

engineering and constructing a better tomorrow

December 7, 2006

Mr. Brian Jankauskas, P.E. Division of Environmental Remediation New York State Department of Environmental Conservation, 11th Floor 625 Broadway Albany, New York 12233-7015

Subject: Final SVIE Data Summary Report Soil Vapor Intrusion Evaluation (SVIE) Work Assignment # D003826-33 Arba Dry Cleaners, Levittown, New York, Site ID # 1-30-062

Dear Mr. Jankauskas,

MACTEC Engineering and Consulting, P.C., (MACTEC), under contract to the New York State Department of Environmental Conservation (NYSDEC) is pleased to present this letter report for the Soil Vapor Intrusion Evaluation (SVIE) Work Assignment (WA) # D003826-33 for sub-slab soil vapor, outdoor air, and groundwater sampling at the former Arba Dry Cleaners (Site), Site # 1-30-062, dated June 7, 2006 (NYSDEC, 2006). This letter report provides a description of the field activities completed and analytical results for the WA. Field activities and laboratory analyses were conducted as outlined in the Work Plan (MACTEC, 2006). Based on an evaluation of the site conditions observed during the SVIE site work and results reported by the laboratory for samples collected as part of the SVIE, the site does not appear to pose a threat to public health from the vapor intrusion pathway.

Site Background

The Site is located in a mixed light commercial/residential area at 701 Newbridge Road in Levittown, Nassau County, New York (Figure 1). The site is located within a shopping mall consisting of several businesses in a one-story building with a sub level. The area surrounding the building is paved. The adjacent properties on the south and west sides of the shopping mall are residential. Levittown Parkway and Newbridge Road border the north and east sides of the mall respectively and there are residential properties located beyond both streets. Presently, Newbridge Kim Cleaners occupies the space previously used by Arba Dry Cleaners. Newbridge Kim Cleaners

is an active dry cleaning facility. Nassau County Department of Health records indicate the facility uses tetrachloroethene (PCE) as part of their dry cleaning operations. The Site property consists of approximately 1.7 acres.

In April 1988, a fire in the basement of the dry cleaners melted a plastic nozzle of an 80 gallon storage tank containing PCE. The water used to put the fire out mobilized the PCE to a floor drain that discharged to the underlying soils. Remedial action performed at the site included removing contaminated soil, closing the floor drain, refinishing the floor, and monitoring groundwater quality. In April 1995, groundwater and soil (taken from the source area) results indicated that the volatile organics remaining did not pose a threat to human health or the environment. In March 1996, a ROD was developed recommending "No Further Action" for the Site. Lastly, in August 1996, the site was de-listed from the New York State Registry of Inactive Hazardous Waste Disposal Sites (NYSDEC, 2006). Subsequently, NYSDEC determined an SVIE was necessary at the Site to verify remedial efforts undertaken to date are protective of human health.

Field Activities

The NYSDEC contracted MACTEC to conduct an SVIE that included: obtaining water level measurements; determining the presence/absence of non-aqueous phase liquids, and sampling groundwater at the four on-site monitoring wells; conducting sub-slab soil vapor sampling beneath the concrete basement floor of the existing dry cleaners space; and obtaining one outdoor air sample upwind of the building. The field investigation and associated sampling were conducted on September 27 and September 28, 2006. Investigation locations are shown on Figure 2.

Groundwater Sampling and Gauging. There are four on-site monitoring wells, MW-1, MW-2, MW-3, and MW-3D (Figure 2). Prior to sampling, water level measurements and presence/absence of non-aqueous phase liquids were documented at three of the four monitoring wells using a water level indicator. The cover on the fourth monitoring well (MW-3) was unable to be opened until after groundwater sampling activities were initiated. Low flow groundwater field data records are included in Appendix A.

All four monitoring wells were purged and sampled using bladder pumps and dedicated Teflon lined, low density polyethylene (LDPE) tubing. The air source was compressed nitrogen.

Groundwater samples were collected using low-flow sampling and documentation procedures described in the SVIE Work Plan (MACTEC, 2006) and analyzed for target compound list (TCL) volatile organic compounds (VOCs) using EPA method 8260, semivolatile organic compounds (SVOCs) using EPA method 8270, and Target Analyte List (TAL) metals using EPA methods 6010/7470. Purge water was initially contained, screened with the photoionization detector (PID), and then dispersed in the grassy areas on-site as the purge water did not exhibit visual or olfactory evidence of contamination, and the PID readings were not above background.

The following table summarizes the survey information and groundwater elevations at the four onsite monitoring wells. The coordinates are NAD 83 NY State Plane (Long Island) with units of US Survey Feet, and the elevations are NAVD 88.

Well ID	Northing	Easting	Top of PVC	Depth to	Groundwater
			Elevation (ft)	Water (ft)	Elevation (ft)
MW-1	210362.80	1112687.47	111.48	45.13	66.35
MW-2	210095.68	1112606.20	110.21	44.18	66.03
MW-3	210068.35	1112711.53	111.01	45.01	66.00
MW-3D	210065.75	1112711.28	110.82	44.97	65.85

Groundwater Survey Table

Source Area Investigation. An indoor air quality questionnaire and building inventory was conducted in the basement of Newbridge Kim Cleaners using the NYSDOH "Indoor Air Quality Questionnaire and Building Inventory" form. A parts per billion (ppb) MiniRae PID was used to scan product containers that may have been off-gassing VOCs, and photographs of the product containers were obtained. When VOC readings were detected or products inventoried listed primary contaminants of concern (i.e. chlorinated solvents) as ingredients, the containers in question were noted, however, they were not removed from the basement due to the fact that indoor air was not being sampled. The maximum PID readings observed ranged from 6 parts per million (ppm) near the racks of dry-cleaned clothes to greater than 20 ppm inside the storage container as noted in the questionnaire. The completed questionnaire is included in Appendix B. Representative photos of the site visit and field investigation are included in Appendix C.

Two sub-slab soil vapor sample locations (SS-1 and SS-2) were completed in the basement of Newbridge Kim Cleaners. SS-1 was located in the vicinity of patched concrete. This was most likely the location of the former floor drain. SS-2 was located west of SS-1, near the entrance to the boiler room. Sub-slab soil vapor sampling followed the procedure as described in the SVIE Work Plan (MACTEC, 2006). Sample locations were approximately 3-inches below the slab. A 1-liter SUMMA[®]-type canister with a 20-minute flow valve was used to collect the soil vapor samples. Each location was backfilled with cement grout and finished to existing grade.

One ambient air sample (OA-1) was collected using a 1-liter SUMMA[®]-type canister. OA-1 was located outside the mall in which Newbridge Kim Cleaners is housed and was located upwind, near MW-2 at the south of the mall, at approximately three feet above ground surface. As indicated in Item 12, Appendix B, the wind was observed from the south. OA-1 was also set with a 20-minute flow valve.

The time of sample collection and initial and final canister vacuum (in inches Hg) were recorded in the field log book (see Appendix A). Representative photos are included in Appendix C. Weather data from the National Oceanic Atmospheric Administration (NOAA) for September 27 and September 28 are included in Appendix D. The samples were shipped to Columbia Analytical Services for analyses of VOCs via USEPA Method TO-15.

Site Survey. A site survey, which included the location and elevation of all monitoring wells, was conducted by YEC, Inc, Valley Cottage, NY. The horizontal datum was NY State Plane NAD83, and the vertical datum was NAVD88.

Results

Upon receipt of the analytical laboratory data, a Data Usability Summary Report (DUSR) was completed by EDV, Inc., an independent third party validation subcontractor. EDV, Inc, determined that the laboratory data met the project specific criteria for data quality and data use. The DUSR, validated Form I's and chain of custody records are presented in Appendix E.

A summary of detected compounds in groundwater is included in Table 1. Detected compounds in groundwater are compared to New York State (NYS) Class GA Groundwater Quality Standards. A

summary of detected compounds in sub-slab soil vapor and outdoor air samples are presented on Table 2. Table 2 includes the October 2006 NYSDOH decision matrices for PCE and trichloroethene (TCE), for reference purposes only. Compounds detected consistent with dry cleaning operations (PCE, TCE, and cis-1,2-dichloroethene [c12DCE]) are summarized on Figure 2.

Groundwater. Groundwater at the site is approximately 45 ft bgs, and as shown on Figure 2, is interpreted to flow south/southwest. This interpreted flow direction is consistent with previous information gathered at the site (NYSDEC, 2006). Chlorinated VOCs consistent with dry cleaning operations were detected in groundwater from wells MW-3 and MW-3D.

Based on a comparison of groundwater results to NYSDEC water quality standards (see Table 1), the following compound concentrations were observed in excess of criteria.

- MW-1: SVOCs (bis(2-ethylhexyl)phthalate, 6.2 μg/L) and metals (iron, 1,520 μg/L and sodium, 174,000 μg/L);
- MW-2: Metals (sodium, 55,100 µg/L);
- MW-3: Chlorinated VOCs (c12DCE, 8.2 μg/L and PCE, 6.7 μg/L) and metals (sodium, 60,600 μg/L); and
- MW-3D: SVOC (bis(2-ethylhexyl)phthalate, 11 μg/L) and metals (iron, 8,450 μg/L and sodium, 33,400 μg/L).

Air. Based on results reported by the laboratory (see Table 2), chlorinated VOCs consistent with dry cleaning operations were detected in the sub-slab soil vapor samples. PCE concentrations ranged from 28 to $86 \,\mu\text{g/m}^3$, TCE ranged from 6.9 to 29 $\mu\text{g/m}^3$, and c12DCE concentrations ranged from 54-110 $\mu\text{g/m}^3$. Concentrations detected in these samples reflect sub-slab soil vapor and outdoor air only and therefore cannot be directly compared to the NYSDOH decision matrices for indoor air. PCE was also detected in the outdoor air sample at 40 $\mu\text{g/m}^3$.

Conclusions

Based on an evaluation of the site conditions observed during the SVIE site work and results reported by the laboratory for samples collected as part of the SVIE, the site is not anticipated to pose a threat to public health from the vapor intrusion pathway.

Concentrations of PCE detected in the sub-slab soil vapor samples were detected at concentrations below indoor air threshold values that would require mitigation (28 to 86 μ g/m³). Concentrations of TCE detected (6.9 to 29 μ g/m³) in the sub-slab soil vapor samples require an evaluation of TCE concentrations in indoor air to compare to the NYSDOH guidance matrix. Indoor air samples, however, were not collected due to the continued use of chlorinated solvents at the Site; therefore, it is not known if the TCE detected represents vapors from a sub-slab source (i.e., contaminated soil or groundwater), or vapors from the active dry cleaner that have migrated from indoor air into the sub-slab. Assuming TCE is present in the sub-slab soil vapors due to a sub-slab source, then it is reasonable to assume the solvents from sub-slab soil gas to indoor air would attenuate by at least a factor of 10¹ and therefore indoor air concentrations resulting from sub-slab sources would be below the guidance concentrations requiring mitigation. In conclusion, concentrations of chlorinated VOCs detected in sub-slab soil vapor samples, when evaluated in comparison to NYSDOH decision matrices for indoor air, suggest soil vapor migration from sub-slab vapors are not believed to pose a threat to public health.

As discussed above, the outdoor air sample was collected up-wind of the mall; however, there may have been shifting wind conditions during sampling. This potential change in wind direction may explain the presence of PCE in the outdoor air sample as PCE is currently used as the facility and would presumably be vented to the outdoor.

Chlorinated VOCs consistent with dry cleaning operations were detected in groundwater, sub-slab soil vapor, and outdoor air samples; however concentrations of these solvents were observed below

¹ Draft EPA guidance (November, 2002) for evaluation of soil vapor intrusion into indoor air states soil gas from sub-slab is conservatively assumed to intrude to indoor spaces with an attenuation factor of 10.

NYS standards and guidelines, as applicable and noted above, with the exception of PCE and c12DCE in groundwater at location MW-3. PCE (6.7 ug/L) and c12DCE (8.2 ug/L) concentrations detected at this location slightly exceeded the NYS GA standard of 5 ug/L. In April 1995, PCE was previously detected in the groundwater downgradient of the site at a concentration of 3.4 ug/L at MW-3, which was below the NYS GA standard (NYSDEC, 2006). Samples collected as part of the SVIE were performed using low flow purging/sampling techniques. It is likely previous site groundwater samples were collected using conventional well sampling techniques (removing three well casing volumes and sampling with a bailer). The slight variation of concentrations detected in groundwater samples as compared to historical results may be contributed to the differences in sampling techniques used.

Recommendations

As requested by NYSDEC, the following recommendations are offered to assist with potential future monitoring activities at the site:

- Evaluate how dry cleaning chemicals are utilized as part of daily operations (i.e., dry cleaning process and chemical storage) and apply best management practices to reduce the potential for direct exposures to chemicals at the facility;
- Inspect the dry cleaning facility to determine if present operations comply with Division of Air Resources Title 6 New York Code Rules and Regulations (NYCRR) part 232, Perchloroethylene Dry Cleaning Facilities;
- Utilize Division of Air Resources Title 6 NYCRR part 232 to evaluate the potential for emissions from the facility to impact the indoor air quality at the mall by assessing the dry cleaning equipment, dry cleaning exhaust vent location, concentration of volatile organics emitting from the exhaust vent, and distance to structure openings/air intakes from the exhaust vent;
- Verify downgradient groundwater concentrations of chemicals exceeding NYS GA standards. If concentrations exceeding standards are confirmed, consider implementing a periodic groundwater monitoring program.

Field Investigation Report NYSDEC - Arba Dry Cleaners Site MACTEC Engineering and Consulting, P.C.- 3612062052

If you have any questions or concerns, please feel free to call us at 207-775-5401.

Sincerely,

MACTEC Engineering and Consulting, P.C.

son

John W. Peterson Project Manager

ATTACHMENTS:

References Tables Figures Appendices

cc:

Ms. Jacquelyn Nealon Mr. Joe DeFranco File

P:\Projects\nysdec1\projects\Region_1_Dry_Cleaners-ARBA\4.0_Deliverables\4.1_Reports\Final SVIE Report\Text\final SVIE text\Report.hw.130062.2006_12_07.Arba_SVIE.doc

William J. Weber, P.E. Program Manager

REFERENCES

- MACTEC Engineering and Consulting, 2006. Soil Vapor Intrusion Evaluation Work Plan, Arba Dry Cleaners, Levittown, New York. Work Assignment No. D003826-33, September 2006.
- New York State Department of Health (NYSDOH), 2006. "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", October 2006
- New York State Department Environmental Conservation (NYSDEC), 2006. Work Assignment #D003826-33, Arba Dry Cleaners, Site # 1-30-062-letter dated June 7, 2006.
- United States Environmental Protection Agency, 2002. Evaluating the Vapor Intrusion to Indoor Air (EPA 530-F-02-052).
- New York State Department Environmental Conservation (NYSDEC), 1997. Division of Air Resources, Title 6 New York Code Rules and Regulations (NYCRR) Part 232, Perchloroethylene Dry Cleaning Facilities, effective date 5/15/1997.

TABLES

TABLE 1 SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER SVIE Data Summary Report Arba Dry Cleaners Site # 1-30-062

				Location	MW-1	MW-2	MW-3	MW-3D	MW-3D
				Sample Date	9/28/2006	9/27/2006	9/28/2006	9/27/2006	9/27/2006
				Sample ID	GW-MW1	GW-MW2	GW-MW3	GW-MW3D	GW-MW3D DUP
				QC Code	FS	FS	FS	FS	FD
Analysis	Parameter	Units	GA Std	GA Guidance					
VOCs	1,1,1-Trichloroethane	µg/L	5		5 U	5 U	5 U	5 U	0.35 J
VOCs	2-Butanone	µg/L		50	10 U	10 U	10 U	2.6 J	2.4 J
VOCs	Chloroform	µg/L	7		0.65 J	0.52 J	5 U	0.38 J	0.44 J
VOCs	Cis-1,2-Dichloroethene	µg/L	5		5 U	5 U	8.2	5 U	5 U
VOCs	Tetrachloroethene (PCE)	µg/L	5		5 U	5 U	6.7	5 U	5 U
VOCs	Trichloroethene (TCE)	µg/L	5		5 U	5 U	3.8 J	0.37 J	0.51 J
SVOCs	Benzo(b)fluoranthene	µg/L		0.002	3.9 J	9.4 U	9.4 U	9.4 U	NS
SVOCs	Bis(2-Ethylhexyl)phthalate	µg/L	5		6.2 J	9.4 U	9.4 U	11	NS
SVOCs	Butylbenzylphthalate	µg/L		50	4 J	9.4 U	9.4 U	9.4 U	NS
SVOCs	Fluoranthene	µg/L		50	37 U	9.4 U	9.4 U	0.99 J	NS
Metals	Aluminum	µg/L			1,380	166	100 U	365	NS
Metals	Arsenic	µg/L	25		19.3	10 U	10 U	10 U	NS
Metals	Barium	µg/L	1,000		48.5	90.7	120	56.4	NS
Metals	Calcium	µg/L			48,800	31,000	14,500	17,700	NS
Metals	Chromium	µg/L	50		32.5	10 U	10 U	10 U	NS
Metals	Iron	µg/L	300	500*	1,520	247	184	8,450	NS
Metals	Lead	µg/L	25		17.2	5 U	5 U	7.9	NS
Metals	Magnesium	µg/L		35,000	4,630	6,380	1,000 U	2,960	NS
Metals	Manganese	µg/L	300	500*	46.4	10 U	15.8	270	NS
Metals	Potassium	µg/L			114,000	4,360	4,290	4,230	NS
Metals	Sodium	µg/L	20,000		174,000	55,100	60,600	33,400	NS
Metals	Zinc	µg/L		2,000	39.3	20.2	20 U	197	NS

Notes:

Shaded = Sample concentration exceeds GA Std

µg/L - Micrograms per liter

U = Not Detected

J = Estimated Value

NS = Not Sampled

FS = Field Sample

FD = Field Duplicate

* = Combined value for sum of iron and manganese concentrations.

GA Std/Guidance values obtained from New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards, August, 1999.

Prepared by: PM Checked by: JPC

TABLE 2 SUMMARY OF DETECTED COMPOUNDS IN AIR SAMPLES SVIE Data Summary Report Arba Dry Cleaners Site # 1-30-062

		Location	OA-1	SS-1	SS-1	SS-2
		Sample Date	9/28/2006	9/28/2006	9/28/2006	9/28/2006
		Sample ID	OA-1	SS-1	SS-1 DUP	SS-2
		QC Code	FS	FS	FD	FS
Analysis Class	Parameter	Units				
VOCs	2-Butanone	µg/m³	3	10	8.9	14
VOCs	2-Hexanone	µg/m³	3.5 U	3.5	3 U	3.3 U
VOCs	4-Methyl-2-pentanone	µg/m³	3.5 U	2.8	3 U	4
VOCs	Acetone	µg/m³	18	200 D	120 D	220 D
VOCs	Benzene	µg/m³	2.7 U	2.2 U	2.3 U	2.9
VOCs	Carbon disulfide	µg/m³	2.5 U	5.6	2.2 U	42
VOCs	Chloroform	µg/m³	3.7 U	3.1 J	6.1 J	3.4 U
VOCs	Cis-1,2-Dichloroethene	µg/m³	3.3 U	54	110 D	3.1 U
VOCs	Ethyl benzene	µg/m³	3.6 U	3 U	3.1 U	3.5
VOCs	Tetrachloroethene	µg/m³	40	28 J	86 J	78
VOCs	Toluene	µg/m³	3.2 U	14	17	20
VOCs	Trichloroethene	µg/m³	4.5 U	6.9 J	29 J	4.2 U
VOCs	Trichlorofluoromethane	µg/m³	4.3 U	3.5 U	3.7 U	14
VOCs	Vinyl acetate	μg/m ³	3.1 U	4.8	4.8	7.5
VOCs	Xylene, m/p	μg/m³	7.2 U	5.8 U	6.2 U	9.7

NYSDOH MATRIX 1 FOR TCE (OCT 2006) - INDOOR AIR CONCENTRATION OF COMPOUND (mcg/m³)

Prepared by: PM

Checked by: JPC

SUB-SLAB VAPOR		INDOOR AIR		
CONCENTRATION OF COMPOUND				
(mcg/m ³)	<0.25	0.25 to < 1	1 to < 5.0	5.0 and above
<5	1. No further action	 Take reasonable and practical actions to identify sources(s) and reduce exposures. 	3. Take reasonable and practical actions to identify source(s) and reduce exposures.	 Take reasonable and practical actions to identify sources(s) and reduce exposures.
5 to < 50	No further action	6. MONITOR	7. MONITOR	8. MITIGATE
50 to < 250	9. MONITOR	10. MONITOR/MITIGATE	11. MITIGATE	12. MITIGATE
250 and below	13. MITIGATE	14. MITIGATE	15. MITIGATE	16. MITIGATE

NYSDOH MATRIX 2 FOR PCE (OCT 2006) - INDOOR AIR CONCENTRATION OF COMPOUND (mcg/m²)

		INDOOR AIR		
SUB-SLAB VAPOR CONCENTRATION OF COMPOUND (mcg/m ³)	< 3	3 to < 30	30 to < 100	100 and above
< 100	1. No further action	 Take reasonable and practical actions to identify sources(s) and reduce exposures. 	3. Take reasonable and practical actions to identify source(s) and reduce exposures.	 Take reasonable and practical actions to identify sources(s) and reduce exposures.
100 to < 1,000	5. MONITOR	6. MONITOR/MITIGATE	7. MITIGATE	8. MITIGATE
1,000 and above	9. MITIGATE	10. MITIGATE	11. MITIGATE	12. MITIGATE

NOTES:

U = Not Detected

J = Estimated Value

D = Value obtained from secondary dilution run

 $\ensuremath{\mathsf{NS}}$ = Value reported from secondary dilution run

FS = Field Sample

FD = Field Duplicate

 $\mu g/m^3$ = micrograms per cubic meter

mcg/m³ = micrograms per cubic meter

NYSDOH matrix values obtained from "Guidelines for Evaluating Soil Vapor Intrusion in the State of New York", October, 2006.

FIGURES

APPENDIX A

LOW FLOW GROUNDWATER FIELD DATA RECORDS AND FIELD LOG BOOK NOTES

FIELD	DATA	REC	ORD - L	OW F	LOW	GRO	UNDW	ATER S.	AMPLIN	NG		JOB NU	MBER 3612	2062052	
PROJECT		Art	a			F	FIELD SAM	PLE NUMBE	R Art	on - GW -	HWI		EVENT N	o] [
SITE ID		MW	1					SITE TYP	E				DATE	27.06	
VITY	START	14	20 Er	D IG	120	5	SAMPLE TI	ME	1.28.01	0 / 0930		FILE	TYPE		
WATERL	EVEL / PL	JMP SI	ETTINGS		MEASU	REMENT			ODOTECT	15		CACINIC			
INITIAL DE		45	D	CT.	TO	P OF WE	OTECTIVE	CASING	CASING ST			DIFFER		F	T
		P	• 11		HISTOR		52	.0	(FROM GRI		FI	WELL		4	1
TO WA	ATER	51	.5	FT	(TOR)		58.9	FT	AMBIENT A		PPM			T	
SCREEN L	LENGTH		1		PRESS		20	<u>P</u> m	PID WELL			INTEGF	NTEHGRITY: NTY: YES	NO N/	A
	L		0	FT	TO PUN	AP [20	PSI	MOUTH		РРМ	CAS			-
TOTAL	VOL.		4.2	GAL	REFILL SETTIN	G	10	5	DISCHARG SETTING	E	5 5	LOCK COLL			ē
(purge	e volume (m	illiliters	per minute) x l	ime dura	ation (minu	ites) x 0.0	00026 gal/m	nilliliter)							
PUNGEL		1 TO	PURGE	т	EMP.			рн	00	TURBIDITY	REDOX				
TIME	WATER	7 (h)	RATE (ml/m)	(+/-	deg.c)	(m	s/cm)	(units)	(mg/L)	(ntu)	(+/- mv)	DEPTH (ft)	СОМ	MENTS	
1442	45	41	160	2.2	0	24	C mL	min		3.58		11	<u> ear</u>		
1448	\$ 45.	79	160							2 07		11	1.		
1452	- 46	10	160							2.84		11	11		
1457	+ 46.	57	-			52						_			
1501	Pu	mp	lowere	d +	0 5	4.5	pure	e rate	mich	rased t	p pure	e well	dry	400 ml	-Im)
1504	46.	78	_	•••		Pm									
1508	47	.51		_											
1 1520	49.	30													
154	15 51.	5	Well	pump	red	dry	/ -	Colles	t Sa	ple 9	. 28. 0	6			
Note	A Wat	reno	ugh san	pic	collect	ed	to obt	ain pu	rge d	aita wl	YSI				
EQUIPMI	ENT DOC	UMEN'	TATION		a.	I			L	1	1	1	I	dir fix i circa	
TYPE	OF PUMP				TYPE		<u>1G</u>		TYPE	OF PUMP MATE	RIAL	TYPE C	OF BLADDER	MATERIAL	
					Н	GH DEN	SITY POLY	ETHYLENE	S S	TAINLESS STEE	L		FLON		
ANALYT	ICAL PAF	RAMET	ERS		- 1210		POLE	1 lieu	d						
ANAL					ME	THOD		PRES	ERVATION	VOLUME REQUIRE	SAME COLLE	PLE CTED S	AMPLE BOT	ILE ID LETTE	ERS
VO	i				82	60		1	LI	Vicis	V	¢	Arba-	GW.	MW
								144							
SVOC	6				82	70		4	36	500 ml	- v	·	1.		
·ta.	ML	1.			5										
IAL	- 1121	als						4	NO3	1 L	v	/	1		- 20
								18.1 - 114 114.	and the second		2010-01-01-01				
PURGE	OBSERV	ATION	s -	No	0 00	lov	or sl	necn							
CONTAIN	NERIZED	YES	NO .												
NOTES:		-													
UGNIATI		10	1. 1.	100	~			LC	W FLC	OW GROU	JNDW	ATER D	ATA R	ECORD)
	UNE		p		÷				QU	ALITY AS	SSURA	NCE P	ROJEC	TPLAN	l
CHECKE	D BY											T,	94th RR	C 2004	<u> </u>
							6 (a						— мас	CTEC, Inc	

IELD I	DATA REC	ORD - LO	W FLOW	GROUNDWA	TER S.	AMPLIN	G		JOB NUM	MBER 3612062052
ROJECT	Arba			FIELD SAME	PLE NUMBE	R Arb	a- GW-	MW2		EVENT NO.
ITE ID	MW-	2			SITE TYP	E			ſ	DATE 9.27.06
VITY	START 122	. 🗢 END	1410	SAMPLE TIN	AE	1350			FILE T	YPE
VATER LE	EVEL / PUMP S	ettings t. 18	MEASUR TOF	REMENT POINT P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIV CASING STI (FROM GRC		FT	CASING DIFFERE	
FINAL DEF TO WAT		. 20	HISTOR WELL D FT (TOR)	EPTH 55.2	FT	PID AMBIENT AI	R C	РРМ	WELL DIAMET	
CREEN LE		0	PRESSI FT TO PUM	JRE 309	PSI	PID WELL MOUTH		О РРМ	INTEGR C CASII	ITY: YES NO N/A APX NGX
TOTAL V PURC (purge v	OL. GED votume (milliliters	2.8 c per minute) x tin	AEFILL SAL SETTIN ne duration (minu	G 1 0 Ites) x 0.00026 gal/m	S illiliter)	DISCHARGE	5	5		
URGE DA	ATA DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. c)	SPECIFIC CONDUCTANCE (ms/cm)	pH (units)	DO (mg/L)	TURBIDITY (ntu)	REDOX (+/- mv)	PUMP INTAKE DEPTH (ft)	COMMENTS
255	44.18	Begin	purging	@ 320	nilm				50.2	clear
1300	44.20	320					12.5		0	n
1323	Hockup	to to Y's	51						11	я
1326	44.20	280	17.06	0.453	6.03	5.50	12,5	111.8		<u></u>
1331	44:20	300	16.13	0.449	6.02	6.02	7.67	133.8	<i>n</i>	
336	44.20	300	16.56	0.448	6.01	6.09	7.10	146.0	6	<u></u>
1350	44.20 C-11-ec	t Samp	le Ar	6.452 ba - GW -	MWZ	2.74	6.03	126.6		
	ENT DOCUMEN OF PUMP LADDER ERISTALTIC		<u>Түре (</u> Ні Ю	DE TUBING GH DENSITY POLYI THER _ LDPE	ETHYLENE Feflon -	TYPE C ST	F PUMP MATE AINLESS STEE HER	E <u>RIAL</u> EL		F BLADDER MATERIAL FLON HER
NALYTI	CAL PARAMET	TERS	ME	THOD	PRES	SERVATION	VOLUME	SAM	9 F	
ANALY	YSIS		NL Q.2	IMBER	M	HU	REQUIRE	D COLLE	<u>cted</u> s	AMPLE BOTTLE ID LETTERS
SVO	.с С		82	-70		4%	160	imber	1	ii
·TA	L Metal	5				HXN03	500	mL	1	11
PURGE (PURGE W CONTAIN	DBSERVATION VATER ERIZED	іs _ s) NO _	No ed	or or sh	<u>ود ب</u>					
NOTES:	IRF. AL	In J. M	fl-		LC	OW FLC	W GRO	UNDW/ SSURA	ATER D NCE PI	ATA RECORD
JIGNATU	/_M								Ţ	4th RRC 2004

FIELD I	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER S	AMPLIN	G		JOB NU	MBER 3612062052
PROJECT	Arl	ba		FIELD SAM	PLE NUMBE	R Arba	a - Gw.	MW3		EVENT NO.
SITE ID	MW	-3			SITE TYP	E				DATE 9.28.06
	START 14		1610	SAMPLE TH	ме	153	5		FILE	
WATER LE	EVEL / PUMP SE	ETTINGS	MEASUF	REMENT POINT						
INITIAL DEP TO WAT	TH 49	5.01		P OF WELL RISER	CASING	PROTECTIV CASING STI (FROM GRC		FT	CASING DIFFERI WELL	
FINAL DEF TO WAT	TH 43	5.01	WELL D FT (TOR)	EPTH 56	FT	PID AMBIENT AI	R Man	O PPM	DIAMET	
SCREEN LE	ENGTH	10	FT TO PUM	IP 30	PSI	PID WELL MOUTH	156 p	pb PPM	INTEGR	ITY: YES NO N/A
TOTAL V PURG (purge v	OL. SED volume (milliliters	3. ic (REFILL SAL SETTING	G I C	S villiditer)	DISCHARGE SETTING	5	s	LOCK	NG ED AR
PURGE DA	ATA			SPECIFIC					PUMP	
ТІМЕ	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (+/- deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DO (mg/L)	TURBIDITY (ntu)	REDOX (+/- mv)	INTAKE DEPTH (ft)	COMMENTS
1447	Begin	Porqu	ng (B	320 InL	m		0		51	clear
1451	45.01	240	-				6.04		11	P
1453	Connec	it ito	YSI						ie .	
1456	45:01	260	17.40	0.407	5.32	14:04	5.25	112.0	11	и
1501	45.01	300	17.15	0.396	5.29	12,95	4.14	1:34-3	14	L1
1506	45.01	300	17.09	0.393	5.28	11.90	4.15	154.6	ii.	"
1511	45.01	300	17.02	0.391	5.29	11.88	4.19	173.2	10	11
1516	45.01	300	17.04	0.393	5.29	10,89	4.01	183.2	11	E1
1521	45.01	300	16.97	0.391	5.29	10.64	3.52	194.6	11	11
152	6 45.01	300	16.97	0.392	5.29	10.42	3.75	199.8	11	11
153	45,01	300	16.95	0.389	5.29	10.41	4.02	197.0	11	6.0
1535	Collec	t Arb	n - Gw	- MW31		L				
			<u>ТҮРЕ (</u> Ни	DE TUBING GH DENSITY POLY	ETHYLENE	TYPE C	OF PUMP MATE AINLESS STEE	<u>RIAL</u> L)F BLADDER MATERIAL FLON
PE		OTHER	(X) or	THER LOPE ;	terlon	ГО	HER			HER
ANALYTI	CAL PARAMET	ERS	ME	THOD	PRES	ERVATION	VOLUME	SAMF	۹LE	
ANALY	YSIS		NU	IMBER	M	ETHOD	REQUIRED	COLLEC	CTED S	AMPLE BOTTLE ID LETTERS
Vol			6	40	11	rci	3x 40	inL.	~	Arba- UW- Mu
SVO	ic		B	270	4	Γ ^ω L	1× 10	2	5	
TAL	Metals	3	*		ŀ	No-3	1×50	0 mL	~	
										Ð
PURGE C	DBSERVATION	S	elect.	n ala	- 14-C	chies.				
PURGE W CONTAIN NOTES:	ERIZED YES	S) NO _		40 mor		Jucco				
SIGNATU	RE:	la f. ly	le_		LC	W FLC	W GROU	JNDWA SSURA	ATER D NCE P	ATA RECORD
									9	94th RRC 2004
CHECKE	D BY:									- MACTEC. Inc
14	20040270 10									

FIELD	DATA	REC	ORD - LO	W FLOW	GROUNDW	ATER S	AMPLIN	G		JOB NU	MBER 3612062052	
PROJECT		Arbo	ι.		FIELD SAM	PLE NUMBI		ba- Gw-	MW3D		EVENT NO.	
SITEID	/	Mw-	30			SITE TY	PE				DATE 9-27 06	
VITY	START	163	bo END	1840	SAMPLE TI	ME	18	•5		FILE	TYPE	
WATER LI	EVEL / P	UMP SE	ETTINGS	MEASU	REMENT POINT		DOOTCOTU	_		CACING		
INITIAL DEF TO WAT	PTH TER	44	98		P OF WELL HISER P OF PROTECTIVE	CASING	CASING STIC		FT	DIFFER		
FINAL DEI TO WA	PTH TER	45	.20	WELL C (TOR)	DEPTH 84	FT	PID AMBIENT AIF	a 🚺 🧯) ррм	DIAMET		
SCREEN L	ENGTH		10	PRESS FT TO PU	URE MP	PSI	PID WELL MOUTH	C	РРМ	INTEGE	AITY: YES NO N/A	
	VOL. [5		REFILL SETTIN		S	DISCHARGE SETTING	5 \$		LOCK		
PURGE D	ATA	initial Cra		ic contained (main	SPECIFIC	minitery				PUMP		
TIME		H TO	PURGE	TEMP	CONDUCTANCE	pH (units)	DO (mo/l.)	TURBIDITY (otu)	REDOX	INTAKE DEPTH (ft)	COMMENTS	
1658	Bei	9700	with the first	- (C)	240 mil	min				79	Cloudy (black a	alor
1705	45.	.20	300	~	212-121			186		4	<u>n</u>	
1713	45.	.20	300					148		il	<u>li</u>	
1718	45	.20	300					83.5		4.4	clearing	
1726	45	.20	300			-		60.2		it	11	
1732	45	.20	300			ļ		46.2		10		
1738	2 .110	vekup	to YS	1						10	<i>11</i>	
1740	45	.20	300	16.60	0.297	6.06	2.15	38.1	-52.4	11	little cloudys	
1745	5 45	1.20	300	16.20	0.290	5.89	2.05	32.6	-23.2	11	<u> </u>	
175	0 45	,20	300	16.09	0.291	5.00	2.23	20.3	-43.8	11	<u> </u>	
1755	45.	.20	200	16.03	0.292	5.04	2.12	28.3	-20.2	10	"	
EQUIPME	ENT DOC	CUMEN	TATION (Ch	15.17	Hest Sam	12.04	rba - Gw	- MW 3N	- 373	hope - 1	W- MWZDMS)	
TYPE	OF PUM	2	10	TYPE	OF TUBING	part L	TYPE O	F PUMP MATE	RIAL	TYPE (OF BLADDER MATERIAL	MW3
Хв	LADDER		1	Цн	IGH DENSITY POLY	THYLENE	ST/	AINLESS STEE	iL.		FLON Arba- GW	DUP
					THER	t-inte		нен		0	IHER	ent
		RAMEI	LHS	M	ETHOD	PRE	SERVATION		SAME		SAMPLE BOTTLE ID LETTERS	
Ve	00			ç	1260		HCI	3 44	<u>s</u> .	/	Arba - GW - MW-	27
						2					t due + MC	20
500	C			3	8270		4%	1 Lan	ber i	-	+ MS	
TA	L M2	tals				ŀ	tNO.3	500	mL	~	+ MS	
										ě.		
PURGE	OBSER	ATION	s	MAX pic	reading	in pu	orge wart	ter buc	ket -	339	ppb	
CONTAIN	NERIZED	YES	<u>мо</u> _	no sta	ect shee	n, bu	t black	i due to	o blau	k yar	ticulates	
NOTES:	8			f	some as	phalt	Fell into	well do	NINGY P	vocess of	Funobstructing well	
	JRE:	fle,	1.00		ight sulfur a	ador L	OW FLO QUA	W GRO	UNĎW/ SSURA	ATER [NCE P	DATA RECORD ROJECT PLAN	
CHECKE	D BY:										94th RRC 2004- Pan MACTEC, Inc	J

24)	Avlas 90. Fz. P Relad	First oc Arber (33)
Weather	Partly cloudy, 60's, slight -	started of barradient well www.
	Forecast: parting cloudy 70's	I will use second bladder rump
Personnel	1 MACTEC (Phil Muller - RM.)	For NW-1 what dedicuted tubury
0000	MALTEL ON Site	1350 Cullect Sample Acta- GW+ MW2]
0910	Prepare for aw level round.	for Voc, TAL Metals, and SVOC.
	Well id by Notes, NAPL DYB	1720 Set- UP @ MW-1
	MW-1 45.13 32 rpb, N 55.5	recolery was very poor, thus
	MW-Z 44 18 0 496, N 55.2	Well was pumped dry - to be
	MW-3D 4497 0 PPb, N 64	Sampled 9.28.06
	MW-35 pm could not open well	1630 Set - up @ MW- 3D deconid bladder pump
Note:	PPB RAK was calibrated of	1805 Collect Samples Arba - QW- MWSD
	10 ppm 15 abotylene	Arba- GW - MW 3DDUP and pr
•	Zero air = 0. 0 ppm (ambient)	(Voc which and Arba - Gw - MW3Mr)
	10 ppm 15 obstylene = 10.0 ppm	1840 MACTEL off site lim
	no serial # on varit.	Nite: See purge data sheets for each is
· N.te :	From ogoc - 1200 PM tried to	MW for defails of purge and
	open MW-Z, MW-3 , and MW-3D.	Sample
	asphalt + I- progs had prevented	Note: Turbidity metry calibrated @ MW-2
	easy access . During this time	© 1220.
	one trip to hardward store was	HACH ZIOOP
	made. MW-3> still cull not be	stud. (urv) reading (urv
	epender May try later.	6.01 0.09
072	Set up @ HW-ZEF -	20.0
	because delivery a has blocked	97.8

SH S olds AM placed pin Flags @ Sul gas Partly cloud, high 50's F Callbrate HACH ZIOOP Turbidisty thet -Set- JP @ MW - 1 for chile that well locaters @ vilage Valet. MACTEL - Puil Hyller (PM) Forecest: cloudy to's (vice) (vite) MACTEL ON- SCAL @ Arba - MM of sample - no purging . well has recoursed ~ 1 ft DTW @ NW1 5 59.65 to try to sample Zero air (backgroud) = 0.0 0.09 20.0 10.0 Yester day atter your ō 10 from 15 chutylene . Calibrate ppb RAE Arba no wind +H-4, pH-7 Calibrate 751 Sthd. (Nrv) Meter . 10.01 20 100 New Personnel : Weather : 9.28.06 Md 00000 was completely obstructed by asphalt poor 25630 - xrw mold - 1 - 50025 other fectors . In addition porge 1820 0490 5010 water had black particulate. worker had a slight sulfur add black purticulate way be due to and for had a to chip it away. Also, the pur will below for pur to asphalt falling into well trying to open well. The well 9.27.06 Some of this may have been cuat a philo bus pining row durines the element of asphalt obstruction when PM was During purging of MW-3, put an ice in culer 611 1 (q d d b 2 52 5 Atba however Samples funge 900 Note: Wote :

placed in the hole above builden if fubing 53 remonder Then bees wax melted on portable Rurged 3 tube vulvines - 60 mL 12to hair - 2" below buttom of Slab Addition glass beads below slab the filled party w/ glass beads sited for theirs placed 1/2" hole drifted through conc. w syringe the Conster to of hole to surface for seal, to to @ 55-2, Cullect Sample 1" unde come. and 3" it to matchial Connect Summa Canisher to itubing @ 55-1, Callect. Sample tea cooker placed into Summa for To- 15 à 7313624 reg. No. 143463 1" hole drilled 1.0 L Arby 7 \$5+11 PL = 29.0" Hy Pf= 1.0" Hs Arba Arba - 55 - 2 20 min , duls tub. --9.20.06 1149 1154 In basement, have waste bucket near bugher rm. energy but safed to by to obtain in basyment. 55-1 near columns, 55-2 Vot pu Sample Arba- CW- MWI and SS-2 9.28.06 not enough water for SVOC + She sqid ico at 15 Energy th racks of dry cleaned cluthes collected for voc onthe -He shiel vocs + methol is analyze for metals, try to collect some svoc sample Brian Jankaystas on - site conducts vity ~ 1.413 ms/cm is eposit + clocky thinker, home und ppb rac - 6 ppm max Called Jayme Coundly Gue later @ Hw-1 dry cleaners Drill holes SS-1 at end of day 029 = 240 mV blaver wice un Conduct Survey Arba (NYSDEC). metals Enter 0945 06.60 100 1030 1015 1000

$ \begin{array}{c} f(z=2), c^{-}, (4) \\ f(z=5, 0^{-}, (4) \\ ze^{-}, (z)^{-}, (z)^{+}, (z)^{-}, (z)^{-}, (z)^{+}, (z)^{-}, $	٩	Arba 9.28	.or g. 28.06 Arber	E)
$\{r_2 = r_0 u^{-}, H_3\}$ $r_0 r_1 = r_0 r_0 H_3$ $r_1 = r_0 r_0 H_3$ $r_1 = r_0 r_0 H_3$ $20 ma_1 (13) + r_0 (14) + r_0 $		76= 29.0 " 14	$P_{i} = 29.6$ Hy	
20 mm 1 a Can, 2 a Can, 1 a Can, 2		RE = 5.0" Hg	PF = 6.5 " H-	
reg. up. 143470 reg. up. 143470 reg. up. 143470 7335857 1210 Callect Somerle [Arba - 35-1 Mp] $Per = 27.5$ H_3 $Per = 1.0$ H_3 $Per = 1.0$ H_3 $Per = 1.0$ H_4 $Per = 1.5$ $Per = 1.5$ $Har Plus Per = 1.5 Har Plus Per = 1.5<$		20 min, 1.0 c Cansiter	· · · · · · · · · · · · · · · · · · ·	uster .
I210 Cellet Sample $\overline{(NTDa - 55 - 1)}{NDa}$ I210 $\overline{(Tab - 57 - 1)}{Stain}$ I213 $\overline{2503}$ $\overline{(Tab - 57 - 1)}{NDa - 57}$ $\overline{Te} = 27.5$ H3 $\overline{Te} = 27.5$ H3 $\overline{Te} = 0^{\circ}$ H3 \overline{Cont} \overline{Cont} \overline{Cont} $\overline{Te} = 10^{\circ}$ H3 \overline{Cont} \overline{Vab} \overline{Cont} <td></td> <td>reg. no. 143470</td> <td>reg no. 143470</td> <td></td>		reg. no. 143470	reg no. 143470	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7313585	7313583	
$P_1 = 27.5^{\circ}$ H3 $P_1 = 27.5^{\circ}$ H3 $P_2 = 1.0^{\circ}$ H3 $P_1 = 27.5^{\circ}$ H3 $P_2 = 1.0^{\circ}$ H3 $P_1 = 24.5^{\circ}$ H4 $P_2 = 1.0^{\circ}$ H3 $P_2 = 1.0^{\circ}$ H4 P_2	0121	Collect Sample Arba - 35-	1 Dup Pitral. Pitra 0 prb	
Rf=1.0" HD Rm 4 cdit 10^{-1} comister		Pi = 27.5" H3	1310 Brian opened MW-3	
Zo mus, 1: 0 th carister PM th edit hirds Veq , Nv : 142251 1355 Nucl. break Veq , Nv : 142251 1355 Nucl. break PM $P15$ = 556 pp $Magg$ RUS = 45 pp 1400 5et - Vr @ $Nu-3$ $Nagg$ RUS = 45 pp 1400 5et - Vr @ $Nu-3$ $Magg$ RUS = 45 pp 1450 445, of a drw $Magg$ RUS = 400 Pub 1475 decon $Nagg$ RUS = 600 pp 1475 60 45, of a drw $Nafe$: $P10$ Pub Far $Nafe$: $P10$ Pub Far $Nafe$: $P10$ Pub Far $Nafe$: $P10$ Pub $P10$ Pub $P257$ Culted $P10$ Pub $P10$ Pub $Nafe$: $P10$ Pub		PF= 1,0" HJ	MW-3 from yesterday 13	Mw-3 D
Veq. no. $i42251$ $i355$ $ivulu break$ 731 GeVet 731 GeVet $Mu-3$ $122c$ $7ib$ $hueckilvre8e^{2} + vreMu-3MapPib = 156rpuhelesrede8e^{2} + vrhelesrede8e^{2} + vrhelesrede8e^{2} + vrhelesrede8e^{2} + vrhelesredee^{2} + srhelesredee^{2} + srhelesrede^{2} + srhele$		20 mil, 1.0 h canster	PM to edit wites	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Veg. 40. 142251	1335 Junch breek	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7310404	1400 Set - Vr @ MW-3	
MapRib= 45 ppm1430145deconprunp1225Pibbasisted of the55-2145 $i = 36'$ $i = 36'$ MarPibbasisted of the55-2 $i = 56'$ $i = 36'$ $i = 36'$ MarPibbasisted of the $i = 55'$ $i = 36'$ $i = 36'$ MarPib $= 600$ $rabrabfranradNote:Proradi = 56'i = 47 mi = 47 mNote:Proradi = 56'i = 47 mi = 47 mNote:Proradi = 56'i = 40 mi = 40 m1250Demudi = 135i = 135i = 1351300Sef-upi = 136 mi = 136 mi = 232 mi = 232 m1300Sef-upi = 136 mi = 136 mi = 236 mi = 236 m1300Sef-upi = 136 mi = 136 mi = 136 mi = 136 m1300i = 136 mi = 136 mi = 136 m$	1220	PID hocked vp to 55-1	du Pib = 156 rpb	
bekgrd= cocpp1225P'IDhenercd q_1 b_2 MarxP(Dhenercd q_1 b_2 MarxP(D= 135ppMarxP(D= 135ppMarxP(D= 135ppMatrixP(D= 135ppNoticP(D> voi,Suoc,NoticP(D> voi,NoticP(D> voi, <tr< td=""><td></td><td>Mayo Pib = 45 ppm</td><td>1430 1415 decan prune</td><td></td></tr<>		Mayo Pib = 45 ppm	1430 1415 decan prune	
1225 P'D howised of the SS-2 difference of the SS-2 difference of the SS-2 howised of the SS-2 howing that the SS-2 howing the solution of the Sample Arbin - Gw - Mw - 3 heave is the free liteling provided that a construction of the Sample Arbin - Gw - Mw - 3 heavier a sure what validity of random from Aw - 3b for School of the School of School of the School of the School of the School of School of the School of School of School of School of School of the School of School		bkgrd = 600 rpb	1430 45, 01'= dTW	
Max PUS = 135 promi135 promi1535 Collecti SampleArbn - Gw - HW3Note:Prin readingRM160, Voi, Svoc, t The Mu-3Mu-3Note:Prin readingRM160, Voi, Svoc, t The Mu-3Mu-3Note:Prin readingRM160, Voi, Svoc, t The Mu-3For Samples1300Set-UpExtended160, Voi, Svoc, t The Mu-3For Samples1300Set-UpExtended100, It100, It100, Voi, Svoc, t The Mu-31300Set-UpExtended100, It100, It100, It1305Set-UpExtended100, It100, It100, It1300Set-UpExtended100, It100, It100, It1300Set-UpIt100, It100, It100, It1300Set-UpIt100, It1	1225	P'ID Marked of the 53-2	4Tb = 56'	
Nete: Pro radies kept clickus, PM Nete: Pro radies kept clickus, PM 1250 De- mob from NW-3 For samples 1300 Set- up estrate Wind is from Soth @ ic mph 1300 Set- up estrate Wind is 1305 from Soth @ ic mph 1305 for To-15 wrtain air 1305 for To-15 wrtain air 00 South of MW-2 logs de-mob		Max PUS = 135 ppm	1535 Collect Sample Arba -	iw-Hw'z
Note: Pro realing kept electing, PM 1610 De-mob from NW-3 Not sure about valatify of reasing re-worke NW-3D for samples 1250 De-mob from basement [620 Sef-ve @ NW-1] AW-3D for samples 1300 Sef-ve extract [620 Sef-ve @ NW-1] from 9-27.06 1305 Lollect Sample [Arba-0A-1] [600 Collect 200 mL for syoc 1305 Lollect Sample air MW-1 6/5 germob		bkgvd 600 ppb	tor voi, Svoc, + TAL	Metall
1250 be mole from basement 1250 be mole from basement 1300 Set-up extended MW-3 from 9.27.06 1300 Set-up extended MW-1 9.27.06 1300 Set-up extended MW-1 9.27.06 1305 Collect Sample Arban 0.1 10.500 MW-1 10.500 1305 Collect Sample Arban 0.1 10.500 MW 1 10.500 6 Suth of MW 2 10.500 MW 1 10.500 MW 1 10.500 6 Suth of MW 2 10.55 Germoly 10.3 10.500 1305 Suth of MW 2 10.55 Germoly 10.3 10.55 Germoly 10.55 Germol	Notes	Pito riadica kept climbing,	PM 1610 De- MOD from NW-3	
1250 be- mole from basement 1300 Set- UP extract Wind is labelled MW-3 from 9-27.06 from Sorth @ 10 mph 1305 Event @ MW-1 for Svoc 60 Subject 200 mL for Svoc 60 Subject 200 mL for Svoc 0 South of Mall near MW-2 logs de-mob		not sure about validity of	rading re-write Aw-30 Ar	Saluples
1300 Set-UP extract wind is 1620 Set-UP @ MW-1 from Setth @ 10 mph 10 dtw; 50.20 ML for Syoc ber To-15 without air MW-1 dry for Syoc	1250	De - mob From basement	1 hould MW-3 from 9-2	90. t
1305 From Suth @ 10 mph 10 drw: 50.80 1305 Lollect Sample [Arba-Oh-1] 1640 Collect 200 mL for Svol 6 50-15 without air NW-1 dry for Svol	1300	Set-up eutside, wind is	1620 Sef-20 @ MW-)	
13es Lollect Sample Arba-Oh-1 1640 Collect 200 mL for Svoc for To-15 without air 1695 germob chy 8 Svoc		from Seath eg 10 moh	dtw: 50.80	
le to-15 without air MW-1 wing	1305	Loilect Sample Arba - OA.	-1] 1640 Collect 200 al for 500C	
@ south of mall nev MW-2 lets de-mob 3		for To-15, where air	MW-1 eirs	
		@ south of mall year MW.	2 16 45 de-mob 3	
		3		

5.

		<u>.</u>	13:5	4	1425 No 1
06	ered	÷			
9-29	delev				
	John 2				
1.8	ale tree				
ba	ed d Leny				
An An	add				
MAC	Lie. Lie. Jan				
0 2					
ES E	182				

.

((0))

APPENDIX B

INDOOR AIR QUALITY QUESTIONAIRE AND BUILDING INVENTRORY

OSR-3

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Ril Mulle	Date/	Time Prepared	28.06	2
Preparer's Affiliation MACTE	Z Phone	No. 603 315	4402	
Purpose of Investigation forme	Spill @ Arbo	. dry clean	ers	
1. OCCUPANT:				
Interviewed: Y/N First Last Name:	First Name: 500	kim		
Address: Toi N. Newbridg	r Kd.	Newbridge	Kim	Cleaners
County: Levitlown, NY	11:756			
(516) Home Phone: 931 32.09	Office Phone:			
Number of Occupants/persons at this lo	ocation <u>3</u> Age of Oc	cupants 40 -	50	
2. OWNER OR LANDLORD: (Chee	k if same as occupant)			
Interviewed: Y				
Last Name:	First Name:			
Address:				
County:				
Home Phone:	Office Phone:			
3. BUILDING CHARACTERISTIC	s			
Type of Building: (Circle appropriate	response)			
Residential Schoo Industrial Churc	h Other:	use		

If the property is residential, type? (Circle appropriate response) 2-Family 3-Family Ranch Raised Ranch Split Level Colonial Cape Cod Contemporary Mobile Home Duplex Apartment House Townhouses/Condos Modular Log Home Other:___ If multiple units, how many? _____ If the property is commercial, type? Business Type(s) Dry Cleaner Does it include residences (i.e., multi-use)? Y (N) If yes, how many? Other characteristics: Number of floors 2 basement + Building age____ IST How air tight? Tight / Average / Not Tight Is the building insulated? Y / N 4. AIRFLOW Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe: Airflow between floors blows air from 1st floor into (Vnevum) AITYUMP bacome Airflow near source Outdoor air infiltration Infiltration into air ducts

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick				
b. Basement type:	full	crawlspace	slab	other				
c. Basement floor:	concrete	dirt	stone	other				
d. Basement floor: Sected	uncovered	covered	covered with _	egety 1-				
e. Concrete floor:	unsealed	sealed	sealed with	crossy				
f. Foundation walls:	poured	block	stone	other				
g. Foundation walls:	unsealed	sealed	sealed with					
h. The basement is:	wet (damp	dry	moldy				
i. The basement is:	finished (unfinished	partially finish	ed				
j. Sump present?	(V) N	drain						
k. Water in sump?	V / not applicable	litle	(ostride	2 basement				
Basement/Lowest level depth below grade:(feet)								

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

	Basemen	t d	001	Seems	to	be	gen	all	the	time, a	tnight
	Small c	racks	in	Slab	art	2 5	ealed	w/ ep	org	d	oor to dry cleaner.
6.	HEATING,	VENTIN	G and J	AIR CONDI	TIONI	NG (Ci	rcle all that	apply)			lockal

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel used is:			
Natural Gas Electric Wood	Fuel Oil Propane Coal	Kerosene Solar	
Domestic hot water tank fueled by	:		
Boiler/furnace located in:	ement Outdoors	Main Floor	Other

None

4

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Y/N

7. OCCUPANCY

Is basement/lo	west level occupied?	Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each	Floor (e.g.,	familyroom, bedro	om, laundry	, workshop, storage)
Basement	storage	1.	1	11 - Martin	
1 st Floor	business -	dry	cleaners		
2 nd Floor	1				
3 rd Floor	·				
4 th Floor			ù.		10
8. FACTORS	THAT MAY INFLUE	NCE INDO	OR AIR QUALITY	ť	
a. Is there a	n attached garage?			YN	
b. Does the	garage have a separate	heating unit	?	Y/N/NÁ	
c. Are petroleum-powered machines or vehicles stored in the garage (c.g., lawnmower, atv, car)			s r)	Y / N / NA Please spec) tify
d. Has the b	uilding ever had a fire	?		🕅 N WI	nen?

e. Is a kerosene or unvented gas space heater present?

f. Is there a workshop or hobby/craft area?

g. Is there smoking in the building?

h. Have cleaning products been used recently?

 N
 How frequently? _____

 Y
 N
 When & Type? _____

Y/N Where?

Y/N Where & Type? _

i. Have cosmetic products been used recently?

j. Has painting/staining been done in the last 6 months	? Y / 🗭 Where & When?						
k. Is there new carpet, drapes or other textiles?	Y / N Where & When?						
I. Have air fresheners been used recently?	Y / 🔊 When & Type?						
Baser m. Is there a kitchen exhaust fan?	Y /N If yes, where vented?						
n. Is there a bathroom exhaust fan?	Y / N If yes, where vented?						
o. Is there a clothes dryer?	Y / OIf yes, is it vented outside? Y / N						
p. Has there been a pesticide application?	Y (N) When & Type?						
Are there odors in the building? If yes, please describe: <u>not pleasant</u>	(Y)						
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic oboiler mechanic, pesticide application, cosmetologist	N or auto body shop, painting, fuel oil delivery,						
If yes, what types of solvents are used?	hinner						
If yes, are their clothes washed at work?	ON day cleaning						
Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropri response)							
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown						
Is there a radon mitigation system for the building/struc Is the system active or passive? Active/Passive	ture? Y / ⑦ Date of Installation:						
9. WATER AND SEWAGE	с: ж						
Water Supply: Public Water Drilled Well Dr	iven Well Dug Well Other:						
Sewage Disposal: Public Sewer Septic Tank Le	ach Field Dry Well Other:						
10. RELOCATION INFORMATION (for oil spill reside	ential emergency)						
a. Provide reasons why relocation is recommended:							
b. Residents choose to: remain in home relocate to	o friends/family relocate to hotel/motel						

- c. Responsibility for costs associated with reimbursement explained? Y / N
- d. Relocation package provided and explained to residents? Y / N

6

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

see photos

8

Make & Model of field instrument used: __

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
				-		1
					· ··· · · · · · · · · · · · · · · · ·	
			r 8			
	(i)					
				141		
				2		
			24			

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) ** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

APPENDIX C

SITE PHOTOGRAPHS

Arba Dry Cleaners Site Levittown, NY

July 11, 2006 Photograph 1: Basement, looking east

July 11, 2006 **Photograph 2:** Basement

Sept 28, 2006 Photograph 3: Epoxy Thinner in Basement

Sept 28, 2006

Photograph 4:

Epoxy Thinner in Basement

Sept 28, 2006 Photograph 5: Epoxy Coating in Basement

<text>

5

Sept 28, 2006

Photograph 6:

Epoxy Coating in Basement

Sept 28, 2006

Photograph 8:

Vacuum Pump in Basement

Photograph 9: Storage Container in

Sept 28, 2006

Sept 28, 2006

Photograph 10:

Cleaning Detergent in Basement.

Basement

Sept 28, 2006 Photograph 11: Former Cleaning Equipment

Sept 28, 2006

Photograph 12:

Former Cleaning Equipment

Sept 28, 2006 Photograph 13: Sub-Slab Sampling (SS-1)

Sept 28, 2006 Photograph 14: PID Screening at SS-1

Sept 28, 2006 Photograph 15: Outdoor Air Sample

Sept 28, 2006 Photograph 16:

Groundwater Sampling at MW-3

APPENDIX D

SITE WEATHER

www.erh.noaa.gov

TURR

Weather observations for the past two days

Enter Your "City, ST" Go

D						Ţ	empera	ture (°	=)	Pres	sure	Pr	ecipita	tion
a t	Time (edt)	Wind (mph)	Vis. (mi.)	Weather	Sky Cond.	Air	Dwpt	6 h Max	our	altimeter (in)	sea level	1 hr	3 hr	6 hr
29	07:51	SW 16	10.00	Overcast	FEW013 BKN029 OVC100	61	56	67	60	29.69	(mb) 1005.2			0.04
29	06:51	SW 12	10.00	Light Rain	SCT009 BKN060 OVC100	61	58			29.68	1004.8	0.04		
29	05:51	W 10	10.00	Light Rain	FEW060 OVC100	62	58			29.68	1004.9			
29	04:51	SW 14	10.00	Mostly Cloudy	FEW010 BKN130	63	59			29.67	1004.7			
29	03:51	SW 7	10.00	Mostly Cloudy	FEW029 SCT060 BKN120	63	58			29.67	1004.6			
29	02:51	W 8	10.00	Overcast	SCT029 BKN060 OVC130	64	60			29.67	1004.7			
29	01:51	S 15	9.00	Light Rain	BKN028 BKN060 OVC095	67	62	68	67	29.69	1005.2	0.01		0.01
29	00:51	S 18	10.00	Mostly Cloudy	SCT060 BKN110	68	63			29.70	1005.6			
28	23:51	S 15	10.00	Mostly Cloudy	FEW012 SCT060 BKN130	68	64			29.72	1006.4			
28	22:51	SE 15	10.00	Overcast	FEW014 BKN070 OVC250	68	64			29.74	1006.9			
28	21:51	SE 13	10.00	Mostly Cloudy	FEW017 BKN065 BKN250	68	63			29.75	1007.3			
28	20:51	SE 14	10.00	Mostly Cloudy	FEW017 SCT140 BKN250	67	62			29.74	1007.1			
28	19:51	SE 14	10.00	Partly Cloudy	FEW015 SCT035 SCT250	67	62	73	67	29.75	1007.3			
28	18:51	SE 15	10.00	Partly Cloudy	FEW033 SCT200	68	62			29.76	1007.6			
28	17:51	SE 17 G 25	10.00	Partly Cloudy	FEW017 SCT035	69	62			29.77	1007.9			
28	16:51	SE 14	10.00	A Few Clouds	FEW017	71	62			29.78	1008.6			
28	15:51	SE 17	10.00	A Few Clouds	FEW017	72	59			29.80	1009.2			
28	14:51	SE 16	10.00	Partly Cloudy	FEW017	72	59			29.83	1010.1			

http://www.erh.noaa.gov/data/obhistory/KJFK.html

					SCT042 SCT250						
28	13:51	SE 16	10.00	Partly Cloudy	FEW017 SCT042	72	61	73	65	29.86	1011.0
28	12:51	S 17	10.00	Partly Cloudy	SCT017 SCT042	73	63			29.89	1012.0
28	11:51	SE 14	10.00	Partly Cloudy	SCT020	71	61			29.90	1012.4
28	10:51	SE 13	10.00	Partly Cloudy	SCT020	71	61			29.91	1012.8
28	09:51	SE 14	10.00	Partly Cloudy	SCT018	70	60			29.93	1013.5
28	08:51	SE 13	10.00	Partly Cloudy	FEW030 SCT250	68	60			29.93	1013.4
28	07:51	SE 7	10.00	Partly Cloudy	FEW030 SCT250	65	60	65	58	29.93	1013.4
28	06:51	SE 5	10.00	Partly Cloudy	SCT030 SCT250	59	55			29.92	1013.2
28	05:51	E 3	10.00	Partly Cloudy	SCT035	60	56			29.93	1013.4
28	04:51	SE 6	10.00	Partly Cloudy	SCT035	62	57			29.92	1013.2
28	03:51	SE 6	10.00	A Few Clouds	FEW035	62	56			29.92	1013.3
28	02:51	S 6	10.00	Fair	CLR	63	56			29.94	1013.8
28	01:51	S 8	10.00	A Few Clouds	FEW095	64	57	67	64	29.95	1014.1
28	00:51	S 10	10.00	Partly Cloudy	FEW095 SCT250	65	56			29.95	1014.2
27	23:51	S 8	10.00	Partly Cloudy	SCT095	65	56			29.96	1014.4
27	22:51	S 9	10.00	Mostly Cloudy	BKN095	66	57			29.96	1014.6
27	21:51	S 10	10.00	Overcast	OVC095	67	58			29.97	1014.7
27	20:51	S 10	10.00	Mostly Cloudy	BKN095	65	58			29.97	1014.9
27	19:51	S 9	10.00	A Few Clouds	FEW080	65	56	72	65	29.97	1014.8
27	18:51	S 9	10.00	Mostly Cloudy	FEW050 BKN075	67	56			29.96	1014.6
27	17:51	S 9	10.00	Mostly Cloudy	FEW046 BKN080	68	55			29.96	1014.6
27	16:51	S 12	10.00	Mostly Cloudy	FEW045 BKN090	68	56			29.97	1014.8
27	15:51	S 12	10.00	Mostly Cloudy	FEW040 BKN090	68	57			29.98	1015.1
27	14:51	S 12	10.00	Mostly Cloudy	FEW040 BKN095	70	53			29.98	1015.2
27	13:51	S 13	10.00	Partly Cloudy	FEW040 SCT060	72	55	73	60	30.00	1015.7
27	12:51	S 12	10.00	Partly Cloudy	FEW040 SCT060 SCT095	72	52			30.02	1016.5
27	11:51	S 10	10.00	Mostly Cloudy	FEW032 SCT065 BKN085	71	54			30.04	1017.1
27	10:51	SE 9	10.00	Mostly Cloudy	FEW025 SCT065 BKN085	69	60			30.05	1017.5
27	09:51	Ε7	10.00	Mostly Cloudy	BKN060 BKN085	67	59			30.05	1017.5
27	08:51	E 5	8.00	Mostly Cloudy	FEW060	63	57			30.04	1017.3

http://www.erh.noaa.gov/data/obhistory/KJFK.html

D a t	Time (edt)	Wind (mph)	Vis. (mi.)	Weather	Sky Cond.	Air	Dwpt	Max. 6 h	Min. our	altimeter (in)	sea level (mb)	1 hr	3 hr	6 hr
e							Tempera	ature (°	F)	Press	sure	Pr	ecipita	tion
Natio Soul	onal Weath	ner Service on Headquarte	rs	Back t	o previous p	age				Ĺ	ast Modi	fied: Ja	nuary Privac	7, 2003 v Policy

Fort Worth, Texas Disclaimer

Credits

APPENDIX E

DATA USABILITY SUMMARY REPORT LABORATORY DATA AND CHAIN OF CUSTODY RECORDS

DATA VALIDATION REPORT

Volatile, Semi-volatile, and Metals Analyses

SDG No. 941066 (R2633867) Sampling Date: September 27-28, 2006

Submitted to:

MACTEC, Inc., 511 Congress Street Portland, ME 04112 207-775-5401

Submitted by:

EDV, Inc., 1326 Orangewood Avenue Pittsburgh, PA 15216 412-341-5281

October 30, 2006

Site:	Arba/NYSDEC
Client:	MACTEC, Inc.
Analytical Laboratory:	Columbia Analytical One Mustard Street Rochester, NY 14609-0859
Sample Delivery Group (SDG):	941066 (R2633867)
Sampling Date:	September 27-28, 2006
Analyses:	Volatile, semi-volatile and metals
Analytical Method: Summary of Data Validation:	8260B, TO-15, 8270C and 6010

The adherence of laboratory analytical performance to SW-846 Analytical Specifications was evaluated during the data validation process. The USEPA Region II's data validation SOP Checklists (SOP HW-18 rev 0, August 1994; SOP HW-24 Rev 1, June 1999; SOP HW-22 Rev 2, June 2001), the National Functional Guidelines for Organic Data Review (October 1999), the National Functional Guidelines for Inorganic Data Review (October 2004) were used as guidelines for data qualifications.

Volatile: Some acetone groundwater results were qualified as non-detects due to blank contamination. Chloroform, tetrachloroethene, and trichloroethene were qualified as estimated in a sub-slab soil vapor sample and its field duplicate due to precision issues.

Semi-volatile analyses: Phenol and 4-nitrophenol results were qualified as estimated due to precision issues.

Metals: The results as presented by the laboratory are acceptable.

The sample qualifiers applied by the data validator are in section 15.0 and Attachment A-Form 1s. The detailed discussions can be found in the report.

Table of Contents

1.0	Samp	le Identifications	1
2.0	Comp	oleteness Checklist	2
3.0	Detec	tion Limits	3
4.0	Holdi	ng Time	3
	4.2	Sample Preservation	3
	4.3	Chain of Custody Record	3
5.0	Calib	ration Quality Control	3
	5.1	Initial Calibration (ICALL)	3
	5.2	Continuing Calibration (CCAL)	3
	5.3	CRDL Standard	3
6.0	Blank	ss Quality Control	3
7.0	Surro	ogate Recoveries	3
8.0	Accu	racy	3
	8.1	Laboratory Control Samples (LCS)/Blank Spikes	3
	8.2	Matrix Spike/Matrix Spike Duplicates (MS/MSD)	3
		8.2.1 Frequency	3
		8.2.2 Recovery	4
9.0	Precis	sion	4
•	9.1	Matrix Spike Duplicates	4
	9.2	Matrix Duplicates	4
	9.3	ICP Serial Dilution	4
10.0	Field	QC	4
	10.1	Field Blanks/Rinse Blanks	4
	10.2	Trip Blanks	4
	10.3	Field Duplicate	4
11.0	Intern	nal Standards	4
	11.1	IS Area Counts	4
	11.2	Retention Time	4
12.0	Targe	et Compound Identification	5
	12.1	Tentatively Identified Compounds (TICs)	5
13.0	Calcu	llations and Transcription	5
14.0	Addit	tional Comments	5
15.0	Data	Qualifier Table	6

List of Appendices

- A Validated and Qualified Data Sheets (Form 1s)
- B Case Narrative and Chain of Custody

1.0 Sample Identifications

The following table summarizes sample IDENTIFICATIONS, matrix of each sample and analyses present in the data package for each sample.

Client Sample ID	Matrix	Volatile 8260B	Volatile	Semi-volatile 8270C	Metals 6010
	SL	G No. R26	33867	02/00	0010
GW-MW2	AQUEOUS	Х	_	X	x
GW-MW3D	AQUEOUS	X	-	х	x
GW-MW1	AQUEOUS	Х	-	Х	x
GW-MW3	AQUEOUS	Х	_	Х	x
TRIP BLANK	AQUEOUS	х	-	-	— .
SS-1	AIR	-	х	-	-
SS-2	AIR	-	х	_	_
OA-1	AIR	-	х	-	-
QC sample ID	Matrix				
GW-MS3DMS	AQUEOUS	Х	-		x
GW-MW3DMSD	AQUEOUS	X	-	·	-
GW-MS3DDUP	AQUEOUS	X	-	-	_
SS-1DUP	AIR	-	X	-	-
LCS/LCSD		-	-	X	_

2.0 Completeness Checklist

The following table identifies the summary form information and raw data found in the data package. Form numbers shown in parentheses refer to the current U.S. EPA CLP SOW equivalent reporting of results in an alternate summary format that has been determined to be acceptable. Analyses in this data package were performed in accordance with SW-846 Methods and TO-15.

Х	Case Narrative
Х	Chain of Custody Records/Traffic Reports/Tracking Records
X	Preservation Information
Х	Sample Cross Reference with Unique Identifiers
Х	Sample Results Summary Form (Form 1/Form 1-TIC)
Х	CLP Flagging used on Results Summary
Х	SMC/Surrogate Results Summary (Form 2)
NR	Matrix Spike/Matrix Spike Duplicate Results Summary (Form 3)
Х	Laboratory Control Sample (LCS)/ Blank Spike Results Summary (Form 3)
NR	Control Charts
Х	Method/Preparation Blank Results Summary (Form 4)
Х	Volatile Initial Calibration Summary (Forms 6)
Х	Volatile Continuing Calibration Summary (Form 7)
Х	Volatile Analytical Sequence (Form 8)
х	Internal Standard Area Summary (Form X11)
Х	Raw Data (incl. IS, Surr/SMC, RT, quant. Reports, etc.)
Х	Samples
Х	Initial Calibration
NR	Clean-ups
Х	Continuing Calibration
NR	Instrument Blanks
Х	Preparation Blanks/Method Blanks
0	Other Blanks
Х	LCS/Blank Spike
Х	Matrix Spikes/Matrix Spike Duplicates
NR	Matrix Duplicates/Replicates
0	Field Blanks – Trip Blank
Х	Field Duplicates
Х	Extraction Log Benchsheets
Х	Instrument Run Logs
Х	Sample Descriptions
Х	Legible Pages
х	Pages in Package Numbered and in Sequence
Х	Electronic Data Deliverable (EDD)

Completeness Checklist

X: Included in original Data Package

NR: Not Required

RS: Provided as a Resubmission

O: Not Included and/or Not Available

X/RS: Incomplete in original data package, completed as a resubmission

3.0 Detection Limits

All Contract Required Detection Limits (CRDLs) were met.

4.0 Holding Time

Holding times were acceptable.

4.1 Sample Preservation

Preservation was acceptable.

4.2 Percent Moisture

Percent moisture is not a requirement since these are aqueous and air samples.

4.3 Chain of Custody Record

Chain of Custody Records were present.

5.0 Calibration Quality Control

5.1 Initial Calibration

The initial calibration was acceptable.

5.2 Continuing Calibration

The CCAL was acceptable.

5.3 CRDL Standard

Recoveries were acceptable.

6.0 Blanks Quality Control

Method blanks were acceptable.

7.0 Surrogate Recoveries

Surrogate recoveries were acceptable.

8.0 Accuracy

8.1 Laboratory Control Samples (LCS)/Blank Spikes

LCS recoveries were acceptable.

8.2 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

8.2.1 Frequency

Frequency was met.

D. V. Report R2633867rev

8.2.2 Recovery

Recoveries were acceptable.

9.0 Precision

9.1 Matrix Spike Duplicates

The results were acceptable.

9.2 Matrix Duplicate

RPDs were not acceptable for phenol-33% and 4-nitrophenol-42% due to the exceedance in the 30% QC criteria. All results for these compounds were qualified as estimated "UJ."

9.3 ICP Serial Dilution

The ICP serial dilution was acceptable.

10.0 Field QC

10.1 Field Blanks/Rinse Blanks

TO-15: Ambient blank reported acetone, 2-butanone and tetrachloroethene contamination. This ambient blank represented outdoor air and thus no qualification was necessary.

10.2 Trip Blanks

VOA: The trip blank reported acetone contamination. All associated detected acetone results were qualified as non-detects at CRDL.

10.3 Field Duplicate

MW-3D DUP is identified as a field duplicate. The original sample is identified as MW-3D. RPDs are calculated when both the field duplicate and original sample report detects. All RPDs were acceptable. SS-1DUP is presented as a field duplicate. The original sample is identified as SS-1. RPDs are calculated when both the field duplicate and original sample report detects. RPDs for chloroform (-65% & -62%), tetrachloroethene (-102% & -104%) and trichloroethene (-123% & -122%) were not acceptable thus, these compounds were qualified as estimated for this precision anomaly in both sample and duplicate.

11.0 Internal Standards (IS)

11.1 IS Area Counts

IS area counts were acceptable.

11.2 Retention Time (**R**T)

All RTs were within the method accepted criteria.

12.0 Target Compound Identification

All target compounds identification was acceptable.

12.1 Tentatively Identified Compounds (TICs)

TICs were not a requirement for this SDG.

13.0 Calculations and Transcription

Raw data were accurately transcribed to summary data sheets.

14.0 Additional Comments

15.0 Data Qualifier Table

Volatile

Sample Identification	Compound	Qualifier	Section Reference
GW-MW3D, GW-MW3D		U	10.2
DUP, GW-MW1	Acetone		
SS-1, SS-1DUP	Chloroform, tetrachloroethene, trichloroethene	J	10.3

Semi-volatile

Sample Identification	Compound	Qualifier	Section Reference
GW-MW3D, GW-MW1, GW- MW3, GW-MW2	4-Nintrophenol, phenol	UJ	9.2

ATTACHMENT A

VALIDATED AND QUALIFIED DATA SHEETS (FORM 1s)

۲

÷

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW2			
Date Sampled : 09/27/06 13:50 C Date Received: 09/29/06 Submis	Order #: 941066 ssion #: R2633867	Sample Matrix: Analytical Run	WATER 135439
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 10/03/06 ANALYTICAL DILUTION: 1.0	00		
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROFTHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE VINYL, CHLORIDE	20 5.0 5.0 5.0 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	$\begin{array}{c} 20 \ U \\ 5.0 \ U \\ 5.0 \ U \\ 5.0 \ U \\ 5.0 \ U \\ 10 \ U \\ 10 \ U \\ 10 \ U \\ 5.0 \ U \ U \ U \\ 5.0 \ U \ U \ U \ U \ U \ U \ U \ U \ U \ $	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
O-XYLENE M+P-XYLENE	5.0 5.0	5.0 U 5.0 U	UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS	•	
4 - BROMOFLUOROBENZENE TOLUENE - D8 DIBROMOFLUOROMETHANE	(80 - 123 %) (88 - 124 %) (91 - 115 %)	107 99 100	90 90 90

......

COLUMBIA ANALYTICAL SERVICES

.

VOLATILE ORGANICS METHOD 8260B TCL Reported: 10/12/06

Project Reference: ARBA Client Sample ID : GW-MW3D Date Sampled : 09/27/06 18:05 Ord Date Received: 09/29/06 Submissi	er #: 941067 on #: R2633867	Sample Matrix: Analytical Run	WATER 135482
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 10/04/06 ANALYTICAL DILUTION: 1.00			
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE O-XYLENE M+P-XYLENE	$\begin{array}{c} 20\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$	$\begin{array}{c} 5.2 \ J \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE (TOLUENE-D8 (DIBROMOFLUOROMETHANE (80 - 123 %) 88 - 124 %) 91 - 115 %)	106 97 100	oto ato

COLUMBIA ANALYTICAL SERVICES

۲

VOLATILE ORGANICS METHOD 8260B TCL

Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW3D DUP			
Date Sampled : 09/27/06 18:05 Orde: Date Received: 09/29/06 Submission	r #: 941068 n #: R2633867	Sample Matrix: Analytical Run	WATER 135482
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 10/03/06 ANALYTICAL DILUTION: 1.00			
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROFTHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROPTHENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE O-XYLENE M+P-XYLENE	20 5.0 5.0 5.0 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	$\begin{array}{c} 6.6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES QC	LIMITS		
4 - BROMOFLUOROBENZENE (80 TOLUENE - D8 (88 DIBROMOFLUOROMETHANE (91	- 123 %) - 124 %) - 115 %)	105 100 97	00 00 00

......

	Report	200. 10/12/00	
MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW1			
Date Sampled : 09/28/06 09:30 O Date Received: 09/29/06 Submis	rder #: 941069 sion #: R2633867	Sample Matrix: Analytical Run	WATER 135439
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 10/03/06 ANALYTICAL DILUTION: 1.0	0		
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE O-XYLENE M+P-XYLENE	20 5.0 5.0 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	$\begin{array}{c} 3.1 & J \\ J \\ 5.0 \\ U \\ 5.0 \\ U \\ 5.0 \\ U \\ 5.0 \\ U \\ 10 \\ U \\ 5.0 \\ U \\ U \\ 5.0 \\ U \\ $	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS		
4 - BROMOFLUOROBENZENE TOLUENE - D8 DIBROMOFLUOROMETHANE	(80 - 123 %) (88 - 124 %) (91 - 115 %)	105 99 98	* * 1 3

*

VOLATILE ORGANICS METHOD 8260B TCL Reported: 10/12/06

	Reported: 10/12/06				
MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW3					
Date Sampled : 09/28/06 15:35 Order Date Received: 09/29/06 Submission	#: 941070 #: R2633867	Sample Matrix: Analytical Run	WATER 135439		
ANALYTE	PQL	RESULT	UNITS		
DATE ANALYZED : 10/03/06 ANALYTICAL DILUTION: 1.00					
ACETONE BENZENE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROFTHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE 0-XYLENE M+P-XYLENE	20 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L		
SURROGATE RECOVERIES QC					
4-BROMOFLUOROBENZENE (80 TOLUENE-D8 (88 DIBROMOFLUOROMETHANE (91	- 123 %) - 124 %) - 115 %)	107 100 98	or or or		

.

.

VOLATILE ORGANICS METHOD 8260B TCL

	Reported: 10/12/06			
MACTEC, Inc. Project Reference: ARBA Client Sample ID : TRIP BLANK				
Date Sampled : 09/28/06 17:38 Orde Date Received: 09/29/06 Submissio	r #: 941074 n #: R2633867	Sample Matrix: Analytical Run	WATER 135439	
ANALYTE	PQL	RESULT	UNITS	
DATE ANALYZED : 10/03/06 ANALYTICAL DILUTION: 1.00				
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE 2-HEXANONE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE (MIBK) STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE VINYL CHLORIDE O-XYLENE M+P-XYLENE	$\begin{array}{c} 20\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 10\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$	$\begin{array}{c} 2.0 \\ J \\ 5.0 \\ U \\ 5.0 \\ U \\ 5.0 \\ U \\ 10 \\ 10 \\ U \\ 5.0 \\$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	
SURROGATE RECOVERIES QC	LIMITS			
4 - BROMOFLUOROBENZENE(80TOLUENE - D8(88DIBROMOFLUOROMETHANE(91	- 123 %) - 124 %) - 115 %)	105 99 103	90 90 90	

.....

VOLATILE ORGANICS

METHOD 8260B TCL Reported: 10/12/06 *

۲

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW2				
Date Sampled : 09/27/06 13:50 Order # Date Received: 09/29/06 Submission #	: 941066 : R2633867	Sample Matrix: Analytical Run	WATER 135591	
ANALYTE	PQL	RESULT	UNITS	
DATE EXTRACTED : 10/04/06 DATE ANALYZED : 10/05/06 ANALYTICAL DILUTION: 0.94				
ACENAPHTHENE	10	9.4 U	UG/L	
ACENAPHTHYLENE	10	9.4 U	UG/L	
ANTHRACENE	10	9.4 U	UG/L	
BENZO (A) ANTHRACENE	10	9.4 U	UG/L	
BENZO (A) PYRENE	10	9.4 U	UG/L	
BENZO (B) FLUORANTHENE	10	9.4 U	UG/L	
BENZO(G, H, I) PERYLENE	10	9.4 U	UG/L	
BENZO (K) FLUORANTHENE	10	9.4 U	UG/L	
BENZYL ALCOHOL	10	9.4 U	UG/L	
BUTYL BENZYL PHTHALATE	10	9.4 U	UG/L	
DI-N-BUTYLPHTHALATE	10	9.4 U	UG/L	
CARBAZOLE	10	9.4 11	UG/L	
INDENO(1,2,3-CD)PYRENE	10	9.4 11	UG/L	
4 - CHLOROANILINE	10	9.4 U	UG/L	
BIS (-2-CHLOROETHOXY) METHANE	10	94 11	UG/L	
BIS (2-CHLOROETHYL) ETHER	10	9411		
2 - CHLORONA PHTHALENE	10	9 4 11	UG/L	
2 - CHLOROPHENOL	10	9 A TT		
2 2! - 0XYBIS (1 - CHLOPODPODNE)	10	9.4 U 9.1 U		
CHRYSENE	10	9 / IT		
DIRENZO(A H) ANTHDACENE	10			
DIDINIO (A, II) ANTINACIMIS	10	9.4 0		
	10			
	10	9.4 U		
1, 2-DICHLOROBENZENE	10	9.4 U		
1,4-DICHLOROBENZENE	10	9.4 U		
3,3'-DICHLOROBENZIDINE	10	9.4 0	UG/L	
Z, 4-DICHLOROPHENOL	10	9.4 U	UG/L	
DIETHYLPHTHALATE	10	9.4 U	UG/L	
DIMETHYL PHTHALATE	10	9.4 U	UG/L	
2,4-DIMETHYLPHENOL	10	9.4 U	UG/L	
2,4-DINITROPHENOL	50	47 U	UG/L	
2,4-DINITROTOLUENE	10	9.4 U	UG/L	
2,6-DINITROTOLUENE	10	9.4 U	UG/L	
BIS (2-ETHYLHEXYL) PHTHALATE	10	9.4 U	UG/L	
FLUORANTHENE	10	9.4 U	UG/L	
FLUORENE	10	9,4 U	UG/L	
HEXACHLOROBENZENE	10	9.4 U	UG/L	
HEXACHLOROBUTADIENE	10	9.4 U	UG/L	
HEXACHLOROCYCLOPENTADIENE	10	9.4 U	UG/L	
HEXACHLOROETHANE	10	9.4 U	UG/L	
ISOPHORONE	10	9.4 U	UG/L	an chu
2-METHYLNAPHTHALENE	10	9.4 U	UG/L	23
4,6-DINITRO-2-METHYLPHENOL	50	47 U	UG/L	

÷

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW2				
Date Sampled : 09/27/06 13:50 Or Date Received: 09/29/06 Submiss	der #: ion #:	941066 R2633867	Sample Matrix: W Analytical Run 1	IATER .35591
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 10/04/06 DATE ANALYZED : 10/05/06 ANALYTICAL DILUTION: 0.94				
4-CHLORO-3-METHYLPHENOL		10	9.4 U	UG/L
2-METHYLPHENOL		10	9.4 U	UG/L
3+4-METHYLPHENOL		10	9.4 U	UG/L
NAPHTHALENE		10	9.4 U	UG/L
2-NITROANILINE		50	47 U	UG/L
3-NITROANILINE		50	47 U	UG/L UG/L
4-NITROANILINE		50	47 U	
NITROBENZENE		10	9.4 U	
2-NITROPHENOL		10	9.4 U	
4-NITROPHENOL		50	$47 \sqrt{3} \sqrt{3}$	
N-NITROSODIMETHYLAMINE		10		
N-NITROSODIPHENYLAMINE		10		
DI-N-OUTIL PHIHALAIL		10		
PENIACHLOROPHENOL		10	9411	
DHENAL INCENE		10	9.4 VUJ	UG/L
A - BROMODHENVI DHENVI.ETHER		10	9.4 U	UG/L
4 - CHLOROPHENYL - PHENYL ETHER		10	9.4 U	UG/L
N-NITROSO-DI-N-PROPYLAMINE		10	9.4 U	UG/L
PYRENE		10	9.4 U	UG/L
1,2,4-TRICHLOROBENZENE		10	9.4 U	UG/L
2.4.6-TRICHLOROPHENOL		10	9.4 U	UG/L
2,4,5-TRICHLOROPHENOL		10	9.4 U	UG/L
SURROGATE RECOVERIES	QC LIM	IITS		
TERPHENYL-d14	(40 -	137 %)	107	S
NITROBENZENE-d5	(38 -	105 %)	85	00
PHENOL-d6	(10 -	69 %)	30	z
2-FLUOROBIPHENYL	(38 -	100 %)	84	olo
2-FLUOROPHENOL	(17 -	74 %)	43	ojo
2,4,6-TRIBROMOPHENOL	(41 -	135 %)	74	8

24

۲

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES

Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW3D					
Date Sampled : 09/27/06 18:05 Order # Date Received: 09/29/06 Submission #	: 941067 : R2633867	Sample Matrix: Analytical Run	WATER 135591		
ANALYTE	PQL	RESULT	UNITS		
DATE EXTRACTED : 10/04/06 DATE ANALYZED : 10/05/06 ANALYTICAL DILUTION: 0.94					
ACENAPHTHENE	10	9.4 U	UG/L		
ACENAPHTHYLENE	10	9.4 U	UG/L		
ANTHRACENE	10	9.4 U	UG/L		
BENZO (A) ANTHRACENE	10	9.4 U	UG/L		
BENZO (A) PYRENE	10	9.4 U	UG/L		
BENZO (B) FLUORANTHENE	10	9.4 U	UG/L		
BENZO (G, H, I) PERYLENE	10	9.4 U	UG/L		
BENZO (K) FLUORANTHENE	10	9.4 U	UG/L		
BENZYL ALCOHOL	10	9.4 U	UG/L		
BUTYL BENZYL PHTHALATE	10	9.4 U	UG/L		
DI-N-BUTYLPHTHALATE	10	9.4 U	UG/L		
CARBAZOLE	10	9.4 U	UG/L		
INDENO(1,2,3-CD) PYRENE	10	9.4 U	UG/L		
4-CHLOROANILINE	10	9.4 U	UG/L		
BIS(-2-CHLOROETHOXY)METHANE	10	9.4 U	UG/L		
BIS (2-CHLOROETHYL) ETHER	10	9.4 U	UG/L		
2 - CHLORONAPHTHALENE	10	9.4 U	UG/L		
2 - CHLOROPHENOL	10	9.4 U	UG/L		
2.2'-OXYBIS (1-CHLOROPROPANE)	10	9.4 U	UG/L		
CHRYSENE	10	9.4 U	UG/L		
DIBENZO (A, H) ANTHRACENE	10	9.4 U	UG/L		
DIBENZOFURAN	10	9.4 U	UG/L		
1,3-DICHLOROBENZENE	10	9.4 U	UG/L		
1.2-DICHLOROBENZENE	10	9.4 U	UG/L		
1,4-DICHLOROBENZENE	10	9.4 U	UG/L		
3,3'-DICHLOROBENZIDINE	10	9.4 U	UG/L		
2.4-DICHLOROPHENOL	10	9.4 U	UG/L		
DIETHYLPHTHALATE	10	9.4 U	UG/L		
DIMETHYL PHTHALATE	10	9.4 U	UG/L		
2,4-DIMETHYLPHENOL	10	9.4 U	UG/L		
2.4-DINITROPHENOL	50	47 U	UG/L		
2,4-DINITROTOLUENE	10	9.4 U	UG/L		
2,6-DINITROTOLUENE	10	9.4 U	UG/L		
BIS (2-ETHYLHEXYL) PHTHALATE	10	11	UG/L		
FLUORANTHENE	10	0.99 J	UG/L		
FLUORENE	10	9.4 U	UG/L		
HEXACHLOROBENZENE	10	9.4 U	UG/L		
HEXACHLOROBUTADIENE	10	9.4 U	UG/L		
HEXACHLOROCYCLOPENTADIENE	10	9.4 U	UG/L		
HEXACHLOROETHANE	10	9.4 U	UG/L	05	
I SOPHORONE	10	9.4 U	UG/L	60	
2-METHYLNAPHTHALENE	10	9.4 U	UG/L		
4,6-DINITRO-2-METHYLPHENOL	50	47 U	UG/L		

	Rep	orted: 10/12/06	
MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW3D)		
Date Sampled : 09/27/06 18:0 Date Received: 09/29/06 Sub	95 Order #: 941067 mission #: R263386	Sample Matrix 7 Analytical Ru	: WATER n 135591
ANALYTE	PQI	. RESULT	UNITS
DATE EXTRACTED : 10/04/ DATE ANALYZED : 10/05/ ANALYTICAL DILUTION:	(06 (06 0.94		
4-CHLORO-3-METHYLPHENOL 2-METHYLPHENOL 3+4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE NITROBENZENE 2-NITROPHENOL 4-NITROPHENOL		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
4-NITROPHENOL N-NITROSODIMETHYLAMINE N-NITROSODIPHENYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENOL PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHER 4-CHLOROPHENYL-PHENYLETHER N-NITROSO-DI-N-PROPYLAMINE PYRENE 1,2,4-TRICHLOROBENZENE 2,4,6-TRICHLOROPHENOL	2]]]]]]]]]]]]]]]]]]]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
2,4,5-TRICHLOROPHENOL		10 9.4 U	UG/L
TERPHENYL-d14 NITROBENZENE-d5 PHENOL-d6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(40 - 137 %) (38 - 105 %) (10 - 69 %) (38 - 100 %) (17 - 74 %) (41 - 135 %)	92 80 31 76 43 82	০০ ০০ ০০ ০০ ০০

4

ç

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 10/12/06 ,

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW1				
Date Sampled : 09/28/06 09:30 Order #: Date Received: 09/29/06 Submission #:	941069 R2633867	Sample Matrix: Analytical Run	WATER 135591	
ANALYTE	PQL	RESULT	UNITS	
DATE EXTRACTED : 10/04/06 DATE ANALYZED : 10/05/06 ANALYTICAL DILUTION: 3.70				
ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO (A) ANTHRACENE BENZO (A) PYRENE BENZO (B) FLUORANTHENE	10 10 10 10 10	37 U 37 U 37 U 37 U 37 U 3.9 J	UG/L UG/L UG/L UG/L UG/L UG/L	
BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BENZYL ALCOHOL BUTYL BENZYL PHTHALATE DI-N-BUTYLPHTHALATE CARBAZOLE	10 10 10 10 10	37 U 37 U 37 U 4.0 J 37 U 37 U	UG/L UG/L UG/L UG/L UG/L UG/L	
INDENO(1,2,3-CD) PYRENE 4-CHLOROANILINE BIS(-2-CHLOROETHOXY) METHANE BIS(2-CHLOROETHYL) ETHER 2-CHLOROAPHTHALENE 2-CHLOROPHENOL	10 10 10 10	37 U 37 U 37 U 37 U 37 U 37 U	UG/L UG/L UG/L UG/L UG/L	
2,2'-ONDOROFHENOL 2,2'-OXYBIS(1-CHLOROPROPANE) CHRYSENE DIBENZO(A,H)ANTHRACENE DIBENZOFURAN 1,3-DICHLOROBENZENE	10 10 10 10 10	37 U 37 U 37 U 37 U 37 U 37 U 37 U	UG/L UG/L UG/L UG/L UG/L	
1,2-DICHLOROBENZENE 1,4-DICHLOROBENZENE 3,3'-DICHLOROBENZIDINE 2,4-DICHLOROPHENOL DIETHYLPHTHALATE DIMETHYL DHTHALATE	10 10 10 10	37 U 37 U 37 U 37 U 37 U 37 U	UG/L UG/L UG/L UG/L UG/L	
2,4-DIMETHYLPHENOL 2,4-DINITROPHENOL 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE BIS (2-ETHYLHEXYL) PHTHALATE	10 50 10 10	37 U 190 U 37 U 37 U 37 U	UG/L UG/L UG/L UG/L UG/L	
FLUORANTHENE FLUORENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE	10 10 10 10 10	37 U 37 U 37 U 37 U 37 U 37 U 37 U	UG/L UG/L UG/L UG/L UG/L	
HEXACHLOROETHANE ISOPHORONE 2-METHYLNAPHTHALENE 4,6-DINITRO-2-METHYLPHENOL	10 10 10 50	37 U 37 U 37 U 190 U	UG/L UG/L UG/L UG/L	27

£

EXTRACTABLE ORGANICS METHOD 8270C SEMIVOLATILES Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW1					
Date Sampled : 09/28/06 09:30 Ord Date Received: 09/29/06 Submissi	ler #: Lon #:	941069 R2633867	Sample Matrix: Analytical Run	WATER 135591	
ANALYTE		PQL	RESULT	UNITS	
DATE EXTRACTED : 10/04/06 DATE ANALYZED : 10/05/06 ANALYTICAL DILUTION: 3.70					
4 - CHLORO - 3 - METHYLPHENOL		10	37 U	UG/L	
2-METHYLPHENOL		10	37 0	UG/L	
3+4-METHYLPHENOL		10	37 0	UG/L	
NAPHTHALENE		10	1 0 L		
2-NITROANILINE		50	190 0		
3-NITROANILINE		50			
4-NITROANILINE		50 10			
NIIKOBENZENE 2. NITUDODUZNOJ		10	ט <i>ז</i> ב דו דיב		
A - NITROPHENOL		±0 50	190 1/4		
N_NITROCODIMETHYLAMINE		10	37 1	UG/L	
N-NITROSODIMETHILAMINE N-NITROSODI DHENVLAMINE		10	37 []	UG/L	
DI-N-OCTVI, PHTHALATE		10	37 U	UG/L	
PENTACHLOROPHENOL		50	190 U	UG/L	
PHENANTHRENE		10	37 Ŭ	UG/L	
PHENOL		10	37 10 1	J UG/L	
4 - BROMOPHENYL - PHENYLETHER		10	37 Ŭ	UG/L	
4 - CHLOROPHENYL-PHENYLETHER		10	37 U	UG/L	
N-NITROSO-DI-N-PROPYLAMINE		10	37 U	UG/L	
PYRENE		10	37 U	UG/L	
1,2,4-TRICHLOROBENZENE		10	37 U	UG/L	
2,4,6-TRICHLOROPHENOL		10	37 U	UG/L	
2,4,5-TRICHLOROPHENOL		10	37 U	UG/L	
SURROGATE RECOVERIES	QC LIM	ITS			
TERPHENYL-d14 (4	40 -	137 %)	98	ક	
NITROBENZENE-d5 (1	38 -	105 %)	73	oto	
PHENOL-d6 (I	10 -	69 %)	35	ક	
2-FLUOROBIPHENYL (:	38 -	100 %)	75	ę	
2-FLUOROPHENOL (1	17 -	74 %)	46	Ŷ	
2,4,6-TRIBROMOPHENOL (4	41 -	135 %)	73	00	

•	METHOD Report	8270C SEMIVOLAT ed: 10/12/06	FILES	
MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW3				
Date Sampled : 09/28/06 15:35 Order #: Date Received: 09/29/06 Submission #:	941070 R2633867	Sample Matrix: Analytical Run	WATER 135591	
ANALYTE	PQL	RESULT	UNITS	
DATE EXTRACTED : 10/04/06 DATE ANALYZED : 10/05/06 ANALYTICAL DILUTION: 0.94				
ACENAPHTHENE	10	9.4 U	UG/L	
ACENAPHTHYLENE	10	9.4 U	UG/L	
ANTHRACENE	10	9.4 U	UG/L	
BENZO (A) ANTHRACENE	10	9.4 U	UG/L	
BENZO (A) PYRENE	10	9.4 U	UG/L	
BENZO (B) FLUORANTHENE	10	9.4 U	UG/L	
BENZO (G, H, I) PERYLENE	10	9.4 U	UG/L	
BENZO (K) FLUORANTHENE	10	9.4 U	UG/L	
BENZYL ALCOHOL	10	9.4 U	UG/L	
BUTYL BENZYL PHTHALATE	10	9.4 U	UG/L	
DI-N-BUTYLPHTHALATE	10	9.4 TI	UG/L	
CARBAZOLE	10	9.4 U		
INDENO(1,2,3-CD)PYRENE	10	9.4 11	UG/L	
4-CHLOROANILINE	10	9.4 11	UG/L	
BIS (-2-CHLOROETHOXY) METHANE	10	9411	$\frac{100}{10}$	
BIS (2-CHLOROETHYL) ETHER	10	9.10		
2-CHLORONAPHTHALENE	10	9.40		
2 - CHLOROPHENOL	10			
$2 \cdot 2! - 0XYBIS(1 - CHLOROPROPANE)$	10	9.4 0		
CHRYSENE	10	9.4 0		
	10	9.4 U		
DIDENZO (R, II) AN INCRCEME	10	9.4 0	UG/L HG/L	
	10	9.4 0	UG/L	
1, 3-DICHLOROBENZENE	10	9.4 0	UG/L	
1, 2-DICHLOROBENZENE	10	9.4 0	UG/L	
1,4-DICHLOROBENZENE	10	9.4 0	UG/L	
3, 3'-DICHLOROBENZIDINE	10	9.4 U	UG/L	
Z, 4-DICHLOROPHENOL	10	9.4 U	UG/L	
DIETHYLPHTHALATE	10	9.4 U	UG/L	
DIMETHYL PHTHALATE	10	9.4 U	UG/L	
2,4-DIMETHYLPHENOL	10	9.4 U	UG/L	
2,4-DINITROPHENOL	50	47 U	UG/L	
2,4-DINITROTOLUENE	10	9.4 U	UG/L	
2,6-DINITROTOLUENE	10	9.4 U	UG/L	
BIS (2-ETHYLHEXYL) PHTHALATE	10	9.4 U	UG/L	
FLUORANTHENE	10	9.4 U	UG/L	
FLUORENE	10	9.4 U	UG/L	
HEXACHLOROBENZENE	10	9.4 U	UG/L	
HEXACHLOROBUTADIENE	10	9.4 U	UG/L	
HEXACHLOROCYCLOPENTADIENE	10	9.4 U	UG/L	nn
HEXACHLOROETHANE	10	9.4 U	UG/T	63
ISOPHORONE	10	9.4 U	UG/L	
2-METHYLNAPHTHALENE	10	9.4 U	UG/L	

50

47 U

UG/L

EXTRACTABLE ORGANICS

4,6-DINITRO-2-METHYLPHENOL

4
.8

.

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : GW-MW3			
Date Sampled : 09/28/06 15:35 Ord Date Received: 09/29/06 Submissi	er #: 941070 on #: R2633867	Sample Matrix 7 Analytical Ru	: WATER n 135591
ANALYTE	PQL	RESULT	UNITS
DATE EXTRACTED : 10/04/06 DATE ANALYZED : 10/05/06 ANALYTICAL DILUTION: 0.94			
4-CHLORO-3-METHYLPHENOL	10) 9.4 U	UG/L
2-METHYLPHENOL	10) 9.4 U	UG/L
3+4-METHYLPHENOL	10) 9.4 U	UG/L
NAPHTHALENE	10) 9.4 U	UG/L
2-NITROANILINE	50) 47 U	UG/L
3-NITROANILINE	50) 47 U	UG/L
4-NITROANILINE	50) 47 U	UG/L
NITROBENZENE	10) 9.4 U	UG/L
2-NITROPHENOL	10) 9.4 U	UG/L
4-NITROPHENOL	5() 47 Fu	UG/L
N-NITROSODIMETHYLAMINE	10) 9.4 U	UG/L
N-NITROSODIPHENYLAMINE	1() 9.4 U	UG/L
DI-N-OCTYL PHTHALATE	10) 9.4 U	UG/L
PENTACHLOROPHENOL	50) 47 U _{st}	ANDG/L
PHENANTHRENE	1(
PHENOL	10		
4-BROMOPHENYL-PHENYLETHER	10	9.4 U	
4-CHLOROPHENYL-PHENYLETHER	L () 9.4 U	
N-NITROSO-DI-N-PROPYLAMINE	1(
PIKENE	1		
1, 2, 4 - TRICHLOROBENZENE	1		
2,4,6-IRICHLOROPHENOL	1 (1 (
2,4,5-IRICHLOROPHENOL	۲. Tr. ۲	9.40	09/11
SURROGATE RECOVERIES Q	C LIMITS		
TERPHENYL-d14 (4	0 - 137 %)	94	S
NITROBENZENE-d5 (3	8 - 105 %)	78	olo
PHENOL-d6 (1	0 - 69 %)	27	સ્ટ
2-FLUOROBIPHENYL (3	8 - 100 %)	76	Ŷ
2-FLUOROPHENOL (1	7 - 74 %)	39	0
2,4,6-TRIBROMOPHENOL (4	1 - 135 %)	73	₽ ₹

30

COLUMBIA ANALYTICAL SERVICES

s,

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 10/12/06

Project Reference: Client Sample ID : METHOD BLANK

Date Sampled : Date Received: S	Order ubmission	#: #:	943008	Sample Ma Analytica	trix: 1 Run	WATER 135591	
ANALYTE			PQL	RES	ULT	UNITS	
DATE EXTRACTED : 10/0 DATE ANALYZED : 10/0 ANALYTICAL DILUTION:	4/06 5/06 1.00						
ACENAPHTHENE			10	10	U	UG/L	
ACENAPHTHYLENE			10	10	U	UG/L	
ANTHRACENE			10	10	U	UG/L	
BENZO (A) ANTHRACENE			10	10	U	UG/L	
BENZO (A) PYRENE			10	10	Ŭ	UG/L	
BENZO (B) FLUORANTHENE			10	10	U	UG/L	
BENZO (G, H, I) PERYLENE			10	10	U	UG/L	
BENZO (K) FLUORANTHENE			10	10	U	UG/L	
BENZYL ALCOHOL			10	10	U	UG/L	
BUTYL BENZYL PHTHALATE			10	10	U	UG/L	
DI-N-BUTYLPHTHALATE			10	10	0	UG/L	
CARBAZOLE			10	10	U	UG/L	
INDENO(1,2,3-CD)PYRENE			10	10	U	UG/L	
4 - CHLOROANILINE	_		10	10	U	UG/L	
BIS (-2-CHLOROETHOXY) METHAN	8		10	10	U	UG/L	
BIS (2-CHLOROETHYL) ETHER			10	10	U	UG/L	
2 - CHLORONAPHTHALENE			10	10	U	UG/L	
2-CHLOROPHENOL	_ \		10	10	U 	UG/L	
2,2'-OXYBIS (1-CHLOROPROPAND	E)		10	10	U	UG/L	
CHRYSENE			10	10	0	UG/L	
DIBENZO (A, H) ANTHRACENE			10	10	U	UG/L	
DIBENZOFURAN			10	10	U	UG/L	
1,3-DICHLOROBENZENE			10	10	U	UG/L	
1,2-DICHLOROBENZENE			10	10	U	UG/L	
1,4-DICHLOROBENZENE			10	10	U	UG/L	
3,3'-DICHLOROBENZIDINE			10	10	U	UG/L	
2,4-DICHLOROPHENOL			10	10	U	UG/L	
DIETHYLPHTHALATE			10	10	U	UG/L	
DIMETHYL PHTHALATE			10	10	U	UG/L	
2,4-DIMETHYLPHENOL			10	10	U	UG/L	
2,4-DINITROPHENOL			50	50	U	UG/L	
2,4-DINITROTOLUENE			10	10	U	UG/L	
2,6-DINITROTOLUENE			10	10	U	UG/L	
BIS (2-ETHYLHEXYL) PHTHALATE			10	10	U	UG/L	
FLUORANTHENE			10	10	U	UG/L	
FLUORENE			10	10	U	UG/L	
HEXACHLOROBENZENE			10	10	0	UG/L	
HEXACHLOROBUTADIENE			10	10	U	UG/L	
HEXACHLOROCYCLOPENTADIENE			10	10	U	UG/L	 4
HEXACHLOROETHANE			10	10	U	UG/L	31
ISOPHORONE			10	10	U	UG/L	
2-METHYLNAPHTHALENE			10	10	U	UG/L	
4,6-DINITRO-2-METHYLPHENOL			50	50	U	UG/L	
4-CHLORO-3-METHYLPHENOL			10	10	U	UG/L	

.

EXTRACTABLE ORGANICS

METHOD 8270C SEMIVOLATILES Reported: 10/12/06

Project Reference: Client Sample ID : METHOD BLANK

Date Sampled :	Order	#: 943008	Sample Matrix:	WATER
Date Received:	Submission	#:	Analytical Run	135591
ANALYTE		PQL	RESULT	UNITS
DATE EXTRACTED : 10 DATE ANALYZED : 10 ANALYTICAL DILUTION:)/04/06)/05/06 1.00			
2-METHYLPHENOL 3+4-METHYLPHENOL NAPHTHALENE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE 2-NITROPHENOL 4-NITROPHENOL 4-NITROPHENOL N-NITROSODIMETHYLAMINE DI-N-OCTYL PHTHALATE PENTACHLOROPHENYLAMINE DI-N-OCTYL PHTHALATE PHENANTHRENE PHENOL 4-BROMOPHENYL-PHENYLETHE 4-CHLOROPHENYL-PHENYLETHE N-NITROSO-DI-N-PROPYLAMI PYRENE 1,2,4-TRICHLOROBENZENE	ER IER INE	10 10 50 50 10 10 10 10 10 10 10 10 10 10 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
2,4,6-TRICHLOROPHENOL		10	10 U	UG/L
2,4,5-TRICHLOROPHENOL		10	10 U	UG/L
TERPHENYL-d14	(40	- 137 %)	107	රූ රු දේ ප් වර වර
NITROBENZENE-d5	(38	- 105 %)	84	
PHENOL-d6	(10	- 69 %)	37	
2-FLUOROBIPHENYL	(38	- 100 %)	82	
2-FLUOROPHENOL	(17	- 74 %)	52	
2,4,6-TRIBROMOPHENOL	(41	- 135 %)	74	

COLUMBIA ANALYTICAL SERVICES

VOLATILE ORGANICS METHOD TO-15 Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-1

4

Date Sampled : 09/28/06 11:49 Order Date Received: 09/29/06 Submission	#: 941076 #: R2633867	Sample Matr Analytical	rix: AIR Run 135628	I	
DATE ANALYZED : 10/02/06					
ANALYTICAL DILUTION: 1.00					
CAN DILUTION : 1.36	Pi= -0.5	Pf= 10.1			
	MRL	RESULT	MRL	RESULT	
ANALYTE	UG/M3	UG/M3	PPBv	PPBv	
n		\$ 2000		83D	
ACETONE	1.1	170 1	0.46	73 E	
BENZENE	1.6	2.2 U	0.51	0.69 บ	
BROMODICHLOROMETHANE	3.3	4.6 U	0.50	0.68 U	
BROMOFORM	5.2	7.0 U	0.50	0.68 U	
BROMOMETHANE	1.9	2.5 U	0.48	0.65 U	
2-BUTANONE (MEK)	1.5	10	0.50	3.5	
METHYL-TERT-BUTYL ETHER	1.7	2.4 U	0.48	0.65 U	
CARBON DISULFIDE	1.5	5.6	0.49	1.8	
CARBON TETRACHLORIDE	3.1	4.3 U	0.50	0.68 U	
CHLOROBENZENE	2.3	3.1 U	0.50	0.68 U	
CHLOROETHANE	1.3	1.7 U	0.48	0.65 Ц	
CHLOROFORM	2.2	3.1 7	0.45	0.63	
CHLOROMETHANE	0.97	1.3 Ū	0.47	0.64 U	
DIBROMOCHLOROMETHANE	4.3	5.9 U	0.51	0.69 U	
1,2-DIBROMOETHANE	3.8	5.2 U	0.50	0.68 U	
1,3-DICHLOROBENZENE	2.9	4.0 U	0.49	0.67 U	
1,4-DICHLOROBENZENE	2.9	4.0 U	0.49	0.67 U	
1,2-DICHLOROBENZENE	2.9	4.0 U	0.49	0.67 U	
1,1-DICHLOROETHANE	2.0	2.8 U	0.50	0.68 U	
1,2-DICHLOROETHANE	2.1	2.8 U	0.51	0.69 U	
1,1-DICHLOROETHENE	1.9	2.6 U	0.49	0.67 U	
TRANS-1, 2-DICHLOROETHENE	1.8	2.4 U	0.45	0.61 U	
CIS-1,2-DICHLOROETHENE	2.0	54	0.50	14	
1,2-DICHLOROPROPANE	2.3	3.1 U	0.50	0.68 U	
CIS-1, 3-DICHLOROPROPENE	2.3	3.1 U	0.51	0.69 U	
TRANS-1, 3-DICHLOROPROPENE	2.2	3.0 U	0.48	0.65 U	
ETHYLBENZENE	2.2	3.0 U	0.50	0.68 U	
2-HEXANONE	2.1	3.5	0.51	0.86	
METHYLENE CHLORIDE	1.7	2.3 U	0.49	0.67 U	
4-METHYL-2-PENTANONE	2.1	2.8	0.51	0.69	
STYRENE	2.1	2.9 U	0.50	0.68 U	
1,1,2,2-TETRACHLOROETHANE	13,4	4.7 U	0.50	0.68 U	
TETRACHLOROETHENE	3.4	28 T	0.50	4.1 5	
TOLUENE	1.9	14	0.51	3.7	
1,1,1-TRICHLOROETHANE	2.8	3.8 U	0.51	0.69 U	
1, 1, 2 - TRICHLOROETHANE	2.8	3.8 U	0.51	0.69 U	
TRICHLOROETHENE	2.7	6.97	0.50	1.3 T	
TRICHLOROFLUOROMETHANE	2.6	3.5 Ŭ	0.46	0.63 Ŭ	
1, 1, 2-TRICHLORO-1, 2, 2-TRIFLUOROETHA	3.8	5.1 U	0.49	0.67 U	20
VINYL ACETATE	1.9	4.8	0.53	1.4	30
VINYL CHLORIDE	1.2	1.7 U	0.48	0.65 U	•

* 5x delution

MACTEC, Inc. **Project Reference:** ARBA **Client Sample ID :** SS-1

٠

Date Sampled : Date Received:	09/28/06 : 09/29/06	11:49 Order Submission	: #: 941076 1 #: R263386	Sample Ma Analytica	atrix: AIR al Run 135628	3	
DATE ANALYZED	: 10,	/02/06	****			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	*********
ANALYTICAL DIL	UTION:	1.00				7	
CAN DILUTION	:	1.36	Pi= -0.5	Pf= 10.1			
ANALYTE			MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE			2 2	11 O F	0 50	0 68 11	
M+P-XYLENE			4.3	5.8 U	0.99	1.3 U	
SURROGATE RECO	VERIES	QC	LIMITS				
BROMOFLUOROBENZ	ENE	(50	- 150 %)	99	¥		

ŧ,

36

.

COLUMBIA ANALYTICAL SERVICES					
	VOLAT	ILE ORGANICS			
	Repor	D 10-15 ted: 10/12/06	5		
MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-1					
Date Sampled : 09/28/06 11:49 Order Date Received: 09/29/06 Submission	#: 941076 #: R2633867	Sample Matr Analytical	rix: AIR Run 135628	**************************************	
DATE ANALYZED : 10/02/06			aagaatatoo - 1 - 411 (400) - 77 A		******
ANALYTICAL DILUTION: 5.00		_			
CAN DILUTION : 1.36	Pi= -0.5	Pf= 10.1			
ĵ	MIDI	DECIII	MDT	DECIT	
ANALYTE	HIG/M3	IIG/M3	PPBV	PPRV	
ACETONE	1.1	200 D	0.46	83 D	
BENZENE	1.6	11 U	0.51	3.5 U	
BROMODICHLOROMETHANE	3.3	23 U	0.50	3.4 U	
BROMOFORM	5.2	35 U	0.50	3.4 U	
BROMOMETHANE	1.9	13 U	0.48	3.3 U	
2-BUTANONE (MEK)	1.5	10 U	0.50	3.4 U	
METHYL-TERT-BUTYL ETHER	1.7	12 U	0.48	3.3 U	
CARBON DISULFIDE	1.5	10 U	0.49	3.3 U	
CARBON TETRACHLORIDE	3.1	21 U	0.50	3.4 U	
CHLOROBENZENE	2.3	16 U	0.50	3.4 U	
CHLOROETHANE	1.3	8.6 U	0.48	3.3 U	
CHLOROFORM	2.2	15 U	0.45	3.1 U	
CHLOROMETHANE	0,97	6.6 U	0.47	3.2 U	
DIBROMOCHLOROMETHANE	4.3	30 U	0.51	3.5 U	
1.2-DIBROMOETHANE	3.8	26 U	0.50	3.4 U	
1,3-DICHLOROBENZENE	2.9	20 U	0.49	3.3 U	
1.4-DICHLOROBENZENE	2.9	20 U	0.49	3.3 U	
1, 2-DICHLOROBENZENE	2.9	20 11	0.49	3.3 11	
1 1-DICHLOROFTHANE	2.5	14 11	0.50	3411	
1 2-DICHLOROFTHANS	**•• • 1		0.50	3511	
1,2-DICHLOROFTNENE	2.1		0.91	3.3 U 3 3 II	
TRANE 1 2 DICHLOROFTHENE	1.9	12 11	0.49	2,20	
CIC 1 2 DICHLOROBINE	1.0	12 0	0.45	J.L U 12	
1.2 DICHLOROEINENE	2.0	40	0.50	2.4 II	
I, 2-DICHLOROPROPANE	2.3	76 U	0.50	3.4 U 2 E U	
CIS-L, 3-DICHLOROPROPENE	2.3	16 U	0.51	3.5 U	
TRANS-I, 3-DICHLOROPROPENE	2.2	15 U	0.48	3.3 U	
ETHILBENZENE	2.2	15 0	0.50	3.4 0	
2-HEXANONE	2.1	14 U	0.51	3.5 0	
METHYLENE CHLORIDE	1.7	12 0	0.49	3.3 0	
4 - METHYL-2 - PENTANONE	2.1	14 0	0.51	3.5 0	
STYRENE	2.1	14 U	0.50	3.4 U	
1, 1, 2, 2-TETRACHLOROETHANE	3.4	23 U	0.50	3.4 0	
TETRACHLOROETHENE	3.4	24	0.50	3.6	
TOLUENE	1.9	13 U	0.51	3.5 U	
1,1,1-TRICHLOROETHANE	2.8	19 U	0.51	3.5 U	
1,1,2-TRICHLOROETHANE	2.8	19 U	0.51	3.5 U	
TRICHLOROETHENE	2.7	18 U	0.50	3.4 U	
TRICHLOROFLUOROMETHANE	2.6	18 U	0.46	3.1 U	0.19
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	3.8	26 U	0.49	з.з\u	31
VINYL ACETATE	1.9	13 U	0.53	3.6 U	
VINYL CHLORIDE	1.2	8.3 U	0.48	3.3 U	
				<u> </u>	

MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-1

.

 Date Sampled : 09/28/06 11:49 Order #: 941076
 Sample Matrix: AIR

 Date Received: 09/29/06
 Submission #: R2633867
 Analytical Run 135628

DATE ANALYZED : ANALYTICAL DILUTION: CAN DILUTION :	10/02/06 5.00 1.36	Pi= -0.5	Pf= 10.1			
ANALYTE		MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE M+P-XYLENE		2.2	15 U 29 U	0.50	3.4 U 6.7 U	
SURROGATE RECOVERIES	QC :	LIMITS				
BROMOFLUOROBENZENE	(50	- 150 %)	7 9	8		

COLUMBIA ANALYTICAL SERVICES

VOLATILE ORGANICS METHOD TO-15 Reported: 10/12/06

.

MACTEC, Inc. **Project Reference:** ARBA **Client Sample ID :** SS-2

ł

Date Sampled : 09/28/06 11:54 Order Date Received: 09/29/06 Submission	#: 941077 #: R2633867	Sample Matrix Analytical Ru	: AIR n 135628		
DATE ANALYZED : 10/02/06					
ANALYTICAL DILUTION: 1.00					
CAN DILUTION : 1.56	Pi= -4.4	Pf= 10.0			
	MRL	RESULT	MRL	RESULT	
ANALYTE	UG/M3	UG/M3	PPBv	PPBv	
		\$ 220D		a. 17	
ACETONE	1.1	C Q D E	0.46	ST B	
BENZENE	1.6	2.9	0.51	0.92	
BROMODICHLOROMETHANE	3.3	5.2 U	0.50	0.78 U	
BROMOFORM	5.2	8.1 U	0.50	0.78 U	
BROMOMETHANE	1 9	2911	0.48	0.75 17	
2-BUTANONE (MEK)	1 5	14	0 50	4 9	
METHYL-TERT-BUTYL ETHER	1 7	2711	0.48	0 75 11	
CARBON DISULFIDE	1 5	42	0.49	14	
CARBON TETRACHLORIDE	2 1	л Q II	0.50	. 0 78 ∏	
CHLODOBENZENE	2.1	3617	0.50	0.78 11	
CHIOROFENALAE	2.5	2.0 1	0.30		
	1.3 7 7		0.40	0.75 0	
	2.2	3.4 U 1 C II	0.45	0.70 0	
DIDDOMOGIU ODOMOTIUDUE	0.97	1.5 0	0.47	0.73 0	
DIBROMOCHLOROMETHANE	4.3	6.8 U	0.51	0.80 0	
1,2-DIBROMOETHANE	3.8	6.0 U	0.50	0.78 0	
1, 3-DICHLOROBENZENE	2.9	4.6 U	0.49	0.76 0	
1,4-DICHLOROBENZENE	2.9	4.6 U	0.49	0.76 0	
1,2-DICHLOROBENZENE	2.9	4.6 U	0.49	0.76 U	
1, 1-DICHLOROETHANE	2.0	3.2 U	0.50	0.78 U	
1,2-DICHLOROETHANE	2.1	3.2 U	0.51	0.80 U	•
1,1-DICHLOROETHENE	1.9	3.0 U	0.49	0.76 U	
TRANS-1, 2-DICHLOROETHENE	1.8	2.8 U	0.45	0.70 U	
CIS-1,2-DICHLOROETHENE	2.0	3.1 U	0.50	0.78 U	
1,2-DICHLOROPROPANE	2.3	3.6 U	0.50	0.78 U	
CIS-1, 3-DICHLOROPROPENE	2.3	3.6 U	0.51	0.80 U	
TRANS-1, 3-DICHLOROPROPENE	2.2	3.4 U	0.48	0.75 U	
ETHYLBENZENE	2.2	3.5	0.50	0.80	
2-HEXANONE	2.1	3.3 U	0.51	0.80 U	
METHYLENE CHLORIDE	1.7	2.7 U	0.49	0.76 U	
4 - METHYL - 2 - PENTANONE	2.1	4.0	0.51	0.97	
STYRENE	2.1	3.3 U	0.50	0.78 U	
1, 1, 2, 2-TETRACHLOROETHANE	3.4	5.4 U	0.50	0.78 U	
TETRACHLOROETHENE	3.4	78	0.50	12	
TOLUENE	1.9	20	0.51	5.3	
1,1,1-TRICHLOROETHANE	2.8	4.3 U	0.51	0,80 U	
1,1,2-TRICHLOROETHANE	2.8	4.3 U	0.51	0.80 U	
TRICHLOROETHENE	2.7	4.2 U	0.50	0.78 U	
TRICHLOROFLUOROMETHANE	2.6	14	0.46	2.5	50
1, 1, 2-TRICHLORO-1, 2, 2-TRIFLUOROETHA	3.8	5.9 U	0.49	0.76 U	33
VINYL ACETATE	1.9	7.5	0.53	2.1	
VINYL CHLORIDE	1.2	1.9 U	0.48	0.75 U	

#5x dilution

MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-2

Date Date	Sampled : Received:	09/28/06 09/29/06	ll:54 Order Submission	#: 941077 #: R2633867	Sample Mat Analytical	rix: AIR . Run 135628		
DAT ANA	E ANALYZED LYTICAL DII	: 1 LUTION:	.0/02/06 1.00					
CAN	DILUTION	:	1.56	Pi= -4.4	Pf= 10.0			
ANA	LYTE			MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBV	
0-XY	LENE			2.2	3.4 U	0.50	0.78 U	
M+P-	XYLENE			4.3	9.7	0,99	2.2	
SUR	ROGATE RECO	OVERIES	QC I	JIMITS				
BROM	OFLUOROBEN:	ZENE	(50	- 150 %)	98	ક		

٩

MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-2

•

÷

Date Sampled : 09/28/06 11:54 Order #: 941077 Sample Matrix: AIR Date Received: 09/29/06 Submission #: R2633867 Analytical Run 135628

DATE ANALYZED : 10/02/06 ANALYTICAL DILUTION: 5.00 CAN DILUTION : 1.56 Pi= -4.4 Pf= 10.0

a 3 ya x yyuun	MRL	RESULT	MRL	RESULT	
ANALIIE	UG/M3	UG/M3	PPBV	PPBV	
ACETONE	1.1	220 D	0.46	94 D	
BENZENE	1.6	13 U	0.51	4.0 Ŭ	
BROMODICHLOROMETHANE	3.3	26 U	0.50	3.9 U	
BROMOFORM	5.2	40 U	0.50	3.9 U	
BROMOMETHANE	1, 9	15 U	0.48	3.7 U	
2-BUTANONE (MEK)	1.5	13	0.50	4.4	
METHYL-TERT-BUTYL ETHER	1.7	13 U	0.48	3.7 U	
CARBON DISULFIDE	1.5	39	0.49	13	
CARBON TETRACHLORIDE	3.1	25 U	0.50	3.9 U	
CHLOROBENZENE	2.3	18 U	0.50	3.9 U	
CHLOROETHANE	1.3	v 9.9 U	0.48	3.7 U	
CHLOROFORM	2.2	ע 17 U	0.45	3.5 U	
CHLOROMETHANE	0.97	7 6 U	0.47	3.7 U	
DIBROMOCHLOROMETHANE	4.3	34 U	0.51	4.0 U	
1,2-DIBROMOETHANE	3.8	30 U	0.50	3.9 U	
1,3-DICHLOROBENZENE	2.9	23 U	0.49	3.8 U	
1,4-DICHLOROBENZENE	2.9	23 U	0.49	3.8 U	
1,2-DICHLOROBENZENE	2.9	23 U	0.49	3.8 U	
1,1~DICHLOROETHANE	2.0	16 U	0.50	3.9 U	
1,2-DICHLOROETHANE	2.1	16 U	0.51	4.0 U	
1,1-DICHLOROETHENE	1.9	15 U	Q.49	3.8 U	
TRANS-1,2-DICHLOROETHENE	1.8	14 U	0.45	3.5 U	
CIS-1,2-DICHLOROETHENE	2.0	15 U	0.50	3.9 U	
1,2-DICHLOROPROPANE	2.3	18 U	0.50	3.9 U	
CIS-1,3-DICHLOROPROPENE	2.3	18 U	0.51	4.0 U	
TRANS-1, 3-DICHLOROPROPENE	2.2	17 U	0.48	3.7 U	
ETHYLBENZENE	2.2	17 U	0.50	3.9 U	
2-HEXANONE	2.1	16 U	0.51	4.0 U	
METHYLENE CHLORIDE	1.7	13 U	0.49	\3.8 U	
4-METHYL-2-PENTANONE	2.1	16 U	0.51	4.0 U	
STYRENE	2.1	17 U	0.50	3/9 U	
1,1,2,2-TETRACHLOROETHANE	3.4	27 U	0.50	3.9 U	
TETRACHLOROETHENE	3.4	61	0.50	9.0	
TOLUENE	1.9	15	0.51	4.1	
1,1,1-TRICHLOROETHANE	2,8	22 U	0.51	4.0 U	
1,1,2-TRICHLOROETHANE	2.8	22 U	0.51	4.0 U	
TRICHLOROETHENE	2.7	21 U	0.50	3.9 U	
TRICHLOROFLUOROMETHANE	2.6	20 U	0.46	3.6 U	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	3.8	29 U	0.49	3.8 U	11
VINYL ACETATE	1.9	15 U	0.53	4.1 U	-I.L
VINYL CHLORIDE	1.2	9.6 U	0.48	3.7 U	

MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-2

٠

 Date Sampled : 09/28/06 11:54 Order #: 941077
 Sample Matrix: AIR

 Date Received: 09/29/06
 Submission #: R2633867
 Analytical Run 135628

DATE ANALYZED : ANALYTICAL DILUTION: CAN DILUTION :	10/02/06 5.00 1.56	Pi= -4.4	Pf= 10.0			
ANALYTE		MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE		2.2	17 U	0.50	3.9 U	
M+P-XYLENE		4.3	34 U	0.99	7.7 U	
SURROGATE RECOVERIES	QC I	IMITS				
BROMOFLUOROBENZENE	(50	- 150 %)	97	e.		

MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-1 DUP	. 1				
Date Sampled : 09/28/06 12:10 Order Date Received: 09/29/06 Submission	#: 941078 #: R2633867	Sample Matr Analytical	rix: AIR Run 13562	8	
DATE ANALYZED : 10/02/06					
ANALYTICAL DILUTION: 1.00					
CAN DILUTION : 1.44	Pi= -2.4	Pf= 9.8			
ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
		¥ 120D		50D	
ACETONE	1.1	120 8	0.46	149 K	
BENZENE	1.6	2.3 U	0.51	0.73 U	
BROMODICHLOROMETHANE	3.3	4.8 U	0.50	0.72 U	
BROMOFORM	5.2	7.4 U	0.50	0.72 U	
BROMOMETHANE	1.9	2.7 11	0.48	0.69 11	
2-BUTANONE (MEK)	1.5	8.9	0.50	3.0	
METHYL-TERT-BUTYL ETHER	1.7	2.5 U	0.48	0.69 U	
CARBON DISULFIDE	1.5	2.2 U	0.49	0.71 U	
CARBON TETRACHLORIDE	3.1	4.5 U	0.50	0.72 U	
CHLOROBENZENE	2.3	3.3 Ŭ	0.50	0.72 U	
CHLOROETHANE	1.3	1.8 U	0.48	0.69 U	
CHLOROFORM	2.2	6.1 J	0.45	1.2 5	
CHLOROMETHANE	0.97	1.4 U	0.47	0.68 U	
DIBROMOCHLOROMETHANE	4.3	6.3 U	0.51	0.73 U	
1,2-DIBROMOETHANE	3.8	5.5 U	0.50	0.72 U	
1,3-DICHLOROBENZENE	2.9	4.2 U	0.49	0.71 U	
1,4-DICHLOROBENZENE	2.9	4.2 U	0.49	0.71 U	
1,2-DICHLOROBENZENE	2.9	4.2 U	0.49	0.71 U	
1,1-DICHLOROETHANE	2.0	2.9 U	0.50	0.72 U	
1,2-DICHLOROETHANE	2.1	3.0 U	0.51	0.73 U	
1,1-DICHLOROETHENE	1.9	2.8 U	0.49	0.71 U	
TRANS-1,2-DICHLOROETHENE	1.8 "	2.6 U	0.45	0.65 U	
CIS-1,2-DICHLOROETHENE	2.0 4	1100110-E	0.50	427-25 K	
1,2-DICHLOROPROPANE	2.3	3.3 U	0.50	0.72 U	
CIS-1,3-DICHLOROPROPENE	2.3	3.3 U	0.51	0.73 U	
TRANS-1, 3-DICHLOROPROPENE	2.2	3.1 U	0.48	0.69 U	
ETHYLBENZENE	2.2	3.1 U	0.50	0.72 U	
2-HEXANONE	2.1	3.0 U	0.51	0.73 U	
METHYLENE CHLORIDE	1.7	2.4 U	0.49	0.71 U	
4 - METHYL - 2 - PENTANONE	2.1	3.0 U	0.51	0.73 U	
STYRENE	2.1	3.1 U	0.50	0.72 U	
1,1,2,2-TETRACHLOROETHANE	3.4	4.9 U	0.50	0.72 U	
TETRACHLOROETHENE	3.4	86 J	0.50	13 T	
TOLUENE	1.9	17	0.51	4.5	
1,1,1-TRICHLOROETHANE	2.8	4.0 U	0.51	0.73 U	
1,1,2-TRICHLOROETHANE	2.8	4.0 U	0.51	0.73 U	
TRICHLOROETHENE	2.7	29 5	0.50	5.4 J	
TRICHLOROFLUOROMETHANE	2.6	3.7 U	0.46	0.66 U	A 174
1, 1, 2-TRICHLORO-1, 2, 2-TRIFLUOROETHA	3.8	5.4 U	0.49	.0.71 U	43
VINYL ACETATE	1.9	4.8	0.53	1.4	
VINYL CHLORIDE	1.2	1.8 U	0.48	0.69 U	

\$2.5x dilution

•

.

VOLATILE ORGANICS METHOD TO-15 Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-1 DUP

Date Date	Sampled : Received:	09/28/06 09/29/06	12:10 Order Submission	#: 941078 #: R2633867	Sample M Analytic	atrix: AIR al Run 135628	3	
DATE	E ANALYZED LYTICAL DI	: 1 LUTION:	0/02/06		A A B A Constant of the second			
CAN	DILUTION	:	1.44	Pi= -2.4	Pf= 9.8			
ANAI	LYTE			MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
0-XYI	LENE			2.2	3.1 U	0.50	0.72 U	
M+P-1	YLENE			4.3	6.2 U	0.99	1.4 U	
SURI	ROGATE REC	OVERIES	QC	LIMITS				
BROM	OFLUOROBEN:	ZENE	(50	- 150 %)	97	¥		

٩,

44

.

1

VOLATILE ORGANICS METHOD TO-15 Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-1 DUP

Date Sampled : 09/28/06 12:10 Order #: 941078 Sample Matrix: AIR Date Received: 09/29/06 Submission #: R2633867 Analytical Run 135628

DATE ANALYZED : 10/03/06 ANALYTICAL DILUTION: 2.50 CAN DILUTION : 1.44 Pi= -2.4 Pf= 9.8

אאזו.עיד	MRL UG/M3	RESULT	MRL	RESULT	
				\frown	
ACETONE	1.1	(120 D)	0.46	(50 D	
BENZENE	\ 1 .6	5.90	0.51	1.8 U	
BROMODICHLOROMETHANE	3,3	12 U	0.50	1.8 U	
BROMOFORM	5.2	19 U	0.50	1.8 U	
BROMOMETHANE	1.9	6.7 U	0.48	1.7 U	
2-BUTANONE (MEK)	1.5 🔪	8.2	0.50	2.8	
METHYL-TERT-BUTYL ETHER	1.7	6.2 U	0.48	1.7 U	
CARBON DISULFIDE	1.5	5.5 U	0.49	1.8 U	
CARBON TETRACHLORIDE	3.1	11 U	0.50	1.8 U	
CHLOROBENZENE	2.3	8.3 U	0.50	1.8 U	
CHLOROETHANE	1.3	\ 4.6 U	0.48	1.7 U	
CHLOROFORM	2.2	\7.9 U	0.45	1.6 U	
CHLOROMETHANE	0.97	3.5 ບ	0.47	1.7 U	
DIBROMOCHLOROMETHANE	4.3	16 U	0.51	1.8 U	
1,2-DIBROMOETHANE	3.8	14 U	0.50	1.8 U	
1,3-DICHLOROBENZENE	2.9	11\ U	0.49	1.8 U	
1,4-DICHLOROBENZENE	2.9	11 U	0.49	1.8 U	
1,2-DICHLOROBENZENE	2.9	11 Ù	0.49	1.8 U	
1,1-DICHLOROETHANE	2.0	7.3 U 🔪	0.50	1.8 U	
1,2-DICHLOROETHANE	2.1	7.4 U 🔪	0.51	1.8 U	
1,1-DICHLOROETHENE	1.9	7.0 U	0.49	1.8 U	
TRANS-1,2-DICHLOROETHENE	1.8	6.4 U	0.45	1.6 0	
CIS-1,2-DICHLOROETHENE	2.0	(110 D)	0.50	(27 D)	
1,2-DICHLOROPROPANE	2.3	8.3 U	0.50	1.8 U	
CIS-1,3-DICHLOROPROPENE	2.3	8.3 U	0.51	1.8 U	
TRANS-1, 3-DICHLOROPROPENE	2.2	7.8 U	0.48	1.7 U	
ETHYLBENZENE	2.2	7.8 U	0.50	1.8 U	
2-HEXANONE	2.1	7.5 U	0.51	1.8 U	
METHYLENE CHLORIDE	1.7	6.1 U	0.49	1.8 U	
4 - METHYL - 2 - PENTANONE	2.1	7.5 U	0.51	1.8 U	
STYRENE	2.1	7.7 U	0.50	\ 1.8 U	
1,1,2,2-TETRACHLOROETHANE	3.4	12 U	0.50	\ 1.8 U	
TETRACHLOROETHENE	3.4	78	0.50	12	
TOLUENE	1,9	15	0.51	3.9	
l, l, 1-TRICHLOROETHANE	2.8	10 U	0.51	\ 1.8 U	
1, 1, 2-TRICHLOROETHANE	2.8	10 U	0.51	\1.8 U	
TRICHLOROETHENE	2.7	26	0.50	4.9	45
TRICHLOROFLUOROMETHANE	2.6	9.3 U	0.46	1\.7 U	- var
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	3.8	14 U	0.49	1\8 U	
VINYL ACETATE	1.9	6.7 U	0.53	1.9 U	
VINYL CHLORIDE	1.2	4.4 U	0.48	1.7 U	

MACTEC, Inc. Project Reference: ARBA Client Sample ID : SS-1 DUP

 Date Sampled : 09/28/06 12:10 Order #: 941078
 Sample Matrix: AIR

 Date Received: 09/29/06
 Submission #: R2633867
 Analytical Run 135628

DATE ANALYZED ANALYTICAL DILUT	: 10/ 'ION:	03/06		DE 0.0			
CAN DILUTION	:	1.44	P1 = -2.4	PI= 9.8			
ANALYTE			MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
				<u>۲</u>			
O-XYLENE			2.2	7.8 U	0.50	1.8 U	
M+P-XYLENE			4.3	15 U	0.99	3.6 U	
SURROGATE RECOVE	RIES	QC	LIMITS				
BROMOFLUOROBENZEN	ΙE	(50	- 150 %)	98	ક		
BROMOFLUOROBENZEN	ſΈ	(50	- 150 %)	98	c t o		

COLUMBIA ANALYTICAL SERVICES

VOLATILE ORGANICS METHOD TO-15 Reported: 10/12/06

MACTEC, Inc. Project Reference: ARBA Client Sample ID : OA-1

1

 Date Sampled : 09/28/06 13:05 Order #: 941079
 Sample Matrix: AIR

 Date Received: 09/29/06
 Submission #: R2633867
 Analytical Run 135628

DATE ANALYZED : 10/02/06 ANALYTICAL DILUTION: 1.00 CAN DILUTION : 1.67	Pi= -6 1	Pf- 9.8			
	MRL	RESULT	MRL	RESULT	
ANALYTE	UG/M3	UG/M3	PPBv	PPBv	No. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19
A CETONE		10	0.46		
BENZENE	1.1	81	0.46	/.8 0.05 H	
	1.0	2.7 U	0.51	0.85 0	
BROMOFORM	3.3 E 0	5.6 U	0.50	0.84 U	
BROMOTORM	⊃.∡ 1 0	8.6 U	0.50	0.84 U	
2-BITANONE (MEY)	1.9	3.1 0	0.48	0.80 0	
MERUNI TERT DURNI BRUDD	1.5	3.0	0.50	1.0	
CARRON DICHLOIDE	1.7	2.9 U	0.48	0.80 0	
CARBON DISOLFIDE	1.5	2.5 0	0.49	0.82 U	
CARDON IBIRACHLORIDE	3.1	5.3 U	0.50	0.84 U	
CHLOROBENZENE	2.3	3.8 U	0.50	0.84 U	
CHLOROETHANE	1.3	2.1 U	0.48	0.80 U	
CHLOROFORM	2.2	3.7 U	0.45	0.75 U	
CHLOROMETHANE	0.97	1.6 U	0.47	0.78 U	
DIBROMOCHLOROMETHANE	4.3	7.3 U	0.51	0.85 U	
1, 2-D1BROMOETHANE	3.8	6.4 U	0.50	0.84 U	
1, 3-DICHLOROBENZENE	2.9	4.9 U	0.49	0.82 U	
1,4-DICHLOROBENZENE	2.9	4.9 U	0.49	0.82 U	
1, 2-DICHLOROBENZENE	2.9	4.9 Ŭ	0.49	0.82 U	
1,1-DICHLOROETHANE	2.0	3.4 U	0.50	0.84 U	
1,2-DICHLOROETHANE	2.1	3.4 U	0.51	0.85 U	
1,1-DICHLOROETHENE	1.9	3.2 U	0.49	0.82 U	
TRANS-1,2-DICHLOROETHENE	1.8	3.0 U	0.45	0.75 U	
CIS-1,2-DICHLOROETHENE	2.0	3.3 U	0.50	0.84 U	
1,2-DICHLOROPROPANE	2.3	3.9 U	0.50	0.84 U	
CIS-1,3-DICHLOROPROPENE	2.3	3.9 U	0.51	0.85 U	
TRANS-1,3-DICHLOROPROPENE	2.2	3.6 U	0.48	0.80 U	
ETHYLBENZENE	2.2	3.6 U	0.50	0.84 U	
2-HEXANONE	2.1	3.5 U	0,51	0.85 U	
METHYLENE CHLORIDE	1.7	2.8 U	0.49	0.82 U	
4-METHYL-2-PENTANONE	2.1	3.5 U	0.51	0.85 U	
STYRENE	2.1	3.6 U	0.50	0.84 U	
1,1,2,2-TETRACHLOROETHANE	3.4	5.7 U	0.50	0.84 U	
🗶 TETRACHLOROETHENE	3.4	40	0.50	5.9	
TOLUENE	1.9	3.2 U	0.51	0.85 U	
1,1,1-TRICHLOROETHANE	2.8	4.6 U	0.51	0.85 U	
1,1,2-TRICHLOROETHANE	2.8	4.6 U	0.51	0.85 U	
TRICHLOROETHENE	2.7	4.5 U	0.50	0.84 U	12
TRICHLOROFLUOROMETHANE	2.6	4.3 U	0.46	0.77 U	"T T
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	3.8	6.3 U	0.49	0.82 U	
VINYL ACETATE	1.9	3.1 U	0.53	0.89 U	
VINYL CHLORIDE	1.2	2.0 U	0.48	0.80 U	
ATIATH CUROKTER	1.2	4.V V	0.40	V.0V V	

MACTEC, Inc. Project Reference: ARBA Client Sample ID : OA-1

•

*

Date Date	Sampled : Received:	09/28/06 09/29/06	13:05 Order Submission	#: 941079 #: R2633867	Sample Ma Analytica	trix: AIR 1 Run 135628		
DATH	E ANALYZED	: 10	0/02/06					
ANAI	LYTICAL DI	LUTION:	1.00					
CAN	DILUTION	:	1.67	Pi= -6.1	Pf= 9.8			
				MRL	RESULT	MRL	RESULT	
ANAI	JYTE			UG/M3	UG/M3	PPBv	PPBv	
0-221	. FNF			j j	2 6 17	0 50	0 84 11	
M+D-J	VLENE			2.2 4 7	3.60 721	0.30		
1471-7				4.5	7.2 0	0.00	1.70	
SURI	ROGATE RECO	OVERIES	QC 1	LIMITS				
BROM	OFLUOROBEN	ZENE	(50	- 150 %)	97	0- 10		

Columbia Analytical Services

METALS **COVER PAGE - INORGANIC ANALYSES DATA PACKAGE**

Contract:	R2633867			Walling and the later of the second	SDG No.:	GW-MW2
lab Code:		Case No.:			SAS No.:	
SOW No.: SW846 CLP-M		Client: MACTEC, Inc.		Inc.		
	Sample No.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	999-11-11-12-12-12-12-12-12-12-12-12-12-12-	Lab Sample ID.		
	GW-MW2			941066		
	GW-MW3D			941067	AND BURNLASA PER	
	GW-MW3DD	<u></u>		941067D	a ga cui ni ili ili ili ili ili ili ili ili ili	
	GW-MW3DS	<u></u>		9410675		
	GW-MW1	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		941069		
	GW-MW3			941070		

Were	ICP interelement corrections applied?	Yes/No	YES
Were	ICP background corrections applied?	Yes/No	YES
	If yes-were raw data generated before application of background corrections?	Yes/No	NO

Comments: See Attached Case Narrative

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

signature: Multure Name: Michael & Delly Date: 10/12/06 Title: Laboratory Menager

52

COVER PAGE - IN

Columbia Analytical Services

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

SAMELLE NU.		SI	MP	LE	NO	
-------------	--	----	----	----	----	--

GW-MW1

Contract:	R2633867
	And the owner of the owner, the o

Lab Code: Case No.:

SAS No.:

SDG NO.: GW-MW2

fatrix (soil/water): WATER
Level (low/med): LOW

Lab Sample ID: 941069

Date Received: 09/29/06

Concentration Units (ug/L or mg/kg dry weight): µG/L

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	1380			P
7440-36-0	Antimony	60.0	υ		P
7440-38-2	Arsenic	19.3			P
7440-39-3	Barium	48.5			P
7440-41-7	Beryllium	5.0	U		P
7440-43-9	Cadmium	5.0	υ		P
7440-70-2	Calcium	48800			P
7440-47-3	Chromium	32.5			P
7440-48-4	Cobalt	50.0	U		P
7440-50-8	Copper	20.0	U		P
7439-89-6	Iron	1520	l		P
7439-92-1	Lead	17.2			P
7439-95-4	Magnesium	4630			P
7439-96-5	Manganese	46.4			P
7439-97-6	Mercury	0.20	U		CV
7440-02-0	Nickel	40.0	U [P
7440-09-7	Potassium	114000		1	P
7782-49-2	Selenium	10.0	ע		P
7440-22-4	Silver	10.0	ע		P
7440-23-5	Sodium	174000	[P
7440-28-0	Thallium	10.0	ע		P
7440-62-2	Vanadium	50.0	U [P
7440-66-6	Zinc	39.3			P

Color	Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:
Color .	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:
Commen	ts:					

53

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

SAMP	LE	NO.	•

54

GW-MW2

Contract: R2633867

Lab Code:

Case No.:

SAS No.:

SDG NO.: GW-MW2

water): WATER

Matrix (soil/water):

Lab Sample ID: 941066 Date Received: 09/29/06

Level (low/med): LOW

м С Q Analyte Concentration CAS No. P 166 7429-90-5 Aluminum ₽ 60.0 U 7440-36-0 Antimony ₽ 10.0 U Arsenic 7440-38-2 \mathbf{P} 90.7 7440-39-3 Barium ₽ 5.0 U Beryllium 7440-41-7 P 5.0 U Cadmium 7440-43-9 31000 Ρ Calcium 7440-70-2 Ρ 10.0 U 7440-47-3 Chromium 50.0 U ₽ Cobalt 7440-48-4 P 20.0 U 7440-50-8 Copper \mathbf{P} 247 Iron 7439-89-6 5.0 U Ρ 7439-92-1 Lead 6380 ₽ Magnesium 7439-95-4 ₽ 10.0 U 7439-96-5 Manganese CV 0.20 U 7439-97-6 Mercury ₽ 40.0 U 7440-02-0 Nickel ₽ 4360 Potassium 7440-09-7 ₽ 10.0 U Selenium 7782-49-2 10.0 0 ₽ Silver 7440-22-4 ₽ 55100 Sodium 7440-23-5 ₽ 10.0 U 7440-28-0 Thallium P 50.0 U Vanadium 7440-62-2 ₽ 20.2 Zinc 7440-66-6

Concentration Units (ug/L or mg/kg dry weight): µG/L

Color Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:
Color After:	COLORLESS	Clarity .	After:	CLEAR	Artifacts:
Comments:					

Columbia Analytical	Services
---------------------	----------

• 2		METALS -1-		
	INORGAN	VIC ANALYSIS DATA SHEET		SAMPLE NO.
				GW-MW3
Contract: R2633867			1	
Lab Code:	Case No.:	SAS No.:	SDG NC).: <u>GW-MW2</u>
Matrix (soil/water):	WATER	Lab Sample ID:	941070	
Level (low/med): LC	W	Date Received:	09/29/06	

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	100	υ		E I
7440-36-0	Antimony	60.0	U		P
7440-38-2	Arsenic	10.0	U 1	I	P
7440-39-3	Barium	120			P
7440-41-7	Beryllium	5.0	ט		P
7440-43-9	Cadnium	5.0	U		P
7440-70-2	Calcium	14500		1	P
7440-47-3	Chromium	10.0	U		P
7440-48-4	Cobalt	50.0	U	1	P
7440-50-8	Copper	20.0	U	[P
7439-89-6	Iron	184		<u> </u>	P
7439-92-1	Lead	5.0	U		P
7439-95-4	Magnesium	1000	ט		P
7439-96-5	Manganese	15.8		<u> </u>	<u> </u>
7439-97-6	Mercury	0.20	ע		CV
7440-02-0	Nickel	40.0	ן ט		P
7440-09-7	Potassium	4290	[[P
7782-49-2	Selenium	10.0	U		P
7440-22-4	Silver	10.0	U	<u> </u>	P
7440-23-5	Sodium	60600		<u> </u>	P
7440-28-0	Thallium	10.0	U		P
7440-62-2	Vanadium	50.0	U		P
7440-66-6	Zinc	20.0	U		P

Concentration Units (ug/L or mg/kg dry weight): μ G/L

Color 1	Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:
Color 2	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:
Commen	ts:					

						-
7440-22-4	Silver	10.0	υ		Р	
		1 <u>cocoo</u>	I	l l	T)	Ī

METALS

-1-

INORGANIC ANALYSIS DATA SHEET

S.	AMPLE	NO	

GW-MW3D

Contract: <u>R2633867</u>

.ab Code:

*

SAS No.:

SDG NO.: GW-MW2

fatrix (soil/water):

.

LOW

Case No.:

WATER

Lab Sample ID: 941067

Date Received: 09/29/06

Level (low/med):

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	365			P
7440-36-0	Antimony	60.0	U		P
7440-38-2	Arsenic	10.0	υ		P
7440-39-3	Barium	56.4		<u> </u>	P
7440-41-7	Beryllium	5.0	U		P
7440-43-9	Cadmium	5.0	U		P
7440-70-2	Calcium	17700			P
7440-47-3	Chromium	10.0	U	<u> </u>	P
7440-48-4	Cobalt	50.0	U		P
7440-50-8	Copper	20.0	U		P
7439-89-6	Iron	8450			P
7439-92-1	Lead	7.9	<u> </u>		P
7439-95-4	Magnesium	2960	<u> </u>		P
7439-96-5	Manganese	270		<u> </u>	P
7439-97-6	Mercury	0.20	U	1	CV
7440-02-0	Nickel	40.0	U		P
7440-09-7	Potassium	4230	<u> </u>	<u> </u>	P
7782-49-2	Selenium	10.0	U		P
7440-22-4	Silver	10.0	U	1	P
7440-23-5	Sodium	33400			P
7440-28-0	Thallium	10.0	U		P
7440-62-2	Vanadium	50.0	U	<u> </u>	P
7440-66-6	Zinc	197			P

Concentration Units (ug/L or mg/kg dry weight): μ G/L

Color	Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:
Color	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:
Commen	its:					

56

ATTACHMENT B

CASE NARRATIVE AND CHAIN OF CUSTODY

CASE NARRATIVE

COMPANY: MACTEC, Inc. PROJECT: ARBA SUBMISSION #: R2633867

MACTEC samples were collected on 09/28/06 and received at CAS on 09/29/06 in good condition at a cooler temperature of 5 °C. An ASP-B validation report has been prepared.

VOLATILE ORGANICS - 8260

Five water samples and a Trip Blank were analyzed for the TCL list of Volatile Organics by method 8260B from SW-846. Values detected between the MDL and PQL have been flagged with a "J" as estimated.

All Tuning criteria for BFB were and Internal Standard Areas within QC limits.

All the initial and continuing calibration criteria were met for all analytes.

All surrogate standard recoveries were within acceptance limits for all samples.

The Blank Spike (Reference Check) recoveries were all acceptable. The Matrix Spike/Matrix Spike Duplicate Recoveries was performed on sample GW-MW3D. All recoveries were within QC limits. The RPD results were all with QC limits.

The Method Blanks associated with these samples were free of contamination.

No other analytical or QC problems were encountered.

SEMIVOLATILE ORGANICS

Fourwater samples were analyzed for the TCL list of SVOAS by method 8270C from SW-846. Values detected between the MDL and PQL have been flagged with a "J" as estimated.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits.

Site specific QC was performed on sample GW-MW3D. All MS/MSD and Blank spike/Blank spike duplicate recoveries were within limits. All RPD's were within limits except 4-Nitrol Phenol and Phenol on the BS/BSD.

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were extracted and analyzed within holding times.

No other analytical or QC problems were encountered.

MACTEC - submission #R2633867 - page 2

METALS ANALYSIS

Four water samples were analyzed for the TAL list of Metals by SW-846 methods 6010C/7470.

Site specific QC was performed on sample GW-MW3D. All MS recoveries were within limits of 75 – 125%. The MS recovery for Calcium and Iron could not be accurately determined due to the amount present in the sample being greater than four times the amount added as spike. All Blank spike recoveries were within limits. All RPD's were within the 20 % limits.

No other analytical or QC problems were encountered.

SOIL VAPOR ANALYSIS

Four soil vapor samples were analyzed for Volatile Organics by EPA method TO-15.

All initial and continuing calibrations were compliant.

The Blank Spike (Reference Check) recoveries were all within QC limits.

No other analytical or QC problems were encountered with these analyses.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the details conditioned above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Analytical Services ^{Mc}	Employee - Owned Company
V	kn Em

SR # CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employee - Owned Company One Mustard St., St www.castab.com	Suite 250 • Rochester, NY 14609	-0859 • (585) 288-5380	• 800-695-7222 x1	1 • FAX (585) 288-8475 PA(GE 1 OF	CA	S Contact
Project Name Arba	Project Number 36120620	52.02.1		ANALYSIS REQUES	TED (Include Metho	d Number and Contai	er Preservative)
Project Manager Jayme Coundin	Report CC		PRESERVAT	WE I O		2	
Company/Address 511 Congress	St.						Preservative Key 0. NONE 1. HCL
Portland, ME	04101		SRENIA				2. HN03 3. H2S04
				1016 1016 105 105	51 51 51 51 51 51 51 51 51 51 51 51 51 5		6. MeOH
Prove 207 775 5441	FAX#		EH OF	608 008 008 008 008 008 008 008 008 008			8. Other
Sampler's Signature	Sampler's Printed Name	• •			V 7 00 00 V		
CLIENT SAMPLE ID	A OFFICE USE ONLY SI LAB ID DATI	AMPLING E TIME MATH	SCA SCA SCA SCA SCA SCA SCA SCA SCA SCA	CAST C 102 PC 90 PC 10 MET CAST C 102 PC 90 PC 10 MET C 4 9 C 102 PC 90 PC 90 PC 10 PC 10 PC 90	MEL WEL		
Arba-GW-MW2	17.1	-01 1350 GV	V X	X	×		
Arba-GW-MW3D	9.4	ote 1805 41	Ķ	×	×		
Arba GW - MW3DDP	476	06 1805 a	×				
Arbe-GW-MW3DMS	9.2 3	· · 5081 10-	X	×	×		
Arbe- Gw-Mw1	9-28	.ch cr130 "	X	*	×		100 mL Sample - Mate
Arba - GW-MW3	\$7 · 6	.4 1535 "	×	×	×		
Trip Blente	Q-2}	rat 17:38 1	×				
SPECIAL INSTRUCTIONS/COMMENTS Metals				TURNAROUND REQUIREME RUSH (SURCHARGES APPI	ENTS REPO	RT REQUIREMENTS s Only	INVOICE INFORMATION
				24 hr 48 hr	5 day II. Resul	ts + QC Summaries	PO#
				X STANDARD 14 44	(LCS, D	UP, MS/MSD as required)	
				REQUESTED FAX DATE	NI. Resu Summar	Its + QC and Calibration ites	
				REQUESTED REPORT DATE	W. Date	Validation Report with Raw D.	
See OAPP			*******		V. Speic	alized Forms / Custom Report	K2 (5)862
SAMPLE RECEIPT: CONDITION/COOLER TE	TEMP: 540	CUSTODY	SEALS: Y N		Ęćeta	A. YasNo	
RELINOUISHED BY	RECEIVED BY	RELINQUIS	HED BY	RECEIVED BY	Ξ	ELINQUISHED BY	RECEIVED BY
Signature M. D. J. J. M. C. Signature	4 M. M. Manteres	Signature		Signatura	Signature		Signature
Printed Name	adwh, Comerian	Printed Name		Printed Name	Printed Name		Printed Name
Fill MACTEC	- CAS	Fith		Firm	Fich		Firm
Date/Time 1 1 0 25 19.28.06 Date/Time	02901 9:30	Date/Time		Date/Time	Date/Time		Date/Time
Distribution: White - Return to Originator; Yellow - Lab C	Copy, Pink - Retained by Client						2011-20-28

i A		A	ir - Chai	in of Cus	tody Rec	ord & An:	alytical Se	rvice Req	uest	Page	10 et	* · ·
Columbia	1 Mustard Sti Rochester, N	reet, Suite 25 ew York 146	50 09-6925									, .
Analytical Services **	Phone (585) Fax (585) 28	288-5380 8-8475		Requested Tr 1 Day 2 Day	urnaround Tii / 3 Day 4 [ne in Busines Jay 5 Day	. Daye From R e 0 Day-Standard	ceipt, please	circle ev	CAS Project No.	7	•
Common Name 8 Addined (Day	andina Infam			Dreitert Mame				CAS Contact:				anna dhu
MALYEC FIRST		iation)			Arba			Analys	is Method a	Ind/or Analyte	S	خدوده بر روینی ا
511 Congress St	Hood .	and , M	E Ofio	Project Number	3012	06 2052	1.60 .					g 1 200 200 200 200 200 200 200 200 200 2
Project Manager Jay we	(onn ll	د		P.O. # / Billing	J Information							******
Phone 2.07 715 - 54-01	Fax										<u>0</u>	Comments becific Instructions
Email Address for Result Reporting				Sampler (Print & Philry J.	k Sign) Muller	Alle 1	rela			9.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID	Flow Controller ID	Sample Final Vacuum		Ta-15				
Arba- 55-1		10-27 E	1149			ا. ہ		×				
Arba - 55-2		2	1154			5, c		×				
Arba - 55 - 1Dup		د	1210			1.0		×				
Arba- cA-1		2	1305			¢.5		×				
						an an an Annaich a star a s						
andre an ann airte à airte an bhar airte an an airte àr ann an an Airte an Airte an Airte an Airte an Airte an												
Report Tier Levels - please se Tier I - (Results/Default if not specifie	ect d)	Tier III (CLP F	orms Only)				EDD required	No No	EDD Units:		ect Kequiren	ופחוג (ואהנג, שארד)
						1 A	- Jak					*****
Reliquished by: (Signature)	1 Mer	,	Date: 9. L&. Ob	Time: 1025	Received by: (S	ignature ignature	lestern)	6	6- Jay - W	9:30		
Reliquíshed by: (Signature)			Date:	Time:	Received by: (S	ignature) °			Date:	Time:		
Reliquished by: (Signature)			Date:	Time:	Received by: (S	ignature)			Date:	Time:		

1