

April 26, 2006

Ms. Kerry Maloney
Environmental Engineer
Division of Environmental Remediation
Bureau A
New York State Department of Environmental Conservation
625 Broadway
Albany, New York 12233

Re: Pre!iminary Site Characterization -

Gem Cleaners

84 North Village Avenue Rockville Centre, New York

Site No. 1-30-082

File: 10653/36447 #5

Dear Ms. Maloney:

This letter report serves to summarize the Preliminary Site Characterization (PSC) activities conducted at the Gem Cleaners site located at 84 North Village Avenue, Rockville Centre, New York. Refer to Figure 1 for the site location.

Site Description

Gem Cleaners is an active dry cleaning facility, which has used and stored chemicals on site. The main chemical used is tetrachloroethene, also known as perchloroethylene or PCE. The facility is located on an approximately 0.25-acre lot in a one-story masonry building. A two-story frame and stucco building is attached to the south side of the building. Refer to Figure 2.

The site has one dry well (DW-1) and two existing monitoring wells (MW-1A and MW-2), located in the paved lot and driveway south of the building. Two additional monitoring wells, MW-1B (located in the proximity of MW-1A and DW-1) and MW-3 (located approximately 300 ft north of the site) were shown on site plans from previous site assessment reports provided by NYSDEC. MW-1B and MW-3 could not be located during the PSC activities, but are presented in Figures 2 and 3.

The site borders North Village Avenue on the east and a municipal parking lot on the west. Neighboring buildings border the site on the north and south.

Previous Investigations/History

Energy & Environmental Analysts, Inc. (EEA) completed a Phase! Environmental Assessment in July 1994 at the site. In May 1995, EEA also conducted a Phase II Environmental Subsurface Investigation which included a soil boring through the dry well and the installation and sampling of four groundwater

Kerry Maloney April 26, 2006 Page 2

monitoring wells. Refer to Attachment 1. PCE was present in all four monitoring wells, ranging from 2 micrograms/liter (µg/L) to 56 µg/L in MW-1A.

In August 1997, P.W. Grosser Consulting conducted additional activities at the site and prepared a Site Assessment and Remediation Report. Refer to Attachment 1. Their inspection focused on the current operations at the facility and the liquid wastes that were generated. Dye testing was performed to evaluate if the interior sink, toilet, and floor drain discharged to the municipal sewer system. Dye testing indicated that the interior sink, toilet, and floor drain discharged to the municipal sewer system through the manhole in front of the building.

A vent pipe, which discharged small amounts of PCE/water condensate into a stairwell drain, was also identified and relocated to the roof. The stairwell drain, located on the west side of the building, was investigated and the soil was sampled. PCE levels were observed in the soil (6 to 8 ft) at $12,000 \,\mu\text{g/Kg}$, which is well above the TAGM Soil Cleanup Objectives of $1,400 \,\mu\text{g/Kg}$. The drain area was excavated to 8 ft below grade (the identified cleanup endpoint), a new drain was installed, and the excavation was backfilled.

Site Geology and Hydrology

The site appears to be filled, as the grade of the Village of Rockville Center parking lot near the site is approximately 3 feet lower. The site is underlain by the Upper Glacial Aquifer. This unit, which underlies most of Long Island, is composed of glacial outwash (unconsolidated mixture of sand and gravel) deposited during the Pleistocene ice ages. The Upper Glacial Aquifer has an average thickness of approximately 100 feet in the vicinity of the site. As indicated during previous drilling events, there is fine sand with trace of gravel to 20 feet below grade.

The Upper Glacial Aquifer is an unconfined aquifer recharging from rainfall that falls on Long Island. The water table is highest along the center of the island. This is also where the greatest rainfall occurs. Groundwater tends to flow from recharge areas in the center of the island to discharge areas along the north and south shores. At the site, depth to groundwater is approximately 19 feet below grade. The estimated average hydraulic conductivity of the Upper Glacial Aquifer is 270 feet/day horizontally and 27 ft/day vertically. The ground water flow direction could not be calculated due to the limited number of monitoring wells at the site. However, in the Phase II Environmental Subsurface Investigation Report, dated May 1995 and prepared by EEA, the regional ground water flow pattern was reportedly from north to south.

Field Activities

Field activities consisting of soil borings, subsurface soil sampling, ground water sampling, and residual sampling were performed on-site from January 17 through January 20, January 30, and March 2 through March 3, 2006. Environmental Probing Investigations, Inc. (EPI) located in Cream Ridge, New Jersey, performed the drilling activities. A representative from YEC located in Valley Cottage, New York provided the drilling oversight and sample collection.

Soil borings were conducted at eight locations (SB-1 through SB-8) as shown on Figures 2 and 3. For borings located outside the property (SB-7/GWS-7 and SB-8/GWS-8), the Village of Rockville was contacted and a permit was obtained prior to drilling. Refer to Attachment 2.

The borings were performed using a Geoprobe® direct push probe (6600 unit). The scope of the PSC was to advance the borings to 90 feet or refusal. None of the borings were advanced to 90 ft due to subsurface conditions. Refusal occurred at the depths presented in Table A below. Four-foot long core samples were retrieved from the borings and screened via a headspace method using a photo ionization detector (PID). Refer to boring logs in Attachment 3. Soil samples with the highest PID reading were collected and submitted for analysis. The PID readings ranged from non-detect to 34.8 ppm. The depths and PID readings for the soil samples collected are presented in Table A below. At SB-3, two soil samples were collected and submitted for analysis. In addition to the soil samples, a residual sample was collected from the dry well (DW-1). Duplicate samples were also collected and submitted for analysis for SB-5 and DW-1.

Table A: Depth to refusal, depth of soil samples, and PID readings.

Location	Depth to Refusal (ft)	Depth of Soil Samples (ft)	PID Reading (ppm)
SB-1	44	24-28	17.8
SB-2	40	36-40	7.4
SB-3	40	28-32 & 36-40	5.0 & 5.3
SB-4	40	24-28	3.7
SB-5	40	28-32 (plus field duplicate at 28-32 ft)	34.8
SB-6	40	16-20	6.6
SB-7	40	36-40	6.1
SB-8	36	20-24	2.0

Groundwater samples were collected from each of the eight boring locations (GWS-1 through GWS-8). The samples were collected using the Geoprobe® discrete screen point groundwater sampling method. Groundwater samples were collected at the depths presented in Table B below. In addition, water samples were collected from the dry well (DW-1) and the existing monitoring wells (MW-1A and MW-2) on site.

Table B: Depth of groundwater samples.

Location	Depth to Groundwater Samples (ft)
GWS-1	29
GWS -2	29
GWS -3	29
GWS -4	20, 34, &49
GWS -5	29 (plus field duplicate at 29 ft)
GWS -6	21, 34, &44
GWS -7	17, 28, &43
GWS -8	24
MW - 1A	59
MW - 2	20

Following the boring and sampling activities YEC performed an instrument survey of the site that included the sample locations, dry well, monitoring wells, and other prominent structures.

The soil samples and the groundwater samples along with matrix spike/matrix spike duplicate (MS/MSD) samples, and equipment blank samples were sent via overnight delivery to Life Science Laboratories in Syracuse, New York for analysis. The samples were analyzed for volatile organic compounds.

Kerry Maloney April 26, 2006 Page 4

Analytical Results

Data Quality

The samples were analyzed for volatile organic compounds according to the Standby QAPP and project specific DER-10 QAPP using USEPA Method 8260B.

The analytical data packages from Life Science Laboratories were validated by an independent data validation contractor, Nancy Potak of Greensboro, Vermont, and the results were reported in a data usability summary report (DUSR). Refer to Attachment 4 (separately bound). The validated soil and residual analytical results are summarized in Table 1. The validated groundwater analytical results are summarized in Table 2.

The data quality for soil, residual and groundwater were generally acceptable for intended uses. The DUSR noted that there were problems with the system monitoring and internal standard recoveries in the initial analysis of the residual samples from DW-1. The samples were reanalyzed and the data from the reanalysis were not significantly different. As recommended by the validator, the data from the original analysis was used for reporting, as presented in Table 1. In addition, the DUSR noted that there was minor acetone and methylene chloride contamination in the method and storage blanks, and the data is flagged by the "B" data qualifier in Table 1.

Minor acetone and methylene chloride contamination was also found in the trip blanks for the groundwater samples. In three groundwater samples, GWS-1(29), GWS-6(21), GWS-6(34), the samples had to be reanalyzed due to the high concentrations of PCE exceeding instrument calibration range. As recommended by the validator, the data for this compound was reported from the diluted analysis.

Data Evaluation

The analytical results were compared to the following New York State screening values:

- Soil and residual results are compared to applicable screening values provided in TAGM #4046, 1994.
- Groundwater results are compared to applicable screening values provided in TOGS 1.1.1, 1998.

The validated analytical results for the soil, residual and groundwater samples are summarized in Tables 1 and 2. In addition, the analytical results, which exceed the applicable screening values, are highlighted with boxes in the tables and presented on Figure 3.

For the soil and residual samples, no compounds exceeded their applicable screening values. Compounds that were detected include acetone, 2-butanone, toluene, and PCE as shown in Table 1.

For the groundwater samples, only PCE and cis-1,2-dichloroethene exceeded their applicable screening values. This occurred at three locations as shown below in Table C. Other compounds that were detected included trichlorofluoromethane, acetone, carbon disulfide, methylene chloride, methyl tert-butyl ether, 2-butanone, chloroform, benzene, trichloroethene, toluene, ethylbenzene, xylenes and 1,2,4-trichlorobenzene as shown in Table 2. PCE was present in GWS-1, 3, 4, 5, 6, 7, and 8, MW-1A and MW-2.

Table C: Groundwater samples with compounds that exceed their applicable screening values.

	Screening	GWS-1	GWS-4	GWS-4	GWS-6	GWS-6	GWS-6
Compound	Values	(29')	(20')	(34')	(21')	(34')	(44')
cis-1,2-dichloroethene	5	ND	ND	ND	5.11	ND	ND
PCE	5	303	20.2	12.4	313	109	11.2

ND = Not detected. Concentrations are in μ g/L.

Summary

PCE was the contaminant of concern based on the site history. Based on the analytical results of the soil and residual samples collected during the PSC, no compounds exceeded their applicable screening values. Several volatile organic compounds were present in the ground water, however, only PCE and cis-1,2-dichloroethene exceeded the applicable screening values. This occurred at three locations (GWS-1, GWS-4 and GWS-6) with PCE concentrations ranging from 11.2 to 313 μg/L.

If you have any questions or comments regarding this information, please contact me at (315) 437-6100, extension 2258.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Marc J. Dent, P.E. Managing Engineer

Man Da

I:\DIV71\Projects\10653\36447\5_rpts\GEM\PSCReport_revised.doc

TABLE 1 Gem Cleaners Site Soil and Residual Sample Results

NYSDECTAGNI Sample ID SB-1 SB-2 SB-2 SB-3 SB-4 SB-5 SB	NYSDECTIAGN Sample ID SB-1 SB-2 SB-3 SB-3 SB-4 SB-5 SB	ne opane	ine	Volatile Organic Compounds CAS No. Volatile Organic Compounds (µg/kg) Dichlorodifluoromethane Chloromethane Chloromethane Chloromethane Trichlorofluoromethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloro-1,2,2-trifluoroethane Carbon disulfide Methyl acetate Methyl ene chloride 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane Cis-1,2-Dichloroethane Cis-1,2-Dichloroethane Chloroform Chloroform Chloroform Chloroethane Chloroform Chloroethane Chloroform Carbon tetrachloride Benzene 1,2-Dichloroethane Carbon tetrachloride Cyclohexane Carbon tetrachloride Benzene 1,2-Dichloroethane Carbon tetrachloride Benzene 1,2-Dichloroethane Carbon tetrachloride Methylcyclohexane Chloroforopane Carbon tetrachloride	
SB-2 SB-2 SB-3 SB-3 SB-3 SB-3 SB-4 SB-5 SB-5 SB-7	SB-17 SB-27 SB-30 SB-31 SB-32 SB-31 SB-32 SB-32 <th< td=""><td>FD = Field Duplicate NA = Not Available</td><td>1 1 1 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td><td>2 2 7 2 45</td><td>NYSDEC TAGM Recommended Soil Cleanup</td></th<>	FD = Field Duplicate NA = Not Available	1 1 1 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 2 7 2 45	NYSDEC TAGM Recommended Soil Cleanup
287 28-20 28-37 58-3 58-5 58-7 27-22 28-27	287	ield Duplicate tot Available = Exceeds Screening Value		Date Sampled	Sample ID Depth Interval
58-20 28-30 58-30 58-30 58-30 28-34 58-40 28-37 58-40 28-37 58-40 28-37 58-40 28-37 58-40 28-37 58-40 28-37 58-40 28-37 18-30-38 38-31 59-31	SB-20 SB-30 SB-30 <th< td=""><td></td><td></td><td> 7/0 = </td><td>SB-1 24'-28'</td></th<>			7/0 =	SB-1 24'-28'
383-3 38-4	362 36-30 24-28 36-30 24-29 25-30 36-40 20-24-30 36			0.09 0.44 0.09 0.16 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.16 0.12 0.12 0.13 0.16 0.13 0.16 0.17 0.18	SB-2 36'-40'
\$6.25 \$8.24 \$8.25	Sept			I86 ⊆	SB-3 28'-32'
28. SB-5 (SB-5FQ/X-1) (SB-6 SB-7 20124 Soil Soil Soil Soil Soil Soil Soil Soil	281-2 281-2 281-7 (27-1) 281-8 281-20 281-32		0.09 0.10 0.14 0.16 0.16 0.15 0.17 0.19 0.19 0.10 0.10 0.10 0.11 0.11 0.12 0.12 0.12	1/18/0 0.09 0.44 0.09 0.16 0.12 0.12 0.12 0.12 0.12 0.12 0.13 0.16 0.17 0.17 0.17 0.18 0.19 0.19 0.11 0.11 0.12	SB-3 36'-40'
3.2 SB-5FD(X-1) 16:-207 36:-40 20:-24* 30:-40 20:-24* 30:-40 20:-24* 30:-40 20:-24* 30:-40 20:-24* 30:-40* 30:	32: \$88-\$FD (X-1) \$98-6 \$98-7 \$98-30 \$00-19 \$16-207 \$01-19			9/0/2	SB-4 24'-28'
SB-6 16:-20' Soil Soil Soil Soil 10:006 Soil Soil Soil Soil Soil Soil Soil Soil	SB-6 SB-7 SB-8 DW-1 Soil				SB-5 28'-32'
3.6 SB-7 20'-24' 20'-24' 20'-24' 20'-24' 20'-24' 20'-24' 20'-24' 36'-40' 30'-66 3'3/06	3-6 3-7 3-10 3-10 3-10 3-10 3-10 3-10 3-10 3-10			906	SB-5 FD (X-1) 28'-32'
40° 20°-24° SB-8 DW-1 40° 20°-24° Soil Soil Nesidu 06 3/3/06 1/20/0 0 0.10 U 0.12 U 0.39 U 0.55 U 0.17 U 0.43 U 0.19 U 0.12 U 0.19 U 0.14 U 0.19 U 0.14 U 0.19 U 0.14 U 0.10 U 0.14 U 0.15 U 0.14 U 0.20 U 0.16 U 0.15 U 0.14 U 0.20 U 0.16 U 0.15 U 0.14 U 0.23 U 0.16 U 0.15 U 0.16 U 0.16 U 0.17 U 0.17 U 0.14 U 0.23 U 0.19 U 0.18 U 0.14 U 0.23 U 0.19 U 0.19 U 0.13 U 0.19 U 0.13 U 0.11 U 0.14 U 0.22 U 0.19 U 0.15 U 0.14 U 0.22 U 0.19 U 0.16 U 0.17 U 0.14 U 0.22 U 0.26 U 0.18 U 0.13 U 0.19 U 0.13 U 0.19 U 0.13 U 0.10 U 0.13 U 0.11 U 0.14 U 0.22 U 0.26 U 0.15 U 0.14 U 0.22 U 0.26 U 0.15 U 0.14 U 0.22 U 0.26 U 0.15 U 0.14 U 0.23 U 0.15 U 0.16 U 0.17 U 0.14 U 0.22 U 0.26 U 0.19 U 0.13 U 0.19 U 0.13 U 0.19 U 0.13 U 0.19 U 0.13 U 0.19	40' 20'-24' Residual Reill Soil Residual Reill Soil Residual Reill Official Control of the contr				SB-6 16'-20'
DW:18 DW:18 DW:19	18 DW-1 24 Residual Residual No.6 1/20/06 1/20			[8 =	SB-7 36'-40'
	25 25 25 25 25 25 25 25 25 25 25 25 25 2			ĝ <u>¥</u>	SB-8 20'-24'
· · · · · · · · · · · · · · · · · · ·	7			00 d	DW-1

[2] Non-detect limits are MDLs.
[3] TOGS April 2000 Addendum.
[4] The TOGS value is for the sum of cis-1,3-Dichloropropene and trans-1,3-Dichloropropene.
[5] The TOGS value for total xylenes is assumed to be equal to the TOGS value for 1,2-xylene, 1,3-xylene, or 1,4-xylene.

OBRIEN & GERE

TABLE 2 Gem Cleaners Site Ground Water Sample Results

		NYSDEC TOGS 1.1.1 Allowable	Sample ID Depth Interval	GWS-1 29'	GWS-2 29'	GWS-3 29'	GWS-4 20'	GWS-4 34'	GWS-4	GWS-5	GWS-5 FD (X-2)	GWS-6	GWS-6	GWS-6
Compounds	CAS No.	Concentration	Date Sampled	1/17/06	1/18/06	1/18/06	1/18/06	1/18/06	1/18/06	1/19/06	1/19/06	1/20/06	1/20/06	1/20/06
Volatile Organic Compounds ^[2] (μg/L)]	,												
Dichlorodifluoromethane	75-71-8	ڻ.			0.03 U									0.03
Chloromethane	74-87-3	ڻ.		0.03 U			0.03				0.03 U			
Vinvi chloride	75-01-4	v (
Vinyi chioriae	75-01-4													
Bromomethane	74-83-9	G						0.10 U						
Chloroethane	75-00-3	_σ ,		0.08 U	0.08 ∪									
Trichlorofluoromethane	75-69-4	Ch												
4 4 Dishlarashana	75 35 4	л (
1,1-Dichloroethene	75-35-4	יו טיו		0.02		0.02 U	0.02	0.02	0.02	0.02	0.02	0.02 U	0.02	
1,1,2-i richioro-1,2,2-triffuoroethane	/6-13-1	U												
Acetone	67-64-1	50		0.23 U	0.23 U			0.23 ∪	0.23 U					
Carbon disulfide	75-15-0	60 ^[3]												
Mathul apotato	79-20-9	NIA C		0.05					0.00					
Methylacetate	75 00 0	· §					0.05							
Menlyere critoride	75-09-2	, 0		0.09										
trans-1,2-Dichloroetnene	6-00-961	ď		0.04	0.04									
Methyl tert-butyl ether	1634-04-4	10 [3]		0.22 J	0.03 U			1.21						
1,1-Dichloroethane	75-34-3	"												
cis-1.2-Dichloroethene	156-59-2	יוט		004	004									
2-Butanone	78-03-3	7 0										L		
	70-93-3	י פ	_											
	67-66-3	7												
1,1,1-Irichioroethane	6-66-17	ď												
	110-82-7	×			0.02 U									
etrachloride	56-23-5	ڻ. ا												
	71-43-2	<u> </u>		0.02								0.02 U		
ane	107-06-2	0.6		0.02 U	0.02 U									
Trichloroethene	79-01-6	С'n		0.12 J	0.03 ∪									
ane	108-87-2	₹	_											
1 2-Dichloropropane	78-87-5	10												
Bromodichloromethane	75-27-4	50					0.00	0.00	0 00	0.00	0.00	0.00		
cis-1 3-Dichloropropene	10061-01-5	_		0.03										
Mothed a postoropa	10001-01-01-01-01-01-01-01-01-01-01-01-0											0.03		
Tolicopo	108 88 3	7 }												
- ciueile	100-00-3			0.02				0.40	0.63	0.60				
trans-1,3-Dichloropropene	10061-02-6			0.03 U	0.03 U									
1,1,2-Trichloroethane	79-00-5	_					0.0 4		0.04	0.04	0.04			
Tetrachloroethene	127-18-4	υı		303	0.05 U									
2-Hexanone	591-78-6	50												
romethane	124-48-1	50												
	106-03-4	8E-04												
i,z-Diplomoemane	100-90-4	0 - 0												
Cnlorobenzene	7-06-801	. 0												
Ethylbenzene	100-41-4	ď		0.02	0.02				0.14 J					
Xylenes	1330-20-7	ر ا ح		0.04	0.0 4									
Styrene	100-42-5	נא												
Bromoform	75-25-2	χ, ·												
12 22 22 20 11 12 20 20 20 20 20 20 20 20 20 20 20 20 20	8 68 80	n (
	10.01	٦ (
nane	/9-34-5	, 0												
1,3-Dichlorobenzene	541-73-1	ω												
1,4-Dichlorobenzene	106-46-7	ω		0.04	0.0 4									
1,2-Dichlorobenzene	95-50-1	ω												
	06 13 0	2												
opane	96-12-8	0.04												
	120-82-1	C ₁		0.19 J	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13	0.13 U
Notes:														
Analytical Data Qualifiers		מס ו הופוע סייאוויפלפ												
Prialytical Data Qualifiers.		FD = Fleid Duplicate												
B = Detected in method blank at concentrations	s	NA = Not Available												
less than contract required detection limit (CRDL)	it (CRDL)	= Exceeds Sc	= Exceeds Screening Value											
J = Estimated														
U = Not detected at or above method detection limit (MDL) or practical quantitation limit (PQL)	ı limit (MDL) o	r practical quantitation lim	iit (PQL)											
11) Table 1 of NYSDEC Division of Water Technic	al and Operat	onal Guidance Series (Ti	DGS) 1 1 1											
[1] Table 1 of NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1,	al and Operat	ional Guidance Series (1	0GS) 1.1.1,											
Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998	e Values and	Groundwater Effluent Lin	itations, June 1998.											

TABLE 2 Gem Cleaners Site Ground Water Sample Results

		NYSDEC								
	2	TOGS 1.1.1 Allowable	Sample ID Depth Interval	GWS-7 17:	GWS-7	GWS-7	GWS-8	MW-1A 59'	MW-2 20'	MW-2 FD (X-3) 20'
Volatile Organic Compounds ^[2] (μα/L)										
Dichlorodifluoromethane	75-71-8	51				0.03	0.03	03		
Chloromethane	74-87-3) (J1				0.03	0.03	03		
Promomethane	74-83-9	את		0.03		0.03	0.03	03		
Chloroethane	75-00-3	On C		0.08	0.08	0.08				
Trichlorofluoromethane 1 1-Dichloroethane	75-69-4	n Cn				0.02	0.02	88		
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	on o			0.02	0.02	0.02	9 6		
Acetone	67-64-1	50				0.23	1.01	23		
Ф	75-15-0	60 ^[3]				1.02	0.03	03		
	79-20-9	² ≥				0.05	0.05	88		
trans-1,2-Dichloroethene	156-60-5	O 1 O		0.0 4	0.09	0.04	0.09	04		
Methyl terf-butyl ether	1634-04-4	10 ^[3]				0.03	0.03			
1,1-Dichloroethane	75-34-3	n (n		0.02 U		0.02	0.02			
2-Butanone	78-93-3	50				1.02	0.04			
	67-66-3	7		0.02		0.02	0.02	0.14 J		
Cycloboxano	/1-55-6	ζ σ				0.04	0.04			
Carbon tetrachloride	56-23-5	σ ξ			0.02	0.03	0.02			
1 2-Dichloroethane	71-43-2	5 <u>1</u>		0.18 0.00		0.18	0.02			
Trichloroethene	79-01-6	51 (0.03	0.03	0.03			
Methylcyclohexane 1.2-Dichloropropane	108-87-2 78-87-5	1 N			0.03	0.03	0.03			
Bromodichloromethane	75-27-4	50		0.02 U		0.02	0.02			
cis-1,3-Dichloropropene	10061-01-5					0.03	0.03	03		33
Toluene	108-88-3	ر د م			0.19	0.30	0.27			
trans-1,3-Dichloropropene	10061-02-6					0.03	0.03			03
Tetrachioroethene	127-18-4	σ 1 –		0. 4 2	0.60		0.04			
	591-78-6	50				0.36	0.36			
Dibromochloromethane 1.2-Dibromoethane	124-48-1 106-93-4	50 6E-04		0.02 0.03	0.02	0.02	0.02	0.02 U		
	108-90-7	51				0.02	0.02			
	100-41-4					0.02	0.02			
Styrene	100-42-5				0.04	0.04	0.04			
Bromoform	75-25-2	50		0.13 U		0.13	0.13			
Isopropylbenzene 1.1.2.2-Tetrachloroethane	98-82-8 79-34-5	יט רט				0.02	0.02			
1,3-Dichlorobenzene	541-73-1	ω			0.02	0.02	0.02			
1,4-Dichlorobenzene	106-46-7	ω				0.04	0.04			
1 2-Dibromo-3-chloropropage	95-50-1	۰ ۵				0.07	0.07			
1,2-Dibromo-3-Chioropropane 1,2,4-Trichlorobenzene	120-82-1	5		0.22 0.13 U	0.22	0.22	U 0.22 U	0.22 U	0.22 0.13 U	0.22 0.13 U
Notes:										
B = Detected in method blank at concentrations	Ø	NA = Not Available								
less than contract required detection limit (CRDL)	it (CRDL)	= Exceeds Screening Value	eening Value							
U = Not detected at or above method detection limit (MDL) or practical quantitation limit (PQL)	ı limit (MDL) o	or practical quantitation limi	t (PQL)							
[1] Table 1 of NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Efficient Limitations. Line 1998.	al and Opera Se Values and	tional Guidance Series (TC Groundwater Efficent imi	GS) 1.1.1,							
[2] Non-detect limits are MDLs.										
[3] TOGS April 2000 Addendum. [4] The TOGS value is for the sum of cis-1 3-Dich.	oropropene s	and trans-1.3-Dichloroprope								
[5] The TOGS value to rotal xylenes is assumed to be equal to the TOGS value for 1,2-xylene, 1,3-xylene, or 1	to be equal to	the TOGS value for 1,2-xy	lene, 1,3-xylene, or 1							

ADAPTED FROM: LYNBROOK, NEW YORK USGS QUADRANGLE.

DRYWELL

LEGEND

- EXISTING MONITORING WELL
- SOIL/GROUND WATER SAMPLE LOCATION

GEM CLEANERS SITE ID # 1-30-082 ROCKVILLE CENTRE, NEW YORK

SAMPLE LOCATIONS

30

OBRIENE GERE O'Brien & Gere Engineers, Inc.

Phase II Environmental Subsurface Investigation Report and Site Assessment and Remediation Report

ENGINEER & HYDROGEOLOGIST, P.C

August 21, 1997

Chris Lafemina NYSDEC SUNY, Bldg. 40 Stony Brook, New York 11790-2356

Re:

Site Assessment & Remediation Report

Gem Cleaners 84 N. Village Ave. Rockville Centre, NY

AUG 22

Dear Mr. LaFemina

Enclosed is a copy of the document Site Assessment & Remediation Report for the Property at 84 North Village Avenue, Rockville Centre, New York, August, 1997.

The report documents the findings of a site inspection, investigation and identification of a potential source of groundwater contamination at the site. After successful remediation of the potential source area, it is believed that no further action is warranted and referral of the site for the NYSDEC Registry of Inactive Hazardous Waste Sites is not appropriate.

We request that your Department acknowledge receipt of the enclosed and your concurrence that this concludes our clients obligations with respect to environmental action at the site.

Should you have any questions or require further information, please do not hesitate to contact this office.

Very truly yours

P.W. GROSSER CONSULTING

ENGINEER & HYDROGEOLOGIST, P.C.

P. alades

James P. Rhodes, C.P.G.

Sr. Hydrogeologist

JPR:jpr

cc: Mr. George Brauch w/encl. Mike Tone, Esq. w/encl Norman Sarnoff, Esq. w/encl.

f:\shared\pwg\gbr\corespnd\transmi

5 Years of Excellence

ENGINEER & HYDROGEOLOGIST, P.C.

SITE ASSESSMENT & REMEDIATION REPORT FOR THE PROPERTY LOCATED AT 84 NORTH VILLAGE AVENUE

ROCKVILLE CENTRE, NEW YORK

130082

Prepared for: Mr. George Brauch

For Submittal To The

New York State Department of Environmental Conservation

Region I

Prepared by: P.W. Grosser Consulting Engineer & Hydrogeologist, P.C.

AUGUST 1997

100 South Main Street, Suite 202 Sayville, New York 11782-3150 Ph: (516) 589-6353 -- Fx: (516) 589-8705

1.0	SECT		NTS	PAGE NUMBER
1.0	INTRODUCT	ION		1
2.0	SITE BACKO	GROUND		1
3.0	SITE INSPEC	CTION		3
4.0	INITIAL SAM	MPLING OF EXTERIOR STAIRWE	ELL DRAIN	6
5.0	SOIL BORIN	G RESULTS		7
6.0	REMEDIATI	ON OF EXTERIOR STAIRWELL	DRAIN	8
7.0	SOIL DISPO	SAL		10
8.0	SUMMARY	& CONCLUSIONS		10
		A FOR ON MADE DO	-	
TABL	E NO.	LIST OF TABLES TABLE NAME Soil Boring Log	_	PAGE NUMBER 7
	2	Soil Boring Sample Results		8
		LIST OF FIGURE	S	
FIGU	RE NO. I	FIGURE NAME Site Plan		PAGE NUMBER 2
	2	Building's First Floor Layout Plan		3
	3	Building's Basement Layout Plan		4
рнот	OGRAPHS:	IMMEDIATELY FOLLOWING	THE REPORT	Γ
APPE	NDIX A:	EEA'S MAY, 1995 PHASE II RI	EPORT	
APPE	NDIX B:	LABORATORY REPORTS		
APPE	NDIX C:	HAZARDOUS WASTE MANIFE	EST	

1.0 INTRODUCTION

P.W. Grosser Consulting Engineer & Hydrogeologist, P.C. (PWGC) has prepared this report to document the findings of a site inspection, investigation and remediation of an exterior stairwell drain at the property located at 84 North Village Avenue, Rockville Centre, New York. The property is currently occupied by a dry cleaning facility known as Gem Cleaners. The objective of the site inspection was to evaluate the potential for the existence of on-site source areas that may be contributing to groundwater contamination detected beneath the site. The findings of the inspection led to the sampling of bottom deposits within a small diameter exterior stairwell drain located adjacent to the basement door in the rear of the facility. After initial sample results indicated concentrations of tetrachloroethene (PCE) above New York State Department of Environmental Conservation (NYSDEC) soil cleanup objectives contained in their Technical and Administrative Guidance Memorandum (TAGM HWR-94-4046), a boring was performed through the drain to define the vertical extent of contamination. Subsequently, the drain was excavated and impacted soils above TAGM soil cleanup objectives were removed and properly disposed. The former drain was backfilled with clean material and a new structure was constructed.

After the identification and successful remediation of the potential source area, no further work at the site is warranted and referral of the site for the NYSDEC Registry of Inactive Hazardous Waste Sites is not appropriate. The basis of these conclusions are set forth below.

2.0 SITE BACKGROUND

Energy & Environmental Analysts, Inc. (EEA) conducted a Phase I Environmental Site Assessment at the facility in July, 1994. The Phase I identified the use of the site as a dry cleaning facility, which uses and stores chemical products. The main chemical noted in use, as in most dry cleaning facilities, was PCE. Also noted during the Phase I was the existence of a floor drain on the first floor of the subject building, a sump pit in the basement for the discharge of boiler condensate, and an exterior drainage structure located in the paved parking area behind the facility. EEA indicated that a pipe was noted within the exterior structure from an unknown source.

1

Based on the information obtained during the Phase I, EEA performed a Phase II Environmental Subsurface Investigation. Phase II work was completed in May, 1995. The scope of work for the Phase II included a soil boring conducted through the exterior drainage structure. Multiple soil samples were collected from within the structure and analyzed from various depths (2-4', 8-10', 13-15', and 18-20') to provide a vertical profile of soil quality. Depth to water beneath the site is approximately 18 feet below grade. In addition, a total of four groundwater monitoring wells (three water table and one deep) were installed and sampled. One well was located approximately 300 feet north (up-gradient) of the site, two wells (one water table and one deep) were installed directly down-gradient from the exterior drainage structure, and one well was located down-gradient of the sump pit located in the basement of the subject building. Since no water table elevation contours are presented in EEA's report, it is assumed EEA used regional groundwater flow patterns to determine up-gradient and down-gradient positions relative to the site (see Figure 1).

The results of the Phase II investigation indicated that PCE was detected at 7 ug/kg, well below the NYSDEC TAGM soil cleanup objective, in the 0-2' foot soil sample collected within the exterior drainage structure. PCE was below detectable levels in subsequent soil samples collected within the structure. The results of the groundwater samples collected from the monitoring wells indicated relatively low concentrations of PCE in the groundwater beneath the property, in addition to well MW-3 installed up-gradient of the site. The highest concentrations of PCE were detected in water table monitoring well MW-1A (26 ug/l -56 ug/l), which is located adjacent to the exterior drainage structure (see Figure 1).

EEA's report, detailing the above findings was submitted to the NYSDEC for their review. The report recommendations indicated that no additional testing or remediation would likely be required as PCE concentrations in MW-1A would diminish over time to background levels. A copy of EEA's May, 1995 Phase II report is included in Appendix A.

Subsequently, the NYSDEC contacted the property owner and indicated that in order for the NYSDEC to consider a "no action" position, the potential for additional source areas needed to be

VILLAGE OF ROCKVILLE CENTRE COMMUTER PARKING

0 10 20 SCALE IN FEET

P.W. Grosser Consul Engineer & Hydrogeo An Affigur of Repoperar & G 100 South Liver Street, Suite SSE Nr. 6110 Hep-Silver	ting logist, P.C. roser Garakery Bratises, P.G. Bayda, N.Y. 1750 Pr. Bris 186-4706	SITE PLAN GEM CLEANERS	Pigero Ha
Prepared for: Germ Cleans)ra	84 N. Yillage Ave.	1
Project Not GBR9701	Drie 8/14/97	Rockville Centre, N.Y.	

evaluated. After an initial site inspection was conducted, Mr. Lafemina of the NYSDEC was contacted by this office to discuss an appropriate scope of work related to the this project. The initial inspection revealed an additional potential source area to be an exterior basement stairwell drain. Mr. Lefemina informally indicated in a January 27, 1997 telephone conversation that a detailed discussion of the site inspection results and the sampling of the stairwell drain would be sufficient to satisfied the Department's requirements.

3.0 SITE INSPECTION

The initial site inspection was conducted on January 22, 1997 and focused on the current operations of the facility and the generation of liquid waste. During the site inspection, it was noted that early generation (transfer machine) equipment is still being utilized and the facility consumes approximately 200 gallons of PCE per year. Early generation machines do not employ many of the waste reduction and recovery technologies that are inherent in the later generation equipment, such as refrigerator condensers. Therefore, these operations tend to use more PCE throughout the year and generate greater volumes of liquid waste. Equipment used during the process includes the following; a Washex washing machine, Solve Miser dryer, Sniff-O-Miser sniffer, Filter King filters, Per Corporation cooker, and Remi-Dri vacuum system. With the exception of the vacuum system, the dry cleaning equipment is utilized on the first floor of the subject building. Figure 2 shows a general layout of the first floor.

As part of the process, PCE is stored at the base of the washer. Prior to washing, the PCE is pumped through the filters, which are designed to remove fatty acids, water and migrant dyes from the PCE. To further remove impurities from the PCE, the PCE is routed to the cooker every other day. The employee at the site indicated that both the muck generated by the cooking process and the spent filters are placed in 30 gallon drums and disposed of by Saftey Kleen. Saftey Kleen drums were observed at the site.

Once the washing operation is complete and the PCE drained, the clothes are transferred to the dryer. The sniffer is connected to both the washer and dryer and is designed to capture vapors from these

processes. Captured liquids and condensed vapors processed by the sniffer are separated into PCE/ water and are contained in pans located at the base of the unit. The employee indicated that the PCE is reused and the water is disposed of in the buildings toilet. Coolant water generated by the dryer is also disposed of in this manner. Also noted on the first floor of the building was a small diameter floor drain, located immediately adjacent to the dryer (see Figure 2). This floor drain, originally discussed in EEA's Phase I, was clogged at the time of inspection. However, tracing of the piping appeared to be associated with the floor drain, discharge to a waste sink located in the basement of the facility.

Figure 3 shows the general layout of the basement. As described in EEA's Phase I report, a sump pit is located off the northwest corner of the active fuel oil fired boiler. The sump pit consists of a pre-fabricated metal receptacle fitted into the basement floor which is currently receiving boiler condensate. No piping was noted in the sump pit and probing with a steel bar revealed it contained a solid bottom. The sump did contain a float activated sump pump, which turns on the pump when liquids reach a designated level. The sump pump discharged, via flex hose, to the waste sink also located in the basement. Numerous other pipes were also routed to the waste sink. One appeared to be from the floor drain located on the first floor, while another appeared to be an abandoned washing machine used for typical wet cleaning also located on the first floor.

The vacuum unit and associated equipment are located in the southwest corner of the basement. The system is designed to pull vapor and residual water from the press and spotting board operations located on the first floor. This vapor and water contains PCE released from the clothes. Water collected during the process is drained through the bottom of the unit when the system is shut down, while the vapor is typically released through a vent routed to the outside of the building. The vacuum vent at Gem Cleaners, constructed of PVC, was routed along the basement's west wall and horizontally out through a hole cut in the wooden basement door. Since the vent pipe was not routed vertically up, small quantities of water drawn into the system are released. The majority of liquid appeared to drain on the inside of the basement door, where a six inch concrete curb exists preventing water from entering or leaving the basement. Some liquid did appear to drain on the outside of the

door to the exterior stairwell, where a small diameter drain (approximately 6 inches) is located. This stairwell drain is located directly up-gradient (north) of monitoring well MW-1A. Additional liquid generated by the vacuum system is drained at the base of the unit and contained in a small pail. The employee at the facility indicated that this liquid was also disposed of in the building's toilet. The operator was made aware of the condition of the vacuum system vent and has since extended it vertically up to the roof and capped it with a "T", thereby, eliminating the discharge.

Since the employee working at the facility indicated that waste water generated at the facility was disposed of in the buildings's toilet, dye testing was performed to document discharge to the municipal sanitary sewer. This area of Nassau County is located in sewered District 2. Sanitary sewer connections began as early as 1953 in this District. Dye testing was performed by placing water soluble dye tablets in the facilities toilet and inducing flow. The closest access to the municipal sewer system is located in the sidewalk (via a steel manhole cover) directly in front of the building. This manhole cover was opened and the dye placed in the facilities toilet was observed. In addition, since it was observed that the sump pit and likely the floor drain discharges to the waste sink, this structure was dye tested. A 5 gallon mixture of dye and potable water was placed in the waste sink and observed in the municipal sewer system. After unclogging of the floor drain located on the first floor, discharge to the waste sink was confirmed.

The site inspection also included a survey of the area surrounding the building. The area around the site is almost entirely paved, with the exception of the exterior drainage structure identified by EEA, several basement window boxes associated with the adjacent building, and a small patch of exposed soil located along the western side of the garage (see Figure 1). The property appeared to be filled, as grade of a Village of Rockville Centre Parking lot adjacent to the site was approximately 3 feet lower.

The cover of the exterior drainage structure was removed so that the structure could be inspected. The structure was approximately four feet in diameter, with depth to bottom sediments estimated to be 3 feet. Unlike the observations made in the EEA report, no piping was noted within the structure.

Additionally, the detached garage located directly behind the Gem Cleaners building was inspected for floor drains and no structures were noted.

The results of the site inspection only identified the exterior stairwell drain as a potential source of groundwater contamination. Though waste water containing PCE is generated at the site, it appears most of it is discharged to the municipal sanitary sewer via the facilities toilet. The sump pit and floor drain identified by EEA both discharge to the waste sink, which was also confirmed to discharge to the sewer system.

The stairwell drain is subject to discharge of small quantities of liquid from the vacuum system. In addition, this drain represents the most likely receptacle for inadvertent manual discharge of waste water. Therefore, the sampling of bottom deposits within this structure was performed.

4.0 INITIAL SAMPLING OF EXTERIOR STAIRWELL DRAIN

A sample of bottom deposits within the exterior stairwell drain was collected on March 21, 1997, by a representative of PWGC. The sample was collected using a stainless steel hand auger that was properly decontaminated prior to use with a non-phosphate detergent scrub and distilled water rinse. To document the effectiveness of decontamination procedures, a rinsate field blank from the hand auger was also collected.

The sample was collected from 12 to 18 inches below the bottom of the drain. Upon collection, the appropriate laboratory supplied glassware was immediately filled with sample material, while the remaining portion was placed in a baggie for headspace screening with a photoionizatrion detector (PID). A PID response of greater than 200 calibration gas equilvalents (cge) was noted. The sample was delivered to Ecotest Laboratories, Inc. (Ecotest), a New York State Certified laboratory and analyzed for PCE, trichloroethylene (TCE), 1,2 dichloroethene (DCE), and vinyl chloride by EPA Method 8010. These compounds represent the contaminant of concern and its common associated breakdown products.

The analytical results for the initial sample were as follows:

<u>Parameter</u>	Concentration(ug/kg)	TAGM Soil Cleanup Objective (ug/kg)
PCE	12,000	1,400
TCE	2,600	700
DCE	4,400	300
Vinyl Chloride	BDL	200

As shown above, PCE, TCE and DCE were detected in excess of their respective TAGM soil cleanup objectives. Compounds analyzed for were below detectable levels in the field blank sample. Analytical results for the initial sampling are contained in Appendix B.

5.0 SOIL BORING RESULTS

A soil boring through the exterior stairwell drain was conducted on May 16, 1997. The objectives of the soil boring were to vertically define the extent of PCE impacted soil within the exterior stairwell drain and to document soil conditions above the water table, prior to remediation. The boring was performed by Advanced Cleanup Technologies, Inc., Farmindale, N.Y., under the field observation of a representative of PWGC.

The borings were advanced using a remote hydraulically driven probing unit capable of collecting soil samples at discreet depths. Soil samples were collected utilizing a 11/4-inch diameter by 2 foot long sampling tube lined with a dedicated acetate liner. Continuous soil samples were collected from two feet below the bottom of the drain to the water table, which was encountered at 10.5 feet below the surface of the structure. Upon retrieval, the sample was immediately screened for VOC's through a slit cut in the acetate liner. The section of the core exhibiting the highest PID response was then transferred to appropriate laboratory supplied glassware. A soil boring log, containing soil descriptions and PID response is shown on Table 1.

A total of three samples (4'-6', 6'-8', and 8'-10') were retained from the soil boring for laboratory

TABLE 1 Exterior Stairwell Drain- Soil Boring Log **Gem Cleaners**

84 North Village Avenue, Rockville Centre, N.Y.

Depth	Rec.	PID	Odor	Visual Description/Comments
ft.	ft.	cge		
2-4	0	NA	NA	No Recovery- sample moist and too soft
4-6A	.25	25	yes	Black medium sands and muck, wet. Rock blocked sampler. Not enough recovery for sample analysis.
4-6B*	2	5	no	Brown medium sands, trace gravel
6-8*	1.5	37	yes	Brown medium sands, some gray staining near top of sample.
8-10*	1.5	2	no	Brown medium sands, trace gravel. Sample dry at the top, moist towards the bottom.
10-12	2	0	no	Brown fine to medium sands, trace gravel. Entire sample saturated.

^{• =} Sample Submitted for laboratory analysis.
PID response was taken directly from the acetate liners.

analysis. No recovery was obtained from the 2'-4' sample interval as the material near the top of the drain was moist and extremely soft. The 4'-6' sample was collected off-center, near the side of the drain, due to a small cobble encountered at this depth. However, the results of this sample can be used to represent soil quality near the sides of the structure. The bottom portion of the 8'-10' sample interval was slightly moist, indicating the bottom of the sample was in close proximity to the water table. To confirm the depth of the water table, a sample from the 10'-12' depth was collected. The sample was completely saturated, confirming the existence of the water table within the 10'-10.5' foot depth range. Since this sample was saturated and not representative of soil conditions above the water table, it was not retained for laboratory analysis. The samples were delivered to Ecotest and analyzed for PCE, TCE, DCE, and vinyl chloride by EPA Method 8010.

Table 2 contains the compounds quantified in the samples collected at the above referenced depths (copies of the analytical results are included in Appendix B). Compounds quantified in these samples are compared to their respective soil clean-up objectives. As presented in Table 1, PCE and TCE in the 4'-6' sample were detected below their TAGM soil cleanup objectives indicating the contamination is primarily confined to the center of the structure. The PCE concentration in the 6'-8' foot sample was the same as in the initial sample however, concentrations of TCE and DCE were an order of magnitude lower. As can be seen in Table 1, the concentrations of PCE and TCE drop well below their respective soil cleanup objectives, directly above the water table. As noted on the soil boring log, the 8'-10' sample interval represents the first depth at which no staining of the soils were noted. Prior to this depth, black staining was noted within the first six feet, which lessened to greyish in the 6'-8' sample interval.

6.0 REMEDIATION OF EXTERIOR STAIRWELL DRAIN

Initial sampling of the stairwell drain and soil boring results, indicate that remediation of the structure down to 8 feet is appropriate to remove the potential source of groundwater contamination at the site. Remediation of the structure was performed on July 31, 1997 by Trade-Winds Environmental Restoration Inc. (Trade-Winds), under the field observation of a representative of PWGC.

TABLE 2 Gem Cleaners

84 N. Village Ave., Rockville Centre, New York Soil Boring Sample Results

Parameter EPA Method 8010 (ug/kg)	4'-6'B^ Depth	6'-8' Depth	8'-10' Depth	TAGM* Clean-up Objective
PCE	350	12,000	90	1,400
TCE	11	270	10	700
DCE	BDL	100	BDL	300
Vinyl Chloride	BDL	BDL	BDL	200

Notes:

BDL = Below Detectable Levels

- ^ Sample was collected off-center towards the side of the drain.
- * = New York State Department of Environmental Conservation, Technical and Administrative Guidance Memorandum, Revised 1/24/94 (HWR-94-4046).

...

The scope of the remediation included the excavation of the existing drain and impacted soil to 8 feet below grade, documented as exceeding TAGM soil cleanup objectives. The previously collected 8-10 foot soil boring sample is considered the "clean" endpoint. This information, along with soil removal methods were presented to the NYSDEC in a June 11, 1997 letter, prior to initiating remediation. The NYSDEC, through informal conversation, indicated that the scope of work presented was adequate to address the concerns documented at the site.

Prior to the removal of impacted soil, the drain and the majority of surrounding concrete making up the stairwell floor were removed. Once the concrete was removed, it was apparent the drain was of block construction. The diameter of the drain ranged from 2.0 feet near the surface to 1.5 feet at approximately 3.0 feet below grade, where the blocks were supported by native soil.

The soil within the blocks were removed using a trailer mounted Vector, which utilizes a vacuum to extract soil and is equipped to discharge directly into drums. After removing the soil within the drain, the majority of blocks were removed to facilitate the placement of a 5 foot section of 2 foot diameter, 3/4 inch thick PVC well screen. Soils immediately adjacent to the outside of the former blocks were excavated to remove material potentially impacted through the blocks. Therefore, the top portion of the excavation was approximately 3 feet wide.

Starting at 3 feet below grade, the well screen was advanced within the excavation to prevent collapse and undermining of the adjacent structure. Soils within the excavation were removed, in a two foot diameter down to 8.5 feet below grade. An additional 1.5 feet of material was excavated in the center of the well screen to provide a greater level of confidence of clean out and at approximately 10 feet soils remained dry. However, following setting of the well screen, water was visible seeping into the deepest portion of the excavation. Additionally, remaining soils within the top 3 feet and bottom 3 feet of the excavation were screened for VOC's with a PID, and no reponse was noted. A total of six 55-gallon drums of soil were removed during remediation procedures.

After removal of the soil was complete, the well screen and excavation was backfilled with clean sand

and on a the following day a new drain was constructed to prevent flooding. New concrete was poured around the drain to secure it into place. Photos depicting the remediation of the drain, newly installed drain, and rerouted PVC vacuum vent, immediately follow this report.

7.0 SOIL DISPOSAL

During remediation of the stairwell drain, impacted soils were placed directly into DOT certified 55-gallon drums. A total of six 55-gallon drums were generated from the clean out. Due to the nature of the waste, the soils were handled as hazardous to be destroyed by incineration. Soil disposal was coordinated by Trade-Winds. The soils were transported by Bechem Transport, Inc. (USEPA ID # CYD982191942) and the designated disposal facility is LWD, Inc., Calvert City KY, (USEPA ID # KYD088438817). The generator copy of the hazardous waste manifests is contained in Appendix C. A signed copy of the manifest by the disposal facility and certificate of destruction will be forwarded upon receipt.

8.0 SUMMARY & CONCLUSIONS

A Phase II investigation performed by EEA as a follow-up to their Phase I Site Assessment performed at the subject site, documented relatively low concentrations of PCE in the groundwater beneath, as well as up-gradient of the site. The highest concentrations of PCE were detected in water table monitoring well MW-IA (26 ug/l -56 ug/l), located adjacent to an exterior drywell believed by EEA to be the most likely source of groundwater contamination. However, results of soil samples collected within the structure indicated that PCE was only detected at 7 ug/kg in the 0-2' foot soil sample. PCE was below detectable levels in subsequent deeper soil samples collected within the structure down to the water table.

A detailed site inspection was performed by PWGC to evaluate the potential for the existence of other on-site source areas that may be contributing to groundwater contamination detected beneath the site. The site inspection focused on the current operations of the facility and the generation of liquid waste. The results of the site inspection indicated that liquid waste is currently being discharged via the toilet or waste sink to the municipal sewer system as documented through dye testing. The floor drain and

basement sump identified as concerns by EEA, were documented as discharging to the waste sink which discharges to the sanitary sewer rather than to the exterior drywell sampled as part of their investigation.

During the site inspection, an exterior basement stairwell drain located directly outside the basement door, was identified as a potentially receiving discharge of waste water containing PCE. The drain is located up-gradient relative to monitoring well MW-1A. During the time of the inspection, the drain was documented as receiving waste from the site's vacuum system vent and also represents the most likely structure to receive inadvertent manual disposal of waste water. Subsequently, the vent was re-routed directly to the roof of the building and capped with a "T" to prevent discharge.

Through sampling of the stairwell drain, impacted soils (in excess of TAGM soil cleanup objectives) were documented as existing to 8 feet beneath the surface of the drain, which was approximately 2 feet above the current water table at the drain's location. Subsequently, the impacted soil was removed and properly disposed.

Though the stairwell drain may have contributed to the low levels of PCE documented in the MW-1A, up-gradient sources apparently exist as documented by the detection of PCE in a well up-gradient of the site. Though up-gradient concentrations were lower, the well was installed approximately 300 feet away and on-site well MW-1A may be installed in a more contaminated portion of the plume. However, if the soils within the drain did contribute to groundwater contamination, they have effectively been removed, and concentrations in the well will return to background levels through natural attenuation.

Therefore, no further work in relation to the site is warranted and that the site should not be referred to the NYSDEC list of Inactive Hazardous Waste Sites in any Classification form. This is based on the following:

EEA sampled the only drywell located on the property and eliminated the structure as a

potential source of groundwater contamination.

- A detailed site inspection only identified an exterior stairwell drain as potentially being an alternate on-site source of contamination.
- The stairwell drain was confirmed to be impacted by PCE and subsequently, effectively remediated.
- Only relatively low levels of PCE were documented in on-site wells, while also being detected in an up-gradient well.
- If the impacted soil with the stairwell drain contributed to groundwater contamination in the
 past, the concentrations should lessen to background levels through natural attenuation within
 a short period of time.

PHOTOS

5 Years of Excellence

Photo #1: Stairwell drain conditions, prior to remediation.

Photo# 2: Installing 2' diameter well screen in excavation for support.

5 Years of Excellence

Photo #3: Excavated stairwell drain with installed well screen.

Photo #4: Backfilling stairwell drain. 5 Years of Excellence

Photo #5: Completed new construction of stairwell drain.

Photo # 6: Rerouted vacuum system venture

P.W. GROSSER CONSULTING

APPENDIX A

5 Gears of Excellence

Phar II

EEA Inc

Energy & Environmental Analysts, Inc.

55 HILTON AVENUE • GARDEN CITY, NEW YORK 11530

PHASE II ENVIRONMENTAL SUBSURFACE INVESTIGATION PROPERTY LOCATED AT 84 NORTH VILLAGE AVENUE ROCKVILLE CENTRE, NEW YORK

Prepared for:

MR. GEORGE BRAUCH 169 HEMPSTEAD AVENUE ROCKVILLE CENTRE, NEW YORK

Prepared by:

EEA, Inc.

55 Hilton Avenue Garden City, New York 11530 (516) 746-4400 (212) 227-3200

MAY 1995

Project: 95706

PHASE II ENVIRONMENTAL SUBSURFACE INVESTIGATION GEM CLEANERS 84 NORTH VILLAGE AVENUE ROCKVILLE CENTRE, NEW YORK

TABLE OF CONTENTS

	Page
INTRODUCTION	1
SCOPE OF WORK	1
RESULTS OF LABORATORY ANALYSES	3
DISCUSSION OF FINDINGS AND CONCLUSIONS	8
RECOMMENDATIONS	8
SAMPLING METHODOLOGY	9

APPENDIX:

Laboratory Data Sheets Chain-of-Custody Record Soll Boring Logs

INTRODUCTION

EEA, Inc. has completed a Phase II Environmental Subsurface Investigation of the property located at 84 North Village Avenue, Rockville Centre, New York. A Phase I Environmental Site Assessment (ESA-94196) was also completed by EEA for this property in July 1994.

EEA's research into the history of site use indicates that the property had been occupied by Gem Cleaners, which operates a dry cleaning facility and tailor shop. This operation uses and stores significant amounts of toxic and hazardous materials and chemical products, and generates toxic or hazardous wastes. Various aboveground and belowground tanks, drums, and containers containing a variety of materials, such as Tetrachloroethene (PCE) were noted.

One floor drain was noted on the first floor of the subject building. In addition, a sump pit was noted in the basement of the subject building. This pit appears to be used for the discharge of boiler condensate.

One exterior drainage structure (possibly a drywell or leaching pool) was observed in the rear paved section of the property. In addition, a pipe was noted extending inside this drainage structure from an unknown source, possibly from drains within the building.

From the information gathered during EEA's Phase I investigation, the following Phase II Scope of Work was developed and performed at the subject property.

SCOPE OF WORK

- o Collect several soil samples within the rear drywell structure at various depth intervals above the water table. The samples were analyzed for volatile organic chemicals including Perchloroethylene (PCE), using United States Environmental Protection Agency (USEPA) Method 8010
- o Construct and sample a total of four (4) groundwater monitoring wells. Two wells (MW-1A and MW-1B) are located adjacent to the exterior drainage structure, and monitor groundwater quality in shallow and deep groundwater environments. Monitoring Well MW-2 is located

84 North Village Avenue - 1 -

downgradient of the sump pit which is found in the building's basement. An upgradient monitoring well (MW-4) was placed approximately 300 feet north of the property in the Village of Rockville Centre parking field.

o The groundwater collected from the monitoring wells was analyzed for volatile organic chemicals which include Tetrachloroethene (PCE) using USEPA Method 8010.

o Soil Sampling Protocol

The soil borings were performed by continuous split spoon sampling. Soil samples were obtained every two feet. Each split spoon sample was screened in the field by utilizing an OVA portable gas analyzer. The sample exhibiting the highest non-methane organic vapor reading was sent to the laboratory for analysis, as stated above.

o <u>Groundwater Sampling</u>

The groundwater samples were obtained by installing a permanent monitoring well. The water samples were obtained by placing a 2-inch ID PVC casing in a 6-inch augered hole at each location. The PVC screen was installed above the level of the perched groundwater.7

The wells were developed on the same day, drilled, and hand bailed until visually free of suspended materials or sediments. A dedicated teflon bailer was used for each well. The groundwater samples were sent to the laboratory for the stated analyses.

o <u>Laboratory Testing</u>

New York State Department of Environmental Conservation (NYSDEC) approved laboratories were used for all laboratory analyses. The laboratory operates a Quality Assurance/Quality Control (QA/QC) program that consists of proper laboratory practices (including the required chain-of-custody), an internal quality control program, and external quality control audits by New York State.

All work performed was completed following United States Environmental Protection Agency (Region II) and NYSDEC protocols and guidelines.

o <u>Field Decontamination</u>

To avoid contamination and cross-contamination of samples, all sampling equipment was cleaned prior to collection of each sample. All sampling equipment was decontaminated using the attached decontamination procedure.

RESULTS OF LABORATORY ANALYSES

The results of soil and groundwater samples were prepared by EcoTest Laboratories, Inc. (New York State certified laboratory). The tables below present a summary of the results. The chain-of-custody records, as well as the analytical laboratory data sheets, are presented in the Appendix to this report. The sample collection locations are shown on Figures 1 and 2.

Groundwater Flow Direction Village of Rockville Center Commuters Parking NORTH 3/95- 16-2 4/65 - 16: - 20 1 MW-1B SB-1 MW-3 @ cil45 762 = 4 pin ADJACENT BUILDING ADJACENT BUILDING Village of Rockville Center Parking Lot North Village Avenue not to scale - Gem Cleaners 84 North Village Avenue Rockville Centre, New York Sample Collection Locations Figure 2

TABLE 1

RESULTS ORGANIC CHEMICAL COMPOUNDS (SOILS)

EPA METHOD 8010

	Sample Collection Location and Depth				NYSDEC [†] Recommended Cleanup Objectives (TAGM)
	September 1994		April 1995		
	SB-1 2-4 ft	SB-1A 8-10 R	SB-1 B 13-15 ft	\$8-1C 18-20 ft	
Chloromethane	<5	<5	<5	<5	1,900
Vinyl Chloride	<5_	<5	ସ	< 5	200
Bromomethane	<5	<5	<5	< 5	NA
Chloroethane	<5	29	23	<5	1,900
Trichlorofluomethane	<10	<10	<10	<10	NA .
1,1 Dichloroethene	< 5	<5	<5	<5	400
Methylene Chloride	<5	<5	<5	<5	100
1-1,2-Dichloroethene	<5	<5	<5	<5	300
1,1 Dichloroethane	< 5	<5	<5	<5	200
Chloroform	<5	< 5	<5	<5	300
111 Trichioroethane	<5	<5	<5	<5	800
Carbon Tetrachloride	< 5	<5	<5	<5	600
Dichlorodifluomethane	<10	<10	<10	<10	NA.
1,2 Dichloroethane	<5	<5	<5	<5	100
Trichloroethene	<5	<5	<5	<5	700
1,2 Dichloropropane	<5	<5	<5	<5	300
Bromodichloromethane	<5	<5	<5	<5	NA NA
2chioroethvinylether	<10	<10	<10	<10	NA NA
1-1,3 Dichloropropene	<10	<10	<10	<10	NA
c 13 Dichloropropene	<10	<10	<10	<10	· NA
112 Trichloroethane	<10	<10	<10	<10	NA NA
Tetrachloroethene	7	< 5	<5	<5	1,400
Chlorodibromomethane	<5	<5	<5	<5	NA NA
Chlorobenzene	<5	<5	<5	<5	1,700

TABLE 2

RESULTS ORGANIC CHEMICAL COMPOUNDS
EPA METHOD 601 (GROUNDWATER)

				Sample C	ollection La	cation and	Depth		
Analytical Parameters (#g/kg)	Sept. 1994 MW-1A	Sept. 1994 MW-2	March 1995 MW-1A	March 1995 MW-1B	April 1995 MW-1A	April 1995 MW-1B	April 1995 MW-2	April 1995 MW-3	NYSDEC ¹ Groundwater Standards (TAGM)
Chloromethane	<1	<1	<1	<1	<1	<1	<1	<1	NA.
Vinyl Chloride	<1	<1	<1	<1	<1	<1	<1	<1	2
Bromomethane	<1	<1	<1	<1	<1	<1	<1	<1	NA.
Chloroethane	<1	<1	<1	<1	V	<1	<1	<1	50
Trichlorofluomethane	<2	< 2	<2	থ	<1	<1	<1	<1	NA.
1,1 Dichloroethene	<1	٧	₹	<1	<1	<1	<1	<1	5
Methylene Chloride	<1	<1	<1	<1	<1	<1	<1	<1	5
1-1,2-Dichloroethene	47	<1	V	<1	<1	<1	<1	<1	5
1,1 Dichloroethane	<1	٧	7	<1	<1	<1	<1	<1	5
Chloroform	<1	~ 1	<1	<1	<1	<1	<1	<1	7
111 Trichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	5
Carbon Tetrachioride	<1	V 1	<1	. '<1	<1	<1	<1	<1	5
Dichlorofluomethane	<2	<2	<2	<2	<1	<1	<1	<1	NA NA
1,2 Dichloroethane	<1	<1	<1	<1	<1	<1	<1	<1	5
Trichloroethene	5	<1	<1	<1	<1	<1	<1	<1	5
1,2 Dichloropropane	<1	7	<1	<1	<1	<1	<1	<1	NA
Bromodichloromethane	<1	< 1	<1	<1	<1	<1	<1	<1	50
2chloroethvinylether	<2	<2	<2	<2	<1	<1	<1	<1	NA NA
1-1,3 Dichloropropene	<2	<2	٧	<2	<1	<1	<1	<1	NA
c 13 Dichloropropene	<2	<2	<2	<2	<1	<1	<1	<1	5
112 Trichioroethane	<2	<2	<2	<2	<1	<1	<1	<1	NA
Tetrachioroethene	-56	9	26	2	49	<1	3	4	. 5
Chlorodibromomethane	<1	<1	<1	<1	<1	<1	<1	<1	NA .
Chlorobenzene	<1	<1	<1	. <1	<1	<1	<1	<1	5
Bromoform	<2	<2	<2	<2	<1	<1	<1	<1	NA .
1122Tetrachioroethane	<2	<2	<2	<2	<1	<1	<1	<1	5

TABLE 2 - Continued

RESULTS ORGANIC CHEMICAL COMPOUNDS EPA METHOD 8240 PLUS LIBRARY SEARCH (GROUNDWATER)

				Sample C	allection La	ocation and	Depth		
Analytical Parameters (£g/kg)	Sept. 1994 MW-1A	Sept. 1994 MW-2	March 1995 MW-1A	March 1995 MW-18	April 1995 MW-1A	April 1995 MW-1B	April 1995 MW-2	April 1995 MW-3	NYSDEC ¹ Groundwater Standards (TAGM)
m Dichlorobenzene	<2	<2	<2	<2	<1	<1.	V	<1	4.7
p Dichlorobenzene	<2	V 2	<2	<2	<1	<1	~1	<1	5
o Dichlorobenzene	<2	<2	<2	<2	<1	<1	<1	<1	5

#g/kg - presented in parts per billion, micrograms per kilogram NA - Not available, no guideline has been established ND - Not detected above method detection limits

New York State Department of Environmental Conservation, Technical and Administrative Guidance Memorandum (TAGM)

DISCUSSION OF FINDINGS AND CONCLUSIONS

Rear Drywell Structure

Results of soil sampling within this drywell structure show low concentration levels of Tetrachloroethene (PCE) $(7\mu g/kg)$ in the soil sample collected in September 1994. Subsequent sampling conducted in April 1995 at depth ranges of 8 to 10 feet, 13 to 15 feet, and 18 to 20 feet did not detect PCE in any of the samples tested. Table 1 shows a summary of the laboratory results.

Groundwater Monitoring Wells

Four permanent groundwater monitoring wells were installed on the subject property in locations upgradient and downgradient of the subject building. Table 2 shows a summary of the laboratory results.

Results of groundwater testing show a low concentration of PCE in MW-1A. This well monitors the water table in the vicinity of the drywell. MW-1B, which monitors the deeper groundwater environment, did not show any detectable concentrations of PCE.

Upgradient Monitor Well (MW-3) and sidegradient Monitor Well (MW-2) did show low concentrations of PCE; however, the concentrations are below NYSDEC Groundwater Standards (5 μ g/L).

From the information collected during this investigation, there is no indication of soil contamination present in the drywell sampled. Low levels of PCE exist in the shallow groundwater, but not in the deeper zone. This indicates that significant contamination of the groundwater has not occurred from operations at this property. Low concentrations of PCE were also found in groundwater upgradient and sidegradient of the property, and is likely derived from another off-site source.

RECOMMENDATIONS

No additional testing or remediation is anticipated to be required. It is expected that, over time, the concentration of PCE in MW-1A will diminish to background levels.

SAMPLING METHODOLOGY

a. <u>Soil Borings</u>

At each on-site sampling location, soil samples were obtained by utilizing a steel, 24-inch, split spoon sampler, which was driven through the subsurface levels ahead of a hollow stem (6inch) auger, which bores into the soil to the desired sampling depth. The split-spoon sampler was driven through the top two feet of soil to obtain the surface sample, which was composted and placed in the properly refrigerated containers.

The auger then bored down to a depth of two feet. A splitspoon sampler was then inserted in the hollow stem and driven to a depth of four feet to obtain the first intermediate sample. Next, the auger bore down to four feet and the split-spoon sampler driven to six feet, to obtain the second intermediate sample. This procedure was repeated until the end of the boring.

An organic vapor analysis (OVA) was performed on all soil samples using a Thermo Environmental 580 B Photoionization Detector with headspace adaptor. The sample producing the highest organic vapor reading was sent to the laboratory for analysis.

b. Ground Water Monitor Wells

The water samples were obtained by installing a 2-inch ID PVC casing in a 6-inch augured hole. The PVC screen was installed with the top two feet above the level of the ground water. The total screen length was 10 feet. The well screen slot size was 0.10. A filter pack of sand was placed in the annular space around the screens and extended above the screen.

The well was developed on the same day, drilled, and hand bailed until visually free of suspected materials or sediments. A dedicated teflon bailer was used for each well.

c. Quality Assurance and Control

To avoid contamination and cross-contamination of samples, all sampling equipment was cleaned before each sample was collected. The split-spoon and hollow-stem auger were first steam cleaned. The following procedures were followed:

- Step 1: Steam clean equipment.
- Step 2: Scrub with a bristle brush using a non-phosphate detergent (such as Alconox) in hot tap water.
- Step 3: Rinse with hot tap water.
- Step 4: Rinse twice with deionized water.

Step 5: Air dry.

Step 6: Rinse twice with deionized water.

Step 7: Air dry.

Step 8: Keep in clean unused aluminum foil.

This decontamination procedure was used for all borings.

A chain-of-custody record is kept at all times with the samples. This record documents sample collection date/time and collector. The sample possession record begins at sample collection and ends at delivery to the laboratory.

J.
APPENDIX
LABORATORY DATA SHEETS, CHAIN-OF-CUSTODY RECORD, and SOIL BORING LOGS

. .

ENERGY AND ENVIRONMENTAL ANALYSTS 55 HILTON AVENUE, GARDEN CITY, NEW YORK SOIL BORING AND MONITOR WELL REPORT DATE 4-24-95 SHEET / CF / CEM CLEANERS BCRING NO: 9 MOJECTLOCATION: 84 N. VILLAGE AVE Rockville Centre PROJECT NO: 95766 DORING through DARRING ARIA dRAINAGE < + RUCHURE REWARKS: DRILLE PR DRILLING CONTRACTOR: TSDT, ITS. LOGGED BY: (CD) MONITOR WELL SPECIFICATIONS DRIL! SIG SOIL SAMPLER EQUIPMENT **MUGET** DRILL METHOD CESTNG CVE SCREEN TYPE SPLT SPOON Mobil 31/4" B-50 SIZE HSA SLAFACE CONDITIONS: ASHALT AROUND COVER SUFFACE ELEVATION: WATER LEVEL SCIL DESCRIPTION & OBSERVATIONS 0 4350 DRAIN STRUCTURE 5 6 6-8 1 dRY O FIRETAN/YW SAND 10 19-101 tr gravel 427 10-12 d RJ 15 112-131 dev 113-15 | MOIST 118-20 LUET

ECB@ 2044

20

MONITOR WELL CONSTRUCTION SPECIFICATION ENERGY AND ENVIROMENTAL ANALYSTS, INC.

JOB NUMBER: 95706

WELL IDENTIFICATION: MW-13

DATE: 3/13/95

HYDROGEOLOGIST: N. Recenia

DRILLING CONTRACTOR: TSDT

LPROTECTIVE CASING (YES) NO

2 CONCRETE SEAL YES NO

3. RISER PIPE TYPE: PVC

LENGTH: 5°FT

DIAMETER: 2 FT IN

4. TYPE OF BACKFILL: NATURAL

HOW INSTALLED BACKFILLED

5. TYPE OF LOWER SEAL: Bit outle

6 SCREEN TYPE: PU'C

SLOTTED LENGTH: OFT

SLOT SIZE; O. \

7. TYPE OF BACKFILL:

COMMENTS;

Deeper zone monitoring

WATER LEVEL CHECKS:

DATE	DEFTH	REMARKS
3/21/05	13.60	€೨℃
4/24:2-	13.	5540
,		

MONITOR WELL CONSTRUCTION SPECIFICATION ENERGY AND ENVIROMENTAL ANALYSTS, INC.

JOB NUMBER: 95706 (FLUSH) 14

24

WELL IDENTIFICATION: MW-3

DATE: 4/24/95
HYDROGEOLOGIST: W. Recchia
DRILLING CONTRACTOR: TSDT

1.PROTECTIVE CASING (YES) NO 2. CONCRETE SEAL (YES) NO 3. RISER PIPE TYPE: PUC

LENGTH: 14 FT

DIAMETER: JFI /N

4. TYPE OF BACKFILL: BACKFILLED BACKFILLED

5. TYPE OF LOWER SEAL: BENTONITE

SLOTTED LENGTH: PT SLOT SIZE; 0,10

7. TYPE OF BACKFILL:

Silica SAND

COMMENTS;

OpgRAdient MW RC PARking lot

WATER LEVEL CHECKS:

DATE 4/24	DEFTH	REMARKS
4/24	14.5	EOC
		1
	1	
]

Groundwater Sampling Data Sheet

Project Name: Get Clearers Project No.: 95706
Sampler Name: N. Recchia Sample ID No.: MW-1B
Date: 3/21/95 Time: 1130
Well pipe diameter: $\overline{\mathcal{L}}$ inches
Depth to well bottom: (c) . ft1
Depth to water surface: 18.60 ft ¹
Total volume: 1.38 gallons
Purge volume: 10.4 gallons
Purge method: BK POMP & BAILER
Depth to water after purging: 18.75 ft1
Water temperature: 11 °C
Conductivity: 650 umhos
рн: <u>5-93</u>
Color: CleAZ
Turbidity: <u><50</u> NTUs
Recharge: (circle) slow normal fast
Odors: (circle) yes (10 OVA/Pid reading O ppm
Additional comments:
Deep robe well

¹ below measuring point

ENERGY AND ENVIRONMENTAL ANALYSTS, INC. 55 HILTON AVENUE, GARDEN CITY, NEW YORK 516-746-4400 212-227-3200

55 I-IILTON AVENUE, GARDEN CITY, NEW YORK

	-	IN OF	CHAIN OF CUSTODY RECORD	DPY RI	ECOH	Д			
Cyd 725	THOJECT NAME EP - 94725		, k		VN/	ANALYSIS			
LANGINI SITY FA	Ŋ	PAMOER	(C) /S/			1//5	//		
SAUTE DATE		OOFFIANTERS	#3 \$13	#&L \$\\ \\			<i>'</i>	\	UESCHIPTION
-W-1	000 MW-1	7			<u> </u>				Greenschapfer
SB-1 1/4 1	100 SB-1 B-4A.		>						SOIL
MW-27/44 1130	S-MM.	(k							Grandler Per
DW-1 7/49 350	12-1-1-2-6	8		\ \ \ \	- 				SOIL
1	ריף- ו	Q		\	<u>\</u>				SAC
	DW-2	8		 \ \					7105
(P-2) 1/44 1440	CP-52	8		Y	\				SOIL
	CP-3	رو		<u>'\</u>	7				So. L
			-		<u>-</u>				
		::	1	<u> </u>					
				 	<u> </u> 				i
			.			 		 	
OI BITTED VIA:	hard delivered by 66 Di	.	hejwytuce	-	• •				
NEUNOUISIED IIY	DATE NIME		025 k	ifically Te	-lenchbe	r specifically Telenchloroethone (PERK)	ERK)		
N. Yealing	11/94 1545	ישר.			.*	-			
HECENED DY:	O DIVIE COMPANY	-				•			
BAMPLEII (SIGNITUTE)	11/11		T						
	Mesholan / / pec	J.	• •		·				

ENVIRONMENTAL , EST. .. 177 Shaffiaid Avanue, North Babylon, New York 11703 CO . EST LABOTATORIES, INC. 516) 422-5777 • FAX (516) 422-5770

CHAIN OF CUSTOUT REJURE

AF A REMARKS-TESTS REQUIRED (" | " | SPECIAL TURNAROUND, SPECIAL D.O.O. etc. 2 Week tor where Received by: (Signature) Received by: (Signature) Representing: Representing: ≨ DATE/TIME SEAL INTACT? ž SEAL INTACT? TRITYPE & NUMBER OF CONTAINERS ş YES NO YES DATE/TIME Relinquished by: (Signature) Relinquished by: (Signature) Representing: Representing: MONTECO SO DE LA CONTROL DE LA Received by: (Signature) Representing: Received by: 30 80 746-4432 18-20 +4 4241/1/2 YES NO CHA? DATE/TIME | SEAL INTACT? **₹** SEAL INTACT? 13-15 f COLLEGIED CONTRANTE DE L'ANDIE DE 8-10 f YES Kerchia 7 M. 1-2 Ave AW-18 NJ-18 SB-18 S2-5 SB-11 ĘĶ ₹ 3 9256 55 Hillion (1-12) (1-12) (1-1-12) 1.4.6 746-4400 Relinquished by: (Signature) erson receiving report: 0581 1330 10-14-15-10c 1/2/4 030 大公 13× 12 11 20 4/2/4/1300 ne! 5:14 Sampled by: (A.P.) 86 A Relingulshed by: (Sign FEA Meriatal. 033Representing: Water, etc.) Representing \ddress: WATER ; some ob No.: CHIER 7/0% JMER WAKE hone: 2/2 Slent: 2/5/

CHAIN OF CUSTGUT RECURL

JCO _ EST __BO.__FOF.__, IN_. EI....IOA.__NT/._.ES;....J 377 Sheffleld Avenue, North Babylon, New York 11703 (516) 422-5777 • FAX (516) 422-5770

Client: FEH, I.S.		TYPE & NUMBER OF CONTAINERS	CONTAINERS
Address: 55 Flitton Ave	/87/	///////////////////////////////////////	
GARCHU (114 NY 11530	INE		
Phone: 746-4400 FAX: 746-4432		///////////////////////////////////////	
Person receiving report: W. Recchia	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Sampled by:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
Source: GEA CLAANRS	/ Jawn		
JOD NO.: 56() 95706		///////////////////////////////////////	
MATRIX COLLECTED (Soll, (Soll, ot.) DATE THE SAMPLE IDENTIFICATION			REMARKS-TESTS REQUIRED, SPECIAL TURNAROUND, SPECIAL TURNAROUND, SPECIAL Q.C. etc
WATER Types 1000 MW-1A	2/		100 Mg.80
WATER 12/4/1130 MW-18	27		USEPA 601
1			
WATER - 344 1800 MW-3	\$\frac{\cappa}{\chi}		-109-1350-
			•
			er.
DATE/TIME SEAL NITACT?	Received by: (Signature)	Relinquished by: (Signature)	DATE/TIME SEAL INTACT? Received by: (Signature)
	Hepledehilfgilli	Representing:	YES NO NA
9) DATE/TIME SEAL INTACT?	Received by: (Signature)	Relinquished by: (Signature)	DATE/TIME SEAL INTACT? Received by: (Signature)
Representing: YES NO NA F	Representing:	Representing:	YES NO NA Representing:

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 •(516) 422-5777 • FAX (516) 422-5770

LAB NO.C951198/1

03/30/95

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

ATTN: Nicholas Recchia

SOURCE OF SAMPLE: Gem Cleaners, EEA 95706

COLLECTED BY: Client DATE COL'D:03/21/95 RECEIVED:03/21/95

SAMPLE: Water sample, MW-1A, 10:40 am

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS
Chloromethane	ug/L	<1	Chlorobenzene ug/L <1
Bromomethane	ug/L	1	1,3 Dichlorobenzene ug/L <2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene ug/L <2
Vinyl Chloride	ug/L	<1	1.4 Dichlorobenzene ug/L <2
Chloroethane	ug/L	<1	
Methylene Chloride	ug/L	<1	
Trichlorofluomethane		<2	
1,1 Dichloroethene	ug/L	<1	
1.1 Dichloroethane	ug/L	<1	
1,2 Dichloroethene	ug/L	<1	
Chloroform	ug/L	<1	. ·
1,2 Dichloroethane	ug/L	<ī	
111 Trichloroethane	ug/L	<ī	•
Carbon Tetrachloride		<1	
Bromodichloromethane		<1	
1,2 Dichloropropane	ug/L	<1	
t-1,3Dichloropropene		<2	
Trichloroethylene	ug/L	<1	
Chlorodibromomethane		< <u>1</u>	
112 Trichloroethane	ug/L	<2 <u> </u>	
c 13 Dichloropropene		<2	
2chloroethvinylether		< <u>2</u>	
Bromoform	ug/L	<2	
1122Tetrachloroethan		<2	•
Tetrachloroethene	ug/L	26	
		•	

cc:

REMARKS:

DIRECTOR_____

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C951198/1

03/30/95

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

ATTN: Nicholas Recchia

SOURCE OF SAMPLE: Gem Cleaners. EEA 95706

COLLECTED BY: Client DATE COL'D:03/21/95 RECEIVED:03/21/95

SAMPLE: Water sample, MW-1B, 11:30 am

ANALYTICAL PARAM	ETERS				ANALYTICAL	L PARAM	ETERS	
Chloromethane	ug/L	<1	• •	Chl	orobenzene	• •	ug/L-	<1
Bromomethane	ug/L	<1		1,3	Dichlorob	enzene	ug/L	<2
Dichlordifluomethane	ug/L	<2			Dichlorobe		ug/L	<2
Vinyl Chloride	ug/L	<1		1.4	Dichlorobe	enzene	ug/L	<2
Chloroethane	ug/L	<1						
Methylene Chloride	ug/L	<1						
Trichlorofluomethane	ug/L	<2						
1,1 Dichloroethene	ug/L	<1						
1,1 Dichloroethane	ug/L	<1						
1,2 Dichloroethene	ug/L	<1						
Chloroform	ug/L	<1						
1,2 Dichloroethane	ug/L	<1						
111 Trichloroethane	ug/L	<1						
Carbon Tetrachloride		<1						
Bromodichloromethane	ug/L	<1						
1.2 Dichloropropane	ug/L	<1						
t-1,3Dichloropropene	ug/L	<2						
Trichloroethylene	ug/L	<1						
Chlorodibromomethane		<1						
112 Trichloroethane	ug/L	<2						
c 13 Dichloropropene	ug/L	<2						
2chloroethvinylether		<2						
Bromoform	ug/L	<2						
1122Tetrachloroethan		<2						
Tetrachloroethene	ug/L	2						

cc:

REMARKS:

DIRECTOR

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C951734/1

05/09/95

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

ATTN: Nicholas Recchia

SOURCE OF SAMPLE: EEA 95706

COLLECTED BY: Client DATE COL'D:04/24/95 RECEIVED:04/24/95

SAMPLE: Soil sample, SB-1A, 8-10 ft., 11:30 am

ANALYTICAL PARAME	ETERS			ANALYTICAL PARAM	ETERS	
Chloromethane	ug/Kg	<5	· · ·	Chlorobenzene	ug/Kg	<5
Bromomethane	ug/Kg	<5		1,3 Dichlorobenzene	ug/Kg	<10
Dichlordifluomethane	ug/Kg	<10		1.2 Dichlorobenzene	ug/Kg	<10
Vinyl Chloride	ug/Kg	<5		1,4 Dichlorobenzene	ug/Kg	<10
Chloroethane	ug/Kg	29		•		
Methylene Chloride	ug/Kg	<5				
Trichlorofluomethane	ug/Kg	<10				
1.1 Dichloroethene	ug/Kg	<5				
1.1 Dichloroethane	ug/Kg	<5				
1.2 Dichloroethene	ug/Kg	<5				
Chloroform	ug/Kg	<5	•			
1.2 Dichloroethane	ug/Kg	<5				
111 Trichloroethane	ug/Kg	<5				
Carbon Tetrachloride	ug/Kg	<5				
Bromodichloromethane	ug/Kg	<5				
1.2 Dichloropropane	ug/Kg	<5				
t-1.3Dichloropropene	ug/Kg	<10				
Trichloroethylene	ug/Kg	<5				
Chlorodibromomethane	ug/Kg	<5				
112 Trichloroethane	ug/Kg	<10				
c 13 Dichloropropene	ug/Kg	<10				
2chloroethvinylether		<10				
Bromoform	ug/Kg	<10				
1122Tetrachloroethan		<10				
Tetrachloroethene	ug/Kg	<5				

cc:

REMARKS:

DIRECTOR

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C951734/2

05/09/95

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

ATTN: Nicholas Recchia

SOURCE OF SAMPLE: **EEA 95706**

COLLECTED BY: Client DATE COL'D:04/24/95 RECEIVED:04/24/95

SAMPLE: Soil sample. SB-1B, 13-15 ft., 12:00 pm

ANALYTICAL PARAM	ETERS				ANALY	TICAL	PARAM	ETERS	
Chloromethane	ug/Kg	<5 .		Chl		izene			. <5
Bromomethane	ug/Kg	< 5	• •				nzene	ug/Kg	·<5
Dichlordifluomethane		<10					nzene	ug/Kg	< 5
Vinyl Chloride	ug/Kg	< 5					nzene	ug/Kg	< 5
Chloroethane	ug/Kg	23		• • ¬			42040	467.46	•
Methylene Chloride	ug/Kg	< 5							
Trichlorofluomethane		<10							
1,1 Dichloroethene	ug/Kg	<5							
1,1 Dichloroethane	ug/Kg	<5							
1,2 Dichloroethene	ug/Kg	< 5							
Chloroform	ug/Kg	< 5							
1,2 Dichloroethane	ug/Kg	<5	٠ مد						
111 Trichloroethane	ug/Kg	< 5							
Carbon Tetrachloride		< 5							
Bromodichloromethane		< 5							
	ug/Kg	< 5					•		
1,2 Dichloropropane		<10							
t-1,3Dichloropropene									
Trichloroethylene	ug/Kg	<5							
Chlorodibromomethane		<5							
112 Trichloroethane	ug/Kg	<10							
c 13 Dichloropropene		<10							
2chloroethvinylether		<10							
Bromoform	ug/Kg	<10							
1122Tetrachloroethan	-	<10							
Tetrachloroethene	ug/Kg	<5							

cc:

REMARKS:

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C951734/3

05/09/95

Energy & Environmental Analysts. Inc.

55 Hilton Avenue

Garden City, NY 11530

ATTN: Nicholas Recchia

SOURCE OF SAMPLE: EEA 95706

COLLECTED BY: Client DATE COL'D:04/24/95 RECEIVED:04/24/95

SAMPLE: Soil sample, SB-1C, 18-20 ft., 12:30 pm

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS	
Chloromethane	ug/Kg	<5	- Chlorobenzeneug/Kg . <5.	
Bromomethane	ug/Kg	<5	1,3 Dichlorobenzene ug/Kg <10)
Dichlordifluomethane		<10	1,2 Dichlorobenzene ug/Kg <10	
Vinyl Chloride	ug/Kg	<5	1.4 Dichlorobenzene ug/Kg <10	
Chloroethane	ug/Kg	<5	27. 220.1201000000000000000000000000000000	
Methylene Chloride	ug/Kg	<5		
Trichlorofluomethane		<10		
1.1 Dichloroethene	ug/Kg	<5		
1.1 Dichloroethane	ug/Kg	<5		
1,2 Dichloroethene	ug/Kg	<5		
Chloroform	ug/Kg	<5		
1.2 Dichloroethane	ug/Kg	<5		
111 Trichloroethane	ug/Kg	<5		
Carbon Tetrachloride		<5		
Bromodichloromethane		<5		
1.2 Dichloropropane	ug/Kg	<5		
t-1.3Dichloropropene	ug/Kg	<10		
Trichloroethylene	ug/Kg	<5	,	
Chlorodibromomethane	ug/Kg	<5		
112 Trichloroethane	ug/Kg	<10		
c 13 Dichloropropene	ug/Kg	<10		
2chloroethvinylether	ug/Kg	<10		
Bromoform	ug/Kg	<10	•	
1122Tetrachloroethan		<10		
Tetrachloroethene	ug/Kg	<5		

cc:

REMARKS:

DIRECTOR

377 SHEFFIELD AVE. .N. BABYLON, N.Y. 11703 .(516) 422-5777 .FAX (516) 422-5770

LAB NO.C951734/5

05/09/95

Energy & Environmental Analysts, Inc. 55 Hilton Avenue

Garden City, NY 11530

Nicholas Recchia ATTN:

EEA 95706 SOURCE OF SAMPLE:

COLLECTED BY: Client DATE COL'D:04/24/95 RECEIVED:04/24/95

SAMPLE: Water sample, MW-1A, 13:00 pm

ANALYTICAL PARAMETER	S		ANALYTICAL PARAMETERS	
Chloromethane ug/	'L <1		Chlorobenzeneug/L	<1
Bromomethane ug/	'L <1		1.3 Dichlorobenzene ug/L	<1
Dichlordifluomethane ug/			1,2 Dichlorobenzene ug/L	<1
Vinyl Chloride ug/	'L <1		1.4 Dichlorobenzene ug/L	<1
Chloroethane ug/	'L <1			
Methylene Chloride ug/				
Trichlorofluomethane ug/				
1,1 Dichloroethene ug/				
1,1 Dichloroethane ug/			,	
1,2 Dichloroethene ug/				
Chloroform ug/			•	
1.2 Dichloroethane ug/		-		
111 Trichloroethane ug/		•		
Carbon Tetrachloride ug/				
Bromodichloromethane ug/			•	
1,2 Dichloropropane ug/	'L <1			
t-1,3Dichloropropene ug/	/L <1			
Trichloroethylene ug/				
Chlorodibromomethane ug/	/L <1		·	
112 Trichloroethane ug/				
c 13 Dichloropropene ug/				
2chloroethvinylether ug/				
Bromoform ug/			,	
1122Tetrachloroethan ug/				
Tetrachloroethene ug/	/L 49			

cc:

REMARKS:

DIRECTOR

8718

NYSDOH ID# 10320

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. ● N. BABYLON, N.Y. 11703 ●(516) 422-5777 ● FAX (516) 422-5770

LAB NO.C951734/4

05/09/95

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

ATTN: Nicholas Recchia

SOURCE OF SAMPLE: EEA 95706

COLLECTED BY: Client DATE COL'D:04/24/95 RECEIVED:04/24/95

SAMPLE: Water sample, MW-1B, 12:30 pm

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS	
Chloromethane	ug/L	<1	Chlorobenzene ug/L <	1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene ug/L <	1
Dichlordifluomethane	ug/L	<1		1
Vinyl Chloride	ug/L	<1		1
Chloroethane	ug/L	<1	,	
Methylene Chloride	ug/L	<1		
Trichlorofluomethane	-	<1		
1.1 Dichloroethene	ug/L	<1		
1.1 Dichloroethane	ug/L	<1		
1.2 Dichloroethene	ug/L	<ī		
Chloroform	ug/L	<1		
1.2 Dichloroethane	ug/L	<1	•	
111 Trichloroethane	ug/L	<1		
Carbon Tetrachloride		<ï		
Bromodichloromethane		<1		
1,2 Dichloropropane	ug/L	<1		
t-1,3Dichloropropene		<ī		
Trichloroethylene	ug/L	< <u>1</u>		
Chlorodibromomethane		< <u>1</u>	•	
112 Trichloroethane	ug/L	<1	•	
c 13 Dichloropropene		<1		
2chloroethvinylether		<1		
Bromoform	ug/L	<1		
1122Tetrachloroethan		<1		
Tetrachloroethene	ug/L	<ī		
	- U .		•	

cc:

REMARKS:

DIRECTOR

<1

<1 <1

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C951734/6

05/09/95

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

Nicholas Recchia ATTN:

SOURCE OF SAMPLE: **EEA 95706**

COLLECTED BY: DATE COL'D:04/24/95 RECEIVED:04/24/95 Client

> SAMPLE: Water sample, MW-2, 13:30 pm

ANALYTICAL PARAMETERS		ANALYTICAL PARAMETERS
Chloromethane ug/L	<1	Chlorobenzeneug/L
Bromomethane ug/L	<1	1,3 Dichlorobenzene ug/L
DichlordifTuomethane ug/L	<1	1.2 Dichlorobenzene ug/L
Vinyl Chloride ug/L	<1	1,4 Dichlorobenzene ug/L
Chloroethane ug/L	<1	
Methylene Chloride ug/L	<1	
Trichlorofluomethane ug/L	<1	
1,1 Dichloroethene ug/L	<1	
1,1 Dichloroethane ug/L	<1	
1,2 Dichloroethene ug/L	<1	
Chloroform ug/L	<1	
1,2 Dichloroethane ug/L	<1	the state of the s
111 Trichloroethane ug/L	<1	
Carbon Tetrachloride ug/L	<1	
Bromodichloromethane ug/L	<1	
1,2 Dichloropropane ug/L	<1	
t-1,3Dichloropropene ug/L	<1	•
Trichloroethylene ug/L	<1	
Chlorodibromomethane ug/L	<1	
112 Trichloroethane ug/L	<1	•
c 13 Dichloropropene ug/L	<1	•
2chloroethvinylether ug/L	<1	
Bromoform ug/L	<1	
1122Tetrachloroethan ug/L	<1	
Tetrachloroethene ug/L	3	

cc:

REMARKS:

377 SHEFFIELD AVE. •• N. BABYLON, N.Y. 11703 ••(516) 422-5777 •• FAX (516) 422-5770

LAB NO.C951734/7

05/09/95

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

ATTN: Nicholas Recchia

SOURCE OF SAMPLE: EEA 95706

COLLECTED BY: Client DATE COL'D:04/24/95 RECEIVED:04/24/95

SAMPLE: Water sample, MW-3, 14:00 pm

ANALYTICAL PARAM	ETERS		,	ANALYTICAL PARAM	ŒTERS
Chloromethane	ug/L	<1		Chlorobenzene	- ug/L ··· <1
Bromomethane	ug/L	<1		1.3 Dichlorobenzene	ug/L <1
Dichlordifluomethane	ug/L	<1		1.2 Dichlorobenzene	ug/L <1
Vinyl Chloride	ug/L	<1		1.4 Dichlorobenzene	ug/L <1
Chloroethane	ug/L	<1			
Methylene Chloride	ug/L	<1			
Trichlorofluomethane	ug/L	<1			
1.1 Dichloroethene	ug/L	<1			
1.1 Dichloroethane	ug/L	<1			
1.2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1.2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane		<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene		<1			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane		<1			
112 Trichloroethane	ug/L	<1			
c 13 Dichloropropene		<1			
2chloroethvinylether		<1			
Bromoform	ug/L	<1			
1122Tetrachloroethan		<1			
Tetrachloroethene	ug/L	4			

cc:

REMARKS:

DIRECTOR

8720

NYSDOH ID# 10320

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C943887/2

09/16/94

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

ATIN: Nicholas Recchia

SOURCE OF SAMPLE: EEA-94725

COLLECTED BY: Client DATE COL'D:09/01/94 RECEIVED:09/01/94

SAMPLE: Soil sample, SB-1, 2-4 ft., 10:00 am

ANALYTICAL PARAME	ETERS	•			ANALY	TICAL PARA	METERS	
Chioromethane	ug/Kg	<5		Ch1	oroben	zene	ug/Kg	<5
Bromomethane	ug/Kg	<5				orobenzene		<10
Dichlordifluomethane	ug/Kg	<10				orobenzene		<10
Vinyl Chloride	ug/Kg	<5				orobenzene		<10
Chloroethane	ug/Kg	<5					_0,	
Methylene Chloride	ug/Kg	<5						
		<10						
1.1 Dichloroethene	ug/Kg	<5						
1.1 Dichloroethane	ug/Kg	<5						
1.2 Dichloroethene	ug/Kg	<5						
	ug/Kg	< 5						
1,2 Dichloroethane	ug/Kg	<5	•					
111 Trichloroethane	ug/Kg	<5						
		< 5						
Bromodichloromethane		< 5					~	
	ug/Kg	<5						
t-1,3Dichloropropene		<10						
	ug/Kg	<5						
		< 5			•			
112 Trichloroethane	ug/Kg	<10						
		<10						
2chloroethvinylether		<10						
Bromoform	ug/Kg	<10						
	ug/Kg	<10						
Tetrachloroethene	ug/Kg	7						
	.							

cc:

REMARKS:

DIRECTOR_____

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C943887/1

09/16/94

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

ATTN: Nicholas Recchia

SOURCE OF SAMPLE: EEA-94725

COLLECTED BY: Client DATE COL'D:09/01/94 RECEIVED:09/01/94

SAMPLE: Water sample, MW-1, 09:30 am

ANALYTICAL PARAM	ETERS	•	,		ANALYTICA	L PARAM	ETERS	
Chloromethane	ug/L	SI.		_Chl	orobenzene		.ug/L	<1
Bromomethane	ug/L	<1		1.3	Dichlorob	enzene	ug/L	<2
Dichlordifluomethane	ug/L	<2		1,2	Dichlorob	enzene	ug/L	<2
Vinyl Chloride	ug/L	<i< td=""><td></td><td>1.4</td><td>Dichlorob</td><td>enzene</td><td>ug/L</td><td><2</td></i<>		1.4	Dichlorob	enzene	ug/L	<2
Chloroethane	ug/L	<1						
Methylene Chloride	ug/L	<1						
Trichlorofluomethane		<2						
1.1 Dichloroethene	ug/L	<1						
1.1 Dichloroethane	ug/L	<1						
1.2 Dichloroethene	ug/L	47						
Chloroform	ug/L	<1			,	•		
1,2 Dichloroethane	ug/L	<1	- '					
111 Trichloroethane	ug/L	<1						
Carbon Tetrachloride	ug/L	<1						
Bromodichloromethane	ug/L	<1						
1,2 Dichioropropane	ug/L	<1						
t-1,3Dichloropropene		<2						
Trichloroethylene	ug/L	5						
Chlorodibromomethane	ug/L	<1						
112 Trichioroethane	ug/L	<2						
c 13 Dichloropropene	ug/L	<2						
2chloroethvinylether		<2						
Bromoform	ug/L	<2						
1122Tetrachioroethan	ug/L	<2						
Tetrachloroethene	ug/L	56						

cc:

REMARKS:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C943887/3

09/16/94

Energy & Environmental Analysts, Inc.

55 Hilton Avenue

Garden City, NY 11530

ATTN: Nicholas Recchia

SOURCE OF SAMPLE: EEA-94725

COLLECTED BY: Client DATE COL'D:09/01/94 RECEIVED:09/01/94

SAMPLE: Water sample, MW-2, 11:30 am

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAHETERS
Chloromethane	ug/L	<1	Chlorobenzene ug/L <i< td=""></i<>
Bromomethane	ug/L	<1	1,3 Dichlorobenzene ug/L <2
Dichlordifluomethane	ug/L	<2	1.2 Dichlorobenzene ug/L <2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene ug/L <2
Chloroethane	ug/L	<1	
Methylene Chioride	ug/L	<1	
Trichlorofluomethane	ug/L	<2	
1,1 Dichloroethene	ug/L	<1	
1.1 Dichloroethane	ug/L	<1	
1.2 Dichloroethene	ug/L	<1	
Chloroform.	ug/L	<1	
1.2 Dichloroethane	ug/L	<1	•
111 Trichloroethane	ug/L	<1	
Carbon Tetrachloride	ug/L	<1	
Bromodichloromethane	ug/L	<1	
1.2 Dichloropropane	ug/L	<1	
t-1,3Dichloropropene	ug/L	<2	
Trichloroethylene	ug/L	<1	
Chlorodibromomethane	ug/L	<1	
112 Trichloroethane	ug/L	<2	
c 13 Dichloropropene	ug/L	<2	
2chloroethvinylether		<2	
Bromoform	ug/L	<2	
1122Tetrachloroethan		<2	
Tetrachloroethene	ug/L	9	

cc:

REMARKS:

DIRECTOR

APPENDIX B

5 Years of Excellence

EST LABORATORIES, INC. · ENVIRONMENTAL TESTING 77 Sheffield Avenue, North Babylon, New York 11703 16) 422-5777 • FAX (516) 422-5770

CHAIN OF CUSTODY RECORDS

TYPE & NUMBER OF CONTAINERS !!! CEH CLEANERS 5AMILE IN 11782 ONE: 589- 1253 FAX: 589-8705 MAIN STREET SAMPLE IDENTIFICATION rson receiving report; JIM 31000 GRAKER 6 BRADIO SOUTH mpled by: ALISON DATE TIME BE9 20 COLLECTED 176 202 ent: 7 W. dress: | 00 . No.: urce:

JINYLC MURLIDO CHOD SINK CO-TRE STAIR WELL STOCK DEAN DE 23:22 18:12 18:12 BER

ECO EST LABORATORIES, INC.

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C971271/1

04/03/97

P.W. Grosser Consulting

100 South Main Street, Suite 202

Sayville, NY 11782 James P. Rhodes, Jr. ATTN:

SOURCE OF SAMPLE: Gem Cleaners, GBR9701

DATE COL'D:03/21/97 RECEIVED:03/21/97 COLLECTED BY: Client

SAMPLE: Soil sample, Stairwell storm drain, 1025

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Tetrachloroethene ug/Kg 12000 Trichloroethylene ug/Kg 2600 1,2 Dichloroethene ug/Kg 4400 Vinyl Chloride ug/Kg <50

% Solids

64

cc:

REMARKS:

NYSDOH ID# 10320

8565 rn≠

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C971271/2

04/03/97

P.W. Grosser Consulting

100 South Main Street, Suite 202

Sayville, NY 11782

ATTN: James P. Rhodes, Jr.

SOURCE OF SAMPLE: Gem Cleaners, GBR9701

COLLECTED BY: Client DATE COL'D:03/21/97 RECEIVED:03/21/97

SAMPLE: Water sample, Field Blank, 1015

ANALYTICAL PARAMETERS

Tetrachloroethene ug/L <1
Trichloroethylene ug/L <1
1,2 Dichloroethene ug/L <1
Vinyl Chloride ug/L <1

cc:

REMARKS:

DIRECTOR

ECO TEST LABORATORIES, INC. - ENVIRONMENTAL TESTING 377 Sheffield Avenue, North Babylon, New York 11703 (516) 422-5777 • FAX (516) 422-5770

CHAIN OF GUSTODY, REGORD

301	/ / TYPE & NIIMBER OF CONTAINERS	NITAINERS //
Address: 100 > 1/101/1 53.76 202		- Car. 6 - C - C - C
		リイン
Phone: 594-675 FAX: 534 6705	//////////////////////////////////////	2 2 ///
report: Jim (The des		
Scott Priva		
Source: 84 Village av.e		
JOB NO.: (5, BR-9-70)		/ / /
COLLECTED		/ / " F REWARKS TESTS REGUMED" : 1 14
) DATE THE SAMPLE IDENTIFICATION	1//////////////////////////////////////	/ "SPECIAL TURNAROUND, SPECIAL O.C. etc."
17-7 0101 49/	() () () () () () () () ()	AMC1162 8010
11111 4-6	Q70H	(PCE, DCE, TCE, and
2 7 27 27 1	AMINEE	(), not Chlorite)
6-9	AST. 25	
3	AMALYZE	
	Q-014	
And the state of t	The second secon	-
John 5/4 120 G W	C1-10H1	
y. (Signature) DATE/TIME	(Signature) Relinquished by: (Signature)	DATE/TIME SEAL INTACT? Received by: (Signature)
THEAD SO YES NO CHIRA	,	YES NO NA
Relinquished by: (Signature) DATE/TIME SEAL INTACT? Received by: (Signature)	(Signature) Relinquished by: (Signature)	DATE/TIME SEAL INTACT? Received by: (Signature)
Representing: YES NO NA Representing:	g: Representing:	YES NO NA Representing:

ECO EST LABORATORIES, INC.

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C972114/3

06/10/97

P.W. Grosser Consulting

100 South Main Street, Suite 202

Sayville, NY 11782

ATTN: James P. Rhodes, Jr.

SOURCE OF SAMPLE: 84 Village Avenue, #GBR-9701

COLLECTED BY: Client DATE COL'D:05/16/97 RECEIVED:05/16/97

SAMPLE: Soil sample, 4-6B ft., 11:40 am

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Tetrachloroethene ug/Kg 350
Trichloroethylene ug/Kg 11
1,2 Dichloroethene ug/Kg <5
Vinyl Chloride ug/Kg <5

% Solids

96

cc:

REMARKS:

DIRECTOR

92

NYSDOH ID# 10320

ECO EST LABORATORIES, INC.

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C972114/4

06/10/97

P.W. Grosser Consulting

100 South Main Street, Suite 202

Sayville, NY 11782

ATTN: James P. Rhodes, Jr.

SOURCE OF SAMPLE: 84 Village Avenue, #GBR-9701

COLLECTED BY: Client DATE COL'D:05/16/97 RECEIVED:05/16/97

SAMPLE: Soil sample, 6-8 ft., 11:15 am

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Tetrachloroethene ug/Kg 12000 Trichloroethylene ug/Kg 270 1,2 Dichloroethene ug/Kg 100 Vinyl Chloride ug/Kg <5

% Solids

93

cc:

REMARKS:

DIRECTOR

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO.C972114/5

06/10/97

P.W. Grosser Consulting

100 South Main Street, Suite 202

Sayville, NY 11782

ATTN: James P. Rhodes, Jr.

SOURCE OF SAMPLE: 84 Village Avenue, #GBR-9701

COLLECTED BY: Client DATE COL'D:05/16/97 RECEIVED:05/16/97

SAMPLE: Soil sample, 8-10 ft., 11:20 am

ANALYTICAL PARAMETERS
ANALYTICAL PARAMETERS
Tetrachloroethene ug/Kg 90

Trichloroethylene ug/Kg 10.
1,2 Dichloroethene ug/Kg <5
Vinyl Chloride ug/Kg <5

% Solids 91

cc:

REMARKS:

DIRECTOR

NYSDOH ID# 10320

APPENDIX C

5 Years of Excollence

z

œ

 ∞ 1427

62

٤

5

ă

Ž

(000)

Response

ŝ 3

ap de

ö

DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID & HAZARDOUS MATERIALS

HAZARDOUS WASTE MANIFEST

P.O. Box 12820, Albany, New York 12212 Please print or type. Do not Staple. Form Approved. OMB No. 2030-0033, Expires 9-30-96 1. Generator's US EPA No. Manifest Document No. Information in the shaded areas is not required by Federal Law. UNIFORM HAZARDOUS N Y D D I 3 1 1610 5 8 5 0 16 16 17 19 WASTE MANIFEST J. Generator's Name and Mailing Address Gen Cleaners NYB 842762 84 North Village Road B. Generator's ID Service of the property of the first of the property of the pr Rockville Centre, NY 11570 4. Generator's Phone ("516) 766-3445 6. US EPA ID Number C. State Transporters to F1 14 311 suff 5. Transporter 1 (Company Name) U.D.: Transporters Phone (-997): 1562-1 280 Bachen Transport, Inc. に性D191812131913191412 7. Transporter 2 (Company Name) E2 State Transporter's ID that 1992 of this Consult 8. US EPA ID Number Pa'Transporter's Prione (ill interprise to a conett G. State Facility's ID 9. Designated Facility Name and Site Address 10. US EPA ID Number rit (glidopet C&C zatkinglenbor 🗀 🚜 Garco Grae LWD, Inc. Highway 1523, PO Box 327 Calvert City, KY 42029 H. Facility's Phone (502) 395-2313 K 17 10 10 18 18 14 13 18 18 11 17 14. Unit 1 11. US DOT Description (Including Proper Shipping Name, Hazard Class and IO Number) Total Waste No. Type Quantity WWW RQ. Hazardous Waste Solids, M.O.S., PO01 .v (Tetrachlorosthylene)(F001) STATE XIOIS DIN 1310101012 ERG# 171 NA 3077 DC TTY STATE ΕPA STATE d. J. Additional Descriptions for Materials listed Above K. Handling Codes for Wastes Listed Above MARKET TOLER DIODES IN YORKS mont order N B Tetrachloroethylene Sect 1 4 9 70 ್ರತ್ಯೂ ಕಾರ್ಡಕ್ಷಿಗೂಗುತ್ತೆ ಮುಕ್ಕುವು त्राप्ता विकास क्षेत्र के प्रतिकार के प्रतिकार के प्रतिकार का कि किया है कर किया है कि स्वाप्त के प्रतिकार के क 15. Special Handling Instructions and Additional Information | Page 1982Cy Contact: Trade Winds lla) 16. GENERATOR'S CERTIFICATION: I hereby deciare that the contents of this consignment are fully and accurately described above by proper shipping name and are classified, packed, marked and labeled, and are in all respects in proper condition for transport by highway according to applicable international and national government regulations and state lines and regulations It is an a large quartery generator. I certify that I have program in place to reduce the volume and toxicity of waste generated to the degree I have determined to be economically practicable and that I have seeded the procedure medical readment, storage, or disposal currently available to me which minimizes the present and future trives to numar nears and the environment; OR if I am a small generator, I have made a good tasts effort to minimize my waste and select the best waste management method that is availance. to me and that I can afford Printed/Typed Name 0.210.715.7 Same · (newat) 17. Transporter 1 (Acknowledgement of Receipt of Materials) Pripad Name Lenox 8079 lowid 18. Transporter 2 (Acknowledgement or Receipt of Materials) Printed/Typed Name Signature 19. Discrepancy Indication Space ×, · · · . 20. Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifest except as noted in item 19.

EPA Form 8700-22 (Rev. 9-88) Previous editions are obsolete.

Printed/Typed Name

Signature

ATTACHMENT 2

Street Opening Permit

VILLAGE OF ROCKVILLE CENTRE DEPARTMENT OF PUBLIC WORKS

THIS PERMIT EXPIRES

30 CALENDAR DAYS

FROM DATE OF ISSUANCE.

STREET OPENING PERMIT

LOCATION: &Z. A	o VIU	A6E PERMI	r#.4100	DATE: 1/27/06
HNIISE NO STRI	FT			
@ intersection/details: PF				_
CASE NO. 6030054				
	BRIEN TOLIAL DR COMPANY)	+ OFFE E	NGINEERS	<u> </u>
<u>5</u> 8	00 BR	2 ITTON FIELD !	KW E.S	SIRACUSE
STREET ADD	RESS,	TOWN.	STATE,	1305
OPENING FOR: TYPE (·////	THE UNDER-SIGNED APPLICANT AG PERIOD OF TWO (2) YEARS FE	ROM COMPLETION O	F WORK. ANY REQUIRED
□ WATER		RESTORATION WITHIN SAID TIME I		
J SEWER □ ASPE		HEREIN FOR STREET REPAIRS.	ET MANNER ACCORDI	TO THE GOID DEATHER SET
GAS (SCON)	CRETE ///	$\omega' \cap v'$		
OTHER PARRISG	LOT /	Slower Syd-		
		(SIGNATURE OF APPLICANT)		
NO. OF OPENINGS		Permission as required by the E Rockville Centre, in compliance w perform the work as described in th	vith the Unified Code	of Ordinances No. 3.1, to
SIZE OF 311				, 0
openings 2		Examined and approved:		
DATE OPENING	11.	1100		
WILL BE MADE: 130 06-	2/4/06	(AUTHORIZED SIGNATURE)		
To avoid serious damage to Call Center # 1-800-27 Addition, the applicant Mileston And Prior to Final Restorations.	2-4480 BEI <u>JST</u> NOTIFY D	FORE STARTING THE WORK DEPT. OF PUBLIC WORKS 2	AUTHORIZED E 4 HOURS BEFOR	BY THIS PERMIT. IN
This permit is issued subject to the co and that the applicant shall save and such applicant in making such excava	keep harmless ti	he Village of Rockville Centre fro	om all damages cau	sed by the negligence of
The applicant shall restore all stree	t openings pursu	ant to Village specifications.		
In making such repairs to road opening repaired surface shall be so made that perimeter of the excavation.				
This permit is not valid unless the appropriate the local gas company and others.	licant complies	with Section 322-a of the General	Business Law, gove	rning proper notification
RESTORATION WORK MUST I	BE COMPLETE	D WITHIN <u>45 CALENDAR DA</u>	YS FROM COMP	LETION OF WORK.
TOFFICE RECORD: DATI		INSPECTOR:		
1 ST INSPECTION DATE:	WHEN SURFACE R		REPAIR GUARANTEE:	UCENSE & PERMIT BOND:
TYPE OF ROADWAY:	NO. OF SQUARE FE	· · · · · · · · · · · · · · · · · · ·		

Z^{NO} INSPECTION DATE:

SIZE OF CUTS:

ATTACHMENT 3

Boring Logs

Project:	GEM		Client: O'B	rien & Gere	Pac	e _1_ of _4_	Sketc	n:
Location:	Rockville C	entre, NY	Job Numbe	er:				
Boring:	SB-1		Total Deptl					
Drilling Co.			-	Sample	Core	Casing	_	
	auren	ast Duah	Type DIA.	4' 2"			\dashv	
	ethod: Dire 1/17/2006	ect Push	Weight	-			\dashv	
Inspector:		son	Fall				\dashv	
inopostor.	<u> </u>						v	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic De	scripton	Class USCS	Remarks
1_				Jan to E (Mf) rown Brown (1	Sphalt Grayn (cm ded grave) Sand, trace 1'6		PID= 0.0 PPM Dry lasse nein-plastic Fill
2_	5.1		4/3	15rawri ()	m) Sand		SW	
4						4	,	
5_				Brawn te	o Grange	(mf) Sand		PID= 0-7 FPM Dry læse non-plashic
6_	52		4/4					Fill
7_							SW	
8_								PID= 0.0 PPM
9_			1,/					PID= 0.0 PPM Dry losse non-plastic Fill
10_	43		4/4					
11_				White, to	Tan (cm	F) Sand 11'(5°	Native 20 11'6"

Project:	GEM			rien & Gere	Pa	ge _2_of _4_	Sketc	h:
Location:	Rockville C	entre, NY	Job Numb					
Boring:	SB-1		Total Dept		10000	Casina		
Drilling Co. Driller: L	auren	_	Tuno	Sample 4'	Core	Casing		er.
	ethod: Dir	act Duch	Type DIA.	2"				
	1/17/2006		Weight		_	_		
Inspector:		son	Fall			 		
mop storr							S	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic D	escripton	Class USCS	Remarks
13_ 14_ 15_	5.4		4/4	Brawn te	Orange (nt) Saird,	131 SP	PID= O.O FPM Dry 1005e non-plastic
16_ 17_ 18_	5.5	-	4/4	Brown to OI Cnif) sub- Brown to (Mf) Sub-	range (cont Counted: Orange (rerunded (Sand Some gravel 1976, Sand, - Vravel	16' 16'6" SP trace	PTD = 0.8 PPM Ory loase ren-plastic
19_ 20_				Red and Dro		Sand	19'- 19'6" 20' SP	Wet a 19'
21_	56		4/3	White to	Tan(f)	Sand	SW	Saturated maderately Compact ron-plastic
23_	(b) ¥			Brown to Ri White to Ti		(craf) Gravel	23'3" 13'9" GP 5W	

Project: G			Client: O'R	rien & Gere	Pan	e _3_ of	Λ	Sketcl	h.
Location: R	SEM Rockville C	entre NY	Job Numbe		ı ay	<u>e _5_ 01</u>		OKCIC	11.
	B-1	enae, ren	Total Depti						
Drilling Co. E				Sample	Core	Casing		İ	
	uren		Туре	4'					
Drilling Met	thod: Dire	ect Push	DIA.	2"					
_	17/2006		Weight						
Inspector: D	an Simps	son	Fall						
		+	'n		•	•		S	
€	60	Blow Count	Penetration/ Recovery	,	Geologic Des	carinton		Class USCS	s ×
Depth (ft)	Sample	0	Penetration	`	seologic Des	scripton		SS	emarks
Det	San	Blo	Per					Cia	Rer
									PID= 17,8 PPM
	}								meterately compact mon-plastic
25									maderately Compact
7			_						11017-126541C
	7		4/						
26_	57		4/3						
1 7									
	ŀ								
27_	ļ								
1 1							27%"		
1	ŀ			Brown Silly G	revel (III)		27/9"	6M	
28				White to ig	n (t) Sond lack (f) San	7	- 27/10"	GM	Pro= 0.4 PPM
1				Brawn to 0	lack (f) San	n ei	28'6"	SW	PID= 0.4 FPM west compact wiPlostic
	-			Brawn (m.	F) Same		- 0		compact
29_	_,)			C).1	MP10StiV
	5.8		4/3				29'6"	NC.	moderately compact Plastic
1 (~> ~		1/3	Brawn clo	ver (f) Si	ine	016		1
30_				J. Sterri	70, 05		ł		moderately compact
							,		Plastic '
	Ì	_					1	50	
31_									
							316		
00				Brown Cla	yey sitt		32′	ML	
32				Brawn (f)			Sd		torn: 05 Dan
				Drawn (t)	Jane				PLD= 0.5 PAM Saturated Mederately Campact Man-Plastic
22	ĺ								maderately compact
33_	-		1						Man-Plastic
			4/					111	
34								SM	Wet
34-1/2	5,9		12,5						[West
) '								
35									
"-								,	
	ļ			Warra da	11/10/0	- 1	356		· ret
36				Brown Clay	(t) 3a	ne		50	Plastic
								50	

Project:	GEM		Client: O'B	rien & Gere	Pac	e_4_of_4_	Sketch	า.
		entre NY	Job Numb		, raç	<u>e_+_0_+_</u>	- OKELCI	1.
Boring:	SB-1		Total Dept					
Drilling Co.	.EPI		•	Sample	Core	Casing		,
	auren		Туре	4'				
Drilling M	ethod: Dir	ect Push	DIA.	2"				
Date:	1/17/2006		Weight					
Inspector:	Dan Simp	son	Fall					
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic De	scripton 3	Class USCS	DID = 2.1 PM
37_	0,	_		Brown (o Gub-angi	cnif) Sav Llav to So	od, traceg b-randed gra		PTD = 2.1 PPM West maderately compact non-plastic
38_	5-10		4/3					1001 - Plastic
39_	·						SP	
40_								PLD= 3.8 PPM Saturated 1005e 1007-plastic
41_	5.11		4/2					loese non-plastic
42_				White to	ton (m)	Sand,		
43_							SP	
44_				End o	f borine	7	7 7	
45_)			
46_								
47_								
48_								

Project:	GEM		Client: O'B	rien & Gere		e 1 of 4	Sketcl	D:
	Rockville C	entre NV	Job Number		Fag	<u>e_1_01_4_</u>	Skelci	1.
Boring:	SB-2	cinc, ivi	Total Dept					
Drilling Co				Sample	Core	Casing		
	.auren		Туре	4'		<u> </u>		
	ethod: Dire	ect Push	DIA.	2"				
	1/17/2006		Weight					
Inspector:	Dan Simp	son	Fall					
Depth (ft)	Sample	Blow Count	Penetration/ Recovery	C	Seologic De	scripton	Class USCS	MAG O.O = CIG
1_ 2_ 3_	5-1			Brown (m.) Brown to Organizate		10 Sand, Trace	sW SP	PID = 0.0 PFM Dry lasse hen-plastic Fill
4_ 5_ 6_	5-2		4/3.5		itange (m	f) Sand		PID: 1.8 FPM Dry lease non-plastic Fill
8_ 9_ 10_ 11_ 12_	5-3		4/4	White to	Tan (f)	Sand	SW	PID = 2.1 FFM Dry 1005e Non-plastic Native 2010'6"

Project:	GEM		Client: O'B	rien & Gere	Pac	e _2_ of _4	Ģ	Sketc	<u> </u>
Location:	Rockville C	entre, NY	Job Numbe		1 49	<u> </u>		J.KO.O.	•
Boring:	SB-2		Total Dept						
Drilling Co.	.EPI			Sample	Core	Casing			
Driller: L	auren		Туре	4'					
	lethod: Dire	ect Push	DIA.	2"					
	1/17/2006		Weight						
Inspector:	Dan Simps	son	Fall						T
Depth (ft)	Sample	Blow Count	Penetration/ Recovery	C	Geologic De	scripton		Class USCS	Remarks
13_									PID = 0.0 PPM Dry lasse non-phostic
14_	5-4		4/3,5				146"		
15_				White to 18 (cmf) sub-n	rawn (mt) gurded gri			S٩	
16_		_		Brawn (mf Gray (C)	and And	inst Gods	5 '911 6' : 16'3" (3P GP	PID= 1.5 PPM
17_				Brown (cmf) Sib-rounded	Sand son grave	e (cm)	4	SP	Dry 1005e non-plastic
18_	55		4/4	Brown to 0	•	Sond	17'6"	SP	
19_				Brown (M)	ravel	Cle = 1	9'	5P	Wet a 19'
20_				IDIAMI (M)	Jandy (Lir	y biavel			2001
21_			., /				 	3 P.	PLD: 1.7 FPM Saturated losse non-plastic
22_	5.6		4/3	0 (5)	- A	26	2'		
23_				Brawn (f)	Sand			SW	m lackely from L
24_								JV√J 	Maderately Compact

Project:	GEM		Client: O'B	rien & Gere	Pa	ige _3_ of	_4_	Sketc	h:
_	Rockville C	entre, NY	Job Numbe					•	
Boring:	SB-2		Total Dept			-1a ·			
Drilling Co.			- -	Sample Core Casing 4'					
	auren		Туре	2"					
	ethod: Dire	ect Push	DIA.	2"					
Date:	1/17/2006	200	Weight Fall					1	
inspector.	Dan Simpi								1
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Seologic D			Class USCS	Remarks
25_ 26_	5-7		4/3	Brawn to C	Yeunge (f) Sand		SW	PID = 2.4 PPM Saturated Mathrotely Compact Mon · Plastic
27_		Santa -		Gray (f)	1 (t) 5a Sand		26'9" 27'6"	5W 'SW'	
28				Brawn schools Brawn to O		Sand	28'	GW	PYD = 2, 1 PPM Wet weeknately compact ron-plastic
29_ 30_	5.8		4/4			·	<i>30</i> ′	SW	Non-Plastic
31_			,	Brawn Sain	dy clay			ML.	Plastic
32_				Braun (f)	Sand		32 [′]		PYD= 4,1 PPM
33_			4/,				,	SW	PXD= 4,1 PPM wet moderately compact non-plastic
34_	5-4		1/4	Brown W	layey (Sand	34		* .
35_					1-1			50	
36_									

Project:	GEM			rien & Gere	Pag	e _4_ of _4_	Sk	etch	ı:
		entre, NY	Job Numbe						
Boring:	SB-2		Total Dept		1-				
Drilling Co.				Sample	Core	Casing			
	auren		Туре	4'					
	ethod: Dire	ect Push	DIA.	2"					
	1/17/2006	_	Weight						
Inspector:	Dan Simp	son	Fall						
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic De		;	Class USCS	Remarks
37_ 38_	5-10		4/4	Brawn (M	f) Sand		56:5"		PSD = 7.4 PPM Sotwated Maderately Compact Pon-plastic
39_				Orange, to A Brawn (Mif Sub-ungel	sed (mf) 5 Sand, son av to som	nud ne (nif) ided gravel	38'9" 5		
40_					//		40'	_	
41_				End of	boring				
42_									
43_									
44_									
45_									
46_									
47_									
48_				_					

Project:	GEM		Client: O'B	rien & Gere	e Pa	ge _1_ of _4	Sketc	h·
Location:		entre, NY	Job Numb			3 - ' _ <u> </u>		•••
Boring:	SB-3		Total Dept					
Drilling Co	.EPI			Sample	Core	Casing		
Driller: l	auren		Туре	4'				
Drilling M	lethod: Dir	ect Push	DIA.	2"				
	1/18/2006		Weight					
Inspector:	Dan Simp	son	Fall					
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic D	escripton	Class USCS	Remarks
1_ 2_ 3_	5		4/3.5		Aspha Savid Orange (m.f.		10" 1.6" SW SW	PID = 1.5 PFM Dry Indise non-plastic Fill
4_ 5_ 6_ 7_	8.9		4/4	Orange t	o Brawn	(mf) Sand	y' SN	PID= 1.2 PPM Dry lasse non-plastic Fill
8_ 9_ 10_ 11_ 12_	5.3		<i>y</i> / ₃	White to	Tan (ni-			PID = 20PPM Dry lodse hon-plastic Native Soil 211

Project:	GEM		Client: O'	Brien & Gere		age _2_ of _4_	Sketc	<u> </u>
Location:	Rockville C	entre NY			5 FC	ige _2_ 01 _4_	- Skell	11.
Boring:	SB-3	7011110, 141	Total Dep			_		
Drilling Co.				Sample	Core	Casing		
	auren		Туре	4'				
Drilling M	lethod: Dir	ect Push	DIA.	2"				
	1/18/2006		Weight					
Inspector:	Dan Simp	son	Fall					
Depth (ft)	ple	Blow Count	Penetration/ Recovery		Geologic D	escripton	Class USCS	Remarks
l deC	Sample	300	Sec				Clas	Лет
13_	5-4		4/4			Sand, som	e 5P	PTD = 2.6 PPM Dry Loase Non-plastic
15_				Orange to (cm f) ro	Brann (m. unded gra	Sand, som	, SP	
16_ 17_ 18_	5.5		4/3	Grange t	o Brown	(f) Sand	SW	PTD = 4.0 PPM Dry 1003e non-plastic
19_				Brann Sav	ndy (curf)	(.cave) =	9' GP	Wet @ 19'
20_	,		4/	White to	Tan () Sand	GP '6'	PID= 0.9 PPM Saturated maderately compact non-plastic
22_ 23_	5,6		13				SW	Compact
24_	,							- 1

Project:	GEM		Client: O'B	rien & Gere	Pa	age _3_ of _4	4	Sketch	n:
Location:	Rockville C	Centre, NY	Job Numb						
Boring:	SB-3		Total Dept						
Drilling Co	. EPI			Sample	Core	Casing			<i>2</i>
	auren		Туре	4'					
	lethod: Dir	ect Push	DIA.	2"					
	1/18/2006		Weight						
Inspector:	Dan Simp	son	Fall						
Depth (ft)	Sample	Blow Count	Penetration/ Recovery	Geologic Descripton				Class USCS	PLD = 3.3 PPM
25_	. 1		4/,,	Owere to white to	de nd (t) Ovange (-	sand f) Sand	24'9"	SW	PID = 3.3 PPM wet carpact non-plastic-
26_	5-7		. / 7					SW	`
28	5.8		4/4	Red (1) 5	sond an (f) said send tan (f) said Tan (f) sa		28'9	5W 5W 5W	PID = 5.0 PPM Wet Confact Book-Plastic
30_ 31_ 32				Brawn Cla		ł	30'4"	ML	Plastic
33_	5-9		4/4	Brawn (f	Sand, S	ione, sitt		SM	PID = 4,3 PPM Wet Non-Plastic Compact
35_ 36_				Brawn (lo Brawn (f)	yey Silt	, silt		ML SW	

Project: GEM									
Bornig: SB-3 Drilling Co. EPI Drilling Method: Direct Push DIA. 2" Drilling Method: Direct Push Dir	Project:	GEM		Client: O'B	rien & Gere	Pa	ge _4_ of _4_	Sketch	n:
Driller: Lauren Driller: Lauren Type 4' Driller: Lauren Type 4' Driller: Haren Dr		Rockville C	entre, NY						
Driller: Lauren L	Boring:	SB-3	_	Total Dept	h: 40'				
Driller: Lauren Type 4'	Drilling Co	.EPI			Sample	Core	Casing		
Date: 1/18/2006 Weight				Туре	4'				
Date: 1/18/2006 Weight	Drilling M	lethod: Dir	ect Push		2"				
September Sample			_	Weight					
Some			son						
37_ 38_ 6, \(\text{0}\) \(\text{3}\) \(\text{1}\) \(\text{End of boring}\) \(\text{End of boring}\) \(\text{2}\) \(2	·							S	
37_ 38_ 6, \(\text{0}\) \(\text{3}\) \(\text{1}\) \(\text{End of boring}\) \(\text{End of boring}\) \(\text{2}\) \(2	₽		, ž	tio Z				SC	y ₀
37_ 38_ 6, \(\text{0}\) \(\text{3}\) \(\text{1}\) \(\text{End of boring}\) \(\text{End of boring}\) \(\text{2}\) \(2	L	be l	ŭ	tra	•	Geologic De	escripton	l s	a x
37_ 38_ 6, \(\infty\) \(\begin{array}{c} \begin{array}{c}	ebt	<u>E</u>	<u></u> <u> </u> <u> </u> <u> </u>	ecc				as	E E
37_		ĸ	<u> </u>	<u> </u>	0 /5	1 - 1		Ü	LATI C C O DOM
37					Brawn (t) Sang			1.101 5,3 FF//1
38 5 N SW 39 End of boring 41 42 43 44 45 46 47 47 47				,,,					Compact
38 5 N SW 39	37_			19/,					non-flastic
39				/ /			,		10111001100
39		\O						-1.1	
39	38_	15/1						SW	
41]							
41									
41	39								
41_	_	1			į				
41_									
41_	40								
41_ 42_ 43_ 44_ 45_ 46_ 47_					//				=
41_ 42_ 43_ 44_ 45_ 46_ 47_					Find of	barina			
42	11				i-run o	201179			
43	"'-	1							
43									
43	40								
44_ 45_ 46_ 47_	42_								
44_ 45_ 46_ 47_									
44_ 45_ 46_ 47_									
45_ 46_ 47_	43_								
45_ 46_ 47_									
45_ 46_ 47_									
46	44_								
46									
46									
47_	45_								
47_									
47_									
47_	46								
	_	1							
	47								
48_	''-								
48_									
	48								
	-		_						

							_		
Project:	GEM _			rien & Gere	Pag	e_1_ of_	4	Sketch	n:
Location:	Rockville C	entre, NY	Job Numb					4	
Boring:	SB-4		Total Dept		10	Io - :		-	
Drilling Co.			-	Sample	Core	Casing		1	e e
	auren	4 D h	Туре	4' 2"				-	
	ethod: Dir	ect Pusn	DIA.	2				-	
	1/19/2006		Weight Fall			_		-	
Inspector:	Dan Simp								<u> </u>
Depth (ft)	Sample	Blow Count	Penetration/ Recovery	C	Geologic De	scripton		Class USCS	MAA C'I : CITA
				/	Asphalt		10"		PID: 1.2 PPM Dry
1_			<u> </u> 	Brown (M) Sand		10		Dry loge nen-plastic Fill
2_	6-1		4/2						
								SW	
3_			_				3'6"		
4_				Brown (unt) Sub-oungulair Brown to (Sand, Son	e (III)	41	SP	PKD = 2 OPPM Dry Loase non-Plastic Native, Soid a) 6'
				Brown to	Irange (m	Sand			PIU > a. Orim
_			1						lowse.
5_			, , , /					SP	non-Plashic
			4/3						
6	52		13				6		Mile off a c'
	5 0			White to E	Bracon (int)	Sand			IVATIVE SOM @ 6
			-						
7_								SP	
							g'		
8_				Brawn (mf)	Sand		. 7		PID=2.8 PPM Dry lagge Non-plastic
				Orawn (m.y	2274			SP	Day
9						•	9' 9'3")	100/20
"			1,,/	From to	Red (RIF) S	and _	9'3"	SP	von-Plastic
			4/,	Brown (MF)	Sand		,		
10_	5.3		14						
								SP	
11_									
					(-1)	۸	116		
12_				White to To	an (mf) Sai	nd		SP	
								ンI	

			011 1 010				To: 1	
Project:	GEM			rien & Gere	Pag	e _2_ of _4	Sketc	h:
Location:	Rockville C SB-4	entre, NY	Job Number				-	
Boring:			Total Depti		Core	Casing	-	
Drilling Co.			Type	Sample 4'	Core	Casing	-	
	_auren	a at Dujah	Туре	2"			-	
	lethod: Dir	ect Push	DIA.				4	
	1/19/2006		Weight Fall				\dashv	·
Inspector:	Dan Simp	SON					+	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic De	· · · · · · · · · · · · · · · · · · ·	Class USCS	Remarks
				white to	Brown ((not) Sand, d gravel		PID= 2.1 PPM
			-	Some (c.n	f) ronnebe	d gravel		Dry 1005e
13_						0	GP	
							61	
			4/3					
14_	ı		173			<u> </u>		_
	54			grange to	Brawn (nf) Sand, Some	ン	
	21			CAH) PALIN	ted graves			
15							GP	
-]			l			101	
						/		
16						16		
_				Brawn to G	Grange (Co	nf) Sand, Some	/	PED= 2.2 PPM Moist 10050 Mon-ylastic
\(\lambda\)				(mf) rounds	el gravel			Mo.St
17					Ü			Van-vlastic
-	1		4/2					1 100.10
1	5.5		1/2					
18	5		1 2				GP	Moistal8
_	1						101	1 7 2 7 3
19						₹ 7		net 019'
-	1					Ž	_	
20					/->	1		
-				Whole to To	in (f) San	ė) – – – – – – – – – – – – – – – – – – –	SW	PID= 1,8 PFM
				While to To	.(0)	(2002)		PID= 1,8 PPM Saturated moderately compact non-plastic
21			/	11. 12 12	T. 101	ione (conf) gravel	3P	Then plastic
,	1		14/	WILTE TO	1000 (F) 5	ind		PHASITO
}	60		1//					
22	\supset_{Λ}		12.5					
	1)					
							SW	
23								
_	1							
24								
_	1							

							101 .	
Project:	GEM			rien & Gere	<u> Pa</u>	age _3_ of _4_	Sketc	h:
	Rockville C	entre, NY	Job Numb					
Boring:	SB-4		Total Dept		10			
Drilling Co.			т.	Sample	Core	Casing	_	
	auren		Туре	4'				
	lethod: Dir	ect Push	DIA.	2"				
	1/19/2006		Weight					
Inspector:	Dan Simp	son	Fall					
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic D		SCIass USCS	PTD = 3.7 PPM
25_				Brown (prt) White to The Founded gra	Sub-randidt an (O San avel	a roughd Grove de trace (cmf)		PID = 3.7 PPM Wet Compact Non-Plastic
26_	57		4/3				SP	
27_								
28_				Rust to Br	ewn Silt	(CAT) Grave!	6M	
29_	5.8		4/					* Slave lost no recovery
31_			10					
32_				Grann (Sand	32'		PID=31PPM
33_					•			PID = 3. PPM west maderately compact non-plastic
34_	5-9		4/4				SW	
35_				V			0 11	
36_				Brown cla	yey (E) S 	a nex	SC	Plastic

			011 1 010				101		
Project:	GEM			rien & Gere	e Pa	ge_4_ of _4_	SK	etch	:
	Rockville C	entre, NY	Job Number						
Boring:	SB-4		Total Dept		Core	Coolna			
Drilling Co.			Ť a	Sample 4'	Core	Casing			
	_auren	ant Dunh	Туре	2"					
	lethod: Dir	ect Push	DIA.	2		-			
	1/19/2006		Weight						
Inspector:	Dan Simp	son	Fall						
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic D	escripton		Class USCS	Remarks
37_	5-10		,	Brown (Com	O Sond, Avid	Sil+	37 [*] 37 6 [#] 5	M	PID: 0.9 Saturated Madrately Commonly Main-Plastic Weit
38_	3 70			Brawn (C)	inf) Saind				Wet loose non-phstic
39_							5	P	
40_					2 lo -/				
41_				End of	Daring				
42									
43_									
44_									
45_									
46_									
47_									
48_									

Drainat	CEM		Client: O'D	rion O Coro	Do	70 1 of 1	Cleate	.h.
Project: Location:	GEM Rockville C	Contro NIV	Job Numb	rien & Gere	Pa	ge _1_ of _4	Sketo	;n:
Boring:	SB-5	Jenue, MT	Total Dept		_			
Drilling Co.			Total Dept	Sample	Core	Casing		
	auren		Туре	4'	Oorc	Casing		
	ethod: Dir	ect Push	DIA.	2"		 		
	1/19/2006	0017 0011	Weight	-	-	 		
	Dan Simp	son.	Fall			 		
mapector.	Dan Oknip							
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic De	scripton	Class USCS	PTD = 14.9 PPM
1_				Brown (12	Asphal of Sound	<u> </u>	10"	Ury 100 se non-plastic
2_	5-1		4/3	Brown (il	1) Sainel,	Some (Cr rounded great	21 (H) SW	-
3_				Job angula	iv 10 50v	rennaka yre		
4_								PTD= 34.3 PAM Dry lage nan-plastic Fill
5_	52		4/2				SP	Non-Plastic Fill
7_								
8_				Brown (cr	nf) Sand		8'	PID= 31.9 PPM
9_			4/4				SP	PID= 31.9 ppM Dry 1003e 100n-plastic
10_	5.3		1/4				24	
11_				White to E	Brown (mt)	Sand	1'6"	Native Soil @ 11'6"
12_							SP	

Touris st.	GEM		Clienti O'D	rien & Gere	Do	ge 2 of 4	Sketc	
Project: Location:	Rockville C	antre NV	Job Number		Га	ge_2_0(_4_	_ Sketci	11.
Boring:	SB-5	enie, Ni	Total Depti				\neg	
Drilling Co.			- Ciai Bopii	Sample	Core	Casing	┪	
	auren		Туре	4'			╡	
	ethod: Dire	ect Push	DIA.	2"			_	
	1/19/2006	COLT USIT	Weight					
Inspector:		SON.	Fall				_	
порессот.	<u> </u>						Class USCS	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic Descripton			PLD = 31.8 PPM
13_ 14_	5-14		4/2.5	White to	7 Tan (r	f) Sand	SP	PtD= 31.8 PPM Ory 12050 non-plastic
15_				White to (Mf) Sub-v	Ton (Funt)	Sand, Some	SP	-
16_						- (\		DYD- 34.4 PSM
17_						nt Sand, some reute and, some (cm)	GP GP	PID = 34,4 PPM Moist Icase Non-Plastic
18_	5.5		1/3	White to	Tan (t)	Sand =		wet a 186"
20_								Compact
21_			. /				SW	Compact PID = 31. PPM Saturated Compact Non-plastic
22_	56		4/4					
23_								
24_								

Droinet	CEM		Client: O'D	rion & Core		70 2 of		Skotol	
Project: Location:	GEM Rockville C	antre NV	Job Numb	Brien & Gere	e Pa	ge _3_ of _	4_	Sketcl	11.
Boring:	SB-5	Jenne, NT	Total Dept						
Drilling Co			- Clai Dopt	Sample	Core	Casing		1	
	auren	_	Туре	4'	23.4			-	
	ethod: Dir	ect Push	DIA.	2"				1	
_	1/19/2006		Weight					1	
Inspector:		son	Fall					1	
	<u>.</u>		2					ý	
£	ь в	Blow Count	Penetration/ Recovery		Geologic D	ecripton		Class USCS	MAJ 8.81 = CLA
Depth (ft)	Sample	, š	letr Sov		Geologic D	e a cripton		SS	n ar
Del	Sar	Be	Per					Cla	Rer
									PID = 18.8 PPM
			1						Wet Compact non-plastic
25_									Compact
									rian-plastic
			111						
26_	57		41.2						
	' '		1.2						
			1				271		
27_				ļ	<u> </u>	- 1 -	27'		
				Change to	Brawn (+) noted gravel	Jana, Se	wi6"		
			1	CMA) NOW	rated graves		1	59	
28_					701		28'		PID = 34,8 PPM wet compact ron-plastic
				white te	Gray (9)	Sand			PUP 3 31,0 111
20			1						WET
29_			.//					(1)	Confact Van-vinctic
	م		4/3					ノリリ	1 CTT PROTE
30	5-8		1/3				30 [′]		
30-			' _	Brawn (+)	Sand		30_		
31								SW	
"-							31'6"	ンレル	
				Brown So	int Call			~ /	Plastic
32_					•		32'	50	
				Brown- 51	Hy Clay			,-	PID = 10,0 PPM Wet Compact Plastic
			-		, ,				Wet L
33_								11	Com fact
			111					06-	1145116
	9,0		19/,				-:11		
34_	2,		14	V	1 - 1 - 1	100	34'		
			'	prewn A	Sand, tra	ale (cint)			Lewals 1
				l'enhacat gi	ave				Compale
35_								<p< td=""><td>non-plact</td></p<>	non-plact
								71	PINSIL
36									
36-									
		L							

		_						
Project:	GEM		Client: O'B	rien & Gere	Pa	ge _4_ of _4_	Sketcl	n:
Location:	Rockville C	entre, NY	Job Numbe					
Boring:	SB-5		Total Depti					
Drilling Co.	.EPI			Sample	Core	Casing		e .
	auren		Type	4'				
Drilling M	ethod: Dir	ect Push	DIA.	2"				
Date:	1/19/2006		Weight					
Inspector:	Dan Simp	son	Fall					
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic D	escripton	Class USCS	PTD = 7.5 PPM
	<u> </u>					30	:'6'	PIUS 7.5 PPM
37_				Gray clay	ky sand	<u></u>	S()	west maderately compact Plastic
38_	5-10		4/4	Gray (F)	Sand	a 1)	SW	•
39_				grave	++) Saind,+	race rounded	SP	
40_								
41_				End of	Doring			
42_								
43_								
44_								
45_								
46_								
47_								
48_								

Project:	GEM		Client: O'B	rien & Gere	Pa	ge _1_ of _4_	Sketch	n;
Location:	Rockville C	entre, NY	Job Numbe	er:				
Boring:	SB-6		Total Dept					
Drilling Co.				Sample	Core	Casing		
	ony Pressi		Туре	4'		-		
	ethod: Dire	ect Push	DIA.	2"				
	1/30/2006		Weight Fall	 		 	_	
Inspector:	Dan Simps						Class USCS	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery	(Geologic Descripton			Remarks CTT
1_	51		4/2	Brown (cn		H 11 cmf) Sand	o" '¿" SW	Ury Imke
3_							SP	ara a 7 pm
5_ 6_	5-2		4/3	Brawn to	ned (cm)		5' SP	PID = 3.7 PPM Dry laose non-plastic
7_ 8_				Brown to	o Ovango	(cm) Sand	SW	PID = 2.9 PPM
10_	5-3		4/3	White, to	Braun (Mt) Samuel	oʻ 5P	Tadse non-plastic Native Soil @ 10'
12_	-			White-to-	Tan (f) So		SW	

Project:	GEM		Client: O'B	rien & Gere	Pa	ge _2_ of _	4	Sketch	
Location:	Rockville C	Centre, NY	Job Numbe		1 0	90_2_01_		OKOLOI	
Boring:	SB-6		Total Dept						
Drilling Co.				Sample	Core	Casing			a.
	Tony Press		Туре	4'			_		
	ethod: Dir	ect Push	DIA.	2"		-			
	1/30/2006 Dan Simp	con	Weight Fall		-	-			
mapector.	Dan Simp							(0	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery	(Geologic D	escripton		Class USCS	Remarks Remarks
13_				Brawn (m	1) Sond		12'5		PID= 2.3 PM Dry non-plastic loose
14_	5-4		4/3.5				11	SP	
15_		_		Brown (Cr Gravel	mt) sand, so n) Sand, so	one (cont)	14'10' ¹ 15' Tounded	5P	moist
16_							(D'	SP	Dry PID= 6.6 PAM imie non-plastic
17_	5,5		4/2	White to	Tan (f)	Sound	1 /		wet a 18'
19_							Ž Ž	SW	
20_				_					prn= 2.7 PPM
21_			,//						PID= 2.7 PPM saturated moderately compact non-plastic
22_	5,6		4/3						
23_									
24_									

Project:	ĞEM		Client: O'P	Brien & Gere	Pa	ge _3_ of	<u> </u>	Sketc	<u> </u>
Location:		Centre, NY	Job Numb		, , ,	90_0_0_01		OKCIO	
Boring:	SB-6	<u> </u>	Total Dept						
Drilling Co.	. EPI			Sample	Core	Casing			,
	Tony Press	imone	Туре	4'					
	lethod: Dir		DIA.	2"					
	1/30/2006		Weight						
Inspector:		son	Fall						
,								S	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic De	escripton		Class USCS	PID = 5.0 PAM
25_ 26_	5-7		4/3						PID = 5.0 PAM libit maderately compact mon-plactic
27_							27'6"		
28_			-	Brown (+) sun White to C	d, some (curl)		27'8" VR 1991	5P 5P	PID= 2.5 PPM
29_			. 1 . 1	Brawn (f)	Sand				PID= 2.5 PPM læse weit nan-plastic
30_	58		4/3					5W	
31_				(6)	· · · · · · · · · · · · · · · · · · ·		31'3"	<u>.</u> .	
32_				Brown (t)) Sandy 2	ia.y	201/"	SC	maderately compact Plastic PLD = 4.5 PPM
33_			4/	Brawn (f) clay lens	Sand wi	th interbe	32 6 about		west moderately compact nam-plastic
34_	5-9		4/4				1	SC	
35_				(a)	4		35'6"		
36_				Gray (f)	Sandy Clay	/ <u> </u>		SW	Plastic

Project:	GEM			rien & Gere	Pag	e_4_of_4_	Sketcl	h:
Location:	Rockville C	entre, NY					1	
Boring:	SB-6		Total Dept		.		1	
Drilling Co				Sample	Core	Casing		e e
	ony Press		Туре	4'			_	
	ethod: Dir	ect Push	DIA.	2"				
	1/30/2006		Weight				_	
Inspector:	Dan Simp	son	Fall					
Depth (ft)	Sample	Blow Count	Penetration/ Recovery	C	Geologic Des	scripton	Class USCS	PID = G.I PPM West Moderately Compact Plastic
37_	. (4/4					PID = G. 1 PPM ived moderately compact Plastic
38_	5-10		174	Brown to riv Brown (craf	$\frac{si(mt)}{Sand}$	Sand 37/10		
39_	ļ						SP	Comfact Non-Mastic
40_					7 7		7	
41_				End of	bering			
42_								
43_								
44_								
45_								
46_								· .
47_								
48_	_							

<u> </u>			011 / 015			4 5 4	loi i	
Project:	GEM_			rien & Gere	e Paç	je _1_ of _4_	Sketc	n:
Location:		entre, NY	Job Number		_		_	
Boring:	SB-7		Total Dept		10	10 :	4	
Drilling Co			I	Sample	Core	Casing	_	•
	Tony Press		Туре	4'			_	
(lethod: Dire	ect Push	DIA.	2"			_	
Date:	3/2/2006		Weight				4	
Inspector:	Dan Simp	son	Fall				 	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic De	scripton	Class USCS	Remarks
1_ 2_ 3_ 4_ 5_	51		4/2	Brown	ncrete (m) Sand		SW	PID = 4,5 PAM Dry 1005e 1007- plastic Fill PID = 0.0 PPM Dry 1005e 1007- plastic Fill Fill
8_ 9_ 10_ 11_ 12_	5-3		4/3	Brown (C Sub-Young	in) Sond ded grave	7'91 some (cm)		PID: 2.6 PPM Ory 10050 non-plastic Native Soil 28'

				-					
Project:	GEM			rien & Gere	Pa	ge _2_ of _4	4	Sketcl	1 ;
I	Rockville C	entre, NY	Job Numb						
Boring:	SB-7		Total Dept	Sample	Core	Casing			
Drilling Co	Tony Press	imono	Туре	3ample 4'	Core	Casing			•
	ethod: Dir		DIA.	2"					
Date:	3/2/2006	ectrusii	Weight						
Inspector:		eon	Fall				_		
пізрестог.	Dan Omp							′0	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic De			Class USCS	PID = 0.0 PPM Wet 2012/6 lasse non-plastic
13_				Brown (c) Tan (f) S	n) Sandiy	Gravel =	13'6"	SP	PID = 0.0 PPM Wet 2012/6 larse Mon-plastic
14_	5.4		4/3	Tan (f) S	and	-	15'6		compact non-plastic
15_									
16_							,	/ i i i	PID = 2.7 PPM West Compact Non Plastic
17_			4/					SW	non-plastic
18_	55		71						
19_									
20_									PID= 1,2 PPM
21_				Brown San	dy Gravel	(mf)	21' 21'3"	GP	PIDS 1,2 PPM wet compact non-Plastic
22_	5-6		4/15	Tan (f) Si		•	22'6"	SW	
23_				brown Si	ty (E) Sav	Ä		мL	low-plastic
24_								/V L	

Project:	GEM		Cliont: O'P	rien & Gere	Pag	e _3_ of	1	Sketcl	
Location:	Rockville C	entre NY	Job Number		гау	e_3_0i		SKEILI	1.
Boring:	SB-7	onac, ivi	Total Dept						
Drilling Co				Sample	Core	Casing			
	Tony Press	imone	Туре	4'		J			
	lethod: Dir		DIA.	2"					
Date:	3/2/2006		Weight						
Inspector:	Dan Simp	son	Fall						
Depth (ft)	Sample	Blow Count	Penetration/ Recovery	C	Geologic Des	scripton		Class USCS	Remarks
							24'6"		PID = 1.4 PPM
25_				Tan to Bi	rown (f)	Sand	29 6		west waterately compact low-plastic non-plastic
26_	5-7		4/2					SW	non-plastic
27_				Tan to Or	iange (f)	Sand	271		
28_								SW	non-plastic PID= 2.2 PPM meist compact plastic
29_	0		4/3	Brawn Sitt	y Clay			/	Plastic tight clay
30_	5.8			Gray (f) Gray (f)	Silty Clo	У		CL	,
32								SW	moist Compact non-plastic
33				Gray Claye	ey (f) San	d	-	SC	PID = 5.4 PPM Wet Compact Plastic
	a		4/3	Gray (F)	Sand				
35	5ª		/3					SW	non-plastic
36_				Tan and Ro	ed (F) So	nd		SW	Comfact non-plastic

Project:	GEM		Client: O'B	rien & Gere	Paç	ge _4_ of _4_	Sketch	n:
Location:	Rockville C	entre, NY	Job Numbe				\sqcup	
Boring:	SB-7		Total Depti		_			
Drilling Co.				Sample	Core	Casing		•
Driller: 7	Tony Press	imone	Туре	4'				
Drilling M	ethod: Dire	ect Push	DIA.	2"				
Date:	3/2/2006		Weight			_		
Inspector:	Dan Simps	son	Fall					-
Depth (ft)	Sample	Blow Count	Penetration/ Recovery		Geologic De		Class USCS	Remarks
37_			L//	Brown (Sub-roun	(mf) San ded graw	d, Sonne (cm) el		PtD = G.1 PPM Next læse non-plastic
38_	5-10		//3				SP	
39_								
40_		-		- 0 (/	/	
41_				End of	wy ing	1		
42_								
43_								
44_								
45_								
46_								
47_								
48_								

Project:	GEM		Client: O'B	rien & Gere	Pac	e _1_ of _3_	Sketc	 h:
	Rockville C	entre, NY	Job Numbe	er:	·			
Boring:	SB-8		Total Dept					
Drilling Co.		_	T	Sample	Core	Casing		
	Tony Press		Туре	4'			_	
	lethod: Dire	ect Push	DIA.	2"		_	\dashv	
Date: Inspector:	3/3/2006		Weight Fall	-		-	\dashv	
inspector.	Dan Simp						10	
Depth (ft)	Sample	Blow Count	Penetration/ Recovery	(Geologic De	scripton	Class USCS	Remarks
1_ 2_ 3_			4/2.5	Grawn (mcrete M) Sand	101	,	PID= 0.9 PPM Dry 10982 non-plastic Fill
4_ 5_ 6_ 7_	5,2		4/2				SW	PID= 0.6 PPM Dry 1005e nan-Alastic Fill
8_ 9_ 10_ 11_ 12_	5-3		4/3.5	Brown (CA Brown (CA Brown (CA	nf) Sand nf) Sand, mf) Sand	some ravided (cr.)	SP SP	PID = 0.9 PPM Dry 1005e hon-plastic Native Soil 0) 8'

Project:	GEM		Client: O'B	rien & Gere	Pa	ge _2_ of _3_	Sketcl	h:
Location:	Rockville C	Centre, NY	Job Numb	er:				
Boring:	SB-8		Total Dept	h: 36'				
Drilling Co	. EPI	_		Sample	Core	Casing		
Driller:	Tony Press	simone	Туре	4'				
	lethod: Dir		DIA.	2"				
Date:	3/3/2006		Weight					
Inspector:		son	Fall					
	1						S	
∦ ⊋	}	Blow Count	Penetration/ Recovery				Class USCS	PID= 0.4 PPWW Wext a 13' Non-Plastic
) <u>+</u>	e e	၂ ပိ	tra	•	Geologic De	escripton	l o	ar X
Depth (ft)	Sample		Penetratic				as	E E
	Sa	<u> </u>	9, 8				<u> </u>	<u>x</u>
1]]	PID= 0.4 PPW
}			1				,	West a 13'
13_]			V 13	<u></u>	non-Plashic
				Tan to Wi	nte sand	y (Limf) rewade	eX.	The state of the s
	1		111	Grave		y (LMF) rounde		
14	5.4		14/,,					
-	3		1 74				SP	}
1	[' '	ĺ			-	
15	Ì		ļ	1				
'~~	1			ļ				
Ŋ	ļ					15'	6"	l. and
16				White to	Tan (f) Sand		CONTACT OF PDIM
10-	<u> </u>			-				Comfact PID = 0.9 PPM Wet Compact non-Plastic
l l	ļ							compact
								non-Phstic
17_	ļ							1
l .	ļ							
1			.1/					}
18_	5.5		14/2	}				}
X .			75				SW	
l								
19_								
20								
								PLD = 2.0 PAM west compact ron-plastic
[west 1
21								compact,
								ron-plastic
	r		4/3.5					,
22	5-60		7/			m'		,
	7		125	Ovanno 1	() Sand	22'	3" SW	†
]			, 0,0	Ovenge (White to	Tan (f)	Sand		
23				,6		JAN.	l	
23-								
							SW	
24								
24_								

Tel # (845) 268-3203 Fax # (845) 268-5313

Project:	GEM		Client: O'B	rien & Gere	e Pa	age _3_ o	f 3	Sketch	 h:
	Rockville C	entre, NY	Job Numb			y			
Boring:	SB-8		Total Dept	h: 36']	
Drilling Co.	EPI		_	Sample	Core	Casing		Ī	e .
Driller: T	ony Press	imone	Туре	4'				1	
Drilling M	ethod: Dire	ect Push	DIA.	2"]	
Date:	3/3/2006		Weight				_	1	
Inspector:	Dan Simps	son	Fall						
		¥	n/					S	
Depth (ft)	ole	Blow Count	Penetration/ Recovery		Geologic D	escripton		Class USCS	PLO = 1.7 PPM
Dept	Sample	Blow	Pene					Class	Rem
							_		PID= 1.7 PAM
}									wet lose, non-plastic
25_								ļ	non-plastic
1		·							,,
}			/					SW	
26_	5-7		4/_					1200	
[]	5.		4/2	ĺ					
			, ,					[
27_								Ì	
) }							27'6"	1	
				Brewin S	nudi =1	7	<u> </u>		DED - O 7 DOM
28_				Julian 1	willy 311	,			1910= U./ PFIII
			l					[PID = 0.7 PPM moist, compact low-plastic
]					low- Plastic
29								ML)
			•	Ì				}	
}	\mathcal{O}		U/,						
30	5.8		4/4						
1 7			/ [ł			30'6"	ł	
ł l				Gray Sano	N/ 5/H		عاللا	.00	
31_				J ´			31'	ML.	
7				Brown to	Orange (f)	Sand			
		_			0 0		,	SW	
32_					^		32'	200	Was a com
				Gray (f) Gray San	Sand			5W	PID= O.OPPM West moderately compact iow-plastic
				Gray San	dy silt				West
33				ĺ ′	,				moderately compact
7		•							10W- Plastic
			/						
34	5,9		4/4					M.	·
7	2 ,		74					ML	
35									
							25/11		
				C 1/ (C)	Gara		35'6" 35'9"	SIA	non-Plastic
36				Gray (f) Brown (L	Sound mfl Suc			50	11011 1110110
				OYOWN (L	Jawe	· · · · · · · · · · · · · · · · · · ·		25	

Find of boring

WELL PURGING LOG

YEC Inc

	PROJECT TITLE:	GEM Clean	er		WELL NO. :	MW	- GEMMW-1A
	PROJECT NO.:						
	STAFF:	Dan Simpso	on, Chris Burke				
-	DATE(S):	1	/19/06 10:30				
_	TOTAL CASING AND SCRI	EEN LENGTH (FT	.)	= _	59.00	WELL ID. 1"	VOL. (GAL/FT) 0.04
	2. WATER LEVEL BELOW TO	OP OF CASING (F	Т.)	= _	17.10	2"	0.17
	3. NUMBER OF FEET STAND	DING WATER (#1	- #2)	= _	41.90	3"	0.38
	4. VOLUME OF WATER/FOO	T OF CASING (GA	AL.)	= _	0.17	4"	0.66
	5. VOLUME OF WATER IN CA	ASING (GAL.)(#3	c #4)	= _	7.12	5"	1.04
	6. VOLUME OF WATER TO R	REMOVE (GAL.)(>:	=3 x #5)	= _	21.37	6"	1.50
	7. VOLUME OF WATER ACT	UALLY REMOVED	(GAL.)	=	21.5	8"	2.60 OR
-					V=	0.0408 x (CAS	SING DIAMETER)2
			ACC	CUMULATED VOLU	JME REMOVED (GAL	LONS)	
-	PARAMETERS	INITIAL	7	14	21		
	pH	6.41	5.89	5.60	5.58		
	SPEC. COND. (umhos)	0.02	0.21	0.25	0.25		
-	TEMPERATURE (°F)	51.80	58.00	58.60	53.90		
	APPEARANCE/TURBIDITY	clear	clear	clear	clear		
	COMMENTS:						
-							
_							

WELL PURGING LOG

YEC Inc

MAFF	Dan Simpso	n, Chris Burke				_
DATE(S):	1	/19/06 9:30				
1. TOTAL CASING AND SO	CREEN LENGTH (FT.)		= _	20.00	WELL ID. 1"	VOL. (GAL/FT) 0.04
2. WATER LEVEL BELOW	TOP OF CASING (FT	.)	= _	16.75	2"	0.17
B. NUMBER OF FEET STA	NDING WATER (#1 - :	# 2)	= _	3.25	3"	0.38
. VOLUME OF WATER/FO	OOT OF CASING (GAL)	= _	0.17	4"	0.66
5. VOLUME OF WATER IN	CASING (GAL.)(#3 x	#4)	= _	0.55	5"	1.04
S. VOLUME OF WATER TO	REMOVE (GAL.)(>=	3 x #5)	= _	1.65	6"	1.50
7. VOLUME OF WATER AC	TUALLY REMOVED	(GAL.)	= _	1.8	8"	2.60 OR
				UME REMOVED (GA		SING DIAMETER)2
PARAMETERS	INITIAL	0.55	1.1	1.65		
bH	7.36	7.15	7.05	6.99		
		0.46	0.43	0.44		
SPEC. COND. (umhos)	0.50	0.40		1 1		
SPEC. COND. (umhos) TEMPERATURE (°F)	55.00	53.90	58.30	57.30		
FEMPERATURE (°F)			58.30		own	
	55.00	53.90	58.30		own	
FEMPERATURE (°F)	55.00	53.90	58.30		own	