### QUARTERLY OPERATION AND MAINTENANCE REPORT

April 2017 – June 2017

### **STANTON CLEANERS**

(NYSDEC Site Number 130072)

### NYSDEC STANDBY ENGINEERING CONTRACT

Work Assignment #D007625-06

## **PREPARED FOR**

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

625 BROADWAY

ALBANY, NEW YORK 12233



Department of Environmental Conservation

Prepared by



16 Corporate Woods Blvd

Albany, NY 12211

## TABLE OF CONTENTS

| 1.0 | INTRODUCTION1                                           |
|-----|---------------------------------------------------------|
| 2.0 | BACKGROUND 1                                            |
| 2.1 | Site History                                            |
| 2.2 | EXISTING SITE CONDITIONS                                |
| 2.3 | SITE CLEANUP OBJECTIVES                                 |
| 3.0 | O&M PROGRAM                                             |
| 3.1 | GROUNDWATER EXTRACTION AND TREATMENT SYSTEM O&M6        |
| 3.2 | SAMPLING AND ANALYSIS                                   |
| 3.3 | PROCESS AIR STREAM MONITORING7                          |
| 4.0 | MONITORING WELL SAMPLING                                |
| 5.0 | PLUME PERIMETER MONITORING9                             |
| 6.0 | INDOOR AIR QUALITY SAMPLING9                            |
| 7.0 | MAINTENANCE ISSUES AND RECOMMENDED SOLUTIONS            |
| 7.1 | DOWNTIME SUMMARY10                                      |
| 8.0 | FUTURE EVENTS PLANNED 10                                |
| 9.0 | SUMMARY/PROGRESS TOWARD ACHIEVING CLEANUP OBJECTIVES 11 |

### LIST OF TABLES

| <u>Table</u> | Title                                                    | <b>Tables Follow Report Text</b> |
|--------------|----------------------------------------------------------|----------------------------------|
|              |                                                          |                                  |
| Table 1      | GWE&TS Influent and Effluent Data – April 2017-June 2017 |                                  |
| Table 2      | Semi-Annual GW Sampling Data – May 2017                  |                                  |
| Table 3      | Semi-Annual SVI Sampling Data – May 2017                 |                                  |
| Table 4      | SVE System Sampling Data – May 2017                      |                                  |
|              |                                                          |                                  |

### LIST OF FIGURES

**Figure** Title **Figures Follow Report Text** 

- Figure 1 Site Location
- Figure 2 Site Layout
- Figure 3 VOC Mass Removal by Groundwater Pumping and Treatment
- Figure 4 Contaminants of Concern Over Time in WAGNN Wells
- Figure 5 PCE Mass Removal by SVE system
- Figure 6 Monitoring Well Network
- Figure 7 Monitoring Schedule
- Figure 8 Shallow Interval Groundwater Contours
- Figure 9 Intermediate Interval Groundwater Contours
- Figure 10 Deep Interval Groundwater Contours

### LIST OF APPENDICES

| Appendix | Title |
|----------|-------|
|          |       |

Appendix A **Daily Reports** 

Title

- Appendix B Groundwater Treatment System Operation & Maintenance Data Logs
- Appendix C Groundwater Treatment System Downloaded Operational Data
- Appendix D Air Sparge System Monitoring Logs
- Appendix E Soil Vapor Extraction System Monitoring Logs
- Appendix F Groundwater Level Monitoring Results
- Appendix G Groundwater Sampling Parameter Log
- Appendix H Structure Sampling Questionnaire and Building Inventory for Soil Vapor Intrusion Sampling

### **ACRONYMS AND ABBREVIATIONS**

| 1,1,1-TCA | 1,1,1-trichloroethane                                   |
|-----------|---------------------------------------------------------|
| 1,1-DCE   | 1,1-dichloroethene                                      |
| AS/SVE    | Air sparging/soil vapor extraction                      |
| BGS       | below ground surface                                    |
| cVOC      | chlorinated volatile organic compound                   |
| EDD       | electronic data deliverable                             |
| GAC       | granular activated carbon                               |
| GPM       | gallons per minute                                      |
| GWE&TS    | groundwater extraction and treatment system             |
| HDR       | Henningson, Durham & Richardson Architecture and        |
|           | Engineering, PC.                                        |
| MW        | Monitoring Well                                         |
| NPL       | National Priorities List                                |
| NYSDEC    | New York State Department of Environmental Conservation |
| NYSDOH    | New York State Department of Health                     |
| O&M       | operation and maintenance                               |
| PCE       | tetrachloroethene                                       |
| PRP       | potentially responsible party                           |
| RI        | remedial investigation                                  |
| ROD       | record of decision                                      |
| RSO       | Remedial System Optimization                            |
| SG        | soil gas                                                |
| SPDES     | State Pollution Detection and Elimination System        |
| SVE       | soil vapor extraction                                   |
| SVI       | soil vapor intrusion                                    |
| TCL       | target compound list                                    |
| UGA       | upper glacial aquifer                                   |
| USEPA     | United States Environmental Protection Agency           |
| VOC       | volatile organic compound                               |
| WAGNN     | Water Authority of Great Neck North                     |
| µg/l      | micrograms per liter                                    |
|           |                                                         |

### **1.0 INTRODUCTION**

As part of the continuing site management at the Stanton Cleaners area groundwater contamination site (the Site) in Great Neck, NY (NYSDEC Site#130072) the New York State Department of Environmental Conservation (NYSDEC) has assigned the operation and maintenance (O&M) and monitoring to Henningson, Durham & Richardson Architecture and Engineering, P.C. (HDR) under Standby Engineering Contract D007625. The Site is currently listed on the New York State Registry of Inactive Hazardous Waste Sites as a Class 4. This designation is for sites that are properly closed but require continued site management until the remedial objectives are achieved. Since 2001 the United States Environmental Protection Agency (USEPA) oversaw the O&M and the site management responsibility was transferred back to the NYSDEC in November 2012.

The on-going site management was assigned to HDR (D007625-06) in August 2012. The work assignment includes the following tasks:

- Task 1- Project Scoping
- Task 2- Develop Site Management Plan
- Task 3- O&M Program
- Task 4- Monitoring Program
- Task 5 Periodic Review
- Task 6 Remedial System Optimization (RSO)

This quarterly summary report was prepared under Task 4 to document and summarize the O&M and monitoring activities taking place at the Site between April 1, 2017 and June 30, 2017. These report provide a concise description of the work performed during the reporting period and include relevant data and performance monitoring documentation as attachments and appendices.

### 2.0 BACKGROUND

### 2.1 Site History

The Stanton Cleaners Area Groundwater Contamination site is located at 110 Cutter Mill Road in Great Neck, Nassau County, New York (Figure 1). The Stanton Cleaners property is approximately <sup>1</sup>/<sub>4</sub> acre in size and includes a two-story building in which a dry-cleaning business

operates and an adjacent one-story boiler/storage building as well as a two-story treatment building. The present configuration of the remedial system including the locations of the existing extraction wells is shown in Figure 2. The site is bordered by an adjacent empty lot which formerly contained an indoor tennis facility, as well as by a synagogue and school facility.

Improper handling and disposal of spent dry cleaning solvents, including tetrachloroethylene (PCE), resulted in the release of hazardous substances at the site. PCE migrated from the site's subsurface soils into the indoor air environments of the surrounding buildings and into groundwater beneath the site, resulting in a significant threat to human health.

In 1983, approximately 20 cubic yards of PCE-contaminated soil was removed from behind the Stanton Cleaners property.

In 1989, a groundwater extraction and treatment system (GWE&TS) was installed by the potentially responsible party (PRP) under consent order to address groundwater contamination which resulted from improper disposal of spent PCE behind the Stanton Cleaners building. The system performed poorly and was abandoned shortly after. In 1993 the site was listed on the New York State Registry of Inactive Hazardous Waste Sites as a Class 2 site.

In 1998, the NYSDEC funded the construction of a new air stripper treatment system for the Water Authority of Great Neck North (WAGNN) water supply wells, which are impacted by contamination from the Site. At the time three production wells made up the WAGNN water supply and the three wells were approximately 1000 ft south and down gradient of the Site. USEPA assistance was requested in 1998 to address the known contamination and in January 1999 the Site was proposed for addition to the National Priorities List (NPL). A Record of Decision (ROD) was finalized in March 1999 and Site formally added to the NPL in May 1999.

In 2001, the EPA completed the construction and installation of a soil vapor extraction (SVE) system and a GWE&TS on the property. Both the SVE and GWE&TS are housed in the treatment building that was constructed on the Site. The SVE was installed to remediate the volatile organic compound (VOC) contaminated soils, thus reducing the indoor air contamination in the adjacent affected buildings to safe levels. The GWE&TS was installed to remediate the VOC-contaminated groundwater and to remove the potential pathway for vapor migration from

the groundwater to the Site soils. Both systems are currently operating at the Site. The collected VOC-contaminated vapors and groundwater from both systems are treated through separate granular activated carbon (GAC) systems prior to discharge.

The first five year review of the site was conducted by the USEPA in 2008. The review concluded that the remedy was in place and functioning as intended. The review did not identify any significant issues that required attention. The most recent five year review was completed in December 2013, with similar results to that of 2008. The next five year review is expected to be conducted in 2018.

In 2012 the EPA completed construction and installation of a complementary groundwater air sparge system and began its operation in March 2012. In December 2014 the air sparge was shut down due to an oil leak. Based on NYSDEC recommendation, the air sparge remains offline indefinitely.

In February 2014, snow and ice on the roof collapsed the gutter system which pulled the service drop from the building. When this occurred, many of the treatment electrical systems were damaged and required repairs. This caused extensive downtime during the 2014 operational year.

A significant amount of downtime (approximately 10 months) occurred for the SVE system during the 2016 monitoring period because the blower required repairs and this was delayed for administrative reasons during the approval process for the amendment.

The May 2016 amendment to the HDR WA included a remedial system optimization task that was initiated at the site in November 2016 and completed in February 2017. The results of the RSO were presented in a draft reported submitted on May 10, 2017. The report is currently in the process of being finalized.

### 2.2 Existing Site Conditions

The Site is approximately 1/4-acre in size and includes a one-story building in which the drycleaning business operates and an adjacent one-story boiler/storage building. The entire site has been paved since 2005 when the last remaining unpaved area between the boiler/storage building and the treatment building was paved over. Adjoining, but separate, properties include a synagogue/day care and school facility, a pre-school across Cutter Mill road, a condominium complex, and a service station. The indoor tennis facility often cited in the historical data was dismantled in the fall of 2004. The community surrounding the Site is zoned commercial and residential and is serviced by public sewer and water.

The Water Authority of Great Neck North (WAGNN) supplies the public water. Three public water supply wells are located approximately 1000 feet south (down gradient) of the Site. Two of these wells are approximately 145 ft deep and the third well is 434 ft deep. The two 145 ft deep wells are designated as PW-2A (N-12796) and PW-9 (N-4388) and both are completed in the deeper portion of the upper glacial aquifer (UGA). The third deep well is designated as PW-11 and is completed in the Lloyd Aquifer which is not believed to be impacted by the site. Well 11 was taken out of service in October of 2015 for drilling a new well (designated PW-11-A). The motor, base, baseplate, column pipe, shafting and pump were pulled from PW-11 in October of 2016 to be used for the new well. The operation schedule for the new well is not yet known. The treatment system on the WAGNN supply wells is currently in operation and VOC contamination has been reduced to below federal and state drinking water standards. WAGNN analytical data provided to NYSDEC shows that the PCE concentration in the pre-treatment samples collected from PW-2A (down gradient of Stanton Cleaners Site) periodically exceeds drinking water standards. In the sampling data provided by WAGNN, the highest PCE concentration in a pre-treatment sample observed this quarter occurred on May 3, 2017 with a concentration of 2.8 µg/l (June 2017 data unavailable). Figure 4 shows the concentrations of the contaminants of concern in the WAGNN wells over time.

Long Island's geology is composed of a sequence of unconsolidated glacial, lacustrine, deltaic, and marine deposits of clay, silt, and gravel that ranges in age from Upper Cretaceous to Pleistocene. These deposits overlay a Precambrian to Paleozoic crystalline bedrock. In the region of Nassau County where the site is located, the thickness of the unconsolidated deposits is approximately 500 feet (minus 419 ft msl).

Previous investigations at the Site have shown that only the UGA exhibits impacts from the site. In this area of Long Island the UGA can be subdivided into shallow, intermediate, and deep zones. For the purposes of the on-going Site Management this convention will be maintained such that the data collection efforts and analysis are consistent with the Final Hydrogeologic Investigation Report- Operable Unit 1 (Earth Tech 2004) and Final Capture Zone Analysis Report (Earth Tech 2004). The shallow UGA consists of orange brown, poorly to well graded outwash sands and till of generally high permeability. In the vicinity of the water table at approximately 50 to 60 ft. bgs a fine grained light gray to white micaceous silty sand and clay. This intermediate zone transitions with depth into the North Shore confining unit which separates the shallow/intermediate zones from the deep zone. The confining unit consists of a much higher percentage of fine grained deposits and is described as light brown clay, light gray clayey silts and silty clay. The finer grained materials are likely marine or post glacial lake deposits which in some areas of the site overlie the deeper UGA. The deep portion of the UGA is generally a thin deposit of outwash sands and gravels that represent possible infilling of low lying areas during an interglacial stage.

The historical monitoring that has occurred at the site has shown that the PCE concentrations in groundwater have declined significantly. The water levels in the vicinity of the site are impacted by the pumping stress associated with the WAGNN pumping wells with the most pronounced impacts in the intermediate and deep zone of the UGA.

### 2.3 Site Cleanup Objectives

The cleanup objectives for the Stanton Cleaners site include:

Groundwater – NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.

Soil – Environmental Conservation Law (ECL) 6 NYCRR Part 375-6: Remedial Program Soil Cleanup Objectives.

Vapor – New York State Department of Health Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

### 3.0 O&M PROGRAM

The O&M activities at the Site include:

- Monthly sample collection from the GWE&TS influent and effluent for analysis of volatile organic compounds;
- Monthly system checks of the GWE&TS, and the SVE system;
- Monthly water levels on a subset of existing monitoring wells;
- Quarterly sampling of influent and effluent on the SVE system;
- Semi-annual GAC change out on the GWE&TS and SVE systems (if necessary);
- Semi-annual monitoring well sampling event;
- Semi-annual air monitoring event, from building locations at or adjacent to the Site;
- Annual State Pollutant Discharge Elimination System (SPDES) sampling event;
- EDDs will be prepared and submitted as they are received; and
- A Periodic Review Report will be issued annually.

This report is a summary of all activities that have occurred within the second quarter of 2017. A chronological summary of the activities at the site with the daily reports is found in Appendix A. Performance monitoring logs for the various components of the system are found in Appendix B to E. The groundwater level monitoring data are found in Appendix F. The semi-annual groundwater sampling parameters, and LIHA SVI questionnaire, are found in Appendix G and H, respectively. Groundwater influent/effluent analytical results are found in Table 1, semi-annual groundwater sampling data are found in Table 2, soil vapor intrusion results are found in Table 3, and SVE effluent sampling data is found in Table 4.

### 3.1 Groundwater Extraction and Treatment System O&M

The table below is a summary of mass removal of PCE performed by the system during this quarter. The monthly flow rate is the average of all flow measurements recorded by Lookout monitoring software during the month, which records the flow every four hours. The total monthly gallons are calculated by subtracting the first recorded cumulative volume in the month from the last recorded cumulative volume in the month. The cumulative volume is the final volume recorded by the system in the month. CVOC volume is the concentration of PCE detected in the monthly influent sample. The GWE&TS treated and discharged 2,481,005 gallons in April, 1,842,914 gallons in May and another 2,463,060 gallons during June 2017. The average flow rate for the period that the system was operational was approximately 57.05 GPM.

The system has treated an approximate total of 380,648,958 gallons since startup in November 2001 through June 30, 2017.

Currently EPA-EXT-02 is the only extraction well pumping at the site; it is located at the corner of Cutter Mill Road and Ascot Road (Figure 2). Extraction wells EPA-EXT-4R and EPA-MW-24 were taken offline by the USEPA previously.

| Date     | Average<br>Monthly Flow<br>Rate (GPM) | Monthly Total<br>(gal/month) | Cumulative over life of system (gallons) | CVOC Concentration<br>in Influent | Monthly CVOC<br>Mass | Cumulative Mass<br>Removed |
|----------|---------------------------------------|------------------------------|------------------------------------------|-----------------------------------|----------------------|----------------------------|
|          |                                       |                              |                                          | PCE (ug/L)                        | PCE (Ib/Month)       | PCE (Ib)                   |
| April-17 | 58.16                                 | 2481005.9                    | 376314636.2                              | 5                                 | 0.10                 | 6.39                       |
| May-17   | 54.2                                  | 1842914.3                    | 378171692.6                              | 14                                | 0.22                 | 6.60                       |
| June-17  | 58.79                                 | 2463060.3                    | 380648958.5                              | 7.6                               | 0.16                 | 6.76                       |
|          |                                       |                              |                                          | Quarter Total                     | 0.48                 |                            |

#### Summary of GWE&TS Mass Removal

### 3.2 Sampling and Analysis

GWE&TS sampling is performed monthly to monitor plant efficiency, to determine whether liquid carbon breakthrough has occurred, and to verify that discharge parameters do not exceed the SPDES permit equivalency. The combined GWE&TS influent, along with the GWE&TS effluent (discharge) are sampled each month during the O&M visit. Collected samples are shipped to Hampton Clarke Laboratory of Fairfield, NJ and analyzed for TCL of VOCs. Influent and effluent samples were taken on April 27, May 25, and July 26 of this quarter. Analytical results are found in Table 1. PCE concentrations of 5.0  $\mu$ g/l, 14.0  $\mu$ g/l, and 7.6  $\mu$ g/l were found in April, May, and June effluents, respectively. No contamination was detected in any of the effluent samples. Figure 3 is a graphical presentation of PCE concentration over time from 2003 to the present.

### 3.3 Process Air Stream Monitoring

Air monitoring of the SVE is performed on a monthly basis. It includes monitoring for VOCs, carbon monoxide, oxygen, lower explosive limit (LEL), hydrogen sulfide, air velocity in cubic feet per minute (CFM), temperature, relative humidity, dew point, and vacuum pressure as specified in the O&M Manual. Soil Vapor Extraction System Air Monitoring Logs are provided in Appendix E. Air monitoring is performed at the following locations:

- Combined SVE influent (pre-treatment);
- Post vapor phase carbon vessel SVE air discharge, effluent (post treatment);
- SVE wells EPA-SVE-1 through EPA-SVE-3.

Figure 5 uses the PID measurements obtained during monitoring to estimate the mass recovery of the SVE system over the life of the system. When applicable, measurement of the SVE influent from a more robust source, such as sample collection via summa canister and laboratory analysis is used instead of a PID measurement. Calculation assumes that PCE is the bulk of the VOC detected in PID readings attained at the site.

Quarterly, 1- liter SUMMA canister influent and effluent samples are collected. During this quarter, samples were collected from the influent and effluent ports on May 9, 2017. Results of that sampling event indicated a PCE concentration of  $3,322 \ \mu g/m^3$  in the SVE influent.

### 4.0 MONITORING WELL SAMPLING

Preferred Environmental Services collected a round of monitoring well samples on May 8-9, 2017. These samples were collected using the low-flow method. Samples were shipped to Hampton Clarke Laboratory of Fairfield, NJ. Sampling results are presented in Table 2. Six of the sixteen wells sampled contained measurable quantities of VOCs. ST-MW-19, located downgradient, contained the highest concentration of PCE at 12  $\mu$ g/L, and exceeds the 5.0  $\mu$ g/L Class GA drinking water standard found in the TOGS 1.1.1. EPA-CL-4D contained 3.4  $\mu$ g/L, 1.8  $\mu$ g/L and 6.5  $\mu$ g/L of cis-1,2 DCE, PCE and TCE, respectively. The TCE concentrations exceeds the 5.0  $\mu$ g/L standard. EPA-MW-23, ST-MW-20, ST-MW-18, and EPA-CL-4S contained PCE concentrations of 1.0  $\mu$ g/L, 2.6  $\mu$ g/L, 4.4  $\mu$ g/L, and 3.5  $\mu$ g/L, respectively. The surface water catch basin in which the GWE&T system discharges its effluent contained 20  $\mu$ g/L of toluene and 38  $\mu$ g/L of acetone. Similarly, EPA-MW-26 contained 1.0  $\mu$ g/L of xylene. The BTEX compounds along with Acetone are not considered site-related.

A comparison of the 2017Q2 semi-annual groundwater-sampling event to the 2016Q4 semiannual groundwater-sampling event does not show a clear relationship of contamination over time. Only EPA-CL-4S tested positive for VOC contamination during both 2017Q2 and 2016Q4 sampling events. A potential cause of these differences is that the GWE&T system was not operating during the 2016Q4 sampling event, whereas it was operational during the 2017Q2 sampling event.

Groundwater sampling parameter logs are found in Appendix G.

### 5.0 PLUME PERIMETER MONITORING

Groundwater level measurements are obtained from both onsite and offsite wells once a month in order to evaluate capture zones(s) around the groundwater extractions wells.

Water level measurements were collected during the April, May, and June monthly O&M visits. Water level measurements are made at 18 on and off-site wells. The location and number of monitoring wells was previously determined by the USEPA based on the site Capture Zone Analysis. Groundwater level measurements for the quarter and historical groundwater level measurements are provided in Appendix F. An aquifer test was conducted in February 2017 as part of the RSO. The aquifer test included collecting water level data continuously in 14 monitoring wells across the site and this data indicated that the water levels in and around the public supply wells are typically much lower than previously believed.. The groundwater contours have been adjusted to reflect observations from the aquifer test data. Figures 8, 9, and 10 show the groundwater contours for the shallow, intermediate, and deep aquifer components.

The groundwater flow directions in the shallow and deep UGA resemble those measured previously for this site, however contours have been refined to represent the more accurate southward flow toward the public water supply wells. Generally the groundwater is flowing to the southwest. A downward component of flow is also apparent when comparing the shallow, intermediate, and deep groundwater contours. A noticeable depression in the shallow water table (Figure 8) is centered about the extraction well, EPA-EXT-02, and the entire site falls within the capture zones of the public water supply wells, which strongly influence flow. The intermediate UGA flow direction was found to be to the southwest in May 2017 (Figure 9). In the deep zone the groundwater was found to be flowing to the southwest (Figure 10).

### 6.0 INDOOR AIR QUALITY SAMPLING

Indoor air quality samples from buildings along the perimeter of the site are collected using summa canisters on a semi-annual basis and shipped to a laboratory (Chemtech) for TO-15

analysis. Results of that sampling event are detailed in Table 3 and indicate indoor air concentration are below the threshold action levels as described by the NYSDOH soil vapor/indoor air matrix 1 and 2. Based on these results of the follow-up sampling, no further action is required.

### 7.0 MAINTENANCE ISSUES AND RECOMMENDED SOLUTIONS

Based on the site visits and data collected during this period HDR has identified the following maintenance issues and our recommendations relative to those findings.

• As the RSO field events and the replacement of the SVE blower and belts are both complete, a review of the ability of the SVE system to handle and dispose of condensate and an assessment of its drainage routing options is recommended.

Unless otherwise noted HDR has requested approval to proceed with our recommendations as outlined above and future quarterly reports will document how the maintenance issues were addressed.

### 7.1 **Downtime Summary**

During this quarterly monitoring period, the system components as noted were not operating for the reasons cited.

- On April 26, 2017 a flow sensor malfunction was noted on the GWE&T system. The system piping was inspected, and the system restarted. Upon restart, the flow sensor returned to normal operation.
- On May 23, 2017 the GWE&T system experienced an unknown issue that caused a lower than normal pumping rate. An inspection of the piping and of the influent strainers did not yield an obvious cause. After a system restart, the GWE&T system returned to normal operation.

### 8.0 FUTURE EVENTS PLANNED

Upcoming maintenance and monitoring activities at the site includes the following:

• Routine monthly maintenance continues to occur near the end of every month.

- 2017Q3 influent and effluent sampling of the SVE system is planned for August 2017.
- Additional maintenance planned for 2017Q3-Q4 involves the assessment of condensate lines linking the SVE knockout tank to settling tank, and of the line linking the settling tank to the liquid-phase GAC unit.

### 9.0 SUMMARY/PROGRESS TOWARD ACHIEVING CLEANUP OBJECTIVES

Total cost incurred associated with the operation of the Stanton Cleaners remedial system during the first quarter is \$52,162.96 (see quarterly cost summary below). Mass removal calculations for the SVE system determined that 24.8 lbs of VOCs were removed by the system. This calculation uses the PID reading collected at the influent port each month, or if laboratory data is available within the quarter for the PCE value detected in the influent sample, this more precise value will be used in the calculation. In terms of groundwater contamination, 0.48 lbs. of VOCs were calculated to have been removed by the GWE&TS, this calculation uses an average of the flow readings collected by the Lookout software, which records the system flow once every four hours (system down time is not included in this average flow). The concentration of PCE which is detected in the GWE&TS influent analytical sample for each month is used to calculate the amount of PCE removed by the extract and treat system every month, if laboratory data is unavailable then an average of the values detected in samples from the month preceding and following may be used to estimate the volume removed. During this quarter, the cost per pound of VOCs removed was \$2,063.41. Progress continues toward achieving the site cleanup objectives. An overall bulk reduction in the groundwater contaminant concentration has been achieved, but the groundwater concentrations still exceed applicable goals.

| Quarterly Cost Summary |    |                  |                     |                     |    |                   |   |               |  |             |         |  |
|------------------------|----|------------------|---------------------|---------------------|----|-------------------|---|---------------|--|-------------|---------|--|
|                        |    |                  |                     |                     |    |                   |   | Total VOCs    |  |             |         |  |
|                        |    |                  | Total VOCS Measured | Total VOCs Measured |    |                   |   | Removed       |  |             |         |  |
| PERIOD                 |    | <u>COST (\$)</u> | at SVE (Ibs.)       | at GWE&TS (Ibs.)    | Q  | uarterly Sum (\$) |   | <u>(Ibs.)</u> |  | Cost per Po | und     |  |
| 4/1/2017 - 4/26/2017   | \$ | 26,708.10        |                     |                     |    |                   |   |               |  |             |         |  |
| 4/27/2017 - 5/27/2017  | \$ | 11,668.68        |                     |                     |    |                   |   |               |  |             |         |  |
| 5/28/2017 - 7/1/2017   | \$ | 13,786.18        | 24.8                | 0.48                | \$ | 52,162.96         | 1 | 25.3          |  | \$ 2        | ,063.41 |  |

Note: Cost is based on the spending associated with the WAD007625-06 and does not include costs related to the RSO task. Specific details on the costs are documented in the HDR CAPs covering these periods.

Tables

#### GWETS Influent - Effluent Sampling Results April - June 2017

|                                       | CLIENT ID:       | : INF-GW-042717 |            | EFF-GW-042717 |            | INF-GW-052517 |            | EFF-GW-052517 |            | INF-GW-62617 |            | EFF-GW-62617 |            |
|---------------------------------------|------------------|-----------------|------------|---------------|------------|---------------|------------|---------------|------------|--------------|------------|--------------|------------|
|                                       | LAB ID:          | AC97            | 7607-002   | AC97          | 607-001    | AC98          | 3152-002   | AC98          | 3152-001   | AC98         | 3692-002   | AC98         | 3692-001   |
|                                       | COLLECTION DATE: | 4/2             | 7/2017     | 4/2           | 7/2017     | 5/2           | 5/2017     | 5/2           | 5/2017     | 6/2          | 6/2017     | 6/2          | 6/2017     |
| Constituent                           | Criteria         | Results         | Qualifiers | Results       | Qualifiers | Results       | Qualifiers | Results       | Qualifiers | Results      | Qualifiers | Results      | Qualifiers |
| :TotalVolatileTic                     | NA               | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| 1,1,1-Trichloroethane                 | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| 1,1,2,2-Tetrachloroethane             | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| 1,1,2-Trichloroethane                 | 1                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| 1.1-Dichloroethane                    | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| 1.1-Dichloroethene                    | 5                | ND              | Ŭ          | ND            | U U        | ND            | Ŭ          | ND            | Ŭ          | ND           | U          | ND           | Ŭ          |
| 1.2.3-Trichlorobenzene                | NA               | ND              | Ŭ          | ND            | U U        | ND            | U          | ND            | Ŭ          | ND           | U          | ND           | Ŭ          |
| 1.2.4-Trichlorobenzene                | 5                | ND              | Ŭ          | ND            | U U        | ND            | U          | ND            | Ŭ          | ND           | U          | ND           | Ŭ          |
| 1.2-Dibromo-3-chloropropane           | NA               | ND              | Ŭ          | ND            | Ŭ          | ND            | Ŭ          | ND            | Ŭ          | ND           | Ŭ          | ND           | Ŭ          |
| 1.2-Dibromoethane                     | NA               | ND              | Ŭ          | ND            | U U        | ND            | Ŭ          | ND            | Ŭ          | ND           | U          | ND           | Ŭ          |
| 1 2-Dichlorobenzene                   | 3                | ND              | U U        | ND            |            | ND            |            | ND            | -<br>      | ND           |            | ND           |            |
| 1 2-Dichloroethane                    | 0.6              | ND              | U U        | ND            | U          | ND            | U U        | ND            | U U        | ND           | U U        | ND           | U U        |
| 1.2-Dichloropropane                   | 1                | ND              | Ŭ          | ND            | U U        | ND            | U          | ND            | Ŭ          | ND           | U          | ND           | Ŭ          |
| 1.3-Dichlorobenzene                   | 3                | ND              | Ŭ          | ND            | U U        | ND            | Ŭ          | ND            | Ŭ          | ND           | U          | ND           | Ŭ          |
| 1 4-Dichlorobenzene                   | 3                | ND              | U U        | ND            |            | ND            |            | ND            | -<br>      | ND           |            | ND           |            |
| 1 4-Dioxane                           | NA               | ND              | U U        | ND            | U U        | ND            | U U        | ND            | U U        | ND           | U U        | ND           | U U        |
| 2-Butanone                            | NA               | ND              | U U        | ND            | U U        | ND            | U U        | ND            | U U        | ND           | U U        | ND           | U U        |
| 2-Hexanone                            | NA               | ND              | U U        | ND            | U U        | ND            | U U        | ND            | U U        | ND           | U U        | ND           | U U        |
| 4-Methyl-2-pentanone                  | NA               | ND              | U U        | ND            | Ü          | ND            | U U        | ND            | U U        | ND           | U U        | ND           | U U        |
| Acetone                               | NA               | ND              | U U        | ND            | U U        | ND            | U U        | ND            | U U        | ND           | U U        | ND           | U U        |
| Benzene                               | 1                | ND              | U U        | ND            | U U        | ND            | U U        | ND            | U U        | ND           | U U        | ND           | U U        |
| Bromochloromethane                    | NA               | ND              | U U        | ND            | U U        | ND            | U U        | ND            | U U        | ND           | U U        | ND           | U U        |
| Bromodichloromethane                  | NA               | ND              | Ű          | ND            | ŭ          | ND            | U          | ND            | U          | ND           | Ű          | ND           | U          |
| Bromoform                             | NA               | ND              | Ŭ          | ND            | Ŭ          | ND            | Ŭ          | ND            | Ŭ          | ND           | Ŭ          | ND           | Ŭ          |
| Bromomethane                          | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Carbon disulfide                      | 60               | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Carbon tetrachloride                  | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Chlorobenzene                         | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Chloroethane                          | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Chloroform                            | 7                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Chloromethane                         | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| cis-1,2-Dichloroethene                | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| cis-1,3-Dichloropropene               | cis+trans =0.4   | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Cyclohexane                           | NA               | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Dibromochloromethane                  | NA               | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Dichlorodifluoromethane               | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Ethylbenzene                          | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Isopropylbenzene                      | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| m&p-Xylenes                           | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Methyl Acetate                        | NA               | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Methylcyclohexane                     | NA               | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Methylene chloride                    | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Methyl-t-butyl ether                  | NA               | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| o-Xylene                              | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Styrene                               | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Tetrachloroethene                     | 5                | 5               |            | ND            | U          | 14            |            | ND            | U          | 7.6          |            | ND           | U          |
| Toluene                               | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| trans-1,2-Dichloroethene              | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| trans-1,3-Dichloropropene             | cis+trans =0.4   | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Trichloroethene                       | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Trichlorofluoromethane                | 5                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Vinyl chloride                        | 2                | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |
| Xvlenes (Total)                       | NA               | ND              | U          | ND            | U          | ND            | U          | ND            | U          | ND           | U          | ND           | U          |

| Units - ug/l    | Bold/highlighted cell – exceedance of criteria                                   |
|-----------------|----------------------------------------------------------------------------------|
| Qualifiers -    | NA - criteria or standard not available                                          |
|                 | R - rejected                                                                     |
|                 | B – also detected in associated method blank                                     |
|                 | J – estimated value; ND – not detected                                           |
|                 | NDJ – not detected, estimated reporting limit                                    |
|                 | NJ - positive identification of tentatively identified compound, estimated value |
|                 | P – greater than 40% difference between primary and confirmation analyses        |
| Criteria- DEC F | Part 703.5 Water Quality Standards Class GA                                      |
|                 |                                                                                  |

#### Semi-Annual Groundwater Sampling Results

| [                                     | Consulta La continu | CT NAVA/ 17 | CT N414/ 12 |             |             | CT N4)4/ 14 |             | CT N414/ 10 | CT MMA 20   |             |              |             |             | CT CD 1     |   | CT N414/ 15 |    | CT N4)4/ 12 | CT N4\4/ 10 |
|---------------------------------------|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|---|-------------|----|-------------|-------------|
|                                       | Sample Location     | SI-IVIVV-1/ | S1-IVIW-12  | EPA-CL-4D   | EPA-CL-45   | S1-IVIVV-14 | EPA-IVIW-27 | S1-IVIW-19  | ST-IVIV-20  | EPA-IVIW-26 | EPA-IVIW-11D | EPA-IVIW-23 | S1-IVIW-16  | SI-CB-1     | 2 | SI-IVIW-15  | 5  | 01-IVIW-13  | S1-IVIVV-18 |
|                                       | Sample ID           | AC97775-001 | AC97775-002 | AC97775-003 | AC97775-004 | AC97775-005 | AC97775-006 | AC97775-007 | AC97775-008 | AC97775-009 | AC97775-010  | AC97775-011 | AC97775-012 | AC97775-013 | A | 097775-014  | AC | .97775-015  | AC97775-016 |
|                                       | Sample Date         | 5/8/2017    | 5/8/2017    | 5/8/2017    | 5/8/2017    | 5/8/2017    | 5/8/2017    | 5/8/2017    | 5/8/2017    | 5/9/2017    | 5/9/2017     | 5/9/2017    | 5/9/2017    | 5/9/2017    | _ | 5/9/2017    |    | 5/9/2017    | 5/9/2017    |
| Consitituent                          | Criteria            |             |             |             |             |             |             |             |             |             |              |             |             |             |   |             |    |             |             |
| 1,1,1-Trichloroethane                 | 5                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND          | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,1,2,2-Tetrachloroethane             | 5                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,1,2-Trichloroethane                 | 1                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,1-Dichloroethane                    | 5                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,1-Dichloroethene                    | 5                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,2,3-Trichlorobenzene                | NA                  | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,2,4-Trichlorobenzene                | 5                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,2-Dibromo-3-chloropropane           | NA                  | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,2-Dibromoethane                     | NA                  | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,2-Dichlorobenzene                   | 3                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,2-Dichloroethane                    | 0.6                 | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,2-Dichloropropane                   | 1                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 1,3-Dichlorobenzene                   | 3                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | J  | ND U        | ND U        |
| 1,4-Dichlorobenzene                   | 3                   | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | J  | ND U        | ND U        |
| 1,4-Dioxane                           | NA                  | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | U  | ND U        | ND U        |
| 2-Butanone                            | NA                  | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | J  | ND U        | ND U        |
| 2-Hexanone                            | NA                  | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | U | ND L        | J  | ND U        | ND U        |
| 4-Methyl-2-pentanone                  | NA                  | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| Acetone                               | NA                  | ND          | U ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | 38          | - | ND L        | J  | ND U        | ND U        |
| Benzene                               | 1                   | ND          | U ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          | J | ND U        | J  | ND U        | ND U        |
| Bromochloromethane                    | NA                  | ND          | U ND        | U ND U      | ND          | U ND L      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| Bromodichloromethane                  | NA                  | ND          | U ND        | U ND U      | ND          | U ND L      | I ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | - | ND I        | -  | ND U        | ND U        |
| Bromoform                             | NA                  | ND          |             |             | ND          |             |             | ND          | U ND U      | ND I        |              | ND          | U ND U      | ND          |   | ND L        |    | ND U        | ND U        |
| Bromomethane                          | 5                   | ND          |             |             | ND          |             |             | ND          |             | ND I        |              | ND          |             | ND          |   | ND I        |    | ND U        |             |
| Carbon disulfide                      | 60                  | ND          |             |             | ND          |             |             | ND          |             | ND I        |              | ND          |             | ND          |   | ND I        |    | ND II       |             |
| Carbon tetrachloride                  | 5                   | ND          |             |             | ND          |             |             | ND          |             | ND I        |              | ND          |             | ND          |   | ND I        |    | ND II       |             |
| Chlorobenzene                         | 5                   | ND          |             |             | ND          |             |             | ND          |             | ND I        |              | ND          |             | ND          |   |             |    | ND II       |             |
| Chloroothano                          | 5                   | ND          |             |             | ND          |             |             | ND          | U ND U      | ND I        |              | ND          |             | ND          |   | ND L        |    | ND U        |             |
| Chloroform                            | 5                   |             |             |             | ND          |             |             | ND          |             | ND I        |              | ND          |             | ND          | 5 | ND U        | 5  |             |             |
| Chloromothana                         | 7                   | ND          |             |             | ND          |             |             | ND          |             | ND I        |              | ND          |             | ND          | 5 | ND U        | 5  |             |             |
|                                       | 5                   | ND V        | U ND        |             | ND          |             |             | ND          | U ND U      | ND U        |              | ND          | U ND U      | ND          |   | ND C        |    |             | ND U        |
| cis-1,2-Dichloropenene                | 5                   | ND I        | U ND        | U 3.4       | ND          |             |             | ND          | U ND U      | ND U        |              | ND          | U ND U      | ND          | 5 | ND U        |    |             | ND U        |
| cis-1,3-Dichloropropene               | 0.4                 | ND          | U ND        |             | ND          |             |             | ND          |             | ND (        |              | ND          |             | ND          |   | ND U        |    | ND U        | ND U        |
| Cyclonexane                           | NA                  | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          |   | ND U        |    | ND U        | ND U        |
| Dibromochloromethane                  | NA                  | ND I        | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          |   | ND U        |    | ND U        | ND U        |
| Dichlorodifluoromethane               | 5                   |             | U ND        |             | ND          |             | U CON U     | ND          |             | ND U        |              | ND          |             | ND          |   |             | J  |             |             |
| Ethylbenzene                          | 5                   | ND          | U ND        |             | ND          | U ND U      |             | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          |   | ND U        | J  | ND U        | ND U        |
| Isopropylbenzene                      | 5                   | ND I        | U ND        | U ND U      | ND          | U ND U      | U DI U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          |   | ND L        | J  | ND U        | ND U        |
| m&p-xylenes                           | 5                   | ND I        | U ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | 1           | ND U         | ND          | U ND U      | ND          |   | ND L        | J  | ND U        | ND U        |
| Methyl Acetate                        | NA                  | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| Methylcyclohexane                     | NA                  | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | J | ND U        | J  | ND U        | ND U        |
| Methylene chloride                    | 5                   | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| Methyl-t-butyl ether                  | NA                  | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          | J | ND U        | J  | ND U        | ND U        |
| o-Xylene                              | 5                   | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| Styrene                               | 5                   | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND I        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| Tetrachloroethene                     | 5                   | ND          | J ND        | U 1.8       | 3.5         | ND U        | J ND U      | 12          | 2.6         | ND U        | U ND U       | 1           | ND U        | ND          | J | ND L        | J  | ND U        | 4.4         |
| Toluene                               | 5                   | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | 20          |   | ND L        | J  | ND U        | ND U        |
| trans-1,2-Dichloroethene              | 5                   | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| trans-1,3-Dichloropropene             | 0.4                 | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| Trichloroethene                       | 5                   | ND          | J ND        | U 6.5       | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          | J | ND U        | J  | ND U        | ND U        |
| Trichlorofluoromethane                | 5                   | ND I        | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| Vinyl chloride                        | 2                   | ND I        | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | ND U        | U ND U       | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |
| Xylenes (Total)                       | NA                  | ND          | J ND        | U ND U      | ND          | U ND U      | J ND U      | ND          | U ND U      | 1           | ND U         | ND          | U ND U      | ND          | J | ND L        | J  | ND U        | ND U        |

 Units - ug/l
 Bold/highlighted cell – exceedance of criteria

 NS - No Standard
 Qualifiers 

 Qualifiers NA - criteria or standard not available

 R - rejected
 B - also detected in associated method blank

 J - estimated value; ND - not detected
 ND - not detected, estimated reporting limit

 NJ - positive identification of tentatively
 identified compound, estimated value

 P - greater than 40% difference between
 primary and confirmation analyses

 Criteria - Water - PART 703.5- Water Quality Standards Surface and Ground Water

| Sample ID                      | LIHA-IA-1 | L-050817   | LIHA-IA-1-050817-DUP |            |  |  |  |  |
|--------------------------------|-----------|------------|----------------------|------------|--|--|--|--|
| Lab Sample Number              | 1310      | 5-01       | 13105-02             |            |  |  |  |  |
| Sampling Date                  | 5/9/      | 2017       | 5/9/3                | 2017       |  |  |  |  |
| Constituent                    | Results   | Qualifiers | Results              | Qualifiers |  |  |  |  |
| 1,1,1-Trichloroethane          | ND        | U          | ND                   | U          |  |  |  |  |
| 1,1,2,2-Tetrachloroethane      | ND        | U          | ND                   | U          |  |  |  |  |
| 1,1,2-Trichloroethane          | ND        | U          | ND                   | U          |  |  |  |  |
| 1,1,2-Trichlorotrifluoroethane | ND        | U          | ND                   | U          |  |  |  |  |
| 1,1-Dichloroethane             | ND        | U          | ND                   | U          |  |  |  |  |
| 1,1-Dichloroethene             | ND        | U          | ND                   | U          |  |  |  |  |
| 1,2,4-Trichlorobenzene         | ND        | U          | ND                   | U          |  |  |  |  |
| 1,2,4-Trimethylbenzene         | 0.54      | J          | 1.82                 | J          |  |  |  |  |
| 1,2-Dibromoethane              | ND        | U          | ND                   | U          |  |  |  |  |
| 1,2-Dichlorobenzene            | ND        | U          | ND                   | U          |  |  |  |  |
| 1,2-Dichloroethane             | ND        | U          | ND                   | U          |  |  |  |  |
| 1,2-Dichloropropane            | ND        | U          | ND                   | U          |  |  |  |  |
| 1,3,5-Trimethylbenzene         | ND        | U          | ND                   | J          |  |  |  |  |
| 1,3-Butadiene                  | ND        | U          | ND                   | U          |  |  |  |  |
| 1,3-Dichlorobenzene            | ND        | U          | ND                   | U          |  |  |  |  |
| 1,4-Dichlorobenzene            | ND        | U          | ND                   | U          |  |  |  |  |
| 1,4-Dioxane                    | ND        | U          | ND                   | U          |  |  |  |  |
| 2,2,4-Trimethylpentane         | ND        | U          | ND                   | J          |  |  |  |  |
| 2-Butanone                     | 0.56      | J          | 0.8                  | J          |  |  |  |  |
| 2-Chlorotoluene                | ND        | U          | ND                   | U          |  |  |  |  |
| 4-Ethyltoluene                 | ND        | U          | ND                   | J          |  |  |  |  |
| 4-Methyl-2-Pentanone           | ND        | U          | ND                   | U          |  |  |  |  |
| Acetone                        | 23        |            | 17.6                 |            |  |  |  |  |
| Allyl Chloride                 | ND        | U          | ND                   | U          |  |  |  |  |
| Benzene                        | 0.61      | J          | 0.51                 | J          |  |  |  |  |
| Bromodichloromethane           | ND        | U          | ND                   | U          |  |  |  |  |
| Bromoethene                    | ND        | U          | ND                   | U          |  |  |  |  |
| Bromoform                      | ND        | U          | ND                   | U          |  |  |  |  |
| Bromomethane                   | ND        | U          | ND                   | U          |  |  |  |  |
| Carbon Disulfide               | ND        | U          | ND                   | U          |  |  |  |  |
| Carbon Tetrachloride           | 0.44      |            | 0.44                 |            |  |  |  |  |
| Chlorobenzene                  | ND        | U          | ND                   | U          |  |  |  |  |
| Chloroethane                   | ND        | U          | ND                   | U          |  |  |  |  |
| Chloroform                     | ND        | U          | ND                   | U          |  |  |  |  |
| Chloromethane                  | 1.2       |            | 1.14                 |            |  |  |  |  |
| cis-1,2-Dichloroethene         | ND        | U          | ND                   | U          |  |  |  |  |
| cis-1,3-Dichloropropene        | ND        | U          | ND                   | U          |  |  |  |  |
| Cyclohexane                    | ND        | U          | ND                   | U          |  |  |  |  |
| Dibromochloromethane           | ND        | U          | ND                   | U          |  |  |  |  |
| Dichlorodifluoromethane        | 1.04      | J          | 0.94                 | J          |  |  |  |  |
| Dichlorotetrafluoroethane      | ND        | U          | ND                   | U          |  |  |  |  |
| Ethyl Benzene                  | ND        | U          | ND                   | J          |  |  |  |  |
| Heptane                        | 0.82      | J          | 0.61                 | J          |  |  |  |  |
| Hexachloro-1,3-Butadiene       | ND        | U          | ND                   | U          |  |  |  |  |
| Hexane                         | ND        | U          | ND                   |            |  |  |  |  |
| m/p-Xylene                     | 1.35      | J          | 4.13                 | J          |  |  |  |  |
| Methyl Methacrylate            | ND        | U          | ND                   | U          |  |  |  |  |
| Methyl tert-Butyl Ether        | ND        | U          | ND                   | U          |  |  |  |  |
| Methylene Chloride             | 3.13      |            | 8.69                 |            |  |  |  |  |
| Naphthalene                    | ND        | U          | ND                   | U          |  |  |  |  |
| o-Xylene                       | ND        | U          | ND                   | J          |  |  |  |  |
| Styrene                        | ND        | U          | ND                   | U          |  |  |  |  |
| t-1,3-Dichloropropene          | ND        | U          | ND                   | U          |  |  |  |  |
| tert-Butyl alcohol             | ND        | U          | ND                   | U          |  |  |  |  |
| Tetrachloroethene              | 0.95      |            | 1.29                 |            |  |  |  |  |
| Tetrahydrofuran                | ND        | U          | ND                   | U          |  |  |  |  |
| Toluene                        | 2.37      |            | 3.13                 |            |  |  |  |  |
| trans-1,2-Dichloroethene       | ND        | U          | ND                   | U          |  |  |  |  |
| Trichloroethene                | ND        | U          | ND                   | U          |  |  |  |  |
| Trichlorofluoromethane         | 1.46      | J          | 1.4                  | J          |  |  |  |  |
| Vinyl Chloride                 | ND        | U          | ND                   | U          |  |  |  |  |
|                                |           |            |                      |            |  |  |  |  |

Units - ug/m<sup>3</sup> Qualifiers -

NA - criteria or standard not available U - Compound analyzed for, but not detected B – also detected in associated method blank

J – estimated value; ND – not detected

NDI – not detected, estimated reporting limit NJ – positive identification of tentatively identified compound, estimated value

P – greater than 40% difference between primary and confirmation analyses

| Sample ID<br>Lab Sample Number<br>Sampling Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVE-EFF<br>1310<br>5/9/2 | -050917<br>7-01<br>2017 | SVE-INF-050917<br>I3107-02<br>5/9/2017 |            |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|----------------------------------------|------------|--|--|--|--|
| Constituent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Results                  | Qualifiers              | Results                                | Qualifiers |  |  |  |  |
| 1.1.1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                       | U                       | ND                                     | U          |  |  |  |  |
| 1.1.2.2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                       | U                       | ND                                     | U          |  |  |  |  |
| 1.1.2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                       | U                       | ND                                     | U          |  |  |  |  |
| 1.1.2-Trichlorotrifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                       | U                       | ND                                     | U          |  |  |  |  |
| 1.1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                       | U                       | ND                                     | U          |  |  |  |  |
| 1 1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                       | U U                     | ND                                     | U U        |  |  |  |  |
| 1 2 4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                       | <u> </u>                | ND                                     | <u> </u>   |  |  |  |  |
| 1.2.4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                       | U                       | ND                                     | U          |  |  |  |  |
| 1 2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                       | U                       | ND                                     | U U        |  |  |  |  |
| 1 2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                       | U                       | ND                                     | U U        |  |  |  |  |
| 1.2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                       | U                       | ND                                     | U          |  |  |  |  |
| 1.2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                       | U                       | ND                                     | U          |  |  |  |  |
| 1.3.5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                       | U                       | ND                                     | U          |  |  |  |  |
| 1 3-Butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                       | U                       | ND                                     | U U        |  |  |  |  |
| 1 3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                       | U U                     | ND                                     | U U        |  |  |  |  |
| 1 4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                       | U                       | ND                                     | U U        |  |  |  |  |
| 1 4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                       | U U                     | ND                                     | U U        |  |  |  |  |
| 2 2 4-Trimethylpentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                       | U                       | 0.98                                   |            |  |  |  |  |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.32                     |                         | 2.6                                    | ,          |  |  |  |  |
| 2-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                       | J                       | 2.0                                    | 11         |  |  |  |  |
| 4 Ethyltoluopo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                       | 0                       | ND                                     | 0          |  |  |  |  |
| 4-Ethyltoldene<br>4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                       | U                       | ND                                     | U          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 22                     | 0                       | 11.6                                   | 0          |  |  |  |  |
| Allyl Chlorido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.55<br>ND               | 11                      | II.0                                   | 11         |  |  |  |  |
| Renzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                       | 0                       | 1.21                                   | 0          |  |  |  |  |
| Bromodichloromothano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                       | 0                       | 1.21<br>ND                             | J          |  |  |  |  |
| Bromosthono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                       | 0                       | ND                                     | 0          |  |  |  |  |
| Bromoetnene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                       | 0                       | ND                                     | 0          |  |  |  |  |
| Bromonothana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                       | 0                       | ND                                     | 0          |  |  |  |  |
| Carbon Disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.52                     | 0                       | ND                                     | 0          |  |  |  |  |
| Carbon Totrachlorido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.55                     | 1                       | ND                                     | 0          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                       | 0                       | ND                                     | 0          |  |  |  |  |
| Chloroothana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                       | 0                       | ND                                     | 0          |  |  |  |  |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                       | 0                       | 1.07                                   | 0          |  |  |  |  |
| Chloromothana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.66                     | 0                       | 1.07                                   | J          |  |  |  |  |
| cition of the sector of the se | 0.00                     | 1                       | 0.91                                   | J          |  |  |  |  |
| cis-1,2-Dichloropropopo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                       | 0                       | 54.7                                   |            |  |  |  |  |
| Cycloboyana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                       | 0                       | 1.06                                   | 0          |  |  |  |  |
| Dibromochloromothana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                       | 0                       | 1.90                                   |            |  |  |  |  |
| Dishlorodifluoromothano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                       | 0                       | 0.64                                   | 0          |  |  |  |  |
| Dichlorototrofluoroothana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                       | 0                       | 0.04                                   | 1          |  |  |  |  |
| Ethyl Bonzono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                       | 0                       | 1.04                                   | 0          |  |  |  |  |
| Hontono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                       | 0                       | 1.04                                   | J          |  |  |  |  |
| Heptalle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                       | 0                       | ND                                     | 0          |  |  |  |  |
| Hexachioro-1,3-Butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.62                     | 0                       | ND<br>9.11                             | U          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.05                     | 1                       | 6.09                                   |            |  |  |  |  |
| Mothyl Mothachilato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                       | 0                       | 0.06                                   |            |  |  |  |  |
| Methyl tort Butyl Ethor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                       | 0                       | ND                                     | 0          |  |  |  |  |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND<br>6.6                | 0                       | 27.0                                   | 0          |  |  |  |  |
| Naphthalana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                      | П                       | 57.9<br>ND                             |            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                       | 0                       | 2 1 2                                  | 0          |  |  |  |  |
| Sturono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | 0                       | 2.10                                   | L L        |  |  |  |  |
| 1 2 Dichloropropert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | 0                       |                                        | 0          |  |  |  |  |
| tort Rutyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | U                       | UNU<br>2 70                            | U          |  |  |  |  |
| Tetrachloroothono                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 0                       | 2.79                                   | P          |  |  |  |  |
| retrachioroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                       | U                       | 3322                                   | U          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND                 | U                       | 0.88                                   | L J        |  |  |  |  |
| rone 1.2 Dichloroethana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                       | U                       | 1.21                                   | J          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND                 | U                       |                                        | U          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                       | U                       | 54.3                                   |            |  |  |  |  |
| I ricniorotluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                       | U                       | 1.91                                   | 1          |  |  |  |  |
| vinyi Chioriae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                       | U                       | ND                                     | U          |  |  |  |  |

# Units - ug/m<sup>3</sup> Qualifiers -

NA - criteria or standard not available U - Compound analyzed for, but not detected B – also detected in associated method blank

J – estimated value; ND – not detected

NDI – not detected, estimated reporting limit NJ – positive identification of tentatively identified compound, estimated value

P – greater than 40% difference between primary and confirmation analyses

Figures





















Appendix A

**Daily Reports** 

### 2017 Quarter 2 Site Activities

4-27-2017 - Preferred conducts monthly O&M activities.

**4-27-2017** – Preferred notes metal chain surrounding primary parking lot, installed by property owner **5-23-2017** – Preferred on-site to inspect malfunctioning GWE&TS flow meter. Preferred confirms intermittent movement of flow meter but no obvious signs of pipe or drainage clog / breaks. Preferred restarts system. Issue is resolved.

**5-25-2017** - Preferred conducts monthly O&M activities. Preferred informs HDR regarding SVE knockout tank. HDR directed Preferred to drain condensate into on-site drums and sample water to determine if treatment necessary.

**6-23-2017** - Tom king (Delta) on-site to replace SVE piping from knock out tank to holding tank. Verified SVE transfer pump is working. Identified missing piping from holding tank to carbon vessel. HDR directed Delta to replace holding tank to carbon vessel piping and pump, and to identify / resolve potential cause for SVE water infiltration.

6-26-2017 - Preferred conducts monthly O&M activities.

| Project: <u>Sta</u><br>Contractors: <u>HD</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nton Cleaners - Site Management<br>R and Preferred Environmental Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          | 1                 | 6 Corpor | HDR<br>ate Woods Blvd |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|-------------------|----------|-----------------------|
| HDB Job No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          | т                 | elenhon  | 2.518 937 9500        |
| Site No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          |                   | olophon  |                       |
| HDR Project Manager: Mic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hael Lehtinen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          |                   |          |                       |
| -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          |                   |          |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DAILY REPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>RT</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                                          |                   |          |                       |
| Day: S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M T W <mark>TH</mark> F S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WEATHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bright<br>Sun                                    | Partly<br>Cloudy                         | Overcast          | Rain     | Clear                 |
| Date: 4/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | To 32                                            | 32-50                                    | 50-70             | 70-85    | 85 and up             |
| REPORT No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Light                                            | Moderate                                 | High              |          | •                     |
| PAGE No. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HUMIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dry                                              | Moderate                                 | Humid             |          |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NE                                               | NW                                       | SE                | SW       |                       |
| PREPARED BY: Der                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nnis Berthold TITLE: Site Rep.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ν                                                | S                                        | E                 | W        |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          |                   |          |                       |
| AVERAGE FIELD FORCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          |                   |          |                       |
| Name of Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hours Worked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | Remarks                                  |                   |          |                       |
| Dennis Berthold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8:00 - 15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | Preferred                                |                   |          |                       |
| Ololade Adewale (BJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8:00 - 15:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                          | Prefe             | erred    |                       |
| VISITORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          |                   |          |                       |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time (From - To)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Representing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | Remarks                                  |                   |          |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                          |                   |          |                       |
| EQUIPMENT AT THE SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I = Idle<br>3. Five Gas Meter - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W = Working<br>5. Diaphragm S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ampling F                                        | Pump - W                                 |                   |          |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ampling F<br>Tubing -                            | Pump - W<br>W                            |                   |          |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ampling F<br>Tubing -                            | Pump - W<br>W                            |                   |          |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I = Idle 3. Five Gas Meter - W 4. 100-ft Solinst - W ANCE ACTIVITIES tative: Dennis Berthold - Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>6. Tedlar Bag +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ampling F<br>Tubing -<br>Iled aroun              | Pump - W<br>W<br>d lot.                  |                   |          |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Looged system readings from f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>WE systems were on upon arrival. Air Sparge war<br>PC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W = Working<br>5. Diaphragm S<br>6. Tediar Bag +<br>6. Tediar Bag +<br>as off upon arrival. Metal chain gate insta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ampling F<br>Tubing -<br>Iled aroun              | Pump - W<br>W<br>d lot.                  |                   |          |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on started on site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>VE systems were on upon arrival. Air Sparge war<br>PC.<br>system and catwalk, flow sensor malfunction. Spor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar B | ampling F<br>Tubing -<br>Iled aroun              | Pump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged System readings from F<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>VE systems were on upon arrival. Air Sparge wa<br>PC.<br>ystem and catwalk, flow sensor malfunction. Spo<br>-042717".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>1. Shutdow<br>1. Shutdow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ampling F<br>Tubing -<br>Iled aroun<br>n & bleed | Pump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Effluent GW "EFF-GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>VE systems were on upon arrival. Air Sparge war<br>PC.<br>ystem and catwalk, flow sensor malfunction. Spo<br>-042717".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>1. Shutdow<br>1. Shutdow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ampling F<br>Tubing -<br>Iled aroun<br>n & bleed | Pump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Effluent GW "EFF-GW<br>9:02 - GWTS (RW-2) offline - began of<br>9:02 - GWTS (RW-2) offline - began of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>Lative: Dennis Berthold - Preferred<br>WE systems were on upon arrival. Air Sparge war<br>PC.<br>System and catwalk, flow sensor malfunction. Spc<br>-042717".<br>V-042717".<br>Training of system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar B | ampling F<br>Tubing -<br>Iled aroun              | Pump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Effluent GW "EFF-GW<br>9:02 - GWTS (RW-2) offline - began of<br>9:20 - 10:15 - Preferred gauged all SY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>WE systems were on upon arrival. Air Sparge wa<br>PC.<br>ystem and catwalk, flow sensor malfunction. Spo<br>-042717".<br>V-042717".<br>Y-042717".<br>Braining of system.<br>KE ports with VelociCalc and MiniRAE 5 gas mel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W = Working<br>5. Diaphragm S<br>6. Tediar Bag +<br>6. Tediar B | iampling F<br>Tubing -<br>Iled aroun             | Dump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on si<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Influent GW "EFF-GW<br>9:02 - GWTS (RW-2) offline - began G<br>9:20 - 10:15 - Preferred gauged all Si<br>10:25 - SVE system shut down, oil ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>VE systems were on upon arrival. Air Sparge with<br>PC.<br>system and catwalk, flow sensor malfunction. Spc<br>-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717 | W = Working<br>5. Diaphragm S<br>6. Tediar Bag +<br>6. Tediar B | ampling F<br>Tubing -<br>Iled aroun              | Dump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from Heiston s<br>8:30 - Took readings from meter on s<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Effluent GW "EFF-GW<br>9:02 - GWTS (RW-2) offline - began of<br>9:20 - 10:15 - Preferred gauged all SV<br>10:25 - SVE system restarted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>VE systems were on upon arrival. Air Sparge war<br>PC.<br>ystem and catwalk, flow sensor malfunction. Spo<br>-042717".<br>V-042717".<br>V-042717".<br>Training of system.<br>/E ports with VelociCalc and MiniRAE 5 gas mel<br>ange performed. 4.5 oz oil replaced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar B | ampling F<br>Tubing -<br>Iled aroun              | Dump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call. | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Effluent GW "EFF-GW<br>9:02 - GWTS (RW-2) offline - began of<br>9:20 - 10:15 - Preferred gauged all SV<br>10:25 - SVE system restarted.<br>10:37 - Started monitoring well gauging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>Native: Dennis Berthold - Preferred<br>VE systems were on upon arrival. Air Sparge wa<br>PC.<br>yestem and catwalk, flow sensor malfunction. Spo<br>-042717".<br>V-042717".<br>Y-042717".<br>Jraining of system.<br>JE ports with VelociCalc and MiniRAE 5 gas mel<br>ange performed. 4.5 oz oil replaced.<br>ang under Task 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar B | ampling F<br>Tubing -<br>Iled aroun              | Pump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. CWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>9:02 - GWTS (RW-2) offline - began of<br>9:02 - 10:15 - Preferred gauged all SV<br>10:25 - SVE system restarted.<br>10:37 - Started monitoring well gaugin<br>10:40 - Preferred performing housekee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>VE systems were on upon arrival. Air Sparge wa<br>PC.<br>ystem and catwalk, flow sensor malfunction. Spo<br>-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>Training of system.<br>//E ports with VelociCalc and MiniRAE 5 gas mel<br>ange performed. 4.5 oz oil replaced.<br>ang under Task 4.<br>eping in and around system shed, Continued bil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar B | ampling F<br>Tubing -<br>Iled aroun              | Pump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly 0&M started.<br>8:10 - Logged system readings from Ff<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Elfluent GW "INF-GW<br>8:52 - Sampled Elfluent GW "INF-GW<br>9:02 - GWTS (RW-2) offline - began or<br>9:02 - 10:15 - Preferred gauged all SV<br>10:25 - SVE system restarted.<br>10:37 - Started monitoring well gaugin<br>10:40 - Preferred performing houseket<br>11:00 - Began draining knock-out tani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>WE systems were on upon arrival. Air Sparge wa<br>PC.<br>ystem and catwalk, flow sensor malfunction. Spo<br>-042717".<br>V-042717".<br>Training of system.<br>VE ports with VelociCalc and MiniRAE 5 gas met<br>ange performed. 4.5 oz oil replaced.<br>mg under Task 4.<br>teping in and around system shed, Continued blic<br>to SVE (Tank no longer attached to transfer pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W = Working<br>5. Diaphragm S<br>6. Tediar Bag +<br>6. Tediar Bag +<br>6. Tediar Bag +<br>10.              | ampling F<br>Tubing -<br>Iled aroun              | Dump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from f<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Effluent GW "EFF-GW<br>9:02 - GWTS (RW-2) offline - began of<br>9:20 - 10:15 - Preferred gauged all SY<br>10:25 - SVE system started.<br>10:37 - Started monitoring well gaugin<br>10:40 - Preferred performing houseket<br>11:00 - Began draining knock-out tant<br>12:00 - 12:30 - Preferred on lunch breacher<br>12:00 - 12:30 - Preferred on lunch breacher<br>12:00 - 12:30 - Preferred on lunch breacher<br>12:00 - 12:30 - Preferred on lunch breacher<br>10:37 - Started monitoring knock-out tant<br>12:00 - 12:30 - Preferred on lunch breacher<br>12:00 - 12:30 - Preferred on lunch breacher<br>13:00 - Preferred b | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>WE systems were on upon arrival. Air Sparge with<br>PC.<br>System and catwalk, flow sensor malfunction. Spon-<br>042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-042717".<br>U-04271 | W = Working<br>5. Diaphragm S<br>6. Tediar Bag +<br>6. Tediar B | ampling F<br>Tubing -<br>Iled aroun              | Dump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on si<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Effluent GW "EFF-GV<br>9:02 - GWTS (RW-2) offline - began G<br>9:20 - 10:15 - Preferred gauged all SV<br>10:25 - SVE system shut down, oil ch<br>10:35 - SVE system restarted.<br>10:37 - Started monitoring well gaugir<br>10:40 - Preferred performing houseke<br>11:00 - Began draining knock-out tant<br>11:200 - 12:30 - Preferred on lunch bre<br>12:40 - Restarted GWTS, Effluent and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>VE systems were on upon arrival. Air Sparge with<br>PC.<br>System and catwalk, flow sensor malfunction. Spec-<br>042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>V-042717".<br>Je ports with VelociCalc and MiniRAE 5 gas met<br>ange performed. 4.5 oz oil replaced.<br>Ing under Task 4.<br>eping in and around system shed, Continued blick<br>to SVE (Tank no longer attached to transfer pu-<br>tak.<br>d RW-2 gauge working.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar B | ampling F<br>Tubing -<br>Iled aroun              | Dump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>9:02 - GWTS (RW-2) offline - began of<br>9:20 - 10:15 - Preferred gauged all SY<br>10:25 - SVE system restarted.<br>10:37 - Started monitoring well gaugir<br>10:40 - Preferred performing houseke<br>11:00 - Began draining knock-out tanh<br>12:00 - 12:30 - Preferred on lunch bref<br>12:40 - Restarted GWTS, Effluent and<br>13:11 - Resampled Effluent GW "EFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative : Dennis Berthold - Preferred<br>VE systems were on upon arrival. Air Sparge war<br>2C.<br>ystem and catwalk, flow sensor malfunction. Spon-<br>042717".<br>V-042717".<br>V-042717".<br>Training of system.<br>//E ports with VelociCalc and MiniRAE 5 gas mel<br>ange performed. 4.5 oz oil replaced.<br>mg under Task 4.<br>leping in and around system shed, Continued ble<br>k to SVE (Tank no longer attached to transfer purak.<br>d RW-2 gauge working.<br>-GW-0422717".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>10. T             | ampling F<br>Tubing -<br>Iled aroun<br>n & bleed | Pump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from F<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>9:02 - GWTS (RW-2) offline - began of<br>9:02 - 10:15 - Preferred gauged all SV<br>10:25 - SVE system restarted.<br>10:37 - Started monitoring well gaugin<br>10:40 - Preferred performing houseket<br>11:00 - Began draining knock-out tant<br>12:40 - Restarted GWTS, Effluent tant<br>13:11 - Resampled Effluent GW "EFF-<br>13:14 - Resampled Influent GW "INF-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>Extrema Section 2014<br>Construction 2014<br>WE systems were on upon arrival. Air Sparge was a section 2014<br>WE systems were on upon arrival. Air Sparge was a section 2014<br>We applied to the section 2014<br>PC.<br>System and catwalk, flow sensor malfunction. Spone 2014<br>PC.<br>PC.<br>System and catwalk, flow sensor malfunction. Spone 2014<br>PC.<br>System and catwalk, flow sensor malfunction. Spon                                                                                                                                                                                                                                                                 | W = Working<br>5. Diaphragm S<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>6. Tedlar Bag +<br>16. T             | ampling F<br>Tubing -<br>Iled aroun<br>n & bleed | Pump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |
| EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTEN/<br>HDR/Preferred Site Represent<br>8:00 - Preferred on site. GWTS and S<br>8:05 - Monthly O&M started.<br>8:10 - Logged system readings from Ff<br>8:30 - Took readings from meter on sy<br>8:49 - Sampled Influent GW "INF-GW<br>8:52 - Sampled Effluent GW "INF-GW<br>9:02 - GWTS (RW-2) offline - began of<br>9:02 - 10:15 - Preferred gauged all SS<br>10:25 - SVE system restarted.<br>10:37 - Started monitoring well gaugin<br>10:40 - Preferred performing houseket<br>11:00 - Began draining knock-out tani<br>12:20 - 12:30 - Preferred on Unch Dref<br>12:40 - Restarted GWTS, Effluent GW "EFF-<br>13:14 - Resampled Effluent GW "EFF-<br>13:14 - Resampled Effluent GW "INF-<br>13:28 - 14:51 - Gauging monitoring wellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W<br>ANCE ACTIVITIES<br>tative: Dennis Berthold - Preferred<br>WE systems were on upon arrival. Air Sparge wa<br>PC.<br>ystem and catwalk, flow sensor malfunction. Spon<br>-042717".<br>V-042717".<br>Ge ports with VelociCalc and MiniRAE 5 gas met<br>ange performed. 4.5 oz oil replaced.<br>Ing under Task 4.<br>to SVE (Tank no longer attached to transfer puration<br>to SVE (Tank no longer attached to transfer puration<br>ARC 2000-042717".<br>GW-042717".<br>GW-042717".<br>GW-042717".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W = Working<br>5. Diaphragm S<br>6. Tediar Bag +<br>6. Tediar Bag +<br>6. Tediar Bag +<br>10.              | ampling F<br>Tubing -<br>Iled aroun<br>n & bleed | Dump - W<br>W<br>d lot.<br>GWTS, clear s | and filter, call  | back.    |                       |

x - Designates report is continued on additional pages

HDR/Preferred Site Representative:

Dennis Berthold (Preferred)

Project Manager: M. Lehtinen

| Project: <u>Stanton</u><br>Contractors: <u>HDR an</u><br>HDR Job No:<br>Site No: | Cleaners - Site Management<br>d Preferred Environmental Services |                            |                   |               |                  | 1)<br>T       | 6 Corpo<br>A<br>elephon | HDR<br>rate Woods Blvd<br>Ibany, NY 12211<br>e: 518.937.9500 |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|-------------------|---------------|------------------|---------------|-------------------------|--------------------------------------------------------------|--|
| TIDITI TOJECI Manager. Michael                                                   | DAILY REPO                                                       | DRT                        |                   |               |                  |               |                         |                                                              |  |
| Day: S                                                                           | M T W TH F S                                                     | ]                          | WEATHER           | Bright<br>Sun | Partly<br>Cloudy | Overcast      | Rain                    | Clear                                                        |  |
| Date: 23-May                                                                     | 17                                                               | _                          | TEMP              | To 32         | 32-50            | 50-70         | 70-85                   | 85 and up                                                    |  |
| REPORT No.                                                                       |                                                                  | _                          | WIND              | Light         | Moderate         | High          |                         |                                                              |  |
| PAGE No. 1                                                                       |                                                                  | _                          | HUMIDITY          | Dry           | Moderate         | Humid         |                         |                                                              |  |
|                                                                                  |                                                                  |                            | WIND DIR          | NE            | NW               | SE            | SW                      |                                                              |  |
| PREPARED BY: Daniel F                                                            | risco-Buxbaum IIILE: Site Rep.                                   | -                          |                   | N             | S                | E             | W                       |                                                              |  |
| AVERAGE FIELD FORCE                                                              |                                                                  |                            |                   |               |                  |               |                         |                                                              |  |
| Name of Contractor                                                               | Name of Contractor Title Hours Worked                            |                            |                   |               | Bemarks          |               |                         |                                                              |  |
| Daniel Prisco-Buxbaum                                                            | Site Representative                                              | 9:45-                      | 10:40             |               | Preferred        |               |                         |                                                              |  |
| VISITORS                                                                         | Time (From - To)                                                 | Benres                     | senting           |               |                  | Bem           | arks                    |                                                              |  |
| Name                                                                             |                                                                  | nepres                     | senting           |               |                  | псп           | aiko                    |                                                              |  |
| EQUIPMENT AT THE SITE<br>1. Camera - W                                           | I = Idle                                                         | W = Working                |                   |               |                  |               |                         |                                                              |  |
| OPERATION & MAINTENANO<br>HDR/Preferred Site Representative                      | CE ACTIVITIES<br>re: Daniel Prisco-Buxbaum - Prefer              | red                        |                   |               |                  |               |                         |                                                              |  |
|                                                                                  | DESCRIPTION OF                                                   |                            |                   | RVFD          |                  |               |                         |                                                              |  |
| 9:45 - Preferred on-site, SVE system and                                         | GWTS system running upon arrival. BW-                            | 2 running on "hand".       | AND ODOL          |               |                  |               |                         |                                                              |  |
| 9:50 - Began inspecting piping associated                                        | with GWTS. No leaks or damage to pipin                           | a noted. Strainers observe | d to be free of s | ediment.      | Influent flow me | eter observed | to be "flut             | terina" but not                                              |  |
| spinning. Effluent flow meter shows 2,584                                        | GPH (~43 GPM).                                                   | 5                          |                   |               |                  |               |                         | J J                                                          |  |
| 10:20 - Turned off RW-2.                                                         |                                                                  |                            |                   |               |                  |               |                         |                                                              |  |
| 10:25 -Turned on RW-2                                                            |                                                                  |                            |                   |               |                  |               |                         |                                                              |  |
| 10:30 - Influent flow meter functioning nor                                      | mally and reading approximately 58 GPM                           |                            |                   |               |                  |               |                         |                                                              |  |
| 10:40 - Preferred off-site                                                       |                                                                  |                            |                   |               |                  |               |                         |                                                              |  |
|                                                                                  |                                                                  |                            |                   |               |                  |               |                         |                                                              |  |
|                                                                                  | - Design                                                         | ates report is continued   | on additional p   | ages          |                  |               |                         |                                                              |  |

HDR/Preferred Site Representative:

Daniel Prisco-Buxbaum

Project Manager: M. Lehtinen

| Project: <u>Sta</u><br>Contractors: <u>HD</u><br>HDR Job No:<br>Site No: | Inton Cleaners - Site Management<br>IR and Preferred Environmental Services                                                                    |                                              |               |                  | 1<br>T        | 6 Corpo<br>A<br>elephon | HDR<br>rate Woods Blvd<br>Ibany, NY 12211<br>e: 518.937.9500 |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|------------------|---------------|-------------------------|--------------------------------------------------------------|--|--|
| HDR Project Manager: Mic                                                 | chael Lehtinen                                                                                                                                 |                                              |               |                  |               |                         |                                                              |  |  |
|                                                                          |                                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |
|                                                                          | DAILY REPOI                                                                                                                                    | <u>RT</u>                                    |               |                  |               |                         |                                                              |  |  |
| Day: S                                                                   | M T W <mark>TH</mark> F S                                                                                                                      | WEATHER                                      | Bright<br>Sun | Partly<br>Cloudy | Overcast      | Rain                    | Clear                                                        |  |  |
| Date: 5/2                                                                | 25/2017                                                                                                                                        | TEMP                                         | To 32         | 32-50            | 50-70         | 70-85                   | 85 and up                                                    |  |  |
| REPORT No.                                                               |                                                                                                                                                | WIND                                         | Light         | Moderate         | High          |                         |                                                              |  |  |
| PAGE No. 1                                                               |                                                                                                                                                | HUMIDITY                                     | Dry           | Moderate         | Humid         |                         |                                                              |  |  |
|                                                                          |                                                                                                                                                |                                              | NÉ            | NW               | SE            | SW                      |                                                              |  |  |
| PREPARED BY: De                                                          | nnis Berthold TITLE: Site Rep.                                                                                                                 | WIND DIR                                     | Ν             | S                | E             | W                       |                                                              |  |  |
|                                                                          |                                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |
| AVERAGE FIELD FORCE                                                      |                                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |
| Name of Contractor                                                       | Title                                                                                                                                          | Hours Worked                                 | Hours Worked  |                  |               | Remarks                 |                                                              |  |  |
| Dennis Berthold                                                          | Technician                                                                                                                                     | 8:00 - 13:40                                 | 8:00 - 13:40  |                  |               | Preferred               |                                                              |  |  |
| John Zator                                                               | Technician                                                                                                                                     | 8:00 - 13:40                                 |               |                  | Pref          | erred                   |                                                              |  |  |
| VISITORS                                                                 |                                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |
| Name                                                                     | Time (From - To)                                                                                                                               | Representing                                 | Representing  |                  |               | Remarks                 |                                                              |  |  |
|                                                                          |                                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |
| EQUIPMENT AT THE SITI                                                    | E I = Idle                                                                                                                                     | W = Working                                  |               | Durana M/        | 1             |                         |                                                              |  |  |
| 2. VelociCalc - TSI 8386 - W                                             | Jamera - W 3. Hrve Gas Meter - W 5. Diaphragm Sampling Hump - W<br>VelociCale - TSI 8386 - W 64 100-ft Soling + U 65 College - TVI and TVI - W |                                              |               |                  |               |                         |                                                              |  |  |
|                                                                          |                                                                                                                                                | ••••••••••••••••••••••••••••••••••••••       |               |                  |               |                         |                                                              |  |  |
| <b>OPERATION &amp; MAINTEN</b>                                           | ANCE ACTIVITIES                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |
| HDR/Preferred Site Represen                                              | tative: Dennis Berthold - Preferred                                                                                                            |                                              |               |                  |               |                         |                                                              |  |  |
| · · · ·                                                                  |                                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |
| 8:00 - Preferred on site. GWTS and S                                     | SVE systems were on upon arrival. Air Sparge wa                                                                                                | as off upon arrival. Metal chain gate instal | led aroun     | d lot.           |               |                         |                                                              |  |  |
| 8:05 - Monthly O&M started.                                              |                                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |
| 8:10 - Logged system readings from                                       | PC.                                                                                                                                            |                                              |               |                  |               |                         |                                                              |  |  |
| 8:20 - Slow leak observed near influe                                    | nt flow meter. Patched leak with plumber's putty.                                                                                              |                                              |               |                  |               |                         |                                                              |  |  |
| 8:30 - Took readings from meters on                                      | system and catwalk.                                                                                                                            |                                              |               |                  |               |                         |                                                              |  |  |
| 8:36 - Sampled Influent GW INF-GW                                        |                                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |
| 8:39 - Sampled Enluent GW "EFF-GV                                        | V-052517                                                                                                                                       |                                              | 4 m           |                  |               |                         | a site and seconds                                           |  |  |
| 8:50 - Call with J. Starr from HDR reg                                   | arding SVE System Knockout (K.O.) Tank. Was I                                                                                                  | instructed to shut down the system, drain    | the cond      | ensate within tr | ne K.O. Tanki | o arums c               | on-site and sample                                           |  |  |
| 8:55 - SVE system shut down, oil cha                                     | ande performed 5.0 oz oil replaced. Drained conc                                                                                               | densate from K.O. Tank to drums utilizing    | transfor      | numn             |               |                         |                                                              |  |  |
| 9:00 - Performed bousekeeping in an                                      | d around the system shed, including the removal                                                                                                | of overgrowth along the rear and side of     | the syste     | am shed          |               |                         |                                                              |  |  |
| 9:17 - Sampled condensate water fro                                      | m K O Tank "EEE-SVE-GW-052517"                                                                                                                 | of overgrowth along the real and side of     | the syste     | in shea.         |               |                         |                                                              |  |  |
| 11:00 - 11:52 - Performed monitoring                                     | well gauging under Task 4                                                                                                                      |                                              |               |                  |               |                         |                                                              |  |  |
| 12:30 - K.O. Tank emptied completely                                     | v. and SVE system restarted. All overgrowth clear                                                                                              | red.                                         |               |                  |               |                         |                                                              |  |  |
| 12:30 - 12:50 - Preferred on lunch bre                                   | eak.                                                                                                                                           |                                              |               |                  |               |                         |                                                              |  |  |
| 12:50 - 13:35 - Preferred gauged all S                                   | SVE ports with VelociCalc and MiniRAE 5 das me                                                                                                 | eter.                                        |               |                  |               |                         |                                                              |  |  |
| 13:37 - O&M activities completed                                         | ,                                                                                                                                              |                                              |               |                  |               |                         |                                                              |  |  |
|                                                                          |                                                                                                                                                |                                              |               |                  |               |                         |                                                              |  |  |

x - Designates report is continued on additional pages

HDR/Preferred Site Representative:

Dennis Berthold (Preferred)

Project Manager: M. Lehtinen
| Project: <u>Star</u><br>Contractors: HDF<br>HDR Job No:<br>Site No:<br>HDR Project Manager: <u>Mic</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nton Cleaners - Site Management<br>R and Preferred Environmental Services<br>hael Lehtinen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                           | 1)<br>T  | 6 Corpor<br>Al<br>elephon | HDR<br>rate Woods Blvd<br>Ibany, NY 12211<br>e: 518.937.9500 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|----------|---------------------------|--------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DAILY REPOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                           |          |                           |                                                              |
| Day: S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M T W TH F S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEATHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bright<br>Sun                                                | Partly<br>Cloudy          | Overcast | Rain                      | Clear                                                        |
| Date: 6/26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | To 32                                                        | 32-50                     | 50-70    | <b>70-85</b>              | 85 and up                                                    |
| REPORT No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Light                                                        | Moderate                  | High     |                           | -                                                            |
| PAGE No. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HUMIDITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dry                                                          | Moderate                  | Humid    |                           |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NE                                                           | NW                        | SE       | SW                        |                                                              |
| PREPARED BY: John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Zator TITLE: Site Rep.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ν                                                            | S                         | E        | W                         |                                                              |
| AVERAGE FIELD FORCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>T</b> 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                           | Base     |                           |                                                              |
| Name of Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tashnisian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                           | Rem      | arks                      |                                                              |
| John Zator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7:45 - 11:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |                           | Prete    | arred                     |                                                              |
| VISITORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                           |          |                           |                                                              |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time (From - To)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Representing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |                           | Rem      | arks                      |                                                              |
| Name<br>EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time (From - To)<br>I = Idle<br>3. Five Gas Meter - W<br>4. 100-ft Solinst - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Representing<br>W = Working<br>[5. Diaphragm<br>6. Tediar Bag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sampling F<br>+ Tubing -                                     | Pump - W<br>W             | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Time (From - To) I = Idle 3. Five Gas Meter - W 4. 100-ft Solinst - W ANCE ACTIVITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Representing<br>W = Working<br>5. Diaphragm<br>6. Tedlar Bag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sampling I<br>+ Tubing -                                     | Pump - W<br>W             | Rem      | arks                      | ]                                                            |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Representa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time (From - To)         I = Idle         3. Five Gas Meter - W         4. 100-ft Solinst - W         ANCE ACTIVITIES         rative: John Zator - Preferred                                                                                                                                                                                                                                                                                                                                                                                                                                               | Representing<br>W = Working<br>5. Diaphragm 9<br>6. Tedlar Bag -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sampling I<br>+ Tubing -                                     | Pump - W<br>W             | Rem      | arks                      |                                                              |
| Name<br>EQUIPMENT AT THE SITE<br>1. Camera - W<br>2. VelociCalc - TSI 8386 - W<br>OPERATION & MAINTENA<br>HDR/Preferred Site Represent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time (From - To)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Representing<br>W = Working<br>[5. Diaphragm 3<br>[6. Tedlar Bag -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sampling I<br>+ Tubing -                                     | Pump - W<br>W             | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Represent           7:45 - Preferred on site. GWTS and S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time (From - To)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Representing<br>W = Working<br>5. Diaphragm<br>6. Tediar Bag<br>6. Tediar Bag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sampling I<br>+ Tubing -<br>alled arour                      | Pump - W<br>W             | Rem      | arks                      |                                                              |
| Name EQUIPMENT AT THE SITE Camera - W VelociCalc - TSI 8386 - W OPERATION & MAINTENA HDR/Preferred Site Represent 7:45 - Preferred on site. GWTS and S 7:50 - Monthly Q&M started. Housekee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time (From - To)  I = Idle  3. Five Gas Meter - W  4. 100-ft Solinst - W  ANCE ACTIVITIES  ative: John Zator - Preferred  VE systems were on upon arrival. Air Sparge wa poing was performed in and around the systems see                                                                                                                                                                                                                                                                                                                                                                                 | Representing<br>W = Working<br>5. Diaphragm 5<br>6. Tediar Bag<br>6. Tediar Bag<br>is off upon arrival. Metal chain gate insta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sampling f<br>+ Tubing -<br>alled arour<br>h.                | Pump - W<br>W             | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Representa           7:45 - Preferred on site. GWTS and S'           7:50 - Monthly O&M started. Housekee           8:30 - Logged system readings from P           2:40         Text eventment                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time (From - To)         I = Idle         3. Five Gas Meter - W         4. 100-ft Solinst - W         ANCE ACTIVITIES         sative: John Zator - Preferred         VE systems were on upon arrival. Air Sparge wa         eping was performed in and around the system s         20.                                                                                                                                                                                                                                                                                                                     | Representing<br>W = Working<br>5. Diaphragm 5<br>6. Tediar Bag -<br>6. Tediar Bag -<br>15. Diaphragm 5<br>6. Tediar Bag -<br>16. Tedia                                             | Sampling !<br>+ Tubing -<br>alled arour<br>h.                | Pump - W<br>W             | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Representa           7:45 - Preferred on site. GWTS and S'           7:50 - Monthly Q&M started. Housekee           8:30 - Logged system readings from P           8:40 - Took readings from meters on s           8:45 - Or De Deformed rearred of SV                                                                                                                                                                                                                                                                                                                                                                                  | Time (From - To)  I = Idle  3. Five Gas Meter - W  4. 100-ft Solinst - W  ANCE ACTIVITIES  ative: John Zator - Preferred  VE systems were on upon arrival. Air Sparge wa eping was performed in and around the systems sec.  system and catwalk.  Sech. State Preferred MisiDAE 5 accents                                                                                                                                                                                                                                                                                                                  | Representing<br>W = Working<br>5. Diaphragm 5<br>6. Tedlar Bag<br>6. Tedlar Bag<br>15. Diaphragm 5<br>16. Tedlar Bag<br>16. Tedlar Bag<br>16. Tedlar Bag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sampling !<br>+ Tubing -<br>alled arour<br>h.                | Pump - W<br>W<br>id lot.  | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Represent           7:59 - Monthly Q&M started. Housekee           8:30 - Logged system readings from P           8:40 - Took readings from meters on s           8:45 - 9:50 - Preferred gauged all SVE                                                                                                                                                                                                                                                                                                                                                                                                                                | Time (From - To)  I = Idle  3. Five Gas Meter - W  4. 100-ft Solinst - W  ANCE ACTIVITIES  ative: John Zator - Preferred  VE systems were on upon arrival. Air Sparge wa eping was performed in and around the system s  C.  system and catwalk. Eports with VelociCalc and MiniRAE 5-gas meter I Combined                                                                                                                                                                                                                                                                                                 | Representing<br>W = Working<br>[5. Diaphragm<br>[6. Tediar Bag<br>[6.                  | Sampling k<br>+ Tubing -<br>alled arour<br>n.                | Pump - W<br>W<br>Id lot.  | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Represent:           7:45 - Preferred on site. GWTS and S'           7:50 - Monthly O&M started. Housekee           8:30 - Logged system readings from P           8:40 - Took readings from meters on s           8:45 - 9:50 - Preferred gauged all SVE           9:50 - Drained condensate from SVE-           9:000 - Somelad Effluent CW, "EEE GI                                                                                                                                                                                                                                                                                  | Time (From - To)  I = Idle  3. Five Gas Meter - W  4. 100-ft Solinst - W  ANCE ACTIVITIES  ative: John Zator - Preferred  VE systems were on upon arrival. Air Sparge wa eping was performed in and around the system s  CC.  system and catwalk.  E ports with VelociCalc and MiniRAE 5-gas meter 1 Combined.                                                                                                                                                                                                                                                                                             | Representing<br>W = Working<br>5. Diaphragm 5<br>6. Tedlar Bag<br>6. Tedlar bag<br>7. Tedla | Sampling I<br>⊢ Tubing -<br>alled arour<br>h.                | Pump - W<br>W<br>id lot.  | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Represent           7:45 - Preferred on site. GWTS and S'           7:50 - Monthly O&M started. Housekee           8:30 - Logged system readings from P           8:40 - Took readings from meters on s           8:45 - 9:50 - Preferred gauged all SVE           9:50 - Drained condensate from SVE-           10:00 - Sampled Effluent GW "EFF-GI           10:00 - Sampled Effluent GW "EFF-GI                                                                                                                                                                                                                                      | Time (From - To)  I = Idle  3. Five Gas Meter - W 4. 100-ft Solinst - W  ANCE ACTIVITIES  ative: John Zator - Preferred  VE systems were on upon arrival. Air Sparge wa eping was performed in and around the system s PC. system and catwalk.  E ports with VelociCalc and MiniRAE 5-gas meter 1 Combined. W -62e177.                                                                                                                                                                                                                                                                                     | Representing<br>W = Working<br>5. Diaphragm 5<br>6. Tediar Bag<br>6. Tediar Bag<br>15. Diaphragm 5<br>16. Tediar Bag<br>16. Tediar Bag<br>16. Tediar Bag<br>16. Tediar Bag<br>16. Tediar Bag<br>16. Tediar Bag<br>16. Tediar Bag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sampling I<br>⊢ Tubing -<br>alled arour<br>h.                | Pump - W<br>W             | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Representation           7:45 - Preferred on site. GWTS and St           7:50 - Monthly O&M started. Housekee           8:30 - Logged system readings from P           8:45 - 9:50 - Preferred gauged all SVE           9:50 - Drained condensate from SVE-10:00 - Sampled Effluent GW "EFF-GN           10:07 - SVE system shut down. Draine                                                                                                                                                                                                                                                                                           | I = Idle         3. Five Gas Meter - W         4. 100-ft Solinst - W         ANCE ACTIVITIES         sative: John Zator - Preferred         VE systems were on upon arrival. Air Sparge wa         eping was performed in and around the system s         °C.         system and catwalk.         E ports with VelociCalc and MiniRAE 5-gas meter         1 Combined.         W-62617".         ed condensate which had collected in SVE-1 Conv                                                                                                                                                            | Representing<br>W = Working<br>5. Diaphragm 5<br>6. Tediar Bag -<br>6. Tediar Bag -<br>16. Ted                                             | Sampling I<br>⊢ Tubing -<br>alled arour<br>h.                | Pump - W<br>W             | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Representa           7:50 - Monthly Q&M started. Housekee           8:30 - Logged system readings from P           8:45 - 9:50 - Preferred gauged all SVE           9:50 - Drained condensate from SVE-10:00 - Sampled Effluent GW "EFF-G           10:07 - SVE system shut down. Draine           10:10 - Sampled Influent GW "INF-GW                                                                                                                                                                                                                                                                                                  | Time (From - To)  I = Idle  3. Five Gas Meter - W 4. 100-ft Solinst - W  ANCE ACTIVITIES  Tative: John Zator - Preferred  VE systems were on upon arrival. Air Sparge wa eping was performed in and around the systems s 2C. system and catwalk. E ports with VelociCalc and MiniRAE 5-gas meter 1 Combined. W-62617*. ed condensate which had collected in SVE-1 Con V-62617*.                                                                                                                                                                                                                            | Representing<br>W = Working<br>5. Diaphragm 5<br>6. Tediar Bag -<br>6. Tediar Bag -<br>15. Diaphragm 5<br>6. Tediar Bag -<br>16. Tedia                                             | Sampling I<br>→ Tubing -<br>alled arour<br>n.                | Pump - W<br>W             | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Represent:           7:50 - Monthly Q&M started. Housekee           8:30 - Logged system readings from P           8:40 - Took readings from meters on s           8:45 - 9:50 - Preferred gauged all SVE           9:50 - Drained condensate from SVE-1           10:00 - Sampled Effluent GW "IFF-GI           10:07 - SVE system shut down. Draine           10:10 - Sampled Influent GW "INF-GW           10:25 - Oil change performed on blow           10:20 - Canead blowurt                                                                                                                                                     | Time (From - To)         I = Idle         3. Five Gas Meter - W         4. 100-ft Solinst - W         ANCE ACTIVITIES         tative: John Zator - Preferred         VE systems were on upon arrival. Air Sparge wa<br>eping was performed in and around the system s<br>2C.         system and catwalk.         ports with VelociCalc and MiniRAE 5-gas meter         1 Combined.         W-62617".         ed condensate which had collected in SVE-1 Conv-<br>V-62617".         er. 5.0 oz oil replaced.                                                                                                | Representing<br>W = Working<br>[5. Diaphragm<br>6. Tediar Bag<br>6. Tediar Bag<br>7. Tediar | Sampling f<br>+ Tubing -<br>alled arour<br>h.                | Pump - W<br>W<br>id lot.  | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Represent           7:50 - Nonthly O&M started. Housekee           8:30 - Logged system readings from P           9:50 - Took readings from meters on s           8:45 - 9:50 - Preferred gauged all SVE           9:50 - Drained condensate from SVE-           10:07 - SVE system shut down. Draine           10:10 - Sampled Influent GW "INF-GW           10:25 - Oil change performed on blower.           10:26 - Oil/C = outpreschedd                                                                                                                                                                                            | Time (From - To)         I = Idle         3. Five Gas Meter - W         4. 100-ft Solinst - W         ANCE ACTIVITIES         tative: John Zator - Preferred         VE systems were on upon arrival. Air Sparge wa         peling was performed in and around the system s         °C.         system and catwalk.         E ports with VelociCalc and MiniRAE 5-gas meter         1 Combined.         W-62617".         ed condensate which had collected in SVE-1 Cor         V-62617".         rer. 5.0 oz oil replaced.                                                                               | Representing W = Working 5. Diaphragm 6. Tedlar Bag 6. Tedlar Bag is off upon arrival. Metal chain gate insta shed including the removal of overgrowth r. mbined piping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sampling I<br>Tubing -<br>Illed arour<br>h.                  | Pump - W<br>W<br>Id lot.  | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Represent           7:45 - Preferred on site. GWTS and S'           7:50 - Monthly O&M started. Housekee           8:30 - Logged system readings from P           8:40 - Took readings from meters on s           8:45 - 9:50 - Preferred gauged all SVE           9:50 - Drained condensate from SVE-           10:00 - Sampled Effluent GW "EFF-G!           10:10 - Sampled Influent GW "INF-GW           10:25 - Oil change performed on blow           10:30 - Greased blower.           10:30 - Greased blower.                                                                                                                   | Time (From - To)         I = Idle         3. Five Gas Meter - W         4. 100-ft Solinst - W         ANCE ACTIVITIES         taitve: John Zator - Preferred         VE systems were on upon arrival. Air Sparge was performed in and around the system s 2°C.         system and catwalk.         E ports with VelociCalc and MiniRAE 5-gas meter         1 Combined.         W-62617".         ed condensate which had collected in SVE-1 Conv-62617".         er, 5.0 oz oil replaced.                                                                                                                  | Representing W = Working 5. Diaphragm 5 6. Tediar Bag 6. Tediar Bag 5. Diaphragm 5 6. Tediar Bag 6.                                                                                                                                                                                                                                                                                  | Sampling I<br>⊢ Tubing -<br>Illed arour<br>h.                | Pump - W<br>W<br>Id lot.  | Rem      | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Representation           7:45 - Preferred on site. GWTS and S'           7:50 - Monthly O&M started. Housekee           8:30 - Logged system readings from P           8:45 - 9:50 - Preferred gauged all SVE           9:50 - Drained condensate from SVE-1           10:00 - Sampled Effluent GW "EFF-GI           10:07 - SVE system shut down. Draine           10:10 - Sampled Influent GW "INF-GW           10:35 - Oil change performed on blower.           10:35 - SVE system restarted.           10:35 - SVE system restarted.           10:35 - SVE system restarted.                                                       | Time (From - To)         I = Idle         3. Five Gas Meter - W         4. 100-ft Solinst - W         ANCE ACTIVITIES         stative: John Zator - Preferred         VE systems were on upon arrival. Air Sparge wa<br>eping was performed in and around the system sec.         system and catwalk.         E ports with VelociCalc and MiniRAE 5-gas meter         1 Combined.         W-62617".         ed condensate which had collected in SVE-1 Conv-<br>V-62617".         ref. 5.0 oz oil replaced.                                                                                                | Representing         W = Working         [5. Diaphragm §         [6. Tedlar Bag         is off upon arrival. Metal chain gate instashed including the removal of overgrowth         r.         mbined piping.         al of overgrowth along the rear and side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sampling I<br>+ Tubing -<br>alled arour<br>h.                | Pump - W<br>W<br>id lot.  |          | arks                      |                                                              |
| Name           EQUIPMENT AT THE SITE           1. Camera - W           2. VelociCalc - TSI 8386 - W           OPERATION & MAINTENA           HDR/Preferred Site Representa           7:45 - Preferred on site. GWTS and S'           7:50 - Monthly Q&M started. Housekee           8:30 - Logged system readings from P           8:45 - 9:50 - Preferred gauged all SVE           9:50 - Drained condensate from SVE-1           10:00 - Sampled Effluent GW "EFF-GI           10:07 - SVE system shut down. Draine           10:10 - Sampled Influent GW "INF-GW           10:35 - Oil change performed on blower.           10:35 - SVE system restarted.           10:35 - Continued housekeeping in an           11:45 - 13:15 - Performed monitoring           12:15 - QM activities composition | Time (From - To)         I = Idle         3. Five Gas Meter - W         4. 100-ft Solinst - W         ANCE ACTIVITIES         tative: John Zator - Preferred         VE systems were on upon arrival. Air Sparge wa         eping was performed in and around the system s         °C.         system and catwalk.         E ports with VelociCalc and MiniRAE 5-gas meter         1 Combined.         W-62617".         ed condensate which had collected in SVE-1 Conv-262617".         er. 5.0 oz oil replaced.         around the system shed, including the remova         well gauging under Task 4. | Representing         W = Working         [5. Diaphragm         [6. Tedlar Bag         is off upon arrival. Metal chain gate inste         shed including the removal of overgrowth         r.         mbined piping.         al of overgrowth along the rear and side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampling I<br>⊢ Tubing -<br>alled arour<br>n.<br>of the syst | Pump - W<br>W<br>Ind lot. |          | arks                      |                                                              |

HDR/Preferred Site Representative:

x - Designates report is continued on additional pages

Dennis Berthold (Preferred)

Project Manager: M. Lehtinen

Appendix B

Groundwater Treatment System Operation & Maintenance Datalogs

## STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Soil-Vapor Extraction and Pump and Treat System Monthly O&M Data Log

4/27/2017

Date:

| -          |               |            | Data from Computer Display Screen: |
|------------|---------------|------------|------------------------------------|
| Pump       | Flow          | Valve open |                                    |
| RW-2       | 59 GPM        | 100%       |                                    |
|            |               |            |                                    |
| Total Gal  | lons Treated: |            | 376,005,943                        |
| Discharge  | e Rate:       |            | 0 GPM                              |
| Discharge  | Conductivity  | :          | 0*                                 |
| Discharge  | e pH:         |            | 5.6*                               |
| SVE Air Fl | ow Rate:      |            | 199 CFM (180 CFM at meter)         |

### Visual Digital Readouts from Catwalk:

| Discharge pH:           | 5.15 |
|-------------------------|------|
| Discharge Temp:         | 19ºC |
| Discharge Conductivity: | 21   |

### Flow meter reading:

| Flow Rate:     |           | 60 GPM  |       |         |                   |
|----------------|-----------|---------|-------|---------|-------------------|
| Total gallons: | 9,759,031 | gallons | meter | display | in 100 of gallons |

### Effluent flow meter reading:

| Flow Rate:     |           | 2,587 GPH |
|----------------|-----------|-----------|
| Total gallons: | 433,784.7 | gallons   |

### Weather:

67ºF, overcast, humid, east wind

### Notes:

\* Meter malfunctioning

Digital reading output for Discharge Rate and Total gallons on flow meter GPM- Gallons Per Minute CFM- Cubic Feet Per Minute

## STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Soil-Vapor Extraction and Pump and Treat System Monthly O&M Data Log

Date: 5/25/2017

| -         |                |            | Data from Computer Display Screen: |
|-----------|----------------|------------|------------------------------------|
| Pump      | Flow           | Valve open |                                    |
| RW-2      | 61 GPM         | 100%       |                                    |
|           |                |            |                                    |
| Total Gal | lons Treated:  |            | 375,805,295                        |
| Discharge | e Rate:        |            | 0 GPM                              |
| Discharge | e Conductivity | :          | 0*                                 |
| Discharge | e pH:          |            | 5.6*                               |
| SVE Air F | ow Rate:       |            | 156 CFM (160 CFM at meter)         |

### Visual Digital Readouts from Catwalk:

| Discharge pH:           | 5.12 |
|-------------------------|------|
| Discharge Temp:         | 19ºC |
| Discharge Conductivity: | -1.4 |

### Flow meter reading:

 Flow Rate:
 60 GPM

 Total gallons:
 1,879,399 gallons
 meter display in 100 of gallons

### Effluent flow meter reading:

Flow Rate:2,594 GPHTotal gallons:4,278,245.5 gallons

### Weather:

62ºF, rain, humid, northeast wind

### Notes:

\* Meter malfunctioning

Digital reading output for Discharge Rate and Total gallons on flow meter GPM- Gallons Per Minute CFM- Cubic Feet Per Minute

## STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Soil-Vapor Extraction and Pump and Treat System Monthly O&M Data Log

6/26/2017

Date:

| _         |               |            | Data from Computer Display Screen: |
|-----------|---------------|------------|------------------------------------|
| Pump      | Flow          | Valve open |                                    |
| RW-2      | 59 GPM        | 100%       |                                    |
|           |               |            |                                    |
| Total Gal | lons Treated: |            | 378,413,521                        |
| Discharge | e Rate:       |            | 0 GPM                              |
| Discharge | Conductivity  | :          | 0*                                 |
| Discharge | e pH:         |            | 5.6*                               |
| SVE Air F | ow Rate:      |            | 196 CFM (160 CFM at meter)         |

### Visual Digital Readouts from Catwalk:

| Discharge pH:           | 4.98 |
|-------------------------|------|
| Discharge Temp:         | 21ºC |
| Discharge Conductivity: | -1.4 |

### Flow meter reading:

| Flow Rate:     |           | 58 GPM  |       |         |             |        |
|----------------|-----------|---------|-------|---------|-------------|--------|
| Total gallons: | 4,527,850 | gallons | meter | display | in 100 of g | allons |

### Effluent flow meter reading:

| Flow Rate:     |             | 2,582 GPH |
|----------------|-------------|-----------|
| Total gallons: | 3,468,168.6 | gallons   |

### Weather:

75ºF, bright sun, dry, northwest wind

### Notes:

\* Meter malfunctioning

Digital reading output for Discharge Rate and Total gallons on flow meter GPM- Gallons Per Minute CFM- Cubic Feet Per Minute Appendix C

Groundwater Treatment System Downloaded Operational Data

| Stanton Cleaner | s Groundwater Con             | tamination Site             | - April 2017 - |
|-----------------|-------------------------------|-----------------------------|----------------|
| Time            | Recovery Well 3<br>Flow (GPM) | Total Gallons<br>Discharged | SVE Air Flow   |
| 4/1/2017 0:00   | 59                            | 373833630.3                 | 189            |
| 4/1/2017 4:00   | 59                            | 373847758.6                 | 192            |
| 4/1/2017 8:00   | 60                            | 373861874.1                 | 198            |
| 4/1/2017 12:00  | 61                            | 373875994.6                 | 195            |
| 4/1/2017 16:00  | 59                            | 373890114.5                 | 195            |
| 4/1/2017 20:00  | 59                            | 373904222.4                 | 177            |
| 4/2/2017 0:00   | 62                            | 373918321                   | 175            |
| 4/2/2017 4:00   | 58                            | 373932444.5                 | 152            |
| 4/2/2017 8:00   | 58                            | 373946543.1                 | 146            |
| 4/2/2017 12:00  | 59                            | 373960604.9                 | 152            |
| 4/2/2017 16:00  | 59                            | 373974676.9                 | 193            |
| 4/2/2017 20:00  | 58                            | 373988722.6                 | 195            |
| 4/3/2017 0:00   | 60                            | 374002805.1                 | 162            |
| 4/3/2017 4:00   | 59                            | 374016872.8                 | 169            |
| 4/3/2017 8:00   | 59                            | 374030944.7                 | 199            |
| 4/3/2017 12:00  | 59                            | 374045027.2                 | 194            |
| 4/3/2017 16:00  | 59                            | 374059116.6                 | 193            |
| 4/3/2017 20:00  | 58                            | 374073207.6                 | 200            |
| 4/4/2017 0:00   | 59                            | 374087301.3                 | 197            |
| 4/4/2017 4:00   | 60                            | 374101394.9                 | 189            |
| 4/4/2017 8:00   | 59                            | 374115505.3                 | 194            |
| 4/4/2017 12:00  | 60                            | 374129606                   | 197            |
| 4/4/2017 16:00  | 61                            | 374143725.8                 | 189            |
| 4/4/2017 20:00  | 57                            | 374157847.7                 | 180            |
| 4/5/2017 0:00   | 58                            | 374171966.3                 | 143            |
| 4/5/2017 4:00   | 60                            | 374186077.2                 | 137            |
| 4/5/2017 8:00   | 58                            | 374200191.7                 | 147            |
| 4/5/2017 12:00  | 62                            | 374214308.4                 | 144            |
| 4/5/2017 16:00  | 60                            | 374228395.2                 | 141            |
| 4/5/2017 20:00  | 58                            | 374242465.4                 | 142            |
| 4/6/2017 0:00   | 61                            | 374256536.2                 | 142            |
| 4/6/2017 4:00   | 60                            | 374270600.1                 | 138            |
| 4/6/2017 8:00   | 57                            | 374284651                   | 144            |
| 4/6/2017 12:00  | 59                            | 374298718.2                 | 135            |
| 4/6/2017 16:00  | 58                            | 374312839.4                 | 174            |
| 4/6/2017 20:00  | 57                            | 374326976.2                 | 195            |
| 4/7/2017 0:00   | 59                            | 374341135.2                 | 198            |
| 4/7/2017 4:00   | 62                            | 374355260.6                 | 164            |
| 4/7/2017 8:00   | 58                            | 374369381.3                 | 143            |
| 4/7/2017 12:00  | 57                            | 374383497.5                 | 152            |
| 4/7/2017 16:00  | 59                            | 374397609.6                 | 156            |
| 4/7/2017 20:00  | 59                            | 374411703.8                 | 160            |

| Stanton Cleaners Groundwater Contamination Site - April 2017 - |                 |               |              |
|----------------------------------------------------------------|-----------------|---------------|--------------|
|                                                                | Site Operation  | al Data       |              |
| Time                                                           | Recovery Well 3 | Total Gallons |              |
| Time                                                           | Flow (GPM)      | Discharged    | SVE AIR FIOW |
| 4/8/2017 0:00                                                  | 58              | 374425815     | 165          |
| 4/8/2017 4:00                                                  | 59              | 374439932.8   | 162          |
| 4/8/2017 8:00                                                  | 59              | 374454044.2   | 159          |
| 4/8/2017 12:00                                                 | 58              | 374468153.1   | 149          |
| 4/8/2017 16:00                                                 | 62              | 374482269.5   | 195          |
| 4/8/2017 20:00                                                 | 60              | 374496341.5   | 162          |
| 4/9/2017 0:00                                                  | 58              | 374510452.5   | 158          |
| 4/9/2017 4:00                                                  | 59              | 374524560.8   | 154          |
| 4/9/2017 8:00                                                  | 59              | 374538644     | 198          |
| 4/9/2017 12:00                                                 | 58              | 374552718.8   | 199          |
| 4/9/2017 16:00                                                 | 59              | 374566786.6   | 194          |
| 4/9/2017 20:00                                                 | 57              | 374580845.1   | 199          |
| 4/10/2017 0:00                                                 | 58              | 374594921.7   | 195          |
| 4/10/2017 4:00                                                 | 59              | 374608987.9   | 197          |
| 4/10/2017 8:00                                                 | 58              | 374623085.1   | 199          |
| 4/10/2017 12:00                                                | 60              | 374637180.9   | 201          |
| 4/10/2017 16:00                                                | 59              | 374651255.3   | 199          |
| 4/10/2017 20:00                                                | 62              | 374665332.9   | 199          |
| 4/11/2017 0:00                                                 | 60              | 374679409.6   | 198          |
| 4/11/2017 4:00                                                 | 60              | 374693500.9   | 201          |
| 4/11/2017 8:00                                                 | 61              | 374707585.1   | 200          |
| 4/11/2017 12:00                                                | 59              | 374721649.2   | 204          |
| 4/11/2017 16:00                                                | 61              | 374735713.4   | 202          |
| 4/11/2017 20:00                                                | 61              | 374749769.7   | 202          |
| 4/12/2017 0:00                                                 | 58              | 374763854.8   | 201          |
| 4/12/2017 4:00                                                 | 61              | 374777937.8   | 203          |
| 4/12/2017 8:00                                                 | 59              | 374792003.5   | 201          |
| 4/12/2017 12:00                                                | 59              | 374806063     | 207          |
| 4/12/2017 16:00                                                | 60              | 374820113     | 205          |
| 4/12/2017 20:00                                                | 61              | 374834162.6   | 197          |
| 4/13/2017 0:00                                                 | 59              | 374848238.1   | 203          |
| 4/13/2017 4:00                                                 | 59              | 374862311.6   | 202          |
| 4/13/2017 8:00                                                 | 59              | 374876390     | 204          |
| 4/13/2017 12:00                                                | 59              | 374890521     | 204          |
| 4/13/2017 16:00                                                | 58              | 374904682.9   | 201          |
| 4/13/2017 20:00                                                | 58              | 374918859.8   | 203          |
| 4/14/2017 0:00                                                 | 60              | 374933016.7   | 201          |
| 4/14/2017 4:00                                                 | 61              | 374947161.1   | 199          |
| 4/14/2017 8:00                                                 | 60              | 374961303.6   | 205          |
| 4/14/2017 12:00                                                | 59              | 374975419     | 205          |
| 4/14/2017 16:00                                                | 59              | 374989514.2   | 201          |
| 4/14/2017 20:00                                                | 60              | 375003596.1   | 202          |

| Stanton Cleaner | s Groundwater Con             | tamination Site             | - April 2017 - |
|-----------------|-------------------------------|-----------------------------|----------------|
|                 | Site Operation                | ai Data                     | [              |
| Time            | Recovery Well 3<br>Flow (GPM) | Total Gallons<br>Discharged | SVE Air Flow   |
| 4/15/2017 0.00  | 58                            | 375017702 1                 | 202            |
| 4/15/2017 0:00  | 58                            | 275021807 1                 | 202            |
| 4/15/2017 4:00  | 58                            | 2750/5002                   | 201            |
| 4/15/2017 12:00 | 50                            | 275060010.2                 | 204            |
| 4/15/2017 12:00 | 60                            | 37507/096                   | 201            |
| 4/15/2017 10:00 | 61                            | 375088201 1                 | 204            |
| 4/16/2017 0:00  | 60                            | 375102321.2                 | 203            |
| 4/16/2017 4:00  | 59                            | 375116425.8                 | 204            |
| 4/16/2017 8:00  | 58                            | 375130490.4                 | 202            |
| 4/16/2017 12:00 | 61                            | 375144535.4                 | 210            |
| 4/16/2017 16:00 | 60                            | 375158590.6                 | 209            |
| 4/16/2017 20:00 | 57                            | 375172672.8                 | 206            |
| 4/17/2017 0:00  | 59                            | 375186750                   | 207            |
| 4/17/2017 4:00  | 62                            | 375200822.6                 | 203            |
| 4/17/2017 8:00  | 59                            | 375214896.4                 | 203            |
| 4/17/2017 12:00 | 59                            | 375228949                   | 208            |
| 4/17/2017 16:00 | 57                            | 375243028.3                 | 202            |
| 4/17/2017 20:00 | 59                            | 375257100.8                 | 203            |
| 4/18/2017 0:00  | 59                            | 375271196.4                 | 202            |
| 4/18/2017 4:00  | 60                            | 375285296.4                 | 202            |
| 4/18/2017 8:00  | 59                            | 375299379.2                 | 204            |
| 4/18/2017 12:00 | 61                            | 375313446.9                 | 203            |
| 4/18/2017 16:00 | 58                            | 375327511.5                 | 202            |
| 4/18/2017 20:00 | 61                            | 375341577.9                 | 200            |
| 4/19/2017 0:00  | 59                            | 375355651.2                 | 201            |
| 4/19/2017 4:00  | 60                            | 375369722                   | 201            |
| 4/19/2017 8:00  | 59                            | 375383807.1                 | 199            |
| 4/19/2017 12:00 | 58                            | 375397894.6                 | 203            |
| 4/19/2017 16:00 | 59                            | 375411969.6                 | 200            |
| 4/19/2017 20:00 | 61                            | 375426045.6                 | 202            |
| 4/20/2017 0:00  | 58                            | 375440168.6                 | 201            |
| 4/20/2017 4:00  | 59                            | 375454310.5                 | 201            |
| 4/20/2017 8:00  | 59                            | 375468487                   | 204            |
| 4/20/2017 12:00 | 61                            | 375482646.3                 | 202            |
| 4/20/2017 16:00 | 58                            | 375496811.7                 | 204            |
| 4/20/2017 20:00 | 58                            | 375510963.6                 | 203            |
| 4/21/2017 0:00  | 60                            | 375525168.9                 | 201            |
| 4/21/2017 4:00  | 58                            | 375539284.2                 | 201            |
| 4/21/2017 8:00  | 58                            | 375553380.5                 | 203            |
| 4/21/2017 12:00 | 59                            | 375567491.8                 | 198            |
| 4/21/2017 16:00 | 57                            | 375581587.1                 | 196            |
| 4/24/2047 20 00 |                               |                             |                |

| Stanton Cleaners Groundwater Contamination Site - April 2017 - |                 |               |              |
|----------------------------------------------------------------|-----------------|---------------|--------------|
|                                                                | Site Operation  | al Data       |              |
|                                                                | Recovery Well 3 | Total Gallons |              |
| Time                                                           | Flow (GPM)      | Discharged    | SVE Air Flow |
|                                                                |                 | 2.001.0.800   |              |
| 4/22/2017 0:00                                                 | 59              | 375609783.5   | 201          |
| 4/22/2017 4:00                                                 | 59              | 375623882.5   | 196          |
| 4/22/2017 8:00                                                 | 58              | 375637979.3   | 202          |
| 4/22/2017 12:00                                                | 59              | 375652107.9   | 199          |
| 4/22/2017 16:00                                                | 58              | 375666221.4   | 199          |
| 4/22/2017 20:00                                                | 60              | 375680321     | 198          |
| 4/23/2017 0:00                                                 | 60              | 375694422.7   | 200          |
| 4/23/2017 4:00                                                 | 61              | 375708539.2   | 203          |
| 4/23/2017 8:00                                                 | 60              | 375722654.6   | 204          |
| 4/23/2017 12:00                                                | 58              | 375736748.6   | 199          |
| 4/23/2017 16:00                                                | 58              | 375750831.4   | 200          |
| 4/23/2017 20:00                                                | 58              | 375764940.1   | 200          |
| 4/24/2017 0:00                                                 | 58              | 375779029     | 201          |
| 4/24/2017 4:00                                                 | 59              | 375793127.9   | 203          |
| 4/24/2017 8:00                                                 | 58              | 375807212.7   | 203          |
| 4/24/2017 12:00                                                | 58              | 375821314.5   | 200          |
| 4/24/2017 16:00                                                | 59              | 375835407.3   | 199          |
| 4/24/2017 20:00                                                | 59              | 375849497.4   | 198          |
| 4/25/2017 0:00                                                 | 60              | 375863582.5   | 199          |
| 4/25/2017 4:00                                                 | 60              | 375877648.4   | 201          |
| 4/25/2017 8:00                                                 | 58              | 375891747.7   | 202          |
| 4/25/2017 12:00                                                | 60              | 375905846.4   | 195          |
| 4/25/2017 16:00                                                | 60              | 375919935.2   | 202          |
| 4/25/2017 20:00                                                | 61              | 375934037.4   | 201          |
| 4/26/2017 0:00                                                 | 59              | 375948139.2   | 200          |
| 4/26/2017 4:00                                                 | 58              | 375962240.2   | 202          |
| 4/26/2017 8:00                                                 | 58              | 375976343.9   | 204          |
| 4/26/2017 12:00                                                | 61              | 375990454.5   | 200          |
| 4/26/2017 16:00                                                | 57              | 376004548.7   | 204          |
| 4/26/2017 20:00                                                | 0               | 376005869.5   | 204          |
| 4/27/2017 0:00                                                 | 0               | 376005869.5   | 200          |
| 4/27/2017 4:00                                                 | 0               | 376005873.7   | 163          |
| 4/27/2017 8:00                                                 | 60              | 376018002.5   | 199          |
| 4/27/2017 12:00                                                | 62              | 376032156.6   | 201          |
| 4/27/2017 16:00                                                | 59              | 376046293.2   | 203          |
| 4/27/2017 20:00                                                | 58              | 376060435.3   | 203          |
| 4/28/2017 0:00                                                 | 60              | 376074575     | 205          |
| 4/28/2017 4:00                                                 | 60              | 376088704     | 209          |
| 4/28/2017 8:00                                                 | 57              | 376102797     | 205          |
| 4/28/2017 12:00                                                | 59              | 376116884.5   | 207          |
| 4/28/2017 16:00                                                | 61              | 376130986.6   | 201          |
| 4/28/2017 20:00                                                | 58              | 376145101.3   | 204          |

| Stanton Cleaners Groundwater Contamination Site - April 2017 - |                               |                             |              |
|----------------------------------------------------------------|-------------------------------|-----------------------------|--------------|
|                                                                | Site Operation                | al Data                     |              |
| Time                                                           | Recovery Well 3<br>Flow (GPM) | Total Gallons<br>Discharged | SVE Air Flow |
| 4/29/2017 0:00                                                 | 60                            | 376159237.8                 | 206          |
| 4/29/2017 4:00                                                 | 58                            | 376173360.4                 | 210          |
| 4/29/2017 8:00                                                 | 58                            | 376187468.9                 | 210          |
| 4/29/2017 12:00                                                | 59                            | 376201565.3                 | 207          |
| 4/29/2017 16:00                                                | 58                            | 376215695                   | 208          |
| 4/29/2017 20:00                                                | 58                            | 376229838.8                 | 202          |
| 4/30/2017 0:00                                                 | 58                            | 376243976.9                 | 205          |
| 4/30/2017 4:00                                                 | 58                            | 376258101                   | 204          |
| 4/30/2017 8:00                                                 | 61                            | 376272241.3                 | 202          |
| 4/30/2017 12:00                                                | 60                            | 376286381.1                 | 204          |
| 4/30/2017 16:00                                                | 58                            | 376300492.2                 | 204          |
| 4/30/2017 20:00                                                | 58                            | 376314636.2                 | 204          |

| Stanton Cleaners Groundwater Contamination Site - May 2017 - |                  |               |         |
|--------------------------------------------------------------|------------------|---------------|---------|
|                                                              | Site Operational | Data          |         |
| Time e                                                       | Recovery Well 3  | Total Gallons | SVE Air |
| Time                                                         | Flow (GPM)       | Discharged    | Flow    |
| 5/1/2017 0:00                                                | 59               | 376328778.3   | 201     |
| 5/1/2017 4:00                                                | 58               | 376342908.8   | 207     |
| 5/1/2017 8:00                                                | 58               | 376357077.5   | 208     |
| 5/1/2017 12:00                                               | 58               | 376371187.1   | 207     |
| 5/1/2017 16:00                                               | 58               | 376385310.7   | 205     |
| 5/1/2017 20:00                                               | 61               | 376399445.3   | 205     |
| 5/2/2017 0:00                                                | 59               | 376413577     | 207     |
| 5/2/2017 4:00                                                | 59               | 376427702.3   | 207     |
| 5/2/2017 8:00                                                | 60               | 376441831.2   | 207     |
| 5/2/2017 12:00                                               | 59               | 376455960.3   | 206     |
| 5/2/2017 16:00                                               | 61               | 376470083.6   | 206     |
| 5/2/2017 20:00                                               | 62               | 376484226.1   | 205     |
| 5/3/2017 0:00                                                | 60               | 376498360.5   | 207     |
| 5/3/2017 4:00                                                | 58               | 376512494.4   | 206     |
| 5/3/2017 8:00                                                | 60               | 376526626.8   | 205     |
| 5/3/2017 12:00                                               | 60               | 376540765.9   | 199     |
| 5/3/2017 16:00                                               | 58               | 376554896.3   | 202     |
| 5/3/2017 20:00                                               | 59               | 376569048.7   | 201     |
| 5/4/2017 0:00                                                | 61               | 376583199.8   | 205     |
| 5/4/2017 4:00                                                | 60               | 376597362.8   | 199     |
| 5/4/2017 8:00                                                | 60               | 376611511.5   | 203     |
| 5/4/2017 12:00                                               | 58               | 376625672.7   | 198     |
| 5/4/2017 16:00                                               | 60               | 376639809.1   | 203     |
| 5/4/2017 20:00                                               | 61               | 376653963.5   | 198     |
| 5/5/2017 0:00                                                | 58               | 376668127.1   | 202     |
| 5/5/2017 4:00                                                | 62               | 376682269.2   | 202     |
| 5/5/2017 8:00                                                | 62               | 376696442.2   | 203     |
| 5/5/2017 12:00                                               | 61               | 376710573.4   | 203     |
| 5/5/2017 16:00                                               | 61               | 376724702.5   | 198     |
| 5/11/2017 8:00                                               | 58               | 376724702.5   | 202     |
| 5/11/2017 12:00                                              | 61               | 376738958     | 198     |
| 5/11/2017 16:00                                              | 62               | 376753214.8   | 200     |
| 5/11/2017 20:00                                              | 61               | 376767482.2   | 200     |
| 5/12/2017 0:00                                               | 61               | 376781737.6   | 202     |
| 5/12/2017 4:00                                               | 61               | 376795988.7   | 203     |
| 5/12/2017 8:00                                               | 60               | 376810283.1   | 203     |
| 5/12/2017 12:00                                              | 61               | 376824555.3   | 202     |
| 5/12/2017 16:00                                              | 60               | 376838816.1   | 199     |
| 5/12/2017 20:00                                              | 62               | 376853102.8   | 196     |
| 5/13/2017 0:00                                               | 58               | 376867386.2   | 202     |
| 5/13/2017 4:00                                               | 59               | 376881683.4   | 200     |
| 5/13/2017 8:00                                               | 60               | 376895979.3   | 198     |

| Stanton Cleaners | Groundwater Conta | mination Site - | May 2017 - |
|------------------|-------------------|-----------------|------------|
|                  | Site Operational  | Data            |            |
| Time             | Recovery Well 3   | Total Gallons   | SVE Air    |
| Time             | Flow (GPM)        | Discharged      | Flow       |
| 5/15/2017 0:00   | 58                | 376906894.1     | 155        |
| 5/15/2017 4:00   | 59                | 376921166.5     | 196        |
| 5/15/2017 8:00   | 61                | 376935434.5     | 196        |
| 5/15/2017 12:00  | 60                | 376949707.6     | 197        |
| 5/15/2017 16:00  | 58                | 376963968.2     | 196        |
| 5/15/2017 20:00  | 59                | 376978232.3     | 175        |
| 5/16/2017 0:00   | 58                | 376992485.7     | 199        |
| 5/16/2017 4:00   | 61                | 377006736.7     | 199        |
| 5/16/2017 8:00   | 61                | 377020973.8     | 197        |
| 5/16/2017 12:00  | 58                | 377035213.7     | 197        |
| 5/16/2017 16:00  | 61                | 377049464.2     | 197        |
| 5/16/2017 20:00  | 58                | 377063731.1     | 195        |
| 5/17/2017 0:00   | 62                | 377077973.9     | 201        |
| 5/17/2017 4:00   | 58                | 377092192.7     | 201        |
| 5/17/2017 8:00   | 59                | 377106408.7     | 197        |
| 5/17/2017 12:00  | 58                | 377120642.6     | 198        |
| 5/17/2017 16:00  | 59                | 377134879.3     | 199        |
| 5/17/2017 20:00  | 60                | 377149124.6     | 200        |
| 5/18/2017 0:00   | 59                | 377163355.2     | 204        |
| 5/18/2017 4:00   | 60                | 377177588.9     | 205        |
| 5/18/2017 8:00   | 60                | 377191798.1     | 204        |
| 5/18/2017 12:00  | 59                | 377206028.2     | 202        |
| 5/18/2017 16:00  | 60                | 377220263.8     | 201        |
| 5/18/2017 20:00  | 60                | 377234480.8     | 202        |
| 5/19/2017 0:00   | 60                | 377248699.5     | 205        |
| 5/19/2017 4:00   | 58                | 377262900.8     | 205        |
| 5/19/2017 8:00   | 0                 | 377274590.6     | 202        |
| 5/19/2017 12:00  | 61                | 377288429.3     | 199        |
| 5/19/2017 16:00  | 60                | 377302656.7     | 200        |
| 5/19/2017 20:00  | 60                | 377316893       | 199        |
| 5/20/2017 0:00   | 58                | 377331139.8     | 199        |
| 5/20/2017 4:00   | 61                | 377345381.4     | 200        |
| 5/20/2017 8:00   | 61                | 377359621.2     | 199        |
| 5/20/2017 12:00  | 60                | 377373868.7     | 194        |
| 5/20/2017 16:00  | 59                | 377388110.2     | 193        |
| 5/20/2017 20:00  | 59                | 377402371.1     | 197        |
| 5/21/2017 0:00   | 59                | 377416623.4     | 200        |
| 5/21/2017 4:00   | 60                | 377430863.2     | 200        |
| 5/21/2017 8:00   | 59                | 377445097.4     | 200        |
| 5/21/2017 12:00  | 59                | 377459326.1     | 196        |
| 5/21/2017 16:00  | 0                 | 377462697.9     | 193        |
| 5/21/2017 20:00  | 0                 | 377462711.5     | 197        |

| Stanton Cleaners | Groundwater Conta | mination Site - | May 2017 - |
|------------------|-------------------|-----------------|------------|
|                  | Site Operational  | Data            |            |
| Time             | Recovery Well 3   | Total Gallons   | SVE Air    |
| Time             | Flow (GPM)        | Discharged      | Flow       |
| 5/22/2017 0:00   | 0                 | 377462711.5     | 197        |
| 5/22/2017 4:00   | 0                 | 377462711.5     | 197        |
| 5/22/2017 8:00   | 0                 | 377462711.5     | 197        |
| 5/22/2017 12:00  | 0                 | 377462711.5     | 194        |
| 5/22/2017 16:00  | 0                 | 377462711.5     | 198        |
| 5/22/2017 20:00  | 0                 | 377462711.5     | 194        |
| 5/23/2017 0:00   | 0                 | 377462715.8     | 197        |
| 5/23/2017 4:00   | 59                | 377476588.4     | 198        |
| 5/23/2017 8:00   | 60                | 377490801.4     | 199        |
| 5/23/2017 12:00  | 58                | 377505030.1     | 195        |
| 5/23/2017 16:00  | 0                 | 377517775.4     | 190        |
| 5/23/2017 20:00  | 59                | 377529506.8     | 191        |
| 5/24/2017 0:00   | 60                | 377543742       | 197        |
| 5/24/2017 4:00   | 58                | 377557965.5     | 196        |
| 5/24/2017 8:00   | 59                | 377572183.4     | 195        |
| 5/24/2017 12:00  | 57                | 377586409.5     | 197        |
| 5/24/2017 16:00  | 59                | 377600638.2     | 195        |
| 5/24/2017 20:00  | 60                | 377614880       | 157        |
| 5/25/2017 0:00   | 60                | 377629131       | 103        |
| 5/25/2017 4:00   | 60                | 377643381.9     | 156        |
| 5/25/2017 8:00   | 58                | 377657626.4     | 195        |
| 5/25/2017 12:00  | 0                 | 377663369.6     | 156        |
| 5/25/2017 16:00  | 60                | 377667695.9     | 153        |
| 5/25/2017 20:00  | 58                | 377681937.6     | 153        |
| 5/26/2017 0:00   | 60                | 377696173.2     | 197        |
| 5/26/2017 4:00   | 59                | 377708415.3     | 196        |
| 5/26/2017 8:00   | 61                | 377722635.8     | 193        |
| 5/26/2017 12:00  | 62                | 377736864.3     | 197        |
| 5/26/2017 16:00  | 59                | 377751099.6     | 190        |
| 5/26/2017 20:00  | 60                | 377765349       | 195        |
| 5/27/2017 0:00   | 60                | 377779597.9     | 196        |
| 5/27/2017 4:00   | 59                | 377793820.2     | 197        |
| 5/27/2017 8:00   | 61                | 377808042       | 198        |
| 5/27/2017 12:00  | 58                | 377822275.3     | 198        |
| 5/27/2017 16:00  | 61                | 377836505.2     | 197        |
| 5/27/2017 20:00  | 59                | 377850745.6     | 197        |
| 5/28/2017 0:00   | 60                | 377858901.9     | 199        |
| 5/28/2017 4:00   | 59                | 377873100.6     | 198        |
| 5/28/2017 8:00   | 62                | 377887296.7     | 198        |
| 5/28/2017 12:00  | 60                | 377897649.4     | 198        |
| 5/28/2017 16:00  | 60                | 377911862       | 197        |
| 5/28/2017 20:00  | 60                | 377926093.7     | 196        |

| Stanton Cleaners Groundwater Contamination Site - May 2017 - |                  |               |         |
|--------------------------------------------------------------|------------------|---------------|---------|
|                                                              | Site Operational | Data          |         |
| Timo                                                         | Recovery Well 3  | Total Gallons | SVE Air |
| Time                                                         | Flow (GPM)       | Discharged    | Flow    |
| 5/29/2017 0:00                                               | 59               | 377940320.9   | 197     |
| 5/29/2017 4:00                                               | 58               | 377954535.5   | 197     |
| 5/29/2017 8:00                                               | 59               | 377968755.3   | 195     |
| 5/29/2017 12:00                                              | 0                | 377980695.9   | 194     |
| 5/29/2017 16:00                                              | 58               | 377992522.3   | 195     |
| 5/29/2017 20:00                                              | 59               | 378006748.6   | 196     |
| 5/30/2017 0:00                                               | 58               | 378018963.4   | 192     |
| 5/30/2017 4:00                                               | 59               | 378033199.4   | 193     |
| 5/30/2017 8:00                                               | 60               | 378047435.9   | 192     |
| 5/30/2017 12:00                                              | 60               | 378061667     | 196     |
| 5/30/2017 16:00                                              | 60               | 378074082     | 195     |
| 5/30/2017 20:00                                              | 59               | 378088315.5   | 192     |
| 5/31/2017 0:00                                               | 61               | 378102535.4   | 197     |
| 5/31/2017 4:00                                               | 59               | 378116751.8   | 196     |
| 5/31/2017 8:00                                               | 59               | 378129065.5   | 200     |
| 5/31/2017 12:00                                              | 61               | 378143261.8   | 194     |
| 5/31/2017 16:00                                              | 57               | 378157475.7   | 191     |
| 5/31/2017 20:00                                              | 59               | 378171692.6   | 193     |

| Stanton Cleaners Groundwater Contamination Site - June 2017 -<br>Site Operational Data |                 |               |         |
|----------------------------------------------------------------------------------------|-----------------|---------------|---------|
|                                                                                        |                 |               |         |
|                                                                                        | Recovery Well 3 | Total Gallons | SVF Δir |
| Time                                                                                   | Flow (GPM)      | Discharged    | Flow    |
|                                                                                        |                 | Discharged    | 11000   |
| 6/1/2017 0:00                                                                          | 59              | 378185898.2   | 199     |
| 6/1/2017 4:00                                                                          | 59              | 378200082     | 198     |
| 6/1/2017 8:00                                                                          | 58              | 378214267.7   | 199     |
| 6/1/2017 12:00                                                                         | 58              | 378228106.7   | 198     |
| 6/1/2017 16:00                                                                         | 59              | 378242317.7   | 196     |
| 6/1/2017 20:00                                                                         | 61              | 378256531.1   | 196     |
| 6/2/2017 0:00                                                                          | 58              | 378270731.9   | 198     |
| 6/2/2017 4:00                                                                          | 60              | 378284920.2   | 194     |
| 6/2/2017 8:00                                                                          | 59              | 378298612     | 197     |
| 6/2/2017 12:00                                                                         | 58              | 378310957.2   | 198     |
| 6/2/2017 16:00                                                                         | 60              | 378325161.5   | 196     |
| 6/2/2017 20:00                                                                         | 60              | 378339380.8   | 195     |
| 6/3/2017 0:00                                                                          | 59              | 378351257.2   | 197     |
| 6/3/2017 4:00                                                                          | 59              | 378365453.5   | 199     |
| 6/3/2017 8:00                                                                          | 58              | 378379645.4   | 197     |
| 6/3/2017 12:00                                                                         | 59              | 378393836.6   | 194     |
| 6/3/2017 16:00                                                                         | 60              | 378408032.3   | 196     |
| 6/3/2017 20:00                                                                         | 60              | 378422240.7   | 155     |
| 6/4/2017 0:00                                                                          | 60              | 378436458.1   | 201     |
| 6/4/2017 4:00                                                                          | 60              | 378450649     | 199     |
| 6/4/2017 8:00                                                                          | 0               | 378459852.8   | 197     |
| 6/4/2017 12:00                                                                         | 58              | 378473165.3   | 197     |
| 6/4/2017 16:00                                                                         | 59              | 378486780.1   | 194     |
| 6/4/2017 20:00                                                                         | 62              | 378499589.7   | 195     |
| 6/5/2017 0:00                                                                          | 61              | 378512537.4   | 197     |
| 6/5/2017 4:00                                                                          | 60              | 378526724.3   | 194     |
| 6/5/2017 8:00                                                                          | 58              | 378539131.8   | 193     |
| 6/5/2017 12:00                                                                         | 60              | 378553329.2   | 195     |
| 6/5/2017 16:00                                                                         | 59              | 378567538.1   | 195     |
| 6/5/2017 20:00                                                                         | 58              | 378579496.3   | 196     |
| 6/6/2017 0:00                                                                          | 60              | 378590771.7   | 156     |
| 6/6/2017 4:00                                                                          | 58              | 378604144.9   | 193     |
| 6/6/2017 8:00                                                                          | 60              | 378616757     | 195     |
| 6/6/2017 12:00                                                                         | 61              | 378630751.4   | 156     |
| 6/6/2017 16:00                                                                         | 61              | 378644972     | 190     |
| 6/6/2017 20:00                                                                         | 59              | 378656498.1   | 157     |
| 6/7/2017 0:00                                                                          | 62              | 378669498.1   | 193     |
| 6/7/2017 4:00                                                                          | 61              | 378682562     | 197     |
| 6/7/2017 8:00                                                                          | 59              | 378695447.7   | 196     |
| 6/7/2017 12:00                                                                         | 60              | 378709263.3   | 199     |

| Stanton Cleaners Groundwater Contamination Site - June 2017 - |                               |                             |                 |
|---------------------------------------------------------------|-------------------------------|-----------------------------|-----------------|
|                                                               |                               |                             |                 |
| Time                                                          | Recovery Well 3<br>Flow (GPM) | Total Gallons<br>Discharged | SVE Air<br>Flow |
| 6/7/2017 16:00                                                | 60                            | 378723399.6                 | 157             |
| 6/7/2017 20:00                                                | 60                            | 378737607 3                 | 191             |
| 6/8/2017 0:00                                                 | 58                            | 378751806.9                 | 198             |
| 6/8/2017 4:00                                                 | 60                            | 378765541.9                 | 198             |
| 6/8/2017 8:00                                                 | 60                            | 378779483.1                 | 196             |
| 6/8/2017 12:00                                                | 59                            | 378793685.7                 | 196             |
| 6/8/2017 16:00                                                | 61                            | 378806803.7                 | 155             |
| 6/8/2017 20:00                                                | 60                            | 378820516                   | 156             |
| 6/9/2017 0:00                                                 | 60                            | 378833877.5                 | 196             |
| 6/9/2017 4:00                                                 | 59                            | 378847747.8                 | 200             |
| 6/9/2017 8:00                                                 | 59                            | 378858120.7                 | 200             |
| 6/9/2017 12:00                                                | 59                            | 378867677.5                 | 199             |
| 6/9/2017 16:00                                                | 58                            | 378879393.5                 | 193             |
| 6/9/2017 20:00                                                | 58                            | 378893167.7                 | 197             |
| 6/10/2017 0:00                                                | 59                            | 378907049.5                 | 201             |
| 6/10/2017 4:00                                                | 58                            | 378920095.3                 | 197             |
| 6/10/2017 8:00                                                | 59                            | 378932784.8                 | 202             |
| 6/10/2017 12:00                                               | 59                            | 378945145.2                 | 194             |
| 6/10/2017 16:00                                               | 60                            | 378957344.1                 | 199             |
| 6/10/2017 20:00                                               | 59                            | 378969054.9                 | 199             |
| 6/11/2017 0:00                                                | 0                             | 378981181.8                 | 199             |
| 6/11/2017 4:00                                                | 61                            | 378993313.8                 | 202             |
| 6/11/2017 8:00                                                | 61                            | 379006950.4                 | 200             |
| 6/11/2017 12:00                                               | 59                            | 379021084.2                 | 203             |
| 6/11/2017 16:00                                               | 59                            | 379033583.8                 | 200             |
| 6/11/2017 20:00                                               | 59                            | 379047746.9                 | 199             |
| 6/12/2017 0:00                                                | 59                            | 379061887.7                 | 199             |
| 6/12/2017 4:00                                                | 60                            | 379074309.4                 | 204             |
| 6/12/2017 8:00                                                | 60                            | 379088417.1                 | 205             |
| 6/12/2017 12:00                                               | 59                            | 379102541.9                 | 197             |
| 6/12/2017 16:00                                               | 59                            | 379116663.4                 | 200             |
| 6/12/2017 20:00                                               | 61                            | 379130779.4                 | 200             |
| 6/13/2017 0:00                                                | 59                            | 379144903.5                 | 204             |
| 6/13/2017 4:00                                                | 60                            | 379159000.2                 | 205             |
| 6/13/2017 8:00                                                | 59                            | 379173079.3                 | 205             |
| 6/13/2017 12:00                                               | 59                            | 379187181.9                 | 201             |
| 6/13/2017 16:00                                               | 62                            | 379201297.8                 | 202             |
| 6/13/2017 20:00                                               | 61                            | 379215404.7                 | 195             |
| 6/14/2017 0:00                                                | 58                            | 379229529.3                 | 202             |
| 6/14/2017 4:00                                                | 62                            | 379243652.4                 | 200             |

| Stanton Cleaners Groundwater Contamination Site - June 2017 - |                               |                             |                 |
|---------------------------------------------------------------|-------------------------------|-----------------------------|-----------------|
|                                                               |                               |                             |                 |
| Time                                                          | Recovery Well 3<br>Flow (GPM) | Total Gallons<br>Discharged | SVE Air<br>Flow |
| 6/14/2017 8.00                                                | 60                            | 379257010 /                 | 201             |
| 6/14/2017 12:00                                               | 58                            | 270271152.1                 | 107             |
| 6/14/2017 12:00                                               | 58<br>60                      | 379285316.8                 | 199             |
| 6/14/2017 20:00                                               | 60                            | 379299453 1                 | 198             |
| 6/15/2017 0.00                                                | 60                            | 379313488.8                 | 201             |
| 6/15/2017 4:00                                                | 59                            | 379327620                   | 201             |
| 6/15/2017 8:00                                                | 61                            | 379341782 5                 | 202             |
| 6/15/2017 12:00                                               | 61                            | 379355922.8                 | 199             |
| 6/15/2017 16:00                                               | 59                            | 379370072 3                 | 195             |
| 6/15/2017 20:00                                               | 59                            | 379384235 9                 | 197             |
| 6/16/2017 0.00                                                | 58                            | 379398376.8                 | 194             |
| 6/16/2017 4:00                                                | 59                            | 379412524 1                 | 196             |
| 6/16/2017 8:00                                                | 61                            | 379425802.4                 | 199             |
| 6/16/2017 12:00                                               | 59                            | 379438448 7                 | 197             |
| 6/16/2017 16:00                                               | 60                            | 379452593 1                 | 195             |
| 6/16/2017 20:00                                               | 61                            | 379466746 1                 | 195             |
| 6/17/2017 0.00                                                | 58                            | 379480890 7                 | 199             |
| 6/17/2017 4:00                                                | 58                            | 379495056.6                 | 194             |
| 6/17/2017 8:00                                                | 60                            | 379509214.9                 | 196             |
| 6/17/2017 12:00                                               | 61                            | 379522311.7                 | 197             |
| 6/17/2017 16:00                                               | 59                            | 379535241.6                 | 195             |
| 6/17/2017 20:00                                               | 57                            | 379549091                   | 196             |
| 6/18/2017 0:00                                                | 59                            | 379562447.2                 | 201             |
| 6/18/2017 4:00                                                | 62                            | 379576587.9                 | 205             |
| 6/18/2017 8:00                                                | 59                            | 379590707.4                 | 204             |
| 6/18/2017 12:00                                               | 60                            | 379604817.7                 | 202             |
| 6/18/2017 16:00                                               | 59                            | 379618941.1                 | 202             |
| 6/18/2017 20:00                                               | 58                            | 379633056.7                 | 197             |
| 6/19/2017 0:00                                                | 60                            | 379647181.7                 | 201             |
| 6/19/2017 4:00                                                | 58                            | 379661296.4                 | 200             |
| 6/19/2017 8:00                                                | 58                            | 379675409.5                 | 201             |
| 6/19/2017 12:00                                               | 58                            | 379689525.9                 | 200             |
| 6/19/2017 16:00                                               | 61                            | 379703640.4                 | 198             |
| 6/19/2017 20:00                                               | 58                            | 379717765.2                 | 195             |
| 6/20/2017 0:00                                                | 59                            | 379731891                   | 201             |
| 6/20/2017 4:00                                                | 60                            | 379745998.8                 | 198             |
| 6/20/2017 8:00                                                | 59                            | 379760107.2                 | 200             |
| 6/20/2017 12:00                                               | 60                            | 379774214.3                 | 199             |
| 6/20/2017 16:00                                               | 61                            | 379788335.2                 | 199             |
| 6/20/2017 20:00                                               | 60                            | 379802459                   | 198             |

| Time         Recovery Well 3<br>Flow (GPM)         Total Gallons<br>Discharged         SVE Air<br>Flow           6/21/2017 0:00         60         379816574.2         202           6/21/2017 4:00         58         379830690.3         198           6/21/2017 12:00         59         379844809.8         198           6/21/2017 12:00         58         379858926.7         201           6/21/2017 10:00         60         379873047.4         200           6/22/2017 0:00         60         37998179.6         193           6/22/2017 0:00         60         379991288.8         202           6/22/2017 12:00         59         379943626.2         197           6/22/2017 12:00         59         379971831         194           6/22/2017 12:00         59         379978384         71           6/23/2017 12:00         58         380014146.9         200           6/23/2017 12:00         58         380042379.3         199           6/23/2017 12:00         58         380042379.3         199           6/23/2017 12:00         58         380042379.3         199           6/24/2017 12:00         58         380127043.6         198           6/24/2017 12:00         58                                                          | Stanton Cleaners Groundwater Contamination Site - June 2017 - |                               |                             |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------|-----------------------------|-----------------|
| TimeRecovery Well 3<br>Flow (GPM)Total Gallons<br>DischargedSVE Air<br>Flow6/21/2017 0:0060379816574.22026/21/2017 4:0058379830690.31986/21/2017 12:0058379858926.72016/21/2017 12:0060379873047.42006/21/2017 16:0060379873047.42006/21/2017 0:0060379987197.61936/22/2017 0:00603799153962026/22/2017 4:0059379943626.21976/22/2017 12:0059379943626.21976/22/2017 12:00593799718311946/23/2017 0:00593799718311946/23/2017 0:00593799718311946/23/2017 0:0058380042379.31996/23/2017 12:00603800282581966/23/2017 12:00603800282581966/23/2017 12:006038007630.11976/24/2017 0:005838012955.11976/24/2017 0:0058380127049.61996/24/2017 12:0060380130264.31986/24/2017 12:00603801310769.81986/25/2017 4:00603801411581976/25/2017 4:00603801303442.12006/25/2017 4:00603801301375.61986/25/2017 12:0061380298214.61986/25/2017 12:0060380231369.41976/25/2017 12:0060 <t< td=""><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                         |                                                               |                               |                             |                 |
| 6/21/2017 0:00         60         379816574.2         202           6/21/2017 4:00         58         379830690.3         198           6/21/2017 12:00         58         379844809.8         198           6/21/2017 12:00         60         379873047.4         200           6/21/2017 12:00         60         379873047.4         200           6/22/2017 0:00         60         379915396         202           6/22/2017 4:00         59         379915396         202           6/22/2017 12:00         59         379943626.2         197           6/22/2017 12:00         59         379971831         194           6/22/2017 12:00         59         379971831         194           6/23/2017 12:00         59         379985938.4         71           6/23/2017 4:00         60         38001446.9         200           6/23/2017 4:00         58         38001446.9         200           6/23/2017 12:00         60         380028258         196           6/23/2017 12:00         58         3800128258         198           6/24/2017 0:00         60         380170630.1         197           6/24/2017 12:00         58         38012955.1         197                                                                                  | Time                                                          | Recovery Well 3<br>Flow (GPM) | Total Gallons<br>Discharged | SVE Air<br>Flow |
| 6/21/2017 0.00         50         579810574.2         202           6/21/2017 4:00         58         379830690.3         198           6/21/2017 12:00         58         379844809.8         198           6/21/2017 12:00         60         379873047.4         200           6/21/2017 12:00         60         379915396         193           6/22/2017 0:00         60         379929505.3         198           6/22/2017 1:00         59         379943626.2         197           6/22/2017 1:00         59         379971831         194           6/22/2017 1:00         59         379971831         194           6/23/2017 0:00         59         379971831         194           6/23/2017 1:00         58         380014146.9         200           6/23/2017 1:00         60         380028258         196           6/23/2017 1:00         58         380042379.3         199           6/23/2017 1:00         58         38005606.1         197           6/24/2017 1:00         58         380127049.6         199           6/24/2017 1:00         58         380127049.6         199           6/24/2017 1:00         58         380127049.6         199     <                                                                               | 6/21/2017 0.00                                                | 60                            | 270916574 2                 | 202             |
| 6/21/2017 4:00         58         578530690.5         138           6/21/2017 8:00         59         379844809.8         198           6/21/2017 12:00         58         379858926.7         201           6/21/2017 12:00         60         379873047.4         200           6/21/2017 20:00         60         379915396         202           6/22/2017 4:00         59         379943626.2         197           6/22/2017 12:00         59         379971831         198           6/22/2017 12:00         59         379971831         194           6/23/2017 0:00         59         379971831         194           6/23/2017 0:00         59         379985938.4         71           6/23/2017 0:00         58         380014146.9         200           6/23/2017 12:00         60         380028258         196           6/23/2017 12:00         58         380042379.3         199           6/24/2017 12:00         58         380042379.3         199           6/24/2017 12:00         58         380127049.6         197           6/24/2017 12:00         58         380127049.6         199           6/24/2017 12:00         61         38012555.1         197 <td>6/21/2017 0.00</td> <td><u>со</u></td> <td>379810374.2</td> <td>102</td> | 6/21/2017 0.00                                                | <u>со</u>                     | 379810374.2                 | 102             |
| 6/21/2017 12:00         58         379848405.8         138           6/21/2017 12:00         60         379873047.4         200           6/21/2017 16:00         60         379873047.4         200           6/22/2017 10:00         60         379887179.6         193           6/22/2017 0:00         60         379915396         202           6/22/2017 12:00         59         379943626.2         197           6/22/2017 12:00         59         379971831         194           6/22/2017 12:00         59         379985938.4         71           6/23/2017 0:00         59         379985938.4         71           6/23/2017 12:00         60         38000042.9         197           6/23/2017 12:00         60         380028258         196           6/23/2017 12:00         60         380028258         196           6/23/2017 12:00         58         380042379.3         199           6/24/2017 12:00         58         38014146.9         200           6/24/2017 12:00         58         380127049.6         199           6/24/2017 12:00         58         380127049.6         199           6/24/2017 12:00         61         380141158         197 </td <td>6/21/2017 4.00</td> <td>50</td> <td>270844800 8</td> <td>190</td> | 6/21/2017 4.00                                                | 50                            | 270844800 8                 | 190             |
| 6/21/2017 12:00         38         379836362.7         201           6/21/2017 16:00         60         379873047.4         200           6/22/2017 0:00         60         3799873047.4         200           6/22/2017 0:00         60         379901288.8         202           6/22/2017 4:00         59         379915396         202           6/22/2017 12:00         59         379943626.2         197           6/22/2017 12:00         59         379971831         194           6/22/2017 16:00         61         379957728         196           6/22/2017 20:00         59         379971831         194           6/23/2017 0:00         59         379971831         194           6/23/2017 4:00         60         38000042.9         197           6/23/2017 12:00         60         380028258         196           6/23/2017 12:00         58         380042379.3         199           6/24/2017 10:00         60         38007630.1         196           6/24/2017 4:00         59         380084742.2         194           6/24/2017 12:00         58         380112955.1         197           6/24/2017 12:00         61         380155253.8         200                                                                               | 6/21/2017 8.00                                                | 59                            | 379644609.6                 | 201             |
| 6/21/2017 16:00         60         379673047.4         200           6/21/2017 20:00         60         37987179.6         193           6/22/2017 0:00         60         379901288.8         202           6/22/2017 4:00         59         379915396         202           6/22/2017 12:00         59         379943626.2         197           6/22/2017 12:00         59         379971831         194           6/23/2017 0:00         59         379985938.4         71           6/23/2017 0:00         59         379985938.4         71           6/23/2017 4:00         60         38000042.9         197           6/23/2017 12:00         60         380028258         196           6/23/2017 12:00         60         38007630.1         197           6/23/2017 16:00         58         380042379.3         199           6/24/2017 12:00         58         3800842379.3         199           6/24/2017 12:00         58         38007630.1         197           6/24/2017 16:00         58         38012955.1         197           6/24/2017 12:00         60         380141158         197           6/25/2017 12:00         61         38015253.8         200                                                                                | 6/21/2017 12:00                                               | 50                            | 270872047 4                 | 201             |
| 6/21/2017 20:00         60         37987173.6         193           6/22/2017 0:00         60         379901288.8         202           6/22/2017 4:00         59         379915396         202           6/22/2017 8:00         60         37992505.3         198           6/22/2017 12:00         59         379943626.2         197           6/22/2017 16:00         61         379957728         196           6/22/2017 0:00         59         379971831         194           6/23/2017 0:00         59         379985938.4         71           6/23/2017 4:00         60         38000042.9         197           6/23/2017 12:00         60         380028258         196           6/23/2017 12:00         58         380042379.3         199           6/23/2017 16:00         58         380028258         196           6/24/2017 16:00         58         380028258         197           6/24/2017 16:00         59         380084742.2         194           6/24/2017 12:00         60         380112955.1         197           6/24/2017 12:00         61         38015253.8         200           6/25/2017 16:00         58         38012955.1         197                                                                                    | 6/21/2017 10:00                                               | 60                            | 379873047.4                 | 200             |
| 6/22/2017 0:0060379901288.82026/22/2017 4:00593799153962026/22/2017 8:0060379929505.31986/22/2017 12:0059379943626.21976/22/2017 16:00613799577281966/22/2017 20:00593799718311946/23/2017 0:0059379985938.4716/23/2017 4:006038000042.91976/23/2017 12:00603800282581966/23/2017 12:0058380042379.31996/23/2017 16:0058380055506.11976/24/2017 0:006038007630.11966/24/2017 10:0059380088442.21946/24/2017 12:0058380112955.11976/24/2017 12:0058380127049.61996/24/2017 12:00583801411581976/25/2017 0:006138015525.82006/25/2017 12:0061380193442.12006/25/2017 12:0061380193442.12006/25/2017 12:0061380127049.61986/25/2017 12:0060380183442.12006/25/2017 12:0061380289821.71576/26/2017 12:0060380239821.71576/26/2017 12:0060380239821.71576/26/2017 12:0060380330369.41966/27/2017 12:0060380338557.71996/27/2017 12:0060380338557.7199 <td< td=""><td>6/21/2017 20:00</td><td>60</td><td>379887179.0</td><td>193</td></td<>                                                                                                                                                                                                                                                                                                                                 | 6/21/2017 20:00                                               | 60                            | 379887179.0                 | 193             |
| 6/22/2017 4:00593799133962026/22/2017 8:0060379929505.31986/22/2017 12:0059379943626.21976/22/2017 16:00613799577281966/22/2017 20:00593799718311946/23/2017 0:0059379985938.4716/23/2017 4:006038000042.91976/23/2017 12:00603800282581966/23/2017 16:0058380042379.31996/23/2017 16:0058380055506.11976/24/2017 0:006038007630.11966/24/2017 4:0059380088442.21946/24/2017 12:0058380112955.11976/24/2017 12:0058380127049.61996/24/2017 12:00603801411581976/25/2017 0:006138015525.82006/25/2017 12:0061380183442.12006/25/2017 12:0061380197516.81986/25/2017 12:0061380239821.71576/26/2017 0:0058380239821.71576/26/2017 12:00603802393.51956/26/2017 12:0060380282146.61966/26/2017 12:0060380330369.41966/26/2017 12:0060380338557.71996/27/2017 12:006138032649.51976/27/2017 12:0060380338557.71996/27/2017 12:0060380336576.21976/2                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/22/2017 0:00                                                | 60                            | 379901288.8                 | 202             |
| 6/22/2017 8:0060379929505.31986/22/2017 12:0059379943626.21976/22/2017 16:00613799577281966/22/2017 20:00593799718311946/23/2017 0:0059379985938.4716/23/2017 4:0060380000042.91976/23/2017 12:00603800282581966/23/2017 12:00603800282581966/23/2017 16:0058380042379.31996/23/2017 0:006038007630.11976/24/2017 0:006038007630.11966/24/2017 12:0058380127049.61996/24/2017 12:0058380127049.61996/24/2017 12:00603801411581976/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 12:0061380197516.81986/25/2017 12:0061380127049.61976/25/2017 12:00613801933442.12006/25/2017 12:0060380211612.41966/25/2017 12:0060380239821.71576/26/2017 12:0060380282146.61966/26/2017 12:006038032821.71576/26/2017 12:0060380310369.41966/26/2017 12:0060380338557.71996/27/2017 12:0060380338557.71996/27/2017 12:00603803365765.2197<                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/22/2017 4:00                                                | 59                            | 379915396                   | 202             |
| 6/22/2017 12:0059379943626.21976/22/2017 16:00613799577281966/22/2017 20:00593799718311946/23/2017 0:0059379985938.4716/23/2017 4:0060380000042.91976/23/2017 12:00603800282581966/23/2017 12:00603800282581966/23/2017 10:0058380042379.31996/23/2017 10:0058380056506.11976/24/2017 0:0060380070630.11966/24/2017 10:00593800884742.21946/24/2017 10:0059380127049.61996/24/2017 12:0058380127049.61996/24/2017 12:00603801411581976/25/2017 0:0061380155253.82006/25/2017 12:0061380193442.12006/25/2017 12:006138028216.61986/25/2017 12:0060380239821.71576/25/2017 12:006038023933.51956/25/2017 12:0060380253933.51956/26/2017 12:0060380282146.61966/26/2017 12:00603803282146.61966/26/2017 12:00603803282146.61966/26/2017 12:006038032857.71996/27/2017 12:0060380338557.71996/27/2017 12:006038032649.51976/27/2017 12:00603803855649.5197<                                                                                                                                                                                                                                                                                                                                                                                                               | 6/22/2017 8:00                                                | 60                            | 379929505.3                 | 198             |
| 6/22/2017 16:00613/995/7281966/22/2017 20:00593799718311946/23/2017 0:0059379985938.4716/23/2017 4:006038000042.91976/23/2017 12:00603800282581966/23/2017 12:00603800282581966/23/2017 16:0058380042379.31996/23/2017 0:0060380076630.11976/24/2017 0:0060380070630.11966/24/2017 12:0059380084742.21946/24/2017 8:0059380098846.31986/24/2017 12:0058380112955.11976/24/2017 12:00583801411581976/24/2017 12:00603801411581976/25/2017 0:006138015525.82006/25/2017 12:006138019347.91976/25/2017 12:0061380193442.12006/25/2017 12:0060380239821.71576/26/2017 12:0058380239821.71576/26/2017 12:006038025393.51956/26/2017 12:0060380282146.61966/26/2017 12:0060380328244.21966/26/2017 12:00603803310369.41966/26/2017 12:0060380338557.71996/27/2017 12:00603803244701976/27/2017 12:006038038557.71996/27/2017 12:006038038656.21976/27                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/22/2017 12:00                                               | 59                            | 379943626.2                 | 197             |
| 6/22/2017 20:00593799718311946/23/2017 0:0059379985938.4716/23/2017 4:006038000042.91976/23/2017 12:00603800282581966/23/2017 12:00603800282581966/23/2017 16:0058380042379.31996/23/2017 0:0060380076630.11976/24/2017 0:0060380070630.11966/24/2017 4:0059380084742.21946/24/2017 8:0059380098846.31986/24/2017 12:0058380112955.11976/24/2017 12:00583801427049.61996/24/2017 0:00603801411581976/25/2017 0:006138015525.82006/25/2017 12:006138019347.91976/25/2017 12:0061380193442.12006/25/2017 12:0061380239821.71576/26/2017 12:0060380239821.71576/26/2017 12:006038028248.21966/26/2017 12:0060380282146.61966/26/2017 12:00603803282146.61966/26/2017 12:0060380328244.01976/26/2017 12:0060380338557.71996/27/2017 12:006038032649.51976/27/2017 12:006038038557.71996/27/2017 12:0060380385549.51976/27/2017 12:006038038557.7199                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/22/2017 16:00                                               | 61                            | 379957728                   | 196             |
| 6/23/2017 0:0059379985938.4716/23/2017 4:006038000042.91976/23/2017 8:0058380014146.92006/23/2017 12:00603800282581966/23/2017 16:0058380042379.31996/23/2017 20:0058380056506.11976/24/2017 0:0060380070630.11966/24/2017 10:0060380070630.11966/24/2017 10:005938008846.31986/24/2017 12:0058380112955.11976/24/2017 12:0058380127049.61996/24/2017 12:00603801411581976/25/2017 0:0061380155253.82006/25/2017 12:0061380183442.12006/25/2017 12:0061380197516.81986/25/2017 12:0060380211612.41966/25/2017 12:0060380239821.71576/26/2017 12:00613802680481986/26/2017 12:00613802680481986/26/2017 12:0060380310369.41966/26/2017 16:0059380296248.21966/26/2017 16:005938032146.61966/26/2017 16:005938032649.51976/27/2017 12:0060380338557.71996/27/2017 12:0060380338557.71996/27/2017 12:0060380366756.21976/27/2017 12:0060380366756.2197 <td>6/22/2017 20:00</td> <td>59</td> <td>379971831</td> <td>194</td>                                                                                                                                                                                                                                                                                                                                              | 6/22/2017 20:00                                               | 59                            | 379971831                   | 194             |
| 6/23/2017 4:006038000042.91976/23/2017 8:0058380014146.92006/23/2017 12:00603800282581966/23/2017 16:0058380042379.31996/23/2017 20:0058380056506.11976/24/2017 0:0060380070630.11966/24/2017 4:0059380084742.21946/24/2017 12:0058380112955.11976/24/2017 12:0058380127049.61996/24/2017 12:00603801411581976/25/2017 0:0061380155253.82006/25/2017 0:0061380197516.81986/25/2017 12:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 12:0060380239821.71576/26/2017 12:006038025393.51956/26/2017 12:00603802680481986/26/2017 12:0060380225720.61976/26/2017 12:0060380225393.51956/26/2017 12:0060380282146.61966/26/2017 12:0060380310369.41966/26/2017 12:0060380310369.41966/27/2017 20:00613803244701976/27/2017 12:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:006038038557.71996/27/2017 12:0060380366756.2197 <td>6/23/2017 0:00</td> <td>59</td> <td>379985938.4</td> <td>71</td>                                                                                                                                                                                                                                                                                                                                              | 6/23/2017 0:00                                                | 59                            | 379985938.4                 | 71              |
| 6/23/2017 8:0058380014146.92006/23/2017 12:00603800282581966/23/2017 16:0058380042379.31996/23/2017 20:0058380056506.11976/24/2017 0:0060380070630.11966/24/2017 0:0060380070630.11966/24/2017 10:0059380084742.21946/24/2017 12:0058380112955.11976/24/2017 12:0058380127049.61996/24/2017 16:005838015525.82006/25/2017 0:006138015525.82006/25/2017 0:006138019347.91976/25/2017 12:0061380197516.81986/25/2017 12:0061380239821.71576/25/2017 12:0060380239821.71576/26/2017 0:00593802680481986/25/2017 12:00613802680481986/26/2017 12:006038021612.41966/26/2017 12:00603802393.51956/26/2017 12:00603802680481986/26/2017 12:0060380310369.41966/27/2017 12:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380338557.71996/27/2017 12:0060380366756.21976/27/2017 12:0060380366756.21976/27/2017 12:0060380366756.2197 <td>6/23/2017 4:00</td> <td>60</td> <td>380000042.9</td> <td>197</td>                                                                                                                                                                                                                                                                                                                                                | 6/23/2017 4:00                                                | 60                            | 380000042.9                 | 197             |
| 6/23/2017 12:00603800282581966/23/2017 16:0058380042379.31996/23/2017 20:0058380056506.11976/24/2017 0:0060380070630.11966/24/2017 4:0059380084742.21946/24/2017 8:0059380098846.31986/24/2017 12:0058380112955.11976/24/2017 16:0058380127049.61996/24/2017 0:00603801411581976/25/2017 0:0061380155253.82006/25/2017 0:0061380183442.12006/25/2017 12:0061380197516.81986/25/2017 12:0061380239821.71576/25/2017 0:0059380239821.71576/26/2017 0:0059380280481986/25/2017 12:00603802393.51956/26/2017 12:0060380239821.71576/26/2017 12:006038024481986/26/2017 12:0060380310369.41966/26/2017 16:005938022648.21966/26/2017 16:00593803244701976/27/2017 0:0061380352649.51976/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27/201                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/23/2017 8:00                                                | 58                            | 380014146.9                 | 200             |
| 6/23/2017 16:0058380042379.31996/23/2017 20:0058380056506.11976/24/2017 0:0060380070630.11966/24/2017 4:0059380084742.21946/24/2017 8:0059380098846.31986/24/2017 12:0058380112955.11976/24/2017 16:0058380127049.61996/24/2017 20:00603801411581976/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 12:0061380197516.81986/25/2017 12:0061380211612.41966/25/2017 0:0059380239821.71576/26/2017 0:0058380239821.71576/26/2017 0:00593802804881986/26/2017 12:0060380280481986/26/2017 12:0060380310369.41966/26/2017 16:00593803244701976/26/2017 0:0061380338557.71996/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27/2017 8:0058380352649.51976/27                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/23/2017 12:00                                               | 60                            | 380028258                   | 196             |
| 6/23/2017 20:0058380056506.11976/24/2017 0:0060380070630.11966/24/2017 4:0059380084742.21946/24/2017 8:0059380098846.31986/24/2017 12:005838012955.11976/24/2017 16:0058380127049.61996/24/2017 20:00603801411581976/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 12:0061380197516.81986/25/2017 12:0061380225720.61976/25/2017 12:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:006038025393.51956/26/2017 4:0060380282146.61966/26/2017 12:0060380310369.41966/26/2017 0:0059380296248.21966/26/2017 0:0059380296248.21966/26/2017 12:0060380310369.41976/26/2017 0:00613803244701976/27/2017 0:0061380328557.71996/27/2017 8:0058380325649.51976/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.21976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/23/2017 16:00                                               | 58                            | 380042379.3                 | 199             |
| 6/24/2017 0:0060380070630.11966/24/2017 4:0059380084742.21946/24/2017 8:0059380098846.31986/24/2017 12:0058380112955.11976/24/2017 16:0058380127049.61996/24/2017 20:00603801411581976/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 8:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 12:0061380225720.61976/26/2017 0:0058380239821.71576/26/2017 0:00583802680481986/26/2017 12:0060380282146.61966/26/2017 12:0060380310369.41966/26/2017 0:00593803244701976/26/2017 0:0061380338557.71996/27/2017 12:0060380338557.71996/27/2017 12:0060380326649.51976/27/2017 12:0060380338557.71996/27/2017 12:0060380326649.51976/27/2017 12:0060380326649.51976/27/2017 12:0060380326649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/23/2017 20:00                                               | 58                            | 380056506.1                 | 197             |
| 6/24/2017 4:0059380084742.21946/24/2017 8:0059380098846.31986/24/2017 12:0058380112955.11976/24/2017 16:0058380127049.61996/24/2017 20:00603801411581976/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 4:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 12:0060380211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:006038028393.51956/26/2017 12:0060380280481986/26/2017 12:0060380282146.61966/26/2017 12:0060380310369.41966/26/2017 0:00613803244701976/27/2017 0:006138032649.51976/27/2017 8:0058380352649.51976/27/2017 12:0060380338557.71996/27/2017 12:0060380338557.71996/27/2017 12:0060380338557.71976/27/2017 12:0060380338557.71976/27/2017 12:00603803366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/24/2017 0:00                                                | 60                            | 380070630.1                 | 196             |
| 6/24/2017 8:0059380098846.31986/24/2017 12:0058380112955.11976/24/2017 16:0058380127049.61996/24/2017 20:00603801411581976/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 8:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 12:00603802211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 12:0060380282146.61966/26/2017 12:0060380310369.41966/26/2017 20:00613803244701976/26/2017 4:0060380338557.71996/27/2017 4:0060380352649.51976/27/2017 12:0060380352649.5197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/24/2017 4:00                                                | 59                            | 380084742.2                 | 194             |
| 6/24/2017 12:0058380112955.11976/24/2017 16:0058380127049.61996/24/2017 20:00603801411581976/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 8:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 12:0060380211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 12:0060380282146.61966/26/2017 12:0060380310369.41966/26/2017 20:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380352649.51976/27/2017 12:0060380352649.5197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6/24/2017 8:00                                                | 59                            | 380098846.3                 | 198             |
| 6/24/2017 16:0058380127049.61996/24/2017 20:00603801411581976/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 8:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 16:0060380211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 12:0060380282146.61966/26/2017 12:0060380310369.41966/26/2017 20:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/24/2017 12:00                                               | 58                            | 380112955.1                 | 197             |
| 6/24/2017 20:00603801411581976/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 8:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 12:0060380211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 12:00613802680481986/26/2017 12:0060380310369.41966/26/2017 12:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6/24/2017 16:00                                               | 58                            | 380127049.6                 | 199             |
| 6/25/2017 0:0061380155253.82006/25/2017 4:0062380169347.91976/25/2017 8:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 16:0060380211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 12:00613802680481986/26/2017 12:0060380310369.41966/26/2017 20:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:006038033657.71996/27/2017 12:0060380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6/24/2017 20:00                                               | 60                            | 380141158                   | 197             |
| 6/25/2017 4:0062380169347.91976/25/2017 8:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 16:0060380211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 8:00613802680481986/26/2017 12:0060380296248.21966/26/2017 10:0061380310369.41966/26/2017 4:0060380338557.71996/27/2017 4:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/25/2017 0:00                                                | 61                            | 380155253.8                 | 200             |
| 6/25/2017 8:0060380183442.12006/25/2017 12:0061380197516.81986/25/2017 16:0060380211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 8:00613802680481986/26/2017 12:0060380296248.21966/26/2017 16:0059380296248.21966/26/2017 0:0061380310369.41966/27/2017 0:0061380338557.71996/27/2017 4:0060380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/25/2017 4:00                                                | 62                            | 380169347.9                 | 197             |
| 6/25/2017 12:0061380197516.81986/25/2017 16:0060380211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 8:00613802680481986/26/2017 12:0060380282146.61966/26/2017 16:0059380296248.21966/26/2017 20:0060380310369.41966/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 12:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6/25/2017 8:00                                                | 60                            | 380183442.1                 | 200             |
| 6/25/2017 16:0060380211612.41966/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 8:00613802680481986/26/2017 12:0060380282146.61966/26/2017 16:0059380296248.21966/26/2017 20:0060380310369.41966/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 12:0060380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/25/2017 12:00                                               | 61                            | 380197516.8                 | 198             |
| 6/25/2017 20:0059380225720.61976/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 8:00613802680481986/26/2017 12:0060380282146.61966/26/2017 16:0059380296248.21966/26/2017 20:0060380310369.41966/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/25/2017 16:00                                               | 60                            | 380211612.4                 | 196             |
| 6/26/2017 0:0058380239821.71576/26/2017 4:0060380253933.51956/26/2017 8:00613802680481986/26/2017 12:0060380282146.61966/26/2017 16:0059380296248.21966/26/2017 20:0060380310369.41966/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/25/2017 20:00                                               | 59                            | 380225720.6                 | 197             |
| 6/26/2017 4:0060380253933.51956/26/2017 8:00613802680481986/26/2017 12:0060380282146.61966/26/2017 16:0059380296248.21966/26/2017 20:0060380310369.41966/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/26/2017 0:00                                                | 58                            | 380239821.7                 | 157             |
| 6/26/2017 8:00613802680481986/26/2017 12:0060380282146.61966/26/2017 16:0059380296248.21966/26/2017 20:0060380310369.41966/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/26/2017 4:00                                                | 60                            | 380253933.5                 | 195             |
| 6/26/2017 12:0060380282146.61966/26/2017 16:0059380296248.21966/26/2017 20:0060380310369.41966/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6/26/2017 8:00                                                | 61                            | 380268048                   | 198             |
| 6/26/2017 16:0059380296248.21966/26/2017 20:0060380310369.41966/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/26/2017 12:00                                               | 60                            | 380282146.6                 | 196             |
| 6/26/2017 20:0060380310369.41966/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/26/2017 16:00                                               | 59                            | 380296248.2                 | 196             |
| 6/27/2017 0:00613803244701976/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6/26/2017 20:00                                               | 60                            | 380310369.4                 | 196             |
| 6/27/2017 4:0060380338557.71996/27/2017 8:0058380352649.51976/27/2017 12:0060380366756.2197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/27/2017 0:00                                                | 61                            | 380324470                   | 197             |
| 6/27/2017 8:00         58         380352649.5         197           6/27/2017 12:00         60         380366756.2         197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/27/2017 4:00                                                | 60                            | 380338557.7                 | 199             |
| 6/27/2017 12:00 60 380366756.2 197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6/27/2017 8:00                                                | 58                            | 380352649.5                 | 197             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/27/2017 12:00                                               | 60                            | 380366756.2                 | 197             |

| Stanton Cleaners Groundwater Contamination Site - June 2017 -<br>Site Operational Data |                               |                             |                 |  |  |  |  |
|----------------------------------------------------------------------------------------|-------------------------------|-----------------------------|-----------------|--|--|--|--|
| Time                                                                                   | Recovery Well 3<br>Flow (GPM) | Total Gallons<br>Discharged | SVE Air<br>Flow |  |  |  |  |
| 6/27/2017 16:00                                                                        | 60                            | 380380866.1                 | 196             |  |  |  |  |
| 6/27/2017 20:00                                                                        | 62                            | 380394980.6                 | 195             |  |  |  |  |
| 6/28/2017 0:00                                                                         | 61                            | 380409086.8                 | 197             |  |  |  |  |
| 6/28/2017 4:00                                                                         | 58                            | 380423189.9                 | 198             |  |  |  |  |
| 6/28/2017 8:00                                                                         | 58                            | 380437297.9                 | 196             |  |  |  |  |
| 6/28/2017 12:00                                                                        | 60                            | 380451411.9                 | 200             |  |  |  |  |
| 6/28/2017 16:00                                                                        | 59                            | 380465522                   | 197             |  |  |  |  |
| 6/28/2017 20:00                                                                        | 58                            | 380479640.5                 | 199             |  |  |  |  |
| 6/29/2017 0:00                                                                         | 60                            | 380493750.4                 | 201             |  |  |  |  |
| 6/29/2017 4:00                                                                         | 59                            | 380507855.4                 | 196             |  |  |  |  |
| 6/29/2017 8:00                                                                         | 59                            | 380521965.7                 | 201             |  |  |  |  |
| 6/29/2017 12:00                                                                        | 58                            | 380536086.3                 | 195             |  |  |  |  |
| 6/29/2017 16:00                                                                        | 58                            | 380550208.5                 | 195             |  |  |  |  |
| 6/29/2017 20:00                                                                        | 58                            | 380564331                   | 198             |  |  |  |  |
| 6/30/2017 0:00                                                                         | 59                            | 380578439.1                 | 199             |  |  |  |  |
| 6/30/2017 4:00                                                                         | 61                            | 380592534.6                 | 202             |  |  |  |  |
| 6/30/2017 8:00                                                                         | 58                            | 380606634.8                 | 203             |  |  |  |  |
| 6/30/2017 12:00                                                                        | 59                            | 380620743.2                 | 196             |  |  |  |  |
| 6/30/2017 16:00                                                                        | 59                            | 380634854.8                 | 200             |  |  |  |  |
| 6/30/2017 20:00                                                                        | 60                            | 380648958.5                 | 199             |  |  |  |  |

Appendix D

Air Sparge System Monitoring Logs

## STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Air Sparge System O&M Data Log

| Treatment Room Readings |          |  |  |  |  |  |
|-------------------------|----------|--|--|--|--|--|
| SCFM                    | N/A* PSI |  |  |  |  |  |
| psi-1                   | N/A* PSI |  |  |  |  |  |
| psi-2                   | N/A* PSI |  |  |  |  |  |
| psi-3                   | N/A* PSI |  |  |  |  |  |
| P <sub>1</sub>          | N/A* PSI |  |  |  |  |  |
| P <sub>2</sub>          | N/A* PSI |  |  |  |  |  |
| P <sub>3</sub>          | N/A* PSI |  |  |  |  |  |

| System Readings |          |  |  |  |  |  |
|-----------------|----------|--|--|--|--|--|
| Temp.           | N/A* ⁰F  |  |  |  |  |  |
| EN-37-1         | N/A* bar |  |  |  |  |  |
| K/O Tank        | N/A* PSI |  |  |  |  |  |

Notes:

\*Air readings could not be collected due to the Air Sparge System being offline.

\*Air Sparge System offline SCFM- Standard Cubic Feet per Minute psi- pounds per square inch

### Locations:

Near Well Head- psi gauge at corner of New Stanton Cleaners Building Bladder- psi gauge at well head SCFM- gauge in treatment room (first gauge when looking at wall from left to right) psi-1 - 2nd gauge attached to line on wall when looking left to right psi-2 - 3rd gauge psi-3 - 4th gauge P<sub>1</sub>- influent relief valve P<sub>2</sub>- adjacent to catwalk P<sub>3</sub>- on top of carbon tank Temp.- from compressor screen display EN-37-1- gauge on compressor K/O Tank- gauge on knockout tank Date: 4/27/2017

## STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Air Sparge System O&M Data Log

 Readings at Well

 Near Well Head
 N/A\*

 Bladder
 Image: Note that the second sec

| Treatment Room Readings |          |  |  |  |  |  |
|-------------------------|----------|--|--|--|--|--|
| SCFM                    | N/A* PSI |  |  |  |  |  |
| psi-1                   | N/A* PSI |  |  |  |  |  |
| psi-2                   | N/A* PSI |  |  |  |  |  |
| psi-3                   | N/A* PSI |  |  |  |  |  |
| P <sub>1</sub>          | N/A* PSI |  |  |  |  |  |
| P <sub>2</sub>          | N/A* PSI |  |  |  |  |  |
| P <sub>3</sub>          | N/A* PSI |  |  |  |  |  |

| System Readings |          |  |  |  |  |  |
|-----------------|----------|--|--|--|--|--|
| Temp.           | N/A* ⁰F  |  |  |  |  |  |
| EN-37-1         | N/A* bar |  |  |  |  |  |
| K/O Tank        | N/A* PSI |  |  |  |  |  |

Notes:

\*Air readings could not be collected due to the Air Sparge System being offline.

\*Air Sparge System offline SCFM- Standard Cubic Feet per Minute psi- pounds per square inch

### Locations:

Near Well Head- psi gauge at corner of New Stanton Cleaners Building Bladder- psi gauge at well head SCFM- gauge in treatment room (first gauge when looking at wall from left to right) psi-1 - 2nd gauge attached to line on wall when looking left to right psi-2 - 3rd gauge psi-3 - 4th gauge P<sub>1</sub>- influent relief valve P<sub>2</sub>- adjacent to catwalk P<sub>3</sub>- on top of carbon tank Temp.- from compressor screen display EN-37-1- gauge on compressor K/O Tank- gauge on knockout tank Date: 5/25/2017

## STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Air Sparge System O&M Data Log

 Readings at Well

 Near Well Head
 N/A\*

 Bladder
 Image: Note that the second sec

| Treatment Room Readings |          |  |  |  |  |  |
|-------------------------|----------|--|--|--|--|--|
| SCFM                    | N/A* PSI |  |  |  |  |  |
| psi-1                   | N/A* PSI |  |  |  |  |  |
| psi-2                   | N/A* PSI |  |  |  |  |  |
| psi-3                   | N/A* PSI |  |  |  |  |  |
| P <sub>1</sub>          | N/A* PSI |  |  |  |  |  |
| P <sub>2</sub>          | N/A* PSI |  |  |  |  |  |
| P <sub>3</sub>          | N/A* PSI |  |  |  |  |  |

| System Readings |          |  |  |  |  |  |
|-----------------|----------|--|--|--|--|--|
| Temp.           | N/A* ⁰F  |  |  |  |  |  |
| EN-37-1         | N/A* bar |  |  |  |  |  |
| K/O Tank        | N/A* PSI |  |  |  |  |  |

Notes:

\*Air readings could not be collected due to the Air Sparge System being offline.

\*Air Sparge System offline SCFM- Standard Cubic Feet per Minute psi- pounds per square inch

### Locations:

Near Well Head- psi gauge at corner of New Stanton Cleaners Building Bladder- psi gauge at well head SCFM- gauge in treatment room (first gauge when looking at wall from left to right) psi-1 - 2nd gauge attached to line on wall when looking left to right psi-2 - 3rd gauge psi-3 - 4th gauge P<sub>1</sub>- influent relief valve P<sub>2</sub>- adjacent to catwalk P<sub>3</sub>- on top of carbon tank Temp.- from compressor screen display EN-37-1- gauge on compressor K/O Tank- gauge on knockout tank Date: 6/26/2017

Appendix E

Soil Vapor Extraction System Air Monitoring Logs

# STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Soil-Vapor Extraction and Pump and Treat System Monthly Air Monitoring Log

### 4/27/2017 Date: Project #

|                          |         | FID MultiRAE Plus PGM-50 |     |     |        |     |     |       | V         | elociCalc Pl | us      |       |
|--------------------------|---------|--------------------------|-----|-----|--------|-----|-----|-------|-----------|--------------|---------|-------|
|                          | Pipe ID | VOC                      | VOC | CO  | Oxygen | LEL | H2S | Temp. | Vac. Pre. | %RH          | Dew pt. | Flow  |
| SVE-Influent             | 5.709   | N/A                      | 1.5 | 0.0 | 20.2   | 0.0 | 0.0 | 68.2  | N/A**     | 67.7         | 57.2    | N/A** |
| Post- Blower Pre-Carbon* | 5.706   | N/A                      | 2.2 | 0.0 | 20.1   | 0.0 | 0.0 | 87.3  | 1.133     | 45.7         | 63.8    | 1,443 |
| EPA-SVE-1 (shallow)      | 1.913   | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 65.7  | 1.613     | 74.7         | 57.5    | 2,054 |
| EPA-SVE-1 (medium)       | 1.913   | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 65.6  | 0.500     | 70.5         | 55.7    | 623   |
| EPA-SVE-2 (shallow)      | 1.913   | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 63.2  | 1.301     | 80.6         | 56.7    | 1,574 |
| EPA-SVE-2 (medium)       | 1.913   | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 64.0  | 0.785     | 83.7         | 58.9    | 996   |
| SS-A                     | 1.913   | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 62.7  | 2.045     | 85.4         | 58.3    | 3,290 |
| SVE-3A                   | 1.913   | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 65.3  | 6.139     | 76.9         | 57.9    | 7,817 |
| SVE-3B                   | 1.913   | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 66.4  | 4.990     | 72.6         | 57.3    | 6,353 |
| SVE-1 Combined           | 1.913   | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 65.0  | N/A**     | 73.2         | 56.5    | N/A** |
| SVE-2 Combined           | 1.913   | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 63.2  | 3.168     | 83.6         | 57.1    | 3,968 |
| Background               |         | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 64.6  | N/A       | 74.5         | 56.3    | N/A   |

Notes:

\*SVE-Effluent relabeled as "Post-Blower Pre-Carbon Sampling Location" Dew Point data

### unavailable, an alternate

velocicalc

| Equipment calibrated by:   | Dennis Berthold |
|----------------------------|-----------------|
| Air readings collected by: | Dennis Berthold |

Notes: \*\*Maxed out reading on meter FID: Flame Ionization Detector VOC: Volatile Organic Compounds (in parts per million) CO: Carbon Monoxide LEL: Lower Explosive Limit H2S: Hydrogen Sulfide Temperature: Measured in Degrees Fahrenheit Vacuum Pressure: measured in inches of water (in/H2O) %RH: relative humidity Dew Pt.: dew point in degrees Fahrenheit Flow: measured in cubic feet per minute (CFM)

AS: Air Stripper SVE: Soil Vapor Extraction System

|                    | Prior to 10/3/05 | After 10/3/05         |
|--------------------|------------------|-----------------------|
| SVE 1              | shallow on       | shallow and medium on |
| SVE 2              | shallow on       | shallow on            |
| SVE 3              | shallow on       | shallow on            |
| SVE 4              | off              | off                   |
| EPA-SVE-04R/SSB(A) | on               | on                    |
| SS-A               | on               | on                    |
| SS-B(B)            | on               | off                   |
| SS-B(C)            | on               | on                    |
| L1                 | on               | off                   |
| L2                 | on               | off                   |

Comments: New SVE well EPA-EXT-04 online since 11/4/04 LIHA sub-slab system was removed by the EPA from service in the Fall of 2012. N/A- Not Available

# STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Soil-Vapor Extraction and Pump and Treat System Monthly Air Monitoring Log

### 5/25/2017 Date: Project #

|                          |         | FID MultiRAE Plus PGM-50 |     |     |        |     |     | VelociCalc Plus |           |       |         |       |
|--------------------------|---------|--------------------------|-----|-----|--------|-----|-----|-----------------|-----------|-------|---------|-------|
|                          | Pipe ID | VOC                      | VOC | со  | Oxygen | LEL | H2S | Temp.           | Vac. Pre. | %RH   | Dew pt. | Flow  |
| SVE-Influent             | 5.709   | N/A                      | 1.1 | 0.0 | 20.2   | 0.0 | 0.0 | 66.9            | N/A**     | 71.3  | 57.4    | N/A** |
| Post- Blower Pre-Carbon* | 5.706   | N/A                      | 1.7 | 0.0 | 20.0   | 0.0 | 0.0 | 74.1            | -1.336    | 88.5  | 70.4    | 1,010 |
| EPA-SVE-1 (shallow)      | 1.913   | N/A                      | 0.1 | 0.0 | 20.9   | 0.0 | 0.0 | 53.9            | 11.781    | 100.0 | 53.9    | 1,218 |
| EPA-SVE-1 (medium)       | 1.913   | N/A                      | 0.1 | 0.0 | 20.9   | 0.0 | 0.0 | 56.4            | 9.315     | 100.0 | 56.4    | 993   |
| EPA-SVE-2 (shallow)      | 1.913   | N/A                      | 0.1 | 0.0 | 20.9   | 0.0 | 0.0 | 56.8            | 4.917     | 100.0 | 56.8    | 1,172 |
| EPA-SVE-2 (medium)       | 1.913   | N/A                      | 0.1 | 0.0 | 20.9   | 0.0 | 0.0 | 57.6            | 3.454     | 100.0 | 57.6    | 1,881 |
| SS-A                     | 1.913   | N/A                      | 0.1 | 0.0 | 20.9   | 0.0 | 0.0 | 54.2            | N/A**     | 100.0 | 54.2    | 1,785 |
| SVE-3A                   | 1.913   | N/A                      | 0.1 | 0.0 | 20.9   | 0.0 | 0.0 | 58.3            | N/A**     | 82.4  | 53.0    | N/A** |
| SVE-3B                   | 1.913   | N/A                      | 0.1 | 0.0 | 20.9   | 0.0 | 0.0 | 64.1            | N/A**     | 66.5  | 52.7    | 6,232 |
| SVE-1 Combined           | 1.913   | N/A                      | 0.1 | 0.0 | 20.9   | 0.0 | 0.0 | 56.3            | 13.852    | 100.0 | 56.3    | N/A** |
| SVE-2 Combined           | 1.913   | N/A                      | 0.1 | 0.0 | 20.9   | 0.0 | 0.0 | 55.4            | 13.496    | 100.0 | 55.4    | 3,975 |
| Background               |         | N/A                      | 0.0 | 0.0 | 20.9   | 0.0 | 0.0 | 55.0            | N/A       | 100.0 | 57.0    | N/A   |

Notes:

\*SVE-Effluent relabeled as "Post-Blower Pre-Carbon Sampling Location" Dew Point data

### unavailable, an alternate

velocicalc

| Equipment calibrated by:   | Dennis Berthold |
|----------------------------|-----------------|
| Air readings collected by: | Dennis Berthold |

Notes: \*\*Maxed out reading on meter FID: Flame Ionization Detector VOC: Volatile Organic Compounds (in parts per million) CO: Carbon Monoxide LEL: Lower Explosive Limit H2S: Hydrogen Sulfide Temperature: Measured in Degrees Fahrenheit Vacuum Pressure: measured in inches of water (in/H2O) %RH: relative humidity Dew Pt.: dew point in degrees Fahrenheit Flow: measured in cubic feet per minute (CFM)

AS: Air Stripper SVE: Soil Vapor Extraction System

|                    | Prior to 10/3/05 | After 10/3/05         |
|--------------------|------------------|-----------------------|
| SVE 1              | shallow on       | shallow and medium on |
| SVE 2              | shallow on       | shallow on            |
| SVE 3              | shallow on       | shallow on            |
| SVE 4              | off              | off                   |
| EPA-SVE-04R/SSB(A) | on               | on                    |
| SS-A               | on               | on                    |
| SS-B(B)            | on               | off                   |
| SS-B(C)            | on               | on                    |
| L1                 | on               | off                   |
| 12                 | on               | off                   |

Comments: New SVE well EPA-EXT-04 online since 11/4/04 LIHA sub-slab system was removed by the EPA from service in the Fall of 2012. N/A- Not Available

# STANTON CLEANERS AREA GROUNDWATER CONTAMINATION SITE Soil-Vapor Extraction and Pump and Treat System Monthly Air Monitoring Log

### 6/26/2017 Date: Project #

|                          |         | FID |     | MultiR | AE Plus P | GM-50 | )   |       | V         | elociCalc Pl | us      |        |
|--------------------------|---------|-----|-----|--------|-----------|-------|-----|-------|-----------|--------------|---------|--------|
|                          | Pipe ID | VOC | VOC | CO     | Oxygen    | LEL   | H2S | Temp. | Vac. Pre. | %RH          | Dew pt. | Flow   |
| SVE-Influent             | 5.709   | N/A | 1.1 | 0.0    | 20.2      | 0.0   | 0.0 | 82.4  | N/A**     | 72.3         | 55.6    | N/A**  |
| Post- Blower Pre-Carbon* | 5.706   | N/A | 1.5 | 0.0    | 20.0      | 0.0   | 0.0 | 99.6  | -1.473    | 46.2         | 62.0    | 31.56  |
| EPA-SVE-1 (shallow)      | 1.913   | N/A | 0.3 | 0.0    | 20.9      | 0.0   | 0.0 | 83.6  | -0.005    | 100.0        | 83.5    | 0.08   |
| EPA-SVE-1 (medium)       | 1.913   | N/A | 0.0 | 0.0    | 20.9      | 0.0   | 0.0 | 80.2  | -0.012    | 97.7         | 79.1    | 0.03   |
| EPA-SVE-2 (shallow)      | 1.913   | N/A | 0.0 | 0.0    | 20.0      | 0.0   | 0.0 | 74.5  | -3.142    | 51.3         | 55.1    | 21.82  |
| EPA-SVE-2 (medium)       | 1.913   | N/A | 3.1 | 0.0    | 20.9      | 0.0   | 0.0 | 73.3  | -2.630    | 51.9         | 54.2    | 39.44  |
| SS-A                     | 1.913   | N/A | 0.0 | 0.0    | 20.9      | 0.0   | 0.0 | 73.3  | -9.976    | 47.8         | 54.0    | 31.74  |
| SVE-3A                   | 1.913   | N/A | 0.0 | 0.0    | 20.9      | 0.0   | 0.0 | 74.4  | -12.013   | 61.1         | 62.0    | N/A**  |
| SVE-3B                   | 1.913   | N/A | 0.2 | 0.0    | 19.9      | 0.0   | 0.0 | 82.5  | -10.395   | 37.2         | 54.2    | 134.31 |
| SVE-1 Combined           | 1.913   | N/A | 0.1 | 0.0    | 20.9      | 0.0   | 0.0 | 82.4  | -0.011    | 100.0        | 83.1    | 0.07   |
| SVE-2 Combined           | 1.913   | N/A | 5.5 | 0.0    | 20.1      | 0.0   | 0.0 | 73.8  | -8.720    | 51.3         | 54.2    | 60.84  |
| Background               |         | N/A | 0.0 | 0.0    | 20.9      | 0.0   | 0.0 | 73.0  | N/A       | 36.0         | 45.0    | N/A    |

Notes:

\*SVE-Effluent relabeled as "Post-Blower Pre-Carbon Sampling Location" Dew Point data

### unavailable, an alternate

velocicalc

| Equipment calibrated by:   | John Zator |
|----------------------------|------------|
| Air readings collected by: | John Zator |

Notes: \*\*Maxed out reading on meter FID: Flame Ionization Detector VOC: Volatile Organic Compounds (in parts per million) CO: Carbon Monoxide LEL: Lower Explosive Limit H2S: Hydrogen Sulfide Temperature: Measured in Degrees Fahrenheit Vacuum Pressure: measured in inches of water (in/H2O) %RH: relative humidity Dew Pt.: dew point in degrees Fahrenheit Flow: measured in cubic feet per minute (CFM)

AS: Air Stripper SVE: Soil Vapor Extraction System

|                    | Prior to 10/3/05 | After 10/3/05         |
|--------------------|------------------|-----------------------|
| SVE 1              | shallow on       | shallow and medium on |
| SVE 2              | shallow on       | shallow on            |
| SVE 3              | shallow on       | shallow on            |
| SVE 4              | off              | off                   |
| EPA-SVE-04R/SSB(A) | on               | on                    |
| SS-A               | on               | on                    |
| SS-B(B)            | on               | off                   |
| SS-B(C)            | on               | on                    |
| L1                 | on               | off                   |
| L2                 | on               | off                   |

Comments: New SVE well EPA-EXT-04 online since 11/4/04 LIHA sub-slab system was removed by the EPA from service in the Fall of 2012. N/A- Not Available

Appendix F

Groundwater Level Monitoring Results

## WATER LEVEL DATA SUMMARY

| PROJECT:          | Stanton Cleaners  |                |       |                   | JOB NUMBER:  |                                          |
|-------------------|-------------------|----------------|-------|-------------------|--------------|------------------------------------------|
| LOCATION:         | Great Neck, NY    |                |       |                   | DATE:        | 4/27/2017                                |
| CLIENT:           | HDR               |                |       |                   | MEASURED BY: | DB                                       |
| SURVEY DATUM:     | ft msl            |                |       |                   |              |                                          |
| MEASURING DEVICE: | Solinst Water Lev | el Indicator   |       |                   |              |                                          |
| WELL              | MEASURING P       | OINT           | Time  | DEPTH TO<br>WATER | ELEVATION OF | COMMENTS                                 |
| NUMBER            | Description       | Elevation (FT) |       | (FT)              | WATER (FT)   |                                          |
| EPA-MW-11D        | ft BTOC           | 74.63          | 14:37 | 56.96             | 17.67        | 4" well in p-lot by med sports bldg.     |
| EPA-MW-21-R       | ft BTOC           | 84.13          | 14:57 | 68.63             | 15.50        | Getty Gas Station well                   |
| EPA-MW-22         | ft BTOC           | 82.20          |       | N/A               | -            | Under clothing bin- SC p-lot             |
| EPA-MW-23         | ft BTOC           | 82.83          | 13:28 | 64.13             | 18.70        | In front of treatment bldg.              |
| EPA-MW-27         | ft BTOC           | 69.32          | 14:51 | 50.96             | 18.36        | LIHA PL                                  |
| ST-MW-06          | ft BTOC           | 69.83          | 14:49 | 45.38             | 24.45        | LIHA PL 4"                               |
| ST-MW-09A         | ft BTOC           | 78.13          | 14:07 | 71.42             | 6.71         | P-lot across from triangle<br>park       |
| ST-MW-11          | ft BTOC           | 75.25          | 14:39 | 58.09             | 17.16        | p-lot by entrance to med<br>sports bldg. |
| ST-MW-12          | ft BTOC           | 87.20          | 14:18 | 70.32             | 16.88        | In front of apartment bldg.              |
| ST-MW-14          | ft BTOC           | 69.73          | 14:48 | 50.03             | 19.70        | LIHA PL                                  |
| ST-MW-16          | ft BTOC           | 75.78          | 13:34 | 55.33             | 20.45        | Other side treatment bldg.<br>near fence |
| ST-MW-17          | ft BTOC           | 86.53          | 14:16 | 69.32             | 17.21        | In front of apartment bldg.              |
| ST-MW-19          | ft BTOC           | 82.50          | 13:58 | 65.96             | 16.54        | Triangle park well                       |
| ST-MW-20          | ft BTOC           | 84.53          | 14:14 | 65.20             | 19.33        | Near apartment bldg.                     |
| EPA-MW-26         | ft BTOC           | 78.37          | 13:40 | 59.40             | 18.97        | Ipswich Ave.                             |
| ST-MW-15          | ft BTOC           | 90.13          | 13:51 | 73.04             | 17.09        | Mirreless Rd                             |
| ST-MW-13          | ft BTOC           | 130.95         | 13:44 | 86.40             | 44.55        | Amherst Rd                               |
| ST-MW-18          | ft BTOC           | 84.40          | 14:23 | 66.71             | 17.69        | Ascot Ridge (past apt bldg)              |
|                   |                   |                |       |                   |              |                                          |

Notes:

## WATER LEVEL DATA SUMMARY

| PROJECT:          | Stanton Cleaners  |                |       |                   | JOB NUMBER:  |                                          |
|-------------------|-------------------|----------------|-------|-------------------|--------------|------------------------------------------|
| LOCATION:         | Great Neck, NY    |                |       |                   | DATE:        | 5/25/2017                                |
| CLIENT:           | HDR               |                |       |                   | MEASURED BY: | DB                                       |
| SURVEY DATUM:     | ft msl            |                |       |                   |              |                                          |
| MEASURING DEVICE: | Solinst Water Lev | el Indicator   |       |                   |              |                                          |
| WELL              | MEASURING P       | OINT           | Time  | DEPTH TO<br>WATER | ELEVATION OF | COMMENTS                                 |
| NUMBER            | Description       | Elevation (FT) | -     | (FT)              | WATER (FT)   |                                          |
| EPA-MW-11D        | ft BTOC           | 74.63          | 11:29 | 59.49             | 15.14        | 4" well in p-lot by med sports<br>bldg.  |
| EPA-MW-21-R       | ft BTOC           | 84.13          | 11:52 | 66.73             | N/A          | Getty Gas Station well                   |
| EPA-MW-22         | ft BTOC           | 82.20          |       | N/A               | N/A          | Under clothing bin- SC p-lot             |
| EPA-MW-23         | ft BTOC           | 82.83          | 11:00 | 64.77             | 18.06        | In front of treatment bldg.              |
| EPA-MW-27         | ft BTOC           | 69.32          | 11:43 | 52.02             | 17.30        | LIHA PL                                  |
| ST-MW-06          | ft BTOC           | 69.83          | 11:41 | 44.88             | N/A          | LIHA PL 4"                               |
| ST-MW-09A         | ft BTOC           | 78.13          | 11:18 | 64.18             | 13.95        | P-lot across from triangle<br>park       |
| ST-MW-11          | ft BTOC           | 75.25          | 11:31 | 60.06             | 15.19        | p-lot by entrance to med<br>sports bldg. |
| ST-MW-12          | ft BTOC           | 87.20          | 11:20 | 71.74             | 15.46        | In front of apartment bldg.              |
| ST-MW-14          | ft BTOC           | 69.73          | 11:40 | 56.54             | 13.19        | LIHA PL                                  |
| ST-MW-16          | ft BTOC           | 75.78          | 11:06 | 55.02             | 20.76        | Other side treatment bldg.<br>near fence |
| ST-MW-17          | ft BTOC           | 86.53          | 11:21 | 60.97             | 25.56        | In front of apartment bldg.              |
| ST-MW-19          | ft BTOC           | 82.50          | 11:17 | 67.06             | 15.44        | Triangle park well                       |
| ST-MW-20          | ft BTOC           | 84.53          | 11:22 | 72.72             | 11.81        | Near apartment bldg.                     |
| EPA-MW-26         | ft BTOC           | 78.37          | 11:09 | 59.61             | N/A          | Ipswich Ave.                             |
| ST-MW-15          | ft BTOC           | 90.13          |       | *                 | N/A          | Mirreless Rd                             |
| ST-MW-13          | ft BTOC           | 130.95         | 11:12 | 86.69             | 44.26        | Amherst Rd                               |
| ST-MW-18          | ft BTOC           | 84.40          | 11:24 | 73.10             | 11.30        | Ascot Ridge (past apt bldg)              |
|                   |                   |                |       |                   |              |                                          |

### Notes:

\*Unable to gauge due to flooding over manhole caused by active rain

## WATER LEVEL DATA SUMMARY

| PROJECT:          | Stanton Cleaners  |                |       |                   | JOB NUMBER:  |                                          |
|-------------------|-------------------|----------------|-------|-------------------|--------------|------------------------------------------|
| LOCATION:         | Great Neck, NY    |                |       |                   | DATE:        | 6/26/2017                                |
| CLIENT:           | HDR               |                |       |                   | MEASURED BY  | JZ                                       |
| SURVEY DATUM:     | ft msl            |                |       |                   |              |                                          |
| MEASURING DEVICE: | Solinst Water Lev | el Indicator   |       |                   |              |                                          |
| WELL              | MEASURING P       | OINT           | Time  | DEPTH TO<br>WATER | ELEVATION OF | COMMENTS                                 |
| NUMBER            | Description       | Elevation (FT) |       | (FT)              | WATER (FT)   |                                          |
| EPA-MW-11D        | ft BTOC           | 74.63          | 12:44 | 58.37             | 16.26        | 4" well in p-lot by med sports<br>bldg.  |
| EPA-MW-21-R       | ft BTOC           | 84.13          | 13:13 | 66.74             | N/A          | Getty Gas Station well                   |
| EPA-MW-22         | ft BTOC           | 82.20          |       | N/A               | N/A          | Under clothing bin- SC p-lot             |
| EPA-MW-23         | ft BTOC           | 82.83          | 11:55 | 68.96             | 13.87        | In front of treatment bldg.              |
| EPA-MW-27         | ft BTOC           | 69.32          | 12:59 | 51.86             | 17.46        | LIHA PL                                  |
| ST-MW-06          | ft BTOC           | 69.83          | 13:04 | 44.38             | N/A          | LIHA PL 4"                               |
| ST-MW-09A         | ft BTOC           | 78.13          | 12:52 | 60.10             | 18.03        | P-lot across from triangle<br>park       |
| ST-MW-11          | ft BTOC           | 75.25          | 12:48 | 59.50             | 15.75        | p-lot by entrance to med sports bldg.    |
| ST-MW-12          | ft BTOC           | 87.20          | 12:31 | 71.61             | 15.59        | In front of apartment bldg.              |
| ST-MW-14          | ft BTOC           | 69.73          | 13:08 | 46.72             | 23.01        | LIHA PL                                  |
| ST-MW-16          | ft BTOC           | 75.78          | 11:49 | 55.06             | 20.72        | Other side treatment bldg.<br>near fence |
| ST-MW-17          | ft BTOC           | 86.53          | 12:34 | 70.58             | 15.95        | In front of apartment bldg.              |
| ST-MW-19          | ft BTOC           | 82.50          | 12:54 | 66.99             | 15.51        | Triangle park well                       |
| ST-MW-20          | ft BTOC           | 84.53          | 12:38 | 68.02             | 16.51        | Near apartment bldg.                     |
| EPA-MW-26         | ft BTOC           | 78.37          | 12:06 | 59.86             | N/A          | Ipswich Ave.                             |
| ST-MW-15          | ft BTOC           | 90.13          | 12:19 | 73.97             | N/A          | Mirreless Rd                             |
| ST-MW-13          | ft BTOC           | 130.95         | 12:12 | 86.91             | 44.04        | Amherst Rd                               |
| ST-MW-18          | ft BTOC           | 84.40          | 12:26 | 68.81             | 15.59        | Ascot Ridge (past apt bldg)              |
|                   |                   |                |       |                   |              |                                          |

### Notes:

\*Unable to gauge due to flooding over manhole caused by active rain

Appendix G

Groundwater Sampling Parameters Logs

5-8 (815-1530)

## Stanton Cleaners Area Groundwater Contamination Site Great Neck, New York Semi-Annual Monitoring Well Sampling Trip Report April 2013

| Field Analysis             |        |                                      |                  |                                              |                                           |                                                    |                                       |                                      |                                 |                                           |                |              | 1              |           |   |
|----------------------------|--------|--------------------------------------|------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------------|---------------------------------------|--------------------------------------|---------------------------------|-------------------------------------------|----------------|--------------|----------------|-----------|---|
| MW #                       | Date   | Time                                 | Volume<br>Purged | pH                                           | Conductivity                              | Water<br>Temperature                               | Turbidity                             | DO                                   | ORP                             | TDS                                       | Water<br>Level | Flow<br>Rate | Sample<br>Time |           |   |
| ₽ ₽ 4D<br>EPA-CL-          | 5-8-17 | 1101<br>1106<br>1111<br>1116<br>1121 |                  | 6.03<br>6.03<br>6.08<br>6.00                 | 0,247<br>0,247<br>0,245<br>0,244<br>0,236 | 19:00<br>13:04<br>13:08<br>13:05<br>13:05          | 418.7<br>12.6<br>11.4<br>11.9<br>12.5 | 208<br>6.51<br>5.79<br>5.30<br>5.20  | 91<br>150<br>161<br>161<br>166  | : 136<br>: 161<br>: 160<br>: 159<br>: 157 | 11.10          | 0.5          | 1/;2)          | 87.50 H   | k |
| HS<br>EPA-CL-OD<br>SZ      |        |                                      |                  |                                              |                                           |                                                    |                                       |                                      |                                 |                                           |                |              |                |           |   |
| EPA-MW 11 D                | 5-9-17 | 829<br>834<br>839<br>844<br>849      | 0.5              | 7,03<br>6,74<br>6,54<br>6,53<br>6,53<br>6,49 | 0,514<br>0,509<br>0,522<br>0,522<br>0,520 | 13.41<br>14.46<br>14.34<br>14.36<br>14.36<br>14.41 | 21.2<br>2.2<br>0.0<br>0.0             | 6,81<br>5,75<br>5,63<br>5,60<br>5,59 | 176<br>178<br>151<br>158<br>161 | . 729<br>.327<br>.334<br>.335<br>.335     | 59.62          | 0.5          | 349            | 177.90 H. | 2 |
| JZ<br>EPA- MW 26<br>5-9-17 |        |                                      |                  |                                              |                                           |                                                    |                                       |                                      |                                 |                                           |                |              |                |           |   |

## Notes:

All water quality readings taken using a U-52 HORIBA water quality meter attached to a flow through cell. Readings taken initially and every five minutes during low flow pumping

Water levels taken using a Solinst water level meter (Model 101)

Flow rate taken using a marked graduated beaker and stop watch. Volume purged represents gallons.

Temperature is measured in degrees Celsius

Conductivity is measured in milliSiemens per centimeter (mS/cm)

Turbidity is measured in nephelometric turbidity units (NTU)

Dissolved Oxygen (DO) is measured in milligrams per liter (mg/L)

Oxidation Reduction Potential (ORP)

Total Dissolved Solids (TDS) is measured in grams per liter (g/L)

penner transliver 5-8-17 @ 10:41, reflect @ 1/38 > pennet transliver 5-8-17 @ 10:41, reflect & 1/38

## Stanton Cleaners Area Groundwater Contamination Site Great Neck, New York Semi-Annual Monitoring Well Sampling Trip Report April 2013

| MW #              | Date    | Time                                                         | Volume<br>Purged                | рН                                                | Conductivity                                                                  | Water<br>Temperature                                        | Turbidity                                      | DO                                                           | ORP                                    | TDS                                           | Water<br>Level | Flow<br>Rate | Sample<br>Time |                   |
|-------------------|---------|--------------------------------------------------------------|---------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|----------------------------------------|-----------------------------------------------|----------------|--------------|----------------|-------------------|
| st- mw 🕫<br>20    | 5. 8,17 | 1425                                                         | 0,5<br>1.0<br>1.5<br>2.0<br>2.5 | 6.32<br>6.31<br>6.20<br>6.22<br>6.23<br>6.23      | 0,547<br>0.541<br>0.532<br>0.539<br>0,541<br>0.535                            | 17.21<br>16.03<br>15.67<br>15.74<br>15.12<br>15.12          | 725<br>725<br>374<br>403<br>418<br>409         | 6.17<br>6.17<br>6.16<br>6.23<br>6.39                         | 161<br>150<br>143<br>144<br>143<br>144 | 344<br>342<br>341<br>341<br>344<br>346<br>343 | 1              | 0,5          | 1450           | 196,9 <b>0</b> Hz |
| ST- MW 13         | 5-9-17  | 1207<br>1212<br>1217<br>1222<br>1222<br>1227<br>1222         | 0.5<br>1.0<br>1.5<br>2.0<br>2.5 | 6.69<br>5.96<br>6.00<br>5.92<br>5.90<br>5.90      | 0; <u>(7</u> 5<br>0; 61 8<br>0, 606<br>0, 609<br>0, 604<br>0, 600             | 16.11<br>(5.83<br>17.39<br>18:36<br>18:46<br>18:46<br>18:30 | 523<br>638<br>364<br>177<br>169<br>169         | (.29<br>5.52<br>5.09<br>4.85<br>4.57<br>4.67                 | 174<br>158<br>149<br>157<br>167        | ,396<br>,338<br>,388<br>,390<br>,386<br>,386  | 86.58          | 0,5          | 1232           | 212 , 31 Hz       |
| ST- MW 14         | 5-817   | 1217<br>1217<br>1227<br>1227<br>1227<br>1232<br>1237<br>1232 |                                 | 817<br>704<br>6.56<br>627<br>6.17<br>6.14<br>6.14 | 0,916<br>0,420<br>0,420<br>0,420<br>0,420<br>0,420<br>0,420<br>0,420<br>0,420 | 14.57<br>13.29<br>13.15<br>13.97<br>14.00<br>14.02<br>14.02 | 15:1<br>750<br>480<br>420<br>275<br>266<br>260 | 5,84<br>5,84<br>5,76<br>5,67<br>5,67<br>5,67<br>5,67<br>5,69 | 82<br>36<br>141<br>149<br>149<br>149   | 217<br>273<br>273<br>274<br>273<br>273<br>273 |                | 05           | 1242           | 165.40 Hz         |
| JZ :<br>ST- MW 15 | 5.9-17  |                                                              |                                 |                                                   |                                                                               |                                                             |                                                |                                                              |                                        |                                               |                |              |                |                   |
|                   |         |                                                              |                                 |                                                   |                                                                               |                                                             |                                                |                                                              |                                        |                                               |                |              |                |                   |

## Notes:

All water quality readings taken using a U-52 HORIBA water quality meter attached to a flow through cell. Readings taken initially and every five minutes during low flow pumping

Water levels taken using a Solinst water level meter (Model 101)

Flow rate taken using a marked graduated beaker and stop watch. Volume purged represents gallons.

Temperature is measured in degrees Celsius

Conductivity is measured in milliSiemens per centimeter (mS/cm)

Turbidity is measured in nephelometric turbidity units (NTU)

Dissolved Oxygen (DO) is measured in milligrams per liter (mg/L)

Oxidation Reduction Potential (ORP)

Total Dissolved Solids (TDS) is measured in grams per liter (g/L)

## Stanton Cleaners Area Groundwater Contamination Site Great Neck, New York Semi-Annual Monitoring Well Sampling Trip Report April 2013

| MW #                     | Date   | Time                                         | Volume<br>Purged                            | рН                                                   | Conductivity                                                         | Water<br>Temperature                                                 | Turbidity                                                   | DO                                                                    | ORP                                         | TDS                                                   | Water<br>Level | Flow<br>Rate | Sample<br>Time |           |
|--------------------------|--------|----------------------------------------------|---------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|----------------|--------------|----------------|-----------|
| ST- MW 16                | 5-9-17 | 947<br>952<br>957<br>1002<br>1007<br>1012    | -<br>0,5<br>1.0<br>1.5<br>2.0<br>2.5<br>7.0 | 6.71<br>6.43<br>6.42<br>6.42<br>6.42<br>6.42<br>6.42 | 0.889<br>0.927<br>0.927<br>0.928<br>0.928<br>0.926<br>0.919          | 13.62<br>14.99<br>16.09<br>16.59<br>17.15<br>17.48<br>17.59          | 800×<br>566<br>117<br>75.6<br>35.4<br>32.9<br>29.9          | 7.15<br>6.20<br>5.97<br>5.81<br>5.70<br>5.52                          | 16<br>150<br>136<br>128<br>122<br>121       | i586<br>,593<br>,593<br>,594<br>,594<br>,592<br>,588  | 55.20          | 0.5          | 1017           | 168.70H   |
| 5-8-<br>ST- MW 17        | 17     |                                              |                                             |                                                      |                                                                      |                                                                      |                                                             |                                                                       |                                             | .382                                                  |                |              |                |           |
| ST- MW 18                |        | 1307<br>1312<br>1317<br>1322<br>1332<br>1332 | 0.5<br>1.0<br>1.5<br>2.0<br>2.5<br>3.0      | 9446<br>8,75<br>7,27<br>6,79<br>6,55<br>6,44<br>6,38 | 0,225<br>0,472<br>0.603<br>0,605<br>0.604<br>0,604<br>0,601<br>0,548 | 15,19<br>15,27<br>14,40<br>14,36<br>14,43<br>14,43<br>14,51<br>14,55 | 332<br>*0,0<br>*0,0<br>*0,0<br>*0,0<br>*0,0<br>*0,0<br>*0,0 | H97 -<br>6,49<br>6,23<br>6,23<br>6,23<br>6,23<br>6,23<br>6,23<br>6,39 | -10<br>70<br>98<br>103<br>106<br>107<br>108 | 1461<br>331<br>386<br>388<br>388<br>384<br>384<br>384 | 8.57           | 0.5          | 137            | \'89,30Hz |
| 52<br>ST- MW 19<br>55 77 |        |                                              |                                             |                                                      |                                                                      |                                                                      |                                                             |                                                                       |                                             |                                                       |                |              |                |           |

## Notes:

All water quality readings taken using a U-52 HORIBA water quality meter attached to a flow through cell. Readings taken initially and every five minutes during low flow pumping

Water levels taken using a Solinst water level meter (Model 101)

Flow rate taken using a marked graduated beaker and stop watch. Volume purged represents gallons.

Temperature is measured in degrees Celsius

Conductivity is measured in milliSiemens per centimeter (mS/cm)

Turbidity is measured in nephelometric turbidity units (NTU)

Dissolved Oxygen (DO) is measured in milligrams per liter (mg/L)

Oxidation Reduction Potential (ORP)

Total Dissolved Solids (TDS) is measured in grams per liter (g/L)
| MW #                      | Date | Time                                                                               | Volume<br>Purged | рH                                     | Conductivity                                                         | Water<br>Temperature                                                 | Turbidity                                                 | DO                                                                   | ORP                                                  | TDS                                                  | Water<br>Level | Flow<br>Rate | Sample<br>Time |
|---------------------------|------|------------------------------------------------------------------------------------|------------------|----------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------|--------------|----------------|
| EPA- MW 23                | 5917 |                                                                                    |                  |                                        |                                                                      |                                                                      |                                                           |                                                                      |                                                      |                                                      |                |              |                |
| 5-8-17<br>st- MW 20<br>12 |      | 4.13<br>4.18<br>123<br>128<br>128<br>133<br>133<br>138<br>139<br>143<br>143<br>148 |                  | ,57<br>,53<br>,51<br>,72<br>,73<br>,73 | 1.07<br>1.09<br>1.22<br>1.37<br>1.35<br>1.35<br>1.34<br>1.34<br>1.34 | 12.79<br>12.86<br>15.47<br>18.30<br>18.90<br>18.77<br>18.42<br>18.13 | 800<br>800<br>661<br>430<br>238<br>112<br>110<br>104<br>0 | 6.79<br>6.52<br>6.07<br>5.89<br>5.89<br>5.57<br>5.57<br>5.57<br>5.57 | 147<br>189<br>162<br>157<br>157<br>162<br>167<br>167 | 684<br>697<br>776<br>871<br>864<br>858<br>855<br>852 | 634            | 0.5          | 9:48           |
| 52<br>EPA- MW 27          |      |                                                                                    |                  |                                        |                                                                      |                                                                      |                                                           |                                                                      |                                                      |                                                      |                |              |                |

Notes:

All water quality readings taken using a U-52 HORIBA water quality meter attached to a flow through cell. Readings taken initially and every five minutes during low flow pumping

Water levels taken using a Solinst water level meter (Model 101)

Flow rate taken using a marked graduated beaker and stop watch. Volume purged represents gallons.

Temperature is measured in degrees Celsius

Conductivity is measured in milliSiemens per centimeter (mS/cm)

Turbidity is measured in nephelometric turbidity units (NTU)

Dissolved Oxygen (DO) is measured in milligrams per liter (mg/L)

Oxidation Reduction Potential (ORP)

Total Dissolved Solids (TDS) is measured in grams per liter (g/L)

本

188.80Hz

hn "

|            | T                                                                                                     | T                                 | -                |                                    | Field                                        | Analysis                                           |                                                    |                                                         | and the second                  | 1212/20                                   | 8     |      | 101101300 | 7     |
|------------|-------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|---------------------------------|-------------------------------------------|-------|------|-----------|-------|
| MW #       | Date                                                                                                  | Time                              | Volume<br>Purged | рН                                 | Conductivity                                 | Water<br>Temperature                               | Turbidity                                          | DO                                                      | ORP                             | TDS                                       | Water | Flow | Sample    |       |
| EPA-CL-4S  | 5/8/17                                                                                                | 1106<br>1111<br>1121<br>1126      |                  | 6,22                               | ,411<br>,411<br>,412<br>,412<br>,412         | 13.22<br>13.27<br>13.28<br>13.24<br>13.27          | 10,3<br>1614<br>18.1<br>20.7<br>21.5               | 4.32<br>4.08<br>4.05<br>4.09<br>4.09                    | 154<br>156<br>158<br>157<br>156 | · 267<br>· 167<br>· 267<br>· 268<br>· 268 | 3:47  | 0,5  | 1126      | 61.6  |
| EPA-CL-4D  | -                                                                                                     |                                   |                  |                                    |                                              |                                                    |                                                    |                                                         |                                 |                                           |       |      |           |       |
| PA-MW 11 D |                                                                                                       |                                   |                  |                                    |                                              |                                                    |                                                    |                                                         |                                 |                                           |       |      |           |       |
| PA- MW 26  | 3<br>8<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9 | 13<br>18<br>23<br>328<br>33<br>38 | 6.               | .90<br>35<br>.28<br>27<br>28<br>28 | .869<br>1.47<br>1.53<br>1.54<br>1.54<br>1.54 | 13.95<br>15.64<br>15.75<br>16.08<br>16.23<br>16.32 | 84.79<br>61.36<br>52.55<br>50.05<br>15.65<br>12.75 | .96 1<br>.86 14<br>.881 :<br>.591 :<br>.51 13<br>.14 13 | 51.0                            | 525 <b>59</b><br>184<br>84<br>85<br>88    | 62 (  | 3.5  | 38 1      | 175.4 |

### Notes:

a.

All water quality readings taken using a U-52 HORIBA water quality meter attached to a flow through cell. Readings taken initially and every five minutes during low flow pumping

Water levels taken using a Solinst water level meter (Model 101)

Flow rate taken using a marked graduated beaker and stop watch. Volume purged represents gallons. Temperature is measured in degrees Celsius

Conductivity is measured in milliSiemens per centimeter (mS/cm)

Turbidity is measured in nephelometric turbidity units (NTU)

Dissolved Oxygen (DO) is measured in milligrams per liter (mg/L)

Oxidation Reduction Potential (ORP)

Total Dissolved Solids (TDS) is measured in grams per liter (g/L)

MMM

| MW #      | Dat      | e T      | me    | Volume<br>Purged. | pH | Conductivity | Water<br>Temperatui | e Turbic     | lity        | 00         | ORP          | TDS  | Water | Flow   | Sample | 1  |
|-----------|----------|----------|-------|-------------------|----|--------------|---------------------|--------------|-------------|------------|--------------|------|-------|--------|--------|----|
|           |          |          | _     |                   |    |              |                     |              | 1           |            |              |      | Level | Rate   | Time   |    |
|           |          | F        | -+    |                   |    |              |                     | +            |             |            |              |      |       |        |        |    |
| ST- MW 12 | 2        |          | -+    |                   |    |              |                     | +            |             |            |              |      |       |        |        |    |
|           |          | F        | 7     |                   |    |              |                     | <u> </u>     |             |            | $\neg$       |      |       |        |        |    |
|           | <u> </u> | +        | 1     |                   |    |              |                     |              |             | $\mp$      |              |      |       |        |        |    |
|           |          |          | $\pm$ |                   |    |              |                     |              | Ŧ           | Ŧ          | 1            | 7    |       |        |        |    |
| ST- MW 13 |          |          | $\pm$ |                   | _  |              |                     |              | +-          | +          |              | _    |       |        |        |    |
|           |          |          |       |                   | +  |              |                     |              |             | $\pm$      | $\pm$        |      |       |        |        |    |
|           |          |          | +     |                   |    |              |                     |              | 1_          |            |              |      |       |        |        |    |
|           |          | <b> </b> | F     |                   | +  |              |                     |              |             | +-         | +            | -+-  |       | _      |        |    |
| ST- MW 14 |          |          | 1-    |                   | -  |              |                     |              |             | -          |              |      |       |        |        |    |
|           |          |          |       |                   |    |              |                     |              |             | -          | +            | +    |       |        |        |    |
|           |          |          |       |                   |    |              |                     |              |             |            | +-           |      |       |        |        |    |
|           |          | 1200     | 0     | - 6.8             | 3  | 333          | 4.40                | 189          | 2,71        | -12        | 5.21         | 47   | 3.590 | .5     |        |    |
|           | 519/17   | 1210     | 1.    | 0 6.4             |    | 557          | 8.58                | 91.3         | 1.86        | -10        | 0.2(<br>2.36 | 5    |       | $\neg$ |        |    |
| ST- MW 15 | 11       | 1220     |       | well              |    | 595 V        | 8.59<br>P. Som      | 57.6<br>pled | <u>3.18</u> | -40<br>ter | 2.3<br>C     | el h | 5020  |        | 25/1   | ٩5 |
|           |          | 10-01 J  |       |                   | +- |              |                     |              |             |            | Ť            |      |       | -1.,   |        |    |
|           |          |          |       | -+                | +  |              |                     |              |             |            |              |      | _     |        |        |    |

### Notes:

ſF

All water quality readings taken using a U-52 HORIBA water quality meter attached to a flow through cell. Readings taken initially and every five minutes during low flow pumping

Water levels taken using a Solinst water level meter (Model 101)

Flow rate taken using a marked graduated beaker and stop watch. Volume purged represents gallons.

Temperature is measured in degrees Celsius

Conductivity is measured in milliSiemens per centimeter (mS/cm)

Turbidity is measured in nephelometric turbidity units (NTU)

Dissolved Oxygen (DO) is measured in milligrams per liter (mg/L)

**Oxidation Reduction Potential (ORP)** 

Total Dissolved Solids (TDS) is measured in grams per liter (g/L)

|        | MW#       | Date   | Time | Volume<br>Purged | PH         | Conductivity | Water                  | Turbidity                 | DO                  | ORP                                          |           | Water  | Flow   | Samuel | ]         |
|--------|-----------|--------|------|------------------|------------|--------------|------------------------|---------------------------|---------------------|----------------------------------------------|-----------|--------|--------|--------|-----------|
| À      |           |        |      |                  |            |              |                        |                           | 1                   | <u> </u>                                     | 143       | Level  | Rate   | Time   |           |
| n<br>H | ST- MW 16 |        |      |                  |            |              |                        |                           |                     |                                              |           |        |        |        |           |
| ļ      | 10        |        |      |                  |            |              |                        |                           |                     |                                              |           |        |        |        |           |
| 1      |           |        |      |                  |            |              |                        |                           |                     |                                              | _         |        |        |        |           |
|        |           | +      | 910  |                  | .17        | 622          | 2.02                   |                           |                     |                                              |           |        |        |        |           |
|        |           |        | 915  | 5                | .93        | .647         | 13.84                  | 672                       | <u>3.50</u><br>8.87 | 141.                                         | 387       | 70.220 | 2.5    |        |           |
|        | ST- MW 17 | 5/2/1  | 925  | 5                | -10<br>-10 | .698         | 14.50                  | 490                       | 7.55                | 33                                           | 115       |        |        |        | 191,20 HZ |
|        | -         |        | 930  |                  | ,10        | . 649        | 14.89                  | 344 1                     | 6169                | 37                                           | 416       |        | $\neg$ | 945    | 110       |
|        |           | 9      | 40   | <u> </u>         | 90         | 1649         | 14.97                  | 300 1                     | 201                 | 46                                           | 416       |        |        |        |           |
| ╞      |           |        |      |                  |            |              |                        |                           |                     |                                              | 116       |        |        |        |           |
|        |           |        |      |                  | _          |              |                        |                           | -+-                 | $-\top$                                      |           |        | _      |        |           |
|        |           | -      |      |                  |            |              |                        |                           |                     |                                              |           |        |        |        |           |
|        | SI- MW 18 | E      |      |                  |            |              |                        |                           |                     |                                              |           |        |        |        |           |
|        |           | -      |      |                  |            |              |                        |                           | -                   |                                              |           |        |        |        |           |
|        |           |        |      |                  |            |              |                        |                           |                     |                                              |           |        |        |        |           |
|        |           |        | 120  | <u> </u>         | 24         | 267 1        | $\frac{ 4,57 }{6,77 }$ | 82 5                      | 3417                |                                              | 121       | 0.     | 5      |        |           |
|        | 4         | 5/2/07 | 136  | 6,               |            | 767          | 7.13 3                 | 86 3                      | 751                 | 2.4                                          | 92        |        |        |        |           |
|        | ST- MW 19 |        | 40   | 6.1              | 2.         | 777 1        | $\frac{7.33}{7.20}$ 3  | <u>9 a. 13,</u><br>69 13, | 841                 | <u>541,4</u><br>37 .44                       | <u>47</u> |        |        | 100    | 84.80 HZ  |
|        |           | 14     | 45   | 6.0              | 8.         | 761 1        | 6.98 3                 | 54 3                      | 9913                | 2 4                                          | 69        |        |        |        |           |
|        |           |        |      |                  |            |              | 740 5                  | 4/ 51                     | 28.14               | <u>.                                    </u> | 5         |        |        |        | i         |

#### Notes:

lī

All water quality readings taken using a U-52 HORIBA water quality meter attached to a flow through cell. Readings taken initially and every five minutes during low flow pumping

N

Water levels taken using a Solinst water level meter (Model 101)

Flow rate taken using a marked graduated beaker and stop watch. Volume purged represents gallons.

Temperature is measured in degrees Celsius

Conductivity is measured in milliSiemens per centimeter (mS/cm)

Turbidity is measured in nephelometric turbidity units (NTU)

Dissolved Oxygen (DO) is measured in milligrams per liter (mg/L)

Oxidation Reduction Potential (ORP)

Total Dissolved Solids (TDS) is measured in grams per liter (g/L)

|   | MW #            | Date   | Time                                         | Volume<br>Purged                     | рН                                                   | Conductivity                                                  | Water<br>Temperature                                        | Turbidity                                  | DO                                                                   | ORP                                    | TDS                                                | Water<br>Level | Flow<br>Rate | Sample<br>Time |           |
|---|-----------------|--------|----------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------|----------------|--------------|----------------|-----------|
|   | EPA- MW 23      | 5/9/17 | 945<br>950<br>955<br>1000<br>1005<br>1010    | -<br>0.5<br>1.0<br>1.5<br>2.0<br>2.5 | 6.50<br>6.29<br>6.28<br>6.28<br>6.28<br>6.28<br>6.28 | .843<br>,979<br>,990<br>,998<br>,998<br>,998                  | 14,69<br>16,46<br>16,67<br>16.80<br>16.86<br>16.92          | 900<br>250<br>90,1<br>34.0<br>20,9<br>18,2 | 5.39<br>3,76<br>3,87<br>3,81<br>3,76<br>3,61                         | 139<br>125<br>128<br>129<br>129<br>129 | , 541<br>. 630<br>. 635<br>. 637<br>. 639<br>. 639 | 64.76          | 0.5          | 10/6           | 183.30 HZ |
|   | st- mw 28<br>20 | )      |                                              |                                      |                                                      |                                                               |                                                             |                                            |                                                                      |                                        |                                                    |                |              |                |           |
| 1 | EPA- MW 27      | 5-9-17 | 1217<br>1222<br>1227<br>1237<br>1237<br>1237 | -<br>0.5<br>1.0<br>2.0<br>2.5<br>3.0 | 6.18<br>6.18<br>6.11<br>6.10<br>6.00<br>6.09         | 1258<br>.465<br>.465<br>.495<br>.495<br>.501<br>1.506<br>.507 | 16.08<br>15.65<br>15.49<br>15.49<br>15.54<br>15.54<br>15.60 | 38.7<br>265<br>207<br>194<br>183           | 5.13<br>5.91<br>6.01<br>6.00<br>5.94<br>5.94<br>5.94<br>5.94<br>6.00 | 160<br>162<br>152<br>150<br>150<br>150 | .194<br>.307<br>.317<br>.324<br>.324<br>.324       |                | 2.0          | 447            | 163,20 HZ |

#### Notes:

All water quality readings taken using a U-52 HORIBA water quality meter attached to a flow through cell. Readings taken initially and every five minutes during low flow pumping

Water levels taken using a Solinst water level meter (Model 101)

Flow rate taken using a marked graduated beaker and stop watch. Volume purged represents gallons.

Temperature is measured in degrees Celsius

Conductivity is measured in milliSiemens per centimeter (mS/cm)

Turbidity is measured in nephelometric turbidity units (NTU)

Dissolved Oxygen (DO) is measured in milligrams per liter (mg/L)

Oxidation Reduction Potential (ORP)

Total Dissolved Solids (TDS) is measured in grams per liter (g/L)

1

Appendix H

Structure Sampling Questionnaire and Building Inventory for

Soil Vapor Intrusion Sampling



•

.

# Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

| Site Name: Stanton Cleaners                                                                 |                      | Site Code:          | Opera                | ble Unit:           |
|---------------------------------------------------------------------------------------------|----------------------|---------------------|----------------------|---------------------|
| Building Code:                                                                              | Building Name:       | Lons Isla           | & Hebrew A           | -c. bmy             |
| Address: \$\$ 122 GATOR MILL Rd                                                             |                      |                     | Apt/Suite No: 3      | A '                 |
| city: Great Neek                                                                            | State:               | Zip: 1/021          | County: Nesse        | V                   |
| Contact Information                                                                         |                      |                     | r-1/                 |                     |
| Preparer's Name: Vennis Sertho                                                              | 12                   |                     | Phone No: 576        | -546-1100           |
| Preparer's Affiliation: Preferred Environm                                                  | entel Servi          | les (               | Company Code:        |                     |
| Purpose of Investigation: Inder Air Sin                                                     | rling                | <del> </del>        | Date of Inspection:  | 5-8-17              |
| Contact Name: Sharyn Blaustein                                                              |                      |                     | Affiliation:         | HA .                |
| Phone No: 516-466-3656 Alt. Phone                                                           | eNo: Poselel         | IHA GH.03           | Email: Murch         | Sore PLINAGY        |
| Number of Occupants (total): 180 Number of                                                  | of Children:         | 160                 |                      |                     |
| Ccupant Interviewed?                                                                        | C Owner Occu         | pied?               | Г                    | Owner Interviewed?  |
| Owner Name (if different): North Shore Se                                                   | phandir Syn          | sesve (             | Wher Phone: 57       | - 482-4228          |
| Owner Mailing Address: 130 Cutter mill                                                      | Ra, Great            | Mecty N             | γ <u> </u>           |                     |
| Building Details                                                                            | ,                    |                     |                      |                     |
| Bldg Type (Res/Com/Ind/Mixed):                                                              | Mixel                |                     | Bldg Size (S/M/L): 🗜 | netium              |
| If Commercial or Industrial Facility, Select Operations:                                    |                      | f Residential Selec | t Structure Type:    |                     |
| Number of Floors: 3 Approx. Year Constructi                                                 | ion: 1960            | Building            | Insulated?           | Attached Garage?    |
| Describe Overall Building 'Tightness' and Airflows(e.g., re                                 | esults of smoke test | s):                 |                      |                     |
| Foundation Description                                                                      |                      |                     |                      |                     |
| Foundation Type: Barren 7                                                                   | F                    | oundation Depth     | (bgs): (             | Jnit: FEET          |
| Foundation Floor Material: fune & Concrete                                                  | F                    | oundation Floor T   | hickness:            |                     |
| Foundation Wall Material: funct Como-est                                                    | 2 · F                | oundation Wall Ti   | nickness:            | JIII.   INCHES      |
| Floor penetrations? Describe Floor Penetrations:                                            | MA                   |                     |                      |                     |
| Wall penetrations? Describe Wall Penetrations:                                              | NIA                  |                     |                      |                     |
| Basement is: FANSLed Basement is:<br>Describe Foundation Condition (cracks, seepage, etc.): | DRY                  | Sumps/              | Drains? Water In S   | ump?:               |
| Radon Mitigation System Installed?                                                          | VOC Mitigati         | on System Installe  | d? 🔽 Mi              | tigation System On? |
| leating/Cooling/Ventilation Systems                                                         |                      | 4                   |                      |                     |
| Heating System: Free, Ar                                                                    | Heat Fuel Type:      | a                   | X7 Ce                | ntral A/C Present?  |
| Vented Appliances                                                                           |                      |                     |                      |                     |
| Water Heater Fuel Type: 01                                                                  | Cl                   | othes Dryer Fuel 1  | ype:                 |                     |
| Water Htr Vent Location:                                                                    | Dr                   | yer Vent Location   | :                    |                     |



## Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

|                |                          | PF            | RODUCT INV   | ENTORY            |                           |          |
|----------------|--------------------------|---------------|--------------|-------------------|---------------------------|----------|
| Building Nam   | e: Loy Ish He            | bren          | Actor Bldg C | ode:              | Date: May 8               | 2017     |
| Bldg Address:  | 122 CATEMII K            | A,            |              |                   | Apt/Suite No: 3A          |          |
| Bldg City/Stat | e/Zip: Greatweek,        | NY 1          | 1021         |                   |                           |          |
| Make and Mo    | del of PID: Mini R.e     | 2002          |              | Date of Ca        | libration: <u>May 8,2</u> | 017      |
| Location       | Product Name/Description | Size (oz)     | Condition *  | Chemical Ingredie | nts PID<br>Reading        | COC Y/N? |
| Mighterne      | Windex                   | 1,34,9        | V            |                   | 0.0                       | Г        |
|                | Rustoleun enruel         | 15-13         | υ            |                   | 0.0                       |          |
|                | Fatotic                  | 12#(2)        | ν            | · · · · · ·       | 010                       |          |
|                | ~D-40                    | 14.502<br>(2) | U            |                   | Q.Q                       | Г        |
|                | Fostuloso Cleaner        | 51            | υ            |                   | 0.0                       | Г        |
| Q/             | Snop plat but clean      | .JZoz<br>(1)  | U            |                   | 010                       | Г        |
| Ŷ              |                          |               |              |                   |                           | Г        |
|                |                          |               |              |                   |                           |          |
|                |                          |               |              |                   |                           |          |
|                |                          |               |              |                   |                           |          |
|                |                          |               |              |                   |                           | Г        |
|                |                          |               |              |                   |                           | Г        |
|                |                          |               |              |                   |                           | Г        |
|                |                          |               |              |                   |                           | Г        |
|                |                          |               |              |                   |                           |          |
|                |                          |               |              |                   |                           |          |

\* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D) \*\* Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.



.

# Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

| Site Name: SAANTOW                                                                                  | Site Code:                                  | Operable Unit:                   |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|
| Building Code: Building                                                                             | Name:                                       |                                  |
| Address: 122 Coffermy Rd                                                                            | A                                           | pt/Suite No:                     |
| city: Great neck s                                                                                  | tate:Zip:                                   | County:                          |
| Factors Affecting Indoor Air Quailty                                                                |                                             | . 1                              |
| Frequency Basement/Lowest Level is Occupied?:                                                       | floor Material:                             | Liseleun/Viny/                   |
| Thabited? THVAC System On?                                                                          | Bathroom Exhaust Fan?                       | 🔽 Kitchen Exhaust Fan?           |
| Alternate Heat Source: None                                                                         | └── Is th                                   | ere smoking in the building?     |
| Air Fresheners? Description/Location of Air Fresh                                                   | ener:                                       |                                  |
| Cleaning Products Used Recently?: Description of Cleaning P                                         | roducts: Bleccl, Fr                         | bloto                            |
| Cosmetic Products Used Recently?: Description of Cosmetic I                                         | Products:                                   |                                  |
| New Carpet or Furniture? Location of New Carpet/Furnitur                                            | 2:                                          |                                  |
| Recent Dry Cleaning? Location of Recently Dry Cleaned                                               | Fabrics:                                    |                                  |
| Recent Painting/Staining? Location of New Painting:                                                 |                                             |                                  |
| Solvent or Chemical Odors? Describe Odors (if any):                                                 |                                             |                                  |
| ☐ Do Any Occupants Use Solvents At Work? If So, List Solvents                                       | Used:                                       |                                  |
| Recent Pesticide/Rodenticide? Description of Last Use:                                              |                                             |                                  |
| Describe Any Household Activities (chemical use,/storage, unvente<br>Bleach fabloso Use? Jaby to Ae | d appliances, hobbies, etc.) That<br>'& Aar | t May Affect Indoor Air Quality: |
| Any Prior Testing For Radon? If So, When?:                                                          |                                             |                                  |
| Any Prior Testing For VOCs? If So, When?:                                                           |                                             |                                  |
| Sampling Conditions                                                                                 |                                             | ~                                |
| Weather Conditions: Stany                                                                           | Outdoor Temperature:                        | - <u>5</u> 9 °F                  |
| Current Building Use:                                                                               | Barometric Pressure:                        | in(hg)                           |
| Product Inventory Complete?                                                                         | onnaire Completed?                          |                                  |

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

| Building Code:           |                   | Address:    | 122       | cAfermil R          | 22 Great           | tet, NY |
|--------------------------|-------------------|-------------|-----------|---------------------|--------------------|---------|
| Sampling Informa         | tion              |             |           |                     |                    |         |
| Sampler Name(s):         | Dennis Be         | the 12      |           | Sampler Com         | pany Code:         |         |
| Sample Collection Date   | e: 5-8-17 p       | 5-9.17      |           | Date Samples        | Sent To Lab: 5-9   | 1-17    |
| Sample Chain of Custo    | dy Number: 1/3 i  | 70411       | 3         | Outdoor Air S       | ample Location ID: |         |
| SUMMA Canister I         | nformation        |             |           |                     |                    |         |
| Sample ID:               | LIHA-IA-I         | 05081       | 7         | LIHA -              | A-1 05081          | 7 dul   |
| Location Code:           |                   | ]           |           |                     |                    |         |
| Location Type:           | Baene, A          |             |           | Beener +            |                    |         |
| Canister ID:             | 10597             | ]           |           | $\boxed{10199}$     |                    |         |
| Regulator ID:            | 10696             |             |           |                     |                    |         |
| -<br>Matrix:             | Inder A.          |             |           | I Imim Ar           |                    |         |
| Sampling Method:         | Summa             |             |           | JUMM 4              |                    |         |
| Sampling Area Inf        | io                |             |           |                     |                    |         |
| Slab Thickness (inches): |                   |             |           |                     |                    | [ ]     |
| Sub-Slab Material:       |                   |             |           |                     |                    |         |
| Sub-Slab Moisture:       |                   |             |           |                     |                    |         |
| Seal Type:               |                   |             |           |                     |                    |         |
| Seal Adequate?:          |                   | C           |           |                     |                    |         |
| Sample Times and         | l Vacuum Reading  | S           |           | ,                   |                    |         |
| Sample Start Date/Time   | : 5-8-17/1244     |             |           | 5-8-17/1244         |                    |         |
| Vacuum Gauge Start:      | >30               |             |           | >30                 |                    |         |
| Sample End Date/Time:    | 5-9-17/1049       |             |           | 5-9-17 1049         |                    |         |
| Vacuum Gauge End:        | 4,0               | ]           |           | -%'O                |                    |         |
| Sample Duration (hrs):   | \$20              |             |           | 20                  |                    |         |
| Vacuum Gauge Unit:       | In (Hg)           | ]           |           | $in(H_s)$           |                    |         |
| Sample QA/QC Re          | adings            |             |           |                     |                    |         |
| Vapor Port Purge:        |                   | ٢           |           |                     |                    |         |
| Purge PID Reading:       |                   |             |           |                     |                    |         |
| Purge PID Unit:          |                   |             |           |                     |                    |         |
| Tracer Test Pass:        |                   | C           |           |                     |                    |         |
| Sample start             | and end times sho | uld be ente | red using | g the following for | mat: MM/DD/YYY     | Y HH:MM |



LOWEST BUILDING LEVEL LAYOUT SKETCH





FIRST FLOOR BUILDING LAYOUT SKETCH

Please click the box with the blue border below to upload a sketch of the first floor of the building. Clear Image The sketch should be in a standard image format (.jpg, .png, .tiff)



Measure the distance of all sample locations from identifiable features, and include on the layout sketch

- # Identify room use (bedroom, living room, den, kitchen, etc.) on the layout sketi
- # Identify the locations of the following features on the layout sketch, using the appropriate symbols

| BorF | Boiler or Furnace | 0        | Otherfloor or wall penetrations (label appropriately)                |
|------|-------------------|----------|----------------------------------------------------------------------|
| HW   | Hot Water Heater  | XXXXXXX  | Perimeter Drains (draw inside or outside outer walls as appropriate) |
| FP   | Fireplaces        | ******   | Areas of broken-up concrete                                          |
| WS   | Wood Stoves       | 9 SS (   | Location & label of sub-slab samples                                 |
| W/D  | Washer / Dryer    | t4-1     | Location & label of indoor air samples                               |
| S    | Sumps             | • (JA-7  | Location & label of outdoor air samples                              |
| 0    | Floor Drains      | @ F#E1.1 | Location and label of any pressure field test holes                  |
|      |                   |          |                                                                      |
|      |                   |          |                                                                      |



Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

OUTDOOR PLOT LAYOUT SKETCH

Clear Image

Please click the box with the blue border below to upload a sketch of the outdoor plot of the building as well as the surrounding area. The sketch should be in a standard image format (.jpg, .png, .tiff)



#### Design Sketch

## Design Sketch Guidelines and Recommended Symbology

- Identify and label the locations of all sub-slab, indoor air, and outdoor air samples on the layout sketch.
- n Measure the distance of all sample locations from identifiable features, and include on the layout sketch.
- a Identify room use (bedroom, living room, den, kitchen, etc.) on the layout skets
- Identify the locations of the following features on the layout sketch, using the appropriate symbols

| B or F<br>HW<br>FP | Boiler or Furnace<br>Hot Water Heater<br>Fireplaces | °<br>xxxxxxx<br>####### | Other floor or wall penetrations (label appropriately)<br>Perimeter Drains (draw inside or outside outer walls as appropriate)<br>Areas of broken-up concrete |
|--------------------|-----------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WS                 | Wood Stoves                                         | 0 SS 1                  | Location & label of sub-slab samples                                                                                                                          |
| WID                | Washer / Dryer                                      | O (A-1                  | Location & label of indoor air samples                                                                                                                        |
| S                  | Sumps                                               | 0 DA-1                  | Location & label of outdoor air samples                                                                                                                       |
| @                  | Floor Drains                                        | 0 PFET.1                | Location and label of any pressure field test holes                                                                                                           |

· 1 a

