

Periodic Review Report 10 April 2020 – 10 April 2023 Tres Bon Cleaners Franklin Square, New York NYSDEC Site No. 130058

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 269 W. Jefferson Street Syracuse, New York 13202 315-431-4610

> January 2024 Version: FINAL EA Project No. 1602523.11

Periodic Review Report 10 April 2020 – 10 April 2023 Tres Bon Cleaners NYSDEC Site No. 130058

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 269 W. Jefferson Street Syracuse, New York 13202 315-431-4610

Donald Conan, P.E., P.G., Program Manager EA Engineering, P.C.

Michael Miller, Project Manager EA Science and Technology

19 January 2024 Date

19 January 2024 Date

January 2024 Version: FINAL EA Project No. 1602523.11

TABLE OF CONTENTS

Page

LIST O	PF TABLESiii
LIST O	F FIGURESiii
LIST O	F APPENDIXESiii
LIST O	F ACRONYMS AND ABBREVIATIONSiv
ES. EX	ECUTIVE SUMMARY ES-1
1.	INTRODUCTION1
	1.1SITE LOCATION, OWNERSHIP, AND DESCRIPTION11.2INVESTIGATION HISTORY11.3REMEDIAL HISTORY21.4REMEDIAL GOALS
2.	INSTITUTIONAL AND ENGINEERING CONTROL PLAN COMPLIANCE52.1INSTITUTIONAL CONTROLS5
	2.2 ENGINEERING CONTROLS 5 2.2.1 Indoor Air Purification Unit. 5 2.2.2 Groundwater Monitoring Well Network 5
	 2.3 DRAFT EXPLANATION OF SIGNIFICANT DIFFERENCE
3.	MONITORING AND SAMPLING PLAN COMPLIANCE
	3.1SITE INSPECTION
	3.2 INDOOR AIR MONITORING 8 3.2.1 March 2022 Indoor Air Sampling 8 3.2.2 March 2023 Indoor Air Sampling 8
4.	GREEN REMEDIATION AND CLIMATE CHANGE RESILIENCE
	4.1GREEN REMEDIATION ASSESSMENT
	4.2 CLIMATE CHANGE VULNERABILITY ASSESSMENT

	5.1 (CONC	LUSIONS	13
	5.2 I	RECO	MMENDATIONS	13
	4	5.2.1	Annual Site Inspections and Indoor Air Monitoring Recommendations	.13
	4	5.2.2	Groundwater Monitoring Recommendations	.14
	4	5.2.3	Indoor Air Monitoring Recommendations	.14
	4	5.2.4	Sub-Slab Vapor Sampling Recommendations	.14
	4	5.2.5	Sub-Slab Depressurization System	.14
	4	5.2.6	Site Management Plan	.15
6.	FUTUR	E SITI	E ACTIVITIES	17
7.	REFER	ENCE	S	19

LIST OF TABLES

- Table 1.Summary of Detected VOCs in Indoor and Outdoor Air (March 2022)
- Table 2.Summary of Detected VOCs in Indoor and Outdoor Air (March 2023)
- Table 3.Monitoring and Sampling Schedule

LIST OF FIGURES

- Figure 1. General Site Location
- Figure 2. Monitoring Well Network
- Figure 3. Building Layout and Sample Locations
- Figure 4. Air Sampling Locations

LIST OF APPENDIXES

- Appendix A. Environmental Justice Screening Tool Report
- Appendix B. Institutional Controls/Engineering Controls Certification
- Appendix C. Site Inspection Forms
- Appendix D. Indoor Air Sampling Letter Reports

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L	Microgram(s) per liter
μg/m ³	Microgram(s) per cubic meter
APU	Air purifying unit
AWQS	Ambient Water Quality Standard
cis-1,2-DCE	cis-1,2-Dichloroethylene
DER	Division of Environmental Remediation
ESD	Explanation of Significant Difference
EA	EA Engineering, P.C. and its affiliate EA Science and Technology
EC	Engineering control
EPA	U.S. Environmental Protection Agency
FPM	FPM Engineering Group
IC	Institutional control
IRM	Interim remedial measure
mg/kg	Milligram(s) per kilogram
No.	Number
NCDH	Nassau County Department of Health
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PCE	Tetrachloroethylene
PRR	Periodic Review Report
RI	Remedial investigation
ROD	Record of Decision
RSO	Remedial Site Optimization
SMP	Site Management Plan
SSDS	Sub-slab depressurization system
SVE	Soil vapor extraction
SVI	Soil vapor intrusion
VOC	Volatile organic compound

ES. EXECUTIVE SUMMARY

Table ES-1. Site Summary

Category	Summary/Results								
Site Name/Site Number	Tres Bon Cleaners (130058)								
Engineering Control									
Engineering Control	Indoor air purification system to remain in service								
	Groundwater monitoring well network.								
Institutional Control	• The Owner shall prohibit the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the Nassau County								
	Department of Health.								
Site Management Plan	A Site Management Plan is not currently in place at this site.								
Certification/Reporting	10 April 2020 to 10 April 2023								
Period									
Monitoring	Frequency								
Site Inspection	As needed								
Monitoring Well Inspection	As needed								
Indoor Air Purifier	As needed								
Sampling	Frequency								
Groundwater	Discontinued in 2013								
Sub-Slab Vapor	As needed								
Indoor Air	As needed, performed annually								
Category	Summary/Results								
Site Management Activities	• Site inspection conducted on 17 February 2022.								
	 Indoor air sampling conducted on 14–15 March 2022. 								
	• Indoor air sampling and site inspection conducted on 6–7 March 2023.								
Site Inspection	On 17 February 2022, the site inspection did confirm compliance with all institutional								
Findings/Concerns	controls but did not confirm compliance with all aspects of engineering controls,								
	because the indoor air purifier was removed from operation by on-site building								
	occupants. During the site inspection, the on-site monitoring wells were not located								
	because of outdoor debris and storage items.								
	On 6 March 2023, EA found the APU in place and operating correctly. EA changed the								
	filters and confirmed that the fan speed was set for the size of the structure. MW-1 and								
	MW-2 remained covered and inaccessible. Additionally, monitoring wells MW-7, MW-								
	9, and MW-10 were not located, but may be present vegetated over in front lawns.								
Air Monitoring	Based on a review of results from the March 2022 and March 2023 air sampling event,								
Findings/Results	the following conclusions can be made:								
1	 Tetrachlorethylene was detected at concentrations below the New York State 								
	Department of Health Ambient Air Quality Guidelines during the March 2022								
	sampling event but was detected at concentrations greater than the guidelines in								
	March 2023.								
	 Engineering Control Indoor air purification unit) failed to mitigate VOCs in indoor 								
	air.								
	• The New York State Department of Health indoor air matrix evaluation concluded								
	that mitigation is required for volatile organic compounds.								
2023 Periodic Review	Continue annual site inspections and indoor air monitoring								
Report Recommendations	• Perform indoor air and sub-slab sampling at off-site residences adjacent to the site								
-	 Install a sub-slab depressurization system 								
	 Institute a Site Management Plan for the site after installation of the sub-slab 								
	depressurization system.								
	depressuization system.								

1. INTRODUCTION

EA Engineering, P.C. and its affiliate EA Science and Technology (EA) was tasked by New York State Department of Environmental Conservation (NYSDEC) under State Superfund Standby Contract Work Assignment Number (No.) D009806-23 to prepare a Periodic Review Report (PRR) for the Tres Bon Cleaners (Site No. 130058) that covers the period from 10 April 2020 through 10 April 2023. The purpose of this PRR is to certify the engineering controls (ECs) and institutional controls (ICs) required by the remedy, report the results of the site inspection and indoor air sampling, and summarize and evaluate the remedy implemented at the site, relative to the requirements of the Record of Decision (ROD) dated March 2004 (NYSDEC 2004). This report was prepared in accordance with the NYSDEC Division of Environmental Remediation (DER)-10, Technical Guidance for Site Investigation and Remediation (NYSDEC 2010). A site summary and applicable remedial program information are summarized in the following sections.

1.1 SITE LOCATION, OWNERSHIP, AND DESCRIPTION

The Tres Bon Cleaners site is a Class 4 inactive hazardous waste disposal site located at 197 Franklin Avenue within the Village of Franklin Square, Nassau County, New York (**Figure 1**). The site is approximately 0.25-acres and identified as Section 35; Block 119; Lot 147. The site is bound on the north by Fenworth Boulevard and to the west by Franklin Avenue. The site contains a one-story building that is surrounded by asphalt pavement. The surrounding parcels are a combination of residential and commercial. The nearest residential area borders directly south and east of the site.

According to property ownership records, the Tres Bon Cleaners property formerly operated as a dry cleaner from 1962 until October 2003. The property changed ownership several times during its history. The building is currently leased as a commercial/retail tenant space.

The site does not fall within a Potential Environmental Justice Area as determined by economic thresholds per the U.S. Environmental Protection Agency (EPA) Environmental Justice Screening and Mapping Tool (EPA 2023). An environmental justice screening tool report is provided in **Appendix A**.

1.2 INVESTIGATION HISTORY

In January 1988, Nassau County Department of Health (NCDH) conducted a site inspection at which time it was noted that water from the dry-cleaning fluid separator was discharged to the soil and pavement in the rear of the building. NCDH collected a soil sample from the discharge area, and tetrachloroethylene (PCE) was detected as a concentration of 30 milligrams per kilogram (mg/kg). The initial soil sampling by NCDH initiated further subsurface investigation that identified PCE in on-site soil gas and groundwater downgradient of the site.

From June 1999 to June 2004, a remedial investigation (RI) (FPM Engineering Group [FPM] 2003) was conducted at the site. The activities performed during the RI were used to evaluate the nature and extent of contamination associated with the historical use of the site and to evaluate possible alternatives for reducing threats to human health and the environment. The RI included

the collection of surface soil, subsurface soil, and groundwater samples. Surface soil samples did not identify elevated concentrations of PCE. Subsurface soil samples from beneath the two dry-cleaning machines contained concentrations of PCE at a maximum 61.4 mg/kg, which was greater than the previous cleanup standards. Results from groundwater samples identified a general decreasing trend in PCE concentrations. During the period from March 2000 to July 2001, PCE concentrations in the shallow downgradient well, MW-5A, ranged from 150 to 2,400 micrograms per liter (μ g/L). However, over the period from December 2001 to June 2003, the concentrations trended downward, with a PCE concentration of 12 μ g/L reported in June 2003, which is slightly above the Class GA Ambient Water Quality Standard (AWQS) of 5 μ g/L (NYSDEC 1998). This downward trend was attributed to the effective operation of the interim remedial measure (IRM).

During the period from September 1999 to June 2003, PCE concentrations in the leading edge well, MW-6, were relatively low, with the exception of an anomalously high concentration of 170 μ g/L in July 2001. Subsequent quarterly sampling over the period from December 2001 to June 2003 showed that PCE concentrations in MW-6 remained low, in the range of 3 to 9 μ g/L.

Based on the results of the RI, the ROD selected No Further Action with continued groundwater monitoring was issued in March 2004 (NYSDEC 2004). Site groundwater monitoring performed between June 2003 and June 2013 continued to show a decrease in PCE concentrations. In September 2010, five additional downgradient wells (MW-7 through MW-11) were installed, and groundwater sampling confirmed that off-site and downgradient concentrations of PCE were below Class GA AWQSs (NYSDEC 1998). Groundwater monitoring was discontinued in 2013 as groundwater on-site and downgradient from the site was no longer at level exceeding the AWQSs.

1.3 REMEDIAL HISTORY

In November 1991, the Owner entered into an agreement with the NCDH to perform an IRM at the site that included soil vapor extraction (SVE), and groundwater extraction and treatment via air stripping. The agreement required the development of a work plan and the construction of the IRM consisting of a groundwater treatment system (air stripper) and SVE system with activated carbon treatment of the extracted soil vapor prior to discharge (NYSDEC 2004). As described below, the air stripper and SVE systems were ultimately operated in three periods, from October 1993 through December 1994, May 1996 through April 1997, and August 1999 through June 2003.

In March 1993, the NYSDEC listed the site as a Class 2 Site in the Registry of Inactive Hazardous Waste Disposal Sites in New York.

The groundwater air stripper and SVE system were in operation from October 1993 to December 1994, when operation of the system was discontinued based on the determination by NCDH that the system had reduced the contamination to levels that were agreed upon in the 1991 Work Plan. The NYSDEC required quarterly monitoring of the groundwater following the system shutdown, and subsequently detected elevated levels of PCE. At the request of the NYSDEC, the system was re-started in May 1996, and the site was reclassified to a Class 4 (site properly closed – requires continued monitoring). The system was again shutdown in April 1997.

In March 1998, the site was reclassified to Class 2 based on recurring exceedances of groundwater standards detected in samples collected from on-site and off-site monitoring wells. In June 1998, NCDH collected samples from the outdoor storm drain. PCE was detected at a concentration of 17 mg/kg in storm drain sediments. Due to structural constraints, only a partial remediation was performed on the storm drain sediments by Tres Bon Cleaners in January 1999.

In August 1999, the SVE and air stripper systems were restarted and operated through June 2003. During the RI, an additional SVE well was installed and monitored for effectiveness in the area of the previously remediated storm drain. Monitoring confirmed the SVE well was effectively removing PCE from the storm drain area (FPM 2003). Operation of the air stripper was discontinued in June 2003 as PCE concentrations measured during groundwater monitoring indicated significant decreasing trends.

The ROD for the site selected No Further Action with continued groundwater monitoring and was issued in March 2004 (NYSDEC 2004). Site groundwater monitoring performed between June 2003 and June 2013 continued to show a decrease in PCE concentrations. Groundwater monitoring was discontinued in 2013 as groundwater on-site and downgradient from the site was no longer at level exceeding the AWQSs.

1.4 REMEDIAL GOALS

According to the ROD (NYSDEC 2004), the remediation goals are to eliminate or reduce to the extent practicable the following:

- Release of contaminants from soil into groundwater that may create exceedances of groundwater quality standards.
- Off-site migration of groundwater that does not attain ambient groundwater quality standards.
- Release of contaminants from subsurface soil into indoor and ambient air through soil vapor.

2. INSTITUTIONAL AND ENGINEERING CONTROL PLAN COMPLIANCE

Since contamination remains in soil vapor at the site, ECs and ICs are required to protect human health and the environment. ICs and ECs were established via the 2004 ROD (NYSDEC 2004). An additional EC in the form or an air purifying unit (APU) was established for the site subsequent to the ROD.

During the certification period an Explanation of Significant Difference (ESD) prepared by the NYSDEC was in draft form to alter the established site remedy. The ROD (NYSDEC 2004) selected No Further Action with continued groundwater monitoring and implementation of an IC restricting groundwater use at site. The ESD will require installation of a vapor mitigation system at the existing on-site building.

A summary of ICs and ECs at the Tres Bon Cleaners site is provided in the following sections.

2.1 INSTITUTIONAL CONTROLS

The ICs established for the site include the following:

• The Owner shall prohibit the use of groundwater as a course of potable or process water, without necessary water quality treatment as determined by the NCDH.

2.2 ENGINEERING CONTROLS

The following ECs have been established for the site:

- Indoor air purification unit
- Groundwater monitoring well network

2.2.1 Indoor Air Purification Unit

An IQAIR[®] GCX series APU was operating in the on-site building during the March 2023 site visit. Prior to the installation of the APU, data indicates that the concentration of PCE in indoor air exceeded New York State Department of Health (NYSDOH) Air Guideline Value of 30 micrograms per cubic meter (μ g/m³).

2.2.2 Groundwater Monitoring Well Network

The ROD (NYSDEC 2004) required continued groundwater monitoring consisting of sampling of the groundwater from the three monitoring wells identified as MW-1, MW-5A, and MW-6. Twelve monitoring wells (MW-1 through MW-5, MW-5A, and MW-6 through MW-11) make up the groundwater monitoring well network and are presented on **Figure 2**. Groundwater monitoring was discontinued in 2013 as groundwater on-site and downgradient from the Site was no longer at level exceeding the AWQSs.

2.3 DRAFT EXPLANATION OF SIGNIFICANT DIFFERENCE

In addition to the 2004 ROD, the ESD in draft form during the certification period will add the following ICs and ECs to the site.

The ESD in draft form during the current certification period will establish institutional controls in the form of an Environmental Easement and Site Management Plan for the Site which will:

- Require the remedial party or site owner to complete and submit a periodic certification of institutional and engineering controls in accordance with 6 New York Code of Rules and Regulations (NYCRR) Part 375-1.8 (h)(3).
- Allow the use and development of the controlled property for commercial or industrial use as defined by 6 NYCRR Part 375-1.8(g), although land use is subject to local zoning laws.
- Restrict the use of groundwater as a source of potable or process water without necessary treatment as determined by the NYSDOH.
- Require compliance with the Department-approved Site Management Plan.

The Site Management Plan will include an Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the steps and media-specific requirements necessary to ensure the institutional and engineering controls remain in place.

The ESD in draft form during the current certification period will require an additional EC in the form of a sub-slab depressurization system, or other acceptable measures, to mitigate the migration of vapors into the on-site building from soil and/or groundwater.

2.4 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION

The IC/EC certification form is provided in **Appendix B** of this PRR. While ICs are in place and being adhered to, due to indoor air results and the inconsistent operation of the APU as presented in Section 3, certification of ECs is not possible as this time. Further discussion is presented in Section 5. Additionally, on-site monitoring wells MW-1 and MW-2 are currently covered and no longer accessible.

3. MONITORING AND SAMPLING PLAN COMPLIANCE

Site inspections and indoor air sampling were performed in accordance with NYSDEC DER-10 (NYSDEC 2010) and NYSDOH Indoor air guidelines (NYSDOH 2006).

3.1 SITE INSPECTION

Site-wide inspections shall be performed as needed until a Site Management Plan (SMP) establishes a schedule. The inspections include evaluation of the following:

- Compliance with all ICs, including site usage
- Condition and continued effectiveness of ECs
- General site conditions at the time of inspection
- Site management activities, including media sampling
- Confirmation that site records are up-to-date

Two site inspections occurred within the reporting period. A summary of the inspections is summarized in the section below. The site inspection forms are included in **Appendix C**.

3.1.1 February 2022 Site Inspection

On 17 February 2022, EA performed a site inspection of on-site features. EA noted that the indoor APU was not located within the structure. During an interview with the store clerk, the clerk mentioned that the APU was located within an outdoor shed and had not in operation within the building for approximately 1 to 2 years. EA installed the APU within the building, changed the filters, and set the appropriate fan speed for the size of the structure.

After the installation of the APU, EA continued the site inspection within the two retail spaces of the business, looking for plumbing, heating, ventilation, and air conditioning systems, as well as cracks in the floor and floor drains. EA attempted to locate the on-site monitoring wells MW-1 and MW-2 that were likely covered in debris and storage items, during the site inspection.

3.1.2 March 2023 Site Inspection

On 6 March 2023, EA performed a site inspection of on-site features. EA found the APU in place and operating correctly. EA changed the filters and confirmed that the fan speed was set for the size of the structure.

Consistent with the 2022 Site Inspection, EA attempted to locate the on-site monitoring wells MW-1 and MW-2, which remained covered in debris and storage items and are inaccessible. Additionally, monitoring wells MW-7, MW-9, and MW-10 were not located. It is believed these monitoring wells are vegetated over in front lawns. These monitoring wells are likely accessible but may require updated access approval from the homeowners.

3.2 INDOOR AIR MONITORING

Two indoor air sampling events have occurred within the reporting period. Indoor air samples were collected on 14–15 March 2022 and 6–7 March 2023. A summary of the sampling events is summarized below. The Indoor Air Sampling Letter Reports are included in **Appendix D**. Air canisters were analyzed for volatile organic compounds (VOCs) by Method TO-15. Laboratory analysis reports and data usability summary reports are included in the **Appendix D** Letter Reports.

3.2.1 March 2022 Indoor Air Sampling

EA completed air sampling on 14–15 March 2022. The purpose of the event was to evaluate the potential for VOCs such as PCE to enter the building and impact indoor air through a process called soil vapor intrusion (SVI). The samples were collected as part of a continued effort to evaluate the effectiveness of the on-site air purifying unit and the potential need for installation of a sub-slab depressurization system (SSDS). Two indoor air samples were collected inside the building, and one outdoor air sample was collected concurrently to provide information on background ambient air quality in the vicinity of the site. The general building layout including sample locations is presented on **Figure 3**. The Site layout including sample locations is presented on **Figure 4**.

The results from the indoor air sample collection were evaluated with NYSDOH Air Guidelines. Concentrations of PCE (15.3 μ g/m³ maximum) detected in indoor air were less than the NYSDOH Air Guideline Value of 30 μ g/m³. However, an evaluation with NYSDOH indoor air decision matrices (NYSDOH 2006) concluded mitigation is required for PCE to prevent VOCs from entering the building through SVI (EA 2022a). A summary of the detected VOCs in indoor and outdoor air is provided in **Table 1**.

3.2.2 March 2023 Indoor Air Sampling

EA completed air sampling from 6 to 7 March 2023. The purpose of the event was to evaluate the potential for VOCs such as PCE to enter the building and impact indoor air through a process called SVI. The samples were collected as part of a continued effort to evaluate the effectiveness of the on-site air purifying unit and the potential need for installation of a SSDS. Two indoor air samples were collected inside the building, and one outdoor air sample was collected concurrently to provide information on background ambient air quality in the vicinity of the site.

The results from the indoor air sample collection were evaluated with NYSDOH Air Guidelines. Concentrations of PCE ($32 \ \mu g/m^3$ maximum) detected in indoor air were greater than the NYSDOH Air Guideline Value of $30 \ \mu g/m^3$. In addition, the NYSDOH indoor air decision matrices concluded that mitigation is required for *cis*-1,2-Dichloroethylene (*cis*-1,2-DCE) and PCE to prevent the VOCs from entering the building through SVI (EA 2023). A summary of the detected VOCs in indoor and outdoor air is provided in **Table 2**.

4. GREEN REMEDIATION AND CLIMATE CHANGE RESILIENCE

Consistent with NYSDEC DER-31 Green Remediation Policy, this section provides a brief summary and qualitative assessment of the overall environmental impacts or environmental footprint of the site for the current reporting period. In accordance with the NYSDEC's Executive Order No. 24, consideration has been given to reducing the consumption of energy and materials; and thereby, reducing the production of greenhouse gases, in the operation and maintenance of the site. Implementation of NYSDEC DER-31 and Executive Order No. 24 have not compromised the selected remedy's protectiveness of public health and the environment, nor has it hindered achievement of the remedial goals established for the site.

As each discrete step of any site operation and maintenance activity consumes resources and energy, consideration has been given to reducing/eliminating those activities, which may not be critical to the protectiveness of the selected remedy.

A critical infrastructure vulnerability assessment was not completed during this certifying period but will be completed in the 2023 reporting period. Such an assessment could generally be utilized to evaluate the potential consequences climate changes may have on a site, as well as any ongoing Site management activities.

4.1 GREEN REMEDIATION ASSESSMENT

In accordance with the NYSDEC's DER-31 Green Remediation policy, the following section provides a qualitative assessment of the overall environmental impacts, or environmental footprint associated with the remedy.

4.1.1 Electric Usage

Implementation of the selected remedy uses electricity to operate the air purifier.

4.1.2 Fossil Fuel Usage

Implementation of the selected remedy does not directly use fossil fuels as part of site management; however, fossil fuels are indirectly used during the completion of maintenance and monitoring activities associated with the groundwater monitoring well network.

Indirect fossil fuel use results from completion of the following site-related activities:

- Transportation to and from the site for monitoring, sampling, and well rehabilitation
- Off-site transportation and shipment of samples collected for laboratory analysis
- Disposal of waste generated at the site

4.1.3 Water Usage

Implementation of the selected remedy does not directly require the use water at this site. However, a *de minimis* quantity of water is used during sampling events for equipment decontamination.

4.1.4 Air Emissions

Implementation of the selected remedy does not directly emit contaminants to the air, nor impact air quality other than through the combustion of fossil fuels in vehicles and use in generators, as described above.

4.1.5 Consumption of Materials and Generation of Waste

Monitoring, maintenance, and reporting activities associated with groundwater sampling events result in material consumption and the generation of waste. A summary of the current material consumption and waste generation activities for the site are summarized below:

- Personal protective equipment associated with groundwater sampling, such as nitrile gloves, etc.
 - While necessary for sampling, proper field and sample planning reduces the amount of PPE necessary to complete the sampling events. Wherever possible, reusable PPE including cut resistant gloves, safety glasses, and steel toe boots are used.
- Consumables associated with groundwater sampling such as polyethylene tubing, paper towels, trash bags, etc.
 - Proper field and sample planning reduces the number of consumables necessary to complete the sampling events. Consumables made from recycled materials are purchased whenever possible.
- Packaging material and ice used to pack and preserve samples to be submitted for laboratory analysis
 - Reusable packaging materials including sample coolers reduces the amount of packaging materials needed. Additionally, bubble wrap and other supplies shipped with the empty glassware/summa canisters from the laboratory are reused during shipment of filled sample glassware to the laboratory to reduce consumption of packaging materials.
- Paper and office supplies associated with site logs, monitoring logs, and report preparation.
 - Consumption of paper office supplies is reduced through the preparation of reports in electronic format.
- Repair and replacement of equipment associated with the monitoring well network.
 - Active site management can reduce the amount of equipment needed for repair/replacement of equipment by identifying and fixing issues before they elevate to a level requiring full replacement or a greater amount of repair materials.

4.2 CLIMATE CHANGE VULNERABILITY ASSESSMENT

Increases in both the severity and frequency of storms and weather events, an increase in sea-level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuations, resulting from global climate change and instability, have the potential to significantly impact the performance, effectiveness, and protectiveness of a given site remedy. The intent of this vulnerability assessment is to provide information to allow the site remedy to better prepare for the impacts of the increasing frequency and intensity of severe storms, weather events, and associated flooding brought on by global climate changes and instabilities, in order to ultimately enhance the remedy's resilience to such events.

This section briefly summarizes the vulnerability of the site and/or the remedy to severe storms, weather events and associated flooding.

This assessment included consideration of the following:

- Flood Plain—The site is not in a flood plain.
- Site Drainage and Storm Water Management—The site is generally well drained with minimal potential for flooding or damage to the monitoring well network during severe rain events.
- Erosion—There is no evidence of erosion at the site or areas of the site that may be susceptible to erosion during periods of severe rain events.
- High Wind—There is no risk of wind damage because the indoor air vapor points and monitoring wells are flush-mounted.

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

Based on a review of results from site inspections and indoor air sampling events performed during the certification period, the following conclusions can be made:

- The APU engineering control is not consistently installed, running, and operating in a manner consistent with the user manual at all times.
- Concentrations of PCE in indoor air was greater than the NYSDOH Air Guidelines value during the March 2023 indoor air sampling event while the APU EC was operating.
- Mitigation for *cis*-1,2-DCE and PCE is recommended from the NYSDOH indoor air decision matrices.
- IC/EC Form lists the monitoring well network as an EC, however there is currently no groundwater monitoring program.

As mentioned in Section 2.3, while ICs are in place and being adhered to, due to indoor air results and the inconsistent operation of the APU as presented in Section 3, certification of the ECs is not possible as this time.

5.2 **RECOMMENDATIONS**

A summary of the recommended monitoring and inspection schedule is presented in **Table 3**. Recommendations will be incorporated into the SMP pending NYSDEC approval. Additionally, EA recommends the following actions for the site:

- Continue annual site inspections and indoor air monitoring.
- Upon issuance of the ESD, design and installation of a SSDS to mitigate soil vapor intrusion into the on-site building.
- Establishment of a SMP for the site.

5.2.1 Annual Site Inspections and Indoor Air Monitoring Recommendations

EA recommends that the site inspections and indoor air monitoring continue to be performed annually. Indoor air sampling along with a concurrent outdoor air sample to evaluate the presence of VOCs potentially resulting from vapor intrusion. A minimum of two indoor air samples and one outdoor air background sample will be collected annually for compounds on the NYSDEC DER's Vapor Intrusion Target Compound List using EPA Method TO-15.

5.2.2 Groundwater Monitoring Recommendations

EA recommends a re-evaluation of the site groundwater to verify that PCE has not re-mobilized since the last sampling data collection in 2013. None of the analytes that were detected from the 2013 groundwater sampling were reported in concentrations exceeding their respective water quality standards/guidance values. It is recommended to sample groundwater within 6 months of finalizing the Site Management Plan (SMP) described in Section 5.2.6 and continue to be sampled as determined by the State agencies.

5.2.3 Indoor Air Monitoring Recommendations

Indoor air sampling is recommended to be conducted annually along with a concurrent outdoor air sample to evaluate the presence of VOCs potentially resulting from vapor intrusion. A minimum of two indoor air samples and one outdoor air background sample will be collected annually for compounds on the NYSDEC DER's Vapor Intrusion Target Compound List using EPA Method TO-15. The March 2022 and March 2023 sampling events reported exceedances of guidance values for VOCs.

Indoor air sampling is recommended for the adjacent and downgradient off-site properties during the 2023/2024 heating season.

5.2.4 Sub-Slab Vapor Sampling Recommendations

Sub-slab vapor monitoring is recommended at the on-site building during the next PRR reporting period to establish an updated baseline concentrations of VOCs in sub-slab vapor that have the potential to enter the building through vapor intrusion. The previous sub-slab vapor sample was collected in 2018 in which results indicated exceedances of PCE at a concentration of 80,000 μ g/m³. A minimum of one sub-slab vapor sample will be collected for compounds on the NYSDEC DER's Vapor Intrusion Target Compound List using EPA Method TO-15.

Sub-slab vapor sampling in conjunction with indoor air sampling is recommended for the adjacent and downgradient off-site properties during the 2023/2024 heating season.

5.2.5 Sub-Slab Depressurization System

As discussed in Section 2, during the certifying period an ESD was in draft form. The ESD will require the design and construction of a of an SSDS or equivalent SVI mitigation method as an EC at the site to mitigate VOCs, such as PCE and *cis*-1,2-DCE from entering the building by SVI. This new remedy would include a permanent SSDS or equivalent that cannot be moved by occupants of the on-site building. NYSDEC is progressing forward with an ESD report to modify the 2004 ROD by requiring an SSDS or equivalent to the remedy (NYSDEC 2004).

The installation of an SSDS is necessary based on evaluation of 2018 subs-slab and 2022 indoor air sampling results using the NYSDOH indoor air decision matrices (NYSDOH 2006). The NYSDOH determined in a letter to Ms. Evelyn Hussey dated 6 July 2022 that an SSDS is required for the site (Tucholski 2022).

This was confirmed on 7 March 2023, when despite operation of the APU, PCE was detected at a maximum indoor air concentration of $32 \mu g/m^3$, which is greater than the NYSDOH Ambient Air Quality Guideline and both PCE and *cis*-1,2-DCE require mitigation per the NYSDOH indoor air decision matrices (NYSDOH 2006).

5.2.6 Site Management Plan

Subsequent to installation of the SSDS, an SMP formalizing site management activity for the site including operation and maintenance of the SSDS should be prepared. The SMP will govern all aspects of the site, including notifications, inspections, monitoring, operations and maintenance, and reporting.

6. FUTURE SITE ACTIVITIES

Based on the recommendations in Section 5, the following site management activities will be completed during the next PRR reporting period (10 April 2023 to 10 April 2024):

- Site Inspection—Annual (conducted in June 2023)
- Indoor Air Sampling—Annual (planned for February or March 2024)
- PRR—Annual (next reporting period 10 April 2023 to 10 April 2024).

7. REFERENCES

- EA Engineering, P.C. and its affiliate EA Science and Technology (EA). 2022a. Summary of Indoor Air Sampling Results from March 2022, Contract/Work Assignment No. D009806-23, Tres Bon Cleaners, Franklin Square, New York, Site No. 130058, EA Project No. 1602523. 17 May.
 - ——. 2022b. Draft Site Management Plan, Tres Bon Cleaners, Franklin Square, New York, NYSDEC Site No. 130058, NYSDEC State Superfund Standby Contract (Work Assignment No. D009806-23). August.
 - ——. 2023. Summary of Indoor Air Sampling Results from March 2023, Contract/Work Assignment No.: D009806-23, Tres Bon Cleaners, Franklin Square, New York, site No. 130058, EA Project No. 1602523. 26 May.
- FPM Engineering Group, P.C. formerly Fanning, Phillips and Molnar Engineers (FPM). 2003. *Remedial Investigation Report. Tres Bon Cleaner Site No. 130058. Franklin Square, Nassau County, New York.* September.
- New York State Department of Environmental Conservation (NYSDEC). 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June. April 2000 Addendum.

——. 2004. Record of Decision. Tres Bon Cleaner Site No. 130058. Franklin Square, Nassau County, New York. March.

——. 2010. Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation.

- New York State Department of Health (NYSDOH). 2006. *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, October, and NYSDOH Soil Vapor Intrusion Updates dated September 2013, August 2015, and May 2017.
- Tucholski, D. 2022. New York State Department of Health. Letter to E. Hussey (New York State Department of Environmental Conservation. 6 July.
- U.S. Environmental Protection Agency (EPA). 2023. *Potential Environmental Justice Area Communities.* Accessed on 12 July 2023. <u>https://www.arcgis.com/apps/mapviewer/index.html?layers=02d8ba023f90403c92f5523e</u> <u>8f3c8208</u>

Tables

		Indoor Air		Outdoor Air			NYSDOH					
	Sample ID	130058-IA1 L147195-01 1st Floor/Show Room 3/15/2022		130058-IA-2 L1471925-02 1st Floor/Kitchen 3/15/2022		130058-DUP-	1	130058-OA-1			Ambient Air Quality	
	Laboratory ID					L1471925-02		L1471925-03		NYSDOH		
	Room					1st Floor/Show R	oom	Outdoor		Ambient Air	Recommended	
	Sample Date					3/15/2022		3/15/2022		Quality	Immediate	
Analyte	Sample Type	Indoor Air		Indoor Air		Indoor Air		Outdoor Air		Guideline ¹	Action Level ¹	
VOCs (TO-15)												
1,2,4-Trimethylbenzene	$\mu g/m^3$	U		0.834	J	U		U				
1,2-Dichloroethane	$\mu g/m^3$	0.437	J	U		0.409	J	U				
2-Butanone (MEK)	$\mu g/m^3$	6.1		4.48		4.87		1.78	J			
2,2,4-Trimethylpentane	$\mu g/m^3$	U		0.649	J	U		U				
Benzene	$\mu g/m^3$	0.543	J	1.02		0.53	J	0.77				
Carbon tetrachloride	$\mu g/m^3$	U		0.569	J	U		U				
Chloromethane	$\mu g/m^3$	1.34		1.36		1.49		1.26				
Dichlorodifluoromethane	$\mu g/m^3$	2.33		2.6		2.6		2.44				
Ethanol	$\mu g/m^3$	1340	J	2560	J	1600	J	232	J			
Ethylbenzene	$\mu g/m^3$	U		0.377	J	U		U				
Trichlorofluoromethane	$\mu g/m^3$	1.4		1.44		1.39		1.23				
4-Methyl-2-pentanone (MIBK)	$\mu g/m^3$	0.815	J	U		0.491	J	U				
Methylene Chloride	$\mu g/m^3$	0.861		0.809		0.927		0.743		60		
tert-Butyl alcohol	$\mu g/m^3$	3.97	J	1.88		U	J	0.603				
Tetrachloroethylene (PCE)	$\mu g/m^3$	13.6		15.3		12.8		U		30	300	
Toluene	$\mu g/m^3$	3.22		3.32		3.1		1.37	J			
m&p-Xylene	$\mu g/m^3$	0.698	J	1.14	J	U		U				
o-Xylene	$\mu g/m^3$	0.413	J	0.581	J	U		U				

Table 1. Summary of Detected VOCs in Indoor and Outdoor Air (March 2022)

Notes:

¹ NYSDOH Ambient Air Guidelines and Immediate Action Levels based on the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, and NYSDOH Soil Vapor Intrusion Updates dated September 2013, August 2015, and May 2017.

 $\mu g/m^3 = Microgram(s)$ per cubic meter = parts per billion

ID = Identification

J = The identification of the analyte is acceptable; the reported value is an estimate.

NYSDEC = New York State Department of Environmental Conservation

NYSDOH = New York State Department of Health

VOC = Volatile organic compound

U = Not detected at the Reporting Limit (or Method Detection Limit where applicable).

Analytical data results provided by Pace Analytical.

Duplicate sample was collected at 130058-IA-1.

Version: FINAL Table 1, Page 1 of 1 January 2024

	Building Indoor Air Outdoor Air								r			
	Sample ID	130058-1	130058-OA-		1	NYSDOH						
	Laboratory ID						8-DUP-1 130058-OA-1 351-03 23C1351-04			NYSDOH	Ambient Air Quality	
	Room	1st Floor/Show Room		1st Floor/Kitch		1st Floor/Show Re	oom	Outdoor		Ambient Air	Recommended	
	Sample Date	3/7/2023		3/7/2023		3/7/2023		3/7/2023		Quality	Immediate	
Analyte	Sample Type	Indoor A	Air	Indoor Air		Indoor Air		Outdoor Air	•	Guideline ¹	Action Level ¹	
VOCs (TO-15)		1				1						
Acetone	$\mu g/m^3$	20		50		23		8.8				
Benzene	$\mu g/m^3$	4.3		1.6		4.1		0.65				
2-Butanone (MEK)	$\mu g/m^3$	1.4	J	4.6	J	2.4	J	1.5	J			
Carbon Disulfide	$\mu g/m^3$	0.13	J	1.6		0.1	J	< 0.10				
Carbon Tetrachloride	$\mu g/m^3$	0.23		0.46		0.24		0.41				
Chloroethane	$\mu g/m^3$	0.18		< 0.094		0.16		< 0.081				
Chloromethane	$\mu g/m^3$	1.4		1.3		1.3		1.3				
Cyclohexane	$\mu g/m^3$	0.2		0.18	1	0.16		0.096	J			
Dichlorodifluoromethane (Freon 12)	$\mu g/m^3$	2.4		< 0.19		2.4		3.2				
1,2-Dichloroethane	$\mu g/m^3$	0.17		< 0.15		0.16		< 0.13				
cis-1,2-Dichloroethylene	$\mu g/m^3$	< 0.10		3		< 0.10		< 0.10				
trans-1,2-Dichloroethylene	$\mu g/m^3$	0.25		< 0.12		< 0.11		< 0.11				
Ethanol	$\mu g/m^3$	670	Е	11000	Е	660	Е	120	Е			
Ethyl Acetate	$\mu g/m^3$	2.4		9.5		2.7		< 0.63				
Ethylbenzene	$\mu g/m^3$	0.5		0.26		0.38		0.15				
4-Ethyltoluene	$\mu g/m^3$	0.12	J	0.13	J	< 0.11		< 0.11				
Heptane	$\mu g/m^3$	1.8		0.76		1.3		0.38				
Hexane	$\mu g/m^3$	0.7	J	< 0.73		< 0.64		<0.64				
2-Hexanone (MBK)	$\mu g/m^3$	< 0.071		1.1		0.61		0.32				
Isopropanol	$\mu g/m^3$	5.2		6.9		6.1		1.6	J			
Methylene Chloride	$\mu g/m^3$	0.71	J	< 0.64		0.68	J	< 0.56		60		
Naphthalene	$\mu g/m^3$	0.55	L-03, V-05	< 0.16		< 0.14		< 0.14				
Styrene	$\mu g/m^3$	0.9		0.34		0.92		< 0.078				
Tetrachloroethylene	$\mu g/m^3$	32		12		31		0.36		30	300	
Tetrahydrofuran	$\mu g/m^3$	0.46	J	< 0.19		< 0.17		< 0.17				
Toluene	$\mu g/m^3$	1.8		1.1		1.6		0.78				
Trichloroethylene	$\mu g/m^3$	< 0.13		0.25		< 0.13		< 0.13		2		
Trichlorofluoromethane (Freon 11)	$\mu g/m^3$	0.67		1.3	1	0.68	J	1.3				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	$\mu g/m^3$	< 0.30		0.71	J	< 0.30		0.61	J			
1,2,4-Trimethylbenzene	$\mu g/m^3$	0.58		0.52	1	0.28		0.19				
1,3,5-Trimethylbenzene	$\mu g/m^3$	0.14	J	0.23	1	< 0.091		< 0.090				
Vinyl Acetate	$\mu g/m^3$	< 0.66		< 0.76	1	2.3	J	<0.66				
m&p-Xylene	$\mu g/m^3$	0.98		0.64	1	0.66		0.46				
o-Xylene	$\mu g/m^3$	0.44		0.3		0.31		0.2				

Table 2. Summary of Detected VOCs in Indoor and Outdoor Air (March 2023)

Version: FINAL Table 2, Page 1 of 2 January 2024

		ŭ.		· · · · · · · · · · · · · · · · · · ·	
	Building		Outdoor Air		
	Sample ID	130058-IA1	130058-IA-2	130058-DUP-1	130058-OA-1
	Laboratory ID	23C1351-01	23C1351-02	23C1351-03	23C1351-04
	Room	1st Floor/Show Room	1st Floor/Kitchen	1st Floor/Show Room	Outdoor
	Sample Date	3/7/2023	3/7/2023	3/7/2023	3/7/2023
Analyte	Sample Type	Indoor Air	Indoor Air	Indoor Air	Outdoor Air

Table 2. Summary of Detected VOCs in Indoor and Outdoor Air (March 2023)

Notes:

^{1.} NYSDOH Ambient Air Guidelines and Immediate Action Levels based on the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, and NYSDOH Soil Vapor Intrusion Updates dated September 2013, August 2015, and May 2017.

Bold values exceed Ambient Air Guidelines

 $\mu g/m3 = Microgram(s)$ per cubic meter = parts per billion

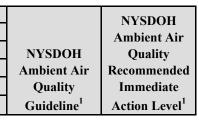
- ID = Identification
- J = The identification of the analyte is acceptable; the reported value is an estimate.
- E #NAME?

L-03 Laboratory fortified blank/control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the low side.

V-05 Continuing Calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

NYSDEC = New York State Department of Environmental Conservation

NYSDOH = New York State Department of Health

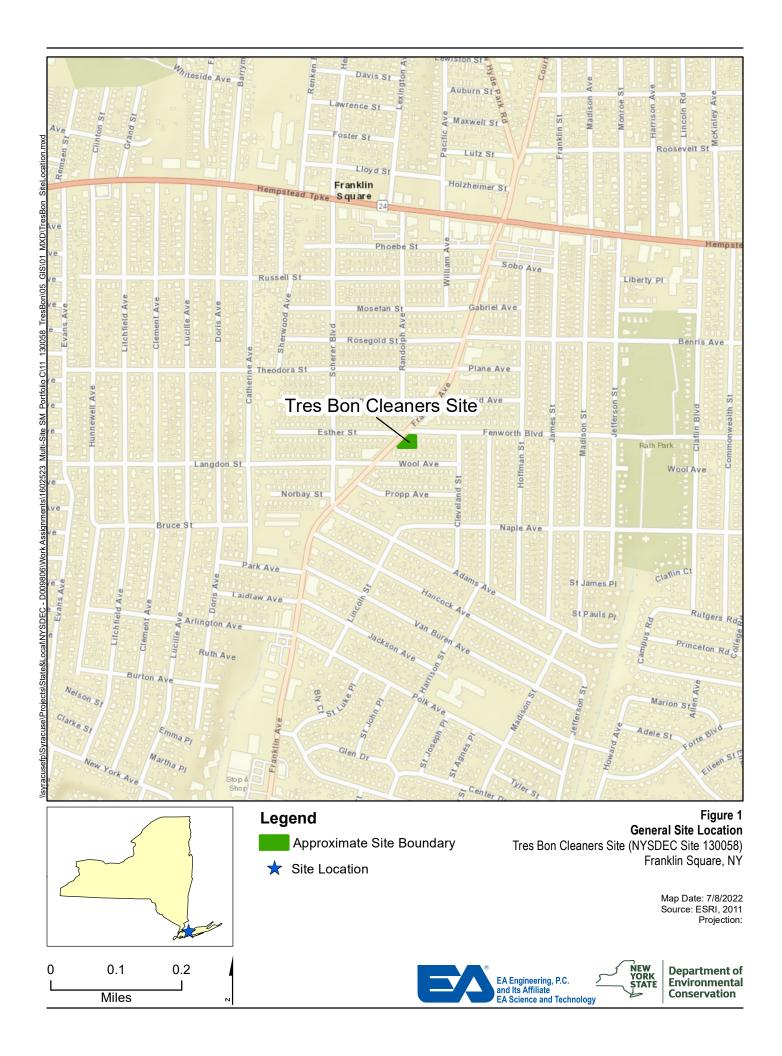

VOC = Volatile organic compound

U = Not detected at the Reporting Limit (or Method Detection Limit where applicable).

Analytical data results provided by Pace Analytical.

Duplicate sample was collected at 130058-IA-1.

Version: FINAL Table 2, Page 2 of 2 January 2024



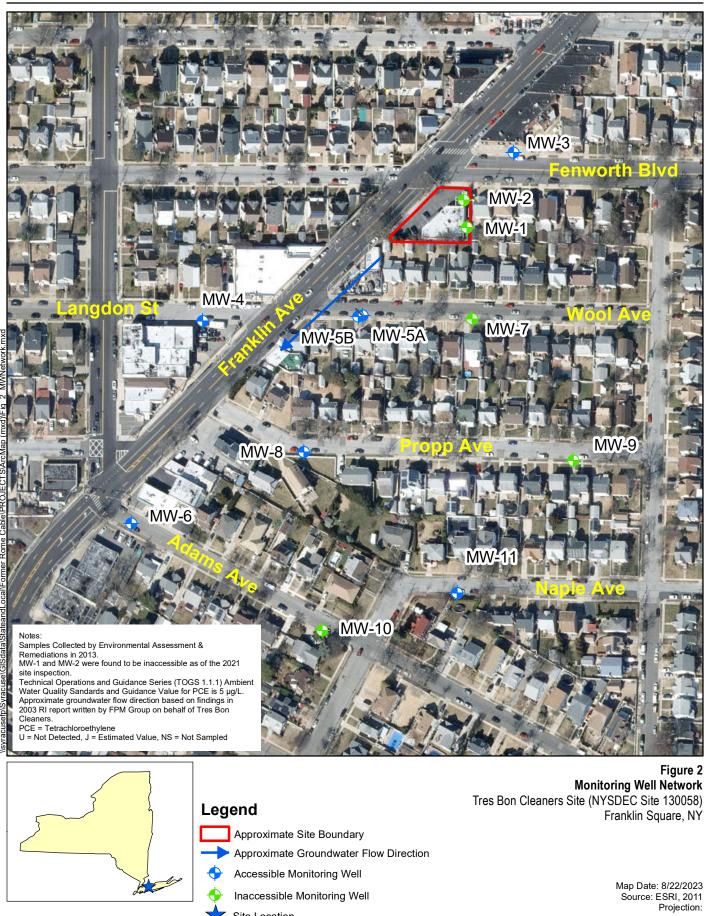

biased on the low side. nd.

Table 5. Womtoring and Samping Schedule						
Site Management Activities Frequency						
Monitoring						
Site Inspection	Annually					
Monitoring Well Inspection	Annually					
Indoor Air Purifier	Annually					
Sampling						
Indoor Air	Annually					

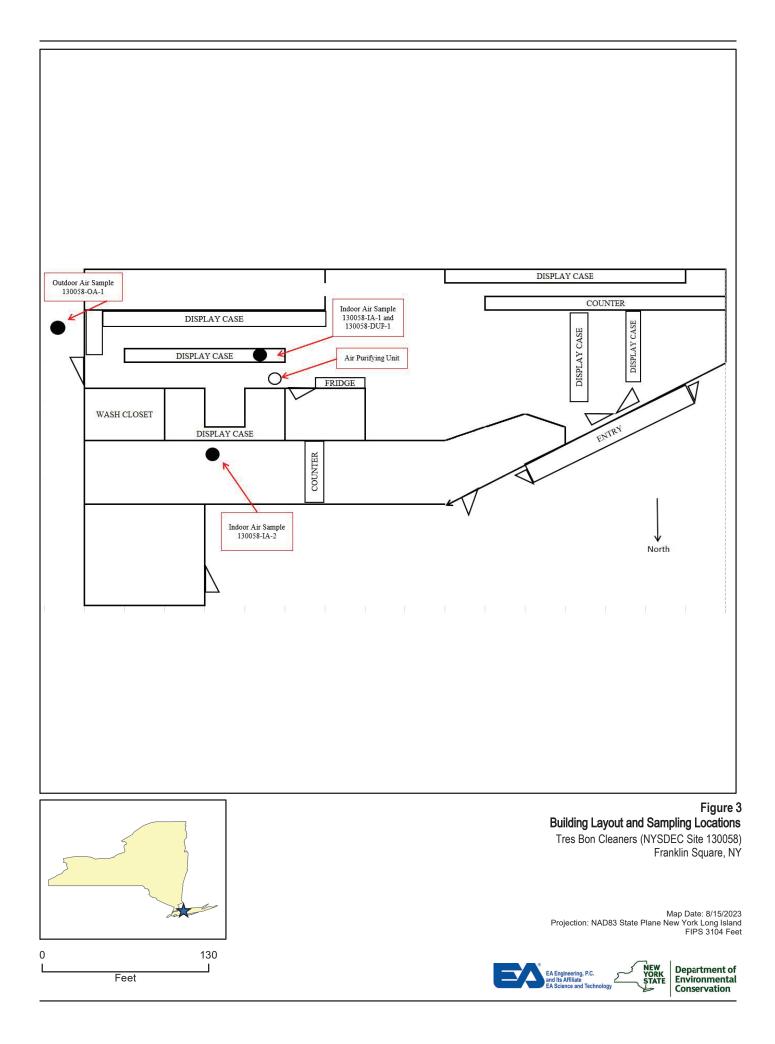
Table 3. Monitoring and Sampling Schedule

Figures

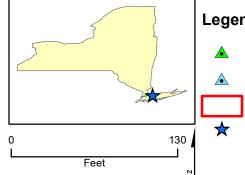
Site Location

 \mathbf{X}

330


165

Feet


NEW YORK

Department of Environmental Conservation

- Legend
 - Indoor Air Sample (Approximate Location)
 - Outdoor Air Sample (Approximate Location)
 - Tres Bon Cleaners Approximate Site Boundary
 - Site Location

Air Sample Locations Tres Bon Cleaners (NYSDEC Site 130058) Franklin Square, NY

Map Date: 6/16/2022 Projection: NAD83 State Plane New York Long Island FIPS 3104 Feet

Appendix A

Environmental Justice Screening Tool Report

50 - 60 per

EJScreen Community Report

This report provides environmental and socioeconomic information for user-defined areas, and combines that data into environmental justice and supplemental indexes.

Franklin Square, NY

1 mile Ring Centered at 40.702570,-73.678672 Population: 41,261 Area in square miles: 3.14

Persons with

disabilities:

9 percent

\$44,567

Per canita

income

COMMUNITY INFORMATION

SEPA

munity Maps Contributors, Nassau County, @ Map, Microsoft, Earl, HERE, Garmin, SafeGraph logies, Inc, METINASA, USGS, EPA, NPS, US Census

Unemployment:

5 percent

83 years

Average life

expectancy

Male

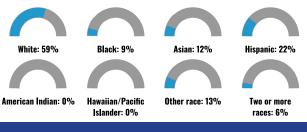
50 percent

Number of

households:

12,356

Female: 50 percent



occupied:

81 percent

BREAKDOWN BY RACE

BREAKDOWN BY AGE

From Ages 1 to 4	5%
From Ages 1 to 18	19%
From Ages 18 and up	81%
From Ages 65 and up	17%

LIMITED ENGLISH SPEAKING BREAKDOWN

Speak Spanish	40%
Speak Other Indo-European Languages	35%
Speak Asian-Pacific Island Languages	25%
Speak Other Languages	0%

Notes: Numbers may not sum to totals due to rounding. Hispanic popultion can be of any race. Source: U.S. Census Bureau, American Community Survey (ACS) 2017-2021. Life expectancy data comes from the Centers for Disease Control.

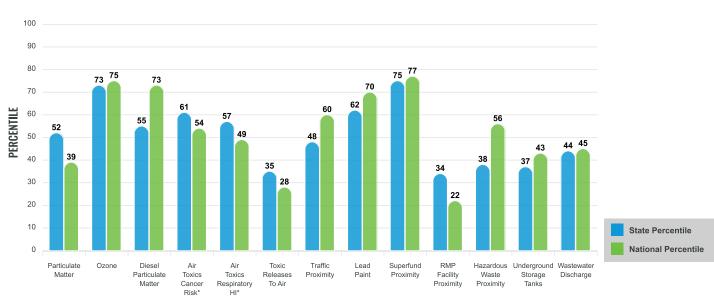
LANGUAGES SPOKEN AT HOME

LANGUAGE	PERCENT
English	61%
Spanish	17%
French, Haitian, or Cajun	4%
Russian, Polish, or Other Slavic	1%
Other Indo-European	9%
Chinese (including Mandarin, Cantonese)	2%
Tagalog (including Filipino)	2%
Other Asian and Pacific Island	3%
Other and Unspecified	1%
Total Non-English	39%

www.epa.gov/ejscreen

Environmental Justice & Supplemental Indexes

The environmental justice and supplemental indexes are a combination of environmental and socioeconomic information. There are thirteen EJ indexes and supplemental indexes in EJScreen reflecting the 13 environmental indicators. The indexes for a selected area are compared to those for all other locations in the state or nation. For more information and calculation details on the EJ and supplemental indexes, please visit the <u>EJScreen website</u>.


\equiv **EJ INDEXES FOR THE SELECTED LOCATION** 100 90 80 78 77 76 74 74 71 70 64 64 61 60 60 PERCENTILE 60 56 57 56 56 55 53 53 52 50 49 45 43 41 40 38 40 30 30 20 10 State Percentile National Percentile 0 Hazardous Particulate Ozone Diesel Air Air Toxic Traffic Lead Superfund RMP Underground Wastewater Particulate Proximity Facility Matter Toxics Toxics Releases Paint Proximity Waste Storage Discharge Matter Cancer To Air Proximity Tanks Respiratory Proximity Risk* HP

EJ INDEXES

The EJ indexes help users screen for potential EJ concerns. To do this, the EJ index combines data on low income and people of color populations with a single environmental indicator.

SUPPLEMENTAL INDEXES

The supplemental indexes offer a different perspective on community-level vulnerability. They combine data on percent low-income, percent linguistically isolated, percent less than high school education, percent unemployed, and low life expectancy with a single environmental indicator.

SUPPLEMENTAL INDEXES FOR THE SELECTED LOCATION

These percentiles provide perspective on how the selected block group or buffer area compares to the entire state or nation.

Report for 1 mile Ring Centered at 40.702570,-73.678672

www.epa.gov/ejscreen

 \equiv

EJScreen Environmental and Socioeconomic Indicators Data

SELECTED VARIABLES	VALUE	STATE AVERAGE	PERCENTILE IN STATE	USA AVERAGE	PERCENTILE IN USA		
POLLUTION AND SOURCES							
Particulate Matter (µg/m ³)	7.69	7.71	46	8.08	37		
Ozone (ppb)	68.6	62.6	87	61.6	90		
Diesel Particulate Matter (µg/m ³)	0.434	0.525	53	0.261	86		
Air Toxics Cancer Risk* (lifetime risk per million)	30	29	44	28	35		
Air Toxics Respiratory HI*	0.3	0.33	41	0.31	31		
Toxic Releases to Air	130	450	29	4,600	26		
Traffic Proximity (daily traffic count/distance to road)	180	430	51	210	72		
Lead Paint (% Pre-1960 Housing)	0.78	0.55	72	0.3	90		
Superfund Proximity (site count/km distance)	1.1	0.24	95	0.13	98		
RMP Facility Proximity (facility count/km distance)	0.072	0.21	31	0.43	19		
Hazardous Waste Proximity (facility count/km distance)	0.86	4.3	32	1.9	58		
Underground Storage Tanks (count/km ²)	1.7	7.7	41	3.9	56		
Wastewater Discharge (toxicity-weighted concentration/m distance)		5	46	22	55		
SOCIDECONOMIC INDICATORS			-	-	•		
Demographic Index	32%	35%	54	35%	53		
Supplemental Demographic Index	11%	14%	44	14%	40		
People of Color	48%	42%	61	39%	65		
Low Income	15%	28%	34	31%	28		
Unemployment Rate	5%	6%	55	6%	58		
Limited English Speaking Households	7%	7%	70	5%	80		
Less Than High School Education	12%	12%	61	12%	64		
Under Age 5	5%	5%	53	6%	50		
Over Age 64	17%	17%	56	17%	56		
Low Life Expectancy	15%	17%	26	20%	12		

*Diesel particulate matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's Air Toxics Data Update, which is the Agency's ongoing, comprehensive evaluation of air toxics in the United States. This effort aims to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that the air toxics data presented here provide broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. Cancer risks and hazard indices from the Air Toxics Data Update are reported to one significant figure and any additional significant figures here are due to rounding. More information on the Air Toxics Data Update can be found at: https://www.epa.gov/haps/air-toxics-data-update.

Sites reporting to EPA within defined area:

Superfund	1
Hazardous Waste, Treatment, Storage, and Disposal Facilities	0
Water Dischargers	1
Air Pollution	15
Brownfields	0
Toxic Release Inventory	0

Other community features within defined area:

Schools	
Places of Worship	

Other environmental data:

Air Non-attainment	Yes
Impaired Waters	Yes

Selected location contains American Indian Reservation Lands*
Selected location contains a "Justice40 (CEJST)" disadvantaged community
Selected location contains an EPA IRA disadvantaged community

Report for 1 mile Ring Centered at 40.702570,-73.678672

www.epa.gov/ejscreen

EJScreen Environmental and Socioeconomic Indicators Data

HEALTH INDICATORS							
INDICATOR HEALTH VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE							
Low Life Expectancy	15%	17%	25	20%	12		
Heart Disease	5.5	5.6	51	6.1	39		
Asthma	8.7	10	17	10	15		
Cancer	6.7	6	60	6.1	62		
Persons with Disabilities	8.5%	11.8%	29	13.4%	21		

CLIMATE INDICATORS							
INDICATOR HEALTH VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE							
Flood Risk	6%	11%	53	12%	47		
Wildfire Risk	0%	1%	0	14%	0		

CRITICAL SERVICE GAPS								
INDICATOR HEALTH VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE								
Broadband Internet	8%	13%	41	14%	39			
Lack of Health Insurance	5%	5%	64	9%	40			
Housing Burden	No	N/A	N/A	N/A	N/A			
Transportation Access	Yes	N/A	N/A	N/A	N/A			
Food Desert	No	N/A	N/A	N/A	N/A			

Footnotes

Report for 1 mile Ring Centered at 40.702570,-73.678672

www.epa.gov/ejscreen

Appendix B

Institutional Controls/Engineering Controls Certification

Enclosure 1 حر Engineering Controls - Standby Consultant/Contractor Certification Form

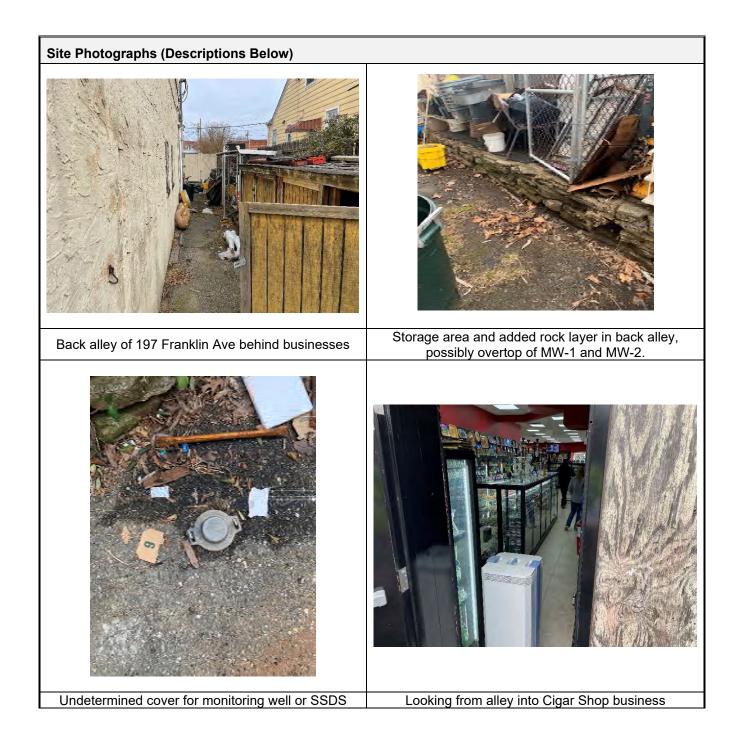
A-080	all -		1
Sit	e No. 130058		Box 1
Sit	e Name Tres Bon Cleaners		
Cit Co	e Address: 197 Franklin Avenue Zip Code: 11010 y/Town: Franklin Square unty: Nassau e Acreage: 0.3		
Re	porting Period: April 10, 2020 to April 10, 2023		
		YES	NO
1.	Is the information above correct?	X	
	If NO, include handwritten above or on a separate sheet.		
2.	To your knowledge has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		Х
3.	To your knowledge has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
4.	To your knowledge have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		Х
	If you answered YES to questions 2 thru 4, include documentation or eviden that documentation has been previously submitted with this certification for		
5.	To your knowledge is the site currently undergoing development?		X
			Box 2
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X	
7.	Are all ICs/ECs in place and functioning as designed?		X
	THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and cont C PM regarding the development of a Corrective Measures Work Plan to address		ues.
-	Donall a 19 January 2	024	
Sig	nature of Standby Consultant/Contractor Date		

NEW YORK STATE

SITE NO. 130058			Box 3				
Description of Institutional Controls							
<u>Parcel</u> 35-119-147	<u>Owner</u> Ms. Alexandra Ehrlein	Institutional Control					
		Monitoring Plan					
Institutional controls a preventing the use of	ROD - March 2004 Institutional controls are currently in place in the form of existing use restrictions preventing the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the Nassau County Department of Health.						
			Box 4				
Description of I	Engineering Controls						
Parcel	Engineering Cont	rol					
35-119-147	Vapor Mitigation						
MW-5A and MW-5B.	An indoor Air Purifying Unit (IQair GC) observation wells, MW-1 through MW- X Multigas air purifier) operates in the m ed organic vapors below DOH guideline	nain room				

		Box
Periodic Review Report (PRR) Certification Statements		
I certify by checking "YES" below that:		
 a) the Periodic Review report and all attachments were prepared under the direct reviewed by, the party making the certification, including data and material prepa contractors for the current certifying period, if any; 		
b) to the best of my knowledge and belief, the work and conclusions described in are in accordance with the requirements of the site remedial program, and generation engineering practices; and the information presented is accurate and compete.		
engineering practices, and the information presented is accurate and compete.	YES	NO
	Х	
 or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is since the date that the Control was put in-place, or was last approved by the Dep (b) nothing has occurred that would impair the ability of such Control, to protect p the environment; (c) nothing has occurred that would constitute a failure to comply with the Site M 	unchai artmen oublic h	nged t; ealth and
or equivalent if no Site Management Plan exists.	YES	NO
		X

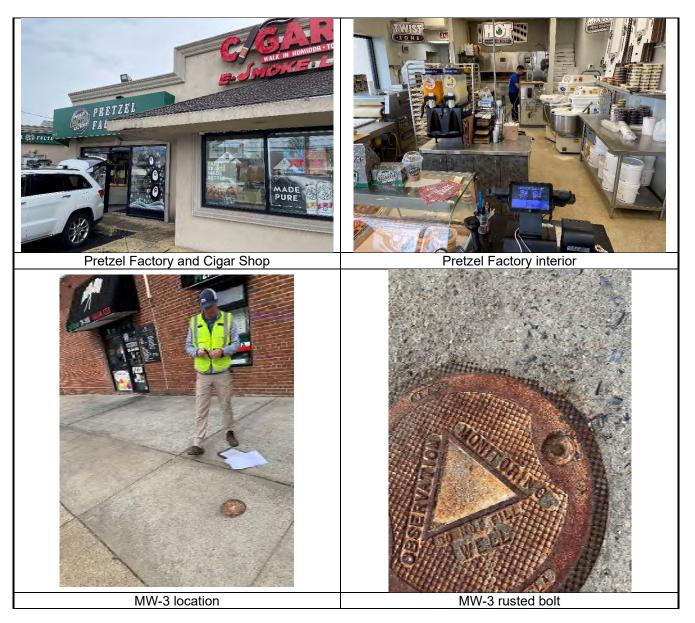
		Box 6							
IC/EC CERTIFICATIONS									
Prof	Professional Engineer Signature								
	rough 5 are true. I understand that a false statement made emeanor, pursuant to Section 210.45 of the Penal Law.								
_I Donald Conan	at EA Engineering P.C.								
print name	269 West Jefferson St. Syracuse, NY 13202								
	,								
	(print business address)								
am certifying as a Professional Engineer.	TEOFNEW LOOD								
Donall an-	75666 75666 19 January 20	24							
Signature of Professional Engineer	Stamp Date (Required for PE)								

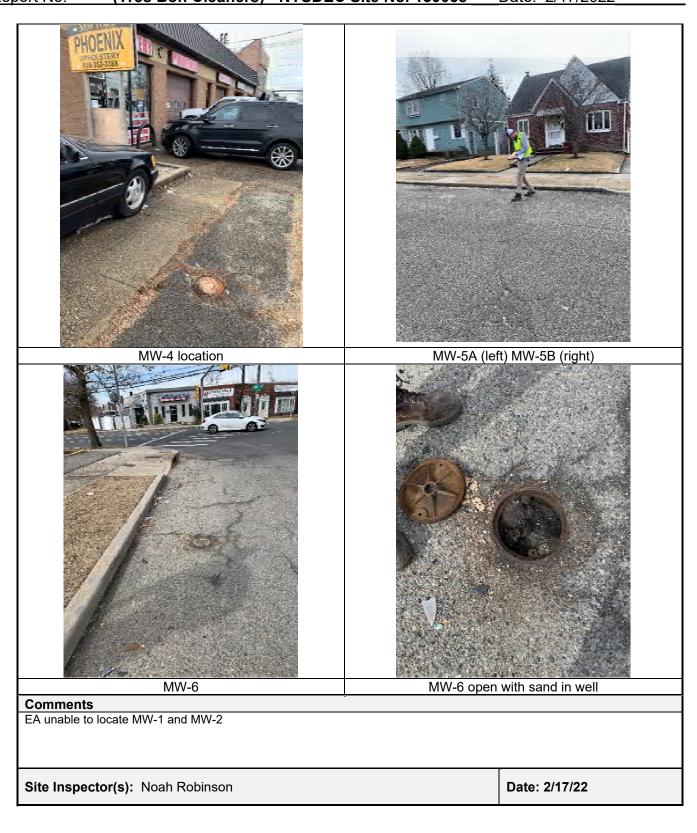

Appendix C

Site Inspection Forms

Report No. (Tres Bon Cleaners) - NYSDEC Site No. 130058 Date: 2/17/2022

NYSDEC Division of Environmental Remediation			STATE OF OPPORT		Departm Environn Conserva	nental	NYSDEC Contract No. Superintendent: NYSDEC PM: Evelyn Hussey		-
Site Location: Frank	klin Square, NY	/						•	•
						Consultant l Liane DeSa		chroer and	
General Description	Partly Overcas					PM		Site Inspecto	ors: Liana
Temperature	60 F	AM				PM	 Consultant Site Inspectors: Liane DeSantis, Kritika Thapa, Noah 		
Wind	NA	AM				PM	Robinson		
Health & Safety If any box below is	checked "Yes	", provide	explanat	tion u	nder "He	ealth 8	k Safety Co	mments".	
Were there any change	es to the Health &	Safety Plan	ı?				*Yes	No X	NA
Were there any exceed	lances of the peri	meter air mo	onitoring re	ported	d on this d	ate?	*Yes	No X	NA
Were there any nuisand	ce issues reported	d/observed	on this date	e?			*Yes	No X	NA
Health & Safety Cor	mments							•	·
None						k			
Summary of Work F		Arrived at		10:15			eparted Site		
EA (L. DeSantis, K. Thapa, & N. Robinson) arrived onsite (1015). EA entered the Cigar Shop part of the building and talked with clerk, Shiv Patel. Clerk stated he was unaware EA had planned to visit. EA asked about air purifier and clerk mentioned it was in the shed outside in the back within a fenced in area. He also indicated it had not been operating in the building for 1-2 years. He pulled the purifier from the shed and brought it inside the building. EA set up the purifier, plugged it in, and changed the filters. EA set the air purifier to the appropriate fan speed for the size of the building (speed 6). EA inspected the Cigar Shop business, looking for plumbing, HVAC system, cracks in flooring, and floor drains. EA began looking for monitoring onsite wells (MW-1 and MW-2). EA was unable to locate the onsite wells due to storage items and debris in the general area where wells should be located. EA entered the other building tenant's business (Pretzel Factory) and inspected the business, looking for plumbing, HVAC system, cracks in flooring, and floor drains. EA located all offsite wells and determined that they are in good condition and likely viable for sampling. EA offsite (11:30).									
mentioned it was in the building for 1-2 years. H it in, and changed the fi inspected the Cigar Shu looking for monitoring of debris in the general ar and inspected the busin wells and determined th	shed outside in t He pulled the purif ilters. EA set the a op business, look onsite wells (MW- rea where wells sh ness, looking for p	fier from the air purifier to ing for plum 1 and MW-2 hould be loc blumbing, H	nin a fence shed and the appro bing, HVA(2). EA was ated. EA e VAC syster	d in a broug priate C syst unable nterec m, cra	ea. He als ht it inside fan speed em, cracks e to locate I the other cks in floo	the bu for the s in floc the on buildin ring, ar	ated it had no ilding. EA set size of the b oring, and floo site wells due g tenant's bu nd floor drains	ot been oper t up the purif wilding (spe- or drains. EA to storage siness (Pret s. EA located	ating in the ier, plugged ed 6). EA began items and zel Factory)
mentioned it was in the building for 1-2 years. H it in, and changed the fi inspected the Cigar Shu looking for monitoring of debris in the general ar and inspected the busin wells and determined th	shed outside in t He pulled the purif ilters. EA set the a op business, look onsite wells (MW- rea where wells sh ness, looking for p	fier from the air purifier to ing for plum 1 and MW-2 hould be loc blumbing, H	hin a fence shed and the appro bing, HVA(2). EA was ated. EA e VAC system and likely	d in a broug priate C syst unable nterec m, cra	ea. He als ht it inside fan speed em, cracks e to locate I the other cks in floo e for sampl	the bu for the s in floc the on buildin ring, ar	ated it had no ilding. EA set size of the b oring, and floo site wells due g tenant's bu nd floor drains a offsite (11:3	ot been oper t up the purif wilding (spe- or drains. EA to storage siness (Pret s. EA located	ating in the ier, plugged ed 6). EA began items and zel Factory) d all offsite
mentioned it was in the building for 1-2 years. H it in, and changed the fi inspected the Cigar Sh looking for monitoring of debris in the general ar and inspected the busin wells and determined th Visitors to Site	shed outside in t He pulled the purif ilters. EA set the a op business, look onsite wells (MW- rea where wells sh ness, looking for p	fier from the air purifier to ing for plum 1 and MW-2 hould be loc blumbing, H	hin a fence shed and the appro bing, HVA(2). EA was ated. EA e VAC system and likely	d in ar broug ppriate C syst unable nterec m, cra viable	ea. He als ht it inside fan speed em, cracks e to locate I the other cks in floo e for sampl	the bu for the s in floc the on buildin ring, ar	ated it had no ilding. EA set size of the b oring, and floo site wells due g tenant's bu nd floor drains a offsite (11:3	ot been oper t up the purif puilding (spec or drains. EA to storage siness (Pret s. EA located 0).	ating in the ier, plugged ed 6). EA began items and zel Factory) d all offsite
mentioned it was in the building for 1-2 years. H it in, and changed the fi inspected the Cigar Shu looking for monitoring of debris in the general ar and inspected the busin wells and determined th Visitors to Site Name	shed outside in t He pulled the purif ilters. EA set the a op business, look onsite wells (MW- rea where wells sh ness, looking for p	fier from the air purifier to ing for plum 1 and MW-2 nould be loc plumbing, H' od condition	hin a fence shed and the appro bing, HVA(2). EA was ated. EA e VAC system and likely	d in ar broug ppriate C syst unable nterec m, cra viable	ea. He als ht it inside fan speed em, cracks e to locate I the other cks in floo e for sampl	the bu for the s in floc the on buildin ring, ar	ated it had no ilding. EA set size of the b oring, and floo site wells due g tenant's bu ad floor drains offsite (11:3	be been oper t up the purif puilding (spe- por drains. EA to storage siness (Pret s. EA located 0).	ating in the ier, plugged ed 6). EA began items and zel Factory) d all offsite CRZ Zone





Page 4 of 7

DAILY INSPECTION REPORTPage 5 of 7Report No.(Tres Bon Cleaners) - NYSDEC Site No. 130058Date: 2/17/2022

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes 🖂	No 🗆
Is the tail gate safety meeting held outdoors?	Yes 🛛	No 🗆
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes 🖂	No 🗆
Were personal protective gloves, masks, and eye protection being used?	Yes 🖂	No 🗆
Are sanitizing wipes, wash stations or spray available?	Yes 🛛	No 🗆
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes 🗆	No 🖂
Comments:		

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🖂	N/A□
Was the temporary fabric structure closed at the end of the day?	Yes 🗆	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A□
Comments:			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Report No.	(Tres Bon Cleaners) - NYSDEC Site No.	130058	Date:	2/17/2022

Is the site supplied with green power and is it properly installed and/or maintained?	Yes 🗆	No 🗆	N/A⊠
Is the site employing 2007 or newer or retrofitted diesel trucks?	Yes 🗆	No 🖂	N/A□
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Is equipment properly maintained and operated by trained personnel?	Yes 🗆	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes 🗆	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR generated wastes and is it complied with?	Yes 🗆	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points?	AM 🗆	РМ 🗆	N/A⊠
Are products and materials appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative [®] , etc.)?	Yes 🗆	No 🗆	N/A⊠
Are resiliency features included in the design or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are green remediation elements included in the design or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are appropriate metrics documented for inclusion on Form A, Summary of Green Remediation Metrics, by the CONTRACTOR?	Yes 🗆	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u>			

Site Inspection Checklist		Data Timas 1/2 /2 /11
Site Name (Number): Tres Bon Cleaners 130058		Date/Time: 2/2/22 11
Site Address (nearest cross street): 197 Franklin A	Ave, Franklin	Square, NY
		Liane DeSantis, Kritika Thapa
Weather: GOF Partly Overlast	Personnel:	Noah Robinson (EA)
Site property description (.e.g, buildings, fencing		
Building(s):] - divided into 2 Stories:]		re: Inuse
Bldg material: Concrete	Area Use (R	
Fenced (Y/N) (material): \mathcal{N}	Gate(s): N	Lock(s): //
Nearest adjacent buildings (and descriptions):		
fesident homes		
Site Surface Hydrology		
Surface water drainage/Impoundments: Street (drain /Alkydrain	Creeks/Streams: NA
Ponds/Water front NA		
Site Features		
	: Acceptabl	e,
Slope/Direction (steep/flat,hilly, etc.) Flat		
Vegetation (grassy/trees/shrubs; overgrown, etc	<u>c.) NA _</u>	
Overhead Utilities (electric/data/phone): NA		
Subsurface Utilities and Locations: Gas line,	Water 12m	c on west side afbuilding
Monitoring Wells (see attached checklist).		-
Nata / Other Observations:		
Urable to locate MW-1 & M	NW-2	
Unable to wrate i i g		
Cita Skotab		
Site Sketch		

SITE-WIDE INSPECTION

Dav:	1

_____ Date: <u>3/6/23</u>

NYSDEC	Temperature: (F)	F	(am)	51 ^F	(pm)
Site Owner: Alexandra Ehrlein	Wind	-	(am)	6 mph N	(pm)
Current Site Use: Commercial	Direction/Speed:				
Tres Bon Cleaners Site	Weather:	(am)			
NYSDEC Site # 130058		(pm) Cl	oudy		
Franklin Square, New York	Arrive at site	12 pm	(am)		
	Leave site:	1:25	(pm)		
Site	e Security				
Evidence of vandalism (Wells, building, etc.):					
None					
Evidence of digging:					
None					
General site condition (Building, wells, pavement cover, et	tc.):				
Site in good condition and maintained as smok	e shop and pretzel sh	iop.			
Additional Comments:					

Pavement Cover
Evidence of integrity loss (cracks, pitting, missing portions, etc.):
None
None
Evidence of erosion/dust:
None
Additional Comments: None
Site Droine as
Site Drainage Evidence of ponding within parking area or storm drain surcharge:
None
Evidence of site runoff not entering storm sewer system:
None
Additional Comments:
None

SITE-WIDE INSPECTION

Site Monitoring V	Wells
-------------------	-------

Are there any new cracks in the concrete collars of the site related MWs? None, MW-1 and MW-2 on-site are missing.

MW-7, MW-9, and MW-10 likely present under grass in front lawns not accessed.

Are monitoring wells locked?

Do monitoring wells have caps?

Air Purifying Unit

Air Purifying Unit condition (Operating, end of life service indicator, etc.):

Air Purifying Unit is opperating as it should. Display indicates filters require changing (changed during inspection).

Appendix D

Indoor Air Sampling Letter Reports

26 May 2023

Ms. Evelyn Hussey New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7012

RE: Summary of Indoor Air Sampling Results from March 2023 Contract/Work Assignment No.: D009806-23 Tres Bon Cleaners, Franklin Square, New York Site No. 130058 EA Project No. 1602523

Dear Ms. Hussey:

This letter provides a summary of analytical results for samples collected during field activities at the Tres Bon Cleaners (No. 130058) in the Village of Franklin Square, Nassau County, New York (**Figure 1**). EA Engineering, P.C. and its affiliate EA Science and Technology (EA) completed sampling to evaluate the indoor air quality during the operation of New York State Department of Conservation (NYSDEC) provided air filters.

Site Background

The Tres Bon Cleaner site is a Class 4 inactive hazardous waste disposal site that is approximately 0.25 acres at 197 Franklin Avenue. The site is currently leased as a commercial/retail tenant space. The surrounding parcels are used for a combination of residential and commercial uses. The nearest residential area is directly adjacent to the south and west site borders.

The Tres Bon Cleaners property operated as a dry cleaner from 1962 to 2003. In January 1988, the Nassau County Department of Health completed a site inspection and observed that water from the dry-cleaning fluid separator was being discharged to the soil and pavement in the rear of the building. Shortly afterward, the tetrachloroethylene (PCE)/water separator discharge was discontinued. Prior to March 2004, all dry-cleaning operations at this location were discontinued, and all dry-cleaning equipment was dismantled and removed from the site in October 2003 by the property owner.

Air Sampling Event

EA completed air sampling on 6–7 March 2023. The purpose of the event was to evaluate the potential for volatile organic compounds (VOCs) such as PCE to enter the building and impact indoor air through a process called soil vapor intrusion. The samples were collected as part of a continued effort to evaluate the effectiveness of the on-site air purifying unit and the potential need for installation of a sub-slab depressurization system (SSDS). Two indoor air samples were

collected inside the building, and one outdoor air sample was collected concurrently to provide information on background ambient air quality in the vicinity of the site. Sample locations are provided in **Figure 1** and included with a building layout in **Figure 2**. Daily Field Reports and Field Notes are provided in **Attachments 1 and 2**, respectively. During the event, the New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaire was completed and is provided in **Attachment 3**.

The air canisters were shipped Con-Test Analytical Laboratory located in East Longmeadow, Massachusetts. Con-Test Analytical Laboratory is an approved Environmental Laboratory Analytical Program certified laboratory for analysis of VOCs by Method TO-15. Analytical data are provided in **Attachment 4**.

Analytical Results

Analytical results for the air samples were validated by an independent third party. A summary of validated analytical results from the March 2023 sampling compared to NYSDOH Ambient Air Guidelines and Immediate Action Levels is provided on **Table 1**. The Data Usability Summary Report is provided as **Attachment 5**. Concentrations of PCE (32 micrograms per cubic meter $\mu g/m^3$ maximum) detected in indoor air were greater than the NYSDOH Air Guideline Value of 30 $\mu g/m^3$. This is consistent with PCE indoor air concentrations detected in 2016 and 2018which were also greater than the guidance value.

Indoor Air Matrix Evaluation

For an estimation of risk, analytic results were evaluated using the NYSDOH indoor air decision matrices $(2006)^1$. Both indoor air and sub-slab vapor samples are required to complete the matrices evaluation; however, no sub-slab vapor samples were collected in 2023. The most recent sub-slab vapor samples were collected in 2016 and 2018 and PCE was the only analyte detected (concentrations of 82,000 µg/m³ and 80,000 µg/m³, respectively). The 2018 concentration for PCE will be used for the evaluation.

Matrix A evaluates carbon tetrachloride, 1,1-dichloroethene, cis-1,2-dichloroethene (cis-1,2-DCE), and trichloroethene (TCE), of which only carbon tetrachloride, cis-1,2-DCE, and TCE were detected at maximum concentrations of 0.46 μ g/m³, 3 μ g/m³, and 0.25 μ g/m³, respectively. The 2016 and 2018 sub-slab concentrations for these parameters were non-detect. However, based on the indoor air concentrations of cis-1,2-DCE, matrix A requires mitigation.

Matrix B evaluates methylene chloride, PCE, and 1,1,1-trichloroethane, of which methylene chloride and PCE were detected in 2023 indoor air samples. Methylene chloride was detected at a maximum indoor air concentration of $0.71 \,\mu\text{g/m}^3$ and was not detected in 2016 or 2018 sub-slab samples. Based on Matrix B, no further action is required for methylene chloride.

¹ NYSDOH. 2006. *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, October, and NYSDOH Soil Vapor Intrusion Updates dated September 2013, August 2015, and May 2017.

Ms. Evelyn Hussey NYSDEC 26 May 2023 Page 3

PCE was detected at a maximum indoor air concentration of $32 \mu g/m^3$ and a 2018 sub-slab sample concentration of 80,000 $\mu g/m^3$. Based on these concentrations, Matrix B requires mitigation for PCE in the building.

Matrix C evaluates vinyl chloride which was not detected in 2023 indoor air samples or 2016 and 2018 sub-slab samples. Matrix C requires no further action.

Recommendations

Currently, indoor air concentrations are greater than NYSDOH Air Guideline Values even with the air purifying unit operating. Consistent with the NYSDOH letter to the NYSDEC dated 6 July 2022 regarding the Tres Bon Site, based on the evaluation of Matrices A and B, further mitigation is required. An SSDS could potentially be used to mitigate PCE and Cis-1,2-DCE from entering the building through soil vapor intrusion.

Sincerely,

EA ENGINEERING, P.C. AND ITS AFFILIATE EA SCIENCE AND TECHNOLOGY

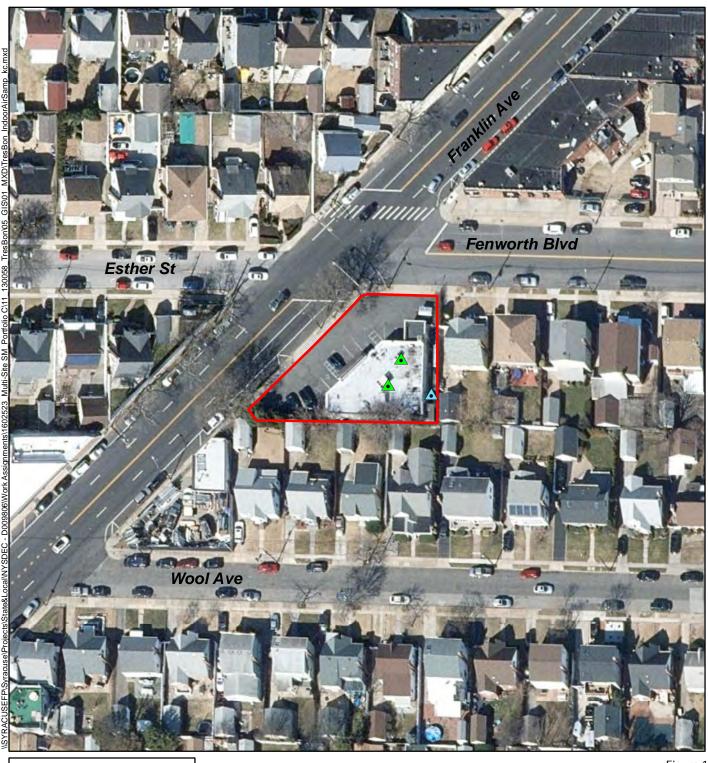
-11_

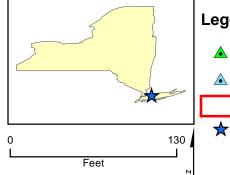
Michael Miller Project Manager

Attachments

cc: S. Saucier D. Tucholski D. Conan

Figures


1	Site and Sample Locations (March 2023)
2	Building Layout and Sample Locations
Tables	
1	Summary of Detected VOCs in Indoor and Outdoor Air (March 2023)


Attachments

1	Daily Field Reports
2	Field Notes
3	New York State Department of Health Indoor Air Quality Questionnaire
4	Analytic Data Laboratory Report
5	Data Usability Summary Report

Figures

This page left intentionally blank

Legend

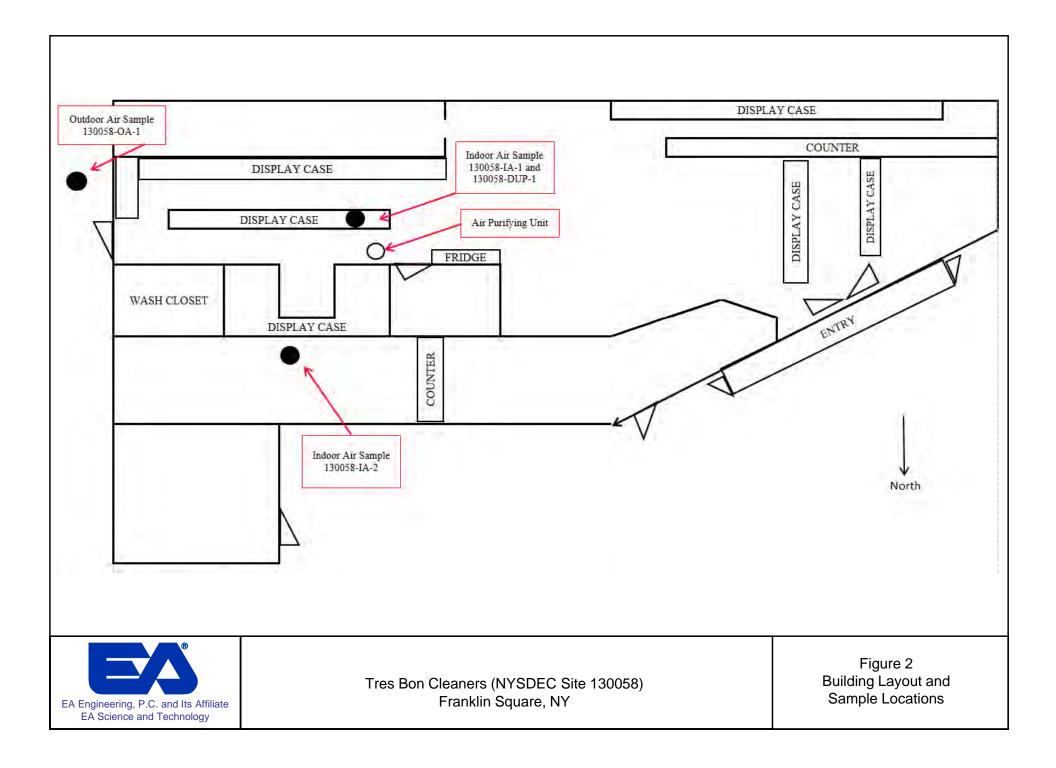

- Indoor Air Sample (Approximate Location)
- Outdoor Air Sample (Approximate Location)
- Tres Bon Cleaners Approximate Site Boundary
- Site Location

Figure 1 Site and Sample Locations (March 202**3**) Tres Bon Cleanersl (NYSDEC Site 130058) Franklin Square, NY

Map Date: 5/5/2022 Projection: NAD83 State Plane New York Long Island FIPS 3104 Feet

This page intentionally left blank

This page intentionally left blank

Tables

This page left intentionally blank

	Building	mary of Detecte		Indoor Air	1140		1020)	Outdoor Ai	r		NUCDON
	Sample ID	130058-1	IA1	130058-IA-2		130058-DUP-	1	130058-OA-		1	NYSDOH Ambient Air
	Laboratory ID	23C1351	-01	23C1351-02		23C1351-03		23C1351-04	ļ	NYSDOH	Quality
	Room	1st Floor/Sho	w Room	1st Floor/Kitch	en	1st Floor/Show R	oom	Outdoor		Ambient Air	Recommended
	Sample Date	3/7/202	23	3/7/2023		3/7/2023		3/7/2023		Quality	Immediate
Analyte	Sample Type	Indoor A	Air	Indoor Air		Indoor Air		Outdoor Air	•	Guideline ¹	Action Level ¹
VOCs (TO-15)	· · · · ·										•
Acetone	$\mu g/m^3$	20		50		23		8.8			
Benzene	$\mu g/m^3$	4.3		1.6		4.1		0.65			
2-Butanone (MEK)	$\mu g/m^3$	1.4	J	4.6	J	2.4	J	1.5	J		
Carbon Disulfide	$\mu g/m^3$	0.13	J	1.6		0.1	J	< 0.10			
Carbon Tetrachloride	$\mu g/m^3$	0.23		0.46		0.24		0.41			
Chloroethane	$\mu g/m^3$	0.18		< 0.094		0.16		< 0.081			
Chloromethane	$\mu g/m^3$	1.4		1.3		1.3		1.3			
Cyclohexane	$\mu g/m^3$	0.2		0.18		0.16		0.096	J		
Dichlorodifluoromethane (Freon 12)	$\mu g/m^3$	2.4		< 0.19		2.4		3.2			
1,2-Dichloroethane	$\mu g/m^3$	0.17		< 0.15		0.16		< 0.13			
cis-1,2-Dichloroethylene	$\mu g/m^3$	< 0.10		3		< 0.10		< 0.10			
trans-1,2-Dichloroethylene	$\mu g/m^3$	0.25		< 0.12		< 0.11		< 0.11			
Ethanol	$\mu g/m^3$	670	Е	11000	Е	660	Е	120	Е		
Ethyl Acetate	$\mu g/m^3$	2.4		9.5		2.7		< 0.63			
Ethylbenzene	$\mu g/m^3$	0.5		0.26		0.38		0.15			
4-Ethyltoluene	$\mu g/m^3$	0.12	J	0.13	J	< 0.11		< 0.11			
Heptane	$\mu g/m^3$	1.8		0.76		1.3		0.38			
Hexane	$\mu g/m^3$	0.7	J	< 0.73		< 0.64		< 0.64			
2-Hexanone (MBK)	$\mu g/m^3$	< 0.071		1.1		0.61		0.32			
Isopropanol	$\mu g/m^3$	5.2		6.9		6.1		1.6	J		
Methylene Chloride	$\mu g/m^3$	0.71	J	< 0.64		0.68	J	< 0.56		60	
Naphthalene	$\mu g/m^3$	0.55	L-03, V-05	< 0.16		< 0.14		< 0.14			
Styrene	$\mu g/m^3$	0.9		0.34		0.92		< 0.078			
Tetrachloroethylene	$\mu g/m^3$	32		12		31		0.36		30	300
Tetrahydrofuran	$\mu g/m^3$	0.46	J	< 0.19		< 0.17		< 0.17			
Toluene	$\mu g/m^3$	1.8		1.1		1.6		0.78			
Trichloroethylene	$\mu g/m^3$	< 0.13		0.25		< 0.13		< 0.13		2	
Trichlorofluoromethane (Freon 11)	$\mu g/m^3$	0.67		1.3		0.68	J	1.3			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	$\mu g/m^3$	< 0.30		0.71	J	< 0.30		0.61	J		
1,2,4-Trimethylbenzene	$\mu g/m^3$	0.58		0.52		0.28		0.19			
1,3,5-Trimethylbenzene	$\mu g/m^3$	0.14	J	0.23		< 0.091		< 0.090			
Vinyl Acetate	$\mu g/m^3$	<0.66		< 0.76	1	2.3	J	<0.66			
m&p-Xylene	$\mu g/m^3$	0.98		0.64	1	0.66		0.46			
o-Xylene	$\mu g/m^3$	0.44		0.3	1	0.31		0.2			

Table 1. Summary of Detected VOCs in Indoor and Outdoor Air (March 2023)

Project No.:1602523 Version: Draft Table 1, Page 1 of 2 May 2023

Table 1. Summary of Detected VOCs in Indoor and Outdoor Air (March 2023)

NOTES:

^{1.} NYSDOH Ambient Air Guidelines and Immediate Action Levels based on the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, and NYSDOH Soil Vapor Intrusion Updates dated September 2013, August 2015, and May 2017.

Bold values exceed Ambient Air Guidelines

 $\mu g/m3 = Microgram(s)$ per cubic meter = parts per billion

ID = Identification

J = The identification of the analyte is acceptable; the reported value is an estimate.

Е #NAME?

L-03 Laboratory fortified blank/control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the low side. V-05 Continuing Calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

NYSDEC = New York State Department of Environmental Conservation

NYSDOH = New York State Department of Health

VOC = Volatile organic compound

U = Not detected at the Reporting Limit (or Method Detection Limit where applicable).

Analytical data results provided by Pace Analytical.

Duplicate sample was collected at 130058-IA-1.

Project No.:1602523 Version: Draft Table 1, Page 2 of 2 May 2023

Attachment 1

Daily Field Reports

This page left intentionally blank

NYSDEC Division of Environme Site Location: Form		1.00		Y YORK	Departm Environn Conserva	nental	Contract DEC Insp DEC PM - I	- N/A Evelyn Hus	•
	Weather	Condition	s				Contractor	Supt. – N/	A
General Description		AM	5	Cloudy	/	PM	Engineer P	M – Mike N	Ailler
Temperature		AM		51 F		PM	Engineer In	en - Halo	v Vouna &
Wind		AM		6 mph I	N	PM	Lincoln Ba		
Health & Safety If any box below is	checked "Yes'	". provide		•		ealth 8			
Were there any change							*Yes	No	NA
Were there any exceed		•		reporte	d on this d	ate?	*Yes	No	NA
Were there any nuisand	•						*Yes	No	NA
Health & Safety Con	· ·	.,							
Safety Topic: Vehicles,	- · · ·			r					
Summary of Work P	erformed	Arrived at	site:	1200		De	eparted Site	: 1325	i
(1258) Set up & begin o	collection at OA-1.	. (1305) Inte	rview wit	th cigar	shop work	ker, pho	tos of buildin	g inventory	taken.
(1258) Set up & begin c (1314) Set up and begin Equipment/Material	Tracking	. (1305) Inte 2. (1316) Ph	rview wit	th cigar pretzel s	shop work	ker, pho tory tak	tos of buildin en. (1325) E.	g inventory A personne	taken. I offsite.
(1258) Set up & begin c (1314) Set up and begin Equipment/Material If any box below is c	Tracking checked "Yes"	. (1305) Inte 2. (1316) Ph ', provide e	rview wit otos of p explana	th cigar pretzel s	shop work shop inven nder "Ma	ker, pho tory tak	tos of buildin en. (1325) E. Tracking C	g inventory A personne	taken. I offsite.
(1258) Set up & begin c (1314) Set up and begin Equipment/Material If any box below is c Were there any vehicles	Tracking checked "Yes"	. (1305) Inte 2. (1316) Ph /, provide e splay proper	rview wit otos of p explana	th cigar pretzel s	shop work shop inven nder "Ma	ker, pho tory tak	tos of buildin en. (1325) E. Tracking C *Yes	g inventory A personne omments No	a taken. el offsite.
(1258) Set up & begin c (1314) Set up and begin Equipment/Material If any box below is o Were there any vehicles Were there any vehicles	Tracking checked "Yes" s which did not dia s which were not	. (1305) Inte 2. (1316) Ph <mark>7, provide e</mark> splay proper tarped?	rview wit otos of p explana D.O.T r	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak aterial [*] ards?	tos of buildin en. (1325) E. Tracking C *Yes * Yes	g inventory A personne omments No No	viaken. el offsite.
(1258) Set up & begin c (1314) Set up and begin Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles	Tracking checked "Yes" s which did not dia s which were not s which were not	. (1305) Inte 2. (1316) Ph <mark>7, provide e</mark> splay proper tarped?	rview wit otos of p explana D.O.T r	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak aterial [*] ards?	tos of buildin en. (1325) E. Tracking C *Yes * Yes	g inventory A personne omments No	a taken. el offsite.
(1258) Set up & begin c (1314) Set up and begin If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi	Tracking checked "Yes" s which did not dia s which were not s which were not	. (1305) Inte 2. (1316) Ph <mark>7, provide e</mark> splay proper tarped? decontamina	explana D.O.T r	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak aterial ' ards?	tos of buildin en. (1325) E. Tracking C *Yes * Yes * Yes * Yes	g inventory A personne omments No No No	. taken. . offsite. . NA NA NA NA
(1258) Set up & begin c (1314) Set up and begin If any box below is of Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1305) Inte 2. (1305) Inte 2. (1305) Inte 2. (1305) Inte 2. (1316) Ph 2. (1316)	explana D.O.T r ated prio	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak atterial ards? ork site?	tos of buildin en. (1325) E Tracking C *Yes *Yes *Yes *Yes ade	g inventory A personne omments No No No	
(1258) Set up & begin c (1314) Set up and begin If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1305) Inte 2. (1305) Inte 2. (1305) Inte 2. (1305) Inte 2. (1305) Inte 2. (1316) Ph 2. (131	explana D.O.T r	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	Taken. I offsite. NA NA NA NA
(1258) Set up & begin c (1314) Set up and begin If any box below is o Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E Tracking C *Yes *Yes *Yes *Yes ade	g inventory A personne omments No No No	NA NA NA NA NA NA NA NA NA
(1258) Set up & begin c (1314) Set up and begin If any box below is o Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	NA NA NA NA NA NA NA NA NA
(1258) Set up & begin c (1314) Set up and begin If any box below is o Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	NA NA NA NA NA NA NA NA NA
(1258) Set up & begin c (1314) Set up and begin If any box below is o Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	NA NA NA NA NA NA NA NA NA
(1258) Set up & begin c (1314) Set up and begin If any box below is o Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	
(1258) Set up & begin c (1314) Set up and begin If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	
(1258) Set up & begin c (1314) Set up and begin If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	
Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	
(1258) Set up & begin c (1314) Set up and begin If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	NA NA NA NA NA NA NA NA NA
(1258) Set up & begin c (1314) Set up and begin If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	NA NA NA NA NA NA NA NA NA
(1258) Set up & begin c (1314) Set up and begin If any box below is o Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equi Individual Lincoln Backman	Tracking checked "Yes" s which did not dia s which were not s which were not pment	. (1305) Inte 2. (1316) Ph 2. (1316) Ph 7, provide e splay proper tarped? decontamina Con	explana D.O.T r ated prio EA	th cigar pretzel s numbers	shop work shop inven nder "Ma s and place	ker, pho tory tak ards? ork site? Tr Sciu	tos of buildin en. (1325) E. Tracking C *Yes *Yes * Yes ade entist	g inventory A personne omments No No No	

DAILY INSPECTION REPORT - No. 01 (Former Tres Bon Cleaners) Site No. 130058

Equipment Description	on		Contractor/Vend	dor	Quantity	Us	ed
Horiba U-52			Pine Environmer	ntal	1	N	0
Peristaltic Pump Water Level Meter Mini Rae 3000			Pine Environmer	ntal	1	N	
Water Level Meter			Pine Environmer	ntal	1	N	0
Mini Rae 3000			Pine Environmer	ntal	1	Ye	
SUMMA Cannister			Pace		4	Ye	S
Material Description	Imported/ Delivered to Site	Exported off Site	Waste Profile (If Applicable		r Disposal Applicable)	Daily Loads	Daily Weight (tons)*
None.							
	}						
	1						
	<u> </u>						
	1						
	1						<u> </u>
*On-Site scale for off-site shipr	nent, deliverv t	licket for mater	rial received				

DAILY INSPECTION REPORT - No. 01 (Former Tres Bon Cleaners) Site No. 130058

Equipment/Material Tracking Comments:

None.

Visitors to Site

Name	Re	presenting	Entered	Exclusion/CRZ Zone
None.			Yes	No
			Yes	No
Site Representatives				
Name		Representing		
Lincoln Backman-Lowe		EA		
Haley Young		EA		
Project Schedule Comments		<u>1</u>		

Issues Pending

Pre-filter for air purifier system was lightly damaged when it was removed from the box. Just some small cracks in the outer Styrofoam container. Pictures taken and shown in attached photo log.

Interaction with Public, Property Owners, Media, etc.

Cigar shop worker was interviewed as part of NYSDEC & NYSDOH questionnaire.

Include (insert) figures with markups showing location of work and job progress

See 6 March 2023 Daily Inspection Report

Site Photographs (Descriptions Below)

See 6 March 2023 Daily Inspection Report

Comments	
Nene	
None.	
Site Inspector(s): Lincoln Backman-Lowe, Haley Young	Date: 03/06/2023

Videos of discreet operations have been provided to the DEC Project Manager to facilitate understanding of the ongoing work. Yes \Box

DAILY INSPECTION REPORT - No. 01 (Former Tres Bon Cleaners) Site No. 130058

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes 🖂	No 🗆
Is the tail gate safety meeting held outdoors?	Yes 🛛	No 🗆
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes 🗵	No 🗆
Were personal protective gloves, masks, and eye protection being used?	Yes 🛛	No 🗆
Are sanitizing wipes, wash stations or spray available?	Yes 🛛	No 🗆
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes 🖂	No 🗆
Comments:	<u>.</u>	

REMEDIAL ACTIVITIES AT PROPERTIES

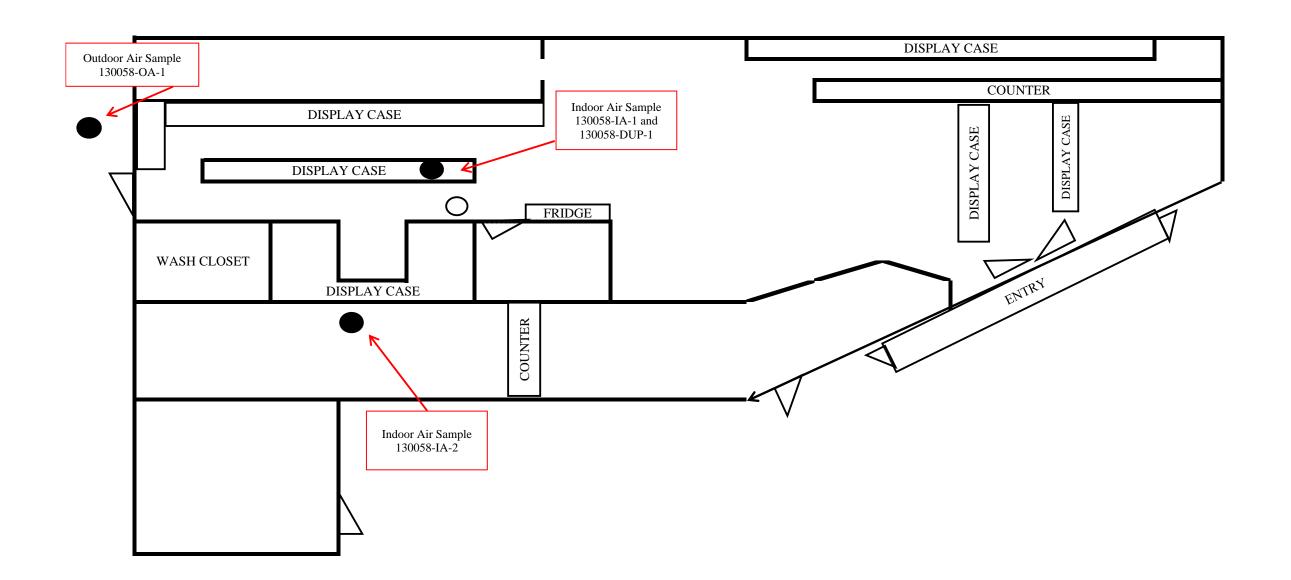
1.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
2.	Is anyone at this location isolated or quarantined for COVID-19?	Yes 🗆	No 🖂
3.	Has anyone at this locaton had contact with anyone known to have COVID-19 in the past 14 days?	Yes 🗆	No 🖂
4.	Does anyone at this locaton have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes 🗆	No 🖂
5.	Does the Department and its contractors have your permission to enter the property at this time?	Yes ⊠	No 🗆
If Yes to	 b <u>any</u> of 1-4 above: If it is <u>not</u> critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone or conduct service without entry. If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry. 	Yes 🗆	No 🖂
Comme None.	<u>ents:</u>		

On-Site Waste Storage

Drums, roll offs and piles are staged in secure areas?	Yes 🗆	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes 🗆	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes □	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes □	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments: None.			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🗆	N/A⊠
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🗆	N/A⊠
Was the temporary fabric structure closed at the end of the day?	Yes □	No 🗆	N/A□
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes □	No 🗆	N/A⊠


Commen	ts:
None.	

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes 🗆	No 🗆	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes 🗆	No 🗆	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes □	No 🗆	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes 🗆	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes 🗆	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes □	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes 🗆	No 🗆	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes □	No 🗆	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes □	No 🗆	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes 🗆	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes 🗆	No 🗆	N/A⊠
Comments: None.			

* BART – Best Available Retrofit Technology

Photographic Record

Former Tres Bon Cleaners Franklin Square, NY March 2023

Crack in Styrofoam casing for pre-filter

Crack in Styrofoam casing for pre-filter

IA-1 and FD-1 air cannister sample locations, within cigar shop

OA-1 air cannister sample location, just outside of cigar shop

Display case inside cigar shop, contains butane torches - located ~5 ft from IA-1 and FD-1 locations

Photo of chemicalbased cleaner located within cigar shop

Photographic Record

Former Tres Bon Cleaners Franklin Square, NY March 2023

Photo of chemicalbased cleaner located within cigar shop

IA-2 air cannister sampling location, within pretzel shop

Indoor pesticide container located within pretzel shop

Weed killer container located within pretzel shop

Multiple lubricant containers located at floor level within pretzel shop

Leak detector fluid container located at floor level within pretzel shop

			RTUNITY	Environn	nenta	DE	EC Insp. – N	/A	sey
Weather Conditions					Co	ontractor Su	pt. – N/A		
weather		15	Sunny		PM	En	gineer PM -	- Mike Mi	ller
						Fn	aineer Insn	– Halov	Young &
	AM		-		PM				
checked "Yes	". provide	explana	ation u	nder "He	ealth	& Sa	afetv Comr	nents".	
						-		No	NA
lances of the peri	meter air m	onitoring	reported	on this d	ate?	1	*Yes	No	NA
		-				1	*Yes	No	NA
nments									
	;.		•						
Performed	Arrived a	t site:	0930		0	Depa	rted Site:	1000	
Equipment/Material Tracking If any box below is checked "Yes", provide explanation under "Material Tracking Comments". Were there any vehicles which did not display proper D.O.T numbers and placards? *Yes No NA Were there any vehicles which were not tarped? *Yes No NA Were there any vehicles which were not tarped? *Yes No NA Were there any vehicles which were not decontaminated prior to exiting the work site? *Yes No NA									
	isplay prope tarped?	er D.O.T r	numbers	and place	ards?	3	*Yes	No	<mark>NA</mark>
s which were not	isplay prope tarped?	er D.O.T r	numbers	and place	ards?	3	*Yes * Yes	No No	NA NA
	isplay prope tarped? decontamir	er D.O.T r	numbers	and place	ards? ork site	3	*Yes * Yes * Yes	No No No	NA NA
s which were not i pment	isplay prope tarped? decontamir	er D.O.T r	numbers	and place	ards? ork site)? '	*Yes * Yes * Yes	No No No	NA NA NA
s which were not	isplay prope tarped? decontamir	er D.O.T r nated prio	numbers	and place	ards? ork site 1 So	? ?? Frade	*Yes * Yes * Yes	No No No	NA NA NA al Hours
	er Tres Bon Cl Weather checked "Yes s to the Health & ances of the peri ce issues reporter mments slips, trips & falls Performed -Lowe & H. Youn Stop collection for bersonnel offsite.	AM AM AM AM AM checked "Yes", provide es to the Health & Safety Plan lances of the perimeter air m ce issues reported/observed mments slips, trips & falls. Performed Arrived a -Lowe & H. Young] onsite. (f Stop collection for IA-2 samp personnel offsite.	ental Remediation er Tres Bon Cleaners Weather Conditions AM AM AM AM checked "Yes", provide explanate sto the Health & Safety Plan? ances of the perimeter air monitoring te issues reported/observed on this data mments slips, trips & falls. Performed Arrived at site: -Lowe & H. Young] onsite. (0935) Sto Stop collection for IA-2 sample. (0942)	ental Remediation Support of the perimeter air monitoring reported ce issues reported/observed on this date? mments Support of the perimeter air monitoring reported co issues reported/observed on this date? Performed Arrived at site: 0930 -Lowe & H. Young] onsite. (0935) Stop collect Stop collection for IA-2 sample. (0942) Removire	Image: State of Construction of Conservation of	Image: State of Unity Environmentation er Tres Bon Cleaners Environmentation AM Sunny PM AM Sunny PM AM 45 F PM AM 3 mph N PM extrements slips, trips & falls. Performed Arrived at site: 0930 C -Lowe & H. Young] onsite. (0935) Stop collection for IA-1 sam Stop collection for IA-2 sample. (0942) Remove flow controller <td>ental Remediation Image: State of Conservation o</td> <td>ental Remediation Environmental Conservation DEC Insp. – N DEC PM – Eve Contractor Su Engineer PM – Engineer PM – Engineer Insp Lincoln Backr AM Sunny PM AM 45 F PM AM 3 mph N PM AM 3 mph N PM AM 3 mph N PM Engineer Insp Lincoln Backr *Yes ances of the perimeter air monitoring reported on this date? *Yes ce issues reported/observed on this date? *Yes slips, trips & falls. *Yes Performed Arrived at site: 0930 Departed Site: -Lowe & H. Young] onsite. (0935) Stop collection for IA-1 sample. (0936) Stop Stop collection for IA-2 sample. (0942) Remove flow controllers from all SUMM</td> <td>ental Remediation Environmental Conservation DEC Insp. – N/A er Tres Bon Cleaners DEC PM – Evelyn Huss Contractor Supt. – N/A — AM Sunny PM — AM 45 F PM — AM 3 mph N PM — AM 3 mph N PM — AM 3 mph N PM checked "Yes", provide explanation under "Health & Safety Comments". es to the Health & Safety Plan? *Yes ances of the perimeter air monitoring reported on this date? *Yes No checked "Yes", trips & falls. Performed Arrived at site: 0930 Departed Site: 1000 -Lowe & H. Young] onsite. (0935) Stop collection for IA-1 sample. (0936) Stop collection for IA-2 sample. (0942) Remove flow controllers from all SUMMA cannist</td>	ental Remediation Image: State of Conservation o	ental Remediation Environmental Conservation DEC Insp. – N DEC PM – Eve Contractor Su Engineer PM – Engineer PM – Engineer Insp Lincoln Backr AM Sunny PM AM 45 F PM AM 3 mph N PM AM 3 mph N PM AM 3 mph N PM Engineer Insp Lincoln Backr *Yes ances of the perimeter air monitoring reported on this date? *Yes ce issues reported/observed on this date? *Yes slips, trips & falls. *Yes Performed Arrived at site: 0930 Departed Site: -Lowe & H. Young] onsite. (0935) Stop collection for IA-1 sample. (0936) Stop Stop collection for IA-2 sample. (0942) Remove flow controllers from all SUMM	ental Remediation Environmental Conservation DEC Insp. – N/A er Tres Bon Cleaners DEC PM – Evelyn Huss Contractor Supt. – N/A — AM Sunny PM — AM 45 F PM — AM 3 mph N PM — AM 3 mph N PM — AM 3 mph N PM checked "Yes", provide explanation under "Health & Safety Comments". es to the Health & Safety Plan? *Yes ances of the perimeter air monitoring reported on this date? *Yes No checked "Yes", trips & falls. Performed Arrived at site: 0930 Departed Site: 1000 -Lowe & H. Young] onsite. (0935) Stop collection for IA-1 sample. (0936) Stop collection for IA-2 sample. (0942) Remove flow controllers from all SUMMA cannist

DAILY INSPECTION REPORT - No. 01 (Former Tres Bon Cleaners) Site No. 130058

Equipment Description	on		Contractor/Vend	lor	Quantity	Use	ed
Horiba U-52	-		Pine Environmen		1	N	0
Peristaltic Pump			Pine Environmen	ital	1	N	
Water Level Meter Mini Rae 3000			Pine Environmen	ıtal	1	No	0
Mini Rae 3000			Pine Environmen	ital	1	N	
SUMMA Cannister			Pace		4	Ye	es
						-	
						-	
							Deller
Material Description	Imported/ Delivered to Site	Exported off Site	Waste Profile (If Applicable		r Disposal Applicable)	Daily Loads	Daily Weight (tons)*
None.							
	-						
						<u> </u>	
		+					
	1	1				-	
		1					
*On-Site scale for off-site shipn	nent, delivery	ticket for mater	rial received				

DAILY INSPECTION REPORT - No. 01 (Former Tres Bon Cleaners) Site No. 130058

Equipment/Material Tracking Comments:

None.

Visitors to Site

	Yes Yes	No
		No
	Yes	No
	·	
Representing		
EA		
EA		
<u>.</u>		

Issues Pending

None.

Interaction with Public, Property Owners, Media, etc.

None.

Include (insert) figures with markups showing location of work and job progress

See 6 March 2023 Daily Inspection report

Site Photographs (Descriptions Below)

See 6 March 2023 Daily Inspection report

Comments	
None.	
INDIG.	
Site Inspector(s): Lincoln Backman-Lowe, Haley Young	Date: 03/07/2023

Videos of discreet operations have been provided to the DEC Project Manager to facilitate understanding of the ongoing work. Yes \Box

DAILY INSPECTION REPORT - No. 01 (Former Tres Bon Cleaners) Site No. 130058

DAILY HEALTH CHECKLIST

Is social distancing being practiced?	Yes 🖂	No 🗆
Is the tail gate safety meeting held outdoors?	Yes 🛛	No 🗆
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes 🗵	No 🗆
Were personal protective gloves, masks, and eye protection being used?	Yes 🛛	No 🗆
Are sanitizing wipes, wash stations or spray available?	Yes 🛛	No 🗆
Have any workers/visitors been excluded based on close contact with individuals diagnosed with COVID-19, have recently traveled to restricted areas or countries, or are symptomatic (fever, chills, cough/shortness of breath)?	Yes 🖂	No 🗆
Comments:	<u>.</u>	

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
2.	Is anyone at this location isolated or quarantined for COVID-19?	Yes 🗆	No 🖂
3.	Has anyone at this locaton had contact with anyone known to have COVID-19 in the past 14 days?	Yes 🗆	No 🖂
4.	Does anyone at this locaton have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes 🗆	No 🖂
5.	Does the Department and its contractors have your permission to enter the property at this time?	Yes ⊠	No 🗆
•	 o <u>any</u> of 1-4 above: If it is <u>not</u> critical that service/entry be carried out immediately and can be postponed until the risk of COVID-19 is lower, or can be accomplished remotely/without entry, postpone or conduct service without entry. If it <u>is</u> critical that service/entry be carried out immediately, advise occupants that as a precaution and for our own protection, project personnel will be donning appropriate PPE* (including respiratory protection) - and do so prior to entry. 	Yes 🗆	No 🖂
Comme None.	<u>ents:</u>		

On-Site Waste Storage

Drums, roll offs and piles are staged in secure areas?	Yes 🗆	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes 🗆	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes □	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments: None.			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🗆	N/A⊠
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🗆	N/A⊠
Was the temporary fabric structure closed at the end of the day?	Yes □	No 🗆	N/A□
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes □	No 🗆	N/A⊠

Commen	ts:
None.	

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No 🗆	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes 🗆	No 🗆	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes □	No 🗆	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes 🗆	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes 🗆	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes 🗆	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes 🗆	No 🗆	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes □	No 🗆	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes 🗆	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No 🗆	N/A⊠
Comments: None.			

* BART – Best Available Retrofit Technology

This page intentionally left blank

Attachment 2

Field Notes

This page left intentionally blank

03/06/23 Ires Bon Cleaners Weather: 51F, cloudy Personneli L. Backman-Lone, H. Yunno, Objective set summA cannister, site inspection 1200 - EA onsite, speak to site representative about sow 1205-calibrate PID 1210 - replace filters in air purifier, result system, pre-filter was drainaged when opened. from packaging, photos taken 1253 - ef + begin collection C 1A-1 with DUP 1258 - set + begin collection C OA - 1 1305 - quick interview N/ cigar shop worker, photo all inventory - E3 1314 - set + begin collection @ IA-2 1316 - photo all inventory 1325 - EA offsite Hil Bld-e 03/06/23 1 Rite in the Rain

Tres Bon 03/07/23 **A**R Weather: 45 F, sunny F Personnel: L. Bademan-Lowe, H. Young F Objective: collect SUMMA cannisters 0930 - ÉA onsite P 0935 - Stop collection for IA-1 F 0936 - stop collection for FD-1 H: - stop collection for OA-1 0940 - stop collection for IA-2 0942 remove flow controllers from all summA cannisters, pack into boxes EA offsite 1000 -<u>р</u>____ 03, 10 Щ. ί. 1 ir Scale: 1 square =

Attachment 3

New York State Department of Health Indoor Air Quality Questionnaire

This page left intentionally blank

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Haley Yo	bung	Date/Time Prepared _	03/06/2022 1300
Preparer's Affiliation <u>Indeper</u>	ident Consultant – EA Enginee	ring Phone No: <u>315-</u>	460-6026
Purpose of Investigation	Air Sampling		
1. OCCUPANT: Interviewed	d: <mark>Y</mark> /N		
Last Name: <u>Villa-Novoa</u>	First Name: France	cisco_	
Address: <u>N/A</u>			
County: <u>N/A</u>			
Home Phone: <u>N/A</u>	Office Phone: <u>516-27</u>	70-2333	
Number of Occupants/persons	at this location: $\underline{1}$ Age of $\underline{0}$	Occupants: <u>26</u>	
2. OWNER OR LANDLORD	• (Check if same as occupant_)	
Interviewed: Y / <mark>N</mark>			
Last Name: Ehrlein	First Name: Alexa	andra_	
Address: <u>N/A</u>			
County: <u>N/A</u>			
Home Phone: <u>N/A</u>	Cell Phone: <u>516-382-4</u>	626	

3. BUILDING CHARACTERISTICS Type of

Building: (Circle appropriate response)

	Residential	School	Commercia	<mark>l/Multi-use</mark>	
	Industrial	Church	Other:		
If the p	property is resid	ential, type? (C	ircle appropr	iate response)	N/A
Ranch					
Raised	Ranch	2-Family Split Level		3-Family Colonial	
Cape C	'ad	Contempora	4 7 7	Mobile Home	
Cape C	ou	Contempora	l y	Mobile Hollie	
Duplex		Apartment H	Iouse	Townhouses/Co	ondos
Modula	ar	Log Home		Other:	

If multiple units, how many? N/A

If the property iscommercial, type?

Business Type(s) Cigar Shop, Pretzel Shop Does it include residences (i.e., multi-use)?

Y / N If yes, how many <u>N/A</u>

Other characteristics:

Number of floors: <u>1</u> Is the building insulated? Y / N Building age <u>69 years (constructed in 1954)</u> How airtight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors: $N/A - One \ story$

Airflow near source: <u>None</u>

Outdoor air infiltration: <u>None</u>

Infiltration into airducts: None

a. Above grade construction	: wood frame	concrete	stone	brick (w/ stucco façade)
b. Basement type:	full	crawlspace	<mark>slab</mark>	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	<mark>dry</mark>	moldy
i. The basement is:	finished	unfinished	partia	lly finished
j. Sump present?	Y / N			
k. Water in sump?	Y / N / not applicable			

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

Basement/Lowest level depth below grade: 0 (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

None visible - all piping in wall(s)

6. HEATING, VENTING and AIR CONDITIONING

Type of heating system(s) used in this building: (circle all that apply –note primary)

Hot air circulation - Heat pump - Hot water baseboard - Space Heaters -Stream radiation - Radiant floor - Electric baseboard - Wood stove -Outdoor wood boiler - Other

The primary type of fuel used is:

Natural Gas - Fuel Oil - Kerosene - Electric - Propane - Solar - Wood - Coal

Domestic hot water tank fueled by: _____

Boiler/furnace located in: Basement - Outdoors - Main Floor – Other: ____

Air conditioning: Central Air - Window units - Open Windows - None

Are there air distribution ducts present? $\underline{\mathbf{Y}}$ / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Is basement/lowest level occupied? Full-time - Occasionally - Seldom - Almost Never

Level General Use of Each Floor (e.g., family room, bedroom, laundry, workshop, storage)

Basement
1 st Floor Cigar Shop & Pretzel Shop
2 nd Floor
3 rd Floor
4 th Floor

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?		Y / <mark>N</mark>
b. Does the garage have a separate heating unit?		Y / N / <mark>NA</mark>
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Please s	Y / N / <mark>NA</mark> pecify
d. Has the building ever had a fire?	Y / <mark>N</mark>	When?
e. Is a kerosene or unvented gas space heater present?	Y / <mark>N</mark>	Where?
f. Is there a workshop or hobby/craft area?	Y / <mark>N</mark>	Where & Type?
g. Is there smoking in the building?	Y / <mark>N</mark>	How frequently?
h. Have cleaning products been used recently?	Y / <mark>N</mark>	When & Type?
i. Have cosmetic products been used recently? j. Has painting/staining been done in the last 6	Y / <mark>N</mark>	When & Type?
months?	Y / <mark>N</mark>	When & Type?
k. Is there new carpet, drapes or other textiles?	Y / <mark>N</mark>	Where & When?
l. Have air fresheners been used recently?	<mark>Y</mark> / N	When & Type?
m. Is there a kitchen exhaust fan?	<mark>Y</mark> /N	If yes, where vented?
		Kitchen of pretzel shop
n. Is there a bathroom exhaust fan?	<mark>Y</mark> / N	If yes, where vented?
o. Is there a clothes dryer?	Y / <mark>N</mark>	If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y / N	When &Type? <u>> 1 year ago</u>
Are there odors in the building? <u>N/A</u>		

If yes, please describe:

(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used? ______ If yes, are their clothes washed at work? Y / N / NA

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

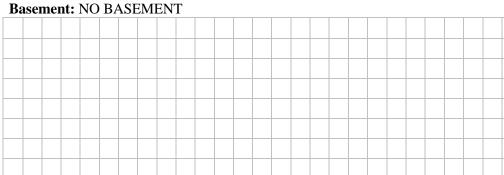
Yes, use dry-cleaning regularly (weekly) No Yes, use dry-cleaning infrequently (monthly or less) Unknown Yes, work at a dry-cleaning service

Is there a radon mitigation system for the building/structure? Y / N Date of Installation: Is the system active or passive? Active/Passive / NA

9. WATER AND SEWAGE

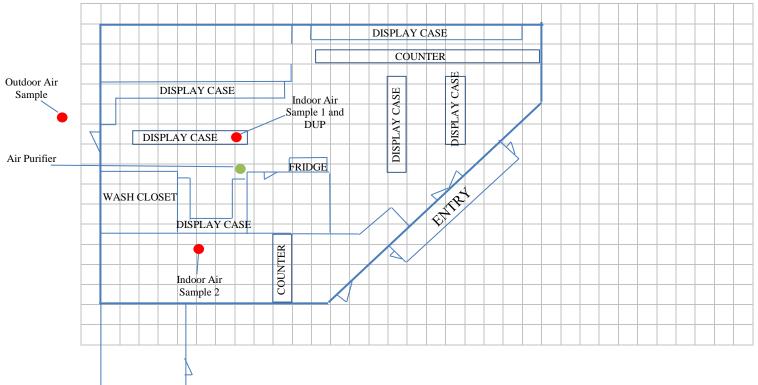
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:

10. RELOCATION INFORMATION (for oil spill residential emergency)


1.a. Provide reasons why relocation is recommended:

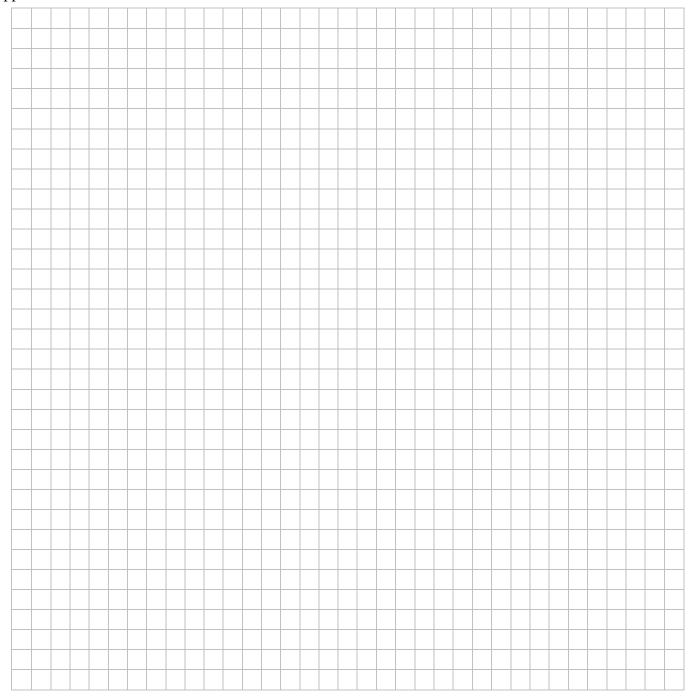
1.b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel

- 1.c. Responsibility for costs associated with reimbursement explained. ~~ Y / N
- 1.d. Relocation package provided and explained to residents? Y / N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

First Floor:



12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repairshops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the welland septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Not Applicable

13. PRODUCT INVENTORY FORM Make & Model of field instrument used:

List specific products found in the residences that have the potential to affect indoor air quality.

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible. BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y / N
Display case, cigar shop	Butane Torches	> 20	New/unopened	Butane	0.0	Y
Display case, cigar shop	Packages of charcoal	> 50	New/unopened	Carbon	0.0	Y
Alleyway, cigar shop	All-purpose joint compound	28 kg	Opened, with cap on	Gypsum board	0.0	Y
	Disinfectant Spray	16 oz	-	Triethanolamine, Lauryl Betaine, PEG PPG Ethylhexyl Ether, Dipropylene Glycol Butyl Ether, Sodium Carbonate, Ethanolamine, Xanthan Gum, PEG, Fragrances	0.0	Y
Maintenance closet, cigar shop	Glass Cleaner	28 oz	Open, with cap on	Alcohol, Butoxyethanol, Propane, Butane, Sodium Nitrite, And T-Butyl Alcohol	0.0	Y
Maintenance closet, pretzel shop	Pan coating canola oil spray	16 oz	Opened, with cap on	High oleic canola oil, soybean lecithin, natural flavor, dimethyl silicone (anti- foaming agent), beta-carotene, propellant.	0.0	Y
Eyewash Station, pretzel shop	Physicians Care eyewash solution	16 oz	New/unopened	Purified water	0.0	Y
Floor level, storage hallway, pretzel shop	Container of weed B'gon weed killer	1 gal	Had cap on	Dimethylamine Salt of 2,4-D acid	0.0	Y
	Windo Clear A (251) bottle	N/A	Open, with cap on	2-Hexoxyethanol Isopropanol amine Ammonium hydroxide	0.0	Y
	Bucket of markers and pens	N/A	All pens had caps	N/A	0.0	Y
	Indoor insect barrier spray	1 gal	Opened with cap on	N/A	0.0	Y
· · · · ·	Container of lubricant		Opened, with no cap	N/A	0.0	Y
Shelf,	Bottle of leak detector fluid	N/A	Opened, with cap on	N/A	0.0	Y
	Bottle of degreaser	N/A	Opened, with no cap	N/A	0.0	Y

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Tres Bon Cleaners		Site Code:1	30058	_ Operable Unit:0U1
Building Code:	Building Name	Cigar Shor	p & Pretze	el Shop
Address: 197 Franklin Avenue			Apt/Suite No):
City: Franklin Square	State: NY	Zip:11010	County: N	lassau
Contact Information				
Preparer's Name: Haley Young			Phone No:	315-460-6026
Preparer's Affiliation: Scientist - EA	Engineering, Science	& Technol	Company Co	de:EAEST
Purpose of Investigation: Air Samplin	g (Contracted by DEC)		Date of Inspe	ection: March 6th, 2🛱
Contact Name:			_ Affiliation:	
Phone No:	Alt. Phone No:		Email:	
Number of Occupants (total):	Number of Children:			
Occupant Interviewed?	Owner Occu	ipied?		Owner Interviewed?
Owner Name (if different):			Owner Phone	2:
Owner Mailing Address:				
Building Details				
Bldg Type (Res/Com/Ind/Mixed): COMME	ERCIAL/MIXED		Bldg Size (S/	M/L): SMALL
If Commercial or Industrial Facility, Select Op RETAIL STORE	erations:	lf Residential Sele	ct Structure T	ype:
Number of Floors: <u>1</u> Approx. Yea	ar Construction:	🖂 Buildin	g Insulated?	Attached Garage?
Describe Overall Building 'Tightness' and Airl	flows(e.g., results of smoke tes	ts):		
Smoke test not administered				
Foundation Description				
Foundation Type: UNKNOWN	F	oundation Depth	ı (bgs):	Unit: FEET
Foundation Floor Material:	F	oundation Floor	Thickness:	
Foundation Wall Material:	F	oundation Wall T	hickness:	Unit: INCHES
Floor penetrations? Describe Floor Pe	netrations:			
Wall penetrations? Describe Wall Per	netrations:			
Basement is: 🗾 🖬	asement is:	Sumps	s/Drains? W	ater In Sump?:
Describe Foundation Condition (cracks, seep	age, etc.) :			
Radon Mitigation System Installed?	VOC Mitigat	on System Install	ed?	Mitigation System On?
Heating/Cooling/Ventilation Syste	ems			
Heating System:	Heat Fuel Type:		•	Central A/C Present?
Vented Appliances				
Water Heater Fuel Type:		othes Dryer Fuel		•
Water Htr Vent Location:	D	ryer Vent Locatio	n:	

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

PRODUCT INVENTORY						
Building Name: Cigar Shop & Pretzel Shop Bldg Co	de: Date: 3/6/2023					
Bldg Address: 197 Franklin Avenue	Apt/Suite No:					
Bldg City/State/Zip: Franklin Square NY, 11010						
Make and Model of PID: Honeywell Mini Rae 3000	Date of Calibration:					
Make and model of the. Homeywell Milli Rae 3000						

Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredients	PID Reading	COC Y/N?
Cigar Shop	Butane torches	> 20	Unopened	Butane	0.0	
Cigar Shop	Packages of charcoal	> 50	Unopened	Carbon	0.0	
Cigar Shop	All-purpose joint compound	28 kg	Open w cap	Gypsum board	0.0	
Cigar Shop	Disinfectant spray	16 oz	Open	Triethanolamine, Lauryl Betaine, Ethylhexyl Ether, Dipropylene Glycol Butyl Ether, Sodium Carbonate, Ethanolamine, Xanthan Gum	0.0	
Cigar Shop	Glass cleaner	28 oz	Open w cap	Alcohol, Butoxyethanol, Propane, Butane, Sodium Nitrite, And T-Butyl Alcohol	0.0	
Pretzel Shop	Canola oil spray	16 oz	Open w cap	High oleic canola oil, soybean lecithin, natural flavor, dimethyl silicone (anti-foaming agent), beta-carotene, propellant.	0.0	
Pretzel Shop	Eyewash station solution	16 oz	Unopened	Purified water	0.0	
Pretzel Shop	Weed killer	1 gal	Open w cap	Dimethylamine Salt of 2,4-D acid	0.0	
Pretzel Shop	Markers/pens	N/A	All capped	2-Hexoxyethanol Isopropanol amine Ammonium hydroxide +	0.0	
Pretzel Shop	Indoor insect spray		Open w cap	N/A	0.0	
Pretzel Shop	Container of lubricant	N/A	Open w cap	N/A	0.0	
Pretzel Shop	Leak detector fluid	N/A	Open w cap	N/A	0.0	
Pretzel Shop	Degreaser	N/A	Open w cap	N/A	0.0	

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete? Yes

Were there any elevated PID readings taken on site? No

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Tres Bon Cleaners	Site Code: 1	30058	Operable Unit:	OU1
Building Code: Building Name:	Cigar Shop	⊳ & Pretz∈	el Shop	
Address: 197 Franklin Avenue		Apt/Sui	ite No:	
City: Franklin Square State: NY	Z Zip: 11010	<u> </u>	County: Nassau	
Factors Affecting Indoor Air Quailty				
Frequency Basement/Lowest Level is Occupied?:	Floor Mater	ial:		-
Inhabited? HVAC System On? Bath	room Exhaust Fa	an?	🦳 Kitchen Exha	ust Fan?
Alternate Heat Source:	v	Is there sr	moking in the build	ing?
Air Fresheners? Description/Location of Air Freshener:				
Cleaning Products Used Recently?: Description of Cleaning Products:				
Cosmetic Products Used Recently?: Description of Cosmetic Products				
New Carpet or Furniture? Location of New Carpet/Furniture:				
Recent Dry Cleaning? Location of Recently Dry Cleaned Fabrics:				
Recent Painting/Staining? Location of New Painting:				
Solvent or Chemical Odors? Describe Odors (if any):				
Do Any Occupants Use Solvents At Work? If So, List Solvents Used:				
Recent Pesticide/Rodenticide? Description of Last Use:				
Describe Any Household Activities (chemical use,/storage, unvented appliar	ices, hobbies, et	:c.) That May	Affect Indoor Air Qເ	Jality:
Any Prior Testing For Radon? If So, When?:		_		
Any Prior Testing For VOCs? If So, When?:		_		
Sampling Conditions				
Weather Conditions: SUNNY Out	door Temperatu	ure: 45		°F
Current Building Use: RETAIL STORE Bare	ometric Pressure	e: 30.	07	in(hg)
Product Inventory Complete? Yes Duilding Questionnaire	Completed?			

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Building Code: Address: 197 Franklin Ave Franklin Square , NY 11010							
Sampling Informa	tion						
Sampler Name(s):	Lincoln Backman	-Lowe / Haley Y	Cour <u>+</u> Sampler Com	pany Code: EAESI			
Sample Collection Dat	e: Mar 7, 2023		Date Samples	Sent To Lab:3 / 8	8/2023		
Sample Chain of Custo	ody Number:		Outdoor Air S	ample Location ID:	13008-0A-1		
SUMMA Canister I	nformation						
Sample ID:	130058-OA-1-0323	130058-IA-1 <mark>+</mark>	130058-IA-2	130058-FD-1			
Location Code:	130058-OA-1	130058-IA-1	130058-IA-2	130058-IA-2			
Location Type:	FIRST FLOOR	FIRST FLOOR	FIRST FLOOR	FIRST FLOOR	-		
Canister ID:	1073	1618	2157	2158			
Regulator ID:	3732	3417	3731	3508			
Matrix:	Ambient Outdoor 2	Indoor Air	Indoor Air	Indoor Air	-		
Sampling Method:	SUMMA AIR SAMPLII	SUMMA AIR SA	SUMMA AIR SA	SUMMA AIR SA	-		
Sampling Area Inf	ō						
Slab Thickness (inches):							
Sub-Slab Material:	-	•	-	-	-		
Sub-Slab Moisture:	-	•	-	-	-		
Seal Type:	•	•	-	-	-		
Seal Adequate?:							
Sample Times and	Vacuum Readings						
Sample Start Date/Time:	03/06/2023 12:	03/06/2023 📫	03/06/2023 📫	03/06/2023 📫			
Vacuum Gauge Start:	-29	-30	-29	-28			
Sample End Date/Time:	03/07/2023 9:36	03/07/2023 🛊	03/07/2023 🛱	03/07/2023 📫			
Vacuum Gauge End:	-12	-13	-14	-7			
Sample Duration (hrs):	20.6	20.7	20.4	20.7			
Vacuum Gauge Unit:	in(hg)	in(hg)	in(hg)	in(hg)	-		
Sample QA/QC Re	adings						
Vapor Port Purge:							
Purge PID Reading:							
Purge PID Unit:	•	•		•	•		
Tracer Test Pass:							
Sample start	and end times should	l be entered using	g the following for	mat: MM/DD/YYY	Y HH: MM		

		click the bo									the low	est bui	lding le	evel . [Clea	r Image
						+										
						Ē	Desigr	n Sketc	ר							
			De	sign Sk	etch Gui	del	ines a	and Rec	ommer	nded	Symbol	ogy				
[Identify an 	nd label the lo	ocations o	of all sub	b-slab, ind	loor	air, ar	nd outdo	or air san	nples	on the lay	yout ske	etch.			
	 Measure 	the distance	of all sam	nple loca	ations fron	n ide	entifial	ble featu	res, and	inclu	de on the l	layout s	ketch.			
	Identify ro	om use (bed	room. livii	na room	n, den, kito	chen	. etc.)	on the I	avout ske	ete						
		e locations o									ropriate sv	mbole:				
·				wing ice												
	B or F HW	Boiler or Fi Hot Water			0 XXXXXX	x					ons (label de or outs			as annron	oriate)	
	FP	Fireplaces			#####				en-up co			.ao out		as approp		
	ws	Wood Stov			• SS-1	I					samples					
	W/D	Washer / D	Dryer		• IA-1						ir samples					
	S	Sumps			• OA-1	1					air sample					
	@	Floor Drain	is		• PFET	-1					ressure fie		noles.			

		FIRS	ST FLOOR I	BUILDING LAYOUT SKETCH
		ck the box with the blu h should be in a standa		low to upload a sketch of the first floor of the building. Clear Image
		Ar Semple RAW DISPLAY CASE DISPLAY CASE WASH CLOSET DISPLAY CASE UNISALA	Tister Ar Sough	
= M = Id = Id	leasure the entify roon entify the I B or F	label the locations of all s e distance of all sample lo n use (bedroom, living roo	Sketch Guide ub-slab, indoor cations from id m, den, kitche	Design Sketch elines and Recommended Symbology rr air, and outdoor air samples on the layout sketch. dentifiable features, and include on the layout sketch. en, etc.) on the layout sketc e layout sketch, using the appropriate symbols: Other floor or wall penetrations (label appropriately) Perimeter Drains (draw inside or outside outer walls as appropriate)
	FP WS W/D S	Fireplaces Wood Stoves Washer / Dryer Sumps Floor Drains	• SS-1 • IA-1 • OA-1 • PFET-1	Areas of broken-up concrete Location & label of sub-slab samples Location & label of indoor air samples Location and label of any pressure field test holes.

	0	UTDOOR	R PLOT LAYOUT SKETCH
			w to upload a sketch of the outdoor plot of the building ould be in a standard image format (.jpg, .png, .tiff) Clear Image
	ine surrounding area. The	SKCTCH SHO	
			Design Sketch
	Design Sk	etch Guide	elines and Recommended Symbology
 Identify ar 	nd label the locations of all sub	o-slab, indoor	or air, and outdoor air samples on the layout sketch.
 Measure 	the distance of all sample loca	ations from id	identifiable features, and include on the layout sketch.
 Identify ro 	om use (bedroom, living room	i, den, kitchei	en, etc.) on the layout sket
Identify th	e locations of the following fea	atures on the	e layout sketch, using the appropriate symbols:
B or F HW	Boiler or Furnace Hot Water Heater	0	Other floor or wall penetrations (label appropriately) Perimeter Drains (draw inside or outside outer walls as appropriate)
FP	Fireplaces	xxxxxxx ######	Areas of broken-up concrete
WS	Wood Stoves	• SS-1	Location & label of sub-slab samples
W/D S	Washer / Dryer	IA-1OA-1	Location & label of indoor air samples Location & label of outdoor air samples
S	Sumps Floor Drains	 OA-1 PFET-1 	

Attachment 4

Analytic Data Laboratory Report

This page left intentionally blank

March 29, 2023

Michael Miller NYDEC_EA Engineering, Science & Tech. - NY 269 W. Jefferson Street Syracuse, NY 13202

Project Location: Franklin Square, NY Client Job Number: Project Number: 1602523.0011 Laboratory Work Order Number: 23C1351

Enclosed are results of analyses for samples as received by the laboratory on March 10, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kyle K. Stuckey Project Manager

hatherine F. allen

QA Officer Katherine Allen

Laboratory Manager Daren Damboragian

NYDEC_EA Engineering, Science & Tech. - NY 269 W. Jefferson Street Syracuse, NY 13202 ATTN: Michael Miller REPORT DATE: 3/29/2023

PURCHASE ORDER NUMBER: SMPC0001

PROJECT NUMBER: 1602523.0011

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23C1351

The results of analyses performed on the following samples submitted to Con-Test, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Franklin Square, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
130058-IA-1-0323	23C1351-01	Indoor air		EPA TO-15	
130058-IA-2-0323	23C1351-02	Indoor air		EPA TO-15	
130058-OA-1-0323	23C1351-03	Ambient Air		EPA TO-15	
130058-FD-1-0323	23C1351-04	Indoor air		EPA TO-15	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Onal	lifica	tions:

EPA TO-15

E Reported result is estimated. Value reported over verified calibration range.

Analyte & Samples(s) Qualified:

Ethanol

L-01 Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.

Analyte & Samples(s) Qualified:

Benzyl chloride

B335600-BS1

L-03 Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Hexachlorobutadiene, Naphthalene

23C1351-01[130058-IA-1-0323], 23C1351-02[130058-IA-2-0323], 23C1351-03[130058-OA-1-0323], 23C1351-04[130058-FD-1-0323], B335600-BLK1, B335600-BS1

V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Hexachlorobutadiene, Naphthalene

23C1351-01[130058-IA-1-0323], 23C1351-02[130058-IA-2-0323], 23C1351-03[130058-OA-1-0323], 23C1351-04[130058-FD-1-0323], B335600-BLK1, B335600-BS1, S085202-CCV1

V-20 Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Benzyl chloride

B335600-BS1, S085202-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan S. Kelley

Meghan E. Kelley Reporting Specialist

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-IA-1-0323 Sample ID: 23C1351-01 Sample Matrix: Indoor air Sampled: 3/7/2023 09:35 Sample Description/Location: Sub Description/Location: Canister ID: 1618 Canister Size: 6 liter Flow Controller ID: 3417 Sample Type: 24 hr

ANALYTICAL RESULTS

Work Order: 23C1351 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -13 Receipt Vacuum(in Hg): -12.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	CPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	8.3	1.4	0.84		20	3.3	2.0	0.696	3/23/23 14:44	CMR
Benzene	1.3	0.035	0.026		4.3	0.11	0.084	0.696	3/23/23 14:44	CMR
Benzyl chloride	ND	0.035	0.031		ND	0.18	0.16	0.696	3/23/23 14:44	CMR
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.696	3/23/23 14:44	CMR
Bromoform	ND	0.035	0.024		ND	0.36	0.24	0.696	3/23/23 14:44	CMR
Bromomethane	ND	0.035	0.023		ND	0.14	0.090	0.696	3/23/23 14:44	CMR
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.696	3/23/23 14:44	CMR
2-Butanone (MEK)	0.47	1.4	0.37	J	1.4	4.1	1.1	0.696	3/23/23 14:44	CMR
Carbon Disulfide	0.042	0.35	0.032	J	0.13	1.1	0.10	0.696	3/23/23 14:44	CMR
Carbon Tetrachloride	0.036	0.035	0.028		0.23	0.22	0.17	0.696	3/23/23 14:44	CMR
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.696	3/23/23 14:44	CMR
Chloroethane	0.068	0.035	0.031		0.18	0.092	0.081	0.696	3/23/23 14:44	CMR
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.696	3/23/23 14:44	CMR
Chloromethane	0.68	0.070	0.028		1.4	0.14	0.057	0.696	3/23/23 14:44	CMR
Cyclohexane	0.058	0.035	0.021		0.20	0.12	0.072	0.696	3/23/23 14:44	CMR
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.696	3/23/23 14:44	CMR
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.696	3/23/23 14:44	CMR
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.696	3/23/23 14:44	CMR
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.696	3/23/23 14:44	CMR
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.696	3/23/23 14:44	CMR
Dichlorodifluoromethane (Freon 12)	0.48	0.035	0.034		2.4	0.17	0.17	0.696	3/23/23 14:44	CMR
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.696	3/23/23 14:44	CMR
1,2-Dichloroethane	0.043	0.035	0.032		0.17	0.14	0.13	0.696	3/23/23 14:44	CMR
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.696	3/23/23 14:44	CMR
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.696	3/23/23 14:44	CMR
trans-1,2-Dichloroethylene	0.062	0.035	0.027		0.25	0.14	0.11	0.696	3/23/23 14:44	CMR
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.696	3/23/23 14:44	CMR
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.696	3/23/23 14:44	CMR
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.696	3/23/23 14:44	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.696	3/23/23 14:44	CMR
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.696	3/23/23 14:44	CMR
Ethanol	350	1.4	0.61	Е	670	2.6	1.2	0.696	3/23/23 14:44	CMR
Ethyl Acetate	0.68	0.35	0.18		2.4	1.3	0.63	0.696	3/23/23 14:44	CMR
Ethylbenzene	0.12	0.035	0.020		0.50	0.15	0.088	0.696	3/23/23 14:44	CMR
4-Ethyltoluene	0.025	0.035	0.021	J	0.12	0.17	0.11	0.696	3/23/23 14:44	CMR
Heptane	0.43	0.035	0.022		1.8	0.14	0.091	0.696	3/23/23 14:44	CMR
Hexachlorobutadiene	ND	0.035	0.029	L-03, V-05	ND	0.37	0.31	0.696	3/23/23 14:44	CMR
Hexane	0.20	1.4	0.18	J	0.70	4.9	0.64	0.696	3/23/23 14:44	CMR
2-Hexanone (MBK)	ND	0.035	0.017		ND	0.14	0.071	0.696	3/23/23 14:44	CMR
Isopropanol	2.1	1.4	0.24		5.2	3.4	0.59	0.696	3/23/23 14:44	CMR
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.696	3/23/23 14:44	CMR
Methylene Chloride	0.20	0.35	0.16	J	0.71	1.2	0.56	0.696	3/23/23 14:44	CMR
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.019	-	ND	0.14	0.076	0.696	3/23/23 14:44	CMR
Naphthalene	0.11	0.035	0.026	L-03, V-05	0.55	0.18	0.14	0.696	3/23/23 14:44	CMR
Propene	ND	1.4	0.31	,	ND	2.4	0.53	0.696	3/23/23 14:44	CMR
Styrene	0.21	0.035	0.018		0.90	0.15	0.078	0.696	3/23/23 14:44	CMR
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.696	3/23/23 14:44	CMR
										5 of 32

Page 5 of 32

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-IA-1-0323 Sample ID: 23C1351-01 Sample Matrix: Indoor air Sampled: 3/7/2023 09:35 Sample Description/Location: Sub Description/Location: Canister ID: 1618 Canister Size: 6 liter Flow Controller ID: 3417 Sample Type: 24 hr

Work Order: 23C1351 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -13 Receipt Vacuum(in Hg): -12.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	4.8	0.035	0.027		32	0.24	0.18	0.696	3/23/23 14:44	CMR
Tetrahydrofuran	0.16	0.35	0.057	J	0.46	1.0	0.17	0.696	3/23/23 14:44	CMR
Toluene	0.48	0.035	0.020		1.8	0.13	0.075	0.696	3/23/23 14:44	CMR
1,2,4-Trichlorobenzene	ND	0.035	0.032		ND	0.26	0.24	0.696	3/23/23 14:44	CMR
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.696	3/23/23 14:44	CMR
1,1,2-Trichloroethane	ND	0.035	0.024		ND	0.19	0.13	0.696	3/23/23 14:44	CMR
Trichloroethylene	ND	0.035	0.023		ND	0.19	0.13	0.696	3/23/23 14:44	CMR
Trichlorofluoromethane (Freon 11)	0.12	0.14	0.041	J	0.67	0.78	0.23	0.696	3/23/23 14:44	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.14	0.039		ND	1.1	0.30	0.696	3/23/23 14:44	CMR
1,2,4-Trimethylbenzene	0.12	0.035	0.015		0.58	0.17	0.076	0.696	3/23/23 14:44	CMR
1,3,5-Trimethylbenzene	0.029	0.035	0.018	J	0.14	0.17	0.090	0.696	3/23/23 14:44	CMR
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.696	3/23/23 14:44	CMR
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.696	3/23/23 14:44	CMR
m&p-Xylene	0.23	0.070	0.039		0.98	0.30	0.17	0.696	3/23/23 14:44	CMR
o-Xylene	0.10	0.035	0.018		0.44	0.15	0.077	0.696	3/23/23 14:44	CMR
Surrogates	% Recov	very		% REC	C Limits					

4-Bromofluorobenzene (1)

108

70-130

3/23/23 14:44

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-IA-2-0323 Sample ID: 23C1351-02 Sample Matrix: Indoor air Sampled: 3/7/2023 09:40 Sample Description/Location: Sub Description/Location: Canister ID: 2157 Canister Size: 6 liter Flow Controller ID: 3731 Sample Type: 24 hr Work Order: 23C1351 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -14 Receipt Vacuum(in Hg): -13.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	EPA TO-15							
t b-t-	Darrelta	ppbv	MDI	Ela -/O-ral	Decelte	ug/m3	MDI	D:1	Date/Time	A a lava d
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	21	1.6	0.97		50	3.8	2.3	0.8	3/23/23 15:16	CMR
Benzene	0.50	0.040	0.030		1.6	0.13	0.097	0.8	3/23/23 15:16	CMR
Benzyl chloride	ND	0.040	0.035		ND	0.21	0.18	0.8	3/23/23 15:16	CMR
Bromodichloromethane	ND	0.040	0.028		ND	0.27	0.19	0.8	3/23/23 15:16	CMR
Bromoform	ND	0.040	0.027		ND	0.41	0.28	0.8	3/23/23 15:16	CMR
Bromomethane	ND	0.040	0.027		ND	0.16	0.10	0.8	3/23/23 15:16	CMR
1,3-Butadiene	ND	0.040	0.034	Ţ	ND	0.088	0.074	0.8	3/23/23 15:16	CMR
2-Butanone (MEK)	1.6	1.6	0.43	J	4.6	4.7	1.3	0.8	3/23/23 15:16	CMR
Carbon Disulfide	0.51	0.40	0.037		1.6	1.2	0.12	0.8	3/23/23 15:16	CMR
Carbon Tetrachloride	0.073	0.040	0.032		0.46	0.25	0.20	0.8	3/23/23 15:16	CMR
Chlorobenzene	ND	0.040	0.027		ND	0.18	0.12	0.8	3/23/23 15:16	CMR
Chloroethane	ND	0.040	0.035		ND	0.11	0.094	0.8	3/23/23 15:16	CMR
Chloroform	ND	0.040	0.038		ND	0.20	0.19	0.8	3/23/23 15:16	CMR
Chloromethane	0.64	0.080	0.032		1.3	0.17	0.066	0.8	3/23/23 15:16	CMR
Cyclohexane	0.051	0.040	0.024		0.18	0.14	0.083	0.8	3/23/23 15:16	CMR
Dibromochloromethane	ND	0.040	0.026		ND	0.34	0.23	0.8	3/23/23 15:16	CMR
1,2-Dibromoethane (EDB)	ND	0.040	0.024		ND	0.31	0.19	0.8	3/23/23 15:16	CMR
1,2-Dichlorobenzene	ND	0.040	0.023		ND	0.24	0.14	0.8	3/23/23 15:16	CMR
1,3-Dichlorobenzene	ND	0.040	0.022		ND	0.24	0.13	0.8	3/23/23 15:16	CMR
1,4-Dichlorobenzene	ND	0.040	0.026		ND	0.24	0.16	0.8	3/23/23 15:16	CMR
Dichlorodifluoromethane (Freon 12)	ND	0.040	0.039		ND	0.20	0.19	0.8	3/23/23 15:16	CMR
1,1-Dichloroethane	ND	0.040	0.035		ND	0.16	0.14	0.8	3/23/23 15:16	CMR
1,2-Dichloroethane	ND	0.040	0.036		ND	0.16	0.15	0.8	3/23/23 15:16	CMR
1,1-Dichloroethylene	ND	0.040	0.030		ND	0.16	0.12	0.8	3/23/23 15:16	CMR
cis-1,2-Dichloroethylene	0.74	0.040	0.029		3.0	0.16	0.12	0.8	3/23/23 15:16	CMR
trans-1,2-Dichloroethylene	ND	0.040	0.031		ND	0.16	0.12	0.8	3/23/23 15:16	CMR
1,2-Dichloropropane	ND	0.040	0.022		ND	0.18	0.10	0.8	3/23/23 15:16	CMR
cis-1,3-Dichloropropene	ND	0.040	0.021		ND	0.18	0.094	0.8	3/23/23 15:16	CMR
trans-1,3-Dichloropropene	ND	0.040	0.020		ND	0.18	0.093	0.8	3/23/23 15:16	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.040	0.039		ND	0.28	0.28	0.8	3/23/23 15:16	CMR
1,4-Dioxane	ND	0.40	0.033		ND	1.4	0.12	0.8	3/23/23 15:16	CMR
Ethanol	5800	80	35	Е	11000	150	66	40	3/24/23 22:43	TPH
Ethyl Acetate	2.6	0.40	0.20		9.5	1.4	0.73	0.8	3/23/23 15:16	CMR
Ethylbenzene	0.060	0.040	0.023		0.26	0.17	0.10	0.8	3/23/23 15:16	CMR
4-Ethyltoluene	0.027	0.040	0.025	J	0.13	0.20	0.12	0.8	3/23/23 15:16	CMR
Heptane	0.18	0.040	0.026		0.76	0.16	0.10	0.8	3/23/23 15:16	CMR
Hexachlorobutadiene	ND	0.040	0.033	L-03, V-05	ND	0.43	0.35	0.8	3/23/23 15:16	CMR
Hexane	ND	1.6	0.21		ND	5.6	0.73	0.8	3/23/23 15:16	CMR
2-Hexanone (MBK)	0.28	0.040	0.020		1.1	0.16	0.082	0.8	3/23/23 15:16	CMR
Isopropanol	2.8	1.6	0.28		6.9	3.9	0.68	0.8	3/23/23 15:16	CMR
Methyl tert-Butyl Ether (MTBE)	ND	0.040	0.031		ND	0.14	0.11	0.8	3/23/23 15:16	CMR
Methylene Chloride	ND	0.40	0.19		ND	1.4	0.64	0.8	3/23/23 15:16	CMR
4-Methyl-2-pentanone (MIBK)	ND	0.040	0.021		ND	0.16	0.088	0.8	3/23/23 15:16	CMR
Naphthalene	ND	0.040	0.030	L-03, V-05	ND	0.21	0.16	0.8	3/23/23 15:16	CMR
Propene	ND	1.6	0.35		ND	2.8	0.61	0.8	3/23/23 15:16	CMR
Styrene	0.081	0.040	0.021		0.34	0.17	0.090	0.8	3/23/23 15:16	CMR
1,1,2,2-Tetrachloroethane	ND	0.040	0.022		ND	0.27	0.15	0.8	3/23/23 15:16	CMR
, , ,										

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-IA-2-0323 Sample ID: 23C1351-02 Sample Matrix: Indoor air Sampled: 3/7/2023 09:40 Sample Description/Location: Sub Description/Location: Canister ID: 2157 Canister Size: 6 liter Flow Controller ID: 3731 Sample Type: 24 hr Work Order: 23C1351 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -14 Receipt Vacuum(in Hg): -13.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	1.7	0.040	0.031		12	0.27	0.21	0.8	3/23/23 15:16	CMR
Tetrahydrofuran	ND	0.40	0.066		ND	1.2	0.19	0.8	3/23/23 15:16	CMR
Toluene	0.30	0.040	0.023		1.1	0.15	0.086	0.8	3/23/23 15:16	CMR
1,2,4-Trichlorobenzene	ND	0.040	0.037		ND	0.30	0.27	0.8	3/23/23 15:16	CMR
1,1,1-Trichloroethane	ND	0.040	0.031		ND	0.22	0.17	0.8	3/23/23 15:16	CMR
1,1,2-Trichloroethane	ND	0.040	0.028		ND	0.22	0.15	0.8	3/23/23 15:16	CMR
Trichloroethylene	0.046	0.040	0.027		0.25	0.21	0.14	0.8	3/23/23 15:16	CMR
Trichlorofluoromethane (Freon 11)	0.24	0.16	0.047		1.3	0.90	0.27	0.8	3/23/23 15:16	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.092	0.16	0.044	J	0.71	1.2	0.34	0.8	3/23/23 15:16	CMR
1,2,4-Trimethylbenzene	0.11	0.040	0.018		0.52	0.20	0.087	0.8	3/23/23 15:16	CMR
1,3,5-Trimethylbenzene	0.047	0.040	0.021		0.23	0.20	0.10	0.8	3/23/23 15:16	CMR
Vinyl Acetate	ND	0.80	0.21		ND	2.8	0.76	0.8	3/23/23 15:16	CMR
Vinyl Chloride	ND	0.040	0.036		ND	0.10	0.092	0.8	3/23/23 15:16	CMR
m&p-Xylene	0.15	0.080	0.045		0.64	0.35	0.19	0.8	3/23/23 15:16	CMR
o-Xylene	0.069	0.040	0.020		0.30	0.17	0.089	0.8	3/23/23 15:16	CMR
Surrogates	% Recov	very		% REC	C Limits					
4-Bromofluorobenzene (1)		105		70-	-130				3/24/23 22:43	
4-Bromofluorobenzene (1)		108		70-	-130				3/23/23 15:16	

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-OA-1-0323 Sample ID: 23C1351-03 Sample Matrix: Ambient Air Sampled: 3/7/2023 09:36 Sample Description/Location: Sub Description/Location: Canister ID: 1073 Canister Size: 6 liter Flow Controller ID: 3732 Sample Type: 24 hr

Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -12 Receipt Vacuum(in Hg): -11.5 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

Work Order: 23C1351

		E	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	3.7	1.4	0.84		8.8	3.3	2.0	0.696	3/23/23 15:48	CMR
Benzene	0.20	0.035	0.026		0.65	0.11	0.084	0.696	3/23/23 15:48	CMR
Benzyl chloride	ND	0.035	0.031		ND	0.18	0.16	0.696	3/23/23 15:48	CMR
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.696	3/23/23 15:48	CMR
Bromoform	ND	0.035	0.024		ND	0.36	0.24	0.696	3/23/23 15:48	CMR
Bromomethane	ND	0.035	0.023		ND	0.14	0.090	0.696	3/23/23 15:48	CMR
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.696	3/23/23 15:48	CMR
2-Butanone (MEK)	0.51	1.4	0.37	J	1.5	4.1	1.1	0.696	3/23/23 15:48	CMR
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.696	3/23/23 15:48	CMR
Carbon Tetrachloride	0.065	0.035	0.028		0.41	0.22	0.17	0.696	3/23/23 15:48	CMR
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.696	3/23/23 15:48	CMR
Chloroethane	ND	0.035	0.031		ND	0.092	0.081	0.696	3/23/23 15:48	CMR
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.696	3/23/23 15:48	CMR
Chloromethane	0.62	0.070	0.028		1.3	0.14	0.057	0.696	3/23/23 15:48	CMR
Cyclohexane	0.028	0.035	0.021	J	0.096	0.12	0.072	0.696	3/23/23 15:48	CMR
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.696	3/23/23 15:48	CMR
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.696	3/23/23 15:48	CMR
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.696	3/23/23 15:48	CMR
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.696	3/23/23 15:48	CMR
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.696	3/23/23 15:48	CMR
Dichlorodifluoromethane (Freon 12)	0.64	0.035	0.034		3.2	0.17	0.17	0.696	3/23/23 15:48	CMR
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.696	3/23/23 15:48	CMR
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.13	0.696	3/23/23 15:48	CMR
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.696	3/23/23 15:48	CMR
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.696	3/23/23 15:48	CMR
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.696	3/23/23 15:48	CMR
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.696	3/23/23 15:48	CMR
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.696	3/23/23 15:48	CMR
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.696	3/23/23 15:48	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.696	3/23/23 15:48	CMR
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.696	3/23/23 15:48	CMR
Ethanol	66	1.4	0.61	Е	120	2.6	1.2	0.696	3/23/23 15:48	CMR
Ethyl Acetate	ND	0.35	0.18		ND	1.3	0.63	0.696	3/23/23 15:48	CMR
Ethylbenzene	0.035	0.035	0.020		0.15	0.15	0.088	0.696	3/23/23 15:48	CMR
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.696	3/23/23 15:48	CMR
Heptane	0.093	0.035	0.022		0.38	0.14	0.091	0.696	3/23/23 15:48	CMR
Hexachlorobutadiene	ND	0.035	0.029	L-03, V-05	ND	0.37	0.31	0.696	3/23/23 15:48	CMR
Hexane	ND	1.4	0.18		ND	4.9	0.64	0.696	3/23/23 15:48	CMR
2-Hexanone (MBK)	0.079	0.035	0.017		0.32	0.14	0.071	0.696	3/23/23 15:48	CMR
Isopropanol	0.67	1.4	0.24	J	1.6	3.4	0.59	0.696	3/23/23 15:48	CMR
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.696	3/23/23 15:48	CMR
Methylene Chloride	ND	0.35	0.16		ND	1.2	0.56	0.696	3/23/23 15:48	CMR
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.019		ND	0.14	0.076	0.696	3/23/23 15:48	CMR
Naphthalene	ND	0.035	0.026	L-03, V-05	ND	0.18	0.14	0.696	3/23/23 15:48	CMR
Propene	ND	1.4	0.31		ND	2.4	0.53	0.696	3/23/23 15:48	CMR
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.696	3/23/23 15:48	CMR
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.696	3/23/23 15:48	CMR
									Dogo	2 - 4 - 2 - 2

Page 9 of 32

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-OA-1-0323 Sample ID: 23C1351-03 Sample Matrix: Ambient Air Sampled: 3/7/2023 09:36

Sample Description/Location: Sub Description/Location: Canister ID: 1073 Canister Size: 6 liter Flow Controller ID: 3732 Sample Type: 24 hr

Work Order: 23C1351 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -12 Receipt Vacuum(in Hg): -11.5 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	0.053	0.035	0.027		0.36	0.24	0.18	0.696	3/23/23 15:48	CMR
Tetrahydrofuran	ND	0.35	0.057		ND	1.0	0.17	0.696	3/23/23 15:48	CMR
Toluene	0.21	0.035	0.020		0.78	0.13	0.075	0.696	3/23/23 15:48	CMR
1,2,4-Trichlorobenzene	ND	0.035	0.032		ND	0.26	0.24	0.696	3/23/23 15:48	CMR
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.696	3/23/23 15:48	CMR
1,1,2-Trichloroethane	ND	0.035	0.024		ND	0.19	0.13	0.696	3/23/23 15:48	CMR
Trichloroethylene	ND	0.035	0.023		ND	0.19	0.13	0.696	3/23/23 15:48	CMR
Trichlorofluoromethane (Freon 11)	0.22	0.14	0.041		1.3	0.78	0.23	0.696	3/23/23 15:48	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.079	0.14	0.039	J	0.61	1.1	0.30	0.696	3/23/23 15:48	CMR
1,2,4-Trimethylbenzene	0.038	0.035	0.015		0.19	0.17	0.076	0.696	3/23/23 15:48	CMR
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.090	0.696	3/23/23 15:48	CMR
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.696	3/23/23 15:48	CMR
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.696	3/23/23 15:48	CMR
m&p-Xylene	0.11	0.070	0.039		0.46	0.30	0.17	0.696	3/23/23 15:48	CMR
o-Xylene	0.046	0.035	0.018		0.20	0.15	0.077	0.696	3/23/23 15:48	CMR
Surrogates	% Recov	very		% REC	C Limits					

4-Bromofluorobenzene (1)

108

70-130

3/23/23 15:48

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-FD-1-0323 Sample ID: 23C1351-04 Sample Matrix: Indoor air Sampled: 3/7/2023 09:36 Sample Description/Location: Sub Description/Location: Canister ID: 2158 Canister Size: 6 liter Flow Controller ID: 3508 Sample Type: 24 hr Work Order: 23C1351 Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -8.0 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	9.9	1.4	0.84		23	3.3	2.0	0.698	3/23/23 16:20	CMR
Benzene	1.3	0.035	0.026		4.1	0.11	0.084	0.698	3/23/23 16:20	CMR
Benzyl chloride	ND	0.035	0.031		ND	0.18	0.16	0.698	3/23/23 16:20	CMR
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	3/23/23 16:20	CMR
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	3/23/23 16:20	CMR
Bromomethane	ND	0.035	0.023		ND	0.14	0.090	0.698	3/23/23 16:20	CMR
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/23/23 16:20	CMR
2-Butanone (MEK)	0.80	1.4	0.37	J	2.4	4.1	1.1	0.698	3/23/23 16:20	CMR
Carbon Disulfide	0.033	0.35	0.032	J	0.10	1.1	0.10	0.698	3/23/23 16:20	CMR
Carbon Tetrachloride	0.038	0.035	0.028		0.24	0.22	0.17	0.698	3/23/23 16:20	CMR
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	3/23/23 16:20	CMR
Chloroethane	0.060	0.035	0.031		0.16	0.092	0.082	0.698	3/23/23 16:20	CMR
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	3/23/23 16:20	CMR
Chloromethane	0.65	0.070	0.028		1.3	0.14	0.057	0.698	3/23/23 16:20	CMR
Cyclohexane	0.046	0.035	0.021		0.16	0.12	0.073	0.698	3/23/23 16:20	CMR
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/23/23 16:20	CMR
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	3/23/23 16:20	CMR
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	3/23/23 16:20	CMR
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	3/23/23 16:20	CMR
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	3/23/23 16:20	CMR
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	3/23/23 16:20	CMR
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/23/23 16:20	CMR
1,2-Dichloroethane	0.038	0.035	0.032		0.16	0.14	0.13	0.698	3/23/23 16:20	CMR
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	3/23/23 16:20	CMR
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	3/23/23 16:20	CMR
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	3/23/23 16:20	CMR
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	3/23/23 16:20	CMR
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	3/23/23 16:20	CMR
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	3/23/23 16:20	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	3/23/23 16:20	CMR
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	3/23/23 16:20	CMR
Ethanol	350	1.4	0.62	Е	660	2.6	1.2	0.698	3/23/23 16:20	CMR
Ethyl Acetate	0.76	0.35	0.18		2.7	1.3	0.64	0.698	3/23/23 16:20	CMR
Ethylbenzene	0.087	0.035	0.020		0.38	0.15	0.088	0.698	3/23/23 16:20	CMR
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	3/23/23 16:20	CMR
Heptane	0.32	0.035	0.022		1.3	0.14	0.091	0.698	3/23/23 16:20	CMR
Hexachlorobutadiene	ND	0.035	0.029	L-03, V-05	ND	0.37	0.31	0.698	3/23/23 16:20	CMR
Hexane	ND	1.4	0.18		ND	4.9	0.64	0.698	3/23/23 16:20	CMR
2-Hexanone (MBK)	0.15	0.035	0.017		0.61	0.14	0.071	0.698	3/23/23 16:20	CMR
Isopropanol	2.5	1.4	0.24		6.1	3.4	0.59	0.698	3/23/23 16:20	CMR
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	3/23/23 16:20	CMR
Methylene Chloride	0.20	0.35	0.16	J	0.68	1.2	0.56	0.698	3/23/23 16:20	CMR
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.019		ND	0.14	0.076	0.698	3/23/23 16:20	CMR
Naphthalene	ND	0.035	0.026	L-03, V-05	ND	0.18	0.14	0.698	3/23/23 16:20	CMR
Propene	ND	1.4	0.31	2	ND	2.4	0.53	0.698	3/23/23 16:20	CMR
Styrene	0.22	0.035	0.018		0.92	0.15	0.078	0.698	3/23/23 16:20	CMR
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	3/23/23 16:20	CMR

Page 11 of 32

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-FD-1-0323 Sample ID: 23C1351-04 Sample Matrix: Indoor air Sampled: 3/7/2023 09:36 Sample Description/Location: Sub Description/Location: Canister ID: 2158 Canister Size: 6 liter Flow Controller ID: 3508 Sample Type: 24 hr

Work Order: 23C1351 Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -8.0 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	4.6	0.035	0.027		31	0.24	0.18	0.698	3/23/23 16:20	CMR
Tetrahydrofuran	ND	0.35	0.057		ND	1.0	0.17	0.698	3/23/23 16:20	CMR
Toluene	0.42	0.035	0.020		1.6	0.13	0.075	0.698	3/23/23 16:20	CMR
1,2,4-Trichlorobenzene	ND	0.035	0.032		ND	0.26	0.24	0.698	3/23/23 16:20	CMR
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	3/23/23 16:20	CMR
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	3/23/23 16:20	CMR
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	3/23/23 16:20	CMR
Trichlorofluoromethane (Freon 11)	0.12	0.14	0.041	J	0.68	0.78	0.23	0.698	3/23/23 16:20	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.14	0.039		ND	1.1	0.30	0.698	3/23/23 16:20	CMR
1,2,4-Trimethylbenzene	0.058	0.035	0.015		0.28	0.17	0.076	0.698	3/23/23 16:20	CMR
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	3/23/23 16:20	CMR
Vinyl Acetate	0.65	0.70	0.19	J	2.3	2.5	0.66	0.698	3/23/23 16:20	CMR
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	3/23/23 16:20	CMR
m&p-Xylene	0.15	0.070	0.039		0.66	0.30	0.17	0.698	3/23/23 16:20	CMR
o-Xylene	0.072	0.035	0.018		0.31	0.15	0.078	0.698	3/23/23 16:20	CMR
Surrogates	% Recov	very		% REC	C Limits					

4-Bromofluorobenzene (1)

109

70-130

3/23/23 16:20

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-15		D	D	Pre-Dil	Pre-Dil	Default	Actual	
Lab Number [Field ID]	Batch	Pressure Dilution	Pre Dilution	Initial mL	Final mL	Injection mL	Injection mL	Date
23C1351-02RE1 [130058-IA-2-0323]	B335323	2	1	N/A	1000	200	10	03/24/23
Prep Method: TO-15 Prep-EPA TO-15		Pressure	Pre	Pre-Dil Initial	Pre-Dil Final	Default Injection	Actual Injection	
Lab Number [Field ID]	Batch	Dilution	Dilution	mL	mL	mL	mL	Date
23C1351-01 [130058-IA-1-0323]	B335600	1.74	1	N/A	1000	200	500	03/23/23
23C1351-02 [130058-IA-2-0323]	B335600	2.0	1	N/A	1000	200	500	03/23/23
23C1351-03 [130058-OA-1-0323]	B335600	1.74	1	N/A	1000	200	500	03/23/23

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	pp	bv	ug/r	n3	Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B335323 - TO-15 Prep											
Blank (B335323-BLK1)					Prepared & A	Analyzed: 03	/24/23				
Acetone	ND	0.80									
2-Butanone (MEK)	ND	0.80									
Ethanol	ND	0.80									
4-Ethyltoluene	ND	0.020									
Isopropanol	0.21	0.80									
1,2,4-Trimethylbenzene	ND	0.020									
1,3,5-Trimethylbenzene	ND	0.020									
Surrogate: 4-Bromofluorobenzene (1)	8.56				8.00		107	70-130			
LCS (B335323-BS1)					Prepared & A	Analyzed: 03	/24/23				
Acetone	4.90				5.00		98.1	70-130			
2-Butanone (MEK)	4.10				5.00		81.9	70-130			
Ethanol	4.52				5.00		90.5	70-130			
4-Ethyltoluene	4.62				5.00		92.5	70-130			
Isopropanol	3.98				5.00		79.5	70-130			
1,2,4-Trimethylbenzene	4.56				5.00		91.2	70-130			
1,3,5-Trimethylbenzene	4.58				5.00		91.5	70-130			
Surrogate: 4-Bromofluorobenzene (1)	8.60				8.00		107	70-130			

Batch B335600 - TO-15 Prep

cis-1,2-Dichloroethylene

ND

0.020

Blank (B335600-BLK1)			Prepared & Analyzed: 03/23/23
Acetone	ND	0.80	
Benzene	ND	0.020	
Benzyl chloride	ND	0.020	
Bromodichloromethane	ND	0.020	
Bromoform	ND	0.020	
Bromomethane	ND	0.020	
1,3-Butadiene	ND	0.020	
2-Butanone (MEK)	ND	0.80	
Carbon Disulfide	ND	0.20	
Carbon Tetrachloride	ND	0.020	
Chlorobenzene	ND	0.020	
Chloroethane	ND	0.020	
Chloroform	ND	0.020	
Chloromethane	ND	0.040	
Cyclohexane	ND	0.020	
Dibromochloromethane	ND	0.020	
1,2-Dibromoethane (EDB)	ND	0.020	
1,2-Dichlorobenzene	ND	0.020	
1,3-Dichlorobenzene	ND	0.020	
1,4-Dichlorobenzene	ND	0.020	
Dichlorodifluoromethane (Freon 12)	ND	0.020	
1,1-Dichloroethane	ND	0.020	
1,2-Dichloroethane	ND	0.020	
1,1-Dichloroethylene	ND	0.020	

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppt Reculta		ug/m3 Reculta		pike Level	Source Result	%PEC	%REC	רוקק	RPD Limit	Flag/Our
Analyte	Results	RL	Results I	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qua
Batch B335600 - TO-15 Prep											
Blank (B335600-BLK1)					Prepared & A	Analyzed: 03	/23/23				
trans-1,2-Dichloroethylene	ND	0.020									
1,2-Dichloropropane	ND	0.020									
cis-1,3-Dichloropropene	ND	0.020									
trans-1,3-Dichloropropene	ND	0.020									
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.020									
1,4-Dioxane	ND	0.20									
Ethanol	ND	0.80									
Ethyl Acetate	ND	0.20									
Ethylbenzene	ND	0.020									
4-Ethyltoluene	ND	0.020									
Heptane	ND	0.020									
Hexachlorobutadiene	ND	0.020									L-03, V-0
Hexane	ND	0.80									
2-Hexanone (MBK)	ND	0.020									
Isopropanol	ND	0.80									
Methyl tert-Butyl Ether (MTBE)	ND	0.020									
Methylene Chloride	ND	0.20									
4-Methyl-2-pentanone (MIBK)	ND	0.020									
Naphthalene	ND	0.020									L-03, V-0
Propene	ND	0.80									
Styrene	ND	0.020									
1,1,2,2-Tetrachloroethane	ND	0.020									
Tetrachloroethylene	ND	0.020									
Tetrahydrofuran	ND	0.20									
Toluene	ND	0.020									
1,2,4-Trichlorobenzene	ND	0.020									
1,1,1-Trichloroethane	ND	0.020									
1,1,2-Trichloroethane	ND	0.020									
Trichloroethylene	ND	0.020									
Trichlorofluoromethane (Freon 11)	ND	0.080									
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.080									
1,2,4-Trimethylbenzene	ND	0.020									
1,3,5-Trimethylbenzene	ND	0.020									
Vinyl Acetate	ND	0.40									
Vinyl Chloride	ND	0.020									
m&p-Xylene	ND	0.040									
o-Xylene	ND	0.020									

Page 15 of 32

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyta	ppl Begylte		ug/m Bagulta		Spike Level	Source	0/050	%REC	יזתק	RPD Limit	Elac/O
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B335600 - TO-15 Prep											
LCS (B335600-BS1)					Prepared & A	Analyzed: 03	/23/23				
Acetone	5.73				5.00		115	70-130			
Benzene	5.82				5.00		116	70-130			
Benzyl chloride	6.93				5.00		139 *	70-130			L-01, V-20
Bromodichloromethane	5.98				5.00		120	70-130			
Bromoform	6.33				5.00		127	70-130			
Bromomethane	5.36				5.00		107	70-130			
1,3-Butadiene	5.47				5.00		109	70-130			
2-Butanone (MEK)	4.90				5.00		97.9	70-130			
Carbon Disulfide	5.07				5.00		101	70-130			
Carbon Tetrachloride	5.49				5.00		110	70-130			
Chlorobenzene	5.39				5.00		108	70-130			
Chloroethane	5.73				5.00		115	70-130			
Chloroform	5.35				5.00		107	70-130			
Chloromethane	5.62				5.00		112	70-130			
Cyclohexane	6.10				5.00		122	70-130			
Dibromochloromethane	5.78				5.00		116	70-130			
1,2-Dibromoethane (EDB)	5.57				5.00		111	70-130			
1,2-Dichlorobenzene	5.51				5.00		110	70-130			
1,3-Dichlorobenzene	5.54				5.00		111	70-130			
1,4-Dichlorobenzene	5.89				5.00		118	70-130			
Dichlorodifluoromethane (Freon 12)	5.51				5.00		110	70-130			
1,1-Dichloroethane	5.85				5.00		117	70-130			
1,2-Dichloroethane	5.38				5.00		108	70-130			
1,1-Dichloroethylene	5.28				5.00		106	70-130			
cis-1,2-Dichloroethylene	5.44				5.00		109	70-130			
trans-1,2-Dichloroethylene	5.61				5.00		112	70-130			
1,2-Dichloropropane	6.20				5.00		112	70-130			
cis-1,3-Dichloropropene	6.11				5.00		124	70-130			
trans-1,3-Dichloropropene	6.36				5.00		122	70-130			
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	5.09				5.00		102	70-130			
1,4-Dioxane	6.03				5.00		121	70-130			
Ethanol	5.27				5.00		105	70-130			
Ethyl Acetate	5.10				5.00		102	70-130			
Ethylbenzene	5.52				5.00		110	70-130			
4-Ethyltoluene	5.72				5.00		114	70-130			
Heptane	6.01				5.00		120	70-130			
Hexachlorobutadiene	3.34				5.00		66.8 *	70-130			L-03, V-03
Hexane	5.52				5.00		110	70-130			
2-Hexanone (MBK)	5.43				5.00		109	70-130			
Isopropanol	4.70				5.00		94.0	70-130			
Methyl tert-Butyl Ether (MTBE)	5.41				5.00		108	70-130			
Methylene Chloride	4.93				5.00		98.6	70-130			
4-Methyl-2-pentanone (MIBK)	6.29				5.00		126	70-130			
Naphthalene	3.43				5.00		68.6 *	70-130			L-03, V-0
Propene	6.15				5.00		123	70-130			_ 00, 1 0.
Styrene	5.67				5.00		113	70-130			

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppł	ov	ug/n	n3	Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B335600 - TO-15 Prep											
LCS (B335600-BS1)					Prepared & A	Analyzed: 03	/23/23				
1,1,2,2-Tetrachloroethane	5.65				5.00		113	70-130			
Tetrachloroethylene	5.52				5.00		110	70-130			
Tetrahydrofuran	5.16				5.00		103	70-130			
Toluene	5.55				5.00		111	70-130			
1,2,4-Trichlorobenzene	4.53				5.00		90.6	70-130			
1,1,1-Trichloroethane	5.40				5.00		108	70-130			
1,1,2-Trichloroethane	5.64				5.00		113	70-130			
Trichloroethylene	5.55				5.00		111	70-130			
Trichlorofluoromethane (Freon 11)	5.05				5.00		101	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	4.74				5.00		94.9	70-130			
1,2,4-Trimethylbenzene	5.59				5.00		112	70-130			
1,3,5-Trimethylbenzene	5.64				5.00		113	70-130			
Vinyl Acetate	6.07				5.00		121	70-130			
Vinyl Chloride	5.61				5.00		112	70-130			
m&p-Xylene	11.2				10.0		112	70-130			
o-Xylene	5.59				5.00		112	70-130			
Surrogate: 4-Bromofluorobenzene (1)	8.67				8.00		108	70-130			

Note: Blank Subtraction is not performed unless otherwise noted

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
Ť	Wide recovery limits established for difficult compound.
\$	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
RL	Reporting Limit
MDL	Method Detection Limit
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
LCS Dup	Duplicate Laboratory Control Sample
MS	Matrix Spike Sample
MS Dup	Duplicate Matrix Spike Sample
REC	Recovery
QC	Quality Control
ppbv	Parts per billion volume
EPA	United States Environmental Protection Agency
% REC	Percent Recovery
ND	Not Detected
N/A	Not Applicable
DL	Detection Limit
NC	Not Calculated
LFB/LCS	Lab Fortified Blank/Lab Control Sample
ORP	Oxidation-Reduction Potential
wet	Not dry weight corrected
% wt	Percent weight
Kg	Kilogram
g	Gram
mg	Milligram
μg	Microgram
ng	Nanogram
L	Liter
mL	Milliliter
μL	Microliter
m3	Cubic Meter
EPH	Extractable Petroleum Hydrocarbons
VPH	Volatile Petroleum Hydrocarbons
APH	Air Petroleum Hydrocarbons
FID	Flame Ionization Detector
PID	Photo Ionization Detector Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the
	calculation which have not been rounded.
Е	Reported result is estimated. Value reported over verified calibration range.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated
L-01	concentration (CLP J-Flag). Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
L-03	Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the low side.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

ANALYST

- TPH Thomas P. Hnitecki
- LA Luis D. Arroyo
- KKS Kyle K. Stuckey
- CMR Catherine M. Rouleau

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Initial Cal Check (S082540-ICV1)			Lab File ID: J23A0)25019.D		Analyzed: 01/2	6/23 00:04		
Bromochloromethane (1)	341158	2.806	341158	2.806	100	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	1102343	3.428	1102343	3.428	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	959356	5.043	959356	5.043	100	60 - 140	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Check (S085066-CCV1)			Lab File ID: J23A)83004.D		Analyzed: 03/2	4/23 14:27		
Bromochloromethane (1)	341732	2.78	341732	2.78	100	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	1001669	3.413	1001669	3.413	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	911329	5.034	911329	5.034	100	60 - 140	0.0000	+/-0.50	
LCS (B335323-BS1)			Lab File ID: J23A)83005.D		Analyzed: 03/2	4/23 14:52		
Bromochloromethane (1)	347038	2.78	341732	2.78	102	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	1006649	3.413	1001669	3.413	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	922043	5.034	911329	5.034	101	60 - 140	0.0000	+/-0.50	
Blank (B335323-BLK1)			Lab File ID: J23A)83007.D		Analyzed: 03/2	4/23 15:48		
Bromochloromethane (1)	334553	2.764	341732	2.78	98	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	971000	3.4	1001669	3.413	97	60 - 140	-0.0130	+/-0.50	
Chlorobenzene-d5 (1)	883906	5.031	911329	5.034	97	60 - 140	-0.0030	+/-0.50	
130058-IA-2-0323 (23C1351-02RE1)			Lab File ID: J23A)83022.D		Analyzed: 03/2	4/23 22:43		
Bromochloromethane (1)	339050	2.767	341732	2.78	99	60 - 140	-0.0130	+/-0.50	
1,4-Difluorobenzene (1)	995983	3.403	1001669	3.413	99	60 - 140	-0.0100	+/-0.50	
Chlorobenzene-d5 (1)	917023	5.03	911329	5.034	101	60 - 140	-0.0040	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Check (S085202-CCV1)			Lab File ID: J23A0	082005.D		Analyzed: 03/2	3/23 12:17		
Bromochloromethane (1)	296957	2.78	296957	2.78	100	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	853952	3.413	853952	3.413	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	770016	5.034	770016	5.034	100	60 - 140	0.0000	+/-0.50	
LCS (B335600-BS1)			Lab File ID: J23A0	082006.D		Analyzed: 03/2	3/23 12:42		
Bromochloromethane (1)	295090	2.78	296957	2.78	99	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	851872	3.413	853952	3.413	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	764347	5.034	770016	5.034	99	60 - 140	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B335600-BLK1)			Lab File ID: J23A	082009.D		Analyzed: 03/2	3/23 14:11		
Bromochloromethane (1)	280704	2.761	296957	2.78	95	60 - 140	-0.0190	+/-0.50	
1,4-Difluorobenzene (1)	800850	3.401	853952	3.413	94	60 - 140	-0.0120	+/-0.50	
Chlorobenzene-d5 (1)	708726	5.031	770016	5.034	92	60 - 140	-0.0030	+/-0.50	
130058-IA-1-0323 (23C1351-01)			Lab File ID: J23A	082010.D		Analyzed: 03/2	3/23 14:44		
Bromochloromethane (1)	294748	2.764	296957	2.78	99	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	841751	3.404	853952	3.413	99	60 - 140	-0.0090	+/-0.50	
Chlorobenzene-d5 (1)	757808	5.031	770016	5.034	98	60 - 140	-0.0030	+/-0.50	
130058-IA-2-0323 (23C1351-02)			Lab File ID: J23A	082011.D		Analyzed: 03/2	3/23 15:16		-
Bromochloromethane (1)	296678	2.764	296957	2.78	100	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	857771	3.401	853952	3.413	100	60 - 140	-0.0120	+/-0.50	
Chlorobenzene-d5 (1)	775908	5.031	770016	5.034	101	60 - 140	-0.0030	+/-0.50	
130058-OA-1-0323 (23C1351-03)			Lab File ID: J23A	082012.D		Analyzed: 03/2	3/23 15:48		
Bromochloromethane (1)	294657	2.764	296957	2.78	99	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	842666	3.401	853952	3.413	99	60 - 140	-0.0120	+/-0.50	
Chlorobenzene-d5 (1)	756288	5.031	770016	5.034	98	60 - 140	-0.0030	+/-0.50	
130058-FD-1-0323 (23C1351-04)			Lab File ID: J23A	082013.D		Analyzed: 03/2	3/23 16:20		
Bromochloromethane (1)	296879	2.764	296957	2.78	100	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	853396	3.404	853952	3.413	100	60 - 140	-0.0090	+/-0.50	
Chlorobenzene-d5 (1)	774403	5.031	770016	5.034	101	60 - 140	-0.0030	+/-0.50	

CONTINUING CALIBRATION CHECK

EPA TO-15

S085066-CCV1

		CONC.	(ppbv)	RE	SPONSE FACTOR	1	% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Acetone	А	5.00	4.73	0.9172061	0.868044		-5.4	30
2-Butanone (MEK)	А	5.00	4.08	1.412082	1.152421		-18.4	30
Ethanol	А	5.00	5.04	0.1626733	0.1639413		0.8	30
4-Ethyltoluene	А	5.00	4.72	1.333301	1.257199		-5.7	30
Isopropanol	А	5.00	4.73	1.0816	1.023338		-5.4	30
1,2,4-Trimethylbenzene	А	5.00	4.70	1.114566	1.047673		-6.0	30
1,3,5-Trimethylbenzene	А	5.00	4.72	1.126426	1.062262		-5.7	30

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

CONTINUING CALIBRATION CHECK

EPA TO-15

S085202-CCV1

		CONC	. (ppbv)	RE	SPONSE FACTOF	ł	% DIFI	7 / DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Acetone	А	5.00	5.33	0.9172061	0.9783504		6.7	30
Benzene	А	5.00	5.61	0.7387105	0.8286124		12.2	30
Benzyl chloride	А	5.00	6.89	0.7213395	0.9937123		37.8	30 *
Bromodichloromethane	А	5.00	5.83	0.5251533	0.61201		16.5	30
Bromoform	А	5.00	6.02	0.4277704	0.5146179		20.3	30
Bromomethane	А	5.00	5.16	0.6097815	0.6288587		3.1	30
1,3-Butadiene	А	5.00	5.41	0.4638914	0.5023003		8.3	30
2-Butanone (MEK)	А	5.00	4.60	1.412082	1.297632		-8.1	30
Carbon Disulfide	А	5.00	4.66	1.950889	1.819102		-6.8	30
Carbon Tetrachloride	А	5.00	5.54	0.4804808	0.5325358		10.8	30
Chlorobenzene	А	5.00	5.19	0.7448082	0.7734717		3.8	30
Chloroethane	А	5.00	5.32	0.3583321	0.3811892		6.4	30
Chloroform	А	5.00	5.04	1.602387	1.61354		0.7	30
Chloromethane	Α	5.00	5.41	0.498645	0.5394289		8.2	30
Cyclohexane	А	5.00	5.76	0.3089687	0.3561643		15.3	30
Dibromochloromethane	А	5.00	5.56	0.5087335	0.5655779		11.2	30
1,2-Dibromoethane (EDB)	А	5.00	5.38	0.4954263	0.5332585		7.6	30
1,2-Dichlorobenzene	А	5.00	5.33	0.6000711	0.6398454		6.6	30
1,3-Dichlorobenzene	А	5.00	5.43	0.6282622	0.6819141		8.5	30
1,4-Dichlorobenzene	А	5.00	5.90	0.5785005	0.6829593		18.1	30
Dichlorodifluoromethane (Freon 12)	А	5.00	5.35	1.788333	1.912681		7.0	30
1,1-Dichloroethane	А	5.00	5.49	1.234282	1.356258		9.9	30
1,2-Dichloroethane	А	5.00	5.09	1.007865	1.025926		1.8	30
1,1-Dichloroethylene	А	5.00	4.87	1.125918	1.095905		-2.7	30
cis-1,2-Dichloroethylene	А	5.00	5.25	0.988136	1.036869		4.9	30
trans-1,2-Dichloroethylene	А	5.00	5.39	1.018061	1.097619		7.8	30
1,2-Dichloropropane	А	5.00	5.93	0.2543605	0.3014952		18.5	30
cis-1,3-Dichloropropene	А	5.00	6.08	0.3935901	0.4786911		21.6	30
trans-1,3-Dichloropropene	Α	5.00	6.08	0.350459	0.4262141		21.6	30
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 1	А	5.00	5.22	1.768022	1.844604		4.3	30
1,4-Dioxane	А	5.00	5.74	0.1607629	0.1846736		14.9	30
Ethanol	А	5.00	5.55	0.1626733	0.1806053		11.0	30
Ethyl Acetate	А	5.00	5.20	0.2181169	0.2267641		4.0	30
Ethylbenzene	А	5.00	5.38	1.320541	1.420964		7.6	30
4-Ethyltoluene	А	5.00	5.55	1.333301	1.479759		11.0	30
Heptane	А	5.00	5.88	0.2163238	0.2543937		17.6	30
Hexachlorobutadiene	А	5.00	3.28	0.4316824	0.283219		-34.4	30 *
Hexane	L	5.00	5.27	0.7010749	0.7456702		5.4	30
		1	I	1	1	1		Jane 33 of 1

CONTINUING CALIBRATION CHECK

EPA TO-15

S085202-CCV1

		CONC	. (ppbv)	RE	SPONSE FACTOF	ł	% DIFF	/ DRIFT
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)
2-Hexanone (MBK)	А	5.00	5.07	0.5317658	0.5391659		1.4	30
Isopropanol	А	5.00	5.36	1.0816	1.158837		7.1	30
Methyl tert-Butyl Ether (MTBE)	А	5.00	5.20	2.038246	2.118454		3.9	30
Methylene Chloride	А	5.00	4.64	0.7621343	0.707658		-7.1	30
4-Methyl-2-pentanone (MIBK)	А	5.00	5.80	0.2070279	0.2403189		16.1	30
Naphthalene	А	5.00	3.23	0.9438203	0.6099572		-35.4	30 *
Propene	А	5.00	5.89	0.3658411	0.4306617		17.7	30
Styrene	А	5.00	5.48	0.7117754	0.780497		9.7	30
1,1,2,2-Tetrachloroethane	А	5.00	5.40	0.7493945	0.8094149		8.0	30
Tetrachloroethylene	А	5.00	5.40	0.3917065	0.4233242		8.1	30
Tetrahydrofuran	А	5.00	4.74	0.721119	0.6843442		-5.1	30
Toluene	А	5.00	5.28	1.018666	1.07476		5.5	30
1,2,4-Trichlorobenzene	А	5.00	4.44	0.3480916	0.3089099		-11.3	30
1,1,1-Trichloroethane	А	5.00	5.42	0.5043155	0.5468054		8.4	30
1,1,2-Trichloroethane	А	5.00	5.33	0.3354709	0.3573889		6.5	30
Trichloroethylene	А	5.00	5.34	0.332105	0.354967		6.9	30
Trichlorofluoromethane (Freon 11)	А	5.00	4.88	1.844271	1.798057		-2.5	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113	А	5.00	4.44	1.418208	1.257987		-11.3	30
1,2,4-Trimethylbenzene	А	5.00	5.50	1.114566	1.225373		9.9	30
1,3,5-Trimethylbenzene	А	5.00	5.47	1.126426	1.231972		9.4	30
Vinyl Acetate	А	5.00	5.16	1.280082	1.319965		3.1	30
Vinyl Chloride	А	5.00	5.29	0.6431254	0.6801739		5.8	30
m&p-Xylene	А	10.0	10.8	1.065519	1.154159		8.3	30
o-Xylene	А	5.00	5.36	1.040057	1.115441		7.2	30

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
A TO-15 in Air		
Acetone	AIHA,NY,ME,NH	
Benzene	AIHA,FL,NJ,NY,ME,NH,VA	
Benzyl chloride	AIHA,FL,NJ,NY,ME,NH,VA	
Bromodichloromethane	AIHA,NJ,NY,ME,NH,VA	
Bromoform	AIHA,NJ,NY,ME,NH,VA	
Bromomethane	AIHA,FL,NJ,NY,ME,NH	
,3-Butadiene	AIHA,NJ,NY,ME,NH,VA	
2-Butanone (MEK)	AIHA,FL,NJ,NY,ME,NH,VA	
Carbon Disulfide	AIHA,NJ,NY,ME,NH,VA	
Carbon Tetrachloride	AIHA,FL,NJ,NY,ME,NH,VA	
Chlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA	
Chloroethane	AIHA,FL,NJ,NY,ME,NH,VA	
Chloroform	AIHA,FL,NJ,NY,ME,NH,VA	
Chloromethane	AIHA,FL,NJ,NY,ME,NH,VA	
Cyclohexane	AIHA,NJ,NY,ME,NH,VA	
Dibromochloromethane	AIHA,NY,ME,NH	
,2-Dibromoethane (EDB)	AIHA,NJ,NY,ME,NH	
,2-Dichlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA	
,3-Dichlorobenzene	AIHA,NJ,NY,ME,NH	
,4-Dichlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA	
Dichlorodifluoromethane (Freon 12)	AIHA,NY,ME,NH	
,1-Dichloroethane	AIHA,FL,NJ,NY,ME,NH,VA	
,2-Dichloroethane	AIHA,FL,NJ,NY,ME,NH,VA	
,1-Dichloroethylene	AIHA,FL,NJ,NY,ME,NH,VA	
is-1,2-Dichloroethylene	AIHA,FL,NY,ME,NH,VA	
rans-1,2-Dichloroethylene	AIHA,NJ,NY,ME,NH,VA	
,2-Dichloropropane	AIHA,FL,NJ,NY,ME,NH,VA	
is-1,3-Dichloropropene	AIHA,FL,NJ,NY,ME,NH,VA	
rans-1,3-Dichloropropene	AIHA,NY,ME,NH	
,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,NJ,NY,ME,NH,VA	
,4-Dioxane	AIHA,NJ,NY,ME,NH,VA	
Ethanol	AIHA	
Ethyl Acetate	AIHA	
Ethylbenzene	AIHA,FL,NJ,NY,ME,NH,VA	
l-Ethyltoluene	AIHA	
Ieptane	AIHA,NJ,NY,ME,NH,VA	
Hexachlorobutadiene	AIHA,NJ,NY,ME,NH,VA	
Iexane	AIHA,FL,NJ,NY,ME,NH,VA	
P-Hexanone (MBK)	AIHA	
sopropanol	AIHA,NY,ME,NH	
Methyl tert-Butyl Ether (MTBE)	AIHA,FL,NJ,NY,ME,NH,VA	
Methylene Chloride	AIHA,FL,NJ,NY,ME,NH,VA	
l-Methyl-2-pentanone (MIBK)	AIHA,FL,NJ,NY,ME,NH	
Naphthalene	NY,ME,NH	
Propene	AIHA	
Styrene	AIHA,FL,NJ,NY,ME,NH,VA	
,1,2,2-Tetrachloroethane	AIHA,FL,NJ,NY,ME,NH,VA	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA TO-15 in Air	
Tetrachloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
Tetrahydrofuran	AIHA
Toluene	AIHA,FL,NJ,NY,ME,NH,VA
1,2,4-Trichlorobenzene	AIHA,NJ,NY,ME,NH,VA
1,1,1-Trichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
1,1,2-Trichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
Trichloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
Trichlorofluoromethane (Freon 11)	AIHA,NY,ME,NH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	AIHA,NJ,NY,ME,NH,VA
1,2,4-Trimethylbenzene	AIHA,NJ,NY,ME,NH
1,3,5-Trimethylbenzene	AIHA,NJ,NY,ME,NH
Vinyl Acetate	AIHA,FL,NJ,NY,ME,NH,VA
Vinyl Chloride	AIHA,FL,NJ,NY,ME,NH,VA
m&p-Xylene	AIHA,FL,NJ,NY,ME,NH,VA
o-Xylene	AIHA,FL,NJ,NY,ME,NH,VA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO 17025:2017	100033	03/1/2024
NY	New York State Department of Health	10899 NELAP	04/1/2023
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
NJ	New Jersey DEP	MA007 NELAP	06/30/2023
FL	Florida Department of Health	E871027 NELAP	06/30/2023
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2023

-	Page / of /	MA 01028	Please fill out completely, sign. date and retain the		Participation of the second se	receipt or rental fees will receipt or rental fees will anoiv	900 X888	248.5959	Difference of the second se		0	× 1018 3417	2157		3508 3508				<u>Matrix Codes:</u>	SG = SOIL GAS IA = INDOOR AIR	AMB = AMBIENT SS = SUB SLAB © D = DUP	BL = BLANK 0 = Other		LLC Accredited		
2017	39 Spruce Street	ANALYSIS REQUESTED	- H 	******		ial Pro						<u></u>		ç I	1-28-1				sample ive: nown			SON-USS ANALYTICAL LANDRATTORY		NELAC and AIHA-LAP, LLC Accredited	Chromatogram	
Doc #378 Rev 1_03242017		ANALYSIS						<u><</u>	Volume	Liters									to Indicate possible : onc Code column abo ; C - Clean: U - Unk		equired		Other	-	MWRA 🗌 WRTA School MBTA	K10
	Y RECORD (AIR)	Innarotiná Tíme 10-Dav	7.	Writ Required 3-Day	Delivery	EXCEL	ed:	ere eaest, com	Flow Rate Matrix	m³/min L/min Code	+		TANK	24					 Concentration within the Concesto indicate possible sample concentration within the Conc Code column above; H - High; M - Medium; L - Low; C - Clean; U - Unknown 	Special Requirements	MCP Certification Form Required	CT RCP Required RCP Certification Form Required			Municipality S 21 J S Brownfield	
http://www.contestlabs.com	CHAIN OF CUSTODY RECORD (AIR)	7-Dav T1 10	JE:	1-Day	Data	Other:	CLP Like Data Pkg Required:	Email 10: <u>Michaelmiller@</u> Fax To#:	Duration	Ending Total Date/Time Commission	0935 1242	0440 1276	01362 1238	*	630710			Diasco		Milem an] [Annual and a second
				Cleaners	in Square N	ŏ		Ear	Collection Data	Beginning E Date/Time Da	10	1	4	1253						Detection Limit Rec AL			2 Stinet	ect Enti		
	Phone: 413-525-2332 Eav: 413-626-6406	Email: info@contestlabs.com		- 7689 - 7 auro, 101	AHS, NY Fran	×		owe	Client Use	Client Sample ID / Description	30058- IA-1-0323	TA-2-0323	13005x-04-1-0323	30058 - FD-1- 0323				able*		Date/Time: 03/08/23 1115	Date/Time: 1/18	Date/Time: 3/9/23 1410	$1 \sim$	Date/Time:	Date/Time:	
Ĕ		~~	LA LAG REVING,	415 - 7689	02.523, 0011		ie/ Multipel :	Backman-Lowe			Ĩ	UL 130058-IA-2	C7 130058-	04 130058				comments: *Cat B deliverable *	requested	Jature)	ie) C Pr	ure) PA	ſe)	ature)	e)	
	ANALTTICAL LABORATORY	RCIE	Address: 204	Phone: (3/5) 4 Prolect Name: 74	Project Location: No. 523, 00	Project Manager: M.; C. h.a.el	Invoice Recipient:		Lab Use	Con-Test Work Order#								Comments: #C3:		Relinquished by: (signature)	Received by: (signature)	Relinguished by fright	Received by: (signature)	Relinquished by: (signature)	Received by: (signature)	

FedEx* Tracking

DELIVERED

Friday

3/10/2023 at 9:36 am

Signed for by: L.ARROYO

🕁 Obtain Proof of delivery

How was your delivery?

Delivery status

tracking id 771523410134 🔗 🟠

> FROM Newburgh, NY US

Label Created 3/9/2023 1:26 PM

PACKAGE RECEIVED BY FEDEX NEWBURGH, NY 3/9/2023 4:16 PM

IN TRANSIT

WINDSOR LOCKS, CT 3/10/2023 7:26 AM

OUT FOR DELIVERY WINDSOR LOCKS, CT 3/10/2023 7:36 AM

DELIVERED

EAST LONGMEADOW, MA US

Delivered 3/10/2023 at 9:36 AM

 \downarrow View travel history

Want updates on this shipment? Enter your email and we will do the rest!

YOUR EMAIL

MORE OPTIONS

Manage Delivery

https://www.fedex.com/fedextrack/?trknbr=771523410134&trkqual=2460013000~771523410134~FX

SUBMIT

:

39 Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332 F:413-525-6405 www.pacelabs.com ENV-FRM-ELON-0009V02___Air Sample Receiving Checklist 1-12-2023

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

ce PEOPLE ADVANCING SCIENCE

True False

Client <u>EA</u>	ingin	reering, Sci	ence .c	and te	.chno	rodrt										
Project_Tr	es	Bon Cie	üner	5		- 1	<u>Re</u>	ceiv	ed on	lce						
MCP/RCP Re	quired						Re	ceive	ed in (Cooler						
Deliverable P	ackag	e Requiremer	nt	MB			Custody Seal: DATE TIME									
		lin squ					COC Relinguished									
PWSID# (Wh	PWSID# (When Applicable)						C/Sa	mole	s Label	s Agri	9e		X			
Arrival Method FedEx 7715 2341 0134				1								X	~~.			
		/Time_LA								n Good						
		ite / Time <u>1</u>					<u>Sar</u>	nple	s Rec	<u>eived v</u>	<u>vithin</u>	Holding	Time			
		nod					<u>ls t</u>	here	e enou	ugh Vol	ume					
		Actual Tempe					Pro	per	Medi	a/Cont	ainer	Used				
		/No					Ind	livid	ually (Certifie	d Can	<u>s</u>				
		/ No					Trij	p Bla	inks							X
							CO.	Cle	gible					\mathbf{X}		
<u>Notes re</u>	gardi	ng Samples,	<u>/COC (</u>	outside	of SO	<u>P:</u>					neck a	all inclu	ded)			
							Cli	ent	X	A	nalvs	is 🛛	Sam	pler Nan	าย	\boxtimes
									t 🗵		Ds	X		ection Da		
						Jee					0011					
Container	0.69104	#	Size		Reg	alator	Du	rati	on				Accesso	orles		
Container Summa Can	5 5	#				ulator	138.999936			Nut/	Ferru		Accesso	ories IC Train		
	s))			138.999936	rati		Nut/ Tubir			Accesso	IC Train		
Summa Can							138.999936			Tubir T-Coi	ng nnect	le	Accesso	IC Train	g Charge	es
Summa Can Tedlar Bags TO-17 Tubes Radiello							138.999936			Tubir T-Cor Syrin	ng nnect ge	le	Accesso	IC Train		es
Summa Can Tedlar Bags TO-17 Tube:							138.999936			Tubir T-Coi	ng nnect ge	le	Accesso	IC Train		2 <u>5</u>
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11		4					138.999936	11	(Tubir T-Cor Syrin Tedla	ng nnect ge	le	Accesso	IC Train		es
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11 Can #'s	5	4					138.999936	11		Tubir T-Cor Syrin Tedla s	ng nnect ge ar	le		IC Train	g Charge	es
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11 Can #'s 1 1618 2 2157	8 9 10	4	16 17 18		24 25 26		138.999936	1 2	(gs #' 3पा 3 न	Tubir T-Col Syrin Tedla s (7 3)	ng nnect ge ar 8 9 10	le	16 17 18	IC Train	24 25 26	es
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11 Can #'s ¹ IGN ² 2157 ³ IG73	8 9 10 11	4	16 17 18 19		24 25 26 27		138.999936	Re 1 2 3	(gs #' 3पा 3न	Tubir T-Col Syrin Tedla s (1 3) 3)	ng nnect ge ar 8 9 10 11	le	16 17	IC Train	g Charge 24 25	2 <u>S</u>
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11 Vors/ 2 2\57 3 \073 4 2\58	8 9 10	4	16 17 18		24 25 26		138.999936	1 2	(gs #' 3पा 3न	Tubir T-Col Syrin Tedla s (7 3)	ng nnect ge ar 8 9 10	le	16 17 18 19	IC Train	24 25 26 27	es
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11 Can #'s ¹ IGN ² 2157 ³ IG73	8 9 10 11 12	4	16 17 18 19 20		24 25 26 27 28		138.999936	Re 1 2 3 4	(gs #' 3पा 3न	Tubir T-Col Syrin Tedla s (1 3) 3)	ng nnect ge ar 8 9 10 11 12	le	16 17 18 19 20	IC Train	24 25 26 27 28	es
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11 Can #'s 1 1618 2 2157 3 1673 4 2158 5	8 9 10 11 12 13	4	16 17 18 19 20 21		24 25 26 27 28 29		138.999936	Re 1 2 3 4 5	(gs #' 3पा 3न	Tubir T-Col Syrin Tedla s (1 3) 3)	ng nnect ge ar 8 9 10 11 12 13	le	16 17 18 19 20 21	IC Train	24 25 26 27 28 29	25
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/TO-11 Can #'s 1 1618 2 2157 3 1073 4 2158 5 5 6	8 9 10 11 12 13 14	4	16 17 18 19 20 21 22		24 25 26 27 28 29 30		138.999936	Re 1 2 3 4 5 6 7	(gs #' 3पा 3न	Tubir T-Col Syrin Tedla s (7 3) 32 (8	ng nnect ge ar 8 9 10 11 12 13 14	le	16 17 18 19 20 21 22	IC Train	24 25 26 27 28 29 30	es
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11 Variable 2 2157 3 1073 4 2158 5 5 6 7	8 9 10 11 12 13 14 15	4	16 17 18 19 20 21 22 23 16 17		24 25 26 27 28 29 30 31 24 25		138.999936	Re 1 2 3 4 5 6 7 Put 1	(gs #' 3पा 37 35	Tubir T-Col Syrin Tedla s (7 3) 32 (8	ng nnect ge 8 9 10 11 12 13 14 15 8 9	le	16 17 18 19 20 21 22 23 16 17	IC Train	24 25 26 27 28 29 30 31 24 29 30	es
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11 Can #'s 1 16 \% 2 2\57 3 \67 3 \67 3 \67 4 2\57 5 5 6 7 7 7 Unused Media 1 2	8 9 10 11 12 13 14 15 8 9 10	4	16 17 18 19 20 21 22 23 16 17 18		24 25 26 27 28 29 30 31 24 25 26		138.999936	Re 1 2 3 4 5 6 7 Puf 1 2	(gs #' 3पा 37 35	Tubir T-Col Syrin Tedla s (7 3) 32 (8	ng nnect ge ar 8 9 10 11 12 13 14 15 8 9 10	le	16 17 18 19 20 21 22 23 16 17 18	IC Train	g Charge 24 25 26 27 28 29 30 31 24 24 25 26	25
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/TO-11 Can #'s 1 1618 2 2157 3 1073 4 2158 5 6 7 7 Unused Media 1 2 3 3	8 9 10 11 12 13 14 15 8 9 10 11		Image: Constraint of the second sec		24 25 26 27 28 29 30 31 24 25 26 27		138.999936	Re 1 2 3 4 5 6 7 Pul 1 2 3	(gs #' 3पा 37 35	Tubir T-Col Syrin Tedla s (7 3) 32 (8	nnect ge ar 8 9 10 11 12 13 14 15 8 9 10 11	le	16 17 18 19 20 21 22 23 16 17 18 19	IC Train	g Charge 24 25 26 27 28 29 30 31 24 25 26 27	ES
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11 Can #'s 1 1618 2 2157 3 1073 4 2158 5 5 6 7 7 7 Unused Media 1 2 3 3	8 9 10 11 12 13 14 15 8 9 10 11 12	4	16 17 18 19 20 21 22 23 16 17 18 19 20 21 22 13 14 15 16 17 18 19 20 20		24 25 26 27 28 29 30 31 24 25 26 27 28		138.999936	Re 1 2 3 4 5 6 7 Puf 1 2	(gs #' 3पा 37 35	Tubir T-Col Syrin Tedla s (7 3) 32 (8	ng nnect ge ar 8 9 10 11 12 13 14 15 8 9 10	le	16 17 18 19 20 21 22 23 16 17 18	IC Train	g Charge 24 25 26 27 28 29 30 31 24 24 25 26	25
Summa Can Tedlar Bags TO-17 Tubes Radiello Pufs/TO-11 Can #'s 1 1618 2 2157 3 1073 4 2158 5 6 7 7 Unused Media 1 2 3 3	8 9 10 11 12 13 14 15 8 9 10 11	4	Image: Constraint of the second sec		24 25 26 27 28 29 30 31 24 25 26 27		138.999936	Re 1 2 3 4 5 6 7 Put 1 2 3 4 5 6 7 Put 1 2 3 4	(gs #' 3पा 37 35	Tubir T-Col Syrin Tedla s (7 3) 32 (8	ng nnect ge ar 8 9 10 11 12 13 14 15 8 9 10 11 12	le	16 17 18 19 20 21 22 23 16 17 18 19 20	IC Train	g Charge 24 25 26 27 28 29 30 31 24 25 26 27 28 29 30 31 24 25 26 27 28	ES

Air Sampling Media Certificate of Analysis

Date Analyzed:	1/13/2	.023	Batch #:	23CC0028
Certification Type:	Batch Certified	J	Individual Certified	
Media Type:	Summa Canister	V	Flow Controllers	
Media IDs:	C1618			

Note: Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: PPBv

< 0.80	Propene	< 0.04
< 0.02	Dichlorodifluoromethane	< 0.20
< 0.04	Chloromethane	< 0.02
< 0.02	Freon 114	< 0.02
< 0.02	Vinyl chloride	< 0.02
< 0.02	1.3-Butadiene	< 0.02
< 0.02	Bromomethane	< 0.02
< 0.02	Chloroethane	< 0.02
< 0.08	Acrolein	< 0.02
< 0.80	Acetone	< 0.02
< 0.20	Trichlorofluoromethane	< 0.02
< 0.80	Ethanol	< 0.02
< 0.02	1,1-Dichloroethylene	< 0.02
< 0.20	Methylene chloride	< 0.02
< 0.20	Freon 113	< 0.02
< 0.2	Carbon disulfide	< 0.02
< 0.02	t-1,2-Dichloroethylene	< 0.02
< 0.02	1,1-Dichloroethane	< 0.02
< 0.02	MTBE	< 0.02
< 0.80	IPA	< 0.02
< 0.20	2-Butanone (MEK)	< 0.02
< 0.02	c-1,2-Dichloroethylene	< 0.02

	_
< 0.04	Vinyl acetate
< 0.20	Hexane
< 0.02	Ethyl acetate
< 0.02	Chloroform
< 0.02	Tetrahydrofuran
< 0.02	1,2-Dichloroethane
< 0.02	1,1,1-Trichloroethane
< 0.02	Benzene
< 0.02	Carbon Tetrachloride
< 0.02	Cyclohexane
< 0.02	1,2-Dichloropropane
< 0.02	Bromodichloromethane
< 0.02	Trichloroethylene
< 0.02	1,4-Dioxane
< 0.02	Methylmethacrylate
< 0.02	Heptane
< 0.02	MIBK
< 0.02	c-1,3-Dichloropropylene
< 0.02	t-1,3-Dichloropropylene
< 0.02	1,1,2-Trichloroethylene
< 0.02	Toluene
< 0.02	2-Hexanone (MBK)
	-

< 0.02	Dibromchloromethane
< 0.02	1,2-Dibromomethane
< 0.02	Tetrachloroethylene
< 0.02	Chlorobenzene
< 0.02	Ethylbenzene
< 0.04	m,p-Xylenes
< 0.02	Bromoform
< 0.02	Styrene
< 0.02	o-Xylene
< 0.02	1,1,2,2-Tetrachloroethane
< 0.02	4-Ethyltoluene
< 0.02	1,3,5-Trimethylbenzene
< 0.02	1,2,4-Trimethylbenzene
< 0.02	1,3-Dichlorobenzene
< 0.02	Benzyl chloride
< 0.02	1,4-Dichlorobenzene
< 0.02	1,2-Dichlorobenzene
< 0.04	1,2,4-Trichlorobenzene
< 0.02	Naphthalene
< 0.02	Hexachlorobutadiene

Special Notes:

Analyst Initials/Date:

Air Sampling Media Certificate of Analysis

Date Analyzed:	1/16	/2023	Batch #:	23CC0029
Certification Typ	e: Batch Certified	✓	Individual Certified	
Media Type:	Summa Canister	\checkmark	Flow Controllers	
Media IDs:	BC2157 BC1073			

Note: Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: PPBv

Γ	< 0.80	Propene	< 0.04	Vinyl acetate
Ī	0.05	Dichlorodifluoromethane	< 0.20	Hexane
	< 0.04	Chloromethane	< 0.02	Ethyl acetate
	< 0.02	Freon 114	< 0.02	Chloroform
	< 0.02	Vinyl chloride	< 0.02	Tetrahydrofuran
	< 0.02	1.3-Butadiene	< 0.02	1,2-Dichloroethane
Γ	< 0.02	Bromomethane	< 0.02	1,1,1-Trichloroethane
	< 0.02	Chloroethane	< 0.02	Benzene
	< 0.08	Acrolein	< 0.02	Carbon Tetrachloride
	< 0.80	Acetone	< 0.02	Cyclohexane
	< 0.20	Trichlorofluoromethane	< 0.02	1,2-Dichloropropane
	< 0.80	Ethanol	< 0.02	Bromodichloromethane
ſ	< 0.02	1,1-Dichloroethylene	< 0.02	Trichloroethylene
	< 0.20	Methylene chloride	< 0.02	1,4-Dioxane
	< 0.20	Freon 113	< 0.02	Methylmethacrylate
	< 0.2	Carbon disulfide	< 0.02	Heptane
	< 0.02	t-1,2-Dichloroethylene	< 0.02	MIBK
	< 0.02	1,1-Dichloroethane	< 0.02	c-1,3-Dichloropropylene
	< 0.02	MTBE	< 0.02	t-1,3-Dichloropropylene
	< 0.80	IPA	< 0.02	1,1,2-Trichloroethylene
	< 0.20	2-Butanone (MEK)	< 0.02	Toluene
	< 0.02	c-1,2-Dichloroethylene	< 0.02	2-Hexanone (MBK)
_		-		=

	_
< 0.02	Dibromchloromethane
< 0.02	1,2-Dibromomethane
< 0.02	Tetrachloroethylene
< 0.02	Chlorobenzene
< 0.02	Ethylbenzene
< 0.04	m,p-Xylenes
< 0.02	Bromoform
< 0.02	Styrene
< 0.02	o-Xylene
< 0.02	1,1,2,2-Tetrachloroethane
< 0.02	4-Ethyltoluene
< 0.02	1,3,5-Trimethylbenzene
< 0.02	1,2,4-Trimethylbenzene
< 0.02	1,3-Dichlorobenzene
< 0.02	Benzyl chloride
< 0.02	1,4-Dichlorobenzene
< 0.02	1,2-Dichlorobenzene
< 0.04	1,2,4-Trichlorobenzene
< 0.02	Naphthalene
< 0.02	Hexachlorobutadiene

Special Notes:

Analyst Initials/Date:

Air Sampling Media Certificate of Analysis

Date Analyzed:	1/18/20	023	Batch #:	23CC0038
Certification Type:	Batch Certified	\checkmark	Individual Certified	
Media Type:	Summa Canister	J	Flow Controllers	
Media IDs:	3C2158			

Note: Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: PPBv

< 0.80	Propene	
< 0.02	Dichlorodifluoromethane	
< 0.04	Chloromethane	
< 0.02	Freon 114	
< 0.02	Vinyl chloride	
< 0.02	1.3-Butadiene	
< 0.02	Bromomethane	
< 0.02	Chloroethane	
< 0.08	Acrolein	
< 0.80	Acetone	
< 0.20	Trichlorofluoromethane	
< 0.80	Ethanol	
< 0.02	1,1-Dichloroethylene	
< 0.20	Methylene chloride	
< 0.20	Freon 113	
< 0.2	Carbon disulfide	
< 0.02	t-1,2-Dichloroethylene	
< 0.02	1,1-Dichloroethane	
< 0.02	MTBE	
< 0.80	IPA	
< 0.20	2-Butanone (MEK)	
< 0.02	c-1,2-Dichloroethylene	
	-	

	_
< 0.04	Vinyl acetate
< 0.20	Hexane
< 0.02	Ethyl acetate
< 0.02	Chloroform
< 0.02	Tetrahydrofuran
< 0.02	1,2-Dichloroethane
< 0.02	1,1,1-Trichloroethane
< 0.02	Benzene
< 0.02	Carbon Tetrachloride
< 0.02	Cyclohexane
< 0.02	1,2-Dichloropropane
< 0.02	Bromodichloromethane
< 0.02	Trichloroethylene
< 0.02	1,4-Dioxane
< 0.02	Methylmethacrylate
< 0.02	Heptane
< 0.02	MIBK
< 0.02	c-1,3-Dichloropropylene
< 0.02	t-1,3-Dichloropropylene
< 0.02	1,1,2-Trichloroethylene
< 0.02	Toluene
< 0.02	2-Hexanone (MBK)

-	_
< 0.02	Dibromchloromethane
< 0.02	1,2-Dibromomethane
< 0.02	Tetrachloroethylene
< 0.02	Chlorobenzene
< 0.02	Ethylbenzene
< 0.04	m,p-Xylenes
< 0.02	Bromoform
< 0.02	Styrene
< 0.02	o-Xylene
< 0.02	1,1,2,2-Tetrachloroethane
< 0.02	4-Ethyltoluene
< 0.02	1,3,5-Trimethylbenzene
< 0.02	1,2,4-Trimethylbenzene
< 0.02	1,3-Dichlorobenzene
< 0.02	Benzyl chloride
< 0.02	1,4-Dichlorobenzene
< 0.02	1,2-Dichlorobenzene
< 0.04	1,2,4-Trichlorobenzene
< 0.02	Naphthalene
< 0.02	Hexachlorobutadiene

Special Notes:

Analyst Initials/Date:

Attachment 5

Data Usability Summary Report

This page left intentionally blank

17 May 2022

Ms. Evelyn Hussey New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7012

RE: Summary of Indoor Air Sampling Results from March 2022 Contract/Work Assignment No.: D009806-23 Tres Bon Cleaners, Franklin Square, New York Site No. 130058 EA Project No. 1602523

Dear Ms. Hussey:

This letter provides a summary of analytical results for samples collected during field activities at the Tres Bon Cleaners (No. 130058) in the Village of Franklin Square, Nassau County, New York (**Figure 1**). EA Engineering, P.C. and its affiliate EA Science and Technology (EA) completed sampling to evaluate the indoor air quality during the operation of New York State Department of Conservation (NYSDEC) provided air filters.

Site Background

The Tres Bon Cleaner site is a Class 4 inactive hazardous waste disposal site that is approximately 0.25 acres at 197 Franklin Avenue. The site is currently leased as a commercial/retail tenant space. The surrounding parcels are used for a combination of residential and commercial uses. The nearest residential area is directly adjacent to the south and west site borders.

The Tres Bon Cleaners property operated as a dry cleaner from 1962 to 2003. In January 1988, the Nassau County Department of Health completed a site inspection and observed that water from the dry-cleaning fluid separator was being discharged to the soil and pavement in the rear of the building. Shortly afterward, the tetrachloroethylene (PCE)/water separator discharge was discontinued. Prior to March 2004, all dry-cleaning operations at this location were discontinued, and all dry-cleaning equipment was dismantled and removed from the site in October 2003 by the property owner.

Air Sampling Event

EA completed air sampling on 14 & 15 March 2022. The purpose of the event was to evaluate the potential for volatile organic compounds (VOCs) such as PCE to enter the building and impact indoor air through a process called soil vapor intrusion. The samples were collected as part of a continued effort to evaluate the effectiveness of the on-site air purifying unit and the potential need for installation of a sub slab diffusion system. Two indoor air samples were collected inside the

building, and one outdoor air sample was collected concurrently to provide information on background ambient air quality in the vicinity of the site. Sample locations are provided in **Figure 1**. Daily Field Reports and Field Notes are provided in **Attachments 1 and 2**, respectively. During the event, the New York State Department of Health (NYSDOH) Indoor Air Quality Questionnaire was completed and is provided in **Attachment 3**.

The air canisters were shipped to Pace Analytical National located in Mount Juliet, Tennessee. Pace Analytical National is an approved Environmental Laboratory Analytical Program certified laboratory for analysis of volatile organic compounds by Method TO-15. Analytical data are provided in **Attachment 4**.

Analytical Results

Analytical results for the air samples have been validated by an independent third party. A summary of validated analytical results from the March 2022 sampling compared to NYSDOH Ambient Air Guidelines and Immediate Action Levels is provided on **Table 1**. The Data Usability Summary Report is provided as **Attachment 5**. Concentrations of PCE (15.3 μ g/m³ maximum) detected in indoor air were less than the New York State Department of Health Air Guideline Value of 30 μ g/m³. In 2016 and 2018, PCE had been detected at concentrations greater than the guidance value.

Indoor Air Matrix Evaluation

For an estimation of risk, analytic results were evaluated using the NYSDOH indoor air decision matrices $(2006)^1$. Both indoor air and sub-slab vapor samples are required to complete the matrices evaluation, however no sub-slab vapor samples were collected in 2022. The most recent sub-slab vapor samples were collected in 2018 and PCE was the only analyte detected (concentrations of 82,000 µg/m³ and 80,000 µg/m³, respectively). The 2018 concentration for PCE will be used for the evaluation.

Matrix A evaluates carbon tetrachloride, 1,1-dichloroethene, cis-1,2-dichloroethene, and trichloroethene, of which only carbon tetrachloride was detected in one of two indoor air samples. Based on the 2022 detected concentration of 0.569 μ g/m³ and 2016 and 2018 non-detect sub-slab concentrations, Matrix A requires no further action.

Matrix B evaluates methylene chloride, PCE, and 1,1,1-trichloroethane, of which methylene chloride and PCE were detected in 2022 indoor air samples. Methylene chloride was detected at a maximum indoor air concentration of 0.927 in the duplicate sample from location 130058-IA-01 and was not detected in 2016 or 2018 sub-slab samples. Based on Matrix B, no further action is required for methylene chloride.

¹ NYSDOH. 2006. *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York*, October, and NYSDOH Soil Vapor Intrusion Updates dated September 2013, August 2015, and May 2017.

Ms. Evelyn Hussey NYSDEC 17 May 2022 Page 3

PCE was detected at a maximum indoor air concentration of 15.3 μ g/m³ and a 2018 sub-slab sample concentration of 80,000 μ g/m³. Based on these concentrations, Matrix B requires mitigation for PCE in the building.

Matrix C evaluates vinyl chloride which was not detected in 2022 indoor air samples or 2016 and 2018 sub-slab samples. Matrix C requires no further action.

Recommendations

Currently, indoor air concentrations are less than NYSDOH Air Guideline Values when the air purifying units are operating. However, based on the Matrix B evaluation of PCE, further mitigation may be required. A sub-slab depressurization system (SSDS) could potentially be used to mitigate PCE entering the building through soil vapor intrusion.

Installation of an SSDS will require additional upfront cost but will provide more reliable operation and potentially a reduction in long term operating costs and maintenance when compared to operation of the air purifying unit and routine sampling.

Sincerely,

EA ENGINEERING, P.C. AND ITS AFFILIATE EA SCIENCE AND TECHNOLOGY

Chris Schroer Project Manager

Attachments

cc: S. Saucier D. Tucholski D. Conan L. DeSantis M. Miller

Figures

1	Site and Sample Location	
Tables		

1	Summary of Detected VOCs in Indoor and Outdoor Air (March 2022)
---	---

Attachments

1	Daily Field Reports
2	Field Notes
3	New York State Department of Health Indoor Air Quality Questionnaire
4	Analytic Data Laboratory Report
5	Data Usability Summary Report

Figures

This page left intentionally blank

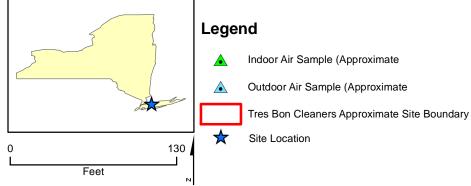


Figure 1 Site and Sample Locations (March 2022) Tres Bon Cleanersl (NYSDEC Site 130058) Franklin Square, NY

Map Date: 5/17/2022 Projection: NAD83 State Plane New York Long Island FIPS 3104 Feet

Department of Environmental Conservation This page intentionally left blank

Tables

This page left intentionally blank

ample ID aboratory ID oom ample Date ample Type	130058-IA1 L147195-01 1st Floor/Show Ro 3/15/2022	oom			130058-DUP-1		130058-OA-1			NYSDOH Ambient Air
oom ample Date	1st Floor/Show Ro	om			I 1471025 02					
ample Date		om	1st Floor/Kitche	L1471925-02		L1471925-02		L1471925-03		Quality Recommended
	3/15/2022		1st Floor/Kitchen		1st Floor/Show Room		Outdoor		NYSDOH Ambient Air	
ample Type		3/15/2022		3/15/2022		3/15/2022		3/15/2022		Immediate
	Indoor Air		Indoor Air		Indoor Air		Outdoor Air		Guideline ¹	Action Level ¹
	U		0.834	J	U		U			
$\mu g/m^3$	0.437	J	U		0.409	J	U			
$\mu g/m^3$	6.1		4.48		4.87		1.78	J		
$\mu g/m^3$	U		0.649	J	U		U			
$\mu g/m^3$	0.543	J	1.02		0.53	J	0.77			
$\mu g/m^3$	U		0.569	J	U		U			
$\mu g/m^3$	1.34		1.36		1.49		1.26			
$\mu g/m^3$	2.33		2.6		2.6		2.44			
$\mu g/m^3$	1340		2560		1600		232			
$\mu g/m^3$	U		0.377	J	U		U			
$\mu g/m^3$	1.4		1.44		1.39		1.23			
$\mu g/m^3$	0.815	J	U		0.491	J	U			
$\mu g/m^3$	0.861		0.809		0.927		0.743		60	
	3.97		1.88		U		0.603	J		
	13.6		15.3		12.8		U		30	300
$\mu g/m^3$	3.22		3.32		3.1		1.37	J		
	0.698	J	1.14	J	U		U			
	0.413	J	0.581	J	U		U			
	97.9		96.3		96.6		96.5			
	97.7		96.8		95		97			
	μg/m ³ μg/m ³	$\mu g/m^3$ U $\mu g/m^3$ 0.437 $\mu g/m^3$ 0.437 $\mu g/m^3$ 0.1 $\mu g/m^3$ 0.543 $\mu g/m^3$ 0.543 $\mu g/m^3$ 0.543 $\mu g/m^3$ 0.543 $\mu g/m^3$ 1.34 $\mu g/m^3$ 1.34 $\mu g/m^3$ 0.815 $\mu g/m^3$ 0.815 $\mu g/m^3$ 0.861 $\mu g/m^3$ 3.97 $\mu g/m^3$ 3.22 $\mu g/m^3$ 0.698 $\mu g/m^3$ 0.413 $\mu g/m^3$ 97.9	$\mu g/m^3$ U $\mu g/m^3$ 0.437 J $\mu g/m^3$ 6.1 $\mu g/m^3$ 0.437 J $\mu g/m^3$ 6.1 $\mu g/m^3$ U $\mu g/m^3$ J $\mu g/m^3$ 0.543 J $\mu g/m^3$ U $\mu g/m^3$ J $\mu g/m^3$ 0.543 J $\mu g/m^3$ U $\mu g/m^3$ J $\mu g/m^3$ 0.543 J $\mu g/m^3$ U $\mu g/m^3$ J $\mu g/m^3$ 0.543 J $\mu g/m^3$ U $\mu g/m^3$ J $\mu g/m^3$ 1.34 $\mu g/m^3$ 0.815 J $\mu g/m^3$ 0.815 J $\mu g/m^3$ 0.861 $\mu g/m^3$ 3.97 $\mu g/m^3$ 3.22 $\mu g/m^3$ 3.22 $\mu g/m^3$ 0.413 J $\mu g/m^3$ 0.413 J $\mu g/m^3$ 97.9 $\mu g/m^3$ 0.413 J	$\mu g/m^3$ U 0.834 $\mu g/m^3$ 0.437 J U $\mu g/m^3$ 6.1 4.48 $\mu g/m^3$ 0.543 J 1.02 $\mu g/m^3$ 1.34 1.36 1.36 $\mu g/m^3$ 1.34 1.36 2.560 $\mu g/m^3$ 0.815 J U $\mu g/m^3$ 0.861 0.809 $\mu g/m^3$ 0.861 0.809 $\mu g/m^3$ 3.22 3.32 $\mu g/m^3$ 0.698 J 1.14 $\mu g/m^3$ 0.413 J 0.581 $\mu g/m^3$ 97.9 96.3 <td>$\mu g/m^3$ U 0.834 J $\mu g/m^3$ 0.437 J U $\mu g/m^3$ $\mu g/m^3$ 6.1 4.48 $\mu g/m^3$ 0.649 J $\mu g/m^3$ 0.543 J 1.02 $\mu g/m^3$ 0.543 J 1.02 $\mu g/m^3$ 0.543 J 1.02 $\mu g/m^3$ 0.569 J $\mu g/m^3$ 0.543 J 1.02 $\mu g/m^3$ 0.569 J $\mu g/m^3$ 0.543 J 0.569 J $\mu g/m^3$ 0.569 J $\mu g/m^3$ 1.34 1.36 0.569 J $\mu g/m^3$ 0.560 $\mu g/m^3$ 0.377 J $\mu g/m^3$ 0.815 J U 0.3777 J $\mu g/m^3$ 0.861 0.809 $\mu g/m^3$ 0.861 0.809 $\mu g/m^3$ 3.97 1.88 $\mu g/m^3$ 3.22 3.32 $\mu g/m^3$ $\mu g/m^3$ 0.698 J 1.14</td> <td>$\mu g/m^3$ U 0.834 J U $\mu g/m^3$ 0.437 J U 0.409 $\mu g/m^3$ 6.1 4.48 4.87 $\mu g/m^3$ 0.543 J 1.02 0.53 $\mu g/m^3$ 0.543 J 1.02 0.53 $\mu g/m^3$ 0.543 J 1.02 0.53 $\mu g/m^3$ U 0.569 J U $\mu g/m^3$ 1.34 1.36 1.49 $\mu g/m^3$ 2.33 2.6 2.6 $\mu g/m^3$ 1.340 2560 1600 $\mu g/m^3$ 1.4 1.44 1.39 $\mu g/m^3$ 0.815 J U 0.491 $\mu g/m^3$ 0.861 0.809 0.927 $\mu g/m^3$ 3.97 1.88 U $\mu g/m^3$ 3.22 3.32 3.1 $\mu g/m^3$ 0.698 J 1.14 J U $\mu g/m^3$ 0.413 J 0.581</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\mu g/m^3$ U 0.834 J U U $\mu g/m^3$ 0.437 J U 0.409 J U $\mu g/m^3$ 0.437 J U 0.409 J U $\mu g/m^3$ 6.1 4.48 4.87 1.78 $\mu g/m^3$ 0.543 J 1.02 0.533 J 0.77 $\mu g/m^3$ 0.543 J 1.02 0.533 J 0.77 $\mu g/m^3$ 0.543 J 1.02 0.533 J 0.77 $\mu g/m^3$ 0.543 J 0.2 0.53 J 0.77 $\mu g/m^3$ 1.34 1.36 1.49 1.26 $\mu g/m^3$ 1.340 2.560 1600 232 $\mu g/m^3$ 1.4 1.44 1.39 1.23 $\mu g/m^3$ 0.861 0.809 0.927 0.743 $\mu g/m^3$ 0.861 0.809 0.927 0.743 $\mu g/m^3$ 3.22 3.32 3.1 1.3</td> <td>$\mu g/m^3$ U 0.834 J U U U $\mu g/m^3$ 0.437 J U 0.409 J U $\mu g/m^3$ 6.1 4.48 4.87 1.78 J $\mu g/m^3$ 0.543 J 1.02 0.53 J 0.77 $\mu g/m^3$ 1.34 1.36 1.49 1.26 1.49 $\mu g/m^3$ 2.33 2.6 2.6 2.44 1.26 $\mu g/m^3$ 1340 2560 1600 232 1.4 $\mu g/m^3$ 0.815 J U 0.491 J U $\mu g/m^3$ 0.861 0.809 0.927 0.743 1.4 $\mu g/m^3$ 3.97 1.88<!--</td--><td>$\mu g/m^3$ U 0.834 J U U $\mu g/m^3$ 0.437 J U 0.409 J U $\mu g/m^3$ 6.1 4.48 4.87 1.78 J $\mu g/m^3$ 6.1 4.48 4.87 1.78 J $\mu g/m^3$ 0.543 J 1.02 0.53 J 0.77 $\mu g/m^3$ 1.34 1.36 1.49 1.26 $\mu g/m^3$ 1.340 2560 1600 232 $\mu g/m^3$ 1.4 1.44 1.39 1.23 $\mu g/m^3$ 0.815 J U 0.491 J U $\mu g/m^3$ 0.861</td></td>	$\mu g/m^3$ U 0.834 J $\mu g/m^3$ 0.437 J U $\mu g/m^3$ $\mu g/m^3$ 6.1 4.48 $\mu g/m^3$ 0.649 J $\mu g/m^3$ 0.543 J 1.02 $\mu g/m^3$ 0.543 J 1.02 $\mu g/m^3$ 0.543 J 1.02 $\mu g/m^3$ 0.569 J $\mu g/m^3$ 0.543 J 1.02 $\mu g/m^3$ 0.569 J $\mu g/m^3$ 0.543 J 0.569 J $\mu g/m^3$ 0.569 J $\mu g/m^3$ 1.34 1.36 0.569 J $\mu g/m^3$ 0.560 $\mu g/m^3$ 0.377 J $\mu g/m^3$ 0.815 J U 0.3777 J $\mu g/m^3$ 0.861 0.809 $\mu g/m^3$ 0.861 0.809 $\mu g/m^3$ 3.97 1.88 $\mu g/m^3$ 3.22 3.32 $\mu g/m^3$ $\mu g/m^3$ 0.698 J 1.14	$\mu g/m^3$ U 0.834 J U $\mu g/m^3$ 0.437 J U 0.409 $\mu g/m^3$ 6.1 4.48 4.87 $\mu g/m^3$ 0.543 J 1.02 0.53 $\mu g/m^3$ 0.543 J 1.02 0.53 $\mu g/m^3$ 0.543 J 1.02 0.53 $\mu g/m^3$ U 0.569 J U $\mu g/m^3$ 1.34 1.36 1.49 $\mu g/m^3$ 2.33 2.6 2.6 $\mu g/m^3$ 1.340 2560 1600 $\mu g/m^3$ 1.4 1.44 1.39 $\mu g/m^3$ 0.815 J U 0.491 $\mu g/m^3$ 0.861 0.809 0.927 $\mu g/m^3$ 3.97 1.88 U $\mu g/m^3$ 3.22 3.32 3.1 $\mu g/m^3$ 0.698 J 1.14 J U $\mu g/m^3$ 0.413 J 0.581	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mu g/m^3$ U 0.834 J U U $\mu g/m^3$ 0.437 J U 0.409 J U $\mu g/m^3$ 0.437 J U 0.409 J U $\mu g/m^3$ 6.1 4.48 4.87 1.78 $\mu g/m^3$ 0.543 J 1.02 0.533 J 0.77 $\mu g/m^3$ 0.543 J 1.02 0.533 J 0.77 $\mu g/m^3$ 0.543 J 1.02 0.533 J 0.77 $\mu g/m^3$ 0.543 J 0.2 0.53 J 0.77 $\mu g/m^3$ 1.34 1.36 1.49 1.26 $\mu g/m^3$ 1.340 2.560 1600 232 $\mu g/m^3$ 1.4 1.44 1.39 1.23 $\mu g/m^3$ 0.861 0.809 0.927 0.743 $\mu g/m^3$ 0.861 0.809 0.927 0.743 $\mu g/m^3$ 3.22 3.32 3.1 1.3	$\mu g/m^3$ U 0.834 J U U U $\mu g/m^3$ 0.437 J U 0.409 J U $\mu g/m^3$ 6.1 4.48 4.87 1.78 J $\mu g/m^3$ 0.543 J 1.02 0.53 J 0.77 $\mu g/m^3$ 1.34 1.36 1.49 1.26 1.49 $\mu g/m^3$ 2.33 2.6 2.6 2.44 1.26 $\mu g/m^3$ 1340 2560 1600 232 1.4 $\mu g/m^3$ 0.815 J U 0.491 J U $\mu g/m^3$ 0.861 0.809 0.927 0.743 1.4 $\mu g/m^3$ 3.97 1.88 </td <td>$\mu g/m^3$ U 0.834 J U U $\mu g/m^3$ 0.437 J U 0.409 J U $\mu g/m^3$ 6.1 4.48 4.87 1.78 J $\mu g/m^3$ 6.1 4.48 4.87 1.78 J $\mu g/m^3$ 0.543 J 1.02 0.53 J 0.77 $\mu g/m^3$ 1.34 1.36 1.49 1.26 $\mu g/m^3$ 1.340 2560 1600 232 $\mu g/m^3$ 1.4 1.44 1.39 1.23 $\mu g/m^3$ 0.815 J U 0.491 J U $\mu g/m^3$ 0.861</td>	$\mu g/m^3$ U 0.834 J U U $\mu g/m^3$ 0.437 J U 0.409 J U $\mu g/m^3$ 6.1 4.48 4.87 1.78 J $\mu g/m^3$ 6.1 4.48 4.87 1.78 J $\mu g/m^3$ 0.543 J 1.02 0.53 J 0.77 $\mu g/m^3$ 1.34 1.36 1.49 1.26 $\mu g/m^3$ 1.340 2560 1600 232 $\mu g/m^3$ 1.4 1.44 1.39 1.23 $\mu g/m^3$ 0.815 J U 0.491 J U $\mu g/m^3$ 0.861

 Table 1. Summary of Detected VOCs in Indoor and Outdoor Air (March 2022)

NOTES:

^{1.} NYSDOH Ambient Air Guidelines and Immediate Action Levels based on the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006, and NYSDOH Soil Vapor Intrusion Updates dated September 2013, August 2015, and May 2017.

 $\mu g/m3 = Microgram(s)$ per cubic meter = parts per billion

ID = Identification

J = The identification of the analyte is acceptable; the reported value is an estimate.

NYSDEC = New York State Department of Environmental Conservation

NYSDOH = New York State Department of Health

VOC = Volatile organic compound

U = Not detected at the Reporting Limit (or Method Detection Limit where applicable).

Analytical data results provided by Pace Analytical.

Duplicate sample was collected at 130058-IA-1

Project No.:1602523 Version: DRAFT Table 1, Page 1 of 1 May 2022 This page intentionally left blank

Attachment 1

Daily Field Reports

This page left intentionally blank

R STATE OF OPPORTUNITY Conservation	ital	emperature: (F)	am: N/A pm: 53° F		
Project Name: Tres Bon	V	Wind Direction: Weather:	n/a Sun, Cl	ear	
NYSDEC Site # 130058					
Work Assignment # 1602523		Arrive at site:	1510	(am)	
Location: Village of Franklin Square , New York	K	Leave site:	1600	(pm)	
HEALTH & SAFETY:					
Are there any changes to the Health & Safety Pl (If yes, list the deviation under items for concern		Yes()	No (x)		
Are monitoring results at acceptable levels?	Soil	Yes ()	n/a (x)		* No()
	Waters Air	Yes() Yes(x)	n/a (x) n/a()		* No() * No()
OTHER ITEMS:	73H	163 (X)	 If No, pro 	vide comr	
Site Sketch Attached:Yes ()No (Photos Taken:Yes (x)No (,				

DESCRIPTION OF DAILY WORK PERFORMED:

(1510) EA (L. Backman-Lowe) onsite. (1512) Brief inspection of cigar shop, log building inventory, air purifier was running. (1527) Set SUMMA cannister for indoor air parent sample 130058-IA-1 and field duplicate 130058-DUP-1, breathing zone height next to air purifier. (1538) Set SUMMA cannister for outdoor air sample 130058-OA-1. (1548) Set SUMMA cannister for indoor air sample 130058-IA-2 in pretzel shop. (1550) Log building inventory. (1600) EA offsite.

Samples collected: 130058-IA-1 130058-IA-2 130058-OA-1 130058-DUP-1))))

DAILY FIELD REPORT

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

EA personnel: Lincoln Backman-Lowe NYSDEC personnel: None Subcontractor personnel: None EA equipment*: Subcontractor Equipment: MiniRAE 3000 (photoionization detector)

(*Indicates active equipment) VISITORS TO SITE: None

PROJECT SCHEDULE ISSUES: None.

PROJECT BUDGET ISSUES: None.

ITEMS OF CONCERN: None.

COMMENTS: None.

ATTACHMENT(S) TO THIS REPORT:

Photolog of building inventory

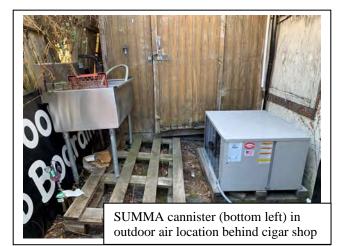
SITE REPRESENTATIVE:

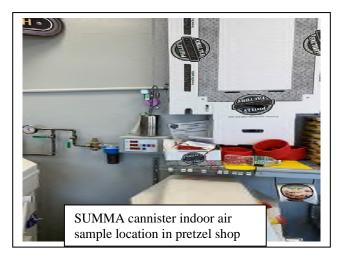
Name: L. DeSantis

cc:

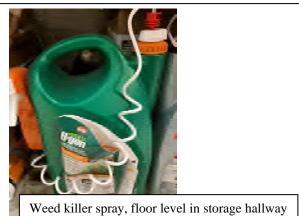
Photographic Record

Former Tres Bon Cleaners Franklin Square, NY March 14, 2022




Photographic Record

Former Tres Bon Cleaners Franklin Square, NY March 14, 2022


Bucket of markers, pens. Next to cash register

Photographic Record

Former Tres Bon Cleaners Franklin Square, NY March 14, 2022

Bottle of lubricant, no cap, floor level in storage hallway

Degreaser, no cap, floor level near dishwashing station

R STATE OF OPPORTUNITY Department Conservation	al	am: N/A pm: 55° F	
Project Name: Tres Bon	Wind Direction: Weather:	n/a Sun, Cle	ar
NYSDEC Site # 130058			
Work Assignment # 1602523	Arrive at site:	1503	(am)
Location: Village of Franklin Square, New York	Leave site:	1600	(pm)
HEALTH & SAFETY:			
Are there any changes to the Health & Safety Pla (If yes, list the deviation under items for concern)	n? Yes()	No (x)	
Are monitoring results at acceptable levels?	Soil Yes ()	n/a (x)	* No()
	Waters Yes ()	n/a (x)	* No()
OTHER ITEMS:	Air Yes ()	n/a (x) • If No, prov	* No() ide comments
Site Sketch Attached:Yes ()No (xPhotos Taken:Yes (x)No (())		

DESCRIPTION OF DAILY WORK PERFORMED:

(1503) EA (L. Backman-Lowe) onsite. (1506) Collect 130058-IA-1 and 130058-DUP-1 indoor air sample cannisters from cigar shop. (1513) Collect 130058-OA-1 outdoor air sample cannister from alley behind cigar shop. (1517) Collect 130058-IA-2 indoor air sample cannister from pretzel shop. (1520) Package SUMMA cannister samples and flow control devices and fill out chain of custody. (1600) EA offsite to ship sample containers.

Samples collected: 130058-IA-1 130058-IA-2 130058-OA-1 130058-DUP-1

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

EA personnel: Lincoln Backman-Lowe NYSDEC personnel: None Subcontractor personnel: None EA equipment*: Subcontractor Equipment: None

(*Indicates active equipment) VISITORS TO SITE: None

PROJECT SCHEDULE ISSUES: None.

PROJECT BUDGET ISSUES: None.

ITEMS OF CONCERN: None.

COMMENTS: None.

ATTACHMENT(S) TO THIS REPORT: None.

SITE REPRESENTATIVE:

Name: L. DeSantis

cc:

	A	EA Engineering, P.C. and Its Aff EA Science and Technology	iliate	Project No. 1(0) Project Name: Location: 1000 Project Manager	02523,0011 Teston g Istand :: L. DeSantis
Sample Location	Information:			1	
Site ID Number:	130058			Sampler(s):	
PID Meter Used: Model, Serial #)	04375	,1		Building I.D. No.:	
SUMMA Caniste				1	
INDOOR AIR -	- FIRST FLOOR	INDOOR AIR - BASEMENT	SUBSLAI	3 SOIL GAS	OUTDOOR AIR
low Regulator No.	021254	Flow Regulator No.	Flow Regulator No.		Flow Regulator No.
Canister Serial No.	11128	Canister Serial No.:	Canister Serial No.:		Canister Serial No.:
tart Date/Time:	122 1527	Start Date/Time:	Start Date/Time:		Start Date/Time:
start Pressure: 7	50.0 Hg	Start Pressure:	Start Pressure:		Start Pressure:
inches Hg) 3		(inches Hg)	(inches Hg)		(inches Hg)
itop Date/Time: 3/1	5/22/1506	Stop Date/Time:	Stop Date/Time:		Stop Date/Time:
Stop Pressure: inches Hg)	1:5 Ha	Stop Pressure: (inches Hg)	Stop Pressure: (inches Hg)		Stop Pressure: (inches Hg)
iample ID: 1302	SS-IA-1 CBD	Sample ID:	Sample ID:		Sample ID:
Other Sampling I	information:				
tory/Level		Story/Level	Basement or Crawl Space?		Direction from Building
Room	show	Room	Floor Slab Thickness (inches) [if present]	3	Distance from Building
ndoor Air Temp 'F)	70'F	Indoor Air Temp	Potential Vapor Entry Points Observed?		Intake Height Above Ground Level (ft.)
arometric ressure?	30H	Barometric Pressure?	Ground Surface Condition (Crawl Space Only)		Intake Tubing Used?
ntake Height Above loor Level (ft.)	5	Intake Height Above Floor Level (ft.)	If slab, intake Depth If Crawl Space, intake height		Distance to nearest Roadway
Noticeable Odor?	NO	Noticeable Odor?	Noticeable Odor?		Noticeable Odor?
ID Reading (ppb) of	m 0,0	PID Reading (ppb)	PID Reading (ppb)		PID Reading (ppb)
uplicate Sample?	NC	Duplicate Sample?	Duplicate Sample?		Duplicate Sample?

	A	EA Engineering, P.C. and Its Aff EA Science and Technology	iliate	Project No. 1602523.0011 Project Name: Tres Bon Location: Franklin Squar, NY Project Manager: L. De Santis			
Sample Location I				1			
Site ID Number:	13005		Sampler(s):	LBL			
PID Meter Used: Model, Serial #)	0457	51		Building I.D. No.:			
SUMMA Canister		1					
INDOOR AIR - I	and a state of the second	INDOOR AIR - BASEMENT	SUBSLAE	3 SOIL GAS	OUTDOOR AIR		
Tow Regulator No. り		Flow Regulator No.	Flow Regulator No.	1	Flow Regulator No.		
	609782	Canister Serial No.:	Canister Serial No.:		Canister Serial No.:		
Start Date/Time: 3/	14/22 KUK	Start Date/Time:	Start Date/Time:		Start Date/Time:		
Start Pressure:	200 0	Start Pressure:	Start Pressure:		Start Pressure:		
inches Hg)	50.0	(inches Hg)	(inches Hg)		(inches Hg)		
itop Date/Time: 3	5/22/517	Stop Date/Time:	Stop Date/Time:		Stop Date/Time:		
stop Pressure:	10	Stop Pressure:	Stop Pressure:		Stop Pressure:		
inches Hg) ample ID:	Tr	(inches Hg) Sample ID:	(inches Hg) Sample ID:		(inches Hg) Sample ID:		
130058-	IA-2	Shipit D.	Sample 10.		Sample 10.		
Other Sampling Ir	nformation:						
tory/Level	4	Story/Level	Basement or		Direction		
loom	4	Room	Crawl Space? Floor Slab Thickness		from Building Distance		
	Kitchen		(inches) [<i>if present</i>]		from Building		
ndoor Air Temp °F)	77°F	Indoor Air Temp	Potential Vapor Entry Points Observed?		Intake Height Above Ground Level (ft.)		
		Barometric Pressure?	Ground Surface		Intake Tubing Used?		
Barometric Pressure?			Condition (Crawl Space Only)		Useur		
	6'	Intake Height Above Floor Level (ft.)	and the second		Distance to nearest Roadway		
ressure? ntake Height Above loor Level (ft.)	6'	Floor Level (ft.)	Space Only) If slab, intake Depth If Crawl Space, intake height		Distance to nearest Roadway		
ressure? 1take Height Above	6' 0.2		Space Only) If slab, intake Depth If Crawl Space,		Distance to		

ÎΠ.

		EA Engineering, P.C. and Its Aff EA Science and Technology	iliate	Project No. 10 Project Name: Location: Fr Project Manage	602523.0011 Tres Bon Zanklin Square II. DeSantis
Sample Location	Information: 1300	50			1.81
oite ID Number: PID Meter Used:	1500	08		Sampler(s):	LOL
Model, Serial #)	045+5)		Building I.D. No.:	
SUMMA Caniste			-		
INDOOR AIR -	- FIRST FLOOR	INDOOR AIR - BASEMENT	SUBSLAI	B SOIL GAS	OUTDOOR AIR
low Regulator No.	011692	Flow Regulator No.	Flow Regulator No.		Flow Regulator No.
anister Serial No.	12519	Canister Serial No.:	Canister Serial No.:		Canister Serial No.:
tart Date/Time: 3	14122 ISZ7	Start Date/Time:	Start Date/Time:		Start Date/Time:
interesting in the second seco	954.	Start Pressure:	Start Pressure:		Start Pressure:
nches Hg)	1.0 19	(inches Hg)	(inches Hg)		(inches Hg)
top Date/Time:	506 3 15 22	Stop Date/Time:	Stop Date/Time:		Stop Date/Time:
top Pressure: / inches Hg)	6,5 43	Stop Pressure: (inches Hg)	Stop Pressure: (inches Hg)		Stop Pressure: (inches Hg)
ample ID:	58-DUP-1	Sample ID:	Sample ID:		Sample ID:
Other Sampling I	Information:				
tory/Level	ſ	Story/Level	Basement or Crawl Space?		Direction from Building
oom	SVIOW NOOM	Room	Floor Slab Thickness (inches) [if present]	5	Distance from Building
ndoor Air Temp 'F)	HO°F	Indoor Air Temp	Potential Vapor Entry Points Observed?		Intake Height Above Ground Level (ft.)
arometric ressure?	1929.5Hg	Bar ometric Pressure?	Ground Surface Condition (Crawl Space Only)		Intake Tubing Used?
ntake Height Above loor Level (ft.)	5'	Intake Height Above Floor Level (ft.)	If slab, intake Depth If Crawl Space, intake height		Distance to nearest Roadway
loticeable Odor?	ND	Noticeable Odor?	Noticeable Odor?	-	Noticeable Odor?
ID Reading (ppb) 🕼	pm 0.0	PID Reading (ppb)	PID Reading (ppb)		PID Reading (ppb)
uplicate Sample?	155	Duplicate Sample?	Duplicate Sample?		Duplicate Sample?

E		EA Engineering, P.C. and Its Affiliate EA Science and Technology			02523.00 res Bon Iklin Sq.,N : L. DeSz	
Sample Location Inform	- the last of the					
Site ID Number:	1300 1300	58		Sampler(s): LBL	-	
PID Meter Used: Model, Serial #)	45751			Building I.D. No.:	-	
SUMMA Canister Reco	ord:		1.	0		
INDOOR AIR - FIRST	FLOOR INDO	OOR AIR - BASEMENT	SUBSLAE	SOIL GAS	OUTDO	OR AIR
Flow Regulator No OH	Flow Regulat	or No.	Flow Regulator No.		Flow Regulator No. 011718	
Canister Serial No.	20506 Canister Seri	al No.:	Canister Serial No.:		Canister Serial No.:	020806
Start Date/Time:	3- 1 B Start Date/Ti	mor	Start Date/Time:		Start Date/Time:	14/22 000
Start Pressure:	Start Pressure		Start Pressure:		Start Pressure:	1738
inches Hg)	(inches Hg)		(inches Hg)		(inches Hg)	30,0
Stop Date/Time:	Stop Date/Ti		Stop Date/Time:		Stop Date/Time: 3	15/22
Stop Pressure:	Stop Pressure	:	Stop Pressure:		Stop Pressure:	5
inches Hg) Sample ID:	(inches Hg) Sample ID:		(inches Hg) Sample ID:		(inches Hg) Sample ID:	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
					130058-	of-I
Other Sampling Inform	the second s		In .	1	101 - 41	
Story/Level	Story/Level		Basement or Crawl Space?		Direction from Building	
Room	Room		Floor Slab Thickness (inches) [<i>if present</i>]		Distance from Building	6.5ft
ndoor Air Temp °F)	Indoor Air To	mp	Potential Vapor Entry Points Observed?		Intake Height Above Ground Level (ft.)	254
Barometric Pressure?	Barometric P	essure?	Ground Surface Condition (Crawl Space Only)		Intake Tubing Used?	NO
ntake Height Above Floor Level (ft.)	Intake Heigh Floor Level (f		If slab, intake Depth If Crawl Space, intake height		Distance to nearest Roadway	~ 100A
(and the second sec				
Noticeable Odor?	AO Noticeable O	dor?	Noticeable Odor?		Noticeable Odor?	No
Noticeable Odor? PID Reading (ppb) (p ⁺⁴) Duplicate Sample?		(ppb)	Noticeable Odor? PID Reading (ppb)		Noticeable Odor? PID Reading (ppb) p	NO.0

This page intentionally left blank

Attachment 2

Field Notes

This page left intentionally blank

Tres Bon Site No. 130058 3/14/222 1510 - EA (L. Backman-Lowe) onsite 1512 - brief inspection of space, logging building inventory 1527 - set 130058-1A-1 and DUP in Cigan Shop 538 - set 130058-0A-1 in back alley of cigar shop 548 - set 130058- IA-2 in pretzel shop 550 - log building inventory for pretzel shop 600 - EA offsite Scale: 1 square =

Tres Bon 1503- Arrive Onsite (EA) 1506- collect 130058-IA-1 and 17 from cigar shop 1513- collect 130058-0A-1 from alley behind cictar shop 1517 collect 130058-TA-2 from R pretzel shor 1520 kage summa cannister DRC samples, and fill out chain of custoch 140- EA: offe ite Scale: 1 square = Rite in the Rain .

Attachment 3

New York State Department of Health Indoor Air Quality Questionnaire

This page left intentionally blank

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.
Preparer's Name Lincoln Backman-Lowe Date/Time Prepared 3/15/2022 1058
Preparer's Affiliation <u>Independent Consultant – EA Engineering</u> Phone No: 716-364-7282
Purpose of Investigation Air Sampling
1. OCCUPANT: Interviewed: Y / N
Last Name: First Name:
Address:
County:
Home Phone: Office Phone:
Number of Occupants/persons at this locationAge of Occupants
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y / N
Last Name: Ehrlein First Name: Alexandra
Address:
County:
Home Phone: Cell Phone: 516-382-4626

3. BUILDING CHARACTERISTICS Type of

Building: (Circle appropriate response)						
	Residential	School	Commercia	l/Multi-use		
	Industrial	Church	Other:			
If the property is residential, type? (Circle appropriate response) N/A						
Ranch		2 Family		2 Family		
Raised	Ranch	2-Family Split Level		3-Family Colonial		
Cape C	od	Contemporar	ry	Mobile Home		
Duplex		Apartment H	louse	Townhouses/Condos		
Modula	ır	Log Home		Other:		

If multiple units, how many? N/A If the property is

commercial, type?

Business Type(s) <u>Cigar shop, Pretzel Shop</u> Does it include residences (i.e., multi-use)? Y / N If yes, how many?_____

Other characteristics:

Number of floors <u>1</u> Building age <u>68, constructed in 1954</u> Is the building insulated? <mark>Y</mark> / N How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors N/A – one story

Airflow near source None

Outdoor air infiltration None

Infiltration into air ducts None

a. Above grade construction	: wood frame	concrete	stone	brick (w/ stucco façade)
b. Basement type:	full	crawlspace	<mark>slab</mark>	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partia	ally finished
j. Sump present?	Y / N			
k. Water in sump?	Y / N / not applicable			

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

Basement/Lowest level depth below grade: 0 (feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

None visible, all piping in wall(s)

6. HEATING, VENTING and AIR CONDITIONING

Type of heating system(s) used in this building: (circle all that apply –note primary) Hot air circulation - Heat pump - Hot water baseboard - Space Heaters -

Stream radiation - Radiant floor - Electric baseboard - Wood stove -Outdoor wood boiler - Other _____

The primary type of fuel used is:

Natural Gas - Fuel Oil - Kerosene - Electric - Propane - Solar - Wood - Coal

Domestic hot water tank fueled by:

Boiler/furnace located in: Basement - Outdoors - Main Floor - Other______ Air conditioning: Central Air - Window units - Open Windows - None Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Is basement/lowest level occupied? Full-time - Occasionally - Seldom - Almost Never

Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)

Basement
1 st Floor Cigar shop & pretzel shop
2 nd Floor
3 rd Floor
4 th Floor

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?	Y / <mark>N</mark>		
b. Does the garage have a separate heating unit?		Y / N / <mark>NA</mark>	
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Please s	Y / N / <mark>NA</mark> pecify	
d. Has the building ever had a fire?	Y / <mark>N</mark>	When?	
e. Is a kerosene or unvented gas space heater present?	Y / <mark>N</mark>	Where?	
f. Is there a workshop or hobby/craft area?	Y / <mark>N</mark>	Where & Type?	
g. Is there smoking in the building?	Y / <mark>N</mark>	How frequently?	
h. Have cleaning products been used recently?	Y / <mark>N</mark>	When & Type?	
i. Have cosmetic products been used recently? j. Has painting/staining been done in the last 6	Y / <mark>N</mark>	When & Type?	
months?	Y / <mark>N</mark>	When & Type?	
k. Is there new carpet, drapes or other textiles?	Y / <mark>N</mark>	Where & When?	
l. Have air fresheners been used recently?	<mark>Y</mark> / N	When & Type?	
m. Is there a kitchen exhaust fan?	Y/N	If yes, where vented? <u>Kitchen of pretzel shop</u> If yes, where vented?	
n. Is there a bathroom exhaust fan?	<mark>Y</mark> / N		
o. Is there a clothes dryer?	Y / <mark>N</mark>	If yes, is it vented outside? Y / N	
p. Has there been a pesticide application?UNSURE	Y / N	When &Type? > 1 year ago	
Are there odors in the building? Y / N			

Do any of the building occupants use solvents at work? Y / N

If yes, please describe:

(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

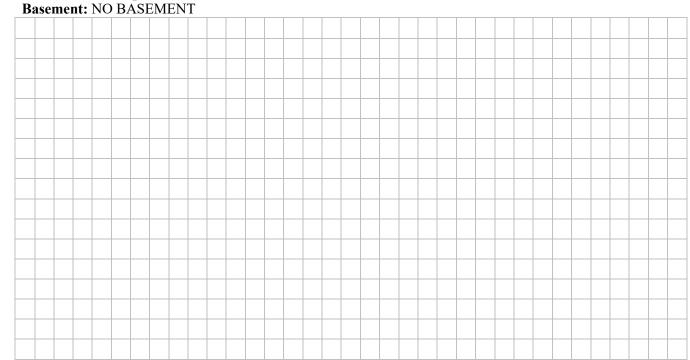
If yes, what types of solvents are used? ______ If yes, are their clothes washed at work? Y / N / NA

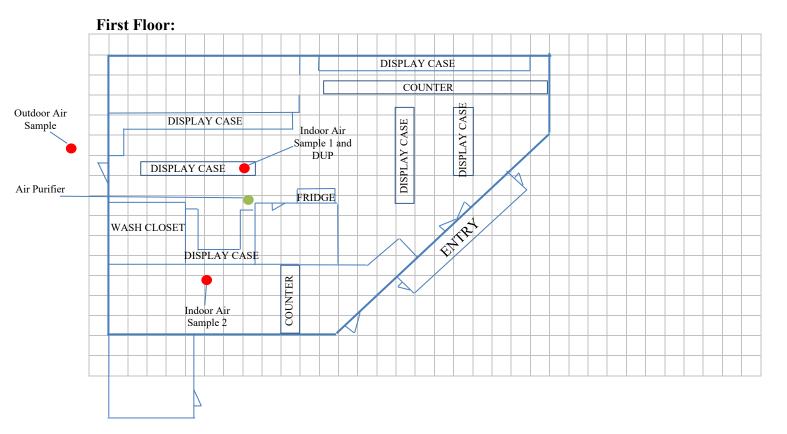
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry-cleaning regularly (weekly) No Yes, use dry-cleaning infrequently (monthly or less) Unknown Yes, work at a dry-cleaning service

Is there a radon mitigation system for the building/structure? Y / N Date of Installation: Is the system active or passive? Active/Passive / NA

9. WATER AND SEWAGE

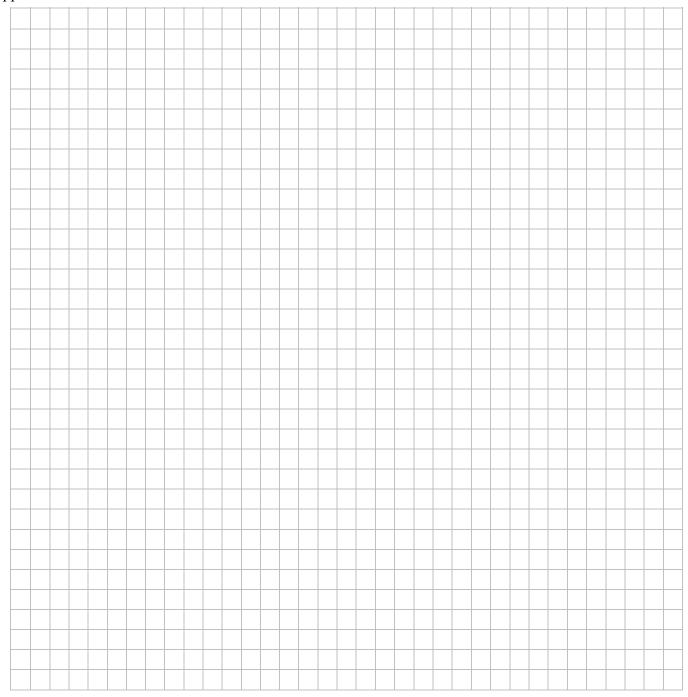

Water Supply: Public Water Drilled Well Driven Well Dug Well Other: ______ Sewage Disposal: Public Sewer Septic Tank Leach Field Dry Well Other: ______


1.10. RELOCATION INFORMATION (for oil spill residential emergency)

- 1.a. Provide reasons why relocation is recommended:
- 1.b. Residents choose to: remain in home relocate to friends/family relocate to hotel/motel
- 1.c. Responsibility for costs associated with reimbursement explained? Y / N
- 1.d. Relocation package provided and explained to residents? Y / N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.



12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repairshops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the welland septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Not Applicable

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residences that have the potential to affect indoor air quality.

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingradiants. However, the photographs must be of good quality and ingradiant labels must be legible.

ingredients. However, the photographs must be of good quality and ingredient labels must be legible. BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

Location	Product Description	Size (units)	Condition *	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y / N
Display case, cigar shop	Multiple torches	>20	New/unopened	Butane	0.0	Y
Display case, cigar shop	Multiple packages of charcoal	>50	New/unopened	Carbon	0.0	Y
Floor, washing closet, cigar shop	Bottle of bleach	2.39 L	Opened, with cap on	Sodium hypochlorite	0.0	Y
Floor, washing closet, cigar shop	Bottle of bleach	3.57 L	Opened, with no cap	Sodium hypochlorite	0.0	Y
, 0	Bottle of Odor counteractant/fabric freshener	3.78 L	Opened, with no cap	Didecyl dimethyl ammonium chloride Benzisothiazolinone Sodium citrate	0.0	Y
Sink, washing closet, cigar shop	Bottle of dish soap	1.66 L	Opened, with cap	Water, sodium hydroxide	0.0	Y
Water heater tank, washing closet, cigar shop	Container of AJAX brand bleach powder	14 oz	Opened, with no cap	Calcium carbonate Sodium carbonate Sodium dodecylbenzenesulfonate	0.0	Y
Cupboard under cash register, pretzel shop	Windo Clear A (251) bottle	NA	Open, with cap on	2-Hexoxyethanol Isopropanolamine Ammonium hydroxide	0.0	Y
Counter top, next to cash register, pretzel shop	Bucket of markers and pens	NA	All pens had caps	NA	0.0	Y
	Cans of canola oil spray	4 cans	All had caps on	NA	0.0	Y
Floor level,	Container of weed B'gon weed killer	NA	Had cap on	Dimethylamine Salt of 2,4-D acid	0.0	Y
Floor level, storage hallway, pretzel shop	Container of lubricant	NA	Opened, with no cap	NA	0.0	Y
Shelf, dishwashing station, pretzel shop	Bottle of leak detector fluid	NA	Opened, with cap on	NA	0.0	Y
Floor level, dishwashing station, pretzel shop	Bottle of degreaser	NA	Opened, with no cap	NA	0.0	Y

Attachment 4

Analytic Data Laboratory Report

This page left intentionally blank

Pace Analytical® ANALYTICAL REPORT March 24, 2022

NYDEC

Sample Delivery Group:	L1471925
Samples Received:	03/16/2022
Project Number:	130058
Description:	Tres Bon
Site:	130058
Report To:	Noah Robinson
	269 West Jefferson St.
	Syracuse, NY 13202

Тс Ss Cn Śr ʹQc Gl ΆI Sc

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: NYDEC

PROJECT: 130058

SDG: L1471925

DATE/TIME: 03/24/22 13:59 PAGE: 1 of 15

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
130058-IA-1 L1471925-01	5
130058-IA-2 L1471925-02	6
130058-OA-1 L1471925-03	7
130058-DUP-1 L1471925-04	8
Qc: Quality Control Summary	9
Volatile Organic Compounds (MS) by Method TO-15	9
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Ср

Ss

°Cn

Sr

Qc

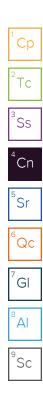
GI

A

Sc

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
130058-IA-1 L1471925-01 Air			Lincoln Backman-Lowe	03/15/22 15:06	03/16/22 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1836251	1	03/22/22 11:34	03/22/22 11:34	CAW	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG1836954	10	03/23/22 11:34	03/23/22 11:34	CAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
130058-1A-2 L1471925-02 Air			Lincoln Backman-Lowe	03/15/22 15:17	03/16/22 09:	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	W01020254	4	date/time	date/time	6411/	N 41 1 11 1 Th
Volatile Organic Compounds (MS) by Method TO-15	WG1836251 WG1836954	1	03/22/22 12:05 03/23/22 12:11	03/22/22 12:05 03/23/22 12:11	CAW CAW	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG1830954	100	03/23/22 12.11	03/23/22 12.11	CAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
130058-0A-1 L1471925-03 Air			Lincoln Backman-Lowe	03/15/22 15:13	03/16/22 09:	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG1836251	1	03/22/22 12:36	03/22/22 12:36	CAW	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG1836954	10	03/23/22 12:50	03/23/22 12:50	CAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
130058-DUP-1 L1471925-04 Air			Lincoln Backman-Lowe	03/15/22 00:00	03/16/22 09:	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG1836251	1	03/22/22 13:07	03/22/22 13:07	CAW	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG1836954	10	03/23/22 13:29	03/23/22 13:29	CAW	Mt. Juliet, TN


SDG: L1471925

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1471925

DATE/TIME: 03/24/22 13:59 PAGE: 4 of 15

SAMPLE RESULTS - 01 L1471925

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	MDL ug/m3	RDL ug/m3	Result	Qualifier	Dilution	Batch	
•	71 FF C	122	-	-	ug/m3 U		1	WC102C2E1	2
I,1,1-Trichloroethane	71-55-6	133	0.400	1.09	U		1	WG1836251	
I,1,2,2-Tetrachloroethane	79-34-5 79-00-5	168 133	0.511 0.422	1.37 1.09	U		1	WG1836251	3
I,1,2-Trichloroethane	75-34-3	98	0.422	0.802	U		1	WG1836251	
,1-Dichloroethane								WG1836251	
I,1-Dichloroethene	75-35-4	96.90	0.302	0.793	U		1	WG1836251	4
,2,4-Trichlorobenzene	120-82-1	181	1.10	4.66	U		1	WG1836251	
I,2,4-Trimethylbenzene	95-63-6	120	0.375	0.982	U		1	WG1836251	5
I,2-Dibromoethane	106-93-4	188	0.554	1.54	U		1	WG1836251	5
I,2-Dichlorobenzene	95-50-1	147	0.770	1.20	U		1	WG1836251	
l,2-Dichloroethane	107-06-2	99	0.283	0.810	0.437	J	1	WG1836251	6
l,2-Dichloropropane	78-87-5	113	0.351	0.924	U		1	WG1836251	
I,3,5-Trimethylbenzene	108-67-8	120	0.382	0.982	U		1	WG1836251	
l,4-Dichlorobenzene	106-46-7	147	0.335	1.20	U		1	<u>WG1836251</u>	/
,4-Dioxane	123-91-1	88.10	0.300	0.721	U		1	<u>WG1836251</u>	
2-Butanone (MEK)	78-93-3	72.10	0.240	3.69	6.10		1	WG1836251	8
I,3-Dichlorobenzene	541-73-1	147	1.09	1.20	U		1	WG1836251	
2,2,4-Trimethylpentane	540-84-1	114.22	0.621	0.934	U		1	WG1836251	
Benzene	71-43-2	78.10	0.228	0.639	0.543	<u>J</u>	1	WG1836251	9
Benzyl Chloride	100-44-7	127	0.311	1.04	U		1	WG1836251	
Bromodichloromethane	75-27-4	164	0.471	1.34	U		1	WG1836251	_
Bromoform	75-25-2	253	0.757	6.21	U		1	WG1836251	
Bromomethane	74-83-9	94.90	0.381	0.776	U		1	WG1836251	
Carbon tetrachloride	56-23-5	154	0.461	1.26	U		1	WG1836251	
Chlorobenzene	108-90-7	113	0.385	0.924	U		1	WG1836251	
Chloroethane	75-00-3	64.50	0.263	0.528	U		1	WG1836251	
Chloroform	67-66-3	119	0.349	0.973	U		1	WG1836251	
Cyclohexane	110-82-7	84.20	0.259	0.689	U		1	WG1836251	
Chloromethane	74-87-3	50.50	0.233	0.413	1.34		1	WG1836251	
cis-1,2-Dichloroethene	156-59-2	96.90	0.311	0.793	U		1	WG1836251	
cis-1,3-Dichloropropene	10061-01-5	111	0.313	0.908	U		1	WG1836251	
Dibromochloromethane	124-48-1	208	0.618	1.70	U		1		
								WG1836251	
Dichlorodifluoromethane	75-71-8	120.92	0.678	0.989	2.33		1	WG1836251	
Ethanol	64-17-5	46.10	5.00	23.6	1340		10	WG1836954	
Ethylbenzene	100-41-4	106	0.362	0.867	U		1	WG1836251	
Trichlorofluoromethane	75-69-4	137.40	0.460	1.12	1.40		1	WG1836251	
I,1,2-Trichlorotrifluoroethane		187.40	0.608	1.53	U		1	<u>WG1836251</u>	
l,2-Dichlorotetrafluoroethane		171	0.622	1.40	U		1	<u>WG1836251</u>	
n-Hexane	110-54-3	86.20	0.726	2.22	U		1	WG1836251	
Hexachloro-1,3-butadiene	87-68-3	261	1.12	6.73	U		1	WG1836251	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	0.313	5.12	0.815	J	1	WG1836251	
ATBE	1634-04-4	88.10	0.233	0.721	U		1	WG1836251	
Methylene Chloride	75-09-2	84.90	0.340	0.694	0.861		1	WG1836251	
Styrene	100-42-5	104	0.335	0.851	U		1	WG1836251	
ert-Butyl alcohol	75-65-0	74.12	0.176	0.606	3.97		1	WG1836251	
etrachloroethylene	127-18-4	166	0.553	1.36	13.6		1	WG1836251	
oluene	108-88-3	92.10	0.328	1.88	3.22		1	WG1836251	
n&p-Xylene	1330-20-7	106	0.585	1.73	0.698	J	1	WG1836251	
-Xylene	95-47-6	106	0.359	0.867	0.413	J	1	WG1836251	
rans-1,2-Dichloroethene	156-60-5	96.90	0.267	0.793	U	-	1	WG1836251	
rans-1,3-Dichloropropene	10061-02-6	111	0.331	0.908	U		1	WG1836251	
richloroethylene	79-01-6	131	0.364	1.07	U		1	WG1836251	
/inyl chloride	75-01-4	62.50	0.243	0.511	U		1	WG1836251	
laphthalene	91-20-3	128	1.83	3.30	U		1	WG1836251	
(S) ,4-Bromofluorobenzene	460-00-4	175	1.05	5.50	97.9		60.0-140	WG1836251	
(S) ,4-Bromofluorobenzene	460-00-4	175			97.7		60.0-140	<u>WG1836954</u>	
ACC	OUNT: DEC			PROJEC 130058		SDG: L147192		DATE/TIME: PA	

SAMPLE RESULTS - 02 L1471925

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	MDL ug/m3	RDL ug/m3	Result ug/m3	Qualifier	Dilution	Batch		
,1,1-Trichloroethane	71-55-6	133	0.400	1.09	U		1	WC19262E1	2	
,1,2,2-Tetrachloroethane	79-34-5	168	0.400	1.09	U		1	WG1836251 WG1836251		
,1,2,2-Trichloroethane	79-00-5	133	0.422	1.09	U		1	WG1836251	3	
,1-Dichloroethane	75-34-3	98	0.422	0.802	U		1	WG1836251	2	
,1-Dichloroethene	75-35-4	96.90	0.302	0.802	U		1	WG1836251		
,2,4-Trichlorobenzene	120-82-1	181	1.10	4.66	U		1	WG1836251	2	
,2,4-Trimethylbenzene	95-63-6	120	0.375	0.982	0.834	1	1	WG1836251		
,2-Dibromoethane	106-93-4	120	0.554	1.54	U.054	J	1	WG1836251	5	
,2-Dichlorobenzene	95-50-1	100	0.554	1.34	U		1	WG1836251		
,2-Dichloroethane	107-06-2	99	0.283	0.810	U		1	WG1836251	_	
	78-87-5	113		0.810					e	
,2-Dichloropropane			0.351		U		1	WG1836251		
,3,5-Trimethylbenzene	108-67-8	120	0.382	0.982	U		1	WG1836251	E	
4-Dichlorobenzene	106-46-7	147	0.335	1.20	U		1	WG1836251		
4-Dioxane	123-91-1	88.10	0.300	0.721	U		1	WG1836251		
2-Butanone (MEK)	78-93-3	72.10	0.240	3.69	4.48		1	WG1836251	٤	
,3-Dichlorobenzene	541-73-1	147	1.09	1.20	U		1	WG1836251		
2,2,4-Trimethylpentane	540-84-1	114.22	0.621	0.934	0.649	Ţ	1	WG1836251		
Benzene	71-43-2	78.10	0.228	0.639	1.02		1	WG1836251		
Benzyl Chloride	100-44-7	127	0.311	1.04	U		1	WG1836251	L	
Bromodichloromethane	75-27-4	164	0.471	1.34	U		1	WG1836251		
Bromoform	75-25-2	253	0.757	6.21	U		1	WG1836251		
Bromomethane	74-83-9	94.90	0.381	0.776	U		1	WG1836251		
Carbon tetrachloride	56-23-5	154	0.461	1.26	0.569	Ţ	1	<u>WG1836251</u>		
Chlorobenzene	108-90-7	113	0.385	0.924	U		1	WG1836251		
hloroethane	75-00-3	64.50	0.263	0.528	U		1	WG1836251		
hloroform	67-66-3	119	0.349	0.973	U		1	WG1836251		
Cyclohexane	110-82-7	84.20	0.259	0.689	U		1	WG1836251		
Chloromethane	74-87-3	50.50	0.213	0.413	1.36		1	WG1836251		
is-1,2-Dichloroethene	156-59-2	96.90	0.311	0.793	U		1	WG1836251		
is-1,3-Dichloropropene	10061-01-5	111	0.313	0.908	U		1	WG1836251		
bibromochloromethane	124-48-1	208	0.618	1.70	U		1	WG1836251		
Dichlorodifluoromethane	75-71-8	120.92	0.678	0.989	2.60		1	WG1836251		
thanol	64-17-5	46.10	50.0	236	2560		100	WG1836954		
thylbenzene	100-41-4	106	0.362	0.867	0.377	J	1	WG1836251		
richlorofluoromethane	75-69-4	137.40	0.460	1.12	1.44		1	WG1836251		
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.608	1.53	U		1	WG1836251		
,2-Dichlorotetrafluoroethane	76-14-2	171	0.622	1.40	U		1	WG1836251		
-Hexane	110-54-3	86.20	0.726	2.22	U		1	WG1836251		
lexachloro-1,3-butadiene	87-68-3	261	1.12	6.73	U		1	WG1836251		
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	0.313	5.12	U		1	WG1836251		
I TBE	1634-04-4	88.10	0.233	0.721	U		1	WG1836251		
lethylene Chloride	75-09-2	84.90	0.340	0.694	0.809		1	WG1836251		
tyrene	100-42-5	104	0.335	0.851	U		1	WG1836251		
ert-Butyl alcohol	75-65-0	74.12	0.176	0.606	1.88		1	WG1836251		
etrachloroethylene	127-18-4	166	0.553	1.36	15.3		1	WG1836251		
oluene	108-88-3	92.10	0.328	1.88	3.32		1	WG1836251		
1&p-Xylene	1330-20-7	106	0.585	1.73	1.14	J	1	WG1836251		
-Xylene	95-47-6	106	0.359	0.867	0.581	J	1	WG1836251		
ans-1,2-Dichloroethene	156-60-5	96.90	0.267	0.793	U	_	1	WG1836251		
ans-1,3-Dichloropropene	10061-02-6	111	0.331	0.908	U		1	WG1836251		
richloroethylene	79-01-6	131	0.364	1.07	U		1	WG1836251		
inyl chloride	75-01-4	62.50	0.243	0.511	U		1	WG1836251		
laphthalene	91-20-3	128	1.83	3.30	U		1	WG1836251		
(S) 4-Bromofluorobenzene	460-00-4	175			96.3		60.0-140	WG1836251		
(S) 4-Bromofluorobenzene	460-00-4	175			96.8		60.0-140	<u>WG1836954</u>		
	OUNT:			PROJEC 130058		SDG: L147192	5	DATE/TIME: 03/24/22 13:59	PAGE : 6 of 15	

SAMPLE RESULTS - 03 L1471925

Volatile Organic Compounds (MS) by Method TO-15

11,2,2-Tetrachloroethane 79-34-5 168 0.511 1.37 U 1 WG1836251 1,1,2-Trichloroethane 79-00-5 133 0.422 1.09 U 1 WG1836251 1,1-Dichloroethane 75-34-3 98 0.290 0.802 U 1 WG1836251 1,1-Dichloroethane 75-34-3 98 0.290 0.802 U 1 WG1836251 1,1-Dichloroethane 75-35-4 96.90 0.302 0.793 U 1 WG1836251 1,2,4-Trichlorobenzene 120-82-1 181 1.10 4.66 U 1 WG1836251 1,2,4-Trinchlybenzene 95-63-6 120 0.375 0.982 U 1 WG1836251 1,2-Dichlorobenzene 95-60-1 147 0.770 1.20 U 1 WG1836251 1,2-Dichlorophane 107-06-2 99 0.283 0.810 U 1 WG1836251 1,2-Dichlorophane 188-67-8 120 0.382 0.982 U 1 WG1836251 1,2-Dichlorophane 188-67-8 </th <th>• • •</th> <th>CAS #</th> <th>Mol. Wt.</th> <th>MDL</th> <th>RDL</th> <th>Result</th> <th>Qualifier</th> <th>Dilution</th> <th>Batch</th> <th></th>	• • •	CAS #	Mol. Wt.	MDL	RDL	Result	Qualifier	Dilution	Batch	
112.2 - Terrenty-Control 94.5 96.9 93.0 94.2 10 1 METERSON 112.0 - Terrenty-Control 94.5 83 0.2.9 0.30 0.0 1 METERSON 1 METERSON <t< th=""><th>•</th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th>2_</th></t<>	•			-						2_
http://www 7005 133 0.42 100 U 1 MARRING No No <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Т</td>										Т
Dipulse Sp-34 <	1,1,2,2-Tetrachloroethane									
Districtionschue 75.34 88 0780 0.870 U 1 Nutleopie 12.4-Treinighenzen 75.34 85.66 0.302 0.783 U 1 Nutleopie 12.4-Treinighenzen 95.61 0.90 0.15. 0.982 U 1 Nutleopie 12.0hterochten 95.83 188 0.554 144 U 1 Nutleopie 12.0hterochten 95.83 188 0.554 142 U 1 Nutleopie 12.0hterochten 95.84 18 0.554 120 U 1 Nutleopie 12.0hterochten 86.74 120 0.282 0.924 1 Nutleopie 13.0hterochten 66.47 170 0.382 120 U 1 Nutleopie 13.0hterochten 94.91 10.70 1.92 1.92 1.92 1.92 1.92 13.0hterochten 94.92 0.27 0.92 1.92 1.92 1.92 1.92	1,1,2-Trichloroethane									³ S
D2-Aff-Contension D2-Aff-Contension <thd2-aff-contension< th=""> D2-Aff-Contension</thd2-aff-contension<>						U		1		
12.4.1.em 15.4.4.1 100 0.37.5 0.37.5 1.0.9 1.1.9 MAXSM221 12.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	1,1-Dichloroethene	75-35-4	96.90		0.793	U		1	WG1836251	4
12.0b0.org/with/set/set/set/set/set/set/set/set/set/set	1,2,4-Trichlorobenzene	120-82-1	181	1.10	4.66	U		1	WG1836251	
12.0Priorectorecone 95.01 97 0.20 U 1 9455201 12.0Priorectorecone 106.067 15 0.351 0.524 U 1 9455201 12.0Priorectorecone 108.478 70 0.351 0.524 U 1 9455202 13.31 Interringthermene 108.478 70 0.351 10.5 U 1 9455025 13.31 Interringthermene 108.478 70 0.351 10.6 U 1 9455025 13.31 Interringthermene 108.478 70 0.90 U 1 9456351 U 1 9456355 13.31 Interringthermene 54.841 72 0.530 0.770 1 9456355 13.31 Interringthermene 54.841 0.471 1.44 U 1 9453253 2.441 Interringthermene 78.42 0.311 0.44 U 1 9453253 2.450 Interringthermene 79.42 4.40 0.775 U 1 9453253 2.460 Interringthermene 108.457 0.331 0.528 0.528	1,2,4-Trimethylbenzene	95-63-6	120	0.375	0.982	U		1	WG1836251	
Dializationethere 98-014 90 0.74 0.74 0 0 0.74 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0 0 0.74 0	1,2-Dibromoethane	106-93-4	188	0.554	1.54	U		1	WG1836251	⁵ c
12.0e1denopopuene 78.75 13 0.314 0.944 U 1 9051323 1 1 </td <td>1,2-Dichlorobenzene</td> <td>95-50-1</td> <td>147</td> <td>0.770</td> <td>1.20</td> <td>U</td> <td></td> <td>1</td> <td>WG1836251</td> <td></td>	1,2-Dichlorobenzene	95-50-1	147	0.770	1.20	U		1	WG1836251	
13.5 Transpondence 198.47.4 100 0.362 0.982 U 1 Message 1.4 Debiardoursene 198.47.4 88.10 0.300 0.771 U 1 Message 1 Message 2.4 Minore 193.41 88.10 0.300 0.771 U 1 Message 1 Message 2.4 Minore, MEK 78.93.3 72.10 0.242 0.374 U 1 Message 1 Message 1 Message	1,2-Dichloroethane	107-06-2	99	0.283	0.810	U		1	WG1836251	6
1.4.Deckambersome 02.4-6.7 17 0.335 1.20 U 1 W3183251 P 1.4.Diskame 72.3931 88.10 0.200 3.64 1.78 1 1 W3183251 1.3.Dicklospurgen 54.73.1 47 100 1.20 U 1 W3183251 1.3.Dicklospurgen 54.73.1 117.2 0.621 0.940 1 W3183251 2.3.Dicklospurgen 54.73.1 117.2 0.621 0.940 1 W3183251 Benzen 7.4.5.2 78.00 0.228 0.639 0.70 1 W3183251 Benzenkonome 7.57.4 164 0.47 1.34 U 1 W3183251 Benzenkonome 7.50.3 6.51 0.23 0.528 U 1 W3183251 Benzenkonome 7.60.3 6.50 0.23 0.528 U 1 W3183251 Choostenter 168.90.7 0.23 0.528 U 1 W3183251 Choostenter 168.91.7 0.23 0.528 U 1 W31	1,2-Dichloropropane	78-87-5	113	0.351	0.924	U		1	WG1836251	Ĩ.
14.0Posene 12.341-1 85.00 0.300 0.271 U 1 W183521 23.342.https://plettance 541.731 147 1.09 1.20 U 1 W183521 2.2.4.7.inter/lybertanc 541.731 147 1.09 1.20 U 1 W185521 Bernyl Chorade 0.04-1.7 172 0.311 1.04 U 1 W185521 Bernyl Chorade 0.04-1.7 172 0.311 1.04 U 1 W185521 Bornodchorade 7.52.2 2.53 0.77 6.21 U 1 W185521 Bornodchorade 56.73.5 154 0.46 1.76 U 1 W185521 Cahna terrachorde 56.73.5 154 0.46 1.76 U 1 W185521 Cahna terrachorde 56.73.5 184 0.46 1.76 U 1 W185521 Cahna terrachorde 78.43.3 50.50 0.213 0.224 U 1 W185521 Cahna terrachorde 78.43.3 50.50 0.213 0.	1,3,5-Trimethylbenzene	108-67-8	120	0.382	0.982	U		1	WG1836251	
14.Holoanie 123.H1 88.60 0.300 0.721 0 I MORESALE 13.Biolinoberzenie 547.31 147 1.09 1.20 0 I MORESALE	1,4-Dichlorobenzene	106-46-7	147	0.335	1.20	U		1	WG1836251	7
13 Definition 540 241 147 2 0.9 120 U 1 WSR2025 2.2.4 Linucthypentane 540 241 14.22 0.621 0.934 U 1 WSR2025 Binvarie 71.43.2 781.0 0.228 0.539 0.770 1 WSR2025 Binvarie 75.75.7 73.0 0.777 6.71 U 1 WSR2025 Binvarie 75.75.7 75.3 0.777 6.71 U 1 WSR2025 Binvarie 75.95.7 75.3 0.777 6.71 U 1 WSR2025 Chancethane 76.0.3 14.6 U 1 WSR2025 Chancethane 76.0.3 149 0.243 0.224 U 1 WSR2025 Chancethane 76.6.3 19 0.249 0.673 U 1 WSR2025 Chancethane 76.6.5 19 0.249 0.678 0.989 2.44 1 WSR2025 Chancethane 76.6.5 111 0.33 0.068 1 WSR2025	1,4-Dioxane	123-91-1	88.10	0.300	0.721	U		1	WG1836251	
13.Bickinkatewane 941-73-1 147 109 120 1 WC183651 2.Arbinethylpetane 941-84 1142 0.671 0.334 U 1 WC183651 Benzene 74.52 7810 0.228 0.639 0.770 1 WC183651 Benzene 75.27.4 144 0.471 134 U 1 WC183651 Bonnochtano 75.27.4 124 144 U 1 WC183651 Bonnochtano 75.25.2 25.3 0.757 6.21 U 1 WC183651 Bonnochtano 74.3.3 94.90 0.381 0.76 U 1 WC183651 Chorostnac 76.0.3 13 0.386 0.528 U 1 WC183651 Chorostnac 76.6.3 19 0.249 0.628 U 1 WC183651 Chorostnac 76.6.3 19 0.330 0.068 1 WC183651 Chorostnac 76.4.3 0.50 0.78 0.898 2.4 1 WC183651 Chorostnac	2-Butanone (MEK)	78-93-3	72.10	0.240	3.69	1.78	J	1	WG1836251	0
2.2.4.Time 540 84.1 14.2.2 0.621 0.934 U 1 VERSINGS Baname 74.8.7 78.10 0.228 0.639 0.770 1 WERSINGS Baname 74.8.7 727 0.31 1.4 U 1 WERSINGS Bornochine 75.27.4 144 0.471 1.34 U 1 WERSINGS Bornochine 75.27.4 144 0.471 1.34 U 1 WERSINGS Bornochine 75.27.4 144 0.471 1.4 U 1 WERSINGS Bornochine 75.07.5 6.10 0.381 0.776 U 1 WERSINGS Chootemane 75.06.3 6.53 0.283 0.272 1 WERSINGS Chootemane 75.07.4 44.0 0.259 0.689 U 1 WERSINGS Chootemane 75.08 10.90 2.59 0.639 U 1 WERSINGS Chootemane	1,3-Dichlorobenzene	541-73-1	147	1.09	1.20	U	-	1		۴A
Benzen 74-32 78.10 0.228 0.639 0.770 1 Weissar21 Berryi Chonde 100-44.7 127 0.311 10.4 U 1 Weissar21 Berryi Chonde 572.5.2 23.3 0.776 C U 1 Weissar21 Bronnenthane 752.5.2 23.3 0.776 C U 1 Weissar21 Bronnenthane 74.8.3 94.90 0.381 0.776 U 1 Weissar21 Cabon teschinge 56.0.3 154 0.481 1.26 U 1 Weissar21 Chorotene 108.27.7 13 0.385 0.924 U 1 Weissar21 Chorotene 70.03 6.45.0 0.253 0.528 U 1 Weissar21 Chorotene 10.82.65 0.233 0.412 1.26 Weissar21 Chorotene 10.85.69 0.311 0.733 U 1 Weissar21 Chorotenome 10.65	2,2,4-Trimethylpentane					U		1		
Backy Chioade 100-44-7 17 0.31 1.04 U 1 WHISH 2021 Brondoith connethane 75 274 164 0.471 1.34 U 1 WHISH 2021 Brondoith connethane 75 252 253 0.777 6.21 U 1 WHISH 2021 Brondoith connethane 7483.9 94.90 0.381 0.76 U 1 WHISH 2021 Brondoith connethane 7483.9 94.90 0.381 0.76 U 1 WHISH 2021 Chiorebane 198.90.7 113 0.385 0.924 U 1 WHISH 2021 Chiorebane 75.00.3 6450 0.253 0.53 U 1 WHISH 2021 Choorebane 76.95.2 96.00 0.311 0.733 U 1 WHISH 2021 Chiorebane 76.95.2 96.00 0.311 0.736 1 WHISH 2021 Chiorebane 76.95.4 120.00 0.786 732 1 WHISH 2021	• •									9
Benerodichoronethane 75 27.4 164 0.471 1.34 U 1 Weissags Bromoferm 75 252 253 0.757 6.21 U 1 Weissags Bromoferm 76 3252 253 0.757 6.21 U 1 Weissags Carbon tetrachinde 56 235 154 0.61 126 U 1 Weissags Chorobara 75 00-3 64 50 0.263 0.528 U 1 Weissags Chorobara 75 00-3 64 50 0.259 0.580 U 1 Weissags Chorobara 108 27 82 0 0.313 0.393 U 1 Weissags Chorobara 76 6-3 19 0.313 0.390 U 1 Weissags Chorobara 77 84 20 0.759 0.680 U 1 Weissags Disomoferitaria 75 42 110 0.313 0.968 2.44 1 Weissags Di										5
Bennothme F2-52 R3 0.757 6.21 U I M0132325 Bronnethame 7483.9 94.90 0.381 0.776 U I W6132625 Chorobattacionide 52.52 154 0.461 1.26 U I W6132625 Chorobanane W69.97 H3 0.385 0.528 U I W6132625 Chorobanane 76-63 H3 0.339 0.973 U I W6132625 Chorobanane 74-63 81.00 0.213 0.431 1.26 I W6132625 Chorobanane W64.81 0.200 0.313 0.793 U I W6132625 Obtomothina D64.92 6.90 0.313 0.793 U I W6132625 Dichonodifuromethane 75-78 120.92 0.678 0.898 2.44 I W6132625 Dichonodifuromethane 75-74 0.50 2.36 2.37 1 W6132625 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>										
Bromomethane 74.83.9 94.90 0.381 0.776 U 1 MISIBSE Carbon tractalunide 56.23.5 154 0.411 126 U 1 WillsB251 Carbon tractalunide 56.23.5 154 0.450 0.283 0.524 U 1 WillsB251 Chiorobergene 106.92.7 184 0.385 0.528 U 1 WillsB251 Chiorobrane 7.96.7.8 42.00 0.259 0.689 U 1 WillsB251 Chiorobrane 7.487.3 50.05 0.213 0.413 1.76 1 WillsB251 Chiorobrane 1487.3 50.05 0.213 0.413 1.76 1 WillsB251 Chiorobrane 1061.015 11 0.313 0.908 U 1 WillsB251 Dibromofultorinethane 7.47.4 120.80 0.678 0.999 2.44 1 WillsB251 Ehnyle 1610.0 0.678 0.999 2.44 1 WillsB251 Ubromofultorinethane 7.614 17.40 0.										
Carbon tetrachloride 56 23 5 154 0.441 126 U 1 WS182525 Choroberane 108490-7 13 0.385 0.924 U 1 WS182525 Choroberane 75-03 64 50 0.263 0.578 U 1 WS182525 Choroberane 76-63 19 0.349 0.933 U 1 WS182525 Cyclohexane 76-83 0.50 0.711 0.733 U 1 WS182525 Cyclohexane 76-84 0.70 0.731 0.733 U 1 WS182625 Obloronchloromethane 75-78 120.92 0.678 0.70 U 1 WS182625 Dichlorodhloromethane 75-78 120.92 0.678 0.70 2.32 10 WS182625 Dichlorodhloromethane 75-74 120.92 0.678 122 1 WS182625 Dichlorodhloromethane 75-14 120.92 0.867 U 1 WS182625										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
Chloroethane 75-00-3 64 50 0.263 0.528 U 1 WG183625 Chloroform 67-65-3 19 0.249 0.973 U 1 WG183625 Chloroform 67-66-3 19 0.249 0.973 U 1 WG183625 Chloromethane 74-87-3 50.50 0.213 0.413 126 1 WG183625 Chloromethane 75-78 20 0.990 0.41 1 WG183625 Obtomochloromethane 75-78 120.92 0.678 0.998 2.44 1 WG183625 Dichoroduluromethane 75-78 120.92 0.678 0.987 U 1 WG183625 Einyleszne 100.414 106 0.362 0.867 U 1 WG183625 12Dichorothorehna 75-74 17.40 0.608 15.3 U 1 WG183625 Tichorofhuoromethane 75-64 105 0.022 12.0 1 WG183625 L2Dichorothorehna 74-72 17 0.622 140 U										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
Cyclohexane 10-82-7 84.20 0.259 0.689 U 1 WG189525 Cholormethane 74-87-3 50.50 0.213 0.413 1.26 1 WG189625 cis-1.2be/choropropene 10661015 11 0.313 0.908 U 1 WG189625 Disromechizomethane 12-48-11 208 0.618 170 U 1 WG189625 Ethanol 6417-5 46.10 5.00 2.36 2.32 10 WG189625 Ethanol 6417-5 46.10 5.00 2.36 2.32 10 WG189625 Ethanol 6417-5 46.10 5.00 2.36 2.32 10 WG189625 Ethanol 6417-5 46.10 0.608 1.53 U 1 WG189625 Itabe/torotifluorot										
Chloromethane 74-87-3 50.50 0.213 0.413 126 1 WG1836251 cis-1,2-bichorostheme 156-59-2 96.90 0.311 0.793 U 1 WG1836251 cis-1,2-bichorostheme 124-48-1 208 0.618 1.70 U 1 WG1836251 Dibromechloromethane 75-78 120.92 0.678 0.989 2.44 1 WG1836251 Ethanol 64-17.5 46.10 0.362 0.867 U 1 WG1836251 Ethanol 64-17.5 46.10 0.362 0.867 U 1 WG1836251 Trichorofluoromethane 75-74 137.40 0.608 1.53 U 1 WG1836251 11,2-Trichlorotrifhuorofhano 76-14-2 17 0.622 1.40 U 1 WG1836251 12.Dichorotrifhorotrifhano 76-14-2 17 0.622 1.40 U 1 WG1836251 12.Dichorotrifhorotrifhano 76-14-2 17 0.622 1.40 U 1 WG1836251 14-Section 10.0										
cis-1,2-bickhoredrepene 196-59-2 96.90 0.311 0.793 U 1 WG183625 cis-1,2-bickhoredrepene 1006-10-15 11 0.313 0.908 U 1 WG183625 Dibromochloromethane 124-48-1 208 0.618 1.70 U 1 WG183625 Dibromochloromethane 75-78 120.92 0.678 0.989 2.44 1 WG1836251 Ehnol 64.75 46.10 5.00 23.6 232 10 WG1836251 Ethylenzene 100-41.4 106 0.362 0.867 U 1 WG1836251 1,12-Trichlorotinfluoroethane 76-54.4 13.74 0.608 15.3 U 1 WG1836251 1,2-Dichlorotinfluoroethane 76-54.4 17.40 0.622 1.40 U 1 WG1836251 1,2-Dichlorotinfluoroethane 76-53.2 26.10 1.22 6.73 U 1 WG1836251 1,2-Dichlorotinfluoroethane 76-59.2 84.90 0.340 0.674 0.401 1 WG1836251 1,2-Dic										
cis-13-Dichloropropene 10061-01-5 11 0.313 0.908 U 1 WG1836251 Dioromochloromethane 124-48-1 208 0.618 1.70 U 1 WG1836251 Dichorodifuoromethane 157.18 120.90 0.678 0.989 2.44 1 WG1836251 Ehnand 64-17-5 46.10 5.00 23.6 232 10 WG1836251 Ehnylenzane 100-41.4 106 0.362 0.867 U 1 WG1836251 11.2-1.1/hotoroffunoromethane 75-69.4 137.40 0.608 15.3 U 1 WG1836251 11.2-1/hotoroffunoromethane 76-14-2 17 0.622 14.0 U 1 WG1836251 12-Dichlorotetrafluoroethane 76-14-2 17 0.622 14.0 U 1 WG1836251 12-Dichlorotetrafluoroethane 76-48-3 2.61 112 6.73 U 1 WG1836251 12-Dichlorotetrafluoroethane 106-86-3 2.1 1/2 0.73 1 WG1836251 12-Dichlorotetrafluoroethy										
Dibformacthare124-48-12080.6181.70U1WG1836251Dichlorodfluoromethare75-71-8120.920.6780.9892.441WG1836251Ethanol641-7546.105.0023.623210WG1836251Ethanol641-7546.10600.520.867U1WG1836251Trichlorofluoromethare75-69-4137.400.4601.121.231WG183625111,2-Tichloroftrifluoroethare76-13-1187.400.6081.53U1WG183625112-Dichlorotetrafluoroethare76-13-2170.6221.40U1WG183625112-Dichlorotetrafluoroethare76-13-2100.6221.40U1WG1836251Hexachloro-1,3-butadiene87-68-32611126.73U1WG1836251Hexachloro-1,3-butadiene87-69-32611126.73U1WG1836251Hexachloro-1,3-butadiene75-09-284.900.3400.6940.7431WG1836251MTFE163-40-4488.100.2330.721U1WG1836251Tetra-buty lackohol75-69-284.900.3400.6940.7431WG1836251Totuene108-88-392.100.3281.881.37J1WG1836251Totuene108-88-392.100.3281.881.37J1WG1836251Totuene108-8										
Dicklorodifluoromethane 75-71-8 120.92 0.678 0.989 2.44 1 WG1836251 Ethanol 64.17-5 45.10 5.00 23.6 232 10 WG1836251 Ethylbenzene 100.41.4 106 0.362 0.867 U 1 WG1836251 Tichlorofluoromethane 75-69.4 137.40 0.660 153 U 1 WG1836251 1.2-Dichlorotetrafluoroethane 75-69.4 137.40 0.662 1.40 U 1 WG1836251 1.2-Dichlorotetrafluoroethane 76-14-2 171 0.622 1.40 U 1 WG1836251 1.2-Dichlorotetrafluoroethane 76-63 26.11 12 67.33 U 1 WG1836251 4-Methyl-2-pentanone (MIBK) 108-10-1 100.10 0.313 5.12 U 1 WG1836251 MTBE 1634-0.44 83.10 0.233 0.721 U 1 WG1836251 Methylene Chioride 75-05-2 74.12 0.176 0.666 0.603 J 1 WG1836251										
Ethanol 64-17-5 46.10 5.00 23.6 232 10 WG183.6954 Ethylbenzene 100-414 106 0.362 0.867 U 1 WG183.6251 Trichlorofluoromethane 75.694 137.400 0.608 1.53 U 1 WG183.6251 1,2-Dichlorothorotethan 76.14-2 171 0.622 1.40 U 1 WG183.6251 1,2-Dichlorotethan 76.42 171 0.622 1.40 U 1 WG183.6251 1,2-Dichlorotethanfluorotehan 76.43 86.20 0.726 2.22 U 1 WG183.6251 Hexachloro-1,3-butadiene 87.68.3 2.61 1.12 6.73 U 1 WG183.6251 Hexachloro-1,3-butadiene 1634-04.4 88.10 0.233 0.721 U 1 WG183.6251 MEB 1634-04.4 88.10 0.233 0.721 U 1 WG183.6251 Syrene 100-42-5 14.4 0.335 0.867 U 1 WG183.6251 Tetrachlorotehylene 130-02.7										
Ethylbenzene 100.41.4 106 0.362 0.867 U 1 WG1836251 Trichloroffuoromethane 75-69.4 137.40 0.608 153 U 1 WG1836251 1,1,2-Trichlorotffuoromethane 76-13.1 187.40 0.608 153 U 1 WG1836251 1,2-Dichlorotetrafluoroethane 76-14.2 171 0.622 1.40 U 1 WG1836251 n-Hexane 105-54.3 86.20 0.726 2.22 U 1 WG1836251 n-Hexane 105-43 86.20 0.726 2.22 U 1 WG1836251 Hexachloro-1.3-butadiene 87-68-3 261 1.12 6.73 U 1 WG1836251 Hexachloro-1.3-butadiene 87-68-3 261 1.20 0.764 0.743 1 WG1836251 Wethylen2 Chloride 75-09-2 84.90 0.335 0.851 U 1 WG1836251 Styrene 100-42-5 104 0.350 0.867 U 1 WG1836251 Toluene 108-88-3 <td< td=""><td>Dichlorodifluoromethane</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Dichlorodifluoromethane									
Trichlorofluoromethane75-69-4137.400.4601121.231WG183625111,2-Trichlorotrifluoroethane76-13-1187.400.6081.53U1WG18362511,2-Dichlorotethafluoroethane76-14-2710.6221.40U1WG18362511,2-Dichlorotethafluoroethane76-14-2710.6221.40U1WG1836251Hexachloro-1,3-butadiene87-68-32.611.126.73U1WG1836251Hekthyl-2, Pathanove (MIBK)100-100.3135.12U1WG1836251MTBE1634-04-488.100.2330.721U1WG1836251Methyl-2, Pathanove (MIBK)100-100.3350.851U1WG1836251Styrene100-42-51040.3350.851U1WG1836251Tetrachloroethylene175-65-074.120.1760.6060.603J1WG1836251Toluene108-88-392.100.3281.881.37J1WG1836251Toluene108-88-392.100.3281.881.37J1WG1836251Toluene108-88-392.100.3641.071WG1836251Toluene196-94-61160.3590.867U1WG1836251Toluene196-94-61130.3641.07U1WG1836251Trichoroethylene75-01-462.500.2430.511	Ethanol	64-17-5	46.10	5.00	23.6	232		10	WG1836954	
1,1,2-Trickhorotifluoroethaa 76-13-1 187.40 0.608 1.53 U 1 WG1836251 1,2-Dichlorotetrafluoroethaa 76-14-2 171 0.622 1.40 U 1 WG1836251 n-Hexane 105-54-3 86.20 0.726 2.22 U 1 WG1836251 Hexachloro-1,3-butadiene 87-68-3 261 112 673 U 1 WG1836251 Hexachloro-1,3-butadiene 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 MTBE 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 Methyl-2-pentanone (MIBK) 108-10 0.335 0.851 U 1 WG1836251 Styrene 100-42-5 104 0.335 0.851 U 1 WG1836251 Tetrakula lachol 75-65. 74.12 0.176 0.606 0.603 1 WG1836251 Toluene 108-88-3 92.10 0.328 1.88 1.37 1 WG1836251 Toluene 1330-20-7 106 <t< td=""><td>Ethylbenzene</td><td>100-41-4</td><td>106</td><td>0.362</td><td>0.867</td><td>U</td><td></td><td>1</td><td>WG1836251</td><td></td></t<>	Ethylbenzene	100-41-4	106	0.362	0.867	U		1	WG1836251	
1.2-Dichlorotetrafluoroethan 761-4.2 71 0.622 1.40 U 1 WG1836251 n-Hexane 100-54-3 86.20 0.726 2.22 U 1 WG1836251 Hexachloro-1,3-butadiene 87-68-3 261 1.12 6.73 U 1 WG1836251 4-Methyl-2-pentanoe (MIBK) 10810 0.10 0.313 5.12 U 1 WG1836251 MTBE 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 Methylene Chloride 75.09-2 84.90 0.340 0.694 0.743 1 WG1836251 Styrene 100-42-5 104 0.335 0.851 1 1 WG1836251 Styrene 100-42-5 142 0.176 0.606 0.603 1 WG1836251 Tetrachloroethylene 127-18-4 166 0.553 1.36 U 1 WG1836251 Toluene 130-20-7 106 0.585 1.73 U 1 WG1836251 Tass-1.2-Dichloroethreme 136-62-5 9.9.0	Trichlorofluoromethane	75-69-4	137.40	0.460	1.12	1.23		1	WG1836251	
n-Hexane 10-54-3 86.20 0.726 2.22 U 1 WG1836251 Hexachloro-1,3-butadiene 87-68-3 261 1.12 6.73 U 1 WG1836251 4-Methyl-2-pentanone (MIBK) 108-10-1 100.10 0.313 5.12 U 1 WG1836251 MTBE 1634-04-4 81.00 0.233 0.721 U 1 WG1836251 Methylene Chloride 75-09-2 84.90 0.340 0.694 0.743 1 WG1836251 Syrene 100-42-5 104 0.335 0.851 U 1 WG1836251 tert-Butyl alcohol 75-65-0 74.12 0.766 0.606 0.603 J 1 WG1836251 Toluene 108-88-3 92.10 0.328 1.88 1.37 J 1 WG1836251 Toluene 108-88-3 92.10 0.359 0.867 U 1 WG1836251 tarsh-12-Dichloroethme 136-0 0.553 1.73 U 1 WG1836251 tarsh-12-Dichloroethme 156-60-5	1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.608	1.53	U		1	WG1836251	
Hexachloro-1,3-butadien87-68-32611126.73U1WC18362514-Methyl-2-pentanone (MIBK)108-10-1100.100.3135.12U1WG1836251MTBE1634-04-488.100.2330.721U1WG1836251Methylene Chloride75-09-284.900.3400.6940.7431WG1836251Styrene1004-2.51040.3350.851U1WG1836251tert-Butyl alcohol75-65-074.120.1760.6060.603J1WG1836251Tetrachloroethylene127-18-41660.5531.36U1WG1836251nøp-Xylene130-20-71060.5851.73U1WG1836251o-Xylene95-47-61060.3590.867U1WG1836251trans-1,2-Dichloroethylene156-60-596.900.2670.793U1WG1836251trans-1,3-Dichloropopene1061-02-6110.3140.908U1WG1836251trans-1,3-Dichloropopene1061-02-6110.3641.07U1WG1836251Vinly choirde75-01-462.500.2430.511U1WG1836251Vinly choirde75-01-462.500.2430.511U1WG1836251Vinly choirde75-01-462.500.2430.511U1WG1836251vinly choirde91-20-31281.833.	1,2-Dichlorotetrafluoroethane	76-14-2	171	0.622	1.40	U		1	WG1836251	
4-Methyl-2-pentanone (MIBK) 108-10-1 100.10 0.313 5.12 U 1 WG1836251 MTBE 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 Mthylene Chloride 75-09-2 84.90 0.340 0.694 0.743 1 WG1836251 Styrene 100-42-5 104 0.335 0.851 U 1 WG1836251 tert-Butyl alcohol 75-65-0 74.12 0.176 0.606 0.603 J 1 WG1836251 Tetrachloroethylene 127-18-4 166 0.553 1.36 U 1 WG1836251 Toluene 108-88-3 92.10 0.328 1.88 1.37 J 1 WG1836251 Toluene 108-88-3 92.10 0.328 1.88 1.37 J 1 WG1836251 o-Xylene 108-0 0.585 1.73 U 1 WG1836251 o-Xylene 106-0 0.585 0.793 U 1 WG1836251 trans-1.2-Dichloroptorpene 106-0-26 11	n-Hexane	110-54-3	86.20	0.726	2.22	U		1	WG1836251	
MTBE 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 Methylene Chloride 75-09-2 84.90 0.340 0.694 0.743 1 WG1836251 Styrene 100-42-5 104 0.335 0.851 U 1 WG1836251 tert-Butyl alcohol 75-65-0 74.12 0.176 0.606 0.603 J 1 WG1836251 Tetrachloroethylene 127.18.4 166 0.553 1.36 U 1 WG1836251 Toluene 108-88.3 92.10 0.328 1.88 1.37 J 1 WG1836251 Toluene 1330-20-7 106 0.585 1.73 U 1 WG1836251 o-Xylene 95.47-6 106 0.359 0.867 U 1 WG1836251 trans-1,2-Dichloroethene 156-60-5 96.90 0.267 0.793 U 1 WG1836251 trans-1,3-Dichloropropene 106-10-26 11 0.314 0.908 U 1 WG1836251 Viny Ichloride 75-01-4	Hexachloro-1,3-butadiene	87-68-3	261	1.12	6.73	U		1	WG1836251	
Methylene Chloride 75-09-2 84.90 0.340 0.694 0.743 1 WG1836221 Styrene 100-42-5 104 0.335 0.851 U 1 WG1836251 tert-Butyl alcohol 75-65-0 74.12 0.176 0.606 0.603 J 1 WG1836251 Tetrachloroethylene 127-18-4 166 0.553 1.36 U 1 WG1836251 Toluene 108-88-3 92.10 0.328 1.88 1.37 J 1 WG1836251 o-Xylene 1330-20-7 106 0.585 1.73 U 1 WG1836251 o-Xylene 95-47-6 106 0.359 0.867 U 1 WG1836251 trans-1,2-Dichloroethene 156-60-5 96.90 0.267 0.793 U 1 WG1836251 trans-1,3-Dichloropropene 10061-02-6 111 0.314 0.908 U 1 WG1836251 Vinyl chloride 75-01-4 62.50 0.243 0.511 U 1 WG1836251 Naphthalene <td< td=""><td>4-Methyl-2-pentanone (MIBK)</td><td>108-10-1</td><td>100.10</td><td>0.313</td><td>5.12</td><td>U</td><td></td><td>1</td><td>WG1836251</td><td></td></td<>	4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	0.313	5.12	U		1	WG1836251	
Styrene 100-42-5 104 0.335 0.851 U 1 Wcft836251 tert-Butyl alcohol 75-65-0 74.12 0.176 0.606 0.603 1 Wcft836251 Tetrachloroethylene 127-18-4 166 0.553 1.36 U 1 Wcft836251 Toluene 108-88-3 92.10 0.328 1.88 1.37 J 1 Wcft836251 nøp-Xylene 1330-20-7 106 0.585 1.73 U 1 Wcft836251 o-Xylene 95-47-6 106 0.359 0.867 U 1 Wcft836251 trans-1,2-Dichloroethene 156-60-5 96.90 0.267 0.793 U 1 Wcft836251 trans-1,3-Dichloropropene 10061-02-6 111 0.311 0.908 U 1 Wcft836251 trans-1,3-Dichloropropene 10061-02-6 111 0.364 1.07 U 1 Wcft836251 Viny chloride 75-01-4 62.50 0.243 0.511 U 1 Wcft836251 Naphthalene 91	MTBE	1634-04-4	88.10	0.233	0.721	U		1	WG1836251	
tert-Butyl alcohol75-65-074.120.1760.6060.603 $_$ 1WG1836251Tetrachloroethylene127-18-41660.5531.36U1WG1836251Toluene108-88-392.100.3281.881.37 $_$ 1WG1836251nwp-Xylene1330-20-71060.5851.73U1WG1836251o-Xylene95-47-61060.3590.867U1WG1836251trans-1,2-Dichloroptene156-60-596.900.2670.793U1WG1836251trans-1,3-Dichloroptopene10061-02-6110.3310.908U1WG1836251trans-1,3-Dichloroptopene79-01-61310.3641.07U1WG1836251Vinyl chloride75-01-462.500.2430.511U1WG1836251Naphtalene91-20-31281.833.30U1WG1836251 $\binom{S}{1,4-Bromofluorobenzene}$ 460-00-4175 $______$ 96.560.0-140WG1836251 $\binom{S}{1,4-Bromofluorobenzene}$ 460-00-4175 $______$ 97.060.0-140WG1836251 $\binom{S}{1,4-Bromofluorobenzene}$ 460-00-4175 $_______$ 97.060.0-140WG1836251 $\binom{S}{1,4-Bromofluorobenzene}$ 460-00-4175 $_______$ 97.060.0-140WG1836251 $\binom{S}{1,4-Bromofluorobenzene}$ 460-00-4175 $____________________________________$	Methylene Chloride	75-09-2	84.90	0.340	0.694	0.743		1	WG1836251	
Tetrachloroethylene127.18.41660.5531.36U1WG1836251Toluene108.88.392.100.3281.881.37J1WG1836251m&p-Xylene1330-20-71060.5851.73U1WG1836251o-Xylene95.47.61060.3590.867U1WG1836251trans-1,2-Dichloroptene156-60-596.900.2670.793U1WG1836251trans-1,3-Dichloroptene10061-02-61110.3310.908U1WG1836251trans-1,3-Dichloroptene79-01-61310.3641.07U1WG1836251Vinyl chloride75-01.462.500.2430.511U1WG1836251Naphthalene91-20-31281.833.30U1WG1836251 $\binom{S}{1,4-Bromofluorobenzene}$ 460-00-4175T96.560.0-140WG1836251 $\binom{S}{1,4-Bromofluorobenzene}$ 460-00-4175T97.060.0-140WG183654	Styrene	100-42-5	104	0.335	0.851	U		1	WG1836251	
Tetrachloroethylene127.18.41660.5531.36U1WG1836251Toluene108.88.392.100.3281.881.37J1WG1836251m&p-Xylene1330-20-71060.5851.73U1WG1836251o-Xylene95.47.61060.3590.867U1WG1836251trans-1,2-Dichloroptene156-60-596.900.2670.793U1WG1836251trans-1,3-Dichloroptene10061-02-61110.3310.908U1WG1836251trans-1,3-Dichloroptene79-01-61310.3641.07U1WG1836251Vinyl chloride75-01.462.500.2430.511U1WG1836251Naphthalene91-20-31281.833.30U1WG1836251 $\binom{S}{1,4-Bromofluorobenzene}$ 460-00-4175T96.560.0-140WG1836251 $\binom{S}{1,4-Bromofluorobenzene}$ 460-00-4175T97.060.0-140WG183654	•						J	1		
Toluene 108-88-3 92.10 0.328 1.88 1.37 J 1 WG1836251 m&p-Xylene 1330-20-7 106 0.585 1.73 U 1 WG1836251 o-Xylene 95-47-6 106 0.359 0.867 U 1 WG1836251 trans-1,2-Dichloroethene 156-60-5 96.90 0.267 0.793 U 1 WG1836251 trans-1,3-Dichloroptopene 10061-02-6 11 0.311 0.908 U 1 WG1836251 trans-1,3-Dichloroptopene 10061-02-6 11 0.364 1.07 U 1 WG1836251 Vinyl chloride 79-01-6 131 0.364 1.07 U 1 WG1836251 Vinyl chloride 75-01-4 62.50 0.243 0.511 U 1 WG1836251 Naphthalene 91-20-3 128 1.83 3.30 U 1 WG1836251 1,4-Bromofluorobenzene 460-00-4 175 YT Prob 60.0-140 WG1836251 1,4-Bromofluorobenzene 460-00-4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>1</td><td></td><td></td></t<>							-	1		
m&p-Xylene 1330-20-7 106 0.585 1.73 U 1 WG1836251 o-Xylene 95-47-6 106 0.359 0.867 U 1 WG1836251 trans-1,2-Dichloroethene 156-60-5 96.90 0.267 0.793 U 1 WG1836251 trans-1,3-Dichloroptopene 10061-02-6 111 0.331 0.908 U 1 WG1836251 trans-1,3-Dichloroptopene 79-01-6 131 0.364 1.07 U 1 WG1836251 Vinyl chloride 75-01-4 62.50 0.243 0.511 U 1 WG1836251 Naphthalene 91-20-3 128 1.83 3.30 U 1 WG1836251 (S) 1,4-Bromofluorobenzene 460-00-4 175 YT 96.5 60.0-140 WG1836251 (A-Bromofluorobenzene 460-00-4 175 YT 97.0 60.0-140 WG1836954							J			
o-Xylene 95-47-6 106 0.359 0.867 U 1 WG1836251 trans-1,2-Dichloroethene 156-60-5 96.90 0.267 0.793 U 1 WG1836251 trans-1,3-Dichloropropene 10061-02-6 111 0.331 0.908 U 1 WG1836251 Trichloroethylene 79-01-6 131 0.364 1.07 U 1 WG1836251 Vinyl chloride 75-01-4 62.50 0.243 0.511 U 1 WG1836251 Naphthalene 91-20-3 128 1.83 0.301 U 1 WG1836251 (S) 1,4-Bromofluorobenzene 460-00-4 175 1.83 3.30 U 1 WG1836251 (A-Bromofluorobenzene 460-00-4 175 1.83 3.30 U 1 WG1836251 (A-Bromofluorobenzene 460-00-4 175 - 96.5 60.0-140 WG1836251 (A-Bromofluorobenzene 460-00-4 175 - 97.0 60.0-140 WG1836954							-			
trans-1,2-Dichloroethene156-60-596.900.2670.793U1WG1836251trans-1,3-Dichloropropene10061-02-6110.3310.908U1WG1836251Trichloroethylene79-01-61310.3641.07U1WG1836251Vinyl chloride75-01-462.500.2430.511U1WG1836251Naphthalene91-20-31281.833.30U1WG1836251(S) 1,4-Bromofluorobenzene460-00-41751.75596.560.0-140WG1836251(S) 1,4-Bromofluorobenzene460-00-41751.5597.060.0-140WG1836954										
trans-1,3-Dichloropropene 10061-02-6 111 0.331 0.908 U 1 WG1836251 Trichloroethylene 79-01-6 131 0.364 1.07 U 1 WG1836251 Vinyl chloride 75-01-4 62.50 0.243 0.511 U 1 WG1836251 Naphthalene 91-20-3 128 1.83 3.30 U 1 WG1836251 (S) 1,4-Bromofluorobenzene 460-00-4 175										
Trichloroethylene 79-01-6 131 0.364 1.07 U 1 WG1836251 Vinyl chloride 75-01-4 62.50 0.243 0.511 U 1 WG1836251 Naphthalene 91-20-3 128 1.83 3.30 U 1 WG1836251 (S) 1,4-Bromofluorobenzene 460-00-4 175 - 96.5 60.0-140 WG1836251 (S) 1,4-Bromofluorobenzene 460-00-4 175 - 97.0 60.0-140 WG1836954										
Vinyl chloride75-01-462.500.2430.511U1WG1836251Naphthalene91-20-31281.833.30U1WG1836251(S) 1,4-Bromofluorobenzene460-00-4175-96.560.0-140WG1836251(S) 1,4-Bromofluorobenzene460-00-4175-97.060.0-140WG1836954										
Naphthalene 91-20-3 128 1.83 3.30 U 1 WG1836251 (S) 1,4-Bromofluorobenzene 460-00-4 175 96.5 60.0-140 WG1836251 (S) 1,4-Bromofluorobenzene 460-00-4 175 97.0 60.0-140 WG1836954										
(S) 460-00-4 175 96.5 60.0-140 WG1836251 (S) 460-00-4 175 97.0 60.0-140 WG1836954										
1,4-Bromofluorobenzene 460-00-4 175 97.0 60.0-140 WG1836954 (S) 1,4-Bromofluorobenzene 175 97.0 60.0-140 WG1836954	(S)			1.00	3.30					
1,4-Bromofluorobenzene 400-00-4 175 97.0 97.0 00.0-140 <u>W31630934</u>	1,4-Bromofluorobenzene									
ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:	1,4-Bromofluorobenzene	460-00-4	175			97.0		60.0-140	<u>WG1836954</u>	
NYDEC 130058 L1471925 03/24/22 13:59 7 of 15					PROJEC	T:	SDG:		DATE/TIME:	PAGE:

SAMPLE RESULTS - 04 L1471925

Volatile Organic Compounds (MS) by Method TO-15

Adapta ····································	A	CAS #	Mol. Wt.	MDL	RDL	Result	Qualifier	Dilution	Batch	
11.2.7.16.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	•			-						2
12.3-10500 performance 3-94.3 93.0 0.42 0.0002 1 MALEAL 1 MALEAL <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Bibliokostenie 5:543 88 0.200 0.212 U 1 WEINSAN 2.4. Tricholytene 7:544 89 0.70 7:84 U 1 WEINSAN 2.4. Tricholytene 65:54 38 0.54 504 U 1 WEINSAN 2.4. Tricholytene 65:54 38 0.54 51:40 U 1 WEINSAN 2.4. Tricholytenes 65:54 38 0.54 52:00 1 WEINSAN 2.4. Electronance 65:54 90 0.33 0.20 U 1 WEINSAN 2.4. Electronance 65:64 90 0.33 0.20 U 1 WEINSAN 2.4. Francelytenes 65:64 16:20 U 1 WEINSAN 1 WEINSAN 3.5. Tricchytenes 67:43 14 1.30 1.40 1 WEINSAN 1 WEINSAN 3.5. Tricchytenes 67:43 1.40 1.20 1 WEINSAN 2.4. Franch										
Debinochane 7.3.8.4 88 0.780 0.807 0 1 veckod Debinochane 7.3.8.4 88 0.780 0.733 0 1 veckod Debinochane 20.41-instructure 56.0 0.20 0.750 0.82 0 1 veckod 1 veckod Debinochane 0.60.3 1.81 0.55 0.55 0.70 0.82 0 1 veckod 1 veckod Debinochane 65.00 1.47 0.70 0.82 0 0 0 1 veckod 1 vec	I,1,2-Trichloroethane							1		3
92.4-Introdyseume 95.9.4 181 10 4.86 U 1 92.808/002 92.4-Introdyseume 95.9.4 188 0.54 1.94 U 1 92.808/022 12.806/002 95.9.1 170 0.23 0.88 0.449 1 97.805/022 2.8 Calchonschure 10.76.5 120 0.23 0.88 0.449 1 97.805/022 1 2.8 Calchonschure 10.84.5 120 0.23 0.38 170 U 1 97.805/02 1 2.4 Calchonschure 10.84.5 120 0.32 0.32 120 1 97.805/02 1 2.4 Calchonschure 10.84.7 120 0.32 120 U 1 97.805/02 1 2.4 Calchonschure 10.84.0 0.30 1 1 97.805/02 1 97.80 1 97.80 1 97.80 1 97.80 1 97.80 1 97.80 1 97.80 1 97								1		
2-1 1.1 Vertice V 1.2 Vertice V 1.4 Vertice V <td>I,1-Dichloroethene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>4</td>	I,1-Dichloroethene							1		4
22 Diponochone 95.94 188 0.544 1.84 U 1 Weinsche 1 Weinsch 1 Weinsche	I,2,4-Trichlorobenzene					U		1		
2 Delanochuchuc 9, 90, 1 V7 0,70 120 V 1 VMS2021 2 Delanochuchuc 90, 00, 2 99 0,30 0,30 0,400 1 VMS2021 2 Delanochuchuc 100, 00, 2 10,00 10,00 VMS2021 1 VMS2021 2 Delanochuchuc 100,00, 7 10,00 0,382 0,892 0 1 VMS2021 2 Delanochuchuc 100,00,7 10,00 0,710 2,20 0 1 VMS2021 2 Delanochuchuc 100,00,7 7,10 2,20 0,22 0 1 VMS2021 1 VMS2021 2 Delanochuchuc 100,00,7 7,10 2,20 0,24 1 VMS2021 1 VMS2021 2 Delanochuchuc 100,04,7 17 12 0,39 0,39 2 1 VMS2021 1 VMS2021 2 Delanochuchuc 100,04,7 14 0,27 0,28 0,28 0 1 VMS2021 2 Delanochuchuc 100,04,77 10 1 VMS2021 1 VMS2021 <t< td=""><td>l,2,4-Trimethylbenzene</td><td>95-63-6</td><td>120</td><td></td><td></td><td>U</td><td></td><td>1</td><td>WG1836251</td><td> L</td></t<>	l,2,4-Trimethylbenzene	95-63-6	120			U		1	WG1836251	L
2 2 Chilonochimo 9 + 0 0.01 1 20 0 1 Version 2 2 Chilonochimo 100 0.2 9 0 0.02 1 Version Version 2 Chilonochimo 100 0.2 9 0 0.02 0.2 4 0 1 Version	l,2-Dibromoethane	106-93-4	188	0.554	1.54	U		1	WG1836251	5
22.24.04.04.04.04.04.04.04.04.04.04.04.04.04	l,2-Dichlorobenzene	95-50-1	147	0.770	1.20	U		1	WG1836251	
3.3.Tommelyabenere 08-97-8 70 0.332 0.982 U 1 WE35025 P 4.4 Docome 02-94-11 85.10 0.350 0.721 U 1 WE35025 4.4 Docome 72-94-11 85.10 0.350 0.721 U 1 WE35025 2.0 Altonobeneme 547.3-1 472 10 1.3 WE35025 1 WE35025 2.2.4 Intertypentane 549.4-1 142.2 0.621 0.344 0.25 1 WE35025 1 WE35025 2.5.1 (rotote) 10.4-4-7 127.0 0.311 1.44 0 1 WE35025 2.5.1 (rotote) 10.4-4-7 127.0 0.311 1.44 0 1 WE35025 2.5.1 (rotote) 10.4-4-7 127.0 0.311 0.75 1 WE35025 1 WE35025 2.5.1 (rotote) 5.5.2 2.3 0.77 6.21 U 1 WE35025 2.5.2 (rototoc) 5.6.3 1.50 0.331 0.775 1 WE35025 2.5.2 (rototoc) 1.50	l,2-Dichloroethane	107-06-2	99	0.283	0.810	0.409	J	1	WG1836251	6
4.Ackatomeree 10.4.6.7 17 0.35 1.0 1 WE335251 1 4.Bioanne (MS) 7833 710 0.240 3.64 1 1 WE335251 1 WE335551	,2-Dichloropropane	78-87-5	113	0.351	0.924	U		1	WG1836251	
4.Dioaen 23.41-4 88.10 0.300 0.721 U 1 WE19557 4.Ritamore (MFK) 78.43.3 72.10 0.240 0.241 1 WE19557 2.2.4-Initiat/Wyentlane 549.241 142.2 0.621 0.344 U 1 WE18557 2.2.4-Initiat/Wyentlane 549.44 142.2 0.621 0.334 U 1 WE18557 Benery Chorde 10.44-7 127 0.311 1.04 U 1 WE185521 Benery Chorde 75-72 753 0.757 6.71 U 1 WE185521 Brannenehame 78-83 9.90 0.331 0.767 U 1 WE185521 Brannenehame 78-03 450 0.528 0.24 U 1 WE185521 Brannenehame 78-03 450 0.538 0.528 U 1 WE185521 Brannenehame 78-03 550 0.518 170 1 WE185521 Brannenehame 78-03 550 0.518 1073 1 WE185521 </td <td>,3,5-Trimethylbenzene</td> <td>108-67-8</td> <td>120</td> <td>0.382</td> <td>0.982</td> <td>U</td> <td></td> <td>1</td> <td><u>WG1836251</u></td> <td>L</td>	,3,5-Trimethylbenzene	108-67-8	120	0.382	0.982	U		1	<u>WG1836251</u>	L
44 Boxane 123-11 88.10 0.300 0.71 0 1 0.035.721 0.21 0 1 0.035.721 0.21 0.21 0 1 0.035.721 0.21 0.21 0.21 0.21 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.22 0.23 0.23 0.23 0.2 1 0.0235.25 0.23 0.23 0.23 0.2 1 0.0235.25 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	l,4-Dichlorobenzene	106-46-7	147	0.335	1.20	U		1	WG1836251	7
3 Debinophagene 540 - 417 - 31 17 100 -	I,4-Dioxane	123-91-1	88.10	0.300	0.721	U		1	WG1836251	
33.bidmonstervame 91.73.4 147 10.9 10.0 1 und139251 22.47.inmethypentame 500.80.41 116.22 0.639 0.530 1 1 WG139251 Bernerce 74.42 78.10 0.228 0.639 0.530 1 WG139251 Bernerce 74.42 78.10 0.228 0.639 0.530 1 WG139251 Bernerce 74.43 144 0 1 WG139251 Bernerce 74.53 164 0.471 1.34 U 1 WG139251 Bernerce 74.53 9.490 0.331 0.776 U 1 WG139251 Cation tittad funder 56.2.5 154 0.461 1.26 U 1 WG139251 Cation tittad funder 75.0.5 0.530 0.238 0.673 U 1 WG139251 Cathor tittad funder 16.590 2.259 0.580 U 1 WG139251 Difurdorm 76.64.3 19.0 0.338 0.670 U 1 WG139251	2-Butanone (MEK)	78-93-3	72.10	0.240	3.69	4.87		1	WG1836251	
22.47 membygentam 90.84.4 11.22 0.671 0.934 U 1 WG189525 Benache 71.49.2 78.10 0.228 0.639 0.530 1 1 WG189525 Benndelhommethame 75.77 6.71 1.4 U 1 WG189525 Benndelhommethame 74.83-9 9.90 0.381 0.76 U 1 WG189525 Benndelhommethame 74.83-9 9.90 0.381 0.76 U 1 WG189525 Bannonethame 74.83-9 9.90 0.381 0.76 U 1 WG189525 Bannonethame 74.84-3 9.640 0.323 0.224 U 1 WG189525 Banno Markan 74.84-3 9.50 0.233 0.528 U 1 WG189525 Dicklorophysene 16.92-7 84.20 0.259 0.589 U 1 WG189525 Schoolsoneme 10.92-7 84.20 0.259 0.589 U 1 WG189525 Schoolsoneme 10.94-7 84.00 0.31 0.73 <td>,3-Dichlorobenzene</td> <td>541-73-1</td> <td>147</td> <td>1.09</td> <td>1.20</td> <td>U</td> <td></td> <td>1</td> <td>WG1836251</td> <td>•</td>	,3-Dichlorobenzene	541-73-1	147	1.09	1.20	U		1	WG1836251	•
Bancse 7.4-5.2 78.00 0.228 0.639 0.530 1 Instruction 1 Selection 1 Selecition 1 Selection	2,2,4-Trimethylpentane					U		1		
Bany Charle 100-44-7 177 0.31 1.04 U 1 MUSSAD2 Brann dechtarmenthame 75-22-4 164 0.47 1.34 U 1 MUSBAD2 Brann dechtarmen 74-38-3 94.90 0.381 0.76 U 1 MUSBAD2 Brann detractione 562-35 154 0.461 126 U 1 MUSBAD2 Chirobenzee 108-90-7 13 0.385 0.973 U 1 MUSBAD2 Interochanne 75-03 64.50 0.233 0.528 U 1 MUSBAD2 Interochanne 175-03 64.50 0.233 0.433 1.49 1 MUSBAD2 Stabilitoringrignee 10610-15 11 0.313 0.908 U 1 MUSBAD2 Stabilitoringrignee 10610-15 11 0.313 0.908 U 1 MUSBAD2 Stabilitoringrignee 10610-15 11 0.313 0.908 2.60 1							J	1		9
Biomodichioomethane 75-274 164 0./1 134 U 1 M0283221 Biomom 75-252 253 0.757 6.21 U 1 M0283221 Biomomethane 74-33 94.90 0.381 0.776 U 1 M0283221 Chronoberzene 196-96-7 113 0.385 0.924 U 1 M0283221 Chronoberzene 196-96-7 113 0.385 0.924 U 1 M0283221 Chronoberzene 196-97-7 182 0.258 U 1 M0283221 Chronoberzene 196-27-7 84.20 0.259 0.699 U 1 M0283221 Chronoberzene 196-97-76 84.20 0.259 0.699 U 1 M0283221 Chronoberzene 196-157-1 40.31 0.990 2.60 1 M0283221 Dichonoberbane 154-4 108 0.02 2.66 0 M0283221 Dichobroberbane							-			
Bendom 72-52 23 0.75 6.21 U 1 VC339251 Bonomethane 74-83-9 94.90 0.381 0.776 U 1 WC339251 Bonomethane 55-25 154 0.461 1.26 U 1 WC339251 Deroperbase 70-03 64.50 0.233 0.242 U 1 WC339251 Deroperbase 70-03 64.50 0.233 0.232 U 1 WC339251 Deroperbase 76-03 19.0 0.249 0.973 U 1 WC339251 Deformethane 74-75 50.50 0.218 0.413 1.49 1 WC339251 Deformethane 74-75 45.00 0.50 2.36 1600 1 WC339251 Deformethane 75-718 120.92 0.678 0.989 2.60 1 WC339251 Deformethane 75-718 120.92 0.678 0.989 2.60 1 WC339251 Deformethane 75-748 120.92 0.867 1 1 WC										L
biomomethane 74 83 9 94 90 0.381 0.776 U 1 WG836251 Carbon tetrachloride 56-735 154 0.461 126 U 1 WG836251 Divorethane 75-00-3 64 50 0.283 0.528 U 1 WG836251 Divorethane 75-00-3 64 50 0.259 0.689 U 1 WG836251 Divorethane 75-46-3 81.20 0.259 0.689 U 1 WG836251 Sta-Dorthorethane 16.487.2 88.00 0.311 0.493 0.413 1.49 1 WG836251 Sta-Dorthorethane 12-448-1 20.80 0.678 0.989 2.60 1 WG836251 Diromothorethane 77-54 10.03 0.678 0.989 2.60 1 WG836251 Diromothorethane 76-74 17.40 0.678 0.989 2.60 1 WG836251 Diromothorethane 76-14-2 <th174< th=""> 0.622 0.678<</th174<>										
Dation tetrachloride56 23 515 40.461126U1WG183251Dihorobenzee108-90-71130.3850.924U1WG183251Dihorobenzee70.0364.500.2530.528U1WG183251Dihorobenzee70.0410.82.784.200.2530.689U1WG183251Dihorobenzee76.6-31190.2330.4131491WG183251Dichorobenzee156.59.296.900.3110.793U1WG183251Dichorobenzee106640.5110.3130.908U1WG183251Dichorobenzee75.718120.920.6780.9892.601WG183251Dichorobenzee75.718120.920.6780.987U1WG183251Dichorobenzee75.718120.920.6780.987U1WG183251Dichorobenzee75.718120.920.6781291WG183251Dichorobenzee76.74137.400.608153U1WG183251Dichorobenzee76.14167.400.608153U1WG183251Dichorobenzee76.14177.400.6221.40U1WG183251Dichorobenzee76.14187.400.608153U1WG183251Dichorobenzee76.1410.000.3135.120.491U1WG183251Dichorobenzee										
Discontinue 108-90-7 113 0.385 0.924 U 1 WG183625 Discontinue 75-00-3 6450 0.263 0.528 U 1 WG183625 Discontinue 67-66-3 159 0.349 0.973 U 1 WG183625 Discontinue 74-87-3 50.50 0.213 0.413 1.49 1 WG183625 Discontinue 74-87-3 50.50 0.213 0.413 1.49 1 WG183625 Discontinue 74-87-3 50.50 0.213 0.413 1.49 1 WG183625 Discontinue 75-14 120.92 0.689 U 1 WG183625 Discontinue 75-14 120.92 0.678 0.989 2.60 1 WG183625 Discontinue 75-14 170.0 0.668 153 U 1 WG183625 Discontinue 76-14 187.40 0.668 153 U 1 WG183625 Lexantor 0.417 0.522 1.40 U 1 WG183625										
Divorothme 75-00-3 64.50 0.263 0.528 U 1 WG1836251 Divorothm 67-65-3 119 0.249 0.973 U 1 WG1836251 Divorothma 67-65-3 119 0.259 0.689 U 1 WG1836251 Divoromethane 164-59-2 96-90 0.311 0.703 U 1 WG1836251 Sis J2-Divoromethane 164-59-2 96-90 0.311 0.703 U 1 WG1836251 Divoromothoromethane 164-91 208 0.618 170 U 1 WG1836251 Divoromothoromethane 75-78 120.92 0.678 0.987 U 1 WG1836251 Divoromothoromethane 75-64 137.40 0.600 122 1.39 1 WG1836251 Divoromothane 75-64 137.40 0.662 0.877 1 WG1836251 J2-Divorothorbane 76-42 171 0.622 1.40 U 1 WG1836251 J2-Divorothorbane 76-43 86.0 0.233 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
historium 67-66-3 19 0.349 0.973 U 1 WCI936251 ichoramethan 14.87.7 84.20 0.259 0.689 U 1 WCI936251 lish2-Dichloroethane 14.350 0.311 0.793 U 1 WCI936251 ish3-3billatoropopene 10061-15 111 0.313 0.908 U 1 WCI936251 ish3-3billatoropopene 10061-15 111 0.313 0.908 U 1 WCI936251 ish3-3billatoropopene 10061-15 111 0.313 0.908 0 1 WCI936251 ichorodifuoromethane 124-14 128 0.618 170 U 1 WCI936251 ichorodifuoromethane 75-71.8 170.9 0.622 1.60 1.60 WCI936251 ichorodifuoromethane 76-94 137.40 0.608 1.53 U 1 WCI936251 ichorodifuoromethane 76-142 174 0.622 1.40 1.40 WCI936251 ichorodifuoromethane 76-142 170 0.622										
yieldexane 10.82.7 84.20 0.259 0.689 U 1 WGB36251 hidromethane 74.87.3 50.50 0.213 0.413 1.49 1 WGB36251 is.12.20ic/horoethene 10610-15 11 0.313 0.908 U 1 WGB36251 bibromochioromethane 124.481 208 0.618 1.70 U 1 WGB36251 bibromochioromethane 75.71.8 120.92 0.678 0.999 2.60 1 WGB36251 bichorodifluoromethane 64.75.4 6.10 Soc 2.60 1 WGB36251 thindo 64.75.4 6.00 0.867 U 1 WGB36251 12.7ichorothindoromethane 75.41 137.40 0.660 12 1 WGB36251 2.2iChiorothetrafluoroethane 76.42 171 0.622 1.40 U WGB36251 2.2iChiorothetrafluoroethane 76.43 86.20 0.726 2.22 U 1 WGB36251 <td></td>										
Informethane74-87-350.500.2130.4131.491WG1836251is 1-2.Dichlorosthere156-59-296.900.3110.793U1WG1836251is 1-3.Dichloroptropen10610-15110.3130.908U1WG1836251ibbornochloromethane124-48-12080.6181.70U1WG1836251ibchlorodthloromethane75-71-8120.920.6780.9892.601WG1836251ibchlorodthloromethane75-71-8120.920.6780.9877U1WG1836251ibchlorodthloromethane75-71-8137.400.4601.121.391WG1836251ibchlorodthloromethane76-13-1187.400.6081.53U1WG1836251ibchlorodthloromethane76-14-21710.6221.40U1WG1836251ibchlorodthloromethane76-63-32611.126.73U1WG1836251ibchlorodthloromethane76-63-32611.126.73U1WG1836251ibchlorodthloromethane16-44-488.100.2330.721U1WG1836251ibchlorodthloromethane16-34-04-488.100.2330.721U1WG1836251ibchlorodthloromethane16-42-5140.330.4511.021WG1836251ibchlorodthloromethane16-34-04-488.100.3280.8511.021WG1836251										
is-1.2-Dichloroptene 156-59-2 96.90 0.311 0.793 U 1 WG1836251 is-1.3-Dichloroptene 100-61-01-5 11 0.313 0.308 U 1 WG1836251 Dibromochloromethane 124-81 208 0.618 1.70 U 1 WG1836251 Dibromochloromethane 75-718 120.92 0.618 0.867 U 1 WG1836251 Dibromochloromethane 76-64 13.74 0.608 1.53 U 1 WG1836251 1,2-Tichlorobethanomethane 76-64 13.74 0.608 1.53 U 1 WG1836251 1,2-Tichlorobethanomethane 76-64 13.74 0.608 1.53 U 1 WG1836251 1,2-Tichlorobethanomethane 76-64 13.74 0.622 1.40 U 1 WG1836251 1,2-Tichlorobethanomethane 76-64 13.74 0.622 1.40 U 1 WG1836251 1,2-Tichlorobethanomethane 76-63 86.20 0.726 2.221 0.491 U 1 WG1836251										
isis-1,3-Dichloropropene 10061-01-5 11 0.313 0.908 U 1 WG1836251 Diconochloromethane 124-48-1 208 0.618 1.70 U 1 WG1836251 Diconochloromethane 75-71-8 120.92 0.678 0.989 2.60 1 WG1836251 Diconochloromethane 75-71-8 120.92 0.678 0.989 2.60 1 WG1836251 tithonol 64.75 46.10 5.00 23.6 1600 10 WG1836251 tithonol 64.75 46.10 5.00 23.6 153 U 1 WG1836251 12.2-Trichlorotrifluoromethane 76-78-4 137.40 0.608 153 U 1 WG1836251 Evacationor-1,3-butatiene 87-68-3 26.1 112 67.3 U 1 WG1836251 Evacationor-1,3-butatiene 87-68-3 26.1 112 67.3 U 1 WG1836251 Evacationor-1,3-butatiene 16.40-44 88.10 0.333 0.21 U 1 WG1836251 E										
Dibmonchloromethane 12448.1 208 0.618 1.70 U 1 MC1836251 Dichlorodfluoromethane 75.718 120.92 0.678 0.989 2.60 1 WC1836251 thanol 64.17.5 46.10 5.00 23.6 1600 10 WC1836251 tichlorodfluoromethane 75.69.4 137.40 0.460 112 139 1 WC1836251 1.2.Trichlorotfluoromethane 76.14.2 171 0.622 1.40 U 1 WC1836251 2.Dichlorotetrafluoroethane 76.42 171 0.622 1.40 U 1 WC1836251 Hexane 10.54.3 86.20 0.726 2.22 U 1 WC1836251 Hexane 10.54.3 86.20 0.726 2.22 U 1 WC1836251 Hexane 10.54.3 86.20 0.726 2.22 U 1 WC1836251 Hexane 10.04.0 3.13 0.12 1 WC1836251										
Dichlorodfluoromethane 75-71-8 120.92 0.678 0.989 2.60 1 WG1836251 thanol 64-17-5 45.10 5.00 23.6 1600 10 WG1836251 athylbenzene 100-41.4 106 0.362 0.867 U 1 WG1836251 ithylbenzene 100-41.4 106 0.608 1.53 U 1 WG1836251 1,2-Trichlorotrifluoroethane 76-13-1 187.40 0.608 1.53 U 1 WG1836251 2-Dichlorotetrafluoroethane 76-14-2 171 0.622 140 U 1 WG1836251 4-wachtoro-1,3-butadiene 76-63 2.11 1.2 6.73 U 1 WG1836251 4-wachtoro-1,3-butadiene 106-40-3 2.01 1.2 6.73 U 1 WG1836251 4-Wethyl-2-pentanone (MIBK) 108-10 0.335 0.851 U 1 WG1836251 4-Wethyl-2-pentanone (MIBK) 108-10.1 0.335 0.851								1		
thtmol 64-17-5 46.10 5.00 23.6 1600 10 WG1836954 thtylbenzne 100-41-4 106 0.362 0.867 U 1 WG1836251 tichorofluoromethane 75-69-4 137.40 0.608 1.53 U 1 WG1836251 1.2-1rchitorofluoromethane 76-13-1 187.40 0.608 1.22 U 1 WG1836251 2.2-Dichlorotetrafluoroethane 76-14-2 171 0.622 1.40 U 1 WG1836251 2.2-Dichlorotetrafluoroethane 76-14-2 171 0.622 1.40 U 1 WG1836251 2.2-Dichlorotetrafluoroethane 76-14-2 0.76 2.22 U 1 WG1836251 4etaxchloro-1,3-butadiene 87-68-3 2.61 1.12 6.73 U 1 WG1836251 ATBE 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 AteHylene Chloride 75-09-7 184 0.660 1 1 WG1836251 etrachloroethylene 130-0-27 106								1		
Bithylbenzene 100-41-4 106 0.362 0.867 U 1 WG1836251 Trichlorofluoromethane 75-69-4 137.40 0.608 1.53 U 1 WG1836251 1,2-Trichlorotfluoroethane 76-13-1 187.40 0.608 1.53 U 1 WG1836251 2-Dichlorotetrafluoroethane 76-14-2 171 0.622 1.40 U 1 WG1836251 +texane 10-54-3 86.20 0.726 2.22 U 1 WG1836251 HMethyl-2-pentanone (MBK) 108-10-1 100-10 0.313 5.12 0.491 _2 1 WG1836251 AffBee 10-42-5 104 0.335 0.851 U 1 WG1836251 Gistroeetholof 75-65-0 74	Dichlorodifluoromethane		120.92	0.678	0.989	2.60		1	WG1836251	
Trichlorofluoromethane75-69-4137.400.4601.121.391WG18362511.12-Trichlorotethane76-13-1187.400.6081.53U1WG18362512-Dichlorotethane76-14-21710.5221.40U1WG1836251Hexane10-54-386.200.7262.22U1WG1836251Hexahloro1,3-butadiene87-68-32611.126.73U1WG1836251Hethyl-2-pentanone (MIR)108.101100.100.3135.120.491U1WG1836251Hethyl-2-pentanone (MIR)1634-04-488.100.2330.721U1WG1836251METE1634-04-488.100.2330.721U1WG1836251Methyl-2-pentanone (MIR)10.42-51040.3350.851U1WG1836251Gene100-42-51040.3350.851U1WG1836251Fetachlorothylene127-18-41660.5531.3612.81WG1836251Foluene108-88-392.100.3281.883.101WG1836251Foluene108-88-392.100.3261.73U1WG1836251Foluene108-88-392.100.3261.73U1WG1836251Foluene108-88-392.100.3261.73U1WG1836251Foluene108-88-392.000.2670.793U1<	Ethanol	64-17-5	46.10	5.00	23.6	1600		10	WG1836954	
1,12-Trichlorotrifluoroethan76-13-1187.400.6081.53U1WG1836251,2-Dichlorotetrafluoroethane76-14-21710.6221.40U1WG1836251+Hexane110-54-386.200.7262.22U1WG1836251+Hexane108-10-1100.100.3135.120.491J1WG1836251Hekthyl-2-pentanone (MIBK)108-10-1100.100.3135.120.491J1WG1836251MTBE1634-04-488.100.2330.721U1WG1836251MEthylene Chloride75-09-284.900.3400.6940.9271WG1836251Attigene100-42-51040.3350.851U1WG1836251Forkort175-65-074.120.1760.606U1WG1836251Forkort127-18-41660.5531.3612.81WG1836251Forkort130-20-71060.5851.73U1WG1836251Forkort133-20-71060.5851.73U1WG1836251Forkort130-20-71060.3590.867U1WG1836251Forkort130-20-71060.3590.867U1WG1836251Forkort130-20-71060.3590.867U1WG1836251Forkort130-20-71060.3590.867U1WG1836251<	Ethylbenzene	100-41-4	106	0.362	0.867	U		1	WG1836251	
12-Dichlorotetrafluoroethane 76-14-2 171 0.622 1.40 U 1 WG1836251 1-Hexane 110-54-3 86.20 0.726 2.22 U 1 WG1836251 Hexachloro-1,3-butadiene 87-68-3 261 112 6.73 U 1 WG1836251 Hextpl-2-pentanone (MIBN) 108-10 100.10 0.313 5.12 0.491 1 WG1836251 WTBE 1634-044 88.10 0.233 0.721 U 1 WG1836251 WTBE 1064-044 88.10 0.233 0.721 U 1 WG1836251 Wethylene Chloride 75-09-2 84.90 0.340 0.694 0.927 1 WG1836251 Styrene 100-42-5 104 0.335 0.851 1 WG1836251 Fetrachloroethylene 127-18-4 166 0.553 1.36 1.40 WG1836251 Followethylene 138-0-27 106 0.585 1.73 U 1 WG1836251 Followethylene 138-0-26-6 95.90 0.267 0	Frichlorofluoromethane	75-69-4	137.40	0.460	1.12	1.39		1	WG1836251	
h+kane 10-54-3 86.20 0.726 2.22 U 1 WG1836251 ekachloro-1,3-butadiene 87-68-3 261 112 6.73 U 1 WG1836251 HMethyl-2-pentanone (MIBK) 108-10-1 100.10 0.313 5.12 0.491 J 1 WG1836251 MTBE 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 Methylene Chloride 75-09-2 84.90 0.340 0.694 0.927 1 WG1836251 Myrene 100-42-5 104 0.335 0.851 U 1 WG1836251 Myrene 100-42-5 104 0.328 1.86 3.10 1 WG1836251 Fertachloroethylene 127-18-4 166 0.553 1.36 12.8 1 WG1836251 Foluene 108-88-3 9.2.10 0.328 1.88 3.10 1 WG1836251 Foluene 133-0.20-7 106 0.585 1.73 U 1 WG1836251 Foluene 156-0.5 96.90 <td< td=""><td>,1,2-Trichlorotrifluoroethane</td><td>76-13-1</td><td>187.40</td><td>0.608</td><td>1.53</td><td>U</td><td></td><td>1</td><td>WG1836251</td><td></td></td<>	,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.608	1.53	U		1	WG1836251	
Hexachloro-1,3-butadiene 87-68-3 261 1.12 6.73 U 1 WG1836251 H-Methyl-2-pentanone (MIBK) 108-10-1 100.10 0.313 5.12 0.491 J 1 WG1836251 WTBE 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 Wethylene Chloride 75-09-2 84.90 0.340 0.694 0.927 1 WG1836251 Styrene 100-42-5 104 0.335 0.851 U 1 WG1836251 retrachloroethylene 127-18-4 166 0.553 1.36 12.8 1 WG1836251 Toluene 108-88-3 92.10 0.328 1.88 3.10 1 WG1836251 Onlone 108-88-3 92.10 0.328 1.88 3.10 1 WG1836251 Onlone 108-88-3 92.0 0.3267 0.793 U 1 WG1836251 onshylene 130-20-7 106 0.585 1.73 U 1 WG1836251 orshylene 10061-02-6 111	,2-Dichlorotetrafluoroethane	76-14-2	171	0.622	1.40	U		1	WG1836251	
L-Methyl-2-pentanone (MIBK) 108-10-1 100.10 0.313 5.12 0.491 J 1 WG1836251 MTBE 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 MTBE 100-42-5 84.90 0.340 0.694 0.927 1 WG1836251 Styrene 100-42-5 104 0.335 0.851 U 1 WG1836251 ert-Butyl alcohol 75-65-0 74.12 0.176 0.606 U 1 WG1836251 foluene 108-88-3 92.10 0.328 1.88 3.10 1 WG1836251 Foluene 108-88-3 92.10 0.328 1.88 3.10 1 WG1836251 Foluene 108-88-3 92.10 0.328 1.88 3.10 1 WG1836251 Foluene 133-0.20-7 106 0.585 1.73 U 1 WG1836251 Foluenchylene 133-0.267 0.667 0.793 U 1 WG1836251 Foliohoropropene 10061-02-66 11 0.364 <td< td=""><td>n-Hexane</td><td>110-54-3</td><td>86.20</td><td>0.726</td><td>2.22</td><td>U</td><td></td><td>1</td><td><u>WG1836251</u></td><td></td></td<>	n-Hexane	110-54-3	86.20	0.726	2.22	U		1	<u>WG1836251</u>	
MTBE 1634-04-4 88.10 0.233 0.721 U 1 WG1836251 Methylene Chloride 75-09-2 84.90 0.340 0.694 0.927 1 WG1836251 Styrene 100-42-5 104 0.335 0.851 U 1 WG1836251 ert-Butyl alcohol 75-65-0 74.12 0.176 0.606 U 1 WG1836251 Ferrachloroethylene 127-18-4 166 0.553 1.36 12.8 1 WG1836251 Follouene 108-88-3 92.10 0.328 1.88 3.10 1 WG1836251 Follouene 130-20-7 106 0.585 1.73 U 1 WG1836251 Follouene 95-47-6 106 0.359 0.867 U 1 WG1836251 Follourene 156-60-5 96.90 0.267 0.793 U 1 WG1836251 Follourene 106-01-66 11 0.331 0.908 U 1 WG1836251 Frinkloriene 75-01-6 031 0.364 1.07 <td>Hexachloro-1,3-butadiene</td> <td>87-68-3</td> <td>261</td> <td>1.12</td> <td>6.73</td> <td>U</td> <td></td> <td>1</td> <td>WG1836251</td> <td></td>	Hexachloro-1,3-butadiene	87-68-3	261	1.12	6.73	U		1	WG1836251	
Methylene Chloride 75-09-2 84.90 0.340 0.694 0.927 1 WG1836251 Styrene 100-42-5 104 0.335 0.851 U 1 WG1836251 ert-Butyl alcohol 75-65-0 74.12 0.176 0.606 U 1 WG1836251 Fetrachloroethylene 127.18-4 166 0.553 1.36 12.8 1 WG1836251 Foluene 108-88-3 92.10 0.328 1.88 3.10 1 WG1836251 Foluene 1330-20-7 106 0.585 1.73 U 1 WG1836251 o-Sylene 95-47-6 106 0.359 0.867 U 1 WG1836251 o-Sylene 95-47-6 106 0.359 0.867 U 1 WG1836251 o-Sylene 95-47-6 106 0.359 0.867 U 1 WG1836251 o-Sylene 100-61-02-6 111 0.331 0.908 U 1 WG1836251 findlorothergene 75-01-4 62.50 0.243 0.511 <td>1-Methyl-2-pentanone (MIBK)</td> <td>108-10-1</td> <td>100.10</td> <td>0.313</td> <td>5.12</td> <td>0.491</td> <td>Ţ</td> <td>1</td> <td>WG1836251</td> <td></td>	1-Methyl-2-pentanone (MIBK)	108-10-1	100.10	0.313	5.12	0.491	Ţ	1	WG1836251	
Styrene 100-42-5 104 0.335 0.851 U 1 WG1836251 ert-Butyl alcohol 75-65-0 74.12 0.176 0.606 U 1 WG1836251 fetrachloroethylene 127-18-4 166 0.553 1.36 12.8 1 WG1836251 foluene 108-88-3 92.10 0.328 1.88 3.10 1 WG1836251 foluene 1330-20-7 106 0.585 1.73 U 1 WG1836251 o-Sylene 95-47-6 106 0.359 0.867 U 1 WG1836251 o-Sylene 95-47-6 106 0.359 0.867 U 1 WG1836251 o-sylene 95-47-6 106 0.331 0.908 U 1 WG1836251 o-sylene 1061-02-6 111 0.364 1.07 U 1 WG1836251 virghthelene 75-01-4 62.50 0.243 0.511 U 1 WG1836251 <td>MTBE</td> <td>1634-04-4</td> <td>88.10</td> <td>0.233</td> <td>0.721</td> <td>U</td> <td>_</td> <td>1</td> <td>WG1836251</td> <td></td>	MTBE	1634-04-4	88.10	0.233	0.721	U	_	1	WG1836251	
Styrene 100-42-5 104 0.335 0.851 U 1 WG183625 ert-Butyl alcohol 75-65-0 74.12 0.176 0.606 U 1 WG183625 Fetrachloroethylene 127-18-4 166 0.553 1.36 12.8 1 WG183625 Foluene 108-88-3 92.10 0.328 1.88 3.10 1 WG183625 Foluene 1330-20-7 106 0.585 1.73 U 1 WG183625 o-Sylene 95-47-6 106 0.359 0.867 U 1 WG183625 orans-1,2-Dichoroethene 156-60-5 96.90 0.267 0.793 U 1 WG1836251 rans-1,3-Dichoropropene 10061-02-6 111 0.331 0.908 U 1 WG1836251 rinkl choride 75-01-4 62.50 0.243 0.511 U MG1836251 Vighthalene 91-20-3 128 1.83 3.30 U MG1836251 <	Methylene Chloride	75-09-2	84.90	0.340	0.694	0.927		1	WG1836251	
Part-Butyl alcohol 75-65-0 74.12 0.176 0.606 U 1 WG1836251 Tetrachloroethylene 127-18-4 166 0.553 1.36 12.8 1 WG1836251 Toluene 108-88-3 92.10 0.328 1.88 3.10 1 WG1836251 n&p-Xylene 130-20-7 106 0.585 1.73 U 1 WG1836251 p-Xylene 95-47-6 106 0.359 0.867 U 1 WG1836251 p-Xylene 95-47-6 106 0.319 0.867 U 1 WG1836251 p-Xylene 95-47-6 106 0.329 0.867 U 1 WG1836251 p-Xylene 95-47-6 106 0.331 0.908 U 1 WG1836251 p-Xichoroethylene 79-01-6 131 0.364 1.07 U 1 WG1836251 //inly chloride 75-01-4 62.50 0.243 0.511 U 1 WG1836251 //inly chlorobenzene 91-20-3 128 1.83 3.30 <td></td> <td>100-42-5</td> <td>104</td> <td>0.335</td> <td>0.851</td> <td>U</td> <td></td> <td>1</td> <td></td> <td></td>		100-42-5	104	0.335	0.851	U		1		
ietrachloroethylene 127.18.4 166 0.553 1.36 12.8 1 WG1836221 ioluene 108.88.3 92.10 0.328 1.88 3.10 1 WG1836251 n&p-Xylene 1330-20-7 106 0.585 1.73 U 1 WG1836251 rAylene 95-47-6 106 0.359 0.867 U 1 WG1836251 rans-1,2-Dichloroethene 156-60-5 96.90 0.267 0.793 U 1 WG1836251 rans-1,2-Dichloroptopene 10061-02-6 11 0.331 0.908 U 1 WG1836251 rinchloroethylene 79-01-6 131 0.364 1.07 U 1 WG1836251 ringh choride 75-01-4 62.50 0.243 0.511 U 1 WG1836251 walkahelene 91-20-3 128 1.83 3.30 U 1 WG1836251 (S) 4-Bromofluorobenzene 460-00.4 175 S 96.6 60.0140 WG1836251 (S) 4-Bromofluorobenzene 460-00.4 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>	•							1		
Toluene108-88-392.100.3281.883.101WG1836251n&p-Xylene1330-20-71060.5851.73U1WG1836251p-Xylene95.47-61060.3590.867U1WG1836251rans-1,2-Dichloroethene156-60-596.900.2670.793U1WG1836251rans-1,3-Dichloropropene10061-02-61110.3310.908U1WG1836251rinchoroethylene79-01-61310.3641.07U1WG1836251/inyl chloride75-01-462.500.2430.511U1WG1836251Aapthtalene91-20-31281.833.30U1WG1836251(S) (A-Bromofluorobenzene460-00-4175'F:96.660.0-140WG1836251(S) (A-Bromofluorobenzene460-00-4175'F:95.060.0-140WG1836251										
hkp-Xylene1330-20-71060.5851.73U1WG18362510-Xylene95-47-61060.3590.867U1WG1836251rans-1,2-Dichloroethene156-60-596.900.2670.793U1WG1836251rans-1,3-Dichloropropene10061-02-61110.3310.908U1WG1836251rinchoroethylene79-01-61310.3641.07U1WG1836251/inyl chloride75-01-462.500.2430.511U1WG1836251Naphthalene91-20-31281.833.30U1WG1836251(S) (A-Bromofluorobenzene460-00-4175:										
b-Xylene95-47-61060.3590.867U1WG1836251rans-1,2-Dichloroethene156-60-596.900.2670.793U1WG1836251rans-1,3-Dichloropropene10061-02-61110.3310.908U1WG1836251richloroethylene79-01-61310.3641.07U1WG1836251rinyl chloride75-01-462.500.2430.511U1WG1836251kaphthalene91-20-31281.833.30U1WG1836251(S) (4-Bromofluorobenzene460-00-4175:										
rans-1,2-Dichloroethene156-60-596.900.2670.793U1WG1836251rans-1,3-Dichloropropene10061-02-61110.3310.908U1WG1836251ririchloroethylene79-01-61310.3641.07U1WG1836251/inyl chloride75-01-462.500.2430.511U1WG1836251/aphthalene91-20-31281.833.30U1WG1836251(S) (4-Bromofluorobenzene460-00-4175-96.660.0-140WG1836251(S) (4-Bromofluorobenzene460-00-4175-95.060.0-140WG1836954										
rans-1,3-Dichloropropene10061-02-6110.3310.908U1WG1836251richloroethylene79-01-61310.3641.07U1WG1836251/inyl chloride75-01-462.500.2430.511U1WG1836251kaphthalene91-20-31281.833.30U1WG1836251(S) 4-Bromofluorobenzene460-00-4175:-\$96.660.0-140WG1836251(S) 4-Bromofluorobenzene460-00-4175:-\$95.060.0-140WG1836954										
richloroethylene79-01-61310.3641.07U1WG1836251finyl chloride75-01-462.500.2430.511U1WG1836251laphthalene91-20-31281.833.30U1WG1836251(S) 4-Bromofluorobenzene460-00-4175-96.660.0-140WG1836251(S) 4-Bromofluorobenzene460-00-4175-95.060.0-140WG1836954										
Yinyl chloride 75-01-4 62.50 0.243 0.511 U 1 WG1836251 Vaphthalene 91-20-3 128 1.83 3.30 U 1 WG1836251 (S) 460-00-4 175 - 96.6 60.0-140 WG1836251 (S) 460-00-4 175 - 95.0 60.0-140 WG1836954										
Japhthalene 91-20-3 128 1.83 3.30 U 1 WG1836251 (S) 460-00-4 175 96.6 60.0-140 WG1836251 (S) 460-00-4 175 95.0 60.0-140 WG1836954										
(S) 460-00-4 175 96.6 60.0-140 WG1836251 (S) 460-00-4 175 95.0 60.0-140 WG1836954										
(S) 460-00-4 175 95.0 60.0-140 WG1836954	(S)			1.83	3.30					
ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE:	(S)	460-00-4	175			95.0		60.0-140	<u>WG1836954</u>	
	ACC	OUNT:			PROJEC	T:	SDG:		DATE/TIME:	PAGE:

WG1836251

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

(MB) R3772917-3 03/22/	22 09:14				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ug/m3		ug/m3	ug/m3	
1,1,1-Trichloroethane	U		0.400	1.09	
1,1,2,2-Tetrachloroethane	U		0.511	1.37	
1,1,2-Trichloroethane	U		0.422	1.09	
1,1-Dichloroethane	U		0.290	0.802	
1,1-Dichloroethene	U		0.302	0.793	
1,2,4-Trichlorobenzene	U		1.10	4.66	
1,2,4-Trimethylbenzene	U		0.375	0.982	
1,2-Dibromoethane	U		0.554	1.54	
1,2-Dichlorobenzene	U		0.770	1.20	
1,2-Dichloroethane	U		0.283	0.810	
1,2-Dichloropropane	U		0.351	0.924	
1,3,5-Trimethylbenzene	U		0.382	0.982	
1,4-Dichlorobenzene	U		0.335	1.20	
1,4-Dioxane	U		0.300	0.721	
2-Butanone (MEK)	U		0.240	3.69	
1,3-Dichlorobenzene	U		1.09	1.20	
2,2,4-Trimethylpentane	U		0.621	0.934	
Benzene	U		0.228	0.639	
Benzyl Chloride	U		0.311	1.04	
Bromodichloromethane	U		0.471	1.34	
Bromoform	U		0.757	6.21	
Bromomethane	U		0.381	0.776	
Carbon tetrachloride	U		0.461	1.26	
Chlorobenzene	U		0.385	0.924	
Chloroethane	U		0.263	0.528	
Chloroform	U		0.349	0.973	
Cyclohexane	U		0.259	0.689	
Chloromethane	U		0.213	0.413	
cis-1,2-Dichloroethene	U		0.311	0.793	
cis-1,3-Dichloropropene	U		0.313	0.908	
Dibromochloromethane	U		0.618	1.70	
Dichlorodifluoromethane	U		0.678	0.989	
Ethylbenzene	U		0.362	0.867	
Trichlorofluoromethane	U		0.460	1.12	

0.608

0.622

0.726

1.12

0.313

0.233

1.53

1.40

2.22

6.73

5.12

0.721

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

ACCOUNT: NYDEC

U

U

U

U

1,1,2-Trichlorotrifluoroethane U

1,2-Dichlorotetrafluoroethane U

Hexachloro-1,3-butadiene

4-Methyl-2-pentanone (MIBK)

n-Hexane

MTBE

PROJECT: 130058 SDG: L1471925 DATE/TIME: 03/24/22 13:59 PAGE: 9 of 15 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3772917-3 03/22/22	2 09:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/m3		ug/m3	ug/m3
Methylene Chloride	U		0.340	0.694
Styrene	U		0.335	0.851
tert-Butyl alcohol	U		0.176	0.606
Tetrachloroethylene	U		0.553	1.36
Toluene	U		0.328	1.88
m&p-Xylene	U		0.585	1.73
o-Xylene	U		0.359	0.867
trans-1,2-Dichloroethene	U		0.267	0.793
trans-1,3-Dichloropropene	U		0.331	0.908
Trichloroethylene	U		0.364	1.07
Vinyl chloride	U		0.243	0.511
Naphthalene	U		1.83	3.30
(S) 1,4-Bromofluorobenzene	97.4			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3772917-1 03/22/											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%	
1,1,1-Trichloroethane	20.4	21.3	20.5	104	101	70.0-130			3.65	25	
1,1,2,2-Tetrachloroethane	25.8	25.3	25.4	98.1	98.4	70.0-130			0.271	25	
1,1,2-Trichloroethane	20.4	20.7	20.9	102	102	70.0-130			0.784	25	
1,1-Dichloroethane	15.0	15.8	15.1	105	101	70.0-130			4.66	25	
1,1-Dichloroethene	14.9	15.3	15.1	103	102	70.0-130			1.56	25	
1,2,4-Trichlorobenzene	27.8	27.8	27.4	100	98.7	70.0-160			1.34	25	
1,2,4-Trimethylbenzene	18.4	17.9	18.3	97.3	99.5	70.0-130			2.17	25	
1,2-Dibromoethane	28.8	30.0	29.6	104	103	70.0-130			1.29	25	
1,2-Dichlorobenzene	22.5	22.2	23.1	98.4	103	70.0-130			4.24	25	
1,2-Dichloroethane	15.2	15.5	15.0	102	98.7	70.0-130			3.19	25	
1,2-Dichloropropane	17.3	18.3	17.5	106	101	70.0-130			4.65	25	
1,3,5-Trimethylbenzene	18.4	18.5	18.9	101	103	70.0-130			2.10	25	
1,4-Dichlorobenzene	22.5	21.2	21.6	93.9	95.7	70.0-130			1.97	25	
1,4-Dioxane	13.5	13.6	14.1	101	104	70.0-140			3.38	25	
Methyl Ethyl Ketone	11.1	12.5	12.1	113	109	70.0-130			3.12	25	
1,3-Dichlorobenzene	22.5	21.9	22.7	97.3	101	70.0-130			3.50	25	
2,2,4-Trimethylpentane	17.5	18.3	18.0	104	103	70.0-130			1.55	25	
Benzene	12.0	12.3	12.1	102	101	70.0-130			1.57	25	
Benzyl Chloride	19.5	18.8	19.2	96.3	98.7	70.0-152			2.46	25	
Bromodichloromethane	25.2	26.4	26.0	105	103	70.0-130			1.79	25	

ACCOUNT: NYDEC PROJECT: 130058 SDG: L1471925 DATE/TIME: 03/24/22 13:59 PAGE: 10 of 15 Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(
((S) R3//291/-1	03/22/22 08:11 • (LCSD) R3772917-2 03/22/22 08:44	
(200) 10772017 1	(2002) 100 1 2 00 22 22 00 11	

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%	
Bromoform	38.8	37.0	36.8	95.5	94.9	70.0-130			0.560	25	
Bromomethane	14.6	15.1	15.0	104	103	70.0-130			0.774	25	
Carbon tetrachloride	23.6	24.5	23.6	104	100	70.0-130			3.66	25	
Chlorobenzene	17.3	17.5	17.1	101	98.7	70.0-130			2.14	25	
Chloroethane	9.89	10.2	10.2	103	103	70.0-130			0.000	25	
Chloroform	18.3	19.1	18.8	105	103	70.0-130			1.54	25	
Cyclohexane	12.9	13.9	13.1	108	102	70.0-130			5.86	25	
Chloromethane	7.75	8.30	7.89	107	102	70.0-130			5.10	25	
cis-1,2-Dichloroethene	14.9	15.1	15.2	102	102	70.0-130			0.522	25	
cis-1,3-Dichloropropene	17.0	17.5	17.5	103	103	70.0-130			0.000	25	
Dibromochloromethane	31.9	32.6	31.7	102	99.5	70.0-130			2.65	25	
Dichlorodifluoromethane	18.5	20.0	19.1	108	103	64.0-139			4.56	25	
Ethylbenzene	16.3	16.4	16.9	101	104	70.0-130			2.86	25	
Frichlorofluoromethane	21.1	21.9	21.4	104	101	70.0-130			2.34	25	
,1,2-Trichlorotrifluoroethane	28.7	29.7	29.0	103	101	70.0-130			2.35	25	
l,2-Dichlorotetrafluoroethane	26.2	27.3	26.5	104	101	70.0-130			2.86	25	
n-Hexane	13.2	13.8	13.5	104	102	70.0-130			2.33	25	
Hexachloro-1,3-butadiene	40.0	39.3	40.7	98.1	102	70.0-151			3.47	25	
1-Methyl-2-pentanone (MIBK)	15.4	15.3	15.7	99.7	102	70.0-139			2.38	25	
MTBE	13.5	14.2	14.1	105	104	70.0-130			1.27	25	
Methylene Chloride	13.0	13.4	13.4	103	103	70.0-130			0.259	25	
Styrene	16.0	16.4	16.5	103	104	70.0-130			1.03	25	
tert-Butyl alcohol	11.4	11.9	11.7	105	103	70.0-130			2.05	25	
Tetrachloroethylene	25.5	23.8	24.1	93.3	94.7	70.0-130			1.42	25	
Toluene	14.1	14.2	13.9	101	98.1	70.0-130			2.68	25	
m&p-Xylene	32.5	32.3	32.8	99.3	101	70.0-130			1.47	25	
o-Xylene	16.3	16.0	16.3	98.7	100	70.0-130			1.61	25	
rans-1,2-Dichloroethene	14.9	15.2	14.9	102	101	70.0-130			1.58	25	
rans-1,3-Dichloropropene	17.0	17.3	16.9	102	99.2	70.0-130			2.65	25	
Trichloroethylene	20.1	20.4	20.1	102	100	70.0-130			1.32	25	
/inyl chloride	9.59	10.3	9.74	107	102	70.0-130			5.36	25	
Naphthalene	19.6	18.3	18.3	93.1	93.1	70.0-159			0.000	25	
(S) 1,4-Bromofluorobenzene				96.8	100	60.0-140					

ACCOUNT: NYDEC PROJECT: 130058 SDG: L1471925 DATE/TIME: 03/24/22 13:59 PAGE: 11 of 15

WG1836954

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3773110-3 03/23/22	2 10:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/m3		ug/m3	ug/m3
Ethanol	U		0.500	2.36
(S) 1,4-Bromofluorobenzene	96.2			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3773110-1 03/23/22	2 08:44 • (LCSE	D) R3773110-2	03/23/22 09:2	6						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%
Ethanol	7.07	6.58	6.54	93.1	92.5	55.0-148			0.575	25
(S) 1,4-Bromofluorobenzene				98.7	98.5	60.0-140				

- 1-
² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

DATE/TIME: 03/24/22 13:59

PAGE: 12 of 15

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The identification of the analyte is acceptable; the reported value is an estimate.

PROJECT: 130058

SDG: L1471925 DATE/TIME: 03/24/22 13:59

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee ^{1 4}	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1471925 DATE/TIME: 03/24/22 13:59

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Company Name/Address: NYDEC 269 West Jefferson St. Syracuse, NY 13202 Report To: Noah Robinson				Billing Information: Accounts Payable 831 Route 67 Ballston, NY 12020						MT JULI		
				est.com	1 - <u>1</u> -1					12065 Lebanon Road Mt Phone: 615-758-5858 Alt Submitting a sample vi constitutes acknowledg of the Pace Terms and	800-767-5859 a this chain of custody ment and acceptance Conditions found at:	
Project Tres Bon Description:	- 2	City/State Collected: V	llage o	f Fanklin S	quade N	Please Circle: PT MT CT	and a second			https://info.pacelabs.co standard-terms.pdf	m/hubfs/pas-	
Phone: C 315-849-4194	lient Project # 130058		Lab Project # NYDEC-E			and a				D147		
collected by (print): Lincoln Backman-Love	ite/Facility ID # 130058		P.O. # 160	02523/0	2084		Summa			Acctnum: NY Template: T2		
Collected by (signature): A. I. B. I Ae.	Rush? (Lab MUST Be M Same DayThree Next DayFive D	a Day	Date Results Needed Standard						Prelogin: P909936 PM: 134 - Mark W. Beas PB: <i>LSL</i> -03/04/4		W. Beasley	
Jac Danco J	Two Day	Standard	Collection Can			Canister Pressure/Vacuum				Shipped Via: FedEX Ground		
Sample ID	Can #	Flow Cont. #	Date	Time	Initial	Final	-0T	100		Rem./Contaminant	Sample # (lab only)	
130058-IA-1	11128	021254	3/15/2	2 1506	30.0	6.5	X			Sector Sector	-01	
130058-IA-2	009782	011680	3/15/2	2 1517	30.0	7.0	X				- 02	
130058-0A-1	020806	011718	3152	2 1513	30.0	3.5	X			1945	- 03	
130058-DUP-1	12519	011692	3/13/23	2 1566	29.5	615	X				-04	
	200	1980 - 199		CBG				Sand -		-		
Ca				1		1.19	13					
T and the second				A Carlos	Sec. and	Sugar B						
						stor p			-	1		
		2	L					- Maria		rite and		
Sample F COC Seal Present/Intact: COC Signed/Accurate: Bottles arrive intact: Correct bottles used: Sufficient volume sent: RAD Screen <0.5 mR/hr:	Y N VOA Zero Headsp Y N Pres.Correct/Cr N N	ace: Y N		s returned via: FedEx Courie	er	Tracking # 5349	7471	1897	Hold #			
Relinquished by : (Signature)	Race 3/15	22 161	Receive	ed by: (Signature)		Date:	Time:		Condition	n: (lab	use only) OF	
Relinquished by : (Signature)	Date:	Time:		ed by: (Signature)			Time:		COC Sea	I Intact:Y _		
Relinquished by : (Signature)	Date:	Time:	Receive	ed for lab by: (Signatu	re)	Date:	Time: 930		NCF:			

This page intentionally left blank

Attachment 5

Data Usability Summary Report

This page left intentionally blank

Appendix E

Laboratory Analysis Reports

This page intentionally left blank

Pace Analytical® ANALYTICAL REPORT March 24, 2022

NYDEC

Sample Delivery Group:	L1471925
Samples Received:	03/16/2022
Project Number:	130058
Description:	Tres Bon
Site:	130058
Report To:	Noah Robinson
	269 West Jefferson St.
	Syracuse, NY 13202

Тс Ss Cn Śr ʹQc Gl A Sc

Entire Report Reviewed By:

Mark W. Beasley Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: NYDEC

PROJECT: 130058

SDG: L1471925

DATE/TIME: 03/24/22 13:59 PAGE: 1 of 15

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
130058-IA-1 L1471925-01	5
130058-IA-2 L1471925-02	6
130058-OA-1 L1471925-03	7
130058-DUP-1 L1471925-04	8
Qc: Quality Control Summary	9
Volatile Organic Compounds (MS) by Method TO-15	9
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Ср

Ss

°Cn

Sr

Qc

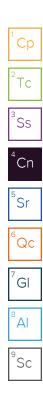
GI

A

Sc

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
130058-IA-1 L1471925-01 Air			Lincoln Backman-Lowe	03/15/22 15:06	03/16/22 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1836251	1	03/22/22 11:34	03/22/22 11:34	CAW	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG1836954	10	03/23/22 11:34	03/23/22 11:34	CAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
130058-1A-2 L1471925-02 Air			Lincoln Backman-Lowe	03/15/22 15:17	03/16/22 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Malatila Oscaria Carrana da (MC) ha Matha di TO 15	WC102C2E1	4	date/time	date/time	CANAL	MAL LUISA TA
Volatile Organic Compounds (MS) by Method TO-15 Volatile Organic Compounds (MS) by Method TO-15	WG1836251 WG1836954	1 100	03/22/22 12:05 03/23/22 12:11	03/22/22 12:05 03/23/22 12:11	CAW CAW	Mt. Juliet, TN Mt. Juliet, TN
volatic organic compounds (ms) by method 10-15	W01030334	100	03/23/22 12.11	03/23/22 12.11	CAM	wit. Junct, Th
			Collected by	Collected date/time	Received date/time	
130058-0A-1 L1471925-03 Air			Lincoln Backman-Lowe	03/15/22 15:13	03/16/22 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1836251	1	date/time 03/22/22 12:36	date/time 03/22/22 12:36	CAW	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG1836251 WG1836954	10	03/22/22 12:50	03/22/22 12:50	CAW	Mt. Juliet, TN
volatile organic compounds (MS) by Meanou 10-15	W01850954	10	03/23/22 12.30	03/23/22 12.30	CAW	Mit. Juliet, Th
			Collected by	Collected date/time	Received da	te/time
130058-DUP-1 L1471925-04 Air			Lincoln Backman-Lowe	03/15/22 00:00	03/16/22 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG1836251	1	03/22/22 13:07	03/22/22 13:07	CAW	Mt. Juliet, TN
Volatile Organic Compounds (MS) by Method TO-15	WG1836954	10	03/23/22 13:29	03/23/22 13:29	CAW	Mt. Juliet, TN


SDG: L1471925

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

h

Mark W. Beasley Project Manager

SDG: L1471925

DATE/TIME: 03/24/22 13:59 PAGE: 4 of 15

SAMPLE RESULTS - 01 L1471925

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	MDL ug/m3	RDL ug/m3	Result	Qualifier	Dilution	Batch	
•	71 55 6	122	-	-	ug/m3 U		1	WC102C2E1	2
I,1,1-Trichloroethane	71-55-6	133	0.400	1.09	U		1	WG1836251	
I,1,2,2-Tetrachloroethane	79-34-5 79-00-5	168 133	0.511 0.422	1.37 1.09	U		1	WG1836251	3
I,1,2-Trichloroethane	75-34-3	98	0.422	0.802	U		1	WG1836251	
,1-Dichloroethane								WG1836251	
I,1-Dichloroethene	75-35-4	96.90	0.302	0.793	U		1	WG1836251	4
,2,4-Trichlorobenzene	120-82-1	181	1.10	4.66	U		1	WG1836251	
I,2,4-Trimethylbenzene	95-63-6	120	0.375	0.982	U		1	WG1836251	5
I,2-Dibromoethane	106-93-4	188	0.554	1.54	U		1	WG1836251	5
I,2-Dichlorobenzene	95-50-1	147	0.770	1.20	U		1	WG1836251	
l,2-Dichloroethane	107-06-2	99	0.283	0.810	0.437	J	1	WG1836251	6
l,2-Dichloropropane	78-87-5	113	0.351	0.924	U		1	WG1836251	
I,3,5-Trimethylbenzene	108-67-8	120	0.382	0.982	U		1	<u>WG1836251</u>	
l,4-Dichlorobenzene	106-46-7	147	0.335	1.20	U		1	<u>WG1836251</u>	/
,4-Dioxane	123-91-1	88.10	0.300	0.721	U		1	<u>WG1836251</u>	
2-Butanone (MEK)	78-93-3	72.10	0.240	3.69	6.10		1	WG1836251	8
I,3-Dichlorobenzene	541-73-1	147	1.09	1.20	U		1	WG1836251	
2,2,4-Trimethylpentane	540-84-1	114.22	0.621	0.934	U		1	WG1836251	
Benzene	71-43-2	78.10	0.228	0.639	0.543	<u>J</u>	1	WG1836251	9
Benzyl Chloride	100-44-7	127	0.311	1.04	U		1	WG1836251	
Bromodichloromethane	75-27-4	164	0.471	1.34	U		1	WG1836251	
Bromoform	75-25-2	253	0.757	6.21	U		1	WG1836251	
Bromomethane	74-83-9	94.90	0.381	0.776	U		1	WG1836251	
Carbon tetrachloride	56-23-5	154	0.461	1.26	U		1	WG1836251	
Chlorobenzene	108-90-7	113	0.385	0.924	U		1	WG1836251	
Chloroethane	75-00-3	64.50	0.263	0.528	U		1	WG1836251	
Chloroform	67-66-3	119	0.349	0.973	U		1	WG1836251	
Cyclohexane	110-82-7	84.20	0.259	0.689	U		1	WG1836251	
Chloromethane	74-87-3	50.50	0.233	0.413	1.34		1	WG1836251	
cis-1,2-Dichloroethene	156-59-2	96.90	0.311	0.793	U		1	WG1836251	
cis-1,3-Dichloropropene	10061-01-5	111	0.313	0.908	U		1	WG1836251	
Dibromochloromethane	124-48-1	208	0.618	1.70	U		1		
								WG1836251	
Dichlorodifluoromethane	75-71-8	120.92	0.678	0.989	2.33		1	WG1836251	
Ethanol	64-17-5	46.10	5.00	23.6	1340		10	WG1836954	
Ethylbenzene	100-41-4	106	0.362	0.867	U		1	WG1836251	
Trichlorofluoromethane	75-69-4	137.40	0.460	1.12	1.40		1	WG1836251	
I,1,2-Trichlorotrifluoroethane		187.40	0.608	1.53	U		1	<u>WG1836251</u>	
l,2-Dichlorotetrafluoroethane		171	0.622	1.40	U		1	<u>WG1836251</u>	
n-Hexane	110-54-3	86.20	0.726	2.22	U		1	<u>WG1836251</u>	
Hexachloro-1,3-butadiene	87-68-3	261	1.12	6.73	U		1	<u>WG1836251</u>	
1-Methyl-2-pentanone (MIBK)	108-10-1	100.10	0.313	5.12	0.815	J	1	WG1836251	
M TBE	1634-04-4	88.10	0.233	0.721	U		1	WG1836251	
Methylene Chloride	75-09-2	84.90	0.340	0.694	0.861		1	WG1836251	
ityrene	100-42-5	104	0.335	0.851	U		1	WG1836251	
ert-Butyl alcohol	75-65-0	74.12	0.176	0.606	3.97		1	WG1836251	
etrachloroethylene	127-18-4	166	0.553	1.36	13.6		1	WG1836251	
oluene	108-88-3	92.10	0.328	1.88	3.22		1	WG1836251	
n&p-Xylene	1330-20-7	106	0.585	1.73	0.698	J	1	WG1836251	
-Xylene	95-47-6	106	0.359	0.867	0.413	J	1	WG1836251	
rans-1,2-Dichloroethene	156-60-5	96.90	0.267	0.793	U	-	1	WG1836251	
rans-1,3-Dichloropropene	10061-02-6	111	0.331	0.908	U		1	WG1836251	
richloroethylene	79-01-6	131	0.364	1.07	U		1	WG1836251	
/inyl chloride	75-01-4	62.50	0.243	0.511	U		1	WG1836251	
Naphthalene	91-20-3	128	1.83	3.30	U		1	WG1836251	
(S) ,4-Bromofluorobenzene	460-00-4	175	1.85	3.30	97.9		60.0-140	WG1836251	
(S) ,4-Bromofluorobenzene	460-00-4	175			97.7		60.0-140	<u>WG1836954</u>	
ACC	OUNT: DEC			PROJEC 130058		SDG: L147192		DATE/TIME: 03/24/22 13:59	PAGE : 5 of 15

SAMPLE RESULTS - 02 L1471925

Volatile Organic Compounds (MS) by Method TO-15

Analyte	CAS #	Mol. Wt.	MDL ug/m3	RDL ug/m3	Result ug/m3	Qualifier	Dilution	Batch	L
,1,1-Trichloroethane	71-55-6	133	0.400	1.09			1	WC19262E1	2
	79-34-5	133	0.400	1.09	UU		1	WG1836251 WG1836251	
,1,2,2-Tetrachloroethane ,1,2-Trichloroethane	79-34-5	133	0.422	1.37	U		1	WG1836251	3
	79-00-5	98	0.422	0.802			1		
,1-Dichloroethane	75-34-3	96.90	0.290		U			WG1836251	L
,1-Dichloroethene	120-82-1	181	1.10	0.793 4.66	U U		1	WG1836251	4
2,4-Trichlorobenzene	95-63-6	120	0.375				1	WG1836251	
,2,4-Trimethylbenzene				0.982	0.834	Ţ		WG1836251	
,2-Dibromoethane	106-93-4	188	0.554	1.54	U		1	WG1836251	5
,2-Dichlorobenzene	95-50-1	147	0.770	1.20	U		1	WG1836251	
2-Dichloroethane	107-06-2	99	0.283	0.810	U		1	WG1836251	e
2-Dichloropropane	78-87-5	113	0.351	0.924	U		1	WG1836251	
,3,5-Trimethylbenzene	108-67-8	120	0.382	0.982	U		1	WG1836251	
,4-Dichlorobenzene	106-46-7	147	0.335	1.20	U		1	WG1836251	ľ
,4-Dioxane	123-91-1	88.10	0.300	0.721	U		1	WG1836251	L
-Butanone (MEK)	78-93-3	72.10	0.240	3.69	4.48		1	<u>WG1836251</u>	8
,3-Dichlorobenzene	541-73-1	147	1.09	1.20	U		1	WG1836251	
2,2,4-Trimethylpentane	540-84-1	114.22	0.621	0.934	0.649	Ţ	1	WG1836251	L
Benzene	71-43-2	78.10	0.228	0.639	1.02		1	WG1836251	ç
Benzyl Chloride	100-44-7	127	0.311	1.04	U		1	WG1836251	
romodichloromethane	75-27-4	164	0.471	1.34	U		1	WG1836251	
romoform	75-25-2	253	0.757	6.21	U		1	WG1836251	
romomethane	74-83-9	94.90	0.381	0.776	U		1	WG1836251	
Carbon tetrachloride	56-23-5	154	0.461	1.26	0.569	J	1	WG1836251	
hlorobenzene	108-90-7	113	0.385	0.924	U		1	WG1836251	
hloroethane	75-00-3	64.50	0.263	0.528	U		1	WG1836251	
hloroform	67-66-3	119	0.349	0.973	U		1	WG1836251	
Cyclohexane	110-82-7	84.20	0.259	0.689	U		1	WG1836251	
Chloromethane	74-87-3	50.50	0.213	0.413	1.36		1	WG1836251	
is-1,2-Dichloroethene	156-59-2	96.90	0.311	0.793	U		1	WG1836251	
is-1,3-Dichloropropene	10061-01-5	111	0.313	0.908	U		1	WG1836251	
Dibromochloromethane	124-48-1	208	0.618	1.70	U		1	WG1836251	
Dichlorodifluoromethane	75-71-8	120.92	0.678	0.989	2.60		1	WG1836251	
thanol	64-17-5	46.10	50.0	236	2560		100	WG1836954	
thylbenzene	100-41-4	106	0.362	0.867	0.377	1	1	WG1836251	
richlorofluoromethane	75-69-4	137.40	0.460	1.12	1.44	2	1	WG1836251	
,1,2-Trichlorotrifluoroethane		187.40	0.608	1.53	U		1	WG1836251	
,2-Dichlorotetrafluoroethane		171	0.622	1.40	U		1	WG1836251	
	110-54-3				U		1	WG1836251	
-Hexane		86.20	0.726	2.22					
lexachloro-1,3-butadiene	87-68-3	261	1.12	6.73	U		1	WG1836251	
I-Methyl-2-pentanone (MIBK) /ITBE		100.10	0.313	5.12	U		1	WG1836251	
	1634-04-4	88.10	0.233	0.721	U		1	WG1836251	
lethylene Chloride	75-09-2	84.90	0.340	0.694	0.809		1	WG1836251	
tyrene	100-42-5	104	0.335	0.851	U		1	WG1836251	
ert-Butyl alcohol	75-65-0	74.12	0.176	0.606	1.88		1	WG1836251	
etrachloroethylene	127-18-4	166	0.553	1.36	15.3		1	WG1836251	
oluene	108-88-3	92.10	0.328	1.88	3.32		1	WG1836251	
1&p-Xylene	1330-20-7	106	0.585	1.73	1.14	Ţ	1	WG1836251	
-Xylene	95-47-6	106	0.359	0.867	0.581	J	1	WG1836251	
ans-1,2-Dichloroethene	156-60-5	96.90	0.267	0.793	U		1	WG1836251	
ans-1,3-Dichloropropene	10061-02-6	111	0.331	0.908	U		1	WG1836251	
richloroethylene	79-01-6	131	0.364	1.07	U		1	WG1836251	
inyl chloride	75-01-4	62.50	0.243	0.511	U		1	WG1836251	
laphthalene	91-20-3	128	1.83	3.30	U		1	WG1836251	
(S) 4-Bromofluorobenzene	460-00-4	175			96.3		60.0-140	WG1836251	
(S) 4-Bromofluorobenzene	460-00-4	175			96.8		60.0-140	WG1836954	
	OUNT: DEC			PROJEC 130058		SDG: L147192	5	DATE/TIME: 03/24/22 13:59	PAGE : 6 of 15

SAMPLE RESULTS - 03 L1471925

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	MDL	RDL	Result	Qualifier	Dilution	Batch	
Analyte			ug/m3	ug/m3	ug/m3				2
1,1,1-Trichloroethane	71-55-6	133	0.400	1.09	U		1	WG1836251	Т
1,1,2,2-Tetrachloroethane	79-34-5	168	0.511	1.37	U		1	WG1836251	
1,1,2-Trichloroethane	79-00-5	133	0.422	1.09	U		1	WG1836251	35
1,1-Dichloroethane	75-34-3	98	0.290	0.802	U		1	WG1836251	
1,1-Dichloroethene	75-35-4	96.90	0.302	0.793	U		1	WG1836251	4
1,2,4-Trichlorobenzene	120-82-1	181	1.10	4.66	U		1	WG1836251	Ċ
1,2,4-Trimethylbenzene	95-63-6	120	0.375	0.982	U		1	WG1836251	
1,2-Dibromoethane	106-93-4	188	0.554	1.54	U		1	WG1836251	55
1,2-Dichlorobenzene	95-50-1	147	0.770	1.20	U		1	WG1836251	
1,2-Dichloroethane	107-06-2	99	0.283	0.810	U		1	WG1836251	6
1,2-Dichloropropane	78-87-5	113	0.351	0.924	U		1	WG1836251	Ĩ.
1,3,5-Trimethylbenzene	108-67-8	120	0.382	0.982	U		1	WG1836251	
1,4-Dichlorobenzene	106-46-7	147	0.335	1.20	U		1	WG1836251	7
1,4-Dioxane	123-91-1	88.10	0.300	0.721	U		1	WG1836251	
2-Butanone (MEK)	78-93-3	72.10	0.240	3.69	1.78	Ţ	1	WG1836251	2
1,3-Dichlorobenzene	541-73-1	147	1.09	1.20	U	-	1	WG1836251	۴
2,2,4-Trimethylpentane	540-84-1	114.22	0.621	0.934	U		1	WG1836251	
Benzene	71-43-2	78.10	0.228	0.639	0.770		1	WG1836251	9
Benzyl Chloride	100-44-7	127	0.311	1.04	U		1	WG1836251	ľs
Bromodichloromethane	75-27-4	164	0.471	1.34	U		1	WG1836251	
Bromoform	75-25-2	253	0.757	6.21	U		1	WG1836251	
Bromomethane	74-83-9	94.90	0.381	0.776	U		1	WG1836251	
Carbon tetrachloride	56-23-5	154	0.461	1.26	U		1	WG1836251	
	108-90-7	113	0.385	0.924	U		1		
Chlorobenzene								WG1836251	
Chloroethane	75-00-3	64.50	0.263	0.528	U		1	WG1836251	
Chloroform	67-66-3	119	0.349	0.973	U		1	WG1836251	
Cyclohexane	110-82-7	84.20	0.259	0.689	U		1	WG1836251	
Chloromethane	74-87-3	50.50	0.213	0.413	1.26		1	WG1836251	
cis-1,2-Dichloroethene	156-59-2	96.90	0.311	0.793	U		1	WG1836251	
cis-1,3-Dichloropropene	10061-01-5	111	0.313	0.908	U		1	WG1836251	
Dibromochloromethane	124-48-1	208	0.618	1.70	U		1	WG1836251	
Dichlorodifluoromethane	75-71-8	120.92	0.678	0.989	2.44		1	WG1836251	
Ethanol	64-17-5	46.10	5.00	23.6	232		10	WG1836954	
Ethylbenzene	100-41-4	106	0.362	0.867	U		1	WG1836251	
Trichlorofluoromethane	75-69-4	137.40	0.460	1.12	1.23		1	WG1836251	
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.608	1.53	U		1	WG1836251	
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.622	1.40	U		1	WG1836251	
n-Hexane	110-54-3	86.20	0.726	2.22	U		1	WG1836251	
Hexachloro-1,3-butadiene	87-68-3	261	1.12	6.73	U		1	WG1836251	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	0.313	5.12	U		1	WG1836251	
MTBE	1634-04-4	88.10	0.233	0.721	U		1	WG1836251	
Methylene Chloride	75-09-2	84.90	0.340	0.694	0.743		1	WG1836251	
Styrene	100-42-5	104	0.335	0.851	U		1	WG1836251	
tert-Butyl alcohol	75-65-0	74.12	0.176	0.606	0.603	Ţ	1	WG1836251	
Tetrachloroethylene	127-18-4	166	0.553	1.36	U	<u> </u>	1	WG1836251	
Toluene	108-88-3	92.10	0.328	1.88	1.37	J	1	WG1836251	
m&p-Xylene	1330-20-7	106	0.585	1.73	U	<u> </u>	1	WG1836251	
o-Xylene	95-47-6	106	0.359	0.867	U		1	WG1836251	
trans-1,2-Dichloroethene	95-47-6 156-60-5	96.90	0.359	0.867	U		1		
	10061-02-6		0.267	0.793	U		1	WG1836251	
trans-1,3-Dichloropropene		111						WG1836251	
Trichloroethylene	79-01-6	131	0.364	1.07	U		1	WG1836251	
Vinyl chloride	75-01-4	62.50	0.243	0.511	U		1	WG1836251	
Naphthalene	91-20-3	128	1.83	3.30	U		1	WG1836251	
(S) 1,4-Bromofluorobenzene	460-00-4	175			96.5		60.0-140	WG1836251	
(S) 1,4-Bromofluorobenzene	460-00-4	175			97.0		60.0-140	WG1836954	
	OUNT: DEC			PROJEC 130058		SDG: L147192	F	DATE/TIME: 03/24/22 13:59	PAGE : 7 of 15

SAMPLE RESULTS - 04 L1471925

Volatile Organic Compounds (MS) by Method TO-15

A	CAS #	Mol. Wt.	MDL	RDL	Result	Qualifier	Dilution	Batch	
Analyte			ug/m3	ug/m3	ug/m3				2
I,1,1-Trichloroethane	71-55-6	133	0.400	1.09	U		1	<u>WG1836251</u>	
I,1,2,2-Tetrachloroethane	79-34-5	168	0.511	1.37	U		1	<u>WG1836251</u>	
I,1,2-Trichloroethane	79-00-5	133	0.422	1.09	U		1	<u>WG1836251</u>	3
I,1-Dichloroethane	75-34-3	98	0.290	0.802	U		1	WG1836251	
l,1-Dichloroethene	75-35-4	96.90	0.302	0.793	U		1	WG1836251	4
I,2,4-Trichlorobenzene	120-82-1	181	1.10	4.66	U		1	WG1836251	
l,2,4-Trimethylbenzene	95-63-6	120	0.375	0.982	U		1	WG1836251	
l,2-Dibromoethane	106-93-4	188	0.554	1.54	U		1	WG1836251	5
l,2-Dichlorobenzene	95-50-1	147	0.770	1.20	U		1	WG1836251	
l,2-Dichloroethane	107-06-2	99	0.283	0.810	0.409	Ţ	1	WG1836251	6
,2-Dichloropropane	78-87-5	113	0.351	0.924	U		1	WG1836251	
,3,5-Trimethylbenzene	108-67-8	120	0.382	0.982	U		1	<u>WG1836251</u>	
l,4-Dichlorobenzene	106-46-7	147	0.335	1.20	U		1	WG1836251	7
,4-Dioxane	123-91-1	88.10	0.300	0.721	U		1	WG1836251	
2-Butanone (MEK)	78-93-3	72.10	0.240	3.69	4.87		1	WG1836251	
,3-Dichlorobenzene	541-73-1	147	1.09	1.20	U		1	WG1836251	°
2,2,4-Trimethylpentane	540-84-1	114.22	0.621	0.934	U		1	WG1836251	
Benzene	71-43-2	78.10	0.228	0.639	0.530	J	1	WG1836251	9
Benzyl Chloride	100-44-7	127	0.311	1.04	U	-	1	WG1836251	
Bromodichloromethane	75-27-4	164	0.471	1.34	U		1	WG1836251	
Bromoform	75-25-2	253	0.757	6.21	U		1	WG1836251	
Bromomethane	74-83-9	94.90	0.381	0.21	U		1	WG1836251	
	56-23-5	94.90 154	0.461	1.26	U		1		
Carbon tetrachloride					U			WG1836251	
Chlorobenzene	108-90-7	113	0.385	0.924			1	WG1836251	
Chloroethane	75-00-3	64.50	0.263	0.528	U		1	WG1836251	
Chloroform	67-66-3	119	0.349	0.973	U		1	WG1836251	
Cyclohexane	110-82-7	84.20	0.259	0.689	U		1	WG1836251	
Chloromethane	74-87-3	50.50	0.213	0.413	1.49		1	<u>WG1836251</u>	
cis-1,2-Dichloroethene	156-59-2	96.90	0.311	0.793	U		1	<u>WG1836251</u>	
cis-1,3-Dichloropropene	10061-01-5	111	0.313	0.908	U		1	WG1836251	
Dibromochloromethane	124-48-1	208	0.618	1.70	U		1	<u>WG1836251</u>	
Dichlorodifluoromethane	75-71-8	120.92	0.678	0.989	2.60		1	WG1836251	
Ethanol	64-17-5	46.10	5.00	23.6	1600		10	WG1836954	
Ethylbenzene	100-41-4	106	0.362	0.867	U		1	WG1836251	
Frichlorofluoromethane	75-69-4	137.40	0.460	1.12	1.39		1	WG1836251	
I,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.608	1.53	U		1	WG1836251	
I,2-Dichlorotetrafluoroethane	76-14-2	171	0.622	1.40	U		1	WG1836251	
n-Hexane	110-54-3	86.20	0.726	2.22	U		1	WG1836251	
Hexachloro-1,3-butadiene	87-68-3	261	1.12	6.73	U		1	WG1836251	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	0.313	5.12	0.491	J	1	WG1836251	
MTBE	1634-04-4	88.10	0.233	0.721	U	-	1	WG1836251	
Methylene Chloride	75-09-2	84.90	0.340	0.694	0.927		1	WG1836251	
Styrene	100-42-5	104	0.335	0.851	U		1	WG1836251	
ert-Butyl alcohol	75-65-0	74.12	0.176	0.606	U		1	WG1836251	
Tetrachloroethylene	127-18-4	166	0.553	1.36	12.8		1	WG1836251	
Foluene	108-88-3	92.10	0.328	1.88	3.10		1	WG1836251	
n&p-Xylene	1330-20-7	106	0.585	1.73	U		1	WG1836251	
p-Xylene	95-47-6	106	0.359	0.867	U		1	WG1836251	
rans-1,2-Dichloroethene	156-60-5	96.90	0.267	0.807					
					U		1	WG1836251	
rans-1,3-Dichloropropene	10061-02-6	111	0.331	0.908	U		1	WG1836251	
richloroethylene	79-01-6	131	0.364	1.07	U		1	WG1836251	
/inyl chloride	75-01-4	62.50	0.243	0.511	U		1	WG1836251	
Naphthalene (S)	91-20-3 <i>460-00-4</i>	128 <i>175</i>	1.83	3.30	U 96.6		1 60.0-140	WG1836251 WG1836251	
,4-Bromofluorobenzene (S) ,4-Bromofluorobenzene	460-00-4	175			95.0		60.0-140	WG1836954	
	OUNT:			PROJEC	T:	SDG:		DATE/TIME:	PAGE:
	/DEC			130058		L147192	5	03/24/22 13:59	8 of 15

WG1836251

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

(MB) R3772917-3 03/22/	/22 09:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/m3		ug/m3	ug/m3
1,1,1-Trichloroethane	U		0.400	1.09
1,1,2,2-Tetrachloroethane	U		0.511	1.37
1,1,2-Trichloroethane	U		0.422	1.09
1,1-Dichloroethane	U		0.290	0.802
1,1-Dichloroethene	U		0.302	0.793
1,2,4-Trichlorobenzene	U		1.10	4.66
1,2,4-Trimethylbenzene	U		0.375	0.982
1,2-Dibromoethane	U		0.554	1.54
1,2-Dichlorobenzene	U		0.770	1.20
1,2-Dichloroethane	U		0.283	0.810
1,2-Dichloropropane	U		0.351	0.924
1,3,5-Trimethylbenzene	U		0.382	0.982
1,4-Dichlorobenzene	U		0.335	1.20
1,4-Dioxane	U		0.300	0.721
2-Butanone (MEK)	U		0.240	3.69
1,3-Dichlorobenzene	U		1.09	1.20
2,2,4-Trimethylpentane	U		0.621	0.934
Benzene	U		0.228	0.639
Benzyl Chloride	U		0.311	1.04
Bromodichloromethane	U		0.471	1.34
Bromoform	U		0.757	6.21
Bromomethane	U		0.381	0.776
Carbon tetrachloride	U		0.461	1.26
Chlorobenzene	U		0.385	0.924
Chloroethane	U		0.263	0.528
Chloroform	U		0.349	0.973
Cyclohexane	U		0.259	0.689
Chloromethane	U		0.213	0.413
cis-1,2-Dichloroethene	U		0.311	0.793
cis-1,3-Dichloropropene	U		0.313	0.908
Dibromochloromethane	U		0.618	1.70
Dichlorodifluoromethane	U		0.678	0.989
Ethylbenzene	U		0.362	0.867
Trichlorofluoromethane	U		0.460	1.12

0.608

0.622

0.726

1.12

0.313

0.233

1.53

1.40

2.22

6.73

5.12

0.721

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

ACCOUNT: NYDEC

U

U

U

U

1,1,2-Trichlorotrifluoroethane U

1,2-Dichlorotetrafluoroethane U

Hexachloro-1,3-butadiene

4-Methyl-2-pentanone (MIBK)

n-Hexane

MTBE

PROJECT: 130058 SDG: L1471925 DATE/TIME: 03/24/22 13:59 PAGE: 9 of 15 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3772917-3 03/22/22	2 09:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/m3		ug/m3	ug/m3
Methylene Chloride	U		0.340	0.694
Styrene	U		0.335	0.851
tert-Butyl alcohol	U		0.176	0.606
Tetrachloroethylene	U		0.553	1.36
Toluene	U		0.328	1.88
m&p-Xylene	U		0.585	1.73
o-Xylene	U		0.359	0.867
trans-1,2-Dichloroethene	U		0.267	0.793
trans-1,3-Dichloropropene	U		0.331	0.908
Trichloroethylene	U		0.364	1.07
Vinyl chloride	U		0.243	0.511
Naphthalene	U		1.83	3.30
(S) 1,4-Bromofluorobenzene	97.4			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3772917-1 03/22/											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%	
1,1,1-Trichloroethane	20.4	21.3	20.5	104	101	70.0-130			3.65	25	
1,1,2,2-Tetrachloroethane	25.8	25.3	25.4	98.1	98.4	70.0-130			0.271	25	
1,1,2-Trichloroethane	20.4	20.7	20.9	102	102	70.0-130			0.784	25	
1,1-Dichloroethane	15.0	15.8	15.1	105	101	70.0-130			4.66	25	
1,1-Dichloroethene	14.9	15.3	15.1	103	102	70.0-130			1.56	25	
1,2,4-Trichlorobenzene	27.8	27.8	27.4	100	98.7	70.0-160			1.34	25	
1,2,4-Trimethylbenzene	18.4	17.9	18.3	97.3	99.5	70.0-130			2.17	25	
1,2-Dibromoethane	28.8	30.0	29.6	104	103	70.0-130			1.29	25	
1,2-Dichlorobenzene	22.5	22.2	23.1	98.4	103	70.0-130			4.24	25	
1,2-Dichloroethane	15.2	15.5	15.0	102	98.7	70.0-130			3.19	25	
1,2-Dichloropropane	17.3	18.3	17.5	106	101	70.0-130			4.65	25	
1,3,5-Trimethylbenzene	18.4	18.5	18.9	101	103	70.0-130			2.10	25	
1,4-Dichlorobenzene	22.5	21.2	21.6	93.9	95.7	70.0-130			1.97	25	
1,4-Dioxane	13.5	13.6	14.1	101	104	70.0-140			3.38	25	
Methyl Ethyl Ketone	11.1	12.5	12.1	113	109	70.0-130			3.12	25	
1,3-Dichlorobenzene	22.5	21.9	22.7	97.3	101	70.0-130			3.50	25	
2,2,4-Trimethylpentane	17.5	18.3	18.0	104	103	70.0-130			1.55	25	
Benzene	12.0	12.3	12.1	102	101	70.0-130			1.57	25	
Benzyl Chloride	19.5	18.8	19.2	96.3	98.7	70.0-152			2.46	25	
Bromodichloromethane	25.2	26.4	26.0	105	103	70.0-130			1.79	25	

ACCOUNT: NYDEC PROJECT: 130058 SDG: L1471925 DATE/TIME: 03/24/22 13:59 PAGE: 10 of 15 Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(
((S) R3//291/-1	03/22/22 08:11 • (LCSD) R3772917-2 03/22/22 08:44	
(200) 10772017 1	(2002) 100 1 2 00 22 22 00 11	

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%	
Bromoform	38.8	37.0	36.8	95.5	94.9	70.0-130			0.560	25	
Bromomethane	14.6	15.1	15.0	104	103	70.0-130			0.774	25	
Carbon tetrachloride	23.6	24.5	23.6	104	100	70.0-130			3.66	25	
Chlorobenzene	17.3	17.5	17.1	101	98.7	70.0-130			2.14	25	
Chloroethane	9.89	10.2	10.2	103	103	70.0-130			0.000	25	
Chloroform	18.3	19.1	18.8	105	103	70.0-130			1.54	25	
Cyclohexane	12.9	13.9	13.1	108	102	70.0-130			5.86	25	
Chloromethane	7.75	8.30	7.89	107	102	70.0-130			5.10	25	
cis-1,2-Dichloroethene	14.9	15.1	15.2	102	102	70.0-130			0.522	25	
cis-1,3-Dichloropropene	17.0	17.5	17.5	103	103	70.0-130			0.000	25	
Dibromochloromethane	31.9	32.6	31.7	102	99.5	70.0-130			2.65	25	
Dichlorodifluoromethane	18.5	20.0	19.1	108	103	64.0-139			4.56	25	
Ethylbenzene	16.3	16.4	16.9	101	104	70.0-130			2.86	25	
Frichlorofluoromethane	21.1	21.9	21.4	104	101	70.0-130			2.34	25	
,1,2-Trichlorotrifluoroethane	28.7	29.7	29.0	103	101	70.0-130			2.35	25	
l,2-Dichlorotetrafluoroethane	26.2	27.3	26.5	104	101	70.0-130			2.86	25	
n-Hexane	13.2	13.8	13.5	104	102	70.0-130			2.33	25	
Hexachloro-1,3-butadiene	40.0	39.3	40.7	98.1	102	70.0-151			3.47	25	
1-Methyl-2-pentanone (MIBK)	15.4	15.3	15.7	99.7	102	70.0-139			2.38	25	
MTBE	13.5	14.2	14.1	105	104	70.0-130			1.27	25	
Methylene Chloride	13.0	13.4	13.4	103	103	70.0-130			0.259	25	
Styrene	16.0	16.4	16.5	103	104	70.0-130			1.03	25	
tert-Butyl alcohol	11.4	11.9	11.7	105	103	70.0-130			2.05	25	
Tetrachloroethylene	25.5	23.8	24.1	93.3	94.7	70.0-130			1.42	25	
Toluene	14.1	14.2	13.9	101	98.1	70.0-130			2.68	25	
m&p-Xylene	32.5	32.3	32.8	99.3	101	70.0-130			1.47	25	
o-Xylene	16.3	16.0	16.3	98.7	100	70.0-130			1.61	25	
rans-1,2-Dichloroethene	14.9	15.2	14.9	102	101	70.0-130			1.58	25	
rans-1,3-Dichloropropene	17.0	17.3	16.9	102	99.2	70.0-130			2.65	25	
Trichloroethylene	20.1	20.4	20.1	102	100	70.0-130			1.32	25	
/inyl chloride	9.59	10.3	9.74	107	102	70.0-130			5.36	25	
Naphthalene	19.6	18.3	18.3	93.1	93.1	70.0-159			0.000	25	
(S) 1,4-Bromofluorobenzene				96.8	100	60.0-140					

ACCOUNT: NYDEC PROJECT: 130058 SDG: L1471925 DATE/TIME: 03/24/22 13:59 PAGE: 11 of 15

WG1836954

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3773110-3 03/23/22	2 10:05			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/m3		ug/m3	ug/m3
Ethanol	U		0.500	2.36
(S) 1,4-Bromofluorobenzene	96.2			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3773110-1 03/23/22	2 08:44 • (LCSE	D) R3773110-2	03/23/22 09:2	6						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/m3	ug/m3	ug/m3	%	%	%			%	%
Ethanol	7.07	6.58	6.54	93.1	92.5	55.0-148			0.575	25
(S) 1,4-Bromofluorobenzene				98.7	98.5	60.0-140				

- 1-
² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

DATE/TIME: 03/24/22 13:59

PAGE: 12 of 15

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The identification of the analyte is acceptable; the reported value is an estimate.

PROJECT: 130058

SDG: L1471925 DATE/TIME: 03/24/22 13:59

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1471925 DATE/TIME: 03/24/22 13:59

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Company Name/Address: NYDEC 269 West Jefferson St.			Billing Information Accounts Pay 831 Route 67 Ballston, NY	yable				Analysis		Chain of Custody	Page of C C
Syracuse, NY 13202						E.				MT JUL	Juliet, TN 37122
Report To: Noah Robinson		defactor	Email To: nrobinson@eaest	LCOM		1.2000 1.2000 1.2000				Phone: 615-758-5858 All Submitting a sample v constitutes acknowled of the Pace Terms and https://info.pacelabs.cc	ia this chain of custody gment and acceptance Conditions found at:
Project Tres Bon Description:		City/State Collected: V		- Fanklin S	guade NY	Please Circle: PT MT CT				standard-terms.pdf	JN1975
Phone: 315-849-4194	130058		Lab Project # NYDEC-EA		ι					D147	4///05
Collected by (print): Lincoln Backman-Love	te/Facility ID # 130058	- 195. - 195	P.O. #	2523/0	2084		<u>a</u>			Acctnum: N Template: T2	YDEC 204878
Collected by (signature):	Rush? (Lab MUST Be I Same DayThree Next DayFive I	e Day			and and		5 Summa			PIVI.	W. Beasley
And Date Of T	Two Day	Standard	Col	llection	Canister Pre	ssure/Vacuum	T0-1			PB: CSC-8,	FedEX Ground
Sample ID	Can #	Flow Cont. #	Date	Time	Initial	Final	F			Rem./Contaminant	Sample # (lab only)
130058-IA-1	11128	021254	3/15/27	2 1506	30.0	6.5	X				-01
130058-IA-2	009782	011680	3/15/2	21517	30.0	7.0	X	and a		A STATE	- 02
130058-0A-1	020806	011718	3/15/22	1513	30.0	3.5	X			245	103
130058-DUP-1	12519	011692	3/13/22	1506	29.5	615	X		1		-04
200 00 000 2				CBD						-	
				1							
and the second		-									
	E.F. P. S.	nan na <u>sea</u> Nan Station Na Station		67	1	2-1-2-					
			L		June 1				K		
Sample R	eceipt Checklist		in the second se								
COC Seal Present/Intact: COC Signed/Accurate:	Y N VOA Zero Heads	pace: Y N		and the second s							- Mar
Bottles arrive intact:	Y N	neck:Y_N	Samples	eturned via:	17-14-14-15-15-15-15-15-15-15-15-15-15-15-15-15-			1000			To the second
Sufficient volume sent: RAD Screen <0.5 mR/hr:	N N		UPS -	FedExCourie	er	Tracking # 5349	7921	1897	Hold #		
Relinquished by : (Signature)	Kne 3/15	22 161		by: (Signature)		Date:	Time:	4	Condition	n: (lab	use only) OF
Relinquished by : (Signature)	Date:	Time:		by: (Signature)		Date:	Time:		COC Sea	l Intact: Y	N_NA
		1	5 1 5 1 5 F								

March 29, 2023

Michael Miller NYDEC_EA Engineering, Science & Tech. - NY 269 W. Jefferson Street Syracuse, NY 13202

Project Location: Franklin Square, NY Client Job Number: Project Number: 1602523.0011 Laboratory Work Order Number: 23C1351

Enclosed are results of analyses for samples as received by the laboratory on March 10, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kyle K. Stuckey Project Manager

hatherine F. allen

QA Officer Katherine Allen

Laboratory Manager Daren Damboragian

NYDEC_EA Engineering, Science & Tech. - NY 269 W. Jefferson Street Syracuse, NY 13202 ATTN: Michael Miller REPORT DATE: 3/29/2023

PURCHASE ORDER NUMBER: SMPC0001

EK NUMBER: SMIPC0001

PROJECT NUMBER: 1602523.0011

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23C1351

The results of analyses performed on the following samples submitted to Con-Test, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Franklin Square, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
130058-IA-1-0323	23C1351-01	Indoor air		EPA TO-15	
130058-IA-2-0323	23C1351-02	Indoor air		EPA TO-15	
130058-OA-1-0323	23C1351-03	Ambient Air		EPA TO-15	
130058-FD-1-0323	23C1351-04	Indoor air		EPA TO-15	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Oual	lifications:	
Qua	mications.	

EPA TO-15

E Reported result is estimated. Value reported over verified calibration range.

Analyte & Samples(s) Qualified:

Ethanol

23C1351-01[130058-IA-1-0323], 23C1351-02RE1[130058-IA-2-0323], 23C1351-03[130058-OA-1-0323], 23C1351-04[130058-FD-1-0323], 23C1351-04[130058-FD-1-04], 23C1351-04[130058-FD-1-04], 23C1351-04[130058-FD-1-04], 23C1351-04[130058-FD-1-04], 23C1351-04[130058-FD-1-04], 23C1351-04[130058-FD-1-04], 23C1351-04[100058-FD-1-04], 23C1350-04[100058-FD-1-04], 23C140-04[100058-FD-1-04], 23C140-04[100058-FD-1-04], 23C140-04[100058-FD-1-04], 23C140-04[100058-FD-1-04], 23C140-04[10000058-FD-1-04], 23C140-04[100058-FD-1-04

L-01 Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.

Analyte & Samples(s) Qualified:

Benzyl chloride

B335600-BS1

L-03 Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Hexachlorobutadiene, Naphthalene

23C1351-01[130058-IA-1-0323], 23C1351-02[130058-IA-2-0323], 23C1351-03[130058-OA-1-0323], 23C1351-04[130058-FD-1-0323], B335600-BLK1, B335600-BS1

V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Hexachlorobutadiene, Naphthalene

23C1351-01[130058-IA-1-0323], 23C1351-02[130058-IA-2-0323], 23C1351-03[130058-OA-1-0323], 23C1351-04[130058-FD-1-0323], B335600-BLK1, B335600-BS1, S085202-CCV1

V-20 Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Benzyl chloride

B335600-BS1, S085202-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan S. Kelley

Meghan E. Kelley Reporting Specialist

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-IA-1-0323 Sample ID: 23C1351-01 Sample Matrix: Indoor air Sampled: 3/7/2023 09:35 Sample Description/Location: Sub Description/Location: Canister ID: 1618 Canister Size: 6 liter Flow Controller ID: 3417 Sample Type: 24 hr

ANALYTICAL RESULTS

Work Order: 23C1351 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -13 Receipt Vacuum(in Hg): -12.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	EPA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	8.3	1.4	0.84		20	3.3	2.0	0.696	3/23/23 14:44	CMR
Benzene	1.3	0.035	0.026		4.3	0.11	0.084	0.696	3/23/23 14:44	CMR
Benzyl chloride	ND	0.035	0.031		ND	0.18	0.16	0.696	3/23/23 14:44	CMR
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.696	3/23/23 14:44	CMR
Bromoform	ND	0.035	0.024		ND	0.36	0.24	0.696	3/23/23 14:44	CMR
Bromomethane	ND	0.035	0.023		ND	0.14	0.090	0.696	3/23/23 14:44	CMR
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.696	3/23/23 14:44	CMR
2-Butanone (MEK)	0.47	1.4	0.37	J	1.4	4.1	1.1	0.696	3/23/23 14:44	CMR
Carbon Disulfide	0.042	0.35	0.032	J	0.13	1.1	0.10	0.696	3/23/23 14:44	CMR
Carbon Tetrachloride	0.036	0.035	0.028		0.23	0.22	0.17	0.696	3/23/23 14:44	CMR
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.696	3/23/23 14:44	CMR
Chloroethane	0.068	0.035	0.031		0.18	0.092	0.081	0.696	3/23/23 14:44	CMR
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.696	3/23/23 14:44	CMR
Chloromethane	0.68	0.070	0.028		1.4	0.14	0.057	0.696	3/23/23 14:44	CMR
Cyclohexane	0.058	0.035	0.021		0.20	0.12	0.072	0.696	3/23/23 14:44	CMR
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.696	3/23/23 14:44	CMR
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.696	3/23/23 14:44	CMR
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.696	3/23/23 14:44	CMR
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.696	3/23/23 14:44	CMR
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.696	3/23/23 14:44	CMR
Dichlorodifluoromethane (Freon 12)	0.48	0.035	0.034		2.4	0.17	0.17	0.696	3/23/23 14:44	CMR
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.696	3/23/23 14:44	CMR
1,2-Dichloroethane	0.043	0.035	0.032		0.17	0.14	0.13	0.696	3/23/23 14:44	CMR
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.696	3/23/23 14:44	CMR
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.696	3/23/23 14:44	CMR
trans-1,2-Dichloroethylene	0.062	0.035	0.027		0.25	0.14	0.11	0.696	3/23/23 14:44	CMR
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.696	3/23/23 14:44	CMR
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.696	3/23/23 14:44	CMR
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.696	3/23/23 14:44	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.696	3/23/23 14:44	CMR
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.696	3/23/23 14:44	CMR
Ethanol	350	1.4	0.61	Е	670	2.6	1.2	0.696	3/23/23 14:44	CMR
Ethyl Acetate	0.68	0.35	0.18		2.4	1.3	0.63	0.696	3/23/23 14:44	CMR
Ethylbenzene	0.12	0.035	0.020		0.50	0.15	0.088	0.696	3/23/23 14:44	CMR
4-Ethyltoluene	0.025	0.035	0.021	J	0.12	0.17	0.11	0.696	3/23/23 14:44	CMR
Heptane	0.43	0.035	0.022		1.8	0.14	0.091	0.696	3/23/23 14:44	CMR
Hexachlorobutadiene	ND	0.035	0.029	L-03, V-05	ND	0.37	0.31	0.696	3/23/23 14:44	CMR
Hexane	0.20	1.4	0.18	, J	0.70	4.9	0.64	0.696	3/23/23 14:44	CMR
2-Hexanone (MBK)	ND	0.035	0.017	-	ND	0.14	0.071	0.696	3/23/23 14:44	CMR
Isopropanol	2.1	1.4	0.24		5.2	3.4	0.59	0.696	3/23/23 14:44	CMR
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.696	3/23/23 14:44	CMR
Methylene Chloride	0.20	0.35	0.16	J	0.71	1.2	0.56	0.696	3/23/23 14:44	CMR
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.019		ND	0.14	0.076	0.696	3/23/23 14:44	CMR
Naphthalene	0.11	0.035	0.019	L-03, V-05	0.55	0.14	0.14	0.696	3/23/23 14:44	CMR
Propene	ND	1.4	0.31	2 00, 1 00	ND	2.4	0.53	0.696	3/23/23 14:44	CMR
Styrene	0.21	0.035	0.018		0.90	0.15	0.078	0.696	3/23/23 14:44	CMR
1,1,2,2-Tetrachloroethane	ND	0.035	0.010		ND	0.13	0.13	0.696	3/23/23 14:44	CMR
-,-,	112	0.000	0.017			0.21	5.15	0.070		5 of 32

Page 5 of 32

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-IA-1-0323 Sample ID: 23C1351-01 Sample Matrix: Indoor air Sampled: 3/7/2023 09:35 Sample Description/Location: Sub Description/Location: Canister ID: 1618 Canister Size: 6 liter Flow Controller ID: 3417 Sample Type: 24 hr Work Order: 23C1351 Initial Vacuum(in Hg): -30 Final Vacuum(in Hg): -13 Receipt Vacuum(in Hg): -12.1 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	4.8	0.035	0.027		32	0.24	0.18	0.696	3/23/23 14:44	CMR
Tetrahydrofuran	0.16	0.35	0.057	J	0.46	1.0	0.17	0.696	3/23/23 14:44	CMR
Toluene	0.48	0.035	0.020		1.8	0.13	0.075	0.696	3/23/23 14:44	CMR
1,2,4-Trichlorobenzene	ND	0.035	0.032		ND	0.26	0.24	0.696	3/23/23 14:44	CMR
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.696	3/23/23 14:44	CMR
1,1,2-Trichloroethane	ND	0.035	0.024		ND	0.19	0.13	0.696	3/23/23 14:44	CMR
Trichloroethylene	ND	0.035	0.023		ND	0.19	0.13	0.696	3/23/23 14:44	CMR
Trichlorofluoromethane (Freon 11)	0.12	0.14	0.041	J	0.67	0.78	0.23	0.696	3/23/23 14:44	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.14	0.039		ND	1.1	0.30	0.696	3/23/23 14:44	CMR
1,2,4-Trimethylbenzene	0.12	0.035	0.015		0.58	0.17	0.076	0.696	3/23/23 14:44	CMR
1,3,5-Trimethylbenzene	0.029	0.035	0.018	J	0.14	0.17	0.090	0.696	3/23/23 14:44	CMR
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.696	3/23/23 14:44	CMR
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.696	3/23/23 14:44	CMR
m&p-Xylene	0.23	0.070	0.039		0.98	0.30	0.17	0.696	3/23/23 14:44	CMR
o-Xylene	0.10	0.035	0.018		0.44	0.15	0.077	0.696	3/23/23 14:44	CMR
Surrogates	% Recov	very		% REC	C Limits					

4-Bromofluorobenzene (1)

108

70-130

3/23/23 14:44

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-IA-2-0323 Sample ID: 23C1351-02 Sample Matrix: Indoor air Sampled: 3/7/2023 09:40 Sample Description/Location: Sub Description/Location: Canister ID: 2157 Canister Size: 6 liter Flow Controller ID: 3731 Sample Type: 24 hr Work Order: 23C1351 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -14 Receipt Vacuum(in Hg): -13.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		F	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	21	1.6	0.97		50	3.8	2.3	0.8	3/23/23 15:16	CMR
Benzene	0.50	0.040	0.030		1.6	0.13	0.097	0.8	3/23/23 15:16	CMR
Benzyl chloride	ND	0.040	0.035		ND	0.21	0.18	0.8	3/23/23 15:16	CMR
Bromodichloromethane	ND	0.040	0.028		ND	0.27	0.19	0.8	3/23/23 15:16	CMR
Bromoform	ND	0.040	0.027		ND	0.41	0.28	0.8	3/23/23 15:16	CMR
Bromomethane	ND	0.040	0.027		ND	0.16	0.10	0.8	3/23/23 15:16	CMR
1,3-Butadiene	ND	0.040	0.034		ND	0.088	0.074	0.8	3/23/23 15:16	CMR
2-Butanone (MEK)	1.6	1.6	0.43	J	4.6	4.7	1.3	0.8	3/23/23 15:16	CMR
Carbon Disulfide	0.51	0.40	0.037		1.6	1.2	0.12	0.8	3/23/23 15:16	CMR
Carbon Tetrachloride	0.073	0.040	0.032		0.46	0.25	0.20	0.8	3/23/23 15:16	CMR
Chlorobenzene	ND	0.040	0.027		ND	0.18	0.12	0.8	3/23/23 15:16	CMR
Chloroethane	ND	0.040	0.035		ND	0.11	0.094	0.8	3/23/23 15:16	CMR
Chloroform	ND	0.040	0.038		ND	0.20	0.19	0.8	3/23/23 15:16	CMR
Chloromethane	0.64	0.080	0.032		1.3	0.17	0.066	0.8	3/23/23 15:16	CMR
Cyclohexane	0.051	0.040	0.024		0.18	0.14	0.083	0.8	3/23/23 15:16	CMR
Dibromochloromethane	ND	0.040	0.026		ND	0.34	0.23	0.8	3/23/23 15:16	CMR
1,2-Dibromoethane (EDB)	ND	0.040	0.024		ND	0.31	0.19	0.8	3/23/23 15:16	CMR
1,2-Dichlorobenzene	ND	0.040	0.023		ND	0.24	0.14	0.8	3/23/23 15:16	CMR
1,3-Dichlorobenzene	ND	0.040	0.022		ND	0.24	0.13	0.8	3/23/23 15:16	CMR
1,4-Dichlorobenzene	ND	0.040	0.026		ND	0.24	0.16	0.8	3/23/23 15:16	CMR
Dichlorodifluoromethane (Freon 12)	ND	0.040	0.039		ND	0.20	0.19	0.8	3/23/23 15:16	CMR
1,1-Dichloroethane	ND	0.040	0.035		ND	0.16	0.14	0.8	3/23/23 15:16	CMR
1,2-Dichloroethane	ND	0.040	0.036		ND	0.16	0.15	0.8	3/23/23 15:16	CMR
1,1-Dichloroethylene	ND	0.040	0.030		ND	0.16	0.12	0.8	3/23/23 15:16	CMR
cis-1,2-Dichloroethylene	0.74	0.040	0.029		3.0	0.16	0.12	0.8	3/23/23 15:16	CMR
trans-1,2-Dichloroethylene	ND	0.040	0.031		ND	0.16	0.12	0.8	3/23/23 15:16	CMR
1,2-Dichloropropane	ND	0.040	0.022		ND	0.18	0.12	0.8	3/23/23 15:16	CMR
cis-1,3-Dichloropropene	ND	0.040	0.022		ND	0.18	0.094	0.8	3/23/23 15:16	CMR
trans-1,3-Dichloropropene	ND	0.040	0.021		ND	0.18	0.093	0.8	3/23/23 15:16	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.040	0.020		ND	0.18	0.095	0.8	3/23/23 15:10	CMR
1,4-Dioxane	ND	0.40	0.033		ND	1.4	0.12	0.8	3/23/23 15:16	CMR
Ethanol	5800	80	35	Е	11000	1.4	66	40	3/24/23 22:43	ТРН
Ethyl Acetate	2.6	0.40	0.20	L	9.5	1.4	0.73	0.8	3/23/23 15:16	CMR
Ethylbenzene	0.060	0.40	0.023		0.26	0.17	0.75	0.8	3/23/23 15:10	CMR
5	0.000	0.040	0.023	J	0.20	0.17	0.10	0.8	3/23/23 15:16	CMR
4-Ethyltoluene	0.18			J	0.13				3/23/23 15:16	CMR
Heptane	0.18 ND	0.040 0.040	0.026	1 02 1/05	0.76 ND	0.16 0.43	0.10	0.8		
Hexachlorobutadiene			0.033	L-03, V-05			0.35	0.8	3/23/23 15:16 3/23/23 15:16	CMR
Hexane	ND	1.6	0.21		ND	5.6	0.73	0.8		CMR
2-Hexanone (MBK)	0.28	0.040	0.020		1.1	0.16	0.082	0.8	3/23/23 15:16	CMR
Isopropanol	2.8	1.6	0.28		6.9	3.9	0.68	0.8	3/23/23 15:16	CMR
Methyl tert-Butyl Ether (MTBE)	ND	0.040	0.031		ND	0.14	0.11	0.8	3/23/23 15:16	CMR
Methylene Chloride	ND	0.40	0.19		ND	1.4	0.64	0.8	3/23/23 15:16	CMR
4-Methyl-2-pentanone (MIBK)	ND	0.040	0.021		ND	0.16	0.088	0.8	3/23/23 15:16	CMR
Naphthalene	ND	0.040	0.030	L-03, V-05	ND	0.21	0.16	0.8	3/23/23 15:16	CMR
Propene	ND	1.6	0.35		ND	2.8	0.61	0.8	3/23/23 15:16	CMR
Styrene	0.081	0.040	0.021		0.34	0.17	0.090	0.8	3/23/23 15:16	CMR
1,1,2,2-Tetrachloroethane	ND	0.040	0.022		ND	0.27	0.15	0.8	3/23/23 15:16	CMR

Page 7 of 32

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-IA-2-0323 Sample ID: 23C1351-02 Sample Matrix: Indoor air Sampled: 3/7/2023 09:40 Sample Description/Location: Sub Description/Location: Canister ID: 2157 Canister Size: 6 liter Flow Controller ID: 3731 Sample Type: 24 hr

Work Order: 23C1351 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -14 Receipt Vacuum(in Hg): -13.7 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	1.7	0.040	0.031		12	0.27	0.21	0.8	3/23/23 15:16	CMR
Tetrahydrofuran	ND	0.40	0.066		ND	1.2	0.19	0.8	3/23/23 15:16	CMR
Toluene	0.30	0.040	0.023		1.1	0.15	0.086	0.8	3/23/23 15:16	CMR
1,2,4-Trichlorobenzene	ND	0.040	0.037		ND	0.30	0.27	0.8	3/23/23 15:16	CMR
1,1,1-Trichloroethane	ND	0.040	0.031		ND	0.22	0.17	0.8	3/23/23 15:16	CMR
1,1,2-Trichloroethane	ND	0.040	0.028		ND	0.22	0.15	0.8	3/23/23 15:16	CMR
Trichloroethylene	0.046	0.040	0.027		0.25	0.21	0.14	0.8	3/23/23 15:16	CMR
Trichlorofluoromethane (Freon 11)	0.24	0.16	0.047		1.3	0.90	0.27	0.8	3/23/23 15:16	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.092	0.16	0.044	J	0.71	1.2	0.34	0.8	3/23/23 15:16	CMR
1,2,4-Trimethylbenzene	0.11	0.040	0.018		0.52	0.20	0.087	0.8	3/23/23 15:16	CMR
1,3,5-Trimethylbenzene	0.047	0.040	0.021		0.23	0.20	0.10	0.8	3/23/23 15:16	CMR
Vinyl Acetate	ND	0.80	0.21		ND	2.8	0.76	0.8	3/23/23 15:16	CMR
Vinyl Chloride	ND	0.040	0.036		ND	0.10	0.092	0.8	3/23/23 15:16	CMR
m&p-Xylene	0.15	0.080	0.045		0.64	0.35	0.19	0.8	3/23/23 15:16	CMR
o-Xylene	0.069	0.040	0.020		0.30	0.17	0.089	0.8	3/23/23 15:16	CMR
Surrogates	% Recov	very		% REC	C Limits					
4-Bromofluorobenzene (1)		105		70-	-130				3/24/23 22:43	
4-Bromofluorobenzene (1)		108		70-	130				3/23/23 15:16	

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-OA-1-0323 Sample ID: 23C1351-03 Sample Matrix: Ambient Air Sampled: 3/7/2023 09:36 Sample Description/Location: Sub Description/Location: Canister ID: 1073 Canister Size: 6 liter Flow Controller ID: 3732 Sample Type: 24 hr

Work Order: 23C1351 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -12 Receipt Vacuum(in Hg): -11.5 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	3.7	1.4	0.84		8.8	3.3	2.0	0.696	3/23/23 15:48	CMR
Benzene	0.20	0.035	0.026		0.65	0.11	0.084	0.696	3/23/23 15:48	CMR
Benzyl chloride	ND	0.035	0.031		ND	0.18	0.16	0.696	3/23/23 15:48	CMR
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.696	3/23/23 15:48	CMR
Bromoform	ND	0.035	0.024		ND	0.36	0.24	0.696	3/23/23 15:48	CMR
Bromomethane	ND	0.035	0.023		ND	0.14	0.090	0.696	3/23/23 15:48	CMR
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.696	3/23/23 15:48	CMR
2-Butanone (MEK)	0.51	1.4	0.37	J	1.5	4.1	1.1	0.696	3/23/23 15:48	CMR
Carbon Disulfide	ND	0.35	0.032		ND	1.1	0.10	0.696	3/23/23 15:48	CMR
Carbon Tetrachloride	0.065	0.035	0.028		0.41	0.22	0.17	0.696	3/23/23 15:48	CMR
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.696	3/23/23 15:48	CMR
Chloroethane	ND	0.035	0.031		ND	0.092	0.081	0.696	3/23/23 15:48	CMR
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.696	3/23/23 15:48	CMR
Chloromethane	0.62	0.070	0.028		1.3	0.14	0.057	0.696	3/23/23 15:48	CMR
Cyclohexane	0.028	0.035	0.021	J	0.096	0.12	0.072	0.696	3/23/23 15:48	CMR
Dibromochloromethane	ND	0.035	0.023	-	ND	0.30	0.20	0.696	3/23/23 15:48	CMR
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.696	3/23/23 15:48	CMR
1,2-Dichlorobenzene	ND	0.035	0.021		ND	0.21	0.12	0.696	3/23/23 15:48	CMR
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.696	3/23/23 15:48	CMR
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.12	0.696	3/23/23 15:48	CMR
Dichlorodifluoromethane (Freon 12)	0.64	0.035	0.034		3.2	0.17	0.14	0.696	3/23/23 15:48	CMR
1,1-Dichloroethane	ND	0.035	0.034		ND	0.14	0.17	0.696	3/23/23 15:48	CMR
1,2-Dichloroethane	ND	0.035	0.032		ND	0.14	0.12	0.696	3/23/23 15:48	CMR
1,1-Dichloroethylene	ND	0.035	0.032		ND	0.14	0.13	0.696	3/23/23 15:48	CMR
cis-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.696	3/23/23 15:48	CMR
trans-1,2-Dichloroethylene	ND	0.035	0.023		ND	0.14	0.10	0.696	3/23/23 15:48	CMR
1,2-Dichloropropane	ND	0.035	0.027		ND	0.14	0.087	0.696	3/23/23 15:48	CMR
	ND	0.035								
cis-1,3-Dichloropropene	ND		0.018		ND	0.16	0.082	0.696	3/23/23 15:48	CMR
trans-1,3-Dichloropropene	ND	0.035 0.035	0.018		ND ND	0.16 0.24	0.081 0.24	0.696	3/23/23 15:48	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND		0.034		ND			0.696	3/23/23 15:48	CMR
1,4-Dioxane		0.35	0.029	г		1.3	0.10	0.696	3/23/23 15:48	CMR
Ethanol	66 ND	1.4	0.61	Е	120	2.6	1.2	0.696	3/23/23 15:48	CMR
Ethyl Acetate	ND	0.35	0.18		ND	1.3	0.63	0.696	3/23/23 15:48	CMR
Ethylbenzene	0.035	0.035	0.020		0.15	0.15	0.088	0.696	3/23/23 15:48	CMR
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.696	3/23/23 15:48	CMR
Heptane	0.093	0.035	0.022	1 02 1105	0.38	0.14	0.091	0.696	3/23/23 15:48	CMR
Hexachlorobutadiene	ND	0.035	0.029	L-03, V-05	ND	0.37	0.31	0.696	3/23/23 15:48	CMR
Hexane	ND	1.4	0.18		ND	4.9	0.64	0.696	3/23/23 15:48	CMR
2-Hexanone (MBK)	0.079	0.035	0.017	Ţ	0.32	0.14	0.071	0.696	3/23/23 15:48	CMR
Isopropanol	0.67	1.4	0.24	J	1.6	3.4	0.59	0.696	3/23/23 15:48	CMR
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.696	3/23/23 15:48	CMR
Methylene Chloride	ND	0.35	0.16		ND	1.2	0.56	0.696	3/23/23 15:48	CMR
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.019		ND	0.14	0.076	0.696	3/23/23 15:48	CMR
Naphthalene	ND	0.035	0.026	L-03, V-05	ND	0.18	0.14	0.696	3/23/23 15:48	CMR
Propene	ND	1.4	0.31		ND	2.4	0.53	0.696	3/23/23 15:48	CMR
Styrene	ND	0.035	0.018		ND	0.15	0.078	0.696	3/23/23 15:48	CMR
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.696	3/23/23 15:48	CMR

Page 9 of 32

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-OA-1-0323 Sample ID: 23C1351-03 Sample Matrix: Ambient Air Sampled: 3/7/2023 09:36 Sample Description/Location: Sub Description/Location: Canister ID: 1073 Canister Size: 6 liter Flow Controller ID: 3732 Sample Type: 24 hr Work Order: 23C1351 Initial Vacuum(in Hg): -29 Final Vacuum(in Hg): -12 Receipt Vacuum(in Hg): -11.5 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	0.053	0.035	0.027		0.36	0.24	0.18	0.696	3/23/23 15:48	CMR
Tetrahydrofuran	ND	0.35	0.057		ND	1.0	0.17	0.696	3/23/23 15:48	CMR
Toluene	0.21	0.035	0.020		0.78	0.13	0.075	0.696	3/23/23 15:48	CMR
1,2,4-Trichlorobenzene	ND	0.035	0.032		ND	0.26	0.24	0.696	3/23/23 15:48	CMR
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.696	3/23/23 15:48	CMR
1,1,2-Trichloroethane	ND	0.035	0.024		ND	0.19	0.13	0.696	3/23/23 15:48	CMR
Trichloroethylene	ND	0.035	0.023		ND	0.19	0.13	0.696	3/23/23 15:48	CMR
Trichlorofluoromethane (Freon 11)	0.22	0.14	0.041		1.3	0.78	0.23	0.696	3/23/23 15:48	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	0.079	0.14	0.039	J	0.61	1.1	0.30	0.696	3/23/23 15:48	CMR
1,2,4-Trimethylbenzene	0.038	0.035	0.015		0.19	0.17	0.076	0.696	3/23/23 15:48	CMR
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.090	0.696	3/23/23 15:48	CMR
Vinyl Acetate	ND	0.70	0.19		ND	2.5	0.66	0.696	3/23/23 15:48	CMR
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.696	3/23/23 15:48	CMR
m&p-Xylene	0.11	0.070	0.039		0.46	0.30	0.17	0.696	3/23/23 15:48	CMR
o-Xylene	0.046	0.035	0.018		0.20	0.15	0.077	0.696	3/23/23 15:48	CMR

Surrogates

4-Bromofluorobenzene (1)

108

% Recovery

% REC Limits

70-130

3/23/23 15:48

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-FD-1-0323 Sample ID: 23C1351-04 Sample Matrix: Indoor air Sampled: 3/7/2023 09:36 Sample Description/Location: Sub Description/Location: Canister ID: 2158 Canister Size: 6 liter Flow Controller ID: 3508 Sample Type: 24 hr Work Order: 23C1351 Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -8.0 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Acetone	9.9	1.4	0.84		23	3.3	2.0	0.698	3/23/23 16:20	CMR
Benzene	1.3	0.035	0.026		4.1	0.11	0.084	0.698	3/23/23 16:20	CMR
Benzyl chloride	ND	0.035	0.031		ND	0.18	0.16	0.698	3/23/23 16:20	CMR
Bromodichloromethane	ND	0.035	0.024		ND	0.23	0.16	0.698	3/23/23 16:20	CMR
Bromoform	ND	0.035	0.024		ND	0.36	0.25	0.698	3/23/23 16:20	CMR
Bromomethane	ND	0.035	0.023		ND	0.14	0.090	0.698	3/23/23 16:20	CMR
1,3-Butadiene	ND	0.035	0.029		ND	0.077	0.065	0.698	3/23/23 16:20	CMR
2-Butanone (MEK)	0.80	1.4	0.37	J	2.4	4.1	1.1	0.698	3/23/23 16:20	CMR
Carbon Disulfide	0.033	0.35	0.032	J	0.10	1.1	0.10	0.698	3/23/23 16:20	CMR
Carbon Tetrachloride	0.038	0.035	0.028		0.24	0.22	0.17	0.698	3/23/23 16:20	CMR
Chlorobenzene	ND	0.035	0.023		ND	0.16	0.11	0.698	3/23/23 16:20	CMR
Chloroethane	0.060	0.035	0.031		0.16	0.092	0.082	0.698	3/23/23 16:20	CMR
Chloroform	ND	0.035	0.033		ND	0.17	0.16	0.698	3/23/23 16:20	CMR
Chloromethane	0.65	0.070	0.028		1.3	0.14	0.057	0.698	3/23/23 16:20	CMR
Cyclohexane	0.046	0.035	0.021		0.16	0.12	0.073	0.698	3/23/23 16:20	CMR
Dibromochloromethane	ND	0.035	0.023		ND	0.30	0.20	0.698	3/23/23 16:20	CMR
1,2-Dibromoethane (EDB)	ND	0.035	0.021		ND	0.27	0.16	0.698	3/23/23 16:20	CMR
1,2-Dichlorobenzene	ND	0.035	0.020		ND	0.21	0.12	0.698	3/23/23 16:20	CMR
1,3-Dichlorobenzene	ND	0.035	0.019		ND	0.21	0.12	0.698	3/23/23 16:20	CMR
1,4-Dichlorobenzene	ND	0.035	0.023		ND	0.21	0.14	0.698	3/23/23 16:20	CMR
Dichlorodifluoromethane (Freon 12)	0.49	0.035	0.034		2.4	0.17	0.17	0.698	3/23/23 16:20	CMR
1,1-Dichloroethane	ND	0.035	0.030		ND	0.14	0.12	0.698	3/23/23 16:20	CMR
1,2-Dichloroethane	0.038	0.035	0.032		0.16	0.14	0.13	0.698	3/23/23 16:20	CMR
1,1-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	3/23/23 16:20	CMR
cis-1,2-Dichloroethylene	ND	0.035	0.025		ND	0.14	0.10	0.698	3/23/23 16:20	CMR
trans-1,2-Dichloroethylene	ND	0.035	0.027		ND	0.14	0.11	0.698	3/23/23 16:20	CMR
1,2-Dichloropropane	ND	0.035	0.019		ND	0.16	0.087	0.698	3/23/23 16:20	CMR
cis-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.082	0.698	3/23/23 16:20	CMR
trans-1,3-Dichloropropene	ND	0.035	0.018		ND	0.16	0.081	0.698	3/23/23 16:20	CMR
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.035	0.034		ND	0.24	0.24	0.698	3/23/23 16:20	CMR
1,4-Dioxane	ND	0.35	0.029		ND	1.3	0.10	0.698	3/23/23 16:20	CMR
Ethanol	350	1.4	0.62	Е	660	2.6	1.2	0.698	3/23/23 16:20	CMR
Ethyl Acetate	0.76	0.35	0.18		2.7	1.3	0.64	0.698	3/23/23 16:20	CMR
Ethylbenzene	0.087	0.035	0.020		0.38	0.15	0.088	0.698	3/23/23 16:20	CMR
4-Ethyltoluene	ND	0.035	0.021		ND	0.17	0.11	0.698	3/23/23 16:20	CMR
Heptane	0.32	0.035	0.022		1.3	0.14	0.091	0.698	3/23/23 16:20	CMR
Hexachlorobutadiene	ND	0.035	0.029	L-03, V-05	ND	0.37	0.31	0.698	3/23/23 16:20	CMR
Hexane	ND	1.4	0.18	,	ND	4.9	0.64	0.698	3/23/23 16:20	CMR
2-Hexanone (MBK)	0.15	0.035	0.017		0.61	0.14	0.071	0.698	3/23/23 16:20	CMR
Isopropanol	2.5	1.4	0.24		6.1	3.4	0.59	0.698	3/23/23 16:20	CMR
Methyl tert-Butyl Ether (MTBE)	ND	0.035	0.027		ND	0.13	0.097	0.698	3/23/23 16:20	CMR
Methylene Chloride	0.20	0.35	0.16	J	0.68	1.2	0.56	0.698	3/23/23 16:20	CMR
4-Methyl-2-pentanone (MIBK)	ND	0.035	0.019	-	ND	0.14	0.076	0.698	3/23/23 16:20	CMR
Naphthalene	ND	0.035	0.026	L-03, V-05	ND	0.18	0.14	0.698	3/23/23 16:20	CMR
Propene	ND	1.4	0.31	,	ND	2.4	0.53	0.698	3/23/23 16:20	CMR
Styrene	0.22	0.035	0.018		0.92	0.15	0.078	0.698	3/23/23 16:20	CMR
1,1,2,2-Tetrachloroethane	ND	0.035	0.019		ND	0.24	0.13	0.698	3/23/23 16:20	CMR
, , ,	112							2.070	Dage 1	

Page 11 of 32

ANALYTICAL RESULTS

Project Location: Franklin Square, NY Date Received: 3/10/2023 Field Sample #: 130058-FD-1-0323 Sample ID: 23C1351-04 Sample Matrix: Indoor air Sampled: 3/7/2023 09:36 Sample Description/Location: Sub Description/Location: Canister ID: 2158 Canister Size: 6 liter Flow Controller ID: 3508 Sample Type: 24 hr Work Order: 23C1351 Initial Vacuum(in Hg): -28 Final Vacuum(in Hg): -7 Receipt Vacuum(in Hg): -8.0 Flow Controller Type: Fixed-Orifice Flow Controller Calibration RPD Pre and Post-Sampling: <20%

		E	PA TO-15							
		ppbv				ug/m3			Date/Time	
Analyte	Results	RL	MDL	Flag/Qual	Results	RL	MDL	Dilution	Analyzed	Analyst
Tetrachloroethylene	4.6	0.035	0.027		31	0.24	0.18	0.698	3/23/23 16:20	CMR
Tetrahydrofuran	ND	0.35	0.057		ND	1.0	0.17	0.698	3/23/23 16:20	CMR
Toluene	0.42	0.035	0.020		1.6	0.13	0.075	0.698	3/23/23 16:20	CMR
1,2,4-Trichlorobenzene	ND	0.035	0.032		ND	0.26	0.24	0.698	3/23/23 16:20	CMR
1,1,1-Trichloroethane	ND	0.035	0.027		ND	0.19	0.15	0.698	3/23/23 16:20	CMR
1,1,2-Trichloroethane	ND	0.035	0.025		ND	0.19	0.13	0.698	3/23/23 16:20	CMR
Trichloroethylene	ND	0.035	0.024		ND	0.19	0.13	0.698	3/23/23 16:20	CMR
Trichlorofluoromethane (Freon 11)	0.12	0.14	0.041	J	0.68	0.78	0.23	0.698	3/23/23 16:20	CMR
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.14	0.039		ND	1.1	0.30	0.698	3/23/23 16:20	CMR
1,2,4-Trimethylbenzene	0.058	0.035	0.015		0.28	0.17	0.076	0.698	3/23/23 16:20	CMR
1,3,5-Trimethylbenzene	ND	0.035	0.018		ND	0.17	0.091	0.698	3/23/23 16:20	CMR
Vinyl Acetate	0.65	0.70	0.19	J	2.3	2.5	0.66	0.698	3/23/23 16:20	CMR
Vinyl Chloride	ND	0.035	0.031		ND	0.089	0.080	0.698	3/23/23 16:20	CMR
m&p-Xylene	0.15	0.070	0.039		0.66	0.30	0.17	0.698	3/23/23 16:20	CMR
o-Xylene	0.072	0.035	0.018		0.31	0.15	0.078	0.698	3/23/23 16:20	CMR
Surrogates	% Recov	very		% REC	Limits					

4-Bromofluorobenzene (1)

109

70-130

3/23/23 16:20

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-15		Pressure		Pre-Dil	Pre-Dil Final	Default	Actual	
Lab Number [Field ID]	Batch	Pressure Dilution	Pre Dilution	Initial mL	Final mL	Injection mL	Injection mL	Date
23C1351-02RE1 [130058-IA-2-0323]	B335323	2	1	N/A	1000	200	10	03/24/23
Prep Method: TO-15 Prep-EPA TO-15		Pressure	Pre	Pre-Dil Initial	Pre-Dil Final	Default Injection	Actual Injection	
Lab Number [Field ID]				interat	1 11141	injection	injection	
	Batch	Dilution	Dilution	mL	mL	mL	mL	Date
23C1351-01 [130058-IA-1-0323]	Batch B335600	1.74	Dilution 1	mL N/A	mL 1000	mL 200	mL 500	Date 03/23/23
i			Dilution 1 1					
23C1351-01 [130058-IA-1-0323]	B335600	1.74	Dilution 1 1 1	N/A	1000	200	500	03/23/23

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppl	bv	ug/r	n3	Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B335323 - TO-15 Prep											
Blank (B335323-BLK1)					Prepared & A	Analyzed: 03	/24/23				
Acetone	ND	0.80									
2-Butanone (MEK)	ND	0.80									
Ethanol	ND	0.80									
4-Ethyltoluene	ND	0.020									
Isopropanol	0.21	0.80									
1,2,4-Trimethylbenzene	ND	0.020									
1,3,5-Trimethylbenzene	ND	0.020									
Surrogate: 4-Bromofluorobenzene (1)	8.56				8.00		107	70-130			
LCS (B335323-BS1)					Prepared & A	Analyzed: 03	/24/23				
Acetone	4.90				5.00		98.1	70-130			
2-Butanone (MEK)	4.10				5.00		81.9	70-130			
Ethanol	4.52				5.00		90.5	70-130			
4-Ethyltoluene	4.62				5.00		92.5	70-130			
Isopropanol	3.98				5.00		79.5	70-130			
1,2,4-Trimethylbenzene	4.56				5.00		91.2	70-130			
1,3,5-Trimethylbenzene	4.58				5.00		91.5	70-130			
Surrogate: 4-Bromofluorobenzene (1)	8.60				8.00		107	70-130			

Batch B335600 - TO-15 Prep

cis-1,2-Dichloroethylene

ND

0.020

Blank (B335600-BLK1)			Prepared & Analyzed: 03/23/23
Acetone	ND	0.80	
Benzene	ND	0.020	
Benzyl chloride	ND	0.020	
Bromodichloromethane	ND	0.020	
Bromoform	ND	0.020	
Bromomethane	ND	0.020	
1,3-Butadiene	ND	0.020	
2-Butanone (MEK)	ND	0.80	
Carbon Disulfide	ND	0.20	
Carbon Tetrachloride	ND	0.020	
Chlorobenzene	ND	0.020	
Chloroethane	ND	0.020	
Chloroform	ND	0.020	
Chloromethane	ND	0.040	
Cyclohexane	ND	0.020	
Dibromochloromethane	ND	0.020	
1,2-Dibromoethane (EDB)	ND	0.020	
1,2-Dichlorobenzene	ND	0.020	
1,3-Dichlorobenzene	ND	0.020	
1,4-Dichlorobenzene	ND	0.020	
Dichlorodifluoromethane (Freon 12)	ND	0.020	
1,1-Dichloroethane	ND	0.020	
1,2-Dichloroethane	ND	0.020	
1,1-Dichloroethylene	ND	0.020	

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

A	ppb		ug/m3		Spike Level	Source	0/ DEC	%REC	DDD	RPD	El- /0
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qua
Batch B335600 - TO-15 Prep											
Blank (B335600-BLK1)					Prepared & A	nalyzed: 03	/23/23				
trans-1,2-Dichloroethylene	ND	0.020									
1,2-Dichloropropane	ND	0.020									
cis-1,3-Dichloropropene	ND	0.020									
trans-1,3-Dichloropropene	ND	0.020									
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.020									
1,4-Dioxane	ND	0.20									
Ethanol	ND	0.80									
Ethyl Acetate	ND	0.20									
Ethylbenzene	ND	0.020									
4-Ethyltoluene	ND	0.020									
Heptane	ND	0.020									
Hexachlorobutadiene	ND	0.020									L-03, V-0
Hexane	ND	0.80									
2-Hexanone (MBK)	ND	0.020									
Isopropanol	ND	0.80									
Methyl tert-Butyl Ether (MTBE)	ND	0.020									
Methylene Chloride	ND	0.20									
4-Methyl-2-pentanone (MIBK)	ND	0.020									
Naphthalene	ND	0.020									L-03, V-0
Propene	ND	0.80									
Styrene	ND	0.020									
1,1,2,2-Tetrachloroethane	ND	0.020									
Tetrachloroethylene	ND	0.020									
Tetrahydrofuran	ND	0.20									
Toluene	ND	0.020									
1,2,4-Trichlorobenzene	ND	0.020									
1,1,1-Trichloroethane	ND	0.020									
1,1,2-Trichloroethane	ND	0.020									
Trichloroethylene	ND	0.020									
Trichlorofluoromethane (Freon 11)	ND	0.080									
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.080									
1,2,4-Trimethylbenzene	ND	0.020									
1,3,5-Trimethylbenzene	ND	0.020									
Vinyl Acetate	ND	0.40									
Vinyl Chloride	ND	0.020									
m&p-Xylene	ND	0.040									
o-Xylene	ND	0.020									

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

Analyte	ppl Results	bv RL	ug/m3 Results	RL	Spike Level ppbv	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag/Qual
Batch B335600 - TO-15 Prep											
LCS (B335600-BS1)					Prepared & A	analyzed: 03	/23/23				
Acetone	5.73				5.00		115	70-130			
Benzene	5.82				5.00		116	70-130			
Benzyl chloride	6.93				5.00		139 *	70-130			L-01, V-20
Bromodichloromethane	5.98				5.00		120	70-130			
Bromoform	6.33				5.00		127	70-130			
Bromomethane	5.36				5.00		107	70-130			
1,3-Butadiene	5.47				5.00		109	70-130			
2-Butanone (MEK)	4.90				5.00		97.9	70-130			
Carbon Disulfide	5.07				5.00		101	70-130			
Carbon Tetrachloride	5.49				5.00		110	70-130			
Chlorobenzene	5.39				5.00		108	70-130			
Chloroethane	5.73				5.00		115	70-130			
Chloroform	5.35				5.00		107	70-130			
Chloromethane	5.62				5.00		112	70-130			
Cyclohexane	6.10				5.00		122	70-130			
Dibromochloromethane	5.78				5.00		116	70-130			
1,2-Dibromoethane (EDB)	5.57				5.00		111	70-130			
1,2-Dichlorobenzene	5.51				5.00		110	70-130			
1,3-Dichlorobenzene	5.54				5.00		111	70-130			
1,4-Dichlorobenzene	5.89				5.00		118	70-130			
Dichlorodifluoromethane (Freon 12)	5.51				5.00		110	70-130			
1,1-Dichloroethane	5.85				5.00		117	70-130			
1,2-Dichloroethane	5.38				5.00		108	70-130			
1,1-Dichloroethylene	5.28				5.00		106	70-130			
cis-1,2-Dichloroethylene	5.44				5.00		100	70-130			
trans-1,2-Dichloroethylene	5.61				5.00		112	70-130			
1,2-Dichloropropane	6.20				5.00		112	70-130			
cis-1,3-Dichloropropene	6.11				5.00		124	70-130			
trans-1,3-Dichloropropene	6.36				5.00		122	70-130			
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	5.09				5.00		102	70-130			
1,4-Dioxane	6.03				5.00		121	70-130			
Ethanol	5.27				5.00		105	70-130			
Ethyl Acetate	5.10				5.00		102	70-130			
Ethylbenzene	5.52				5.00		110	70-130			
4-Ethyltoluene	5.72				5.00		114	70-130			
Heptane	6.01				5.00		120	70-130			
Hexachlorobutadiene	3.34				5.00		66.8 *	70-130			L-03, V-03
Hexane	5.52				5.00		110	70-130			
2-Hexanone (MBK)	5.43				5.00		109	70-130			
Isopropanol	4.70				5.00		94.0	70-130			
Methyl tert-Butyl Ether (MTBE)	5.41				5.00		108	70-130			
Methylene Chloride	4.93				5.00		98.6	70-130			
4-Methyl-2-pentanone (MIBK)	6.29				5.00		126	70-130			
Naphthalene	3.43				5.00		68.6 *	70-130			L-03, V-03
Propene	6.15				5.00		123	70-130			2 00, 1-0.
Styrene	5.67				5.00		113	70-130			

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppł	ov	ug/n	13	Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag/Qual
Batch B335600 - TO-15 Prep											
LCS (B335600-BS1)					Prepared & A	Analyzed: 03	/23/23				
1,1,2,2-Tetrachloroethane	5.65				5.00		113	70-130			
Tetrachloroethylene	5.52				5.00		110	70-130			
Tetrahydrofuran	5.16				5.00		103	70-130			
Toluene	5.55				5.00		111	70-130			
1,2,4-Trichlorobenzene	4.53				5.00		90.6	70-130			
1,1,1-Trichloroethane	5.40				5.00		108	70-130			
1,1,2-Trichloroethane	5.64				5.00		113	70-130			
Trichloroethylene	5.55				5.00		111	70-130			
Trichlorofluoromethane (Freon 11)	5.05				5.00		101	70-130			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	4.74				5.00		94.9	70-130			
1,2,4-Trimethylbenzene	5.59				5.00		112	70-130			
1,3,5-Trimethylbenzene	5.64				5.00		113	70-130			
Vinyl Acetate	6.07				5.00		121	70-130			
Vinyl Chloride	5.61				5.00		112	70-130			
m&p-Xylene	11.2				10.0		112	70-130			
o-Xylene	5.59				5.00		112	70-130			
Surrogate: 4-Bromofluorobenzene (1)	8.67				8.00		108	70-130			

Note: Blank Subtraction is not performed unless otherwise noted

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
Ť	Wide recovery limits established for difficult compound.
\$	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
RL	Reporting Limit
MDL	Method Detection Limit
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
LCS Dup	Duplicate Laboratory Control Sample
MS	Matrix Spike Sample
MS Dup	Duplicate Matrix Spike Sample
REC	Recovery
QC	Quality Control
ppbv	Parts per billion volume
EPA	United States Environmental Protection Agency
% REC	Percent Recovery
ND	Not Detected
N/A	Not Applicable
DL	Detection Limit
NC	Not Calculated
LFB/LCS	Lab Fortified Blank/Lab Control Sample
ORP	Oxidation-Reduction Potential
wet	Not dry weight corrected
% wt	Percent weight
Kg	Kilogram
g	Gram
mg	Milligram
μg	Microgram
ng	Nanogram
L	Liter
mL	Milliliter
μL	Microliter
m3	Cubic Meter
EPH	Extractable Petroleum Hydrocarbons
VPH	Volatile Petroleum Hydrocarbons
APH	Air Petroleum Hydrocarbons
FID	Flame Ionization Detector
PID	Photo Ionization Detector
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
Е	Reported result is estimated. Value reported over verified calibration range.
2	
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated
L-01	concentration (CLP J-Flag). Laboratory fortified blank/laboratory control sample recovery outside of control limits. Data validation is not
	affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
L-03	Laboratory fortified blank/laboratory control sample recovery is outside of control limits. Reported value for this
	compound is likely to be biased on the low side.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for
V-20	this compound. Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side.
	Data validation is not affected since sample result was "not detected" for this compound.

ANALYST

- TPH Thomas P. Hnitecki
- LA Luis D. Arroyo
- KKS Kyle K. Stuckey
- CMR Catherine M. Rouleau

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Initial Cal Check (S082540-ICV1)		Lab File ID: J23A025019.D Analyzed: 01/26/23 00							
Bromochloromethane (1)	341158	2.806	341158	2.806	100	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	1102343	3.428	1102343	3.428	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	959356	5.043	959356	5.043	100	60 - 140	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Check (S085066-CCV1)			Lab File ID: J23A)83004.D		Analyzed: 03/24	4/23 14:27		
Bromochloromethane (1)	341732	2.78	341732	2.78	100	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	1001669	3.413	1001669	3.413	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	911329	5.034	911329	5.034	100	60 - 140	0.0000	+/-0.50	
LCS (B335323-BS1)			Lab File ID: J23A)83005.D		Analyzed: 03/24	4/23 14:52		
Bromochloromethane (1)	347038	2.78	341732	2.78	102	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	1006649	3.413	1001669	3.413	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	922043	5.034	911329	5.034	101	60 - 140	0.0000	+/-0.50	
Blank (B335323-BLK1)			Lab File ID: J23A)83007.D					
Bromochloromethane (1)	334553	2.764	341732	2.78	98	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	971000	3.4	1001669	3.413	97	60 - 140	-0.0130	+/-0.50	
Chlorobenzene-d5 (1)	883906	5.031	911329	5.034	97	60 - 140	-0.0030	+/-0.50	
130058-IA-2-0323 (23C1351-02RE1)			Lab File ID: J23A)83022.D		Analyzed: 03/24	4/23 22:43		
Bromochloromethane (1)	339050	2.767	341732	2.78	99	60 - 140	-0.0130	+/-0.50	
1,4-Difluorobenzene (1)	995983	3.403	1001669	3.413	99	60 - 140	-0.0100	+/-0.50	
Chlorobenzene-d5 (1)	917023	5.03	911329	5.034	101	60 - 140	-0.0040	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Calibration Check (S085202-CCV1)			Lab File ID: J23A	082005.D		Analyzed: 03/2	3/23 12:17		
Bromochloromethane (1)	296957	2.78	296957	2.78	100	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	853952	3.413	853952	3.413	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	770016	5.034	770016	5.034	100	60 - 140	0.0000	+/-0.50	
LCS (B335600-BS1)			Lab File ID: J23A	082006.D		Analyzed: 03/2	3/23 12:42		
Bromochloromethane (1)	295090	2.78	296957	2.78	99	60 - 140	0.0000	+/-0.50	
1,4-Difluorobenzene (1)	851872	3.413	853952	3.413	100	60 - 140	0.0000	+/-0.50	
Chlorobenzene-d5 (1)	764347	5.034	770016	5.034	99	60 - 140	0.0000	+/-0.50	

INTERNAL STANDARD AREA AND RT SUMMARY

EPA TO-15

Internal Standard	Response	RT	Reference Response	Reference RT	Area %	Area % Limits	RT Diff	RT Diff Limit	Q
Blank (B335600-BLK1)			Lab File ID: J23A	082009.D		Analyzed: 03/2	3/23 14:11		
Bromochloromethane (1)	280704	2.761	296957	2.78	95	60 - 140	-0.0190	+/-0.50	
1,4-Difluorobenzene (1)	800850	3.401	853952	3.413	94	60 - 140	-0.0120	+/-0.50	
Chlorobenzene-d5 (1)	708726	5.031	770016	5.034	92	60 - 140	-0.0030	+/-0.50	
130058-IA-1-0323 (23C1351-01)			Lab File ID: J23A		Analyzed: 03/2	3/23 14:44			
Bromochloromethane (1)	294748	2.764	296957	2.78	99	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	841751	3.404	853952	3.413	99	60 - 140	-0.0090	+/-0.50	
Chlorobenzene-d5 (1)	757808	5.031	770016	5.034	98	60 - 140	-0.0030	+/-0.50	
130058-IA-2-0323 (23C1351-02)		Lab File ID: J23A082011.D					3/23 15:16		<u> </u>
Bromochloromethane (1)	296678	2.764	296957	2.78	100	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	857771	3.401	853952	3.413	100	60 - 140	-0.0120	+/-0.50	
Chlorobenzene-d5 (1)	775908	5.031	770016	5.034	101	60 - 140	-0.0030	+/-0.50	
130058-OA-1-0323 (23C1351-03)			Lab File ID: J23A	082012.D		Analyzed: 03/2	3/23 15:48		
Bromochloromethane (1)	294657	2.764	296957	2.78	99	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	842666	3.401	853952	3.413	99	60 - 140	-0.0120	+/-0.50	
Chlorobenzene-d5 (1)	756288	5.031	770016	5.034	98	60 - 140	-0.0030	+/-0.50	
130058-FD-1-0323 (23C1351-04)			Lab File ID: J23A	082013.D		Analyzed: 03/2	3/23 16:20		. <u> </u>
Bromochloromethane (1)	296879	2.764	296957	2.78	100	60 - 140	-0.0160	+/-0.50	
1,4-Difluorobenzene (1)	853396	3.404	853952	3.413	100	60 - 140	-0.0090	+/-0.50	
Chlorobenzene-d5 (1)	774403	5.031	770016	5.034	101	60 - 140	-0.0030	+/-0.50	

CONTINUING CALIBRATION CHECK

EPA TO-15

S085066-CCV1

		CONC. (ppbv)		RES	SPONSE FACTOR	% DIFF / DRIFT		
COMPOUND	TYPE	STD CCV		ICAL	CCV	MIN (#)	CCV	LIMIT (#)
Acetone	А	5.00	4.73	0.9172061	0.868044		-5.4	30
2-Butanone (MEK)	А	5.00	4.08	1.412082	1.152421		-18.4	30
Ethanol	А	5.00	5.04	0.1626733	0.1639413		0.8	30
4-Ethyltoluene	А	5.00	4.72	1.333301	1.257199		-5.7	30
Isopropanol	А	5.00	4.73	1.0816	1.023338		-5.4	30
1,2,4-Trimethylbenzene	А	5.00	4.70	1.114566	1.047673		-6.0	30
1,3,5-Trimethylbenzene	А	5.00	4.72	1.126426	1.062262		-5.7	30

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

CONTINUING CALIBRATION CHECK

EPA TO-15

S085202-CCV1

		CONC. (ppbv)		RE	SPONSE FACTOF	ι	% DIFF / DRIFT			
COMPOUND	TYPE	STD CCV		ICAL	CCV	MIN (#)	CCV	LIMIT (#)		
Acetone	А	5.00	5.33	0.9172061	0.9783504		6.7	30		
Benzene	А	5.00	5.61	0.7387105	0.8286124		12.2	30		
Benzyl chloride	А	5.00	6.89	0.7213395	0.9937123		37.8	30 *		
Bromodichloromethane	А	5.00	5.83	0.5251533	0.61201		16.5	30		
Bromoform	А	5.00	6.02	0.4277704	0.5146179		20.3	30		
Bromomethane	А	5.00	5.16	0.6097815	0.6288587		3.1	30		
1,3-Butadiene	А	5.00	5.41	0.4638914	0.5023003		8.3	30		
2-Butanone (MEK)	А	5.00	4.60	1.412082	1.297632		-8.1	30		
Carbon Disulfide	А	5.00	4.66	1.950889	1.819102		-6.8	30		
Carbon Tetrachloride	А	5.00	5.54	0.4804808	0.5325358		10.8	30		
Chlorobenzene	А	5.00	5.19	0.7448082	0.7734717		3.8	30		
Chloroethane	А	5.00	5.32	0.3583321	0.3811892		6.4	30		
Chloroform	Α	5.00	5.04	1.602387	1.61354		0.7	30		
Chloromethane	Α	5.00	5.41	0.498645	0.5394289		8.2	30		
Cyclohexane	А	5.00	5.76	0.3089687	0.3561643		15.3	30		
Dibromochloromethane	А	5.00	5.56	0.5087335	0.5655779		11.2	30		
1,2-Dibromoethane (EDB)	А	5.00	5.38	0.4954263	0.5332585		7.6	30		
1,2-Dichlorobenzene	А	5.00	5.33	0.6000711	0.6398454		6.6	30		
1,3-Dichlorobenzene	А	5.00	5.43	0.6282622	0.6819141		8.5	30		
1,4-Dichlorobenzene	А	5.00	5.90	0.5785005	0.6829593		18.1	30		
Dichlorodifluoromethane (Freon 12)	А	5.00	5.35	1.788333	1.912681		7.0	30		
1,1-Dichloroethane	Α	5.00	5.49	1.234282	1.356258		9.9	30		
1,2-Dichloroethane	А	5.00	5.09	1.007865	1.025926		1.8	30		
1,1-Dichloroethylene	Α	5.00	4.87	1.125918	1.095905		-2.7	30		
cis-1,2-Dichloroethylene	А	5.00	5.25	0.988136	1.036869		4.9	30		
trans-1,2-Dichloroethylene	А	5.00	5.39	1.018061	1.097619		7.8	30		
1,2-Dichloropropane	А	5.00	5.93	0.2543605	0.3014952		18.5	30		
cis-1,3-Dichloropropene	А	5.00	6.08	0.3935901	0.4786911		21.6	30		
trans-1,3-Dichloropropene	Α	5.00	6.08	0.350459	0.4262141		21.6	30		
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 1	А	5.00	5.22	1.768022	1.844604		4.3	30		
1,4-Dioxane	А	5.00	5.74	0.1607629	0.1846736		14.9	30		
Ethanol	А	5.00	5.55	0.1626733	0.1806053		11.0	30		
Ethyl Acetate	А	5.00	5.20	0.2181169	0.2267641		4.0	30		
Ethylbenzene	А	5.00	5.38	1.320541	1.420964		7.6	30		
4-Ethyltoluene	А	5.00	5.55	1.333301	1.479759		11.0	30		
Heptane	А	5.00	5.88	0.2163238	0.2543937		17.6	30		
Hexachlorobutadiene	А	5.00	3.28	0.4316824	0.283219		-34.4	30 *		
Hexane	L	5.00	5.27	0.7010749	0.7456702		5.4	30		
		1	1	L	I	1		l Dago 23 of		

CONTINUING CALIBRATION CHECK

EPA TO-15

S085202-CCV1

		CONC	. (ppbv)	RE	SPONSE FACTOR	ł	% DIFF	/ DRIFT			
COMPOUND	TYPE	STD	CCV	ICAL	CCV	MIN (#)	CCV	LIMIT (#)			
2-Hexanone (MBK)	А	5.00	5.07	0.5317658	0.5391659		1.4	30			
Isopropanol	А	5.00	5.36	1.0816	1.158837		7.1	30			
Methyl tert-Butyl Ether (MTBE)	А	5.00	5.20	2.038246	2.118454		3.9	30			
Methylene Chloride	А	5.00	4.64	0.7621343	0.707658		-7.1	30			
4-Methyl-2-pentanone (MIBK)	А	5.00	5.80	0.2070279	0.2403189		16.1	30			
Naphthalene	А	5.00	3.23	0.9438203	0.6099572		-35.4	30 *			
Propene	А	5.00	5.89	0.3658411	0.4306617		17.7	30			
Styrene	А	5.00	5.48	0.7117754	0.780497		9.7	30			
1,1,2,2-Tetrachloroethane	А	5.00	5.40	0.7493945	0.8094149		8.0	30			
Tetrachloroethylene	А	5.00	5.40	0.3917065	0.4233242		8.1	30			
Tetrahydrofuran	А	5.00	4.74	0.721119	0.6843442		-5.1	30			
Toluene	А	5.00	5.28	1.018666	1.07476		5.5	30			
1,2,4-Trichlorobenzene	А	5.00	4.44	0.3480916	0.3089099		-11.3	30			
1,1,1-Trichloroethane	А	5.00	5.42	0.5043155	0.5468054		8.4	30			
1,1,2-Trichloroethane	А	5.00	5.33	0.3354709	0.3573889		6.5	30			
Trichloroethylene	А	5.00	5.34	0.332105	0.354967		6.9	30			
Trichlorofluoromethane (Freon 11)	А	5.00	4.88	1.844271	1.798057		-2.5	30			
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113	А	5.00	4.44	1.418208	1.257987		-11.3	30			
1,2,4-Trimethylbenzene	А	5.00	5.50	1.114566	1.225373		9.9	30			
1,3,5-Trimethylbenzene	А	5.00	5.47	1.126426	1.231972		9.4	30			
Vinyl Acetate	А	5.00	5.16	1.280082	1.319965		3.1	30			
Vinyl Chloride	А	5.00	5.29	0.6431254	0.6801739		5.8	30			
m&p-Xylene	А	10.0	10.8	1.065519	1.154159		8.3	30			
o-Xylene	А	5.00	5.36	1.040057	1.115441		7.2	30			

Column to be used to flag Response Factor and %Diff/Drift values with an asterisk

* Values outside of QC limits

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
PA TO-15 in Air		
Acetone	AIHA,NY,ME,NH	
Benzene	AIHA,FL,NJ,NY,ME,NH,VA	
Benzyl chloride	AIHA,FL,NJ,NY,ME,NH,VA	
Bromodichloromethane	AIHA,NJ,NY,ME,NH,VA	
Bromoform	AIHA,NJ,NY,ME,NH,VA	
Bromomethane	AIHA,FL,NJ,NY,ME,NH	
1,3-Butadiene	AIHA,NJ,NY,ME,NH,VA	
2-Butanone (MEK)	AIHA,FL,NJ,NY,ME,NH,VA	
Carbon Disulfide	AIHA,NJ,NY,ME,NH,VA	
Carbon Tetrachloride	AIHA,FL,NJ,NY,ME,NH,VA	
Chlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA	
Chloroethane	AIHA,FL,NJ,NY,ME,NH,VA	
Chloroform	AIHA,FL,NJ,NY,ME,NH,VA	
Chloromethane	AIHA,FL,NJ,NY,ME,NH,VA	
Cyclohexane	AIHA,NJ,NY,ME,NH,VA	
Dibromochloromethane	AIHA,NY,ME,NH	
1,2-Dibromoethane (EDB)	AIHA,NJ,NY,ME,NH	
1,2-Dichlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA	
1,3-Dichlorobenzene	AIHA,NJ,NY,ME,NH	
1,4-Dichlorobenzene	AIHA,FL,NJ,NY,ME,NH,VA	
Dichlorodifluoromethane (Freon 12)	AIHA,NY,ME,NH	
1,1-Dichloroethane	AIHA,FL,NJ,NY,ME,NH,VA	
1,2-Dichloroethane	AIHA,FL,NJ,NY,ME,NH,VA	
1,1-Dichloroethylene	AIHA,FL,NJ,NY,ME,NH,VA	
cis-1,2-Dichloroethylene	AIHA,FL,NY,ME,NH,VA	
trans-1,2-Dichloroethylene	AIHA,NJ,NY,ME,NH,VA	
1,2-Dichloropropane	AIHA,FL,NJ,NY,ME,NH,VA	
cis-1,3-Dichloropropene	AIHA,FL,NJ,NY,ME,NH,VA	
trans-1,3-Dichloropropene	AIHA,NY,ME,NH	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,NJ,NY,ME,NH,VA	
1,4-Dioxane	AIHA,NJ,NY,ME,NH,VA	
Ethanol	AIHA	
Ethyl Acetate	AIHA	
Ethylbenzene	AIHA,FL,NJ,NY,ME,NH,VA	
4-Ethyltoluene	AIHA	
Heptane	AIHA,NJ,NY,ME,NH,VA	
Hexachlorobutadiene	AIHA,NJ,NY,ME,NH,VA	
Hexane	AIHA,FL,NJ,NY,ME,NH,VA	
2-Hexanone (MBK)	AIHA	
Isopropanol	AIHA,NY,ME,NH	
Methyl tert-Butyl Ether (MTBE)	AIHA,FL,NJ,NY,ME,NH,VA	
Methylene Chloride	AIHA,FL,NJ,NY,ME,NH,VA	
4-Methyl-2-pentanone (MIBK)	AIHA,FL,NJ,NY,ME,NH	
Naphthalene	NY,ME,NH	
Propene	AIHA	
Styrene	AIHA,FL,NJ,NY,ME,NH,VA	
1,1,2,2-Tetrachloroethane	AIHA,FL,NJ,NY,ME,NH,VA	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA TO-15 in Air	
Tetrachloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
Tetrahydrofuran	AIHA
Toluene	AIHA,FL,NJ,NY,ME,NH,VA
1,2,4-Trichlorobenzene	AIHA,NJ,NY,ME,NH,VA
1,1,1-Trichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
1,1,2-Trichloroethane	AIHA,FL,NJ,NY,ME,NH,VA
Trichloroethylene	AIHA,FL,NJ,NY,ME,NH,VA
Trichlorofluoromethane (Freon 11)	AIHA,NY,ME,NH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	AIHA,NJ,NY,ME,NH,VA
1,2,4-Trimethylbenzene	AIHA,NJ,NY,ME,NH
1,3,5-Trimethylbenzene	AIHA,NJ,NY,ME,NH
Vinyl Acetate	AIHA,FL,NJ,NY,ME,NH,VA
Vinyl Chloride	AIHA,FL,NJ,NY,ME,NH,VA
m&p-Xylene	AIHA,FL,NJ,NY,ME,NH,VA
o-Xylene	AIHA,FL,NJ,NY,ME,NH,VA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO 17025:2017	100033	03/1/2024
NY	New York State Department of Health	10899 NELAP	04/1/2023
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
NJ	New Jersey DEP	MA007 NELAP	06/30/2023
FL	Florida Department of Health	E871027 NELAP	06/30/2023
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2023

	t Page / of /		" Hg Please fill out completely, sign, date and retain the		Lab R	und lie returned within 15 days of diabon receipt or rental fees will built	t Pre	ssur	8 8				10107 0 1032	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•			<u>Matrix Codes:</u>	SG = SOIL GAS		BL = BLANK TORY 0 = Other		NELAC and AlHA-LAP, LLC Accredited Other PCB ONLY PCB ONLY		
03242017	39 Spruce Street East Longmeadov	ANALYSIS REQUESTED			Inii	tial Pr	ressu	re		······	8	****						ssible sample nn above:			ANULYTICAL LABORATORY		NELAC and AlHA-L Other	WRTA Chromatogram	
bs.com Doc #378 Rev 1_03242017		av 7 ANA	2					eaest.com	Matrix Volume	m³/min Code		TA X						Please use the following codes to indicate possible sample concentration within the Conc Code column above: H - High; M - Medium: L - Low: C - Clean: 11, 11,5,2000	Special Requirements	J MA MCP Required	CT RCP Required	Other		MWRA School	
http://www.contestlabs.com	CITATIN OF COSTODY RECORD (AIR)	7-Day [] 10-Day	ate: [1-Day 3-Day 3-Day 7-Day	Data	r ormat: PDF L EXCEL Other:	CLP Like Data Pkg Required:	Email 10: <u>Michael m'iller @</u> Fax To #:	m Data Duration Flow Rate	Ending Total m Date/Time Minutes		0940 03/07 1226	0936-1238 03/07-1238	035 1243			 	Please use the concentrat H - High; M -	6 Reguingmon	WCP (RCP C			Government L Municipality Federal 21 J City Brownfield	Professor
Phone: 412.535.333	Fax: 413-525-6405	Email: info@contestlabs.com	g, buence, and Technology	d j		*		owe	Client Use Collection Data	Client Sample ID / Description Beginning Date/Time	-0323 1253	-0323 1314	- 0323 1258	130058 - FD-1- 0323 125306			1010 *		Date/Time: Detection Lini 03/05/13 1115 AN	Date/Time: 1/18	Date/Time:	1	12		
Con-test		55 - 1	Address: 209 W. Telferson St. C. Land	Phone: (315) 415 - 7689 Protect Name 7000 Stor Arod	Project Location: Hart Project Society Project Number: 1002 5 32, 0011		Invoice Recipient:	Sampled By: L. Backman-Lowe	Lab Use	Con-Test Work Order# Clien			C3 13005x-0A-1	04 130058-			Comments: XPA+ B NOVINOVALATO *	requested	Relinquished by: (signature)	Received by: (signature) / Por	Relinguished by signature)	Received by: (signature)	Kelinquished by: (signature)	Received by: (signature)	

Page 27 of 32

Detailed Tracking

lign Up of Log In

(https://www.fedex.com/enus/home.html)

FedEx* Tracking

DELIVERED

Friday

3/10/2023 at 9:36 am

Signed for by: L.ARROYO

🕁 Obtain Proof of delivery

How was your delivery?

Delivery status

TRACKING ID 771523410134 🖉 🏠

> FROM Newburgh, NY US

Label Created 3/9/2023 1:26 PM

PACKAGE RECEIVED BY FEDEX NEWBURGH, NY 3/9/2023 4:16 PM

IN TRANSIT

WINDSOR LOCKS, CT 3/10/2023 7:26 AM

OUT FOR DELIVERY WINDSOR LOCKS, CT 3/10/2023 7:36 AM

DELIVERED EAST LONGMEADOW, MA US

Delivered 3/10/2023 at 9:36 AM

 \downarrow View travel history

Want updates on this shipment? Enter your email and we will do the rest!

YOUR EMAIL

MORE OPTIONS

Manage Delivery

https://www.fedex.com/fedextrack/?trknbr=771523410134&trkqual=2460013000~771523410134~FX

SUBMIT

Page 28 of 32

39 Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332 F:413-525-6405 www.pacelabs.com ENV-FRM-ELON-0009V02___Air Sample Receiving Checklist 1-12-2023

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

Q PEOPLE ADVANCING SCIENCE

True False

Project <u>Tra</u> MCP/RCP Rea Deliverable P Location <u>FY</u> PWSID# (Wha Arrival Metho	eS quired ackage achage achag achag achag achag achag achag achag achag achag achag achag achag	BON CIE Le Requirement lin Squ plicable) ed Kx 7	aners nt <u>CATB</u> nave, NY 715 234	1 0134	COC Relingu	Cooler I: DATE	TIME		
Received By / Date / Time LA 3-10-23 0935 Back-Sheet By / Date / Time TOH 3-10-23 1405 Temperature Method					Is there enoune Proper Medin Individually Trip Blanks COC Legible	a/Container Us Certified Cans ed: (Check all i Analysis	ed included) X Sam	Image: Constraint of the section of the sectin of the section of the section of the section of the section of	
Container Summa Cans Tedlar Bags TO-17 Tubes Radiello Pufs/ TO-11		#	Size	Regulator	Duration 24hr	Nut/Ferrule Tubing T-Connector Syringe Tedlar	Accesso	r ies IC Train Shipping Char	zes
Can #'s 1 1618 2 2157 3 1073 4 2158 5 6 7 Unused Media	8 9 10 11 12 13 14		16 17 18 19 20 21 22	24 25 26 27 28 29 30	Regs #' 1 341 2 371 3 371 4 35 5 6 7 7	9 3\ 10 32 11 08 12 13 14	16 17 18 19 20 21 21 22 23	24 25 26 27 28 29 30 31	
1 2	15 8 9 10		23 16 17 18	31 24 25 26	Pufs/TO 1 2	15 17/5 8 9 10	16 17 18	24 25 26	

Air Sampling Media Certificate of Analysis

Date Analyzed:	1/13/2	.023	Batch #:	23CC0028
Certification Type:	Batch Certified	\checkmark	Individual Certified	
Media Type:	Summa Canister	\checkmark	Flow Controllers	
Media IDs:	C1618			

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: PPBv

< 0.80	Propene	
< 0.02	Dichlorodifluoromethane	
< 0.04	Chloromethane	
< 0.02	Freon 114	
< 0.02	Vinyl chloride	
< 0.02	1.3-Butadiene	
< 0.02	Bromomethane	
< 0.02	Chloroethane	
< 0.08	Acrolein	
< 0.80	Acetone	
< 0.20	Trichlorofluoromethane	
< 0.80	Ethanol	
< 0.02	1,1-Dichloroethylene	
< 0.20	Methylene chloride	
< 0.20	Freon 113	
< 0.2	Carbon disulfide	
< 0.02	t-1,2-Dichloroethylene	
< 0.02	1,1-Dichloroethane	
< 0.02	MTBE	
< 0.80	IPA	
< 0.20	2-Butanone (MEK)	
< 0.02	c-1,2-Dichloroethylene	
	-	

	_
< 0.04	Vinyl acetate
< 0.20	Hexane
< 0.02	Ethyl acetate
< 0.02	Chloroform
< 0.02	Tetrahydrofuran
< 0.02	1,2-Dichloroethane
< 0.02	1,1,1-Trichloroethane
< 0.02	Benzene
< 0.02	Carbon Tetrachloride
< 0.02	Cyclohexane
< 0.02	1,2-Dichloropropane
< 0.02	Bromodichloromethane
< 0.02	Trichloroethylene
< 0.02	1,4-Dioxane
< 0.02	Methylmethacrylate
< 0.02	Heptane
< 0.02	MIBK
< 0.02	c-1,3-Dichloropropylene
< 0.02	t-1,3-Dichloropropylene
< 0.02	1,1,2-Trichloroethylene
< 0.02	Toluene
< 0.02	2-Hexanone (MBK)

Dibromchloromethane
1,2-Dibromomethane
Tetrachloroethylene
Chlorobenzene
Ethylbenzene
m,p-Xylenes
Bromoform
Styrene
o-Xylene
1,1,2,2-Tetrachloroethane
4-Ethyltoluene
1,3,5-Trimethylbenzene
1,2,4-Trimethylbenzene
1,3-Dichlorobenzene
Benzyl chloride
1,4-Dichlorobenzene
1,2-Dichlorobenzene
1,2,4-Trichlorobenzene
Naphthalene
Hexachlorobutadiene

Special Notes:

Analyst Initials/Date:

Air Sampling Media Certificate of Analysis

Date Analyzed:	1/16/	/2023	Batch #:	23CC0029
Certification Typ	e: Batch Certified	J	Individual Certified	
Media Type:	Summa Canister	J	Flow Controllers	
Media IDs:	BC2157 BC1073			

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: PPBv

<	0.80	Propene	< 0.04	Vinyl acetate
0	0.05	Dichlorodifluoromethane	< 0.20	Hexane
<	0.04	Chloromethane	< 0.02	Ethyl acetate
<	0.02	Freon 114	< 0.02	Chloroform
<	0.02	Vinyl chloride	< 0.02	Tetrahydrofuran
<	0.02	1.3-Butadiene	< 0.02	1,2-Dichloroethane
<	0.02	Bromomethane	< 0.02	1,1,1-Trichloroethane
<	0.02	Chloroethane	< 0.02	Benzene
<	0.08	Acrolein	< 0.02	Carbon Tetrachloride
<	0.80	Acetone	< 0.02	Cyclohexane
<	0.20	Trichlorofluoromethane	< 0.02	1,2-Dichloropropane
<	0.80	Ethanol	< 0.02	Bromodichloromethane
<	0.02	1,1-Dichloroethylene	< 0.02	Trichloroethylene
<	0.20	Methylene chloride	< 0.02	1,4-Dioxane
<	0.20	Freon 113	< 0.02	Methylmethacrylate
<	:0.2	Carbon disulfide	< 0.02	Heptane
<	0.02	t-1,2-Dichloroethylene	< 0.02	MIBK
<	0.02	1,1-Dichloroethane	< 0.02	c-1,3-Dichloropropylene
<	0.02	MTBE	< 0.02	t-1,3-Dichloropropylene
<	0.80	IPA	< 0.02	1,1,2-Trichloroethylene
<	0.20	2-Butanone (MEK)	< 0.02	Toluene
<	0.02	c-1,2-Dichloroethylene	< 0.02	2-Hexanone (MBK)

	_
< 0.02	Dibromchloromethane
< 0.02	1,2-Dibromomethane
< 0.02	Tetrachloroethylene
< 0.02	Chlorobenzene
< 0.02	Ethylbenzene
< 0.04	m,p-Xylenes
< 0.02	Bromoform
< 0.02	Styrene
< 0.02	o-Xylene
< 0.02	1,1,2,2-Tetrachloroethane
< 0.02	4-Ethyltoluene
< 0.02	1,3,5-Trimethylbenzene
< 0.02	1,2,4-Trimethylbenzene
< 0.02	1,3-Dichlorobenzene
< 0.02	Benzyl chloride
< 0.02	1,4-Dichlorobenzene
< 0.02	1,2-Dichlorobenzene
< 0.04	1,2,4-Trichlorobenzene
< 0.02	Naphthalene
< 0.02	Hexachlorobutadiene

Special Notes:

Analyst Initials/Date:

Air Sampling Media Certificate of Analysis

Date Analyzed:	1/18/202	23	Batch #:	23CC0038
Certification Type:	Batch Certified	√ Ind	lividual Certified	
Media Type:	Summa Canister	J Fla	w Controllers	
Media IDs:	BC2158			

Note:Two ID's grouped together, for example BC2136/BC3145, represents matched pairs of certified summa canisters and flow controllers.

Units: PPBv

< 0.80	Propene	< 0.04	Vinyl acetate
< 0.02	Dichlorodifluoromethane	< 0.20	Hexane
< 0.04	Chloromethane	< 0.02	Ethyl acetate
< 0.02	Freon 114	< 0.02	Chloroform
< 0.02	Vinyl chloride	< 0.02	Tetrahydrofuran
< 0.02	1.3-Butadiene	< 0.02	1,2-Dichloroethane
< 0.02	Bromomethane	< 0.02	1,1,1-Trichloroethane
< 0.02	Chloroethane	< 0.02	Benzene
< 0.08	Acrolein	< 0.02	Carbon Tetrachloride
< 0.80	Acetone	< 0.02	Cyclohexane
< 0.20	Trichlorofluoromethane	< 0.02	1,2-Dichloropropane
< 0.80	Ethanol	< 0.02	Bromodichloromethane
< 0.02	1,1-Dichloroethylene	< 0.02	Trichloroethylene
< 0.20	Methylene chloride	< 0.02	1,4-Dioxane
< 0.20	Freon 113	< 0.02	Methylmethacrylate
< 0.2	Carbon disulfide	< 0.02	Heptane
< 0.02	t-1,2-Dichloroethylene	< 0.02	MIBK
< 0.02	1,1-Dichloroethane	< 0.02	c-1,3-Dichloropropylene
< 0.02	MTBE	< 0.02	t-1,3-Dichloropropylene
< 0.80	IPA	< 0.02	1,1,2-Trichloroethylene
< 0.20	2-Butanone (MEK)	< 0.02	Toluene
< 0.02	c-1,2-Dichloroethylene	< 0.02	2-Hexanone (MBK)

< 0.02	Dibromchloromethane
< 0.02	1,2-Dibromomethane
< 0.02	Tetrachloroethylene
< 0.02	Chlorobenzene
< 0.02	Ethylbenzene
< 0.04	m,p-Xylenes
< 0.02	Bromoform
< 0.02	Styrene
< 0.02	o-Xylene
< 0.02	1,1,2,2-Tetrachloroethane
< 0.02	4-Ethyltoluene
< 0.02	1,3,5-Trimethylbenzene
< 0.02	1,2,4-Trimethylbenzene
< 0.02	1,3-Dichlorobenzene
< 0.02	Benzyl chloride
< 0.02	1,4-Dichlorobenzene
< 0.02	1,2-Dichlorobenzene
< 0.04	1,2,4-Trichlorobenzene
< 0.02	Naphthalene
< 0.02	Hexachlorobutadiene

Special Notes:

Analyst Initials/Date:

This page intentionally left blank

Appendix F

Data Usability Summary Reports

This page intentionally left blank

DATA VALIDATION REPORT

Tres Bon Cleaners

SDGs: L1471925

Chemical Analyses Performed by:

Pace Analytical National – Mount Juliet, TN

Prepared by

ENVIRONMENTAL DATA SERVICES, LTD.

Prepared for

EA Engineering, Science and Technology, Inc.

May 12, 2022

5 Brilliant Avenue, Pittsburgh, PA 15215 412.408.3288 I www.eds-pa.com

DATA USABILITY SUMMARY REPORT FOR VOLATILES

PROJECT: Tres Bon Cleaners

CLIENT: EA Engineering, Science and Technology, Inc.

LABORATORY: Pace Analytical National - Mount Juliet, TN

SAMPLE DELIVERY GROUP: L1471925

SAMPLE DATES: 03/15/2022

This sample delivery group consist of the following samples:

Sample Identification	Laboratory Identification
130058-IA-1	L1471925-01
130058-IA-2	L1471925-02
130058-OA-1	L1471925-03
130058-DUP-1	L1471925-04

The samples described above were analyzed via methods USEPA TO-15 and/or USEPA TO-15 SIM to determine the concentrations of trace volatile organic analytes (VOAs) in air samples.

Project specific quality assurance (QA) objectives, as well as the USEPA Region II SOP, Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15 Data Validation, HW-31, Rev. 6, June 2014 have been considered during validation of this data and its usability.

Table 1 provides a summary of major and minor data quality issues identified for this data set. All data are acceptable except those results which have been qualified with "R", rejected. Data validation qualifiers along with associated descriptions are provided in Table 2. All data qualification related to this group of samples is detailed on the attached sheets.

Per USEPA Region 2 Validation Guidance, "All data users should note two facts. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables even as a last resort. The second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error."

1. HOLDING TIME/SAMPLE HANDLING

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Proper sample handling and preservation also play a role in the chemical stability of analytes in the sample matrix. If samples are not collected and stored using proper containers and/or preservatives, data may not be valid.

The samples in this delivery group were prepared and analyzed within the holding time specified in the validation guidelines.

2. BLANK CONTAMINATION

Quality assurance blanks include method, storage, trip, field, or rinse blanks. Blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation and analysis or field activity. Method and storage blanks measure laboratory contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contaminations.

Method Blanks

Method blanks were prepared and analyzed in association with the samples in this delivery group at the specified frequency. Upon examination of method blank data, no analyte was positively identified at a concentration equal to or above the method detection limit (MDL) in any associated method blank.

Storage Blanks

No storage blanks were required for this sample delivery group (SDG).

Trip Blanks

No trip blanks were submitted in association with this SDG.

Field Blanks

No field blanks were submitted in association with this SDG.

3. MASS SPECTROMETER TUNING

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances.

The tuning standard for volatiles is bromofluorobenzene (BFB).

All tunes associated with this SDG were fully compliant.

4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration curve demonstrates that the instrument is capable of giving acceptable performance at the beginning of an analytical sequence. The continuing calibration verifies that the instrument is continuing to provide satisfactory daily performance. Additionally, a continuing calibration is analyzed at the end of each 24-hour analytical sequence, denoted as a "closing" calibration verification and ascertains acceptable performance at the conclusion of the analytical sequence.

Note, no closing continuing calibration verifications were performed in association with this SDG.

Response Factor

The relative response factor (RRF) measures the instruments responses to specific chemical compounds. The RRFs for the volatile organic analysis (VOA) target compound list (TCL) must be ≥ 0.05 in both the initial and continuing calibrations with exception of poor response compounds, where RRFs must be ≥ 0.01 . Additionally, the RRF in the closing continuing calibration must be ≥ 0.01 . A value less than the respective criteria indicates serious detection and quantitation problems. If the mean RRF of the initial calibration or the continuing calibration RRF is <0.05, or <0.01 for poor response compounds, or the RRF for the closing continuing calibration is <0.01 for any analyte, those analytes detected in environmental samples will be qualified as estimated. All non-detects for those analytes will be rejected.

The RRF values in all initial and continuing calibrations were found to be acceptable in all cases.

Percent Relative Standard Deviation and Percent Deviation

Percent relative standard deviation (%RSD) is calculated from the initial calibration and is used to indicate stability of a specific compound over the calibration range. Percent deviation (%D) compares the response factor of the continuing calibration with the mean response factor of the initial calibration. Therefore, %D is a measure of the instrument's daily performance.

The following QC criteria have been applied for this project:

The %RSD of initial calibration must be <30%.

An RSD value outside initial calibration limit indicates the potential for quantitation errors. For this reason, all positive results are qualified as estimated. Severe performance failures (RSD >90%) require qualification of non-detected results as well.

The %D for continuing calibration must be <30%.

A value outside these limits indicates the potential for detection and quantitation errors. For these reasons, all positive results are qualified as estimated, and non-detects are qualified with "UJ".

All initial calibration and continuing calibration %RSD and %D values were within defined QC criteria with the following exceptions.

The %D values for the target analytes benzyl chloride and ethanol were outside of acceptance limits for two continuing calibration verifications. All samples are associated with the non-compliant continuing calibration verifications. The results reported for the impacted analytes have been qualified estimated "J" or "UJ" as appropriate on this basis.

5. INTERNAL STANDARDS PERFORMANCE

Internal standard performance criteria are meant to ensure that the gas chromatography/mass spectrometry (GC/MS) sensitivity and response are stable during every experimental run.

The internal standard area count must not vary by more than a factor of two from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/- 20 seconds from the associated continuing calibration standard. The area count must be within -60% to +140% range of the associated standard. If area count is >140% non-detected results are not qualified while positive results are qualified "J", estimated. However, when an observed area count is <60%, positive results are qualified "J" estimated while non-detected results are rejected.

The reported analysis for all samples, lab control sample, and associated method blanks had internal standard areas and retention times within QC criteria in all cases.

6. COMPOUND IDENTIFICATION

Volatile

The TCL compounds are identified on the GC/MS by using the analytes relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within ± 0.06 RRT units of the standard compound, and have ion spectra which has a ratio of the primary and secondary ion intensities within 20% of that in the standard compound. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications.

All identification criteria were met. Therefore, no analytes were qualified for compound identification.

Volatile Tentatively Identified Compounds

Tentatively Identified Compounds (TICs) were reported by the laboratory and reviewed for quality assurance. For all TIC results where there is presumptive evidence of a match, being greater than or equal to an 85% match, the results are qualified "NJ", tentatively identified. If the non-target compound is reported as an unknown, the result is qualified "J", estimated. Likewise, if it is determined that the identification of a TIC is unacceptable, the tentative identification of the compound is changed to "unknown" and the result is qualified "J", estimated.

Tentatively identified compounds were not reported by the laboratory and were not evaluated for this program.

7. LABORATORY CONTROL SAMPLE

The Laboratory Control Sample (LCS) is spiked with the same analytes at the same concentrations as the matrix spike. The LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

All LCS/Laboratory Control Sample Duplicate (LCSD) precision and accuracy indicators were favorable.

8. **REPORTING**

All samples were analyzed at dilutions to bring the concentration of target analytes within the calibrated range; the reported compound quantitation limits were adjusted upwards accordingly. No other dilution, re-extraction, or reanalysis was performed on the samples associated with this SDG.

9. OTHER QUALITY CONTROL DATA OUT OF SPECIFICATION

None.

10. FIELD DUPLICATE

Field duplicates are two (or more) field samples collected at the same time in the same location. Each of the samples represents the same population and is carried through all steps of the sampling and analytical procedures in an identical manner. Field duplicate results are used to assess precision of the total method, including sampling, analysis, and site heterogeneity.

Samples 130058-IA-1 and 130058-DUP-1 were submitted as a field duplicate pair in association with this SDG. Adequate field precision was demonstrated with the exception of tert-butyl alcohol. Results reported for the impacted analyte in the field duplicate samples have been qualified estimated "J" or "UJ" as appropriate on this basis.

11. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Clean canisters were used to transport air samples in this SDG. All criteria were met to ensure containers were appropriate for sample storage.

Overall, the laboratory data generated met the project goals and quality control criteria, with the exceptions identified in this report and as summarized in Table 1.

Table 1 **Review Elements Summary**

	Were acceptance criteria met?		eria met?
	Yes No		0
Volatiles		Major	Minor
Holding Time	х		
Method Blanks	х		
Storage Blanks	NA		
Trip Blanks	NA		
Field Blanks	NA		
Mass Spectrometer Tuning	х		
Calibration Response Factor	х		
Calibration Percent Relative Standard Deviation and Percent Difference			х
Internal Standards	х		
Compound Identification - Volatile	х		
Tentatively Identified Compounds - Volatile	NA		
Laboratory Control Sample	х		
Reporting	х		
Other Quality Control Data out of Specification	х		
Field Duplicate			Х

Major= Major data quality issue identified resulting in rejection of data. Minor= Minor data quality issue identified resulting in the qualification of data. Data qualification should be used to inform the data users of data limitations. NA = Not applicable

Data Qualifier	Definition
U	The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

Table 2Data Validation Qualifiers