Monthly Operations and Monitoring Report

April 2006

Site:

Stanton Cleaners Area Groundwater Contamination Site Great Neck, New York

Prepared for:

Environmental Chemical Corporation 1293 Broad Street, Suite 200 Bloomfield, New Jersey 07003

Prepared by: Earth Tech, Inc. 7870 Villa Park Drive, Suite 400 Richmond, Virginia 23228

May26, 2006

ET Project No. 70536.02.01.02

Monthly Operations and Monitoring Report

April 2006

Stanton Cleaners Area Groundwater Contamination Site G	reat Neck, New Y	ork
Prepared for: Environmental Chemical Corporation 1293 Broad Street, Suite 200 Bloomfield, New Jersey 07003		
Prepared by: Earth Tech, Inc. 7870 Villa Park Drive, Suite 400 Richmond, Virginia 23228	Prepared by:	Robert Derrick
	Title:	Environmental Technician
ET Project No. 70536.02.01.02	Date:	May 16, 2006
	Reviewer:	James Kearns
	Title:	Environmental Scientist
	Date:	May 26, 2006

Table of Contents

1.0	INTROD	OUCTION
2.0	SUMMA	ARY OF ACTIVITIES DURING APRIL 2006
3.0	GROUN	DWATER TREATMENT SYSTEM ACTIVITIES
3.1	Operat	ion and Maintenance
3.2		ing and Analysis
		aw and Treated Groundwater
		DRING WELL SAMPLING
		PERIMETER MONITORING
6.0	INDOOF	R AIR QUALITY SAMPLING
		E EVENTS PLANNED
8.0	PROBLE	EM AREAS AND RECOMMENDED SOLUTIONS (OUTSTANDING ISSUES)
		Tables
Table	1	Estimated PCE Recovery Rates (September 2003 – April 2006)
		Figures
Figure Figure		Site Location Map Average PCE Concentrations (September 2003 – April 2006)
		Appendices
Appen Appen Appen Appen Appen Appen Appen Appen Appen Appen	dix B dix C dix D dix E dix F dix G dix H dix I	Daily Quality Control Reports (DQCRs) Groundwater Treatment System Operation & Maintenance Checklists Groundwater Treatment System Downloaded Operational Data Sampling Trip Reports Groundwater Treatment System Raw and Treated Analytical Data Soil Vapor Extraction and Pump and Treat System Bi-weekly Air Monitoring Logs Semi-Annual Groundwater Sampling Analytical Data Historical Groundwater Level Monitoring Results (Ongoing) Indoor Air Quality Analytical Data Action List Dated April 2006

1.0 INTRODUCTION

This Monthly Operations and Monitoring Report, April 2006 (Monthly Report) has been prepared by Earth Tech, Inc., as a subcontractor to Environmental Chemical Corporation (ECC), under Contract No.5442-001-001.

The Stanton Cleaners Area Groundwater Contamination (Stanton) site is located at 110 Cutter Mill Road in Great Neck, Nassau County, New York. The Stanton Cleaner Property (SCP) is approximately ¼ acre in size and includes a two-story building in which a dry-cleaning business operates and an adjacent one-story boiler/storage building as well as a two-story treatment building. The site is bordered by an indoor tennis facility, a synagogue and school facility.

Improper handling and disposal of spent dry cleaning solvents, including Tetrachloroethylene (PCE), resulted in the release of hazardous substances at the site. PCE migrated from the site's subsurface soils into the indoor air environments of the surrounding buildings and into groundwater beneath the site, resulting in a significant threat to human health.

In 1983, approximately 20 cubic yards of PCE-contaminated soil was removed from behind the Stanton Cleaners property.

In 1989, a groundwater extraction and treatment system was installed by the original Site operator to address groundwater contamination which resulted from improper disposal of spent PCE behind the SCP building. This system is not currently operational.

In 1998, the New York State Department of Environmental Conservation (NYSDEC) funded the construction of a new air stripper treatment system for the WAGNN water supply wells, which are impacted by contamination from the Site. This treatment system is currently in operation. In October 1998, as an immediate response action, the EPA installed a temporary soil vapor interceptor system, adjacent to the tennis club, to mitigate impacts from PCE vapors to the indoor air of this facility.

In 2001, the EPA completed the construction and installation of a soil vapor extraction (SVE) system and a ground water treatment (GWT) system on the SCP. Both the SVE and GWT systems are housed in the treatment building that was constructed on the SCP. The SVE was installed to remediate the VOC-contaminated soils, thus reducing the indoor air contamination in the adjacent affected buildings to safe levels. The GWT system was installed to remediate the VOC-contaminated groundwater and to remove the threat of vapors through the Site soils. Both systems are currently operating at the Site. The collected VOC-contaminated vapors and groundwater from both systems are treated through separate granular activated carbon (GAC) systems.

The site is presently under the jurisdiction of the Remedial Branch of the USEPA, Region II; USACE provides oversight to USEPA for the remedial action and the long-term remedial action programs. ECC provides oversight to the USACE to perform long-term remediation actions. Earth Tech, as a subcontractor to ECC, provides support on the following tasks as described in the Work Plan:

- Operation and maintenance (O&M) of the GWTS and SVE, including sampling and reporting;
- Sampling of monitoring wells associated with the site in order to track the migration of the contaminant plume, along with reporting.

• Sampling of indoor air quality of buildings adjacent to the site in order to identify all the adjacent buildings being impacted by site related contaminants and the effectiveness of the remedial actions being instituted at the site.

All work under this contract is performed in accordance with the following documents:

- Work Plan for Long-Term Remedial Action Support;
- Site-Specific Health and Safety Plan (HASP), dated July 23, 2001 (Revised February 3, 2003) and
- Sampling Quality Assurance Project Plan (SQAPP) dated August 22, 2000.

As required by the Scope of Work for this project, monthly summary reports are prepared to document and summarize the activities taking place. These reports provide a concise description of work performed during the reporting period and include pertinent deliverables as appendices. This monthly summary report covers the period between April 1 and April 30, 2006.

2.0 SUMMARY OF ACTIVITIES DURING APRIL 2006

The following list summarizes activities performed and milestone dates under this contract during the reporting period, April 1 through April 30, 2006:

- April 4 O&M Inspection/System Monitoring
- April 4 Monthly System Sampling
- April 4 Flex hose at the sub slab at the Long Island Hebrew Academy was replaced with permanent hard piping. The outside piping to the blower was also replaced with hard piping and the blower itself was stabilized
- April 11 O&M Inspection/System Monitoring
- April 11 Bi-weekly air monitoring
- April 11 Change out of carbon filters on the rooftop of the LIHA
- April 18 O&M Inspection/System Monitoring
- April 18 The broken actuator for well EPA-EXT-02 was replaced with a working one

Details of system shutdowns and alarms during the month of April 2006 are discussed in section 3.1. Daily Quality Control Reports (DQCRs), which include projected work for the following two weeks, are completed for each day of site activities. Copies of these reports are included as Appendix A.

3.0 GROUNDWATER TREATMENT SYSTEM ACTIVITIES

3.1 Operation and Maintenance

The GWTS treated and discharged 2,799,342.7 gallons during the month of April 2006. The system was operational (recovery well pumps running) for approximately 720 of the 720 hours during the month, for an average operating flow of 64.8 gallons per minute (gpm). The system has treated a total of 124,682,647 gallons since the plant startup in November 2001.

There are currently two recovery wells pumping water into the system (EPA-EXT-02 and EPA-MW-24). EPA-EXT-02 is located in the triangle, the corner of New Cutter Mill Road and Mirrielees Road. Extraction well MW-24 had been pumping from the triangle location until it was turned off and April 20, 2005. Extraction well EPA-EXT-4R was activated on April 20, 2005. EPA-EXT-4R is located in the parking lot directly in front of the Stanton Dry Cleaners building. The decision to turn off extraction well MW-24 and replace it with EPA-EXT-4R in April 2005 was made by the USEPA. Later, in early 2006, based on an evaluation of laboratory analytical results obtained from extraction well EPA-EXT-4R and monitoring well sampling results for monitoring wells located in the area of EPA-MW-24, the decision was made to shut down extraction well EPA-EXT-4R and re-activate EPA-MW-24. Therefore, EPA-EXT-4R was taken offline and EPA-MW-24 was activated on February 2, 2006.

The facility is equipped with a remote monitoring and control system that was accessed a minimum of three times per week, by the lead engineer, during the reporting period to ensure proper system operation and notify response personnel if a problem or abnormal condition was observed. The system also provides remote notification of alarm conditions via automatic e-mail and text messaging.

The Treatment System Operation and Maintenance Checklist were completed during each O&M inspection event and the checklists for April 4, 11 and 18, 2006 are provided in Appendix B. When the system is operational, any abnormal conditions or parameters outside of the normal operating range are addressed by the lead operator and/or monitoring/environmental technician on site (Jim Simmonds or James Kearns). If they require guidance or notes any serious conditions, the inspector notifies the response manager (Tom Williams). The checklists are completed on site and sent to James Kearns for review and scheduling of additional work if needed. Abnormal conditions and/or parameters outside the operating range are addressed, including repairs, cleaning, and continued monitoring.

System operational and alarm conditions are automatically stored by the PLC. This data is downloaded every two weeks. The March 2006 operational data is included in Appendix C. While operational, the system data are within the normal ranges and are consistent with visual observations, with any exceptions as described above.

The effluent flow data table in Appendix C shows daily discharge flows from each day of system operation and cumulative treated water discharge for each day during the reporting period, as well as a summary of total monthly flow and average daily flow since the system was started up in October 2001.

A review of October's Operations and maintenance logs indicated there has been a slight reduction in discharge flow for the P&T system. In an effort to increase the discharge flow, it was determined that the P&T system aqueous phase carbon vessels needed to be placed in parallel in the system treatment train in an effort to reduce back pressure and increase effluent flow. The altering of the piping for the 2-400 pound aqueous phase carbon vessels from series to parallel was performed on November 1, and 2, 2005.

On November 30, 2005 the SVE systems was offline due to a faulty low level sensor in the SVE knockout tank. The sensor was reviewed during the December 19, 2005 O&M inspection and was deemed to be faulty. A new low-level float switch was installed on January 9, 2006.

On January 9, 2006, three drains were installed in the line of SVE 1 so that the line can be drained weekly and so adequate air flow can be obtained at the SVE 1 air sample ports for the bi weekly air monitoring. On January 24, 2006 the drains were replaced with more permanent ball valve drains.

3.2 Sampling and Analysis

3.2.1 Raw and Treated Groundwater

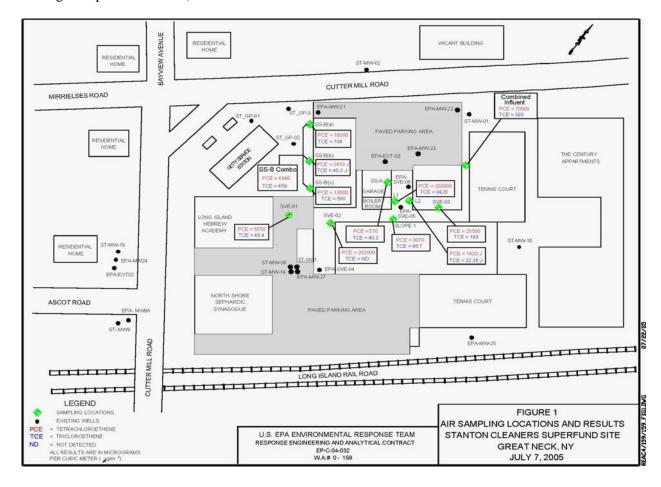
In accordance with the SQAPP, GWTS sampling is conducted on a monthly basis to monitor plant efficiency, to determine whether liquid carbon breakthrough has occurred, and to verify that contract-specific discharge parameters (in accordance with National Pollutant Discharge Elimination System (NPDES) permit equivalency) are met. The combined GWTS influent, along with the GWTS effluent (discharge), will be sampled by the 15th of each month. Collected samples will be shipped to a designated EPA, CLP lab for analysis of TCL volatile organic compounds.

Earth Tech personnel conducted the GWTS influent and effluent sampling for this report period on April 4, 2006. The samples were shipped to the USEP Region II DESA Laboratory, located in Edison, NJ for analysis of low concentration TCL volatile organic compounds. A copy of the full sampling trip report containing the chain of custody forms and FedEx air bill is included in Appendix D. Laboratory analytical results for the GWTS sampling event during this reporting period will be forwarded to ECC under separate cover from the laboratory.

Measurements of influent and effluent pH and turbidity, along with effluent conductivity, are automatically monitored and recorded by the GWTS PLC on a daily basis; this information is included with the downloaded data in Appendix C.

The next GWTS influent / effluent sampling event is scheduled for May 2, 2006.

3.2.2 Process Air Stream Monitoring


Air monitoring of the SVE and Pump and Treat System is performed on a bi-weekly basis. It includes monitoring for VOCs, air velocity, temperature, humidity, dew point, vacuum pressure and other parameters, as specified in the O&M manual. Air monitoring is performed at the following locations within the system:

- Combined SVE Influent (pre-treatment),
- Post groundwater Air-Stripper (pre-treatment),
- Post vapor phase carbon vessel 1 Air Stripper air discharge (post-treatment),
- Post vapor phase carbon vessel 2 SVE air discharge (post-treatment),
- Sub-slab monitoring points (pre-treatment),
- SVE wells EPA-SVE-1 through EPA-SVE-4 (Shallow and Medium depth)

On October 3, 2005, following a review of the REAC SVE System Air Sampling Results for the event performed on July 7, 2005, the active SVE recovery wells were modified in an effort to maximize contaminant recovery rates. Details of the modifications to the active SVE wells prior to and post October 3, 2005 are included in the table below.

SVE Location	Prior to 10/3/05	After 10/3/05
SVE 1	Shallow On	Shallow and Intermediate On
SVE 2	Shallow On	Shallow On
SVE 3	Shallow On	Shallow On
SVE 4	Off	Off
EPA-SVE-4R	On	On
SSA	On	On
SSB-A	On	On
SSB-B	On	Off
SSB-C	On	On
L1	On	On
L2	On	Off

In addition to modifying the active SVE locations, the names of each location were altered in an effort to stay consistent with REAC's nomenclature. Future weekly monitoring logs will be consistent REACs sample numbers. The laboratory analytical results for REAC's sampling of the SVE locations, performed on July, 7, 2005 are included in the figure below (please note the results in the figure are reported in micrograms per cubic meter).

Additional evaluation/enhancement of the SVE recovery rates is ongoing and the installation of several SVE sample port locations was performed on November 1 and 2, 2005. On January 9, 2006, two more

SVE sample port locations were installed in the line of SVE 3. The bi-weekly air monitoring logs are included in Appendix F. Estimated PCE removal rates for the SVE system are presented in Table 1. A Graph showing the estimated PCE removal rate trend over time is presented in Figure 2. The next bi-weekly air-monitoring event is scheduled for May 4, 2006.

4.0 MONITORING WELL SAMPLING

Groundwater samples from select monitoring wells both on and off-site are collected on a quarterly basis and shipped to a designated EPA, CLP lab for analysis. Groundwater sampling activities are performed in accordance with the USEPA Groundwater Sampling SOP #2007 and the USEPA Low-Stress Purging and Sampling SOP provided in the SQAPP. Each quarterly sampling event is coordinated with the local water authority to schedule the event when local water supply drawdown conditions do not impact the measurements. The location and number of monitoring wells as well as analytical parameters will be determined before each event by the USPEA, USACE, and ECC.

The first semi-annual groundwater sampling event of 2005 was conducted by Earth Tech personnel on February 7 through 11, 2005. A total of 25 groundwater monitoring wells were sampled for analysis of the presence of TCL volatiles only. A copy of the full sampling trip report containing the chain of custody forms and FedEx air bills is included in Appendix D.

The second semi-annual groundwater sampling event was performed the week of August 29, 2005. It included sampling 29 monitoring wells, 15 of which had natural attenuation parameter analyses. Laboratory analytical results for this semi-annual groundwater sampling event were sent directly to ECC under separate cover from the laboratory. The next groundwater monitoring well sampling event is scheduled for the week of May 22, 2006. Below is a list of monitoring wells that will be sampled (per RPM selection/request). Also below is a list of monitored well samples that will be further analyzed for monitoring and natural attenuation parameters.

Well to be Sampled

- 1) ST-MW-02,
- 2) EPA-MW-22,
- 3) EPA-MW-21,
- 4) ST-MW-15,
- 5) ST-MW19,
- 6) ST-MW-12,
- 7) CL-1D
- 8) EPA-MW-26
- 9) EPA-MW-23
- 10) ST-MW-14
- 11) EPA-MW-27
- 12) EPA-MW-9A
- 13) ST-MW11
- 14) EPA-MW29
- 15) CL-4D
- 16) ST-MW-20 (as a back-up only in the event another well cannot be sampled)
- 17) ST-MW-17 (as a back-up only in the event another well cannot be sampled)

Monitoring & Natural Attenuation Parameter Wells

- 1) CL-1D
- 2) EPA-MW-29

- 3) STMW-20
- 4) EPA-MW-26
- 5) EPA-MW-27
- 6) STMW-17
- 7) STMW-12
- 8) ST-MW-19
- 9) EPA-MW-21
- 10) And EPA-MW-9A (as a back-up only in the event another well cannot be sampled)

5.0 PLUME PERIMETER MONITORING

Groundwater level measurements are obtained from both on-site and offsite wells once a month in order to evaluate capture zone(s) around the groundwater extraction wells. The event is coordinated with the local water authority so the event can be scheduled when the local water supply drawdown conditions will have minimal impact to the measurements.

Water level measurements were collected on May 2, 2006. The location and number of monitoring wells was determined by the USEPA based on the site Capture Zone Analysis Plan. Groundwater level measurements for May 2, 2006 and historical groundwater level measurements are provided in Appendix H.

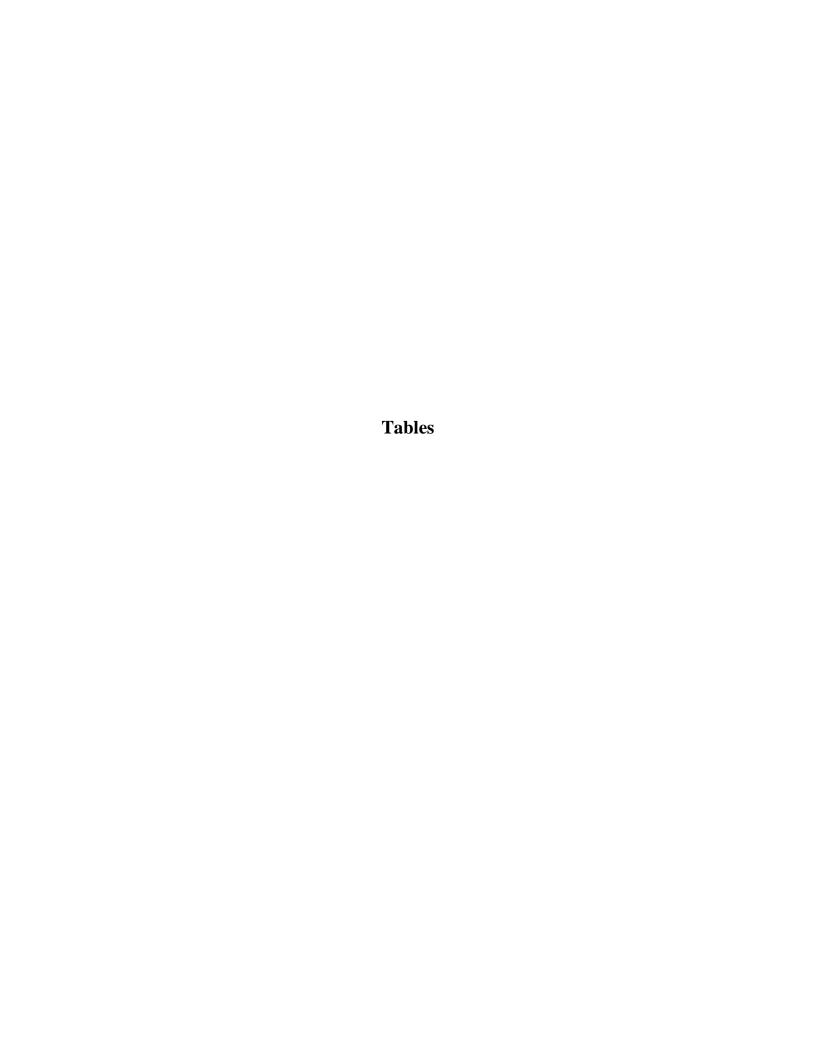
6.0 INDOOR AIR QUALITY SAMPLING

Indoor air quality samples from select locations within the treatment building and buildings along the perimeter of the site are collected using summa canisters on a quarterly basis and shipped to a laboratory for analysis. The location and number of indoor air quality samples to be collected as well as analytical parameters are determined by the USEPA, USACE and ECC.

The last indoor air quality sampling event was conducted on September 20 and 21, 2005 by Earth Tech personnel. This sampling event was conducted to address air quality issues within the Long Island Hebrew Academy. The next indoor air sampling event is planned for May 2006.

7.0 FUTURE EVENTS PLANNED

The following scheduled events are planned (or have since occurred) during the next three reporting periods:


- Continue to perform GWTS inspection and maintenance as required;
- Continue to perform bi-weekly system air monitoring;
- Collect system influent and effluent samples as directed by USACE/ECC/USEPA;
- Obtain groundwater level measurements as directed by USACE/ECC/USEPA;
- Collect groundwater samples from monitoring wells as directed by USACE/ECC/USEPA (Planned for week of May 22, 2006);
- Collect indoor air quality samples as directed by USACE/ECC/USEPA (Planned for May 2006);
- Revise O&M manual to reflect changes to GWP&T carbon vessel set-up (April 2006);
- Review aqueous and SVE vapor phase carbon change out schedule (review performed in December 2005, to be changed out in June 2006)

• Change out of carbon in indoor air filters inside the Stanton treatment building

8.0 PROBLEM AREAS AND RECOMMENDED SOLUTIONS (OUTSTANDING ISSUES)

The altering of the piping for the 2-400 pound aqueous phase carbon vessels from series to parallel was performed in November 2005. A review of flow rates indicated the effluent flow has increased from approximately 60 gpm to 72 gpm following the change. Action List of ongoing and completed items is provided in Appendix J to track work tasks that have been targeted as issues to be addressed.

Monthly O&M performed on November 29, 2005 indicated the low level float switch for the SVE system knockout tank was not functioning. Further inspection performed in December 2005 indicated a replacement was required. A replacement low level float switch was installed on January 9, 2006.

TABLE 1 ESTIMATED PCE RECOVERY RATES

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 250 CFM SVE SYSTEM

September 2003 - April 2006

		Flo	w Rate	Voc					
Date	# of Days	(cfm)	Avg (cfm)	Concentration	Average	Discharge Rate	Total Discharge (Ibs)		
9/11/2003	1	225	225	(ppm) 4.2	(ppm) 4.20	(lbs/day) 0.6	0.6		
9/25/2003	13	210	217.5	4.7	4.45	0.6	7.8		
10/8/2003	13	213	217.5	4.7 5	4.45	0.6	8.2		
1	15	210	211.5	12.2		1.1	16.7		
10/23/2003					8.6				
11/5/2003	13	215	212.5	6.8	9.5	1.2	16.2		
11/22/2003	17	211	213	6	6.4	0.8	14.3		
12/4/2003	12	205	208	5.9	5.95	0.8	9.2		
12/17/2003	13	200	202.5	4	4.95	0.6	8.0		
12/30/2003	13	210	205	4	4.95	0.6	8.1		
1/15/2004	16	205	207.5	4.1	4.05	0.5	8.3		
2/5/2004			SVE	System Manually	Shutdown S	Since 1/16/04			
2/12/2004	8	200	200	3.5	3.5	0.4	3.5		
2/26/2004	14	205	202.5	5.3	4.4	0.6	7.7		
3/10/2004	12	200	202.5	5	5.15	0.6	7.7		
3/25/2004	15	199	199.5	5.1	5.05	0.6	9.3		
4/13/2004	19	175	187	6.3	5.7	0.7	12.5		
4/29/2004	16	170	172.5	6	6.15	0.7	10.5		
						Total	148.7		

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump

and Treatment Systems" publication.

$$M_{air} = Q_{air} \times C_{air} \times \underbrace{0.0283_{m3}}_{ft.3} \times \underbrace{1440_{min.}}_{day} \times \underbrace{2.2_{lbs.}}_{1000000 \ mg}$$

$$C_{air (mg/m3)} = \frac{Conc_{(ppmv)}}{1E+06} \times \frac{1 \text{ mole air } x}{24.1 \text{ L}} \times \frac{1000 \text{ L}}{m3} \times \frac{1000 \text{ mg}}{g} \times MW_x$$

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and

pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Fahrenheit

(0 degrees Celsius), the conversion is (1 mole air)/(22.4 L).

TABLE 1 (continued)

ESTIMATED PCE RECOVERY RATES STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE

250 CFM SVE SYSTEM

September 2003 - April 2006

		Flow Rate		VOC					
Date	# of Days	(cfm)	Avg (cfm)	Concentration (ppm)	Average (ppm)	Discharge Rate (Ibs/day)	Total Discharge (Ibs)		
5/13/2004	14	150	160	6	6	0.6	8.3		
5/30/2004	17	147	148.5	5.9	5.95	0.5	9.3		
6/10/2004	11	150	148.5	4.4	5.15	0.5	5.2		
6/30/2004	20	145	147.5	5.6	5	0.5	9.1		
7/8/2004	8	140	142.5	4.9	5.25	0.5	3.7		
7/22/2004	14	139	139.5	4.8	4.85	0.4	5.8		
8/9/2004	18	140	139.5	3.1	3.95	0.3	6.1		
8/31/2004	1	135	137.5	3	3.05	0.3	0.3		
9/8/2004	8	120	127.5	2.9	2.95	0.2	1.9		
9/30/2004	22	121	120.5	3.1	3	0.2	4.9		
10/4/2004	5	121	121	2.9	3	0.2	1.1		
10/20/2004	15	120	120.5	2.8	2.85	0.2	3.2		
11/1/2004	12	121	120.5	3	2.9	0.2	2.6		
11/17/2004	16	125	123	4.1	3.55	0.3	4.3		
11/29/2004	12	120	122.5	4.2	4.15	0.3	3.8		
12/7/2004	8	121	120.5	4.2	4.2	0.3	2.5		
12/16/2004	9	120	120.5	4.1	4.15	0.3	2.8		
						Total	223.5		

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump

and Treatment Systems" publication.

Mair = Qair x Cair x
$$0.0283 \text{ m}_3$$
 x 1440 min. x 2.2 lbs.
ft.3 day 1000000 mg

$$C_{air (mg/m3)} = Conc_{(ppmv)} \times 1 \text{ mole air } \times 1000 \text{ L} \times 1000 \text{ mg} \times MWx$$

$$1E+06 \qquad 24.1 \text{ L} \qquad m3 \qquad q$$

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and

pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Fahrenheit

(0 degrees Celsius), the conversion is (1 mole air)/(22.4 L).

TABLE 1 ESTIMATED PCE RECOVERY RATES STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE

250 CFM SVE SYSTEM

September 2003 - April 2006

		Flow Rate		VOC					
Date	# of Days	(cfm)	Avg (cfm)	Concentration (ppm)	Average (ppm)	Discharge Rate (Ibs/day)	Total Discharge (lbs)		
1/12/2005	27	120	120	4.5	4.3	0.3	8.6		
1/17/2005	5	120	120	4.5	4.5	0.3	1.7		
2/9/2005	23	120	120	3.9	4.2	0.3	7.2		
2/23/2005	14	120	120	3.5	3.7	0.3	3.8		
3/2/2005	7	120	120	3.2	3.35	0.2	1.7		
3/16/2005	14	120	120	3.5	3.35	0.2	3.5		
4/4/2005	19	120	120	3	3.25	0.2	4.6		
4/20/2005	16	120	120	2.9	2.95	0.2	3.5		
5/3/2005	13	120	120	3.1	3.00	0.2	2.9		
5/19/2005	16	120	120	2.9	3.00	0.2	3.6		
6/15/2005	26	120	120	1	1.95	0.1	3.8		
6/22/2005	7	270	120	8.3	4.65	0.3	2.4		
7/25/2005	33	280	275	8.3	8.30	1.4	46.5		
8/9/2005	15	290	285	5	6.65	1.2	17.6		
8/24/2005	15	290	290	6	5.50	1.0	14.8		
9/7/2005	14	260	275	6.5	6.25	1.1	14.9		
9/20/2005	13	260	260	6.8	6.65	1.1	13.9		
						Total	378.3		

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump and Treatment Systems" publication.

$$M_{air} = Q_{air} \ x \ C_{air} \ x \ \underline{0.0283 \ m_3} \ x \ \underline{1440 \ min.} \ x \ \underline{2.2 \ lbs}.$$
 ft.3 day 1000000 mg

$$C_{air (mg/m3)} = \frac{Conc_{(ppmv)}}{1E+06} \times \frac{1 \text{ mole air}}{24.1 \text{ L}} \times \frac{1000 \text{ L}}{m3} \times \frac{1000 \text{ mg}}{g} \times MW_x$$

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and

pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Fahrenheit

(0 degrees Celsius), the conversion is (1 mole air)/(22.4 L).

TABLE 1 ESTIMATED PCE RECOVERY RATES

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 250 CFM SVE SYSTEM

September 2003 - April 2006

		Flow Rate		VOC						
Date	# of Days	(cfm)	Avg (cfm)	Concentration (ppm)	Average (ppm)	Discharge Rate (Ibs/day)	Total Discharge (lbs)			
10/3/2005	13	270	265	7.4	7.10	1.2	15.1			
10/18/2005	15	240	255	3.7	5.55	0.9	13.1			
11/7/2005	20	250	245	1.5	2.60	0.4	7.9			
11/29/2005	22	200	225	1.7	1.60	0.2	4.9			
12/19/2005	20	305	252.5	14.7	8.20	1.3	25.6			
1/4/2006	16	260	282.5	3.4	9.05	1.6	25.3			
1/19/2006	15	285	272.5	2.5	2.95	0.5	7.4			
1/30/2006	10	275	280	2.2	2.35	0.4	4.1			
2/16/2006	17	210	242.5	10.7	6.45	1.0	16.4			
2/27/2006	11	275	242.5	2.4	6.55	1.0	10.8			
3/23/2006	24	245	260	2.3	2.35	0.4	9.1			
4/11/2006	19	245	245	1.6	1.95	0.3	5.6			
						Total	523.5			

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

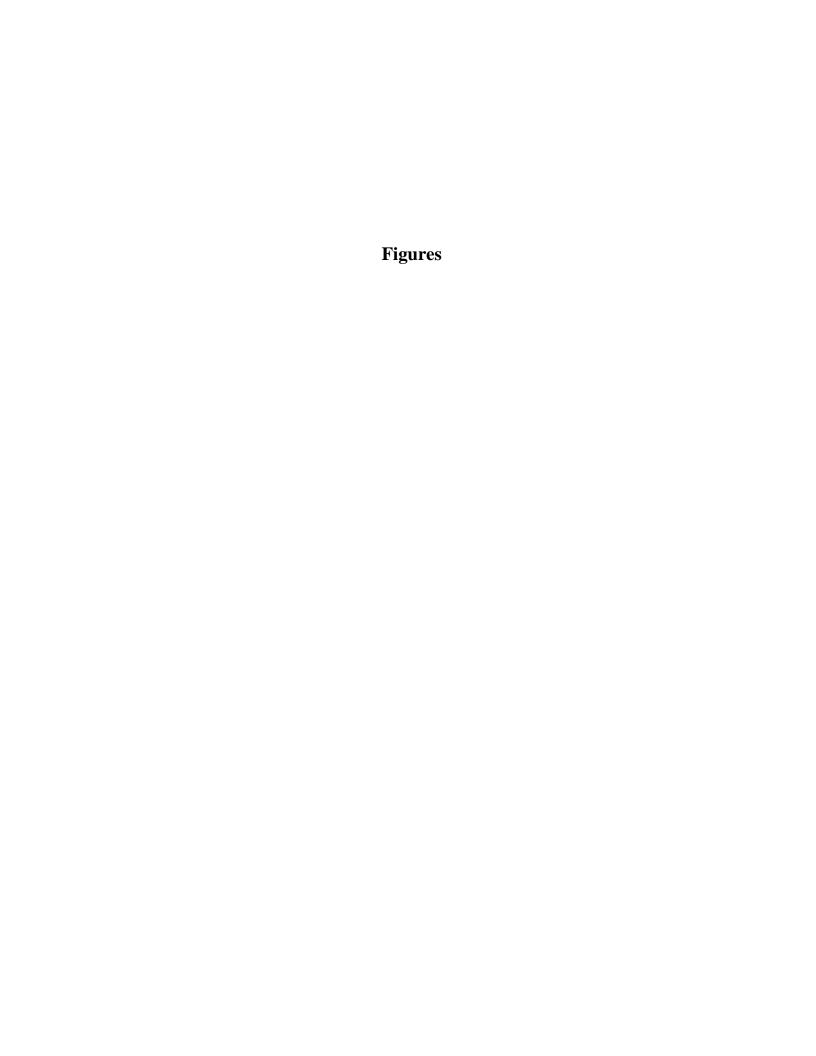
Formula provided by EPA in the "Elements for Effective Management of Operating Pump and Treatment Systems" publication.

Mair = Qair x Cair x
$$0.0283 \text{ m}_3$$
 x 1440 min. x 2.2 lbs.
ft.3 day 1000000 mg

$$C_{air (mg/m3)} = Conc_{(ppmv)} \times 1 mole air \times 1000 L \times 1000 mg \times MWx$$

 $1E+06$ $24.1 L$ m_3 g

Notes


Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Fahrenheit (0 degrees Celsius), the conversion is (1 mole air)/(22.4 L).

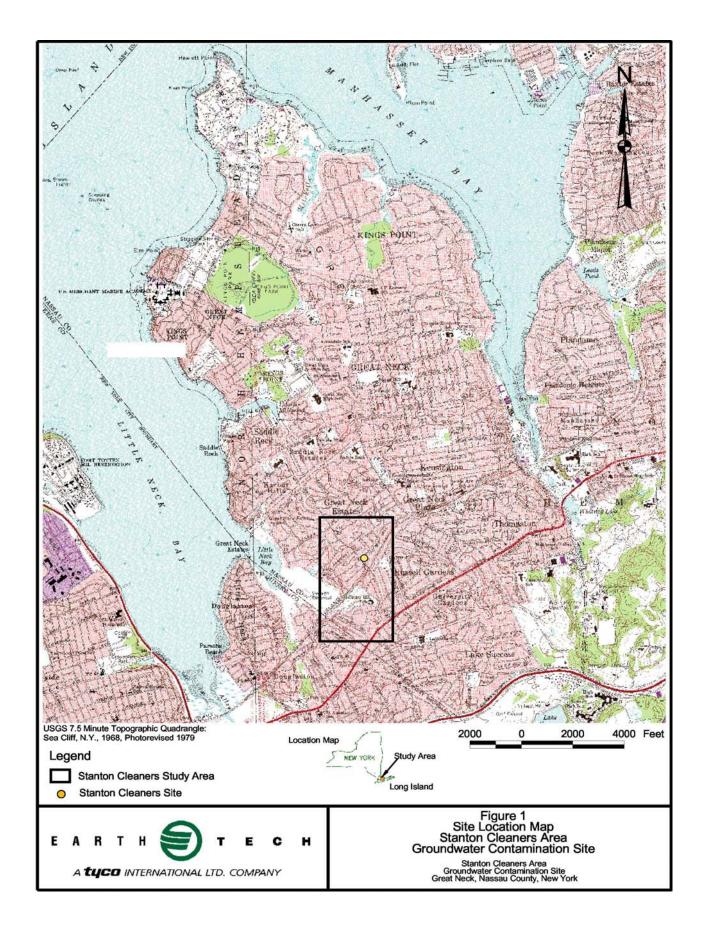
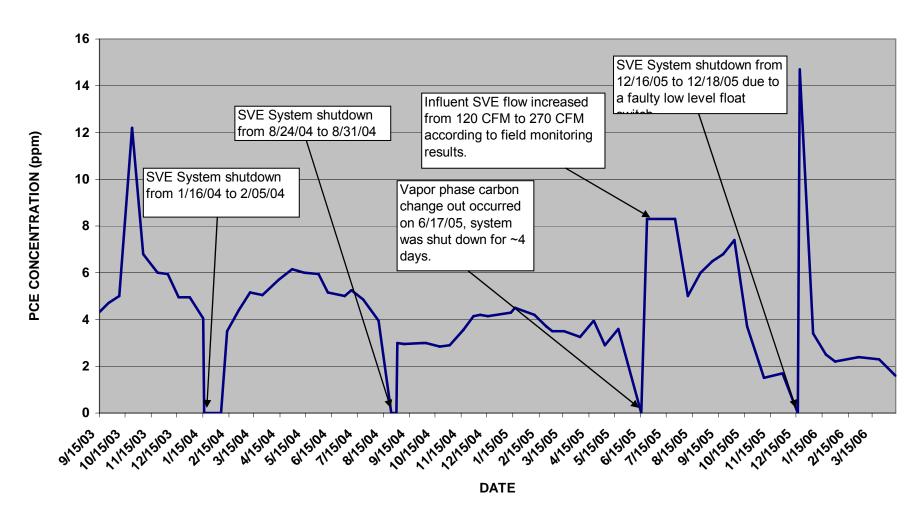



Figure 2
STANTON CLEANERS AREA GOUNDWATER CONTAMINATION SITE
AVERAGE PCE CONCENTRATIONS (ppm)
250 CFM FINAL SVE SYSTEM
September 2003 - April 2006

Appendix A Daily Quality Control Reports (DQCRs)

		DAIL	Y QUALITY (CONTR	OL REPOR	RT	
Site Name ar	nd Location: S	Stanton Cle	aners Site (LTRA)) – Great	Neck, NY		
Client: ECC							
Contractor:	Earth Tech						
Address:	7870 Villa						
	Richmond,	_	3228				
Phone No.:	(804) 515-8	3300		T			
Date: 4/4/06		134			Tech Project N		l a
Day	S	M	T	W	Т	F	S
Weather			CLOUDY				
Temp.			40°F				
Wind			10-15 MPH GUSTS				
Humidity			50%				
	l Personnel On-	Site: Rober	rt Derrick, Chuck	 Fernal	 d		
Lartii Teen I	ersonner on	one. Robei	t Derrick, Chuci	reman	<u>u</u>		
Subcontracto	or (include na	nes & resn	onsibilities): N/A				
Buocommucio	/ (merade na	nes æ resp	onstollings): 1 4/11				
			site: Ford F 150,	F-150, l	oottle ware, ge	neral sampling	g equipment,
piping, gene	ral hand too	is and pipi	ng materiais				
W 1 D C	17. 1 1	1' 1	L' 4 1 NIAC 1	·c 1	. 11)		
	`		list by NAS number	er 11 appl	icable):		
	stem Samplii	ıg					
O and M Ins	-	oven at the	LIHA from the	wall to w	hara it gaag in	aida tha wall a	a wall oa tha
			es out of the wall		_		
Stabilized th	•	ici e it com	es out of the wan	to where	e it connects w	ith the blower	,
		(including	field calibrations)	· Calibra	ation of Horibs	a	
Quality Colli	101710171103	(meraamg	Tiera carrorations)	. Cumbre	111011 01 1101101	•	
Health and S	afety Levels	and Activit	ies: Level D				
Problems En	countered/Co	rrection Ac	ction Taken: N/A				
			nange in SOW or I				
		t all inspec	tions by subject ar	nd specif	ication location	; attach minute	s of meeting and
list of all atte	endees): N/A						
Have all requ	uired submitta	als and sam	ples of construction	n been a	pproved? Yes		
Do the mater	rials and equip	oment to be	used conform to	the subm	ittals? Yes		
Has all prelin	ninary work l	peen inspec	ted, tested, and co	mpleted	? Yes		

DAILY QUALITY CONTROL REPORT						
Site Name and Location: Stanton Cleaners Site (LTRA) – Great Neck, NY						
Client: ECC	Contract No: 5442-001-001					
Contractor:	Earth Tech, Inc.					
Address:	7870 Villa Park Drive, Suite 400					
	Richmond, Virginia 23228					
Phone No.:	(804) 515-8300					
Date: 4/4/06	Earth Tech Project No.: 70536					
Test required	and inspection techniques to be executed to prove contract compliance (include both expected					
and actual resi	ults): N/A					
Has a phase has	azard analysis been performed? Included in the Site Specific Health & Safety Plan					
Comments and	d deficiencies noted and corrective actions taken: Explained in work performed section.					
-	ion: List all inspections by subject and specification location. Comment and/or deficiencies					
	rective actions taken.					
Explained in w	work performed section.					
*	pection: List all inspections by subject and specification location. Comment and/or deficiencies					
noted and corr	rective actions taken.					
G 1137						
Special Notes	:					
7						
Tomorrow's E						
Monthly well						
Bi-weekly air						
*	d M inspection					
Rooftop filter change out at LIHA						
In door air filter carbon change out at Stanton (end of month)						
By: Robert De	errick Title: Environmental Scientist					
0	het Den (Quality Control Representative/Manager)					
Signature:	(Quality Control Representative/Manager)					
-	ort is complete and correct. All materials and equipment used and all work performed during					
	period are in compliance with the contract specifications and submittals, except as noted above.					
Signature:	(Contractor's Authorized Representative)					

			Y QUALITY				
	nd Location:	Stanton Cle	eaners Site (LTRA	1	<u> </u>		
Client: ECC				Contrac	t No: 5442-001-001		
Contractor:	Earth Tech	· 1	g : 400				
Address:		a Park Drive					
Phone No.:		l, Virginia 2	3228				
Date: 4/11/06	(804) 515	-8300		Forth '	Fech Project No.:	70536	
Date: 4/11/00	S	M	T	W	T	F	S
Weather	3	171	SUNNY	**		F	
Temp.			65°F				
Wind			5-10 MPH				
Humidity			35%				
	ersonnel On	-Site: Robe		Mahalsl	ki, William Pollard	<u> </u>	
			y		,		
Subcontracto	or (include n	ames & resp	onsibilities): N/A				
	`	<u></u>	, -				
Contract Mat	terials and E	auipment or	n site: Ford F 150	F-150, N	IultiRae PID, Vel	ociCalc, ai	ir pump, air
			evel meter, genera		,	, , , , , , , , , , , , , , , , , , , 	PP,
sumple sug,	cui son inc	or sy water re	ever meter, gener	ii iidiid t	7015		
Work Donform	سه ما (نسمای ما		Light last NIAC garage	:£1:	a a b 1 a) .		
			list by NAS numb	er ii appii	cable).		
O and M Ins			oring				
Bi weekly ai		O		TT 1	A 7		
_		top filters a	t the Long Island	Hebrew	Academy		
Water level		- (:1:1:	£: -1.11:1 4:	. C-121	4: £ DID		
Quality Cont	roi Activitie	s (including	field calibrations)	: Cambra	tion of PID		
Haalth and C	ofoty I ovolo	and Activit	ios, Lavel D				
Health and S	v						_
Problems Em	countered/C	offection Ac	ction Taken: N/A				
Evnlain Deve	elonments I	eading to Cl	nange in SOW or l	Finding of	Fact: N/A		
			•		cation location; atta	ch minute	es of meeting and
list of all atte			tions by subject a	iu speciii	cation location, atta	ich minute	s of freeting and
iist of all atte	nuccs). 14/A						
Have all requ	iired submit	tals and sam	ples of construction	n heen ar	nroved? Ves		
Trave an requ	anca saonin	tais and sam	pies of construction	ni ocen ap	proved: 163		
Do the mater	rials and equ	ipment to be	e used conform to	the submi	ttals? Yes		
	040	T	20113111110				
Has all prelin	ninary work	been inspec	cted, tested, and co	mpleted?	Yes		
	<i>J</i>		,,	1			
Test required	l and inspect	ion techniqu	ues to be executed	to prove o	contract compliance	e (include	both expected
	T	1				, , , , , ,	1

	DAILY QUALITY CONTROL REPORT						
Site Name and	nd Location: Stanton Cleaners Site (LTRA) – Great Neck, NY						
Client: ECC	Contract No: 5442-001-001						
Contractor:	Earth Tech, Inc.						
Address:	7870 Villa Park Drive, Suite 400						
	Richmond, Virginia 23228						
Phone No.:	(804) 515-8300						
Date: 4/11/06	6 Earth Tech Project No.: 70536						
and actual resu	esults): N/A						
Has a phase ha	hazard analysis been performed? Included in the Site Specific Health & Safety Plan						
Comments on	nd deficiencies noted and competitive actions taken. Explained in graph neglection	<u> </u>					
Comments and	and deficiencies noted and corrective actions taken: Explained in work performed section	11.					
Initial Inspect	ction: List all inspections by subject and specification location. Comment and/or deficien	cias					
_	prective actions taken.	cics					
	work performed section.						
	•						
Follow-up Ins	nspection: List all inspections by subject and specification location. Comment and/or def	iciencies					
	prrective actions taken.						
Special Notes:	es:						
	Expectations:						
•	ir monitoring						
	nd M inspection						
	of carbon in indoor air filters inside Stanton						
Well samplin	ing (week of May 1)						
By: Robert De							
0	Fort Den C (Quality Control Representative/Manager)						
Signature: P	(Quality Control Representative/Manager)						
	eport is complete and correct. All materials and equipment used and all work performed d						
	g period are in compliance with the contract specifications and submittals, except as noted	above.					
Signature:	(Contractor's Authorized Representative)						

		DAILY	QUALITY	CONTR	OL REPOR	T		
Site Name ar	nd Location: S	tanton Cleane	ers Site (LTRA) – Great	Neck, NY			
Client: ECC				Contrac	t No: 5442-001	1-001		
Contractor:	Earth Tech,	Inc.						
Address:	7870 Villa I	Park Drive, Su	iite 400					
		Virginia 2322	8					
Phone No.:	(804) 515-8	300						
Date: 4/18/06	1	T	T	Earth Tech Project No.: 70536				
Day	S	M	T	W	T	F	S	
Weather			SUNNY					
Temp.			65°F					
Wind			SLIGHT					
Humidity			LOW					
Earth Tech P	ersonnel On-S	Site: Robert D	Derrick, Chuc	k Fernald				
Subcontracto	or (include nan	nes & respons	ibilities): N/A					
Contract Mat	terials and Equ	uipment on sit	e: F 150, repl	acement a	ctuator, gene	ral hand tools		
	med (include s		•		cable):			
	em monitorin	_	_					
	actuator for	EPA-EXT-02	was replaced	l and it wa	as inspected to	o make sure it	was properly	
working								
Quality Cont	rol Activities	(including fiel	ld calibrations): N/A				
Health and S	afety Levels a	nd Activities:	Level D					
Problems En	countered/Co	rection Action	n Taken: N/A					
	elopments Lea							
		t all inspection	ns by subject a	nd specifi	cation location	; attach minute	s of meeting and	
list of all atte	endees): N/A							
Have all requ	iired submitta	ls and samples	s of constructi	on been ap	proved? Yes			
Do the mater	rials and equip	ment to be us	ed conform to	the submi	ttals? Yes			
Has all prelin	ninary work b	een inspected	, tested, and co	ompleted?	Yes			
·								

	DAIL VOLLALITY CONTROL DEDORT
Cita Nama and	DAILY QUALITY CONTROL REPORT Lagranian Stanton Classes Site (LTRA) Creek Neels NIV
	Location: Stanton Cleaners Site (LTRA) – Great Neck, NY
Client: ECC	Contract No: 5442-001-001
	Earth Tech, Inc.
Address:	7870 Villa Park Drive, Suite 400
	Richmond, Virginia 23228
Phone No.:	(804) 515-8300
Date: 4/18/06	Earth Tech Project No.: 70536
-	and inspection techniques to be executed to prove contract compliance (include both expected
and actual resu	ilts): N/A
Has a phase ha	zard analysis been performed? Included in the Site Specific Health & Safety Plan
Comments and	deficiencies noted and corrective actions taken: Explained in work performed section.
	on: List all inspections by subject and specification location. Comment and/or deficiencies
	ective actions taken.
Explained in w	ork performed section.
Follow-up Insp	pection: List all inspections by subject and specification location. Comment and/or deficiencies
noted and corre	ective actions taken.
Special Notes:	
Tomorrow's E	xpectations:
Weekly O and	l M inspection
Bi weekly air	monitoring
Monthly syste	em sampling (May 2)
Quarterly wel	l sampling (week of May 15)
By: Robert De	rrick Title: Environmental Scientist
0	Let Den G (Quality Control Representative/Manager)
Signature: F	(Quality Control Representative/Manager)
	(Quality Control Representative Filantiger)
The above repo	ort is complete and correct. All materials and equipment used and all work performed during
	period are in compliance with the contract specifications and submittals, except as noted above.
Signature:	(Contractor's Authorized Representative)
Signature:	(Contractor's Authorized Representative)

Appendix B Groundwater Treatment System Operation & Maintenance Checklists

$\frac{STANTON\ CLEANERS\ AREA\ GROUNDWATER\ CONTAMINATION\ SITE\ OPERATION\ AND}{MAINTENANCE\ WEEKLY\ CHECKLIST}$

1.	A. Is any part of the system leaking? YES \sqrt{N} If so, list where.	NO		
	B. Is there water on the floor? YES \sqrt{NO} If so, list where.			
	C. Are all three (3) floor sump level switches in place	e? √YES	NO	
	D. Is there any evidence of water in any of these floor. Note: If water is present, remove with shop vac or pa		YES	/NO
	A. Display screen on computer will either show systeger to show screen. If only the desktop is showing with the taskbar at the bottom of the screen.			
Current	B. From the site display, monitor and record the follootly MW-24 and EPA-EXT-02 are on 1. Recovery Well EPA-EXT-02 flow ¹	_	GPM	
	2. Recovery Well EPA-EXT-02 valve open	100	%	
	3. Recovery Well EPA-EXT-4R flow		GPM	
	4. Recovery Well EPA-EXT-4R valve open		_ %	
	5. Recovery Well pH	7.2	pH	
	6. Recovery Well conductivity	91	cond	
	7. Air Stripper pH	8.5 pH		
	8. Air Stripper temperature	153	_ deg.	
	9. Air Stripper air flow	413	CFM	
	10. Pre-vapor carbon pressure	0	_"wc	
	11. Post carbon air flow	2774	CFM	
	12. Discharge conductivity	155	cond	
	13. Discharge pH	8.7	pH	
	14. Discharge flow	70	GPM	
	15. Discharge total gallons	122,216,2	237	Gal
	16. SVE inlet vacuum	2	_"Hg	
	17. SVE air flow		CFM	

¹ Wells EPA-EXT-02 and MW-24 wells are manifold together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

C. From the treatment room, monitor and record the	following.
1. Recovery Well EPA-EXT-02 total flow	5,238,047 Gal
2. Recovery Well EPA-EXT-03 total flow	Gal
3. Recovery Well pH	pH
4. Recovery Well conductivity	0.64 cond
5. Air Stripper pH	pH
6. Air Stripper temperature	15.0deg. F
7. Air Stripper Pump water flow	72 GPM
8. Air Stripper Pump pressure	30PSI
9. Discharge conductivity	1.17 cond
10. Discharge pH	8.20pH
11. SVE inlet vacuum (digital readout)	1.6"Hg
12. SVE inlet vacuum	2.6"Hg
13. SVE post knockout vacuum	2.4"Hg
A TOS III I I I I I I I I I I I I I I I I I	

3. A. If time allows, check to see that the treatment system is cycling properly as described in STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE O&M MANUAL

$\frac{STANTON\ CLEANERS\ AREA\ GROUNDWATER\ CONTAMINATION\ SITE\ OPERATION\ AND}{MAINTENANCE\ WEEKLY\ CHECKLIST}$

1.	A. Is any part of the system leaking? YES VN If so, list where.			
	B. Is there water on the floor? YES \sqrt{NO} If so, list where.			
	C. Are all three (3) floor sump level switches in place	e? √YES	NO	
	D. Is there any evidence of water in any of these floor Note: If water is present, remove with shop vac or paper.		YES	√NO
	A. Display screen on computer will either show syste ger to show screen. If only the desktop is showing with the taskbar at the bottom of the screen.			
C	B. From the site display, monitor and record the follo	wing.		
Curren	tly MW-24 and EPA-EXT-02 are on 1. Recovery Well EPA-EXT-02 flow ¹	600	PM	
	2. Recovery Well EPA-EXT-02 valve open	100	%	
	3. Recovery Well EPA-EXT-4R flow		GPM	
	4. Recovery Well EPA-EXT-4R valve open		%	
	5. Recovery Well pH	6.9 pH		
	6. Recovery Well conductivity	69	cone	d
	7. Air Stripper pH	8.1 pH		
	8. Air Stripper temperature	154	_deg.	
	9. Air Stripper air flow	366	CFM	
	10. Pre-vapor carbon pressure	0	_"wc	
	11. Post carbon air flow	2691	CFM	
	12. Discharge conductivity	133	cond	
	13. Discharge pH	8.1	pH	
	14. Discharge flow	69	GPM	
	15. Discharge total gallons	122,887,325_		_ Gal
	16. SVE inlet vacuum	2	_"Hg	

¹ Wells EPA-EXT-02 and MW-24 wells are manifold together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

	17. SVE air flow	500 CFM	
C. Fro	m the treatment room, monitor and record the	following.	
	1. Recovery Well EPA-EXT-02 total flow	5854800 Gal	
	2. Recovery Well EPA-EXT-03 total flow	Gal	
	3. Recovery Well pH	6.78 pH	
	4. Recovery Well conductivity	0.64cond	
	5. Air Stripper pH	pH	
	6. Air Stripper temperature	15.2deg. F	
	7. Air Stripper Pump water flow	~72 GPM	
	8. Air Stripper Pump pressure	30PSI	
	9. Discharge conductivity	1.19 cond	
	10. Discharge pH	8.23 pH	
	11. SVE inlet vacuum (digital readout)	01.6"Hg	
	12. SVE inlet vacuum	2.5"Hg	
	13. SVE post knockout vacuum	~3.25"Hg	

3. A. If time allows, check to see that the treatment system is cycling properly as described in STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE O&M MANUAL

$\frac{STANTON\ CLEANERS\ AREA\ GROUNDWATER\ CONTAMINATION\ SITE\ OPERATION\ AND}{MAINTENANCE\ WEEKLY\ CHECKLIST}$

1.	A. Is any part of the system leaking? YES X If so, list where.	NO		
	B. Is there water on the floor? YES X NO If so, list where			
	C. Are all three (3) floor sump level switches in place	e? X YES	NO	
	D. Is there any evidence of water in any of these floo Note: If water is present, remove with shop vac or pa		YES X	NO
	A. Display screen on computer will either show systeger to show screen. If only the desktop is showing with the taskbar at the bottom of the screen.			
Current	B. From the site display, monitor and record the followard the followard the following		GPM	
	2. Recovery Well EPA-EXT-02 valve open	100	%	
	3. Recovery Well EPA-EXT-4R flow		GPM	
	4. Recovery Well EPA-EXT-4R valve open	·	%	
	5. Recovery Well pH	7.1	pH	
	6. Recovery Well conductivity	84	cond	
	7. Air Stripper pH	8.4 pH		
	8. Air Stripper temperature	154	_ deg.	
	9. Air Stripper air flow	388	CFM	
	10. Pre-vapor carbon pressure	0	_ "wc	
	11. Post carbon air flow	2732	CFM	
	12. Discharge conductivity	150	cond	
	13. Discharge pH	8.6	pH	
	14. Discharge flow	68	GPM	
	15. Discharge total gallons	123,511,9	960	Gal
	16. SVE inlet vacuum	2	"Hg	
	17. SVE air flow	256	CFM	

¹ Wells EPA-EXT-02 and MW-24 wells are manifold together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

C. From the treatment room, monitor and record the	following.
1. Recovery Well EPA-EXT-02 total flow	6,432,900 Gal
2. Recovery Well EPA-EXT-03 total flow	Gal
3. Recovery Well pH	pH
4. Recovery Well conductivity	0.64cond
5. Air Stripper pH	pH
6. Air Stripper temperature	15.2 deg. F
7. Air Stripper Pump water flow	70 GPM
8. Air Stripper Pump pressure	30PSI
9. Discharge conductivity	1.20 cond
10. Discharge pH	8.20 pH
11. SVE inlet vacuum (digital readout)	01.5"Hg
12. SVE inlet vacuum	2.60"Hg
13. SVE post knockout vacuum	3.5"Hg

3. A. If time allows, check to see that the treatment system is cycling properly as described in STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE O&M MANUAL

Appendix C

Groundwater Treatment System Downloaded Operational Data

	Recovery Well	Recovery Well	Recovery Well				Influent	Effluent	Influent	Air Stripper	Discharge		Air Stripper Air		SVE Air
	1	2	3	Discharge	Discharge	Influent water	conductivity	conductivity	water	water	water	Total gallons discharged	Flow	Combined Discharge Air Flow	Flow
	Flow (GPM)	Flow (GPM)	Flow (GPM)	Flow (GPM)	Flow (CFM)	Temperature (deg F)			pH	pH	pH				
1/2006 00	0	0	62	67	2774	154	68	132	6.9	8.1	8.3	121898990.3	412	2774	500
/1/2006 :00	0	0	60	66	2691	154	71	134	6.9	8.1	8.3	121914400.1	361	2691	500
/1/2006	0	0	60	66	2693	155	72	138	7	8.2	8.4	121929814.7	338	2693	500
/1/2006 2:00	0	0	61	66	2449	155	68	136	6.9	8.1	8.3	121945444.3	318	2449	500
/1/2006 6:00	0	0	62	70	2541	155	66	132	6.9	8.1	8.3	121960835.2	389	2541	500
/1/2006 0:00	0	0	59	68	2449	154	67	131	6.9	8.1	8.3	121976214	357	2449	500
/2/2006	0	0	59	65	2551	154	68	132	6.9	8.1	8.3	121991828.7	406	2551	500
2/2006 00	0	0	61	68	2546	154	69	132	6.9	8.1	8.3	122003424.2	449	2546	500
2/2006 00	0	0	62	65	2599	153	73	135	6.9	8.2	8.4	122018862.9	468	2599	500
2/2006 2:00	0	0	62	66	2742	153	74	137	7	8.2	8.4	122034255.9	406	2742	500
2/2006 5:00	0	0	60	68	2546	153	68	131	6.9	8.1	8.3	122049908.9	388	2546	500
/2/2006 0:00	0	0	60	67	2771	153	66	129	6.9	8.1	8.3	122065327.2	376	2771	500
3/2006 00	0	0	59	67	2691	152	69	130	6.9	8.1	8.3	122080694.5	401	2691	500
3/2006	0	0	60	67	2909	153	76	139	7	8.2	8.5	122096133.5	424	2909	500
00 3/2006 00	0	0	62	67	2774	153	85	148	7.2	8.4	8.6	122111758.9	413	2774	500
3/2006 2:00	0	0	62	66	2866	154	82	146	7.1	8.4	8.6	122127200.3	389	2866	500
3/2006	0	0	62	68	2774	154	77	141	7	8.3	8.5	122142580	465	2774	500
i:00 3/2006	0	0	60	70	2691	154	84	148	7.1	8.4	8.6	122158281.6	422	2691	500
4/2006 00	0	0	61	69	2866	155	87	155	7.2	8.5	8.7	122173708.9	457	2866	500
4/2006	0	0	59	66	2544	154	87	154	7.2	8.5	8.7	122189137.9	427	2544	500
00 4/2006	0	0	58	68	2815	153	90	154	7.3	8.5	8.8	122204811.5	401	2815	500
4/2006	0	0	61	66	2601	153	87	150	7.2	8.5	8.7	122220245.7	489	2601	500
4/2006	0	0	60	65	2909	153	81	144	7.1	8.3	8.6	122235634.6	333	2909	500
5:00 4/2006	0	0	59	68	2785	153	77	139	7	8.3	8.5	122251074.9	383	2785	500
0:00 5/2006	0	0	59	4	2691	153	91	154	7.3	8.5	8.8	122266661.3	396	2691	500
5/2006	0	0	60	70	2691	156	99	164	7.4	8.7	8.9	122282168.3	539	2691	344
5/2006	0	0	59	66	2863	157	102	166	7.5	8.7	9	122297624.3	493	2863	500
00 5/2006	0	0	58	68	2546	156	99	163	7.4	8.7	8.9	122313047.4	463	2546	500
2:00	0	0	61	66	2774	154	95	159	7.3	8.6	8.8	122328743.2	401	2774	500
i:00 5/2006	0	0	60	67	2739		89		7.2	8.5	8.7	122344208.7	414	2739	500
5/2006 0:00 6/2006	0	0	59	66	2774	152 156	100	152 164	7.4	8.7	8.9	122359657.6	457	2774	500
6/2006 6/2006	0	0	61	66	2928	157	106	170	7.4	8.8	9.1	122375065.8	372	2928	500
00		0													
6/2006 00	0	0	60 58	67	2601 2546	159	107	172	7.6	8.8	9.1	122390768.6 122406175.9	500 480	2601 2546	500
6/2006 2:00	0	0				157	101		7.5	8.7	9				500
6/2006 5:00	0	0	61	66	2739	153	88	152	7.2	8.5	8.7	122421591.9	539	2739	500
6/2006 1:00	0	0	60	69	2601	153	81	145	7.1	8.3	8.6	122436983.3	427	2601	239
7/2006 00	0	0	61	66	2921	153	91	156	7.3	8.5	8.8	122452379.4	444	2921	500
7/2006 00	0	0	60	68	2691	157	99	166	7.4	8.7	8.9	122467989.6	435	2691	500
7/2006 00	0	0	59	66	2739	158	105	170	7.5	8.8	9	122483388.2	409	2739	500
/2006 :00	0	0	62	69	2728	157	96	163	7.4	8.6	8.9	122498804.2	399	2728	500
7/2006 :00	0	0	60	69	2742	155	84	149	7.2	8.4	8.6	122514227.1	444	2742	500
7/2006 :00	0	0	61	67	2551	155	73	139	7	8.2	8.4	122529934	388	2551	500
8/2006	0	0	58	68	2548	155	74	141	7	8.2	8.4	122545319.1	392	2548	500
8/2006 00	0	0	59	68	2546	155	76	142	7	8.2	8.4	122560740.8	332	2546	500
8/2006 00	0	0	60	70	2774	154	76	140	7	8.2	8.4	122576403.5	393	2774	500
8/2006 2:00	0	0	61	69	2739	153	82	145	7.1	8.4	8.6	122591813.1	417	2739	500
8/2006 i:00	0	0	58	67	2863	153	87	151	7.2	8.5	8.7	122607253.2	367	2863	500

4/8/2006 20:00	0	0	60	69	2771	154	91	155	7.3	8.5	8.8	122622650.8	407	2771	500
4/9/2006 0:00	0	0	60	67	2691	155	97	162	7.4	8.6	8.9	122638313.6	414	2691	500
4/9/2006 4:00	0	0	59	66	2774	156	101	165	7.4	8.7	9	122653761.6	394	2774	500
4/9/2006 8:00	0	0	59	67	2863	156	103	167	7.5	8.8	9	122669250.8	403	2863	500
4/9/2006	0	0	60	69	2907	156	101	166	7.4	8.7	9	122684760.5	409	2907	500
12:00 4/9/2006	0	0	59	69	2866	153	83	147	7.1	8.4	8.6	122700277.4	406	2866	500
16:00 4/9/2006	0	0	59	66	2698	153	69	132	6.9	8.1	8.3	122715527.8	434	2698	500
20:00 4/10/2006	0	0	61	67	2774	153	82	146	7.1	8.3	8.6	122731028.3	450	2774	500
0:00 4/10/2006	0	0	59	67	2900	154	94	159	7.3	8.6	8.8	122746525.9	407	2900	500
4:00	ŭ											122762044.2			
4/10/2006 8:00	0	0	62	69	2691	157	100	165	7.4	8.7	8.9		490	2691	500
4/10/2006 12:00	0	0	59	66	2691	153	84	148	7.2	8.4	8.6	122777546.2	399	2691	500
4/10/2006 16:00	0	0	59	66	2725	153	69	132	6.9	8.1	8.3	122793046.9	358	2725	500
4/10/2006 20:00	0	0	61	68	2909	152	69	130	6.9	8.1	8.3	122808553.3	406	2909	500
4/11/2006 0:00	0	0	60	67	2866	153	82	145	7.1	8.3	8.5	122824061.7	506	2866	500
4/11/2006 4:00	0	0	59	67	2866	155	95	160	7.4	8.6	8.8	122839565.6	432	2866	500
4/11/2006	0	0	60	0	2774	157	103	169	7.5	8.7	9	122854884.2	402	2774	500
8:00 4/11/2006	0	0	59	65	2742	155	89	156	7.3	8.5	8.7	122870286.7	382	2742	500
12:00 4/11/2006	0	0	60	66	2746	154	70	136	6.9	8.1	8.3	122885731.7	320	2746	500
16:00 4/11/2006	0	0	60	68	2691	153	69	132	6.9	8.1	8.3	122901178.4	389	2691	500
20:00 4/12/2006	0	0	62	70	2909	154	81	146	7.1	8.3	8.5	122916619.7	396	2909	500
0:00 4/12/2006	0	0	59	67	2739	153	90	155	7.1	8.5	8.7	122932099.3	485	2739	500
4:00	v	U		0/											
4/12/2006 8:00	0	0	58	0	2601	155	93	160	7.3	8.6	8.8	122947612.5	406	2601	500
4/12/2006 12:00	0	0	58	5	2691	155	81	148	7.1	8.3	8.6	122963251.2	430	2691	500
4/12/2006 16:00	0	0	60	66	2753	155	71	137	6.9	8.2	8.4	122978726.2	402	2753	500
4/12/2006 20:00	0	0	60	71	2744	154	73	137	7	8.2	8.4	122994181.3	359	2744	500
4/13/2006 0:00	0	0	60	71	2601	154	81	147	7.1	8.4	8.6	123009622.3	407	2601	500
4/13/2006 4:00	0	0	59	66	2691	154	86	152	7.2	8.5	8.7	123025065.1	462	2691	500
4/13/2006	0	0	58	67	2909	155	89	156	7.2	8.5	8.7	123040517.5	338	2909	500
8:00 4/13/2006	0	0	61	72	2691	156	81	149	7.1	8.4	8.6	123055954.5	440	2691	500
12:00 4/13/2006	0	0	62	65	2774	155	68	135	6.9	8.1	8.3	123071594.5	343	2774	500
16:00 4/13/2006	0	0	60	68	2870	154	66	132	6.9	8.1	8.3	123087035.1	343	2870	500
20:00 4/14/2006	0	0	61	68	2861	154	68	133	6.9	8.1	8.3	123102586.3	361	2861	500
0:00 4/14/2006	0	0	60	67	2744	154	71	135	6.9	8.1	8.3	123117905.7	352	2744	500
4:00 4/14/2006	0	0	59	67	2546	155	81	147	7.1	8.3	8.5	123133447.1	406	2546	500
8:00	0	0							7.1						
4/14/2006 12:00	0	0	59	69	2912	155	76	143	/	8.2	8.4	123149021.1	397	2912	500
4/14/2006 16:00	0	0	58	67	2551	155	74	140	7	8.2	8.4	123164380.4	322	2551	500
4/14/2006 20:00	0	0	58	66	2744	155	74	142	7	8.2	8.4	123179984.5	351	2744	500
4/15/2006 0:00	0	0	61	68	2601	155	78	146	7.1	8.3	8.5	123195359.5	388	2601	500
4/15/2006 4:00	0	0	59	65	2691	155	81	147	7.1	8.3	8.5	123209353.9	399	2691	500
4/15/2006 8:00	0	0	59	66	2599	155	83	150	7.1	8.4	8.6	123224967.6	389	2599	500
4/15/2006 12:00	0	0	63	67	2551	156	75	144	7	8.2	8.4	123240312.7	429	2551	500
4/15/2006	0	0	61	67	2447	156	68	136	6.9	8.1	8.3	123255920.8	393	2447	500
16:00			<u> </u>	1	<u> </u>		1	<u>I</u>	<u> </u>	I .	l	1	l .	I	
4/15/2006 20:00	0	0	61	65	2604	154	66	130	6.9	8.1	8.3	123271491.2	331	2604	500
4/16/2006 0:00	0	0	59	69	2746	154	68	132	6.9	8.1	8.3	123286811.9	423	2746	500
4/16/2006 4:00	0	0	62	66	2693	153	69	133	6.9	8.1	8.3	123302410.7	383	2693	500
4/16/2006 8:00	0	0	59	67	2551	154	79	144	7	8.3	8.5	123317755	361	2551	500
4/16/2006	0	0	58	69	2739	154	78	143	7	8.3	8.5	123333333.5	348	2739	500
12:00 4/16/2006	0	0	59	66	2691	154	69	134	6.9	8.1	8.3	123348681.3	338	2691	292
16:00 4/16/2006	0	0	60	68	2691	153	68	132	6.9	8.1	8.3	123364256.7	398	2691	500
20:00 4/17/2006	0	0	59	68	2601	153	70	134	6.9	8.1	8.4	123379609.6	424	2601	500
0:00	,	,	39	30	2301	.55		1.34	V.9	0.1	0.9	1255,7007.0	729	2001	500

4/17/2006 4:00	0	0	62	67	2742	153	82	146	7.1	8.4	8.6	123392079	413	2742	500
4/17/2006 8:00	0	0	58	69	2546	154	91	156	7.3	8.5	8.8	123407466.1	381	2546	500
4/17/2006 12:00	0	0	58	65	2744	154	80	146	7.1	8.3	8.5	123423092.1	437	2744	500
4/17/2006 16:00	0	0	60	66	2746	154	69	134	6.9	8.1	8.3	123438419.9	428	2746	500
4/17/2006 20:00	0	0	61	65	2447	154	68	132	6.9	8.1	8.3	123454061.3	386	2447	500
4/18/2006 0:00	0	0	60	66	2771	153	75	138	7	8.2	8.4	123469463.2	452	2771	500
4/18/2006	0	0	62	67	2691	154	86	151	7.2	8.4	8.7	123485063.2	434	2691	500
4:00 4/18/2006	0	0	59	69	2546	156	97	162	7.4	8.6	8.9	123500448.8	424	2546	500
8:00 4/18/2006	39	39	166	253	18	154	91	159	7.2	8.4	8.7	123524920	17	18	88
12:00 4/18/2006	0	0	61	70	2498	154	69	135	6.9	8.1	8.3	123541509.4	406	2498	500
16:00 4/18/2006	0	0	59	66	2774	154	67	131	6.9	8.1	8.3	123557113	414	2774	500
20:00 4/19/2006	0	0	58	66	2774	153	68	132	6.9	8.1	8.3	123572663.5	407	2774	327
0:00 4/19/2006	0	0	59	70	2604	154	72	136	6.9	8.1	8.4	123588272.6	453	2604	500
4:00	0	0													
4/19/2006 8:00		-	60	70	2546	154	80	145	7.1	8.3	8.5	123603899.9	402	2546	500
4/19/2006 12:00	0	0	62	67	2691	154	73	139	7	8.2	8.4	123619501.8	403	2691	500
4/19/2006 16:00	0	0	59	66	2546	154	68	134	6.9	8.1	8.3	123635125.1	386	2546	500
4/19/2006 20:00	0	0	62	67	2604	154	66	130	6.8	8.1	8.3	123650727.7	387	2604	500
4/20/2006 0:00	0	0	60	0	2447	154	67	132	6.9	8.1	8.3	123666379.9	369	2447	500
4/20/2006 4:00	0	0	60	69	2691	154	69	133	6.9	8.1	8.3	123682146.4	386	2691	500
4/20/2006 8:00	0	0	58	69	2742	154	74	138	7	8.2	8.4	123697741.1	384	2742	331
4/20/2006 12:00	0	0	60	67	2746	154	69	135	6.9	8.1	8.3	123713375.3	340	2746	500
4/20/2006	0	0	62	65	2553	154	66	132	6.9	8.1	8.3	123729005.2	353	2553	500
16:00 4/20/2006	0	0	60	67	2546	154	65	129	6.8	8	8.3	123744676.8	398	2546	500
20:00 4/21/2006	0	0	62	65	2691	153	66	130	6.8	8.1	8.3	123760278.1	383	2691	500
0:00 4/21/2006	0	0	60	65	2551	153	68	133	6.9	8.1	8.3	123775907.8	392	2551	500
4:00 4/21/2006	0	0	62	71	2774	154	73	138	6.9	8.2	8.4	123791543.5	415	2774	500
8:00 4/21/2006	0	0	59	67	2744	154	70	135	6.9	8.1	8.3	123807180.4	434	2744	500
12:00 4/21/2006	0	0	58	65	2693	154	68	133	6.9	8.1	8.3	123822770	368	2693	500
16:00 4/21/2006	0	0	60	68	2693	153	68	133	6.9	8.1	8.3	123838386.5	359	2693	500
20:00 4/22/2006	0	0	62	66	2774	153	74	137	6.9	8.2	8.4	123853988.7	361	2774	500
0:00		0	,												
4/22/2006 4:00	0	-	61	68	2930	153	83	147	7.1	8.4	8.6	123869647.5	358	2930	500
4/22/2006 8:00	0	0	59	66	2774	153	88	154	7.2	8.5	8.7	123885298.3	389	2774	500
4/22/2006 12:00	0	0	59	66	2866	154	93	158	7.3	8.6	8.8	123900916.1	409	2866	500
4/22/2006 16:00	0	0	61	4	2774	153	91	157	7.3	8.6	8.8	123916747.7	445	2774	500
4/22/2006 20:00	0	0	61	67	2742	155	95	161	7.3	8.6	8.8	123932420.2	398	2742	500
4/23/2006 0:00	0	0	61	65	2578	156	96	164	7.4	8.7	8.9	123948075.4	379	2578	500
4/23/2006 4:00	0	0	61	67	2742	155	95	162	7.3	8.6	8.8	123963725.2	440	2742	500
4/23/2006 8:00	0	0	60	67	2742	156	94	163	7.3	8.6	8.8	123979392.5	427	2742	500
4/23/2006 12:00	0	0	60	65	2601	156	91	161	7.3	8.6	8.8	123994959.6	281	2601	500
4/23/2006	0	0	59	65	2551	156	85	154	7.2	8.4	8.6	124010572.7	399	2551	500
16:00 4/23/2006	0	0	60	67	2728	155	80	147	7.1	8.3	8.5	124026170.2	372	2728	500
20:00 4/24/2006	0	0	62	65	2546	155	84	150	7.1	8.4	8.6	124041762	427	2546	500
0:00 4/24/2006	0	0	60	65	2742	154	86	153	7.2	8.4	8.7	124057409.4	346	2742	500
4:00 4/24/2006	0	0	58	69	2742	154	90	157	7.2	8.5	8.7	124073074.1	519	2742	500
8:00 4/24/2006	0	0	61	68	2537	155	90	158	7.2	8.5	8.7	124088720.1	393	2537	500
12:00	0	0	58	67	2601	155	80	147	7.1	8.3	8.5	124104406.6	440	2601	500
4/24/2006 16:00 4/24/2006	0	0	58	68	2601	154	72	137	6.9	8.1	8.4	124120080.6	388	2601	500
20:00		0	60	68			80	147			8.4	124120080.6	388	2714	500
4/25/2006 0:00	0				2714	155			7.1	8.3					
4/25/2006 4:00	0	0	60	68	2546	154	89	156	7.2	8.5	8.7	124151365.3	386	2546	500
4/25/2006 8:00	0	0	60	65	2544	158	99	167	7.4	8.7	8.9	124167027.6	424	2544	500
4/25/2006 12:00	0	0	59	67	2498	155	89	157	7.2	8.5	8.7	124182683.3	327	2498	500

4/25/2006 16:00	0	0	60	70	2544	155	71	138	6.9	8.2	8.4	124198302.6	335	2544	500
4/25/2006 20:00	0	0	60	65	2746	154	68	135	6.9	8.1	8.3	124214163.7	362	2746	500
4/26/2006 0:00	0	0	60	65	2691	153	75	139	7	8.2	8.4	124229772.6	439	2691	500
4/26/2006 4:00	0	0	61	69	2742	153	88	151	7.2	8.5	8.7	124245388.2	361	2742	500
4/26/2006 8:00	0	0	60	69	2774	155	96	162	7.3	8.6	8.9	124261223.1	338	2774	500
4/26/2006 12:00	0	0	62	65	2742	154	93	158	7.3	8.6	8.8	124276832.7	393	2742	500
4/26/2006 16:00	0	0	60	66	2774	154	81	146	7.1	8.3	8.6	124292415.1	406	2774	500
4/26/2006 20:00	0	0	59	69	2774	153	74	137	7	8.2	8.4	124308007.6	376	2774	500
4/27/2006 0:00	0	0	61	66	2691	154	85	151	7.2	8.4	8.7	124323559.7	463	2691	500
4/27/2006 4:00	0	0	60	69	2691	154	93	158	7.3	8.6	8.8	124339388.9	352	2691	500
4/27/2006 8:00	0	0	60	66	2691	157	98	167	7.4	8.7	8.9	124354974.6	404	2691	500
4/27/2006 12:00	0	0	59	65	2541	155	87	155	7.2	8.5	8.7	124370595.3	379	2541	500
4/27/2006 16:00	0	0	59	68	2396	154	71	137	6.9	8.1	8.4	124386180.6	398	2396	500
4/27/2006 20:00	0	0	61	67	2746	154	68	134	6.9	8.1	8.3	124401732.6	394	2746	500
4/28/2006 0:00	0	0	58	67	2744	154	71	136	6.9	8.1	8.4	124417283.8	403	2744	500
4/28/2006 4:00	0	0	58	10	2928	153	82	146	7.1	8.3	8.6	124433074.7	410	2928	500
4/28/2006 8:00	0	0	60	67	2689	153	90	155	7.2	8.5	8.7	124448639.6	437	2689	500
4/28/2006 12:00	0	0	61	67	2551	154	88	154	7.2	8.5	8.7	124464255.9	469	2551	500
4/28/2006 16:00	0	0	62	67	2601	154	77	142	7	8.3	8.5	124479862.6	427	2601	500
4/28/2006 20:00	0	0	60	66	2601	153	69	133	6.9	8.1	8.3	124495480.6	429	2601	500
4/29/2006 0:00	0	0	61	68	2601	153	79	144	7.1	8.3	8.5	124511095	448	2601	500
4/29/2006 4:00	0	0	60	70	2909	154	92	157	7.3	8.5	8.8	124526716.1	476	2909	500
4/29/2006 8:00	0	0	59	67	2774	156	100	165	7.4	8.7	8.9	124542356.2	413	2774	500
4/29/2006 12:00	0	0	58	69	2691	155	95	161	7.3	8.6	8.8	124557970.4	364	2691	500
4/29/2006 16:00	0	0	59	66	2744	154	80	145	7.1	8.3	8.5	124573600.9	407	2744	500
4/29/2006 20:00	0	0	62	67	2604	153	69	133	6.9	8.1	8.3	124589230.3	448	2604	500
4/30/2006 0:00	0	0	59	67	2928	153	84	148	7.1	8.4	8.6	124604824.6	424	2928	500
4/30/2006 4:00	0	0	62	66	2774	155	95	161	7.3	8.6	8.8	124620432.4	423	2774	500
4/30/2006 8:00	0	0	58	68	2774	158	103	170	7.5	8.7	9	124636044.1	469	2774	500
4/30/2006 12:00	0	0	60	65	2601	155	94	161	7.3	8.6	8.8	124651669.5	351	2601	500
4/30/2006 16:00	0	0	61	69	2553	154	77	144	7	8.3	8.5	124667051.1	404	2553	500
4/30/2006 20:00	0	0	61	67	2601	154	68	134	6.9	8.1	8.3	124682647	372	2601	500

Appendix D Sampling Trip Reports

SAMPLING TRIP REPORT

Site Name: STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE

CERCLIS ID Number: NYD047650197

Sampling Dates: April 4, 2006 **CLP Case Number:** N/A

Site Location: 110 Cutter Mill Road, Great Neck, New York, 11021 **Sample Descriptions:** Groundwater Treatment System Influent / Effluent.

Laboratories Receiving Samples (Table 1):

Case Number	Sample Type	Name and Address of Laboratory
N/A	TCL-VOAs OLC03.2	John Birri USEPA Region II DESA LAB Building 209 MS-230 2890 Woodbridge Avenue Edison, N.J. 08837

Sample Dispatch Data (Table 2):

On April 4, 2006, a total of four (4) groundwater samples, including one (1) duplicate sample and one (1) trip blank were shipped to the U.S. Environmental Protection Agency Region II Lab (USEPA) for TCL-VOAs analysis.

FedEx Air Bill No.	Number of Coolers	Number and Type of Samples	Time and Date of Shipping
855367817699	1	Total of 4 Aqueous Samples to include 1 duplicate sample, and 1 Trip Blank for TCL-VOAs	4/4/06 @ 10:15 TO: USEPA

Sampling Personnel (Table 3):

2011-P111-8 1 012011101 (1 0210 0)1		
Name	Organization	Site Duties
Tom Williams	Earth Tech, Inc.	Earth Tech Project Manager
James Kearns	Earth Tech, Inc.	Earth Tech Task Manager/ Health and Safety
Robert Derrick	Earth Tech, Inc.	Sampler

Sample Numbers and Collection Points (Table 4):

Laboratory	Analysis	Sample Type	Sample #	Sample Collection Point(SCP)
			Influent (MW-24	Influent (MW-24
USEPA Region II DESA	TCL-VOAs	Aqueous	and EPA-EXT-02)	and EPA-EXT-02)
LAB		Groundwater	Effluent	Effluent
Building 209 MS-230 2890 Woodbridge Avenue			Effluent A	Duplicate of Effluent
Edison, N.J. 08837			ТВ	Trip Blank

Additional Comments:

The Influent, Effluent and Effluent-A samples were collected after a five gallon purge from the sample ports located within the treatment system. The influent sample includes MW-24 and EPA-EXT-02. These two wells combine before they reach the treatment room and therefore cannot be sampled individually. These samples were collected for the following analysis: Target Compound List (TCL) Volatile Organic Compounds. In addition, one duplicate sample (Effluent-A) was collected from the effluent of the groundwater treatment process and was a duplicate sample of sample Effluent. One trip blank (TB) was also included in the shipment. Copies of the Chain of Custody forms and a copy of the FedEx air bill are included in Appendix A and B, respectively.

Earth Tech personnel also collected real time water quality parameters from the raw water for all the following sampling locations: Influent and Effluent (Discharge) and the results are included in Appendix C.

Appendix 1

Chain of Custody (April 4, 2006 System Sampling Event)

© EPA USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

DAS No:	Case No:

	ТВ	INFLUENT (MW-24 AND	EFFLUENT A	EFFLUENT	ORGANIC SAMPLE No.	Region: Project Code: Account Code: CCRCLIS ID: Spill ID: Site Name/State: Project Leader: Action: Sampling Co:
Robert Derrick	Field QC/	Monitor Well/ Robert Derrick	Robert Derrick	Monitor Well/ Robert Derrick	MATRIX/ SAMPLER	20.00
	L/G	L/G	L/G	L/G	TYPE	2 NYD047650197 02LH Stanton Cleaners Area Groun James Kearns Operations and Maintenance Earth Tech
	VOA (14)	VOA (14)	VOA (14)	VOA (14)	ANALYSIS/ TURNAROUND	2 , v/D047650197 02LH Stanton Cleaners Area Groundwater Contami James Kearrs Operations and Maintenance Earth Tech
	(HCL) (3)	(HCL) (3)	(HCL) (3)	(HCL) (3)	TAG No.! PRESERVATIVE! Bottles	Date Shipped: Carrier Name: Airbill: Shipped to:
		=			o./ /E/ Bottles	4/4/2006 FedEx B85367817699 USEPA REGION II DESA LAB Building 209, MS-230 Building 209, MS-289 E3890 Woodbridge Avenue Edison NJ 08837 (732) 906-6866
	ТВ	INFLUENT (MW-24 and S: 4/4/2006 EPA-EXT-02)	EFFLEUNT A	EFFLUENT	STATION	e e e e e e e e e e e e e e e e e e e
		24 and .				Relingu 1 2
	S: 4/4/2006	S: 4/4/2006	S: 4/4/2006	S: 4/4/2006	SAMPLE DAT	Chain of Custody Record Relinguished By (Da 1 Fall Y-1 Y-1 2 3 4
	8:00	8:38	8:50	8: 48	SAMPLECOLLECT DATE/TIME	(Date / Time) ('H-&b / 10:15
					SAME	(C:15
					SAMPLE No.	Signature Williams Received By
	III DIGIIN	T., 0135	LIBIN POPILICAIS		SAMPLE No.	Signature: Mut Received By

Ombinent road	Type/Designate: Composite = C, Grab = G	L = Low, M = Low/Medium, H = High	Concentration:	Analysis Key:
Chipmont looks				
			EFFLUENT A	
		e used for laboratory ac:	Sample(s) to be u	Complete? N
Chain of Custody Seal Number:	Additional Sampler Signature(s):			

TR Number: 2-445049606-040306-0006

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 703/264-9348 Fax 703/264-9222

ORGANIC MATRIXI CONCI ANALYSISI SAMPLEN TYPE TURNAROUND PRES	(732) 906-6886	2890 Woodbridge Avenue 3	LAB Building 209 MS-230	USEPA REGION II DESA	_	36	© EPA USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record
ANALYSIS/ TURNAROUND	4	Avenue 3	2	II DESA	Re.	Ω	Intract L
	4	3	N	71	Rel	Ω	20 -
PRES				WAR.	Relinquished By	Chain of Custody Record	aboratory F port & Cha
TAG No./ PRESERVATIVE/ Bottles				51:01/10-11 C	(Date / Time)	y Record	rogram in of Custody Re
STATION LOCATION					Received By	Sampler LALL	cord
SAMPLE COLLE DATE/TIME					(Date / Time)	V	
INORGANIC SAMPLE No.	Unit Price:	Lab Contract No:	Transfer To:	Unit Price:	Lab Contract No:	For Lab Use Only	Case No: DAS No: SDG No:
FOR LAB USE ONLY Sample Condition On Receipt							_
	STATION SAMPLECOLLECT INORGANIC LOCATION DATE/INME SAMPLE No.	STATION SAMPLE COLLECT INORGANIC LOCATION DATE: TIME SAMPLE No.	Lab Contract No: Unit Price: STATION SAMPLECOLLECT INORGANIC LOCATION DATETIME SAMPLE No.	Lab Contract No: Lab Contract No: Unit Price: STATION SAMPLECOLLECT INORGANIC LOCATION DATETIME SAMPLE No.	Unit Price: Transfer To: Lab Contract No: Unit Price: STATION SAMPLECOLLECT INORGANIC LOCATION DATETIME SAMPLE No.	Received By (Date / Time) Lab Contract No: Unit Price: Transfer To: Lab Contract No: Lab Contract No: Unit Price: INORGANIC STATION DATETIME SAMPLE COLLECT INORGANIC SAMPLE No.	Sampler Signature: Received By (Date / Time) Lab Contract No: Unit Price: Transfer To: Lab Contract No: Unit Price: STATION LOCATION SAMPLECOLLECT LOCATION DATE TIME SAMPLE No.

	Robert Derrick							
EFFLUENT A	Field QC/ Robert Derrick	L/G	VOA (14)	(HCL) (3)	EFFLEUNT A S: 4/4/2006	တ္	4/4/2006	8:50
INFLUENT (MW-24 AND	INFLUENT Monitor Well/ (MW-24 AND Robert Derrick	L/G	VOA (14)	(HCL) (3)	INFLUENT (MW-24 and EPA-EXT-02)	Ś	S: 4/4/2006	8:38
В	Field QC/ Robert Derrick	L/G		(HCL) (3)	ТВ	Ś	S: 4/4/2006	8:00

Shipment for Case Complete?N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt	Chain of Custody Seal Numbe	9r:
	EFFLUENT A				
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact?	Shipment iced?
VOA = CLP TCL Volatiles	5				

Appendix 2

FedEx Air Bill (April 4, 2006 System Sampling Event)

Fedex US Airbill Trading 8553 6781 7699	fem. D200 Sender's Copy
1 From neuropidad provided Date 4-406 Sensible's FeoEs Account Number 237442598	4a Express Package Service Touch Statistics The Section 6. Felic Priority Overnight Felic Standard Overnight Sections oping. Felic Priority Overnight Sections oping.
Senders Robert Derrick Phone (804)400-9611	FedEx 2Day Cocard losiness pay.* FodEx Express Saver That business day.*
Company Earth Tech	4b Express Freight Service To add SATURDAY Delivery, see Section 6. Packages over 150 fbs.
Address 110 Cutter Mill Food	FedEx 10ey Freight* FedEx 20ey Freight Second business day: *Culter Conference: *Culter Conference:
Cay Great Nock State NY ZIP 11021	5 Packaging FedEx Pak* FredEx Pak* FredEx Pak* FredEx Small Pak FredEx Small Pa
2 Your Internal Billing Reference 70536 07.03 (1983)	6 Special Handling Maturis Follows in Section 1
3 To Recipients John Birri Phone (732) 406-6886	SATURDAY Leiterer HOLD Weekday at FORES Location Foliation (Fig. 20). HOLD Saturday at FORES Location Foliation Foliation (Fig. 20). HOLD Saturday at FORES Location Foliation Foliation (Fig. 20). HOLD Saturday at FORES Location Foliation Foliation (Fig. 20). HOLD Saturday at FORES Location Foliation Folia
Recipient's John Birri Phone (732) 406-6886	Decision of Decision
Recipients John Birri Phone (732) 906-6886	Dualization Di Vi fer
Recipient's John Birri Phone (732) 906-6886 Company USEPA Fegian II Pecipients 299 Word bridge Avenue Building 209 MS-230 We contribute to Box to PD. 28 codes. Address. Address to require protects to box to post first address rove.	Designation of Inf Vier
Recipients John Birri Phone (732) 906-6886 Company USEPA Region IT Recipients 2890 World bridge Avenue Building 209 MS-230 Mar convention to P.D. Davis or P.D. ZP codes. Address.	Description
Recipient's John Birri Phone (732) 906-6886 Company USEPA Fegian II Pecipients 299 Word bridge Avenue Building 209 MS-230 We contribute to Box to PD. 28 codes. Address. Address to require protects to box to post first address rove.	Description
Recipient's John Birri Phone (732) 906-6886 Company USEPA Fegian II Pecipients 299 Word bridge Avenue Building 209 MS-230 We contribute to Box to PD. 28 codes. Address. Address to require protects to box to post first address rove.	Description Programme Pr
Recipient's John Birri Phone (732) 906-6886 Company USEPA Fegina II Pecipients 2890 Word bridge Avenue Building 209 MS-230 Address We consort deliver to Pr. Decora or Pr. 27 codes. Address To require speckage to held as aspectic Fredic location, prior Fretz address river. City Zdi SOA State NJ ZIP 08837	Description Test Description Descrip

Appendix 3

Water Quality Parameters (April 4, 2006 System Sampling Event)

STANTON CLEANERS SITE LTRA

Groundwater Pump and Treatment System Water Quality Parameters Log

Date: 4/4/06 Project # 70536

	рН	COND.	TURB.	DO	TEMP.	SALINITY
Influent*	6.24	0.783	40.6	9.6	12.9	0.0
Discharge	7.20	0.745	20.0	10.0	12.75	0.0

Total Gallons pumped: 122,216,237 gallons

Flow rate: 61 gpm

* The influent consists of MW-24 and EPA-EXT-02. These wells combine before they reach the treatment room and therefore cannot be individually sampled for analysis.

Equipment Calibrated by: Robert Derrick Comments:

Water samples collected by: Robert Derrick Water monitoring performed by: Robert Derrick

TEMP. - Temperature measured in degrees Fahrenheit.

COND. - Conductivity measured in milliSiemens per centimeter (mS/cm).

TURB. - Turbidity measure in nephelometric turbidity units (NTU).

DO - Dissolved Oxygen measured in milligrams per liter (mg/L).

SALINITY - Salinity in percentage.

Appendix E

Groundwater Treatment System Raw and Treated Analytical Data

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria
				MTBE	2	J	?
				cis-1,2-Dichloroethene	2	J	?
Influent	SC-01	B0001	10/27/2003	Trichloroethene (TCE)	3	J	5
				Toluene	3	J	5
				Tetrachloroethene	350 (D)		5
Effluent	SC-04	B0002	10/27/2003	None			
Trip Blank	SC-TB	B0003	10/27/2003	Acetone	61	J	5
ттр ыапк	30-16	Б0003	10/21/2003	Methylene chloride	2	J	5
				Tetrachloroethene (PCE)	240		5
Influent	SC-01	B0177	11/12/2003	Chlorodifluoromethane	8.6	NJ	
				1,2-Dichloroethene	3.3	NJ	5
Effluent	SC-04	B0178	11/12/2003	Chlorodifluoromethane	22	NJ	
				Tetrachloroethene	250		5
Influent Dup	SC-60	B0179	11/12/2003	Chlorodifluoromethane	29	NJ	
				1,2-Dichloroethene	3.4	NJ	
Trip Blank	SC-TB	B0180	11/12/2003	Tetrachloroethene	9.4		5
ттр Ватк	00 15	D0100	11/12/2000	Chlorodifluoromethane	4.3	NJ	
				Tetrachloroethene	290 (D)		5
Influent	SC-01	B17J3	12/10/2003	cis-1,2-Dichloroethene	2	J	
				Trichloroethene	3	J	
Effluent	SC-04	B17J4	12/10/2003	None			
				Tetrachloroethene	280 (D)		5
Influent Dup	SC-61	B17J5	12/10/2003	cis-1,2-Dichloroethene	2	J	
				Trichloroethene	3	J	
				MTBE	5	J	
Trip Blank	SC-TB	B17J6	12/10/2003	Toluene	2	J	
				Ethylbenzene	2	J	
				MTBE	2.7		
Influent	SC-01	B1000	1/12/2004	cis-1,2-Dichloroethene	1.5		
iiiideiit	30-01	B1000	1/12/2004	Trichloroethene	2.5		
				Tetrachloroethene	280		5
Effluent	SC-04	B1001	1/12/2004	None			
				MTBE	2.6		
Influent Dup	SC-62	B1002	1/12/2004	cis-1,2-Dichloroethene	1.5		
irilident Dup	30-02	D1002	1/12/2004	Trichloroethene	2.5		
				Tetrachloroethene	300		5
				Methylene chloride	0.6	K	
Trip Blank	SC-TB	B1003	1/12/2004	MTBE	3.7		
THP Blank	00-1B	D1003	1/12/2004	Tetrachloroethene	7.9		5
				m&p-Xylene	0.7		
				cis-1,2-Dichloroethene	1.7		
Influent	SC-01	B17Z0	2/12/2004	Trichloroethene	3.0		
n mucht	00-01	51120	L11212UU4	Tetrachloroethene	610 (D)		5
				Unknown TIC	0.53	J	
Effluent	SC-04	B17Z1	2/12/2004	Acetone	3.8	J	5
				Acetone	25	J	5
Influent Dup	SC-63	B17Z2	2/12/2004	cis-1,2-Dichloroethene	1.7		
mindent Dup	00-00	DIIZZ	L11212UU4	Trichloroethene	2.8		
				Tetrachloroethene	440 (D)		5
				Methylene chloride	0.16	J	
				MTBE	4.7		
				Chloroform	0.26	J	
				Tetrachloroethene	7.1		5
Trip Blank	SC-TB	B17Z3	2/12/2004	Xylene (total)	0.56		
				1,3-Dichlorobenzene	0.40	J	
				1,4-Dichlorobenzene	0.38	J	
				Unknown TIC	0.58	J	
				Benzene, 1-ethyl-3-methyl-	0.72	JN	

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria
				MTBE	2.7		
ladi	00.04	D4770	0/40/0004	cis-1,2-Dichloroethene	1.2		
Influent	SC-01	B17Z6	3/10/2004	Trichloroethene	2.3		
				Tetrachloroethene	260		5
Effluent	SC-04	B17Z7	3/10/2004	Tetrachloroethene	0.70		5
				MTBE	2.8		_
				cis-1,2-Dichloroethene	1.2		
Influent Dup	SC-64	B17Z8	3/10/2004	Trichloroethene	2.3		
				Tetrachloroethene	260		5
				Acetone	1.8		5
Trip Blank	SC-TB	B17Z9	3/10/2004	Toluene	0.50		
The Blank	00 15	B1723	0/10/2004	Isobutane	41	NJ	
				MTBE	1.9	140	
				cis-1,2-Dichloroethene	0.83		
Influent	SC-01	B1BS2	4/14/2004	Trichloroethene	1.5		
				Tetrachloroethene	380 (D)		5
Effluent	SC-04	B1BS3	4/14/2004	Tetrachloroethene	1.9		5
Lilidelit	30-04	B1B33	4/14/2004	Acetone	1.2	J	5
				MTBE	1.5	,	3
Influent Dup	SC-65	B1BS4	4/14/2004	cis -1,2-Dichloroethene	0.67	J	
ппаста Вар	00-03	B1504	4/14/2004	Trichloroethene	1.1	3	
				Tetrachloroethene	260 (D)		5
				Methylene chloride	0.17	J	3
Trip Blank	SC-TB	B1BS5	4/14/2004	Chloroform	2.8	3	
ттр Батк	00-1B	B1B03	4/14/2004	Bromodichloromethane	0.80		
				MTBE	2.1		
				cis -1,2-Dichloroethene	1.0		
Influent	SC-01	B1BS6	5/20/2004	Trichloroethene	1.8		
				Tetrachloroethene	190		5
Effluent	SC-04	B1BS7	5/20/2004	Acetone	1.2		5
Lindent	00-04	Bibbi	3/20/2004	Acetone	0		5
				MTBE	2.1		
Influent Dup	SC-66	B1BS8	5/20/2004	cis-1,2-Dichloroethene	0.9		
miliaoni Bap	00 00	5.500	0/20/2001	Trichloroethene	1.6		
				Tetrachloroethene	200		5
				Acetone	1		5
Trip Blank	SC-TB	B1BS9	5/20/2004	Chloroform	0		
, =	I			Bromodichloromethane	0	İ	
	1			Carbon Disulfide	1.1	İ	
				MTBE	2.7		
Influent	SC-01	B1BS6	6/15/2004	cis-1,2-Dichloroethene	1.3	1	
30110]	2.500	5, . 5, 200 1	Trichloroethene	2.4	1	
	ĺ			Tetrachloroethene	320	1	5
Effluent	SC-04	B1BS7	6/15/2004	Tetrachloroethene	2.1		5
Lindont	<u> </u>	2.507	0, 10, £00 T	MTBE	2.3	1	
				cis-1,2-Dichloroethene	1.2		
Influent Dup	SC-67	B1BS8	6/15/2004	Trichloroethene	2.2	Ì	
	ĺ			Tetrachloroethene	330	İ	5
Trip Blank	SC-TB	B1BS9	6/15/2004	None		1	Ť
The Dialik	00-10	0.000	5/ 15/200 1	Tione			

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria
				Acetone	0.8		5
				MTBE	2.3		
Influent	SC-01	B1FJ2	7/13/2004	cis-1,2-Dichloroethene	1.1		
				Trichloroethene	1.7		
				Tetrachloroethene	170		5
Effluent	SC-04	B1FJ3	7/13/2004	Acetone	0.72		5
Lindon	00-04	B11 00	7/10/2004	Tetrachloroethene	2		5
				MTBE	2.4		
Influent Dup	SC-67	B1FJ4	7/13/2004	cis-1,2-Dichloroethene	1.1		
ишаси Вар	00 0.	5	1710/2001	Trichloroethene	1.8		
				Tetrachloroethene	160		5
Trip Blank	SC-TB	B1FJ5	7/13/2004	Acetone	0.73		5
		200	.,,200.	Acetic Acid, Ethyl Ester	2.5	NJ	
				MTBE	1.9		
				cis-1,2-Dichloroethene	0.7		
Influent	SC-01	B1GH2	8/16/2004	Trichloroethene	1.5		
				Tetrachloroethene	200		5
				Acetone	2		5
Effluent	SC-04	B1GH3	8/16/2004	Tetrachloroethene	5.4		5
Lindon	55-0 1	5.516	0/10/2007	Acetone	1.6		5
				Acetone	1.2		5
				MTBE	2		
Influent Dup	SC-69	B1GH4	8/16/2004	cis-1,2-Dichloroethene	0.7		
				Trichloroethene	1.5		
				Tetrachloroethene	210		5
				Chloromethane	0.80		
				Acetone	1.0		5
Influent	SC-01			MTBE	1.5		
iiiiueiii	30-01			cis-1,2-Dichloroethene	0.70		
				Trichloroethene	1.4		
				Tetrachloroethene	200		5
				Chloromethane	0.80		
Effluent	SC-04			Acetone	2.1		5
				Tetrachloroethene	1.7		5
				Acetone	1.0		5
				MTBE	1.3		
Influent Dup	SC-70			cis-1,2-Dichloroethene	0.60		
				Trichloroethene	1.4		
				Tetrachloroethene	210		5
Trip Blank	SC-TB			Acetone	2.2		5
ттр ыатк	30-15			2-Butanone	1.5		
				Acetone	5	J	5
				Methylene chloride	0.2	J	
Influent	SC-01	B1LZ2	10/21/2004	MTBE	0.82		
mmuent	30-01	DILL	10/21/2004	cis-1,2-Dichloroethene	0.5		
				Trichloroethene	1.2		
	<u> </u>			Tetrachloroethene	220		5
				Acetone	5	J	5
Effluent	SC-04	B1LZ3	10/21/2004	Methylene chloride	0.5	UJ	
				Tetrachloroethene	0.2	J	5
				Acetone	5	J	5
				Methylene chloride	1.1		
Influent Dun	SC-71	B1LZ4	10/21/2004	MTBE	1.1		
Influent Dup	30-71	DILZ4	10/21/2004	cis-1,2-Dichloroethene	0.64		
				Trichloroethene	1.1		
				Tetrachloroethene	210	(D)	5
				Acetone	5.7		5
Trip Blank	SC-TB	B1LZ5	10/21/2004	Methylene chloride	0.68		
Trip Diarik							

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria
				Acetone	3	J	5
				Methylene chloride	1.3	U	
Influent	SC-01	B1T22	11/17/2004	MTBE	1.3		
iniluent	SC-01	BIIZZ	11/17/2004	cis-1,2-Dichloroethene	0.64		
				Trichloroethene	1.2		
				Tetrachloroethene	170	(D)	5
Effluent	SC-04	B1T23	11/17/2004	Methyl Acetate	0.5	ÜĴ	
Ellidelit	30-04	B1123	11/11/2004	Methylene chloride	0.5	U	
				Methylene chloride	0.85	U	
				MTBE	1.3		
Influent Dup	SC-72	B1T24	11/17/2004	cis-1,2-Dichloroethene	0.5		
				Trichloroethene	0.83		
				Tetrachloroethene	160	(D)	5
				Acetone	3	J	5
				Methyl Acetate	0.5	UJ	
Trip Blank	SC-TB	B1T25	11/17/2004	Methylene chloride	0.46	J	
ттр ыапк	3C-1B	DIIZO	11/17/2004	2-Butanone	2.4	J	
				Tetrachloroethene	9.6		5
				1,2,3-Trichlorobenzene	0.5	UJ	5
				MTBE	1.6		
				cis-1,2-Dichloroethene	0.45	J	
				Trichloroethene (TCE)	1.0	J	5
				Tetrachloroethene	100	(D)	5
				Methylcyclohexane	1	ÜĴ	
Influent	SC-01	B1T79	12/15/2004	Bromomethane	1	UJ	
iniluent	SC-01	БП79	12/15/2004	Bromodichloromethane	1	UJ	
				Chloromethane	1	UJ	
				1,2-Dichloroethene	1	UJ	
				1,2-Dichloropropane	1	UJ	
				2-Hexanone	10	R	
				4-Methyl-2-pentanone	10	R	
				Benzene	0.5	JB	
Effluent	SC-04	B1T81	12/15/2004	1,2,4-Trichlorobenzene	0.5	JB	
				1,2,3-Trichlorobenzene	0.5	JB	5
				Methyl tert-Butyl Ether	1.6		
				cis-1,2-Dichloroethene	0.48	J	
Influent Dup	SC-73	B1T80	12/15/2004	Trichloroethene	0.98	J	
iiiiuenι υυρ	30-73	DIIÖU	12/13/2004	4-Methyl-2-pentanone	10	R	
				Tetrachloroethene	98	(D)	5
				2-Hexanone	10	R	
				Chloroform	0.1	J	
Trip Blank	SC-TB	B1T82	12/15/2004	Cyclohexane	0.15	J	
ттр Батк	30-16	DITOZ	12/13/2004	Benzene	0.5	JB	
ĺ				Toluene	0.21	J	

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria
				MTBE	1.5		
				cis-1,2-Dichloroethene	0.7		
Influent	SC-01	B1W00	1/21/2005	Trichloroethene (TCE)	1.4		5
				Tetrachloroethene	160		5
Effluent	SC-04	B1W02	1/21/2005	Acetone	1.8		5
Lindon	0001	562	172 172000	Methyl tert-Butyl Ether	1.4		- ŭ
				cis-1,2-Dichloroethene	0.7		
Influent Dup	SC-74	B1W01	1/21/2005	Trichloroethene	1.4		
doi.e 2 ap	00 / 1	2	.,,	Tetrachloroethene	150		5
				Acetone	10		5
Trip Blank	SC-TB	B1W03	1/21/2005	Acetone	3.5		5
THP Blank	00 15	211100	172 172000	MTBE	1.4	1	
				cis-1,2-Dichloroethene	0.5		
Influent	SC-01	AG00197	2/3/2005	Trichloroethene (TCE)	1.1		5
				Tetrachloroethene	140		5
Effluent	SC-04	AG00198	2/3/2005	Acetone	1.2		5
Lilidelit	00-04	AG00130	2/3/2003	Methyl tert-Butyl Ether	1.5		- v
				cis-1,2-Dichloroethene	0.54		
Influent Dup	SC-75	AG00199	2/3/2005	Trichloroethene	1.1		
ппаста Вар	00 70	71000100	2/0/2000	Tetrachloroethene	140		5
				Acetone	1.1		5
		1		Acetone	4.3		5
Trip Blank	SC-TB	AG00200	2/3/2005	4-Methyl-2-pentanone	1.2		
		 		MIBE	1.4		
				Acetone	2.5		5
Influent	SC-01	AG00468	3/9/2005	Trichloroethene (TCE)	1.1	1	5
				Tetrachloroethene	130	1	5
Effluent	SC-04	AG00469	3/9/2005	Acetone	1.8	1	5
		1		MTBE	1.4	1	
Influent Dun	00.70	4.000.470	2/0/0005	Acetone	1.2	1	5
Influent Dup	SC-76	AG00470	3/9/2005	Trichloroethene	1.1		
				Tetrachloroethene	130		5
Trin Dlank	SC-TB	AG00471	3/9/2005	Acetone	1.7		5
Trip Blank	SC-1B	AG00471	3/9/2005	Chloroform	1.6		
				MTBE	1.7		
	l]		2-Butanone	2.2	Ī	
Influent	SC-01	AG00825	4/22/2005	Acetone	2.4	Ī	5
(EPA-EXT-02)	ĺ			Trichloroethene (TCE)	1.1	Ī	5
				Tetrachloroethene	65		5
	Ì	† †		2-Butanone	2.5	İ	
Influent	00.55		4/00/222	Acetone	5.1	i e	5
(EPA-EXT-4R)	SC-02	AG00826	4/22/2005	Trichloroethene (TCE)	1.3	İ	5
, ,	ĺ	1		Tetrachloroethene	9.5	ì	5
Effluent	SC-04	AG00827	4/22/2005	None	J.5	ì	<u> </u>
			.,,	2-Butanone	2.8	ì	i
Influent Dup				Acetone	4.9	1	5
(EPA-EXT-02)	SC-77	AG00828	4/22/2005	Trichloroethene	1.3	İ	Ť
(EPA-EXT-4R)				Tetrachloroethene	9	İ	5

Sample Location	ECC ID*	EPA ID	Date Collected	Compounds Detected	Result (μg/L)	Qualifier**	Discharge Criteria
	200.2	2.7(.2		Acetone	1	Quanito	5
Trip Blank	SC-TB	AG00829	4/22/2005	Chloroform	1.7		<u> </u>
mp Blank	00.15	7.000020	1/22/2000	Trichloroethene (TCE)	0.84		5
		 		MTBE	1.1		
Influent	SC-01	AG01320	5/24/2005	Trichloroethene (TCE)	1.0		5
(EPA-EXT-02)			5.2 2555	Tetrachloroethene	100		5
Influent (EPA-EXT-4R)	SC-02	AG01321	5/24/2005	Tetrachloroethene	8.8		5
Effluent	SC-04	AG01322	5/24/2005	Acetone	1.3		5
Influent Dup (EPA-EXT-02) (EPA-EXT-4R)	SC-78	AG01323	5/24/2005	Tetrachloroethene	8.6		5
,		1		Acetone	1.3		5
Trip Blank	SC-TB	AG01324	5/24/2005	Chloroform	13		
				Bromodichloromethane	2.5		
				MTBE	0.98		
Influent				Trichloroethene (TCE)	0.8		5
(EPA-EXT-02)	SC-01	AG02074	6/22/2005	Tetrachloroethene	95		5
(EFA-EXT-02)				Acetone	2.7	K	5
				Ethyl Acetate	10	JN	
				Tetrachloroethene	9.1		5
Influent	SC-02	AG02075	6/22/2005	Acetone	1.9	K	5
(EPA-EXT-4R)	30-02	AG02073	0/22/2003	Ethyl Acetate	3.6	JN	
				Propane, 2-Isothiocyanto-2	0.8	JN	
				MTBE	0.64		
				Tetrachloroethene	50		5
Influent		AG02076	6/22/2005	Acetone	2	K	5
				Trichloroethene (TCE)	0.56		5
				Ethyl Acetate	8.8	JN	
Effluent	SC-04	AG02072	6/22/2005	Acetone	2.6	K	5
Lindon	00 04	71002072	0/22/2000	Ethyl Acetate	6.2	JN	
EffluenDup	SC-04	AG02073	6/22/2005	Acetone	2.6	K	5
Ешаопрар	00 01	71002070	0/22/2000	Ethyl Acetate	3.3	JN	
				Acetone	2.4	K	5
Trip Blank	SC-TB	AG02077	6/22/2005	Chloroform	13		
	00 .2	7.002077	0,22,2000	Bromodichloromethane	2.7		
				Ethyl Acetate	3.1	JN	
				MTBE	0.9		
Influent	SC-01	AG02780	7/12/2005	Trichloroethene (TCE)	0.8		5
(EPA-EXT-02)				Tetrachloroethene	85	.,	5
				Acetone	1	K	5
				Tetrachloroethene	7.4	1.	
Influent	SC-02	AG02781	7/12/2005	Acetone	2.1	K	5
(EPA-EXT-4R)				Ethyl Acetate	4.1	JN	.
				Propane, 2-Isothiocyanto-2	1.4	JN	
Influent		AG02782	7/12/2005	MTBE	0.52	1	
		 		Tetrachloroethene	43	1/	5
Effluent	SC-04	AG02778	7/12/2005	Acetone	2.8	K	5
		 		Ethyl Acetate	11	JN	
EffluenDup	SC-04	AG02779	7/12/2005	Acetone Ethyl Acetote	1.9	K	5
·		 		Ethyl Acetate	5.2	JN	F
Trip Blank	SC-TB		7/12/2005	Acetone	1.5	K	5
THP BIATIK	3C-1B		1/12/2005	Chloroform	12	1	
	<u> </u>			Bromodichloromethane	2.6	<u> </u>	

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria
Influent				MTBE	0.68		
(EPA-EXT-02)	SC-01	AG03721	8/15/2005	Trichloroethene (TCE)	0.73		5
(LI / L/ 1 02)				Tetrachloroethene	88		5
Influent (EPA-EXT-4R)	SC-02	AG03722	8/15/2005	Tetrachloroethene	9.7		5
, ,				Propane, 2-Isothiocyanto-2	0.53	JN	
Influent		AG03723	8/15/2005	Tetrachloroethene	43		5
Effluent	SC-04	AG03725	8/15/2005	Acetone	ND (5.0)		5
EffluenDup	SC-04	AG03720	8/15/2005	Acetone	ND (5.0)		5
Trip Blank	SC-TB	AG03724	8/15/2005	Chloroform	13		
· · · · · · · · · · · · · · · · · · ·				Bromodichloromethane	2.6		
Influent	00.04	4.004000	0/0/000	MTBE	0.76		_
(EPA-EXT-02)	SC-01	AG04086	9/8/2005	Trichloroethene (TCE)	0.74		5
1.0				Tetrachloroethene	90		5
Influent (EPA-EXT-4R)	SC-02	AG04087	9/8/2005	Tetrachloroethene	9.8		5
Influent		AG04088	9/8/2005	MTBE	0.63		
				Tetrachloroethene	44		5
Effluent	SC-04	AG04084	9/8/2005	Acetone	ND (1.0)		5
EffluentDup	SC-04	AG04085	9/8/2005	Acetone	1.0		5
Trip Blank	SC-TB	AG04089	9/8/2005	Chloroform	11		
2	00.2	71001000	0,0,200	Bromodichloromethane	2.2		
Influent				MTBE	0.82		
(EPA-EXT-02)	SC-01	AG07649	10/5/2005	Trichloroethene (TCE)	0.78		5
, ,				Tetrachloroethene	100		5
Influent (EPA-EXT-4R)	SC-02	AG07650	10/5/2005	Tetrachloroethene	9.3		5
				MTBE	0.6		
Influent		AG07651	10/5/2005	Acetone	1		5
				Tetrachloroethene	52		5
Effluent	SC-04	AG07647	10/5/2005	Acetone	1.1		
EffluentDup	SC-04	AG07648	10/5/2005	Acetone	1.4		
Trip Blank	SC-TB	AG07652	10/5/2005	Chloroform	ND		
				Acetone	1.4	K	
Influent	SC-01	AG08530	11/14/2005	MTBE	0.92		
(EPA-EXT-02)	0001	7100000	11/14/2000	Trichloroethene (TCE)	0.81		5
				Tetrachloroethene	95		5
Influent	SC-02	AG08531	11/14/2005	Acetone	1.0	K	5
(EPA-EXT-4R)	55-02	/1000001	11/17/2000	Tetrachloroethene	10		5
				MTBE	0.9		
Influent		AG08532	11/14/2005	Acetone	1.4	K	5
			,, 2000	Trichloroethene (TCE)	0.74		5
		<u> </u>		Tetrachloroethene	91		5
Effluent	SC-04	AG08528	11/14/2005	Acetone	ND		5
EffluentDup	SC-04	AG08529	11/14/2005	Acetone	ND		5
Trip Blank	SC-TB	AG08533	11/14/2005	Acetone	2.0	K	5

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria
				Acetone	4.1		
				MTBE	0.85		
Influent	SC-01	AG08953	12/6/2005	Trichloroethene (TCE)	0.67		5
(EPA-EXT-02)				Tetrachloroethene	90		5
				1-Butanol	0.63	NJ	
Influent	SC-02	AG08954	12/6/2005	Acetone	1.4	K	5
(EPA-EXT-4R)	00 02	71000004	12/0/2000	Tetrachloroethene	9.5		5
				MTBE	0.9		
Influent		AG08955	12/6/2005	Acetone	1.4	K	5
				Trichloroethene (TCE)	0.77		5
□ #1	00.04	AC000E4	40/0/0005	Tetrachloroethene	89	I/	5
Effluent	SC-04	AG08951	12/6/2005	Acetone	1.5	K K	5
EffluentDup	SC-04 SC-TB	AG08952	12/6/2005	Acetone Acetone	3.0 ND	n.	5 5
Trip Blank	SC-1B	1	12/6/2005		ND		5
Influent				Acetone MTBE	0.98		5
(EPA-EXT-02)	SC-01	AH00216	1/10/2006	Trichloroethene (TCE)	0.30		5
(2171 271 02)				Tetrachloroethene	93		5
Influent		1		Acetone	ND (1.0)		5
(EPA-EXT-4R)	SC-02	AH00217	1/10/2006	Tetrachloroethene	8.2		5
(2171271111)				MTBE	0.94		
				Acetone	ND (1.0)		5
Influent		AH00218	1/10/2006	Trichloroethene (TCE)	0.85		5
				Tetrachloroethene	90		5
Effluent	SC-04	AH00214	1/10/2006	Acetone	ND (1.0)		5
EffluentDup	SC-04	AH00215	1/10/2006	Furan, Tetrahydro	0.52	NJ	
Trip Blank	SC-TB	AH00219	.,,	Acetone	ND (1.0)	-	5
				MTBE	1.2		
Influent	SC-01	AH01177	2/15/2006	Trichloroethene (TCE)	0.72		5
				Tetrachloroethene	80		5
				Acetone	1.2		5
MW-19		AH01178	2/15/2006	Trichloroethene (TCE)	1.2		5
				Tetrachloroethene	85		5
MW-21		AH01179	2/15/2006	Trichloroethene (TCE)	2.6		5
				Tetrachloroethene	27		5
Effluent		AH01175	2/15/2006		ND		
Effluent Duplicate		AH01176	2/15/2006		ND		
	00 TD	41100040	0/45/0000	Chloroform	10		
Trip Blank	SC-TB	AH00219	2/15/2006	Bromodichloromethane	2.3		
				MTBE	1.4		
la flora at	00.04	ALIO4050	0/0/0000	Trichloroethene (TCE)	0.71		5
Influent	SC-01	AH01256	3/8/2006	Tetrachloroethene	83		5
				Acetone	2		5
Effluent	SC-04	AH01254	3/8/2006	Acetone	2		5
Effluent	00.04	AH01255	3/8/2006	Acetone	2.4		_
Duplicate	SC-04			Acetone	2		5 5
Trip Blank	SC-TB	AH01257	3/8/2006	Bromodichloromethane	5		5
Прыспк	00 15	711101207	0/0/2000	Chloroform	14		
		1		MTBE	1.5		
				TRICHLOROETHENE	0.57		
Influent		AH01641	4/5/2006	TETRACHLOROETHENE	68		
				ACETONE	1.7		
	SC-01			ETHYL ACETATE	1.5	NJ	
Ε <i>ι</i>		<u> </u>		ACETONE	1.7		
Effluent	SC-04	AH01639	4/5/2006	EHHYL ACETATE	1.7	NJ	
Effluent A			4/5/2006	ACETONE	4.6		
Effluent A	SC-04	AH01640	4/5/2006	EHHYL ACETATE	5.3	NJ	
Trip Blank	SC-TB	AH01642	4/5/2006	ACETONE	1.7		

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria

Notes:

- * = Unless otherwise noted, samples collected from ECC ID SC-04 were used as the matrix spike / matrix spike duplicate sample.
- ** = Data validation was performed by EPA Region II. ECC carried over assigned qualifers and did not perform a separate review or validation of the data.
- (D) = Detection from a dilution of the sample.
- J = qualified as estimated
- JN = Presumptive evidence for the presence of the material at an estimated value.
- K = The reported value may be biased high.
- $\mu g/L$ = micrograms per liter
- MTBE = Tert-butyl-methyl-ether
 - NJ = TIC. The reported value is estimated.
 - TIC = Tentatively Identified Compound.

Appendix F Soil Vapor Extraction and Pump and Treat System Bi-weekly Air Monitoring Logs

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE

Soil-Vapor Extraction and Pump and Treat System Bi-Weekly Air Monitoring Log

Date: 4/11/06 Project # 70536

		MultiR	AE Plus P	GM-50			Ve	lociCalc P	lus	
	.,,,,						Vac.	0/511		
	VOC	CO	Oxygen	LEL	H2S	Temp.	Pre.	%RH	Dew pt.	Flow
SVE-Influent	1.6	1	20.5%	0%	0%	101.6	N/A	23.4%	57.4	245
Post Air Stripper	0.0	1	20.9%	0%	0%	59.0	N/A	96.1%	57.4	2040
SVE-Effluent ¹	0.0	2	20.1%	0%	0%	82.1	N/A	43.2%	57.5	250
GW Post Vapor Effluent ²	0.0	1	20.9%	0%	0%	59.1	N/A	93.0%	56.7	2000
EPA-SVE-1 (shallow)	0.0	2	20.5%	0%	0%	62.0	11.00	40.3%	37.5	2.80
EPA-SVE-1 (medium)	0.0	1	20.5%	0%	0%	67.4	12.00	33.3%	37.5	5.80
EPA-SVE-2 (shallow)	0.0	2	20.4%	0%	0%	72.4	0.00	58.2%	56.6	1.00
EPA-SVE-2 (medium)	0.0	2	20.5%	0%	0%	80.7	0.00	26.5%	44.0	1.300
SS-A	0.0	0	20.5%	0%	0%	62.2	5.00	48.9%	42.7	36.0
EPA-SVE-04R/SS-B(A)	0.0	1	20.9%	0%	0%	58.1	2.75	47.7%	38.1	3.15
SS-B-C	0.0	2	20.4%	0%	0%	63.3	3.00	37.0%	37.4	41.50
SS-C	0.0	1	20.9%	0%	0%	56.8	3.00	56.7%	41.5	32.2
L1	0.0	2	20.4%	0%	0%	60.8	6.25	100.0%	60.8	74.5
L2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SS-B(B)	0.0	2	20.9%	0%	0%	56.2	3.75	52.1%	39	5.75
SS Vent-LIHA	0.0	1	20.9%	0%	0%	56.9	2.25	49.0%	40.1	65.5
Vapor Point-1/Slope 1	0.0	2	20.9%	0%	0%	N/A	N/A	N/A	N/A	N/A
SVE-3A*	0.0	2	20.4%	0%	0%	N/A	N/A	N/A	N/A	>200
SVE-3B	0.9	1	19.9%	0%	0%	63.1	9.50	79.0	56.6	95
Background	0.0	0	20.9%	0%	0%	101.8	N/A	37.7%	35.4	N/A

^{*}Flow to strong to take VelociCalc readings

Equipment calibrated by: Frank Mahalski

Air readings collected by: Robert Derrick, Frank Mahalski, William Pollard

*Approximately

Comments:

VOC: Volatile Organic Compounds

CO: Carbon Monoxide LEL: Lower Explosive Limit ppm: parts per million

temperature: measured in degrees Fahrenheit

pressure: measured in inches of water (in/H2O), inches of mercury (in/Hg), or

pounds per square inch

(psi).

¹Formerly Post SVE Carbon

Flow: measured in cubic feet per minute (cfm)

²Formerly Post Air Stripper Carbon

%RH: relative humidity

Dew Pt.: dew point in degrees Fahrenheit

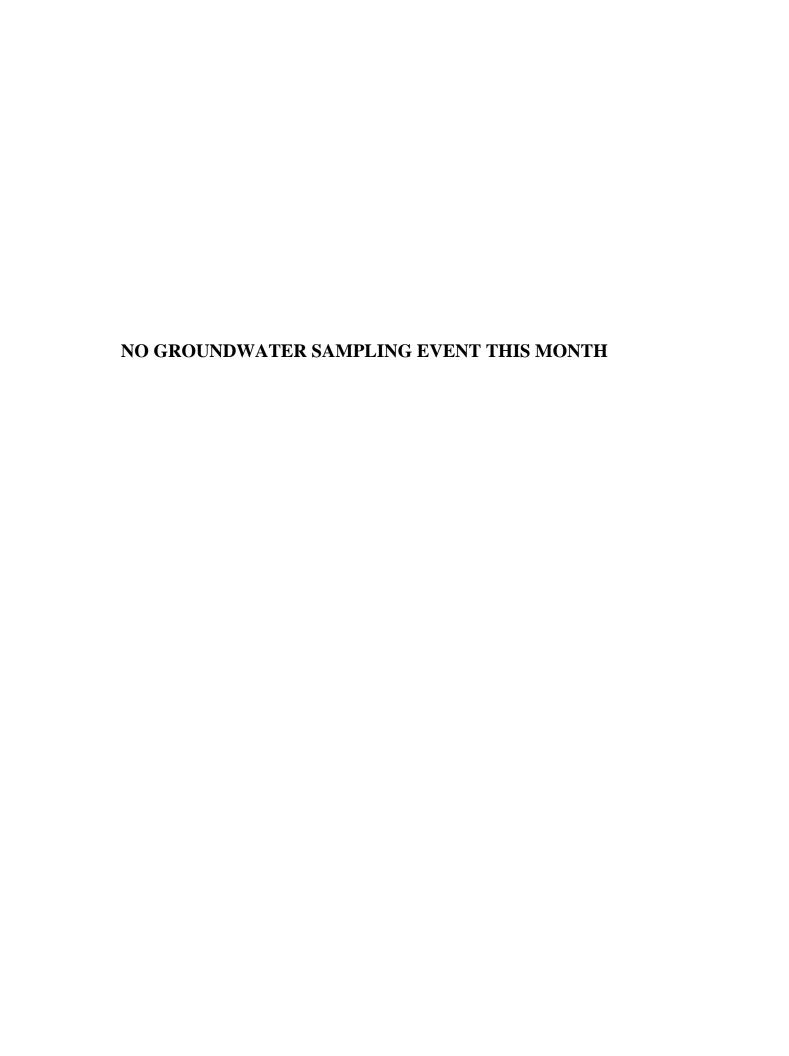
AS: Air Stripper

SVE: Soil Vapor Extraction

System

SVE 1 SVE 2 SVE 3 SVE 4 EPA-SVE-04R/SSB(A) SS-A SS-B(B) SS-B(C) L1 L2

Comments:


New SVE well EPA-EXT-04 online since 11/4/04 Sub-slab sample ports online since 3/22/05 L2 is offline ³Formerly Sub-Slab A,B, and C respectively
⁴Formerly Sub-Slab
D
⁵Formerly Sub-Slab

NA- Not Available

Prior to 10/3/05	After 10/3/05
shallow on	shallow and medium on
shallow on	shallow on
shallow on	shallow on
off	off
on	on
on	on
on	off
on	on
on	on
on	off

Appendix G

Semi-Annual Groundwater Sampling Analytical Data

Appendix H

Historical Groundwater Level Monitoring Results (Ongoing)

WATER LEVEL DATA SUMMARY

PROJECT:	Stanton Cleaners			JOB NUMBER:	70536
LOCATION:					
LOCATION.	Great Neck, NY	,		DATE:	5/2/2006
				- MEASURED	Derrick, Fernald
CLIENT:	USACE / USEP/	4		BY:	
SURVEY DATUM:	ft msl			-	
MEASURING DEVICE:	Solinst Water Level Indicator S	S/N# 34407		-	
WELL	MEASURING P	OINT	DEPTH TO	ELEVATION OF	
NUMBER	Description	Elevation (FT)	WATER (FT)	WATER (FT)	COMMENTS
EPA-MW-11D	ft BTOC	74.63	64.90	9.73	
EPA-MW-21	ft BTOC	84.13	63.84	20.29	
EPA-MW-22	ft BTOC	82.20	63.59	18.61	
EPA-MW-23	ft BTOC	82.83	68.99	13.84	
EPA-MW-27	ft BTOC	69.32	51.28	18.04	
ST-MW-02	ft BTOC	82.03			
ST-MW-06	ft BTOC	69.83	44.58	25.25	
ST-MW-09	ft BTOC	78.13	63.50	14.63	
ST-MW-11	ft BTOC	75.25			
ST-MW-12	ft BTOC	87.20	73.87	13.33	
ST-MW-14	ft BTOC	69.73	55.71	14.02	
ST-MW-16	ft BTOC	75.78	54.63	21.15	
ST-MW-17	ft BTOC	86.53	70.35	16.18	
ST-MW-19	ft BTOC	82.50	66.69	15.81	
ST-MW-20	ft BTOC	84.53	71.80	12.73	
Notes:					

WAGNN Public Supply Well Pumping Rate: GPM

Treatment System: Total Gallons Pumped:

Pumping Rate:

		10/29	9/2003	10/31	1/2003	11/22/03	3 - 11/23/03
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	57.74	16.89	57.94	16.69	60.07	14.56
EPA-MW-21	84.13	66.70	17.43	66.14	17.99	66.86	17.27
EPA-MW-22	82.20	64.51	17.69	64.08	18.12	65.09	17.11
EPA-MW-23	82.83	64.97	17.86	64.54	18.29	78.61	4.22
EPA-MW-27	69.32	51.74	17.58	51.12	18.20	52.85	16.47
ST-MW-02	82.03	64.19	17.84	63.78	18.25	64.40	17.63
ST-MW-06	69.83	63.43	6.40	44.82	25.01	44.92	24.91
ST-MW-09	78.13	61.39	16.74	60.67	17.46	62.52	15.61
ST-MW-11	75.25	58.67	16.58	58.06	17.19	60.59	14.66
ST-MW-12	87.20	73.84	13.36	70.18	17.02	72.01	15.19
ST-MW-14	69.73	50.94	18.79	50.76	18.97	56.40	13.33
ST-MW-16	75.78	55.51	20.27	55.53	20.25	65.51	10
ST-MW-17	86.53	69.95	16.58	69.27	17.26	71.55	14.98
ST-MW-19	82.50	67.01	15.49	64.93	17.57	68.04	14.46
ST-MW-20	84.53	65.99	18.54	65.83	18.70	73.45	11.08

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

	Top of PVC	12/17/03	- 12/18/03	1/12	/2004	2/26/2	2004
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.00	15.63	57.52	17.11	56.50	18.13
EPA-MW-21	84.13	64.99	19.14	66.17	17.96	64.30	19.83
EPA-MW-22	82.20	63.03	19.17	63.99	18.21	61.90	20.30
EPA-MW-23	82.83	77.05	5.78	64.45	18.38	63.00	19.83
EPA-MW-27	69.32	51.75	17.57	51.22	18.10	50.50	18.82
ST-MW-02	82.03	63.25	18.78	64.03	18.00	62.03	20.00
ST-MW-06	69.83	43.10	26.73	45.74	24.09	44.40	25.43
ST-MW-09	78.13	61.50	16.63			60.00	18.13
ST-MW-11	75.25	59.23	16.02	62.10	13.15	60.90	14.35
ST-MW-12	87.20	72.00	15.20	70.27	16.93	60.50	26.70
ST-MW-14	69.73	55.05	14.68	NA	NA	48.70	21.03
ST-MW-16	75.78	64.18	11.60	54.99	20.79	53.00	22.78
ST-MW-17	86.53	69.99	16.54	69.40	17.13	67.25	19.28
ST-MW-19	82.50	67.21	15.29			65.25	17.25
ST-MW-20	84.53	71.56	12.97	63.51	21.02	61.75	22.78

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

	Town of DVO	3/29	/2004	4/5/	2004	5/19/2	2004
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	60.00	14.63	60.36	14.27	60.30	14.33
EPA-MW-21	84.13	66.99	17.14	67.38	16.75	67.10	17.03
EPA-MW-22	82.20	61.90	20.30	65.00	17.20	64.98	17.22
EPA-MW-23	82.83	65.10	17.73	65.59	17.24	65.25	17.58
EPA-MW-27	69.32	52.08	17.24	52.84	16.48	53.10	16.22
ST-MW-02	82.03	63.99	18.04	64.90	17.13	64.87	17.16
ST-MW-06	69.83	45.60	24.23	46.24	23.59	46.25	23.58
ST-MW-09	78.13	62.80	15.33			62.00	16.13
ST-MW-11	75.25	60.00	15.25	60.85	14.40	60.46	14.79
ST-MW-12	87.20	72.22	14.98	72.22	14.98	72.12	15.08
ST-MW-14	69.73	56.99	12.74	57.87	11.86	58.13	11.60
ST-MW-16	75.78	54.68	21.10	55.48	20.30	55.09	20.69
ST-MW-17	86.53	70.25	16.28	71.76	14.77	71.80	14.73
ST-MW-19	82.50	66.00	16.50			65.78	16.72
ST-MW-20	84.53	71.45	13.08	73.78	10.75	73.65	10.88

Notes:

ft msl - feet mean sea level

ft BTOC - feet below top of casing

		6/14	/2004	7/21/04	- 7/22/04	8/2/2	004
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.97	14.66	59.75	14.88	59.75	14.88
EPA-MW-21	84.13	67.00	17.13	66.99	17.14	66.11	18.02
EPA-MW-22	82.20	64.78	17.42	64.50	17.70	64.33	17.87
EPA-MW-23	82.83	66.21	16.62	66.10	16.73	65.16	17.67
EPA-MW-27	69.32	53.05	16.27	52.98	16.34	54.86	14.46
ST-MW-02	82.03	65.11	16.92	65.00	17.03	59.85	22.18
ST-MW-06	69.83	45.99	23.84	45.66	24.17	44.11	25.72
ST-MW-09	78.13	62.00	16.13	61.79	16.34		
ST-MW-11	75.25	60.40	14.85	60.39	14.86	60.50	14.75
ST-MW-12	87.20	72.29	14.91	72.20	15.00	71.36	15.84
ST-MW-14	69.73	58.55	11.18	58.34	11.39	55.56	14.17
ST-MW-16	75.78	55.09	20.69	55.01	20.77	54.85	20.93
ST-MW-17	86.53	71.52	15.01	71.46	15.07	70.80	15.73
ST-MW-19	82.50	65.00	17.50	64.77	17.73		
ST-MW-20	84.53	73.44	11.09	73.25	11.28	71.66	12.87

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

		9/28/04	- 9/29/04	10/12/04	-10/13/04	11/3	3/2004
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.70	14.93	58.97	15.66	58.95	15.68
EPA-MW-21	84.13	66.75	17.38	66.50	17.63	66.41	17.72
EPA-MW-22	82.20	64.41	17.79	64.34	17.86	64.32	17.88
EPA-MW-23	82.83	65.11	17.72	65.00	17.83	64.87	17.96
EPA-MW-27	69.32	52.31	17.01	52.25	17.07	52.26	17.06
ST-MW-02	82.03	65.00	17.03	65.03	17.00	65.00	17.03
ST-MW-06	69.83	44.55	25.28	55.34	14.49	55.29	14.54
ST-MW-09	78.13	62.00	16.13	62.12	16.01	62.15	15.98
ST-MW-11	75.25	60.41	14.84	60.50	14.75	60.34	14.91
ST-MW-12	87.20	72.00	15.20	72.21	14.99	72.22	14.98
ST-MW-14	69.73	56.71	13.02	56.50	13.23	56.49	13.24
ST-MW-16	75.78	55.10	20.68	57.00	18.78	57.01	18.77
ST-MW-17	86.53	70.99	15.54	70.98	15.55	70.95	15.58
ST-MW-19	82.50	64.84	17.66	64.80	17.70	64.79	17.71
ST-MW-20	84.53	71.97	12.56	72.00	12.53	72.55	11.98

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

	Top of PVC	12/8	/2004	1/3/	2005	2/7/20	005
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.75	14.88	59.10	15.53	57.63	17.00
EPA-MW-21	84.13	66.61	17.52	65.67	18.46	65.80	18.33
EPA-MW-22	82.20	64.33	17.87	64.44	17.76	65.32	16.88
EPA-MW-23	82.83	65.16	17.67	65.10	17.73	64.44	18.39
EPA-MW-27	69.32	52.24	17.08	51.87	17.45	50.85	18.47
ST-MW-02	82.03	64.54	17.49	64.78	17.25	63.90	18.13
ST-MW-06	69.83	44.11	25.72	55.41	14.42	47.32	22.51
ST-MW-09	78.13	59.98	18.15	62.31	15.82	63.44	14.69
ST-MW-11	75.25	60.50	14.75	59.99	15.26	58.64	16.61
ST-MW-12	87.20	71.36	15.84	71.98	15.22	70.45	16.75
ST-MW-14	69.73	55.56	14.17	56.51	13.22	50.15	19.58
ST-MW-16	75.78	54.85	20.93	57.08	18.70	55.15	20.63
ST-MW-17	86.53	70.80	15.73	71.03	15.50	70.75	15.78
ST-MW-19	82.50	64.32	18.18	64.76	17.74	65.01	17.49
ST-MW-20	84.53	71.66	12.87	72.43	12.10	65.09	19.44

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

		3/22	/2005	4/11	/2005	5/19/2	005
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	60.00	14.63	60.99	13.64	61.00	13.63
EPA-MW-21	84.13	64.50	19.63	64.00	20.13	63.21	20.92
EPA-MW-22	82.20	64.55	17.65	65.12	17.08	65.43	16.77
EPA-MW-23	82.83	65.00	17.83	65.10	17.73	65.00	17.83
EPA-MW-27	69.32	51.67	17.65	51.60	17.72	51.33	17.99
ST-MW-02	82.03	63.99	18.04	63.89	18.14	63.40	18.63
ST-MW-06	69.83	55.40	14.43	55.42	14.41	55.32	14.51
ST-MW-09	78.13	61.20	16.93	61.78	16.35	61.72	16.41
ST-MW-11	75.25	60.10	15.15	60.00	15.25	59.99	15.26
ST-MW-12	87.20	72.00	15.20	71.21	15.99	71.12	16.08
ST-MW-14	69.73	56.20	13.53	56.33	13.40	56.34	13.39
ST-MW-16	75.78	57.00	18.78	57.10	18.68	57.30	18.48
ST-MW-17	86.53	70.78	15.75	70.00	16.53	59.90	26.63
ST-MW-19	82.50	63.23	19.27	63.00	19.50	63.00	19.50
ST-MW-20	84.53	71.32	13.21	71.21	13.32	71.71	12.82

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

	Top of PVC	6/15	/2005	7/7/	2005	8/4/2	2005
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	58.70	15.93	58.51	16.12	59.07	15.56
EPA-MW-21	84.13	66.35	17.78	66.27	17.83	66.85	17.28
EPA-MW-22	82.20	63.83	18.37	63.78	18.42	64.38	17.82
EPA-MW-23	82.83	64.32	18.51	64.29	18.54	64.88	17.95
EPA-MW-27	69.32	51.45	17.87	51.35	17.97	51.84	17.48
ST-MW-02	82.03						
ST-MW-06	69.83	45.70	24.13	45.90	23.93	45.80	24.03
ST-MW-09	78.13	63.45	14.68	63.29	14.84	63.94	14.19
ST-MW-11	75.25		-		-		
ST-MW-12	87.20	71.02	16.18	70.71	16.49	71.42	15.78
ST-MW-14	69.73	55.08	14.65	54.99	14.74	55.45	14.28
ST-MW-16	75.78	54.54	21.24	54.71	21.07	54.82	20.96
ST-MW-17	86.53	70.35	16.18	70.17	16.36	70.78	15.75
ST-MW-19	82.50	66.82	15.68	66.89	15.61	66.53	15.97
ST-MW-20	84.53	71.20	13.33	71.07	13.46	71.59	12.94

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

	Town of DVO	8/30	/2005	10/1	1/2005	11/6/	/2005
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63			59.28	15.35	60.09	
EPA-MW-21	84.13	67.03	17.10	67.35	16.78	67.14	16.99
EPA-MW-22	82.20	64.52	17.68	64.93	17.27	64.67	17.53
EPA-MW-23	82.83	65.03	17.80	65.43	17.40	65.17	17.66
EPA-MW-27	69.32	55.11	14.21	52.38	16.94	52.27	17.05
ST-MW-02	82.03	64.42	17.61				
ST-MW-06	69.83	46.25	23.58	45.99	23.84	43.69	26.14
ST-MW-09	78.13			64.28	13.85	64.40	13.73
ST-MW-11	75.25						
ST-MW-12	87.20	71.61	15.59	71.68	15.52	71.76	15.44
ST-MW-14	69.73	55.71	14.02	55.71	14.02	57.16	12.57
ST-MW-16	75.78	55.21	20.57	55.78	20.00	54.55	21.23
ST-MW-17	86.53	70.99	15.54	71.09	15.44	71.36	15.17
ST-MW-19	82.50	66.71	15.79	66.90	15.60	66.86	15.64
ST-MW-20	84.53	71.83	12.70	71.78	12.75	74.56	9.97

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

Well ID	Top of PVC Elevation (ft msl)	12/19/2005		1/24/2006		2/22/2006	
		DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.19	15.44	59.22	15.41	58.37	16.26
EPA-MW-21	84.13	66.84	17.29	66.55	17.58	65.72	18.41
EPA-MW-22	82.20	64.39	17.81	64.09	18.11	63.38	18.82
EPA-MW-23	82.83	64.89	17.94	64.61	18.22	63.91	18.92
EPA-MW-27	69.32	51.96	17.36	51.72	17.60	51.10	18.22
ST-MW-02	82.03						
ST-MW-06	69.83	44.43	25.40	44.08	25.75	44.88	24.95
ST-MW-09	78.13	63.96	14.17	63.77	14.36	63.24	14.89
ST-MW-11	75.25		-				
ST-MW-12	87.20	71.43	15.77	71.17	16.03	70.58	16.62
ST-MW-14	69.73	55.58	14.15	56.09	13.64	54.86	14.87
ST-MW-16	75.78	54.77	21.01	54.43	21.35	54.17	21.61
ST-MW-17	86.53	70.82	15.71	70.62	15.91	70.03	16.50
ST-MW-19	82.50	66.94	15.56	66.66	15.84	66.46	16.04
ST-MW-20	84.53	71.64	12.89	72.13	12.40	70.81	13.72

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

	Top of PVC	4/11	/2006	5/2/2006	
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-11D	74.63	59.30	15.33	64.90	9.73
EPA-MW-21	84.13	66.23	17.90	63.84	20.29
EPA-MW-22	82.20	63.89	18.31	63.59	18.61
EPA-MW-23	82.83	64.44	18.39	68.99	13.84
EPA-MW-27	69.32	51.72	17.60	51.28	18.04
ST-MW-02	82.03				
ST-MW-06	69.83	46.54	23.29	44.58	25.25
ST-MW-09	78.13	63.96	14.17	63.50	14.63
ST-MW-11	75.25				
ST-MW-12	87.20	71.35	15.85	73.87	13.33
ST-MW-14	69.73	56.10	13.63	55.71	14.02
ST-MW-16	75.78	54.58	21.20	54.63	21.15
ST-MW-17	86.53	70.76	15.77	70.35	16.18
ST-MW-19	82.50	67.13	15.37	66.69	15.81
ST-MW-20	84.53	72.13	12.40	71.80	12.73

Notes:

ft msl - feet mean sea level ft BTOC - feet below top of casing

Appendix I Indoor Air Quality Analytical Data

Appendix J Action List Dated April 2006

APRIL 2006 ACTION LIST SUMMARY

PROJECT:Stanton CleanersJOB NUMBER:70536LOCATION:Great Neck, NYDATE:May 15, 2006

CLIENT: <u>USACE / USEPA</u>

COMPLETED ITEMS DATE PERFORMED

Review of Carbon Change out Schedule (Aqueous Carbon and SVE Vapor Phase in June 2006)

Scheduling of Indoor Air Sampling Event Planned for May 2006

O&M Inspection/ System Monitoring 4/4/2006

Monthly System Sampling 4/4/2006

Flex Hose of Sub Slab at LIHA Replaced With Hard Piping, Blower Supported 4/4/2006

O&M/ System Monitoring/Air Monitoring 4/11/2006

Change out of Carbon Filters on the Rooftop of the LIHA 4/11/2006

O&M Inspection/ System Monitoring 4/18/2006

Replacement of Broken Actuator for Well EPA-EXT-02 4/18/2006

OUTSTANDING ITEMS / RECOMMENDED SOLUTION

Revision to O&M manual to reflect changes in GWP&T Completed

Indoor Air Sampling To be performed May 2006

Change out of R2D2's in treatment Building
Groundwater Monitoring Well Sampling
To be performed first week in May
To be performed Week of May 23, 2006
Replacement of System Oil and Grease
To be performed first week in May 2006