

November 3, 2022

Sent by email: robert.bellotti@dec.ny.gov

Mr. Robert Bellotti New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, NY 12233-7016

Re: Excavation Work Plan Jackson Steel Site, Site No. 130095 435 First Street, Mineola, NY

Dear Mr. Bellotti:

On behalf of Mineola 435, LLC (AJM), Fleming, Lee Shue Environmental Engineering and Geology D.P.C. (FLS) is submitting this Excavation Work Plan for the referenced site for a forthcoming excavation to install new drainage structures to bring the site's drainage system into compliance with local building codes, in connection with upcoming improvements to the site to return it to productive use. The site is now classified as a Class 4 site. The excavation areas occupy less than 5,000 square feet. Figure 1 shows the site layout along with the locations of the two excavation areas. This Excavation Work Plan was adopted from the generic Excavation Work Plan included in the NYSDEC's 2022 Site Management Plan template. This revised Excavation Work Plan reflects the NYSDEC's comments in your Excavation Workplan Disapproval letter dated November 1, 2022, as same were clarified by the email from Jacquelyn Nealon of the New York State Department of Health (NYSDOH) dated November 1, 2022.

Site Description

The Site address is 435 First Street, Mineola, New York in Nassau County. The Site is on a level area that contains an abandoned warehouse building that is being restored and brought back into productive use. Remediation was completed for releases of Tetrachloroethylene and Trichloroethylene. The soils for excavation were sampled to characterize them for disposal and the results are included as an attachment. Most results were below detection limits or below the Part 375 Unrestricted Use Soil Cleanup Objectives (SCOs). All results were below the Restricted Residential SCOs.

AJM will be excavating soils from the two drainage areas (Areas A and B) as part of site renovation. Planned excavation areas are at least 20 ft. from any occupied structures or outdoor activities in the area as shown on Figure 2. The soils for removal were sampled for waste characterization purposes using the Clean Earth Carteret sampling protocol that calls for a combination of grab and composite samples. The results of soil testing found most organic compounds below detection limits and most metals below the Part 375 Unrestricted Use Soil Cleanup Objectives. All sample results were below the Restricted Residential Soil Cleanup Objectives. Soils will be loaded directly into trucks for removal as there is limited storage space on site to stockpile soil. The gym referenced in NYSDOH's email is currently under construction and unoccupied. All work referenced in this work plan is outside.

Please call (212) 675-3225 if you have any questions or comments.

Sincerely, Fleming, Lee Shue Environmental Engineering and Geology D.P.C.

Awold F. Pleming

Arnold F. Fleming, P.E. Principal

c: A. Mann, Mineola 435, LLC

Attachments: Excavation Work Plan NYSDEC Excavation Workplan Disapproval letter dated 11/1/2022 NYSDOH email dated 11/1/2022 Soil results for waste disposal characterization

EXCAVATION WORK PLAN

SOIL SCREENING METHODS

Visual, olfactory and instrument-based (e.g. photoionization detector) soil screening will be performed during all excavations into known or potentially contaminated material. A qualified environmental professional as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State will perform the screening. Soil screening will be performed when invasive work is done and will include all excavation and invasive work performed during excavations for foundations.

SOIL STAGING METHODS

Soil will be loaded directly into trucks and removed off site. There is no space for stockpiling.

MATERIALS EXCAVATION AND LOAD-OUT

A qualified environmental professional as defined in 6 New York Codes, Rules and Regulations (NYCRR) Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and remedial party (if applicable) and its contractors are responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities on the site will be investigated prior to excavation. A site utility stakeout will be completed for all utilities prior to any ground intrusive activities at the site. Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements). Due to limited space on-site, three trucks will be on hire for the day to make multiple loops between the Site and Posillico Materials in Farmingdale. The loops will be staggered to mitigate the chance of trucks having to queue off-site. In the event a truck needs to queue, it will be performed along the south shoulder of 1st Street, as indicated by the Truck Staging Area shown on Figure 1. Excavations are not expected to be within 20 ft. from any occupied structures or outdoor activities in the area as shown on Figure 2.

A truck wash will be operated on-site, as appropriate, or if needed. However, due to the limited volume of soil being removed a truck wash is not anticipated. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be free of soil that could impact the local streets. Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials. Material accumulated from the street cleaning and egress cleaning activities will be disposed off-site at a permitted landfill facility in accordance with all applicable local, State, and Federal regulations.

MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks loaded with site materials will exit the vicinity using a route that minimizes impacts to the community and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport; (g) community input where necessary. Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development. To the extent feasible, queuing of trucks will be performed on-site in order to minimize off-site disturbance.

MATERIALS DISPOSAL OFF-SITE

All material excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed off-site in a permitted facility in accordance with all local, State and Federal regulations. Unregulated off-site management of materials from this site will not occur without formal NYSDEC project manager approval.

Off-site disposal locations for excavated soils will be identified in the preexcavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, (e.g. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C&D debris recovery facility). This documentation will include, but will not be limited to waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts. Non-hazardous historic fill and contaminated soils taken off-site will be handled consistent with 6 NYCRR Parts 360, 361, 362, 363, 364 and 365. Material that does not meet Unrestricted SCOs is prohibited from being taken to a New York State C&D debris recovery facility (6 NYCRR Subpart 360-15 registered or permitted facility).

BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by NYSDEC prior to being brough on site. A Request to Import/Reuse Fill or Soil form, which can be found at <u>http://www.dec.ny.gov/regulations/67386.html</u>, will be prepared and submitted to the NYSDEC project manager allowing a minimum of 5 business days for review.

Material from industrial sites, spill sites, other environmental remediation sites, or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6 NYCRR 375-6.7(d) and DER-10 Appendix 5 for Restricted Residential site use. Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are listed in Table 375-6.8(b) in 6 NYCRR Part 375. Soils that meet 'general' fill requirements under 6 NYCRR Part 360.13, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC project manager. Soil material will be sampled for the full suite of analytical parameters, including PFAS and 1, 4-dioxane. Solid waste will not be imported onto the site.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

COMMUNITY AIR MONITORING PLAN

Two CAMP stations will be employed: one downwind of the work area and one at the site perimeter. These locations will be adjusted on a daily or more frequent basis based on actual wind directions to provide an upwind and one downwind monitoring station. Daily recorded CAMP data will be provided to NYSDEC and NYSDOH Project Managers when any ground-intrusive work is conducted.

Exceedances of action levels listed in the CAMP and efforts taken to address such exceedances will be reported to NYSDEC and NYSDOH Project Managers. A CAMP in included as an attachment.

Special Requirements for Work within 20 Feet of Potentially Exposed Individuals or Structures

When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates will reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor/dust barriers, temporary negative pressure enclosures, or special ventilation devices will be considered to prevent exposures related to the work activities and to control dust and odors if warranted by site conditions. Consideration will be given to implementing the planned activities when potentially exposed populations are at a minimum, such as during weekends or evening hours in non-residential settings, or otherwise coordinate work with outdoor activities to excavate and load soil when outdoor activities are not in session.

If total 15-minute time-weighted average VOC concentrations opposite the walls of occupied structures or next to intake vents exceed 1 ppm, monitoring will occur within the occupied structure(s).

Depending upon the nature of contamination, chemical-specific colorimetric tubes of sufficient sensitivity may be necessary for comparing the exposure point concentrations with appropriate predetermined response levels (response actions should also be predetermined). Colorimetric tubes (Drëager tubes or equivalent) for Tetrachloroethylene and Trichloroethylene with sensitivities of 25 ppm and 10 ppm, respectively, will be on hand during excavation and loading, and these levels, established by the American Council of Governmental and Industrial Hygienists (ACGIH), shall be the predetermined action levels. If outdoor readings exceed these levels, then work shall stop and the situation be evaluated to determine what action should be taken. Background readings in the occupied spaces will be taken with colorimetric tubes prior to commencement of the planned work. Any unusual background readings will be discussed with NYSDOH prior to commencement of the work.

If 15-minute time-weighted average total particulate concentrations opposite the walls of occupied structures or next to intake vents exceed 150 mcg/m³, work activities will be suspended until controls are implemented and are successful in reducing the 15-minute time-weighted average total particulate concentration to 150 mcg/m³ or less at the monitoring point.

Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be monitored. This will be undertaken only if warranted by field conditions.

Special Requirements for Indoor Work with Co-Located Residences or Facilities

If indoor work takes place, the following procedures will be employed. **However**, **no indoor work is currently planned**.

Unless a self-contained, negative-pressure enclosure with proper emission controls will encompass the work area, all individuals not directly involved with the planned work must be absent from the room in which the work will occur. Monitoring requirements shall be as stated above under "Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures" except that in this instance "nearby/occupied structures" would be adjacent occupied rooms. Additionally, the location of all exhaust vents in the room and their discharge points, as well as potential vapor pathways (openings,

conduits, etc.) relative to adjoining rooms, should be understood and the monitoring locations established accordingly. In these situations, it is strongly recommended that exhaust fans or other engineering controls be used to create negative air pressure within the work area during remedial activities. Additionally, it is strongly recommended that the planned work be implemented during hours (e.g., weekends or evenings) when building occupancy is at a minimum.

DUST CONTROL PLAN

Particulate monitoring must be conducted according to the Community Air Monitoring Plan (CAMP). If particulate levels at the site exceed the thresholds listed in the CAMP or if airborne dust is observed on the site or leaving the site, the dust suppression techniques listed below will be employed. The remedial party will also take measures listed below to prevent dust production on the site.

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

• Dust suppression will be achieved using water as necessary to control dust.

Figure 2 - Excavation Areas and Distances (in yellow). Locations approximate. Source: Google Earth 2022

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau A 625 Broadway, 12th Floor, Albany, NY 12233-7015 P: (518) 402-9625 | F: (518) 402-9627 www.dec.ny.gov

November 1st, 2022

Adam Mann 2 Jericho Plaza, Suite 101 Jericho, NY 11753

> **RE: Excavation Workplan Disapproval** Site No. 130095 Jackson Steel, Mineola, NY

Dear Mr. Mann,

The New York State Department of Environmental Conservation (the Department) and the New York State Department of Health (NYSDOH) have reviewed the Excavation Workplan for Jackson Steel, dated October 7th 2022, which was prepared by Fleming, Lee Shue on behalf of Mineola 435 LLC. Based on our review the workplan is disapproved with the following comments.

- 1. There should be an area designated on the figure where the trucks will be staged since there is not a lot of room at the site or in the surrounding roadways.
- 2. CAMP data should be received by the Agencies daily as long as the groundintrusive work is being performed. Any exceedances should be reported to the Agencies on the day of the exceedance and what steps were taken to address that exceedance.
- 3. Since there is a possibility that excavation work may take place within 20 feet of an occupied structure or an outdoor activity, the Special Requirements CAMP language should be included in the overall monitoring plan. The Special Requirements Language is included:

Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates must reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor/dust barriers, temporary negative pressure enclosures, or special ventilation devices should be considered to prevent exposures related to the work activities and to control dust and odors. Consideration should be given to implementing the planned activities when potentially exposed populations are at a minimum, such as during weekends or evening hours in non-residential settings.

-If total VOC concentrations opposite the walls of occupied structures or next to intake vents exceed 1 ppm, monitoring should occur within the occupied structure(s).

Environmental Conservation

Depending upon the nature of contamination, chemical-specific colorimetric tubes of sufficient sensitivity may be necessary for comparing the exposure point concentrations with appropriate predetermined response levels (response actions should also be predetermined). Background readings in the occupied spaces must be taken prior to commencement of the planned work. Any unusual background readings should be discussed with NYSDOH prior to commencement of the work.

-If total particulate concentrations opposite the walls of occupied structures or next to intake vents exceed 150 mcg/m3, work activities should be suspended until controls are implemented and are successful in reducing the total particulate concentration to 150 mcg/m3 or less at the monitoring point.

-Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be monitored. Response levels and actions should be pre-determined, as necessary, for each site.

Special Requirements for Indoor Work With Co-Located Residences or Facilities

Unless a self-contained, negative-pressure enclosure with proper emission controls will encompass the work area, all individuals not directly involved with the planned work must be absent from the room in which the work will occur. Monitoring requirements shall be as stated above under "Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures" except that in this instance "nearby/occupied structures" would be adjacent occupied rooms. Additionally, the location of all exhaust vents in the room and their discharge points, as well as potential vapor pathways (openings, conduits, etc.) relative to adjoining rooms, should be understood and the monitoring locations established accordingly. In these situations, it is strongly recommended that exhaust fans or other engineering controls be used to create negative air pressure within the work area during remedial activities. Additionally, it is strongly recommended that the planned work be implemented during hours (e.g. weekends or evenings) when building occupancy is at a minimum.

Please address the comments contained in this letter and resubmit the workplan for approval once completed. If you have any questions, feel free to contact me at 518-402-2230 or at <u>Robert.Bellotti@dec.ny.gov</u>.

Sincerely,

R Bollett

Robert Bellotti Project Manager

- Ec: R. DeCandia, NYSDEC
 - C. Engelhardt, NYSDEC RHWRE J. Nealon, NYSDOH. C. Leas, Sive, Paget & Riesel PC S. Panter, Fleming Engineering

From: Bellotti, Robert V (DEC) <<u>Robert.Bellotti@dec.ny.gov</u>> Date: Tuesday, November 1, 2022 at 11:12 AM To: Adam Mann adam@ajmre.com> Cc: DeCandia, Rob D (DEC) <rob.decandia@dec.ny.gov>, steve@flemingleeshue.com <steve@flemingleeshue.com>, joel@flemingleeshue.com <joel@flemingleeshue.com>, Mustico, Richard X (DEC) <richard.mustico@dec.ny.gov>, Nealon, Jacquelyn E (HEALTH) <jacquelyn.nealon@health.ny.gov>, CLEAS@SPRLAW.COM <CLEAS@SPRLAW.COM> Subject: (130095) Jackson Steel Excavation Work Plan Disapproval

Soil Results for Waste Disposal Characterization

Site Code: 130095 CE PO: 2022-435

Waste Characterization Report

September 28, 2022

NYSDEC State Superfund Program Site:

Jackson Steel 435 First Street Mineola, NY Nassau County Tax Map Designation: Section 2; Block 239; Lot 3A, 4, 5 & 7 NYSDEC State Superfund Program Site No. 130095

Prepared for:

Mineola 435, LLC

New York State Department of Environmental Conservation

CERTIFICATION

Client:	Mineola 435, LLC
Project:	Waste Characterization Report
Location:	Jackson Steel, Mineola, New York
	NYSDEC State Superfund Program No. 130095

Cider Key Personnel

Title	Name	Telephone
Project Manager	James Cressy	(631) 365-6118
Sr. Consultant	Wenqing Fang	(631) 790-3338

I, Wenqing Fang, certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Waste Characterization Report (WCR) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10, May 2010) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Wenyy Park

Wenqing Fang, P.E.

P.E. License No.: 095477

Registration State: New York

TABLE OF CONTENTS

1	INTI	RODUCTION	3
2	SITE	DESCRIPTION	4
	2.1	Site Conditions	.4
	2.2	Remediation History	.4
	2.3	PROPOSED SITE CONSTRUCTION	.4
3	WA	STE CHARACTERIZATION ACTIVITES	5
4	EVA	LUATION OF WASTE CHARACTERIZATION RESULTS	6

TABLES

Table 1Waste Characterization Results

FIGURES

Figure 1 Waste Characterization Sampling Locations

APPENDICES

Appendix A	Photo Log
Appendix B	Laboratory Analysis Report

LIST OF ACRONYMS

Acronym	Definition
AMSL	Above Mean Sea Level
AOC	Area of Concern
AWQS	Ambient Water Quality Standard
CAMP	Community Air Monitoring Plan
COC	Contaminant of Concern
СРР	Citizen Participation Plan
CSM	Conceptual Site Model
DER-10	New York State Department of Environmental Conservation Technical Guide 10
GPR	Ground Penetrating Radar
GPS	Global Positioning System
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operations and Emergency Response
IRM	Interim Remedial Measure
NAPL	Non-aqueous Phase Liquid
NYS DOH ELAP	New York State Department of Health Environmental Laboratory Accreditation Program
NYS DEC	New York State Department of Environmental Conservation
OSHA	Occupational Safety and Health Administration
PID	Photo Ionization Detector
QA/QC	Quality Assurance and Quality Control
QEP	Qualified Environmental Professional
REC	Recognized Environmental Condition
RIR	Remedial Investigation Report
RIWP	Remedial Investigation Work Plan
SCG	Standards, Criteria or Guidance
SCO	Soil Cleanup Objective
SOW	Scope of Work
USEPA	United State Environmental Protection Agency
USGS	United State Geological Survey

1 INTRODUCTION

Cider Environmental (CE) on behalf of Mineola 435 LLC (the Client) has prepared this Waste Characterization Report (the Report or the WCR) to document the soil sampling activities performed at 435 First Street, Mineola, New York (the Site or the Subject Property). The Site is a listed as a State Superfund Site (Site Code 130095).

The waste characterization sampling generally followed the Waste Characterization Sampling Plan, dated 9/20/2022 prepared by Fleming Lee Shue.

Unless otherwise noted, this WCR has been prepared in accordance with the following state and local standards, criteria or guidance (SCGs):

- NYSDEC, Division of Environmental Remediation, DER-10 Technical Guidance for Site Investigation and Remediation, dated May 3, 2010
- NYSDEC CP-51 Soil Cleanup Guidance
- 6 NYCRR Part 375 Subpart 375-6, Remedial Program Soil Cleanup Objectives

2 SITE DESCRIPTION

2.1 Site Conditions

The Site is located in an urban area. It is on the southern side of First Street and the Eastern side of Herricks Road. It is located about 1,000 ft. east of the Garden City Park Industrial Area. The main site feature is a 30,000 square foot one story former manufacturing building, constructed in 1959, and a 13,000 square foot "back section" that was added in 1963. The property was used from the mid-1970s until 1991 as a roll form metal shapes manufacturing facility. Degreasers, including tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,1,1-trichloroethane (TCA), were used at the facility until 1985. In October 1999, the Site was proposed for placement on EPA's Superfund National Priorities List (NPL). On February 4, 2000, the Site was listed on the NPL. After determination that the site no longer posed a threat to the public, EPA deleted the site from the NPL in 2016 and subsequently transferred to DEC for long term site management.

2.2 Remediation History

Remediation at the site is complete. Prior to remediation, the primary contaminants of concern were TCE, PCE, SVOCs, pesticides and metals in soil; TCE, PCE and their breakdown products in groundwater and PCE in soil vapor and indoor air. Remedial actions have successfully achieved soil cleanup objectives for commercial use. Groundwater standards were met in the Upper Glacial Aquifer in 2009. Residual contamination in the soil, soil vapor and indoor air is being managed under a Site Management Plan composed of a Vapor Intrusion Management Plan and Institutional Control Implementation and Assurance Plan.

2.3 Proposed Site Construction

The development plan calls for improved drainage that will be realized by installing two new drainage lines. Drainage System A, located outside the building footprint in the northwest corner of the Site, has the approximate dimensions 15 ft. by 49 ft. by 6 ft. deep. It is estimated that System A will require excavation of approximately 200 tons (163 yd3) of soil. Additionally, Drainage System B, located at the southwest corner of the Site, has the approximate dimensions 43 ft. by 16 ft. by 11 ft. deep and another section that is approximately 16 ft. by 12 ft. by 11 ft. deep. It is estimated that System B will require excavation of additional 950 tons (730 yd3) of soil. **Figure 1** shows the approximate locations of the excavations.

3 WASTE CHARACTERIZATION ACTIVITES

On 9/23/2022, CE installed test pits in Area A and Area B for waste characterization. Refer to **Figure 1** for sampling locations. A Photo log for the sampling activities is included as **Appendix A**.

Area A (~200 tons)

For Area A, soil appears to be urban fill materials from grade to 3 feet bgs, underlain by native brown medium sand with little gravels to 6 feet bgs. Slightly elevated PID readings (maximum at 11 ppm) were encountered within the urban fill layer (0 to 3 feet bgs). No evidence of impact was observed within the native soil (3 to 6 feet bgs). Two (2) 8-point composite samples were collected from Area A. COMP-A [0'-3'] represents the urban fill material. COMP-A [3'-6'] represents the native soil. For COMP-A [0'-3'], the grab sample for VOC analysis was collected from the highest PID reading (11 ppm).

Area B (~950 tons)

For Area B, soil appears to be urban fill materials from grade to 3 feet bgs, underlain by native brown medium sand with little gravels to 11 feet bgs. No evidence of impact (visual, olfactory or elevated PID reading) was observed. Three (3) 8-point composite samples were collected from Area B. COMP-B [0'-3'] represents the urban fill material. COMP-B [3'-11'] and COMP-BC [3'-11'] represents the native soil.

The samples selected for laboratory analysis were containerized in the appropriate vessels, preserved at 4°C in a cooler and transported under proper chain-of-custody procedures to a NYS-DOH certified commercial laboratory for analysis.

The grab samples were analyzed for:

o Target volatile organic compounds (VOCs) via USEPA Test Method 8260C

The composite samples were analyzed for:

- o Target Polynuclear Aromatic HC compounds (PAHs) via USEPA Test Method 8270D
- TAL Metals via USEPA Test Method 6010
- TCLP Metals
- TPH via USEPA Test Method 8015
- PCBs via USEPA Test Method 8082
- NJ EPH by NJEPH 10-08 R3

4 EVALUATION OF WASTE CHARACTERIZATION RESULTS

The laboratory quality assurance / quality control (QA/QC) data summary was reviewed. The samples were analyzed within the proper holding time. The sample were properly preserved and the samples arrived at the laboratory in good condition at the proper temperature. A review of the QA/QC analytical data included in the laboratory reports did not reveal any QA/QC issues.

A summary of the soil classification results can be referenced with **Table 1.** The original laboratory analysis report is presented in **Appendix B**.

The laboratory analysis results were compared against 6 NYCRR Part 375-6.8; (a): Unrestricted Use SCOs (UUSCO) and Restricted Commercial SCO (RCSCO).

COMP-A [0'-3'] detected several metal and PAHs at levels exceeding the UUSCO but below the RCSCO, including chromium at 74.9 mg/Kg, lead at 111 mg/Kg and chrysene at 1,100 μ g/Kg. No other exceedances were detected with any other soil samples.

Total EPH was detected at 430 mg/Kg at COMP-A [0'-3']. EPH was not detected in any other samples.

All TCLP metals were below the EPA toxicity characterization levels.

FIGURES

LEGEND

X- COMP-A [0'-3'] X- COMP-A [3'-6'] X- COMP-B [0'-3'] X- COMP-B [3'-11'] X- COMP-BC [3'-11']

Note: On 9/23/2022, CE installed test pits on the Site for waste characterization. The information included on this graphic representation has been compiled from a variety of sources and is subject to change without notice. Cite Environmental makes no representations or warranties, express or highled, as to accuracy, completeness, limetines, or rights to the use of such information. This document is not interacted for uses as all and survey policult not is fit. The use or misuse of the information contained on this graphic representation is at the sole risk of the party using or misusing the information.

on	Waste Characterization Sampling Locations								
1	435 First Street, Mineola, New York								
5	DRAWN BY:	WF	REVISED BY:		PROJECT No.				
ient. is	CHECKED BY:	JC	REVISED DATE:		2022-122				
	DATE:	9-28-2022	APPROVED BY:		FIGURE No.				
	SCALE:	1" = 50'	FILE NAME:		01				

Tel: (631) 616-000 Fax: (631) 980-7972 www.ClderEnvfromental.com 6268 Jettor Direk, Sulte 12, Command, NY 11725

TABLES

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

Exceeding 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

Parameters	Sample ID Sample Date	Sample ID Sample Date Unit	EPA Toxicity	NYCRR 375	NYCRR 375 Restricted-	COMP-A (0-3`) 9/23/2022	COMP-A (3`-6`) 9/23/2022
	CAS		Characteristics	Unrestricted Use	Commercial	Result	Result
Miscellaneous/Inorganics							
Percent Solid		%				91	97
Corrosivity		Pos/Neg				Negative	Negative
Flash Point		Degree F				>200	>200
Ignitability		degree F				Passed	Passed
pH at 25C - Soil		pH Units				7.78	7.68
Reactivity Cyanide		mg/Kg				< 5	< 5
Reactivity Sulfide		mg/Kg				< 20	< 20
Reactivity		Pos/Neg				Negative	Negative

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

Exceeding 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

Parameters	Sample ID Sample Date	Unit	EPA Toxicity Characteristics	NYCRR 375 Unrestricted Use	NYCRR 375 Restricted-	COMP-A (0-3`) 9/23/2022 Result	COMP-A (3`-6`) 9/23/2022 Result
Metals, Total	679				Commercial	Result	Result
Arsenic, As	7440-38-2	mg/Kg		13	16	9.1	1.08
Barium, Ba	7440-39-3	mg/Kg		350	400	183	20.5
Cadmium, Cd	7440-43-9	mg/Kg		2.5	9.3	0.88	< 0.34
Chromium, Cr	7440-47-3	mg/Kg		30	1500	74.9	5.39
Lead, Pb	7439-92-1	mg/Kg		63	1000	111	3.35
Mercury, Hg	7439-97-6	mg/Kg		0.18	2.8	0.06	< 0.02
Selenium, Se	7782-49-2	mg/Kg		3.9	1500	< 1.5	< 1.4
Silver, Ag	7440-22-4	mg/Kg		2	1500	< 0.37	< 0.34
Metals, TCLP							
TCLP Arsenic	7440-38-2	mg/L	5			< 0.10	< 0.10
TCLP Barium	7440-39-3	mg/L	100			0.88	0.14
TCLP Cadmium	7440-43-9	mg/L	1			< 0.050	< 0.050
TCLP Chromium	7440-47-3	mg/L	5			< 0.10	< 0.10
TCLP Lead	7439-92-1	mg/L	5			0.18	< 0.10
TCLP Mercury	7439-97-6	mg/L	0.2			< 0.0002	< 0.0002
TCLP Selenium	7782-49-2	mg/L	1			< 0.10	< 0.10
TCLP Silver	7440-22-4	mg/L	5			< 0.10	< 0.10

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

Exceeding 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

Parameters	Sample ID Sample Date CAS	Unit	EPA Toxicity Characteristics	NYCRR 375 Unrestricted Use	NYCRR 375 Restricted- Commercial	COMP-A (0-3`) 9/23/2022 Result	COMP-A (3`-6`) 9/23/2022 Result
PCBs By SW8082A							
Aroclor 1016	12674-11-2	μg/Kg				< 360	< 340
Aroclor 1221	11104-28-2	μg/Kg				< 360	< 340
Aroclor 1232	11141-16-5	μg/Kg				< 360	< 340
Aroclor 1242	53469-21-9	μg/Kg				< 360	< 340
Aroclor 1248	12672-29-6	μg/Kg		100	1,000	< 360	< 340
Aroclor 1254	11097-69-1	μg/Kg				< 360	< 340
Aroclor 1260	11096-82-5	μg/Kg				< 360	< 340
Aroclor 1262	37324-23-5	μg/Kg				< 360	< 340
Aroclor 1268	11100-14-4	μg/Kg				< 360	< 340

Notes:

µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

Exceeding 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

	Sample ID		FPA Toxicity	NYCRR 375	NYCRR 375	COMP-A (0-3`)	COMP-A (3`-6`)
Parameters	Sample Date	Unit	Characteristics	Unrestricted Use	Restricted-	9/23/2022	9/23/2022
	CAS		Characteristics	office office	Commercial	Result	Result
Volatiles By SW8260C							
1,1,1,2-Tetrachloroethane	630-20-6	μg/Kg		NA	NA	< 5.7	< 5.2
1,1,1-Trichloroethane	71-55-6	µg/Kg		680	500000	< 5.7	< 5.2
1,1,2,2-Tetrachloroethane	79-34-5	µg/Kg		NA	NA	< 5.7	< 5.2
1,1,2-Trichloroethane	79-00-5	µg/Kg		NA	NA	< 5.7	< 5.2
1,1-Dichloroethane	75-34-3	μg/Kg		270	240000	< 5.7	< 5.2
1,1-Dichloroethene	75-35-4	µg/Kg		330	500000	< 5.7	< 5.2
1,1-Dichloropropene	563-58-6	μg/Kg		NA	NA	< 5.7	< 5.2
1,2,3-Trichlorobenzene	87-61-6	μg/Kg		NA	NA	< 5.7	< 5.2
1,2,3-Trichloropropane	96-18-4	μg/Kg		NA	NA	< 5.7	< 5.2
1,2,4-Trichlorobenzene	120-82-1	µg/Kg		NA	NA	< 5.7	< 5.2
1,2,4-Trimethylbenzene	95-63-6	µg/Kg		3600	190000	< 5.7	< 5.2
1,2-Dibromo-3-Chloropropane	96-12-8	µg/Kg		NA	NA	< 5.7	< 5.2
1,2-Dibromoethane	106-93-4	μg/Kg		NA	NA	< 5.7	< 5.2
1,2-Dichlorobenzene	95-50-1	μg/Kg		1100	500000	< 5.7	< 5.2
1,2-Dichloroethane	107-06-2	µg/Kg		20	30000	< 5.7	< 5.2
1,2-Dichloropropane	78-87-5	μg/Kg		NA	NA	< 5.7	< 5.2
1,3,5-Trimethylbenzene	108-67-8	µg/Kg		8400	190000	< 5.7	< 5.2
1,3-Dichlorobenzene	541-73-1	μg/Kg		2400	280000	< 5.7	< 5.2
1,3-Dichloropropane	142-28-9	µg/Kg		NA	NA	< 5.7	< 5.2
1,4-Dichlorobenzene	106-46-7	μg/Kg		1800	130000	< 5.7	< 5.2
2,2-Dichloropropane	594-20-7	µg/Kg		NA	NA	< 5.7	< 5.2
2-Chlorotoluene	95-49-8	μg/Kg		NA	NA	< 5.7	< 5.2
2-Hexanone	591-78-6	µg/Kg		NA	NA	< 28	< 26
2-Isopropyltoluene	527-84-4	µg/Kg		NA	NA	< 5.7	< 5.2
4-Chlorotoluene	106-43-4	μg/Kg		NA	NA	< 5.7	< 5.2
Methyl Isobutyl Ketone	108-10-1	μg/Kg		NA	NA	< 28	< 26
Acetone	67-64-1	μg/Kg		50	500000	< 28	< 26

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

Exceeding 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

	Sample ID		FPA Toxicity	NYCRR 375	NYCRR 375	COMP-A (0-3`)	COMP-A (3`-6`)
Parameters	Sample Date	Unit	Characteristics	Unrestricted Use	Restricted-	9/23/2022	9/23/2022
	CAS		Characteristics	Onrestricted Use	Commercial	Result	Result
Acrylonitrile	107-13-1	μg/Kg		NA	NA	< 11	< 10
Benzene	71-43-2	μg/Kg		60	44000	< 5.7	< 5.2
Bromobenzene	108-86-1	μg/Kg		NA	NA	< 5.7	< 5.2
Bromochloromethane	74-97-5	µg/Kg		NA	NA	< 5.7	< 5.2
Bromodichloromethane	75-27-4	μg/Kg		NA	NA	< 5.7	< 5.2
Bromoform	75-25-2	μg/Kg		NA	NA	< 5.7	< 5.2
Bromomethane	74-83-9	μg/Kg		NA	NA	< 5.7	< 5.2
Carbon Disulfide	75-15-0	µg/Kg		NA	NA	< 5.7	< 5.2
Carbon Tetrachloride	56-23-5	μg/Kg		760	22000	< 5.7	< 5.2
Chlorobenzene	108-90-7	μg/Kg		1100	500000	< 5.7	< 5.2
Chloroethane	75-00-3	μg/Kg		NA	NA	< 5.7	< 5.2
Chloroform	67-66-3	μg/Kg		370	350000	< 5.7	< 5.2
Chloromethane	74-87-3	µg/Kg		NA	NA	< 5.7	< 5.2
cis-1,2-Dichloroethene	156-59-2	μg/Kg		250	500000	< 5.7	< 5.2
cis-1,3-Dichloropropene	10061-01-5	μg/Kg		NA	NA	< 5.7	< 5.2
Chlorodibromomethane	124-48-1	μg/Kg		NA	NA	< 5.7	< 5.2
Dibromomethane	74-95-3	μg/Kg		NA	NA	< 5.7	< 5.2
Dichlorodifluoromethane	75-71-8	μg/Kg		NA	NA	< 5.7	< 5.2
Ethylbenzene	100-41-4	μg/Kg		1000	390000	< 5.7	< 5.2
Hexachlorobutadiene	87-68-3	µg/Kg		NA	NA	< 5.7	< 5.2
Isopropylbenzene	98-82-8	μg/Kg		NA	NA	< 5.7	< 5.2
m&p-Xylene	179601-23-1	µg/Kg		NA	NA	< 5.7	< 5.2
2-Butanone	78-93-3	μg/Kg		NA	500000	< 28	< 26
Methyl Tert-Butyl Ether	1634-04-4	µg/Kg		930	500000	< 11	< 10
Methylene Chloride	75-09-2	μg/Kg		50	500000	< 11	< 10
Naphthalene	91-20-3	μg/Kg		12000	500000	< 5.7	< 5.2

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

Exceeding 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

Parameters	Sample ID Sample Date CAS	Unit	EPA Toxicity Characteristics	NYCRR 375 Unrestricted Use	NYCRR 375 Restricted- Commercial	COMP-A (0-3`) 9/23/2022 Result	COMP-A (3`-6`) 9/23/2022 Result
n-Butylbenzene	104-51-8	μg/Kg		12000	500000	< 5.7	< 5.2
n-Propylbenzene	103-65-1	μg/Kg		3900	500000	< 5.7	< 5.2
o-Xylene	95-47-6	µg/Kg		NA	NA	< 5.7	< 5.2
p-Isoproplytoluene	99-87-6	µg/Kg		NA	NA	< 5.7	< 5.2
sec-Butylbenzene	135-98-8	µg/Kg		11000	500000	< 5.7	< 5.2
Styrene	100-42-5	µg/Kg		NA	NA	< 5.7	< 5.2
tert-Butylbenzene	98-06-6	µg/Kg		5900	500000	< 5.7	< 5.2
Tetrachloroethene	127-18-4	µg/Kg		1300	150000	< 5.7	< 5.2
Tetrahydrofuran	109-99-9	µg/Kg		NA	NA	< 11	< 10
Toluene	108-88-3	μg/Kg		700	500000	< 5.7	< 5.2
Total Xylenes	1330-20-7	μg/Kg		260	500000	< 5.7	< 5.2
trans-1,2-Dichloroethene	156-60-5	µg/Kg		190	500000	< 5.7	< 5.2
trans-1,3-Dichloropropene	10061-02-6	μg/Kg		NA	NA	< 5.7	< 5.2
trans-1,4-dichloro-2-butene	110-57-6	µg/Kg		NA	NA	< 11	< 10
Trichloroethene	79-01-6	µg/Kg		470	200000	< 5.7	< 5.2
Trichlorofluoromethane	75-69-4	µg/Kg		NA	NA	< 5.7	< 5.2
Trichlorotrifluoroethane	76-13-1	μg/Kg		NA	NA	< 5.7	< 5.2
Vinyl Chloride	75-01-4	μg/Kg		20	13000	< 5.7	< 5.2

Notes:

µg/Kg: microgram per kilogram (ppb) mg/Kg: miligram per kilogram (ppm)

Analyte detected

Exceeding 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

Parameters	Sample ID		EPA Toxicity Characteristics	NYCRR 375	NYCRR 375	COMP-A (0-3`)	COMP-A (3`-6`)
	Sample Date	Unit		Unrestricted Use	Restricted-	9/23/2022	9/23/2022
	CAS				Commercial	Result	Result
Polynuclear Aromatic HC By SW8270D							
2-Methylnaphthalene	91-57-6	μg/Kg		NA	NA	< 250	< 240
Acenaphthene	83-32-9	µg/Kg		20000	500000	< 250	< 240
Acenaphthylene	208-96-8	μg/Kg		100000	500000	< 250	< 240
Anthracene	120-12-7	µg/Kg		100000	500000	< 250	< 240
Benzo-a-Anthracene	56-55-3	μg/Kg		1000	5600	550	< 240
Benzo-a-Pyrene	50-32-8	µg/Kg		1000	1000	770	< 240
Benzo-b-Fluoranthene	205-99-2	μg/Kg		1000	5600	480	< 240
Benzo-g,h,i-Perylene	191-24-2	μg/Kg		100000	500000	510	< 240
Benzo-k-Fluoranthene	207-08-9	μg/Kg		800	56000	310	< 240
Chrysene	218-01-9	µg/Kg		1000	56000	1,100	< 240
Dibenzo-a,h-Anthracene	53-70-3	μg/Kg		330	560	< 250	< 240
Fluoranthene	206-44-0	μg/Kg		100000	500000	310	< 240
Fluorene	86-73-7	µg/Kg		30000	500000	< 250	< 240
Indeno(1,2,3-cd)Pyrene	193-39-5	μg/Kg		500	5600	330	< 240
Naphthalene	91-20-3	μg/Kg		12000	500000	< 250	< 240
Phenanthrene	85-01-8	μg/Kg		100000	500000	360	< 240
Pyrene	129-00-0	μg/Kg		100000	500000	940	< 240

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

Exceeding 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives

Parameters	Sample ID Sample Date CAS	Unit	EPA Toxicity Characteristics	NYCRR 375 Unrestricted Use	NYCRR 375 Restricted- Commercial	COMP-A (0-3`) 9/23/2022 Result	COMP-A (3`-6`) 9/23/2022 Result
NJ EPH Category 1 (Fuel #2/Diesel) By NJEPH 10-08 R3							
>C28-C40		mg/kg		NA	NA	230	< 10
C9-C28		mg/kg		NA	NA	200	< 10
Total EPH		mg/kg		NA	NA	430	< 10
TPH By 8015D DRO							
Diesel Range Organics (C10-C28)		mg/Kg				130	< 50

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm) Analyte detected

Exceeding 6 NYCRR Part 375 Unrestricted Soil Cleanup Objectives Exceeding 6 NYCRR Part 375 Restricted Commercial Soil Cleanup Objectives

Parameters	Sample ID Sample Date	e Unit	EPA Toxicity	NYCRR 375	NYCRR 375 Restricted-	COMP-B (0-3`) 9/23/2022	COMP-B (3`-11`) 9/23/2022	COMP-BC (3`-11`) 9/23/2022
	CAS		Characteristics	Unitestricted Use	Commercial	Result	Result	Result
Miscellaneous/Inorganics								
Percent Solid		%				97	98	96
Corrosivity		Pos/Neg				Negative	Negative	Negative
Flash Point		Degree F				>200	>200	>200
Ignitability		degree F				Passed	Passed	Passed
pH at 25C - Soil		pH Units				8.34	8.18	6.94
Reactivity Cyanide		mg/Kg				< 5	< 5	< 5
Reactivity Sulfide		mg/Kg				< 20	< 20	< 20
Reactivity		Pos/Neg				Negative	Negative	Negative
Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

	Sample ID		EPA Toxicity	NYCRR 375	NYCRR 375	COMP-B (0-3`)	COMP-B (3`-11`)	COMP-BC (3`-11`)
Parameters	Sample Date	Unit	Characteristics	Unrestricted Use	Restricted-	9/23/2022	9/23/2022	9/23/2022
	CAS		Characteristics	official official official	Commercial	Result	Result	Result
Metals, Total								
Arsenic, As	7440-38-2	mg/Kg		13	16	1.14	1.57	1.38
Barium, Ba	7440-39-3	mg/Kg		350	400	9.74	13.4	15.1
Cadmium, Cd	7440-43-9	mg/Kg		2.5	9.3	< 0.31	< 0.33	< 0.37
Chromium, Cr	7440-47-3	mg/Kg		30	1500	3.93	5.61	4.92
Lead, Pb	7439-92-1	mg/Kg		63	1000	5.29	5.82	6.7
Mercury, Hg	7439-97-6	mg/Kg		0.18	2.8	< 0.03	< 0.02	< 0.03
Selenium, Se	7782-49-2	mg/Kg		3.9	1500	< 1.3	< 1.3	< 1.5
Silver, Ag	7440-22-4	mg/Kg		2	1500	< 0.31	< 0.33	< 0.37
Metals, TCLP								
TCLP Arsenic	7440-38-2	mg/L	5			< 0.10	< 0.10	< 0.10
TCLP Barium	7440-39-3	mg/L	100			0.13	0.23	0.15
TCLP Cadmium	7440-43-9	mg/L	1			< 0.050	< 0.050	< 0.050
TCLP Chromium	7440-47-3	mg/L	5			< 0.10	< 0.10	< 0.10
TCLP Lead	7439-92-1	mg/L	5			< 0.10	< 0.10	< 0.10
TCLP Mercury	7439-97-6	mg/L	0.2			< 0.0002	< 0.0002	< 0.0002
TCLP Selenium	7782-49-2	mg/L	1			< 0.10	< 0.10	< 0.10
TCLP Silver	7440-22-4	mg/L	5			< 0.10	< 0.10	< 0.10

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

Parameters	Sample ID Sample Date CAS	Unit	EPA Toxicity Characteristics	NYCRR 375 Unrestricted Use	NYCRR 375 Restricted- Commercial	COMP-B (0-3`) 9/23/2022 Result	COMP-B (3`-11`) 9/23/2022 Result	COMP-BC (3`-11`) 9/23/2022 Result
PCBs By SW8082A		-						
Aroclor 1016	12674-11-2	μg/Kg				< 340	< 330	< 340
Aroclor 1221	11104-28-2	µg/Kg				< 340	< 330	< 340
Aroclor 1232	11141-16-5	μg/Kg				< 340	< 330	< 340
Aroclor 1242	53469-21-9	µg/Kg				< 340	< 330	< 340
Aroclor 1248	12672-29-6	μg/Kg		100	1,000	< 340	< 330	< 340
Aroclor 1254	11097-69-1	µg/Kg				< 340	< 330	< 340
Aroclor 1260	11096-82-5	μg/Kg				< 340	< 330	< 340
Aroclor 1262	37324-23-5	μg/Kg				< 340	< 330	< 340
Aroclor 1268	11100-14-4	µg/Kg				< 340	< 330	< 340

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

	Sample ID		FPA Toxicity	NYCRR 375	NYCRR 375	COMP-B (0-3`)	COMP-B (3`-11`)	COMP-BC (3`-11`)
Parameters	Sample Date	Unit	Characteristics	Unrestricted Use	Restricted-	9/23/2022	9/23/2022	9/23/2022
	CAS		Characteristics	office office of the	Commercial	Result	Result	Result
Volatiles By SW8260C		-						
1,1,1,2-Tetrachloroethane	630-20-6	µg/Kg		NA	NA	< 5.2	< 5.2	NT
1,1,1-Trichloroethane	71-55-6	µg/Kg		680	500000	< 5.2	< 5.2	NT
1,1,2,2-Tetrachloroethane	79-34-5	µg/Kg		NA	NA	< 5.2	< 5.2	NT
1,1,2-Trichloroethane	79-00-5	µg/Kg		NA	NA	< 5.2	< 5.2	NT
1,1-Dichloroethane	75-34-3	µg/Kg		270	240000	< 5.2	< 5.2	NT
1,1-Dichloroethene	75-35-4	µg/Kg		330	500000	< 5.2	< 5.2	NT
1,1-Dichloropropene	563-58-6	µg/Kg		NA	NA	< 5.2	< 5.2	NT
1,2,3-Trichlorobenzene	87-61-6	μg/Kg		NA	NA	< 5.2	< 5.2	NT
1,2,3-Trichloropropane	96-18-4	μg/Kg		NA	NA	< 5.2	< 5.2	NT
1,2,4-Trichlorobenzene	120-82-1	μg/Kg		NA	NA	< 5.2	< 5.2	NT
1,2,4-Trimethylbenzene	95-63-6	µg/Kg		3600	190000	< 5.2	< 5.2	NT
1,2-Dibromo-3-Chloropropane	96-12-8	µg/Kg		NA	NA	< 5.2	< 5.2	NT
1,2-Dibromoethane	106-93-4	µg/Kg		NA	NA	< 5.2	< 5.2	NT
1,2-Dichlorobenzene	95-50-1	µg/Kg		1100	500000	< 5.2	< 5.2	NT
1,2-Dichloroethane	107-06-2	µg/Kg		20	30000	< 5.2	< 5.2	NT
1,2-Dichloropropane	78-87-5	µg/Kg		NA	NA	< 5.2	< 5.2	NT
1,3,5-Trimethylbenzene	108-67-8	µg/Kg		8400	190000	< 5.2	< 5.2	NT
1,3-Dichlorobenzene	541-73-1	µg/Kg		2400	280000	< 5.2	< 5.2	NT
1,3-Dichloropropane	142-28-9	µg/Kg		NA	NA	< 5.2	< 5.2	NT
1,4-Dichlorobenzene	106-46-7	µg/Kg		1800	130000	< 5.2	< 5.2	NT
2,2-Dichloropropane	594-20-7	µg/Kg		NA	NA	< 5.2	< 5.2	NT
2-Chlorotoluene	95-49-8	µg/Kg		NA	NA	< 5.2	< 5.2	NT
2-Hexanone	591-78-6	µg/Kg		NA	NA	< 26	< 26	NT
2-Isopropyltoluene	527-84-4	µg/Kg		NA	NA	< 5.2	< 5.2	NT
4-Chlorotoluene	106-43-4	μg/Kg		NA	NA	< 5.2	< 5.2	NT
Methyl Isobutyl Ketone	108-10-1	μg/Kg		NA	NA	< 26	< 26	NT
Acetone	67-64-1	μg/Kg		50	500000	< 26	< 26	NT

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

	Sample ID		FDA Toxicity		NYCRR 375	COMP-B (0-3`)	COMP-B (3`-11`)	COMP-BC (3`-11`)
Parameters	Sample Date	Unit	Charactoristics	Uprostrictod Uso	Restricted-	9/23/2022	9/23/2022	9/23/2022
	CAS		Characteristics	Unrestricted Use	Commercial	Result	Result	Result
Acrylonitrile	107-13-1	µg/Kg		NA	NA	< 10	< 10	NT
Benzene	71-43-2	μg/Kg		60	44000	< 5.2	< 5.2	NT
Bromobenzene	108-86-1	µg/Kg		NA	NA	< 5.2	< 5.2	NT
Bromochloromethane	74-97-5	µg/Kg		NA	NA	< 5.2	< 5.2	NT
Bromodichloromethane	75-27-4	µg/Kg		NA	NA	< 5.2	< 5.2	NT
Bromoform	75-25-2	μg/Kg		NA	NA	< 5.2	< 5.2	NT
Bromomethane	74-83-9	μg/Kg		NA	NA	< 5.2	< 5.2	NT
Carbon Disulfide	75-15-0	µg/Kg		NA	NA	< 5.2	< 5.2	NT
Carbon Tetrachloride	56-23-5	µg/Kg		760	22000	< 5.2	< 5.2	NT
Chlorobenzene	108-90-7	µg/Kg		1100	500000	< 5.2	< 5.2	NT
Chloroethane	75-00-3	μg/Kg		NA	NA	< 5.2	< 5.2	NT
Chloroform	67-66-3	µg/Kg		370	350000	< 5.2	< 5.2	NT
Chloromethane	74-87-3	µg/Kg		NA	NA	< 5.2	< 5.2	NT
cis-1,2-Dichloroethene	156-59-2	µg/Kg		250	500000	< 5.2	< 5.2	NT
cis-1,3-Dichloropropene	10061-01-5	µg/Kg		NA	NA	< 5.2	< 5.2	NT
Chlorodibromomethane	124-48-1	µg/Kg		NA	NA	< 5.2	< 5.2	NT
Dibromomethane	74-95-3	μg/Kg		NA	NA	< 5.2	< 5.2	NT
Dichlorodifluoromethane	75-71-8	μg/Kg		NA	NA	< 5.2	< 5.2	NT
Ethylbenzene	100-41-4	µg/Kg		1000	390000	< 5.2	< 5.2	NT
Hexachlorobutadiene	87-68-3	µg/Kg		NA	NA	< 5.2	< 5.2	NT
Isopropylbenzene	98-82-8	μg/Kg		NA	NA	< 5.2	< 5.2	NT
m&p-Xylene	179601-23-1	µg/Kg		NA	NA	< 5.2	< 5.2	NT
2-Butanone	78-93-3	µg/Kg		NA	500000	< 26	< 26	NT
Methyl Tert-Butyl Ether	1634-04-4	μg/Kg		930	500000	< 10	< 10	NT
Methylene Chloride	75-09-2	µg/Kg		50	500000	< 10	< 10	NT
Naphthalene	91-20-3	μg/Kg		12000	500000	< 5.2	< 5.2	NT

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

	Sample ID		EPA Toxicity	NYCRR 375	NYCRR 375	COMP-B (0-3`)	COMP-B (3`-11`)	COMP-BC (3`-11`)
Parameters	Sample Date	Unit	Characteristics	Uprostricted Use	Restricted-	9/23/2022	9/23/2022	9/23/2022
	CAS		Characteristics	Unrestricted Use	Commercial	Result	Result	Result
n-Butylbenzene	104-51-8	μg/Kg		12000	500000	< 5.2	< 5.2	NT
n-Propylbenzene	103-65-1	μg/Kg		3900	500000	< 5.2	< 5.2	NT
o-Xylene	95-47-6	μg/Kg		NA	NA	< 5.2	< 5.2	NT
p-Isoproplytoluene	99-87-6	μg/Kg		NA	NA	< 5.2	< 5.2	NT
sec-Butylbenzene	135-98-8	µg/Kg		11000	500000	< 5.2	< 5.2	NT
Styrene	100-42-5	μg/Kg		NA	NA	< 5.2	< 5.2	NT
tert-Butylbenzene	98-06-6	µg/Kg		5900	500000	< 5.2	< 5.2	NT
Tetrachloroethene	127-18-4	μg/Kg		1300	150000	< 5.2	< 5.2	NT
Tetrahydrofuran	109-99-9	µg/Kg		NA	NA	< 10	< 10	NT
Toluene	108-88-3	μg/Kg		700	500000	< 5.2	< 5.2	NT
Total Xylenes	1330-20-7	µg/Kg		260	500000	< 5.2	< 5.2	NT
trans-1,2-Dichloroethene	156-60-5	µg/Kg		190	500000	< 5.2	< 5.2	NT
trans-1,3-Dichloropropene	10061-02-6	µg/Kg		NA	NA	< 5.2	< 5.2	NT
trans-1,4-dichloro-2-butene	110-57-6	µg/Kg		NA	NA	< 10	< 10	NT
Trichloroethene	79-01-6	µg/Kg		470	200000	< 5.2	< 5.2	NT
Trichlorofluoromethane	75-69-4	µg/Kg		NA	NA	< 5.2	< 5.2	NT
Trichlorotrifluoroethane	76-13-1	μg/Kg		NA	NA	< 5.2	< 5.2	NT
Vinyl Chloride	75-01-4	μg/Kg		20	13000	< 5.2	< 5.2	NT

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm)

Analyte detected

	Sample ID		FPA Toxicity	NYCRR 375	NYCRR 375	COMP-B (0-3`)	COMP-B (3`-11`)	COMP-BC (3`-11`)
Parameters	Sample Date	Unit	Characteristics	Uprostricted Use	Restricted-	9/23/2022	9/23/2022	9/23/2022
	CAS		Characteristics	Unrestricted Use	Commercial	Result	Result	Result
Polynuclear Aromatic HC By SW8	270D							
2-Methylnaphthalene	91-57-6	µg/Kg		NA	NA	< 240	< 230	< 240
Acenaphthene	83-32-9	µg/Kg		20000	500000	< 240	< 230	< 240
Acenaphthylene	208-96-8	µg/Kg		100000	500000	< 240	< 230	< 240
Anthracene	120-12-7	µg/Kg		100000	500000	< 240	< 230	< 240
Benzo-a-Anthracene	56-55-3	µg/Kg		1000	5600	< 240	< 230	< 240
Benzo-a-Pyrene	50-32-8	µg/Kg		1000	1000	< 240	< 230	< 240
Benzo-b-Fluoranthene	205-99-2	µg/Kg		1000	5600	< 240	< 230	< 240
Benzo-g,h,i-Perylene	191-24-2	µg/Kg		100000	500000	< 240	< 230	< 240
Benzo-k-Fluoranthene	207-08-9	µg/Kg		800	56000	< 240	< 230	< 240
Chrysene	218-01-9	µg/Kg		1000	56000	< 240	< 230	< 240
Dibenzo-a,h-Anthracene	53-70-3	µg/Kg		330	560	< 240	< 230	< 240
Fluoranthene	206-44-0	µg/Kg		100000	500000	< 240	< 230	< 240
Fluorene	86-73-7	µg/Kg		30000	500000	< 240	< 230	< 240
Indeno(1,2,3-cd)Pyrene	193-39-5	µg/Kg		500	5600	< 240	< 230	< 240
Naphthalene	91-20-3	µg/Kg		12000	500000	< 240	< 230	< 240
Phenanthrene	85-01-8	μg/Kg		100000	500000	< 240	< 230	< 240
Pyrene	129-00-0	μg/Kg		100000	500000	< 240	< 230	< 240

Notes: µg/Kg: microgram per kilogram (ppb)

mg/Kg: miligram per kilogram (ppm) Analyte detected

Parameters	Sample ID Sample Date Unit CAS	EPA Toxicity Characteristics	NYCRR 375 Unrestricted Use	NYCRR 375 Restricted- Commercial	COMP-B (0-3`) 9/23/2022 Result	COMP-B (3`-11`) 9/23/2022 Result	COMP-BC (3`-11`) 9/23/2022 Result
NJ EPH Category 1 (Fuel #2/Dies	3						
>C28-C40	mg/kg		NA	NA	< 10	< 10	< 12
C9-C28	mg/kg		NA	NA	< 10	< 10	< 12
Total EPH	mg/kg		NA	NA	< 10	< 10	< 12
TPH By 8015D DRO							
Diesel Range Organics (C10-C28)	mg/Kg				< 51	NT	< 100

APPENDIX A

Photo Log

APPENDIX B

Laboratory Analysis Report

Time

9:22

15:10

Analysis Report

September 28, 2022

FOR: Attn: Mr. Wenqing Fang, Principal Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

Sample Information

Matrix:	SOIL
Location Code:	CIDER-ENV
Rush Request:	24 Hour
P.O.#:	2022-122

Received by:	CP
Analyzed by:	see

Custody Information

Collected by:

"By" below Laboratory Data

SDG ID: GCM41513 Phoenix ID: CM41513

Date

09/23/22

09/26/22

435 FIRST ST MINELA, NY Project ID:

Client ID:

COMP-A (0-3`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.37	0.37	mg/Kg	1	09/27/22	ΤН	SW6010D	
Arsenic	9.10	0.73	mg/Kg	1	09/27/22	TH	SW6010D	
Barium	183	0.37	mg/Kg	1	09/27/22	TH	SW6010D	
Cadmium	0.88	0.37	mg/Kg	1	09/27/22	TH	SW6010D	
Chromium	74.9	0.37	mg/Kg	1	09/27/22	TH	SW6010D	
Mercury	0.06	0.03	mg/Kg	2	09/28/22	IE	SW7471B	
Lead	111	0.37	mg/Kg	1	09/27/22	ΤН	SW6010D	
Selenium	< 1.5	1.5	mg/Kg	1	09/27/22	ΤН	SW6010D	
TCLP Silver	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Arsenic	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Barium	0.88	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Cadmium	< 0.050	0.050	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Chromium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	09/27/22	IE	SW846 1311/7470	
TCLP Lead	0.18	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Selenium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010D	
TCLP Metals Digestion	Completed				09/27/22	AB/AB	SW3010A	
Percent Solid	91		%		09/26/22	AL	SW846-%Solid	
Corrosivity	Negative		Pos/Neg	1	09/26/22	JW	SW846-Corr	1
Flash Point	>200	200	Degree F	1	09/27/22	G	SW1010B	
Ignitability	Passed	140	degree F	1	09/27/22	G	SW846-Ignit	1
pH at 25C - Soil	7.78	1.00	pH Units	1	09/26/22 20:14	JW	SW846 9045D	1
Reactivity Cyanide	< 5	5	mg/Kg	1	09/27/22	DK/GD	SW846 7.3.3.1/90	1
Reactivity Sulfide	< 20	20	mg/Kg	1	09/27/22	DK/GD	SW846 CH7	1
Reactivity	Negative		Pos/Neg	1	09/27/22	DK/GD	SW846-React	1
Soil Extraction for PCB	Completed				09/27/22	O/MO	SW3545A	
Mercury Digestion	Completed				09/28/22	AB/AB	SW7471B	

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-A (0-3`)

Devenueter	Desult	RL/	l la ita	Dilution	Data /Time	D	Deferre	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Extraction of NY ETPH	Completed				09/27/22	Z/U	SW3546	
NJ EPH Extraction	Completed				09/27/22	Z/MO	NJDEP 10-08 R3	
Soil Extraction for SVOA PAH	Completed				09/26/22	Н	SW3546	
TCLP Digestion Mercury	Completed				09/27/22	AB/KL	SW7470A	
TCLP Extraction for Metals	Completed				09/26/22	AB	SW1311	
Total Metals Digest	Completed				09/26/22	J/AG	SW3050B	
NJ EPH Category 1 (Fu	el #2/Diese	el)						
>C28-C40	230	11	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
C9-C28	200	11	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
Total EPH	430	11	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
QA/QC Surrogates								
% COD (surr)	Interference		%	1	09/28/22	JRB	40 - 140 %	
% Terphenyl (surr)	54		%	1	09/28/22	JRB	40 - 140 %	
Polychlorinated Bipher	nvls							
PCB-1016	ND	360	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1221	ND	360	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1232	ND	360	ug/Kg	10	09/28/22	SC	SW/8082A	
PCB-12/2	ND	360	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1242	ND	360	ug/Kg	10	09/28/22	SC	SW/8082A	
PCB-1254	ND	360	ug/Kg	10	09/28/22	SC	SW/8082A	
PCB-1260		360	ug/Kg	10	09/28/22	SC	SW/8082A	
PCB 1262		360	ug/Kg	10	00/28/22	SC	SW/8082A	
PCB 1262		360	ug/Kg	10	00/28/22	SC	SW/8082A	
	ND	500	ug/itg	10	03/20/22	50	3110002A	
	75		0/	10	00/28/22	50	20 150 %	
% DCBF	75		70 9/	10	09/20/22	50	30 - 150 %	
	60		70 9/	10	09/20/22	50	30 - 150 %	
% TOMA	72		/0	10	09/20/22	50	30 - 150 %	
	12		78	10	09/20/22	30	30 - 130 %	
TPH (C10-C28) Extracta	able Produ	<u>cts</u>						
Diesel Range Organics (C10-C28)	130	55	mg/Kg	1	09/28/22	JRB	8015D DRO	
QA/QC Surrogates					/ /			
% COD (surr)	118		%	1	09/28/22	JRB	50 - 150 %	
% Terphenyl (surr)	92		%	1	09/28/22	JRB	50 - 150 %	
Polynuclear Aromatic I	<u>+C</u>							
2-Methylnaphthalene	ND	250	ug/Kg	1	09/27/22	WB	SW8270D	
Acenaphthene	ND	250	ug/Kg	1	09/27/22	WB	SW8270D	
Acenaphthylene	ND	250	ug/Kg	1	09/27/22	WB	SW8270D	
Anthracene	ND	250	ug/Kg	1	09/27/22	WB	SW8270D	
Benz(a)anthracene	550	250	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(a)pyrene	770	250	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(b)fluoranthene	480	250	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(ghi)perylene	510	250	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(k)fluoranthene	310	250	ug/Kg	1	09/27/22	WB	SW8270D	
Chrysene	1100	250	ug/Kg	1	09/27/22	WB	SW8270D	
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	09/27/22	WB	SW8270D	
Fluoranthene	310	250	ug/Kg	1	09/27/22	WB	SW8270D	

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-A (0-3`)

Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Fluorene	ND	250	ug/Kg	1	09/27/22	WB	SW8270D	
Indeno(1,2,3-cd)pyrene	330	250	ug/Kg	1	09/27/22	WB	SW8270D	
Naphthalene	ND	250	ug/Kg	1	09/27/22	WB	SW8270D	
Phenanthrene	360	250	ug/Kg	1	09/27/22	WB	SW8270D	
Pyrene	940	250	ug/Kg	1	09/27/22	WB	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	54		%	1	09/27/22	WB	30 - 130 %	
% Nitrobenzene-d5	71		%	1	09/27/22	WB	30 - 130 %	
% Terphenyl-d14	63		%	1	09/27/22	WB	30 - 130 %	

DI /

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The TPH (C10-C28) is quantitated using an alkane standard.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director September 28, 2022 Official Report Release To Follow

Analysis Report

FOR: Attn: Mr. Wenqing Fang, Principal Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

September 28, 2022

Sample Information		Custody Inform	Custody Information				
Matrix:	SOIL	Collected by:		09/23/22	9:14		
Location Code:	CIDER-ENV	Received by:	CP	09/26/22	15:10		
Rush Request:	24 Hour	Analyzed by:	see "By" below				
P.O.#:	2022-122				001444		

Laboratory Data

SDG ID: GCM41513 Phoenix ID: CM41514

Project ID:435 FIRST ST MINELA, NYClient ID:COMP-A (0-3`) GRAB

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Percent Solid	91	0.05	%		09/28/22	AL	SW846-%Solid	
Field Extraction	Completed				09/23/22		SW5035A	1
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,1-Trichloroethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,2-Trichloroethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloroethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloroethene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloropropene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,3-Trichloropropane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,4-Trimethylbenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dibromoethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichlorobenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichloroethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichloropropane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3,5-Trimethylbenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3-Dichlorobenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3-Dichloropropane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
1,4-Dichlorobenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
2,2-Dichloropropane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
2-Chlorotoluene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C	
2-Hexanone	ND	28	ug/Kg	1	09/27/22	JLI	SW8260C	

Project ID: 435 FIRST ST MINELA, NY

Client ID: COMP-A (0-3`) GRAB

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
2-Isopropyltoluene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C 1
4-Chlorotoluene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
4-Methyl-2-pentanone	ND	28	ug/Kg	1	09/27/22	JLI	SW8260C
Acetone	ND	28	ug/Kg	1	09/27/22	JLI	SW8260C
Acrylonitrile	ND	11	ug/Kg	1	09/27/22	JLI	SW8260C
Benzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Bromobenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Bromochloromethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Bromodichloromethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Bromoform	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Bromomethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Carbon Disulfide	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Carbon tetrachloride	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Chlorobenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Chloroethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Chloroform	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Chloromethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Dibromochloromethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Dibromomethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Dichlorodifluoromethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Ethylbenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Hexachlorobutadiene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Isopropylbenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
m&p-Xylene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Methyl Ethyl Ketone	ND	28	ug/Kg	1	09/27/22	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	1	09/27/22	JLI	SW8260C
Methylene chloride	ND	11	ug/Kg	1	09/27/22	JLI	SW8260C
Naphthalene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
n-Butylbenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
n-Propylbenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
o-Xylene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
p-Isopropyltoluene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
sec-Butylbenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Styrene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
tert-Butylbenzene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Tetrachloroethene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Tetrahydrofuran (THF)	ND	11	ug/Kg	1	09/27/22	JLI	SW8260C
Toluene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Total Xylenes	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	11	ug/Kg	1	09/27/22	JLI	SW8260C
Trichloroethene	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Trichlorofluoromethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
Vinyl chloride	ND	5.7	ug/Kg	1	09/27/22	JLI	SW8260C
OV/OC Surrogates							

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-A (0-3`) GRAB

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% 1,2-dichlorobenzene-d4	99		%	1	09/27/22	JLI	70 - 130 %
% Bromofluorobenzene	100		%	1	09/27/22	JLI	70 - 130 %
% Dibromofluoromethane	97		%	1	09/27/22	JLI	70 - 130 %
% Toluene-d8	101		%	1	09/27/22	JLI	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

DI /

Phyllis, Shiller, Laboratory Director September 28, 2022 Official Report Release To Follow

Analysis Report

September 28, 2022

FOR: Attn: Mr. Wenqing Fang, Principal Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

Sample Information

Matrix:	SOIL
Location Code:	CIDER-ENV
Rush Request:	24 Hour
P.O.#:	2022-122

Received by:	CP
Analyzed by:	see

Custody Information

Collected by:

RL/

"By" below

09/26/22 15:10

Time

9:34

Date

09/23/22

Laboratory Data

SDG ID: GCM41513 Phoenix ID: CM41515

435 FIRST ST MINELA, NY Project ID:

Client ID:

COMP-A (3`-6`)

Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Silver	< 0.34	0.34	mg/Kg	1	09/27/22	TH	SW6010D	
Arsenic	1.08	0.69	mg/Kg	1	09/27/22	ΤН	SW6010D	
Barium	20.5	0.34	mg/Kg	1	09/27/22	TH	SW6010D	
Cadmium	< 0.34	0.34	mg/Kg	1	09/27/22	ΤН	SW6010D	
Chromium	5.39	0.34	mg/Kg	1	09/27/22	ΤН	SW6010D	
Mercury	< 0.02	0.02	mg/Kg	2	09/28/22	IE	SW7471B	
Lead	3.35	0.34	mg/Kg	1	09/27/22	ΤН	SW6010D	
Selenium	< 1.4	1.4	mg/Kg	1	09/27/22	ΤН	SW6010D	
TCLP Silver	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Arsenic	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Barium	0.14	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Cadmium	< 0.050	0.050	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Chromium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	09/27/22	IE	SW846 1311/7470	
TCLP Lead	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Selenium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010D	
TCLP Metals Digestion	Completed				09/27/22	AB/AB	SW3010A	
Percent Solid	97		%		09/26/22	AL	SW846-%Solid	
Corrosivity	Negative		Pos/Neg	1	09/26/22	JW	SW846-Corr	1
Flash Point	>200	200	Degree F	1	09/27/22	G	SW1010B	
Ignitability	Passed	140	degree F	1	09/27/22	G	SW846-Ignit	1
pH at 25C - Soil	7.68	1.00	pH Units	1	09/26/22 20:14	JW	SW846 9045D	1
Reactivity Cyanide	< 5	5	mg/Kg	1	09/27/22	DK/GD	SW846 7.3.3.1/90	1
Reactivity Sulfide	< 20	20	mg/Kg	1	09/27/22	DK/GD	SW846 CH7	1
Reactivity	Negative		Pos/Neg	1	09/27/22	DK/GD	SW846-React	1
Soil Extraction for PCB	Completed				09/27/22	O/MO	SW3545A	
Mercury Digestion	Completed				09/28/22	AB/AB	SW7471B	

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-A (3`-6`)

Descenter	D It	RL/	11.20			-		
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Extraction of NY ETPH	Completed				09/27/22	Z/U	SW3546	
NJ EPH Extraction	Completed				09/27/22	Z/MO	NJDEP 10-08 R3	
Soil Extraction for SVOA PAH	Completed				09/26/22	Н	SW3546	
TCLP Digestion Mercury	Completed				09/27/22	AB/KL	SW7470A	
TCLP Extraction for Metals	Completed				09/26/22	AB	SW1311	
Total Metals Digest	Completed				09/26/22	J/AG	SW3050B	
NJ EPH Category 1 (Fu	el #2/Diese	el)						
>C28-C40	ND	10	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
C9-C28	ND	10	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
Total EPH	ND	10	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
QA/QC Surrogates								
% COD (surr)	78		%	1	09/28/22	JRB	40 - 140 %	
% Terphenyl (surr)	86		%	1	09/28/22	JRB	40 - 140 %	
Polychlorinated Bipher	nyls							
PCB-1016	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1221	ND	340	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1232	ND	340	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1242	ND	340	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1248	ND	340	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1254	ND	340	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1260	ND	340	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1262	ND	340	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1268	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
QA/QC Surrogates		0.10	<i></i>		00/20/22		0110002/1	
% DCBP	78		%	10	09/28/22	SC	30 - 150 %	
% DCBP (Confirmation)	88		%	10	09/28/22	SC	30 - 150 %	
% TCMX	83		%	10	09/28/22	SC	30 - 150 %	
% TCMX (Confirmation)	80		%	10	09/28/22	SC	30 - 150 %	
	ahla Dradu	oto						
Diesel Range Organics (C10-C28)	ND	50	ma/Ka	1	09/28/22	IRB	8015D DRO	
OA/OC Surrogates	110	00	ing/itg		00/20/22	UND		
% COD (surr)	70		%	1	09/28/22	JRB	50 - 150 %	
% Terphenyl (surr)	62		%	1	09/28/22	JRB	50 - 150 %	
Relynuclear Aromatic L								
Polynuclear Alomatic P		240		4	00/27/22		CW0070D	
	ND	240	ug/Kg	1	09/27/22	WB	SVV8270D	
Acenaphthene	ND	240	ug/Kg	1	09/27/22	WB	SVV8270D	
Acenaphthylene	ND	240	ug/Kg	1	09/27/22	WB	SVV8270D	
Anthracene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benz(a)anthracene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(a)pyrene	ND	240	ug/Kg	1	09/27/22	WB	5W8270D	
Benzo(b)fluoranthene	ND	240	ug/Kg	1	09/27/22	VVB	SW8270D	
Benzo(ghi)perylene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(k)fluoranthene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Chrysene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Fluoranthene	NĎ	240	ug/Kg	1	09/27/22	WB	SW8270D	

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-A (3`-6`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Fluorene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D
Naphthalene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D
Phenanthrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D
Pyrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	48		%	1	09/27/22	WB	30 - 130 %
% Nitrobenzene-d5	57		%	1	09/27/22	WB	30 - 130 %
% Terphenyl-d14	59		%	1	09/27/22	WB	30 - 130 %

DI /

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The TPH (C10-C28) is quantitated using an alkane standard.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 28, 2022 Official Report Release To Follow

Analysis Report

FOR: Attn: Mr. Wenqing Fang, Principal Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

September 28, 2022

Sample Information		Custody Inforr	Custody Information				
Matrix:	SOIL	Collected by:		09/23/22	9:26		
Location Code:	CIDER-ENV	Received by:	CP	09/26/22	15:10		
Rush Request:	24 Hour	Analyzed by:	see "By" below				
P.O.#:	2022-122				001444		

Laboratory Data

SDG ID: GCM41513 Phoenix ID: CM41516

Project ID:435 FIRST ST MINELA, NYClient ID:COMP-A (3`-6`) GRAB

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	97	0.05	%		09/28/22	AL	SW846-%Solid	
Field Extraction	Completed				09/23/22		SW5035A	1
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,1-Trichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,2-Trichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloropropene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,3-Trichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,4-Trimethylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dibromoethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3,5-Trimethylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3-Dichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3-Dichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,4-Dichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
2,2-Dichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
2-Chlorotoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
2-Hexanone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C	

Project ID: 435 FIRST ST MINELA, NY

Client ID: COMP-A (3`-6`) GRAB

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
2-Isopropyltoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C 1
4-Chlorotoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
4-Methyl-2-pentanone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C
Acetone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C
Acrylonitrile	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Benzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromochloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromodichloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromoform	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromomethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Carbon Disulfide	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Carbon tetrachloride	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chloroform	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Dibromochloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Dibromomethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Dichlorodifluoromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Ethylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Hexachlorobutadiene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Isopropylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
m&p-Xylene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Methyl Ethyl Ketone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Methylene chloride	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Naphthalene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
n-Butylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
n-Propylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
o-Xylene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
p-Isopropyltoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
sec-Butylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Styrene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
tert-Butylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Tetrachloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Toluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Total Xylenes	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Trichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Trichlorofluoromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Vinyl chloride	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
QA/QC Surrogates							

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-A (3`-6`) GRAB

Result	PQL	Units	Dilution	Date/Time	Ву	Reference
99		%	1	09/27/22	JLI	70 - 130 %
100		%	1	09/27/22	JLI	70 - 130 %
98		%	1	09/27/22	JLI	70 - 130 %
102		%	1	09/27/22	JLI	70 - 130 %
	Result 99 100 98 102	Result PQL 99 100 98 102	ResultPQLUnits99%100%98%102%	REJUnitsDilution99%1100%198%1102%1	Result PQL Units Dilution Date/Time 99 % 1 09/27/22 100 % 1 09/27/22 98 % 1 09/27/22 102 % 1 09/27/22	Result PQL Units Dilution Date/Time By 99 % 1 09/27/22 JLI 100 % 1 09/27/22 JLI 98 % 1 09/27/22 JLI 102 % 1 09/27/22 JLI

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

DI /

Phyllis Shiller, Laboratory Director September 28, 2022 Official Report Release To Follow

Analysis Report

September 28, 2022

FOR: Attn: Mr. Wenqing Fang, Principal Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

Sample Information

Matrix:	SOIL
Location Code:	CIDER-ENV
Rush Request:	24 Hour
P.O.#:	2022-122

Received by:	CF
Analyzed by:	se

Collected by:

Custody Information

CP see "By" below 09/26/22 15:10

Time

9:42

Date

09/23/22

Laboratory Data

SDG ID: GCM41513 Phoenix ID: CM41517

Project ID: 435 FIRST ST MINELA, NY

Client ID:

COMP-B (0-3`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Silver	< 0.31	0.31	mg/Kg	1	09/27/22	ΤН	SW6010D	
Arsenic	1.14	0.63	mg/Kg	1	09/27/22	ΤН	SW6010D	
Barium	9.74	0.31	mg/Kg	1	09/27/22	ΤН	SW6010D	
Cadmium	< 0.31	0.31	mg/Kg	1	09/27/22	ΤН	SW6010D	
Chromium	3.93	0.31	mg/Kg	1	09/27/22	ΤН	SW6010D	
Mercury	< 0.03	0.03	mg/Kg	2	09/28/22	IE	SW7471B	
Lead	5.29	0.31	mg/Kg	1	09/27/22	ΤН	SW6010D	
Selenium	< 1.3	1.3	mg/Kg	1	09/27/22	ΤН	SW6010D	
TCLP Silver	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Arsenic	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Barium	0.13	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Cadmium	< 0.050	0.050	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Chromium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	09/27/22	IE	SW846 1311/7470	
TCLP Lead	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Selenium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010D	
TCLP Metals Digestion	Completed				09/27/22	AB/AB	SW3010A	
Percent Solid	97		%		09/26/22	AL	SW846-%Solid	
Corrosivity	Negative		Pos/Neg	1	09/26/22	JW	SW846-Corr	1
Flash Point	>200	200	Degree F	1	09/27/22	G	SW1010B	
Ignitability	Passed	140	degree F	1	09/27/22	G	SW846-Ignit	1
pH at 25C - Soil	8.34	1.00	pH Units	1	09/26/22 20:14	JW	SW846 9045D	1
Reactivity Cyanide	< 5	5	mg/Kg	1	09/27/22	DK/GD	SW846 7.3.3.1/90	1
Reactivity Sulfide	< 20	20	mg/Kg	1	09/27/22	DK/GD	SW846 CH7	1
Reactivity	Negative		Pos/Neg	1	09/27/22	DK/GD	SW846-React	1
Soil Extraction for PCB	Completed				09/27/22	O/MO	SW3545A	
Mercury Digestion	Completed				09/28/22	AB/AB	SW7471B	

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-B (0-3`)

	Dec. II	RL/	11.20			-		
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Extraction of NY ETPH	Completed				09/27/22	Z/U	SW3546	
NJ EPH Extraction	Completed				09/27/22	Z/MO	NJDEP 10-08 R3	
Soil Extraction for SVOA PAH	Completed				09/26/22	н	SW3546	
TCLP Digestion Mercury	Completed				09/27/22	AB/KL	SW7470A	
TCLP Extraction for Metals	Completed				09/26/22	AB	SW1311	
Total Metals Digest	Completed				09/26/22	J/AG	SW3050B	
NJ EPH Category 1 (Fu	el #2/Diese	el)						
>C28-C40	ND	10	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
C9-C28	ND	10	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
Total EPH	ND	10	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
QA/QC Surrogates								
% COD (surr)	79		%	1	09/28/22	JRB	40 - 140 %	
% Terphenyl (surr)	85		%	1	09/28/22	JRB	40 - 140 %	
Polychlorinated Bipher	nvls							
PCB-1016	ND	340	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1221	ND	340	ua/Ka	10	09/28/22	SC	SW8082A	
PCB-1232	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1242	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1242	ND	340	ug/Kg	10	09/28/22	SC	SW/8082A	
PCB-1250	ND	340	ug/Kg	10	09/28/22	SC	SW/8082A	
PCB-1260	ND	340	ug/Kg	10	09/28/22	SC	SW/80824	
PCB 1260		340	ug/Kg	10	00/28/22	SC	SW/8082A	
PCB 1262		340	ug/Kg	10	00/28/22	SC	SW/8082A	
	ND	540	ug/itg	10	03/20/22	50	5110002A	
	76		0/	10	00/28/22	80	20 150.9/	
% DCBF	70		/0	10	09/20/22	50	30 - 150 %	
	09		/0	10	09/20/22	50	30 - 150 %	
% TOMX	70		70	10	09/20/22	30	30 - 150 %	
% TCMX (Confirmation)	79		70	10	09/28/22	30	30 - 150 %	
TPH (C10-C28) Extracta	able Produ	<u>cts</u>						
Diesel Range Organics (C10-C28)	ND	51	mg/Kg	1	09/28/22	JRB	8015D DRO	
QA/QC Surrogates								
% COD (surr)	82		%	1	09/28/22	JRB	50 - 150 %	
% Terphenyl (surr)	73		%	1	09/28/22	JRB	50 - 150 %	
Polynuclear Aromatic H	<u>+C</u>							
2-Methylnaphthalene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Acenaphthene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Acenaphthylene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Anthracene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benz(a)anthracene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(a)pyrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(b)fluoranthene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(ghi)perylene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(k)fluoranthene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Chrysene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Fluoranthene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-B (0-3`)

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Fluorene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Naphthalene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Phenanthrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Pyrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	55		%	1	09/27/22	WB	30 - 130 %	
% Nitrobenzene-d5	67		%	1	09/27/22	WB	30 - 130 %	
% Terphenyl-d14	64		%	1	09/27/22	WB	30 - 130 %	

DI /

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The TPH (C10-C28) is quantitated using an alkane standard.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 28, 2022 Official Report Release To Follow

Analysis Report

FOR: Attn: Mr. Wenqing Fang, Principal Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

September 28, 2022

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:		09/23/22	9:44
Location Code:	CIDER-ENV	Received by:	CP	09/26/22	15:10
Rush Request:	24 Hour	Analyzed by:	see "By" below		
P.O.#:	2022-122				001444

Laboratory Data

SDG ID: GCM41513 Phoenix ID: CM41518

Project ID:435 FIRST ST MINELA, NYClient ID:COMP-B (0-3`) GRAB

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Percent Solid	97	0.05	%		09/28/22	AL	SW846-%Solid	
Field Extraction	Completed				09/23/22		SW5035A	1
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,1-Trichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,2-Trichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloropropene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,3-Trichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,4-Trimethylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dibromoethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3,5-Trimethylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3-Dichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3-Dichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,4-Dichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
2,2-Dichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
2-Chlorotoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
2-Hexanone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C	

Project ID: 435 FIRST ST MINELA, NY

Client ID: COMP-B (0-3`) GRAB

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
2-Isopropyltoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C 1
4-Chlorotoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
4-Methyl-2-pentanone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C
Acetone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C
Acrylonitrile	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Benzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromochloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromodichloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromoform	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromomethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Carbon Disulfide	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Carbon tetrachloride	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chloroform	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Dibromochloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Dibromomethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Dichlorodifluoromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Ethylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Hexachlorobutadiene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Isopropylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
m&p-Xylene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Methyl Ethyl Ketone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Methylene chloride	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Naphthalene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
n-Butylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
n-Propylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
o-Xylene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
p-Isopropyltoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
sec-Butylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Styrene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
tert-Butylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Tetrachloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Toluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Total Xylenes	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Trichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Trichlorofluoromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Vinyl chloride	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
QA/QC Surrogates							

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-B (0-3`) GRAB

Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
100		%	1	09/27/22	JLI	70 - 130 %
98		%	1	09/27/22	JLI	70 - 130 %
97		%	1	09/27/22	JLI	70 - 130 %
101		%	1	09/27/22	JLI	70 - 130 %
	Result 100 98 97 101	Result PQL 100 98 97 101	ResultPQLUnits100%98%97%101%	ResultPQLUnitsDilution100%198%197%1101%1	Result PQL Units Dilution Date/Time 100 % 1 09/27/22 98 % 1 09/27/22 97 % 1 09/27/22 101 % 1 09/27/22	Result PQL Units Dilution Date/Time By 100 % 1 09/27/22 JLI 98 % 1 09/27/22 JLI 97 % 1 09/27/22 JLI 101 % 1 09/27/22 JLI

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

DI /

Phyllis, Shiller, Laboratory Director September 28, 2022 Official Report Release To Follow

Analysis Report

September 28, 2022

FOR: Attn: Mr. Wenqing Fang, Principal Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

Sample Information

Matrix:	SOIL
Location Code:	CIDER-ENV
Rush Request:	24 Hour
P.O.#:	2022-122

Received by:	CP
Analyzed by:	see

Custody Information

Collected by:

CP see "By" below

09/26/22 15:10

Time

9:58

Date

09/23/22

Laboratory Data

SDG ID: GCM41513 Phoenix ID: CM41519

Project ID: 435 FIRST ST MINELA, NY

Client ID: CC

COMP-B (3`-11`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.33	0.33	mg/Kg	1	09/27/22	TH	SW6010D	
Arsenic	1.57	0.66	mg/Kg	1	09/27/22	ΤН	SW6010D	
Barium	13.4	0.33	mg/Kg	1	09/27/22	ΤН	SW6010D	
Cadmium	< 0.33	0.33	mg/Kg	1	09/27/22	ΤН	SW6010D	
Chromium	5.61	0.33	mg/Kg	1	09/27/22	ΤН	SW6010D	
Mercury	< 0.02	0.02	mg/Kg	2	09/28/22	IE	SW7471B	
Lead	5.82	0.33	mg/Kg	1	09/27/22	ΤН	SW6010D	
Selenium	< 1.3	1.3	mg/Kg	1	09/27/22	ΤН	SW6010D	
TCLP Silver	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Arsenic	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Barium	0.23	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Cadmium	< 0.050	0.050	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Chromium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	09/27/22	IE	SW846 1311/7470	
TCLP Lead	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Selenium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010D	
TCLP Metals Digestion	Completed				09/27/22	AB/AB	SW3010A	
Percent Solid	98		%		09/26/22	AL	SW846-%Solid	
Corrosivity	Negative		Pos/Neg	1	09/26/22	JW	SW846-Corr	1
Flash Point	>200	200	Degree F	1	09/27/22	G	SW1010B	
Ignitability	Passed	140	degree F	1	09/27/22	G	SW846-Ignit	1
pH at 25C - Soil	8.18	1.00	pH Units	1	09/26/22 20:14	JW	SW846 9045D	1
Reactivity Cyanide	< 5	5	mg/Kg	1	09/27/22	DK/GD	SW846 7.3.3.1/90	1
Reactivity Sulfide	< 20	20	mg/Kg	1	09/27/22	DK/GD	SW846 CH7	1
Reactivity	Negative		Pos/Neg	1	09/27/22	DK/GD	SW846-React	1
Soil Extraction for PCB	Completed				09/27/22	O/MO	SW3545A	
Mercury Digestion	Completed				09/28/22	AB/AB	SW7471B	

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-B (3`-11`)

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Extraction of NY ETPH	Pending				09/27/22	Z/U	SW3546	
NJ EPH Extraction	Completed				09/27/22	Z/MO	NJDEP 10-08 R3	
Soil Extraction for SVOA PAH	Completed				09/26/22	н	SW3546	
TCLP Digestion Mercury	Completed				09/27/22	AB/KL	SW7470A	
TCLP Extraction for Metals	Completed				09/26/22	AB	SW1311	
Total Metals Digest	Completed				09/26/22	J/AG	SW3050B	
NJ EPH Category 1 (Fu	uel #2/Diese	el)						
>C28-C40	ND	10	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
C9-C28	ND	10	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
Total EPH	ND	10	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
QA/QC Surrogates								
% COD (surr)	73		%	1	09/28/22	JRB	40 - 140 %	
% Terphenyl (surr)	82		%	1	09/28/22	JRB	40 - 140 %	
Polychlorinated Biphe	nyls							
PCB-1016	ND	330	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1221	ND	330	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1232	ND	330	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1242	ND	330	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1248	ND	330	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1254	ND	330	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1260	ND	330	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1262	ND	330	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1268	ND	330	ug/Kg	10	09/28/22	SC	SW8082A	
QA/QC Surrogates								
% DCBP	72		%	10	09/28/22	SC	30 - 150 %	
% DCBP (Confirmation)	83		%	10	09/28/22	SC	30 - 150 %	
% TCMX	81		%	10	09/28/22	SC	30 - 150 %	
% TCMX (Confirmation)	79		%	10	09/28/22	SC	30 - 150 %	
TPH (C10-C28) Extract	able Produ	<u>cts</u>						
TPH (C10-C28) Extractable Product	ts Pending		mg/Kg	1			8015D DRO	
Polynuclear Aromatic	<u>HC</u>							
2-Methylnaphthalene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Acenaphthene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Acenaphthylene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Anthracene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Benz(a)anthracene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(a)pyrene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(b)fluoranthene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(ghi)perylene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(k)fluoranthene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Chrysene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Dibenz(a,h)anthracene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Fluoranthene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Fluorene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Indeno(1,2,3-cd)pyrene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Naphthalene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-B (3`-11`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Phenanthrene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
Pyrene	ND	230	ug/Kg	1	09/27/22	WB	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	68		%	1	09/27/22	WB	30 - 130 %	
% Nitrobenzene-d5	82		%	1	09/27/22	WB	30 - 130 %	
% Terphenyl-d14	94		%	1	09/27/22	WB	30 - 130 %	

D1 /

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The TPH (C10-C28) is quantitated using an alkane standard.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director September 28, 2022 Official Report Release To Follow

Analysis Report

FOR: Attn: Mr. Wenqing Fang, Principal Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

September 28, 2022

Sample Information		Custody Inforr	Custody Information					
Matrix:	SOIL	Collected by:		09/23/22	9:59			
Location Code:	CIDER-ENV	Received by:	CP	09/26/22	15:10			
Rush Request:	24 Hour	Analyzed by:	see "By" below					
P.O.#:	2022-122				001444			

Laboratory Data

SDG ID: GCM41513 Phoenix ID: CM41520

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-B (3`-11`) GRAB

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Percent Solid	98	0.05	%		09/28/22	AL	SW846-%Solid	
Field Extraction	Completed				09/23/22		SW5035A	1
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,1-Trichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1,2-Trichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,1-Dichloropropene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,3-Trichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2,4-Trimethylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dibromoethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,2-Dichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3,5-Trimethylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3-Dichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,3-Dichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
1,4-Dichlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
2,2-Dichloropropane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
2-Chlorotoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C	
2-Hexanone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C	

Project ID: 435 FIRST ST MINELA, NY

Client ID: COMP-B (3`-11`) GRAB

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
2-Isopropyltoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C 1
4-Chlorotoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
4-Methyl-2-pentanone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C
Acetone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C
Acrylonitrile	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Benzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromochloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromodichloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromoform	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Bromomethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Carbon Disulfide	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Carbon tetrachloride	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chlorobenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chloroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chloroform	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Chloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Dibromochloromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Dibromomethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Dichlorodifluoromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Ethylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Hexachlorobutadiene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Isopropylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
m&p-Xylene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Methyl Ethyl Ketone	ND	26	ug/Kg	1	09/27/22	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Methylene chloride	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Naphthalene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
n-Butylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
n-Propylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
o-Xylene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
p-Isopropyltoluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
sec-Butylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Styrene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
tert-Butylbenzene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Tetrachloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Toluene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Total Xylenes	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	09/27/22	JLI	SW8260C
Trichloroethene	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Trichlorofluoromethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
Vinyl chloride	ND	5.2	ug/Kg	1	09/27/22	JLI	SW8260C
QA/QC Surrogates							

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-B (3`-11`) GRAB

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% 1,2-dichlorobenzene-d4	100		%	1	09/27/22	JLI	70 - 130 %
% Bromofluorobenzene	98		%	1	09/27/22	JLI	70 - 130 %
% Dibromofluoromethane	98		%	1	09/27/22	JLI	70 - 130 %
% Toluene-d8	102		%	1	09/27/22	JLI	70 - 130 %

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director September 28, 2022 Official Report Release To Follow

Analysis Report

September 28, 2022

FOR: Attn: Mr. Wenqing Fang, Principal Cider Environmental, LLC 6268 Jericho Turnpike, Suite 12 Commack, NY 11725

Sample Information

Matrix:	SOIL
Location Code:	CIDER-ENV
Rush Request:	24 Hour
P.O.#:	2022-122

Collected by:
Received by:
Analyzed by:

CP see "By" below 09/26/22 15:10

<u>Date</u> 09/23/22 Time

10:06

Laboratory Data

Custody Information

SDG ID: GCM41513 Phoenix ID: CM41521

Project ID: 435 FIRST ST MINELA, NY

Client ID: COM

COMP-BC (3`-11`)

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Silver	< 0.37	0.37	mg/Kg	1	09/27/22	ΤН	SW6010D	
Arsenic	1.38	0.73	mg/Kg	1	09/27/22	ΤН	SW6010D	
Barium	15.1	0.37	mg/Kg	1	09/27/22	ΤН	SW6010D	
Cadmium	< 0.37	0.37	mg/Kg	1	09/27/22	ΤН	SW6010D	
Chromium	4.92	0.37	mg/Kg	1	09/27/22	ΤН	SW6010D	
Mercury	< 0.03	0.03	mg/Kg	2	09/28/22	IE	SW7471B	
Lead	6.70	0.37	mg/Kg	1	09/27/22	ΤН	SW6010D	
Selenium	< 1.5	1.5	mg/Kg	1	09/27/22	ΤН	SW6010D	
TCLP Silver	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Arsenic	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Barium	0.15	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Cadmium	< 0.050	0.050	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Chromium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Mercury	< 0.0002	0.0002	mg/L	1	09/27/22	IE	SW846 1311/7470	
TCLP Lead	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010	
TCLP Selenium	< 0.10	0.10	mg/L	1	09/27/22	CPP	SW846 1311/6010D	
TCLP Metals Digestion	Completed				09/27/22	AB/AB	SW3010A	
Percent Solid	96		%		09/26/22	AL	SW846-%Solid	
Corrosivity	Negative		Pos/Neg	1	09/26/22	JW	SW846-Corr	1
Flash Point	>200	200	Degree F	1	09/28/22	G	SW1010B	
Ignitability	Passed	140	degree F	1	09/28/22	G	SW846-Ignit	1
pH at 25C - Soil	6.94	1.00	pH Units	1	09/26/22 20:15	JW	SW846 9045D	1
Reactivity Cyanide	< 5	5	mg/Kg	1	09/27/22	DK/GD	SW846 7.3.3.1/90	1
Reactivity Sulfide	< 20	20	mg/Kg	1	09/27/22	DK/GD	SW846 CH7	1
Reactivity	Negative		Pos/Neg	1	09/27/22	DK/GD	SW846-React	1
Soil Extraction for PCB	Completed				09/27/22	O/MO	SW3545A	
Mercury Digestion	Completed				09/28/22	AB/AB	SW7471B	
Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-BC (3`-11`)

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Extraction of NY ETPH	Completed				09/27/22	Z/U	SW3546	
NJ EPH Extraction	Completed				09/27/22	Z/MO	NJDEP 10-08 R3	
Soil Extraction for SVOA PAH	Completed				09/26/22	н	SW3546	
TCLP Digestion Mercury	Completed				09/27/22	AB/KL	SW7470A	
TCLP Extraction for Metals	Completed				09/26/22	AB	SW1311	
Total Metals Digest	Completed				09/26/22	J/AG	SW3050B	
NJ EPH Category 1 (Fu	uel #2/Diese	el)						
>C28-C40	ND	12	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
C9-C28	ND	12	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
Total EPH	ND	12	mg/kg	1	09/28/22	JRB	NJEPH 10-08 R3	1
QA/QC Surrogates								
% COD (surr)	77		%	1	09/28/22	JRB	40 - 140 %	
% Terphenyl (surr)	87		%	1	09/28/22	JRB	40 - 140 %	
Polychlorinated Biphe	nyls							
PCB-1016	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1221	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1232	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1242	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1248	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1254	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1260	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1262	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
PCB-1268	ND	340	ug/Kg	10	09/28/22	SC	SW8082A	
QA/QC Surrogates								
% DCBP	80		%	10	09/28/22	SC	30 - 150 %	
% DCBP (Confirmation)	87		%	10	09/28/22	SC	30 - 150 %	
% TCMX	82		%	10	09/28/22	SC	30 - 150 %	
% TCMX (Confirmation)	79		%	10	09/28/22	SC	30 - 150 %	
TPH (C10-C28) Extract	able Produ	<u>cts</u>						
Diesel Range Organics (C10-C28)	ND	100	mg/Kg	1	09/28/22	JRB	8015D DRO	
QA/QC Surrogates								
% COD (surr)	73		%	1	09/28/22	JRB	50 - 150 %	
% Terphenyl (surr)	68		%	1	09/28/22	JRB	50 - 150 %	
Polynuclear Aromatic	<u>HC</u>							
2-Methylnaphthalene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Acenaphthene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Acenaphthylene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Anthracene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benz(a)anthracene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(a)pyrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(b)fluoranthene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(ghi)perylene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Benzo(k)fluoranthene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Chrysene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Fluoranthene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	

Project ID: 435 FIRST ST MINELA, NY Client ID: COMP-BC (3`-11`)

_		RL/				_		
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Fluorene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Naphthalene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Phenanthrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
Pyrene	ND	240	ug/Kg	1	09/27/22	WB	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	40		%	1	09/27/22	WB	30 - 130 %	
% Nitrobenzene-d5	49		%	1	09/27/22	WB	30 - 130 %	
% Terphenyl-d14	48		%	1	09/27/22	WB	30 - 130 %	

1 = This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The TPH (C10-C28) is quantitated using an alkane standard.

Corrosivity is based solely on the pH analysis performed above.

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above. Passed is >140 degree F.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide. This method is no longer listed in the current version of SW-846.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Sulfide. This method is no longer listed in the current version of SW-846.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 28, 2022 Official Report Release To Follow

Wednesday	, September 2	28, 2022	Sample Criteria I	Exceedances Report				Page 1 of 1
Criteria:	None		GCM4151	3 - CIDER-ENV				
State:	NY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
*** No Data	to Display ***							

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

	. –								PEL-111 Rev 10/2021
Cooler: Yes CDNo	Temp/O°C Pg of		t P.O: 2022 - 122 his section MUST be completed with ottle Quantities.		1 4 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				PA Clean Fill Limits Clean Fill Limits Clean Fill Limits PA Soil Restricted PA Soil non-restricted State Samples Collected?
Coc		Phone: Fax: Email:			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u>6</u>	<u> </u>		NY NY TOGS GW TOGS GW TOGS GW 375SC0 Ntnestricted Soil 375SC0 Residential Soi 375SC0 Industrial Soil 175SC0 Ntnestricted Soil 175SC0 Ntnestricted Soil 175SC0 Ntnestricted Soil 175SC0 Subpart 5 DW
	ECORD	, CT 06040 -0823	+2+2+2+1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		·/ //		Res. Criteria Res. Criteria Non-Res. Criteria Impact to GW Soil Cleanup Criteria soil screen Criteria GW Criteria SP B) *
	F CUSTODY RE). Box 370, Manchester .com Fax (860) 645 .s (860) 645-8726	435 Minela					X	Data Package: NY Enhanced As
)	J/PA CHAIN O	Middle Turnpike, P.C ail: info@phoenixlabs Client Service	Project: Report to: Invoice to: QUOTE # :	Analysis Request	XX				1 1 1 1 1 1 1 1 1 1 1 1 1 1
	N/XN.	587 East Emi	Jum	on Date: 9/23/22 ww=Waste Water	Date Time Sampled Sampled 9(23/72 9:22	11 9:34	11 9:58 11 9:58	11 10:00	Data Format:
		ss, Inc.	Envilor	rmation - Identificati Sw=Surface Water dge S=Soil SD=Solic	n Matrix - 3 5 5	-) 10000	11 11 22 22 22 22 22 22 22 22 22 22 22 2	11 (21)	epted by:
		HINIX	C1760	Client Sample - Info	Customer Sarridentification	1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1	(Jong B (0-3-) (Jong B (0-3-) (bune B (3-1-)	(Junpe (3-11)) Joing BJ (3-	Acc
		PHO Environmen	Customer: Address:	Sampler's Signature <u>Matrix Code:</u> DW=Raw Water S RW=Raw Water S OIL=Oil B=Bulk	PHOENIX USE ONL) SAMPLE # 7]5]3 7]5]3	41515	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1520 1521	Relinquished by Comments, Specie See Atter Suplay

Clean Earth Sampling Protocol Carteret

PARAME	TOTAL PELINS I.	TOTAL VOLATILE VOCEN	POLYCICLE ARCIPANT.	TOTAL METALS . 8.	TCLP NETALS RO	IGNITABILITY	CORROSIUTY IPM	REACTIVITY SUPE	PCES	
METHODS (1)		8015C	8260D	8270E	6010D/7471B	1311/6010D/ 7470A	1030A	9045D	SW846 CHAPTER 7.3	8082A
	FREQUENCY									
DESIDENTIAL	5 point composite sample every 400 CY	×								
	8 point composite sample every 800 CY		×							
Limit (mg/Kg)		*				Below RCRA Toxicity Level	Negative	>2 - <12.5	Sulfide <500 Cyanide <250	-2
	5 point composite sample every 400 CY	×								
COMMERCIAL	8 point composite sample every 800 CY		×	×	×	×	×	×	×	×
Limit (mg/Kg)		:			End Use Criteria	Below RCRA Toxicity Level	Negative	>2 - <12.5	Sulfide <500 mg/kg: Cyanide <250 mg/kg	3
N I EPH Category 2 Non-Fi	ractionnated method	d osla van t	e used for D	otroleum Hy	drocarhon ana	lyeie				

TPH-GRO analysis is required for soils with known or suspected gasoline contamination

63 03 - COMPX 80 3-11 - Compx 80 03 - COMPX 80 03 - COMPX 80 3-11 - Compx 80 03 - COMPX 80 3-11 - Compx 80 03 - COMPX 80 00 - COMPX 80 00 - COMPX 80 00 - COMPX

** - For soils with greater than 17,000 ppm TPH or EPH, provide Paint Filter Test analysis Method 9095

(1) The methods provided are standard EPA methods. The method revisions are subject to change and the most current method should always be utilized by the aboratory. This is to be used as a guideline for sampling. Sampling frequencies and parameter requirements may be modified at the discretion of the CE Approval staff based upon items such as site history, levels of contamination and/or source of contamination, etc.

10/5/2018