

April 6, 2006

Heide-Marie Dudek, P.E. NYSDEC Division of Environmental Remediation Remedial Bureau A 625 Broadway, 11th Floor Albany, New York 12233-7015

Re:

Quarterly Interim Remedial Measure Operation

& Maintenance and Indoor Air Quality

Monitoring Report

December 10, 2005 through March 15, 2006

Jimmy's Dry Cleaner Site, Roosevelt, New York

NYSDEC Site No. 1-30-080

File:

10653/36951 #5

Dear Ms. Dudek:

O'Brien & Gere has prepared this letter report to serve as a Quarterly Operation, Monitoring & Maintenance (OM&M) and Indoor Air Quality (IAQ) Report for the Soil Vapor Extraction (SVE) System in operation at the former Jimmy's Dry Cleaner (JDC) located at 61 Nassau Road in Roosevelt, New York. The SVE system was installed as an Interim Remedial Measure (IRM) to abate volatile organic compounds (VOCs) observed at businesses and residences located in the vicinity of the Site.

Background

The IRM consists of seven extraction wells, underground piping, a blower, and two granular activated carbon (GAC) vessels to treat the effluent air from the system. Refer to **Figure 1**. After the start-up of the SVE system on August 7, 2002, Shaw Environmental & Infrastructure Engineering of New York, P.C. (Shaw) implemented an IAQ Monitoring program for select sampling locations. In June 2005, O'Brien & Gere replaced Shaw and assumed the implementation of the IAQ monitoring program. This report covers the period of December 10, 2005 through March 15, 2006.

Remedial System Operation and Maintenance

To evaluate the SVE system operating performance, three site visits were completed on January 6, February 6, and March 15, 2006. During the site visits, VOC concentrations, air flow rates and vacuum readings were observed at extraction wells SVE-1, SVE-2, SVE-3, SVE-4, SVE-5, SVE-6, SVE-7 and at the SVE blower. Air flow rates and VOC concentrations were also observed at the carbon influent, mid carbon and carbon effluent monitoring points. The monitoring data log sheets are presented in **Attachment 1**. During the January, February, and March visits, the vacuum, air flow rate, and VOC readings for SVE-4 could not be collected because it was underwater.

Vy met me B

A summary of the monitoring data collected during the three monitoring events is presented in **Table 1** and the average vacuum, airflow, and VOC concentration data are summarized in **Table 2.** During the current monitoring period, the air flow control valve at SVE-1 was adjusted from 50% to 100% open in February and from 100% to 50% open in March. The valve at SVE-4 was closed during the February visit to prevent water from entering the SVE treatment system. Compared to the last monitoring period, the average VOC concentrations for December 10, 2005 through March 15, 2006 are lower for all SVE monitoring points, except for SVE-3. The historical monitoring data for past monitoring periods are presented in **Attachment 2**.

Prior to this period, a total of 14 carbon vessel change outs occurred since system startup. Typically, during each carbon change out, the lag vessel was moved to the lead position and a new carbon vessel was placed in the lag position. However, during some events, both carbon vessels were replaced. During this period, one carbon vessel was replaced during the January visit. The vessel was replaced due to detectable VOC concentrations between the lead and lag vessels. The lead carbon was replaced and the lag vessel was placed in the lead. The rate of carbon usage will be monitored during each site visit to determine the maximum VOC extraction rate that can be accomplished to minimize VOC migration while maximizing the life of the carbon vessels.

Indoor Air Quality Monitoring Results

On behalf of O'Brien & Gere, YEC conducted an indoor air quality monitoring event on March 14, 2006 at KFC, 40 Dutchess Street, and 44 Dutchess Street. The Deli was closed during the 2-day monitoring visit and YEC personnel could not access the sampling location in the Deli. Prior to the site visit, attempts were made to contact the owner, Jose Molina, by phone, but there was no answer.

Passive diffusion dosimeters were used to collect air samples over a 24-hour period. Additional air samples were collected, including a background sample near the Deli and a duplicate sample from KFC for comparative purposes. The samples were analyzed for the presence of PCE according to New York State Department of Health (NYSDOH) Method 311-9. The analytical results are summarized in **Table 3**. The historical analytical results are presented in **Attachment 3** and the laboratory report of analyses is presented as **Attachment 4**.

The analytical results indicated that concentrations of PCE were well below the NYSDOH Ambient Air Guidance Value of $100~\mu g/m^3$ in each of the samples collected. The highest PCE concentration observed during this monitoring event was $8.6~\mu g/m^3$ from the sample collected at KFC. The letters summarizing the air quality monitoring were submitted to NYSDEC for approval and forwarded by O'Brien & Gere to the residences and businesses on March 31, 2006. The SVE system will continue to be adjusted during each site visit to minimize the migration of PCE into these businesses and residences. Quarterly monitoring will continue at KFC, the Deli (if possible), and the residences to verify that PCE is not migrating into these areas at levels above the ambient air guideline. During the upcoming monthly site visits, YEC will visit the Deli to try to establish contact with the owner in order to gain access to the sampling location in the Deli during the next sampling event.

April 6, 2006 Page 3

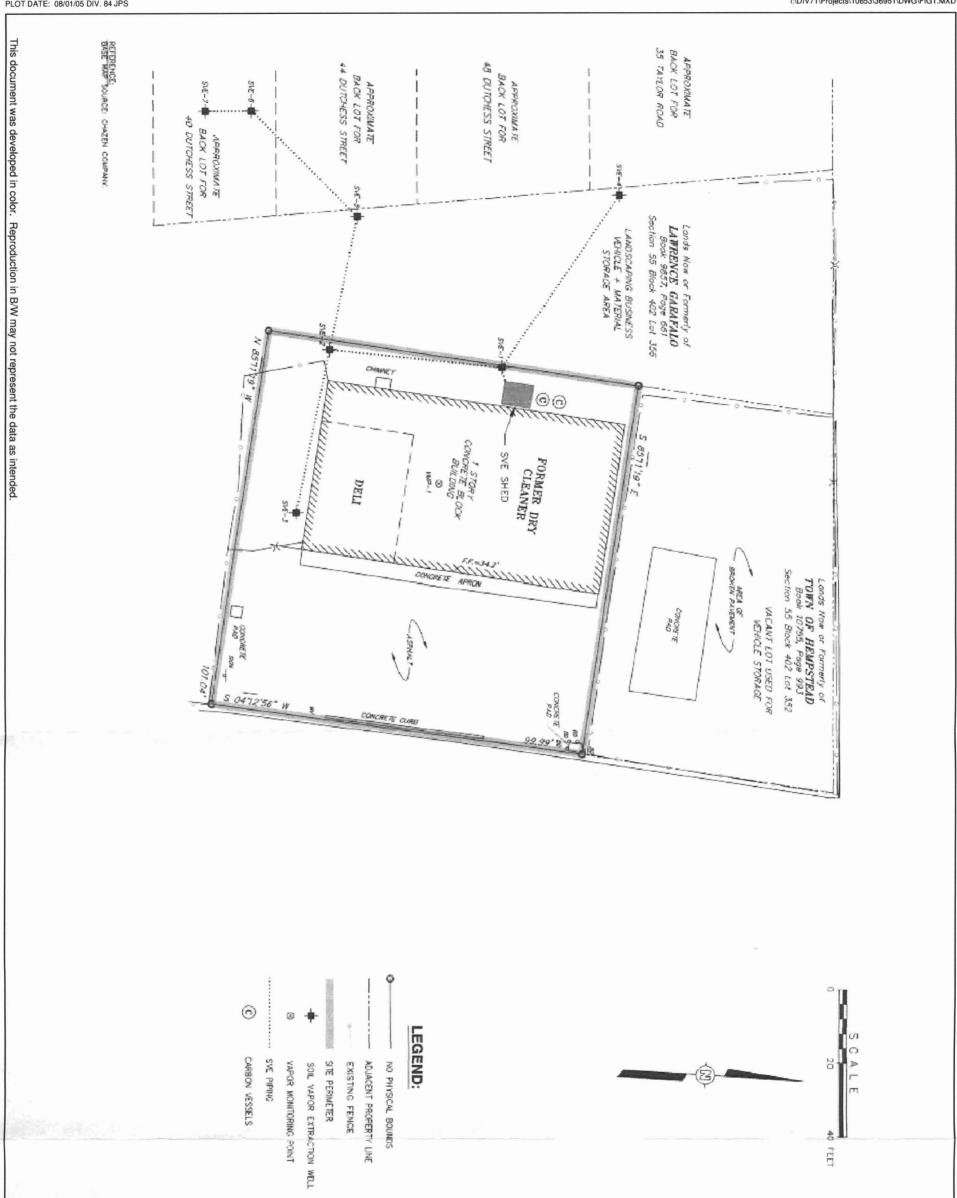
Following the completion of the next quarter of monitoring events, a letter report summarizing the monitoring events will be prepared by O'Brien & Gere and submitted to the NYSDEC. If you have any questions or comments regarding this information, please contact me at (315) 437-6100, extension 2258.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Marc Sut

Marc J. Dent, P.E. Managing Engineer


I:\DIV71\Projects\10653\36951\5_rpts\Quarterly SVE Reports\ January - March 06\JDC_QtrlyRpt_Jan-Mar06.

cc:

Joseph Yavonditte, P.E. – NYSDEC

Trevor Wescott – NYSDOH Joseph DeFranco – NCDOH

Dan Simpson - YEC

IRM - SVE PLAN

NYSDEC JIMMY'S DRY CLEANER ROOSEVELT, NEW YORK

AUGUST 2005

OBRIEN & GERE

FIGURE 1

Table 1 IRM Parameters NYSDEC - Jimmy's Dry Cleaners

		1/6/06				2/6/06				3/15/06	T VI TELE	
Sample	Vac	Flow	PID	Valve %	Vac	Flow	PID	Valve %	Vac	Flow	PID	Valve %
Location	(inches of water)	(cfm)	(ppm)	Open	(inches of water)	(cfm)	(ppm)	Open	(inches of water)	(cfm)	(ppm)	Open
SVE - 1	4.2	45.5	14.3	50%	9.0	37.7	10.7	100%	1.6	56.2	10.3	50%
SVE - 2	1.7	40.5	1.1	100%	5.0	32.9	0	100%	13.6	13.6	0.2	100%
SVE - 3	5.0	23.5	5.6	100%	8.9	18.7	10.1	100%	0	6.9	4.7	100%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	0%	NS	NS	NS	0%
SVE - 5	3.8	16.7	0	100%	4.7	60.5	0	100%	6.6	18.3	0	100%
SVE - 6	1.03	10.7	0	100%	5.7	102.5	0	100%	0	14.61	0	100%
SVE - 7	1.03	10	0	100%	5.5	98.5	0	100%	0	13	0	100%
VMP - 1	NS	NS	NA	NA	NS	NS	NA	NA	NS	NS	NA	NA
Before blower	NA	NS	2.0	NA	NA	112.5	2.5	NA	NA	22.3	9.7	NA
Influent	NA	133.5	27.5	NA	NA	128	1.1	NA	NA	158	0	NA
Mid	NA	137.5	2.2	NA	NA	103	0	NA	NA	104	0	NA
Effluent	NA	96.0	0	NA	NA	138	0	NA	NA	141	0	NA

Carbon changeout performed (1 vessel).

Notes:

NS = Not sampled, well head not accessible.

NA = Not applicable.

Influent = Before carbon.

Mid = Between carbon.

Over = Greater than meter capacity.

Table 2
Average SVE System Monitoring Data
NYSDEC - Jimmy's Dry Cleaners

	E. The second second	1/6/06 -	3/15/06	
Sample Location	Average Vac (inches of water)	Average Flow (cfm)	Average PID (ppm)	Maximum PID (ppm)
SVE - 1	4.9	46	11.8	14.3
SVE - 2	6.8	29	0.43	1.1
SVE - 3	4.6	16	6.8	10.1
SVE - 4	NS	NS	NS	NS
SVE - 5	5.0	32	0	0
SVE - 6	2.2	43	0	0
SVE - 7	2.2	41	0	0
Before blower	NA	67	4.7	9.7
Influent	NA	140	9.5	27.5
Mid	NA	115	0.73	2.2
Effluent	NA	125	0	0
Blower	20.3	NA	NA	NA

Notes

NS = Not sampled, well head not accessible.

NA = Not applicable.

Influent = Before carbon.

Mid = Between carbon.

Over = Greater than meter capacity.

Table 3 Indoor Air Quality Data NYSDEC - Jimmy's Dry Cleaners

530	100	NYSDOH		61			X
Sample Location	Units	Guidance Value	6/15/05	9/13/05	12/8/05	3/14/06	
KFC - Kitchen	μg/m ³	100	6.7	5.5	4.3	8.6	
DUPA (KFC)	μg/m ³	100	17	5.2	4.0	8.6	
40 Dutchess (Gonzalez Bsmt. Bdrm/baby rm)	μg/m ³	100	12	1.2	11	<1.4	
Deli - Front Room	μg/m ³	100	29	6.2	39	NS	
44 Dutchess (Jackson Bsmt./Family Rm)	μg/m ³	100	17	6.4	<0.7	3.3	
Background	μg/m ³	100	11	1.4	<0.7	<1.5	

Notes:

Bold = Value exceeds NYSDOH guidance value.

KFC = 497 North Main Street.

All samples were sampled for Tetrachloroethene by NYSDOH Method 311-9.

NYSDOH Guidance Value references NYSDOH's "Tetrachloroethene

in Indoor and Outdoor Air", May, 2003.

NS = Not sampled.

NA = Data not available.

ND = Non - Detect.

(PL) = value detected less than the reported value.

ATTACHMENT 1

Monitoring Data Log Sheets

Jimmy's Dry Cleaners 61 Nassau Road Roosevelt, New York Site No. 1-30-080

Date: 16/06		apson Chris Br	,Qu=
Arrival Time: 1300	Weather: 35 F. o.	DRCAST	
Departure Time: 1630		SI SE REALITY I	ear the rise
System Status: Is system running upon arrival? Is system running upon departure? Electrical meter reading Inspect SVE intake filter SVE System:	Yes No No OK Replaced	4 files	expire All wee or parat of the ele days in arow
Bleed valve Vacuum at blower	70 % Open		91: N
Location: Flow Before bleed valve Carbon influent 133,5 Between carbon units 157,0	Conc. (PID) CFM 1.0 PPM CFM 2.5 PPM CFM 2.5 PPM CFM 2.6 PPM	Iemp WATER • F -48.9 • F -18.8 • F -49.0 • F	
Location Vacuum	Flow	Gonc, (PID)	Valva
SVE-1 니고 SVE-2 니구	1,H20 45.5 CFM 1,H20 40.5 CFM 1,H20 13.5 CFM		<u>Valve</u> 50 % Open <u>700'</u> % Open ∼0 % Open
SVE-4 UNDOW WATCH		PPM 7	00 % Open
SVE-5 3,8	H20 16.7 CFM	O,O PPM	700 % Open
SVE-6 1,0-5	H20 10.7 CFM	OID PPM	100 % Open
	"H20 /O CFM	O.O PPM	% Open
Number of new carbon units on site: Knockout unit drained? Quantity drained? Number of knockout water drums on site: Air quality monitoring conducted?	Yes X No gals Yes No Z		
Comments: ** Carbon Changed out Arum and Moved to the less Pallet,	ad postion. The lead	was replaced w drum was maked	fth a new to the
* Botween Carpon after n		177	
Carbon Efficient after n			
* Before bleed port: water	vapor on proper, could	d not got a read.	no.
		<u> </u>	

O'Brien Gere

I:\71\10653\36951\4\OBG-SVE Insp Form

Jimmy's Dry Cleaners 61 Nassau Road Roosevelt, New York Site No. 1-30-080

Date:	2/6/2006		Inspector:		on, Bryan Shaw	
Arrival Time:	133	0	Weather:	55° sunny		
Departure Time:	17	00		•		ž.
System Status: Is system running Is system running Electrical meter re Inspect SVE intak	g upon dep eading		Yes X Yes X 00797, 0.0 OK X	No No 9 kw Replaced	_	
SVE System:			40	0/ 0		
Bleed valve	_		10	% Open		
Vacuum at blowe	r		24	" H20		
Location: Before bleed valv Carbon influent Between carbon of Carbon effluent		128 C 103 C	FM 2 FM 1	nc. (PID) 5 PPM 1 PPM PPM PPM PPM	Temp 52.2 ° F 51.9 ° F 53.7 ° F 49.3 ° F	
Location SVE-1 SVE-2 SVE-3 SVE-4 * see SVE-5 SVE-6 SVE-7	note .	5 " 8.9 " N/A " 4.7 " 5.7 "	H20 32 H20 18 H20 N H20 60 H20 10	Flow 7.7 CFM 7.9 CFM 7.7 CFM 7.7 CFM 7.7 CFM 7.7 CFM 7.7 CFM 7.8 CF	Conc. (PID) 10.7 PPM 0 PPM 10.1 PPM N/A PPM 0 PPM 0 PPM 0 PPM 0 PPM	Valve 50 % Oper 100 % Oper 100 % Oper N/A % Oper 100 % Oper 100 % Oper 100 % Oper 100 % Oper
Number of new care Knockout unit dra Quantity drained? Number of knocker Air quality monitors	ined? out water o	drums on site:	Yes <u>x</u> 55	No gals No _x		
Comments:	ınder wate	r				
	gal - 5 gal					
		npled metals				
	sed sve-4					
	1					

Jimmy's Dry Cleaners 61 Nassau Road Roosevelt, New York Site No. 1-30-080

Date: 3/15/2006	Ins	spector:	Dan Si	mpson	
Arrival Time: 1100	We	eather:	Cloudy 56	6*, Windy	
Departure Time: 1300		1	•		
System Status:	-10		N		
Is system running upon arriv			No		
Is system running upon depa	arture? Ye		No		
Electrical meter reading			0850		
Inspect SVE intake filter	Or	< <u>X</u>	Replaced		
SVE System:					
Bleed valve		20	% Open		
Vacuum at blower		17	" H20		
Location:	Flow	Conc	. (PID)	Temp	
Before bleed valve	22.3 CFM		9.7 PPM	68.3 ° F	
Carbon influent	158 CFM		0.0 PPM	70.4 ° F	
Between carbon units	104 CFM		0.0 PPM	69.5 ° F	
Carbon effluent	141 CFM		0.0 PPM	65.3 ° F	
-	141 01 111		0.0		
Location	Vacuum	FI	<u>ow</u>	Conc. (PID)	Valve
SVE-1	1.6 " H20	56.2		10.3 PPM	50 % Open
SVE-2	13.6 " H20	13.6		0.2 PPM	100 % Open
SVE-3	0.0 " H20	6.9		4.7 PPM	100 % Open
SVE-4		N/A			
_					
SVE-5	6.6 " H20	18.3		O.O PPM	
SVE-6	0.0 " H20	14.6		PPM	
SVE-7	0.0 " H20	13	CFM	PPM	100% Open
Number of new carbon units		3			
Knockout unit drained?	Ye	s	No X		
Quantity drained?		N/A	gals		
Number of knockout water d	rums on site:	7			
Air quality monitoring conduc	cted? Ye	s X	No		
Comments:					
* SVE-4 under surface wa	ter				
2					
y					

ATTACHMENT 2

Historical IRM Parameters

		10/10/05				11/11/05				12/8/05	15	
Sample	Vac	Flow	PD	Valve %	Vac	Flow	입	Valve %	Vac	Flow	PID	Valve %
Location	(inches of water)	(ctm)	(mdd)	Open	(inches of water)	(ctm)	(mdd)	Open	(inches of water)	(ctm)	(mdd)	Open
SVE - 1	7.0	92	6.69	30%	SN	NS	NS	SN	5.0	61.5	46.5	20%
SVE - 2	6.5	64	1.8	100%	15.0	10.1	3.4	100%	0.0	1.04	1.7	100%
SVE - 3	7.0	75.5	0.0	100%	15.0	5.65	18.3	100%	0.0	0.55	1.0	100%
SVE - 4	0.9	92	NS	100%	3.2	7.9	7.5	100%	5.0	10.3	12.3	100%
SVE - 5	5.9	33	2.4	100%	SN	0.0	SN	100%	0.0	0.73	0.3	100%
SVE - 6	5.0	92	0.0	100%	SN	1.3	NS	100%	0.0	0.0	0.1	100%
SVE - 7	2.0	113	0.4	100%	SN	7.3	NS	100%	0.0	0.0	0.1	100%
VMP - 1	NS	NS	NA	NA	NS	NS	NA	AN	SN	NS	AN	AN
Before blower	NA	88	15.5	NA	NA	80	54.2	AN	NA	29.4	19.7	AN
Influent	NA	103.5	16.2	NA	NA	94	32.6	NA	NA	136	5.0	AN
Mid	NA	101.5	0.0	NA	NA	94	0.0	NA	NA	113.5	0.1	Ą
Effluent	ΑΝ	103.5	0.0	AN	NA	130	0.0	ΑN	NA	150	0.0	AA
	Carbon changeout performed (2 vessels)	eout perform	ed (2 vess	sels).	Carbon changeout performed (2 vessels)	eout pertor	med (2 ves:	sels).				

NS = Not sampled, well head not accessible.
NA = Not applicable.
Influent = Before carbon.
Mid = Between carbon.
Over = Greater than meter capacity.

Sample Location	Vac (inches of water)	8/4/05 Flow (cfm)	PID (ppm)	Valve % Open	Vac (inches of water)	9/13/05 Flow (cfm)	PID (ppm)	Valve % Open	Vac (inches of water)	Flow (cfm)	PID (ppm)	Valve % Open
SVE - 1	5.12	82.5	46.9	10%	4.3	34.3	12.8	30%				-
SVE - 2	NS	NS	NS	NA	NS	NS	NS	NA				
SVE - 3	5.10	214	9.2	100%	4.0	33.1	23.5	100%				
SVE - 4	6.2	192	0.0	100%	5.0	68.0	4.6	100%				
SVE - 5	NS	NS	NS	NA	3.25	70.5	0.5	100%				
SVE - 6	4.15	188	0.0	100%	3.1	27.2	0.7	100%				
SVE - 7	4.13	137.5	0.0	100%	3.0	25.3	1.3	100%			*	
VMP - 1	NS	NS	NS	NA	NS	NS	NS	NA				
Before blower	NA	380	7.9	NA	NA	95	26.6	NA				
Influent	NA	390	5.4	NA	NA	116	23.3	NA				
Mid	NA	354	3.1	NA	NA	97.5	18.8	NA				
Effluent	NA	461	0.0	NA	NA	130	0.9	NA				

Notes:

NS = Not sampled, well head not accessible.
NA = Not applicable.
Influent = Before carbon.

Mid = Between carbon.

Over = Greater than meter capacity.

		4/28/05				5/31/05				6/15/05		
Sample Location	Vac (inches of water)	Flow (cfm)	PID (ppm)	Valve % Open	Vac (inches of water)	Flow (cfm)	PID (ppm)	Valve % Open	Vac (inches of water)	Flow (cfm)	PID (ppm)	Valve % Open
SVE - 1	6.0	48	93.3	25%	>5	7.25	84.6	10%	6.0	50	89.4	25%
SVE - 2	6.0	11	0	100%	4.5	8.8	0	100%	6.0	10.5	0	100%
SVE - 3	6.0	25	12.8	100%	4.8	19.5	14	100%	6.0	30	5.9	100%
SVE - 4	6.0	50	0	100%	4.8	45.6	0.2	100%	6.0	55	0	100%
SVE - 5	4.6	45	0	80%	NS	NS	NS	100%	4.8	51	0	80%
SVE - 6	3.8	31.5	0	100%	4.3	23	0	100%	4.5	36.3	0	100%
SVE - 7	3.5	10.8	0	100%	4.1	15	0	100%	4.5	13.6	0	100%
VMP - 1	NS	NS	NS	NA	NS	NS	NS	NA	NS	NS	NS	NA
Before blower	NA	68	8.5	NA	NA	60.5	7.7	NA	NA	71.5	10.2	NA
Influent	NA	98	4.7	NA	NA	98	3.1	NA	NA	102	5.2	NA
Mid	NA	76	0	NA	NA	89	0	NA	NA	88.2	0	NA
Effluent	NA	128	0	NA	NA	143	0	NA	NA	131	0	NA

Notes:

NS = Not sampled, well head not accessible.

NA = Not applicable.

Influent = Before carbon.

Mid = Between carbon.

Over = Greater than meter capacity.

1.1		March 2,	2005			March 22,	2005			March 23	, 2005	
Sample	Vac (inches			Valve %	Vac (inches of			Valve %	Vac (inches			Valve %
Location	of water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	of water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NS	NS	NS	NS	7.0	26.1	128.0	10%	5.0	7.15	NA	10%
SVE - 2	3.5	12.3	1.6	100%	0.0	0.5	2.6	100%	4.0	12.70	NA	100%
SVE - 3	NS	NS	NS	100%	3.0	19.5	11.5	100%	NA	NA	NA	100%
SVE - 4	4.0	25.5	16.4	100%	5.5	34.2	23.5	100%	4.5	39.2	NA	100%
SVE - 5	3.0	13.0	0.6	100%	0.0	0.2	0.0	100%	3.3	18.20	NA	100%
SVE - 6	2.00	10.80	0.0	100%	0.0	0.13	0.0	100%	3.00	7.60	NA	100%
SVE - 7	2.50	10.70	0.0	100%	0.0	0.13	0.0	100%	3.00	17.00	NA	100%
VMP - 1	NS	NS	NS	NA	NS	NS	NS	NA	NS	NS	NS	NA
Before blower	NA	214.0	124.2	NA	NA	210.0	25.5	NA	NA	NA	NA	NA
Influent	NA	114.0	10.4	NA	NA	113.0	8.4	NA	NA	NA	NA	NA
Mid	NA	88.0	0.80	NA	NA	88.0	1.8	NA	NA	NA	NA	NA
Effluent	NA	113.0	0.0	NA	NA	117.0	0.0	NA	NA	NA	NA	NA
Notes:					Following	a carbon ves	sel change o	out.				
NS = Not sample	d. well head n	ot accessible	e.		Before blower	Over	17.2	NA	i			
NA = Not applical			000		Influent	110.0	9.1	NA	1			
Influent = Before					Mid	91.5	0.0	NA	1			
Mid = Between ca	arbon.				Effluent	121.0	0.0	NA	1			
Over = Greater th	an meter cap	acity.		(1					4			

		February 1	10, 2005			February 1	7, 2005			February 2	22, 2005	
Sample	Vac (inches			Valve %	Vac (inches			Valve %	Vac (inches			Valve %
Location	of water)	Flow (cfm)	PID (ppm)	Open	of water)	Flow (cfm)	PID (ppm)	Open	of water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	6.0	17.5	29.9	10%	6.0	16.8	30.1	10%				
SVE - 2	1.8	3.1	0.0	100%	1.8	2.97	0.0	100%				
SVE - 3	2.0	2.6	11.0	100%	2.6	3.08	17.0	100%				
SVE - 4	NS	NS	NS	NS	2.0	1.7	0.8	100%				
SVE - 5	1.5	30.2	0.0	80%	1.8	35.0	0.0	80%				
SVE - 6	1.20	6.75	0.0	100%	1.5	7.05	0.0	100%				
SVE - 7	1.80	5.40	0.0	100%	2.0	5.50	0.0	100%	1			
VMP - 1	NS	NS	NS	NA	NS	NS	NS	NA				
Before blower	NA	30.0	2.7	NA	NA	28.5	3.7	NA				
Influent	NA	102.0	0.0	NA	NA	107.0	0.0	NA				
Mid	NA	86.5	0.00	NA	NA	82.5	0.0	NA				
Effluent	NA	104.0	0.0	NA	NA	112.0	0.0	NA				

Notes:

NS = Not sampled, well head not accessible.

NA = Not applicable.

Influent = Before carbon.

Mid = Between carbon.

Over = Greater than meter capacity.

Brief visit to confirm system operation and check for water accumulation in moisture separator.

System OK.

		January 20), 2005			January 27	7, 2005			February 2	2, 2005	Av-
Sample	Vac (inches			Valve %	Vac (inches			Valve %	Vac (inches			Valve %
Location	of water)	Flow (cfm)	PID (ppm)	Open	of water)	Flow (cfm)	PID (ppm)	Open	of water)	Flow (cfm)	PID (ppm)	Open
SVE - 1					5.5	73.0	NA	10%	6.0	9.60	300.0	10%
SVE - 2					3.8	34.1	NA	100%	2.5	6.35	0.0	100%
SVE - 3					1.5	3.5	NA	100%	1.0	2.77	12.9	100%
SVE - 4					2.8	12.8	NA	100%	0.8	9.3	0.0	100%
SVE - 5					3.3	4.2	NA	100%	2.6	27.00	0.0	80%
SVE - 6					3.0	6.85	NA	100%	2.00	6.85	0.0	100%
SVE - 7					3.0	7.25	NA	100%	1.80	1.90	0.0	100%
VMP - 1					NS	NS	NS	NA	NS	NS	NS	NA
Before blower					NA	40.0	NA	NA	NA	200.0	57.3	NA
Influent					NA	130.0	NA	NA	NA	112.0	14.8	NA
Mid					NA	NA	NA	NA	NA	94.0	0.0	NA
Effluent					NA	101.0	NA	NA	NA	140.0	0.0	NA
Notes:		nut down due and ice obse			System resta service. Syst				Installed lag	vessel; two v	essels now	in service.

NS = Not sampled, well head not accessible.

NA = Not applicable.

Influent = Before carbon.

Mid = Between carbon.

Over = Greater than meter capacity.

	0	ctober 20, 20	004		No	vember 17, 2	2004		De	cember 21, 2	2004	1.6
	Vac (inches of		PID	Valve %	Vac (inches of		PID	Valve %	Vac (inches of		PID	Valve %
Sample Location	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	(ppm)	Open
SVE - 1	5.0	13.4	133.0	25%	6.5	26.6	175.0	25%	3.5	1.89	232.0	25%
SVE - 2	NS	NS	NS	NA	NS	NS	NS	NA	2.0	17.50	1.4	100%
SVE - 3	3.0	13.9	33.2	100%	5.0	7.5	19.8	100%	2.5	3.53	19.0	100%
SVE - 4	NS	NS	NS	100%	6.0	18.7	25.5	100%	3.0	12.0	10.7	100%
SVE - 5	NS	NS	NS	100%	3.0	28.2	0.0	80%	2.3	10.30	0.0	80%
SVE - 6	4.00	8.90	0.0	100%	4.5	10.00	0.0	100%	3.00	9.38	0.0	100%
SVE - 7	4.00	8.85	0.0	100%	4.5	19.00	0.0	100%	3.00	16.20	0.0	100%
VMP - 1	NS	NS	NS	NA	NS	NS	NS	NA	NS	NS	NS	NA
Before blower	NA	218.0	23.5	NA	NA	214+	23.7	NA	NA	Over	36.2	NA
Influent	NA	89.0	7.3	NA	NA	110.0	9.0	NA	NA	97.0	11.5	NA
Mid	NA	84.5	0.10	NA	NA	97.0	0.0	NA	NA	78.0	4.1	NA
Effluent	NA	134.0	0.0	NA	NA	128.0	0.0	NA	NA	106.0	2.6	NA
Notes:					Following carbon vessel change out. Following carbon vessel ch			change	out.			
IS = Not sampled, well head not accessible.					Before blower 204.0 25.6 NA Before blower 85.5 33.				33.9	NA		

NA = Not applicable.

Influent = Before carbon.

Mid = Between carbon.

Over = Greater than meter capacity.

Following c	arbon vessel	change	out.	Following c	arbon vessel	change	out.
Before blower	204.0	25.6	NA	Before blower	85.5	33.9	NA
Influent	113.0	9.3	NA	Influent	115.0	16.7	NA
Mid	102.0	0.0	NA	Mid	80.5	6.6	NA
Effluent	132.0	0.0	NA	Effluent	130.0	0.0	NA

	1	August 20, 2	2004		S	September 29	. 2004	
	Vac (inches of	3 ,		Valve %	Vac (inches of		,	Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	7.0	43.0	153.0	25%	6.0	7.1	145.0	25%
SVE - 2	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 3	4.0	23.0	75.0	100%	2.0	6.5	31.9	100%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	4.00	35.00	0.0	100%	4.60	7.90	0.0	100%
SVE - 7	4.00	18.00	0.00	100%	4.80	5.75	0.00	100%
VMP - 1	NS	NS	NS	NA	NS	NS	NS	NA
Before blower	NA	48.0	49.0	NA	NA	145.0	23.7	NA
Influent	NA	122.0	34.0	NA	NA	91.0	9.0	NA
Mid	NA	98.0	33.0	NA	NA	86.0	0.0	NA
Effluent	NA	107.0	31.0	NA	NA	127.0	0.0	NA
Notes:	Following	g carbon vess	el change ou	ıt.				
NS = Not sampled, well head not accessible.	Before blower	48.0	53.0	NA				
NA = not applicable.	Influent	122.0	33.0	NA				
Influent = Before carbon.	Mid	98.0	0.0	NA				
Mid = Between carbon.	Effluent	107.0	0.0	NA				
Effluent = After carbon.								

		May 24, 20	04			June 22, 20	04			July 28, 20	04	7.3
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	2.6	18.8	120.0	10%	2.0	27.0	212.0	20%	3.5	65.5	77.5	25%
SVE - 2	NS	NS	NS	100%	4.0	38.0	0.0	100%	NS	NS	NS	100%
SVE - 3	2.9	2.1	69.7	100%	3.0	19.0	83.0	100%	3.0	5.0	86.8	100%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	2.60	9.00	0.0	100%	3.00	15.00	0.0	100%	2.75	55.5	0.0	100%
SVE - 7	2.50	12.70	0.00	100%	3.00	22.00	0.00	100%	2.75	66.0	0.00	100%
VMP - 1	NS	NS	NS	NA	NS	NS	NS	NA	NS	NS	NS	NA
Before blower	NA	33.5	32.6	NA	NA	39.0	53.0	NA	NA	42.4	19.9	NA
Influent	NA	92.5	10.6	NA	NA	114.0	8.0	NA	NA	109.0	2.0	NA
Mid	NA	85.0	0.0	NA	NA	89.0	0.0	NA	NA	83.5	1.5	NA
Effluent	NA	126.0	0.0	NA	NA	91.0	0.0	NA	NA	136.0	0.0	NA
Notes:	Chan	ged SVE-1 to	20% open		С	hanged SVE-1	to 25%		-			

NS = Not sampled, well head not accessible.
NA = not applicable.
Influent = Before carbon.

Mid = Between carbon.

Effluent = After carbon.

		February 9	, 2004			March 30,	2004			April 28, 20	004	
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of	-		Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	2.0	10.0	0.0	10%	7.0	9.7	97.4	10%
SVE - 2	NS	NS	NS	100%	6.0	47.0	5.0	100%	NS	NS	NS	100%
SVE - 3	2.0	4.4	42.3	100%	5.0	30.0	60.0	100%	1.2	0.9	2.2	100%
SVE - 4	NS	NS	NS	100%	5.0	24.0	15.0	100%	6.0	17.7	7.3	100%
SVE - 5	0.1	1.0	18.8	100%	5.0	22.0	10.0	100%	NS	NS	NS	100%
SVE - 6	0.0	0.9	0.0	100%	4.0	24.0	0.0	100%	0.08	0.88	0.0	100%
SVE - 7	0.0	0.1	0.0	100%	4.0	32.0	0.0	100%	0.05	2.97	0.01	100%
VMP - 1	0.0	0.0	NA	NA	NS	NS	NA	NA	NS	NS	NA	NA
Before blower	NA	6.3	19.5	NA	NA	45.0	33.0	NA	NA	18.8	42.5	NA
Influent	NA	101.0	0.0	NA	NA	128.0	14.0	NA	NA	82.0	7.1	NA
Mid	NA	88.0	0.0	NA	NA	103.0	5.0	NA	NA	96.5	4.1	NA
Effluent	NA	133.0	0.0	NA	NA	100.0	0.0	NA	NA	130.0	1.1	NA
Notes:					Notes:				Followin	ng carbon vesse	el change out.	
NA = not applicable	e.				Carbon change out performed.				Before blower	36.0	35.7	NA
NS = Not sampled,	, well head unde	r water.							Influent	128.0	6.3	NA
Influent = Before ca	arbon.								Mid	106.0	1.1	NA

Mid = Between carbon.

Effluent = After carbon.

100.0

Effluent

0.0

NA

		November 2	4, 2003			December 17	2003		- ,	January 6,	2004	
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	NA	NA	NA	0%	NS	NS	NS	0%
SVE - 2	4.5	4.7	67.9	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 3	3.5	6.9	185.0	100%	0.0	0.0	19.9	100%	NS	NS	NS	100%
SVE - 4	5.0	16.4	46.7	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	3.2	12.5	3.4	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	3.0	8.4	0.0	100%	0.0	0.0	0.0	100%	NS	NS	NS	100%
SVE - 7	2.5	10.5	0.0	100%	0.0	0.0	0.0	100%	NS	NS	NS	100%
VMP - 1	0.0	0.0	NA	NA	0.0	0.0	NA	NA	NS	NS	NS	NA
Before blower	NA	218.0	39.2	NA	NA	160.0	136.0	NA	NS	NS	NS	NA
Influent	NA	75.0	3.6	NA	NA	86.0	12.7	NA	NS	NS	NS	NA
Mid	NA	83.0	0.0	NA	NA	81.5	1.5	NA	NS	NS	NS	NA
Effluent	NA	132.0	0.0	NA	NA	126.0	0.0	NA	NS	NS	NS	NA

Notes:

NA = not applicable.

NS = not sampled due to access issues.

Influent = Before carbon.

Mid = Between carbon.

Effluent = After carbon.

NS = System not sampled due to maintence, standing water in lines, changed SVE filter.

		August 26	2003			September 2	24, 2003			October 21	, 2003	
	Vac (inches of		y	Valve %	Vac (inches of	-		Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	NA	NA	NA	0%	NA	NA	NA	0%
SVE - 2	NS	NS	NS	100%	5.0	10.8	1026.0	100%	NS	NS	NS	100%
SVE - 3	5.0	36.5	157.0	100%	4.0	28.1	82.5	100%	3.0	13.7	101.0	100%
SVE - 4	5.0	26.3	50.2	100%	5.0	20.2	127.0	100%	3.0	25.2	53.8	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	4.0	19.0	0.0	100%	3.5	24.5	0.0	100%	2.0	27.2	0.0	100%
SVE - 7	4.0	23.6	0.0	100%	4.0	16.9	0.0	100%	2.0	24.4	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	120.0	43.0	NA	NA	52.0	478.0	NA	NA	101.0	46.2	NA
Influent	NA	125.0	20.2	NA	NA	119.0	139.0	NA	NA	114.0	17.0	NA
Mid	NA	102.0	0.0	NA	NA	98.5	53.0	NA	NA	97.5	0.0	NA
Effluent	NA	110.0	0.0	NA	NA	99.5	67.0	NA	NA	87.0	0.0	NA

Notes:

NA = not applicable.
NS = not sampled due to access issues.

Influent = Before carbon.

Mid = Between carbon.

Effluent = After carbon.

		June 30,	2003			July 16, 2	2003			July 29, 20	003	
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	NA	NA	NA	0%	NA	NA	NA	0%
SVE - 2	5.0	23.5	0.0	100%	NS	NS	NS	100%	5.0	15.6	0.0	100%
SVE - 3	6.0	25.0	76.8	100%	5.5	NS	3.0	100%	6.0	6.0	0.0	100%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	100%	5	29.9	0	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	4.5	10.0	0.0	100%
SVE - 6	6.0	43.2	0.0	100%	4.0	NS	3.2	100%	4.0	7.6	0.0	100%
SVE - 7	5.5	19.2	0.0	100%	4.0	NS	1.6	100%	5.0	13.0	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	62.5	7.0	NA	NA	NS	31.0	NA	NA	65.0	34.9	NA
Influent	NA	96.0	0.0	NA	NA	NS	21.6	NA	NA	108.0	18.3	NA
Mid	NA	89.5	7.0	NA	NA	NS	22.0	NA	NA	91.5	11.5	NA
Effluent	NA	121.3	20.6	NA	NA	NS	16.4	NA	NA	121.0	7.6	NA

Notes:

NA = not applicable. NS = not sampled due to access issues.

Influent = Before carbon.

Mid = Between carbon.

Effluent = After carbon.

Unable to change out carbon units due to access issues.

Flow meter not working.

Followin	ng carbon vesse	el change out.	
Before blower	71.5	31.2	NA
Influent	100.0	14.0	NA
Mid	92.0	0.0	NA
Effluent	114.0	0.0	NA

		May 14, 2	2003			May 27,	2003			June 11,	2003	
	Vac (inches of			Valve %	Vac (inches of	F		Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	NA	NA	NA	0%	NA	NA	NA	0%
SVE - 2	NS	NS	NS	100%	8.5	83.0	14.5	100%	NS	NS	NS	100%
SVE - 3	>5	5.35	101.0	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 4	>5	15.7	35.9	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	NS	NS	NS	100%	8.0	71.5	5.6	100%	NS	NS	NS	100%
SVE - 6	>5	21.7	0.0	100%	8.0	46.8	0.0	100%	<5	23.3	0.0	100%
SVE - 7	>5	16.0	0.0	100%	8.0	25.3	0.0	100%	<5	18.3	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	74.5	31.6	NA	NA	140.0	35.5	NA	NA	71.5	6.6	NA
Influent	NA	104.0	17.5	NA	NA	105.0	16.2	NA	NA	81.5	0.0	NA
Mid	NA	90.5	14.6	NA	NA	25.6	26.2	NA	NA	86.5	0.0	NA
Effluent	NA	122.0	0.0	NA	NA	106.0	0.0	NA	NA	128.0	0.0	NA

Notes:

NA = not applicable.

NS = not sampled due to access issues.

Influent = Before carbon.

Mid = Between carbon.

Effluent = After carbon.

		April 5, 2	003			April 14,	2003			May 1, 2	003	
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	NA	NA	NA	0%	NA	NA	NA	0%
SVE - 2	7.5	7.2	0.5	100%	9.0	11.5	10.8	100%	NA	NA	NA	100%
SVE - 3	7.0**	9.8**	131.0**	100%	9.0	5.0	85.0	100%	8.0	22.1	89.2	100%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	7.0	21.3	0.0	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	6.5	13.1	0.0	100%	8.0	55.0	0.0	100%	7.0	40.5	0.0	100%
SVE - 7	6.0	9.5	0.0	100%	9.0	34.0	0.0	100%	7.0	43.4	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	46.0	36.6	NA	NA	93.0	36.4	NA	NA	59.0	24.5	NA
Influent	NA	120.0	9.7	NA	NA	118.0	15.6	NA	NA	109.5	15.1	NA
Mid	NA	96.1	0.6	NA	NA	94.0	5.5	NA	NA	101.0	20.5	NA
Effluent	NA	105.0	0.0	NA	NA	106.0	0.0	NA	NA	111.0	0.0	NA

 Changed the extraction rate at SVE-3 to 100%.

 SVE - 3
 7.0
 10.6
 144

Notes:

NA = not applicable.

Mid = Between carbon.

100%

NS = not sampled due to access issues.

Effluent = After carbon.

Influent = Before carbon.

		February 10	0, 2003			March 5,	2003			March 18,	2003	The state of
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	8.0	28.7	350.0	30%	NA	NA	NA	0%	NA	NA	NA	0%
SVE - 2	NS	NS	NS	50%	<1	0.3	7.7	100%	2.0	3.6	0.0	100%
SVE - 3	0.0	0.0	0.0	50%	<1	0.0	0.0	50%	2.0	4.6	46.1	50%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	NS	NS	NS	100%	<1	0.2	2.7	100%	2.5	11.3	0.0	100%
SVE - 6	0.0	0.0	0.0	100%	0.0	0.0	0.0	100%	2.5	3.9	0.0	100%
SVE - 7	0.0	0.0	0.0	100%	0.0	0.0	0.0	100%	3.0	10.9	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	30.0	165.0	NA	NA	44.0	0.0	NA	NA	54.0	2.6	NA
Influent	NA	15.3	109.0	NA	NA	106.0	0.0	NA	NA	113.0	0.0	NA
Mid	NA	92.5	3.3	NA	NA	88.6	22.3	NA	NA	85.0	0.0	NA
Effluent	NA	126.0	0.0	NA	NA	115.0	0.0	NA	NA	121.0	0.0	NA

Open valve at SVE -2 to 100%
Close valve at SVE -1 to 0%
Carbon Change out performed

Notes:

NA = not applicable.

Mid = Between carbon.

NS = not sampled due to access issues.

Effluent = After carbon.

Influent = Before carbon.

		January 6	2003			January 13	3, 2003			January 31	, 2003	THE N
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of	F		Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	4.0	3.0	900.0	30%	3.0	13.0	823.0	30%	4.0	8.0	425.0	30%
SVE - 2	NS	NS	NS	50%	NS	NS	NS	50%	NS	NS	NS	50%
SVE - 3	~1.0	2.4	78.2	50%	1.25	1.10	72.0	50%	0-1	1.00	10.0	50%
SVE - 4	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 5	3.0	4.1	0.0	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	~2.0	5.8	0.0	100%	3.0	8.15	0.0	100%	2-3	6.00	0.0	100%
SVE - 7	~2.0	4.6	0.0	100%	2.0	4.70	0.0	100%	2-3	5.10	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	40.1	180.0	NA	NA	120.0	210.0	NA .	NA	17.0	525.0	NA
Influent	NA	NS	NS	NA	NA	103.0	36.0	NA	NA	115.0	38.6	NA
Mid	NA	91.0	24.0	NA	NA	93.0	12.0	NA	NA	96.0	28.0	NA
Effluent	NA	111.0	0.0.	NA	NA	118.0	1.5	NA	NA	112.0	0.0	NA

** = Well under water, could not bail out fast enough.

Carbon change out performed.

Notes:

Effluent = After carbon.

NA = not applicable. NS = not sampled due to access issues.

Influent = Before carbon.

Mid = Between carbon.

		November 1	5, 2002			December 4	4, 2002			December 1	6, 2002	780
g/	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of	f		Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	3.0	10.4	29.1	30%	NS	NS	NS	30%
SVE - 2	NS	NS	NS	50%	. NS	NS	NS	50%	NS	NS	NS	50%
SVE - 3	~1.0	5.2	0.0	50%	2-3	17.0	225.0	50%	0.5	1.6	117.0	50%
SVE - 4	NS	NS	NS	100%	4.0	12.0	97.1	100%	1.5	1.3	126.0	100%
SVE - 5	NS	NS	NS	100%	3-4	3.2	0.0	100%	1.0	1.3	0.0	100%
SVE - 6	~2.0	11.8	0.0	100%	2.0	4.5	0.0	100%	1.0	0.5	0.0	100%
SVE - 7	~2.0	5.0	0.0	100%	2.0	4.7	0.0	100%	1.0	0.5	0.0	100%
VMP - 1	0.0	NA	0.0	NA	0.0	NA	8.7	NA	0.0	NA	0.0	NA
Before blower	NA	High	92.9	NA	NA	47.9	120.0	NA	NA	40.5	190.0	NA
Influent	NA	82.5	25.2	NA	NA	110.0	15.0	NA	NA	98.1	26.4	NA
Mid	NA	84.0	17.0	NA	NA	86.5	4.5	NA	NA	911	39.0	NA
Effluent	NA	126.0	0.0.	NA	NA	107.5	0.0	NA	NA	132.9	0.0	NA

** = Well under water, could not bail out fast enough.

Notes:

NA = not applicable.

Effluent = After carbon.

NS = not sampled due to access issues.

Influent = Before carbon.

Mid = Between carbon.

		September 3	0, 2002			October 14	, 2002			November	1, 2002	7
	Vac (inches of			Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	NA	NA	NA	0%	NA	NA	NA	0%	NA	NA	NA	0%
SVE - 2	NS	NS	NS	50%	NS	NS	NS	50%	NS	NS	NS	50%
SVE - 3	3-4	6.4	>2000	30%	3.5	10.8	513.0	30%	3.0	8.8	369.0	50%
SVE - 4	2-3	24.5	1245.0	50%	4.5	38.5	109.0	50%	3.5	17.0	105.0	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	2-3	21.1	0.0	100%	2.5	11.8	0.0	100%	<1.0	2.0	0.0	100%
SVE - 7	2.0	8.3	0.0	100%	3.0	3.07	0.0	100%	<1.0	9.40	0.0	100%
VMP - 1	0.0	NA	620.0	NA	0.0	NA	0.0	NA	0.0	NA	0.0	NA
Before blower	NA	31.5	1350.0	NA	NA	40.4	95.4	NA	NA	53.0	140.0	NA
Influent	NA	106.0	240.0	NA	NA	113.0	7.4	NA	NA	118.0	16.5	NA
Mid	NA	94.5	144.0	NA	NA	95.0	0.0	NA	NA	97.0	10.5	NA
Effluent	NA	114.0	0.0	NA	NA	113.0	0.0	NA	NA	102.0	0.0	NA

Notes:

NA = not applicable.

NS = not sampled due to access issues. Influent = Before carbon.

Mid = Between carbon.

Effluent = After carbon.

Carbon change out performed.

		September 12,	2002		Sept.	12, 2002 (Afte	r adjustments	5)		September 18	, 2002	
	Vac (inches of	F	PID	Valve %	Vac (inches of			Valve %	Vac (inches of			Valve %
Sample Location	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open
SVE - 1	1.0	9.7	>2000	10%	NA	NA	NA	0%	NA	NA	NA	0%
SVE - 2	3.0	20.4	682.0	100%	2.0-3.0	12.3	668.0	50%	3.5	8.0	68.1	100%
SVE - 3	2.0-3.0	8.6	>2000	50%	2.0	6.8	>2000	30%	3.2	3.0	368.0	30%
SVE - 4	2.0-3.0	21.9	410.0	100%	3.0	17.2	276.0	50%	3.7	10.2	54.5	50%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	2.0-3.0	14.7	0.0	100%	NS	NS	NS	100%	3.0	16.5	0.0	100%
SVE - 7	2.0-3.0	21.5	0.0	100%	NS	NS	NS	100%	3.0	8.5	0.0	100%
VMP - 1	0.0	NA	>2000	NA	NS	NA	NS	NA	0.0	NA	0.0	NA
Before blower	NA	32.8	>2000	75%	NA	30.3	626.0	75%	NA	34.0	69.2	75%
Influent	NA	98.5	711.0	NA	NA	98.0	153.0	NA	NA	106.0	16.5	NA
Mid	NA	84.5	763.0	NA	NA	78	494.0	NA	NA	94.5	48.6	NA
Effluent	NA	130.0	0.0	NA	NA	115.0	0.0	NA	NA	94.0	46.3	NA

Notes:

NA = not applicable.

NS = not sampled due to access issues. Influent = Before carbon.

Mid = Between carbon.

Effluent = After carbon.

Followin	g carbon vesse	l change out.	
Before blower	36.1	67.1	NA
Influent	110.0	16.1	NA
Mid	94.5	43.7	NA
Effluent	104.0	0.0	NA

		August 27, 2	002			September	5, 2002			September 5,	2002	
	Vac (inches of		PID	Valve %	Vac (inches of			Valve %	Vac (inches of		PID	Valve %
Sample Location	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	(ppm)	Open
SVE - 1	4.0	18.0	1098.0	25%	4.0	19.8	>2000	15%	NS	NS	NS	10%
SVE - 2	4.0	12.5	93.2	100%	5.0	10.5	576.0	100%	NS	NS	NS	100%
SVE - 3	4.0	16.5	425.0	50%	3.0	11.5	>2000	50%	NS	NS	NS	50%
SVE - 4	4.0	20.6	33.2	100%	5.0	26.5	385.0	100%	NS	NS	NS	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	4.0	23.4	0.0	100%	3.0	10.1	0.0	100%	NS	NS	NS	100%
SVE - 7	3.0	6.5	0.0	100%	3.0	7.5	0.0	100%	NS	NS	NS	100%
VMP - 1	0.0	NA	116.0	NA	0.0	NA	1220.0	NA	Oper	bleed air valve	e to 75%.	
Before blower	NA	57.0	193.0	65%	NA	43.5	>2000	65%	NA	35.2	>2000	75%
Influent	NA	103.0	90.3	NA	NA	103.0	1150.0	NA	NA	104.0	615.0	NA
Mid	NA	83.0	69.6	NA	NA	76.0	915.0	NA	NA	78.0	850.0	NA
Effluent	NA	128.0	0.0	NA	NA	99.5	0.0	NA	NA	101.0	0.0	NA

Carbon change out performed.

Notes:

Effluent = After carbon.

NA = not applicable. NS = not sampled due to access issues.

Influent = Before carbon.

Mid = Between carbon.

		August 7, 200	2			August 12	, 2002			August 21, 2	002	
	Vac (inches of		PID	Valve %	Vac (inches of			Valve %	Vac (inches of		PID	Valve %
Sample Location	water)	Flow (cfm)	(ppm)	Open	water)	Flow (cfm)	PID (ppm)	Open	water)	Flow (cfm)	(ppm)	Open
SVE - 1	7.0	30.0	326.0	100%	3.5	18.8	449.0	25%	7.0	31.7	925.0	25%
SVE - 2	6.0	10.0	64.4	100%	4.0	9.5	32.4	100%	7.0	17.9	68.9	100%
SVE - 3	5.5	25.0	695.0	100%	4.0	17.7	221.0	50%	7.0	23.0	521.0	50%
SVE - 4	6.0	39.0	36.4	100%	5.0	34.5	28.0	100%	8.0	25.2	37.1	100%
SVE - 5	NS	NS	NS	100%	NS	NS	NS	100%	NS	NS	NS	100%
SVE - 6	5.0	17.0	0.0	100%	4.0	20.5	0.0	100%	6.0	11.4	0.0	100%
SVE - 7	5.0	10.5	0.0	100%	4.0	22.0	0.0	100%	6.0	9.3	0.0	100%
VMP - 1	0.0	NA	283.0	NA	0.0	NA	50.6	NA	0.0	NA	NS	NA
Before blower	NA	98.0	157.0	NA	NA	80.0	132.0	50%	. NA	73.5	178.0	50%
Influent	NA	113.0	162.0	NA	NA	105.0	96.5	NA	NA	115.0	145.0	NA
Mid	NA	97.5	0.0	NA	NA	99.0	0.0	NA	NA	102.0	163.0	NA
Effluent	NA	110.0	0.0	NA	NA	110.0	0.0	NA	NA	108.0	0.0	NA

Open bleed air valve 10%

	Open biced an	Valve 1070.		
Before blower	NA	95.0	156.0	NA
Influent	NA	113.0	143.0	NA
Mid	NA	95.0	0.0	NA
Effluent	NA	104.0	0.0	NA

Notes:

NA = not applicable.

Mid = Between carbon.

NS = not sampled due to access issues.

Effluent = After carbon.

Influent = Before carbon.

Historical Indoor Air Quality Data

Attachment 3

Indoor Air Quality Data

NYSDEC - Jimmy's Dry Cleaners

61 Nassau Road, Roosevelt, New York

		NYSDOH					
Sample Location	Units	Guidance Value	6/15/05	9/13/05	12/8/05		
KFC - Kitchen	μg/m ³	100	6.7	5.5	4.3		
DUPA (KFC)	μg/m ³	100	17	5.2	4.0		
40 Dutchess (Bsmt. Bdrm/baby rm)	μ g /m³	100	12	1.2	11		
Deli - Front Room	μ g /m ³	100	29	6.2	39		
44 Dutchess (Jackson Bsmt./Family Rm)	μg/m ³	100	17	6.4	<0.7		
Background	μg/m ³	100	11	1.4	<0.7		

Notes:

Bold = Value exceeds NYSDOH guidance value.

KFC = 497 North Main Street.

All samples were sampled for Tetrachloroethene by NYSDOH Method 311-9.

NYSDOH Guidance Value references NYSDOH's "Tetrachloroethene

in Indoor and Outdoor Air", May, 2003.

NS = Not sampled.

NA = Data not available.

ND = Non - Detect.

(PL) = value detected less than the reported value.

Attachment 3

Indoor Air Quality Data

NYSDEC - Jimmy's Dry Cleaner

61 Nassau Road, Roosevelt, New York

		NYSDOH						
Sample Location	Units	Guidance Value	9/23/03	3/30/04	6/22/04	9/30/04	12/21/04	3/22/05
KFC - Kitchen	ug/m ³	10	5.9	5.5	4.3	19	6.2	8.8
40 Dutchess (Bsmt. Living. Rm)	ug/m ³	10	NS	NS	NS	NS	NS	NS
40 Dutchess (Bsmt. Bdrm/baby rm)	ug/m ³	10	6.2	10.0	6.2	2.8	4.0	6.4
40 Dutchess (Kitchen/First Floor)	ug/m ³	10	NS	NS	NS	NS	NS	NS
Deli - Front Room	ug/m ³	10	26	14.0	54	27	31	36
Deli - Storage Room (Back)	ug/m ³	10	NS	NS	NS	NS	NS	NS
DUPA (KFC)	ug/m ³	10	NS	5.2	7.1	20	5.7	9.0
Dupe 1 (Deli - Front Room)	ug/m ³	10	NS	NS	NS	NS	NS	NS
Dupe 2 (40 Dutchess.Bsmt)	ug/m ³	10	NS	NS	NS	NS	NS	NS
Dupe 3 (Deli - Front Room)	ug/m ³	10	NS	NS	NS	NS	NS	NS
Dupe 4 (KFC)	ug/m ³	10	5.2	NS	NS	NS	NS	NS
44 Dutchess (Jackson Bsmt./Family Rm)	ug/m ³	10	NS	5.0	NS	5.2	NS	5.9
44 Dutchess (First Floor/Kitchen)	ug/m ³	10	NS	NS	NS	NS	NS	NS
34 Dutchess (Bsmt. Rec Room)	ug/m ³	10	NS	3.6	NS	NS	NS	NS
34 Dutchess (Bsmt. Bdrm)	ug/m ³	10	NS	NS	NS	NS	NS	NS
34 Dutchess (First Floor/Kitchen)	ug/m ³	10	NS	NS	NS	NS	NS	NS
MSUP - Bld. 1 Basement, store room	ug/m ³	10	NS	NS	NS	NS	NS	NS
MSUP - Bld. 1 First floor, southwest corner	ug/m ³	10	NS	NS	NS	NS	NS	NS
MSUP - Bld. First floor, northwest corner	ug/m ³	10	NS	NS	NS	NS	NS	NS
MSUP - Bld. 2 First floor, front room	ug/m ³	10	NS	NS	NS	NS	NS	NS
MSUP - Bld. 2 First floor, rear room	ug/m ³	10	NS	NS	NS	NS	NS	NS
MSUP - Bld. 3 Basement, computer room	ug/m ³	10	NS	NS	NS	NS	NS	NS
	ug/m ³	10	NS	NS	NS	NS	NS	NS
MSUP - Play area southwest of Bld. 1	ug/m ³	10	NS	NS	NS	NS	NS	NS
	ug/m³	10	6.2	4.8	4.3	4.0	4.8	4.2

Notes:

Bold = Value exceeds NYSDOH guidance value.

MSUP = Miss Shelly's School - 66 Nassau Road.

KFC = 497 North Main Street.

All samples were sampled for Tetrachloroethene by NYSDOH Method 311-9.

NYSDOH Guidance Value references NYSDOH's "Tetrachloroethene

in Indoor and Outdoor Air", May, 2003.

NS = Not sampled.

NA = Data not available.

ND = Non - Detect.

(PL) = value detected less than the reported value.

5 (PL)/5 (PL) = Indicates that the NCDOH collected

a duplicate sample from this location.

Attachment 3 Indoor Air Quality Data NYSDEC - Jimmy's Dry Cleaner

NYSDEC - Jimmy's Dry Cleaner 61 Nassau Road, Roosevelt, New York

		NYSDOH					
Sample Location	Units	Guidance Value	7/1/02	11/25/02	1/13/03	3/5/03	5/1/03
KFC - Kitchen	ug/m ³	10	NS	18	6.4	3.3	42
40 Dutchess (Bsmt. Living. Rm)	ug/m ³	10	5 (PL)	NS	NS	NS	NS
40 Dutchess (Bsmt. Bdrm/baby rm)	ug/m ³	10	5	1.0	5.2	24	NS
40 Dutchess (Kitchen/First Floor)	ug/m ³	10	NS	NS	NS	NS	NS
Deli - Front Room	ug/m ³	10	230	67	48	119	69
Deli - Storage Room (Back)	ug/m ³	10	NS	NS	NS	NS	NS
DUPA (KFC)	ug/m ³	10	NS	NS	NS	NS	NS
Dupe 1 (Deli - Front Room)	ug/m ³	10	NS	NS	49	NS	NS
Dupe 2 (40 Dutchess.Bsmt)	ug/m ³	10	NS	NS	NS	20	NS
Dupe 3 (Deli - Front Room)	ug/m ³	10	NS	NS	NS	NS	69
Dupe 4 (KFC)	ug/m ³	10	NS	NS	NS	NS	NS
44 Dutchess (Jackson Bsmt./Family Rm)	ug/m ³	10	14	7.4	NS	2.6	NS
44 Dutchess (First Floor/Kitchen)	ug/m ³	10	5 (PL)	NS	NS	NS	NS
34 Dutchess (Bsmt. Rec Room)	ug/m ³	10	NS	NS	NS	NS	NS
34 Dutchess (Bsmt. Bdrm)	ug/m ³	10	NS	NS	NS	NS	NS
34 Dutchess (First Floor/Kitchen)	ug/m ³	10	NS	NS	NS	NS	NS
MSUP - Bld. 1 Basement, store room	ug/m ³	10	NS	NS	NS	NS	NS
MSUP - Bld. 1 First floor, southwest corner	ug/m ³	10	NS	NS	NS	NS	NS
MSUP - Bld. First floor, northwest corner	ug/m ³	10	NS	NS	NS	NS	NS
MSUP - Bld. 2 First floor, front room	ug/m ³	10	NS	NS	NS	NS	NS
MSUP - Bld. 2 First floor, rear room	ug/m ³	10	NS	NS	NS	NS	NS
MSUP - Bld. 3 Basement, computer room	ug/m ³	10	NS	NS	NS	NS	NS
MSUP - Bld. 3 First floor, office	ug/m³	10	NS	NS	NS	NS	NS
MSUP - Play area southwest of Bld. 1	ug/m ³	10	NS	NS	NS	NS	NS
Background	ug/m ³	10	NS	1.7	2.4	4.0	15
Notos:							

Notes:

Bold = Value exceeds NYSDOH guidance value.

MSUP = Miss Shelly's School - 66 Nassau Road.

KFC = 497 North Main Street.

All samples were sampled for Tetrachloroethene by NYSDOH Method 311-9.

NYSDOH Guidance Value references NYSDOH's "Tetrachloroethene

in Indoor and Outdoor Air", May, 2003.

NS = Not sampled.

NA = Data not available.

ND = Non - Detect.

(PL) = value detected less than the reported value.

5 (PL)/5 (PL) = Indicates that the NCDOH collected

a duplicate sample from this location.

Attachment 3 Indoor Air Quality Data NYSDEC - Jimmy's Dry Cleaner

61 Nassau Road, Roosevelt, New York

4		NYSDOH					
Sample Location	Units	Guidance Value	9/29/98	1/5/99	8/17/00	8/28/01	5/9/02
KFC - Kitchen	ug/m ³	10	NS	NS	NS	10	70
40 Dutchess (Bsmt. Living. Rm)	ug/m ³	10	NS	NS	NS	5 (PL)	NS
40 Dutchess (Bsmt. Bdrm/baby rm)	ug/m ³	10	NS	NS	NS	5 (PL)	490
40 Dutchess (Kitchen/First Floor)	ug/m ³	10	NS	NS	NS	5 (PL)	280
Deli - Front Room	ug/m ³	10	1250/1400	400/400	510/480	108	900/870
Deli - Storage Room (Back)	ug/m ³	10	930/970	400/400	490/480	NS	NS
DUPA (KFC)	ug/m ³	10	NS	NS -	NS	NS	NS
Dupe 1 (Deli - Front Room)	ug/m ³	10	NS	NS	NS	NS	NS
Dupe 2 (40 Dutchess.Bsmt)	ug/m ³	10	NS	NS	NS	NS	NS
Dupe 3 (Deli - Front Room)	ug/m ³	10	NS	NS	NS	NS	NS
Dupe 4 (KFC)	ug/m ³	10	NS	NS	NS	NS	NS
44 Dutchess (Jackson Bsmt./Family Rm)	ug/m ³	10	NS	NS	NS	NS	NS
44 Dutchess (First Floor/Kitchen)	ug/m ³	10	NS	NS	NS	NS	NS
34 Dutchess (Bsmt. Rec Room)	ug/m ³	10	NS	NS	NS	5 (PL)/5 (PL)	NS
34 Dutchess (Bsmt. Bdrm)	ug/m ³	10	NS	NS	NS	5 (PL)	NS
34 Dutchess (First Floor/Kitchen)	ug/m ³	10	NS	NS	NS	5 (PL)	NS
MSUP - Bld. 1 Basement, store room	ug/m ³	10	NS	NS	NS	ND	ND
MSUP - Bld. 1 First floor, southwest corner	ug/m ³	10	NS	NS	NS	ND/ND	5 (PL)
MSUP - Bld. First floor, northwest corner	ug/m ³	10	NS	NS	NS	ND	5 (PL)
MSUP - Bld. 2 First floor, front room	ug/m ³	10	NS	NS	NS	ND	5 (PL)
MSUP - Bld. 2 First floor, rear room	ug/m ³	10	NS	NS	NS	ND	ND
MSUP - Bld. 3 Basement, computer room	ug/m ³	10	NS	NS	NS	ND	5 (PL)/5 (PL)
MSUP - Bld. 3 First floor, office	ug/m ³	10	NS	NS	NS	ND	ND
MSUP - Play area southwest of Bld. 1	ug/m ³	10	NS	NS	NS	ND/ND	5 (PL)
Background	ug/m ³	10	NS	NS	NS	NA	NA
Notes:					<u> </u>		

Notes:

Bold = Value exceeds NYSDOH guidance value.

MSUP = Miss Shelly's School - 66 Nassau Road.

KFC = 497 North Main Street.

All samples were sampled for Tetrachloroethene by NYSDOH Method 311-9.

NYSDOH Guidance Value references NYSDOH's "Tetrachloroethene in Indoor and

Outdoor Air", May, 2003.

NS = Not sampled.

NA = Data not available.

ND = Non - Detect.

(PL) = value detected less than the reported value.

5 (PL)/5 (PL) = Indicates that the NCDOH collected a

duplicate sample from this location.

ATTACHMENT 4

Indoor Air Analytical

Mr. Mark Dent O'Brien & Gere Engineers, Inc. 5000 Brittonfield Parkway P.O. Box 4873 Syracuse, NY 13221 March 23, 2006

DOH ELAP# 11626

Account# 10864

Login# L130631

Dear Mr. Dent:

Enclosed are the analytical results of the samples received by our laboratory March 16, 2006. All test results meet the quality control requirements of AIHA and NELAC unless otherwise stated in this report.

Results in this report are based on the sampling data provided by the client and refer only to items tested. Unless otherwise requested, all samples will be discarded 14 days from the date of this report.

Please contact your client service representative, Charlene Moser at (888) 432-5227, if you would like any additional information regarding this report.

Thank you for using Galson Laboratories.

Flagel Unangot

Sincerely,

Galson Laboratories

F. Joseph Unangst Laboratory Director

Enclosure(s)

Galson 6601 Kirkville Rd. E Syracuse, NY 13057

LABORATORY ANALYSIS REPORT

Client

: O'Brien & Gere Engineers, Inc.

Site

: Jimmy's Cleaners

Project No.

: Jimmy's Cleaners

Date Sampled : 14-MAR-06

Account No.: 10864

Date Received : 16-MAR-06

Login No. : L130631

Date Analyzed : 20-MAR-06

Perchloroethylene

Sample ID	<u>Lab ID</u>	Time minutes	Total ug	Conc ug/m3
JIMMY'S G	L130631-1	1410	<0.06	<1.4
JIMMY'S J	L130631-2	1460	0.14	3.3
JIMMY'S AMBIENT	L130631-3	1400	<0.06	<1.5
JIMMY'S KFC	L130631-4	1400	0.35	8.6
JIMMY'S X-1	L130631-5	1400	0.35	8.6
LAB BLANK	L130631-6	NA	<0.06	NA

COMMENTS: Results corrected for a desorption efficiency of 103% in the ppm calculation.

Level of quantitation: 0.06 ug

OSHA PEL (TWA) Collection Media

Analytical Method : mod. NYS DOH 311-9

: NA

: M3M-3500

Submitted by: lef

Approved by : dk

Date : 23-MAR-06

NYS DOH # : 11626

QC by: Joe Unangst

< -Less Than

mg -Milligrams ug -Micrograms m3 -Cubic Meters

kg -Kilograms

> -Greater Than

l -Liters

NS -Not Specified

NA -Not Applicable

ND -Not Detected

ppm -Parts per Million