

Commissioner

July 7, 2025

National Grid Mike Quinlan 175 East Old Country Road Hicksville, NY 11801

> Re: Groundwater Monitoring Report – December 2024 (Q4) Quarterly Sampling Event K - Glen Cove (C) MGP, Glen Cove Nassau County, Site No.: 130089

Dear Mike Quinlan (as the Certifying Party):

The NYSDEC has reviewed and accepts your Groundwater Monitoring Report for the December 2024 (Q4) Quarterly Sampling Event for the subject site submitted on 4/25/2025. Within this report National Grid recommended revising the groundwater sampling requirements outlined in the Site Management Plan. NYSDEC's comments and response to National Grid's recommendations included in this report are provided below.

- 1. National Grid requested to decrease the groundwater sampling frequency from quarterly to semiannual. The NYSDEC rejects this this request and requires that the sampling schedule continue as outlined in the existing Site Management Plan.
- 2. National Grid requested to remove submitting the groundwater samples for Delineation Parameters including PCBs, metals, and total cyanide from the sampling plan. The NYSDEC approves this request.
- The analytical report from Eurofins for the Q4 2024 sampling event was not included in this Groundwater Monitoring Report. Submission of this analytical report will be required for NYSDEC approval of the Periodic Review Report and Certification for the certifying period from 12/5/2024 to 12/5/2025.

If you have any questions, or need additional forms, please contact me at 518-603-3163 or e-mail: tracey.garland@dec.ny.gov.

Sincerely,

Tracey Darland

Tracey Garland Project Manager Remedial Bureau C, Section E

EC: Gerald Pratt, NYSDEC Matthew O'Neill, GEI (Consultant for National Grid) Michael Izdebski, NYSDOH

Groundwater Monitoring Report December 2024 (Q4) Quarterly Sampling Event

Glen Cove Former MGP Site

City of Glen Cove, Nassau County, New York Order on Consent Index No. D1-001098-11 Site No. 1-3-089P

Submitted to:

National Grid USA 175 East Old Country Road Hicksville, NY 11801

Submitted by:

GEI Consultants, Inc. DBA GEI Consultants Engineering, Geology, Architecture & Landscape Architecture 1000 New York Avenue, Ste. B Huntington Station, NY 11746 631.760.9300

April 2025 Project No. 1905774-20.6

atthe

Matthew O'Meil, P.E. Senior Engineer

milissa Hette

Melissa Felter, P.G. Geologist/Environmental Scientist

Table of Contents

1.	Intro	duction and Site Background	
1.1.		scription and History	2
1.2.	Geolog		2
1.3.	-	geology	3
1.4.		cal Groundwater Monitoring Event Summary	3
2.	Grou	ndwater Monitoring Event Summary	5
2.1.	Post-Re	emedial Groundwater Monitoring Plan	5
2.2.	Quarte	rly Groundwater Monitoring Summary	5
	2.2.1.	Groundwater Analytical Sample Summary	6
	2.2.2.	Hydrological Data	7
	2.2.3.	NAPL Gauging	7
2.3.	Ground	dwater Results Analysis	7
	2.3.1.	VOC Trend Analysis	7
	2.3.2.	SVOC Trend Analysis	8
	2.3.3.	Delineation Parameters Analysis	9
	2.3.4.	NAPL Gauging	9
	2.3.5.	Monitoring Deficiencies	9
3.	Opera	ation & Maintenance (O&M) Summary	
3.1.	Oxyger	n Injection System	10
	3.1.1.	Program Scope and Purpose	10
	3.1.2.	Current Monitoring Activities	10
	3.1.3.	Oxygen Injection System OM&M Data	10
		3.1.3.1. System Operational Data	10
4.	Reco	mmendations	
4.1.	Quarte	rly Monitoring Well Sampling	11
4.2.	NAPLO	Sauging	11
4.3.	Recom	mendations	11
List	of Tabl	es	
Table	2-1. Sum	mary of Quarterly Groundwater Monitoring Program	6
Table	3-1. Sum	mary of Oxygen Injection System OM&M Activity	10
Tabl	es		

Table 1 Water Level Measurements and Calculated Groundwater Elevations Table 2 Groundwater Analysis Results

Table 3 Oxygen Injection System Operational Data Q4 2024Table 4 Monitoring Well Sampling Frequency Reductions

Figures

Figure 1 Site Location Map

Figure 2 Well Location Map

Figure 3 Groundwater Contour Map – Shallow Wells

Figure 4 Groundwater Contour Map – Intermediate Wells

Figure 5 Groundwater Analytical Results – Shallow Wells

Figure 6 Groundwater Analytical Results – Intermediate Wells

Figure 7 Monitoring Well Sampling Schedule and Groundwater Analytical Summary (ug/L)

Appendices

Appendix A Quarterly Groundwater Sampling Logs

Appendix B Time Serie Plots

Appendix C Data Usability Summary Report and Form 1 Analytical Reports

MO/MF:bdp

B:\Working\NATIONAL GRID\1905774 (13 Sites) OM&M Services-Downstate, NY\01_ADMIN\Glen Cove\Groundwater Monitoring\2024 Q4\Report_Q4-GWMR_04.25.2025_New.docx

1. Introduction and Site Background

This report presents the December 2024 quarterly groundwater monitoring event results for the Glen Cove Former Manufactured Gas Plant (MGP) site located in Glen Cove, Nassau County, New York (the Site). This report has been prepared in accordance with the requirements of Section 6 of DER-10 (Division of Environmental Remediation) Technical Guidance for Site Investigation and Remediation; the Order on Consent, Index No. D1-0001-98-11 signed by National Grid Corporation (National Grid) and the New York State Department of Environmental Conservation (NYSDEC), and the Remedial Action Plan (RAP), Glen Cove Former Manufactured Gas Plant, Town of Oyster Bay, Nassau County, New York, prepared by GEI Consultants, Inc. DBA GEI Consultants Engineering, Geology, Architecture & Landscape Architecture (GEI), dated March 2010.

The NYSDEC-approved remedy for the Site included two remedial phases. Phase I included the excavation of shallow soil and offsite disposal of accessible MGP-related source material (or "hot spots"). Phase II includes groundwater treatment using oxygen injection technology and the installation of recovery wells to remove mobile non-aqueous phase liquids (NAPL). The current property owner, Long Island Power Authority (LIPA), conducted a facility upgrade which included the installation of underground utilities, foundation, pilings, and associated electric equipment. LIPA's upgrade to this substation was in response to the growing energy demand in the Glen Cove region.

Phase I excavation activities were performed from May 5 through 21, 2011 and included the removal and proper disposal of 3,411 tons of material at depths of up to approximately 17 feet below ground surface (ft bgs). All impacted soils were transported to the **Clean Earth facility** located in Morrisville, Pennsylvania for thermal desorption. An oxygen injection pilot test was conducted on April 27, 2011. Additional excavation of surface soils along the property boundary in the southwest portion of the Site was conducted from July 15 through 18, 2011. Approximately 240 tons of polycyclic aromatic hydrocarbon (PAH)-impacted material was removed to a depth of approximately 2 feet and transported offsite to the **Clean Earth facility** located in Morrisville, Pennsylvania for thermal desorption. A summary report of the soil removal was submitted to the NYSDEC on September 12, 2011. Phase II of the remediation began in February 2012 with the installation of one recovery well. Two additional recovery wells were installed in May 2012. The oxygen injection treatment system was installed between June 2017 and August 2017. The system was tested from September 17, 2017 through November 28, 2017, and several mechanical and power-related issues were resolved. The oxygen system began continuous operation on November 28, 2017.

As part of the long-term monitoring of the remedy, National Grid began quarterly monitoring of the groundwater at the Site in Q1 2010. Groundwater sampling was suspended in 2015 during LIPA substation construction, with NYSDEC approval. Monitoring wells which were abandoned to accommodate the LIPA substation construction project were reinstalled following the completion of the majority of the LIPA construction work. Quarterly sampling resumed in the first quarter of 2018 following the completion of the Phase II field work.

Monitoring was temporarily suspended in Q1 and Q2 2020 in accordance with New York State Executive Order 202.6.

1.1. Site Description and History

The Glen Cove Former MGP Site (1 Stanco Street, Glen Cove, NY) is an inverted L-shaped parcel of approximately 1.59 acres presently occupied by an active electrical substation which services Glen Cove and the surrounding area (Figure 2). The Site is bounded by a health club parking area to the north with the LIRR tracks to the northwest, mixed commercial/residential properties to the south and to the east, and Glen Cove Arterial Highway (Route 107) right-of-way to the west.

Topographically, the Site is a flat depression bounded by approximately 20-foot-high slopes to the north, south, and east. To the west, the property slopes downward approximately 20 feet to Glen Cove Creek, a channelized stream, which eventually discharges to Hempstead Bay. Glen Cove Creek flows in a general south to north direction along the western site property line. The creek exits the property boundary at the northwest corner of the Site through a box culvert that directs flow beneath the Long Island Rail Road (LIRR) tracks. The creek eventually discharges to Mosquito Cove (Hempstead Bay). A site location map is included in Figure 1.

MGP-related activities at the Site began in 1905 under the ownership of the Sea Cliff and Glen Cove Gas Company. The facility's footprint was relatively small and remained unchanged through its operational period, which ended in 1929. Facility structures were located on the northern section of the property, and consisted of a 60,000 cubic foot gas holder, boilers, purifiers, retorts, coal shed, engine room, tar and oil tank, and approximately eight gas tanks. In 1923, Sea Cliff and Glen Cove Gas Company was purchased or merged with the Long Island Lighting Company (LILCO). A 40,000-cubic-foot-high pressure Hortonsphere gas holder was added to the facility in the southwestern portion of the Site in 1925 for gas distribution purposes.

In 1929, LILCO terminated MGP operations and demolished the facility's surface structures sometime, thereafter. Site activities following 1929 consisted solely of natural gas storage in the Hortonsphere gas holder through the 1950s. The Hortonsphere was decommissioned and demolished between 1959 and 1966. A major electrical substation was constructed on the Site in the mid-1960s. In 1998, Brooklyn Union Gas and LILCO merged to form the KeySpan Corporation, at which time the ownership of the substation was transferred to Long Island Power Authority (LIPA). In 2007, National Grid acquired responsibility for the former MGP property through the acquisition of KeySpan Corporation. Currently, the Site is owned by LIPA and operated by Public Service Enterprise Group – Long Island (PSEG-LI) under contract to LIPA.

1.2. Geology

The shallow stratigraphy beneath the Site is comprised of heterogeneous fill and glacial outwash of Upper Pleistocene deposits. The stratigraphic sequence consists of outwash deposits overlain by heterogeneous fill. The heterogeneous fill across most of the Site ranges in thickness from approximately

10 feet throughout most of the former site to 30 feet in the off-site area just north of the Site boundary. The fill composition is primarily poorly sorted and highly permeable sand and gravel with varying percentages of gravel, silt, clay, and coal fragments. The glacial outwash deposits consist mainly of interbedded layers of permeable sand and gravel, and less permeable silty sand. The top of the glacial unit was encountered from approximately 10 ft bgs on the central portion of the Site to approximately 32 ft bgs from the top of the railroad embankment. The ground surface elevation of the Site is significantly lower than the top of the railroad embankment, and when factoring in the ground surface elevation difference, the glacial deposits are encountered at similar elevations across the Site and beneath the railroad embankment.

Glen Cove Creek originally occupied a natural stream channel just to the west of the Site before it was channelized along its present route. The natural creek bed is indicated by the alluvial deposits consisting of reworked glacial outwash present along the western boundary of the Site. The alluvial deposits associated with the original stream channel consist of isolated sand and gravelly sand layers encountered in the upper 5 to 10 feet of soils at the western site boundary.

1.3. Hydrogeology

The groundwater beneath the Site is considered part of the regional Upper Glacial aquifer. Regionally, this aquifer is not used for drinking water. Drinking water for Long Island is provided by the deeper Magothy aquifer.

Groundwater elevations of site wells were similar for the shallow and intermediate wells ranging from about 45 to 53 feet above mean sea level (ft-msl). Groundwater elevation contours indicate a consistent general groundwater flow direction to the west-southwest for the shallow zone wells and southwest for the intermediate zone.

The water table surface of the shallow groundwater follows the general topography of the Site sloping from east to west with a hydraulic gradient of 0.021 feet/feet. A uniform hydraulic gradient of about 0.035 feet/foot is present in the intermediate groundwater across the Site. The estimated groundwater seepage flow velocities, assuming an effective porosity of 20 percent, were calculated for the shallow and intermediate aquifer zones as 0.05 and 0.001 feet per day (ft/day), respectively. The potential vertical hydraulic gradients at the well clusters at the Site are less than 0.081 feet.

1.4. Historical Groundwater Monitoring Event Summary

Three groundwater monitoring events were conducted at the Site prior to 2010. Groundwater sample collection and analysis, and NAPL/groundwater measurements were conducted in 2004, 2005, and 2008. Quarterly groundwater sampling was conducted during 2010. Semiannual sampling began in July 2011 after completion of the Phase I remedial excavation. Semiannual sampling was suspended during 2015 during the LIPA substation construction project. The baseline sampling was completed in the first quarter 2016 and quarterly sampling resumed in the first quarter of 2018 following the completion of the Phase II field work. On March 5, 2020, the groundwater sampling criteria was modified with the approval

of NYSDEC based on the results of the quarterly sampling from 2018-2019. Monitoring was temporarily suspended in Q1 and Q2 2020 in accordance with New York State Executive Order 202.6.

2. Groundwater Monitoring Event Summary

Event Dates:	December 26 and 31, 2024
Site Phase:	Quarterly groundwater monitoring
Location:	The location of the Glen Cove Former MGP Site is depicted in Figure 1.

2.1. Post-Remedial Groundwater Monitoring Plan

Groundwater monitoring continues to be performed on a quarterly and annual basis by National Grid to assess the performance of the remedy. The network of monitoring wells has been installed to monitor both up-gradient and down-gradient groundwater conditions at the Site. A total of 26 monitoring wells, piezometers, and recovery wells are currently located at or adjacent to the Site. The location of each of the monitoring wells in the network is included in Figure 2.

Specific wells are sampled on a quarterly or annual basis in accordance with the frequency identified in the Site Management Plan (SMP). Criteria for reductions in groundwater sampling were developed in accordance with Section 6.0 of NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated May 2010. The NYSDEC-approved criteria for groundwater monitoring reductions at the Glen Cove Site are summarized in the SMP.

Monitoring wells removed from the sampling program will not be immediately abandoned and therefore may be reintroduced into the sampling program if site conditions change. Monitoring wells that have been removed from the program will be abandoned no sooner than one year following removal from the program. Recommendations for monitoring well abandonments will be submitted to the NYSDEC prior to abandonment.

2.2. Quarterly Groundwater Monitoring Summary

The Q4 2024 groundwater sampling event was performed on December 26 and 31, 2024 and included all accessible wells on the quarterly sampling list as identified below. All monitoring well sampling activities performed by National Grid, in accordance with the SMP, are recorded in a field book and a groundwater sampling log. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network. Copies of the well sampling logs from Q4 2024 sampling event are included in Appendix A.

Groundwater levels were measured at 26 monitoring wells and piezometers on December 26, 2024. The depth to water and water table elevation data for the shallow and intermediate portions of the aquifer are presented in Table 1. Shallow and intermediate groundwater contours and elevations for the December 2024 sampling event are depicted in Figs. 3 and 4, respectively. The groundwater flow direction was generally to the southwest in the shallow and intermediate zones (Figs. 3 and 4).

Groundwater sampling is conducted using low flow groundwater methods. This includes the use of a low flow pump, water level meter, a water quality meter (YSI^{*} or equivalent), and turbidity meter. Initially groundwater is purged and logged until groundwater parameters are recorded with the water quality and turbidity monitors stabilize. This includes conductivity, turbidity, dissolved oxygen, Oxidation-Reduction Potential (ORP), temperature, water level depth, and dissolved oxygen. Analytical samples are collected once parameters are stable. The groundwater analytical sampling list for each well as of Q4 2024 is provided in Table 2-1 below.

2.2.1. Groundwater Analytical Sample Summary

A total of eight monitoring wells and recovery wells were sampled on December 26 and 31, 2024. Monitoring well GCMW-20I was not sampled in Q4 2024 and will be sampled in Q1 2025. If monitoring wells with measurable thicknesses of NAPL were identified during a sampling event, they would not be sampled. All monitoring wells and recovery wells were sampled for the following analytes:

- Volatile organic compounds (VOCs) and methyl tert-butyl ether (MTBE) via Environmental Protection Agency (EPA) Method 8260.
- Semi-volatile organic compounds (SVOCs) via EPA Method 8270.

In addition, two monitoring wells were also sampled for the following analytes:

- Polychlorinated biphenyls (PCBs) via EPA Method 8082A.
- TAL Metals via EPA Methods 6010D and 7470A.
- Total Cyanide via EPA Method 9012B

Groundwater sampling logs for each well included in the quarterly sampling list are included in Appendix A.

Monitoring Well	Property	Sampling Frequency	Sample Parameters
GCMW-08S	Private Property	Quarterly	VOCs & SVOCs
GCMW-09S-R	LIPA	Quarterly	VOCs & SVOCs, Delineation Parameters
GCMW-11S	LIPA	Quarterly	VOCs & SVOCs
GCMW-11I	LIPA	Quarterly	VOCs & SVOCs
GCMW-13I	LIPA	Quarterly	VOCs & SVOCs
GCMW-20S	LIPA	Quarterly	VOCs & SVOCs, Delineation Parameters
GCMW-20I	LIPA	Quarterly	VOCs & SVOCs, Delineation Parameters
GCRW-01	LIPA	Quarterly	VOCs & SVOCs if No DNAPL in Well
GCRW-02	LIPA	Quarterly	VOCs & SVOCs if No DNAPL in Well

Table 2-1. Summary of Quarterly Groundwater Monitoring Program

Notes: LIPA - Long Island Power Authority

VOCs - Volatile Organic Compounds

SVOCs – Semi-Volatile Organic Compounds

Delineation Parameters include Total Cyanide, Metals, and Polychlorinated Biphenyls (PCBs)

2.2.2. Hydrological Data

Groundwater levels were measured at 26 monitoring wells and piezometers on December 26, 2024. The depth to water and water table elevation data for the shallow and intermediate portions of the aquifer are presented in Table 1. Shallow and intermediate groundwater contours and elevations for the December 2024 sampling event are depicted in Figs. 3 and 4, respectively. The groundwater flow direction was generally to the southwest in the shallow and intermediate zones (Figs. 3 and 4).

The average calculated shallow hydraulic gradient was 0.021 feet/foot. The average calculated intermediate hydraulic gradient was 0.035 feet/foot.

2.2.3. NAPL Gauging

All existing wells in the groundwater monitoring network and the three recovery wells are gauged for the presence of NAPL during each groundwater monitoring event. The three recovery wells are located downgradient of the substation (Figure 2). Recovery well GCRW-01 was installed in Q1 2012 and recovery wells GCRW-02 and GCRW-03 were installed in Q2 2012.

Historically, dense non-aqueous phase liquid (DNAPL) has only been present in GCMW-13S. DNAPL was measured in GCMW-13S at a thickness of 0.74 feet in June 2005 and had been steadily decreasing to the thickness of 0.3 feet, in July 2011, prior to the increasing in the two 2012 sampling events. The measured thicknesses during these events were 0.65 and 0.70 feet, respectively. The DNAPL thickness in GCMW-13S decreased during the January 2013 event to 0.40 feet and decreased again in the July 2013 event to 0.30 feet. Monitoring well GCMW-13S was destroyed during PSEG-LI construction activities in 2015. NAPL was not observed in any of the 26 existing wells since 2015.

2.3. Groundwater Results Analysis

The analytical results for all sampling conducted during the reporting period are included on Table 2. Detections of individual compounds above the AWQS for Class GA groundwater during the reporting period are also included on Figure 7. Time series plots depicting the total BTEX, and total PAHs are presented in Appendix B for all wells sampled during this reporting period. The time series plots also denote the period of the Phase I excavation and the period of groundwater treatment at the Site. The laboratory analytical reports are included in Appendix C.

2.3.1. VOC Trend Analysis

VOC detections above the AWQS for Class GA groundwater during the reporting period were limited to benzene, ethylbenzene and xylene.

Concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) compounds have generally decreased across the Site since the completion of the excavation and with the implementation of the

groundwater treatment system. Individual BTEX compound concentrations above the AWQS were identified in three of the wells with detections including GCMW-09S-R, GCMW-11I and GCRW-02.

- Benzene was detected above the AWQS in the samples from GCMW-09SR and GCMW-11I collected in Q4 2024.
- Ethylbenzene and total xylenes were detected above the AWQS in the samples from GCMW-09SR and GCRW-02 collected in Q4 2024.
- The detections of Ethylbenzene and total xylenes at GCRW-02 have decreased since the Q3 2024 sampling event. BTEX impacts at GCRW-02 appear to be seasonal as they have increased in during Q3 2022, Q2 2023, Q3 2023, Q2 2024 and decreased during the winter and spring sampling events in Q4 2022, Q1 2023, Q4 2023, Q1 2024, Q2 2024 and Q4 2024.

2.3.2. SVOC Trend Analysis

SVOC detections above the AWQS for Class GA groundwater during the reporting period were limited to PAHs. Concentrations of total PAHs have generally decreased across the Site since the completion of the excavation and with the implementation of the groundwater treatment system. Historic fluctuations in total PAH concentrations are evident at several wells including GCMW-08S, GCMW-09S-R, GCMW-11I, GCMW-11S, and GCMW-20S. However, the overall total PAH concentration trend for each of these wells is decreasing with the exception of the Q4 2023 sampling event at GCMW-13I. The total PAH concentrations at GCMW-13I have returned to within historic ranges in the last 4 quarters. Concentrations of individual PAHs were detected above the AWQS during the reporting period in three of the wells including GCMW-09SR, GCMW-11I, and GCRW-01.

- The concentrations of PAH compounds detected above the AWQS at GCMW-09S-R, GCMW-11I, and GCRW-01 remained relatively stable with the majority being at, or near, the historic detections.
- Acenaphthene was detected above the AWQS in the samples from GCMW-09S-R and GCRW-01 collected in Q4 2024. The concentrations were similar to historic concentrations at these wells.
- Naphthalene was detected above the AWQS in the sample from GCMW-09S-R and GCMW-11I collected in Q4 2024. The concentrations in GCMW-09SR are consistent with historical concentrations. Concentrations from GCMW-11I appear to be seasonal as they are similar to the increased concentrations detected at this well in Q4 2023. No other PAH compounds were detected above the AWQS at GCMW-11I during the reporting period.
- Phenanthrene was detected above the AWQS in the sample from GCMW-09S-R collected in Q4 2024. The concentration was similar to historic concentrations at this well.

2.3.3. Delineation Parameters Analysis

PCBs, total metals, and total cyanide were analyzed in two of the eight wells analyzed during the sampling event. Analyzing samples for PCBs, total metals, and total cyanide began during the baseline groundwater sampling event in 2016.

PCB concentrations were not detected in any sample. This is consistent with the 2016 baseline groundwater sampling results.

Total metals concentrations were detected above the AWQS for antimony, chromium, iron, lead, manganese, and sodium some of which are naturally occurring.

Total cyanide was detected in the samples from monitoring wells GCMW-09S-R and GCMW-20S at a concentration below the AWQS and remained within the historical concentration range.

2.3.4. NAPL Gauging

All of the existing wells in the groundwater monitoring network and the three recovery wells were gauged for the presence of NAPL during the groundwater monitoring event. NAPL gauging was conducted using an interface probe to measure the depth to water level, the depth to NAPL, and depth to bottom of the well. The three recovery wells are located downgradient of the existing substation (Figure 2) and the location of destroyed monitoring well GCMW-13S where NAPL was observed historically. No NAPL was observed in any wells during the quarterly monitoring event.

2.3.5. Monitoring Deficiencies

All groundwater monitoring events complied to the scope of the SMP.

3. Operation & Maintenance (O&M) Summary

3.1. Oxygen Injection System

3.1.1. Program Scope and Purpose

An oxygen injection system started operation in November 2017 and is currently in operation at the Site. The oxygen injection system generates and injects oxygen into the subsurface to create an aerobic environment which facilitates the bioremediation of the dissolved MGP-related contaminants.

The Oxygen Injection System continues to operate at the Site to create an aerobic environment which facilitates the bioremediation of the dissolved MGP-related impacts.

3.1.2. Current Monitoring Activities

The oxygen injection system monitoring activities are summarized in Table 3-1. The system is operating within the design parameters.

Current Activity	Description	Frequency
Oxygen System Monitoring	Routine inspection and maintenance of the system components, monitoring of operational parameters, and recording/adjusting of the injection flow rates.	Monthly
	Monitoring of oxygen purity.	Monthly
Performance Monitoring of Oxygen Injection	Monitoring of total BTEX and total PAH concentrations in groundwater at upgradient and downgradient wells.	Quarterly
Systems	Monitoring of groundwater chemistry parameters.	Quarterly

Table 3-1. Summary of Oxygen Injection System OM&M Activity

3.1.3. Oxygen Injection System OM&M Data

3.1.3.1. System Operational Data

The oxygen injection system operational data for Q4 2024 can be viewed in Table 3

4. Recommendations

4.1. Quarterly Monitoring Well Sampling

Monitoring wells which meet the AWQS for individual BTEX and PAH compounds for 4 consecutive quarters can be reduced to annual sampling. No wells currently within the quarterly sampling program with analytical results have met the NYSDEC-approved sampling criteria for 4 consecutive quarters.

The following quarterly monitoring wells had detections of individual BTEX compounds or PAHs in at least one of the last four consecutive groundwater sampling events which exceed the AWQS and will remain in the quarterly sampling program:

- GCMW-08S
- GCMW-09S-R
- GCMW-11S
- GCMW-11I
- GCMW-13I
- GCMW-20S
- GCMW-20I
- GCRW-01
- GCRW-02

The current monitoring frequency is presented on Table 4.

4.2. NAPL Gauging

Three recovery wells were installed on Site (GCRW-01, GCRW-02, and GCRW-03). All three wells were installed at a depth of 30 feet bgs with 5-foot sumps. NAPL has not been detected in any of the recovery wells or any other existing wells at the Site.

4.3. Recommendations

National Grid is recommending revision to the groundwater sampling requirements outlined in the Site Management Plan. National Grid would like to modify the frequency of sampling from quarterly to semiannual. In addition, National Grid would like to modify the analytical list to MGP constituents BTEX via EPA Method 8260D and PAHs via EPA Method 8270E. Delineation parameters would no longer be analyzed.

The current groundwater sampling program at the Site consists of sampling nine monitoring wells, piezometers, and recovery wells on a quarterly basis. The baseline sampling was completed in the first quarter 2016 and quarterly sampling resumed in the first quarter of 2018 following the installation of the oxygen injection treatment system.

The monitoring results indicate that following the implementation of remedial activities, including source area excavations and the oxygen injection system, concentrations of the contaminants of concern (COCs), primarily BTEX and PAHs, in groundwater have been significantly reduced.

The following proposed criteria for reductions in groundwater sampling at the Glen Cove former MGP Site has been developed in accordance with Section 6.0 of NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated May 2010. The proposed criteria for the groundwater monitoring program for the Glen Cove Site is summarized as follows:

- Monitoring wells which meet the AWQS for individual BTEX and PAH compounds for four consecutive events can be reduced to annual sampling.
- For compounds with standards less than the analytical detection limits, individual BTEX or PAH compound concentrations must be reduced below detection limits for two consecutive semiannual events before annual sampling can be instituted.
- Annual sampling will be terminated at these wells after two consecutive years of meeting the above criteria.
- Semi-annual sampling will resume at any well where concentrations greater than 50 μg/L of total BTEX or total PAHs are detected in annual sampling.

The following groundwater monitoring wells will be sampled on a semi-annual basis, until they meet the proposed reduction criteria to sampling on an annual basis:

- GCMW-08S
- GCMW-09S-R
- GCMW-11S
- GCMW-11I
- GCMW-13I
- GCMW-20S
- GCMW-20I
- GCRW-01
- GCRW-02

The current program includes quarterly reporting. The reporting frequency will be reduced to the annual Periodic Review Report..

Upon NYSDEC approval of this revision to groundwater sampling program, the SMP will be modified to reflect these changes prior to final submittal.

Tables

Table 1 Water Level Measurements and Calculated Groundwater Elevations

Table 2 Groundwater Analysis Results

Table 3 Oxygen Injection System Operational Data Q4 2024

Table 4 Monitoring Well Sampling Frequency Reductions

Table 1. Water Level Measurements and Calculated Groundwater ElevationsGroundwater Monitoring Report - Q4 2024Glen Cove Former MGP SiteGlen Cove, New York

Well ID	Well Elevation ¹ (feet above MSL)	Depth to Water (feet)	Water Elevation (feet above MSL)
PZ-05	58.15	9.07	49.08
PZ-06	56.94	5.50	51.44
GCMW-08S	76.37	27.07	49.30
GCMW-08D	76.59	23.33	53.26
GCMW-09S-R	54.59	9.60	44.99
GCMW-09I-R	54.40	8.95	45.45
GCMW-10S-R	53.88	9.10	44.78
GCMW-10I-R	54.00	8.75	45.25
GCMW-11S	54.36	7.03	47.33
GCMW-11I	55.45	5.56	49.89
GCMW-12S	61.65	12.90	48.75
GCMW-13S ²	NM	NM	NM
GCMW-13I	55.51	9.54	45.97
GCMW-14S-R	54.5	9.35	45.15
GCMW-14I-R	54.40	8.76	45.64
GCMW-15	NM ³	5.62	NC ³
GCMW-16	NM ³	5.21	NC ³
GCMW-20S	54.24	9.46	44.78
GCMW-20I	53.95	8.80	45.15
GCMW-2012	54.52	7.85	46.67
GCMW-21I	76.68	30.41	46.27
GCMW-21I2	76.47	29.73	46.74
GCMW-22I	54.68	9.10	45.58
GCMW-2212	54.56	9.35	45.21
GCRW-01	54.78	9.60	45.18
GCRW-02	54.17	9.11	45.06
GCRW-03	54.52	9.39	45.13

Notes:

bgs - Below Ground Surface

¹- Well Elevations Obtained From 2015 Site Survey

²- Destroyed

³- Well elevation has not been surveyed

⁴- Well could not be located

MSL - Mean Sea Level

NM - Not Measured

NC - Not Calculated

GEI Consultants, Inc. DBA GEI Consultants Engineering, Geology, Architecture & Landscape Architecture

Table 2. Groundwater Analysis Results Quarterly Monitoring Report - Q4 2024 Glen Cove Former MGP Site Glen Cove, New York

		S	cation Name ample Name Start Depth End Depth Depth Unit Sample Date arent Sample	GCMW-08S GCMW-08S 26 36 ft 12/31/2024	GCMW-09SR GCMW-09S-R 8 18 ft 12/26/2024	GCMW-09SR DUP-01 8 18 ft 12/26/2024 GCMW-09S-R	GCMW-11S GCMW-11S 8 20 ft 12/26/2024	GCMW-11I GCMW-11I 23 28 ft 12/26/2024	GCMW-13I GCMW-13I 25 30 ft 12/26/2024	GCMW-20S GCMW-20S 9 19 ft 12/26/2024	GCRW-01 GCRW-01 15 25 ft 12/26/2024	GCRW-02 GCRW-02 15 25 ft 12/26/2024
Analyte	Units	CAS No.	NYS AWQS									
BTEX	ug/L		III O All QO									
Benzene	ug/L	71-43-2	1	1 U	2.3	2.4	1 U	2.2	1 U	1 U	1 U	0.61 J
Toluene		108-88-3	5	1 U	1.9	1.9	10	1 U	10	10	1 U	2.6
Ethylbenzene		100-41-4	5	1 U	43	47	0.89 J	10	10	10	0.4 J	66
Total Xylene		1330-20-7	5	2 U	40	43	2.2	2 U	1.7 J	2 U	0.89 J	29
Total BTEX (ND=0)		TBTEX ND0	NE	ND	87.2	94.3	3.09	2.0	1.7	ND	1.29	98.21
Other VOCs	ug/L				01.2	0-7.0	0.00	2.2			1.20	00.21
Acetone	9/=	67-64-1	50*	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane		75-27-4	50*	1 U	10	1 U	1 U	1 U	1 U	1 U	1 U	10
Bromoform		75-25-2	50*	1 U	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
Bromomethane		74-83-9	5	1 UJ	10	1 U	1 U	1 U	1 U	1 U	1 U	10
Carbon disulfide		75-15-0	60*	1 U	10	1 U	1 U	1 U	10	1 U	1 U	10
Carbon tetrachloride		56-23-5	5	10	10	1 U	1 U	1 U	1 U	1 U	1 U	10
Chlorobenzene		108-90-7	5	10	10	1 U	1 U	1 U	1 U	1 U	1 U	10
Chloroethane		75-00-3	5	1 U	10	1 U	1 U	1 U	10	1 U	1 U	10
Chloroform (Trichloromethane)		67-66-3	7	10	10	1 U	1 U	1 U	1 U	1 U	1 U	10
Chloromethane		74-87-3	5	10	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
Dibromochloromethane		124-48-1	50*	1 U	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ	1 UJ
1,1-Dichloroethane		75-34-3	5	10	0.74 J	0.76 J	1 U	1 U	1 U	1 U	1 U	10
1,2-Dichloroethane		107-06-2	0.6	10	10	1 U	1 U	1 U	1 U	1 U	1 U	10
1,1-Dichloroethene		75-35-4	5	10	10	1 U	1 U	1 U	10	1 U	1 U	10
Total 1,2-Dichloroethene		540-59-0	NE	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
1,2-Dichloropropane		78-87-5	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
cis-1,3-Dichloropropene		10061-01-5	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,3-Dichloropropene		10061-02-6	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Hexanone		591-78-6	50*	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methyl ethyl ketone (2-Butanone)		78-93-3	50*	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
Methyl tert-butyl ether (MTBE)		1634-04-4	10*	1 U	1 U	1 U	1 U	9.4	1 U	1 U	1 U	0.95 J
4-Methyl-2-pentanone (MIBK)		108-10-1	NE	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methylene chloride		75-09-2	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene		100-42-5	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-Tetrachloroethane		79-34-5	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene (PCE)		127-18-4	5	1 U	1 U	1 U	1 U	0.7 J	2.2	1 U	1 U	1 U
1,1,1-Trichloroethane (TCA)		71-55-6	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-Trichloroethane		79-00-5	1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene (TCE)		79-01-6	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.61 J	1 U
Vinyl chloride		75-01-4	2	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Total VOCs (ND=0)		TVOC_ND0	NE	0	87.94	95.06	3.09	12.3	3.9	0	1.9	99.16

April 2025 B:\Working\NATIONAL GRID\1905774 (13 Sites) OM&M Services-Downstate, NY\01_ADMIN\Glen Cove\Groundwater Monitoring\2024 Q4\Tables\Table 2. Glen Cove_GW_Q4.2024

Table 2. Groundwater Analysis Results Quarterly Monitoring Report - Q4 2024 Glen Cove Former MGP Site Glen Cove, New York

	Location Nam Sample Nam Start Dept End Dept Depth Un Sample Dat Parent Sampl					GCMW-09SR DUP-01 8 18 ft 12/26/2024 GCMW-09S-R	GCMW-11S GCMW-11S 8 20 ft 12/26/2024	GCMW-11I GCMW-11I 23 28 ft 12/26/2024	GCMW-13I GCMW-13I 25 30 ft 12/26/2024	GCMW-13I GCMW-20S G 25 9 30 19 ft ft ft 2/26/2024 12/26/2024 12/26/2024 12 10 U 10 U 10 U 10 U 10 U 10 U	GCRW-01 GCRW-01 15 25 ft 12/26/2024	GCRW-02 GCRW-02 15 25 ft 12/26/2024
Analyte	Units	CAS No.	NYS AWQS									
PAH17	ug/L	0/10/1101										
Acenaphthene	ug, L	83-32-9	20*	8.4 J	120 J	110	1.3 J	1.5 J	10 U	10 U	47	7.7 J
Acenaphthylene		208-96-8	NE	4.2 J	2.9 J	2.6 J	10 U	2.2 J			2.2 J	10 U
Anthracene		120-12-7	50*	4.7 J	8.2 J	6.2 J	10 U	10 U			10 U	10 U
Benzo(a)anthracene		56-55-3	0.002*	1 U	1 U	1 U	1 U	1 U			1 U	1 U
Benzo(b)fluoranthene		205-99-2	0.002*	2 U	2 U	2 U	2 U	2 U			2 U	2 U
Benzo(k)fluoranthene		207-08-9	0.002*	1 U	1 U	1 U	1 U	1 U			1 U	1 U
Benzo(g,h,i)perylene		191-24-2	NE	10 U	10 U	10 U	10 U	10 U			10 U	10 U
Benzo(a)pyrene		50-32-8	ND	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chrysene		218-01-9	0.002*	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Dibenz(a,h)anthracene		53-70-3	NE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Fluoranthene		206-44-0	50*	5.4 J	4.5 J	3.2 J	10 U	10 U	10 U	10 U	1.7 J	10 U
Fluorene		86-73-7	50*	4.2 J	46 J	40	10 U	10 U	10 U	10 U	5 J	2.4 J
Indeno(1,2,3-cd)pyrene		193-39-5	0.002*	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
2-Methylnaphthalene		91-57-6	NE	10 U	28 J	22	10 U	10 U	10 U	10 U	10 U	10 U
Naphthalene		91-20-3	10*	2 U	330	290	2 U	51		2 U	2 U	1.5 J
Phenanthrene		85-01-8	50*	45	57 J	43	10 U	1.7 J			10 U	10 U
Pyrene		129-00-0	50*	5.3 J	4.8 J	3.3 J	10 U	10 U			2 J	10 U
Total PAH (17) (ND=0)		TPAH17_ND0	NE	77.2	601.4	520.3	1.3	56.4	ND	ND	57.9	11.6
PAH17 Other SVOCs	ug/L											
Bis(2-chloroethoxy)methane		111-91-1	5	10 U	10 U	10 U	10 U	10 U			10 U	10 U
Bis(2-chloroethyl)ether		111-44-4	1	1 U	1 U	1 U	1 U	1 U			1 U	1 U
2,2-oxybis(1-Chloropropane)		108-60-1	5	10 U	10 U	10 U	10 U	10 U			10 U	10 U
Bis(2-ethylhexyl)phthalate		117-81-7	5	2 UJ	1.9 J	2 U	2 U	2 U			2 U	2 U
4-Bromophenyl phenyl ether		101-55-3	NE	10 U	10 U	10 U	10 U	10 U			10 U	10 U
Butyl benzyl phthalate		85-68-7	50*	10 U	10 U	10 U	10 U	10 U			10 U	10 U
Carbazole		86-74-8	NE	10 U	2.4 J	2.1 J	10 U	0.81 J			10 U	1.2 J
4-Chloro-3-methylphenol		59-50-7	NE	10 U	10 U	10 U	10 U	10 U			10 U	10 U
4-Chloroaniline		106-47-8	5	10 U	10 UJ	10 U	10 U	10 U			10 U	10 U
2-Chloronaphthalene		91-58-7	10*	10 U	10 U	10 U	10 U	10 U			10 U	10 U
2-Chlorophenol		95-57-8	NE	10 U	10 U	10 U	10 U	10 U			10 U	10 U
4-Chlorophenyl phenyl ether		7005-72-3	NE	10 U	10 U	10 U	10 U	10 U			10 U	10 U
Dibenzofuran		132-64-9	NE	3.1 J	9.4 J	8.1 J	10 U	10 U			10 U	10 U
1,2-Dichlorobenzene (o-DCB)		95-50-1	3	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene (m-DCB)		541-73-1	3	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene (p-DCB)		106-46-7	3	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
3,3-Dichlorobenzidine 2,4-Dichlorophenol		91-94-1 120-83-2	5 5	10 U 10 U	10 UJ 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U

April 2025 B:\Working\NATIONAL GRID\1905774 (13 Sites) OM&M Services-Downstate, NY\01_ADMIN\Glen Cove\Groundwater Monitoring\2024 Q4\Tables\Table 2. Glen Cove_GW_Q4.2024

Table 2. Groundwater Analysis ResultsQuarterly Monitoring Report - Q4 2024Glen Cove Former MGP SiteGlen Cove, New York

			cation Name Sample Name	GCMW-08S GCMW-08S 26	GCMW-09SR GCMW-09S-R	GCMW-09SR DUP-01	GCMW-11S GCMW-11S	GCMW-11I GCMW-11I	GCMW-13I GCMW-13I	GCMW-20S GCMW-20S	GCRW-01 GCRW-01	GCRW-02 GCRW-02 15 25 ft 12/26/2024
	1		Start Depth End Depth Depth Unit Sample Date arent Sample	nd Depth 36 epth Unit ft uple Date 12/31/2024	8 18 ft 12/26/2024	8 18 ft 12/26/2024 GCMW-09S-R	8 20 ft 12/26/2024	23 28 ft 12/26/2024	25 30 ft 12/26/2024	9 19 ft 12/26/2024	15 25 ft 12/26/2024	
Analyte	Units	CAS No.	NYS AWQS									
Diethyl phthalate		84-66-2	50*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dimethyl phthalate		131-11-3	50*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol		105-67-9	50*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Di-n-butyl phthalate		84-74-2	50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4,6-Dinitro-2-methylphenol		534-52-1	NE	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
2,4-Dinitrophenol		51-28-5	10*	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U	40 U
2,4-Dinitrotoluene		121-14-2	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene		606-20-2	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Di-n-octyl phthalate		117-84-0	50*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene		118-74-1	0.04	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-Hexachlorobutadiene (C-46)		87-68-3	0.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Hexachlorocyclopentadiene		77-47-4	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Hexachloroethane		67-72-1	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Isophorone		78-59-1	50*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Methylnaphthalene		91-57-6	NE	10 U	28 J	22	10 U	10 U	10 U	10 U	10 U	10 U
2-Methylphenol (o-Cresol)		95-48-7	1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Methylphenol (p-Cresol)		106-44-5	1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2-Nitroaniline		88-74-4	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
3-Nitroaniline		99-09-2	5	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Nitroaniline		100-01-6	5	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Nitrobenzene		98-95-3	0.4	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Nitrophenol		88-75-5	NE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
4-Nitrophenol		100-02-7	NE	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
N-Nitrosodiphenylamine (NDFA)		86-30-6	50*	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
N-Nitrosodi-n-propylamine (NDPA)		621-64-7	NE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Pentachlorophenol		87-86-5	1	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
Phenol		108-95-2	1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2,4-Trichlorobenzene		120-82-1	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
2,4,5-Trichlorophenol		95-95-4	NE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
2,4,6-Trichlorophenol		88-06-2	NE	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Total SVOCs (ND=0)		TSVOC_ND0	NE	80.3	615.1	530.5	1.3	57.21	ND	ND	57.9	12.8
PCB Aroclors	ug/L											
Aroclor 1016		12674-11-2	NE		0.4 U	0.4 U				0.4 U		
Aroclor 1221		11104-28-2	NE		0.4 U	0.4 U				0.4 U		
Aroclor 1232		11141-16-5	NE		0.4 U	0.4 U				0.4 U		
Aroclor 1242		53469-21-9	NE		0.4 U	0.4 U				0.4 U		
Aroclor 1248		12672-29-6	NE		0.4 U	0.4 U				0.4 U		
Aroclor 1254		11097-69-1	NE		0.4 U	0.4 U				0.4 U		

Table 2. Groundwater Analysis ResultsQuarterly Monitoring Report - Q4 2024Glen Cove Former MGP SiteGlen Cove, New York

		S	cation Name ample Name Start Depth End Depth Depth Unit Sample Date arent Sample	GCMW-08S GCMW-08S 26 36 ft 12/31/2024	GCMW-09SR GCMW-09S-R 8 18 ft 12/26/2024	GCMW-09SR DUP-01 8 18 ft 12/26/2024 GCMW-09S-R	GCMW-11S GCMW-11S 8 20 ft 12/26/2024	GCMW-11I GCMW-11I 23 28 ft 12/26/2024	GCMW-13I GCMW-13I 25 30 ft 12/26/2024	GCMW-20S GCMW-20S 9 19 ft 12/26/2024	GCRW-01 GCRW-01 15 25 ft 12/26/2024	GCRW-02 GCRW-02 15 25 ft 12/26/2024
Analyte	Units	CAS No.	NYS AWQS									
Aroclor 1260		11096-82-5	NE		0.4 U	0.4 U				0.4 U		
Aroclor 1262		37324-23-5	NE		0.4 U	0.4 U				0.4 U		
Aroclor 1268		11100-14-4	NE		0.4 U	0.4 U				0.4 U		
Total PCBs (Lab calculated)		1336-36-3	0.09		0.4 U	0.4 U				0.4 U		
Total PCB Aroclors (ND=0)		TPCB-AR_ND0	0.09		ND	ND				ND		
Total Metals	ug/L	—										
Aluminum		7429-90-5	NE		37.8 J	69.8				20700		
Antimony		7440-36-0	3		2 U	2 U				34.7		
Arsenic		7440-38-2	25		7.5	7.5				13.3		
Barium		7440-39-3	1000		100	102				357		
Beryllium		7440-41-7	3*		0.8 U	0.8 U				1.3		
Cadmium		7440-43-9	5		2 U	2 U				1.7 J		
Calcium		7440-70-2	NE		69700	71200				116000		
Chromium		7440-47-3	50		4 U	4 U				52.6		
Cobalt		7440-48-4	NE		0.7 J	0.7 J				20.4		
Copper		7440-50-8	200		4 U	4 U				68		
Iron		7439-89-6	300		12700	12400				45000		
Lead		7439-92-1	25		1.2 U	1.2 U				67.2		
Magnesium		7439-95-4	35000*		12800	12600				32100		
Manganese		7439-96-5	300		4300	3950				3660		
Mercury		7439-97-6	0.7		0.2 U	0.2 U				0.23		
Nickel		7440-02-0	100		4 U	4 U				43.1		
Potassium		7440-09-7	NE		4310	4070				10700		
Selenium		7782-49-2	10		2.5 U	2.5 U				8.4		
Silver		7440-22-4	50		2 U	2 U				2 U		
Sodium		7440-23-5	20000		11300	11000				39700		
Thallium		7440-28-0	0.5*		0.8 U	0.8 U				0.8 U		
Vanadium		7440-62-2	NE		4 U	4 U				53.2		
Zinc		7440-66-6	2000*		4.2 J	16 U				346		
Cyanides	ug/L											
Total Cyanide		57-12-5	200		43.9 J	46.8				6.6 J		

Table 2. Groundwater Analysis ResultsQuarterly Monitoring Report - Q4 2024Glen Cove Former MGP SiteGlen Cove, New York

Notes:

Analytes in blue are not detected in any sample ug/L = micrograms per liter or parts per billion (ppb)

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes PAH = Polycyclic Aromatic Hydrocarbon PCB = Polychlorinated Biphenyl SVOC = Semi-Volatile Organic Compound VOC = Volatile Organic Compound

NYS AWQS = New York State Ambient Water Quality Standards and Guidance Values for GA groundwater * indicates the value is a guidance value and not a standard

CAS No. = Chemical Abstracts Service Number MGP = Manufactured Gas Plant ND = Not Detected NE = Not Established

Bolding indicates a detected result concentration Gray shading and bolding indicates that the detected result value exceeds the NYS AWQS

Validation Qualifiers:

J = The result is an estimated value.

U = The result was not detected above the reporting limit.

UJ = The results was not detected at or above the reporting limit shown and the reporting limit is estimated.

Table 3. Oxygen Injection System Operational Data Periodic Review Report - Q4 2024 Glen Cove Former MGP Site Glen Cove, New York

Weight of Oxy	gen Injected through Q3 2024	117,067.4	7 <mark>lbs</mark>
	Operational Days	;	Oxygen Injected Per Month (lbs)
Month 1	Oct-24	31	1,244
Month 2	Nov-24	30	1,661
Month 3	Dec-24	31	1,782
Total Operatio	nal Days in Q4 2024		92
Total Oxygen i	in Q4 2024 (lbs)		4,687.16
Running Tota	ll for Oxygen Through Q4 2024	(lbs)	121,754.63

				(October 202	4 System C	heck			No	ovember 20	24 System	Check			De	ecember 20	24 System	Check	
					10/2	29/2024					11/	19/2024					12/	23/2024		
		O ₂ %				82.3						81.7						78.2		
		R			1	0.73						10.73						10.73		
		Temp R (T)				636						634						631		
		<u>Depth</u>	SCFH (M)	SCFH (C*)	<u>CF/D (V)</u>	<u>PSI (M)</u>	<u>PSla (P)</u>	n=PV/RT lbs O2	SCFH (M)	SCFH (C*)	<u>CF/D (V)</u>	<u>PSI (M)</u>	<u>PSIa (P)</u>	n=PV/RT lbs O2	SCFH (M)	SCFH (C*)	<u>CF/D (V)</u>	<u>PSI (M)</u>	<u>PSla (P)</u>	n=PV/RT lbs O2
	Point 01I	34	10	13.503	27.007	15.0	29.7	0.097	10	13.503	27.007	15.0	29.7	0.096	10	13.617	27.233	15.5	30.2	0.095
5	Point 02S	21	0	0.000	0.000	0.0	14.7	0.000	0	0.000	0.000	0.0	14.7	0.000	0	0.000	0.000	0.0	14.7	0.000
Bank	Point 02I	34	10	13.389	26.779	14.5	29.2	0.094	36	48.612	97.224	15.0	29.7	0.347	10	13.617	27.233	15.5	30.2	0.095
	Point 03S	21	19	25.000	50.000	13.5	28.2	0.170	20	26.316	52.632	13.5	28.2	0.178	20	26.779	53.557	14.5	29.2	0.181
tior	Point 03I	34	10	13.503	27.007	15.0	29.7	0.097	10	13.503	27.007	15.0	29.7	0.096	10	13.617	27.233	15.5	30.2	0.095
Injection	Point 04S	21	31	0.000	0.000	8.5	23.2	0.000	30	0.000	0.000	8.5	23.2	0.000	30	36.943	73.886	10.0	24.7	0.211
<u> </u>	Point 04I	34	13	15.681	31.363	9.0	23.7	0.090	14	16.888	33.775	9.0	23.7	0.096	20	24.629	49.258	10.0	24.7	0.141
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	Oxygen Injecte	d Per Day (Ib)			1	7.518					2	6.043					2	6.141		
		<u>Depth</u>	SCFH (M)	SCFH (C*)	<u>CF/D (V)</u>	<u>PSI (M)</u>	PSIa (P)	n=PV/RT lbs O2	SCFH (M)	SCFH (C*)	<u>CF/D (V)</u>	PSI (M)	PSIa (P)	n=PV/RT lbs O2	SCFH (M)	SCFH (C*)	<u>CF/D (V)</u>	<u>PSI (M)</u>	PSIa (P)	n=PV/RT lbs O2
	Point 05S	21	25	29.513	59.027	8.0	22.7	0.162	28	32.689	65.378	7.5	22.2	0.174	30	35.416	70.832	8.0	22.7	0.186
5	Point 05I	34	10	12.314	24.629	10.0	24.7	0.073	10	12.314	24.629	10.0	24.7	0.073	10	12.314	24.629	10.0	24.7	0.070
Bank	Point 06S	21	10	12.189	24.378	9.5	24.2	0.071	10	12.189	24.378	9.5	24.2	0.071	10	12.189	24.378	9.5	24.2	0.068
ä	Point 06I	34	10	12.189	24.378	9.5	24.2	0.071	10	12.189	24.378	9.5	24.2	0.071	10	12.189	24.378	9.5	24.2	0.068
tior	Point 07S	21	32	0.000	0.000	3.5	18.2	0.000	30	0.000	0.000	3.5	18.2	0.000	30	31.712	63.424	3.5	18.2	0.133
Injection	Point 07I	34	10	11.805	23.611	8.0	22.7	0.065	40	47.221	94.443	8.0	22.7	0.257	32	37.777	75.554	8.0	22.7	0.198
<u> </u>	Point 08S	21	32	36.936	73.871	7.0	21.7	0.193	32	37.359	74.717	7.5	22.2	0.199	30	35.416	70.832	8.0	22.7	0.186
	Point 08I	34	10	12.189	24.378	9.5	24.2	0.071	10	12.189	24.378	9.5	24.2	0.071	10	12.314	24.629	10.0	24.7	0.070
Total	Total Oxygen Injected Per				2	2.603					2	9.331					3	31.348		
Sj	System Total Per Day (Ib)				2	0.12						55.37						57.49		

System Operating Specs

SCFH (M) = Measured flow rate

PSI (M) = Measured pressure

Temperature = Degrees Rankine

n = PV/RT = (lb Moles) lbs = n*32 lb/lb mole

R = Constant (10.73)

CF/D (V) = Volume of oxygen injected per day

PSIa (P) = Pressure converted to atmospheric pressure

Total of 2 injection banks Oxygen is injected for 10 minutes during each injection cycle Each Injection bank operates for 12 injection cycles per day Each injection point injects oxygen for 120 min per day (10 min per cycle * 12 cycles)

SCFH (C*) = Flow rate converted for oxygen (Flow meters are calibrated for air)

Example

Notes:

Bank 1 starts injection at 700AM Bank 1 finishes injection at 710AM System is recharging 710AM to 800AM Bank 2 starts injection at 800AM Bank 2 finishes injection at 810AM System is recharging 810AM to 900AM (Keep repeating cycle for course of day)

	Current Sampling	Initial Sampling	Date Moved to	Reason for Reduced	Date Removed from	Reason for Reduced	Date Returned to	Reason for Increased
Well ID	Frequency	Frequency in ISMP	Annual Sampling	Sampling Frequency	Sampling Program	Sampling Frequency	Quarterly Sampling	Sampling
GCMW-08S	Quarterly	Quarterly						
GCMW-09SR	Quarterly	Quarterly						
GCMW-11S	Quarterly	Quarterly						
GCMW-11I	Quarterly	Quarterly						
GCMW-13I	Quarterly	Quarterly	Q2 2021	Met Criteria for 4 Quarters			Q3 2023	Q2 2023 Exceeded Criteria
GCMW-20S	Quarterly	Quarterly						
GCMW-20I	Quarterly	Quarterly	Q2 2022	Met Criteria for 4 Quarters			Q3 2024	Q3 2024 Exceeded Criteria
GCRW-01	Quarterly	Quarterly						
GCRW-02	Quarterly	Quarterly	Q3 2020	Met Criteria for 4 Quarters			Q3 2022	Q2 2022 Exceeded Criteria
GCMW-08D	Not Sampled	Quarterly	Q3 2020	Met Criteria for 4 Quarters	Q3 2022	Met Criteria for 2 Annual Events		
GCMW-09IR	Not Sampled	Quarterly	Q3 2020	Met Criteria for 4 Quarters	Q3 2023	Met Criteria for 2 Annual Events		
GCMW-12S	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCMW-10IR	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCMW-10SR	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCMW-14IR	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCMW-14SR	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCMW-15	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCMW-16	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCMW-2012	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCMW-21I	Not Sampled	Quarterly	Q3 2022	Met Criteria for 4 Quarters	Q3 2024	Met Criteria for 2 Annual Events		
GCMW-21I2	Not Sampled	Quarterly	Q4 2021	Met Criteria for 4 Quarters	Q3 2023	Met Criteria for 2 Annual Events		
GCMW-22I	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCMW-2212	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
GCRW-03	Not Sampled	Quarterly	Q3 2020	Met Criteria for 4 Quarters	Q3 2022	Met Criteria for 2 Annual Events		
PZ-05	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		
PZ-06	Not Sampled	Quarterly			Q3 2020	All Samples Pre Q3 2020 Met Criteria		

Notes:

Sample reduction criteria requires meeting Ambient Water Quality Standards for individual Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX) and Polycyclic aromatic hydrocarbons (PAH) compounds Items in bold indicate a recommended change based on current quarterly groundwater sampling results

Figures

Figure 1 Site Location Map

Figure 2 Well Location Map

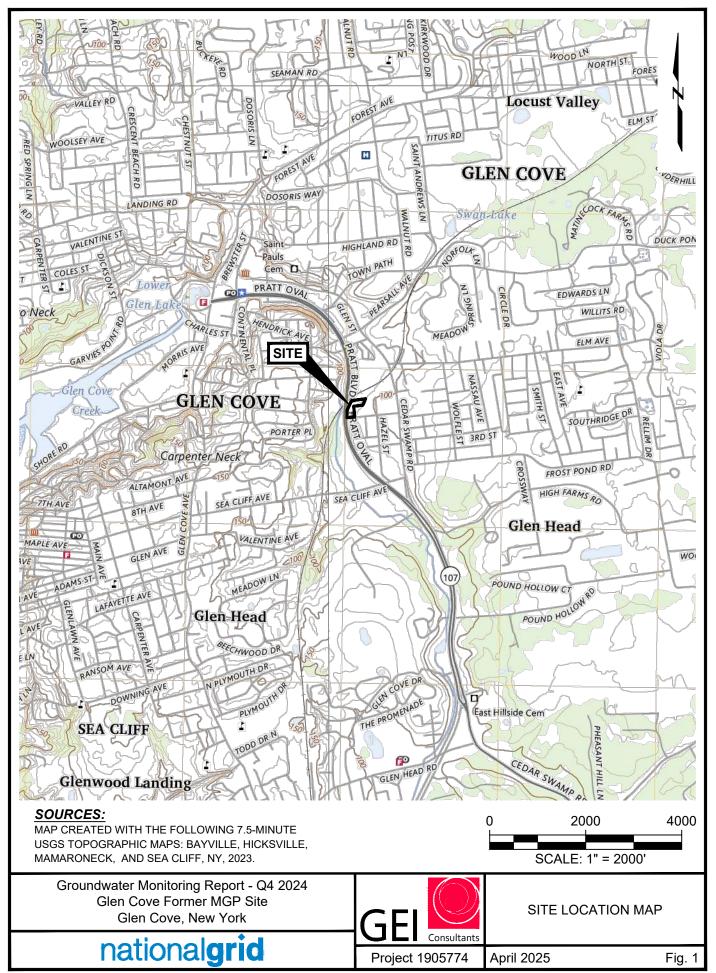

Figure 3 Groundwater Contour Map – Shallow Wells

Figure 4 Groundwater Contour Map – Intermediate Wells

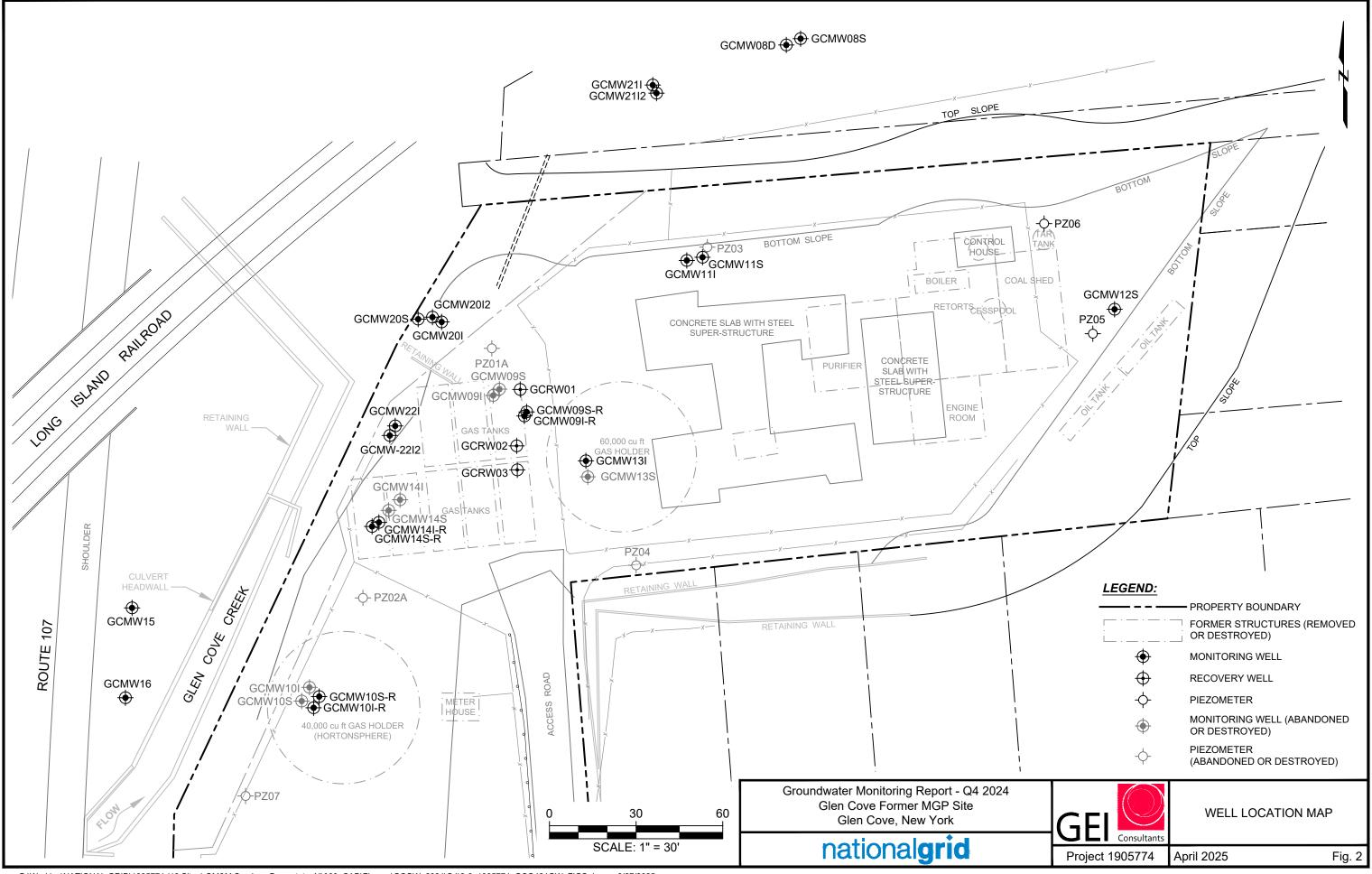
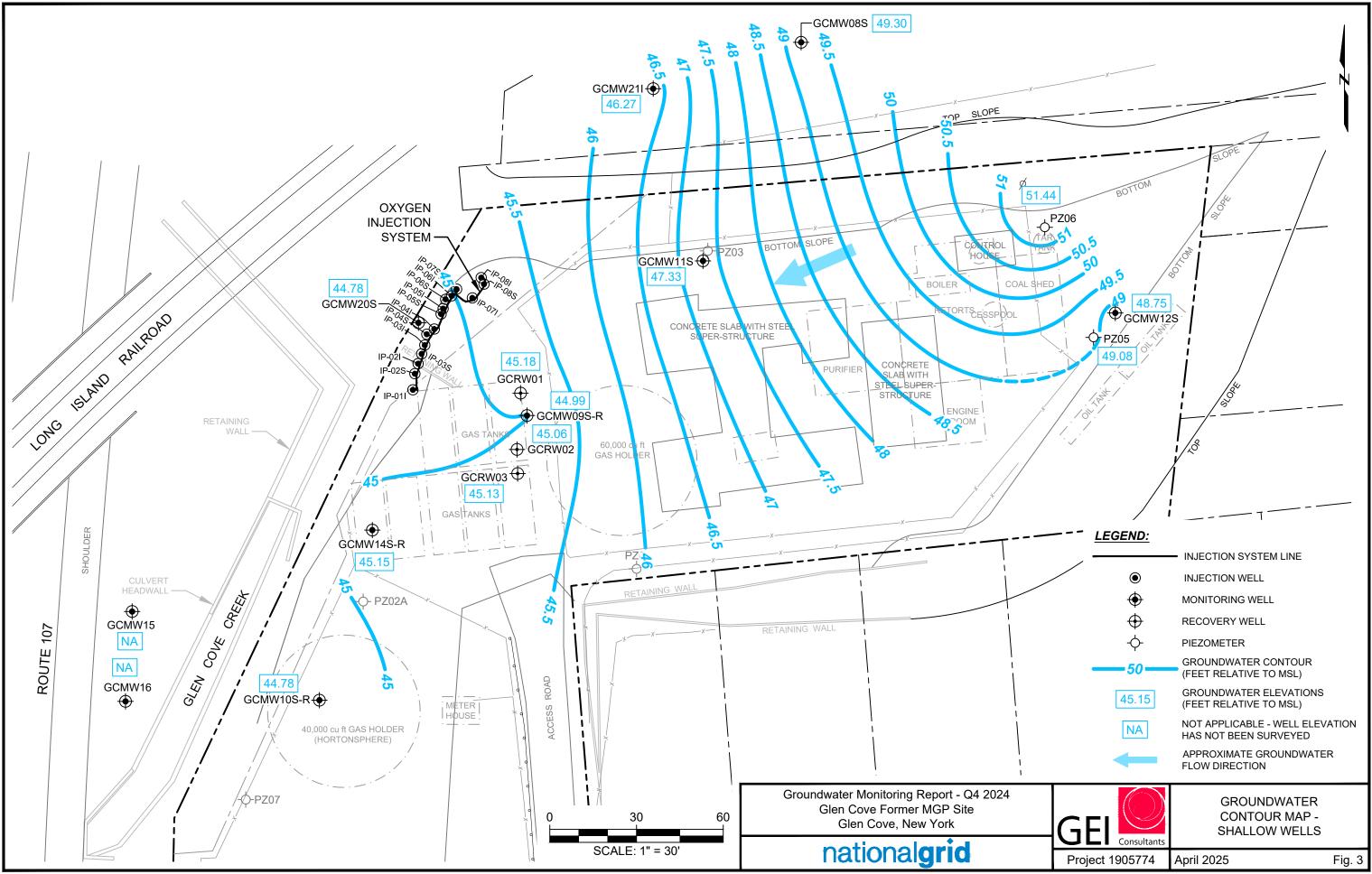
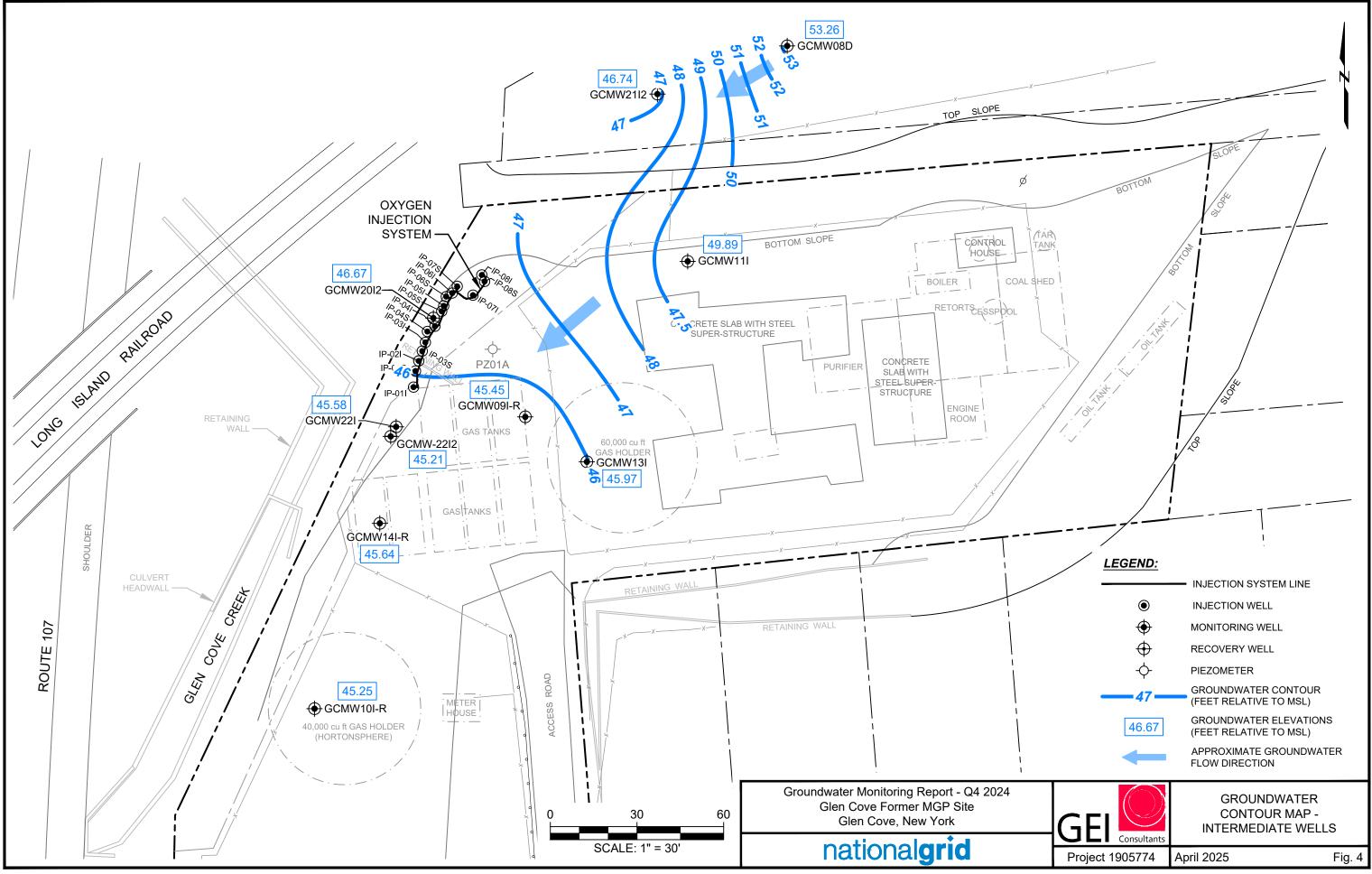

Figure 5 Groundwater Analytical Results – Shallow Wells

Figure 6 Groundwater Analytical Results – Intermediate Wells

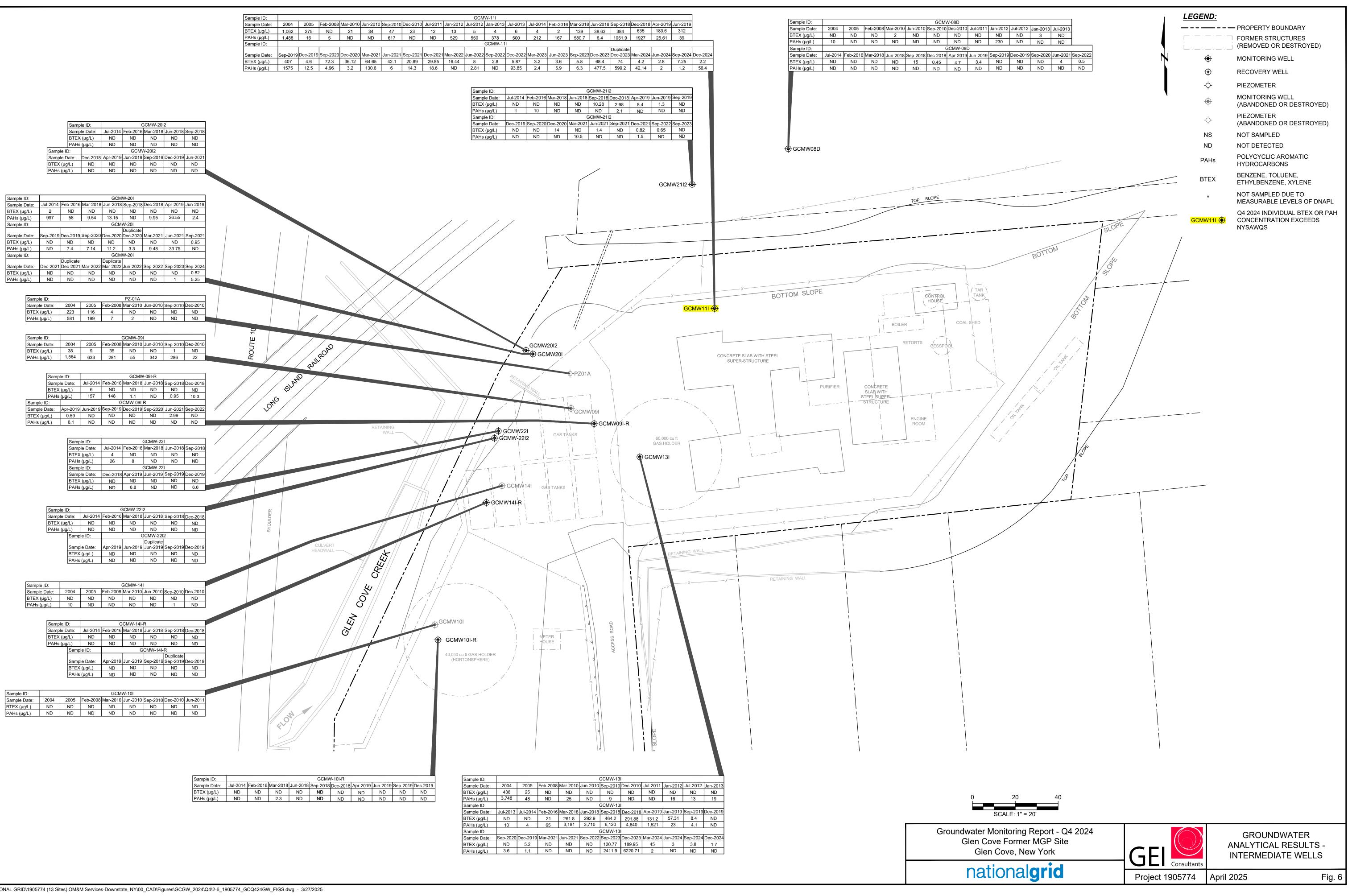

Figure 7 Monitoring Well Sampling Schedule and Groundwater Analytical Summary (ug/L)

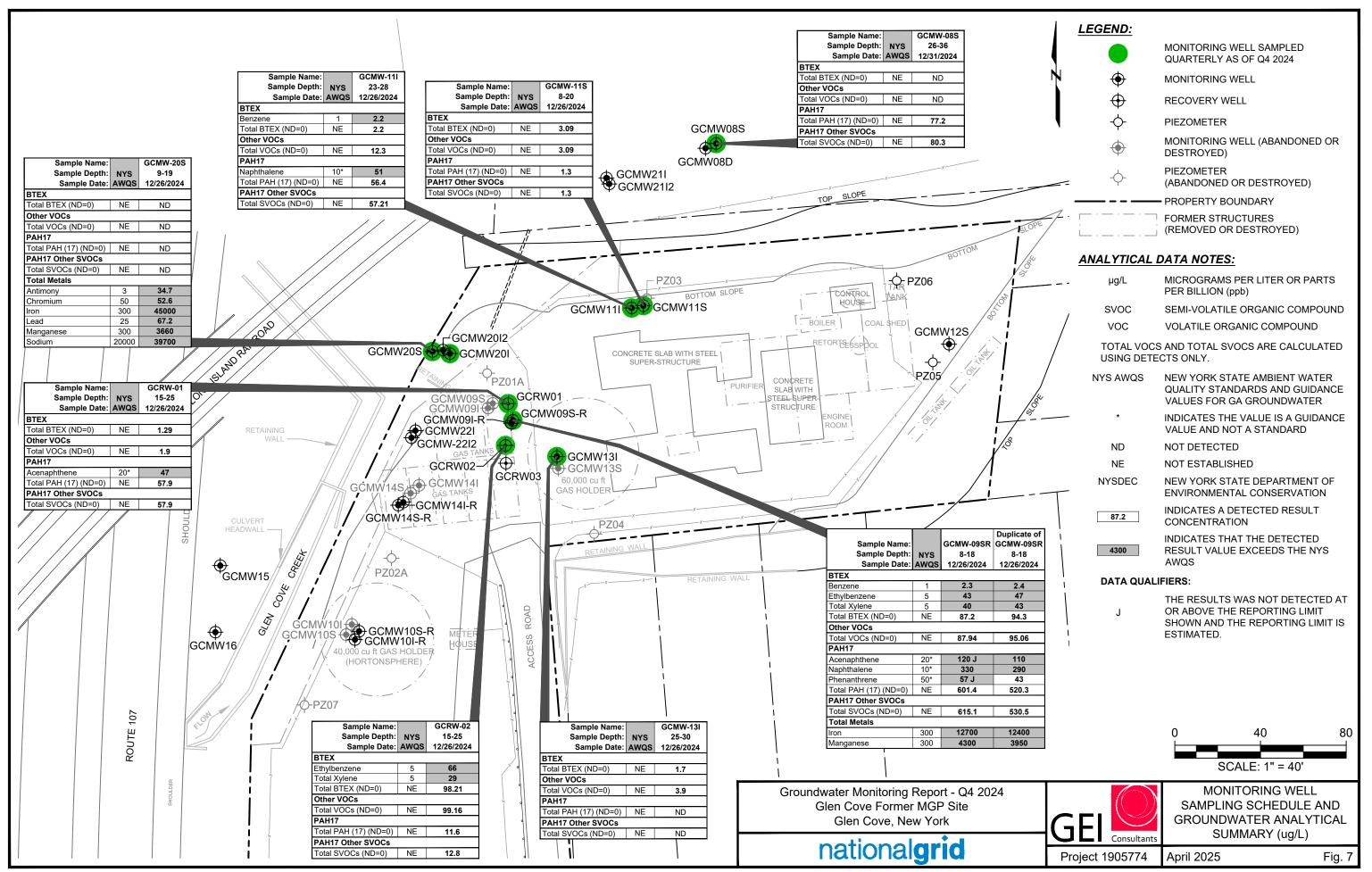

---- B:\Working\NATIONAL GRID\1905774 (13 Sites) OM&M Services-Downstate, NY\00_CAD\Figures\GCGW_2024\Q4\1_1905774_GCQ424GW_SLM.dwg - 3/5/2025

---- B:\Working\NATIONAL GRID\1905774 (13 Sites) OM&M Services-Downstate, NY\00_CAD\Figures\GCGW_2024\Q4\2-6_1905774_GCQ424GW_FIGS.dwg - 3/27/2025

---- B:\Working\NATIONAL GRID\1905774 (13 Sites) OM&M Services-Downstate, NY\00_CAD\Figures\GCGW_2024\Q4\2-6_1905774_GCQ424GW_FIGS.dwg - 3/27/2025

---- B:\Working\NATIONAL GRID\1905774 (13 Sites) OM&M Services-Downstate, NY\00_CAD\Figures\GCGW_2024\Q4\2-6_1905774_GCQ424GW_FIGS.dwg - 3/27/2025




Diz Junces Discontrational description PROPERTY BOUNDARY Diz Junces Discontrational description PROPERTY BOUNDARY Discontrational description Discontrational description PROPERTY BOUNDARY Discontration Discontra										LEGEI	ND:					
CEC SHIP-2021 No-2022	ND N	ID	ND	ND	13.1	15 N	D		-	 _		FOF	RMER S	STRUCT	URES	
Image: 10 No						I				L	· ·	``				ED)
↓ PIEZOMETER ↓ PIEZOMETER ↓ MONTORING WELL ↓ MANDONED OR DESTROYED) ↓ PIEZOMETER ↓ ND NOT SAMPLED ND NOT SAMPLED ND NOT SAMPLED DUE TO MEASURABLE LEVES OF DNAP BENZER ETVICENZER TOULERS. ETVICENZER ETVICENZER NOT SAMPLED DUE TO MEASURABLE LEVES OF DNAP DOCKONTRATION EXCELEDS OF DNAP ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM ØSTOM <thøstom< th=""> ØSTOM<td>ND N</td><td>D</td><td>0.6</td><td>0.58</td><td>0.3</td><td>5 N</td><td>D</td><td></td><td></td><td></td><td></td><td>-</td><td>_</td><td>-</td><td></td><td></td></thøstom<>	ND N	D	0.6	0.58	0.3	5 N	D					-	_	-		
MONITORINA VELL (ABANDONED OR DESTROYED) (ABANDONED OR DESTROYED) NO NOT SAMPLED NO NO SAMPLED NO SAMMLE SAM NO						ł										
Participant Provide Display Filter Participant Provide Display Filter <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_L</td><td></td></td<>															_L	
(ABANDONED OR DESTROYED) NS NOT SAMPLED ND NOT DETECTED PAHs POLYCYCLIC AROMATIC HYDROCARBONS BTEX BERZENE, TOLLENE, HYDROCARBON BTEX BERZENE, TOLLENE, BERZENE, TOLENE, BERZENE, TOLLENE, BERZENE, TOLENE, BERZENE, TO										-(•				DESTR	OYED)
ND NOT DETECTED PAHs POLYCYCLIC AROMATIC PAHs POLYCYCLIC AROMATIC BTEX BENZENE, TOLUENE, ETHYLBERZENE, YLENE OT SAMPLED ULE TO MCTANABLE LEVELS OF DATA BTEX BENZENE, TOLUENE, ETHYLBERZENE, YLENE OT SAMPLED ULE TO MCTANABLE LEVELS OF DATA BTEX BENZENE, TOLUENE, ETHYLBERZENE, YLENE OT SAMPLED ULE TO MCTANABLE LEVELS OF DATA BTEX BENZENE, TOLUENE, ETHYLBERZENE, YLENE BTEX BENZENE, TOLUENE, YLENE BTEX BENZENE, TOLUENE, YLENE BTEX BENZENE, TOLUENE, YLENE BTEX BENZENE, TOLUENE, YLENE BTEX BENZENE,										-	¢ -				DESTR	OYED)
PAHs POLYCYCLIC AROMATIC HYDROCARBONS BTEX BENZENE, FOLLENE, ETHYLBENZENE, XYLENE BTEX BENZENE, SYLENE COMMONSENE COMMONSENE COMMONSENE COMMONSENE COMMONSENE COMMONSENE BOTTOM TOPE BOTTOM <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>١</td><td>١S</td><td>NO</td><td>T SAMF</td><td>PLED</td><td></td><td></td></t<>										١	١S	NO	T SAMF	PLED		
PAris HYDROCARBONS BTEX BENZENE, TOLUENE, ETHVLERKENE, XYLENE BTEX BENZENE, TOLUENE, ETHVLERKENE, XYLENE NOT SAMPLED DUE TO MEASURABLE LEVELS OF DNAP G4 2024 INDIVIDUAL BTEX OR P. COMMOSTIC BOTTOM Sample Dia Sample Dia BOTTOM Sample Dia Sample Dia BOTTOM Sample Dia										١	ND	-		-		
BTEX ETHYLEENZENE, XVLENE NOT SAMPLED DUE TO MEASURABLE LEVELS OF DNA PARESURABLE LEVELS DNA PARESURABLE LEVELS DNA PARESURABLE LEVELS OF DNA PARESURABLE LEVELS DNA PARESURABLE LEVELS DNA PARESURABLE LEVELS DNA PARESURABLE LEVELS DNA PARESURABLE LEVELS DNA PARESURABLE LEVELS DNA	-X	-								PA	AHs					
Source Secrete Commonscence									_	B	ΓEX					-
Service Diff Service Diff<											*			,		
Surgie Do COMUSER CONCENTRATION EXCEEDS NYSAWOS BOTTOM Sargie Bo F2-00 F2-00 F2-00 Sargie Bo NO NO NO NO NO PAth (pg.) NO NO NO NO NO NO Sargie Bo NO NO NO NO NO NO NO NO Sargie Bo NO NO <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							1									
BOTTOM Sample Dr. P2.06 Simple Dr. NO N				1	OPE		/		-	GCMW	09S-R (COI	NCENT	RATION		
Sample ID: Solution				SI	_0. /			/	/			IN FG	SAVVQS)		
And Date	ROTTOM						Sa	/ mple ID:				PZ-06				
Sample Dic P2:45 Sample Dic Ju-2011 Jan-2012 Jul-2013 Jul-2013 Jul-2014 Feb-2016 Bit P2: LiggL) NS NS ND ND ND ND ND Bit P2: LiggL) NS NS ND ND ND ND ND Bit P2: LiggL) NS NS ND <	Be			1/6	8					-				-		
Strick (ugL) NS ND			/	18			PA Sa	Hs (µg/L) mple ID:			1	PZ-06				
PAHs (µgL) ND				\vdash			Sa BT	mple Date: EX (μg/L)	NS	NS	ND	ND	ND	ND	ND	
PAHs (µgL) ND		/~	NOL IN	1			Sa	mple ID:				PZ	-06			D- 6*
S GCMW-12S Sample Date: 2004 2005 Feb-2008 Mar.2010 Lin-2010 Sep-2010 Dec-2010 BTEX (ug1) 6 1 N.D N.D N.D N.D N.D N.D Sample Date: Jul-2011 Jul-2012 Jul-2012 Jul-2012 Jul-2013 Jul-2014 Feb-2016 Sample Date: Jul-2011 Jul-2012 Jul-2012 Jul-2012 Jul-2012 Jul-2012 Jul-2012 Jul-2013 Jul-2014 Feb-2016 Sample Date: Jul-2014 ND		/ &					ВТ	EX (µg/L)	ND	ND	ND	ND	ND	ND	ND	ND
Sample ID: CC/MW-125 Sample Date: 2004 2005 Feb-2008 Mar-2010 Jun-2010 Sep-2010 Dec-2010 PAHs (ug1,) ND <		~				/		пэ (µy/L)			טאי ן	עא ן	טאי ן		עא ן	שאי
Sample Date: 2004 2005 Feb-2008 [Mm-2010] Sep-2010 [Dm-2010] Sep-2010] B Simple Date: 0.01 ND ND ND ND ND Simple Date: 0.02 Simple Date: 0.02 Simple Date: 0.02 0.02 0.01 ND	. /		\geq				Sa	mple ID.				GCMW-12	s			
PARS (LB2) 0 1 ND ND ND Sample D. CCMW-125 Sample D.t. CCMW-125 Sample D.t. CCMW-125 Sample D.t. Jul-2011 Jan-2012 Jul-2012 Jul-2012 Jul-2013 Jul-2013 Jul-2014 Feb-2016 Feb-2016 ND ND ND Sample D.t. Mar-2018 Jun-2018 Jun-2018 Sep-2018 Dec-2019 Apr-2019 Jun-2019 Sep-2019 Dec-2019 Sep-2018 Dec-2019 Apr-2019 Jun-2019 Sep-2010 Dec-2019 ND		Rut					Sa	mple Date:			Feb-2008	Mar-2010	Jun-2010	-		
Sample Date: Jul-2011 Jul-2011 Jul-2013 Jul-2014 Feb-2016 BTEX (µgL) ND ND ND ND ND ND Bample Date: Jul-2014 Jul-2018 Sep-2019 Dec-2019 BTEX (µgL) ND ND ND ND ND ND BTEX (µgL) ND ND ND ND ND ND ND ND BTEX (µgL) ND	∕∕`∕	/				/	PA	Hs (µg/L)			ND	ND	ND			
Sample ID: GCMW-125 Sample Date: Mar-2018 Jun-2018 Bec-2018 Apr-2019 Jun-2019 Sep-2019 Dec-2015 BFEX (µg/L) ND						/	Sa	mple Date:			1			1		
PAHs (µg/L) ND	, ,			/	/		Sa	mple ID:				GCM	W-12S			
Sample Date: 2004 2005 PZ-05 Sample Date: 2004 2005 Feb-2008 Mar-2010 Jun-2010 Sep-2010 10/1/10 BTEX (ug/L) ND ND ND ND ND ND ND Sample Date: Jul-2011 Jan-2012 Jul-2013 Jul-2014 Feb-2016 BTEX (ug/L) ND	/			\rightarrow			BT	EX (µg/L)	ND	ND	ND	ND	ND	ND	ND	ND
BTEX (µg/L) ND ND ND ND ND ND ND PAHs (µg/L) ND ND <th></th> <th></th> <th>\$⁰⁰⁶</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>2004</th> <th>2005</th> <th>Feb-2009</th> <th></th> <th></th> <th>Sen 2010</th> <th>10/1/10</th> <th></th>			\$ ⁰⁰⁶					-	2004	2005	Feb-2009			Sen 2010	10/1/10	
Sample ID: PZ-05 Sample Date: Jul-2011 Jul-2012 Jul-2013 Jul-2014 Feb-2016 BTEX (µg/L) NS NS ND ND ND ND Sample Date: Jul-2014 Jul-2013 Jul-2013 Jul-2014 Feb-2016 BTEX (µg/L) NS NS ND ND ND ND Sample Date: Mar-2018 Jun-2018 Sep-2018 Dec-2018 Apr-2019 Jul-2019 Sep-2019 Dec-2019 Sep-2019 Sep-2019 Dec-2019 Sep-2019 Sep-2019 Dec-2019 Sep-2020 Sep-2020 Sep-2020 Sep-2020 Sep-2021 Sep-2019 Sep-2019 Sep-2019 Sep-2019 Sep-2021 Sep-2021 Sep-202							BT	EX (µg/L)	ND	ND	ND	ND	ND	ND	ND	
BTEX (µg/L) NS NS ND ND ND ND ND Sample ID: PAHs (µg/L) NS NS ND ND ND ND ND ND Sample Date: Mar-2018 Jun-2018 Sep-2018 Dec-2019 Jun-2019 Dec-2019 Dec-2019 BTEX (µg/L) ND ND <td< td=""><td>/</td><td>1,2</td><td></td><td></td><td></td><td></td><td>Sa</td><td>mple ID:</td><td>Jul-2011</td><td>Jan-2012</td><td></td><td>PZ-05 Jan-2013</td><td></td><td></td><td></td><td></td></td<>	/	1,2					Sa	mple ID:	Jul-2011	Jan-2012		PZ-05 Jan-2013				
Sample Date: Mar-2018 Jun-2018 Sep-2018 Dec-2018 Apr-2019 Jun-2019 Sep-2019 Dec-2019 BTEX (µg/L) ND <							BT PA	EX (µg/L) Hs (µg/L)		NS	ND	ND ND	ND ND			
Sample ID: GCMW-09S-R Duplicate							Sa	mple Date:				Dec-2018	Apr-2019			
Sample Date: Jul-2014 Feb-2016 Mar-2018 Jun-2018 Sep-2018 Dec-2018 Apr-2019 Jun-2019 Sep-2019 Duplicate Duplicate Duplicate Sep-2020 Sep-2020 Sep-2020 Sep-2020 Sep-2020 Sep-2020 Sep-2019 Dec-2019 Sep-2019 Dec-2019 Sep-2019 Dec-2019 Sep-2020 Sep-2021 Sep-2019 Sep-2019 Dec-2021 Sep-2021 Sep-2021 Sep-2019 Sep-2021 Sep-2019 Sep-2019 <td></td> <td>1</td> <td></td> <td></td>														1		
Sample Date: Jul-2014 Feb-2016 Mar-2018 Jun-2018 Sep-2018 Dec-2018 Apr-2019 Jun-2019 Sep-2019 Duplicate Duplicate Duplicate Sep-2020 Sep-2020 Sep-2020 Sep-2020 Sep-2020 Sep-2020 Sep-2019 Dec-2019 Sep-2019 Dec-2019 Sep-2019 Dec-2019 Sep-2020 Sep-2019 Sep-2019 Dec-2019 Sep-2020 Sep-2020 Sep-2020 Sep-2020 Sep-2020 Sep-2021 Sep-2019 Sep-2019 Dec-2019 Sep-2021 Sep-2021 Sep-2019 Sep-2019 Sep-2019 Sep-2019 Sep-2019 Sep-2019 Sep-2021 Sep-2019 Sep-2022 Sep-2022 Sep-2022 <td></td>																
BTEX (μg/L) 385 141 102.4 60.2 90.2 79.1 97.2 168.6 223.4 214.5 266.3 280.2 281.2 PAHs (µg/L) 2,482 1,670 946.5 1,047 752.3 662.7 889.3 1247 187 241.2 929.2 270.6 322.4 Sample ID: GCMW-09S-R Sample Date: Dec-2020 Mar-2021 Jun-2021 Jun-2021 Sep-2021 Dec-2021 Mar-2022 Jun-2022 Sep-2022 Sep-2022 Sep-2022 Sep-2022 Sep-2022 Jun-2022 Jun-2022 Sep-2021 Dec-2021 Mar-2022 Jun-2022 Sep-2022 Sep-																
Sample ID: GCMW-09S-R Sample Date: Dec-2020 Mar-2021 Mar-2021 Jun-2021 Sep-2021 Dec-2021 Mar-2022 Jun-2022 Sep-2022 Sep-2023 Sep-2023 Sep-2023 Sep-2023 Sep-2023 Duplicate Sep-2023 Mar-2024 Jun-2024 Sep-2024 Dec-2024 Dec-20	BTEX (µg/L)	385	14	1 1	02.4	60.2	90.2	79.1	97.2	168.6	223.4	214.5	266.3	280.2	281.2	
Sample Date: Dec-2020 Mar-2021 Mar-2021 Jun-2021 Sep-2021 Dec-2021 Sep-2022 Jun-2022 Sep-2022 Sep-2023 Sep-2023 Sep-2021 Sep-2021 Sep-2022 Sep-2023		∠,482	1,67	-		1,U4 <i>1</i>					187	241.2	929.2	270.6		
Sample ID: GCMW-09S-R Sample Date: Duplicate	BTEX (µg/L)	218.5	156.	021 Ma .5 1	ar-2021 56.5	205.4	Jun-20 205.2	21 Sep-202 2 106.2	145.2	106.2	145.2	144	122.2	146.2	Sep-2022 160.5	
Sample Date: Dec-2022 Mar-2023 Mar-2023 Jun-2023 Sep-2023 Dec-2023 Dec-2023 Jun-2024 Jun-2024 Sep-2024 Dec-2024 BTEX (µg/L) 106.4 95.2 90.3 97.4 95.5 81.5 68.4 74 77.5 107.8 110.8 150.5 87.2 94.3		749.6	511.			213.2	217.7		GCMV	V-09S-R		948.5				
	· ·		_	023 Mai	r-2023			23 Sep-202	23 Dec-2023	3 Dec-2023	Mar-2024		Jun-2024	Sep-2024	Dec-2024	Dec-2024
			_													
	<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>															
	(****** (F3 (-)															
	(******* (F3 ***)						1									
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															
	(/ / ((/ g/ _ /)															
	(r, a, c (r, g, -)															
	(r , u , c (r , g , z)															
	(r ,															
		4	-0													
20 40 ALE: 1" = 20'	20	4	0													

GROUNDWATE ANALYTICAL RESULTS -SHALLOW WELLS

Sample ID:									
Sample Date:	2004	2005	Feb-2008	Mar-2010	Jun-2010	Sep-2010	Dec-2010	Jul-2011	Jan-20
BTEX (µg/L)	1,062	275	ND	21	34	47	23	12	13
PAHs (µg/L)	1,488	16	5	ND	ND	617	ND	ND	529
Sample ID:									
Sample Date:	Sep-2019	Dec-2019	Sep-2020	Dec-2020	Mar-2021	Jun-2021	Sep-2021	Dec-2021	Mar-20
BTEX (µg/L)	407	4.6	72.3	36.12	64.65	42.1	20.89	29.85	16.44
PAHs (µg/L)	1575	12.5	4.96	3.2	130.6	6	14.3	18.6	ND

---- B:\Working\NATIONAL GRID\1905774 (13 Sites) OM&M Services-Downstate, NY\00_CAD\Figures\GCGW_2024\Q4\7_1905774_GCQ424GW_WELL.dwg - 3/5/2025

Appendix A Quarterly Groundwater Sampling Logs

Monitoring Well Sample Data Form

á.

Project:		National G	rid - Glyn	Cer	-	Well ID:	GCMW.	205	. Sa	mple Date	12/26/24
Total Well E (from top of	•		18-631	Total Well (From We		19.00	-		Depth to V (from top o	Vater of casing):	9.461
Well Diame	ter:		3/4"	_1"(2)	4"	_		Pump Inta (Mid-Point of	•	: 14.00 '
Sampling C	rew:		(Haye	<u>s</u>		-		Purge Tim	Start: e:	08"0
Purging Me	thod:		Peristaltic P	ump			-			Finish:	
Sampling M	lethod:		Low Flow		(- - 10		Sample Ti	Start: me: Finish:	0850
Sample Ana	alysis:		VDCS SVE	XS Mer	eng the hetal	¥					
						Purge Da	ata		<u> </u>		
Sample Time	Depth to Water* (ft)	Flow Rate (lpm/gpm)	Volume Purged (liters/gals.)	pH (std. Units)	Conductivity (mS/cm)	Purge D a Turbidity (NTU)	Dissolved Oxygen	Temp. (Cel.)	Salinity (%)	ORP (mV)	Comments/Observations
						Turbidity	Dissolved				Comments/Observations Well Headspace PID =
Time 0815 0810	Water* (ft)	(lpm/gpm)	Purged (liters/gals.)	(std. Units)	(mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	(Cel.)	(%)	(mV)	Well Headspace PID =
Time 0δ ⁽⁵⁾ 0δ ^{τ0} 0δ ^{τ5}	Water* (ft) 9.46	(Ipm/gpm) 0.닉	Purged (liters/gals.) Z 4	(std. Units) 6.75	(mS/cm)	Turbidity (NTU) 931	Dissolved Oxygen (mg/l) उर, ४ हि	(Cel.) 1.48	(%) 0.4	(mV) 721	Well Headspace PID =
Time 0δ ⁽⁵⁾ 0δ ^{τ0} 0δ ^{τ5} 0δ ^{τ5}	Water* (ft) 9.46 16.02	(Ipm/gpm) 0.4 0.4	Purged (liters/gals.) Z. 4	(std. Units) 6.75 6.63	(mS/cm) 0.750 0.751	Turbidity (NTU) 931	Dissolved Oxygen (mg/l) 31,42 32,79	(Cel.) 12.48 12.67	(%) 0.4 0.4	(mV) 101 107	
Time 0δ ⁽⁵⁾ 0δ ^{τ0} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5}	Water* (ft) 9.46 16.02 13.60 13.60	(<i>lpm/gpm</i>) 04 04 04 04 04 04	Purged (liters/gals.) Z 4 0 2 8 6 6 6	(std. Units) 6.75 6.63	(mS/cm) 0.750 0.751	Turbidity (NTU) 931	Dissolved Oxygen (mg/l) 31,42 32,79	(Cel.) 12.48 12.67	(%) 0.4 0.4	(mV) 101 107	Well Headspace PID = */well duest up @0825 Whit Fit Recharge.
Time 0δ ⁽⁵⁾ 0δ ^{τ0} 0δ ^{τ5} 0δ ^{τ5}	Water* (ft) 9.46 16.02 1350	(<i>Ipm/gpm</i>) 0.4 0.4 0.4 0.4	Purged (liters/gals.) Z 4 Ú Č	(std. Units) 6.75 6.63	(mS/cm) 0.750 0.751	Turbidity (NTU) 931	Dissolved Oxygen (mg/l) 31,42 32,79	(Cel.) 12.48 12.67	(%) 0.4 0.4	(mV) 101 107	Well Headspace PID =
Time 0δ ⁽⁵⁾ 0δ ^{τ0} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5}	Water* (ft) 9.46 16.02 1350 	(<i>lpm/gpm</i>) 04 04 04 04 04 04	Purged (liters/gals.) Z 4 0 2 8 6 6 6	(std. Units) 6.75 6.63	(mS/cm) 0.750 0.751	Turbidity (NTU) 931	Dissolved Oxygen (mg/l) 31,42 32,79	(Cel.) 12.48 12.67	(%) 0.4 0.4	(mV) 101 107	Well Headspace PID = *Mell duest up & 0825 Whit für Kednarge. Simple @ 0850
Time 0δ ⁽⁵⁾ 0δ ^{τ0} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5}	Water* (ft) 9.46 16.02 1350 	(<i>lpm/gpm</i>) 04 04 04 04 04 04	Purged (liters/gals.) Z 4 0 2 8 6 6 6	(std. Units) 6.75 6.63	(mS/cm) 0.750 0.751	Turbidity (NTU) 931	Dissolved Oxygen (mg/l) 31,42 32,79	(Cel.) 12.48 12.67	(%) 0.4 0.4	(mV) 101 107	Well Headspace PID = *Well duest up @0825 Whit Fil Reducings. Simple @0850 Coloress
Time 0δ ⁽⁵⁾ 0δ ^{τ0} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5}	Water* (ft) 9.46 16.02 1350 	(<i>lpm/gpm</i>) 04 04 04 04 04 04	Purged (liters/gals.) Z 4 0 2 8 6 6 6	(std. Units) 6.75 6.63	(mS/cm) 0.750 0.751	Turbidity (NTU) 931	Dissolved Oxygen (mg/l) 31,42 32,79	(Cel.) 12.48 12.67	(%) 0.4 0.4	(mV) 101 107	Well Headspace PID = *Mell duest up & 0825 Whit für Kednarge. Simple @ 0850
Time 0δ ⁽⁵⁾ 0δ ^{τ0} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5}	Water* (ft) 9.46 16.02 1350 	(<i>lpm/gpm</i>) 04 04 04 04 04 04	Purged (liters/gals.) Z 4 0 2 8 6 6 6	(std. Units) 6.75 6.63	(mS/cm) 0.750 0.751	Turbidity (NTU) 931	Dissolved Oxygen (mg/l) 31,42 32,79	(Cel.) 12.48 12.67	(%) 0.4 0.4	(mV) 101 107	Well Headspace PID = *Well duest up @0825 Whit Fil Reducings. Simple @0850 Coloress
Time 0δ ⁽⁵⁾ 0δ ^{τ0} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5} 0δ ^{τ5}	Water* (ft) 9.46 16.02 1350 	(<i>lpm/gpm</i>) 04 04 04 04 04 04	Purged (liters/gals.) Z 4 0 2 8 6 6 6	(std. Units) 6.75 6.63	(mS/cm) 0.750 0.751	Turbidity (NTU) 931	Dissolved Oxygen (mg/l) 31,42 32,79	(Cel.) 12.48 12.67	(%) 0.4 0.4	(mV) 101 107	Well Headspace PID = *Well duest up @0825 Whit Fil Reducings. Simple @0850 Coloress

				M.	SAMSD
	Monite	-	mple Data Form		UP-01
Project:	National Grid- Glen Cove	Well ID:	GCMW-09	1.5-R Sample Date:	2/26/24
Total Well Depth (from top of casing):	(7. 4) (Total Well Depth (From Well Log):	16	<i>·</i>	Depth to Water (from top of casing):	9.60
Well Diameter:	3/4" 1" (2")	4"		Pump Intake Depth (Mid-Point of Screen Zone):	12.41'
Sampling Crew:	P. Beachia		_	Start:	0815
Purging Method:	Peristaltic Pump	<u> </u>		Finish: Start:	(0900)
Sampling Method:	Low Flow			Sample Time: Finish:	
Sample Analysis:	Peliniation				
		Purge	Data		

and the second second		1		en e	I dige D		<u> </u>			
Water*	Flow Rate (Ipm/gpm)	Volume Purged (liters/gals.)	pH (std. Units)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp. (Cel.)	Salinity (%)	ORP (mV)	Comments/Observations
	0.4	Initial	5.98	1.90	233	4.32	12.38			Well Headspace PID =
		2	6.11	1.86	206	2.41	13.20	0.9	-86_	*INSIMSD & DUP-DI
· · · · · · · · · · · · · · · · · · ·		4	6.03	154	161	2.95	13 62	<u>C.8</u>	- 89	* CUTOT PSS/MGP odor
	1	6	6.21	1.57	124	1.81	13.94		- 115	
1		8		1.63	87.3	0.69	14.09		- 122	
10.52					80.6	0.60	14.16		-125	
					61.1	0.29	14.10		-130	
· ·			1 1 1 1		60.6	0.24	14.15	0.8	- 132	
	1		1	161	60.0	0.20	14.12	08	-136	1
		1								
	1		1	1						
	Water* (ft) 9.60 10.16 10.45 10.52	Water (ft) (lpm/gpm) 9.60 0.4 10.16 10.45 10.45 10.52	Water* (ft) Flow Rate (lpm/gpm) Purged (liters/gals.) 9.60 0.4 Initial 10.16 2 10.45 4 10.52 8	Water* Flow Rate (lpm/gpm) Purged (liters/gals.) pff (std. Units) 9.60 0.4 $1n_1 + a_1$ 5.9ϵ 10.16 2 6.11 10.45 4 6.03 6 6.21 6.11 10.52 6.11 6.14 10.52 6.14 6.14	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Project:		National G	rid - Arn	love		Well ID:	GCMW-	115	Sa	mple Date:	12/26/24
Total Well D (from top of			21.52	Total Well (From We	Depth II Log):	70.00			Depth to W (from top o		7.03
Well Diamet	er:		3/4"	1" (2	4"			Pump Intal (Mid-Point of	•	14,001
Sampling C	rew:		<u> </u>	Hayes)				Purge Time	Start:	0930
Purging Me	thod:		Peristaltic P	l ump					i digo i ili	Finish:	1005
Sampling M	ethod:		Low Flow	<u></u>					Sample Tir	Start:	(100)
Sample Ana				Lanc	<				oumpio m	Finish:	
					>		•				
						Purge Da					
Sample Time	Depth to Water* (ft)	Flow Rate (Ipm/gpm)	Volume Purged (liters/gals.)	pH (std. Units)	Conductivity (mS/cm)	Purge Da Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp. (Cel.)	Salinity (%)	ORP (mV)	Comments/Observations
	Water*	Flow Rate		(std. Units)		Turbidity	Dissolved Oxygen			1	Comments/Observations Well Headspace PID =
Time	Water* (ft)	(lpm/gpm)	Purged (liters/gals.)	(std. Units) U-G3	(mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	(Cei.) 11-62	(%) U.	(mV)	
Time DG35	Water* (ft) 7.03 7.01	lipm/gpm) (lpm/gpm)	Purged (liters/gals.) Z	(std. Units)	(mS/cm) 0.262	Turbidity (NTU)	Dissolved Oxygen (mg/l) & 2C	(Cel.)	(%) U.	(mV)	
Time DG25 UGUO	Water* (ft) 7.03	Plow Rate (lpm/gpm) 은 닉 ().낙	Purged (liters/gals.) Z U	(std. Units) 0-63 6-68	(mS/cm) 0.262 0.260	Turbidity (NTU) 132 132	Dissolved Oxygen (mg/l) & 2C B. / [(Cei.) 11-62 11-67	(%) U. 1 ()- 1	(mV) -4/ -20	Well Headspace PID =
Time DG35 UGUO UGUS	Water* (ft) 7.03 7.01 6.99	Flow Rate (lpm/gpm) 은 직 ().작	Purged (liters/gals.) Z () ()	(std. Units) 0-63 6-68 6:72	(mS/cm) 0.262 0.261 0.259	Turbidity (NTU) / 3 2 / 3 2 / 3 1	Dissolved Oxygen (mg/l) 8 2C 8.11 5.04	(Cei.) 11-62 11-67 11-77	(%) 0.1 0.1	(mV) - 4 / - 2 C - 6	Well Headspace PID =
Time D935 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945	Water* (ft) 7.03 7.01 6.99 7.02	C Y 0.4 0.4 0.4 0.4	Purged (liters/gals.) Z () () S	(std. Units) <u>10-63</u> 6-68 <u>6-72</u> 6-74	(mS/cm) 0.262 0.261 0.269 0.252	Turbidity (NTU) 132 132 131 9.4	Dissolved Oxygen (mg/l) 8 2C 8.11 5.04 7.73	(Cei) 11.62 11.67 11.77 72 01	(%) <i>U.</i> <i>U.</i> <i>U.</i> <i>J.</i> /	(mV) - 4 / - 2 0 - 6 - 1	Well Headspace PID =
Time D935 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945 0945	Water* (ft) 7.03 7.01 6.99 7.02 7.02 7.02	Flow Rate (lpm/gpm) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Purged (liters/gals.) Z U U C S S C	(std. Units) <u>U-G3</u> <u>G-G8</u> <u>G-77</u> <u>U-74</u> <u>U-75</u>	(mS/cm) 0.262 0.261 0.259 0.259 0.257	Turbidity (NTU) 132 132 131 9.4 4.5	Dissolved Oxygen (mg/l) 8 2C 8.11 5.04 7.73 7.49	(Cei) 1462 1467 1467 11.77 72 61 72 11	(%) <i>U</i> . <i>U</i> . <i>U</i> . <i>U</i> . <i>U</i> . <i>U</i> .	(mV) - 4 / - 2 0 - 6 - 1 * 2	Well Headspace PID =
Time DG15 UG40 UG40 UG45 UG45 UG460 UG455	Water* (ft) 7.03 7.01 6.99 7.02 7.02 7.02 7.03	Flow Rate (lpm/gpm) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Purged (liters/gals.) Z U U C X X C X C	(std. Units) <u>0-63</u> <u>6-68</u> <u>6:72</u> <u>6:72</u> <u>6:75</u> <u>6:76</u>	(mS/cm) 0.262 0.261 0.259 0.257 0.257 0.257	Turbidity (NTU) 132 132 131 9.4 4.5 4.1	Dissolved Oxygen (mg/l) 8 2C 8.71 5.04 7.73 7.99 7.21	(Cei) 11.62 11.67 11.77 72 01 12.24	(%) 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(mV) - 4 / - 20 - 6 - 1 • 2 5	Well Headspace PID =
Time D935 0945 0940 0945 0945 0945 0945 0945 0945 0945 0945 0945	Water* (ft) 7.03 7.01 6.99 7.02 7.02 7.02 7.03	Flow Rate (lpm/gpm) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Purged (liters/gals.) Z U U C X X C X C	(std. Units) <u>0-63</u> <u>6-68</u> <u>6:72</u> <u>6:72</u> <u>6:75</u> <u>6:76</u>	(mS/cm) 0.262 0.261 0.259 0.257 0.257 0.257	Turbidity (NTU) 132 132 131 9.4 4.5 4.1	Dissolved Oxygen (mg/l) 8 2C 8.71 5.04 7.73 7.99 7.21	(Cei) 11.62 11.67 11.77 72 01 12.24	(%) 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(mV) - 4 / - 20 - 6 - 1 • 2 5	Well Headspace PID =

Project:	National Gr	id - <u>Gler,</u>	Que	,	Weil ID:	SCMU	N-13	T San	nple Date:	12/26/24
Total Well Depth (from top of casing):	<u>Indefine er</u>	. .	Total Well (From Well	Depth	301		ſ	Depth to W from top o	ater	9.54'
Well Diameter:	<u> </u>	3/4"	1" /	~~	4"			Pump Intak Mid-Point of S	e Depth Screen Zone):	30.08'
Sampling Crew:		P. Re	cchia					Purge Time	Start:	1000
Purging Method:		Peristaltic Pu	ımp						Finish:	1035
Sampling Method:		Low Flow					:	Sample Tin	Start: n e: Finish:	(1040)
Sample Analysis:		VCC/S	VOC						1 111311.	
					Purge Da	ata				and the second secon
Sample Time	Flow Rate (Ipm/gpm)	Volume Purged (liters/gals.)	pH (std. Units)	Conductivity (mS/cm)	Purge Da Turbidity (NTU)	nta Dissolved Oxygen (mg/l)	Temp. (Cel.)	Salinity (%)	ORP (mV)	Comments/Observations
Time (ft)	(lpm/gpm)	Purged (liters/gals.)	(std. Units)	(mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	(Cel.)	(%)	(mV)	Comments/Observations Well Headspace PID =
Sample Time Water* (ft) 1000 9.54'	Flow Rate	Purged (liters/gals.) In Fial	(std. Units)	(mS/cm)	Turbidity (NTU) 42.2	Dissolved Oxygen (mg/l) O_23	(Cei.) 11.60			Well Headspace PID =
Sample Time Water* (ft) 1000 9.54' 1005 10.61	(Ipm/gpm)	Purged (liters/gals.) 1n; f i al 2	(std. Units) 6.78 6.85	(mS/cm) 1.73 1.95	Turbidity (NTU) 42.2 70.7	Dissolved Oxygen (mg/l) O. 2.3 O. 0.0	(Cei.) 11.6() 13.78	(%) 0.8 1.0	(mV) -118	
Sample Time Water* (ft) 1000 9.54' 10.05 10.61 1010 12.82	(Ipm/gpm)	Purged (liters/gals.) 1n; 1; al 2 2	(std. Units) 6.85 6.82	(mS/cm) 1.73 1.95 1.88	Turbidity (NTU) 42.2 70.7 57.8	Dissolved Oxygen (mg/l) O.23 O.00 O.00 O.00	(Col) 11.6() 13.78 13.87	(%) 0.8 1.0 0.9	(mV) 118 77	Well Headspace PID =
Sample Time Water* (ft) 1000 9.54' 1005 10.61 1010 12.82 1015 10.55	(Ipm/gpm)	Purged (liters/gals.) 10, fial 2 4 6	(std. Units) 6.78 6.85 6.82 6.82	(mS/cm) 1.73 1.95 1.88 1.88	Turbidity (NTU) 42.2 70.7 57.8 57.8 54.0	Dissolved Oxygen (mg/l) 〇 23 〇.00 〇.00 〇.00	(Cei) 11.67 13.78 13.87 14.02	(%) 0.8 1.0	(mV) -118 -77 -74 -77	Well Headspace PID =
Sample Time Water* (ft) 1000 9.54' 10.05 10.61 1010 12.82 1015 10.20		Purged (liters/gals.) 1n; 1; al 2 4	(std. Units) 6.85 6.82 6.82 6.82 6.82	(mS/cm) 1.73 1.95 1.88 1.88 1.88	Turbidity (NTU) 42.2 70.7 57.8 54.0 47.9	Dissolved Oxygen (mg/l) O.23 O.00 O.00 O.00 O.00	(Cei) 11.67 13.78 13.87 14.02 13.99	(%) 0.8 1.0 0.9 0.9	(mV) -118 -77 -74	Well Headspace PID =
Sample Time Water* (ft) 1000 9.54' 1005 10.61 1010 12.82 1015 10.20 1025 15.29'		Purged (liters/gals.) 10, fial 2 4 6	(std. Units) 6.85 6.82 6.82 6.82 6.82 6.82 6.82	(mS/om) 1.73 1.95 1.88 1.88 1.88 1.88 1.90	Turbidity (NTU) 42.2 70.7 57.8 54.0 47.9 38.3	Dissolved Oxygen (mg/l) O.23 O.00 O.00 O.00 O.00 O.00	(Cei) 11.67 13.78 13.87 13.87 14.02 13.99 13.98	(%) 0.8 1.0 0.9 0.9 0.9 0.9 1.0	(mV) -118 -77 -74 -77 -78 -78	Well Headspace PID =
Sample Time Water* (ft) 1000 9.54' 10.05 10.61 1010 12.82 1015 10.20 1025 15.29' 1030 10.30		Purged (liters/gals.) 10, fial 2 4 6	(std. Units) 6.85 6.82 6.82 6.82 6.82 6.82 6.80 6.80	(ms/om) 1.73 1.95 1.88 1.88 1.88 1.90 1.92	Turbidity (NTU) 42.2 70.7 57.8 54.0 47.9 38.3 35.2	Dissolved Oxygen (mg/l) O.23 O.00 O.00 O.00 O.00 O.00 O.00	(Cei) 11.60 13.78 13.87 13.87 14.02 13.99 13.98 13.88 13.87	(%) 0.8 1.0 0.9 0.9 0.9 1.0 1.0	(mV) -118 -77 -74 -77 -78 -77 -78 -77 -65	Well Headspace PID =
Sample Time Water* (ft) 1000 9.54' 1005 10.61 1010 12.82 1015 10.20 1025 15.29'		Purged (liters/gals.) 10, fial 2 4 6	(std. Units) 6.85 6.82 6.82 6.82 6.82 6.82 6.82	(mS/om) 1.73 1.95 1.88 1.88 1.88 1.88 1.90	Turbidity (NTU) 42.2 70.7 57.8 54.0 47.9 38.3	Dissolved Oxygen (mg/l) O.23 O.00 O.00 O.00 O.00 O.00	(Cei) 11.67 13.78 13.87 13.87 14.02 13.99 13.98	(%) 0.8 1.0 0.9 0.9 0.9 0.9 1.0	(mV) -118 -77 -74 -77 -78 -78	Well Headspace PID =
Sample Time Water* (ft) 1000 9.54' 10.05 10.61 1010 12.82 1015 10.20 1025 15.29' 1030 10.30		Purged (liters/gals.) 10, fial 2 4 6	(std. Units) 6.85 6.82 6.82 6.82 6.82 6.82 6.80 6.80	(ms/om) 1.73 1.95 1.88 1.88 1.88 1.90 1.92	Turbidity (NTU) 42.2 70.7 57.8 54.0 47.9 38.3 35.2	Dissolved Oxygen (mg/l) O.23 O.00 O.00 O.00 O.00 O.00 O.00	(Cei) 11.60 13.78 13.87 13.87 14.02 13.99 13.98 13.88 13.87	(%) 0.8 1.0 0.9 0.9 0.9 1.0 1.0	(mV) -118 -77 -74 -77 -78 -77 -78 -77 -65	Well Headspace PID =
Sample Time Water* (ft) 1000 9.54' 10.05 10.61 1010 12.82 1015 10.20 1025 15.29' 1030 10.30		Purged (liters/gals.) 10, fial 2 4 6	(std. Units) 6.85 6.82 6.82 6.82 6.82 6.82 6.80 6.80	(ms/om) 1.73 1.95 1.88 1.88 1.88 1.90 1.92	Turbidity (NTU) 42.2 70.7 57.8 54.0 47.9 38.3 35.2	Dissolved Oxygen (mg/l) O.23 O.00 O.00 O.00 O.00 O.00 O.00	(Cei) 11.60 13.78 13.87 13.87 14.02 13.99 13.98 13.88 13.87	(%) 0.8 1.0 0.9 0.9 0.9 1.0 1.0	(mV) -118 -77 -74 -77 -78 -77 -78 -77 -65	Well Headspace PID =

Project:		National G	rid Gleen		lae	,	Well ID:	GCMW-	111	Sar	nple Date:
Total Well D (from top of	•		<u>३</u> ७ थ्('		Total Well (From Wel	-	23.00			Depth to W (from top o	
Well Diamet	er:		3/4"		1"	2)	4"			Pump Intak (Mid-Point of)	-
Sampling C	rew:				C. Haye	<u>ز</u>				Purge Time	Start:
Purging Met	thod:		Peristaltic		ump					_	Finish:
Sampling M	ethod:		Low Flow							Sample Tin	Start: ne: Finish:
Sample Ana	lysis:		VOC	- <u>-</u>	5/00	- 5					
							Purge Da	nta			
Sample Time	Depth to Water* (ft)	Flow Rate (Ipm/gpm)	Volume		pH (std. Units)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp. (Cel.)	Salinity (%)	ORP (mV)
1070	504	64	-7 		6.54	6413	51.0	000	16.71	5.2	7
117.0	2:34	041	<u></u>		6.59	0412	24.6	0.00	12.69	6.2	5
10">>	2.56	64	1		659	0411	7.6	000	17 57	02	5
1040	8.96	04	3		1.58	6469	5.0	د ن <i>ت</i>	1756	ςζ	-1
10:45	156	0.4	10		672	0409	\$4.9	000	12.55	63	4
1050	856	4 Y	17		658		4.2	0100	17.54	< 2	4

* DTW - Record first two readings, final reasonable and minimum of once evey 15 minutes dur

1

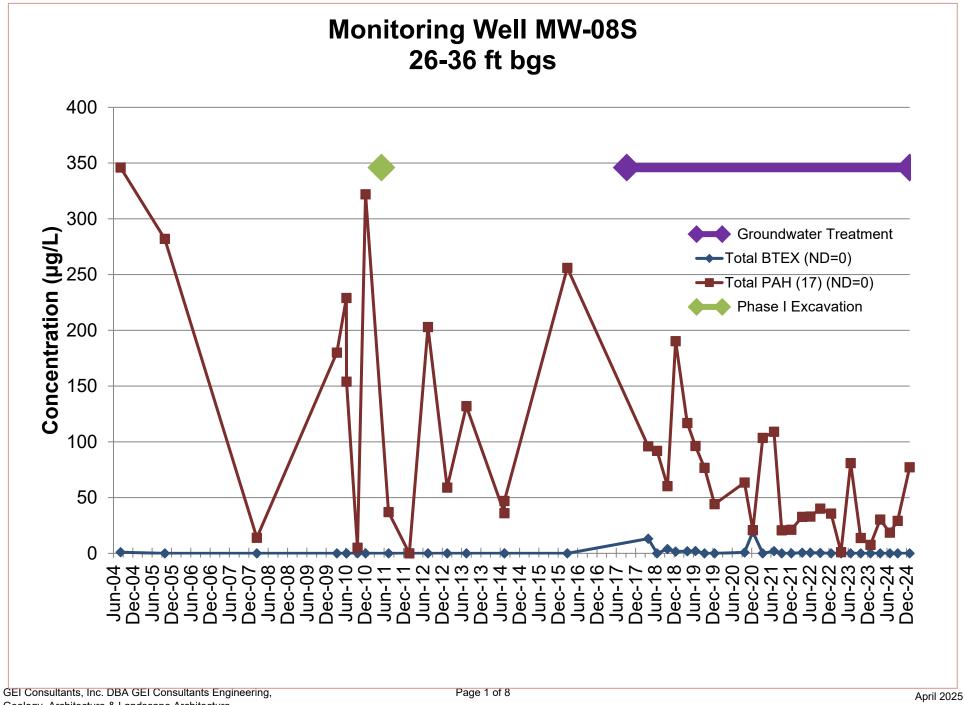
Project:		National G	rid - Ola	(ne		Well ID:	jenniu.	<u></u>	Sar	nple Date:	12/26/2-1
Total Well D (from top of			2215	Total Well (From Wel		25 CG			Depth to W (from top o		9.11 '
Well Diamet	ter:		3/4"	1"	<u>)</u>	<u>4)</u>			Pump Intak (Mid-Point of S	•	2 è, cú
Sampling C	rew:		2.44	in co	· · - = =				Purge Time	Start:	//? C
Purging Me	thod:		Peristaltic P	ump						Finish:	1200
Sampling N			Low Flow						Sample Tin	Start: ne:	1205
Sampling w				5/5V8	oës 👘					Finish:	and the second sec
						Purge Da	ita		· ·		
Sample Time	Depth to Water*	Flow Rate (lpm/gpm)	Volume Purged	pH (std. Units)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen	Temp. (Cel.)	Salinity (%)	ORP (mV)	Comments/Observations
	Water* (ft)	(lpm/gpm)		(std. Units)		Turbidity	Dissolved		(%)		Comments/Observations Well Headspace PID =
Time	Water*	(lpm/gpm)	Purged (liters/gals.)		(mS/cm)	Turbidity (NTU) 1728	Dissolved Oxygen (mg/l) 772 72	(Cel.) (3.54) 13.56	(%)	(mV) - 300 /90	Well Headspace PID =
Time	Water* (ft)	(lpm/gpm)	Purged (liters/gals.) 2	(std. Units)	(mS/cm) 6 6 6 5 6 57 4 6 56 9	Turbidity (NTU)	Dissolved Oxygen (mg/l) 77C 77C 77C 77C 77C 77C 77C 77C 77C 77	(Cel.) 13.54 13.56 13.92	(%) (%) () () () () (%) () (%) () (%) (%	(mV) - <u>२८८</u> - / १८ - (हॅ २	Well Headspace PID = *Shuk Ilonia ellisc
Time 772.5 77.3.4	Water* (ft)	(lpm/gpm)	Purged (liters/gals.) 2	(std. Units) 6.5-1 4:55	(mS/cm)	Turbidity (NTU) 17.8 47.6 3.9 3.1	Dissolved Oxygen (mg/l) 7 7 C 7 7 C	(Cel.) 13.54 13.54 13.92 13.89	(%)	(mV) - 300 - 190 - 184 - 184	Well Headspace PID =
Time 1125 (134 (135)	Water* (ft)	(lpm/gpm)	Purged (liters/gals.) 2 01	(std. Units) 6.5.1 6.55 6.55 6.55 6.55	(mS/cm) 6 6 6 5 6 57 4 6 56 9	Turbidity (NTU) 1788 47.6 3 9	Dissolved Oxygen (mg/l) 77C 77C 77C 77C 77C 77C 77C 77C 77C 77	(Cel.) 13.54 13.54 13.92 13.89 13.85	(%) C 3 C 3 C 1 C 3 C 3 C 3 C 3 C 3	(mV) - 300 - 190 - 187 - 187 - 180	Well Headspace PID = *Shuk Ilonia ellisc
Time 772 S 773 4 713 5 714/0	Water* (ft) 9.10 i2.20	c f c f c f c f c f	Purged (liters/gals.) 2 0.1	(std. Units) 6.5.1 6.55 6.55 6.55	(mS/cm) 6 6 6 6 5 6 57 4 6 56 9 6 56 2	Turbidity (NTU) 17.8 47.6 3.9 3.1	Dissolved Oxygen (mg/l) 7 7 C 7 C	(Cel.) 13.56 (3.92 13.89 13.85 14.69	(%)	(mV) - 3 C C - 19 C - 18 7 - 18 7 - 18 7 - 18 0 18 1	Well Headspace PID = *Shuk Ilonia ellisc
Time 1125 (134 (135 (135 (135 (135 (135	Water* (ft) 9.10 i2.20	C C C C C C C C	Purged (liters/gals.) 2 (1 2 2 3 4 2 3 2 3 2 3 2 3 4 2 3 4 4 3 4 4 3 4 5 2 3 3 4 5 3 5 3 5 3 5 3 5 3 5 5 3 5 5 5 5	(std. Units) 6.5.1 6.55 6.55 6.55 6.55	(mS/cm) 6 6 6 6 3 6 5 7 4 0 5 6 9 0 5 6 2 0 5 5 9	Turbidity (NTU) 128 41.6 39 31 31 1.4	Dissolved Oxygen (mg/l) 77C 77C 77C 77C 77C 77C 77C 77C 77C 77	(Cel.) 13.50 13.50 13.82 17.89 13.85 14.09 14.09	(%) (%) (3)	(mV) - 300 - 187 - 187 - 187 - 187 - 187 - 187 - 181 - 179	Well Headspace PID = *Shuk Ilonia ellisc
Time 1125 (136 (111) 7.460 1156	Water* (ft) 9.10 i2.20	C C C C C C C C C C C C C C	Purged (liters/gals.) 2 	(std. Units) 6.5.1 6.55 6.55 6.55 6.55 6.55 6.55 6.55	(mS/cm) 6 6 6 5 6 7 9 0 56 9 0 56 2 0 55 9 0 54 5	Turbidity (NTU) 128 44.6 39 39 31 1.4 005	Dissolved Oxygen (mg/l) 7 7 C 7 C	(Cel.) 13.56 (3.92 13.89 13.85 14.69	(%)	(mV) - 3 C C - 19 C - 18 7 - 18 7 - 18 7 - 18 0 18 1	Well Headspace PID = *Shuk Ilonia ellisc
Time 1125 (134 (134 (135 (135 (135 (135 (135 (135 (135 (135 (135 (135 (135 (135 (135	Water* (ft) (ft) (2.20) (4.50)	C C C C C C C C C C C C C C C C C C C C C T	Purged (liters/gals.) 2 (1 2 2 3 4 2 3 2 3 2 3 2 3 4 2 3 4 4 3 4 4 3 4 5 2 3 3 4 5 3 5 3 5 3 5 3 5 3 5 5 3 5 5 5 5	(std. Units) 6.5.1 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55	(mS/cm) 6 6 6 5 6 7 9 0 56 9 0 56 9 0 56 9 0 56 9 0 56 9 0 56 9	Turbidity (NTU) 1728 44.6 39 31 31 1.4 015 6.4	Dissolved Oxygen (mg/l) 77C 77C 77C 77C 77C 77C 77C 77C 77C 77	(Cel.) 13.50 13.50 13.82 17.89 13.85 14.09 14.09	(%) (%) (3)	(mV) - 300 - 187 - 187 - 187 - 187 - 187 - 187 - 181 - 179	Well Headspace PID = *Shuk Ilonia ellisc
Time 1125 (134 (134 (135 (135 (135 (135 (135 (135 (135 (135 (135 (135 (135 (135 (135	Water* (ft) (ft) (2.20) (4.50)	C C C C C C C C C C C C C C C C C C C C C T	Purged (liters/gals.) 2 (1 2 2 3 4 2 3 2 3 2 3 2 3 4 2 3 4 4 3 4 4 3 4 5 2 3 3 4 5 3 5 3 5 3 5 3 5 3 5 5 3 5 5 5 5	(std. Units) 6.5.1 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55	(mS/cm) 6 6 6 5 6 7 9 0 56 9 0 56 9 0 56 9 0 56 9 0 56 9 0 56 9	Turbidity (NTU) 1728 44.6 39 31 31 1.4 015 6.4	Dissolved Oxygen (mg/l) 77C 77C 77C 77C 77C 77C 77C 77C 77C 77	(Cel.) 13.50 13.50 13.82 17.89 13.85 14.09 14.09	(%) (%) (3)	(mV) - 300 - 187 - 187 - 187 - 187 - 187 - 187 - 181 - 179	Well Headspace PID = *Shuk Ilonia ellisc
Time 1125 (134 (134 (135 (135 (135 (135 (135 (135 (135 (135 (135	Water* (ft) (ft) (2.20) (4.50)	C C C C C C C C C C C C C C C C C C C C C T	Purged (liters/gals.) 2 (1 2 2 3 4 2 3 2 3 2 3 2 3 4 2 3 4 4 3 4 4 3 4 5 2 3 3 4 5 3 5 3 5 3 5 3 5 3 5 5 3 5 5 5 5	(std. Units) 6.5.1 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.55	(mS/cm) 6 6 6 5 6 7 9 0 56 9 0 56 9 0 56 9 0 56 9 0 56 9 0 56 9	Turbidity (NTU) 1728 44.6 39 31 31 1.4 015 6.4	Dissolved Oxygen (mg/l) 77C 77C 77C 77C 77C 77C 77C 77C 77C 77	(Cel.) 13.50 13.50 13.82 17.89 13.85 14.09 14.09	(%) (%) (3)	(mV) - 300 - 187 - 187 - 187 - 187 - 187 - 187 - 181 - 179	Well Headspace PID = *Shuk Ilonia ellisc

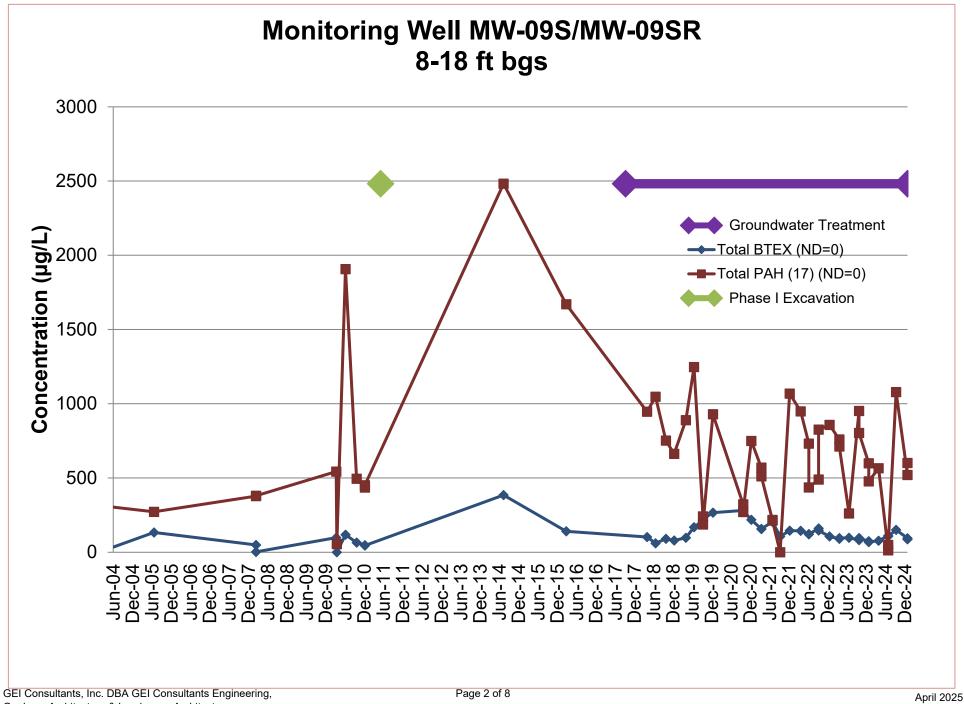
,

Project:		National G	irid - Glei	n Cave	_	Well ID:	GCR	W-0	Sa	mple Date:	12/26/24
Total Well D (from top of			25.54	[/] Total We _(From We	ll Depth ell Log):	25'	-		Depth to W (from top o	-	10 9.39 9.60'
Well Diamet	er:		3/4"	1"	<u>2</u> "	4")	_		Pump Intal (Mid-Point of	ke Depth Screen Zone):	20.54
Sampling C	rew:		<u> </u>	herchi	9	······	-		Durge Tim	Start:	1125
Purging Met	hod:		Peristaltic P	ump			_		Purge Time	Finish:	1200
Sampling Me	ethod:		Low Flow				_		Sample Tin	Start:	(1205)
Sample Anal	ysis:		<u> </u>	<u>s/sva</u>	<u> 265</u>		-			Finish: -	
						Purge Da	ata			·····	
Sample Time	Depth to Water* (ft)	Flow Rate (Ipm/gpm)	Volume Purged (liters/gals.)	pH (std. Units)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp. (Cel.)	Salinity (%)	ORP (mV)	Comments/Observations
125	9.60	0.4	Initial	6.57	2.30	127		14/23	io		

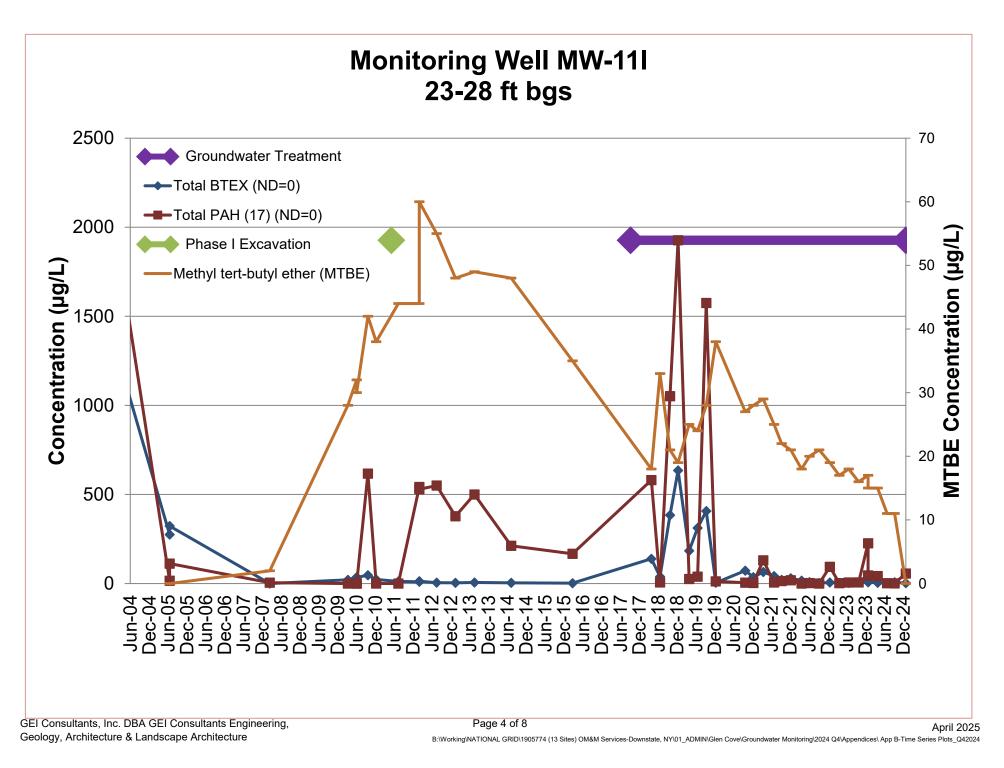
	(ft)	(Ipm/gpm)	(liters/gals.)	(std. Units)	(mS/cm)	(NTU)	(<i>mg/l</i>)	(Cel.)	(%)	(mV)	Comments/Observations
125	9.60	0.4	Initial	6.57	2.33	127	1.08	14.23	1.2	-70	Well Headspace PID =
<u> 130</u>	10.90'	·	2	6.58	2.33	145	0.81	14,30	1.2	-67	* Slight DiQuin covor/
1135	11.53		4	6.63	2.47	152	0.29	14.30	1.3	-59	some visible turbidity /
1140			6	6.66	2.55	136	0.00	(4.3)	1.3	-65	Mid MG7-Like stor
1145			8	6.69	2.58	104	0.00	(4.23	1.3	-69	10 C 10/ LDP 280/
1150	13.481			6.70	2.59	101	0.00	14.19	1,3	-81	
1155				6.71	2 60	99.4	0.00	14.17	1.3	-76	
1200	14.93			6.71	2.61	97.6	0.00	14.17	1.3	_72	
						·····					

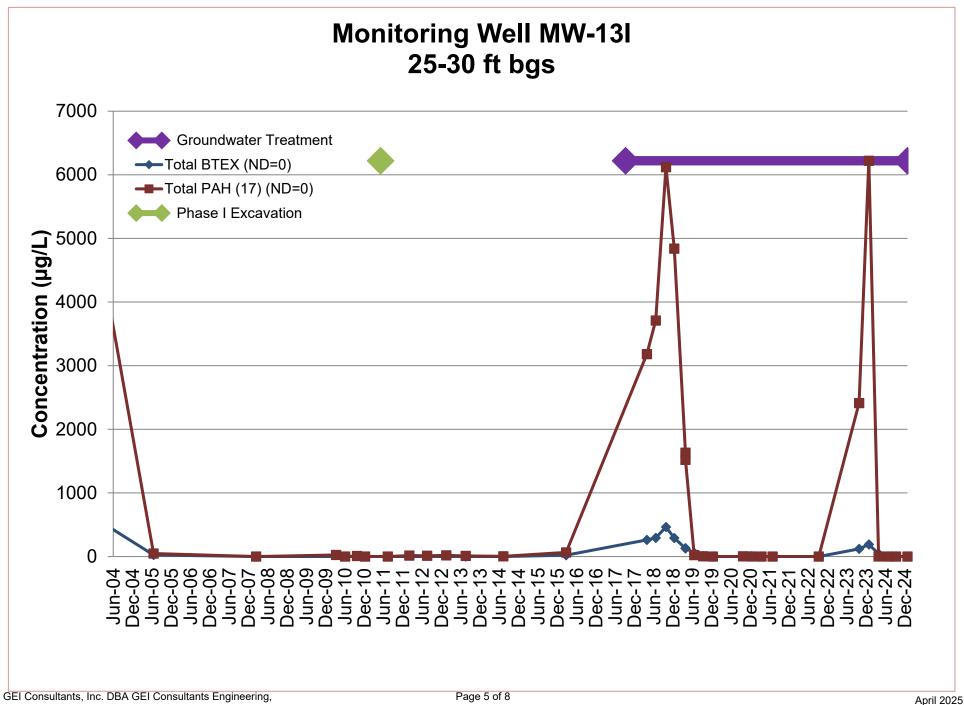
Project:	National Grid - Gen Cove	Well ID: <u>GCMW</u>	-085 Sample Date: 2/31/24
Total Well Depth (from top of casing):	36.50 ⁷ Total Well Depth (From Well Log):	371	Depth to Water (from top of casing): 27.20
Well Diameter:	3/4" 1" (2")	4"	Pump Intake Depth (Mid-Point of Screen Zone):
Sampling Crew:	e Feter Beachia		Start: 0940
Purging Method:	Peristaltic Pump		Purge Time: Finish: 1035
Sampling Method:	Low Flow		Sample Time:
Sample Analysis:	VOCS/SVOCS		Finish:
		Piuras Data	

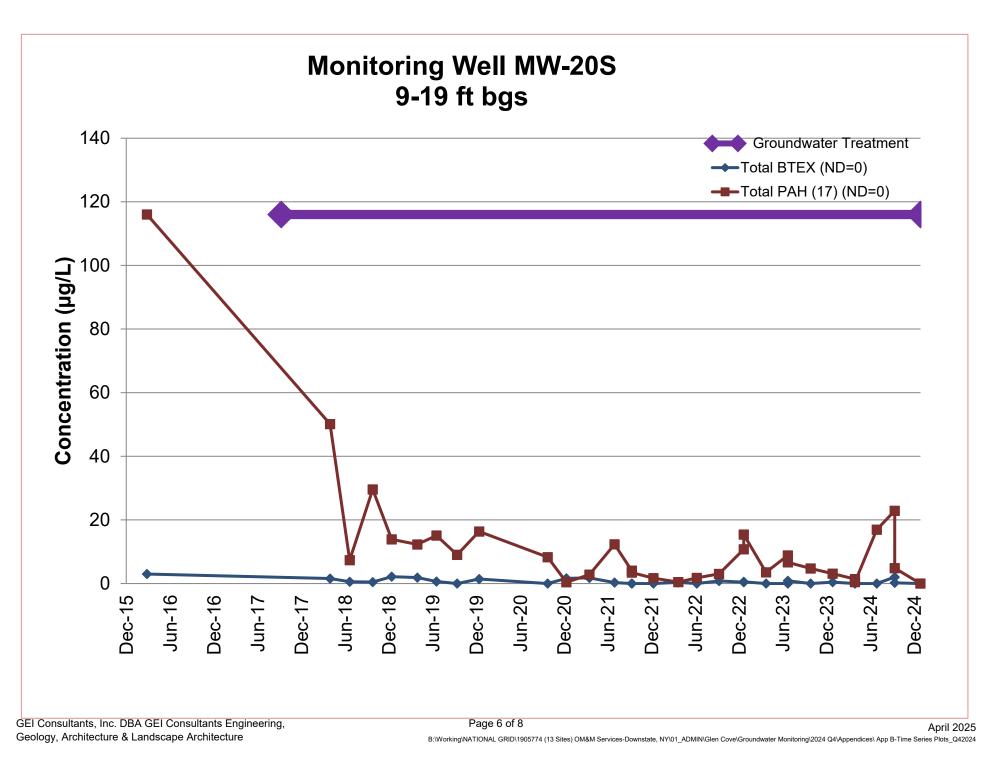

Donth 4	T	T	1		uyeu	ala	1. A			
Water* (ft)	Flow Rate (Ipm/gpm)	Volume Purged (liters/gals.)	pH (std. Units)	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen	Temp. (Cel.)	Salinity (%)	ORP (mV)	Comments/Observations
			6.23	C 131		0 00	1363	0.1	-48	Well Headspace PID = -
· · · · · · · · · · · · · · · · · · ·			,	0.195		0.00	1392	C.		* Light Brown/
27.91			10.4				14.11		-36	cloudy / odorless
1					655				-20	* ~ 3 well volumes
27.88			656						- 1 1	removed
32.161			6.59	0,187						
					· · · · · · · · · · · ·					
1				··	1					
	Water* (ft) 27.20 23.01 27.91 27.88	(ft) (lpm/gpm) 27.20 23.01 27.91/ 27.88	Depth to Water* (ft)Flow Rate (lpm/gpm)Volume Purged (liters/gals.)Z7.20	Water* (ft)Flow Rate (lpm/gpm)Purged (liters/gals.)pH (std. Units) 27.20 6.23 23.21 6.25 27.91 6.27 6.58 6.57 27.68 6.57	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

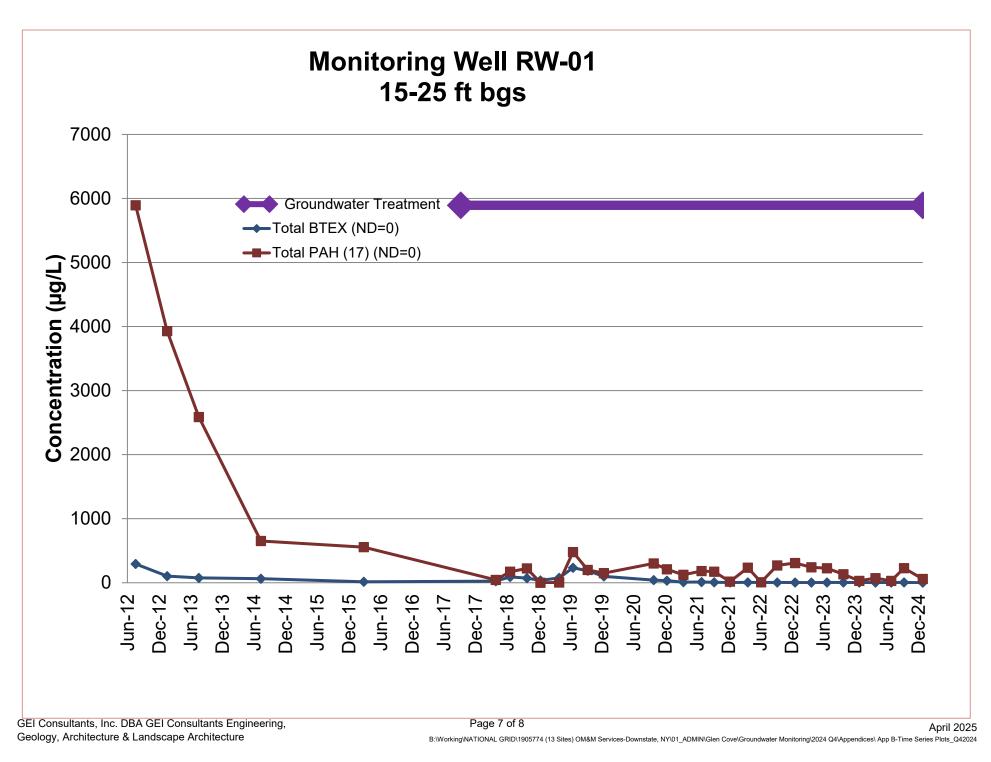

* DTW - Record first two readings, final reading, and minimum of once evey 15 minutes during purging

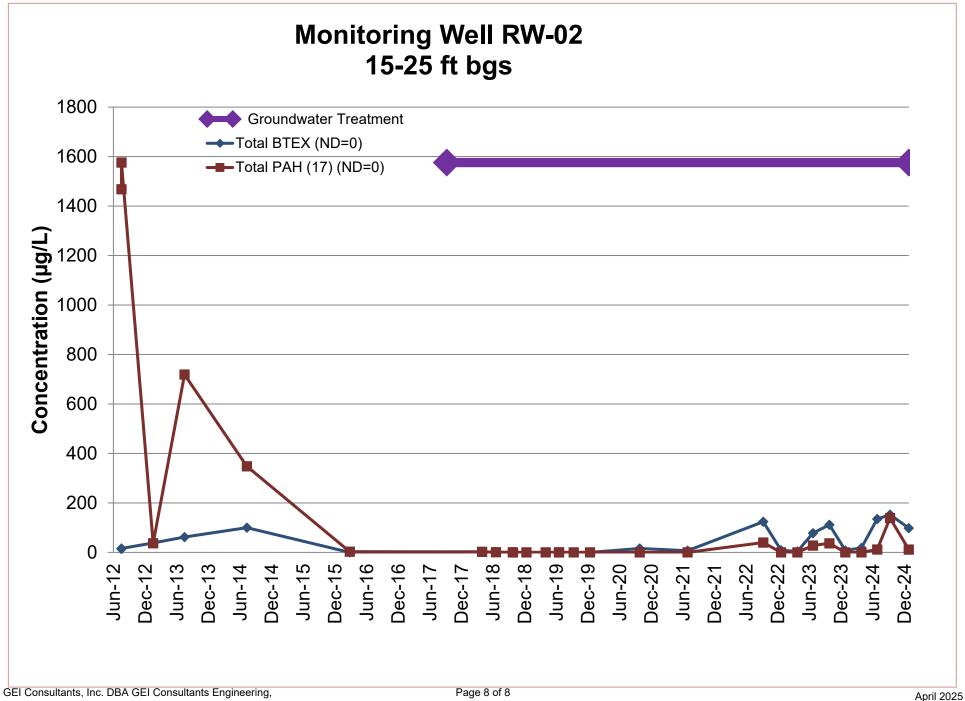
C:\Users\diannotta\AppData\Loca\Microsoft\Windows\NetCache\Content.Outlook\BNQ4MLUN\Copy of Revised-GW-SamplingLog-MJO


Groundwater Monitoring Report December 2024 (Q4) Quarterly Sampling Event Glen Cove Former MGP Site City of Glen Cove, Nassau County, New York Order on Consent Index No. D1-001098-11 Site No. 1-3-089P April 2025


Appendix B Time Serie Plots







B:WorkingINATIONAL GRID/1905774 (13 Sites) OM&M Services-Downstate, NY/01_ADMIN/Glen Cove/Groundwater Monitoring/2024 Q4/Appendices/ App B-Time Series Plots_Q42024

Groundwater Monitoring Report December 2024 (Q4) Quarterly Sampling Event Glen Cove Former MGP Site City of Glen Cove, Nassau County, New York Order on Consent Index No. D1-001098-11 Site No. 1-3-089P April 2025

Appendix C Data Usability Summary Report and Form 1 Analytical Reports

Site:	Glen Clove Quarterly Groundwater Monitoring
Laboratory:	Eurofins, Edison, NJ
Report Number:	460-318022
Reviewer:	Bethany Russell/GEI Consultants
Date:	January 22, 2025

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
TB-122624	460-318022-1	VOC
GCMW-20S	460-318022-2	VOC, SVOC, metals, cyanide, PCB
GCMW-09S-R	460-318022-3	VOC, SVOC, metals, cyanide, PCB
GCMW-11S	460-318022-4	VOC, SVOC
GCMW-13I	460-318022-5	VOC, SVOC
GCMW-11I	460-318022-6	VOC, SVOC
GCRW-01	460-318022-7	VOC, SVOC
GCRW-02	460-318022-8	VOC, SVOC
DUP-01	460-318022-9	VOC, SVOC, metals, cyanide, PCB
FB-122624	460-318022-10	VOC, SVOC, metals, cyanide, PCB

Associated QC Samples:

Field/Trip Blanks: TB-122624, FB-122624 Field Duplicate Pair: DUP-01/ GCMW-09S-R

The above-listed aqueous samples and field and trip blank samples were collected on December 26, 2024, and were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260D, semivolatile organic compounds (SVOCs) by SW-846 method 8270E, metals and cyanide by SW-846 methods 6020B/7470A/9012B, and polychlorinated biphenyls (PCB) by SW-846 method 8082A. The data validation was performed in accordance with the following USEPA Region 2 Documents: Standard Operating Procedure (SOP) for Validation of Volatile Data, QA-HWSS-A-004 (March 2022), SOP for Validation of Semivolatile Data, QA-HWSS-A-005 (April 2022), SOP for Validation of Aroclor (PCB) Data, QA-HWSS-A-006 (April 2022), SOP for ICP-MS Data Validation, QA-HWSS-A-009 (March 2022), SOP for Cyanide Data Validation, QA-HWSS-A-012 (March 2022), as well as by the methods referenced by the data package and professional and technical judgment.

The data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standard Results
- Field Duplicate Results
- Laboratory Control Sample (LCS)/LCS Duplicate (LCSD) Results
- Quantitation Limits

• Sample Quantitation and Compound Identification

All results appear usable as reported or usable with minor qualification due to uncertainty for levels below the reporting limit, MS/MSD recovery exceedances, LCS/LCSD recovery exceedances, ICSA interference evaluation exceedances, blank contamination, and continuing calibration exceedances. These results were considered valid; even though some were qualified as discussed below.

The validation findings were based on the following information.

Data Completeness

The data package was complete as received by the laboratory.

Holding Times and Sample Preservation

All criteria were met.

GC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All initial and continuing calibration criteria were met except where noted below.

Instrument/ Calibration Standard	Compound	Calibration Exceedance	Validation Qualifier
		VOCs	
	Chloromethane	27.8 %D	
CVOAMS1 CCV	2-Butanone	30.1 %D	Estimate (UJ) the nondetect results in the associated
460-1014703/2			samples.
	Bromoform	38.4 %D	
Associated samples: 7 02, DUP-01, FB-1220		W-09S-R, GCMW	-11S, GCMW-13I, GCMW-11I, GCRW-01, GCRW-
		Metals	
ICPMS metals ICSA standard Analysis 460- 1015061/10	Manganese	Detected >MDL	See ICSA interference evaluation table below.
Associated samples:	GCMW-20S, GCMW-09S-R, D	UP-01, FB-122624	4

Initial calibration (ICAL) relative standard deviation (%RSD) > 20% for VOC and SVOC; estimate (J) positive and blank-qualified (UJ) results only.

Continuing calibration (CCAL) percent difference (%D) > 20% for VOC and SVOC; estimate (J/UJ) positive and nondetect results.

Response factor (RF) < 0.05; Estimate (J) positive results and reject (R) nondetect results.

Reporting limit standard Criteria of 70-130 %R not met: estimate (J/UJ) results <10xRL dependent on recovery.

ICSA Detections >MDL; Evaluation required if sample interferent levels are similar to ICSA sample.

Select metals, which should not be present, were detected above the absolute value of the method detection limit in the ICSA sample analyses. Only samples with interferent levels similar (within 75%) to those of the ICSA sample were considered to be affected. Estimated interferences were determined by multiplying the ICSA interference detected by the ICSA/sample interference level comparison multiplication factor. If the estimated sample interference was at least 10 percent of the sample analyte level, the result was qualified as estimated (J/UJ). The following table summarizes the estimated ICSA interferences for samples which contained interferent levels similar to those of the ICSA sample.

Analyte Detected in ICSA	ICSA Detection (ug/L)	Sample/ICSA Interferent Comparison	Estimated Interference in Sample (ug/L)	Sample Level (ug/L)	Validation Actions
Manganese	0.959	GCMW-20S (Ca 1.16x)	1.11	3655.423	Validation action was not required as estimated interference is less than 10% of the sample level.

<u>Blanks</u>

Contamination was not detected in the laboratory instrument and method blank samples, field, and trip blank samples except where noted below.

Analyte	e	Blank ID/ Associated Samples	Concentration Detected	2X Action Level	10X Action Level	Validation Actions
Lead		CCB 460-1015061/80/ GCMW-20S, GCMW-09S- R, DUP-01, FB-122624	0.512 ug/L	1.02 ug/L	5.12 ug/L	Qualify the detect result for lead in sample DUP-01 as nondetect (U) at the reporting limit.

Blank Actions:

If the sample result is < RL; report the result as nondetect (U) at the reporting limit (RL).

If the sample result is \geq RL and \leq 2x blank contamination detected; report the result as nondetect (U) at the reported value. If the sample result is \geq RL and \leq 10x Action Level; professional judgment was taken to report the sample result as estimated (J); biased high.

If the sample result is nondetect or > 10x Action Level; validation action is not required.

Surrogate Recoveries

All surrogate recovery criteria were met.

MS/MSD Results

MS/MSD analyses were performed on sample GCMW-09S-R for VOCs, SVOCs, metals, PCBs, and cyanide. All recovery and precision criteria were met except where noted below.

	MS/MSD Sample GCMW-09S-R						
Analyte	MS (%)	MSD (%)	RPD (%)	Control Limits	Validation Action/Bias		
			I	PCBs			
Aroclor 1260	129	-	-	42-126	Validation action was not required as sample was nondetect and not affected by the high bias.		
			C	yanide			
Total Cyanide	155	122	-	90-110	Estimate (J) the detect result for the affected compound. High bias.		
			\	/OCs			
Bromoform	133	155	-	58-128			
2-Butanone	-	152	-	65-142			
2-Hexanone	-	153	-	72-134 Validation action not required as sample is r and not affected by the high bias.			
4-Methyl-2-pentanone	-	138	-	77-130			
Dibromochloromethane	-	139	-	73-121			
Styrene	-	130	-	82-127			
			S	VOCs			
3,3-Dichlorobenzidine	53	45	-	55-145			
3-Nitroaniline	-	44	-	51-120	Estimate (UJ) the nondetect result for he affected compounds. Low bias.		
4-Chloroaniline	-	39	-	43-120			
Acenaphthene	162	9	40	62-127			
Acenaphthylene	140	-	38	58-122, 30			
Anthracene	133	-	44	67-127, 30			

Bis(2-ethylhexyl)phthalate	161	-	53	65-144, 30	
Dibenzofuran	132	-	40	64-125, 30	
Fluoranthene	-	-	49	30	Estimate (J) the detect results for the affected
Fluorene	145	56	41	67-125, 30	compounds. High bias, low bias, precision exceedances.
Phenanthrene	151	31	51	68-126, 30	
2-Methylnaphthalene	-	-	42	30	
Carbazole	-	-	42	30	
Pyrene	-	-	38	30	
4-Bromophenyl phenyl ether	133	-	42	59-132, 30	
4-Chlorophenyl phenyl ether	129	-	38	65-127, 30	
Benzo(g,h,i)perylene	145	-	44	52-143, 30	
Hexachlorocyclopentadiene	154	-	42	10-135, 30	Validation action not required as sample is nondetect
N-Nitrosodiphenylamine	132	-	40	66-128, 30	and not affected by the high bias or precision exceedance.
1,2,4-Trichlorobenzene	-	-	36	30	
1,2-Dichlorobenzene	-	-	36	30	
1,3-Dichlorobenzene	-	-	34	30	
1,4-Dichlorobenzene	-	-	34	30	
2,2-oxybis(1-Chloropropane)	-	-	32	30	
2,4,5-Trichlorophenol	-	-	37	30	
2,4,6-Trichlorophenol	-	-	36	30	

2,4-Dichlorophenol	-	-	33	30	
2,4-Dimethylphenol	-	-	34	30	
2,4-Dinitrophenol	-	-	36	30	
2,4-Dinitrotoluene	-	-	33	30	
2,6-Dinitrotoluene	-	-	33	30	
2-Chloronaphthalene	-	-	39	30	
2-Chlorophenol	-	-	32	30	
2-Nitroaniline	-	-	34	30	
2-Nitrophenol	-	-	34	30	Validation action not required as sample is nondetect
4,6-Dinitro-2-methylphenol	-	-	44	30	and not affected by the high bias or precision exceedance.
4-Chloro-3-methylphenol	-	-	34	30	
4-Nitrophenol	-	-	33	30	
Benzo(a)anthracene	-	-	44	30	
Benzo(a)pyrene	-	-	42	30	
Benzo(b)fluoranthene	-	-	43	30	
Benzo(k)fluoranthene	-	-	44	30	
Bis(2-chloroethoxy)methane	-	-	32	30	
Bis(2-chloroethyl)ether	-	-	32	30	
Butyl benzyl phthalate	-	-	41	30	
Chrysene	-	-	42	30	

Dibenz(a,h)anthracene	-	-	43	30	
Diethyl phthalate	-	-	34	30	
Di-n-butyl phthalate	-	-	45	30	
Di-n-octyl phthalate	-	-	46	30	
Hexachlorobenzene	-	-	41	30	Validation action not required as sample is nondetect
1,3-Hexachlorobutadiene	-	-	39	30	and not affected by the high bias or precision exceedance.
Hexachloroethane	-	-	34	30	
Indeno(1,2,3-cd)pyrene	-	-	44	30	
Isophorone	-	-	33	30	-
Nitrobenzene	-	-	32	30	-
N-Nitrosodi-n-propylamine	-	-	31	30	-
Pentachlorophenol	-	-	50	30	
Phenol	-	-	32	30	
Naphthalene	-	-105	-	39-126	Validation action was not required as sample amount was more than four times the spike amount.

Internal Standard Results

All criteria were met.

Field Duplicate Results

Samples DUP-01 and GCMW-09S-R were identified as the field duplicate pair. The following table summarizes the RPDs of the detected analytes in the field duplicate pairs which were within the acceptance criteria.

Analyte	GCMW-09S-R (ug/L)	DUP-01 (ug/L)	RPD (%)
Aluminum	37.8 J	69.8	Within 2x RL
Arsenic	7.5	7.5	0

Barium	100	102	1.9
Calcium	69700	71200	2.1
Cobalt	0.70 J	0.70 J	Within 2x RL
Iron	12700	12400	2.4
Magnesium	12800	12600	1.6
Manganese	4300	3950	8.5
Potassium	4310	4070	5.7
Sodium	11300	11000	2.7
Zinc	4.2 J	16 U	NC, Within 2x RL
1,1-Dichloroethane	0.74 J	0.76 J	Within 2x RL
Benzene	2.3	2.4	4.3
Ethylbenzene	43	47	8.9
Toluene	1.9	1.9	Within 2x RL
Total Xylene	40	43	7.2
2-Methylnaphthalene	28	22	24
Acenaphthene	120	110	8.7
Acenaphthylene	2.9 J	2.6 J	Within 2x RL
Anthracene	8.2 J	6.2 J	Within 2x RL
Bis(2-ethylhexyl)phthalate	1.9 J	2.0 U	NC, Within 2x RL
Carbazole	2.4 J	2.1 J	Within 2x RL
Dibenzofuran	9.4 J	8.1 J	Within 2x RL
Fluoranthene	4.5 J	3.2 J	Within 2x RL
Fluorene	46	40	13.9
Naphthalene	330	290	12.9
Phenanthrene	57	43	28
Pyrene	4.8 J	3.3 J	Within 2x RL
5	43.9	46.8	6.4

Criteria: When both results are $\geq 5x$ the RL, RPDs must be <30%.

When results are < 5x the RL, the absolute difference between the original and field duplicate must be < 2xRL

LCS/LCSD Results

All compound recovery and precision criteria were met in the LCS and/or LCSD samples except where noted below.

Compound	Recovery (%)	RPD (%)	Control Limits (%)	LCS ID	Validation Action/Bias	
VOCs						
Bromoform	134, 141	-	58-128	LCS/LCSD	Validation action was not required as the compounds were nondetect in the associated	
Dibromochloromethane	-,128	-	73-121	460- 1014703	samples and therefore results were not affected by the potential high bias.	
Associated samples: TB-122624, GCMW-20S, GCMW-09S-R, GCMW-11S, GCMW-13I, GCMW-11I, GCRW-01, GCRW-02, DUP-01, FB-122624						
	PCBs					

Aroclor 1016	121	-			Validation action was not required as the compounds were nondetect in the associated	
Aroclor 1260	134	-	42-126	1014372	samples and therefore results were not affected by the potential high bias.	
Associated samples: GCMW-20S, GCMW-09S-R, DUP-01, FB-122624						

Serial Dilution Results

A serial dilution analysis was performed on sample GCMW-09S-R for metals. Precision criteria were met.

Quantitation Limits

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL). If detected, these results were qualified as estimated (J) by the laboratory. The direction of the bias is indeterminate for these results.

The following table lists the sample dilutions and analyses which were performed.

Sample	Analysis	Dilution/Re-analyses Performed
GCMW-09S-R	SVOCs	The sample was analyzed undiluted and at a 10-fold dilution for naphthalene. The results were combined to be within the calibration range and at the lowest reporting limits.
DUP-01	SVOCs	The sample was analyzed undiluted and at a 10-fold dilution for naphthalene. The results were combined to be within the calibration range and at the lowest reporting limits.

Sample Quantitation and Compound Identification

Compound identification criteria were met. Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: TB-122624

Date Collected: 12/26/24 00:00 Date Received: 12/27/24 18:00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Resul	dualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0) U	1.0	0.24	ug/L			12/31/24 12:03	1422010400104
1,1,2,2-Tetrachloroethane	1.0) U	1.0		ug/L			12/31/24 12:03	
1,1,2-Trichloroethane	1.0	U	1.0		ug/L			12/31/24 12:03	
1,1-Dichloroethane	1.0	U	1.0		ug/L			12/31/24 12:03	
1,1-Dichloroethene	1.0	U	1.0		ug/L			12/31/24 12:03	1
1,2-Dichloroethane	1.0	U	1.0		ug/L			12/31/24 12:03	1
1,2-Dichloroethene, Total	2.0	U	2.0	0.44	ug/L			12/31/24 12:03	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			12/31/24 12:03	1
2-Butanone (MEK)	5.0	U	5.0		ug/L			12/31/24 12:03	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			12/31/24 12:03	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0		ug/L			12/31/24 12:03	1
Acetone	5.0	U	5.0		ug/L			12/31/24 12:03	1
Benzene	1.0	U	1.0	0.20				12/31/24 12:03	. 1
Bromodichloromethane	1.0	U	1.0	0.34				12/31/24 12:03	1
Bromoform	1.0	U **	1.0	0.54				12/31/24 12:03	1
Bromomethane	1.0	U	1.0	0.55	ug/L			12/31/24 12:03	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			12/31/24 12:03	1
Carbon tetrachloride	1.0	U	1.0	0.21				12/31/24 12:03	1
Chlorobenzene	1.0	U	1.0	0.38	0.270			12/31/24 12:03	1
Chloroethane	1.0	U	1.0	0.32				12/31/24 12:03	1
Chloroform	1.0	U	1.0	0.33				12/31/24 12:03	1
Chloromethane	1.0	U	1.0	0.40				12/31/24 12:03	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22				12/31/24 12:03	1
Dibromochloromethane	1.0	U+	1.0	0.28				12/31/24 12:03	1
Ethylbenzene	1.0	U	1.0	0.30				12/31/24 12:03	1
Methyl tert-butyl ether	1.0	U	1.0	0.22				12/31/24 12:03	1
Methylene Chloride	1.0	U	1.0	0.32				12/31/24 12:03	1
Styrene	1.0	U	1.0	0.42				12/31/24 12:03	1
Tetrachloroethene	1.0	U	1.0	0.25				12/31/24 12:03	1
Toluene	1.0	U	1.0	0.38				12/31/24 12:03	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22				12/31/24 12:03	1
Trichloroethene	1.0	U	1.0	0.31	177.1			12/31/24 12:03	1
Vinyl chloride	1.0	U	1.0	0.17				12/31/24 12:03	1
Xylenes, Total	2.0	U	2.0	0.65				12/31/24 12:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 128					12/31/24 12:03	1
4-Bromofluorobenzene	103		76 - 120					12/31/24 12:03	1
Dibromofluoromethane (Surr)	103		77 - 132					12/31/24 12:03	1
Toluene-d8 (Surr)	90		80 - 120					12/31/24 12:03	1

Client Sample ID: GCMW-20S

Date Collected: 12/26/24 08:50

Date Received: 12/27/24 18:00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			12/31/24 14:30	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			12/31/24 14:30	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			12/31/24 14:30	1

BUR 1/21/25

Eurofins Edison

Matrix: Water

Lab Sample ID: 460-318022-2

Lab Sample ID: 460-318022-1

Matrix: Water

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-20S

Date Collected: 12/26/24 08:50 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-2

Matrix: Water

Method: SW846 8260D - V Analyte					tinued)				
1,1-Dichloroethane		Qualifier	RL		L Unit		D Prepared	Analyzed	Dil Fa
1,1-Dichloroethene		U	1.0		6 ug/L			12/31/24 14:30	
1,2-Dichloroethane		U	1.0		6 ug/L			12/31/24 14:30	1
		U	1.0		3 ug/L			12/31/24 14:30	
1,2-Dichloroethene, Total		U	2.0		4 ug/L			12/31/24 14:30	1
1,2-Dichloropropane		U	1.0		5 ug/L			12/31/24 14:30	S 1
2-Butanone (MEK)		U	5.0		9 ug/L			12/31/24 14:30	1
2-Hexanone	5.0		5.0		1 ug/L			12/31/24 14:30	1
4-Methyl-2-pentanone (MIBK)	5.0		5.0		3 ug/L			12/31/24 14:30	1
Acetone	5.0		5.0		4 ug/L			12/31/24 14:30	1
Benzene	1.0		1.0) ug/L			12/31/24 14:30	1
Bromodichloromethane	1.0		1.0	0.34	1 ug/L			12/31/24 14:30	1
Bromoform		U	1.0	0.54	t ug/L			12/31/24 14:30	1
Bromomethane	1.0	U	1.0	0.55	6 ug/L			12/31/24 14:30	1
Carbon disulfide	1.0	U	1.0	0.82	2 ug/L			12/31/24 14:30	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			12/31/24 14:30	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			12/31/24 14:30	1
Chloroethane	1.0	U	1.0		ug/L			12/31/24 14:30	1
Chloroform	1.0	U	1.0		ug/L			12/31/24 14:30	
Chloromethane	1.0	U	1.0		ug/L			12/31/24 14:30	1
cis-1,3-Dichloropropene	1.0	U	1.0		ug/L			12/31/24 14:30	. 1
Dibromochloromethane	1.0	U	1.0		ug/L			12/31/24 14:30	1
Ethylbenzene	1.0	υ	1.0		ug/L			12/31/24 14:30	1
Methyl tert-butyl ether	1.0	U	1.0		ug/L			12/31/24 14:30	1
lethylene Chloride	1.0	U	1.0		ug/L			12/31/24 14:30	1
Styrene	1.0	U	1.0		ug/L			12/31/24 14:30	1
etrachloroethene	1.0	U	1.0		ug/L			12/31/24 14:30	1
oluene	1.0	U	1.0		ug/L			12/31/24 14:30	1
rans-1,3-Dichloropropene	1.0		1.0		ug/L			12/31/24 14:30	
richloroethene	1.0	1999	1.0		ug/L			12/31/24 14:30	1
inyl chloride	1.0		1.0		ug/L			12/31/24 14:30	1
ylenes, Total	2.0		2.0		ug/L			12/31/24 14:30	1
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	92		70 - 128					12/31/24 14:30	1
-Bromofluorobenzene	109		76 - 120					12/31/24 14:30	1
ibromofluoromethane (Surr)	106		77 - 132					12/31/24 14:30	1
oluene-d8 (Surr)	91		80 - 120					12/31/24 14:30	1
lethod: SW846 8270E - Ser	mivolatile Orga	nic Comp	ounds (GC/MS	;)					
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Trichlorobenzene	2.0	U	2.0	0.64	ug/L		12/29/24 10:53		1
2-Dichlorobenzene	10	υ	10	0.50				12/29/24 15:33	1
3-Dichlorobenzene	10	U	10		ug/L			12/29/24 15:33	1
4-Dichlorobenzene	10		10		ug/L			12/29/24 15:33	1
2'-oxybis[1-chloropropane]	10		10	0.63				12/29/24 15:33	
4,5-Trichlorophenol	10		10	0.88					1
4,6-Trichlorophenol	10		10					12/29/24 15:33	1
4-Dichlorophenol	10			0.86				12/29/24 15:33	1
4-Dimethylphenol			10		ug/L		12/29/24 10:53		1
	10	U	10	0.62	ug/L		12/29/24 10:53	12/29/24 15:33	1

Page 17 of 2780

40

11 ug/L

40 U

2,4-Dinitrophenol

Eurofins Edison

1

12/29/24 10:53 12/29/24 15:33

BLA 1/21/25

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-20S Date Collected: 12/26/24 08:50 Date Received: 12/27/24 18:00 Job ID: 460-318022-1

Lab Sample ID: 460-318022-2 Matrix: Water

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS) (Continued) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed **Dil Fac** 2.4-Dinitrotoluene 10 U 10 1.0 ug/L 12/29/24 10:53 12/29/24 15:33 1 2,6-Dinitrotoluene 2.0 U 2.0 0.83 ug/L 12/29/24 10:53 12/29/24 15:33 1 2-Chloronaphthalene 10 U 10 1.2 ug/L 12/29/24 10:53 12/29/24 15:33 1 2-Chlorophenol 10 U 10 0.95 ua/L 12/29/24 10:53 12/29/24 15:33 1 2-Methylnaphthalene 10 U 10 0.53 ug/L 12/29/24 10:53 12/29/24 15:33 1 2-Methylphenol 10 U 10 0.67 ug/L 12/29/24 10:53 12/29/24 15:33 1 2-Nitroaniline 10 U 10 1.2 ug/L 12/29/24 10:53 12/29/24 15:33 1 2-Nitrophenol 10 U 10 0.75 ug/L 12/29/24 10:53 12/29/24 15:33 1 3.3'-Dichlorobenzidine 10 U 10 1.4 ug/L 12/29/24 10:53 12/29/24 15:33 1 3-Nitroaniline 10 U 10 1.9 ua/L 12/29/24 10:53 12/29/24 15:33 1 4,6-Dinitro-2-methylphenol 20 U 20 8.6 ug/L 12/29/24 10:53 12/29/24 15:33 1 4-Bromophenyl phenyl ether 10 U 10 0.75 ug/L 12/29/24 10:53 12/29/24 15:33 1 4-Chloro-3-methylphenol 10 U 10 1.3 ug/L 12/29/24 10:53 12/29/24 15:33 1 4-Chloroaniline 10 U 10 1.9 ug/L 12/29/24 10:53 12/29/24 15:33 1 4-Chlorophenyl phenyl ether 10 U 10 1.3 ug/L 12/29/24 10:53 12/29/24 15:33 1 4-Methylphenol 10 U 10 0.65 ug/L 12/29/24 10:53 12/29/24 15:33 1 4-Nitroaniline 10 U 10 1.2 ug/L 12/29/24 10:53 12/29/24 15:33 1 4-Nitrophenol 20 U 20 4.0 ug/L 12/29/24 10:53 12/29/24 15:33 1 Acenaphthene 10 U 10 1.1 ug/L 12/29/24 10:53 12/29/24 15:33 1 Acenaphthylene 10 U 10 0.82 ug/L 12/29/24 10:53 12/29/24 15:33 1 Anthracene 10 U 10 1.3 12/29/24 10:53 12/29/24 15:33 ug/L 1 Benzo[a]anthracene 1.0 U 1.0 0.59 ug/L 12/29/24 10:53 12/29/24 15:33 1 Benzo[a]pyrene 1.0 U 1.0 0.41 ug/L 12/29/24 10:53 12/29/24 15:33 1 Benzo[b]fluoranthene 2.0 U 2.0 0.68 12/29/24 10:53 12/29/24 15:33 ug/L 1 Benzo[g,h,i]perylene 10 U 10 0.70 ug/L 12/29/24 10:53 12/29/24 15:33 1 Benzo[k]fluoranthene 1.0 U 1.0 0.67 ug/L 12/29/24 10:53 12/29/24 15:33 1 Bis(2-chloroethoxy)methane 10 U 10 0.59 ug/L 12/29/24 10:53 12/29/24 15:33 1 Bis(2-chloroethyl)ether 1.0 U 1.0 0.63 ug/L 12/29/24 10:53 12/29/24 15:33 1 Bis(2-ethylhexyl) phthalate 2.0 U 2.0 0.80 ug/L 12/29/24 10:53 12/29/24 15:33 1 Butyl benzyl phthalate 10 U 10 0.85 ug/L 12/29/24 10:53 12/29/24 15:33 1 Carbazole 10 U 10 0.68 ug/L 12/29/24 10:53 12/29/24 15:33 1 Chrysene 2.0 U 2.0 0.91 ug/L 12/29/24 10:53 12/29/24 15:33 1 1.0 U Dibenz(a,h)anthracene 1.0 0.72 ug/L 12/29/24 10:53 12/29/24 15:33 1 Dibenzofuran 10 U 10 1.1 ug/L 12/29/24 10:53 12/29/24 15:33 1 **Diethyl phthalate** 10 U 10 0.98 ug/L 12/29/24 10:53 12/29/24 15:33 1 **Dimethyl phthalate** 10 U 10 0.77 ug/L 12/29/24 10:53 12/29/24 15:33 1 Di-n-butyl phthalate 10 U 10 0.84 ug/L 12/29/24 10:53 12/29/24 15:33 1 Di-n-octyl phthalate 10 U 10 4.0 ug/L 12/29/24 10:53 12/29/24 15:33 1 Fluoranthene 10 U 10 0.84 ug/L 12/29/24 10:53 12/29/24 15:33 1 Fluorene 10 U 10 0,91 ug/L 12/29/24 10:53 12/29/24 15:33 1 Hexachlorobenzene 1.0 U 1.0 0.40 ug/L 12/29/24 10:53 12/29/24 15:33 1 Hexachlorobutadiene 1.0 U 1.0 0.78 ug/L 12/29/24 10:53 12/29/24 15:33 1 Hexachlorocyclopentadiene 10 U 10 3.6 ug/L 12/29/24 10:53 12/29/24 15:33 1 Hexachloroethane 2.0 U 2.0 0.80 ug/L 12/29/24 10:53 12/29/24 15:33 1 Indeno[1,2,3-cd]pyrene 2.0 U 2.0 0.94 ug/L 12/29/24 10:53 12/29/24 15:33 1 Isophorone 10 U 10 0.80 ug/L 12/29/24 10:53 12/29/24 15:33 1 2.0 U Naphthalene 2.0 0.54 ug/L 12/29/24 10:53 12/29/24 15:33 1 Nitrobenzene 1.0 U 1.0 0.57 ug/L 12/29/24 10:53 12/29/24 15:33 1 N-Nitrosodi-n-propylamine 1.0 U 1.0 0.43 ug/L 12/29/24 10:53 12/29/24 15:33 1

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-20S

Date Collected: 12/26/24 08:50 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-2 Matrix: Water

Method: SW846 8270E - Sei Analyte	-	Qualifier	RL		Unit) D	Prepared	Analyzed	Dil F
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		12/29/24 10:53	12/29/24 15:33	
Pentachlorophenol	20	U	20	6.6	ug/L		12/29/24 10:53	12/29/24 15:33	
Phenanthrene	10	U	10		ug/L		12/29/24 10:53	12/29/24 15:33	
Phenol	10	υ	10		ug/L		12/29/24 10:53	12/29/24 15:33	
Pyrene	10	U	10		ug/L		12/29/24 10:53	12/29/24 15:33	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
,4,6-Tribromophenol (Surr)	56		37 - 150				12/29/24 10:53	12/29/24 15:33	
-Fluorobiphenyl	64		46 - 139				12/29/24 10:53	12/29/24 15:33	
-Fluorophenol (Surr)	30		16-80				12/29/24 10:53	12/29/24 15:33	
litrobenzene-d5 (Surr)	69		51 - 145					12/29/24 15:33	
henol-d5 (Surr)	21		10 - 56					12/29/24 15:33	
erphenyl-d14 (Surr)	21		13 - 159					12/29/24 15:33	
lethod: SW846 8082A - Pol	vchlorinated	Biphenyls	(PCBs) by G	as Chro	matogra	phy			
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
roclor 1016	0.40		0.40	0.12			12/29/24 07:56	12/30/24 13:18	
roclor 1221	0.40	U	0.40	0.12	ug/L		12/29/24 07:56	12/30/24 13:18	
oclor 1232	0.40	U	0.40	0.12	ug/L		12/29/24 07:56	12/30/24 13:18	
oclor 1242	0.40	U	0.40	0.12	ug/L		12/29/24 07:56	12/30/24 13:18	
oclor 1248	0.40	U	0.40	0.12	ug/L		12/29/24 07:56	12/30/24 13:18	
oclor 1254	0.40	U	0.40	0.11	ug/L		12/29/24 07:56	12/30/24 13:18	
oclor 1260	0.40	U *	0.40	0.11	ug/L		12/29/24 07:56	12/30/24 13:18	
oclor-1262	0.40	U	0.40	0.11	ug/L		12/29/24 07:56	12/30/24 13:18	
oclor 1268	0.40	U	0.40	0.11	ug/L		12/29/24 07:56	12/30/24 13:18	
blychlorinated biphenyls, Total	0.40	U	0.40	0.12	ug/L		12/29/24 07:56	12/30/24 13:18	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
CB Decachlorobiphenyl	47		18-145				12/29/24 07:56	12/30/24 13:18	
CB Decachlorobiphenyl	50		18 - 145					12/30/24 13:18	
trachloro-m-xylene	51		21 - 124				12/29/24 07:56	12/30/24 13:18	
atrachloro-m-xylene	49		21 - 124				12/29/24 07:56	12/30/24 13:18	
lethod: SW846 6020B - Met	als (ICP/MS)	Total Rec	overable						
nalyte	A STATE OF A	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
uminum	20700		40.0	11.7			01/03/25 10:06		
ntimony	34.7		2.0	0.48			01/03/25 10:06	01/03/25 16:13	
senic	13.3		2.0	1.2	ug/L		01/03/25 10:06		
arium	357		4.0	0.93	ug/L		01/03/25 10:06		
eryllium	1.3		0.80	0.12	-		01/03/25 10:06		
admium	1.7	J	2.0	0.38	ug/L		01/03/25 10:06	01/03/25 16:13	
alcium	116000		500	31.7	ug/L		01/03/25 10:06		
nromium	52.6		4.0	1.7	ug/L		01/03/25 10:06	01/03/25 16:13	
obalt	20.4		4.0	0.41	ug/L		01/03/25 10:06		
opper	68.0		4.0	2.0	ug/L		01/03/25 10:06	01/03/25 16:13	
on	45000		120	33.7			01/03/25 10:06	01/03/25 16:13	
	67.2		1.2	0.42			01/03/25 10:06	01/03/25 16:13	
ad					-				
			200	21.8	ug/L		01/03/25 10:06	01/03/25 16:13	
ead agnesium anganese	32100 3660		200 8.0	21.8 0.84			01/03/25 10:06 01/03/25 10:06		

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Matrix: Water

Lab Sample ID: 460-318022-2

Lab Sample ID: 460-318022-3

Matrix: Water

Client Sample ID: GCMW-20S Date Collected: 12/26/24 08:50 Date Received: 12/27/24 18:00

Analyte	(1997) Th			(Continue	1. C.	12250		12	1200000000
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Potassium	10700		200	83.3	ug/L		01/03/25 10:06	01/03/25 16:13	1
Selenium	8.4		2.5	0.43	ug/L		01/03/25 10:06	01/03/25 16:13	1
Silver	2.0	U	2.0	1.3	ug/L		01/03/25 10:06	01/03/25 16:13	1
Sodium	39700		500	180	ug/L		01/03/25 10:06	01/03/25 16:13	1
Thallium	0.80	U	0.80	0.19	ug/L		01/03/25 10:06	01/03/25 16:13	1
Vanadium	53.2		4.0	1.0	ug/L		01/03/25 10:06	01/03/25 16:13	1
Zinc	346		16.0	4.2	ug/L		01/03/25 10:06	01/03/25 16:13	1
Method: SW846 7470A - Mercu	ry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.23		0.20	0.091	ug/L		01/03/25 11:23	01/03/25 15:01	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	6.6	J	10.0	4.0	ug/L		12/31/24 19:45	12/31/24 21:12	1

Client Sample ID: GCMW-09S-R

Date Collected: 12/26/24 09:00

Date Received: 12/27/24 18:00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			12/31/24 14:54	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			12/31/24 14:54	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			12/31/24 14:54	1
1,1-Dichloroethane	0.74	J	1.0	0.26	ug/L			12/31/24 14:54	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			12/31/24 14:54	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			12/31/24 14:54	1
1,2-Dichloroethene, Total	2.0	U	2.0	0.44	ug/L			12/31/24 14:54	1
1,2-Dichloropropane	1.0	U	1.0	0.35	-			12/31/24 14:54	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			12/31/24 14:54	1
2-Hexanone	5.0	U	5.0		ug/L			12/31/24 14:54	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			12/31/24 14:54	1
Acetone	5.0	U	5.0		ug/L			12/31/24 14:54	1
Benzene	2.3		1.0	0.20	ug/L			12/31/24 14:54	1
Bromodichloromethane	1.0	U	1.0	0.34	ug/L			12/31/24 14:54	1
Bromoform	1.0	U*	1.0	0.54	ug/L			12/31/24 14:54	1
Bromomethane	1.0	U	1.0	0.55	ug/L			12/31/24 14:54	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			12/31/24 14:54	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			12/31/24 14:54	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			12/31/24 14:54	1
Chloroethane	1.0	U	1.0	0.32	ug/L			12/31/24 14:54	1
Chloroform	1.0	U	1.0	0.33	ug/L			12/31/24 14:54	1
Chloromethane	1.0	U	1.0	0.40	ug/L			12/31/24 14:54	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			12/31/24 14:54	1
Dibromochloromethane	1.0	U	1.0	0.28				12/31/24 14:54	1
Ethylbenzene	43		1.0	0.30	ug/L			12/31/24 14:54	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	1000			12/31/24 14:54	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			12/31/24 14:54	1
Styrene	1.0	U	1.0	0.42				12/31/24 14:54	1

BLA Marlas

Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-09S-R Date Collected: 12/26/24 09:00 Date Received: 12/27/24 18:00 Job ID: 460-318022-1

Lab Sample ID: 460-318022-3

Matrix: Water

Method: SW846 8260D - Ve Analyte		Qualifier	nds by GC/MS RL		tinued) . Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			12/31/24 14:54	
Toluene	1.9		1.0	0.38	ug/L			12/31/24 14:54	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			12/31/24 14:54	4
Trichloroethene	1.0	U	1.0	0.31	ug/L			12/31/24 14:54	1
Vinyl chloride	1.0	U	1.0		ug/L			12/31/24 14:54	1
Xylenes, Total	40		2.0	0.65	ug/L			12/31/24 14:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 128				-	12/31/24 14:54	1
4-Bromofluorobenzene	114		76 - 120					12/31/24 14:54	1
Dibromofluoromethane (Surr)	108		77 - 132					12/31/24 14:54	1
Toluene-d8 (Surr)	91		80 - 120					12/31/24 14:54	1
Method: SW846 8270E - Se	mivolatile Org	anic Com	pounds (GC/M	S)					
Analyte		Qualifier	ŘL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	2.0	U	2.0	0.64	ug/L		12/29/24 10:53		1
1,2-Dichlorobenzene	10	U	10	0.50	ug/L		12/29/24 10:53	12/29/24 18:21	1
1,3-Dichlorobenzene	10	U	10	2.0	ug/L		12/29/24 10:53	12/29/24 18:21	1
1,4-Dichlorobenzene	10	U	10	1.1	-		12/29/24 10:53	12/29/24 18:21	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		12/29/24 10:53		1
2,4,5-Trichlorophenol	10	U	10		ug/L		12/29/24 10:53		1
2,4,6-Trichlorophenol	10	U	10		ug/L		12/29/24 10:53		1
2,4-Dichlorophenol	10	U	10	1.1			12/29/24 10:53		1
2,4-Dimethylphenol	10	U	10		ug/L			12/29/24 18:21	1
2,4-Dinitrophenol	40	U	40	11	-			12/29/24 18:21	1
2,4-Dinitrotoluene	10	U	10		ug/L			12/29/24 18:21	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83				12/29/24 18:21	. 1
2-Chloronaphthalene	10	U	10		ug/L			12/29/24 18:21	1
2-Chlorophenol	10	U	10	0.95	0.07.000.00			12/29/24 18:21	1
2-Methylnaphthalene	28	5	10	0.53				12/29/24 18:21	1
2-Methylphenol	10		10	0.67	A REAL PROPERTY AND A REAL			12/29/24 18:21	1
2-Nitroaniline	10		10		ug/L			12/29/24 18:21	1
2-Nitrophenol	10		10	0.75	_		12/29/24 10:53		1
3.3'-Dichlorobenzidine	10		10		ug/L		12/29/24 10:53		1
3-Nitroaniline	10		10		ug/L		12/29/24 10:53	second to the second second second second	1
4,6-Dinitro-2-methylphenol	20		20		ug/L			12/29/24 18:21	1
-Bromophenyl phenyl ether	10		10	0.75			12/29/24 10:53		1
-Chloro-3-methylphenol	10		10		ug/L		12/29/24 10:53		
I-Chloroaniline		UJ	10		ug/L		12/29/24 10:53		1
-Chlorophenyl phenyl ether	10		10		ug/L		12/29/24 10:53		1
-Methylphenol	10		10	0.65			12/29/24 10:53		1
I-Nitroaniline	10		10		ug/L		12/29/24 10:53		1
-Nitrophenol	20		20		ug/L				1
Acenaphthene	120		10		ug/L ug/L		12/29/24 10:53		1
and a market of the second second second second					- AT / A		12/29/24 10:53		1
Acenaphthylene Anthracene	2.9		10	0.82	2012 - C.		12/29/24 10:53		1
	8.2		10	1.3	COCH COLUMN		12/29/24 10:53		1
lenzo[a]anthracene	1.0		1.0	0.59			12/29/24 10:53		1
Senzo[a]pyrene	1.0		1.0	0.41			12/29/24 10:53		1
Benzo[b]fluoranthene	2.0		2.0	0.68	- T		12/29/24 10:53		1 1
Benzo[g,h,i]perylene	10	U	10	0.70	- T		12/29/24 10:53		

Eurofins Edison

BUR 1/21

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-09S-R

Date Collected: 12/26/24 09:00 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-3

Matrix: Water

Method: SW846 8270E - S	emivolatile Org	janic Com	pounds (GC/)			
Analyte		Qualifier	RL		L Unit		D Prepared	Analyzed	Dil Fa
Benzo[k]fluoranthene	1.0	1.1.1	1.0	0.6	7 ug/L		12/29/24 10:53	3 12/29/24 18:21	
Bis(2-chloroethoxy)methane		U	10	0.5	9 ug/L		12/29/24 10:53	3 12/29/24 18:21	
Bis(2-chloroethyl)ether	1.0	1000	1.0	0.6	3 ug/L		12/29/24 10:53	3 12/29/24 18:21	
Bis(2-ethylhexyl) phthalate	1.9		2.0	0.80	0 ug/L		12/29/24 10:53	3 12/29/24 18:21	
Butyl benzyl phthalate	10	U	10	0.85	5 ug/L		12/29/24 10:53	12/29/24 18:21	
Carbazole	2.4		10	0.68	3 ug/L		12/29/24 10:53	12/29/24 18:21	8
Chrysene	2.0	U	2.0	0.91	l ug/L		12/29/24 10:53	12/29/24 18:21	1
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	2 ug/L		12/29/24 10:53	12/29/24 18:21	1
Dibenzofuran	9.4	J	10	1.1	ug/L		12/29/24 10:53	12/29/24 18:21	
Diethyl phthalate	10	U	10	0.98	ug/L		12/29/24 10:53	12/29/24 18:21	1
Dimethyl phthalate	10	U	10	0.77	ug/L		12/29/24 10:53	12/29/24 18:21	
Di-n-butyl phthalate	10	U	10	0.84	ug/L			12/29/24 18:21	
Di-n-octyl phthalate	10	U	10	4.0	ug/L			12/29/24 18:21	
Fluoranthene	4.5	J	10		ug/L		12/29/24 10:53	12/29/24 18:21	
Fluorene	46	5	10	0.91	1475.			12/29/24 18:21	
lexachlorobenzene	1.0	U	1.0	0.40	ug/L			12/29/24 18:21	1
lexachlorobutadiene	1.0	U	1.0		ug/L			12/29/24 18:21	1
lexachlorocyclopentadiene	10	U	10		ug/L			12/29/24 18:21	1
lexachloroethane	2.0	υ	2.0	0.80				12/29/24 18:21	-
ndeno[1,2,3-cd]pyrene	2.0	U	2.0		ug/L			12/29/24 18:21	
sophorone	10	U	10		ug/L			12/29/24 18:21	1
litrobenzene	1.0	U	1.0		ug/L			12/29/24 18:21	1
I-Nitrosodi-n-propylamine	1.0	U	1.0		ug/L			12/29/24 18:21	1
I-Nitrosodiphenylamine	10	U	10		ug/L			12/29/24 18:21	1
entachlorophenol	20	U	20		ug/L			12/29/24 18:21	1
henanthrene	57	T	10		ug/L			12/29/24 18:21	1
henol	10		10		ug/L			12/29/24 18:21	1
yrene	4.8		10		ug/L			12/29/24 18:21	1
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4,6-Tribromophenol (Surr)	77		37 - 150					12/29/24 18:21	1
Fluorobiphenyl	71		46 - 139					12/29/24 18:21	1
Fluorophenol (Surr)	42		16-80					12/29/24 18:21	1
itrobenzene-d5 (Surr)	78		51 - 145				12/29/24 10:53		1
henol-d5 (Surr)	28		10 - 56				12/29/24 10:53		1
erphenyl-d14 (Surr)	50		13 - 159				12/29/24 10:53		1
lethod: SW846 8270E - Se	mivolatile Orga	nic Comp	ounds (GC/M	S) - D	Ê.				
nalyte	Result		RL	MDL		D	Prepared	Analyzed	Dil Fac
aphthalene	330		20		ug/L		12/29/24 10:53		10
ethod: SW846 8082A - Po	lychlorinated B	inhenvis /	PCBe) by Ga	e Chro	matograp	hv			
nalyte	Result (RL	MDL		D	Prepared	Anabard	Dil Fac
oclor 1016	0.40 (0.40	0.12			12/29/24 07:56	Analyzed	
oclor 1221	0.40 0		0.40						1
oclor 1232	0.40 0			0.12			12/29/24 07:56		1
oclor 1232			0.40	0.12			12/29/24 07:56		1
oclor 1242	0.40 L		0.40	0.12	0.000		12/29/24 07:56		1
	0.40 l		0.40	0.12	(1997)		12/29/24 07:56		1
oclor 1254	0.40 L	1	0.40	0.11			12/29/24 07:56		1

Page 22 of 2780

BCR 1/21/25 Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-09S-R Date Collected: 12/26/24 09:00 Date Received: 12/27/24 18:00

Job ID: 460-3	18022-1
---------------	---------

Lab Sample ID: 460-318022-3

Matrix: Water

Method: SW846 8082A - Pol Analyte	Resu	t Qualifier	RL		. Unit		(Continued)		
Aroclor-1262		0 U	0.40		ug/L	D	····	Analyzed	DIIF
Aroclor 1268		υ	0.40					5 12/30/24 13:35	
Polychlorinated biphenyls, Total		5 U	0.40		ug/L ug/L			5 12/30/24 13:35 10/00/04 40 05	
	0.4		0.40	0.12	ug/L		12/29/24 07:56	5 12/30/24 13:35	
Surrogate		Qualifier	Limits				Prepared	Analyzed	DII F
DCB Decachlorobiphenyl	8		18 - 145				12/29/24 07:56	12/30/24 13:35	
DCB Decachlorobiphenyl	10:		18_145				12/29/24 07:56	12/30/24 13:35	
Tetrachloro-m-xylene	80		21 - 124				12/29/24 07:56	12/30/24 13:35	
Tetrachloro-m-xylene	82	2	21 - 124				12/29/24 07:56	12/30/24 13:35	
Method: SW846 6020B - Met	als (ICP/MS)	- Total Re	ecoverable						
Analyte	Resul	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum	37.8	J	40.0	11.7	ug/L		and the second se	01/03/25 15:07	
Antimony	2.0	U	2.0		ug/L			01/03/25 15:07	
Arsenic	7.5		2.0		ug/L			01/03/25 15:07	
Barium	100		4.0		ug/L			01/03/25 15:07	
Beryllium	0.80	U	0.80		ug/L			01/03/25 15:07	
Cadmium	2.0	U	2.0		ug/L			01/03/25 15:07	
Calcium	69700		500		ug/L			01/03/25 15:07	
Chromium	4.0	U	4.0		ug/L			01/03/25 15:07	
Cobalt	0.70	J	4.0	0.41				01/03/25 15:07	
Copper	4.0		4.0		ug/L			01/03/25 15:07	
ron	12700	•	120	33.7					
_ead	1.2	u –	1.2	0.42				01/03/25 15:07	
Magnesium	12800	•	200	21.8				01/03/25 15:07	
Manganese	4300							01/03/25 15:07	
Vickel	4300	п	8.0	0.84				01/03/25 15:07	
Potassium	4.0	0	4.0		ug/L			01/03/25 15:07	
Selenium	4310		200	83.3	10.000			01/03/25 15:07	
Silver			2.5	0.43				01/03/25 15:07	
Sodium	2.0	U	2.0		ug/L			01/03/25 15:07	
Thallium	11300		500	180				01/03/25 15:07	
/anadium	0.80	- F 2	0.80	0.19	-			01/03/25 15:07	
	4.0		4.0	1.0				01/03/25 15:07	
linc	4.2	J	16.0	4.2	ug/L	21	01/03/25 10:06	01/03/25 15:07	
lethod: SW846 7470A - Merc	ury (CVAA)								
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
lercury	0.20	U	0.20	0.091	ug/L		01/03/25 11:23	01/03/25 14:20	
Seneral Chemistry									
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
yanide, Total (SW846 9012B)	43.9	5	10.0	4.0	ug/L	1	12/31/24 19:45	12/31/24 21:10	
ient Sample ID: GCMW-	115					Lal	Sample	D: 460-318	022-/
te Collected: 12/26/24 10:10							o dampie i	Matrix:	
te Received: 12/27/24 18:00								matrix.	water
lethod: SW846 8260D - Volat	ile Organic (Compour	ds by GC/Me						
nalyte		Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Trichloroethane	1.0		1.0	0.24				12/31/24 15:19	Dirrat
1,2,2-Tetrachloroethane	1.0		1.0	0.24 t					
	1.0		1.0	0.37 L	ig/L		1	12/31/24 15:19	1
					BCR	.1	allas	Eurofins E	Edison
					* L []]				

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: GCMW-11S

Date Collected: 12/26/24 10:10 Date Received: 12/27/24 18:00

2,4-Dimethylphenol

Lab Sample ID: 460-318022-4 Matrix: Water

Analyte **Result Qualifier** RL MDL Unit Analyzed Dil Fac D Prepared 1.0 U 1,1,2-Trichloroethane 1.0 0.20 ug/L 12/31/24 15:19 1.1-Dichloroethane 1.0 U 1.0 12/31/24 15:19 0.26 ug/L 1.1-Dichloroethene 1.0 U 1.0 0.26 ug/L 12/31/24 15:19 1.2-Dichloroethane 1.0 U 1.0 0.43 ug/L 12/31/24 15:19 1.2-Dichloroethene, Total 2.0 U 2.0 0.44 ug/L 12/31/24 15:19 1,2-Dichloropropane 1.0 U 1.0 0.35 ug/L 12/31/24 15:19 2-Butanone (MEK) 5.0 U 5.0 12/31/24 15:19 1.9 ug/L 2-Hexanone 5.0 U 5.0 1.1 ug/L 12/31/24 15:19 4-Methyl-2-pentanone (MIBK) 5.0 U 5.0 1.3 ug/L 12/31/24 15:19 Acetone 5.0 U 5.0 4.4 ug/L 12/31/24 15:19 Benzene 1.0 U 1.0 0.20 ug/L 12/31/24 15:19 Bromodichloromethane 1.0 U 1.0 0.34 ug/L 12/31/24 15:19 1.0 U+--Bromoform 1.0 0.54 ug/L 12/31/24 15:19 Bromomethane 1.0 U 10 0.55 ug/L 12/31/24 15:19 Carbon disulfide 1.0 U 0.82 ug/L 12/31/24 15:19 1.0 Carbon tetrachloride 1.0 U 1.0 0.21 ug/L 12/31/24 15:19 Chlorobenzene 1.0 U 1.0 0.38 ug/L 12/31/24 15:19 1 1 Chloroethane 1.0 U 1.0 0.32 ug/L 12/31/24 15:19 Chloroform 1.0 U 1.0 0.33 ug/L 12/31/24 15:19 1 Chloromethane 1.0 U 0.40 ug/L 12/31/24 15:19 1 1.0 1 1.0 U cis-1,3-Dichloropropene 1.0 0.22 ug/L 12/31/24 15:19 Dibromochloromethane 1 1.0 U** 12/31/24 15:19 10 0.28 ug/L 1 Ethylbenzene 0.89 J 1.0 0.30 ug/L 12/31/24 15:19 12/31/24 15:19 Methyl tert-butyl ether 1.0 U 0.22 ug/L 1 1.0 1.0 U 1 Methylene Chloride 1.0 0.32 ug/L 12/31/24 15:19 1.0 U 0.42 ug/L 12/31/24 15:19 1 Styrene 1.0 12/31/24 15:19 1.0 U 1 Tetrachloroethene 1.0 0.25 ua/L 1.0 1 Toluene 1.0 U 0.38 ug/L 12/31/24 15:19 1 trans-1,3-Dichloropropene 1.0 U 1.0 0.22 ug/L 12/31/24 15:19 1 Trichloroethene 1.0 U 0,31 ug/L 12/31/24 15:19 10 12/31/24 15:19 1 1.0 U Vinyl chloride 1.0 0.17 ug/L 1 2.0 0.65 ug/L 12/31/24 15:19 Xylenes, Total 2.2 Dil Fac %Recovery Qualifier Analyzed Limits Prepared Surrogate 12/31/24 15:19 1,2-Dichloroethane-d4 (Surr) 93 70-128 1 107 12/31/24 15:19 1 4-Bromofluorobenzene 76 - 120 Dibromofluoromethane (Surr) 104 77 - 132 12/31/24 15:19 1 91 12/31/24 15:19 1 Toluene-d8 (Surr) 80 - 120 Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS) **Dil Fac Result Qualifier** RL MDL Unit D Prepared Analyzed Analyte 12/29/24 10:53 12/29/24 15:54 1,2,4-Trichlorobenzene 2.0 U 2.0 0,64 ug/L 1 10 U 10 0.50 ug/L 12/29/24 10:53 12/29/24 15:54 1 1,2-Dichlorobenzene 12/29/24 10:53 12/29/24 15:54 1 10 U 10 2.0 ug/L 1.3-Dichlorobenzene 12/29/24 10:53 12/29/24 15:54 1 10 1.1 ug/L 1,4-Dichlorobenzene 10 U 1 12/29/24 10:53 12/29/24 15:54 10 U 10 0.63 ug/L 2,2'-oxybis[1-chloropropane] 1 12/29/24 10:53 12/29/24 15:54 10 U 10 0.88 ug/L 2.4.5-Trichlorophenol 0.86 ug/L 12/29/24 15:54 1 10 U 10 12/29/24 10:53 2,4,6-Trichlorophenol 1 12/29/24 10:53 12/29/24 15:54 10 1.1 ug/L 2,4-Dichlorophenol 10 U

BER 1/21/25

0.62 ug/L

Eurofins Edison

12/29/24 10:53 12/29/24 15:54

1

10

10 U

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Client Sample ID: GCMW-11S Date Collected: 12/26/24 10:10

Date Received: 12/27/24 18:00

Lab	Sample	ID:	460-318022-4
			Matrix: Water

Method: SW846 8270E - Sen Analyte	Result	Qualifier	ŘL		Unit	D	Prepared	Analyzed	Dil Fa
2,4-Dinitrophenol	40	U	40	11	ug/L		12/29/24 10:53	12/29/24 15:54	
2,4-Dinitrotoluene	10	U	10	1.0	ug/L		12/29/24 10:53	12/29/24 15:54	
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		12/29/24 10:53	12/29/24 15:54	
2-Chloronaphthalene	10	U	10	1.2	ug/L		12/29/24 10:53	12/29/24 15:54	
2-Chlorophenol	10	U	10	0.95	ug/L			12/29/24 15:54	
2-Methylnaphthalene	10	U	10	0.53	ug/L		12/29/24 10:53	12/29/24 15:54	
2-Methylphenol	10	U	10	0.67	ug/L			12/29/24 15:54	
2-Nitroaniline	10	U	10		ug/L			12/29/24 15:54	
2-Nitrophenol	10	U	10	0.75	ug/L		12/29/24 10:53	12/29/24 15:54	
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		12/29/24 10:53	12/29/24 15:54	
3-Nitroaniline	10	U	10		ug/L		12/29/24 10:53	12/29/24 15:54	
4,6-Dinitro-2-methylphenol	20	U	20		ug/L			12/29/24 15:54	
1-Bromophenyl phenyl ether	10	U	10	0.75				12/29/24 15:54	8
4-Chloro-3-methylphenol	10	U	10		ug/L			12/29/24 15:54	
4-Chloroaniline	10	U	10		ug/L			12/29/24 15:54	
-Chlorophenyl phenyl ether	10		10		ug/L			12/29/24 15:54	
-Methylphenol	10		10	0.65				12/29/24 15:54	1
-Nitroaniline	10	-573	10		ug/L			12/29/24 15:54	1
-Nitrophenol	20		20		ug/L			12/29/24 15:54	
Acenaphthene	1.3		10		ug/L			12/29/24 15:54	
cenaphthylene	10		10	0.82	2		12/29/24 10:53		
Anthracene	10		10		ug/L		12/29/24 10:53		
Benzo[a]anthracene	1.0		1.0	0.59			12/29/24 10:53		
Senzo[a]pyrene	1.0		1.0				12/29/24 10:53		1
enzo[b]fluoranthene	in the second second	U	2.0	0.41 0.68					
enzo[g,h,i]perylene		U	2.0		ug/L				1
enzo[k]fluoranthene	1.0		1.0		ug/L		12/29/24 10:53		1
is(2-chloroethoxy)methane					ug/L		12/29/24 10:53		. 1
	10		10		ug/L		12/29/24 10:53		1
is(2-chloroethyl)ether	1.0		1.0		ug/L		12/29/24 10:53		1
is(2-ethylhexyl) phthalate	2.0		2.0		ug/L		12/29/24 10:53		1
utyl benzyl phthalate	10		10	0.85				12/29/24 15:54	1
arbazole		U	10	0.68			12/29/24 10:53		1
hrysene	2.0		2.0		ug/L		12/29/24 10:53	Contraction and and the state of the	1
ibenz(a,h)anthracene	1.0		1.0	0.72	-		12/29/24 10:53		1
ibenzofuran	10		10	1.1			12/29/24 10:53		1
iethyl phthalate	10		10	0.98	13 A		12/29/24 10:53	12/29/24 15:54	1
imethyl phthalate	10		10	0.77			12/29/24 10:53		1
i-n-butyl phthalate	10	U	10	0.84			12/29/24 10:53	12/29/24 15:54	1
i-n-octyl phthalate	10	U	10	4.0	-		12/29/24 10:53	12/29/24 15:54	1
uoranthene	10	J	10	0.84	ug/L	1	2/29/24 10:53	12/29/24 15:54	1
uorene	10	U	10	0.91	ug/L	1	2/29/24 10:53	12/29/24 15:54	1
exachlorobenzene	1.0	J	1.0	0.40	ug/L	1	2/29/24 10:53	12/29/24 15:54	1
exachlorobutadiene	1.0	J	1.0	0.78	ug/L	1	2/29/24 10:53	12/29/24 15:54	1
exachlorocyclopentadiene	10	J	10	3.6 1	ug/L	1	2/29/24 10:53	12/29/24 15:54	1
exachloroethane	2.0	J	2.0	0.80 1	ug/L	1	2/29/24 10:53	12/29/24 15:54	1
deno[1,2,3-cd]pyrene	2.0	J	2.0	0.94 u	ug/L	1	2/29/24 10:53	12/29/24 15:54	1
ophorone	10 1	J	10	0.80 u	. Second	1	2/29/24 10:53	12/29/24 15:54	1
aphthalene	2.0	J	2.0	0.54 u	2		2/29/24 10:53		1
trobenzene	1.0 1		1.0	0.57 u			2/29/24 10:53		1

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-11S

Date Collected: 12/26/24 10:10 Date Received: 12/27/24 18:00

Method: SW846 8270E - S	emivolatile Org	anic Com	pounds (GC/MS)	(C	ontinued)				
Analyte		Qualifier	RL	Constant of	Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		12/29/24 10:53	12/29/24 15:54	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		12/29/24 10:53	12/29/24 15:54	1
Pentachlorophenol	20	U	20	6.6	ug/L		12/29/24 10:53	12/29/24 15:54	1
Phenanthrene	10	U	10	1.3	ug/L		12/29/24 10:53	12/29/24 15:54	1
Phenol	10	U	10	0.29	ug/L		12/29/24 10:53	12/29/24 15:54	1
Pyrene	10	U	10	1.6	ug/L		12/29/24 10:53	12/29/24 15:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	62		37 - 150				12/29/24 10:53	12/29/24 15:54	1
2-Fluorobiphenyl	70		46 - 139				12/29/24 10:53	12/29/24 15:54	1
2-Fluorophenol (Surr)	37		16 - 80				12/29/24 10:53	12/29/24 15:54	1
Nitrobenzene-d5 (Surr)	73		51 - 145				12/29/24 10:53	12/29/24 15:54	1
Phenol-d5 (Surr)	26		10 - 56				12/29/24 10:53	12/29/24 15:54	1
Terphenyl-d14 (Surr)	34		13 - 159				12/29/24 10:53	12/29/24 15:54	1

Client Sample ID: GCMW-13I

Date Collected: 12/26/24 10:40 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			12/31/24 15:43	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			12/31/24 15:43	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			12/31/24 15:43	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			12/31/24 15:43	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			12/31/24 15:43	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			12/31/24 15:43	1
1,2-Dichloroethene, Total	2.0	U	2.0	0.44	ug/L			12/31/24 15:43	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			12/31/24 15:43	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			12/31/24 15:43	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			12/31/24 15:43	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			12/31/24 15:43	1
Acetone	5.0	U	5.0	4.4	ug/L			12/31/24 15:43	1
Benzene	1.0	U	1.0	0.20	ug/L			12/31/24 15:43	1
Bromodichloromethane	1.0	U	1.0	0.34	ug/L			12/31/24 15:43	1
Bromoform	1.0	U 🛀	1.0	0.54	ug/L			12/31/24 15:43	1
Bromomethane	1.0	U	1.0	0.55	ug/L			12/31/24 15:43	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			12/31/24 15:43	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			12/31/24 15:43	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			12/31/24 15:43	1
Chloroethane	1.0	U	1.0	0.32	ug/L			12/31/24 15:43	1
Chloroform	1.0	U	1.0	0.33	ug/L			12/31/24 15:43	1
Chloromethane	1.0	U	1.0	0.40	ug/L			12/31/24 15:43	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			12/31/24 15:43	1
Dibromochloromethane	1.0	Ut	1.0	0.28	ug/L			12/31/24 15:43	1
Ethylbenzene	1.0	U	1.0	0.30	ug/L			12/31/24 15:43	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			12/31/24 15:43	1
Methylene Chloride	1.0	U	1.0	0.32				12/31/24 15:43	1
Styrene	1.0	U	1.0	0.42	ug/L			12/31/24 15:43	1
Tetrachloroethene	2.2		1.0	0.25	ug/L			12/31/24 15:43	1

BCR 1/21/25 Eurofins Edison

Lab Sample ID: 460-318022-4 Matrix: Water

Job ID: 460-318022-1

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Client Sample ID: GCMW-13I Date Collected: 12/26/24 10:40 Date Received: 12/27/24 18:00

Lab	Sample	ID:	460-318022-5
			Matrix: Water

Method: SW846 8260D -				11.00	tinued)				
Analyte Toluene	the second se	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
	1.0		1.0		ug/L			12/31/24 15:43	
trans-1,3-Dichloropropene	1.0		1.0		ug/L			12/31/24 15:43	
Trichloroethene	1.0		1.0	0.31	ug/L			12/31/24 15:43	
Vinyl chloride	1.0		1.0	0.17				12/31/24 15:43	
Xylenes, Total	1.7	J	2.0	0.65	ug/L			12/31/24 15:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	92		70 - 128					12/31/24 15:43	and the first state
4-Bromofluorobenzene	107		76 - 120					12/31/24 15:43	
Dibromofluoromethane (Surr)	101		77 - 132					12/31/24 15:43	
Toluene-d8 (Surr)	92		80 - 120					12/31/24 15:43	
Method: SW846 8270E - 5	Semivolatile Org	anic Comp	ounds (GC/M	S)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
,2,4-Trichlorobenzene	2.0	U	2.0	0.64	ug/L		12/29/24 10:53	al and a second s	
,2-Dichlorobenzene	10	U	10	0.50			12/29/24 10:53		
,3-Dichlorobenzene	10	U	10	2.0	ug/L		12/29/24 10:53	12/29/24 16:15	
,4-Dichlorobenzene	10	U	10	1.1	ug/L		12/29/24 10:53	12/29/24 16:15	
,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		12/29/24 10:53	12/29/24 16:15	
4,5-Trichlorophenol	10	U	10	0.88			12/29/24 10:53	12/29/24 16:15	
,4,6-Trichlorophenol	10	U	10		ug/L		12/29/24 10:53	12/29/24 16:15	
,4-Dichlorophenol	10	U	10		ug/L			12/29/24 16:15	
,4-Dimethylphenol	10	U	10	0.62				12/29/24 16:15	
4-Dinitrophenol	40	U	40		ug/L			12/29/24 16:15	
4-Dinitrotoluene	10	U	10		ug/L			12/29/24 16:15	
6-Dinitrotoluene	2.0	U	2.0	0.83	1070			12/29/24 16:15	
Chloronaphthalene	10	U	10	1.2				12/29/24 16:15	
-Chlorophenol	10	U	10	0.95				12/29/24 16:15	
Methylnaphthalene	10	U	10		ug/L			12/29/24 16:15	
Methylphenol		U	10		ug/L			12/29/24 16:15	
Nitroaniline		U	10						
Nitrophenol	10		10		ug/L			12/29/24 16:15	
3'-Dichlorobenzidine	10			0.75				12/29/24 16:15	
Nitroaniline	10		10		ug/L			12/29/24 16:15	
6-Dinitro-2-methylphenol	20		10		ug/L		2/29/24 10:53	12/29/24 16:15	
Bromophenyl phenyl ether	10		20	8.6				12/29/24 16:15	
Chloro-3-methylphenol	10 1		10	0.75				12/29/24 16:15	
Chloroaniline	10 1		10	1.3				12/29/24 16:15	
Chlorophenyl phenyl ether	10 1		10		ug/L			12/29/24 16:15	
			10		ug/L			12/29/24 16:15	
Methylphenol	10 1		10	0.65 u				12/29/24 16:15	
Nitroaniline	10 1		10	1.2 u				12/29/24 16:15	
Nitrophenol	20 1		20		ug/L			12/29/24 16:15	
enaphthene	10 (10	1.1 ı		1:	2/29/24 10:53	12/29/24 16:15	
enaphthylene	10 (10	0.82 L	10-10-10-10-10-10-10-10-10-10-10-10-10-1			12/29/24 16:15	
thracene	10 L		10	1.3 u				12/29/24 16:15	
enzo[a]anthracene	1.0 L		1.0	0.59 L		1:	2/29/24 10:53	12/29/24 16:15	
nzo[a]pyrene	1.0 L		1.0	0.41 L		12	2/29/24 10:53	12/29/24 16:15	
nzo[b]fluoranthene	2.0 L		2.0	0.68 L				12/29/24 16:15	
nzo[g,h,i]perylene	10 L	J	10	0.70 u	ıg/L	12	2/29/24 10:53	12/29/24 16:15	
nzo[k]fluoranthene	1.0 L	1	1.0	0.67 u	ia/l	11	0/20/24 10.52	12/29/24 16:15	

RL

Result Qualifier

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-13I Date Collected: 12/26/24 10:40 Date Received: 12/27/24 18:00

Analyte

Job ID: 460-318022-1

Lab Sample ID: 460-318022-5 Matrix: Water

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit D Prepared Analyzed **Dil Fac**

Analyte	Resul	t Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bis(2-chloroethoxy)methane	10) U	10	0.59	ug/L			12/29/24 16:15	
Bis(2-chloroethyl)ether	1.0) U	1.0		ug/L			12/29/24 16:15	
Bis(2-ethylhexyl) phthalate	2.0) U	2.0		ug/L			12/29/24 16:15	
Butyl benzyl phthalate	10) U	10		ug/L			12/29/24 16:15	
Carbazole	10) U	10		ug/L			12/29/24 16:15	
Chrysene	2.0	U	2.0		ug/L			12/29/24 16:15	
Dibenz(a,h)anthracene	1.0	U	1.0		ug/L			12/29/24 16:15	
Dibenzofuran	10	U	10		ug/L			12/29/24 16:15	
Diethyl phthalate	10	U	10		ug/L			12/29/24 16:15	8
Dimethyl phthalate	10	U	10		ug/L			12/29/24 16:15	03
Di-n-butyl phthalate	10	U	10		ug/L			12/29/24 16:15	15
Di-n-octyl phthalate	10	U	10		ug/L			12/29/24 16:15	
Fluoranthene	10	U	10	0.84	-			12/29/24 16:15	3
Fluorene	10	U	10	0.91				12/29/24 16:15	
Hexachlorobenzene	1.0	U	1.0	0.40				12/29/24 16:15	
Hexachlorobutadiene	1.0	U	1.0	0.78	-			12/29/24 16:15	
Hexachlorocyclopentadiene	10	U	10		ug/L			12/29/24 16:15	
Hexachloroethane	2.0	U	2.0	0.80				12/29/24 16:15	
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94				12/29/24 16:15	
sophorone	10	U	10	0.80				12/29/24 16:15	
Naphthalene	2.0	U	2.0	0.54	-			12/29/24 16:15	
Nitrobenzene	1.0	U	1.0	0.57				12/29/24 16:15	1.11
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43				12/29/24 16:15	1
N-Nitrosodiphenylamine	10	U	10	0.89	0.750			12/29/24 16:15	1
Pentachlorophenol	20		20	6.6				12/29/24 16:15	1
Phenanthrene	10	U	10	1.3				12/29/24 16:15	1
Phenol	10	U	10	0.29				12/29/24 16:15	1
^o yrene	10		10	1.6	-			12/29/24 16:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	58		37 - 150				12/29/24 10:53	12/29/24 16:15	1
2-Fluorobiphenyl	67		46 - 139				12/29/24 10:53	12/29/24 16:15	1
2-Fluorophenol (Surr)	34		16 - 80				12/29/24 10:53		1
Nitrobenzene-d5 (Surr)	73		51 - 145				12/29/24 10:53	12/29/24 16:15	1
Phenol-d5 (Surr)	25		10-56			1	2/29/24 10:53	12/29/24 16:15	1
Terphenyl-d14 (Surr)	30		13 - 159				2/29/24 10:53	and the second	1
lient Sample ID: GCMV ate Collected: 12/26/24 10:5 ate Received: 12/27/24 18:0	5					Lat	Sample I	D: 460-318 Matrix:	

Method: SW846 8260D - Vo	latile Organic	Compounds	by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0	0.24	ug/L			12/31/24 16:08	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			12/31/24 16:08	1
1,1,2-Trichloroethane	1.0	υ	1.0	0.20	ug/L			12/31/24 16:08	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			12/31/24 16:08	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			12/31/24 16:08	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			12/31/24 16:08	1
1,2-Dichloroethene, Total	2.0	U	2.0	0.44	ug/L			12/31/24 16:08	1

Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-11I

Date Collected: 12/26/24 10:55 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-6

Matrix: Water

$ \begin{array}{r} 1.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 1.0 \\ $	0.34 1.9 1.3 4.4 0.20 0.34 0.55 0.82 0.21 0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.32 0.42 0.25			D Prepared	Analyzed 12/31/24 16:08 12/31/24 16:08 12/3	
5.0 5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.9 1.1 1.3 4.4 0.20 0.34 0.55 0.82 0.21 0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.32 0.32	9 ug/L 1 ug/L 3 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 2 ug/L 3 ug/L 2 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08	
5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.1 1.3 4.4 0.20 0.34 0.55 0.82 0.21 0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.32 0.42 0.25	1 ug/L 3 ug/L 4 ug/L 0 ug/L 4 ug/L 4 ug/L 4 ug/L 5 ug/L 2 ug/L 2 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08	
5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.3 4.4 0.20 0.34 0.55 0.82 0.21 0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.32 0.32	3 ug/L 4 ug/L 0 ug/L 4 ug/L 4 ug/L 5 ug/L 2 ug/L 2 ug/L 3 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08	
5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	4,4 0,20 0,34 0,55 0,82 0,21 0,38 0,32 0,33 0,40 0,22 0,28 0,30 0,22 0,32 0,32 0,32	4 ug/L 0 ug/L 4 ug/L 5 ug/L 2 ug/L 2 ug/L 3 ug/L 2 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.20 0.34 0.54 0.82 0.21 0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.32 0.42	0 ug/L 4 ug/L 5 ug/L 2 ug/L 2 ug/L 3 ug/L 3 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.34 0.54 0.55 0.82 0.21 0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.32 0.42	4 ug/L 4 ug/L 5 ug/L 2 ug/L 3 ug/L 2 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.54 0.55 0.82 0.21 0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.32 0.42 0.25	4 ug/L 5 ug/L 2 ug/L 4 ug/L 3 ug/L 2 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.55 0.82 0.21 0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.32 0.42 0.25	5 ug/L 2 ug/L 3 ug/L 3 ug/L 2 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0,82 0,21 0,38 0,32 0,33 0,40 0,22 0,28 0,30 0,22 0,32 0,32 0,42 0,25	2 ug/L 1 ug/L 3 ug/L 2 ug/L 3 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.21 0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.42 0.25	 ug/L 			12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.38 0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.42 0.25	3 ug/L 2 ug/L 3 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.32 0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.42 0.25	2 ug/L 3 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L 4 ug/L			12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.33 0.40 0.22 0.28 0.30 0.22 0.32 0.32 0.42 0.25	3 ug/L 9 ug/L 9 ug/L 9 ug/L 9 ug/L 9 ug/L 9 ug/L 9 ug/L			12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.40 0.22 0.28 0.30 0.22 0.32 0.42 0.42	y ug/L ug/L ug/L ug/L ug/L ug/L ug/L			12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.22 0.28 0.30 0.22 0.32 0.42 0.25	ug/L ug/L ug/L ug/L ug/L ug/L			12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0 1.0	0.28 0.30 0.22 0.32 0.42 0.25	ug/L ug/L ug/L ug/L ug/L			12/31/24 16:08 12/31/24 16:08 12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0 1.0	0.30 0.22 0.32 0.42 0.25	ug/L ug/L ug/L ug/L			12/31/24 16:08 12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0 1.0	0.22 0.32 0.42 0.25	ug/L ug/L ug/L			12/31/24 16:08 12/31/24 16:08	
1.0 1.0 1.0	0.32 0.42 0.25	ug/L ug/L			12/31/24 16:08	
1.0 1.0	0.42 0.25	ug/L			monter and compared and	
1.0	0.25				10/01/01 10 00	
		ug/L			12/31/24 16:08	
1.0	0.20				12/31/24 16:08	
	0.30	ug/L			12/31/24 16:08	
1.0	0.22	ug/L			12/31/24 16:08	
1.0	0.31	ug/L			12/31/24 16:08	10
1.0	0.17	ug/L			12/31/24 16:08	23
2.0	0.65	ug/L			12/31/24 16:08	54
nits				Prepared	Analyzed	Dil Fa
- 128					12/31/24 16:08	
- 120					12/31/24 16:08	1
- 132						
- 120					12/31/24 16:08	
ds (GC/MS	3					
RL		Unit	D	Prepared	Analyzed	Dil Fac
2.0	0.64	ug/L		12/29/24 10:53	12/29/24 16:36	1
10	0.50	ug/L		12/29/24 10:53	12/29/24 16:36	1
10	2.0	ug/L		12/29/24 10:53	12/29/24 16:36	1
10	1.1	ug/L		12/29/24 10:53	12/29/24 16:36	1
10	0.63	ug/L				1
10		-				1
10						1
10						1
10						1
40		1.00				1
						-
		2011년 2011년 2011				
						1
10						1
	0.00			10.00	220/24 10.00	
	1.0 1.0 1.0 2.0 mits - 128 - 120 - 132 - 120 ds (GC/MS RL 2.0 10 10 10 10 10 10 10 10 10 1	1.0 0.22 1.0 0.31 1.0 0.17 2.0 0.65 mits - 128 - 120 - 132 - 120 ds (GC/MS) RL MDL 2.0 0.64 10 0.50 10 2.0 10 1.1 10 0.63 10 0.88 10 0.88 10 0.86 10 1.1 10 0.62 40 11 10 0.83 10 1.0 2.0 0.83 10 1.2	1.0 0.22 ug/L 1.0 0.31 ug/L 1.0 0.17 ug/L 2.0 0.65 ug/L mits - 128 - 120 - 132 - 120 ds (GC/MS) RL MDL Unit 2.0 0.64 ug/L 10 0.50 ug/L 10 0.63 ug/L 10 0.63 ug/L 10 0.88 ug/L 10 0.88 ug/L 10 0.88 ug/L 10 0.86 ug/L 10 0.86 ug/L 10 0.88 ug/L 10 0.83 ug/L 10 1.0 ug/L 2.0 0.83 ug/L 10 1.2 ug/L	1.0 0.22 ug/L 1.0 0.31 ug/L 1.0 0.17 ug/L 2.0 0.65 ug/L mits - 128 - 120 - 132 - 120 ds (GC/MS) RL MDL Unit D 2.0 0.64 ug/L 10 0.50 ug/L 10 0.63 ug/L 10 0.63 ug/L 10 0.63 ug/L 10 0.88 ug/L 10 0.83 ug/L 10 1.0 ug/L 2.0 0.83 ug/L 10 1.2 ug/L	1.0 0.22 ug/L 1.0 0.31 ug/L 1.0 0.17 ug/L 2.0 0.65 ug/L 2.0 0.65 ug/L 2.0 0.65 ug/L 2.128 2.120 2.132 - 120 1.10 0.11 Unit D Prepared 2.0 0.64 ug/L 12/29/24 10:53 10 0.50 ug/L 12/29/24 10:53 10 10 2.0 ug/L 12/29/24 10:53 10 10 0.63 ug/L 12/29/24 10:53 10 10 0.63 ug/L 12/29/24 10:53 10 10 0.88 ug/L 12/29/24 10:53 10 1.1 ug/L 12/29/24 10:53 10 0.86 ug/L 12/29/24 10:53 10 1.1 ug/L 12/29/24 10:53 10 0.62 ug/L 12/29/24 10:53 10 1.0 ug/L 12/29/24 10:53 10 1.0 ug/L 12/29/24 10:53 10 1.0 ug/L	1.0 0.22 ug/L 12/31/24 16:08 1.0 0.31 ug/L 12/31/24 16:08 1.0 0.17 ug/L 12/31/24 16:08 2.0 0.65 ug/L 12/31/24 16:08 2.0 0.65 ug/L 12/31/24 16:08 -128 12/31/24 16:08 12/31/24 16:08 -120 12/31/24 16:08 12/31/24 16:08 -132 12/31/24 16:08 12/31/24 16:08 -120 12/31/24 16:08 12/31/24 16:08 -120 12/31/24 16:08 12/31/24 16:08 -120 12/31/24 16:08 12/31/24 16:08 -120 12/31/24 16:08 12/31/24 16:08 -120 12/31/24 16:08 12/31/24 16:08 110 0.64 ug/L 12/29/24 10:53 10 0.64 ug/L 12/29/24 10:53 10 0.63 ug/L 12/29/24 10:53 10 0.63 ug/L 12/29/24 10:53 10 0.84 ug/L 12/29/24 10:53 10 0.86 ug/L 12/29/24 10:53 10 0.86 u

Eurofins Edison

Client Sample ID: GCMW-11I Date Collected: 12/26/24 10:55 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-6 Matrix: Water

Method: SW846 8270E - Sem Analyte	27.2	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	10	1.00 Mar 10 Mar 10 Mar 10	10	0.53	1969-2021			12/29/24 16:36	
2-Methylphenol		Ŭ	10	0.67	3			12/29/24 16:36	
2-Nitroaniline		U	10		ug/L			12/29/24 16:36	1
2-Nitrophenol	10		10	0.75				12/29/24 16:36	1
3.3'-Dichlorobenzidine	10		10		ug/L			12/29/24 16:36	1
3-Nitroaniline	10		10		ug/L			12/29/24 16:36	1
4,6-Dinitro-2-methylphenol	20		20	8.6	10.370			12/29/24 16:36	1
		U	10	0.75				12/29/24 16:36	1
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	10		10		ug/L			12/29/24 16:36	1
1224	10		10	1.9				12/29/24 16:36	1
4-Chloroaniline	10		10		ug/L			12/29/24 16:36	1
4-Chlorophenyl phenyl ether		U	10	0.65	-			12/29/24 16:36	1
4-Methylphenol		U U		1.2			12/29/24 10:53		1
4-Nitroaniline		U U	10	4.0	10.0			12/29/24 16:36	1
4-Nitrophenol	1778. S		20					12/29/24 16:36	1
Acenaphthene	1.5		10 10	0.82	ug/L			12/29/24 10:30	1
Acenaphthylene	100 A 100	J			and the second sec		12/29/24 10:53		1
Anthracene	10		10	1.3			12/29/24 10:53		1
Benzo[a]anthracene	1.0		1.0	0.59					1
Benzo[a]pyrene		U	1.0		ug/L		12/29/24 10:53		
Benzo[b]fluoranthene	2.0		2.0		ug/L		NAME AND ADDRESS OF A DESCRIPTION OF A DESCRIPTION	12/29/24 16:36	1
Benzo[g,h,i]perylene	10		10		ug/L		12/29/24 10:53		1
Benzo[k]fluoranthene	1.0		1.0		ug/L		12/29/24 10:53		1
Bis(2-chloroethoxy)methane	10		10		ug/L		12/29/24 10:53		1
Bis(2-chloroethyl)ether	1.0		1.0		ug/L		12/29/24 10:53		1
Bis(2-ethylhexyl) phthalate	2.0		2.0		ug/L		12/29/24 10:53		1
Butyl benzyl phthalate	10	U	10		ug/L		12/29/24 10:53		1
Carbazole	0.81	J	10		ug/L		12/29/24 10:53		1
Chrysene	2.0	υ	2.0	0.91	ug/L		12/29/24 10:53	12/29/24 16:36	1
Dibenz(a,h)anthracene	1.0	U	1.0	0,72	ug/L		12/29/24 10:53		1
Dibenzofuran	10	U	10	1.1	ug/L		12/29/24 10:53		1
Diethyl phthalate	10	U	10		ug/L		12/29/24 10:53		1
Dimethyl phthalate	10	U	10	0.77	ug/L		12/29/24 10:53		1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		12/29/24 10:53		1
Di-n-octyl phthalate	10	U	10	4.0	ug/L		12/29/24 10:53		1
Fluoranthene	10	U	10	0.84	ug/L		12/29/24 10:53	12/29/24 16:36	1
Fluorene	10	U	10	0.91	ug/L		12/29/24 10:53	12/29/24 16:36	1
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		12/29/24 10:53	12/29/24 16:36	1
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		12/29/24 10:53	12/29/24 16:36	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		12/29/24 10:53	12/29/24 16:36	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		12/29/24 10:53	12/29/24 16:36	1
Indeno[1,2,3-cd]pyrene	2.0	υ	2.0	0.94	ug/L		12/29/24 10:53	12/29/24 16:36	1
Isophorone	10	U	10	0.80	ug/L		12/29/24 10:53	12/29/24 16:36	1
Naphthalene	51		2.0	0.54			12/29/24 10:53	12/29/24 16:36	1
Nitrobenzene	1.0	U	1.0	0.57			12/29/24 10:53	12/29/24 16:36	1
N-Nitrosodi-n-propylamine	1.0		1.0	0.43	1000		12/29/24 10:53		1
N-Nitrosodiphenylamine	10		10	0.89			12/29/24 10:53		1
Pentachlorophenol	20		20	6.6	2000 Contraction (1990) Contraction (19900) Contraction (19900) Contraction (1990) Contra		12/29/24 10:53		1
	1.7		10	1.3	11.000		12/29/24 10:53		1
Phenanthrene Phenol	10		10	0.29			12/29/24 10:53		1

Client: GEI Consultants Inc. Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Lab Sample ID: 460-318022-6

Client Sample ID: GCMW-111 Date Collected: 12/26/24 10:55 Date Received: 12/27/24 18:00

Analyte

Matrix: Water Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS) (Continued) **Result Qualifier** RL MDL Unit D Prepared Analyzed **Dil Fac** 40

Pyrene	10	U	10	1.6	ug/L	12/29/24 10:53	12/29/24 16:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	65		37 - 150			12/29/24 10:53	12/29/24 16:36	1
2-Fluorobiphenyl	73		46 - 139			12/29/24 10:53	12/29/24 16:36	1
2-Fluorophenol (Surr)	34		16 - 80			12/29/24 10:53	12/29/24 16:36	1
Nitrobenzene-d5 (Surr)	75		51 - 145			12/29/24 10:53	12/29/24 16:36	1
Phenol-d5 (Surr)	22		10 - 56			12/29/24 10:53	12/29/24 16:36	1
Terphenyl-d14 (Surr)	37		13 - 159			12/29/24 10:53	12/29/24 16:36	1

Client Sample ID: GCRW-01

Date Collected: 12/26/24 12:05 Date Received: 12/27/24 18:00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0	U	1.0		ug/L			12/31/24 16:32	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			12/31/24 16:32	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			12/31/24 16:32	1
1,1-Dichloroethane	1.0	U	1.0	0.26	ug/L			12/31/24 16:32	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L			12/31/24 16:32	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L			12/31/24 16:32	1
1,2-Dichloroethene, Total	2.0	U	2.0	0.44	ug/L			12/31/24 16:32	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			12/31/24 16:32	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			12/31/24 16:32	1
2-Hexanone	5.0	U	5.0	1.1	ug/L			12/31/24 16:32	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L			12/31/24 16:32	1
Acetone	5.0	U	5.0	4.4	ug/L			12/31/24 16:32	1
Benzene	1.0	U	1.0	0.20	ug/L			12/31/24 16:32	1
Bromodichloromethane	1.0	U	1.0	0.34	ug/L			12/31/24 16:32	1
Bromoform	1.0	U 🏞	1.0	0.54	ug/L			12/31/24 16:32	1
Bromomethane	1.0	U	1.0	0.55	ug/L			12/31/24 16:32	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			12/31/24 16:32	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			12/31/24 16:32	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			12/31/24 16:32	1
Chloroethane	1.0	U	1.0	0.32	ug/L			12/31/24 16:32	1
Chloroform	1.0	U	1.0	0.33	ug/L			12/31/24 16:32	1
Chloromethane	1.0	U	1.0	0.40	ug/L			12/31/24 16:32	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			12/31/24 16:32	1
Dibromochloromethane	1.0	U -	1.0	0.28	ug/L			12/31/24 16:32	1
Ethylbenzene	0.40	J	1.0	0.30	ug/L			12/31/24 16:32	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			12/31/24 16:32	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			12/31/24 16:32	1
Styrene	1.0	U	1.0	0.42	ug/L			12/31/24 16:32	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			12/31/24 16:32	1
Toluene	1.0	U	1.0	0.38	ug/L			12/31/24 16:32	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			12/31/24 16:32	1
Trichloroethene	0.61	J	1.0	0.31	ug/L			12/31/24 16:32	1
Vinyl chloride	1.0		1.0	0.17	ug/L			12/31/24 16:32	1
Xylenes, Total	0.89	J	2.0	0.65	ug/L			12/31/24 16:32	1

BLA 1/21/25

Eurofins Edison

Lab Sample ID: 460-318022-7

Matrix: Water

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Client Sample ID: GCRW-01 Date Collected: 12/26/24 12:05

Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-7 Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 128					12/31/24 16:32	1
4-Bromofluorobenzene	107		76 - 120					12/31/24 16:32	1
Dibromofluoromethane (Surr)	103		77 - 132					12/31/24 16:32	1
Toluene-d8 (Surr)	93		80 - 120					12/31/24 16:32	1
Method: SW846 8270E - Se	mivolatile Org	anic Comp	ounds (GC/I	NS)			3 5		
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	2.0	U	2.0		ug/L			12/29/24 16:57	1
1,2-Dichlorobenzene	10	U	10		ug/L			12/29/24 16:57	1
1,3-Dichlorobenzene	10	U	10		ug/L			12/29/24 16:57	1
1,4-Dichlorobenzene	10	U	10		ug/L			12/29/24 16:57	1
2,2'-oxybis[1-chloropropane]	10	U	10		ug/L			12/29/24 16:57	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L			12/29/24 16:57	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L			12/29/24 16:57	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L			12/29/24 16:57	1
2,4-Dimethylphenol	10	U	10		ug/L			12/29/24 16:57	1
2,4-Dinitrophenol	40	U	40		ug/L			12/29/24 16:57	1
2,4-Dinitrotoluene	10	U	10	1.0	ug/L			12/29/24 16:57	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L			12/29/24 16:57	1
2-Chloronaphthalene	10	U	10	1.2	ug/L			12/29/24 16:57	1
2-Chlorophenol	10	U	10	0.95	ug/L		12/29/24 10:53	12/29/24 16:57	1
2-Methylnaphthalene	10	U	10	0.53	ug/L		12/29/24 10:53	12/29/24 16:57	1
2-Methylphenol	10	U	10	0.67	ug/L		12/29/24 10:53		1
2-Nitroaniline	10	U	10	1.2	ug/L			12/29/24 16:57	1
2-Nitrophenol	10	U	10	0.75	ug/L		12/29/24 10:53	12/29/24 16:57	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		12/29/24 10:53	12/29/24 16:57	1
3-Nitroaniline	10	U	10	1.9	ug/L		12/29/24 10:53	12/29/24 16:57	1
4,6-Dinitro-2-methylphenol	20	U	20	8.6	ug/L		12/29/24 10:53	12/29/24 16:57	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		12/29/24 10:53	12/29/24 16:57	1
4-Chloro-3-methylphenol	10	U	10	1.3	ug/L		12/29/24 10:53	12/29/24 16:57	1
4-Chloroaniline	10	U	10	1.9	ug/L		12/29/24 10:53	12/29/24 16:57	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		12/29/24 10:53	12/29/24 16:57	1
4-Methylphenol		U	10	0.65	ug/L		12/29/24 10:53	12/29/24 16:57	1
4-Nitroaniline		U	10	1.2	ug/L		12/29/24 10:53	12/29/24 16:57	1
4-Nitrophenol	20	U	20	4.0	ug/L		12/29/24 10:53	12/29/24 16:57	1
Acenaphthene	47		10	1.1	ug/L		12/29/24 10:53	12/29/24 16:57	1
Acenaphthylene	2.2	J	10	0.82	ug/L		12/29/24 10:53	12/29/24 16:57	1
Anthracene		U	10	1.3	ug/L			12/29/24 16:57	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		12/29/24 10:53	12/29/24 16:57	1
Benzo[a]pyrene	1.0		1.0	0.41	ug/L		12/29/24 10:53	12/29/24 16:57	1
Benzo[b]fluoranthene	2.0		2.0	0.68	ug/L		12/29/24 10:53	12/29/24 16:57	1
Benzo[g,h,i]perylene		U	10	0.70	ug/L		12/29/24 10:53	12/29/24 16:57	1
Benzo[k]fluoranthene	1.0		1.0	0.67	ug/L		12/29/24 10:53	12/29/24 16:57	1
Bis(2-chloroethoxy)methane		Ŭ	10		ug/L		12/29/24 10:53	12/29/24 16:57	1
Bis(2-chloroethyl)ether	1.0		1.0		ug/L			12/29/24 16:57	1
Bis(2-ethylhexyl) phthalate	2.0		2.0		ug/L			12/29/24 16:57	1
Butyl benzyl phthalate		U	10		ug/L			12/29/24 16:57	1
Carbazole		Ŭ	10		ug/L		12/29/24 10:53	12/29/24 16:57	1
	2.0		2.0		ug/L		12/29/24 10:53	12/29/24 16:57	1
Chrysene Dibenz(a,h)anthracene		U	1.0		ug/L			12/29/24 16:57	1

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCRW-01

Date Collected: 12/26/24 12:05 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-7 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzofuran	10	U	10	1.1	ug/L		12/29/24 10:53	12/29/24 16:57	1
Diethyl phthalate	10	U	10	0.98	ug/L		12/29/24 10:53	12/29/24 16:57	1
Dimethyl phthalate	10	U	10	0.77	ug/L		12/29/24 10:53	12/29/24 16:57	1
Di-n-butyl phthalate	10	U	10	0.84	ug/L		12/29/24 10:53	12/29/24 16:57	1
Di-n-octyl phthalate	10	U	10	4.0	ug/L		12/29/24 10:53	12/29/24 16:57	1
Fluoranthene	1.7	J	10	0.84	ug/L		12/29/24 10:53	12/29/24 16:57	1
Fluorene	5.0	J	10	0.91	ug/L		12/29/24 10:53	12/29/24 16:57	ୀ
Hexachlorobenzene	1.0	U	1.0	0.40	ug/L		12/29/24 10:53	12/29/24 16:57	1
Hexachlorobutadiene	1.0	U	1.0	0.78	ug/L		12/29/24 10:53	12/29/24 16:57	1
Hexachlorocyclopentadiene	10	U	10	3.6	ug/L		12/29/24 10:53	12/29/24 16:57	1
Hexachloroethane	2.0	U	2.0	0.80	ug/L		12/29/24 10:53	12/29/24 16:57	1
Indeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L		12/29/24 10:53	12/29/24 16:57	1
Isophorone	10	U	10	0.80	ug/L		12/29/24 10:53	12/29/24 16:57	1
Naphthalene	2.0	U	2.0	0.54	ug/L		12/29/24 10:53	12/29/24 16:57	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		12/29/24 10:53	12/29/24 16:57	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		12/29/24 10:53	12/29/24 16:57	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		12/29/24 10:53	12/29/24 16:57	1
Pentachlorophenol	20	U	20	6.6	ug/L		12/29/24 10:53	12/29/24 16:57	1
Phenanthrene	10	U	10	1.3	ug/L		12/29/24 10:53	12/29/24 16:57	1
Phenol	10	U	10	0.29	ug/L		12/29/24 10:53	12/29/24 16:57	1
Pyrene	2.0	J	10	1.6	ug/L		12/29/24 10:53	12/29/24 16:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	73		37 - 150				12/29/24 10:53	12/29/24 16:57	1
2-Fluorobiphenyl	80		46 - 139				12/29/24 10:53	12/29/24 16:57	1
2-Fluorophenol (Surr)	41		16 - 80				12/29/24 10:53	12/29/24 16:57	1
Nitrobenzene-d5 (Surr)	83		51 - 145				12/29/24 10:53	12/29/24 16:57	1
Phenol-d5 (Surr)	28		10 - 56				12/29/24 10:53	12/29/24 16:57	1
Terphenyl-d14 (Surr)	31		13 - 159				12/29/24 10:53	12/29/24 16:57	1

Client Sample ID: GCRW-02 Date Collected: 12/26/24 12:05

Date Received: 12/27/24 18:00

•

Method: SW846 8260D - Volat Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.1.1-Trichloroethane	1.0	U	1.0	0.24	ug/L			12/31/24 16:56	1
1.1.2.2-Tetrachloroethane	1.0	U	1.0	0.37	ug/L			12/31/24 16:56	1
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L			12/31/24 16:56	1
1.1-Dichloroethane	1.0	U	1.0	0.26	ug/L			12/31/24 16:56	1
1.1-Dichloroethene	1.0	U	1.0	0.26	ug/L			12/31/24 16:56	1
1.2-Dichloroethane	1.0	U	1.0	0.43	ug/L			12/31/24 16:56	1
1.2-Dichloroethene, Total	2.0	U	2.0	0.44	ug/L			12/31/24 16:56	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L			12/31/24 16:56	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L			12/31/24 16:56	1
2-Hexanone	5.0		5.0	1.1	ug/L			12/31/24 16:56	1
4-Methyl-2-pentanone (MIBK)	5.0		5.0	1.3	ug/L			12/31/24 16:56	1
	5.0		5.0		ug/L			12/31/24 16:56	1
Acetone	0.61		1.0		ug/L			12/31/24 16:56	1
Benzene	101-04-04-04-04-04-04-04-04-04-04-04-04-04-	J	1.0		ug/L			12/31/24 16:56	1

Eurofins Edison

Matrix: Water

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCRW-02

Date Collected: 12/26/24 12:05 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-8 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	1.0	U 🍆	1.0	0.54	ug/L			12/31/24 16:56	1
Bromomethane	1.0	U	1.0	0.55	ug/L			12/31/24 16:56	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L			12/31/24 16:56	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L			12/31/24 16:56	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L			12/31/24 16:56	1
Chloroethane	1.0	U	1.0	0.32	ug/L			12/31/24 16:56	1
Chloroform	1.0	U	1.0	0.33	ug/L			12/31/24 16:56	1
Chloromethane	1.0	U	1.0	0.40	ug/L			12/31/24 16:56	1
is-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			12/31/24 16:56	1
Dibromochloromethane	1.0	U	1.0	0.28	ug/L			12/31/24 16:56	1
Ethylbenzene	66		1.0	0.30	ug/L			12/31/24 16:56	1
Methyl tert-butyl ether	0.95	J	1.0	0.22	ug/L			12/31/24 16:56	1
Aethylene Chloride	1.0	U	1.0	0.32	ug/L			12/31/24 16:56	1
Styrene	1.0	U	1.0	0.42	ug/L			12/31/24 16:56	1
etrachloroethene	1.0	U	1.0	0.25	ug/L			12/31/24 16:56	1
oluene	2.6		1.0	0.38	ug/L			12/31/24 16:56	1
rans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			12/31/24 16:56	1
richloroethene	1.0	U	1.0	0.31	ug/L			12/31/24 16:56	1
/inyl chloride	1.0	U	1.0	0.17	ug/L			12/31/24 16:56	1
(ylenes, Total	29		2.0	0.65 (ug/L			12/31/24 16:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	91		70 - 128					12/31/24 16:56	1
Bromofluorobenzene	109		76 - 120					12/31/24 16:56	1
Dibromofluoromethane (Surr)	100		77 - 132					12/31/24 16:56	1
oluene-d8 (Surr)	89		80 - 120					12/31/24 16:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	2.0	U	2.0	0.64	ug/L		12/29/24 10:53	12/29/24 17:18	1
1,2-Dichlorobenzene	10	U	10	0.50	ug/L		12/29/24 10:53	12/29/24 17:18	1
1,3-Dichlorobenzene	10	U	10	2.0	ug/L		12/29/24 10:53	12/29/24 17:18	1
1,4-Dichlorobenzene	10	U	10	1.1	ug/L		12/29/24 10:53	12/29/24 17:18	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		12/29/24 10:53	12/29/24 17:18	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		12/29/24 10:53	12/29/24 17:18	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		12/29/24 10:53	12/29/24 17:18	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		12/29/24 10:53	12/29/24 17:18	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		12/29/24 10:53	12/29/24 17:18	1
2,4-Dinitrophenol	40	U	40	11	ug/L		12/29/24 10:53	12/29/24 17:18	1
2.4-Dinitrotoluene	10	U	10	1.0	ug/L		12/29/24 10:53	12/29/24 17:18	1
2.6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		12/29/24 10:53	12/29/24 17:18	1
2-Chloronaphthalene	10	U	10	1.2	ug/L		12/29/24 10:53	12/29/24 17:18	1
2-Chlorophenol	10	U	10	0.95	ug/L		12/29/24 10:53	12/29/24 17:18	1
2-Methylnaphthalene	10		10	0.53	ug/L		12/29/24 10:53	12/29/24 17:18	1
2-Methylphenol	10	U	10	0.67	ug/L		12/29/24 10:53	12/29/24 17:18	1
2-Nitroaniline	10		10	1.2	ug/L		12/29/24 10:53	12/29/24 17:18	1
2-Nitrophenol	10	U	10	0.75	ug/L		12/29/24 10:53	12/29/24 17:18	1
3.3'-Dichlorobenzidine	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:18	1
3-Nitroaniline	10		10	1.9	-		12/29/24 10:53	12/29/24 17:18	1
4,6-Dinitro-2-methylphenol	20		20		1970		12/29/24 10:53	12/29/24 17:18	1

En Jailas

Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCRW-02

Date Collected: 12/26/24 12:05 Date Received: 12/27/24 18:00

Method: SW846 8270E - Se Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
I-Bromophenyl phenyl ether	10		10	0.75	ug/L		12/29/24 10:53	12/29/24 17:18	
I-Chloro-3-methylphenol	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:18	
-Chloroaniline	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:18	
-Chlorophenyl phenyl ether	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:18	
-Methylphenol	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:18	
-Nitroaniline	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:18	
	20	Ŭ	20		ug/L			12/29/24 17:18	
-Nitrophenol	7.7	J	10	1.1	ug/L		12/29/24 10:53	12/29/24 17:18	
cenaphthene	10	U	10		ug/L		12/29/24 10:53		
cenaphthylene	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:18	
nthracene	1.0	U	1.0				12/29/24 10:53	12/29/24 17:18	
enzo[a]anthracene				0.41	ug/L		12/29/24 10:53	12/29/24 17:18	
enzo[a]pyrene	1.0	U	1.0				12/29/24 10:53	12/29/24 17:18	
enzo[b]fluoranthene	2.0	U	2.0		-		12/29/24 10:53		
enzo[g,h,i]perylene	10	U	10		ug/L		12/29/24 10:53		
enzo[k]fluoranthene	1.0	U	1.0	0.67			12/29/24 10:53		
is(2-chloroethoxy)methane	10	U	10	0.59			12/29/24 10:53		
is(2-chloroethyl)ether	1.0		1.0		ug/L		the second s	12/29/24 17:18	
is(2-ethylhexyl) phthalate	2.0	U	2.0	0.80			12/29/24 10:53		
utyl benzyl phthalate	10	U	10	0.85			12/29/24 10:53	12/29/24 17:18	
arbazole	1.2	J	10	0.68			12/29/24 10:53	12/29/24 17:18	
hrysene	2.0	U	2.0	0.91	ug/L		12/29/24 10:53	12/29/24 17:18	
ibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		12/29/24 10:53	12/29/24 17:18	
ibenzofuran	10	U	10	1.1	ug/L		12/29/24 10:53	12/29/24 17:18	
ethyl phthalate	10	U	10	0.98	ug/L		12/29/24 10:53	12/29/24 17:18	
imethyl phthalate	10	U	10	0.77	ug/L		12/29/24 10:53	12/29/24 17:18	
i-n-butyl phthalate	10	U	10	0.84	ug/L		12/29/24 10:53	12/29/24 17:18	
i-n-octyl phthalate	10	U	10	4.0	ug/L		12/29/24 10:53	12/29/24 17:18	
luoranthene	10	U	10	0.84	ug/L		12/29/24 10:53	12/29/24 17:18	
luorene	2.4	J	10	0.91	ug/L		12/29/24 10:53	12/29/24 17:18	
lexachlorobenzene	1.0	U	1.0	0.40	ug/L		12/29/24 10:53	12/29/24 17:18	
lexachlorobutadiene	1.0	U	1.0	0.78	ug/L		12/29/24 10:53	12/29/24 17:18	
lexachlorocyclopentadiene	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:18	
	2.0	U	2.0	0.80			12/29/24 10:53	12/29/24 17:18	
lexachloroethane	2.0		2.0		ug/L		12/29/24 10:53	12/29/24 17:18	
ndeno[1,2,3-cd]pyrene	10		10		ug/L		12/29/24 10:53	12/29/24 17:18	
sophorone			2.0		ug/L			12/29/24 17:18	
laphthalene	1.5		1.0		ug/L		12/29/24 10:53		
litrobenzene	1.0				ug/L			12/29/24 17:18	
l-Nitrosodi-n-propylamine	1.0		1.0				12/29/24 10:53		
I-Nitrosodiphenylamine	10		10		ug/L			12/29/24 17:18	
Pentachlorophenol	20		20		ug/L			12/29/24 17:18	
henanthrene	10		10		ug/L			12/29/24 17:18	
Phenol	1.4.4	U	10		ug/L			12/29/24 17:18	
yrene	10	U	10	1.6	ug/L		12/29/24 10:55	12/29/24 17.10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed 12/29/24 17:18	Dil I
,4,6-Tribromophenol (Surr)	63		37 - 150				12/29/24 10:53		
-Fluorobiphenyl	66		46 - 139					12/29/24 17:18	
-Fluorophenol (Surr)	34		16 - 80					12/29/24 17:18	
Vitrobenzene-d5 (Surr)	70		51 - 145					12/29/24 17:18	
Phenol-d5 (Surr)	23		10 - 56				12/29/24 10:53	12/29/24 17:18	

Lab Sample ID: 460-318022-8 Matrix: Water

Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove Job ID: 460-318022-1

Matrix: Water

Dil Fac

1

1

Client Sample ID: GCRW-02

Date Collected: 12/26/24 12:05 Date Received: 12/27/24 18:00

Surrogate

Terphenyl-d14 (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 460-318022-8 Matrix: Water

Lab Sample ID: 460-318022-9

Analyzed

12/31/24 17:21

12/31/24 17:21

Method: SW846 8270E - Semivolatile Organic Compounds (GC/MS) (Continued) Analyzed Dil Fac Prepared Limits 12/29/24 10:53 12/29/24 17:18 13 - 159 1

Client Sample ID: DUP-01 Date Collected: 12/26/24 00:00

Date Received: 12/27/24 18:00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Prepared **Result Qualifier** MDL Unit D RL Analyte 1.0 U 1.0 0.24 ug/L 1,1,1-Trichloroethane 1.0 0.37 ug/L 1.0 U 1.1.2.2-Tetrachloroethane

%Recovery Qualifier

25

1, 1, 2, 2- retrachioroethane	1.0	0	1.0	0.0.	-3			
1,1,2-Trichloroethane	1.0	U	1.0	0.20	ug/L		12/31/24 17:21	1
1,1-Dichloroethane	0.76	J	1.0	0.26	ug/L		12/31/24 17:21	1
1,1-Dichloroethene	1.0	U	1.0	0.26	ug/L		12/31/24 17:21	1
1,2-Dichloroethane	1.0	U	1.0	0.43	ug/L		12/31/24 17:21	1
1,2-Dichloroethene, Total	2.0	U	2.0	0.44	ug/L		12/31/24 17:21	1
1,2-Dichloropropane	1.0	U	1.0	0.35	ug/L		12/31/24 17:21	1
2-Butanone (MEK)	5.0	U	5.0	1.9	ug/L		12/31/24 17:21	1
2-Hexanone	5.0	U	5.0	1.1			12/31/24 17:21	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0	1.3	ug/L		12/31/24 17:21	1
Acetone	5.0	U	5.0		ug/L		12/31/24 17:21	1
Benzene	2.4		1.0	0.20	ug/L		12/31/24 17:21	1
Bromodichloromethane	1.0	U	1.0	0.34	ug/L		12/31/24 17:21	1
Bromoform	1.0	U**	1.0	0.54	ug/L		12/31/24 17:21	1
Bromomethane	1.0	U	1.0	0.55	ug/L		12/31/24 17:21	1
Carbon disulfide	1.0	U	1.0	0.82	ug/L		12/31/24 17:21	1
Carbon tetrachloride	1.0	U	1.0	0.21	ug/L		12/31/24 17:21	1
Chlorobenzene	1.0	U	1.0	0.38	ug/L		12/31/24 17:21	1
Chloroethane	1.0	U	1.0	0.32	ug/L		12/31/24 17:21	1
Chloroform	1.0	U	1.0	0.33	ug/L		12/31/24 17:21	1
Chloromethane	1.0	U	1.0	0.40	ug/L		12/31/24 17:21	1
cis-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L		12/31/24 17:21	1
Dibromochloromethane	1.0	U*	1.0	0.28	ug/L		12/31/24 17:21	1
Ethylbenzene	47		1.0	0.30	ug/L		12/31/24 17:21	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L		12/31/24 17:21	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L		12/31/24 17:21	1
Styrene	1.0	U	1.0	0.42	ug/L		12/31/24 17:21	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L		12/31/24 17:21	1
Toluene	1.9		1.0	0.38	ug/L		12/31/24 17:21	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L		12/31/24 17:21	1
Trichloroethene	1.0	U	1.0	0.31	ug/L		12/31/24 17:21	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L		12/31/24 17:21	1
Xylenes, Total	43		2.0	0.65	ug/L		12/31/24 17:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 128				12/31/24 17:21	1
4-Bromofluorobenzene	108		76 - 120				12/31/24 17:21	1
Dibromofluoromethane (Surr)	102		77 - 132				12/31/24 17:21	1
Dibiomonuoromenane (our)			00 400				12/31/24 17:21	1

3-R 1/21/25

80 - 120

91

Lab Sample ID: 460-318022-9 Matrix: Water

Method: SW846 8270E -	Semivolatile Org	anic Compo	unds (GC/N	AS)	
Analyte	Result	Qualifier	RL	MDL	Unit

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	2.0	U	2.0	0.64	ug/L		12/29/24 10:53	and the second of the second second second	1
1,2-Dichlorobenzene	10	U	10	0.50	ug/L		12/29/24 10:53	12/29/24 17:39	1
1,3-Dichlorobenzene	10	U	10	2.0	ug/L		12/29/24 10:53	12/29/24 17:39	1
1,4-Dichlorobenzene	10	U	10	1.1	ug/L		12/29/24 10:53		1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		12/29/24 10:53	12/29/24 17:39	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		12/29/24 10:53	12/29/24 17:39	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L		12/29/24 10:53	12/29/24 17:39	1
2,4-Dichlorophenol	10	U	10	1.1	ug/L		12/29/24 10:53	12/29/24 17:39	1
2,4-Dimethylphenol	10	U	10	0.62	ug/L		12/29/24 10:53	12/29/24 17:39	1
2,4-Dinitrophenol	40	U	40	11	ug/L		12/29/24 10:53	12/29/24 17:39	1
2,4-Dinitrotoluene	10	U	10	1.0	ug/L		12/29/24 10:53	12/29/24 17:39	1
2,6-Dinitrotoluene	2.0	U	2.0	0.83	ug/L		12/29/24 10:53	12/29/24 17:39	1
2-Chloronaphthalene	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:39	1
2-Chlorophenol	10	υ	10	0.95	ALCONTROL STATES		12/29/24 10:53	12/29/24 17:39	1
2-Methylnaphthalene	22		10	0.53	ug/L		12/29/24 10:53	12/29/24 17:39	1
2-Methylphenol	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:39	1
2-Nitroaniline	10	U	10		ug/L		12/29/24 10:53	12/29/24 17:39	1
2-Nitrophenol	10	U	10	0.75			12/29/24 10:53	12/29/24 17:39	1
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		12/29/24 10:53	12/29/24 17:39	1
3-Nitroaniline	10	U	10	1.9	ug/L		12/29/24 10:53	12/29/24 17:39	1
4,6-Dinitro-2-methylphenol	20	U	20	8.6	ug/L		12/29/24 10:53	12/29/24 17:39	1
4-Bromophenyl phenyl ether	10	U	10	0.75	ug/L		12/29/24 10:53	12/29/24 17:39	1
4-Chloro-3-methylphenol	10	U	10	1.3	ug/L		12/29/24 10:53	12/29/24 17:39	1
4-Chloroaniline	10	U	10	1.9	ug/L		12/29/24 10:53	12/29/24 17:39	1
4-Chlorophenyl phenyl ether	10	U	10	1.3	ug/L		12/29/24 10:53	12/29/24 17:39	1
4-Methylphenol	10	U	10	0.65	ug/L		12/29/24 10:53	12/29/24 17:39	1
4-Nitroaniline	10	U	10	1.2	ug/L		12/29/24 10:53	12/29/24 17:39	1
4-Nitrophenol	20	U	20		ug/L		12/29/24 10:53	12/29/24 17:39	1
Acenaphthene	110		10		ug/L		12/29/24 10:53	12/29/24 17:39	1
Acenaphthylene	2.6	J	10	0.82	ug/L		12/29/24 10:53	12/29/24 17:39	1
Anthracene	6.2	J	10	1.3	ug/L		12/29/24 10:53	12/29/24 17:39	1
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		12/29/24 10:53	12/29/24 17:39	1
Benzo[a]pyrene	1.0	U	1.0	0.41	ug/L		12/29/24 10:53	12/29/24 17:39	1
Benzo[b]fluoranthene	2.0	U	2.0	0.68			12/29/24 10:53	12/29/24 17:39	1
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		12/29/24 10:53	12/29/24 17:39	1
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		12/29/24 10:53	12/29/24 17:39	1
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		12/29/24 10:53	12/29/24 17:39	1
Bis(2-chloroethyl)ether	1.0		1.0	0.63			12/29/24 10:53	12/29/24 17:39	1
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	ug/L		12/29/24 10:53	12/29/24 17:39	1
Butyl benzyl phthalate	10	U	10	0.85	ug/L		12/29/24 10:53	12/29/24 17:39	1
Carbazole	2.1	J	10	0.68	ug/L		12/29/24 10:53	12/29/24 17:39	1
Chrysene	2.0		2.0	0.91	ug/L		12/29/24 10:53	12/29/24 17:39	1
Dibenz(a,h)anthracene	1.0		1.0	0.72	ug/L		12/29/24 10:53	12/29/24 17:39	1
Dibenzofuran	8.1		10		ug/L		12/29/24 10:53	12/29/24 17:39	1
Diethyl phthalate	10		10	0.98			12/29/24 10:53	12/29/24 17:39	1
Dimethyl phthalate	10		10	0.77			12/29/24 10:53	12/29/24 17:39	1
Di-n-butyl phthalate	10		10	0.84	100-25 (State 1)		12/29/24 10:53	12/29/24 17:39	1
	10		10	4.0			12/29/24 10:53	12/29/24 17:39	1
Di-n-octyl phthalate									

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Lab Sample ID: 460-318022-9 Matrix: Water

Date Collected: 12/26/24 00:00 Date Received: 12/27/24 18:00

Client Sample ID: DUP-01

uorene 40 10 0.51 ugl. 12/23/24 (10:3) 1	Method: SW846 8270E - Se Analyte		Qualifier	 RL	I CHANGE AND A STREET AND A STR	. Unit	, D	Prepared	Analyzed	DII
baschlörberizene 1.0 U 1.0 0.40 ug/L 1228/24 (10:33 1228/24 (10:31	Fluorene	40						· ····································	designed a statistic relation of the state of the state of the state	-
Sexachlorocybenaldiene 1.0 U 1.0 0.78 ugL 1228/24 10:53	lexachlorobenzene			1.0						
Saxehlorocyclopentadiene 10 U 10 36 ug/L 12/28/24 (10:33 <th< td=""><td>lexachlorobutadiene</td><td>1.0</td><td>U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	lexachlorobutadiene	1.0	U							
baschloredhane 2.0 U 2.0 0.80 ug/L 1222421053 1229241053 1229241739 deno[1,2,3-cd]pyrene 2.0 U 2.0 0.94 ug/L 1229241053 1229241739 phorone 10 U 10 0.50 ug/L 1229241053 1229241739 broberzene 1.0 U 1.0 0.57 ug/L 1229241053 1229241739 Nilcosodi-pherylamine 10 U 10 0.43 ug/L 1229241053 1229241739 nincohorophenol 20 0.6 ug/L 1229241053 1229241739 nanathrene 43 10 1.3 ug/L 1229241053 1229241739 nanatochorophenol 20 0.4 0.2 1229241053 1229241739 rene 3.3 10 1.5 ug/L 1229241053 1229241739 rene 3.3 10 1.6 0.0 1229241739 1229241739 renorber 3.7	exachlorocyclopentadiene		5 1517			•				
denc [1.3ddjyrene 2.0 0.44 upL 122224 10:53 1222924 10:53 1222924 17:39 ophorone 1.0 U 1.0 0.80 upL 1222924 10:53 1222924 17:39 Nilrosedih-spropylamine 1.0 U 1.0 0.43 upL 1222924 10:53 1228924 17:39 Nilrosedih-spropylamine 1.0 U 1.0 0.43 upL 1228924 10:53 1228924 17:39 minachlorophenol 2.0 U 2.0 6.6 upL 1228924 10:53 1228924 17:39 wenol 1.0 U 1.0 0.29 upL 1228924 10:53 1228924 17:39 wenol 1.0 U 1.0 0.29 upL 1228924 10:53 1228924 17:39 wenol 5.716/romophenol (Surr) 66 37.750 1228924 10:53 1228924 17:39 1228924 10:53 1228924 17:39 wenod-65 (Surr) 75 51.145 1228924 10:53 1228924 17:39 1228924 10:53 1228924 17:39 wenod-65 (Surr) 75	exachloroethane									
opborne 10 U 10 0.80 ug/L 12/22/24 10:53 12/22/24 17:39 indoenzene 1.0 U 1.0 0.57 ug/L 12/22/24 10:53 12/22/24 17:39 Nitrosodi-proylamine 1.0 U 1.0 0.43 ug/L 12/22/24 10:53 12/22/24 17:39 Nitrosodi-proylamine 10 U 10 0.89 ug/L 12/22/24 10:53 12/22/24 17:39 enanthrene 43 10 1.3 ug/L 12/22/24 10:53 12/22/24 17:39 rene 3.3 J 10 0.29 ug/L 12/22/24 10:53 12/29/24 17:39 rene 3.3 J 16 ug/L 12/28/24 10:53 12/28/24 17:39 rene 5.7 5.7 1.45 12/28/24 10:53 12/28/24 17:39 rene 5.7 5.7 1.45 12/28/24 10:53 12/28/24 17:39 rene 4.6 7.7 5 1.45 12/28/24 10:53 12/28/24 17:39 renorbain 7.7	deno[1.2.3-cd]pyrene									
Intosence 1.0 U 1.0 0.57 upL 12229/24 10:53 12229/24 10:53 12229/24 10:53 12229/24 10:53 12229/24 10:53 12229/24 10:53 12229/24 10:53 12229/24 10:53 12229/24 10:53 12229/24 10:53 12229/24 10:53 1229/24 17:39 Intrachiorphenol 20 U 20 6.6 upL 1229/24 10:53 1229/24 17:39 1229/24 10:53 1229/24 17:39 semanthrene 43 10 1.3 upL 1229/24 10:53 1229/24 17:39 1229/24 17:39 rene 5.3 J 10 1.6 upL 1229/24 10:53 1229/24 17:39 irrogate 5/Recovery Qualifier Limits Prepared Analyzed Dil ibiophenyi f17 31 16 6.0 1229/24 10:53 1229/24 17:39 1229/24 10:53 1229/24 17:39 ibiophenyi f19 75 5.1 -145 1229/24 10:53 1229/24 17:39 1229/24 10:53 1229/24 17:39 ibiophenyi f19 Result Qualifier RL MDL NL <td></td>										
Nilosadiphenylamine 1.0 U 1.0 0.43 ug/L 12/29/24 10:53 12/29/24 17:39 Nilosadiphenylamine 10 U 10 0.89 ug/L 12/29/24 10:53 12/29/24 17:39 emanthrene 43 10 1.3 ug/L 12/29/24 10:53 12/29/24 17:39 rene 3.3 J 10 1.6 ug/L 12/29/24 10:53 12/29/24 17:39 rene 3.3 J 10 1.6 ug/L 12/29/24 10:33 12/29/24 17:39 rene 3.3 J 10 1.6 ug/L 12/29/24 10:33 12/29/24 17:39 rene 3.3 J 16-50 12/29/24 10:33 12/29/24 17:39 12/29/24 17:39 12/29/24 10:33 12/29/24 17:39 12/29/24 17:39 12/29/24 17:39 12/29/24 12/29/24 10:33 12/29/24 17:39 12/29/24 10:33 12/29/24 17:39 12/29/24 17:39 12/29/24 <t< td=""><td>itrobenzene</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	itrobenzene					-				
Nilrosophenol 10 10 0.89 ug/L 12/29/24 12/29/24 10:35 12/29/24 17:39 mitachiorophenol 20 U 20 6.6 ug/L 12/29/24 10:35 12/29/24 17:39 menol 10 U 10 0.29 ug/L 12/29/24 10:35 12/29/24 17:39 rene 3.3 J 10 1.6 ug/L 12/29/24 10:35 12/29/24 17:39 irrogate Kecovery Qualifier Limits Prepared Analyzed Dil Filorobiphenyl 70 46 73 17 12/29/24 10:35 12/29/24 17:39 Filorobiphenyl 75 51 145 12/29/24 10:35 12/29/24 17:39 enol-d5 (Surr) 75 51 145 12/29/24 10:35 12/29/24 17:39 ethod: SW846 8270E - Semivolatile Organic Compounds (GC/MS) - DL Prepared Analyzed Dil ethod: SW846 802A - Polychiorinated Biphenyls (PCBs) by Gas Chromatography 12/	-Nitrosodi-n-propylamine					Contraction of the second s			the standard and the second second second	
Initialização 20 20 6.6 ugr. 12/29/24 10:53 12/29/24 17:39 Nemanthrone 43 10 1.3 ugr. 12/29/24 10:53 12/29/24 17:39 renol 10 U 10 0.29 ugr. 12/29/24 10:53 12/29/24 17:39 rrene 3.3 J 10 1.8 ugr. 12/29/24 10:53 12/29/24 17:39 rrongato %Recovery Qualifier Limits Prepared Analyzed Diversity Filorophenol (Surr) 31 16:80 12/29/24 10:33 12/29/24 17:39 Filorophenol (Surr) 17 17 12/29/24 10:33 12/29/24 17:39 Filorophenol (Surr) 27 13:159 12/29/24 10:33 12/29/24 17:39 ethod: SW846 802A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography P P P Analyzed Dil pinhtalene 290										
henanthrene 43 10 1.3 ug/L 12/29/24 10:53 12/29/24 17:39 verol 10 U 10 0.29 ug/L 12/29/24 10:33 12/29/24 17:39 12/29/24 17:39 12/29/24 12/29/24 17:39 12/29/24 17:39 12/29/24 17:39 12/29/24 10:3 12/29/24 10:3 12/29/24 10:3 12/29/24 10:3 12/29/24 10:3 12/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 17:39 11/29/24 11/29/24 17:39 11/29/24 11/29/24 11/29/24 11/29/24 11/29/24 11/29/24 11/29/24 11/29/24						1 - SARTONES				
lenol 10 U 10 0.29 ug/L 12/29/24 10:53 12/29/24 17:39 irrogate %Recovery Qualifier Limits Prepared Analyzed Dil 66 37. 150 12/29/24 10:53 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29/24 00:55 12/29			(- ES)							
Image 3.3 J 10 1.6 ug/L 12/29/24 10:53 12/29/24 17:39 Image/s %Recovery Qualifier Limits Prepared Analyzed Dil 6,5-Triborobib/nomphenol (Surr) 66 37.750 12/29/24 10:53 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51 12/29/24 00:51	henol									
4.6-Tribromophenol (Surr) 66 37.150 12/29/24 10:53 12/29/24 17:39 Fluorabphenyl 70 46.139 12/29/24 10:53 12/29/24 17:39 Fluorabphenyl (Surr) 31 16.60 12/29/24 10:53 12/29/24 17:39 trobenzene-d5 (Surr) 75 51.145 12/29/24 10:53 12/29/24 17:39 probenziene-d5 (Surr) 19 10.56 12/29/24 10:53 12/29/24 10:53 12/29/24 17:39 ethod: SW846 8270E - Semivolatile Organic Compounds (GC/MS) - DL alayte Resuit Qualifier RL MDL Dimit D Prepared Analyzed Dil apht Resuit Qualifier RL MDL Unit D Prepared Analyzed Dil ocior 1216 0.40 0 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 Dil ocior 1221 0.40 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 Dil ocior 1232 0.40 0 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 Dil ocior 1242 0.40 0 0.40	yrene		1 - 1 <u>7</u> - 1			· · · · · · · · · · · · · · · · · · ·				
Fluorobliphenyl 70 46.139 12/29/24 10:53 12/29/24 00:56	urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
Fluorobliphenyl 70 46.139 12/29/24 10:53 12/29/24 00:56		66		37 - 150				12/29/24 10:53	service and the second se	100522
Index non-offs Sum 75 51 - 145 12/29/24 10:53 12/29/24 07:56 12/2	Fluorobiphenyl	70		46 - 139				12/29/24 10:53	12/29/24 17:39	
nenol-d5 (Surr) 19 10 - 56 12/29/24 10:53 12/29/24 10:53 12/29/24 17:39 prihenyl-d14 (Surr) 27 13 - 159 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:54 12/30/24 14:25 0 0 0 0 0 0 0 0 0 12/29/24 07:56 12/30/24 14:25 0 12/30/24 14:25 0 12/30/24 14:25 0 12/30/24 14:25 0 12/30/24 14:25 0 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24	Fluorophenol (Surr)	31		16 - 80				12/29/24 10:53	12/29/24 17:39	
nenol-d5 (Surr) 19 10 - 56 12/29/24 10:53 12/29/24 10:53 12/29/24 17:39 prihenyl-d14 (Surr) 27 13 - 159 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 10:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:53 12/29/24 00:54 12/30/24 14:25 0 0 0 0 0 0 0 0 0 12/29/24 07:56 12/30/24 14:25 0 12/30/24 14:25 0 12/30/24 14:25 0 12/30/24 14:25 0 12/30/24 14:25 0 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24	trobenzene-d5 (Surr)	75		51 - 145				12/29/24 10:53	12/29/24 17:39	
ethod: SW846 8270E - Semivolatile Organic Compounds (GC/MS) - DL nalyte Prepared Analyzed Dil Light in the south Qualifier RL MDL Unit D Prepared Analyzed Dil Light in the south Qualifier RL MDL Unit D Prepared Analyzed Dil Light in the south Qualifier RL MDL Unit D Prepared Analyzed Dil Light in the south Qualifier RL MDL Unit D Prepared Analyzed Dil Light in the south Qualifier RL MDL Unit D Prepared Analyzed Dil Light in the south Qualifier RL MDL Unit D Prepared Analyzed Dil Light in the south Qualifier RL MDL Unit D Prepared Analyzed Dil Light in the south Qualifier Unit Qualifier Ug/L 12/29/24 07:56 12/30	henol-d5 (Surr)	19		10 - 56				12/29/24 10:53	12/29/24 17:39	
Result Qualifier RL MDL Unit D Prepared Analyzed Dil uphthalene 290 20 5.4 ug/L 12/29/24 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:13 12/31/24 09:14 12/29/24 07:56 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 12/30/24 12/30/24 12/30/24 14:25	rphenyl-d14 (Surr)	27		13 - 159				12/29/24 10:53	12/29/24 17:39	
W846 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography lalyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil color 1016 0.40 0 0.40 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 Dil color 1221 0.40 0 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 color 1242 0.40 0 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 color 1248 0.40 0 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 color 1248 0.40 0 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 color 1260 0.40 0 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 color 1262 0.40 0 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bockor 1268 0.40 0 0.40 <	ethod: SW846 8270E - Se nalyte	12-	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10 m			D	Prepared	Analyzed	Dil
halyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil backer 1016 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 12/30/24	aphthalene	290		20	5.4	ug/L		12/29/24 10:53	12/31/24 09:13	
halyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil backer 1016 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 12/30/24	ethod: SW846 8082A - Po	lychlorinated	Biphenvls	(PCBs) by Ga	is Chro	matogra	ohv			
bcbor 1016 0.40 U 0.40 0.12 ug/L 12/29/24		같은 다시 보기에 가지 아니지 않는 것이 가지 못했다.					1000 C	Prepared	Analyzed	Dil
bodor 1221 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1232 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1242 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1248 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1254 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1260 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1262 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 brooker 128 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 brooker 128 0.40 U	oclor 1016	0.40	U	0.40	0.12	ug/L		12/29/24 07:56	12/30/24 14:25	
bodor 1232 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1242 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1248 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1254 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1260 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 toclor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 trogate %Recovery Qualifier Limits 12/20/24 07:56 12/30/24 14:25 trackloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable alyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil	oclor 1221	0.40	U	0.40		a sector and the sect		12/29/24 07:56	12/30/24 14:25	
bolor 1242 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bolor 1248 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bolor 1254 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bolor 1260 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bolor 1260 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bolor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 by bolor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 by bolor 1268 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 ty by bolor 1268 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 ty by bolor 1269 18 - 145 18 - 145 12/29/24 07:56 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25<	oclor 1232							12/29/24 07:56	12/30/24 14:25	
bclor 1248 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 bclor 1254 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bclor 1260 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bclor 1260 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bclor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bclor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 tracklor 1268 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 tracklor orbiphenyl 95 18 - 145 12/29/24 07:56 12/30/24 14:25 Dil tracklor orbiphenyl 95 18 - 145 12/29/24 07:56 12/30/24 14:25 Dil tracklor orbiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 Dil trackloro-m-xylene 88 21 - 124									12/30/24 14:25	
bodor 1254 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1260 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1260 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bodor 1268 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 trongate %Recovery Qualifier Limits Prepared Analyzed Dil 122 29/24 07:56 12/30/24 14:25 12/20/24 07:56 12/30/24 14:25 12/20/24 07:56 12/30/24 14:25 B Decachlorobiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 12/20/24 07:56 12/30/24 14:25 trachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 12/30/24 14:25 12/30/24 14:25 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>										
bolor 1260 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bolor 1262 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bolor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bolor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 trongate %Recovery Qualifier Limits 12/29/24 07:56 12/30/24 14:25 trongate %Recovery Qualifier Limits 12/29/24 07:56 12/30/24 14:25 trongate %Recovery Qualifier Limits 12/29/24 07:56 12/30/24 14:25 trachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 trachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 alyte Result Qualifier RL MDL Unit D Prepared Analyzed DI								the second second second second second second		
bclor-1262 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 bclor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 07:56 12/30/24 14:25 tychlorinated biphenyls, Total 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 trogate %Recovery Qualifier Limits 12/29/24 07:56 12/30/24 14:25 2B Decachlorobiphenyl 95 18 - 145 12/29/24 07:56 12/30/24 14:25 2B Decachlorobiphenyl 95 18 - 145 12/29/24 07:56 12/30/24 14:25 2B Decachlorobiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 trachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 12/30/24 14:25 ethod: SW846 6020B - Metals (UCP/MS) - Total Recoverable 01/03/25 10:06 01/03/25 10:06 01/03/25 16:15 uminum 69.8 40.0 11.7 ug/L 01/03/25 10:06 01/03/25 16:15 senic 7.5 2.										
bclor 1268 0.40 U 0.40 0.11 ug/L 12/29/24 12/30/24 14:25 tychlorinated biphenyls, Total 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 trogate %Recovery Qualifier Limits Prepared Analyzed Dil 2B Decachlorobiphenyl 95 18 - 145 12/29/24 07:56 12/30/24 14:25 2B Decachlorobiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 2B Decachlorobiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 trachloro-m-xylene 88 21 - 124 12/29/24 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable MDL Unit D Prepared Analyzed Dil uminum 69.8 40.0 11.7 ug/L 0.103/25 0.10:00 0.103/25 16:15 senic 7.5 2.0 1.2 ug/L 0.103/25 0.10:00 0.103/25 0.10 <										
Nychlorinated biphenyls, Total 0.40 U 0.40 0.12 ug/L 12/29/24 07:56 12/30/24 14:25 rrogate %Recovery Qualifier Limits Prepared Analyzed Dil 3B Decachlorobiphenyl 95 18 - 145 12/29/24 07:56 12/30/24 14:25 Dil 3B Decachlorobiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 Dil trachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 Dil trachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 Dil ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 Dil uminum 69.8 40.0 11.7 ug/L 01/03/25 10:06 01/03/25 16:15 timony 2.0 U 2.0 0.48 ug/L 01/03/25 10:06 01/03/25 16:15 senic 7.5 2.0 1.2 ug/L 01/03/25 10:06 01/03/25 16:15						1000			And the start was a strength of the start	
B Decachlorobiphenyl 95 18 - 145 12/29/24 07:56 12/30/24 14:25 B Decachlorobiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 B Decachlorobiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 Irachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 Irachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 11/1 10/103/25 10:06 01/03/25 16:15 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 11.7 10/1 11.7 10/1 uminum 69.8 40.0 11.7 10/1 01/03/25 10:06 01/03/25 16:15 timony	lychlorinated biphenyls, Total									
B Decachlorobiphenyl 95 18 - 145 12/29/24 07:56 12/30/24 14:25 B Decachlorobiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 B Decachlorobiphenyl 114 18 - 145 12/29/24 07:56 12/30/24 14:25 B Decachlorobiphenyl 88 21 - 124 12/29/24 07:56 12/30/24 14:25 B Decachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 11.7 ug/L 01/03/25 10:06 01/03/25 16:15 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 11.7 ug/L 01/03/25 10:06 01/03/25 16:15 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable 11.7 ug/L 01/03/25 10:06	rrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
b D D D D D D D D D D D D D D D D D D D	B Decachlorobiphenyl	and the second se		18 - 145				12/29/24 07:56	12/30/24 14:25	
trachloro-m-xylene 88 21 - 124 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable alyte MDL Unit D Prepared Analyzed Dill uminum 69.8 40.0 11.7 ug/L 01/03/25 10:06 01/03/25 16:15 Dill senic 7.5 2.0 1.2 ug/L 01/03/25 10:06 01/03/25 16:15	B Decachlorobiphenyl	114		18-145				12/29/24 07:56	12/30/24 14:25	
B8 21 - 124 12/29/24 07:56 12/30/24 14:25 ethod: SW846 6020B - Metals (ICP/MS) - Total Recoverable alyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil uminum 69.8 40.0 11.7 ug/L 01/03/25 10:06 01/03/25 16:15 Dil timony 2.0 U 2.0 0.48 ug/L 01/03/25 10:06 01/03/25 16:15 senic 7.5 2.0 1.2 ug/L 01/03/25 10:06 01/03/25 16:15	trachloro-m-xylene	88		21 - 124				12/29/24 07:56	12/30/24 14:25	
alyte Result Qualifier RL MDL Unit D Prepared Analyzed Dill uminum 69.8 40.0 11.7 ug/L 01/03/25 10:06 01/03/25 16:15 11.7 timony 2.0 U 2.0 0.48 ug/L 01/03/25 10:06 01/03/25 16:15 senic 7.5 2.0 1.2 ug/L 01/03/25 10:06 01/03/25 16:15	rachloro-m-xylene	88		21 - 124				12/29/24 07:56	12/30/24 14:25	
alyte Result Qualifier RL MDL Unit D Prepared Analyzed Dill uminum 69.8 40.0 11.7 ug/L 01/03/25 10:06 01/03/25 16:15 11.7 timony 2.0 U 2.0 0.48 ug/L 01/03/25 10:06 01/03/25 16:15 senic 7.5 2.0 1.2 ug/L 01/03/25 10:06 01/03/25 16:15	ethod: SW846 6020B - Me	tals (ICP/MS) ·	Total Rec	overable						
timony 2.0 U 2.0 0.48 ug/L 01/03/25 10:06 01/03/25 16:15 senic 7.5 2.0 1.2 ug/L 01/03/25 10:06 01/03/25 16:15	alyte				MDL	Unit	D	Prepared	Analyzed	Dil I
timony 2.0 U 2.0 0.48 ug/L 01/03/25 10:06 01/03/25 16:15 senic 7.5 2.0 1.2 ug/L 01/03/25 10:06 01/03/25 16:15	uminum	69.8		40.0	11.7	ug/L				
senic 7.5 2.0 1.2 ug/L 01/03/25 10:06 01/03/25 16:15	timony	2.0	U	2.0	0.48	ug/L		01/03/25 10:06	01/03/25 16:15	
7. a la lac Furofine Edie	N DO TO YOU TO Y			2.0	1.2	ug/L		01/03/25 10:06	01/03/25 16:15	
	senic	1.0		1000		0.000000000000				
				Page 38 of 278		BUP	1	ailas	Eurofins	Edi

Page 38 of 2780

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: DUP-01 Date Collected: 12/26/24 00:00 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-9 Matrix: Water

Ameliate	1.1.1.1	- Total Reco	RL		Unit	D	Dramanad	Analyzad	Dil Fac
Analyte		Qualifier			1. m. M. and m	D	Prepared	Analyzed	Dire
Barium	102		4.0		ug/L				
Beryllium	0.80	ward and	0.80		ug/L			01/03/25 16:15	1
Cadmium	2.0	U	2.0		ug/L			01/03/25 16:15	
Calcium	71200		500		ug/L			01/03/25 16:15	
Chromium	4.0	U	4.0		ug/L			01/03/25 16:15	
Cobalt	0.70	J	4.0	0.41				01/03/25 16:15	1
Copper	4.0	U	4.0		•		01/03/25 10:06	01/03/25 16:15	1
Iron	12400		120	33.7			01/03/25 10:06	01/03/25 16:15	1
Lead	120.72	+0	1.2	0.42	ug/L		01/03/25 10:06	01/03/25 16:15	1
Magnesium	12600		200	21.8	ug/L		01/03/25 10:06	01/03/25 16:15	1
Manganese	3950		8.0	0.84	ug/L		01/03/25 10:06	01/03/25 16:15	1
Nickel	4.0	U	4.0	1.4	ug/L		01/03/25 10:06	01/03/25 16:15	1
Potassium	4070		200	83.3	ug/L		01/03/25 10:06	01/03/25 16:15	1
Selenium	2.5	U	2.5	0.43	ug/L		01/03/25 10:06	01/03/25 16:15	1
Silver	2.0	U	2.0	1.3	ug/L		01/03/25 10:06	01/03/25 16:15	1
Sodium	11000		500	180	ug/L		01/03/25 10:06	01/03/25 16:15	1
Thallium	0.80	U	0.80	0.19	ug/L		01/03/25 10:06	01/03/25 16:15	1
Vanadium	4.0	υ	4.0	1.0	ug/L		01/03/25 10:06	01/03/25 16:15	1
Zinc	16.0	U	16.0	4.2	ug/L		01/03/25 10:06	01/03/25 16:15	1
Method: SW846 7470A - Merce	ury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.20	U	0.20	0.091	ug/L		01/03/25 11:23	01/03/25 15:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total (SW846 9012B)	46.8		10.0	4.0	ug/L		12/31/24 19:45	12/31/24 21:13	1

Date Collected: 12/26/24 09:05 Date Received: 12/27/24 18:00 Matrix: Water

Method: SW846 8260D - Volatile Organic Compounds by GC/MS **Dil Fac Result** Qualifier Analyzed MDL Unit D Prepared RL Analyte 12/31/24 12:28 1 1,1,1-Trichloroethane 1.0 U 1.0 0.24 ug/L 12/31/24 12:28 1 1,1,2,2-Tetrachloroethane 1.0 U 1.0 0.37 ug/L 1 1.0 0.20 ug/L 12/31/24 12:28 1.0 U 1,1,2-Trichloroethane 12/31/24 12:28 1 0.26 ug/L 1.0 U 1.0 1,1-Dichloroethane 12/31/24 12:28 1 0.26 ug/L 1.0 U 1.0 1,1-Dichloroethene 1 12/31/24 12:28 0.43 ug/L 1,2-Dichloroethane 1.0 U 1.0 1 12/31/24 12:28 2.0 U 2.0 0.44 ug/L 1,2-Dichloroethene, Total 1 12/31/24 12:28 1.0 0.35 ug/L 1.0 U 1,2-Dichloropropane 12/31/24 12:28 1 1.9 ug/L 5.0 2-Butanone (MEK) 5.0 U 12/31/24 12:28 1 5.0 1.1 ug/L 5.0 U 2-Hexanone 12/31/24 12:28 1 5.0 U 5.0 1.3 ug/L 4-Methyl-2-pentanone (MIBK) 12/31/24 12:28 1 5.0 4.4 ug/L 5.0 U Acetone 12/31/24 12:28 1 1.0 0.20 ug/L 1.0 U Benzene 1 0.34 ug/L 12/31/24 12:28 1.0 1.0 U Bromodichloromethane 12/31/24 12:28 1 1.0 0.54 ug/L 1.0 U* Bromoform 12/31/24 12:28 1 0.55 ug/L 1.0 U 1.0 Bromomethane

1/21/25 KR

Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: FB-122624

Date Collected: 12/26/24 09:05 Date Received: 12/27/24 18:00

Lab Sample ID: 460-318022-10 Matrix: Water

Method: SW846 8260D - Vo		이야 한다. 이는 것은 것을 위해 위한 것을 가지 않는다.			inued)	-	-		D11 E
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	1.0	5	1.0		ug/L			12/31/24 12:28	1
Carbon tetrachloride	1.0		1.0		ug/L			12/31/24 12:28	1
Chlorobenzene	1.0		1.0		ug/L			12/31/24 12:28	1
Chloroethane	1.0		1.0		ug/L			12/31/24 12:28	1
Chloroform	1.0	U	1.0		ug/L			12/31/24 12:28	1
Chloromethane	1.0	U	1.0		ug/L			12/31/24 12:28	1
cis-1,3-Dichloropropene	1.0		1.0	0.22	ug/L			12/31/24 12:28	1
Dibromochloromethane	1.0	UT	1.0	0,28	ug/L			12/31/24 12:28	1
Ethylbenzene	1.0	U	1.0	0,30	ug/L			12/31/24 12:28	1
Methyl tert-butyl ether	1.0	U	1.0	0.22	ug/L			12/31/24 12:28	1
Methylene Chloride	1.0	U	1.0	0.32	ug/L			12/31/24 12:28	1
Styrene	1.0	U	1.0	0.42	ug/L			12/31/24 12:28	1
Tetrachloroethene	1.0	U	1.0	0.25	ug/L			12/31/24 12:28	1
Toluene	1.0	U	1.0	0.38	ug/L			12/31/24 12:28	1
trans-1,3-Dichloropropene	1.0	U	1.0	0.22	ug/L			12/31/24 12:28	1
Trichloroethene	1.0	U	1.0	0.31	ug/L			12/31/24 12:28	1
Vinyl chloride	1.0	U	1.0	0.17	ug/L			12/31/24 12:28	1
Xylenes, Total	2.0	U	2.0	0.65	ug/L			12/31/24 12:28	1
Surrogate	%Recovery	Qualifler	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 128					12/31/24 12:28	1
4-Bromofluorobenzene	105		76 - 120					12/31/24 12:28	1
Dibromofluoromethane (Surr)	104		77 - 132					12/31/24 12:28	1
Toluene-d8 (Surr)	91		80 - 120					12/31/24 12:28	1
Method: SW846 8270E - Se	mivolatile Org	anic Com	ounds (GC/M	S)					
Analyte		Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	2.0	U	2.0	0.64	ug/L		12/29/24 10:53	12/29/24 18:00	1
1,2-Dichlorobenzene	10	U	10	0.50	ug/L		12/29/24 10:53	12/29/24 18:00	1
1.3-Dichlorobenzene	10	U	10	2.0	ug/L		12/29/24 10:53	12/29/24 18:00	1
1.4-Dichlorobenzene	10	U	10	1.1	ug/L		12/29/24 10:53	12/29/24 18:00	1

1.3-Dichlorobenzene	10 U	10	2.0	ug/L	12/29/24 10:53 12/29/24 18:00	0 1
1,4-Dichlorobenzene	10 U	10			12/29/24 10:53 12/29/24 18:00	0 1
2,2'-oxybis[1-chloropropane]	10 U	10	0.63	ug/L	12/29/24 10:53 12/29/24 18:00	D 1
2,4,5-Trichlorophenol	10 U	10	0.88		12/29/24 10:53 12/29/24 18:00	0 1
2,4,6-Trichlorophenol	10 U	10	0.86		12/29/24 10:53 12/29/24 18:00	0 1
2,4-Dichlorophenol	10 U	10			12/29/24 10:53 12/29/24 18:00	D 1
2,4-Dimethylphenol	10 U	10		ug/L	12/29/24 10:53 12/29/24 18:00	0 1
2,4-Dinitrophenol	40 U	40	11	ug/L	12/29/24 10:53 12/29/24 18:00	0 1
2,4-Dinitrotoluene	10 U	10	1.0	-	12/29/24 10:53 12/29/24 18:00	0 1
2,6-Dinitrotoluene	2.0 U	2.0	0.83	ug/L	12/29/24 10:53 12/29/24 18:00	0 1
2-Chloronaphthalene	10 U	10			12/29/24 10:53 12/29/24 18:00	0 1
2-Chlorophenol	10 U	10	0.95	ug/L	12/29/24 10:53 12/29/24 18:00	0 1
2-Methylnaphthalene	10 U	10	0.53	ug/L	12/29/24 10:53 12/29/24 18:00	0 1
2-Methylphenol	10 U	10			12/29/24 10:53 12/29/24 18:00	0 1
2-Nitroaniline	10 U	10			12/29/24 10:53 12/29/24 18:00	0 1
	10 U	10		ug/L	12/29/24 10:53 12/29/24 18:00	0 1
2-Nitrophenol 3.3'-Dichlorobenzidine	10 U	10		ug/L	12/29/24 10:53 12/29/24 18:00	0 1
3-Nitroaniline	10 U	10		ug/L	12/29/24 10:53 12/29/24 18:00	0 1
4,6-Dinitro-2-methylphenol	20 U	20			12/29/24 10:53 12/29/24 18:00	0 1
	10 U	10		ug/L	12/29/24 10:53 12/29/24 18:00	0 1
4-Bromophenyl phenyl ether	10 U	10		ug/L	12/29/24 10:53 12/29/24 18:00	0 1
4-Chloro-3-methylphenol	10 0	10	1.0	-9		

Page 40 of 2780

BLR 1/21/25

Eurofins Edison

12/29/24 10:53	12/29/24 18:00	1
Prepared	Analyzed	Dil Fac
12/29/24 10:53	12/29/24 18:00	1
12/29/24 10:53	12/29/24 18:00	1
12/29/24 10:53	12/29/24 18:00	1
12/29/24 10:53	12/29/24 18:00	1
12/29/24 10:53	12/29/24 18:00	1
12/29/24 10:53	12/29/24 18:00	1

Eurofins Edison

Page 41 of 2780

Client Sample ID: FB-122624 Date Collected: 12/26/24 09:05 Date Received: 12/27/24 18:00

Method: SW846 8270E - Se						-			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
4-Chloroaniline		U	10	1.9	0		12/29/24 10:53		
4-Chlorophenyl phenyl ether	10		10	1.3	•			12/29/24 18:00	
4-Methylphenol	10		10		ug/L		12/29/24 10:53		
4-Nitroaniline	10		10		ug/L		12/29/24 10:53		
4-Nitrophenol	20		20	4.0	ug/L		12/29/24 10:53		
Acenaphthene	10		10		ug/L		12/29/24 10:53		
Acenaphthylene	10	U	10		ug/L		12/29/24 10:53	12/29/24 18:00	
Anthracene	10	U	10	1.3	ug/L		12/29/24 10:53	12/29/24 18:00	
Benzo[a]anthracene	1.0	U	1.0	0.59	ug/L		12/29/24 10:53	12/29/24 18:00	
Benzo[a]pyrene	1.0		1.0	0.41	ug/L		12/29/24 10:53	12/29/24 18:00	
Benzo[b]fluoranthene	2.0	U	2.0	0.68	ug/L		12/29/24 10:53	12/29/24 18:00	
Benzo[g,h,i]perylene	10	U	10	0.70	ug/L		12/29/24 10:53	12/29/24 18:00	
Benzo[k]fluoranthene	1.0	U	1.0	0.67	ug/L		12/29/24 10:53	12/29/24 18:00	
Bis(2-chloroethoxy)methane	10	U	10	0.59	ug/L		12/29/24 10:53	12/29/24 18:00	
Bis(2-chloroethyl)ether	1.0	U	1.0	0.63	ug/L		12/29/24 10:53	12/29/24 18:00	
Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80	ug/L		12/29/24 10:53	12/29/24 18:00	3
Butyl benzyl phthalate	10	U	10		ug/L		12/29/24 10:53	12/29/24 18:00	1
Carbazole	10	U	10		ug/L		12/29/24 10:53	12/29/24 18:00	1
Chrysene	2.0	U	2.0	0.91	ug/L		12/29/24 10:53	12/29/24 18:00	
Dibenz(a,h)anthracene	1.0	U	1.0	0.72	ug/L		12/29/24 10:53	12/29/24 18:00	
Dibenzofuran	10	U	10	1.1	ug/L		12/29/24 10:53	12/29/24 18:00	
Diethyl phthalate	10	U	10	0.98	ug/L		12/29/24 10:53	12/29/24 18:00	
Dimethyl phthalate	10	U	10		ug/L		12/29/24 10:53	12/29/24 18:00	
Di-n-butyl phthalate	10	U	10		ug/L		12/29/24 10:53	12/29/24 18:00	
Di-n-octyl phthalate	10	U	10		ug/L		12/29/24 10:53	12/29/24 18:00	
luoranthene	10	U	10		ug/L		12/29/24 10:53	12/29/24 18:00	
luorene	10	U	10		ug/L		12/29/24 10:53	12/29/24 18:00	
lexachlorobenzene	1.0	U	1.0		ug/L		12/29/24 10:53	12/29/24 18:00	
Hexachlorobutadiene	1.0	U	1.0		ug/L		12/29/24 10:53	12/29/24 18:00	
Hexachlorocyclopentadiene	1.0	U	1.0		ug/L		12/29/24 10:53	12/29/24 18:00	
Hexachloroethane	2.0	U	2.0		ug/L		12/29/24 10:53	12/29/24 18:00	
	2.0		2.0		ug/L		12/29/24 10:53	12/29/24 18:00	- I
ndeno[1,2,3-cd]pyrene	2.0		10		ug/L		12/29/24 10:53	12/29/24 18:00	
sophorone			2.0	0.54			12/29/24 10:53		
Naphthalene	2.0								
Nitrobenzene	1.0		1.0	0.57			12/29/24 10:53		
N-Nitrosodi-n-propylamine	1.0		1.0	0.43			12/29/24 10:53		1
N-Nitrosodiphenylamine	10		10	0.89			12/29/24 10:53		1
Pentachlorophenol	20		20	6.6			12/29/24 10:53		1
Phenanthrene	10		10		ug/L		12/29/24 10:53		
Phenol	10		10	0.29			12/29/24 10:53		
byrene	10	U	10	1.6	ug/L		12/29/24 10:53	12/29/24 18:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,4,6-Tribromophenol (Surr)	60		37 - 150					12/29/24 18:00	1
-Fluorobiphenyl	71		46 - 139				12/29/24 10:53	12/29/24 18:00	1
-Fluorophenol (Surr)	35		16-80				12/29/24 10:53	12/29/24 18:00	1
litrobenzene-d5 (Surr)	74		51 - 145				12/29/24 10:53	12/29/24 18:00	1
Phenol-d5 (Surr)	23		10-56				12/29/24 10:53	12/29/24 18:00	1
Ferphenyl-d14 (Surr)	45		13 - 159					12/29/24 18:00	1

Lab Sample ID: 460-318022-10 Matrix: Water

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Client Sample ID: FB-122624

Date Collected: 12/26/24 09:05 Date Received: 12/27/24 18:00

Lab	Sample	ID:	460-318022-10
			Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
General Chemistry						27	-		
Aercury	0.20	U	0.20	0.091	ug/L		01/03/25 11:23	01/03/25 15:04	
Inalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
lethod: SW846 7470A - Mer	cury (CVAA)								
inc	16.0	0	16.0	4.2	ug/L		01/03/25 10:06	01/03/20 14:30	
anadium	4.0		4.0		ug/L				
hallium	0.80		0.80	0.19			01/03/25 10:06		
odium	500		500				01/03/25 10:06		
ilver	2.0		2.0		ug/L ug/L		01/03/25 10:06		
elenium	2.5		2.5	0.43			01/03/25 10:06 01/03/25 10:06		
otassium	200		200	83.3			01/03/25 10:06		
ickel	4.0		4.0	1.4	ug/L		01/03/25 10:06		
anganese	8.0		8.0	0.84	ug/L		01/03/25 10:06		
lagnesium	200		200		ug/L		01/03/25 10:06		
ead	1.2		1.2	0.42			01/03/25 10:06		
ron	120		120	33.7	ug/L		01/03/25 10:06		
Copper	4.0		4.0		ug/L		01/03/25 10:06		
Cobalt	4.0		4.0		ug/L		01/03/25 10:06		
Chromium	4.0		4.0	1.7			01/03/25 10:06		
Calcium	500		500	31.7	ug/L		01/03/25 10:06	01/03/25 14:35	
Cadmium	2.0		2.0	0.38	ug/L			01/03/25 14:35	
Beryllium	0.80		0.80		•			01/03/25 14:35	
Barium	4.0		4.0		ug/L			01/03/25 14:35	
rsenic			2.0						
	2.0				ug/L ug/L			01/03/25 14:35	
ntimony	40.0		2.0					01/03/25 14:35	
Inalyte	40.0	Qualifier	40.0	11.7	Unit ug/L	D	Prepared 01/03/25 10:06	Analyzed 01/03/25 14:35	DIIF
lethod: SW846 6020B - Me									
letrachloro-m-xylene	99		21 - 124				12/29/24 07:56	12/30/24 14:41	
Tetrachloro-m-xylene	96		21 - 124				12/29/24 07:56	12/30/24 14:41	
DCB Decachlorobiphenyl	96		18-145				12/29/24 07:56	12/30/24 14:41	
DCB Decachlorobiphenyl	91		18 - 145				12/29/24 07:56	12/30/24 14:41	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
					-3-				
Polychlorinated biphenyls, Total	0.40		0.40		ug/L			12/30/24 14:41	
Aroclor 1268	0.40		0.40	0.11				12/30/24 14:41	
Aroclor-1262	0.40		0.40	0.11			12/29/24 07:56		
Aroclor 1260		U **	0.40	0,11				12/30/24 14:41	
Aroclor 1254	0.40		0.40	0.11				12/30/24 14:41	
Aroclor 1248	0.40		0.40		ug/L		12/29/24 07:56		
Aroclor 1242	0.40	5.K.K	0.40		ug/L		12/29/24 07:56		
Aroclor 1232	0.40		0.40		ug/L		12/29/24 07:56		
Aroclor 1221	0.40		0.40 0.40		ug/L ug/L		12/29/24 07:56		
Aroclor 1016	0.40						12/29/24 07:56		

BLR 1/21/25

Eurofins Edison

I 20/01	Relinquished by	Polynomiskod by	Unelopmat	Is Intact. Ves No		Special Instructions/OC Requirements & Community	A Hazardous V dispose of the	Preservation Used: 1= ice, 2= HCl; 3= H2SO4; 4=HNO3; Possible Hazard Identification:		FB-122624	NU2-01	(-111-2085		H ULAND GORD-01	GCMW-	& GUMW- 1JI		GCMW-	Gemburios	Tin-122024	Sample Identification	PO# 1905774, 2013	Site City Cove	1022	Phone (mary an aris)	, New YOUL YOUR SWITC	Gel Gushtant	Client Contact	Address [.]	
e#c	Company.	Company:	GEL O	Custody Seal No .:	OATB	Poison B	e List any EP,	S=NaCH; 8= Other		0		-	1			1	1	6		12/26/24	Sample S Date				CALENDAR DAYS	A	TellEmail: Jungwi Storgedungselle	Project Manager: Clavi>	Regular	
2.2/2		12-27-24	Chillenc	I No.:	Repor		A Waste Co	Other		5060	1	HES .	1205	1705	1055	_	10.0	Colo	0850		Sample (Time	1 day	1 week	1A1 II different from Below 2 weeks	R DAYS	Analysis Tumaround Time	HACANI SCO	ager: Ch	Regulatory Program:	
2.2/24-25/2		~	ď.		er T	Unknown	des for the	San Sugar	_	G i	6	6 6	66	6 6	6	6 6	5 6	6 6		6 0	Sample Type (C=Comp, G=Grab) M	Y	s ¥	Below - A TALLIER	WORKING DAYS	haround Ti	Holms with		am:	
5/2.	Date/Time:	Date/Time: 1	Date/Time: I				sample in t	and the second	_	iw 4	Briel 9	64 5	6~ 5	6w 5	Sim 5	Gin 5	6W 5	6W 27	6W 9	64 2	Matrix Cont.			New	NG DAYS	me	harsie			つかい
7			1-3) Received by				3322	H						_				Ċ		Ż	Filtered Sa Perform M			N) Y/N)		7	1	Site		
	Received in Labo	Received	eceived			Retu	Sample Disposa			XX	XX	X	x X	××	XX	×	XX	X X	××	R	82608 170		DC s	_		7	Lab Contact: Kyys	Contac		>
	in Labo	en	W/Kq	Cogle		Return to Client	lispos			×	X	_		_		_		×	×		8082A 7470A	-10	B3	<u>.</u>		1	- IONO			
	pratory by	Ì		r Temp		7	ıl (Afee			×	\times	_						X	×		Luzas	THE		tal	Ś		4100	1		
	by:	S	D	(°9)			e may			×	×							×	×		9UJZB	-14	and	le i	ah	4	has Thursda		Record	
		`		Obs'd:		Disposal by Lab	may be assessed		+	+	-	-	_		_	-	_	_	+										ġ	100
	0	0	0			al by Lat	sessec		_		_																Carrier: 2		89	ł
	Company:	Company	Compan	8			ii s											1								- C	Carrier: Cu valo		686594	ł
		ETA	1	Corr'd			80-318			\exists																	Se	2	94	ł
	ľ	4	2-	11	,					-		-	-	-		-	-			_						-			\$	ļ
$\left \right $			2	Ę		IO LIN				-	+	_	+	_	-	+	-	-	-			10	T	La	5	Sal	18	3	🔅 eurofins	l
	Da	B		0		10	the second se		= 1	- 1	- 1		- 1					2				15			21.	31	N Č	5	0	ł
	Date/Time	Date/Time	Date/Time	erm ID N		Custod											t				Sa	ŭ	.	-in Cli	abu	Dier	LUC NO:		fin	ŧ
	Date/Time:	Date/Time:	aterime:	Therm ID No		- Custody											Ī	WSN W			Sample Sp	L'ON PUS / DO	ذ	Walk-ın Client: Lab Sampling:	ab Use Onk	Sampler: Carling	of (And and a second second
		Time: 227	17 11: 3c	erm ID No		Custody				٩١	٩	0	2	د د		2	_ 1		-2-	-	Sample Specific N	TOL TON PUR	210	-In Client: Sampling:	For Lab Use Only:	Itau	of I			And and a state of the state of the
		DaterTime: 1227 1800	ate/Time: 11:30	erm ID No	1	Custody				6 l	ą	d	8.	د د		~	_ 1	INSN I	-2-		Sample Specific Notes	1 17 MULTON AND		-ın Client: Sampling:	ab Use Only:	Itau		TAL-8210	Environment America	And the second s

NG Downstork Glen Cours

Data Review Worksheets

Data Package ID: 400 - 318033 Project/Charge Number: 1005774-204 Matrix: 11000 Collection Date/Cooler Temperature Acceptance: 12-126 2.70

Sample IDs: See attached laboratory report summary form

Field Duplicate IDs: D. 8- 01 GCODW- 005-B

Data Review Elements:

1. Agreement of Analyses Conducted with COC - Laboratory Report/EDD Revisions Needed

1-10 VICKS NOCS -10 9-10 ABS 00-6 TO

2. Holding Times and Sample Preservation Nonconformances

See Completeness form or attached pages for analyses/hold time outliers

V cogiltum on

3. Initial and Continuing Calibrations: See Attached Form

4. Blanks (Laboratory and Field)

Blank Actions – Make action level table of 2x and 10x the blank contamination detected. If sample result \leq RL; report the result as nondetect (U) at the reporting limit (RL). If sample result > RL and < 2xblank contamination; report the result as nondetect (U) at the detected value. If sample result > RL and \leq 10x Action level; report the result as estimated (J); blased high.

If the sample result is nondetect or > the 10x Action level; validation is not required.

mB	460-1014466	00-	(2-10)	
2mB	460-194372	DON	(2-),9-10)	
87	160-1015034	DOX	(2-19-10)	
Em c	460-105043	nor	(2-3,9-10)	
2 mg	460-614819	nor	(2-3, 9-10)	

5. Surrogate Spike Recoveries - Lab Limits used

For VOC; any surrogate out - qualify results based on recovery.

For SVOC; one surrogate out (but >10%) in each fraction no action taken. Two or more out - qualify results based

NC N c 0 . 01-

6. MS/MSD Results - Organics: Lab limits, Metals/CN 75-125% REC and <20%RPD (AQ) <35%RPD Solls Only evaluated if performed on a project sample:

If sample compound level is greater than 4x the spike conc., action is not applied based on recoveries - only RPD evaluated. For any analyte recovery outside of control limits but >10%; estimate based on recovery. For analyte recovery less than 10; estimate (J) If positive, reject (R) if nondetect.

IF MS/MSD RPD is high; estimate (J) if positive, accept nondetect without qualification. LIDE

LOC GEO	ou-ags-B	0.0	caboche	2 auguste
	W-ms-B	100	attached	- Conce
15 Gro	w-cas-B	1	Charles Feel	
an am	W-OQJ-B	See	(had solton	dents

7. LCS Results - Lab limits used

For any analyte recovery outside of control limits but ≥10%; estimate based on recovery.

For analyte recovery < 10%; estimate (J) if positive, reject (R) if nondetect. VOC ICSIO 460-1014703 (1-10) 500 ICSIO XOC 460-1014166 -101 633 01231 4(-a-10M372 Q SCO -10 altected W. P. 1 CS 460-1015021 1-3 C. BE 460-1015061 -147 149 105 460- Laisell3 10) 100 CS LIG 0-1614819 G mA1 460-16111810 1 2

8. Internal Standards - 50 - 200% control limits

For IS recovery <50 (but > 20%) estimate (J/UJ) associated positive and nondetect compounds. For IS recovery <20% estimate (J) if positive, reject (R) if nondetect. Only those compounds quantitated from an internal standard are affected. No qualification for high IS recovery if sample is nondetect.

V01-1 33 VBP 10K 500 155 9-101-3 -

9. Field Duplicate Results - Use separate sheet

Aqueous review: Criteria: When both results are \geq 5x the RL, RPDs must be < 30%. When results are < 5x the QL, the difference between the original and field duplicate must be less than 2xRL.

Soll review: Criteria: When both results are $\geq 5x$ the RL, RPDs must be < 50%. When results are < 5x the QL, the difference between the original and field duplicate must be less than 4xRL.

10. Dual Column Results - For GC analyses - Easier to print out Form 10's for multiple actions.

Percent Differences	Qualifier
0% - 25%	No qualification
26% - 70%	J
71 - 200% (interferences detected)*	JN
> 50% (pesticide value < CRQL)**	U
> 200%	R

- When interferences are detected on either column, qualify the data as "JN".
- ** When the pesticide value is below CRQL and %D > 50%, raise the value to CRQL and qualify "U" undetected.

lotects /

11. Laboratory Duplicate Results

All analyses with the exception of metals: Use laboratory control limits Metals: Aqueous limit of 20% RPD and soil limit of 35% RPD

netals Balch 12. Serial Dilution Results %D between sample and dilution analysis must be <10% for analyte level greater than 50X MDL. metals -1

13. Quantitation Limits/Required Dilutions and reanalyses

14. Sample Moisture Content - Soils with total solids less than 30% are estimated (J/UJ)

15. Additional Nonconformances - Comparison of Total/Free Cyanide, Total/Dissolved Metals, etc.

16. Results between MDL and RL - Are results between MDL and RL detected or reported in this job? If so - Note must be added to validation report. If not, validation report must state that detected results were reported down to RL only.

10.00
•••
- 22
-
-
-
-
ല
· •
್
-
_
ъ.
123
-
-
۰.
- E
-
.=
1.1
-
-
u
_
•
-
- 1 -1
-
- 22
ene
~
- CL
-
10.0
· •
-
-
-
-
~
0
0
2
-
1
0
- 10
10
-
-
C
-
-
1.1
•
-
0
-
-
-
-
100
5

Sample	Collection Date	33	Suc		S	125	Ha	CP
-01	orelet	194 08-0	J		1		21	
-02	-	12/11	pelel		100/01	1/3	1/3	15/41
69-	_	15/61	Helen	(10)	12/21		13	18/41
ģ		15/0)	0/201		1		1	-
92		15/4	100/01		1	1	1	1
90,		15/e)	Pc/20		1	1	1	1
-01		15/m	108/01		1	1	1	1
-08		1514	be/m		1))	1
60-		13/31)08/e1	(10)	be/ei	13	13	6 m
-10	>	15/61	15/01		66/41	1/3	:13	15/21
ij								1
-12								
-13								
¥1-								
÷ċ								

Calibration Review Page _____ of _____

Analysis	Instrument/ Date	Compound/Analyte	%RSD, %D, % REC, RF	Associated samples
DC	CUORDS1			
	BEB 10/22		1	1-10
	ICAL ICTAZ		1	
	104 10/22		1	
	CCV 6/31	See at	Acched	1-10 Qual
int	BOAMSIY			
	No 101 977-70		1	3 DL GOL
	ICAL INAM		1	
1	Letter 193		V	
	KV 10/24		1	
	CV 12/31	Sector	and ~	
	Cannos T			
	99770		1.0	2-10
	ICAL IILZZ		1	1
	10V 1122		~	
	a upa		1	Y
CB	PERGRIM			
	Fal 10/23	1016/1260 (1/2)	V	2-3. 9-10
	tal 10/23	1010/1260 (12)	y	ars, 01-10
	CCV 12/30	10/0/12/00/1/2)	1	Y
etals	ILAL 13			
	tou cev is co	144, cause, could caup	00,00	2-3 9-10
	Ed borrs	See atta	hours	drugs
	CSP	accesses Tomp &		
	2005	neightest have s	- Contro	sect
	10.01			
13	ICAL 13			
201	ICU CIVI-CI	un -	~	2-3,9-10
	a) ocnes	10	~	
_				

Initial calibration (ICAL) %RSD > 20% for VOC, SVOC, pest, PCB; Estimate (J) positive results.

Correlation coefficient < 0.990 for organics or <0.995 for inorganics; Estimate (I/UI) positive and nondetect results. Initial calibration verification (ICV) %D > control limits; Estimate (I/UI) positive and nondetect results. Continuing calibration (ICAL) %D >20% for VOC, SVDC, pest, PCBs; Estimate (I/UI) positive and nondetect results. Continuing calibration recovery outside of control limits for inorganics; Estimate (I/UI) dependent on recovery. Detections for metals > MDL in the ICSA sample; Evaluation required if sample interferent levels are at least 75% of the ICSA. Response factor (RF) <0.050 (or <0.010 for poor responders); Estimate (I) positive and reject (R) nondetect results.

Sample Summary

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
450-318022-1	TB-122624	Water	12/26/24 00:00	12/27/24 18:00
460-318022-2	GCMW-205/	Water	12/26/24 08:50	12/27/24 18:00
460-318022-3	GCMW-09S-R/	Water	12/26/24 09:00	12/27/24 18:00
460-318022-4	GCMW-115	Water	12/26/24 10:10	12/27/24 18:00
460-318022-5	GCMW-13I	Water	12/26/24 10:40	12/27/24 18:00
460-318022-6	GCMW-111/	Water	12/26/24 10:55	12/27/24 18:00
460-316022-7	GCRW-01	Water	12/26/24 12:05	12/27/24 18:00
460-318022-8	GCRW-02,	Water	12/26/24 12:05	12/27/24 18:00
460-318022-9	DUP-01	Water	12/26/24 00:00	12/27/24 18:00
460-318022-10	FB-122624	Water	12/26/24 09:05	12/27/24 18:00

CASE NARRATIVE

Client: GEI Consultants Inc

Project: National Grid - Downstate Glen Cove

Report Number: 460-318022-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/27/2024 6:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, property preserved and on ice. The temperatures of the 2 coolers at receipt time were 2.4°C and 2.7°C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples TB-122624 (460-318022-1), GCMW-20S (460-318022-2), GCMW-09S-R (460-318022-3), GCMW-11S (460-318022-4), GCMW-13I (460-318022-5), GCMW-11I (460-318022-6), GCRW-01 (460-318022-7), GCRW-02 (460-318022-8), DUP-01 (460-318022-9) and FB-122624 (460-318022-10) were analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were analyzed on 12/31/2024.

The continuing calibration verification (CCV) analyzed in batch 460-1014703 was outside the method criteria for the following analyte(s): Bromoform (blased high) and Chloromethane (blased low). A CCV standard at or below the peopring limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 460-1014703 recovered outside control limits for the following analytes: Bromoform and Chlorodibromomethane. These analytes were biased high in the LCS/LCSD and were not detected in the associated samples; therefore, the data have been reported. Refer to the QC report for details.

Bromoform failed the recovery criteria high for the MS of sample GCMW-09S-RMS (460-318022-3) in batch 460-1014703. Several analytes failed the recovery criteria high for the MSD of sample GCMW-09S-RMSD (460-318022-3) in batch 460-1014703. Refer to the QC report for details.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples GCMW-205 (460-318022-2), GCMW-09S-R (460-318022-3), GCMW-115 (460-318022-4), GCMW-131 (460-318022-5), GCMW-111 (460-318022-6), GCRW-01 (460-318022-7), GCRW-02 (460-318022-8), DUP-01 (460-318022-9) and FB-122624 (460-318022-10) were analyzed for semivolatile organic compounds (GCMS) in

accordance with EPA SW-846 Method 8270E. The samples were prepared on 12/29/2024 and analyzed on 12/29/2024 and 12/31/2024.

The continuing calibration verification (CCV) analyzed in batch 460-1014683 was outside the method criteria for the following analyte(s): Benzaldehyde and 2-Nitroaniline. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

3,3'-Dichlorobenzidine failed the recovery criteria low and several analytes failed the recovery criteria high for the MS of sample GCMW-09S-RMS (460-318022-3) in batch 460-1014470. Several analytes failed the recovery criteria low for the MSD of sample GCMW-09S-RMSD (460-318022-3) in batch 460-1014470. Several analytes exceeded the RPD limit. Refer to the QC report for details.

Samples GCMW-09S-R (460-318022-3)(10X) and DUP-01 (460-318022-9)(10X) required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples GCMW-20S (460-318022-2), GCMW-09S-R (460-318022-3), DUP-01 (460-318022-9) and FB-122624 (460-318022-10) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082A. The samples were prepared on 12/29/2024 and analyzed on 12/30/2024.

The laboratory control sample duplicate (LCSD) for preparation batch 460-1014372 and analytical batch 460-1014538 recovered outside control limits for the following analytes: Aroclor 1016 and Aroclor 1260. These analytes were blased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported. Refer to the QC report for details.

Aroctor 1260 failed the recovery criteria high for the MS of sample GCMW-09S-RMS (460-318022-3) in batch 460-1014538. Refer to the QC report for details.

No other difficulties were encountered during the PCBs analysis.

All other quality control parameters were within the acceptance limits.

METALS - TOTAL (ICP/MS)

Samples GCMW-20S (460-318022-2), GCMW-09S-R (460-318022-3), DUP-01 (460-318022-9) and FB-122624 (460-318022-10) were analyzed for Metals - Total (ICP/MS) in accordance with EPA SW-846 Method 6020B - Total. The samples were prepared and analyzed on 01/03/2025.

Colcium failed the recovery criteria high for the MSD of sample GCMW-093-RMSD (460-318022-3) in batch 460-1015061. Refer to the QC report for details.

No other difficulties were encountered during the metals analysis,

All other quality control parameters were within the acceptance limits.

MERCURY

Samples GCMW-20S (460-318022-2), GCMW-09S-R (460-318022-3), DUP-01 (460-318022-9) and FB-122624 (460-318022-10) were analyzed for mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared and analyzed on 01/03/2025.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

TOTAL CYANIDE

Samples GCMW-20S (460-318022-2), GCMW-09S-R (460-318022-3), DUP-01 (460-318022-9) and FB-122624 (460-318022-10) were analyzed for total cyanide in accordance with EPA SW-846 Method 9012B. The samples were prepared and analyzed on 12/31/2024.

Total Cyanide failed the recovery criteria high for the MS/MSD of sample GCMW-09S-RMS (460-318022-3) and V

GCMW-09S-RMSD (460-318022-3) in batch 460-1014825. Refer to the QC report for details.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount. Refer to the QC report for details.

No other difficulties were encountered during the cyanide analysis,

All other quality control parameters were within the acceptance limits.

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Edison

Job No.: 460-318022-1

SDG	No.I			
Lab	Sample	ID:	CCVIS	460-1014703/2

Instrument ID: CVOAMS1

GC Column: Rtx-624

Calibration Date: 12/31/2024 07:01 Calib Start Date: 10/22/2024 03:15 ID: 0.25(mm) Calib End Date: 10/22/2024 05:47

GC Column: Rtx-624	1	D: 0.25(mm)	Calib	End Date: 1	0/22/202	4 05:47		
Lab File ID: A21101.D			Conc.	Units: ug/1	'H	leated Pu	rge: (Y/	N) N
	. 5	10						
ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	₩D	MAX ND
Chlorotrifluoroethene	Qua?		0.0390		10.3	20.0	-48.5*	20.
Dichlorodifluoromethane	Ave	0,3771	0.3135	0.1000	16.6	20.0	-16.9	20.
Chlorodifluoromethane	Ave	0,5680	0.3991		14.1	20.0	-29.7=	20.
Chloromothane 5	Ave	0.4994	0,3600	0,1900	14.4	20.0	1-27.80	20.
Vinyl chloride	Ave	0.3693	0.3108	0,1000	16.8	20.0	-15.8	20.
Butadiene	Ava	0.3539	0.2573		6.62	20.0	-27.3*	20.
Bromomethane	Ave	0.1649	0.1424	0,1000	17,3	20.0	+13.6	50.
Chloroethane	Acu	0.2246	6.2070	0.1000	18,4	20.0	-7.8	50.
Dichlorofluoromethane	Ave	0.5932	0.5504		18.6	20.0	-7.2	20.
Trichlorofluoromethane	Ave	0,3732	0.3935	0.1000	21.1	20.0	5.8	20.
Pentane	Ave	3,393	2,486		29.3	40.0	-26.7*	20.
Ethanol	Ave.	0.0824	0,0647		628	800	-21.4	50.
Ethyl ether	Are	0.2589	0.2062		15.9	20.0	-20.4*	28,
2-Methyl-1,3-butadlene	Ave	0.2766	0.1945		14.1	20.0	-29.6*	20.
1,2-Dichloro-1,1,2-trifluoro ethane	Ave	0.1962	0.2054		20.9	20.0	4.7	20.
1,1,1-Trifluero-J,2-dichloro ethane	Ave	0,3838	0.3344		17.4	20.0	-12,9	20.
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave.	0.2355	0,2266	0.1000	19.4	20.0	-2.9	20.
Acrolein	Av9	2.043	1,519		29.7	40.0	-25.6	50,
1,1-Dichlerostheme	Rive	0.2579	0.2306	0.1000	17.9	50+0	-10.6	20.
Acolone	200	0,2147	0.2231	0.0900	104	100	3.7	50.
Isopropyl alcohol	Ave	0.7676	0.6567		171	200	-14.5	50.
Icdomethane	Qual		0.1696		11.7	20.0	-41.5*	20.
Carbon disulfide	376	2.033	0.8852	0.1000	17.1	20.0	-14.9	50.
3-Chipre-1-propens	Ave	0,1682	0.1573		17.1	20.0	-14.6	20,
Methyl acetate	Ave	10.91	8,625	0.0500	31.6	40.0	-20,9*	20.
Cyclopentene	Ave	0.6265	0.4968		15.9	20.0	-20.7*	20.
Acctonitrile	Ave	2.274	1+92		140	200	-30.0*	20.
Mothylone Chipzide	200	0.2130	0.2992	0.1000	19.1	20.0	-4.6	20.
2-Methyl-2-propanal	:399	1.046	1.078		20/6	200	3.1	50.
Mothyl tert-butyl ether	3ve	0,6652	0,6474	0.1000	19.4	20.0	-3.1	20.
trans-1,2-Dichloroetheae	Are	0.2747	0.2664	0.1000	19-4	20.0	+3.0	20,
Acrylonitrile	244	0.0878	0.0832		190	300	-5.2	20.
Цахаре	Ave .	0.2746	0.1758		12.8	20.0	-36.0*	20,
Isopropyl ether	Ave	0.9454	0,7097		13.0	20,0	-24.9*	20.
1,1-Dichloroothane	Are	0.5363	0,4527	0.2000	16.9	20.0	-12,6	20,
Vinyi adetate	Ave	2.999	2,799		37.3	40.0	-6.7	20,
2-Chloro-1,3-butadiene	Ave	0.2508	0.2278		18.2	20.0	-9.2	20.
Tert-butyl ethyl ether	Ave	0.8084	9,6941		16.9	20.0	-15.4	20,
2,2-Dichloropropane	Ave	0.0889	0.0906		20.4	20.0	1.9	20.

FORM VII 8260D

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Edison

Job No.: 460-318022-1

SDG No.:

Lab Sample ID: CCVIS 460-1014703/2

Instrument ID: CVOAMS1

GC Column: Rtx-624

Lab File ID: A21101.D

Calibration Date: 12/31/2024 07:01

Calib Start Date: 10/22/2024 03:15

ID: 0.25(mm) Calib End Date: 10/22/2024 05:47

Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	PRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	۹D	MAX ND
cis-1,2-Dichloroethene	Ave	0.3044	0.2953	5.1000	19.4	20.0	-3.0	20.0
Ethyl acetate	At/0	0.2573	0.2984		46.4	40.0	16.0	20.0
(2-Butanone (MER) US	Ave	0.2442	0.3177	0.0500	130	100	(30.1)	50.0
Methyl acrylate	Ave.	0.2009	0.1912		29.0	20.0	-4.8	20.0
Propiositrile	Ave	2.007	1.733		173	200	-13.6	20.0
Chlosobromomethane	Ava	0,1225	0.1421		23.1	20.0	15.6	20.0
Tetrahydrofuran	Ave	0.5039	0.9312		41.2	40.0	3.0	20.0
Methacrylonitrile	Ave	0.0953	0.1018		214	200	6.8	20.0
Chloroform	Ave	0.4691	0,4594	0.2000	19.6	20.0	-2.1	20.0
Cyclobexane	Ave	0.5029	0.3586	0.1000	14.3	20.0	-28.7	50.0
1,1,1-Trichloroethane	Avo	0.3658	0.3663	0.1000	20.0	20.0	0.1	20.0
Carbon tetrachloride	Ave	0.3045	0.3089	0.1000	20.3	20.0	1.3	20.0
1,1-Dichleropropens	Assa	0.3797	0.3252		17.1	20.0	-14.3	20.0
Isobutyl alcohol	Ave	0.4552	0.4294		440	500	-12.1	50.0
Isooctane	Ave	0,6435	0.5104		12.1	20.0	+39.5*	20.0
Benzene	Ave	1.584	1.418	0.5000	17.9	20.0	-10.5	20.0
Teopropyl acetate	Lin2		0.0973		18.7	20.0	-6.3	20,0
Tert-anyl methyl ether	Ave	0,1925	0.2100		21.9	20,0	9.4	20.0
1,2-Dichloroethane	Ave	0.3224	0.3111	0.1000	19.3	20.0	-3.5	20.0
n-Neptane	Ave	0.2052	0,1449		14.1	20.0	-29.4*	20.0
n-Butapol	Lin2		0.2733		472	500	-5.6	50.0
Trichloroethene	Ave.	0.2747	0.2701	0.2000	19.7	20.0	-1.7	20.0
Ethyl acrylate	Lin2		0.0327		18.8	20.0	-6.1	20.0
Methylcyclohexane	Ave	0.4222	6.3539	0.1000	16.8	20.0	-16.2	50.0
1,2-Dichloropropane	Ave	0.3165	0.2587	0.1000	16.3	20.0	-18,3	20.0
Methyl methacrylate	Ave	0.1513	0.1579		41.7	40,0	4.4	20.0
1,4-Dicmane	Ave	1.090	1.001		367	400	-8.2	54.0
n-Propyl acetate	Ave	0.3138	3.2871		18.3	20.0	-8.5	20.0
Dibromomethane	Ave	0.1520	3.1638		21.6	20.0	7.8	20.0
Bronodichloromethane	Ave	C.3434	3.3463	0.2000	20.2	20.0	0.8	20.0
2-Nitropropane	Ave	0,0527	3.0471		35.7	40.0	-10,6	20.0
Epichlorohydrin	Ave	0,1613	0.2068		513	400	28.2*	20.0
cis-1,3-Dichloropropene	Ave	0.6122	0.5802	0.2000	19.0	20.0	-5.2	50.0
4-Methyl-2-pentanone (MIBE)	Ave	1.878	2.126	0.0500	113	100	13.2	50.0
Toluene	Ave	1.602	1.403	0.4000	18.5	20.0	-7.5	20.0
trans-1, 3-Dichleropropene	Ave	0.5075	0.4744	0.1000	18.7	20.0	-6.5	50.0
Ethyl methaorylate	Lin2		0.2804		19.3	20.0	-3.5	20.0
1,1,2-Trichloroethane	Ave	0,2752	0.2731	0.1000	19.8	20.0	-0.8	20.0
Tetrachloroethene	Ave	0.3268	0.3519	0.2000	21.5	20.0	7.7	20.0
1,3-Dichloropropane	Ave	0,5362	0.5149		19.2	20.0	-4.0	20.0
2-liexanone	Ave	0,7051	0.8290	0.0500	118	100	17.6	50.0

FORM VII 8260D

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Ediso	ee.		505 100	.: 460-3180	nn			
SDG No.:								
Lab Sample ID: CCVIS 460	-1014703	/2	Calibr	ation Date:	12/31/2	024 07:	01	
Instrument ID: CVOAMS1			Calib	Start Date:	10/22/2	024 03:	15	
GC Column: Rtx-624	I	D: 0.25(mm)	Calib	End Date: 1	0/22/202	4 05:47		
Lab File ID: A21101.D		Conc.	Units: ug/L	н	eated Pu	rge: (Y)	(N) N	
			0.000000	000000000000000000000000000000000000000		2012251012		175511486
ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	۹D	MAX ND
n-Butyl acetate	Ave	0,0703	0.0713		20.3	20.0	1.4	20.4
Dibromochloromethane>	Ave	0.3031	0.3685	0.1000	24.3	20.0	21.7	50,1
Ethylene Dibromida	Ave	0.2767	0.3130	0.1000	22.6	20.0	13.1	20.
Chlorobenzene	Ave	0.9245	0.9530	0.5000	20.6	20.0	3.0	20.
Ethylbenzene	Ave	0.4847	0.4597	0.1000	20.2	20.0	1.0	20.
1,1,1,2-Tetrachloroothans	Ave	0,2991	0.3417		22.8	20.0	14.2	20.
m-Xylene & p-Xylene	Ave	0.6024	0.6049	0,1000	20.1	20.0	0.4	20.
n-Butyl acrylate	Are	0,2088	0.2159		20.7	20.0	3.3	20.
c-Xylene	Ave	0.5756	0.5943	0.3000	20.7	20.0	3.3	20.
Styrene	A1/6	0.9651	1.011	0.3000	21.0	20.0	4.8	20.
Anyl acotate (mixed isomers)	Ave	0.9444	0.7836		16.6	20.0	+17.0	20.
Bronoform US	Ave	0,1768	0.2446	0.1000	27.7	20.0	Q8.4*	20.
Teopropylbanzene	Ave	1.341	1.325	0,1000	19.8	20.0	-1.2	20.
Bronobensene	Ave	0.7357	0.7300	0.000.000	19.8	20.0	-0.8	20.
1,1,2,2-Tetrachloroothane	Ave	0.7342	0.7080	0.3000	19.3	20.0	-3.6	20.1
N-Propylbensene	Ave	3.919	3,262		16.6	20.0	-16.8	20.
1,2,3-Trichloropropane	Ave	0.1835	0.2078		22.6	20.0	13.0	20.
trans-1,4-Dichloro-2-butehe	Ave	0.2001	0.1837		18.4	20.0	-#,2	20.
2-Chlorotoluene	Ave	2,604	2.305		17,7	20.0	-11.5	20.4
4-Ethyltoluene	Ave	2.566	2.772		18.7	20.0	-6.5	20.
1,3,5-Trimethylbenzene	Ave	2.479	2.239		18.1	20.0	-9.7	20.
4-Chlorotoluene	Ave	2.365	2.112		17.9	20.0	-10.7	20.
Butyl Methacrylate	Ave	0.7720	0.7714		20.0	20.0	-0.0	20.
tert-Butylbenzene	Ave	2.062	1.659		18.0	20.0	-9.9	20.4
1,2,4-Trimethylbenzene	Ave	2.479	2.374		19.1	20.0	-4.3	20.
sec-Butylbenzene	Ave	0.5991	0.5471		18.3	20.0	-8.7	20.

FORM VII 8260D

Naphthalene

4-Isopropyltoluene

1,3-Dichlorobenzene

1,4-Dichlerobenzene

Bensyl chloride

p-Diethylbenrene

1,2-Dichlorobenzene

1,2,4,5-Tetranothylbensene

1,2-Dibrono-3-Chloropropane

1,3,5-Trichlorobenzene

1, 2, 4-Trichlorobenzene

Hexachlorobutadiene

n-Butylbensene

Indan

1,2,3-Trimethylbenzone

2.452

1.434

1.441

2.496

1.271

2.468

1.531

1.237

:.376

2.122

0.1387

0.9460

0.8561

0.2825

1.951

2.622

1.373

1.419

2.599

1.171

2.517

1,634

1.484

1.276

2.255

0.1121

0.9571

0.8217

0.3566

1,726

Ave

18.7

20.9

20.3

19.2

21.7

19.6

18.7

16.7

21.6

18.8

24.7

19.8

20.8

15.8

22.6

0.6000

0.5000

0,4000

0.0500

0.2000

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

-6.5

4.5

1.6

-3.9

6.5

-1.5

-6.3

-16.6

7.9

-5.9

23.7

-1.0

4.2

-20.8*

13.1

20.0

20.0

20.0

20.0

50.0

20.0

20.0

20.0

20.0

20.0

50.0

20.0

20.0

20.0

50.0

9+IN CALIBRATION BLANK DETECTION LIMITS METALS - TOTAL RECOVERABLE

Lab Name: Eurofina Edison

Job Number: 460-318022-1

SDG Number:

Matrix: Water

Method: 6020B

Instrument ID: ICPMS4

XMDL Date: 09/05/2024 00:00

Analyte	Wavelength/ Mass	XRL (ug/L)	XMDL (ug/L)
Aluminum		40	11.7
Antimony		2	0.475
Arsenic		2	1.15
Barium	1	4	0.925
Beryllium		0.8	0.124
Cadmium	1	2	0.375
Calcium		500	31.7
Chromium		4	1.65
Cobalt		4	0.412
Copper		4	1.97
Iron		120	33.7
Lead		1.2	0.417
Magnesium		200	21.8
Manganese		8	0.839
Nickel		4	1.39
Potassium		200	83.3
Selenium		2.5	0.432
Silver		2	1.3
Sodium		500	180
Thallium		0.8	0.191
Vanadium		4	1
Zinc		16	4.22

4A-IN INTERFERENCE CHECK STANDARD METALS

Lab Name: Eurofins Edison

Job No.: 460-318022-1

SDG No.:

Lab Sample ID: ICSA 460-1015061/10

Instrument ID: ICPMS4

Lab File ID: 013ICSA.d

ICS Source: me_ICSA_00272

Concentration Units: ug/L

Analyte	True Solution A	Found Solution A	Percent Recovery
2-5%	100000	101111	101
Aluminum	100000	0.0240	101
Antimony		0.303	
Arsenic			
Barium		0.749	-
Beryllium		0.0070	
Cadmium		0.293	
Calcium	100000	99151	99
Chromium		0.383	
Cobalt		0.349	
Copper		0.517	
Iron	100000	99515	100
Lead		-0.140/	
Magnesium	100000	101174	101
Manganese		0.959	2
Nickel		-1.26	
Potassium	100000	94988	95
Selenium		0.309	•
Silver		0.0180	 1.150
Sodium	100000	101488	101
Thallium		0.0020	
Vanadium		0.0270	
Zinc		0.115	
Boron	and the second	3.88	
Nolybdenum	2000	2069	10.
Strontium		0.746	
Tin		0.216	
Titanium	2000	2158	105

Calculations are performed before rounding to avoid round-off errors in calculated results.

Sample Report

File Name	0540542.4
The Path	C1Agter/3CPHH/J12IATA/MH21835A.b
Acq Time	2025-01-03 16:13:04
Sample Name	460-318022-I-2-A
Comment	-
Dilution	1.0000
Vial #	3362
PullQuark Table	

.

Denert	Masa	DTD.	Tune Hode	Care.	Units	RSD(%)	High Value	QC Play
8		4	No Gas	1.330	ept	4.7	3000	
8	13	4	No Gan	213.758	ug1	6.1	2000	
Na	23	45	te	29667.461	Igt	0.8	50000	
Mg	24	45	He	12543.376	ugt	1.6	500000	
A	27	6	He	20723.381	101	0.4	500000	1
*	29	-1	He	101010.000	ugi!	0.4	\$00000	
9	40	-61	H	Tisen7 1799	-51	1.9	1000000	-
n	0	45	te	1382.310	ugi!	0.8	10000	1
¥	31	45	HE	53.152	ugit	1.3	5000	
0	22	45	He	\$2.618	ligit	1.5	20000	
MI	H	45	**	2655.422	upt	0.9	20000	
Fe .	34	45	#2	41049.029	ligit	0.5	500600	
Ca	50	41	***	20.363	ugs	1.2	2000	
N	60	45	He	43.106	191	3.9	20090	
G	Ð	6	-	67.981	ugi)	0.5	20030	
24	66	15	H	346.203	ug1	1.6	20000	
Ac	75	6	Hat	13.115	ingit	7.0	\$200	
Se	78	6	12	8.358	ug1	4.7	3000	
Sr	35	115	the l	712,413	ugi	1.8	9300	
No	15	115	Ha	6.241	ugt	3.1	2000	
Ag	107	115	He	0.125	ug1	2.0	1000	
C4	111	115	He	1.726	ugit .	9.2	5000	
Se .	318	115	Ne	4.637	Hall	2.1	2000	
50	121	115	714	34.800	191	3.9	1000	
ta .	137	139	He	354.883	Pgu	1.5	20000	
P.	225	205	H	0.143	1qu	10.8	1000	
Po]	206	209	He	66.311	495	1.7		
74)	207	209	Ha	64.757	rda.	4.9		1
15	204		In	65,963	vp1	0.9	20000	

ISTO Tables

Einmant	Plass	Tune Note	0%	RSD(%)	157D Recovery %	Lower Land	Lipper Limit	QC Fing
u (S)	4	No Ges	4342861.50	1.0	50.0	71	125	
Se (ISDOPMS)	-5	No Ger	7308441.42	2.9	94.9	70	125	
5: (1510745)	6	12	1292151.71	1.5	81	70	125	
5c (153CPM5)	-6	He	44714,85	0.5	18.3	79	125	
Ge (15)	74	ю	219138.47	0.5	29.5	70	125	
Ce (15)	74	Pier	29020.06	1,2	97.0	70	125	
47	10	1.00	0.00	N/A				

3-IN INSTRUMENT BLANKS METALS

Lab Name: Eurofins Edison

Job No.: 460-318022-1

SDG No.:

Concentration Units: ug/L

		CCB 460-101506 01/03/2025 1	\$1/69 5:27	CCB 460-101500 01/03/2025 1	51/80 5:55	CCB 460-101506 01/03/2025 1	6:23		
Analyte	RL	Found	С	Found	с	Found	с	Found	¢
Aluminum	40.0	40.0	U.	40.0	υ	40.0	U		1
Antimony	2.0	2.0	U.	2.0	U	2.0	11		
Arsenic	2.0	2.0	U	2.0	U	2.0	U		-
Barium	4.0	4.0	U	4.0	U	4.0	U		
Beryllium	0.80	0.80	U	0.80	U	0.80	U		
Cadmium	2.0	2.0	Ų	2.0	U	2.0	U		
Calcium	500	500	U	500	U	500	U		
Chromium	4.0	4.0	U	4.0	U	4.0	U		1
Cobalt	4.0	4.0	U	4.0	U	4.0	U		
Copper	4.0	4.0	IJ	4.0	Π	4.0	U		
Iron	120	120	U.	120	-U	120	U.		
Lead	1.2	1.2	U	0.512	J	0.496	3		
Magnesium	200	200	U	200	U	200	U		
Manganese	8.0	8.0	U	8.0	U	8.0	U		
Nickel	4.0	4.0	U	4.0	U	4.0	U		
Potassium	200	200	U	200	0	200	U		
Selenium	2.5	2.5	Û	2.5	U	2.5	U		
Silver	2.0	2.0	U	2.0	0	2.0	U		
Sodium	500	500	U	500	U	500	U		
Thallium	0.80	0.80	U	0.80	U	0.80	13		
Vanadium	4.0	4.0	U	4.0	U	4.0	13		
Zinc	16.0	16.0	U	16.0	U	16.0	U		

IOK SIR

-9 ND ON RL

Italicized analytes were not requested for this sequence.

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 460 Matrix: Water	-1014372/3	-A				8	Client	Sampl	e ID: Lai	b Control S Prep Typ		
Analysis Batch: 1014538										Prep Batc	h: 10	1437
	LCSD	LCSD										
Surrogate	SRecovery	Qualifier	Limits									
DCB Decachlorobiphenyl	109		18.145									
DCB Decachlorobiphenyl	114		10-145									
Tetrachioro-m-xylene	111		21.124									
Tetrachioro-m-xylene	111		21 . 124									
Lab Sample ID: 460-31802 Matrix: Water	2-3 MS							CI	lent San	nple ID: GC Prep Type		12.12.02.02
Analysis Batch: 1014538										Prep Batch		
	Sample	Sample	Spike	115	MS					%Rec	1, 10	1437
Analyte		Qualifier	Added	Result	1000	NEar	Unit		KRec	Limits		
Arocior 1016	0.40	and the second se	4.00	4.04		eren.	ug/L		101	42.120		
Arocior 1016	0.40	0724	4.00	3.35			ug/L		84	42-120		
Arocior 1260	0.40	S	4.00	4.43			ug/L		111	42.120		
Arocior 1260 00,00	0.40	150	4.00	5.15			ug/L		(129	42-125		
	MS	MS										
Surrogate	KRecovery	Qualifier	Limits									
DCB Decachiorobiphenyl	90		18.145									
DCB Decechlorobiphenyl	111		18.145									
Tetrachioro-m-xylene	75		21-124									
Tetrachioro-m-xylene	82		21-124									
Lab Sampie ID: 460-318022 Matrix: Water Analysis Batch: 1014538	2-3 MSD							CII		ple ID: GCI Prep Type Prep Batch	: To	tal/NA
	Sample	Sample	Spike	MSD	MSD	8				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limit
Aroclar 1016	0.40	U	4.00	3.93		n/e-n-	ug/L	1	98	42.120	3	30
Vroclor 1016	0.40	υ	4.00	3.40			ugL		85	42 - 120	2	30
Aroclor 1260	0.40	U.	4.00	4.11			ugit		103	42.126	8	30
Aracior 1260	0.40	U.	4.00	4,99			ug/L		125	42 - 126	3	30
	MSD	MSD										
Surrogate	SRecovery	State Contraction	Limits									
OCB Decachlorobiohenyl	82		18-145									
CB Decachlorobiohenyl	99		18_145									
Tetrachioro-m-xylena	75		21.124									
Tetrachioro-m-xylene	77		21.124									
lethod: 6020B - Metals	(ICP/MS)	j.										-
								19933				
Lab Sample ID: MB 460-101	15034/1-A								COLUMN CONTRACT	ple ID: Meth		
Matrix: Water Analysis Batch: 1015061								F		e: Total Re		
Analysis Batch. 1010001		MB MB								Prep Batch	. 101	5034
Instyle		sult Qualifier	RI	16	IDL U	Init		D P	berager	Analyzed	1	Dil Fac
Numinum		0.0 U	40.0		11.7 1			ALC: NOT	A Contract of the American	01/03/25 14:		UN PAC
			-0.0	62 - E	104 1	10.0		01/0	area 10.00	01/03/25 14:	20	1

Eurofins Edison

1

1

1

0.48 ug/L 01/03/25 10:08 01/03/25 14:29 1.2 ug/L 01/03/25 10:06 01/03/25 14:29

01/03/25 10:06 01/03/25 14:29

2.0

2.0

4.0

0.93 upt.

2.0 U

20 U

4.0 U

Antimony

Arsenic

Barium

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 460-318022-3 DU Matrix: Water						Client	Sample ID: GCMW- Prep Type: Tol	P
Analysis Batch: 10	15077						Prep Batch: 10	
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Mercury	0.20	U	0.20	U	ug/L		NC	20

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 460-101 Matrix: Water	4819/13-4	۱.								CI	lent Sar	nple ID;		
													ype: To	
Analysis Batch: 1014825		MB										Prep B	atch: 10	014819
Analyte	D		Oualifier		RL	8	MDL.	11-14		D	Prepared	8 Ya23	vzed	Dil Fac
Cyanide, Total	~	10.0			10.0			ug/L		Contraction of the local sectors of the local secto	A COLORADO DE C	45 12/31/2	· · · · · · · · · · · · · · · · · · ·	Ulirac
Lab Sample ID: LCS 460-101	14819/14-	A							CI	ient Sa	ample II): Lab Co	ontrol S	ample
Matrix: Water													ype: To	
Analysis Batch: 1014825												Prep Ba		
				Spike		LCS	LCS					%Rec		
Analyte				Added	R	esult	Qual	lifier	Unit	0	%Rec	Limits		
Cyanide, Total				100	1	98.80			ug/L		99	85.115		
Lab Sample ID: MRL 460-10 Matrix: Water Analysis Batch: 1014825	14819/12-	A							CI	ient Sa	ample IC	Prep Ba	ype: To	tal/NA
212712121070				Spike		_	MRL	2300				%Rec		
Analyte				Added			Qual	ifier	Unit	D	1000	Limits		
Cyanide, Total				0.0100	0.0	0840	1		mg/L		64	50.150		
Lab Sample ID: 460-318022- Matrix: Water	3 MS									CI	lent Sar	Prep T	GCMW-	
Analysis Batch: 1014825												Prep Ba		
	Sample	Samp	ple	Spike		MS	MS					%Rec		
Analyte	Result	Qual	fier	Added	R	esult	Qual	ifier	Unit	D	%Rec	Limits		
Cyanide, Total	43.9			200	1	354.0	N		ugit	3	C155	90.110		
Lab Sample ID: 460-318022-	3 MSD									CI	ient San	nple ID: (GCMW-	09S-R
Matrix: Water												Prep T		
Analysis Batch: 1014825												Prep Ba		
2010/00	Sample	Samp	ale	Spike		MSD	MSD					%Rec		RPD
Analyte	Result	Quali	fler	Added	R	osult	Qual	fier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	43.9			200	2	287.0	N		ug/L	-	122	90.110	21	35

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-318022-3 MS Matrix: Water Analysis Batch: 1014703

Client Sample ID	: GCMW-09S-R
Prep	Type: Total/NA

Analysis Batch: 1014703									
420103900		Sample	Spike	MS	MS				%Rec
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	SRec	Limits
1,2-Dichloroethene, Total	2.0	U	40.0	40.2		ug/L		101	77 - 126
1,2-Dichloropropane	1.0	U	20.0	17.6		ug/L		58	72-128
2-Butanone (MEK)	5.0	U	100	130		ug/L		130	65.142
2-Hexanone	5.0	U	100	131		ug/L		131	72-134
4-Methyl-2-pentanone (MIBK)	5.0	U	100	119		ug/L		119	77 - 130
Acetone	5.0	U	100	107		ug/L		107	60.133
Benzene	2,3		20.0	20.1		ug/L		89	71 - 125
Bromodichloromethane	1.0	U	20.0	19.7		ug/L		99	76-121
Bromotorm NP. NA	1.0	U.	20.0	26.5	•	ugL		(133)	58 - 128
Bromomethane	1.0	U	20.0	16.5		ug/L		82	33.150
Carbon disulfide	1.0	U	20.0	17.4		ug/L		67	35.150
Carbon tetrachloride	1.0	U	20.0	20.8		ug/L		104	65-131
Chlorobenzene	1.0	U	20.0	20.7		ug/L		104	80.120
Chloroethane	1.0	U	20.0	18.0		ug/L		90	54 - 150
Chloroform	1.0	U	20.0	19.5		ug/L		98	78.125
Chloromethane	1.0	U	20.0	14,4		ugh		72	43.149
cis-1,3-Dichloropropene	1.0	U	20.0	18.4		ug/L		92	74.125
Dibromochioromethane	1.0	U*	20.0	23.4		ug/L		117	73 - 121
Ethylbenzene	43		20,0	60.3		ug/L		88	78.120
Methyl tert-butyl ether	1.0	U	20.0	21.1		ug/L		106	72.131
Methylene Chloride	1.0	U	20.0	18.8		ug/L		94	74.127
Styrene	1.0	U	20.0	22.7		ug/L		114	62-127
Tetrachloroethene	1.0	U	20.0	22.3		ug/L		112	70.127
Toluene	1.9		20.0	20.2		ugit		92	78.120
trans-1,3-Dichloropropene	1.0	U	20.0	19.1		ug/L		96	71-127
Trichloroethene	1.0	U	20,0	19.5		ug/L		98	73-121
Vinyl chloride	1.0	U	20.0	16.6		ug/L		83	65-144
Xylenes, Total	40		40.0	80.2		ug/L,		100	80 - 120
	1 march 1 marc	MS							
Surrogate	KRecovery	Qualifier	Limits						
1.2-Dichiomethane-d4 (Surr)	80		70.128						

and of all	Jan to Covery	C. Daminian	PT ALL ALL ALL ALL ALL ALL ALL ALL ALL AL
1,2-Dichloroethane-d4 (Surr)	89		70.128
4-Bromofluorobenzene	106		76-120
Dibromofluoromethane (Surr)	99		77.132
Toluene-d8 (Sum)	92		80 - 120
	0.5552		1.000

Lab Sample ID: 460-318022-3 MSD Matrix: Water Analysis Batch: 1014703

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	1.0	U	20.0	23.4		ug/L		117	72.128	13	30
1,1,2,2-Tetrachloroethane	1.0	U	20.0	23.2		ug/L		116	63.139	9	30
1,1,2-Trichloroethane	1.0	U	20.0	22.2		ug/L		111	74.125	15	30
1,1-Dichloroethane	0.74	J	20.0	20.1		ug/L		97	73 - 130	10	30
1,1-Dichloroethene	1.0	U	20.0	21.4		ugit		107	68.133	11	30
1,2-Dichloroethane	1.0	U	20.0	21.2		ug/L		106	66.129	12	30
1,2-Dichloroethene, Total	2.0	U	40.0	44,9		ug/L		112	77-126	11	30
1,2-Dichioropropane	1.0	U	20,0	19.7		ug/L		98	72.128	11	30

Eurofins Edison

Client Sample ID: GCMW-09S-R

Prep Type: Total/NA

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Prep Type: Total/NA

Client Sample ID: GCMW-09S-R

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 460-318022-3 MSD Matrix: Water

Analysis Batch: 1014703											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
(2-Butanone (MEK) N	5.0	U	100	152	•	ug/L		152	65-142	15	30
2-Hexanone	5.0	U	100	153		ug/L	0	153	72-134	15	30
4-Methyl-2-pentanone (MIBK)	5.0	U	100	138	*	ug/L		(138	77-130	15	30
Acetone	5.0	U	100	126		ug/L		126	60.133	16	30
Benzene	2.3		20.0	22.9		ug/L		103	71.126	13	30
Bromodichloromethane	1.0	U	20.0	23.4		up/L		117	76-121	17	30
Bromoform	1.0	U-	20.0	31.0		ug/L		155	358.128	16	30
Bromomethane	1,0	U	20.0	21.2		ug/L		106	33-150	25	30
Carbon disulfide	1.0	U	20.0	19.7		ug/L		99	35.150	13	30
Carbon tetrachloride	1,0	U	20.0	24.5		ugit		123	65.131	16	30
Chlorobenzene	1.0	U	20.0	24.0		ugh		120	80.120	15	30
Chloroethane	1.0	U	20.0	22.4		ugh		112	54.150	22	30
Chloroform	1.0	U	20.0	21.8		ug/L		109	78.125	11	30
Chloromethane	1.0	U	20.0	17.3		ug/L		86	43.149	18	30
cis-1,3-Dichloropropene	1.0	U	20.0	21.3		ug/L		107	74-125	15	30
Dibromochloromethane	1.0	U.	20.0	27.7	•	ug/L	3	139	73.121	17	30
Ethylbenzene	43		20.0	65.2		UG/L		112	78.120	8	30
Mothyl tort-butyl ether	1.0	U	20.0	23.7		ug/L		119	72.131	12	30
Methylene Chloride	1.0	U	20.0	21.2		ug/L		106	74-127	12	30
Styrene	/ 1.0	U	20.0	26.0		ug/L		(130	82-127	14	30
Tetrachloroethene	1.0	U	20.0	25.1		ug/L		125	70.127	12	30
Toluene	1.9		20.0	23.3		ug/L		107	78-120	14	30
trans-1,3-Dichloropropene	1.0	U	20.0	22.7		ug/L		113	71 - 127	17	30
Trichloroethene	1.0	U	20.0	23.0		ug/L		115	73-121	17	30
Vinyi chloride	1.0	U	20.0	20.3		ugA		102	55.144	20	30
Xylenes, Total	40		40.0	86.8		ug/L		116	80.120	8	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1.2-Dichloroethane-d4 (Sun)	88		70.125								
4-Bromofluorobenzene	109		76-120								
Dibromofluoromethane (Sun)	97		77.132								
Toluene-d8 (Surr)	92		80.120								

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-10144 Matrix: Water Analysis Batch: 1014470	nalysis Batch: 1014470								d Blank otal/NA 014466
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	2.0	U	2.0	0.64	ugt		12/29/24 10:53	12/29/24 13:06	1
1.2-Dichlorobenzene	10	U	10	0.50	upt		12/29/24 10:53	12/29/24 13:06	1
1,3-Dichlorobenzene	10	υ	10	2.0	ugt		12/29/24 10:53	12/29/24 13:06	1
1.4-Dichlorobenzene	10	U	10	1.1	ugt		12/29/24 10:53	12/29/24 13:06	1
2.2'-oxybis[1-chioropropane]	10	U	10	0.63	ugt		12/29/24 10:53	12/29/24 13:06	1
2.4.5-Trichlorophenol	10	U	10	0.88	ugt		12/29/24 10:53	12/29/24 13:05	1
2.4.6-Trichlorophenol	10	U	10	0.86	Ug/L		12/29/24 10:53	12/29/24 13:05	1
2.4-Dichiorophenol	10	U	10	1.1	ugt		12/29/24 10:53	12/29/24 13:06	1
2,4-Dimethylphenol	10	U	10		ugt		12/29/24 10.69	12/29/24 13:06	1

Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-318022-3 M Matrix: Water	IS						Client Sar	nple ID: GCMW-09S-R Prep Type: Total/NA
Analysis Batch: 1014470								Prep Batch: 1014466
	Sample	Sample	Spike	MS	MS			%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D %Rec	Limits
3,3'-Dichiorobenzidine	10	U	40.0	21.1		ug/L	(53	55-145
3-Nitroaniline	10	U	40.0	20.5		ug/L	51	51 - 120
4.6-Dinitro-2-methylphenol	20	U	80.0	100		ug/L	125	65-145
4-Bromophenyl phenyl ether D. NP	10	U	40.0	53.0		ug/L	(133)	59-132
4-Chloro-3-methylphenol	10	U	40.0	38.5		ug/L	86	54.120
4-Chloroaniline	10	U	40.0	18.7		ug/L	47	43.120
4-Chiorophenyl phenyl ether DO, N	P 10	U	40,0	51,5		ug/L	(129	65-127
4-Methylphenol	10	U	40,D	28.1		ug/L	70	28-120
4-Nitroaniline	10	U	40.0	35.3		ug/L	88	57.135
4-Nitrophenol	20	U	80.0	35.1		ug/L	44	10.120
Acenaphthene	120		40.0	184		ug/L	5.162	82 - 127
Acenaphthylene 5	2.9	3	40.0	58.9		ug/L	140	58.122
Anthracene	8.2		40.0	61.5		ug/L	(133)	67-127
Benzo[a]anthracene	1.0		40.0	52.0		ug/L	130	71-131
Benzo(a)pyrene	1.0		40.0	55.4		ug/L	138	75.148
Benzo/bittuoranthene	2.0		40.0	53.2		ug/L	133	70 - 140
Benzoighulperylene nD. 00	10		40.0	57.9		ug/L	<145	52.143
Benzo(k)/fuoranthene	1.0		40.0	52.8		ug/L	132	71-140
Bis(2-chloroethoxy)methane	10		40.0	48.8		ug/L	122	63 - 122
Bis(2-chloroethyf)ether /	1.0		40.0	47.8		ug/L	120	61 - 125
Bis(2-ethythexyl) phthalate	1.9		40.0	66.2		ug/L	C161	65.144
Butyl benzyl phthalate	10		40.0	54.1		ug/L	135	67 - 141
Carbazole	2.4		40.0	53.9		ug/L	129	68 - 132
Chrysene	2.0		40.0	51.2		ug/L	128	70 - 132
Dibenzia.h)anthracene	1.0		40.0	52.1		ug/L	130	63 - 150
Dibenzofuran 35	9.4		40.0	62.0		ug/L	< 132	264.125
Diethyl phthalate	10		40.0	46.4		ug/L	116	67-131
Dimethyl phthalate	10		40.0	48.4		ug/L	121	67.129
Di-n-butyl phthalate	10		40.0	63.3		ug/L	133	71-139
Di-n-octyl phthalate	10		40.0	67.1		ug/L	143	51-150
Fluorarithene	4,5		40.0	59.0		ug/L	136	69-137
Fluorene 3	46		40.0	103		ug/L	145	
Hexachiorobenzene	1.0	11	40.0	62.8		ug/L	132	62 - 135
Hexachiorobutadiene	1.0		40.0	50.7		ug/L	127	10-147
Hexachiorocyclopentations NO, N			40.0	61.7		ug/L	(154	210-135
Hexachloroethane	2.0		40.0	50.4		ugit	126	10-138
Indeno[1,2,3-od]pymme	2.0		40.0	53.4		ug/L	133	59.150
	10		40.0	49.7		ug/L	124	65-128
Isophorone					-		80	39.126
Naphthalene	300		40.0	337	P.	ug/L		66.127
Nitrobenzene	1.0		40.0	50.0		ug/L	125	63 - 133
N-Nitrosodi-n-propylamine	1.0		40.0	49.1		ug/L	123	
N-Nitrosodiphenylamine 700,00	10		40.0	52.7		ug/L	(132)	
Pentachiorophenol	20	U	80.0	101		og/L	126	60 - 140
Phenanthrene	57	991	40.0	117	2	ug/L	(151)	68-126
Phenol	10		40.0	17.3		ug/L	45	10.80
Pyrene	4.8	3	40.0	53.4		ug/L	122	60.137

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-318022-3 MS
Matrix: Water
Analysis Batch: 1014470

Client Sample ID: GCMW-09S-R Prep Type: Total/NA Prep Batch: 1014466

Client Sample ID: GCMW-09S-R

Prep Type: Total/NA

Surrogate	MS %Recovery	MS Qualifier	Limits
2,4,6-Tribromophenol (Surr)	72		37.150
2-Fluorobiphenyl	83		46.139
2-Fluorophenol (Surr)	38		16.80
Nitrobenzene-d5 (Surr)	83		51.145
Phenoi-d5 (Sun)	26		10.50
Terphenyl-d14 (Surr)	27		13.159

Leb Sample ID: 460-318022-3 MSD Matrix: Water

Analysis Batch: 1014470	10.2410-00120									atch: 101	
122222		Sample	Spike		MSD				%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1.2-Dichlorobenzene		nudur	40.0	34.0		ug/L		85	20.135	and the second se	30
and the second se	10	2010 UN	40.0	33,9		ug/L		85	18.128		> 30
1,3-Dichlorobenzene	10	-0.254	40.0	33.6		ug/L		64	11.130	the second second second	> 30
1.4-Dichlorobenzene	10		40.0	34.1		ug/L		65	14.129	and the second se	2 30
(2,2-caytis[1-chloropropane]	10	5251 E	40.0	35.0		ug/L		68	47 - 133	32	30
2.4.5-Trichlorophenol	10	0.000	40.0	30.5		ug/L		76	63 - 124	(37)	30
2,4,6-Trichlorophenol	10	U	40.0	32.2	•	ug/L		81	66.131	36	30
2,4-Dictilorophenol	10	N.C	40.0	29.3	•	ug/L		73	60.120	33	2 30
2,4-Dimethylphenol	10	1070	40.0	32.5	•	ug/L		51	37.120	< 34	30
2,4-Dintrophenol	40		80.0	64.4	*	ug/L		81	50.148	36	30
2,4-Dintrotoluene	10	U	40.0	36.6	•	ug/L		92	71-142	33	30
2.0-Dinitrotoluene	2.0	U	40.0	36.1	•	ug/L		90	71-136	33	30
2-Chioronaphthalene	10	U	40.0	34.9	•	ug/L		87	50-129	39	30
2-Chiorophenol	10	UV	40.0	26.5	•	ug/L		66	49-120	32	30
2-Methylnaphthalene	28		40.0	49.8	•	ug/L		55	42.134	42	-30
2-Methylohenol	10	anjanu	40.0	22.3		ug/L		56	35-120	32	30
2-Nitroanline	10	Ul	40.0	35.2		Ug/L		88	57.134	34	30
2-Nitrophenol	10	UL	40.0	32.2		up/L		81	62.124	34	30
3.3'-Dichlorobenzidine	10	U	40.0	18.2		ugiL	1.1	45	55.145	15	30
3-Nitroaniline	10	U	40.0	17.6		ug/L	1.0	C 44	51.120	15	30
4,6-Dinitro-2-methylphenol	20	ucoloo	80.0	64.3		ug/L		80	65.145	(4)	30
4-Bromophenyl phenyl ether	10	UI	40.0	34.7		ug/L		87	59-132	(42)	30
4-Chioro-3-methylphenol	10	UV	40.0	27.2		UD/L		68	54.120	(34)	30
4-Chloroaniline	10	U	40.0	15.7		ug/L		39	43.120	17	30
4-Chlorophenyl phenyl ether	10	99.99	40.0	35.2		ug/L		88	65.127	G	30
4-Methylphenol	10		40.0	20.8		ugit		52	28-120	30	30
4-Nitroanilne	10	U	40.0	26.6		ug/L		66	57.135	28	30
4-Nitrophenol		97.0410	80.0	25,1	*	ug/L		31	10_120	330	30
Acenaphthene	120		40.0		•3	ug/L		(9)	62.127	40	30
Acenaphthylene 3	2.9	3	40.0	40.1	• : :	ug/L		93	58.122	38	30
Anthracene	8.2		40.0	39.2		ug/L		77	67-127	(44	30
Benzo(a)anthracene co.co	1.0		40.0	33.4	÷	ug/L		83	71.131	44>	30
(Benzo(a)pyrene	1.0	(T) ()	40.0	36.1		ug/L		50	75.148	(42)	30
(Benzolb)/luoranthene	2.0	(5.1).	40.0	34.5		ug/L		86	70.140	(4)	30
(Benzolg h, ilpecylene)	10		40.0	37.2		ugL		93	52.143	4	30
Benzo k Muoranthens	1.0		40.0	33.9		ug/L		85	71.140	~4	30
Contradidation in the second	1.4		40.0	33.9		oge.		63	11+140	-	30

Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 460-3180 Matrix: Water Analysis Batch: 1014470	9.02.000.000.000						Client S		Type: Tot	al/NA
		Sample	Spike	MSD	MSD			%Rec	atch: 101	4465 RPD
Analyte		Qualifier	Added		Qualifier	Unit	0 %8		RPD	Limit
Bis(2-chioroethoxy)methans	a constant of the second s	U	40.0	35.3		ug/L		8 63-122		30
Bis(2-chloroethyljether	1.0	U	40.0	34.7		ug/L	8	7 61-125		
(Bis(2-ethylhexyl) phthalate	1.9	1	40.0	38.5		ugit		2 65.144	and the second sec	2 30
Butyl benzyl phthalate Dr.O.	- 10	U	40.0	35.5		Ug/L		9 67.141	C41	> 30
Carbazola	2.4		40.0	35.1		Ug/L				C (C)
Chrysene malina	2.0		40.0	33.5		ug/L	8			30
Dibenz(a,h)anthracene	1.0	U	40.0	33.7		ugit	8			
Dibenzofuran	9.4	J	40.0	41.6		ug/L	8	SE 1150 03775		30
Diethyl phthatate 100 100	10		40.0	32.8		ug/L	8	20 X X X X X X X X X X X X X X X X X X X	34	
Dimethyl phthalate	10		40.0	35.9		ug/L	9		30	30
Di-n-butyl phthalate			40.0	33.8		ug/L	8		C 45 1	30
Di-n-octyl phthalate	10	U	40.0	35.8		ugit	9		46	30
Fluoranthene	4.5		40.0	35.9		ug/L	7	1	49	30
Fluorene 5	46	-	40.0	68.1		ug/L	0		TICHNIA	
Haxachiorobenzene) 00.	0.1 10	U	40.0	34.7		ug/L	5		30	30
Hexachiorobutadiene	1.0		40.0	34.4		ug/L	5/		39	30
Hexachlorocyclopentadiene	10	0.750	40.0	40.4		UQ1	10	53 - NUT (PED)	(12	30
Hexachioroethane	2.0		40.0	35.6		ugi	8		34	30
Indeno[1,2,3-cd]pyrane	2.0		40.0	34.1		ug/L	8		44	
Isophorone	10	17.5	40.0	35.6		ug/L	85		33	30
Naphthalene 711 x	1. TO	172	40.0	263		ug/L	-105	A CONTRACTOR		0.7.5
Nitrobenzene) nole			40.0	36.1	CROWN IN THE	ug/L	-100		25	30 30
N-Nitrosod-n-propytamine	1.0		40.0	35.7		upt	85		31	30
N-Nitrosodiphenytamine	10	100	40.0	35.1		ugit	55		40	5.55
Pentachicrophenol	20	-	80.0	60.4		ug/L	74		The reason of	30
Phenanthrens	57		40.0	69.6		ug/L	31		51	30
Phonol 00,00	10	u	40.0	12.5		ug/L	31		32	
Pyrene 3/	4.6		40.0	36.2		ug/L	79		38	30
	MSD	MSD								
Surrogate	%Recovery	Qualifier	Limits							
2,4,6-Tribromophenol (Surr)	57		37.150							
2-Fluorobiphenyl	61		46-139							
2-Fluorophenal (Surr)	30		15.80							
Nitrobenzene-d5 (Surr)	64		51-145							
Phenol-d5 (Sun)	20		10.56							
Terphonys-d14 (Sum)	21		13.159							

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MB MB Analyte Result Qualifier RL Aroclor 1016 0.40 0.40 0.40 Aroclor 1016 0.40 0.40 0.40 Aroclor 1221 0.40 0.40 0.40	MDL Unit	D Prepared	888	
Arocior 1016 0.40 U 0.40 Arocior 1016 0.40 U 0.40	MOL Unit	D Branned		
Arodor 1016 0.40 U 0.40	the second	D Prepared	Analyzed	Dil Fac
	0.12 up/L	12/28/24 07:55	12/30/24 11:27	1
Aroclor 1221 0.40 U 0.40	0.12 ug/L	12/28/24 07:55	12/30/24 11:27	
	0.12 up/L	12/28/24 07:55	12/30/24 11:27	1
Aroclor 1221 0.40 U 0.40	0.12 ug/L	12/28/24 07:55	12/30/24 11:27	
Aroclor 1232 0.40 U 0.40	0.12 00%	12/28/24 07:55	12/30/24 11:27	1

Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318022-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 460-1014703/3 Matrix: Water	3				Clie	ent Sa	mple ID	: Lab Control Sample Prep Type: Total/NA
Analysis Batch: 1014703	1276							
1	1-10	Spike		LCS	1999	1023	0323	%Rec
Analyte		Added		Qualifier	Unit	D	-	Limits
1,1,2-Trichioroethane		20.0	19.0		ug/L		95	74 - 125
1,1-Dichloroethane		20.0	17.2		ug/L		86	73 - 130
1,1-Dichloroethene		20.0	19.4		ug/L		97	68.133
1,2-Dichloroethane		20.0	18.8		ug/L		94	66 - 129
1,2-Dichloroethene, Total		40.0	40.2		ugit		101	77 - 126
1,2-Dichioropropane		20.0	16.6		ug/L		83	72 - 128
2-Butanone (MEK)		100	132		ug/L		132	65.142
2-Hexanone		100	124		ug/L		124	72.134
4-Methyl-2-pentanone (MIBK)		100	117		ug/L		117	77.130
Acetone		100	107		ug/L		107	60.133
Banzone		20.0	17.9		ug/L		89	71-126
Bromodichloromethane		20.0	20.0		ug/L		100	76.121
Bromotorm , NO, NP		20.0	26.7	•	ug/L		134	58.128
Bromomethane		20.0	18.1		ug/L		90	33 - 150
Carbon disulfide		20.0	17.5		ug/L		88	35.150
Carbon tetrachloride		20.0	21.0		ugit		105	65.131
Chlorobenzene		20.0	21.0		ugit		105	80.120
Chioroethane		20.0	17.8		ug/L		69	54.150
Chioroform		20.0	19.4		ug/L		97	78-125
Chioromethane		20.0	14.4		ug/L		72	43-149
cis-1,3-Dichloropropena		20.0	18.4		ug/L		92	74.125
Dibromochloromethane		20.0	23.8		ug/L		119	73-121
Ethylbenzene		20.0	19.9		ug/L		99	78.120
Mothyl tert-butyl ether		20.0	20.0		ug/L		100	72-131
Methylene Chioride		20.0	18.7		UGL		94	74 - 127
Styrane		20.0	21.2		ug/L		106	82 - 127
Tetrachicrosthano		20.0	23.1		ug/L		115	70-127
Toluene		20.0	18.3		ug/L		91	78.120
trans-1,3-Dichloropropene		20.0	19.1		ugit		96	71.127
Trichlorgethene		20.0	19.8		ug/1.		99	73.121
Vinyl chloride		20.0	16.9		ug/L		85	55-144
and a manual			10.0					

	LCS	LCS	
Surrogate	KRecovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		70-128
4-Bromofluorobenzene	108		76.120
Dibromofluoromethane (Sun)	100		77 - 132
Toluene-d8 (Surr)	90		80.120

Lab Sample ID: LCSD 450-1014703/4 Matrix: Water Analysis Batch: 1014703

Xylenes, Total

Spike LCSD LCSD %Rec RPD Limits Limit Added Result Qualifier Unit D %Rec RPD Analyte 109 72.128 4 30 20.0 21.5 ug/L 1,1,1-Trichloroethane 20.0 22.0 110 63.139 8 30 1,1,2,2-Tetrachioroethane ug/L 74-125 10 30 1,1,2-Trichloroethane 20.0 21.1 ug/L 106 5 30 91 73.130 20.0 ug/L 1,1-Dichloroethane 16.2

40.0

41.3

UD/L

103 80-120

Client Sample ID: Lab Control Sample Dup

Eurofins Edison

Prep Type: Total/NA

Lab Sample ID: LCSD 4 Matrix: Water	60-1014703/4			Client	Sample ID: Li	b Control	Sampl	e Dup
Analysis Batch: 101470	1					Prep Ty	pe: To	tal/N/
Analysis Batch. 101410	(-10	Spike	1.040	LCSD		100000		
Analyte	(Added		00000000 Million		%Rec	-	RPD
1,1-Dictionethene		20.0	20.0	Contraction of the second seco	D %Rec		RPD	Limit
1,2-Dichloroethane		20.0	20.0	ug/L	100	68-133	3	30
1,2-Dichloroethene, Total		40.0	42.4	ug/L	100	66.129	6	30
1,2-Dichloropropane		20.0	17.7	upt	106	77.128	5	30
2-Butanone (MEK)		100	139	ug/L	89	72.128	7	30
2-Hexanone		100	130	207032	139	65.142	5	30
4-Methyl-2-pentanone (MIBK)		100	123	ug/L	130	72.134	5	30
Acelone		100	119	UgL	123	77.130	5	30
Benzene		20.0	18.9	ug/L ug/L	119	60_133 71_126	11	30
Bromodichloromethane		20.0	20.8	ug/L	104	100 C C C C C C C C C C C C C C C C C C	6	30
Bromoform D. CP		20.0	28.3		and a Lobert	76-121	4	30
Bromomethane		20.0	19.3	ug/L	97	33.150	0	30
Carbon disulfide		20.0	18.4	ug/L	92		7	30
Carbon tetrachioride		20.0	22.7	ug/L	114	35-150	5	30
Chlorobenzene		20.0	22.3	սց/Ն	114	0.025110.0255	8	30
Chioroethane		20.0	19.7	ug/L	98	54-150	6 10	30
Chloroform		20.0	20.6	ug/L	103	78.125	10000	30
Chloromethane		20.0	15.5	ug/L	77	43.149	67	30
cis-1,3-Dichloropropene		20.0	19.9	ug/L	99	74-125	1.25	30
	4n,Q	20.0	25.6		(128	73.121	8	30
Ethylbenzene		20.0	22.1	ug/L	110	78-120	10	30
Methyl tert-butyl other		20.0	21.5	ug/L	107	72.131	7	30 30
Methylene Chloride		20.0	20.1	ugiL	100	74.127	7	1.36
Stymene		20.0	22.6	ugit	113	62 - 127		30
etrachiorosthene		20.0	23.7	ugit	118	70.127	3	30 30
foluene		20.0	19.8	ug/L	99		8	2.50
rans-1.3-Dichloropropene		20.0	20.4	ug/L	102	78.120	6	30
richlorpethena		20.0	20.5	ug/L	102	73-121		30
/inyl chloride		20.0	17.5	ug/L	87	55.144	3	30
lylenes, Total		40,0	44.6	ug/L	111	80.120	8	30 30
	LCSD LCSD							
Surrogate	%Recovery Qualifi	er Limits						
,2-Dichloroethane-d4 (Sum)	89	70-128						
-Bromofivorobenzene	109	76.120						
Nbromofluoromethane (Sun)	99	77.132						
bluene-dil (Surr)	91	80.120						
ab Sample ID: 460-3180 Atrix: Water	22-3 MS				Client Sam	ple ID: GC Prep Typ		

Analysis Batch: 1014703

Analyte		Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec Limits
1,1,1-Trichloroethane	1.0	U	20.0	20.5		ug/L		102	72.128
1,1,2,2-Tetrachloroethane	1.0	U	20.0	21.3		ug/L		106	63.139
1,1,2-Trichloroethane	1.0	U	20.0	19.2		upt		96	74-125
1,1-Dichloroethane	0.74	J	20.0	18.2		ug/L		87	73.130
1,1-Dichloroethene	1.0	U	20,0	19.0		ug/L		95	68.133
1,2-Dichloroethane	1.0	U	20.0	16.6		ug/L		94	66.129
						10.000			

Eurofins Edison

.

Mathad 00004 Detable to the

Lab Sample ID: MB 460-1 Matrix: Water Analysis Batch: 1014538									à	Clic		ple ID: Metho Prep Type: 1	fotal/NA
Analysis Batch. 1014030		-	MB									Prep Batch: '	1014372
Analyte	P		Qualifier	1.0	L	-	Hell					2001200002	
Arodor 1232		0.40		0.	August 1		Unit		D		repared	Analyzed	Dil Fac
Arocior 1242		0.40		0.4	377		Ugi					12/30/24 11:27	
Aroclor 1242		0.40	0.77.1	0.4			ugt					12/30/24 11:27	
Vocior 1248		0.40	0.000	0.4	27 - C		upt			03.67	8/24 07:55 8/24 07:55		
Arocior 1248		0.40	1.7.1	0.4			upt			1000	6/24 07:55		
Vocior 1254		0.40	07.0	0.4	3		1003040					12/30/24 11:27	
vocior 1254		0.40	and a second sec	0.4	0.0	0.11						12/30/24 11:27	
vocior 1260		0,40	0.5	0.4	24		ugit					12/30/24 11:27	;
vodor 1260		0.40	57 C	0.4	-	0.11							
roclor-1262	12	0.40	170	0.4	₹. I	0.11						12/30/24 11:27	1
vocior-1262		0.40	75.0	0.4		1.05500	ugt			10.52	122020000	12/30/24 11:27	1
rodor 1268		0.40		0.4	2. · · · ·					100.00	1.000	12/30/24 11:27	1
rocior 1268		0.40	121	0.4	S1	0.11				10.81		12/30/24 11:27	1
olychiorinated biphenyls, Total		0.40	577 U	10000	Č) (0.11					이야 요즘 안가지?	12/30/24 11:27	1
olychlorinated biphenyls, Total		0.40	20.0	0.4	34	0.12			- 3	1923		12/30/24 11:27	1
- January and Strangla, 1942			S		0	0.12	ngir		0	2/21	\$24 07.50	12/30/24 11:27	1
urrogate		MB	MB Qualifier	Limits						D.		Archived	-
C8 Decachlorobiphenyl		100		18.145					1		epared	Analyzed 12/30/24 11:27	Dil Fac
CB Decachlorobiphenyl		106		18.145									1
etrachioro-m-xylana		104		21-124								12/30/24 11:27	
strachloro-m-xylene		104		21.124								12/30/24 11:27	1
a name a statistica de		104		21-124					1	2/28	24 07:55	12/30/24 11:27	1
ab Sample ID: LCS 460-1	1014372/2-A			10				Clier	nt S	San		Lab Control S	
Aatrix: Water		2	-3,9	-10								Prep Type: Te	
analysis Batch: 1014538											F	Prep Batch: 1	014372
nalyte				Spike		LCS				20		%Rec	
radior 1016				Added	Result	Unit Adda	lifier	Unit		D	Adding Comments	Limits	
oclor 1016				4.00	4,42			ug/L				42-120	
				4.00	4.24			ug/L				42 - 120	
roclar 1260 roclar 1260				4.00	4.55			ug/L				42.126	
OCIOF 1200				4.00	4.67			ug/L			117	42-126	
	LCS												
wrogate	SRecovery	Qual		Limits									
CB Decachlorobiphenyl	104			18.145									
CB Decachlorobiphenyl	107			18.145									
trachioro-m-xylene	109		一般	21.124									
trachloro-m-xylene	111		63	21 - 124									
ab Sample ID: LCSD 460-	-1014372/3-A						c	lient Sar	mp	le II	D: Lab (Control Samp	le Dup
atrix: Water												Prep Type: To	
nalysis Batch: 1014538												rep Batch: 10	
100				Spike	LCSD	LCS	2					%Rec	RPD
				A	10000000	115000	225					20/00.55	0.000

	Spike	LCSD	LC5D				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arodor 1016 00,002	4.00	4.82		ug/L		121	42 . 120	9	30
Aroclor 1016	4.00	4.62		ug1		115	42.120	9	30
Aroclar 1250	4.00	5.02		ugh		125	42.126	10	30
Aroclor 1250 00,00	4.00	5.38	•	ug/L	1	(134)	42.126	14	30

Eurofins Edison

Target Compound Quantitation Report

Data File: Lims ID:	\\chromfs\Edison\ChromData\C 460-318022-B-3	VOAMS1/20241231-18	5340.b\A21	120.D	
Client ID:	GCMW-09S-R				
Sample Type:	Client				
Inject. Date:	31-Dec-2024 14:54:30	ALS Bottle#:	20	Worklist Smp#:	20
Purge Vol:	5.000 mL	Dil. Factor:	1.0000		
Sample Info:	460-318022-B-3				
Misc. Info .:	460-0185340-020				
Operator ID:		Instrument ID:	CVOAMS	51	
Method:	\\chromfs\Edison\ChromData\C	VOAMS1\20241231-18	5340.6\8260	624W 1.m	
Limit Group:	VOA - 8260D Water and Solid			-	
Last Update:	02-Jan-2025 07:04:39	Calib Date:	22-Oct-20	024 05:47:30	
Integrator:	RTE	ID Type:	Deconvol	lution ID	
Quant Method:	Internal Standard	Quant By:	Initial Cal	ibration	
Last ICal File:	\\chromfs\Edison\ChromData\C	VOAMS1\20241022-18	2449.b\A185	538.D	
Column 1 : Process Host:	Rtx-624 (0.25 mm) CTX1608		Det: MS	SCAN	

First Level Reviewer: KG2Q Date: 02-Jan-2025 07:01:13 RT Exp RT DIt RT OnCol Amt Compound Sig (min.) (min.) (min.) Q Flags Response ug/I * 30 TBA-d9 (IS) 65 3,134 3.134 0.000 0 142847 1000.0 38 1.1-Dichloroethane 63 3.745 3.746 -0.001 96 3514 0.7441 42 2-Butanone-d5 46 4.222 4.228 -0.006 0 167007 250.0 \$ 55 Dibromofluoromethane (Surr) 113 4.716 4.716 0.000 97 121463 54.2 60 Benzene 78 5.081 5.087 -0.006 94 24948 2.35 \$ 61 1,2-Dichloroethane-d4 (Surr) 5.098 -0.001 119064 46.7 65 5.099 0 66 Fluorobenzene 96 5.387 5.387 0.000 99 440301 50.0 73 1,4-Dioxane-d8 96 0.000 18822 1000.0 6.157 6.157 0 \$ 83 Toluene-d8 (Surr) 7.245 7.245 0.000 100 433043 45.6 98 7.333 7.334 -0.001 93 20657 1.92 84 Toluene 91 94 Chlorobenzene-d5 117 9.327 9.328 -0.001 85 335484 50.0 96 Ethylbenzene 106 9.445 9,445 0.000 98 138943 42.7 9.575 9.575 -0.001 56997 14.1 98 m-Xylene & p-Xylene 106 0 100 o-Xylene 106 9.957 9.957 0.000 95 101509 26.3 \$ 105 4-Bromofiuorobenzene 174 10,422 10.422 0.000 92 139902 57.0 121 1.4-Dichlorobenzene-d4 152 11.233 11.233 0.000 95 191732 50.0 100 0 40.4 S 137 Xylenes, Total OC Flog I acond

Processing Flags
Reagents:
8260ISNEW_00192
8260SURR250_00252

Amount Added:	1.00	
Amount Added:	1.00	

Units: uL Units: uL Run Reagent Run Reagent

- (2.317) 335434 1.5837

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofina Edison	Job No.: 460-318022-1			
SDG No.:				
Client Sample ID: GCMW-095-R	Lab Sample ID: 460-318022-3			
Matrix: Water	Lab File ID: A21120.D			
Analysis Method: 8260D	Date Collected: 12/26/2024 09:00			
Sample wt/vol: 5(mL)	Date Analyzed: 12/31/2024 14:54			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)			
Purge Volume: 5.0(mL)	Heated Purge: (Y/N) N pH:			
Moisture: % Solids:	Level: (low/med) Low			
Analysis Batch No.: 1014703	Units: ug/L			
Preparation Batch No.:	Instrument ID: CVOAMS1			

CAS NO.	COMPOUND NAME	RESULT	0	RL	MDL
71-55-6	1,1,1-Trichloroethane	1.0	U	1.0	0.2
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U	1.0	0.3
79-00-5	1,1,2-Trichloroethane	1.0	U	1.0	0.2
75-34-3	1,1-Dichloroethane	0.74	J	1.0	0.2
75-35-4	1,1-Dichlorgethene	1.0	U	1.0	0.2
107-06-2	1,2-Dichloroethane	1.0	U	1.0	0.4
540-59-0	1,2-Dichloroethene, Total	2.0	U	2.0	0.4
78-87-5	1,2-Dichloropropane	1.0	U	1.0	0.3
78-93-3	2-Batanone (MEK)	5.0	U	5.0	1.
591-78-6	2-Hexanone	5.0	U	5.0	1.
108-10-1	4-Methyl-2-pentenone (MIBE)	5.0	0	5.0	1.
67-64-1	Acetone	5.0	U	5.0	4.
71-43-2	Benzene	2.3	1./	1.0	0.2
75-27-4	Bromodichloromethane	1.0	0	1.0	0.3
75-25-2	Bromoform	1.0	u •	1.0	0.5
74-83-9	Bromonethane	1.0	U	1.0	0.5
75-15-0	Carbon disulfide	1.0	U	1.0	0.8
56-23-5	Carbon tetrachloride	1.0	U	1.0	0.2
108-90-7	Chlorobenzene	1.0	Ù	1.0	0.3
75-00-3	Chloroethane	1.0	U	1.0	0.3
67-66-3	Chloroform	1.0	t	1.0	0.3
74-87-3	Chloromethane	1.0	U	1.0	0.4
10061-01-5	cis-1, J-Dichloropropene	1.0	U	1.0	0.2
124-48-1	Dibromochloromethane	1.0	U •	1.0	0.2
100-41-4	Ethylbenzene	43		1.0	0.3
1634-04-4	Methyl tert-butyl ether	1.0	0	1.0	0.2
15-09-2	Methylene Chloride	1.0	U	1.0	0.3
100-42-5	Styrene	1.0	9	1.0	0.4
27-18-4	Tetrachloroethene	1.0	U	1.0	0.2
108-88-3	Toluene	1.9		1.0	0.3
10061-02-6	trans-1,3-Dichloropropene	1.0	5	1.0	0.2
79-01-6	Trichloroethene	1.0	0	1.0	0.3

Eurofins Edison Target Compound Quantitation Report

Data File: Lims ID:	\\chromfs\Edison\ChromData\ 460-318022-E-3-A	CBNAMS17/20241229-1	85270.b\M3	4017.D	
Client ID:	GCMW-09S-R				
Sample Type:	Client				
Inject. Date:	29-Dec-2024 18:21:30	ALS Bottle#:	21	Worklist Smp#:	21
Injection Vol:	5.0 ul	Dil. Factor.	1,0000	Wordist Shipe,	21
Sample Info:	460-0185270-021		1.0000		
Operator ID:		Instrument ID:	CBNAMS	517	
Method:	\\chromfs\Edison\ChromData\	CBNAMS17\20241229-1	85270.6\827	0LVI 17.m	
Limit Group:	SV 8270E ICAL		0.512.007.00		
Last Update:	30-Dec-2024 12:09:39	Calib Date:	22-Nov-2	024 12:56:30	
Integrator:	RTE	ID Type:	Deconvol	lution ID	
Quant Method:	Internal Standard	Quant By:	Initial Cal	ibration	
Last ICal File:	\\chromfs\Edison\ChromData\(CBNAMS17\20241122-1	83810.b\M32	2908.D	
Column 1 : Process Host:	Rbd-5Sil MS (0.25 mm) CTX1669		Det: MS S	SCAN	

Date:

First Level Reviewer: LKI7

30-Dec-2024 11:13:58

That Lord The handle Link	14141 C	1 m m m m m m m m m m m m m m m m m m m		voice+		00-000-20	24 11.13.30	Y
Compound	Sig	RT (min.)	Adj RT (min.)	Dit RT (min.)	Q	Response	OnCol Amt ug/ml	Flags
4 2-Fluorophenol	112	2,705	2.698	0.007	97	373437	4,18	
6 Phenol-d5	99	3.596	3.595	0.001	0	317359	2.81	
10 Benzonitrile	103	3.788	3.704	0.081	51	49893	NC	
15 1,4-Dichlorobenzene-d4	152	3.951	3.950	0.001	94	533508	8.00	
12 2-Toluidine	107	4.270	4.263	0.009	37	1172	NC	
28 Nitrobenzene-d5	82	4,494	4,494	0.000	83	729066	7.80	
38 Naphthalene-d8	136	5,191	5.190	0.001	99	2028214	8.00	
39 Naphthalene	128	5.210	5.209	0.001	97	10258218	38.1	EeMa
48 2-Methylnaphthalene	142	5.882	5.880	-0.002	85	607146	3.45 L	/
47 1-Methylnaphthalene	142	5.978	5.974	0.002	92	3838448	24.1	E
53 2-Fluorobiphenyl	172	6.244	6.245	-0.001	97	1452277	7.14	
54 1,1'-Biphenyl	154	6.337	6.338	-0.001	95	336015	1.56 60	ING .
58 1,3-Dimethylnaphthalene	156	6.558	6.560	-0.004	95	577756		PICEE
62 Acenaphthylene	152	6.737	6.738	-0.004	97	89970	0.3581	19911
64 Acenaphthene-d10	164	6.875	6.878	-0.003	95	1066977		1.45
66 Acenaphthene	154	6.907	6.907	0.000	95	2261302	14.9	31.1. 1
70 Dibenzofuran	168	7.070	7.071	-0.004	97	265439	1.17	
74 Fluorene	166	7.397	7.397	-0.003	94	1002326	5.69	
80 2,4,6-Tribromophenol	330	7,624	7.627	-0.003	91	266897	7.68	
81 1-Naphthylamine	143	8.258	8.246	0.006	46	144	NC	
88 Phenanthrene-d10	188	8.284	8.286	-0.002	98	1809559	8.00	
89 Phenanthrene	178	8,307	8.308	-0.001	98	1724057	7.14	
90 Anthracene	178	8.351	8.356	-0.005	98	252081	1.03	
91 Carbazole	167	8.515	8.516	-0.004	96	62874	0.2939	
82 2-Naphthylamine	143	8.509	8.538	-0.036	18	93	NC	
93 Fluoranthene	202	9.428	9.430	-0.005	97	123227	0.5615	
95 Pyrene	202	9.640	9.641	-0.004	97	129640	0.5948	
97 Terphenyl-d14	244	9.816	9.817	-0.001	98	867826	5.01	
103 Chrysene-d12	240	10.861	10.866	-0.006	99	1075215	8.00	
105 Bis(2-othylhexyl) phthalate	149	10,963	10.965	-0.002	88	25083	0.2345	
110 Perylene-d12	264	12.694	12.695	-0.001	98	1096313	8.00	

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Edison		Job No.: 460-318022-1	
SDG No.:			
Client Sample ID:	GCMW-095-R	Lab Sample ID: 460-318022-3	
Matrix: Water		Lab File ID: M34017.D	
Analysis Method: 8270E		Date Collected: 12/26/2024 09:00	
Extract, Method: 3510C		Date Extracted: 12/29/2024 10:53	
Sample wt/vol: 250(mL)		Date Analyzed: 12/29/2024 18:21	
Con. Extract Vol.	: 2 (mL)	Dilution Factor: 1	
Injection Volume:	5(uL)	GC Column: Rtx1-5511 MS ID: 0.25(mm)	
% Moisture:	% Solids:	GPC Cleanup: (Y/N) N	
Cleanup Factor:		Level: (low/med) Low	
Analysis Batch No	.: 1014470	Units: ug/L	
Preparation Batch No.: 1014466		Instrument ID: CBNAMS17	

	COMPOUND NAME	RESULT	Q	RL	MDL
120-82-1	82-1 1,2,4-Trichlorobenzene		υ	2.0	0.6
95-50-1	1,2-Dichlorobenzene	10	U	10	0.5
541-73-1	1,3-Dichlorobenzene	10	U	10	2.
105-46-7	1,4-Dichlorobenzene	10	U	10	3.
108-60-1	2,2'-oxybis[1-chloropropane]	10	U	10	0.6
95-95-4	2,4,5-Trichlorophenol	10	U	10	0.8
88-06-2	2,4,6-Trichlorophenol	10	U	10	0.8
120-83-2	2,4-Dichlorophenol	10	U	10	1.
105-67-9	2,4-Dimethylphenol	10	U	10	0.6
51-28-5	2,4-Dinitrophenol	40	U	40	1
121-14-2	2,4-Dinitrotoluene	10	U	10	1.
06-20-2	2,6-Dinitrotoluene	2.0	U	2.0	0.8
1-58-7	2-Chloronaphthalene	10	U	10	1.
5-57-8	2-Chlarophenol	10	0 /	10	0.9
1-57-6	G-Methylnaphthalene	28	51	10	0.5
5-48-7	2-Methylphenol	10	U	10	0.6
8-74-4	2-Nitroaniline	10	U	10	1.
8-75-5	2-Nitrophenol	10	U	10	0.7
1-94-1	3, 3'-Dichlorobenzidine	10	U	10	1.
9-09-2	3-Nitroaniline	10	U	10	1.
34-52-1	4,6-Dinitro-2-methylphenol	20	U	20	8.
01-55-3	4-Bronophenyl phenyl other	10	U	10	0.7
9-50-7	4-Chloro-3-methylphenol	10	U	10	1.5
06-47-8	4-Chloroaniline	10	U	10	1.3
005-72-3	4-Chlorophenyl phenyl ether	10	U	10	1.3
06-44-5	4-Methylphenol	10	0	10	0.65
00-01-6	4-Nitroaniline	10	U	10	1.3
00-02-7	4-Nitrophenol	20	0	20	4.0
3-32-9	Acenaphthene	120		10	1.1
08-96-8	Acenaphthylene	2.9	J	10	0.8
20-12-7	Anthracene 201	8.2	J	10	1.3

FORM I 8270E

Page 816 of 2780

Report Date: 31-Dec-2024 10:47:29

Chrom Revision: 2.3 17-Dec-2024 12:44:46

Eurofins Edison

Target Compound Quantitation Report

1. 1. 4. 2. 2. 2. 2. 2. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	[[[[]]] [[]]][[]]][[]]][[]]][[]]][[]]]				
Data File:	\\chromfs\Edison\ChromData\C	PESTGC14\20241230-	-185294.b\14	F0010530.D	
Lims ID:	460-318022-G-9-A				
Client ID:	DUP-01				
Sample Type:	Client				
Inject, Date:	30-Dec-2024 14:25:05	ALS Bottle#:	90	Worklist Smp#:	27
Injection Vol:	1.0 ul	Dil. Factor:	1.0000		_
Sample Info:	460-0185294-027				
Operator ID:		Instrument ID:	CPESTG	C14	
Method:	\\chromfs\Edison\ChromData\C	PESTGC14\20241230-	185294.6\80	82GC14 m	
Limit Group:	GC 8082A PCB ISTD				
Last Update:	31-Dec-2024 10:43:32	Calib Date:	23-Oct-20	024 13:24:19	
Integrator:	Falcon				
Quant Method:	Internal Standard	Quant By:	Initial Cal	ibration	
Last ICal File:	\\chromfs\Edison\ChromData\Ci		182534.b\14	F0008291.D	
Column 1 :	Rtx-CLPesticides (0.53 mm)		Det: GC E	CD1A	
Column 2 :	Rtx-CLP Pest 2 (0.53 mm)		Det: GC E		
Process Host:	CTX1623				
First Level Review	wer: COTZ	Date:	31-Dec-2	024 10:42:24	

Col	RT (min.)	Exp RT (min.)	Dit RT (min.)	Response	OnCol Amt ug/l	Flags
13	I-Bromo-	2-nitroben	zene			
1	2.242	2.235	0.007	48325380	20.0	
2	1.923	1.917	0.006	98412368	20.0	

4	1.923	1.917	0.006	98412368	20.	0
					RPD =	0.00
0.7	and the second second					

\$ 2 Tetrachloro-m-xylene

1	3.329	3.320	0.009	202541587	(88.1	V
2				475751832		

RPD = 0.07

202541537 - 20 = 88.06 L 48325380 .9518 = 88.06 L

FORM I PCBS ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Edison		Job No.: 460-318022-1			
SDG No.:					
Client Sample ID:	: DUP-01	Lab Sample ID: 460-3180	022-9		
Matrix: Water		Lab File ID: 14F0010530	0.D		
Analysis Method: 8082A		Date Collected: 12/26/2	024 00:00		
Extraction Method: 3510C		Date Extracted: 12/29/	2024 07:56		
Sample wt/vol: 250(mL)		Date Analyzed: 12/30/2024 14:25			
Con. Extract Vol.	: 1(mL)	Dilution Factor: 1			
Injection Volume:	1 (uL)	GC Column: Rtx-CLP	ID: 0.53(mm)		
% Moisture:	<pre>% Solids:</pre>	GPC Cleanup:(Y/N) N			
Cleanup Factor:					
Analysis Batch No	.: 1014538	Unita: ug/L			
Preparation Batch	No.: 1014372	Instrument ID: CPESTGC14			

CAS NO.	SURROGATE	AREC Q	LIMITS
2051-24-3	DCB Decachlorobiphenyl	95_	18-145
877-09-8	Tetrachloro-m-xylene	68	21-124

1A-IN INORGANIC ANALYSIS DATA SHEET METALS - TOTAL RECOVERABLE

Client Sample ID: GCMM-205	Lab Sample ID: 460-318022-2
Lab Name: Eurofins Edison	Job No.: 460-310022-1
55G 15.1	
Hatrix: Water	Date Sampled: 12/26/2024 08:50
Reporting Basis: WET	Date Received: 12/27/2024 18:00
Preparation Batch Number: 1015034	Instrument ID: ICPM34

CAS No.	Analyte	Result	RL	MDL	Unite	c	٩	DIL	Mathod
7429-90-5	Aluminum	20700	10.0	11.7	ug/L		-	1	60208
7440-36-0	Antimony	34.7	2.0	0.48	ug/L	1		-	60203
7440-38-2	Arsenic	13.3	2.0	1.2	19/2	-	-	- î	60208
7440-39-3	Barium	357	4.0	0.93	29/2	1	-	1	6020h
7440-41-7	Baryllium	1.3	0.80	0.12	ug/L			- î	60208
7440-43-9	Cadmiun	1.7	2.3	0.58	ug/t.	3	-	1	6020B
7440-70-2	Calcium	116000	500	31.7	ug/L	10		- î	60203
7440-47-3	Ctronius	52.6	4.0	1.7	09/1		-	1	60203
7440-49-4	Cobalt	20.4	4.0	0.41	ug/L	1		1	60208
7440-50-8	Copper	68.0	4.0	2.0	vg/L			1	60208
439-89-6	Tron	45000	120	33.7	ug/t.		-	1	6020B
439-92-1	Load	67.2	5.2	0.42	ug/L	-		1	60208
439-95-4	Magnesium	32100	200	21.8	ug/L			1	60208
439-96-5	Manganese	3660	6.0	0.84	Dg/1	-	-	1	60208
440-02-0	Nickel	43.1	4.0	1.4	102/1	-		i	60208
440-03-7	Potassium	10700	200	83.3	ug/L		-	1	60208
782-49-2	Selenium	9.4	2.5	0.43	29/1		-	1	£0268
440-22-4	Silver	2.0	2.0	1.3	ug/L			1	6020B
440-23-5	Sodium	39700	500	180	ug/1		-	1	6020B
440-28-0	Thellium	0.60	0.80	0.19	ug/1	0	-	1	60203
440-62-2	Vanadium	53.2	4.0	1.0	00/1	1.20		1	60203
440-55-6	Zinc	346	16.0	4.2	19/1	-			6020B

Site:	Glen Clove Quarterly Groundwater Monitoring
Laboratory:	Eurofins, Edison, NJ
Report Number:	460-318143
Reviewer:	Bethany Russell/GEI Consultants
Date:	January 22, 2025

Samples Reviewed and Evaluation Summary

[FIELD ID	LAB ID	FRACTIONS VALIDATED
	GCMW-08S	460-318143-1	VOC, SVOC

The above-listed aqueous sample was collected on December 31, 2024, and was analyzed for volatile organic compounds (VOCs) by SW-846 method 8260D and semivolatile organic compounds (SVOCs) by SW-846 method 8270E. The data validation was performed in accordance with the following USEPA Region 2 Documents: Standard Operating Procedure (SOP) for Validation of Volatile Data, QA-HWSS-A-004 (March 2022), SOP for Validation of Semivolatile Data, QA-HWSS-A-005 (April 2022), as well as by the methods referenced by the data package and professional and technical judgment.

The data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Internal Standard Results
- Field Duplicate Results
- Laboratory Control Sample (LCS)/LCS Duplicate (LCSD) Results
- Quantitation Limits
- Sample Quantitation and Compound Identification

The following sample was listed on the Chain of Custody (COC); however, no sample was received: TB-12312024 (460-318143-2). Sample analysis was canceled on 1/10/25 per client request.

All results appear usable as reported or usable with minor qualification due to uncertainty for levels below the reporting limit and continuing calibration exceedances. These results were considered valid; even though some were qualified as discussed below.

The validation findings were based on the following information.

Data Completeness

The data package was complete as received by the laboratory.

Site: Glen Cove Quarterly Groundwater Monitoring Report Number: 460-318143 Date: January 22, 2025

Holding Times and Sample Preservation

All criteria were met.

GC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All initial and continuing calibration criteria were met except where noted below.

Instrument/ Calibration Standard	Compound	Calibration Exceedance	Validation Qualifier
		VOCs	
CVOAMS7 CCV	Bromomethane	40.4 %D	Estimate (UJ) the nondetect results in the associated
460-1014989/2	2-Butanone	22.0 %D	sample.
Associated samples:	GCMW-08S		
		SVOCs	
CBNAMS17 CCV 460-1015134/2	Bis(2-ethylhexyl)phthalate	24.8 %D	Estimate (UJ) the nondetect result in the associated sample.
Associated some last	COMULARS		

Associated samples: GCMW-08S

Initial calibration (ICAL) relative standard deviation (%RSD) > 20% for VOC and SVOC; estimate (J) positive and blank-qualified (UJ) results only.

Continuing calibration (CCAL) percent difference (%D) > 20% for VOC and SVOC; estimate (J/UJ) positive and nondetect results.

Response factor (RF) < 0.05; Estimate (J) positive results and reject (R) nondetect results.

Reporting limit standard Criteria of 70-130 %R not met: estimate (J/UJ) results <10xRL dependent on recovery.

<u>Blanks</u>

Contamination was not detected in the laboratory instrument and method blank samples.

Surrogate Recoveries

All surrogate recovery criteria were met.

MSMSD Results

MS/MSD analyses were not associated with this sample set.

Internal Standard Results

Site: Glen Cove Quarterly Groundwater Monitoring Report Number: 460-318143 Date: January 22, 2025

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set.

LCS/LCSD Results

All compound recovery and precision criteria were met in the LCS and/or LCSD samples.

Quantitation Limits

Results were reported which were below the reporting limit (RL) and above the method detection limit (MDL). If detected, these results were qualified as estimated (J) by the laboratory. The direction of the bias is indeterminate for these results.

No sample dilutions were performed.

Sample Quantitation and Compound Identification

Compound identification criteria were met. Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-08S

Date Collected: 12/31/24 10:35 Date Received: 12/31/24 16:30

Lab Sample ID: 460-318143-1 Matrix: Water

Method: SW846 8260D - Ve Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane		U	1.0		ug/L		Toparca	01/03/25 14:06	Dirra
1,1,2,2-Tetrachloroethane	1.0	U	1.0		ug/L			01/03/25 14:06	
1,1,2-Trichloroethane	1.0	U	1.0		ug/L			01/03/25 14:06	
1,1-Dichloroethane	1.0	U	1.0		ug/L			01/03/25 14:06	
1,1-Dichloroethene	1.0	U	1.0		ug/L			01/03/25 14:06	1
1,2-Dichloroethane	1.0	U	1.0		ug/L			01/03/25 14:06	1
1,2-Dichloroethene, Total	2.0	U	2.0		ug/L			01/03/25 14:06	1
1,2-Dichloropropane	1.0	U	1.0		ug/L			01/03/25 14:06	1
2-Butanone (MEK)	5.0	UJ	5.0		ug/L			01/03/25 14:06	1
2-Hexanone	5.0	U	5.0	1.1				01/03/25 14:06	1
4-Methyl-2-pentanone (MIBK)	5.0	U	5.0		ug/L			01/03/25 14:06	1
Acetone	5.0	U	5.0		ug/L			01/03/25 14:06	1
Benzene	1.0	U	1.0		ug/L			01/03/25 14:06	1
Bromodichloromethane	1.0	U	1.0		ug/L			01/03/25 14:06	1
Bromoform	1.0	U	1.0		ug/L			01/03/25 14:06	1
Bromomethane	1.0	UJ	1.0		ug/L			01/03/25 14:06	1
Carbon disulfide	1.0		1.0		ug/L			01/03/25 14:06	1
Carbon tetrachloride	1.0		1.0		ug/L			01/03/25 14:06	1
Chlorobenzene	1.0		1.0	0.38	10 M M			01/03/25 14:06	1
Chloroethane	1.0		1.0	0.32				01/03/25 14:06	1
Chloroform	1.0		1.0	0.33				01/03/25 14:06	1
Chloromethane	1.0		1.0	0.40	C 1000 (11)			01/03/25 14:06	1
sis-1,3-Dichloropropene	1.0		1.0	0.22				01/03/25 14:06	1
Dibromochloromethane	1.0		1.0	0.28				01/03/25 14:06	1
Ethylbenzene	1.0		1.0	0.30				01/03/25 14:06	1
Methyl tert-butyl ether	1.0		1.0	0.22				01/03/25 14:06	1
Methylene Chloride	1.0		1.0	0.32				01/03/25 14:06	1
Styrene	1.0		1.0	0.42	10.72			01/03/25 14:06	1
fetrachloroethene	1.0		1.0	0.25	10110-701-001			01/03/25 14:06	1
Foluene	1.0		1.0	0.38	Contraction of the second s			01/03/25 14:06	. 1
rans-1,3-Dichloropropene	1.0		1.0	0.22				01/03/25 14:06	1
richloroethene	1.0	10711	1.0	0.31				01/03/25 14:06	1
/inyl chloride	1.0		1.0	0.17				01/03/25 14:06	1
(ylenes, Total	2.0		2.0	0.65				01/03/25 14:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	102		70-128					01/03/25 14:06	1
-Bromofluorobenzene	93		76 - 120					01/03/25 14:06	1
)ibromofluoromethane (Surr)	93		77 - 132					01/03/25 14:06	1
Coluene-d8 (Surr)	98		80 - 120					01/03/25 14:06	1
Method: SW846 8270E - Se	mivolatile Org	anic Comp	ounds (GC/N	IS)					
Analyte		Qualifier	ŘL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,2,4-Trichlorobenzene	2.0	U	2.0	0.64	ua/L		01/04/25 11:13	01/04/25 23:21	1

raidifyto									
1,2,4-Trichlorobenzene	2.0	U	2.0	0.64	ug/L		01/04/25 11:13	01/04/25 23:21	1
1,2-Dichlorobenzene	10	U	10	0.50	ug/L		01/04/25 11:13	01/04/25 23:21	1
1,3-Dichlorobenzene	10	U	10	2.0	ug/L		01/04/25 11:13	01/04/25 23:21	1
1,4-Dichlorobenzene	10	U	10	1.1	ug/L		01/04/25 11:13	01/04/25 23:21	1
2,2'-oxybis[1-chloropropane]	10	U	10	0.63	ug/L		01/04/25 11:13	01/04/25 23:21	1
2,4,5-Trichlorophenol	10	U	10	0.88	ug/L		01/04/25 11:13	01/04/25 23:21	1
2,4,6-Trichlorophenol	10	U	10	0.86	ug/L	1	01/04/25 11:13	01/04/25 23:21	1

3-A 1/22/25

Eurofins Edison

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-08S

Date Collected: 12/31/24 10:35 Date Received: 12/31/24 16:30

Isophorone

Lab Sample ID: 460-318143-1 Matrix: Water

Method: SW846 8270E - Sem Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
2,4-Dichlorophenol		U	10	1.1	ug/L		01/04/25 11:13	01/04/25 23:21	
2,4-Dimethylphenol	10	U	10	0.62			01/04/25 11:13	01/04/25 23:21	
2.4-Dinitrophenol	40	U	40		ug/L		01/04/25 11:13	01/04/25 23:21	
2,4-Dinitrotoluene	10		10		ug/L		01/04/25 11:13	01/04/25 23:21	
2,6-Dinitrotoluene	2.0		2.0	0.83	-		01/04/25 11:13	01/04/25 23:21	
2-Chloronaphthalene	10	U	10		ug/L		01/04/25 11:13	01/04/25 23:21	
2-Chlorophenol	10	U	10	0.95			01/04/25 11:13	01/04/25 23:21	
2-Methylnaphthalene	10	U	10	0.53	ug/L		01/04/25 11:13	01/04/25 23:21	
2-Methylphenol	10	U	10	0.67	ug/L		01/04/25 11:13	01/04/25 23:21	
2-Nitroaniline	10	U	10	1.2	ug/L		01/04/25 11:13	01/04/25 23:21	
2-Nitrophenol	10	U	10	0.75	ug/L		01/04/25 11:13	01/04/25 23:21	
3,3'-Dichlorobenzidine	10	U	10	1.4	ug/L		01/04/25 11:13	01/04/25 23:21	
3-Nitroaniline	10	U	10	1.9	ug/L		01/04/25 11:13	01/04/25 23:21	
1,6-Dinitro-2-methylphenol	20		20	8.6	ug/L		01/04/25 11:13	01/04/25 23:21	
I-Bromophenyl phenyl ether	10		10	0.75	1900-60300		01/04/25 11:13		
I-Chloro-3-methylphenol	10	0.000	10		ug/L		01/04/25 11:13		
-Chloroaniline	10		10		ug/L		01/04/25 11:13		
-Chlorophenyl phenyl ether	10		10		ug/L			01/04/25 23:21	
-Methylphenol	10	1.0110	10	0.65				01/04/25 23:21	
-Nitroaniline	10		10		ug/L			01/04/25 23:21	
-Nitrophenol	20		20		ug/L			01/04/25 23:21	
	8.4		10	1.1	ug/L			01/04/25 23:21	
cenaphthene cenaphthylene	4.2		10	0.82			01/04/25 11:13		
	4.2		10		ug/L		01/04/25 11:13		
Inthracene	4.7		1.0	0.59				01/04/25 23:21	
enzo[a]anthracene			1.0		ug/L		01/04/25 11:13		
enzo[a]pyrene	1.0	U		0.68	-		01/04/25 11:13		
enzo[b]fluoranthene	2.0		2.0					01/04/25 23:21	
enzo[g,h,i]perylene	10	U	10	0.70	Coloris and			01/04/25 23:21	
enzo[k]fluoranthene	1.0		1.0		ug/L		01/04/25 11:13		
is(2-chloroethoxy)methane	10		10	0.59				01/04/25 23:21	
is(2-chloroethyl)ether	1.0		1.0	0.63				01/04/25 23:21	
is(2-ethylhexyl) phthalate		07	2.0	0.80			01/04/25 11:13		
utyl benzyl phthalate	10		10	0.85				01/04/25 23:21	
Carbazole	10	14110	10	0.68	1925		01/04/25 11:13		
hrysene	2.0		2.0	0.91					
ibenz(a,h)anthracene	1.0		1.0	0.72				01/04/25 23:21	
ibenzofuran	3.1		10		ug/L			01/04/25 23:21	
liethyl phthalate	10		10	0.98				01/04/25 23:21	
imethyl phthalate	10		10	0.77				01/04/25 23:21	
i-n-butyl phthalate	10	U	10	0.84			01/04/25 11:13		
i-n-octyl phthalate	10	U	10		ug/L			01/04/25 23:21	
luoranthene	5.4	J	10	0.84				01/04/25 23:21	
luorene	4.2		10		ug/L			01/04/25 23:21	
lexachlorobenzene	1.0	U	1.0		ug/L			01/04/25 23:21	
exachlorobutadiene	1.0	U	1.0		ug/L			01/04/25 23:21	
lexachlorocyclopentadiene	10	U	10	3.6	ug/L			01/04/25 23:21	
lexachloroethane	2.0	U	2.0	0.80	ug/L			01/04/25 23:21	
ndeno[1,2,3-cd]pyrene	2.0	U	2.0	0.94	ug/L			01/04/25 23:21	
a na ang ang ang ang ang ang ang ang ang	10	П	10	0.80	ua/i		01/04/25 11:13	01/04/25 23:21	

35

0.80 ug/L

01/04/25 11:13 01/04/25 23:21

Eurofins Edison

10

10 U

Client Sample Results

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Client Sample ID: GCMW-08S

Date Collected: 12/31/24 10:35 Date Received: 12/31/24 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	2.0	U	2.0	0.54	ug/L		01/04/25 11:13	01/04/25 23:21	1
Nitrobenzene	1.0	U	1.0	0.57	ug/L		01/04/25 11:13	01/04/25 23:21	1
N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43	ug/L		01/04/25 11:13	01/04/25 23:21	1
N-Nitrosodiphenylamine	10	U	10	0.89	ug/L		01/04/25 11:13	01/04/25 23:21	1
Pentachlorophenol	20	U	20	6.6	ug/L		01/04/25 11:13	01/04/25 23:21	1
Phenanthrene	45		10	1.3	ug/L		01/04/25 11:13	01/04/25 23:21	1
Phenol	10	U	10	0.29	ug/L		01/04/25 11:13	01/04/25 23:21	1
Pyrene	5.3	J	10	1.6	ug/L		01/04/25 11:13	01/04/25 23:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	63		37 - 150				01/04/25 11:13	01/04/25 23:21	1
2-Fluorobiphenyl	58		46 - 139				01/04/25 11:13	01/04/25 23:21	1
2-Fluorophenol (Surr)	31		16 - 80				01/04/25 11:13	01/04/25 23:21	1
Nitrobenzene-d5 (Surr)	59		51 - 145				01/04/25 11:13	01/04/25 23:21	1
Phenol-d5 (Surr)	21		10 - 56				01/04/25 11:13	01/04/25 23:21	1
Terphenyl-d14 (Surr)	19		13 - 159				01/04/25 11:13	01/04/25 23:21	1

Lab Sample ID: 460-318143-1 Matrix: Water

Job ID: 460-318143-1

Eurofins Edison

Tril no/cs	Relinquished by MILLAD	1 1	Relinquished by: Pickor headning	U Yes U No	Special Instructions/QC Requirements & Comments:	Non-Hazard Rammable Skin Irritant	Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample	Preservation Used: 1= los, 2= HCl; 3= H2SO4; 4=HN03;		400-318143		183	1	36 <u>8</u>	Par	TB-12312024	580-1	The section of the se	Sample Identification	2742	Site Glan Cove Forma Mon anter	Name Al Laul C St. A.	1-760-9300	T S	V Name GEL Consultants Inc. P.C.	Client Contact			Address:
#e # q 3;	EG 12-31-24		GET Consultants Inc.	Custody Seal No	CATB	Poison B Unknown	e List any EPA Waste Codes for t	5=NaOH; 6= Other		400-318143 Chain of Custody						Edular - G	12/31/24 1035 G		Sample Sample Type Date Time G-Grab)	1 d	1 week	2 weeks	t from Below	Analysis Iumaround lime	Tel/Email: amon sever ansultans con	Project Manager: Chr3 N	Regulatory Program:		
32/399	Date/1/20 Received	Date/Time: Received b	2131/24 Received by		REPORT		the sample in the									GW 2 X	2 XX 2 M9		Matrix Cont. Filtered St. Perform M	s	MSD				JU JAAD CAR Lab Contact:		DW NPDES RCRA		Chain of Custody
-	1 in Laboratory by Miles	Y and	Iby A	Cooler Temp. ("C). Obs'd		Return to Client Disposal by Lab	and the second sec																		2.10	Tom Johansen	Cother:		Record
	Company: ET/4	Company 12-31-24	Company.	Con'd		1 by Lab Archive for_		I TEL ISLAND																	er: Test-Amonica				685900 🔅 e
-	Date/Time: 12/31 (635	DaterTime: 14/47	Paterine://127 [8.20	Therm ID No.:		Months		A lancer than 4 months											Sample Specific Notes:	C 4180	Job / SDG No. CIO /1 /2	Lab Sampling:	Walk-in Client.	Sampler F, DECCh A	I of COCs		TAL-8210	America	Seurofins Environment Testing

AG Damstat Gler Cove

Data Review Worksheets

Data Package ID: 460-318143 Project/Charge Number: 1905774-20.4 Matrix: 1007 Collection Date/Cooler Temperature Acceptance: 1231 39'C

Sample IDs: See attached laboratory report summary form

Field Duplicate IDs:_____

Data Review Elements:

1. Agreement of Analyses Conducted with COC -- Laboratory Report/EDD Revisions Needed

1-2 1005

2. Holding Times and Sample Preservation Nonconformances

See Completeness form or attached pages for analyses/hold time outliers

po actient

3. Initial and Continuing Calibrations: See Attached Form

4. Blanks (Laboratory and Field)

Blank Actions - Make action level table of 2x and 10x the blank contamination detected.

If sample result \leq RL; report the result as nondetect (U) at the reporting limit (RL).

If sample result >,RL and < 2xblank contamination; report the result as nondetect (U) at the detected value.

If sample result > RL and \leq 10x Action level; report the result as estimated (J); biased high.

If the sample result is nondetect or > the 10x Action level; validation is not required.

1-12212024mB 460 - 1014939 DOV mb 460- loisily nor

5. Surrogate Spike Recoveries - Lab Limits used

For VOC; any surrogate out – qualify results based on recovery. For SVOC; one surrogate out (but >10%) in each fraction no action taken. Two or more out – qualify results based on recovery.

VICC 7710 1.1 6. MS/MSD Results - Organics: Lab limits, Metals/CN 75-125% REC and <20%RPD (AQ) <35%RPD Solis Only evaluated if performed on a project sample: If sample compound level is greater than 4x the spike conc., action is not applied based on recoveries - only RPD evaluated. For any analyte recovery outside of control limits but >10%; estimate based on recovery. For analyte recovery less than 10; estimate (I) if positive, reject (R) if nondetect. IF MS/MSD RPD is high; estimate (J) If positive, accept nondetect without qualification. B 7. LCS Results - Lab limits used For any analyte recovery outside of control limits but ≥10%; estimate based on recovery. For analyte recovery < 10%; estimate (J) if positive, reject (R) if nondetect. ICSD 460-10M989 1050 460-101514

8. Internal Standards - 50 - 200% control limits

NIC IV

For IS recovery <50 (but > 20%) estimate (J/UJ) associated positive and nondetect compounds. For IS recovery <20% estimate (J) if positive, reject (R) if nondetect. Only those compounds quantitated from an internal standard are affected. No qualification for high IS recovery if sample is nondetect.

9. Field Duplicate Results – Use separate sheet

Aqueous review: Criteria: When both results are $\geq 5x$ the RL, RPDs must be $\leq 30\%$. When results are $\leq 5x$ the QL, the difference between the original and field duplicate must be less than 2xRL.

Soil review: Criteria: When both results are $\geq 5x$ the RL, RPDs must be < 50%. When results are < 5x the QL, the difference between the original and field duplicate must be less than 4xRL

10. Dual Column Results - For GC analyses - Easier to print out Form 10's for multiple actions.

Percent Differences	Qualifier	1
0%25%	No qualification	
26% - 70%	1	7
71 - 200% (interferences detected)*	JN	
> 50% (pesticide value < CRQL)**	Ú	
> 200%	R	

When interferences are detected on either column, qualify the data as "JN".

** When the pesticide value is below CRQL and %D > 50%, raise the value to CRQL and qualify "U" undetected.

11. Laboratory Duplicate Results

All analyses with the exception of metals: Use laboratory control limits Metals: Aqueous limit of 20% RPD and soil limit of 35% RPD

12. Serial Dilution Results

12

%D between sample and dilution analysis must be <10% for analyte level greater than 50X MDL.

13. Quantitation Limits/Required Dilutions and reanalyses

co dustos

14. Sample Moisture Content - Soils with total solids less than 30% are estimated (J/UJ)

15. Additional Nonconformances - Comparison of Total/Free Cyanide, Total/Dissolved Metals, etc.

16. Results between MDL and RL - Are results between MDL and RL detected or reported in this job? If so - Note must be added to validation report. If not, validation report must state that detected results were reported down to RL only. FLCO FEDERAL

Sample Analyses/Completeness/Hold Time Exceedance/Dilutions

00 MA (13) MM 03 03 03 04 04 03 03 04 04 04 04 03 04 04 04 04 04 04 04 04 04 04 04 04 05 04 04 04 04 04 04 04 05 04	Sample	Collection NOC	Sec	
	Ģ			
	Ģ			
	ë			
	ş			
	òs			
	90			
	-04			
	-08			
	60			
	61-			
	ŧ:			
	-12			
	£1-			
-15	-14			
	-15			

Analysis	Instrument/ Date	Compound/Analyte	%RSD, %D, % REC, RF	Associated samples
tr.	Clams7			
	AFB ILAL		/	
	RAL WAL		1	
			1	1
	Lev 1/3	see ette	had	Quals
			Trace	-
286	unems17			
Sector Sector	56/11 99/20		1	N
	06-166 11/22		1	1
	COV 14	See abut	-V-	ada
	EQU UDZ		2	1 I
	les a mila			- V
9				
-				
			÷	
				_
			in Tarak	

Initial calibration (ICAL) %RSD > 20% for VOC, SVOC, pest, PCB; Estimate (J) positive results.

Calibration Review Page

of

Correlation coefficient < 0.990 for organics or <0.995 for inorganics; Estimate (I/UJ) positive and nondetect results. Initial calibration verification (ICV) %D > control limits; Estimate (I/UJ) positive and nondetect results. Continuing calibration (CCAL) %D >20% for VOC, SVOC, pest, PCBs; Estimate (I/UJ) positive and nondetect results. Continuing calibration recovery outside of control limits for inorganics; Estimate (I/UJ) dependent on recovery. Detections for metals > MDL in the ICSA sample; Evaluation required if sample interferent levels are at least 75% of the ICSA. Response factor (RF) <0.050 (or <0.010 for poor responders); Estimate (J) positive and reject (R) nondetect results.

Sample Summary

Client: GEI Consultants Inc Project/Site: National Grid - Downstate Glen Cove

Job ID: 460-318143-1

	Client Sample ID	Matrix	Collected	Received	
460-318143-1	GCMW-085	Water	12/31/24 10:35	12/31/24 16:30	

CASE NARRATIVE

Client: GEI Consultants Inc

Project: National Grid - Downstate Glen Cove

Report Number: 460-318143-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 12/31/2024 4:30 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.9°C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

RECEIPT EXCEPTIONS

The following sample was listed on the Chain of Custody (COC); however, no sample was received: TB-12312024 (460-318143-2). Sample analysis was canceled on 1/10/25 per client request.

VOLATILE ORGANIC COMPOUNDS (GC/MS)

Sample GCMW-06S (460-318143-1) was analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were analyzed on 01/03/2025.

No difficulties were encountered during the Volatiles analysis.

All quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Sample GCMW-08S (460-318143-1) was analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Method 8270E. The samples were prepared and analyzed on 01/04/2025.

The continuing calibration verification (CCV) associated with batch 460-1015134 recovered above the upper control limit for Bis(2-ethythexyl) phthalate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No other difficulties were encountered during the semivolatiles analysis.

All quality control parameters were within the acceptance limits.

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Edison

Job No.: 460-318143-1

SDG No.:

Lab Sample ID: CCVIS 460-1014989/2

Instrument ID: CVOAMS7

GC Column: Rtx-624 ID: 0.25(mm)

Lab File ID: V648075.0

Calibration Date: 01/03/2025 06:18

Calib Start Date: 11/21/2024 01:43

Calib End Date: 11/21/2024 04:23

Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	۹D	MAX %D
Monochloropentafluoroethane	QuaF		0.0065		15.9	20.0	-20.3*	Z0.0
Chlorotrifluoroethene	Ave	0.0941	0.0276		5.67	20.0	-70.7*	20.0
1,1-Difluorosthane	Ave	0.2126	0.1462		13.7	20.0	-31.3*	20.0
Dichlorodifluoromethane	Ave	0.5829	0.3973	0.1000	13.6	20.0	-31.8*	20.0
Chlorodifluorcesthans	Ave	0.0847	0.0526		12.4	20.0	-37.9*	20.0
Chleromethane	Ave	0.6144	0.5753	0,1000	18.7	20.0	-6.4	20.0
Vinyl chloride	Ave	0.5424	0.4860	0.1000	17.9	20.0	-10.4	20.0
Butadiene	Ave	0.5704	0.4969		17.4	20.0	-12.9	20.0
Bronomethane \ VS	Ave	0.2401	0.1478	0.1000	11.9	20.0 0	-40.4	50.0
Chloroethane	Ave	0.3608	0.3490	0.1000	19.3	20.0	-3.3	50.0
Dichlorofluoromethane	Ave	0.9003	0.8397		1#.7	20.0	-6.7	20.0
Trichlorofluoromothane	Ave	0.6537	0.5492	0,1000	16.6	20.0	-16.0	20.0
Pestane	Ave	0.0892	0.0765		34.7	40.0	-13.3	20.0
Ethanol	QuaY	20.000	0.5961		1020	800	27.3	50.0
Ethyl ather	100	0,3110	0.2760		17.9	20.0	-10.6	20.0
2-Methyl-1, 3-butadiene	Ave	0.4159	0.3919		10.0	20.0	-5.8	20.0
1,2-Dichloro-1,1,2-trifluoro ethane	Ave	0.3890	0.2943		15.1	20.0	-24.3*	20.0
1,1,1-Trifluoro-2,2-dichloro ethane	Ave	0,6751	0.5040		14.9	20.0	-25.3*	20.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	0.4152	0.3543	0.1000	17.1	20.0	-14.7	20.0
Adrolein	Ave	0.0344	0.0514	2012030	59.7	40.0	49.2	50.0
1,1-Dichloroethene	Ave	0.4858	0.3994	0.1000	16.4	20.0	-17.8	20.0
Acetone	Ave	1.285	1,301	0.0500	101	100	1.2	50.0
Indonethane	QuaF		0.1357		6.74	20.0	-66.3*	20.0
Isopropyl alcohol	Ave	6.040	6.438		212	200	2.9	50.0
Carbon disulfide	Ave	1,526	1.321	0,1000	17.3	20.0	-13.4	50.0
3-Chloro-1-propene	Ave.	0.3374	0.2784		16.5	20.0	-17.5	20.0
Methyl acetate	Ave	0.2769	0.3306	0.0500	48.1	40.0	20.2*	20.0
Cyclopentene	740	1.047	1,000		19.1	20.0	-4.5	20.0
Acctonitrile	Ave	0.6432	6.7331	0.000	228	200	14.0	20.0
Methylene Chloride	200	0,5306	0.4607	0.1000	17.4	20.0	-13.2	20.0
2-Methyl-2-propanol	¥26	13.23	11.63	-	176	200	-12.1	50.0
Mathyl tart-butyl ether	Але	1.329	1.225	0.1000	14.5	20.0	-7.6	20.0
trans-1,2-Dichloroethene	Ave	0.5333	0,4360	0.1000	16.4	20.0	-18.2	20.0
Aarylonitrile	λνε	0.1570	0.1780		227	200	13.3	20.0
Hexane	Ave	0.5565	0.5358		19.3	20.0	-3.7	20.0
Isopropyl ether	Ave.	2.357	1.518		22.4	20.0	11.*	20.0
1,1-Dichloroethane	¥46	0.8716	0.7992	0.2000	18.3	20.0	-8.3	20.0
Vinyl sostate	Ave	10.14	11.18		44.1	40.0	10.2	20.0
2-Chloro-1,3-butadiene	Ave	0.4792	0.3926		16.4	20.0	-18.1	20.0

FORM VII 8260D

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Edison

Job No.: 460-318143-1

SDG No.:

Lab Sample ID: CCVIS 460-1014989/2

Instrument ID: CVOAMS7

GC Column: Rtx-624 ID: 0.25(mm)

Lab File ID: V648075.D

Calibration Date: 01/03/2025 06:18

Calib Start Date: 11/21/2024 01:43

Calib End Date: 11/21/2024 04:23

Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	\$D	MAX BD
Tert-butyl ethyl ether	Ave	1,435	1,389		19.4	20.0	-3.2	20.0
2,2-Dichloropropane	240	0,1820	0.1438		15.8	20.0	-21.0*	20.0
2-Butanone (MER)	A70	0.6831	0.5328	0.0500	78.0	100 (-22.0	50.0
cis-1,2-Dichloroethane	Ave	0.5663	0.4627	0.1000	:6.3	20.0	-14.7	20.0
Ethyl acetate	Ave	0.6448	0,5378		33.4	40.0	-16.6	20.0
Mothyl acrylate	Ave	0.3226	0.3409		21.1	20.0	5.7	20.0
Propionitrile	Lin2		0.0624		222	200	11.0	20.0
Chlorobromomethane	Ave	0,2397	0.2011		16.8	20.0	-16.1	20.0
Tetrahydrofuran	Ave	0.0573	0.0574		40.1	40.0	0.2	20.0
Methacrylonitrile	Ave	0.1934	0.1994		206	200	3.1	20.0
Chloreform	Ave	0.0311	0.7270	0.2000	17.5	20.0	-12.5	20.0
Cyclohesane	274	0,7260	0.6141	0.1000	16.9	20.0	-15.4	50.0
1,1,1-Trichloroethane	Ave	0.7336	0.6084	0.1000	16.6	20.0	-17.1	20.0
Carbon tetrachloride	A79	0.5773	0.4773	0.1000	16.5	20.0	-17.3	20.0
1,1-Dichloropropene	Ave	0.6969	0.5972		17.1	20.0	-14.3	20.0
isobutyi slochol	1102		7.850		517	500	3.4	20.0
Isooctane	Ave	1.051	1.032		19.6	20.0	-1.9	20.0
Benzene	Ave	2.794	2.693	0.5000	20.7	20.0	3.4	20.0
Isopropyl acetate	Ave	0.4263	0.4023		18.9	20.0	-5.6	20.0
Tort-amyl methyl ether	Ave	1.424	1.407		19.8	20.0	-1.2	20.0
1,2-Dichloroethane	Ave	0.5781	0.5095	6.1000	17.6	20.0	-12.0	20.0
n-lleptane	Ave	0.2471	0.2339		18.9	20.0	-5.3	20.0
Trichloroethene	Ave	0.5348	0.4338	6.2000	16.2	20.0	-18.9	20.0
s-Butanol	Ave	1.984	1.373	5 K. 40 M St. 4	346	500	-30.8	50.0
Ethyl acrylate	Quaf		0.0555		17.2	20.0	-13.8	20.0
Methylcyclohesane	Ave	0,7083	0.6327	0.1000	17.9	20.0	-10.7	50.0
1,2-Dichieropropane	Ave	0.4666	0.4483	0.1000	19.2	20.0	-3.9	20.0
Methyl methacrylate	Ave	0.1181	0.1187		40.2	40.0	0.5	20.0
1,4-Disane	Ave	2.147	2.025		377	400	-5.7	50.0
Dibromomothane	Ave	0.2916	0.2445		16.6	20.0	-16.2	20.0
n-Propyl acetate	Qua2		0.5904		22.5	20.0	12.5	20.0
Bromodichloromethane	Ave	0.5880	0.5016	0.3000	17.1	20.0	-14.6	20.0
2-Nitropropane	Qua2		0.0910		49.4	40.0	23.6*	20.0
2-Chloroethyl vinyl ether	Ave	0.2179	0.1921		17.7	20.0	-11.8	20.0
Epichlorohydrin	Ave	0.4642	0.4224		364	400	-9.0	20.0
cis-1,3-Dichloropropene	Ave	1.056	1.050	0.2000	20.0	20.0	0.2	50.0
4-Methyl-2-pentanone (MIBE)	Ave	4.314	4.649	0.0500	108	100	7.8	50.0
Teluene	200	3.098	2,919	0.4000	18.8	20.0	-5.8	20.0
trans-1,3-Dichloropropens	Ave	0.8563	0.8792	0.1000	19.6	20.0	-1.9	50.0
Ethyl methacrylate	Ave	0.7161	0.0161		22.6	20.0	14.2	20.0
1.1.2-Trichloroethane	Ave	0.4853	0.4966	0.1000	20.4	20.0	2.1	20.0

FORM VII 8260D

FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: Eurofins Edison

Job No.: 460-318143-1

SDG No.:

Lab Sample ID: CCVIS 460-1015134/2

Instrument ID: CBNAMS17

Lab File ID: M34037.D

Calibration Date: 01/04/2025 13:26 Calib Start Date: 11/22/2024 10:01 GC Column: Rtx1-5511 MS ID: 0.25(mm) Calib End Date: 11/22/2024 12:56 Conc. Units: ug/L

ANALYTE	TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	۹D	MAX ND
2,3,7,8-7000	Ave	0.2489	0.2010		80.8	100	-19.2	20.0
Carbanazepine	Ave	0.4415	0.5013		11400	10000	12.5	20.0
3,3'-Dichlorobenzidine	AV0	0.4651	0.5063	0.0100	10900	10005	8,6	20.0
Benzo[a]anthrazone	Ave	1.322	1.350	0.8000	10200	10000	2.1	20.0
Chrysene	Ave	1.264	1.264	0.7000	10000	10000	0.0	20.0
Bis(2-ethylhexyl) phthalate	428 V	15 0.7557	0,9932	0.0100	12500	10000	21.1.	- 20.0
Di-m-octyl phthalate	Ave	1.290	1,530	0.0100	11900	10000	18.6	20.0
Benzo(b)fluoranthene	A70	1.142	1.170		10200	10000	2.5	20.0
Henzo[k]fluorantheno	Ave	1.186	1.250	0.7000	10500	10000	5.3	20.0
Benzolalpyrene	Ave	1.022	1.099	0.7000	10800	10000	7.5	20.0
Indens[1,2,3-cd]pyrene	Avq	1.163	1.177	0.5000	10100	10000	1.2	20.0
Dibenz(a, h) anthracene	Are	1.162	1,128	0.4000	9700	10000	-3.0	20.0
Benzo[q,b,1]perylana	Ave	1.138	1.125	0.5000	9990	10000	-1.1	20.0
2-Fluorophenol (Surr)	Ave	1.340	1.362		10200	10000	1.6	20.0
Phenol-d5 (Surr)	Ave	1.693	1.752		10300	10000	3.5	20.0
Nitrobenzene-d5 (Surr)	Ave	0.3689	0.3761		10200	10000	2.0	20.0
2-Fluerobiphenyl	Ave	1.524	1.530		10000	10000	0.4	20.0
2,4,6-Tribromophenol (Surr)	Ave	0.2607	0.2889		11100	10000	10.8	20.0
Terphenyl-dl4 (Surr)	Ave	1.289	1,257		9750	10000	-2.5	20.0

FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Edison	Job No.: 460-318143-1
SDG No.:	
Client Sample ID: GCMW-085	Lab Sample ID: 460-318143-1
Matrix: Water	Lab File ID: V648096.D
Analysis Method: 8260D	Date Collected: 12/31/2024 10:35
Sample wt/vol: 5(mL)	Date Analyzed: 01/03/2025 14:06
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
Purge Volume: 5.0(mL)	Heated Purge: (Y/N) N pH:
Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 1014989	Units: ug/L
Preparation Batch No.:	Instrument ID: CVOAMS7

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-01-4	Vinyl chloride	1.0	U	1.0	0.17
1330-20-7	Xylenes, Total	2.0	U	2.0	0.65
CAS NO.	SURROGATE		4REC	٥	LIMITS
17060-07-0	1,2-Dichlorosthane-d4 (Surr)		102		70-128

T1000.01.0	1,2 Dichtoroschans-04 (Bull)	144	10-120
460-00-4	4-Bromofluorobenzene	93	76-120
1868-53-7	Dibromofluoromethane (Surr)	93 2	77-132
2037-26-5	Toluene-d8 (Surr)	98	80-120

46.3/50 = 0.926 = 93400

Report Date: 05-Jan-2025 10:50:45

Chrom Revision: 2.3 17-Dec-2024 12:44:46

04-Jan-2025 10:22:49

Eurofins Edison

Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type:	\\chromfs\Edison\ChromData\\ 460-318143-A-1 GCMW-08S Client	CVOAMS7/20250103-18	35419.b\V648	3096.D	
Inject. Date:	03-Jan-2025 14:06:30	ALS Bottle#:	72	Worklist Smp#:	23
Purge Vol:	5.000 mL	Dil. Factor:	1.0000		
Sample Info:	460-318143-A-1		0.000.0000		
Misc. Info.:	460-0185419-023				
Operator ID:		Instrument ID:	CVOAMS	17	
Method: Limit Group:	\\chromfs\Edison\ChromData\C VOA - 8260D Water and Solid	VOAMS7/20250103-18	5419.6\8260	W_7.m	
Last Update:	05-Jan-2025 10:48:50	Calib Date:	21-Nov-2	024 04:23:30	
Integrator:	RTE	ID Type:	Deconvol	ution ID	
Quant Method:	Internal Standard	Quant By:	Initial Cali		
Last ICal File:	\\chromfs\Edison\ChromData\C	VOAMS7\20241121-18	3733.b\V623	64.D	
Column 1 : Process Host:	Rtx-624 (0.25 mm) CTX1612		Det: MS C	Quad	

Date:

First Level Reviewer: RD6L

			Deno.			04-041-2020 10.22.49		
Compound	Sig	RT (min.)	Exp RT (min.)	Dit RT (min.)	a	Response	OnCol Amt ug/l	Flags
* 28 TBA-d9 (IS)	66	2.420	2.420	0.000	98	28804	1000.0	
* 42 2-Butanone-d5	46	3.300	3.300	0.000	100	272707	250.0	
\$ 56 Dibromofluoromethane (Surr)	113	3.734	3.734	0.000	97	(164388)	C 46.3	/
\$ 60 1,2-Dichloroethane-d4 (Surr)	65	4.043	4.043	0.000	95	182189	50.8	
67 Fluorobenzene	96	4.306	4.306	0.000	99	663660	50.0	
68 1,4-Dioxane-d8	96	5.003	4.991	0.012	87	19125	1000.0	
5 82 Toluene-d8 (Surr)	98	5.975	5.974	0.001	100	690092	48.8	
94 Chlorobenzene-d5	117	7.906	7.906	0.000	86	439645	50.0	
105 4-Bromofluorobenzene	174	9.243	9.243	0.000	0	168036	46.4	
106 1,4-Dichlorobenzene-d4	152	10.284	10.283	0.001	96	190682	50.0	
Reagents:						00000000000	10.552.00	
8260ISNEW_00171		Amount	Added: 1	.00	L	Inits: uL	Run Reagen	t
8260SURR250_00252		Amount	Added: 1	.00	U	Inits: uL	Run Reagen	t

164388 x 50 663660 0.2674 = (46.3)

FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Edison	Job No.: 460-318143-1
SDG No.:	
Client Sample ID: GCMN-085	Lab Sample ID: 460-318143-1
Matrix: Water	Lab File ID: M34065.D
Analysis Method: 8270E	Date Collected: 12/31/2024 10:35
Extract, Method: 3510C	Date Extracted: 01/04/2025 11:13
Sample wt/vol: 250(mL)	Date Analyzed: 01/04/2025 23:21
Con. Extract Vol.: 2(mL)	Dilution Factor: 1
Injection Volume: 5(uL)	GC Column: Rtxi-5Sil MS ID: 0.25(mm)
<pre>% Moisture: % Solids:</pre>	GPC Cleanup: (Y/N) N
Cleanup Factor:	Level: (low/med) Low
Analysis Batch No.: 1015134	Units: ug/L
Preparation Batch No.: 1015114	Instrument ID: CBNAMS17

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
56-55-3	Benzo[a]anthracene	1.0	U	1.0	0.5
50-32-8	Benzo[a]pyrene	1.0	U	1.0	0.41
205-99-2	Benzo(b)fluoranthene	2.0	U	2.0	0.66
191-24-2	Benzo[g,h,i]perylene	10	U	10	0.70
207-08-9	Benzo[k]fluoranthene	1.0	U	1.0	0.65
111-91-1	Bis(2-chloroethoxy)methane	10	U	10	0.55
111-44-4	Bis(2-chloroethyl)ether	1.0	υ	1.0	0.63
117-01-7	Bis(2-ethylhexyl) phthalate	2.0	U	2.0	0.80
85-68-7	Butyl benzyl phthalate	10	U	10	0.85
86-74-8	Carbazole	10	U	10	0.68
218-01-9	Chrysene	2.0	U	2.0	0.91
53-70-3	Dibent (a, h) anthracene	1.0	U	1.0	0.72
132-64-9	Dibenzofuran	3.1	J	10	1.1
84-66-2	Diethyl phthalate	10	U	10	0.96
131-11-3	Dimethyl phthalate	10	U	10	0.7
84-74-2	Di-n-butyl phthalate	10	U	10	0.84
117-84-0	Di-n-octyl phthalate	10	U	10	4.0
206-44-0	Fluoranthene	5.4	J	10	0.8
86-73-7	Fluorene	4.2	J	10	0.93
118-74-1	Hexachlorobenzene	1.0	U	1.0	0.40
87-68-3	Hexachlorobutadiene	1.0	U	1.0	0.76
77-47-4	Hexachlorocyclopentadiene	10	U	10	3.6
67-72-1	Hexachloroethane	2.0	U	2.0	0.80
193-39-5	Indenc[1,2,3-cd]pyrene	2.0	U	2.0	0.94
78-59-1	Isophorone	10	U	10	0.80
91-20-3	Naphthalene	2.0	U	2.0	0.54
98-95-3	Nitrobenzene	1.0	U	1.0	0.57
621-64-7	N-Nitrosodi-n-propylamine	1.0	U	1.0	0.43
86-30-6	N-Nitrosodiphenylamine	10	U	10	0.89
97-86-5	Pentachlorophenol	20	U	20	6.6
95-01-8	Phenanthrene	C 45	1	10	1.3

FORM I 8270E 5.58 " 250ml = 0,0446 mill = 441.6 mill - Page 564 of 830

Report Date: 05-Jan-2025 14:23:20

Chrom Revision: 2.3 17-Dec-2024 12:44:46

Eurofins Edison Target Compound Quantitation Report

Data File:	\\chromfs\Edison\ChromData\	CBNAMS17\20250104-1	85439.b\M34	4065.D						
Lims ID:	460-318143-E-1-A									
Client ID:	GCMW-08S									
Sample Type:	Client									
Inject. Date:	04-Jan-2025 23:21:30	ALS Bottle#:	30	Worklist Smp#:	30					
Injection Vol:	5.0 ul	Dil, Factor:	1.0000	1.122011.2222.2012						
Sample Info:	460-0185439-030									
Operator ID:		Instrument ID;	CBNAMS	517						
Method:	\\chromfs\Edison\ChromData\CBNAMS17\20250104-185439.b\8270LVI_17.m									
Limit Group:	SV 8270E ICAL									
Last Update:	05-Jan-2025 14:23:20	Calib Date:	22-Nov-2024 12:56:30							
Integrator:	RTE	ID Type:	Deconvol	lution ID						
Quant Method:	Internal Standard	Quant By:	Initial Cal	libration						
Last ICal File:	\\chromfs\Edison\ChromData\CBNAMS17\20241122-183810.b\M32908.D									
Column 1 :	Rtxi-5Sil MS (0.25 mm)		Det MS	SCAN						
Process Host	CTX1669									

Date:

First Level Reviewer: C8UP

05-Jan-2025 14:23:20

First Level Reviewer, Cour			Date.			03-381-2023 14.23.20		
Compound	Sig	RT (min.)	Adj RT (min.)	Dit RT (min.)	a	Response	OnCol Amt ug/ml	Flags
4 2-Fluorophenol	112	2.669	2.666	0.003	97	348788	3.11	
6 Phenol-d5	99	3.557	3.567	-0.010	0	297212	2.10	
15 1,4-Dichlorobenzene-d4	152	3.917	3.921	-0.004	95	669513	8.00	
28 Nitrobenzene-d5	82	4.463	4.468	-0.005	83	677660	5.91	
38 Naphthalene-d8	136	5.165	5.171	-0.006	99	2486979	8.00	
53 2-Fluorobiphenyl	172	6.229	6.236	-0.007	97	1420587	5.82	
62 Acenaphthylene	152	6.728	6.729	-0.007	98	157372	0.5219	
64 Acenaphthene-d10	164	6.866	6.872	-0.006	96	1280638	8.00	
66 Acenaphthene	154	6.894	6.901	-0.007	96	191967	1.05	
70 Dibenzofuran	168	7.064	7.064	-0.007	97	106381	0.3905	
74 Fluorene	166	7.390	7,391	-0.007	92	111825	0,5291	
80 2,4,6-Tribromophenol	330	7.621	7.627	-0.006	90	260976	6.25	
88 Phenanthrene-d10	188	8.283	8.286	-0,003	99	2324377	8.00	
89 Phenanthrene	178	8.306	8.312	-0.006	98 C	1730890	5.58 L	/
90 Anthracene	178	8.351	8.360	-0.009	98	185060	0.5889	
93 Fluoranthene	202	9.433	9.443	-0.010	97	191665	0.6799	
95 Pyrene	202	9.648	9.647	-0.006	96	227228	0.6644	
97 Terphenyl-d14	244	9.821	9.827	-0.006	98	524338	1.93	
103 Chrysene-d12	240	10.859	10,870	-0.011	99	1687185	8,00	
110 Perylene-d12	264	12.656	12.668	-0.012	98	1743528	8.00	
QC Flag Legend								

QC Flag Legend Processing Flags Reagents: SM_ISTD_LVI_00197

Amount Added: 20.00 Units: uL

Run Reagent

1730390, 8 = 5.58