

April 20, 2005

Mr. Shewen Bian US Army Corps of Engineers, Metro East Residend Fort Hamilton Military Community 408 Pershing Loop Brooklyn, NY 11252

RE:

Transmittal of February 2005 Monthly O&M Activity Reports

Stanton Cleaners Area Groundwater Contamination Site, Great Neck, New York USACE LTRA Contract DACW41-03-D-0004, T.O. 001

Dear Mr. Bian:

Environmental Chemical Corporation (ECC) is transmitting in this letter one hardcopy of the February 2005 Monthly O&M Activity Reports for the Stanton Cleaners LTRA site. This Report includes groundwater analytical (Till February 2005). To date, all effluent data has been below the discharge criteria with detectable concentrations of PCE in the effluent well below the discharge limits. Validated results will be included along with 1st quarter quality summary report (to be sent in April 2005)

Please review the attached report, and let us know if you have any comments, or require additional information.

If you have any questions, please contact me at (973) 338-7011, ext. 121.

Sincerely,

Environmental Chemical Corporation

David Miller

Project Manager

cc: Mr. Damian Duda, US EPA Region II – 2 copies, and softcopy via e-mail Mr. Gerard Burke, NYSDEC – 1 softcopy via electronic mail and 1 hardcopy via mail courier: Division of Env. Remediation 625 Broadway - 11th Floor Albany, New York 12233-7015

gwburke@gw.dec.state.ny.us

(518) 402-9798

293 Broad St., Suite 200 Bloomfield, NJ 07003

TEL: (973) 338-7011 FAX: (973) 338-7950

Monthly Operations and Monitoring Report February 2005

Site.

Stanton Cleaners Area Groundwater Contamination Site Great Neck, New York

Prepared for:

Environmental Chemical Corporation 1293 Broad Street, Suite 200 Bloomfield, New Jersey 07003

Prepared by: Earth Tech, Inc. 7870 Villa Park Drive, Suite 400 Richmond, Virginia 23228

March 1, 2005

ET Project No. 70536.02.01.02

Monthly Operations and Monitoring Report February 2005

Site:

Stanton Cleaners Area Groundwater Contamination Site Great Neck, New York

Prepared for: Environmental Chemical Corporation 1293 Broad Street, Suite 200 Bloomfield, New Jersey 07003

Prepared by: Earth Tech, Inc. 7870 Villa Park Drive, Suite 400 Richmond, Virginia 23228

March 1, 2005

ET Project No. 70536.02.01.01

Monthly Operations and Monitoring Report February 2005

Site:		
Stanton Cleaners Area Groundwater Contar	nination Site	
Great Neck, New York		
Prepared for:	Author:	John Huisman
Environmental Chemical Corporation	11	
1293 Broad Street, Suite 200		
Bloomfield, New Jersey 07003	Tid.	Familia and all Catandine
Zicomicia, i to w veize, a veez	Title:	Environmental Scientist
Prepared by:		
Earth Tech, Inc.		
7870 Villa Park Drive, Suite 400	Date:	March 1, 2005
Richmond, Virginia 23228		
March 1, 2005	Reviewer:	
ET Project No. 70536.02.01.01		
	Title:	
	Date:	

Tя	ы	e	Λĺ	•	'n	nte	ents

		Table of Contents				
1.0	INTROD	UCTION	. 1			
2.0	SUMMA	RY OF ACTIVITIES DURING FEBRUARY 2005	.2			
_	Operati Sampli .2.1 Ra	DWATER TREATMENT SYSTEM ACTIVITIES	.2 .3 .3			
4.0	MONITO	PRING WELL SAMPLING	.4			
5.0	PLUME I	PERIMETER MONITORING	.4			
6.0	INDOOR	AIR QUALITY SAMPLING	.5			
7.0	FUTURE	EVENTS PLANNED	.5			
8.0	3.0 PROBLEM AREAS AND RECOMMENDED SOLUTIONS (OUTSTANDING ISSUES)					
		Tables				
Table	1	Estimated PCE Recovery Rates (September 2003 – February 2005)				
		Figures				
Figure 1 Site Location Map Figure 2 Average PCE Concentrations (Site Location Map Average PCE Concentrations (September 2003 – February 2005)				
		Appendices				
Apper Apper Apper Apper Apper Apper Apper	ndix B ndix C ndix D ndix E ndix F ndix G ndix H ndix 1	Daily Quality Control Reports (DQCRs) Groundwater Treatment System Operation & Maintenance Checklists Groundwater Treatment System Downloaded Operational Data Sampling Trip Reports Groundwater Treatment System Raw and Treated Groundwater Analytical Data Soil Vapor Extraction and Pump and Treat System Bi-weekly Air Monitoring Logs Quarterly Groundwater Sampling Analytical Data Historical Groundwater Level Monitoring Results (Ongoing) Indoor Air Quality Analytical Data Action List				

1.0 INTRODUCTION

This Monthly Operations and Monitoring Report, February 2005 (Monthly Report) has been prepared by Earth Tech, Inc., as a subcontractor to Environmental Chemical Corporation (ECC), under Contract No.5442-001-001.

The Stanton Cleaners Area Groundwater Contamination (Stanton) site is located at 110 Cutter Mill Road in Great Neck, Nassau County, New York. The Stanton Cleaner Property (SCP) is approximately ¼ acre in size and includes a two-story building in which a dry-cleaning business operates and an adjacent one-story boiler/storage building as well as a two-story treatment building. The site is bordered by an indoor tennis facility, a synagogue and school facility.

Improper handling and disposal of spent dry cleaning solvents, including Tetrachloroethylene (PCE), resulted in the release of hazardous substances at the site. PCE migrated from the site's subsurface soils into the indoor air environments of the surrounding buildings and into groundwater beneath the site, resulting in a significant threat to human health.

In 1983, approximately 20 cubic yards of PCE-contaminated soil was removed from behind the Stanton Cleaners property.

In 1989, a groundwater extraction and treatment system was installed by the original Site operator to address groundwater contamination which resulted from improper disposal of spent PCE behind the SCP building. This system is not currently operational.

In 1998, the New York State Department of Environmental Conservation (NYSDEC) funded the construction of a new air stripper treatment system for the WAGNN water supply wells, which are impacted by contamination from the Site. This treatment system is currently in operation. In October 1998, as an immediate response action, the EPA installed a temporary soil vapor interceptor system, adjacent to the tennis club, to mitigate impacts from PCE vapors to the indoor air of this facility.

In 2001, the EPA completed the construction and installation of a soil vapor extraction (SVE) system and a ground water treatment (GWT) system on the SCP. Both the SVE and GWT systems are housed in the treatment building that was constructed on the SCP. The SVE was installed to remediate the VOC-contaminated soils, thus reducing the indoor air contamination in the adjacent affected buildings to safe levels. The GWT system was installed to remediate the VOC-contaminated groundwater and to remove the threat of vapors through the Site soils. Both systems are currently operating at the Site. The collected VOC-contaminated vapors and groundwater from both systems are treated through separate granular activated carbon (GAC) systems.

The site is presently under the jurisdiction of the Remedial Branch of the USEPA, Region II; USACE provides oversight to USEPA for the remedial action and the long-term remedial action programs. ECC provides oversight to the USACE to perform long-term remediation actions. Earth Tech, as a subcontractor to ECC, provides support on the following tasks as described in the Work Plan:

- Operation and maintenance (O&M) of the GWTS and SVE, including sampling and reporting;
- Sampling of monitoring wells associated with the site in order to track the migration of the contaminant plume, along with reporting.

 Sampling of indoor air quality of buildings adjacent to the site in order to identify all the adjacent buildings being impacted by site related contaminants and the effectiveness of the remedial actions being instituted at the site.

All work under this contract is performed in accordance with the following documents:

- Work Plan for Long-Term Remedial Action Support;
- Site-Specific Health and Safety Plan (HASP), dated July 23, 2001 and
- Sampling Quality Assurance Project Plan (SQAPP) dated August 22, 2000.

As required by the Scope of Work for this project, monthly summary reports are prepared to document and summarize the activities taking place. These reports provide a concise description of work performed during the reporting period and include pertinent deliverables as appendices. This monthly summary report covers the period between February 1 and February 28, 2005.

2.0 SUMMARY OF ACTIVITIES DURING FEBRUARY 2005

The following list summarizes activities performed and milestone dates under this contract during the reporting period, February 2005:

- February 3 Weekly O&M Inspection.
- February 3 Collect Monthly System Samples.
- February 7 through 11 Quarterly Groundwater Sampling Event.
- February 8 Weekly O&M Inspection.
- February 9 Bi-weekly system air monitoring.
- February 15 Weekly O&M Inspection.
- February 21 Drill new groundwater extraction well.
- February 22 Complete Installation of new groundwater extraction well.
- February 23 Change-out HVAC carbon filters at the Long Island Hebrew Academy.
- February 23 Bi-weekly system air monitoring.
- February 23 Weekly O&M Inspection.

Details of system shutdowns and alarms during the month of February 2005 are discussed in section 3.1. Daily Quality Control Reports (DQCRs), which include projected work for the following two weeks are completed for each day of site activities. Copies of these reports are included as Appendix A.

3.0 GROUNDWATER TREATMENT SYSTEM ACTIVITIES

3.1 Operation and Maintenance

The GWTS treated and discharged 2,157,544.1 gallons during the month of February 2005. The system was operational (recovery well pumps running) for approximately 672 of the 672 hours during the month, for an average operating flow of 53.5 gallons per minute (gpm). The system has treated a total of 88,449,885.3 gallons since the plant startup in November 2001. There were no system shutdowns during the month of February 2005.

There are currently two recovery wells pumping water into the system. (EPA-EXT-02 and MW-24) Both wells are located in the triangle, the corner of New Cuttermill Road and Mirrielees Road. The two wells are manifolded together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells. The decision to have two wells pumping from the triangle into the system was made by the USEPA. A third well EPA-EXT-04 was put online November 4, 2004. However, due to issues with sediment entering the well this extraction well was taken off-line November 9, 2004. A replacement extraction well was installed on February 22, 2005 adjacent to abandoned extraction well EXT-04. The SVE portion of EPA-EXT-04 remains operational. The new extraction well is scheduled to be piped into the treatment system by the end of April 2005.

The facility is equipped with a remote monitoring and control system that was accessed a minimum of three times per week, by the lead engineer, during the reporting period to ensure proper system operation and notify response personnel if a problem or abnormal condition was observed. The system also provides remote notification of alarm conditions via automatic e-mail and text messaging.

The Treatment System Operation and Maintenance Checklist were completed during each O&M inspection event and the checklists for February 3, 8, 15, and 23, 2005 are provided in Appendix B. When the system is operational, any abnormal conditions or parameters outside of the normal operating range are addressed by the lead operator and/or monitoring/environmental technician on site (Jim Simmonds or John Huisman). If they require guidance or notes any serious conditions, the inspector notifies the task manager (Tom Williams). The checklists are completed on site and sent to the task manager for review and scheduling of additional work if needed. Abnormal conditions and/or parameters outside the operating range are addressed, including repairs, cleaning, and continued monitoring.

System operational and alarm conditions are automatically stored by the PLC. This data is downloaded every two weeks. The February 2005 operational data is included in Appendix C. While operational, the system data are within the normal ranges and are consistent with visual observations, with any exceptions as described above.

The effluent flow data table in Appendix C shows daily discharge flows from each day of system operation and cumulative treated water discharge for each day during the reporting period, as well as a summary of total monthly flow and average daily flow since the system was started up in October 2001.

3.2 Sampling and Analysis

3.2.1 Raw and Treated Groundwater

In accordance with the SQAPP, GWTS sampling is conducted on a monthly basis to monitor plant efficiency, to determine whether liquid carbon breakthrough has occurred, and to verify that contract-specific discharge parameters (in accordance with National Pollutant Discharge Elimination System (NPDES) permit equivalency) are met. The combined GWTS influent, along with the GWTS effluent (discharge), will be sampled by the 15th of each month. Collected samples will be shipped to a designated EPA, CLP lab for analysis of TCL volatile organic compounds.

Earth Tech personnel conducted the GWTS influent and effluent sampling for this report period on February 3, 2005. The samples were shipped to the USEP Region II DESA Laboratory, located in Edison, NJ for analysis of low concentration TCL volatile organic compounds. A copy of the full sampling trip report containing the chain of custody forms and FedEx airbill is included in Appendix D. Laboratory analytical results for the GWTS sampling event during this reporting period will be forwarded to ECC under separate cover from the laboratory.

Measurements of influent and effluent pH and turbidity, along with effluent conductivity, are automatically monitored and recorded by the GWTS PLC on a daily basis; this information is included with the downloaded data in Appendix C.

The next GWTS influent / effluent sampling event is scheduled for March 10, 2005.

3.2.2 Process Air Stream Monitoring

Air monitoring of the SVE and Pump and Treat System is performed on a bi-weekly basis. It includes monitoring for VOCs, air velocity, temperature, humidity, dew point, vacuum pressure and other parameters, as specified in the O&M manual. Air monitoring is performed at the following locations within the system:

- Combined SVE Influent (pre-treatment),
- Post groundwater Air-Stripper (pre-treatment),
- Post vapor phase carbon vessel 1 Air Stripper air discharge (post-treatment).
- Post vapor phase carbon vessel 2 SVE air discharge (post-treatment).

Bi-weekly air monitoring activities were conducted on February 9 and 23, 2005. The bi-weekly air monitoring logs are included in Appendix F. Estimated PCE removal rates for the SVE system are presented in Table 1. A Graph showing the estimated PCE removal rate trend over time is presented in Figure 2. The next bi-weekly air-monitoring event is scheduled for March 9, 2005.

4.0 Monitoring Well Sampling

Groundwater samples from select monitoring wells both on and off-site are collected on a quarterly basis and shipped to a designated EPA, CLP lab for analysis. Groundwater sampling activities are performed in accordance with the USEPA Groundwater Sampling SOP #2007 and the USEPA Low-Stress Purging and Sampling SOP provided in the SQAPP. Each quarterly sampling event is coordinated with the local water authority to schedule the event when local water supply drawdown conditions do not impact the measurements. The location and number of monitoring wells as well as analytical parameters will be determined before each event by the USPEA, USACE, and ECC.

The first semi-annual groundwater sampling event of 2005 was conducted by Earth Tech personnel on February 7 through 11, 2005. A total of 25 groundwater monitoring wells were sampled for analysis of the presence of TCL volatiles only. A copy of the full sampling trip report containing the chain of custody forms and FedEx airbills is included in Appendix D.

Laboratory analytical results for this quarterly groundwater sampling event will be forwarded to ECC under separate cover from the laboratory. The next quarterly groundwater sampling event is scheduled for August 2005.

5.0 Plume Perimeter Monitoring

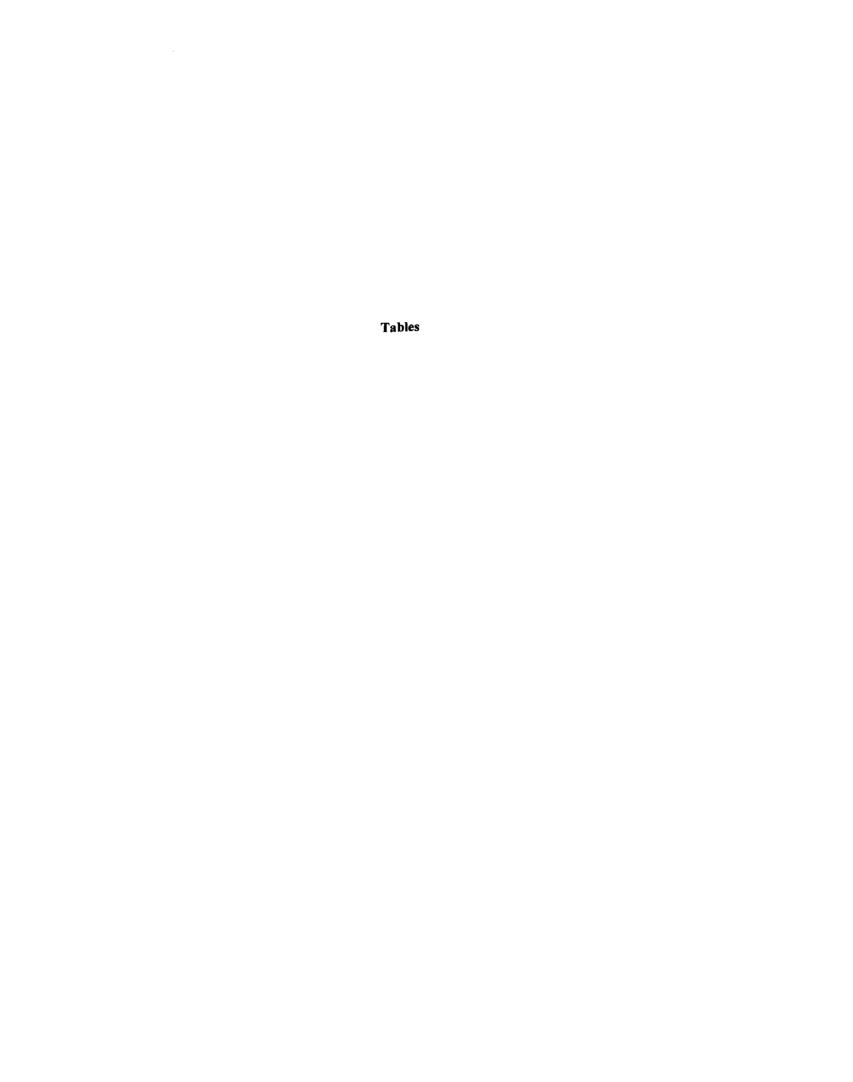
Groundwater level measurements are obtained from both on-site and offsite wells once a month in order to evaluate capture zone(s) around the groundwater extraction wells. The event is coordinated with the local water authority so the event can be scheduled when the local water supply drawdown conditions will have minimal impact to the measurements.

Water level measurements were collected from 29 monitoring wells on February 7, 2005 in conjunction with the quarterly groundwater sampling event. The location and number of monitoring wells was determined by the USEPA based on the site Capture Zone Analysis Plan. Groundwater level measurements for February 2005 and historical groundwater level measurements are provided in Appendix H.

6.0 Indoor Air Quality Sampling

Indoor air quality samples from select locations within the treatment building and buildings along the perimeter of the site are collected using summa canisters on a quarterly basis and shipped to a designated EPA, CLP lab for analysis. The location and number of indoor air quality samples to be collected as well as analytical parameters will be determined by the USEPA, USACE and ECC.

The last indoor air quality sampling event was conducted on January 18, 2005 by Earth Tech personnel. This sampling event was conducted to address air quality issues within the groundwater treatment building. Based on instructions by the EPA OSC no future indoor air quality sampling events are scheduled at this time.


7.0 FUTURE EVENTS PLANNED

The following scheduled events are planned (or have since occurred) during the next three reporting periods:

- Continue to perform GWTS inspection and maintenance as required;
- Continue to perform bi-weekly system air monitoring;
- Collect system influent and effluent samples as directed by USACE/ECC/USEPA;
- Obtain groundwater level measurements as directed by USACE/ECC/USEPA;
- Collect groundwater samples from monitoring wells as directed by USACE/ECC/USEPA;
- Collect indoor air quality samples as directed by USACE/ECC/USEPA;
- Develop new groundwater extraction well.
- Install pump into new groundwater extraction well.

8.0 PROBLEM AREAS AND RECOMMENDED SOLUTIONS (OUTSTANDING ISSUES)

An Action List of ongoing and completed items is provided in Appendix J to track work tasks that have been targeted as issues to be addressed.

TABLE 1 ESTIMATED PCE RECOVERY RATES STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 250 CFM SVE SYSTEM

September 2003 - February 2005

	4.1	. ⊮ Flo	w Rate	VRate tages VOC			A STATE OF THE STA
Date	# of Days	(cfm)	Avg (cfm)	Concentration (ppm)	Average (ppm)	Discharge Rate (Ibs/day)	Total Discharge (lbs)
9/11/2003	1	225	225	4.2	4.20	0.6	0.6
9/25/2003	13	210	217.5	4.7	4.45	0.6	7.8
10/8/2003	13	213	211.5	5	4.85	0.6	8.2
10/23/2003	15	210	210	12.2	8.6	1.1	16.7
11/5/2003	13	215	212.5	6.8	9.5	1.2	16.2
11/22/2003	17	211	213	6	6.4	0.8	14.3
12/4/2003	12	205	208	5.9	5.95	0.8	9.2
12/17/2003	13	200	202.5	4	4.95	0.6	8.0
12/30/2003	13	210	205	4	4.95	0.6	8.1
1/15/2004	16	205	207.5	4.1	4.05	0.5	8.3
2/5/2004			SVE	System Manually	/ Shutdown	Since 1/16/04	
2/12/2004	8	200	200	3.5	3.5	0.4	3.5
2/26/2004	14	205	202.5	5.3	4.4	0.6	7.7
3/10/2004	12	200	202.5	5	5.15	0.6	7.7
3/25/2004	15	199	199.5	5.1	5.05	0.6	9.3
4/13/2004	19	175	187	6.3	5.7	0.7	12.5
4/29/2004	16	170	172.5	6	6.15	0.7	10.5

Notes:

VOC readings taken before vapor phase carbon off-gas treatment. Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump and Treatment Systems" publication.

$$M_{air} = Q_{air} \times C_{air} \times \frac{0.0283 \text{ m3}}{6.3} \times \frac{1440 \text{ min.}}{440 \text{ day}} \times \frac{2.2 \text{ lbs.}}{1000000 \text{ mg}}$$

Cair (mg/m3) = $\frac{\text{Conc (ppmv)}}{1\text{E}+06} \times \frac{1 \text{ mole air}}{24.1} \times \frac{1000 \text{ L}}{\text{m}_3} \times \frac{1000 \text{ mg}}{\text{g}} \times \text{MW}_x$

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Farenheit (0 degrees Celcius), the conversion is (1 mole air)/(22.4 L).

TABLE 1 (continued) ESTIMATED PCE RECOVERY RATES STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 250 CFM SVE SYSTEM

September 2003 - February 2005

	1764	* Flo	w Rate		Section 1	VOC.	
Date	# of Days	(cfm)	Avg (cfm)	Concentration (ppm)	Average (ppm)	Discharge Rate (Ibs/day)	Total Discharge (Ibs)
5/13/2004	14	150	160	6	6	0.6	8.3
5/30/2004	17	147	148.5	5.9	5.95	0.5	9.3
6/10/2004	11	150	148.5	4.4	5.15	0.5	5.2
6/30/2004	20	145	147.5	5.6	5	0.5	9.1
7/8/2004	8	140	142.5	4.9	5.25	0.5	3.7
7/22/2004	14	139	139.5	4.8	4.85	0.4	5.8
8/9/2004	18	140	139.5	3.1	3.95	0.3	6.1
8/31/2004	1	135	137.5	3	3.05	0.3	0.3
9/8/2004	8	120	127.5	2.9	2.95	0.2	1.9
9/30/2004	22	121	120.5	3.1	3	0.2	4.9
10/4/2004	5	121	121	2.9	3	0.2	1.1
10/20/2004	15	120	120.5	2.8	2.85	0.2	3.2
11/1/2004	12	121	120.5	3	2.9	0.2	2.6
11/17/2004	16	125	123	4.1	3.55	0.3	4.3
11/29/2004	12	120	122.5	4.2	4.15	0.3	3.8
12/7/2004	8	121	120.5	4.2	4.2	0.3	2.5
12/16/2004	9	120	120.5	4.1	4.15	0.3	2.8
1/12/2005	27	120	120	4.5	4.3	0.3	8.6
1/17/2005	5	120	120	4.5	4.5	0.3	1.7
2/9/2005	23	120	120	3.9	4.2	0.3	7.2
2/23/2005	14	120	120	3.5	3.7	0.3	3.8
						Total	244.8

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activites.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump and Treatment Systems" publication.

$$M_{air} = Q_{air} \times C_{air} \times \frac{0.0283 \text{ m3}}{\text{ft.3}} \times \frac{1440 \text{ min.}}{\text{day}} \times \frac{2.2 \text{ lbs.}}{1000000 \text{ mg}}$$

Cair (mg/m3) =
$$\frac{\text{Conc (ppmv)}}{1\text{E}+06} \times \frac{1 \text{ mole air}}{24.1 \text{ L}} \times \frac{1000 \text{ L}}{m3} \times \frac{1000 \text{ mg}}{3} \times \text{MWx}$$

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and

pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Farenheit

(0 degrees Celcius), the conversion is (1 mole air)/(22.4 L).

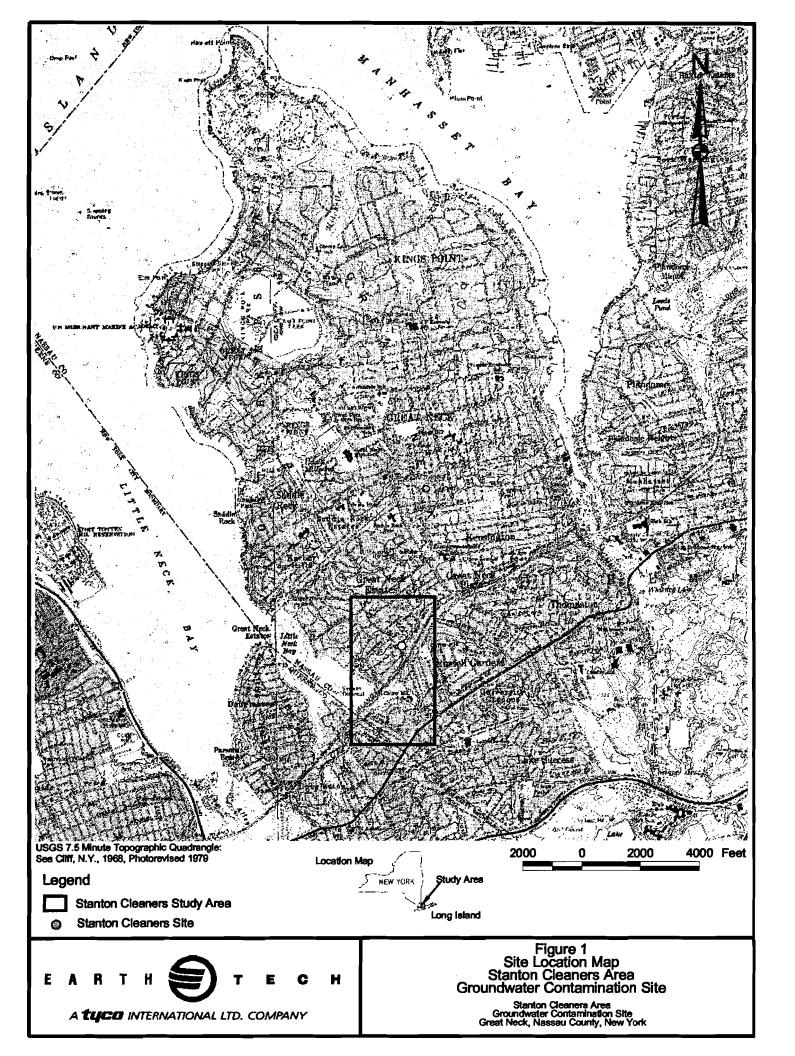
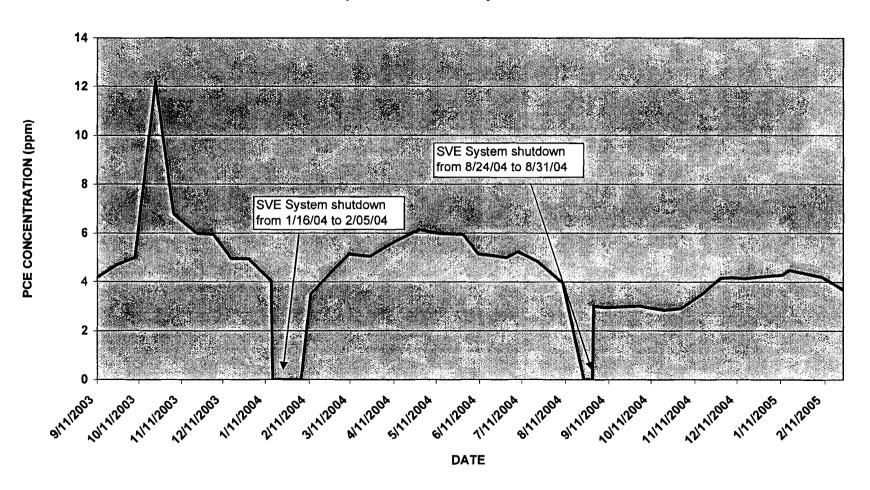



Figure 2
STANTON CLEANERS AREA GOUNDWATER CONTAMINATION SITE
AVERAGE PCE CONCENTRATIONS (ppm)
250 CFM FINAL SVE SYSTEM
September 2003 - February 2005

Appendix A

Daily Quality Control Reports (DQCRs)

DAILY QUALITY CONTROL REPORT							
Site Name ar	Site Name and Location: Stanton Cleaners Site (LTRA) – Great Neck, NY						
Client: ECC	Client: ECC Contract No: 5442-001-001						
Contractor:	Earth Tech,	Inc.				<u> </u>	
Address:	7870 Villa P	ark Drive, Sui	te 400	·			
	Richmond, V	/irginia 23228					
Phone No.:	(804) 515-83	300					
Date: 2/3/05				Earth Tech	Project No.:	70536	
Day	S	M	T	W	T	F	S
Weather					Cloudy		
Temp.					42°F		
Wind					Low		
Humidity					High		
 _	ersonnel On-S	ite: John Huis	sman		<u> </u>		
Subcontracto	or (include nam	es & responsi	bilities): N/A				
-	· ·						
Contract Mat	terials and Equ	ipment on site	: Ford F-250.	Horiba U-22	Water Qualit	tv Meter, sam	ple bottles
and general						<u></u>	
Work Perform	med (include sa	ampling: list b	v NAS numbe	er if applicable	=):		
	ekly O&M ins		<u>, , , , , , , , , , , , , , , , , , , </u>				
	thly Water Sa						
Contect Main	this traces on						
							
Quality Cont	rol Activities (including field	d calibrations)	· Collect dun	licate water sa	mnle.	
Quality Cont	ioi rictivities (morading not	- carror acrons)	· content dup			
Health and S	afety Levels ar	nd Activities: I	evel D				
	countered/Cori						
1 toolens En	countercu/con	ection Action	Taken. IVA				
Evnlain Dave	elopments Lead	ling to Change	a in SOW or F	Einding of Fac	t. N/A		
					on location; atta	ch minutes of	meeting and
list of all atte		an inspection.	s by subject at	id specification	in location, atta	ich minutes of	meeting and
list of all atte	ildees). IVA						
Have all requ	ired submittals	and samples	of construction	n been approx	red? Ves		
Have all required submittals and samples of construction been approved? Yes							
Do the materials and equipment to be used conform to the submittals? Yes							
Do the mater	iais and equipi	nent to be use	u comorni to i	ine sabilitais	. 165		
							
Has all prelim	ninary work be	en inspected	tested and co	mpleted? Ves			
rias an picili	minary WOIK UC	en mapeeteu,	tostou, and co	inploted: 165			
•	Test required and inspection techniques to be executed to prove contract compliance (include both expected and actual results): N/A						

DAILY QUALITY	CONTROL REPORT
Site Name and Location: Stanton Cleaners Site (LTRA	
Client: ECC	Contract No: 5442-001-001
Contractor: Earth Tech, Inc.	
Address: 7870 Villa Park Drive, Suite 400	
Richmond, Virginia 23228	
Phone No.: (804) 515-8300	
Date: 2/3/05	Earth Tech Project No.: 70536
Has a phase hazard analysis been performed? Included	in the Site Specific Health & Safety Plan
Comments and deficiencies noted and corrective action	s taken: Explained in work performed section.
Initial Inspection: List all inspections by subject and specifications are subject and specifications.	pecification location. Comment and/or deficiencies
noted and corrective actions taken.	
Explained in work performed section.	
E-llaw on Lawrestians I is all inspections by subject a	ud an aiffaction la action. Commant and/andoffairmains
• •	nd specification location. Comment and/or deficiencies
noted and corrective actions taken.	
Special Notace	
Special Notes: Samples shipped to USEPA DESA Lab for analysis.	
Trip report forwarded to CLP SMO.	
Trip report for warded to CLF SIMO.	
Tomorrow's Expectations:	
Prepare for semi-annual groundwater sampling eve	nt
1 repare for semi-annual groundwater sampling eve	<u> </u>
By: John Huisman Title: E	nvironmental Scientist
0/ 1/:	
Signature: (Quality	Control Representative/Manager)
The share war of a smallet 1 4.11 2-1	and assignment used and all results a sufferenced discloss this
	s and equipment used and all work performed during this
reporting period are in compliance with the contract sp	
Signature: (Contract	ctor's Authorized Representative)

DAILY QUALITY CONTROL REPORT							
Site Name ar	nd Location: Sta						
Client: ECC	<u> </u>			Contract No	5442-001-001		
Contractor:	Earth Tech, I		400	, a ⁿ			
Address:	and the second of the second o	ark Drive, Suite	e 400				
Phone No.:	(804) 515-83	rirginia 23228					
Date: 2/7/04		00		Farth Tech	Project No.: 705	36	
Day Day	<u> </u>	M		W	T T	F	
Weather				 			
Temp.							
Wind							
Humidity							
Earth Tech P	ersonnel On-Si	te: John Huist	nan, To <u>dd</u> P	lating, Russe	el Reynolds		
Subcontracto	or (include name	es & responsib	ilities): N/A				
G			AD 415	1 7 7 1 4	D.F. + X7		
Contract Mat	terials and Equi	 _					
			Pine Enviro	nmentai Ken	tal Sampling E	juipment	
Work Perfor	med (include sa	umpling: list by	NAS numbe	er if applicable			
	groundwater i				·)·		
					hem out via Fed	Ex	
					ent after each u		
	M Inspectiuon						
	r monitoring.						
Quality Cont	rol Activities (i	ncluding field	calibrations)	: Calibrated	<u>both Horiba U-</u>	22 water qua	lity meters
				 			
Horiba U-22	Auto Cal Soli	<u>ution: PH: 4.0</u>	Conduct	<u>ivity: 4.49mS</u>	/cm Turbidit	y: 0.0 NTU	
Collected du	iplicate sample	<u> </u>					
Health and S	afety Levels an	d Activities: La	evel D				
	countered/Corr			 			
			<u></u>				
Explain Developments Leading to Change in SOW or Finding of Fact: N/A							
Preparatory Inspection (list all inspections by subject and specification location; attach minutes of meeting and							
list of all attendees): N/A							
Have all requ	Have all required submittals and samples of construction been approved? Yes						
D. 41 1	Do the materials and equipment to be used conform to the submittals? Yes						
	ninary work be						
rias all prelli	imiary work be	en inspected, te	sicu, anu co	inpicieu? 1 es			
Test required	and inspection	techniques to	he executed i	to prove contr	act compliance (include both e	expected and
	Test required and inspection techniques to be executed to prove contract compliance (include both expected and actual results): N/A						

DAILY OUALITY CONTROL REPORT Site Name and Location: Stanton Cleaners Site (LTRA) - Great Neck, NY Client: ECC Contract No: 5442-001-001 Earth Tech, Inc. Contractor: Address: 7870 Villa Park Drive, Suite 400 Richmond, Virginia 23228 Phone No.: (804) 515-8300 Date: 2/7/04 - 2/11/05 Earth Tech Project No.: 70536 Has a phase hazard analysis been performed? Included in the Site Specific Health & Safety Plan Comments and deficiencies noted and corrective actions taken: Explained in the work performed section. Initial Inspection: List all inspections by subject and specification location. Comment and/or deficiencies noted and corrective actions taken. Explained in the work performed section. Follow-up Inspection: List all inspections by subject and specification location. Comment and/or deficiencies noted and corrective actions taken. Special Notes: TCL-VOA Samples were shipped to: A4 Scientific Lab Chains-of-custody were faxed to Dave Miller, Jennifer Ferranda, Robert Toth, and Adly Michael. Electronic XML TR/COC file was forwarded via email to Heather Bauer. Tomorrow's Expectations: Continue Groundwater sampling Activities. Title: Environmental Scientist By: John Huisman Signature: (Quality Control Representative/Manager) The above report is complete and correct. All materials and equipment used and all work performed during this reporting period are in compliance with the contract specifications and submittals, except as noted above. Signature: (Contractor's Authorized Representative)

DAILY QUALITY CONTROL REPORT							
Site Name ar	d Location: St	anton Cleaner	s Site (LTRA)	- Great Neck,	NY		
Client: ECC				Contract No:	5442-001 - 001		
Contractor:	Earth Tech,						
Address:		ark Drive, Sui					
		irginia 23228					
Phone No.:	(804) 515-83	00	· 				<u></u>
Date: 2/15/05	, 		·		Project No.: 7		
Day	S	<u>M</u>	T	W	<u>T</u>	F	<u></u>
Weather			Sunny	· · · · · · · · · · · · · · · · · · ·			
Temp.			39°F				
Wind			Low				
Humidity			High_				
Earth Tech P	ersonnel On-S	ite: John Hui	sman			 -	
		- 	- 				
Subcontracto	r (include nam	es & responsi	bilities): N/A				
			7 1746				
Contract Mat	erials and Equ	ipment on site	: Ford F-250,	general hand	tools.		
W 1 D C	1 (1 1	12 12 15 11	NAC	······································			
			y NAS numbe	er if applicable)	<u>: </u>		
Periorm wee	ekly O&M ins	pection					
<u> </u>							
Quality Cont	-al Astirition (inaluding field	d solibrations	· Collect dunlis	nata Watar sar	mple	
Quality Cont	roi Activities (including her	u canbrations)	: Collect duplic	cate water sai	ii pie.	
Health and S	afety Levels ar	d Activities	L aval D				
	countered/Corr						
Problems En	countereu/Corr	ection Action	Taken. IVA				
Evolain Day	Johnsonts I and	ding to Chang	a in SOW or I	inding of Fact:	N/A		
				nd specification		h minutes of r	neeting and
list of all atte		an inspection	s by subject al	ia specification	iocation, attac	ii iiiiides of i	neemig and
nst or an are	114003): 1471						
Have all requ	ired submittals	s and samples	of construction	n been approve	d? Ves		
Have all required submittals and samples of construction been approved? Yes							
Do the materials and equipment to be used conform to the submittals? Yes							
	<u> </u>		<u> </u>				
Has all prelin	ninary work be	en inspected.	tested, and co	mpleted? Yes			
Test required actual results	•	techniques to	o be executed	to prove contrac	ct compliance	(include both	expected and

DAILY QUALITY CONTROL REPORT				
Site Name and Location: Stanton Cleaners Site (LTRA)	- Great Neck, NY			
Client: ECC	Contract No: 5442-001-001			
Contractor: Earth Tech, Inc.				
Address: 7870 Villa Park Drive, Suite 400				
Richmond, Virginia 23228				
Phone No.: (804) 515-8300	<u></u>			
Date: 2/15/05	Earth Tech Project No.: 70536			
Has a phase hazard analysis been performed? Included	in the Site Specific Health & Safety Plan			
Comments and deficiencies noted and corrective actions	taken: Explained in work performed section.			
Initial Inspection: List all inspections by subject and spe	ecification location. Comment and/or deficiencies			
noted and corrective actions taken.				
Explained in work performed section.				
Follow-up Inspection: List all inspections by subject an	d specification location. Comment and/or deficiencies			
noted and corrective actions taken.				
Special Notes:				
Tomorrow's Expectations:				
Begin installation of new groundwater extraction wel	l.			
	vironmental Scientist			
Signature: J. King (Quality	Control Representative/Manager)			
	<i>G</i> /			
The above report is complete and correct. All materials	and equipment used and all work performed during this			
reporting period are in compliance with the contract spec				
VI Ilim	or's Authorized Representative)			
Signature. v (Contract	or s Audiorized Representative)			

DAILY QUALITY CONTROL REPORT							
Site Name an	d Location: Sta	nton Cleaners	Site (LTRA) - Great Neck	, NY		
Client: ECC	Client: ECC Contract No: 5442-001-001						
Contractor:	Earth Tech, Ir	nc.		<u> </u>			
Address:	7870 Villa Pa	rk Drive, Suite	400				I
	Richmond, Vi						
Phone No.:	(804) 515-830	00			·		
Date: 2/21/05	5 - 2/22/05			Earth Tech	Project No.: 7	0536	
Day	S	M	T	W	T	F	<u>S</u>
Weather							
Temp.							
Wind				1			
Humidity							
Earth Tech Po	ersonnel On-Sit	e: John Huisn	nan, Leslee	Alexander, T	om Williams		
Subcontracto	r (include name	s & responsibi	lities): N/A				
			<u></u>				
Contract Mat	erials and Equip	oment on site:	Ford F-250).			
	<u></u>						_
							
							
Work Perform	ned (include sar	nnling: list by	NAS numb	er if annlicable	.)·		
					groundwater ex	straction well	
Oversee 1651	Contractors	tuo summit D	Thing Cit	W Install hew	Broama water ex	ati action well.	-
Quality Contr	rol Activities (ir	cluding field	calibrations)·			
Quality Conti	tor rectivities (ii	icidanig ficia	<u>carrorations</u>	<u>/·</u>			
					 		
							
Hoolth and Sa	afety Levels and	A otivities: L	ovol D				
	countered/Corre						
Problems End	countereu/Corre	ction Action 1	aken. IVA				
Faralain Davis		- to Change	in COW on	Cinding of Coo	. NT/A		
	elopments Leadi				n location; attac	h minutag of m	acting and
list of all atte		n nispections	by subject a	inu specificatio	ii location, attac	in minutes of m	eeting and
list of all atte	ndees): IVA						
Have all requi	TT 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Have all required submittals and samples of construction been approved? Yes							
Do the metarials and aguirment to be used conform to the submittals? Ver							
Do the materials and equipment to be used conform to the submittals? Yes							
							
Hog all malin	ainomy vyouls has	n inspected to	oted and a	ampleted Var			
rias all prelin	ninary work bee	ii inspected, te	sieu, and co	ompieted? res			
Test required	and inspection	techniques to	be executed	to prove contr	act compliance	(include both e	xnected and
•		teeninques to	oo exceuted	to prove contr	act compilation	(merade bottle.	Apoolog and
actual results): N/A							

DAILY QUALITY CONTROL REPORT					
Site Name and	Location: Stanton Cleaners Site (LTRA)	- Great Neck, NY			
Client: ECC		Contract No: 5442-001-001			
	Earth Tech, Inc.				
Address:	7870 Villa Park Drive, Suite 400				
1	Richmond, Virginia 23228				
Phone No.: ((804) 515-8300				
Date: 2/21/05 -	- 2/22/05	Earth Tech Project No.: 70536			
Has a phase haz	zard analysis been performed? Included	n the Site Specific Health & Safety Plan			
Comments and	deficiencies noted and corrective actions	taken: Explained in work performed section.			
					
•	1 , , , ,	ecification location. Comment and/or deficiencies			
	ctive actions taken.				
Explained in w	ork performed section.				
	•	d specification location. Comment and/or deficiencies			
noted and corre	ctive actions taken.				
Special Notes:					
Tomorrow's Ex					
	well installed to 120' bgs. with screen	ed interval from 100' to 120'			
Well will be de	eveloped by RST in the next week.				
By: John Huism	nan Title: En	vironmental Scientist			
Signature:	Thisman (Quality)	Control Representative/Manager)			
Signature. V	(Quality	Control Representative/tvianager)			
The above reno	rt is complete and correct. All metarials	and equipment used and all work performed during this			
		rifications and submittals, except as noted above.			
- 1	thim.				
Signature:	(Contracte	or's Authorized Representative)			

· · ·		DAILY QU	ALITY	CONTROL	REPORT		
Site Name an	d Location: St	anton Cleaners S	ite (LTRA	A) – Great Neck	, NY		
Client: ECC				Contract No	: 5442-001-001		
Contractor:	Earth Tech,		_				
Address:		ark Drive, Suite 4	100				
		Virginia 23228					
Phone No.:	(804) 515-83	300					
Date: 2/23/05					Project No.: 70:		
Day	<u> </u>	M	T	W	T	<u>F</u>	S
Weather				Cloudy			
Temp.				45°F			
Wind				Low	<u> </u>		
Humidity D. I. D.	-10 0			High	<u></u>		
Earth Tech Pe	ersonnel On-S	ite: John Huisma	an				
0.1	· 1 1		4°) BT/A		·		
Subcontractor	r (include nam	es & responsibili	ties): N/A	<u> </u>			
Comtro at Mat		inment on site. F	250 % ~	manal band 4a	Ja Mali DAE	DID Valació	
Contract Mate	eriais and Equ	ipment on site: F	-250 & ge	enerai nano tod	JIS. MUIU KAE	PID, Velocic	ai meter.
Warls Darfarm	nod (inaluda a	ampling; list by N	IAS numb	or if applicable	·		
work Periori	ned (include s	ampinig, nst by N	NAS IIIIIII	der it applicable	<u>)· </u>		
Change out	HVAC corbo	n filters at the lo	na Island	Habrew Acad			 -
	r monitoring.		ng Islanu	TIEDIEW Acau	сшу		
DI-WCCKIY ALI	monitoring.						
Quality Contr	ol Activities (including field ca	librations): Calibrate M	ulti-Rae PID w	vith 100 nnm	
Isobutylene		merading nera ea	inorations.	y. Cumbrate 1/1	uiti itae i ib v	ith 100 ppin	
130butylene g	543						
Health and Sa	fety Levels ar	nd Activities: Lev	el D				
		rection Action Ta					
							
Explain Deve	lopments Lea	ding to Change in	SOW or	Finding of Fact	: N/A		
		all inspections by				h minutes of n	neeting and
list of all atter							
Have all requ	ired submittal	s and samples of	constructi	on been approv	ed? Yes		
Do the mater	ials and equipi	ment to be used co	onform to	the submittals?	Yes		
							
Has all prelin	ninary work be	een inspected, test	ted, and c	ompleted? Yes			
		- 					
	-	n techniques to be	e executed	I to prove contra	act compliance	(include both e	expected and
actual results): IN/A						

DAILY QUALITY CONTROL REPORT				
Site Name and	d Location: Stanton Cleaners Site (LTRA) - Great	at Neck, NY		
Client: ECC	Contr	ract No: 5442-001-001		
Contractor:	Earth Tech, Inc.	,		
Address:	7870 Villa Park Drive, Suite 400	·		
	Richmond, Virginia 23228			
Phone No.:	(804) 515-8300	<u> </u>		
Date: 2/23/05	_ 	Tech Project No.: 70536		
Has a phase ha	nazard analysis been performed? Included in the	Site Specific Health & Safety Plan		
Comments and	nd deficiencies noted and corrective actions taken	Explained in work performed section.		
-	tion: List all inspections by subject and specifica	tion location. Comment and/or deficiencies		
	rective actions taken.			
Explained in	work performed section.			
				
	spection: List all inspections by subject and spec	itication location. Comment and/or deficiencies		
noted and corr	rective actions taken.			
G : 1NI				
Special Notes:				
KS1 is at the	e Max and Sonia Silverstein Academy collectin	g sub-siab samples and indoor air samples.		
				
Tomoway'a E	Evnactational			
Tomorrow's E				
Weekly O&N	vi inspection			
By: John Huis	sman Title: Environn	pental Scientist		
<u> </u>	1 diam			
Signature:	(Quality Contro	ol Representative/Manager)		
		uipment used and all work performed during this		
reporting perio	iod are in compliance with the contract specificati	ons and submittals, except as noted above.		
Signature:	(Contractor's A	uthorized Representative)		

Appendix B

Groundwater Treatment System Operation & Maintenance Checklists

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND MAINTENANCE

1.	A. Is any part of the system leaking? YES If so, list where.	NO	
	B. Is there water on the floor? YES VNO		
	C. Are all three (3) floor sump level switches in place?	✓ YES	NO
	D. Is there any evidence of water in any of these floor sur Note: If water is present, remove with shop vac or paper		es √ no
2.	A. Display screen on computer will either show system o screen with finger to show screen. If only the desktop is sthe <i>Lookout</i> – (Stanton) icon on the taskbar at the bottom	showing with no	
	B. From the site display, monitor and record the following	g.	
	Recovery Well EPA-EXT-02 flow ¹	50	GPM
	2. Recovery Well EPA-EXT-02 valve open	30	%
	3. Recovery Well IW-01 flow	NA	GPM
	4. Recovery Well IW-01 valve open	NA	%
	5. Recovery Well EPA-EXT-03 flow	NA	GPM
	6. Recovery Well EPA-EXT-03 valve open	NA	%
	7. Recovery Well pH	6.7	pH
	8. Recovery Well conductivity	55	micromhos
	9. Air Stripper pH	7.6	pH
	10. Air Stripper temperature	151	deg.
	11. Air Stripper air flow	2480	CFM
	12. Pre-vapor carbon pressure	0	"wc
	13. Post carbon air flow	2512	CFM
	14. Discharge conductivity	55	micromhos
	15. Discharge pH	8.0	pН

Wells EPA-EXT-02 and MW-24 wells are manifolded together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

16. Discharge flow	55GPM
17. Discharge total gallons	86,453,222 Gal
18. SVE inlet vacuum	4"Hg
19. SVE air flow	64CFM
C. From the treatment room, monitor and record the	following.
1. Recovery Well EPA-EXT-02 total flow	NA Gal
2. Recovery Well IW-01 total flow	NA Gal
3. Recovery Well EPA-EXT-03 total flow	NAGal
5. Recovery Well pH	pH
6. Recovery Well conductivity	0.59 micromhos
7. Air Stripper pH	pH
8. Air Stripper temperature	15.1 deg.
9. Air Stripper Pump water flow	65GPM
10. Air Stripper Pump pressure	35PSI
11. Discharge conductivity	55 micromhos
12. Discharge pH	8.00
13. Discharge total gallons	NAGal
14. SVE inlet vacuum (digital readout)	
15. SVE inlet vacuum	4"Hg
16. SVE post knockout vacuum	5"Hg

3. A. If time allows, check to see that the treatment system is cycling properly as described in STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE O&M Manual.

Notes:

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND MAINTENANCE

1.	A. Is any part of the system leaking? YES If so, list where.	∕NO	-
	B. 1s there water on the floor? YES ✓NO 1f so, list where.		
	C. Are all three (3) floor sump level switches in place?	✓ YES	NO
	D. Is there any evidence of water in any of these floor Note: If water is present, remove with shop vac or pap		YES ✓NO ·
2.	A. Display screen on computer will either show system screen with finger to show screen. If only the desktop the <i>Lookout – (Stanton)</i> icon on the taskbar at the bottom	is showing with no	If screen saver is on, tag o system screen, click
	B. From the site display, monitor and record the follow	ving.	
	1. Recovery Well EPA-EXT-02 flow ¹	52	GPM
	2. Recovery Well EPA-EXT-02 valve open _	30	%
	3. Recovery Well IW-01 flow	NA	GPM
	4. Recovery Well 1W-01 valve open	NA	%
	5. Recovery Well EPA-EXT-03 flow	NA	GPM
	6. Recovery Well EPA-EXT-03 valve open _	NA	%
	7. Recovery Well pH	6.8	рН
	8. Recovery Well conductivity	55	micromhos
	9. Air Stripper pH	7.6	pH
	10. Air Stripper temperature	151	deg.
	11. Air Stripper air flow	2491	CFM
	12. Pre-vapor carbon pressure	0	"wc
	13. Post carbon air flow	2512	CFM
	14. Discharge conductivity	.55	micromhos
	15. Discharge pH	8.0	рН

¹ Wells EPA-EXT-02 and MW-24 wells are manifolded together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

16. Discharge flow	55GPM
17. Discharge total gallons	86,832,321 Gal
18. SVE inlet vacuum	4"Hg
19. SVE air flow	65CFM
C. From the treatment room, monitor and record the	following.
1. Recovery Well EPA-EXT-02 total flow	NA Gal
2. Recovery Well IW-01 total flow	NA Gal
3. Recovery Well EPA-EXT-03 total flow	NA Gal
5. Recovery Well pH	6.70pH
6. Recovery Well conductivity	0.59 micromhos
7. Air Stripper pH	7.90pH
8. Air Stripper temperature	15.1deg.
9. Air Stripper Pump water flow	65GPM
10. Air Stripper Pump pressure	95PSI
11. Discharge conductivity	55 micromhos
12. Discharge pH	8.00
13. Discharge total gallons	NA Gal
14. SVE inlet vacuum (digital readout)	
15. SVE inlet vacuum	4"Hg
16. SVE post knockout vacuum	5"Hg

3. A. If time allows, check to see that the treatment system is cycling properly as described in STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE O&M Manual.

Notes:

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND MAINTENANCE

1.	A. Is any part of the system leaking? YES If so, list where.	√N0 	
	B. Is there water on the floor? YES ✓NO If so, list where.		
	C. Are all three (3) floor sump level switches in place?	YES ✓YES	NO
	D. Is there any evidence of water in any of these floor Note: If water is present, remove with shop vac or pap		YES ✓NO
2.	A. Display screen on computer will either show system screen with finger to show screen. If only the desktop the <i>Lookout</i> – (Stanton) icon on the taskbar at the bottom	is showing with I	
	B. From the site display, monitor and record the follow	ving.	
	1. Recovery Well EPA-EXT-02 flow ¹	55	GPM
	2. Recovery Well EPA-EXT-02 valve open _	30	%
	3. Recovery Well IW-01 flow	NA	GPM
	4. Recovery Well IW-01 valve open	NA	%
	5. Recovery Well EPA-EXT-03 flow	NA	GPM
	6. Recovery Well EPA-EXT-03 valve open _	NA	%
	7. Recovery Well pH	6.8	pH
	8. Recovery Well conductivity	.55	micromhos
	9. Air Stripper pH	7.4	pH
	10. Air Stripper temperature	150	deg.
	11. Air Stripper air flow	2491	CFM
	12. Pre-vapor carbon pressure	0	"wc
	13. Post carbon air flow	2510	CFM
	14. Discharge conductivity	55	micromhos
	15. Discharge pH	7.9	рH

¹ Wells EPA-EXT-02 and MW-24 wells are manifolded together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

16. Discharge flow	57GPM
17. Discharge total gallons	87,380,191 Gal
18. SVE inlet vacuum	4"Hg
19. SVE air flow	65CFM
C. From the treatment room, monitor and record the	following.
1. Recovery Well EPA-EXT-02 total flow	NAGal
2. Recovery Well IW-01 total flow	NAGal
3. Recovery Well EPA-EXT-03 total flow	NA Gal
5. Recovery Well pH	pH
6. Recovery Well conductivity	0.55 micromhos
7. Air Stripper pH	pH
8. Air Stripper temperature	15.1deg.
9. Air Stripper Pump water flow	66GPM
10. Air Stripper Pump pressure	35PSI
11. Discharge conductivity	55 micromhos
12. Discharge pH	8.00
13. Discharge total gallons	NAGal
14. SVE inlet vacuum (digital readout)	2.4"Hg
15. SVE inlet vacuum	4"Hg
16. SVE post knockout vacuum	"Hg

3. A. If time allows, check to see that the treatment system is cycling properly as described in STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE O&M Manual.

Notes:

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND MAINTENANCE

1.	A. Is any part of the system leaking? YE If so, list where.	ES ✓NO			_
	B. Is there water on the floor? YES If so, list where.	, NO			_
	C. Are all three (3) floor sump level switches in	n place?	✓ YES		NO
	D. Is there any evidence of water in any of thes Note: If water is present, remove with shop vac			YES	√NO
2.	A. Display screen on computer will either show screen with finger to show screen. If only the d the <i>Lookout – (Stanton)</i> icon on the taskbar at the	esktop is shov	ving with		
	B. From the site display, monitor and record th	e following.			
	1. Recovery Well EPA-EXT-02 flow ¹		52	G	PM
	2. Recovery Well EPA-EXT-02 valve	open	30	%	ó
	3. Recovery Well IW-01 flow		NA		GPM
	4. Recovery Well IW-01 valve open		NA		%
	5. Recovery Well EPA-EXT-03 flow		NA		GPM
	6. Recovery Well EPA-EXT-03 valve	open	NA	_ (%
	7. Recovery Well pH		6.9	p	Н
	8. Recovery Well conductivity		55	1	micromhos
	9. Air Stripper pH		7.4	F	Н
	10. Air Stripper temperature		150		deg.
	11. Air Stripper air flow		2490		CFM
	12. Pre-vapor carbon pressure		0	"w	c
	13. Post carbon air flow		2520		CFM
	14. Discharge conductivity		55	n	nicromhos
	15. Discharge pH		7.9		pН

Wells EPA-EXT-02 and MW-24 wells are manifolded together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

16. Discharge flow	57GPM
17. Discharge total gallons	88,089,002 Gal
18. SVE inlet vacuum	4"Hg
19. SVE air flow	65CFM
C. From the treatment room, monitor and record the	following.
1. Recovery Well EPA-EXT-02 total flow	NA Gal
2. Recovery Well IW-01 total flow	NA Gal
3. Recovery Well EPA-EXT-03 total flow	NAGal
5. Recovery Well pH	pH
6. Recovery Well conductivity	0.55 micromhos
7. Air Stripper pH	
8. Air Stripper temperature	15.1 deg.
9. Air Stripper Pump water flow	66GPM
10. Air Stripper Pump pressure	35PSI
11. Discharge conductivity	55 micromhos
12. Discharge pH	8.00
13. Discharge total gallons	NAGal
14. SVE inlet vacuum (digital readout)	"Hg
15. SVE inlet vacuum	4"Hg
16. SVE post knockout vacuum	4"Hg

3. A. If time allows, check to see that the treatment system is cycling properly as described in STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE O&M Manual.

Notes:

Appendix C

Groundwater Treatment System Downloaded Operational Data

SVE Air Flow	88	85	2 62	82	28	e F	83	3 2			ō F	2 2	2	8	2		0,	8 1	T	: 62	88	28	2	82	3	+	85	98	22	3	150	92	2		2	182	Ī	200	82	1	K	2 5	3 8	2 2	5 5	8 8	3 2	152	2	75	8	7	92	2 82	2 10	2	92	77	25	92	2	8 5	×	4	1	28	82	98	8	2	28	3 8	8 4	0 0	8 2	5 -	20	2	2	3 8	8 4	2 22
			1	Ц		1				l	1	+	1	1		+	1	+	1												_	L	L			-		ļ	ł			-	1			1	-	l				1	+	t						1	1	1	1				L				+	1	†	1	1					1	1	+
Combined Discharge Air Flow	2696	2606	2/80	2990	2880	7897	Dest.	2043	2000	58187	9/17	09/2	200	2000	2562	2693	28187	2693	5693	9096	2758	2877	2774	2806	2758	2804	2919	2870	2758	2760	2774	277.4	2880	2914	2780	2778	2548	2608	2760	2693	2884	7867	7000	2002	25.00	9846	2000	2544	2606	2606	2893	2707	2691	2648	2765	2691	2447	2748	2606	2691	2888	79/7	2002	1010	2782	2760	2723	2919	2693	2813	2774	7270	1//7	2930	2804	2776	2470	2891	2548	Date:	7977	2893
			1																\downarrow													Ĺ																		ļ																						1	1			ļ						1
Air Stripper Air Flow	2523	2538	2528	2595	2832	600	2006	2626	2762	2000	0767	2002	//57	R107	2589	2468	2007	2430	2752	2510	2545	2443	2342	2391	2490	2315	2330	2686	2394	2218	2548	2581	2585	24.05	2575	2503	2502	2375	2304	2464	2418	2300	3448	2000	3000	2463	OBEL C	2172	2102	2286	2310	2296	2254	2112	2480	2225	2401	2396	2389	2431	2317	2772	2369	32.50	396	2504	2277	2279	2326	2336	2408	23/3	2002	2008	2230	7375	2255	2346	2357	1000	9577	7377
rged Air S	1		1				1	†	1	1					1	1	1	1	1	1	Ĺ	Ì		+	i -	_			1			l							+		1	1	1			1	Ì		1				+	1	1	1	-			1	1	1	1	1	1		-	Ĺ	Ľ			1	1	+	l		1		1	1	1	1
Total gallons discharged	86343440.7	88358082.5	86368987.3	86394519.2	86407178	88420089.2	96445640 4	0.0442040.4	004000000	21017400	88484022	86496714.6	66509632.7	7.75222590	86535161.9	86547789.7	88360723.1	96573444	66566281.1	86811847.A	89624726.3	86637361 4	88650281	86629027	69675830.1	86658442	86701357.6	86714042.9	86728908.7	887398713	867524843	88785298 R	86778084 1	SAZONONS	Sean-seza &	8881 ASA 1	RACOCAR	86842212.4	86854879 B	86867825.7	SERVICES A	100000000	90093433.0	90000000	0.0001.000	98932039.8	90067680.9	86970668 7	86983376.2	96996400	87009420.2	87022101.9	87035085	870480607	870736983	87089870 G	87099325.4	87112289.1	87125271.7	87137915.8	87150853	8/1636/6.5	871/8481.8	47100000 B	87745008	87228080 5	87240745.8	87253707.2	87268494.4	67279354.1	87292289.7	87304843.5	A.T.P. TEACH	8/3308/9.8	87758510 2	87789158 1	87382134	87395098.8	87407782	201010	87420722.1	87448399 7
Discharge water Tota		6.1		80	1.0	82	7:					8.2	8.2	25	8.2		2.5	8.2	8.2	0,0			2.5	82	1.6	1.0	1.0	9.1	282	1						8.2							700		6			,,,	2 2	8.2	8.2	5	28	27	8.7		8.2	8.2	8.2	6.2	8.2	200	200	270	70:		8.2	2	8.2	82	8.2	8.2	2.5	27	7	200	82	8.2		700	82	
		6																		20 00								6							T		,),						,							6	6		8	6,0	200			8				6.		,							6	6	00 0		2 0					,		,
r Air Strippe		7		-	7.			1		1			7	-	-	^			_								7.	1	1		-			1							-		1	1		1	1	1		_	,	,	-		1	1	1	_			-]					4				1	_]		1							<u> </u>
Influent wate	8.8	6.8	80 8	8.8	8.8	8.9	9 9	2	0.0	9.9	9.9	8.8	8.8	9.9	8.6	8.8	8.8	89	6.8	9	9	8	9	88	98	88	8.8	8.8	88	4	8.8	8	2 2					2 4	2	8	000		000			8.9	:	0 0	0 4	99	8.8	6.8	88	9	0.0		8	8.8	8.8	8.8	6.8	99	9 9	9		3	88	8.8	6.8	8.8	6.8	6.8	8.0	9.0	000	0		88			2	2,5
influent conductivity Effluent conductivity Influent water Air Stripper water IF)	8 8	58	55	25	56	8	96	8	8	ŝ	ន	26	\$	98	28	98	25	57	8	F	8	8 9	8 8	3 15	95	\$	3	95	-		15	9	95	8 9	8	9	3	8 8	8 6	5	5 5	6	2	à	10	22	à	5 5	À L	25	25	57	57	3	* 5	6	96	61	112	111	110	20	=	-	717	1	=	110	113	112	=	28	Ξ	25	2	0 0	3	95		200	88	Å
aivity Efflue	1		1	1			1	1	1		1	1	-	-						1	1	<u> </u>	+		-	L			1	1			1	1	1		1		1	-	1	1			1		1	1	1		L		1	1	1	1	+				+	1		1	1	T								1	+	+					+	_
Influent condu	8 28	25	25	8	85	58	8	8	8	3	28	ŝ	8	3	8 8	8	8	88	28	2 2	\$	3 8	3 5	2	57	28	8	8	2		8 8	3	8	8 3	8 5	3 2	3 2	8 9	8 8	8 8	B	R	8	8	R	8	8	8 8	8 9	3	8	88	83	8	20 2	8 9	88	65	29	28	8	8	8	8 5	8 8	3 8	57	55	88	3 8	88	86	8	8	8 9	B S	8	2	5 2	20	8	85
age age	5 5	150	148	149	149	150	200	48	2	49	ž	151	151	150	151	150	ž	151	151	\$ 5	460	200	200	2 5	Ē	150	150	150	3	-	150	200	8	S S	2	100	2	2	rer osi	2 3	2	72	121	152	161	161	251	25	5	152	151	152	151	150	Š	143	149	149	150	150	₹ -	149	25	2	5		5	3	55	150	50	149	ŝ	20	5 5	725	76	184	3	152	152	133
F.W.	2 5	8 8	8 3	8 8	98	92	8	40	2	13	76	09	8	96	29	193	<u>2</u>	93	88	e 8	8 5	8 5		1 8	82	200	610	202		3 6	3 2	:	2 8	2	2 3	8 6		1	200	8 8	2	¥ :	212	260	8	9	₹ 3	8	¥ 8	3 3	183	707	284	883	248	8 3	180	48	906	891	398	762	8	200	616	2 2 2	23	010	693	813	774	670	13	930	2808	201	2 6	, 00	94.0	3	762	- 189
Flow (GPM) Flow (CFA	7 2	**	2		2	35	25	3	F	5	5	27	ž		5	36	5	*	*	2	4	7						7		1	4,6	1	1	1		1	1	1	7	1	-	7	7	7	~ `	2	2		7		-	2	~	2	7	7			2	2	1 2	2	2	~ (`	-			7	7	3	7	2	1	1	1		ł	t	1	1	_
II 3 Discha	2 2	17	2	1	ľ	74	٥	2	٩	4	٥	78	=	E.	78	73	2	0	72	0	2 4	2 2	1	1	:	2	2		7	֓֞֜֜֜֜֜֝֟֜֜֝֟֜֜֟֜֜֟֟ ֓֞֞֞֞֞֓֞֞֞	7	1	2	1	9	1	1	7	2,6	1	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	0	F	0	2	2	22	2 2	6	2 5	2	1	2	~	٠ 	-	۲		7	7.	~	<u> </u>	*	-	7	* *	1	1	- 0		*	7.	~	-	2	7	1	-		٥	2	
Recovery Well 3 Flow (GPM)	2	200	53	205	ş	20	51	S	S	51	51	15	20	5	20	20	5	51	53	iñ i	F 8	8	5 5	8 2	;	;	5	4	2 2	;	76	5 8	2 5	8	5	ñ 1	ñ	8	2	7	8	25	<u>.</u>	23	5	25	25	20	5	200	i is	53	3	53	5	25	7.5	25	52	50	25	52	25	52	2	76	3 2	5	25	52	52	21	5	5	23	25	7 .		ō	5	5	76
Stalliol Votalies Schollwarder Containmand of the Recovery Well 2 Recovery Well 2 Recovery Well 3 Discharge Discharge Flow (GPM) Flo			•	3			-	•	-	0	0	0	0	0	6	0	0		٥	0	-	-	+	-	,	,	-	,	•	 	-	>	-	•	•	-	-		•	-		-	0	-	٥	٥	0	0		-	, 0	0	0	-	-			0	0	0	0	٥		-	-	-	,	•			0	0	•	•			+	,	-	-	-	•
elf 1 Reco	+	+		+		L			1					L				_					+	1		<u> </u>				1	1	1	1	1		1		1		+	1		1				$\frac{1}{1}$	1			L					1	1									-	-				-			1				1				1
Recovery Well 1 Recovery Well 2 Flow (GPM) Flow (GPM)	٥	0	٥	5		٥	0	٥		٥	٥	٥	٥	o			,	0		٥			0	ء		,	-		,	}						0	5			١			٥	٥	٥		٥	ا		-		٥	٥	0		ا	٥	0			٥	٥			•	,	ا				•	0	٥	•	0	0	٥	,	1	٥		
	72005 8:00	/2005 18:00	2/1/2005 20:00	2/2005 4:00	72/2005 8:00	2/2005 12:00	2/2005 18:00	2/2005 20:00	2/3/2005 0:00	2/3/2005 4:00	J3/2005 8:00	3/2005 12:00	3/2005 16:00	N2005 20:00	74/2005 0:00	2/4/2005 4:00	2/4/2005 8:00	4/2005 12:00	4/2005 16:00	4/2005 20:00	000000000000000000000000000000000000000	00.8 (00.7%)	00 9 600767	2/2005 12 OC	20.00	18/2004 D.OD	W.2005 4:00	00 4 SOUTH	000000000000000000000000000000000000000	00.21 50020	00.000 10.00	00.00 00.00	2/7/2005 0:00	2/7/2005 4:00	27/2005 8:00	7/2009 12:00	DO:91 CD7//	7/2005 20:00	0002000	007007	00/2005 8:00	8/2005 12:00	6/2005 18:00	6/2005 20:00	9/2005 0:00	/9/2005 4:00	9,2005 8.00	9/2005 12:00	9/2005 16:00	00.07.000.00	10/2005 4:00	10/2005 8:00	2/10/2005 12:00	0/2005 16:00	0/2005 20:00	11/2005 0:00	11/2005 4.00	1/2005 12:00	1/2005 16:00	1/2005 20:00	12/2005 0:00	12/2005 4:00	12/2005 6:00	2/2005 12:00	22005 16:00	2005 20:00	20000	2000	72005 12:00	V2005 18:00	V2005 20:00	4/2005 0:00	4/2005 4:00	4/2005 8:00	42005 12:00	12005 18:00	2002 2010	000000	DO 2 CONT. 6	5/2005 8:00	72005 12:00	\$2005 15 tu

File	000 2 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
99	0 00 48 500.74 0 107.1 500.74
### 24.05	0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240
££ \$2.05. \$2.06. \$2.06. \$3.06. \$9.0 \$9.5 \$9.5 \$9.1 \$1.05. \$2.1 \$1.9 \$0.2 \$1.9 \$0.2 \$1.9 \$1.0	0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240 0 000 9000240
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	0 00 9 0024 0 00 9 0024
19	0 000 5002% 0 000 5002% 0 000 5002% 0 000 19 5002% 0 000 19 5002% 0 000 19 5002% 0 000 19 5002% 0 000 5002% 0 000 5002% 0 000 5002% 0 000 5002% 0 000 5002% 0 000 5002% 0 000 5002% 0 000 5002% 0 000 5002% 0 000 5002%
19 1998 19	0 000 5000.00 0 100 100 100 100 100 100 100 100 100
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	0 00 94 5000.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0 0 0 00 75 500.0
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	0 DO 21 5002.0 0 DO 45 5002.1 0 DO 95 5002.1 0 DO 95 5002.1 0 DO 5002.1 0 DO 00 5002.1 0 DO 15 5002.0 0 DO 17 5002.0 0 DO 17 5002.0 0 DO 19 5002.0 0 DO 19 5002.0 0 DO 19 5002.0 0 DO 19 5002.0
ZQ 169Z ZQ CSSECCESS ZQ 6 L 9 p LS 9 g 6 p1 169Z ZL ZS D 4Q VLZ CTQ 1 9 SECCESS Z 6 L 9 p LS 98 6 p1 VLZ 7 L CS D CQ DL9Z B239 Y 6P42/CGS 1 9 6 L 9 p 95 65 6 p1 DL9Z 0 CS 0 CQ 1 002C B12 9 8 61585282 1 9 8 L 9 p L5 65 0 G1 1 100Z VL CT 1 G 0 CS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	0 00190024 0 000 900244 0 000 900244 0 000 90024 0 000 900026 0 000 900026 0 000 900026 0 000 900026 0 000 900026 0 000 900026 0 000 900026
CQ 01/92 87/9 FSB/LOCRE 1/9 6/1 9/8 9/9 9/9 8/9 8/9 1/9 1/2 0 1/9 0 1/9 1/2 1/9 1/2 1/9 1/2 1/9 1/2 1/9 1/2 1/9 1/2 1/9 1/2 1/9	0 000 9002// 0 0000 9002/ 0 0000 9002/ 0 000 9002/ 0 00 9 9002/6 0 00 9002/6 0 00 9002/6 0 00 9002/6 0 00 9002/6
CO 100Z 999 9 86195200 1'9 6'L 9'9 L'5 96 051 100Z 1'L 1'5 0 0 LL 1/LZ CCD 9'6192200 7'9 6'L 9'9 L'5 96 051 110Z 1'L 1'L 1'S 0 LL 1/LZ CCD 9'6192200 7'0 6'L 9'9 L'5 96 051 11L 1'L 1'L 1'S 0 LL 1/LZ CCD 9'6192200 7'0 6'L 9'9 L'5 96 051 11'S 1'L 1'L 1'S 0 LL 1/LZ CCD 9'6192200 7'0 6'L 9'9 L'5 96 051 11'S 1'L 1'L 1'S 0 LL 1/LZ CCD 9'1 L'1'S 1'S 1'S 1'S 1'S 1'S 1'S 1'S 1'S 1'S	0 00 02 9002/ 0 00 03 9002/ 0 00 07 9002/ 0 00 9002/ 0 00 9002/ 0 00 00 9002/
LL LLLZ CCD 9 CP1/20209 Z 0 6 L 9 0 LS 96 05i LLLZ LL 15 0 LL PPSC C 2.00 L 26190009 1 0 6 L 9 0 L5 95 0 0i PPSC PL 25 0 0 9 0 1 0 <t< td=""><td>0 0002.6 0 0002.6 0 0000.6 0 0 0000.6 0 0 0000.6 0 0 0000.6 0 0 0 0000.6 0 0 0 0000.6 0 0 0 0 0000.6 0 0 0 0 0000.6 0 0 0 0 0 0000.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></t<>	0 0002.6 0 0002.6 0 0000.6 0 0 0000.6 0 0 0000.6 0 0 0000.6 0 0 0 0000.6 0 0 0 0000.6 0 0 0 0 0000.6 0 0 0 0 0000.6 0 0 0 0 0 0000.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LL PHSC 2.19 1.2 (186200) 1.9 6.1 9.9 1.0 0.5 0.61 PHSC P.1 2.5 0 C9 0.16,5 2.66 9.12,400000 9.9 9.5 1.5 8.91 1.16,1 0 1.5 0 0 1.5 8.91 1.16,1 0 1.5 0	N2006 12:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\$\frac{\cuperts}{\cuperts}\$ \frac{\cuperts}{\cuperts}\$ \frac{\cuperts}{\cup	85002 9 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
61 2165 259 \$80000000 19 57 99 99 15 891 2185 21 09 09 09 16 892 2 99 1 20 2 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0026 67,5002 0 00 0 0 7,5002 50:00 0
29 S98Z 66S 2/190C298 19 8/2 99 25 8S 6F1 698Z 9/2 Z5 0	9,5002 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	N2002 50:00 0
17 0762 807 8.26.04.6.6.6.6.6.7 8.26.04.6.6.6.7 8.26.04.6.6.7 6.2 8.26.04.6.6.7 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	0 00:91 90007
29 189Z 759 P75986189 79 67 89 25 891 168Z 72 09 0	V2005 12:00 D
Z8 P16C /LI9 95C89/LI99 1.9 5/L 8/9 /LS BS 6P1 P16C 0 ZS 0	0 00:8 9:002/9
22 CCCC 109 STS189160 Z9 62 99 25 65 61 CCCC 22 15 0	2/2005 4:00
24 COSC 100 STREET C	2,2005 0.00 0
09 C10C 125 579151918 C4 52 79 25 579 C10C C2 55 U	0 000 5000 00
	0 00:219:007/
29 0.22 599 20101019 19 67 99 96 99 191 0.22 12 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 00.8 9002//
0 282,0 149 29 28 89 91 99092,013 292,0 80 0	0 00 + 5002/+
<u>19</u> <u>27-12</u> <u>909 1 900/008 1 9 8 1 9 15 95 641 27-12 91 06 0</u>	0 00:0 90:0//
17 0865 006 178006088 5.8 6.7 6.8 6.8 1.5000608 5.9 0.7 6.8 1.5000608 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	N5006 20:00 0
76 Dees 819 7.6650088 2.8 8.7 8.8 7.8 8.2 0.81 Dees 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 00.91 5005V
ZZ 029Z 119 11DEC098 Z8 6Z 839 8S 8S 0S1 0Z9Z SZ 0S 0S 0S	N3002 13:00 0
09 826Z 119 Z1SP7099 Z.9 6.7 8.9 Z.6 0S1 826Z EV Z.2 0	3/5006 8:00
777 8775 150 15 6.8 8.1 861108 1.8 6.7 6.8 7.5 88 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	0 00:1 9002/6
87 85 858 87 888 8 7 8 8 8 8 8 8 8 8 8 8	0 0002/0
18 889Z 278 7.07828278 1.8 8.7 8.8 72 8.8 8.2 77 12 12 12 12 12 12 12 12 12 12 12 12 12	0 00:00
19 9FZZ 069 6'969ZZ6ZQ 1'9 6'Z 2'9 ZS 99 151 9FZZ FZ FZ FZ	0 00.91.5005/
L9 7417 C49 610709649 T9 64 89 85 95 151 7427 94 05 0	0 00:21 9002/
18 D26Z 599 F56Z16G8 19 6Z 8B Z5 9S O51 D26Z 5Z 05 0	2/2/06 8:00
29 99/2 PGG 6'955'9649 19 6/2 99 95 2G 051 99/2 C/2 05 0	0 000 4:00
22 9992 159 602515628 7.8 612 8.9 125 95 051 9992 2 15 00	0 00:0 9002/2
16 1697 S99 962/963/2 119 61/ 99 25 95 051 1697 L/ 75 9	0 000 3000/
92 9667 709 568456948 19 67 89 25 66 051 8692 64 05 0	0 00:91 5002/
87. 1996. 109 50050844 14 07 29 29 19 19 00 04 19 19 00 19 19 00 19 19 19 19 19 19 19 19 19 19 19 19 19	0 00:21 2002/
	0 00.8 9002/1
	0 000 \$002/6
28 1892 CS1 5912PPP2 1'8 67 8'9 C11 15 6F1 1802 O CS O	0 00:0 9002/1
C8 91/2 128 6.80816576 18 87 8.8 E11 72 94/5 27 52 0	V2005 20:00 0
18 9rLZ 5L9 9rL842 Z'0 6L 0'9 Cil 05 6rl 9rLZ ZL is 0	0 00:91 9002/
CS 5665 516 616 616 617 618 61 618 618 618 618 618 618 618 618	N2009 15:00 0
99 L017 650 650 650 650 650 650 650 650 650 650	0 0030020
<u> </u>	0/5002 4:00
0 25 0 2512 149 29 112 88 21 81 817(173)(1 886 24) 87	0,2005/0
78 1095 107 107 107 107 107 107 107 107 107 107	_ 0 000 S0:00
97 1095 5555 26511 749 67 8.8 6.1 6.2 6.1 6.2 6.2 7.5 8.1 6.2 6.2 7.5 8.1 6.2 7.5 8.1 6.2 7.5 8.1 6.2 7.5 8.1 6.2 7.5 8.1 6.2 7.5 8.2 7	0 00316:00
92 1522 8799 1799621 29 67 99 71 150 991 1502 0 69 0	0 00:21 9002/
0 25 72 7990 146 56 79 111 6.6 79 61 6775550.2 2721 2990 50	3/2002 0 00 0
19 D66Z 996Z 996Z 9'989ZD2/29 19 5'2 8'9 O11 9'S 2/P1 D66Z Z2 15 D	0 00.7 5002/6
14 C 252	0 00.0 5005/6
C9 7/1/2 0.152 5/1/2/1/2/2 2 9 6/1 9/9 1/1 9/5 9/1 7/1/2 7/1 1/5 D	0 000 3000A
\$\frac{\circ}{\circ}\$ \frac{\circ}{\circ}\$ \c	0 00:91 20007
92 V/LZ 9952 (589)50/8 L9 6/2 99 Z11 95 691 974LZ 1/2 05 0	0 00:21 30054
CP	8/5002 8:00 0
96 0785 881 178 1000078 1.0 8.1 8.1000078 27 527 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	V2008 20:00 0
C9 92/2 5496 621529529 1.8 6.7 6.3 5146 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 00'81 9002/
87 87 77 7776 148 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.	0 00213:00
0 24 78 2691 149 57 113 6.0 7.9 0.1 67561622.4 2.441 2.691 TT	7/2005 8:00
18 9212 PPP 2 (\$1989\$12 1'8 6'2 8'9 bit 95 6bt 9212 12 6b	00:1-2005/7
ZQ CZLZ P65Z 9059552/9 1/9 6/L 8/9 P11 95 051 5ZLZ ZL 06 0	0 00:0 9002/2
17 1062 TTA 2.8522225 3 1.8 8.7 8.8 2.1 2605 0 1.0 5.0	V2005 20:00 0
17 108 <u>C 126C 2 18101878 1.8 6.7 8.8 87 128C 321 108C 87 18</u>	V2005 16.00 0
29 9997 CRCZ 2.7291269-20 1-9 67 8-9 2.11 2.5 251 9997 52 1.5 0	V2005 12:00 0
82 1967 1777 S2C1797/S 19 6/2 89 211 9S 151 1967 92 05 0	e/S002/9 00 0
92 1692 6067 9391/2/28 78 57 89 69 65 78 1892 6 6 6 6 0	6/2005 4:00 0
C9 Z9/Z 96CZ 9'(1C69P/R Z'9 6'/ 99 95 66 Z51 Z8/Z C/ C9 0	0,2005 0:00

Appendix D

Sampling Trip Reports

SAMPLING TRIP REPORT

Site Name: STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE

CERCLIS ID Number: NYD047650197 **Sampling Dates:** February 3, 2005

CLP Case Number: N/A

Site Location: 110 Cutter Mill Road, Great Neck, New York, 11021 Sample Descriptions: Groundwater Treatment System Influent / Effluent.

Laboratories Receiving Samples (Table 1):

Case Number	Sample Type	Name and Address of Laboratory	
N/A	TCL-VOAs OLC03.2	USEPA Region II (USEPA) Building 209 MS-230 2890 Woodbridge Avenue Edison, N.J. 08837	

Sample Dispatch Data (Table 2):

On February 3, 2005, four groundwater samples, including extra volume for Matrix Spike / Matrix Spike Duplicate (MS/MSD) analysis, one duplicate sample, and one trip blank were shipped to the USEPA Region II Laboratory for TCL-VOAs analysis.

FedEx Airbill No.	Number of Coolers	Number and Type of Samples	Time and Date of Shipping
791539769992	1	4 Aqueous Samples including 1 duplicate sample, and 1 Trip Blank for TCL-VOAs.	12/15/04 @ 18:00 TO: USEPA

Sampling Personnel (Table 3):

Name	Organization	Site Duties
Tom Williams	Earth Tech, Inc.	Task Manager
John Huisman	Earth Tech, Inc.	Health & Safety/Sampler

Sample Numbers and Collection Points (Table 4):

Laboratory	Analyses	Sample Type	CLP Sample #	Sample Collection Point(SCP)
USEPA	TCL-	Aqueous	N/A	SC-01
	VOAs	Groundwater	N/A	SC-04 (MS/MSD)
			N/A	SC-75 (Dupl SP-01)
			N/A	SC-TB (Trip Blank)

Additional Comments:

All groundwater samples were collected after a five gallon purge from the sample ports located within the treatment system. Volumes were collected from the influent (SC-01) and effluent (SC-04) of the treatment system for the following analysis: Target Compound List (TCL) Volatile Organic Compounds. Sample collection point SC-75 is a duplicate sample of influent sample SC-01.

Earth Tech personnel also collected real time water quality parameters from the raw water (influent) and treated water (effluent) using a Horiba U-22 water quality meter. Copies of the Chains of Custody Records are included in Appendix A. A copy of the FedEx airbill is included in Appendix B. The field measured water quality data is included in Appendix C.

APPENDIX A CHAIN OF CUSTODY FORMS

Q,	F	PΔ	Ŀ
v	اصلا		b

Date Shipped:

Carrier Name:

USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

Chain of Custody Record

Relinguished By

		<u> </u>
	Case No:	_
	DAS No:	
	SDG No:	
	For Lab Use Only	
	Lab Contract No:	
<u>~</u>	Unit Price:	
	Transfer To:	
	Lab Contract No:	

791539769992 Alrbiii: Shipped to: **USEPA REGION II DESA** LAB Building 209 MS 230 2890 Woodbridge Avenue Edison NJ 08837 (732) 906-6886

2/3/2005

FedEx

						One Fit		
ORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/ Bottles	STATION LOCATION	SAMPLE COLLECT DATE/TIME	INORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receipt
SC-01	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	SC-01	S: 2/3/2005 / 17:00	•	
SC-04	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	SC-04	s: 2/3/2005 / /7:30		
SC-75	Ground Water/ JOHN HUISMAN	ĽG	VOA (21)	(HCL) (3)	SC-75	S: 2/3/2005 / 17:00		
SC-TB	Ground Water/	L/G	VOA (21)	(HCL) (3)	SC-TB	S: 2/3/2005 //6:00	•	

Signature;

(Date / Time)

Received By

Fadex

(Date / Time

Shipment for Case Complete?Y	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Numi	ber:
Analysis Key:	Concentration: ` L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact?	Shipment Iced?
VOA = CLP TCL Volatile	98			,	

TR Number:

TR Number: 2-525300610-020205-0002

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 703/264-9348 Fax 703/264-9222

LABORATORY CO

F2V&1.045 Page 1 of 1

:ON SACI Case No:

Organic Traffic Report & Chain of Custody Record

NAMSIUH NHOC

NAMSIUH NHOL

SC-TB

Ground Water

_		CO:CI / SOOZIEIZ :S	SC-75	(HCF) (3)	(IS) AOV	эЛ	NOHN HUISMAN Ground Wateri	1
_		6: 2/3/2002/E/Z :S	2C-04	(HCF) (3)	(IS) AOV	9/1	HUISMAN Ground Waterl	2C-04
		00: (1 / 900Z/E/Z :S	2C-01_	(HCF) (3)	(IS) AOV	рл	Ground Wateri JOHN	
OD eqyT	NORGANIC		STATION	LON DAT SOIDOR WATTAVESERRY	ANALY SISV	CONC	NATTAIN SELPINAS	ORGANIC SAMPLE No.
		ε <i>Α</i>		S gnibling	fi.	snetnisM bns	NHOC	9Kp Namo/State: Project Leader: Action: Sampling Co:
(Date / 1985)	Received	Relinquished By (Date I Time)	ECION II DE <i>S</i> V	Cerrier Name: FedEx Ahipped to: 19163976 LAB		26 1	0 9 92 1 004N	Spin ID: Project Code: Project Code:
1 .72 71	Sempler Signature:	Chain of Custody Record	ľ	Date Shipped: 2/3/2005		•	Z	Region:

SC-TB

00: 9// 900Z/E/Z :S

APPLE SONOZIETZ :S

SECTON COPY		5-252300610-020205-0005	TR Number:
		50	VOA = CLP TCL Volatile
Sheal Inempiris	D = ds10, 0 = signate: Composite = C.	Concentration: L = Low, M = Low/Medium, H = High	Analysis Key:
		1	
Chain of Custody Seal Number:	Additional Sampler Signatura(s):	Sample(s) to be used for laboratory QC:	Shipment for Cese

FTO F BOBS 300.12VZT REGION COPT

Trip Blank

Send Copy to: Sample Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 703/264-9346 Fax 703/264-9222 PR provides preliminary results. Requests for preliminary results will increase analytical costs.

(HCL) (3)

(FS) AOV

ЭΠ

APPENDIX B FEDEX AIRBILLS

Track Shipments **Detailed Results**

Tracking number Signed for by Ship date **Delivery date**

791539769992 S.FIGUEROA Feb 3, 2005 Feb 4, 2005 9:15 AM

Reference **Delivery location** Delivered to Service type Weight

5442.001 Edison, NJ Shipping/Receiving Priority Overnight 20.0 lbs.

Status

Delivered

Date/Time		Activity	Location Details
Feb 4, 2005	9:15 AM	Delivered	Edison, NJ
	8:23 AM	On FedEx vehicle for delivery	EDISON, NJ
	6:48 AM	At local FedEx facility	EDISON, NJ
Feb 3, 2005	10:17 PM	Arrived at FedEx location	NEWARK, NJ
	8:36 PM	Left origin	GARDEN CITY, NY
	6:31 PM	Picked up	GARDEN CITY, NY
	9:54 AM	Package data transmitted to FedEx	

Signature proof

Track more shipments

Email your detailed tracking results (optional)

Enter your email, submit up to three email addresses (separated by commas), add your message (optional), and click Send email.

Add a message to this email.

From

То

Send email

APPENDIX C WATER QUALITY DATA

STANTON CLEANERS SITE LTRA

Groundwater Pump and Treatment System Water Quality Parameters Log

Date: 2/3/05 Project # 70536

	рΗ	COND.	TURB.	· DO	TEMP.	SALINITY
Combined Influent	7.10	0.499	1.0	4.7	52.14	0.01
Discharge	7.62	0.51	0.0	8.8	53.21	0.01

Total Gallons pumped: 86,099,123 gallons

Flow rate: 55 gpm

Equipment Calibrated by: John Huisman Water samples collected by: John Huisman

Water monitoring performed by: John Huisman

Comments:

SC-01: Influent Sample Collected

SC-04 : Effluent Sample Collected & (MS/MSD)

SC-75 : Duplicate Sample of SC-01

TEMP. - Temperature measured in degrees Fahrenheit.

COND. - Conductivity measured in milliSiemens per centimeter (mS/cm).

TURB. - Turbidity measure in nephelometric turbidity units (NTU).

DO - Dissolved Oxygen measured in milligrams per liter (mg/L).

SALINITY - Salinity in percentage.

SAMPLING TRIP REPORT

Site Name: STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE

CERCLIS ID Number: NYD047650197

Sampling Dates: February 7, 2005 – February 11, 2005

CLP Case Number: 33838

Site Location: 110 Cutter Mill Road, Great Neck, New York, 11021

Sample Descriptions: First Semi-Annual Groundwater Sampling Event Of 2005

Laboratories Receiving Samples:

Case Number	Sample Type	Name and Address of Laboratory
33838	TCL-VOAs	A4 Scientific (A4) 1544 Sawdust Road – Suite 505 The Woodlands, TX 77380

Sample Dispatch Data:

On February 8, 2005, fourteen groundwater samples, including one duplicate sample, one trip blank and two equipment blanks were shipped to A4 Scientific for analysis of TCL-Volatiles.

FedEx Airbill No.	Number of Coolers	Number and Type of Samples	Time and Date of Shipping
791471149376	1	14 aqueous samples including 1 duplicate sample, 1 trip blank, and 2 equipment blanks for analysis of TCL-volatiles.	2/8/05 @ 16:30 TO: A4

On February 9, 2005, ten groundwater samples, including one duplicate sample, one trip blank, and one equipment blank were shipped to A4 Scientific for analysis of TCL-Volatiles.

FedEx Airbill No.	Number of Coolers	Number and Type of Samples	Time and Date of Shipping
790421953760	1	10 aqueous samples including 1 trip blank, and 1 equipment blank for analysis of TCL-volatiles.	2/9/05 @ 17:00 TO: A4

On February 10, 2005, ten groundwater samples, including two duplicate samples, one trip blank, and one equipment blank were shipped to A4 Scientific for analysis of TCL-Volatiles.

FedEx Airbill No.	Number of Coolers	Number and Type of Samples	Time and Date of Shipping
792202877711	1	10 aqueous samples including 2 duplicate samples, 1 trip blank, and 1 equipment blank for analysis of TCL-volatiles.	2/10/05 @ 16:30 TO: A4

On February 11, 2005, three groundwater samples, including one trip blank and one equipment blank were shipped to A4 Scientific for analysis of TCL-Volatiles.

FedEx Airbill No.	Number of Coolers	Number and Type of Samples	Time and Date of Shipping
791474604785	1	3 aqueous samples including 1 trip blank and 1 equipment blank for analysis of TCL-volatiles.	2/11/05 @ 12:00 TO: A4

Sampling Personnel:

Name	Organization	Site Duties
John Huisman	Earth Tech, Inc.	Sampler / Health & Safety
Leslee Alexander	Earth Tech, Inc.	Sampler
Russell Reynolds	Earth Tech, Inc.	Sampler
Todd Plating	Earth Tech, Inc.	Sampler
Howard Nichols	Environmental Chemical Corp.	Sampler

Sample Numbers and Collection Points:

Attachment A includes a table with a list of all the groundwater monitoring well collection points and their assigned CLP sample numbers.

Additional Comments:

During the groundwater sampling event that occurred from February 7, 2005 through February 11, 2005, a total of 28 groundwater samples including three duplicate samples (EPA-MW-31D, ST-MW-17D, and EPA-MW-21D) a were collected and shipped for laboratory analysis. A total of 4 trip blanks and 5 equipment blanks were also collected.

The groundwater sampling procedures were conducted in accordance with the USEPA Region II Groundwater Sampling Low Flow (Minimal Drawdown) Groundwater Sampling Procedures, date April 1996. Copies of the Chains of Custody Records are included in Attachment B. FedEx airbills are included in Attachment C.

ATTACHMENT A CLP SAMPLE NUMBERS AND COLLECTION POINTS

CLP Sample Numbers And Collection Points Stanton Cleaners Site February 2005

Well ID#	CLP Sample #	Top of PVC	Depth to Top	Depth to bottom	Depth to Install	QA/QC
		Elevation (ft msl)	of Screen (ft.)	of Screen (ft.)	Sample Pump (ft)	Samples
CL-1D	B1W05	DNA*	135	145	140	
CL-1S	B1W06	DNA*	75	85	80	
CL-4D	B1W07	DNA*	135	145	140	
CL-4S	B1W08	DNA*	75	85	80	
EPA-MW-21	B1W09	84.13	85.43	95.52	90	
EPA-MW-21D	B1W10	QA/QC DUPLICATE	SAMPLE		West Control	DUPLICATE
EPA-MW-23	BIWII	82.83	85.74	95.72	90	_
EPA-MW-26	B1W12	78.37	85.83	95.88	90	
EPA-MW-27	B1W13	69.32	115.33	125.93	120	
EPA-MW-29	B1W14	31.06	145	155	150	
EPA-MW-31	B1W15	51.46	55	65	60	
EPA-MW-31D	* B1W16	QA/QC DUPLICATE	SAMPLE	10 - 10 x 20 m	Barthar States	DUPLICATE
EPA-MW-32	B1W17	53.39	110	120	115	
EPA-MW-33	B1W18	68.75	75	85	80	
EPA-MW-9a	B1W19	80.24	83	103	90	
MW-11D	B1W20	74.63	125	135	130	
ST-MW-02	B1W21	82.03	90	100	95	
ST-MW-06	B1W22	69.83	44.3	54.3	49	
ST-MW-11	B1W23	75.25	73	83	78	
ST-MW-13	B1W24	103.94	87	102	89	L
ST-MW-14	B1W25	69.73	185	200	190	
ST-MW-15	B1W26	90.13	85	95	90_	
ST-MW-16	B1W27	75.78	54.5	69.5	60	
ST-MW-17	B1W28	86.53	120	140	130	
ST-MW-17D	* B1W29 -	QA/QC DUPLICATE	SAMPLE	STATE OF A STATE OF	and the second	DUPLICATE
ST-MW-18	B1W30	84.40	183		190	
ST-MW-20	B1W31	84.53	200	215	205	
ST-MW-19	B1W32	82.50	74	89	80	
National Control		STEEDSLAN	KS/TRIPBLANKS			
EB-01	B1W33		Equipmnet Blank			
TB-01	B1W34		Trip Blank			
EB-02	B1W35		Equipmnet Blank			
TB-02	B1W36		Trip Blank			
EB-03	B1W37		Equipmnet Blank			
TB-03	B1W38		Trip Blank			
EB-04	B1W39		Equipmnet Blank			
TB-04	B1W40		Trip Blank			
EB-05	B1W41		Equipmnet Blank			

NOTES

DNA* - Data Not Available; Construction data from previous investigations could not be located.

EPA-MW-31- Will collect duplicate QA/QC Sample

EPA-MW-21- Will collect duplicate QA/QC Sample

ST-MW-17- Will collect duplicate QA/QC Sample

Under Different CLP#

Under Different CLP#

ATTACHMENT B CHAIN OF CUSTODY FORMS

ate Shipped:	2/8/2005		Chain of Custoc	iy Record	Sampler Signature:		For La	b Use Only	
arrier Name; Jrbiil:	FedEx 791471149376	•	Relinquished By	(Date / Time)	Received By	(Date / Time)	Lab Cont	tract No:	
hipped to:	A4 Scientific		1 ph Thin	2 8/05 16:30	Fedex 2	18 ks 116:30	Unit Pric	e:	
	1544 Sawdust Road Suite 505	l	2 (/				Transfer	То:	
	The Woodlands TX (281) 292-5277	77380	3				Lab Cont	tract No:	
	(201) 292-3211		4				Unit Pric	e;	
ORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSISI TURNAROUND	TAG No.J PRESERVATIVE/ Bolies	STATION LOCATION	SAMPLE COLL DATE/TIME		INORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receipt
B1W05	Ground Water/ JOHN HUISMAN	₩Ğ	VOA (21)	(HCL) (3)	CL-1D	S: 2/8/2005	15:20		
B1W06	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	CL-1S	S: 2/8/2005	14:10	•	
B1W07	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	CL-4D	S: 2/8/2005	14:05		
B1W08	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	CL-4S	\$: 2/8/2005	14:45		
B1W15	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	EPA-MW-31	S: 2/7/2005	14:50		
B1W16	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	EPA-MW-31D	S: 2/7/2005	14:50		
B1W17	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	EPA-MW-32	S: 2/7/2005	15:20		
B1W18	Ground Water/ JOHN HUISMAN	L∕G	VOA (21)	(HCL) (3)	EPA-MW-33	S: 2/8/2005	9:00		
B1W19	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	EPA-MW-9A	S: 2/8/2005	9:10		
B1W24	Ground Water/ JOHN HUISMAN	υG	VOA (21)	(HCL) (3)	ST-MW-13	S: 2/8/2005	10:30		

Shipment for Case Complete?N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = C		Custody Seal Intact? Shipment iced?
VOA = CLP TCL Volatile	s			

LABORATORY COPY

⊕EPA		t Laboratory Program Report & Chain of Custody Re	ecord	Case No: 33838 DAS No: SDG No:
Date Shipped: Carrier Name:	2/8/2005	Chain of Custody Record	Sampler Signature:	For Lab Use Only
Airbili:	FedEx	Relinquished By (Date / Time)	Received By (Date / Time)	Lab Contract No:
Shipped to:	791471149376 A4 Scientific	2/8/05/11:30	Fedex 2/8/05/11:30	Unit Price:
	1544 Sawdust Road Suite 505	1 2 ∛		Transfer To:
Ì	The Woodlands TX 77380 (281) 292-5277	3		Lab Contract No:
	(401) 232-3217	4		Unit Price:

ORGANIC SAMPLE No.	MATROX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No.! PRESERVATIVE! Botiles	STATION LOCATION	SAMPLE COLLE DATE/TIME	ст	INORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receipt
B1W32	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	ST-MW-19	S: 2/8/2005	10:30		
B1W33	Ground Water/ JOHN HUISMAN	ĽG	VOA (21)	(HCL) (3)	EB-01	S: 2/7/2005	13:45	•	
B1W34	Ground Water	/G	VOA (21)	(HCL) (2)	TB-01	S: 2/7/2005	8:00		
B1W35	Ground Water/ JOHN HUISMAN	₩G	VOA (21)	(HCL) (3)	EB-02	S: 2/8/2005	13:30		

Shipment for Case Complete?N	Sample(s) to be used for laboratory QC:		Cooler Temperature Upon Receipt:	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact? Shipment iced?
VOA = CLP TCL Volatile	3			

LABORATORY COP'

USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

Data Shipped: 2/8/2005

Carrier Name: FedEx

Region:

Project Code:

Case No: 33838

DAS No:

Signature:

Chain of Custody Record

Account Gode: CERCLIS ID: Spill ID: Site Name/State: Project Leader: Action: Sempling Co:	JOHN HU!! Operations	eaners Site/	nance	Airbill: Shipped to:	79147114937 A4 Scientific 1544 Sawdus Suite 505 The Woodlan (281) 292-527	t Road ds TX 77380	1 1 1 2 2 3 4	(Date /	Time) Received	
ORGANIC SAMPLE No.	MATRIX/ Sampler	CONC/ TYPE	ANALY SIS/ TURNAROUND		G No./ \TIVE/ Bottles	STATION LOCATION		PLE COLLECT DATE/TIME	INORGANIC SAMPLE No.	QC Type
	Ground Water/ JOHN HUISMAN	IJĠ	VOA (21)	(HCL) (3)	<u>.</u>	CL-1D	S: 2/8/2005	15:20		_
B1W06	Ground Water/ JOHN HUISMAN	L∕G	VOA (21)	(HCL) (3)		CL-1S	S: 2/8/2005	14:10		
B1W07	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)		CL-4D	S: 2/8/2006	□ 14:05		-
B1W08 (Ground Water/ JOHN HUISMAN	ΓÆ	VOA (21)	(HCL) (3)		CL-4S	S: 2/8/2005	14:45		-
B1W15 (Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)		EPA-MW-31	\$: 2/7/2005	14:50		-
•	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)		EPA-MW-31D	S: 2/7/2005	14:50		Field Duplicate
•	Ground Water/ JOHN HUISMAN	L∕G	VOA (21)	(HCL) (3)		EPA-MW-32	S: 2/7/2005	15:20		-
•	Ground Waterl JOHN HUISMAN	₽G	VOA (21)	(HCL) (3)		EPA-MW-33	S: 2/8/2005	9:00		-
•	Ground Water/ JOHN HUISMAN	ĽG	VOA (21)	(HCL) (3)		EPA-MW-9A	S: 2/8/2005	9:10		-
B1W24 (Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)		ST-MW-13	S: 2/8/2005	10:30		-
Shipment for Case Complete 7 N	Sample	(s) to be used	for laboratory QC:		Additional San	npler Signature(a):			Chain of Cu	atody Seal Number:
Analysis Key:		tration: L	= Low, M = Low/Medlur	n, H = High	Type/Designs	ite: Composite = C.	Grab = G		Shipment k	ed?
VOA = CLP TCL	Volatiles					-				

TR Number: 2-525300610-020805-0001

REGION COPY

SEPA USEPA Contract Laboratory Program
Organic Traffic Report & Chain of Custody Record

33838 Case No: DAS No:

Region: Project Code:	2	 		Date Shipped: 2/8/2005		Chain of Custody Record	ecord	Sempler Signature:	7
Account Code:					<u>,</u>	Refinquished By	(Date / Time)	Received BY	(Date / Time)
Spill ID:	NYD047850197	197		ğ	<u> </u>	11 11	218 bos 111:30	Feder	2/1/05/16:70
She Name/State:		Stanton Cleaners Site/NY		Suite 505		2()_			
Project Leader:		JOHN HUISMAN Operations and Maintenance	ş	The Woodshids X //360 (281) 292-527	086// KI	3			
Sampling Co:	U.S. Corps.	U.S. Corps. of Engineers				4			
ORGANIC SAMPLE No.	MATRIX! SAMPLER	CONC/ TYPE	ANALYSIS TURNAROUND	TAG NOJ PRESERVATIVE BOCINS	STATION	SAMPLE COLLECT DATE/TINE		INORGANIC SAMPLE No.	25 FE(
B1W32	Ground Water/ JOHN	D/C	VOA (21)	(HCL) (3)	ST-MW-19	S: 2/8/2005	10:30		l l
B1W33	Ground Water/ JOHN	ខ្ម	VOA (21)	(HCL) (3)	EB-01	S: 2/7/2005	13:45		Rinsate
B1W34	HUISMAN Ground Water	Q	VDA (21)	(HCL) (2)	78-01	S: 2/7/2005	8:00	F.	Trip Blank
BIW35	Ground Water/ JOHN HUISMAN	9	VOA (21)	(HCL) (3)	EB-02	S: 2/8/2005	13:30		Rinsate

Shipment for Case Complete? N	Semple(s) to be u	Semple(s) to be used for laboratory QC:	Additional Sampler Signature(s):	ignature(s):	Chain of Custody Seel Number:
Analysis Key:	Concentration:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate:	Type/Designate: Composite = C, Grab = G	Shipment loed?
VOA = CLP TCL Volatiles	Se				

TR Number:

TR Number: 2-525300610-020805-0001
PR provides preliminary results for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 703/264-9348 Fax 703/264-9222

FORTON COPY

%EPA

Organic Traffic Report & Chain of Custody Record **USEPA Contract Laboratory Program**

33838

Case No:

DAS No: SDG No:

For Lab Use Only Lab Contract No: Lab Contract No: Transfer To: Unit Price: Sampler Signature: Received By Facy 2hlos 1700 (Date / Time) Chain of Custody Record Relinquished By A4 Scientific 1544 Sawdust Road Suite 505 The Woodlands TX 77380 (281) 292-5277 790421953780 2/9/2005 FedEx Date Shipped: Carrier Name:

Shipped to: Airbili:

j			4			Unit Price:	ice:	
ORGANIC SAMPLE NO.	MATRIXI	CONC.	ANALY SISJ TURNAROUND	TAGNO./ PRESERVATIVE/ Bothes	STATION	SAMPLE COLLECT DATE/TIME	INORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receipt
B1W12	Ground Water/	270	VOA (21)	(HCL) (3)	ÉPA-MW-26	S: 2/9/2005 9:30		

	9:15	S: 2/9/2005	EB-03	(HCL) (3)	VOA (21)	2	Ground Water/ JOHN HUISMAN	B1W37
	8:00	S: 2/9/2005	TB-02	(HCL) (2)	VOA (21)	9	Ground Water	B1W36
	14:20	S: 2/9/2005	ST-MW-18	(HCL) (3)	VOA (21)	25	Ground Water/ JOHN HUISMAN	B1W30
	15.15	S: 2/9/2005	ST-MW-16	(HCL) (3)	VOA (21)	D/O	Ground Water/ JOHN HUISMAN	B1W27
	14:00	S: 2/9/2005	ST-MW-15	(HCL) (3)	VOA (21)	ρ'n	Ground Water/ JOHN HUISMAN	B1W26
	8 :30	S: 2/9/2005	ST-MW-11	(HCL) (3)	VOA (21)	၁	Ground Water/ JOHN HUISMAN	B1W23
	15:50	S: 2/9/2005	ST-MW-02	(HCL) (3)	VOA (21)	26	Ground Waterl JOHN HUISMAN	B1W21
	11.30	S: 2/9/2005	EPA-MW-11D	(HCL) (3)	VOA (21)	ne	Ground Water/ JOHN HUISMAN	B1W20
,	11:10	S: 2/9/2005	EPA-MW-29	(HCL) (3)	VOA (21)	2	Ground Water/ JOHN HUISMAN	B1W14
	9:30	S: 2/9/2005	ÉPA-MW-26	(HCL) (3)	VOA (21)	57	Ground Water/ JOHN HUISMAN	B1W12

Shipment for Case Complete 7N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(e):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Number:	<i>و</i> ر:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Dealgnate: Composite = C. Grab = G		Custody Seal Intact? Shipment Iced?	Shipment Iced?
VOA = CLP TCL Volatiles	ø,				

TR Number: 2-525300610-020905-0002
PR provides preliminary results. Requests for prailing results will increase analytical costs.
Send Copy to Sample Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 703/264-9348 Fax 703/264-9222 TR Number:

LABORATORY COPY

EPA USEPA Contract Laboratory Program
Organic Traffic Report & Chain of Custody Record

33838 Case No: DAS No:

Region:	7			Date Shipped: 2/9/2005	<u> </u>	Chain of Custody Record	Record	Sampler	
Project Code:								Signature	1
Account Code:	-			Albeit.	<u> æ</u>	Relinquished By	(Date / Time)	Received Ev	(Date / Time)
CERCLIS ID:	NYD047650197	197		•	<u> </u>	11911		1	
Spill ID:		ļ		Snipped to: A4 Scientific 1544 Sawdust Road	_	1	2 HIPS 11 100	V FEETON	4/10 // XD
Site Name/State:		Stanton Cleaners Site/NY		Suite 505	2				
Project Leader: Action:		JOHN HUISMAN Operations and Maintenance	R	(281) 252-5277	3				
Sampling Co:	U.S. Согрв.	U.S. Corps. of Engineers			4				
ORGANIC SAMPLE No.	MATRIX	CONCI	ANALY SIS/ TURNAROUND	TAG No. PRESERVATIVE Boths	STATION LOCATION	SAMPL	SAMPLE COLLECT IN DATECTINE SA	INORGANIC SAMPLE No.	SQ. Type
B1W12	Ground Water/ JOHN	P.G	VOA (21)	(HCL) (3)	EPA-MW-26	S: 2/9/2005	9:30		1
B1W14	HUISMAN Ground Water/ JOHN	28	VOA (21)	(HCL) (3)	EPA-MW-29	S: 2/9/2005	11:10		1
B1W20	HUISMAN Ground Water/ JOHN	UG	VOA (21)	(HCL) (3)	EPA-MW-11D	S: 2/9/2005	- 11:30		ı
B1W21	HUISMAN Ground Water/ JOHN	2	VOA (21)	(HCL) (3)	ST-MW-02	S: 2/9/2005	15:50		ı
B1W23	HUISMAN Ground Water/ JOHN	97	VOA (21)	(HCL) (3)	ST-MW-11	S: 2/9/2005	9:30		ī
B1W26	HUISMAN Ground Water/ JOHN	2	V0A (21)	(HCL) (3)	ST-MW-15	S: 2/9/2005	14:00		1
B1W27	HUISMAN Ground Water/ JOHN	97	VOA (21)	(HCL) (3)	ST-MW-16	5: 2/9/2005	15:15		t
B1W30	HUISMAN Ground Water/ JOHN	57	VOA (21)	(HCL) (3)	ST-MW-18	S: 2/9/2005	14:20		ı
B1W36	HUISMAN Ground Water	97	VOA (21)	(HCL) (2)	TB-02	S: 2/9/2005	8:00		Trip Blank
B1W37	Ground Water/ JOHN HUISMAN	ዷ	VOA (21)	(HCL) (3)	EB-03	S: 2/9/2005	e 71.		Rinsate

Shipment for Case Complete? N	Sample(s) to be u		Additional Sampler Signature(s):		Chain of Custody Seal Number.
Analysis Key:	Concentration:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate:	Type/Designate: Composite = C, Grab = G	Shipment iced?
VOA = CLP 1CL Volatiles	80				

TR Number:

TR Number: 2-525300610-020905-0002

PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, 2000 Edmund Halley Dr., Reston, VA, 20191-3400 Phone 703/264-9348 Fax 703/264-9222

REGION COPY

EPA			t Laboratory Report & Ch	Program ain of Custody Ro	ecord		Case DAS No SDG No	D :	38
Pate Shipped:	2/10/2005	_	Chain of Custoc	ly Record	Sampler Signature:	Lim	For La	b Use Only	
Airbili: Shipped to:	FedEx 792202877711 A4 Scientific 1544 Sawdust Road		Reilinquished By	(Date / Time) 2 (loles (1630)	Fodey 2	(Date / Time) (Date / //630	Lab Cor Unit Prid		-
	Suite 505 The Woodlands TX (281) 292-5277	77380	3					ntract No:	
			4				Unit Pri	<u>Ce:</u>	
ORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC! TYPE	ANALY SIS/ TURNAROUND	TAG No.J PRESERVATIVE BOXIES	STATION	SAMPLE COLL DATE/TIME		INORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receip
B1W09	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	EPA-MW-21	S: 2/10/2005	15:30		
B1W10	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	EPA-MW-21D	\$: 2/10/2005	15:30	٠	
B1W13	Ground Water/ JOHN HUISMAN	IJĠ	VOA (21)	(HCL) (3)	EPA-MW-27	S: 2/10/2005	14:15		
B1W22	Ground Water/ JOHN HUISMAN	ĽG	VOA (21)	(HCL) (3)	ST-MW-08	S: 2/10/2005	10:30		
B1W25	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	ST-MW-14	S: 2/18/2005	11:30		
B1W28	Ground Water/ JOHN HUISMAN	UG	VOA (21)	(HCL) (3)	ST-MW-17	S: 2/10/2005	11:00		
B1W29	Ground Water/ JOHN HUISMAN	L/G	VOA (21)	(HCL) (3)	ST-MW-17D	S: 2/10/2005	11:00		
B1W31	Ground Water/ JOHN HUISMAN	ĽĢ	VOA (21)	(HCL) (3)	ST-MW-20	S: 2/10/2005	14:00		
B1W38	Ground Water	IJĠ	VOA (21)	(HCL) (2)	TB-03	S: 2/10/2005	8:00		
B1W39	Ground Water/ JOHN HUISMAN	1/G	VOA (21)	(HCL) (3)	EB-04	S: 2/10/2005	9:00		

Shipment for Case Complete ?N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal intect? Shipment iced?
VOA = CLP TCL Volatile	s			

LABORATORY COPY

USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

Region:

Project Code:

2

Case No: 33838 DAS No:

Signature:

Chain of Custody Record

Account Code: CERCLIS ID: Spill ID: Site Name/State Project Leader: Action: Sampling Co:	NYDO Stanto JOHN Opera	a7650197 on Cleaners S HUISMAN itions and Ma Corps. of Eng	aintenance	Airbill: Shipped to:	792202877711 A4 Scientific 1544 Sawdust Ro Suite 505 The Woodlands 1 (281) 292-5277		Relinquished By 1 2 3	(Date / Ti	me) //632	Fracey	(Date / Time) 2/p/05/1630
ORGANIC SAMPLE No.	MATR SAMP				No./ TIVE/ Bottles	STATION LOCATION		E COLLECT TE/TIME		GANIC LE No.	QC Type
B1W09	Ground Wa JOHN HUISMAN	ter/ L/G	VOA (21)	(HCL) (3)		EPA-MW-21	S: 2/10/2005	15:30			
B1W10	Ground Wa JOHN HUISMAN	iter/ L/G	VOA (21)	(HCL) (3)		EPA-MW-210	S: 2/10/2005	15:30		F	Field Duplicate
B1W13	Ground Wa JOHN HUISMAN	iter/ L/G	VOA (21)	(HCL) (3)		EPA-MW-27	\$: 2/10/2005	√,14:15			-
B1W22	Ground Wa JOHN HUISMAN	iter/ L/G	VOA (21)	(HCL) (3)		ST-MW-06	S: 2/10/2005	10:30			-
B1W25	Ground Wa JOHN HUISMAN	iter/ L/G	VOA (21)	(HCL) (3)		ST-MW-14	S: 2/10/2005	11:30			-
B1W28	Ground Wa JOHN HUISMAN	iter/ L/G	VOA (21)	(HCL) (3)		ST-MW-17	S: 2/10/2005	11:00			-
B1W29	Ground Wa JOHN HUISMAN	iter/ L/G	VOA (21)	(HCL) (3)		ST-MW-17D	S: 2/10/2005	11:00		F	field Duplicate
B1W31	Ground Wa JOHN HUISMAN	ater/ L/G	VOA (21)	(HCL) (3)		ST-MW-20	S: 2/10/2005	14:00			-
B1W38	Ground Wa	iter ⊔G	VOA (21)	(HCL) (2)		TB-03	S: 2/10/2005	8:00			Trip Blank
B1W39	Ground Wa JOHN HUISMAN	iter/ L/G	VOA (21)	(HCL) (3)		EB-O4	S: 2/10/2005	9:00			Rinsate
Shipment for Case Complete? N	Sa	mple(s) to be	used for laboratory QC:		Additional Sample	r Signature(s):			C	hein of Gustody	Seal Number:
Anelysis Key: VOA = CLP TC		oncentration:	L = Low, M = Low/Med	dum, H = High	Type/Designate:	Composite = C,	Grab = G		s	ihipment loed?	
											

2/10/2005

FedEx

Date Shipped:

Carrier Name:

TR Number: 2-525300610-021005-0001

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 703/264-9348 Fax 703/264-9222

REGION COPY

F2V11.045 Page 1 of 1

\$	EPA
----	------------

USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

Case No:	33838	
DAS No:		i i
SOG No:		

Date Shipped:	2/11/2005	Chain of Custody Record	Sampler Signature:	For Lab Use Only
Carrier Name:	FedEx	Relinquished By (Date / Time)	Received By (Date / Time)	Lab Contract No:
Alrbiii:	791474604785	1 Joh Skilm 2/11/05 1200	Feder 2/11/05/1200	
Shipped to:	A4 Scientific	John Skulm 2/11/05/1/05	Feder 211105/1200	Unit Price:
	1544 Sawdust Road Suite 505	2 4		Transfer To:
	The Woodlands TX 77380 (281) 292-5277	3		Lab Contract No:
		4		Unit Price:

ORGANIC SAMPLE No.	MATRIX! SAMPLER	CONC/ TYPE	ANALYSISI TURNAROUND	TAG No./ PRESERVATIVE/ Bottles	STATION LOCATION	SAMPLE COLL DATE/TIME		INORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receipt
 81W11	Ground Water/ JOHN HUISMAN	L∕G	VOA (21)	(HCL) (3)	EPA-MW-23	S: 2/11/2005	9:30		
B1W40	Ground Water	ĽĢ	VOA (21)	(HCL) (2)	TB-04	S: 2/11/2005	8:00		
B1W41	Ground Water/ JOHN HUISMAN	⊔G	VOA (21)	(HCL) (3)	EB-O5	S: 2/11/2005	9:00		

Shipment for Case Complete ?Y	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Num	ber:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = C		Custody Seal Intact?	Shipment Iced?
VOA = CLP TCL Volatile	es				<u> </u>

TR Number: 2-525300610-021105-0001

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 703/264-9348 Fax 703/264-9222

LABORATORY CO

SEPA USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

211 los-1120 (Date / Time) 33838 Fedex Received B Sampler Signeture: A 11 (05 [1200] (Date / Time) Case No: DAS No: Chain of Custody Record Relinquished By -6 A4 Scientific 1544 Sawdust Road Suite 505 The Woodlands TX 77380 (281) 292-5277 791474604785 2/11/2005 FedEx Date Shipped: Carrier Name: Shipped to:

Arbill:

Operations and Maintenance

Action:

Stanton Cleaners Site/NY

Site Name/State: Project Leader:

NYD047650197

Account Code:

Project Code: CERCLIS ID:

Region:

JOHN HUISMAN

Sampling Co:		U.S. Corps. of Engineers			4				
ORGANIC	1	CONC	ANALYSIS/ TURNAROUND	TAGNOJ PRESERVATNE BOEINS	STATION	SANPLE	SAMPLE COLLECT DATE/TIME	INORGANIC SAMPLE NO.	Type
B1W11	Ground Water	S/I	VOA (21)	(HCL) (3)	EPA-MW-23	S: 2/11/2005	9:30		1
B1W40	JOHN HUISMAN Ground Water	P,G	VOA (21)	(HCL) (2)	TB-04	S: 2/11/2005	8:00		Trip Blank
B1W41	Ground Water/	97	VOA (21)	(HCL) (3)	EB-05	S: 2/11/2005	00:6		Rinsate
	JOHN								

	Sample(s) to be u	Semple(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody sees number.
Complete? Y				
				Shipment lead?
Analysis Key:	Concentration:	Concentration: L = Low, M = Low/Nedium, H = High	Type:Designate: Composite & C. Crab & C	
VOA = CLP TCL Volatiles	es			
			a report	The state of the s

TR Number: 2-525300610-021105-0001
PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 703/284-9348 Fax 703/264-9222

F2V51.045 Page 1 of 1 メルジョン こうりん

ATTACHMENT C FEDEX AIRBILLS

From: Origin ID. (516)466-4960 John Huisman FARTH TECH, INC 7870 VILLA PARK DRIVE SUITE 400 RICHMOND, VA 23228

SHIP TO: (281)292-52/7 **BILL THIRD PARTY**

Eleana Cruz A4 Scientific 1544 Sawdust Road Suite 505

The Woodlands, TX 77380

Ship Date: 08FEB05 Actual Wgt. 30 LB System# 3909298/INET2000 Account#. S REF: 5442001

PRIORITY OVERNIGHT

7914 7114 9376 TRK#

WED Deliver By 09FEH05

A1 IAH

77380 -TX-US

Shipping Label: Your shipment is complete

- 1. Use the 'Print' feature from your browser to send this page to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's lees, costs, and other forms of damage whether direct, inclidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jewetry. precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

From. Origin ID: (516)466-4960 John Huisman EARTH TECH, INC 7870 VILLA PARK DRIVE SUITE 400 RICHMOND, VA 23228

Ship Dale: 09FEB05 Actual Wgt: 30 LB System#: 3909298/INET2000 Account#: \$ *********

RFF 5442 001

SHIP TO: (281)292-5277

BILL THIRD PARTY

Eleana Cruz A4 Scientific 1544 Sawdust Road Suite 505

The Woodlands, TX 77380

PRIORITY OVERNIGHT

THU Deliver By. 10FEB05

7904 2195 3760

A1

77380 -TX-US

Shipping Label: Your shipment is complete

- 1. Use the 'Print' feature from your browser to send this page to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jewelry. precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

From: Origin ID: (516)466-4960 John Huisman EARTH TECH, INC 7870 VILLA PARK DRIVE SUITE 400 RICHMOND, VA 23228

Ship Date, 10FEB05 Actual Wgf: 25 LB System#: 3909298/INET 2000 Account# S ******

REF: 5442.00°

SHIP TO: (281)292:5277

BILL THIRD PARTY

Eleana Cruz A4 Scientific 1544 Sawdust Road Suite 505

The Woodlands, TX 77380

PRIORITY OVERNIGHT

FRI Deliver By:

7922 0287 7711 TRK#

11FEB05 A1

IAH

77380 -TX-US

Shipping Label: Your shipment is complete

- 1. Use the 'Print' feature from your browser to send this page to your laser or inkjet printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jewelry, precious metats, negotiable instruments and other items listed in our Service Guide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

From: Origin ID: (516)466-4960 John Huisman EARTH TECH, INC 7870 VILLA PARK DRIVL SUITE 400 RICHMOND, VA 23228

Ship Date: 11FEB05 Actual Wgt. 10 LB System#: 3909298/INET2000 Accoun#: S *******

REF 5442 001

SHIP TO: (281)292-5277

BILL THRD PARTY

Eleana Cruz A4 Scientific 1544 Sawdust Road Suite 505

The Woodlands, TX 77380

PRIORITY SATURDAY ***************************

7914 7460 4785

Deliver By 12FEB05

A1 IAH

77380 -TX-US

Shipping Label: Your shipment is complete

- 1. Use the 'Print' feature from your browser to send this page to your laser or inkjet printer.
- Fold the printed page along the horizontal line.
- Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdefivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit. attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$500, e.g. jawelry, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Appendix E Groundwater Treatment System Raw and Treated Groundwater Analytical Data

Stanton Cleaners Analytical Tracking Table Influent and Effluent Groundwater Data

Sample			Date	Compounds	Result	
Location	ECC ID*	EPA ID	Collected	Detected	(μ g/L)	Qualifier**
2004				MTBE	2	J
]]				cis-1,2-Dichloroethene	2	
Influent	SC-01	B0001	10/27/2003	Trichloroethene (TCE)	3	J
Illinderic	30-01	D0001	10/21/2000	Toluene	3	J
				Tetrachloroethene	350 (D)	 -
Effluent	SC-04	B0002	10/27/2003	None	330 (D)	<u> </u>
	-			Acetone	61	J
Trip Blank	SC-TB	B0003	10/27/2003	Methylene chloride	2	
<u> </u>				Tetrachloroethene (PCE)	240	
Influent	SC-01	B0177	11/12/2003	Chlorodifluoromethane	8.6	NJ
l masin	000.	20,,,		1,2-Dichloroethene	3.3	NJ
Effluent	SC-04	B0178	11/12/2003	Chlorodifluoromethane	22	NJ
Lindon	0007	50170	111122000	Tetrachloroethene	250	
Influent Dup	SC-60	B0179	11/12/2003	Chlorodifluoromethane	29	NJ
mindont Bup	00 00	50170		1,2-Dichloroethene	3.4	NJ
		_		Tetrachloroethene	9.4	
Trip Blank	SC-TB	B0180	11/12/2003	Chlorodifluoromethane	4.3	NJ
				Tetrachloroethene	290 (D)	
Influent	SC-01	B17J3	12/10/2003	cis-1,2-Dichloroethene	2	J
I IIII	000	J.,, U.		Trichloroethene	3	 j
Effluerit	SC-04	B17J4	12/10/2003	None		
Lindein	00 04	B17 <u>0</u> 7	12 10/2000	Tetrachloroethene	280 (D)	
Influent Dup	SC-61	B17J5	12/10/2003	cis-1,2-Dichloroethene	2	J
		5.,00	12/10/2003	Trichloroethene	3	J
		_		MTBE	5	J
Trip Blank	SC-TB	B17J6	12/10/2003	Toluene	2	J
				Ethylbenzene	2	J
				MTBE	2.7	
l	00.04	D4000	4/40/0004	cis-1,2-Dichloroethene	1.5	
Influent	SC-01	B1000	1/12/2004	Trichloroethene	2.5	
		ĺ		Tetrachloroethene	280	
Effluent	SC-04	B1001	1/12/2004	None		
			<u></u> -	MTBE	2.6	
	00.00	D1000	1/10/0004	cis-1,2-Dichloroethene	1.5	
Influent Dup	SC-62	B1002	1/12/2004	Trichloroetherie	2.5	
				Tetrachloroethene	300	
	-			Methylene chloride	0.6	K
Trin Blank	SC-TB	B1003	1/12/2004	MTBE	3.7	
Trip Blank	30-10	R1003	1/12/2004	Tetrachloroethene	7.9	
_				m&p-Xylene	0.7	
				cis-1,2-Dichloroethene	1.7	
Influent	SC-01	B17Z0	2/12/2004	Trichloroethene	3.0	
irinuent	30 01	51,20	2122004	Tetrachloroethene	610 (D)	
			_	Unknown TIC	0.53	J
Effluent	SC-04	B17Z1	2/12/2004	Acetone	3.8	J
				Acetone	25	J
Influent Dup	SC-63	B17Z2	2/12/2004	cis-1,2-Dichloroethene	1.7	
minderit Dup	00 00	D1122	2,22004	Trichloroethene	2.8	
				Tetrachloroethene	440 (D)	

Sample		 	Date	Compounds	Result	T
Location	ECC ID*	EPA ID	Collected	Detected	(μ g/L)	Qualifier**
Location	ECC ID	LFA ID	Ooneoted			
				Methylene chloride	0.16	J
			İ	MTBE	4.7	<u> </u>
				Chloroform	0.26	J
			-40,000	Tetrachloroethene	7.1	
Trip Blank	SC-TB	B17Z3	2/12/2004	Xylene (total)	0.56	
				1,3-Dichlorobenzene	0.40	J
1				1,4-Dichlorobenzene	0.38	J
				Unknown TIC	0.58	J
				Benzene, 1-ethyl-3-methyl-	0.72	JN
				MTBE	2.7	
Influent	SC-01	B17Z6	3/10/2004	cis-1,2-Dichloroethene	1.2	
Innuent	SC-01	B1/20	3/10/2004	Trichloroethene	2.3	
1				Tetrachloroethene	260	
Effluent	SC-04	B17Z7	3/10/2004	Tetrachloroethene	0.70	
				MTBE	2.8	
]				cis-1,2-Dichloroethene	1.2	
Influent Dup	nfluent Dup SC-64	B17Z8	3/10/2004	Trichloroethene	2.3	
				Tetrachloroethene	260	
l 			-	Acetone	1.8	
Trio Blank	Trip Blank SC-TB	B17Z9	3/10/2004	Toluene	0.50	
The blank		DITES	3/10/2004	Isobutane	41	NJ
				MTBE	1.9	140
Influent				cis-1,2-Dichloroethene	0.83	
	SC-01	B1BS2	4/14/2004	Trichloroethene	1.5	
				Tetrachloroethene	380 (D)	
Effluent	SC-04	B1BS3	4/14/2004	Tetrachloroethene	1.9	
- Lindelli	Emdent 30-04 Bit		4/14/2004	Acetone	1.2	J
	SC-65			MTBE	1.5	<u>_</u>
Influent Dup		B1BS4	4/14/2004	cis-1,2-Dichloroethene	0.67	J
I macini bap		D1004	471472004	Trichloroethene	1.1	
				Tetrachloroethene	260 (D)	
-		_		Methylene chloride	0.17	J
Trip Blank	SC-TB	B1BS5	4/14/2004	Chloroform	2.8	
,,,,				Bromodichloromethane	0.80	
				MTBE	2.1	
l . [cis-1,2-Dichloroethene	1.0	
Influent	SC-01	B1BS6	5/20/2004	Trichloroethene	1.8	
		ļ		Tetrachloroethene	190	
Effluent	SC-04	B1BS7	5/20/2004	Acetone	1.2	
				Acetone	0	
				MTBE	2.1	
Influent Dup	SC-66	B1BS8	5/20/2004	cis -1,2-Dichloroethene	0.9	
 				Trichloroethene	1.6	
1			_	Tetrachloroethene	200	
			<u> </u>	Acetone	1	
Trip Blank	SC-TB	B1BS9	5/20/2004	Chloroform	0	
				Bromodichloromethane	0	
				Carbon Disulfide	1.1	
				MTBE	2.7	
Influent	SC-01	B1BS6	6/15/2004	cis-1,2-Dichloroethene	1.3	
				Trichloroethene	2.4	
				Tetrachloroethene	320	
Effluent	SC-04	B1BS7	6/15/2004	Tetrachloroethene	2.1	
				MTBE	2.3	

Detected Cug/L Qualifier Cis-1,2-Dichloroethene 1.2 Trichloroethene 2.2 Trichloroethene 3.3 Cis-1,2-Dichloroethene 3.4 Cis-1,2-Dichloroethene 3.5 Cis-1,2-Dichloroethene 3.7 Cis-1,2-Dichloroethene 3.8 Cis-1,2-Dich	Sample	<u> </u>		Date	Compounds	Result	<u> </u>					
Influent Dup SC-67 B1BS8 S/15/2004 Cis-1,2-Dichloroethene 1,2 2,2 2,3 2,2 3,0 1,4 1,4 1,5 1,	11	ECC ID*	EDA ID	· '	-	1	Qualifier**					
Influent Dup SC-67 B1BSB B1BSP 6/15/2004 Trichloroethene 2.2 Tetrachloroethene 330 Tetrachloroethene	Location	ECCID	LFAID	Concocca			Guanner					
Trip Blank SC-TB B1BS9 6/15/2004 Sc-the SC-th	Influent Dup	SC-67	B1BS8	6/15/2004								
Trip Blank SC-70							 					
Influent SC-01 B1FJ2 T/13/2004 T/15/2004 T	Trip Blook	SC TD	DIDCO	6/15/2004								
Influent SC-01 B1FJ2 7/13/2004 Cars-1,2-Dichloroethene 1.7 Tetrachloroethene 2.2 Tetrachloroethene 2.2 Tetrachloroethene 2.2 Tetrachloroethene 1.8 Tetrachloroethene 1.8 Tetrachloroethene 1.8 Tetrachloroethene 1.8 Tetrachloroethene 1.8 Tetrachloroethene 1.8 Tetrachloroethene 1.6 Tetrachloroethene 1.5 Tetrachloroethene 1.5 Tetrachloroethene 1.5 Tetrachloroethene 1.5 Tetrachloroethene 2.0 Tetrachloroethene 2.0 Tetrachloroethene 2.0 Tetrachloroethene 2.0 Tetrachloroethene 2.0 Tetrachloroethene 1.5 Tetrachloroethene 2.0 Tetrachloroethene 2.0	TIP BIATIK	30-16	D 1039	0/1 <u>3/</u> 2004		_						
Influent SC-01 B1FJ2 7/13/2004 Cis-1,2-Dichlorosthene 1,1 Trichlorosthene 1,7 Teltachlorosthene 1,7 Teltachlorosthene 1,7 Teltachlorosthene 1,7 Teltachlorosthene 2,2 MTBE 2,4 Cis-1,2-Dichlorosthene 2,2 MTBE 2,4 Cis-1,2-Dichlorosthene 1,8 Teltachlorosthene 1,0 Teltachlorosth												
Effluent SC-04 B1FJ3 7/13/2004 Titrachloroethene 1.7 Tetrachloroethene 1.70 Acetone 0.72 Tetrachloroethene 2.2 MTBE 2.4 (dis-1.2-Dichloroethene 1.1 Trichloroethene 1.1 Trichloroethene 1.8 Tetrachloroethene 1.8 Tetrachloroethene 1.8 Tetrachloroethene 1.1 Trichloroethene 1.6 MTBE 1.9 (dis-1.2-Dichloroethene 1.5 MTBE 1.9 (dis-1.2-Dichloroethene 1.5 MTBE 1.9 (dis-1.2-Dichloroethene 1.5 MTBE 1.9 (dis-1.2-Dichloroethene 200 Acetone 2.2 MTBE 1.9 (dis-1.2-Dichloroethene 200 Acetone 2.2 MTBE 1.9 (dis-1.2-Dichloroethene 1.5 MTBE 1.5 (dis-1.2-Dichloroethene 1.5 MTBE 1.5 (dis-1.2-Dichloroethene 1.5 MTBE 1.5 (dis-1.2-Dichloroethene 1.5 MTBE 1.5 (dis-1.2-Dichloroethene 1.0 MTBE 1.3 (dis-1.2-Dichloroethene 1.4 (dis-1.2-Dichloroethene 1.4 (dis-1.2-Dichloroethene 1.5 (dis-1.2-Dich	Influent	SC-01	R1F I2	7/13/2004			 					
Effluent SC-04 B1FJ3 7/13/2004 Acetone 0.72	I muent	30-01	B11 02	7713/2004								
Effluent SC-04 B1FJ3 7/13/2004 Tetrachloroethene 2	1											
Effluent SC-04 B1FJ3 7/13/2004 Tetrachloroethene 2 2 2 2 2 2 2 2 2	<u></u>				+		 					
Influent Dup SC-67 B1FJ4 7/13/2004 Cis-1,2-Dichloroethene 1.8 Tetrachloroethene 1.6 Acetione 0.73 Acetic Acid, Ethyl Ester 2.5 NJ MTBE 1.9 Cis-1,2-Dichloroethene 0.7 Tetrachloroethene 0.7 Tetrachloroethene 0.7 Tetrachloroethene 2.0 Acetione 2 Tetrachloroethene 2.0 Acetione 1.6 Acetione 1.5 Tetrachloroethene 0.7 Trichloroethene 0.7 Trichloroethene 1.5 Tetrachloroethene 0.7 Trichloroethene 1.5 Tetrachloroethene 1.5 Tetrachlo	Effluent	SC-04	B1FJ3	7/13/2004								
Influent Dup SC-67 B1FJ4 7/13/2004 Cis-1,2-Dichloroethene 1.1 Trichloroethene 1.8 Trichloroethene 1.8 Tetrachloroethene 1.6 Acetone 0.73 Acetone Acetone 0.73 Acetone Ac	-						<u> </u>					
Influent Dup SC-67 B1FJ4 7/13/2004 Trichloroethene 1.8 Tetrachloroethene 160 Acetone 0.73 Acetone 0.74 Acetone 0.7 Trichloroethene 0.8 Trichl	1											
Trip Blank SC-TB B1FJ5 7/13/2004 Acetone 0.73 NJ	Influent Dup	SC-67	B1FJ4	7/13/2004								
Trip Blank SC-TB B1FJ5 7/13/2004 Acetone 0.73 Acetone 0.73 Acetone 0.73 Acetone 0.73 Acetone 0.73 Acetone 0.74 MTBE 1.9 Cis - 1,2-Dichloroethene 0.7 Trichloroethene 0.7 Acetone 0.7 Acetone 0.7 Acetone 0.7 Acetone 0.7 Acetone 0.7 Trichloroethene 0.8 Trichloroethene 0.5												
Influent SC-01 B1GH2 B		00.70	5.5.5	7/40/0004								
Influent SC-01 B1GH2 8/16/2004 SC-1,2-Dichloroethene 0.7 Trichloroethene 0.7 Trichloroethene 0.7 Tetrachloroethene 200 Acetone 2 Tetrachloroethene 5.4 Acetone 1.6 Acetone 1.2 MTBE 2 Cis-1,2-Dichloroethene 0.7 Trichloroethene 0.8 Tetrachloroethene 0.8 Trichloroethene 0.8 Trichloroethene 0.8 Trichloroethene 0.8 Trichloroethene 0.8 Trichloroethene 0.8 Trichloroethene 0.5 Trichloro	Inp Blank	SC-1B	B1FJ5	//13/2004	Acetic Acid, Ethyl Ester		NJ					
Influent SC-01 B1GH2 8/16/2004						1.9						
Influent SC-01 B1GH2 8/16/2004 Trichloroethene 1.5 Tetrachloroethene 200 Acetone 2												
Effluent SC-04 B1GH3 8/16/2004 Acetone 2	Influent	SC-01	B1GH2	8/16/2004								
Effluent SC-04 B1GH3 8/16/2004 Tetrachloroethene 5.4												
Acetone						2						
Acetone 1.6 Acetone 1.2 MTBE 2 Cis-1,2-Dichloroethene 1.5 Tetrachloroethene 1.5 Cis-1,2-Dichloroethene 1.5 Cis-1,2-Dichloroethene 1.0 MTBE 1.5 Cis-1,2-Dichloroethene 1.0 MTBE 1.5 Cis-1,2-Dichloroethene 1.0 MTBE 1.5 Cis-1,2-Dichloroethene 1.4 Tetrachloroethene 1.4 Tetrachloroethene 200 Chloromethane 0.80 Acetone 1.4 Tetrachloroethene 2.0 Chloromethane 0.80 Acetone 2.1 Tetrachloroethene 1.7 Acetone 2.1 Tetrachloroethene 1.7 Acetone 1.0 MTBE 1.3 Cis-1,2-Dichloroethene 1.7 Acetone 2.1 Tetrachloroethene 1.7 Acetone 1.0 MTBE 1.3 Cis-1,2-Dichloroethene 1.0 MTBE 1.3 Cis-1,2-Dichloroethene 1.0 MTBE 1.3 Cis-1,2-Dichloroethene 2.0 Acetone 2.2 Zebutanone 1.5 Zebutanone 1.5 Zebutanone 1.5 Acetone 2.2 Zebutanone 1.5 Acetone 2.2 Zebutanone 2.2 Zebutanone 2.2 Zebutanone 2.2 Zebutanone 2.3 Zebutanone 2.4 Zebutanone 2.5 Zebutanone		00.04	D4 01 10	0/4.0/0004	Tetrachloroethene	5.4						
Influent Dup SC-69 B1GH4 8/16/2004	Effluent	SC-04	BIGH3	8/16/2004		1.6						
Influent Dup SC-69	_			_	Acetone	1.2						
Trichloroethene						2						
Tetrachloroethene 210	Influent Dup	SC-69	B1GH4	8/16/2004	cis -1,2-Dichloroethene	0.7						
Influent SC-01 SC-01 SC-01 SC-01 SC-01 SC-01 SC-01 SC-01 SC-02 SC-02 SC-03 SC-04 S					Trichloroethene							
Acetone					Tetrachloroethene	210						
Influent SC-01 SC-01 SC-01 SC-01 SC-01 SC-01 SC-02 S			_		Chloromethane	0.80						
Cis-1,2-Dichloroethene 0.70 Trichloroethene 1.4 Tetrachloroethene 200 Chloromethane 0.80 Acetone 2.1 Tetrachloroethene 1.7 Acetone 1.0 MTBE 1.3 Cis-1,2-Dichloroethene 0.60 Trichloroethene 1.4 Tetrachloroethene 1.4 Tetrachloroethene 1.4 Tetrachloroethene 210 Acetone 2.2 Zebutanone 1.5 Acetone 2.2 Zebutanone 1.5 Acetone 2.2 Zebutanone 3.5 Acetone 3.5 Zebutanone 3.5					Acetone							
Effluent SC-04 SC-04 SC-04 Effluent SC-04 Influent	SC-01											
Tetrachloroethene 200	IIIIIdein	30-01										
Chloromethane 0.80 Acetone 2.1 Tetrachloroethene 1.7 Acetone 1.0 MTBE 1.3 Cis-1,2-Dichloroethene 1.4 Tetrachloroethene 210 Acetone 2.2 Z-Butanone 1.5 Acetone 1.5 Acetone 2.2 Z-Butanone 1.5 Acetone 2.2 Z-Butanone 2.5 J MTBE 0.82 Cis-1,2-Dichloroethene 0.60 Trichloroethene 2.10 Acetone 2.2 Z-Butanone 2.5 J MTBE 0.82 Cis-1,2-Dichloroethene 0.5 Trichloroethene 0.5 Trichloroethene 0.5 Trichloroethene 0.5 Trichloroethene 0.5 Trichloroethene 0.5 Tetrachloroethene 2.2 Acetone 5 J Methylene chloride 0.5 UJ Tetrachloroethene 0.2 J Tetrachloroethene 0.2 Tetrachloroethene Tetra												
Acetone 2.1						-						
Tetrachloroethene			ł									
Acetone	Effluent	SC-04			Acetone	2.1						
MTBE												
Influent Dup SC-70 Cis-1,2-Dichloroethene 0.60 Trichloroethene 1.4 Tetrachloroethene 210 Acetone 2.2 2-Butanone 1.5 Acetone 5 J MTBE 0.82 Cis-1,2-Dichloroethene 0.5 Trichloroethene 0.5 Trichloroethene 1.2 Tetrachloroethene 220 Acetone 5 J Mthylene chloride 0.5 UJ Tetrachloroethene 0.5 UJ Tetrachloroethene 0.2 J Mthylene chloride 0.5 UJ Tetrachloroethene 0.2 J Mthylene chloride 0.5 UJ Tetrachloroethene 0.2 J Methylene chloride 0.5 UJ Tetrachloroethene 0.2 UJ Tetrachloroethene UT Tetrachlo												
Trichloroethene		00.70					-					
Tetrachloroethene 210	Influent Dup	SC-70										
Acetone 2.2	ľ											
Part		-										
SC-01 B1LZ2 10/21/2004 Acetone 5 J Methylene chloride 0.2 J MTBE 0.82	Trip Blank	SC-TB										
SC-01 B1LZ2 10/21/2004 Methylene chloride 0.2 J MTBE 0.82		1	-									
SC-01 B1LZ2 10/21/2004 MTBE 0.82		,										
SC-01 B1LZ2 10/21/2004												
Trichloroethene 1.2	Influent	SC-01	B1LZ2	10/21/2004								
Tetrachloroethene 220												
Effluent SC-04 B1LZ3 10/21/2004 Acetone 5 J Methylene chloride 0.5 UJ Tetrachloroethene 0.2 J												
Effluent SC-04 B1LZ3 10/21/2004 Methylene chloride 0.5 UJ Tetrachloroethene 0.2 J		_	1									
Tetrachloroethene 0.2 J	Effluent	SC-04	B1L73	10/21/2004								
	Lindent	00 07	5,220	TOLE ILLOUT								
			-		Acetone	5	 j					

Sample	1	I	Date	Compounds	Result	<u> </u>
Location	ECC ID*	EPA ID	Collected	Detected	(μ g/L)	Qualifier**
Location	LCC ID	LFAID	- Concolcu	Methylene chloride	1.1	Guanner
ļ				MTBE	1.1	
Influent Dup	SC-71	B1LZ4	10/21/2004	cis-1,2-Dichloroethene	0.64	
				Trichloroethene	1.1	
ĺ .			1	Tetrachloroethene	210	(D)
				Acetone	5.7	(0)
Trip Blank	SC-TB	B1LZ5	10/21/2004	Methylene chloride	0.68	
II TIP BIAIK	30-15	5123	10/21/2004	Toluene	0.39	J
<u> </u>				Acetone	3	J
				Methylene chloride	1.3	
				MTBE	1.3	
Influent	SC-01	B1T22	11/17/2004	cis-1,2-Dichloroethene	0.64	
	ľ			Trichloroethene	1.2	
				Tetrachloroethene	170	(D)
				Methyl Acetate	0.5	UJ
Effluent	SC-04	B1T23	11/17/2004	Methylene chloride	0.5	U
				Methylene chloride	0.85	Ü
				MTBE	1.3	
Influent Dup	SC-72	B1T24	11/17/2004	cis-1,2-Dichloroethene	0.5	
I IIII GCIN BUP	0072	D1121	11/1//2004	Trichloroethene	0.83	
				Tetrachloroethene	160	(D)
<u> </u>				Acetone	3	J
				Methyl Acetate	0.5	<u> UJ</u>
		B1T25	11/17/2004	Methylene chloride	0.46	J
Trip Blank	SC-TB			2-Butanone	2.4	J
				Tetrachloroethene	9.6	
				1,2,3-Trichlorobenzene	0.5	UJ
				MTBE	1.6	
				cis-1,2-Dichloroethene	0.45	J
				Trichloroethene (TCE)	1.0	J
	00.04			Tetrachloroethene	100	(D)
				Methylcyclohexane	1	ÙÚ
		D4 T 70	40/45/0004	Bromomethane	1	UJ
Influent	SC-01	B1T79	12/15/2004	Bromodichloromethane	1	UJ
1				Chloromethane	1	UJ
				1,2-Dichloroethene	1	UJ
				1,2-Dichloropropane	1	ŪJ
				2-Hexanone	10	R
				4-Methyl-2-pentanone	10	R
				Benzene	0.5	JB
Effluent	SC-04	B1T81	12/15/2004	1,2,4-Trichlorobenzene	0.5	JB
				1,2,3-Trichlorobenzene	0.5	JB
				Methyl tert-Butyl Ether	1.6	
				cis-1,2-Dichloroethene	0.48	J
Influent Dup	SC-73	B1T80	12/15/2004	Trichloroethene	0.98	J
mingent Dup	30-73	ויייים	12/13/2007	4-Methyl-2-pentanone	10	R
				Tetrachloroethene	98	(D)
				2-Hexanone	10	R
				Chloroform	0.1	J
Trip Blank	SC-TB	B1T82	12/15/2004	Cyclohexane	0.15	J
THE DIGITIK	00-10	51102	12 13/2007	Benzene	0.5	JB
				Toluene	0.21	J
				MTBE	1.5	
Influent	SC-04	RIMO	1/21/2005	cis-1,2-Dichloroethene	0.7	
Influent	SC-01	B1W00	1/21/2005	Trichloroethene (TCE)	1.4	

Sample			Date	Compounds	Result	
Location	ECC ID*	EPA ID	Collected	Detected	(μ g/L)	Qualifier**
				Tetrachloroethene	160	
Effluent	SC-04	B1W02	1/21/2005	Acetone	1.8	
	_			Methyl tert-Butyl Ether	1.4	
ł				cis-1,2-Dichloroethene	0.7	
Influent Dup	SC-74	B1W01	1/21/2005	Trichloroethene	1.4	
Ж				Tetrachloroethene	150	
ľ				Acetone	10	
Trip Blank	SC-TB	B1W03	1/21/2005	Acetone	3.5	
				MTBE	1.4	
Influent	SC-01	AG00197	2/3/2005	cis-1,2-Dichloroethene	0.5	
militaem	30-01	AGOUTE		Trichloroethene (TCE)	1.1	
				Tetrachloroethene	140	
Effluent	SC-04	AG00198	2/3/2005	Acetone	1.2	
		1		Methyl tert-Butyl Ether	1.5	
}				cis-1,2-Dichloroethene	0.54	
Influent Dup	SC-75	AG00199	2/3/2005	Trichloroethene	1.1	
				Tetrachloroethene	140	
				Acetone	1.1	
Trip Blank	SC-TB	AG00200	2/3/2005	Acetone	4.3	
THP BIATIK	30-16	AG00200	23/2005	4-Methyl-2-pentanone	1.2	

Notes:

- = Unless otherwise noted, samples collected from ECC ID SC-04 were used as the matrix spike / matrix spike duplicate sample.
- ** = Data validation was performed by EPA Region II. ECC carried over assigned qualifers and did not perform a separate review or validation of the data.
- (D) = Detection from a dilution of the sample.
- J = qualified as estimated
- JN = Presumptive evidence for the presence of the material at an estimated value.
- K = The reported value may be biased high.
- μ g/L = micrograms per liter
- MTBE = Tert-butyl-methyl-ether
 - NJ = TIC. The reported value is estimated.
 - TIC = Tentatively Identified Compound.

Appendix F
Soil Vapor Extraction and Pump and Treat System Bi-weekly Air Monitoring Logs

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Soil-Vapor Extraction and Pump and Treat System

Soil-Vapor Extraction and Pump and Treat System
Bi-Weekly Air Monitoring Log

Date: 2/9/2005 Project # 70536

		MultiRAE Plus PGM-50					VelociCalc Plus					
	VOC	CO	Oxygen	LEL	H2S	Temp.	Vac. Pre.	%RH	Dew pt.	Flow		
Influent SVE	3.9	0	21.00%	0%	0	99.8	NA	42.33%	-4.44	120		
Post Air Stripper	0.0	0	20.90%	0%	0	63.2	NA	42.32%	-4.43	2000		
Post SVE Carbon	0.7	0	21.00%	0%	0	80.9	NA	42.31%	-4.44	NA		
Post AS Carbon	0.0	0	20.90%	0%	0	80.3	NA	42.35%	-4.45	2200		
Background	0.0	0	20.90%	0%	0	45.2	NA	46.30%	-6.77	NA		

Total gallons pumped: 86,919,401 gallons

Flow Rate: 52 gpm

Equipment calibrated by: J. Huisman **Air sample collected by:** J. Huisman

Air sample readings performed by: J. Huisman

Comments:

New SVE well EPA-EXT-04 online since 11/4/04

EPA-EXT-04 PID Reading = 2.0 ppm

VOC: Volatile Organic Compounds CO: Carbon Monoxide LEL: Lower Explosive Limit

ppm: parts per million

temperature: measured in degrees Farenheit

pressure: measured in inches of water (in/H2O), inches of mercury (in/Hg), or

pounds per square inch (psi).

Flow: measured in cubic feet per minute (cfm)

%RH: relative humidity

Dew Pt.: dew point in degrees Farenheit

AS: Air Stripper

SVE: Soil Vapor Extraction System

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE

Soil-Vapor Extraction and Pump and Treat System Bi-Weekly Air Monitoring Log

Date: 2/23/2005 Project # 70536

		MultiRAE Plus PGM-50					VelociCalc Plus				
	VOC	CO	Oxygen	LEL	H2S	Temp.	Vac. Pre.	%RH	Dew pt.	Flow	
Influent SVE	3.5	0	21.00%	0%	0	101.2	NA	42.00%	-4.14	120	
Post Air Stripper	0.0	0	20.90%	0%	0	66.1	NA	43.00%	-4.17	2000	
Post SVE Carbon	0.7	0	21.00%	0%	0	81.2	NA	43.11%	-4.15	NA	
Post AS Carbon	0.0	0	20.90%	0%	0	81.1	NA	44.21%	-4.12	2200	
Background	0.0	0	20.90%	0%	0	45.2	NA	45.55%	-5.65	NA	

Total gallons pumped: 87,991,321 gallons

Flow Rate: 56 gpm

Equipment calibrated by: J. Huisman **Air sample collected by:** J. Huisman

Air sample readings performed by: J. Huisman

Comments:

New SVE well EPA-EXT-04 online since 11/4/04

EPA-EXT-04 PID Reading = 2.0 ppm

VOC: Volatile Organic Compounds

CO: Carbon Monoxide LEL: Lower Explosive Limit

ppm: parts per million

temperature: measured in degrees Farenheit

pressure: measured in inches of water (in/H2O), inches of mercury (in/Hg), or

pounds per square inch (psi).

Flow: measured in cubic feet per minute (cfm)

%RH: relative humidity

Dew Pt.: dew point in degrees Farenheit

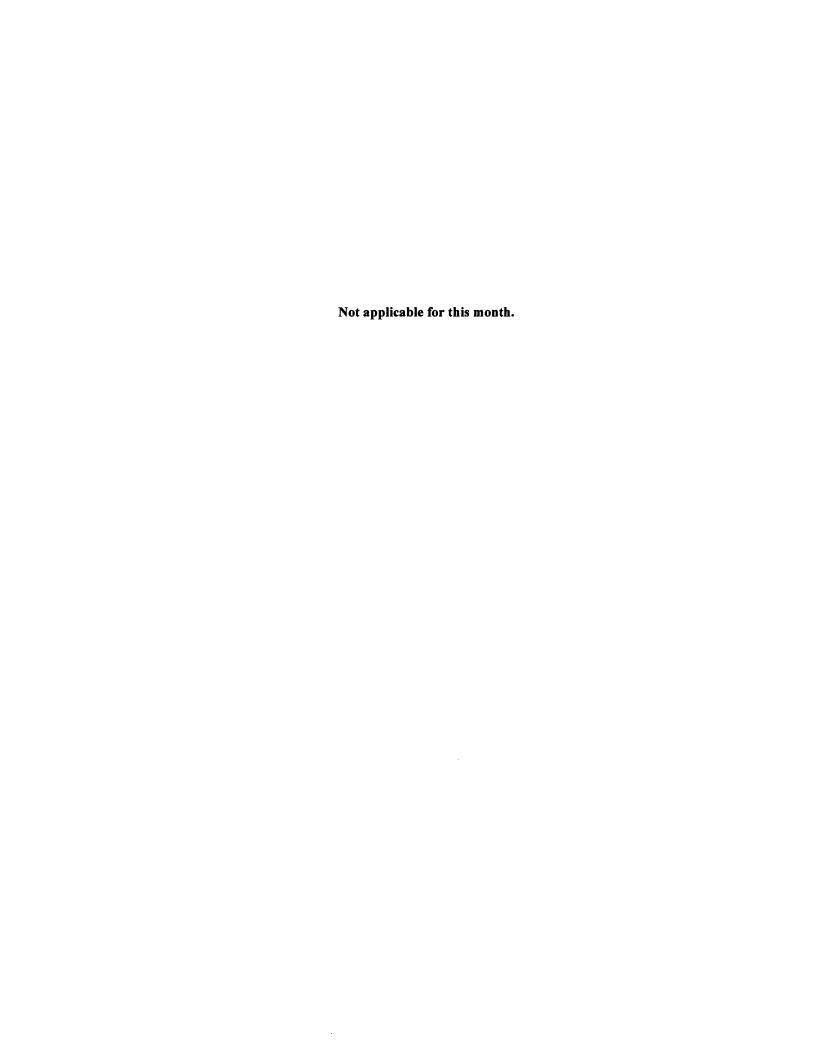
AS: Air Stripper

SVE: Soil Vapor Extraction System

Appendix G

Quarterly Groundwater Sampling Analytical Data

Appendix H


Historical Groundwater Level Monitoring Results (Ongoing)

WATER LEVEL DATA SUMMARY

PROJECT:	Sta	<u>ınton Clear</u>	iers		JOB N	UMBER: 70536	
LOCATION:	G	reat Neck, I	<u> </u>			DATE:	2/7/2005
CLIENT:	US	ACE / US E	PA		_	MEAS	URED BY: J. Huisman
SURVEY DATUM:		ft msl				<u>R. R</u>	eynolds T. Platting
MEASURING DEVICE:		Slope Indicator Co.	Water Level Indicator				
WELL NUMBER	TIME (Military)	I I I I I I I I I I I I I I I I I I I		ELEVAT WATE		COMMENTS	
CL-1D	11:00	ft BTOC	27.63	15.53	12.	10	Boits not long enough
CL-1S	11:04	ft BTOC	27.68	12.72	14.	96	Bolts not long enough
CL-3	11: <u>06</u>	ft BTOC	25.03	9.15	15.	88	
_CL-4D	11:10	ft BTOC	20.30	17. <u>63</u>	2.6	7	missing bolts, no cap on well
CL-4S	11:13	ft BTOC	20.56	4.80	15.	76	
EPA-MW-11D	11:25	ft BTOC	74.63	57.63	17.	00	missing 1 bolt
EPA-MW-21	10:55	ft BTOC	84.13	65.80	18.3	33	missing 1 bolt
EPA-MW-22	11:30	ft BTOC	82.20	65.32	16.	88	
EPA-MW-23	11:36	ft BTOC	82.83	64.44	18.	39	
EPA-MW-25	8:05	ft BTOC	73.24	55.12	18.	12	_
EPA-MW-26	13:00	ft BTOC	78.37	59.60	18.	77	no bolts_
EPA-MW-27	14:39	ft BTOC	69.32	50.85	18.47		no bolts
EPA-MW-29	12:00	ft BTOC	31.06	12.56	18.50		
EPA-MW-30	15:00	ft BTOC	25.45	DNE	DN	ΙE	Paved Over
EPA-MW-31	15:10	ft BTOC	51.46	30.26	21.	20	missing cover and bolts
EPA-MW-32	15:32	ft BTOC	53.39	30.60	22.	79	retro fit with new cover
EPA-MW-33	15:23	ft BTOC	68.75	44.75	24.	00	broken cover andbolts missing
EPA-MW-9A	11:17	ft BTOC	80.24	63.55	16.	69	
ST-MW-02	17:03	ft BTOC	82.03	63.90	18.	13	
ST-MW-06	17:15	ft BTOC	69.83	47.32	22.	<u>51</u>	
ST-MW-11	14:17	ft BTOC	75.25	58.64	16.	61	no bolts
ST-MW-12	16:33	ft BTOC	87.20	70.45	16.	75	missing 1 bolt
ST-MW-13	16:29	ft BTOC	103.94	86.43	17.	51	bolts not long enough
ST-MW-14	14:08	ft BTOC	69.73	50.15	19.	58	no bolts
ST-MW-15	16:05	ft BTOC	90.13	73.22	16.	91	no bolts
ST-MW-16	12:20	ft BTOC	75.78	55.15	20.	63	no bolts
ST-MW-17	16:30	ft BTOC	86.53	70.75	15.	78	no bolts
ST-MW-18	16:55	ft BTOC	84.40	65.89	18.	51	no bolts
ST-MW-20	16:42	ft BTOC	84.53	65.09	19.	44	no bolts

Appendix I Indoor Air Quality Analytical Data

Appendix J

Action List Dated February 2005

February 2005 ACTION LIST SUMMARY

PROJECT:	Stanton Cleaners	JOB NUMBER:	70536
LOCATION:	Great Neck, NY	DATE:	February-05
CLIENT:	USACE / USEPA		
COMPLETED ITE	MS		DATE PERFORMED
ltem #1 - Installed ne	ew groundwater extraction well.		2/22/2005
ltem #2 - Replaced F	IVAC carbon filters at the Long Island hebrew academy		2/23/2005
re I	*		
, see a			
OUTSTANDING IT	TEMS /		RECOMMENDED SOLUTION