Monthly Operations and Monitoring Report March 2007

Site:

Stanton Cleaners Area Groundwater Contamination Great Neck, NY

Prepared for:

Environmental Chemical Corporation 1125 Route 22 West Bridgewater, New Jersey 08807

Prepared by: Earth Tech, Inc. 7870 Villa Park Drive, Suite 400 Richmond, Virginia 23228

May 5, 2007

Earth Tech Project No. 70536

Monthly Operations and Monitoring Report March 2007

Site: Stanton Cleaners Area Groundwater Contamination Great Neck, NY	Author:
Prepared for: Environmental Chemical Corporation	Title:
1125 Route 22 West Bridgewater, New Jersey 08807	Date:
Prepared by: Earth Tech, Inc. 7870 Villa Park Drive, Suite 400 Richmond, Virginia 23228	Reviewer:
May 5, 2007	Title:
Earth Tech Project No. 70536	Date:

Table of Contents

1.0 I	NTROD	OUCTION1
2.0	SUMMA	RY OF ACTIVITIES DURING MARCH 2007
3.0	GROUN	DWATER TREATMENT SYSTEM ACTIVITIES4
	Sampli .1 Ray	ion and Maintenance
4.0 N	MONITO	ORING WELL SAMPLING7
5.0 I	PLUME	PERIMETER MONITORING9
6.0 I	INDOOF	R AIR QUALITY SAMPLING9
7.0 I	FUTURI	E EVENTS PLANNED9
8.0 I	PROBLE	EM AREAS AND RECOMMENDED SOLUTIONS (OUTSTANDING ISSUES) 10
		Tables
Table 1	Mod	ification to Active SVE Wells6
Table 2		itored Well Samples for Further Analysis
		Appendices
Append Append Append	lix B	Daily Quality Control Reports (DQCRs) Groundwater Treatment System Operation & Maintenance Checklists Groundwater Treatment System Downloaded Operational Data
Append		Groundwater Treatment System Sampling Trip Report
Append		Groundwater Treatment System Raw and Treated Analytical Data
Append		Soil Vapor Extraction and Pump and Treat System Bi-weekly Air Monitoring Logs
Append		Semi-Annual Groundwater Sampling Trip Report
Append		Historical Groundwater Level Monitoring Results (Ongoing)
Append		Indoor Air Quality Sampling Trip Report
Append	11X J	Action List Dated March 2007

1.0 INTRODUCTION

This Monthly Operations and Monitoring Report, March 2007 (Monthly Report) has been prepared by Earth Tech, Inc., as a subcontractor to Environmental Chemical Corporation (ECC), under Contract No.5442-001-001.

The Stanton Cleaners Area Groundwater Contamination (Stanton) site is located at 110 Cutter Mill Road in Great Neck, Nassau County, New York. The Stanton Cleaner Property (SCP) is approximately ¼ acre in size and includes a two-story building in which a dry-cleaning business operates and an adjacent one-story boiler/storage building as well as a two-story treatment building. The site is bordered by an indoor tennis facility, a synagogue and school facility.

Improper handling and disposal of spent dry cleaning solvents, including Tetrachloroethylene (PCE), resulted in the release of hazardous substances at the site. PCE migrated from the site's subsurface soils into the indoor air environments of the surrounding buildings and into groundwater beneath the site, resulting in a significant threat to human health.

In 1983, approximately 20 cubic yards of PCE-contaminated soil was removed from behind the Stanton Cleaners property.

In 1989, a groundwater extraction and treatment system was installed by the original Site operator to address groundwater contamination which resulted from improper disposal of spent PCE behind the SCP building. This system is not currently operational.

In 1998, the New York State Department of Environmental Conservation (NYSDEC) funded the construction of a new air stripper treatment system for the Water Authority of Great Neck North (WAGNN) water supply wells, which are impacted by contamination from the Site. This treatment system is currently in operation. In October 1998, as an immediate response action, the EPA installed a temporary soil vapor interceptor system, adjacent to the tennis club, to mitigate impacts from PCE vapors to the indoor air of this facility.

In 2001, the EPA completed the construction and installation of a soil vapor extraction (SVE) system and a ground water treatment (GWT) system on the SCP. Both the SVE and GWT systems are housed in the treatment building that was constructed on the SCP. The SVE was installed to remediate the Volatile Organic Compound (VOC) contaminated soils, thus reducing the indoor air contamination in the adjacent affected buildings to safe levels. The GWT system was installed to remediate the VOC-contaminated groundwater and to remove the threat of vapors through the Site soils. Both systems are currently operating at the Site. The collected VOC-contaminated vapors and groundwater from both systems are treated through separate granular activated carbon (GAC) systems.

The site is presently under the jurisdiction of the Remedial Branch of the United States Environmental Protection Agency (USEPA), Region II; United States Army Corps of Engineers (USACE) provides oversight to USEPA for the remedial action and the long-term remedial action programs. ECC provides oversight to the USACE to perform long-term remediation actions. Earth Tech, as a subcontractor to ECC, provides support on the following tasks as described in the Work Plan:

 Operation and maintenance (O&M) of the GWT system and SVE system, including sampling and reporting;

- Sampling of monitoring wells associated with the site in order to track the migration of the contaminant plume, along with reporting; and,
- Sampling of indoor air quality of buildings adjacent to the site in order to identify all the adjacent buildings being impacted by site related contaminants and the effectiveness of the remedial actions being instituted at the site.

All work under this contract is performed in accordance with the following documents:

- Work Plan for Long-Term Remedial Action Support;
- Site-Specific Health and Safety Plan (HASP), dated July 23, 2001 (Revised February 3, 2003);
 and,
- Sampling Quality Assurance Project Plan (SQAPP) dated August 22, 2000.

As required by the Scope of Work for this project, monthly summary reports are prepared to document and summarize the activities taking place. These reports provide a concise description of work performed during the reporting period and include pertinent deliverables as appendices. This monthly summary report covers the period between March 1 and March 31, 2007.

2.0 SUMMARY OF ACTIVITIES DURING MARCH 2007

The following list summarizes activities performed and milestone dates under this contract during the reporting period, March 1 and March 31, 2007:

- March 7 Bi-weekly O&M Inspection/System Monitoring (installed new breaker and electric wiring for heat trace on outside influent pipe);
- March 7 Bi-weekly air monitoring;
- March 7 Monthly Treatment System sampling;
- March 7 Monthly groundwater monitoring well network water level measurement;
- March 21 Bi-weekly O&M Inspection/System Monitoring (GWT System was down due to wet floor alarm, restarted GWT System);
- March 21 Bi-weekly air monitoring; and,
- March 28 and 29 System maintenance (wet floor alarm had shut down the system due to leaking
 aqueous phase carbon vessel, by-passed vessel for servicing, restarted GWT System, reduced
 flow to avoid backpressure problems).

Details of system shutdowns and alarms during the month of March 2007 are discussed in section 3.1. Daily Quality Control Reports (DQCRs), which include projected work for the following two weeks, are completed for each day of site activities. Copies of these reports are included as Appendix A.

3.0 GROUNDWATER TREATMENT SYSTEM ACTIVITIES

3.1 Operation and Maintenance

The GWT system treated and discharged 1,384,345.4 gallons during the month of March 2007. The system was operational (recovery well pumps running) for approximately 408 of the 720 hours during the month, for an average operating flow of 56.6 gallons per minute (gpm). The system has treated a total of 147,525,423 gallons since the plant startup in October 2001.

There are currently two recovery wells pumping water into the system (EPA-EXT-02 and EPA-MW-24). EPA-EXT-02 is located in the triangle, the corner of New Cutter Mill Road and Mirrielees Road. Extraction well MW-24 had been pumping from the triangle location until it was turned off and April 20, 2005. Extraction well EPA-EXT-4R was activated on April 20, 2005. EPA-EXT-4R is located in the parking lot directly in front of the Stanton Dry Cleaners building. The decision to turn off extraction well MW-24 and replace it with EPA-EXT-4R in April 2005 was made by the USEPA. Later, in early 2006, based on an evaluation of laboratory analytical results obtained from extraction well EPA-EXT-4R and monitoring well sampling results for monitoring wells located in the area of EPA-MW-24, the decision was made to shut down extraction well EPA-EXT-4R and re-activate EPA-MW-24. Therefore, EPA-EXT-4R was taken offline and EPA-MW-24 was activated on February 2, 2006.

The facility is equipped with a remote monitoring and control system that was accessed a minimum of three times per week, by the lead engineer, during the reporting period to ensure proper system operation and notify response personnel if a problem or abnormal condition was observed. The system also provides remote notification of alarm conditions via automatic e-mail and text messaging.

The Treatment System Operation and Maintenance Checklist was completed during the O&M inspection event for March 7 and 21, 2007 and is provided in Appendix B. When the system is operational, any abnormal conditions or parameters outside of the normal operating range are addressed by the lead operator and/or monitoring/environmental technician on site (Russell Kolacek). If he requires guidance or notes any serious conditions, the inspector notifies the Project Manager (Francisco Metcalf). The checklists are completed on site and sent to Project Manager for review and scheduling of additional work if needed. Abnormal conditions and/or parameters outside the operating range are addressed, including repairs, cleaning, and continued monitoring.

System operational and alarm conditions are automatically stored by the programmable logic controller (PLC). This data is downloaded every two weeks. The March 2007 operational data is included in Appendix C. While operational, the system data are within the normal ranges and are consistent with visual observations, with any exceptions as described above.

The effluent flow data table in Appendix C shows daily discharge flows from each day of system operation and cumulative treated water discharge for each day during the reporting period, as well as a summary of total monthly flow and average daily flow since the system was started up in October 2001.

A review of October 2005 Operations and Maintenance logs indicated there has been a slight reduction in discharge flow for the GWT system. In an effort to increase the discharge flow, it was determined that the GWT system aqueous phase carbon vessels needed to be placed in parallel in the system treatment train in an effort to reduce back pressure and increase effluent flow. The altering of the piping for the 2-400 pound aqueous phase carbon vessels from series to parallel was performed on November 1, and 2, 2005.

On November 30, 2005 the SVE systems was offline due to a faulty low level sensor in the SVE knockout tank. The sensor was reviewed during the December 19, 2005 O&M inspection and was deemed to be faulty. A new low-level float switch was installed on January 9, 2006.

On January 9, 2006, three drains were installed in the line of SVE 1 so that the line can be drained weekly and so adequate air flow can be obtained at the SVE 1 air sample ports for the bi weekly air monitoring. On January 24, 2006 the drains were replaced with more permanent ball valve drains.

On December 12, 2006 PLC analog cards in positions 2, 3, and 5 were replaced. The replacement of these analog cards fixed the erroneous communication between ph/conductivity meters and the PLC display panel (as described in the November 2006 O & M Report).

On February 7, 2007, the GWT system was shut down due to influent pipeline freezing. Heat tape was installed around the pipe to prevent future freezing and the system was restarted on February 20, 2007.

In March 2007 the GWT System was shut down due to wet floor alarms triggered by water leaking from one of the 400-lb aqueous phase carbon vessels. The damaged aqueous phase carbon vessel has been taken offline for maintenance. The GWT System continues to operate with just one 400-lb aqueous phase carbon vessel at a reduce flow (influent at 38 GPM and effluent at 66 GPM).

3.2 Sampling and Analysis

3.2.1 Raw and Treated Groundwater

In accordance with the SQAPP, GWT system sampling is conducted on a monthly basis to monitor plant efficiency, to determine whether liquid carbon breakthrough has occurred, and to verify that contract-specific discharge parameters do not exceed the National Pollutant Discharge Elimination System (NPDES) permit equivalency. The combined GWT system influent, along with the GWT system effluent (discharge), will be sampled by the 15th of each month. Collected samples will be shipped to a designated USEPA, contract laboratory program (CLP) lab for analysis of target compound list (TCL) volatile organic compounds.

Earth Tech personnel conducted the GWT system influent and effluent sampling for this report period on March 7, 2007. The samples were shipped to the USEPA Region II Division of Environmental Science and Assessment (DESA) Laboratory, located in Edison, NJ for analysis of low concentration TCL volatile organic compounds. A copy of the full sampling trip report containing the chain of custody forms and FedEx air bill is included in Appendix D. Laboratory analytical results for the GWT system sampling event during this reporting period will be forwarded to ECC under separate cover from the laboratory.

Measurements of influent and effluent pH and turbidity, along with effluent conductivity, are automatically monitored and recorded by the GWT system PLC on a daily basis; this information is included with the downloaded data in Appendix C.

The next GWTS influent / effluent sampling event is scheduled for April 12, 2007.

3.2.2 Process Air Stream Monitoring

Air monitoring of the SVE and GWT System is performed on a bi-weekly basis. It includes monitoring for VOCs, carbon monoxide, oxygen, lower explosive limit (LEL), hydrogen sulfide, air velocity in cubic feet per minute (CFM), temperature, relative humidity, dew point, and vacuum pressure as specified in the O&M Manual. Air monitoring is performed at the following locations within the system:

- Combined SVE Influent (pre-treatment);
- Post groundwater Air-Stripper (pre-treatment);
- Post vapor phase carbon vessel 1 Air Stripper air discharge (post-treatment);
- Post vapor phase carbon vessel 2 SVE air discharge (post-treatment);
- Sub-slab monitoring points (pre-treatment); and,
- SVE wells EPA-SVE-1 through EPA-SVE-4 (Shallow and Medium depth).

The bi-weekly air monitoring of the SVE and GWT System was performed on March 7 and 21, 2007. Copies of the bi-weekly air monitoring logs are included in Appendix F. The next bi-weekly air-monitoring event is scheduled for April 3, 2007. A summary of estimated PCE recovery rate based on air monitoring results is presented in Table 3.

On October 3, 2005, following a review of the REAC SVE System Air Sampling Results for the event performed on July 7, 2005, the active SVE recovery wells were modified in an effort to maximize contaminant recovery rates. Details of the modifications to the active SVE wells prior to and post October 3, 2005 are included in the table below.

Table 1 Modification to Active SVE Wells

1	09 - 1864	18
SVE 1	Shallow On	Shallow and Intermediate On
SVE 2	Shallow On	Shallow On
SVE 3	Shallow On	Shallow On
SVE 4	Off	Off
EPA-SVE-4R	On	On
SSA	On	On
SSB-A	On	On
SSB-B	On	Off
SSB-C	On	On
L1	On	On
L2	On	Off

In addition to modifying the active SVE locations, the names of each location were altered in an effort to stay consistent with the USEPA Response Engineering and Analytical Contractor's (REAC) nomenclature. Future weekly monitoring logs will be consistent REACs sample numbers. The laboratory analytical results for REAC's sampling of the SVE locations, performed on July 7, 2005 are included in the Figure 1.

Additional evaluation/enhancement of the SVE recovery rates is ongoing and the installation of several SVE sample port locations was performed on November 1 and 2, 2005. On January 9, 2006, two more SVE sample port locations were installed in the line of SVE 3.

4.0 MONITORING WELL SAMPLING

Initially, groundwater sampling from select monitoring wells, both on and off-site, were collected on a quarterly basis and shipped to a designated EPA, CLP lab for analysis. Groundwater sampling activities are performed in accordance with the USEPA Groundwater Sampling standard operating procedure (SOP) #2007 and the USEPA Low-Stress Purging and Sampling SOP provided in the SQAPP. Each quarterly sampling event is coordinated with the local water authority to schedule the event when local water supply drawdown conditions do not impact the measurements. The location and number of monitoring wells as well as analytical parameters will be determined before each event by the USPEA, USACE, and ECC.

In 2005 and at the direction of the USEPA, groundwater sampling frequency was revised. It was decided to switch the frequency to semi-annually. The first semi-annual groundwater sampling event of 2005 was conducted by Earth Tech personnel on February 7 through 11, 2005. A total of 25 groundwater monitoring wells were sampled for analysis of the presence of TCL volatiles only. A copy of the full sampling trip report containing the chain of custody forms and FedEx air bills is included in Appendix D.

The second semi-annual groundwater sampling event was performed the week of August 29, 2005. It included sampling 29 monitoring wells, 15 of which had natural attenuation parameter analyses. Laboratory analytical results for this semi-annual groundwater sampling event were sent directly to ECC under separate cover from the laboratory.

The third semi-annual groundwater sampling event was performed the week of May 23, 2006. It included sampling sixteen (16) monitoring wells, nine (9) of which had natural attenuation parameter analyses. Laboratory analytical results for this semi-annual groundwater sampling event were sent directly to ECC under separate cover from the laboratory.

The fourth semi-annual groundwater sampling event took place the week of February 12, 2007. Below is a list of monitoring wells that were be sampled (per the USEPA Remedial Project Manager selection/request). Also below is a list of monitoring well samples that were further analyzed for monitoring and natural attenuation parameters. A copy of the semi-annual groundwater sampling event trip report was included in Appendix G of the February 2007 Monthly O&M Report.

Table 2 Monitored Well Samples for Further Analysis

transport of the second of the	
CL-1D	CL-ID
CL-4D	EPA-MW-21
EPA-MW-21	EPA-MW-26
EPA-MW-22	EPA-MW-27
EPA-MW-23	EPA-MW-29
EPA-MW-26	ST-MW-12
EPA-MW-27	ST-MW-17
EPA-MW-29	ST-MW-19
ST-MW-02	ST-MW-20
ST-MW-11	

ST-MW-12	
ST-MW-14	
ST-MW-15	
ST-MW-17	
ST-MW-19	
ST-MW-20	

5.0 PLUME PERIMETER MONITORING

Groundwater level measurements are obtained from both on-site and offsite wells once a month in order to evaluate capture zone(s) around the groundwater extraction wells. The event is coordinated with the local water authority (Water Authority of Great Neck North) so the event can be scheduled when the local water supply drawdown conditions will have minimal impact to the measurements.

Water level measurements were collected on March 7, 2007. The location and number of monitoring wells was determined by the USEPA based on the site Capture Zone Analysis Plan. Groundwater level measurements for March 7, 2007 and historical groundwater level measurements are provided in Appendix H.

6.0 INDOOR AIR QUALITY SAMPLING

Indoor air quality samples from select locations within the treatment building and buildings along the perimeter of the site are collected using summa canisters on a quarterly basis and shipped to a laboratory for analysis (as of May 2006 indoor air sampling is performed on a semi-annual basis). The location and number of indoor air quality samples to be collected as well as analytical parameters are determined by the USEPA, USACE and ECC.

Indoor air quality samples were collected on February 13 and February 14, 2007 by Earth Tech personnel. This sampling event was conducted to address air quality issues within the Long Island Hebrew Academy, the Silverstein Hebrew Academy, and the Stanton Cleaners Treatment Building. A copy of the Indoor Air Sampling Trip Report was included in Appendix I of the February 2007 Monthly O&M Report.

7.0 FUTURE EVENTS PLANNED

The following scheduled events are planned (or have since occurred) during the next three reporting periods:

- Continue to perform GWT system inspection and maintenance as required;
- Continue to perform bi-weekly system air monitoring;
- Collect system influent and effluent samples as directed by USACE/ECC/USEPA; and,
- Obtain groundwater level measurements as directed by USACE/ECC/USEPA.

8.0 PROBLEM AREAS AND RECOMMENDED SOLUTIONS (OUTSTANDING ISSUES)

The altering of the piping for the 2-400 pound aqueous phase carbon vessels from series to parallel was performed in November 2005. A review of flow rates indicated the effluent flow has increased from approximately 60 GPM to 72 GPM following the change. Action List of ongoing and completed items is provided in Appendix J to track work tasks that have been targeted as issues to be addressed.

Monthly O&M performed on November 29, 2005 indicated the low level float switch for the SVE system knockout tank was not functioning. Further inspection performed in December 2005 indicated a replacement was required. A replacement low level float switch was installed on January 9, 2006.

On December 28, 2006, one of the windows of the GWT system building was broken. An unidentified person threw a padlock and broke the window. The broken window was secured (using ply wood from the inside) and a contractor was scheduled to replace it with a new one. The window replacement will take place on the second week of January 2007.

On January 10, 2007, a pinhole sized leak was observed at the base of an air stripper. It appears to be caused by a corroded weld at the seam between the front and bottom of the air stripper. The leak is not affecting the floor sump pumps or systems operations at this point. Options are being explored for a repair.

On January 18, 2007, the broken window on the GWT system building was replaced.

On February 7, 2007, the GWT system was shut down due to influent pipeline freezing. Heat tape was installed around the influent pipe to prevent freezing and the system was restarted on February 20, 2007.

On February 20, 2007, it was noted that the SVE lines for SS-B(B) & SS-B(A) had broken due to the weight of the SVE line above it that had fallen onto it. Repairs to these lines are planned during the next trip to the site.

On March 28, 2007 the GWT System was shut down due to wet floor alarms triggered by water leaking from one of the 400-lb aqueous phase carbon vessels. The damaged aqueous phase carbon vessel has been taken offline for maintenance. The GWT System continues to operate with just one 400-lb aqueous phase carbon vessel at a reduce flow (influent at 38 GPM and effluent at 66 GPM). Maintenance on the leaking vessel will be performed to coincide with the next spent carbon change out (vessel needs to be empty in order to perform maintenance).

Estimated PCE Recovery Rates Stanton Cleaners Area Groundwater Contamination Site 250 CFM SVE SYSTEM September 2003 – March 2007

	<u></u>						
9/11/2003	1	225	225	4.2	4.20	0.6	0.6
9/25/2003	13	210	217.5	4.7	4.45	0.6	7.8
10/8/2003	13	213	211.5	5	4.85	0.6	8.2
10/23/200							
3	15	210	210	12.2	8.6	1.1	16.7
11/5/2003	13	215	212.5	6.8	9.5	1.2	16.2
11/22/200							
3	17	211	213	6	6.4	0.8	14.3
12/4/2003	12	205	208	5.9	5.95	0.8	9.2
12/17/200	13	200	202.5	4	4.95	0.6	8.0
12/30/200 3	13	210	205	4	4.95	0.6	8.1
1/15/2004	16	205	207.5	4.1	4.05	0.5	8.3
2/5/2004			SVE	System Manually	Shutdown S	Since 1/16/04	
2/12/2004	8	200	200	3.5	3.5	0.4	3.5
2/26/2004	14	205	202.5	5.3	4.4	0.6	7.7
3/10/2004	12	200	202.5	5	5.15	0.6	7.7
3/25/2004	15	199	199.5	5.1	5.05	0.6	9.3
4/13/2004	19	175	187	6.3	5.7	0.7	12.5
4/29/2004	16	170	172.5	6	6.15	0.7	10.5
W-10 AU AU AU A							

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump

and Treatment Systems" publication.

$$C_{air (mg/m3)} = \frac{Conc_{(ppmv)}}{1E+0} \times \frac{1 \text{ mole air}}{6} \times \frac{1000 \text{ L}}{24.1} \times \frac{1000 \text{ mg}}{24.1} \times \frac$$

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Farenheit (0 degrees Celcius), the conversion is (1 mole air)/(22.4 L).

						1985 - 1 30 - 1 1400	
						1	
5/13/2004	14	150	160	6	6	0.6	8.3
5/30/2004	17	147	148.5	5.9	5.95	0.5	9.3
6/10/2004	11	150	148.5	4.4	5.15	0.5	5.2
6/30/2004	20	145	147.5	5.6	5	0.5	9.1
7/8/2004	8	140	142.5	4.9	5.25	0.5	3.7
7/22/2004	14	139	139.5	4.8	4.85	0.4	5.8
8/9/2004	18	140	139.5	3.1	3.95	0.3	6.1
8/31/2004	1	135	137.5	3	3.05	0.3	0.3
9/8/2004	8	120	127.5	2.9	2.95	0.2	1.9
9/30/2004	22	121	120.5	3.1	3	0.2	4.9
10/4/2004	5	121	121	2.9	3	0.2	1.1
10/20/200 4	15	120	120.5	2.8	2.85	0.2	3.2
11/1/2004	12	121	120.5	3	2.9	0.2	2.6
11/17/200 4	16	125	123	4.1	3.55	0.3	4.3
11/29/200 4	12	120	122.5	4.2	4.15	0.3	3.8
12/7/2004	8	121	120.5	4.2	4.2	0.3	2.5
12/16/200 4	9	120	120.5	4.1	4.15	0.3	2.8

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump

and Treatment Systems" publication.

$$C_{\text{air (mg/m3)}} = \frac{Conc_{\text{(ppmv)}}}{1E+0} \times \frac{1 \text{ mole air}}{6} \times \frac{1000 \text{ L}}{1E+0} \times \frac{1000 \text{ mg}}{1E+0} \times \frac{1000 \text{ mg}}{1E+$$

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and

pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Farenheit

							and the second s
1/12/2005	27	120	120	4.5	4.3	0.3	8.6
1/17/2005	5	120	120	4.5	4.5	0.3	1.7
2/9/2005	23	120	120	3.9	4.2	0.3	7.2
2/23/2005	14	120	120	3.5	3.7	0.3	3.8
3/2/2005	7	120	120	3.2	3.35	0.2	1.7
3/16/2005	14	120	120	3.5	3.35	0.2	3.5
4/4/2005	19	120	120	3	3.25	0.2	4.6
4/20/2005	16	120	120	2.9	2.95	0.2	3.5
5/3/2005	13	120	120	3.1	3.00	0.2	2.9
5/19/2005	16	120	120	2.9	3.00	0.2	3.6
6/15/2005	26	120	120	1	1.95	0.1	3.8
6/22/2005	7	270	120	8.3	4.65	0.3	2.4
7/25/2005	33	280	275	8.3	8.30	1.4	46.5
8/9/2005	15	290	285	5	6.65	1.2	17.6
8/24/2005	15	290	290	6	5.50	1.0	14.8
9/7/2005	14	260	275	6.5	6.25	1.1	14.9
9/20/2005	13	260	260	6.8	6.65	1.1	13.9
						j.	

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump and Treatment Systems" publication.

$$M_{air} = Q_{air} \times C_{air} \times \frac{0.0283 \text{ m}_3}{\text{ft.3}} \times \frac{1440 \text{ min.}}{\text{day}} \times \frac{2.2 \text{ lbs.}}{1000000 \text{ mg}}$$

$$C_{air (mg/m3)} = Conc_{(ppmv)} \times 1 mole air \times 1000 L \times 1000 mg \times MWx$$

 $1E+06$ $24.1 L$ m_3 g

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Farenheit

					er jaran		
10/3/2005	13	270	265	7.4	7.10	1.2	15.1
10/18/2005	15	240	255	3.7	5.55	0.9	13.1
11/7/2005	20	250	245	1.5	2.60	0.4	7.9
11/29/2005	22	200	225	1.7	1.60	0.2	4.9
12/19/2005	20	305	252.5	14.7	8.20	1.3	25.6
1/4/2006	16	260	282.5	3.4	9.05	1.6	25.3
1/19/2006	15	285	272.5	2.5	2.95	0.5	7.4
1/30/2006	10	275	280	2.2	2.35	0.4	4.1
2/16/2006	17	210	242.5	10.7	6.45	1.0	16.4
2/27/2006	11	275	242.5	2.4	6.55	1.0	10.8
3/23/2006	24	245	260	2.3	2.35	0.4	9.1
4/11/2006	19	245	245	1.6	1.95	0.3	5.6
5/4/2006	23	265	255	0	0.80	0.1	2.9
6/15/2006	42	270	267.5	5	2.50	0.4	17.3
6/26/2006	11	260	265	0	2.50	0.4	4.5
7/13/2006	17	275	267.5	7.2	3.60	0.6	10.1
7/27/2006	14	305	290	3.3	5.25	0.9	13.2
8/3/2006	7	265	285	4.5	3.90	0.7	4.8
8/14/2006	11	270	267.5	10.3	7.40	1.2	13.4
8/28/2006	14	255	262.5	8	9.15	1.5	20.8
							NO THE STATE OF TH

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump and Treatment Systems" publication.

$$M_{air} = Q_{air} \times C_{air} \times \frac{0.0283 \text{ m}_3}{1.3} \times \frac{1440 \text{ min.}}{440 \text{ min.}} \times \frac{2.2 \text{ lbs.}}{1000000 \text{ mg}}$$

$$C_{air (mg/m3)} = Conc_{(ppmv)} \times 1 \text{ mole air} \times 1000_{ L} \times 1000_{ mg} \times MW_x$$

1E+06 24.1 L m3 g

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and

pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Farenheit

		jA – St				- 1 3 3 3 3 3 3 3 3 3 3	

						i i	
9/21/2006	24	280	267.5	12	10.00	1.7	39.6
9/28/2006	7	252	266	10.6	11.30	1.9	13.0
10/12/200		_					_
6	14	260	256	6.3	8.45	1.3	18.7
10/26/200							
6	14	250	255	7.8	7.05	1,1	15.5
11/13/200							
6	18	265	257.5	7.5	7.65	1.2	21.9
11/28/200	٠						
6	15	265	265	4	5.75	0.9	14.1
12/13/200	4.5		404.5		0.00		
6	15	98	181.5	0	2.00	0.2	3.4
12/28/200 6	15	83	90.5	2.7	1.35	0.1	1.1
1/10/2007	13	55.5	69.25	0	1.35	0.1	0.8
1/23/2007	13	23	39.25		AE not oper		
2/20/2007	25	52	37.5	0	0	0.0	0.0
3/7/2007	15	61	56.5	0	0	0.0	0.0
3/17/2007		<u> </u>			n down	0.0	3.0
3/21/2007	10	61	61	0	0	0.0	0.0
OIL IILOOI	10	01	01			0.0	

Notes:

SVE system turned off from 8/24/2004 through 8/31/2004 during tennis court demolition activities.

SVE system off from 2/7/2007 through 2/20/07 due to frozen lines.

New SVE well EPA-EXT-04 on-line 11/04/2004

VOC readings taken before vapor phase carbon off-gas treatment.

Deep SVE Wells Closed on 12/10/03 Per OSC's Request

Formula provided by EPA in the "Elements for Effective Management of Operating Pump and Treatment Systems" publication.

$$M_{air} = Q_{air} \times C_{air} \times \frac{0.0283 \text{ m3}}{1.3} \times \frac{1440 \text{ min.}}{1000000 \text{ mg}} \times \frac{2.2 \text{ lbs.}}{1000000 \text{ mg}}$$

$$C_{air (mg/m3)} = \frac{Conc_{(ppmv)}}{1E+0} \times \frac{1 \text{ mole air}}{6} \times \frac{1000 \text{ L}}{1E+0} \times \frac{1000 \text{ mg}}{1E+0} \times \frac$$

Notes:

Mair = mass loading, removal rate in air (lbs/day)

Qair = flow rate in air (cfm)

Cair = contaminant concentration (mg/m3)

MWx = molecular weight in grams/mole, for PCE is 166

Note: The conversion factor (1 mole air)/(24.1 L) varies with both temperature and pressure. At a pressure of 1 atmosphere and a temperature of 32 degrees Farenheit

Appendix A Daily Quality Control Reports (DQCRs)

					1		
Day	S	М	T	W	T	F	S
Weather				SNOWING			
Temp.				15° F			
Wind				WINDY			
Humidity Forth Tech P	Parsonnal On Sit	o: Dussall	Kolacek, Justin	LOW			
Contract Ma Extension la	dder, climbing	oment on s			hand tools.	MultiRAE.	
B(A); Collection outside port	eted monthly sy ion of the influ	stem sampent pipe; p	ples; Installed no hotographed in	g; Repaired broke ew breaker and el stallation; (see spo Calibrated Mult	ectrical wir ecial notes)		ar SS-B(B) and SS- trace for the
	afety Levels and countered/Corre						
				inding of Fact: N/A d specification loca		minutes of me	eting and
list of all atte		-					
Have all requ	uired submittals	and sample	es of construction	been approved? Y	'es		
Do the mater	rials and equipm	ent to be u	sed conform to the	ne submittals? Yes			
Has all prelir	ninary work bee	n inspected	d, tested, and con	npleted? Yes			
Test required results): N/A	•	techniques	to be executed to	o prove contract co	mpliance (ir	nclude both ex	pected and actual
Has a phase l	hazard analysis	een perfor	med? Included	in the Site Specific	Health &	Safety Plan.	

Comments and deficiencies noted and corrective actions taken: Explained in work performed section.

Initial Inspection: List all inspections by subject and specification location. Comment and/or deficiencies noted and corrective actions taken.

Explained in work performed section.

Follow-up Inspection: List all inspections by subject and specification location. Comment and/or deficiencies noted and corrective actions taken.

See special notes

Special Notes: The LCD display for the plant PLC was not working when we arrived. The enclosure had been left opened indicating someone had been working inside it. We jiggled the power cord for the monitor trying to get it to turn on. It turned on for a short period enabling us to record a portion of the O&M data, but shortly afterwards stopped working again. Removed the plug on the monitor and plugged it back in and jiggled the cord, this time hearing a pop sound. The monitor would not respond. I examined the DC power supply and could see that the DC plug was a makeshift job with the original plug that was attached to the power supply electrical taped to a different DC plug which was the correct size for the monitor. A shorting between the contacts could likely have damaged the LCD monitor. I checked the power supply with a multi-meter; it was operating at the correct voltage. I called the distributor and spoke with tech-support. We concluded that the monitor was damaged and outside of warranty and would need replaced.

Tomorrow's Expectations:

Bi weekly O&M Inspection; bi weekly air monitoring.

Change out of carbon in indoor air filters at the site.

Explore options for repairing leak in air stripper.

By: Russell Kolacek

Title: Environmental Technician

Signature: Russell P. Volaca

(Quality Control Representative/Manager)

The above report is complete and correct. All materials and equipment used and all work performed during this reporting period are in compliance with the contract specifications and submittals, except as noted above.

				対 の			
Day	S	M	T	W	T	F	S
Weather	5	171		SUNNY	+-		
Temp.				48° F			
Wind				BREEZY			
Humidity		<u> </u>		LOW			
	ersonnel On-Site	: Russell k	Kolacek, John N				
	r (include names	•				A. M.D. A. F.	
Contract Mat	erials and Equip	ment on site	: Chevy 1500 p	oick-up, general	nand tools. I	viultiRAE.	
Health and S. Problems En	afety Levels and countered/Corre	Activities:	Level D Taken: N/A	Calibrated Mu			
				specification loc		minutes of me	eting and
list of all atte		- Inspection			, www.		
Have all requ	ired submittals a	and samples	of construction	been approved?	Yes		_
Do the mater	ials and equipme	ent to be use	d conform to th	e submittals? Ye	s		
Has all prelin	ninary work bee	n inspected,	tested, and com	npleted? Yes			
Test required results): N/A	and inspection	techniques to	be executed to	prove contract c	ompliance (in	clude both exp	pected and actual
Has a phase h	nazard analysis b	een perform	ned? Included i	n the Site Specif	ic Health & S	Safety Plan.	

Bi weekly O&M Inspection; bi weekly air monitoring.

Change out of carbon in indoor air filters at the site.

Explore options for repairing leak in air stripper.

By: Russell Kolacek

Title: Environmental Technician

Signature: Russell P. Volaca

(Quality Control Representative/Manager)

The above report is complete and correct. All materials and equipment used and all work performed during this reporting period are in compliance with the contract specifications and submittals, except as noted above.

				4.5			
Day	S	M	T	W	T	F	S
Weather		,		CLOUDY			
Temp.				52° F			
Wind				WINDY			
Humidity	10.00			LOW			
Earth Tech I	Personnel On-Sit	e: Russell	Kolacek, Justin	Self			
Subcontracto	or (include name	s & resnon	sibilities): N/A				
Subcontracti	or (morade name	s ex respons	nominos). MA				
Contract Ma	terials and Equir	oment on si	te: Chevy 1500 i	pick-up, general	hand tools.	MultiRAE.	
			•	17.8			
	med (include sar					_	
				erside of one of th			
							re were no bypass
							ted to find supplier
				le to reach them			er Maidin 1%; Cleaned water
	;(see special not		iai into the I LC	and reduce the	HOW HOME	ne wens by 50	70, Cleaned water
	,(200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		·		_		
Quality Con	trol Activities (in	cluding fie	ld calibrations):				
						_	
TT 1/1 1.0	1 C . T . 1 . 1		* 15				
	Safety Levels and acountered/Corre						
riodiems En	countered/Corre	ction Actio	n Taken: N/A				
Explain Dev	elonments Leadi	ng to Chan	ge in SOW or Fi	nding of Fact: N/A			
				specification loc		minutes of me	eeting and
	endees): N/A		<u> </u>		,		<u></u>
	,						
Have all requ	uired submittals	and sample	s of construction	been approved?	Yes		
Do the mater	rials and equipme	ent to be us	ed conform to th	e submittals? Yes			
							_
Uog all proli-	minory worls has	n increased	tosted and sam	nlatad? Van			
nas an prem	minary work bee	n inspected	, lested, and com	ipicica: Yes			
Test require	and increation	techniques	to be executed to	nrove contract of	omnliance (neluda keth e	spected and actual

	i j
환, 시민의 이번 경제 보는 그렇게 되었다.	
results): N/A	
II	
Has a phase hazard analysis been perio	ormed? Included in the Site Specific Health & Safety Plan.
Comments and deficiencies noted and	corrective actions taken: Explained in work performed section.
Comments and deficiencies noted and	corrective actions taken. Explained in work perior med section.
Initial Inspection: List all inspections	by subject and specification location. Comment and/or deficiencies noted and
corrective actions taken.	0) 5-0,000 mad 5p00m0m0m 00mmm0m
Explained in work performed section	n.
Follow-up Inspection: List all inspects	ions by subject and specification location. Comment and/or deficiencies noted and
corrective actions taken.	
See special notes	
Special Notes:	
Returning to supplier tomorrow to p	purchase parts and install;
Tomorrow's Expectations:	
Bi weekly O&M Inspection; bi week	dy air monitoring.
Change out of carbon in indoor air f	filters at the site.
Install ball valves to bypass carbon v	vessel
By: Russell Kolacek	Title: Environmental Technician
Signature Russell P. Volanda	
Signature: Kussell T. Lolard	(Quality Control Representative/Manager)

The above report is complete and correct. All materials and equipment used and all work performed during this reporting period are in compliance with the contract specifications and submittals, except as noted above.

Des		M		137			
Day Weather	S	<u>M</u>	<u> </u>	W	T SUNNY	F	S
Temp.				+	51° F		
Wind					windy		
Humidity					LOW		
Earth Tech P	ersonnel On-Site	e: Russell K	olacek				
					_		
Subcontracto	or (include names	s & responsil	oilities): N/A				
Contract Mat	torials and Equin	mant an sita	. Chara 1500 m	ialr un gana	ral hand tools. Mu	-143D A E	
Contract Mai	ieriais and Equip	ment on site	: Chevy 1500 p	ick-up, gene	rai nang toois. Mi	IIIIKAE.	
Work Perform	med (include san	npling: list b	v NAS number	if applicable):			
					led ball valves on i	influent and	effluent sides of
					er system cycling v		
leaking carb	on vessel; Meas	sured influe	nt @ 38GPM &	k effluent @ (66GPM; Cleaned	water on the	floor;(see specia
notes)							
O1' C	1 A1'11'	1 1' 6 11	1 - 17			_	
Quality Cont	rol Activities (in	cluding field	calibrations):				
			<u> </u>				
Health and Sa	afety Levels and	Activities: I	Level D				
Problems En	countered/Correc	ction Action	Taken: N/A				-
							_
	elopments Leadin						
		ll inspections	by subject and	specification	location; attach min	nutes of meet	ting and
list of all atte	ndees): N/A						
Have all requ	ired submittals a	and samples	of construction	heen approved	d? Ves		
	Ju bubililiumib u	samples	or comparation	этоп арргото			
Do the mater	ials and equipme	ent to be used	d conform to the	submittals?	Yes		
TT - 11 11				1 . 10 77			
Has all prelin	ninary work beer	n inspected, i	tested, and comp	pieted? Yes			
Test required	and increation t	echniques to	he executed to	nrove contrac	et compliance (inclu	ide hoth over	ected and actual
		echniques to	be executed to	prove contrac	et compliance (inclu	ide both expe	ected and actual
Test required results): N/A		echniques to	be executed to	prove contrac	et compliance (inclu	ide both expe	ected and actual

period are in compliance with the contract specifications and submittals, except as noted above.

Appendix B

Groundwater Treatment System Operation & Maintenance Checklists

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND MAINTENANCE WEEKLY CHECKLIST DATE: 03/07/07

1.	A. Is any part of the system leaking? <u>YES</u> If so, list where: slow leak @ base of air stripper near	NO r discharge	flange – corroc	ded seam weld
	B. Is there water on the floor? YES NO If so, list where: below air stripper – not very much			
	C. Are all three (3) floor sump level switches in place	? YES	NO	
	D. Is there any evidence of water in any of these floor Note: If water is present, remove with shop vac or par		YES	<u>NO</u>
	A. Display screen on computer will either show syste ger to show screen. If only the desktop is showing with the taskbar at the bottom of the screen.			
	B. From the site display, monitor and record the follo	wing.		
	1. Recovery Well EPA-EXT-02 flow ¹	43	_GPM	
	2. Recovery Well EPA-EXT-02 valve open	100	%	
	3. Recovery Well EPA-EXT-4R flow	0_	GPM	I
	4. Recovery Well EPA-EXT-4R valve open	0	%	
	5. Recovery Well pH	6.6	pН	
	6. Recovery Well conductivity	55	cond	
	7. Air Stripper pH	6.8	_pH	
	8. Air Stripper temperature	148_	deg.	
	9. Air Stripper air flow	415	CFM	
	10. Pre-vapor carbon pressure	0	"wc	
	11. Post carbon air flow	<u>NA</u>	CFM	
	12. Discharge conductivity	<u>NA</u>	cond	
	13. Discharge pH	NA	pH	
	14. Discharge flow	<u>NA</u>	GPM	
	15. Discharge total gallons	NA	Gal	
	16. SVE inlet vacuum	<u>NA</u>	"Hg	

Wells EPA-EXT-02 and MW-24 wells are manifold together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

17. SVE air flow	<u>NA</u>	CFM
C. From the treatment room, monitor and record the	following.	
1. Recovery Well EPA-EXT-02 total flow	<u>8953363.5</u>	Gal
2. Recovery Well EPA-EXT-03 total flow	51.5	_Gal
3. Recovery Well pH	6.20_	pH
4. Recovery Well conductivity	0.52	cond
5. Air Stripper pH	6.85	pH
6. Air Stripper temperature	<u>14.7</u>	_deg. C
7. Air Stripper Pump water flow	<u>77.0</u>	_ GPM
8. Air Stripper Pump pressure	<u>49</u>	_ PSI
9. Discharge conductivity	0.933	cond
10. Discharge pH	<u>7.86</u> _ pF	I
11. SVE inlet vacuum (digital readout)	+2.1	_"Hg
12. SVE inlet vacuum		"Hg
13. SVE post knockout vacuum	<u>-3.7</u>	"Hg

3. A. If time allows, check to see that the treatment system is cycling properly as described in STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 0&M MANUAL

Treatment System is cycling properly.

The LCD display needed for O&M data recording was not functioning and appeared to have been damaged. Some O&M data was unattainable due to this problem.

<u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE OPERATION AND MAINTENANCE WEEKLY CHECKLIST</u> <u>DATE:03/21/07</u>

1.	A. Is any part of the system leaking? YES If so, list where: Air stripper between some seals and	NO at a weld seam. Slow leak.	
	B. Is there water on the floor? YES NO If so, list where: Below the air stripper, slight accumu	ilation.	
	C. Are all three (3) floor sump level switches in place	e? YES NO	
	D. Is there any evidence of water in any of these floor Note: If water is present, remove with shop vac or pa		
	A. Display screen on computer will either show syste ger to show screen. If only the desktop is showing with the taskbar at the bottom of the screen.		
	B. From the site display, monitor and record the follo	owing.	
	1. Recovery Well EPA-EXT-02 flow ¹	GPM	
	2. Recovery Well EPA-EXT-02 valve open	%	
	3. Recovery Well EPA-EXT-4R flow	GPM	
	4. Recovery Well EPA-EXT-4R valve open	%	
	5. Recovery Well pH	pH	
	6. Recovery Well conductivity	cond	
	7. Air Stripper pH	pH	
	8. Air Stripper temperature	deg.	
	9. Air Stripper air flow	CFM	
	10. Pre-vapor carbon pressure	"wc	
	11. Post carbon air flow	CFM	
	12. Discharge conductivity	cond	
	13. Discharge pH	pH	
	14. Discharge flow	GPM	
	15. Discharge total gallons	Gal	
	16. SVE inlet vacuum	"Hg	

Wells EPA-EXT-02 and MW-24 wells are manifold together in the field and are piped into the treatment building together. The EPA-EXT-02 water flow meter is therefore actually displaying and totalizing the output of both wells.

17. SVE air flow		CFM
C. From the treatment room, monitor and record the	following.	
1. Recovery Well EPA-EXT-02 total flow	_9450454	Gal
2. Recovery Well EPA-EXT-03 total flow	51.5	Gal
3. Recovery Well pH	6.12	pH
4. Recovery Well conductivity	0.60	cond
5. Air Stripper pH	6.88	рН
6. Air Stripper temperature	15.1	deg. C
7. Air Stripper Pump water flow	72.5	GPM
8. Air Stripper Pump pressure	49	PSI
9. Discharge conductivity	0.39	cond
10. Discharge pH	7.35	pH
11. SVE inlet vacuum (digital readout)	1.6	"Hg
12. SVE inlet vacuum	3.0	"Hg
13 SVE post knockout vacuum	2.8	"Ho

3. A. If time allows, check to see that the treatment system is cycling properly as described in <u>STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE 0&M MANUAL</u>

Appendix C

Groundwater Treatment System Downloaded Operational Data

		200	200	200	2009	200	200	976	976	976	200	200	200	200	86	8	200	200	200	200	500	200	200	200	200	200	9	200	35	200	976	200	200	200	976	500	200	200	200	500	500	200	200	200	300	200	200	200	200
		2832	2930	2928	2776	2774	2693	2776	2693	2693	2606	2693	2610	2774	2880	3000	2769	2776	2693	2774	2776	2932	2730	2926	2932	2932	2926	2819	0467	2921	3045	2886	2889	2982	3174	2935	2776	2909	2909	3031	2992	3043	2932	2002	2835	3179	2928	3043	2893
		381	453	306	407	371	413	392	331	352	389	329	368	433	243	376	428	359	397	374	387	379	328	430	373	427	429	425	878	188	486	340	382	394	458	428	383	439	442	358	352	417	378	242	988	390 463	382	417	336
		146154417.9	146167497.9	146180611.8	146206835	146220072.5	146233327.1	146246450.9	146259601.9	146272742.4	146285869.9	146299227.1	146312314.7	146325426.3	146351800 8	146264074.2	146378048 1	146391134.8	146404509.9	146417616.9	146430708.2	146443926.9	146457196.3	146470271.7	146483353	146496439.3	146509770.2	146522858.1	140030921.1	146562322.7	146575319.2	146588574.2	146601705.6	146614849.1	146627863.5	146654292 9	146664727.5	146678001.8	146691295	146704332.5	146717589.6	146730677.2	146743733.8	146757041.9	146770101.4	146796494.4	146809548.3	146822665.8	146835885.5
		7.8	7.8	8.7	7.6	7.7	7.7	7.7	7.6	9.7	7.6	7.7	8.);;	+	-	7.8	7.7	1.	7.8	7.7	7.7	7.8	7.8	7.8	7.7	8.7	: :	2,5	8,2	7.7	7.8	7.8	7.8	7.8	2,4	7.7	7.5	7.5	7.8	7.8	7.8	7.8	1.7	8) (S	8.7	2 8	7.8	7.8
		6.8	9.9	8.9	6.9	6.9	8.9	6.9	6.9	6.9	6.9	6.9	8.9	200	0.0	3	69	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	2	6.9	6.8	6.8	6.8	6.8	8.8	2 8	8.8	8.8	6.8	6.8	6.8	6.8	6.8	6.9	6.0	8.8	8 8	6.8	8.8
		6.5	9.9	9.6	6.4	6.5	6.5	6.5	6.4	6.4	6.5	6.5	9.6	0,0	0.0	33	6.5	6.5	6.5	6.6	6.5	6.5	9.9	9.9	9.6	6.5	6.5	6.5	2	6.5	6.5	6.5	6.5	6.5	9.9	99	6.5	6.4	6.3	9.9	9.9	9.9	9.9	6.5	9.6	9.9	9,0	9.9	9.9
Data		84	47	47	3	86	88	89	49	49	47	48	47	4/4	44	4	47	47	47	46	46	47	46	46	46	46	47	47	₽ ;	45	4	46	45	46	46	46	45	44	44	46	46	46	47	47	90,5	40	46	47	47
Operation		55	24	98 82	29	39	28	62	62	63	22	19	88	2 2	44	2	89	19	29	53	29	69	22	63	8	83	62	62	2 1) 2	25	57	22	55	9 5	8 2	25	88	49	42	54	47	9	25	202	53	3 6	52	53
Site - March 2007 - Site Operation Data		150	149	150	150	150	151	152	153	153	152	151	150	25	151	195	151	150	150	150	150	150	150	149	149	149	150	120	148	148	147	147	148	147	147	147	148	148	148	148	148	148	149	149	148	140	147	148	149
e - March		2932	2930	2928	2776	2774	2693	2776	2693	2693	2606	2693	2610	79,72	0000	2002	2769	2776	2693	2774	2776	2932	2730	2926	2832	2932	2926	2919	0407	2921	3045	2886	2889	2992	3174	2035	2776	2909	2909	3031	2882	3043	2932	2608	2935	2479	2028	3043	2893
1 =		99	69	3	3 8	۰	64	. 29	49	99	69	69	88	28 8	8 6	2	8 2	2	2	8	2	0	65	92	98	8	29	8 3	g (5 8	8	99	0	69	29	3 -	159	8	8	65	3	65	2	98	\$ 1	8 8	8 8	30	69
Contamir		20	20	51	2 4	48	41	20	46	45	43	45	8	45	2 2	7 2	41	45	51	47	38	45	44	39	37	38	28	4 8	35	40	20	44	47	20	49	- 4	47	48	51	45	48	46	43	648	8	45	789	38	40
undwater		0	0	0	0	0	0	0	0	0	0	0	٥						0	0	0	0	0	0	0	0	٥	٥	- (0		0	0	0	0		0		0	0	0	0	0	0 0	٥	0	0	0	00
Stanton Cleaners Groundwater Contaminatio		0	0	0 0	0	0	0	0	0	0	0	0	٩	9						0	0	0	0	0	0	0	0	٥	١	-		0	0	0	0		,	0	0	0	0	0	0		٥	5 6	> 0	, 0	00
on Clea		0:00	4:00	3.00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	000	00.4	9.6	16.00	20:00	00:0	4.00	8:00	12:00	16:00	20:00	0:00	8	8:00	12:00	16:00	20:00	4:00	8:00	12:00	16:00	20:00	88	8.6	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	4:00	3.50	12:00	16:00
Stant	in the state of th	3/1/2007	3/1/2007	3/1/2007	3/1/2007	3/1/2007	3/2/2007	3/2/2007	3/2/2007	3/2/2007	3/2/2007	3/2/2007	3/3/2007	3/3/2007	3/3/2007	200000	3/3/2007	3/4/2007	3/4/2007	3/4/2007	3/4/2007	3/4/2007	3/4/2007	3/5/2007	3/5/2007	3/5/2007	3/5/2007	3/5/2007	3/5/2007	3/6/2007	3/6/2007	3/6/2007	3/6/2007	3/6/2007	3/7/2007	3/7/2007	3/7/2007	3/7/2007	3/7/2007	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/9/2007	3/9/2007	3/9/2007	3/9/2007

200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	500	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	86	200	200	976	976	976	200	200	200	200	200	200	200	200	200	36	36
2693	2932	2546	2693	2919	2776	2693	2776	2776	5606	2877	2776	2932	2776	2928	2762	2774	2760	2932	2886	2893	2608	2755	2776	2693	2882	2776	2606	2447	2762	2923	2548	2606	23	50	23	23	23	2832	2930	2022	2776	2774	2693	2776	2693	2693	2606	2693	2610	2767	2771	2889	2886	2769	2//0	2022	2114
389	358	377	376	414	352	338	327	457	293	371	438	332	362	393	397	389	387	367	372	340	408	403	398	388	388	418	383	402	408	368	346	326	×		,	4	4 20	381	433	414	407	37.1	413	392	331	352	389	328	368	433	297	343	376	428	303	337	110
146862265.6	146875319.8	146888644.5	146901747.2	146914848.4	146928212.4	146941328.5	146954514.4	146967806.1	146980867.9	146994162.1	147007309	147020393.5	147033698.8	147046781.3	147059855.5	147073205.2	147086240	147099331.2	147112637	147125687.4	147138877.1	147152111.7	147165192.4	147178524.1	147191606.3	147204680.5	147217968.8	147231004.9	147244102.6	147257323.8	147270355.5	147283674.5	147293256	147293256	147293256	147293256	147293256	146154417.9	446400044	146180611.8	146206835	146220072.5	146233327.1	146246450.9	146259601.9	146272742.4	146285869.9	146299227.1	146312314.7	146325426.3	146338519.9	146351800.8	146364974.2	146378048.1	146391134.8	140404309.9	1401111111
7.8	7.8	7.7	7.7	7.6	7.6	9.7	7.6	7.7	7.7	7.7	7.7	7.8	7.8	7.8	7.7	7.6	7.7	7.7	7.7	7.8	7.7	7.6	7.7	7.7	7.7	7.7	7.7	7.6	7.7	7.7	7.7	7.6	7.6	7.6	7.6	7.5	6:)	29.0	9,0	9,1	7.6	7.7	7.7	7.7	7.6	7.6	7.6	7.7	7.8	7.7	/'/	7.7	7.7	7.8	<u>;;</u>	/:/	?
6.8	6.8	8.9	6.9	6.9	6.9	6.9	6.9	8.9	6.9	6.9	6.9	6.9	6.8	8.8	6.8	6.9	6.9	6.9	6.9	6.8	6.9	6.9	6.9	6.9	6.9	6.8	6.9	6.9	6.9	6.9	6.9	6.8	6.5	6.3	6.2	6.3	200	8.0	9	0.0	9 9	6.9	6.8	6.9	6.9	6.9	6.9	6.9	6.8	6.8	6.8	6.9	6.9	6.9	6.0	20.0	0.0
9.9	9.9	6.5	9.9	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	9.9	9.9	6.5	6.5	6.5	6.5	6.5	9.9	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.4	6.5	6.5	0.0	9.0	6.4	6.5	6.5	6.5	6.4	6.4	6.5	6.5	9.9	6.5	9.9	6.5	6.5	6.5	0.0	0.0	2.5
47	47	48	50	48	49	49	49	49	48	49	48	49	47	48	49	49	49	49	49	49	49	49	50	49	20	50	50	50	50	49	20	20	29	67	70	71	2	\$ 2	44	4/	84	86	88	89	49	49	47	48	47	47	47	48	47	47	47	47	2
57	45	43	22	57	57	59	59	22	26	29	- 29	92	09	62	- 29	09	29	41	26	52	54	54	47	47	22	20	63	54	22	63	62	25	\$	78	79	79	62	ន	\$ 8	8 8	20 05	39	28	62	62	63	57	61	29	9	47	45	09	63	10 00	80	3
149	149	150	152	152	152	152	152	152	151	151	150	150	150	150	152	151	151	151	151	151	152	152	152	152	152	152	153	154	153	153	153	153	155	155	155	155	136	130	200	150	150	150	151	152	153	153	152	151	150	120	151	152	151	151	130	190	201
2693	2932	2546	2693	2919	2776	2693	2776	2776	5606	2877	2776	2932	2776	2928	2762	2774	2760	2832	2886	2893	2608	2755	27.76	2693	2882	2776	2606	2447	2762	2923	2548	2606	23	20	23	23	23	2832	0000	2022	2776	2774	2693	2776	2693	2693	2606	2693	2610	2767	2771	2889	2886	2769	2//2	2022	1 4113
25	67	11	64	99	99	69	0	99	88	0	64	69	10	69	64	65	68	0	65	3	0	64	99	64	64	99	65	64	0	99	67	65	٥	•	0	0	0 8	98	60	ខ្លួ	3 8	0	2	67	4	99	69	69	65	89	65	0	69	25 25	2 2	\$ 8	20
33	48	46	49	40	37	46	31	36	41	49	41	48	49	32	48	35	47	47	47	41	39	44	37	30	52	45	39	49	46	42	49	38	٥	0	0	٥	0 8	2 6	8 2	51	44	84	41	50	46	45	43	45	48	45	200	42	21	4	\$ 2	10.	,
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	•	٥		٥			0		0	0	0	0	0	0	0	0	0	٥	0	0	0		,	7
0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	۰	٥	0	0	0	0	0	0	0	0	0	•	٥	0	٥	•	٥						, -		0	0	0	0	0	0	0	٥	٥	0			5		,
0:00	4:00	8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	00:00	4:00	8:00	12:00	16:00	20:00	00:00	6:4	8:00	12:00	16:00	20:00	00:0	4:00	8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	000	00:4	0:00	200	3.00	16:00	20:00	00:0	4:00	8:00	12:00	16:00	20:00	8	4:00	8:00	12:00	16:00	20:00	20:00	20.5	0.00
3/10/2007	3/10/2007	3/10/2007	3/10/2007	3/10/2007	3/10/2007	3/11/2007	3/11/2007	3/11/2007	3/11/2007	3/11/2007	3/11/2007	3/12/2007	3/12/2007	3/12/2007	3/12/2007	3/12/2007	3/12/2007	3/13/2007	3/13/2007	3/13/2007	3/13/2007	3/13/2007	3/13/2007	3/14/2007	3/14/2007	3/14/2007	3/14/2007	3/14/2007	3/14/2007	3/15/2007	3/15/2007	3/15/2007	3/15/2007	3/15/2007	3/15/2007	3/16/2007	3/16/2007	3/1/2007	3/1/2007	3772007	3/1/2007	3/1/2007	3/2/2007	3/2/2007	3/2/2007	3/2/2007	3/2/2007	3/2/2007	3/3/2007	3/3/2007	3/3/2007	3/3/2007	3/3/2007	3/3/2007	3/4/2007	3/4/2007	JUNTERON I

200	200	200	200	200	200	ŝ	ŝ	8	80	99	976	2005	200	8	926	926	200	200	200	8	3 2	88	ŝ	200	200	200	8		8	909	200	200	200	8	3 2	88	200	200	8 2	2005	88	200	200	200	200	200	8	8	8	3 6	200	ŝ	202
2//2	2932	2730	2926	2932	2932	2926	2919	2546	2884	2921	3045	2886	2889	2992	3174	2992	2935	2776	5909	2909	2001	3043	2932	2608	2935	2896	3179	3043	2893	2693	2693	2932	2546	2693	9776	2693	2776	2776	2606	2776	2932	2776	2928	2762	2774	2760	2932	2886	2893	2755	2776	2693	2882
è	379	328	430	373	427	429	425	429	338	481	486	340	385	394	458	465	428	383	439	442	35.5	417	378	445	366	386	463	302	336	389	389	358	377	376	352	338	327	457	293	438	332	362	393	397	389	387	367	372	5 5	403	398	388	388
146430708.2	146443926.9	146457196.3	146470271.7	146483353	146496439.3	146509770.2	146522858.1	146535921.1	146549155.5	146562322.7	146575319.2	146588574.2	146601705.6	146614849.1	146627863.5	146641140.8	146654292.9	146664727.5	146678001.8	146691295	146717589 6	146730677.2	146743733.8	146757041.9	146770101.4	146783147.4	146796494.4	146822665.8	146835885.5	146848952.9	146862265.6	146875319.8	146888644.5	146901747.2	146914848.4 146928212.4	146941328.5	146954514.4	146967806.1	146980867.9	147007309	147020393.5	147033698.8	147046781.3	147059855.5	147073205.2	147086240	147099331.2	147112637	147125687.4	1471521117	147165192.4	147178524.1	1471916063
7.7	7.7	7.8	7.8	7.8	7.7	7.8	7.7	7.8	7.8	7.8	7.7	7.8	7.8	7.8	7.8	7.8	7.8	7.7	7.5	7.5	0.7	7.8	7.8	7.7	7.8	7.8	7.8	7 8	7.8	7.8	7.8	7.8	7.7	7.7	7,6	7.6	7.6	7.7	7.7	7.7	7.8	7.8	7.8	7.7	7.6	7.7	7.7	7.7	7.8	7.6	7.7	7.7	7.7
6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	8.9	8.8	8.9	8.8	6.8	8.9	6.8	6.8	6.8	6.8	8.8	0.0	6.8	6.8	6.9	6.9	6.8	89.0	0 8	6.8	6.8	6.8	6.8	8.8	6.9	6.0	6.9	6.9	6.8	6.0	6.9	6.9	6.8	6.8	6.8	6.9	6.9	6.9	6.9	8.0	8.0	6.9	6.9	0
6.5	6.5	9.9	9.9	9.9	6.5	6.5	6.5	6.5	6.5	6.5	55	6.5	6.5	6.5	9.9	9.9	9.9	6.5	6.4	6.3	9 9	9.9	9.9	6.5	9.9	9.9	9.0	99	9.9	9.9	9.9	9.9	6.5	9.6	0.5	6,5	6.5	6.5	, Q	6.5	6.5	9.9	9.9	6.5	6.5	6.5	6.5	6.5	9.9	6.5	6.5	6.5	2 2
46	47	46	46	46	46	47	47	46	45	45	44	46	45	46	46	45	46	45	44	44	46	46	47	47	46	46	46	47	47	47	47	47	48	20	49	49	49	49	24	48	49	47	48	49	49	49	49	49	49	4 49	20	49	ទួ
28	28	22	63	8	63	62	29	83	22	25	2	22	22	25	40	29	54	55	26	49	2 2	47	09	52	53	51	2 2	25 35	55	53	57	25	43	57	22	29	59	22	26	20	55	9	62	29	9	29	41	92	25	2 2	47	47	67
150	150	150	149	149	149	150	150	149	148	147	147	147	148	147	147	147	147	148	148	148	148	148	149	149	148	148	147	148	149	149	149	149	150	152	152	152	152	152	151	150	150	150	150	152	151	151	151	151	151	152	152	152	153
27.76	2832	2730	2926	2932	2932	2926	2919	2546	2884	2921	3045	2886	2889	2992	3174	2992	2935	2776	5909	2909	2862	3043	2932	2608	2935	2896	31/9	3043	2893	2693	2693	2932	2546	2693	2776	2693	2776	2776	2000	2776	2832	2776	2928	2762	2774	2760	2832	2886	2883	2755	2776	2693	2882
g ,	٥	89	65	99	98	29	8	æ	0	8	8	8	-	69	29	99	0	ક્ક	88	89	3 6	88	25	99	2	8	88	800	29	69	2	67	=	2 8	8 8	8	0	99	200	2	8	10	69	2	88	88		2	2 0	- 3	8	2	2
88	45	4	39	37	38	28	44	32	40	47	22	44	47	82	49	41	47	47	84	51	48	46	43	49	8	49	25	8	42	40	38	84	46	49	37	46	31	36	404	14	48	49	32	48	32	47	47	4	4 %	8 4	37	30	2
9	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥		0	0	0	0	0	0	0 0		0	0	0		0	0	0	0	0	0	0	0	9		0	0	0	c
0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	٥			0	0	0	0	0	0		0	0	0		0	0	0	0	0	0	0	0	٥		0		0	٠
00.21	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	80.02	4:00	8:00	12:00	16:00	20:00	00:0	00:4	12:00	16:00	20:00	0:00	4:00	8:00	12:00	20.02	0:00	4:00	8:00	18:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	00:00	93.6	3.00	16:00	20:00	0:00	4.00
3/4/2007	3/4/2007	3/4/2007	3/5/2007	3/5/2007	3/5/2007	3/5/2007	3/5/2007	3/5/2007	3/6/2007	3/6/2007	3/6/2007	3/6/2007	3/6/2007	3/6/2007	3/7/2007	3/7/2007	3/7/2007	3/7/2007	3/7/2007	3/1/2007	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/8/2007	3/9/2007	3/9/2007	3/9/2007	3/9/2007	3/9/2007	3/10/2007	3/10/2007	3/10/2007	3/10/2007	3/10/2007	3/11/2007	3/11/2007	3/11/2007	3/11/2007	3/11/2007	3/12/2007	3/12/2007	3/12/2007	3/12/2007	3/12/2007	3/12/2007	3/13/2007	3/13/2007	3/13/2007	3/13/2007	3/13/2007	3/14/2007	3/14/2007

200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	86	200	200	000	8	000	200	200	200	500	200	200	200	200	200	976	9/0	9/6	976	976	976	976
2776	2606	2447	2762	2923	2548	2606	23	20	23	23	23	23	20	20	23	20	20	20	20	20	23	20	20	20	23	20	20	20	20	20	8	20	20	20	23	8 8	3 2	2 5	57	200	8 8	23	23	1672	1803	1587	1104	1706	1699	2 2	R (2	2 2	8	2 2	8	23
418	383	402	408	368	346	326	첧	8	7	4	14	12	0	6	27	11	31	0	26	18	0	0	9	2	9	8	56	13	0	¥	4	13	66	٥	9	•	→ ;	\$ 8	†	- ?	4	22	14	160	438	174	٥	210	0	0 8	7	n e	۰	, , ,	7	3
147204680.5	147217968.8	147231004.9	147244102.6	147257323.8	147270355.5	147283674.5	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147293256	147203250	44700000	147203250	147293256	147293256	147293256	147302846	147315973.2	147329185.6	147342362	147355552.4	147368766.9	147368974.8	14/3689/4.8	14/3689/4.8	447969074 0	147368974.8	147368974.8	147368974.8
7.7	7.7	7.6	7.7	7.7	7.7	7.6	7.6	7.6	7.6	7.5	7.5	7.5	7.6	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.4	7.5	7.5	7.4	7.3	7.4	7.4	7.4	7.4	7.3	7.4	7.3	7.4	7.3	7.3	2	5,0		4:4	47	7.2	7.2	7.6	7.8	7.8	7.9	7.9	7.8	8./	1	7	;;	12	7.6	7.6
6.8	6.9	6.9	6.9	6.9	6.9	6.8	6.5	6.3	6.2	6.3	6.3	6.2	6.2	6.2	6.2	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.2	6.2	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	200	5.0	3	6.3	6.0	6.3	6.3	6.9	6.8	6.8	6.8	6.8	6.8	8.8	200	B. 0	0.0	6.9	6.9	6.9
6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.4	6.5	6.5	9.9	9.9	9.9	9.9	9.9	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.8	6.7	6.7	6.7	6.7	6.7	6.7	9.8	6.7	9.8	20,00	9	0.0	9.0	3 6	6.7	6.7	9.9	9.9	6.5	9.9	6.5	6.5	6.5		4.0	0.0	6.6	6.5	6.5
20	20	20	20	49	20	20	29	67	70	71	73	73	169	169	164	168	170	74	73	71	73	74	76	75	167	153	160	162	173	165	161	156	159	167	158	165	200	203	100	10/	182	164	148	49	20	20	49	20	21	*	*	2 4	2 8	3 2	74	72
20	63	Ŗ	22	63	62	55	2	78	79	62	62	79	78	79	81	81	78	78	_ 11	6/	11	8	44	80	62	78	80	82	74	82	77	81	79	78	75	F F	9 6	2 5		5 6	\$ 8	08	82	99	26	59	69	28	28	4	-	2	1 1	2 12	74	79
152	153	154	153	153	153	153	155	155	155	155	156	156	156	156	156	156	156	156	156	157	157	157	157	157	157	157	157	158	158	157	158	158	158	158	158	158	138	200	139	158	159	159	159	152	152	152	152	153	\$	154	40.5	156	101	163	163	162
2776	2606	2447	2762	2923	2548	2606	23	20	23	23	23	23	20	20	23	20	20	20	20	20	23	20	20	20	23	20	20	20	20	20	20	20	20	20	23	3 3	23	22	5 6	2 2	200	23	23	1672	1803	1587	1104	1706	1699	8	R	23	2 6	20 50	23	23
99	65	2	0	99	67	65	٥	٥	0	0	•	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	0				0 0	0	0	25	61	55	57	26	55	٥	3	0		0		0
45	39	64	46	42	49	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	•	0	0	0	43	20	49	46	47	52	0	١	0	9	0	0	0
0	0	٥	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,				0	0	0	0	0	0	0	٥		0		0		0
0	0	°	0	0	0	0	٥	°	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	°	٥		,				0	0	0	0	0	•	0	0	0			9	,	0		0
8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	00:0	4:00	8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	00:00	4:00	8:00	12:00	16:00	20:00	800	6:00	808	00:21	300	33.00	200	3 6	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	888	00.0	200	8:00	16:00	20:00	0:00
3/14/2007	3/14/2007	3/14/2007	3/14/2007	3/15/2007	3/15/2007	3/15/2007	3/15/2007	3/15/2007	3/15/2007	3/16/2007	3/16/2007	3/16/2007	3/16/2007	3/16/2007	3/16/2007	3/17/2007	3/17/2007	3/17/2007	3/17/2007	3/17/2007	3/17/2007	3/18/2007	3/18/2007	3/18/2007	3/18/2007	3/18/2007	3/18/2007	3/19/2007	3/19/2007	3/19/2007	3/19/2007	3/19/2007	3/19/2007	3/20/2007	3/20/2007	3/20/2007	3/20/2007	3/20/2007	3/20/2007	3/21/2007	3/21/2007	3/21/2007	3/21/2007	3/21/2007	3/22/2007	3/22/2007	3/22/2007	3/22/2007	3/22/2007	3/22/2007	3/23/2007	3/23/2007	3/23/2007	3/23/2007	3/23/2007	3/24/2007

976	926	976	926	976	976	976	976	926	976	976	976	976	926	926	976	976	926	926	976	976	976	076	076	0.40	9/6	9/6	200	200	200	200	200	200	200	500	200	200	200	200	200	200	200	200	200	200	200	200	200
Н		Н	_	Н	_	_		 	\vdash	H		L		-	H	-	\vdash	-	_	ŀ	ŀ	l	+	$\frac{1}{1}$	\dagger	1	1				-	2		4	0	0	-	L		9	6	-	٥	9		2	6
20	23	20	23	20	23	20	20	20	20	23	20	20	20	20	20	8	8	23	23	23	18	22	3 8		3 8	Ş	8	23	20	23	23	2755	278	2744	293	293	3151	2990	2930	2693	2693	269	299	2866	2990	291	2909
3	2	29	8	2	1	9	0	12	9	1	24	0	2	0	56	-	23	17	22	44	2	1	13	2	0		32	6	3	8	11	479	329	342	358	443	407	378	353	346	418	504	486	478	372	435	425
147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974.8	147368974 B	147368074 8	147368974.0	447000044	147358974.8	14/3669/4.8	147368975.2	147368975.2	147368975.2	147368975.2	147368975.2	147368998.4	147379767.5	147390320.8	147400549.7	147411131.4	147421380.5	147431823.1	147442230.5	147452509.1	147463004.2	147473413.2	147483697.6	147494264.3	147504632.2	147514932.6	147525423
7.7	7.6	7.5	7.5	9.7	9.7	7.5	7.5	7.5	7.4	7.5	7.6	7.5	7.5	7.5	7.4	7.4	7.5	7.4	7.4	7.3	7.3	7.2	5,7	 - -	4.	4:	7.4	7.3	7.3	7.3	7.3	6.3	7.6	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7
6.9	6.9	6.9	6.9	6.9	6.9	6.9	4	7	7	7	_	7	6.9	7	_	6.9	6.9	6.9	6.8	0,0	0	0	6.0	9	6.6	١	6.8	6.7	6.7	6.7	9.9	6.7	6.8	6.8	6.8	6.8	6.7	6.7	6.8	6.8	8.8	6.8	6.8	6.8	6.8	6.8	6.8
9.9	9.9	9.9	9.9	2.9	9.9	9.9	6.7	9.9	9.9	6.7	6.8	6.7	6.7	8.9	6.7	6.7	8.9	8.9	6.7	6.7	67	9	0.0	3	6.9	8.0	6.4	6.3	6.4	6.4	6.4	6.4	6.3	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4
74	75	7.1	70	74	75	73	75	72	89	70	75	76	73	74	73	72	71	73	73	e.	8	8	99	3 7	7	2	20	72	69	29	69	105	47	48	47	47	46	47	48	48	48	47	47	46	47	47	46
88	99	74	SS	9/	75		75	74	76	02	74	75	62	74	74	92	- 62	74	28	٤	7,	2 2	4 4	2 5	9	2	76	88	68	8	16	02	72	7.1	72	72	72	72	72	72	71	72	72	72	7.4	71	71
162	163	163	164	163	163	162	163	164	164	163	163	163	162	164	164	164	164	164	165	185	166	466	166	200	165	156	155	156	157	158	159	155	149	150	150	149	149	150	151	151	151	150	150	150	150	150	150
20	23	20	23	20	23	20	20	20	20	23	50	20	50	20	20	50	20	23	23	23	26	26	3 6	3 6	50	23	20	23	20	23	23	2755	2781	2744	2930	2930	3151	2990	2930	2693	2693	2691	2990	2866	2990	2912	2909
0	0	0	0	0	0	0	٥	0	0	0	0	٥	0	0	0	0	0	0	0	-				,	٥	٩	0	0	0	0	°	28	88	65	Z	2	99	0	2	29	0	88	65	2	3	99	0
0	0	0	0		٥	٥	٥		0	°		0	0	0		•	0		0	٥		†				٦	٥	0	0	٥	٥	٥	39	42	\$	38	88	42	98	39	14	42	6	39	88	38	39
0	0	0	0	0	0	•	•	0	0	0	0	0	0			°	°	٥	0	١	,	,		1		٦	٥	0	0		°	0	°	0	°	°	°	°	٥	0	°		0	0	•	0	0
0	0	0	•	0	0	0	0	0	0		0	0	0	0	0	°		0	0	-	,			,	0 (٥	0	0	0	0	0	0	0	0	0	0	0	°	٥	0	0	٥	0		6	0	0
4:00	8:00	12:00	16:00	20:00	00:0	4:00	8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	00:0	4:00	8:00	12:00	18:00	200	33.5	3,5	4:00	8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	0:00	4:00	8:00	12:00	16:00	20:00	00:0	4:00	800	12:00	16:00	20:00
3/24/2007	3/24/2007	3/24/2007	3/24/2007	3/24/2007	3/25/2007	3/25/2007	3/25/2007	3/25/2007	3/25/2007	3/25/2007	3/26/2007	3/26/2007	3/26/2007	3/26/2007	3/26/2007	3/26/2007	3/27/2007	3/27/2007	3/27/2007	200012012	3/27/2007	2000/20/0	3/21/2007	2000000	3/28/2007	3/28/2007	3/28/2007	3/28/2007	3/28/2007	3/29/2007	3/29/2007	3/29/2007	3/29/2007	3/29/2007	3/29/2007	3/30/2007	3/30/2007	3/30/2007	3/30/2007	3/30/2007	3/30/2007	3/31/2007	3/31/2007	3/31/2007	3/31/2007	3/31/2007	3/31/2007

Appendix D

Groundwater Treatment System Sampling Trip Report

SAMPLING TRIP REPORT

Site Name: STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE

CERCLIS ID Number: NYD047650197

Sampling Dates: March 7, 2007 CLP Case Number: N/A

Site Location: 110 Cutter Mill Road, Great Neck, New York, 11021 Sample Descriptions: Groundwater Treatment System Influent / Effluent.

Laboratories Receiving Samples (Table 1):

Case Number	Sample Type	Name and Address of Laboratory
N/A	TCL-VOAs OLC03.2	John Birri USEPA Region II DESA LAB Building 209 MS-230 2890 Woodbridge Avenue Edison, N.J. 08837

Sample Dispatch Data (Table 2):

On March 7, 2007, a total of four (4) groundwater samples, including one (1) duplicate sample and one (1) trip blank were shipped to the U.S. Environmental Protection Agency Region II Lab (USEPA) for TCL-VOAs analysis.

FedEx Air Bill No.	Number of Coolers	Number and Type of Samples	Time and Date of Shipping
791248202403	1	Total of 4 Aqueous Samples to include 1 duplicate sample, and 1 Trip Blank for TCL-VOAs	3/7/07 @ 5:00 pm TO: USEPA

Sampling Personnel (Table 3):

Name	Organization	Site Duties
Francisco Metcalf	Earth Tech, Inc.	Earth Tech Project Manager
Russell Kolacek	Earth Tech, Inc.	Sampler

Sample Numbers and Collection Points (Table 4):

Laboratory	Analysis	Sample Type	Sample #	Sample Collection Point(SCP)
			Influent (MW-24	Influent (MW-24
USEPA Region II DESA	TCL-VOAs	Aqueous	and EPA-EXT-02)	and EPA-EXT-02)
LAB		Groundwater	Effluent	Effluent
Building 209 MS-230 2890 Woodbridge			Effluent A	Duplicate of Effluent
Avenue Edison, N.J. 08837			Trip Blank	Trip Blank

Additional Comments:

The Influent, Effluent and Effluent-A samples were collected after a five gallon purge from the sample ports located within the treatment system. The influent sample includes MW-24 and EPA-EXT-02. These two wells combine before they reach the treatment room and therefore cannot be sampled individually. These samples were collected for the following analysis: Target Compound List (TCL) Volatile Organic Compounds. In addition, one duplicate sample (Effluent-A) was collected from the effluent of the groundwater treatment process and was a duplicate sample of sample Effluent. One trip blank (TB) was also included in the shipment. Copies of the Chain of Custody forms and a copy of the FedEx air bill are included in Appendix A and B, respectively.

Earth Tech personnel also collected real time water quality parameters from the raw water for all the following sampling locations: Influent and Effluent (Discharge) and the results are included in Appendix C.

Appendix A

Chain of Custody (March 7, 2007, System Sampling Event) CEPA USEPA Contract Laboratory Program
Organic Traffic Report & Chain of Custody Record

~ Case No: DAS No:

	,						
Ragion: Project Code:	2		Date Shipped: 3/7/2007		Chain of Custody Record	Senator L.	Well Helek
Account Code:			Arbiti	791248202403	Refinquished By (Date / Time)	Received By	(Date / Time)
CERCLIS ID:		26	Shipped to:	USEPA Region 2 - DESA	of which down ton		
Site MemoState:		02LH Stanton Ame Cleaners Groundweter Contes		LAB 2890 Woodbridge Ave.	2		
Project Leader:		etcaf		Bidg. 208, MS-230 Edison NJ 08637	8		
Sampling Co:	EarthTech			(732) 906-6896	1		
	// De A VITTOR /	-	770044	1-10 Table	200 100 3 canto		8

MORGANIC GC SAMPLE No. Type	ı	Field Duplicate	1	Trip Blank
AMPLE COLLECT DATE/THE	16:35	16:40	16:30	16:45
PAMPLE ON TEL	S: 3/7/2007	S: 3/7/2007	S: 3/7/2007	S: 3/1/2007
STATION	EFFLUENT	EFFLUENT A	INFLUENT (AM-24 & S: 3/7/2007 EPA-EXT-02)	TRIP BLANK
AND TAG NO.	(HCL) (3)	(HCL) (3)	(HCL) (3)	(HCL) (Z)
AMALYSES TURMARCIAD	VOA (14)	VOA (14)	VOA (14)	VOA (14)
CONCO	2	ያ	ន	3
SAMPLER	Ground Water/ Russell Kolacek	EFFLUENT A Ground Water! L/G Russell Kolacek	NFLUENT Ground Water/ L/G (MW-24 & EP Russell Kolecek	TRIP BLANK Field QC/ Russell Kolacek
ORGANIC SAMPLE No.	EFFLUENT Ground Water/ L/G Russell Kolscek	EFFLUENT A	INFLUENT (MW-24 & EP	TRIP BLANK

Shipment for Case Complete? Y	Sample(s) to be used for	used for inhoratory QC:	Additional Sampler Signature(s):		Chain of Custody Besi Mumber:
Analysis Key:		Concentration: L = Low, M = LowMadium, H = High	Type/Designate:	ype/Deelgnate: Composite = C, Grab = G	Shipment load?
VOA - CLP TCL Volatiles	2				

PR Number: 2-043013577-030707-0001
PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Atin: Heather Bauer, CSC, 15000 Conference Center Dr., Chantally, VA 20151-3819; Phone 703/818-4200; Fax: 703/818-4200.

REGION COPY

USEPA Contract Laboratory Program
Organic Traffic Report & Chain of Custody Record の日本

Case No: DAS No: SDG No:

							FOR LAB URE ONLY Sumple Condition On Receipt
	For Lab Use Only	Lab Contract No:	Jule Price:	fransfer To:	Lab Contract No:	Unit Price:	F INORGANIC SAMPLE No.
	Rolmet	(Date / Time)					SAMPLE COLLECT DATE/THE
•	West France	Received By					STATION LOCATION
	y Record	(Date / Time)	Cost roller				TAGNO/ FRESENATIVE BOXING
	Chain of Custody Record	Refinquished By	Lum Wh	2	3	4	ANALYBBY
			12-DESA		230		CONCY
	3/7/2007	recex	/BTZ46KUZ4U3 USEPA Recion 2 ·	LAB 2800 Whodhair	Bidg. 209, MS Follon N. 1088	(732) 906-6886	SAMPLER
	2002/L/E spending energ		Shisped to:				ORGANIC SAMPLE No.

EFFLUENT S: 37	EFFLUENT A S: 3/7/2007	INFLUENT (AM-24 & S: 37/2007 EPA-EXT-02)	TRIP BLANK S: 3/7/2007
VOA (14) (HCL) (3)	VOA (14) (HCL) (3)	(HCL) (3)	VOA (14) (HCL) (Z)
		VOA (14)	VOA (14)
ሄ	ន	3	2
JENT Ground Water L/G Russell Kolercek	EFFLUENT A Ground Water/ L/G Russell Kolacok	INFLUENT Ground Water/ L/G (MW-24 & EP Russell Kolacek	TRIP BLANK Fleid QC/
FFLUENT	FFLUENT A	AFLUENT AW-24 & EP	RIP BLANK

Shipment for Case Complete 7Y	Bempies) to be use	and for laboratory QC:	Additional Bampler Signeture(s):	Cooler Temperature Upon Receipt:	Chein of Custody Beal Number:	ii.
Analysis Key:	Concentration:	L = Low, M = LowMAndium, H = High	TyperDesigness: Composits = C, Grab = G		Custody Seal Intact? Shipment load?	Shipment load?
VOA = CLP TCL Volatiles	8					

TR Number: 2-043013577-030707-0001

TR produce preference preference analytical costs.

TR produce preference preference preference content Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

TO3/818-4602

Appendix B

FedEx Air Bill (March 7, 2007, System Sampling Event)

Shipping Label

This shipping label constitutes the air waybill for this shipment.

- 1. Use the "Print" feature from your browser to send this page to your laser printer.
- 2. Fold the printed page along the horizontal line.
- 3. Place label in shipping label pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

3. Piace lebel in shipping label pouch and affex it by your shipment so that the barcode portion of the lebel can be read and scanned. Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.
Use of this system constitutes your agreement to the service conditions in the current FadEx Service Guide, available on fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of leas, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss aren'd file a timely claim in Limitations found in the current FadEx Service Guide apply. Your right to recover from FadEx for any loss, including intrinsic value of the package, loss of sales, income interset, profit, attorney's fees, costs, and other forms of demage whether drevel, included in consequentled, or appectable institutes to the greater of \$100 or the authorized cleared value. Recovery cannot exceed actual documented loss. Mactimum for learns must be filed within strict time limits, see current FadEx Service Guide.

Appendix C

Water Quality Parameters (March 7, 2007, System Sampling Event)

STANTON CLEANERS SITE LTRA

Groundwater Pump and Treatment System
Water Quality Parameters Log

Date: 03/07/07 Project # 70536

5.37	0.639	15.2	8.9	14.12	0.0
6.02	0.628	15.6	10.2	12.29	0.0

Russell Kolacek

Total Gallons pumped: NA gallons

Flow rate: 66 gpm

* The influent consists of MW-24 and EPA-EXT-02. These wells combine before they reach the treatment room and therefore cannot be individually sampled.

Equipment Calibrated by:

Justin Self

Comments:

Water monitoring performed by: Justin Self

PLC monitor not working, total flow data missing.

TEMP. - Temperature measured in degrees Fahrenheit.

COND. - Conductivity measured in milliSiemens per centimeter (mS/cm).

TURB. - Turbidity measure in nephelometric turbidity units (NTU).

DO - Dissolved Oxygen measured in milligrams per liter (mg/L).

SALINITY - Salinity in percentage.

Water samples collected by:

Appendix E

Groundwater Treatment System Raw and Treated Analytical Data

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μ g/L)	Qualifier**	Criteria
				MTBE	2	J	
				cis-1,2-Dichloroethene	2	J	
Influent	SC-01	B0001	10/27/2003	Trichloroethene (TCE)	3	J	5
				Toluene	3	J	5
				Tetrachloroethene	350	D	5
Effluent	SC-04	B0002	10/27/2003	None			<u> </u>
				Acetone	61	J	5
Trip Blank	SC-TB	B0003	10/27/2003	Methylene chloride	2	J	5
				Tetrachloroethene (PCE)	240	_	5
Influent	SC-01	B0177	11/12/2003	Chlorodifluoromethane	8.6	NJ	
		55,11		1,2-Dichloroethene	3.3	NJ	
Effluent	SC-04	B0178	11/12/2003	Chlorodifluoromethane	22	NJ	
Lingent	00-04	50170	11/12/2000	Tetrachloroethene	250	110	5
Influent Dup	SC-60	B0179	11/12/2003	Chlorodifluoromethane	29	NJ	
iiiideik bap	00-00	1 50170	11/12/2000	1,2-Dichloroethene	3.4	NJ	
				Tetrachloroethene	9.4	140	5
Trip Blank	SC-TB	B0180	11/12/2003	Chlorodifluoromethane	4.3	NJ	⊢ ັ
				Tetrachloroethene	290	D	5
Influent	SC-01	B17J3	12/10/2003	cis -1,2-Dichloroethene	2	J	+ $$
iiiiideiit	30-01	B1733	12/10/2000	Trichloroethene	3	J	
Eff. cont	SC 04	B17J4	12/10/2003	None			+
Effluent	SC-04	B1/34	12/10/2003	Tetrachloroethene	280	D	5
Influent Dun	SC-61	B17J5	12/10/2003	cis -1,2-Dichloroethene	2	J	
Influent Dup	30-01	B1733	12/10/2003	Trichloroethene	3	J	
		-		MTBE	5	J	+
Trin Blank	SC-TB	B17J6	12/10/2003			J	
Trip Blank	30-16	B1/30	12/10/2003	Toluene Ethylbenzene	2	J	
				MTBE	2.7		

Influent	SC-01	B1000	1/12/2004	cis-1,2-Dichloroethene	1.5 2.5		+
				Trichloroethene			-
men	20.04	D4004	4/40/0004	Tetrachloroethene	280		5
Effluent	SC-04	B1001	1/12/2004	None	2.6		_
				MTBE	2.6		+
Influent Dup	SC-62	B1002	1/12/2004	cis-1,2-Dichloroethene	1.5		
· I				Trichloroethene	2.5		
				Tetrachloroethene	300	- 1/	5
				Methylene chloride	0.6	K	+
Trip Blank	SC-TB	B1003	1/12/2004	MTBE	3.7		 _ _
,				Tetrachloroethene	7.9		5
				m&p-Xylene	0.7		-
				cis-1,2-Dichloroethene	1.7		
Influent	SC-01	B17Z0	2/12/2004	Trichloroethene	3.0		-
				Tetrachloroethene	610.0	D	5
Fra	55.51	D4774	0/40/0004	Unknown TIC	0.53	J	-
Effluent	SC-04	B17Z1	2/12/2004	Acetone	3.8	J	5
				Acetone	25	J	5
Influent Dup	SC-63	B17Z2	2/12/2004	cis-1,2-Dichloroethene	1.7		
,				Trichloroethene	2.8		-
				Tetrachloroethene	440	D	5
				Methylene chloride	0.16	J	
				MTBE	4.7		+
				Chloroform	0.26	J	+
-	22.72	D4===	0/40/2004	Tetrachloroethene	7.1		5
Trip Blank	SC-TB	B17Z3	2/12/2004	Xylene (total)	0.56		
				1,3-Dichlorobenzene	0.40	J	
				1,4-Dichlorobenzene	0.38	J	+
				Unknown TIC	0.58	J	
				Benzene, 1-ethyl-3-methyl-	0.72	NJ	

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μ g/L)	Qualifier**	Criteria
				MTBE	2.7		
lm6lam4	SC 04	D4776	3/40/2004	cis-1,2-Dichloroethene	1.2		
Influent	SC-01	B17Z6	3/10/2004	Trichloroethene	2.3		
				Tetrachloroethene	260		5
Effluent	SC-04	B17Z7	3/10/2004	Tetrachloroethene	0.70		5
				MTBE	2.8		
				cis-1,2-Dichloroethene	1.2		
Influent Dup	SC-64	B17Z8	3/10/2004	Trichloroethene	2.3		
				Tetrachloroethene	260		5
		-		Acetone	1.8		5
Trip Blank	SC-TB	B17Z9	3/10/2004	Toluene	0.50		
THE BIGHT	00 15	1 5.725	0/10/2001	isobutane	41	NJ	
		_		MTBE	1.9	110	1
				cis-1,2-Dichloroethene	0.83		
Influent	SC-01	B1BS2	4/14/2004	Trichloroethene	1.5		
				Tetrachloroethene	380	D	5
Effluent	SC-04	B1BS3	4/14/2004	Tetrachloroethene	1.9	<u></u>	5
Ellidelit	30-04	B 1800	4/14/2004	Acetone	1.2	J	5
				MTBE	1.5	<u>J</u>	
influent Dup	SC-65	B1BS4	4/14/2004	cis -1,2-Dichloroethene	0.67	J	-
IIIIIdent Dup	30-03	1 51554	4/14/2004	Trichloroethene	1.1		+
				Tetrachloroethene	260	D	5
		1		Methylene chloride	0.17	J	
Trip Blank	SC-TB	B1BS5	4/14/2004	Chloroform	2.8		+
THP BIGHK	00-15	1 5.500	471472004	Bromodichloromethane	0.80		+
	-			MTBE	2.1		+
				cis-1,2-Dichloroethene	1.0		+
Influent	SC-01	B1BS6	5/20/2004	Trichloroethene	1.8		+
				Tetrachloroethene	190		5
Effluent	SC-04	B1BS7	5/20/2004	Acetone	1.2		5
Lindent	00-04	D 1007	0/20/2004	Acetone	0		5
				MTBE	2.1		
Influent Dup	SC-66	B1BS8	5/20/2004	cis-1,2-Dichloroethene	0.9		
iiiideik Bap	00 00	1 5.500	0/20/2001	Trichloroethene	1.6		
				Tetrachloroethene	200		5
				Acetone	1		5
Trip Blank	SC-TB	B1BS9	5/20/2004	Chloroform	0		
				Bromodichloromethane	Ō		
		1 		Carbon Disulfide	1.1		
				MTBE	2.7		
Influent	SC-01	B1BS6	6/15/2004	cis-1,2-Dichloroethene	1.3		
		555	5 5. 200 .	Trichloroethene	2.4		1
				Tetrachloroethene	320		5
Effluent	SC-04	B1BS7	6/15/2004	Tetrachloroethene	2.1	7	5
-moon.		7.207	3, 10,2001	MTBE	2.3	•	<u> </u>
1		D. 1005	014510001	cis-1,2-Dichloroethene	1.2		
Influent Dup	SC-67	B1BS8	6/15/2004	Trichloroethene	2.2		
				Tetrachloroethene	330		5
Trip Blank	SC-TB	B1BS9	6/15/2004	None			

Sample Location	ECC ID*	EPA ID	Date Collected	Compounds Detected	Result (μg/L)	Qualifier**	Discharge Criteria
Location	LOCID	LIAID	Composida	Acetone	0.8	Quanto	5
		1		MTBE	2.3		
Influent	SC-01	B1FJ2	7/13/2004	cis-1,2-Dichloroethene	1.1		+
mildent	30-01	D 11 32	1713/2004	Trichloroethene	1.7		+
		1		Tetrachloroethene	170		5
				Acetone	0.72		5
Effluent	SC-04	B1FJ3	7/13/2004	Tetrachloroethene	2		5
		+		MTBE	2.4		
				cis-1,2-Dichloroethene	1.1		+
Influent Dup	SC-67	B1FJ4	7/13/2004	Trichloroethene	1.8		
				Tetrachloroethene	160		5
				Acetone	0.73		5
Trip Blank	SC-TB	B1FJ5	7/13/2004	Acetic Acid, Ethyl Ester	2.5	NJ	
		 		MTBE	1.9		+
				cis-1,2-Dichloroethene	0.7		
Influent	SC-01	B1GH2	8/16/2004	Trichloroethene	1.5		
mmdon.	0001	5.02	6/ 10/2001	Tetrachloroethene	200		5
		1		Acetone	2		5
				Tetrachloroethene	5.4		5
Effluent	SC-04	B1GH3	8/16/2004	Acetone	1.6		5
		1		Acetone	1.2		5
		1		MTBE	2		
Influent Dup	SC-69	B1GH4	8/16/2004	cis-1,2-Dichloroethene	0.7		1
			00.200	Trichloroethene	1.5		
		1		Tetrachloroethene	210		5
		 		Chloromethane	0.80		+
				Acetone	1.0		5
		1		MTBE	1.5		
Influent SC-01	1	9/28/2004	cis-1,2-Dichloroethene	0.70			
		1		Trichloroethene	1.4		
		1]	Tetrachloroethene	200		5
		†		Chloromethane	0.80		
Effluent	SC-04	1	9/28/2004	Acetone	2.1		5
		1	0.20.200	Tetrachloroethene	1.7		5
		1		Acetone	1.0		5
		1		MTBE	1.3		
Influent Dup	SC-70	1	9/28/2004	cis-1,2-Dichloroethene	0.60		
		1		Trichloroethene	1.4		
				Tetrachloroethene	210		5
Tria Diamir	CC TD	1	9/28/2004	Acetone	2.2		5
Trip Blank	SC-TB		9/28/2004	2-Butanone	1.5		
				Acetone	5	J	5
				Methylene chloride	0.2	J	
I=64	60.04	B41.70	10/24/2004	MTBE	0.82		
Influent	SC-01	B1LZ2	10/21/2004	cis -1,2-Dichloroethene	0.5		
				Trichloroethene	1.2		
				Tetrachloroethene	220		5
				Acetone	5	J	5
Effluent	SC-04	B1LZ3	10/21/2004	Methylene chloride	0.5	UJ	
				Tetrachloroethene	0.2	J	5
				Acetone	5	J	5
				Methylene chloride	1.1		
Influent Dup	SC-71	B1LZ4	10/21/2004	MTBE	1.1		
derit Dup	00-71	5,024	10/2 //2004	cis-1,2-Dichloroethene	0.64		
				Trichloroethene	1.1	_	
				Tetrachloroethene	210	D	5
				Acetone	5.7		5
Trip Blank	SC-TB	B1LZ5	10/21/2004	Methylene chloride	0.68		
				Toluene	0.39	J	

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μ g/L)	Qualifier**	Criteria
				Acetone	3	J	5
				Methylene chloride	1.3	U	
Influent	SC-01	B1T22	11/17/2004	MTBE	1.3		
influent	30-01	BIIZZ	11/17/2004	cis-1,2-Dichloroethene	0.64		
				Trichloroethene	1.2		
				Tetrachloroethene	170	D	5
Effluent	SC-04	B1T23	11/17/2004	Methyl Acetate	0.5	UJ	
Lilident	00-04	51123	11/11/2004	Methylene chloride	0.5	U	
				Methylene chloride	0.85	U	
				MTBE	1.3		
Influent Dup	SC-72	B1T24	11/17/2004	cis-1,2-Dichloroethene	0.5		
				Trichloroethene	0.83		
				Tetrachloroethene	160	D	5
				Acetone	3	J	5
				Methyl Acetate	0.5	UJ	
Trip Blank	SC-TB	B1T25	11/17/2004	Methylene chloride	0.46	J	
THE STAIN			· ·	2-Butanone	2.4	J	<u> </u>
				Tetrachloroethene	9.6		5
				1,2,3-Trichlorobenzene	0.5	UJ	5
				MTBE	1.6		
				cis-1,2-Dichloroethene	0.45	J	
				Trichloroethene (TCE)	1.0	j	5
	influent SC-01 B1			Tetrachloroethene	100	D	5
				Methylcyclohexane	1	UJ	
Influent	SC-01	B1T79	12/15/2004	Bromomethane	1	UJ	
			, , , , , , , , , , , , , , , , , , , ,	Bromodichloromethane	1	UJ	
				Chloromethane	1	UJ	+
Influent				1,2-Dichloroethene	1	UJ	
				1,2-Dichloropropane	1 10	กำ	+
				2-Hexanone		R	
		1		4-Methyl-2-pentanone	10	R U	
F69	00.04	I DATOA	40/45/2004	Benzene 4.0.4 Triebland arrange	0.5 0.5	U	
Effluent	SC-04	B1T81	12/15/2004	1,2,4-Trichlorobenzene	0.5	U	5
				1,2,3-Trichlorobenzene		U	
				Methyl tert-Butyl Ether	1.6 0.48	J	
				cis-1,2-Dichloroethene Trichloroethene	0.48	J	
Influent Dup	SC-73	B1T80	12/15/2004				
` !				4-Methyl-2-pentanone	10 98	R D	5
				Tetrachioroethene	98 10	R	 3
		+		2-Hexanone Chloroform	0.1	J R	+
					0.1	J	+
Trip Blank	SC-TB	B1T82	12/15/2004	Cyclohexane		J U	+
•				Benzene	0.5 0.21	J	_
				Toluene	0.21	J	

Sample Location ECC ID* EPA ID Collected Detected (μg/L)	Qualifier**	Discharge Criteria
Influent SC-01 B1W00 1/21/2005 MTBE 1.5 C/s - 1/2-Dichloroethene 0.7 Trichloroethene (TCE) 1.4 Tetrachloroethene 160 Tetrachloroethene 1.8 Tet		
Influent SC-01 B1W00 1/21/2005		
Influent SC-01 B1W00 1/21/2005 Trichloroethene (TCE) 1.4 Tetrachloroethene 160 Effluent SC-04 B1W02 1/21/2005 Acetone 1.8		
Tetrachloroethene 160 Effluent SC-04 B1W02 1/21/2005 Acetone 1.8		5
Effluent SC-04 B1W02 1/21/2005 Acetone 1.8		5
Elitoria de la privata de la p		5
		+
	_	+
		+
		5
		5
7.000.00	_	5
THE BIATIK CO TE STATES 1/21/2000		-
MTBE 1.4		+
Influent SC-01 AG00197 2/3/2005 cis-1,2-Dichloroethene 0.5	_	+
Inchloroethene (ICE) 1.1		5
Tetrachloroethene 140		5
Effluent SC-04 AG00198 2/3/2005 Acetone 1.2		5
Methyl tert-Butyl Ether 1.5		
cis-1,2-Dichloroethene 0.54		
Influent Dup SC-75 AG00199 2/3/2005 Trichloroethene 1.1		
Tetrachloroethene 140		5
Acetone 1.1		5
Trip Blank SC-TB AG00200 2/3/2005 Acetone 4.3		5
4-Methyl-2-pentanone 1.2		
MTBE 1.4		
Influent SC-01 AG00468 3/9/2005 Acetone 2.5		5
Trichloroethene (TCE) 1.1		5
Tetrachloroethene 130		5
Effluent SC-04 AG00469 3/9/2005 Acetone 1.8		5
MTBE 1.4		
Influent Dup SC-76 AG00470 3/9/2005 Acetone 1.2		5
Influent Dup SC-76 AG00470 3/9/2005 Trichloroethene 1.1		
Tetrachloroethene 130		5
Trip Blank SC-TB AG00471 3/9/2005 Acetone 1.7		5
Trip Blank SC-TB AG00471 3/9/2005 Chloroform 1.6		
MTBE 1.7		
2-Butanone 2.2		
Influent SC-01 AG00825 4/22/2005 Acetone 2.4		5
(EPA-EXT-02) Trichloroethene (TCE) 1.1		5
Tetrachloroethene 65		5
2-Butanone 2.5		
Influent Acetone 5.1		5
(EPA-EXT-4R) SC-02 AG00826 4/22/2005 Trichloroethene (TCE) 1.3		5
Tetrachloroethene 9.5		5
Effluent SC-04 AG00827 4/22/2005 None		
2-Butanone 2.8		1
Influent Dup Acetone 4.9		5
(EPA-EXT-02) SC-77 AG00828 4/22/2005 Trichlomethene 1.3		1
(EPA-EXT-4R) Tetrachloroethene 9		5

Sample Location	ECC ID*	EPA ID	Date Collected	Compounds Detected	Result (μg/L)	Qualifier**	Discharge Criteria
Location	ECCID	EFAID	Oonected	Acetone	1	Qualifier	5
Trip Blank	SC-TB	AG00829	4/22/2005	Chloroform	1.7		
ттр ыапк	30-16	AG00029	4/22/2003	Trichloroethene (TCE)	0.84		5
		+		MTBE	1.1		
Influent	SC-01	AG01320	5/24/2005	Trichloroethene (TCE)	1.0		5
(EPA-EXT-02)	30-01	AG01320	3/24/2003	Tetrachloroethene	100		5
Influent							
(EPA-EXT-4R)	SC-02	AG01321	5/24/2005	Tetrachloroethene	8.8		5
Effluent	SC-04	AG01322	5/24/2005	Acetone	1.3		5
Influent Dup (EPA-EXT-02) (EPA-EXT-4R)	SC-78	AG01323	5/24/2005	Tetrachloroethene	8.6		5
				Acetone	1.3		5
Trip Blank	SC-TB	AG01324	5/24/2005	Chloroform	13		
				Bromodichloromethane	2.5		
				MTBE	0.98		
1-54				Trichloroethene (TCE)	8.0		5
Influent (EPA-EXT-02)	SC-01	AG02074	6/22/2005	Tetrachloroethene	95		5
(EFA-EX1-02)				Acetone	2.7	K	5
				Ethyl Acetate	10	NJ	
				Tetrachloroethene	9.1		5
Influent	SC-02	AG02075	6/22/2005	Acetone	1.9	K	5
(EPA-EXT-4R)	30-02	AG02075	0/22/2000	Ethyl Acetate	3.6	NJ	
				Propane, 2-Isothiocyanto-2	0.8	NJ	
				MTBE	0.64		
				Tetrachloroethene	50		5
Influent		AG02076	6/22/2005	Acetone	2	K	5
				Trichloroethene (TCE)	0.56		5
				Ethyl Acetate	8.8	NJ	
Effluent	SC-04	AG02072	6/22/2005	Acetone	2.6	K	5
				Ethyl Acetate	6.2	NJ	-
EffluenDup	SC-04	AG02073	6/22/2005	Acetone	2.6	K	5
				Ethyl Acetate	3.3	ŊJ	5
				Acetone	2.4	К	+ -
Trip Blank	SC-TB	AG02077	6/22/2005	Chloroform	13 2.7		+
				Bromodichloromethane Ethyl Acetate	3.1	NJ	
		_		MTBE	0.9	143	+
Influent				Trichloroethene (TCE)	0.8		5
(EPA-EXT-02)	SC-01	AG02780	7/12/2005	Tetrachloroethene	85		5
(CFA-EXT-02)				Acetone	1	К	5
		+		Tetrachloroethene	7.4		
Influent				Acetone	2.1	К	5
(EPA-EXT-4R)	SC-02	AG02781	7/12/2005	Ethyl Acetate	4.1	NJ	<u> </u>
(2.7.2.1.4.1)				Propane, 2-Isothiocyanto-2	1.4	NJ	
		4000705	740000	MTBE	0.52	. 10	
Influent		AG02782	7/12/2005	Tetrachloroethene	43		5
E60	00.04	4000770	7/40/0005	Acetone	2.8	K	5
Effluent	SC-04	AG02778	7/12/2005	Ethyl Acetate	11	NJ	
E#war Dur	SC 04	AC02770	7/12/2005	Acetone	1.9	K	5
EffluenDup	SC-04	AG02779	7/12/2005	Ethyl Acetate	5.2	NJ	
				Acetone	1.5	K	5
Trip Blank	SC-TB		7/12/2005	Chloroform	12		
				Bromodichloromethane	2.6		

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μg/L)	Qualifier**	Criteria
	E00 1D	EIAID		MTBE	0.68	Qualitios	01110111
Influent	SC-01	AG03721	8/15/2005	Trichloroethene (TCE)	0.73		5
(EPA-EXT-02)	30-01	7000721	0/10/2000	Tetrachloroethene	88		5
Influent		4000700	014510005	Tetrachloroethene	9.7		5
(EPA-EXT-4R)	SC-02	AG03722	8/15/2005	Dranana 2 laathianyaata 2	0.53	NJ	3
Indicant		AG03723	8/15/2005	Propane, 2-Isothiocyanto-2 Tetrachloroethene	43	INJ	5
Influent Effluent	SC-04	AG03725	8/15/2005	Acetone	ND (5.0)		5
	SC-04 SC-04	AG03720	8/15/2005	Acetone	ND (5.0)		5
EffluenDup				Chloroform	13		+
Trip Blank	SC-TB	AG03724	8/15/2005	Bromodichloromethane	2.6		+
		-		MTBE	0.76		
Influent	SC-01	AG04086	9/8/2005	Trichloroethene (TCE)	0.74		5
(EPA-EXT-02)	30-01	AG04000	3/0/2003	Tetrachloroethene	90		5
Influent	SC-02	AG04087	9/8/2005	Tetrachloroethene	9.8		
(EPA-EXT-4R)		1		MTBE	0.62		5
Influent		AG04088	9/8/2005	Tetrachloroethene	0.63 44		5
Effluent	SC-04	AG04084	9/8/2005	Acetone	ND (1.0)		5
			9/8/2005				5
EffluentDup	SC-04	AG04085	9/6/2005	Acetone Chloroform	1.0		
Trip Blank	SC-TB	AG04089	9/8/2005	Bromodichloromethane	2.2		+
				MTBE	0.82		+
Influent	SC-01	AG07649	10/5/2005	Trichloroethene (TCE)	0.82		5
(EPA-EXT-02)	30-01	AG07649	10/3/2003	Tetrachloroethene	100		5
Influent				retrachioroethene			+
Influent (EPA-EXT-4R)	SC-02	AG07650	10/5/2005	Tetrachloroethene	9.3		5
				MTBE	0.6		
Influent		AG07651	10/5/2005	Acetone	1		5
				Tetrachloroethene	52		5
Effluent	SC-04	AG07647	10/5/2005	Acetone	1.1		
EffluentDup	SC-04	AG07648	10/5/2005	Acetone	1.4		
Trip Blank	SC-TB	AG07652	10/5/2005	Chloroform	ND		
				Acetone	1.4	K	
Influent	SC-01	AG08530	11/14/2005	MTBE	0.92		 _
(EPA-EXT-02)				Trichloroethene (TCE)	0.81		5
				Tetrachloroethene	95		5
Influent	SC-02	AG08531	11/14/2005	Acetone	1.0	K	5
(EPA-EXT-4R)				Tetrachloroethene	10		5
				MTBE	0.9	17	+
Influent		AG08532	11/14/2005	Acetone (TCF)	1.4	К	5
l				Trichloroethene (TCE)	0.74		5
F40 4	00.04	ACC05505	444440005	Tetrachloroethene	91 ND		5 5
Effluent	SC-04	AG08528	11/14/2005	Acetone	ND ND		5
EffluentDup	SC-04	AG08529 AG08533	11/14/2005	Acetone Acetone	2.0	K	5
Trip Blank	SC-TB	WG00000	11/14/2005	Vegous	۷.۷	r\	<u> </u>

Decidion ECC ID* EPA ID Collected Decided Gug/L Qualifier* Criteria Influent (EPA-EXT-Q) SC-01 AG08953 12/6/2005 Tridhloroethene (TCE) 0.67 5 5 1-8	Sample			Date	Compounds	Result		Discharge
Influent (EPA-EXT-22) SC-01 AG08953 12/6/2005 Tridnorethene (TCE) 0.67 5 5 5 1-8	-	ECC ID*	EPA ID	Collected	·	(μ g/L)	Qualifier**	_
Influent SC-01 AG08953 12/6/2005 Trichlorosthene (TCE) 0.67 5 5 5 5 5 5 5 5 5					Acetone	4.1		
Influent SC-04 AG08954 12/6/2005 Telephonocethene 90 S S S S S S S S S	Influent					0.85		
Influent SC-02 AG08954 12/6/2005 Acetone 1.4 K 5 5 5 5 5 5 5 5 5		SC-01	AG08953	12/6/2005		0.67		5
Influent (EPA-EXT-RR)	(2171 211 02)							5
Influent SC-04 AG08955 12/6/2005 Tetrachloroethene 9.5 5 5								
Influent AG08955 12/6/2005		SC-02	AG08954	12/6/2005			K	
Influent	(EPA-EXT-4R)							5
Effluent SC-04 AG08951 12/6/2005 Acetone 1.5 K 5								_
Effluent	Influent		AG08955	12/6/2005			K	
Effluent SC-04 AG08951 12/6/2005 Acetone 1.5 K 5 EffluentDup SC-04 AG08952 12/6/2005 Acetone 3.0 K 5 Influent (EPA-EXT-02) SC-01 AH00216 1/10/2006 Acetone ND 5 Influent (EPA-EXT-02) SC-01 AH00216 1/10/2006 Acetone ND 5 Influent (EPA-EXT-02) SC-02 AH00217 1/10/2006 Acetone ND (1.0) 5 Influent (EPA-EXT-04) SC-02 AH00217 1/10/2006 Acetone ND (1.0) 5 Influent (EPA-EXT-04) AC-02 AH00218 1/10/2006 Acetone ND (1.0) 5 Influent (EPA-EXT-04) SC-02 AH00218 1/10/2006 Full Control Acetone ND (1.0) 5 Effluent CEFU SC-04 AH00218 1/10/2006 Full Control Acetone ND (1.0) 5 Influent SC-01 AH01177 2/15/2006 Full Control ND (1.0) 5								
EffluentDup	Effluent	SC 04	AC09054	40/6/000E			- 1/	
Trip Blank SC-TB 12/6/2005 Acetone ND 5								
Influent (EPA-EXT-02)			AG06952					
Influent (EPA-EXT-02)	тпр ыапк	30-16		12/0/2005				
Trichloroethene (TCE) 0.79 5 5	Influent							
Influent		SC-01	AH00216	1/10/2006				+
Influent (EPA-EXT-4R) SC-02	(E17A-EX1-02)							
Tetrachicroethene	Influent		-	_				
Influent		SC-02	AH00217	1/10/2006				
Influent	(=:::=:::::::::::::::::::::::::::::::::							
Effluent SC-04 AH00214 1/10/2006 Trichloroethene 90 5 5								5
Tetrachloroethene 90 5 5	Influent		AH00218	1/10/2006				
Effluent SC-04 AH00214 1/10/2006 Acetone ND (1.0) S							-	
EffluentDup SC-04	Effluent	SC-04	AH00214	1/10/2006				
Trip Blank SC-TB AH00219 Acetone ND (1.0) 5							N.I	
Influent SC-01				17 1072000			110	5
Influent SC-01								
Tetrachloroethene	Influent	SC-01	AH01177	2/15/2006				5
MW-19	.,							
MW-19 AH01178 2/15/2006 Trichloroethene (TCE) 1.2 5 MW-21 AH01179 2/15/2006 Trichloroethene (TCE) 2.6 5 Effluent AH01175 2/15/2006 None 27 5 Effluent Duplicate AH01176 2/15/2006 None 10 10 Trip Blank SC-TB AH00219 2/15/2006 Chloroform 10 10 Influent SC-01 AH01256 3/8/2006 Chloroform 10								
Tetrachloroethene	MW-19		AH01178	2/15/2006				
AH01179 Z15/Z006 Tetrachloroethene Z7 5								
Tetrachloroethene 27 5 5	NAV 04		AU04470	0/45/0000	Trichloroethene (TCE)			
Effluent Duplicate	MW-21		AH011/9	2/15/2006	Tetrachloroethene			
Duplicate	Effluent		AH01175	2/15/2006	None			
Trip Blank SC-TB AH00219 2/15/2006 Bromodichloromethane 2.3 MTBE 1.4	Effluent		AU01176	2/15/2006	None			
Influent	Duplicate		AHUTT76	2/15/2006				
Influent	Trip Blank	SC-TB	AH00219	2/15/2006				
Influent SC-01	·							
Tetrachloroethene 83 5								
Acetone 2 5	Influent	SC-01	AH01256	3/8/2006		-		
Effluent Duplicate SC-04 AH01254 3/8/2006 Acetone 2 5 Trip Blank SC-04 AH01255 3/8/2006 Acetone 2.4 5 Trip Blank SC-TB AH01257 3/8/2006 Bromodichloromethane 5 Chloroform 14 MTBE 1.5 TRICHLOROETHENE 0.57 TETRACHLOROETHENE TETRACHLOROETHENE 68 5 ACETONE 1.7 5 Effluent SC-04 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 Effluent A SC-04 AH01640 4/5/2006 ACETONE 4.6 5 Effluent A SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5								
Effluent Duplicate SC-04 AH01255 3/8/2006 Acetone 2.4 5 Trip Blank SC-TB AH01257 3/8/2006 Bromodichloromethane 5 Chloroform 14 MTBE 1.5 TRICHLOROETHENE 0.57 TETRACHLOROETHENE TETRACHLOROETHENE 68 5 ACETONE 1.7 5 Effluent SC-04 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 Effluent A SC-04 AH01640 4/5/2006 ACETONE 4.6 5 Effluent A SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5	Effluent	SC M	AU01254	3/9/2006				
Duplicate SC-04 AH01255 3/8/2006 Acetone 2.4 5 Trip Blank SC-TB AH01257 3/8/2006 Bromodichloromethane 5 Chloroform 14 MTBE 1.5 TRICHLOROETHENE 0.57 TETRACHLOROETHENE TETRACHLOROETHENE 68 5 ACETONE 1.7 5 Effluent SC-04 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 Effluent A SC-04 AH01640 4/5/2006 ACETONE 4.6 5 Effluent A SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5		00-04		-				1 - 5
Acetone 2 5		SC-04	AH01255	3/8/2006	Acetone	2.4		5
Trip Blank SC-TB AH01257 3/8/2006 Bromodichloromethane 5 Chloroform 14 MTBE 1.5 TRICHLOROETHENE 0.57 TETRACHLOROETHENE 68 5 ACETONE 1.7 5 Effluent SC-01 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 Effluent A SC-04 AH01640 4/5/2006 ACETONE 4.6 5 Effluent A SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5				-	Acetone	2		
Chloroform 14	Trip Blank	SC-TB	AH01257	3/8/2006				
AH01641	· ·							
Influent AH01641 4/5/2006 TETRACHLOROETHENE 68 5 ACETONE 1.7 5 ETHYL ACETATE 1.5 NJ 5 ACETONE 1.7 5 ACETONE 1.7 NJ 5 Effluent A SC-04 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 Effluent A SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5			1	_				
Influent AH01641 4/5/2006 TETRACHLOROETHENE 68 5 ACETONE 1.7 5 ETHYL ACETATE 1.5 NJ 5 ACETONE 1.7 5 ACETONE 1.7 NJ 5 Effluent A SC-04 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 Effluent A SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5								
SC-01 ETHYL ACETATE 1.5 NJ 5 Effluent SC-04 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 Effluent A SC-04 AH01640 4/5/2006 ACETONE 4.6 5 Effluent A SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5	influent		AH01641	4/5/2006				5
Effluent SC-04 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 Effluent A SC-04 AH01640 4/5/2006 ACETONE 4.6 5 Effluent A SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5								
Effluent A SC-04 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 4/5/2006 ACETONE 4.6 5 SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5		SC-01				1.5	NJ	5
SC-04 AH01639 4/5/2006 EHHYL ACETATE 1.7 NJ 5 Effluent A SC-04 AH01640 4/5/2006 ACETONE 4.6 5 SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5	Effluent							
Effluent A SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5	Lindelli	SC-04	AH01639			1.7	NJ	5
SC-04 AH01640 4/5/2006 EHHYL ACETATE 5.3 NJ 5	Effluent A							5
Trip Blank SC-TB AH01642 4/5/2006 ACETONE 1.7 5							NJ	
	Trip Blank	SC-TB	AH01642	4/5/2006	ACETONE	1.7		5

Sample Location	ECC ID*	EPA ID	Date Collected	Compounds Detected	Result (μg/L)	Qualifier**	Discharge Criteria
				ACETONE	2.3		5
Influent (MW-24	00.04	41100070	E (0.10000	MTBE	1.7		
& EPA-EXT-02)	SC-01	AH02078	5/3/2006	TRICHLOROETHENE	0.72		
1				TETRACHLOROETHENE	80		5
C#9ant		AU02076	E/3/3006	CHLOROMETHANE	0.51		
Effluent	SC-04	AH02076	5/3/2006	ACETONE	1.6		5
Effluent-A	SC-04	AH02077	5/3/2006	ACETONE	2.2		5
Trip Blank	SC-TB	AH02079	5/3/2006	ACETONE	1.8		5
				ACETONE	1.8	K	5
l l				MTBE	1.6		
Influent		AH02645	6/8/2006	TRICHLOROETHENE	70		
	SC-01			EHHYL ACETATE	0.7	NJ	5
Effluent	SC-04	AH02643	6/8/2006	ACETONE	1.2	K	5
			6/8/2006	ACETONE	1.5	K	<u> </u>
Effluent-A	SC-04	AH02644	6/8/2006	ETHYL ACETATE	1	NJ	5
Trip Blank	SC-TB	AH02646	6/8/2006	ETHTEAGETATE	ND	110	
		74102040	0/0/2000	ACETONE	1.8		5
Influent (MW-24	SC-01	AH03367	7/12/2006	MTBE	1.6		
& EPA-EXT-02)	30-01	A1 103307	111212000	TETRACHLOROETHENE	74		5
Effluent	SC-04	AH03367	7/12/2006	None	ND		
	SC-04 SC-04	AH03368	7/12/2006		ND ND		
Effluent A				None			
Trip Blank	SC-TB	AH03370	7/12/2006	None	ND		
l				ACETONE	1.3	J	5
Influent (MW-24	SC-01	AH04373	8/9/2006	MTBE	1.6		
& EPA-EXT-02)		1	2,0,200	TRICHLOROETHENE	0.55		
				TETRACHLOROETHENE	65		5
Effluent	SC-04	AH04371	8/9/2006	ACETONE	1.3	J	5
Effluent A	SC-04	AH04372	8/9/2006	ACETONE	2	J	5
Trip Blank	SC-TB	AH04374	8/9/2006	ACETONE	0.78	j	5
Influent (MW-24			_	MTBE	1.7		
& EPA-EXT-02)	SC-01	AH05500	9/6/2006	TRICHLOROETHENE	0.68		
a EFA-EX1-02)				TETRACHLOROETHENE	69		5
Effluent	SC-04	AH05498	9/6/2006		ND		
Effluent A	SC-04	AH05499	9/6/2006	CHLOROMETHANE	0.64		5
Trip Blank	SC-TB	AH05501	9/6/2006		ND		
				MTBE	1		
Influent (MW-24	SC-01	AH05962	10/4/2006	TRICHLOROETHENE	0.54		
& EPA-EXT-02)				TETRACHLOROETHENE	68		5
Effluent	SC-04	AH05960	10/4/2006	None			
Effluent A	SC-04	AH05961	10/4/2006	None			5
Trip Blank	SC-TB	AH05963	10/4/2006	None			
Influent (MW-24			_	MTBE	1.4		
& EPA-EXT-02)	SC-01	AH06624	11/8/2006	TETRACHLOROETHENE	67		5
Effluent	SC-04	AH06622	11/8/2006	None	<u>.</u>		
Effluent A	SC-04	AH06623	11/8/2006	None			5
Trip Blank	SC-TB	AH06625	11/8/2006	MTBE	0.6		─
Influent (MW-24				MTBE	1.4		
& EPA-EXT-02)	SC-01	AH07022	12/14/2006	TETRACHLOROETHENE	58		5
Effluent	SC-04	AH07020	12/14/2006	None			1
Effluent A	SC-04	AH07021	12/14/2006	None		-	†
Trip Blank	SC-TB	AH07023	12/14/2006	METHYLENE CHLORIDE	1.3		5
Influent (MW-24				MTBE	1.1	к	+
& EPA-EXT-02)	SC-01	AJ00067	1/11/2007	TETRACHLOROETHENE	51		5
Effluent	SC-04	AJ00065	1/11/2007	None	<u> </u>		+
Effluent A	SC-04	AJ00066	1/11/2007	None			+
Trip Blank	SC-TB	AJ00068	1/11/2007	METHYLENE CHLORIDE	1.3		5
	30-10	7300000	1/11/200/				+
Influent (MW-24	SC-01	AJ00524	2/20/2007	MTBE	0.59		+
& EPA-EXT-02)				TETRACHLOROETHENE	54		5
Effluent	SC-04	AJ00522	2/20/2007	None			+ -
Effluent A	SC-04	AJ00523	2/20/2007	None None	0.64		5
Trip Blank	SC-TB	AJ00525	2/20/2007	METHYLENE CHLORIDE	0.81	K	5

Sample			Date	Compounds	Result		Discharge
Location	ECC ID*	EPA ID	Collected	Detected	(μ g/L)	Qualifier**	Criteria
Influent (MW-24	SC-01	AJ01186	3/7/2007	MTBE	1		
& EPA-EXT-02)	5	A301166	3/1/2007	TETRACHLOROETHENE	57		5
Effluent	SC-04	AJ01184	3/7/2007	None			
Effluent A	SC-04	AJ01185	3/7/2007	None			
Trip Blank	SC-TB	AJ01187	3/7/2007	None			

* cted from ECC ID SC-04 were used as the matrix spike matrix spike duplicate sample.

** legion II. ECC carried over assigned qualifers and did not perform a separate review or validation of the data.

(D) from a dilution of the sample

J lalified as estimated

NJ presence of the material at an estimated value

K ed value may be biased high

μg/L nicrograms per liter

MTBE nyl tertiary - butyl ether TIC rely Identified Compound

Appendix F

Soil Vapor Extraction and Pump and Treat System Bi-weekly Air Monitoring Logs

STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE

Soil-Vapor Extraction and Pump and Treat System Bi-Weekly Air Monitoring Log

3/7/2007 Project # 70536

			Mu	ItiRAE Plus PGN	-50			Ve	lociCalc Plus		
	Pipe ID	voc	СО	Oxygen	LEL	H2S	Temp.	Vac. Pre.	%RH	Dew pt.	Flow
SVE-Influent	5.709	0.0	0	20.9%	0%	0%	87.3	+	24.3%	46.4	61
Post Air Stripper	11.294	0.1	0	20.9%	0%	0%	56.9	+	100.0%	56.9	122
SVE-Effluent¹	5.706	0.0	0	20.5%	0%	0%	29.7	+	81.4%	18.3	43
GW Post Vapor Effluent ²	11.294	0.0	0	20.9%	0%	0%	56.2	+	98.5%	55.2	115
EPA-SVE-1 (shallow)	1.913	0.0	0	20.9%	0%	0%	28.5	0.00	87.6%	25.8	0.0
EPA-SVE-1 (medium)	1.913	0.0	0	20.9%	0%	0%	32.8	0.00	84.8%	28.3	0.00
EPA-SVE-2 (shallow)	1.913	0.0	0	20.9%	0%	0%	28.4	0.00	79.4%	23.1	0.000
EPA-SVE-2 (medium)	1.913	0.0	0	20.9%	0%	0%	28.2	0.00	78.8%	23.3	0.000
SS-A	1.913	0.0	0	20.9%	0%	0%	41.7	5.50	33.8%	16.1	72.5
EPA-SVE-04R/SS-B(A)	1.913	0.0	0	20.9%	0%	0%	30.7	3.60	63.2%	20.8	32.60
SS-B-C	1.913	0.0	0.0	20.9	0.0	0.0	27.1	5.00	62.2	17.8	5.5
SS-C	1.913	0.0	0	20.9%	0%	0%	29.4	5.20	94.3%	28.1	101.0
L1	1.913	0.0	0	20.9%	0%	0%	30.5	6.40	89.0%	18.8	167.0
L2	1.913					Not	Measured -	Offline			
SS-B(B)	1.913	0.0	0	20.9%	0%	0%	27.8	3.50	61.5%	19.5	31.5
SS Vent-LIHA	3.786	0.0	0	20.9%	0%	0%	29.6	1.80	61.5%	19.9	16.6
Vapor Point-1/Slope 1		0	0	20.90%	0	0	NM	NM	NM	NM	NM
SVE-3A	1.913			Ports frozen							
SVE-3B	1.913			Ports frozen						,	
Background		0.0	0	20.9%	0%	0%	22.7	0.0	62.0%	12.7	0

Equipment calibrated by: Russell Kolacek, Justin Self Air readings collected by: Russell Kolacek, Justin Self

VOC: Volatile Organic Compounds

CO: Carbon Monoxide LEL: Lower Explosive Limit ppm: parts per million

temperature: measured in degrees Fahrenheit

pressure: measured in inches of water (in/H2O), inches of mercury (in/Hg), or

pounds per square inch (psi).

Flow: measured in cubic feet per minute (cfm)

%RH: relative humidity

Dew Pt.: dew point in degrees Fahrenheit

AS: Air Stripper

SVE: Soil Vapor Extraction System

Comments: NM=Not Measured

¹Formerly Post SVE Carbon ²Formerly Post Air Stripper Carbon ³Formerly Sub-Slab A,B, and C ⁴Formerly Sub-Slab D ⁵Formerly Sub-Slab B NA- Not Available

SVE 1 SVE 2 SVE 3 SVE 4	Prior to 10/3/05 shallow on shallow on shallow on off	As of 03/07/07 shallow and medium on not measurable A & B on off
EPA-SVE-04R/SSB(A)	on	on
SS-A	on	on
SS-B(B)	on	on
SS-B(C)	on	on
L1	on	on

L2 on off

Comments:

L2 is offline

Points SVE-3A AND SVE-3B has frozen ports and were unable to break loose. Monitoring not taken for those points. Repaired previously broken section of SVE pipe near SS-B(B) AND SS-B(A)

STANTON CLEANERS AREA GROUNDWATER **CONTAMINATION SITE**

Soil-Vapor Extraction and Pump and Treat System Bi-Weekly Air Monitoring Log

3/21/2007 Project # 70536

				MultiRAE Plus PGM-5	<u></u>			Ve	lociCalc Plu		
	Pipe ID	VOC	СО	Oxygen	LEL	H2S	Temp.	Vac. Pre.	%RH	Dew pt.	Flow
SVE-Influent	5.709	0.0	0	20.3%	0%	0%	71.1	+	100.0%	71.0	61
Post Air Stripper	11.294	0.0	0	20.9%	0%	0%	60.5	+	89.8%	57.0	71.5
SVE-Effluent'	5.706	0.0	0	20.4%	0%	0%	57.5	+	95.6%	29.5	39
GW Post Vapor Effluent ^a	11.294	0.0	0	20.5%	0%	0%	73.0	+	57.9%	56.0	74.5
EPA-SVE-1 (shallow)	1.913	0.0	0	20.9%	0%	0%	42.3		68.8%	32.6	0.1
EPA-SVE-1 (medium)	1.913	0.0	0	20.9%	0%	0%	44.5		72.4%	35.6	0.05
EPA-SVE-2 (shallow)	1.913	0.0	0	20.1%	0%	0%	39.4		66.4%	29.1	28.300
EPA-SVE-2 (medium)	1.913	0.0	0	20.5%	0%	0%	47.6		95.4%	47.5	40.300
SS-A	1.913			buried under ice			_				
EPA-SVE-04R/SS-B(A)	1.913	0.0	0	20.9%	0%	0%	39.5		68.1%	30.4	4.46
SS-B-C	1.913	0.0	0.0	20.9	0.0	0.0	39.7		67.5	30.2	2.0
ss-c	1.913	0.0	0	20.9%	0%	0%	42.3		58.7%	29.8	75.5
L1	1.913	0.0	0	20.9%	0%	0%	37.6		91.9%	34.6	188.0
L2	1.913					Not Meas	sured - Offli	ne			
SS-B(B)	1.913	0.0	0	20.9%	0%	0%	41.3		62.2%	29.8	37.5
SS Vent-LIHA	3.786	0.0	0	20.9%	0%	0%	44.6		68.6%	36.1	13.2
Vapor Point-1/Slope 1		0	0	20.90%	0	0	NM	NM	NM	NM	NM
SVE-3A	1.913	0.0	0	20.9%	0%	0%	54.8		22.1	18	2.21
SVE-3B	1.913	0.0	0	20.9%	0%	0%	49.4		100.0	48.9	186.0
Background		0.0	0	20.9%	0%	0%	37.6		46.0%	19.4	0

Equipment calibrated by: Russell Kolacek, John McTernan Air readings collected by: Russell Kolacek, John Mcternan

VOC: Volatile Organic Compounds

CO: Carbon Monoxide LEL: Lower Explosive Limit ppm: parts per million

temperature: measured in degrees Fahrenheit

pressure: measured in inches of water (in/H2O), inches of mercury (in/Hg), or

pounds per square inch (psi).

Flow: measured in cubic feet per minute (cfm)

%RH: relative humidity

Dew Pt.: dew point in degrees Fahrenheit

AS: Air Stripper

SVE: Soil Vapor Extraction System

Comments: Vac gauge not working. Variable vacuum box unavailable for measurement. NM=Not Measured

¹Formerly Post SVE Carbon ²Formerly Post Air Stripper Carbon ³Formerly Sub-Slab A,B, and C ⁴Formerly Sub-Slab D ⁵Formerly Sub-Slab B NA- Not Available

SVE 1 SVE 2 SVE 3 SVE 4	Prior to 10/3/05 shallow on shallow on shallow on off	As of 03/21/07 shallow and medium on not measurable A & B on off
EPA-SVE-04R/SSB(A)	on	on
SS-A	on	on
SS-B(B)	on	on
SS-B(C)	on	on
L1	on	on
L2	on	off

Comments:

L2 is offline

SS-A was buried under a mound of snow and ice that had slid from the roof of the adjacent building. was unavailable for use.	The site vacuum gauge is broken and our office's vacuum box

Appendix G

Semi-Annual Groundwater Sampling Trip Report (submitted under separate cover)

Appendix H

Historical Groundwater Level Monitoring Results (Ongoing)

PAGE	1	OF 1
PAGE	7	OF 1

WATER LEVEL DATA SUMMARY

_									
	PROJECT:	Stanton Cleaners				JOB NUMBER:	<u>_</u>	70536	-
	LOCATION:	Great Neck, NY			_	DATE:		3/7/2007	.
	CLIENT:	USACE / USEPA			_	MEASURED BY:	_	R. Kolacek	•
	SURVEY - DATUM:	ft msl						J. Self	
	MEASURING - DEVICE:	Solinst Water Leve	I Indicator S/I	 N# 34407					
		MEASURING	POINT	DEPTH					
	WELL NUMBER	Description	Elevation (FT)	TO WATER (FT)		ELEVATION OF WATER (FT)		COMMENTS	
	EPA-MW-11D	ft BTOC	74.63	58.01		16.62		no bolts	
	EPA-MW-21	ft BTOC	84.13			84.13	no bolts,	buried beneath snow	mound
	EPA-MW-22	ft BTOC	82.20	62.89		19.31			
	EPA-MW-23	ft BTOC	82.83	63.42		19.41			
	EPA-MW-27	ft BTOC	69.32	50.58		18.74		no bolts	
	ST-MW-02	ft BTOC	82.03	62.79		19.24		top of PVC	_
	ST-MW-06	ft BTOC	69.83	45.05		24.78		top of PVC	
	ST-MW-09	ft BTOC	78.13	62.36		15.77			
	ST-MW-11	ft BTOC	75.25	58.58		16.67		no bolts	
	ST-MW-12	ft BTOC	87.20	70.02		17.18_		missing 1 bolt	
	ST-MW-14	ft BTOC	69.73	54.39		15.34		no bolts	
	ST-MW-16	ft BTOC	75.78	54.17		21.61		no bolts	
	ST-MW-17	ft BTOC	86.53	69.49		17.04		no bolts	
	ST-MW-19	ft BTOC	82.50	65.42		17.08		no bolts	
	ST-MW-20	ft BTOC	84.53	70.63		13.90		no bolts	

Notes:

EPA-MW-21 was buried beneath a mound of snow and ice that had been plowed and pushed on top of it.

During water level measurements, WAGNN Well # 9 was pumping at 1000 GPM, and well #12 was pumping at 1250 GPM.

	STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE GREAT NECK, NASSAU COUNTY, NEW YORK												
- 1 - Newword Name I away may a 1971 N day of a Market American American			NECK, NASSA 9/2003	1	1/2003								
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)						
EPA-MW-11D	74.63	57.74	16.89	57.94	16.69	60.07	14.56						
EPA-MW-21	84.13	66.70	17.43	66.14	17.99	66.86	17.27						
EPA-MW-22	82.20	64.51	17.69	64.08	18.12	65.09	17.11						
EPA-MW-23	82.83	64.97	17.86	64.54	18.29	78.61	4.22						
EPA-MW-27	69.32	51.74	17.58	51.12	18.20	52.85	16.47						
ST-MW-02	82.03	64.19	17.84	63.78	18.25	64.40	17.63						
ST-MW-06	69.83	63.43	6.40	44.82	25.01	44.92	24.91						
ST-MW-09	78.13	61.39	16.74	60.67	17.46	62.52	15.61						
ST-MW-11	75.25	58.67	16.58	58.06	17.19	60.59	14.66						
ST-MW-12	87.20	73.84	13.36	70.18	17.02	72.01	15.19						
ST-MW-14	69.73	50.94	18.79	50.76	18.97	56.40	13.33						
ST-MW-16	75.78	55.51	20.27	55.53	20.25	65.51	10						
ST-MW-17	86.53	69.95	16.58	69.27	17.26	71.55	14.98						
ST-MW-19	82.50	67.01	15.49	64.93	17.57	68.04	14.46						
ST-MW-20	84.53	65.99	18.54	65.83	18.70	73.45	11.08						

	T (D) (0	12/17/03	- 12/18/03	1/12	/2004	2/26/2	2004
Well ID	Top of PVC Elevation (ft msi)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-11D	74.63	59.00	15.63	57.52	17.11	56.50	18.13
EPA-MW-21	84.13	64.99	19.14	66.17	17.96	64.30	19.83
EPA-MW-22	82.20	63.03	19.17	63.99	18.21	61.90	20.30
EPA-MW-23	82.83	77.05	5.78	64.45	18.38	63.00	19.83
EPA-MW-27	69.32	51.75	17.57	51.22	18.10	50.50	18.82
ST-MW-02	82.03	63.25	18.78	64.03	18.00	62.03	20.00
ST-MW-06	69.83	43.10	26.73	45.74	24.09	44.40	25.43
ST-MW-09	78.13	61.50	16.63	-		60.00	18.13
ST-MW-11	75.25	59.23	16.02	62.10	13.15	60.90	14.35
ST-MW-12	87.20	72.00	15.20	70.27	16.93	60.50	26.70
ST-MW-14	69.73	55.05	14.68	NA	NA	48.70	21.03
ST-MW-16	75.78	64.18	11.60	54.99	20.79	53.00	22.78
ST-MW-17	86.53	69.99	16.54	69.40	17.13	67.25	19.28
ST-MW-19	82.50	67.21	15.29			65.25	17.25
ST-MW-20	84.53	71.56	12.97	63.51	21.02	61.75	22.78

ft msl - feet mean sea level ft BTOC - feet below top of casing

	T 4 DV0	3/29/2004		4/5/2004		5/19/2004	
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	60.00	14.63	60.36	14.27	60.30	14.33
EPA-MW-21	84.13	66.99	17.14	67.38	16.75	67.10	17.03
EPA-MW-22	82.20	61.90	20.30	65.00	17.20	64.98	17.22
EPA-MW-23	82.83	65.10	17.73	65.59	17.24	65.25	17.58
EPA-MW-27	69.32	52.08	17.24	52.84	16.48	53.10	16.22
ST-MW-02	82.03	63.99	18.04	64.90	17.13	64.87	17.16
ST-MW-06	69.83	45.60	24.23	46.24	23.59	46.25	23.58
ST-MW-09	78.13	62.80	15.33			62.00	16.13
ST-MW-11	75.25	60.00	15.25	60.85	14.40	60.46	14.79
ST-MW-12	87.20	72.22	14.98	72.22	14.98	72.12	15.08
ST-MW-14	69.73	56.99	12.74	57.87	11.86	58.13	11.60
ST-MW-16	75.78	54.68	21.10	55.48	20.30	55.09	20.69
ST-MW-17	86.53	70.25	16.28	71.76	14.77	71.80	14.73
ST-MW-19	82.50	66.00	16.50			65.78	16.72
ST-MW-20	84.53	71.45	13.08	73.78	10.75	73.65	10.88

		6/14	/2004	7/21/04	- 7/22/04	8/2/2	004
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-				78 887 A 1 668 da h			
11D	74.63	59.97	14.66	59.75	14.88	59.75	14.88
EPA-MW-21	84.13	67.00	17.13	66.99	17.14	66.11	18.02
EPA-MW-22	82.20	64.78	17.42	64.50	17.70	64.33	17.87
EPA-MW-23	82.83	66.21	16.62	66.10	16.73	65.16	17.67
EPA-MW-27	69.32	53.05	16.27	52.98	16.34	54.86	14.46
ST-MW-02	82.03	65.11	16.92	65.00	17.03	59.85	22.18
ST-MW-06	69.83	45.99	23.84	45.66	24.17	44.11	25.72
ST-MW-09	78.13	62.00	16.13	61.79	16.34		
ST-MW-11	75.25	60.40	14.85	60.39	14.86	60.50	14.75
ST-MW-12	87.20	72.29	14.91	72.20	15.00	71.36	15.84
ST-MW-14	69.73	58.55	11.18	58.34	11.39	55.56	14.17
ST-MW-16	75.78	55.09	20.69	55.01	20.77	54.85	20.93
ST-MW-17	86.53	71.52	15.01	71.46	15.07	70.80	15.73
ST-MW-19	82.50	65.00	17.50	64.77	17.73		
ST-MW-20	84.53	73.44	11.09	73.25	11.28	71.66	12.87

ft msl - feet mean sea level

ft BTOC - feet below top of casing

		9/28/04	9/28/04 - 9/29/04		10/12/04 -10/13/04		3/2004
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.70	14.93	58.97	15.66	58.95	15.68
EPA-MW-21	84.13	66.75	17.38	66.50	17.63	66.41	17.72
EPA-MW-22	82.20	64.41	17.79	64.34	17.86	64.32	17.88
EPA-MW-23	82.83	65.11	17.72	65.00	17.83	64.87	17.96
EPA-MW-27	69.32	52.31	17.01	52.25	17.07	52.26	17.06
ST-MW-02	82.03	65.00	17.03	65.03	17.00	65.00	17.03
ST-MW-06	69.83	44.55	25.28	55.34	14.49	55.29	14.54
ST-MW-09	78.13	62.00	16.13	62.12	16.01	62.15	15.98
ST-MW-11	75.25	60.41	14.84	60.50	14.75	60.34	14.91
ST-MW-12	87.20	72.00	15.20	72.21	14.99	72.22	14.98
ST-MW-14	69.73	56.71	13.02	56.50	13.23	56.49	13.24
ST-MW-16	75.78	55.10	20.68	57.00	18.78	57.01	18.77
ST-MW-17	86.53	70.99	15.54	70.98	15.55	70.95	15.58
ST-MW-19	82.50	64.84	17.66	64.80	17.70	64.79	17.71
ST-MW-20	84.53	71.97	12.56	72.00	12.53	72.55	11.98

	Top of PVC	12/8	/2004	1/3/	2005	2/7/2005	
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-			-				
11D	74.63	59.75	14.88	59.10	15.53	57.63	17.00
EPA-MW-21	84.13	66.61	17.52	65.67	18.46	65.80	18.33
EPA-MW-22	82.20	64.33	17.87	64.44	17.76	65.32	16.88
EPA-MW-23	82.83	65.16	17.67	65.10	17.73	64.44	18.39
EPA-MW-27	69.32	52.24	17.08	51.87	17.45	50.85	18.47
ST-MW-02	82.03	64.54	17.49	64.78	17.25	63.90	18.13
ST-MW-06	69.83	44.11	25.72	55.41	14.42	47.32	22.51
ST-MW-09	78.13	59.98	18.15	62.31	15.82	63.44	14.69
ST-MW-11	75.25	60.50	14.75	59.99	15.26	58.64	16.61
ST-MW-12	87.20	71.36	15.84	71.98	15.22	70.45	16.75
ST-MW-14	69.73	55.56	14.17	56.51	13.22	50.15	19.58
ST-MW-16	75.78	54.85	20.93	57.08	18.70	55.15	20.63
ST-MW-17	86.53	70.80	15.73	71.03	15.50	70.75	15.78
ST-MW-19	82.50	64.32	18.18	64.76	17.74	65.01	17.49
ST-MW-20	84.53	71.66	12.87	72.43	12.10	65.09	19.44

ft msl - feet mean sea level ft BTOC - feet below top of casing

		3/22	/2005	4/11	/2005	5/19/2	:005
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-			e e e e e e e e e e e e e e e e e e e				
11D	74.63	60.00	14.63	60.99	13.64	61.00	13.63
EPA-MW-21	84.13	64.50	19.63	64.00	20.13	63.21	20.92
EPA-MW-22	82.20	64.55	17.65	65.12	17.08	65.43	16.77
EPA-MW-23	82.83	65.00	17.83	65.10	17.73	65.00	17.83
EPA-MW-27	69.32	51.67	17.65	51.60	17.72	51.33	17.99
ST-MW-02	82.03	63.99	18.04	63.89	18.14	63.40	18.63
ST-MW-06	69.83	55.40	14.43	55.42	14.41	55.32	14.51
ST-MW-09	78.13	61.20	16.93	61.78	16.35	61.72	16.41
ST-MW-11	75.25	60.10	15.15	60.00	15.25	59.99	15.26
ST-MW-12	87.20	72.00	15.20	71.21	15.99	71.12	16.08
ST-MW-14	69.73	56.20	13.53	56.33	13.40	56.34	13.39
ST-MW-16	75.78	57.00	18.78	57.10	18.68	57.30	18.48
ST-MW-17	86.53	70.78	15.75	70.00	16.53	59.90	26.63
ST-MW-19	82.50	63.23	19.27	63.00	19.50	63.00	19.50
ST-MW-20	84.53	71.32	13.21	71.21	13.32	71.71	12.82

	Top of PVC	6/15/2005		7/7/2005		8/4/2005	
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	58.70	15.93	58.51	16.12	59.07	15.56
EPA-MW-21	84.13	66.35	17.78	66.27	17.83	66.85	17.28
EPA-MW-22	82.20	63.83	18.37	63.78	18.42	64.38	17.82
EPA-MW-23	82.83	64.32	18.51	64.29	18.54	64.88	17.95
EPA-MW-27	69.32	51.45	17.87	51.35	17.97	51.84	17.48
ST-MW-02	82.03		1		-		
ST-MW-06	69.83	45.70	24.13	45.90	23.93	45.80	24.03
ST-MW-09	78.13	63.45	14.68	63.29	14.84	63.94	14.19
ST-MW-11	75.25		1		ŀ		
ST-MW-12	87.20	71.02	16.18	70.71	16.49	71.42	15.78
ST-MW-14	69.73	55.08	14.65	54.99	14.74	55.45	14.28
ST-MW-16	75.78	54.54	21.24	54.71	21.07	54.82	20.96
ST-MW-17	86.53	70.35	16.18	70.17	16.36	70.78	15.75
ST-MW-19	82.50	66.82	15.68	66.89	15.61	66.53	15.97
ST-MW-20	84.53	71.20	13.33	71.07	13.46	71.59	12.94

ft msl - feet mean sea level ft BTOC - feet below top of casing

	Ton of DVC	8/30	/2005	10/11/2005		11/6/2005	
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-	74.60			EO 20	15.25	60.09	
11D	74.63		47.40	59.28	15.35	l———	40.00
EPA-MW-21	84.13	67.03	17.10	67.35	16.78	67.14	16.99
EPA-MW-22	82.20	64.52	17.68	64.93	17.27	64.67	17.53
EPA-MW-23	82.83	65.03	17.80	65.43	17.40	65.17	17.66
EPA-MW-27	69.32	55.11	14.21	52.38	16.94	52.27	17.05
ST-MW-02	82.03	64.42	17.61				
ST-MW-06	69.83	46.25	23.58	45.99	23.84	43.69	26.14
ST-MW-09	78.13			64.28	13.85	64.40	13.73
ST-MW-11	75.25						
ST-MW-12	87.20	71.61	15.59	71.68	15.52	71.76	15.44
ST-MW-14	69.73	55.71	14.02	55.71	14.02	57.16	12.57
ST-MW-16	75.78	55.21	20.57	55.78	20.00	54.55	21.23
ST-MW-17	86.53	70.99	15.54	71.09	15.44	71.36	15.17
ST-MW-19	82.50	66.71	15.79	66.90	15.60	66.86	15.64
ST-MW-20	84.53	71.83	12.70	71.78	12.75	74.56	9.97

	Top of PVC 12/19/2005		9/2005	1/24	/2006	2/22/2006	
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	59.19	15.44	59.22	15.41	58.37	16.26
EPA-MW-21	84.13	66.84	17.29	66.55	17.58	65.72	18.41
EPA-MW-22	82.20	64.39	17.81	64.09	18.11	63.38	18.82
EPA-MW-23	82.83	64.89	17.94	64.61	18.22	63.91	18.92
EPA-MW-27	69.32	51.96	17.36	51.72	17.60	51.10	18.22
ST-MW-02	82.03	-					
ST-MW-06	69.83	44.43	25.40	44.08	25.75	44.88	24.95
ST-MW-09	78.13	63.96	14.17	63.77	14.36	63.24	14.89
ST-MW-11	75.25						
ST-MW-12	87.20	71.43	15.77	71.17	16.03	70.58	16.62
ST-MW-14	69.73	55.58	14.15	56.09	13.64	54.86	14.87
ST-MW-16	75.78	54.77	21.01	54.43	21.35	54.17	21.61
ST-MW-17	86.53	70.82	15.71	70.62	1 <u>5.91</u>	70.03	16.50
ST-MW-19	82.50	66.94	15.56	66.66	15.84	66.46	16.04
ST-MW-20	84.53	71.64	12.89	72.13	12.40	70.81	13.72

ft msl - feet mean sea level

ft BTOC - feet below top of casing

	Top of PVC	4/11	/2006	5/2/2006		
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	
EPA-MW-11D	74.63	59.30	15.33	64.90	9.73	
EPA-MW-21	84.13	66.23	17.90	63.84	20.29	
EPA-MW-22	82.20	63.89	18.31	63.59	18.61	
EPA-MW-23	82.83	64.44	18.39	68.99	13.84	
EPA-MW-27	69.32	51.72	17.60	51.28	18.04	
ST-MW-02	82.03	-	-	_		
ST-MW-06	69.83	46.54	23.29	44.58	25.25	
ST-MW-09	78.13	63.96	14.17	63.50	14.63	
ST-MW-11	75.25	1	1			
ST-MW-12	87.20	71.35	15.85	73.87	13.33	
ST-MW-14	69.73	56.10	13.63	55.71	14.02	
ST-MW-16	75.78	54.58	21.20	54.63	21.15	
ST-MW-17	86.53	70.76	15.77	70.35	16.18	
ST-MW-19	82.50	67.13	15.37	66.69	15.81	
ST-MW-20	84.53	72.13	12.40	71.80	12.73	

	Top of PVC	5/22/2006		
Well ID	Well ID Elevation (ft msl)		Elevation (ft msl)	
ST-MW-02	82.03	63.36	18.67	
ST-MW-16	75.78	54.52	21.26	
EPA-MW-25	73.24	54.03	19.21	
EPA-MW-26	78.37	58.64	19.73	
ST-MW-15	90.13	72.78	17.35	
ST-MW-18	84.4	71.9	12.50	
ST-MW-12	87.2	70.4	16.80	
ST-MW-17	86.53	69.96	16.57	
ST-MW-20	84.53	71.37	13.16	
ST-MW-19	N/A	66.3		
ST-MW-09	N/A			
EPA-MW-9A	80.24	65.18	15.06	
ST-MW-06	69.83	44.5	25.33	
EPA-MW-27	69.32	51.03	18.29	
ST-MW-14	69.73	55.35	14.38	

ft msl - feet mean sea level ft BTOC - feet below top of casing

T 6 DVO		6/2	2/06	7/20/2006		8/31/2006	
Well ID	Top of PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63			58.62	16.01	58.12	16.51
EPA-MW-21	84.13	65.44	18.69	65.57	18 <u>.</u> 56	65.42	18.71
EPA-MW-22	82.20	63.10	19.10	63.23	18.97	63.13	19.07
EPA-MW-23	82.83	63.70	19.13	63.77	19.06	63.64	19.19
EPA-MW-27	69.32	51.78	17.54	51.00	18.32	50.80	18.52
ST-MW-02	82.03			64.11	17.92		
ST-MW-06	69.83	43.81	26.02	43.43	26.40	43.61	26.22
ST-MW-09	78.13	62.92	15.21	63.18	14.95	62.92	15.21
ST-MW-11	75.25	-			1		
ST-MW-12	87.20	70.24	16.96	70.56	16.64	70.21	16.99
ST-MW-14	69.73	54.38	15.35	55.57	14.16	54.82	14.91
ST-MW-16	75.78	53.85	21.93	53.54	22.24	53.75	22.03
ST-MW-17	86.53	69.74	16.79	70.05	16.48	69.71	16.82
ST-MW-19	82.50	65.70	16.80	64.97	17.53	65.69	16.81
ST-MW-20	84.53	73.45	11.08	71.54	12.99	70.86	13.67

Top of PVC		9/27/2006		10/25/2006		12/13/2006	
Well ID	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)
EPA-MW-							
11D	74.63	58.17	16.46	58.92	15.71	57.92	16.71
EPA-MW-21	84.13	65.43	18.70	65.80	18.33	65.33	18.80
EPA-MW-22	82.20	63.11	19.09	63.48	18.72	63.04	19.16
EPA-MW-23	82.83	63.68	19.15	64.04	18.79	63.53	19.30
EPA-MW-27	69.32	50.81	18.51	51.29	18.03	50.65	18.67
ST-MW-02	82.03				1	62.98	19.05
ST-MW-06	69.83	45.00	24.83	45.18	24.65	45.27	24.56
ST-MW-09	78.13	63.97	14.16	63.45	14.68	62.75	15.38
ST-MW-11	75.25	-	1		1		
ST-MW-12	87.20	70.42	16.78	70.87	16.33	70.24	16.96
ST-MW-14	69.73	54.69	15.04	56.69	13.04	53.95	15.78
ST-MW-16	75.78	54.57	21.21	54.90	20.88	53.84	21.94
ST-MW-17	86.53	69.85	16.68	70.35	16.18	69.64	16.89
ST-MW-19	82.50	65.79	16.71	66.22	16.28	65.59	16.91
ST-MW-20	84.53	73.83	10.70	71.71	12.82	70.05	14.48

ft msl - feet mean sea level ft BTOC - feet below top of casing

- · · · · · · · · · · · · · · · · · · ·	Top of	1/10	1/10/2007		2/7/2007		3/7/2007	
Well ID	PVC Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	DTW (ft BTOC)	Elevation (ft msl)	
EPA-MW- 11D	74.63	-	-	58.29	16.34	58.01	16.62	
EPA-MW-21	84.13	65.84	18.29	65.35	18.78		84.13	
EPA-MW-22	82.2	63.51	18.69	63.11	19.09	62.89	19.31	
EPA-MW-23	82.83	64.09	18.74	63.63	19.2	63.42	19.41	
EPA-MW-27	69.32	51.38	17.94	50.7	18.62	50.58	18.74	
ST-MW-02	82.03	63.39	18.64	62.94	19.09	62.79	19.24	
ST-MW-06	69.83	44.85	24.98	46.28	23.55	45.05	24.78	
ST-MW-09	78.13	63.54	14.59	62.59	15.54	62.36	15.77	
ST-MW-11	75.25	-		58.95	16.3	58.58	16.67	
ST-MW-12	87.2	70.89	16.31	70.3	16.9	70.02	17.18	
ST-MW-14	69.73	55.64	14.09	55.2	14.53	54.39	15.34	
ST-MW-16	75.78	54.1	21.68	54.14	21.64	54.17	21.61	
ST-MW-17	86.53	70.37	16.16	67.7	18.83	69.49	17.04	
ST-MW-19	82.5	66.26	16.24	64.7	17.8	65.42	17.08	
ST-MW-20	84.53	71.63	12.9	71.17	13.36	70.63	13.90	

ft msl - feet mean sea level ft BTOC - feet below top of casing --- Not measured

Appendix I

Indoor Air Quality Sampling Trip Report (submitted under separate cover)

Appendix J Action List Dated March 2007

MARCH 2007 ACTION LIST SUMMARY

PROJECT:Stanton CleanersJOB NUMBER:70536LOCATION:Great Neck, NYDATE:May 5, 2007

CLIENT: USACE / USEPA

COMPI	LETED ITEMS	DATE	PERFORMED
•	Bi-weekly O&M Inspection/System Monitoring (installed new breaker and electric wiring for heat trace on outside influent pipe)	•	March 7
•	Bi-weekly air monitoring	•	March 7
•	Monthly Treatment System sampling	•	March 7
•	Monthly groundwater monitoring well network water level measurement	•	March 7
•	Bi-weekly O&M Inspection/System Monitoring (GWT System was down due to wet floor alarm, restarted GWT System)	•	March 21
•	Bi-weekly air monitoring	•	March 21
•	System maintenance (wet floor alarm had shut down the system due to leaking aqueous phase carbon vessel, by-passed vessel for servicing, restarted GWT System, reduced flow to avoid backpressure problems)	•	March 28 & 29

OUTSTANDING ITEMS

RECOMMENDED SOLUTION

 Maintenance/repair of leaking 400-lb aqueous phase carbon vessel (currently off- line). 	Order replacement part and perform maintenance when carbon vessel is empty.
Carbon change-out.	Schedule carbon change out with general Carbon.