

330 Crossways Park Drive, Woodbury, New York 11797 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 • www.db-eng.com

Board of Directors

Steven A. Fangmann, P.E., BCEE President & Chairman Robert L. Raab, P.E., BCEE, CCM Senior Vice President

William D. Merklin, P.E. Senior Vice President

May 16, 2019

Ms. Caroline Eigenbrodt New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, NY 12233-7013

Re: New York State Superfund Standby Contract Work Assignment No. D007620-41 123 Post Avenue Site (Site No. 130088) D&B No. 3150-41

Dear Ms. Eigenbrodt:

The purpose of this letter is to summarize site management activities completed for the 123 Post Avenue Site – OU1, located at 123 Post Avenue, Westbury, NY (see Attachment A - Figures). This monitoring report addresses the period from July 1, 2018 through September 30, 2018. Presented below is a summary of system operations during the quarter, as well as the results of analytical testing completed in accordance with the approved work plan for the referenced work assignment.

During this reporting period, activities occurring at the Site included the installation of a new electrical service to power the existing soil vapor extraction (SVE) system; completion of a geophysical survey; groundwater monitoring well installation and development; soil vapor point and sub-slab vapor point installation; completion of a site survey to survey the locations and elevations of the newly installed monitoring wells and vapor points; non-routine system maintenance activities to enable successful SVE system start-up; weekly SVE system operation and maintenance; and, routine groundwater sampling.

Electrical Service

A new electrical service was installed on the site building by Charles J. Hoyler Electrical Contractors Inc. of Babylon, New York. The service was constructed as a 100 Amp, 3 Phase service and the electrical contractor transferred the power supply for the SVE system from the electrical service that powers the site building to the new service. A copy of the Electrical Approval Certificate provided by the electrical inspector is provided as **Attachment B**.

Geophysical Survey

Prior to undertaking any intrusive activities, a geophysical survey was completed on August 9, 2018 by Utility Detection Inc. to: verify the locations of known underground utilities that were identified

D&B ENGINEERS AND ARCHITECTS, P.C.

Ms. Caroline Eigenbrodt New York State Department of Environmental Conservation Division of Environmental Remediation May 16, 2019

by New York 811 one-call and non-member utility companies; identify and mark any unknown/unmarked utilities or subsurface structures; and, clear each proposed boring location. The geophysical survey was performed using non-intrusive locating techniques including ground penetrating radar, radio frequency pipe and cable locator and electromagnetic utility locating system. All utilities and/or structures that were identified during the survey were marked on the ground using standard utility color codes. A location for each proposed subsurface sampling location, which was clear of utilities and subsurface structures was identified in white on the ground surface.

Groundwater Monitoring Well Installation and Development

Two groundwater monitoring wells (MW-1A and MW-2A) were installed in the vicinity of MW-1 and MW-2 as replacement wells on August 13, 2018 by Land Air Water Environmental Services, Inc. (LAWES). The monitoring well locations are provided in **Attachment A**.

The monitoring wells were installed utilizing a hollow stem auger (HSA) drill rig to depths of approximately 40 feet. Each well was constructed utilizing 2-inch diameter (I.D.) Schedule 40 polyvinyl chloride (PVC) riser and 10 feet of 0.010-inch slotted well screen. A No. 1 well gravel pack was placed around each well screen. A bentonite seal was placed above the sand pack and the remainder of the borehole was grouted to grade. Protective, flush mount casings with locking covers were installed at each well location. Monitoring well construction logs are provided in **Attachment C.** A summary of the depth of each well and construction details are presented in Table 1 below.

Well ID	Depth of Well (Fect bgs)	Depth of Screened Interval (Fcet bgs)	Well Inner Diameter (inches)	Ground Surface Elev. (U.S. Survey Feet)	PVC Elev. (U.S. Survey Feet)	Screened Interval Elev. (U.S. Survey Feet)	Northing (U.S. Survey Feet)	Easting (U.S. Survey Feet)
MW-1A	40	30 - 40	2.0	96.07	95.73	65.73-55.73	192449.03	2113998.69
MW-2A	42	32 - 42	2.0	98.49	98.27	66.27-56.27	192388.2	2113928.94

Table 1: Monitoring Well Construction Summary

Notes:

-	ID:	Identification
---	-----	----------------

-	bgs: below ground surface	-	Vertical Datum:	North	American	Vertical	Datum	88

- U.S.: United States (NAD83) Projected on the Universal Transverse Mercat (Zone 18N)	-	Elev.:	Elevation	-	Horizonta	l Datum:	North	America	n Datum	of	1983
	-	U.S.:	United States		(NAD83) (Zone 18N	Projected N)	on the	Universal	Transverse	Me	rcator

- PVC: Polyvinyl Chloride

Following installation on August 15, 2018, LAWES developed the newly installed wells and existing monitoring well MW-3 (three wells total) in order to remove foreign materials and to facilitate hydraulic communication between the formation and the wells. The wells were developed utilizing standard surging and pumping techniques. Well development water was monitored for turbidity during purging using a water quality meter and readings were recorded. Development was considered

Ms. Caroline Eigenbrodt New York State Department of Environmental Conservation Division of Environmental Remediation May 16, 2019

complete when either the turbidity of the purge water was below 50 nephelometric turbidity units (NTUs), the well purged dry, or 10 well volumes were removed. Monitoring well development logs are provided in Attachment D.

Soil Vapor and Sub-Slab Vapor Point Installation

Three soil vapor points (SV-1 through SV-3) were installed in paved areas surrounding the on-site building on August 14, 2018 by LAWES. The soil vapor points were set at approximately 10 feet bgs. utilizing direct push techniques. The subsurface soil vapor points were constructed using stainless steel screens and Teflon® lined polyethylene tubing. The vapor point screens are approximately 6-inches long and constructed of double-woven stainless-steel wire. Filter glass beads were placed around the screened portion of each vapor point extending from the bottom of the borehole to approximately 1-foot above the screen. Approximately 6 inches of washed sand were placed directly above the filter glass beads, followed by a bentonite seal above the washed sand to a depth of approximately 1-foot bgs.

Two sub-slab vapor points (SS-1 and SS-2) were installed within the on-site building on August 14, 2018 by LAWES. The concrete slab was cored at each sub-slab sample location. The sub-slab vapor points were constructed to approximately 1.5 feet below grade, using stainless steel screens and polyethylene tubing. The point screens were approximately 6-inches long and constructed of double-woven stainless-steel wire. Filter glass beads were placed around the screened portion of each vapor point extending from the bottom of the borehole to approximately 4-inches above the screen followed by a washed sand and a bentonite seal.

After construction each vapor point was purged using a low-flow sample pump to evacuate 3 volumes of soil vapor. A PID was utilized to record volatile organic compound (VOC) concentrations from the soil vapor probes in ppb. Helium was used as a tracer gas to ensure that an adequate surface seal was created during construction. Flush mount protective casings with covers were installed at all soil vapor and sub-slab vapor point locations. Locations of the soil vapor points and sub-slab vapor points are provided in **Attachment A**. Construction logs for the soil vapor points and the sub-slab soil vapor points are provided in **Attachment C**.

SVE System Operation, Maintenance and Sampling

Non-routine System Maintenance Activities

On September 9, 2018, Clean Globe Environmental (Clean Globe) was on-site to complete an SVE system inspection to enable the successful restart of the system. Following the system inspection Clean Globe recommended repair or replacement of the system flow meters, vacuum gauges, effluent piping and gripper plugs at the well heads, as well as installation of a temperature gauge for the effluent piping. Clean Globe retuned on September 17, 2018, to complete the above-mentioned maintenance activities to enable the system restart. Clean Globe attempted to fix the flow rate meters at the on-site recovery wells (RW-1S, RW-2S, RW-3S and RW-4S); however, due to the

Ms. Caroline Eigenbrodt New York State Department of Environmental Conservation Division of Environmental Remediation May 16, 2019

configuration of the flow meters and housings Clean Globe recommended the use of a hand-held meter to obtain accurate system flow rate readings at the recovery wells through an access point in the PVC. Clean Globe replaced the broken vacuum gauges at recovery wells (RW-1S, RW-2S, RW-3S and RW-4S), at the blower and moisture separator and a new temperature gauge was installed on the blower effluent line. Additionally, Clean Globe installed new CPVC piping to the effluent line and removed the granular activated carbon adsorbers, as the previous piping was compromised. Following the above completed maintenance activities Clean Globe restarted the system on September 17, 2018, of this reporting period.

System Performance Summary

Following the SVE system start-up on September 17, 2018, D&B completed weekly site visits to complete routine operations and maintenance activities. System monitoring logs are provided in Attachment E – SVE Operation and Maintenance Logs. The SVE system has been in operation since start-up on September 17, 2018 of this reporting period. The performance of the SVE system during the current reporting period and start-up on September 17, 2018, is summarized below.

SVE System Performance Summary												
Current Reporting Previous Reporting Totals to Date												
Parameter	Period	Period	(3)									
SVE System												
SVE System Average Flow Rate (1)	203.85	NA	203.85									
VOC Removal Summary (lbs.) ⁽²⁾	6.91	NA	6.91									
Total VOC Removal (lbs.)	6.91	NA	6.91									

1. SVE System flow rates are monitored on a weekly basis.

2. SVE discharge vapor sampling is conducted on a quarterly basis

3. Totals are based on SVE System start-up on September 17, 2018 through the end of this reporting period.

Soil Vapor Extraction System Runtime/Downtime Summary

The total elapsed time for this reporting period from system start-up on September 17, 2018 through September 30, 2018 was 320 hours. Of this amount, the SVE system operated for 320 hours or 100 percent of the total elapsed time. A detailed system downtime summary, which identifies specific information regarding alarm conditions, downtime, system restart time, repairs, etc. is provided as **Attachment F**.

System runtime/downtime summary for the SVE system is summarized below.

SVE Runtime/Downtime Summary											
	(Hours)	(Percentage)									
SVE System Runtime	320	100%									
SVE System Downtime	0	0%									
Total SVE System Runtime to Date ⁽¹⁾	320	100%									

1. Total SVE System runtime and downtime to date are based the system being restarted on September 17, 2018.

Ms. Caroline Eigenbrodt New York State Department of Environmental Conservation Division of Environmental Remediation May 16, 2019

Soil Vapor Extraction System Vapor Sampling

One vapor-phase effluent discharge sample was collected for laboratory analysis via United States Environmental Protection Agency (USEPA) Method TO-15. The sample was collected from the SVE effluent system on September 17, 2018 upon system restart. The total volatile organic compound (VOC) emissions rate was 2.16E-02 pounds per hour (lbs./hr.) based on the sample collected on September 17, 2018 where the SVE blower average flow rate was 203.85 CFM. Since the system start-up through the end of this reporting period the SVE system removed approximately 6.91 pounds of VOCs. The sample exhibited VOC Concentrations well below the site-specific effluent limit of 0.5 lbs/hr, which was developed in consultation with the NYSDEC as a means of monitoring VOC emissions associated with the SVE System. Refer to Attachment G for analytical results.

Groundwater Monitoring and Sampling

Water levels were measured at the newly installed monitoring wells in conjunction with the quarterly groundwater sampling event conducted on September 17, 2018. Depth to water measurements and topographic survey data were used to calculate groundwater elevations and to prepare a groundwater elevation contour map. Groundwater level measurements and a groundwater contour map are provided in **Attachment A**. Based on information gathered, the depth to groundwater ranges from 31.72 feet bgs in MW-01A to 34.38 feet bgs in MW-02A. Based on groundwater elevation measurements, the groundwater flow direction is to the southwest.

Groundwater samples were collected from three on-site monitoring wells (MW-1A, MW-2A and MW-3) during this reporting period. Samples were analyzed for VOCs utilizing USEPA Method 8260, all results are compared to NYSDEC Class GA Groundwater Standards and Guidance Values. Additionally, per the request of the NYSDEC, all monitoring wells were sampled for per- and polyfluoroalkyl substances (PFAS), as well as 1,4-dioxane during this reporting period. The locations of on-site groundwater monitoring wells are provided in **Attachment A**. VOCs were not detected in excess of standards, criteria and guidance values in any of the monitoring wells sampled. **Attachment G** presents tabulated analytical results relative to SCGs and **Attachment H** presents groundwater quality logs.

Data Validation Summary

One vapor-phase sample and three groundwater samples were collected this reporting period. All three groundwater samples collected throughout this reporting period were analyzed for VOCs via USEPA Method 8260, 1,4-dioxane via USEPA Method 8270 SIM and TCL PFAS via USEPA Method 537 Modified by Test America Analytical Laboratory. Additionally, the collected vapor-phase sample was analyzed in accordance with USEPA Method TO-15 by Test America Analytical Laboratory.

D&B ENGINEERS AND ARCHITECTS, P.C.

Ms. Caroline Eigenbrodt New York State Department of Environmental Conservation Division of Environmental Remediation May 16, 2019

The laboratory deliverable packages were reviewed for contact and method compliance to determine the usability of the sample results. Data validation checklists are provided as **Attachment I**. The findings of the review process are summarized below:

Vapor Phase Sample:

• Tetrachloroethene exceeded the calibration in the original analysis and was reported from the secondary dilution which was "D" qualified for the vapor-phase system effluent sample collected on September 17, 2018.

Groundwater Samples:

• Perfluorobutanoic acid (PFBA) and perfluorohexanesulfonic acid (PFHxS) were detected in the FIELD BLANK and method blank for groundwater samples collected from MW-1A, MW-2A and MW-3 on September 17, 2018. Perfluorohexanesulfonic acid (PFHxS) was qualified as non-detect (UB) in sample MW-1A. The "B" qualifier was removed from the remaining water sample results in which the results were more than ten times that found in the blank.

Conclusions

- The site management activities completed this reporting period included the installation of a new electrical service to power the existing SVE system; completion of a geophysical survey; groundwater monitoring well installation and development; soil vapor point and sub-slab vapor point installation; completion of a site survey to survey the locations and elevations of the newly installed monitoring wells and vapor points; non-routine system maintenance activities to enable successful SVE system start-up; weekly SVE system operation and maintenance; and, routine groundwater sampling.
- Non-Routine SVE system maintenance was successfully completed prior to the system start-up in September 2018.
- The SVE system was operating during this reporting period since system start-up on September 17, 2018, following maintenance activities, as detailed above.
- One vapor-phase discharge sample was collected for laboratory analysis this reporting period. The sample was collected from the SVE effluent following SVE system start-up on September 17, 2018. The total VOC emissions rate was 2.16E-02 lbs/hr., lower than the Site-Specific Vapor-Phase Effluent Limit of 0.5lbs/hr. established by the NYSDEC.
- Three on-site monitoring wells (MW-1A, MW-2A, MW-3) were sampled on September 17, 2018. VOCs were not detected in excess of SCGs in any of the monitoring wells

Ms. Caroline Eigenbrodt New York State Department of Environmental Conservation Division of Environmental Remediation May 16, 2019

sampled. Additionally, per the request of the NYSDEC, the monitoring wells were sampled for PFAS and 1,4-dioxane during this reporting period.

Recommendations

- The SVE system be shutdown to allow for a soil vapor intrusion (SVI) study to be completed during the upcoming heating season.
- An evaluation should be performed after completion of the SVI study to determine if continued operation of the SVE system is necessary or if an alternate remedial measure such as installation of sub-slab depressurization system(s) should be implemented as VOC concentrations in groundwater were found to be below SCGs.
- Groundwater monitoring and sampling should continue to be conducted on a quarterly basis to monitor seasonal trends in groundwater contaminant levels at the site.
- Continue to report results, conclusions and recommendations for site/system performance activities in quarterly Site Management Reports and annual Periodic Review Reports.

Please do not hesitate to contact me at (516) 364-9890, Ext. 3506 if you have any questions.

Very truly yours,

James Van Horn Project Manager

JVHt/cf Attachments cc: M. Wright (D&B) •3150JVH051619CE_Ltr

ATTACHMENT A

FIGURES AND TABLES

GROUND WATER CONTOUR MAP

FIGURE 2

Table A-1: Gro	Table A-1: Groundwater Elevation Measurements														
			GROUND	TOP OF PVC	DATE										
	LOCA	TION	ELEVATION	RISER	9/17/2018										
WELL	NORTH	EAST	(U.S. Survey Ft.)	(U.S. Survey Ft.)	DTW	ELEV									
MW-01A	192449.03	2113998.69	96.07	95.73	31.72	64.01									
MW-02A	192388.2	2113928.94	98.49	98.27	34.38	63.89									
MW-03	192392.28	2113941.42	98.3	97.78	33.91	63.87									

NOTES

-- Not measured

U.S.: United States

Ft.: Feet

DTW: Depth to water

ELEV: Elevation

Vertical Datum: North American Vertical Datum 88

Horizontal Datum: North American Datum 83

ATTACHMENT B

ELECTRICAL APPROVAL CERTIFICATE

Electrical Inspectors, Inc.

New York Board of Fire Underwriter 300 East Meadow Avenue East Meadow, NY 11554 Office: (516) 794-0400 (631) 650-0200 Website: www.eiiny.com

Mail To: Charles J. Hoyler Electrical Contractors Inc. Charles J. Hoyler PO Box 727 Babylon NY 11702 License # Westbury 468 Hempstead 1929 2018-1061514 Westbury, Village of Inspector: 126 Issue Date: 7/19/2018

Property Address:

NYS DEC 123 Post Avenue Westbury NY 11590

ELECTRICAL APPROVAL CERTIFICATE

Section: Block: Lot: Permit: AREAS LISTED BELOW ARE APPROVED BY Inspection AND FOUND TO BE IN COMPLIANCE WITH THE BUILDING CODE OF NYS AND CURRENT PROMULGATED NEC

No visual defects were found for the electrical inspection provided. No obvious unsatisfactory conditions were found in the areas herein below only.

Commercial Inspection Final Approved 7/18/18

New Service Overhead 1: Meter 100 Amps Three Phase 1-100 Amp 20 Circuit Panel 8 Used.*

This electrical inspection and certificate does not take into account any FEMA, NYS and local flood elevation requirements. It is the responsibility of the property owner to determine if flood elevation requirements apply. NYBFU and Ell are not responsible for any Flood Elevation requirements. Therefore this electrical certificate is only for compliance of NYS Electrical and NEC Codes.

Richard M. Bivone President

This document features a tamper proof Quici

Philip F. Goehring, Jr. Chief Electrical Inspector

ATTACHMENT C

MONITORING WELL, SOIL VAPOR AND SUB-SLAB VAPOR POINT CONSTRUCTION LOGS

Well Construction Log

Well Construction Log

AND ARCHITECTS, P.C. Sub-Slab Vapor Point - Construction Log
 Job No.
 3150-41
 Soil Vapor No.
 SS-1

 95.83
 Top Riser Elevation
 95.51
 Site 123 Post Avenue - OU1 SS-1 Total Depth 20 inches Surface Elevation Date Installed 8/14/2018 Dia. ___ Material Teflon-tubing Tubing Length 12 inches --Dia. 0.25 in. Material Stainless Steal 6 inches Screen Length **SCHEMATIC** Flush Mount Manhole Seal Type Bentonite granular seal 2 inches Top Seal 6 inches Top of Sand Pack Sand Pack Type Filpro Sand Pack Size #00 8 inches Top of Glass Beads 12 inches Top of Screen Sand Pack Type Filpro Glass Filter Beads Size --18 inches Bottom of Vapor Point 20 inches Total Depth of Boring

D&B ENGINEERS

AND ARCHITECTS, P.C. Sub-Slab Vapor Point - Construction Log Job No.3150-41Soil Vapor No.SS-95.87Top RiserElevation95.60 Site 123 Post Avenue - OU1 SS-2 Total Depth 20 inches Surface Elevation Date Installed 8/14/2018 Dia. ___ Material Teflon-tubing Tubing Length 12 inches --Dia. 0.25 in. Material Stainless Steal 6 inches Screen Length **SCHEMATIC** Flush Mount Manhole Seal Type Bentonite granular seal 2 inches Top Seal 6 inches Top of Sand Pack Sand Pack Type Filpro Sand Pack Size #00 8 inches Top of Glass Beads 12 inches Top of Screen Sand Pack Type Filpro Glass Filter Beads Size --18 inches Bottom of Vapor Point 20 inches Total Depth of Boring

D&B ENGINEERS

ATTACHMENT D

MONITORING WELL DEVELOPMENT LOGS

FIELD OBSERVATION LOG MONITORING WELL DEVELOPMENT RECORD

SITE 123 Post Avenue –	OU1		DA	TE: <u>8/15/2018</u>		
WELL ID: MW-1A						
PERSONNEL: Tara Judge	e		_			
	.		10.5			
Depth of well (from top o	of casing)		. 40 ft.			
Initial static water level (from top of c	asing)	. <u>31.51 ft.</u>			
neadspace readings			. <u>0.0 ppm</u>			
Puraina Method			Well Volume Ca	alculation:		
Airlift	Centrif	ugal	2 ii	n. casing: 8.49	ft. of water x 0.16 =	1.38 gallons
Bailer	Pos. Di	ispl.	3 ii	n. casing:	ft. of water x 0.36 =	gallons
Submersible	Perista	ltic	4 ir	n. casing:	ft. of water x 0.65 =	gallons
Pump X	Pump ((Low Flow)				
	-					
volume of water removed:						
55 gal.		>3 volume	s:ves X	no	purged dry? yes	no X
<u> </u>		o volumo	<u> </u>	<u> </u>	purgou ury	
Field Tests						
Comments	Temp	nН	Conductivity	Turbidity	Dissolved Oxygen	ORP
	(c°)	рп	(ms/cm)	(NTUs)	(mg/l)	(mv)
Surge pump to bottom of screen.	19.16	6.17	0.498	+1000	6.37	238
	18.73	6.56	0.544	+1000	6.57	176
Set pump in screen zone	17.72	6.75	0.505	+1000	5.91	164
	17.59	6.66	0.504	189	5.72	154
	17.59	6.57	0.508	65.5	5.73	134
	17.67	6.49	0.576	1000	5.81	128
	17.54	6.52	0.558	1000	6.06	157
	17.37	6.45	0.554	120	5.59	166
Surge to bottom	17.71	6.44	0.540	1000	6.70	173
	17.41	6.40	0.518	1000	6.56	185
	17.42	6.43	0.490	1000	6.16	189
Surge to bottom	17.38	6.41	0.520	1000	6.26	190
	17.38	6.35	0.726	1000	4.76	154
2	17.33	6.40	0.528	395	5.74	169
Surge through screen zone	17.50	6.42	0.524	98.5	5.54	146
	17.55	6.45	0.525	59.4	5.30	128
	17.09	0.01	0.517	20	6.32	124
	17.43	6.65	0.515	17.1	6.45	124
	17.39	6.64	0.510	0.2	6.33	116
	17.50	0.04	0.515	9.2	0.55	110
Method: Purge Start: 7:27 am Purge Stop: 8:55 am Pump: Submersible Meters: Horiba U52 a	Grundos pu and water lev	mp /el				
Observations						
Weather/Temperature:	Sunny	70-90 degre	es F			
Description:	Clear at e	nd of purgin	g			
Free Product? yes			no <u>X</u> des	cribe		
Sheen? yes			no X des	cribe		

describe

 Free Product? yes
 no
 X

 Sheen? yes
 no
 X

 Odor? yes
 no
 X

 Comments: Purge water contained in (1) 55-gallon drum.

 Periodic surging was performed throughout the screened zone.

FIELD OBSERVATION LOG MONITORING WELL DEVELOPMENT RECORD

SITE 123 Post Avenue – O	U1		D	ATE: <u>8/15/2018</u>			
WELL ID: MW-2A							
PERSONNEL: <u>Tara Judge</u>							
Dopth of wall (from top of	cacing)		10 ft				
Initial static water level (from the static	be top of c		42 IL.				
Headspace readings		asing)	0.0 nnm				
ricadopace readings		·····	0.0 ppm				
Puraina Method			Well Volume (Calculation:			
Airlift	Centr	ifugal		2 in. casing: 6.6	64 ft. of water x 0.16 =	1.08	gallons
Bailer	Pos. I	Displ.		3 in. casing:	ft. of water x 0.36 =		gallons
Submersible	Perist	altic		4 in. casing:	ft. of water x 0.65 =		gallons
Pump X	Pump	(Low Flow)					
· · · · · ·							
volume of water removed:		2 yalum-		20	purgod drug was		
55gai.		>> volume	s. yes <u>X</u>		purged ary? yes		
Field Tests							
Comments	Temp		Conductivity	Turbidity	Dissolved Oxygen	ORP	
Commonito	(C°)	рН	(ms/cm)	(NTUs)	(mg/l)	(mv)	
Pump set to bottom of	10.25	6.02	0.775	1000	2.52	161	
screen zone.	10.55	0.93	0.775	1000	3.33	101	
Stopped pumping to clear obstruction.	17.42	6.88	0.866	668	1.99	159	
	18.32	6.90	0.842	1000	3.17	158	
Pump surged to bottom.	18.40	6.69	0.851	1000	2.62	174	
	17.56	6.75	0.873	1000	2.80	165	
	17.88	6.68	0.868	322	3.15	162	
	17.96	6.65	0.876	1000	2.60	171	
Surged through screen zone	17.89	6.62	0.879	739	2.50	171	
	17.56	6.66	0.883	248	2.68	161	
	18.07	6.63	0.848	1000	2.63	166	
a	18.15	6.57	0.850	947	2.06	170	
Surged to bottom.	18.09	6.75	0.867	1000	3.01	172	
	18.10	6.64	0.870	467	2.76	168	
	18.00	6.75	0.866	132	2.99	160	
Surged Inrough screen Zone	18.03	0.00	0.847	630	3.52	162	
	10.00	0.00	0.854	26.9	3.69	100	
	17.00	6.70	0.850	21.0	2.99	150	
	17.71	0.70	0.651	21.9	2.69	159	
Method: Purge Start: 10:53 am Purge Stop: 12:03 am Pump: Submersible G Meters: Horiba U52 an	rundfos Pu d water leve	mp əl					
Observations							
Weather/Temperature:	Sunny, 70	-90 degrees	s F				
Description:	Clear at e	nd of purgin	ıg.				
Free Product? yes			no <u>X</u> de	escribe			
Sheen? yes			no <u>X</u> de	escribe			
Odor? yes			no <u>X</u> de	escribe			

Comments: Purge water contained in (1) 55-gallon drum. Periodic surging was performed throughout the screened zone.

FIELD OBSERVATION LOG MONITORING WELL DEVELOPMENT RECORD

SITE 123 Post Avenue – Ol	U1		D	ATE: <u>8/15/2018</u>	}	
WELL ID: MW-3						
PERSONNEL: Tara Judge			_			
			-			
Depth of well (from top of o	casing)		. 42 ft.		_	
Initial static water level (fro	om top of ca	asing)	. 33.68 ft.		_	
Headspace readings		. 0.0 ppm		_		
Purging Method Airlift	Centri	ifugal	Well Volume (Calculation: 2 in. casing:	8.04 ft. of water x 0.16 =	1.31 gallons
Bailer	Pos. [Displ.		3 in. casing:	ft. of water x 0.36 =	gallons
Submersible	Perist	altic		4 in. casing:	ft. of water x 0.65 =	gallons
Pump X	Pump	(Low Flow)			
volume of water removed: 55 gal.	_	>3 volum	es: yes <u>X</u>	no	purged dry? yes	no X
Field Tests	-			-		
Comments	Temp	рH	Conductivity	Turbidity	Dissolved Oxygen	ORP
Ot and many in a	(C°)	0.77	(ms/cm)	(NTUS)	(mg/l)	(mv)
Start pumping	19.02 0.77		0.761	1000	2.12	144
Set pump to bottom of screen	18.45	0.58	0.708	653	2.30	109
Surge through screen zone	17.97	6.55	0.009	155	2.32	173
Surge through screen zone	17.45	6.46	0.000	100	2.00	160
	17.90	6.51	0.752	944	3.52	161
Surge through screen zone	17.80	6.38	0.004	1000	2.07	171
	17.66	6.45	0.661	597	3.61	171
	17.53	6.47	0.655	77.7	3.76	163
Surge through screen zone	17.66	6.48	0.684	1000	3.71	156
5 5	17.57	6.44	0.645	340	3.34	169
	17.52	6.47	0.638	79.0	3.30	161
	17.49	6.46	0.638	39.5	3.61	159
	17.43	6.49	0.634	30	3.78	153
	17.30	6.48	0.630	140	3.51	149
Surge through screen zone	18.84	6.49	0.650	1000	4.50	152
	18.11	6.57	0.621	1000	4.31	165
	17.70	6.54	0.609	188	3.62	167
	17.92	6.48	0.610	62.4	3.69	168
	17.62	6.50	0.610	26	3.69	160
	17.60	6.51	0.610	18	3.31	161
Method: Purge Start: 9:20 am Purge Stop: 10:40 am Pump: Submersible Ge Meters: Horiba U52 and Observations	rundfos Pu d water leve	mp el	- F			
vveatner/ i emperature:	Sunny,	0-90 degre				
Description.	Ulear at i	ena ot burc	und.			

Description.	oloar at one of parging.		
Free Product? yes	no	Х	describe
Sheen? yes	no	Х	describe
Odor? yes	no	Х	describe

Comments: Purge water contained in (1) 55-gallon drum. Periodic surging was performed throughout the screened zone.

ATTACHMENT E

SVE SYSTEM FIELD LOGS

123 Post Ave, Westbury, NY 123 Post Ave Cleaners SVE Field Logs

		Flow	(cfm)			Vacuur	m (inch)			PID (ppm)		Pre-Blower	Pre-Blower	Post-Blower	Post-Blower	Post-Blower	Moist-Sep	Post Blower Temp	
Date/Time	RW-1S	RW-2S	RW-3S	RW-4S	RW-1S	RW-2S	RW-3S	RW-4S	RW-1S	RW-2S	RW-3S	RW-4S	Vacuum (inch)	Flow (cfm)	Pressure (inch)	Flow (cfm)	PID (ppm)	Vac (inch)	°F
9/17/18 5:00 PM	39	65		52	-4	-5	-7	-8	2	5.1	19.2	9.2		190		210	11.2	-30	117.2
9/26/18 4:30 PM	39	65	65	50	-5	-5.5	-6.5	-9	1.6	1.4	4.9	4.8		190		197.7	3.7	-32	122.5
AVERAGE	39.00	65.00	65.00	51.00	-4.50	-5.25	-6.75	-8.50	1.80	3.25	12.05	7.00		190.00		203.85	7.45	-31.00	119.85

ATTACHMENT F

SVE DOWNTIME TABLE

Table1 New York State Department of Environmental Conservation NYSDEC Site No. 130088 - 123 Post Avenue Site Westbury, New York System Downtime Summary

Shut-Off Date/Time	Restart Date/Time	Component Restarted	Cause	Action Taken
	9/17/18 15:45	SVE	System Start-up	Maintenance and Restart of on-site SVE system.

ATTACHMENT G

TABULATED ANALYTICAL RESULTS

123 Post Avenue Site Air Effluent Sample Volatile Organic Compounds (VOCs)

	Sample ID Sampling Date Units	EFFLUENT 09/17/18 ug/m ³
1.1.1-Trichloroethane		180
1.1.2.2-Tetrachloroethane		U
1,1,2-Trichloro-1,2,2-Trifluoroethane		U
1,1,2-Trichloroethane		U
1,1-Dichloroethane		130
1,1-Dichloroethene		U
1,2,4-Trichlorobenzene		U
1,2,4-Trimethylbenzene		U
1,2-Dibromoethane (Ethylene Dibrom	ide)	U
1,2-Dichlorobenzene		U
1,2-Dichloroethane		U
1,2-Dichloropropane		U
1,2-Dichlorotetrafluoroethane		U
1,3,5-Trimethylbenzene (Mesitylene)		U
1,3-Butadiene		U
1,3-Dichlorobenzene		U
1,4-Dichlorobenzene		U
1,4-Dioxane (P-Dioxane)		U
2,2,4-Trimethylpentane		U
2-Chlorotoluene		U
2-Hexanone		U
4-Ethyltoluene		U
Acetone		U
Allyl Chloride (3-Chloropropene)		U
Benzene		U
Benzyl Chloride		U
Bromodichloromethane		U
Bromoethene		U
Bromoform		U
Bromomethane		U
Butane		U
Carbon Disulfide		U
Carbon Tetrachloride		U
Chlorobenzene		U
Chlorodifluoromethane		U
Chloroethane		U
Chloroform		28 J
Chioromethane		U
		550
Cis-1,3-Dichloropropene		U
Cymono		U
Dibromochloromothana		0
Dichlorodifluoromethane		0
Dichloroethylenes		580
Fthvlbenzene		11
Hexachlorobutadiene		U
Isopropanol		U U
Isopropylbenzene (Cumene)		U U
M.P-Xvlenes		U U
Methyl Ethyl Ketone (2-Butanone)		U U
		0

See next page for footnotes.

123 Post Avenue Site Air Effluent Sample Volatile Organic Compounds (VOCs)

Sample ID	EFFLUENT
Sampling Date	09/17/18
Units	ug/m³
VOCs continued	
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	U
Methyl Methacrylate	U
Methylene Chloride	U
Naphthalene	U
N-Butylbenzene	U
N-Heptane	U
N-Hexane	U
N-Propylbenzene	U
O-Xylene (1,2-Dimethylbenzene)	U
Sec-Butylbenzene	U
Styrene	U
T-Butylbenzene	U
Tert-Butyl Alcohol	U
Tert-Butyl Methyl Ether	U
Tetrachloroethylene(PCE)	<u>23000</u> D
Tetrahydrofuran	U
Toluene	U
Trans-1,2-Dichloroethene	29
Trans-1,3-Dichloropropene	U
Trichloroethylene (TCE)	<u>3800</u>
Trichlorofluoromethane	U
Vinyl Chloride	U
Xylenes, Total	U
Total Volatile Organic Compounds	28297.00 ug/m3
AVERAGE AIR DISCHARGE FLOW RATE (CFM)	203.85 CFM
TOTAL VOC DISCHARGE RATE (lbs/hr)	2.16E-02 lbs/hr

Qualifiers:

D: Result reported from a secondary dilution

U: Analyzed but not detected

J: Estimated value

Notes:

ug/m³: Micrograms per cubic meter

lb/hr: pounds per hour

CFM: cublic feet per minute

123 Post Avenue Site Groundwater Samples Volatile Origanic Compounds

Sample ID Sampling Date	MW-1A 9/17/2018	MW-2A 9/17/2018	MW-3 9/17/2018	NYSDEC Class GA Standard
				or Guidance Value
Units	ug/l	ug/l	ug/l	ug/l
VOLATILE ORGANIC COMPOUNDS				
1,1,1-Trichloroethane	U	U	U	5
1,1,2,2-Tetrachloroethane	U	U	U	5
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	5
1,1,2-Trichloroethane	U	U	U	1
1,1-Dichloroethane	U	0.38 J	U	5
1,1-Dichloroethene	U	U	U	5
1,2,4-Trichlorobenzene	U	U	0	5
1.2-Dibromoothano	0	0	0	0.04
1.2-Dichlorobonzono	0	0	0	0.0000
1.2-Dichloroethane	0	0	U	0.6
1 2-Dichloropropane	U	U U	U	1
1.3-Dichlorobenzene	U	U	U U	3
1.4-Dichlorobenzene	U	U	U	3
2-Hexanone	U	U	U	50
Acetone	U	3.3 J	U	50
Benzene	U	U	U	1
Bromodichloromethane	2.5	1.7	3	50
Bromoform	2.2	U	1	50
Bromomethane	U	U	U	5
Carbon Disulfide	U	U	U	60
Carbon Tetrachloride	U	U	U	5
Chlorobenzene	U	U	U	5
Chloroethane	U	U	U	5
Chloroform	1.4	1.6	2.3	7
Chloromethane	U	U	U	5
Cis-1,2-Dichloroethylene	1	U	U	5
Cis-1,3-Dichloropropene	U	U	U	0.4
Cyclonexane	0	0	0	
Dibromocniorometnane	3.9	1.7	3.4	50
Ethylbonzono	0	0	0	5
Isopronylbenzene	0	0	0	5
Methyl acetate	U	U	U	
Methyl Ethyl Ketone	U	Ŭ	Ŭ	50
Methyl Isobutyl Ketone	U	U	U	
Methylcyclohexane	U	U	U	5
Methylene Chloride	U	U	U	5
Styrene	U	U	U	5
Tert-Butyl Methyl Ether	U	U	U	10
Tetrachloroethylene	1.4	3.4	3.1	5
Toluene	U	U	U	5
Trans-1,2-Dichloroethene	U	U	U	5
Trans-1,3-Dichloropropene	U	U	U	0.4
Trichloroethylene	U	1.4	0.6 J	5
Trichlorofluoromethane	U	U	U	5
Vinyl Chloride	U	U	U	2
Xylenes, Total	U	U	U	5
Total Volatile Compounds	12.4	13.48	13.4	
	Footnotes/Qualifie	ers:	U: Ana	lyzed for but not detected
	ograms per liter	J: Esti	mated value or limit	

--: No standard

Exceeds Class GA Standard or Guidance Value

123 Post Avenue Site Groundwater Samples PFAs and 1,4-Dioxane

Sample ID Sampling Date	MW-1A 9/17/2018	MW-2A 9/17/2018	MW-3 9/17/2018
		••••••	••••••
PFAs in ng/l			
2-(N-methyl perfluorooctanesulfonamido) acetic acid	U	U	U
N-Ethyl-N-((heptadecafluorooctyl)sulphonyl) glycine	U	8.5 J	U
Perfluorobutanesulfonic acid (PFBS)	2.9	4	5.5
Perfluorobutanoic Acid	4.2	9.6	8.1
Perfluorodecane Sulfonic Acid	U	U	U
Perfluorodecanoic acid (PFDA)	0.4 J	1.6 J	1.5 J
Perfluorododecanoic acid (PFDoA)	U	U	1.2 J
Perfluoroheptane Sulfonate (PFHPS)	0.25 J	1.2 J	1 J
Perfluoroheptanoic acid (PFHpA)	3.8	8	13
Perfluorohexanesulfonic acid (PFHxS)	UB	3.1	6
Perfluorohexanoic acid (PFHxA)	5	9.9	12
Perfluorononanoic acid (PFNA)	1.4 J	6.9	3.4
Perfluorooctane Sulfonamide (FOSA)	0.53 J	3.7	4.8
Perfluorooctanesulfonic acid (PFOS)	8.5	210	84
Perfluorooctanoic acid (PFOA)	6.8	20	34
Perfluoropentanoic Acid (PFPeA)	5.7	9.9	12
Perfluorotetradecanoic acid (PFTA)	U	U	U
Perfluorotridecanoic Acid (PFTriA)	U	U	U
Perfluoroundecanoic Acid (PFUnA)	U	U	U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2)	U	U	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2)	17	220	9.7 J
1,4-DIOXANE (P-DIOXANE) in ug/l	0.5	U	0.42

Footnotes/Qualifiers:

ng/l: Nanogram per liter

ug/l: Micrograms per liter

U: Analyzed for but not detected

UB: Qualified as non detect due to blank result

J: Estimated value or limit

ATTACHMENT H

GROUNDWATER QUALITY LOGS

FIELD OBSERVATION LOG MONITORING WELL SAMPLE RECORD

SITE 123 Post	Avenue – OU1		I	DATE: <u>9/17/2018</u>		
WELL ID: <u>N</u> PERSONNEL: <u>1</u>	IW-1A ara Judge					
Depth of well (Initial static wa	from top of casil ter level (from to	ng) op of casing)	<u>40.1</u> <u>31.7</u>	10 72		
Purging Method Airlift Bailer Bladder Pump	C: P: P: (L	entrifugal os. Displ eristaltic Pump ow Flow)	Wel 3 4 ir	Il Volume Calculation 2 in. casing: <u>8.38</u> 3 in. casing: n. casing:	ft. of water x 0.16 = ft. of water x 0.36 = ft. of water x 0.65 =	gallons gallons gallons
volume of water rer 1.32	noved: gal.	>3 volumes: yes	3	no <u>X</u>	purged dry? yes	no _X
Field Tests						
Volume (mL)	Temp (C°)	рН	Conductivity	Turbidity	Dissolved Oxygen	ORP (mu)
Initial	23.30	6 57	0.652	1000	(119/1)	(1117)
500	19.60	6 30	0.032	1000	7/9	2/8
1 000	19.00	6.26	0.744	832	6.82	240
1,500	19.05	6.26	0.721	561	6.03	250
2,000	18.51	6.25	0.711	235	5.64	252
2 500	18 29	6.25	0.699	82.1	5.34	250
3,000	18.21	6.25	0.692	81.2	5.29	251
3.500	18.04	6.26	0.692	51	5.12	248
4,000	18.02	6.28	0.691	42	5.00	248
4,500	17.99	6.28	0.692	27	4.99	247
5,000	17.89	6.28	0.692	6.9	4.69	248
Sample ID: M Sample Time: 5: Pump: Bl Meters: Ho	Sample ID:MW-1AAnalyzed:Sample Time:5:00 pm(2) 250mL plastics for PFASPump:Bladder pump with drop screen(2) 1 L for 1,4-DioxaneMeters:Horiba U52 and water level(3) 40 mL for VOAs (2) 1 L Amber for SVOCs					
Observations Weather/Temp Description: Free Prod	erature: <u>Part</u> <u>Clear,</u> uct? yes	ly Cloudy, 60-75 F no odor, no sheen –	no X o	describe		

X describe X describe

 Sheen? yes
 no
 \overline{X}

 Odor? yes
 no
 \overline{X}

 Decontaminated the pump, drop screen and changed bladder.

FIELD OBSERVATION LOG MONITORING WELL SAMPLE RECORD

SITE 123 Pos	t Avenue – OU1			DATE: <u>9/17/2018</u>			
WELL ID.	MW-2A						
PERSONNEL:	Tara Judge						
	- and cauge						
Depth of well	(from top of casi	ng)	<u>41</u>	.31			
Initial static w	ater level (from to	op of casing)	<u>34</u>	.38			
Puraina Method			10/	ell Volume Calculatio	n.		
Airlift	C	entrifugal	2	in. casing: 6.93	ft. of water x 0.16 =	1.30 g	allons
Bailer	Po	os. Displ.	3	in. casing:	ft. of water x 0.36 =	g	allons
Submersible	Po	eristaltic	4	in. casing:	ft. of water x 0.65 =	(gallons
Pump	X P	ump (Low		-			
	FI	ow)					
volume of water r	amayadı						
	enioved. dal	>3 volumes.	ves X	no	nurged dry? yes	no	x
	gui.	s o volumes.	<u>yes _/</u>				<u></u>
Field Tests							
Volume (ml.)	Temp (C°)	nН	Conductivity	Turbidity	Dissolved Oxygen	ORF	>
		pri	(ms/cm)	(NTUs)	(mg/l)	(mv)	1
Initial	18.34	6.37	0.482	1,000	11.37	270	
1,000	17.70	6.37	0.530	330	8.77	261	
2,000	17.50	6.37	0.505	133	7.51	248	
3,000	17.51	6.30	0.575	99.0	7.11	242	
4,000	17.45	0.30	0.577	90.0	7.01	240	
5,000	17.40	0.39	0.565	0.0	0.00	234	
7,000	17.50	6.37	0.587	0.0	3.04	234	
8,000	17.05	6.36	0.507	50.0	3.09	233	
9,000	18.00	6.36	0.507	60.0	3.20	236	
10,000	18.51	6.36	0.503	51.0	3.05	236	
11,000	18.45	6.38	0.587	55.1	3.00	236	
	10.10	0.00	0.001	00.1	0.00		
Sample ID: I	MW-2A		Analyzed:				
Sample Time:	11:30 am		(2) 250m	L plastics for PFAS			
Pump: I	Bladder pump wit	h drop screen	(2) 1 L fo	r 1,4-Dioxane			
Meters: Horiba U52 and water level			(3) 40 ml	_ for VOAs			
			(2) 1 L Amb	per for SVOCs			
Observations							
Weather/Tem	nerature Dart	ly Cloudy 60-7	5 F				
Description	Perature. <u>Fait</u> Clear	no odor no sh	o i een				
				de e entre			

Description.				
Free Product? yes	s no)	Х	describe
Sheen? yes	s no)	X	describe
Odor? yes	s no)	Х	describe
enteminated the numb	drop coroon and changed bl	~~	Idor	

Decontaminated the pump, drop screen and changed bladder.

FIELD OBSERVATION LOG MONITORING WELL SAMPLE RECORD

SITE 123 Pc	ost Avenue – OU1			DATE: <u>9/17/201</u>	8	
WELL ID: PERSONNEL:	MW-3 Tara Judge					
Depth of we Initial static	ell (from top of cas water level (from	ing) top of casing)	<u>42.</u> <u>33</u> .	10 91	_	
Purging Method		Centrifugal	We 2 i	ell Volume Calculat	ion: ft_of water x 0 16 =	1.33 gallons
Bailer	i	Pos Displ	3i	n casing: <u>0.10</u>	ft of water x 0.36 =	gallons
Submersibl	e	Peristaltic	4 i	in casing:	ft of water x 0.65 =	gallons
Pump	X I	Pump (Low Flow)				gaiono
volume of water	removed:		Vec X	20		
1.19	gai.	>3 volumes:	yes <u>x</u>	no	purgea ary? yes	
Field Tests						
Volumo (ml	$T_{\rm cmn}$	~H	Conductivity	Turbidity	Dissolved Oxygen	ORP
volume (mL) Temp (C)	рп	(ms/cm)	(NTUs)	(mg/l)	(mv)
Initial	22.20	6.70	0.322	1000	5.66	216
500	21.40	6.55	0.327	9111	6.00	221
1,000	20.50	6.48	0.340	149	5.31	225
1,500	19.42	6.43	0.341	165	5.20	228
2,000	19.99	6.51	0.348	490	6.15	225
2,500	18.85	6.35	0.324	168	3.26	239
3,000	18.53	6.36	0.322	149	3.07	235
3,500	18.47	6.34	0.320	141	2.81	236
4,000	18.22	6.39	0.319	115	2.77	235
4,500	18.26	6.34	0.319	108	2.60	238
Sample ID: Sample Time: Pump: Meters:	MW-3 3:00 pm Bladder pump w Horiba U52 and	ith drop screen water level	Analyzed: (6) 250mL (6) 1 L for (9) 40 mL (6) 1 L An	Collected MS/MS _ plastics for PFAS ⁻ 1,4-Dioxane for VOAs nber for SVOCs	D.	
Observations Weather/Te	emperature: Pa	tly Cloudy, 60-7	5 F			
	Clear	, no oaor, no sh	een	doooribo		
Free P	Shoon2 yes			describe		
	Odor? yes			describe		

Decontaminated the pump, drop screen and changed bladder.

ATTACHMENT I

DATA VALIDATION CHECKLISTS

DATA REVIEW CHECK LIST

Project Name:	123 Post Ave		
Project Number:	3150-41		
Sample Date(s): 9/17/2018			
Matrix/Number of Samples: <u>Air/1 (Effluent)</u>			
Analyzing Laboratory: TestAmerica Laboratories, South Burlington, VT		ngton, VT	
Analyses: <u>Volatile Organic Compounds (VOCs)</u> : TO15		TO15	
Laboratory Report No:	200-45324	Date:9/28/18	

ORGANIC ANALYSES

VOCS

	Rep	oorted	Perfo Acc	rmance eptable	Not
	No	Yes	No	Yes	Required
1. Holding times		Х		Х	
2. Method blanks		Х		Х	
3. Laboratory Control Sample (LCS) %R		Х		Х	
5. Surrogate spike recovery					Х
6. Internal standard retention times and areas		Х		Х	
7. Initial calibration RRF's		Х		Х	
8. Continuing calibration RRF's and %D's		Х		Х	
9. Field duplicates RPD					Х
VOCs - volatile organic compounds %D - percent diffe	erence		R	RF - relative res	ponse factor

%R - percent recovery

%D - percent difference RPD - relative percent difference

Comments:

Performance was acceptable with the following exceptions:

Tetrachloroethene exceed the calibration in the original analysis and was reported from the secondary dilution which was "D" qualified.

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 12/3/2018
VALIDATION PERFORMED BY SIGNATURE:	Rom M Br

Project Name:	123 Post Ave	
Project Number:	3150-41	
Sample Date(s):	September 17, 2018	
Sample Team:	Tara Judge	
Matrix/Number of Samples:	<u>Water/ 3</u> Field Duplicate/ 0 <u>Trip Blank/ 1</u> Field Blank/ 1	
Analyzing Laboratory:	TestAmerica Laboratories, Buffalo, NY Sacramento, CA	and TestAmerica, Laboratories,
Analyses:	<u>Volatile Organic Compounds (VOCs):</u> b <u>Per-and Polyfluoroalkyl Substances (P</u> <u>1,4-Dioxane:</u> USEPA SW-846 Method 8	y SW846 8260C by NY <u>FAS):</u> by EPA 537 (modified) by CA 3270D SIM by NY
Laboratory Report No:	480-141969	Date:10/05/18

DATA VALIDATION CHECKLIST

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Performance				
	Reported		Acceptable		Not
	No	Yes	No	Yes	Required
1. Sample results		Х		Х	
2. Parameters analyzed		Х		Х	
3. Method of analysis		Х		Х	
4. Sample collection date		Х		Х	
5. Laboratory sample received date		Х		Х	
6. Sample analysis date		Х		Х	
 Copy of chain-of-custody form signed by Lab sample custodian 		Х		Х	
8. Narrative summary of QA or sample problems provided		Х		Х	

QA - quality assurance

Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.

Custody Numbers:480-141969 SAMPLE AND ANALYSIS LIST

		Sample	Parent		Analysi	is	
Sample ID	Lab ID	Date	Sample	VOC	1,4-Dioxane	PFAS	MISC
MW-2A	480-141969-1	9/17/2018		Х	Х	Х	
MW-3	480-141969-2	9/17/2018		Х	Х	Х	
MW-1A	480-141969-3	9/17/2018		Х	Х	Х	
TRIP BLANK	480-141969-4	9/17/2018		Х		Х	
FIELD BLANK	480-141969-5	9/17/2018				Х	

ORGANIC ANALYSES	

	Reported		Performance Acceptable		Not Required
	No	Yes	No	Yes	
1. Holding times		Х		Х	
2. Blanks					
A. Method blanks		Х	Х		
B. Trip blanks		Х		Х	
C. Field blanks		Х	Х		
3. Matrix spike (MS) %R		Х		Х	
4. Matrix spike duplicate (MSD) %R		Х		Х	
5. MS/MSD precision (RPD)		Х		Х	
6. Laboratory control sample (LCS) %R and RPD		Х		Х	
7. Surrogate spike recoveries		Х		Х	
8. Instrument performance check		Х		Х	
9. Internal standard retention times and areas		Х		Х	
10. Initial calibration RRF's and %RSD's		Х		Х	
11. Continuing calibration RRF's and %D's		Х		Х	
12. Transcriptions – quant report vs. Form I		Х		Х	
VOCs - volatile organic compounds %D - percent differe	ence		RR	F - relative resp	oonse factor

%R - percent recovery

%RSD - percent relative standard deviation

RPD - relative percent difference

Comments:

Performance was acceptable, with the following exception:

2. Perfluorobutanoic acid (PFBA) and perfluorohexanesulfonic acid (PFHxS) were detected in the FIELD BLANK and method blank. Perfluorohexanesulfonic acid (PFHxS) was qualified as non-detect (UB) in sample MW-1A. The "B" qualifier was removed from the remaining water sample results in which the results were more than ten times that found in the blank.

DATA VALIDATION AND QUALIFICATION SUMMARY

QUALIFICATION SUM	Laborat	tory Numbers: 480-141969		
Sample ID	Analyte(s)	Qualifier	Reason(s)	
PFA				
MW-1A	Perfluorohexanesulfonic acid (PFHxS)	UB	Detected in the method blank and/or FIELD BLANK	
Water sample	Perfluorobutanoic acid (PFBA) and perfluorohexanesulfonic acid (PFHxS)	B removed	More than ten times that found in the blank	

VALIDATION PERFORMED BY & DATE:	Donna M. Brown 12/3/18
VALIDATION PERFORMED BY SIGNATURE:	Rom M Br

Pages 4/4