Monthly Operations and **Monitoring Report** June 2006

Site:

Stanton Cleaners Area Groundwater Contamination Site Great Neck, New York

Prepared for:

Environmental Chemical Corporation 1293 Broad Street, Suite 200 Bloomfield, New Jersey 07003

Prepared by:

Earth Tech, Inc. Blower (BL-1) 7870 Villa Park Drive, Suite 400 Richmond, Virginia 23228

42

July 1, 2006

ET Project No. 70536.02.01.02

Transfer Pump

Monthly Operations and Monitoring Report June 2006

Site: Stanton Cleaners Area Groundwater Contamination Great Neck, NY	Author:
Prepared for:	Title:
Environmental Chemical Corporation 1293 Broad Street, Suite 200 Bloomfield, New Jersey 07003	Date:
<i>Prepared by:</i> Earth Tech, Inc. 7870 Villa Park Drive, Suite 400 Richmond, Virginia 23228	Reviewer:
July , 2006	Title:
Earth Tech Project No. 70536.02.01.02	Date:

Table of Contents

1.0	INTRODUCTION	1
2.0	SUMMARY OF ACTIVITIES DURING JUNE 2006	2
3.0	GROUNDWATER TREATMENT SYSTEM ACTIVITIES	2
3.1 3.2 3. 3.	Operation and Maintenance	4
4.0	MONITORING WELL SAMPLING	6
5.0 PL	UME PERIMETER MONITORING	7
6.0 IN	DOOR AIR QUALITY SAMPLING	7
7.0	FUTURE EVENTS PLANNED	7
8.0	PROBLEM AREAS AND RECOMMENDED SOLUTIONS (OUTSTANDING ISSUES)	7

Figures

Figure 1	Air Sampling Locations and Results	6
----------	------------------------------------	---

Tables

Table 1	Modification to Active SVE Wells	5
Table 2	Monitored Well Samples for Further Analysis	7

Appendices

Appendix A	Daily Quality Control Reports (DQCRs)
Appendix B	Groundwater Treatment System Operation & Maintenance Checklists
Appendix C	Groundwater Treatment System Downloaded Operational Data
Appendix D	Sampling Trip Reports
Appendix E	Groundwater Treatment System Raw and Treated Analytical Data
Appendix F	Soil Vapor Extraction and Pump and Treat System Bi-weekly Air Monitoring Logs
Appendix G	Semi-Annual Groundwater Sampling Analytical Data
Appendix H	Historical Groundwater Level Monitoring Results (Ongoing)
Appendix I	Indoor Air Quality Analytical Data
Appendix J	Action List Dated June 2006

1.0 INTRODUCTION

This Monthly Operations and Monitoring Report, June 2006 (Monthly Report) has been prepared by Earth Tech, Inc., as a subcontractor to Environmental Chemical Corporation (ECC), under Contract No.5442-001-001.

The Stanton Cleaners Area Groundwater Contamination (Stanton) site is located at 110 Cutter Mill Road in Great Neck, Nassau County, New York. The Stanton Cleaner Property (SCP) is approximately ¹/₄ acre in size and includes a two-story building in which a dry-cleaning business operates and an adjacent one-story boiler/storage building as well as a two-story treatment building. The site is bordered by an indoor tennis facility, a synagogue and school facility.

Improper handling and disposal of spent dry cleaning solvents, including Tetrachloroethylene (PCE), resulted in the release of hazardous substances at the site. PCE migrated from the site's subsurface soils into the indoor air environments of the surrounding buildings and into groundwater beneath the site, resulting in a significant threat to human health.

In 1983, approximately 20 cubic yards of PCE-contaminated soil was removed from behind the Stanton Cleaners property.

In 1989, a groundwater extraction and treatment system was installed by the original Site operator to address groundwater contamination which resulted from improper disposal of spent PCE behind the SCP building. This system is not currently operational.

In 1998, the New York State Department of Environmental Conservation (NYSDEC) funded the construction of a new air stripper treatment system for the WAGNN water supply wells, which are impacted by contamination from the Site. This treatment system is currently in operation. In October 1998, as an immediate response action, the EPA installed a temporary soil vapor interceptor system, adjacent to the tennis club, to mitigate impacts from PCE vapors to the indoor air of this facility.

In 2001, the EPA completed the construction and installation of a soil vapor extraction (SVE) system and a ground water treatment (GWT) system on the SCP. Both the SVE and GWT systems are housed in the treatment building that was constructed on the SCP. The SVE was installed to remediate the VOC-contaminated soils, thus reducing the indoor air contamination in the adjacent affected buildings to safe levels. The GWT system was installed to remediate the VOC-contaminated groundwater and to remove the threat of vapors through the Site soils. Both systems are currently operating at the Site. The collected VOC-contaminated vapors and groundwater from both systems are treated through separate granular activated carbon (GAC) systems.

The site is presently under the jurisdiction of the Remedial Branch of the USEPA, Region II; USACE provides oversight to USEPA for the remedial action and the long-term remedial action programs. ECC provides oversight to the USACE to perform long-term remediation actions. Earth Tech, as a subcontractor to ECC, provides support on the following tasks as described in the Work Plan:

- Operation and maintenance (O&M) of the GWTS and SVE, including sampling and reporting;
- Sampling of monitoring wells associated with the site in order to track the migration of the contaminant plume, along with reporting.

• Sampling of indoor air quality of buildings adjacent to the site in order to identify all the adjacent buildings being impacted by site related contaminants and the effectiveness of the remedial actions being instituted at the site.

All work under this contract is performed in accordance with the following documents:

- Work Plan for Long-Term Remedial Action Support;
- Site-Specific Health and Safety Plan (HASP), dated July 23, 2001 (Revised February 3, 2003) and
- Sampling Quality Assurance Project Plan (SQAPP) dated August 22, 2000.

As required by the Scope of Work for this project, monthly summary reports are prepared to document and summarize the activities taking place. These reports provide a concise description of work performed during the reporting period and include pertinent deliverables as appendices. This monthly summary report covers the period between May 1 and May 31, 2006.

2.0 SUMMARY OF ACTIVITIES DURING JUNE 2006

The following list summarizes activities performed and milestone dates under this contract during the reporting period, June 1 through June 31, 2006:

- June 7 O&M Inspection/System Monitoring
- June 7 Monthly System Sampling
- June 7 Calibration of pH and conductivity meters (Recovery Well, Air Stripper and Effluent) by grab sample and using pH buffers
- June 15 O&M Inspection/System Monitoring
- June 15 Bi weekly air monitoring
- June 20 O&M Inspection/System Monitoring
- June 26 Monthly water level gauging
- June 26 O&M Inspection/System Monitoring
- June 26 Bi weekly air monitoring
- June 26 Calibration of pH and conductivity meters (Recovery Well, Air Stripper and Effluent) by grab sample

Details of system shutdowns and alarms during the month of June 2006 are discussed in section 3.1. Daily Quality Control Reports (DQCRs), which include projected work for the following two weeks, are completed for each day of site activities. Copies of these reports are included as Appendix A.

3.0 GROUNDWATER TREATMENT SYSTEM ACTIVITIES

3.1 Operation and Maintenance

The GWTS treated and discharged 2,413,463.2 gallons during the month of June 2006. The system was operational (recovery well pumps running) for approximately 720 of the 720 hours during the month, for an average operating flow of 55.86 gallons per minute (gpm). The system has treated a total of 128,108,854 gallons since the plant startup in November 2001.

There are currently two recovery wells pumping water into the system (EPA-EXT-02 and EPA-MW-24). EPA-EXT-02 is located in the triangle, the corner of New Cutter Mill Road and Mirrielees Road. Extraction well MW-24 had been pumping from the triangle location until it was turned off and April 20, 2005. Extraction well EPA-EXT-4R was activated on April 20, 2005. EPA-EXT-4R is located in the parking lot directly in front of the Stanton Dry Cleaners building. The decision to turn off extraction well MW-24 and replace it with EPA-EXT-4R in April 2005 was made by the USEPA. Later, in early 2006, based on an evaluation of laboratory analytical results obtained from extraction well EPA-EXT-4R and monitoring well sampling results for monitoring wells located in the area of EPA-MW-24, the decision was made to shut down extraction well EPA-EXT-4R and re-activate EPA-MW-24. Therefore, EPA-EXT-4R was taken offline and EPA-MW-24 was activated on February 2, 2006.

The facility is equipped with a remote monitoring and control system that was accessed a minimum of three times per week, by the lead engineer, during the reporting period to ensure proper system operation and notify response personnel if a problem or abnormal condition was observed. The system also provides remote notification of alarm conditions via automatic e-mail and text messaging.

The Treatment System Operation and Maintenance Checklist were completed during each O&M inspection event and the checklists for June 7, 15, 20 and 26, 2006 are provided in Appendix B. When the system is operational, any abnormal conditions or parameters outside of the normal operating range are addressed by the lead operator and/or monitoring/environmental technician on site (Jim Simmonds or James Kearns). If they require guidance or notes any serious conditions, the inspector notifies the response manager (Tom Williams). The checklists are completed on site and sent to James Kearns for review and scheduling of additional work if needed. Abnormal conditions and/or parameters outside the operating range are addressed, including repairs, cleaning, and continued monitoring.

System operational and alarm conditions are automatically stored by the PLC. This data is downloaded every two weeks. The June 2006 operational data is included in Appendix C. While operational, the system data are within the normal ranges and are consistent with visual observations, with any exceptions as described above.

The effluent flow data table in Appendix C shows daily discharge flows from each day of system operation and cumulative treated water discharge for each day during the reporting period, as well as a summary of total monthly flow and average daily flow since the system was started up in October 2001.

A review of October's Operations and maintenance logs indicated there has been a slight reduction in discharge flow for the P&T system. In an effort to increase the discharge flow, it was determined that the P&T system aqueous phase carbon vessels needed to be placed in parallel in the system treatment train in an effort to reduce back pressure and increase effluent flow. The altering of the piping for the 2-400 pound aqueous phase carbon vessels from series to parallel was performed on November 1, and 2, 2005.

On November 30, 2005 the SVE systems was offline due to a faulty low level sensor in the SVE knockout tank. The sensor was reviewed during the December 19, 2005 O&M inspection and was deemed to be faulty. A new low-level float switch was installed on January 9, 2006.

On January 9, 2006, three drains were installed in the line of SVE 1 so that the line can be drained weekly and so adequate air flow can be obtained at the SVE 1 air sample ports for the bi weekly air monitoring. On January 24, 2006 the drains were replaced with more permanent ball valve drains.

3.2 Sampling and Analysis

3.2.1 Raw and Treated Groundwater

In accordance with the SQAPP, GWTS sampling is conducted on a monthly basis to monitor plant efficiency, to determine whether liquid carbon breakthrough has occurred, and to verify that contract-specific discharge parameters (in accordance with National Pollutant Discharge Elimination System (NPDES) permit equivalency) are met. The combined GWTS influent, along with the GWTS effluent (discharge), will be sampled by the 15th of each month. Collected samples will be shipped to a designated EPA, CLP lab for analysis of TCL volatile organic compounds.

Earth Tech personnel conducted the GWTS influent and effluent sampling for this report period on June 7, 2006. The samples were shipped to the USEP Region II DESA Laboratory, located in Edison, NJ for analysis of low concentration TCL volatile organic compounds. A copy of the full sampling trip report containing the chain of custody forms and FedEx air bill is included in Appendix D. Laboratory analytical results for the GWTS sampling event during this reporting period will be forwarded to ECC under separate cover from the laboratory.

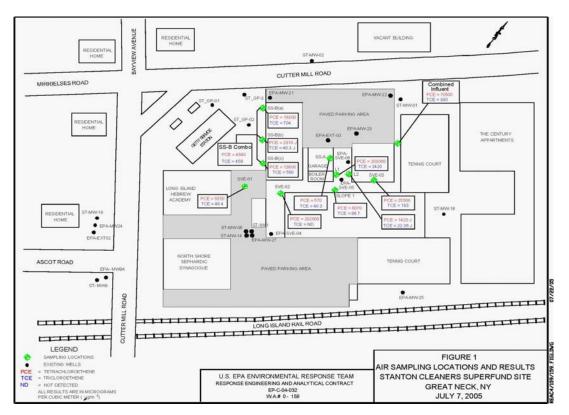
Measurements of influent and effluent pH and turbidity, along with effluent conductivity, are automatically monitored and recorded by the GWTS PLC on a daily basis; this information is included with the downloaded data in Appendix C.

The next GWTS influent / effluent sampling event is scheduled for July 11, 2006.

3.2.2 Process Air Stream Monitoring

Air monitoring of the SVE and Pump and Treat System is performed on a bi-weekly basis. It includes monitoring for VOCs, air velocity, temperature, humidity, dew point, vacuum pressure and other parameters, as specified in the O&M manual. Air monitoring is performed at the following locations within the system:

- Combined SVE Influent (pre-treatment),
- Post groundwater Air-Stripper (pre-treatment),
- Post vapor phase carbon vessel 1 Air Stripper air discharge (post-treatment),
- Post vapor phase carbon vessel 2 SVE air discharge (post-treatment),
- Sub-slab monitoring points (pre-treatment),
- SVE wells EPA-SVE-1 through EPA-SVE-4 (Shallow and Medium depth)


On October 3, 2005, following a review of the REAC SVE System Air Sampling Results for the event performed on July 7, 2005, the active SVE recovery wells were modified in an effort to maximize contaminant recovery rates. Details of the modifications to the active SVE wells prior to and post October 3, 2005 are included in the table below.

SVE Location	Prior to 10/3/05	After 10/3/05	
SVE 1	Shallow On	Shallow and Intermediate On	
SVE 2	Shallow On	Shallow On	
SVE 3	Shallow On	Shallow On	
SVE 4	Off	Off	
EPA-SVE-4R	On	On	
SSA	On	On	
SSB-A	On	On	
SSB-B	On	Off	
SSB-C	On	On	
L1	On	On	
L2	On	Off	

Table 1Modification to Active SVE Wells

In addition to modifying the active SVE locations, the names of each location were altered in an effort to stay consistent with REAC's nomenclature. Future weekly monitoring logs will be consistent REACs sample numbers. The laboratory analytical results for REAC's sampling of the SVE locations, performed on July, 7, 2005 are included in the figure below (please note the results in the figure are reported in micrograms per cubic meter).

Figure 1 Air Sampling Locations and Results

Additional evaluation/enhancement of the SVE recovery rates is ongoing and the installation of several SVE sample port locations was performed on November 1 and 2, 2005. On January 9, 2006, two more SVE sample port locations were installed in the line of SVE 3. The bi-weekly air monitoring logs are included in Appendix F. Estimated PCE removal rates for the SVE system are presented in Table 1. A Graph showing the estimated PCE removal rate trend over time is presented in Figure 2. The next bi-weekly air-monitoring event is scheduled for July 13, 2006.

4.0 MONITORING WELL SAMPLING

Groundwater samples from select monitoring wells both on and off-site are collected on a quarterly basis and shipped to a designated EPA, CLP lab for analysis. Groundwater sampling activities are performed in accordance with the USEPA Groundwater Sampling SOP #2007 and the USEPA Low-Stress Purging and Sampling SOP provided in the SQAPP. Each quarterly sampling event is coordinated with the local water authority to schedule the event when local water supply drawdown conditions do not impact the measurements. The location and number of monitoring wells as well as analytical parameters will be determined before each event by the USPEA, USACE, and ECC.

The first semi-annual groundwater sampling event of 2005 was conducted by Earth Tech personnel on February 7 through 11, 2005. A total of 25 groundwater monitoring wells were sampled for analysis of the presence of TCL volatiles only. A copy of the full sampling trip report containing the chain of custody forms and FedEx air bills is included in Appendix D.

The second semi-annual groundwater sampling event was performed the week of August 29, 2005. It included sampling 29 monitoring wells, 15 of which had natural attenuation parameter analyses. Laboratory analytical results for this semi-annual groundwater sampling event were sent directly to ECC under separate cover from the laboratory. The next groundwater monitoring well sampling event is scheduled for the week of May 22, 2006. Below is a list of monitoring wells that will be sampled (per RPM selection/request). Also below is a list of monitored well samples that will be further analyzed for monitoring and natural attenuation parameters.

Wells to be Sampled	Monitoring & Natural Attenuation Parameter Wells
ST-MW-02	CL-ID
EPA-MW-22	EPA-MW-29
EPA-ME-21	ST-MW-20
ST-MW-15	EPA-MW-26
ST-MW-19	EPA-MW-27
ST-MW-12	ST-MW-17
CL-1D	ST-MW-12
EPA-ME-26	ST-MW-19
SSB-C	EPA-MW-21
EPA-MW-23	EPA-MW-9A*
ST-MW-14	
EPA-MW-27	
EPA-MW-9A	
ST-MW-11	
EPA-MW-29	
CL-4D	
ST-MW-20*	
ST-MW-17*	

Table 2Monitored Well Samples for Further Analysis

*as a back-up only in the event another well cannot be sampled)

5.0 PLUME PERIMETER MONITORING

Groundwater level measurements are obtained from both on-site and offsite wells once a month in order to evaluate capture zone(s) around the groundwater extraction wells. The event is coordinated with the local water authority so the event can be scheduled when the local water supply drawdown conditions will have minimal impact to the measurements.

Water level measurements were collected on June 26, 2006. The location and number of monitoring wells was determined by the USEPA based on the site Capture Zone Analysis Plan. Groundwater level measurements for June 26, 2006 and historical groundwater level measurements are provided in Appendix H.

6.0 INDOOR AIR QUALITY SAMPLING

Indoor air quality samples from select locations within the treatment building and buildings along the perimeter of the site are collected using summa canisters on a quarterly basis and shipped to a laboratory for analysis. The location and number of indoor air quality samples to be collected as well as analytical parameters are determined by the USEPA, USACE and ECC.

The last indoor air quality sampling event was conducted on May 31 and June 1, 2006 by Earth Tech personnel. This sampling event was conducted to address air quality issues within the Long Island Hebrew Academy.

7.0 FUTURE EVENTS PLANNED

The following scheduled events are planned (or have since occurred) during the next three reporting periods:

- Continue to perform GWTS inspection and maintenance as required;
- Continue to perform bi-weekly system air monitoring;
- Collect system influent and effluent samples as directed by USACE/ECC/USEPA;
- Obtain groundwater level measurements as directed by USACE/ECC/USEPA;
- Revise O&M manual to reflect changes to GWP&T carbon vessel set-up (April 2006);
- Aqueous and vapor phase carbon change out (July 18, 2006)
- Change out of carbon filters on the roof of the Long Island Hebrew Academy (July 2006)
- Carbon in indoor air filters (R2D2s) change out (Early August)

8.0 **PROBLEM AREAS AND RECOMMENDED SOLUTIONS (OUTSTANDING ISSUES)**

The altering of the piping for the 2-400 pound aqueous phase carbon vessels from series to parallel was performed in November 2005. A review of flow rates indicated the effluent flow has increased from approximately 60 gpm to 72 gpm following the change. Action List of ongoing and completed items is provided in Appendix J to track work tasks that have been targeted as issues to be addressed.

Monthly O&M performed on November 29, 2005 indicated the low level float switch for the SVE system knockout tank was not functioning. Further inspection performed in December 2005 indicated a replacement was required. A replacement low level float switch was installed on January 9, 2006.

Figures

Tables

Estimated PCE Recovery Rates Stanton Cleaners Area Groundwater Contamination Site 250 CFM SVE SYSTEM September 2003 – June 2006

		Flo	ow Rate	VOC				
Date	# of			Concentration	Average	Discharge Rate	Total Discharge	
	Days	(cfm)	Avg (cfm)	(ppm)	(ppm)	(lbs/day)	(lbs)	
9/11/2003	1	225	225	4.2	4.20	0.6	0.6	
9/25/2003	13	210	217.5	4.7	4.45	0.6	7.8	
10/8/2003	13	213	211.5	5	4.85	0.6	8.2	
10/23/2003	15	210	210	12.2	8.6	1.1	16.7	
11/5/2003	13	215	212.5	6.8	9.5	1.2	16.2	
11/22/2003	17	211	213	6	6.4	0.8	14.3	
12/4/2003	12	205	208	5.9	5.95	0.8	9.2	
12/17/2003	13	200	202.5	4	4.95	0.6	8.0	
12/30/2003	13	210	205	4	4.95	0.6	8.1	
1/15/2004	16	205	207.5	4.1	4.05	0.5	8.3	
2/5/2004			SVE	System Manually	Shutdown	Since 1/16/04		
2/12/2004	8	200	200	3.5	3.5	0.4	3.5	
2/26/2004	14	205	202.5	5.3	4.4	0.6	7.7	
3/10/2004	12	200	202.5	5	5.15	0.6	7.7	
3/25/2004	15	199	199.5	5.1	5.05	0.6	9.3	
4/13/2004	19	175	187	6.3	5.7	0.7	12.5	
4/29/2004	16	170	172.5	6	6.15	0.7	10.5	
						Total	148.7	
Notes:	Notes:							
SVE system tur	SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.							
New SVE well EPA-EXT-04 on-line 11/04/2004								

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump

and Treatment Systems" publication.

Mair = Qair x Cair x 0.0283 m3 x 1440 min. x 2.2 lbs. ft.3

1000000 mg day

m3 g

Cair (mg/m3) = Conc (ppmv) x 1 mole air x 1000 L x 1000 mg x MWx

1E+06 24.1 ∟

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and

pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Fahrenheit

(0 degrees Celsius), the conversion is (1 mole air)/(22.4 L).

		Flo	w Rate	VOC			
Date	# of Days	(cfm)	Avg (cfm)	Concentration (ppm)	Average (ppm)	Discharge Rate (Ibs/day)	Total Discharge (lbs)
5/13/2004	14	150	160	6	6	0.6	8.3
5/30/2004	17	147	148.5	5.9	5.95	0.5	9.3
6/10/2004	11	150	148.5	4.4	5.15	0.5	5.2
6/30/2004	20	145	147.5	5.6	5	0.5	9.1
7/8/2004	8	140	142.5	4.9	5.25	0.5	3.7
7/22/2004	14	139	139.5	4.8	4.85	0.4	5.8
8/9/2004	18	140	139.5	3.1	3.95	0.3	6.1
8/31/2004	1	135	137.5	3	3.05	0.3	0.3
9/8/2004	8	120	127.5	2.9	2.95	0.2	1.9
9/30/2004	22	121	120.5	3.1	3	0.2	4.9
10/4/2004	5	121	121	2.9	3	0.2	1.1
10/20/2004	15	120	120.5	2.8	2.85	0.2	3.2
11/1/2004	12	121	120.5	3	2.9	0.2	2.6
11/17/2004	16	125	123	4.1	3.55	0.3	4.3
11/29/2004	12	120	122.5	4.2	4.15	0.3	3.8
12/7/2004	8	121	120.5	4.2	4.2	0.3	2.5
12/16/2004	9	120	120.5	4.1	4.15	0.3	2.8
						Total	223.5

Estimated PCE Recovery Rates (continued)

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump

and Treatment Systems" publication.

Mair = Qair X Cair X 0.0283 m3 X 1440 min. X 2.2 lbs. 1000000 mg ft.3 day

 $C_{air (mg/m3)} = \underline{Conc (ppmv)} \times \underline{1 \text{ mole air } x \underline{1000 \text{ L}} \times \underline{1000 \text{ mg}} \times MW_x$ 1E+06

24.1 ∟ m3 g

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and

pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Fahrenheit

(0 degrees Celsius), the conversion is (1 mole air)/(22.4 L).

		Flo	w Rate	VOC				
Date	# of Days	(cfm)	Avg (cfm)	Concentration (ppm)	Average (ppm)	Discharge Rate (Ibs/day)	Total Discharge (lbs)	
1/12/2005	27	120	120	4.5	4.3	0.3	8.6	
1/17/2005	5	120	120	4.5	4.5	0.3	1.7	
2/9/2005	23	120	120	3.9	4.2	0.3	7.2	
2/23/2005	14	120	120	3.5	3.7	0.3	3.8	
3/2/2005	7	120	120	3.2	3.35	0.2	1.7	
3/16/2005	14	120	120	3.5	3.35	0.2	3.5	
4/4/2005	19	120	120	3	3.25	0.2	4.6	
4/20/2005	16	120	120	2.9	2.95	0.2	3.5	
5/3/2005	13	120	120	3.1	3.00	0.2	2.9	
5/19/2005	16	120	120	2.9	3.00	0.2	3.6	
6/15/2005	26	120	120	1	1.95	0.1	3.8	
6/22/2005	7	270	120	8.3	4.65	0.3	2.4	
7/25/2005	33	280	275	8.3	8.30	1.4	46.5	
8/9/2005	15	290	285	5	6.65	1.2	17.6	
8/24/2005	15	290	290	6	5.50	1.0	14.8	
9/7/2005	14	260	275	6.5	6.25	1.1	14.9	
9/20/2005	13	260	260	6.8	6.65	1.1	13.9	
						Total	378.3	

Estimated PCE Recovery Rates (continued)

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump

and Treatment Systems" publication.

 $M_{air} = Q_{air} \ x \ C_{air} \ x \ \underline{0.0283 \ m^3} \ x \ \underline{1440 \ min.} \ x \ \underline{2.2 \ lbs}.$

ft.3 day 100000 mg

 $C_{air (mg/m3)} = \frac{Conc (ppmv)}{1E+06} \times \frac{1 \text{ mole air } x}{24.1 \text{ L}} \times \frac{1000 \text{ L}}{m3} \times \frac{1000 \text{ mg}}{g} \times MW_x$

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and

pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Fahrenheit

(0 degrees Celsius), the conversion is (1 mole air)/(22.4 L).

		Flow Rate		VOC			
Date	# of Days	(cfm)	Avg (cfm)	Concentration (ppm)	Average (ppm)	Discharge Rate (Ibs/day)	Total Discharge (lbs)
10/3/2005	13	270	265	7.4	7.10	1.2	15.1
10/18/2005	15	240	255	3.7	5.55	0.9	13.1
11/7/2005	20	250	245	1.5	2.60	0.4	7.9
11/29/2005	22	200	225	1.7	1.60	0.2	4.9
12/19/2005	20	305	252.5	14.7	8.20	1.3	25.6
1/4/2006	16	260	282.5	3.4	9.05	1.6	25.3
1/19/2006	15	285	272.5	2.5	2.95	0.5	7.4
1/30/2006	10	275	280	2.2	2.35	0.4	4.1
2/16/2006	17	210	242.5	10.7	6.45	1.0	16.4
2/27/2006	11	275	242.5	2.4	6.55	1.0	10.8
3/23/2006	24	245	260	2.3	2.35	0.4	9.1
4/11/2006	19	245	245	1.6	1.95	0.3	5.6
5/4/2006	23	265	255	0	0.80	0.1	2.9
6/15/2006	42	270	267.5	5	2.50	0.4	17.3
6/26/2006	11	260	265	0	2.50	0.4	4.5
						Total	548.2

Estimated PCE Recovery Rates (continued)

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activites. New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "*Elements for Effective Management of Operating Pump and Treatment Systems*" publication.

$C_{air (mg/m3)} = \underline{Conc (ppmv)} \times 1$	<u>l mole air</u> x <u>1000</u>	∟ x <u>100</u>	<u>00 mg</u> x MWx
1E+06	24.1 ∟	m3	q

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Farenheit (0 degrees Celcius), the conversion is (1 mole air)/(22.4 L).

Appendices

Appendix A

Daily Quality Control Reports (DQCRs)

		DAII	LY QUALI	TY CONTRO	L REPOR	RT	
Site Name an	d Location:	Stanton Cle	eaners Site (L	TRA) – Great Ne	eck, NY		
Client: ECC				Contract N	No: 5442-00	1-001	
Contractor:	Earth Tech	, Inc.					
Address:	7870 Villa	Park Drive	e, Suite 400				
	Richmond	, Virginia 2	3228				
Phone No.:	(804) 515-	8300					
Date: 6/7/06				Earth Tech	Project No	.: 70536	
Day	S	Μ	Т	W	Т	F	S
Weather				RAINY			
Temp.				60°F			
Wind				SLIGHT			
Humidity				80%			
Earth Tech P	ersonnel On-	Site: Robe	rt Derrick, (Chuck Fernald			
			,				
Subcontracto	r (include na	mes & resr	onsibilities):	N/A			
	(
Contract Mat	erials and Ec	uipment o	n site: Ford F	F 150, F-250, gen	eral sampli	ing equipmen	t. Horiba U 22.
pH 4.0 and 7		* *		, , _ , _ _	Sumph		-,, ,
	to bullets, g	seneral na					
Work Perform	med (include	sampling	list by NAS 1	number if applica	hle).		
Monthly sys		1 0	115t Uy 11110 1	iumber ir apprea	010).		
O and M Ins		g					
		nH motor (sonsors (Soo	special notes)			
Quality Cont	rol Activities	(including	field calibra	tions): Calibratio	n of Horib	a II 22	
Quanty Cont	IOI ACTIVITIES	s (menualing	, ficia canora			a U 22	
Health and Sa	ofoty Lovala	and Activit	tion I aval D				
Problems End	~			NI/A			
PIODIeIIIS EII	countered/Co	Shection A	ction Taken.	IN/A			
Explain Dave	alonmonta La	oding to C	hange in SOT	V or Finding of F	lact: NI/A		
						. attach minut	es of meeting and
list of all atte		si an inspec	Luons by subj	ject and specifical	non iocatior	i, attach minut	es of meeting and
list of all alle	ndees): N/A						
TT 11	• • • •	1 1	1 6	. 1	10 \$7		
Have all requ	ired submitt	als and sam	ples of const	ruction been appr	oved? Yes		
	• 1 1 •	1	1 0	, , 1 1 1	1.0 17		
Do the mater	ials and equi	pment to b	e used contor	m to the submitta	us? Yes		
.					,		
Has all prelin	nınary work	been inspe	cted, tested, a	nd completed? Y	es		
							1.1
-	-	on techniq	ues to be exec	cuted to prove con	ntract comp	liance (include	both expected
and actual res	sults): N/A						
		• •			a		D
Has a phase l	nazard analys	sis been pei	rtormed? Inc	luded in the Site	Specific He	ealth & Safety	y Plan

	DAILY QUALITY CONTROL REPORT
Site Name and	Location: Stanton Cleaners Site (LTRA) – Great Neck, NY
Client: ECC	Contract No: 5442-001-001
Contractor:	Earth Tech, Inc.
Address:	7870 Villa Park Drive, Suite 400
11001055	Richmond, Virginia 23228
Phone No.:	(804) 515-8300
Date: 6/7/06	Earth Tech Project No.: 70536
Comments an	d deficiencies noted and corrective actions taken: Explained in work performed section.
Initial Inspect	ion. List all inspections by subject and specification logation. Comment and/or deficiencies
-	ion: List all inspections by subject and specification location. Comment and/or deficiencies rective actions taken.
Explained in v	vork performed section.
-	pection: List all inspections by subject and specification location. Comment and/or deficiencies
noted and cor	rective actions taken.
Special Notes	:
	s shut down and all three pH meter sensors (Recovery Well, Air Stripper and Effluent) were taken
-	d. Two of the pH meters are model TB417. These are older models. The manuals recommended not
	ffer calibration with the sensors but instead said that a grab sample calibration was more accurate.
	ers have only been off by a few tenths of a pH unit anyway. The effluent pH meter is a newer model
	neter has been the most accurate. A two point pH buffer calibration was performed on the Effluent
	ndings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer.
After the syst	ndings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer.
-	indings on the meters still do not match the readings of the meters on the PLC so there must be a in issue between them and the computer. The means turned back on, it was found that air got into the air stripper pump. The lines
before the pu	ndings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The was turned back on, it was found that air got into the air stripper pump. The lines imp and the effluent line were drained. The pump was turned on and off several times to
before the pu	indings on the meters still do not match the readings of the meters on the PLC so there must be a in issue between them and the computer. The means turned back on, it was found that air got into the air stripper pump. The lines
before the pu	ndings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The was turned back on, it was found that air got into the air stripper pump. The lines imp and the effluent line were drained. The pump was turned on and off several times to
before the pu clear it of any	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The was turned back on, it was found that air got into the air stripper pump. The lines imp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally.
before the pu	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The was turned back on, it was found that air got into the air stripper pump. The lines imp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally.
before the pu clear it of any	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The was turned back on, it was found that air got into the air stripper pump. The lines imp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally.
before the purclear it of any Tomorrow's I Bi-weekly ain	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The was turned back on, it was found that air got into the air stripper pump. The lines imp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally.
before the purclear it of any Tomorrow's I Bi-weekly ain	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The was turned back on, it was found that air got into the air stripper pump. The lines mp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally. Expectations:
before the purclear it of any Tomorrow's I Bi-weekly ain	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The was turned back on, it was found that air got into the air stripper pump. The lines imp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally. Expectations:
before the purclear it of any clear it of any Tomorrow's I Bi-weekly ain Weekly O an By: Robert Do	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The meters the back on, it was found that air got into the air stripper pump. The lines mp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally. Expectations: Temonitoring d M inspection Title: Environmental Scientist
before the purclear it of any clear it of any Tomorrow's I Bi-weekly ain Weekly O an By: Robert Do	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The meters the back on, it was found that air got into the air stripper pump. The lines mp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally. Expectations: Temonitoring d M inspection Title: Environmental Scientist
before the purclear it of any clear it of any Tomorrow's I Bi-weekly ain Weekly O an By: Robert Do	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The meters the back on, it was found that air got into the air stripper pump. The lines mp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally. Expectations: Temonitoring d M inspection Title: Environmental Scientist
before the purclear it of any clear it of any Tomorrow's I Bi-weekly ain Weekly O an By: Robert Do	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The meters still do not match that air got into the air stripper pump. The lines may and the effluent line were drained. The pump was turned on and off several times to a new off war. This fixed the solution, the system was turned back on and is operating normally. Expectations: The monitoring d M inspection Title: Environmental Scientist
before the purclear it of any Tomorrow's I Bi-weekly ain Weekly O and By: Robert Do Signature:	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The mean the empty of the second that air got into the air stripper pump. The lines mp and the effluent line were drained. The pump was turned on and off several times to a air. This fixed the solution, the system was turned back on and is operating normally.
before the purclear it of any clear it of any Tomorrow's I Bi-weekly ain Weekly O an By: Robert Do Signature:	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The mass turned back on, it was found that air got into the air stripper pump. The lines mp and the effluent line were drained. The pump was turned on and off several times to y air. This fixed the solution, the system was turned back on and is operating normally. Expectations: monitoring d M inspection errick Title: Environmental Scientist MAT Daw (Quality Control Representative/Manager)
before the purclear it of any clear it of any Tomorrow's I Bi-weekly ain Weekly O an By: Robert Do Signature:	adings on the meters still do not match the readings of the meters on the PLC so there must be a n issue between them and the computer. The mean the empty of the second that air got into the air stripper pump. The lines mp and the effluent line were drained. The pump was turned on and off several times to a air. This fixed the solution, the system was turned back on and is operating normally.

		DAILY	QUALITY	CONTRO	L REPORT		
Site Name an	d Location: St	anton Clean	ers Site (LTR	A) – Great Ne	eck, NY		
Client: ECC				Contract N	No: 5442-001-0	01	
Contractor:	Earth Tech,						
Address:	7870 Villa F	,					
	Richmond, V	•	28				
Phone No.:	(804) 515-8.	300				70726	
Date: 6/15/06	S	Μ	Т	W Earth Lech	Project No.: '	/ <u>U536</u> F	S
Day Weather	3	IVI		••	SUNNY		8
Temp.					65 F		
Wind					NONE		
Humidity					50%		
~	ersonnel On-S	ite: Robert]	Derrick, Tri	p Stakem			
				L			
Subcontracto	r (include nam	nes & respon	sibilities): N/	'A			
		1	ite: F 150, M	ultiRae PID, '	VelociCalc, aiı	r pump and ba	ag, pressure
gauge, gener	al hand tools						
	1 / 1 1	1. 1.	1 1140	1	11 \		
			by NAS nun	nber if applica	ble):		
•	nd M inspecti	0 n					
BI weekiy al	r monitoring						
Quality Cont	rol Activities (including fi	eld calibration	ns): Calibrate	h PID		
Quality Cont		including in	end cumbration				
	afety Levels an						
Problems End	countered/Cor	rection Actio	on Taken: N/A	4			
	1 / T	1. (01	: cour				
				or Finding of F		ttach minutag	of meeting and
list of all atte		an inspectio	ons by subject	and specifical	tion location; a	ttach minutes (of meeting and
list of all atte	ndees): N/A						
Have all requ	uired submittal	s and sample	es of construc	tion been appr	coved? Ves		
	ined submitta	s and sample					
Do the mater	ials and equip	ment to be u	sed conform	to the submitta	uls? Yes		
	* *						
Has all prelin	ninary work be	een inspected	d, tested, and	completed? Y	es		
Tractin 1			4 - h	- 1 4		· · · · · · · · · · · · · · · · · · ·	41
1 est required	and inspectio	n techniques	to be execute	ed to prove col	ntract compliar	ice (include bo	oun expected

DAILY QUALITY CONTROL REPORT
Site Name and Location: Stanton Cleaners Site (LTRA) – Great Neck, NY
Client: ECC Contract No: 5442-001-001
Contractor: Earth Tech, Inc.
Address: 7870 Villa Park Drive, Suite 400
Richmond, Virginia 23228
Phone No.: (804) 515-8300
Date: 6/15/06 Earth Tech Project No.: 70536
and actual results): N/A
Has a phase hazard analysis been performed? Included in the Site Specific Health & Safety Plan
Comments and deficiencies noted and corrective actions taken: Explained in work performed section.
Initial Inspection: List all inspections by subject and specification location. Comment and/or deficiencies noted and corrective actions taken.
Explained in work performed section.
Follow-up Inspection: List all inspections by subject and specification location. Comment and/or deficiencies noted and corrective actions taken.
Special Notes:
Tomorrow's Expectations:
Weekly o and m inspection
Vapor Phase Carbon Change out (Late June)
Monthly system sampling (early July)
By: Robert Derrick Title: Environmental Scientist
Signature: Abit Deni (Quality Control Representative/Manager)
Signature: Proof Generative/Manager)
The above report is complete and correct. All materials and equipment used and all work performed during
this reporting period are in compliance with the contract specifications and submittals, except as noted above.
Signature: (Contractor's Authorized Representative)

		DAILY (QUALITY	CONTROI	REPORT		
	d Location: St	anton Cleaner	rs Site (LTR	RA) – Great Nec	k, NY		
Client: ECC				Contract No	p: 5442-001-00)1	
Contractor:	Earth Tech,						
Address:		ark Drive, Su					
		Virginia 2322	8				
Phone No.:	(804) 515-83	300		1			
Date: 6/20/06			I _		Project No.: 7		
Day	S	Μ	Т	W	Т	F	S
Weather			SUNNY				
Temp.			75 F				
Wind			NONE				
Humidity			70%				
Earth Tech P	ersonnel On-S	ite: Rob Deri	rick, Trip S	takem			
Subcontracto	r (include nam	les & responsi	ibilities): N/	'A			
Contract Mat	erials and Equ	ipment on site	e: F-150, ge	neral hand too	ls		
Work Perform	ned (include s	ampling; list l	oy NAS nur	nber if applicab	le):		
Weekly O ar	nd M inspection	on					
Quality Cont	rol Activities (including fiel	d calibration	ns): N/A			
		C		,			
Health and Sa	afety Levels a	nd Activities:	Level D				
Problems End	countered/Cor	rection Actior	n Taken: N/	4			
Explain Deve	elopments Lea	ding to Chang	ge in SOW of	or Finding of Fa	ct: N/A		
Preparatory I	nspection (list	all inspection	s by subject	t and specificati	on location; at	tach minutes of	f meeting and
list of all atte	ndees): N/A						
Have all requ	ired submittal	s and samples	of construc	tion been appro	oved? Yes		
		-		**			
Do the mater	ials and equip	ment to be use	ed conform	to the submittal	s? Yes		
Has all prelin	ninary work be	een inspected,	tested, and	completed? Ye	s		
-	1	n techniques t	o be execut	ed to prove con	tract compliand	ce (include bot	h expected
and actual res	sults): N/A						
Has a phase h	nazard analysis	s been perform	ned? Includ	led in the Site S	Specific Healt	n & Safety Pla	an

	DAILY QUALITY CONTROL REPORT
Site Name and	d Location: Stanton Cleaners Site (LTRA) – Great Neck, NY
Client: ECC	Contract No: 5442-001-001
Contractor:	Earth Tech, Inc.
Address:	7870 Villa Park Drive, Suite 400
	Richmond, Virginia 23228
Phone No.:	(804) 515-8300
Date: 6/20/06	Earth Tech Project No.: 70536
Comments an	d deficiencies noted and corrective actions taken: Explained in work performed section.
	ion: List all inspections by subject and specification location. Comment and/or deficiencies
	rective actions taken.
Explained in v	vork performed section.
-	spection: List all inspections by subject and specification location. Comment and/or deficiencies
noted and corr	rective actions taken.
Special Notes	
Special Notes	
Tomorrow's H	Expectations
Bi weekly air	
O and M insp	
	Carbon change out (Late June)
.	tem sampling (early July)
Wontiny Byst	tem sampning (carry sury)
By: Robert De	errick Title: Environmental Scientist
Signature: A	1 ± 0
Signature: Fr	(Quality Control Representative/Manager)
The above rep	port is complete and correct. All materials and equipment used and all work performed during
this reporting	period are in compliance with the contract specifications and submittals, except as noted above.
Signature:	(Contractor's Authorized Representative)

		DAILY	QUALITY	Y CONTROI	REPORT		
Site Name an	d Location: St	tanton Cleane	rs Site (LTF	RA) – Great Neo	ck, NY		
Client: ECC				Contract N	o: 5442-001-00)1	
Contractor:	Earth Tech,						
Address:		Park Drive, Su					
		Virginia 2322	8				
Phone No.:	(804) 515-82	300					
Date: 6/26/06			-		Project No.: 7		
Day	S	M	Т	W	Т	F	S
Weather		CLOUDY					
Temp.		80 F					
Wind		5-10 MPH					
Humidity		70%					
Earth Tech P	ersonnel On-S	ite: Rob Der	rick, Trip S	stakem			
C 1	<i>(</i> , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			/ •			
Subcontracto	r (include nam	ies & respons	10111ties): N	/A			
Contro of Mot	aniala and Eau	in an ant an ait	. F 150 V	alasiCala Mul			. h aa
	ige, water lev	-		elociCalc, Mult	likae PID, air	pump, sample	e bag,
pressure gau	ige, water iev	ei tape, genei	rai nanu to	018			
Work Perform	med (include a	ampling: list	by NAS nur	nber if applicab	1e):		
	nd M inspecti	1 0	by INAS IIUI	nder if applicad	<i>ie)</i> .		
v	ir Monitoring						
•	iter Level Ga	•	6)				
•	librating pH a	0 0 .		S			
				ns): Calibrate	d PID and Ho	riba (2 point r	оH
-	and general ca				u uu		
Health and Sa	afety Levels a	nd Activities:	Level D				
Problems End	countered/Cor	rection Action	n Taken: N/	A			
				or Finding of Fa			
Preparatory I	nspection (list	all inspection	is by subjec	t and specificati	on location; at	tach minutes of	f meeting and
list of all atte	ndees): N/A						
Have all requ	ired submittal	s and samples	s of construc	ction been appro	oved? Yes		
Do the mater	ials and equip	ment to be use	ed conform	to the submittal	s? Yes		
TT 11 1'	• 11	• , •	, , 1 1	1 / 10 \$7			
Has all prelin	ninary work b	een inspected	, tested, and	completed? Ye	S		

	DAILY QUALITY	CONTROL REPORT
Site Name and	d Location: Stanton Cleaners Site (LTR	
Client: ECC		Contract No: 5442-001-001
Contractor:	Earth Tech, Inc.	
Address:	7870 Villa Park Drive, Suite 400	
	Richmond, Virginia 23228	
Phone No.:	(804) 515-8300	
Date: 6/26/06		Earth Tech Project No.: 70536
Test required	and inspection techniques to be execute	ed to prove contract compliance (include both expected
and actual res	1 1	a to prove contract compnance (menude both expected
Has a phase h	azard analysis been performed? Includ	ed in the Site Specific Health & Safety Plan
· · · ·	• •	* · · · ·
Comments an	d deficiencies noted and corrective action	ons taken: Explained in work performed section.
Initial Inspect	ion: List all inspections by subject and	specification location. Comment and/or deficiencies
	rective actions taken.	specification location. Comment and/or deficiencies
	vork performed section.	
-	•	
Follow-up Ins	pection: List all inspections by subject	and specification location. Comment and/or deficiencies
noted and cor	rective actions taken.	
Special Notes	:	
T	7	
Tomorrow's I	Expectations:	
	4	
O and M insp Vanar Phaga		
-	Carbon change out (Late June)	
Wonthly Syst	tem sampling (early July)	
By: Robert De	errick Title: Environ	nmental Scientist
0	$1 \pm 0 = 0$	
Signature: A	(Qual	ity Control Representative/Manager)
751 1		1 1 ' / 1 11 1 ^ 1 1 '
-	-	als and equipment used and all work performed during
		act specifications and submittals, except as noted above.
Signature:	(Contractor's Author	zea kepresentative)

Appendix B

Groundwater Treatment System Operation & Maintenance Checklists

<u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND</u> <u>MAINTENANCE WEEKLY CHECKLIST</u>

A. Is any part of the system leaking? YE If so, list where	S X NO
B. Is there water on the floor? YES X N If so, list where	0
C. Are all three (3) floor sump level switches in	place? X YES NO
D. Is there any evidence of water in any of these Note: If water is present, remove with shop vac	1

2. A. Display screen on computer will either show system or screen saver. If screen saver is on, tap screen with finger to show screen. If only the desktop is showing with no system screen, click the Lookout - (Stanton) icon on the taskbar at the bottom of the screen.

B. From the site display, monitor and record the following.

6/7/06

1.

1. Recovery Well EPA-EXT-02 flow ¹	60 GPM
2. Recovery Well EPA-EXT-02 valve open	100 %
3. Recovery Well EPA-EXT-4R flow	GPM
4. Recovery Well EPA-EXT-4R valve open	%
5. Recovery Well pH	8.3pH
6. Recovery Well conductivity	148 cond
7. Air Stripper pH	10.1pH
8. Air Stripper temperature	174 deg.
9. Air Stripper air flow	358CFM
10. Pre-vapor carbon pressure	0"wc
11. Post carbon air flow	2746CFM
12. Discharge conductivity	152 cond
13. Discharge pH	9.4pH
14. Discharge flow	68GPM
15. Discharge total gallons	128,143,245Gal
16. SVE inlet vacuum	4"Hg

¹ Wells EPA-EXT-02 and MW-24 wells are manifold together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

17. SVE air flow	500	CFM
C. From the treatment room, monitor and record the	following.	
1. Recovery Well EPA-EXT-02 total flow	10606200	Gal
2. Recovery Well EPA-EXT-03 total flow	Gal	
3. Recovery Well pH	6.89	pH
4. Recovery Well conductivity	0.68	cond
5. Air Stripper pH	8.44	pH
6. Air Stripper temperature	15.4	deg. F
7. Air Stripper Pump water flow	70	_GPM
8. Air Stripper Pump pressure	29	_PSI
9. Discharge conductivity	0.65	_ cond
10. Discharge pH	7.77	pH
11. SVE inlet vacuum (digital readout)	01.8	"Hg
12. SVE inlet vacuum	3.0	"Hg
13. SVE post knockout vacuum	4.5	"Hg

3. A. If time allows, check to see that the treatment system is cycling properly as described in <u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 0&M MANUAL</u>

6/15/06 <u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND</u> <u>MAINTENANCE WEEKLY CHECKLIST</u>

B. Is there water on the floor? If so, list where	YES	XNO		
C. Are all three (3) floor sump	level swite	ches in place	e? XYES	NO

2. A. Display screen on computer will either show system or screen saver. If screen saver is on, tap screen with finger to show screen. If only the desktop is showing with no system screen, click the Lookout - (Stanton) icon on the taskbar at the bottom of the screen.

B. From the site display, monitor and record the following.

1.

1. Recovery Well EPA-EXT-02 flow ¹	50 GPM
2. Recovery Well EPA-EXT-02 valve open	100%
3. Recovery Well EPA-EXT-4R flow	GPM
4. Recovery Well EPA-EXT-4R valve open	%
5. Recovery Well pH	7.2pH
6. Recovery Well conductivity	157 cond
7. Air Stripper pH	8.8 pH
8. Air Stripper temperature	174deg.
9. Air Stripper air flow	354CFM
10. Pre-vapor carbon pressure	0"wc
11. Post carbon air flow	2546CFM
12. Discharge conductivity	159 cond
13. Discharge pH	9.2pH
14. Discharge flow	60 GPM
15. Discharge total gallons	126877120 Gal
16. SVE inlet vacuum	4"Hg

¹ Wells EPA-EXT-02 and MW-24 wells are manifold together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

17. SVE air flow	500	CFM			
C. From the treatment room, monitor and record the following.					
1. Recovery Well EPA-EXT-02 total flow	1178700	Gal			
2. Recovery Well EPA-EXT-03 total flow	Gal				
3. Recovery Well pH	5.85	pH			
4. Recovery Well conductivity	0.74	cond			
5. Air Stripper pH	7.22	pH			
6. Air Stripper temperature	15.5	deg. F			
7. Air Stripper Pump water flow		GPM			
8. Air Stripper Pump pressure	28	PSI			
9. Discharge conductivity	0.69	cond			
10. Discharge pH	7.59	_ pH			
11. SVE inlet vacuum (digital readout)	01.5	"Hg			
12. SVE inlet vacuum	2.5	"Нд			
13. SVE post knockout vacuum	5.0	"Hg			

3. A. If time allows, check to see that the treatment system is cycling properly as described in <u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 0&M MANUAL</u>

<u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND</u> <u>MAINTENANCE WEEKLY CHECKLIST</u>

B. Is there water on the floor? If so, list where	YES	XNO			
C. Are all three (3) floor sump	level swite	ches in place?	XYES	NO	

2. A. Display screen on computer will either show system or screen saver. If screen saver is on, tap screen with finger to show screen. If only the desktop is showing with no system screen, click the Lookout - (Stanton) icon on the taskbar at the bottom of the screen.

B. From the site display, monitor and record the following.

6/20/06

1.

1. Recovery Well EPA-EXT-02 flow ¹	53	GPM
2. Recovery Well EPA-EXT-02 valve open	100	%
3. Recovery Well EPA-EXT-4R flow		GPM
4. Recovery Well EPA-EXT-4R valve open		%
5. Recovery Well pH	7.2	рН
6. Recovery Well conductivity	162	cond
7. Air Stripper pH	8.8	pH
8. Air Stripper temperature	179	deg.
9. Air Stripper air flow	413	CFM
10. Pre-vapor carbon pressure	0	"wc
11. Post carbon air flow	2394	CFM
12. Discharge conductivity	168	cond
13. Discharge pH	9.2	pH
14. Discharge flow	69	GPM
15. Discharge total gallons	12726	8884 Gal
16. SVE inlet vacuum	4	"Hg

¹ Wells EPA-EXT-02 and MW-24 wells are manifold together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

17. SVE air flow	500	CFM
C. From the treatment room, monitor and record the	following.	
1. Recovery Well EPA-EXT-02 total flow	1532100	Gal
2. Recovery Well EPA-EXT-03 total flow	Gal	
3. Recovery Well pH	5.85	pH
4. Recovery Well conductivity	0.74	cond
5. Air Stripper pH	7.17	pH
6. Air Stripper temperature	15.8	deg. F
7. Air Stripper Pump water flow		GPM
8. Air Stripper Pump pressure	27	PSI
9. Discharge conductivity	0.73	cond
10. Discharge pH	7.55	_ pH
11. SVE inlet vacuum (digital readout)	01.5	"Hg
12. SVE inlet vacuum	2.5	"Hg
13. SVE post knockout vacuum	5.0	"Hg

3. A. If time allows, check to see that the treatment system is cycling properly as described in <u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 0&M MANUAL</u>

6/26/06 <u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND</u> <u>MAINTENANCE WEEKLY CHECKLIST</u>

B. Is there water on the floor? If so, list where	YES	XNO		
C. Are all three (3) floor sump	level swite	ches in place?	XYES	NO

2. A. Display screen on computer will either show system or screen saver. If screen saver is on, tap screen with finger to show screen. If only the desktop is showing with no system screen, click the Lookout - (Stanton) icon on the taskbar at the bottom of the screen.

B. From the site display, monitor and record the following.

1.

1. Recovery Well EPA-EXT-02 flow ¹	49GPM
2. Recovery Well EPA-EXT-02 valve open	100%
3. Recovery Well EPA-EXT-4R flow	GPM
4. Recovery Well EPA-EXT-4R valve open	%
5. Recovery Well pH	8.1 pH
6. Recovery Well conductivity	170 cond
7. Air Stripper pH	9.1pH
8. Air Stripper temperature	182 deg.
9. Air Stripper air flow	398 CFM
10. Pre-vapor carbon pressure	0"wc
11. Post carbon air flow	2604CFM
12. Discharge conductivity	176 cond
13. Discharge pH	8.6pH
14. Discharge flow	70GPM
15. Discharge total gallons	127773948Gal
16. SVE inlet vacuum	4"Hg

¹ Wells EPA-EXT-02 and MW-24 wells are manifold together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

17. SVE air flow	500	CFM
C. From the treatment room, monitor and record the	following.	
1. Recovery Well EPA-EXT-02 total flow	198700	_ Gal
2. Recovery Well EPA-EXT-03 total flow	Gal	
3. Recovery Well pH	5.96	рН
4. Recovery Well conductivity	0.74	cond
5. Air Stripper pH	7.29	pH
6. Air Stripper temperature	15.8	deg. F
7. Air Stripper Pump water flow		GPM
8. Air Stripper Pump pressure	28	PSI
9. Discharge conductivity	0.73	cond
10. Discharge pH	6.89	_ pH
11. SVE inlet vacuum (digital readout)	01.5	"Hg
12. SVE inlet vacuum	2.5	"Нд
13. SVE post knockout vacuum	5.0	"Hg

3. A. If time allows, check to see that the treatment system is cycling properly as described in <u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 0&M MANUAL</u> Appendix C

Groundwater Treatment System Downloaded Operational Data

Stanton Cle	eaners Grour	ndwater Cont	tamination S	ite - June 200	6 - Site Oper	ation Data									
	Recover y Well 1	Recover y Well 2	Recover y Well 3	Discharg e	Discharg e	Influent water	Influent conductivit y	Effluent conductivit y	Influen t water	Air Strippe r water	Discharg e water	Total gallons discharged	Air Strippe r Air Flow	Combine d Discharg e Air Flow	SVE Air Flo w
	Flow (GPM)	Flow (GPM)	Flow (GPM)	Flow (GPM)	Flow (CFM)	Temperatur e (deg F)			pH	pH	pН				
6/1/2006 0:00	0	0	61	64	2447	168	127	132	8.1	9.4	8.8	127599419. 4	349	2447	500
6/1/2006 4:00	0	0	60	64	2870	167	126	132	8.1	9.4	8.8	127615006. 6	381	2870	500
6/1/2006 8:00	0	0	58	67	2544	168	127	135	8.1	9.4	8.8	127630579. 1	331	2544	500
6/1/2006 12:00	0	0	58	65	2546	171	132	142	8.2	9.5	8.9	127646157. 4	332	2546	500
6/1/2006 16:00	0	0	51	69	2728	169	127	141	8	9.7	8.9	127661187. 7	298	2728	500
6/1/2006 20:00	0	0	49	67	2447	168	127	139	8	9.7	8.8	127674474. 3	447	2447	500
6/2/2006 0:00	0	0	50	5	2555	168	127	138	7.9	9.7	8.8	127688003. 8	379	2555	500
6/2/2006 4:00	0	0	50	65	2546	168	126	135	7.9	9.6	8.8	127701454. 9	388	2546	500
6/2/2006 8:00	0	0	50	65	2748	168	127	136	7.9	9.6	8.8	127714891. 7	352	2748	500
6/2/2006 12:00	0	0	51	6	2447	169	127	137	7.9	9.6	8.8	127728381.	328	2447	500
6/2/2006 16:00	0	0	50	65	2447	168	126	136	7.9	9.6	8.8	127741669. 1	388	2447	500
6/2/2006 20:00	0	0	52	67	2438	167	124	132	7.9	9.6	8.8	127755209. 6	384	2438	500
6/3/2006 0:00	0	0	51	66	2691	167	125	133	7.9	9.6	8.8	127768753. 3	359	2691	500
6/3/2006 4:00	0	0	51	9	2693	166	126	132	7.9	9.6	8.8	127782050.	402	2693	500
6/3/2006 8:00	0	0	51	67	2447	165	125	129	7.9	9.6	8.8	127795632	337	2447	500
6/3/2006 12:00	0	0	51	0	2601	168	127	133	7.9	9.6	8.8	127809169. 5	419	2601	500
6/3/2006 16:00	0	0	51	67	2396	168	126	131	7.9	9.6	8.8	127822597.	364	2396	500
6/3/2006 20:00	0	0	50	0	2546	166	127	132	7.9	9.6	8.8	127836044. 3	356	2546	500
6/4/2006 0:00	0	0	51	70	2447	165	127	130	7.9	9.7	8.9	127849577. 3	392	2447	500
6/4/2006 4:00	0	0	50	65	2548	166	128	130	7.9	9.7	8.9	127862959. 3	439	2548	500
6/4/2006	0	0	49	67	2689	166	130	133	8	9.7	8.9	127876356.	338	2689	500

8:00												3			
6/4/2006	0	0	51	69	2396	166	127	130	7.9	9.7	8.8	127889750.	464	2396	500
12:00	0	0	51	07	2370	100	127	150	1.9).1	0.0	5	404	2370	500
6/4/2006	0	0	50	0	2396	167	128	133	8	9.7	8.9	127903135.	340	2396	500
16:00	0	0	50	0	2370	107	120	155	0).1	0.7	8	540	2370	500
6/4/2006	0	0	49	69	2746	167	127	131	7.9	9.7	8.8	127916780.	286	2746	500
20:00	0	0	49	09	2740	107	127	151	1.9	9.1	0.0	127910780.	280	2740	500
6/5/2006	0	0	50	68	2498	167	127	132	7.9	9.7	8.8	127930127.	393	2498	500
0:00	0	0	50	08	2490	107	127	132	1.9	9.7	0.0	7	393	2490	300
6/5/2006	0	0	50	67	2744	167	127	131	7.9	9.6	8.8	127943480.	376	2744	500
4:00	0	0	50	07	2744	107	127	151	7.9	9.0	0.0	127943480. 5	570	2744	300
6/5/2006	0	0	53	69	2544	165	128	131	7.9	9.6	8.8	127956800.	398	2544	500
8/3/2006 8:00	0	0	55	69	2544	105	128	151	7.9	9.0	8.8	127956800.	398	2544	500
	0	0	51	65	2746	167	130	134	0	0.7	8.0	127970391.	260	2746	500
6/5/2006	0	0	51	65	2746	167	130	134	8	9.7	8.9		368	2746	500
12:00	0	0	51	<i>(</i> 7)	2 (01	1.67	120	105	0	0.7	0.0	4	201	2 (01	500
6/5/2006	0	0	51	67	2691	167	130	135	8	9.7	8.9	127983689.	301	2691	500
16:00	0	0	51	0	2546	1.67	107	100	0	0.7	0.0	3	201	2546	500
6/5/2006	0	0	51	0	2546	167	127	133	8	9.7	8.9	127996997.	381	2546	500
20:00	-											1			
6/6/2006	0	0	51	66	2447	168	129	132	8	9.7	8.9	128010558.	404	2447	500
0:00	-	-		-								9			
6/6/2006	0	0	54	68	2551	165	127	129	7.9	9.6	8.8	128024157.	419	2551	500
4:00												1			
6/6/2006	0	0	50	66	2544	167	127	132	7.9	9.6	8.8	128037456.	434	2544	500
8:00												8			
6/6/2006	0	0	53	66	2601	168	130	136	8	9.7	8.9	128051014.	388	2601	500
12:00												6			
6/6/2006	0	0	52	71	2546	168	129	136	8	9.7	8.9	128064283	342	2546	500
16:00															
6/6/2006	0	0	50	66	2691	167	128	134	8	9.7	8.9	128077841.	424	2691	500
20:00												5			
6/7/2006	0	0	52	66	2544	167	128	131	8	9.7	8.8	128091395.	412	2544	500
0:00												2			
6/7/2006	0	0	52	70	2645	168	129	133	8	9.7	8.8	128104704.	399	2645	500
4:00												1			
6/7/2006	0	0	50	70	2601	167	128	132	8	9.7	8.9	128118293.	428	2601	500
8:00												7			
6/7/2006	0	0	53	48	2732	170	136	141	8.1	9.9	9.1	128129447.	367	2732	500
12:00												9			
6/7/2006	0	0	50	67	2551	173	147	151	8.3	10.1	9.4	128142967.	388	2551	500
16:00												6			
6/7/2006	0	0	50	70	2546	173	148	150	8.3	10.1	9.4	128156519.	403	2546	86
20:00												7			
6/8/2006	0	0	51	67	2551	174	149	152	8.3	10.1	9.4	128169852.	452	2551	500
0:00					-		-	-				8			
6/8/2006	0	0	51	69	2447	173	149	152	8.3	10.1	9.4	128183479.	361	2447	500
4:00	3	Ŭ							5.0			4			200
6/8/2006	0	0	52	65	2551	173	146	149	8.3	10.1	9.3	128196856.	381	2551	500
8:00	3	Ŭ		55				/	5.0			4			200
0.00	i	I	1	I	1	l	I	I		1	I	· · ·		I	1

C 10 10 00 C	0	0			0771	174	1.40	150	0.0	10.1	0.1	120210402	246	0771	500
6/8/2006 12:00	0	0	51	65	2771	174	148	153	8.3	10.1	9.4	128210482. 3	346	2771	500
6/8/2006 16:00	0	0	51	70	2748	174	148	154	8.3	10.1	9	128223828. 9	371	2748	500
6/8/2006 20:00	0	0	50	68	2447	174	148	152	8.3	10.1	9	128237157. 6	297	2447	500
6/9/2006	0	0	50	67	2553	174	147	151	8.3	10.1	9	128250784. 2	424	2553	500
0:00	0	0	54	66	2691	173	145	148	8.3	10	8.9		406	2691	500
4:00		-								_		3			
6/9/2006 8:00	0	0	54	68	2551	174	148	153	8.3	10.1	9	128277799. 9	372	2551	500
6/9/2006 12:00	0	0	49	69	2546	174	149	154	8.3	10.1	9	128291177. 6	366	2546	500
6/9/2006 16:00	0	0	52	70	2544	174	147	152	8.3	10.1	9	128304538	353	2544	500
6/9/2006 20:00	0	0	52	69	2594	174	146	151	8.3	10.1	9	128317911. 2	399	2594	500
6/10/200 6 0:00	0	0	50	65	2500	173	147	152	8.3	10.1	9	128331570. 2	317	2500	500
6/10/200 6 4:00	0	0	50	69	2744	171	146	148	8.3	10.1	8.9	128344966. 5	393	2744	500
6/10/200	0	0	51	65	2546	172	147	148	8.3	10.1	9	128358631.	420	2546	500
6 8:00 6/10/200	0	0	50	68	2440	173	148	150	8.3	10.1	9	8 128371974.	369	2440	500
6 12:00 6/10/200	0	0	50	0	2601	172	148	151	8.3	10.2	9	8 128385375.	420	2601	500
6 16:00	0	0		<i>c</i> 0	2511	150	1.17	1.40		10.1	0	6		0544	500
6/10/200 6 20:00	0	0	52	68	2544	172	147	148	8.3	10.1	9	128398883. 8	371	2544	500
6/11/200 6 0:00	0	0	50	65	2868	171	148	148	8.3	10.1	9	128412450. 8	373	2868	500
6/11/200 6 4:00	0	0	50	4	2551	172	150	149	8.3	10.2	9	128425964. 3	423	2551	500
6/11/200 6 8:00	0	0	52	66	2774	173	153	154	8.4	10.2	9.1	128439305. 3	305	2774	500
6/11/200	0	0	51	68	2746	172	150	152	8.4	10.2	9	128452858.	354	2746	500
6 12:00 6/11/200	0	0	51	72	2601	174	149	154	8.4	10.2	9.1	2 128466129.	348	2601	500
6 16:00												8			
6/11/200 6 20:00	0	0	53	66	2748	174	148	152	8.4	10.2	9	128479679. 5	367	2748	500
6/12/200 6 0:00	0	0	51	67	2551	172	149	151	8.4	10.2	9	128493231. 1	409	2551	500
6/12/200 6 4:00	0	0	51	0	2774	172	149	150	8.3	10.1	9	128506723. 6	472	2774	500
6/12/200 6 8:00	0	0	52	66	2601	173	150	154	8.4	10.2	9	128520076. 5	398	2601	500
6/12/200	0	0	50	65	2746	175	151	156	8.4	10.2	9.1	128533641.	429	2746	500

6 12:00					<u> </u>	1			1				1		1	
6/12/200	0	0	51		55	2546	175	160	160	7.2	8.8	9.2	1 128546942.	349	2546	500
6 16:00	•	-			-								3			
6/12/200 6 20:00	0	0	53	6	57	2396	175	159	160	7.2	8.8	9.2	128560520	325	2396	500
6/13/200 6 0:00	0	0	50	6	58	2546	175	159	158	7.2	8.7	9.2	128573820. 6	369	2546	500
6/13/200	0	0	49	6	56	2553	175	159	158	7.2	8.7	9.2	128587391.	404	2553	500
6 4:00 6/13/200	0	0	50	6	59	2553	176	161	160	7.2	8.8	9.2	3 128600733.	363	2553	500
6 8:00 6/13/200	0	0	51		0	2544	177	162	162	7.2	8.8	9.2	9 128614275.	379	2544	500
6 12:00 6/13/200	0	0	50		70	2751	176	160	160	7.2	8.8	9.2	5 128627757.	412	2751	500
6 16:00 6/13/200	0	0	51		70	2447	176	158	160	7.2	8.8	9.2	9 128640975.	384	2447	500
6 20:00 6/14/200	0	0	51		58	2546	176	160	162	7.2	8.8	9.2	9 128654485.	328	2546	500
6 0:00	-		-										1			
6/14/200 6 4:00	0	0	53		59	2447	176	161	162	7.2	8.8	9.2	128667990. 3	331	2447	500
6/14/200 6 8:00	0	0	54		4	2748	174	154	156	7.1	8.6	9.1	128681454. 3	399	2748	500
6/14/200 6 12:00	0	0	50	6	67	2748	164	122	125	6.6	8.1	8.5	128694736. 8	394	2748	500
6/14/200 6 16:00	0	0	53	6	67	2442	170	139	140	6.8	8.4	8.8	128708227. 3	381	2442	500
6/14/200 6 20:00	0	0	51	6	56	2691	165	132	132	6.8	8.3	8.7	128721708. 2	404	2691	500
6/15/200	0	0	52	7	70	2691	164	125	125	6.6	8.1	8.5	128735178.	401	2691	500
6 0:00 6/15/200	0	0	51	6	58	2546	163	123	123	6.6	8.1	8.5	7 126846743.	432	2546	500
6 4:00 6/15/200	0	0	51	6	58	2544	167	131	131	6.7	8.2	8.7	1 126860207	336	2544	500
6 8:00 6/15/200	0	0	50	6	57	2774	176	159	160	7.2	8.8	9.2	126873663.	364	2774	500
6 12:00													2			
6/15/2006 16:00	0	0	52	66	2507	175	157	158	7.2	8.8	9.2	126887083.9	467	250	07	500
6/15/2006 20:00	0	0	51	67	2546	174	159	158	7.2	8.7	9.2	126900509.8	337	254	46	500
6/16/2006 0:00	0	0	53	66	2866	175	160	158	7.2	8.8	9.2	126913941.3	452	280	66	500
6/16/2006 4:00	0	0	51	69	2546	174	160	158	7.2	8.7	9.2	126927345.5	429	254	46	500

4:00 6/16/2006

7.2

8.8

9.2

126940988.1

8:00					<u> </u>										
6/16/2006	0	0	49	67	2447	176	163	164	7.2	8.8	9.3	126954453.6	357	2447	500
12:00															
6/16/2006	0	0	54	65	2555	175	162	162	7.2	8.8	9.3	126967831.6	333	2555	500
16:00 6/16/2006	0	0	51	70	2746	176	160	161	7.2	8.8	9.2	126981190.1	394	2746	500
0/10/2000 20:00	0	0	51	70	2746	170	160	101	1.2	8.8	9.2	120981190.1	394	2740	500
6/17/2006	0	0	51	67	2553	174	160	159	7.2	8.7	9.2	126994560.3	401	2553	500
0:00		-	-										-		
6/17/2006	0	0	51	65	2774	175	159	158	7.2	8.7	9.2	127008198	448	2774	500
4:00	-														
6/17/2006	0	0	49	66	2546	177	162	162	7.2	8.7	9.2	127021560.2	414	2546	500
8:00 6/17/2006	0	0	52	66	2544	177	164	165	7.2	8.8	9.2	127034904.7	337	2544	500
12:00	0	0	52	00	2344	177	104	105	1.2	0.0).2	12/034904.7	337	2344	500
6/17/2006	0	0	52	0	2546	178	163	165	7.3	8.8	9.3	127048369.3	394	2546	500
16:00															
6/17/2006	0	0	52	68	2447	178	163	166	7.3	8.8	9.3	127061830.1	428	2447	500
20:00	0	0	51	65	2072	177	1.62	164	7.0	0.0	0.0	107075110.0	40.4	2972	500
6/18/2006 0:00	0	0	51	65	2873	177	163	164	7.2	8.8	9.2	127075118.8	404	2873	500
6/18/2006	0	0	52	66	2693	176	160	162	7.2	8.8	9.2	127088676.1	376	2693	500
4:00	0	0	52	00	2075	170	100	102	7.2	0.0	2.2	12/0000/01	570	2075	500
6/18/2006	0	0	50	68	2546	178	162	165	7.2	8.8	9.2	127101958.1	348	2546	500
8:00															
6/18/2006	0	0	52	66	2447	179	163	168	7.3	8.8	9.3	127115508.7	378	2447	500
12:00 6/18/2006	0	0	52	0	2509	178	161	167	7.2	8.8	9.2	127128924.1	394	2509	500
16:00	0	0	52	0	2309	178	101	107	1.2	0.0	9.2	12/120924.1	394	2309	500
6/18/2006	0	0	51	65	2509	178	161	166	7.2	8.8	9.2	127142268	330	2509	500
20:00															
6/19/2006	0	0	52	65	2447	179	164	167	7.3	8.8	9.3	127155778.5	367	2447	500
0:00															
6/19/2006 4:00	0	0	51	9	2505	177	162	167	7.2	8.8	9.2	127169279.7	313	2505	500
6/19/2006	0	0	51	66	2447	179	162	166	7.2	8.8	9.2	127182515.9	331	2447	500
8:00	0	0	51	00	2447	175	102	100	7.2	0.0	9.2	127102515.9	551	2447	500
6/19/2006	0	0	52	66	2558	178	163	168	7.2	8.8	9.3	127196053.6	407	2558	500
12:00															
6/19/2006	0	0	52	68	2447	179	161	166	7.2	8.8	9.3	127209448.8	427	2447	500
16:00	0	0		71	0555	150	1.62	1.67	5.0	0.0	0.0	10700001.0	200	2555	500
6/19/2006 20:00	0	0	51	71	2555	178	163	165	7.2	8.8	9.3	127222931.2	388	2555	500
6/20/2006	0	0	53	10	2555	178	161	164	7.2	8.8	9.2	127236413.9	397	2555	500
0:00	0	0	55	10	2555	170	101	104	1.2	0.0	7.2	12/200410.9	571	2000	500
6/20/2006	0	0	51	68	2571	178	162	166	7.2	8.7	9.2	127249667.5	422	2571	500
4:00															
6/20/2006	0	0	51	71	2546	179	163	168	7.2	8.8	9.3	127263236.1	381	2546	500
8:00															

6/20/2006	0	0	51	70	2396	177	162	165	7.2	8.8	9.2	127276529.9	372	2396	500
12:00	0	0	51	69	2507	178	162	167	7.2	8.8	9.3	127290125.9	409	2507	500
16:00	0	0	51	09	2507	178	102	107	1.2	0.0	9.5	127290123.9	409	2507	500
6/20/2006 20:00	0	0	50	68	2256	177	162	165	7.2	8.8	9.3	127303466.7	357	2256	500
6/21/2006 0:00	0	0	53	68	2447	176	162	165	7.2	8.8	9.2	127316767.1	371	2447	500
6/21/2006 4:00	0	0	54	69	2691	177	163	164	7.2	8.8	9.2	127330395.4	415	2691	500
6/21/2006	0	0	49	70	2553	177	164	164	7.2	8.8	9.3	127343693.8	490	2553	500
8:00 6/21/2006	0	0	50	69	2544	178	166	167	7.3	8.9	9.3	127357226.6	383	2544	500
12:00 6/21/2006	0	0	51	68	2256	178	164	166	7.3	8.9	9.3	127370458.1	403	2256	500
16:00 6/21/2006	0	0	51	67	2546	176	163	164	7.2	8.8	9.3	127383963.5	420	2546	500
20:00															
6/22/2006 0:00	0	0	54	67	2748	177	165	166	7.3	8.8	9.3	127397482.6	414	2748	500
6/22/2006 4:00	0	0	52	1	2601	178	165	167	7.3	8.8	9.3	127410912.4	397	2601	500
6/22/2006 8:00	0	0	50	70	2546	179	165	168	7.3	8.8	9.3	127424181	392	2546	500
6/22/2006 12:00	0	0	51	66	2601	180	166	171	7.3	8.9	9.3	127437651.3	445	2601	500
6/22/2006	0	0	49	65	2509	180	165	172	7.3	8.9	9.3	127451107.7	414	2509	500
16:00 6/22/2006	0	0	52	66	2753	166	128	133	6.7	8.2	7.9	127464525.5	392	2753	500
20:00 6/23/2006	0	0	52	66	2447	163	115	118	6.5	7.9	7.6	127477914.3	392	2447	500
0:00	-			00											
6/23/2006 4:00	0	0	50	67	2396	161	111	115	6.4	7.8	7.5	127491284.2	425	2396	500
6/23/2006 8:00	0	0	50	67	2546	161	110	114	6.4	7.8	7.5	127504658.6	373	2546	500
6/23/2006 12:00	0	0	52	0	2546	159	101	105	6.2	7.7	7.4	127518124.9	417	2546	500
6/23/2006	0	0	52	66	2447	159	93	98	6.1	7.5	7.2	127531721	423	2447	500
16:00 6/23/2006	0	0	51	69	2546	159	85	89	6	7.4	7.1	127545083.6	459	2546	500
20:00 6/24/2006	0	0	50	68	2555	159	88	93	6	7.4	7.1	127558436.7	417	2555	500
0:00															
6/24/2006 4:00	0	0	50	0	2502	159	93	96	6.1	7.5	7.2	127571944.1	379	2502	500
6/24/2006 8:00	0	0	54	66	2507	159	95	100	6.1	7.5	7.2	127585435.4	410	2507	500
6/24/2006	0	0	52	69	2601	160	95	100	6.1	7.6	7.2	127598762.4	403	2601	500

12:00		[[Ι											
6/24/2006 16:00	0	0	49	70	2546	159	95	98	6.1	7.5	7.2	127612378.7	413	2546	500
6/24/2006 20:00	0	0	52	66	2870	159	96	99	6.1	7.5	7.2	127625735.4	337	2870	500
6/25/2006	0	0	54	0	2546	159	100	104	6.2	7.6	7.3	127639117.5	433	2546	500
0:00 6/25/2006	0	0	50	69	2601	159	104	105	6.2	7.6	7.4	127652674.3	420	2601	500
4:00 6/25/2006	0	0	53	66	2548	160	105	108	6.3	7.7	7.4	127665992.8	443	2548	500
8:00 6/25/2006	0	0	51	70	2544	160	105	109	6.3	7.7	7.4	127679580.6	420	2544	500
12:00 6/25/2006	0	0	50	68	2574	160	101	105	6.2	7.7	7.3	127692904.1	386	2574	500
16:00	-						-								
6/25/2006 20:00	0	0	52	72	2396	159	98	102	6.2	7.6	7.3	127706219.9	452	2396	500
6/26/2006 0:00	0	0	51	70	2585	159	102	105	6.2	7.7	7.4	127719822.9	399	2585	500
6/26/2006 4:00	0	0	50	66	2551	159	105	108	6.3	7.7	7.4	127733166.7	420	2551	500
6/26/2006 8:00	0	0	51	66	2445	166	124	127	6.6	8.1	7.8	127746793.1	320	2445	500
6/26/2006 12:00	0	0	50	67	2546	182	170	175	8.1	9.1	8.6	127760123.2	388	2546	500
6/26/2006	0	0	52	65	2505	182	171	177	8.1	9.1	8.6	127773444.8	373	2505	500
16:00 6/26/2006	0	0	50	69	2555	181	170	175	8.1	9.1	8.6	127787041.4	398	2555	500
20:00 6/27/2006	0	0	50	65	2396	181	170	173	8.1	9	8.6	127800385.7	326	2396	500
0:00 6/27/2006	0	0	50	8	2507	181	170	175	8.1	9.1	8.6	127813982.5	377	2507	500
4:00	0	0	50	67	2447	179	163	168	7.9	8.9	8.5	127827372.9	412	2447	500
8:00 6/27/2006	0	0	52	67	2396	167	124	130	7.3	8.2	7.8	127840715.6	352	2396	500
12:00	-		-												
6/27/2006 16:00	0	0	54	68	2546	175	148	153	7.6	8.6	8.2	127854025.4	394	2546	500
6/27/2006 20:00	0	0	50	65	2742	181	170	175	8	9.1	8.6	127867641	396	2742	500
6/28/2006 0:00	0	0	51	69	2447	181	171	175	8	9.1	8.6	127880954.1	363	2447	500
6/28/2006 4:00	0	0	54	7	2748	180	169	174	8	9.1	8.6	127894541.1	389	2748	500
6/28/2006 8:00	0	0	52	69	2553	181	170	174	8	9.1	8.6	127907905.7	333	2553	500
6/28/2006	0	0	50	65	2555	182	171	177	8	9.1	8.6	127921214	344	2555	500
12:00				1					1						

6/28/2006 16:00	0	0	51	65	2396	182	169	177	8.1	9.1	8.6	127934799.9	389	2396	500
6/28/2006 20:00	0	0	53	67	2604	181	169	175	8.1	9	8.6	127948133.1	392	2604	500
6/29/2006 0:00	0	0	52	65	2472	181	171	175	8.1	9	8.6	127961720.1	327	2472	500
6/29/2006 4:00	0	0	53	65	2396	181	171	175	8.1	9	8.6	127975032.7	437	2396	500
6/29/2006 8:00	0	0	52	66	2546	181	171	175	8.1	9	8.6	127988619.6	335	2546	500
6/29/2006 12:00	0	0	52	67	2449	182	171	178	8.1	9.1	8.6	128001939	376	2449	500
6/29/2006 16:00	0	0	50	67	2507	176	156	160	7.9	8.8	8.4	128015492.2	331	2507	500
6/29/2006 20:00	0	0	52	66	2774	163	120	123	7.2	8.1	7.7	128028795.8	393	2774	500
6/30/2006 0:00	0	0	53	67	2502	164	119	122	7.2	8	7.6	128042176.6	424	2502	500
6/30/2006 4:00	0	0	51	0	2771	162	121	121	7.2	8.1	7.7	128055377.5	369	2771	500
6/30/2006 8:00	0	0	53	65	2601	165	126	126	7.3	8.2	7.8	128068655.2	363	2601	500
6/30/2006 12:00	0	0	53	67	2553	164	121	123	7.2	8.1	7.7	128082165.4	336	2553	500
6/30/2006 16:00	0	0	50	65	2599	159	109	111	7	7.9	7.5	128095388.2	331	2599	500
6/30/2006 20:00	0	0	52	69	2546	158	98	98	6.8	7.7	7.3	128108854.8	318	2546	500

Appendix D

Sampling Trip Reports

SAMPLING TRIP REPORT

Site Name: STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE CERCLIS ID Number: NYD047650197 Sampling Dates: June 7, 2006 CLP Case Number: N/A Site Location: 110 Cutter Mill Road, Great Neck, New York, 11021 Sample Descriptions: Groundwater Treatment System Influent / Effluent.

Laboratories Receiving Samples (Table 1):

Case Number	Sample Type	Name and Address of Laboratory
N/A	TCL-VOAs OLC03.2	John Birri USEPA Region II DESA LAB Building 209 MS-230 2890 Woodbridge Avenue Edison, N.J. 08837

Sample Dispatch Data (Table 2):

On June 7, 2006, a total of four (4) groundwater samples, including one (1) duplicate sample and one (1) trip blank were shipped to the U.S. Environmental Protection Agency Region II Lab (USEPA) for TCL-VOAs analysis.

FedEx Air Bill No.	Number of Coolers	Number and Type of Samples	Time and Date of Shipping
855368819713	1	Total of 4 Aqueous Samples to include 1 duplicate sample, and 1 Trip Blank for TCL-VOAs	6/7/06 @ 14:45 TO: USEPA

Sampling Personnel (Table 3):

Name	Organization	Site Duties
Tom Williams	Earth Tech, Inc.	Earth Tech Project Manager
James Kearns	Earth Tech, Inc.	Earth Tech Task Manager/ Health and Safety
Robert Derrick	Earth Tech, Inc.	Sampler

Sample Numbers and Collection Points (Table 4):

Laboratory	Analysis	Sample Type	Sample #	Sample Collection Point(SCP)
			Influent (MW-24	Influent (MW-24
USEPA Region II DESA	TCL-VOAs	Aqueous	and EPA-EXT-02)	and EPA-EXT-02)
LAB Duilding 200 MS 220		Groundwater	Effluent	Effluent
Building 209 MS-230 2890 Woodbridge			Effluent A	Duplicate of
Avenue				Effluent
Edison, N.J. 08837			ТВ	Trip Blank

Additional Comments:

The Influent, Effluent and Effluent-A samples were collected after a five gallon purge from the sample ports located within the treatment system. The influent sample includes MW-24 and EPA-EXT-02. These two wells combine before they reach the treatment room and therefore cannot be sampled individually. These samples were collected for the following analysis: Target Compound List (TCL) Volatile Organic Compounds. In addition, one duplicate sample (Effluent-A) was collected from the effluent of the groundwater treatment process and was a duplicate sample of sample Effluent. One trip blank (TB) was also included in the shipment. Copies of the Chain of Custody forms and a copy of the FedEx air bill are included in Appendix A and B, respectively.

Earth Tech personnel also collected real time water quality parameters from the raw water for all the following sampling locations: Influent and Effluent (Discharge) and the results are included in Appendix C.

Chain of Custody (June 7, 2006 System Sampling Event)

EPA			Laboratory Report & Cha	Program ain of Custody Re	cord		Case DAS No SDG No	D:	L	
Date Shipped: 6/7/2006 Carrier Name: FedEx Airbill: 855368619713 Shipped to: USEPA REGION II DESA LAB Building 209, MS-230			Chain of Custody Record Religquished By (Date / Time) 1 full full full full full full full full		Sampler Signature: Aut Maga Received By (Date / Time)			For Lab Use Only Lab Contract No: Unit Price: Transfer To:		
	2890 Woodbridge / Edison NJ 08837 (732) 906-6886 MATRIX/ SAMPLER		3 4 ANALYSIS/ TURNAROUND	TAG No.1 PRESERVATIVE/ Bottles	STATION LOCATION	SAMPLE CO DATE/TI	Unit Pri	ntract No: ce: INORGANIC SAMPLE No.	FOR LAB USE ONLY Sample Condition On Receipt	
EFFLUENT	Ground Water/ Robert Derrick	L/G	VOA (14)	(HCL) (3)	Effluent	S: 6/7/2006	13:06			
EFFLUENT-A	Ground Water/ Robert Derrick	L/G	VOA (14)	(HCL) (3)	Effluent-A	S: 6/7/2006	13:08			
INFLUENT (MW-24 AND	Ground Water/ Robert Derrick	L/G	VOA (14)	(HCL) (3)	Influent (MW-24 and EPA-EXT-02)	S: 6/7/2006	12:53			
ТВ	Field QC/ Robert Derrick	L/G	VOA (14)	(HCL) (3)	Trip Blank	S: 6/7/2006	8:00			

Shipment for Case Complete?N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt	Chain of Custody Seal Num	iber:						
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/DesIgnate: Composite = C, Grab =	G	Custody Seal Intact?	Shipment Iced?						
VOA = CLP TCL Volati	Independence Upon Receipt Independence Upon Receipt Independence Upon Receipt Upon Receipt Upon Receipt Upon Receipt Upon Receipt Independence Concentration: L = Low, M = Low/Medium, H = High Type/Designate: Composite = C, Grab = G Custody Seal Intact? Independence Shipment load? Independence Independence										
	2-445049606-060506-0004 esults. Requests for preliminary results will increase anal anagement Office, 2000 Edmund Halley Dr., Reston, VA	ytical costs. . 20191-3400 Phone 703/264-9348 Fax 703/264-92	LA		Y COPY Page 1 of 1						

€EPA	USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record								Case No: AS No:		R
Region: Project Code: Account Code: CERCLIS ID: Spill ID: Site Name/State Project Leader: Action: Sampling Co:	2 NYD047650 02LH Stanton Cle James Kear Operations Earth Tech	aners Area (ns	Groundwater Contami ance	Date Shipped: Carrier Name: Airbill: Shipped to:	LAB Building 209	713 GION II DESA 9, MS-230 bridge Avenue 98837	Chain of Cu Relinguished I 1 ///// 2 3 4		rd Date / Time) のししよりられ	Sampler Signature: /// Received By	(Date / Time)
ORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND		No./ TIVE/ Bottles	STATION LOCATION		SAMPLE COLLEG	intor	RGANIC PLE No.	QC Type
Self CONSTRUCTION	Ground Water/ Robert Derrick	L/G	VOA (14)	(HCL) (3)		Effluent	S: 6/7/2	2006 13:0	3		
	Ground Water/ Robert Derrick	L/G	VOA (14)	(HCL) (3)		Effluent-A	S: 6/7/	2006-13:0	8		Field Duplicate
CALCED THE THE CALCED AND A SECTION OF	Ground Water/ Robert Derrick	L/G	VOA (14)	(HCL) (3)		Influent (MW-24 a EPA-EXT-02)		2006 12:5	3		**
	Field QC/ Robert Derrick	L/G	VOA (14)	(HCL) (3)		Trip Blank	S: 6/7/	2006 8:00	e.		Trip Blank

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:		
Analysis Key: VOA = CLP TCL Volatil	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment lced?		
TR Number:	2-445049606-060506-0004	legeta	REGION COPY		

F2V5.1.045 Page 1 of 1

PR provides preliminary results. Requests for preliminary results will increase analytical costs. Send Copy to: Sample Management Office, 2000 Edmund Halley Dr., Reston, VA. 20191-3400 Phone 703/264-9348 Fax 703/264-9222

FedEx Air Bill (June 7, 2006 System Sampling Event)

Fedex. US Airbill	form. D200 Sender's Copy
1 From Pleases print and press hard. Date 6-706 Sender's FedEx Account Number 277442548	FedEx Priority Overnight Next business mining.* FedEx Standard Overnight Next business atternor.* FedEx Priority Overnight ErdEx Priority Overnight BedEx Priority Overnight Standard Overnight
Sender's Fabert Derrick Phone ()	FedEx 2Day Second business day.* Thert business Gay.* Thert business Gay.* Thert business Gay.* Thert business Gay.* There business Gay.* There business Gay.* There business Gay.* Packages over 150 lbs. Packages over 150 lbs.
Address 110 Cutter Mill Food	4b Express Freight Service To add SATURDAY Delivery, see Section 6. Packages over 159 /bs. FedEx 1Day Freight FedEx 2Day Freight FedEx 2Day Freight FedEx 2Day Freight FedEx 3Day Freight Cafe Confirmation Second business day.* The dustiness day.*
city Great Neck State NT ZIP (102)	5 Packagin g * Declared value limit 5300. FedEx Envelope* FedEx Pak* FedEx Induces freques kunn Fred FedEx Box FedEx Ø Other Transport
2 Your Internal Billing Reference OPPORAL 3 To Recipient's John Billing Phone (732) 9066886	FordEx Provides Tops FordEx Pak*
company USEPA Region IL Desa Lab	Predpt to select [2]P codes. FridEx 2Day to select floations. Boes this bigment contain dangerous goods? FridEx 2Day to select floations. Image: Predict and the checked. Yes As por stricthed As por stricthed mict required. Dangerous goods (including dry coll sector) Yes mict required. Dangerous goods (including dry coll sector) The float sector floations. Dangerous goods (including dry coll sector) Cargo Aircraft Only
Recipient's 2890 Woodbridge Avenue, Building 209 MS-230 We cannot deliver to P.D. bases or P.D. ZIP codes. Address	7 Payment Bill to: Enter FielEx Acct. No. or Credit Card No. below. Second Seco
To request a package be held at a specific FedEx location, print FedEx address here.	FedSi Acet No. 500 Deter Carl No. Deter Total Packages Total Weight Total Declared Value
Try online shipping at fedex.com	S .00 TOur flability is limited to \$100 unless you declare a higher value. See back for details. FedEx Use Only NEW Residential Delivery Signature Options If you require a signature, check Direct or Indirect
By using this Airbill you agree to the service conditions on the back of this Airbill and in the current Fedix Service Guide, including terms that limit our liability. Questions? Go to our Web site at fedex.com or call 1.800.GoFedEx 1.800.463.3339.	No Signature Procure Signature Adverse A service A se

Water Quality Parameters (June 7, 2006 System Sampling Event)

STANTON CLEANERS SITE LTRA

Groundwater Pump and Treatment System Water Quality Parameters Log

> Date: 6/7/06 Project # 70536

	рН	COND.	TURB.	DO	TEMP.	SALINITY
Influent*	6.85	0.708	9.0	10.7	15.58	0.0
Discharge	7.88	0.689	2.9	9.7	16.27	0.0

Total Gallons pumped:			
gallons		128,143,245	gallons
Flow rate:	68	gpm	

* The influent consists of MW-24 and EPA-EXT-02. These wells combine before they reach the treatment room and therefore cannot be individually sampled for analysis.

Equipment Calibrated by: Water samples collected by: Water monitoring performed by: Robert Derrick Robert Derrick Robert Derrick Comments:

TEMP. - Temperature measured in degrees Fahrenheit.

COND. - Conductivity measured in milliSiemens per centimeter (mS/cm).

TURB. - Turbidity measure in nephelometric turbidity units (NTU).

DO - Dissolved Oxygen measured in milligrams per liter (mg/L).

SALINITY - Salinity in percentage.

Appendix E

Groundwater Treatment System Raw and Treated Analytical Data

Sample Location	ECC ID*	EPA ID	Date Collected	Compounds Detected	Result (µg/L)	Qualifier**	Discharge Criteria
				MTBE	2	J	?
				cis-1,2-Dichloroethene	2	J	?
Influent	SC-01	B0001	10/27/2003	Trichloroethene (TCE)	3	J	5
				Toluene	3	J	5
				Tetrachloroethene	350 (D)		5
Effluent	SC-04	B0002	10/27/2003	None			
Trip Blank	SC-TB	B0003	10/27/2003	Acetone	61	J	5
пр ыапк	30-16	B0003	10/27/2003	Methylene chloride	2	J	5
				Tetrachloroethene (PCE)	240		5
Influent	SC-01	B0177	11/12/2003	Chlorodifluoromethane	8.6	NJ	
				1,2-Dichloroethene	3.3	NJ	5
Effluent	SC-04	B0178	11/12/2003	Chlorodifluoromethane	22	NJ	
				Tetrachloroethene	250		5
Influent Dup	SC-60	B0179	11/12/2003	Chlorodifluoromethane	29	NJ	
				1,2-Dichloroethene	3.4	NJ	
Tria Diania		D0100	44/40/0000	Tetrachloroethene	9.4		5
Trip Blank	SC-TB	B0180	11/12/2003	Chlorodifluoromethane	4.3	NJ	-
				Tetrachloroethene	290 (D)		5
Influent	SC-01	B17J3	12/10/2003	<i>cis</i> -1,2-Dichloroethene	2	J	
				Trichloroethene	3	J	
Effluent	SC-04	B17J4	12/10/2003	None	Ŭ	ů	
Endon	00 04	BING	12/10/2000	Tetrachloroethene	280 (D)		5
Influent Dup	SC-61	B17J5	12/10/2003	cis-1,2-Dichloroethene	200 (D)	J	5
initiaent Dap		12/10/2000	Trichloroethene	3	J		
				MTBE	5	J	
Trip Blank	SC-TB	B17J6	12/10/2003	Toluene	2	J	
прылк 30-тв	BINGO	12/10/2003	Ethylbenzene	2	J		
				MTBE	2.7	5	
				cis-1,2-Dichloroethene	1.5		
Influent	SC-01	B1000	1/12/2004	Trichloroethene			
					2.5		5
Effluent.	00.04	D 4004	4/40/0004	Tetrachloroethene	280		5
Effluent	SC-04	B1001	1/12/2004	None			
				MTBE	2.6		
Influent Dup	SC-62	B1002	1/12/2004	cis-1,2-Dichloroethene	1.5		
				Trichloroethene	2.5		
				Tetrachloroethene	300		5
				Methylene chloride	0.6	K	
Trip Blank	SC-TB	B1003	1/12/2004	MTBE	3.7		
•				Tetrachloroethene	7.9		5
				m&p-Xylene	0.7		
				cis-1,2-Dichloroethene	1.7		
Influent	SC-01	B17Z0	2/12/2004	Trichloroethene	3.0		
initiaoni	00 01	01120	2/12/2001	Tetrachloroethene	610 (D)		5
				Unknown TIC	0.53	J	
Effluent	SC-04	B17Z1	2/12/2004	Acetone	3.8	J	5
				Acetone	25	J	5
Influent Dup	SC-63	B17Z2	2/12/2004	cis-1,2-Dichloroethene	1.7		
	00-00		2/12/2004	Trichloroethene	2.8		
				Tetrachloroethene	440 (D)		5
				Methylene chloride	0.16	J	
				MTBE	4.7		
				Chloroform	0.26	J	
				Tetrachloroethene	7.1		5
Trip Blank	SC-TB	B17Z3	2/12/2004	Xylene (total)	0.56		
-				1,3-Dichlorobenzene	0.40	J	
				1,4-Dichlorobenzene	0.38	J	
				Unknown TIC	0.58	J	
					0.72	-	

Sample Location	ECC ID*	EPA ID	Date Collected	Compounds Detected	Result (µg/L)	Qualifier**	Discharge Criteria
				MTBE	2.7		
				cis-1,2-Dichloroethene	1.2		
Influent	SC-01	B17Z6	3/10/2004	Trichloroethene	2.3		
				Tetrachloroethene	260		5
Effluent	SC-04	B17Z7	3/10/2004	Tetrachloroethene	0.70		5
				MTBE	2.8		
				<i>cis</i> -1,2-Dichloroethene	1.2		
Influent Dup	SC-64	B17Z8	3/10/2004	Trichloroethene	2.3		
				Tetrachloroethene	260		5
				Acetone	1.8		5
Trip Blank	SC-TB	B17Z9	3/10/2004	Toluene	0.50		0
The Blank	0010	DILLO	0/10/2001	Isobutane	41	NJ	
				MTBE	1.9	110	
				cis-1,2-Dichloroethene	0.83		
Influent	SC-01	B1BS2	4/14/2004	Trichloroethene	1.5		
				Tetrachloroethene	380 (D)		5
Effluent	SC-04	B1BS3	4/14/2004	Tetrachloroethene	1.9		5
Endon	00.04	BIBGO	4/14/2004	Acetone	1.2	J	5
	Influent Dup SC-65 B1BS4		4/14/2004	MTBE	1.5	ů	0
Influent Dup		B1BS4		cis-1,2-Dichloroethene	0.67	J	
	00.00	01001		Trichloroethene	1.1	ů	
				Tetrachloroethene	260 (D)		5
				Methylene chloride	0.17	J	. · ·
Trip Blank	Trip Blank SC-TB B1BS5	B1BS5	4/14/2004	Chloroform	2.8	Ů	
	00.5			Bromodichloromethane	0.80		
				MTBE	2.1		
				<i>cis</i> -1,2-Dichloroethene	1.0		
Influent	SC-01	B1BS6	5/20/2004	Trichloroethene	1.8		
				Tetrachloroethene	190		5
Effluent	SC-04	B1BS7	5/20/2004	Acetone	1.2		5
				Acetone	0		5
				MTBE	2.1		
Influent Dup	SC-66	B1BS8	5/20/2004	cis-1,2-Dichloroethene	0.9		
				Trichloroethene	1.6		
				Tetrachloroethene	200		5
				Acetone	1		5
Trip Blank	SC-TB	B1BS9	5/20/2004	Chloroform	0		
				Bromodichloromethane	0		
				Carbon Disulfide	1.1		
				MTBE	2.7		
Influent	SC-01	B1BS6	6/15/2004	cis-1,2-Dichloroethene	1.3	I	
				Trichloroethene	2.4	I	
				Tetrachloroethene	320		5
Effluent	SC-04	B1BS7	6/15/2004	Tetrachloroethene	2.1		5
				MTBE	2.3		
Influent Dup	SC-67	B1BS8	6/15/2004	cis-1,2-Dichloroethene	1.2		
	30-07	DIDOO	0/10/2004	Trichloroethene	2.2		
				Tetrachloroethene	330		5
Trip Blank	SC-TB	B1BS9	6/15/2004	None)		

Sample Location	ECC ID*	EPA ID	Date Collected	Compounds Detected	Result (µg/L)	Qualifier**	Discharge Criteria
				Acetone	0.8		5
				MTBE	2.3		
Influent	SC-01	B1FJ2	7/13/2004	cis-1,2-Dichloroethene	1.1		
				Trichloroethene	1.7		
				Tetrachloroethene	170		5
E #luant	SC-04	B1FJ3	7/12/2004	Acetone	0.72		5
Effluent	50-04	BIFJ3	7/13/2004	Tetrachloroethene	2		5
				MTBE	2.4		
				cis-1.2-Dichloroethene	1.1		
Influent Dup	SC-67	B1FJ4	7/13/2004	Trichloroethene	1.8		
				Tetrachloroethene	160	1	5
				Acetone	0.73	1	5
Trip Blank	SC-TB	B1FJ5	7/13/2004	Acetic Acid, Ethyl Ester	2.5	NJ	0
				MTBE	1.9	INJ	
					0.7		
1.0	00.04	D 4OUIO	0/40/0004	cis-1,2-Dichloroethene			
Influent	SC-01	B1GH2	8/16/2004	Trichloroethene	1.5	4	_
				Tetrachloroethene	200	 	5
				Acetone	2		5
Effluent	SC-04	B1GH3	8/16/2004	Tetrachloroethene	5.4	I	5
Lindent	00-04	510110	0,10,2004	Acetone	1.6		5
				Acetone	1.2		5
				MTBE	2		
Influent Dup	SC-69	B1GH4	8/16/2004	cis-1,2-Dichloroethene	0.7		
				Trichloroethene	1.5		
				Tetrachloroethene	210	1	5
				Chloromethane	0.80		0
					1.0	1	5
				Acetone MTBE			5
Influent SC-01	SC-01				1.5		
				cis-1,2-Dichloroethene	0.70	1	
				Trichloroethene	1.4		_
				Tetrachloroethene	200		5
				Chloromethane	0.80		
Effluent	SC-04			Acetone	2.1		5
				Tetrachloroethene	1.7		5
				Acetone	1.0		5
				MTBE	1.3		
Influent Dup	SC-70			cis-1,2-Dichloroethene	0.60		
				Trichloroethene	1.4		
				Tetrachloroethene	210	1	5
	aa			Acetone	2.2	1	5
Trip Blank	SC-TB			2-Butanone	1.5	1	5
	 				5	J	5
				Acetone Mothylana ablarida		-	5
				Methylene chloride	0.2	J	
Influent	SC-01	B1LZ2	10/21/2004	MTBE	0.82	+	
				cis-1,2-Dichloroethene	0.5	ł	
				Trichloroethene	1.2	 	_
	ļ			Tetrachloroethene	220	I	5
				Acetone	5	J	5
Effluent	SC-04	B1LZ3	10/21/2004	Methylene chloride	0.5	UJ	
				Tetrachloroethene	0.2	J	5
				Acetone	5	J	5
				Methylene chloride	1.1	1	
			10/2 / /2	MTBE	1.1	1	
Influent Dup	SC-71	B1LZ4	10/21/2004	cis-1,2-Dichloroethene	0.64	1	
				Trichloroethene	1.1	1	
				Tetrachloroethene		(D)	5
	ł				210	(D)	5
	00 TD	D41 75	10/04/0004	Acetone	5.7		5
Trip Blank	SC-TB	B1LZ5	10/21/2004	Methylene chloride	0.68	I	
	1			Toluene	0.39	J	

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(µg/L)	Qualifier**	Criteria
				Acetone	3	J	5
				Methylene chloride	1.3	U	
la flui e e t	00.01	DATOO	44/47/0004	MTBE	1.3		
Influent	SC-01	B1T22	11/17/2004	cis-1,2-Dichloroethene	0.64		
				Trichloroethene	1.2		
				Tetrachloroethene	170	(D)	5
E #l t	SC-04	B1T23	11/17/2004	Methyl Acetate	0.5	ÙĴ	
Effluent	50-04	BI123	11/17/2004	Methylene chloride	0.5	U	
				Methylene chloride	0.85	U	
				MTBE	1.3		
Influent Dup	SC-72	B1T24	11/17/2004	cis-1,2-Dichloroethene	0.5		
				Trichloroethene	0.83		
				Tetrachloroethene	160	(D)	5
				Acetone	3	Ĵ	5
				Methyl Acetate	0.5	UJ	
Tria Dianti		DATOS	11/17/2004	Methylene chloride	0.46	J	
Trip Blank	SC-TB	B1T25		2-Butanone	2.4	J	
				Tetrachloroethene	9.6		5
				1,2,3-Trichlorobenzene	0.5	UJ	5
			MTBE	1.6			
				cis-1,2-Dichloroethene	0.45	J	
				Trichloroethene (TCE)	1.0	J	5
				Tetrachloroethene	100	(D)	5
				Methylcyclohexane	1	ÙĴ	
Influent	00.01	D4T70	40/45/0004	Bromomethane	1	UJ	
Influent	SC-01	B1T79	12/15/2004	Bromodichloromethane	1	UJ	
				Chloromethane	1	UJ	
				1,2-Dichloroethene	1	UJ	
				1,2-Dichloropropane	1	UJ	
				2-Hexanone	10	R	
				4-Methyl-2-pentanone	10	R	
				Benzene	0.5	JB	
Effluent	SC-04	B1T81	12/15/2004	1,2,4-Trichlorobenzene	0.5	JB	
				1,2,3-Trichlorobenzene	0.5	JB	5
				Methyl tert-Butyl Ether	1.6		
				cis-1,2-Dichloroethene	0.48	J	
Influent Dup	SC-73	B1T80	12/15/2004	Trichloroethene	0.98	J	
	30-73	DIIOU	12/13/2004	4-Methyl-2-pentanone	10	R	
				Tetrachloroethene	98	(D)	5
	<u> </u>			2-Hexanone	10	R	
				Chloroform	0.1	J	
Trip Blank	SC-TB	B1T82	12/15/2004	Cyclohexane	0.15	J	
	30-16	DITOZ	12/13/2004	Benzene	0.5	JB	
				Toluene	0.21	J	

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria
				MTBE	1.5		
Influent	SC-01	B1W00	1/21/2005	cis-1,2-Dichloroethene	0.7		
milluent	30-01	ВТИЮО	1/2 1/2005	Trichloroethene (TCE)	1.4		5
				Tetrachloroethene	160		5
Effluent	SC-04	B1W02	1/21/2005	Acetone	1.8		5
		I I		Methyl tert-Butyl Ether	1.4		
				cis-1,2-Dichloroethene	0.7		
Influent Dup	SC-74	B1W01	1/21/2005	Trichloroethene	1.4		
				Tetrachloroethene	150		5
				Acetone	10		5
Trip Blank	SC-TB	B1W03	1/21/2005	Acetone	3.5		5
				MTBE	1.4		
Influent	SC-01	AG00197	2/3/2005	cis-1,2-Dichloroethene	0.5		
milluent	30-01	AG00197	2/3/2005	Trichloroethene (TCE)	1.1		5
				Tetrachloroethene	140		5
Effluent	SC-04	AG00198	2/3/2005	Acetone	1.2		5
		I I		Methyl tert-Butyl Ether	1.5		
			2/3/2005	cis-1,2-Dichloroethene	0.54		
Influent Dup	SC-75	5 AG00199		Trichloroethene	1.1		
				Tetrachloroethene	140		5
				Acetone	1.1		5
Trip Blank	SC-TB	AG00200	2/3/2005	Acetone	4.3		5
пр ыапк	3C-1B	AG00200	2/3/2005	4-Methyl-2-pentanone	1.2		
				MIBE	1.4		
Influent	SC-01	AG00468	3/9/2005	Acetone	2.5		5
initiaoni	00 01	/1000100	0/0/2000	Trichloroethene (TCE)	1.1		5
				Tetrachloroethene	130		5
Effluent	SC-04	AG00469	3/9/2005	Acetone	1.8		5
				MTBE	1.4		
Influent Dup	SC-76	AG00470	3/9/2005	Acetone	1.2		5
				Trichloroethene	1.1		
				Tetrachloroethene	130		5
Trip Blank	SC-TB	AG00471	3/9/2005	Acetone	1.7		5
•				Chloroform	1.6		
				MTBE	1.7		
Influent				2-Butanone	2.2		
(EPA-EXT-02)	SC-01	AG00825	4/22/2005	Acetone	2.4		5
· · · ·				Trichloroethene (TCE)	1.1		5
				Tetrachloroethene	65		5
				2-Butanone	2.5		L
Influent	SC-02	AG00826	4/22/2005	Acetone	5.1		5
(EPA-EXT-4R)	EPA-EXT-4R) 3C-02 AG00820	1/22/2000	Trichloroethene (TCE)	1.3		5	
				Tetrachloroethene	9.5	ļ	5
Effluent	SC-04	AG00827	4/22/2005	None			
Influent Dup				2-Butanone	2.8		
(EPA-EXT-02)	SC-77	AG00828	4/22/2005	Acetone	4.9		5
(EPA-EXT-02) (EPA-EXT-4R)	SC-77	AG00828	4/22/2005	Trichloroethene	1.3		
(EPA-EXT-4R)				Tetrachloroethene	9		5

Sample Location	ECC ID*	EPA ID	Date Collected	Compounds Detected	Result (µg/L)	Qualifier**	Discharge Criteria
				Acetone	1		5
Trip Blank	lank SC-TB AG00829 4/22/2005		Chloroform	1.7	1	0	
				Trichloroethene (TCE)	0.84		5
				MTBE	1.1		-
Influent	SC-01	AG01320	5/24/2005	Trichloroethene (TCE)	1.0		5
(EPA-EXT-02)				Tetrachloroethene	100		5
Influent (EPA-EXT-4R)	SC-02	AG01321	5/24/2005	Tetrachloroethene	8.8		5
Effluent	SC-04	AG01322	5/24/2005	Acetone	1.3		5
Influent Dup (EPA-EXT-02) (EPA-EXT-4R)	SC-78	AG01323	5/24/2005	Tetrachloroethene	8.6		5
(,				Acetone	1.3		5
Trip Blank	SC-TB	AG01324	5/24/2005	Chloroform	13		
				Bromodichloromethane	2.5		
		1 1		MTBE	0.98		
				Trichloroethene (TCE)	0.8	İ	5
Influent	SC-01	AG02074	6/22/2005	Tetrachloroethene	95	İ	5
(EPA-EXT-02)				Acetone	2.7	К	5
				Ethyl Acetate	10	JN	-
				Tetrachloroethene	9.1		5
Influent				Acetone	1.9	К	5
(EPA-EXT-4R)	SU-07 AG07		6/22/2005	Ethyl Acetate	3.6	JN	
. , ,				Propane, 2-Isothiocyanto-2	0.8	JN	
				MTBE	0.64		
				Tetrachloroethene	50		5
Influent		AG02076	6/22/2005	Acetone	2	K	5
				Trichloroethene (TCE)	0.56		5
				Ethyl Acetate	8.8	JN	
Effluent.	00.04	1000070	C/00/0005	Acetone	2.6	K	5
Effluent	SC-04	AG02072	6/22/2005	Ethyl Acetate	6.2	JN	
	80.04	AC02072	6/22/2005	Acetone	2.6	K	5
EffluenDup	SC-04	AG02073	6/22/2005	Ethyl Acetate	3.3	JN	
				Acetone	2.4	K	5
Trip Blank	SC-TB	AG02077	6/22/2005	Chloroform	13		
пр Банк	30-16	AG02077	0/22/2003	Bromodichloromethane	2.7		
				Ethyl Acetate	3.1	JN	
				MTBE	0.9		
Influent	SC-01	AG02780	7/12/2005	Trichloroethene (TCE)	0.8		5
(EPA-EXT-02)	30-01	AG02780	7/12/2005	Tetrachloroethene	85		5
				Acetone	1	K	5
		I T		Tetrachloroethene	7.4		
Influent	SC-02	AG02781	7/12/2005	Acetone	2.1	K	5
(EPA-EXT-4R)	00-02	1002101	1/12/2003	Ethyl Acetate	4.1	JN	
				Propane, 2-Isothiocyanto-2	1.4	JN	
Influent		AG02782	7/12/2005	MTBE	0.52		
inndent			1,12,2000	Tetrachloroethene	43		5
Effluent	SC-04	AG02778	7/12/2005	Acetone	2.8	К	5
Lindent	00-04	1002110	1/12/2003	Ethyl Acetate	11	JN	
EffluenDup	SC-04	AG02779	7/12/2005	Acetone	1.9	К	5
Emachbup	00-04		1,12,2000	Ethyl Acetate	5.2	JN	
		I I		Acetone	1.5	К	5
Trip Blank	SC-TB	I I	7/12/2005	Chloroform	12	ļ	
				Bromodichloromethane	2.6		

Sample			Date	Compounds	Result	1	Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(µg/L)	Qualifier**	Criteria
	20015			MTBE	0.68	quantor	0
Influent	SC-01	AG03721	8/15/2005	Trichloroethene (TCE)	0.73		5
(EPA-EXT-02)			0,10,2000	Tetrachloroethene	88	ł	5
Influent				Tetrachloroethene	9.7		
(EPA-EXT-4R)	SC-02	AG03722	8/15/2005		-	INI	5
Influent		AG03723	8/15/2005	Propane, 2-Isothiocyanto-2 Tetrachloroethene	0.53 43	JN	5
Effluent	SC-04	AG03725	8/15/2005	Acetone	43 ND (5.0)	1	5
EffluenDup	SC-04 SC-04	AG03725 AG03720	8/15/2005	Acetone	ND (5.0)		5
EnidenDup		1	0/10/2000	Chloroform	13		5
Trip Blank	SC-TB	AG03724	8/15/2005	Bromodichloromethane	2.6		
				MTBE	0.76		
Influent	SC-01	AG04086	9/8/2005	Trichloroethene (TCE)	0.70		5
(EPA-EXT-02)	30-01	AG04000	3/0/2003	Tetrachloroethene	90		5
Influent	00.00	4.004007	0/0/0005				5
(EPA-EXT-4R)	SC-02	AG04087	9/8/2005	Tetrachloroethene	9.8		5
Influent		AG04088	9/8/2005	MTBE	0.63		
		7100-1000	5/6/2000	Tetrachloroethene	44		5
Effluent	SC-04	AG04084	9/8/2005	Acetone	ND (1.0)		5
EffluentDup	SC-04	AG04085	9/8/2005	Acetone	1.0		5
Trip Blank	Trip Blank SC-TB AG04089		9/8/2005	Chloroform	11		
The Blank	00.12		0,0,2000	Bromodichloromethane	2.2		
Influent				MTBE	0.82		
(EPA-EXT-02)	SC-01	AG07649	10/5/2005	Trichloroethene (TCE)	0.78		5
, ,				Tetrachloroethene	100		5
Influent (EPA-EXT-4R)	SC-02	AG07650	10/5/2005	Tetrachloroethene	9.3		5
				MTBE	0.6		
Influent		AG07651	10/5/2005	Acetone	1		5
				Tetrachloroethene	52		5
Effluent	SC-04	AG07647	10/5/2005	Acetone	1.1		
EffluentDup	SC-04	AG07648	10/5/2005	Acetone	1.4		
Trip Blank	SC-TB	AG07652	10/5/2005	Chloroform	ND		
				Acetone	1.4	K	
Influent	SC-01	AG08530	11/14/2005	MTBE	0.92		
(EPA-EXT-02)	00-01	A000330	11/14/2003	Trichloroethene (TCE)	0.81		5
				Tetrachloroethene	95		5
Influent	SC-02	AG08531	11/14/2005	Acetone	1.0	К	5
(EPA-EXT-4R)	00 02	/.000001	11/17/2000	Tetrachloroethene	10		5
				MTBE	0.9	I	
Influent		AG08532	11/14/2005	Acetone	1.4	K	5
maom		1.000002	1,1,1,2000	Trichloroethene (TCE)	0.74	ļ	5
	ļ			Tetrachloroethene	91	ļ	5
Effluent	SC-04	AG08528	11/14/2005	Acetone	ND	ļ	5
EffluentDup	SC-04	AG08529	11/14/2005	Acetone	ND		5
Trip Blank	SC-TB	AG08533	11/14/2005	Acetone	2.0	K	5

Sample	ECC ID*		Date	Compounds	Result	Ovelifier**	Discharge
Location	n ECC ID* EPA ID Collected		Detected	(μg/L)	Qualifier**	Criteria	
				Acetone	4.1		
Influent	00.04		10/0/0005	MTBE	0.85		
(EPA-EXT-02)	SC-01	AG08953	12/6/2005	Trichloroethene (TCE)	0.67		5
				Tetrachloroethene	90		5
		┨───┤		1-Butanol	0.63	NJ	
	SC-02	AG08954	12/6/2005	Acetone	1.4	K	5
(EPA-EXT-4R)				Tetrachloroethene	9.5		5
				MTBE	0.9	14	
Influent		AG08955	12/6/2005	Acetone	1.4	K	5
				Trichloroethene (TCE)	0.77		5
	00.04	4000054	40/0/0005	Tetrachloroethene	89	K	5
Effluent	SC-04	AG08951	12/6/2005	Acetone	1.5	K	5
EffluentDup	SC-04	AG08952	12/6/2005	Acetone	3.0	K	5
Trip Blank	SC-TB		12/6/2005	Acetone	ND		5
				Acetone	ND		5
Influent	SC-01	AH00216	1/10/2006	MTBE	0.98		
(EPA-EXT-02)				Trichloroethene (TCE)	0.79		5
		↓ ↓		Tetrachloroethene	93		5
Influent	SC-02	AH00217	1/10/2006	Acetone	ND (1.0)		5
(EPA-EXT-4R)				Tetrachloroethene	8.2		5
				MTBE	0.94		_
Influent		AH00218	1/10/2006	Acetone	ND (1.0)		5
		/	.,	Trichloroethene (TCE)	0.85		5
				Tetrachloroethene	90		5
Effluent	SC-04	AH00214	1/10/2006	Acetone	ND (1.0)		5
EffluentDup	SC-04	AH00215	1/10/2006	Furan, Tetrahydro	0.52	NJ	
Trip Blank	SC-TB	AH00219		Acetone	ND (1.0)		5
		I I		MTBE	1.2		
Influent	SC-01	AH01177	2/15/2006	Trichloroethene (TCE)	0.72		5
				Tetrachloroethene	80		5
				Acetone	1.2		5
MW-19		AH01178	2/15/2006	Trichloroethene (TCE)	1.2		5
				Tetrachloroethene	85		5
MW-21		AH01179	2/15/2006	Trichloroethene (TCE)	2.6		5
10100-21		AII01173	2/13/2000	Tetrachloroethene	27		5
Effluent		AH01175	2/15/2006		ND		
Effluent		AH01176	2/15/2006		ND		
Duplicate		ALIOT 170	2/15/2000		ND		
Trip Blank	SC-TB	AH00219	2/15/2006	Chloroform	10		
пр ыапк	30-15	AI 1002 19	2/13/2000	Bromodichloromethane	2.3		
				MTBE	1.4		
Influent	SC-01	AH01256	3/8/2006	Trichloroethene (TCE)	0.71		5
muent	30-01	AI 101230	3/0/2000	Tetrachloroethene	83		5
				Acetone	2		5
Effluent	SC-04	AH01254	3/8/2006	Acetone	2		5
Effluent		AH01255	3/8/2006	Acotono	2.4		
Duplicate	SC-04	ADU1200	3/0/2000	Acetone	2.4		5
				Acetone	2		5
Trip Blank	SC-TB	AH01257	3/8/2006	Bromodichloromethane	5		
				Chloroform	14		
				MTBE	1.5		
				TRICHLOROETHENE	0.57		
Influent		AH01641	4/5/2006	TETRACHLOROETHENE	68		
				ACETONE	1.7		
	SC-01			ETHYL ACETATE	1.5	NJ	
E#lus-t	l	1 1		ACETONE	1.7	I	
Effluent	SC-04	AH01639	4/5/2006	EHHYL ACETATE	1.7	NJ	
	-		4/5/2006	ACETONE	4.6		
Effluent A	SC-04	AH01640	4/5/2006	EHHYL ACETATE	5.3	NJ	

Sample Location	ECC ID*	EPA ID	Date Collected	Compounds Detected	Result (µg/L)	Qualifier**	Discharge Criteria
Location	ECCID		Collected			Quaimer	
				ACETONE	2.3		5
Influent (MW-24	SC-01	AH02078	5/3/2006	MTBE	1.7		
& EPA-EXT-02)	30-01	AI 102070	3/3/2000	TRICHLOROETHENE	0.72		
				TETRACHLOROETHENE	80		5
Effluent		41102076	5/3/2006	CHLOROMETHANE	0.51		
Enluent	SC-04	AH02076	5/3/2006	ACETONE	1.6		5
Effluent-A	SC-04	AH02077	5/3/2006	ACETONE	2.2		5
Trip Blank	SC-TB	AH02079	5/3/2006	ACETONE	1.8		5
				ACETONE	1.8	K	5
Influent		AH02645	6/8/2006	MTBE	1.6		
Innuent		AH02045	6/8/2006	TRICHLOROETHENE	70		
	SC-01			EHHYL ACETATE	0.7	NJ	5
Effluent	SC-04	AH02643	6/8/2006	ACETONE	1.2	К	5
		41100044	6/8/2006	ACETONE	1.5	К	
Effluent-A	SC-04	AH02644	6/8/2006	ETHYL ACETATE	1	NJ	5
Trip Blank	SC-TB	AH02646	6/8/2006		ND		

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(µg/L)	Qualifier**	Criteria

Notes:

- * = Unless otherwise noted, samples collected from ECC ID SC-04 were used as the matrix spike / matrix spike duplicate sample.
- ** = Data validation was performed by EPA Region II. ECC carried over assigned qualifers and did not perform a separate review or validation of the data.
- (D) = Detection from a dilution of the sample.
- J = qualified as estimated
- JN = Presumptive evidence for the presence of the material at an estimated value.
- K = The reported value may be biased high.
- µg/L = micrograms per liter
- MTBE = Tert-butyl-methyl-ether
 - NJ = TIC. The reported value is estimated.
 - TIC = Tentatively Identified Compound.

Appendix F

Soil Vapor Extraction and Pump and Treat System Bi-weekly Air Monitoring Logs

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Soil-Vapor Extraction and Pump and Treat System Bi-Weekly Air Monitoring Log

Date: 6-15-06
Project # 70536

	I	MultiR	AE Plus P	GM-50)	VelociCalc Plus					
	VOC	СО	Oxygen	LEL	H2S	Temp.	Vac. Pre.	%RH	Dew pt.	Flow	
SVE-Influent	5.0	0	20.3%	0%	0%	110.2	N/A	27.0%	69.1	270	
Post Air Stripper	0.0	0	20.9%	0%	0%	58.7	N/A	96.6%	57.7	2300	
SVE-Effluent ¹	0.0	0	20.5%	0%	0%	92.0	N/A	46.7%	68.9	260	
GW Post Vapor Effluent ²	0.0	0	20.9%	0%	0%	61.6	N/A	89.5%	58.0	2300	
EPA-SVE-1 (shallow)	0.0	0	20.9%	0%	0%	74.0	8.50	55.0%	56.9	2.30	
EPA-SVE-1 (medium)	0.0	0	20.9%	0%	0%	77.6	6.75	60.5%	63.0	1.50	
EPA-SVE-2 (shallow)	0.0	0	20.9%	0%	0%	82.4	3.00	55.0%	64.4	1.00	
EPA-SVE-2 (medium)	0.0	0	20.9%	0%	0%	89.0	0.00	55.0%	70.5	0.020	
SS-A	0.3	0	20.9%	0%	0%	75.2	3.00	52.0%	58.0	28.00	
EPA-SVE-04R/SS-B(A)	1.4	0	20.9%	0%	0%	75.5	2.75	62.5%	60.8	0.550	
SS-B-C						Blocked b	y truck				
SS-C	0.3	0	20.9%	0%	0%	81.1	3.00	48.0%	60.3	34.0	
L1	0.0	0	20.9%	0%	0%	82.7	5.00	45.0%	59.7	78.5	
L2						Offlir	ne				
SS-B(B)	1.5	0	20.9%	0%	0%	76.4	2.50	52.5%	58.0	7.4	
SS Vent-LIHA	0.0	0	20.9%	0%	0%	80.7	1.75	46.0%	58.0	85.0	
Vapor Point-1/Slope 1	0.6	0	20.9%	0%	0%	N/A	N/A	N/A	N/A	N/A	
SVE-3A		_				Water ir	n line				
SVE-3B	1.9	0	20.9%	0%	0%	73.2	8.50	65.0	60	114.0	
Background	0.0	0	20.9%	0%	0%	74.6	N/A	51.2%	55.3	N/A	

Equipment calibrated by: R. Derrick Air readings collected by: R. Derrick

*Approximately

Comments:

VOC: Volatile Organic Compounds CO: Carbon Monoxide LEL: Lower Explosive Limit ppm: parts per million temperature: measured in degrees Fahrenheit pressure: measured in inches of water (in/H2O), inches of mercury (in/Hg), or pounds per square inch (psi). Flow: measured in cubic feet per minute (cfm)

¹Formerly Post SVE Carbon ²Formerly Post Air Stripper Carbon %RH: relative humidity

EPA-SVE-04R/SSB(A)

Dew Pt.: dew point in degrees Fahrenheit

AS: Air Stripper SVE: Soil Vapor Extraction System

³Formerly Sub-Slab A,B, and C respectively ⁴Formerly Sub-Slab D ⁵Formerly Sub-Slab B NA- Not Available

Prior to 10/3/05

shallow on	shall
shallow on	shall
shallow on	shall
off	off
on	on
on	on
on	off
on	on
on	on
on	off

After 10/3/05 shallow and medium on shallow on shallow on off on on off

Comments:

SVE 1

SVE 2

SVE 3

SVE 4

SS-A SS-B(B) SS-B(C) L1 L2

New SVE well EPA-EXT-04 online since 11/4/04 Sub-slab sample ports online since 3/22/05 L2 is offline

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Soil-Vapor Extraction and Pump and Treat System Bi-Weekly Air Monitoring Log

Date: 6-26-06
Project # 70536

	Γ	/ ultiR	AE Plus P	GM-50)	VelociCalc Plus					
	VOC	СО	Oxygen	LEL	H2S	Temp.	Vac. Pre.	%RH	Dew pt.	Flow	
SVE-Influent	0.0	1	20.2%	0%	0%	112.0	N/A	29.5%	73.1	260	
Post Air Stripper	0.0	0	20.9%	0%	0%	58.9	N/A	98.5%	57.8	2300	
SVE-Effluent ¹	0.0	1	20.3%	0%	0%	96.3	N/A	47.0%	72.6	265	
GW Post Vapor Effluent ²	0.0	0	20.9%	0%	0%	60.2	N/A	59.6%	91.5	2550	
EPA-SVE-1 (shallow)	0.0	0	20.3%	0%	0%	81.8	6.50	72.5%	72.1	2.10	
EPA-SVE-1 (medium)	0.0	1	20.9%	0%	0%	81.8	8.00	69.9%	71.5	37.0	
EPA-SVE-2 (shallow)	0.0	1	20.9%	0%	0%	81.9	2.50	77.8%	74.2		
EPA-SVE-2 (medium)	0.0	1	20.9%	0%	0%	85.2	0.00	64.1%	71.7	1.3	
SS-A	0.0	1	20.9%	0%	0%	77.0	3.00	85.7%	73.6	29.5	
EPA-SVE-04R/SS-B(A)	0.0	3	20.9%	0%	0%	83.9	2.50	73.0%	74.6	2.3	
SS-B-C						Blocked	by truck				
SS-C	0.0	0	20.9%	0%	0%	86.0	2.75	82.0%	75.5	32.0	
L1	0.0	2	20.9%	0%	0%	27.3	5.50	84.8%	72.4	77.5	
L2						Off	line				
SS-B(B)	0.0	3	20.9%	0%	0%	83.2	2.50	74.4%	74.0	26.0	
SS Vent-LIHA	0.0	2	20.9%	0%	0%	80.0	1.75	54.0%	67.8	76.0	
Vapor Point-1/Slope 1	0.0	1	20.5%	0%	0%	N/A	N/A	N/A	N/A	N/A	
SVE-3A						Water	in line				
SVE-3B	0.0	3	20.9%	0%	0%	83.4	8.50	69.4	72.9	95.5	
Background	0.0	0	20.9%	0%	0%	82.4	N/A	63.5%	70.0	N/A	

Equipment calibrated by: R. Derrick Air readings collected by: R. Derrick

*Approximately

Comments:

VOC: Volatile Organic Compounds CO: Carbon Monoxide LEL: Lower Explosive Limit ppm: parts per million temperature: measured in degrees Fahrenheit pressure: measured in inches of water (in/H2O), inches of mercury (in/Hg), or pounds per square inch (psi). Flow: measured in cubic feet per minute (cfm)

¹Formerly Post SVE Carbon ²Formerly Post Air Stripper Carbon %RH: relative humidity

Dew Pt.: dew point in degrees Fahrenheit

AS: Air Stripper SVE: Soil Vapor Extraction System

SVE 1
SVE 2
SVE 3
SVE 4
EPA-SVE-04R/SSB(A)
SS-A
SS-B(B)
SS-B(C)
L1
L2

Comments:

New SVE well EPA-EXT-04 online since 11/4/04 Sub-slab sample ports online since 3/22/05 L2 is offline ³Formerly Sub-Slab A,B, and C respectively ⁴Formerly Sub-Slab D ⁵Formerly Sub-Slab B NA- Not Available

Prior to 10/3/05 After 10/3/05 shallow on shallow and medium on shallow on shallow on shallow on shallow on off off on on on on off on on on on on on off

Appendix G

Semi-Annual Groundwater Sampling Analytical Data

No Groundwater Sampling Event this Month

Appendix H

Historical Groundwater Level Monitoring Results (Ongoing)

	WATE	R LEVE	EL DAT	A SU		RY	
PROJECT:	Stanton Cleaners				JOB NU	MBER:	70536
LOCATION:	Great Neck, NY				DATE:		6/26/2006
CLIENT:	USACE / USEPA				MEASURED BY:		Robert Derrick
SURVEY DATUM: MEASURING	ft msl						
DEVICE:	Solinst Water Level Indicator S/	N# 34407	· · · · ·			1	
	MEASURING PC		DEPTH TO		TION OF		COMMENTS
	Description	Elevation (FT)	WATER (FT)	WAT	TER (FT)		COMMENTS
EPA-MW-11D	TOC	74.63					blocked by car
EPA-MW-21	тос	84.13	65.44	18	8.69		missing 1 bolt
EPA-MW-22	тос	82.20	63.10	19	9.10		
EPA-MW-23	TOC	82.83	63.70	19	9.13		
EPA-MW-27	TOC	69.32	51.78	17	7.54		no bolts
ST-MW-02	TOC	82.03					
ST-MW-06	TOC	69.83	43.81	20	5.02		
ST-MW-09	TOC	78.13	62.92	1:	5.21		
ST-MW-11	TOC	75.25					blocked by car
ST-MW-12	TOC	87.20	70.24	10	5.96		missing 1 bolt
ST-MW-14	TOC	69.73	54.38	1:	5.35		no bolts
ST-MW-16	TOC	75.78	53.85	2	1.93		no bolts
ST-MW-17	TOC	86.53	69.74	10	6.79		no bolts
ST-MW-19	TOC	82.50	65.70	16	6.80 no bolts		no bolts
ST-MW-20	TOC	84.53	73.45	1	1.08		no bolts

N/A: Data not available

HISTORICAL GROUNDWATER ELEVATIONS STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE GREAT NECK, NASSAU COUNTY, NEW YORK

		10/29	9/2003	10/3 ⁻	1/2003	11/22/03	8 - 11/23/03
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	57.74	16.89	57.94	16.69	60.07	14.56
EPA-MW-21	84.13	66.70	17.43	66.14	17.99	66.86	17.27
EPA-MW-22	82.20	64.51	17.69	64.08	18.12	65.09	17.11
EPA-MW-23	82.83	64.97	17.86	64.54	18.29	78.61	4.22
EPA-MW-27	69.32	51.74	17.58	51.12	18.20	52.85	16.47
ST-MW-02	82.03	64.19	17.84	63.78	18.25	64.40	17.63
ST-MW-06	69.83	63.43	6.40	44.82	25.01	44.92	24.91
ST-MW-09	78.13	61.39	16.74	60.67	17.46	62.52	15.61
ST-MW-11	75.25	58.67	16.58	58.06	17.19	60.59	14.66
ST-MW-12	87.20	73.84	13.36	70.18	17.02	72.01	15.19
ST-MW-14	69.73	50.94	18.79	50.76	18.97	56.40	13.33
ST-MW-16	75.78	55.51	20.27	55.53	20.25	65.51	10
ST-MW-17	86.53	69.95	16.58	69.27	17.26	71.55	14.98
ST-MW-19	82.50	67.01	15.49	64.93	17.57	68.04	14.46
ST-MW-20	84.53	65.99	18.54	65.83	18.70	73.45	11.08

Notes:

ft msl - feet mean sea level

ft BTOC - feet below top of casing

		12/17/03	- 12/18/03	1/12	/2004	2/26/2	2004
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.00	15.63	57.52	17.11	56.50	18.13
EPA-MW-21	84.13	64.99	19.14	66.17	17.96	64.30	19.83
EPA-MW-22	82.20	63.03	19.17	63.99	18.21	61.90	20.30
EPA-MW-23	82.83	77.05	5.78	64.45	18.38	63.00	19.83
EPA-MW-27	69.32	51.75	17.57	51.22	18.10	50.50	18.82
ST-MW-02	82.03	63.25	18.78	64.03	18.00	62.03	20.00
ST-MW-06	69.83	43.10	26.73	45.74	24.09	44.40	25.43
ST-MW-09	78.13	61.50	16.63			60.00	18.13
ST-MW-11	75.25	59.23	16.02	62.10	13.15	60.90	14.35
ST-MW-12	87.20	72.00	15.20	70.27	16.93	60.50	26.70
ST-MW-14	69.73	55.05	14.68	NA	NA	48.70	21.03
ST-MW-16	75.78	64.18	11.60	54.99	20.79	53.00	22.78
ST-MW-17	86.53	69.99	16.54	69.40	17.13	67.25	19.28
ST-MW-19	82.50	67.21	15.29			65.25	17.25
ST-MW-20	84.53	71.56	12.97	63.51	21.02	61.75	22.78

ft msl - feet mean sea level

ft BTOC - feet below top of casing

	T (D)(0	3/29	/2004	4/5/	2004	5/19/2	2004
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	60.00	14.63	60.36	14.27	60.30	14.33
EPA-MW-21	84.13	66.99	17.14	67.38	16.75	67.10	17.03
EPA-MW-22	82.20	61.90	20.30	65.00	17.20	64.98	17.22
EPA-MW-23	82.83	65.10	17.73	65.59	17.24	65.25	17.58
EPA-MW-27	69.32	52.08	17.24	52.84	16.48	53.10	16.22
ST-MW-02	82.03	63.99	18.04	64.90	17.13	64.87	17.16
ST-MW-06	69.83	45.60	24.23	46.24	23.59	46.25	23.58
ST-MW-09	78.13	62.80	15.33			62.00	16.13
ST-MW-11	75.25	60.00	15.25	60.85	14.40	60.46	14.79
ST-MW-12	87.20	72.22	14.98	72.22	14.98	72.12	15.08
ST-MW-14	69.73	56.99	12.74	57.87	11.86	58.13	11.60
ST-MW-16	75.78	54.68	21.10	55.48	20.30	55.09	20.69
ST-MW-17	86.53	70.25	16.28	71.76	14.77	71.80	14.73
ST-MW-19	82.50	66.00	16.50			65.78	16.72
ST-MW-20	84.53	71.45	13.08	73.78	10.75	73.65	10.88

ft msl - feet mean sea level

ft BTOC - feet below top of casing

		6/14	/2004	7/21/04	- 7/22/04	8/2/2	004
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.97	14.66	59.75	14.88	59.75	14.88
EPA-MW-21	84.13	67.00	17.13	66.99	17.14	66.11	18.02
EPA-MW-22	82.20	64.78	17.42	64.50	17.70	64.33	17.87
EPA-MW-23	82.83	66.21	16.62	66.10	16.73	65.16	17.67
EPA-MW-27	69.32	53.05	16.27	52.98	16.34	54.86	14.46
ST-MW-02	82.03	65.11	16.92	65.00	17.03	59.85	22.18
ST-MW-06	69.83	45.99	23.84	45.66	24.17	44.11	25.72
ST-MW-09	78.13	62.00	16.13	61.79	16.34		
ST-MW-11	75.25	60.40	14.85	60.39	14.86	60.50	14.75
ST-MW-12	87.20	72.29	14.91	72.20	15.00	71.36	15.84
ST-MW-14	69.73	58.55	11.18	58.34	11.39	55.56	14.17
ST-MW-16	75.78	55.09	20.69	55.01	20.77	54.85	20.93
ST-MW-17	86.53	71.52	15.01	71.46	15.07	70.80	15.73
ST-MW-19	82.50	65.00	17.50	64.77	17.73		
ST-MW-20	84.53	73.44	11.09	73.25	11.28	71.66	12.87

ft msl - feet mean sea level

ft BTOC - feet below top of casing

		9/28/04	- 9/29/04	10/12/04	-10/13/04	11/:	3/2004
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.70	14.93	58.97	15.66	58.95	15.68
EPA-MW-21	84.13	66.75	17.38	66.50	17.63	66.41	17.72
EPA-MW-22	82.20	64.41	17.79	64.34	17.86	64.32	17.88
EPA-MW-23	82.83	65.11	17.72	65.00	17.83	64.87	17.96
EPA-MW-27	69.32	52.31	17.01	52.25	17.07	52.26	17.06
ST-MW-02	82.03	65.00	17.03	65.03	17.00	65.00	17.03
ST-MW-06	69.83	44.55	25.28	55.34	14.49	55.29	14.54
ST-MW-09	78.13	62.00	16.13	62.12	16.01	62.15	15.98
ST-MW-11	75.25	60.41	14.84	60.50	14.75	60.34	14.91
ST-MW-12	87.20	72.00	15.20	72.21	14.99	72.22	14.98
ST-MW-14	69.73	56.71	13.02	56.50	13.23	56.49	13.24
ST-MW-16	75.78	55.10	20.68	57.00	18.78	57.01	18.77
ST-MW-17	86.53	70.99	15.54	70.98	15.55	70.95	15.58
ST-MW-19	82.50	64.84	17.66	64.80	17.70	64.79	17.71
ST-MW-20	84.53	71.97	12.56	72.00	12.53	72.55	11.98

ft msl - feet mean sea level

ft BTOC - feet below top of casing

	Top of PVC	12/8	/2004	1/3/	2005	2/7/20	005
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.75	14.88	59.10	15.53	57.63	17.00
EPA-MW-21	84.13	66.61	17.52	65.67	18.46	65.80	18.33
EPA-MW-22	82.20	64.33	17.87	64.44	17.76	65.32	16.88
EPA-MW-23	82.83	65.16	17.67	65.10	17.73	64.44	18.39
EPA-MW-27	69.32	52.24	17.08	51.87	17.45	50.85	18.47
ST-MW-02	82.03	64.54	17.49	64.78	17.25	63.90	18.13
ST-MW-06	69.83	44.11	25.72	55.41	14.42	47.32	22.51
ST-MW-09	78.13	59.98	18.15	62.31	15.82	63.44	14.69
ST-MW-11	75.25	60.50	14.75	59.99	15.26	58.64	16.61
ST-MW-12	87.20	71.36	15.84	71.98	15.22	70.45	16.75
ST-MW-14	69.73	55.56	14.17	56.51	13.22	50.15	19.58
ST-MW-16	75.78	54.85	20.93	57.08	18.70	55.15	20.63
ST-MW-17	86.53	70.80	15.73	71.03	15.50	70.75	15.78
ST-MW-19	82.50	64.32	18.18	64.76	17.74	65.01	17.49
ST-MW-20	84.53	71.66	12.87	72.43	12.10	65.09	19.44

ft msl - feet mean sea level

ft BTOC - feet below top of casing

		3/22	/2005	4/11	/2005	5/19/2	2005
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	60.00	14.63	60.99	13.64	61.00	13.63
EPA-MW-21	84.13	64.50	19.63	64.00	20.13	63.21	20.92
EPA-MW-22	82.20	64.55	17.65	65.12	17.08	65.43	16.77
EPA-MW-23	82.83	65.00	17.83	65.10	17.73	65.00	17.83
EPA-MW-27	69.32	51.67	17.65	51.60	17.72	51.33	17.99
ST-MW-02	82.03	63.99	18.04	63.89	18.14	63.40	18.63
ST-MW-06	69.83	55.40	14.43	55.42	14.41	55.32	14.51
ST-MW-09	78.13	61.20	16.93	61.78	16.35	61.72	16.41
ST-MW-11	75.25	60.10	15.15	60.00	15.25	59.99	15.26
ST-MW-12	87.20	72.00	15.20	71.21	15.99	71.12	16.08
ST-MW-14	69.73	56.20	13.53	56.33	13.40	56.34	13.39
ST-MW-16	75.78	57.00	18.78	57.10	18.68	57.30	18.48
ST-MW-17	86.53	70.78	15.75	70.00	16.53	59.90	26.63
ST-MW-19	82.50	63.23	19.27	63.00	19.50	63.00	19.50
ST-MW-20	84.53	71.32	13.21	71.21	13.32	71.71	12.82

ft msl - feet mean sea level ft BTOC - feet below top of casing -- - Not measured

	Top of PVC	6/15	/2005	17/7	2005	8/4/2	2005
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	58.70	15.93	58.51	16.12	59.07	15.56
EPA-MW-21	84.13	66.35	17.78	66.27	17.83	66.85	17.28
EPA-MW-22	82.20	63.83	18.37	63.78	18.42	64.38	17.82
EPA-MW-23	82.83	64.32	18.51	64.29	18.54	64.88	17.95
EPA-MW-27	69.32	51.45	17.87	51.35	17.97	51.84	17.48
ST-MW-02	82.03						
ST-MW-06	69.83	45.70	24.13	45.90	23.93	45.80	24.03
ST-MW-09	78.13	63.45	14.68	63.29	14.84	63.94	14.19
ST-MW-11	75.25						
ST-MW-12	87.20	71.02	16.18	70.71	16.49	71.42	15.78
ST-MW-14	69.73	55.08	14.65	54.99	14.74	55.45	14.28
ST-MW-16	75.78	54.54	21.24	54.71	21.07	54.82	20.96
ST-MW-17	86.53	70.35	16.18	70.17	16.36	70.78	15.75
ST-MW-19	82.50	66.82	15.68	66.89	15.61	66.53	15.97
ST-MW-20	84.53	71.20	13.33	71.07	13.46	71.59	12.94

ft msl - feet mean sea level

ft BTOC - feet below top of casing

	Top of DVC	8/30	/2005	10/11	1/2005	11/6/	/2005
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63			59.28	15.35	60.09	
EPA-MW-21	84.13	67.03	17.10	67.35	16.78	67.14	16.99
EPA-MW-22	82.20	64.52	17.68	64.93	17.27	64.67	17.53
EPA-MW-23	82.83	65.03	17.80	65.43	17.40	65.17	17.66
EPA-MW-27	69.32	55.11	14.21	52.38	16.94	52.27	17.05
ST-MW-02	82.03	64.42	17.61				
ST-MW-06	69.83	46.25	23.58	45.99	23.84	43.69	26.14
ST-MW-09	78.13			64.28	13.85	64.40	13.73
ST-MW-11	75.25						
ST-MW-12	87.20	71.61	15.59	71.68	15.52	71.76	15.44
ST-MW-14	69.73	55.71	14.02	55.71	14.02	57.16	12.57
ST-MW-16	75.78	55.21	20.57	55.78	20.00	54.55	21.23
ST-MW-17	86.53	70.99	15.54	71.09	15.44	71.36	15.17
ST-MW-19	82.50	66.71	15.79	66.90	15.60	66.86	15.64
ST-MW-20	84.53	71.83	12.70	71.78	12.75	74.56	9.97

ft msl - feet mean sea level

ft BTOC - feet below top of casing

	Top of PVC	12/19	9/2005	1/24	/2006	2/22	/2006
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.19	15.44	59.22	15.41	58.37	16.26
EPA-MW-21	84.13	66.84	17.29	66.55	17.58	65.72	18.41
EPA-MW-22	82.20	64.39	17.81	64.09	18.11	63.38	18.82
EPA-MW-23	82.83	64.89	17.94	64.61	18.22	63.91	18.92
EPA-MW-27	69.32	51.96	17.36	51.72	17.60	51.10	18.22
ST-MW-02	82.03						
ST-MW-06	69.83	44.43	25.40	44.08	25.75	44.88	24.95
ST-MW-09	78.13	63.96	14.17	63.77	14.36	63.24	14.89
ST-MW-11	75.25						
ST-MW-12	87.20	71.43	15.77	71.17	16.03	70.58	16.62
ST-MW-14	69.73	55.58	14.15	56.09	13.64	54.86	14.87
ST-MW-16	75.78	54.77	21.01	54.43	21.35	54.17	21.61
ST-MW-17	86.53	70.82	15.71	70.62	15.91	70.03	16.50
ST-MW-19	82.50	66.94	15.56	66.66	15.84	66.46	16.04
ST-MW-20	84.53	71.64	12.89	72.13	12.40	70.81	13.72

ft msl - feet mean sea level

ft BTOC - feet below top of casing

	Top of PVC	4/11	/2006	5/2/	2006	6/26	6/2006
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.30	15.33	64.90	9.73		
EPA-MW-21	84.13	66.23	17.90	63.84	20.29	65.44	18.69
EPA-MW-22	82.20	63.89	18.31	63.59	18.61	63.10	19.10
EPA-MW-23	82.83	64.44	18.39	68.99	13.84	63.70	19.13
EPA-MW-27	69.32	51.72	17.60	51.28	18.04	51.78	17.54
ST-MW-02	82.03						
ST-MW-06	69.83	46.54	23.29	44.58	25.25	43.81	26.02
ST-MW-09	78.13	63.96	14.17	63.50	14.63	62.92	15.21
ST-MW-11	75.25						
ST-MW-12	87.20	71.35	15.85	73.87	13.33	70.24	16.96
ST-MW-14	69.73	56.10	13.63	55.71	14.02	54.38	15.35
ST-MW-16	75.78	54.58	21.20	54.63	21.15	53.85	21.93
ST-MW-17	86.53	70.76	15.77	70.35	16.18	69.74	16.79
ST-MW-19	82.50	67.13	15.37	66.69	15.81	65.70	16.80
ST-MW-20	84.53	72.13	12.40	71.80	12.73	73.45	11.08

ft msl - feet mean sea level

ft BTOC - feet below top of casing

	Top of PVC	5/22/2006	
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
ST-MW-02	82.03	63.36	18.67
ST-MW-16	75.78	54.52	21.26
EPA-MW-25	73.24	54.03	19.21
EPA-MW-26	78.37	58.64	19.73
ST-MW-15	90.13	72.78	17.35
ST-MW-18	84.4	71.9	12.50
ST-MW-12	87.2	70.4	16.80
ST-MW-17	86.53	69.96	16.57
ST-MW-20	84.53	71.37	13.16
ST-MW-19	N/A	66.3	
ST-MW-09	N/A		
EPA-MW-9A	80.24	65.18	15.06
ST-MW-06	69.83	44.5	25.33
EPA-MW-27	69.32	51.03	18.29
ST-MW-14	69.73	55.35	14.38

ft msl - feet mean sea level

ft BTOC - feet below top of casing

Appendix I

Indoor Air Quality Analytical Data

Appendix J

Action List Dated June 2006

JUNE 2006 ACTION LIST SUMMARY

PROJECT:	Stanton Cleaners	JOB NUMBER:	70536
LOCATION:	Great Neck, NY	DATE: July 1	3, 2006
CLIENT:	USACE / USEPA		

1

COMPLETED ITEMS

COMPLETED ITEMS	DATE PERFORMED
O&M Inspection/ System Monitoring	6/7/2006
Monthly System Sampling	6/7/2006
Calibration of pH and Conductivity Meters	6/7/2006
Bi Weekly Air Monitoring/ O&M Inspection/ System Monitoring	6/15/2006
O&M Inspection/ System Monitoring	6/20/06
Monthly Water Level Gauging	6/26/2006
Bi Weekly Air Monitoring/ O&M Inspection/ System Monitoring	6/26/2006
Calibration of pH and Conductivity Meters	6/26/2006

OUTSTANDING ITEMS

Change out of Vapor Phase Carbon Change out of Carbon Filters on Rooftop of LIHA Change out of Caron in Indoor Air Filters

RECOMMENDED SOLUTION

To be performed July 18, 2006 To be performed July 2006 To be performed August 2006