NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau E 625 Broadway, 12th Floor, Albany, NY 12233-7017 P: (518) 402-9813 I F: (518) 402-9819 www.dec.ny.gov

May 14, 2019

Mr. James Van Horn Project Manager - D&B Engineers and Architects, P.C. 330 Crossways Park Drive Woodbury, New York 11797 JVanHorn@db-eng.com

RE: Pre-Design Investigation Report (March 2019)

Site Name: Wantagh Cleaners OU2 Site

DEC Site No. 130064

Town of Hempstead, Nassau County, New York

Dear Mr. Van Horn:

The New York State Department of Environmental Conservation (NYSDEC) reviewed the subject report dated March 2019 and finds the recommendations outlined in Section 5.2 acceptable to advance the project. Please provide the Department with a letter work plan outlining the proposed work scope and schedule associated with chemical oxidation pilot study and installation of permanent monitoring wells.

Property transfer is currently in progress and it is anticipated that the on-site building will be demolished and that a sub-slab depressurization system will not be required. The placement of and access to injection wells will require future coordination with the property owner. If you have any questions, please contact me by email lisa.gorton@dec.ny.gov or by phone at (518) 402-9574.

Sincerely,

Lisa Gorton, P.E.

Lisa A. Gorton

Project Manager

Remedial Bureau E, Remedial Section A Division of Environmental Conservation

ec: David Harrington, DEC

New York State Department of Environmental Conservation

Division of Environmental Remediation

Wantagh Cleaners 0U2 Site

Pre-Design Investigation Report Site No. 130064

PRE-DESIGN INVESTIGATION REPORT

WANTAGH CLEANERS OU2 SITE TOWN OF HEMPSTEAD, NASSAU COUNTY, NEW YORK SITE NO. 130064

WORK ASSIGNMENT NO. D007620-40

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION

Prepared by:

D&B ENGINEERS AND ARCHITECTS, P.C.

MAY 2019

PRE-DESIGN INVESTIGATION REPORT WANTAGH CLEANERS OU2 SITE

TABLE OF CONTENTS

Secti	<u>on</u>	<u>Title</u>	<u>Page</u>
1.0	INT	RODUCTION	1-1
2.0	SIT	E DESCRIPTION AND HISTORY	2-1
	2.1 2.2 2.3	Site Description	2-1
3.0	SIT	E INVESTIGATION	3-1
	3.1 3.2	Site Investigation Field Activities Field Procedures, Analytical Methods and Quality Assurance	
4.0	DIS	CUSSION OF RESULTS	4-1
5.0	4.1 4.2 4.3 4.4 4.5 CO I	Applicable Regulatory Standards	4-1 4-9 4-10 4-11
	5.2	Recommendations	5-2
List	of Figu	ıres	
	1-1 2-1 3-1 3-2 4-1 4-2 4-3	Off-Site Sample Location Map Teacher's Pets Child Care Center Sample Location Map On-Site VOC Sample Results Exceeding SCGs in Groundwater On-Site PFAS Concentrations in Groundwater On-Site 1,4-Dioxane Concentrations in Groundwater	2-2 3-2 3-3 4-3 4-4 4-5
	4-4	Off-Site VOC Sample Results Exceeding SCGs in Groundwater	4-8

TABLE OF CONTENTS (continued)

Section	<u>Title</u>	<u>Page</u>
List of Tab	oles	
3-1	Monitoring Well Construction Summary	3-5
3-2	Discrete-Depth Groundwater Sample Collection Depths	3-7
4-1	Groundwater Monitoring Well Sample Results Exceeding SCGs	4-2
4-2	Off-Site Discrete Depth Groundwater Sample Results Exceeding SCGs	
List of App	pendices	
Gro	undwater Elevation Data and Figures	A
Field	d Forms	B
Ana	lytical Data Summary Tables	C
Indo	oor Air Quality Questionnaire	D
Site	Survey	E
Data	a Validation Checklists	F
	Vapor Extraction Evaluation	

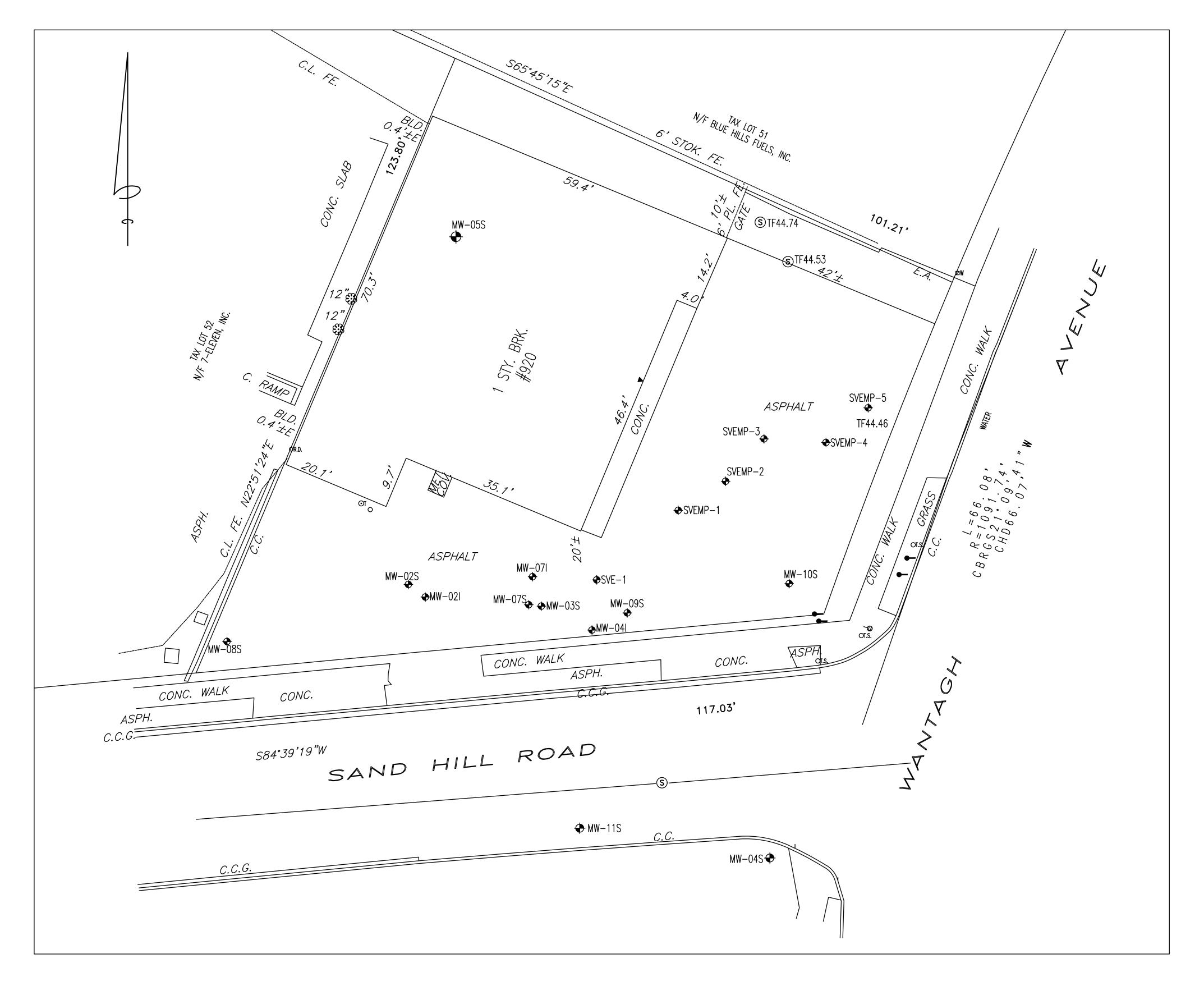
1.0 INTRODUCTION

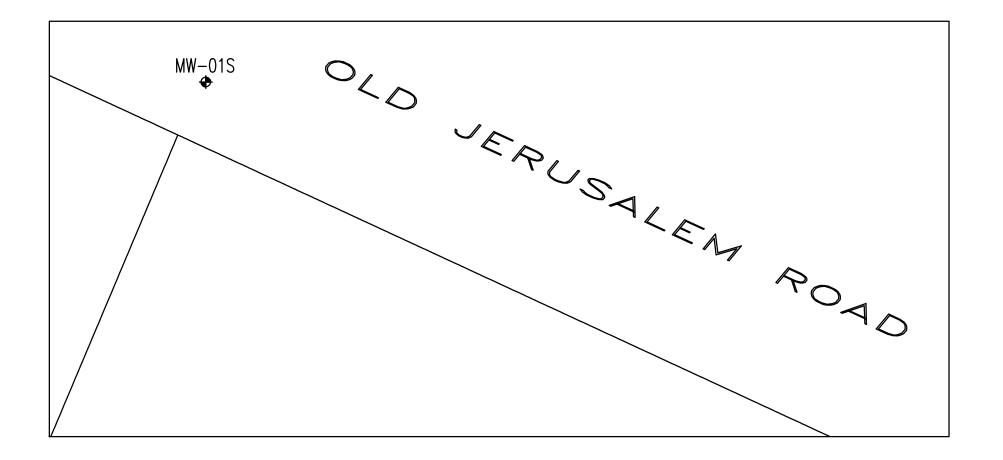
In accordance with the New York State Department of Environmental Conservation (NYSDEC) approved Scope of Work dated July 19, 2018, D&B Engineers and Architects, P.C. (D&B) has been issued a Work Assignment to complete a Remedial Design (RD) for the Wantagh Cleaners OU2 Site (the Site) located in the Town of Hempstead, New York (refer to Figure 1-1). Under this RD Work Assignment D&B has been tasked to complete a Pre-Design Investigation (PDI), where field activities were completed between August 2018 and November 2018. The purpose of the PDI was to obtain current groundwater quality information at the Site and downgradient of the Site; determine if soil vapor intrusion was affecting the indoor air quality at the nearby Teacher's Pets Child Care Center (TPCCC); and, provide data for the design of a soil vapor extraction system. This Pre-Design Investigation Report presents the results, conclusions and recommendations associated with PDI and has been completed in accordance with the requirements of NYSDEC Division of Environmental Remediation's (DER) Technical Guidance for Site Investigation and Remediation, dated May 2010 (DER-10).

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Description

The Site is located at 920 Wantagh Avenue, Town of Hempstead, New York at the intersection of Wantagh Avenue and Sand Hill Road (see Figure 2-1 – Site Plan). The Site is in an area characterized by residential, and commercial land use. The topography of the Site is relatively flat with elevations ranging from approximately 43 to 45 feet above mean sea level.


920 Wantagh Avenue, identified as Nassau County Tax ID 51-374-53, is a commercial property made up of an approximately 0.22-acre rectangular shaped lot, with one approximately 3,556 square-foot square-shaped single-story brick building. The property was previously a dry cleaners; however, is currently vacant. The exterior surfaces of the Wantagh Cleaners property are covered with asphalt and concrete, and the utilities include gas, electric, water and sewer.


2.2 Site Geology and Hydrogeology

The site is underlain by the Upper Glacial Aquifer. The unsaturated zone consists of brown and black silty and coarse sand intermixed with pebbles. The saturated zone below the water table consists of brown silty sand mixed with pebbles. Based on measured groundwater elevations, the localized groundwater flow direction is in a southerly direction. Groundwater elevation data and a groundwater surface elevation contour map are provided in Appendix A.

2.3 Remedial History

The site has been the location of a dry-cleaning facility from 1974 to August of 2018. Three on-site leaching pools were used for disposing wastewater containing tetrachloroethene into subsurface soils and groundwater from 1974 to 1991. In March 1991, the facility was connected to the public sewer system as ordered by the Nassau County Department of Health (NCDH). In 1992, based upon the results of a 1991 preliminary site assessment, the on-site leaching pools were

MW-COORDINATES/ELEVATIONS (NAD83/NAVD88)
TF DENOTES TOP CASING ELEVATION
.

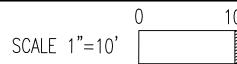
Northing(Y) Easting(X) Elev(TF) Elev(TP) Description 195260.6930 1121154.7420 44.30 43.84 MW—SVE1 195251.3830 1121153.8510 43.80 43.56 MW—04I 195248.7580 1121150.1970 43.56 MW—C 195249.9730 1121142.7160 43.61 MW-B 195256.0750 1121142.1200 43.76 43.42 MW-07S 195255.8230 1121144.4600 43.77 43.41 MW-03S 1121131.6940 43.85 43.60 MW-01S 1121205.0420 44.54 44.30 MW-SVEMP-5 1121197.2480 44.58 44.25 MW-SVEMP-4 1121185.7310 44.68 44.38 MW-SVEMP-3 1121178.6660 44.62 44.46 MW-SVEMP-2 195273.6350 1121169.7690 44.76 44.58 MW_SVEMP_1 195249.2500 1121086.1050 43.17 42.85 MW_OSS

NOTE: -THIS SURVEY IS FOR MUNICIPAL PURPOSES ONLY NOT INTENDED FOR TITLE CONVEYANCE. -ELEVATIONS REFER TO NAVD88 VERTICAL DATUM -COORDINATES REFER TO NAD83 (LIZONE)

LEGEND

♦ MONITORING WELL

-UTILITIES SHOWN ARE PER FIELD OBSERVATIONS, PARTIAL MARKOUTS AND AVAILABLE RECORDS AND ARE NOT GUARANTEED. ELEVATIONS REFER NAVD88 DATUMCOORDINATES REFER TO NAD83 (LIZONE)


Source: Survey completed by American Engineering & Land Surveying P.C. on September 19, 2018.

WANTAGH CLEANERS OU2 SITE

TOWN OF HEMPSTEAD

SITE PLAN

emptied, cleaned and backfilled, and a floor drain was cleaned and filled. The NYSDEC conducted another preliminary site assessment, in 1994, that resulted in the site being listed as a Class 2 site in May 1995. A Focused Remedial Investigation was conducted from 1997 thru 1998, and an air sparge/soil vapor extraction system was installed as an interim remedial measure in 1998/1999. A no further action Record of Decision was issued in May 1999 based on the results of the interim remedial measure. The site was subsequently removed from the State Registry of Inactive Hazardous Waste Disposal Sites in 2003.

In 2009, based upon the results of a 2007 soil vapor intrusion evaluation required by the NYSDEC and New York State Department of Health's soil vapor intrusion legacy site initiative, a new operable unit was assigned to the Site which was listed as Class 2 on the registry. A Remedial Investigation was initiated to investigate soil vapor intrusion impacts. The Remedial Investigation was conducted from 2011 through 2014 and a subsequent Feasibility Study was completed in 2016. The selected remedy for the site per the March 2017 Record of Decision is air sparging/soil vapor extraction, enhanced bioremediation and vapor mitigation.

3.0 SITE INVESTIGATION

The PDI field activities were completed by D&B and its subcontractors between August 2018 and November 2018. The PDI field activities were completed in accordance with the NYSDEC approved Scope of Work, dated July 19, 2018, and subsequent approved modifications during the implementation of the field activities. The following activities were performed:

- Mobilization
- Geophysical Survey
- On-site Groundwater Monitoring Well Installation
- Well Development
- Groundwater Monitoring Well Water Level Measurements and Sampling
- Off-site Discrete-Depth Groundwater Sampling
- Soil Vapor Intrusion Evaluation (TPCCC)
- Soil Vapor Extraction Pilot Test
- Site Survey
- Investigation Derived Waste Management

The scope of completed field activities and methods are discussed below. Sample locations are depicted on Figure 2-1 (above) which includes the locations of all groundwater monitoring well samples, Figure 3-1 which includes the locations of all off-site discrete depth groundwater samples and Figure 3-2 which includes the locations of all vapor samples collected at the TPCCC. Due to field conditions and/or the presence of underground utilities, modifications to the scope of work were necessary, including the relocation of several sample locations. All such modifications were approved in advance of the PDI field activities by NYSDEC and are discussed below in the appropriate sections.

MAP SOURCE: GOOGLE EARTH

WANTAGH CLEANERS OU2 SITE TOWN OF HEMPSTEAD

SCALE: 1"=40'

TEACHER'S PET CHILD CARE CENTER SAMPLE LOCATION MAP **NOVEMBER 19, 2018**

FIGURE 3-2

3.1 Site Investigation Field Activities

Mobilization

The following permits, approvals, and/or notifications were obtained or completed by either D&B, D&B's subcontractor, or NYSDEC as part of the project:

- New York State Parks, Recreation and Historical Preservation Parkway Use Permit.
- New York State Department of Transportation Highway Work Permit
- Town of Hempstead Department of Highways Right of Way Permits
- New York 811 and Non-member Utility Companies, Utility Mark-out Request

Geophysical Survey

Prior to undertaking any intrusive activities, a geophysical survey was completed by Utility Detection Inc. to: 1) verify the locations of known underground utilities that were identified by New York 811 and non-member utility companies; 2) identify and mark the location of any unknown/unmarked utilities or subsurface structures; and, 3) clear each proposed subsurface sampling location prior to drilling. The geophysical survey was performed using non-intrusive locating techniques including ground penetrating radar and an electromagnetic utility locating system. All utilities and/or structures that were identified during the survey were marked on the ground using standard utility color codes. A location for each proposed subsurface sampling location, which was clear of utilities and subsurface structures and suitable for a utility clearance test pit and drilling was identified in white on the ground surface.

Groundwater Monitoring Well Installation

Seven groundwater monitoring wells (MW-05S, MW-07S, MW-07I, MW-08S, MW-09S, MW-10S and MW-11S) were installed by Aztech Environmental Technologies (Aztech) during the period from September 5, 2018 to September 14, 2018. Groundwater monitoring well MW-06S, which was proposed in the approved Scope of Work, could not be installed because a

subgrade concrete slab was encountered at this location during hand clearing activities. The monitoring well locations are depicted on Figure 2-1.

The monitoring wells were installed using hollow stem auger (HSA) drilling methods to depths ranging from approximately 17.63 to 59.10 feet below ground surface (bgs). The wells were installed using a direct-push drill rig capable of turning 4.25-inch inner diameter HSAs. Each well was constructed utilizing 2-inch diameter (I.D.) Schedule 40 polyvinyl chloride (PVC) riser and 10 feet of 0.010-inch slotted well screen. A No.1 well sand pack was placed around each well screen. A bentonite seal was placed above the sand pack followed by the installation of a cement/bentonite grout to grade. Protective, flush-to-grade casings with locking covers were installed at each well location. Monitoring well construction logs were generated and are provided in Appendix B. A summary of the depth of each newly installed monitoring well and construction details are presented below in Table 3-1.

Table 3-1: Monitoring Well Construction Summary

Well ID	Depth of Well (Feet bgs)	Depth of Screened Interval (Feet bgs)	Well Inner Diameter (inches)	Protective Casing Elev. (U.S. Survey Feet)	(U.S. Survey	Screened Interval Elev. (U.S. Survey Feet)	Northing (U.S. Survey Feet)	Easting (U.S. Survey Feet)
MW-05S	17.63	7.63 - 17.63	2.0	45.51	45.26	37.63 - 27.63	195324.35	1121128.587
MW-07S	19.10	9.10 – 19.10	2.0	43.76	43.42	34.32 – 24.32	195256.075	1121142.12
MW-07I	59.10	49.10 – 59.10	2.0	44.03	43.75	(-5.35) – (-15.35)	195261.277	1121142.819
MW-08S	17.68	7.68 – 17.68	2.0	43.17	42.85	35.17 – 25.17	195249.25	1121086.105
MW-09S	18.81	8.81 - 18.81	2.0	44.07	43.80	34.99 – 24.99	195254.572	1121160.405
MW-10S	18.46	8.46 – 18.46	2.0	44.46	44.20	35.74 – 25.74	195260.003	1121190.472
MW-11S	18.65	8.65 – 18.65	2.0	43.47	43.14	34.49 – 24.49	195214.601	1121151.585

Notes:

ID: Identification

bgs: below ground surface

Elev.: Elevation U.S.: United States

PVC: Polyvinyl chloride

Vertical Datum: North American Vertical Datum 88 Horizontal Datum: North American Datum of 1983 (NAD83)

Well Development

Following installation, the groundwater monitoring wells were developed on September 18, 2018 and September 19, 2018 to remove foreign materials introduced during drilling and to facilitate hydraulic communication between the formation and the well. Standard surging and pumping techniques were used to develop the wells. Well development water was monitored for turbidity during purging using a water quality meter and readings were recorded. Development was considered complete when either the turbidity of the purge water was below 50 nephelometric turbidity units (NTUs), the well purged dry, or 10 well volumes were removed. Monitoring well development logs were generated and are provided in Appendix B.

Groundwater Monitoring Well Water Level Measurements and Sampling

Over the course of the PDI, water levels were measured at the newly installed monitoring wells. Depth to water measurements and topographic survey data were used to calculate groundwater elevations and to prepare a groundwater elevation contour map. Groundwater level measurements and a groundwater contour map are provided in Appendix A. Based on groundwater elevation measurements, the groundwater flow direction on-site was to the south at the time of PDI field investigation.

Groundwater samples were collected from the seven newly installed monitoring wells and six existing monitoring wells using low-flow sampling methodologies on September 24, 2018, September 26, 2018 and October 30, 2018. PID headspace readings were measured at each location prior to groundwater sample collection. In addition, the depth to water was measured from the surveyed referenced mark using an electronic water level indicator, which was decontaminated between locations. During purging, dissolved oxygen, oxidation/reduction potential, turbidity, temperature, conductivity, and pH were measured using a water quality meter. Monitoring well sampling logs were generated and are provided in Appendix B.

All collected groundwater samples were analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs) +10 by USEPA Method 8260. Additionally, seven samples

(MW-05S, MW-07S, MW-07I, MW-08S, MW-09S, MW-10S and MW-11S) were analyzed for 1,4-Dioxane by USEPA Method 8270 SIM, and Per- and Poly-Fluorinated Alkyl Substances (PFAS) by USEPA Method 537 Modified. Monitoring well groundwater sample analytical results are described in Section 4.2 and analytical data summary tables are provided in Appendix C.

Off-Site Discrete-Depth Groundwater Sampling

Thirteen discrete-depth groundwater sample locations (O, QR, U, YY, XX, EEE, III, RRR, SSS, DT1G, DT1F, DT2C and DT2E) were installed and associated groundwater samples were collected during the period from September 12, 2018 to September 25, 2018. A discrete-depth groundwater sample was not collected at sample location U at a depth of 15 ft. bgs. due insufficient yield at that depth interval, which was proposed in the approved Scope of Work. The discrete-depth groundwater probe sample locations are depicted on Figure 3-1.

The discrete-depth groundwater samples were collected utilizing a direct-push drill rig to advance a SP-16 groundwater sampler and the samples were analyzed for TCL VOCs+10 by USEPA Method 8260. Each discrete-depth groundwater sample location/interval was purged of approximately two gallons to attempt to reduce turbidity of recovered groundwater. During purging, dissolved oxygen, oxidation/reduction potential, turbidity, temperature, conductivity, and pH were measured using a water quality meter. Groundwater sampling logs were generated and are provided in Appendix B. The sample collection depth intervals at the discrete-depth groundwater sampling locations are summarized in Table 3-2 below. Discrete-depth groundwater sample analytical results are described in Section 4.2 and analytical data summary tables are provided in Appendix C.

Table 3-2: Discrete-Depth Groundwater Sample Collection Depths

Sample Location	0	QR	U	YY	XX	EEE	III
Sample Depth Intervals (Feet BGS)	15, 20, 25	15, 20, 25	20, 25	20, 25, 30	65, 75, 85	25, 35, 45, 55, 65, 75	25, 35, 45, 55, 65, 75, 85, 95

Table 3-2: Discrete-Depth Groundwater Sample Collection Depths (continued)

Sample Location	RRR	SSS	DT1G	DT1F	DT2C	DT2E
Sample Depth Intervals (Feet BGS)	35, 45, 55, 65	55, 65, 75, 85, 95	75, 85, 95	45, 55, 65		15, 25, 35, 45, 55, 65, 75, 85

Soil Vapor Intrusion Evaluation (TPCCC)

Two sub-slab soil vapor samples (SV-1 and SV-2) were collected within the Teacher's Pets Child Care Center, five indoor air samples were also collected within the Center (Basement, Office, C-1, C-2 and C-3), and one outdoor ambient air sample was collected (Outside). Sub-slab soil vapor, indoor air and outdoor ambient air samples were collected to evaluate the potential for soil vapor intrusion at the property, and to evaluate the potential for exposures within the Teacher's Pets Child Care Center building. The sub-slab vapor points were installed by Aztech Technologies (Aztech) on September 24, 2018, and the sub-slab soil vapor, indoor air, and outdoor ambient air samples were collected November 19, 2018. The sample locations are presented on Figure 3-2.

Prior to installation of the sub-slab vapor points the building floor was inspected for any penetrations. The sub-slab soil vapor point locations were chosen to ensure minimal potential for ambient air infiltration via floor penetrations. The concrete slab was cored at each sub-slab sample location. The sub-slab vapor points were constructed to approximately 1.5 feet below grade, using stainless steel screens and polyethylene tubing. The point screens were approximately 6-inches long and constructed of double-woven stainless-steel wire. Washed sand was placed around the screened portion of each vapor point extending from the bottom of the borehole to approximately 2-inches above the screen followed by a bentonite seal.

After construction each vapor point was purged using a low-flow sample pump to evacuate 3 volumes of soil vapor. A PID was utilized to record volatile organic compound (VOC) concentrations from the soil vapor probes in ppb. Helium was used as a tracer gas to ensure that an adequate surface seal was created during construction. Flush mount protective casings with locking covers were installed at the sub-slab vapor point locations. Construction logs for the sub-

slab soil vapor points are provided in Appendix B.

Prior to performing the sampling, an indoor air quality questionnaire and building inventory was completed by D&B to evaluate the type of structure, floor layout and physical conditions of the building, as well as identify and minimize conditions that may have affected or interfered with testing. A parts per billion (ppb) range PID was used to evaluate potential interferences. The indoor air quality questionnaire and building inventory are provided in Appendix D.

During sampling the sub-slab vapor points were connected through tubing to a laboratory supplied batch certified clean 6-liter SUMMA canister, fitted with laboratory calibrated low-flow regulators that were set to collect the sample over a 8-hour period with the regulator calibrated at a flow rate that did not exceed 0.2 liters per minute. The soil vapor points were purged using a low-flow sample pump to evacuate 3 volumes of soil vapor. A PID was utilized to record VOC concentrations from the soil vapor probes in ppb at the start and end of sample collection. Helium was used as a tracer gas to ensure that an adequate surface seal was created during sampling.

The indoor air samples were collected utilizing batch certified clean 6-liter SUMMA canisters fitted with laboratory calibrated low-flow regulators. The samples were collected over a 8-hour period with the regulator calibrated at a flow rate that did not exceed 0.2 liters per minute. The canisters were placed at a height of approximately 3 feet above the floor.

The outdoor ambient air sample was collected over a 8-hour period during sub-slab soil vapor and indoor air sampling activities. The ambient air sample was collected in an observed upwind direction. The ambient air sample was screened with a calibrated ppb range PID, and readings were recorded prior to sampling. The ambient air sample was collected utilizing batch certified clean 6-liter SUMMA canister with a laboratory calibrated low-flow regulator over a 8-hour period with the regulator calibrated at a flow rate that did not exceed 0.2 liters per minute. The canister was placed in a secure location at a height of approximately 3 feet above the ground surface.

Sub-slab soil vapor, indoor air, and outdoor ambient air samples were collected for laboratory analysis of VOCs via USEPA Method TO-15. Analytical results are described in Section 4.3 and analytical data summary tables are provided in Appendix C.

Soil Vapor Extraction Pilot Test

The on-site soil vapor extraction (SVE) pilot test was conducted to gather information necessary for designing a SVE system to address remaining soil contamination at the Site, as well as provide vapor mitigation for the one on-site structure. The SVE pilot test included the installation of a SVE well (SVE-1) along with a network of five (5) permanent monitoring points (SVEMP-1 through SVEMP-5) and a network of five (5) temporary sub-slab monitoring points (SSMP-1 through SSMP-5), to determine radius of influence (ROI), as well as wellhead pressures and flowrates required to provide air distribution within the unsaturated zone.

The SVE well was installed by Aztech using a direct-push drill rig capable of turning 6.25-inch inner diameter HSAs. The SVE well was constructed utilizing 4-inch diameter (I.D.) Schedule 40 PVC riser and 7 feet of 0.020-inch slotted well screen located from 3 to 10-feet bgs. A No. 2 well gravel pack was placed around the well screen. A bentonite seal was placed above the sand pack followed by the installation of a cement/bentonite grout to grade.

The permanent monitoring points were installed by Aztech using a direct-push drill rig capable turning 4.25-inch inner diameter HSAs. The monitoring points were constructed using one-inch diameter Schedule 40 PVC riser and 7-foot of 0.010-inch slotted well screen located from 3 to 10-feet bgs. A No. 1 well gravel pack was placed around the well screen. A bentonite seal was placed above the sand pack followed by the installation of a bentonite powder to grade. All five temporary sub-slab monitoring points were installed by Clean Globe Environmental, LLC (Clean Globe) to below the concrete slab within the on-site building using a concrete hammer drill, polyethylene tubing and a bentonite seal. Flush-mount protective casings with locking covers were installed at the SVE well and permanent monitoring point locations. The Site Plan depicts locations of the SVE well and the permanent monitoring point locations. Appendix B includes construction logs for the SVE well and permanent monitoring points.

Upon successful installation of the SVE well and monitoring points, a series of pilot tests were conducted utilizing a portable regenerative blower to induce negative pressure at the SVE well at various flow rates (20 cubic feet per minute (CFM), 40 CFM, 60 CFM and 80 CFM) to establish effective SVE radius of influence. Immediately prior to conducting the SVE pilot test, subsurface pressure measurements and headspace total organic vapor readings were collected from the network of five (5) newly installed permanent monitoring points (SVEMP-1 through SVEMP-5) and five (5) temporary vapor points (VP-1 through VP-5) to establish baseline conditions at the Site. The network of existing monitoring wells were also utilized during the test to collect periodic pressure influence readings.

The SVE pilot study was conducted on September 30, 2018 by Clean Globe utilizing various flow rates and operating pressures as described above. Each series of pilot testing activities (total of 4 different flow rates) was conducted for approximately one hour and until pressure influence readings stabilized within 10 percent of each other for three successive readings. As part of these efforts, a soil vapor sample was collected and analyzed for VOCs via EPA Method TO-15 at the SVE well to determine requirements for exhaust gas treatment based on contaminant loading rates observed during the testing. The results of the pilot test with associated analytical results are described in Section 4.4 and analytical data summary tables are provided in Appendix C.

Site Survey

On September 25, 2018, October 1, 2018 and October 6, 2018, American Engineering & Land Surveying, P.C. (American), a New York State licensed surveyor, performed a physical features and property boundary survey that included identifying the locations and elevations (top of outer protective steel casing, top of inner PVC casing, and ground surface) of the newly installed monitoring wells, existing monitoring wells, newly installed SVE well and for the new permanent monitoring points. A copy of the Site survey is presented in Appendix E.

<u>Investigation Derived Waste Management</u>

Investigation Derived Waste (IDW) generated during the PDI activities included decontamination fluid, used personal protective equipment (PPE), used disposable sampling equipment, well purge and development water, and soil cuttings. All IDW was containerized in DOT-approved 55-gallon drums. The drums are currently staged on-site and will be removed from the Site pending waste characterization sampling.

3.2 Field Procedures, Analytical Methods, and Quality Assurance

All investigation and sampling activities were performed in accordance with D&B's Generic Field Activities Plan (FAP) and Generic Quality Assurance Project Plan (QAPP), which have been approved for use on D&B's Standby Contract for Engineering Services with the NYSDEC. The FAP is dated February 2013 and the QAPP is dated April 2011.

Quality control (QC) samples included matrix spike (MS) and matrix spike duplicates (MSD) and trip blanks. Matrix spike and matrix spike duplicates were collected at a minimum frequency of one per twenty samples and analyzed for the same analytes as the environmental samples. Trip blanks were supplied with each shipment of sample containers for water samples. Trip blanks were analyzed for VOCs only. Additionally, an equipment blank was collected associated with the PFAS sampling.

All samples were submitted to Test America, a NYSDOH ELAP certified laboratory, for analysis. Test America performed the analysis in accordance with the latest edition of the NYSDEC Analytical Services Protocol and provided 8 NYSDEC Category B laboratory deliverables packages. A Data Usability Summary Report was prepared for the packages and is discussed in Section 4.5. Data validation checklists are provided in Appendix F.

4.0 DISCUSSION OF RESULTS

This section presents a detailed discussion of the results. Analytical results summary tables are provided in Appendix C.

4.1 Applicable Regulatory Standards

The groundwater sample results were compared to standards, criteria and guidelines (SCGs) selected for the Site to determine the significance of the analytical data. The groundwater data was compared to Class GA groundwater standards and guidance values as defined in the NYSDEC June 1998 Division of Water Technical and Operational Guidance Series (1.1.1) - Ambient Water Quality Standards, Criteria and Guidance (SCG) Values. Air sample data, including sub-slab soil vapor, indoor air, and outdoor ambient air data was compared to the NYSDOH May 2017 Updates to Soil Vapor / Indoor Air Decision Matrices, as well as NYSDOH air guideline values.

4.2 Groundwater Samples

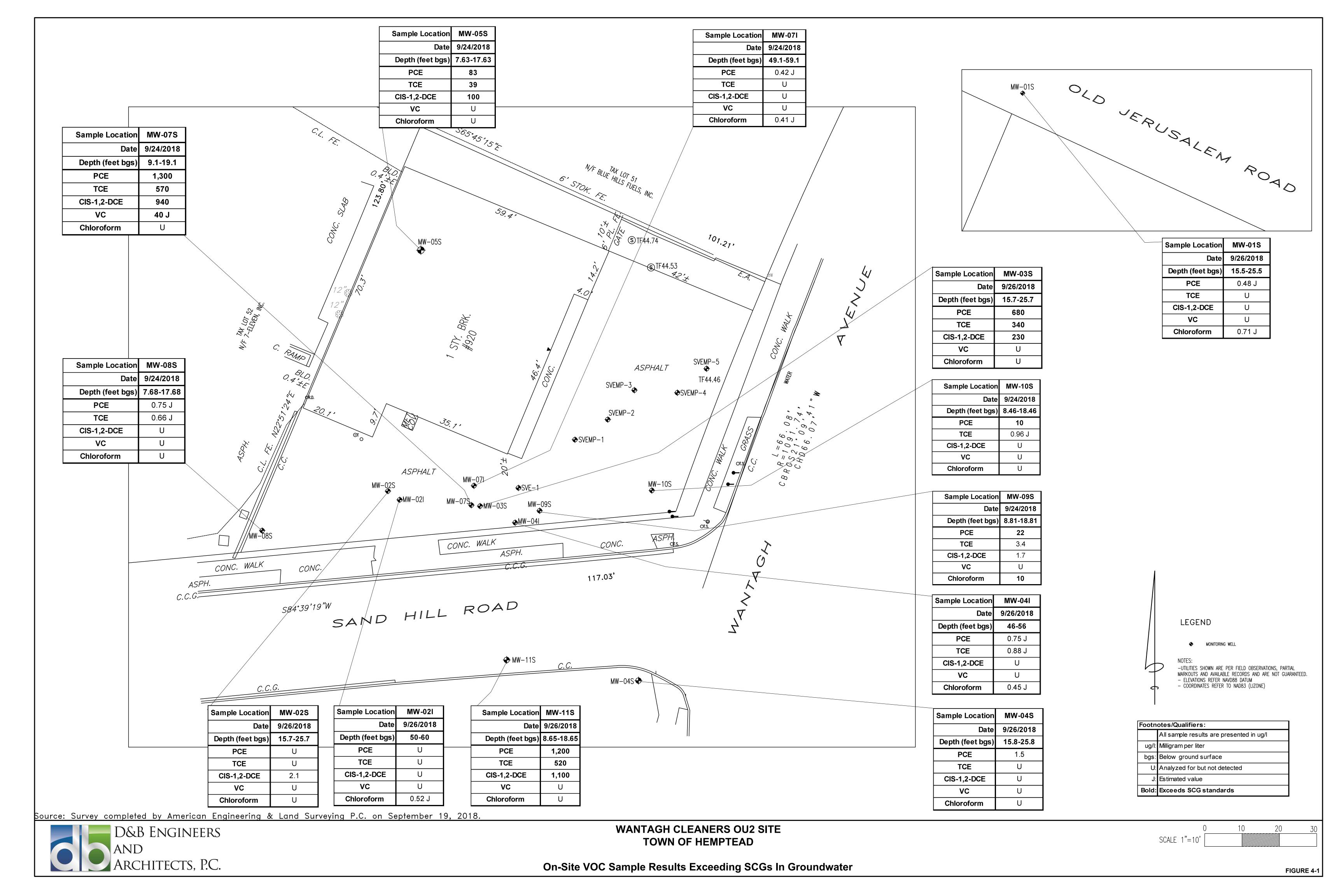
Groundwater samples were collected from the seven newly installed monitoring wells (MW-05S, MW-07S, MW-07I, MW-08S, MW-09S, MW-10S and MW-11S), as well as the six existing monitoring wells (MW-01S, MW-02S, MW-02I, MW-03S, MW-04S and MW-04I) and from thirteen offsite discrete depth groundwater probe locations (O, QR, U, YY, XX, EEE, III, RRR, SSS, DT1G, DT1F, DT2C and DT2E). The groundwater samples collected from the newly installed monitoring wells were analyzed for TCL VOCs+10, 1,4-Dioxane and PFAS and the existing monitoring wells were analyzed for TCL VOCs+10, only. The discrete depth groundwater probe samples were analyzed for TCL VOCs+10.

Groundwater Monitoring Well Samples

Groundwater monitoring well samples were collected from depths ranging from 17.63 to 59.10 feet bgs. The groundwater data was compared to Class GA SCG values. Compounds

detected in the groundwater monitoring well samples above SCGs are summarized in Table 4-1 below and analytical data summary tables are provided in Appendix C. Figure 4-1 summarizes VOC exceedances of SCGs in on-site groundwater. Figure 4-2 and Figure 4-3 summarize concentrations of PFAS and 1,4-Dioxane detected in on-site groundwater, respectively.

Table 4-1: Groundwater Monitoring Well Sample Results Exceeding SCGs


Sample ID Sample Depth	MW-01S 15.5-25.5	MW-02S 15.7-25.7	MW-02I 50-60	MW-03S 15.7-25.7	MW-04S 15.8-25.8	MW-04I 46-56	MW-05S 7.63-17.63	NYSDEC Class GA
Date	9/26/18	9/26/18	9/26/18	9/26/18	9/26/18	9/26/18	9/24/18	Standard or Guidance
PCE (ug/l)	0.48 J	U	U	<u>680</u>	1.5	0.75 J	<u>83</u>	5
TCE (ug/l)	U	U	U	<u>340</u>	U	0.88 J	<u>39</u>	5
Cis-1,2-DCE (ug/l)	U	2.1	U	<u>230</u>	U	U	<u>100</u>	5
VC (ug/l)	U	U	U	U	U	U	U	2
Chloroform (ug/l)	0.71 J	U	0.52 J	U	U	0.45 J	U	7
Sample ID	MW-07S	MW-07I	MATTER AGG	MANA OOC	NAME OF	N/XX/ 11C	MIXICIDEC	
Sample Depth	9.1-19.1	49.1-59.1	MW-08S 7.68-17.68	MW-09S 8.81–18.81	MW-10S 8.46-18.46	MW-11S 8.65-18.65	NYSDEC Class GA	
-		1.1						
Sample Depth	9.1-19.1	49.1-59.1	7.68-17.68	8.81–18.81	8.46-18.46	8.65-18.65	Class GA Standard or	
Sample Depth Date	9.1-19.1 9/24/18	49.1-59.1 9/24/18	7.68-17.68 9/24/18	8.81–18.81 9/24/18	8.46-18.46 9/24/18	8.65-18.65 9/26/18	Class GA Standard or Guidance	
Sample Depth Date PCE (ug/l)	9.1-19.1 9/24/18 <u>1,300</u>	49.1-59.1 9/24/18 0.42 J	7.68-17.68 9/24/18 0.75 J	8.81–18.81 9/24/18 22	8.46-18.46 9/24/18 <u>10</u>	8.65-18.65 9/26/18 <u>1,200</u>	Class GA Standard or Guidance	
Sample Depth Date PCE (ug/l) TCE (ug/l)	9.1-19.1 9/24/18 1,300 570	49.1-59.1 9/24/18 0.42 J U	7.68-17.68 9/24/18 0.75 J 0.66 J	8.81–18.81 9/24/18 22 3.4	8.46-18.46 9/24/18 <u>10</u> 0.96 J	8.65-18.65 9/26/18 1,200 520	Class GA Standard or Guidance 5	

Notes:

ug/l: Micrograms per liter U: Analyzed for but not detected

J: Estimated Value **Bold**: Exceeds SCG

As shown above, PCE was detected in eleven of the thirteen groundwater monitoring well samples and six of the samples exhibited PCE concentrations above its respective NYSDEC Class GA groundwater standard. TCE was detected in eight of the thirteen groundwater monitoring well samples and four of the samples exhibited TCE concentrations above its respective NYSDEC Class GA groundwater standard. Cis-1,2-DCE was detected in six of the thirteen groundwater monitoring well samples and four of the samples exhibited cis-1,2-DCE concentrations above its respective NYSDEC Class GA groundwater standard. VC was detected in one of the thirteen groundwater monitoring well samples and was at a concentration above its respective NYSDEC Class GA groundwater standard. Chloroform was detected in five of the thirteen groundwater monitoring well samples and one of the samples exhibited chloroform concentrations above its respective NYSDEC

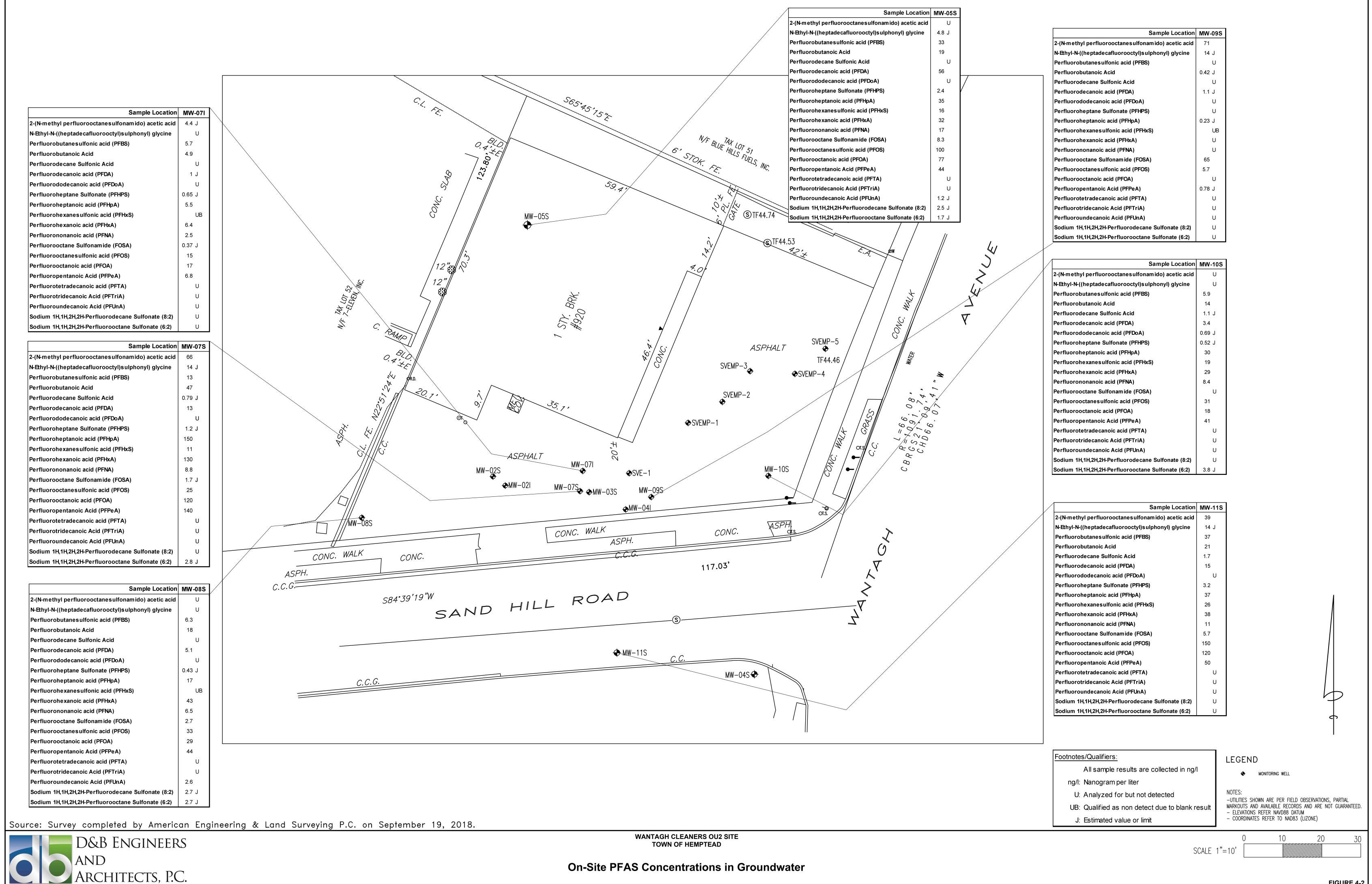
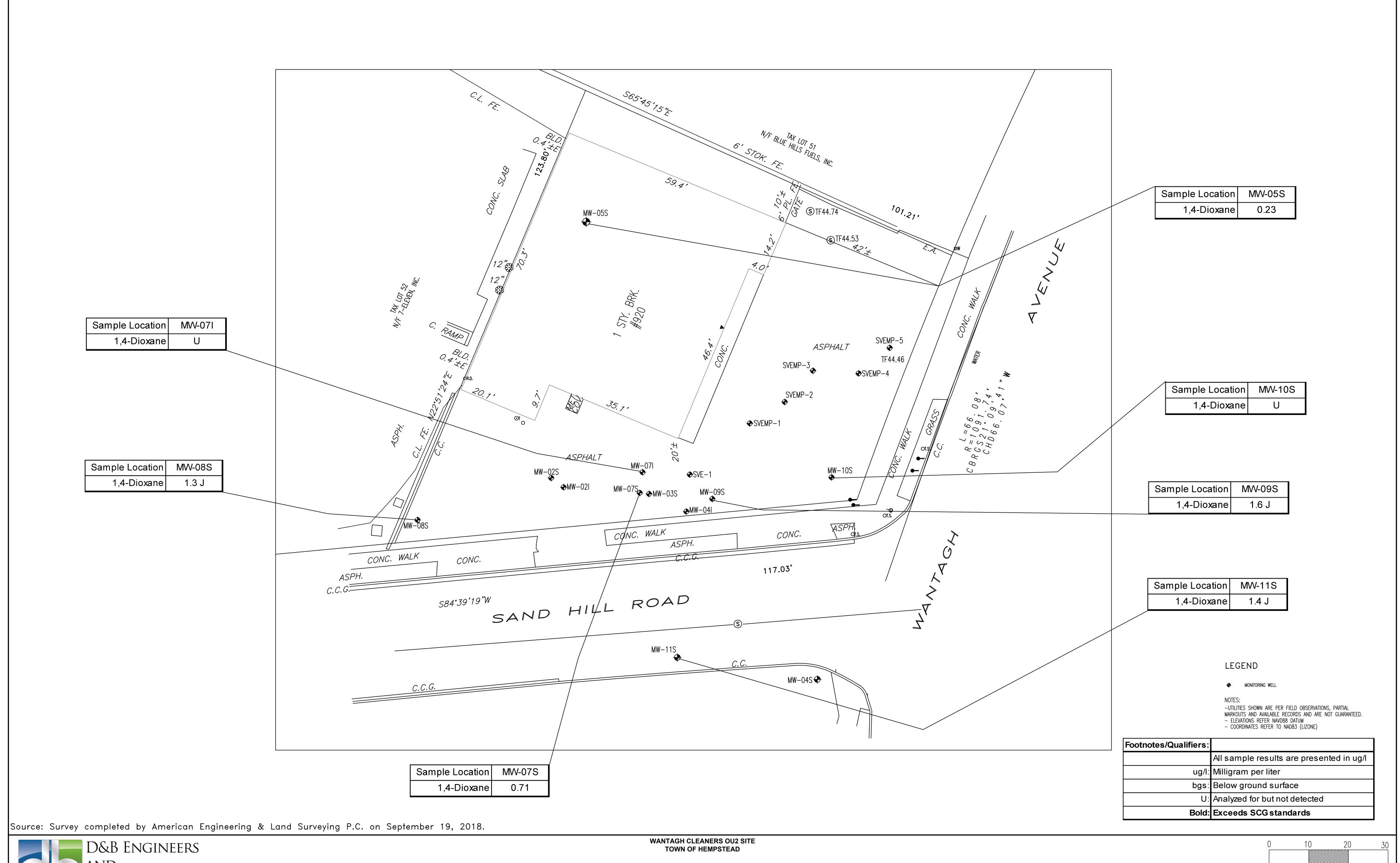



FIGURE 4-2

ARCHITECTS, P.C.

On-site 1,4-Dioxane Concentrations in Groundwater

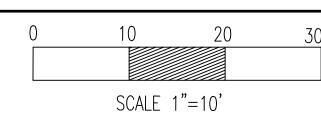


FIGURE 4-3

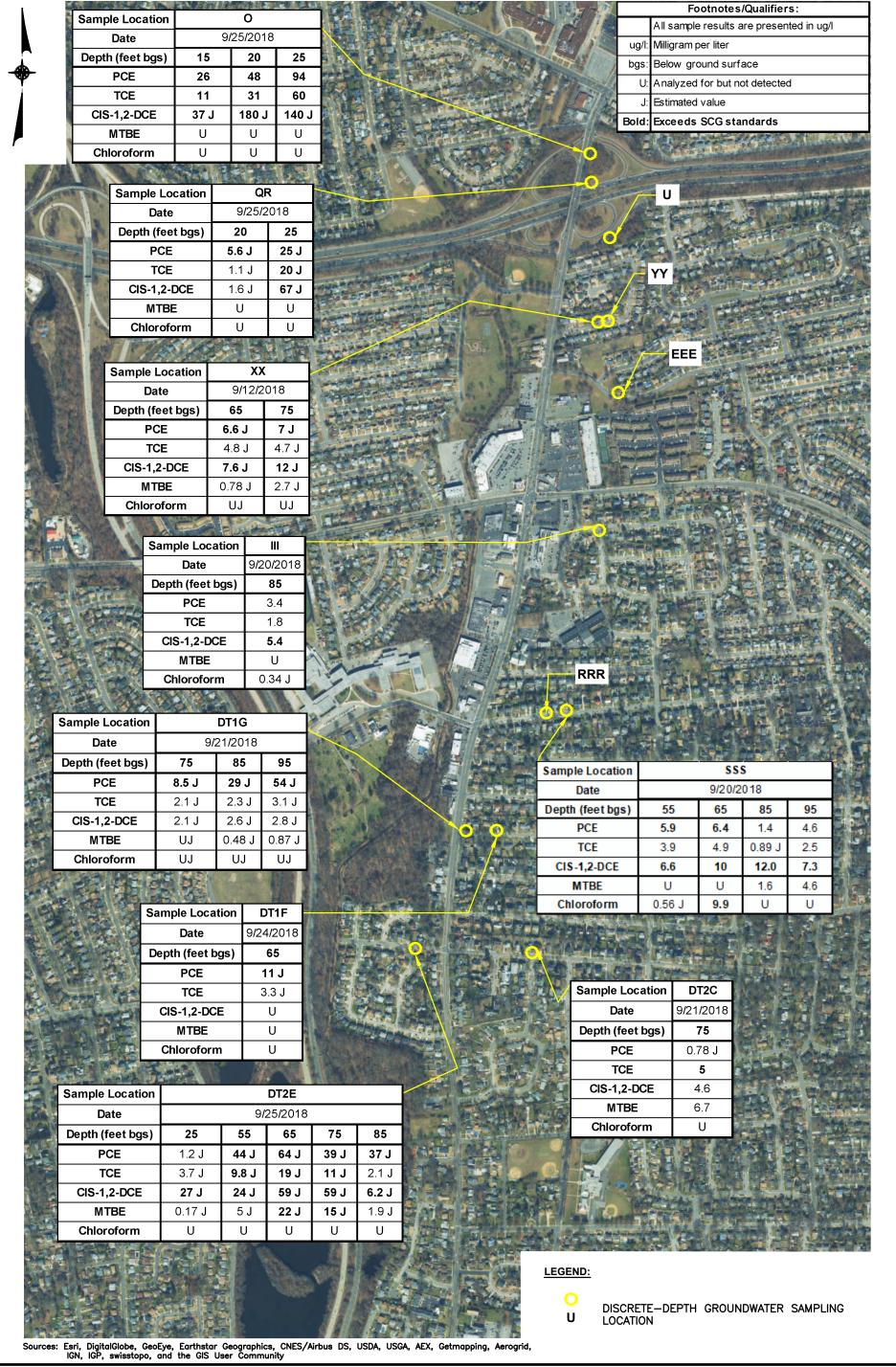
Class GA groundwater standard. Concentrations of PCE ranged from not detected to a high of 1,300 ug/l. Concentrations of TCE ranged from not detected to a high of 570 ug/l. Concentrations of cis-1,2-DCE ranged from not detected to a high of 1,100 ug/l. VC ranged from not detected to a high of 40 ug/l and chloroform ranged from not detected to a high of 10 ug/l. Per and poly fluorinated alkyl substances (PFAS) were detected in all seven groundwater samples analyzed for these compounds. Additionally, 1,4-dioxane was detected in five of the seven groundwater monitoring well samples.

Offsite Discrete Depth Groundwater Samples

Discrete depth groundwater samples were collected from depths ranging from 15 to 95 feet bgs with samples collected from various discrete depth intervals at locations (O, QR, U, YY, XX, EEE, III, RRR, SSS, DT1G, DT1F, DT2C and DT2E). The groundwater data was compared to Class GA groundwater standards and guidance values. Compounds detected in the discrete depth groundwater samples in exceedance of SCGs are summarized in Table 4-2 below. Figure 4-4 summarizes exceedances of SCGs in groundwater at the offsite discrete depth groundwater probe locations.

Table 4-2: Offsite Discrete Depth Groundwater Sample Results Exceeding SCGs

Sample Location	O (15)	O (20)	O (25)	QR (20)	QR (25)	NYSDEC Class GA
Date	9/25/18	9/25/18	9/25/18	9/25/18	9/25/18	Standard or Guidance
Cis-1,2-DCE (ug/l)	<u>37 J</u>	<u>180 DJ</u>	<u>140 J</u>	1.6 J	<u>67 J</u>	5
PCE (ug/l)	<u> 26 J</u>	<u>48 J</u>	94 J	<u>5.6 J</u>	<u>25 J</u>	5
TCE (ug/l)	<u>11 J</u>	<u>31 J</u>	<u>60 J</u>	1.1 J	<u>20 J</u>	5
MTBE (ug/l)	U	U	U	U	U	10
Chloroform (ug/l)	U	U	U	U	U	7
Sample Location	XX (65)	<u>XX (75)</u>	<u>SSS (55)</u>	SSS (65)	<u>SSS (85)</u>	NYSDEC Class GA
Sample Location Date	XX (65) 9/12/18	XX (75) 9/12/18	SSS (55) 9/20/18	SSS (65) 9/20/18	SSS (85) 9/20/18	
-						Class GA Standard or
Date	9/12/18	9/12/18	9/20/18	9/20/18	9/20/18	Class GA Standard or Guidance
Date Cis-1,2-DCE (ug/l)	9/12/18 7.6 J	9/12/18 12 J	<u>9/20/18</u> <u>6.6</u>	9/20/18 10	9/20/18 12	Class GA Standard or Guidance
Date Cis-1,2-DCE (ug/l) PCE (ug/l)	9/12/18 7.6 J 6.6 J	9/12/18 12 J 7 J	9/20/18 6.6 5.9	9/20/18 10 6.4	9/20/18 12 1.4	Class GA Standard or Guidance 5


Table 4-2: Offsite Discrete Depth Groundwater Sample Results Exceeding SCGs (continued)

Sample Location	<u>SSS (95)</u>	<u>III (85)</u>	<u>DT1G (75)</u>	<u>DT1G (85)</u>	NYSDEC Class GA
Date	<u>9/20/18</u>	<u>9/20/18</u>	<u>9/21/18</u>	<u>9/21/18</u>	Standard or Guidance
Cis-1,2-DCE (ug/l)	<u>7.3</u>	<u>5.4</u>	2.1 J	2.6 J	5
PCE (ug/l)	4.6	3.4	<u>8.5 J</u>	<u>29 J</u>	5
TCE (ug/l)	2.5	1.8	2.1 J	2.3 J	5
MTBE (ug/l)	4.6	U	UJ	0.48 J	10
Chloroform (ug/l)	U	0.34 J	UJ	UJ	7
Sample Location	<u>DT1G (95)</u>	<u>DT1F (65)</u>	<u>DT2E (25)</u>	<u>DT2E (55)</u>	NYSDEC Class GA
Date	<u>9/21/18</u>	<u>9/24/18</u>	<u>9/25/18</u>	<u>9/25/18</u>	Standard or Guidance
Cis-1,2-DCE (ug/l)	2.8 J	U	<u>27 J</u>	<u>24 J</u>	5
PCE (ug/l)	<u>54 J</u>	<u>11 J</u>	1.2 J	<u>44 J</u>	5
TCE (ug/l)	3.1 J	3.3 J	3.7 J	<u>9.8 J</u>	5
MTBE (ug/l)	0.87 J	U	0.17 J	5 J	10
Chloroform (ug/l)	UJ	U	U	U	7
Sample Location	<u>DT2E (65)</u>	<u>DT2E (75)</u>	<u>DT2E (85)</u>	NYSDEC Class GA	
Date	9/25/18	9/25/18	<u>9/25/18</u>	Standard or Guidance	
Cis-1,2-DCE (ug/l)	<u>59 J</u>	<u>59 J</u>	<u>6.2 J</u>	5	
PCE (ug/l)	<u>64 J</u>	<u>39 J</u>	<u>37 J</u>	5	
TCE (ug/l)	<u>19 J</u>	<u>11 J</u>	2.1 J	5	
MTBE (ug/l)	<u>22 J</u>	<u>15 J</u>	1.9 J	10	
Chloroform (ug/l)	U	U	U	7	

^{(15):} Indicates sample depth in feet bgs ug/l: Micrograms per liter
U: Analyzed for but not detected
J: Estimated Value

Bold: Exceeds SCG

150-40\Dwg\Concentration maps\3150-40A-Figure-Discrete-SCG Exceedances.dwg, Layout1, 3/29/2019 7:04:25

As shown in Table 4-2 and Figure 4-4, seventeen of the fifty-four samples collected exhibited concentrations of PCE above its NYSDEC Class GA SCG. Additionally, seven of the fifty-four samples collected exhibited the presence of TCE at concentrations above its Class GA SCG. Sixteen samples collected exhibited the presence of cis-1,2-dichloroethylene exceeding its Class GA SCG. Two samples collected exhibited the presence of MTBE exceeding its Class GA SCG. One sample collected exhibited the presence of chloroform exceeding its Class GA SCG.

Concentrations of PCE ranged from not detected to a high of 94 ug/l. Concentrations of TCE ranged from not detected to a high of 60 ug/l. Concentrations of cis-1,2-DCE ranged from not detected to a high of 180 ug/l. Concentrations of MTBE ranged from not detected to a high of 22 ug/l. Concentrations of chloroform ranged from not detected to a high of 9.9 ug/l.

4.3 Soil Vapor Intrusion Evaluation (TPCCC)

A total of eight air samples were collected for volatile organic compound (VOC) analysis, including: two sub-slab soil vapor samples (SV-1 and SV-2), five indoor air samples (Basement, C-1, C-2, C-3 and Office), and one outdoor ambient air sample (Outside) at the Teacher's Pets Child Care Center. Sub-slab soil vapor, indoor air, and outdoor ambient air samples were analyzed for VOCs via USEPA Method TO-15. Analytical data summary tables are provided in Appendix C and Figure 3-2 depicts the locations of the samples collected.

Several VOCs were detected in all air samples collected. The concentrations of VOCs detected were fairly uniform throughout all the samples. Indoor air and sub-slab soil vapor samples were compared to the decision matrices and air guideline values provided by the NYSDOH. No VOC compounds from the NYSDOH Soil Vapor/Indoor Air Matrices A through C were detected at concentrations that would require additional actions to address human exposures. Additionally, no VOC compounds were detected at concentrations exceeding their respective air guideline values.

4.4 Soil Vapor Extraction Pilot Test

The objective of the SVE pilot test was to gather information necessary to design a SVE system to address remaining soil contamination at the Site, as well as to provide for vapor mitigation at the one on-site structure. A series of pilot tests were conducted utilizing a portable regenerative blower to induce negative pressure at the SVE well at various flow rates (20 CFM, 40 CFM, 60 CFM, and 80 CFM) to establish effective SVE radius of influence.

Vacuum response measurements were collected at approximately 15 minute intervals throughout the pilot test from the five permanent soil vapor monitoring points (SVEMP-1 through SVEMP-5), five temporary sub-slab vapor points (VP-1 through VP-5) and seven on-site groundwater monitoring wells (MW-02S, MW-03S, MW-05S, MW-07S, MW-08S, MW-09S and MW-10S) which range in distance from approximately 10 to 65 feet away from the SVE well. The pilot test was conducted over a period of one day utilizing various flow rates and operating pressures as described above. A summary of the vacuum response readings collected from the monitoring locations during the evaluation, corresponding to various air flow rates and vacuum applied at the wellhead is provided in Appendix G.

In general, air flow rates and vacuum responses remained relatively constant at the SVE well during each step of the evaluation. Upon reviewing the vacuum response data set it was determined the limited vacuum response observed at the sub-slab vapor points would not be effective for vapor mitigation at the on-site structure by utilizing surrounding SVE wells; therefore, further evaluation of this data is not provided. Additionally, as the vacuum response was much more evenly distributed at the soil vapor monitoring points compared to the groundwater monitoring wells, the monitoring point data only was utilized for the analysis presented below.

The ROI for each flow rate was calculated by plotting the measured vacuum response in each soil vapor monitoring point and the distance from the SVE well to the soil vapor monitoring points on a semi-log graph. The distance from the SVE well to the soil vapor monitoring points was placed on the logarithmic scale and the measured vacuum response was placed on the arithmetic scale for each flow rate. A best-fit line was placed on each graph. The distance where

the vacuum response was -0.1 inches of water was considered to be within the zone of influence. ROI graphs are presented as Appendix G. Based on the test data, the approximate ROI for the SVE well was 7 feet for the 20 SCFM test, 27 feet for the 40 SCFM test, 35 feet for the 60 SCFM test and 43 feet for the 80 SCFM test.

The analytical results from the vapor sample collected during the 40 SCFM test indicated concentrations of total volatile organic compounds (TVOCs) were 138,928 μ g/m³. Based on an average air discharge flow rate of 40 SCFM and the TVOC concentration detected in the vapor sample collected during the test, the TVOC discharge rate would be approximately 0.0208 lbs/hr. A summary of the vapor discharge results is provided in Appendix C.

4.5 Data Usability Summary Report

A total of 67 groundwater samples, 9 air/soil vapor samples, 1 field duplicate, 4 trip blanks and 1 field blank were collected for analysis as part of the remedial investigation completed at the 920 Wantagh Ave, Town of Hempstead, New York Site between September 12, 2018 and November 19, 2018. Air samples were submitted to Test America Laboratories, Inc. located in South Burlington, Vermont for analysis of Volatile Organic Compounds (VOCs) by United States Environmental Protection Agency (USEPA) method TO-15. Groundwater samples were submitted to Test America Laboratories, Inc. located in Amherst, NY, for analysis of VOCs by USEPA method 8620C; selected samples were also analyzed for 1,4-Dioxane by USEPA method 8270D SIM. In addition, seven groundwater samples were submitted to Test America Laboratories, Inc. located in Sacramento, California for analysis of Per- and Poly-Fluorinated Alkyl Substances (PFAs) by USEPA method 537.

Test America Laboratories, Inc. provided 8 NYSDEC Analytical Services Protocol (ASP) Category B Sample Deliverable Group (SDG) laboratory packages [200-45587 (air VOC data), 200-46352 (air VOC data), 320-43822 (water PFAs data), 460-168374 (water 1,4-dioxane data), 480-141888 (water VOC data), 480-142369 (water VOC data), 480-142708 (water VOC data) and 480-142747 (water VOC data)] for review. These data packages were reviewed by Ms. Donna Brown, D&B's Quality Assurance/Quality Control (QA/QC) Officer. Ms.

Brown meets the New York State Department of Environmental Conservation (NYSDEC) requirements of a data validator as listed in the DER-10 Technical Guidance for Site Investigation and Remediation, dated June 2010. The review of the data was conducted in accordance with NYSDEC 7/05 ASP QA/QC requirements, as well as DER-10.

All samples were analyzed using the proper methods and within the method-specified holding times, in accordance with the 2005 NYSDEC ASP. The internal standard area counts and spike recoveries were within QC limits except where noted below. Initial and continuing calibrations were analyzed at the method specified frequency and were within QC limits. Raw data confirmed the reported sample results. The following sample results were qualified based on validation of the data:

- Tetrachloroethene exceeded the calibration range in SVE-Effluent and was reanalyzed at a secondary dilution. The secondary dilution was reported for tetrachloroethene (D) in SVE-Effluent.
- Cis-1,2-dichloroethene exceeded the calibration range in sample O (20) and was reanalyzed at a secondary dilution. The secondary dilution was reported for cis-1,2-dichloroethene (D) in sample O (20).
- Perfluorohexanesulfonic acid (PFHxS) was detected in the Equipment Blank and method blanks. Perfluorohexanesulfonic acid (PFHxS) was qualified as non-detect (UB) in samples MW-07I, MW-08S and MW-09S. The "B" qualifier was removed from samples Blind Duplicate, MW-05S, MW-11S, MW-07S and MW-10S because the results were more than ten times that found in the blank.
- An "E" flag was generated based upon the bias corrected on the recovery of the 1,4-dioxane-d8 isotope in samples MW-08S, MW-11S and MW-09S. The "E" qualifier was removed from samples MW-08S, MW-11S and MW-09S and 1,4-dioxane was qualified as estimated (J).
- The following samples had significant headspace: XX(85), XX(75), XX(65), DT1G (95), DT1G (85), DT1G (75), DT2C (65), DT2C (55), RRR (65) and III (95). The following samples had pH greater than 2: XX(85), III (65), DT1G (85), RRR (65), RRR (55), RRR (35), III (95) and SSS (75). All VOC results were qualified as estimated (J/UJ) in samples XX(85), XX(75), XX(65), DT1G (95), DT1G (85), DT1G (75), DT2C (65), DT2C (55), RRR (65), RRR (55), RRR (35), III (95), III (65), and SSS (75).
- 2-Butanone, acetone and benzene were detected in the TRIP BLANK. The following were qualified as non-detect (UB): 2-butanone in samples RRR (65), RRR (45), RRR

- (35), III (95), III (85), III (75), III (55), III (45), III (35), SSS (95), SSS (85) and SSS (75); acetone in samples RRR (65), RRR (55), RRR (45), RRR (35), III (95), III (85), III (75), III (65), III (55), III (45), III (35), SSS (95), SSS (85), SSS (75), DT1G (95), DT1G (85), DT1G (75), DT2C (75), DT2C (65) and DT2C (55); benzene in samples RRR (65) and III (95).
- The percent recoveries (%Rs) were above the QC limits in the MS, MSD and or LCS for numerous VOCs. The following results were above the reporting limit and were qualified as estimated (J): tetrachloroethene in samples DT1F (65), DT2E (85), DT2E (75), DT2E (65), DT2E (55), DT2E (45), DT2E (25), QR (25), QR (20), QR (15), O (25), O (20) and O (15); trichloroethene in samples DT1F (65), DT2E (85), DT2E (75), DT2E (65), DT2E (55), DT2E (25), QR (20), O (25), O (20) and O (15); 1,1-dichloroethane in samples SSS (85), DT2E (85) and DT2E (75); cis-1,2-dichloroethene in samples DT2E (85), DT2E (75), DT2E (65), DT2E (55), DT2E (25), QR (25), QR (20), O (25), O (20) and O (15); methyl tert-butyl ether in samples DT2E (85), DT2E (75), DT2E (65) and DT2E (55); trans-1,2-dichloroethene in samples QR (25) and O (20); and vinyl chloride in samples O (20) and MW-07S.

Based on the findings of the data validation process, the results have been deemed valid and usable for environmental assessment purposes. Copies of the data validation checklists are provided in Appendix F.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The following conclusions are based on the finding of this investigation/evaluation performed at the Site.

- Monitoring Well Groundwater Samples: Monitoring well groundwater samples detected PCE exceeding NYSDEC Class GA SCG values at six of the thirteen groundwater sample locations and TCE exceeding NYSDEC Class GA SCG values at four of the thirteen sample locations. Cis-1,2-dichloroethylene was detected exceeding SCGs in four monitoring well groundwater samples and VC was detected exceeding SCGs in one monitoring well sample. Additionally, chloroform was detected exceeding SCGs in one monitoring well sample. The highest concentrations of VOCs were detected in shallow groundwater, within the vicinity of a former dry well and hydraulically downgradient of the structure within the groundwater samples collected from monitoring wells MW-03S, MW-07S and MW-11S. The elevated concentrations of these compounds indicates that source material remains on-site in the vicinity of the former dry well.
- Off-Site Discrete Groundwater Samples: Discrete depth groundwater samples detected PCE exceeding NYSDEC Class GA SCG values at seventeen of the fifty-four groundwater sample locations and TCE exceeding NYSDEC Class GA SCG values at seven of the fifty-four groundwater sample locations. Cis-1,2-DCE was detected exceeding SCGs in sixteen of the fifty-four discrete depth groundwater samples and MTBE was detected exceeding SCGs in two of the fifty-four groundwater samples. Additionally, chloroform was detected exceeding SCGs in one of the fifty-four groundwater samples. The highest concentrations of VOCs were detected in shallow groundwater at boring location O, closest to the site. Additionally, concentrations exceeding SCGs were detected over a mile downgradient of the Site. These results are consistent with the findings of the RI report.
- Soil Vapor Intrusion Evaluation (TPCCC): Several VOCs were detected in the subslab soil vapor, indoor air and outdoor ambient air samples. No VOC compounds from the NYSDOH Soil Vapor/Indoor Air Matrices A through C were detected at concentrations that would require additional actions to address human exposures. Additionally, no VOC compounds were detected at concentrations exceeding their respective air guideline values.

• SVE Pilot Test:

In general, air flow rates and vacuum responses remained relatively constant at the SVE well during each step of the evaluation. Upon reviewing the vacuum response data set it was determined the limited vacuum response observed at the sub-slab vapor points

would not be effective for vapor mitigation at the on-site structure by utilizing surrounding SVE wells; therefore, further evaluation of this data was not completed. Additionally, as the vacuum response was much more evenly distributed at the soil vapor monitoring points compared to the groundwater monitoring wells, the monitoring point data only was utilized for the analysis.

The approximate ROI for the SVE well was 7 feet for the 20 SCFM test, 27 feet for the 40 SCFM test, 35 feet for the 60 SCFM test and 43 feet for the 80 SCFM test. Additionally, the analytical results from the vapor sample collected during the 40 SCFM test indicated concentrations of total TVOCs were 138,928 μ g/m3. Based on an average air discharge flow rate of 40 SCFM and the TVOC concentration detected in the vapor sample collected during the test, the TVOC discharge rate would be approximately 0.0208 lbs/hr. The location of the vapor extraction well is in close proximity to the location of the identified on-site groundwater contamination; however, the concentrations identified in the soil vapor exhaust sample are not indicative of source material in the vadose zone.

5.2 Recommendations

Based on the results of the investigation/evaluation performed, residual groundwater contamination remains on-site. As the source of the remaining on-site groundwater contamination is in vicinity of a former dry well and hydraulically downgradient of this structure, it is recommended to perform limited treatment of the groundwater in this area. As the concentrations identified in the soil vapor exhaust sample are not indicative of source material in the vadose zone, and as it was determined that a soil vapor extraction system would not be effective at reducing soil vapor intrusion within the building, it is recommended not to install an air sparge with soil vapor extraction system at the Site. In lieu of implementation of the air sparge with soil vapor extraction system remedy, it is recommended to evaluate in-situ chemical oxidation to treat the identified contamination on-site through the implementation of a pilot study. In addition, it is recommended that a SSDS system be installed for the on-site building.

As limited off-site groundwater contamination was identified, it is recommended that permanent monitoring wells be installed in the vicinity of boring location O to provide for long-term monitoring of the identified groundwater contamination.

With regard to the TPCC, no additional actions are recommended at this time; however, the results of the soil vapor intrusion study should be provided to both the facility operator and owner.

APPENDIX A GROUNDWATER ELEVATION DATA AND FIGURES

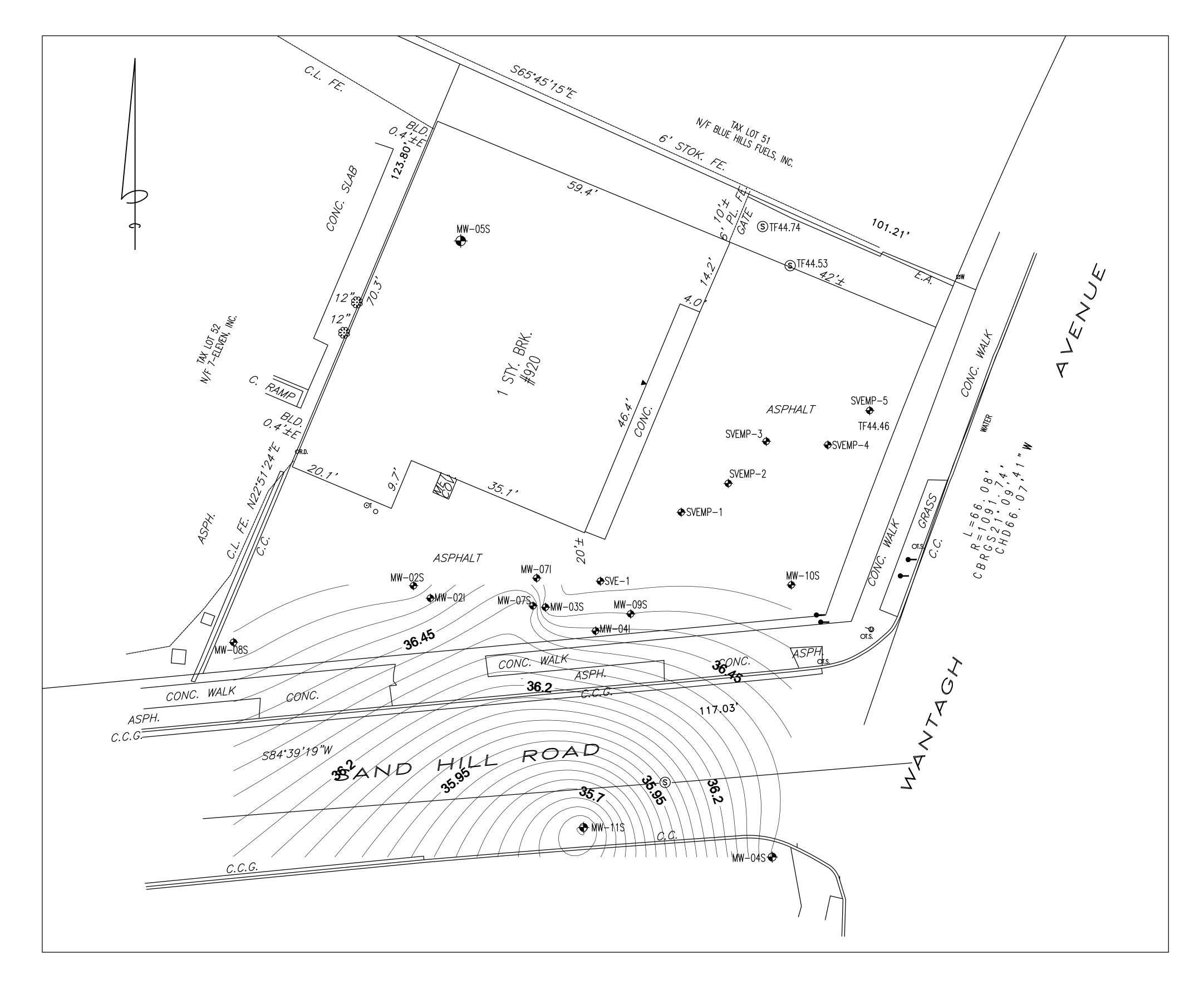
WANTAGH CLEANERS SITE PRE-DESIGN INVESTIGATION

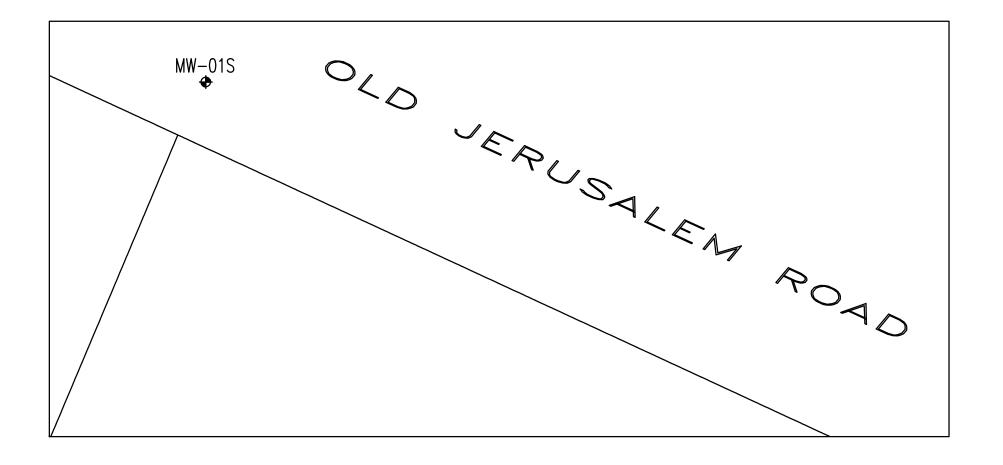
Table A-1: Groundwater Elevation Measurements								
			GROUND	TOP OF PVC	DA	ΛTE	DA	TE
	LOCA	TION	ELEVATION	RISER	9/24/	/2018	2/12/2019	
WELL	NORTH	EAST	(U.S. Survey Ft.)	(U.S. Survey Ft.)	DTW	ELEV	DTW	ELEV
MW-01S	195567.994	1121131.694	43.85	43.6	8.98	34.62	6.26	37.34
MW-02S	195259.841	1121119.773	43.57	43.33	9.63	33.70	6.69	36.64
MW-02I	195257.508	1121122.919	43.52	43.22	9.63	33.59	6.65	36.57
MW-03S	195255.823	1121144.46	43.77	43.41	9.73	33.68	6.81	36.60
MW-04S	195209.076	1121186.884	44.39	44.06	10.46	33.60	7.65	36.41
MW-04I	195251.383	1121153.851	43.80	43.56	9.71	33.85	6.71	36.85
MW-05S	195324.35	1121128.587	45.51	45.26	11.44	33.82		
MW-07S	195256.075	1121142.12	43.76	43.42	9.91	33.51	7.05	36.37
MW-07I	195261.277	1121142.819	44.03	43.75	9.75	34.00	6.81	36.94
MW-08S	195249.25	1121086.105	43.17	42.85	9.10	33.75	6.21	36.64
MW-09S	195254.572	1121160.405	44.07	43.80	10.15	33.65	7.25	36.55
MW-10S	195260.003	1121190.472	44.46	44.20	10.49	33.71	7.57	36.63
MW-11S	195214.601	1121151.585	43.47	43.14	9.42	33.72	7.66	35.48

NOTES

-- Not measured U.S.: United States

Ft.: Feet


DTW: Depth to water


ELEV: Elevation

Vertical Datum: North American Vertical Datum 88

Horizontal Datum: North American Datum 83

MW-COORDINATES/ELEVATIONS (NAD83/NAVD88)
TF DENOTES TOP CASING ELEVATION
TP DENOTES TOP OF PIPE FLEVATION (NORTH SI

 Northing(Y)
 Easting(X)
 Elev(TF)
 Elev(TP)
 Description

 195260.6930
 1121154.7420
 44.30
 43.84
 MW-SVE1

 195251.3830
 1121153.8510
 43.80
 43.56
 MW-O4I

 195248.7580
 1121150.1970
 43.56
 MW-C

 195249.9730
 1121142.7160
 43.61
 MW-B

 195255.8230
 1121142.1200
 43.76
 43.42
 MW-O7S

 195263.0960
 1121179.7520
 44.31
 MW-O7I

 195254.5720
 1121160.4050
 44.07
 43.80
 MW-O9S

 195250.2670
 1121135.1710
 43.44
 MW-A

 195259.8410
 1121119.7730
 43.57
 43.33
 MW-O2S

 195257.5080
 1121122.9190
 43.52
 43.22
 MW-O2I

 195260.0030
 1121186.8840
 44.46
 44.20
 MW-10S

 195209.0760
 1121186.8840
 44.39
 44.06
 MW-04S

 195209.5700
 1121190.4720
 44.54
 44.30
 MW-01S

 195286.2850
 1121177.24

NOTE:
-THIS SURVEY IS FOR MUNICIPAL PURPOSES ONLY
NOT INTENDED FOR TITLE CONVEYANCE.
-ELEVATIONS REFER TO NAVD88 VERTICAL DATUM

-COORDINATES REFER TO NAD83 (LIZONE)

LEGEND

♦ MONITORING WELL

NOTES:

-UTILITIES SHOWN ARE PER FIELD OBSERVATIONS, PARTIAL
MARKOUTS AND AVAILABLE RECORDS AND ARE NOT GUARANTEED.

- ELEVATIONS REFER NAVD88 DATUM

- COORDINATES REFER TO NAD83 (LIZONE)

Source: Survey completed by American Engineering & Land Surveying P.C. on September 19, 2018.

0 10 20 30 SCALE 1"=10'

APPENDIX B FIELD FORMS

DISCRETE OFF-SITE GROUNDWATER SAMPLE INFORMATION RECORDS

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew: _	Tara Judge	
Sample Location/	Well No.: <u>DT1F (</u>	<u>15)</u>			
Field Sample I.D. Number: DT1F (45)			Time 4:20 pm		
Weather Partly	Cloudy		Temperature _	60-65° F	
Sample Type:					
Groundwater	X		Sediment		
Surface Water/St	ream				
Soil			Other (describe, water, septage,		
Well Information Depth to Water Depth of Sample Removal Method	N/A Inlet 45 ft.				
Field Test Results					
Color		pH <u>6.82</u> Tur	bidity (NTUs)	1000 ORP -283	
Temperature (°C)	16.39	Specific Conducta	nce (ms/cm) 0.4	50	
Dissolved Oxygen	(mg/l) 0.38				
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " = 0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew: Tara .	Judge
Sample Location/	Well No.: <u>DT1F (</u>	<u>55)</u>		
Field Sample I.D. Number: DT1F (55)			Time 3:40 p	om
Weather Partly	Cloudy		Temperature 60-65	°F
Sample Type:				
Groundwater	X		Sediment	
Surface Water/St	ream			
			Other (describe, i.e. water, septage, etc.)	
Well Information Depth to Water Depth of Sample	N/A	ndwater samples)		
Removal Method	Low flow peri-	pump		
Field Test Results	3			
Color Brown Ta	n	pH <u>6.67</u> Tur	rbidity (NTUs) 100	0 ORP -83
Temperature (°C)	16.13	Specific Conducta	ance (ms/cm) 0.441	
Dissolved Oxygen	(mg/l) <u>0.64</u>			
Constituents Sam	pled			
VOCs				_
Remarks:				
		Well Casing	; Volumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh, N	<u>Y</u>	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>DT1F (65</u>)			
Field Sam <u>ple I.D.</u>	Number: DT1F (6	5)	Time	2:50 pm	
Weather Partly	Cloudy		Temperature	60-65° F	
Sample Type:					
Groundwater	X		Sediment		
Surface Water/St	ream				
Soil			Other (describe water, septage	, i.e.	
Depth to Water _ Depth of Sample 1	Inlet 65 ft. Low flow peri-pu	штр		1000 ORP -931	
Dissolved Oxygen		Specific Conductar	ice (ms/cm) <u>0.</u>	371	
Constituents Sam VOCs					
Remarks:					
		Well Casing V	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	1½" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

Site: Wantagh C	Cleaners, Wantagh, N	Y	Sample Crew: Tara Ju	dge
Sample Location/	Well No.: <u>DT1G (75</u>	<u>5)</u>		
Field Sample I.D.	Number: DT1G (7	5)	Time 9:30 an	1
Weather Cloud	у		Temperature 63-72°	F
Sample Type:				
Groundwater	X		Sediment	
Surface Water/St	ream			
Soil			Other (describe, i.e. water, septage, etc.)	
Well Information	(fill out for ground	water samples)		
Depth to Water _	N/A			
Depth of Sample	Inlet 75 ft.			
Removal Method	Low flow peri-pu	mp		
Field Test Results	S			
Color Brown Ta		H 7.05 Turb	oidity (NTUs) 1000	ORP -138
Temperature (°C)	17.72	Specific Conductar	nce (ms/cm) 0.574	
Dissolved Oxygen	n (mg/l) 0.00			
Constituents Sam	pled			
VOCs	P			
Remarks:				
		Well Casing V	Volumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65
	11/2" =0 10	$2^{1}/2^{2} = 0.24$	$31/2^{\circ} = 0.50$	6" = 1.46

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh, I	NY	Sample Crew:	Tara Judge
Sample Location/	Well No.: <u>DT1G (</u> 8	<u>85)</u>		
Field Sample I.D.	Number: DT1G(85)	Time	9:15 am
Weather Cloud	у		Temperature	63-72° F
Sample Type:				
Groundwater	X		Sediment	
Surface Water/St	ream			
			Other (describe water, septage	e, i.e.
Well Information Depth to Water _	(fill out for groun N/A	dwater samples)		
Depth of Sample	Inlet 85 ft.			
Removal Method	Low flow peri-p	ump		
Field Test Results	S			
Color	<u></u> 1	pH _7.25 Tur	bidity (NTUs)	1000 ORP -170
Temperature (°C)	18.00	Specific Conducta	ance (ms/cm) 0.	.679
Dissolved Oxygen	(mg/l) 0.00			
Constituents Sam	pled			
VOCs			. <u></u>	
Remarks:				
		Well Casing	Volumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	7 4" = 0.65
	11/2" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46

Site: Wantagh C	Cleaners, Wantagh, N	<u>Y</u>	ample Crew: Tara Ju	dge	
Sample Location/	/Well No.: <u>DT1G (95</u>	5)			
Field Sample I.D.	Number: DT1G (9	5)	Time 9:00 an	n	
Weather Cloud	y		Temperature 63-72°	F	
Sample Type:					
Groundwater	X	S	ediment		
Surface Water/St	tream		_		
~			other (describe, i.e. water, septage, etc.)		
Well Information	(fill out for ground	water samples)			
Depth to Water	N/A				
Depth of Sample	Inlet 95 ft.				
Removal Method	Low flow peri-pu	mp			
Field Test Results	s				
Color Tan cloud	ly silty p	H <u>7.01</u> Turbi	dity (NTUs) 1000	ORP -128	
Temperature (°C)	18.58	Specific Conductan	ce (ms/cm) 0.670		
Dissolved Oxygen	n (mg/l) 0.00				
Constituents Sam	ıpled				
VOCs	•				
Remarks:					
		Well Casing V	olumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	11/22 =0.10	$2^{1}/2^{2} = 0.24$	31/2 = 0.50	6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh Cleaners, Wantagh, NY			Sample Crew: <u>lara Judge</u>		
Sample Location/	Well No.: <u>DT2C (53</u>	<u>5)</u>			
Field Sample I.D. Number: DT2C (55)			Time 12:10 pm		
Weather Cloudy	У		Temperature 63-72°	F	
Sample Type:					
Groundwater	X		Sediment		
Surface Water/St	ream				
Soil			Other (describe, i.e. water, septage, etc.)		
Depth to Water _					
Depth of Sample l Removal Method	Low flow peri-pu	ımp			
Field Test Results		н 722 т	L'IL. OVEVIA 1000	ODB 160	
	p			ORP -168	
Temperature (°C) Dissolved Oxygen		Specific Conducta	ance (ms/cm) <u>0.442</u>		
Constituents Sam	nled				
VOCs					
Remarks:					
Collected MS/MSI)				
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

D&B_SIR/kb

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew: Tara J	udge
Sample Location/	Well No.: <u>DT2C (</u>	<u>65)</u>		
Field Sample I.D.	Number: DT2C	(65)	Time 11:50	am
Weather Cloudy	7		Temperature 63-72°	°F
Sample Type:				
Groundwater	X		Sediment	
Surface Water/Str	ream			
Soil			Other (describe, i.e. water, septage, etc.)	
Well Information	(fill out for groun	ndwater samples)		
Depth to Water _	N/A			
Depth of Sample I	nlet 65 ft.			
Removal Method	Low flow peri-	oump		
Field Test Results				
Color		pH <u>7.46</u> Tur	bidity (NTUs) 1000	ORP -174
Temperature (°C)	18.52	Specific Conducta	ance (ms/cm) 0.407	
Dissolved Oxygen	(mg/l) <u>0.00</u>			
Constituents Sam	pled			
VOCs	· 			_
Remarks:				
		Well Casing	Volumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65
	11/2" =0 10	$2^{1}/3^{2} = 0.24$	$3^{1}/3^{2} = 0.50$	6" = 1.46

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew:	Tara Judge
Sample Location/	Well No.: <u>DT2C (</u>	<u>75)</u>		
Field Sample I.D.	Number: DT2C	(75)	Time	11:35 am
Weather Cloudy	Ý		Temperature	63-72° F
Sample Type:				
Groundwater	X		Sediment	
Surface Water/St	ream		Air	
Soil			Other (describe water, septage	'
Well Information Depth to Water Depth of Samuel	N/A	ndwater samples)		
Depth of Sample l				
Removal Method	Low now pen-p	bump		
Field Test Results				
Color		pH <u>6.87</u> Turl	oidity (NTUs)	1000 ORP -89
Temperature (°C)	20.77	Specific Conducta	nce (ms/cm) <u>0</u> .	362
Dissolved Oxygen	(mg/l) <u>0.00</u>			
Constituents Sam VOCs	pled ————————————————————————————————————			
Remarks:				
		Well Casing	Volumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	7 4" = 0.65
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46

D&B_SIR/kb

Site: Wantagh C	leaners, Wantagh, N	Y	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>DT2E (15</u>				
Field Sam <u>ple I.D.</u>	Number: DT2E (1	5)	Time	11:30 am	
Weather Cloud	y		Temperature	63-72° F	
Sample Type:					
Groundwater	X		Sediment		
	ream				
			Other (describe water, septage	, i.e	
Well Information Depth to Water Depth of Sample		water samples)			
	Low flow peri-pu	mn			
	•	шр			
Field Test Results					
	p				
Temperature (°C)	19.92	Specific Conducta	nce (ms/cm) <u>0</u>	349	
Dissolved Oxygen	(mg/l) <u>0.00</u>				
Constituents Sam	pled				
VOCs					
					
Remarks:					
Collected MS/MSI	D.				
		Well Casing V	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.3		
	11/2" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh, I	NY	Sample Crew: _	Tara Judge
Sample Location/	Well No.: <u>DT2E (2</u>	<u>5)</u>		
Field Sample I.D.	Number: DT2E (2	25)	Time _	11:20 am
Weather Cloud	у		Temperature _	63-72° F
Sample Type:				
Groundwater	X		Sediment	
	ream			
			Other (describe, water, septage,	i.e
Well Information Depth to Water	(fill out for ground N/A	dwater samples)		
Depth of Sample	Inlet 25 ft.			
Removal Method	Low flow peri-pr	ump		
Field Test Results	S			
Color	I	oH <u>6.67</u> Turl	oidity (NTUs)	1000 ORP -424
		Specific Conducta	nce (ms/cm) 0.8	53
Dissolved Oxygen	(mg/l) <u>0.00</u>			
Constituents Sam	pled			
VOCs				
Remarks:		-		
		Well Casing	Volumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65
	11/2" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	0 6" = 1.46

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh, N	Y	Sample Crew:	Tara Judge
Sample Location/	Well No.: <u>DT2E (35</u>	<u>5)</u>		
Field Sam <u>ple I.D.</u>	Number: DT2E (3	5)	Time	11:00 am
Weather Cloudy	Ý		Temperature	63-72° F
Sample Type:				
Groundwater	Groundwater X		Sediment	
Surface Water/Stream Soil				
Well Information Depth to Water	(fill out for ground	lwater samples)		
Depth of Sample I				
	Low flow peri-pu	ımp		
Field Test Results				
	p	H 686 Tur	hidity (NTUs)	1000 ORP -423
	P			
Dissolved Oxygen		opeeme conducta		,,,,,,
Constituents Sam	· · · · · · · · · · · · · · · · · · ·			
VOCs	picu			
, 005				
Remarks:				
		Well Casing	Volumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	7 4" = 0.65
	11/2" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh, N	<u>Y</u>	Sample Crew:	Tara Judge	
Sample Location/	/Well No.: <u>DT2E (45</u>)			
Field Sam <u>ple I.D.</u>	Number: DT2E (4:	5)	Time	10:45 am	
Weather Cloud	у		Temperature	63-72° F	
Sample Type:					
Groundwater	X		Sediment		
Surface Water/St	tream				
Soil			Other (describe, i.e. water, septage, etc.)		
Depth to Water _		water samples)			
Depth of Sample	Low flow peri-pu	mn			
		шр			
Field Test Results		п 690 т	.: 1:4 (NITH)	1000 ODB 414	
	p			1000 ORP -414	
		Specific Conducta	nce (ms/cm) <u>0</u> .	.001	
Dissolved Oxygen	· · · · · · · · · · · · · · · · · · ·				
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing			
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37		
	$1\frac{1}{3}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

Site: Wantagh Cleaners, Wantagh, NY			Sample Crew: Tara Judge		
Sample Location/	Well No.: <u>DT2E (55</u>				
Field Sam <u>ple I.D.</u>	Number: DT2E (5	5)	Time 10:25 as	m	
Weather Cloudy	y		Temperature 63-72°	F	
Sample Type:					
Groundwater	X	Se	ediment		
Surface Water/St	Surface Water/Stream				
Soil			Other (describe, i.e. water, septage, etc.)		
Well Information	(fill out for ground	water samples)			
Depth to Water _	N/A				
Depth of Sample	Inlet 55 ft.				
Removal Method	Low flow peri-pu	mp			
Field Test Results	S				
Color	p	H 6.57 Turbio	lity (NTUs) 1000	ORP -407	
Temperature (°C)	17.76	Specific Conductanc	e (ms/cm) 0.451		
Dissolved Oxygen	(mg/l) <u>0.00</u>				
Constituents Sam	pled				
VOCs	•				
Remarks:					
		Well Casing Vo	lumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	11/2" =0 10	21/2 = 0.24	31/2 = 0.50	6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh, N	YY S	Sample Crew:	Tara Judge
Sample Location/	Well No.: <u>DT2E (65</u>	<u>5)</u>		
Field Sample I.D.	Number: DT2E (6	55)	Time	10:10 am
Weather Cloud	y		Temperature	63-72° F
Sample Type:				
Groundwater	X	S	ediment	
Surface Water/St	ream			
G .			Other (describe water, septage	, i.e.
Well Information	(fill out for ground	lwater samples)		
Depth to Water _	N/A			
Depth of Sample				
Removal Method	Low flow peri-pu	ımp		
Field Test Results	·			
	p	oH 7.00 Turbi	dity (NTUs)	1000 ORP -137
Temperature (°C)	_	Specific Conductan	• ` ` ′	456
Dissolved Oxygen		•	· /	
Constituents Sam	pled			
VOCs	•			
		_		
Remarks:		_		
		Well Casing V	olumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65
	11/2" =0 10	$2\frac{1}{2} = 0.24$	31/2" = 0	50 6" = 1.46

Site: Wantagh Cleaners, Wantagh, NY		<u>Y</u>	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>DT2E (75</u>				
Field Sam <u>ple I.D.</u>	Number: DT2E (7	5)	Time 9:30 am		
Weather Cloud	y		Temperature	63-72° F	
Sample Type:					
Groundwater	X		Sediment		
Surface Water/St	ream				
Soil			Other (describe, i.e water, septage, etc.)		
Well Information Depth to Water Depth of Sample		water samples)			
Removal Method	Low flow peri-pu	mp			
Field Test Results	S				
Color	p	H <u>6.47</u> Turl	bidity (NTUs)	1000 ORP -113	
Temperature (°C)	17.77	Specific Conducta	nce (ms/cm) <u>0</u>	372	
Dissolved Oxygen	(mg/l) <u>0.00</u>				
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.3"	7 4" = 0.65	
	11/2" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

Site: Wantagh C	leaners, Wantagh	<u>, NY</u>	Sample Crew: _	l'ara Judge	
Sample Location/	Well No.: <u>DT2E</u>	(85)			
Field Sam <u>ple I.D.</u>	Number: DT2E	(85)	Time _	9:10 am	
Weather Cloud	y		Temperature	63-72° F	
Sample Type:					
Groundwater X Surface Water/Stream			Sediment		
Removal Method Field Test Results Color	Inlet 85 ft. Low flow peri-	-pump pH <u>7.31</u> Tur			
Temperature (°C) Dissolved Oxygen		Specific Conducta	ance (ms/cm) <u>0.3</u>	63	
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing	y Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh Cleaners, Wantagh, NY		<u>Y</u> ,	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>EEE (25)</u>				
Field Sam <u>ple I.D.</u>	Number: EEE (25))	Time	4:58 PM	
Weather Partly	cloudy		Temperature	65-78° F	
Sample Type:					
Groundwater	X		Sediment		
Surface Water/St	Surface Water/Stream				
Soil					
Well Information Depth to Water Depth of Sample		water samples)			
Removal Method	Low flow peri-pu	mp			
Field Test Results	S				
	p	H 6.97 Turb	idity (NTUs)	+1000 ORP 43	
) 17.47				
Dissolved Oxygen					
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing V	olumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.3"	7 4" = 0.65	
	1½" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh, I	NY S	ample Crew:	Tara Judge
Sample Location/	Well No.: <u>EEE (35</u>)		
Field Sample I.D.	Number: EEE (35	5)	Time	4:35 pm
Weather Partly	cloudy		Temperature	65-78° F
Sample Type:				
Groundwater	X	S	ediment	
Surface Water/St	ream			
~ .				, i.e
Well Information	(fill out for groun	dwater samples)		
Depth to Water _	N/A			
Depth of Sample	Inlet 35 ft.			
	Low flow peri-p			
Field Test Results	S			
Color]	oH <u>7.22</u> Turbi	dity (NTUs)	+1000 ORP -81
		Specific Conductan		
Dissolved Oxygen	(mg/l) 0.35			
Constituents Sam	pled			
VOCs				
Remarks:				
Collected MS/MSI	D.			
	41/9 0 055	Well Casing V		, and a co
GAL/FT	$1\frac{1}{4}$ " = 0.077 $1\frac{1}{4}$ " = 0.10	$2" = 0.16$ $2^{1}/2" = 0.24$	$3" = 0.37$ $3^{1}/3" = 0$	

Site: Wantagh Cleaners, Wantagh, NY			Sample Crew: Tara Judge		
Sample Location/	Well No.: <u>EEE (45</u>	5)			
Field Sam <u>ple I.D.</u>	Number: EEE (4	5)	Time 4:15 pm	ı	
Weather Partly	cloudy		Temperature 65-78° 1	F	
Sample Type:					
Groundwater	X	S	ediment		
Surface Water/St	ream	A	air		
Soil			Other (describe, i.e. water, septage, etc.)		
Well Information	(fill out for groun	dwater samples)			
Depth to Water _	N/A				
Depth of Sample l	Inlet 45 ft.				
Removal Method	Low flow peri-p	oump			
Field Test Results	F				
Color		pH <u>7.15</u> Turbi	idity (NTUs) +1000	ORP -85	
Temperature (°C)	17.17	Specific Conductan	ce (ms/cm) 0.463		
Dissolved Oxygen	(mg/l) 1.17				
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing V	olumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	11/2" =0.10	$2^{1}/2^{2} = 0.24$	31/3 = 0.50	6" = 1.46	

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew: Tara	Judge	
Sample Location/	Well No.: <u>EEE (5</u>	<u>5)</u>			
Field Sam <u>ple I.D.</u>	Number: EEE (5	55)	Time 3:58	om	
Weather Partly	Weather Partly cloudy			8° F	
Sample Type:					
Groundwater X Surface Water/Stream Soil			Sediment		
Depth to Water _	N/A Inlet 55 ft. Low flow peri-				
Color		pH _7.48 Tur	bidity (NTUs) +10	000 ORP -122	
Temperature (°C)	17.05	Specific Conducta	nnce (ms/cm) 0.455		
Dissolved Oxygen	(mg/l) <u>0.00</u>				
Constituents Sam	pled				
VOCs					
Remarks:				_	
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

Site: Wantagh Cleaners, Wantagh, NY		Y	Sample Crew:	Tara Judge
Sample Location/	Well No.: <u>EEE (65)</u>			
Field Sam <u>ple I.D.</u>	Number: EEE (65))	Time	3:35 PM
Weather Partly	cloudy		Temperature	65-78° F
Sample Type:				
Groundwater	X		Sediment	
Surface Water/Stream Soil				
Well Information Depth to Water Depth of Sample		lwater samples)		
Removal Method	Low flow peri-pu	ımp		
Field Test Results	Š			
Color	p	H 8.27 Turk	oidity (NTUs)	+1000 ORP -370
		Specific Conducta		
Dissolved Oxygen	<u> </u>			
Constituents Sam	pled			
VOCs				
Remarks:		_		
		Well Casing	Volumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.3"	7 4" = 0.65
	11/2" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46

Site: Wantagh C	leaners, Wantag	h, NY	_ Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>EEE (</u>	(75)			
Field Sam <u>ple I.D.</u>	Number: EEE	(75)	Time	3:10 PM	
Weather Partly	Weather Partly cloudy			65-78° F	
Sample Type:					
Groundwater X Surface Water/Stream			Sediment		
Soil				, i.e	
	N/A [nlet 75 ft.	ri-pump	-		
Field Test Results		рН <u>6.73</u> Ти	rbidity (NTUs)	+1000 ORP 45	
Temperature (°C)	18.90	_ Specific Conduct	tance (ms/cm) <u>0</u> .	494	
Dissolved Oxygen	(mg/l) 1.73	<u> </u>			
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casin	g Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	1½" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

Site: Wantagh C	leaners, Wantagh, N	<u>Y</u>	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>III (25)</u>				
Field Sam <u>ple I.D.</u>	Number: III (25)		Time	12:25 pm	
Weather Cloudy			Temperature	63-72° F	
Sample Type:					
Groundwater	X	S	Sediment		
Surface Water/St	ream		Air		
Soil			Other (describe, i.e. water, septage, etc.)		
Depth to Water _ Depth of Sample l Removal Method Field Test Results Color	Inlet 25 ft. Low flow peri-pu	ump H <u>6.86</u> Turb i			
		Specific Conductan	ce (ms/cm) <u>0.</u>	192	
Dissolved Oxygen	(mg/l) <u>0.00</u>				
Constituents Sam	pled				
VOCs					
Remarks:					
CAL/ET	11/22 0.077	Well Casing V		477 _ 0 < 5	
GAL/FT	$1\frac{1}{4}$ " = 0.077 $1\frac{1}{2}$ " = 0.10	$2" = 0.16$ $2\frac{1}{2}" = 0.24$	$3" = 0.37$ $3\frac{1}{2}" = 0.3$		

Site: Wantagh C	leaners, Wantagh, N	<u>Y</u>	Sample Crew:	Tara Judge		
Sample Location/	Well No.: <u>III (35)</u>					
Field Sam <u>ple I.D.</u>	Number: III (35)		Time	12:10 pm		
Weather Cloudy			Temperature	63-72° F		
Sample Type:						
Groundwater	X	S	Sediment			
	ream		Air			
Soil			Other (describe, i.e. water, septage, etc.)			
Depth to Water _ Depth of Sample	Inlet 35 ft. Low flow peri-pu					
		H 7.25 Turb	idity (NTUs)	_1000 ORP 95		
		Specific Conductan				
Dissolved Oxygen						
Constituents Sam VOCs	pled					
Remarks:						
		Well Casing V				
GAL/FT	$1\frac{1}{4}$ " = 0.077 $1\frac{1}{2}$ " = 0.10	$2" = 0.16$ $2\frac{1}{2}" = 0.24$	$3" = 0.37$ $3\frac{1}{2}" = 0.3$			
	1/4 V+1V	-/4 V+- I	0/4	U 1110		

Site: Wantagh Cleaners, Wantagh, NY			Sample Crew: lara Judge		
Sample Location/V	Vell No.: <u>III (45)</u>				
Field Sample I.D. Number: III (45)			Time _12:00 pm		
Weather Cloudy			Temperature	63-72° F	
Sample Type:					
Groundwater X			Sediment		
Surface Water/Str	eam		_ Air		
Soil					
Well Information (Depth to Water] Depth of Sample In	N/A	dwater samples)			
Removal Method		amp			
Field Test Results					
Color	p	oH <u>7.40</u> Tur	bidity (NTUs)	1000 ORP -101	
Temperature (°C)	14.95	Specific Conducta	nce (ms/cm) <u>0</u> .	211	
Dissolved Oxygen ((mg/l) <u>0.13</u>				
Constituents Samp	led				
VOCs					
Remarks:					
Collected MS/MSD	<u>. </u>				
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	7 4" = 0.65	
	11/2" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

Site: Wantagh C	leaners, Wantagh,	, NY	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>III (55)</u>	1			
Field Sam <u>ple I.D.</u>	Number: III (55)	Time	11:40 pm	
Weather Cloudy			Temperature	63-72° F	
Sample Type:					
Groundwater	Σ	ζ	_ Sediment		
Surface Water/St	ream		_ Air		
			Other (describe, i.e. water, septage, etc.)		
Well Information Depth to Water Depth of Sample Removal Method	N/A Inlet 55 ft.	ndwater samples)			
Field Test Results	S				
Color		pH <u>7.98</u> Tur	bidity (NTUs)	1000 ORP -226	
Temperature (°C)	15.62	Specific Conducta	nce (ms/cm) <u>0</u> .	311	
Dissolved Oxygen	(mg/l) <u>0.00</u>				
Constituents Sam	pled				
VOCs					
Remarks:		-			
-		Well Casing			
GAL/FT	$1\frac{1}{4}$ " = 0.077 $1\frac{1}{2}$ " = 0.10	$2" = 0.16$ $2\frac{1}{2}" = 0.24$	$3" = 0.37$ $3\frac{1}{2}" = 0.$		
	1/2 -0.10	4/2 — U.44	3/2 - 0.	JU U - 1.70	

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew:	Tara Judge			
Sample Location/	Well No.: <u>III (65)</u>						
Field Sam <u>ple I.D.</u>	Number: III (65)		Time _	11:10 am			
Weather Cloud	y		Temperature 63-72° F				
Sample Type:							
Groundwater	X		Sediment				
Surface Water/St	ream						
Field Test Results Color Brown silt Temperature (°C)	Low flow peri-p	pH <u>8.20</u> Tur Specific Conducta					
Dissolved Oxygen	(mg/l) <u>0.00</u>						
Constituents Sam	pled						
VOCs							
Remarks:							
		Well Casing	Volumes				
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65			
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.5	6" = 1.46			

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>III (75)</u>				
Field Sample I.D. Number: III (75)			Time 10:55 am	10:55 am	
Weather Cloudy	y		Temperature	63-72° F	
Sample Type:					
Groundwater X			Sediment		
Surface Water/St	ream		Air Other (describe, i.e water, septage, etc.)		
Soil					
Depth to Water _ Depth of Sample l					
Field Test Results Color Brown silt Temperature (°C) Dissolved Oxygen	15.40	pH <u>7.48</u> Tur Specific Conduct			
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing	g Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	7 4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh, N	<u>Y</u> .	Sample Crew: 1 ara Ju	idge
Sample Location/	Well No.: <u>III (85)</u>			
Field Sample I.D.	Number: III (85)		Time 10:35 a	m
Weather Cloud	у		Temperature 63-72°	F
Sample Type:				
Groundwater	X	S	ediment	
Surface Water/St	ream			
Soil		(Other (describe, i.e. water, septage, etc.)	
Well Information Depth to Water _	(fill out for ground N/A	water samples)		
Depth of Sample	Inlet 85 ft.			
Removal Method	Low flow peri-pu			
Field Test Results	S			
		H 8.22 Turb	idity (NTUs) 1000	ORP -227
) 17.51			
Dissolved Oxygen	(mg/l) 0.00		· ·	
Constituents Sam	pled			
VOCs	<u></u>			
Remarks:				
		Well Casing V	olumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65
	1½" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46

D&B_SIR/kb Rev. 10/2011

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>III (95)</u>				
Field Sample I.D.	Number: <u>III (95)</u>	<u> </u>	Time	9:55 am	
Weather Cloud	y		Temperature	63-72° F	
Sample Type:					
Groundwater	X		Sediment		
Surface Water/St	ream				
			Other (describe water, septage	, i.e.	
Removal Method Field Test Results	Inlet 95 ft. Low flow peri-p	oump pH <u>8.27</u> Turk	oidity (NTUs)	1000 ORP -277	
		Specific Conducta			
Dissolved Oxygen		P			
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	6" = 1.46	

Site: Wantagh C	leaners, Wantagl	h, NY	Sample Crew: _	Tara Judge	
Sample Location/	Well No.: <u>O(15)</u>				
Field Sample I.D. Number: O(15)			Time 3:55 pm		
Weather Cloud	у		Temperature _	63-72° F	
Sample Type:					
Groundwater		X	Sediment		
Surface Water/St	ream				
Soil			Other (describe, water, septage,	i.e	
Well Information Depth to Water Depth of Sample Removal Method	N/A Inlet 15 ft.	undwater samples)	-		
Field Test Results	•		-		
·			rbidity (NTUs)		
Temperature (°C)		_ Specific Conduct	ance (ms/cm) 0.5	50	
Dissolved Oxygen	(mg/l) 0.56	_			
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing	g Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.5	0 6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh Cleaners, Wantagh, NY			Sample Crew: Tara Judge		
Sample Location/	Well No.: <u>O (20</u>)			
Field Sample I.D.	Number: O(20	0)	Time	3:40 pm	
Weather Cloudy	У		Temperature	63-72° F	
Sample Type:					
Groundwater		X	Sediment		
Surface Water/Str	ream				
Soil			Other (describe water, septage	•	
Depth to Water _	N/A	undwater samples)	-		
Depth of Sample 1		•	_		
Removal Method	Low flow per	n-pump	-		
Field Test Results					
Color		_ pH <u>6.69</u> Tu	rbidity (NTUs)	583 ORP <u>-367</u>	
Temperature (°C)	19.25	_ Specific Conduct	ance (ms/cm) <u>0</u> .	550	
Dissolved Oxygen	(mg/l) <u>0.00</u>	_			
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casin	g Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	7 4" = 0.65	
	$1\frac{1}{2}$ " = 0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

D&B_SIR/kb Rev. 10/2011

Site: Wantagh C	leaners, Wantagh	ı, NY	Sample Crew: Tara	Judge	
Sample Location/	Well No.: <u>O(25)</u>				
Field Sample I.D.	Number: <u>O(25)</u>	<u> </u>	Time 3:25	pm	
Weather Cloudy	y		Temperature 63-72	2° F	
Sample Type:					
Groundwater		X	Sediment		
Surface Water/St	ream				
			Other (describe, i.e. water, septage, etc.)		
Well Information Depth to Water _ Depth of Sample I Removal Method	N/A Inlet 25 ft.	-pump			
Field Test Results					
		pH 6.69 Tur	bidity (NTUs) 100	00 ORP -176	
Temperature (°C)			ance (ms/cm) 0.285		
Dissolved Oxygen	(mg/l) 0.00	_			
Constituents Sam	pled				
VOCs				_	
Remarks:					
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " = 0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6 " = 1.46	

Site: Wantagh C	leaners, Wantagh	ı, NY	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>QR (1</u>	5)			
Field Sample I.D.	Number: QR (1	15)	Time	2:55 pm	
Weather Cloud	y		Temperature	63-72° F	
Sample Type:					
Groundwater	·	X	Sediment		
Surface Water/St	ream				
			Other (describe, water, septage	, i.e	
Well Information Depth to Water Depth of Sample Removal Method	N/A Inlet 15 ft.	andwater samples)	: :		
Field Test Results	S				
Color		pH 6.08 Tu	rbidity (NTUs)	1000 ORP 121	
Temperature (°C)	18.83	Specific Conduct	ance (ms/cm) 0	572	
Dissolved Oxygen	(mg/l) 5.32	_			
Constituents Sam	pled				
VOCs			,		
Remarks:					
~·		Well Casing			
GAL/FT	$1\frac{1}{4}$ " = 0.077 $1\frac{1}{2}$ " = 0.10	$2" = 0.16$ $2\frac{1}{2}" = 0.24$	$3" = 0.37$ $3\frac{1}{2}" = 0.5$		
	1/4 0.10	#/4 V•#T	J/2 - U.	U 1.TU	

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew: Tara	Judge	
Sample Location/	Well No.: <u>QR (20</u>)			
Field Sample I.D.	Number: QR (20	0)	Time 2:25 j	om	
Weather Cloud	y		Temperature 63-72	2° F	
Sample Type:					
Groundwater	X		Sediment		
				-	
Depth to Water _	N/A Inlet 20 ft. Low flow peri-				
Color		pH <u>6.27</u> Tur	bidity (NTUs) 543	ORP 72	
Temperature (°C)	18.57	Specific Conducta	nce (ms/cm) 0.658		
Dissolved Oxygen	(mg/l) 3.57				
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew: Tara	Judge	
Sample Location/	Well No.: <u>QR (25)</u>)			
Field Sample I.D.	Number: QR (25	5)	Time 2:10	pm	
Weather Cloud	у		Temperature 63-72	2° F	
Sample Type:					
Groundwater	X		Sediment		
Surface Water/St	ream				
			Other (describe, i.e. water, septage, etc.)		
Depth of Sample Removal Method Field Test Results Color Temperature (°C)	Low flow peri-	pump pH <u>6.59</u> Tur	bidity (NTUs) <u>100</u> nnce (ms/cm) <u>0.599</u>		
Dissolved Oxygen	(mg/l) 0.00				
Constituents Sam	pled				
VOCs				_	
Remarks:					
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

Site: Wantagh C	Cleaners, Wantagh, N	Y Sa	ample Crew: Tara Ju	ıdge	
Sample Location/	Well No.: <u>RRR (35)</u>				
Field Sample I.D.	Number: RRR (35)	Time 3:10 pt	n	
Weather Partly	cloudy	7	Temperature 61-77°	F	
Sample Type:					
Groundwater	X	Se	ediment		
Surface Water/St	ream				
		O	ther (describe, i.e. water, septage, etc.)		
Well Information	(fill out for ground	water samples)			
Depth to Water _	N/A				
Depth of Sample	Inlet 35 ft.				
Removal Method	Low flow peri-pu	mp			
Field Test Results	S				
Color Brown sil	ty p	H 6.99 Turbio	lity (NTUs) 948	ORP -81	
Temperature (°C)	27.89	Specific Conductanc	e (ms/cm) 0.523		
Dissolved Oxygen	(mg/l) 0.00				
Constituents Sam	pled				
VOCs	•				
Remarks:					
		Well Casing Vo	lumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	11/2" =0 10	$2^{1}/2^{2} = 0.24$	$31/2^{2} = 0.50$	6" = 1.46	

Site: Wantagh C	leaners, Wantagh,	NY S	Sample Crew: Tara J	udge	
Sample Location/	Well No.: <u>RRR (45</u>	5)			
Field Sample I.D.	Number: RRR (4	5)	Time 2:55 p	m	
Weather Partly	cloudy		Temperature 61-77°	F	
Sample Type:					
Groundwater	X	S	sediment		
	ream				
			Other (describe, i.e. water, septage, etc.)		
Depth to Water _ Depth of Sample l	Inlet 45 ft. Low flow peri-p				
		nH 7.11 Turb	idity (NTUs) +100	00 ORP -104	
		Specific Conductan		<u> </u>	
Dissolved Oxygen		»росино солишения	<u> </u>		
Constituents Sam	pled				
VOCs				_	
Remarks:				_	
		Well Casing V	olumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	1½" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

Site: Wantagh C	leaners, Wantagh, N	<u>Y</u>	Sample Crew:	Tara Judge
Sample Location/	Well No.: <u>RRR (55)</u>			
Field Sample I.D.	Number: RRR (55)	Time	2:25 pm
Weather Partly	cloudy		Temperature	61-77° F
Sample Type:				
Groundwater	X		Sediment	
	ream			
			Other (describe water, septage	, i.e
Depth to Water _				
	Inlet 55 ft.			
Removal Method	Low flow peri-pu	mp		
Field Test Results				
Color	p	H 7.31 Turb	idity (NTUs)	<u>+1000</u> ORP <u>-95</u>
Temperature (°C)	25.34	Specific Conductan	ce (ms/cm) <u>0</u>	463
Dissolved Oxygen	(mg/l) <u>0.00</u>			
Constituents Sam	pled			
VOCs				
Remarks:				
		Well Casing V	olumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.3"	4" = 0.65
	1½" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46

Site: Wantagh C	leaners, Wantagh, N	Y	Sample Crew:	Tara Judge
Sample Location/	Well No.: <u>RRR (65)</u>	<u> </u>		
Field Sample I.D.	Number: RRR (65)	Time	2:00 pm
Weather Partly	cloudy		Temperature	61-77° F
Sample Type:				
Groundwater	X		Sediment	
	ream			
			Other (describe water, septage	, i.e
Well Information Depth to Water	(fill out for ground	lwater samples)		
Depth to water _ Depth of Sample I				
-	Low flow peri-pu	ımn		
		<u> </u>		
Field Test Results		W 7.50 TO 1	· II· (NITTI)	11000 OPP 161
				<u>+1000</u> ORP <u>-161</u>
	20.98	Specific Conductar	ice (ms/cm) <u>0</u>	498
Dissolved Oxygen	(mg/l) <u>0.00</u>			
Constituents Sam	pled			
VOCs				
Remarks:				
		Well Casing V	olumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.3"	4" = 0.65
	11/2" =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantagh	ı, NY	Sample Crew: Tara Ju	ıdge	
Sample Location/	Well No.: <u>SSS (5</u>	(5)			
Field Sample I.D. Number: SSS (55)			Time 4:10 pm		
Weather Cloudy				F	
Sample Type:					
Groundwater X			Sediment		
Surface Water/St	ream				
Soil			Other (describe, i.e. water, septage, etc.)		
Depth to Water _ Depth of Sample 1	N/A Inlet 55 ft. Low flow peri	-pump			
		рН 6.94 Tu	rbidity (NTUs) 1000	ORP -86	
			tance (ms/cm) 0.482	<u> </u>	
Dissolved Oxygen	•	- • -	· /		
Constituents Sam	pled				
VOCs					
Remarks:		-			
		Well Casin	g Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " = 0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

D&B_SIR/kb Rev. 10/2011

Site: Wantagh C	leaners, Wantagh,	, NY	Sample Crew:	Tara Judge	
Sample Location/	mple Location/Well No.: SSS (65) eld Sample I.D. Number: SSS (65) eather Cloudy	5)			
Field Sample I.D.	Number: SSS (6	55)	Time 3:55 pm		
Weather Cloudy		Temperature	63-72° F		
Sample Type:					
Groundwater	y	Χ	Sediment		
Surface Water/St	ream				
Soil			Other (describe water, septage		
Well Information Depth to Water Depth of Sample Removal Method	N/A Inlet 65 ft.	ndwater samples)			
Field Test Results		pH <u>6.97</u> Tur	bidity (NTUs)		
Temperature (°C)	17.23	Specific Conducta	nce (ms/cm) <u>0.</u>	602	
Dissolved Oxygen	(mg/l) <u>0.00</u>				
Constituents Sam	pled				
VOCs				<u> </u>	
Remarks:					
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

Site: Wantagh C	leaners, Wantagh	ı, NY	Sample Crew: 1	ara Judge	
Sample Location/	Well No.: <u>SSS (7</u>	<u>75)</u>			
Field Sample I.D.	Number: SSS (75)	Time <u>3</u>	:40 pm	
Weather Cloudy			Temperature 6	3-72° F	
Sample Type:					
Groundwater X			Sediment		
Surface Water/St	ream				
Soil					
Removal Method Field Test Results	Inlet 75 ft. Low flow peri	-pump	·bidity (NTUs)	1000 ORP -210	
		Specific Conducta			
Dissolved Oxygen	-	- • -			
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

Site: Wantagh C	leaners, Wantagh, N	Y Sa	mple Crew: Tara Ju	ıdge	
Sample Location/	Well No.: <u>SSS (85)</u>				
Field Sample I.D.	Number: <u>SSS (85)</u>		Time 3:30 pt	n	
Weather Cloud	у	1	Cemperature 63-72°	F	
Sample Type:					
	X	Se	diment		
	ream				
		O	her (describe, i.e. vater, septage, etc.)		
Well Information Depth to Water _	(fill out for ground	water samples)			
Depth of Sample	In <u>let</u> 85 ft.				
Removal Method	Low flow peri-pu	mp			
Field Test Results	S				
Color	p	H 6.97 Turbio	lity (NTUs) 1000	ORP -113	
Temperature (°C)	18.63	Specific Conductanc	e (ms/cm) 0.447		
Dissolved Oxygen	(mg/l) 0.00				
Constituents Sam	pled				
VOCs	•				
Remarks:					
		Well Casing Vo	lumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	11/2" =0 10	$2^{1}/2^{2} = 0.24$	$31/3^{\circ} = 0.50$	6" = 1.46	

Site: Wantagh C	leaners, Wantagh,	NY	Sample Crew: Tara Ju	udge	
Sample Location/	Well No.: <u>SSS (95</u>)			
Field Sample I.D.	Number: SSS (93	5)	Time 3:10 p	m	
Weather Cloudy		Temperature 63-72°	F		
Sample Type:					
Groundwater X Surface Water/Stream Soil			Sediment		
			Air		
Depth of Sample Removal Method Field Test Results	Low flow peri-p	oump			
			oidity (NTUs) 1000	ORP31	
		Specific Conducta	nce (ms/cm) 0.405		
Dissolved Oxygen	(mg/l) 0.00				
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing V	Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

Site: Wantagh C	leaners, Wantagh, N	JY	Sample Crew:	Tara Judge
Sample Location/	Well No.: <u>U (20)</u>			
ample Type: Groundwater X Surface Water/Stream			Time	5:35 pm
Weather Cloudy		Temperature	63-72° F	
Sample Type:				
Groundwater	X		Sediment	
Surface Water/St	ream			
			Other (describe water, septage	, i.e
Depth to Water _	N/A	• /		
_	Low flow peri-pu	ump		
	r	oH 6.97 Tur	bidity (NTUs)	1000 ORP -46
		Specific Conducta	,	
Dissolved Oxygen	(mg/l) 1.51	-	`	
Constituents Sam VOCs	pled			
Remarks:				
		Well Casing	Volumes	
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	6" = 1.46

Site: Wantagh C	leaners, Wantagh, N	ΙΥ	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>U (25)</u>				
Field Sample I.D.	Number: <u>U (25)</u>		Time	5:25 pm	
Weather Cloud	у		Temperature	63-72° F	
Sample Type:					
Groundwater X		Sediment			
	ream				
Soil			Other (describe, i.e water, septage, etc.)		
Depth to Water _ Depth of Sample Removal Method Field Test Results Color	Inlet 25 ft. Low flow peri-pu p	ımp			
Dissolved Oxygen	(mg/l) 1.69				
Constituents Sam	pled				
VOCs					
Remarks:	· · ·				
		Well Casing V			
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37		
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

Site: Wantagh Cl	eaners, Wantagh	ı, NY	Sample Crew: Tara J	udge	
Sample Location/V	Well No.: <u>XX (6</u>	5)			
Field Sample I.D.	Number: XX (65)	Time 3:31 p	m	
Groundwater X Surface Water/Stream Soil Vell Information (fill out for groundwater samples) Depth to Water N/A Depth of Sample Inlet 65 ft. Volume Removed N/A Sield Test Results Color pH 7.63 Tu Cemperature (°C) 20.15 Specific Conduct Dissolved Oxygen (mg/l) 0.00 Constituents Sampled VOCs		Temperature 69-77	°F		
Sample Type:					
Groundwater		X	Sediment		
Surface Water/Str	eam				
			Other (describe, i.e. water, septage, etc.)		
	`	undwater samples)			
_					
Depth of Sample I	n <u>let</u> 65 ft.		Measurement Method Water Level Meter		
Volume Removed	N/A		Removal Method Lo	ow flow peri-pump	
Field Test Results					
Color		pH _7.63 Tu	rbidity (NTUs) +10	00 ORP -146	
Temperature (°C)	20.15	_ Specific Conduct	tance (ms/cm) 0.484		
Dissolved Oxygen	(mg/l) 0.00	_			
Constituents Samp	oled				
VOCs					
Remarks:					
		Well Casin	g Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh C	leaners, Wantag	h, NY	Sample Crew: Tara	Judge	
Sample Location/	mple Location/Well No.: XX (75) eld Sample I.D. Number: XX (75) eather Overcast with chance of rain	75)			
Field Sample I.D.	Number: XX (75)	Time 3:10	pm	
Weather Overca	ast with chance of	of rain	Temperature 69-7	7° F	
Sample Type:					
Groundwater		X	Sediment		
Surface Water/St	ream				
Soil			Other (describe, i.e. water, septage, etc.)		
Depth to Water _ Depth of Sample 1	N/A Inlet 75 ft.	undwater samples)	- -		
Removal Method		n-pump	_		
Field Test Results	3				
Color		_ pH <u>8.14</u> Tu	rbidity (NTUs) +1	000 ORP <u>-284</u>	
Temperature (°C)	18.27	_ Specific Conduct	tance (ms/cm) 0.481		
Dissolved Oxygen	(mg/l) <u>0.00</u>	_			
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casin	g Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " = 0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.50	6" = 1.46	

D&B_SIR/kb Rev. 10/2011

Site: Wantagh C	leaners, Wantagh, N	NY	Sample Crew:	Tara Judge	
ield Sample I.D. Number: XX (85) ield Sample I.D. Number: XX (85) /eather Overcast with chance of rain ample Type: roundwater X urface Water/Stream oil /ell Information (fill out for groundwater sample epth to Water N/A epth of Sample Inlet 85 ft. emoval Method Low flow peri-pump ield Test Results olor Gray-Tan pH 7.69 emperature (°C) 19.67 Specific Condissolved Oxygen (mg/l) 0.00					
Field Sample I.D.	d Sample I.D. Number: XX (85) ather Overcast with chance of rain ple Type: oundwater X face Water/Stream Il Information (fill out for groundwater samples of the Water N/A oth of Sample Inlet 85 ft. noval Method Low flow peri-pump d Test Results or Gray-Tan pH 7.69 Temperature (°C) 19.67 Specific Conducts only 19.60 Solved Oxygen (mg/l) 0.00 astituents Sampled		Time	1:57 pm	
Groundwater X Surface Water/Stream Soil Well Information (fill out for groundwater samples) Depth to Water N/A Depth of Sample Inlet 85 ft. Removal Method Low flow peri-pump Sield Test Results Color Gray-Tan pH 7.69 Ture Cemperature (°C) 19.67 Specific Conducts Dissolved Oxygen (mg/l) 0.00 Constituents Sampled VOCs		Temperature	69-77° F		
Sample Type:					
Groundwater	X		Sediment		
Surface Water/St	ream				
Soil			Other (describe water, septage	, i.e	
Depth to Water _ Depth of Sample	N/A Inlet 85 ft.				
Field Test Results Color Gray-Tan		oH <u>7.69</u> Tur	bidity (NTUs)	<u>+1000</u> ORP <u>-19</u>	1
Temperature (°C	19.67	Specific Conducta	nce (ms/cm) <u>0.</u>	746	
Dissolved Oxygen	(mg/l) <u>0.00</u>				
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing			
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37		
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

Site: Wantagh C	leaners, Wantagh	ı, NY	Sample Crew:	Tara Judge	
Sample Location/	Well No.: <u>YY (2</u>	0)			
Field Sample I.D.	Number: YY (2	20)	Time	12:23 pm	
Weather Partly	cloudy		Temperature	65-78° F	
Sample Type:					
Groundwater		X	Sediment		
Soil					
Depth of Sample I Removal Method Field Test Results Color	Inlet 20 ft. Low flow peri			<u>+1000</u> ORP <u>-40</u>	
	-	Specific Conduct	ance (ms/cm) <u>0.</u>	466	
Dissolved Oxygen	(mg/l) 1.31	_			
Constituents Sam	pled				
VOCs					
Remarks:					
		Well Casing	g Volumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	$1\frac{1}{2}$ " =0.10	$2\frac{1}{2}$ " = 0.24	$3\frac{1}{2}$ " = 0.	50 6" = 1.46	

SAMPLE INFORMATION RECORD

Site: Wantagh C	Cleaners, Wantagh, N	<u>Y</u> S	ample Crew: Tara Ju	dge	
Sample Location/	Well No.: <u>YY (25)</u>				
Field Sample I.D.	Number: <u>YY (25)</u>		Time 12:10 p	m	
Weather Partly	cloudy		Temperature 65-78°	F	
Sample Type:					
Groundwater	X	S	ediment		
Surface Water/St	ream		_		
Soil		C	other (describe, i.e. water, septage, etc.)		
Well Information	(fill out for ground	lwater samples)			
Depth to Water _	N/A				
Depth of Sample	Inlet 25 ft.				
Removal Method	Low flow peri-pu	ımp			
Field Test Results	S				
Color Brown sil	ty p	H <u>6.81</u> Turbi	dity (NTUs) +1000	ORP 0	
Temperature (°C)	17.68	Specific Conductan	ce (ms/cm) 0.584		
Dissolved Oxygen	(mg/l) 2.19				
Constituents Sam	pled				
VOCs	•				
Remarks:					
		Well Casing V	olumes		
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65	
	11/2" =0 10	21/2 = 0.24	31/2 = 0.50	6" = 1.46	

D&B_SIR/kb Rev. 10/2011

SAMPLE INFORMATION RECORD

Site: Wantagh C	Cleaners, Wantagh, N	<u>Y</u> S	Sample Crew: Tara Judge			
Sample Location/	Well No.: <u>YY (30)</u>					
Field Sample I.D.	Number: <u>YY (30)</u>		Time	12:00		
Weather Partly	cloudy		Temperature _	65-78° F		
Sample Type:						
	X	S	ediment			
Surface Water/St	tream					
		_	Other (describe, i.e. water, septage, etc.)			
Well Information	(fill out for ground	water samples)				
Depth to Water	N/A					
Depth of Sample	Inlet 30 ft.					
Removal Method	Low flow peri-pu	mp				
Field Test Results	s					
Color Tan silty	p	H <u>6.73</u> Turbi	dity (NTUs)	<u>+1000</u> ORP <u>14</u>		
Temperature (°C	17.36	Specific Conductan	ce (ms/cm) <u>0.</u>	732		
Dissolved Oxygen	n (mg/l) 2.30					
Constituents Sam	pled					
VOCs						
Remarks:						
		Well Casing V	olumes			
GAL/FT	$1\frac{1}{4}$ " = 0.077	2" = 0.16	3" = 0.37	4" = 0.65		
	11/22 =0.10	$2^{1}/2^{2} = 0.24$	31/2" = 0.5	6" = 1.46		

D&B_SIR/kb Rev. 10/2011

SITE Wantagh C	leaners, Want	agh, NY		DATE 10/30/2018	}	
WELL ID: M PERSONNEL: Ta		_				
			<u>17.</u> <u>10</u> .			
Purging Method Airlift Bailer Submersible Pump	Pi Pi	entrifugal os. Displ. eristaltic ump (Low ow)	2 i	ell Volume Calculation n. casing: 6.44 n. casing: in. casing:	n: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =	1.04 gallons gallons gallons
volume of water rem	oved: gal.	>3 volumes:	yes X	no	purged dry? yes	no X
Field Tests						
Volume (mL)	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial	19.57	5.93	0.003	507	7.16	76
1,000	19.96	6.34	0.003	510	7.56	-10
2,000	20.12	6.62	0.003	529	7.76	-26
3,000	20.15	6.70	0.003	536	7.76	-34
4,000	20.20	6.66	0.003	530	7.82	-34
5,000	20.22	6.68	0.003	518	8.24	-35
6,000	19.89	6.64	0.278	104	3.82	-35
7,000	20.02	6.75	0.280	61.8	3.74	-41
8,000	20.06	6.77	0.281	34.6	3.64	-41
9,000	20.11	6.82	0.282	18.4	3.64	-44
10,000	20.12	6.83	0.282	13.0	3.65	-44
Sample Time: 8:1 Pump: So Flow Rate: 500	V-05S 0AM Inist Peri-pump 0 ml/min riba U52 and w		Analyzed: (2) 1L Amber	glass bottles for 1,4	Dioxane	
	Clear,	ny, 40-50 F no odor, no sho - -	no X no X no X	describe describe describe		

SITE Wantagh Cle	eaners, Wanta	agh, NY	<u>—</u>	DATE 10/30/201	8		
\4/51 ID							
WELL ID: MV PERSONNEL: Tai		<u></u>					
FERSONNEL. Tai	a Juuge						
			<u>57.6</u>		_		
Initial static water	r level (from to	p of casing)	<u>8.91</u>	ft.	_		
Purging Method			Wel	Volume Calculation	nn:		
Airlift	Ce	entrifugal		. casing: 48.77		7.94	gallons
Bailer	Po	os. Displ.	3 in	. casing:	ft. of water x 0.36 =		gallons
Submersible		eristaltic	4 ir	ı. casing:	" ' , , , , , , , , , , , , , , , , , ,	-	gallons
Pump		ımp (Low	X				
		ow)					
volume of water remo	ved:						
	gal.	>3 volumes:	yes	no X	purged dry? yes	no	Χ
Field Tests	-		0 1 ""	-	1 5: 1 10 1	-	
Volume (mL)	Temp (c°)	pН	Conductivity	Turbidity (NTUs)	Dissolved Oxygen		RP
Initial	17.03	6.94	(ms/cm) 0.406	10.8	(mg/l) 4.82		nv) 69
1,500	16.70	6.34	0.408	9.1	4.83		30 30
3,000	16.13	5.97	0.405	8.2	4.67		32
4,500	15.95	5.91	0.404	6.6	4.69)7
6,000	15.74	5.80	0.403	5.3	4.70	1	17
7,500	15.73	5.79	0.405	3.1	4.72	1:	26
9,000	15.69	5.81	0.405	3.6	4.64	1:	31
10,500	15.73	5.81	0.405	2.9	4.79	1:	38
12,000	15.75	5.81	0.406	2	4.71		44
13,000	15.80	5.81	0.407	1.9	4.70		48
14,000	15.85	5.82	0.407	2	4.70		52
15,000	15.84	5.80	0.407	0.9	4.70		60
16,000	15.85	5.80	0.407	1.1	4.70	1	60
Pump: Soln Flow Rate: 333	-07I 0 am iist Peri-pump ml/min ba U52 and w	ater level	Analyzed: (2) 1L Amber (glass bottles for 1,4	l Dioxane		
	Clear,	ny, 40-50 F no odor, no she - -	no X o	describe describe describe			

SITE Wantagh	Cleaners, Want	agh, NY		DATE 10/30/201	8		
WELL ID: 1	MM-078						
PERSONNEL:		<u></u>					
	·						
Denth of well (from top of casi	na)	19.0	11 ft			
			9.1		.		
Duraina Mathad			10/0	II Valuma Calaulatia	- n.		
Purging Method Airlift	C	entrifugal		ll Volume Calculatio า. casing: 9.86	n: ft. of water x 0.16 =	1.61	gallons
Bailer		os. Displ.	3 ir	n. casing: 5.00		1.01	gallons
Submersible		eristaltic	4 ii	n. casing:	6 6 6 005	-	gallons
Pump	-	ump (Low	Χ	eaeg			. 9
•		ow)					
volume of water re	moved:						
7.5	gal.	>3 volumes:	yes	no X	purged dry? yes	no	Χ
	_		<u> </u>		· · · · <u> </u>	_	
Field Tests		1	0	Tour take.	D:	01	
Volume (mL)	Temp (c°)	pН	Conductivity	Turbidity	Dissolved Oxygen		RP
Initial	18.84	6.54	(ms/cm) 0.446	(NTUs) 116	(mg/l) 0.79		าv) 51
1,000	18.99	6.55	0.447	325	0.79		57
2,000	19.17	6.59	0.446	376	0.52		67
3,000	19.20	6.59	0.447	141	0.50		71
4,000	19.19	6.58	0.447	50.9	0.51		71
5,000	19.20	6.58	0.443	25.3	0.45		73
6,000	19.24	6.58	0.443	9.1	0.44		74
7,000	19.21	6.58	0.442	11.6	0.41		75
8,000	19.20	6.59	0.439	0.9	0.52	-7	78
9,000	19.20	6.59	0.440	0.5	0.62	-7	79
10,000	19.21	6.59	0.441	0.6	0.66	-7	78
11,000	19.18	6.59	0.440	1.0	0.59	-{	33
12,000	19.16	6.59	0.441	1.5	0.50	-{	30
Sample Time: 1 Pump: S Flow Rate: 50 Meters: H	IW-07S 1:00 am olnist Peri-pump 00 ml/min oriba U52 and v		Analyzed: (2) 1L Amber	glass bottles for 1,4	Dioxane		
Observations Weather/Temp Description: Free Proc	Clear, duct? yes	ny, 40-50 F no odor, no sh –	no X	describe			
	een? yes	<u> </u>		describe			
O	odor? yes	_	no X	describe			

SITE Wantagh Cleaners, Wantagh, NY DATE: 10/30/2018								
	W-08S ara Judge	_	_					
			<u>17.</u> 8.3					
Purging Method Airlift Bailer Submersible Pump	Po Po Po	entrifugal os. Displ. eristaltic ump (Low ow)	2 ii 3 ii	Il Volume Calculation n. casing: 9.13 n. casing: n. casing:	ft. of water x 0.16 =			
volume of water rem 2.11		>3 volumes: y	yes	no X	purged dry? yes	no <u>X</u>		
Field Tests	1	<u> </u>		T 1.10	B: 1 10	000		
Volume (mL)	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)		
Initial	18.90	6.55	0.541	110	1.10	-78		
1,000	18.95	6.54	0.540	105	1.11	-76		
2,000	19.31	6.49	0.535	78.1	0.89	-70		
3,000	19.65	6.46	0.515	47	0.60	-68		
4,000	19.72	6.43	0.510	23.2	0.53	-67		
5,000	16.67	6.44	0.509	19.9	0.51	-69		
6,000	19.65	6.43	0.512	15.5	0.49	-68		
7,000	19.63	6.42	0.513	13.3	0.49	-68		
8,000	19.63	6.43	0.503	12.7	0.48	-69		
Sample ID: MW-08S (MS/MSD collected) Sample Time: 9:15 am Pump: Solnist Peri-pump Flow Rate: 500 ml/min Meters: Horiba U52 and water level			Analyzed: (2) 1L Amber Collected MS	glass bottles for 1,4 [MSD	Dioxane			
Observations Weather/Tempore Description: Free Productions	Clear, uct? yes	ny, 40-50 F no odor, no she	no X	describe				
	en? yes	<u> </u>		describe				
Od	lor? yes	_	no X	describe				

SITE Wantagh	Cleaners, Wanta	agh, NY		DATE 10/30/201	8	
WELL ID:	MW OOS					
	Tara Judge					
I LINGONNEL.	Tara baage					
Danth aforell	/£	\	4.0			
			<u>18</u> 9.		_	
miliai Static W	ater lever (Ironi to	op or casing)	<u>9.</u>	31 IL.	_	
Purging Method			W	ell Volume Calculation	on:	
Airlift	C	entrifugal		in. casing: 9.19	ft. of water x 0.16 =	1.49 gallons
Bailer		os. Displ.		in. casing:	ft. of water x 0.36 =	gallons
Submersible		eristaltic		in. casing:	ft. of water x 0.65 =	gallons
Pump		ump (Low	X			
	FI	ow)				
volume of water re	emoved:					
2.9	gal.	>3 volumes:	yes	no X	purged dry? yes	no X
	_ •		, <u>—</u>			
Field Tests		t	+	-		
Volume (mL)	Temp (c°)	рН	Conductivity	Turbidity	Dissolved Oxygen	ORP
. , ,		-	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial 1,000	15.93 15.92	6.78 6.73	0.229 0.225	34.7 18.3	5.47 5.25	20 40
2,000	15.92	6.72	0.225	15.5	5.18	43
3,000	15.95	6.68	0.226	10.9	5.13	50
4,000	15.95	6.65	0.225	11.4	5.12	56
5,000	15.96	6.67	0.226	10.4	5.05	62
6,000	15.98	6.66	0.226	9.3	5.01	68
7,000	15.98	6.67	0.226	9	4.93	70
8,000	15.99	6.65	0.225	0.0	4.87	75
9,000	16.00	6.65	0.226	0.0	4.84	80
10,000	15.99	6.65	0.226	0.0	4.83	79
11,000	15.99	6.65	0.226	0.0	4.86	81
0I- ID: A	1 144 000		A l l.			
	/IW-09S :40 pm		Analyzed:	er glass bottles for 1,4	I Diovane	
	Solnist Peri-pump	1	(Z) TE ATTIBLE	or glass bottles for 1,-	FDIOXAIIC	
	loriba U52 and w					
	600 ml/min					
Observations Weather/Tem	noroturo: C:	nv. 40 F0 F				
Weather/Tem		ny, 40-50 F				
Description:	Clear, duct? yes	no odor, no sh		dosoribo		
	duct? yes neen? yes	_	no X	describe describe		
	dor? yes Odor? yes	_	no X	describe		
(Judi : yes	_	no X	describe		

SITE Wantagh Cle	eaners, Wanta	igh, NY		DATE: _	10/30/2018			
WELL ID: MW PERSONNEL: Tar		_						
Depth of well (fro Initial static water								
Purging Method Airlift Bailer Submersible Pump	Po Pe Pu	entrifugal os. Displ. eristaltic ump (Low ow)		Well Volume 2 in. casing: 3 in. casing: 4 in. casing:	8.45	_ft. of water x 0.16 = _ft. of water x 0.36 =	1.37	gallons gallons gallons
volume of water remo		>3 volumes:	yes	no X	_	purged dry? yes	no	Х
Field Tests			•					
Volume (mL)	Temp (c°)	рН	Conductivi		bidity	Dissolved Oxygen	OF	
` '	. , ,	•	(ms/cm)		TUs)	(mg/l)	(m	
Initial	17.71	6.46	0.557		352	2.50	7	
1000	18.52	6.43	0.584		94	1.45	8	
2000	18.70	6.41	0.577		3.1	1.33	9:	
3000	18.81	6.41	0.571	-	3.9	1.31	9	-
4000	18.85	6.40	0.553		1.3	1.32	9	
5000	18.88	6.38	0.546		2.1	1.31	10	
6000	18.88	6.37	0.539		0.1	1.32	10	
7000	18.88	6.35	0.533		8	1.37	10	
8000	18.87	6.37	0.527		5.4	1.40	10)7
Meters: Horil		ater level	Analyzed: (2) 1L Am	ber glass bott	les for 1,4 l	Dioxane		
	Clear, ı	ny, 40-50 F no odor, no sh - -	een no X no X no X	describe describe describe				

SITE Wantagh Cleaners, Wantagh, NY DATE: 10/30/2018								
	MW-11S Tara Judge		_					
			18.4 8.7					
Purging Method Airlift Bailer Submersible Pump	Po Po Po	entrifugal os. Displ. eristaltic ump (Low ow)	2 ir 3 ir	I Volume Calculation 1. casing: 9.60 1. casing: 1. casing:	n: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =			
volume of water re	moved: gal.	>3 volumes:	ves	no X	purged dry? yes	no X		
Field Teets	_		, <u>—</u>					
Field Tests Volume (mL)	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP		
Initial	18.24	6.39	0.742	205	1.46	(mv) -39		
1,000	18.25	6.41	0.742	108	1.47	-41		
2,000	18.45	6.40	0.720	3.3	1.42	-52		
3,000	18.51	6.43	0.697	4.1	1.18	-65		
5,000	18.52	6.44	0.695	1	1.21	-66		
6,000	18.55	6.44	0.709	1.3	1.20	-68		
7,000	18.49	6.45	0.724	1.2	1.17	-72		
8,000	18.47	6.44	0.726	0.8	1.19	-72		
9,000	18.41	6.44	0.728	0.0	1.17	-72		
10,000	18.38	6.44	0.729	0.0	1.14	-73		
Sample Time: 1: Pump: S Meters: H Flow Rate: 50	IW-11S 2:20 pm olnist Peri-pump oriba U52 and w 00 ml/min		Analyzed: (2) 1L Amber	glass bottles for 1,4	Dioxane			
Observations								
	perature: Sunr							
Description:		no odor, no she						
Free Prod		_		describe				
	een? yes	_		describe				
C	odor? yes	_	no X	describe				

SITE Wantagh	Cleaners, Wanta	agh, NY	[DATE: <u>9/26/2018</u>		
WELL ID:	MANA/ O1S					
WELL ID: _ PERSONNEL:						
I LINGOININEL.	Tara Judge					
Danish africall	/f	>	05.0	.C.#		
			<u>25.3</u> 8.88		_	
illiliai static w	ater lever (IIOIII to	op or casing)	<u>0.00</u>	· it.	_	
Purging Method			Well	Volume Calculation	on:	
Airlift	Ce	entrifugal		. casing: <u>16.48</u>	ft. of water x 0.16 =	2.68 gallons
Bailer		os. Displ.	3 in	. casing:		gallons
Submersible		eristaltic		ı. casing:	ft. of water x 0.65 =	gallons
Pump		nmb (Fom	X			
		ow)				
volume of water re	emoved:					
	gal.	>3 volumes:	ves	no X	purged dry? yes	no X
	9		,		g	_
Field Tests						
Volume (mL)	Temp (C°)	рН	Conductivity	Turbidity	Dissolved Oxygen	ORP
		'	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial	18.75	6.14	0.241	135	8.63	98
2,000	18.48	6.06	0.241	87.4	8.02	121
4,000	18.49	6.03	0.248	37.1	6.61	151
6,000	18.54	6.06	0.251	2.3	6.22	170
8,000	18.60	6.07	0.253	0	6.02	183
10,000	18.57	6.08	0.255	0	5.92	188
12,000	18.60	6.08	0.255	0	5.72	191
14,000	18.79	6.12	0.254	0	5.57	191
16,000	18.84	6.12	0.254	0	5.55	192
18,000	18.80	6.10	0.255	0	5.53	195
20,000 22,000	18.80 18.78	6.09 6.11	0.255 0.254	0	5.50 5.49	198 198
22,000	10.70	0.11	0.234	U	5.49	190
Sample ID: N	MW-01S		Analyzed:			
	2:45 pm		VOCs - (3) 40	ml VOAs		
	Solnist Peri-pump		()			
	Horiba U52 and w					
Flow Rate: 1	1,000 ml/min					
Obcomunting						
Observations Weather/Tem	nerature: Clau	dy, 60-75 F				
Description:		no odor, no sh				
	duct? yes	110 0001, 110 511		lescribe		
	neen? yes	_		lescribe		
	Odor? yes	_		lescribe		
•		_	110	iosoribo		

SITE Wantagh C	leaners, Want	agh, NY		DATE: <u>9/26/2018</u>	3	
	W-02I Ira Judge	_	_			
			<u>59.8</u>		<u>-</u>	
Purging Method Airlift Centrifugal Bailer Pos. Displ. Submersible Peristaltic Pump Pump (Low Flow)		2 in 3 in	I Volume Calculation casing: 50.71 casing:	on: ft. of water x 0.16 = ft. of water x 0.36 = ft. of water x 0.65 =	8.26 gallons gallons gallons	
volume of water remo	oved: gal.	>3 volumes:	yes	no X	purged dry? yes	no <u>X</u>
Field Tests						
Volume (mL)	Temp (c°)	pН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial	16.50	6.10	0.385	57.1	4.00	173
2,000	16.05	6.05	0.384	50.9	3.95	180
4,000	15.98	5.93	0.380	6.2	3.91	199
6,000	15.85	5.74	0.373	0	3.98	226
8,000	15.82	5.70	0.371	0	3.98	240
10,000	15.81	5.67	0.372	0	3.98	247
12,000	15.74	5.67	0.370	0	4.06	254
14,000	15.72	5.66	0.370	0	4.97	259
16,000	15.71	5.64	0.370	0	5.03	264
18,000	15.71	5.66	0.369	0	5.01	266
20,000	15.70	5.64	0.369	0	5.06	269
Sample Time: 10: Pump: Sol Meters: Hor	/-02I 00 am nist Peri-pump iba U52 and v 00 ml/min		Analyzed: VOCs - (3) 40) ml VOAs		
Observations Weather/Tempe Description:		udy, 60-75 F no odor, no sh	een			
Free Produ				describe		
	en? yes	_		describe		
	or? yes	_		describe		
	-	_				

SITE Wantagh Cle	eaners, Wanta	agh, NY		DATE: <u>9/26/2018</u>		
	V-02S ra Judge	_	_			
Depth of well (fro Initial static water						
Purging Method Airlift Bailer Submersible Pump	Po Po Po	entrifugalos. Displeristaltic ump (Low ow)	2 ir 3 ir	I Volume Calculation 1. casing: 16.27 1. casing: 16.27 1. casing: 16.27	_ft. of water x 0.16 = _ft. of water x 0.36 =	2.65 gallons gallons gallons
volume of water remo	oved: gal.	>3 volumes: y	/es X	no	purged dry? yes	no <u>X</u>
Field Tests						
Volume (mL)	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial	18.49	6.28	0.167	27.5	6.15	0
3,000	18.51	6.33	0.127	0.0	4.50	2
6,000	18.60	6.32	0.124	0.0	4.19	4
9,000	18.71	6.33	0.115	0.0	7.79	18
11,000	18.66	6.31	0.110	0.0	7.60	22
13,000	18.68	6.30	0.110	0.0	7.46	21
15,000	18.68	6.31	0.109	0.0	7.29	21
17,000	18.66	6.31	0.108	0.0	7.00	21
Sample Time: 9:15 Pump: Soln Meters: Hori	-02S 5 am hist Peri-pump ba U52 and w 10 ml/min		<u>Analyzed:</u> VOCs - (3) 40) ml VOAs		
	Clear,	dy, 60-75 F no odor, no she - -	no X no X	describe describe describe		

SITE Wantagh C	leaners, Wanta	agh, NY		DATE: 9/26/2018		
	W-03S ara Judge					
	· J					
			25		_	
initial static wat	er level (from to	op of casing)	9.5	ο8 π.	=	
Purging Method			We	ell Volume Calculatio	on:	
Airlift	C	entrifugal		in. casing: 15.8	ft. of water x 0.16 =	2.57 gallons
Bailer		os. Displ.			ft. of water x 0.36 =	gallons
Submersible		eristaltic	4	in. casing:	ft. of water x 0.65 =	gallons
Pump		ump (Low	X			
=	FI	ow)				
volume of water rem	ovod:					
7.39	gal.	>3 volumes:	ves X	no	purged dry? yes	no X
	. ga	o volumos.)00 <u>//</u>		pargod ary. you	
Field Tests						
Volume (mL)	Temp (c°)	рН	Conductivity	Turbidity	Dissolved Oxygen	ORP
	. , ,	·	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial	18.90	6.33	0.328	92.8	5.98	-45
2,000 4,000	18.72 18.70	6.35	0.322	22.8	4.99	-49 57
6,000	18.80	6.43 6.43	0.282 0.276	0	3.76 1.69	-57 -56
8,000	18.79	6.41	0.260	0	1.00	-61
10,000	18.78	6.42	0.261	0	0.99	-62
12,000	18.76	6.49	0.252	0	0.71	-65
14,000	18.70	6.47	0.248	0	0.27	-64
16,000	18.65	6.44	0.240	0	0.15	-63
18,000	18.65	6.48	0.234	0	0.02	-66
20,000	18.75	6.45	0.226	0	0.00	-64
22,000	18.76	6.45	0.238	0	0.00	-67
24,000	18.76	6.45	0.226	0	0.00	-66
26,000	18.71	6.43	0.227	0	0.00	-66
28,000	18.73	6.46	0.227	0	0.00	-69
Sample Time: 12: Pump: So	V-03S 35 pm Inist Peri-pump riba U52 and w		<u>Analyzed:</u> VOCs - (3) 4	40 ml VOAs		
Observations Weather/Tempe		ıdy, 60-75 F				
Description:		no odor, no sh				
Free Produ		_	no X	describe		
	en? yes	_	no X	describe		
Oc	lor? yes	_	no X	describe		

SITE Wantag	h Cleaners, Want	agh, NY		DATE: 9/26/2018		
WELL ID:	MW-04I					
PERSONNEL:	Tara Judge	<u></u>				
		,		. = .		
	II (from top of casi				_	
initiai static v	water level (from to	op of casing)	<u>9.2</u>	/ π.	_	
Purging Method			We	ell Volume Calculation	on:	
Airlift	С	entrifugal		n. casing: <u>45.18</u>		7.36 gallons
Bailer		os. Displ.	3 i	n. casing:	ft. of water x 0.36 =	gallons
Submersible		eristaltic	4 i	n. casing:	ft. of water x 0.65 =	gallons
Pump		ump (Low	X			
	FI	ow)				
volume of water i	removed:					
5.81	gal.	>3 volumes:	ves	no X	purged dry? yes	no X
	ga	o volumos.		<u> </u>	pargod ary. you	
Field Tests				_		
Volume (mL)	Temp (c°)	рН	Conductivity	Turbidity	Dissolved Oxygen	ORP
	. , ,	·	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial	17.14	6.08	0.332	257	10.16	97
2,000	16.50	5.89	0.333	19.4	7.74	177
4,000 6,000	16.29 16.24	5.80 5.79	0.330 0.330	0	6.89 5.75	203 210
8,000	16.17	5.78	0.330	0	6.47	219
10,000	16.10	5.78	0.330	0	6.15	233
12,000	16.07	5.79	0.331	0	5.91	221
14,000	16.08	5.77	0.330	0	5.87	236
16,000	16.08	5.79	0.330	0	5.72	238
18,000	16.05	5.80	0.330	0	5.64	238
20,000	16.00	5.82	0.328	0	5.47	240
22,000	16.01	5.80	0.328	0	5.47	242
					<u> </u>	
	MW-04I		Analyzed:	0 ml \/O \ o		
	1:25 pm Solnist Peri-pump		VOCs - (3) 4	u mi voas		
	Horiba U52 and w					
Flow Rate:	1,000ml/min	10101				
	•					
Observations		–				
Weather/Ter		ıdy, 60-75 F				
Description:		no odor, no sh		1 9		
	oduct? yes	_		describe		
8	Sheen? yes	_		describe		
	Odor? yes	_	no X	describe		

SITE Wantagh C	leaners, Wanta	agh, NY	<u> </u>	DATE: <u>9/26/2018</u>		
	W-04S ara Judge		_			
			<u>25.:</u> 9.9			
Purging Method Airlift _ Bailer _ Submersible Pump	Po Po Po	entrifugal os. Displ. eristaltic ump (Low ow)	2 ir 3 ir	Il Volume Calculation n. casing: 15.34 n. casing: n. casing:	ft. of water x 0.16 = ft. of water x 0.36 = ft. of water x 0.65 =	2.50 gallons gallons gallons
volume of water rem 5.81	oved: gal.	>3 volumes:	yes	no X	purged dry? yes	no <u>X</u>
Field Tests						
Volume (mL)	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial	17.68	6.36	0.228	197	5.84	83
2,000	17.94	6.19	0.238	22.6	3.34	165
4,000	17.96	6.19	0.242	13.4	3.13	175
6,000	17.93	6.13	0.239	23	2.46	185
8,000	17.94	6.15	0.234	0	2.10	189
10,000	17.90	6.17	0.231	0	1.72	193
12,000	18.01	6.18	0.233	0	1.45	195
14,000	18.01	6.20	0.232	0	1.41	196
16,000	18.00	6.19	0.233	0	1.16	99
18,000	18.02	6.19	0.232	0	1.08	200
20,000	18.05	6.18	0.231	0	1.00	201
22,000	18.04	6.19	0.229	0	0.99	201
Sample Time: 11: Pump: So	V-04S 30 nist Peri-pump riba U52 and w		Analyzed: VOCs - (3) 40	ml VOAs		
	Clear,	idy, 60-75 F no odor, no she - -	no X no X	describe describe describe		

SIIE Wantagh	Cleaners, Wanta	agh, NY	<u></u>	DATE: 9/24/2018		
WELL ID: _		_	<u> </u>			
			<u>16.</u> <u>11</u> .			
Purging Method Airlift Bailer Submersible Pump	Po Po Po	entrifugal os. Displ. eristaltic ump (Low ow)	2 ii 3 ii	Il Volume Calculatio n. casing: 5.51 n. casing: n. casing:	ft. of water x 0.16 = _ft. of water x 0.36 =	0.898 gallons gallons gallons
volume of water re 2.69		>3 volumes:	yes <u>X</u>	no	purged dry? yes	no X
Field Tests		•	•	+		
Volume (mL)	Temp (c°)	pН	Conductivity	Turbidity	Dissolved Oxygen	ORP
Initial	19.84	7.89	(ms/cm) 0.602	(NTUs) 1000	(mg/l) 0.88	(mv) -194
2,000	19.64	7.62	0.602	1000	3.39	-19 4 -150
4,000	19.67	7.35	0.369	1000	6.44	-108
6,000	19.61	7.23	0.347	1000	6.05	-87
8,000	19.59	7.15	0.339	354	5.37	-73
10,000	19.58	7.15	0.342	394	5.31	-73
12,000	19.59	7.12	0.339	264	4.93	-68
14,000	19.58	7.12	0.335	243	4.70	-64
16,000	19.58	7.10	0.334	210	4.70	-63
18,000	19.58	7.10	0.332	186	4.44	-62
20,000	19.58	7.10	0.331	176	4.37	-62
22,000	19.58	7.10	0.330	200	4.29	-61
24,000	19.55	7.09	0.327	129	3.55	-57
26,000	19.56	7.10	0.328	102	3.45	-51
Sample ID: M Sample Time: 1 Pump: S Meters: H	IW-05S 2:40 pm olnist Peri-pump oriba U52 and w ,000 ml/min		<u>Analyzed:</u> VOCs – (3) 4(PFAS - (2) 25	•		
Observations						
Weather/Temp		idy, 60-75 F				
Description:		no odor, no she				
Free Prod		_		describe		
	een? yes	<u> </u>		describe 		
C	odor? yes	_	no X	describe		

SITE Wantagh C	leaners, Want	agh, NY	DATE	9/24/2018		
WELL ID: M	W-07I					
	ara Judge					
			<u>57.3</u>		-	
Initial static wat	er level (from to	op of casing)	9.75	oft.	-	
Purging Method			We	II Volume Calculatio	ın·	
Airlift	C	entrifugal		n. casing: 47.56	ft. of water x 0.16 =	7.75 gallons
Bailer		os. Displ.			ft. of water x 0.36 =	gallons
Submersible		eristaltic		n. casing:	ft. of water x 0.65 =	gallons
Pump		ump (Low	X			
-		ow)				
volume of water rem	noved:					
7.5	gal.	>3 volumes:	yes	no X	purged dry? yes	no X
	-		<u> </u>			
Field Tests		1			1	
Volume (mL)	Temp (c°)	pН	Conductivity	Turbidity	Dissolved Oxygen	ORP
Initial	15.80	6.38	(ms/cm) 0.317	(NTUs) 1000	(mg/l) 4.37	(mv) 146
3,000	15.69	6.29	0.317	1000	4.02	159
6,000	15.67	6.30	0.327	450	4.52	160
9,000	15.81	6.37	0.333	800	3.29	157
10,500	15.75	6.30	0.324	500	3.28	181
12,000	15.66	6.29	0.325	193	3.27	182
13,500	15.65	6.28	0.325	177	3.24	183
15,000	15.65	6.28	0.324	142	3.36	184
16,500	15.61	6.23	0.324	125	3.32	188
18,000	15.59	6.23	0.325	125	3.32	184
19,500	15.56	6.24	0.325	170	3.40	190
21,000	15.56	6.24	0.324	90.1	3.41	191
22,500	15.55	6.26	0.326	75.5	3.48	190
24,000	15.54	6.24	0.325	77.3	3.55	191
25,500 27,000	15.54 15.53	6.23 6.23	0.325 0.324	52.3 50.1	3.42 3.46	193 182
28,500	15.51	6.22	0.325	55.1	3.48	193
20,300	10.51	0.22	0.020	55.1	3.40	190
	V-07I		Analyzed:			
•	:10 am		VOCs - (3) 40			
	Inist Peri-pump			0 mL plastic bottles		
	riba U52 and w 100 ml/min	ater ievei	1,4-DIOXANE	E - (2) 1 L Amber		
i low ixate. 1,0	700 1111/111111					
Observations						
Weather/Tempe	erature: Clou	ıdy, 60-75 F				
Description:		no odor, no sh				
Free Produ		_		describe		
	en? yes	_	· · · · · · · · · · · · · · · · · · ·	describe		
Oc	lor? yes	_	no X	describe		

SITE Wantagh C	leaners, Wanta	agh, NY		DATE: <u>9/24/2018</u>			
	W-07S ara Judge	_	_				
			<u>19.2</u>				
Purging Method Airlift Bailer Submersible Pump	Po Po Po	entrifugal os. Displ. eristaltic ump (Low ow)	2 ir 3 ir	Il Volume Calculation n. casing: 9.3 n. casing: n. casing:	: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =		gallons gallons gallons
volume of water rem 7.5		>3 volumes:	yes X	no	purged dry? yes	no	X
Field Tests							
Volume (mL)	Temp (c°)	рН	Conductivity	Turbidity	Dissolved Oxygen	OF	
. ,			(ms/cm)	(NTUs)	(mg/l)	(m	,
Initial	19.69	7.52	0.476	1000	3.15	-13	
1,500	19.68	6.85	0.386	516	0.57	-8	
3,000	19.56	6.81	0.373	600	0.28	-8	
4,500	19.53	6.77	0.368	173	0.09	-7	
6,000	19.48	6.78	0.367	160	0.01	-8	
7,500	19.43	6.77	0.365	117	0.00	-8	2
9,000	19.43	6.77	0.366	86	0.00	-8	4
10,500	19.44	6.75	0.363	90.1	0.00	-8	3
12,000	19.42	6.77	0.366	60.8	0.00	-8	4
Sample Time: 11: Pump: Sol Meters: Ho	V-07S 20 am nist Peri-pump riba U52 and w) ml/min			0 ml VOAs 0 mL plastic bottles 5 - (2) 1 L Amber			
	Clear,	dy, 60-75 F no odor, no she - -	no X no X	describe describe describe			

SITE Wantagh Cle	eaners, Wanta	ıgh, NY	_ DATE	9/24/2018		
	V-08S ra Judge	_	_			
Depth of well (fro Initial static water						
Purging Method Airlift Bailer Submersible Pump	Po Pe X Pu	entrifugal _ os. Displ oristaltic Imp (Low ow) _	2 ir 3 ir	Il Volume Calculation n. casing: 8.58 n. casing: n. casing:	: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =	gallons gallons gallons
volume of water remo	oved: gal.	>3 volumes: y	/es	no X	purged dry? yes	no <u>X</u>
Field Tests						
Volume (mL)	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial	20.59	6.64	0.435	200	2.86	-50
1,000	20.63	6.62	0.430	220	1.96	-46
2,000	20.73	6.61	0.431	109	0.00	-44
3,000	20.67	6.59	0.424	51.7	0.00	-41
4,000	20.62	6.59	0.423	46.7	0.00	-43
5,000	20.66	6.59	0.423	10.3	0.00	-41
6,000	20.64	6.59	0.421	22.9	0.00	-43
7,000	20.62	6.61	0.422	75.6	0.00	-44
Sample Time: 3:30 Pump: Solr Meters: Hori	-08S) pm nist Peri-pump ba U52 and w ml/min		1,4-DIOXANE	0 ml VOAs 0 mL plastic bottles - (2) 1 L Amber ected and Blind Dupli	cate for PFAS	
	Clear, r	dy, 60-75 F no odor, no she - -	no X no X	describe describe describe		

SITE Wantagh	Cleaners, Wanta	agh, NY		DATE: <u>9/24/2018</u>		
	MW-09S					
PERSONNEL:	Tara Judge					
			<u>18.</u> <u>10:</u>		- -	
Purging Method			We	ell Volume Calculatio	n:	
Airlift	C	entrifugal		n. casing: 8.46	ft. of water x 0.16 =	1.38 gallons
Bailer		os. Displ.		n. casing:	ft. of water x 0.36 =	gallons
Submersible	P	eristaltic	4 i	n. casing:	ft. of water x 0.65 =	gallons
Pump		ump (Low	X			
	FI	ow)				
volume of water re 4.13	moved: gal.	>3 volumes:	yes X	no	purged dry? yes	no <u>X</u>
Field Tests						
	Tomp (o°)	ъЦ	Conductivity	Turbidity	Dissolved Oxygen	ORP
Volume (mL)	Temp (c°)	рН	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial	22.47	7.31	0.185	1000	3.18	32
1,000	21.49	7.04	0.183	1000	3.05	51
2,000	21.35	6.99	0.176	508	4.95	65
3,000	21.31	6.98	0.175	195	5.00	75
4,000	21.29	6.97	0.176	100	6.30	80
5,000	21.28	6.96	0.175	85	6.97	82
6,000	21.41	7.00	0.177	48.2	7.33	77
7,000	21.41	7.02	0.175	58.2	7.22	79
8,000	21.40	7.03	0.177	34.2	7.11	80
9,000	21.45	6.99	0.174	20.5	7.00	84
10,000	21.50	6.88	0.184	450	2.81	85
11,000	21.47	6.76	0.180	330	1.65	100
12,000	21.55	6.84	0.180	208	1.64	99
13,000	21.50	6.80	0.181	190	2.23	98
Sample Time: 2: Pump: S Meters: H	IW-09S :30 pm olnist Peri-pump oriba U52 and w 33 ml/min			0 ml VOAs 50 mL plastic bottles E - (2) 1 L Amber		
Weather/Temp	perature: Clou	ıdy, 60-75 F				
Description:		no odor, no sh	een			
Free Prod		5451, 110 511	no X	describe		
	een? yes	_	$\frac{10}{N}$	describe		
	odor? yes	<u> </u>	no X	describe		
		_				

SITE Wantagh Cl	eaners, Wanta	agh, NY		DATE: <u>9/24/2018</u>			
WELL ID: MV	V-10S						
	ra Judge						
I LINGOININEL. Ia	ia Judge		<u> </u>				
Depth of well (fro	m top of casir	ng)	18.4	0 ft.			
Initial static wate	r level (from to	p of casing)	<u>10.4</u>	9 ft.			
Purging Method	0			Volume Calculation		4.00	
Airlift		entrifugal		. casing: 7.91	_ft. of water x 0.16 =	1.29	•
Bailer Submersible		os. Displ. eristaltic		. casing: . casing:	_ft. of water x 0.36 = ft. of water x 0.65 =		gallons gallons
Pump		imp (Low	X 4 III	i. casing.	_it. of water x 0.65 =		gallons
rump		ow)	^				
		,					
volume of water remo	oved:						
3.87	gal.	>3 volumes:	yes	no X	purged dry? yes	no	Χ
Field Tests		-	0 1 11 11		 		
Volume (mL)	Temp (c°)	Нq	Conductivity	Turbidity	Dissolved Oxygen		RP
\	- ` '	6.65	(ms/cm)	(NTUs)	(mg/l)		1V)
Initial 1,500	20.00 20.57	6.58	0.478 0.419	393 116	4.39 3.33		'8 13
3,000	20.56	6.55	0.406	79.5	1.53		26
4,500	20.56	6.53	0.405	58.5	1.26		39
6,000	20.57	6.54	0.398	55.0	1.06		40
7,500	20.50	6.55	0.408	29.8	1.21		39
9,000	20.54	6.54	0.402	18.8	0.72		45
10,500	20.55	6.52	0.413	12.8	0.76	14	48
12,000	20.52	6.53	0.406	9.2	1.82		52
13,500	20.53	6.53	0.409	8.5	1.63	1;	52
					<u> </u>		
	-10S (MS/MS	D collected)	Analyzed:				
	pm		VOCs - (3) 40				
	nist Peri-pump			mL plastic bottles			
	ba U52 and w	ater level	1,4-DIOXANE	- (2) 1 L Amber			
Flow Rate: 500	ml/min						
Observations							
Weather/Temper	ature: Clou	dy, 60-75 F					
Description:		no odor, no she	en				
Free Produc		3401, 110 0110		lescribe			
	n? yes	_		lescribe			
	or? yes	=		lescribe			
0.00	,	_					

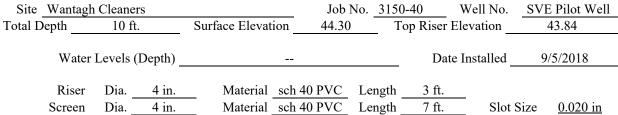
SITE Wantagh	Cleaners, Wanta	igh, NY		DATE: 9/26	/2018	
	/IW-11S ara Judge		_			
	from top of casir ter level (from to					
Purging Method Airlift Bailer Submersible Pump	Po Po Po	entrifugal os. Displ. eristaltic ump (Low ow)	<u> </u>	Well Volume Cald 2 in. casing: 9 3 in. casing: 4 in. casing:	ft. of water x 0.16 = ft. of water x 0.36 =	
volume of water rer 4.75	noved: _ gal.	>3 volumes:	yes	no X	purged dry? yes	no <u>X</u>
Field Tests						
Volume (mL)	Temp (c°)	рН	Conductivity (ms/cm)	y Turbidit (NTUs		ORP (mv)
Initial	20.63	6.21	0.591	247	6.03	5
2,000	20.62	6.20	0.587	85.3	4.21	6
4,000	20.61	6.21	0.561	76.1	3.34	7
6,000	20.55	6.21	0.549	55.6	2.73	-16
8,000	20.51	6.23	0.544	15.6	2.22	-25
10,000	20.47	6.23	0.539	0	1.85	-28
12,000	20.45	6.23	0.537	0	1.46	-30
14,000	20.46	6.23	0.536	0	1.25	-34
16,000	20.44	6.24	0.539	0	1.03	-41
18,000	20.42	6.24	0.532	0	0.92	-41
Sample Time: 10 Pump: So Meters: Ho	W-11S 0:45 am olnist Peri-pump oriba U52 and w 000 ml/min		PFAS - (2)) 40 ml VOAs 250 mL plastic b NE - (2) 1 L Amb		
	Clear,	dy, 60-75 F no odor, no she - -	no X no X no X	describe describe describe		

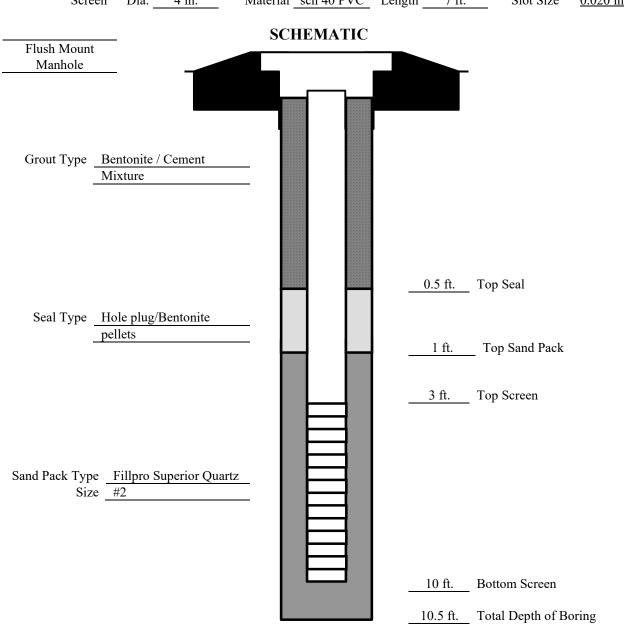
FIELD OBSERVATION LOG FOR 1,4-DIOXANE MONITORING WELL SAMPLE RECORD

SITE Wantagh C	leaners, Want	agh, NY		DATE 10/30/2018	}	
WELL ID: M PERSONNEL: Ta		_				
			<u>17.</u> <u>10</u> .			
Purging Method Airlift Bailer Submersible Pump	Pi Pi	entrifugal os. Displ. eristaltic ump (Low ow)	2 i	ell Volume Calculation n. casing: 6.44 n. casing: in. casing:	n: _ft. of water x 0.16 = _ft. of water x 0.36 = _ft. of water x 0.65 =	1.04 gallons gallons gallons
volume of water rem	oved: gal.	>3 volumes:	yes X	no	purged dry? yes	no X
Field Tests						
Volume (mL)	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial	19.57	5.93	0.003	507	7.16	76
1,000	19.96	6.34	0.003	510	7.56	-10
2,000	20.12	6.62	0.003	529	7.76	-26
3,000	20.15	6.70	0.003	536	7.76	-34
4,000	20.20	6.66	0.003	530	7.82	-34
5,000	20.22	6.68	0.003	518	8.24	-35
6,000	19.89	6.64	0.278	104	3.82	-35
7,000	20.02	6.75	0.280	61.8	3.74	-41
8,000	20.06	6.77	0.281	34.6	3.64	-41
9,000	20.11	6.82	0.282	18.4	3.64	-44
10,000	20.12	6.83	0.282	13.0	3.65	-44
Sample Time: 8:1 Pump: So Flow Rate: 500	V-05S 0AM Inist Peri-pump 0 ml/min riba U52 and w		Analyzed: (2) 1L Amber	glass bottles for 1,4	Dioxane	
	Clear,	ny, 40-50 F no odor, no sho - -	no X no X no X	describe describe describe		

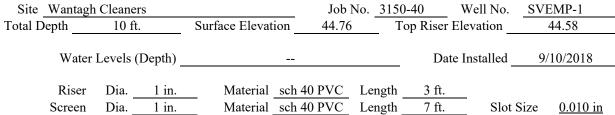
SITE Wantagh	Cleaners, Want	agh, NY		DATE 10/30/2018			
WELL ID: N	/W-07I						
PERSONNEL: T							
	from top of casi						
miliai static wa	ter level (from t	op or casing)	<u> </u>).91 II.			
Purging Method				Well Volume Calculation	:		
Airlift		entrifugal				7.94	gallons
Bailer		os. Displ.		3 in. casing:	_ft. of water x 0.36 =		gallons
Submersible		eristaltic		4 in. casing:	_ft. of water x 0.65 =		gallons
Pump		ump (Low low)	X				
volume of water rer	moved:						
4.22	_ gal.	>3 volumes:	yes	no X	purged dry? yes	no	X
Field Tests							
Volume (mL)	Temp (c°)	рН	Conductivity	y Turbidity	Dissolved Oxygen	OF	₹P
. ,	. , ,		(ms/cm)	(NTUs)	(mg/l)	(m	
Initial	17.03	6.94	0.406	10.8	4.82	-6	
1,500	16.70	6.34	0.408	9.1	4.83	30	
3,000 4,500	16.13 15.95	5.97 5.91	0.405 0.404	8.2 6.6	4.67 4.69	<u>8</u> 2	
6,000	15.74	5.80	0.404	5.3	4.70	11	
7,500	15.74	5.79	0.405	3.1	4.72	12	
9,000	15.73	5.79	0.405	3.6	4.64	13	
10,500	15.73	5.81	0.405	2.9	4.79	13	
12,000	15.75	5.81	0.406	2.9	4.71	14	
13,000	15.80	5.81	0.407	1.9	4.70	14	
14,000	15.85	5.82	0.407	2	4.70	15	
15,000	15.84	5.80	0.407	0.9	4.70	16	
16,000	15.85	5.80	0.407	1.1	4.70	16	
· · · · · · · · · · · · · · · · · · ·					1		
Sample ID: M	W-07I		Analyzed:				
):20 am			er glass bottles for 1,4 l	Dioxane		
	olnist Peri-pump)	(_/ :_:::::	J			
	33 ml/min .						
Meters: Ho	oriba U52 and v	vater level					
Observations							
Weather/Temp		ny, 40-50 F					
Description:		no odor, no sh					
Free Prod		_	no X	describe			
	een? yes	_	no X	describe			
O	dor? yes	_	no X	describe			

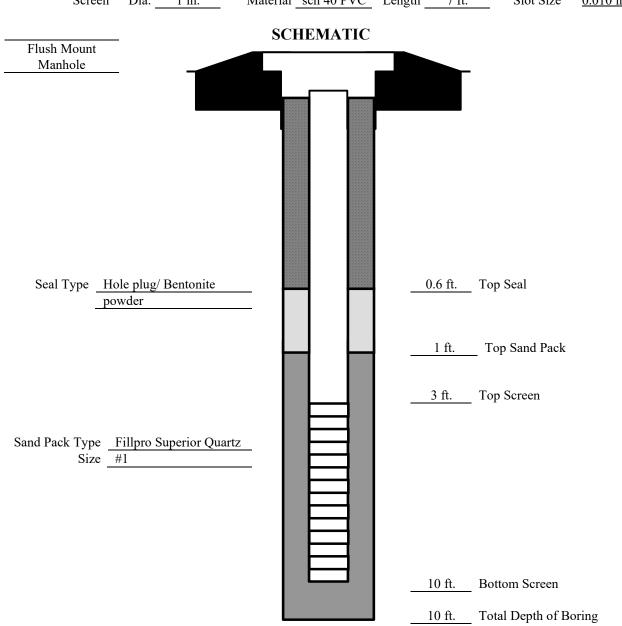
SITE Wantagh	n Cleaners, Wanta	agh, NY	<u> </u>	DATE 10/30/2	018		
WELL ID:							
PERSONNEL: _	Tara Judge						
D 11 (11	/f		40	04.6			
			<u>19.</u> 9.1				
milai otalio w		pp or odollig)	<u>0.1</u>	0 11.	<u>—</u>		
Purging Method				Il Volume Calcula		4.04	
Airlift Bailer		entrifugal		n. casing: 9.8			gallons
Bailer Submersible		os. Displ. eristaltic		n. casing: n. casing:	ft. of water x 0.36 = ft. of water x 0.65 =		gallons gallons
Pump	Pt	ump (Low ow)	X	n. casing	it. or water x 0.05 =		galloris
		,					
volume of water re	emoved: gal.	>3 volumes:	VAS	no X	purged dry? yes	no	Χ
	gai.	-5 volunics.	ycs	110	purged dry: yes		
Field Tests							
Volume (mL)	Temp (c°)	рН	Conductivity	Turbidity	Dissolved Oxygen	OF (rea	
Initial	18.84	6.54	(ms/cm) 0.446	(NTUs) 116	(mg/l) 0.79	<u>(m</u> -5	
1,000	18.99	6.55	0.447	325	0.61	<u>-5</u> -5	
2,000	19.17	6.59	0.446	376	0.52	-6	
3,000	19.20	6.59	0.447	141	0.50	-7	1
4,000	19.19	6.58	0.447	50.9	0.51	-7	1
5,000	19.20	6.58	0.443	25.3	0.45	-7	
6,000	19.24	6.58	0.443	9.1	0.44	-7	
7,000	19.21	6.58	0.442	11.6	0.41	<u>-7</u>	
8,000	19.20	6.59	0.439	0.9	0.52	-7	
9,000 10,000	19.20 19.21	6.59 6.59	0.440 0.441	0.5 0.6	0.62 0.66	-7 -7	
11,000	19.18	6.59	0.440	1.0	0.59	- <i>1</i>	
12,000	19.16	6.59	0.441	1.5	0.50	-8	
12,000	10.10	0.00	0.111	1.0	0.00		<u> </u>
Sample ID:	MW-07S		Analyzed:				
	11:00 am			glass bottles for 1	1,4 Dioxane		
	Solnist Peri-pump		()	5			
	500 ml/min						
Meters: I	Horiba U52 and w	ater level					
Observations							
Weather/Tem	nperature: <u>S</u> uni	ny, 40-50 F					
Description:		no odor, no she					
	oduct? yes	_		describe			
	heen? yes	_		describe			
(Odor? yes	_	no X	describe			

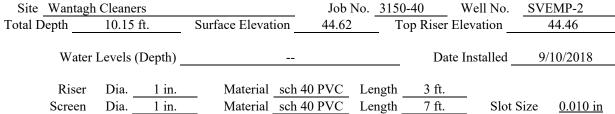

SITE Wantagh Cl	eaners, Wanta	igh, NY		DATE: 10/30/2	2018		
	V-08S ra Judge		_				
Depth of well (fro Initial static water					<u></u>		
Purging Method Airlift Bailer Submersible Pump	 Рс Рс	entrifugal os. Displ. eristaltic ımp (Low ow)	<u> </u>	Well Volume Calcul 2 in. casing: 9.13 3 in. casing: 4 in. casing:	ft. of water x 0.16 = ft. of water x 0.36 =	1.49	gallons gallons gallons
volume of water remo		>3 volumes:	yes	no X	purged dry? yes	no	X
Field Tests			-				
Volume (mL)	Temp (c°)	рН	Conductivity		Dissolved Oxygen	OF	
. ,			(ms/cm)	(NTUs)	(mg/l)		1V)
Initial 1,000	18.90 18.95	6.55 6.54	0.541 0.540	110 105	1.10	-7 -7	
2,000	19.31	6.49	0.535	78.1	0.89	- <i>1</i> -7	
3,000	19.65	6.46	0.515	47	0.60		88
4,000	19.72	6.43	0.510	23.2	0.53		67
5,000	16.67	6.44	0.509	19.9	0.53		69
6,000	19.65	6.43	0.512	15.5	0.49	<u></u>	
	19.63	6.42	0.512		0.49	<u>-6</u>	-
7,000 8,000	19.63	6.43	0.513	13.3 12.7	0.49		69
Sample ID: MW Sample Time: 9:15 Pump: Solr Flow Rate: 500	-08S (MS/MSI	O collected)	Analyzed:	per glass bottles for			15
	Clear, ı	ny, 40-50 F no odor, no she - -	no X no X no X	describe describe describe			

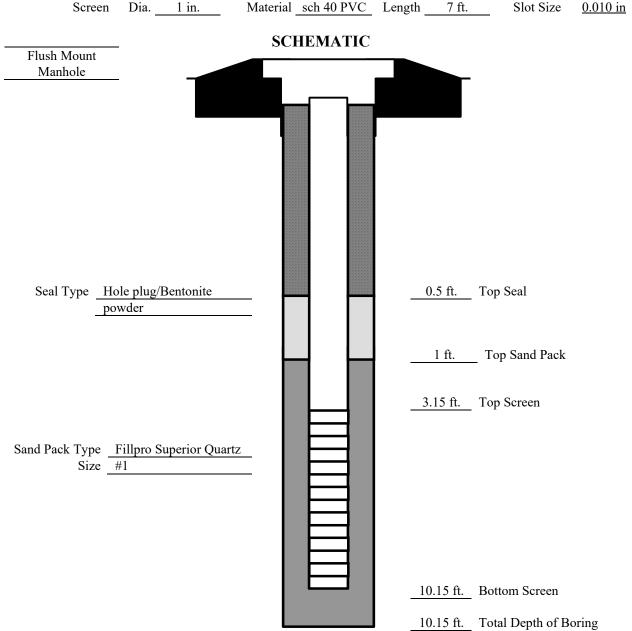

SITE Wantag	h Cleaners, Want	agh, NY		DATE 1	0/30/2018	3		
WELL ID: PERSONNEL:	MW-09S Tara Judge							
	ll (from top of casi water level (from to							
Purging Method Airlift Bailer Submersible Pump	P P	entrifugal os. Displ. eristaltic ump (Low ow)	_ :	Vell Volume C 2 in. casing: 3 in. casing: 4 in. casing:	9.19	ft. of water x 0.16 =	1.49	
volume of water i	removed: gal.	>3 volumes:	yes	no X	_	purged dry? yes	no	Χ
Field Tests								
Volume (mL)	Temp (c°)	рН	Conductivity (ms/cm)	Turb (NT	•	Dissolved Oxygen (mg/l)		RP nv)
Initial	15.93	6.78	0.229	34		5.47		20
1,000	15.92	6.73	0.225	18		5.25		-0
2,000	15.92	6.72	0.225	15	.5	5.18	4	.3
3,000	15.95	6.68	0.226	10	.9	5.13	5	50
4,000	15.95	6.65	0.225	11	.4	5.12	5	6
5,000	15.96	6.67	0.226	10	.4	5.05	6	52
6,000	15.98	6.66	0.226	9.	3	5.01	6	8
7,000	15.98	6.67	0.226	ç)	4.93	7	'0
8,000	15.99	6.65	0.225	0.	0	4.87	7	'5
9,000	16.00	6.65	0.226	0.	0	4.84	8	0
10,000	15.99	6.65	0.226	0.	0	4.83		'9
11,000	15.99	6.65	0.226	0.	0	4.86	8	<u> </u>
Sample Time: Pump:	MW-09S 1:40 pm Solnist Peri-pump Horiba U52 and v 500 ml/min		Analyzed: (2) 1L Amb	er glass bottle	es for 1,4	Dioxane		
Observations Weather/Ter Description:	Clear,	ny, 40-50 F no odor, no sh						
	oduct? yes	_	no X	describe				
S	Sheen? yes	_	no X	describe				
	Odor? yes	_	no X	describe				

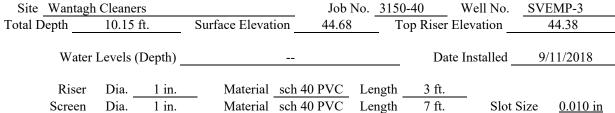
,	agh, NY		D/(1L1	0/30/2018			
		_					
Po Po Po	os. Displ. eristaltic ump (Low	x	2 in. casing: 3 in. casing:	8.45		1.37	gallons gallons gallons
	>3 volumes:	yes	no X	_	purged dry? yes	no	X
Temp (c°)	рΗ					_	
. , ,			· · · · · · · · · · · · · · · · · · ·				
				-			
18.87	6.37	0.527	5	.4	1.40	10)7
) pm nist Peri-pump iba U52 and w				es for 1,4 [Dioxane		
Clear, ct? yes		no X no X	describe describe describe				
	Temp (c°) 17.71 18.52 18.70 18.81 18.88 18.88 18.88 18.88 18.99 7-10S 7-10S 7-10S 7-10S 7-10S 8-10S 9-10S 9-10S	Temp (c°) pH 17.71 6.46 18.52 6.43 18.70 6.41 18.81 6.41 18.85 6.40 18.88 6.38 18.88 6.35 18.87 6.37 7-10S 0 pm nist Peri-pump riba U52 and water level 0 ml/min rature: Sunny, 40-50 F Clear, no odor, no she ct? yes en? yes ————————————————————————————————————	Centrifugal	Temp (c°) pH Conductivity (ms/cm) (NT 18.10 ft. 18.10 ft. 9.65 ft. 9.65 ft.	Temp (c°) PH Conductivity (ms/cm) (NTUs)	Tamp (c°) ph Conductivity Turbidity Dissolved Oxygen (mg/l)	Temp (c°) pH Conductivity Turbidity (mg/l) (m

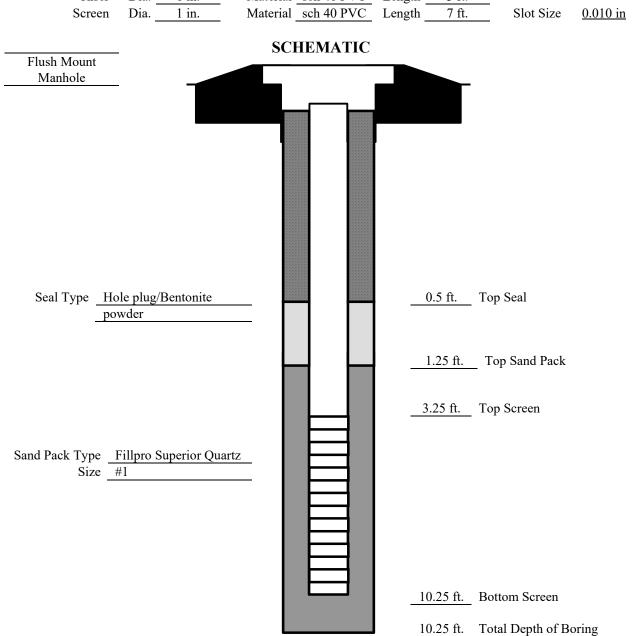

SITE Wantagh Cl	SITE Wantagh Cleaners, Wantagh, NY DATE: 10/30/2018						
WELL ID: M\	N-11S						
PERSONNEL: Ta	ra Judge						
Donth of wall (fre	om ton of again	, a)	10) 44 ft			
Depth of well (fro Initial static wate	or level (from to	ng) ng of casing)	Ω	71 ft			
illiliai Static Wate	i level (IIOIII ic	ip or casing)	<u>0.</u>	7 1 IL.			
Purging Method			W	ell Volume Calculation	:		
Airlift	Ce	entrifugal	2	in. casing: 9.60	ft. of water x 0.16 =	1.56	gallons
Bailer	Po	os. Displ.	3	in. casing:	ft. of water x 0.36 =		gallons
Submersible		eristaltic		in. casing:	_ft. of water x 0.65 =		gallons
Pump		ımb (Fom	X				
_		ow)					
volume of water remo	avod:						
2.6	gal.	>3 volumes:	ves	no X	purged dry? yes	no	Χ
	gui.	vo volumos.		110 <u>X</u>	purgou ury: you		
Field Tests							
Volume (mL)	Temp (c°)	рН	Conductivity	Turbidity	Dissolved Oxygen	OF	₹P
volume (mc)	. , ,		(ms/cm)	(NTUs)	(mg/l)		ıv)
Initial	18.24	6.39	0.742	205	1.46	-3	
1,000	18.25	6.41	0.740	108	1.47	-4	
2,000	18.45	6.40	0.720	3.3	1.42		52
3,000	18.51	6.43	0.697	4.1	1.18	-6	
5,000	18.52	6.44	0.695	1	1.21		36
6,000	18.55	6.44	0.709	1.3	1.20	-6 -7	
7,000 8,000	18.49 18.47	6.45 6.44	0.724 0.726	1.2 0.8	1.17 1.19	- <i>1</i> -7	
9,000	18.41	6.44	0.728	0.0	1.17	- <i>1</i> -7	
10,000	18.38	6.44	0.729	0.0	1.14	-7 -7	
10,000	10.50	0.44	0.723	0.0	1.17		<u> </u>
Sample ID: MW	/-11S		Analyzed:				
	20 pm		(2) 1L Ambe	er glass bottles for 1,4 I	Dioxane		
	nist Peri-pump						
	iba U52 and w	ater level					
Flow Rate: 500	ml/min						
Observations							
Weather/Tempe	rature: Sunr	ny, 40-50 F					
Description:		no odor, no she	en				
Free Produ		, 5	no X	describe			
	n? yes	_	no X	describe			
Odd	or? yes	- -	no X	describe			

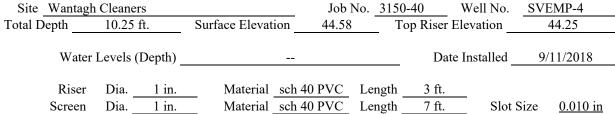


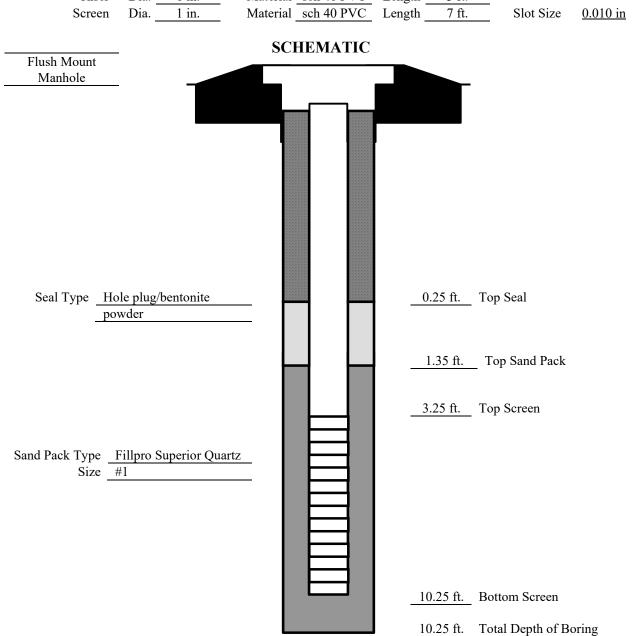


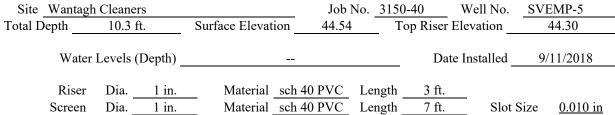


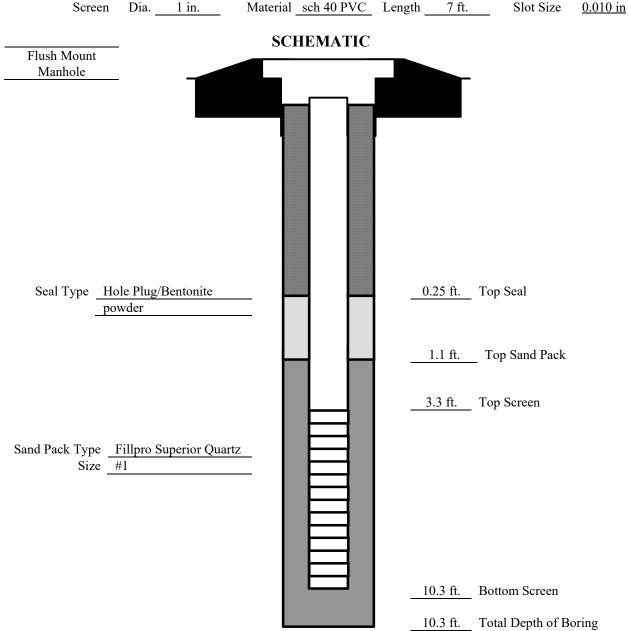


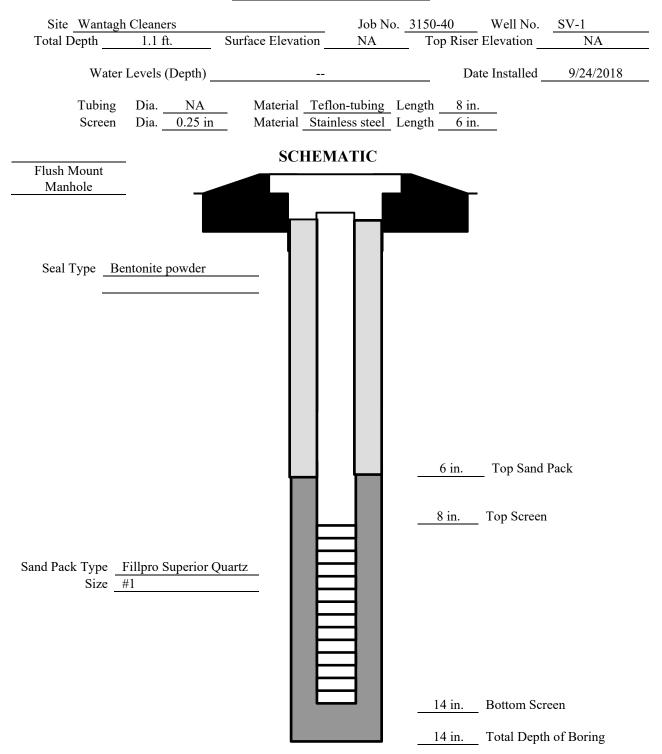


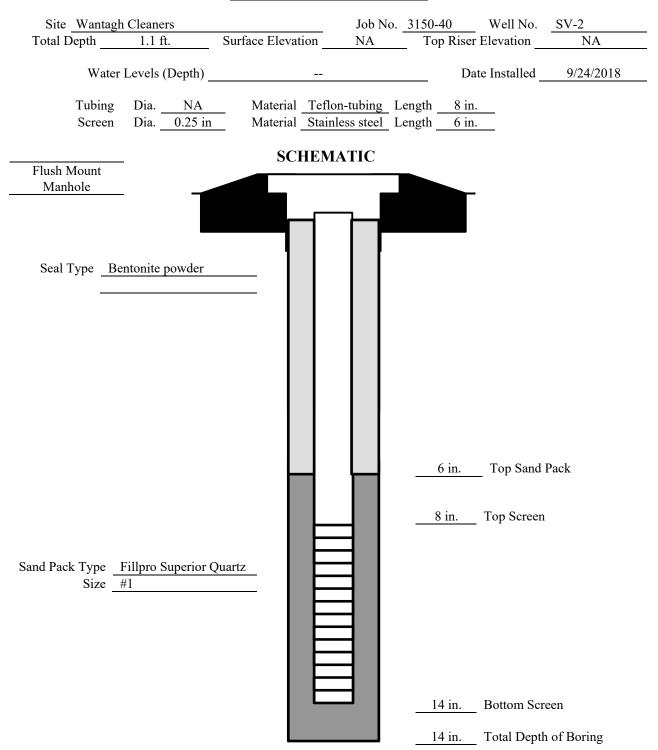




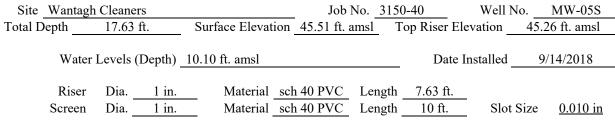


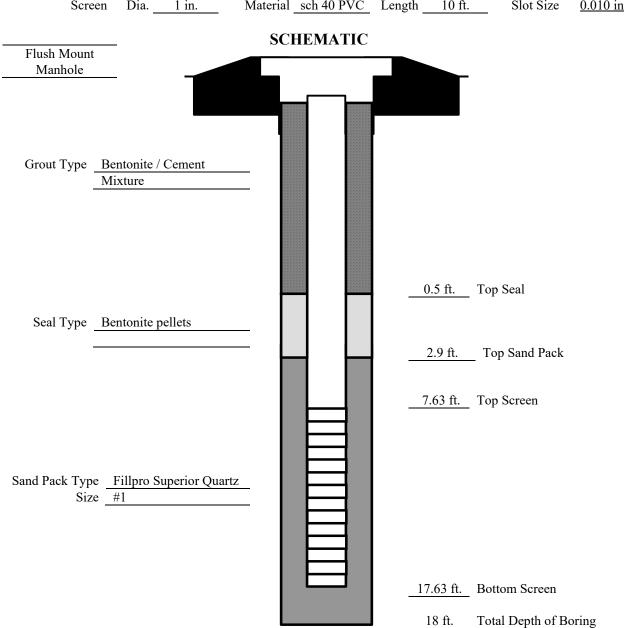




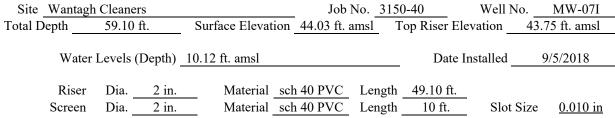


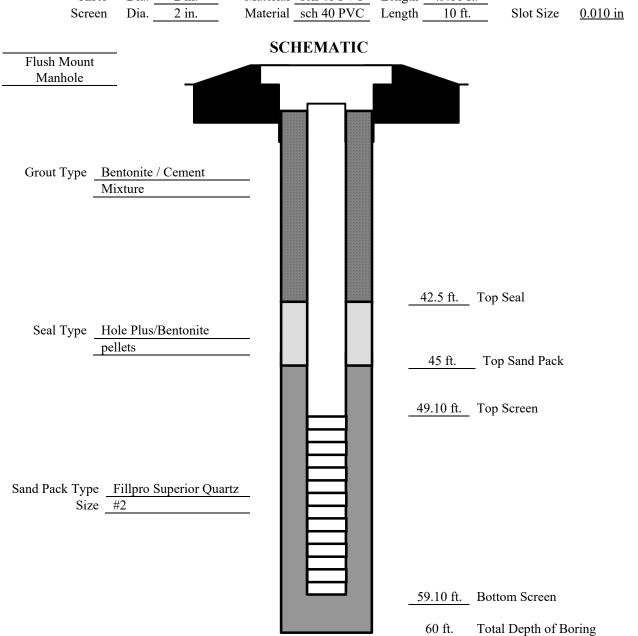
Soil Vapor Construction Log

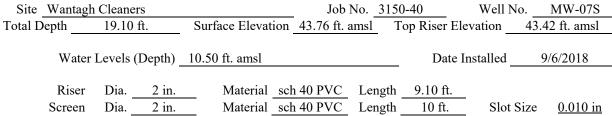


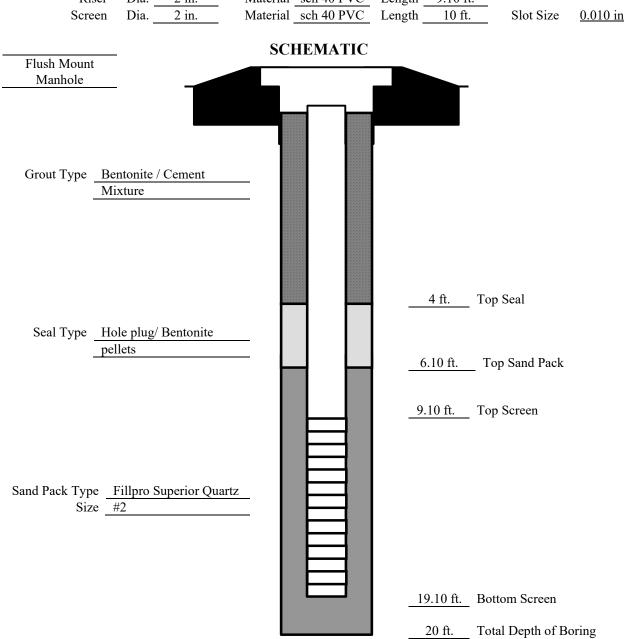


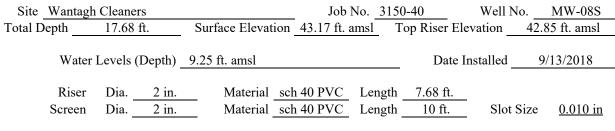
Soil Vapor Construction Log

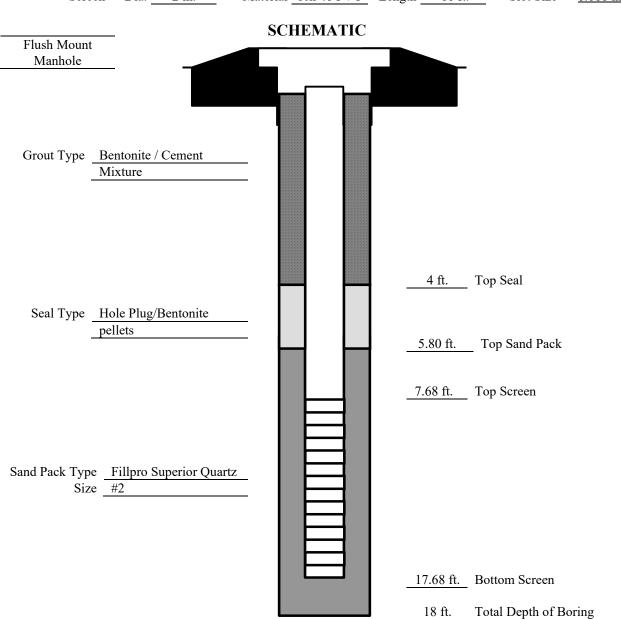


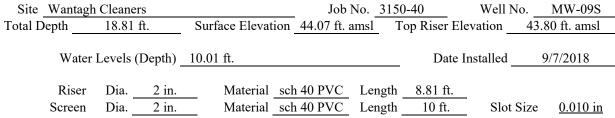


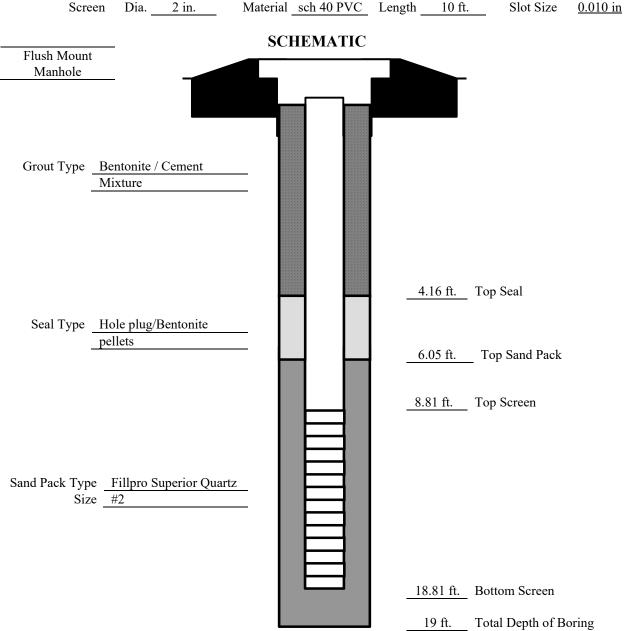


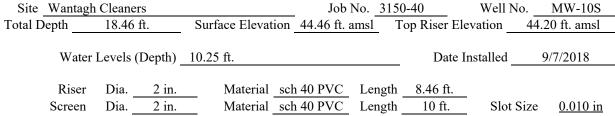


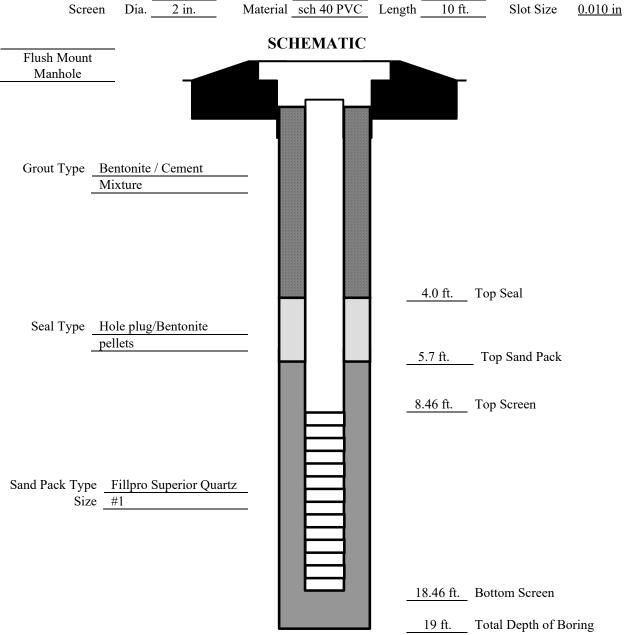


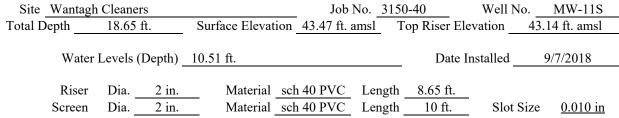


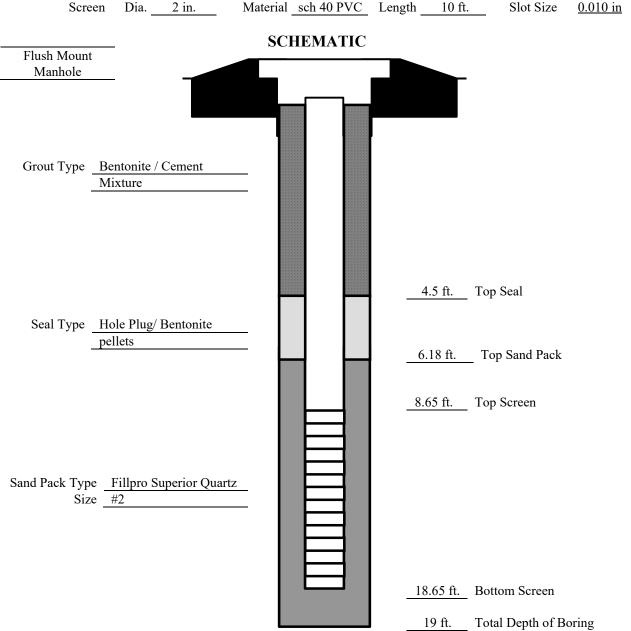












ON-SITE MONITORING WELL DEVELOPMENT LOGS

SITE Wantagh Clean	ers, Wanta	agh, NY		DATE 9/19/2018		
WELL ID: MW-0						
PERSONNEL: Tara J	udge					
Depth of well (from t	op of casir	na)	25.2	28 ft.		
Initial static water le					_	
	•	,			_	
Purging Method				I Volume Calculation		7.07 "
Airlift		entrifugal			ft. of water x 0.16 =	
Bailer Submersible		os. Displ. eristaltic			ft. of water x 0.36 = ft. of water x 0.65 =	gallons gallons
Pump X		ump (Low	4 11	i. casing.	it. or water x 0.05 =	gallons
7.		ow)				
						
volume of water removed						V
55 gal		>3 volumes:	yes X	no	purged dry? yes	no <u>X</u>
Field Tests						
Comments	Temp		Conductivity	Turbidity	Dissolved Oxygen	ORP
	(c°)	рН	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial reading	18.24	5.74	0.233	218	7.63	245
Pump set mid-screen	18.34	5.85	0.241	51.8	6.41	251
	18.41	5.87	0.242	38.2	6.03	253
	18.59	6.04	0.232	1000	5.31	247
	18.46	5.99	0.242	520	5.63	246
Commo to bottom	18.49	6.04	0.243	145	5.55	242
Surge to bottom	18.62	6.19	0.242	696	5.43	237
	18.49 18.40	6.11 6.11	0.243 0.239	19.4 390	5.43 5.29	242 246
	18.50	6.14	0.243	30.5	5.42	244
	18.48	6.11	0.243	7.5	5.40	243
Surge to bottom	18.45	6.17	0.243	3.5	5.42	239
<u> </u>	18.52	6.20	0.242	631	5.39	242
	18.51	6.17	0.244	60.7	5.41	244
	18.49	6.11	0.243	32.4	5.37	244
	18.49	6.18	0.243	25	5.41	243
	18.47	6.15	0.243	20.4	5.41	243
Meters: Horiba L Flow Rate: 4 gallons			thod			
Observations Weather/Temperatu	re. Parti	y Cloudy, 61-7	2 F			
Description:		no odor, no sh				
Free Product?		5 5 6 6 7 10 3 11		describe		
Sheen?		_		describe		
Odor?		- -	no X	describe		

Comments: Purge water contained in (1) 55-gallon drum.

Periodic surging was performed throughout the screened zone (15 to 25 ft) using 3/8*1/4 in. poly-tubing

SITE Wantagh Clean	ers, Want	agh, NY	DATE	9/19/2018		
WELL ID: MW-0: PERSONNEL: Tara J			_			
Depth of well (from t Initial static water lev					- -	
Purging Method Airlift Bailer Submersible Pump X	P P P	entrifugal os. Displ. eristaltic ump (Low ow)	2 ir 3 ir	I Volume Calculation casing: 50.55 casing:	ft. of water x 0.16 = _ft. of water x 0.36 =	
volume of water removed 65 gal		>3 volumes:	yes X	no	purged dry? yes	no <u>X</u>
Field Tests Comments	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial reading Pump set mid-screen	15.05 14.97	6.04 5.59	0.361 0.353	35.8	5.02	190 244
r ump set mid-screen	14.97	5.59	0.352	0.0	5.05	252
	15.27 14.96	5.59 5.54	0.352 0.351	250 6.0	5.01 5.05	264 278
	14.96	5.56	0.351	0.0	5.05	281
Surge to bottom	14.97	5.60	0.350	4	5.03	283
9	14.95	5.55	0.351	0.0	5.03	290
	17.01	6.01	0.261	198	4.44	108
	15.25	5.57	0.345	0.0	4.98	204
	15.02	5.63	0.349	0.0	4.96	230
Surge to bottom	15.05	5.61	0.351	321	4.94	253
	14.98	5.59	0.350	100	4.94	259
	14.95	5.55	0.350	2.3	4.95	266
	14.92	5.55	0.349	0.0	4.95	271
	14.93	5.53	0.349	0.0	4.97	278
Meters: Horiba U Flow Rate: 4 gallons Observations Weather/Temperatu Description: Free Product?	J52 and was per minurer:		7 F een no <u>X</u> (describe describe		
Sheen? y Odor? y		_	· · · · · · · · · · · · · · · · · · ·	describe		
Ouol :	y 03		110	10301IDE		

Comments: Purge water contained in (1.25) 55-gallon drum.

Periodic surging was performed throughout the screened zone (50 - 60 ft) using 3/8*1/4 in. poly-tubing.

SITE Wantagh Cleane	ers, Wanta	agh, NY	DATE	9/18/2018		
WELL ID: MW-02	S					
PERSONNEL: Tara Ju						
Donth of wall (from to	n of cacir	aa)	2	5 12 ft		
Depth of well (from to Initial static water leve	ıp oı casıı ≥l (from to	ng) on of casing)		145 ft		
milar statio water love	31 (110111 10	op or odoling)				
Purging Method				Vell Volume Calculation	:	
Airlift		entrifugal		2 in. casing: <u>16.29</u>	_ft. of water x 0.16 =	
Bailer	-	os. Displ.			_ft. of water x 0.36 =	gallons
Submersible Pump X		eristaltic ump (Low	4	4 in. casing:	_ft. of water x 0.65 =	gallons
Fullip A		ow)				
	•	···)				
volume of water removed:						
45 gal.		>3 volumes:	yes X	no	purged dry? yes	no X
Ciald Tasts						
Field Tests Comments	Temp		Conductivity	Turbidity	Dissolved Oxygen	ORP
Comments	(c°)	рН	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial reading	17.47	6.17	0.063	39	0.0	82
Pump set mid-screen	17.50	5.95	0.063	6.2	0.0	84
	17.51	5.90	0.065	0.0	0.0	78
	17.47	5.88	0.059	100	0.0	88
	17.54	6.03	0.076	0.6	0.0	53
	17.53	6.08	0.075	0.0	0.0	45
Surge to bottom	17.53	6.20	0.079	172.9	0.0	38
	17.56	6.23	0.079	50	0.0	33
	17.53	6.22	0.069	30	0.0	40
	17.56	6.25	0.068	4.5	0.0	30
Method:						
Purge Start: 5:00 pm						
Purge Stop: 5:35 pm						
•		ımp - Airlift Me	thod			
Meters: Horiba U5						
Flow Rate: 4 gallons	per minut	te (gpm)				
Observations						
Weather/Temperature	e: Rain	, 60-75 F				
Description:	Clear,	no odor, no sh	een			
Free Product? ye			no X	describe		
Sheen? ye		_	no X	describe		
Odor? ye		. (4) ==	no <u>X</u>	describe		
Comments: Purge water of Periodic surging was performed as the comments of the				6 to 26 ft) using 3/8*1/4	in. poly-tubing.	

SITE Wantagh Clean	ers, Wanta	agh, NY	<u>—</u>	DATE <u>9/18/2018</u>		
WELL ID: MW-03		<u></u>				
PERSONNEL: Tara J	udge					
Depth of well (from to	op of casir	na)	2	5.35 ft.		
Initial static water lev						
	`	. 37				
Purging Method				Vell Volume Calculation		
Airlift		entrifugal		2 in. casing: <u>15.99</u>	_ft. of water x 0.16 =	
Bailer	_	os. Displ.		3 in. casing:		gallons
Submersible		eristaltic	2	1 in. casing:	_ft. of water x 0.65 =	gallons
Pump X		ump (Low ow)				
	- ''	OW)				
volume of water removed	l:					
35 gal		>3 volumes:	yes X	no	purged dry? yes	no X
			<u> </u>		· · · · <u>—</u>	<u> </u>
Field Tests						
Comments	Temp	рН	Conductivity		Dissolved Oxygen	ORP
1 10 1 1	(c°)		(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial reading	17.32	6.00	0.202	400	0.00	18
Pump set mid-screen	17.36 17.60	6.00 6.28	0.203 0.147	210 357	0.00	14 -3
	17.56	6.21	0.147	24.7	0.00	-3 -22
	17.54	6.28	0.198	4	0.00	-27
	18.00	6.51	0.128	250	0.00	-49
Surge to bottom	17.48	6.39	0.196	60.3	0.00	-36
edige to bettern	17.57	6.54	0.197	5.5	0.00	-49
	17.50	6.52	0.190	189.7	0.00	-60
Surge to bottom	17.56	6.49	0.197	13	0.00	-48
<u> </u>	17.53	6.49	0.198	3.7	0.00	-51
	17.52	6.49	0.198	0.3	0.00	-49
Method:						
Purge Start: 4:30 pm						
Purge Stop: 5:15 pm Pump: Whale Pi	romium Dı	ımp - Airlift Me	thad			
	52 and wa		iriou			
Flow Rate: 4 gallons	per minut	e (gpm)				
Ŭ	•	ιο. ,				
Observations		_				
Weather/Temperatu		, 60-75 F				
Description:		no odor, no she		d		
Free Product? y		_	no X	describe		
Sheen? y	/es		no X	describe		

Odor? yes $\frac{1}{N}$ describe

Comments: Purge water contained in (1) 55-gallon drum.

Periodic surging was performed throughout the screened zone (16 to 26 ft) using 3/8*1/4 in. poly-tubing.

SITE Wantagh Clean	ers, Wanta	agh, NY		DATE <u>9/18/2018</u>		
WELL ID: MW-04 PERSONNEL: Tara J		_				
Depth of well (from t					_	
Initial static water lev	el (from to	op ot casing)	<u>9.45</u>	ο π.	=	
Purging Method Airlift		entrifugal	2 ir	l Volume Calculation. casing: 45.2	ft. of water x 0.16 =	7.36 gallons
Bailer		os. Displ.	3 ir	n. casing:	ft. of water x 0.36 =	gallons
Submersible Pump X		eristaltic ump (Low	4 ır	n. casing:	ft. of water x 0.65 =	gallons
-unip X		ow)				
volume of water removed 35 gal		>3 volumes:	yes X	no	purged dry? yes	no X
Field Tests	_	1	0 1 1: 11	T 1:10	B: O	000
Comments	Temp (c°)	pН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial reading	15.33	5.61	0.325	1000	5.37	198
Pump set mid-screen	15.02	5.61	0.320	56.5	5.13	220
	15.92	5.97	0.326	1000	5.00	217
	15.98	5.91	0.322	1000	5.06	222
	15.24	5.41	0.321	126	5.21	242
	15.15	5.53	0.322	146	5.11	257
Surge to bottom	14.98	5.63	0.322	0.0	5.04	265
<u> </u>	15.32	5.82	0.322	65.8	5.02	259
	15.75	5.88	0.322	200	4.99	261
Surge to bottom	16.16	5.83	0.323	224	4.98	252
-	16.07	5.80	0.323	150	5.00	249
	15.90	5.74	0.323	85	5.01	260
	15.97	5.81	0.320	6.8	5.02	256
	15.65	5.83	0.323	47.7	5.00	261
	15.80	5.83	0.322	15.3	4.99	260
Meters: Horiba U	remium Pu 52 and wa per minu		thod			
Observations Weather/Temperatu		ı, 60-75 F				
Description:		no odor, no sh				
Free Product?		_		describe		
Sheen?		_		describe		
Odor? y				describe		
Comments: Purge water Periodic surging was per	contained formed thr	in (1) 55-galloi oughout the sc	n arum. creened zone (45 t	o 55 ft) using 3/8*1	/4 in. poly-tubing	

SITE Wantagh Clean	ers, Wanta	agh, NY		DATE 9/19/2018	3	
WELL ID: MW-04	4S					
PERSONNEL: Tara J	udge					
Depth of well (from t	op of casi	na)	25.3	32 ft.		
Initial static water lev					_	
	•	. 07			_	
Purging Method				l Volume Calculati		
Airlift		entrifugal		n. casing: <u>14.92</u>	ft. of water x 0.16 =	
Bailer		os. Displ.			ft. of water x 0.36 =	gallons
Submersible Pump X		eristaltic ump (Low	4 Ir	n. casing:	ft. of water x 0.65 =	gallons
Tullip A		ow)				
		···/				
volume of water removed	d:					
45 gal		>3 volumes:	yes X	no	purged dry? yes	no <u>X</u>
Field Tests Comments	Temp	<u> </u>	Conductivity	Turbidity	Dissolved Oxygen	ORP
Comments	(c°)	рН	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial reading	17.02	5.96	0.196	1000	0.58	240
Pump set mid-screen	17.35	6.15	0.198	1000	0.62	235
	17.60	6.10	0.201	110	0.63	239
	17.63	6.08	0.202	12.7	0.61	244
	17.25	6.35	0.185	1000	0.14	235
	17.64	6.20	0.207	351	0.59	243
Surge to bottom	17.56	6.15	0.202	76.9	0.43	246
	17.58	6.20	0.201	12.9	0.51	245
	17.72	6.07	0.204	875	0.74	252
	17.58	6.09	0.196	165	0.46	250
	17.57	6.13	0.198	71.2	0.46	247
Surge to bottom	17.56	6.05	0.200	30.9	0.45	251
	17.55	6.05	0.201	10.5	0.39	253
	17.32	6.24	0.182	1000	0.46	246
	17.36 17.56	6.23 6.23	0.193 0.201	1000 134	0.42 0.41	247 245
	17.58	6.21	0.201	44.5	0.41	246
	17.50	U.Z I	0.201	44.0	0.41	<u> </u>
Method:						
Purge Start: 8:40 am						
Purge Stop: 9:20 am						
		ımp - Airlift Me	thod			
_	J52 and wa					
Flow Rate: 4 gallons	s per minu	te (gpm)				
Observations						
Weather/Temperatu	re: Part	ly Cloudy, 61-7	7 F			
Description:		no odor, no she				
Free Product?		•		describe		
Sheen?	yes			describe		
Odor?		<u> </u>		describe		
Comments: Purge water	contained	in (1) 55-gallor	n drum			

Comments: Purge water contained in (1) 55-gallon drum.

Periodic surging was performed throughout the screened zone (16 to 26 ft) using 3/8*1/4 in. poly-tubing

SITE Wantagh Cle	eaners, Wa	antagh, NY	D/	ATE <u>9/18/2018</u>		
\A/ELL ID. \ \A\A	V 071					
WELL ID: <u>MV</u> PERSONNEL: Tar						
		asing)	57 25	ft		
		n top of casing)			_	
ililiai statio watei		ii top or casing)	<u>9.00 it</u>	•	_	
Purging Method			Well V	olume Calculatio	on:	
Airlift		Centrifugal	2 in. c	asing: 47.65	ft. of water x 0.16 =	7.76 gallons
Bailer		Pos. Displ.	3 in. c	asing:	ft. of water x 0.36 =	gallons
Submersible Pump		Peristaltic Pump	4 in. d	casing:	ft. of water x 0.65 =	gallons
		(Low Flow)				
volume of water remo	ved.					
	gal.	>3 volumes: yes	X	no	purged dry? yes	no X
Field Tests	3	,			1 3 , ,	
Field Tests	Temp		Conductivity	Turbidity	Dissolved Oxygen	ORP
Comments	(c°)	pН	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial Readings	14.94	6.41	0.321	360	3.71	210
Pump at bottom	14.86	5.54	0.329	129	4.09	235
· ump at sottom	14.86	5.40	0.331	110	3.92	246
	14.84	5.32	0.330	73.3	4.00	252
Surged to bottom	15.05	5.33	0.334	1000	3.55	258
<u> </u>	15.01	5.15	0.350	1000	3.65	266
	14.78	5.21	0.331	113	4.23	263
	14.79	5.21	0.331	106	4.25	264
	14.78	5.23	0.331	112	4.25	262
Surged to bottom	14.88	5.40	0.330	1000	4.00	237
cargoa to pottorii	14.77	5.21	0.330	550	4.41	255
Surged to bottom	14.97	5.48	0.343	1000	3.36	230
9	14.76	5.27	0.328	633	4.42	254
	14.74	5.29	0.329	502	4.44	252
	14.75	5.30	0.328	450	4.45	252
	14.75	5.30	0.328	380	4.45	252
	14.73	5.97	0.327	290	4.47	218
Surged to bottom	14.73	5.91	0.327	204	4.50	223
<u> </u>	14.74	5.95	0.327	142	4.52	223
	14.74	5.94	0.326	137	4.52	224
	14.74	5.92	0.326	117	4.52	226
	14.75	5.93	0.325	88.3	4.54	226
	14.74	5.90	0.326	90.1	4.53	228
	14.75	5.92	0.325	89.1	4.54	227
	14.74	5.91	0.326	75.3	4.53	228
Method:		•			•	
Purge Start: 840	am am					
0 1) am					
		ım Pump - Airlift Metho	od			
		nd water level				
•	alions per	minute (gpm)				
Observations Weather/Temper	ature D	ain, 60-75 F				
Description:		ar, no odor, no sheen				
Free Produc			no X des	scribe		
	n? yes			scribe		
	r? yes			scribe		

Comments: Purge water contained in (1.5) 55-gallon drum.

Periodic surging was performed throughout the screened zone (48 - 58 ft) using 3/8*1/4 in. poly-tubing.

SITE Wantagh Cl	eaners, War	tagh, NY		DATE <u>9/18/2018</u>		
WELL ID: MV PERSONNEL: Ta	V-07S ra Judge		_			
			<u>19.2</u> 9.45		- -	
Purging Method Airlift Bailer Submersible Pump	 	Centrifugal Pos. Displ. Peristaltic Pump (Low Flow)	2 in 3 in	I Volume Calculation casing: 9.82	ft. of water x 0.16 = _ft. of water x 0.36 =	gallons gallons gallons
volume of water remo		. 0 . 1	V			v
50	gal.	>3 volumes:	yes X	no	purged dry? yes	no <u>X</u>
Field Tests	_					
Comments	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial Readings	19.88	6.29	0.481	1000	0.00	-52
- J	19.39	6.66	0.396	910	0.00	-105
	19.38	6.70	0.388	432	0.00	-110
Surge to bottom	19.33	6.69	0.384	211	0.00	-118
	19.31	6.69	0.386	61.5	0.00	-126
	19.29	6.68	0.386	57.5	0.00	-126
Surge to bottom	20.04	6.75	0.394	1000	0.00	-133
	19.14	6.07	0.387	198	0.00	-100
	19.14	6.06	0.387	156	0.00	-100
	19.12	6.07	0.382	105	0.00	-101
	19.05	6.34	0.386	1000	0.00	-118
	19.07	6.36	0.389	51.8	0.00	-120
	19.07	6.43	0.390	20.0	0.00	-125
Surge to bottom	19.04	6.62	0.388	410	0.00	-137
	19.03	6.64	0.388	33.3	0.00	-139
	19.03	6.65	0.388	12.3	0.00	-140
	19.03	6.65	0.389	9	0.00	-141
Purge Stop: 1 Pump: W Meters: H Flow Rate: 4 Observations Weather/Tempe Description:	loriba U52 ar gallons per i rature: <u>Ra</u> <u>Clear</u>	m Pump - Airlift nd water level minute (gpm) in, 60-75 F , no odor, no she	een			
Free Produ	ct? yes		no X	describe		
	n? yes	<u> </u>		describe		
Odd	or? yes		no X	describe		

Comments: Purge water contained in (1) 55-gallon drum.
Periodic surging was performed throughout the screened zone (9 to 19 ft) using 3/8*1/4 in. poly-tubing.

SITE Wantagh Clear	ers, Want	agh, NY	_	DATE <u>9/18/2018</u>		
WELL ID: MW-0 PERSONNEL: Tara J			_			
Depth of well (from the Initial static water le	top of casi vel (from to	ng) op of casing)	17.6	67 ft. 1 ft.	- -	
Purging Method Airlift Bailer Submersible Pump X	Pos Peri	ntrifugal . Displ. istaltic Pump w Flow)	2 ir 3 ir	Il Volume Calculation. casing: 7.86 n. casing:	ft. of water x 0.16 =	gallons gallons gallons
volume of water removed		>3 volumes:	yes X	no	purged dry? yes	no <u>X</u>
Field Tests						
Comments	Temp	рН	Conductivity	Turbidity	Dissolved Oxygen	ORP
Initial reading	(c°) 20.57	6.02	(ms/cm) 0.359	(NTUs) 1000	(mg/l) 7.18	(mv) 24
Pump set mid-screen	20.56	5.93	0.336	975	0.00	0
r ump set mid-soreen	20.49	5.93	0.339	125	0.00	-4
	20.43	6.07	0.346	75.1	0.00	-20
	20.45	6.00	0.344	1000	0.00	0
Surge to bottom	20.43	5.96	0.346	521	0.00	-3
<u> </u>	20.40	5.99	0.351	46	0.00	-10
	20.43	6.07	0.345	1000	0.00	-8
	20.37	6.08	0.346	974	0.00	-9
Surge to bottom	20.39	6.06	0.349	445	0.00	-11
-	20.33	6.29	0.343	1000	0.00	-26
	20.40	6.39	0.346	443	0.00	-33
	20.39	6.24	0.346	137	0.00	-27
Surge to bottom	20.22	6.44	0.336	1000	0.00	-42
	20.36	6.42	0.335	198	0.00	-52
	20.36	6.50	0.347	57.8	0.00	-48
	20.36	6.45	0.345	15.3	0.00	-46
	20.36	6.45	0.342	3.7	0.00	-47
	20.35	6.45	0.341	4.7	0.00	-48
	20.36	6.49	0.343	4.1	0.00	-50
Meters: Horiba L Flow Rate: 4 gallons Observations Weather/Temperatu Description Free Product?	n Premium Pu J52 and was s per minu Ire: Rair I: Clear, yes		neen no <u>X</u>	describe		
Sheen?	y e s	_	no X	describe		

Odor? yes no \overline{X} describe

Comments: Purge water contained in (1.25) 55-gallon drum.

Periodic surging was performed throughout the screened zone (8 to 18 ft) using 3/8*1/4 in. poly-tubing

SITE Wantagh Cl	eaners, Wan	tagh, NY		DATE <u>9/18/2018</u>		
	V-09S ra Judge					
			<u>18.6</u> <u>10.0</u>		<u>-</u> -	
Purging Method Airlift Bailer Submersible Pump	F F X F	Centrifugal Pos. Displ. Peristaltic Pump (Low Flow)	2 in 3 in	Volume Calculation casing: 8.66 casing:	ft. of water x 0.16 = _ft. of water x 0.36 =	
	oved: gal.	>3 volumes:	yes X	no	purged dry? yes	no <u>X</u>
Field Tests Comments	Temp (c°)	рН	Conductivity (ms/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/l)	ORP (mv)
Initial Readings	21.74	6.16	0.180	1000	2.33	111
	21.53	6.27	0.179	622	2.46	133
Surge to bottom	21.44 21.40	6.57 6.59	0.178 0.177	195 67.7	2.63 2.70	133 140
Surge to bottom	21.40	6.50	0.177	1000	2.86	163
	21.33	6.61	0.177	923	2.90	163
Surge to bottom	21.23	6.62	0.176	187	2.96	164
Cargo to bottom	21.23	6.64	0.176	99.1	2.99	165
	21.51	6.81	0.182	1000	2.05	160
	21.42	6.13	0.175	1000	2.96	197
	21.28	6.03	0.175	1000	2.99	207
	21.21	6.03	0.176	126	2.94	207
	21.19	6.03	0.176	24.6	2.94	208
Surge to bottom	21.17	6.05	0.175	5.3	2.93	207
	21.16	6.06	0.175	0.0	2.91	200
Purge Stop: 11:3 Pump: Wha Meters: Hori	50 am 85 am ale Premium ba U52 and ıllons per miı		ethod			
	Clear	in, 60-75 F , no odor, no she 	no X o	describe describe describe		

Comments: Purge water contained in (1.25) 55-gallon drum. Periodic surging was performed throughout the screened zone (9 to 19 ft) using 3/8*1/4 in. poly-tubing

SITE Wantagh Clean	ers, Want	agh, NY		DATE <u>9/18/2018</u>	3	
WELL ID: MW-1	ns					
PERSONNEL: Tara J						
<u> </u>	9-					
Depth of well (from t					<u> </u>	
Initial static water le	vel (from to	op of casing)	<u>10.</u> 4	43 ft.	_	
D : M (I)			107			
Purging Method	0	ontrifugal		Il Volume Calculatio		1.21 gallons
Airlift Bailer		entrifugal os. Displ.	Z II	n. casing: <u>8.03</u>	ft. of water x 0.16 = ft. of water x 0.36 =	1.31 gallons
Submersible		eristaltic		n. casing: n. casing:	ft. of water x 0.65 =	gallons gallons
Pump X		ump (Low	4 11	i. casing.	It. 01 Water x 0.05 =	gallons
p //		low)				
	_	,				
volume of water removed	d:					
50 gal		>3 volumes:	yes X	no	purged dry? yes	no X
F:-1-1 T4-						
Field Tests Comments	Tomp	1	Conductivity	Turbidity	Dissolved Overgon	ORP
Comments	Temp (c°)	рН	Conductivity (ms/cm)	(NTUs)	Dissolved Oxygen (mg/l)	(mv)
Initial reading	21.11	6.01	0.343	1000	2.61	149
Pump set mid-screen	21.00	6.13	0.335	1000	0.42	174
r amp cormia corcon	20.90	6.24	0.344	1000	0.29	173
	20.85	6.25	0.351	370	0.15	177
	20.74	6.20	0.348	1000	0.23	185
	20.80	6.20	0.354	166	0.06	190
Surge to bottom	20.65	6.28	0.353	1000	0.04	192
<u> </u>	20.80	6.29	0.355	127	0.00	193
	20.79	6.37	0.358	18.7	0.00	192
Surge to bottom	20.77	6.39	0.357	7.0	0.00	189
	20.67	6.37	0.373	1000	0.00	194
	20.73	6.36	0.363	500	0.00	193
	20.75	6.41	0.357	50.1	0.00	190
	20.75	6.39	0.361	15.6	0.00	191
	20.75	6.39	0.362	3.2	0.00	191
	20.74	6.37	0.361	1.0	0.00	194
Method:	_					
Purge Start: 12:50 pm Purge Stop: 1:40 pm	11					
	remium Pi	ump 12 volt - A	irlift Method			
	J52 and wa		annic Woulde			
_	s per minu					
•		,_, ,				
Observations	5 .	00 75 5				
Weather/Temperatu		n, 60-75 F				_
Description:		no odor, no sh		describe		
Free Product?		_	no X no X			
Sheen?		_		describe		
Odor?	yes	_	no X	describe		

Comments: Purge water contained in (1) 55-gallon drum.

Periodic surging was performed throughout the screened zone (8 to 18 ft) using 3/8*1/4 in. poly-tubing

SITE Wantagh Clean	ers, Wanta	agh, NY		DATE 9/18/2018		
MITTELL ID: MANA 44	10					
WELL ID: MW-1						
PERSONNEL: Tara J		-a\	10.5	:0 #		
Depth of well (from to Initial static water lev						
initial Static water lev	rei (iioiii id	op or casing)	<u>9.40</u>) II.		
Purging Method			Wel	l Volume Calculation	:	
Airlift		ntrifugal	2 i	in. casing: 9.19	ft. of water x 0.16 =	1.50 gallons
Bailer		s. Displ.	3 i	in. casing:	ft. of water x 0.36 =	gallons
Submersible		ristaltic Pump	4 ir	n. casing:	ft. of water x 0.65 =	gallons
Pump X	(Lo	w Flow)				
	=	-	<u></u>			
volume of water removed	l:					
75 gal		>3 volumes: y	es X	no	purged dry? yes	no X
		·			· · · · · <u>—</u>	<u> </u>
Field Tests		· · · · · · · · · · · · · · · · · · ·			T = T	
Comments	Temp	рН	Conductivity	Turbidity	Dissolved Oxygen	ORP
	(c°)	-	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial reading	19.81	6.23	0.545	1000	1.50	-37
Pump set mid-screen	19.54	6.23 6.37	0.595 0.570	1000 1000	0.00	-59 -69
	19.45 19.45	6.18	0.558	1000	0.00	-60
	19.40	6.17	0.560	1000	0.00	-64
	19.40	6.22	0.579	280	0.00	-04 -72
Surge to bottom	19.42	6.34	0.576	69.5	0.00	-72 -81
Surge to bottom		6.38		1000		-84
	19.38	6.38	0.557	500	0.00	-64 -86
Surge to bottom	19.47 19.41	6.46	0.605 0.575	75.4	0.00	-91
Surge to bottom	19.41	6.43	0.564	1000	0.00	-91 -87
	19.41	6.02	0.562	1000	0.00	-6 <i>1</i> -72
	19.38	6.20	0.587	400	0.00	-82
	19.36	6.31	0.572	100	0.00	-91
	19.35	6.28	0.577	4	0.00	-95
	19.35	6.41	0.577	0.0	0.00	-103
Surge to bottom	19.34	6.41	0.576	0.0	0.00	-105
ourge to bottom	19.40	6.31	0.584	400	0.00	-95
	19.36	6.36	0.576	133	0.00	-100
	19.34	6.37	0.576	20	0.00	-104
	19.31	6.37	0.574	3.1	0.00	-106
	10.01	0.01	0.01 1	0.1	0.00	100
Method:						
Purge Start: 2:00 pm						
Purge Stop: 3:05 pm						
		ımp - Airlift Meth	od			
	52 and wa					
Flow Rate: 4 gallons Observations	per minut	e (gpiii)				
Weather/Temperatur	re· Rain	, 60-75 F				
-		no odor, no shee	en			
Free Product?		, 2.100	no X descri	ibe		
Sheen?		_	no X descr			
Odor? y		_	no X descr	ibe		
			_ 			

Comments: Purge water contained in (1.5) 55-gallon drum.

Periodic surging was performed throughout the screened zone (9 to 19 ft) using 3/8*1/4 in. poly-tubing.

APPENDIX C ANALYTICAL DATA SUMMARY TABLES

Table 1 Wantagh Cleaners OU2 Site On-Site Groundwater Monitoring Well Sample Results Volatile Organic Compounds

Sample ID	MW-01S	MW-02I	MW-02S	MW-03S	MW-04I	MW-04S	MW-05S	MW-07I	MW-07S	MW-08S	MW-09S	MW-10S	MW-11S	NYSDEC Class
Sampling Date		9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/26/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/24/2018	9/26/2018	GA Standard
Start depth (BLS)	15.5	50	15.7	15.7	46	15.8	7.63	49.1	9.1	7.68	8.81	8.46	8.65	or Guidance
End depth (BLS)	25.5	60	25.7	25.7	56	25.8	17.63	59.1	19.1	17.68	18.81	18.46	18.65	Value ug/l
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	
VOLATILE ORGANIC COMPOUNDS														_
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	1
1,1-Dichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,1-Dichloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	5
1,2-Dibromo-3-Chloropropane	U	U	U	U	U	U	U	U	U	U	U	U	U	0.04
1,2-Dibromoethane	U	U	U	U	U U	U	U	U	U	U	U U	U	U U	0.0006
1,2-Dichlorobenzene	U	U	U	U	-	U	U	U	U	U	-	U	_	3
1,2-Dichloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	0.6
1,2-Dichloropropane	U	U	U	U	U	U	U	U	U	U	U	U	U	1
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	U	U	U U	U	U	3
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	U	U	-	U	U	3
2-Hexanone	U	U	U	U	U	U	U	U	U	U	U	U	U	50
Acetone	U U	U U	U U	U	U U	U U	U U	U U	U	3.5 J	4.8 J U	U U	U U	50 1
Benzene Bromodichloromethane	U	U	U	U	U	U	U	U	U U	U	8.5	U	U	50
	U	_	_	U	-	-	_	_		U		-	_	
Bromoform Bromomethane	U	U U	U U	U U	U U	U U	U U	U U	U U	U U	1.9 U	U U	U U	50 5
Carbon Disulfide	U	U	U	U	U	U	U	U	U	U	U	U	U	60
Carbon Distillide Carbon Tetrachloride	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Carbon Tetrachioride Chlorobenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Chloroethane	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Chloroform	0.71 J	0.52 J	U	U	0.45 J	U	U	0.41 J	U	U	10	U	U	5 7
Chloromethane	U.713	U.52 J	U	U	0.45 J U	U	U	U.41 J	U	U	<u>10</u> U	U	U	<i>7</i> 5
Cis-1,2-Dichloroethylene	U	U	2.1	230	U	U	100	U	940	U	1.7	U	1100	5
Cis-1,3-Dichloropropene	U	U	2.1 U	<u>230</u> U	U	U	100 U	U	<u>940</u> U	U	1.7 U	U	1100 U	0.4
	U	U	U	U	U	U	U	U	U	U	U	U	U	0.4
Cyclohexane	U	U	U	U	U	U	U	U	U	U	U	U	U	

Table 1 Wantagh Cleaners OU2 Site On-Site Groundwater Monitoring Well Sample Results Volatile Organic Compounds

Sample ID Sampling Date Start depth (BLS) End depth (BLS) Units	MW-01S 9/26/2018 15.5 25.5 ug/l	MW-02I 9/26/2018 50 60 ug/I	MW-02S 9/26/2018 15.7 25.7 ug/l	MW-03S 9/26/2018 15.7 25.7 ug/l	MW-04I 9/26/2018 46 56 ug/I	MW-04\$ 9/26/2018 15.8 25.8 ug/l	MW-05S 9/24/2018 7.63 17.63 ug/l	MW-07I 9/24/2018 49.1 59.1 ug/I	MW-07S 9/24/2018 9.1 19.1 ug/l	MW-08S 9/24/2018 7.68 17.68 ug/l	MW-09S 9/24/2018 8.81 18.81 ug/l	MW-10S 9/24/2018 8.46 18.46 ug/l	MW-11S 9/26/2018 8.65 18.65 ug/l	NYSDEC Class GA Standard or Guidance Value ug/l
Dibromochloromethane	U	U	U	U	U	U	U	U	U	U	6.7	U	U	50
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Methyl Acetate	U	U	U	U	U	U	U	U	U	U	U	U	U	
Methyl Ethyl Ketone	U	U	U	U	U	U	U	U	U	U	U	U	U	50
Methyl Isobutyl Ketone	U	U	U	U	U	U	U	U	U	U	U	U	U	
Methylcyclohexane	U	U	U	U	U	U	U	U	U	U	U	U	U	
Methylene Chloride	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Styrene	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Tert-Butyl Methyl Ether	U	U	U	U	U	U	U	U	U	U	U	U	U	10
Tetrachloroethylene	0.48 J	U	U	<u>680</u>	0.75 J	1.5	<u>83</u>	0.42 J	<u>1300</u>	0.75 J	<u>22</u>	<u>10</u>	<u>1200</u>	5
Toluene	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	U	U	U	U	U	0.4
Trichloroethylene	U	U	U	<u>340</u>	0.88 J	U	<u>39</u>	U	<u>570</u>	0.66 J	3.4	0.96 J	<u>520</u>	5
Trichlorofluoromethane	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Vinyl Chloride	U	U	U	U	U	U	U	U	<u>40</u> <u>J</u>	U	U	U	U	2
Xylenes, Total	U	U	U	U	U	U	U	U	U	U	U	U	U	5
Total Volatile Compounds	1.19	0.52	2.1	1,250	2.08	1.50	222.0	0.83	2,850	4.91	59.00	10.96	2,820	

Footnotes/Qualifiers:

BLS: Below land surface

ug/I: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value or limit

JB: Estimated value, also dectected in method blank

Table 2 Wantagh Cleaners OU2 Site Groundwater Well Samples PFAs

Sample ID Sampling Date	MW-05S 9/24/2018	MW-07I 9/24/2018	MW-07S 9/24/2018	MW-08S 9/24/2018	Blind Duplicate 9/24/2018	MW-09S 9/24/2018	MW-10S 9/24/2018	MW-11S 9/26/2018	Equipment Blank 9/26/2018
Samping Sate	0/2 1/2010	0/2 1/2010	0,2 1,20 10	0/2 11/2010	0/2 1/20 10	0,2 1,20 10	0/2 11/2010	0/20/2010	0/20/2010
PFAs in ng/l									
2-(N-methyl perfluorooctanesulfonamido) acetic acid	U	4.4 J	66	U	U	71	U	39	U
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine	4.8 J	IJ	14 J	IJ	Ü	14 J	U	14 J	U
Perfluorobutanesulfonic acid (PFBS)	33	5.7	13	6.3	6.7	U	5.9	37	U
Perfluorobutanoic Acid	19	4.9	47	18	18	0.42 J	14	21	U
Perfluorodecane Sulfonic Acid	U	ų. U	0.79 J	IJ	U	U.42 U	1.1 J	17	U
Perfluorodecanoic acid (PFDA)	56	1 J	13	5.1	5.1	1.1 J	3.4	15	U
Perfluorododecanoic acid (PFDoA)	U	U	U	U	U	U	0.69 J	U	U
Perfluoroheptane Sulfonate (PFHPS)	2.4	0.65 J	1.2 J	0.43 J	0.26 J	U	0.52 J	3.2	U
Perfluoroheptanoic acid (PFHpA)	35	5.5	150	17	21	0.23 J	30	37	U
Perfluorohexanesulfonic acid (PFHxS)	16	UB	11	UB	3.2	UB	19	26	0.24 JB
Perfluorohexanoic acid (PFHxA)	32	6.4	130	43	48	U	29	38	U
Perfluorononanoic acid (PFNA)	17	2.5	8.8	6.5	6.6	U	8.4	11	U
Perfluorooctane Sulfonamide (FOSA)	8.3	0.37 J	1.7 J	2.7	2.6	65	U	5.7	U
Perfluorooctanesulfonic acid (PFOS)	100	15	25	33	31	5.7	31	150	U
Perfluorooctanoic acid (PFOA)	77	17	120	29	34	U	18	120	U
Perfluoropentanoic Acid (PFPeA)	44	6.8	140	44	50	0.78 J	41	50	U
Perfluorotetradecanoic acid (PFTA)	U	U	U	U	U	U	U	U	U
Perfluorotridecanoic Acid (PFTriA)	U	U	U	U	U	U	U	U	U
Perfluoroundecanoic Acid (PFUnA)	1.2 J	U	U	2.6	2.7	U	U	U	U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2)	2.5 J	U	U	2.7 J	2.1 J	U	U	U	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2)	1.7 J	U	2.8 J	2.7 J	1.9 J	U	3.8 J	U	U

Footnotes/Qualifiers:

ng/l: Nanogram per liter

U: Analyzed for but not detected

UB: Qualified as non detect due to blank result

J: Estimated value or limit

JB: Estimated value, also detected in method blank

--: Not analyzed

Table 3
Wantagh Cleaners OU2 Site
Groundwater Well Samples
1,4-Dioxane

Sample ID	Sampling Date	1,4-DIOXANE (ug/l)
MW-05S	10/30/2018	0.23
MW-07I	10/30/2018	U
MW-07S	10/30/2018	0.71
MW-08S	10/30/2018	1.3 J
MW-09S	10/30/2018	1.6 J
MW-10S	10/30/2018	U
MW-11S	10/30/2018	1.4 J

Footnotes/Qualifiers:

ug/l: Micrograms per liter

U: Analyzed for but not detected

J: Estimated value or limit

--: Not analyzed

Sample ID Sampling Date	O 9/25/2018	O 9/25/2018	O 9/25/2018	QR 9/25/2018	QR 9/25/2018	QR 9/25/2018	U 9/25/2018	U 9/25/2018	NYSDEC Class
Start depth (BLS)		20	15	25	20	15	25	20	GA Standard or
End depth (BLS)	25	20	15	25	20	15	25	20	Guidance Value ug/l
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/i
VOLATILE ORGANIC COMPOUNDS									
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	5
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	1
1,1-Dichloroethane	U	U	U	U	U	U	U	U	5
1,1-Dichloroethene	U	0.4 J	U	U	U	U	U	U	5
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5
1,2-Dibromo-3-Chloropropane	U	U	U	U	U	U	U	U	0.04
1,2-Dibromoethane	U	U	U	U	U	U	U	U	0.0006
1,2-Dichlorobenzene	U	U	U	U	U	U	U	U	3
1,2-Dichloroethane	U	U	U	U	U	U	U	U	0.6
1,2-Dichloropropane	U	U	U	U	U	U	U	U	1
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	3
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	3
2-Hexanone	U	U	U	U	U	U	U	U	50
Acetone	U	U	U	U	3.6 J	U	4.8 J	U	50
Benzene	U	U	U	U	U	U	U	U	1
Bromodichloromethane	U	U	U	U	U	U	U	U	50
Bromoform	U	U	U	U	U	U	U	U	50
Bromomethane	U	U	U	U	U	U	U	U	5
Carbon Disulfide	U	U	U	U	U	U	U	U	60
Carbon Tetrachloride	U	U	U	U	U	U	U	U	5
Chlorobenzene	U	U	U	U	U	U	U	U	5
Chloroethane	U	U	U	U	U	U	U	U	5
Chloroform	U	U	U	U	U	U	U	U	7
Chloromethane	U	U	U	U	U	U	U	U	5
Cis-1,2-Dichloroethylene	<u>140</u> <u>J</u>	<u>180</u> <u>DJ</u>	<u>37</u> <u>J</u>	<u>67</u> <u>J</u>	1.6 J	U	U	U	5
Cis-1,3-Dichloropropene	U	U	U	U	U	U	U	U	0.4
Cyclohexane	U	U	U	U	U	U	U	U	

Sample ID Sampling Date Start depth (BLS) End depth (BLS) Units	25 25	O 9/25/2018 20 20 ug/l	O 9/25/2018 15 15 ug/l	QR 9/25/2018 25 25 ug/l	QR 9/25/2018 20 20 ug/l	QR 9/25/2018 15 15 ug/l	U 9/25/2018 25 25 ug/l	U 9/25/2018 20 20 ug/l	NYSDEC Class GA Standard or Guidance Value ug/l
Dibromochloromethane	U	U	U	U	U	U	U	U	50
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	U	U	U	5
Methyl Acetate	U	U	U	U	U	U	U	U	
Methyl Ethyl Ketone	U	U	U	U	U	U	U	U	50
Methyl Isobutyl Ketone	U	U	U	U	U	U	U	U	
Methylcyclohexane	U	U	U	U	U	U	U	U	
Methylene Chloride	U	U	U	U	U	U	U	U	5
Styrene	U	U	U	U	U	U	U	U	5
Tert-Butyl Methyl Ether	U	U	U	U	U	U	U	U	10
Tetrachloroethylene	<u>94</u> <u>J</u>	<u>48</u> <u>J</u>	<u>26</u> <u>J</u>	<u>25</u> <u>J</u>	<u>5.6</u> <u>J</u>	3.8 J	U	U	5
Toluene	U	U	U	U	U	U	U	U	5
Trans-1,2-Dichloroethene	U	2.4 J	U	1.9 J	U	U	U	U	5
Trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	0.4
Trichloroethylene	<u>60</u> <u>J</u>	<u>31</u> <u>J</u>	<u>11</u> <u>J</u>	<u>20</u> <u>J</u>	1.1 J	0.76 J	U	U	5
Trichlorofluoromethane	U	U	U	U	U	U	U	U	5
Vinyl Chloride	U	1.3 J	U	U	U	U	U	U	2
Xylenes, Total	U	U	U	U	U	U	U	U	5
Total Volatile Compounds	294	263.1	74	113.9	11.9	4.56	4.8	0	

Footnotes/Qualifiers:

BLS: Below land surface

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value or limit

D: Dilution

Sample ID Sampling Date	YY 9/13/2018	YY 9/13/2018	YY 9/13/2018	XX 9/12/2018	XX 9/12/2018	XX 9/12/2018	NYSDEC Class
Start depth (BLS)		25	20	85	75	65	GA Standard or
End depth (BLS)		25	20	85	75	65	Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
VOLATILE ORGANIC COMPOUNDS							
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	UJ	UJ	UJ	5
1,1,1-Trichloroethane	U	U	U	UJ	UJ	UJ	5
1,1,2,2-Tetrachloroethane	U	U	U	UJ	UJ	UJ	5
1,1,2-Trichloroethane	U	U	U	UJ	UJ	UJ	1
1,1-Dichloroethane	U	U	U	UJ	UJ	UJ	5
1,1-Dichloroethene	U	U	U	UJ	UJ	UJ	5
1,2,4-Trichlorobenzene	U	U	U	UJ	UJ	UJ	5
1,2-Dibromo-3-Chloropropane	U	U	U	UJ	UJ	UJ	0.04
1,2-Dibromoethane	U	U	U	UJ	UJ	UJ	0.0006
1,2-Dichlorobenzene	U	U	U	UJ	UJ	UJ	3
1,2-Dichloroethane	U	U	U	UJ	UJ	UJ	0.6
1,2-Dichloropropane	U	U	U	UJ	UJ	UJ	1
1,3-Dichlorobenzene	U	U	U	UJ	UJ	UJ	3
1,4-Dichlorobenzene	U	U	U	UJ	UJ	UJ	3
2-Hexanone	U	U	U	UJ	UJ	UJ	50
Acetone	4.7 J	5.5 J	6.3 J	16 J	9 J	8.3 J	50
Benzene	U	U	U	UJ	UJ	UJ	1
Bromodichloromethane	U	U	U	UJ	UJ	UJ	50
Bromoform	U	U	U	UJ	UJ	UJ	50
Bromomethane	U	U	U	UJ	UJ	UJ	5
Carbon Disulfide	U	U	U	UJ	0.31 J	0.28 J	60
Carbon Tetrachloride	U	U	U	UJ	UJ	UJ	5
Chlorobenzene	U	U	U	UJ	UJ	UJ	5
Chloroethane	U	U	U	UJ	UJ	UJ	5
Chloroform	U	U	2.4	UJ	UJ	UJ	7
Chloromethane	U	U	U	UJ	UJ	UJ	5
Cis-1,2-Dichloroethylene	U	U	U	2.2 J	<u>12</u> <u>J</u>	<u>7.6</u> <u>J</u>	5
Cis-1,3-Dichloropropene	U	U	U	UJ	UJ	UJ	0.4
Cyclohexane	U	U	U	UJ	UJ	UJ	

Sample ID	YY	YY	YY	XX	XX	XX	
Sampling Date	9/13/2018	9/13/2018	9/13/2018	9/12/2018	9/12/2018	9/12/2018	NYSDEC Class
Start depth (BLS)	30	25	20	85	75	65	GA Standard or Guidance Value
End depth (BLS)	30	25	20	85	75	65	ug/l
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug.
Dibromochloromethane	U	U	U	UJ	UJ	UJ	50
Dichlorodifluoromethane	U	U	U	UJ	UJ	UJ	5
Ethylbenzene	U	U	U	UJ	UJ	UJ	5
Isopropylbenzene	U	U	U	UJ	UJ	UJ	5
Methyl Acetate	U	U	U	UJ	UJ	UJ	
Methyl Ethyl Ketone	U	U	U	4.5 J	UJ	3.5 J	50
Methyl Isobutyl Ketone	U	U	U	UJ	UJ	UJ	
Methylcyclohexane	U	U	U	UJ	UJ	UJ	
Methylene Chloride	U	U	U	0.65 J	0.57 J	0.63 J	5
Styrene	U	U	U	UJ	UJ	UJ	5
Tert-Butyl Methyl Ether	U	U	U	UJ	2.7 J	0.78 J	10
Tetrachloroethylene	0.84 J	1.4	0.5 J	3.2 J	<u>7</u> <u>J</u>	<u>6.6</u> <u>J</u>	5
Toluene	U	U	U	1.6 J	UJ	UJ	5
Trans-1,2-Dichloroethene	U	U	U	UJ	UJ	UJ	5
Trans-1,3-Dichloropropene	U	U	U	UJ	UJ	UJ	0.4
Trichloroethylene	U	U	U	1.3 J	4.7 J	4.8 J	5
Trichlorofluoromethane	U	U	U	UJ	UJ	UJ	5
Vinyl Chloride	U	U	U	UJ	UJ	UJ	2
Xylenes, Total	U	U	U	UJ	UJ	UJ	5
Total Volatile Compounds	5.54	6.9	9.2	29.45	36.28	32.49	

Footnotes/Qualifiers:

BLS: Below land surface

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value or limit

D: Dilution

Sample ID Sampling Date	9/13/2018	EEE 9/13/2018	EEE 9/13/2018	EEE 9/13/2018	EEE 9/13/2018	EEE 9/13/2018	NYSDEC Class GA Standard or
Start depth (BLS)	75	65	55	45	35	25	Guidance Value
End depth (BLS)		65	55	45	35	25	ug/l
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	9.1
VOLATILE ORGANIC COMPOUNDS							
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	5
1,1,1-Trichloroethane	U	U	U	U	U	U	5
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	5
1,1,2-Trichloroethane	U	U	U	U	U	U	1
1,1-Dichloroethane	U	U	U	U	U	U	5
1,1-Dichloroethene	U	U	U	U	U	U	5
1,2,4-Trichlorobenzene	U	U	U	U	U	U	5
1,2-Dibromo-3-Chloropropane	U	U	U	U	U	U	0.04
1,2-Dibromoethane	U	U	U	U	U	U	0.0006
1,2-Dichlorobenzene	U	U	U	U	U	U	3
1,2-Dichloroethane	U	U	U	U	U	U	0.6
1,2-Dichloropropane	U	U	U	U	U	U	1
1,3-Dichlorobenzene	U	U	U	U	U	U	3
1,4-Dichlorobenzene	U	U	U	U	U	U	3
2-Hexanone	U	U	U	U	U	U	50
Acetone	4 J	11	9.2 J	6.3 J	5.6 J	6.2 J	50
Benzene	U	U	U	U	U	U	1
Bromodichloromethane	U	U	U	U	U	U	50
Bromoform	U	U	U	U	U	U	50
Bromomethane	U	U	U	U	U	U	5
Carbon Disulfide	U	0.33 J	U	U	U	U	60
Carbon Tetrachloride	U	U	U	U	U	U	5
Chlorobenzene	U	U	U	U	U	U	5
Chloroethane	U	U	U	U	U	U	5
Chloroform	U	U	U	U	U	U	7
Chloromethane	U	U	U	U	U	U	5
Cis-1,2-Dichloroethylene	U	U	U	U	U	U	5
Cis-1,3-Dichloropropene	U	U	U	U	U	U	0.4
Cyclohexane	U	U	U	U	U	U	

Table 4
Wantagh Cleaners OU2 Site
Off-Site Discrete Depth Groundwater Sample Results
Volatile Organic Compounds

Sample ID Sampling Date Start depth (BLS) End depth (BLS) Units		EEE 9/13/2018 65 65 ug/l	EEE 9/13/2018 55 55 ug/l	EEE 9/13/2018 45 45 ug/l	EEE 9/13/2018 35 35 ug/l	EEE 9/13/2018 25 25 ug/l	NYSDEC Class GA Standard or Guidance Value ug/l
Dibromochloromethane	U	U	U	U	U	U	50
Dichlorodifluoromethane	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	U	5
Methyl Acetate	U	U	U	U	U	U	
Methyl Ethyl Ketone	U	3.1 J	U	U	U	U	50
Methyl Isobutyl Ketone	U	U	U	U	U	U	
Methylcyclohexane	U	U	U	U	U	U	
Methylene Chloride	U	U	U	U	U	U	5
Styrene	U	U	U	U	U	U	5
Tert-Butyl Methyl Ether	U	U	U	U	U	U	10
Tetrachloroethylene	U	U	U	U	U	U	5
Toluene	U	U	U	U	U	U	5
Trans-1,2-Dichloroethene	U	U	U	U	U	U	5
Trans-1,3-Dichloropropene	U	U	U	U	U	U	0.4
Trichloroethylene	U	U	U	U	U	U	5
Trichlorofluoromethane	U	U	U	U	U	U	5
Vinyl Chloride	U	U	U	U	U	U	2
Xylenes, Total	U	U	U	U	U	U	5
Total Volatile Compounds	4	14.43	9.2	6.3	5.6	6.2	

Footnotes/Qualifiers:

BLS: Below land surface

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value or limit

D: Dilution

Table 4
Wantagh Cleaners OU2 Site
Off-Site Discrete Depth Groundwater Sample Results
Volatile Organic Compounds

Sample ID	III	III	III	III	III	III	III	III	
Sampling Date	9/20/2018	9/20/2018	9/20/2018	9/20/2018	9/20/2018	9/20/2018	9/20/2018	9/20/2018	NYSDEC Class GA Standard or
Start depth (BLS)	95	85	75	65	55	45	35	25	GA Standard or Guidance Value
End depth (BLS)	95	85	75	65	55	45	35	25	ug/l
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	u.g.
VOLATILE ORGANIC COMPOUNDS									
1,1,2-Trichloro-1,2,2-trifluoroethane	UJ	U	U	UJ	U	U	U	U	5
1,1,1-Trichloroethane	UJ	U	U	UJ	U	U	U	U	5
1,1,2,2-Tetrachloroethane	UJ	U	U	UJ	U	U	U	U	5
1,1,2-Trichloroethane	UJ	U	U	UJ	U	U	U	U	1
1,1-Dichloroethane	UJ	U	U	UJ	U	U	U	U	5
1,1-Dichloroethene	UJ	U	U	UJ	U	U	U	U	5
1,2,4-Trichlorobenzene	UJ	U	U	UJ	U	U	U	U	5
1,2-Dibromo-3-Chloropropane	UJ	U	U	UJ	U	U	U	U	0.04
1,2-Dibromoethane	UJ	U	U	UJ	U	U	U	U	0.0006
1,2-Dichlorobenzene	UJ	U	U	UJ	U	U	U	U	3
1,2-Dichloroethane	UJ	U	U	UJ	U	U	U	U	0.6
1,2-Dichloropropane	UJ	U	U	UJ	U	U	U	U	1
1,3-Dichlorobenzene	UJ	U	U	UJ	U	U	U	U	3
1,4-Dichlorobenzene	UJ	U	U	UJ	U	U	U	U	3
2-Hexanone	UJ	U	U	UJ	U	U	U	U	50
Acetone	UBJ	UBJ	UBJ	UBJ	UBJ	UBJ	UBJ	U	50
Benzene	UBJ	U	U	UJ	U	U	U	U	1
Bromodichloromethane	UJ	U	U	UJ	U	U	U	U	50
Bromoform	UJ	U	U	UJ	U	U	U	U	50
Bromomethane	UJ	U	U	UJ	U	U	U	U	5
Carbon Disulfide	UJ	0.25 J	U	UJ	U	U	U	U	60
Carbon Tetrachloride	UJ	U	U	UJ	U	U	U	U	5
Chlorobenzene	UJ	U	U	UJ	U	U	U	U	5
Chloroethane	UJ	U	U	UJ	U	U	U	U	5
Chloroform	UJ	0.34 J	U	UJ	U	1.1	U	U	7
Chloromethane	UJ	U	U	UJ	U	U	U	U	5
Cis-1,2-Dichloroethylene	UJ	<u>5.4</u>	1.4	3.7 J	2	1.3	U	U	5
Cis-1,3-Dichloropropene	UJ	U	U	UJ	U	U	U	U	0.4
Cyclohexane	UJ	U	U	UJ	U	U	U	U	

Sample ID Sampling Date		III 9/20/2018	NYSDEC Class GA Standard or						
Start depth (BLS) End depth (BLS)	95	85 85	75 75	65 65	55 55	45 45	35 35	25 25	Guidance Value ug/l
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	<u> </u>
Dibromochloromethane	UJ	U	U	UJ	U	U	U	U	50
Dichlorodifluoromethane	UJ	U	U	UJ	U	U	U	U	5
Ethylbenzene	UJ	U	U	UJ	U	U	U	U	5
Isopropylbenzene	UJ	U	U	UJ	U	U	U	U	5
Methyl Acetate	UJ	U	U	UJ	U	U	U	U	
Methyl Ethyl Ketone	UBJ	UBJ	UBJ	UJ	UBJ	UBJ	UBJ	U	50
Methyl Isobutyl Ketone	UJ	U	U	UJ	U	U	U	U	
Methylcyclohexane	UJ	U	U	UJ	U	U	U	U	
Methylene Chloride	UJ	U	U	UJ	U	U	U	U	5
Styrene	UJ	U	U	UJ	U	U	U	U	5
Tert-Butyl Methyl Ether	UJ	U	U	UJ	U	U	U	U	10
Tetrachloroethylene	UJ	3.4	0.84 J	1.5 J	1.3	1.1	U	U	5
Toluene	1.1 J	U	U	UJ	U	U	U	U	5
Trans-1,2-Dichloroethene	UJ	U	U	UJ	U	U	U	U	5
Trans-1,3-Dichloropropene	UJ	U	U	UJ	U	U	U	U	0.4
Trichloroethylene	UJ	1.8	0.65 J	UJ	0.89 J	0.59 J	U	U	5
Trichlorofluoromethane	UJ	U	U	UJ	U	U	U	U	5
Vinyl Chloride	UJ	U	U	UJ	U	U	U	U	2
Xylenes, Total	UJ	U	U	UJ	U	U	U	U	5
Total Volatile Compounds	1.1	11.19	2.89	5.2	4.19	4.09	0	0	

Footnotes/Qualifiers:

BLS: Below land surface

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value or limit

D: Dilution

Table 4
Wantagh Cleaners OU2 Site
Off-Site Discrete Depth Groundwater Sample Results
Volatile Organic Compounds

Sample ID	RRR	RRR	RRR	RRR	SSS	SSS	SSS	SSS	SSS	
Sampling Date	9/19/2018	9/19/2018	9/19/2018	9/19/2018	9/20/2018	9/20/2018	9/20/2018	9/20/2018	9/20/2018	NYSDEC Class GA Standard or
Start depth (BLS)	65	55	45	35	95	85	75	65	55	Guidance Value
End depth (BLS)	65	55	45	35	95	85	75	65	55	ug/l
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	wg.r
VOLATILE ORGANIC COMPOUNDS										
1,1,2-Trichloro-1,2,2-trifluoroethane	UJ	UJ	U	UJ	U	U	UJ	U	U	5
1,1,1-Trichloroethane	UJ	UJ	U	UJ	U	U	UJ	U	U	5
1,1,2,2-Tetrachloroethane	UJ	UJ	U	UJ	U	U	UJ	U	U	5
1,1,2-Trichloroethane	UJ	UJ	U	UJ	U	U	UJ	U	U	1
1,1-Dichloroethane	UJ	UJ	U	UJ	0.66 J	1.8 J	1.1 J	U	U	5
1,1-Dichloroethene	UJ	UJ	U	UJ	U	U	UJ	U	U	5
1,2,4-Trichlorobenzene	UJ	UJ	U	UJ	U	U	UJ	U	U	5
1,2-Dibromo-3-Chloropropane	UJ	UJ	U	UJ	U	U	UJ	U	U	0.04
1,2-Dibromoethane	UJ	UJ	U	UJ	U	U	UJ	U	U	0.0006
1,2-Dichlorobenzene	UJ	UJ	U	UJ	U	U	UJ	U	U	3
1,2-Dichloroethane	UJ	UJ	U	UJ	U	0.21 J	UJ	U	U	0.6
1,2-Dichloropropane	UJ	UJ	U	UJ	U	U	UJ	U	U	1
1,3-Dichlorobenzene	UJ	UJ	U	UJ	U	U	UJ	U	U	3
1,4-Dichlorobenzene	UJ	UJ	U	UJ	U	U	UJ	U	U	3
2-Hexanone	UJ	UJ	U	UJ	U	U	UJ	U	U	50
Acetone	UBJ	UBJ	UBJ	UBJ	UBJ	UBJ	UBJ	U	U	50
Benzene	UBJ	UJ	U	UJ	U	U	UJ	U	U	1
Bromodichloromethane	UJ	UJ	U	UJ	U	U	UJ	U	U	50
Bromoform	UJ	UJ	U	UJ	U	U	UJ	U	U	50
Bromomethane	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Carbon Disulfide	UJ	0.36 J	0.34 J	UJ	U	2.2	UJ	U	0.21 J	60
Carbon Tetrachloride	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Chlorobenzene	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Chloroethane	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Chloroform	UJ	UJ	U	UJ	U	U	UJ	<u>9.9</u>	0.56 J	7
Chloromethane	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Cis-1,2-Dichloroethylene	UJ	2.9 J	3.7	UJ	<u>7.3</u>	<u>12</u>	3.3 J	<u>10</u>	<u>6.6</u>	5
Cis-1,3-Dichloropropene	UJ	UJ	U	UJ	U	U	UJ	U	U	0.4
Cyclohexane	UJ	UJ	U	UJ	U	U	UJ	U	U	

Sample ID Sampling Date		RRR 9/19/2018	RRR 9/19/2018	PRR 9/19/2018	SSS 9/20/2018	SSS 9/20/2018	SSS 9/20/2018	SSS 9/20/2018	SSS 9/20/2018	NYSDEC Class GA Standard or
Start depth (BLS) End depth (BLS)	65 65	55 55	45 45	35 35	95 95	85 85	75 75	65 65	55 55	Guidance Value
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
Dibromochloromethane	UJ	UJ	U	UJ	U	U	UJ	U	U	50
Dichlorodifluoromethane	UJ	UJ	Ū	UJ	Ü	Ü	UJ	Ü	U	5
Ethylbenzene	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Isopropylbenzene	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Methyl Acetate	UJ	UJ	U	UJ	U	U	UJ	U	U	
Methyl Ethyl Ketone	UBJ	UJ	UBJ	UBJ	UBJ	UBJ	UBJ	U	U	50
Methyl Isobutyl Ketone	UJ	UJ	U	UJ	U	U	UJ	U	U	
Methylcyclohexane	UJ	UJ	U	UJ	U	U	UJ	U	U	
Methylene Chloride	0.87 J	0.45 J	U	UJ	U	U	UJ	U	U	5
Styrene	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Tert-Butyl Methyl Ether	UJ	UJ	0.29 J	UJ	4.6	1.6	2.3 J	U	U	10
Tetrachloroethylene	UJ	1.3 J	2.7	0.77 J	4.6	1.4	0.45 J	<u>6.4</u>	<u>5.9</u>	5
Toluene	1.3 J	0.55 J	U	UJ	U	U	0.52 J	U	U	5
Trans-1,2-Dichloroethene	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Trans-1,3-Dichloropropene	UJ	UJ	U	UJ	U	U	UJ	U	U	0.4
Trichloroethylene	UJ	1.1 J	1.8	UJ	2.5	0.89 J	UJ	4.9	3.9	5
Trichlorofluoromethane	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Vinyl Chloride	UJ	UJ	U	UJ	U	U	UJ	U	U	2
Xylenes, Total	UJ	UJ	U	UJ	U	U	UJ	U	U	5
Total Volatile Compounds	2.17	6.66	8.83	0.77	19.66	20.1	7.67	31.2	17.17	

Footnotes/Qualifiers:

BLS: Below land surface

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value or limit

D: Dilution

Table 4
Wantagh Cleaners OU2 Site
Off-Site Discrete Depth Groundwater Sample Results
Volatile Organic Compounds

Sample ID	DT1G	DT1G	DT1G	DT1F	DT1F	DT1F	DT2C	DT2C	DT2C	
Sampling Date	9/21/2018	9/21/2018	9/21/2018	9/24/2018	9/24/2018	9/24/2018	9/21/2018	9/21/2018	9/21/2018	NYSDEC Class GA Standard or
Start depth (BLS)	95	85	75	65	55	45	75	65	55	Guidance Value
End depth (BLS)	95	85	75	65	55	45	75	65	55	ug/l
Units	ug/l	ug.								
VOLATILE ORGANIC COMPOUNDS										
1,1,2-Trichloro-1,2,2-trifluoroethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
1,1,1-Trichloroethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
1,1,2,2-Tetrachloroethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
1,1,2-Trichloroethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	1
1,1-Dichloroethane	0.53 J	UJ	UJ	U	U	U	0.63 J	UJ	UJ	5
1,1-Dichloroethene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
1,2,4-Trichlorobenzene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
1,2-Dibromo-3-Chloropropane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	0.04
1,2-Dibromoethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	0.0006
1,2-Dichlorobenzene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	3
1,2-Dichloroethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	0.6
1,2-Dichloropropane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	1
1,3-Dichlorobenzene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	3
1,4-Dichlorobenzene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	3
2-Hexanone	UJ	UJ	UJ	U	U	U	U	UJ	UJ	50
Acetone	UBJ	UBJ	UBJ	3.1 J	3.6 J	3.3 J	UBJ	UBJ	UBJ	50
Benzene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	1
Bromodichloromethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	50
Bromoform	UJ	UJ	UJ	U	U	U	U	UJ	UJ	50
Bromomethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Carbon Disulfide	0.25 J	0.76 J	0.4 J	U	U	U	U	2.9 J	UJ	60
Carbon Tetrachloride	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Chlorobenzene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Chloroethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Chloroform	UJ	UJ	UJ	U	U	U	U	UJ	0.42 J	7
Chloromethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Cis-1,2-Dichloroethylene	2.8 J	2.6 J	2.1 J	U	U	U	4.6	4.1 J	UJ	5
Cis-1,3-Dichloropropene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	0.4
Cyclohexane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	

Sample ID Sampling Date Start depth (BLS) End depth (BLS) Units	DT1G 9/21/2018 95 95 ug/l	DT1G 9/21/2018 85 85 ug/l	DT1G 9/21/2018 75 75 ug/l	DT1F 9/24/2018 65 65 ug/l	DT1F 9/24/2018 55 55 ug/l	DT1F 9/24/2018 45 45 ug/l	DT2C 9/21/2018 75 75 ug/l	DT2C 9/21/2018 65 65 ug/l	DT2C 9/21/2018 55 55 ug/l	NYSDEC Class GA Standard or Guidance Value ug/l
Dibromochloromethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	50
Dichlorodifluoromethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Ethylbenzene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Isopropylbenzene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Methyl Acetate	UJ	UJ	UJ	U	U	U	U	UJ	UJ	
Methyl Ethyl Ketone	UJ	UJ	UJ	U	U	U	U	UJ	UJ	50
Methyl Isobutyl Ketone	UJ	UJ	UJ	U	U	U	U	UJ	UJ	
Methylcyclohexane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	
Methylene Chloride	UJ	1.3 J	UJ	U	U	U	U	UJ	UJ	5
Styrene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Tert-Butyl Methyl Ether	0.87 J	0.48 J	UJ	U	U	U	6.7	4.8 J	0.6 J	10
Tetrachloroethylene	<u>54</u> <u>J</u>	<u>29</u> <u>J</u>	<u>8.5</u> <u>J</u>	<u>11</u> J	0.62 J	U	0.78 J	2.4 J	UJ	5
Toluene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Trans-1,2-Dichloroethene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Trans-1,3-Dichloropropene	UJ	UJ	UJ	U	U	U	U	UJ	UJ	0.4
Trichloroethylene	3.1 J	2.3 J	2.1 J	3.3 J	U	U	5	1.9 J	UJ	5
Trichlorofluoromethane	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Vinyl Chloride	UJ	UJ	UJ	U	U	U	U	UJ	UJ	2
Xylenes, Total	UJ	UJ	UJ	U	U	U	U	UJ	UJ	5
Total Volatile Compounds	61.55	36.44	13.1	17.4	4.22	3.3	17.71	16.1	1.02	

Footnotes/Qualifiers:

BLS: Below land surface

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value or limit

D: Dilution

Sample ID Sampling Date	DT2E 9/25/2018	DT2E 9/25/2018	DT2E 9/25/2018	DT2E 9/25/2018	DT2E 9/25/2018	DT2E 9/25/2018	DT2E 9/25/2018	DT2E 9/25/2018	NYSDEC Class
Start depth (BLS)	85	75	65	55	45	35	25	15	GA Standard or
End depth (BLS)	85	75	65	55	45	35	25	15	Guidance Value ug/l
Units	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/i
VOLATILE ORGANIC COMPOUNDS									
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	5
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	1
1,1-Dichloroethane	1.8 J	1.5 J	0.96 J	U	U	U	U	U	5
1,1-Dichloroethene	0.37 J	0.43 J	0.47 J	U	U	U	U	U	5
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5
1,2-Dibromo-3-Chloropropane	U	U	U	U	U	U	U	U	0.04
1,2-Dibromoethane	U	U	U	U	U	U	U	U	0.0006
1,2-Dichlorobenzene	U	U	U	U	U	U	U	U	3
1,2-Dichloroethane	0.23 J	U	U	U	U	U	U	U	0.6
1,2-Dichloropropane	U	U	U	U	U	U	U	U	1
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	3
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	3
2-Hexanone	U	U	U	U	U	U	U	U	50
Acetone	3.8 J	U	3.3 J	U	3.4 J	3.7 J	U	U	50
Benzene	U	U	U	U	U	U	U	U	1
Bromodichloromethane	U	U	U	U	U	U	U	U	50
Bromoform	U	U	U	U	U	U	U	U	50
Bromomethane	U	U	U	U	U	U	U	U	5
Carbon Disulfide	0.49 J	U	0.26 J	U	U	U	U	U	60
Carbon Tetrachloride	U	U	U	U	U	U	U	U	5
Chlorobenzene	U	U	U	0.99 J	U	U	U	U	5
Chloroethane	U	U	U	U	U	U	U	U	5
Chloroform	U	U	U	U	U	U	U	U	7
Chloromethane	U	U	U	U	U	U	U	U	5
Cis-1,2-Dichloroethylene	<u>6.2</u> <u>J</u>	<u>59</u> <u>J</u>	<u>59</u> <u>J</u>	<u>24</u> <u>J</u>	2 J	0.93 J	<u>27</u> <u>J</u>	0.92 J	5
Cis-1,3-Dichloropropene	U	U	U	U	U	U	U	U	0.4
Cyclohexane	U	U	U	U	U	U	U	U	

Sample ID Sampling Date Start depth (BLS) End depth (BLS) Units	85	DT2E 9/25/2018 75 75 ug/l	DT2E 9/25/2018 65 65 ug/l	DT2E 9/25/2018 55 55 ug/l	DT2E 9/25/2018 45 45 ug/l	DT2E 9/25/2018 35 35 ug/l	DT2E 9/25/2018 25 25 ug/l	DT2E 9/25/2018 15 15 ug/l	NYSDEC Class GA Standard or Guidance Value ug/l
Dibromochloromethane	U	U	U	U	U	U	U	U	50
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	U	U	U	5
Methyl Acetate	U	U	U	U	U	U	U	U	
Methyl Ethyl Ketone	U	U	U	U	U	U	U	U	50
Methyl Isobutyl Ketone	U	U	U	U	U	U	U	U	
Methylcyclohexane	U	U	U	U	U	U	U	U	
Methylene Chloride	U	U	U	U	U	U	U	U	5
Styrene	U	U	U	U	U	U	U	U	5
Tert-Butyl Methyl Ether	1.9 J	<u>15</u> <u>J</u>	<u>22</u> <u>J</u>	5 J	0.53 J	0.27 J	0.17 J	U	10
Tetrachloroethylene	<u>37</u> <u>J</u>	<u>39</u> <u>J</u>	<u>64</u> <u>J</u>	<u>44</u> <u>J</u>	2.8 J	0.84 J	1.2 J	U	5
Toluene	U	U	U	U	U	U	U	U	5
Trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	5
Trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	0.4
Trichloroethylene	2.1 J	<u>11</u> <u>J</u>	<u>19</u> <u>J</u>	<u>9.8</u> <u>J</u>	0.7 J	U	3.7 J	U	5
Trichlorofluoromethane	U	U	U	U	U	U	U	U	5
Vinyl Chloride	U	U	0.91 J	U	U	U	U	U	2
Xylenes, Total	U	U	U	U	U	U	U	U	5
Total Volatile Compounds	53.89	125.93	169.9	83.79	9.43	5.74	32.07	0.92	

Footnotes/Qualifiers:

BLS: Below land surface

ug/l: Micrograms per liter

--: No standard

U: Analyzed for but not detected

J: Estimated value or limit

D: Dilution

Table 5 Wantagh Cleaners OU2 Site TPCCC Vapor Intrusion Samples Volatile Organic Compounds (VOCs)

Sample ID	BASEMENT	C-1	C-2	C-3	OFFICE	SV-1	SV-2	OUTSIDE	NYSDOH
Sampling Date	11/19/18	11/19/18	11/19/18	11/19/18	11/19/18	11/19/18	11/19/18	11/19/18	Air
Sampling Date				11/19/10					Guideline Value
Units	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	(ug/m3)
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.58 J	U	0.49 J	U	U	0.56 J	0.44 J	0.51 J	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	
1,1-Dichloroethane	U	U	U	U	U	U	U	U	
1,1-Dichloroethene	U	U	U	U	U	U	U	U	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	
1,2,4-Trimethylbenzene	0.7 J	U	0.99	U	U	9.7	1.1	0.43 J	
1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene	U U	U	U U	U U	U U	U U	U U	U U	
1,2-Dichlorobenzene 1,2-Dichloroethane	U	U	0.72 J	1.5 J	4.6	U	U	U	
1,2-Dichloropethane	U	U	0.72 J	1.5 J	4.0 U	U	U	U	
1,2-Dichlorotetrafluoroethane	Ü	Ü	Ü	U	Ü	Ü	Ü	Ü	
1,3,5-Trimethylbenzene (Mesitylene)	Ü	U	0.31 J	U	U	1.4	0.3 J	U	
1,3-Butadiene	Ü	Ü	U	Ü	Ü	U	U	Ü	
1,3-Dichlorobenzene	Ü	U	U	U	U	U	U	U	
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	
1,4-Dioxane (P-Dioxane)	U	U	U	U	U	U	U	U	
2,2,4-Trimethylpentane	1.2	U	2.7	1 J	U	U	U	0.72 J	
2-Chlorotoluene	U	U	U	U	U	U	U	U	
2-Hexanone	U	U	U	U	U	U	U	U	
4-Ethyltoluene	U	U	0.43 J	U	U	3	U	U	
Acetone	13	56	39	100	180	26	8.4 J	12 J	
Allyl Chloride (3-Chloropropene)	U	U	U	U	U	U	U	U	
Benzene	1.4	1.7 J	1.7	0.91 J	1.1 J	U	U	1.1	
Benzyl Chloride Bromodichloromethane	U U	U	U U	U U	U U	U U	U	U U	
Bromoethene	U	U U	U	U	U	U	U	U	
Bromoform	U	U	U	U	U	U	U	U	
Bromomethane	U	U	Ü	U	U	Ü	U	U	
Butane	12	200	25	34	71	Ü	Ü	7	
Carbon Disulfide	U	16	1 J	U	7.9	5.7	1.5 J	U	
Carbon Tetrachloride	0.62	U	0.42	0.43	U	0.32	U	0.39	
Chlorobenzene	U	U	U	U	U	U	U	U	
Chlorodifluoromethane	1.6 J	U	4.6	2.2 J	U	U	U	1.4 J	
Chloroethane	U	U	U	U	U	U	U	U	
Chloroform	4.4	2.1 J	1.9	1.7 J	1.7 J	69	4.3	U	
Chloromethane	1.1	U	2.1	1.3 J	U	0.66 J	U	0.98 J	
Cis-1,2-Dichloroethylene	U	U	U	U	U	U	U	U	
Cis-1,3-Dichloropropene Cyclohexane	U 0.47 J	U U	U 0.62 J	U U	U U	U U	U U	U	
Cymene	0.47 J U	U	0.62 J U	U	U	U	U	0.25 J U	
Dibromochloromethane	U	U	U	U	U	U	U	U	
Dichlorodifluoromethane	3	U	2.7	2.6 J	U	2.8	2.3 J	2.5	
Dichloroethylenes	Ŭ	U	U	U	U	U	2.0 U	U	
Ethylbenzene	0.52 J	Ü	0.72 J	Ü	Ü	0.45 J	Ü	0.42 J	
Hexachlorobutadiene	U	U	U	U	U	U	U	U	
Isopropanol	U	28 J	49	23 J	21 J	U	U	U	
Isopropylbenzene (Cumene)	U	U	U	U	U	0.5 J	U	U	
M,P-Xylenes	1.7 J	1.4 J	2.3	U	2.6 J	1 J	0.62 J	1.3 J	
Methyl Ethyl Ketone (2-Butanone)	1.4 J	3.2 J	1.7	1.4 J	4 J	4	1.7	1.8	
See next page for footnotes.									

Table 5 Wantagh Cleaners OU2 Site TPCCC Vapor Intrusion Samples Volatile Organic Compounds (VOCs)

Sample ID Sampling Date	11/19/18	C-1 11/19/18	C-2 11/19/18	C-3 11/19/18	OFFICE 11/19/18	SV-1 11/19/18	SV-2 11/19/18	OUTSIDE 11/19/18	NYSDOH Air Guideline
Units	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	Value (ug/m3)
VOCs continued									
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	U	U	U	U	U	U	U	U	
Methyl Methacrylate	U	U	U	U	U	U	U	U	
Methylene Chloride	U	U	U	U	U	1 J	U	U	60
Naphthalene	U	U	U	U	U	6.4	U	U	
N-Butylbenzene	U	U	U	U	U	U	U	U	
N-Heptane	1.5	5.7	55	8.7	19	U	U	0.58 J	
N-Hexane	1.2	U	1.9	1.4	U	0.64 J	U	0.9	
N-Propylbenzene	U	U	U	U	U	2.1	U	U	
O-Xylene (1,2-Dimethylbenzene)	0.7 J	U	0.88	U	U	2.1	0.39 J	0.53 J	
Sec-Butylbenzene	U	U	U	U	U	1.6	U	U	
Styrene	U	U	U	U	U	U	U	U	
T-Butylbenzene	U	U	U	U	U	U	U	U	
Tert-Butyl Alcohol	U	U	U	U	U	U	U	U	
Tert-Butyl Methyl Ether	U	U	U	U	U	U	U	U	
Tetrachloroethylene(PCE)	0.54 J	U	0.58 J	0.48 J	U	2.8	3	0.35 J	30
Tetrahydrofuran	U	U	U	U	U	U	U	U	
Toluene	3.1	3.1	4.9	3.2	4.1	0.67 J	0.67 J	2.4	
Trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	
Trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	
Trichloroethylene (TCE)	U	U	U	U	U	U	U	U	2
Trichlorofluoromethane	1.4	U	1.7	1.6 J	1.6 J	1.4	1.2	1.2	
Vinyl Chloride	U	U	U	U	U	U	U	U	
Xylenes, Total	2.3 J	U	3.1	U	2.6 J	3.2	0.99 J	1.8 J	

Qualifiers:

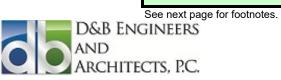
U: Analyzed but not detected

J: Estimated value

Notes

ug/m³: Micrograms per cubic meter

-- : No AGV established by NYSDOH


Bold: Indicates exceedance of NYSDOH AGV

Green Highlight: Indicates no additional actions are recommended to address human exposures per the NYSDOH Soil Vapor / Indoor Air Matricies, May 2017.

Table 6 Wantagh Cleaners OU2 Site **SVE Pilot Test Vapor Sample** Volatile Organic Compounds (VOCs)

Sample ID	
Sampling Date	10/03/18
Units	ug/m³
1,1,1-Trichloroethane	U
1,1,2,2-Tetrachloroethane	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	U
1,1,2-Trichloroethane	U
1,1-Dichloroethane	U
1,1-Dichloroethene	U
1,2,4-Trichlorobenzene	U
1,2,4-Trimethylbenzene	U
1,2-Dibromoethane (Ethylene Dibromide)	U
1,2-Dichlorobenzene	U
1,2-Dichloroethane	U
1,2-Dichloropropane	U
1,2-Dichlorotetrafluoroethane	U
1,3,5-Trimethylbenzene (Mesitylene)	U
1,3-Butadiene	U
1,3-Dichlorobenzene	U
1,4-Dichlorobenzene	U
1,4-Dioxane (P-Dioxane)	U
2,2,4-Trimethylpentane	U
2,2,4-11methylpentane 2-Chlorotoluene	U
	_
2-Hexanone	U
4-Ethyltoluene	U
Acetone	U
Allyl Chloride (3-Chloropropene)	U
Benzene	U
Benzyl Chloride	U
Bromodichloromethane	U
Bromoethene	U
Bromoform	U
Bromomethane	U
Butane	590
Carbon Disulfide	U
Carbon Tetrachloride	U
Chlorobenzene	U
Chlorodifluoromethane	U
Chloroethane	U
Chloroform	350
Chloromethane	U
Cis-1,2-Dichloroethylene	7,700
Cis-1,3-Dichloropropene	U
Cyclohexane	U
Cymene	U
Dibromochloromethane	U
Dichlorodifluoromethane	U
Dichloroethylenes	7,800
Ethylbenzene	U
Hexachlorobutadiene	U
Isopropanol	U
Isopropylbenzene (Cumene)	U
M,P-Xylenes	U
Methyl Ethyl Ketone (2-Butanone)	U
metry Luly Netolie (2-Datallolle)	U

Table 6 Wantagh Cleaners OU2 Site SVE Pilot Test Vapor Sample Volatile Organic Compounds (VOCs)

Sample ID Sampling Date	
Units	ug/m³
VOCs continued	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	U
Methyl Methacrylate	U
Methylene Chloride	U
Naphthalene	U
N-Butylbenzene	U
N-Heptane	U
N-Hexane	U
N-Propylbenzene	U
O-Xylene (1,2-Dimethylbenzene)	U
Sec-Butylbenzene	U
Styrene	U
T-Butylbenzene	U
Tert-Butyl Alcohol	U
Tert-Butyl Methyl Ether	U
Tetrachloroethylene(PCE)	110,000 D
Tetrahydrofuran	U
Toluene	78 J
Trans-1,2-Dichloroethene	260
Trans-1,3-Dichloropropene	U
Trichloroethylene (TCE)	12,000
Trichlorofluoromethane	U
Vinyl Chloride	150
Xylenes, Total	U
Total Volatile Organic Compounds	138,928 ug/m3
AVERAGE AIR DISCHARGE FLOW RATE (CF	40 CFM
TOTAL VOC DISCHARGE RATE (lbs/hr)	2.08E-02 lbs/hr

Qualifiers:

U: Analyzed but not detected

J: Estimated value

D: Dilution

Notes:

ug/m³: Micrograms per cubic meter

CFM: Cubic feet per minute

APPENDIX D INDOOR AIR QUALITY QUESTIONNAIRE

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

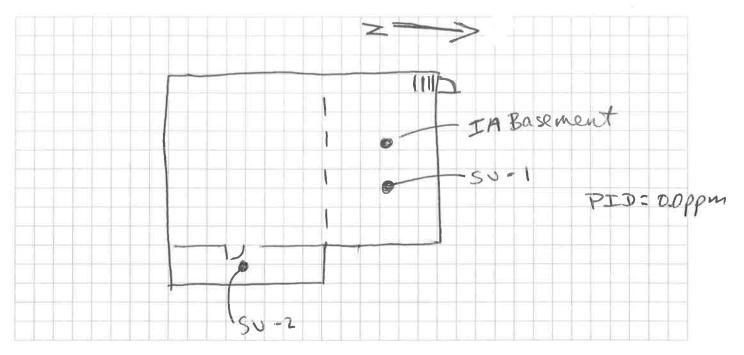
This form must be completed for each residence involved in indoor air testing.

Preparer's Name Tara Judge Date/Time Prepared 11/19/18
Preparer's Name Date/Time Prepared 11/13/10
Preparer's Affiliation D&B Phone No. 516-364-9890
Purpose of Investigation Soil Vapor Study
. OCCUPANT:
nterviewed: 🕟 / N
ast Name: McCabe First Name: Timora (director) address: 3510 Old Jerusalem Rd, Wantagh, NY
address: 3510 Old Jerusalean Rd, Wantagh, NY
County: Nassa U
Iome Phone: Office Phone: 516-520 7721
Tumber of Occupants/persons at this location Age of Occupants
. OWNER OR LANDLORD: (Check if same as occupant)
nterviewed: YN
ast Name: Weible First Name: Les lie
iddress: Same as about
County:
ome Phone: Office Phone:
BUILDING CHARACTERISTICS
ype of Building: (Circle appropriate response)
Residential School Commercial/Multi-use Industrial Church Other:

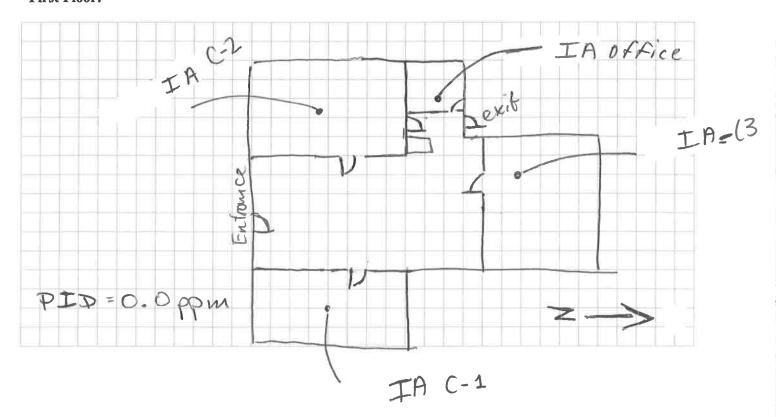
If the property is residential, type? (Circle appropriate response)

	Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:	
If multi	ple units, how many?			
If the pr	roperty is commercial,	type?		
Bus	siness Type(s) Sch	sol/Day Ca	re	
		(i.e., multi-use)? Y		nany?
Other c	haracteristics:			
Nun	nber of floors 1	Buildin	g age 1876	
Is th	e building insulated (Y	N How ai	r tight? Tight / Avera	nge Not Tight
4. AIR	RFLOW			
Use air	current tubes or trace	r smoke to evaluate airi	low patterns and qu	alitatively describe:
Air	between floors r condition window v	nits for	all 3	classrooms are
Airflow	near source			
Outdoor	air infiltration			ia .
Infiltratio	on into air ducts			
				1

5. BASEMENT AND CONS	5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)								
a. Above grade constructi	on: wood frame	concrete	stone	brick					
b. Basement type:	full	crawlspace	slab	other					
c. Basement floor:	concrete	dirt	stone	other					
d. Basement floor:	uncovered	covered	covered with	1					
e. Concrete floor:	unsealed	sealed	sealed with	paint.					
f. Foundation walls:	poured	block	stone	other					
g. Foundation walls:	unsealed	sealed	sealed with						
h. The basement is:	wet	damp	dry	moldy					
i. The basement is:	finished	unfinished	partially fini	shed					
j. Sump present?	YN								
k. Water in sump?	Y N/N/ not applicable								
Basement/Lowest level depth	below grade: ~ 🖇	(feet)							
Identify potential soil vapor e	ntry points and approx	iimate size (e.	g., cracks, utilit	y ports, drains)					
=	2,								
6. HEATING, VENTING an	d AIR CONDITIONIT	NG (Circle all	that apply)						
Type of heating system(s) used	d in this building: (circ	le all that app	oly – note prima	ary)					
Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove	on Rad	water baseboard ant floor loor wood boiler						
The primary type of fuel used is:									
Natural Gas Electric Wood	Propane Coal	Kero Sola	osene r						
Domestic hot water tank fuele	Domestic hot water tank fueled by:								
Boiler/furnace located in:	Basement Outdoo		n Floor	Other					


Are there air	distribution ducts present? YN						
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.							
	NA						
		=					
7. OCCUPA	NCY						
Is basement/lo	west level occupied? Full-time Occa	sionally	Seldom	Almost Never			
Level	General Use of Each Floor (e.g., familyroo	m, bedro	om, laundry, wor	kshop, storage)			
Basement	5+0-000						
1 st Floor	Storage Classroom, buth room		£C				
	Classroom, both room	5, 0	Trice				
2 nd Floor							
3 rd Floor							
4 th Floor	3						
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR Q	UALITY	7				
a. Is there a	n attached garage?		YN				
b. Does the	garage have a separate heating unit?		Y (NA)				
c. Are petro	leum-powered machines or vehicles		Y/N/NA				
stored in	the garage (e.g., lawnmower, atv, car)		Please specify_				
d. Has the b	uilding ever had a fire?		_				
e. Is a keros	ene or unvented gas space heater present?		Y N Where?				
f. Is there a	workshop or hobby/craft area?	Y/N	Where & Type?	Childrens crafts			
g. Is there sr	noking in the building?						
h. Have clea	ning products been used recently?	Y N	When & Type?	Lysol /Simple Green			
i. Have cosm	netic products been used recently?	Y N	When & Type?				

5	
j. Has painting/staining been done in the last 6 months?	Y (N) Where & When?
k. Is there new carpet, drapes or other textiles?	Y(N) Where & When?
l. Have air fresheners been used recently?	(Y) N When & Type? Glade Aerosol
m. Is there a kitchen exhaust fan?	Y N If yes, where vented?
n. Is there a bathroom exhaust fan?	√N If yes, where vented? <u>r</u>
o. Is there a clothes dryer?	Y N If yes, is it vented outside? Y/N
p. Has there been a pesticide application?	Y/N When & Type?
Are there odors in the building? If yes, please describe:	Y()
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist	Y (N) auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work at response)	a dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structu Is the system active or passive? Active/Passive	re? Y N Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Drive	en Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leac	h Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill resident	ial emergency)
a. Provide reasons why relocation is recommended:	N/A
b. Residents choose to: remain in home relocate to fi	riends/family relocate to hotel/motel
c. Responsibility for costs associated with reimburseme	ent explained? Y/N
d. Relocation package provided and explained to reside	ents? Y/N


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:	

List specific products found in the residence that have the potential to affect indoor air quality.

Background = 0.0 ppb

	Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units) Pp	Photo ** Y/N
6	Basement	Odor bandisin fectant	IOT	new toused	see pictures	0.0	Y
(1)	11	Lysol (All purpose)	QT	new	see pictures	0.0	4
(ı)	u	Blastic Lysol spray	3202		11	0.0	Y
3)	1.1	Clorex Bleach	3.57L		+ }	6.0	Y
1)	11	Zep Commercial Filess	[90	15 used	\widetilde{x}	0.0	4
2)	11	- 4	1(aal	11 49	/ ?	0.0	Y
1)	q	Elmers Glue	1 Cal	new	lı	0.0	N
1)	11	800 Snow Spray	202	used	11	6.0	Y
6)	11	English (1)	1602	used	11	0,0	4
ıń)	30	Color paints	1) 16al	used to	1 💥	0.0	Y
J)	/1	Deck Paint	5 Gal	used	δγ	0.0	Y
1)	٤١	Spray Paint Krylon	1202	used	+ 1	6.0	2
1)	+1	Spray Paint Valspa			(1	0.0	7
5)	11	Paint Cans	16al	vied		0,0	~
1)	office	white-out	20ml	osel	Cinner	0.0	N
(1)	11	Glade -air fresh	602	used	Sec 100	0.0	M
3)	Classroom	F	1602	used	state of the state	0,0	N
5)	11	Do-a-Aot-Arts	2.50	used	T Things'	0.0	W
1)	11	Lysol	1602		§ -	0.0	4

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument	used:

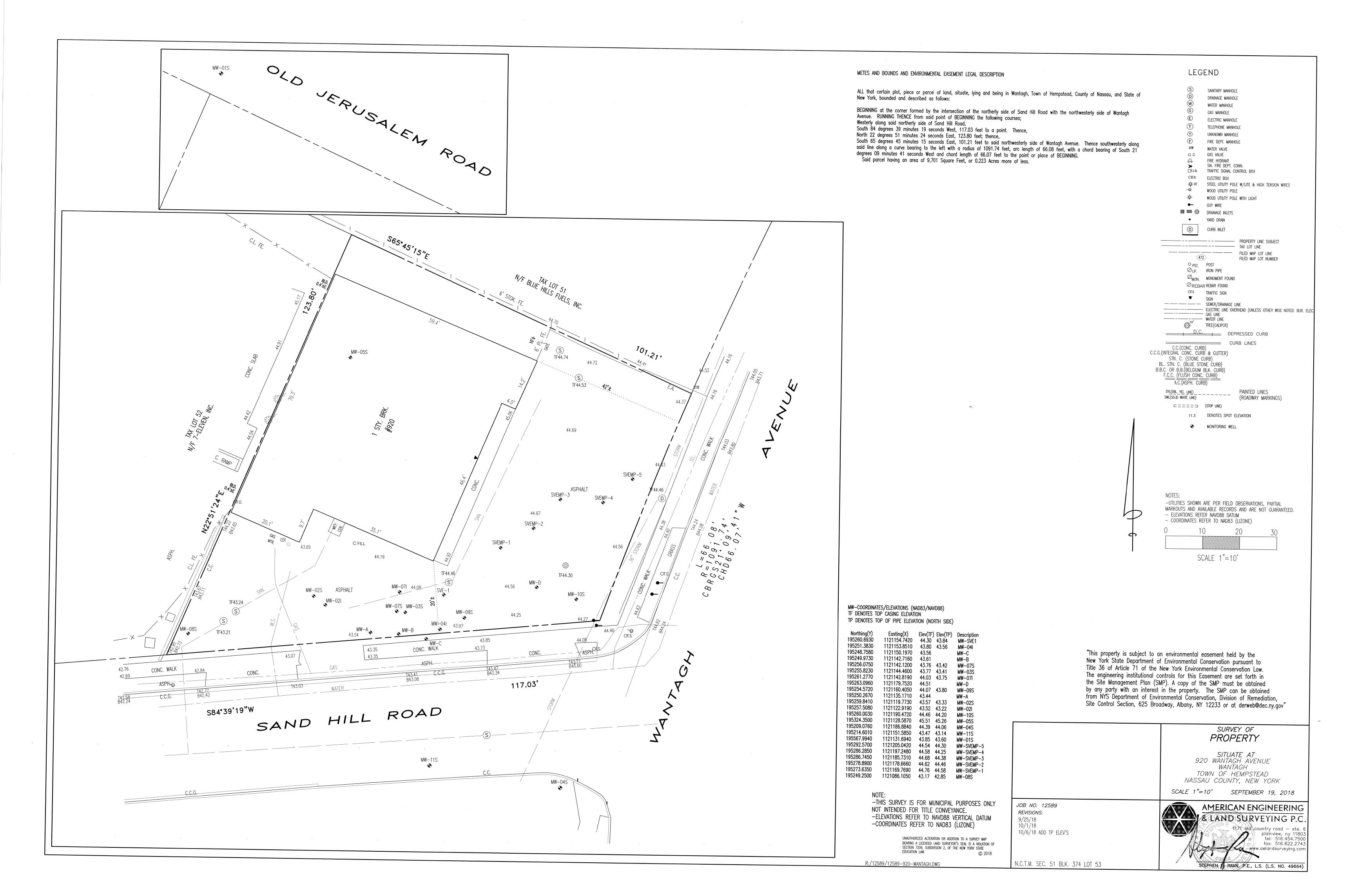
List specific products found in the residence that have the potential to affect indoor air quality.

	Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
(1)	CIAIST	Simple Green	3202	used	seepieluce	0.6	Y
(1)	U	Clorex Bleach	3201	used	(1	0.0	Y
(1)	1.1	Glade Spray	802	used	11	0.0	У
201	Class 3		2.002	Ü	11	0.0	4
(7) (4)	[]		1202	2	× {;	0.0	4
(3)	13	Glue Elmers washable paints	1,0(1a)	7	i)	0.0	4
	()		1602	7	(-1	0.0	N
(s) (1)	11	Simple Green	3262	7	4	0.0	N
(2)	11	Lysol spray	1902	C	++	0.0	N
	11	Glade	802	0	-	0,0	N
(1)	(1	Lysol	1602	U		0.0	N
	Class 2	alve	Cal	7		0 : 0	N
10)	1)	Bingo markers	2.80		tanin to	0.0	N
(i)	11	whiteout	20ml		· Capperson	0.0	W
(1)	()	Glade	1602	ν	and the same of th	0.0	W
(2)	11	Simple Green	310	L 0		0.0	N
(1)	11	Bleach	Gal	V		0,0	N
(1)	11	Lysol	12.5	V	_	0.0	N
	1000	1		- J		0.0	_0

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FORM


List specific products found in the residence that have the potential to affect indoor air quality.

	Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
)	closet	P/ Lysol	12.50	2 New		6.0	NEY
1	U	Real Kill Wasp- Hornet Spray lesolul stain arpet lesolul carpet form paint primers	2502	used	see picture	0.6	4
)	11	lesolue stain arget	12202	11	٧,	0.0	4
1)	11	lesolue carpet form	2202	£ \$	١,	6.0	Y
51	11	paint primers	11291	ti	r)	0.0	Y
)	11	Simple green Bleach Quick shire floor finish	3202	L)	Uj	0.0	Y
)	ιV	Bleach	1 Ga	1 11	E, N	6.0	4
)		Quickshire	1702	()	1 /	0.0	4
		f loor finish			1.7		
					-		
						=	

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX E SITE SURVEY

APPENDIX F DATA VALIDATION CHECKLISTS

DATA VALIDATION CHECKLIST

Project Name:	Wantagh Cleaners	
Project Number:	3150-40	
Sample Date(s):	September 12 & 13, 2018	
Sample Team:	Tara Judge	
Matrix/Number of Samples:	Water/ 12 Field Duplicate/ 0 Trip Blank/ 1 Field Blank/ 0	
Analyzing Laboratory:	TestAmerica Laboratories, Buffalo, NY	
Analyses:	Volatile Organic Compounds (VOCs): by SW846	8260C
Laboratory Report No:	480-141888	Date: 9/28/18

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance Reported Acceptable N			Not	
•	No	Yes	No	Yes	Required
1. Sample results		X		X	
2. Parameters analyzed		X		X	
3. Method of analysis		X		X	
4. Sample collection date		X		X	
5. Laboratory sample received date		X		X	
6. Sample analysis date		X		X	
7. Copy of chain-of-custody form signed by Lab sample custodian		X		X	
8. Narrative summary of QA or sample problems provided		X		X	

QA - quality assurance

Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

Custody Numbers:480-141888 SAMPLE AND ANALYSIS LIST

		Sample	Parent	Analysis					
Sample ID	Lab ID	Collection Date	Sample	VOC	1,4-Dioxane	PFAS	MISC		
XX (85)	480-141888-1	9/12/2018		X					
XX (75)	480-141888-2	9/12/2018		X					
XX (65)	480-141888-3	9/12/2018		X					
YY (30)	480-141888-4	9/13/2018		X					
YY (25)	480-141888-5	9/13/2018		X					
YY (20)	480-141888-6	9/13/2018		X					
EEE (75)	480-141888-7	9/13/2018		X					
EEE (65)	480-141888-8	9/13/2018		X					
EEE (55)	480-141888-9	9/13/2018		X					
EEE (45)	480-141888-10	9/13/2018		X					
EEE (35)	480-141888-11	9/13/2018		X					
EEE (25)	480-141888-12	9/13/2018		X					
TRIP BLANK	480-141888-13	9/13/2018		X					

ORGANIC ANALYSES VOCS

	Reported		Performance Acceptable		Not Required	
	No	Yes	No	Yes		
1. Holding times		X	X			
2. Blanks						
A. Method blanks		X		X		
B. Trip blanks		X		X		
C. Field blanks					X	
3. Matrix spike (MS) %R		X		X		
4. Matrix spike duplicate (MSD) %R		X		X		
5. MS/MSD precision (RPD)		X		X		
6. Laboratory control sample (LCS) %R		X		X		
7. Surrogate spike recoveries		X		X		
8. Instrument performance check		X		X		
9. Internal standard retention times and areas		X		X		
10. Initial calibration RRF's and %RSD's		X		X		
11. Continuing calibration RRF's and %D's		X		X		
12. Transcriptions – quant report vs. Form I		X		X		

VOCs - volatile organic compounds %R - percent recovery

%D - percent difference

%RSD - percent relative standard deviation

RRF - relative response factor

RPD - relative percent difference

Comments:

Performance was acceptable, with the following exception:

1. The following samples had significant headspace XX(85), XX(75) and XX(65) and sample XX(85) also had pH greater than 2. All VOC results were qualified as estimated (J/UJ) based on significant headspace in samples XX(85), XX(75) and XX(65).

DATA VALIDATION AND QUALIFICATION SUMMARY

Sample ID	Analyte(s),	Qualifier	Reason(s),
<u>VOCs</u>			
XX(85), XX(75) and	All VOC	J/UJ	Significant headspace in
XX(65)		0, 00	samples

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 1/2/2019
VALIDATION PERFORMED BY SIGNATURE:	Dom'n Br

DATA VALIDATION CHECKLIST

Project Name:	Wantagh Cleaners	
Project Number:	3150-40	
Sample Date(s):	September 17-21, 2018	
Sample Team:	Tara Judge	
Matrix/Number of Samples:	Water/ 23 Field Duplicate/ 0 Trip Blank/ 1 Field Blank/ 0	
Analyzing Laboratory:	TestAmerica Laboratories, Buffalo, NY	
Analyses:	Volatile Organic Compounds (VOCs): by SW846	8260C
Laboratory Report No:	480-142369	Date:10/4/18

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Repo		mance ptable	Not	
•	No	Yes	No	Yes	Required
1. Sample results		X		X	•
2. Parameters analyzed		X		X	
3. Method of analysis		X		X	
4. Sample collection date		X		X	
5. Laboratory sample received date		X		X	
6. Sample analysis date		X		X	
7. Copy of chain-of-custody form signed by Lab sample custodian		X		X	
8. Narrative summary of QA or sample problems provided		X		X	

QA - quality assurance

Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

Custody Numbers:480-142369 SAMPLE AND ANALYSIS LIST

		Sample Collection Parent			Analysi	s	
Sample ID	Lab ID	Date Collection	Sample	VOC	1,4-Dioxane	PFAS	MISC
TRIP BLANK	480-142369-1	9/17/2018		X			
RRR (65)	480-142369-2	9/19/2018		X			
RRR (55)	480-142369-3	9/19/2018		X			
RRR (45)	480-142369-4	9/19/2018		X			
RRR (35)	480-142369-5	9/19/2018		X			
III (95)	480-142369-6	9/20/2018		X			
III (85)	480-142369-7	9/20/2018		X			
III (75)	480-142369-8	9/20/2018		X			
III (65)	480-142369-9	9/20/2018		X			
III (55)	480-142369-10	9/20/2018		X			
III (45)	480-142369-11	9/20/2018		X			
III (35)	480-142369-12	9/20/2018		X			
III (25)	480-142369-13	9/20/2018		X			
SSS (95)	480-142369-14	9/20/2018		X			
SSS (85)	480-142369-15	9/20/2018		X			
SSS (75)	480-142369-16	9/20/2018		X			
SSS (65)	480-142369-17	9/20/2018		X			
SSS (55)	480-142369-18	9/20/2018		X			
DT1G (95)	480-142369-19	9/21/2018		X			
DT1G (85)	480-142369-20	9/21/2018		X			
DT1G (75)	480-142369-21	9/21/2018		X			
DT2C (75)	480-142369-22	9/21/2018		X		_	
DT2C (65)	480-142369-23	9/21/2018		X			
DT2C (55)	480-142369-24	9/21/2018		X			

ORGANIC ANALYSES VOCS

	Rep	orted	Performance Acceptable		Not Required	
	No	Yes	No	Yes		
1. Holding times		X	X			
2. Blanks						
A. Method blanks		X		X		
B. Trip blanks		X	X			
C. Field blanks					X	
3. Matrix spike (MS) %R		X	X			
4. Matrix spike duplicate (MSD) %R		X	X			
5. MS/MSD precision (RPD)		X		X		
6. Laboratory control sample (LCS) %R		X		X		
7. Surrogate spike recoveries		X	X			
8. Instrument performance check		X		X		
9. Internal standard retention times and areas		X		X		
10. Initial calibration RRF's and %RSD's		X		X		
11. Continuing calibration RRF's and %D's		X		X		
12. Transcriptions – quant report vs. Form I		X		X		

VOCs - volatile organic compounds %R - percent recovery

%D - percent difference

%RSD - percent relative standard deviation

RRF - relative response factor RPD - relative percent difference

Comments:

Performance was acceptable, with the following exception:

- 1. The following samples had significant headspace DT1G (95), DT1G (85), DT1G (75), DT2C (65), DT2C (55), RRR (65) and III (95) and samples III (65), DT1G (85), RRR (65), RRR (55), RRR (35), III (95) and SSS (75) had pH greater than 2. All VOC results were qualified as estimated (J/UJ) in samples DT1G (95), DT1G (85), DT1G (75), DT2C (65), DT2C (55), RRR (65), RRR (55), RRR (35), III (95), III (65), and SSS (75).
- 2B. 2-Butanone, acetone and benzene were detected in the TRIP BLANK. The following were qualified as non-detect (UB): 2-butanone in samples RRR (65), RRR (45), RRR (35), III (95), III (85), III (75), III (55), III (45), III (35), SSS (95), SSS (85) and SSS (75); acetone in samples RRR (65), RRR (55), RRR (45), RRR (35), III (95), III (85), III (75), III (65), III (55), III (45), III (35), SSS (95), SSS (85), SSS (75), DT1G (95), DT1G (85), DT1G (75), DT2C (75), DT2C (65) and DT2C (55); benzene in samples RRR (65) and III (95).
- 3&4. The %Rs were above the QC limits in the MS and MSD for 1,1,1-trichloroethane, 1,2-dichloroethane, bromodichloromethane, dibromochloromethane, dichlorodifluoromethane, and trichlorofluoromethane associated with all samples except DT1G (75) III (65) SSS (85) and 1,1-dichloroethane, bromomethane, chloroethane, chloromethane and vinyl chloride associated with samples DT1G (75), III (65) and SSS (85). 1,1-Dichloroethane was qualified as estimated (J) in sample SSS (85).

7. Surrogate recovery for 1,2-dichloroethane-d4 was above the QC limit in sample DT2C (55), no associated compounds were detected above the reporting limit in the sample therefore qualification of the data was not necessary.

DATA VALIDATION AND QUALIFICATION SUMMARY

Laboratory Numbers: 480-142369

Sample ID	Analyte(s),	Qualifier	Reason(s),
<u>VOCs</u>			
DT1G (95), DT1G (85), DT1G (75), DT2C (65), DT2C (55), RRR (65), RRR (55), RRR (35), III (95), III (65), and SSS (75)	All VOC	J/UJ	Samples had significant headspace and/or pH greater than 2
RRR (65), RRR (45), RRR (35), III (95), III (85), III (75), III (55), III (45), III (35), SSS (95), SSS (85) and SSS (75)	2-Butanone		
RRR (65), RRR (55), RRR (45), RRR (35), III (95), III (85), III (75), III (65), III (55), III (45), III (35), SSS (95), SSS (85), SSS (75), DT1G (95), DT1G (85), DT1G (75), DT2C (75), DT2C (65) and DT2C (55)	Acetone	UB	Detected in the TRIP BLANK
RRR (65) and III (95)	Benzene		
SSS (85)	1,1-Dichloroethane	J	The %R was above the QC limit in the MS and MSD
_			

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 1/7/19
VALIDATION PERFORMED BY SIGNATURE:	Don'n Br

DATA VALIDATION CHECKLIST

Project Name:	Wantagh Cleaners	
Project Number:	3150-40	
Sample Date(s):	September 24, 2018	
Sample Team:	Tara Judge	
Matrix/Number of Samples:	Water/ 7 Field Duplicates/ 1 Trip Blanks / 0 Field Blanks/ 1	
Analyzing Laboratory:	TestAmerica Laboratories, Amher	st, NY
Analyses:	1,4-Dioxane: by method 8270D SI	M
Laboratory Report No:	480-142737	Date:10/15/2018

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance				
	Reported		Acceptable		Not
	No	Yes	No	Yes	Required
1. Sample results		X		X	
2. Parameters analyzed		X		X	
3. Method of analysis		X		X	
4. Sample collection date		X		X	
5. Laboratory sample received date		X		X	
6. Sample analysis date		X		X	
7. Copy of chain-of-custody form signed by Lab sample custodian		X		X	
8. Narrative summary of QA or sample problems provided		X		X	

QA - quality assurance

Comments:

A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria, and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

Custody Numbers: 480-142737 SAMPLE AND ANALYSIS LIST

		Sample Collection	Parent		P	Analysis		
Sample ID	Lab ID	Date	Sample	PFAs	1,4- Dioxane	PCB	MET	MISC
MW-07I	480-142737-1	9/24/2018			X			
MW-07S	480-142737-2	9/24/2018			X			
MW-05S	480-142737-3	9/24/2018			X			
MW-09S	480-142737-4	9/24/2018			X			
MW-08S	480-142737-5	9/24/2018			X			
MW-10S	480-142737-6	9/24/2018			X			
MW-11S	480-142737-7	9/24/2018			X			

ORGANIC ANALYSES PFAs and 1,4-Dioxane

	Reported		Performance Acceptable		Not	
	No	Yes	No	Yes	Required	
1. Holding times						
2. Blanks						
A. Method blank						
B. Trip blanks						
C. Field blank						
3. Matrix spike (MS) %R						
4. Matrix spike duplicate (MSD) %R						
5. MS/MSD precision (RPD)						
6. Laboratory control sample (LCS) %R						
7. Surrogate spike or isotope dilution recoveries						
8. Instrument performance check						
9. Internal standard retention times and areas						
10. Initial calibration RRF's and %RSD's						
11. Continuing calibration RRF's and %D's	·					
12. Transcriptions – quant report vs. Form I	·					
13. Field duplicates RPD		_		_		

VOCs - volatile organic compounds %R - percent recovery %D - percent difference

%RSD - percent relative standard deviation

RRF - relative response factor RPD - relative percent difference

Comments:

Performance was acceptable except the following:

DATA VALIDATION AND QUALIFICATION SUMMARY

Laboratory Numbers:480-142737

Sample ID	Analyte(s)	<u>Qualifier</u>	Reason(s)
1,4-Dioxane			
This data not used samples resampled			

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 12/17/2018
VALIDATION PERFORMED BY SIGNATURE:	Don'n Br

DATA VALIDATION CHECKLIST

Project Name:	Wantagh Cleaners	
Project Number:	3150-40	
Sample Date(s):	September 24-26, 2018	
Sample Team:	Tara Judge	
Matrix/Number of Samples:	Water/ 13 Field Duplicate/ 0 Trip Blank/ 1 Field Blank/ 0	
Analyzing Laboratory:	TestAmerica Laboratories, Buffalo, NY	
Analyses:	Volatile Organic Compounds (VOCs): by SW846	8260C
Laboratory Report No:	480-142708	Date:10/15/18

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance Reported Acceptable N			Not	
•	No	Yes	No	Yes	Required
1. Sample results		X		X	
2. Parameters analyzed		X		X	
3. Method of analysis		X		X	
4. Sample collection date		X		X	
5. Laboratory sample received date		X		X	
6. Sample analysis date		X		X	
7. Copy of chain-of-custody form signed by Lab sample custodian		X		X	
8. Narrative summary of QA or sample problems provided		X		X	

QA - quality assurance

Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

Custody Numbers:480-142708 SAMPLE AND ANALYSIS LIST

		Sample	Parent		Analysi		
Sample ID	Lab ID	Collection Date	Sample	VOC	1,4-Dioxane	PFAS	MISC
MW-07I	480-142708-1	9/24/2018		X			
MW-07S	480-142708-2	9/24/2018		X			
MW-05S	480-142708-3	9/24/2018		X			
MW-09S	480-142708-4	9/24/2018		X			
MW-08S	480-142708-5	9/24/2018		X			
MW-10S	480-142708-6	9/24/2018		X			
MW-02I	480-142708-7	9/26/2018		X			
MW-11S	480-142708-8	9/26/2018		X			
MW-04S	480-142708-9	9/26/2018		X			
MW-04I	480-142708-10	9/26/2018		X			
MW-03S	480-142708-11	9/26/2018		X			
MW-01S	480-142708-12	9/26/2018		X			
MW-02S	480-142708-13	9/26/2018		X			
TRIP BLANK	480-142708-14	9/26/2018		X			

ORGANIC ANALYSES VOCS

	Rep	orted		rmance eptable	Not Required
	No	Yes	No	Yes	
1. Holding times		X		X	
2. Blanks					
A. Method blanks		X		X	
B. Trip blanks		X	X		
C. Field blanks					X
3. Matrix spike (MS) %R		X	X		
4. Matrix spike duplicate (MSD) %R		X	X		
5. MS/MSD precision (RPD)		X		X	
6. Laboratory control sample (LCS) %R and RPD		X	X		
7. Surrogate spike recoveries		X		X	
8. Instrument performance check		X		X	
9. Internal standard retention times and areas		X		X	
10. Initial calibration RRF's and %RSD's		X		X	
11. Continuing calibration RRF's and %D's		X		X	
12. Transcriptions – quant report vs. Form I		X		X	

VOCs - volatile organic compounds %R - percent recovery %D - percent difference

%RSD - percent relative standard deviation

RRF - relative response factor RPD - relative percent difference

Comments:

Performance was acceptable, with the following exception:

- 2B. Methylene Chloride and xylene were detected in the TRIP BLANK. They were not detected in the associated samples therefore qualification of the data was not necessary.
- 3,4&6. The %Rs were above the QC limit for 1,1-dichloroethane, chloroethane, chloromethane and vinyl chloride in the MS and/or MSD. The %R was above the QC limit for chloromethane in the LCS. The only compound detected in the associated samples was vinyl chloride in sample MW-07S which was qualified as estimated (J).

Laboratory Numbers: 480-142708

DATA VALIDATION AND QUALIFICATION SUMMARY

Sample ID	Analyte(s)	Qualifier	Reason(s)
<u>VOCs</u>			
MW-07S	Vinyl chloride	J	The %Ra were above the QC limit in the MS and MSD

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 12/20/18
VALIDATION PERFORMED BY SIGNATURE:	Bu m Br

DATA VALIDATION CHECKLIST

Project Name:	Wantagh Cleaners	
Project Number:	3150-40	
Sample Date(s):	September 24 & 25, 2018	
Sample Team:	Tara Judge	
Matrix/Number of Samples:	Water/ 19 Field Duplicate/ 0 Trip Blank/ 1 Field Blank/ 0	
Analyzing Laboratory:	TestAmerica Laboratories, Buffalo, NY	
Analyses:	Volatile Organic Compounds (VOCs): by SW846	8260C
Laboratory Report No:	480-142747	Date: 10/16/18

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance Reported Acceptable N			Not	
•	No	Yes	No	Yes	Required
1. Sample results		X		X	
2. Parameters analyzed		X		X	
3. Method of analysis		X		X	
4. Sample collection date		X		X	
5. Laboratory sample received date		X		X	
6. Sample analysis date		X		X	
7. Copy of chain-of-custody form signed by Lab sample custodian		X		X	
8. Narrative summary of QA or sample problems provided		X		X	

QA - quality assurance

Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

Custody Numbers:480-142747 SAMPLE AND ANALYSIS LIST

		Sample	Parent		Analysi	s		
Sample ID	Lab ID	Collection Date	Sample	VOC	1,4-Dioxane	PFAS	MISC	
TRIP BLANK-	480-142747-1	9/24/2018		X				
92418								
DT1F (65)	480-142747-2	9/24/2018		X				
DT1F (55)	480-142747-3	9/24/2018		X				
DT1F (45)	480-142747-4	9/24/2018		X				
DT2E (85)	480-142747-5	9/25/2018		X				
DT2E (75)	480-142747-6	9/25/2018		X				
DT2E (65)	480-142747-7	9/25/2018		X				
DT2E (55)	480-142747-8	9/25/2018		X				
DT2E (45)	480-142747-9	9/25/2018		X				
DT2E (35)	480-142747-10	9/25/2018		X				
DT2E (25)	480-142747-11	9/25/2018		X				
DT2E (15)	480-142747-12	9/25/2018		X				
QR (25)	480-142747-13	9/25/2018		X				
QR (20)	480-142747-14	9/25/2018		X				
QR (15)	480-142747-15	9/25/2018		X				
0 (25)	480-142747-16	9/25/2018		X				
0 (20)	480-142747-17	9/25/2018		X				
0 (20)	480-142747-18	9/25/2018		X				
0 (15)	480-142747-19	9/25/2018		X				
U (25)	480-142747-20	9/25/2018		X				

ORGANIC ANALYSES VOCS

	Reported			rmance eptable	Not Required
	No	Yes	No	Yes	
1. Holding times		X		X	
2. Blanks					
A. Method blanks		X		X	
B. Trip blanks		X		X	
C. Field blanks					X
3. Matrix spike (MS) %R		X	X		
4. Matrix spike duplicate (MSD) %R		X	X		
5. MS/MSD precision (RPD)		X		X	
6. Laboratory control sample (LCS) %R		X	X		
7. Surrogate spike recoveries		X		X	
8. Instrument performance check		X		X	
9. Internal standard retention times and areas		X		X	
10. Initial calibration RRF's and %RSD's		X		X	
11. Continuing calibration RRF's and %D's		X		X	
12. Transcriptions – quant report vs. Form I		X		X	

VOCs - volatile organic compounds %R - percent recovery

%D - percent difference

%RSD - percent relative standard deviation

RRF - relative response factor

RPD - relative percent difference

Comments:

Performance was acceptable, with the following exception:

3,4&6. The following results had the %R above the QC limits in the MS, MSD and or LCS: 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, 1,2-dibromoethane, 1,2-dichloropropane, bromomethane, carbon tetrachloride, chlorobenzene, cis-1,2-dichloroethene, dibromochloromethane, methyl tert-butyl ether, tetrachloroethene, trans-1,2-dichloroethene, trichloroethene and vinyl chloride.

The following results were above the reporting limit and were qualified as estimated (J): tetrachloroethene in samples DT1F (65), DT2E (85), DT2E (75), DT2E (65), DT2E (55), DT2E (45), DT2E (25), QR (25), QR (20), QR (15), O (25), O (20) and O (15); trichloroethene in samples DT1F (65), DT2E (85), DT2E (75), DT2E (65), DT2E (25), QR (25), QR (20), O (25), O (20) and O (15); 1,1-dichloroethane in samples DT2E (85) and DT2E (75); cis-1,2-dichloroethene in samples DT2E (85), DT2E (25), DT2E (2

12. Cis-1,2-dichloroethene exceeded the calibration range in sample O (20) and was reanalyzed at a secondary dilution. The secondary dilution was reported for cis-1,2-dichloroethene (D) in sample O (20).

DATA VALIDATION AND QUALIFICATION SUMMARY

Laboratory Numbers: 480-142747 Oualifier Reason(s), Sample ID Analyte(s), **VOCs** DT1F (65), DT2E (85), DT2E (75), DT2E (65), DT2E (55), DT2E (45), Tetrachloroethene DT2E (25), QR (25), QR (20), QR (15), O (25), O (20) and O (15) DT1F (65), DT2E (85), DT2E (75), DT2E (65), DT2E (55), DT2E (25), Trichloroethene QR (25), QR (20), O (25), O (20) and O (15) %R above the OC limits in DT2E (85) and DT2E (75) 1,1-Dichloroethane J the MS, MSD and or LCS DT2E (85), DT2E (75), DT2E (65), DT2E (55), DT2E (45), DT2E (25), Cis-1,2-dichloroethene QR (25), QR (20), O (25), 0 (20) and O (15) DT2E (85), DT2E (75), DT2E (65) Methyl tert-butyl ether and DT2E (55) Trans-1,2-dichloroethene QR (25) and O (20) Vinyl chloride O (20) D O (20) Cis-1,2-dichloroethene Exceeded the calibration range and was reanalyzed and reported from a secondary dilution

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 1/2/19
VALIDATION PERFORMED BY SIGNATURE:	Dom'n Br

DATA VALIDATION CHECKLIST

Project Name:	Wantagh Cleaners
Project Number:	3150-40
Sample Date(s):	September 24-26, 2018
Sample Team:	Tara Judge
Matrix/Number	Water/ 7
of Samples:	Field Duplicate/ 1
	Trip Blank/ 0
	Field Blank/ 1
Analyzing Laboratory:	TestAmerica, Laboratories, Sacramento, CA
Analyses:	Per-and Polyfluoroalkyl Substances (PFAS): by EPA 537 (modified) by CA
Laboratory Report No:	320-43822 Date:10/25/18

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance				
_	Reported		Acceptable		Not
	No	Yes	No	Yes	Required
1. Sample results		X		X	
2. Parameters analyzed		X		X	
3. Method of analysis		X		X	
4. Sample collection date		X		X	
5. Laboratory sample received date		X		X	
6. Sample analysis date		X		X	
7. Copy of chain-of-custody form signed by Lab sample custodian		X		X	
8. Narrative summary of QA or sample problems provided		X		X	_

QA - quality assurance

Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

Custody Numbers:320-43822 SAMPLE AND ANALYSIS LIST

	S	Sample	Parent	Analysis					
Sample ID	Lab ID	Collection Date	Sample	VOC	1,4-Dioxane	PFAS	MISC		
MW-07I	320-43822-1	9/24/2018				X			
MW-07S	320-43822-2	9/24/2018				X			
MW-05S	320-43822-3	9/24/2018				X			
MW-09S	320-43822-4	9/24/2018				X			
MW-08S	320-43822-5	9/24/2018				X			
MW-10S	320-43822-6	9/24/2018				X			
MW-11S	320-43822-7	9/26/2018				X			
Blind Duplicate	320-43822-8	9/26/2018	MW-08S			X			
Equipment blank	320-43822-9	9/26/2018				X			

ORGANIC ANALYSES PFAS

	Rep	orted		rmance eptable	Not Required	
	No	Yes	No	Yes		
1. Holding times		X		X		
2. Blanks						
A. Method blanks		X	X			
B. Trip blanks					X	
C. Field blanks		X	X			
3. Matrix spike (MS) %R		X		X		
4. Matrix spike duplicate (MSD) %R		X		X		
5. MS/MSD precision (RPD)		X		X		
6. Laboratory control sample (LCS) %R and RPD		X		X		
7. Surrogate spike recoveries		X	X			
8. Internal standard retention times and areas		X		X		
9. Initial calibration RRF's and %RSD's		X				
10. Continuing calibration RRF's and %D's		X				
11. Transcriptions – quant report vs. Form I		X		X		
12. Field Blind Duplicate		X		X		

VOCs - volatile organic compounds %R - percent recovery

%D - percent difference

%RSD - percent relative standard deviation

RRF - relative response factor

RPD - relative percent difference

Comments:

Performance was acceptable, with the following exception:

- 2. Perfluorohexanesulfonic acid (PFHxS) was detected in the Equipment Blank and method blanks. Perfluorohexanesulfonic acid (PFHxS) was qualified as non-detect (UB) in samples MW-07I, MW-08S and MW-09S. The "B" qualifier was removed from samples Blind Duplicate, MW-05S, MW-11S, MW-07S and MW-10S because the results were more than ten times that found in the blank.
- 7. The surrogate M2-6:2 FTS was above the QC limit for samples MW-07S, MW-08S, MW-10S, MW-11S and Blind Duplicate. The associated result was not detected above the reporting limit in any of the associated samples therefore qualification of the data was not necessary.

Laboratory Numbers: 320-43822

DATA VALIDATION AND QUALIFICATION SUMMARY

Sample ID	Analyte(s)	Qualifier	Reason(s)
<u>PFA</u>			
MW-07I, MW-08S and MW-09S	Perfluorohexanesulfonic acid (PFHxS)	UB	Detected in the Equipment Blank and method blanks
	Perfluorohexanesulfonic acid (PFHxS)	B removed	More than ten times that found in the blank
	, ,		

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 12/17/18
VALIDATION PERFORMED BY SIGNATURE:	Dom'n Br

DATA REVIEW CHECK LIST

Project Name:	Wantagh Cleaners		
Project Number:	3150-40		
Sample Date(s):	October 3, 2018		
Matrix/Number of Samples:	Air/ 1 (SVE-Effluent)		
Analyzing Laboratory:	TestAmerica Laboratories, South Burlington, VT		
Analyses:	Volatile Organic Compounds (VOCs):	TO15	
Laboratory Report No:	200-45587	Date: 10/15/18	

ORGANIC ANALYSES VOCS

	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
1. Holding times		X		X	
2. Method blanks		X		X	
3. Laboratory Control Sample (LCS) %R		X		X	
4. Instrument Performance Check		X		X	
5. Internal standard retention times and areas		X		X	
6. Initial calibration RRF's		X		X	
7. Continuing calibration RRF's and %D's		X		X	
8. Field duplicates RPD					X

VOCs - volatile organic compounds

%R - percent recovery

Comments:

Performance was acceptable with the following exception:

12. Tetrachloroethene exceeded the calibration range in SVE-Effluent and was reanalyzed at a secondary dilution. The secondary dilution was reported for tetrachloroethene (D) in SVE-Effluent.

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 1/2/2019
VALIDATION PERFORMED BY SIGNATURE:	Bom m Br

[%]D - percent difference RPD - relative percent difference

RRF - relative response factor

DATA VALIDATION CHECKLIST

Project Name:	Wantagh Cleaners				
Project Number:	r: 3150-40				
Sample Date(s):	October 30, 2018				
Sample Team:	: Tara Judge				
Matrix/Number of Samples:	Water/ 7 Field Duplicates/ 0 Trip Blanks / 0 Field Blanks/ 0				
Analyzing Laboratory:	Lest America Lanoratories Buttato IN Y				
Analyses:	1,4-Dioxane: by method 8270D SIM				
Laboratory Report No:	460-168374	Date:11/16/2018			

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Damantad		Performance Acceptable		Not
	No	Reported No Yes		Yes	Required
1. Sample results		X		X	•
2. Parameters analyzed		X		X	
3. Method of analysis		X		X	
4. Sample collection date		X		X	
5. Laboratory sample received date		X		X	
6. Sample analysis date		X		X	
7. Copy of chain-of-custody form signed by Lab sample custodian		X		X	
8. Narrative summary of QA or sample problems provided		X		X	

QA - quality assurance

Comments:

A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria, and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

Custody Numbers: 460-168374 SAMPLE AND ANALYSIS LIST

		Sample Collection	Sample Collection Parent	Analysis				
Sample ID	Lab ID	Date	Sample	PFAs	1,4- Dioxane	PCB	MET	MISC
MW-05S	460-168374-1	10/30/2018			X			
MW-08S	460-168374-2	10/30/2018			X			
MW-07I	460-168374-3	10/30/2018			X			
MW-07S	460-168374-4	10/30/2018			X			
MW-11S	460-168374-5	10/30/2018			X			
MW-09S	460-168374-6	10/30/2018			X			
MW-10S	460-168374-7	10/30/2018			X			

ORGANIC ANALYSES

1,4-Dioxane

	Reported		Performance Acceptable		Not	
	No	Yes	No	Yes	Required	
1. Holding times		X		X	-	
2. Blanks						
A. Method blank		X		X		
B. Trip blanks					X	
C. Field blank					X	
3. Matrix spike (MS) %R		X		X		
4. Matrix spike duplicate (MSD) %R		X		X		
5. MS/MSD precision (RPD)		X		X		
6. Laboratory control sample (LCS) %R		X		X		
7. Surrogate spike or isotope dilution recoveries		X		X		
8. Instrument performance check		X		X		
9. Internal standard retention times and areas		X		X		
10. Initial calibration RRF's and %RSD's		X		X		
11. Continuing calibration RRF's and %D's		X		X		
12. Transcriptions – quant report vs. Form I		X		X		
13. Field duplicates RPD					X	

VOCs - volatile organic compounds %R - percent recovery

%D - percent difference

%RSD - percent relative standard deviation

RRF - relative response factor RPD - relative percent difference

Comments:

Performance was acceptable except the following:

12. An "E" flag was generated based upon the bias corrected on the recovery of the 1,4-dioxane-d8 isotope in samples MW-08S, MW-11S and MW-09S. The "E" qualifier was removed from samples MW-08S, MW-11S and MW-09S and 1,4-dioxane was qualified as estimated (J).

DATA VALIDATION AND QUALIFICATION SUMMARY

Laboratory Numbers:460-168374

Sample ID	Analyte(s)	<u>Qualifier</u>	Reason(s)
1,4-Dioxane			
MW-08S, MW-11S and MW-09S	1,4-Dioxane	J	An "E" flag was generated based upon the bias corrected on the recovery of the 1,4-dioxane-d8 isotope and it was removed

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 12/17/2018
VALIDATION PERFORMED BY SIGNATURE:	Dom'n Br

DATA REVIEW CHECK LIST

Project Name:	Wantagh Cleaners		
Project Number:	3150-40		
Sample Date(s):	November 19, 2018		
Matrix/Number of Samples:	Air/8 (Outside, C-1, C-2, C-3, OFFICE, BASEMENT, SV-1 and SV-2)		
Analyzing Laboratory:	TestAmerica Laboratories, South Burlington, VT		
Analyses:	Volatile Organic Compounds (VOCs): TO15		
Laboratory Report No:	200-46352 Date: 12/14/18		

ORGANIC ANALYSES VOCS

	Reported		Performance Acceptable		Not
	No	Yes	No	Yes	Required
1. Holding times		X		X	
2. Method blanks		X		X	
3. Laboratory Control Sample (LCS) %R		X		X	
4. Instrument Performance Check		X		X	
5. Internal standard retention times and areas		X		X	
6. Initial calibration RRF's		X		X	
7. Continuing calibration RRF's and %D's		X		X	
8. Field duplicates RPD					X

VOCs - volatile organic compounds

%R - percent recovery

RPD - relative percent difference

Comments:

Performance was acceptable.

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 1/7/2019
VALIDATION PERFORMED BY SIGNATURE:	Bon n Br

[%]D - percent difference

RRF - relative response factor

APPENDIX G SOIL VAPOR EXTRACTION EVALUATION

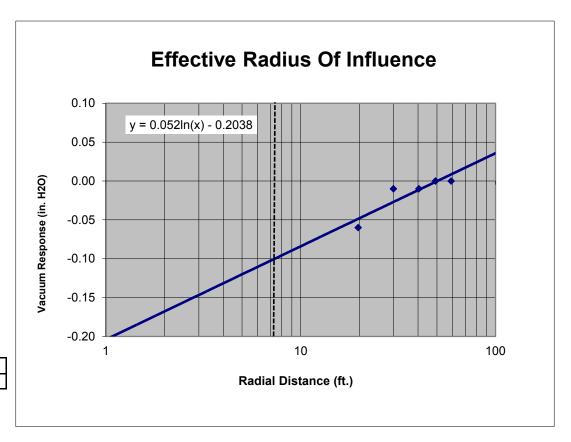
Summary of Soil Vapor Extraction System Evaluation Data Wantagh Cleaners Site 920 Wantagh Avenue

Wantagh, New York

 Depth Interval (ft. bgs):
 3 to 10

 Test Date:
 10/3/2018

 Performed By:
 D&B


Extraction Well: SVE-1 Pilot Well

Test Duration (min.): 60
Wellhead Vacuum ("H2O): -1.3
Vapor Discharge Flow (scfm): 20

Radial Distance	Vacuum Response
(ft.)	20 scfm
19.7	-0.06
29.9	-0.01
40.4	-0.01
49.1	0.00
59.1	0.00

Est. ROI (ft.)	Vacuum ("H2O)	Flow (scfm)
7.36	-1.3	20

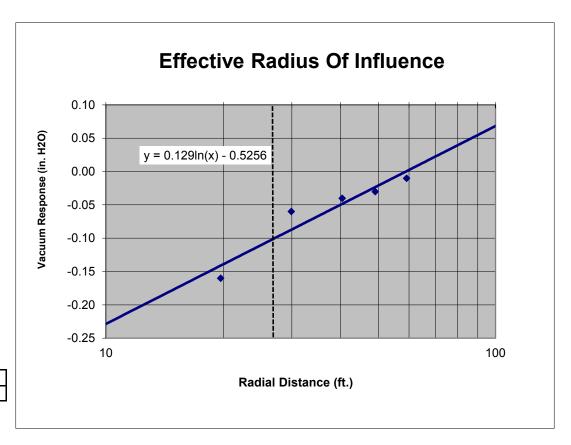
Response:	-0.1
Slope:	0.052
Intercept	0.2038

Summary of Soil Vapor Extraction System Evaluation Data

Wantagh Cleaners Site 920 Wantagh Avenue Wantagh, New York

Depth Interval (ft. bgs): 3 to 10
Test Date: 10/3/2018

Performed By: D&B


Extraction Well: SVE-1 Pilot Well

Test Duration (min.): 60
Wellhead Vacuum ("H2O): -2.1
Vapor Discharge Flow (scfm): 40

Radial Distance	Vacuum Response
(ft.)	40 scfm
19.7	-0.16
29.9	-0.06
40.4	-0.04
49.1	-0.03
59.1	-0.01

Est. ROI (ft.)	Vacuum ("H2O)	Flow (scfm)
27.09	-2.1	40

Response:	-0.1
Slope:	0.129
Intercept	0.5256

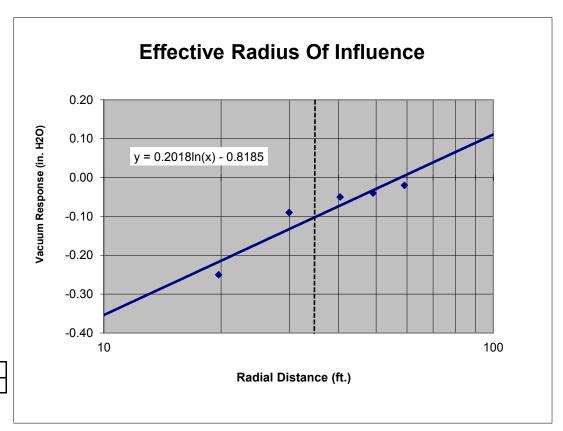
Summary of Soil Vapor Extraction System Evaluation Data

Wantagh Cleaners Site 920 Wantagh Avenue Wantagh, New York

 Depth Interval (ft. bgs):
 3 to 10

 Test Date:
 10/3/2018

 Performed By:
 D&B


Extraction Well: SVE-1 Pilot Well

Test Duration (min.): 60
Wellhead Vacuum ("H2O): -4.7
Vapor Discharge Flow (scfm): 60

Radial Distance	Vacuum Response
(ft.)	60 scfm
19.7	-0.25
29.9	-0.09
40.4	-0.05
49.1	-0.04
59.1	-0.02

Est. ROI (ft.)	Vacuum ("H2O)	Flow (scfm)
35.18	-4.7	60

Response:	-0.1
Slope:	0.2018
Intercept	0.8185

Summary of Soil Vapor Extraction System Evaluation Data

Wantagh Cleaners Site 920 Wantagh Avenue Wantagh, New York

 Depth Interval (ft. bgs):
 3 to 10

 Test Date:
 10/3/2018

 Performed By:
 D&B

Extraction Well: SVE-1 Pilot Well

Test Duration (min.): 60
Wellhead Vacuum ("H2O): -7.6
Vapor Discharge Flow (scfm): 80

Radial Distance	Vacuum Response				
(ft.)	80 scfm				
19.7	-0.39				
29.9	-0.14				
40.4	-0.09				
49.1	-0.07				
59.1	-0.04				

Est. ROI (ft.)	Vacuum ("H2O)	Flow (scfm)
42.97	-7.6	80

Response:	-0.1
Slope:	0.3049
Intercept	1.2466

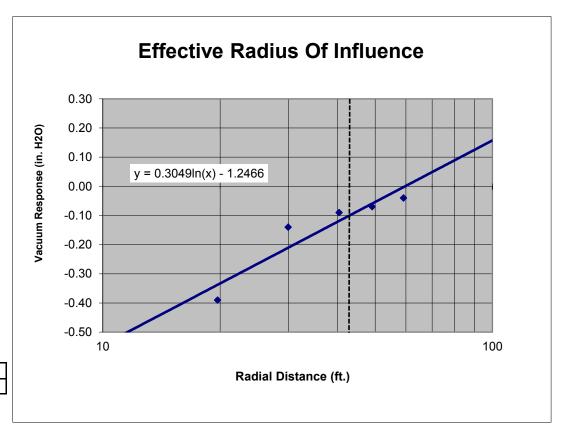


TABLE 1
WANTAGH CLEANERS OU2 SITE
SVE PILOT TEST DATA
OCTOBER 2018

	Monitoring Point	SVEMP-1	SVEMP-2	SVEMP-3	SVEMP-4	SVEMP-5	MW-02S	MW-03S	MW-05S	MW-07S	MW-08S	MW-09S	MW-10S	
	Total Depth (feet bgs)	10.00	10.15	10.25	10.25	10.30	25.43	25.35	16.95	19.27	17.67	18.67	18.40	
	Radial Distance from SVE-1 Well (feet)	19.7	29.9	40.4	49.1	59.1	34.5	10.5	65.5	12.6	68.2	8.4	35.9	
					•									
Initial PID (ppm)	39.4	49.4	19.1	63.1	16.4	12.0	3.2	2.3	550.0	2.3	5.5	36.0	28.1	
Time	Applied System Flow at PSTS Well (SCFM/in. H ₂ O)		Vacuum Reading (in. H ₂ O)							Exhaust PID (ppm)				
	Test 1:20 CFM													
10:25	20.5 / -0.9	-0.06	-0.01	0.00	0.00	0.00	0.00	0.00	0.00	-0.01	0.00	-0.12	0.00	24.1
10:45	21.1 / -1.1	-0.07	-0.02	-0.01	-0.01	-0.01	0.00	0.00	0.00	-0.05	0.00	-0.13	-0.01	24.0
11:05	20.8 / -1.1	-0.06	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	-0.01	0.00	-0.14	-0.02	23.0
11:23	20.0 / -1.3	-0.06	-0.01	-0.01	0.00	0.00	0.00	0.00	0.00	-0.01	0.00	-0.14	-0.02	22.5
	Test 2 : 40 CFM													
11:40	40.52 / -2.5	-0.17	-0.07	-0.05	-0.02	-0.03	0.00	0.00	0.00	0.00	0.00	-0.32	-0.05	24.6
12:00	49.71 / -2.2	-0.16	-0.05	-0.03	-0.02	-0.01	0.00	0.00	0.00	0.00	-0.01	-0.31	-0.03	25.2
12:15	40.64 / -2.2	-0.15	-0.05	-0.05	-0.03	-0.01	0.00	0.00	0.00	0.00	0.00	-0.32	-0.04	24.3
12:35	43.46 / -2.1	-0.16	-0.06	-0.04	-0.03	-0.01	0.00	0.00	0.00	0.00	0.00	-0.31	-0.03	21.5
	Test 3:60 CFM													
13:00	60.75 / -4.4	-0.24	-0.08	-0.05	-0.04	-0.02	0.00	0.00	0.00	0.00	-0.01	-0.47	-0.05	20.0
13:25	60.23 / -4.2	-0.25	-0.11	-0.07	-0.06	-0.04	0.00	0.00	0.00	-0.01	-0.01	-0.50	-0.06	25.2
13:40	59.64 / -4.7	-0.24	-0.10	-0.06	-0.06	-0.03	0.00	0.00	0.00	-0.03	-0.01	-0.50	-0.07	26.2
14:00	59.56 / -4.7	-0.25	-0.09	-0.05	-0.04	-0.02	0.00	0.00	0.00	-0.03	0.00	-0.47	-0.05	27.1
	Test 4:80 CFM													
14:25	82.21 / -7.6	-0.40	-0.15	-0.10	-0.08	-0.05	-0.01	0.00	-0.01	-0.01	-0.01	-0.74	-0.10	28.4
14:45	80.72 / -7.4	-0.39	-0.15	-0.09	-0.07	-0.05	0.00	0.00	0.00	-0.01	-0.01	-0.74	-0.09	29.2
15:00	81.26 / -7.3	-0.36	-0.11	-0.06	-0.04	-0.02	0.00	0.00	0.00	0.00	0.00	-0.72	-0.05	29.0
15:20	79.98 / -7.6	-0.39	-0.14	-0.09	-0.07	-0.04	0.00	0.00	0.00	0.00	-0.01	-0.74	-0.08	27.2

Notes

ft bgs: Feet below ground surface in. H₂0: Inches of water

SVE: Soil Vapor Extraction PID: Photoionization detector

SCFM: Standard cubic feet per minute ppm: Parts per million

TABLE 1
WANTAGH CLEANERS OU2 SITE
SVE PILOT TEST DATA
OCTOBER 2018

	Monitoring Point	VP-1	VP-2	VP-3	VP-4	VP-5	7
	Total Depth (ft bgs)	2.0	2.0	2.0	2.0	2.0	7
	Radial Distance from SVE-1 Well (feet)	10.5	18.9	28.3	37.7	49.8	
			•	•		•	
Initial PID (ppm)	39.4	260.0	5.0	3.0	3.1	1.3	
Time	Applied System Flow at SVE-1 Well (SCFM/in. H ₂ O)		Vacuu	m Reading (in	n. H ₂ O)	1	Exhaust PID (ppm)
	Test 1 : 20 CFM						
10:25	20.5 / -0.9	0.00	0.00	0.00	0.00	0.00	24.1
10:45	21.1 / -1.1	0.00	0.00	0.00	0.00	0.00	24.0
11:05	20.8 / -1.1	0.00	0.00	0.00	0.00	0.00	23.0
11:23	20.0 / -1.3	0.00	0.00	0.00	0.00	0.00	22.5
	Test 2 : 40 CFM						
11:40	40.52 / -2.5	-0.01	0.00	0.00	0.00	0.00	24.6
12:00	49.71 / -2.2	0.00	0.00	0.00	0.00	0.00	25.2
12:15	40.64 / -2.2	0.00	0.00	0.00	0.00	0.00	24.3
12:35	43.46 / -2.1	-0.01	-0.01	0.00	0.00	0.00	21.5
	Test 3 : 60 CFM						
13:00	60.75 / -4.4	0.00	0.00	0.00	0.00	0.00	20.0
13:25	60.23 / -4.2	-0.02	0.00	0.00	0.00	0.00	25.2
13:40	59.64 / -4.7	0.00	0.00	0.00	0.00	0.00	26.2
14:00	59.56 / -4.7	-0.01	0.00	0.00	0.00	0.00	27.1
	Test 4:80 CFM						
14:25	82.21 / -7.6	0.00	0.00	0.00	-0.01	-0.01	28.4
14:45	80.72 / -7.4	0.00	0.00	0.00	0.00	0.00	29.2
15:00	81.26 / -7.3	0.00	0.00	0.00	0.00	0.00	29.0
15:20	79.98 / -7.6	0.00	0.00	0.00	0.00	0.00	27.2

Notes

ft bgs: Feet below ground surface in. H₂0: Inches of water

SVE: Soil Vapor Extraction PID: Photoionization detector

SCFM: Standard cubic feet per minute ppm: Parts per million