

Periodic Review Report No. 4 November 12, 2015 – November 12, 2016 Metal Etching Co., Inc. Site (130110)

Freeport Nassau County, New York

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7017

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211 (315) 431-4610

> January 2017 Version: FINAL EA Project No. 14907.09

This page left intentionally blank

Periodic Review Report No. 4 November 12, 2015 – November 12, 2016 Metal Etching Co., Inc. Site (130110)

Freeport Nassau County, New York

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7017

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211 (315) 431-4610

Donald F. Conan, P.E. Vice President

Miller

Megan Miller Project Manager

January 31, 2017 Date

January 31, 2017 Date

January 2017 Version: FINAL EA Project No. 14907.09 This page left intentionally blank

TABLE OF CONTENTS

Page

LIST C	OF FIGU	JRESii	i
LIST C	OF TAB	LESiv	V
LIST C	OF ACR	ONYMS AND ABBREVIATIONS	Į
ES. EX	XECUT	IVE SUMMARY ES-1	1
1.	INTRO	DUCTION1-1	1
	1.1 1.2	SITE BACKGROUND	
		1.2.1 Summary of Remedial Actions	1
		1.2.1.1Remaining Contamination1-51.2.1.2Final Engineering Report1-51.2.1.3Site Management Plan1-6	5
	1.3 1.4 1.5	SITE GEOLOGY AND HYDROGEOLOGY	5
2.		UATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND ECTIVENESS	l
	2.1	SITE INSPECTION2-1	1
		2.1.1Site Cover	1
	2.2 2.3 2.4	MONITORING PLAN COMPLIANCE REPORT	2
		2.4.1Groundwater Monitoring and Sampling2-22.4.2Volatile Organic Compounds2-22.4.3Inorganic Compounds2-22.4.4Monitored Natural Attenuation Parameters2-2	4 4
	2.5 2.6	INDOOR AIR MONITORING	

3.		TUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION REPORT
	3.1	INSTITUTIONAL CONTROL/ENGINEERING CONTROL REQUIREMENTS AND COMPLIANCE
	3.2	INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION FORM
4.	COST	EVALUATION
	4.1	SUMMARY OF COSTS
5.	RECO	MMENDATIONS
	5.1	GROUNDWATER MONITORING
	5.2 5.3	INDOOR AIR MONITORING
		5.3.1Site Cover
	5.4	SUMMARY
6.	REFE	RENCES
		A SITE MANAGEMENT DI AN

APPENDIX A:	SITE MANAGEMENT PLAN
APPENDIX B:	SITE INSPECTION FORMS
APPENDIX C:	MONITORING WELL PURGING/SAMPLING LOGS
APPENDIX D:	DAILY FIELD REPORTS
APPENDIX E:	DATA USABILITY SUMMARY REPORTS
APPENDIX F:	AIR SAMPLING FORMS
APPENDIX G:	INSTITUTIONAL/ENGINEERING CONTROL CERTIFICATIONS

LIST OF FIGURES

Number	Title		
1	Site location and boundary map		
2	Shallow groundwater contours high tide conditions (November 2015)		
3	Shallow groundwater contours low tide conditions (May 2016)		
4	Tetrachloroethene isopleths (November 2015 and May 2016)		

LIST OF TABLES

Number	Title
1	Summary of detected volatile organic compounds in groundwater
2	Summary of detected inorganic compounds in groundwater
3	Summary of monitored natural attenuation parameters in groundwater
4	Summary of detected volatile organic compounds in soil vapor

LIST OF ACRONYMS AND ABBREVIATIONS

AMSL	Above mean sea level
AWQS	Ambient water quality standard
bgs	Below ground surface
btoc	Below top of casing
CVOC	Chlorinated volatile organic compound
DCE	Dichloroethene
DO	Dissolved oxygen
EA	EA Engineering, P.C. and Its Affiliate EA Science and Technology
EC	Engineering controls
EPA	United States Environmental Protection Agency
ft	Feet (foot)
ft ²	Square feet (foot)
hr	Hour(s)
IC	Institutional controls
in.	Inch(es)
Metal Etching	Metal Etching, Co., Inc.
mg/L	Milligrams per liter
MNA	Monitored natural attenuation
MTBE	Methyl tert-butyl ether
mV	Millivolts
No.	Number
NTU	Nephelometric turbidity units
NYSDEC	New York State Department of Environmental of Conservation
NYSDOH	New York State Department of Health
O&M	Operation and maintenance
ORP	Oxidation-reduction potential
PCE	Tetrachloroethene
PRR	Periodic review report
RA	Remedial action
RI	Remedial investigation
ROD	Record of decision

SCG	Standards, criteria, and guidance
SCO	Soil cleanup objectives
SMP	Site management plan
SSDS	Sub-slab depressurization system
SVI	Soil vapor intrusion
TAL	Target analyte list
TCE	Tricholorethene
UST	Underground storage tank
VC	Vinyl chloride
VOC	Volatile organic compound
WC	Water column
yd ³	Cubic yard(s)

ES. EXECUTIVE SUMMARY

The New York State Department of Environmental Conservation (NYSDEC) tasked EA Engineering, P.C. and its Affiliate EA Science and Technology (EA) to provide site management services from August 21, 2012 to August 26, 2016 at the Metal Etching Co., Inc. (Metal Etching) site (Site Number [No.] 130110) in Freeport, Nassau County, New York (Figure 1). This Work Assignment is being conducted under NYSDEC Standby Engineering Services Contract No. D007624-09.1.

Post-closure monitoring and facility maintenance program activities were conducted at the Metal Etching site in November 2015 and May 2016 in accordance with the New York State Inactive Hazardous Waste Disposal Site Remedial Program and as stipulated in the Record of Decision (NYSDEC 2007) and Site Management Plan (EA 2014a).

ES.1 REMEDY EVALUATION

Groundwater Monitoring

Concentrations of primary chlorinated volatile organic compounds (CVOCs) were consistently detected in groundwater samples collected from the deep wells within the former source area (MW-09D and MW-08DR) during the monitoring period. Concentrations of *cis*-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride were detected exceeding the respective NYSDEC Ambient Water Quality Standard (AWQS) in samples collected in November 2015 and May 2016 in shallow and deep wells at the site.

Based upon monitored natural attenuation (MNA) parameter data generated during this monitoring period, there is continued potential for natural attenuation to occur within the aquifer. Water quality parameters (dissolved oxygen and oxidation reduction potential), and concentrations of total organic carbon, dissolved oxygen, nitrate, and chloride provide moderately favorable conditions for reductive dechlorination of CVOCs to occur.

Soil Vapor Intrusion Monitoring

The sub-slab depressurization system at the site office building was operational for the monitoring period. Indoor and outdoor air of the office building was monitored during the November 2015 event and will continue to be monitored on an annual basis. No detections of site-related CVOCs were identified in the indoor air samples collected as part of the monitoring program.

Site Inspection and Maintenance

Semi-annual site inspections were completed on November 17, 2015 and May 16, 2016. Site cover material was observed to be in fair condition with some disturbance. There is some evidence of disintegration of the porous pavement cover south of the main office building.

The site cover materials continue to provide protection to human health and the environment from contaminants of concern at this time. In addition, infiltration of the permeable pavement was observed to be slow in high traffic areas due to the accumulation of sediment and debris within the pavement system.

ES.2 RECOMMENDATIONS

- Site management tasks should continue during the next period. This includes semi-annual site inspections, maintenance (as needed), semi-annual groundwater monitoring and sampling with annual collection of MNA parameters, and annual indoor air monitoring.
- Sweeping/vacuuming of permeable pavement should be completed annually.

1. INTRODUCTION

A periodic review process is commonly implemented at environmental remediation sites to evaluate the effectiveness of the selected remedy and to determine if the remedy continues to be protective of human health and the environment, as set forth in the Site Management Plan (SMP) (EA Engineering, P.C. and its affiliate EA Science and Technology [EA] 2014a). The objectives of the periodic review for sites in the State Superfund Program are as follows:

- Evaluate if chosen remedy is performing properly and effectively, and is protective of public health and the environment.
- Determine compliance with the Record of Decision (ROD) (New York State Department of Environmental Conservation [NYSDEC] 2007) and the SMP (EA 2014a).
- Evaluate treatment system and recommend repairs, if necessary.
- Evaluate the current state and condition of the remedy.
- Determine that the intent of the institutional controls continues to be met, the engineering controls remain in-place, and both are effective and protect public health and the environment.
- Evaluate the operation and maintenance (O&M) costs of the remedy.

1.1 SITE BACKGROUND

The site is located adjacent to Freeport Creek at 435 South Main Street, Freeport, Nassau County, New York. The Metal Etching Co., Inc. (Metal Etching) site is a Class 4 site that was reclassified in April 2014, and is listed on the NYSDEC Registry of Inactive Hazardous Waste Sites (Site No. 130110).

The Metal Etching property is a 2.25-acre L-shaped area, bounded by Ray Street East and a commercial property to the north, Freeport Creek to the south and east, and Main Street and Ray Street East to the west (Figure 1). The site is currently owned by Freeport Creek Associates, Apache Realty Corporation, and BWM High & Dry; it is leased by Main Street Marina, 500 South Main Street, Freeport, New York. The Metal Etching property is designated as Section 62, Block 45, and Lots 24, 54, 144, 145, 155, 157, and 158 on the tax maps. The site is currently used as a boat dealership, marina, and boat storage yard. Boat maintenance operations at the site are conducted in a single 2,400 square foot (ft²) warehouse building located on the northeast corner of the property. A smaller, 1,200 ft² building, located on the western portion of the property, has been restored, and is used for office space for the boat dealership. Minor boat restoration activities are performed within the warehouse building, as well as a sprung structure that was installed west of the warehouse building; activities include engine rebuilds, sanding, and painting/varnishing.

The former Metal Etching buildings at the site were erected prior to 1954; however, the exact date of construction is unknown. These connected buildings occupied approximately 26,650 ft² of the property (approximately 60 percent of the Metal Etching portion of the site). Aside from the warehouse building, which was originally a portion of the Metal Etching quarters, the Metal Etching buildings were demolished in 2001; however, the concrete slabs and footings of the buildings remained in place at the site. A 6-inch thick concrete slab covering an approximate area of 7,750 ft² was the foundation of the Metal Etching plating slab and is visible to the west of the warehouse building.

Historical site operations consisted of handbag manufacturing which involved decorative plating with nickel, chromium, and cadmium; followed by the manufacturing of other metal products including nameplates, instrument panels, rulers, and miscellaneous plated products. All products were etched or printed. The process of etching included anodizing, chromate conversion, and chrome/nickel plating. All operations terminated in 1999, and facility buildings were demolished around 2001.

1.2 REMEDIAL HISTORY

A remedial investigation (RI) was performed to characterize the nature and extent of contamination at the site. The RI/Feasibility Study report prepared by Environmental Resource Management (2007) for the Metal Etching site is summarized below:

- The top 7 feet (ft) of soil in three separate areas across the site contained concentrations of metals exceeding the standards, criteria, and guidance (SCGs) used for the site.
- Concentrations of volatile organic compounds (VOCs) in soil varied across the site.
- Groundwater contained concentrations of VOCs exceeding the SCGs across the site; the highest concentrations were detected in samples collected above the clay layer west and south of the 2,400 ft² warehouse building. Both tetrachloroethene (PCE) and breakdown contaminants trichloroethene (TCE), dichloroethene (DCE), and vinyl chloride (VC) were detected in site groundwater samples, indicating that degradation was occurring at the site.
- Soil vapor intrusion (SVI) sampling completed in 2004 indicated that both PCE and TCE were present beneath the slabs of the 1,200 ft² office building and the warehouse building. A sub-slab depressurization system (SSDS) was installed in each building to address the potential SVI.
- One underground storage tank (UST) was removed from the western area of the site in 1990, prior to the RI. Two additional potential USTs were identified during the RI; the first was identified east of the office building, and the second was identified south of the warehouse building.

- Sediment samples collected from south of the southeast bulkhead in Freeport Creek contained concentrations of chromium and nickel at concentrations exceeding their SCGs.
- Sediment samples collected from within an existing storm drain contained metals exceeding their respective SCGs.

NYSDEC issued a ROD for the Metal Etching site in March 2007. The specific elements of this alternative (as presented in the ROD [NYSDEC 2007]) are identified below:

- A remedial design program to provide the details necessary for the construction, operation, maintenance, and monitoring of the remedial program. This program included delineating the boundaries of sediment excavation within Freeport Creek.
- Hot spot excavation, to the extent practicable, of VOC and metals contaminated soil to the depth of groundwater table.
- Removal of sediment from the onsite stormwater system and disposal at an approved offsite facility.
- Determination of the presence, closure, and removal of USTs onsite in accordance with NYSDEC regulations.
- Areas not previously covered, and where excavation was not practicable, were to receive a cover of asphalt or ballast underlain by a demarcation layer.
- Limited sediment removal from Freeport Creek upon completion of the additional Freeport Creek Study and delineation of site-related contamination in the area of SED-04.
- A long-term groundwater monitoring program to confirm the effectiveness of the remedy.
- Establishment of an institutional control that requires: (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning, (b) compliance with the approved SMP (EA 2014a), (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by New York State Department of Health (NYSDOH), and (d) submission of a periodic certification of institutional controls (ICs) and engineering controls (ECs) to the NYSDEC by the property owner.
- Development of a SMP.
- Requirement of the property owner to submit a periodic certification of ICs and ECs prepared and submitted by a professional engineer, or such other expert acceptable to the NYSDEC, until the NYSDEC notifies the property owner in writing that this certification

is no longer needed. This submittal will: (a) contain certification that the ICs and ECs put in place are still in place, and are either unchanged from the previous certification or are compliant with NYSDEC-approved modifications, (b) allow the NYSDEC access to the site, and (c) state that nothing has occurred that will impair the ability of the controls to protect public health or the environment, or constitute a violation or failure to comply with the site management plan unless otherwise approved by the NYSDEC.

1.2.1 Summary of Remedial Actions

The remedial action (RA) selected by the ROD (NYSDEC 2007) included excavation and disposal of soil/fill exceeding soil cleanup objectives (SCOs), construction of a soil cover system of asphalt or permeable pavement to prevent human exposure to contaminated soil/fill remaining, removal and disposal of contaminated sediment from the onsite stormwater system, and from a limited area within Freeport Creek.

The site was remediated in accordance with the NYSDEC-approved remedial design, which was part of Contract Documents dated August 2010, and Addendums dated September 28, 2010, September 30, 2010, and October 1, 2010.

The following is a summary of the RAs performed at the site:

- 1. Excavation of 2,684 cubic yards (yd³) of soil/fill exceeding SCOs within identified excavation limits, to low-tide groundwater elevation, approximately 5 ft below ground surface (bgs).
- 2. Construction and maintenance of a soil cover system consisting of a geotextile demarcation layer covered by asphalt or permeable pavement to prevent human exposure to contaminated soil/fill remaining at the site.
- 3. Execution and recording of three Environmental Notices to restrict land use to commercial or industrial uses, and prevent future exposure to any contamination remaining at the site.
- 4. Removal of approximately 2 yd³ of sediment from the onsite stormwater system and disposal at an approved offsite facility.
- 5. Closure and removal of four USTs onsite in accordance with NYSDEC regulations.
- 6. Limited removal of approximately 183 yd³ of sediment from delineated area within Freeport Creek and disposal at an approved offsite facility.
- Development and implementation of a SMP for long-term management of remaining contamination as required by the Environmental Notices, which include plans for:
 (1) ICs/ECs, (2) monitoring, (3) O&M, and (4) reporting.

8. Remedial activities were completed at the site in January 2012.

1.2.1.1 Remaining Contamination

Per the ROD (NYSDEC 2007), excavation depth was limited by the low-tide groundwater elevation; therefore, known contamination remains at the site. Mirafi[®] 180N/O non-woven geotextile was installed over the footprints of all excavations to demarcate the extent of removal and remaining contamination. The majority of the excavations were completed at a depth of 5 ft; two small excavations were completed at a depth of 1 ft.

During the RI, VOC and metals contamination was identified in various locations throughout the site deeper than the maximum excavation depth of 5 ft. Concentrations of metals and VOCs exceeded the SCOs at sampling intervals 7 to 8 ft bgs and 12 ft bgs. A confining clay layer was identified 31 to 38 ft bgs across the site.

Endpoint soil samples were collected at the excavation bottom and sidewall boundaries during the remedial action. VOCs detected in endpoint soil samples with concentrations exceeding the site-specific SCOs included xylenes, 1,2-DCE as a combination of *cis*- and *trans*-1,2-DCE, and toluene (south of the warehouse building).

Metals detected in endpoint soil samples collected near the warehouse building with concentrations exceeding the site-specific SCOs include chromium, copper, nickel, and zinc.

Near the office building, zinc was detected in endpoint samples exceeding the site-specific SCO.

Many of the endpoint samples collected northeast and east of the warehouse building contained copper, nickel, and zinc exceeding the site-specific SCOs. One sample directly east of the warehouse building contained chromium at a concentration exceeding the site-specific SCOs.

Sediment was removed from a 2 ft excavation within Freeport Creek directly adjacent to the easternmost portion of the southern bulkhead. Endpoint samples collected following dredging activities contained arsenic, copper, and mercury at concentrations exceeding their respective SCGs.

A full discussion of remaining contamination including tables and figures can be found in the Final Engineering Report (EA 2014b).

1.2.1.2 Final Engineering Report

The Final Engineering Report (EA 2014b) was completed in October 2012 following the RA, and updated in April 2014 to include the Environmental Notices. The Final Engineering Report details the remedial activities conducted at the Metal Etching site.

1.2.1.3 Site Management Plan

The SMP was originally completed by EA in August 2012 and provided direction for maintenance and monitoring of the remedy selected by the ROD (NYSDEC 2007) for the Metal Etching site. The SMP (EA 2014a) was revised in April 2014 to include the Environmental Notices as an appendix and to update the groundwater monitoring well network based on field changes. A full copy of the SMP is provided in Appendix A.

1.3 SITE GEOLOGY AND HYDROGEOLOGY

The site is located adjacent to Freeport Creek at an elevation of 5 ft above mean sea level (AMSL). Freeport Creek and site groundwater is tidally influenced and ranges from 5 to 2.5 ft bgs at the site.

The top 3 to 4 ft of soil at the site consists of compacted fill material which includes sand, gravel, brick and wood debris. Fill is underlain by organics and shells to approximately 11 ft bgs. Some fill was excavated, disposed offsite, and replaced with clean granular fill during the 2011 RA. Glacial outwash sediments including sand and silt form the layer beneath the fill to a layer of clay at approximately 31 to 38 ft bgs. The glacial outwash is underlain by the Magothy formation, which consists of sand and gravel with some clayey sands.

Depth to groundwater ranges from 3 to 5 ft bgs and is highly influenced by tides, as discussed in the RI Report (Environmental Resource Management 2007). Groundwater flow is to the southeast across the site during low tide, and to the northwest during high tide. Groundwater flow as observed during the November 2015 and May 2016 monitoring events is shown in Figures 2 and 3, respectively.

1.4 SITE MANAGEMENT OBJECTIVES

Environmental monitoring points at the Metal Etching site have been maintained and sampled during the monitoring period in accordance with the SMP (EA 2014a). This included collection of groundwater samples at various locations across the site, inspection of the site cover material, and site maintenance. Indoor air and outdoor air samples were collected in November 2015. Sampling locations, sampling methodology, list of analytes, analytical methods, cover material inspection methodology, and site maintenance objectives are documented in the SMP.

The following are objectives of the monitoring and maintenance program:

- Collect representative groundwater samples and evaluate the data to confirm the remedy continues to be effective in protecting public health and the environment.
- Collect indoor air samples and evaluate the data to monitor effectiveness of the existing SSDS and determine necessity.
- Periodically inspect the site and provide routine maintenance, as necessary.

• Document and report this information to the NYSDEC.

1.5 PERIODIC REVIEW REPORT

The purpose of this Periodic Review Report (PRR) is to summarize the results of the November 2015 and May 2016 semi-annual groundwater monitoring and site inspection events; and to provide sufficient documentation that the remedy remains in place, is performing properly and effectively, and is protective of public health and the environment. Specifically, this report provides the following information:

- Results of groundwater and indoor air monitoring
- Evaluation of the current groundwater quality conditions
- Results of site inspections
- Maintenance activities performed to date.

This page left intentionally blank

2. EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

2.1 SITE INSPECTION

Inspection of the site and its appurtenances was conducted on November 20, 2015 and May 18, 2016. Findings and observations were recorded on the site-specific field forms, which are provided in Appendix B.

2.1.1 Site Cover

Overall, the site was in good condition. There were several spots that appeared to show settling/rutting of the porous pavement to the south of the site's office building and around the warehouse. There is also evidence of some disintegration of the porous pavement cover south of the main office building.

The porous pavement was tested for permeability with several gallons of water in three areas. Infiltration occurred at a moderately slow pace, with water spreading out before it started to infiltrate. There is some evidence of ponding on the porous pavement. The puddles were small in size, and evident based on dried dirt/staining.

2.1.2 Site Security

The site was generally found to be in good condition during both inspections. There was no evidence of vandalism. The front fence along Ray Street East and Main Street was fully intact. The concrete around the east drain is cracking. Both onsite drains are less than half full of debris. There was no obvious evidence of any spilled liquids onsite. Monitoring wells are in generally good condition and serving the intended purpose. Monitoring wells MW-04 and MW-06 showed some minor cracking around the well collars.

2.1.3 Sub-Slab Depressurization Systems

The sub-slab depressurization system on the office building was in operation at the time of the site inspections. The manometer read 3.5 inches (in.) of water column (WC) in November 2015 and May 2016. The exhaust pipe was observed to be cracked during the May 2016 inspection; damage is not affecting system operation. The system on the warehouse was decommissioned in 2014 and is not currently in operation due to building use.

2.2 MONITORING PLAN COMPLIANCE REPORT

This PRR assesses whether the Metal Etching site has been remediated and managed as set forth in the SMP (EA 2014a) and ROD (NYSDEC 2007). The Monitoring Plan includes a description of the methods and rationale to be used for assessing the remedy effectiveness, including the following elements:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air).
- Assessing compliance with applicable NYSDEC SCGs, particularly Ambient Water Quality Standard (AWQS).
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

2.3 CONFIRM COMPLIANCE WITH MONITORING PLAN

The following table identifies the SMP monitoring plan requirements on an annual and semi-annual basis for the first year of the plan, and demonstrates compliance with the monitoring plan has been achieved prior to the end of the reporting period.

	Required Frequency		
Monitoring Program Activity	Semi-Annually	Annually	Compliance Dates
Groundwater Monitoring/Sampling	Х		November 2015 and May 2016
Site Cover Inspection	Х		November 2015 and May 2016
Indoor Air Monitoring		Х	November 2015

2.4 GROUNDWATER MONITORING

2.4.1 Groundwater Monitoring and Sampling

Semi-annual groundwater monitoring including gauging and sampling has been continuously performed at the site since completion of the RA in 2012. During the reporting period (November 2015 through November 2016), two groundwater monitoring and gauging events were completed at the site. Site monitoring wells were gauged prior to each sampling event in November 2015 and May 2016.

The site monitoring well network has changed since the completion of the RA. Monitoring wells MW-01 and MW-05, which were originally included in the SMP (EA 2014a) monitoring well network, have not been located onsite since the completion of the RA. A records review indicates these monitoring wells had not been sampled since before the RA, and were likely either paved over or decommissioned. In addition, a concrete pad was poured by the property owner to the west of the warehouse building between Fall 2012 and Spring 2013, which covered monitoring well cluster MW-8. In July 2013, monitoring wells MW-08SR and MW-08DR were installed off the southwest corner of the warehouse, and MW-05R was installed to the southeast of the warehouse. In April 2014, two monitoring wells, MW-11S and MW-11D, were installed along Ray Street behind the warehouse to serve as high tide down-gradient monitoring points. Monitoring well locations are shown on Figures 2 and 3.

The Metal Etching site is located directly adjacent to Freeport Creek, which connects to the

	Version: FINAL
EA Engineering, P.C. and Its Affiliate	Page 2-3
EA Science and Technology	January 2017

Atlantic Ocean through a series of salt marshes; and therefore, is tidally influenced. Due to the proximity of the site to these waters, site groundwater elevation is tidally influenced, and typically ranges between 3 to 5 ft bgs. Groundwater gauging events in November 2015 and May 2016 took place at different points in the tidal cycle. The November 2015 sampling event took place during the 4-hour (hr.) period leading up to high tide. The May 2016 sampling event took place during the 4-hr period surrounding low tide. Water elevation data for each gauging event conducted are summarized in the following table.

	Well Casing	Depth to Water	Water Elevation	Depth to Water	Water Elevation
Well	Elevation	(ft btoc)	(ft AMSL)	(ft btoc)	(ft AMSL)
Identification	(ft AMSL)	November 18, 2015	November 18, 2015	May 17, 2016	May 17, 2016
MW-06	4.34	3.66	0.68	4.40	-0.06
MW-05R	4.02	2.36	1.66	2.18	1.84
MW-04	6.02	5.26	0.76	6.11	-0.09
MW-08DR	5.24	4.30	0.94	5.79	-0.55
MW-08SR	5.41	4.60	0.81	5.55	-0.14
MW-9D	4.16	2.76	1.40	5.06	-0.90
MW-9S	4.27	2.94	1.33	5.18	-0.91
MW-10D	5.30	4.00	1.30	6.02	-0.72
MW-10M	5.37	4.14	1.23	6.18	-0.81
MW-10S	5.09	3.91	1.18	5.74	-0.65
MW-11S	4.05	3.48	0.57	3.96	0.09
MW-11D	3.96	3.10	0.86	4.22	-0.26
NOTE: btoc	NOTE: btoc = Below top of casing				
AMSL = Above mean sea level					

Interpreted groundwater potentiometric surface flow patterns for the November 2015 and May 2016 gauging events are presented on Figures 2 and 3, respectively. Groundwater fluctuates with the tides, and typically flows from northwest to southeast across the site during low tides and southeast to northwest during high tides. The November 2015 gauging event took place at high tide, with groundwater flowing in a northwest direction. The May 2016 gauging event took place at low tide, with groundwater flowing in a southeast direction.

Groundwater monitoring wells were sampled in November 2015 and May 2016 during this monitoring period. Each well was purged using low-flow techniques (submersible pumps), and water quality readings were allowed to stabilize prior to sample collection. Purge forms are provided in Appendix C, and daily field reports are provided in Appendix D. Samples were submitted to Con-Test Analytical Laboratory, in East Longmeadow, Massachusetts for analysis of VOCs via United States Environmental Protection Agency (EPA) Method 8260C and target analyte list (TAL) metals using EPA Method 6010, in accordance with the NYSDEC Analytical Services Protocol. During the November 2015 sampling event, samples were also analyzed for monitored natural attenuation (MNA) parameters including chloride, sulfate, nitrate, and total organic carbon.

Groundwater sampling results were compared to NYSDEC AWQS for Class GA waters (NYSDEC 1998). Analytical results are summarized in Tables 1 through 3. Figure 4 shows the

EA Project No.: 14907.09

interpreted PCE isopleths from November 2015 and May 2016. Data usability summary reports are provided in Appendix E.

2.4.2 Volatile Organic Compounds

Eleven VOCs were detected during the November 2015 groundwater sampling event; 5 of the 11 VOCs, including *cis*-1,2-DCE, PCE, TCE, *trans*-1,2-DCE and VC were detected at concentrations exceeding the NYSDEC AWQS. The majority of groundwater exceedances were detected at monitoring wells MW-08DR, MW-09S and MW-09D. Twelve VOCs were detected during the May 2016 groundwater sampling event; 6 of the 12 VOCs, including *cis*-1,2-DCE, PCE, TCE, tert-butyl alcohol, methyl tert-butyl ether (MTBE) and VC were detected at concentrations exceeding the NYSDEC AWQS. The majority of groundwater exceedances were detected at monitoring wells MW-08DR, MW-09D, MW-09D, MW-09S, MW-10M, and MW-10S. CVOCs have typically exceeded the AWQS in MW-09S during high tide events; this may be evidence of the residual soil source (e.g., sorbed or diffused CVOCs in soil) known to remain in the area of monitoring well sets MW-08R, MW-09 and MW-10 that is continuing to impact shallow groundwater during high tide.

2.4.3 Inorganic Compounds

Prior to collecting groundwater samples, monitoring wells were purged until the turbidity readings as measured using a Horiba U-52 were less than 50 nephelometric turbidity units (NTU). Based on the unfiltered analyses, nine organic compounds (i.e., copper, iron, magnesium, manganese, and sodium) were detected at concentrations greater than their applicable NYSDEC AWQS during the November 2015 and May 2016 groundwater sampling events. Aluminum, barium, calcium, copper, iron, magnesium, manganese, nickel, potassium, sodium, and zinc were detected in all twelve monitoring wells and remained consistent for both sampling events.

2.4.4 Monitored Natural Attenuation Parameters

As part of the groundwater monitoring program, groundwater samples collected in November 2015 were submitted for MNA parameter analysis including chloride, sulfate, sulfide, nitrate, and total organic carbon and are summarized along with prior sampling results in Table 3.

Discussed are the notable monitored natural attenuation parameters:

- A total organic carbon concentration less than 20 milligrams per liter (mg/L) is a limiting factor in the availability of electron donors required for reductive dechlorination of chlorinated VOCs. Total organic carbon was not detected at concentrations greater than 20 mg/L at any of the site monitoring wells in November 2015.
- If nitrate concentrations are less than 1 mg/L, along with dissolved oxygen (DO) concentrations less than 0.5 mg/L and increased sulfide concentrations, it can be concluded that anaerobic conditions exist at the site. Nitrate concentrations were less

than 1 mg/L at all but one (MW-11D) of the monitoring wells at the site. DO was less than 0.5 mg/L in MW-10S, MW-10M and MW-11D. Sulfide analysis was not completed during this sampling event.

- Sulfate concentrations greater than 20 mg/L can cause competitive exclusion of reductive dechlorination. Sulfate concentrations were less than 20 mg/L in MW-04 and MW-09S.
- Chloride was detected above 250 mg/L in six of the twelve site monitoring wells; however, it is a major contributor to the ion composition of natural seawater, typically found at concentrations of roughly 19,000 mg/L. Therefore, it is not a reliable metric for measuring MNA in sites influenced by tides.
- Natural attenuation of the CVOCs present in the groundwater at the site primarily occurs under anaerobic conditions that are reflected by DO concentrations below 0.5 mg/L and oxidation-reduction potential (ORP) less than 0.0 millivolts (mV). ORP was less than 0.0 mV along with DO detected at less than 0.5 mg/L in MW-10S. ORP was less than 0.0 mV and DO was just over 0.5 mg/L (0.51 mg/L) in MW-10D.

2.5 INDOOR AIR MONITORING

The SMP (EA 2014a) required annual indoor air sampling in both the office and warehouse buildings during the heating season to monitor the effectiveness of the SSDSs; however, both systems were damaged during Superstorm Sandy in 2012. A SVI evaluation was conducted in November 2013 and March 2014 to determine the continued necessity of the SSDSs in both buildings. Indoor air, outdoor air, and sub-slab vapor samples were collected in November 2013 from both buildings and again in March 2014 from the warehouse building to confirm results, and it was determined the warehouse SSDS could be shut down with no further monitoring unless building use changes.

In November 2015, indoor air and outdoor air samples were collected from the office building. Samples were collected using laboratory clean-certified Summa® canisters regulated for a 24-hr sample collection. Samples were submitted to Con-Test Analytical Laboratory, of East Longmeadow, Massachusetts for analysis of VOCs using EPA Method TO-15. Air sampling forms are provided in Appendix F.

Results were compared to NYSDOH Air Guidance Values (2006). Analytical results are summarized in Table 4. Data usability summary reports are provided in Appendix E.

During the November 2015 sampling event, various VOCs were detected, but none were detected above NYSDOH Air Guidelines, and no detections of site-related CVOCs were observed.

2.6 CONFIRM THAT PERFORMANCE STANDARDS ARE BEING MET

Tables 1 through 3 provide a summary of groundwater results for the reporting period. Natural

attenuation of primary CVOC compounds (PCE/TCE) is a long-term process and will continue to be monitored. Previous soil vapor intrusion monitoring indicated the presence of TCE and PCE beneath the slab in the office building, which is regularly occupied during business hours, indicated the office SSDS needed to be returned to operation. TCE and PCE concentrations in the indoor air were non-detect during the November 2015 sampling event, lower than the previous sampling events, indicating that the SSDS is serving its purpose.

3. INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION PLAN REPORT

As previously noted, the SMP is included under Appendix A of this PRR and includes the ICs/ECs Plan. The SMP was revised in April 2014 to include the environmental notices and the updated groundwater monitoring well network. ICs and ECs at the Metal Etching site currently include the following:

- EC—Cover system that includes permeable and standard asphalt pavement areas, rip rap, and concrete building slabs/foundations that prevent incidental contact or ingestion of remaining contaminated subsurface soil at the majority of the site. An excavation work plan included as an appendix to the SMP, identifies the procedures and protocols required to be implemented should the cover system be breached, penetrated, or temporarily removed, and any underlying remaining contamination is disturbed.
- EC—O&M of the SSDSs in the site buildings.
- IC—Establishment of Environmental Notices and compliance with the SMP.

3.1 INSTITUTIONAL CONTROL/ENGINEERING CONTROL REQUIREMENTS AND COMPLIANCE

Determination of compliance with the ICs and ECs at the Metal Etching site is made on the following criteria:

- The ICs and ECs applied at the site are in place and unchanged since completion of the remedial activities and issuance of the SMP.
- No changes or occurrences of activity have impaired or impacted the ability of such controls to protect human health and the environment, or constitute a violation or failure to comply with any element of the SMP for such controls.
- Access to the Metal Etching site will continue to be provided to the NYSDEC for evaluation of the remedy, including access to the site monitoring network and other controls (e.g., SSDS) for continued monitoring and/or maintenance.

3.2 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION FORM

The IC/EC certification forms from the owner and EA are included as Appendix G of this PRR.

This page left intentionally blank

4. COST EVALUATION

4.1 SUMMARY OF COSTS

Costs for EA site management services, including groundwater monitoring and sampling, site inspection, and air sampling was \$54,358 for this reporting period. A breakdown of major costs for November 2015 to November 2016 is provided in the following table.

Site Management Activity	EA Cost Incurred for the period of November 2015 – November 2016
Monitoring, Sampling, Inspection, Oversight, Supplies/Equipment, Travel, and Reporting (EA)	\$46,342
Analytical Laboratory (Con-Test Analytical)	\$7,018
Data Validation (EDS, Inc.)	\$998

The monitoring, sampling, inspection, oversight, and reporting costs, which are billed by EA, include costs associated with project management, quality assurance, and periodic reporting throughout the reporting period. These monitoring and reporting costs are based on fiscal data generated and tracked by an EA internal financial management system, and includes travel expenses, equipment/supply costs, and other direct charges.

The analytical costs, billed by Con-Test Analytical of East Longmeadow, Massachusetts covered semi-annual groundwater analyses and annual air analyses. Under the next performance monitoring period Con-Test Analytical will again be providing analytical services for the groundwater monitoring and sampling program. Data generated during the reporting period was validated by Environmental Data Services, Inc. of Williamsburg, Virginia.

This page left intentionally blank

5. RECOMMENDATIONS

5.1 GROUNDWATER MONITORING

Semi-annual groundwater monitoring should continue during the next monitoring period. VOCs, such as PCE, TCE, and *cis*-1,2-DCE, are consistently detected in monitoring wells located near the former source area (MW-09S, MW-09D, MW-08SR, and MW-08DR). Inorganics, such as copper, iron, magnesium, manganese, and sodium are consistently detected at concentrations greater than respective NYSDEC AWQS across the site monitoring well network, although sodium is expected to be due to the salinity of the groundwater in this area.

Further sampling is necessary to identify consistent trends during both high and low tides, and to identify an effective long-term management strategy for residual contaminants. In addition, chloride concentrations may not be indicative of groundwater quality as related to the natural attenuation process due to the natural salinity of the groundwater. The MNA parameters analyte list should be supplemented with methane, ethane, and ethene to better understand natural attenuation at the site.

Groundwater monitoring for CVOCs at the site has been completed twice annually for the last four years; groundwater samples from the site monitoring wells have been analyzed for MNA parameters four times up to the end of this reporting period. It is recommended that biannual monitoring for VOCs and annual monitoring for MNA parameters be completed for an additional year before evaluating for the need for additional groundwater treatment.

5.2 INDOOR AIR MONITORING

Onsite indoor and outdoor air monitoring was completed in November 2015 and should continue during the next monitoring period to support continued operation of the SSDS at the site office building, and ensure the system is providing adequate mitigation for vapor intrusion.

5.3 SITE INSPECTION AND MAINTENANCE

5.3.1 Site Cover

The site cover system and surrounding areas were observed to be in good condition with minimal damage during the inspections. Although some minor areas exist where the cover material has been punctured due to ongoing site activities, the damage does not pose a threat to human health.

5.3.2 Sub-Slab Depressurization Systems

The warehouse's SSDS system will remain out of operation as long as building use does not change. Despite a crack in the exhaust pipe, the office system is fully functioning and is to remain in operation.

5.4 SUMMARY

The following actions are recommended:

- Site management tasks should continue. This includes semi-annual site inspections and groundwater sampling. The first site inspection and groundwater sampling event of the next reporting period (November 2016 November 2017) will be completed in early 2017 and will include the addition of methane, ethane, and ethane to the MNA parameter list, as recommended in previous reports.
- Sweeping of permeable pavement should be completed annually.

6. REFERENCES

- EA Engineering, P.C., and Its Affiliate EA Science and Technology. 2014a. *SMP. Final.* Metal Etching Site, Nassau County, Freeport, New York. April.
- ——. 2014b. *Final Engineering Report. Final.* Metal Etching State Superfund Site, Nassau County, Freeport, New York. April.
- Environmental Resource Management. 2007. *Remedial Investigation Report, Metal Etching Co. Inc. Site (NYSDEC Site No. 1-30-110).* Freeport, New York. January.
- New York State Department of Environmental Conservation (NYSDEC). 1998. Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June.
- ——. 2007. Record of Decision, Metal Etching Site, Freeport, Nassau County, Site Number 130110. March.
- New York State Department of Health (NYSDOH). 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Division of Environmental Health Assessment, Center for Environmental Health. October.

This page left intentionally blank

Legend

- Site Boundary
 - PropertyParcels
- Existing Buildings
- ★ Site Location

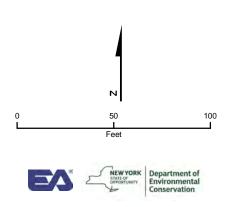
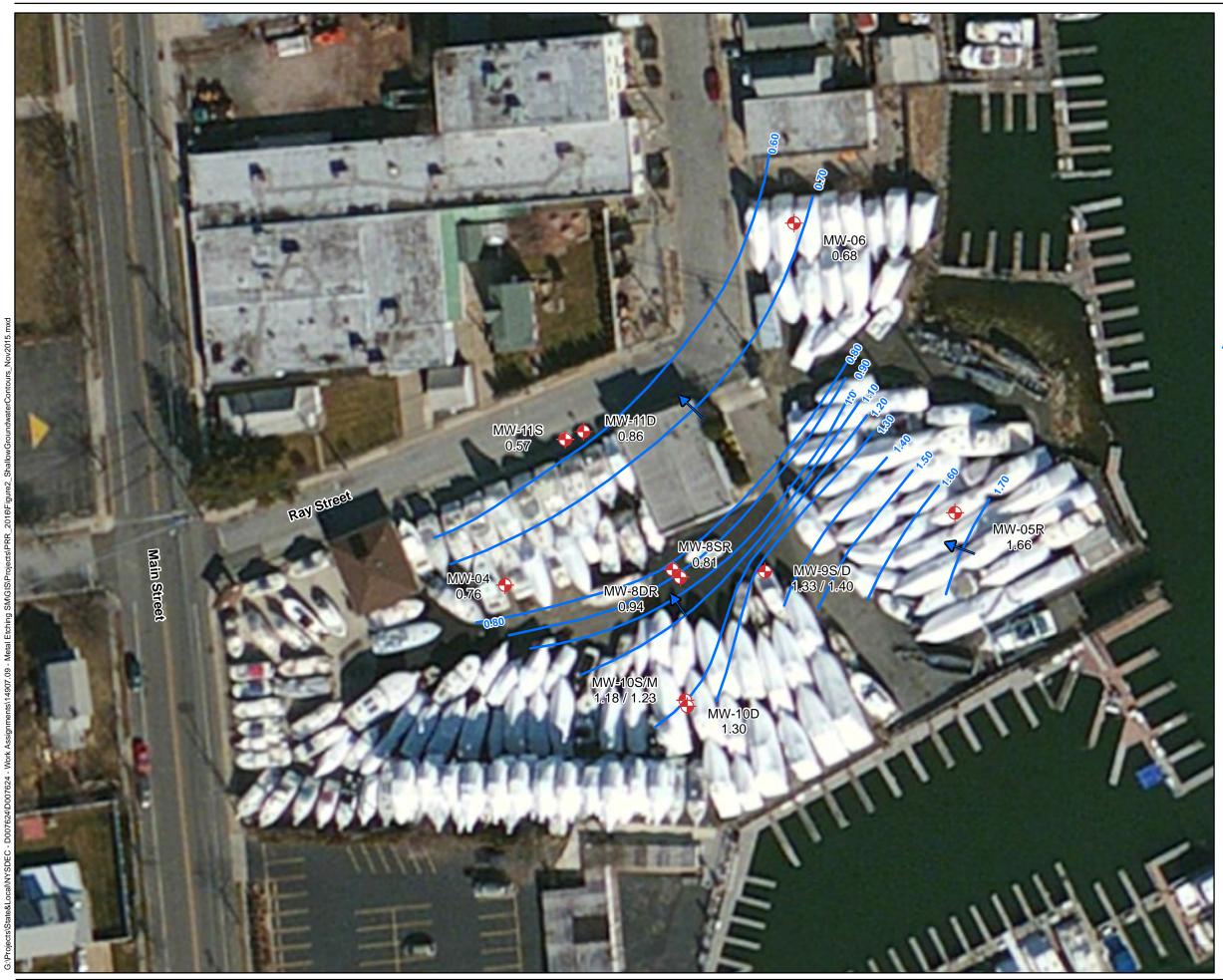



Figure 1 Site Location and Boundary Map Freeport Metal Etching Periodic Review Report Freeport, New York

Legend

- Existing Monitoring Well
- ----- Shallow Groundwater Contour
- (1.0) Groundwater Elevation in ft amsl
- -----> Groundwater Flow Direction

Map Date: 1/12/2017 Projection: NAD 1983 State Plane New York Long Isl FIPS 3104 Feet

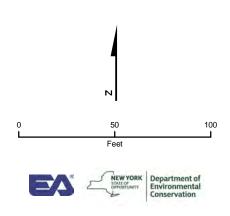


Figure 2 Shallow Groundwater Contours High Tide Conditions November 2015 Freeport Metal Etching Periodic Review Report Freeport, New York

Legend

- Existing Monitoring Well
- ----- Shallow Groundwater Contours
- (1.0) Groundwater Elevation in ft amsl
- -----> Groundwater Flow Direction

Map Date: 1/12/2017 Projection: NAD 1983 State Plane New York Long Isl FIPS 3104 Feet

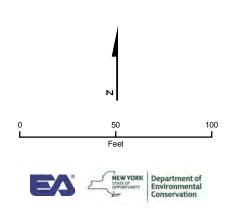
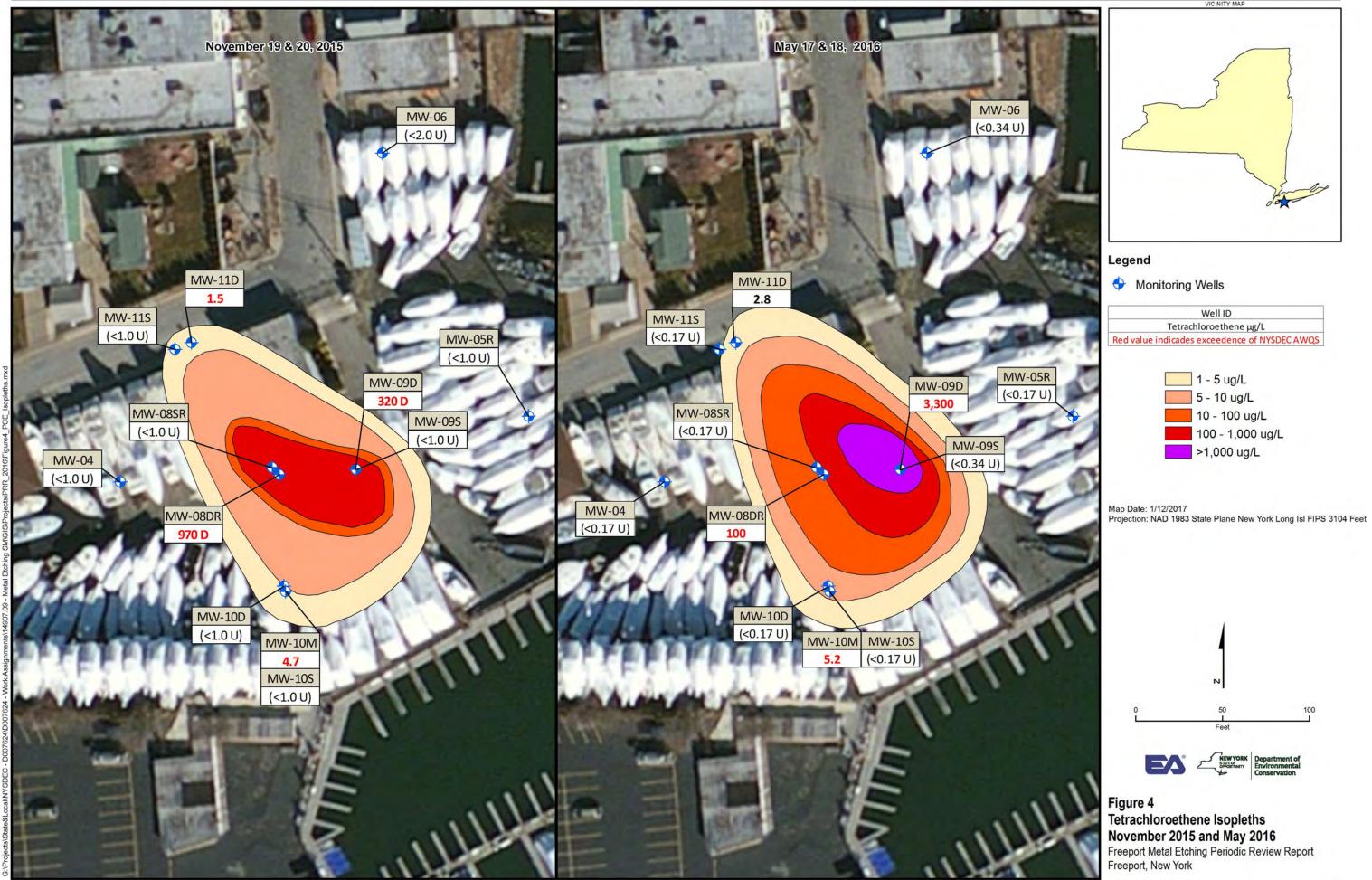



Figure 3 Shallow Groundwater Contours Low Tide Conditions May 2016 Freeport Metal Etching Periodic Review Report Freeport, New York

	Location ID								MW	/-04								
	Lab ID	12K0749-0)2	13E0755-0)7	13K0947-0)2	14F0194-0	7	14K0664-0)4	15E0606-0	7	15K0954-0	13	16E0858-0	6	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwat	er	Groundwat	er	Groundwat	er	Groundwate	er	Groundwat	er	Groundwat	er	Groundwat	er	Groundwate	er	Water Quality Standard Class
Method 8200C	Sample Date	11/19/201	2	5/20/2013	3	11/21/201	3	6/3/2014		11/11/201	4	5/12/2015		11/19/2013	5	5/17/2016	j -	GA ^(a) (µg/l)
	Tidal Phase	Ebb		Low/Flood	d	High/Ebb		Flood/High	ı	Ebb		Low		High		Low		0/1 (μg/1)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	5 (s)
Acetone	μg/l	(<50)	U	(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U	50 (g)
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	R	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ	5 (s)
cis-1,2-dichloroethene	μg/l	(<1.0)	U	1.1		1.1		2.4		(<1.0)	U	1.1		(<0.15)	U	(<0.15)	U	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	5 (s)
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	5 (s)
Methylcyclohexane	μg/l															(<0.63)	U	
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.09)	U	5 (s)
N-Butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	10 (g)
Tetrachloroethene	μg/l	2		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	5(s)
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	5(s)
Trichloroethene	μg/l	1		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	5 (s)
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	2 (s)

(a) 6 NYCRR Part 703.5 Class GA Groundwater Quality Regulations, as presented in the Division of Water Technical and Operational Guidance Series 1.1.1, 1998, as amended. NOTE:

EPA = U.S. Enivronmental Protection Agency.

Identification

NYSDEC = New York State Department of Environmental Conservation.

 $\mu g/l$ = micrograms per liter = parts per billion (ppb).

U = Non-detect, detection below the method detection limit.

UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is aproximate.

= Non-detect result rejected due to exceedence of 20% deviation and/or average RRF values < 0.05 in the initial or continuing calibration R

Data provided by Con-Test Analytical Laboratory. Only analytes that were detected in at least one sample are shown.

Concentration values in BOLD indicate that analyte was detected above the NYSDEC Ambient Water Quality Standards (s) or Guidance Values (g).

	Location ID							-05R					1		
		13K0947-0	2	14F0194-0	2	14K0664-0		15E0606-0	1	15K0954-02		16E0858-0	1		NYSDEC Ambient
Parameter List USEPA	Lab ID		-											1	Water Quality
Method 8260C	Sample Type	Groundwate	-	Groundwat	er	Groundwat	-	Groundwate		Groundwate		Groundwat		1	Standard Class
	Sample Date	11/21/2013	3	6/3/2014		11/11/2014	4	5/12/2015		11/19/2015		5/18/2016		1	GA ^(a) (µg/l)
	Tidal Phase	High/Ebb		Flood/Hig	1	Ebb		Low		High		Low			(10)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U		5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	1		(<1.0)	U	1.2		1.1		1			5 (s)
Acetone	μg/l	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U		50 (g)
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ		5 (s)
cis-1,2-dichloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U		5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	2.7		(<0.18)	U	(<0.18)	U		
Diisopropyl ether	μg/1	0.88		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U		5 (s)
Isopropylbenzene	μg/1	2.7		2.9		1.9		1.9		(<0.12)	U	(<0.12)	U		5 (s)
Methylcyclohexane	μg/l											1.1			
Methyl tert-butyl ether	μg/l	4.3		3.4		2		2.6		1.4		1.3			5 (s)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U		5 (s)
N-propylbenzene	μg/l	1		1.3		(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U		5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	1.1		(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U		
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U		10 (g)
Tetrachloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U		5(s)
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U		5(s)
Trichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U		5 (s)
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U		2 (s)

Table 1 Summary	of Detected	Volatile Organic	Compounds in	Groundwater
Table I Summary	of Denenuu	volatile Organie	Compounds m	010unu water

	Location ID								MW	-06								
	Lab ID	12K0749-0)1	13E0755-0	1	13K0947-0	1	14F0194-0	1	14K0664-0	7	15E0606-02	2	15K0954-0	1	16E0858-0	12	NYSDEC Ambient Water Quality
Parameter List USEPA Method 8260C	Sample Type	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	r	Groundwate	er	Groundwat	er	Standard Class
Method 0200C	Sample Date	11/19/2013	2	5/20/2013		11/21/2013	3	6/3/2014		11/11/2014	Ļ	5/12/2015		11/19/2015	i	5/18/2016	ō	GA ^(a) (µg/l)
	Tidal Phase	Ebb		Low/Flood	i	High/Ebb		Flood/High	ı	Ebb		Low		High		Low		(P8)
1,1-dichloroethene	μg/1	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.42)	U	(<0.32)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.36)	U	(<0.36)	U	5 (s)
Acetone	μg/l	(<50)	U	(<100)	U	(<100)	UJ	(<100)	U	(<100)	U	(<100)	U	(<9.7)	U	(<9.7)	U	50 (g)
Butyl alcohol, tert-	μg/l	(<20)	U	(<40)	UJ	(<40)	R	(<40)	R	(<40)	U	(<40)	U	(<4.3)	U	(<4.3)	UJ	5 (s)
cis-1,2-dichloroethene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.29)	U	(<0.29)	U	5 (s)
Dichlorodifluoromethane	μg/1	(<2.0)	U	(<4.0)	U	(<4.0)	U	(<4.0)	UJ	(<4.0)	U	(<4.0)	U	(<0.36)	U	(<0.36)	U	
Diisopropyl ether	μg/1	< 0.5	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.36)	U	5 (s)
Isopropylbenzene	μg/l	(<1.0)	U	2.8		2.1		3		2.2		4.4	D	2.2		2.4	D	5 (s)
Methylcyclohexane	μg/l															3.4	D	
Methyl tert-butyl ether	μg/l	1.5		3		(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	5 (s)
N-Butylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.3)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.22)	U	(<0.26)	U	5 (s)
Sec-butylbenzene	μg/1	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.22)	U	(<0.26)	U	
Tert-butylbenzene	μg/1	1.1		(<2.0)	U	2.2		3.6		3		3.7	D	3.8		2.6	D	10 (g)
Tetrachloroethene	μg/1	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.34)	U	(<0.34)	U	5(s)
trans-1,2-dichloroethene	μg/1	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.3)	U	(<0.3)	U	5(s)
Trichloroethene	μg/1	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.4)	U	(<0.4)	U	5 (s)
Vinyl chloride	μg/1	(<2.0)	U	(<4.0)	U	(<4.0)	U	(<4.0)	U	(<4.0)	U	(<4.0)	U	(0.27)	U	(0.27)	U	2 (s)

	x (1 x)	MW-08D				ary or Dette		5	MW-							MW-088	1	
	Location ID				-						-							NYSDEC Ambient
Parameter List USEPA	Lab ID	12K0749-0	6	13K0947-1	0	14F0194-1	1	14K0664-1	1	15E0606-1	3	15K1033-0)2	16E0858-1	0	12K0749-0)7	Water Quality
Method 8260C	Sample Type	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwat	er	Groundwat	er	Groundwat	er	Standard Class
Withou 8200C	Sample Date	11/20/2012	2	11/21/2013	3	6/4/2014		11/11/2014	4	5/13/2015		11/20/201	5	5/18/2016	5	11/20/201	2	GA ^(a) (µg/l)
	Tidal Phase	Flood		High/Ebb		Flood/High	ı	Ebb		Ebb		High		Low		Flood		0/1 (μg/1)
1,1-dichloroethene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<5.2)	U	(<1.6)	U	(<1.0)	U	5 (s)
1,2,4-trimethylbenzene	μg/1	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<4.5)	U	(<1.8)	U	(<1.0)	U	5 (s)
Acetone	μg/1	(<50)	U	(<1,000)	UJ	(<500)	U	(<1,000)	U	(<250)	U	(<120)	UJ	(<49)	U	74		50 (g)
Butyl alcohol, tert-	μg/1	(<20)	R	(<400)	R	(<200)	R	(<400)	U	(<100)	U	(<54)	U	(<22)	UJ	(<20)	R	5 (s)
cis-1,2-dichloroethene	μg/1	52		220		(<10)	U	450		97	D	250		24	D	85		5 (s)
Dichlorodifluoromethane	μg/1	(<2.0)	U	(<40)	U	(<20)	UJ	(<40)	U	(<10)	U	(<4.5)	U	(<1.8)	U	(<2.0)	U	
Diisopropyl ether	μg/1	(<0.5)	U	(<10)	U	(<5.0)	U	(<10)	U	(<2.5)	U	(<12.0)	U	(<1.8)	U	(<0.5)	U	5 (s)
Isopropylbenzene	μg/1	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<3.0)	U	(<1.2)	U	(<1.0)	U	5 (s)
Methylcyclohexane	μg/l													(<6.3)	U			
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<2.2)	U	(<0.9)	U	1.5		5 (s)
N-Butylbenzene	μg/1	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<25)	U	(<1.5)	U	(<1.0)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<2.8)	U	(<1.3)	U	(<1.0)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<2.8)	U	(<1.3)	U	(<1.0)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<2.8)	U	(<1.1)	U	(<1.0)	U	10 (g)
Tetrachloroethene	μg/l	1,900		750		1,900		530		93	D	970		400	D	100		5(s)
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<3.8)	U	(<1.5)	U	(<1.0)	U	5(s)
Trichloroethene	μg/l	70		630		73		200		12	D	150		15	D	140		5 (s)
Vinyl chloride	μg/l	3.3		(<40)	U	(<20)	U	(<40)	U	(<10)	U	(<3.3)	U	(<1.3)	U	(<2.0)	U	2 (s)

Table 1 Summarv	of Detected	Volatile (Droanic C	omnounds in	Groundwater

	Location ID						MW-	-08SR						
	Lab ID	13K0947-0)9	14F0194-1	0	14K0664-1	0	15E0606-1	2	15K1033-0)1	16E0858-0	9	NYSDI Wate
Parameter List USEPA Method 8260C	Sample Type	Groundwat	ter	Groundwa	er	Groundwat	er	Groundwat	er	Groundwat	er	Groundwat	er	Stand
Method 0200C	Sample Date	11/21/201	3	6/4/2014		11/11/201	4	5/13/2015	i	11/19/201:	5	5/18/2016	i	GA
	Tidal Phase	High/Ebb)	Flood/Hig	h	Ebb		Ebb		High		Low		
,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	5
,2,4-trimethylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	:
Acetone	μg/1	(<50)	U	(<50)	U	(<50)	U	(<50)	U	(<4.9)	UJ	(<4.9)	U	5
Butyl alcohol, tert-	μg/1	130	J	(<20)	R	(<20)	U	44		(<2.2)	U	(<2.2)	UJ	:
is-1,2-dichloroethene	μg/1	6.3		5.4		2.4		2.5		1.4		2.2		4
Dichlorodifluoromethane	μg/1	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	
Diisopropyl ether	μg/1	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	4
sopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	4
/lethylcyclohexane	μg/l											(<0.63)	U	
lethyl tert-butyl ether	μg/l	8.3		3.8		2.2		7.6		1.4		1.5		5
J-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	5
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	5
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	
ert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	10
Fetrachloroethene	μg/1	2.4		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	5
rans-1,2-dichloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	
richloroethene	μg/1	5.2		1.6		1.4		1		2.3		1.1		5
/inyl chloride	μg/1	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	2

				Tuble T b	umm	iury of Detec	icu	olatile Orga			1.01	ounawater						·
	Location ID								MW	-09D								NYSDEC Ambient
	Lab ID	12K0749-0	8	13E0755-0	2	13K0947-0	8	14F0194-0	9	14K0664-0	9	15E0606-1	1	15K0954-0	8	16E0858-0)8	Water Quality
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwat	er	Standard Class
Mitthou 0200C	Sample Date	11/20/2012	2	5/20/2013		11/21/2013	3	6/4/2014		11/11/2014	Ļ	5/13/2015		11/19/2015	5	5/17/2016	5	GA ^(a) (µg/l)
	Tidal Phase	Flood		Low/Flood	1	High/Ebb		Flood/High	1	Ebb		Ebb		High		Low		G/1 (μg/1)
1,1-dichloroethene	μg/l	2		(<2.0)	U	(<2.0)	U	(<5.0)	U	(<25)	U	(<5.0)	U	(<2.1)	U	(<0.63)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<5.0)	U	(<25)	U	(<5.0)	U	(<1.8)	U	(<0.72)	U	5 (s)
Acetone	μg/1	250		(<100)	U	(< 100)	UJ	(<250)	U	(<1,200)	U	(<250)	U	(<49)	U	(<19)	U	50 (g)
Butyl alcohol, tert-	μg/l	(<20)	R	(<40)	R	(<40)	R	(<100)	R	(<500)	U	(<100)	U	(<22)	U	(<8.7)	UJ	5 (s)
cis-1,2-dichloroethene	μg/l	530		12		260		72		160		190	D	180		110	D	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(4.0)	U	(<4.0)	U	(<10)	UJ	(<50)	U	(<10)	U	(<1.8)	U	(<0.72)	U	
Diisopropyl ether	μg/1	(<0.5)	U	(<1.0)	U	(<1.0)	U	(<2.5)	U	(<12)	U	(<2.5)	U	(<5.0)	U	(<0.72)	U	5 (s)
Isopropylbenzene	μg/1	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<5.0)	U	(<25)	U	<5.0)	U	(<1.2)	U	(<0.48)	U	5 (s)
Methylcyclohexane	μg/l															(<2.5)	U	
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	<5.0)	U	(<25)	U	<5.0)	U	(<0.9)	U	(<0.36)	U	5 (s)
N-Butylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	<5.0)	U	(<25)	U	<5.0)	U	(<10)	U	(<0.6)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	<5.0)	U	(<25)	U	<5.0)	U	(<1.1)	U	(<0.52)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	<5.0)	U	(<25)	U	<5.0)	U	(<1.1)	U	(<0.52)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<5.0)	U	(<25)	U	(<5.0)	U	(<1.1)	U	(<0.44)	U	10 (g)
Tetrachloroethene	μg/l	89		160		430		2300		510		340	D	320		3,300	D	5(s)
trans-1,2-dichloroethene	μg/1	2.3		(<2.0)	U	3.5		(<5.0)	U	(<25)	U	(<5.0)	U	(<1.5)	U	(<0.6)	U	5(s)
Trichloroethene	μg/l	180		27		240		220		250		220	D	180		41	D	5 (s)
Vinyl chloride	μg/l	48		(<4.0)	U	7.3		(<10)	U	(<50)	U	(<10)	U	(<1.3)	U	10	D	2 (s)

	Location ID								MW	-09S								
	Lab ID	12K0749-1	0	13E0755-0)3	13K0947-0	7	14F0194-0	8	14K0664-0	8	15E0606-0	8	15K0954-0	7	16E0858-0)7	NYSDEC Ambient Water Quality
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er	Groundwa	ter	Groundwate	er	Groundwat	er	Standard Class								
Method 0200C	Sample Date	11/19/2012	2	5/20/2011	3	11/21/2013	3	6/4/2014		11/11/2014	1	5/12/2015		11/19/2015	5	5/17/2016	5	GA ^(a) (µg/l)
	Tidal Phase	Ebb		Low/Floo	d	High/Ebb		Flood/High	ı	Ebb		Low		High		Low		(P8)
1,1-dichloroethene	μg/1	1.8		(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	4.5		(<0.32)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.36)	U	5 (s)
Acetone	μg/l	1700		(<50)	U	58	J	(< 200)	U	(<50)	U	150		(<4.9)	U	(<9.7)	U	50 (g)
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	R	(< 20)	R	(< 80)	R	(<20)	U	(< 20)	U	(<2.2)	U	(<4.3)	UJ	5 (s)
cis-1,2-dichloroethene	μg/1	1300		(<1.0)	U	220	J	86		(<1.0)	U	(<1.0)	U	1,600		(<0.29)	U	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	U	(<1.0)	U	(< 8.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.36)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(< 0.5)	U	(< 2.0)	U	(< 0.5)	U	(< 0.5)	U	(<0.5)	U	(<0.36)	U	5 (s)
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.24)	U	5 (s)
Methylcyclohexane	μg/l															(<1.3)	U	
Methyl tert-butyl ether	μg/l	1.1		(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.18)	U	5 (s)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.3)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.26)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.26)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.22)	U	10 (g)
Tetrachloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.34)	U	5(s)
trans-1,2-dichloroethene	μg/1	4.7		(<1.0)	U	1.3		(< 4.0)	U	(<1.0)	U	(<1.0)	U	8.6		(<0.3)	U	5(s)
Trichloroethene	μg/1	5.2		(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.4)	U	5 (s)
Vinyl chloride	μg/1	290		(< 2.0)	U	100	J	94		(< 2.0)	U	(< 2.0)	U	250	J	(<0.27)	U	2 (s)

				Table 15	umm	any of Dette	uu	olatile Orga	me (compounds in	1.01	oundwater						
	Location ID								MW	-10D								NVODEC A 11
	Lab ID	12K0749-0	3	13E0755-0	4	13K0947-0	6	14F0194-05	5	14K0664-02	2	15E0606-05	5	15K0954-04	4	16E0858-0	4	NYSDEC Ambient Water Quality
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	er	Standard Class
Withou 0200C	Sample Date	11/19/2012	2	5/20/2013		11/21/2013	3	6/3/2014		11/11/2014		5/12/2015		11/19/2015	i	5/17/2016	5	GA ^(a) (µg/l)
	Tidal Phase	Ebb		Low/Floor	1	High/Ebb		Flood/High	1	Ebb		Low		High		Low		(µg/1)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	5 (s)
1,2,4-trimethylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	5 (s)
Acetone	μg/1	(<50)	U	(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U	50 (g)
Butyl alcohol, tert-	μg/1	(<20)	R	(<20)	R	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ	5 (s)
cis-1,2-dichloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	5 (s)
Dichlorodifluoromethane	μg/1	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	UJ	(<2.0)	UJ	(<2.0)	U	(<0.18)	U	(<0.18)	UJ	
Diisopropyl ether	μg/1	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	5 (s)
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	5 (s)
Methylcyclohexane	μg/l															(<0.63)	U	
Methyl tert-butyl ether	μg/l	1.1		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.09)	U	5 (s)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	5 (s)
N-propylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	5 (s)
Sec-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	
Tert-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	10 (g)
Tetrachloroethene	μg/1	(<1.0)	U	(<1.0)	U	15		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	5(s)
trans-1,2-dichloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	5(s)
Trichloroethene	μg/1	(<1.0)	U	(<1.0)	U	3.3		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	5 (s)
Vinyl chloride	μg/1	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	2 (s)

Table 1 Summary	of Detected Volatile	Organic Compounds	in Groundwater

	Location ID								MW-	-10M								
	Lab ID	12K0749-0)4	13E0755-0	6	13K0947-0	15	14F0194-0	6	14K0664-0	5	15E0606-06	<u>5</u>	15K0954-0	5	16E0858-0	5	NYSDEC Ambient Water Quality
Parameter List USEPA Method 8260C	Sample Type	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	er	Standard Class
Memor 0200C	Sample Date	11/20/2012	2	5/20/2013		11/21/2013	3	6/3/2014		11/11/2014		5/12/2015		11/19/2015	5	5/17/2016		$GA^{(a)}$ (µg/l)
	Tidal Phase	Flood		Low/Flood	i	High/Ebb		Flood/High	ı	Ebb		Low		High		Low		- (70)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	5 (s)
Acetone	μg/1	(<50)	U	(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U	50 (g)
Butyl alcohol, tert-	μg/l	(<20)	R	32	J	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ	5 (s)
cis-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	1.2		(<1.0)	U	(<0.15)	U	(<0.15)	U	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	UJ	(<2.0)	U	(<2.0)	UJ	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	5 (s)
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	5 (s)
Methylcyclohexane	μg/l															(<0.63)	U	
Methyl tert-butyl ether	μg/l	2.9		3		(<1.0)	U	1.1		(<1.0)	U	1		(<0.09)	U	(<0.09)	U	5 (s)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	UJ	(<1.0)	U	(<0.15)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	5 (s)
Sec-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	10 (g)
Tetrachloroethene	μg/l	2.5		(<1.0)	U	5.8		9.2		7.2	J	7.9		4.7		5.2		5(s)
trans-1,2-dichloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	5(s)
Trichloroethene	μg/1	(<1.0)	U	(<1.0)	U	1.6		(<1.0)		(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	5 (s)
Vinyl chloride	μg/1	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<0.13)	U	(<0.13)	U	2 (s)

					umm	ary or Dette	.icu y	olatile Orga		ompounds n	101	ounuwater						
	Location ID								MW	-10S								
	Lab ID	12K0749-0	5	13E0755-0	5	13K0947-0)4	14F0194-03	3	14K0664-02	3	15E0606-03	3	15K0954-0	6	16E0858-0	3	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Water Quality Standard Class
Method 0200C	Sample Date	11/20/2012	2	5/20/2013	3	11/21/201	3	6/3/2014		11/11/2014	t	5/12/2015		11/19/2015	5	5/17/2016	i	GA ^(a) (µg/l)
	Tidal Phase	Flood		Low/Floor	1	High/Ebb		Flood/High	1	Ebb		Low		High		Low		011 (18-5)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	5 (s)
Acetone	μg/1	190		(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U	50 (g)
Butyl alcohol, tert-	μg/1	(<20)	R	(<20)	R	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	29	J	5 (s)
cis-1,2-dichloroethene	μg/1	1.4		(<1.0)	U	(<1.0)	U	4.7		(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	5 (s)
Dichlorodifluoromethane	μg/1	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	
Diisopropyl ether	μg/1	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	5 (s)
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	5 (s)
Methylcyclohexane	μg/l															(<0.63)	U	
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<1.0)	U	2.5		3.8		(<1.0)	U	2.3		1		11		5 (s)
N-Butylbenzene	μg/l													(<1.0)	U	(<0.15)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	5 (s)
Sec-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	
Tert-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	10 (g)
Tetrachloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	5(s)
trans-1,2-dichloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	5(s)
Trichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	5 (s)
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	2.1		(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	2 (s)

	Location ID					MW-11D					
Parameter List USEPA	Lab ID	14F0194-1	13	14K0664-1	12	15E0606-0	9	15K1033-0	4	16E0858-12	2
Method 8260C	Sample Type	Groundwat	ter	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er
intenioù 62000	Sample Date	6/4/2014		11/11/201	4	5/13/2015		11/20/2015	5	5/17/2016	i
	Tidal Phase	Flood/Hig	;h	Ebb		Ebb		High		Low	
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U
,2,4-trimethylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U
Acetone	μg/1	(<50)	U	(<50)	U	(<50)	U	(<4.9)	UJ	(<4.9)	U
Butyl alcohol, tert-	μg/1	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ
is-1,2-dichloroethene	μg/1	1.6		2		1.2		(<0.15)	U	1.6	
Dichlorodifluoromethane	μg/l	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U
sopropylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U
Methylcyclohexane										(<0.63)	U
Methyl tert-butyl ether	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.09)	U
N-Butylbenzene								(<1.0)	U	(<0.15)	U
N-propylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U
Sec-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U
Fert-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U
Fetrachloroethene	μg/1	22		9.6		4.3		1.5		2.8	
rans-1,2-dichloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U
Frichloroethene	μg/1	1.3		1.9		1.1		(<0.2)	U	1.3	
Vinyl chloride	μg/1	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U

Table 1 Summary	of Detected Volatile	Organic Compou	nds in Groundwater

	Location ID					MW-11S					
	Lab ID	14F0194-1	2	14K0664-1	3	15E0606-1	0	15K1033-0	3	16E0858-1	1
Parameter List USEPA Method 8260C	Sample Type	Groundwat	er	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er
Method 02000	Sample Date	6/4/2014		11/11/2014	4	5/13/2015		11/20/2015	5	5/17/2016	i
	Tidal Phase	Flood/High	h	Ebb		Ebb		High		Low	
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U
Acetone	μg/l	(<50)	U	(<50)	U	(<50)	U	(<4.9)	UJ	(<4.9)	U
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ
cis-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U
Dichlorodifluoromethane	μg/l	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	1.1		(<0.12)	U	1	
Methylcyclohexane										2.1	
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.09)	U
N-Butylbenzene								(<1.0)	U	1.7	
N-propylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U
Sec-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	1.2		(<0.11)	U	2	
Tert-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U
Tetrachloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U
trans-1,2-dichloroethene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U
Trichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U

							DUI	PLICATE SAM	PLES									
	Lab ID	12K0749-0	9	13E0755-0	8	13K0947-1	1	14F0194-0	4	14K0664-0	6	15E0606-04	4	15K0954-1	0	16E0858-1	4	
	Sample Name	130110-DUP-1	1112	0110-MW-DUP	01-05	130110-DUP-	1113	130110-DUP-0	0614	130110-DUP-	1114	DUP-05121	5	130110-DU	Р	DUP-0516	5	NYSDEC Ambient
Parameter List USEPA	Parent Sample ID	30110-MW-09I	D-111	30110-MW-093	8-051	130110-MW-098	S-111	130110-MW-108	S-0614	30110-MW-101	M-111	MW-04-051	5	130110-MW-	09S	MW-10S-05	516	Water Quality
Method 8260C	Sample Type	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwat	er	Groundwate	er	Groundwat	er	Groundwat	er	Standard Class
	Sample Date	11/19/2012	2	5/20/2013		11/21/2013	3	6/3/2014		11/11/2014	4	5/12/2015		11/19/2013	5	5/17/2016	5	$GA^{(a)}\left(\mu g/l ight)$
	Tidal Phase	Ebb		Low/Flood	1	High/Ebb		Flood/High	h	Ebb		Low		High		Low		
1,1-dichloroethene	μg/1	2		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<2.1)	U	(<0.16)	U	5 (s)
1,2,4-trimethylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.8)	U	(<0.18)	U	5 (s)
Acetone	μg/1	310		(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<49)	U	(<4.9)	U	50 (g)
Butyl alcohol, tert-	μg/1	(<20)	R	(<20)	R	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<22)	U	30	J	5 (s)
cis-1,2-dichloroethene	μg/1	470		(<1.0)	U	36	J	5.8		(<1.0)	U	(<1.0)	U	1,300		(<0.15)	U	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<1.8)	U	(<0.18)	U	
Diisopropyl ether	μg/1	(<0.5)	U	(< 0.5)	U	(< 0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<5.0)	U	(<0.18)	U	5 (s)
Isopropylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.2)	U	(<0.12)	U	5 (s)
Methylcyclohexane																(<0.63)	U	
Methyl tert-butyl ether	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	4.9		(<1.0)	U	2.1		(<0.9)	U	12		5 (s)
N-Butylbenzene		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U			(<10)	U	(<0.15)	U	5 (s)
N-propylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.1)	U	(<0.13)	U	5 (s)
Sec-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.1)	U	(<0.13)	U	
Tert-butylbenzene	μg/1	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.1)	U	(<0.11)	U	10 (g)
Tetrachloroethene	μg/1	79		(<1.0)	U	(<1.0)	U	(<1.0)	U	2.4	J	(<1.0)	U	(<1.7)	U	(<0.17)	U	5(s)
trans-1,2-dichloroethene	μg/1	2.3		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.5)	U	(<0.15)	U	5(s)
Trichloroethene	μg/1	170		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<2)	U	(<0.2)	U	5 (s)
Vinyl chloride	μg/l	49		(< 2.0)	U	16	J	2.7		(<2.0)	U	(<2.0)	U	180	J	(<0.13)	U	2 (s)

	Location ID							MV	V-04									
	Lab ID	12K074	49-02	13E07:	55-07	13K09	47-02	14F019	94-07	14K06	64-04	15E0606-0	7	15K0954-0	3	16E0858-0	6	NYSDEC Ambient
Demonstern I int	Sample Type	Ground	water	Ground	water	Ground	lwater	Ground	water	Ground	lwater	Groundwate	r	Groundwate	er	Groundwate	er	Water Quality
Parameter List USEPA Method	Sample Date	11/19/	2012	5/20/2	2013	11/21/	2013	6/3/2	014	11/11/	2014	5/12/2015		11/19/2015	5	5/17/2016	i	Standard Class GA ^(a)
6010C/7471B	Tidal Phase	Eb	b	Low/F	lood	High/	Ebb	Flood/	High	Eb	b	Low		High		Low		(mg/l)
Aluminum	mg/l	0.1		0.78		0.35		0.95		2.5		0.86		0.23		0.091		
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.005 (s)
Barium	mg/l	0.27		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.0063)	U	(<0.0063)	U	1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	0.003 (s)
Cadmium	mg/l	0.0051		< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	0.005 (s)
Calcium	mg/l	NA		69		27		18		12		14		13		19		
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.03		0.011		(<0.0008)	U	(<0.0008)	U	0.05 (s)
Copper	mg/l	0.29		0.047		0.015		0.012		0.039		0.019		(<0.0047)	U	(<0.0047)	U	0.2 (s)
Iron	mg/l	NA		13		1.6		1.5		7.8		1.9		0.43		0.23		0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.015		< 0.01	U	(<0.0025)	U	(<0.0025)	U	0.025 (s)
Magnesium	mg/l	NA		22		6.6		3.9		2.7		2.6	В	2.1		3.4		35 (s)
Manganese	mg/l	3.5		0.44		0.18		0.13		0.27		0.14		0.076		0.068		0.3 (s)
Nickel	mg/l	0.17		0.011		< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.1 (s)
Potassium	mg/l	NA		11		8		4.9		4.3		4		4.5		3.8		
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	0.0006 (s)
Sodium	mg/l	NA		320		150		140		97		77		57		59		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0038)	U	(<0.0038)	U	
Zinc	mg/l	0.24		0.059		< 0.02	U	< 0.02	U	0.049		< 0.02	U	(<0.0094)	U	(<0.0094)	U	2 (s)
(a) 6 NYCRR Part 7 NOTE:	ID = Identification NYSDEC = New York S mg/l = milligrams p	nmental Protection	n Agency. of Environmer per million (pp	ital Conservation. m).	ion of Water T	'echnical and Ope	erational Guida	nce Series 1.1.1,	1998, as amend	led.								

U = Non-detect, detection below the method detection limit.

= Analyte is found in the associated blank as well as in the sample в

B = Analyte is form in the associated orbits as were as in the sample NA = Analyte not analyzed for during this sampling event. Data provided by Con-Test Analytical Laboratory. Only analytes that were detected in at least one sample are shown. Concentration values in **BOLD** indicate that analyte was detected above the NYSDEC Ambient Water Quality Standards (s) or Guidance Values (g).

	Location ID						MW-051	ł										
	Lab ID	13K094	47-03	14F019	94-02	14K06	64-01	15E06	06-01	15K095	54-02	16E0858-0	1					
	Sample Type	Ground	lwater	Ground	lwater	Ground	lwater	Ground	water	Ground	water	Groundwate	r					NYSDEC Ambient
Parameter List USEPA Method	Sample Date	11/21/	2013	6/3/2	014	11/11/	2014	5/12/2	2015	11/19/2	2015	5/18/2016						Water Quality Standard Class GA ^(a)
6010C/7471B	Tidal Phase	High/	Ebb	Flood/	High	Eb	b	Lo	W	Hig	h	Low						(mg/l)
Aluminum	mg/l	< 0.05	U	0.098		< 0.05	U	0.11		(<0.043)	U	0.093						
Antimony	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	0.059		(<0.045)	U	(<0.045)	U					0.003 (s)
Arsenic	mg/l	0.012		< 0.01	U	0.035		< 0.01	U	(<0.0078)	U	(<0.0078)	U					0.005 (s)
Barium	mg/l	0.3		0.15		0.19		0.19		0.19		0.26						1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U					0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U					0.005 (s)
Calcium	mg/l	130		87		94		93		73		100						
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U					0.05 (s)
Copper	mg/l	< 0.01	U	0.019		0.015		0.017		0.018		(<0.0047)	U					0.2 (s)
Iron	mg/l	6.7		5.8		8.6		13		10		17						0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U					0.025 (s)
Magnesium	mg/l	36		22		20		19	В	17		23						35 (s)
Manganese	mg/l	0.51		0.3		0.49		0.61		0.45		0.82						0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.012		(<0.0036)	U					0.1 (s)
Potassium	mg/l	38		23		20		18		26		17						
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U					0.0006 (s)
Sodium	mg/l	300		280		260		230		200		240						20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U					0.001 (s)
Vanadium	mg/l	0.017		0.012		< 0.01	U	< 0.01	U	0.018		(<0.0038)	U					
Zinc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	< 0.02	U	0.053		0.061						2 (s)
	Location ID							MV	V-06									
ŀ	Location ID Lab ID	12K074	49-01	13E07	55-01	13K094	47-01	MV 14F01		14K066	54-07	15E0606-02	2	15K0954-0	1	16E0858-0	2	NVODEC Anthing
Parameter List		12K074 Ground		13E07: Ground		13K094 Ground			94-01	14K066 Ground		15E0606-02 Groundwate		15K0954-0 Groundwate		16E0858-0 Groundwate		NYSDEC Ambient Water Quality
Parameter List USEPA Method	Lab ID		lwater		lwater		lwater	14F01	94-01 lwater		water		r		r		er	Water Quality
Parameter List USEPA Method 6010C/7471B	Lab ID Sample Type	Ground	lwater 2012	Ground	lwater 2013	Ground	lwater 2013	14F01 Ground	94-01 lwater 014	Ground	water 2014	Groundwate	r	Groundwate	r	Groundwate	er	
USEPA Method	Lab ID Sample Type Sample Date	Ground 11/19/	lwater 2012	Ground 5/20/2	lwater 2013	Ground 11/21/	lwater 2013	14F01 Ground 6/3/2	94-01 lwater 014	Ground 11/11/	water 2014	Groundwate 5/12/2015	r	Groundwate 11/19/2015	r	Groundwate 5/18/2016	er	Water Quality Standard Class GA ^(a)
USEPA Method 6010C/7471B	Lab ID Sample Type Sample Date Tidal Phase	Ground 11/19/ Eb	lwater 2012	Ground 5/20/2 Low/F	lwater 2013	Ground 11/21/ High/	lwater 2013 Ebb	14F01 Ground 6/3/2 Flood/	94-01 lwater 014	Ground 11/11/2 Eb	water 2014 b	Groundwate 5/12/2015 Low	r	Groundwate 11/19/2015 High	r	Groundwate 5/18/2016 Low	er	Water Quality Standard Class GA ^(a) (mg/l)
USEPA Method 6010C/7471B Aluminum	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.06	lwater 2012	Ground 5/20/2 Low/F 1.5	lwater 2013 Flood	Ground 11/21/ High/ < 0.05	lwater 2013 Ebb U	14F01 Ground 6/3/2 Flood/ 0.31	04-01 water 014 High	Ground 11/11/2 Eb	water 2014 b U	Groundwate 5/12/2015 Low 0.11	er	Groundwate 11/19/2015 High 0.057	er j	Groundwate 5/18/2016 Low 0.13	er	Water Quality Standard Class GA ^(a) (mg/l)
USEPA Method 6010C/7471B Aluminum Antimony	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l	Ground 11/19/ Eb 0.06 NA	dwater 2012 Jb	Ground 5/20/2 Low/F 1.5 < 0.05	lwater 2013 Flood U	Ground 11/21/ High/ < 0.05 < 0.05	lwater 2013 Ebb U U	14F01 Ground 6/3/2 Flood/ 0.31 < 0.05	94-01 water 014 High U	Ground 11/11// Eb < 0.05 < 0.05	water 2014 b U	Groundwate 5/12/2015 Low 0.11 < 0.05	er U	Groundwate 11/19/2015 High 0.057 (<0.045)	er 5 U	Groundwate 5/18/2016 Low 0.13 (<0.045)	er U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01	dwater 2012 bb U	Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01	lwater 2013 Flood U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.01	lwater 2013 Ebb U U U	14F01 Ground 6/3/2 Flood/ 0.31 < 0.05 < 0.01	94-01 lwater 014 High U U	Ground 11/11// Eb < 0.05 < 0.05 0.037	water 2014 b U U	Groundwate 5/12/2015 Low 0.11 < 0.05 < 0.01	er U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078)	r U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078)	er U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05	dwater 2012 bb U U U	Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05	lwater 2013 Flood U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.05	dwater 2013 Ebb U U U U U	14F01 Ground 6/3/2 Flood/ 0.31 < 0.05 < 0.01 < 0.05	04-01 water 014 High U U U U U	Ground 11/11/: Ebi < 0.05 < 0.05 0.037 < 0.05	water 2014 b U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	T U U U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0063)	r U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0063)	er U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004	dwater 2012 b U U U U U	Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05 < 0.05 < 0.004	lwater 2013 Flood U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.05 < 0.004	Iwater 2013 Ebb U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.31 < 0.05 < 0.01 < 0.05 < 0.004	04-01 water 014 High U U U U U U U	Ground 11/11/2 Ebi < 0.05 < 0.05 0.037 < 0.05 < 0.05 < 0.004	water 2014 b U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	er U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0063) (<0.001)	er U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0063) (<0.001)	er U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 < 0.004	dwater 2012 b U U U U U	Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004	lwater 2013 Flood U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.05 < 0.004	Iwater 2013 Ebb U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.31 < 0.05 < 0.01 < 0.05 < 0.004	04-01 water 014 High U U U U U U U	Ground 11/11/ Eb < 0.05 < 0.05 < 0.037 < 0.05 < 0.004 < 0.004	water 2014 b U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	er U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0063) (<0.001) (<0.0007)	er U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0063) (<0.001) (<0.001)	er U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 < 0.004 NA	iwater 2012 b U U U U U U	Ground 5/20/2 Low/F <0.05 <0.01 <0.05 <0.004 <0.004 86	lwater 2013 ^{?lood} U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110	lwater 2013 Ebb U U U U U U U U	14F01 Ground 6/3/2 Flood/ 0.03 < 0.05 < 0.001 < 0.05 < 0.004 < 0.004 110	04-01 water 014 High U U U U U U U	Ground 11/11/ Eb < 0.05 < 0.05 < 0.037 < 0.05 < 0.004 < 0.004 80	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	er U U U U U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.007) (<0.0007) 71	er U U U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.001) (<0.0007) 70	er U U U U U U U	Water Quality Standard Class GA ^(b) (mg/) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 < 0.004 NA < 0.01	dwater 2012 b U U U U U U U U U U U	Ground 5/20/2 Low/F < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 & 6 < 0.004 & 6 < 0.01 0.032 20	lwater 2013 ^{?lood} U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.001 < 0.004 110 < 0.01 < 0.01 < 0.01 6.8	lwater 2013 Ebb U U U U U U U U	14F01 Ground 6/3/2 Flood < 0.01 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110 < 0.01	04-01 water 014 High U U U U U U U	Ground 11/11/2 Eb < 0.05 < 0.05 < 0.037 < 0.004 < 0.004 80 < 0.001 0.017 5	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.11 <0.05	er U U U U U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0063) (<0.0001) (<0.0007) 71 (<0.0008)	er U U U U U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0063) (<0.0007) 70 (<0.0008)	er U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 0.05 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Chromium Copper	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 × 0.004 NA < 0.01 < 0.01 < 0.01	dwater 2012 b U U U U U U U U U U U	Ground 5/20/2 1.5 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 86 < 0.01 0.032	lwater 2013 ^{?lood} U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110 < 0.01 < 0.01	lwater 2013 Ebb U U U U U U U U	14F01 Ground 6/3/2 Flood 0.31 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110 < 0.01 0.017	04-01 water 014 High U U U U U U U	Ground 11/11/2 Eb < 0.05 < 0.05 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 r	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	er U U U U U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0003) (<0.0007) 71 (<0.0008) (<0.00047)	er U U U U U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0063) (<0.0007) 70 (<0.0007) 70 (<0.0008) (<0.00047)	er U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.2 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadrium Calcium Chromium Copper Iron	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 NA < 0.01 < 0.01 NA	dwater 2012 bb U U U U U U U U U U U	Ground 5/20/2 Low/F < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 & 6 < 0.004 & 6 < 0.01 0.032 20	lwater 2013 Flood U U U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.001 < 0.004 110 < 0.01 < 0.01 < 0.01 6.8	lwater 2013 Ebb U U U U U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.31 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 9.5	04-01 water 014 High U U U U U U U U U U U	Ground 11/11/2 Eb < 0.05 < 0.05 < 0.037 < 0.004 < 0.004 80 < 0.001 0.017 5	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	er U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0003) (<0.0001) (<0.0007) 71 (<0.0008) (<0.00047) 4.3	r U U U U U U U U U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0007) 70 (<0.0008) (<0.0008) (<0.0008) (<0.00047) 4.5	er U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Barium Cadmium Cadmium Cadmium Calcium Chromium Chromium Copper Iron Lead	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 NA < 0.01 < 0.01 < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.05 < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.001 NA < 0.004 NA < 0.004 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.001 NA < 0.004 NA < 0.001 < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 < 0.0	dwater 2012 bb U U U U U U U U U U U	Ground 5/20/2 Low/F <.0.05 <0.001 <0.004 <0.004 86 <0.001 86 <0.001 20 <0.01	lwater 2013 Flood U U U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.004 < 0.004 < 0.004 110 < 0.001 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	lwater 2013 Ebb U U U U U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.31 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110 < 0.01 0.017 9.5 < 0.01	04-01 water 014 High U U U U U U U U U U U	Ground 11/11/2 Eb < 0.05 < 0.05 < 0.037 < 0.004 < 0.004 < 0.004 80 < 0.011 5 < 0.01	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	er U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045)	r U U U U U U U U U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045)	er U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.025 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Calcium Chromium Copper Iron Lead Magnesium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.001 < 0.024 < 0.024 < 0.01 < 0.01 < 0.01 < 0.024 < 0.01 < 0.01 < 0.01 < 0.024 < 0.01 < 0.01 0.01<br 0.01<br 0.01<br 0.01<br 0.01<br 0.01<br 0.01</td <td>dwater 2012 bb U U U U U U U U U U U</td> <td>Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 86 < 0.01 0.032 20 < 0.01 20</td> <td>lwater 2013 Flood U U U U U U U U</td> <td>Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 < 0.01 6.8 < 0.01 38 0.41 < 0.01</td> <td>lwater 2013 Ebb U U U U U U U U U U U U U</td> <td>14F01 Ground 6/3/2 Floody < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 110 < 0.017 9.5 < 0.01 30</td> <td>04-01 water 014 High U U U U U U U U U U U</td> <td>Ground 11/11/ Eb < 0.05 < 0.05 < 0.037 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 5 < 0.01 23</td> <td>water 2014 b U U U U U U U</td> <td>Groundwate 5/12/2015 Low 0.11 < 0.05</td> < 0.01	dwater 2012 bb U U U U U U U U U U U	Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 86 < 0.01 0.032 20 < 0.01 20	lwater 2013 Flood U U U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 < 0.01 6.8 < 0.01 38 0.41 < 0.01	lwater 2013 Ebb U U U U U U U U U U U U U	14F01 Ground 6/3/2 Floody < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 110 < 0.017 9.5 < 0.01 30	04-01 water 014 High U U U U U U U U U U U	Ground 11/11/ Eb < 0.05 < 0.05 < 0.037 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 5 < 0.01 23	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	er U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045)	r U U U U U U U U U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045)	er U U U U U U U U U U U U	Water Quality Standard Class GA ^(b) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadicium Chromium Copper Iron Lead Magnesium Manganese	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 < 0.004 NA < 0.01 < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.004 NA < 0.01 NA < 0.004 NA < 0.01 NA < 0.004 NA < 0.004 NA < 0.01 NA < 0.004 NA < 0.004 NA < 0.001 NA < 0.004 NA < 0.001 < 0.004 NA < 0.001 < 0.004 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.012 NA < 0.012 NA 	lwater 2012 b U U U U U U U U U U U U	Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 86 < 0.001 0.032 20 < 0.01 20 0.21	Iwater 2013 2000 U U U U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.004 < 0.004 110 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6.8 < 0.01 38 0.41	twater 2013 Ebb U U U U U U U U U U U U U	14F01 Ground 6/3/2 Flood < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 110 < 0.01 0.017 9.5 < 0.01 30 0.38	04-01 water 014 U U U U U U U U U U U U U U U U U U U	Ground 11/11/2 Ebi < 0.05 < 0.05 < 0.004 < 0.004 < 0.004 80 < 0.011 5 < 0.011 23 0.29	water 2014 5 U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0007) (<0.0007) (<0.0007) 71 (<0.0008) (<0.0047) 4.3 (<0.0025) 20 0.24	r U U U U U U U U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0007) (<0.0007) 70 (<0.0008) (<0.00047) 4.5 (<0.0025) 20 0.25	er U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.3 (s) 0.3 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.001 < 0.024 < 0.024 < 0.01 < 0.01 < 0.01 < 0.024 < 0.01 < 0.01 < 0.01 < 0.024 < 0.01 < 0.01 0.01<br 0.01<br 0.01<br 0.01<br 0.01<br 0.01<br 0.01</td <td>lwater 2012 b U U U U U U U U U U U U</td> <td>Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 86 < 0.01 0.032 20 < 0.01 20 < 0.01 20 < 0.01</td> <td>Iwater 2013 2000 U U U U U U U U U</td> <td>Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 < 0.01 6.8 < 0.01 38 0.41 < 0.01</td> <td>twater 2013 Ebb U U U U U U U U U U U U U</td> <td>14F01 Ground 6/3/2 Flood 0.31 < 0.05 < 0.001 < 0.05 < 0.004 < 0.004 < 0.004 1110 < 0.01 0.017 9.5 < 0.001 30 0.38 < 0.01</td> <td>04-01 water 014 U U U U U U U U U U U U U U U U U U U</td> <td>Ground 11/11/2 Eb < 0.05 < 0.05 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 0.017 5 < 0.01 23 0.29 < 0.01</td> <td>water 2014 5 U U U U U U U</td> <td>Groundwate 5/12/2015 Low 0.11 < 0.05</td> < 0.05	lwater 2012 b U U U U U U U U U U U U	Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 86 < 0.01 0.032 20 < 0.01 20 < 0.01 20 < 0.01	Iwater 2013 2000 U U U U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 < 0.01 6.8 < 0.01 38 0.41 < 0.01	twater 2013 Ebb U U U U U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.31 < 0.05 < 0.001 < 0.05 < 0.004 < 0.004 < 0.004 1110 < 0.01 0.017 9.5 < 0.001 30 0.38 < 0.01	04-01 water 014 U U U U U U U U U U U U U U U U U U U	Ground 11/11/2 Eb < 0.05 < 0.05 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 0.017 5 < 0.01 23 0.29 < 0.01	water 2014 5 U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0007) (<0.0007) (<0.0007) 71 (<0.0008) (<0.0047) 4.3 (<0.0025) 20 0.24 (<0.0036)	r U U U U U U U U U U U U U	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0007) (<0.0007) 70 (<0.0008) (<0.00047) 4.5 (<0.0025) 20 0.25 (<0.0036)	er U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnese Magnese Nickel Potassium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.024 < 0.01 NA	lwater 2012 bb U U U U U U U U U U U U U	Ground 5/20/2 1.5 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 86 < 0.004 86 < 0.01 0.032 20 < 0.01 20 0.21 < 0.01 11	Iwater 2013 Nood U U U U U U U U U U U U U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 < 0.01 6.8 < 0.01 3.8 0.41 < 0.01 29	twater 2013 Ebb U U U U U U U U U U U U U	$\begin{array}{c} 14F01^{\circ}\\ Ground\\ 6/3/2\\ Flood\\ 0.31\\ < 0.05\\ < 0.01\\ < 0.05\\ < 0.004\\ < 0.004\\ 110\\ < 0.01\\ 10\\ 0.017\\ \textbf{9.5}\\ < 0.01\\ 30\\ \textbf{0.38}\\ < 0.01\\ 16\\ \end{array}$	04-01 water 014 High U U U U U U U U U U U U U U U U U U U	Ground 11/11/ Eb < 0.05 < 0.05 < 0.037 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.0017 5 < 0.01 23 0.29 < 0.01 20	water 2014 b U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	Image: second	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0007) (<0.0007) 71 (<0.0008) (<0.0008) (<0.0047) 4.3 (<0.0025) 20 0.24 (<0.0036) 20	r 5 4 4 4 4 4 4 4 4 4 4 4 4 4	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0007) 70 (<0.0007) 70 (<0.0008) (<0.0008) (<0.0047) 4.5 (<0.0025) 20 0.25 (<0.0036) 11	er U U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.003 (s) 0.003 (s) 0.005 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.3 (s) 0.1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadrium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver	Lab ID Sample Type Sample Date Tidal Phase mg/1 m	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 × 0.004 NA < 0.01 × 0.01 × 0.01 NA < 0.01 NA < 0.01 NA < 0.024 < 0.001 NA < 0.024 < 0.001 NA	lwater 2012 bb U U U U U U U U U U U U U	Ground 5/20/2 Low/F <.0.05 <0.001 <0.005 <0.004 <0.004 86 <0.001 0.032 20 <0.01 20 0.21 <0.01 20 0.21 <0.005	Iwater 2013 Nood U U U U U U U U U U U U U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.004 < 0.004 110 < 0.001 < 0.01 < 0.01 6.8 < 0.01 38 0.41 < 0.01 29 < 0.005	twater 2013 Ebb U U U U U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.31 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 110 < 0.017 9.5 < 0.01 30 0.38 < 0.01 16 < 0.005	04-01 water 014 High U U U U U U U U U U U U U U U U U U U	Ground 11/11/2 Eb < 0.05 < 0.05 < 0.037 < 0.05 < 0.004 < 0.004 80 < 0.004 80 < 0.001 0.017 5 < 0.01 23 0.29 < 0.01 20 < 0.05	water 2014 b U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	Image: second	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0003) (<0.0001) (<0.0007) 71 (<0.0008) (<0.00047) 4.3 (<0.0025) 20 0.24 (<0.0036) 20 (<0.0029)	r 5 4 4 4 4 4 4 4 4 4 4 4 4 4	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0007) 70 (<0.0008) (<0.0008) (<0.00047) 4.5 (<0.0025) 20 0.25 (<0.0036) 11 (<0.0029)	er U U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(b) (mg/l) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 NA < 0.01 < 0.01 < 0.01 < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.02 NA < 0.01 NA < 0.05 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.001 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.001 NA	Iwater 2012 2b U	Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 86 < 0.01 < 0.032 20 < 0.01 20 0.21 < 0.01 11 < 0.005 250	Iwater 2013 2004 U U U U U U U U U U U U U U U	Ground 11/21/ High/ < 0.05 < 0.05 < 0.004 < 0.004 < 0.004 110 < 0.001 < 0.01 < 0.01 < 0.01 6.8 < 0.01 38 0.41 < 0.01 2 9 < 0.005 310	twater 2013 Ebb U U U U U U U U U U U U U	14F01 Ground 6/3/2 Floody < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.017 9.5 < 0.01 30 0.38 < 0.01 16 < 0.005 310	94-01 water 014 U U U U U U U U U U U U U U U U U U U	Ground 11/11/2 Eb < 0.05 < 0.05 < 0.037 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 0.017 5 < 0.01 23 0.29 < 0.01 20 < 0.05 220	water 2014 b U U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.11 < 0.05	r U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0003) (<0.0001) (<0.0007) 71 (<0.0008) (<0.00047) 4.3 (<0.0025) 20 0.24 (<0.0036) 20 (<0.0029) 220	r 	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0078) (<0.0007) 70 (<0.0008) (<0.008) (<0.008) (<0.008) (<0.0008) (<0.0005) 20 0.25 (<0.0036) 11 (<0.0029) 200	er U U U U U U U U U U U U U	Water Quality Standard Class GA ^(b) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Cadicium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Silver Silver	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.06 NA < 0.01 < 0.05 < 0.004 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.005 NA	Iwater 2012 b U	Ground 5/20/2 Low/F 1.5 < 0.05 < 0.01 < 0.05 < 0.004 86 < 0.001 0.032 20 < 0.01 20 0.21 < 0.01 11 < 0.005 250 < 0.005	twater 2013 Tood U U U U U U U U U U U U U U U U U	Ground 11/21/ High/ < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.001 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 38 0.41 < 0.01 29 < 0.005 310 < 0.05	twater 2013 Ebb U U U U U U U U U U U U U	14F01 Ground 6/3/2 Flood < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.01 0.017 9.5 < 0.01 3.0 0.38 < 0.01 1.6 < 0.005	94-01 water 014 High U U U U U U U U U U U U U U U U U U U	Ground 11/11/2 Ebi < 0.05 < 0.05 < 0.004 < 0.004 < 0.01 0.017 5 < 0.01 23 0.29 < 0.01 20 < 0.005 220 < 0.05	water 2014 5 U U U U U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.11 <0.05	r U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.057 (<0.045) (<0.0078) (<0.0007) (<0.0007) (<0.0007) 71 (<0.0008) (<0.0047) 4.3 (<0.0025) 20 0.24 (<0.0025) 20 (<0.0029) 220 (<0.0029)	r 	Groundwate 5/18/2016 Low 0.13 (<0.045) (<0.0078) (<0.0007) (<0.0007) (<0.0007) (<0.0008) (<0.0047) 4.5 (<0.0025) 20 0.25 (<0.0025) 11 (<0.0029) 200 (<0.0029)	er U U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(b) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.25 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s) 0.001 (s)

	Location ID	MW-	08D						MW-08DR							MW-08S		
	Lab ID	12K074	49-06	13K09	47-10	14F019	94-11	14K06	64-11	15E060)6-13	15K1033-02	2	16E0858-10	0	12K0749-0)7	
	Sample Type	Ground	water	Ground	lwater	Ground	water	Ground	lwater	Ground	water	Groundwate	r	Groundwate	er	Groundwate	er	NYSDEC Ambient Water Quality
Parameter List USEPA Method	Sample Date	11/20/	2012	11/21/	2013	6/4/2	014	11/11/	2014	5/13/2	2015	11/20/2015	i	5/18/2016		11/20/2012	2	Standard Class GA ^(a)
6010C/7471B	Tidal Phase	Floo	od	High/	/Ebb	Flood/	High	Eb	b	Eb	b	High		Low		Flood		(mg/l)
Aluminum	mg/l	0.32		< 0.05	U	0.073		< 0.05	U	0.13		(<0.043)	U	0.12		2.2		
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	NA		0.003 (s)
Arsenic	mg/l	< 0.01	U	0.011		< 0.01	U	0.024		< 0.01	U	(<0.0078)	U	(<0.0078)	U	< 0.01	U	0.005 (s)
Barium	mg/l	0.1		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.0063)	U	(<0.0063)	U	0.2		1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	< 0.004	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	< 0.004	U	0.005 (s)
Calcium	mg/l	NA		98		95		49		50		43		70		NA		
Chromium	mg/l	0.041		< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.21		0.05 (s)
Copper	mg/l	0.015		< 0.01	U	0.014		0.017		0.019		(<0.0047)	U	(<0.0047)	U	0.064		0.2 (s)
Iron	mg/l	NA		9.5		12		6		12		5.1		11		NA		0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	0.01		0.025 (s)
Magnesium	mg/l	NA		26		35		18		12	В	14		18		NA		35 (s)
Manganese	mg/l	2.1		1.1		1.4		0.79		0.74		0.73		0.93		0.73		0.3 (s)
Nickel	mg/l	0.022		< 0.01	U	0.011		< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.032		0.1 (s)
Potassium	mg/l	NA		12		12		8.8		6.5		6		9.4		NA		
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	< 0.005	U	0.0006 (s)
Sodium	mg/l	NA		220		390		170		140		140		220		NA		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	< 0.05	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0038)	U	(<0.0038)	U	0.032		
Zinc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	0.028		< 0.02	U	(<0.0094)	U	(<0.0094)	U	< 0.02	U	2 (s)
,	I C ID						MW-08S	D										1
	Location ID																	
	L-L ID	121/00	17.00	14E01	04.10	14806			06.12	151/10	22.01	16E0959.00						
	Lab ID	13K094		14F01		14K06	54-10	15E06		15K10		16E0858-09						NYSDEC Ambient
Parameter List	Sample Type	Ground	water	Ground	lwater	Ground	54-10 water	15E06 Ground	lwater	Ground	water	Groundwate						Water Quality
USEPA Method	Sample Type Sample Date	Ground 11/21/	lwater 2013	Ground 6/4/2	dwater 2014	Ground 11/11/	54-10 water 2014	15E06 Ground 5/13/2	lwater 2015	Ground 11/19/	water 2015	Groundwate 5/18/2016						Water Quality Standard Class GA ^(a)
USEPA Method 6010C/7471B	Sample Type Sample Date Tidal Phase	Ground 11/21/ High/	lwater 2013	Ground 6/4/2 Flood/	dwater 2014	Ground 11/11/ Eb	54-10 water 2014	15E06 Ground 5/13/2 Eb	lwater 2015	Ground 11/19/ Hig	water 2015 h	Groundwate 5/18/2016 Low						Water Quality Standard Class GA ^(a) (mg/l)
USEPA Method 6010C/7471B Aluminum	Sample Type Sample Date Tidal Phase mg/l	Ground 11/21/ High/ 0.11	lwater 2013 Ebb	Ground 6/4/2 Flood/ 1.1	dwater 2014 High	Ground 11/11/ Eb 0.24	54-10 lwater 2014 b	15E06 Ground 5/13/2 Eb 0.83	lwater 2015	Ground 11/19/ Hig (<0.043)	water 2015 th U	Groundwate 5/18/2016 Low 0.079						Water Quality Standard Class GA ^(a) (mg/l)
USEPA Method 6010C/7471B Aluminum Antimony	Sample Type Sample Date Tidal Phase mg/l mg/l	Ground 11/21/ High/ 0.11 < 0.05	lwater 2013	Ground 6/4/2 Flood/ 1.1 < 0.05	dwater 2014	Ground 11/11/ Eb 0.24 < 0.05	54-10 water 2014	15E06 Ground 5/13/2 Eb 0.83 0.059	lwater 2015 b	Ground 11/19/ Hig (<0.043) (<0.045)	water 2015 sh U U	Groundwate 5/18/2016 Low 0.079 (<0.045)						Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic	Sample Type Sample Date Tidal Phase mg/l mg/l mg/l	Ground 11/21/ High/ 0.11 < 0.05 0.023	lwater 2013 Ebb	Ground 6/4/2 Flood/ 1.1 < 0.05 0.023	dwater 2014 High	Ground 11/11/ Eb 0.24 < 0.05 0.037	54-10 lwater 2014 b	15E06 Ground 5/13/: Et 0.83 0.059 < 0.01	lwater 2015	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078)	water 2015 th U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078)						Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium	Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1	Ground 11/21// High/ 0.11 < 0.05 0.023 0.14	lwater 2013 Ebb U	Ground 6/4/2 Flood/ 1.1 < 0.05 0.023 0.23	dwater 014 /High U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14	54-10 water 2014 b U	15E06 Ground 5/13/: Et 0.83 0.059 < 0.01 0.19	dwater 2015 b U U	Ground 11/19/ (<0.043) (<0.045) (<0.0078) 0.11	water 2015 th U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17						Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium	Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004	water 2013 Ebb U U U	Ground 6/4/2 Flood/ 1.1 < 0.05 0.023 0.23 < 0.004	dwater 2014 High U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004	54-10 water 2014 b U U U	15E06 Ground 5/13/ Et 0.83 0.059 < 0.01 0.19 < 0.004	dwater 2015 b U U U U U	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.001)	water 2015 .h U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001)						Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium	Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/21// High/ 0.11 < 0.05 0.023 0.14	lwater 2013 Ebb U	Ground 6/4/2 Flood/ 1.1 < 0.05 0.023 0.23	dwater 014 /High U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14	54-10 water 2014 b U	15E06 Ground 5/13/: Et 0.83 0.059 < 0.01 0.19	dwater 2015 b U U	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.001) (<0.0007)	water 2015 th U U U	Groundwate 5/18/2016 Low (<0.045) (<0.0078) 0.17 (<0.001) (<0.0007)						Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium	Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004	water 2013 Ebb U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 0.23 < 0.004 < 0.004	dwater 2014 High U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004	54-10 water 2014 b U U U	15E06 Ground 5/13/ EE 0.83 0.059 < 0.01	dwater 2015 b U U U U U	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.001)	water 2015 .h U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001)						Water Quality Standard Class GA ^(a) (mc/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s)
USEPA Method 6010C/471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 110	water 2013 Ebb U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 0.23 < 0.004 < 0.004 92	dwater 014 High U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60	54-10 water 2014 b U U U U	15E06 Ground 5/13/; Eb 0.83 0.059 < 0.01 0.19 < 0.004 < 0.004 94	lwater 2015 b U U U U U	Ground 11/19/ Hig (<0.043) (<0.005) (<0.0078) 0.11 (<0.001) (<0.001) (<0.0007) 48	water 2015 .h U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001) (<0.001) (<0.0007) 70						Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 110 < 0.01	water 2013 Ebb U U U U U	Ground 6/4/2 Flood/ 1.1 < 0.05 0.023 0.23 < 0.004 < 0.004 92 < 0.01	dwater 014 High U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01	54-10 water 2014 b U U U U	15E06 Ground 5/13/ Et 0.03 0.059 < 0.01 0.19 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004	lwater 2015 b U U U U U	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.001) (<0.0007) 48 (<0.0008)	water 2015 .h U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001) (<0.0007) 70 (<0.0008)	r U U U U U U					Water Quality Standard Class GA ^(b) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Copper	Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 110 < 0.01 < 0.01	water 2013 Ebb U U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.23 0.23 < 0.004 < 0.004 92 < 0.01 0.053	dwater 014 High U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01 0.042	54-10 water 2014 b U U U U	15E06 Ground 5/13/ Et 0.83 0.059 < 0.01 0.19 < 0.004 < 0.004 94 < 0.01 0.069	lwater 2015 b U U U U U	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.0001) (<0.0007) 48 (<0.0008) 0.014	water 2015 .h U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001) (<0.0007) 70 (<0.0008) (<0.0008) (<0.0047)	r U U U U U U					Water Quality Standard Class GA ^(b) (mg/1) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Barium Cadmium Cadmium Calcium Chromium Copper Iron	Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 110 < 0.01 < 0.01 4.1	water 2013 Ebb U U U U U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 0.23 < 0.004 < 0.004 92 < 0.01 0.053 6.9	dwater 014 High U U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01 0.042 1.9	54-10 water 2014 b U U U U U U U	15E06 Ground 5/13/ EE 0.83 0.059 < 0.01 0.19 < 0.004 < 0.004 < 0.004 94 < 0.01 0.069 3.5	lwater 2015 bb U U U U U U U	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.001) (<0.0007) 48 (<0.0008) 0.014 0.19	water 2015 th U U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001) (<0.0007) 70 (<0.0008) (<0.00047) 0.19	r U U U U U U					Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Barium Cadmium Cadmium Cadmium Calcium Chromium Chromium Copper Iron Lead	Sample Type Sample Date Tidal Phase mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 110 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	water 2013 Ebb U U U U U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 < 0.004 < 0.004 92 < 0.004 92 < 0.01 0.053 6.9 < 0.01	dwater 014 High U U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01 0.042 1.9 < 0.01	54-10 water 2014 b U U U U U U U	15E06 Ground 5/13/2 Eb 0.83 0.059 < 0.01	lwater 2015 b U U U U U U U	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.001) (<0.0007) 48 (<0.0008) 0.014 0.19 (<0.0025)	water 2015 th U U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045)	r U U U U U U					Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.025 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barvlium Beryllium Cadnium Cadnium Calcium Chromium Copper Iron Lead Magnesium	Sample Type Sample Date Tidal Phase mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 110 < 0.01 < 0.01 4.1 < 0.01 23	water 2013 Ebb U U U U U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 0.023 < 0.004 < 0.004 92 < 0.01 0.053 6.9 < 0.01 18	dwater 014 High U U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01 0.042 1.9 < 0.01 11	54-10 water 2014 b U U U U U U U	15E06 Ground 5/13/ E E 0.83 0.059 < 0.01 0.19 < 0.004 < 0.004 < 0.004 94 < 0.004 94 < 0.01 0.069 3.5 < 0.01 16	lwater 2015 b U U U U U U U	Ground 11/19/ Hig (<0.043) (<0.0078) 0.11 (<0.0007) 48 (<0.0008) 0.014 0.019 (<0.0025) 8.1	water 2015 th U U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001) (<0.0007) 70 (<0.0008) (<0.0047) 0.19 (<0.0025) 12	r U U U U U U					Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese	Sample Type Sample Date Tidal Phase mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 110 < 0.01 < 0.01 < 0.01 4.1 < 0.01 23 0.62	water 2013 Ebb U U U U U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 0.23 < 0.004 < 0.004 92 < 0.01 0.053 6.9 < 0.01 18 1.2	dwater 014 High U U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01 0.042 1.9 < 0.01 11 0.24	54-10 water 2014 b U U U U U U U	15E06 Ground 5/13/ EE 0.03 0.059 <0.01 0.19 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.001 0.069 3.5 <0.01 16 1.6	lwater 2015 b U U U U U U U	Ground 11/19/ Hig (<0.043) (<0.045) (<0.007) (<0.0007) 48 (<0.0007) 48 (<0.0008) 0.014 0.19 (<0.0025) 8.1 0.22	water 2015 .h. U U U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0045) (<0.0017) (<0.0007) 70 (<0.0007) 70 (<0.0008) (<0.00047) 0.19 (<0.0025) 12 0.05	r U U U U U U					Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.003 (s) 0.003 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.3 (s) 0.3 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Maganese Nickel	Sample Type Sample Date Tidal Phase mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 4.1 < 0.01 23 0.62 0.073	water 2013 Ebb U U U U U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 0.23 < 0.004 < 0.004 92 < 0.01 0.053 6.9 < 0.01 18 1.2 0.08	dwater 014 High U U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01 0.042 1.9 < 0.01 11 0.24 0.023	54-10 water 2014 b U U U U U U U	15E06 Ground 5/13/ Et 0.83 0.059 < 0.01 0.19 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 0.069 3.5 < 0.001 16 1.6 0.069	lwater 2015 b U U U U U U U	Ground 11/19/ Hig (<0.043) (<0.0045) (<0.0078) 0.11 (<0.0001) (<0.0007) 48 (<0.0008) 0.014 0.19 (<0.0025) 8.1 0.22 (<0.0036)	water 2015 .h. U U U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001) (<0.0007) 70 (<0.0008) (<0.0008) (<0.0047) 0.19 (<0.0025) 12 0.05 (<0.0036)	r U U U U U U					Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 3.5 (s) 0.3 (s) 0.3 (s) 0.1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadrium Cadrium Cadrium Calcium Chromium Copper Iron Lead Magnesium Magnese Nickel Potassium	Sample Type Sample Date Tidal Phase mg/l	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 4.1 < 0.01 2.3 0.62 0.073 18	water 2013 Ebb U U U U U U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 0.23 < 0.004 < 0.004 92 < 0.01 0.053 6.9 < 0.01 18 1.2 0.08 11	Jwater 014 High U U U U U U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01 0.042 1.9 < 0.01 11 0.24 0.023 9.6	54-10 water 2014 b U U U U U U U U U	15E06 Ground 5/13/ Eb 0.83 0.059 < 0.01	lwater 2015 b U U U U U U U B B	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.001) (<0.0007) 48 (<0.0008) 0.014 0.19 (<0.0025) 8.1 0.22 (<0.0036) 6	water 2015 /h U U U U U U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001) (<0.0007) 70 (<0.0008) (<0.0008) (<0.0008) (<0.00047) 0.19 (<0.0025) 12 0.05 (<0.0036) 6.5	r U U U U U U					Water Quality Standard Class GA ^(b) (mg/1) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.2 (s) 35 (s) 0.3 (s) 0.3 (s) 0.3 (s) 0.1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Cadrium Calcium Calcium Chromium Copper Iron Lead Maganese Maganese Nickel Potassium Silver	Sample Type Sample Date Tidal Phase mg/l mg/l	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 110 < 0.004 (0.004 110 < 0.001 < 0.01 < 0.01 23 0.62 0.073 18 < 0.005	water 2013 Ebb U U U U U U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 < 0.004 < 0.004 92 < 0.01 0.053 6.9 < 0.01 18 1.2 0.08 11 < 0.005	Jwater 014 High U U U U U U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01 0.042 1.9 < 0.01 11 0.24 0.023 9.6 < 0.005	54-10 water 2014 b U U U U U U U U U	15E06 Ground 5/13/ EE 0.83 0.059 < 0.01	lwater 2015 b U U U U U U U B B	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.0007) 48 (<0.0008) 0.014 0.19 (<0.0025) 8.1 0.22 (<0.0036) 6 (<0.0029)	water 2015 /h U U U U U U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045) (<0.0078) 0.17 (<0.001) (<0.0007) 70 (<0.0008) (<0.0008) (<0.00047) 0.19 (<0.0025) 12 0.05 (<0.0036) 6.5 (<0.0029)	r U U U U U U					Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadnium Cadnium Cadcium Chromium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium	Sample Type Sample Date Tidal Phase mg/1	Ground 11/21/ High/ 0.11 < 0.05 0.023 0.14 < 0.004 < 0.004 110 < 0.004 110 < 0.001 < 0.01 < 0.01 23 0.62 0.073 18 < 0.005 160	water 2013 Ebb U U U U U U U U U U U U U U	Ground 6/4/2 Flood 1.1 < 0.05 0.023 0.23 < 0.004 < 0.004 92 < 0.01 0.053 6.9 < 0.01 18 1.2 0.08 11 < 0.005 130	Jwater 014 High U U U U U U U U U U U U U	Ground 11/11/ Eb 0.24 < 0.05 0.037 0.14 < 0.004 < 0.004 60 < 0.01 0.042 1.9 < 0.01 11 0.24 0.023 9.6 < 0.005 89	54-10 water 2014 b U U U U U U U U U U U U	15E06 Ground \$1137 Et 0.033 0.059 < 0.01	lwater 2015 b U U U U U U B B U U U U U U	Ground 11/19/ Hig (<0.043) (<0.045) (<0.0078) 0.11 (<0.001) (<0.0007) 48 (<0.0008) 0.014 0.19 (<0.0025) 8.1 0.22 (<0.0036) 6 (<0.0029) 70	water 2015 h U U U U U U U U U U U U U U	Groundwate 5/18/2016 Low 0.079 (<0.045)						Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s)

	Location ID							MW	7-09D									
	Lab ID	12K07	49-08	13E07	55-02	13K09	47-08	14F01	94-09	14K066	54-09	15E0606-1	1	15K0954-08	3	16E0858-0	8	
	Sample Type	Ground	lwater	Ground	lwater	Ground	lwater	Ground	lwater	Ground	water	Groundwate	r	Groundwate	r	Groundwate	er	NYSDEC Ambient
Parameter List USEPA Method	Sample Date	11/20/	2012	5/20/2	2013	11/21/	2013	6/4/2	014	11/11/2	2014	5/13/2015		11/19/2015		5/17/2016		Water Quality Standard Class GA ^(a)
6010C/7471B	Tidal Phase	Flo	od	Low/F	Flood	High/	Ebb	Flood/	/High	Eb	b	Ebb		High		Low		(mg/l)
Aluminum	mg/l	0.74		0.64		< 0.05	U	0.34		1.5		0.33		0.17		0.17		
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	0.031		0.014		< 0.01	U	< 0.01	U	< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.005 (s)
Barium	mg/l	0.086		< 0.05	U	0.18		0.066		0.11		< 0.05	U	0.082		(<0.0063)	U	1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	0.005 (s)
Calcium	mg/l	NA		28		140		96		81		43		33		75		
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.018		< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.05 (s)
Copper	mg/l	< 0.01	U	0.19		0.25		0.17		0.65		0.18		0.16		0.019		0.2 (s)
Iron	mg/l	NA		26		78		31		45		22		14		15		0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	0.042		< 0.01	U	0.016		< 0.01	U	(<0.0025)	U	(<0.0025)	U	0.025 (s)
Magnesium	mg/l	NA		8.5		66		42		46		16	В	14		26		35 (s)
Manganese	mg/l	1.3		0.98		5.9		2.7		3.6		1.4		1.2		0.93		0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	0.032		0.011		0.017		< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.1 (s)
Potassium	mg/l	NA		4.7		14		8.3		9.8		4.7		4.9		7.4		
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	0.0051		< 0.005	U	(<0.0029)	U	(<0.0029)	U	0.0006 (s)
Sodium	mg/l	NA		110		300		440		300		190		140		240		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	0.015		0.017		< 0.01	U	0.023		< 0.01	U	0.012		(<0.0038)	U	
Zinc	mg/l	< 0.02	U	0.22		0.69		0.066		0.26		0.059		0.18		(<0.0094)	U	2 (s)
h																		
	Location ID					1			V-09S			1						
	Location ID Lab ID	12K07		13E07:		13K09		14F01	94-08	14K066		15E0606-08		15K0954-07		16E0858-0		NYSDEC Ambient
Parameter List		Ground	lwater	Ground	lwater	Ground	lwater	14F01 Ground	94-08 Iwater	Ground	water	Groundwate	r	Groundwate	r	Groundwate	er	NYSDEC Ambient Water Quality
Parameter List USEPA Method	Lab ID Sample Type Sample Date	Ground 11/19/	lwater 2012	Ground 5/20/2	lwater 2013	Ground 11/21/	lwater 2013	14F01 Ground 6/4/2	94-08 Iwater 014	Ground 11/11/2	water 2014	Groundwate 5/12/2015	r	Groundwate 11/19/2015	r	Groundwate 5/17/2016	er	
USEPA Method 6010C/7471B	Lab ID Sample Type Sample Date Tidal Phase	Ground 11/19/ Eb	lwater 2012	Ground 5/20/2 Low/F	lwater 2013	Ground 11/21/ High/	lwater 2013	14F01 Ground 6/4/2 Flood/	94-08 Iwater 014	Ground 11/11/2 Eb	water 2014	Groundwate 5/12/2015 Low	r	Groundwate 11/19/2015 High	r	Groundwate 5/17/2016 Low	er	Water Quality
USEPA Method 6010C/7471B Aluminum	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.55	lwater 2012	Ground 5/20/2 Low/F 0.86	dwater 2013 Flood	Ground 11/21/ High/ 1.5	lwater 2013 Ebb	14F01 Ground 6/4/2 Flood/ 0.069	94-08 Iwater 014 High	Ground 11/11/2 Eb 0.27	water 2014 b	Groundwate 5/12/2015 Low 0.48	er	Groundwate 11/19/2015 High 0.16	r	Groundwate 5/17/2016 Low 0.29	er	Water Quality Standard Class GA ^(a) (mg/l)
USEPA Method 6010C/7471B Aluminum Antimony	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1	Ground 11/19/ Eb 0.55 NA	lwater 2012 b	Ground 5/20/2 Low/F 0.86 < 0.05	lwater 2013	Ground 11/21/ High/ 1.5 < 0.05	lwater 2013	14F01 Ground 6/4/2 Flood/ 0.069 < 0.05	94-08 Iwater 014 High U	Ground 11/11// Eb 0.27 < 0.05	water 2014	Groundwate 5/12/2015 Low 0.48 < 0.05	er U	Groundwate 11/19/2015 High 0.16 (<0.045)	r U	Groundwate 5/17/2016 Low 0.29 (<0.045)	er U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.55 NA < 0.01	lwater 2012	Ground 5/20/2 Low/F 0.86 <0.05 0.013	dwater 2013 Flood	Ground 11/21/ High/ 1.5 < 0.05 0.022	lwater 2013 Ebb	14F01 Ground 6/4/2 Flood/ 0.069 < 0.05 < 0.01	94-08 Iwater 014 High	Ground 11/11/: Ebi 0.27 < 0.05 0.021	water 2014 b	Groundwate 5/12/2015 Low 0.48 < 0.05 < 0.01	er	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078)	r	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078)	er	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1	Ground 11/19/ Eb 0.55 NA <0.01 0.38	dwater 2012 bb U	Ground 5/20/2 Low/F 0.86 <0.05 0.013 0.14	dwater 2013 Flood U	Ground 11/21/ High/ 1.5 <0.05 0.022 0.061	lwater 2013 Ebb U	14F01 Ground 6/4/2 Flood/ 0.069 < 0.05 < 0.01 0.24	94-08 dwater 014 High U U U	Ground 11/11/2 Eb 0.27 < 0.05 0.021 0.21	water 2014 b U	Groundwate 5/12/2015 Low 0.48 < 0.05	er U U U	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5	r U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26	er U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004	dwater 2012 b U U U	Ground 5/20/2 Low/F 0.86 <0.05 0.013 0.14 <0.004	dwater 2013 Flood U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004	Water 2013 Ebb U U	14F01 Ground 6/4/2 Flood/ 0.069 < 0.05 < 0.01 0.24 < 0.004	94-08 dwater 014 High U U U U	Ground 11/11/2 Eb 0.27 < 0.05 0.021 0.21 < 0.004	water 2014 b U U U	Groundwate 5/12/2015 Low 0.48 < 0.05	er U U U U U	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.001)	r U U U	Groundwate 5/17/2016 Low (<0.045) (<0.0078) 0.26 (<0.001)	er U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 < 0.004	dwater 2012 bb U	Ground 5/20/2 Low/F 0.86 <0.05 0.013 0.14 <0.004 <0.004	dwater 2013 Flood U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004	lwater 2013 Ebb U	14F01 Ground 6/4/2 Flood 0.069 < 0.05 < 0.01 0.24 < 0.004	94-08 dwater 014 High U U U	Ground 11/11/ Eb 0.27 < 0.05 0.021 0.21 < 0.004 < 0.004	water 2014 b U	Groundwate 5/12/2015 Low 0.48 < 0.05	er U U U	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.001) (<0.0007)	r U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.001) (<0.0007)	er U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 < 0.004 NA	lwater 2012 b U U U U U	Ground 5/20/2 Low/F 0.86 <0.05 0.013 0.14 <0.004 <0.004 33	dwater 2013 Flood U U U U U	Ground 11/21/ High/ 1.5 <0.05 0.022 0.061 <0.004 <0.004 44	Water 2013 Ebb U U	14F01 Ground 6/4/2 Flood 0.069 < 0.05 < 0.01 0.24 < 0.004 < 0.004 56	94-08 dwater 014 High U U U U U	Ground 11/11/ Eb 0.27 < 0.05 0.021 0.21 < 0.004 < 0.004 33	water 2014 b U U U U U	Groundwate 5/12/2015 Low 0.48 < 0.05 < 0.01 0.25 < 0.004 < 0.004 43	er U U U U U U U	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.001) (<0.0007) 70	r U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.001) (<0.0007) 44	U U U U U	Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.55 NA <0.01 0.38 <0.004 <0.004 NA <0.01	lwater 2012 b U U U U U U	Ground 5/20/2 Low/F 0.86 <0.05 0.013 0.14 <0.004 <0.004 33 <0.01	lwater 2013 Clood U U U U U U	Ground 11/21/ High/ 1.5 <0.05 0.022 0.061 <0.004 <0.004 44 0.025	Water 2013 Ebb U U	14F01 Grounc 6/42 Floody < 0.05 < 0.01 0.24 < 0.004 < 0.004 56 < 0.01	94-08 dwater 014 High U U U U	Ground 11/11/ Eb 0.27 < 0.05 0.021 < 0.004 < 0.004 33 < 0.01	water 2014 b U U U	Groundwate 5/12/2015 Low 0.48 < 0.05	er U U U U U	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.001) (<0.0007) 70 (<0.0008)	r U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.001) (<0.0007) 44 (<0.0008)	er U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Chromium Copper	Lab ID Sample Type Sample Date Tidal Phase mg/1	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 < 0.004 NA < 0.01 < 0.01	lwater 2012 b U U U U U	Ground 5/20/2 0.86 < 0.05 0.013 0.14 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001	dwater 2013 Flood U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28	Water 2013 Ebb U U	14F01 Ground 6/4/2 Flood <0.069 <0.05 <0.01 0.24 <0.004 <0.004 <56 <0.01 0.016	94-08 dwater 014 High U U U U U	Ground 11/11/2 Eb 0.27 < 0.05 0.021 < 0.004 < 0.004 < 0.004 < 0.004 33 < 0.01 0.085	water 2014 b U U U U U	Groundwate 5/12/2015 Low 0.48 < 0.05 < 0.01 0.25 < 0.004 < 0.004 43 < 0.01 0.45	er U U U U U U U	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.0001) (<0.0007) 70 (<0.0008) 0.12	r U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.001) (<0.0007) 44 (<0.0008) 0.26	U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadrium Calcium Chromium Copper Iron	Lab ID Sample Type Sample Date Tidal Phase mg/1	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 × 0.004 NA < 0.01 < 0.01 NA	dwater 2012 bb U U U U U U U U U U	Ground 5/20/2 0.86 < 0.05 0.013 0.14 < 0.004 < 0.004 33 < 0.01 < 0.01 6.8	lwater 2013 Flood U U U U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11	lwater 2013 Ebb U U U U	14F01 Ground 6/4/2 Flood 0.069 < 0.05 < 0.01 0.24 < 0.004 < 0.004 56 < 0.01 0.016 7.2	94-08 Iwater 014 High U U U U U U U U	Ground 11/11/2 Eb 0.27 < 0.05 0.021 < 0.004 < 0.004 33 < 0.004 33 < 0.01 0.085 4	water 2014 b U U U U U U	Groundwate 5/12/2015 Low 0.48 < 0.05	er U U U U U U U U U U U	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.0007) 70 (<0.0007) 70 (<0.0008) 0.12 13	r U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.0007) 44 (<0.0008) 0.26 2.4	U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Barium Cadmium Cadmium Cadmium Calcium Chromium Chromium Copper Iron Lead	Lab ID Sample Type Sample Date Tidal Phase mg/1	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 × 0.004 NA < 0.001 × 0.01 NA < 0.01	lwater 2012 b U U U U U U	Ground 5/20/2 Low/F 0.05 0.013 0.014 < 0.004 < 0.004 33 < 0.001 < 0.01 6.8 < 0.01	lwater 2013 Clood U U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11 < 0.01	Water 2013 Ebb U U	14F01 Ground 6/4/2 Flood 0.069 < 0.05 < 0.01 0.24 < 0.004 < 0.004 56 < 0.01 0.016 7.2 < 0.01	94-08 dwater 014 High U U U U U	Ground 11/11/2 Eb 0.27 < 0.05 0.021 < 0.004 < 0.004 33 < 0.004 33 < 0.001 0.085 4 < 0.01	water 2014 b U U U U U	Groundwate 5/12/2015 Low 0.48 < 0.05	Image: state	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.001) (<0.0007) 70 (<0.0008) 0.12 13 (<0.0025)	r U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.001) (<0.0007) 44 (<0.0008) 0.26 2.4 (<0.0025)	U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Calcium Chromium Copper Iron Lead Magnesium	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 < 0.004 NA < 0.01 NA < 0.01 NA	dwater 2012 bb U U U U U U U U U U	Ground 5/20/7 Low/F 0.05 0.013 0.04 < 0.004 < 0.004 33 < 0.01 < 0.001 6.8 < 0.01 8.3	lwater 2013 Flood U U U U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11 < 0.01 10	lwater 2013 Ebb U U U U	14F01 Grounc 6/4/2 Flood 0.069 < 0.05 < 0.01 0.24 < 0.004 < 0.004 56 < 0.01 0.016 7.2 < 0.01 16	94-08 Iwater 014 High U U U U U U U U	Ground 11/11/ Eb 0.27 < 0.05 0.021 < 0.004 < 0.004 < 0.004 33 < 0.01 0.085 4 < 0.01 5.7	water 2014 b U U U U U U	Groundwate 5/12/2015 Low 0.48 < 0.05	er U U U U U U U U U U U	Groundwate 11/19/2015 High 0.16 (<0.045)	r U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.001) (<0.0007) 44 (<0.0008) 0.26 2.4 (<0.0025) 7.6	U U U U U U	Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 × 0.004 NA < 0.01 × 0.01 NA < 0.01 NA 2.2	twater 2012 bb U U U U U U U U U	Ground 5/20/2 Low/F 0.86 < 0.05 0.013 0.14 < 0.004 < 0.004 33 < 0.001 < 0.01 6.8 < 0.001 6.8 < 0.001 8.3 0.31	dwater 2013 -lood U U U U U U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11 < 0.01 10 0.46	twater 2013 Ebb U U U U U U U U U	14F01 Grounc 6/4/2 Floody < 0.05 < 0.01 0.24 < 0.004 < 0.004 < 0.004 56 < 0.01 0.016 7.2 < 0.01 16 0.62	94-08 Jwater 014 High U U U U U U U U	Ground 11/11/2 Ebi 0.27 < 0.05 0.021 < 0.004 < 0.004 < 0.004 33 < 0.001 0.085 4 < 0.01 5.7 0.3	water 2014 b U U U U U U U U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.48 < 0.05	U U	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.007) (<0.0007) (<0.0007) 70 (<0.0007) 0.12 13 (<0.0025) 13 0.74	r U U U U U U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.007) (<0.0007) (<0.0007) 44 (<0.0008) 0.26 2.4 (<0.0025) 7.6 0.44	er U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 0.3 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 < 0.004 NA < 0.001 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 < 0.004 < 0.01 NA < 0.004 < 0.004 < 0.001 NA < 0.004 < 0.001 NA < 0.004 < 0.001 NA < 0.001 < 0.004 < 0.001 NA < 0.001 < 0.004 < 0.001 < 0.001 < 0.001 < 0.004 < 0.001 < 0.001 < 0.001 < 0.004 < 0.001 < 0.0	dwater 2012 bb U U U U U U U U U U	Ground 5/20/2 Low/F 0.86 < 0.05 0.013 0.14 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 6.8 < 0.01 6.8 < 0.01 8.3 < 0.01 8.3 < 0.01	lwater 2013 Flood U U U U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11 < 0.01 10 0.46 < 0.01	lwater 2013 Ebb U U U U	14F01 Grounc 6/42 Floody < 0.05 < 0.01 0.24 < 0.004 < 0.004 56 < 0.001 0.016 7.2 < 0.01 16 0.62 < 0.01	94-08 Iwater 014 High U U U U U U U	Ground 11/11/2 Ebi 0.27 < 0.05 0.021 0.21 < 0.004 < 0.004 33 < 0.004 33 < 0.004 33 < 0.004 33 < 0.004 33 < 0.005 4 < 0.01 5.7 0.3 < 0.01	water 2014 b U U U U U U	Groundwate 5/12/2015 Low 0.48 <0.05	Image: state	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.0007) (<0.0007) (<0.0008) 0.12 13 (<0.0025) 13 0.74 (<0.0036)	r U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.0007) 44 (<0.0008) 0.26 2.4 (<0.0025) 7.6 0.44 (<0.0036)	U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.3 (s) 0.1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Maganese Nickel Potassium	Lab ID Sample Type Sample Date Tidal Phase mg/1	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.004 < 0.001 NA < 0.001 NA	twater 2012 bb U U U U U U U U U U U U	Ground 5/20/2 Low/F 0.86 < 0.05 0.013 0.14 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 6.8 < 0.01 8.3 0.31 < 0.01 9.4	Jwater 2013 -lood U U U U U U U U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11 < 0.01 10 0.46 < 0.01 15	twater	14F01 Ground 6/4/2 Flood 0.069 <0.05 <0.01 0.24 <0.004 <0.004 <56 <0.01 0.016 7.2 <0.01 16 0.62 <0.01 13	94-08 Iwater 014 High U U U U U U U U U U	Ground 11/11/2 Eb 0.27 < 0.05 0.021 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.005 4 < 0.01 5.7 0.3 < 0.0 9.4	water	Groundwate 5/12/2015 Low 0.48 <0.05	Image: series of the series	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.0007) 70 (<0.0008) 0.12 13 (<0.0025) 13 0.74 (<0.036) 16	r U U U U U U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.0007) 44 (<0.0008) 0.26 2.4 (<0.0025) 7.6 0.44 (<0.0036) 7.2		Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.25 (s) 35 (s) 0.3 (s) 0.1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver	Lab ID Sample Type Sample Date Tidal Phase mg/1	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 < 0.004 NA < 0.001 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.004 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.004 NA < 0.001 NA < 0.001 NA	twater 2012 bb U U U U U U U U U	Ground 5/20/2 Low/F 0.86 < 0.05 0.013 0.14 < 0.004 < 0.004 < 0.004 3 3 < 0.01 < 0.01 6.8 < 0.01 6.8 < 0.01 8.3 0.31 < 0.01 9.4 < 0.005	dwater 2013 -lood U U U U U U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 44 0.025 0.28 11 < 0.01 10 0.46 < 0.01 15 < 0.005	twater 2013 Ebb U U U U U U U U U	14F01 Grounc 6/4/2 Flood 0.069 <0.05 <0.01 0.24 <0.004 <0.004 56 <0.01 0.016 7.2 <0.01 16 0.62 <0.01 13 <0.005	94-08 Jwater 014 High U U U U U U U U	Ground 11/11/2 Eb 0.27 < 0.05 0.021 < 0.004 < 0.004 33 < 0.004 33 < 0.004 33 < 0.004 33 < 0.004 33 < 0.004 33 < 0.005 0.021 0.21 < 0.005 0.021 < 0.004 33 < 0.004 33 < 0.005 0.025 0.021 < 0.005 0.021 < 0.005 0.021 < 0.004 33 < 0.005 0.025 0.025 0.021 < 0.004 33 < 0.004 33 < 0.004 33 < 0.001 0.035 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.001 0.3 < 0.001 0.3 < 0.005 0.021 0.03 < 0.005 0.03 < 0.005 0.005 0.03 < 0.005 0.03 < 0.005 0.03 < 0.005 0.005 0.03 < 0.005 0.03 < 0.005 0.03 0.005 0.03 0.005 0.005 0.03 0.005 0.03 0.005 0.005 0.03 0.005 0	water 2014 b U U U U U U U U U	Groundwate 5/12/2015 Low 0.48 < 0.05	U U	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.001) (<0.0007) 70 (<0.0008) 0.12 13 (<0.0025) 13 0.74 (<0.0036) 16 (<0.0029)	r U U U U U U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.0078) 0.26 (<0.0007) 44 (<0.0008) 0.26 2.4 (<0.0025) 7.6 0.44 (<0.0036) 7.2 (<0.0029)	er U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Calcium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 < 0.004 NA < 0.001 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.001 NA < 0.005 NA	twater 2012 ibi U U U U U U U U U U U U U U	Ground 5/20/2 Low/F 0.05 0.013 0.14 < 0.004 < 0.004 33 < 0.01 < 0.001 6.8 < 0.01 8.3 0.31 < 0.01 8.3 0.31 < 0.001 8.3 250	Jwater 2013 -lood U U U U U U U U U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11 < 0.01 10 0.46 < 0.01 15 < 0.005 150	twater 2013 Ebb U U U U U U U U U U U U U	14F01 Grounc 6/4/2 Flood 0.069 < 0.05 < 0.01 0.24 < 0.004 56 < 0.014 0.016 7.2 < 0.01 16 0.62 < 0.01 13 < 0.005 190	94-08 Jwater 014 High U U U U U U U U U U U U U	Ground 11/11/2 Eb 0.27 < 0.05 0.021 < 0.004 < 0.004 < 0.004 33 < 0.001 0.085 4 < 0.01 5.7 0.3 < 0.01 5.7 0.3 < 0.001 9.4 < 0.005 91	water 2014 b U U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.48 < 0.05	r 	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.001) (<0.0007) 70 (<0.0008) 0.12 13 (<0.0025) 13 0.74 (<0.0036) 16 (<0.0029) 130	r U U U U U U U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045)	er U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potasium Silver Sodium	Lab ID Sample Date Tidal Phase mg/l mg/l <t< td=""><td>Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 × 0.004 NA < 0.001 NA < 0.01 NA 2.2 < 0.01 NA < 0.01 NA < 0.01 NA < 0.004 × 0.01 NA < 0.001 × 0.01 NA < 0.001 × 0.01 NA < 0.001 NA < 0.005 NA</td><td>twater 2012 bb U U U U U U U U U U U U U U U U U</td><td>Ground 5/20/2 Low/F 0.86 < 0.05 0.013 0.14 < 0.004 < 0.004 33 < 0.01 < 0.01 < 0.01 6.8 < 0.01 8.3 0.31 < 0.01 9.4 < 0.005 250 < 0.05</td><td>Jwater 2013 "lood U</td><td>Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11 < 0.01 10 0.46 < 0.01 15 < 0.005 150 < 0.05</td><td>twater</td><td>14F01 Grounc 6/4/2 Flood/ < 0.05 < 0.01 0.24 < 0.004 < 0.004 < 0.004 56 < 0.01 0.016 7.2 < 0.01 16 0.62 < 0.01 13 < 0.005 190 < 0.05</td><td>94-08 Iwater 014 High U U U U U U U U U U</td><td>Ground 11/11/2 Ebi 0.27 < 0.05 0.021 < 0.004 < 0.004 < 0.004 33 < 0.01 0.085 4 < 0.01 5.7 0.3 < 0.01 9.4 < 0.005 91 < 0.05</td><td>water 2014</td><td>Groundwate 5/12/2015 Low 0.48 <0.05</td> <0.01</t<>	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 × 0.004 NA < 0.001 NA < 0.01 NA 2.2 < 0.01 NA < 0.01 NA < 0.01 NA < 0.004 × 0.01 NA < 0.001 × 0.01 NA < 0.001 × 0.01 NA < 0.001 NA < 0.005 NA	twater 2012 bb U U U U U U U U U U U U U U U U U	Ground 5/20/2 Low/F 0.86 < 0.05 0.013 0.14 < 0.004 < 0.004 33 < 0.01 < 0.01 < 0.01 6.8 < 0.01 8.3 0.31 < 0.01 9.4 < 0.005 250 < 0.05	Jwater 2013 "lood U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11 < 0.01 10 0.46 < 0.01 15 < 0.005 150 < 0.05	twater	14F01 Grounc 6/4/2 Flood/ < 0.05 < 0.01 0.24 < 0.004 < 0.004 < 0.004 56 < 0.01 0.016 7.2 < 0.01 16 0.62 < 0.01 13 < 0.005 190 < 0.05	94-08 Iwater 014 High U U U U U U U U U U	Ground 11/11/2 Ebi 0.27 < 0.05 0.021 < 0.004 < 0.004 < 0.004 33 < 0.01 0.085 4 < 0.01 5.7 0.3 < 0.01 9.4 < 0.005 91 < 0.05	water 2014	Groundwate 5/12/2015 Low 0.48 <0.05	r	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.007) (<0.0007) (<0.0007) (<0.0007) 0.12 13 (<0.0025) 13 0.74 (<0.0025) 16 (<0.0029) 130 (<0.0029) 130	r U U U U U U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045) (<0.007) (<0.0007) (<0.0007) 44 (<0.0008) 0.26 2.4 (<0.0025) 7.6 0.44 (<0.0025) 7.2 (<0.0029) 90 (<0.022)	er U U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.2 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s) 0.001 (s)
USEPCA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium	Lab ID Sample Type Sample Date Tidal Phase mg/l	Ground 11/19/ Eb 0.55 NA < 0.01 0.38 < 0.004 < 0.004 NA < 0.001 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.001 NA < 0.005 NA	twater 2012 ibi U U U U U U U U U U U U U U	Ground 5/20/2 Low/F 0.05 0.013 0.14 < 0.004 < 0.004 33 < 0.01 < 0.001 6.8 < 0.01 8.3 0.31 < 0.01 8.3 0.31 < 0.001 8.3 250	Jwater 2013 -lood U U U U U U U U U U U U U	Ground 11/21/ High/ 1.5 < 0.05 0.022 0.061 < 0.004 < 0.004 44 0.025 0.28 11 < 0.01 10 0.46 < 0.01 15 < 0.005 150	twater 2013 Ebb U U U U U U U U U U U U U	14F01 Grounc 6/4/2 Flood 0.069 < 0.05 < 0.01 0.24 < 0.004 56 < 0.014 0.016 7.2 < 0.01 16 0.62 < 0.01 13 < 0.005 190	94-08 Jwater 014 High U U U U U U U U U U U U U	Ground 11/11/ Eb 0.27 < 0.05 0.021 < 0.004 < 0.004 33 < 0.001 0.085 4 < 0.01 5.7 0.3 < 0.01 9.4 < 0.005 91	water 2014 b U U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.48 < 0.05	r 	Groundwate 11/19/2015 High 0.16 (<0.045) (<0.0078) 0.5 (<0.001) (<0.0007) 70 (<0.0008) 0.12 13 (<0.0025) 13 0.74 (<0.0036) 16 (<0.0029) 130	r U U U U U U U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.29 (<0.045)	er U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s)

	Location ID							MW	-10D									
	Lab ID	12K07	49-03	13E07:	55-04	13K09	47-06	14F01	94-05	14K066	54-02	15E0606-05	5	15K0954-04	4	16E0858-0	4	
	Sample Type	Ground	lwater	Ground	lwater	Ground	lwater	Ground	water	Ground	water	Groundwate	r	Groundwate	r	Groundwate	er	NYSDEC Ambient
Parameter List USEPA Method	Sample Date	11/19/	2012	5/20/2	2013	11/21/	2013	6/3/2	014	11/11/2	2014	5/12/2015		11/19/2015		5/17/2016		Water Quality Standard Class GA ^(a)
6010C/7471B	Tidal Phase	Eb	b	Low/F	Flood	High/	Ebb	Flood/	High	Eb	b	Low		High		Low		(mg/l)
Aluminum	mg/l	0.64		0.13		< 0.05	U	0.21		0.18		0.76	Γ	(<0.043)	U	0.15	1	
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.012		0.024		(<0.0078)	U	(<0.0078)	U	0.005 (s)
Barium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.0063)	U	(<0.0063)	U	1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	0.005 (s)
Calcium	mg/l	NA		9.8		24		12		11		27		11		34		
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.035		(<0.0008)	U	(<0.0008)	U	0.05 (s)
Copper	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.073		(<0.0047)	U	(<0.0047)	U	0.2 (s)
Iron	mg/l	NA		6.7		8.7		4.7		8.5		44		6		9.5		0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	0.025 (s)
Magnesium	mg/l	NA		4.6		13		5.7		4.6		10	В	4.9		20		35 (s)
Manganese	mg/l	0.31		0.47		0.7		0.34		0.33		1.4		0.34		0.75		0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.019		(<0.0036)	U	(<0.0036)	U	0.1 (s)
Potassium	mg/l	NA		2.5		5.3		3.1		2.6		5.2		3.1		6.2		
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	0.0006 (s)
Sodium	mg/l	NA		44		96		71		62		130		52		130		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0038)	U	(<0.0038)	U	
Zinc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	< 0.02	U	0.023		0.078		0.033		0.094		2 (s)
		1																
	Location ID		10.01	10005		101100	18.05		-10M	4 4000 4			. 1			4 4700 40 0		
	Lab ID	12K07		13E07:		13K09		14F01	94-06	14K066		15E0606-06		15K0954-05		16E0858-0	-	NYSDEC Ambient
Parameter List	Lab ID Sample Type	12K07 Ground	lwater	Ground	lwater	Ground	lwater	14F01 Ground	94-06 lwater	Ground	water	Groundwate		Groundwate	r	Groundwate	er	Water Quality
USEPA Method	Lab ID Sample Type Sample Date	12K07 Ground 11/20/	lwater 2012	Ground 5/20/2	lwater 2013	Ground 11/21/	lwater 2013	14F01 Ground 6/3/2	94-06 lwater 014	Ground 11/11/	water 2014	Groundwate 5/12/2015		Groundwate 11/19/2015	r	Groundwate 5/17/2016	er	Water Quality Standard Class GA ^(a)
USEPA Method 6010C/7471B	Lab ID Sample Type Sample Date Tidal Phase	12K07 Ground 11/20/ Flo	lwater 2012	Ground 5/20/2 Low/F	lwater 2013	Ground 11/21/ High/	lwater 2013	14F01 Ground 6/3/2 Flood/	94-06 lwater 014	Ground 11/11/2 Eb	water 2014	Groundwate 5/12/2015 Low		Groundwate 11/19/2015 High	r	Groundwate 5/17/2016 Low	er	Water Quality Standard Class GA ^(a) (mg/l)
USEPA Method 6010C/7471B Aluminum	Lab ID Sample Type Sample Date Tidal Phase mg/l	12K07 Ground 11/20/ Flo 0.82	lwater 2012	Ground 5/20/2 Low/F 0.23	lwater 2013 Flood	Ground 11/21/ High/ 0.72	lwater 2013 Ebb	14F01 Ground 6/3/2 Flood/ 0.18	04-06 water 014 High	Ground 11/11/2 Eb	water 2014 b	Groundwate 5/12/2015 Low 0.69		Groundwate 11/19/2015 High 0.76	r	Groundwate 5/17/2016 Low 0.21	er	Water Quality Standard Class GA ^(a) (mg/l)
USEPA Method 6010C/7471B Aluminum Antimony	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1	12K07 Ground 11/20/ Flo 0.82 NA	dwater 2012 od	Ground 5/20/2 Low/F 0.23 < 0.05	lwater 2013	Ground 11/21/ High/ 0.72 < 0.05	lwater 2013	14F01 Ground 6/3/2 Flood/ 0.18 < 0.05	94-06 water 014 High U	Ground 11/11// Eb 0.7 < 0.05	water 2014	Groundwate 5/12/2015 Low 0.69 0.06	r	Groundwate 11/19/2015 High 0.76 (<0.045)	r U	Groundwate 5/17/2016 Low 0.21 (<0.045)	er U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1	12K07. Ground 11/20/ Flo 0.82 NA < 0.01	dwater 2012 od U	Ground 5/20/2 Low/F 0.23 < 0.05 0.035	lwater 2013 Flood U	Ground 11/21/ High/ 0.72 < 0.05 0.01	lwater 2013 Ebb U U	14F01 Ground 6/3/2 Flood/ 0.18 < 0.05 < 0.01	94-06 lwater 014 High U U	Ground 11/11// Eb 0.7 < 0.05 0.041	water 2014 b U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	T U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078)	r U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078)	er U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1	12K07. Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05	dwater 2012 od U U	Ground 5/20/2 Low/F 0.23 < 0.05 0.035 < 0.05	lwater 2013 Flood U U	Ground 11/21/ High/ 0.72 < 0.05 0.01 < 0.05	lwater 2013 Ebb U U	14F01 Ground 6/3/2 Flood/ 0.18 < 0.05 < 0.01 < 0.05	04-06 water 014 High U U U U	Ground 11/11/: Eb 0.7 < 0.05 0.041 < 0.05	water 2014 b U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	r U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0063)	r U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0063)	er U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004	dwater 2012 od U U U U U	Ground 5/20/2 Low/F 0.23 < 0.05 0.035 < 0.05 < 0.05 < 0.004	lwater 2013 Flood U U U U U	Ground 11/21/ High/ 0.72 < 0.05 0.01 < 0.05 < 0.05 < 0.004	Water 2013 Ebb U U U U	14F01 Ground 6/3/2 Flood/ 0.18 < 0.05 < 0.01 < 0.05 < 0.004	04-06 water 014 High U U U U U U	Ground 11/11/2 Ebi 0.7 < 0.05 0.041 < 0.05 < 0.004	water 2014 b U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	r U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0063) (<0.001)	r U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0063) (<0.001)	er U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004	dwater 2012 od U U	Ground 5/20/2 Low/F 0.23 < 0.05 0.035 < 0.05 < 0.004 < 0.004	lwater 2013 Flood U U	Ground 11/21/ High/ 0.72 < 0.05 0.01 < 0.05 < 0.004 < 0.004	lwater 2013 Ebb U U	14F01 Ground 6/3/2 Flood 0.18 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004	04-06 water 014 High U U U U	Ground 11/11/ Eb 0.7 <0.05 0.041 <0.05 <0.004 <0.004	water 2014 b U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	r U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0063) (<0.001) (<0.0007)	r U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0063) (<0.001) (<0.0007)	er U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004 < 0.004 NA	dwater 2012 od U U U U U	Ground 5/20/2 Low/F 0.23 < 0.05 < 0.035 < 0.05 < 0.004 < 0.004 75	lwater 2013 Flood U U U U U	Ground 11/21/ High/ 0.72 < 0.05 0.01 < 0.05 < 0.004 < 0.004 72	Iwater 2013 Ebb U U U U U U U	14F01 Ground 6/3/2 Flood 0.18 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110	04-06 water 014 High U U U U U U U	Ground 11/11/ Eb 0.7 <0.05 0.041 <0.05 <0.004 <0.004 93	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01 < 0.05 < 0.004 < 0.004 59	r U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.007) (<0.0007) (<0.0007) 57	r U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0007) (<0.0007) 59	er U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004 < 0.004 NA 0.01	lwater 2012 od U U U U U U	Ground 5/20/2 Low/F 0.23 < 0.05 < 0.035 < 0.004 < 0.004 75 < 0.01	lwater 2013 Flood U U U U U	Ground 11/21/ High/ 0.72 <0.05 0.01 <0.004 <0.004 72 <0.01	lwater 2013 Ebb U U U U U U U U	14F01 Ground 6/3/2 Flood 0.18 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110 < 0.01	04-06 water 014 High U U U U U U	Ground 11/11/ Ebi 0.7 <0.05 0.041 <0.004 <0.004 93 <0.01	water 2014 b U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	r U U U U	Groundwate 11/19/2015 High 0.76 (<0.045)	r U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0063) (<0.0001) (<0.0007) 59 (<0.0008)		Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Copper	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004 NA 0.01 < 0.01	dwater 2012 od U U U U U	Ground 5/20/2 0.23 < 0.05 0.035 < 0.004 < 0.004 75 < 0.01 0.01	lwater 2013 Flood U U U U U	Ground 11/21/ High/ 0.72 < 0.05 0.01 < 0.05 < 0.004 < 0.004 72 < 0.01 < 0.01	Iwater 2013 Ebb U U U U U U U	14F01 Ground 6/3/2 Flood 0.18 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110 < 0.01 0.016	04-06 water 014 High U U U U U U U	Ground 11/11/2 Eb 0.7 < 0.05 0.041 < 0.05 < 0.004 < 0.004 93 < 0.01 0.077	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 0.004 0.004 0.004	r U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0003) (<0.0001) (<0.0007) 57 0.01 0.013	r U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0007) (<0.0007) 59 (<0.0008) (<0.0008)	er U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadrium Calcium Chromium Copper Iron	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004 < 0.004 NA 0.01 < 0.01 NA	dwater 2012 od U U U U U U U U U	Ground 5/20/7 Low/F 0.23 < 0.05 0.035 < 0.05 < 0.004 < 0.004 75 < 0.01 0.01 53	lwater 2013 Flood U U U U U U U	Ground 11/21/ High/ 0.72 < 0.05 < 0.05 < 0.004 < 0.004 72 < 0.01 < 0.01 3.5	lwater 2013 Ebb U U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.18 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 110 < 0.0116 2	04-06 iwater 014 High U U U U U U U U U U	Ground 11/11/2 Eb 0.7 < 0.05 0.041 < 0.05 < 0.004 93 < 0.01 0.077 6.6	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	r U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0007) 57 0.01 0.013 3	r U U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0007) 59 (<0.0008) (<0.0008) (<0.0047) 0.93		Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Lead	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004 NA 0.01 < 0.01 NA < 0.01 NA	lwater 2012 od U U U U U U	Ground 5/20/2 Low/F 0.23 < 0.05 < 0.035 < 0.035 < 0.004 < 0.004 75 < 0.01 < 0.01 53 < 0.01	lwater 2013 Flood U U U U U	Ground 11/21/ High/ 0.72 < 0.05 < 0.01 < 0.004 < 0.004 72 < 0.004 72 < 0.001 < 0.01 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 < 0.004 < 0.001 < 0.004 < 0.001 < 0.004 < 0.001 < 0.001 < 0.001 < 0.004 < 0.001 < 0.0	lwater 2013 Ebb U U U U U U U U	14F01 Ground 6/3/2 Flood 0.18 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110 < 0.016 0.016 2 < 0.01	04-06 water 014 High U U U U U U U	Ground 11/11/2 Eb 0.7 < 0.05 < 0.041 < 0.004 < 0.004 93 < 0.004 93 < 0.001 0.077 6.6 < 0.01	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	r U U U U U U U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0003) (<0.0003) (<0.0001) (<0.0007) 57 0.01 0.013 3 (<0.0025)	r U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0063) (<0.0001) (<0.0007) 59 (<0.0008) (<0.0008) (<0.00047) 0.93 (<0.0025)	er U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/) 0.003 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.025 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	12K07 Grounc 11/20/ Flo 0.82 NA < 0.01 < 0.004 < 0.004 NA 0.01 NA < 0.01 NA	dwater 2012 od U U U U U U U U U	Ground 5/20/2 Low/F 0.23 < 0.05 < 0.035 < 0.035 < 0.035 < 0.004 < 0.004 75 < 0.001 0.01 53 < 0.01 14	lwater 2013 Flood U U U U U U U	Ground 11/21/ High/ 0.72 < 0.05 < 0.01 < 0.004 < 0.004 72 < 0.01 < 0.004 3.5 < 0.01 18	lwater 2013 Ebb U U U U U U U U U U	14F01 Ground 6/3/2 Floody < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110 < 0.016 2 < 0.01 2 < 0.01 2 27	04-06 iwater 014 High U U U U U U U U U U	Ground 11/11/ Eb 0.7 <0.05	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	r U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0078) (<0.0007) (<0.0007) 57 0.01 0.013 3 (<0.0025) 19	r U U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0063) (<0.0007) 59 (<0.0008) (<0.0007) 59 (<0.0008) (<0.0047) 0.93 (<0.0025) 20		Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Lead	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004 NA 0.01 < 0.01 NA < 0.01 NA	dwater 2012 od U U U U U U U U U	Ground 5/20/2 Low/F 0.23 < 0.05 < 0.035 < 0.035 < 0.004 < 0.004 75 < 0.01 < 0.01 53 < 0.01	lwater 2013 Flood U U U U U U U	Ground 11/21/ High/ 0.72 < 0.05 < 0.01 < 0.004 < 0.004 72 < 0.004 72 < 0.001 < 0.01 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 < 0.004 < 0.001 < 0.004 < 0.001 < 0.004 < 0.001 < 0.001 < 0.001 < 0.004 < 0.001 < 0.0	lwater 2013 Ebb U U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.18 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 110 < 0.016 0.016 2 < 0.01	04-06 iwater 014 High U U U U U U U U U U	Ground 11/11/2 Eb 0.7 < 0.05 < 0.041 < 0.004 < 0.004 93 < 0.004 93 < 0.001 0.077 6.6 < 0.01	water 2014 b U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	r U U U U U U U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0003) (<0.0001) (<0.0007) 57 0.01 0.013 3 (<0.0025) 19 0.22	r U U U U U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0007) (<0.0007) (<0.0007) 59 (<0.0008) (<0.00047) 0.93 (<0.0025) 20 0.28	er U U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/) 0.003 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.025 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Carlium Cadruium Calcium Chromium Copper Iron Lead Magnesium Magnese	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004 NA < 0.01 NA < 0.01 NA 0.01 NA < 0.01 NA < 0.01 NA	Iwater 2012 od U U U U U U U U U	Ground 5/20/2 0.23 < 0.05 0.035 < 0.05 < 0.004 < 0.004 < 0.004 75 < 0.01 0.01 53 < 0.01 14 0.24 0.012	lwater 2013 Flood U U U U U U U	Ground 11/21/ High/ 0.72 < 0.05 0.01 < 0.05 < 0.004 < 0.004 72 < 0.01 < 0.01 3.5 < 0.01 18 0.8 < 0.01	twater 2013 Ebb U U U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.18 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 110 < 0.01 0.016 2 < 0.01 27 0.43 < 0.01	94-06 water 014 U U U U U U U U U U U	Ground 11/11/2 Eb 0.7 < 0.05 0.041 < 0.05 < 0.004 < 0.004 93 < 0.004 93 < 0.001 0.077 6.6 < 0.01 23 0.34 < 0.01	water 2014 5 U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.0027 3 < 0.01 18 0.22 < 0.01	r U U U U U U U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0007) (<0.0007) (<0.0007) 57 0.01 0.013 3 (<0.0025) 19 0.22 (<0.0036)	r U U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0007) (<0.0007) 59 (<0.0008) (<0.0008) (<0.00047) 0.93 (<0.0025) 20 0.28 (<0.0036)		Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.003 (s) 0.003 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.3 (s) 0.3 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Maganese Nickel Potassium	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA <0.01 <0.05 <0.004 NA <0.004 NA <0.01 NA <0.01 NA 0.34 <0.01 NA	Iwater 2012 od U U U U U U U U U U U U U U	Ground 5/20/7 0.23 < 0.05 < 0.035 < 0.004 < 0.004 < 0.004 75 < 0.01 0.01 53 < 0.01 14 0.24 0.012 12	lwater 2013 Cood U U U U U U U U U U	Ground 11/21/ High/ 0.72 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 72 < 0.01 < 0.01 3.5 < 0.01 18 0.8 < 0.01 10	twater 2013 Ebb U U U U U U U U U U U U U U U U	$\begin{array}{c} 14F01^{\circ}\\ Ground\\ 6/3/2\\ Flood\\ 0.18\\ < 0.05\\ < 0.01\\ < 0.05\\ < 0.004\\ < 0.004\\ < 0.004\\ \hline 110\\ < 0.01\\ \hline 0.016\\ \hline 2\\ < 0.01\\ \hline 27\\ \hline 0.43\\ < 0.01\\ \hline 14\\ \end{array}$	04-06 water 014 High U U U U U U U U U U U U U U	Ground 11/11/ Eb 0.7 < 0.05 < 0.05 < 0.004 < 0.004 < 0.004 93 < 0.004 93 < 0.004 < 0.0077 6.6 < 0.01 23 0.34 < 0.03 12	water	Groundwate 5/12/2015 Low 0.69 0.06 <0.01	r U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0007) 57 0.01 0.013 3 (<0.0025) 19 0.22 (<0.0036) 9.6	r U U U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0007) 59 (<0.0008) (<0.0008) (<0.0008) (<0.0008) (<0.00047) 0.93 (<0.0025) 20 0.28 (<0.0036) 10		Water Quality Standard Class GA ^(b) (mg/1) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.3 (s) 0.3 (s) 0.3 (s) 0.1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver	Lab ID Sample Type Sample Date Tidal Phase mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	12K07 Ground 11/20/ Flo 0.82 NA < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 NA < 0.01 NA < 0.01 NA < 0.034 < 0.005	Iwater 2012 od U U U U U U U U U	Ground 5/20/7 Low/F 0.23 < 0.05 < 0.05 < 0.004 < 0.004 75 < 0.004 75 < 0.001 0.01 53 < 0.01 14 0.24 0.012 12 < 0.005	lwater 2013 Flood U U U U U U U	Ground 11/21/ High/ 0.72 < 0.05 < 0.05 < 0.004 < 0.004 72 < 0.01 < 0.01 3.5 < 0.01 18 0.8 < 0.01 10 < 0.05	twater 2013 Ebb U U U U U U U U U U U	14F01 Ground 6/3/2 Flood 0.18 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 2 < 0.011 27 0.43 < 0.01 27 0.43 < 0.01 4 < 0.005	94-06 water 014 U U U U U U U U U U U	Ground 11/11/2 Eb 0.7 < 0.05 < 0.041 < 0.05 < 0.004 93 < 0.004 93 < 0.004 93 < 0.001 0.077 6.6 < 0.01 23 0.34 < 0.03 < 0.34 < 0.001 12 < 0.005	water 2014 5 U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.01 < 0.05	r U U U U U U U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0007) 57 0.01 (<0.0007) 57 0.01 0.013 3 (<0.0025) 19 0.22 (<0.0036) 9.6 (<0.0029)	r U U U U U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0003) (<0.0001) (<0.0007) 59 (<0.0008) (<0.00047) 0.93 (<0.0025) 20 0.28 (<0.0036) 10 (<0.0029)	er U U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	12K07 Groun 11/20/ Flo 0.82 NA < 0.01 < 0.004 < 0.004 < 0.004 NA 0.01 NA < 0.01 NA 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA	Iwater 2012 od U	Ground 5/20/2 Low/F 0.23 < 0.05 < 0.035 < 0.004 < 0.004 75 < 0.01 < 0.01 53 < 0.01 14 0.24 0.012 12 < 0.005 210	lwater 2013 -lood U U U U U U U U U	Ground 11/21/ High/ 0.72 < 0.05 < 0.01 < 0.05 < 0.004 72 < 0.004 72 < 0.001 3.5 < 0.01 18 0.8 < 0.01 10 < 0.005 170	twater 2013 Ebb U U U U U U U U U U U U U	$\begin{array}{c} 14F01^{\circ}\\ Ground\\ 6/3/2\\ Floody\\ 0.18\\ < 0.05\\ < 0.01\\ < 0.05\\ < 0.004\\ < 0.004\\ 110\\ < 0.004\\ 110\\ < 0.016\\ \hline 2\\ < 0.01\\ 27\\ \hline 0.43\\ < 0.01\\ 14\\ < 0.005\\ \hline 390\\ \end{array}$	94-06 water 014 U U U U U U U U U U U U U U U U U U U	Ground 11/11/2 Eb 0.7 < 0.05 < 0.041 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 0.077 6.6 < 0.01 2.3 0.34 < 0.01 1.2 < 0.005 320	water 2014 b U U U U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.01 < 0.05	r U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0007) (<0.0007) 57 0.01 0.013 3 (<0.0025) 19 0.22 (<0.0036) 9.6 (<0.0029) 230	r U U U U U U U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0063) (<0.0001) (<0.0007) 59 (<0.0008) (<0.0008) (<0.00047) 0.93 (<0.0025) 20 0.28 (<0.0036) 10 (<0.0029) 240		Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	12K07 Grounc 11/20/ Flo 0.82 0.05 <0.004 <0.004 <0.004 <0.004 NA <0.01 NA <0.01 NA <0.01 NA <0.01 NA <0.01 NA <0.034 <0.05	Iwater 2012 2012 U U U U U U U U U U U U U U U U U	Ground 5/20/2 Low/F 0.23 < 0.05	lwater 2013 -lood U U U U U U U U U U U U U	Ground 11/21/ High/ 0.72 < 0.05 0.01 < 0.05 < 0.004 72 < 0.004 72 < 0.001 3.5 < 0.01 18 0.8 < 0.01 10 < 0.005 170 < 0.05	twater 2013 Ebb U U U U U U U U U U U U U U U U U	14F01 Ground 6/3/2 Flood < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 0.016 2 < 0.01 27 0.43 < 0.01 14 < 0.005 390 < 0.05	94-06 water 014 U U U U U U U U U U U U U U U U U U U	Ground 11/11/2 Ebi 0.7 < 0.05 0.041 < 0.05 < 0.004 < 0.004 93 < 0.004 93 < 0.01 0.077 6.6 < 0.01 23 0.34 < 0.01 12 < 0.005 320 < 0.005	water 2014 5 U U U U U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.06 < 0.01	r U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0007) (<0.0007) (<0.0007) 57 0.01 0.013 3 (<0.0025) 19 0.22 (<0.0025) 9.6 (<0.0029) 230 (<0.022)	r U U U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0007) (<0.0007) (<0.0007) (<0.0008) (<0.00047) 0.93 (<0.0025) 20 0.28 (<0.0025) 20 0.28 (<0.0025) 10 (<0.0029) 240 (<0.0021)		Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.025 (s) 0.3 (s) 0.025 (s) 0.3 (s) 0.1 (s) 0.0006 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Calcium Chromium Copper Iron Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Silver Sodium	Lab ID Sample Type Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	12K07 Groun 11/20/ Flo 0.82 NA < 0.01 < 0.004 < 0.004 < 0.004 NA 0.01 NA < 0.01 NA 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA	Iwater 2012 od U	Ground 5/20/2 Low/F 0.23 < 0.05 < 0.035 < 0.004 < 0.004 75 < 0.01 < 0.01 53 < 0.01 14 0.24 0.012 12 < 0.005 210	lwater 2013 -lood U U U U U U U U U	Ground 11/21/ High/ 0.72 < 0.05 < 0.01 < 0.05 < 0.004 72 < 0.004 72 < 0.001 3.5 < 0.01 18 0.8 < 0.01 10 < 0.005 170	twater 2013 Ebb U U U U U U U U U U U U U	$\begin{array}{c} 14F01^{\circ}\\ Ground\\ 6/3/2\\ Floody\\ 0.18\\ < 0.05\\ < 0.01\\ < 0.05\\ < 0.004\\ < 0.004\\ 110\\ < 0.004\\ 110\\ < 0.016\\ \hline 2\\ < 0.01\\ 27\\ \hline 0.43\\ < 0.01\\ 14\\ < 0.005\\ \hline 390\\ \end{array}$	94-06 water 014 U U U U U U U U U U U U U U U U U U U	Ground 11/11/2 Eb 0.7 < 0.05 < 0.041 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 0.077 6.6 < 0.01 2.3 0.34 < 0.01 1.2 < 0.005 320	water 2014 b U U U U U U U U U U U U U U	Groundwate 5/12/2015 Low 0.69 0.01 < 0.05	r U U U U U U U U U U U U U	Groundwate 11/19/2015 High 0.76 (<0.045) (<0.0078) (<0.0007) (<0.0007) 57 0.01 0.013 3 (<0.0025) 19 0.22 (<0.0036) 9.6 (<0.0029) 230	r U U U U U U U U U U U U U U U U U	Groundwate 5/17/2016 Low 0.21 (<0.045) (<0.0078) (<0.0063) (<0.0001) (<0.0007) 59 (<0.0008) (<0.0008) (<0.00047) 0.93 (<0.0025) 20 0.28 (<0.0036) 10 (<0.0029) 240		Water Quality Standard Class GA ^(a) (mg/1) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.2 (s) 0.3 (s) 0.25 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s) 0.001 (s)

	Location ID					v		-	/-10S	I GI ound wate.								
	Lab ID	12K074	49-05	13E07	55-05	13K09	47-04	14F01	94-03	14K06	64-03	15E0606-0	13	15K0954-0	6	16E0858-0	3	
	Sample Type	Ground	water	Ground	dwater	Ground	lwater	Ground	water	Ground	water	Groundwate	er	Groundwate	r	Groundwate	er	NYSDEC Ambient
Parameter List USEPA Method	Sample Date	11/20/	2012	5/20/	2013	11/21/	2013	6/3/2	014	11/11/	2014	5/12/2015	5	11/19/2015	i	5/17/2016	i	Water Quality Standard Class GA ^(a)
6010C/7471B	Tidal Phase	Flo	bd	Low/I	Flood	High	Ebb	Flood	High	Eb	b	Low		High		Low		(mg/l)
Aluminum	mg/l	1		0.078		< 0.05	U	0.35		0.085		0.22		0.12		0.13	T	
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	0.056		(<0.045)	U	(<0.045)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	0.014		0.019		< 0.01	U	0.037		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.005 (s)
Barium	mg/l	0.35		0.13		0.24		0.25		0.24		0.71		0.46		0.58		1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	0.005 (s)
Calcium	mg/l	NA		39		100		80		53		110		72		120		
Chromium	mg/l	0.014		< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.05 (s)
Copper	mg/l	0.02		< 0.01	U	< 0.01	U	0.011		0.061		0.027		0.011		(<0.0047)	U	0.2 (s)
Iron	mg/l	NA		1.6		5.7		5.9		5.2		11		2.4		3.2		0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	0.025 (s)
Magnesium	mg/l	NA		6		16		12		7.5		15	В	9.6		19		35 (s)
Manganese	mg/l	1.1		0.14		0.46		0.59		0.33		1.1		0.35		0.62		0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	0.044		0.1 (s)
Potassium	mg/l	NA		7.9		23		12		8.7		12		15		14		
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	0.0006 (s)
Sodium	mg/l	NA		220		210		190		160		220		180		150		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	0.001 (s)
Vanadium	mg/l	0.013		< 0.01	U	< 0.01	U	0.011		< 0.01	U	< 0.01	U	0.012		(<0.0038)	U	
Zinc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	< 0.02	U	0.064		0.046		0.037		(<0.0094)	U	2 (s)
												11						
	Location ID	1 170 11				MW-				1 (700)		-						
	Lab ID	14F019		14K06		15E06		15K10		16E085		-						NYSDEC Ambient
Parameter List	Sample Type	Ground 6/4/2		Ground 11/11/		Ground 5/13/2		Ground 11/20/		Ground 5/17/2								Water Quality
USEPA Method	Sample Date Tidal Phase	6/4/2 Flood/		Eb		5/15/. Eb		11/20/ His		5/1//2 Lo		-						Standard Class GA ^(a)
6010C/7471B Aluminum	mg/l	0.6	High	< 0.05	U	0.18	D	(<0.043)	in U	0.082	w							(mg/l)
Antimony	mg/l	< 0.05	U	< 0.05	U	0.18		(<0.045)	U	(<0.045)	U	-						0.003 (s)
Arsenic	mg/l	< 0.05	U	< 0.05	U	< 0.01	U	(<0.045)	U	(<0.045)	U	-						0.005 (s)
Barium	mg/l	< 0.01	U	0.04		0.053	U	0.061	U	0.058	U	-						1 (s)
Beryllium	mg/l	< 0.004	U	0.038		< 0.004	U	(<0.001)	U	(<0.001)	U	-						0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.0044	U	< 0.004	U	(<0.001)	U	(<0.001)	U	-						0.005 (s)
Calcium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U							
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U							0.05 (s)
Copper	mg/l	0.017	0	0.021	0	0.027	0	(<0.0008)	U	(<0.0008)	U							0.2 (s)
Iron	mg/l	7.8		13		2.8		0.55	0	0.4	0							0.2 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U							0.025 (s)
Magnesium	mg/l	40		35	0	33	В	29		36								35 (s)
Manganese	mg/l	4.1		3.6		3.2		1.8		2.5		1						0.3 (s)
-		•••			U	< 0.01	U	(<0.0036)	U	(<0.0036)	U							0.1 (s)
Nickel	mg/l	< 0.01	U U	< 0.01						(.0.0000)	<u> </u>							
Nickel Potassium	mg/l mg/l	< 0.01	U	< 0.01	U			10		14								
	mg/l	< 0.01 15 < 0.005	UUU	< 0.01 21 < 0.005	U	12	U	10 (<0.0029)	U	14 (<0.0029)	U							 0.0006 (s)
Potassium	mg/l mg/l	15 < 0.005		21 < 0.005		12 < 0.005		(<0.0029)	U	(<0.0029)	U							
Potassium Silver	mg/l mg/l mg/l	15 < 0.005 430		21 < 0.005 290	U	12 < 0.005 340	U	(<0.0029) 300	U	(<0.0029) 440		-						0.0006 (s)
Potassium Silver Sodium	mg/l mg/l mg/l mg/l	15 < 0.005 430 < 0.05	U U	21 < 0.005 290 < 0.05		12 < 0.005 340 < 0.05	U	(<0.0029) 300 (<0.022)	U	(<0.0029) 440 (<0.022)	U							0.0006 (s) 20 (s)
Potassium Silver Sodium Thallium	mg/l mg/l mg/l	15 < 0.005 430	U	21 < 0.005 290	U	12 < 0.005 340	U	(<0.0029) 300		(<0.0029) 440		-						0.0006 (s) 20 (s) 0.001 (s)

Table 2 Summary	of Detected I	norganic Com	ounds in C	roundwater
1 able 2 Summary	of Defectieu I	noi game comp	Jounus m C	n ounu water

	Location ID					MW-	115											
	Lab ID	14F019	94-12	14K06	64-13	15E060	06-10	15K10	33-03	16E085	8-11							NRADEG A L'
D	Sample Type	Ground	lwater	Ground	lwater	Ground	water	Ground	lwater	Ground	water							NYSDEC Ambient Water Quality
Parameter List USEPA Method	Sample Date	6/4/2	014	11/11/	2014	5/13/2	2015	11/20/	2015	5/17/2	016							Standard Class GA ^(a)
6010C/7471B	Tidal Phase	Flood/	High	Eb	b	Eb	b	Hig	ţh	Lov	W							(mg/l)
Aluminum	mg/l	1.3		1.1		0.74		0.77		0.23								
Antimony	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U							0.003 (s)
Arsenic	mg/l	< 0.01	U	0.049		< 0.01	U	(<0.0078)	U	(<0.0078)	U							0.005 (s)
Barium	mg/l	0.097		0.11		0.061		0.083		(<0.0063)	U							1 (s)
Beryllium	mg/l	< 0.004	U	0.0054		< 0.004	U	(<0.001)	U	(<0.001)	U							0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U							0.005 (s)
Calcium	mg/l	95		94		59		85		57								
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U							0.05 (s)
Copper	mg/l	< 0.01	U	0.014		0.018		(<0.0047)	U	(<0.0047)	U							0.2 (s)
Iron	mg/l	50		30		34		31		38								0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U							0.025 (s)
Magnesium	mg/l	23		36		20	В	36		13								35 (s)
Manganese	mg/l	1.6		1		0.8		0.86		0.85								0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U							0.1 (s)
Potassium	mg/l	8.9		23		8		15		6.4								
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U							0.0006 (s)
Sodium	mg/l	280		480	D	200		350		140								20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U							0.001 (s)
Vanadium	mg/l	< 0.01	U	0.013		< 0.01	U	(<0.0038)	U	(<0.0038)	U							
Zinc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	(<0.0094)	U	(<0.0094)	U							2 (s)
	Location ID							DUPLICAT	E SAMPLES									
	Lab ID	12K074		13E075		13K094		14F01	94-04	14K066		15E0606-04		15K0954-10		16E0858-14		
		130110-D	UP-1112	130110-MW-I	DUP01-0513	130110-D	UP-1113	14F01 130110-D	94-04 UP-0614	14K066 130110-DU	JP-1114	DUP-05121:		130110-DUF	?	DUP-0516	i	NYSDEC Ambient
Parameter List	Lab ID Sample Name Parent Sample ID	130110-D 130110-MW	UP-1112 7-09D-1112	130110-MW-I 130110-MW	DUP01-0513 7-09S-0513	130110-D 130110-MW	UP-1113 7-09S-1113	14F01 130110-D 130110-MW	94-04 UP-0614 7-10S-0614	14K066 130110-DU 130110-MW-	JP-1114 -10M-1114	DUP-05121: MW-04		130110-DUF 130110-MW-0	? 19S	DUP-0516 MW-10S-05	16	NYSDEC Ambient Water Quality
Parameter List USEPA Method	Lab ID Sample Name Parent Sample ID Sample Date	130110-D 130110-MW 11/19/	UP-1112 7-09D-1112 2012	130110-MW-I 130110-MW 5/20/2	DUP01-0513 7-09S-0513 2013	130110-D 130110-MW 11/21/	UP-1113 7-09S-1113 2013	14F01 130110-D 130110-MW 6/3/2	04-04 UP-0614 7-10S-0614 014	14K066 130110-DU 130110-MW- 11/11/2	UP-1114 -10M-1114 2014	DUP-05121: MW-04 5/12/2015		130110-DUF 130110-MW-0 11/19/2015	? 19S	DUP-0516 MW-10S-05 5/17/2016	16	
USEPA Method 6010C/7471B	Lab ID Sample Name Parent Sample ID	130110-D 130110-MW 11/19/ Flood/	UP-1112 7-09D-1112 2012	130110-MW-I 130110-MW 5/20/2 Eb	DUP01-0513 7-09S-0513 2013	130110-D 130110-MW	UP-1113 7-09S-1113 2013	14F01 130110-D 130110-MW 6/3/2 Eb	04-04 UP-0614 7-10S-0614 014	14K066 130110-DU 130110-MW- 11/11/2 Ebl	UP-1114 -10M-1114 2014	DUP-05121: MW-04 5/12/2015 Ebb		130110-DUF 130110-MW-0	? 19S	DUP-0516 MW-10S-05	16	Water Quality
USEPA Method 6010C/7471B Aluminum	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/l	130110-D 130110-MW 11/19/ Flood/ 1.6	UP-1112 7-09D-1112 2012	130110-MW-I 130110-MW 5/20/2 Eb 2.7	DUP01-0513 7-09S-0513 2013 b	130110-D 130110-MW 11/21// Flood/ 2	UP-1113 7-09S-1113 2013 High	14F01 130110-D 130110-MW 6/3/2 Eb 0.29	04-04 UP-0614 V-10S-0614 014 b	14K066 130110-DU 130110-MW- 11/11/2 Ebl 0.55	UP-1114 -10M-1114 2014	DUP-05121: MW-04 5/12/2015 Ebb 0.22		130110-DUF 130110-MW-0 11/19/2015 High 0.1	9 195	DUP-0516 MW-10S-05 5/17/2016 Low 0.14	16	Water Quality Standard Class GA ^(a) (mg/l)
USEPA Method 6010C/7471B Aluminum Antimony	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA	UP-1112 7-09D-1112 2012 High	130110-MW-I 130110-MW 5/20/2 Eb 2.7 < 0.05	DUP01-0513 7-09S-0513 2013	130110-D 130110-MW 11/21/2 Flood/2 < 0.05	UP-1113 7-09S-1113 2013	14F01 130110-D 130110-MW 6/3/2 Eb 0.29 < 0.05	04-04 UP-0614 /-10S-0614 014 b U	14K066 130110-DU 130110-MW- 11/11/2 Ebl 0.55 < 0.05	UP-1114 -10M-1114 2014	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055	5	130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045)	9 995 U	DUP-0516 MW-108-05 5/17/2016 Low 0.14 (<0.045)	16 U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s)
USEPA Method 6010C/7471B Aluminum	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/l	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01	UP-1112 7-09D-1112 2012	130110-MW-1 130110-MW 5/20/2 Eb 2.7 < 0.05 0.015	DUP01-0513 7-09S-0513 2013 b	130110-D 130110-MW 11/21/ Flood/ 2 < 0.05 0.033	UP-1113 7-09S-1113 2013 High	14F01 130110-D 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01	04-04 UP-0614 V-10S-0614 014 b	14K066 130110-DU 130110-MW- 11/11/2 Ebl 0.55 <0.05 0.041	UP-1114 -10M-1114 2014 	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01		130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078)	9 195	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078)	16	Water Quality Standard Class GA ^(a) (mg/l)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/l mg/l mg/l	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096	UP-1112 -09D-1112 2012 High U U	130110-MW-1 130110-MW 5/20/2 Eb 2.7 < 0.05 0.015 0.17	DUP01-0513 7-09S-0513 2013 b U U	130110-DU 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1	UP-1113 '-09S-1113 2013 High U	14F01 130110-D 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25	04-04 UP-0614 7-10S-0614 014 b U U U	14K066 130110-DU 130110-MW- 11/11/2 Ebb 0.55 <0.05 0.041 <0.05	UP-1114 10M-1114 2014 0 U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72	5 U	130110-DUR 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49	2 195 U U	DUP-0516 MW-108-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58	16 U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004	UP-1112 -09D-1112 2012 High U U U	130110-MW- 130110-MW 5/20/2 Eb 2.7 < 0.05 0.015 0.17 < 0.004	DUP01-0513 7-09S-0513 2013 b U U U	130110-DJ 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004	UP-1113 -09S-1113 2013 High U U U	14F01 130110-D 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004	04-04 UP-0614 7-10S-0614 014 b U U U U	14K066 130110-DU 130110-MW 11/11/ Ebi 0.55 < 0.05 0.041 < 0.05 < 0.041 < 0.05	UP-1114 -10M-1114 2014 	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004	5 U U	130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.001)	2 195 U U U	DUP-0516 MW-108-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001)	16 U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004	UP-1112 -09D-1112 2012 High U U	130110-MW-1 130110-MW 130110-MW 5/20/2 Eb 2.7 < 0.05	DUP01-0513 7-09S-0513 2013 b U U	130110-D 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004	UP-1113 '-09S-1113 2013 High U	14F01 130110-D 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004	04-04 UP-0614 7-10S-0614 014 b U U U	14K066 130110-DU 130110-MW- 11/11/2 Ebi 0.55 < 0.05 < 0.05 < 0.041 < 0.05 < 0.004	UP-1114 10M-1114 2014 0 U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004	5 U	130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.001) (<0.0007)	2 195 U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007)	16 U U	Water Quality Standard Class GA ^(a) (mc/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Barium Cadmium Cadmium Calcium	Lab ID Sample Name Parent Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 < 0.004 NA	UP-1112 -09D-1112 2012 High U U U	130110-MW- 130110-MW 5/20/2 Eb 2.7 < 0.05 0.015 0.17 < 0.004 < 0.004 36	DUP01-0513 7-09S-0513 2013 b U U U	130110-D 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004 < 0.004 40	UP-1113 -09S-1113 2013 High U U U	14F01 130110-D 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004 < 0.004 79	04-04 UP-0614 7-10S-0614 014 b U U U U U U U	14K066 130110-DU 130110-MW- 11/11/2 0.55 <0.05 0.041 <0.05 <0.004 <0.004 92	UP-1114 10M-1114 2014 5 U U U U U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 110	5 U U U	130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.001) (<0.0007) 70	995 1995 U U U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120	16 U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.003 (s) 0.005 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	Lab ID Sample Name Parent Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 < 0.004 NA 0.013	UP-1112 -09D-1112 2012 High U U U	130110-MW- 130110-MW 5/20/2 Eb 2.7 < 0.05 0.015 0.17 < 0.004 < 0.004 36 0.015	DUP01-0513 7-09S-0513 2013 b U U U	130110-D 130110-MW 11/21/, Flood/ 2 < 0.05 0.033 0.1 < 0.004 < 0.004 40 0.15	UP-1113 -09S-1113 2013 High U U U	14F01 130110-D 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004 < 0.004 < 0.004 79 < 0.01	04-04 UP-0614 7-10S-0614 014 b U U U U U U U U U	14K066 130110-DU 130110-MW- 11/11/2 Eb0 0.55 <0.05 0.041 <0.05 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004	UP-1114 -10M-1114 2014 	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 110 < 0.01	5 U U	130110-DUB 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) (<0.001) (<0.0007) 70 (<0.0008)	2 195 U U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0008)	16 U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Copper	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 < 0.004 NA 0.013 0.012	UP-1112 -09D-1112 2012 High U U U	130110-MW- 130110-MW 5/20/2 Eb 2.7 < 0.05 0.015 0.17 < 0.004 < 0.004 36 0.015 0.015 0.014	DUP01-0513 7-09S-0513 2013 b U U U	130110-D 130110-MW 11/21/ Flood/ 2 <.0.05 0.033 0.1 <.0.004 <0.004 40 0.15 0.88	UP-1113 -09S-1113 2013 High U U U	14F01 130110-DU 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004 < 0.004 79 < 0.01 < 0.01	04-04 UP-0614 7-10S-0614 014 b U U U U U U U	14K066 130110-DU 130110-MW- 11/11/2 Ebl 0.055 <0.05 0.041 <0.05 <0.004 <0.004 <0.004 92 <0.01 0.043	UP-1114 10M-1114 2014 5 U U U U U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 110 < 0.01 0.025	5 U U U	130110-DUE 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.0001) (<0.0007) 70 (<0.0008) 0.072	995 1995 U U U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0008) (<0.0008)	16 U U U U U	Water Quality (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.005 (s) 0.05 (s) 0.2 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadrium Calcium Chromium Copper Iron	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 < 0.004 < 0.004 NA 0.013 0.012 NA	UP-1112 C-09D-1112 2012 High U U U U U	130110-MW- 130110-MW 5/20/2 Eb 2.7 < 0.05 0.015 0.17 < 0.004 < 0.004 < 0.004 36 0.015 0.014 12	DUP01-0513 2-09S-0513 2013 b U U U U U	130110-D 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004 < 0.004 40 0.15 0.88 19	UP-1113 -09S-1113 2013 High U U U	14F01 130110-DU 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004 < 0.004 < 0.004 79 < 0.01 < 0.01 5.9	04-04 UP-0614 -10S-0614 014 b U U U U U U U U U U U U U	14K066 130110-DU 130110-MW- 11/11/2 Ebi 0.055 < 0.05 0.041 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 92 < 0.01 0.043 4.3	UP-1114 -10M-1114 2014 	DUP-05121: MW-04 S/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 < 0.004 110 < 0.01 0.025 11	5 U U U U U U	130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.001) (<0.0007) 70 (<0.0008) 0.072 13	2995 U U U U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0008) (<0.0047) 3.1	16 U U U U U U U U U U	Water Quality (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Barium Cadmium Cadmium Cadmium Cadmium Chromium Copper Iron Lead	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 NA 0.013 0.012 NA < 0.01	UP-1112 -09D-1112 2012 High U U U	130110-MW- 130110-MW 5/20/2 Eb 2.7 < 0.05 0.015 0.17 < 0.004 36 0.015 0.015 0.014 12 < 0.01	DUP01-0513 7-09S-0513 2013 b U U U	130110-Di 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004 < 0.004 40 0.15 0.88 19 0.014	UP-1113 -09S-1113 2013 High U U U	14F01 130110-D 130110-M (30110-M (3010-M (3	04-04 UP-0614 7-10S-0614 014 b U U U U U U U U U	14K06c 130110-DI 130110-MW- 11/11/2 Ebl 0.55 < 0.05 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.004 < 0.01 0.043 4.3 < 0.01	UP-1114 10M-1114 2014 5 U U U U U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 110 < 0.01 0.025 11 < 0.01	5 0 0 0 0 0 0 0 0 0 0 0 0 0	130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.045) (<0.0078) 0.49 (<0.0007) 70 (<0.0008) 0.072 13 (<0.0025)	995 1995 U U U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0008) (<0.00047) 3.1 (<0.0025)	16 U U U U U U U	Water Quality Standard Class GA ^(a) (mg/) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s)
USEPA Method 6010C/74718 Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium	Lab ID Sample Name Parent Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 < 0.004 NA 0.013 0.012 NA < 0.01 NA	UP-1112 C-09D-1112 2012 High U U U U U	130110-MW-1 130110-MW 5/20/2 Eb 2.7 < 0.05	DUP01-0513 2-09S-0513 2013 b U U U U U	130110-Di 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004 < 0.004 40 0.15 0.88 19 0.014 9.4	UP-1113 -09S-1113 2013 High U U U	$\begin{array}{c} 14F01^{\circ}\\ 130110-M\\ 130110-M\\ 6/3/2\\ \hline\\ & Eb\\ 0.29\\ < 0.05\\ < 0.00\\ < 0.05\\ < 0.004\\ < 0.004\\ \hline\\ 79\\ < 0.01\\ < 0.01\\ \hline\\ 5.9\\ < 0.01\\ \hline\\ 11\\ \end{array}$	04-04 UP-0614 -10S-0614 014 b U U U U U U U U U U U U U	14K066 130110-DU 130110-MW- 11/11/2 0.55 < 0.05 < 0.004 < 0.004 < 0.004 92 < 0.01 0.043 4.3 < 0.01 23	UP-1114 -10M-1114 2014 	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 110 < 0.01 0.025 11 < 0.01 15	5 U U U U U U	130110-DUR 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.001) (<0.0007) 70 (<0.0008) 0.072 13 (<0.0025) 13	2995 U U U U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0007) 120 (<0.0007) 3.1 (<0.0025) 19	16 U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese	Lab ID Sample Name Parent Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 < 0.004 NA 0.013 0.012 NA < 0.01 NA 1.4	UP-1112 -09D-1112 2012 High U U U U U U	130110-MW- 130110-MW 5/20/2 Eb 2.7 < 0.05 0.015 0.017 < 0.004 < 0.004 36 0.015 0.014 12 < 0.01 9.6 0.35	DUP01-0513 -09S-0513 2013 b U U U U U U U	130110-Di 130110-MW 11/21/ Flood/ 2 <0.05 0.033 0.1 <0.004 <0.004 40 0.15 0.88 19 0.014 9.4 0.42	UP-1113 -09S-1113 2013 High U U U	14F01 130110-D 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 < 0.05 < 0.01 < 0.05 < 0.01 < 0.05 < 0.004 < 0.004 < 0.004 < 0.001 < 0.001 < 0.001	04-04 UP-0614 -105-0614 014 b U U U U U U U U U U U U U	14K066 130110-DU 130110-MW- 11/11/2 0.55 < 0.05 < 0.05 < 0.004 < 0.001 < 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.003 < 0.001 < 0.003 < 0.001 < 0.03 < 0.03	UP-1114 10M-1114 2014 5 U U U U U U U U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 < 0.004 < 0.01 0.025 11 < 0.01 15 1.1	5 U U U U U U U B	130110-DUR 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.0001) (<0.0007) 70 (<0.0008) 0.072 13 (<0.0025) 13 0.74	2 99S U U U U U U U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) (<0.0007) 120 (<0.0007) 120 (<0.0008) (<0.00047) 3.1 (<0.0025) 19 0.63	16 U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 0.025 (s) 0.025 (s) 0.03 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Magnesium Nickel	Lab ID Sample Name Parent Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 ×0.004 NA 0.013 0.012 NA < 0.01 NA < 0.01 NA < 0.01 NA	UP-1112 C-09D-1112 2012 High U U U U U	130110-MW-1 130110-MW 5/20/2 Eb 2.7 < 0.05	DUP01-0513 2-09S-0513 2013 b U U U U U	130110-D 130110-MW 11/21/ Flood/ 2 0.033 0.1 < 0.004 < 0.004 40 0.15 0.88 19 0.014 9.4 0.42 0.098	UP-1113 -09S-1113 2013 High U U U	14F01 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004 < 0.004 < 0.004 < 0.001 5.9 < 0.01 11 0.59 < 0.01	04-04 UP-0614 -10S-0614 014 b U U U U U U U U U U U U U	14K066 130110-DU 130110-MW- 11/11/2 Eb0 0.55 < 0.05 < 0.05 0.041 < 0.05 < 0.004 < 0.004 < 0.004 92 < 0.01 0.043 4.3 < 0.01 2.3 0.33 < 0.01	UP-1114 -10M-1114 2014 	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 110 < 0.01 0.025 11 < 0.01 15 1.1 < 0.01	5 0 0 0 0 0 0 0 0 0 0 0 0 0	130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.001) (<0.0007) 70 (<0.0008) 0.072 13 (<0.0025) 13 0.74 (<0.0036)	2995 U U U U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.0017) (<0.0007) 120 (<0.0007) 120 (<0.0008) (<0.0047) 3.1 (<0.0025) 19 0.63 (<0.0036)	16 U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 3.5 (s) 0.3 (s) 0.3 (s) 0.1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Maganese Nickel Potassium	Lab ID Sample Name Parent Sample ID Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 < 0.004 < 0.004 NA 0.013 0.012 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.01 NA	UP-1112 -09D-1112 2012 High U U U U U U U U U U	130110-MW-1 130110-MW 5/20/2 Eb 2.7 <0.05	DUP01-0513 2-09S-0513 2013 b U U U U U U U U U U U U	130110-D 130110-MW 11/21/ Flood/ 2 <.0.05 0.033 0.1 <.0.004 <.0.004 40 0.15 0.88 19 0.014 9.4 0.42 0.098 15	UP-1113 -098-1113 2013 High U U U U U U U U U U U	14F01 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004 < 0.004 79 < 0.01 < 0.01 5.9 < 0.01 11 0.59 < 0.01 11	04-04 UP-0614 -105-0614 014 b U U U U U U U U U U U U U U	14K066 130110-DU 130110-MW- 11/11/2 Ebi 0.055 < 0.05 < 0.05 0.041 < 0.05 < 0.004 < 0.004 < 0.004 92 < 0.01 0.043 4.3 < 0.01 23 0.33 < 0.01 13	UP-1114 10M-1114 2014 5 U U U U U U U U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 < 0.004 < 0.004 110 < 0.01 0.025 11 < 0.01 15 1.1 < 0.01 12	5 U U U U U U U B U U B	130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.0001) (<0.0007) 70 (<0.0008) 0.072 13 (<0.0025) 13 0.74 (<0.036) 17		DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0008) (<0.0008) (<0.00047) 3.1 (<0.0025) 19 0.63 (<0.0036) 14	16 U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.005 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.25 (s) 35 (s) 0.3 (s) 0.3 (s) 0.1 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver	Lab ID Sample Name Parent Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 < 0.004 < 0.004 NA 0.013 0.012 NA < 0.01 NA < 0.01 NA < 0.01 NA < 0.013 NA < 0.013 NA < 0.012 NA < 0.01 NA < 0.013 NA < 0.013 NA < 0.013 NA < 0.013 NA < 0.013 NA < 0.013 NA < 0.010 NA < 0.013 NA < 0.010 NA < 0.013 NA < 0.013 NA < 0.012 NA < 0.013 NA < 0.013 NA < 0.013 NA < 0.013 NA < 0.012 NA < 0.013 NA < 0.013 NA < 0.012 NA < 0.013 NA < 0.013 NA < 0.013 NA < 0.013 NA < 0.013 NA < 0.012 NA < 0.013 NA < 0.015 NA < 0.015 NA < 0.015 NA < 0.015 NA < 0.015 NA < 0.015 NA < 0.015 NA < 0.015 NA < 0.005 NA < 0.005 NA < 0.005 NA < 0.005 NA < 0.005 NA < 0.005 NA 	UP-1112 -09D-1112 2012 High U U U U U U	$\begin{array}{c} 130110\text{-}\text{MW-I}\\ 130110\text{-}\text{MW}\\ 5/20/2\\ \hline \text{Eb}\\ 2.7\\ < 0.05\\ \textbf{0.015}\\ 0.015\\ 0.017\\ < 0.004\\ < 0.004\\ < 0.004\\ \hline 36\\ 0.015\\ 0.011\\ \textbf{12}\\ < 0.01\\ \textbf{9.6}\\ \textbf{0.35}\\ < 0.01\\ 10\\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	DUP01-0513 -09S-0513 2013 b U U U U U U U	130110-D 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004 < 0.004 < 0.004 40 0.15 0.88 19 0.014 9.4 0.42 0.098 15 < 0.005	UP-1113 -09S-1113 2013 High U U U	$\begin{array}{c} 14F01^{\circ}\\ 130110-D\\ 130110-M\\ (37)2\\ \hline Eb\\ 0.29\\ < 0.05\\ < 0.01\\ 0.25\\ < 0.004\\ < 0.004\\ \hline 79\\ < 0.01\\ < 0.001\\ \hline 5.9\\ < 0.01\\ 11\\ \hline 0.59\\ < 0.01\\ 11\\ \hline 0.59\\ < 0.01\\ 11\\ \hline 1\\ < 0.005\\ \end{array}$	04-04 UP-0614 -105-0614 014 b U U U U U U U U U U U U U	14K066 130110-DI 130110-MW- 11/11/2 Ebl 0.55 <0.005 0.041 <0.005 <0.004 <0.004 92 <0.01 0.043 4.3 <0.01 23 0.33 <0.03 <0.01 13 <0.005	UP-1114 10M-1114 2014 5 U U U U U U U U U U	DUP-05121: MW-04 S/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 < 0.004 < 0.004 110 < 0.01 15 1.1 < 0.01 12 < 0.005	5 U U U U U U U B	130110-DUF 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0045) (<0.0078) 0.49 (<0.0001) (<0.0007) 70 (<0.0008) 0.072 13 (<0.0025) 13 0.74 (<0.0036) 17 (<0.0029)	2 99S U U U U U U U U U	DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0008) (<0.0008) (<0.0008) (<0.00047) 3.1 (<0.0025) 19 0.63 (<0.0036) 14 (<0.0029)	16 U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/l) 0.0003 (s) 0.005 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.025 (s) 0.3 (s) 0.025 (s) 0.3 (s) 0.1 (s) 0.0006 (s)
USEPA Method 6010C/74718 Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadnium Cadnium Cadnium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium	Lab ID Sample Name Parent Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 	UP-1112 -09D-1112 2012 High U U U U U U U U U U U U U U U U U U	130110-MW-1 130110-MW 5/20/2 Eb 2.7 < 0.05	DUP01-0513 -09S-0513 2013 b U U U U U U U U U U U U U	130110-Di 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004 < 0.004 40 0.15 0.88 19 0.014 9.4 0.42 0.098 15 < 0.005 130	UP-1113 -09S-1113 2013 High U U U U U U U U U U U U U U U U U U U	$\begin{array}{c} 14F01^{\circ}\\ 130110-D\\ 130110-M\\ 6/3/2\\ \hline\\ Fb\\ 0.29\\ < 0.05\\ < 0.01\\ 0.25\\ < 0.004\\ < 0.004\\ \hline\\ 79\\ < 0.01\\ \hline\\ 5.9\\ < 0.01\\ \hline\\ 11\\ 0.59\\ < 0.01\\ \hline\\ 11\\ < 0.005\\ \hline\\ 180\\ \end{array}$	04-04 UP-0614 -105-0614 014 b U U U U U U U U U U U U U U U U U U	14K066 130110-DU 130110-DWW 11/11/2 Ebb 0.55 <0.005 0.041 <0.005 <0.004 92 <0.001 0.043 4.3 <0.001 23 0.33 <0.01 13 <0.005 320	UP-1114 10M-1114 2014 0 U U U U U U U U U U U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 110 < 0.004 110 < 0.01 15 1.1 < 0.01 12 < 0.005 220	5 0 0 0 0 0 0 0 0 0 0 0 0 0	130110-DUR 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.001) (<0.0007) 70 (<0.0008) 0.072 13 0.74 (<0.0025) 13 0.74 (<0.0036) 17 (<0.0029) 130	2995 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	DUP-0516 MW-10S-05 5/17/2016 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0007) 120 (<0.0007) 120 (<0.0007) 3.1 (<0.0025) 19 0.63 (<0.0025) 19 0.63 (<0.0036) (<0.0029) 150	16 U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s)
USEPA Method 6010C/7471B Aluminum Antimony Arsenic Barium Beryllium Cadnium Cadnium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium Thallium	Lab ID Sample Name Parent Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 1.6 NA < 0.01 0.096 < 0.004 < 0.004 × 0.004 NA 0.013 0.012 NA < 0.01 NA < 0.004 < 0.0012 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.001 NA < 0.005 NA < 0.005 NA < 0.005 NA	UP-1112 -09D-1112 2012 High U U U U U U U U U U U U U U U U U U	130110-MW-1 130110-MW 5/20/2 Eb 2.7 < 0.05	DUP01-0513 2-09S-0513 2013 b U U U U U U U U U U U U	130110-Di 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004 < 0.004 40 0.15 0.88 19 0.014 9.4 0.42 0.098 15 < 0.005 130 < 0.005	UP-1113 -098-1113 2013 High U U U U U U U U U U U	14F01 130110-MW 6/3/2 Eb 0.29 < 0.05 < 0.01 0.25 < 0.004 < 0.004 < 0.004 < 0.004 < 0.001 < 0.01 5.9 < 0.01 11 0.59 < 0.01 11 < 0.05 80 < 0.05	04-04 UP-0614 -105-0614 014 b U U U U U U U U U U U U U U	14K066 130110-DU 130110-MW 11/11/2 0.05 <0.05	JP-1114 10M-1114 2014 5 U U U U U U U U U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 < 0.004 < 0.004 < 0.004 < 0.01 0.025 11 < 0.01 15 1.1 < 0.01 12 < 0.005 220 < 0.005	5 0 0 0 0 0 0 0 0 0 0 0 0 0	130110-DUR 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.0001) (<0.0007) 70 (<0.0008) 0.072 13 (<0.0025) 13 0.74 (<0.0025) 13 0.74 (<0.0029) 130 (<0.0029) 130 (<0.0029)		DUP-0516 MW-10S-05 5/17/2016 Low 0.14 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0007) 120 (<0.0007) 120 (<0.0007) 120 (<0.00025) 19 0.63 (<0.0025) 14 (<0.0029) 150 (<0.022)		Water Quality Standard Class GA ^(a) (mg/l) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s) 0.001 (s)
USEPA Method 6010C/74718 Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Silver Sodium	Lab ID Sample Name Parent Sample Date Tidal Phase mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	130110-D 130110-MW 11/19/ Flood/ 	UP-1112 -09D-1112 2012 High U U U U U U U U U U U U U U U U U U	130110-MW-1 130110-MW 5/20/2 Eb 2.7 < 0.05	DUP01-0513 -09S-0513 2013 b U U U U U U U U U U U U U	130110-Di 130110-MW 11/21/ Flood/ 2 < 0.05 0.033 0.1 < 0.004 < 0.004 40 0.15 0.88 19 0.014 9.4 0.42 0.098 15 < 0.005 130	UP-1113 -09S-1113 2013 High U U U U U U U U U U U U U U U U U U U	$\begin{array}{c} 14F01^{\circ}\\ 130110-D\\ 130110-M\\ 6/3/2\\ \hline\\ Fb\\ 0.29\\ < 0.05\\ < 0.01\\ 0.25\\ < 0.004\\ < 0.004\\ \hline\\ 79\\ < 0.01\\ \hline\\ 5.9\\ < 0.01\\ \hline\\ 11\\ 0.59\\ < 0.01\\ \hline\\ 11\\ < 0.005\\ \hline\\ 180\\ \end{array}$	04-04 UP-0614 -105-0614 014 b U U U U U U U U U U U U U U U U U U	14K066 130110-DU 130110-DWW 11/11/2 Ebb 0.55 <0.005 0.041 <0.005 <0.004 92 <0.001 0.043 4.3 <0.001 23 0.33 <0.01 13 <0.005 320	UP-1114 10M-1114 2014 0 U U U U U U U U U U U U U	DUP-05121: MW-04 5/12/2015 Ebb 0.22 0.055 < 0.01 0.72 < 0.004 110 < 0.004 110 < 0.01 15 1.1 < 0.01 12 < 0.005 220	5 0 0 0 0 0 0 0 0 0 0 0 0 0	130110-DUR 130110-MW-0 11/19/2015 High 0.1 (<0.045) (<0.0078) 0.49 (<0.001) (<0.0007) 70 (<0.0008) 0.072 13 0.74 (<0.0025) 13 0.74 (<0.0036) 17 (<0.0029) 130	2995 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	DUP-0516 MW-10S-05 5/17/2016 (<0.045) (<0.0078) 0.58 (<0.001) (<0.0007) 120 (<0.0007) 120 (<0.0007) 120 (<0.0007) 3.1 (<0.0025) 19 0.63 (<0.0025) 19 0.63 (<0.0036) (<0.0029) 150	16 U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA ^(a) (mg/) 0.003 (s) 0.005 (s) 1 (s) 0.003 (s) 0.005 (s) 0.05 (s) 0.2 (s) 0.3 (s) 0.025 (s) 35 (s) 0.3 (s) 0.1 (s) 0.0006 (s) 20 (s)

Table 3 Summary of Monitored Natural Attenuation Parameters In Groundwater

		Table 5 5		ary of Monit			enua	tion Paramet	ers I	h Groundwa	ler				
	Well ID	101/05/0	~ 1	101100 15 0	MW	-		15770054.0	-	101/00/17 0	2	MW-05R		15700510	
	Lab ID	12K0749-0		13K0947-0		14K0664-0		15K0954-0		13K0947-0		14K0664-0		15K0954-0	
	Sample Type	Groundwate		Groundwate		Groundwate		Groundwate		Groundwate		Groundwat		Groundwat	
USEPA Parameters	Sample Date	11/19/2012	2	11/21/2013		11/11/2014	1	11/19/2015	5	11/21/2013	3	11/11/201	4	11/19/201	5
List	Tidal Phase	Ebb	_	High/Ebb		Ebb		High		High/Ebb		Ebb		High	
ORP	mV	23		45		-88		-27		-112		-120		-145	
Dissolved Oxygen	mg/l	1.01		2.34		0		1.99		2.01		0		0.63	
Chloride	mg/l	3400		170		58		8.81		510		380		260	
Nitrate	mg/l	0.54		(< 0.05)	U	0.13		0.06		(< 0.05)	U	(< 0.05)	U	0.15	
Sulfate	mg/l	330		39		11		13.1		(< 2)	U	(< 2)	U	(<3.0)	U
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U	NA		(< 2)	U	(< 2)	U	NA	
Total organic carbon	mg/l	5.2		3.2		3.2		2		12		12		11	
	Well ID				MW		_		_			MW-08D			
	Lab ID	12K0749-0		13K0947-0		14K0664-0		15K0954-0		13K0947-1	-	14K0664-1		15K1033-0	
	Sample Type	Groundwate		Groundwate		Groundwate		Groundwate		Groundwate		Groundwat		Groundwat	-
USEPA Parameters	Sample Date	11/19/2012	2	11/21/2013		11/11/2014	1	11/19/2015	5	11/21/2013		11/11/201	4	11/20/201	5
List	Tidal Phase	Ebb		High/Ebb	-	Ebb	1	High	1	High/Ebb	-	Ebb		High	
ORP	mV	-66		-133		-119		-125		-9		70		-52	
Dissolved Oxygen	mg/l	0		0.94		0		3.17		0		0		3.38	
Chloride	mg/l	810		320		340		248		350		310		251	
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	(< 0.05)	U	0.057		(< 0.05)	U	(< 0.05)	U	0.1	
Sulfate	mg/l	75		44		(< 2)	U	66		63		34		41.7	
Sulfide	mg/l	(<2)	U	(< 2)	U	(< 2)	U	NA		(< 2)	U	(< 2)	U	NA	
Total organic carbon	mg/l	22		11		13		12		2.1		2.6		2	
								1		1		F			
	Well ID			MW-08SR				MW-08S		MW-08D					
	Lab ID	13K0947-0		14K0664-1		15K1033-0		12K0749-0		12K0749-0					
	Sample Type	Groundwate		Groundwate		Groundwate		Groundwate		Groundwate	-				
USEPA Parameters	Sample Date	11/21/2013	3	11/11/2014		11/19/2015	5	11/20/2012	2	11/20/2012	2				
List	Tidal Phase	High/Ebb		Ebb		High		Flood		Flood					
ORP	mV	-57		-52		-18		-136		-69					
Dissolved Oxygen	mg/l	0		0		3.06		0		0					
Chloride	mg/l	240		55		32.5		2100		1200					
Nitrate	mg/l	(< 0.05)	U	0.18		(<0.049)	U	(< 0.05)	U	(< 0.05)	U				
Sulfate	mg/l	92		46		28.3	<u> </u>	220		180					
Sulfide	mg/l	(< 2)	U	(< 2)	U	NA		(< 2)	U	(< 2)	U				
Total organic carbon NOTE:	mg/l	9.9		4.5		3.9		11		8.1					
	$\begin{array}{rl} ID & = Id \\ NYSDEC & = N \\ ORP & = C \\ mg/l & = n \\ mV & = n \\ NA & = N \\ U & = N \\ D & = D \\ Data provided b \end{array}$	lentification Vew York State I Dxidation-Reduc nilligrams per Li nillivolts Vot analyzed. Von-detect, detec Dilution sample vy Con-Test Ana	Depart tion Po ter = tion b	parts per billion elow the method Laboratory. Onl	menta (ppb) detec y anal	l Conservation.		d in at least one s	sample	e are shown.					

Table 3 Summary of Monitored Natural Attenuation Parameters In Groundwater

	Well ID				MW	-09S			
	Lab ID	12K0749-10)	13K0947-07	7	14K0664-08	8	15K0954-07	'
	Sample Type	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	r
USEPA Parameters	Sample Date	11/19/2012		11/21/2013		11/11/2014		11/19/2015	
List	Tidal Phase	Ebb		High/Ebb		Ebb		High	
ORP	mV	-286		-111		-108		-103	
Dissolved Oxygen	mg/l	0		0.90		0		2.59	
Chloride	mg/l	2000		160		51		109	
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	(< 0.05)	U	0.071	
Sulfate	mg/l	41		20		(< 2)	U	4.89	
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U	NA	
Total organic carbon	mg/l	49		21		9		6.1	

	Well ID				MW	-09D			
	Lab ID	12K0749-0	8	13K0947-0	8	14K0664-09)	15K0954-08	
	Sample Type	Groundwate	er	Groundwate	er	Groundwate	r	Groundwate	ſ
USEPA Parameters	Sample Date	11/20/2012	2	11/21/2013		11/11/2014		11/19/2015	
List	Tidal Phase	Flood		High/Ebb		Ebb		High	
ORP	mV	-120		-15		-9		-46	
Dissolved Oxygen	mg/l	0		3.34		0.18		1.6	
Chloride	mg/l	730		750		890		292	
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	(< 0.05)	U	0.075	
Sulfate	mg/l	57		120		100	D	42.7	
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U	NA	
Total organic carbon	mg/l	13		13		0.78		0.69	

1 1	Well ID				MW	-10D			
	Lab ID	12K0749-0	3	13K0947-0	6	14K0664-0	2	15K0954-0	4
	Sample Type	Groundwate	r	Groundwate	er	Groundwat	er	Groundwat	er
USEPA Parameters	Sample Date	11/19/2012		11/21/2013	3	11/11/201	4	11/19/201	5
List	Tidal Phase	Ebb		High/Ebb		Ebb		High	
ORP	mV	13		-36		96		-35	
Dissolved Oxygen	mg/l	0		0.90		0		0.51	
Chloride	mg/l	180		230		110		93.6	
Nitrate	mg/l	0.075		(< 0.05)	U	(< 0.05)	U	0.072	
Sulfate	mg/l	23		14		2		5.73	
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U	NA	
Total organic carbon	mg/l	1.7		(< 0.5)	U	(< 0.5)	U	(<0.16)	U

	Well ID				MW	-10M			
	Lab ID	12K0749-04	ł	13K0947-05	5	14K0664-0	5	15K0954-05	5
	Sample Type	Groundwate	r	Groundwate	r	Groundwat	er	Groundwate	r
USEPA Parameters	Sample Date	11/20/2012		11/21/2013		11/11/201	4	11/19/2015	
List	Tidal Phase	Flood		High/Ebb		Ebb		High	
ORP	mV	8		87		8		27	
Dissolved Oxygen	mg/l	0		0		0		0.28	
Chloride	mg/l	380		330		630		378	
Nitrate	mg/l	0.31		(< 0.05)	U	0.55		0.43	
Sulfate	mg/l	120		59		65	D	64.2	
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U	NA	
Total organic carbon	mg/l	4.6		1.2		3.1		2.1	

Table 3 Summary of Monitored Natural Attenuation Parameters In Groundwater

	Well ID				MW	-10S			
	Lab ID	12K0749-0	5	13K0947-04	4	14K0664-0	3	15K0954-00	5
	Sample Type	Groundwate	r	Groundwate	er	Groundwate	er	Groundwate	er
USEPA Parameters	Sample Date	11/20/2012		11/21/2013	3	11/11/2014	Ļ	11/19/2015	
List	Tidal Phase	Flood		High/Ebb		Ebb		High	
ORP	mV	-123		-124		-49		-118	
Dissolved Oxygen	mg/l	0		0.94		0		0.25	
Chloride	mg/l	1700		240		59		99.4	
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	(< 0.05)	U	(<0.049)	U
Sulfate	mg/l	180		140		26		24.2	
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U	NA	
Total organic carbon	mg/l	6.5		7.2		5.3		2.4	

	Well ID		MW	-11D			MW	-11S	
	Lab ID	14K0664-12	2	15K1033-04	ŀ	14K0664-13	3	15K1033-03	;
	Sample Type	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	r
USEPA Parameters	Sample Date	11/11/2014		11/20/2015		11/11/2014		11/20/2015	
List	Tidal Phase	Ebb		High		Ebb		High	
ORP	mV	48		86		-195		-187	
Dissolved Oxygen	mg/l	0		0.29		0		0.62	
Chloride	mg/l	690		728		870		670	
Nitrate	mg/l	1.4		3.4		(< 0.05)	U	0.082	
Sulfate	mg/l	80		80.5		63		64.9	
Sulfide	mg/l	(< 2)	U	NA		(< 2)	U	NA	
Total organic carbon	mg/l	2.3		1.1		4.1		3.5	

Table 4 Summary of Detected Volatile Organic Compounds in Soil Vapor	Table 4 Summar	v of Detected Volatile	Organic Com	pounds in Soil Vapor
--	-----------------------	------------------------	--------------------	----------------------

	Sample ID	130110-IA-111	.915	130110-DUP-11	1915	130110-OA-111	915	
	Lab ID	15K1053-02	2	15K1053-0	3	15K1053-01	L	NYSDOH Indoor Air
	Sample Type	Indoor Air		Indoor Air Dup	licate	Outdoor Air	•	Guidance Values ^(a)
Parameter List EPA Method TO-15	Sample Date	11/18/2015		11/18/2015	5	11/18/2015		(µg/m ³)
Acetone	$\mu g/m^3$	58	D	55	D	20	D	
Benzene	$\mu g/m^3$	0.51	D	0.53	D	0.48	D	
1,3-Butadiene	$\mu g/m^3$	0.19	D	0.17	D	(<0.4)	U	
Carbon Tetrachloride	$\mu g/m^3$	0.45	D	0.45	D	0.44	D	
Chloromethane	$\mu g/m^3$	1.3	D	1.4	D	1.0	D	
Cyclohexane	$\mu g/m^3$	0.49	D	0.5	D	0.4	D	
Dichlorodifluoromethane (Freon 12)	$\mu g/m^3$	0.64	D	0.66	D	0.67	D	
Ethanol	$\mu g/m^3$	510	D	500	D	9.3	D	
Ethyl Acetate	$\mu g/m^3$	1.1	D	1.1	D	0.27	D	
Ethylbenzene	$\mu g/m^3$	0.35	D	0.38	D	0.25	D	
Heptane	$\mu g/m^3$	0.74	D	0.74	D	0.71	D	
Naphthalene	$\mu g/m^3$	(<0.1)	U	0.19	D	(<0.1)	U	
Styrene	$\mu g/m^3$	0.36	D	0.49	D	0.25	D	
Toluene	$\mu g/m^3$	53	D	55	D	3.9	D	
Trichlorofluoromethane (Freon 11)	$\mu g/m^3$	1.1	D	1.1	D	1.1	D	
1,2,4-Trimethylbenzene	$\mu g/m^3$	0.69	D	0.74	D	0.38	D	
1,3,5-Trimethylbenzene	$\mu g/m^3$	0.23	D	0.25	D	(<0.034)	U	
Vinyl Acetate	$\mu g/m^3$	3.1	D	2.7	D	(<0.063)	U	
m&p-Xylene	$\mu g/m^3$	1.3	D	1.3	D	0.97	D	
o-Xylene	$\mu g/m^3$	0.47	D	0.51	D	0.38	D	

(a) NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York. August 2015. Table 3.1 Indoor Air guideline values derived by the NYSDOH. NOTE:

ID = Identification

NYSDOH = New York State Department of Health

 $\mu g/m^3 =$ microgram per cubic meter

--- = No applicable guideline value.

D = The analyte was diluted.

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

The duplicate sample was collected at 130110-DUP-111915.

Table includes only those volatile organic compounds detected in one or more samples.

Analytical data results reported by Con-Test Analytical, Inc. using EPA Method TO-15.

Appendix A

Site Management Plan

This page intentionally left blank

Metal Etching Site NASSAU COUNTY, FREEPORT, NEW YORK

Site Management Plan

NYSDEC Site Number: 130110

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E 625 Broadway Albany, New York 12233-7017

Prepared by: EA Engineering, P.C. and its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315)-431-4610

Revisions to Final Approved Site Management Plan:

Revision #	Submitted Date	Summary of Revision	DEC Approval Date
1	04/11/14	Incorporation of Environmental Notices	

AP	RIL	2014

TABLE OF CONTENTS

Page

LIST OF FIGURES LIST OF TABLES	
1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM	1-1
1.1 INTRODUCTION	. 1-1
1.1.1 General 1.1.2 Purpose 1.1.3 Revisions	1-1
1.2 SITE BACKGROUND	. 1-2
1.2.1 Site Location and Description1.2.2 Site History1.2.3 Geologic Conditions	1-3
1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS 1.4 SUMMARY OF REMEDIAL ACTIONS	
1.4.1 Removal of Contaminated Materials from the Site1.4.2 Site-Related Treatment Systems1.4.3 Remaining Contamination	1-8 1-9
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN	2-1
2.1 INTRODUCTION	2-1
2.1.1 General	
2.2 ENGINEERING CONTROLS	2-1
2.2.1 Engineering Control Systems	2-1
2.2.1.1 Final Cover System2.2.1.2 Sub Slab Depressurization Systems	2-1 2-2
2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems	2-2

Page

2.2.2.1 Composite Cover System 2.2.2.2 Sub-Slab Depressurization Systems	
2.3 INSTITUTIONAL CONTROLS	
2.3.1 Excavation Work Plan2.3.2 Soil Vapor Intrusion Evaluation	
2.4 INSPECTIONS AND NOTIFICATIONS	
2.4.1 Inspections	
2.5 CONTINGENCY PLAN	
2.5.1 Emergency Telephone Numbers2.5.2 Map and Directions to Nearest Health Facility2.5.3 Response Procedures	
2.5.3.1 Spill Procedures2.5.3.2 Evacuation Plan	
3.0 SITE MONITORING PLAN	
3.1 INTRODUCTION	
3.1.1 General3.1.2 Purpose and Schedule	
3.2 COVER SYSTEM MONITORING 3.3 MEDIA MONITORING PROGRAM	
3.3.1 Groundwater Monitoring	
3.3.1.1 Sampling Protocol3.3.1.2 Monitoring Well Repairs, Replacement And Decommissioning	
3.3.2 Indoor Air Monitoring	
3.4 SITE-WIDE INSPECTION 3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL	3-9

Page

4.0 OPERATION AND MAINTENANCE PLAN	4-1
4.1 INTRODUCTION 4.2 SUB-SLAB DEPRESSURIZATION SYSTEM OPERATION AND MAINTENAN	
4.2.1 Scope	4-1
4.2.1.3 System Operation: Equipment Maintenance	4-2
4.3 ENGINEERING CONTROL SYSTEM PERFORMANCE MONITORING	4-2
4.3.1 General Equipment Monitoring4.3.2 Sampling Event Protocol	
4.4 MAINTENANCE AND PERFORMANCE MONITORING REPORTING REQUIREMENTS	4-5
4.4.1 Maintenance Reports	4-5
5.0 INSPECTIONS, REPORTING, AND CERTIFICATIONS	5-1
5.1 SITE INSPECTIONS	5-1
 5.1.1 Inspection Frequency	5-1 5-1
5.3 PERIODIC REVIEW REPORT 5.4 CORRECTIVE MEASURES PLAN	

APPENDIX A:	ENVIRONMENTAL NOTICES
APPENDIX B:	EXCAVATION WORK PLAN
APPENDIX C:	MONITORING WELL CONSTRUCTION DETAILS
APPENDIX D:	FIELD FORMS
APPENDIX E:	QUALITY ASSURANCE PROJECT PLAN
APPENDIX F:	HISTORICAL SOIL VAPOR INTRUSION AIR MONITORING
	FORMS

LIST OF FIGURES

<u>Number</u>	Title
1	Site location and boundary map.
2	Cross sections.
3	Extent of remedial action performed.
4	Groundwater contours June 2008.
5	Remedial Investigation soil and sediment sample locations.
5A	Remedial Investigation soil sample results - metals.
5B	Remedial Investigation sediment sample results - metals.
5C	Remedial Investigation soil sample results - VOCs.
6A	Remedial Investigation groundwater sample results - metals.
6B	Remedial Investigation groundwater sample results - VOCs
7	Remedial Investigation soil vapor data.
8	Documentation soil and sediment sample locations.
8A	Documentation sample locations with exceedences of unrestricted levels in EX3.
8B	Documentation sample locations with exceedences of unrestricted levels in EX1, -4, and -5.
8C	Documentation sample locations with exceedences of unrestricted levels in EX2 and -6.
9	Documentation soil and sediment sample locations.
9A	Documentation sample locations with exceedences of site-specific SCOs in EX3.
9B	Documentation sample locations with exceedences of site-specific SCOs in EX1, EX4, and EX5.

- 9C Documentation sample locations with exceedences of site-specific action levels in EX2 and EX6.
 9D Documentation sample locations with exceedences of site-specific action levels in EX7
 10 Location of cover system types.
 11 Area of soil vapor concern.
 12 Groundwater monitoring well network.
 13 Baseline post-remediation groundwater quality.
- 14 Location of remedial treatment systems.

LIST OF TABLES

<u>Number</u>	Title
1	Remedial Investigation soil contamination summary.
2	Remedial Investigation groundwater contamination summary.
3	Remedial Investigation soil vapor data summary.
4	Remedial Investigation sediment contamination summary.
5A	Site-specific soil cleanup objectives.
5B	Site-specific sediment cleanup objectives.
6A	Summary of remaining soil contamination above unrestricted levels for volatile organic compounds.
6B	Summary of remaining soil contamination above unrestricted levels for metals.
7A	Summary of remaining soil contamination above site-specific soil cleanup objectives for volatile organic compounds.
7B	Summary of remaining soil contamination above site-specific soil cleanup objectives for metals.
8	Summary of remaining sediment contamination above site-specific cleanup objectives.
9A	Summary of site groundwater contamination above site-specific cleanup objectives for volatile organic compounds.
9B	Summary of site groundwater contamination above site-specific cleanup objectives for metals.

SITE MANAGEMENT PLAN

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM

1.1 INTRODUCTION

This document is required as an element of the remedial program at the Metal Etching Co, Inc. site under the New York State (NYS) Inactive Hazardous Waste Disposal Site Remedial Program administered by New York State Department of Environmental Conservation (NYSDEC). The Class 2 inactive hazardous waste disposal site (Site No. 130110) was remediated in accordance with the Record of Decision (ROD) (NYSDEC 2007)¹.

1.1.1 General

EA Engineering, P.C., and its affiliate EA Science and Technology (EA), along with its Joint Venture Partner, The Louis Berger Group, Inc. (Berger) were tasked by the NYSDEC to oversee the remediation of a 1.05 acre property located in Freeport, Nassau County, New York. The Remedial Party, EA and Berger, was required to investigate and oversee the remediation of contaminated media at the site. A figure showing the site location and boundaries of this 1.05-acre site is provided in Figure 1. The boundaries of the site are more fully described in the metes and bounds site descriptions that are part of three Environmental Notices (ENs) recorded with Nassau County in March 2014 and included in Appendix A. One EN was filed for each of the three parcels that make up the site.

After completion of the remedial work described in the Remedial Action Work Plan, some contamination was left in the subsurface at this site, which is hereafter referred to as remaining contamination. This Site Management Plan (SMP) was prepared to manage remaining contamination at the site until the ENs are extinguished. All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in NYS.

This SMP was prepared by EA in accordance with the requirements in NYSDEC Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation (NYSDEC 2010)² and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the institutional controls (ICs) and engineering controls (ECs) that are required by the ENs for the site.

1.1.2 Purpose

The site contains contamination left after completion of the remedial action. ECs have been incorporated into the site remedy to control exposure to remaining contamination during the use

^{1.} NYSDEC. 2007. Record of Decision. March.

^{2.} NYSDEC. 2010. DER-10 Technical Guidance for Site Investigation and Remediation.

of the site to ensure protection of public health and the environment. Each of the three ENs recorded with the Nassau County Clerk requires compliance with this SMP and all ECs and ICs placed on the site. The ICs place restrictions on site use; and mandate operation, maintenance, monitoring, and reporting measures for all ECs and ICs. This SMP specifies the methods necessary to ensure compliance with all ECs and ICs required by the ENs for contamination that remains at the site. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the ENs and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to manage remaining contamination at the site after completion of the remedial action, including: (1) implementation and management of all ECs and ICs; (2) media monitoring; and (3) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports. To address these needs, this SMP includes two plans: (1) an EC/IC Plan for implementation and management of EC/ICs; and (2) a Monitoring Plan for implementation of site monitoring.

This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the ENs. Failure to properly implement the SMP is a violation of the ENs.
- Failure to comply with this SMP is also a violation of ECL, 6 New York Code of Rules and Regulations Part 375 and, thereby, subject to applicable penalties.

1.1.3 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. In accordance with the ENs for the site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.2 SITE BACKGROUND

1.2.1 Site Location and Description

The Metal Etching site is a Class 2 Site listed on the NYSDEC Registry of Inactive Hazardous Waste Sites (No. 1-30-110). The site is located adjacent to Freeport Creek at 435 South Main Street, Freeport, Nassau County, New York. A site location map is presented in Figure 1. The site is currently owned by Freeport Creek Associates and leased by Main Street Marina, 500 South Main Street, Freeport, New York. The Metal Etching property is designated as Section 62, Block 45, and Lots 144, 145, and 158 on the tax maps. The Metal Etching property is a 1.05 acre L-shaped area, bounded by Ray Street East and a commercial property to the north, Freeport

Creek to the south and east, and Main Street and Ray Street East to the west. Figure 1 depicts the site boundaries. The boundaries of the site are more fully described in Appendix A – Environmental Notices.

The site is currently used as a boat dealership, marina, and boat storage yard. Operations at the site are conducted in a single 2,400 ft² building located on the northeast corner of the property. A smaller 1,200 ft² building, located on the western portion of the property, has been restored and is used for office space for the boat dealership. Minor boat restoration activities are performed within the 2,400 ft² building and include engine rebuilds, sanding, and painting/varnishing. Prior to remediation, most areas of the site grounds were concrete or asphalt paved. Portions of the site adjacent to Freeport Creek were covered with gravel. Soil cover was observed on a small stretch of land on the southern property beneath a two-story boat rack.

1.2.2 Site History

The former Metal Etching buildings at the site were erected prior to 1954; however, the exact date of construction is unknown. These connected buildings occupied approximately 26,650 ft^2 of the property (approximately 60 percent of the Metal Etching portion of the site). Aside for the 2,400 ft^2 building, which was a portion of the Metal Etching quarters, the Metal Etching buildings were demolished in 2001; however, the concrete slabs and footings of the buildings remained in place at the site. A 6-in. thick concrete slab covering an approximate area of 7,750 ft^2 was the foundation of the Metal Etching plating slab and is visible to the west of the 2,400 ft^2 building.

Prior to 1966, the site operated as Flores Manufacturing, which manufactured handbags. The manufacturing process included decorative plating with nickel, chromium, and cadmium. From 1966 to 1999, Metal Etching Corporation manufactured metal nameplates, instrument panels, rulers, and miscellaneous plated products. All products were etched or printed. The process of etching included anodizing, chromate conversion, and chrome/nickel plating. From 1973 to 1982, Metal Etching Co. operated under the name of Plastic Associates, as a wholly owned subsidiary. From July 1982 to June 1999, Metal Etching Co., Inc. was the entity that operated the site. In the later years of the operation of Metal Etching Co., Inc., several of the metal coating operations were discontinued; i.e., chromate conversion (discontinued in 1997), chrome plating (discontinued in 1997), and anodizing (discontinued in 1998). All operations terminated in 1999 and Metal Etching Co., Inc. abandoned the premises during September of 1999. The facility buildings were demolished around 2001. During the demolition, limited decontamination and/or investigation was performed under the oversight of NYSDEC Resource Conservation and Recovery Act personnel. Two 4,000 gal aboveground storage tanks (ASTs), which formerly contained ferric chloride, were decontaminated and removed from the site during demolition activities.

1.2.3 Geologic Conditions

The top 3-4 ft of soil at the site consists of compacted fill material which includes sand, gravel, and brick and wood debris. Fill is underlain by organics and shells to approximately 11 ft below

EA Project No.: 14474.37

	Version: FINAL
EA Engineering, P.C. and its Affiliate	Page 1-4
EA Science and Technology	April 2014

ground surface (bgs). A geologic cross section of the site is provided in Figure 2. Some fill was excavated, disposed offsite, and replaced with clean granular fill during the 2011 remedial action. In areas depicted on Figure 3, fill has been excavated, disposed offsite and replaced with clean granular fill.

Depth to groundwater ranges from 3 to 5 ft bgs and is highly influenced by tides, as discussed in the remedial investigation (RI) report (Environmental Resource Management [ERM] 2007)³. Groundwater flow is to the southeast across the site. Overburden and bedrock groundwater flow is shown in Figure 4.

1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS

A RI was performed to characterize the nature and extent of contamination at the site. The results of the RI are described in detail in the RI Report $(ERM 2007)^3$.

Generally, the RI determined that, based on the standards, criteria, and guidance (SCGs) used for the site, surface soil, subsurface soil, groundwater, and sediment contained metals and volatile organic compounds (VOCs) contamination that was to be addressed in the remedy selection. Soil vapor contained VOC contamination which was addressed by an interim remedial measure (IRM) conducted at the site prior to the remedial action.

Below is a summary of site conditions when the RI was performed in 2007.

Soil

Site soil was analyzed for VOCs and metals during the RI. Analytical results indicated that the site soil contained concentrations of VOCs and metals exceeding their SCGs. Metals were detected exceeding their SCGs in the top 7 ft of soil; specifically, nickel, copper, and zinc were detected at concentrations exceeding their SCGs. VOC contamination varied across the site. The eastern area was contaminated with petroleum related compounds including ethylbenzene, chlorobenzene, and xylene. Samples collected from the western area contained xylene and naphthalene exceeding their SCGs. Contaminants tetrachloroethene (PCE) (non-detect [ND] to 4.3 mg/kg), trichloroethene (TCE) (ND to 10 mg/kg), and methyl tert butyl ether (MTBE) (ND to 1.5 mg/kg) were the predominant VOCs detected in soil samples above their SCGs in the eastern central area of the site. The western central area of the site contained only TCE above its SCG.

Table 1 and Figures 5-5D show site soil sampling results from the RI.

EA Project No.: 14474.37

³ ERM. 2007. Remedial Investigation Report Metal Etching Co. Inc. Site (NYSDEC Site No. 1-30-110), Freeport, New York. Environmental Resource Management. January.

Site-Related Groundwater

Groundwater samples were collected from 10 on-site monitoring wells at the water table interface and three monitoring wells installed directly above the clay layer. Samples collected from all on-site monitoring wells contained concentrations of VOCs including MTBE and PCE; and PCE breakdown contaminants TCE, dichloroethene (DCE), and vinyl chloride (VC). Samples collected from above the clay layer contained higher concentrations of PCE, TCE, DCE, and VC than samples collected from the water table interface. Concentrations of PCE from samples collected above the clay layer ranged from ND to 1,600 μ g/L, while concentrations of PCE from samples collected at the water table interface ranged from ND to 250 μ g/L. The highest concentrations of PCE and breakdown contaminants were detected in monitoring wells located west and south of the 2,400 ft² building in monitoring wells MW-02S/D and MW-07S/D. The distribution and concentrations of breakdown contaminants across the site indicated that degradation was occurring at the site.

MTBE was detected in groundwater samples across the site at concentrations ranging from ND to 2,100 μ g/L. The highest groundwater concentration of MTBE was collected as a grab sample at boring SB-21, south of MW-02S/D in the area of a suspected underground storage tank (UST) southwest of the 2,400 ft² building.

Table 2 and Figures 6A and 6B show the groundwater sampling results from the RI.

Site-Related Soil Vapor Intrusion

The potential for vapor intrusion in on-site buildings was evaluated prior to the remedial action. Subslab vapor samples collected in July 2004 indicated that both PCE and TCE were present in subslab air beneath both on-site buildings (office building and warehouse building). The smaller office building subslab vapor sample contained PCE at a concentration of 292 μ g/m³ and TCE at a concentration of 187 μ g/m³. The subslab vapor sample from the larger warehouse building contained PCE at a concentration of 5,772 μ g/m³ and TCE at a concentration of 16,014 μ g/m³. Indoor air samples collected from both buildings did not contain detections of PCE or TCE. Potential vapor intrusion was addressed by the installation of sub-slab depressurization systems in March 2005 at the two on-site buildings prior to the remedial action; however, site soil vapor will continue to be monitored as part of the EC/IC Plan as discussed in Section 2.0.

Table 3 and Figure 7 show the soil vapor sampling results from the RI.

Underground Storage Tanks

One UST was removed from the western area of the site in 1990, prior to the RI. This tank contained heating fuel. During the RI, two additional potential USTs were identified on the site. One was identified east of the smaller building and the other was identified south of the larger building. Contents were unknown prior to the remedial action.

Sediment

Sediment within Freeport Creek surrounding the perimeter of the site was sampled during the RI. Two of the eight samples contained metals (i.e., nickel, chromium, and zinc) exceeding their respective SCGs. The sample collected from sediment just below the outfall in the northeastern part of the site contained nickel at a concentration of 40.4 mg/kg, exceeding the Effect Range-Low (ER-L) of 20.9 mg/kg. The sample collected south of the southeastern bulkhead contained chromium (127 mg/kg) and nickel (28.4 mg/kg) at concentrations exceeding their respective ER-L values (81 mg/kg and 20.9 mg/kg, respectively), as well as zinc (425 mg/kg) exceeding the Effect Range-Medium (ER-M) of 410 mg/kg. ER-L is the 10th percentile on a series of data that is ranked from the lowest, or least toxic concentrations, to the highest, or more toxic concentrations. ER-M is the 50th percentile on this continuum.

In addition to sediment within Freeport Creek, sediment from within an existing storm drain was sampled during the RI. The samples contained metals (i.e., nickel, copper, and zinc) exceeding their respective SCGs. Table 4 and Figure 5D show the sediment sampling results from the RI.

1.4 SUMMARY OF REMEDIAL ACTIONS

The site was remediated in accordance with the NYSDEC-approved remedial design, which was part of the Contract Documents dated August 2010 and addendums dated September 28, 2010, September 30, 2010, and October 1, 2010.

The following is a summary of the remedial actions performed at the site:

- Excavation of 2,684 yd³ of soil/fill exceeding soil cleanup objectives (SCOs) listed in Table 5A within identified excavation limits, to low-tide groundwater elevation, approximately 5 ft bgs.
- Construction and maintenance of a soil cover system consisting of a geotextile demarcation layer covered by asphalt or permeable pavement to prevent human exposure to contaminated soil/fill remaining at the site.
- Execution and recording of three ENs to restrict land use to commercial or industrial uses, and prevent future exposure to any contamination remaining at the site.
- Removal of approximately 2 yd³ of sediment from the on-site storm water system and disposal at an approved offsite facility.
- Closure and removal of four USTs on-site in accordance with NYSDEC regulations.
- Limited removal of approximately 183 yd³ of sediment from delineated area within Freeport Creek and disposal at an approved offsite facility.

• Development and implementation of a SMP for long-term management of remaining contamination as required by the ENs, which include plans for: (1) IC/ECs, (2) monitoring, (3) operation and maintenance, and (4) reporting.

Remedial activities were completed at the site in January 2012.

1.4.1 Removal of Contaminated Materials from the Site

Soil and sediment hot spots were identified on-site and delineated during design activities prior to the remedial construction. Hot spot locations were based on soil sample collection and analysis performed during the 2007 RI (ERM 2007)³ and the 2008 additional site investigation.

Soil

Remedial activities at the site consisted of excavation and offsite disposal of contaminated soils from within excavation areas EX-1 through EX-7 shown on Figure 3. Asphalt and concrete top layers within excavation limits were saw-cut using walk-behind saw equipment, broken up by a CAT 320 excavator, and disposed of offsite. Remnant foundation walls encountered within excavation areas were removed to the bottom of the excavation limits, broken up, and disposed of offsite along with other construction and demolition (C&D) debris. Approximately 240 tons of C&D materials were removed and disposed offsite at 110 Sand Landfill in Melville, NY.

Soil within excavation areas EX1, EX3, EX4, EX5, and EX6 was removed down to 5 ft bgs. Soil within excavation area EX2 was removed down to 1 ft bgs. Contaminated soil from the excavation areas was removed using a CAT 320 excavator and disposed offsite at 110 Sand Landfill. During excavation within EX6, fuel-impacted soil was encountered directly to the west of excavation limit points EX6-7 and EX6-8. Excavation area EX6 was extended an additional 9 ft to the east of excavation limit points EX6-7 and EX6-8, down to approximately 5 ft bgs to remove visual impacts. Two additional USTs were uncovered within EX3, to the east side of the one-story brick office building. All product from within the USTs was pumped and disposed of at International Petroleum Corporation of Delaware. Cleaned USTs were delivered to Gershow Recycling in Freeport, NY.

During excavation in the vicinity of excavation limit points EX5-11, EX5-12, and EX5-13, down to 5 ft bgs, two USTs were encountered. These USTs were found to extend within the footprint of excavation area EX1. The area to the west of points EX5-11 and EX5-13, and entire excavation area EX1 were excavated down to the bottom of the USTs (approximately 5 ft bgs), and then further excavated another 2-3 ft below the bottom of the USTs to remove visually impacted soils.

Approximately 5,500 tons of contaminated soil was excavated and disposed off-site. This includes approximately 110 tons of fuel-impacted soil encountered within EX1 and EX6, and C&D materials. The fuel-impacted soil encountered at excavations EX1 and EX6 were segregated from other excavated soil, characterized, and disposed at 110 Sand Landfill, following disposal facility approval.

In addition, during excavation activities, monitoring wells MW02S/MW02D, MW03S/MW03D, and MW07S/MW07D were decommissioned, removed, and disposed of offsite in accordance with the Contract Documents. Monitoring wells MW-08S and MW-08D replaced MW-02S and MW-02D; monitoring wells MW-09S and MW-09D replaced MW-07S and MW-07D; and monitoring wells MW-10D replaced MW-03S and MW-03D.

Storm Drain Sediment

Sediment from within an 18-in. reinforced-concrete storm pipe located in the east portion of the site was cleaned out on May 16, 2011 using a vactor truck (2100 Series DEC 1A-727).

No sediment or wash water was observed to flow out of the pipe into Freeport Creek from the outfall end. Following pipe clean out activities, water that had been pumped from the manhole during clean out activities was decanted from the vactor truck back into the manhole, then sediment from the vactor truck was loaded into 55 gal drums. Seven drums were packed with sediment and staged on-site until disposal at Residuals Management Services, Inc. (RMS) in Deer Park, NY on October 3, 2011.

Freeport Creek Contaminated Sediment

Dredging of contaminated sediment located in the 40 ft \times 60 ft targeted area within Freeport Creek (delineated by excavation limit points EX7-1 through EX7-4) was performed between 11 and January 20, 2012. Wood-finger docks were removed prior to dredging and restored following dredging activities. A turbidity barrier was installed prior to dredging operations to prevent migration of sediment outside of the targeted area and was removed following completion of dredging activities.

Pre- and post-dredging surveys of the dredging area were performed by Alphonse Pesce Land Surveying to verify the sediment removal limits and the volume of sediment removed. Dredging was performed by Hancock Bulkhead by means of clamshell boom mechanical dredging equipment. Sediment removal progressed in a grid pattern within the targeted area. AARCO removed sediment from the on-site barge and transported it to 110 Sand Landfill. Approximately 250 tons of dredged sediment were transported and disposed offsite.

A list of the ER-Ls and ER-Ms for the primary contaminants of concern is provided in Table 5B.

A figure showing areas where excavation was performed is shown in Figure 3.

1.4.2 Site-Related Treatment Systems

Two sub-slab depressurization systems (SSDSs) that were installed in March 2005 in the on-site buildings remain. The SSDS that was installed in the office building was not operational from October 2012 until April 2014, when it was repaired. The SSDS that was installed in the warehouse building has not been operational since October 2012. Both systems were damaged during Superstorm Sandy in October 2012. Post-remedial action termination sampling was

EA Project No.: 14474.37

	Version: FINAL
EA Engineering, P.C. and its Affiliate	Page 1-9
EA Science and Technology	April 2014

conducted in November2013 and March 2014 to assess current soil vapor conditions. An evaluation of the need for repairing the warehouse SSDS to return to operational status and/or a decision to decommission the warehouse SSDS will be made in the near future dependent upon the results of the termination sampling events, and in consultation with NYSDEC and New York State Department of Health (NYSDOH). No additional long-term treatment systems were installed as part of the site remedy.

1.4.3 Remaining Contamination

Per the ROD, excavation depth was limited by the low-tide groundwater elevation; therefore, known contamination remains at the site. Mirafi[®] 180N/O non-woven geotextile was installed at a depth of 5 ft in excavation areas EX3, EX4, EX5, and EX6; it was installed at a depth of 1 ft in excavation areas EX1 and EX2.

During the RI, VOC and metals contamination was identified in various locations throughout the site deeper than the maximum excavation depth of 5 ft. Concentrations of metals and VOCs exceeded the SCOs at sampling intervals 7-8 ft bgs and 12 ft bgs. VOCs (i.e., xylene and naphthalene) were identified in the western area of the site near excavation EX3 7-8 ft bgs and 12 ft bgs. Various VOCs including TCE, benzene, toluene, and MTBE were identified in the central area of the site near excavation EX5 within intervals 7-8 ft bgs and 12 ft bgs. Xylenes were identified 7-8 ft bgs and 12 ft bgs in the northeast area of the site near an existing electrical conduit. Ethylbenzene, xylene, and chlorobenzene were identified 8 ft bgs in the southeast area of the site.

Metals including chromium, copper, nickel, and zinc were identified at concentrations exceeding the SCOs in soil within the central portion of the site 7-8 ft bgs and 12 ft bgs. Copper, nickel, and zinc were identified in soil within the east area of the site 7-8 ft bgs and 12 ft bgs. A confining clay layer was identified 31-38 ft bgs across the site.

Confirmation soil samples were collected at the excavation boundaries following remediation work. VOCs detected in confirmation soil samples with concentrations exceeding the site-specific SCGs include xylenes (north sidewall of EX1 and south central area of EX5); and 1,2-DCE as a combination of *cis*- and *trans*-1,2-DCE, and toluene (south central area of EX5).

Metals detected in confirmation soil samples with concentrations exceeding the site-specific SCGs include chromium, copper, nickel, and zinc. Some confirmation samples collected from the bottom of excavations EX1 and EX2 contained all four metals at concentrations in exceedance of the site-specific SCGs.

Of the three confirmation samples collected from the bottom of EX3, only one sample contained zinc at a concentration exceeding the site-specific SCGs. Four of the five side wall samples from EX3 contained zinc at a concentration exceeding the site-specific SCGs as well.

EA Project No.: 14474.37

The bottom sample collected from EX4 contained chromium, copper, and zinc at concentrations exceeding the SCGs, while only one of the three side wall samples from EX4 contained a concentration of zinc exceeding the site-specific SCGs.

A majority of the bottom samples of EX5 contained a concentration of copper exceeding the sitespecific SCGs, while the northwest quadrant contained chromium and the northeast quadrant contained nickel at concentrations exceeding the respective site-specific SCGs. A majority of side samples from EX5 contained concentrations of copper and zinc exceeding the site-specific SCGs, while 4 of 13 samples contained concentrations of nickel exceeding the site-specific SCGs. Only one side wall sample from EX5 contained chromium at a concentration exceeding the site-specific SCGs.

Excavation EX6 consisted of a northern and southern portion separated by the utility right-ofway. Both bottom samples in the northern portion and all three of the bottom samples in the southern portion contained concentrations of copper and zinc exceeding the site-specific SCGs. One of the northern bottom samples and two of the three southern bottom samples contained nickel at a concentration greater than the site-specific SCGs. All side wall samples collected from EX6 contained concentrations of zinc exceeding the site-specific SCGs, while all but two (along the northern and northwestern excavation boundary) contained concentrations of copper exceeding the site-specific SCGs. All but two of the side wall samples collected from the southern portion of EX6 and one of the side wall samples collected from the northern portion of EX6 (along the boundary with the right-of-way) contained nickel at a concentration exceeding the site-specific SCGs. One side wall sample along the southern boundary of EX6 contained a concentration of chromium at a concentration exceeding the site-specific SCGs.

EX7 was a 2 ft excavation within Freeport Creek. Documentation samples collected following dredging activities contained copper and mercury exceeding their respective ER-Ls of 34 mg/Kg and 0.15 mg/Kg. Sample location EX7P2 contained copper at a concentration of 299 mg/Kg exceeding the Effects Range-High (ER-H) of 270 mg/Kg. Sample location EX7P3 contained mercury at a concentration of 1.86 mg/Kg exceeding the ER-H of 0.71 mg/Kg. Four of the five documentation samples collected from EX7 contained concentrations of arsenic which exceeded the ER-L of 8.2 mg/Kg. Concentrations ranged from 8.48 mg/Kg in EX7P5 to 17.2 mg/Kg in EX7P2.

Tables 6A and 6B, and Figures 8-8C summarize the results of all soil samples remaining at the site after completion of remedial action that exceed the unrestricted levels for VOCs and metals, respectively. Tables 7A and 7B, and Figures 9-9C summarize the remaining soil contamination that exceeds the site-specific SCOs for VOCs and metals, respectively. Table 8 and Figure 9D summarizes the results of all sediment samples remaining at the site after completion of dredging activities that exceed the ER-L and ER-H.

Since contaminated soil and groundwater remain beneath the site after completion of the remedial action, ECs and ICs are required to protect human health and the environment. These ECs and ICs are described in the following sections. Long-term management of these ECs and ICs, and residual contamination will be performed under this SMP.

2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION

2.1.1 General

Since remaining contaminated soil exists beneath the site, ECs and ICs are required to protect human health and the environment. This EC/IC Plan describes the procedures for the implementation and management of all EC/ICs at the site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

2.1.2 Purpose

This plan provides:

- A description of all EC/ICs on the site
- The basic implementation and intended role of each EC/IC
- A description of the key components of the ICs set forth in the ENs
- A description of the features to be evaluated during each required inspection and periodic review
- A description of plans and procedures to be followed for implementation of EC/ICs, such as the implementation of the Excavation Work Plan (EWP) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the site remedy, as determined by the NYSDEC.

2.2 ENGINEERING CONTROLS

2.2.1 Engineering Control Systems

2.2.1.1 Final Cover System

Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in Appendix B outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in Section 4 of this SMP. A figure showing the location of the different cover types is provided as Figure 10.

2.2.1.2 Sub-Slab Depressurization Systems

Exposure to indoor air impacted with VOCs within the site buildings was prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. Both systems remained in operation until October 2012, but became inoperable due to a large storm, Superstorm Sandy, that resulted in site flooding. The office building was renovated following the flooding and re-occupied beginning in 2013. The SSDS at this building was repaired in April 2014 and is again operational.

2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

2.2.2.1 Composite Cover System

The composite cover system is a permanent control; the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

2.2.2.2 Sub-Slab Depressurization Systems

The SSDSs will be monitored on an annual basis to determine whether the systems remain necessary at the site, or if the remedial action objectives were achieved.

2.3 INSTITUTIONAL CONTROLS

A series of ICs is required by the ROD to: (1) implement, maintain and monitor EC systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to commercial or industrial uses only. Adherence to these ICs on the site is required by the ENs and will be implemented under this SMP. These ICs are:

- Compliance with the ENs and this SMP by the Grantor and the Grantor's successors and assigns.
- All ECs must be operated and maintained as specified in this SMP.

EA Project No.: 14474.37

- All ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.
- Groundwater and indoor air monitoring must be performed as defined in this SMP.
- Submission of a periodic certification of institutional and ECs to the NYSDEC by the property owner.
- Data and information pertinent to site management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP.

ICs identified in the ENs may not be discontinued without an amendment to or extinguishment of the ENs.

The site has a series of ICs in the form of site restrictions. Adherence to these ICs is required by the ENs. Site restrictions that apply to the Controlled Property are:

- The property may only be used for commercial use provided that the long-term ECs and ICs included in this SMP are employed. The property may also be used for industrial use, in conformance of local zoning.
- The property may not be used for a higher level of use, such as unrestricted use without additional remediation and amendment of the ENs, as approved by the NYSDEC.
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP.
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use.
- The potential for vapor intrusion must be evaluated for any buildings developed within the site boundaries, and any potential impacts that are identified must be monitored or mitigated.
- Vegetable gardens and farming on the property are prohibited.
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This

certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.3.1 Excavation Work Plan

The site has been remediated for commercial or industrial uses. Any future intrusive work that will penetrate the soil cover or cap, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system will be performed in compliance with the EWP that is attached as Appendix B to this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) prepared for the site. A sample HASP is attached as Appendix B-1 to the EWP that is in current compliance with DER-10, and 29 Code of Federal Regulations (CFR) 1910, 29 CFR 1926, and all other applicable federal, state, and local regulations. Based on future changes to state and federal health and safety requirements, and specific methods employed by future contractors, the HASP and CAMP will be updated and re-submitted with the notification provided in Section A-1 of the EWP. Any intrusive construction work will be performed in compliance with the EWP, HASP, and CAMP; and will be included in the periodic inspection and certification reports submitted under the Site Management Reporting Plan (Section 5).

The site owner and associated parties preparing the remedial documents submitted to the State, and parties performing this work, are completely responsible for the safe performance of all intrusive work, the structural integrity of excavations, proper disposal of excavation de-water, control of runoff from open excavations into remaining contamination, and for structures that may be affected by excavations (such as building foundations and bridge footings). The site owner will ensure that site development activities will not interfere with, or otherwise impair or compromise, the ECs described in this SMP.

2.3.2 Soil Vapor Intrusion Evaluation

Prior to the construction of any enclosed structures within the area identified on Figure 11, a soil vapor intrusion (SVI) evaluation will be performed to determine whether any mitigation measures are necessary to eliminate potential exposure to vapors in the proposed structure. Alternatively, a SVI mitigation system may be installed as an element of the building foundation without first conducting an investigation. This mitigation system will include a vapor barrier and passive SSDS that is capable of being converted to an active system.

Prior to conducting a SVI investigation or installing a mitigation system, a work plan will be developed and submitted to the NYSDEC and NYSDOH for approval. This work plan will be developed in accordance with the most recent NYSDOH Guidance for Evaluating Vapor Intrusion in the State of New York (NYSDOH 2006)⁴. Measures to be employed to mitigate

⁴ New York State Department of Health. 2006. *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*. New York State Department of Health, Division of Environmental Health Assessment, Center for Environmental Health. October.

potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (un-validated) SVI sampling data will be forwarded to the NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for follow-up action, such as mitigation. Validated SVI data will be transmitted to the property owner within 30 days of validation. If any indoor air test results exceed NYSDOH guidelines, relevant NYSDOH fact sheets will be provided to all tenants and occupants of the property within 15 days of receipt of validated data.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the next Periodic Review Report.

2.4 INSPECTIONS AND NOTIFICATIONS

2.4.1 Inspections

Inspections of all remedial components installed at the site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. A comprehensive site-wide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether ECs continue to perform as designed
- If these controls continue to be protective of human health and the environment
- Compliance with requirements of this SMP and the ENs
- Achievement of remedial performance criteria
- Sampling and analysis of appropriate media during monitoring events
- If site records are complete and up to date
- Changes, or needed changes, to the remedial or monitoring system.

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

2.4.2 Notifications

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

- 60-day advance notice of any proposed changes in site use in accordance with the ROD.
- 15-day advance notice of any proposed ground-intrusive activities pursuant to the EWP.
- Notice within 48-hours of any damage or defect to the foundations structures that reduces or has the potential to reduce the effectiveness of other ECs and likewise any action to be taken to mitigate the damage or defect.
- Notice within 48-hours of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the site, including a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action shall be submitted to the NYSDEC within 45 days and shall describe and document actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of all approved work plans and reports, including this SMP
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing.

2.5 CONTINGENCY PLAN

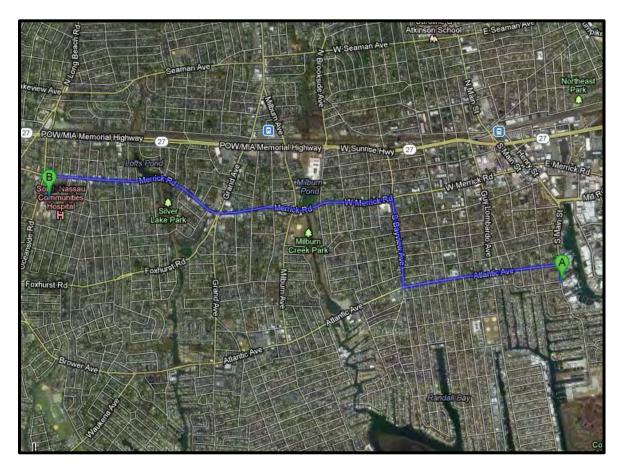
Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

2.5.1 Emergency Telephone Numbers

In the event of any environmentally-related situation or unplanned occurrence requiring assistance, the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to the NYSDEC project manager. These emergency contact lists must be maintained in an easily accessible location at the site.

Emergency Contact Numbers				
Medical, Fire, and Police:	911			
	(800) 272-4480			
One Call Center:	(3 day notice required for utility markout)			
Poison Control Center:	(800) 222-1222			
Pollution Toxic Chemical Oil Spills:	(800) 424-8802			
NYSDEC Spills Hotline	(800) 457-7362			

Contact Numbers				
NYSDEC Division of Environmental	518-402-9814			
Remediation				
Eric Hausamann (SSDS)	518-402-9814			
NOTE: Contact numbers subject to change and should be updated as necessary				


2.5.2 Map and Directions to Nearest Health Facility

Site Location: Metal Etching Site Nearest Hospital Name: South Nassau Communities Hospital Hospital Location: 1 Healthy Way, Oceanside, New York 11572 Hospital Telephone: 516-632-3000

Directions to the Hospital:

- 1. Go north on S Main Street.
- 2. Take 1st left onto Atlantic Avenue.
- 3. Turn right onto S Bayview Avenue.
- 4. Turn left onto W Merrick Road.
- 5. Turn left onto Healthy Way.
- Total Distance: 3.6 miles

Total Estimated Time: 10 minutes

Map Showing Route from the site to the Hospital:

*Map is from maps.google.com

2.5.3 Response Procedures

As appropriate, the fire department and other emergency response group will be notified immediately by telephone of the emergency. The emergency telephone number list is found at the beginning of this Contingency Plan. The list will also be posted prominently at the site and made readily available to all personnel at all times.

2.5.3.1 Spill Procedures

In the event that a hazardous substance is released on the site, all site personnel shall be notified immediately. If the substance poses an immediate threat to human health and the environment, evacuation and notification of the appropriate authorities including the NYSDEC Spill Response team (listed in previous table) may be necessary. If the release is minimal and does not pose a health risk, the leak shall be contained and the spilled material shall be cleaned up with appropriately sized absorbent pads. Materials used to contain the substance shall be disposed of properly.

2.5.3.2 Evacuation Plan

If site evacuation is necessary, site personnel shall exit the site on Main Street. All site personnel shall be notified of the evacuation.

3.0 SITE MONITORING PLAN

3.1 INTRODUCTION

3.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the site, the soil cover system, and all affected site media identified below. Monitoring of other ECs is described in Chapter 4, Operation and Maintenance Plan. This Monitoring Plan may only be revised with the approval of NYSDEC.

3.1.2 Purpose and Schedule

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor)
- Assessing compliance with applicable NYSDEC SCGs, particularly ambient groundwater standards and Part 375 SCOs for soil
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency
- Information on all designed monitoring systems (e.g., well logs)
- Analytical sampling program requirements
- Reporting requirements
- Quality Assurance (QA)/Quality Control (QC) requirements
- Inspection and maintenance requirements for monitoring wells and SSDS
- Monitoring well decommissioning procedures
- Annual inspection and periodic certification.

Semi-annual monitoring of the performance of the remedy and overall reduction in contamination on-site will be conducted for the first year. The frequency thereafter will be determined by NYSDEC. Trends in contaminant levels in air, soil, and/or groundwater in the affected areas, will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. Monitoring programs are summarized in the following table and outlined in detail in Sections 3.2 and 3.3 below.

Monitoring/Inspection Schedule						
Monitoring Program	Frequency ⁽¹⁾	Matrix	Analysis			
Groundwater	Semi-Annually (For first year)	Water	VOCs and Metals			
Site Cover Inspection	Semi-Annually (For first year)	NA	NA			
SSDS/Indoor Air	Annually for SSDS/As recommended by State Agencies for indoor air (During heating season)	Air	VOCs			
(1) The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH						

3.2 COVER SYSTEM MONITORING

For the first year of monitoring, the cover system will be inspected on a semi-annual basis and after large storm events to ensure proper drainage, and to look for sedimentation issues. The inspector will also note whether the asphalt and porous pavement has settled unevenly, been overloaded, or otherwise disturbed. The porous pavement will be checked for signs of clogging by soil or debris or chemical sealers. Rip-rap areas will be inspected for disturbance and effectiveness. Concrete surrounding the slotted drains at the site entrances will be inspected for cracking or crumbling.

3.3 MEDIA MONITORING PROGRAM

Groundwater and indoor air will be monitored as part of the management of this site.

3.3.1 Groundwater Monitoring

The network of monitoring wells has been installed to monitor both upgradient and downgradient groundwater conditions at the site. The network of on-site wells was designed and installed during the RI. A total of 10 wells were installed including three monitoring well clusters of one shallow and one deep well, three single shallow wells, and one single deep micro well. Deep wells were installed to a maximum of 33 ft bgs, which is the depth of the top of the clay layer observed during the soil boring investigation. Shallow wells were installed to 13 ft bgs to intercept any light non-aqueous phase liquid that may have been present. All wells were constructed with 10 ft of screen. Well locations were selected based on the geophysical, soil boring and groundwater investigations which took place as part of the RI and field observations. Wells are located throughout the site. Figure 12 show the shallow and deep monitoring well arrays.

As noted in Section 1.4.1, monitoring wells MW02S/MW02D, MW03S/MW03D, and MW07S/MW07D were decommissioned during soil excavation activities. These monitoring wells were replaced with monitoring wells MW-08S and MW-08D, MW-09S and MW-09D, and

MW-10S and MW-10D following cover installation in similar locations and to similar depths as the original wells. Monitoring well construction details for all wells present at the site are included in Appendix C.

New monitoring wells were last sampled on December 14, 2011. Samples were analyzed for oil and grease (Method E1664A), polychlorinated biphenyls (PCBs) and pesticides (Method E608), metals and mercury (Methods SW6010B and SW7470A, respectively,) VOCs (Method SW8260B), and semivolatile organic compounds (Method SW8270C). Results of the initial post-remedial groundwater sampling are shown on Figure 13.

Groundwater monitoring is to be performed twice per year for the first year and as directed by NYSDEC thereafter. Groundwater is to be analyzed for metals and mercury (Methods 6010B and SW7470A) and VOCs (Method 8260B). The following monitoring wells are to be sampled as part of the groundwater monitoring program for the Metal Etching site.

Monitoring Wells at the Metal Etching Site					
On-site Monitoring Wells	Well Depth (ft bgs)				
MW-06	13				
MW-04	13				
MW-05R	13				
MW-08SR	14				
MW-08DR	31				
MW-09S	14				
MW-09D	32				
MW-10S	14				
MW-10D	32				
Off-site Monitoring Wells	Well Depth (ft bgs)				
MW-11S	15				
MW-11D	30				

The sampling frequency may be modified with the approval of the NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by the NYSDEC.

The groundwater monitoring well network is shown in Figure 12. Figure 13 and Tables 9A and 9B provide a summary of the post-remaining groundwater quality for VOCs and metals, respectively.

Deliverables for the groundwater monitoring program are specified below.

3.3.1.1 Sampling Protocol

All monitoring well sampling activities will be recorded in a field book and a groundwater sampling log presented in Appendix D. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network.

EA Project No.: 14474.37

Prior to sampling, all monitoring wells shall be inspected and gauged to obtain the static water levels for the site. Monitoring well purging will be performed and groundwater samples will be collected from the monitoring wells using a submersible pump and dedicated section of polyethylene tubing. A water quality meter (Horiba U-52 or similar) with flow-through cell (flushed with distilled water before use at each well) will be used during well purging for field measurement of pH, specific conductance, temperature, Eh, turbidity, and dissolved oxygen. Each well shall be purged three well volumes or until field parameters stabilize, whichever occurs first. Purge water is to be discharged to the ground surface near the well. In the event that a strong odor or sheen is evident, water is to be drummed, characterized, handled, and disposed of at a licensed treatment, storage, and disposal facility.

The following procedures will be used for monitoring well groundwater sampling:

- Wear appropriate personal protective equipment as specified in the site-specific HASP Addendum (Appendix B-1). In addition, samplers will use new nitrile sampling gloves for the collection of each sample.
- Unlock and remove the well cap.
- Measure the static water level in the well with an electronic water level indicator.
- The water level indicator will be washed with Alconox detergent and water, then rinsed with deionized water between individual monitoring wells to prevent cross-contamination.
- Calculate the volume of water in the well.
- Place polyethylene sheeting around the well casing to prevent contamination of sampling equipment in the event sampling equipment is dropped.
- Purge 3-5 well volumes of water from the well or until water quality parameters are stabilized, using the method described below.
- Pump with a submersible pump equipped with new polyethylene tubing dedicated to each well. Set pump intake at the approximate mid-point of the monitoring wells screened interval and start pump.
- Allow field parameters of pH, reduction-oxidation potential (Eh), dissolved oxygen, specific conductivity, turbidity, and temperature to stabilize before sampling. Purging will be considered complete if the following conditions are met:
 - Consecutive pH readings are ± 0.1 pH units of each other
 - Consecutive dissolved oxygen readings are ± 10 percent of each other
 - Consecutive Redox readings are ± 0.10 units of each other
 - \circ Consecutive measured specific conductance is ± 3 percent of each other

• Turbidity < 50 Nephelometric turbidity units

If these parameters are not met after purging a volume equal to 3-5 times the volume of standing water in the well, the EA Project Manager will be contacted to determine the appropriate action(s).

- If the well is purged dry before the required volumes are removed, the well may be sampled when it recovers (recovery period up to 24 hours).
- Place analytical samples in cooler and chill to 4°C. Samples will be shipped to the analytical laboratories within 24 hours.
- Pump will be decontaminated and the polyethylene suction/discharge line will be properly discarded.
- Re-lock well cap.
- Fill out field sampling form, labels, custody seals, and chain-of-custody forms.

Groundwater samples will be placed in appropriate sample containers, sealed, and submitted to the laboratory for analysis.

3.3.1.2 Monitoring Well Repairs, Replacement, and Decommissioning

If biofouling or silt accumulation occurs in the on-site and/or offsite monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan), if an event renders the wells unusable.

Well decommissioning procedures are as follows:

- Measure total depth of the well to ensure the well depth is consistent with the recorded construction depth.
- Remove the steel manhole or steel stickup protective casing with an effort being made to ensure that the riser does not splinter and/or become structurally unstable for pulling.
- The bottom of the casing shall be punctured and the casing freed from the hole using suitable equipment (i.e., drill rig cable system). Well materials shall be disposed of at a licensed disposal facility.
- The well shall be tremie-grouted with a cement bentonite grout while removing the casing. The grout shall be completed to a depth of approximately 5 ft below grade.

- A bentonite seal shall be placed on top of the grout.
- The remaining riser shall be sealed with a Portland cement plug to the ground surface.

In the event the casing or well screen is severed during casing pulling, or if a borehole collapse occurs, the remaining materials will be removed by over-drilling using the conventional augering method described below:

- Overdrilling shall be conducted by either using a hollow-stem auger with outward facing carbide cutting teeth with a diameter 2 in. larger than the casing and/or using a hollow-stem auger fitting with a plug used to grind the well materials which will be brought to the surface by the auger. Spoils shall be drummed and disposed of at a licensed disposal facility.
- Overdrilling shall be advanced 0.5 ft beyond the original bore depth.
- Once the desired drilling depth has been completed (using open ended hollow-stem auger method) the casing and screen shall be retrieved from the center of the augers.
- As the augers are being retracted, cement-bentonite grout shall be pumped down the center of the augers.
- Bore hole shall be grouted and sealed with bentonite and Portland cement as described above.

Replacement wells shall be constructed using methods consistent with those used during the RI. Monitoring well construction logs are provided in Appendix C.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent periodic report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's Commissioner Policy – 43 Groundwater Monitoring Well Decommissioning Policy (NYSDEC 2009)⁵. Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

⁵ NYSDEC. 2009. Commissioner Policy–43 Groundwater Monitoring Well Decommissioning Policy. 3 November.

3.3.2 Indoor Air Monitoring

Indoor air sampling is to take place in the existing office building and warehouse (Figure 14), as discussed in Section 1.3 of this plan, on-site on an annual basis to monitor effectiveness of SSDSs and potential SVI. Samples are to be analyzed by an Environmental Laboratory Analytical Program-certified laboratory for VOCs using U.S. Environmental Protection Agency (EPA) Method TO-15. In accordance with the NYSDOH guidance for evaluating SVI, the analysis for the indoor air samples is to achieve detection limits of 0.25 μ g/m³ for each compound.

Prior to collection of indoor air, an inspection of general site conditions is to be performed. The inspection is to include the following activities:

- Completion of the NYSDOH Indoor Air Quality Questionnaire and Building Inventory included in Indoor Air Sampling and Analysis Guidance (NYSDOH 2006)⁴. A sample of the questionnaire is provided in Appendix D. As directed by NYSDEC, a limited product inventory will be prepared. Sections 1 through 12 of the questionnaire will be completed with the exception of Section 4. In addition, a floor plan sketch of the first floor will not be required.
- Documentation of weather conditions outside and temperature inside.
- Ambient air (indoor and outdoor) screening using field equipment (i.e., parts per billion photoionization detector).
- Selection of air sampling locations.

An active approach, utilizing laboratory batch-certified Summa canisters, regulated for an 8-hour sample collection, will be used to monitor the indoor air conditions. An associated outdoor ambient air sample shall be collected during the same time period as the indoor air sample. The following procedures will be used for all indoor and outdoor air sampling:

- Visually assess the building to be sampled. Select an area for indoor air sampling that is approximately 3-4 ft above the floor surface, out of the line of traffic, and away from any vents or windows. Select an area for outdoor air sampling that is approximately 3-4 ft above the ground surface, out of the line of traffic, and in the vicinity of the building to be sampled.
- Place a canister in the selected sample location. The canister must be certified clean in accordance with EPA Method TO-15 and under a vacuum pressure of no more than -30 in. of mercury in Hg. Flow controllers must be set for an 8-hour collection period.
- Record the serial number of the canister and associated regulator on the chain-of-custody form and field notebook/sample form. Assign a sample identification on the canister

identification tag and record this on chain-of-custody and field notebook/sample form. For the property owner's privacy, do not use a sample identifier containing the name of the property owner or the address of the property.

- Record the gauge pressure; the vacuum gauge pressure must read -25 in Hg or less, or the canister cannot be used.
- Record the start time on the chain-of-custody form and on the air sampling form (Appendix D), and take a digital photograph of canister setup and the surrounding area.

To terminate the sample collection:

- Close the canister valve; record the stop time on the chain-of-custody form and in the field notebook/sample form.
- Record the final gauge pressure and disconnect the pressure gauge/flow controller from the canister.
- Install the plug on the canister inlet fitting and place the sample container in the original box.
- Complete the sample collection log with the appropriate information, and log each sample on the chain-of-custody form.

3.4 SITE-WIDE INSPECTION

Site-wide inspections will be performed on a regular schedule at a minimum of once a year. Sitewide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, an inspection form will be completed (Appendix D). The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage
- An evaluation of the condition and continued effectiveness of ECs
- General site conditions at the time of the inspection
- The site management activities being conducted including, where appropriate, sampling and a health and safety inspection
- Compliance with permits and schedules included in the Operation and Maintenance Plan
- Confirm that site records are up to date.

• Confirm that site use has not changed since the previous inspection.

SSDS inspections will take place as part of the annual site-wide inspection and are discussed in Section 4.0 of this plan.

3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL

All sampling and analyses will be performed in accordance with the requirements of the Quality Assurance Project Plan (QAPP) prepared for the site (Appendix E). Main components of the QAPP include:

- QA/QC Objectives for Data Measurement
- Sampling Program:
 - Sample containers will be properly washed, decontaminated, and appropriate preservative will be added (if applicable) prior to their use by the analytical laboratory. Containers with preservative will be tagged as such.
 - Sample holding times will be in accordance with the NYSDEC Analytical Services Protocol requirements.
 - Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will be collected as necessary.
- Sample Tracking and Custody
- Calibration Procedures:
 - All field analytical equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.
 - The laboratory will follow all calibration procedures and schedules as specified in EPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.
- Analytical Procedures
- Preparation of a Data Usability Summary Report, which will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method.
- Internal QC and Checks
- QA Performance and System Audits
- Preventative Maintenance Procedures and Schedules

• Corrective Action Measures.

3.6 MONITORING REPORTING REQUIREMENTS

Forms and any other information generated during regular monitoring events and inspections will be kept on file. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the Periodic Review Report, as specified in the Reporting Plan of this SMP.

All monitoring results will be reported to NYSDEC on a periodic basis in the Periodic Review Report. A letter report will also be prepared subsequent to each sampling event. The report will include, at a minimum:

- Date of event
- Personnel conducting sampling
- Description of the activities performed
- Type of samples collected (e.g., groundwater, indoor air, etc.)
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.)
- Sampling results in comparison to appropriate standards/criteria
- A figure illustrating sample type, sampling locations, and analytical results
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format)
- Any observations, conclusions, or recommendations
- A determination as to whether groundwater conditions have changed since the last reporting event.

Data will be reported in hard copy or digital format as determined by NYSDEC. A summary of the monitoring program deliverables are summarized below.

Schedule of Monitoring/Inspection Reports				
Task	Reporting Frequency ⁽¹⁾			
Letter Inspection and Monitoring Report	Twice a year for the first year only			
Periodic Review Report	January 2014 (first), annually after ⁽¹⁾			
(1) The frequency of events will be conducted as specified until otherwise approved by NYSDEC				

4.0 OPERATION AND MAINTENANCE PLAN

4.1 INTRODUCTION

This Operation and Maintenance Plan describes the measures necessary to operate, monitor, and maintain the mechanical components of the remedy in place at the site. This Operation and Maintenance Plan:

- Includes the steps necessary to allow individuals unfamiliar with the site to operate and maintain the SSDSs
- Includes an operation and maintenance contingency plan
- Will be updated periodically to reflect changes in site conditions or the manner in which the SSDSs are operated and maintained.

Information on non-mechanical ECs (i.e., soil cover system) is provided in Section 2 -Engineering and Institutional Control Plan. A copy of this Operation and Maintenance Plan, along with the complete SMP, will be kept at the site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of the SMP.

4.2 SUB-SLAB DEPRESSURIZATION SYSTEM OPERATION AND MAINTENANCE

There are two SSDSs on-site: one in the small office building and another in the larger warehouse building. The systems serve to reduce sub-slab pressure and vent built-up soil gas outside of the building. The systems consist of slotted screen installed beneath the slabs, connected to polyvinyl chloride pipe, an in-line ventilation fan, and an exterior exhaust point. The pipe for the smaller office building runs up the exterior wall and vents above the roof of the building. The pipe for the larger warehouse building runs up an interior wall, along the ceiling, and out through an existing hole in a window. Both vent fans are outside of the buildings. Both exhaust points are covered with rain caps. System locations are shown on Figure 14. Both systems ran continuously from March 2005 until October 2012 when Superstorm Sandy caused flooding on the site. The system for the office building was repaired in April 2014; the warehouse building system is currently being evaluated for termination and/or repair by the NYSDEC and NYSDOH.

4.2.1 Scope

Typically, SSDSs are continuously operational, and require minimal maintenance and oversight; however, annual inspections are required to verify continuous and effective operation. The following sections detail system startup, inspections, and maintenance.

4.2.1.2 System Startup and Testing

Prior to system startup, the building slab, including the system slab and wall penetration and any gaps between the slab and the walls are to be sealed with a polyurethane sealant. After the fan is turned on, the operating pressure is to be marked on the pressure gauge located on the vertical pipe. The pressure is to be checked weekly during continuous operation, until the pressure is observed to be the same during two consecutive weeks.

Following system startup, a field test is to be conducted to check negative pressure beneath the slab. Starting approximately 5 ft from the system, a ¹/₄-in. diameter hole is to be drilled completely through the concrete slab. The vacuum is to be measured using a handheld electric manometer at the test location. This is to be repeated an additional 5 ft from each previous test hole, until the furthest possible point on the slab has been tested. Each previously tested hole is to be filled with fast-setting concrete prior to the succeeding test. The system is working properly if all points tested show a pressure drop of 0.5 Pa or higher.

The system testing described above will be conducted if, in the course of the SSDS lifetime, significant changes are made to the system, and the system must be restarted.

4.2.1.3 System Operation: Equipment Maintenance

In the event that the annual inspection discussed in Section 4.3 reveals system failure or potential for system failure, the building owner and NYSDEC SSDS contact should be notified immediately. Faulty parts of the system should be replaced if possible, or cracks should be sealed using a polyurethane sealant. Depending on the complexity of the problem, an experienced professional should be consulted to return the system to service.

4.3 ENGINEERING CONTROL SYSTEM PERFORMANCE MONITORING

Sub-slab depressurization systems have been installed to mitigate possible SVI into occupied buildings. While the systems involve very little in the way of operation and maintenance, monitoring is necessary to verify system functionality and effectiveness. An annual inspection described in Section 4.3.1 will serve to verify that the system components are in working condition and are not compromised in any way. Annual air sampling as discussed in Section 4.3.2 will serve to verify that the system is effectively mitigating vapor intrusion.

4.3.1 General Equipment Monitoring

An annual inspection will be performed on both systems in conjunction with the annual site-wide inspection discussed in Section 3.4 of this plan. The inspection is to include the following:

• Inspect all visible system components, including the system piping, fans, manometer, etc. Note any cracks in piping or other operational issues

- Inspect slab for cracks, noting location and size of gaps, or where seals have begun to fail
- Make sure that contact information on the SSDS is up to date
- Note changes in building use and changes in heating, ventilation and air conditioning.

Inspection frequency is subject to change with the approval of the NYSDEC. Unscheduled inspections and/or sampling may take place when a suspected failure of the SSDS has been reported or an emergency occurs that is deemed likely to affect the operation of the system. Monitoring deliverables for the SSDS are specified later in this plan.

A complete list of components to be checked is provided in the Inspection Checklist, which is part of the site-wide inspection form presented in Appendix D. If any equipment readings are not within their typical range, if any equipment is observed to be malfunctioning, or the system is not performing within specifications, maintenance and repair as per the Operation and Maintenance Plan are required immediately, and the SSDS is to be restarted.

4.3.2 Sampling Event Protocol

Indoor air monitoring is to take place on an annual basis, and is discussed in Section 3.3.2 of this plan. In the event that indoor air monitoring indicates VOC contamination in the air, or per NYSDEC's request, a full sub-slab soil vapor intrusion evaluation is to be completed. This would include the collection of an indoor air sample, a sub-slab air sample, and an outdoor air sample. The indoor sample is to be collected as discussed in Section 3.3.2. The following procedures will be used for collection of sub-slab soil vapor samples:

- Visually assess the condition of the floor. Select an area for sampling that is out of the line of traffic and away from major cracks and other floor penetrations (sumps, pipes, etc.). Refer to historical sample forms (Appendix F) for ideal sample locations.
- Drill a ³/₈-in. diameter hole completely through the concrete floor slab using an electric hammer drill.
- Sweep concrete dust away from the drill hole and wipe the floor with a dampened towel. Concrete dust can be cleaned up with a vacuum equipped with a high efficiency particulate air filter only after the sample tubing is properly sealed and sample collection has begun.
- Insert the Teflon-lined polyethylene tubing (¼-in. inside diameter × ¾-in. outside diameter, approximately 3-ft long) into the hole drilled in the floor, extending no further than 2 in. below the bottom of the floor slab.
- Pour the melted beeswax around the tubing at the floor penetration, packing it in tightly around the tubing.

- Attach a syringe to the sample tube and purge approximately 100 mL of air/vapor. The syringe will be capped and the air released outside the building as to not interfere with the indoor air sample collection.
- Place a canister on the floor adjacent to the sample tube. The canister will be a 6-L canister (provided by an independent laboratory) with a vacuum gauge and flow controller. The canister must be certified clean in accordance with EPA Method TO-15 and under a vacuum pressure of no more than -30 in. of mercury in HG. Flow controllers must be set for a 24-hour collection period.
- Record the serial number of the canister and associated regulator on the chain-of-custody form and field notebook/sample form. Assign a sample identification on the canister identification tag and record this on the chain-of-custody form and field notebook/sample form. For the property owner's privacy, do not use a sample identifier containing the name of the property owner or the address of the property.
- Record the gauge pressure; the vacuum gauge pressure must read -25 in Hg or less, or the canister cannot be used.
- Record the start time on the chain-of-custody form and on the field record of air sampling (Appendix D), and take a digital photograph of canister setup and the surrounding area.

To complete the sample collection:

- Close the canister valve and record the stop time on the chain-of-custody form and in the field notebook/sample form.
- Record the final gauge pressure and disconnect the sample tubing and the pressure gauge/flow controller from the canister, if applicable.
- Install the plug on the canister inlet fitting and place the sample container in the original box.
- Complete the sample collection log with the appropriate information, and log each sample on the chain-of-custody form.
- Remove the temporary subsurface probe and properly seal the hole in the slab with hydraulic cement.

Field QC samples will include duplicates and trip blanks. Field duplicates will be collected at the rate of 1 duplicate per 20 original samples (20 percent). Field duplicates will be collected by installing an in-line "tee," which will essentially split the flow coming from the sample tubing penetrating the floor to two canisters set up adjacent to each other and each collecting vapors at identical flow rates.

Concurrently with the indoor air and sub-slab soil vapor monitoring program, one outdoor ambient air sample will be collected each day that indoor air monitoring occurs. The ambient air samples will be collected during the same 8-hour period as the indoor air samples, which represent outdoor air conditions for the sampling area. The ambient air samples will be collected in a laboratory batch-certified Summa canister regulated for an 8-hour sample collection. A section of Teflon or polyethylene tubing that is identified as laboratory- or food-grade will be extended from the Summa canister to collect the ambient air sample from the breathing zone at approximately 3-5 ft above ground surface. Consistent with the indoor and sub-slab vapor sampling, the collecting rate of the outdoor air sample will be less than 0.2 L per minute.

Air samples will be analyzed by an Environmental Laboratory Analytical Program-certified laboratory for VOCs using EPA Method TO-15. In accordance with the NYSDOH Indoor Air Sampling and Analysis Guidance, the analysis for indoor and outdoor air samples will achieve a minimum reporting limit of $0.25 \ \mu g/m^3$. The analysis for sub-slab soil vapor samples will achieve minimum reporting limit of $5 \ \mu g/m^3$ for structures with full slab foundations, and a minimum 1 $\mu g/m^3$ for structures with less than a full slab foundation. For specific parameters identified by NYSDOH, where the selected parameters may have a higher detection limit (e.g., acetone), the higher detection limits will be designated by NYSDOH. The analytical turnaround time will be 14 days from receipt of sample containers. Analytical results will be provided as an electronic data deliverable.

4.4 MAINTENANCE AND PERFORMANCE MONITORING REPORTING REQUIREMENTS

Maintenance reports and any other information generated during regular operations at the site will be filed on-site. All reports, forms, and other relevant information generated will be available upon request to the NYSDEC and submitted as part of the Periodic Review Report, as specified in the Section 5 of this SMP.

4.4.1 Maintenance Reports

During each maintenance event, a form will be completed which will include, but not be limited to, the following information:

- Date
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities
- Presence of leaks
- Date of leak repair
- Other repairs or adjustments made to the system

- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet)
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

5. INSPECTIONS, REPORTING AND CERTIFICATIONS

5.1 SITE INSPECTIONS

5.1.1 Inspection Frequency

All inspections will be conducted at the frequency specified in the schedule provided in Section 3 Monitoring Plan of this SMP. At a minimum, a site-wide inspection will be conducted twice a year. Inspections of remedial components (SSDS in this case) will also be conducted when a breakdown of any treatment system component has occurred or whenever a severe condition has taken place, such as an erosion or flooding event that may affect the ECs.

5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports

A general site-wide inspection form will be completed during the site-wide inspection (Appendix D). This form is subject to NYSDEC revision.

All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format in the Periodic Review Report.

5.1.3 Evaluation of Records and Reporting

The results of the inspection and site monitoring data will be evaluated as part of the EC/IC certification to confirm that the:

- EC/ICs are in place, are performing properly, and remain effective
- The Monitoring Plan is being implemented
- Operation and maintenance activities are being conducted properly; and, based on the above items
- The site remedy continues to be protective of public health and the environment and is performing as designed in the Remedial Action Work Plan and Final Engineering Report.

5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

After the last inspection of the reporting period, a qualified environmental professional will prepare the following certification:

For each IC/EC identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the ICs and ECs required by the remedial program was performed under my direction
- The IC and/or EC employed at this site is unchanged from the date the control was put in place, or last approved by the NYSDEC
- Nothing has occurred that would impair the ability of the control to protect the public health and environment
- Nothing has occurred that would constitute a violation or failure to comply with any SMP for this control
- Access to the site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document
- Use of the site is compliant with the ENs
- The EC systems are performing as designed and are effective
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative]. The signed certification will be included in the Periodic Review Report described below.

For each IC identified for the site, I certify that all of the following statements are true:

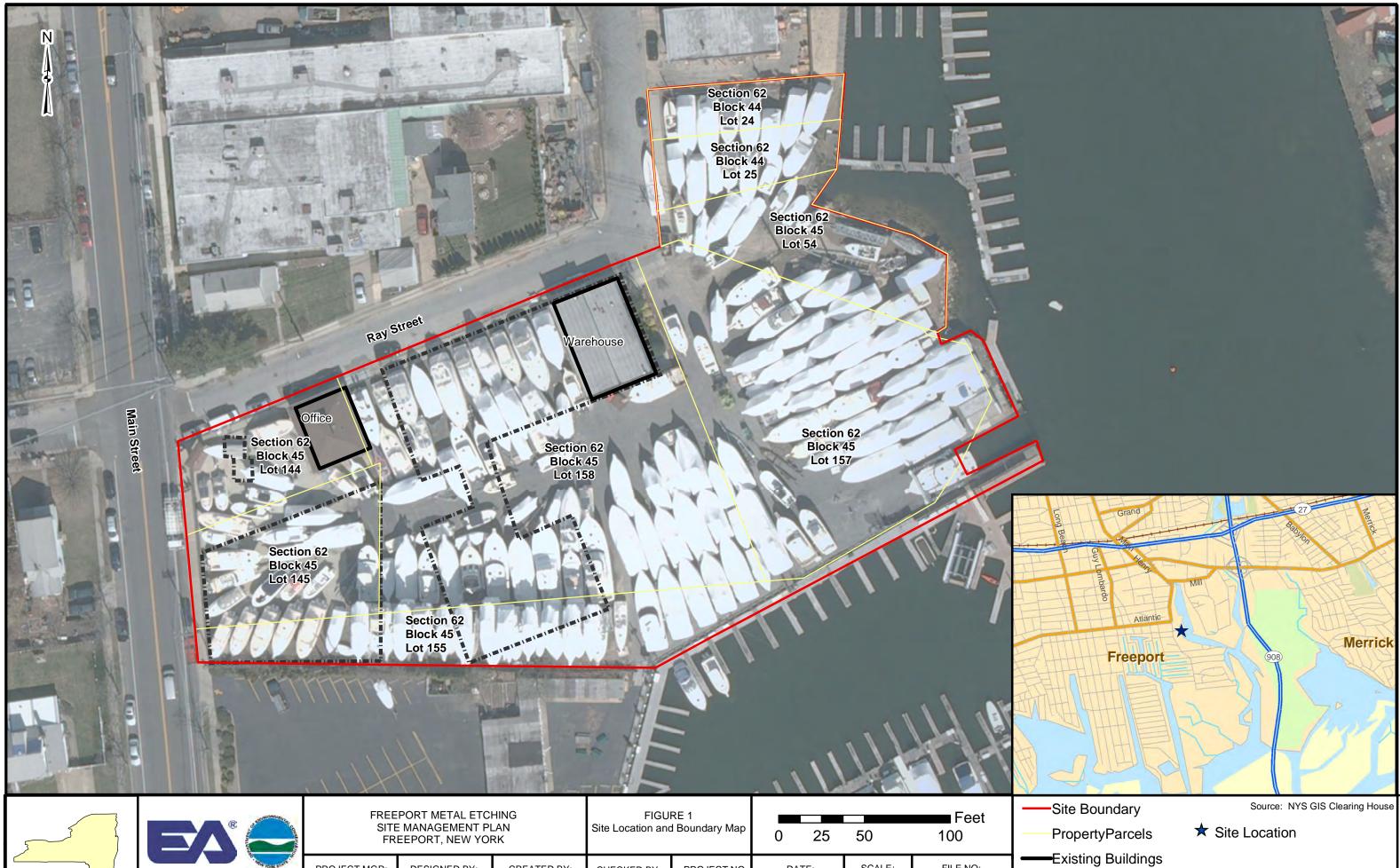
- The IC employed at this site is unchanged from the date the control was put in place, or last approved by the NYSDEC
- Nothing has occurred that would impair the ability of the control to protect the public health and environment
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control

- Access to the site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document
- Use of the site is compliant with the ENs.
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative]

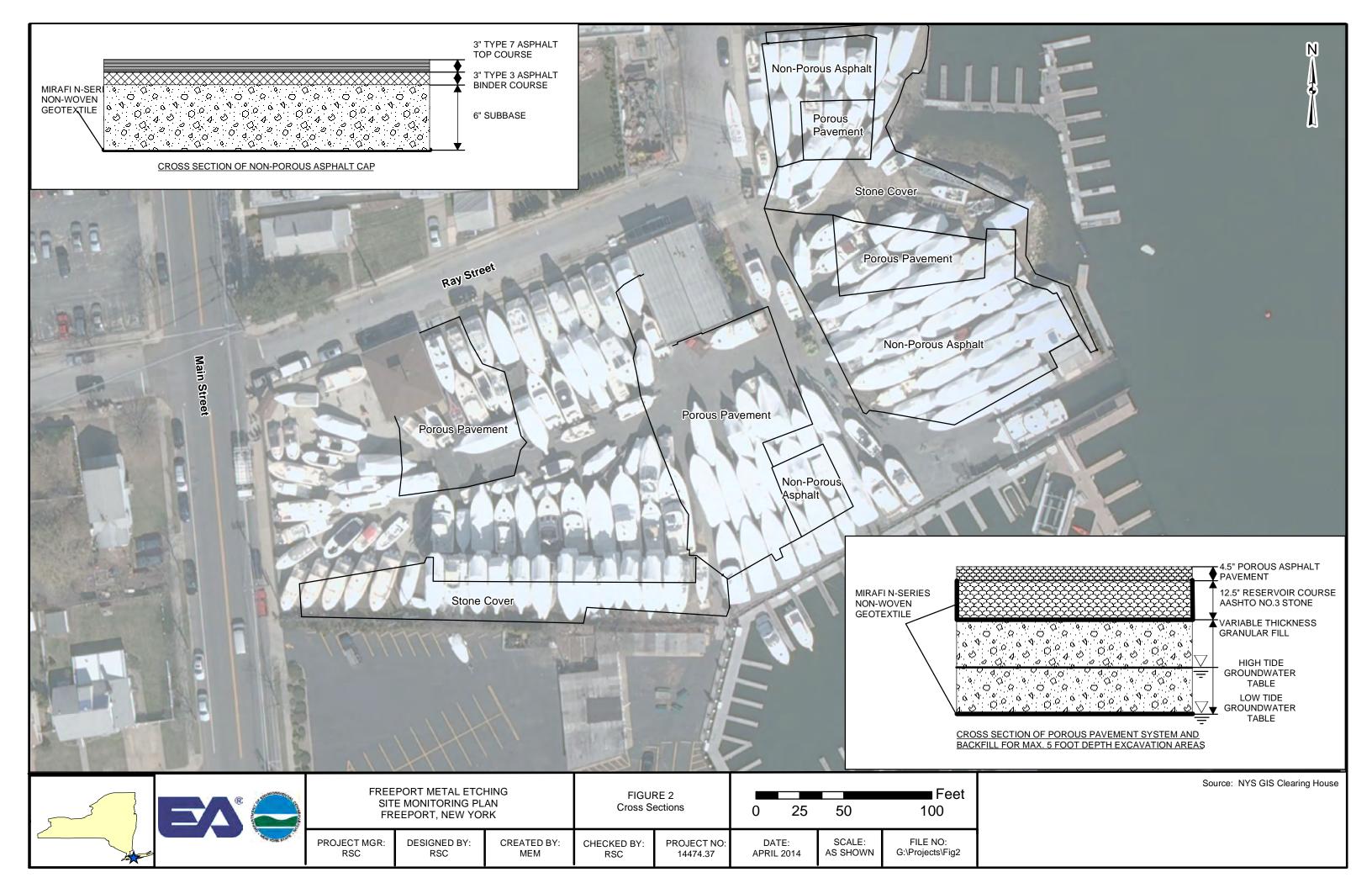
5.3 PERIODIC REVIEW REPORT

A Periodic Review Report will be submitted to the NYSDEC every year, beginning 18 months after approval of the Final Engineering Report. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Appendix A (Environmental Notices). The report will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. Media sampling results will also incorporated into the Periodic Review Report. The report will include:


- Identification, assessment, and certification of all ECs/ICs required by the remedy for the site
- Results of the required annual site inspections and severe condition inspections, if applicable
- All applicable inspection forms and other records generated for the site during the reporting period in electronic format
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions
- Data summary tables and graphical representations of contaminants of concern by media (e.g., groundwater, soil vapor), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends

- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific Remedial Action Work Plan, ROD or Decision Document;
 - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - The overall performance and effectiveness of the remedy.

The Periodic Review Report will be submitted, in electronic-copy format, to the NYSDEC Central Office and Regional Office in which the site is located, and in electronic format to NYSDEC Central and Regional Offices, and the NYSDOH Bureau of Environmental Exposure Investigation.


5.4 CORRECTIVE MEASURES PLAN


If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an IC/EC, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC.

	FREEPORT METAL ETCHING SITE MANAGEMENT PLAN FREEPORT, NEW YORK			FIGURE 1 Site Location and Boundary Map		0	25	50	Feet 100	
	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37		ATE: L 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\SMP\FIG1	

Approximate Locations of Former Buildings

Source: NYS GIS Clearing House

- Surveyed Location of Excavated Underground Storage Tanks 1 and 2 ---- Excavation Area Boundaries
- Approxmate Location of Excavated Underground Storage Tanks 3 and 4
 - Cross Section

PROJECT MGR: RSC

and the

DESIGNED BY: RSC

CREATED BY: MEM

CHECKED BY: RSC

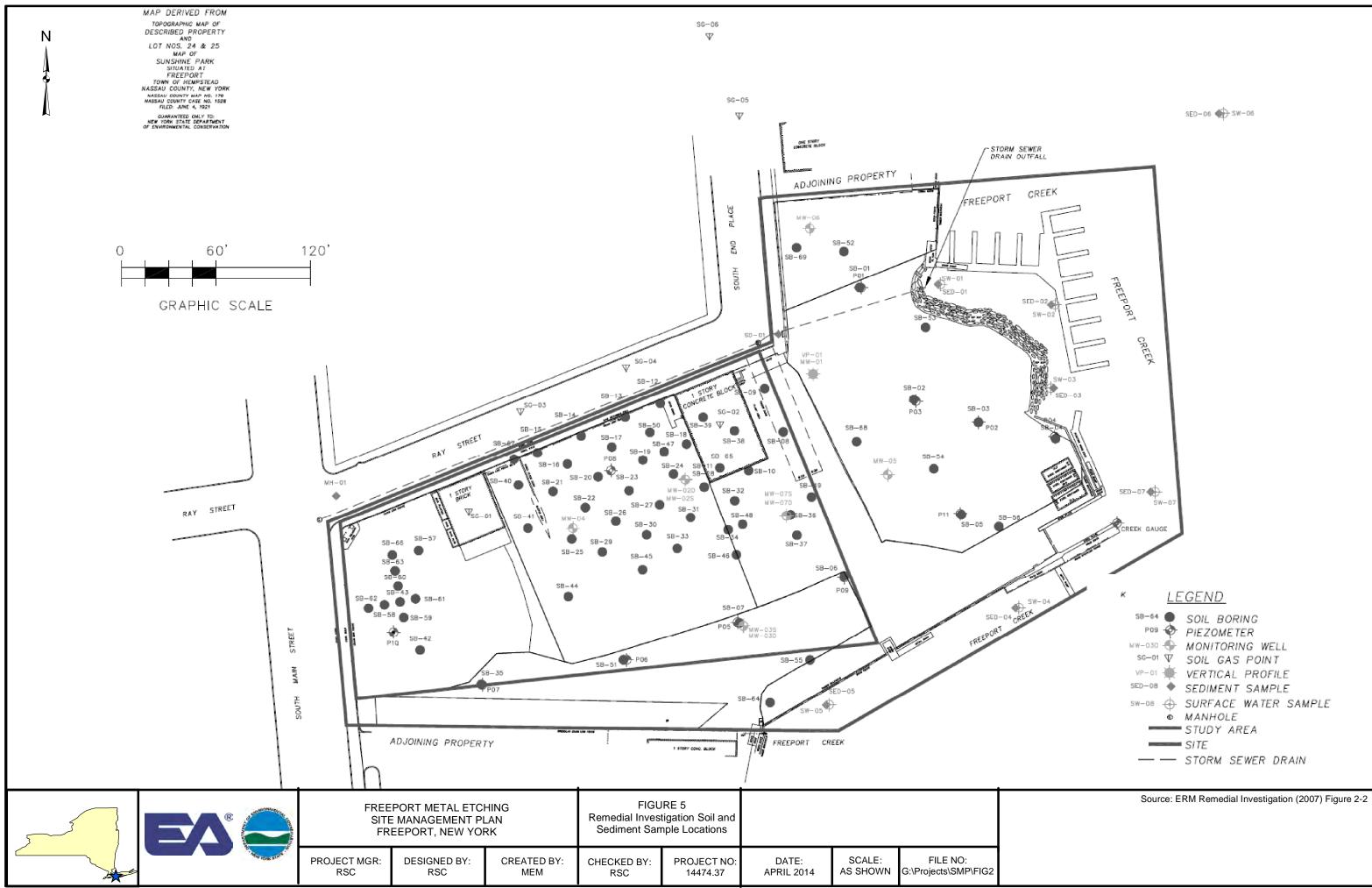
PROJECT NO:

14474.37

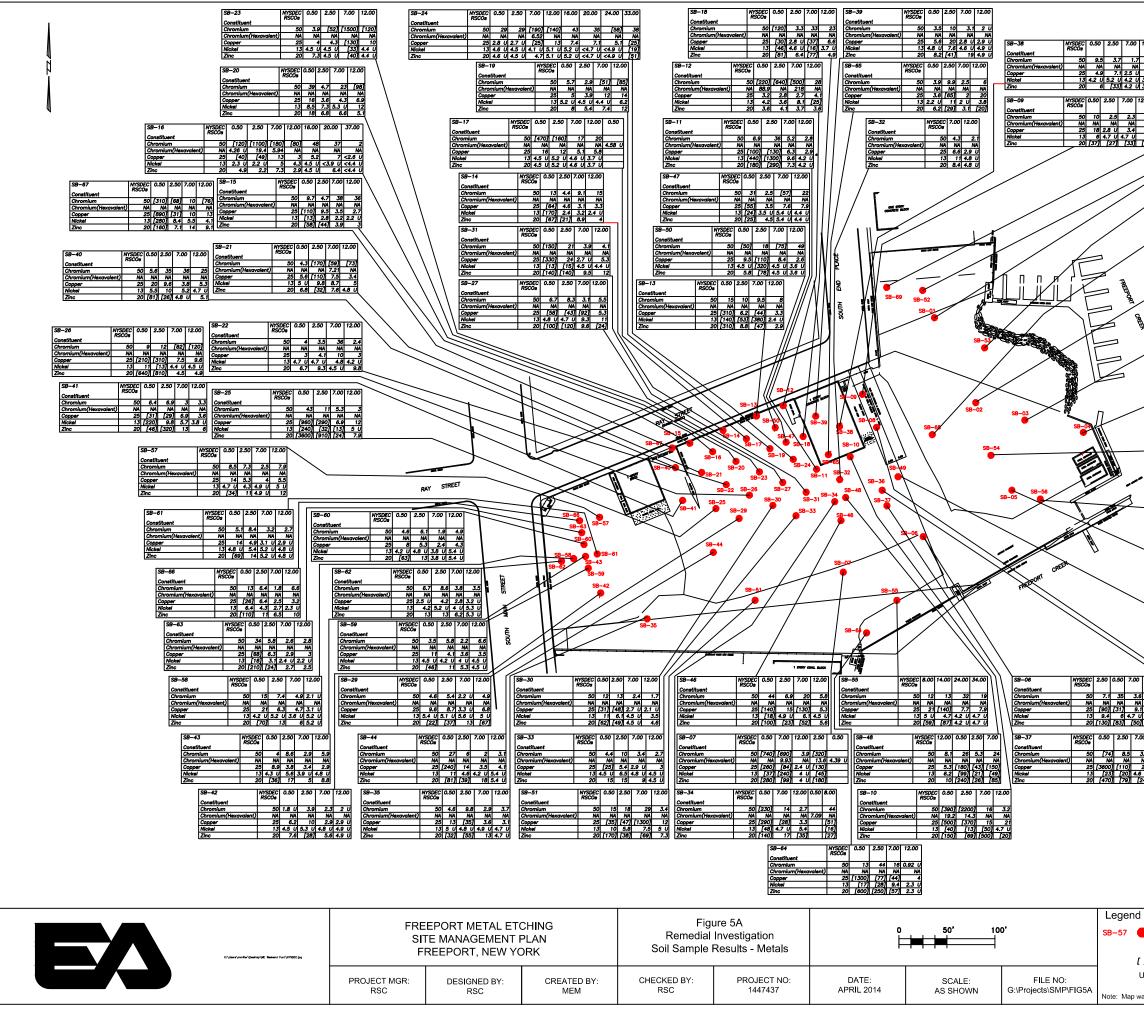
FILE NO:

G:\MegalEtching\ SMP\Fig4

SCALE: AS SHOWN


DATE:

APRIL 2014


Monitoring Well (Groundwater Elevation ft amsl)

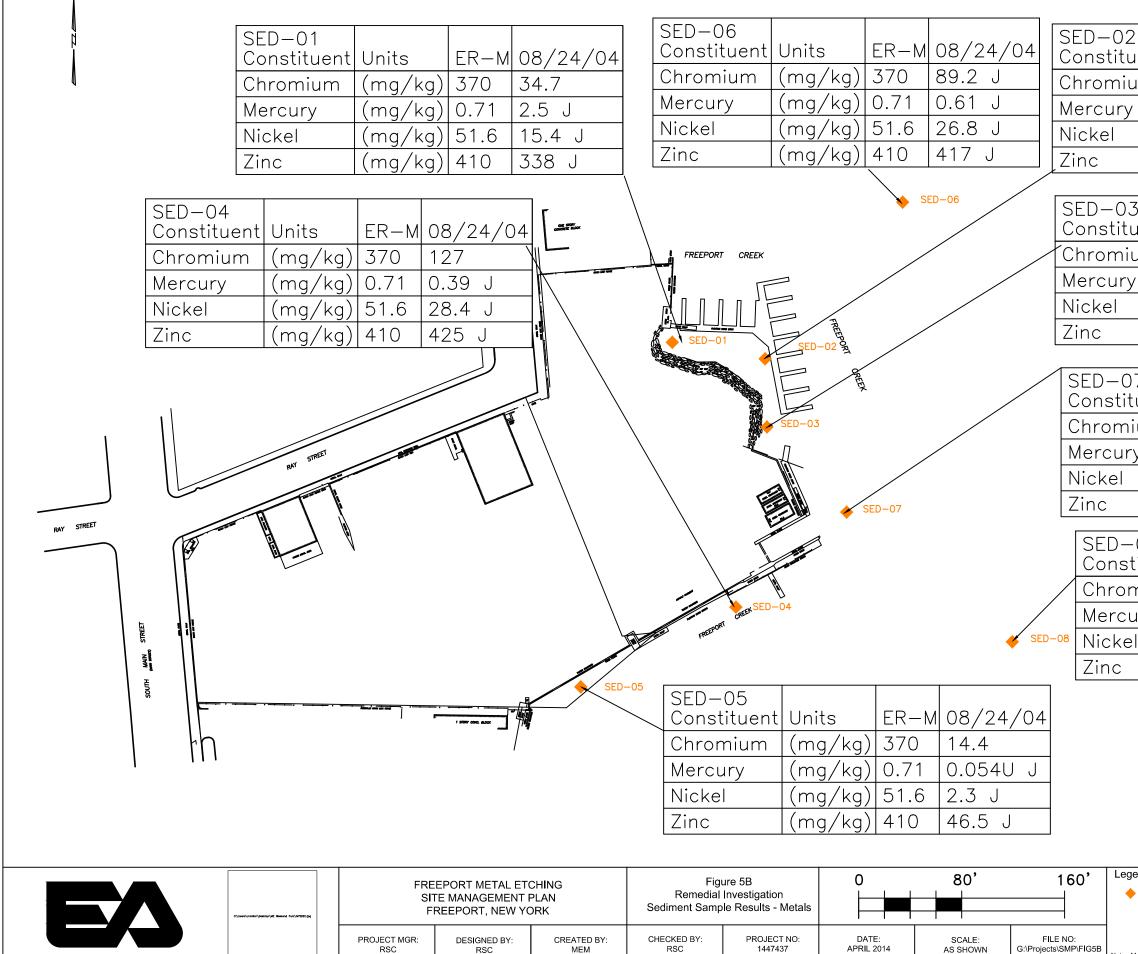
Groundwater Contours

Groundwater Flow Direction

	SB-69	NYSDEC	0.50	2.50	7.00	12.00	
	Constituent	RSCOs					
	Chromium Chromium(Hexavalent)	50 NA	6.7 NA	3 NA	2.8 NA	3.5 NA	
0 7.00 12.00	Copper Nickel	25 13	9.7 4.5	3.6 2.2 U	3.5 2.3 U	4.1 2.2 U	
.7 1.7 1.8	Zinc	20	[23]	4.8	4.5	3.2	
14 NA NA 1.1 2.5 U 2.5	SB-52 Constituent	NYSDEC RSCOs	0.50	2.50	7.00	12.00	
U 4.2 U 3.8 U 3] 4.2 U 3.8 U	Chromium Chromium(Hexavalent)	50 NA	[100] NA	34 NA	NA	7 7 NA	
7.00 12.00	Copper Nickel	25 13	[100] 6.2	[180 [21	5.3		
	Zinc	20	[48]	[1200		[150]	
2.3 2.1 NA NA	SB-01	NYSDEC RSCOa	0.50	2.50	7.00	12.00	
<u>3.4 3.3</u> 4.7 U 9.9	Constituent Chromium	50	14	13	14	3.4	
	Chromium(Hexavalent) Copper	NA 25	NA [530]	NA [5700]		NA 15	
	Nickel Zinc	13	9 [140]	9.3 [790]	6.9	5 U 5 U	
	SB-53	NYSDEC RSCOs	0.50			2.00	
	Constituent	RSCOs 50	27	18		6.6	
	Chromium Chromium(Hexavalent)	NA	NA	NA	6.1 NA	NA	
	Copper Nickel	25 13	[85]			5 1.9 U	
	Zinc	20	[130]	[95]	[26]	13	
	SB-68 Constituent	NYSDEC RSCOs	0.50	2.50	7.00	12.00	
	Chromium Chromium(Hexavalent)	50 NA	42 NA	7.3	3.4 NA	5.5 NA	
	Copper Nickel	25	[540] 10	[35] 4.4	[160] 2.2 U	24	
_	Zinc	20	[200]	[110]		[160]	
	SB-02	NYSDEC RSCOs	0.50	2.50	7.00	12.00	
MO	Constituent Chromium	50	7	11200	13	9.5	
6	Chromium(Hexavalent) Copper	NA 25	NA [30]	24.3 [1600	NA	NA	
CREEK	Nickel Zinc	13	9.1 [110]	[19	[24] [130]	7.8	
<u>م</u> د	SB-03		7.00	0.50	2.50		
	Constituent	NYSDEC RSCOs	7.00	0.30	2.50		
	Chromium Chromium(Hexavalent)	50 NA	22 NA	[57 4.56 (
5	Copper Nickel	25 13	[640] [20]	[2000] [180	11 5.2 U	
	Zinc	20	[360]	[1600	[13 [240	13	
	SB-04	NYSDEC RSCOs	0.50	2.50 7.	.00 12	.00	
	Constituent Chromium Chromium(Hexavalent)	50 NA	14 NA	5.7 NA	22 NA	22 NA	
	Copper Nickel	25	[39]	[40] [1	00]	10	
	Zinc		[22]		60] [31]	
\ \	SB-54	NYSDEC RSCOa	0.50	2.50	7.00 1	2.00	
	Constituent Chromium	50	3.9		24	14	
	Chromium(Hexavalent) Copper	NA 25	NA 16	15	NA [170]	NA 4.4	
	Nickel Zinc	13 20	5.1 U 14		[15] [260]	4.7	
	.SB-56	NYSDEC RSCOs	8.00	14.00	24.00	38.00	
	Constituent Chromium	50	14	2.2 U	31	5.9	
	Chromium(Hexavalent) Copper	NA 25	NA [57]	NA 3.3 U	NA [69]	NA 3.5	
	Nickel Zinc	13 20	[16]	5.6 U 5.6 U	5 U 5 U	4.3 13	
	SB-05	NYSDEC RSCOs	0.50	2.50 7.	00 12.	00	
	Constituent						
	Chromium Chromium(Hexavalent)	50 NA	30 NA	NA	NA .	1.9 NA	
	Copper Nickel	25 13	[87] 9.3	[69] § 7.7 5 [87] [3	0.6 2 U 4.2	2.9 U	
	Zinc					_	
	SB-49 Constituent	NYSDEC RSCOs	0.50	2.50 7	.00 12	.00	
	Chromium Chromium(Hexavalent)	50 NA	14 NA	9.5 NA	16 NA	11 NA	
\searrow	Copper Nickel		[32]	17		37] 5.5	
	Zinc		[73]	[160] [54]	
50 7.00 12.00	SB-08	NYSDEC RSCOs	0.50	2.50	7.00	2.00	
35 3.6 9	Constituent Chromium	HSC08 50	18	12	3.1	3.4	
NA NA NA	Chromium(Hexavalent) Copper	NA 25	NA [81]	NA	NA 3.1 U	NA 2.7	
31] 9.1 2.7 U 6 4.7 U 4.5 U 83] [50] 4.5 U	Nickel	13	[34]	6.7	5.2 U ·	4.5 U	
	Zinc	20					
2.50 7.00 12.00	SB-36 Constituent	NYSDEC RSCOs	0.50	2.50	7.00	12.00	
8.5 3.6 7.7 NA NA NA	Constituent Chromium Chromium(Hevaualent)	50 NA	23 NA	6 NA	12 NA	3.1 NA	MAP DERIVED FROM
[110] 22 [83]	Chromium(Hexavalent) Copper	25	[65]	9.6	[64]	2.2 U	TOPOGRAPHIC MAP OF
[20] 4.6 U 5 U [79] [24] [130]	Nickel Zinc	13 20		4.9 U [32]	9.9 [140]	3.7 U 3.7 U	DESCRIBED PROPERTY AND
							LOT NOS. 24 & 25
							MAP OF SUNSHINE PARK
							SITUATED AT
							FREEPORT TOWN OF HEMPSTEAD
							NASSAU COUNTY, NEW YORK NASSAU COUNTY MAP NO. 179
							NASSAU COUNTY CASE NO. 1528
							FILED: JUNE 4, 1921

FILED: JUNE 4, 1921 GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATIO

SB-57 🔴


[]

U

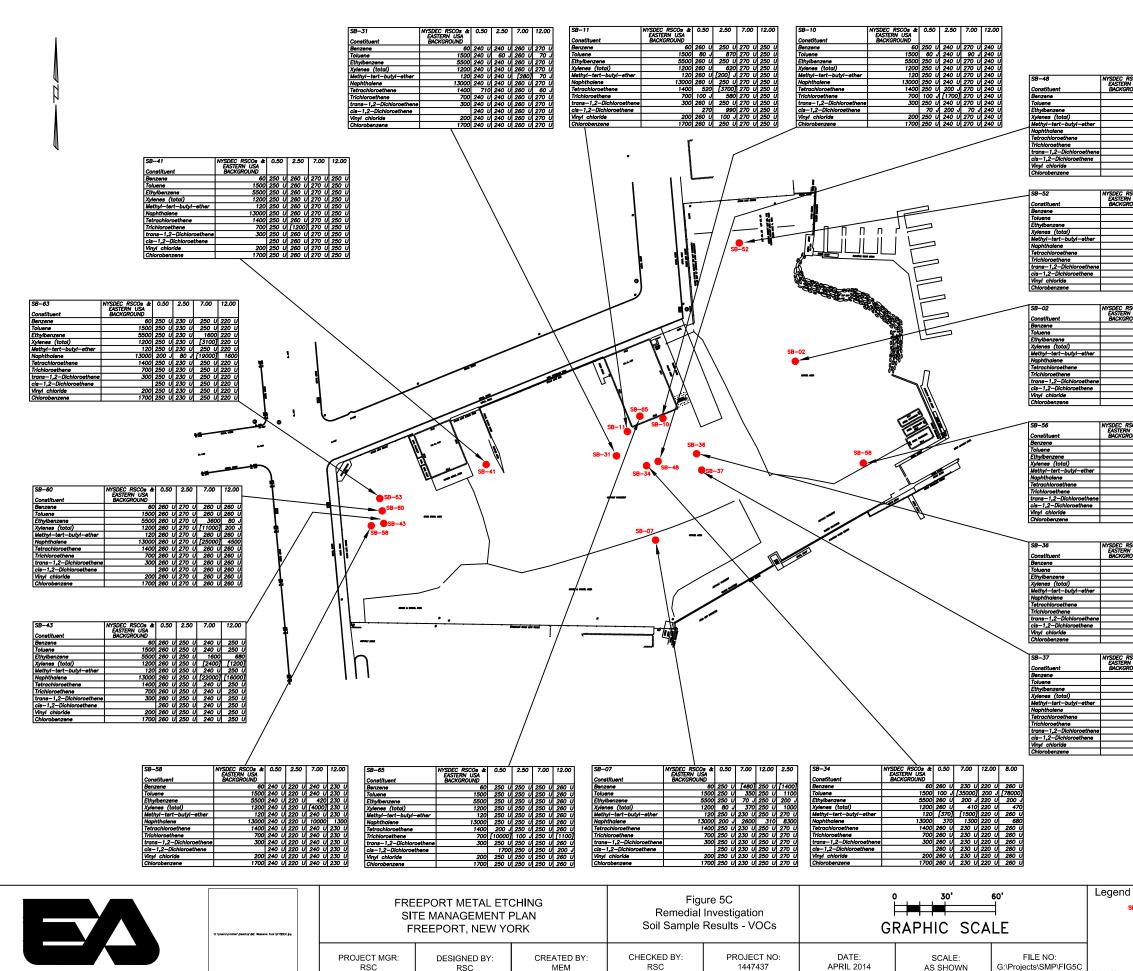
Concentrations of constituents are shown in milligrams per kilogram (mg/kg) Detected soil concentration is above NYSDEC TAGM SCO's

Not Detected at indicated detection limit

Soil boring location

RSC

RSC


1447437

APRIL 2014

AS SHOWN

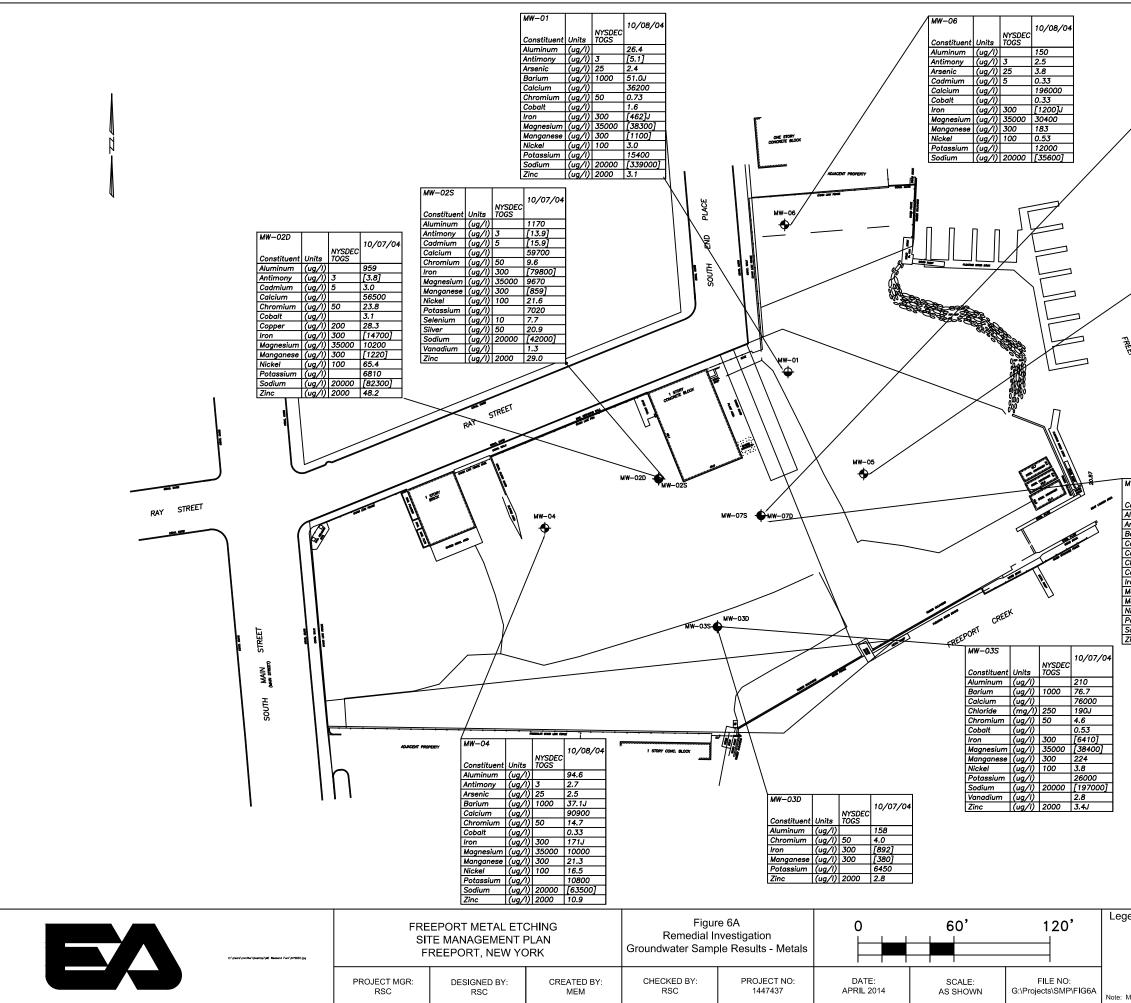
G:\Projects\SMP\FIG5B

-02 tituent	U	nits	EF	₹—M	08	8/24/04	
mium	(r	ng/kg)	37	70	1 (5.0	
ury	(r	ng/kg)	0.	71	0.	.065 J	
el	(r	ng/kg)	5	1.6	8.	8 J	
	(r	ng/kg)	4	10	9	3.2 J	
	<u> </u>				<u> </u>		
-03 stituent	U	nits	E	R-M	0	8/24/04	
mium	(r	ng/kg)		70		.3	
ury	(r	ng/kg)	0	.71	0	.059U J	
el	(r	mg/kg)	5	1.6	3	.2 J	
	(r	mg/kg)	4	10	5	9.7 J	
~ 7							
-07 stituent	t L	Jnits	E	IR-N	1 C	8/24/04	
omium	(mg/kg)		370		3.4	
cury	(mg/kg)).71	C).047U J	
el	(mg/kg)) 5	51.6	1	.4 J	
:	(mg/kg)	4	-10	1	6.5 J	
D-08]
nstitue		(~ ` `			08/24/04	-
romiun	1	(mg/k)	<u>g)</u>	370	1	6.5	-
rcury		(mg/k)	<u>9)</u> 2)	0./ 51 (0.089 J	-
ckel		(mg/k)	$\frac{y}{y}$	410		2.6 J 26.5 J	-
1C		(шу/к	<u> </u>	410		20.0 0	
					DE L NAS	TOPOGRAPHIC MAP OF SCRIBED PROPERTY AND OT NOS. 24 & 25 MAP OF SUNSHINE PARK STUATED AT FREEPORT TOWN OF HEMPSTAD SAU COUNTY ONE MO. 178 SAU COUNTY ONE MO. 178 SAU COUNTY ONE MO. 178 FRED: JUNE 4. 1921 GUANNEED ONLY TOR SUM COUNTY COME MO. 1288 FRED: JUNE 4. 1921 GUANNEED ONLY TOR WITCH STATE COMERCIANTON	
Legend	, Se	diment sample locat	ion				
ER-M	Eff	ect Range-Median-	Values			SDEC Technical ts (NYSDEC 1999)	
Note: Map was deve	eloped f	or the 2007 Remedial In	vestigat	ion by Enviror	nmenta	Remedial Management, Inc.	

SDEC RSCOB & ASTERN USA	12.00	0.50	2.50	7.00
BACKGROUND				
60	270 U	260 U	270 U	250 U
1500	270 U	260 U	270 U	60 J
5500	270 U	260 U	270 U	250 U
1200	270 U	260 U	270 U	80 J
120	[450]	260 U	60 J	250 U
13000	100 J	260 U	200 J	640
1400	270 U	260 U	270 U	200 J
700	200 J	260 U	80 J	[730]
300	270 U 60 J	260 U 260 U	270 U 270 U	250 U 70 J
200		260 U 260 U	270 U 270 U	70 J 250 U
1700		260 U	270 U	250 U
	2/0 0	200 0	2/0 0	200 0
DEC RSCOs & ASTERN USA	0.50	2.50	7.00	12.00
astern usa Background				
60	240 U	250 U	250 U	260 U
1500	240 U	250 U	360	80 J
5500	240 U	250 U	5200	1500
1200	240 U	250 U	[4000]	[1700]
120	240 U	250 U	250 U	260 U
13000	240 U	250 U	6700	2800
1400	240 U	250 U	250 U	260 U 260 U
700	240 U	250 U	250 U	260 U
300	240 U	250 U 250 U	250 U	260 U
	240 U 240 U	250 U 250 U	250 U 250 U	260 U 260 U
200	240 U	250 U 250 U	250 U 250 U	260 U
,700	270 0	200 0	200 0	200 0
DEC RSCOs & ASTERN USA BACKGROUND	0.50	2.50	7.00	12.00
ASIERN USA BACKGROUND				
60	250 U	260 U	250 U	260 U
1500	250 U	260 U	250 U	260 U
5500	250 U	1600	200 J	260 U
1200	250 U	[2000]	60 J	260 U
120	250 U	260 U	250 U	260 U
13000 1400	250 U 250 U	1200 260 U	3800 250 U	350 260 U
700	250 U	260 U	250 U	260 U
300	250 U	260 U	250 U	260 U
	250 U	260 U	250 U	260 U
200	250 U	260 U	250 U	260 U
1700	250 U	260 U	250 U	260 U
		1		1
DEC RSCOs &	8.00	14.00	24.00	38.00
DEC RSCOs & ASTERN USA MACKGROUND				
ACKGROUND 60	260 0	/ 260 (J 250 U	J 230 U
ACKGROUND 60 1500	260 0	1 260 0 260 0	J 250 U J 250 U	/ <u>230 U</u> / 230 U
ACKGROUND 60 1500	260 (270 [14000	/ 260 (260 (7 28)	U 250 (U 250 (U 250 (D 250 (/ <u>230 U</u> / <u>230 U</u> / 230 U
ACKGROUND 60 1500 5500 1200 120	260 (270 [14000 [15000 260 (/ 260 (260 (260 (28) 28) 28) 280 (260 (U 250 0 U 250 0 D 250 0 D 250 0	/ 230 U / 230 U / 230 U / 230 U / 230 U / 230 U
ACKGROUND 60 1500 5500 1200 1200 13000	260 (270 [14000 [15000 260 (/ 260 (260 (280 (280 (280 (260 (200 (200)	U 250 0 U 250 0 D 250 0 D 250 0 U 250 0	J 230 U J 230 U J 230 U J 230 U J 230 U J 230 U J 230 U
ACKGROUND 60 1500 5500 1200 1200 13000	260 (270 [14000 [15000 260 (11000 260 (/ 260 (260 (280] 280] 320 / 260 (120) / 260 (U 250 0 U 250 0 D 250 0 D 250 0 D 250 0 U 250 0 D 60 0 U 250 0	/ 230 U / 230 U
ACKGROUND 600 1500 1500 1200 1200 13000 1400 700	260 0 270 [14000 [15000 260 0 260 0 260 0	/ 260 (260 (260 (28) 260 (260 (260 (260 (260 (U 250 0 U 250 0 D 250 0 U 250 0 U 250 0 U 250 0 U 250 0 U 250 0	/ 230 U / 230 U
ACKGROUND 60 1500 5500 1200 1200 13000	260 0 270 [14000 [15000 260 0 260 0 260 0 260 0	/ 260 (260 (260 (260 (260 (260 (260 (260 (260 (260 (U 250 0 U 250 0 D 250 0 U 250 0	/ 230 U / 230 U
ACKGROUND 60 1500 5500 1200 1200 13000 1400 700 300	260 (27([14000 [15000 260 (260 (260 (260 (260 (260 (/ 260 (260 (260 (280 (280 (280 (260 (260)	U 250 0 U 250 0 D 250 0 U 250 0	/ 230 U / 230 U
ACKGROUND 60 1500 1200 13000 13000 1400 700 300 200	260 (27([14000 [15000 260 (260 (260 (260 (260 (260 (260 (260 (260 (/ 260 () 260 () 260 () 280 () 280 () 260	U 250 0 U 250 0 D 250 0 U 250 0	/ 230 U / 230 U
ACKGROUND 60 1500 5500 1200 1200 13000 1400 700 300	260 (27([14000 [15000 260 (260 (260 (260 (260 (260 (/ 260 () 260 () 260 () 280 () 280 () 260	U 250 0 U 250 0 D 250 0 U 250 0	/ 230 U / 230 U
ACKGROUND 60 1500 1200 13000 13000 1400 700 300 200	260 (27([14000 [15000 260 (260 (260 (260 (260 (260 (260 (260 (260 (/ 260 () 260 () 260 () 280 () 280 () 260	U 250 0 U 250 0 D 250 0 U 250 0	/ 230 U / 230 U
60 1500 1500 1200 1200 13000 1400 1400 3300 1400 1400 1400 1	260 (270 [14000 [15000 260 (260 (/ 260 (260 (280 (280 (280 (280 (260 (260)	J 250 (J 250 (2 250 (2 250 (2 250 (J 250 (2 250 (J 2 250 ()	1 230 U 1 230 U
44CKGKOUND 60 1500 1200 1200 13000 1400 700 300 200 1700 200 46CED 154	260 (27([14000 [15000 260 (260 (260 (260 (260 (260 (260 (260 (260 (/ 260 () 260 () 260 () 280 () 280 () 260	U 250 0 U 250 0 D 250 0 U 250 0	/ 230 U / 230 U
60 1500 5500 1200 1300 1300 13000 1400 1400 3300 200 1700 300 1700 300 1700	260 (270 [14000 260 (260 (2	2.50	J 250 (J) J 250 (I) D 250 (I) D 250 (I) J 250 (I)	230 U 230 U
42CKCROUND 60 1500 1200 1200 1200 13000 1400 700 300 200 1700 300 200 1770 8DEC RSCOs & ASTERN USA 34CKGROUND 60	260 (270 [14000 [15000 260 (260 (260))))))))))))))))))))))))))))))))))))	2.50 U	250 U 250 U	230 U 230 U
60 1500 5500 1200 1200 1300 1300 1400 1400 700 300 700 300 1700 200 1700 80EC RSC0s & ASTERN USA ASSTERN USA 405CRR0UND 60 1500	260 (270 [14000 [15000 260 (260 (260))))))))))))))))))))))))))))))))))))	250 U 250 U 250 U 260 1 260 0 260 0 260 0 260 0 260 0 260 0 250 U 250 U 250 U 250 U 250 U	7.00 250 U 250 U	1 230 U 230 U
ALKCROUND 60 1500 5500 1200 1400 1400 700 200 1700 200 1700 8DEC RSC0s & ASTERN USA ASTERN USA 60 1500 1500 1500 1200	260 (270 [14000 [15000 260 (260 (260))))))))))))))))))))))))))))))))))))	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	250 U 250 U	1 230 U 230 U
2000 1500 1500 1200 1200 1200 1200 1200 1200	260 (270 [14000 260 (260 (2	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	7.00 7.00 750 U 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	1 230 U 230 U
ALKRONAL 42,KRONAL 1500 1500 1200 1200 1200 1200 1200 200 200 200	260 (277 [14000 [15000 260 (260 (260))))))))))))))))))))))))))))))))))))	2.50 250 U 250 U 260 0 260 0 260 0 260 0 260 0 260 0 260 0 260 0 250 U 250 U	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	1 230 U 230 U
ALCRONUL ALCRONUL 5500 1500 1200 1200 1200 1200 1200 1200 1200 1400 2000 2000 1400 300 2000 1400 500 1200 1500 1000	260 (277 [14000 260 (260 (2	250 U 250 U 260 I 260 U 250 U	250 U 250 U	1 230 U 230 U
842.567049 842.567049 1500 1500 1200	260 (270 [14000 260 (260 (2	260 1 260 1 260 1 200 1 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	1 230 U 230 U
84.KG/MB 60 1500 1500 1200 100	280 (1 277(114000) 280 (280 (280 (280 (3700)) 280 (3700) 280 (3700) 280 (3700) 250 (3700) 25	1 200 1 2 260 1 2 280 1 280 1 322 280 1 2 260 1 280 1 280 1 280 1 280 1 280 1 280 1 280 1 280 1 280 1 280 1 280 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 200 1	250 (250 (25	1 230 U 2 30 U
84.KG/MB 60 1500 1500 1200 100	280 (1 277(114000) 280 (280 (280 (280 (3700)) 280 (3700) 280 (3700) 280 (3700) 250 (3700) 25	1 200 1 2 260 1 2 280 1 280 1 322 280 1 2 260 1 280 1 280 1 280 1 280 1 280 1 280 1 280 1 280 1 280 1 280 1 280 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 250 1 200 1	1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 250 1/250 250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 1/250 3/200 1/250 3/200	1 230 U 1 230 U 2 30 U
842.567049 842.567049 1500 1500 1200	200 L 277 277 277 276 260 L 260 L 250	260 1 260 1 250 U 250 U	J 250 L J 250 L 250 J 250 L 250 L 250 U 250 U 250 L 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 300 300	1 230 U 1 230 U 2 30 U
84.KKWWW 1500 1500 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 13000 1400 1700 1200 1	200 U 27(27(2) 27(2) 260 U 27(2) 260 U 260 U 26	250 U 250 U 260 1 260 1 250 U 250 U	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	1 230 U
ALCRONUL ALCRONUL 1500 1500 1200 1200 1200 1200 1200 1200 1200 1200 1200 1400 2000 1700 1400 1400 2000 1700 1500 100 100 100 100 100 100	200 (27(27(27(270) (15000 200 (1000) 200 (200 (200) 200 (200) 200 (200) 200 (200) 200 (200) 250 (250 U 250 U 260 1 260 1 250 U 250 U	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	1 230 U 1 230 U 2 30 U
ALCRONUL ALCRONUL 1500 1500 1200 1200 1200 1200 1200 1200 1200 1200 1200 1400 2000 1700 1400 1400 2000 1700 1500 100 100 100 100 100 100	200 (27(27(27(270) (15000 200 (1000) 200 (200 (200) 200 (200) 200 (200) 200 (200) 200 (200) 250 (250 U 250 U 260 1 260 1 250 U 250 U	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	1 230 U
84.CKONUU 94.CKONUU 1500 1500 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1400 200 1700 1400 100	200 (27(27(27(270) (15000 200 (1000) 200 (200 (200) 200 (200) 200 (200) 200 (200) 200 (200) 250 (250 U 250 U 260 1 260 1 250 U 250 U	250 U 250 U	1230 U 1230 U 1230 1230 U 1230 U 230 U 230 U <
BLCKROUND 800 1500 1500 1200 10	200 (t) 277 (14000 280 (t) 280	2000 1 2000 1 20	250 U 250 U	1 230 U 1 230 U 230 U 1 230 U 230 U 230 U 1 230 U 230 U <t< th=""></t<>
84.CK0/WB 64.CK0/WB 1500 1500 1200 10	200 (t 277 (14000 280 (t) 280 (t) 250 (t) 270	200 1 200 1	1 250 0 1 250 1 250 1 250 1 250 1 2 250 1 250 1 2 250 1 250 1 2 250 1 250 1 1 250 1 250 1 2 250 1 250 1 2 250 1 250 1 2 2 50 1 2 1 2 50 1 2 50 1 2 50 1 2 50 1 2 50 1 2 50 1 3 3 3 3 3 3 2 1 100 3 3 3 3 100 2 100 3 3 3 2 2 1	1 230 U 1 230 U 230 U 1 230 U 230 U 230 U 1 230 U 230 U 230 U 230 U 1 230 U 1 230 U 1 230 U 1 230 U 1 230 U 1 230 U 1 230 U 1 230 U 1 230 U 2 30
PLCROVAL 800 1500 1200 1200 1200 1200 1200 1200 12	200 (t) 277 (14000 280 (t) 280 (t) 270	2000 1 2000 1 20	250 U 250 U 250	1 230 U 1 230 U 230 1 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 <
84.CKONUU 64.CKONUU 1500 1500 1200 1200 1200 1200 1200 1400 200 1700 1400 1400 1700 1400 1700 100 100 100 100 100 100	280 (t 277) 276) (14000 280 (t 280) (t	2000 1 2001 2 2001 2 20	250 U 250 U	1 230 U 1 230 U 230 U 1 230 U 230 U 230 U 1 230 U 230 U 230 U 230 U 1 230 U 1 230 U 1 230 U 1 230 U 1 230 U 1 230 U 1 230 U 1 230 U 2 230 U 2 30
PLACKOND PLACKOND 1500 1500 1200 1200 1200 1200 1200 1200	280 (t 277) 276) (14000 280 (t 280) (t	2 260 1 2 280 1 2 250 1 2 260 1 1 2 2 260 1 1 2 260 1 1	250 U 250 U	1 230 U 1 230 U 230 1 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 <
PLACKOND PLACKOND 1500 1500 1200 1200 1200 1200 1200 1200	280 (i 277) 270 (14000) 280 (i 280 (i	2 260 1 2 250	250 U 250 U	1230 U 230 U 230
84/CROVAD 84/CROVAD 1500 1500 1200 1200 1200 1200 1200 1200	200 (1 277) 271 (14000) 280 (1 280 (1	2 260 1 2 250	2 250 U 2 2 50 U 2	1230 U 230 U 230
PLCROVAL 800 1500 1500 120	200 (277 (14000 280 (280 (2	2 260 1 2 250 1 2 2	250 0 250 250 0 250 250 0 250 250 0 250 0 60 250 0 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 3000 250 1 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250 250 1 250<	1 230 U 1 230 U 1330 U 1 2330 U 1330 U 1 2330 U 1330 U 1 2330 U 1330 U 1 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 23
84.CK0/WB 84.CK0/WB 1500 1500 1200 1200 1200 1200 1200 1200 1200 1400 200 1700 1400 1400 1000 1700 1000 1200 1000 1200 100	200 (277 276 276 280 (280 (2	2 260 1 2 260 1 2 260 1 2 260 1 2 260 1 2 260 1 2 200 1 2 2 00 1 2	2 250 U 2 50 U	1230 U 230 U 230
PLCROVAL 800 1500 1500 120	200 (277 (14000 280 (280 (2	2 260 1 2 250 1 2 2	2 250 U 2 50 U	1 230 U 1 230 U 1330 U 1 2330 U 1330 U 1 2330 U 1330 U 1 2330 U 1330 U 1 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 2300 U 23

TOPOGRAPHIC MAP OF

TOPOGRAPHIC MAP OF DESCRIBED PROPERTY AND LOT NOS. 24 & 25 MAP OF SUNSHINE PARK STUATED AT FREEPORT TOWN OF HEMPSTEAD NASSAU COUNTY, NEW YORK MASSAU COUNTY CASE NO. 1538 FLED: JUNE 4, 1921


GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT

: Elevations shown established from Benchmark 22011 EL 9.642 from the Massau County Department of Public Works Benchmark Book. U.S.C. & C.S. Datum.

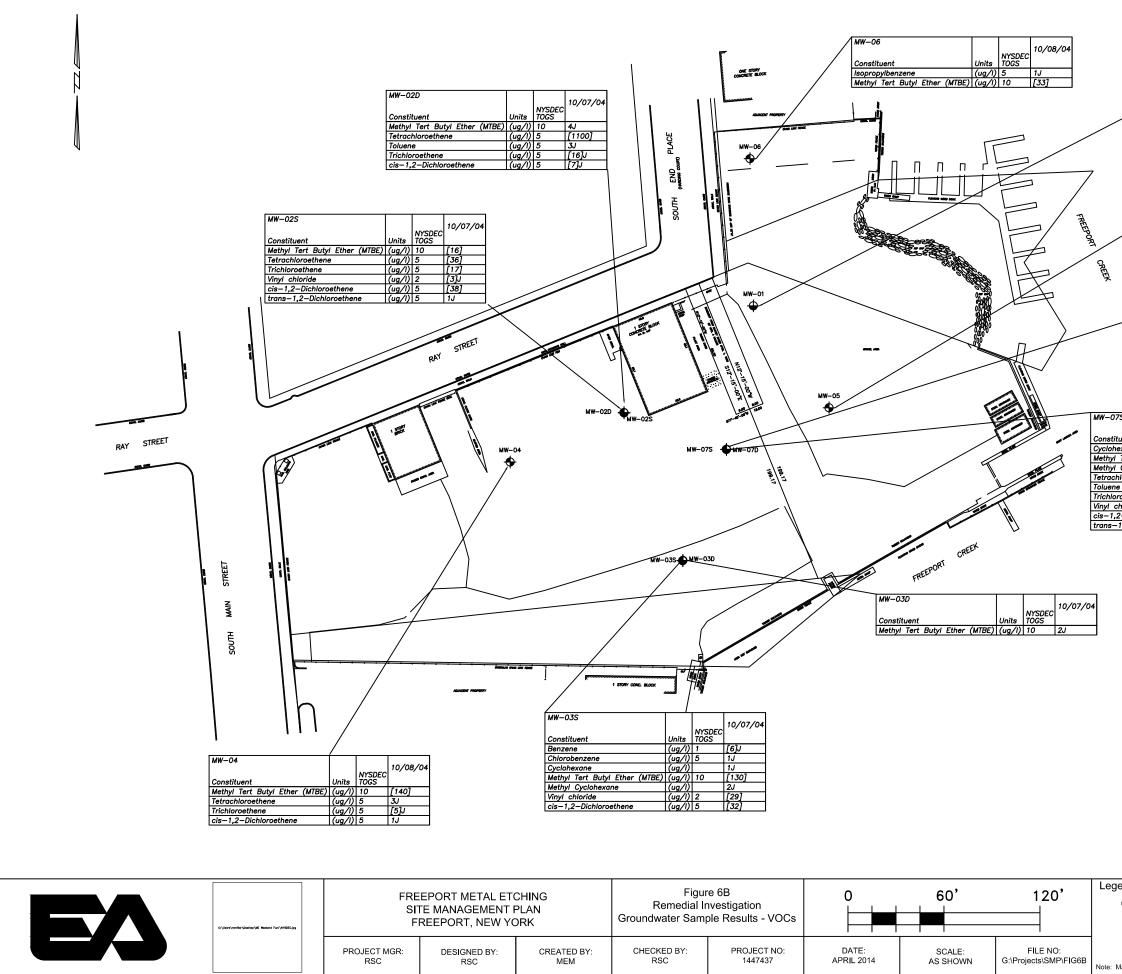
HORIZONTAL DATUM IS N.A.D. 1927 EST NASSAU COUNTY GIS GPS MONUMENTS BLISHED FRO BEARINGS SHOWN TAKEN FROM RECORD DESCRIPTIONS. ABSTRACT OF TITLE AND EASEMENTS FOR SUBJECT PARCEL AND ADJOINNE PARCELS NOT FROVIDED FOR THE PREPERATION OF THIS SURVEY. ABSENCE OF EASEMENTS DOES NOT DENY THE EXISTENCE OF SAME.

SB-56

Soil Boring location exceeding the NYSDEC RSCO (Recomended Soil Cleanup Objective per TAGM 4046) Concentrations reported in micrograms per kilogram (ug/mg)

MW-07S		NYSDEC	10/07/04
Constituent	Units	TOGS	
Aluminum	(ug/l)		64.5
Antimony	(ug/l)	3	[11.3]
Barium	(ug/l)	1000	310
Cadmium	(ug/l)	5	[6.2]
Calcium	(ug/l)		229000
Chromium	(ug/l)	50	2.0
Cobalt	(ug/l)		0.89
Iron	(ug/l)	300	[29200]
Magnesium	(ug/l)	35000	[58200]
Manganese	(ug/l)	300	[761]
Nickel	(ug/l)	100	2.8
Potassium	(ug/l)		31000
Sodium	(ug/l)	20000	[198000]
Vanadium	(ug/l)		0.60

MW-05			10/08/04
Constituent	Units	NYSDEC TOGS	
Aluminum	(ug/l)		96.8
Antimony	(ug/l)	3	[7.2]
Barium	(ug/l)	1000	[1050]J
Cadmium	(ug/l)	5	3.6
Calcium	(ug/l)		128000
Chloride	(mg/l)	250	[400]J
Chromium	(ug/l)	50	0.90
Chromium (Hexavalent)	(mg/l)	0.050	[0.069]J
Iron	(ug/l)	300	[17400]J
Lead	(ug/l)	25	6.2
Magnesium	(ug/l)	35000	[37800]
Manganese	(ug/l)	300	[529]
Nickel	(ug/l)	100	4.6
Potassium	(ug/l)		31300
Sodium	(ug/l)	20000	[243000]
Vanadium	(ug/l)		2.6
Zinc	(ug/l)	2000	7.2


	NYSDEC	10/07/04
Units	TOGS	
(ug/l)		227
(ug/l)	3	[4.1]
(ug/l)	1000	23.2
(ug/l)	5	1.3
(ug/l)		18200
(ug/l)	50	3.5
(ug/l)		1.7
(ug/l)	300	[6370]
(ug/l)	35000	4740
(ug/l)	300	[680]
(ug/l)	100	3.6
(ug/l)		2740
(ug/l)	20000	[42400]
(ug/l)	2000	9.8
	(ug/1) (ug/1) (ug/1) (ug/1) (ug/1) (ug/1) (ug/1) (ug/1) (ug/1) (ug/1)	Units TOGS (ug/l) 3 (ug/l) 1000 (ug/l) 5 (ug/l) 50 (ug/l) 50 (ug/l) 50 (ug/l) 300 (ug/l) 300 (ug/l) 300 (ug/l) 100

CREEK

TOPOGRAPHIC MAP OF DESCRIBED PROPERTY AND LOT NOS. 24 & 25 MAP OF SUNSHINE PARK SITUATED AT FREEPORT TOWN OF HEMPSTEAD NASSAU COUNTY, NEW YORK NASSAU COUNTY MAP NO. 179 NASSAU COUNTY CASE NO. 1528 FILED: JUNE 4, 1921

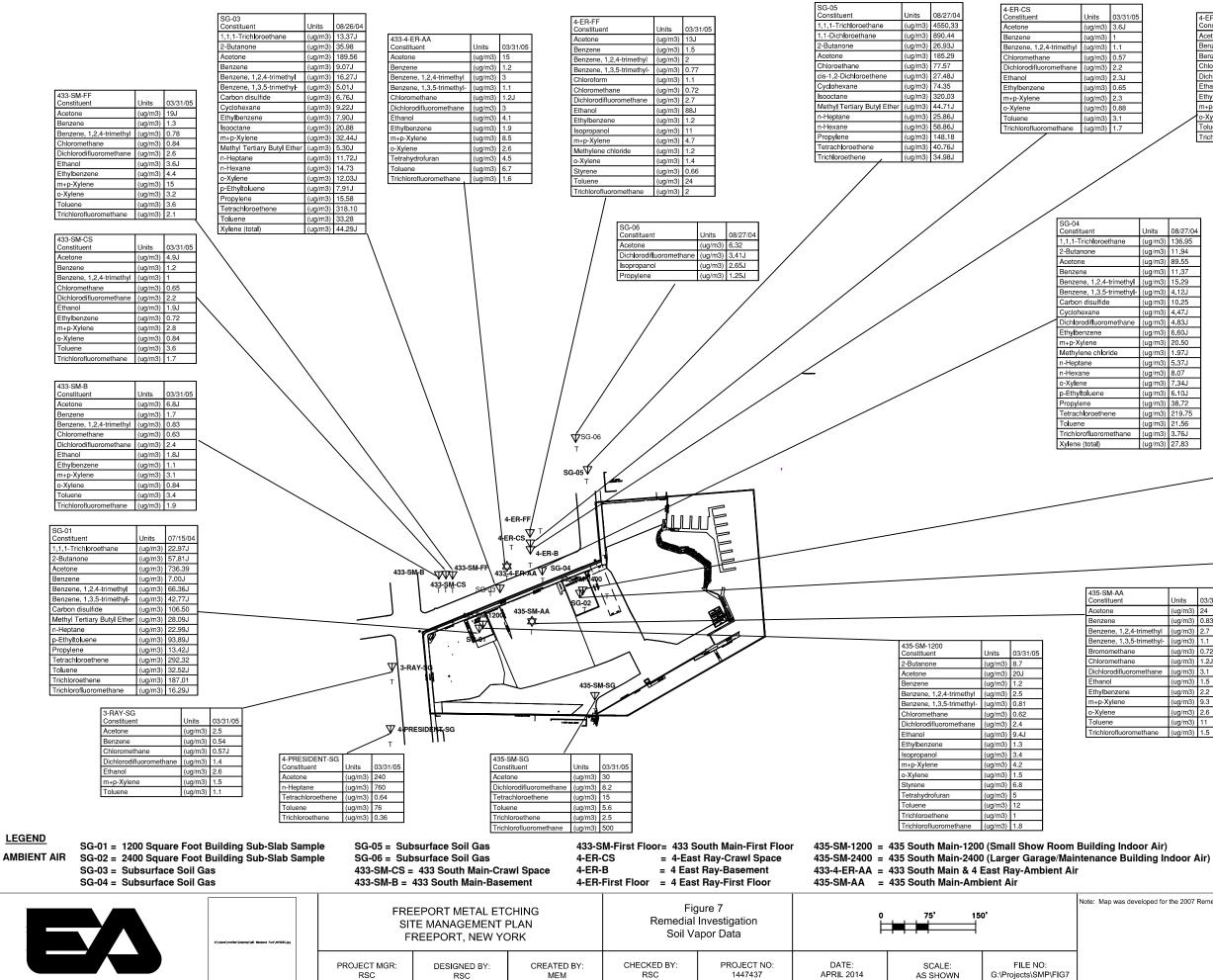
GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

end	
MW-05 🔶	Monitoring Well Location
[]	Detected groundwater concentration is above NYSDEC TOGS Class GA Groundwater Standard
J	Estimated value

MW-01		NYSDEC TOGS	10/08/04
Constituent	Units		
Methyl Tert Butyl Ether (MTBE)	(ug/l)	10	4J
Tetrachloroethene	(ug/l)	5	[13]
Trichloroethene	(ug/l)	5	3J

	MW-05 Constituent	Units	NYSDEC TOGS	10/08/04
1	Cyclohexane	(ug/l)		2J
[Isopropylbenzene	(ug/l)	5	2J
[Methyl Tert Butyl Ether (MTBE)	(ug/l)	10	[54]

MW-07D Constituent	Units	NYSDEC TOGS	10/07/04
Tetrachloroethene		5	[1600]
Trichloroethene	(ug/l)	5	[25]J
cis-1,2-Dichloroethene	(ug/l)	5	4J


7S tuent	Units	NYSDEC TOGS	10/07/04
		1005	
exane	(ug/l)		4J
Tert Butyl Ether (MTBE)	(ug/l)	10	[10]J
Cyclohexane	(ug/l)		8J
hloroethene	(ug/l)	5	3J
e	(ug/l)	5	2J
proethene	(ug/l)	5	[5]J
chloride	(ug/l)	2	[400]
2-Dichloroethene	(ug/l)	5	[370]
-1,2-Dichloroethene	(ug/l)	5	3J

MAP DERIVED FROM

TOPOGRAPHIC MAP OF DESCRIBED PROPERTY AND LOT NOS. 24 & 25 MAP OF SUNSHINE PARK SITUATED AT FREEPORT TOWN OF HEMPSTEAD NASSAU COUNTY, NEW YORK MASSAU COUNTY, NEW YORK MASSAU COUNTY MAP NO. 179 NASSAU COUNTY MAP NO. 179 NASSAU COUNTY MAP NO. 1528 FILED: JUNE 4, 1921 GUARANTEED ONLY TO:

GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

gend	
MW-05 🔶	Monitoring Well Location
[]	Detected groundwater concentration is above NYSDEC TOGS Class GA Groundwater Standard
J	Estimated value

	03/31/05	
3)	3.6J	
3)	1	
3)	1.1	
3)	0.57	
3)	2.2	
3)	2.3J	
3)	0.65	
3)	2.3	
3)	0.88	
3)	3.1	
3)	1.7	

4-ER-B Constituent	Units	03/31/05
Acetone	(ug/m3)	4.4J
Benzene	(ug/m3)	1.1
Benzene, 1,2,4-trimethyl	(ug/m3)	1.2
Chloromethane	(ug/m3)	0.73
Dichlorodifluoromethane	(ug/m3)	2.8
Ethanol	(ug/m3)	3.4J
Ethylbenzene	(ug/m3)	0.75
m+p-Xylene	(ug/m3)	2.4
o-Xylene	(ug/m3)	0.7
Toluene	(ug/m3)	3.3
Trichlorofluoromethane	(ug/m3)	2

1
Ν

	Units	08/27/04
oethane	(ug/m3)	136.95
	(ug/m3)	11.94
	(ug/m3)	89.55
	(ug/m3)	11.37
,4-trimethyl	(ug/m3)	15.29
,5-trimethyl-	(ug/m3)	4.12J
ide	(ug/m3)	10.25
	(ug/m3)	4.47J
romethane	(ug/m3)	4.83J
	(ug/m3)	6.60J
	(ug/m3)	20.50
oride	(ug/m3)	1.97J
	(ug/m3)	5.37J
	(ug/m3)	8.07
	(ug/m3)	7.34J
e	(ug/m3)	6.10J
	(ug/m3)	38.72
hene	(ug/m3)	219.75
	(ug/m3)	21.56
omethane	(ug/m3)	3.76J
	(ug/m3)	27.83

435-SM-2400 Constituent	Units	03/31/05
2-Butanone	(ug/m3)	12
Acetone	(ug/m3)	1800E
Benzene	(ug/m3)	30
Benzene, 1,2,4-trimethyl	(ug/m3)	320
Benzene, 1,3,5-trimethyl-	(ug/m3)	110
Cyclohexane	(ug/m3)	14
Dichlorodifluoromethane	(ug/m3)	13
Ethanol	(ug/m3)	120J
Ethylbenzene	(ug/m3)	290
Isopropanol	(ug/m3)	10
m+p-Xylene	(ug/m3)	1200
Methyl Tertiary Butyl Ether	(ug/m3)	390
n-Heptane	(ug/m3)	30
n-Hexane	(ug/m3)	64
n-Propylbenzene	(ug/m3)	87
o-Xylene	(ug/m3)	320
p-Ethyltoluene	(ug/m3)	410
Styrene	(ug/m3)	400
Tetrachloroethene	(ug/m3)	1
Toluene	(ug/m3)	370
Trichloroethene	(ug/m3)	2
Trichlorofluoromethane	(ug/m3)	21

				1,1
				2-E
				Ac
				Be
				Be
			_	Be
				Ca
				cis
M-AA				n-⊦
tuent	Units	03/31/05		0->
1e	(ug/m3)	24		p-E
ne	(ug/m3)	0.83		Pro
ne, 1,2,4-trimethyl	(ug/m3)	2.7		Tet
ne, 1,3,5-trimethyl-	(ug/m3)	1.1		То
methane	(ug/m3)	0.72		tra
methane	(ug/m3)	1.2J		Tri
rodifluoromethane	(ug/m3)	3.1		Tri
bl	(ug/m3)	1.5		Хy
enzene	(ug/m3)	2.2		
ylene	(ug/m3)	9.3		
ne	(ug/m3)	2.6		
ie	(ug/m3)	11		
orofluoromethane	(ug/m3)	1.5		

SG-02 Constituent	Units	07/15/04
1,1,1-Trichloroethane	(ug/m3)	35.19J
2-Butanone	(ug/m3)	56.92J
Acetone	(ug/m3)	84.80
Benzene	(ug/m3)	4.79J
Benzene, 1,2,4-trimethy	(ug/m3)	634.13
Benzene, 1,3,5-trimethyl-	(ug/m3)	321.00
Carbon disulfide	(ug/m3)	129.24
cis-1,2-Dichloroethene	(ug/m3)	283.88
n-Heptane	(ug/m3)	29.14J
o-Xylene	(ug/m3)	28.75J
p-Ethyltoluene	(ug/m3)	702.95
Propylene	(ug/m3)	10.46J
Tetrachloroethene	(ug/m3)	5771.83
Toluene	(ug/m3)	14.66J
trans-1,2-Dichloroethene	(ug/m3)	33.46J
Trichloroethene	(ug/m3)	16014.00
Trichlorofluoromethane	(ug/m3)	10.84J
Xylene (total)	(ug/m3)	63.40J


MAP DERIVED FROM TOPOGRAPHIC MAP OF

AND

MAP OF SITUATED AT

OF HEMPSTER WASSAU COUNTY MAP NO. 179 ASSAU COUNTY CASE NO. 1528 FILED: JUNE 4. 1921 GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT

4-President-SG = 4 President-Soil Gas = 435 South Main-Soil Gas 435-SM-SG 3-Ray-SG = 3 Ray-Soil Gas

DESIGNED BY: RSC

CREATED BY:

MEM

CHECKED BY:

RSC

PROJECT NO

14474.37

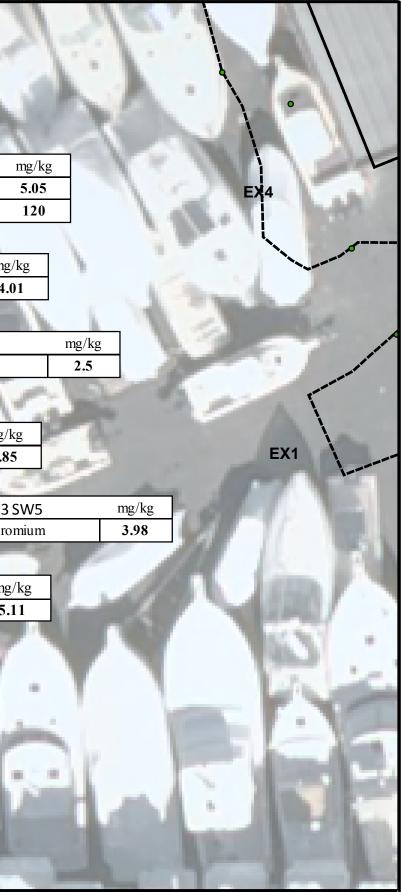
PROJECT MGR:

RSC

ন্

FILE NO: G:\Projects\Fig8

SCALE:


AS SHOWN

DATE:

APRIL 2014

---- Excavation Area Boundaries

		T1 SW1 Chromiu T1 B1 Chromium Nickel T1 B2 Chromium Nickel mg/kg 5.33		and the second se	EX3	EX3 SW Chromiu	m	mg/kg 3.34 T2 B1 Chromium Lead T2 B2 Chromium EX3 B3 Chromium	
EX3 B1 Chromium	EX3	2	mg/kg 4.63	EX3 SW3 Chromium	mg/k 6.9*		EX3 SW4 Chromiun		mg/ 5.1
	SITI	EPORT METAL ETC E MANAGEMENT P EEPORT, NEW YO DESIGNED BY: RSC	LAN	FIGUR Documentat Locations with of Unrestricted CHECKED BY: RSC	ion Sample Exceedences	0 5 10 DATE: APRIL 2014	Fee 20 SCALE: AS SHOWN	FILE NO: G:\Projects\Fig8	Lege •

jend

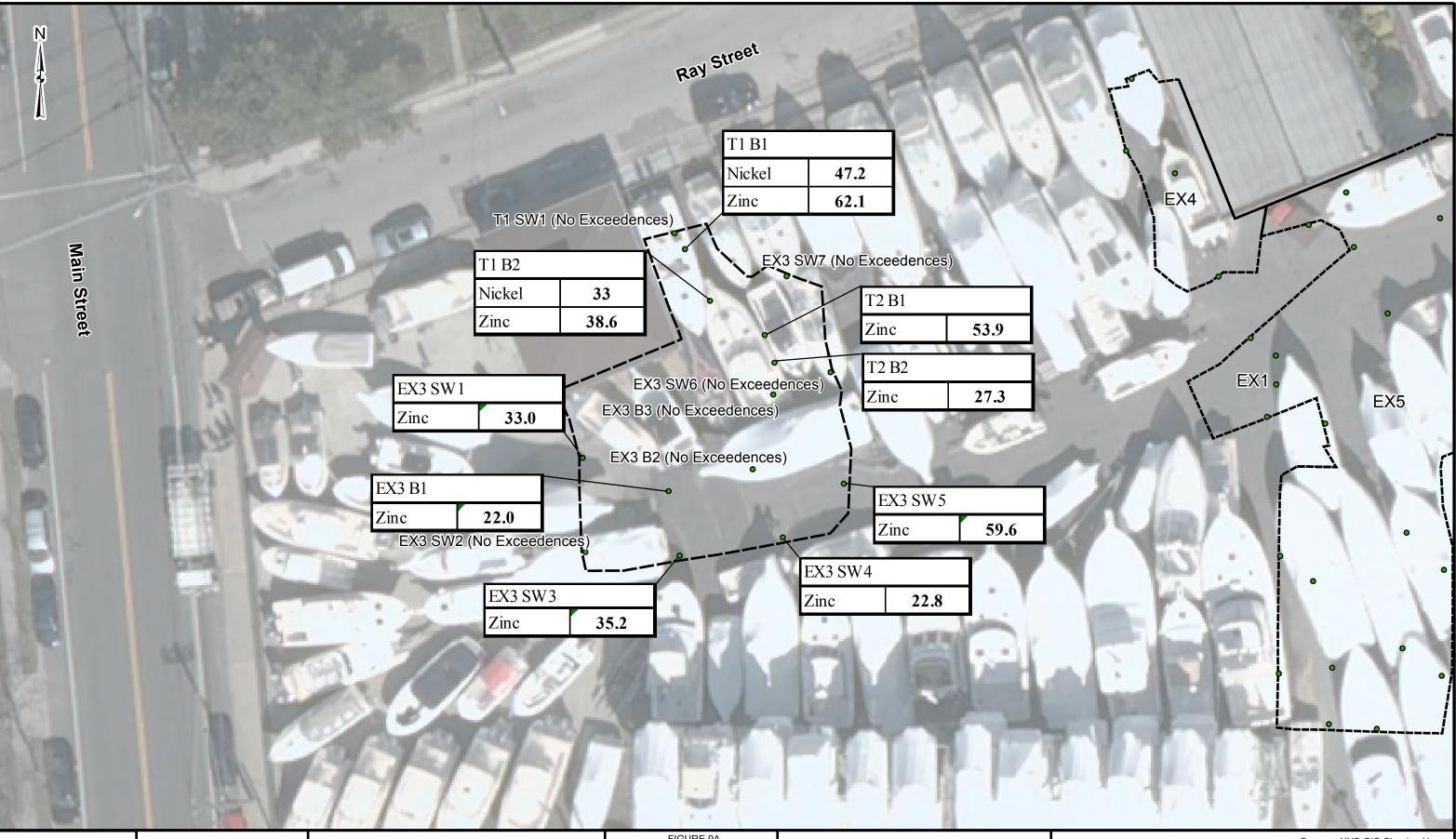
Source: NYS GIS Clearing House

- Documentation Sample Location
- ---- Excavation Area Boundaries

N EX4 SW3 mg/kg Chromium 3.89 EX4 SW2 mg/kg Chromium 8.19 Ray St	reet	EX5 SW10 Chromium Copper Lead Mercury Nickel Silver Zinc	mg/kg EX5 B6 218 Chromi 1190 Copper 227 Nickel 0.191 Zinc 110 8.75 311 Image: State St	ium 61.3 Chromiun	h 15.8 Chromium Copper Zinc EX5 SW12 m	mg/kg 34.2 152 116 ng/kg 10.8 mg/kg
EX4 SW1mg/kgChromium9.12EX1 SW1mg/kgChromium71.6Copper107	EX4 B1 mg/kg Chromium 78.3	EX4		EX5 SW9 mg/kg	EX5 B7 mg/kg Chromium 30.3 Copper 114 Nickel 31.8	17.2 53.7 117
Nickel 32.7 1,2,4- 20,000 m,p Xylene 2,100 o-Xylene 1,000 T4 B1 mg/kg Chromium 12			EX1	Chromium 6.75 Lead 65.8 EX5 SW Chromium Copper Lead	B mg/kg n 7.24 266 80.3	mg/kg 4.33
Zinc 158 T3 B1 mg/kg Chromium 29.8 Copper 105 Lead 70.7 Mercury 0.227			EX5	Nickel Zinc EX5 SW Chromiu Copper	m 7.3 Chromium 120 cis 1,2-DCE	mg/kg 10.1 458 mg/kg 6.3 390
EX1 SW2mg/kgChromium15.8Lead68.3Zinc135EX5 SW1ChromiumZinc	iium 4.78 mg/kg 7.15 178 EX5 SW2 Chromium	28.7 Chromi	um 20.9 EX5 SV		Image: mail of the second s	1500 460 1600 ng/kg 18.4 168
EX5 B1 Chromium Copper	mg/kg Copper 8.1 Lead 73.8 Zinc FREEPORT METAL ETC SITE MANAGEMENT P FREEPORT, NEW YO PROJECT MGR: PROJECT MGR: RSC DESIGNED BY: RSC	LAN Documentation with Exceedence	92.2Chromi121Copper183LeadIRE 8BLeadSample Locations es of Unrestricted X-1, -4, & -50PROJECT NO: 14474.37DATE: APRIL 2014	r 84.9 81.4 30 60 SCALE: EILE NO:	Zinc m,p-Xylene	166 780 GIS Clearing House

COMPANY AND A DESCRIPTION OF		A Designed	Contract Inter					7			e	
N		EX6N SW3	mg/kg	EX6N B1	mg/kg	EX6N SW2	mg/kg	EX6N B2	mg/kg	EX6N SW1	mg/kg	
		Chromium	8.65	Chromium	20	Chromium	10.8	Chromium	10.1	Barium	572	
EX6N SV	N4 mg/kg	Lead	86.5	Copper	102	Copper	162	Copper	54.9	Chromium	14.1	
Chromiu	m 11.2			Lead	146	Lead	254	Lead	63.3	Copper	314	
Zinc	132			Zinc	114	Mercury	0.22	Zinc	146	Lead	275	
2-22	CONTRACTOR OF T				M	Zinc	371			Zinc	399	
EX6 SW6	mg/kg			8						and the second second	EX6N SW5	mg/kg
Arsenic	17.6		1					1	1 11		Chromium	32.2
Chromium	9.43										Copper	149
Copper	76.1	A		1 10	4						Lead	113
Lead	81	2. 198. 1	1.14	EX6N /	a	101					Zinc	168
Zinc	159	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					100	-			Zinit	100
EVC D1	ma/lea	1100	1.15		T	EX6N SW	/6 m	g/kg		4		
EX6 B1 Chromium	mg/kg	N EN	T			Chromiun	n 9	0.16				
Copper	56.7		15	·	0	Copper	(51.5		10.00	EX6 SW4	mg/kg
Lead	739			A			11000			1.1	Chromium	16.1
Zinc	280		1			EX6 SW5		ng/kg			Copper	283
				16-		Arsenic		7.9	S Eler		Lead	82.3
EX6 B2	mg/kg			1 and 1		Chromiun		0.09			Nickel	596
Chromium	12.1		~		STP.	Copper		220			Zinc	358
Copper	55.8			6						A COLUMN A COLUMN		
Lead	80.6				1000	· ····································		- free	- Cal		EX2 B3	mg/kg
Zinc	127			$\langle \rangle$				Land Land	1		Chromium	21.2
	EX6 SW7	mg/kg	. .		-				1		Copper	77.1
		18.4	1 1		EX6	S	-				Lead	72.7
- 111111111		1670			1	-	-		205		EX2 B2	mg/kg
-1111111	Lead	1070		-	~	0		_	1.00		Chromium	91.5
11111111		41.3	1			1			100	Contraction of the	Copper	631
		473									Lead	171
-1 -1				1	-		1 2	EX2	~	1210	Mercury	0.121
	EVC P2				100					11	Nickel	52.4
		mg/kg			112		/		- 1		Zinc	442
à		25.2 EX6 SW 12.4 Chromiu		ng/kg EX6 SV 22 Chromi		mg/kg 86.3 EX6	C) 1/2	ma/lea	~	403	EX2 B4	mg/kg
1 0		3,312		10.00			5SW3	mg/kg		-	Chromium	60.1
		206 Copper 0.348 Lead		285 Copper 75.9 Lead		70.6 Lead		19.8	EX2 B	1 mg/k		288
	-	45.3 • Nickel		39.9 Nickel		70.0 Itea		107	Chron			71.6
EX4		264 Zinc		215 Zinc		558 Zind		281	Coppe	er 482		244
· The methods			1					201	Zinc	365		256
			4	1				-				
5 3		SI	EPORT METAL E MANAGEMEN REEPORT, NEW	NT PLAN	Docum Locations	IGURE 8C nentation Sample with Exceedences of d Levels in EX-2 & -6	0 10	20	Feet 40	Documen	tation Sample Lo	rce: NYS GIS Clearir
		PROJECT MGR: RSC	DESIGNED B RSC	Y: CREATED BY: MEM	CHECKED RSC	BY: PROJECT NO: 14474.37	DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\Fig8C	Excavatio	on Area Boundari	es

earing House


5-5		SITE	PORT METAL ETC MANAGEMENT PI EEPORT, NEW YOI	LAN	Document	JRE 9 ation Soil & nple Locations	Feet 0 15 30 60			
	· · · · · · · · · · · · · · · · · · ·	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37	DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\Fig9]

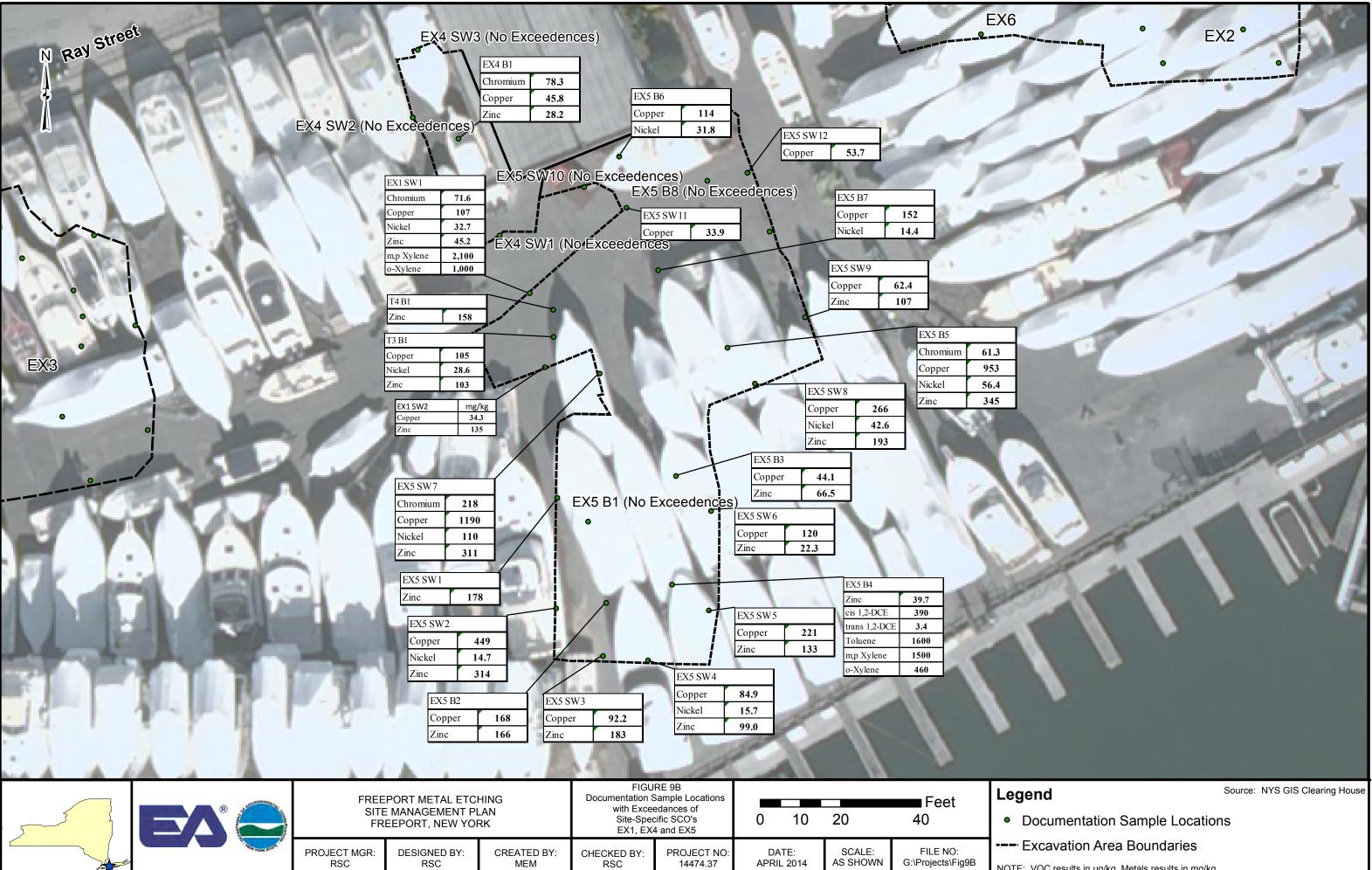
gend

Source: NYS GIS Clearing House

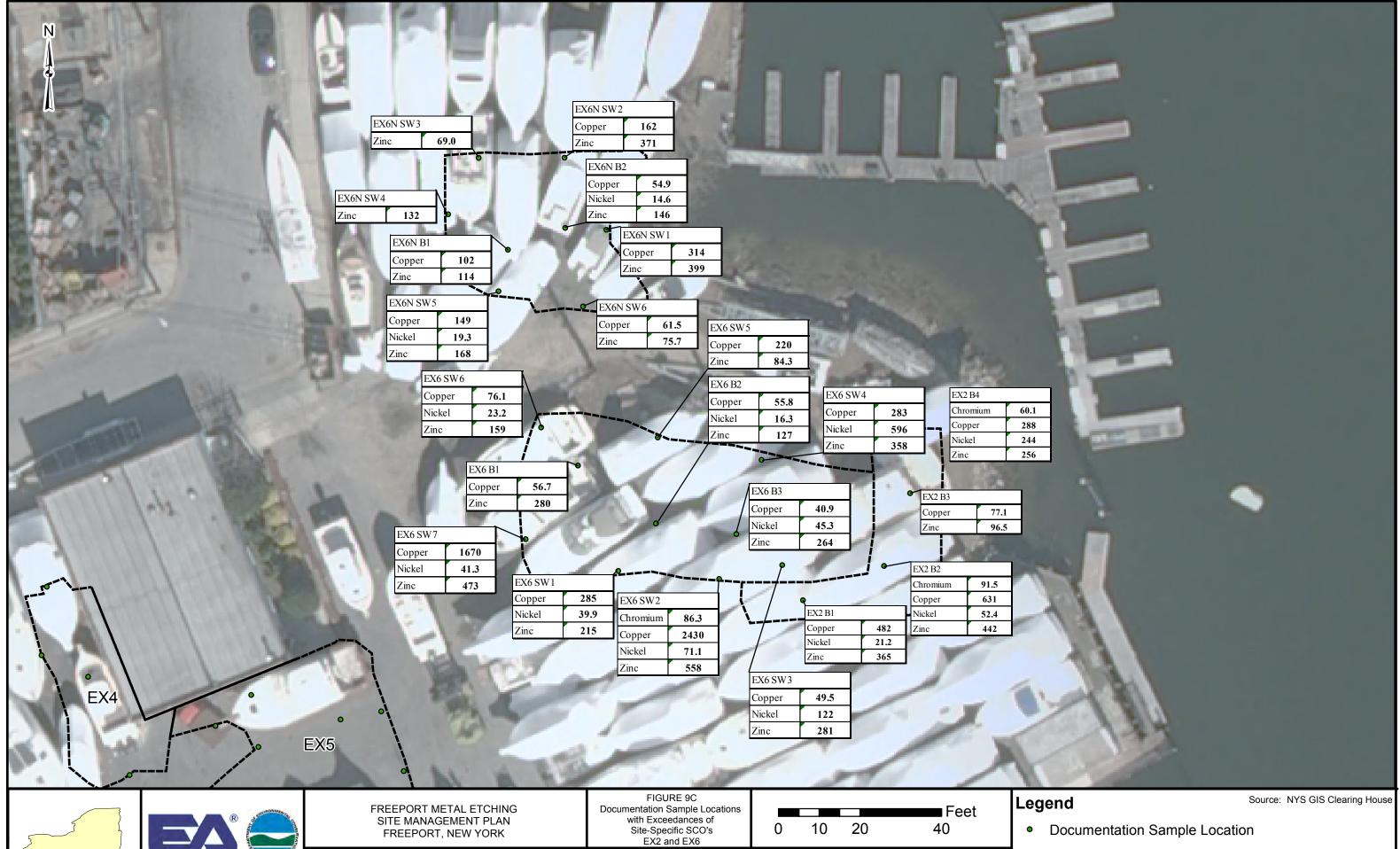
Documentation Sample Locations

- Excavation Area Boundaries

	REEPORT METAL ETCHING SITE MANAGEMENT PLAN FREEPORT, NEW YORK		LAN	Documentation S with Excee Site-Spec	RE 9A Sample Locations edances of cific SCO's X3	0 12.5	Lege		
Total State	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37	DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\Fig9A	E NOTE: VC


gend

Source: NYS GIS Clearing House


Documentation Sample Locations

• Excavation Area Boundaries

: VOC results in ug/kg, Metals results in mg/kg

NOTE: VOC results in ug/kg, Metals results in mg/kg

CREATED BY: MEM

CHECKED BY:

RSC

PROJECT NO:

14474.37

PROJECT MGR:

RSC

the second

DESIGNED BY:

RSC

FILE NO: G:\Projects\Fig9C

SCALE:

AS SHOWN

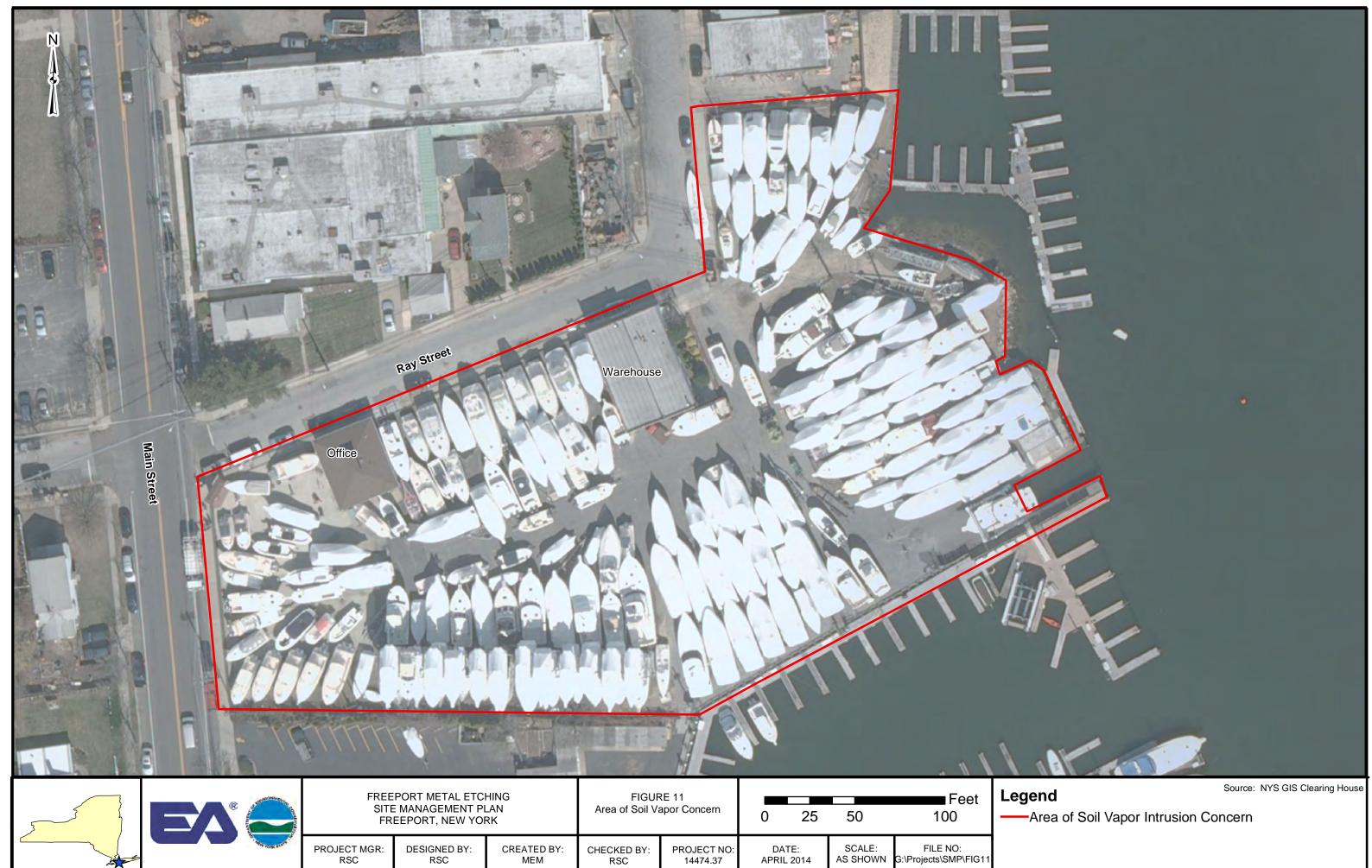
DATE:

APRIL 2014

--- Excavation Area Boundaries

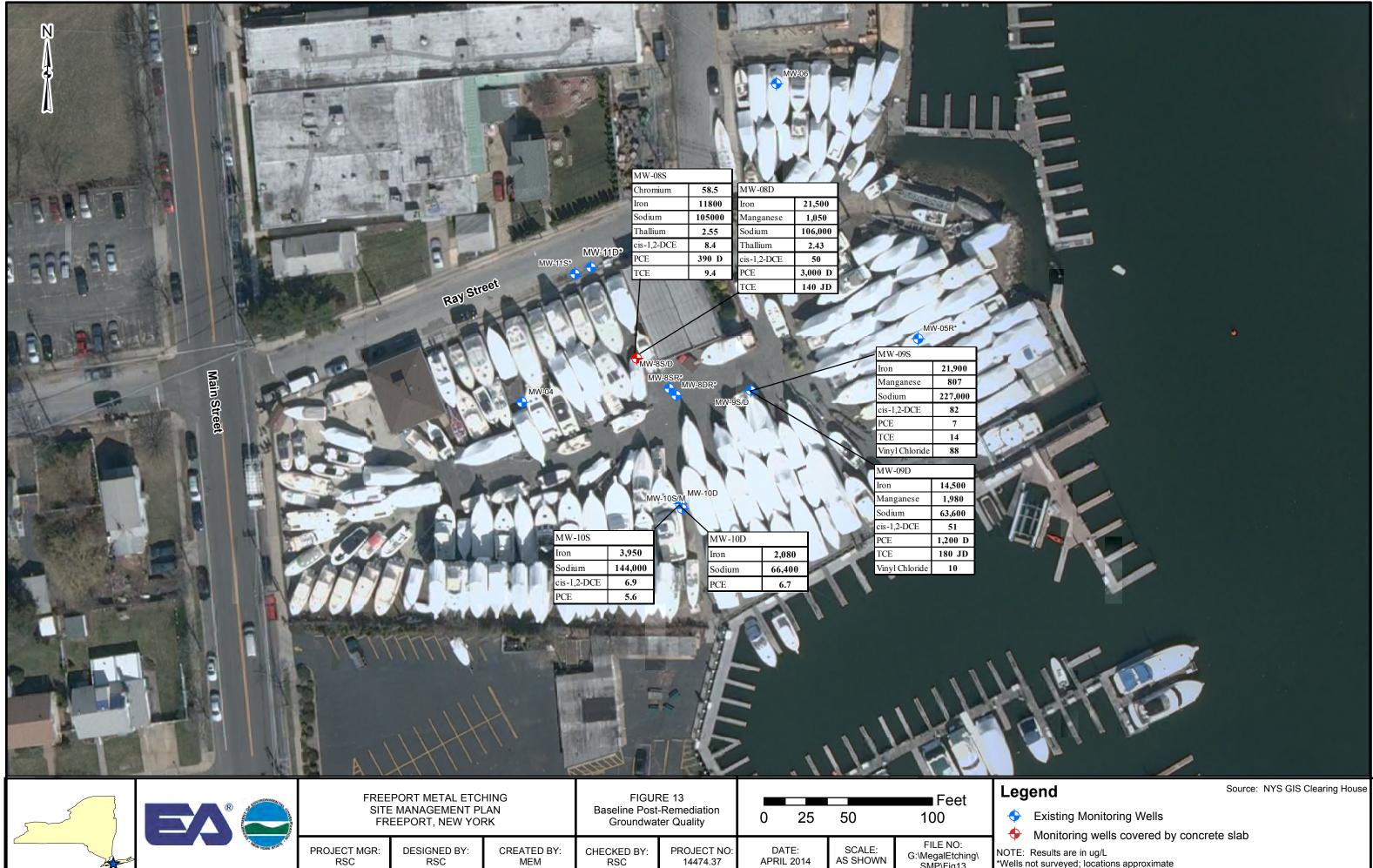
NOTE: VOC results in ug/kg, Metals results in mg/kg

N N		EX6S	E	X2	,				
EX4		EX7P Arsen Copp	nic 13.3	and the second	-				•
	4 1-	Lead			1				
	del -	Merc				EX7P2			
EX5	11.06					Arsenie		.2	
EX1 °		the second	-	(1)		Copper	29)9	
han hand	EX7P5			Y-		Lead	76	5.1	
	Arsenic	8.48				Mercur	y 0.4	92	
	Copper	91.5				Zinc	31	18	
	Mercury	0.202		E Contraction	X7		•		
						7P3	_		
	EX7P		_				10.9		
	Copp						4.04		
ALL AND A CALL	Merce	ury 0.15	2				97.4		
							134		
				. 1	Lea		228		
			1		Nic		1.86 23.3		
					Silv		4.05		
		1 .	IL	James -	Zin		206		
		11							
	SITE	PORT METAL ETC MANAGEMENT P EEPORT, NEW YO	LAN	FIGUF Documentation S with Exceedences	ample Locations	0 15	30	Feet 60	Le
	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37	DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\Fig9D	


_egend

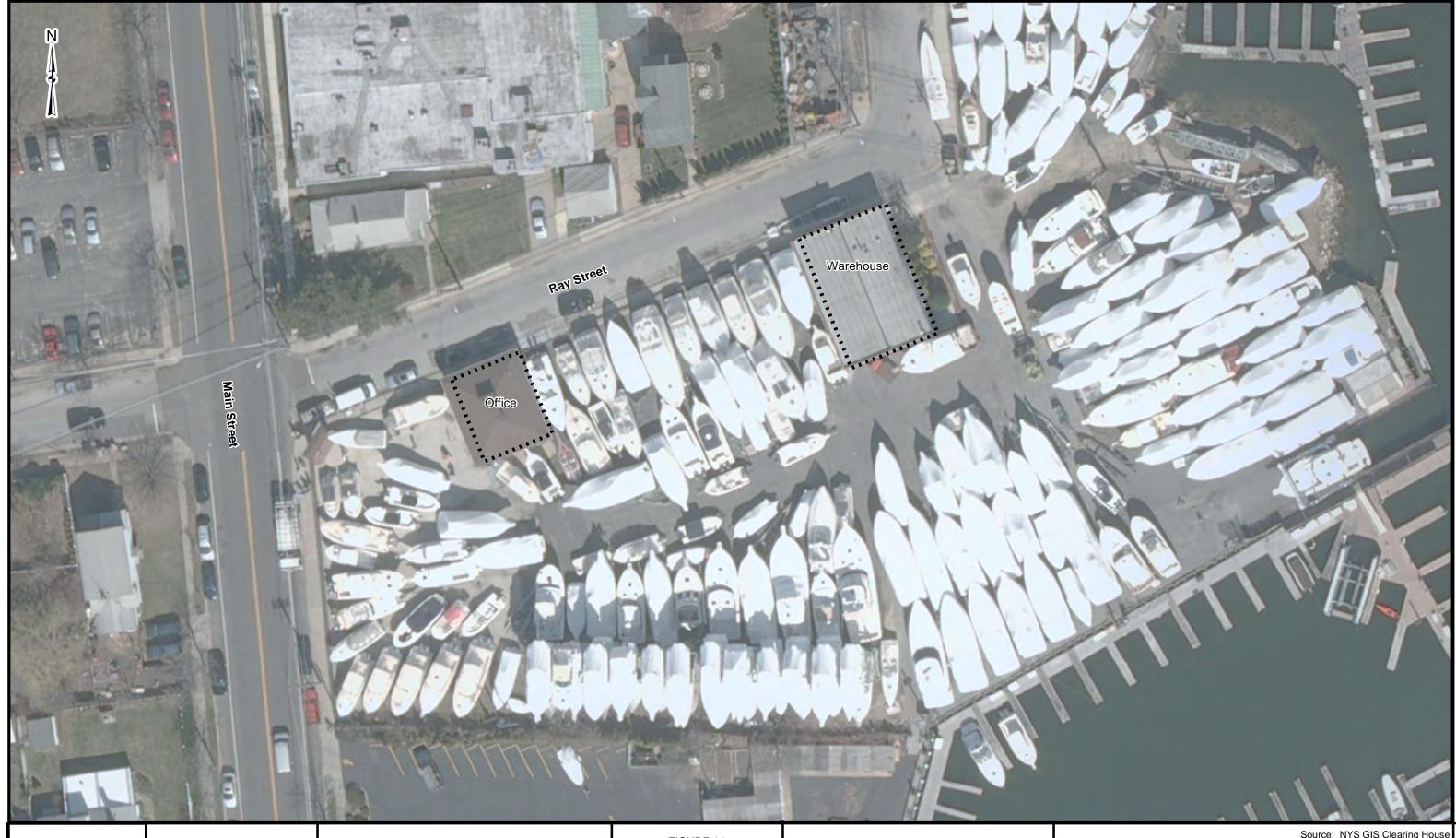
Source: NYS GIS Clearing House

• Documentation Sample Locations


---- Excavation Area Boundaries

*Wells not surveyed; locations approximate

RSC


and the

G:\MegalEtching\ SMP\Fig13

AS SHOWN

NOTE: Results are in ug/L

*Wells not surveyed; locations approximate

3-5-5	SITE	EPORT METAL ETC E MANAGEMENT P EEPORT, NEW YO	LAN	Location of	RE 14 Remedial t Systems	0 20	40	Feet 80	Legen
	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37	DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\SMP\FIG12	

end

Source: NYS GIS Clearing House

Location of Sub Slab Depressurization System

	Maximum			Protection of
	Detected	TAGM RSCO	Direct Contact	Groundwater
Chemical	Concentration	Level	Criteria	Criteria
	V	OCs (µg/kg)		
Trans-1,2-dichloroethene	300	300	2,000,000	300
Benzene	1,400	60	24,000	60
Chlorobenzene	3,700	2,700	2,000,000	1700
Ethylbenzene	14,000	5,500	8,000,000	5500
Methyl-tert-butyl ether	1,500	120	-	120
Naphthalene	25,000	13,000	300,000	13000
Tetrachloroethene	4,300	1,400	800,000	1400
Toluene	78,000	1,500	20,000,000	1500
Trichloroethene	10,000	700	64,000	700
Xylene	15,000	1,200	200,000,000	1200
Vinyl Chloride	1,800	200	-	120
NOTE: TAGM = Technical and				
RSCO = Recommende	1 0	tive		
VOC = Volatile Orga				
$\mu g/kg = Micrograms p$	-		II H. D I C. I.	
Direct Contact Criteria				
Protection of Groundwa	ter Criteria obtained l	from the TAGM #40	46 Protection of Grou	ndwater.

TABLE 1 REMEDIAL INVESTIGATION SOIL CONTAMINATION SUMMARY

EA Engineering, P.C. and Its Affiliate EA Science and Technology

	Maximum Detected Concentration	Eastern US Background ¹	New York	NYSDEC	Frequency of Detection Above
Constituent	(mg/kg)	(mg/kg)	Region ² (mg/kg)	RSCO (mg/kg)	RSCOs
		METAI	LS		
Arsenic	29	<0.1 - 73	3 - 12	7.5 or SB	11/273
Barium	970	10 - 1500	15 - 600	300 or SB	1/273
Beryllium	1	<1 - 7	0 - 1.75	0.16 or SB	12/273
Cadmium	78	N/A	0.1 - 1	10	2/273
Calcium	72000	100 - 280000	130 - 35000	SB	5/273
Chromium	2200	1 - 1000	1.5 - 40	50	40/273
Chromium-Hexavalent	218			50	-
Cobalt	91	0.3 - 70	2.5 - 60	30 or SB	3/273
Copper	5700	<1 - 700	<1 - 50	25 or SB	91/273
Iron	43000	100 - >100000	2000 - 550000	2,000 or SB	239/273
Lead	3900	<10 - 300	200 - 500	SB	6/273
Magnesium	22000	50 - 50000	100 - 5000	SB	0/273
Nickel	1300	<5 - 700	0.5 - 25	13 or SB	52/273
Selenium	6.7	<0.1 - 3.9	<0.1 - 3.9	2 or SB	11/273
Zinc	3600	<5 - 2900	9 - 50	20 or SB	126/273

1. Shacklette, HT and JG Boerngen, 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States, USGS Professional Paper 1270

2. Background Concentrations of 20 Elements in Soils with Special Regard for New York State, E. Carol McGovern, NYSDEC Wildlife Resources Center. These values are the same as the background concentrations listed in TAGM 4046.

NOTE: NYSDEC = New York State Department of Environmental Conservation

mg/kg = Milligram per kilogram

SB = Site Background

Shaded cells represent chemicals detected above both Eastern US Background and New York Region Background.

		MW-01	MW-02D	MW-02S	MW-03D	MW-03S	MW-04	MW-05	MW-06	MW-07D	MW-07S
	Screening	C1292-03	C1282-03	C1282-02	C1282-05	C1282-04	C1292-04	C1292-01	C1292-02	C1282-07	C1282-06
	Levels 1				10/7/2004						
Constituents	Levels	10/8/2004	10/7/2004	10/7/2004		10/7/2004	10/8/2004	10/8/2004	10/8/2004	10/7/2004	10/7/2004
	1000			VOLATILE	JRGANIC COM	POUNDS (µg/L)				
Benzene	1900					6 J					
Benzene, 1-methylethyl-	na				<u> </u>			2 J	1 J		
Bromoform	na	-	-	-	2 J				-		
Chlorobenzene	50	-	7 J	38		1 J 32	1 J		-	4 J	370
cis-1,2-Dichloroethylene	na		/ J	38		-	IJ	0 X		4 J	
Cyclohexane	na			1 J		1 J		2 J			4 J 3 J
Ethene, 1,2-dichloro-, (E)-	na			IJ		2 J					3 J 8 J
Methylcyclohexane Methyltert-butylether	na na	4 J	4 J	16	2 J	2 J 130	140	54	33		8 J 10
Tetrachloroethylene		13	4 J 1100	36	2 J	150	140 3 J	54	33	1600	10 3 J
Toluene	na 920	15	3 J	30			33			1600	2 J
Trichloroethylene	400 a	3 J	16	17			5 J			25	2 J 5 J
Vinyl chloride	400 a na	31	10	3 J		29	33			23	400
v myr emoride	lla		C.		E OBCANIC CO	2.9 OMPOUNDS (µş	-/T)				400
2 Mathalasahthalasa	40	1	5	T	E OKGANIC CO	JMPOUNDS (µį	2/L)	1	1		1 T
2-Methylnaphthalene	42								2.1		1 J
Acenaphthene Bis(2-ethylhexyl)phthalate (BEHP)	66			1 J					3 J		2 J 1 J
	na			IJ							1 J 1 J
Carbazole Dibenzofuran	na										1 J 1 J
Fluorene	na 25								3 J		1 J
Naphthalene	160					2 J			31		6 J
N-Nitrosodiphenylamine						2 J					15
Phenanthrene	na 15										13 2 J
I nenantinene	15				METALS (µg/l						23
A1	1	26.4	959	1170	158	210	94.6	96.8	150	227	(4.5
Aluminum	na		3.8		158	3.1	2.7	7.2	2.5	4.1	64.5 11.3
Antimony	na 630	5.1 2.4	3.8	13.9		3.1	2.7	1.2	3.8	4.1	11.3
Arsenic Barium		2.4 51 J			34.2	76.7	2.5 37.1 J	1050 J	3.8	23.2	310
Cadmium	na 77	51.5	3	15.9	54.2	1.4	57.1 J	3.6	0.33	1.3	6.2
Calcium	na	36200	56500	59700	24400	76000	90900	128000	196000	1.5	229000
Chloride		36200	36300	39700	24400	190 J	90900	400 J	190000	18200	229000
Chromium	na na	0.73	23.8	9.6	4	4.6	14.7	0.9		3.5	2
Chromium (Hexavalent)	540	0.75	23.8	9.0	4	4.0	14./	0.069 J		5.5	2
Cobalt	na	1.6	3.1		0.31	0.53	0.33	0.009 J	0.33	1.7	0.89
Copper	34	1.0	28.3		0.51	0.55	0.55		0.55	1.7	0.87
Iron	na	462 J	14700	79800	892	6410	171 J	17400 J	1200 J	6370	29200
Lead	80	402 5	14700	19000	072	0410	1/15	6.2	1200 5	0570	27200
Magnesium	na	38300	10200	9670	15600	38400	10000	37800	30400	4740	58200
Manganese	na	1100	1220	859	380	224	21.3	529	183	680	761
Nickel	82	3	65.4	21.6	2.8	3.8	16.5	4.6	0.53	3.6	2.8
Potassium	na	15400	6810	7020	6450	26000	10800	31300	12000	2740	31000
Selenium	na	10400		7.7	0100	23000		51500	12000	2/10	51000
Silver	na			20.9	1			1			
Sodium	na	339000	82300	42000	142000	197000	63500	243000	35600	42400	198000
Vanadium	na	22,000		1.3		2.8		2.6			0.6
Zinc	660	3.1	48.2	29	2.8	3.4 J	10.9	7.2		9.8	0.0
	000		1 10.2		PESTICIDES (µ		10.7		1	2.0	1
Endrin ketone	na	1	1				1	1	1	1	0.079 J
Endrin ketone 1. Screening Levels shown were obtained t	na			I	 			I		I	

TABLE 2 REMEDIAL INVESTIGATION GROUNDWATER CONTAMINATION SUMMARY

ards (New York State Codes, Rules and Regulations; Title 6, Chapter X Parts 700-706, Amendments through August 4, 1999) - Fish Propagation (saline waters) values used unless otherwise noted.

NOTE: µg I = Micrograms per liter J = Estimated value. The value was designated as estimated as a result of the data validation criteria. Also used to indicate when an organic compound is present, but the concentration is less than the Contract Required Quantitation Limit (CRQL). The value is usable as an estimated result. na = Not Available a = Human Consumption of Fish (saline) value used

No qualifier indicates the analyte was positively identified at the associated numerical value which is the concentration of the analyte in the sample.

All screening levels are multiplied by 10 to adjust for ground water to surface water dilution (see text). Only detected values are shown on this table

Soil Gas Survey Sample Point Identification	Sample Serial Number	Installation Date/Time	Initial Reading	Sustained Reading
Gore Sorbers				
GS-01	452988	7/15/2004 / 8:16:00 AM	0.0 ppm	0.0 ppm
GS-02	452989	7/16/2004 / 9:00:00 AM	9.5 ppm	9.5 ppm
GS-03	452990	7/16/2004 / 9:15:00 AM	0.6 ppm	0.6 ppm
GS-04	452991	7/16/2004 / 10:20:00 AM	0.0 ppm	0.0 ppm
GS-05	452992	7/16/2004 / 10:30:00 AM	0.0 ppm	0.0 ppm
GS-06	452993	7/16/2004 / 11:00:00 AM	0.0 ppm	0.0 ppm
GS-07	452994	7/16/2004 / 11:30:00 AM	0.9 ppm	0.9 ppm
GS-08	452995	7/16/2004 / 11:45:00 AM	0.0 ppm	0.0 ppm
GS-09	452996	7/16/2004 / 12:50:00 PM	30 ppm	30 ppm
GS-10	452997	7/16/2004 / 1:29:00 PM	1.5 ppm	1.5 ppm

TABLE 3 REMEDIAL INVESTIGATION SOIL VAPOR DATA SUMMARY

TABLE 4 REMEDIAL INVESTIGATION SEDIMENT CONTAMINATION SUMMARY

	ER-L mg/kg (Metals); ug/kg (PCBs,	ER-M mg/kg (Metals); ug/kg (PCBs,	SED-01 C1024-01 8/24/2004	SED-01 C1024-09 8/24/2004	SED-02 C1024-02 8/24/2004	SED-03 C1024-03 8/24/2004	SED-04 C1024-04 8/24/2004	SED-05 C1024-05 8/24/2004	SED-07 C1024-07 8/24/2004	Background SED-06 C1024-06 8/24/2004	1 Locations SED-08 C1024-08 8/24/2004
	VOCs, SVOCs)	VOCs, SVOCs)	Primary	Duplicate	Primary	Primary	Primary	Primary	Primary	Primary	Primary
A	NA	NIA	24	17	VOCs (ug/kg)	12.11	26	12 11	7	5(0	17
Acetone Carbon disulfide	NA	NA NA	24 14 U	17 12 U	18 13 U	13 U 13 U	36	13 U 13 U	7 12 U	560 87	17 13 U
Methylene chloride	NA	NA	14 U	12 U	10	13 U	19 U	13 U	12 U	19	10
Methyl-tert-butyl-ether	NA	NA	14 U	12 U	13 U	13 U	19 U	3	13 U	42 U	12 U
Sum of Constituents			24	17	28 SVOCs (ug/kg)	0	43	3	7	751	27
2-Methylnaphthalene	70	670	480 U	400 U	410 U	430 U	610 U	430 U	390 U	1400 U	430 U
4-Methylphenol	NA	NA	480 U	400 U	86	430 U	610 U	430 U	390 U	1400 U	430 U
Acenaphthene Acetophenone	16 NA	500 NA	110 480 U	80 42	410 U 410 U	430 U 66	610 U 610 U	260 430 U	390 U 390 U	1400 U 1400 U	430 U 430 U
Anthracene	85.3		280	260	97	430 U	610 U	430 0	390 U 390 U	1400 U 1400 U	430 U 430 U
Benzaldehyde	NA	NA	130	69	410 U	430 U	610 U	430 U	390 U	1400 U	430 U
Benzo(a)anthracene	261 430	1600 1600	1100 1200	930 940	340 380	61	410 250	3000 3000	390 U 390 U	350 410	430 U 430 U
Benzo(a)pyrene Benzo(b)fluoranthene	430 NA	NA	2200	1600	620	95	490	4000	43	750	430 0
Benzo(ghi)perylene	NA	NA	290	260	110	430 U	610 U	690	390 U	250	430 U
Benzo(k)fluoranthene	NA	NA	740	570	250	46	160	2000	390 U	280	430 U
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	NA NA	NA NA	6000 810	1700 400	690 120	100 430 U	1000 610 U	270 430 U	160 390 U	1400 1400 U	240 430 U
Carbazole	NA	NA	200	140	50	430 U	610 U	390	390 U	1400 U	430 U
Chrysene	384		1400	1500	430	79	350	3400	390 U	550	58
Dibenzo(a,h)anthracene Dibenzofuran	63.4 NA		180 65	150 51	69 410 U	430 U 430 U	610 U 610 U	460	390 U 390 U	1400 U 1400 U	430 U 430 U
Dimethyl phthalate	NA		140	93	410 U 410 U	430 U 430 U	610 U	430 U	390 U 390 U	1400 U 1400 U	430 U 430 U
Di-n-butyl phthalate	NA		310	250	410 U	430 U	610 U	430 U	390 U	1400 U	430 U
Di-n-octyl phthalate Fluoranthene	NA 600		91 2500	53 1900	410 U 650	430 U 110	610 U 510	430 U 5100	390 U 390 U	1400 U 470	430 U 61
Fluorene	19		130	140	410 U	430 U	610 U	270	390 U 390 U	1400 U	430 U
Indeno(1,2,3-cd)pyrene	NA	NA	740	570	240	430 U	610 U	1700	390 U	330	430 U
Naphthalene	160		480 U	400 U	410 U	430 U	610 U	50	390 U	1400 U	430 U
Pentachlorophenol Phenanthrene	NA 240	NA 1500	1200 U 1600	73	1000 U 410	1100 U 58	1500 U 610 U	1100 U 3200	970 U 390 U	3500 U 160	1100 U 430 U
Pyrene	665		3100	2300	910	130	3000	5200	42	930	75
Sum of Constituents			23316	15471	5452	809	6170	33780	245	5880	510
4,4'-DDD	NA	NA	4.1	10	Pest/PCBs (ug/kg) 4.1 U	3.7	6.1 U	4.3 U	3.9 U	14 U	4.3 U
4,4'-DDD 4,4'-DDE	2.2		2.3	10	4.1 U	4.2	4.3	4.3 U	3.9 U 3.9 U	14 U	4.3 U 4.3 U
4,4'-DDT	1.58	46.1	4.8 U	8.2	4.1 U	4.3 U	6.1 U	4.3 U	3.9 U	14 U	4.3 U
Aldrin alpha-BHC	NA NA	NA NA	2.5 U 2.5 U	2 U 2 U	2.1 U 2.1 U	2.2 U 2.2 U	3.1 U 3.1 U	2.2 U 2.2 U	2 U 2 U	7.1 U 7.1 U	2.2 U 2.2 U
alpha-Chlordane	0.5		2.5 U	2 U 2 U	2.10	1.9	3.1 U 3.1 U	1.2	2 U 2 U	7.1 U 7.1 U	2.2 U 2.2 U
Dieldrin	0.02	8	4.8 U	4 U	4.1 U	4.3 U	6.1 U	4.3 U	3.9 U	14 U	4.3 U
Endosulfan I	NA	NA NA	2.5 U 4.8 U	2 U 4 U	2.1 U 4.1 U	2.2 U 4.3 U	3.1 U 6.1 U	2.2 U 4.3 U	2 U 3.9 U	7.1 U 14 U	2.2 U 4.3 U
Endosulfan sulfate Endrin aldehyde	NA	NA	4.8 U 4.8 U	40	4.1 U 4.1 U	4.3 U 4.3 U	6.1 0	4.3 U 4.3 U	3.9 U 3.9 U	14 U 14 U	4.3 U 4.3 U
Endrin ketone	0.02	45	4.8 U	4 U	4.1 U	4.3 U	8.9	4.3 U	3.9 U	14 U	4.3 U
gamma-Chlordane	0.5 NA	6 NA	1.7 2.5 U	12 2 U	2.5 2.1 U	2.3 2.2 U	3.1 U 3.1 U	2.2 U 2.2 U	2 U 2 U	7.1 U 7.1 U	2.2 U 2.2 U
Heptachlor epoxide Methoxychlor	NA	NA	2.5 U	14	2.1 U	2.2 U 22 U	12	2.2 U 22 U	2 U 20 U	7.1 U	2.2 U 22 U
Aroclor 1254	22.7	180	96	2300	70	86	170	43 U	39 U	140 U	43 U
					Metals (mg/kg)			=-			
Aluminum Arsenic	NA 8.2		3560 6.3	5120 5.6	2950 5.2	1310 2.7	8200 15	1670 5.1	1050 0.77	17800 26	1740 1.6
Barium	NA		23.5	18.6	8	5	52.8	7.6	3.6	67.5	6.4
Beryllium	NA	NA	0.39	0.35	0.34	0.12	0.79	0.15	0.077	1.5	0.15
Cadmium Calcium	1.2 NA	9.6 NA	0.42	0.64 9050	0.18 11000	1.1 UJ 2090	1 2230	0.93 UJ 329	0.96	1 12900	0.096
Chromium	NA 81	370	34.7	9050	16	3.3	127	329	3.4	89.2	6.5
Cobalt	NA	NA	2.6	3	1.8	0.43	5.6	1	0.3	6.7	0.7
Copper	34		285	261	52.3	30.1	290	57.8	39	338	17.5
Iron ¹ Lead	2% 46.7		11000 63.8	10500 105	6040 98.6	4840 17.1	21400 134	7100	1910 6	39300 154	3210 15.2
Magnesium	46.7 NA		11400	8590	1430	2200	3880	553	529	154	994
Manganese ¹	460		64.3	83.6	36.5	32.5	116	38.9	13.1	268	25.6
Mercury	0.15		2.5	0.083	0.065	0.12 UJ	0.39	0.11 UJ	0.094 UJ	0.61	0.089
Nickel Potassium	20.9 NA		15.4 627	40.4 585	8.8 450	3.2 230	28.4 1850	2.3 358	1.4 284	26.8 5730	2.6 479
Silver	1	3.7	0.67	0.69	0.33	0.22	1.8	0.39	204	3.4	0.13
Sodium	NA	NA	4990	3940	2680	1700	6200	473	1580	33300	3260
Thallium	NA		1.8	1.1	0.63	2.1 UJ	2.1	1.9 UJ	1.9 UJ	4.8	0.76
Vanadium Zinc	NA 150		31.5 338	20.6 315	10.6 93.2	9.4 59.7	40.7	7.5 46.5	3.4 16.5	81.7 417	5.9 26.5
	Above Effects Range	Low (ER-L) and above	e SED-06 & SED-08								
t	VA Not applicable J : Chemical was not dete JJ: Chemical was undeten	cted but estimated to be	nical limit. e at indicated level.		ita in Ostaria. Ostaria	Mainta Cala David	ronment, Queen's Prir	ter for Orderia			

TABLE 5A SITE-SPECIFIC SOIL AND GROUNDWATER CLEANUP OBJECTIVES

	Standards, Criteria, and	
Constituent	Guidance	Units
VOLATILE ORGANI	C COMPOUNDS - SOI	Ĺ
Tetrachloroethylene (PCE)	1.4	mg/Kg
Trichloroethylene (TCE)	0.7	mg/Kg
1,2-Dichloroethylene (DCE)	0.3	mg/Kg
Vinyl Chloride	0.2	mg/Kg
Benzene	0.06	mg/Kg
Toluene	1.5	mg/Kg
Ethylbenzene	5.5	mg/Kg
Xylene	1.2	mg/Kg
Naphthalene	13	mg/Kg
Chlorobenzene	17	mg/Kg
INORGANICS	(METALS) - SOIL	
Chromium	50	mg/Kg
Copper	25	mg/Kg
Nickel	13	mg/Kg
Zinc	20	mg/Kg
VOLATILE ORGANIC CON	APOUNDS - GROUNDV	VATER
Tetrachloroethylene (PCE)	5	µg/L
Trichloroethylene (TCE)	5	µg/L
1,2-Dichloroethylene (DCE)	5	µg/L
Vinyl Chloride	2	µg/L
Methyl Tert Butyl Ether (MTBE)	10	μg/L
INORGANICS (META	ALS) - GROUNDWATE	R
Chromium	50	µg/L
Copper	200	µg/L
Nickel	100	µg/L
Zinc	2000	µg/L
NOTE: Soil Cleanup Objectives develop	ped for 2007 Record of Deci	sion

TABLE 5B SITE-SPECIFIC SEDIMENT CLEANUP OBJECTIVES

Constituent	Effects Range-Low	Effects Range-High	Units
	INORGANIC	S (METALS)	
Arsenic	8.2	70	mg/Kg
Cadmium	1.2	9.6	mg/Kg
Chromium	81	370	mg/Kg
Copper	34	270	mg/Kg
Iron ^(a)	mg/Kg		
Lead	46.7	218	mg/Kg
Manganese ^(a)	460	1100	mg/Kg
Mercury	0.15	0.71	mg/Kg
Nickel	20.9	51.6	mg/Kg
Silver	1	3.7	mg/Kg
Zinc	150	410	mg/Kg
Managament of A		n, 1992. Guidelines for the Ontario. Ontario Ministry	

	Sample ID	EX1SW1		EX1SW2		T3B1		T4B1		EX2B1	EX2B2		EX2B3		
	Lab ID	C3524-03		C3524-04		C3524-01		C3524-02		C3109-07	C3109-08		C3109-09		
D	Sample Type	Soil		Soil		Soil	ľ	Soil		Soil	Soil		Soil		Part 375 Unrestricted
Parameter List EPA Method 8260B	Sample Date	8/25/2011		8/25/2011		8/25/2011	ľ	8/25/2011		7/21/2011	7/21/2011		7/21/2011		Use Soil Cleanup Objectives
1.2.4-Trimethylbenzene	(µg/kg)	20.000	D	3.2 D	5		U		U	U		U	//21/2011	U	3,600
cis-1,2-Dichloroethylene	(µg/kg)	20,000	U	5.2			U		U	U		U		U	250
m,p-Xylene	(μg/kg)	2,100	D	E			Ŭ		Ŭ	U		U		U	260 ^(a)
o-Xylene	(µg/kg)	1,000	D	E)		U	1	U	U		U		U	260 ^(a)
Toluene	(µg/kg)	13					U	1	U	U		U		U	700
		EVADA		EVADI	T	EVADA	T	EWADA	T	ENGOUI	EVAQUUA	1	ENGOUS		
	Sample ID Lab ID	EX2B4 C3109-10		EX3B1 C3068-06	_	EX3B2 C3068-07	_	EX3B3 C3109-02	_	EX3SW1 C3068-01	EX3SW2 C3068-02		EX3SW3 C3068-03		D (2751) (1)
Parameter List	Sample Type	Soil		Soil	_	Soil	_	Soil	_	Soil	C3068-02 Soil		Soil		Part 375 Unrestricted Use Soil Cleanup
EPA Method 8260B	Sample Date	7/21/2011		7/19/2011	-	7/19/2011	-	7/21/2011	-	7/19/2011	7/19/2011		7/19/2011		Objectives
1.2.4-Trimethylbenzene	(µg/kg)	//21/2011	U	10/2011	T		U		U	U		U		U	3,600
cis-1,2-Dichloroethylene	(µg/kg)		U		-		U		U	U		U		U	250
m,p-Xylene	(µg/kg)		U	U U	-		U		U	U		U		U	260 ^(a)
o-Xylene	(µg/kg)		Ŭ	Ũ	J		Ū		Ŭ	Ŭ		U		Ū	260 ^(a)
Toluene	(µg/kg)		U	Ŭ	J		U	1	U	U		U		U	700
					-		-							_	
	Sample ID	EX3SW4		EX3SW5		EX3SW6	_	EX3SW7	_	T1B1	T1B2		T1SW1		
_	Lab ID	C3068-04		C3068-05		C3109-01	_	C3153-06	_	C3153-01	C3153-02		C3153-05		Part 375 Unrestricted
Parameter List	Sample Type	Soil		Soil 7/19/2011	_	Soil 7/21/2011	_	Soil 7/27/2011	_	Soil 7/27/2011	Soil 7/27/2011		Soil 7/27/2011		Use Soil Cleanup
EPA Method 8260B	Sample Date	7/19/2011	TI		т		TT		T T	//2//2011 U		II		II	Objectives
1,2,4-Trimethylbenzene cis-1,2-Dichloroethylene	(μg/kg) (μg/kg)		U	U			U U		U U	U		U U		U	3,600 250
m,p-Xylene	(μg/kg) (μg/kg)		U				U		U	U U		U		U	250 260 ^(a)
o-Xylene	(μg/kg) (μg/kg)		U		-		U		U	U U		U		U	260 ^(a)
Toluene	(µg/kg)		U				U		U	U		U		U	700
Toruene			U				0		0	1 - 1		0		0	700
	Sample ID	T2B1		T2B2		EX4B1	_	EX4SW1	_	EX4SW2	EX4SW3		EX5B1		
	Lab ID	C3153-03 Soil		C3153-04 Soil		C3473-06 Soil		C3473-01 Soil	_	C3473-02 Soil	C3473-03 Soil		C3265-04 Soil		Part 375 Unrestricted
Parameter List EPA Method 8260B	Sample Type Sample Date	7/27/2011		7/27/2011	_	8/22/2011	_	8/22/2011	_	8/22/2011	8/22/2011		8/4/2011		Use Soil Cleanup
	4		T	31	+		U		т	8/22/2011 U		U		U	Objectives 3,600
1,2,4-Trimethylbenzene cis-1,2-Dichloroethylene	(μg/kg) (μg/kg)	7.5	U	31	T		J		J U	U		U		U	250
m,p-Xylene	(μg/kg) (μg/kg)		U		-		J U		J	U		U		U	250 260 ^(a)
o-Xylene	(µg/kg)		U	1.4 J			U		J	U		U		U	260 ^(a)
Toluene	(µg/kg)		U	1.4 1	_		U		J	U		U		U	700
			Ũ		-		Ű			· · ·		Ŭ		0	,
	Sample ID	EX5B2		EX5B3		EX5B4		EX5B5		EX5B6	EX5B7		EX5B8		
	Lab ID	C3265-05		C3355-04		C3355-05	_	C3355-09	_	C3473-08	C3622-04		C3622-05		Part 375 Unrestricted
Parameter List	Sample Type	Soil		Soil	_	Soil	_	Soil		Soil	Soil		Soil		Use Soil Cleanup
EPA Method 8260B	Sample Date	8/4/2011	5	8/11/2011	-	8/11/2011	_	8/22/2011		8/22/2011	9/7/2011	Ţ	9/7/2011		Objectives
1,2,4-Trimethylbenzene	(µg/kg)	2,700	D	U			D		U	1.9 J	2.4	J		U	3,600
cis-1,2-Dichloroethylene	(µg/kg)	200	U	1.4 J	_		JD		U	22	1.9	J		U	250 2 co(a)
m,p-Xylene	(µg/kg)	780	JD	U	-	, · · ·	D		U	U		U		U	260 ^(a)
o-Xylene Toluono	(µg/kg)	2	UJ	U	-		JD		U U	U		U		U	260 ^(a) 700
Toluene	(µg/kg)	2	J	U	J	1,600	D		U	2.3 J	1.6	J		U	/00

TABLE 6A SUMMARY OF REMAINING SOIL CONTAMINATION ABOVE UNRESTRICTED LEVELS FOR VOCs

(a) Standards, Criteria, and Guidance is for total xylenes

NOTE: EPA = U.S. Enivronmental Protection Agency.

ID = Identification

J

μg/kg = micrograms per kilogram = parts per billion (ppb).

D = Indicates the reported value was obtained by analysis at a secondary dilution factor.

U = Non-detect, detection below the method detection limit.

= Indicates the reported value was less than the Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit.

Data provided by Chemtech Consulting Group. Only analytes included in Table 1 of the ROD are included

Concentration values in BOLD indicate that analyte was detected above the site specific standards, criteria, and guidance.

	Sample ID	EX5SW1	EX5SW2	EX5SW3	EX5SW4	EX5SW5	EX5SW6	EX5SW7	
	Lab ID	C3265-01	C3265-02	C3265-03	C3355-01	C3355-02	C3355-03	C3355-06	Part 375 Unrestricted
Parameter List	Sample Type	Soil	Use Soil Cleanup						
EPA Method 8260B	Sample Date	8/4/2011	8/4/2011	8/4/2011	8/11/2011	8/11/2011	8/11/2011	8/22/2011	Objectives
1.2.4-Trimethylbenzene	(µg/kg)	U	8.3	U	4.3 J	U	U	U	3,600
cis-1,2-Dichloroethylene	(µg/kg)	U	U	U	U	U	U	U	250
m,p-Xylene	(µg/kg)	U	21	U	U	U	U	U	260 ^(a)
o-Xylene	(µg/kg)	U	U	U	U	U	U	U	260 ^(a)
Toluene	(µg/kg)	U	U	U	U	U	U	U	700
									n
	Sample ID	EX5SW8	EX5SW9	EX5SW10	EX5SW11	EX5SW12	EX5SW13	EX6B1	
	Lab ID	C3355-07	C3355-08	C3473-07	C3622-03	C3622-01	C3622-02	C3109-03	Part 375 Unrestricted
Parameter List	Sample Type	Soil	Use Soil Cleanup						
EPA Method 8260B	Sample Date	8/16/2011	8/16/2011	9/7/2011	9/7/2011	9/7/2011	9/7/2011	7/21/2011	Objectives
1,2,4-Trimethylbenzene	(µg/kg)	U	U	U	U	U	4.5 J	U	3,600
cis-1,2-Dichloroethylene	(µg/kg)	U	U	33	3.4 J	U	U	U	250
m,p-Xylene	(µg/kg)	U	U	5.9 J	U	U	U	U	260 ^(a)
o-Xylene	(µg/kg)	U	U	2.5 J	U	U	U	U	260 ^(a)
Toluene	(µg/kg)	U	U	13	2.6 J	U	U	U	700
	Commits ID	EX6B2	EX6B3	EX6SW1	EX6SW2	EX6SW3	EX6SW4	EX6SW5	
	Sample ID Lab ID	C3109-04	C3109-05	C3100-01	C3100-02	C3100-03	C3100-04	C3100-05	D
D (1)	Sample Type	Soil	Part 375 Unrestricted						
Parameter List		7/21/2011	7/21/2011	7/20/2011	7/20/2011	7/20/2011	7/20/2011	7/20/2011	Use Soil Cleanup
EPA Method 8260B	Sample Date			//20/2011					Objectives
1,2,4-Trimethylbenzene	(µg/kg)	U	U		33	U	U	U	3,600
cis-1,2-Dichloroethylene	(µg/kg)	U	U		U	U	U	U	250
m,p-Xylene	(µg/kg)	U	3.1 J		U	U	U	U	260 ^(a)
o-Xylene	(µg/kg)	U	U		U	U	U	U	260 ^(a)
Toluene	(µg/kg)	3.2 J	U		U	U	U	U	700
	Sample ID	EX6SW6	EX6SW7	EX6NB1	EX6NB2	EX6NSW1	EX6NSW2	EX6NSW3	
	Lab ID	C3100-06	C3109-06	C3265-15	C3265-16	C3265-06	C3265-07	C3265-08	Part 375 Unrestricted
Parameter List	Sample Type	Soil	Use Soil Cleanup						
EPA Method 8260B	Sample Date	7/20/2011	7/21/2011	8/4/2011	8/4/2011	8/4/2011	8/4/2011	8/4/2011	Objectives
1,2,4-Trimethylbenzene	(µg/kg)	U	U	U	U	U	U	39	3,600
cis-1.2-Dichloroethylene	(µg/kg)	U	U	U	U	U	Ŭ	U	250
m,p-Xylene	(µg/kg)	U	U	U	U	U	U	20	260 ^(a)
o-Xylene	(µg/kg)	U	U	U	U	U	Ű	2.0 J	260 ^(a)
Toluene	(µg/kg)	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	U	700
	(1-88)	~	~	~	~	~	÷	~	
	Sample ID	EX6NSW4	EX6NSW5	EX6NSW6					
	Lab ID	C3265-09	C3265-13	C3265-14					Part 375 Unrestricted
Parameter List	Sample Type	Soil	Soil	Soil					Use Soil Cleanup
EPA Method 8260B	Sample Date	8/4/2011	8/4/2011	8/4/2011					Objectives
1,2,4-Trimethylbenzene	(µg/kg)	U	U	U					3,600
cis-1,2-Dichloroethylene	(µg/kg)	U	U	U					250
m,p-Xylene	(µg/kg)	U	U	U					260 ^(a)
o-Xylene	(µg/kg)	U	U	U					260 ^(a)
Toluene	(µg/kg)	U	U	U					700

	Sample ID	EX1SW1		EX1SW2		T3B1		T4B1		EX2B1		EX2B2		EX2B3		Part 375
	Lab ID	C3524-03		C3524-04		C3524-01		C3524-02		C3109-07		C3109-08		C3109-09		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	8/25/2011		8/25/2011		8/25/2011		8/25/2011		7/21/2011		7/21/2011		7/21/2011		Objectives
Arsenic	(mg/kg)	4.490		5.410		3.110		1.840		3.080	*	3.300	*	6.840	*	13
Barium	(mg/kg)	14.8		23.5		50.7		7.740		32.6		107		38.8		350
Chromium (Total)	(mg/kg)	71.6		15.8		29.8		12.0		32.4		91.5		21.2		$1^{(a)}, 30^{(b)}$
Copper	(mg/kg)	107		34.3		105		3.700		482		631		77.1		50
Lead	(mg/kg)	22.2		68.3		70.7		2.440		61.6		171		72.7		63
Mercury	(mg/kg)	0.056		0.105		0.227			U	0.058		0.121		0.077		0.18
Nickel	(mg/kg)	32.7		12.3		28.6		8.520		21.2		52.4		12.4		30
Silver	(mg/kg)	0.433	J	0.437		0.542			U	0.272	J	0.263	J	0.201	J	2
Zinc	(mg/kg)	45.2		135		103		158		365		442		96.5		109
	Sample ID	EX2B4		EX3B1		EX3B2		EX3B3	T	EX3SW1	1	EX3SW2		EX3SW3		Part 375
	Lab ID	C3109-10		C3068-06		C3068-07		C3109-02		C3068-01		C3068-02		C3068-03		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	7/21/2011		7/19/2011		7/19/2011		7/21/2011		7/19/2011		7/19/2011		7/19/2011		Objectives
Arsenic	(mg/kg)	6.93	*	1.270		1.510		2.16	*	2.150		6.950		4.090		13
Barium	(mg/kg)	32.4		12.0		6.900		8.270		28.3		13.9		24.3		350
Chromium (Total)	(mg/kg)	60.1		4.170		5.110		5.850		5.330		4.630		6.970		1 ^(a) , 30 ^(b)
Copper	(mg/kg)	288		4.100		2.960		3.810		2.850		5.460		11.4		50
Lead	(mg/kg)	71.6		11.4		3.370		5.740		17.8		5.130		40.2		63
Mercury	(mg/kg)	0.084		0.094	*	0.013	*	0.013		0.036	*	0.012	*	0.031	*	0.18
Nickel	(mg/kg)	244		3.690		3.510		3.740		3.120		3.230		4.670		30
Silver	(mg/kg)		U	0.155	J	0.159	J		U		U	0.146	J	0.259	J	2
Zinc	(mg/kg)	256		22.0		11.8		14.8		33.0		16.5		35.2		109
	Sample ID	EX3SW4		EX3SW5		EX3SW6		EX3SW7	1	T1B1		T1B2		T1SW1		Part 375
	Lab ID	C3068-04		C3068-05		C3109-01		C3153-06		C3153-01		C3153-02		C3153-05		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	7/19/2011		7/19/2011		7/21/2011		7/27/2011		7/27/2011		7/27/2011		7/27/2011		Objectives
Arsenic	(mg/kg)	2.310		1.220		0.6	J*	1.130		1.610		2.810		3.510		13
Barium	(mg/kg)	16.6		13.7	1	8.180		7.410		16.4		18.6	1	20.2		350
Chromium (Total)	(mg/kg)	5.240		3.980	1	2.500		3.340		6.750		5.350	1	11.4		1 ^(a) , 30 ^(b)
Copper	(mg/kg)	3,900		6.600		6.870		2.880		10.1		13.6		4,770		50
Lead	(mg/kg)	8.780	1	31.0	1	2.620	1	2.720	1 1	26.1	1	18.6	t –	5.580		63
Mercury	(mg/kg)	0.018	*	0.064	*	0.004	J	0.005	J	0.049		0.072	1	0.013		0.18
	(mg/kg)	3.490		3.430	1	3.850		3.730		47.2		33.0	1	6.420		30
Nickel					+		1		T Y		U		U			2
Nickel Silver	(mg/kg)	0.216	J	0.178	J		U		U		0		0		U	2

TABLE 6B SUMMARY OF REMAINING SOIL CONTAMINATION ABOVE UNRESTRICTED LEVELS FOR METALS

NOTE: EPA = U.S. Enivronmental Protection Agency.

Identification

U

J

mg/kg = Millirgrams per kilogram * = Indicates the duplicate a

= Indicates the duplicate analysis was not within the control limits.

= Non-detect, detection below the method detection limit.

= Indicates the reported value was less than the Contract Required Detection Limit , but greater than or equal to the Method Detection Limit.

N = Indicates the spiked sample recovery was not within the control limits.

Data provided by Chemtech Consulting Group. Only analytes that were detected in at least one sample are shown.

Concentration values inBOLD indicate that analyte was detected above the site specific standards, criteria, and guidance.

	Sample ID	T2B1		T2B2		EX4B1	1	EX4SW1		EX4SW2	1	EX4SW3		EX5B1		D
	Lab ID	C3153-03		C3153-04		C3473-06		C3473-01		C3473-02		C3473-03		C3265-04		Part 375 Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	7/27/2011		7/27/2011		8/22/2011		8/22/2011		8/22/2011		8/22/2011		8/4/2011		Objectives
Arsenic	(mg/kg)	2.340		1.820	T	0.88	Т	2,500		3.620	_	0.67	T	4.040		13
Barium	(mg/kg)	34.7		13.0		20.4	5	13.6		1.370	J	6.170	3	27.7		350
Chromium (Total)	(mg/kg)	5.050		4.010		78.3		9.120		8.190	,	3.890		8.1	*	1 ^(a) . 30 ^(b)
Copper	(mg/kg)	14.1		5.950		45.8		22.5		3.100		3.770		73.8		50
Lead	(mg/kg)	14.1	-	20.9	-	4.860	*	34.4	*	0.53	J*	1.580	*	52.2	-	63
Mercury	(mg/kg)	0.042	-	0.090	-	0.015		0.078		0.018	J.	0.010	Ť	0.061	*	0.18
Nickel	(mg/kg)	6.120		5.070		5.700		8.160		0.010	U	10.8	3	8.420		30
Silver	(mg/kg)	0.120	U	0.070	U	0.16	J	0.100	U		U	10.0	U	0.120	U	2
Zinc	(mg/kg)	53.9	*	27.3	*	28.2		63.8	Ŭ	4.380	Ū	14.9	Ŭ	62.5	Ŭ	109
	(00.7		21.5		20.2		00.0		1.500		11.7		02.5		107
	Sample ID	EX5B2		EX5B3		EX5B4		EX5B5		EX5B6		EX5B7		EX5B8		Part 375
	Lab ID	C3265-05		C3355-04		C3355-05		C3355-09		C3473-08		C3622-04		C3622-05		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	8/4/2011		8/11/2011		8/11/2011		8/22/2011		8/22/2011		9/7/2011		9/7/2011		Objectives
Arsenic	(mg/kg)	2.620		2.220		2.440		1.560		2.560		3.440	Ν	3.090	Ν	13
Barium	(mg/kg)	25.6		35.2		20.1		11.4		34.8		30.9		36.8		350
Chromium (Total)	(mg/kg)	18.4	*	10.1		6.300		4.330		61.3		30.3		34.2		1(a), 30(b)
Copper	(mg/kg)	168		44.1		18.4		4.240		953		114		152		50
Lead	(mg/kg)	48.6		458		32.1		4.170		50.9	*	40.5		62.4		63
Mercury	(mg/kg)	0.096	*	0.036		0.032		0.048		0.055		0.034		0.069	_	0.18
Nickel	(mg/kg)	11.0		5.180		4.770		3.220		56.4		31.8		14.4		30
Silver	(mg/kg)		U		U	0.18	J		U	0.84			U		U	2
Zinc	(mg/kg)	166		66.5		39.7		10.6		345		88.6	Ν	116	Ν	109
	Sample ID	EX5SW1		EX5SW2		EX5SW3		EX5SW4		EX5SW5		EX5SW6		EX5SW7		Part 375
	Lab ID	C3265-01		C3265-02		C3265-03		C3355-01		C3355-02		C3355-03		C3355-06		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	8/4/2011		8/4/2011		8/4/2011		8/11/2011		8/11/2011		8/11/2011		8/22/2011		Objectives
Arsenic	(mg/kg)	1.690		5.300		6.600		2.920		3.970		1.940		1.740		13
Barium	(mg/kg)	12 (2.920				20.9				350
Chromium (Total)		13.6		59.6		81.0		2.920		63.4		20.9		12.4		
C	(mg/kg)	7.15	*	59.6 28.7	*	81.0 20.9	*			63.4 12.6		7.300		12.4 4.780		1 ^(a) , 30 ^(b)
Copper	(mg/kg) (mg/kg)		*		*		*	25.9								1 ^(a) , 30 ^(b) 50
Lead		7.15	*	28.7	*	20.9	*	25.9 27.6		12.6		7.300		4.780		1
	(mg/kg)	7.15 8.230	*	28.7 449	*	20.9 92.2	*	25.9 27.6 84.9		12.6 221		7.300 120		4.780 11.2		50 63 0.18
Lead	(mg/kg) (mg/kg)	7.15 8.230 31.7	*	28.7 449 101	*	20.9 92.2 121		25.9 27.6 84.9 81.4 0.057 15.7		12.6 221 48.5 0.097 8.480		7.300 120 33.6		4.780 11.2 22.8		50 63 0.18 30
Lead Mercury Nickel Silver	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	7.15 8.230 31.7 0.085 3.170	* * U	28.7 449 101 0.124 14.7	* * U	20.9 92.2 121 0.174 10.4		25.9 27.6 84.9 81.4 0.057 15.7 0.75		12.6 221 48.5 0.097 8.480 0.35	J	7.300 120 33.6 0.035 4.180	U	4.780 11.2 22.8 0.036 3.220	U	50 63 0.18 30 2
Lead Mercury Nickel	(mg/kg) (mg/kg) (mg/kg) (mg/kg)	7.15 8.230 31.7 0.085	* * U	28.7 449 101 0.124	*	20.9 92.2 121 0.174	*	25.9 27.6 84.9 81.4 0.057 15.7		12.6 221 48.5 0.097 8.480	J	7.300 120 33.6 0.035	U	4.780 11.2 22.8 0.036	U	50 63 0.18 30
Lead Mercury Nickel Silver	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	7.15 8.230 31.7 0.085 3.170 178	* * U	28.7 449 101 0.124 14.7 314	*	20.9 92.2 121 0.174 10.4 183	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0		12.6 221 48.5 0.097 8.480 0.35 133	J	7.300 120 33.6 0.035 4.180 22.3	U	4.780 11.2 22.8 0.036 3.220 25.0	U	50 63 0.18 30 2 109
Lead Mercury Nickel Silver	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID	7.15 8.230 31.7 0.085 3.170 778 EX5SW8	* * U	28.7 449 101 0.124 14.7 314 EX5SW9	*	20.9 92.2 121 0.174 10.4 183 EX5SW10	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11		12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12	J	7.300 120 33.6 0.035 4.180 22.3 EX5SW13	U	4.780 11.2 22.8 0.036 3.220 25.0 EX6B1	U	50 63 0.18 30 2 109 Part 375
Lead Mercury Nickel Silver Zinc	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID	7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07	* * U	28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08	*	20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03		12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01	J	7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02	U	4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03	U	50 63 0.18 30 2 109 Part 375 Unrestricted Use
Lead Mercury Nickel Silver	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID	7.15 8.230 31.7 0.085 3.170 778 EX5SW8	* * U	28.7 449 101 0.124 14.7 314 EX5SW9	*	20.9 92.2 121 0.174 10.4 183 EX5SW10	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11		12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12	1	7.300 120 33.6 0.035 4.180 22.3 EX5SW13	U	4.780 11.2 22.8 0.036 3.220 25.0 EX6B1	U	50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup
Lead Mercury Nickel Silver Zinc Parameter List	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date	7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011	* * U	28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil	*	20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011		12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011		7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011		4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil	U *	50 63 0.18 30 2 109 Part 375 Unrestricted Use
Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type	7.15 8.230 31.7 0.085 3.170 178 EX55W8 C3355-07 Soil	* * U	28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011	*	20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil	N	12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil	J	7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil	U	4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011	U *	50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives
Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg)	7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7	* * U	28.7 449 101 0.124 14.7 314 EX58W9 C3355-08 Soil 8/16/2011 3.090 30.2	*	20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 50.2	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5	N	12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2		7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5		4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9	U U *	50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350
Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total)	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg)	7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240	* * U	28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750	*	20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 50.2 218	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8	N	12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8		7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2		4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980	U *	50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b)
Lead Mercury Nickel Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240 266	* * U U	28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750 62.4	*	20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 50.2 218 1190	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8 20.1	N	12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8 33.9		7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2 53.7		4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980 56.7	U *	50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50
Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total)	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240	* * U U	28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750	*	20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 50.2 218	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8	N	12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8		7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2		4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980	*	50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b)
Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240 266 80.3	* * U U	28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750 62.4 65.8	*	20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 50.2 218 1190 227	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8 20.1 36.0	N	12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8 33.9 S3.5		7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2 53.7 117		4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980 56.7 739	*	50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63
Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury	(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240 266 80.3 0.079	* * U U	28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750 62.4 65.8 0.068	*	20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 S0.2 218 1190 227 0.191	*	25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8 20.1 36.0 0.024	N	12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8 33.9 53.5 0.070		7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2 53.7 117 0.081		4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980 56.7 739 0.109		50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18

	Sample ID	EX6B2		EX6B3		EX6SW1		EX6SW2		EX6SW3		EX6SW4		EX6SW5		Part 375
	Lab ID	C3109-04		C3109-05		C3100-01		C3100-02		C3100-03		C3100-04		C3100-05		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	7/21/2011		7/21/2011		7/20/2011		7/20/2011		7/20/2011		7/20/2011		7/20/2011		Objectives
Arsenic	(mg/kg)	11.2	*	25.2	*	9.760		4.640		7.630		11.6		17.9		13
Barium	(mg/kg)	59.7		59.6		35.0		39.7		44.2		30.5		45.5		350
Chromium (Total)	(mg/kg)	12.1		12.4		22.0		86.3		19.8		16.1		9.090		1 ^(a) , 30 ^(b)
Copper	(mg/kg)	55.8		40.9		285		2430		49.5		283		220		50
Lead	(mg/kg)	80.6		206		75.9		70.6		107		82.3		51.5		63
Mercury	(mg/kg)	0.117		0.348		0.142		0.087		0.079		0.091		0.051		0.18
Nickel	(mg/kg)	16.3		45.3		39.9		71.1		122		596		11.2		30
Silver	(mg/kg)		U		U		U	0.602			U		U		U	2
Zinc	(mg/kg)	127		264		215		558		281		358		84.3		109
				DI CONTE		PROF		PHOP:		ENGINE		-				
	Sample ID	EX6SW6		EX6SW7		EX6NB1		EX6NB2		EX6NSW1		EX6NSW2		EX6NSW3		Part 375
	Lab ID	C3100-06		C3109-06		C3265-15		C3265-16		C3265-06		C3265-07		C3265-08		Unrestricted Use
Parameter List	Sample Type	Soil		Soil 7/21/2011		Soil		Soil 8/4/2011		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	7/20/2011	-	7.03	*	8/4/2011				8/4/2011		8/4/2011		8/4/2011		Objectives 13
Arsenic	(mg/kg)	17.6 24.3	-	65.7	*	4.610 94.2		4.220 26.8		4.060 572		4.300		3.210 28.5	-	350
Barium	(mg/kg)	24.3 9.430	-	65.7 18.4			*		*		*		*		*	
Chromium (Total)	(mg/kg)	9.430	-	18.4		20 102	Ť	10.1 54.9	Ť	14.1 314	Ť	10.8	Ť	8.65 23.6	Ť	1(a), 30(b) 50
Copper Lead	(mg/kg)		-							-		254			-	63
	(mg/kg)	81.0 0.049	-	0.118		146	U*	63.3 0.075	4	275 0.052	*	0.22	*	86.5 0.092	*	0.18
Mercury Nickel	(mg/kg) (mg/kg)	23.2		41.3		11.3	0*	14.6		10.8	*	11.5	*	5.420	*	30
Silver	(mg/kg)	23.2	U	41.5	U	11.5	U	14.0	U	10.8	U	0.684		3.420	U	2
Zinc	(mg/kg)	159	0	473	U	114	U	146	0	399	U	371		69.0	U	109
Zine	(IIIg/Kg)	133		475		114		140		333		5/1		09.0		109
	Sample ID	EX6NSW4		EX6NSW5		EX6NSW6										Part 375
	Lab ID	C3265-09		C3265-13		C3265-14										Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil										Soil Cleanup
EPA Method 6010B/7471A	Sample Date	8/4/2011		8/4/2011		8/4/2011										Objectives
Arsenic	(mg/kg)	2.030		5.120		2.420										13
Barium	(mg/kg)	27.6		45.4		18.6										350
Chromium (Total)	(mg/kg)	11.2	*	32.2	*	9.16	*									1 ^(a) , 30 ^(b)
Copper	(mg/kg)	13.8	1	149	1	61.5										50
Lead	(mg/kg)	58.2	1	113	1	46.6										63
Mercury	(mg/kg)	0.034	*	0.085	*	0.051	*									0.18
Nickel	(mg/kg)	7.790		19.3		8.060										30
Silver	(mg/kg)		U	0.161	J		U									2
Zinc	(mg/kg)	132		168	l l	75.7										109

i	<u> </u>				Т		-		1		-		1		1
	Sample ID	EX1SW1		EX1SW2		T3B1		T4B1		EX2B1		EX2B2	EX2B3		
	Lab ID	C3524-03		C3524-04		C3524-01		C3524-02		C3109-07		C3109-08	C3109-09		Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil	Soil		Standards, Criteria, and
EPA Method 8260B	Sample Date	8/25/2011		8/25/2011		8/25/2011		8/25/2011		7/21/2011		7/21/2011	7/21/2011		Guidance
Benzene	(µg/kg)		U		U	τ	U		U	U		U		U	60
Chlorobenzene	(µg/kg)		U	1	U	τ	U		U	U		U		U	17,000
cis 1,2- Dichloroethylene	(µg/kg)		U	1	U	τ	U		U	U		U		U	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		U	1	U	τ	U		U	U		U		U	300 ^(a)
Ethylbenzene	(µg/kg)	570	D	1	U	τ	U		U	U		U		U	5,500
Methyl tert-butyl ether	(µg/kg)	2	J	1	U	τ	U	4	J	U		U		U	120
Naphthalene	(µg/kg)	13,000	D	1	U	τ	U		U	U		U		U	13,000
Tetrachloroethylene (PCE)	(µg/kg)		U	1	U	τ	U	1	U	U		U		U	1,400
Toluene	(µg/kg)	13		1	U	τ	U		U	U		U		U	1,500
Trichloroethylene (TCE)	(µg/kg)		U	1	U	τ	U	1	U	U		U		U	700
Vinyl chloride	(µg/kg)		U	1	U	τ	U		U	U		U		U	200
m,p- Xylene	(µg/kg)	2,100	D	1	U	τ	U		U	U		U		U	1,200 ^(b)
o- Xylene	(µg/kg)	1,000	D	1	U	τ	U		U	U		U		U	1,200 ^(b)
	Sample ID	EX2B4	1	EX3B1	<u> </u>	EX3B2	-	EX3B3	-	EX3SW1	Т	EX3SW2	EX3SW3		1
	Lab ID	C3109-10		C3068-06		C3068-07	-	C3109-02	-	C3068-01	+	C3068-02	C3068-03		Site Specific
Parameter List	Sample Type	Soil		Soil		Soil	-	Soil	-	Soil	+	Soil	Soil		Standards, Criteria, and
EPA Method 8260B	Sample Type Sample Date	7/21/2011		7/19/2011	+	7/19/2011	-	7/21/2011	-	7/19/2011	+	7/19/2011	7/19/2011		Guidance
Benzene	(µg/kg)	//21/2011	U		U		U		U	U	+	U	//1//2011	U	
Chlorobenzene	(µg/kg)		Ũ		Ū		U		Ŭ	Ũ		Ŭ		Ŭ	17,000
cis 1,2- Dichloroethylene	(µg/kg)		Ŭ		Ŭ		U		U	Ŭ		Ŭ		Ŭ	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		Ŭ		Ŭ		U		Ŭ	Ũ	_	Ŭ		Ŭ	300 ^(a)
Ethylbenzene	(µg/kg)		Ŭ		Ū		U		Ŭ	Ũ		Ŭ		Ŭ	5,500
Methyl tert-butyl ether	(µg/kg)		Ŭ		Ŭ		U		Ŭ	Ũ		Ŭ		Ŭ	120
Naphthalene	(µg/kg)	3	J		Ŭ		Ŭ		Ŭ	Ũ		Ũ		Ŭ	13,000
Tetrachloroethylene (PCE)	(µg/kg)		U	1	U	τ	U	1	U	U		U	6		1,400
Toluene	(µg/kg)		U	1	U	τ	U	1	U	U		U		U	1,500
Trichloroethylene (TCE)	(µg/kg)		U	1	U	τ	U	1	U	U		U		U	700
Vinyl chloride	(µg/kg)		U	1	U	τ	U		U	U		U		U	200
m,p- Xylene	(µg/kg)		U	1	U	I	U	1	U	U		U		U	1,200 ^(b)
o- Xylene	(µg/kg)		U	1	U	τ	U		U	U		U		U	1,200 ^(b)
(a) SCG is for the sum of cis 1,2-DCE and tr	ans 1,2-DCE									· · · ·		· · ·			
(b) SCG is for total Xylenes															
NOTE: EPA = U.S. Enivronmental	Protection Agency.														
ID = Identification															
μg/kg = micrograms per kilo	gram = parts per bi	llion (ppb).													
U = Non-detect, detectio															
D = Indicates the reporte	d value was obtained	l by analysis at a se	condar	y dilution factor.											
I = Indicates the reporte	d value was less than	the Contract Requ	ired De	staction Limit but great	tor th	an or equal to the Instru	uma	nt Datastian Limit							

TABLE 7A SUMMARY OF REMAINING SOIL CONTAMINATION ABOVE SITE-SPECIFIC SOIL CLEANUP OBJECTIVES FOR VOCs

J = Indicates the reported value was less than the Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit.

Data provided by Chenter Consulting Group. Only analytes included in Table 1 of the ROD are included Concentration values in**BOLD** indicate that analyte was detected above the site specific standards, criteria, and guidance.

	Sample ID	EX3SW4		EX3SW5		EX3SW6		EX3SW7		T1B1		T1B2	T1SW1	
	Lab ID	C3068-04		C3068-05		C3109-01		C3153-06		C3153-01		C3153-02	C3153-05	Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil	Soil	Standards, Criteria, and
EPA Method 8260B	Sample Date	7/19/2011		7/19/2011		7/21/2011		7/27/2011		7/27/2011		7/27/2011	7/27/2011	Guidance
Benzene	(µg/kg)		U		U	,,,_	U		U	,,_,,_,,	U	U		
Chlorobenzene	(µg/kg)		U		U		U		U		U	U	L L	
cis 1.2- Dichloroethylene	(µg/kg)		U		U		U		U		U	U	I I	
trans 1,2- Dichloroethylene	(µg/kg)		U		U		U		U		U	U	(500
Ethylbenzene	(µg/kg)		U		U		U		U		U	U	1	500
Methyl tert-butyl ether	(µg/kg)		U		U		U		U		U	U	1	
Naphthalene	(μg/kg)		U		U		U		U		U	U	1	
Tetrachloroethylene (PCE)	(µg/kg)		U		U		U		U		U	U	(
Toluene	(µg/kg)		U		U		U		U		U	U	1	/
Trichloroethylene (TCE)	(μg/kg)		U		U		U		U		U	U	1	,
Vinvl chloride	(μg/kg)		U		U		U		U		U	U	1	,
m,p- Xylene	(μg/kg) (μg/kg)		U		U		U		U		U	U U	(
o- Xylene			U		U		U		U		U	U	-	1,200
0- Xylene	(µg/kg)		U		U		U		U		U	0		1,200**
	Sample ID	T2B1		T2B2		EX4B1		EX4SW1		EX4SW2		EX4SW3	EX5B1	
	Lab ID	C3153-03		C3153-04		C3473-06		C3473-01		C3473-02		C3473-03	C3265-04	Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil	Soil	Standards, Criteria, and
EPA Method 8260B	Sample Date	7/27/2011		7/27/2011		8/22/2011		8/22/2011		8/22/2011		8/22/2011	8/4/2011	Guidance
Benzene	(µg/kg)		U		U		U		U		U	U	U	60
Chlorobenzene	(µg/kg)		U		U		U		U		U	U	τ	17,000
cis 1,2- Dichloroethylene	(µg/kg)		U		U	1.7	J		U		U	U	τ	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		U		U		U		U		U	U	ι	300 ^(a)
Ethylbenzene	(µg/kg)		U		U		U		U		U	U	t	
Methyl tert-butyl ether	(µg/kg)		U		U		U		U		U	U	t	
Naphthalene	(µg/kg)		U	81	J		U		U		U	U	τ	13.000
Tetrachloroethylene (PCE)	(µg/kg)		U		U	96	D	3	J		U	U	ι	1,400
Toluene	(µg/kg)		U		U		U	1.1	J		U	U	ι	1,500
Trichloroethylene (TCE)	(µg/kg)	5.2	J	3.4	J	12			U		U	U	ι	700
Vinyl chloride	(µg/kg)		U		U		U		U		U	U	τ	200
m,p- Xylene	(µg/kg)		U		U		U	7.2	J		U	U	τ	1.200 ^(b)
o- Xylene	(µg/kg)		U	1.4	J		U	1	J		U	U	L	,
														,
	Sample ID	EX5B2		EX5B3		EX5B4		EX5B5		EX5B6		EX5B7	EX5SW1	_
	Lab ID	C3265-05		C3355-04		C3355-05		C3473-08		C3622-04		C3622-05	C3265-01	Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil	Soil	Standards, Criteria, and
EPA Method 8260B	Sample Date	8/4/2011		8/11/2011		8/11/2011		8/22/2011		9/7/2011		9/7/2011	8/4/2011	Guidance
Benzene	(µg/kg)		U		U		U		U		U	U		
Chlorobenzene	(µg/kg)		U		U		U		U		U	U	U	
cis 1,2- Dichloroethylene	(µg/kg)		U	1.4	J	390	JD	22		1.9	J	U	L	
trans 1,2- Dichloroethylene	(µg/kg)		U		U	3.4	J		U		U	U	U	500
Ethylbenzene	(µg/kg)	430	JD		U	340	JD		U		U	U	ι	
Methyl tert-butyl ether	(µg/kg)		U		U		U		U		U	U	U	
Naphthalene	(µg/kg)	470	JD		U	31	U		U	1.9	J	U	ι	
Tetrachloroethylene (PCE)	(µg/kg)		U		U	1.6	J	26	1		U	U	U	,
Toluene	(µg/kg)	2	J		U	1,600	D	2.3	J	1.6	J	U	ι	
Trichloroethylene (TCE)	(µg/kg)		U		U		U	36	1		U	U	τ	
Vinyl chloride	(µg/kg)		U		U	14	U		U		U	U	ι	
m,p- Xylene	(µg/kg)	780	JD		U	1,500	D		U		U	U	τ	-,= • •
o- Xylene	(µg/kg)		U		U	460	JD		U		U	U	U	1,200 ^(b)

	Sample ID	EX5SW2		EX5SW3		EX5SW4		EX5SW5	T	EX5SW6	1	EX5SW7	- 1	EX5SW8		
	Lab ID	C3265-02		C3265-03		C3355-01		C3355-02	-	C3355-03	-	C3473-07		C3355-07		Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil	-	Soil	-	Soil		Soil		Standards, Criteria, and
EPA Method 8260B	Sample Type Sample Date	8/4/2011		8/4/2011		8/11/2011		8/11/2011		8/11/2011		8/22/2011		8/16/2011		Guidance
Benzene	(µg/kg)	0/ 1/2011	U	0.1.2011	U	0/11/2011	U	0/11/2011	T	U	1	0/22/2011	U		U	60
Chlorobenzene	(µg/kg)		U		U		U			U			U		U	17.000
cis 1.2- Dichloroethylene	(µg/kg)		U		U		U			U		33	0		U	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		U		U		U			U		1.9	J		U	300 ^(a)
Ethylbenzene	(µg/kg)	9.2	0		U		U	U U		U		1.9	U		U	5,500
Methyl tert-butyl ether	(µg/kg)).2	U		U		U	T		U			U		U	120
Naphthalene	(µg/kg)	2.9	J		U		U	U U	·	6			U		U	13,000
Tetrachloroethylene (PCE)	(µg/kg)	2.)	U		U		U	U U		Ŭ	1	2.1	J		U	1,400
Toluene	(µg/kg)		U		U		U			U	-	13	3		U	1,500
Trichloroethylene (TCE)	(µg/kg)		U		U		U	T		U		15	U		U	700
Vinyl chloride	(µg/kg)		U		U		U	U U	·	U		8.1	U		U	200
m,p- Xylene	(µg/kg)	21	0		U		U	Ŭ		U		5.9	J		U	1,200 ^(b)
o- Xylene	(µg/kg)	21	U		U		U	U		U	-	2.5	J		U	1,200 ^(b)
0- Xylelle	(µg/kg)		U		U		0	[J	0		2.3	J		0	1,200
	Sample ID	EX5SW9		EX5SW10		EX5SW11		EX5SW12		EX6B1		EX6B2		EX6B3		
	Lab ID	C3355-08		C3622-03		C3622-01		C3622-02		C3109-03		C3109-04		C3109-05		Site Specific
Parameter List	Sample Type	Soil		Soil		Standards, Criteria, and										
EPA Method 8260B	Sample Date	8/16/2011		9/7/2011		9/7/2011		9/7/2011		7/21/2011		7/21/2011		7/21/2011		Guidance
Benzene	(µg/kg)		U		U		U	U	J	U			U		U	60
Chlorobenzene	(µg/kg)		U		U		U	τ	J	U			U		U	17,000
cis 1,2- Dichloroethylene	(µg/kg)		U	3.4	J		U	U	J	U			U		U	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		U		U		U	U	J	U			U		U	300 ^(a)
Ethylbenzene	(µg/kg)		U		U		U	υ	J	U			U		U	5,500
Methyl tert-butyl ether	(µg/kg)		U		U		U	Ŭ	J	U			U		U	120
Naphthalene	(µg/kg)	3.6	J		U		U	2.4 J	ſ	U			U		U	13,000
Tetrachloroethylene (PCE)	(µg/kg)		U		U		U	U	J	U			U		U	1,400
Toluene	(µg/kg)		U	2.6	J		U	U	J	U		3.2	J		U	1,500
Trichloroethylene (TCE)	(µg/kg)		U		U		U	τ	J	U			U		U	700
Vinyl chloride	(µg/kg)		U		U		U	τ	J	U			U		U	200
m,p- Xylene	$(\mu g/kg)$		U		U		U	υ	J	U			U	3.1	J	1.200 ^(b)
o- Xylene	(µg/kg)		U		U		U	U	J	U			U		U	1,200 ^(b)
											_					
	Sample ID	EX6SW1		EX6SW2		EX6SW3		EX6SW4		EX6SW5		EX6SW6		EX6SW7		
	Lab ID	C3100-01		C3100-02		C3100-03		C3100-04	_	C3100-05	_	C3100-06		C3109-06		Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil	_	Soil		Soil		Standards, Criteria, and
EPA Method 8260B	Sample Date	7/20/2011		7/20/2011		7/20/2011		7/20/2011	-	7/20/2011	_	7/20/2011		7/21/2011	**	Guidance
Benzene	(µg/kg)		U		U		U	U		U	_		U		U	60
Chlorobenzene	(µg/kg)		U		U		U	U		U	_		U		U	17,000
cis 1,2- Dichloroethylene	(µg/kg)		U		U		U	U		U	_		U		U	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		U		U		U	U		U			U		U	300 ^(a)
Ethylbenzene	(µg/kg)		U		U		U	U		U	1		U		U	5,500
Methyl tert-butyl ether	(µg/kg)		U		U		U	U		U	_		U		U	120
Naphthalene	(µg/kg)		U	7.3			U	U		U			U		U	13,000
Tetrachloroethylene (PCE)	(µg/kg)		U		U		U	Ľ		U			U		U	1,400
Toluene	(µg/kg)		U		U		U	U		U			U		U	1,500
Trichloroethylene (TCE)	(µg/kg)		U		U		U	τ		U			U		U	700
Vinyl chloride	(µg/kg)		U		U		U	U	·	U			U		U	200
m,p- Xylene	(µg/kg)		U		U		U	U		U			U		U	1,200 ^(b)
o- Xylene	(µg/kg)		U		U		U	U	J	U			U		U	1,200 ^(b)

	Sample ID	EX6NB1	EX6NB2	EX6NSW1	EX6NSW2		EX6NSW3	EX6NSW4	EX6NSW5	
	Lab ID	C3265-15	C3265-16	C3265-06	C3265-07		C3265-08	C3265-09	C3265-13	Site Specific
Parameter List	Sample Type	Soil	Soil	Soil	Soil		Soil	Soil	Soil	Standards, Criteria, and
EPA Method 8260B	Sample Date	8/4/2011	8/4/2011	8/4/2011	8/4/2011		8/4/2011	8/4/2011	8/4/2011	Guidance
Benzene	(µg/kg)	τ	J	U	U	U	U	τ	U	U 60
Chlorobenzene	(µg/kg)	τ	J		-	U	U		U	U 17,000
cis 1,2- Dichloroethylene	(µg/kg)	τ	J	U	U I	U	U		U	U 300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)	τ		-	-	U	U	l	-	U 300 ^(a)
Ethylbenzene	(µg/kg)	τ	J	U	U	U	1.8 J		U	U 5,500
Methyl tert-butyl ether	(µg/kg)	τ			-	U	U	ι	•	U 120
Naphthalene	(µg/kg)	τ		-	-	U	35		-	U 13,000
Tetrachloroethylene (PCE)	(µg/kg)	τ		-	-	U	U		-	U 1,400
Toluene	(µg/kg)	τ				U	U			U 1,500
Trichloroethylene (TCE)	(µg/kg)	τ		-	-	U	U		-	U 700
Vinyl chloride	(µg/kg)	τ	J	U	U	U	U	ι	U	U 200
m,p- Xylene	(µg/kg)	τ	J	U	U I	U	20	ι	U	U 1,200 ^(b)
o- Xylene	(µg/kg)	τ	J	U	U	U	2.1 J	ι	U	U 1,200 ^(b)
	Sample ID	EX6NSW6								
	Lab ID	C3265-14	-							
										Site Specific
Parameter List			-							Site Specific Standards, Criteria, and
Parameter List EPA Method 8260B	Sample Type	Soil	-							Standards, Criteria, and
EPA Method 8260B	Sample Type Sample Date									Standards, Criteria, and Guidance
	Sample Type Sample Date (µg/kg)	Soil 8/4/2011								Standards, Criteria, and
EPA Method 8260B Benzene	Sample Type Sample Date (µg/kg) (µg/kg)	Soil 8/4/2011	J							Standards, Criteria, and Guidance 60
EPA Method 8260B Benzene Chlorobenzene	Sample Type Sample Date (µg/kg)	Soil 8/4/2011	J							Standards, Criteria, and Guidance 60 17,000
EPA Method 8260B Benzene Chlorobenzene cis 1,2- Dichloroethylene	Sample Type Sample Date (µg/kg) (µg/kg) (µg/kg)	Soil 8/4/2011	J							Standards, Criteria, and Guidance 60 17,000 300 ^(a)
EPA Method 8260B Benzene Chlorobenzene cis 1,2- Dichloroethylene trans 1,2- Dichloroethylene	Sample Type Sample Date (µg/kg) (µg/kg) (µg/kg) (µg/kg)	Soil 8/4/2011	T T T							Standards, Criteria, and Guidance 60 17,000 300 ^(a) 300 ^(a)
EPA Method 8260B Benzene Chlorobenzene cis 1,2- Dichloroethylene trans 1,2- Dichloroethylene Ethylbenzene	Sample Type Sample Date (µg/kg) (µg/kg) (µg/kg) (µg/kg) (µg/kg)	Soil 8/4/2011 U U U U U U U U U U	I I J I T							Standards, Criteria, and Guidance 60 17,000 300 ^(a) 300 ^(a) 5,500
EPA Method 8260B Benzene Chlorobenzene cis 1,2- Dichloroethylene trans 1,2- Dichloroethylene Ethylbenzene Methyl tert-butyl ether	Sample Type Sample Date (μg/kg) (μg/kg) (μg/kg) (μg/kg) (μg/kg) (μg/kg) (μg/kg) (μg/kg)	Soil 8/4/2011 U U U U U U U U U U								Standards, Criteria, and Guidance 60 17,000 300 ^(a) 5,500 120
EPA Method 8260B Benzene Chlorobenzene cis 1,2- Dichloroethylene trans 1,2- Dichloroethylene Ethylbenzene Methyl tert-butyl ether Naphthalene	Sample Type Sample Date (μg/kg)	Soil 8/4/2011 U U U U U U U U U U U U U U U U U U								Standards, Criteria, and Guidance 60 17,000 300 ^(a) 5,500 120 13,000
EPA Method 8260B Benzene Chlorobenzene cis 1,2- Dichloroethylene trans 1,2- Dichloroethylene Ethylbenzene Methyl tert-butyl ether Naphthalene Tetrachloroethylene (PCE)	Sample Type Sample Date (μg/kg)	Soil 8/4/2011 U U U U U U U U U U U U U U U U U U								Standards, Criteria, and Guidance 60 17,000 300 ^(a) 5,500 120 13,000 1,400
EPA Method 8260B Benzene Chlorobenzene cis 1,2- Dichloroethylene trans 1,2- Dichloroethylene Ethylbenzene Methyl tert-butyl ether Naphthalene Tetrachloroethylene (PCE) Toluene	Sample Type Sample Date (μg/kg)	Soil 8/4/2011 U U U U U U U U U U U U U U U U U U								Standards, Criteria, and Guidance 60 17,000 300 ^(a) 5,500 120 13,000 1,400 1,500 700 200
EPA Method 8260B Benzene Chlorobenzene cis 1,2- Dichloroethylene Itrans 1,2- Dichloroethylene Ethylbenzene Methyl tert-butyl ether Naphthalene Tetrachloroethylene (PCE) Toluene Trichloroethylene (TCE)	Sample Type Sample Date (μg/kg) (μg/kg)	Soil 8/4/2011 U U U U U U U U U U U U U U U U U U								Standards, Criteria, and Guidance 60 17,000 300 ^(a) 5,500 120 13,000 1,400 1,500 700

EX2B1 EX2E Sill C3109 Soil Soil Soil Soil Soil Soil Soil Soil Soil Soil Soil T/21/20 21/2011 7/21/20 2.4 91.5 82 631 1.2 52.4 65 442 X3SW1 EX3SV 3068-01 C3068 Soil Soil Soil Soil Stoil Soil Stoil 5.460 120 3.230 30.0 16.5 TIBI TIB Soil Soil Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	-08 C3109- Soil Soil 011 7/21/20 21.2 77.1 12.4 96.5 W2 EX3SV 02 C3068- Soil Soil 011 7/19/20 6.970 11.4 4.670 35.2 2 TISW-02 02 C3153- Soil Soil 011 7/27/20 11.4 4.77 4.77 6.42	09 011 V3 03 011 11 11 05	Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20
21/2011 7/21/20 2.4 91.5 82 631 1.2 52.4 65 442 X3SW1 EX3SV X3SW1 EX3SV Soil Soil Soil Soil 330 4.630 350 5.460 120 3.230 3.0 16.5 TIB1 TIB Soil Soil Soil <td>011 7/21/20 21.2 77.1 12.4 96.5 W2 EX3SV -02 C3068- Soil Soil 011 7/19/20 11.4 4.670 35.2 T1SW -02 C3153- Soil Soil 011 7/27/20 11.4 4.77 6.42 6.42</td> <td>V3 03 011 11 05</td> <td>Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 Site Specific Standards, Criteria and Guidance 50 25 13</td>	011 7/21/20 21.2 77.1 12.4 96.5 W2 EX3SV -02 C3068- Soil Soil 011 7/19/20 11.4 4.670 35.2 T1SW -02 C3153- Soil Soil 011 7/27/20 11.4 4.77 6.42 6.42	V3 03 011 11 05	Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 Site Specific Standards, Criteria and Guidance 50 25 13
21/2011 7/21/20 2.4 91.5 82 631 1.2 52.4 65 442 X3SW1 EX3SV X3SW1 EX3SV Soil Soil Soil Soil 330 4.630 350 5.460 120 3.230 3.0 16.5 TIB1 TIB Soil Soil Soil <td>011 7/21/20 21.2 77.1 12.4 96.5 W2 EX3SV -02 C3068- Soil Soil 011 7/19/20 11.4 4.670 35.2 T1SW -02 C3153- Soil Soil 011 7/27/20 11.4 4.77 6.42 6.42</td> <td>V3 03 011 11 05</td> <td>and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13</td>	011 7/21/20 21.2 77.1 12.4 96.5 W2 EX3SV -02 C3068- Soil Soil 011 7/19/20 11.4 4.670 35.2 T1SW -02 C3153- Soil Soil 011 7/27/20 11.4 4.77 6.42 6.42	V3 03 011 11 05	and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13
2.4 91.5 82 631 1.2 52.4 65 442 X3SW1 EX3S' Soil Soil Soil Soil 330 4.630 350 5.460 120 3.230 3.0 16.5 TIB1 TIB Soil Soil Soil Soil 75 5.35 0.1 13.6	21.2 77.1 12.4 96.5 W2 EX3SV 02 C3068- Soil Soil 011 7/19/20 11.4 4.670 35.2 T1SW -02 C3153- Soil Soil 011 7/27/20 11.4 4.77 6.42 6.42	V3 03 011 (1 05	50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13
82 631 1.2 52.4 65 442 X3SW1 EX3SV X3SW1 EX3SV Soil Soil Soil Soil 330 4.630 350 5.460 120 3.230 3.0 16.5 TIB1 TIB Soil Soil Soil	77.1 12.4 96.5 96.5 96.5 02 C3068 03 Soil 011 7/19/20 11.4 4.670 35.2 T1SW -02 C3153- 011 7/2/20 011 7/2/20 011 7/2/20 011 7/2/20 011 6.42	03	25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20
1.2 52.4 65 442 X3SW1 EX3SV 3068-01 C3068 Soil Soil 19/2011 7/19/20 330 4.630 350 5.460 120 3.230 3.0 16.5 T1B1 T1B Soil Soil Soil Soil 75 5.35 0.1 13.6	12.4 96.5 W2 EX3SV -02 C3068- Soil Soil D11 7/19/20 6.970 11.4 4.670 35.2 2 TISW -02 C3153- Soil Soil D11 7/27/20 11.4 4.77 6.42 6.42	03	13 20 Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 20 Site Specific Standards, Criteria and Guidance 50 25 13
65 442 X3SW1 EX3SV 3068-01 C3068 Soil Soil 19/2011 7/19/20 330 4.630 120 3.230 3.0 16.5 T1B1 T1B Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	96.5 W2 EX3SV -02 C3068 Soil Soil 011 7/19/20 6.970 11.4 4.670 35.2 2 T1SW -02 C3153- Soil Soil 011 7/27/20 111.4 4.77 4.77 6.42	03	20 Site Specific Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13
3068-01 C3068 Soil Soil 19/2011 7/19/20 330 4.630 550 5.460 120 3.230 3.0 16.5 T1B1 T1B Soil C3153 Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	-02 C3068- 111 7/19/20 6.970 11.4 4.670 35.2 2 T1SW -02 C3153- 1011 7/27/20 111.4 4.77 4.77 6.42	03	Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13
3068-01 C3068 Soil Soil 19/2011 7/19/20 330 4.630 550 5.460 120 3.230 3.0 16.5 T1B1 T1B Soil C3153 Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	-02 C3068- 111 7/19/20 6.970 11.4 4.670 35.2 2 T1SW -02 C3153- 1011 7/27/20 111.4 4.77 4.77 6.42	03	Standards, Criteria and Guidance 50 25 13 20 Site Specific Standards, Criteria and Guidance 50 25 13
Soil Soil 19/2011 7/19/20 330 4.630 350 5.460 120 3.230 3.0 16.5 TTB1 TTB Stift-01 C3153 Soil Soil Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	Soil 011 7/19/20 6.970 11.4 11.4 4.670 35.2 35.2 2 TISW -02 C3153- 1011 7/27/20 11.4 4.77 6.42 6.42	011 1 1 05	Standards, Criteri and Guidance 50 25 13 20 Site Specific Standards, Criteri and Guidance 50 25 13
19/2011 7/19/20 330 4.630 350 5.460 120 3.230 3.0 16.5 TIB1 TIB Soil Soil Soil Soil Z7/2011 7/27/20 75 5.35 0.1 13.6	7/19/20 6.970 11.4 4.670 35.2 2 7158 02 0313 Soil 7/27/20 11.4 4.77 6.42	1 05	and Guidance 50 25 13 20 Site Specific Standards, Criter and Guidance 50 25 13
330 4.630 850 5.460 120 3.230 3.0 16.5 TIB1 TIB Soil Soil Soil Soil 75 5.35 0.1 13.6	6.970 11.4 4.670 35.2 2 T1SW -02 C3153 Soil 011 7/27/20 11.4 4.77 6.42	1 05	50 25 13 20 Site Specific Standards, Criteri and Guidance 50 25 13
350 5.460 120 3.230 3.0 16.5 TIB1 TIB Soil C3153 Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	11.4 4.670 35.2 2 T1SW -02 C3153- 011 7/27/20 11.4 4.77 6.42 6.42	05	25 13 20 Site Specific Standards, Criteri and Guidance 50 25 13
120 3.230 3.0 16.5 T1B1 T1B Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	4.670 35.2 2 TISW -02 C3153- 011 7/27/20 11.4 4.77 6.42	05	13 20 Site Specific Standards, Criteri and Guidance 50 25 13
3.0 16.5 T1B1 T1B 3153-01 C3153 Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	35.2 2 TISW -02 C3153- 011 7/27/20 11.4 4.77 6.42 6.42	05	20 Site Specific Standards, Criteria and Guidance 50 25 13
TIBI TIB 3153-01 C3153 Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	2 T1SW -02 C3153- 1 Soil 1 7/27/20 11.4 4.77 6.42	05	Site Specific Standards, Criteria and Guidance 50 25 13
3153-01 C3153 Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	-02 C3153- Soil 011 7/27/20 11.4 4.77 6.42 6.42	05	Standards, Criteria and Guidance 50 25 13
3153-01 C3153 Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	-02 C3153- Soil 011 7/27/20 11.4 4.77 6.42 6.42	05	Standards, Criteria and Guidance 50 25 13
Soil Soil 27/2011 7/27/20 75 5.35 0.1 13.6	Soil 011 7/27/20 11.4 4.77 6.42		Standards, Criteria and Guidance 50 25 13
27/2011 7/27/20 75 5.35 0.1 13.6	011 7/27/20 11.4 4.77 6.42	011	and Guidance 50 25 13
75 5.35 0.1 13.6	11.4 4.77 6.42		50 25 13
0.1 13.6	4.77 6.42		25 13
			13
			* *
2.1 38.6	17.2		20
X4SW2 EX4SV			
3473-02 C3473		04	Site Specific
Soil Soil 22/2011 8/22/20		11	Standards, Criteria
	011 8/4/20		and Guidance
190 <u>3.890</u>	52.0	U	50 25
100 <u>3.770</u>	73.8		
U 10.8 380 14.9	8.420		13 20
380 14.9	62.5		20
			Site Specific
			Standards, Criteri
			and Guidance
			50
			25
			13
			20

TABLE 7B SUMMARY OF REMAINING SOIL CONTAMINATION ABOVE SITE-SPECIFIC SOIL CLEANUP OBJECTIVES FOR METALS

	Sample ID	EX5B3		EX5B4		EX5B5		EX5B6		EX5B7		EX5SW1		EX5SW2		
	Lab ID	C3355-04		C3355-05		C3473-08		C3622-04		C3622-05		C3265-01		C3265-02		Site Specific
Parameter List	Sample Type	Soil		Soil		Standards, Criteria										
EPA Method 6010/7470	Sample Date	8/11/2011		8/11/2011		8/22/2011		9/7/2011		9/7/2011		8/4/2011		8/4/2011		and Guidance
Chromium (total)	(mg/kg)	10.1		6.300		61.3		30.3		34.2			U		U	50
Copper	(mg/kg)	44.1		18.4		953		114		152		8.230		449		25
Nickel	(mg/kg)	5.180		4.770		56.4		31.8		14.4		3.170		14.7		13
Zinc	(mg/kg)	66.5		39.7		345			U		U	178		314		20
	Sample ID	EX5SW3		EX5SW4		EX5SW5	Т	EX5SW6		EX5SW7		EX5SW8		EX5SW9		1
	Lab ID	C3265-03		C3355-01		C3355-02		C3355-03		C3473-07		C3355-07		C3355-08		Site Specific
Parameter List	Sample Type	Soil		Soil		Standards, Criteri										
EPA Method 6010/7470	Sample Date	8/4/2011		8/11/2011		8/11/2011		8/11/2011		8/22/2011		8/16/2011		8/16/2011		and Guidance
Chromium (total)	(mg/kg)		U	27.6		12.6		7.300		218		7.240		6.750		50
Copper	(mg/kg)	92.2		84.9		221		120		1190		266		62.4		25
Nickel	(mg/kg)	10.4		15.7		8.480		4.180		110		42.6		10.7		13
Zinc	(mg/kg)	183		99.0		133		22.3		311		193		107		20
	Sample ID	EX5SW10		EX5SW11		EX5SW12		EX6B1		EX6B2		EX6B3		EX6SW1		
	Lab ID	C3622-03		C3622-01		C3622-02	-	C3109-03		C3109-04		C3109-05		C3100-01		a:, a
D (1 ¹)	Sample Type	Soil		Soil		Soil	_	Soil		Soil		Soil		Soil		Site Specific
Parameter List EPA Method 6010/7470	Sample Type Sample Date	9/7/2011		9/7/2011		9/7/2011	_	7/21/2011		7/21/2011		7/21/2011		7/20/2011		Standards, Criter and Guidance
Chromium (total)	(mg/kg)	15.8		10.8		17.2	-	6.980		12.1	1	12.4		22.0	r	50
		20.1	-	33.9		53.7	_	56.7		55.8		40.9		22.0		25
Copper Nickel	(mg/kg)	9.550	-	12.8		11.7	_	6.450		16.3		40.9		285 39.9		13
Zinc	(mg/kg)	9.550	U	12.8	U	11.7 U	T	280		16.5		45.5		215		20
Zific	(mg/kg)		U		U	0		280		127		204		215		20
	Sample ID	EX6SW2		EX6SW3		EX6SW4		EX6SW5		EX6SW6		EX6SW7		EX6NB1		
	Lab ID	C3100-02		C3100-03		C3100-04		C3100-05		C3100-06		C3109-06		C3265-15		Site Specific
Parameter List	Sample Type	Soil		Soil		Standards, Criter										
EPA Method 6010/7470	Sample Date	7/20/2011		7/20/2011		7/20/2011		7/20/2011		7/20/2011		7/21/2011		8/4/2011		and Guidance
Chromium (total)	(mg/kg)	86.3		19.8		16.1		9.090		9.430		18.4			U	50
Copper	(mg/kg)	2430		49.5		283		220		76.1		1670		102		25
Nickel	(mg/kg)	71.1		122		596		11.2		23.2		41.3		11.3		13
Zinc	(mg/kg)	558		281		358		84.3		159		473		114		20
	Sample ID	EX6NB2		EX6NSW1		EX6NSW2	Т	EX6NSW3		EX6NSW4		EX6NSW5		EX6NSW6		
	Lab ID	C3265-16		C3265-06		C3265-07		C3265-08		C3265-09		C3265-13		C3265-14		Site Specific
Parameter List	Sample Type	Soil		Soil		Standards, Criter										
EPA Method 6010/7470	Sample Date	8/4/2011		8/4/2011		8/4/2011		8/4/2011		8/4/2011		8/4/2011		8/4/2011		and Guidance
Chromium (total)	(mg/kg)		U		U	U	J		U		U		U		U	50
Copper	(mg/kg)	54.9		314		162		23.6		13.8		149		61.5		25
Nickel	(mg/kg)	14.6		10.8		11.5		5.420		7.790		19.3		8.060		13
Zinc	(mg/kg)	146	1	399	-	371		69.0								20

	Sample ID	EX7P1		EX7P2		EX7P3		EX7P4		EX7P5 D1315-05				
	Lab ID	D1315-01		D1315-02		D1315-03		D1315-04					Effects Dongo	
Parameter List	Sample Type	Sediment		Sediment		Sediment		Sediment		Sediment		Effects Range-	Effects Range- Median	
EPA Method 6010/7470	Sample Date	1/27/2012		1/27/2012		1/27/2012		1/27/2012		1/27/2012		Low (mg/kg)	(mg/kg)	
Arsenic	(mg/kg)	13.3		17.2		10.9		3.81		8.48		8.2	70	
Cadmium	(mg/kg)	0.512		0.981		4.04		0.123	J	0.309	J	1.2	9.6	
Chromium	(mg/kg)	40.7		55.2		97.4		17.4		42.6		81	370	
Copper	(mg/kg)	177		299		134		42.2		91.5		34	270	
Iron ^(a)	(mg/kg)	14000		21100		21900		5630		11900		2%	4%	
Lead	(mg/kg)	46.8		76.1		228		24.5		40.9		46.7	218	
Mercury	(mg/kg)	0.373		0.492		1.86	D	0.152		0.202		0.15	0.71	
Nickel	(mg/kg)	15.8		16.7		23.3		5.28		15.3		20.9	51.6	
Silver	(mg/kg)		U		U	4.05			U		U	1	3.7	
Zinc	(mg/kg)	141		318		206		44.8		100		150	410	

TABLE 8 SUMMARY OF REMAINING SEDIMENT CONTAMINATION ABOVE SITE-SPECIFIC CLEANUP OBJECTIVES FOR METALS

mg/kg = Millirgrams per kilogram

= Indicates the reported value was less than the Contract Required Detection Limit, but greater than or equal to the Method Detection Limit.

D = Indicates the reported value is from a dilution.

U = Non-detect, detection below the method detection limit.

Data provided by Chemtech Consulting Group. Only analytes that were detected in at least one sample are shown.

Concentration values in BOLD indicate that analyte was detected above the Effects Range-Low. Concentration values in ITALICS indicate that analyte was detected above the Effects Range-Median.

J

TABLE 9A SUMMARY OF GROUNDWATER CONTAMINATION ABOVE SITE-SPECIFIC CLEANUP OBJECTIVES FOR VOCs

	Sample ID Lab ID	MW-08S C5040-01		MW-08D C5040-02		MW-09S C5040-03		MW-09D C5040-04		MW-108 C5040-03		MW-10D C5040-06		Duplicate C5040-07		Trip Blank C5040-21		NYSDEC Ambient Water Quality
Parameter List	Sample Type	Groundwate		Groundwate		Groundwater		Groundwat		Groundwa	ter	Groundwat	er	Groundwate	er	QA/QC		Standard Class GA
EPA Method 8260B	Sample Date	12/14/201	1	12/14/2011		12/14/2011		12/14/201	1	12/14/201	1	12/14/201	1	12/14/2011		NA		(µg/L)
Acetone	(µg/L)	(<25)	U	(<25)	U	44		(<25)	U	4	J	(<25)	U	47		(<25)	U	50 (g)
cis-1,2-Dichloroethene	(µg/L)	8.4		50		82		51		6.9		(<5.0)	U	67		(<5)	U	5 (s)
Methyl tert-butyl ether	(µg/L)	3	J	(<5.0)	U	2	J	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5)	U	10 (g)
Tetrachloroethene (PCE)	(µg/L)	390	D	3,000	D	7		1,200	D	5.6		6.7		7		(<5)	U	5 (s)
trans-1,2-Dichloroethene	(µg/L)	(<5.0)	U	1	J	(<5.0)	U	1.9	J	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5)	U	5 (s)
Trichloroethene (TCE)	(µg/L)	9.4		140	JD	14		180	JD	(<5.0)	U	(<5.0)	U	7		(<5)	U	5 (s)
Vinyl chloride	(µg/L)	(<5.0)	U	(<5.0)	U	88		10		(<5.0)	U	(<5.0)	U	75		(<5)	U	2 (s)
ID = Identification QA/QC = Quality assuran NA = Not applicable NYSDEC = New York State µg/L = micrograms p U = Non-detect, d J = Indicates the p	e Department of En er Liter = parts pe etection below the reported value was cted at MW-09S. a Consulting Group DD indicate that an	vironmental Cons r billion (ppb). method detection less than the Cont obtained by analy . Only analytes the nalyte was detected	limit. ract Requ sis at a se at were de d above tl	ired Detection Li condary dilution f etected in at least of he NYSDEC Amb	actor. one samp	le are shown. er Quality Standard	l (g) gı	uidance value, (s) s	tandard v	alue.	ort.							

	Sample ID	MW-08S		MW-08D		MW-09S		MW-09D		MW-10S		MW-10D		Duplicate		NYSDEC Ambient	
	Lab ID	C5040-01		C5040-02		C5040-03		C5040-04		C5040-05		C5040-06		C5040-07		Water Quality Standard	
Parameter List	Sample Type	Groundwate	r	Groundwater		Groundwater		Groundwate	r	Groundwater		Groundwate	er	Groundwate	r	Class GA	
EPA Method 6010/7470	Sample Date	12/14/2011		12/14/2011		12/14/2011		12/14/2011		12/14/2011		12/14/2011	l	12/14/2011		(μg/L)	
Aluminum	(μg/L)	485		65.5		1,010	П	1,570		903		550		995			
Arsenic	(µg/L)	(<10)	U	(<10)	U	(<10)	U	(<10)	U	5.76	J	(<10)	U	(<10)	U	25 (s)	
Barium	(µg/L)	81.6		35.5	J	119		46.2	J	71.1		13.2	J	116		1,000 (s)	
Boron	(µg/L)	188		169		554		73.6		779		74.4		573		1,000 (s)	
Cadmium	(µg/L)	0.709	J	1.41	J	1.37	J	0.853	J	(<3)	U	(<3)	U	1.46	J	5 (s)	
Calcium	(µg/L)	32,700		100,000		60,300		36,000		33,200		13,500		58,300			
Chromium (total)	(µg/L)	58.5		5.69		11.9		12.5		12.5		6.57		68.8		50 (s)	
Copper	(µg/L)	15.5		7.91	J	6.8	J	4.64	J	12.3		(<10)	U	(<10)	U	200 (s)	
Iron	(µg/L)	11,800		21,500		21,900		14,500		3,950		2,080		22,000		300 (s)	
Lead	(µg/L)	3	J	(<6)	U	(<6)	U	3.68	J	4.13	J	(<6)	U	3.01	J	25 (s)	
Magnesium	(µg/L)	3,480		10,200		19,600		7,740		3,430		6,010		19,200		35,000 (g)	
Manganese	(µg/L)	239		1,050		807		1,980		106		227		778		300 (s)	
Nickel	(µg/L)	20.4		10.4	J	(<20)	U	7.17	J	6.11	J	(<20)	U	30.9		100 (s)	
Potassium	(µg/L)	4,150.0		7,370		14,000		3,880		6,950		3,340		14,200			
Silver	(µg/L)	(<5)	U	(<5)	U	(<5)	U	(<5)	U	(<5)	U	1.61	J	1.51	J	50 (s)	
Sodium	(µg/L)	105,000		106,000		227,000		63,600		144,000		66,400		225,000		20,000 (s)	
Thallium	(µg/L)	2.55	J	2.43	J	(<20)	U	(<20)	U	(<20)	U	(<20)	U	2.73	J	0.5 (g)	
Vanadium	(µg/L)	(<20)	U	(<20)	U	(<20)	U	(<20)	U	8.46	J	(<20)	U	(<20)	U		
Zinc	(µg/L)	22.8		21		24.1		13.9	J	15.7	J	18.3	J	17.3	J	2,000 (g)	
NOTE: EPA = U.S. Eni ID = Identif	vronmental Protection Age ication	ency.															
NYSDEC = New Yor	k State Department of Envi	ironmental Conserva	tion.														
$\mu g/L = microgr$	ams per Liter = parts per b	billion (ppb).															
= No app	licable standard																
U = Non-de	tect, detection below the m	ethod detection limi	t.														
J = Indicate	s the reported value was le	ss than the Contract	Require	ed Detection Limit, I	out gre	ater than or equal to t	he Inst	trument Detection I	imit.								
Duplicate was collect	ed at MW-09S.		-		-	-											
Data provided by Che	mtech Consulting Group. (Only analytes that we	ere dete	cted in at least one s	ample	are shown.											
	in BOLD indicate that ana						guidan	ice value, (s) standa	rd value	e.							
April 2014 Revision -	New monitoring wells MV	V-11S and MW-11D	will be	sampled in Spring 2	2014; d	ata will be provided i	n a let	ter report and/or Pe	riodic R	Review Report.							

TABLE 9B SUMMARY OF GROUNDWATER CONTAMINATION ABOVE SITE-SPECIFIC CLEANUP OBJECTIVES FOR METALS

Metal Etching Co. Site (130110) Freeport, New York

APPENDIX A

ENVIRONMENTAL NOTICES

Metal Etching Owner: Apache Realty Corporation Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 155 and 157

ENVIRONMENTAL NOTICE

THIS ENVIRONMENTAL NOTICE is made the $5^{-1/4}$ day of <u>Marcel</u> 2014, by the New York State Department of Environmental Conservation (Department), having an office for the transaction of business at 625 Broadway, Albany, New York 12233.

WHEREAS, a parcel of real property located at the address of 435 Main Street and 24 Ray Street in the Incorporated Village of Freeport, Town of Hempstead, County of Nassau and State of New York, known and designated on the tax map of the County Clerk of Nassau as tax map parcel numbers: Section 62. Block 45 Lot 155, being the same as that property conveyed to Grantor by deed dated March 15, 1983 and recorded in the Nassau County Clerk's Office in Liber 9463 at Page 571 and Section 62. Block 45 Lot 157, being the same as that property conveyed to Grantor by deed dated August 2, 1983 and recorded October 4, 1983 in Liber 9505 at Page 357, comprising approximately 0.81 +/- acres, being more particularly described in the Property Description attached hereto and made a part hereof in Appendix "A,", and hereinafter referred to as "the Property" is the subject of a remedial program performed by the Department; and

WHEREAS, the Department approved a cleanup to address contamination disposed at the Property and such cleanup was conditioned upon certain limitations.

NOW, THEREFORE, the Department provides notice that:

5 A. I.

FIRST, the part of lands subject to this Environmental Notice is as shown on a survey map dated April 12, 2013 prepared by MJ Engineering and Land Surveying, P.C., attached to this Notice as Appendix "B" and made a part hereof.

SECOND, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, where contamination remains at the Property subject to the provisions of the Site Management Plan ("SMP"), there shall be no disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results or may result in a significantly increased threat of harm or damage at any site as a result of exposure to soils. A violation of this provision is a violation of 6 NYCRR 375-1.1 1(b)(2).

THIRD, no person shall disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of engineering controls required for the Remedy, including but not limited to those engineering controls described in the SMP and listed below, unless in each instance they first obtain a written waiver of such prohibition from the Department or Relevant Agency.

FOURTH, the remedy was designed to be protective for Commercial or Industrial uses. Therefore, any use for purposes other than Commercial or Industrial uses without the express written waiver of such prohibition by the Relevant Agency may result in a significantly Metal Etching Owner: Apache Realty Corporation Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 155 and 157

increased threat of harm or damage at any site.

4 14

FIFTH, the no person shall use the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Department or Relevant Agency. Use of the groundwater without appropriate treatment may result in a significantly increased threat of harm or damage at any site.

SIXTH, it is a violation of 6 NYCRR 375-1.11(b) to use the Property in a manner inconsistent with this environmental notice.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

By:

Robert W. Schick, P.E., Director Division of Environmental Remediation

STATE OF NEW YORK) ss: COUNTY OF ALBANY)

On the <u>5</u> day of <u>Mach</u>, in the year 20_, before me, Robert W. Schick, the undersigned, personally appeared, and is personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

State of New Notary Public York

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenected, County Commission Express August 22, 20

Metal Etching Owner: Apache Realty Corporation Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 155 and 157

Appendix A

METES AND BOUNDS DESCRIPTION

ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND SITUATE, LYING AND BEING IN THE INCORPORATED VILLAGE OF FREEPORT, COUNTY OF NASSAU AND STATE OF NEW YORK MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT ON THE EASTERLY SIDE OF SOUTH MAIN STREET AT ITS INTERSECTION WITH THE DIVISION LINE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE SOUTH AND LANDS NOW OR FORMERLY FREEPORT CREEK ASSOCIATES TO THE NORTH, BEING 113.10' SOUTHERLY FROM THE CORNER FORMED BY THE INTERSECTION OF THE EASTERLY SIDE OF SOUTH MAIN STREET AND THE SOUTHERLY SIDE OF RAY STREET;

RUNNING THENCE ALONG SAID DIVISION LINE THE FOLLOWING TWO (2) COURSES:

1) S 86°19'00" E, 331.25' TO A POINT; 2) N 12°15'00" W, 199.17' TO A POINT ON THE SOUTH SIDE OF RAY STREET;

THENCE ALONG RAY STREET IN PART AND LANDS NOWOR FORMERLY BWMHIGH & DRY INC. THE FOLLOWING TWO (2) COURSES:

1) N 77°45'00" E, 33.26' TO A POINT; 2) S 60°06'00" E, 146.22' TO A POINT AT THE WESTERLY EDGE OF FREEPORT CREEK;

THENCE RUNNING ALONG FREEPORT CREEK THE FOLLOWING THIRTEEN (13) COURSES:

S 27°30'08" E, 3.52' TO A POINT;
 S 46°43'34" E, 19.95' TO A POINT;
 S 54°48'18" E, 13.53' TO A POINT;
 S 13°15'20" E, 12.03' TO A POINT;
 S 06°14'04" W, 20.87' TO A POINT;
 S 31°12'03" W, 13.01' TO A POINT;
 S 35°49'59" W, 17.03' TO A POINT;
 S 47°18'43" W, 23.33' TO A POINT;
 S 62°36'32" W, 23.33' TO A POINT;
 S 71°43'13" W, 27.02' TO A POINT;
 S 70°16'31" W, 40.11' TO A POINT;
 S 86°19'00" E, 9.70' TO A POINT;
 S 86°19'00" E, 9.70' TO A POINT;

4) ¹⁰⁴

13) S 61°16'43"W, 95.3' TO A POINT ON THE DMSION UNE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE NORTH AND LANDS NOW OR FORMERLY OF FREEPORT MOTOR INN & BOAT RENTAL TO THE SOUTH; THENCE ALONG SAID DIMENSION LINE N 77°43'08" W, 289.63' TO A POINT AT THE EASTERLY SIDE OF SOUTH MAIN STREET;

THENCE NORTHERLY ALONG THE EAST SIDE OF SOUTH MAIN STREET N 04°35'45" E, 15.95' TO THE POINT AND PLACE OF BEGINNING CONTAINING 0.81 ACRES OF LAND, MORE OR LESS.

BEING AND INTENDING TO DESCRIBE THE SAME PARCEL CONVEYED TO APACHE REALTY CORP., FROM FREEPORT CREEK PROPERTIES, INC. BY DEED DATED AUGUST 2, 1983 AND RECORDED IN LIBER 9505 AT PAGE 357 AT THE NASSAU COUNTY CLERK'S OFFICE AND ALSO THAT PARCEL CONVEYED TO APACHE REALTY CORP., FROM FREDERICK J. VALENTINE BY DEED DATED MARCH 15, 1983 AND RECORDED IN LIBER 9463 AT PAGE 571 AT THE NASSAU COUNTY CLERK'S OFFICE.

APPENDIX B

SURVEY

- 1) MAP PREPARED FROM A FIELD SURVEY CONDUCTED BY M.J. ENGINEERING AND LAND SURVEYING P.C., DATED JUNE 2008 AND UPDATED OCTOBER 2012.
- 2) PARCELS SURVEYED IS FURTHER REFERENCED TO THE TOWN OF FREEPORT SECTION 62, BLOCK 45, LOTS 155 AND 157. 3) UNDERGROUND UTILITY LOCATIONS SHOWN HEREON ARE APPROXIMATE IN NATURE ONLY, AND SUBJECT TO VERIFICATION BY EXCAVATION.
- 4) SUBJECT TO ANY AND ALL RIGHTS, EASEMENTS, RESTRICTIONS, OR COVENANTS OF RECORD.
- 5) VERTICAL DATUM BASED UPON NAVO 88 TRANSFERRED TO THE SITE BY CONVENTIONAL METHODS.
- 6) BUILDING HEIGHTS SHOWN ARE MEASURED FROM GRADE. 7) SITE IS LOCATED 480'± SOUTH OF THE INTERSECTION OF ATLANTIC AVE AT THE INTERSECTION OF MAIN ST. AND RAY ST

8) NORTH REFERENCE SHOWN HEREON PER DEED REFERENCE ONE. 9) THIS SURVEY HAS BEEN REVISED WITH THE BENEFIT OF TITLE REPORT PREPARED BY FRONTIER ABSTRACT AND RESEARCH SERVICES AS AGENT FOR CHICAGO TITLE INSURANCE COMPANY, COMMITMENT NO. 5032264, DATED OCTOBER 2, 2012.

1057-

KIM-191

E 16V=-4.02 12" ROP

S NV=-2.87 "0" KOU

W HV=-4.07 2" RSH

- DEED REFERENCES:
- 1) CONVEYANCE FROM FREEPORT CREEK PROPERTIES, INC. TO APACHE REALTY CORP. DATED AUGUST 2, 1983 IN THE NASSAU COUNTY CLERK'S OFFICE IN LIBER 9505 OF DEEDS, PAGE 357 AS FILED ON OCTOBER 4, 1983.
- 2) CONVEYANCE FROM FREDERICK J. VALENTINE TO APACHE REALTY CORP. DATED MARCH 15, 1983 IN THE NASSAU COUNTY CLERK'S OFFICE IN LIBER 9463 OF DEEDS, PAGE 571 AS FILED MARCH 22, 1983.

MAP REFERENCES:

LOVERSTE

- 1) MAP ENTITLED "DESCRIPTIVE PROPERTY", PREPARED BY VITO A. VALENTI, DATED APRIL 1,
- 2) MAP ENTITLED "MAP OF PROPERTY SITUATED AT FREEPORT TOWN OF HEMPSTEAD
- NASSAU COUNTY-N.Y.", PREPARED BY BALDWIN & CORNELIUS, P.C. DATED AUGUST 2, 1985 LAST REVISED NOVEMBER 21, 1988.
- 3) MAP ENTITLED " MAP OF SUNSHINE PARK AT FREEPORT, NEW YORK" DATED JUNE 4. 1921 FILED IN NASSAU COUNTY CLERK'S OFFICE AS MAP NUMBER 179.

DESCRIPTION OF ENVIRONMENTAL EASEMENT ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND SITUATE, LYING AND BEING IN THE INCORPORATED VILLAGE OF FREEPORT, COUNTY OF NASSAU AND STATE OF NEW YORK

MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT ON THE EASTERLY SIDE OF SOUTH MAIN STREET AT ITS INTERSECTION WITH THE DIVISION LINE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE SOUTH AND LANDS NOW OR FORMERLY FREEPORT CREEK ASSOCIATES TO THE NORTH, BEING 113.10' SOUTHERLY FROM THE CORNER FORMED BY THE INTERSECTION OF THE EASTERLY SIDE OF SOUTH MAIN STREET AND THE SOUTHERLY SIDE OF RAY STREET;

RUNNING THENCE ALONG SAID DIVISION LINE THE FOLLOWING TWO (2) COURSES:

1) S 86'19'00" E, 331.25' TO A POINT; N 12'15'00" W, 199.17' TO A POINT ON THE SOUTH SIDE OF RAY

THENCE ALONG RAY STREET IN PART AND LANDS NOW OR FORMERLY BWM HIGH & DRY INC. THE FOLLOWING TWO (2) COURSES:

1) N 77*45'00" E, 33.26' TO A POINT;

2) S 60'06'00" E, 146.22' TO A POINT AT THE WESTERLY EDGE OF FREEPORT CREEK; THENCE RUNNING ALONG FREEPORT CREEK THE FOLLOWING THIRTEEN (13) COURSES:

1)	S	27'30'08"	E,	3.52' 1	0	AF	POINT;
2)	S	46"43'34"	E,	19.95'	TO	A	POINT;
3)	S	54'48'18"	Ε,	13.53'	TO	A	POINT;
4)	S	13'15'20"	Ε,	12.03'	TO	A	POINT;
5)	S	06'14'04"	₩,	20.87	TO	A	POINT;
6)	S	31"12'03"	W,	13.01'	TO	A	POINT;
7)	S	35'49'59"	W,	17.03'	TO	A	POINT;
8)	S	47'18'43"	W,	23.33"	TO	A	POINT;
9)	S	62'36'32"	W,	23.33'	TO	A	POINT;
10)	S	71'43'13"	W,	27.02	TO	A	POINT;
11)	S	70"16'31"	W,	40.11"	TO	A	POINT:
12)	S	85'19'00"	Ε,	9.70' 1	0 /	F	POINT;

RETAINING -

ERICK PAVERS

+ CONCRETE -----

RECOR

RETAKINE -15:41

BRICK PAVERS

BRICK PILLAR

P.O.B. OF ENVIRONMENTAL

<u>S 86°19'00"</u>

EASEMENT AREA

WAL

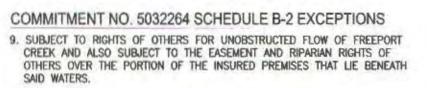
13) S 61"16'43"W, 95.3' TO A POINT ON THE DIVISION LINE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE NORTH AND LANDS NOW OR FORMERLY OF FREEPORT MOTOR INN & BOAT RENTAL TO THE SOUTH; THENCE ALONG SAID DIVISION LINE N 77"43'08" W, 289.63' TO A POINT AT THE EASTERLY SIDE OF SOUTH MAIN STREET:

THENCE NORTHERLY ALONG THE EAST SIDE OF SOUTH MAIN STREET N 04'35'45" E, 15.95' TO THE POINT AND PLACE OF BEGINNING CONTAINING 0.81 ACRES OF LAND, MORE OR

BEING AND INTENDING TO DESCRIBE THE SAME PARCEL CONVEYED TO APACHE REALTY CORP., FROM FREEPORT CREEK PROPERTIES, INC. BY DEED DATED AUGUST 2, 1983 AND RECORDED IN LIBER 9505 AT PAGE 357 AT THE NASSAU COUNTY CLERK'S OFFICE AND ALSO THAT PARCEL CONVEYED TO APACHE REALTY CORP., FROM FREDERICK J. VALENTINE BY DEED DATED MARCH 15, 1983 AND RECORDED IN LIBER 9463 AT PAGE 571 AT THE NASSAU COUNTY CLERK'S OFFICE.

17-535

ONE STORY


RRICK

BUILDING

802 NP. 17 8

1,706 56

-3.07

STRE

MAIN

SOUTH

N 04°35'45"E

15.95'

10. RIPARIAN RIGHTS AND EASEMENTS TO OTHERS OVER FREEPORT CREEK.

- 12. RIGHTS OF THE UNITED STATES GOVERNMENT, THE STATE OF NEW YORK AND NASSAU COUNTY OR ANY OF THEIR DEPARTMENTS OR AGENCIES TO REGULATE AND CONTROL THE USE OF PIERS. BULKHEADS, LAND UNDER WATER AND LAND ADJACENT THERETO, AND TO TAKE LAND NOW OR FORMERLY UNDER WATER WITHOUT COMPENSATION.
- 13. RIGHTS OF THE UNITED STATES GOVERNMENT TO ESTABLISH HARBOR, BULKHEAD OR PIERHEAD LINES OR TO CHANGE OR ALTER ANY SUCH EXISTING LINES AND TO REMOVE OR COMPEL THE REMOVAL OF FILL AND IMPROVEMENTS THEREON INCLUDING BUILDINGS OR OTHER STRUCTURES, FROM LAND NOW OR FORMERLY LYING BELOW THE HIGH WATER MARK OF FREEPORT CREEK.

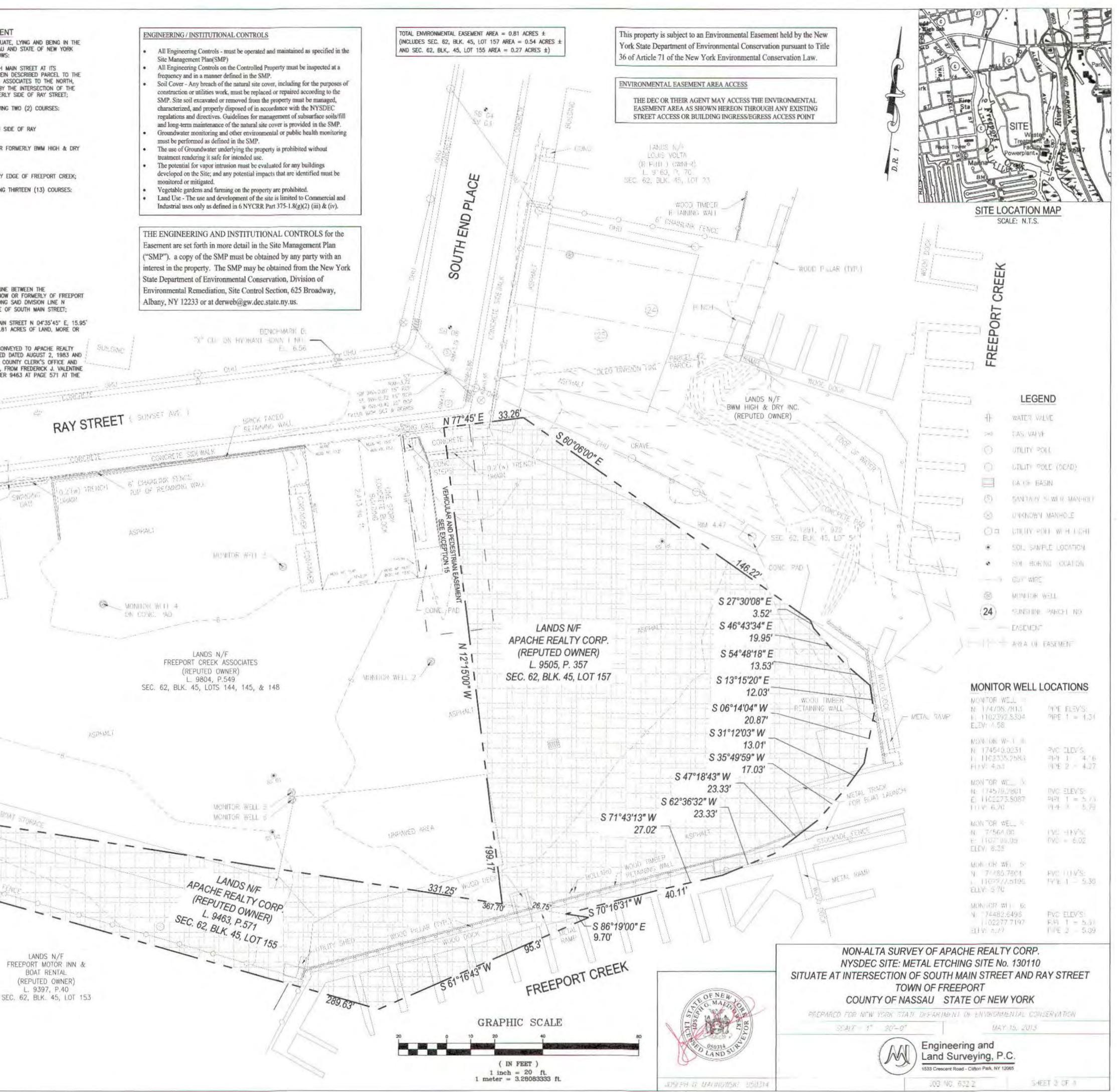
PARCEL A (LIBER 9505, PAGE 357)

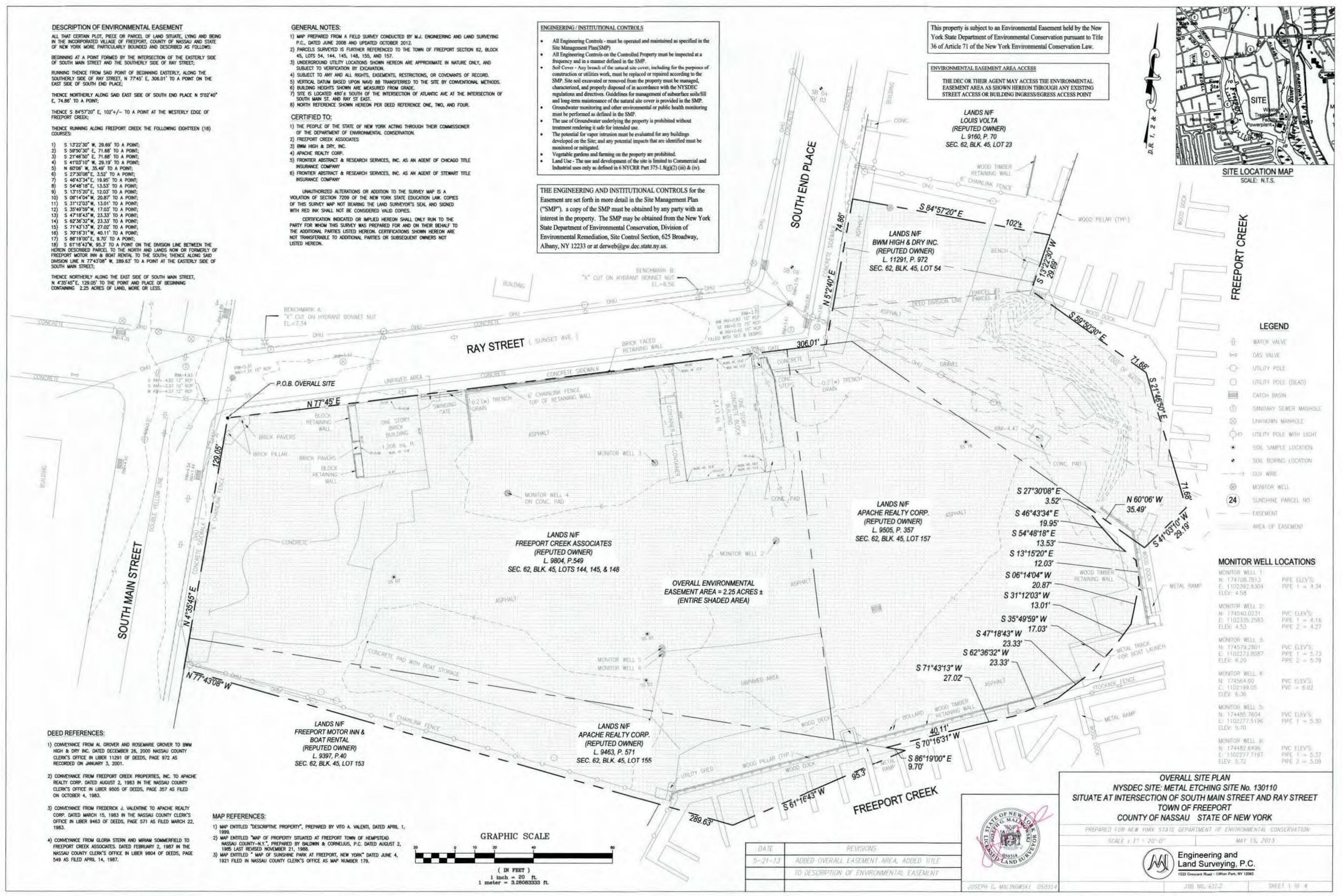
15. EASEMENTS CONTAINED IN THAT CERTAIN DECLARATION OF EASEMENT OF RIGHT OF WAY RECORDED IN LIBER 9505 OF DEEDS, PAGE 364 AS SHOWN HEREON DOES AFFECT THE PREMISES HEREIN DESCRIBED.

CERTIFIED TO:

BENGEMARK A

11 = 7.54


"X" OUT ON EVERYNAME DONNE" KUT


- 1) THE PEOPLE OF THE STATE OF NEW YORK ACTING THROUGH THEIR COMMISSIONER OF THE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
- 2) APACHE REALTY CORP

3) FRONTIER ABSTRACT & RESEARCH SERVICES, INC AS AN AGENT OF CHICAGO TITLE INSURANCE COMPANY

UNAUTHORIZED ALTERATIONS OR ADDITION TO THE SURVEY MAP IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW. COPIES OF THIS SURVEY MAP NOT BEARING THE LAND SURVEYOR'S SEAL AND SIGNED WITH RED INK SHALL NOT BE CONSIDERED VALID COPIES.

CERTIFICATION INDICATED OR IMPLIED HEREON SHALL ONLY RUN TO THE PARTY FOR WHOM THIS SURVEY WAS PREPARED FOR AND ON THEIR BEHALF TO THE ADDITIONAL PARTIES LISTED HEREON, CERTIFICATIONS SHOWN HEREON ARE NOT TRANSFERABLE TO ADDITIONAL PARTIES OR SUBSEQUENT OWNERS NOT LISTED HEREON.

Metal Etching Owner: BWM High & Dry, Inc. Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 24 and 54

ENVIRONMENTAL NOTICE

THIS ENVIRONMENTAL NOTICE is made the 5^{-4} day of $\cancel{MARCH}_{20}20^{-4}$, by the New York State Department of Environmental Conservation (Department), having an office for the transaction of business at 625 Broadway, Albany, New York 12233.

WHEREAS, a parcel of real property located at the address of South End Place and 16 South End Place in the Incorporated Village of Freeport, Town of Hempstead, County of Nassau and State of New York, known and designated on the tax map of the County Clerk of Nassau as tax map parcel numbers: Section 62. Block 45 Lot(s) 24 and 54, being the same as that property conveyed to Grantor by deed dated December 26, 2000 and recorded in the Nassau County Clerk's Office in Liber 11291 at Page 972, comprising approximately 0.35 +/- acres, and hereinafter more fully described in property description and attached hereto as Appendix "A," attached to this notice and made a part hereof, and hereinafter referred to as "the Property" is the subject of a remedial program performed by the Department; and

WHEREAS, the Department approved a cleanup to address contamination disposed at the Property and such cleanup was conditioned upon certain limitations.

NOW, THEREFORE, the Department provides notice that:

FIRST, the part of lands subject to this Environmental Notice is as shown on a survey map dated April 12, 2013 prepared by M J Engineering and Land Surveying, P.C. attached to this Notice as Appendix "B" and made a part hereof.

SECOND, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, where contamination remains at the Property subject to the provisions of the Site Management Plan ("SMP"), there shall be no disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results or may result in a significantly increased threat of harm or damage at any site as a result of exposure to soils. A violation of this provision is a violation of 6 NYCRR 375-1.1 1(b)(2).

THIRD, no person shall disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of engineering controls required for the Remedy, including but not limited to those engineering controls described in the SMP and listed below, unless in each instance they first obtain a written waiver of such prohibition from the Department or Relevant Agency.

FOURTH, the remedy was designed to be protective for Commercial or Industrial uses. Therefore, any use for purposes other than Commercial or Industrial uses without the express written waiver of such prohibition by the Relevant Agency may result in a significantly increased threat of harm or damage at any site.

Metal Etching Owner: BWM High & Dry, Inc. Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 24 and 54

FIFTH, the no person shall use the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Department or Relevant Agency. Use of the groundwater without appropriate treatment may result in a significantly increased threat of harm or damage at any site.

SIXTH, it is a violation of 6 NYCRR 375-1.11(b) to use the Property in a manner inconsistent with this environmental notice.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

By:

Robert W. Schick, P.E., Director Division of Environmental Remediation

STATE OF NEW YORK) ss: COUNTY OF ALBANY)

On the 5 day of 1/4 in the year 20/4, before me, Robert W. Schick, the undersigned, personally appeared, and is personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenested: County Commission Express August 22, 2014

Metal Etching Owner: BWM High & Dry, Inc. Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 24 and 54

Appendix A

METES AND BOUNDS DESCRIPTION

ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND SITUATE, LYING AND BEING IN THE INCORPORATED VILLAGE OF FREEPORT, COUNTY OF NASSAU AND STATE OF NEW YORK MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE CORNER FORMED BY THE INTERSECTION OF THE SOUTHERLY SIDE OF RAY STREET AND THE EASTERLY SIDE OF SOUTH END PLACE;

THENCE FROM SAID POINT OF BEGINNING RUNNING NORTHERLY ALONG THE EAST SIDE OF SOUTH END PLACE N 5°02'40" E, 74.86' TO A POINT ;

THENCE NORTH S 84°57" 20 E, 102' +/- TO A POINT AT THE WESTERLY EDGE OF FREEPORT CREEK;

THENCE RUNNING ALONG FREEPORT CREEK THE FOLLOWING FOUR (4) COURSES:

 S 13°22'30" W, 29.69' TO A POINT;
 S 59°50'30" E, 71.68' TO A POINT;
 S 21°46'50" E, 71.68' TO A POINT;
 S 41°03'10" W, 29.19' TO A POINT ON THE DIVISION LINE BETWEEN FREEPORT CREEK AND LANDS NOW OR FORMERLY OF APACHE REALTY CORP. TO THE SOUTH AND THE LANDS HEREIN DESCRIBED TO THE NORTH;

THENCE ALONG SAID DIVISION LINE THE FOLLOWING TWO (2) COURSES:

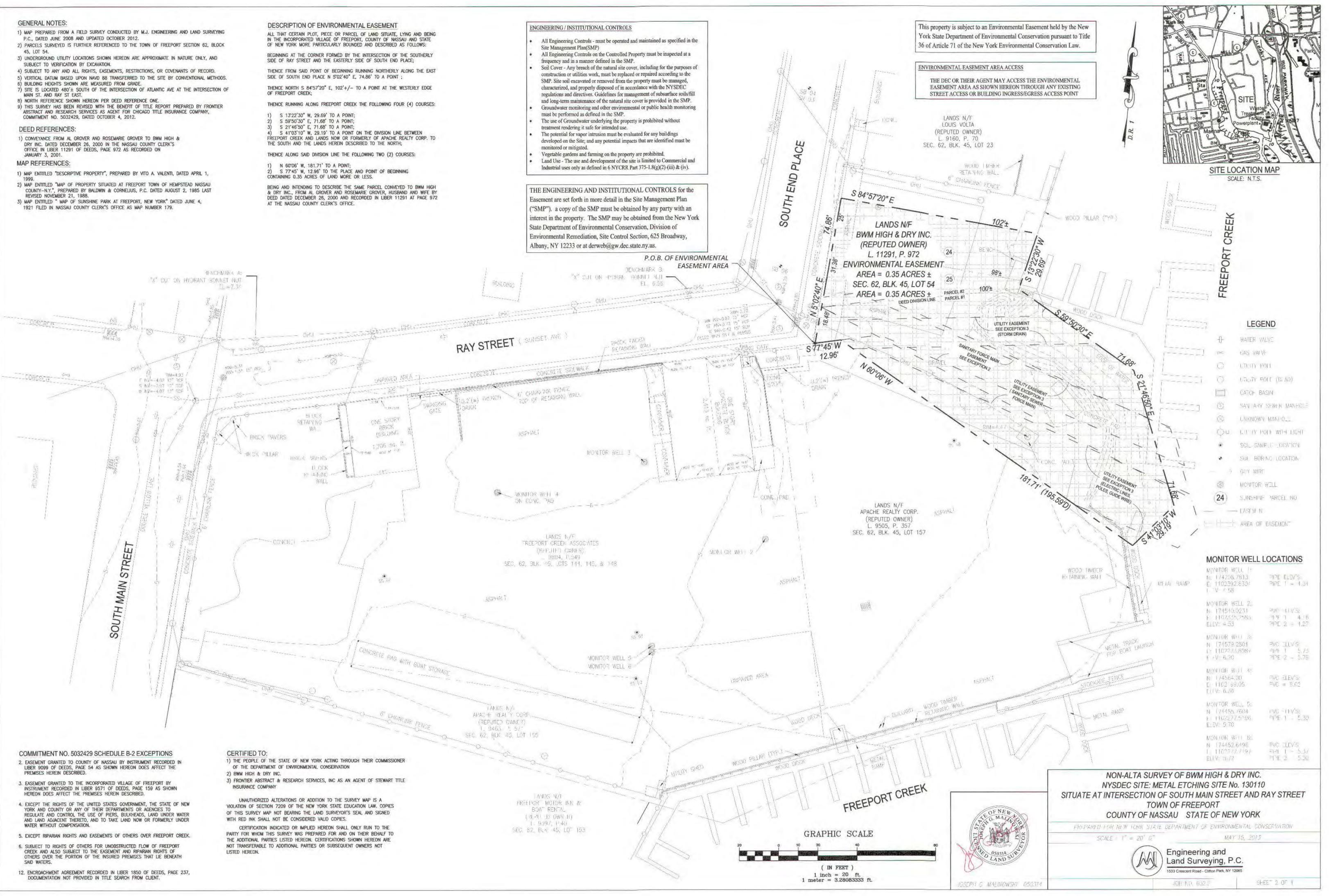
1) N 60°06' W, 181.71' TO A POINT; 2) S 77°45' W, 12.96' TO THE PLACE AND POINT OF BEGINNING CONTAINING 0.35 ACRES OF LAND MORE OR LESS.

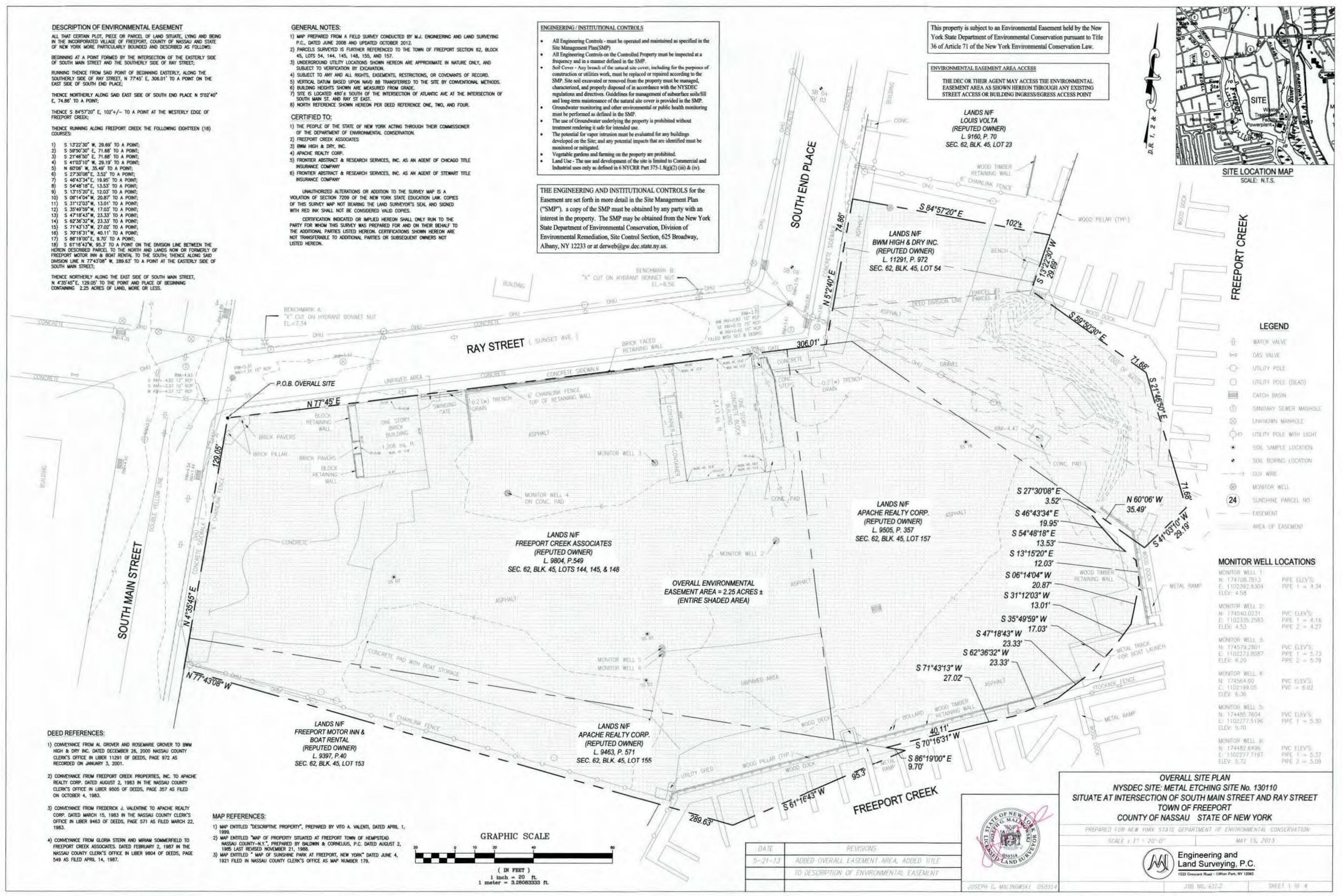
BEING AND INTENDING TO DESCRIBE THE SAME PARCEL CONVEYED TO BWM HIGH & DRY INC., FROM AL GROVER AND ROSEMARIE GROVER, HUSBAND AND WIFE BY DEED DATED DECEMBER 26, 2000 AND RECORDED IN LIBER 11291 AT PAGE 972 AT THE NASSAU COUNTY CLERK'S OFFICE.

APPENDIX B

SURVEY

MAIN ST. AND RAY ST EAST.


COMMITMENT NO. 5032429, DATED OCTOBER 4, 2012.


- DRY INC. DATED DECEMBER 26, 2000 IN THE NASSAU COUNTY CLERK'S OFFICE IN LIBER 11291 OF DEEDS, PAGE 972 AS RECORDED ON

- REVISED NOVEMBER 21, 1988.

S 59'50'30" E, 71.68' TO A POINT;

S 41°03'10" W, 29.19' TO A POINT ON THE DIVISION LINE BETWEEN

Metal Etching Owner: Freeport Creek Associates Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 144,145 and 158

ENVIRONMENTAL NOTICE

THIS ENVIRONMENTAL NOTICE is made the $\frac{14}{2019}$ day of <u>M4401</u> 2019, by the New York State Department of Environmental Conservation (Department), having an office for the transaction of business at 625 Broadway, Albany, New York 12233.

WHEREAS, a parcel of real property located at the address of 435 Main Street; 325 Main Street and Ray Street in the Town of Hempstead, County of Nassau and State of New York, known and designated on the tax map of the County Clerk of Nassau as tax map parcel numbers: Section 62. Block 45 Lot(s) 144, 145 and 158, being the same as that property conveyed to Grantor by deed dated February 2, 1987 and recorded in the Nassau County Clerk's Office in Liber 9804 at Page 549, comprising approximately 1.08 +/- acres, and hereinafter more fully described in the Property Description and attached hereto as Appendix "A," attached to this notice and made a part hereof, and hereinafter referred to as "the Property" is the subject of a remedial program performed by the Department; and

WHEREAS, the Department approved a cleanup to address contamination disposed at the Property and such cleanup was conditioned upon certain limitations.

NOW, THEREFORE, the Department provides notice that:

FIRST, the part of lands subject to this Environmental Notice is as shown on a survey map dated April 12, 2013 prepared by M J Engineering and Land Surveying, P.C., attached to this Notice as Appendix "B" and made a part hereof.

SECOND, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, where contamination remains at the Property subject to the provisions of the Site Management Plan ("SMP"), there shall be no disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results or may result in a significantly increased threat of harm or damage at any site as a result of exposure to soils. A violation of this provision is a violation of 6 NYCRR 375-1.1 1(b)(2).

THIRD, no person shall disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of engineering controls required for the Remedy, including but not limited to those engineering controls described in the SMP and listed below, unless in each instance they first obtain a written waiver of such prohibition from the Department or Relevant Agency.

FOURTH, the remedy was designed to be protective for Commercial or Industrial uses. Therefore, any use for purposes other than Commercial or Industrial uses without the express written waiver of such prohibition by the Relevant Agency may result in a significantly increased threat of harm or damage at any site.

Metal Etching Owner: Freeport Creek Associates Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 144,145 and 158

FIFTH, the no person shall use the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Department or Relevant Agency. Use of the groundwater without appropriate treatment may result in a significantly increased threat of harm or damage at any site.

SIXTH, it is a violation of 6 NYCRR 375-1.11(b) to use the Property in a manner inconsistent with this environmental notice.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

By:

Robert W. Schick, P.Ě., Director Division of Environmental Remediation

STATE OF NEW YORK) ss: COUNTY OF ALBANY)

On the 5 day of 4 and 5, in the year 20/4, before me, Robert W. Schick, the undersigned, personally appeared, and is personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenetzdy County Commission Express August 22, 2014

Metal Etching Owner: Freeport Creek Associates Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 144,145 and 158

Appendix A

METES AND BOUNDS DESCRIPTION

ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND SITUATE, LYING AND BEING IN THE INCORPORATED VILLAGE OF FREEPORT, COUNTY OF NASSAU AND STATE OF NEW YORK MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT FORMED BY THE INTERSECTION OF THE EASTERLY SIDE OF SOUTH MAIN STREET AND THE SOUTHERLY SIDE OF RAY STREET;

RUNNING THENCE FROM SAID POINT OF BEGINNING EASTERLY, ALONG THE SOUTHERLY SIDE OF RAY STREET, N 77°45' E, 285.71' TO A POINT AT THE DIVISION LINE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE WEST AND LANDS NOW OR FORMERLY OF APACHE REALTY CORP TO THE EAST;

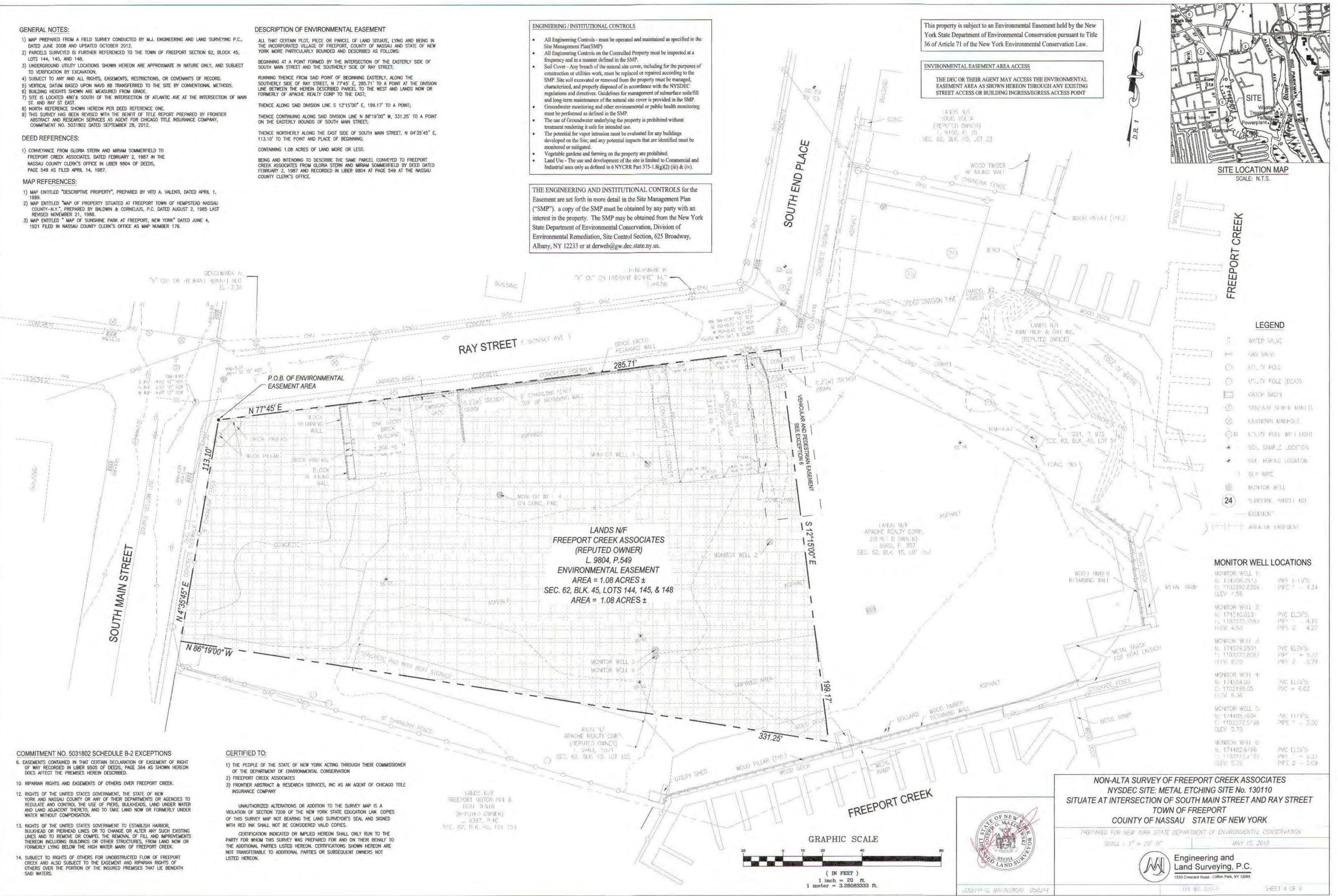
THENCE ALONG SAID DIVISION LINE S 12°15'00" E, 199.17' TO A POINT;

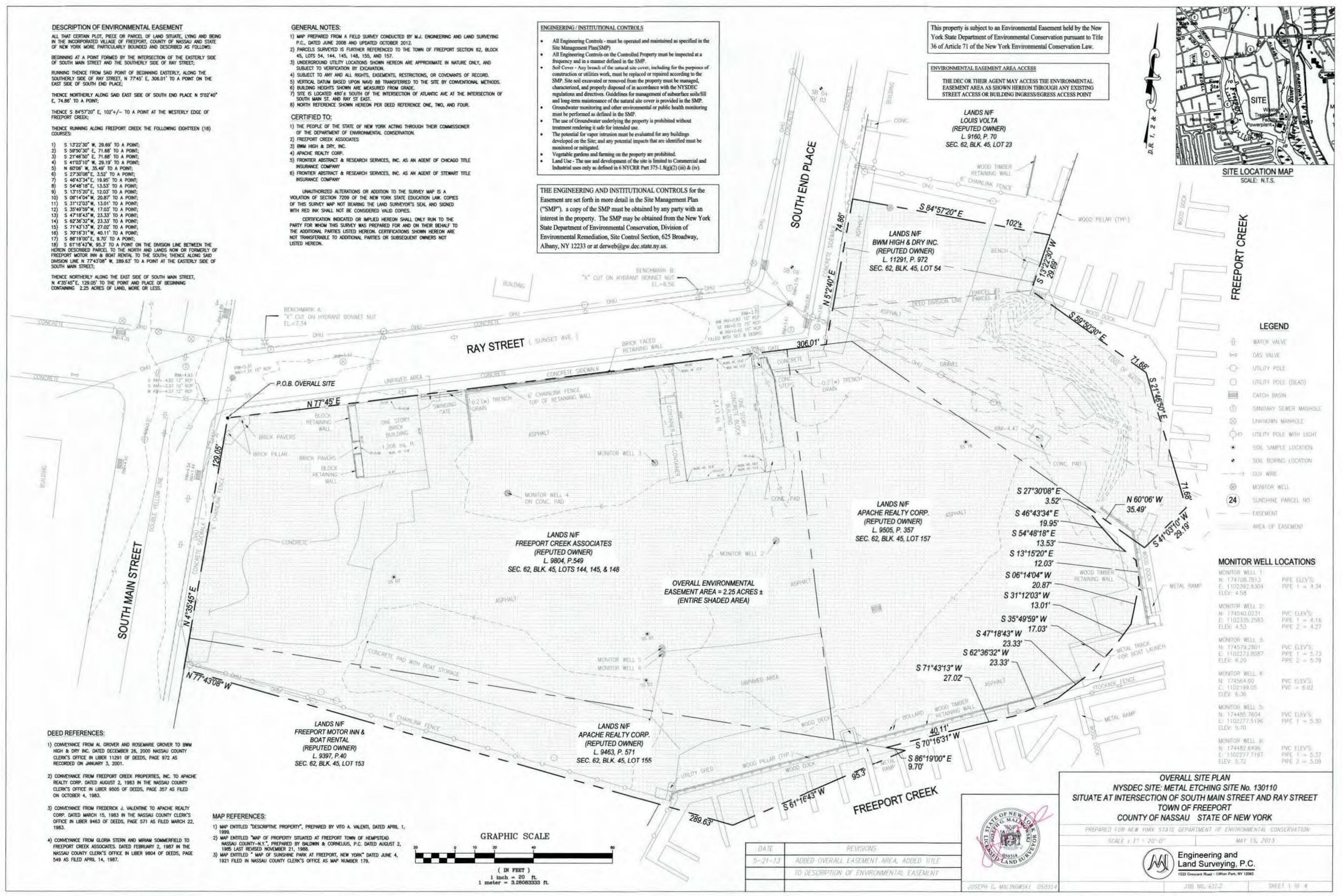
THENCE CONTINUING ALONG SAID DMSION LINE N 86°19'00" W, 331.25' TO A POINT ON THE EASTERLY BOUNDS OF SOUTH MAIN STREET;

THENCE NORTHERLY ALONG THE EAST SIDE OF SOUTH MAIN STREET, N 04°35'45" E, 113.10' TO THE POINT AND PLACE OF BEGINNING;

CONTAINING 1.08 ACRES OF LAND MORE OR LESS.

BEING AND INTENDING TO DESCRIBE THE SAME PARCEL CONVEYIED TO FREEPORT CREEK ASSOCIATES FROM GLORIA STERN AND MIRIAM SOMMERFIELD BY DEED DATED FEBRUARY 2, 1987 AND RECORDED IN LIBER 9804 AT PAGE 549 AT THE NASSAU COUNTY CLERK'S OFFICE.


APPENDIX B


SURVEY

- DATED JUNE 2008 AND UPDATED OCTOBER 2012.
- LOTS 144, 145, AND 148.
- TO VERIFICATION BY EXCAVATION.
- ST. AND RAY ST EAST.
- ABSTRACT AND RESEARCH SERVICES AS AGENT FOR CHICAGO TITLE INSURANCE COMPANY,

- NASSAU COUNTY CLERK'S OFFICE IN LIBER 9804 OF DEEDS,

YORK MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

APPENDIX B

EXCAVATION WORK PLAN

APPENDIX B – EXCAVATION WORK PLAN

B-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the Department. Currently, this notification will be made to:

David Chiusano, Project Manager Site Remediation Engineer New York State Department of Conservation 625 Broadway 12th Floor Albany, New York 12233-7017

Email: djchiusa@gw.dec.state.ny.us

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control,
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP,
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120,

- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix B-1 of this document,
- Identification of disposal facilities for potential waste streams,
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

B-2 SOIL SCREENING METHODS

Prior to intrusive soil screening, on-site utilities shall be field located. Soil screening is to take place prior to any excavation or disposal of soil from within the site boundaries. Soil boring methods are recommended for soil screening at the site, due to asphalt/porous pavement cover; however, depending on the extent of the planned excavation, test pit methods may be used, following saw-cutting of asphalt. Soil samples shall be collected at a minimum of one per 500 cubic yards of planned soil excavation, and analyzed for VOCs by EPA Method 8260B, SVOCs by EPA Method 8270C, and TAL Metals and mercury by EPA Method 6010/7470, or per the disposal facility's requirements, if applicable.

Visual, olfactory and instrument-based soil screening will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal, material that requires testing, material that can be returned to the subsurface, and material that can be used as cover soil.

B-3 STOCKPILE METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC.

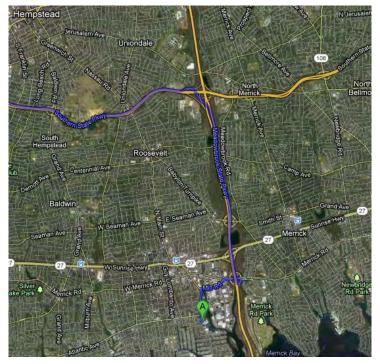
B-4 MATERIALS EXCAVATION AND LOAD OUT

Asphalt, porous pavement, or concrete shall be saw-cut, removed and stockpiled prior to excavation of underlying soil. Excavated soil shall be stockpiled separate from asphalt or concrete debris prior to load out. Excavations left open overnight or longer shall be surrounded by temporary construction fencing. A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material. The owner of the property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

If site conditions during excavation activities require that trucks drive over bare soil, a truck wash will be operated on-site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete. Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking. The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.


B-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be washed prior to leaving the site if necessary. Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Trucks leaving the site shall go north on S Main Street and turn right on Mill Road. Continue right onto East Avenue, and then straight onto Guy Lombardo Avenue. Turn onto Sunrise Highway in either direction, depending on destination.

Map courtesy of maps.google.com

All trucks loaded with site materials will exit the vicinity of the site using only these approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development. Trucks will be prohibited from stopping and idling in the neighborhood outside the project site. Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

B-6 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of

soil/fill from this site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the preexcavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

B-7 MATERIALS REUSE ON-SITE

Analytical results from soil screening activities which are completed in accordance with section B-2 of this EWP will be used to determine if reuse is appropriate. Chemical criteria for on-site reuse of material have been approved by NYSDEC and are listed in Table 4 of the SMP. The qualified environmental professional will ensure that procedures defined for materials reuse in the SMP are followed and that unacceptable material does not remain on-site. Soil slated for reuse is to be stockpiled distinctly separate from soil to be disposed off-site.

On-site material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines. Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

B-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, but will be managed off-site.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

B-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system will be restored in a manner that complies with the Contract Documents. The demarcation layer, consisting of non-woven geotextile or equivalent material will be replaced to provide a visual reference to the top of the 'Remaining Contamination Zone', the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this Site Management Plan. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the 'Remaining Contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the Site Management Plan.

B-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site. The source of backfill supply shall be approved by the NYSDEC. The facility shall be operating under a valid NYSDEC Mining Permit or other applicable regulatory authority for the duration of the site work.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site. Material shall not contain man-made fills, trash, refuse, backfills from previous construction, root or other organic matter, frozen material, or any other deleterious materials. Material shall not contain free liquids when delivered, or placed and compacted.

All materials shall be sampled for Target Compound List (TCL) VOCs by USEPA Method 8260, TCL SVOCs by USEPA Method 8270, polychlorinated biphenyls (PCBs) by USEPA Method 8082, and TAL Metals by USEPA Method 6010/7000 series. All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.8(d) included as Table B-1. Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are listed in Table 1 of the SMP. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

B-11 STORMWATER POLLUTION PREVENTION

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC. All necessary repairs shall be made immediately. Accumulated sediments will be removed as required to keep the barrier and hay bale check functional. All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials. Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering. Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

B-12 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

All UST removal work shall be performed in accordance with Section 5.5 of the NYSDEC DER-10: Technical Guidance for Site Investigation and Remediation (May 2010). All UST removal work shall also comply with applicable local, county, state, and federal regulations. Ten days' notice must be provided to the NYSDEC DER prior to the closure of a regulated UST.

The contractor shall monitor the site with an explosimeter and an organic vapor detector to indicate the presence and concentration of flammable vapors and gas. The atmosphere in the bottom, middle, and top of the excavation shall be monitored with the explosimeter regularly until the tank is removed from the site. If unsafe working conditions exist at any point during removal, work shall be suspended immediately until it is determined that conditions are acceptable for resuming work.

During excavation, extreme caution shall be exercised in order to maintain the integrity of the UST. The contractor shall provide shoring and bracing where necessary to support existing structures. Excavated material shall be placed in a separate stockpile, sampled, and submitted for acceptance by an approved disposal facility.

Removal of each tank shall consist of opening the tank, cleaning the interior, removal of tank from the site, and disposal. This includes removal and disposal of all

service lines associated with each UST back to their source. Disposal shall be in strict accordance with NYSDEC and applicable local, county, state, and federal regulations. The contractor shall remove all liquid and sludge from the tank using explosion proof pumps. All equipment must be bonded to the tank and the tank must be grounded to a separate ground when purging the tank with compressed air or inert gas under pressure. The contractor shall avoid leakage from the tanks onto the surrounding soil by properly pumping the contents of the tanks into permitted transport vehicles. Transport vehicles for tank contents shall not remain on-site for more than 24 hours. The removed contents shall be disposed of according to appropriate federal, state, and local laws. If leakage or spillage occurs, the contractor shall immediately notify the NYSDEC Spill Case Hotline, and the Nassau County health department within 15 minutes.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for full a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the periodic reports prepared pursuant to Section 5 of the SMP.

B-13 COMMUNITY AIR MONITORING PLAN

Community air monitoring will be implemented to monitor for VOC and particulate levels at the perimeter of the work area. Total VOCs will be monitored continuously at the downwind perimeter of the work area daily using approved instrumentation. If total VOC levels exceed 5 parts per million (ppm) above background at the work area perimeter, work activities will be halted and monitoring continued. All readings will be recorded and available to the NYSDEC and New York State Department of Health (NYSDOH) personnel to review.

Because the site is in a densely populated area, with active commercial buildings adjacent to the site, a fixed monitoring station shall be located at the site perimeter, regardless of wind direction.

Exceedances of action levels listed in the Community Air Monitoring Plan will be reported to NYSDEC and NYSDOH Project Managers.

B-14 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors offsite. Specific odor control methods to be used as necessary will include odor masking agents. If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the property owner's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

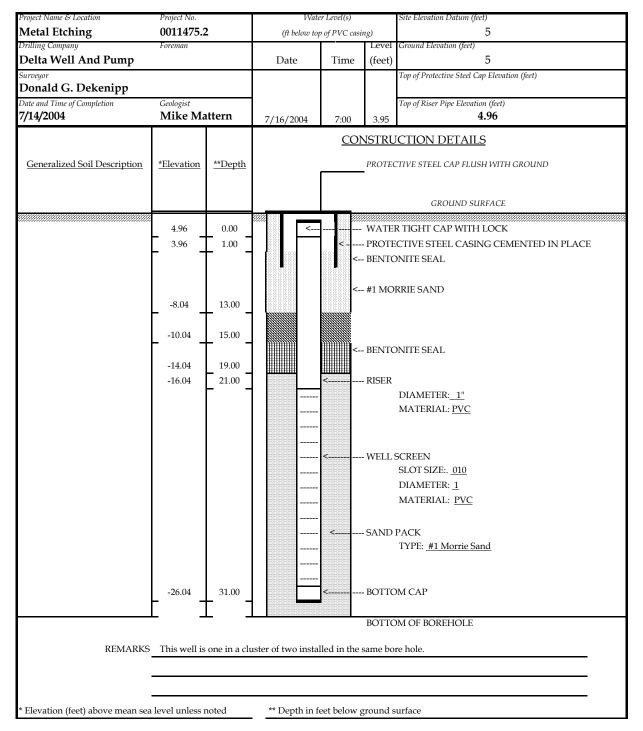
B-15 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

B-16 OTHER NUISANCES

A plan for rodent control will be developed and utilized by the contractor prior to and during site clearing and site grubbing, and during all remedial work. A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.


APPENDIX C

MONITORING WELL CONSTRUCTION DETAILS

ERM-Northeast

WELL: MW-01

520 Broadhallow Road, Melville, NY 11747

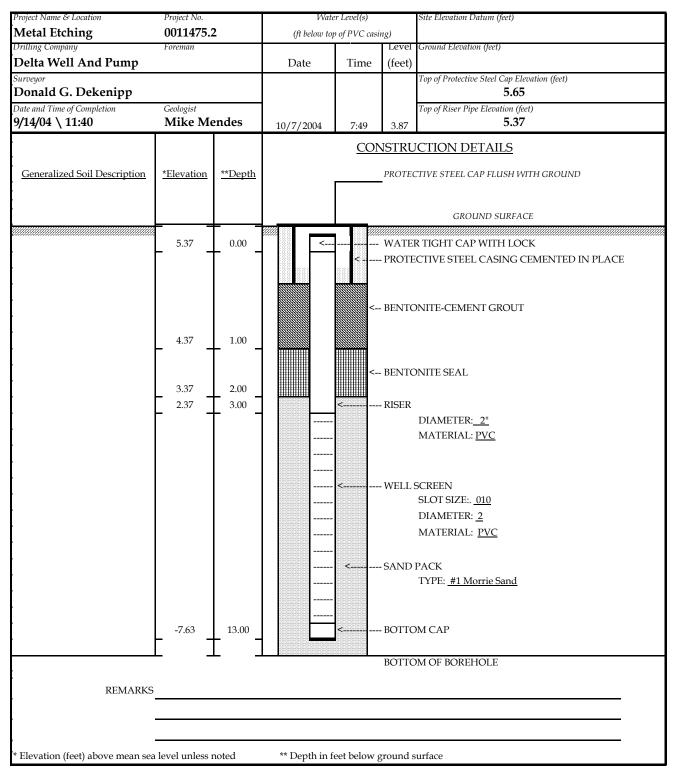
ERM-Northeast

WELL: MW-04

520 Broadhallow Road, Melville, NY 11747

Project Name & Location	Project No.		Wate	r Level(s)		Site Elevation Datum (feet)	
Metal Etching	0011475.2			of PVC casir	19)		
Drilling Company	Foreman		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Ground Elevation (feet)	
Delta Well And Pump			Date	Time	(feet)		
Surveyor Donald G. Dekenipp					. ,	Top of Protective Steel Cap Elevation (feet) 7.41	
Date and Time of Completion 9/13/04 \ 13:54	Geologist Mike Me	endes	10/7/2004	7:53	5.49	Top of Riser Pipe Elevation (feet) 7.07	
				CON	ISTRU	ICTION DETAILS	
Generalized Soil Description	*Elevation	<u>**Depth</u>			PROTEC	CTIVE STEEL CAP FLUSH WITH GROUND	
						GROUND SURFACE	
	7.07	0.00		<	PROTE	R TIGHT CAP WITH LOCK ICTIVE STEEL CASING CEMENTED IN PLACE DNITE-CEMENT GROUT	
	6.07 5.07 4.07				BENTC	DNITE SEAL DIAMETER: <u>2"</u> MATERIAL: <u>PVC</u>	
					WELL S	SCREEN SLOT SIZE:. <u>010</u> DIAMETER: <u>2</u> MATERIAL: <u>PVC</u> PACK TYPE: <u>#1 Morrie Sand</u>	
	-5.93	13.00		<	BOTTC	DM CAP	
					BOTTC	DM OF BOREHOLE	
REMARKS							
* Elevation (feet) above mean sea	level unless r	noted	** Depth in fe	eet below o	round s	surface	

ERM-Northeast 520 Broadhallow Road, Melville, NY 11747


WELL: MW-05

Project Name & Location	Project No.		Water Level(s)			Site Elevation Datum (feet)	
Metal Etching	0011475.2		.2 (ft below top of PVC casing)			¥ .	
Drilling Company	Foreman				-	Ground Elevation (feet)	
Delta Well And Pump			Date	Time	(feet)		
Surveyor Donald G. Dekenipp						Top of Protective Steel Cap Elevation (feet) 5.48	
Date and Time of Completion 9/13/04 \ 14:59	Geologist Mike Me	endes	10/7/2004	7:44	3.92	Top of Riser Pipe Elevation (feet) 5.16	
				<u>CO1</u>	NSTRU	CTION DETAILS	
Generalized Soil Description	<u>*Elevation</u>	<u>**Depth</u>			PROTEC	TIVE STEEL CAP FLUSH WITH GROUND	
						GROUND SURFACE	
	5.16	0.00			WATE	R TIGHT CAP WITH LOCK	
				<		CTIVE STEEL CASING CEMENTED IN PLACE	
	4.16	1.00			- BENTC	NITE-CEMENT GROUT	
	3.16	2.00				DNITE SEAL	
	2.16	3.00		<	- RISER		
						DIAMETER: <u>2"</u> MATERIAL: <u>PVC</u>	
				<	- WELL S	SCREEN SLOT SIZE:. <u>010</u> DIAMETER: <u>2</u>	
						MATERIAL: <u>PVC</u>	
				<	-SAND	PACK TYPE: <u>#1 Morrie Sand</u>	
	-13.00	13.00		<	- BOTTC	PM CAP	
	L _	L _			BOTTC	OM OF BOREHOLE	
REMARKS							
* Elevation (feet) above mean sea	level unless 1	noted	** Depth in fe	eet below §	ground s	urface	

ERM-Northeast

WELL: MW-06

520 Broadhallow Road, Melville, NY 11747

					V-08 D/S			
					roTrac Ltd.			
		5 (Did Dock	Road,	Yaphank, New			
Nien! IYSDEC Haz Waste						Depth to 1 (fl. from meas		Sile Elevation
ile Name		Address			-	Date	DTW	
reeport Metal Etching	_		ain Street, Fri	eeport, N	Y			
Iniling Company: ARCO		Method Geoprobe er	uiped w/ rola	nianaar			<u> </u>	leasuring Point Elevatio
Date Started		Date Comple		iy augei		1	- N	teasoning Point Clevato
11/10/2011		11/10/11						
completion Depth:		ENVIROTRA Michael Rose	C Geologist					
WELL	DEPTH	MIGHAELINUS	SAMPLES					
	eet below	Reco-	Blows	- ···		SOIL	DESCRIPTION	
(NTS)	grade)	very	per	PID				
		(inches)	6 inches	(ppm) '				
MW-08D / S	o –	NA	NA	NA	0'-5' (Pre-cleared)			
	_				Fill material, concre			
8888 R B888	-				to medium grained	sand Dry to m	oist, petroleum o	odor
	-							
	-	NA	NA	313.2	6'-30' Fill material, brown	to black mediur	. In fine grained	sand with some
	-				gravel Wel at 6'		into into granico	
				1	_			
1日 ト	10							
	1	NA	NA	NM				
	_							
	-							
		1		1				
	-	1						
	_							
	20]			Γ			
		{						
		1						
		1						
		{						
		1			-			
	30			1				
	-	1						
EGEND:								
Concrete								
Bentonite Seal					Well Construction	Details:		
					Bottom of Well	31	1, 14'	
Gravel Pack					Screen material Casing material:		. 10-slot schedul schedule 40 PV	
Screen					Sand Pack	м	one #1 -4'	_
End Cap					Bentonite Seal: Surface Seal:		-4')" boll-down mar	hole

				MV	V-09 S/D			
					roTrac Ltd.			
		5 (Old Dock	Road,	Yaphank, New			
lient:							o Water	Site Elevation
IYSDEC Haz Waste ite Name:		Address.				Date	DTW	
reeport Metal Etchu	ng		lain Street, Fr	eeport, N	Y		0.111	
niing Company:		Method:]		
ARCO		Geoprobe en Date Comple	quiped w/ rota	ry auger		- 1		Measuring Point Elevalio
11/11/2011		11/11/11	5106.			1		
ompletion Depth:			AC Geologist			1 !		
1		Michael Ros						
WELL CONSTRUCTION	DEPTH (feet below	Reco-	Blows			501		DM
(NTS)	grade)	very	per	PID		301	L DESCRIPTI	
		(inches)	6 inches	(ppm)				
MW-09D / S	_							
0000	_ 0 _	NA	NA	NA	<u>0'-5'</u> (Pre-cleared)	ate and brick	alermiyed with	brown to black coarse
	-				to medium grained			
		4			-			
		NA	NA	313.2	6'-30'			
						to black med	ium to fine gra	ned sand with some
		-			gravel Wel at 6'			
	10				-			
]]						
		NA	NA	NM				
		j						
				1				
2000 2000000		-		1				
		1						
	20	4			-			
0000 10000000	- 20 -	1						
		1		1				
		1						
		1						
		1						
	30	-			-			
		1						
EGEND.								
Concrete								
Bentonite Seal					Well Construction	Detais:		
					Bottom of Well:		32', 14'	
Gravel Pack					Screen material:		2*. 10-slot sch	
Screen					Casing material: Sand Pack:		2" schedule 40 Mone #1	1 PVC
					Bentonite Seal:		1'-4'	
End Cap					Surface Seal		10" boll-down	manhole

				M	W-10S		
					roTrac Ltd.		
		5 (Old Dock	Road,	۲aphank, New ۱		
Client:						Depth to Water	Site Elevation
VYSDEC Haz Wasl	e	Address				(ft. from measuring pl.) Date DTW	{
reeport Metal Etch	ing		ain Street, Fri	eeport, N	v F	Duit DITT	1
Drilling Company		Method.					
ARCO			quiped w/ rota	ry auger			Measuring Point Elevatio
Date Started 11/10/2011		Date Compk 11/10/11	eleo				
Completion Depth			C Geologist:				
5'		Michael Ros	e				
WELL	DEPTH		SAMPLES				
CONSTRUCTION (NTS)	(feet below grade)	Reco- very	Blows per	PID		SOIL DESCRIPT	IUN
(113)	grade)	(inches)	6 inches	(ppm)			
MW-10S							
	- ° -	NA	NA	NA	0'-5' (Pre-cleared)		
		-				and brick intermoxed with and. Dry to moist, petrole	
wood bd boood	E -				to mousian gramad a	and by to most, petiols	
	F 1				-		
		NA	NA	313.2	<u>6'-30'</u>		
			117	0102		black medium to fine gra	ined sand with some
		1 1			gravel. Wet at 6'	0	
	- 10 -	-			-		
	10 -			1			
	E 1	NA	NA	NM			
	F -						
		-					
		1			ļ		
H				1			
E	⊢ -	- '		1			
B	20 -	1		1	-		
E		1		1			
E	⊢ -	-					
	E 1	-					
. H	μ Ξ	-					
	r -	1					
	F 1	1		1			
	30 -	-			ŀ		
alah ila ku		1					
EGEND							
Concrele							
Bentonite Sea					Well Construction D	etails:	
					Bottom of Well:	14'	
Gravel Pack					Screen material:		nedule 40 PVC
Barner					Casing material: Sand Pack:	2" schedule 4 Morie #1	0 PVC
Screen					Bentonite Seal	1'-4'	
End Cap					Surface Seal:	10° bolt-down	
					Special Note*.	Deep Well No	ot Utilized

	Geolo	gic L	og an	d W	ell Cons	tructi	on De	tails
				M	W-10D			
		5.0	ld Dock F		roTrac Ltd. Yaphank, New	York 119	80	
Client:			TO DOORT	1000,	rupitaliti, iteli		to Water	Site Elevation
NYSDEC Haz Waste						· · · ·	easuring pt.)	
Site Name:		Address:	- Chool Er	and a la		Date	DTW	
Freeport Metal Etchi Drilling Company.		Method	ain <u>Street, Fre</u>	зерон, м	11	4		
AARCO			uiped w/ rola	ry auger				Measuring Point Elevation
Date Starled:		Date Comple	led:]		
11/11/2011		11/11/11 ENVIROTRA	C Coologial			- 1		
Completion Depth 32		Michael Ros	-					
WELL	DEPTH		SAMPLES			<u> </u>		<u></u>
CONSTRUCTION (NTS)	(feet below grade)	Reco- very (inches)	Blows per 6 inches	PID (ppm)		SO	IL DESCRIPT	ю
<u>M</u> ₩-10D		NA	NA	NM	0 <u>'-5'</u> (Pre-cleared) Fill material, concr to medium grained			n brown to black coarse sum odor.
		NA	NA	NM	<u>6'-30'</u> Fill material, brown gravel. Wel at 6'	n lo black med	ວ່ພາກ lo fine gra	ained sand with some
		NA	NA	NM				
LEGEND.								
Concrete								
Gravel Pack					Well Construction Bottom of Well: Screen material	Details.	32' 2" 10-stol set	nedule 40 PVC
Screen					Casing material: Sand Pack.		2" schedule 4 Mone #1	
End/Top Cap					Bentonite Seal: Surface Seal.		1'-4' 10" bolt-down	manhole
NTS - Nol to Scale	Ň	A - Not Appli	able	NM - 1	Not Measured	DTW - D	epth to Water	DTP - Depth to Product

APPENDIX D

FIELD FORMS

SITE-WIDE INSPECTION	Day:	Date:	
NYSDEC	Temperature: (F)	(am)	(pm)
	Wind Direction:	(am)	(pm)
METAL ETCHING SITE	Weather:	(am) (pm)	
NYSDEC Site # 130110		· · ·	
Contract #	Arrive at site	(am)	
Freeport, New York	Leave site:	(pm)	
Cite			
SITE Evidence of vandalism (wells, protective cover dama	Security		
Evidence of vandalism (wells, protective cover dam	age):		
Evidence of cover system intrusion (ruts, burrows,	excavations):		
	,		
Evidence of penetrations (poles, posts, stakes):			
General site condition (gates, access, storm drains)	:		
Additional Comments:			

SITE-WIDE INSPECTION	Day:	Date:
	Asphalt Cover	
Evidence of settlement, rutting, potholes:	•	
Evidence of cracking, distortion, or disintegrat	ion:	
Additional Comments:		
D	rainage System	
Evidence of damage to storm drains:	.	
Evidence of stockpiles on porous pavement ar	eas:	
Evidence of ponding on porous pavement area	as:	
Evidence of spilled liquids (well tampering/ver	nt blowout):	
Additional Comments:		
Sub-Slab D	epressurization	Systems

acks in the slab that have not been sealed? If so, describe: e there any new

Are there any new cracks in structure walls? If so, describe:

SITE-WIDE INSPECTION

Day:	

Date:

Does system PVC pipe appear to be compromised in any way? If so, describe:

Does manometer read within range marked?

Is fan making any abnormal noises?

Is contact information on SSDS up to date?

Has the building use changed since the last inspection?

Has building heating, ventilation and air conditioning changed since the last inspection?

Inspection Photolog

Metal Etching Co., Inc. Site No. 130110 GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	Personnel:	Client:
		NYSDEC
Location:	Well Condition:	Weather:
Metal Etching Co., Inc. Site		
Sounding Method:	Gauge Date:	Measurement Ref:

Purge Date:	Purge Time:
Purge Method:	Field Technician:

Well Volume							
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:					
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:					
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:					

			Wa	ter Quality	/ Paramet	ers			
Time (hrs)	DTW (ft btoc)	Volume (Gal)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO mg/L)	Turbidity (ntu)

Total Quantity of Water Removed (gal):	Sampling Time:	
Samplers:	Split Sample With:	
Sampling Date:	Sample Type:	
COMMENTS AND OBSERVATIONS:		

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing. Preparer's Name _____ Date/Time Prepared _____ Preparer's Affiliation _____ Phone No. Purpose of Investigation 1. OCCUPANT: Interviewed: Y / N Last Name: _____ First Name: _____ Address: County: Home Phone: Office Phone:
 Number of Occupants/persons at this location
 Age of Occupants ______
 2. OWNER OR LANDLORD: (Check if same as occupant) Interviewed: Y / N Last Name: First Name: Address: County: _____ Office Phone: _____ Home Phone: _____

3. BUILDING CHARACTERISTICS Type of

Buildir	ng: (Circle appro	priate response)		
	Residential	School	Commercial	l/Multi-use
	Industrial	Church	Other:	
If the p	property is resid	ential, type? (C	Circle appropr	iate response)
Ranch				
Raised	Ranch	2-Family Split Level		3-Family Colonial
Cape C	od	Contempora	ry	Mobile Home
Duplex		Apartment H	Iouse	Townhouses/Condos
Modula	ır	Log Home		Other:
If mul	tinle units how	v many?		

If multiple units, how many?

If the property is commercial, type? Business Type(s) Does it include residences (i.e., multi-use)? Y / N If yes, how many?

Other characteristics:

Building age Number of floors Is the building insulated? Y / N How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors Airflow near source Outdoor air infiltration Infiltration into air ducts

a. Above grade construction	: wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with _	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with _	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partia	lly finished
j. Sump present?	Y / N			
k. Water in sump?	Y / N / not applicable			

Basement/Lowest level depth below grade: _____(feet) Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING

Type of heating system(s) used in this building: (circle all that apply –note primary)
Hot air circulation - Heat pump - Hot water baseboard - Space Heaters - Stream radiation - Radiant floor - Electric baseboard - Wood stove - Outdoor wood boiler - Other ______
The primary type of fuel used is:
Natural Gas - Fuel Oil - Kerosene - Electric - Propane - Solar - Wood - Coal
Domestic hot water tank fueled by: ______
Boiler/furnace located in: Basement - Outdoors - Main Floor - Other ______
Air conditioning: Central Air - Window units - Open Windows - None
Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

7. OCCUPANCY Is basement/lowest level occupied? Full-time - Occasionally - Seldom - Almost Never

Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)

Basement		
1 Floor		
2 F1001		
3 rd Floor 4 th Floor		
8. FACTORS THAT MAY INFLUENCE INDOOR AII		
a. Is there an attached garage?		Y / N
b. Does the garage have a separate heating unit?		Y / N / NA
c. Are petroleum-powered machines or vehicles		Y / N / NA
stored in the garage (e.g., lawnmower, atv, car)	Please s	pecify
d. Has the building ever had a fire?	Y / N	When?
e. Is a kerosene or unvented gas space heater present?	Y / N	Where?
f. Is there a workshop or hobby/craft area?	Y / N	Where & Type?
g. Is there smoking in the building?	Y / N	How frequently?
h. Have cleaning products been used recently?	Y / N	When & Type?
i. Have cosmetic products been used recently? j. Has painting/staining been done in the last 6	Y / N	When & Type?
months?	Y / N	When & Type?
k. Is there new carpet, drapes or other textiles?	Y / N	Where & When?
l. Have air fresheners been used recently?	Y / N	When & Type?
		If yes, where vented?
m. Is there a kitchen exhaust fan?	Y / N	If was with one wants d?
n. Is there a bathroom exhaust fan?	Y / N	If yes, where vented?
o. Is there a clothes dryer?	Y / N	If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y / N	When &Type?
Are there odors in the building? Y / N If yes, please describe:		

Do any of the building occupants use solvents at work? Y / N

(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used? If yes, are their clothes washed at work? Y / N

Do any of the building occupants regularly use or work at a dry-cleaning service? (Circle appropriate response)

Yes, use dry-cleaning regularly (weekly) No

Yes, use dry-cleaning infrequently (monthly or less) Unknown

Yes, work at a dry-cleaning service

Is there a radon mitigation system for the building/structure? Y / N Date of Installation: **Is the system active or passive?** Active/Passive

9. WATER AND SEWAGE

Water Supply: Public Water Drilled Well Driven Well Dug Well Other: ______ Sewage Disposal: Public Sewer Septic Tank Leach Field Dry Well Other: ______

10. RELOCATION INFORMATION (for oil spill residential emergency)

□.a. Provide reasons why relocation is recommended:

□.**b. Residents choose to:** remain in home relocate to friends/family relocate to hotel/motel

 \Box .c. Responsibility for costs associated with reimbursement explained? Y / N

d. Relocation package provided and explained to residents? Y / N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

	-	 															

First Floor:

 11.50	 001	L •	 			 	 											
	 					 				 				_				
	 				 	 	 	 		 	 	 	 	_				
	 				 	 	 	 		 	 	 		_	 			
-	 																	

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings. Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

	ap.																			
<u> </u>							_		_		_							\rightarrow		
		 	 	 		 	 		 					 		 		 _		
									 									_		
									 					_	_			-	_	
			 	 					 									-	_	
			 	 		 	 	 	 					 		 		 \rightarrow	_	
									 									-		
			 	 		 	 	 	 					 		 		 -	-	
			 	 					 									-	_	
						 	 							 		 		 \rightarrow	_	
							 							 		 		 -+		
							 							 		 		 -+		
																		$ \rightarrow$		
																		-		
							_		_		_		_							

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: ____

List specific products found in the residences that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition *	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y / N

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible. BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

FIELD AIR SAMPLING FORM

Consultant				Project #:		
				Project Name:		
Address				Location:		
Location				Project Manager:		
Sample Location Information:						
Site ID Number:				Complex(c):		
PID Meter Used:				Sampler(s):		
(Model, Serial #)				Building I.D. No.:		
SUMMA Canister Record:						
INDOOR AIR - FIRST FLOOR	INDOOR AIR - B	BASEMENT	SUBSLAB	SOIL GAS	OUTDO	OR AIR
Flow Regulator No.:	Flow Regulator No.:]	Flow Regulator No.:		Flow Regulator No.:	
Canister Serial No.:	Canister Serial No.:	(Canister Serial No.:		Canister Serial No.:	
Start Date/Time:	Start Date/Time:		Start Date/Time:		Start Date/Time:	
Start Pressure: (inches Hg)	Start Pressure: (inches Hg)		Start Pressure: (inches Hg)		Start Pressure: (inches Hg)	
	(increasing)		incrites i igj		(incrites rig)	
Stop Date/Time:	Stop Date/Time:		Stop Date/Time:		Stop Date/Time:	
Stop Pressure: (inches Hg)	Stop Pressure: (inches Hg)		Stop Pressure: (inches Hg)		Stop Pressure: (inches Hg)	
Sample ID:	Sample ID:		Sample ID:		Sample ID:	
*	x				ł	
Other Sampling Information:						
Story/Level	Story/Level		Basement or		Direction	
Desere	P		Crawl Space? Floor Slab Thickness		from Building	
Room	Room		(inches) [if present]		Distance from Building	
					Ū	
Indoor Air Temp	Indoor Air Temp		Potential Vapor		Intake Height Above	
(°F)			Entry Points Observed?		Ground Level (ft.)	
Barometric	Barometric Pressure?		Ground Surface		Intake Tubing	
Pressure?			Condition (Crawl Space Only)		Used?	
Intake Height Above	Intake Height Above		If slab, intake Depth		Distance to	
Floor Level (ft.)	Floor Level (ft.)		If Crawl Space, intake		nearest Roadway	
		1	height			
Noticeable Odor?	Noticeable Odor?	1	Noticeable Odor?		Noticeable Odor?	
PID Reading (ppb)	PID Reading (ppb)		PID Reading (ppb)		PID Reading (ppb)	
Duplicate Sample?	Duplicate Sample?		Duplicate Sample?		Duplicate Sample?	
Comments:						
Sampler Signature:						

APPENDIX E

QUALITY ASSURANCE PROJECT PLAN

1. PURPOSE AND OBJECTIVES

1.1 PURPOSE

This Quality Assurance Project Plan (QAPP) is for the site management work done for the Metal Etching site in the city of Freeport, Nassau County, New York (New York State Department of Environmental Conservation [NYSDEC] Site No. 130110). This QAPP contains site-specific procedures for the collection, analysis, and evaluation of data that will be legally and scientifically defensible.

1.2 QUALITY ASSURANCE PROJECT PLAN OBJECTIVES

This QAPP provides site-specific information and standard operating procedures applicable to all work performed at the site that. The information includes definitions and goals for data quality and required types and quantities of quality assurance (QA)/quality control (QC) samples. The procedures address sampling protocols; field documentation; sample handling, custody, and shipping; instrument calibration and maintenance; auditing; data reduction, validation, and reporting; corrective action requirements; and QA reporting. The Site Management Plan contains a site description and information on site field activities; such as, sample locations, sampling procedures, analytical methods, and reporting limits.

2. PROJECT ORGANIZATION AND RESPONSIBILITIES

While all personnel involved in an investigation and the generation of data are implicitly a part of the overall project management and QA/QC program, certain members of the Project Team have specifically designated responsibilities. Project responsibilities are summarized below.

2.1 CONSULTANT

The consultant responsible for site management will provide field support during groundwater sampling activities and evaluation of analytical data. The roles required in this project include:

- **Project QA/QC Officer**—The QA/QC Officer provides guidance on technical matters and reviews technical documents relating to the project. They assess the effectiveness of the QA/QC program and recommend modifications when applicable. Additionally, the QA/QC Officer may delegate technical guidance to specially trained individuals under his direction.
- **Project Manager**—The Project Manager provides overall coordination and preparation of the project activities. This includes coordination with NYSDEC, budget control, subcontractor performance, implementation of the QAPP, and allocation of resources and staffing to implement both the QA/QC program and the site Health and Safety Plan.
- *Site Manager*—The Site Manager will serve as the on-site contact person for field activities and tests. They will be responsible for coordinating the field activities, including inspecting and replacing equipment, preparing daily and interim reports, scheduling sampling and inspections, and coordinating shipment and receipt of samples and containers.

2.2 LABORATORY

Laboratory analyses for this project will be performed by an Environmental Laboratory Analytical Program (ELAP) certified laboratory. The laboratory will have its own provisions for conducting an internal QA/QC review of the data before they are released. The laboratories' contract supervisors will contact the consultant's Project Manager with any sample discrepancies or data concerns.

Electronic data deliverable formatted QA/QC reports will be filed by the analytical laboratories when data are submitted to the consultant. Corrective actions will be reported to the consultant's Project Manager along with the QA/QC report. The laboratories may be contacted directly by the consultant or NYSDEC personnel to discuss QA concerns. The consultant will act as laboratory coordinator on this project and all correspondence from the laboratories will be coordinated with the consultant's Project Manager.

3. SAMPLING RATIONALE, DESIGNATION, AND CONTAINERS

3.1 SAMPLING RATIONALE

The sampling rationale is presented for groundwater monitoring in the Site Management Plan. Laboratory quality control samples including field duplicates, matrix spike, and matrix spike duplicates are to be collected at a frequency of 1 per 20 samples. Field duplicates are two samples of the same matrix, which are collected, to the extent possible, from the same location at the same time using the same techniques. Field duplicates provide information on the precision of the sampling and analysis process. Matrix spike and matrix spike duplicates are two additional samples of the same matrix fortified with the analyte(s) of interest and analyzed to monitor measurement bias associated with the sample matrix.

The remedial investigation laboratory program includes the number of samples for each sample location, as well as QA/QC samples (Table 1).

3.2 SAMPLE DESIGNATION

Field samples collected from the site will be assigned a unique sample tracking number. Sample/designation will be an alpha-numeric code, which will identify each sample by the site identification, matrix sampled, location number, and date of collection.

The following terminology will be used for the sample identification:

• Groundwater Samples

— NYSDEC SITE ID-MW-XX

3.3 SAMPLE CONTAINERS

Types of sample containers and preservatives required for sample collection will be determined by the analyzing laboratory. Sample containers will be properly washed, decontaminated, and the appropriate preservative will be added by the analytical laboratory. Containers with preservative will be labeled accordingly.

3.4 SAMPLE HOLDING TIMES

Sample holding times will be in accordance with the NYSDEC Analytical Services Protocol (ASP) requirements. All samples shall be transferred to the analytical laboratory with enough time for the lab to process the samples before the holding time is expired.

3.5 SAMPLE TRACKING AND CUSTODY

The laboratory must satisfy the sample chain-of-custody requirements by implementing the following Standard Operating Procedures for laboratory/sample security:

- Samples are stored in a secure area
- Access to the laboratory is through a monitored area
- Visitors sign a visitor's log and are escorted while in the laboratory
- Only the designated sample custodians have keys to sample storage area(s)
- Transfers of samples in and out of storage are documented.

4. ANALYTICAL LABORATORY

The data collected during this investigation will be used to determine the presence and concentration of volatile organic compounds (VOCs) and metals in groundwater.

Groundwater samples collected during execution of the QAPP will be submitted to the approved analytical laboratory. The laboratory must be a New York State Department of Health ELAPcertified laboratory, meeting specifications for documentation, data reduction, and reporting. Preliminary analytical results will be provide within 14 days of sample receipt and full NYSDEC Analytical Services Protocol Category B deliverables and associated electronic data deliverables (EDDs) in Equis format will be provided to the consultant within 30 days of sample receipt.

4.1 CALIBRATION PROCEDURES AND FREQUENCY

Instruments and equipment used in this investigation are controlled by a formal calibration program, which verifies that equipment is of the proper type, range, accuracy, and precision to provide data compatible with specified requirements. Instruments and equipment that measure a quantity, or whose performance is expected at a stated level, are subject to calibration. Calibration is performed using reference standards or externally by calibration agencies or equipment manufacturers.

4.1.1 Calibration System

The following sections contain a discussion of the elements comprising the calibration system.

4.1.1.1 Calibration Procedures

Written procedures are used for all instruments and equipment subject to calibration. Whenever possible, recognized procedures, such as those published by the American Society of Testing and Materials or United States Environmental Protection Agency (USEPA), or procedures provided by manufacturers, are adopted. If established procedures are not available, a procedure is developed considering the type of equipment, stability characteristics of the equipment, required accuracy, and the effect of operational error on the quantities measured.

4.1.1.2 Calibration Frequency

Calibration frequency is based on the type of equipment, inherent stability, manufacturer's recommendations, values provided in recognized standards, intended data use, specified analytical methods, effect of error upon the measurement process, and prior experience.

4.1.1.3 Calibration Reference Standards

Two types of reference standards will be used by the standby laboratories for calibration:

- *Physical standards*, such as weights for calibrating balances and certified thermometers for calibrating working thermometers, refrigerators and ovens, are generally used for periodic calibration.
- *Chemical standards*, such as Standard Reference Materials provided by the National Institute of Standards and Technology or USEPA. These may include vendor-certified materials traceable to National Institute of Standards and Technology or USEPA Standard Reference Materials. These are primarily used for operational calibration.

4.1.1.4 Calibration Failure

Equipment that cannot be calibrated or becomes inoperable is removed from service. Such equipment must be repaired and satisfactorily recalibrated before re-use. For laboratory equipment that fails calibration, analysis cannot proceed until appropriate corrective action is taken and the analyst achieves an acceptable calibration.

Laboratory managers are responsible for development and implementation of a contingency plan for major equipment failure. The plan includes guidelines on waiting for repairs, use of other instrumentation, subcontracting analyses, and evaluating scheduled priorities.

4.1.1.5 Calibration Records

Records are prepared and maintained for each piece of equipment subject to calibration. Records demonstrating accuracy of preparation, stability, and proof of continuity of reference standards are also maintained. Copies of the raw calibration data are kept with the analytical sample data.

4.1.2 Operational Calibration

Operational calibration is generally performed as part of the analytical procedure and refers to those operations in which instrument response (in its broadest interpretation) is related to analyte concentration. Included is the preparation of a standard response (calibration) curve and often the analysis of blanks.

4.1.2.1 Preparation of Calibration Curve

Preparation of a standard calibration curve is accomplished by the analysis of calibration standards, which are prepared by adding the analyte(s) of interest to the solvent that is introduced into the instrument. The concentrations of the calibration standards are chosen to cover the working range of the instrument or method. Sample measurements are made within this working range. The calibration curve is prepared by plotting or regressing the instrument responses versus the analyte concentrations. Concentrations of the analyzed samples are back-calculated from the calibration curve.

4.1.2.2 Blanks

Reagent and/or solvent blanks are analyzed to assess if the materials used to prepare the standards are free from interfering substances that could affect the analysis. A method blank is prepared whenever samples are processed through steps that are not applied to the calibration standards.

4.1.3 Periodic Calibration

Periodic calibrations are performed for equipment (e.g., balances, thermometers) that is required in the analytical method, but that is not routinely calibrated as part of the analytical procedure.

4.2 FIELD EQUIPMENT CALIBRATION

The procedures and frequencies for the calibration of field equipment are provided below in the table below.

FIELI	D INSTRUMENTATION CALIBRA	ATION FREQUENCY										
Instrument	Frequency of Calibration Check	Calibration Standard										
pH Meter	Prior to use – daily	Commercially prepared pH buffer solutions (4.01, 7.00, 10.00)										
Conductivity MeterPrior to use - dailyCommercially prepared saline solution (12.9 mS/cm)												
Water Level Meter												
Dissolved Oxygen Meter	Per sampling event	Saturation										
Photoionization Detector	Prior to use – daily	100 ppm isobutylene										
TurbidityPrior to use - daily10 NTU, 200 NTU												
NOTE: NTU = Nephelo	metric turbidity units.											

5. ANALYTICAL TEST PARAMETERS

This QAPP will require the analysis of aqueous samples using USEPA Method 8260B for VOCs, and USEPA Method 6010/7470 for metals. Compound lists for each analytical method are included in Table 2.

6. ANALYTICAL DATA VALIDATION

The laboratory will review data prior to its release from the laboratory. Objectives for review are in accordance with the QA/QC objectives stated in the NYSDEC Division of Environmental Remediation-10 (DER-10). The laboratories are required to evaluate their ability to meet these objectives. Outlying data will be flagged in accordance with laboratory standard operating procedures and corrective action will be taken to rectify the problem.

In order to ensure the validity of analytical data generated by a project, it will be validated by an entity independent from the analysts and the project. The resumes of the personnel providing the data validation services shall be submitted for approval under a separate cover.

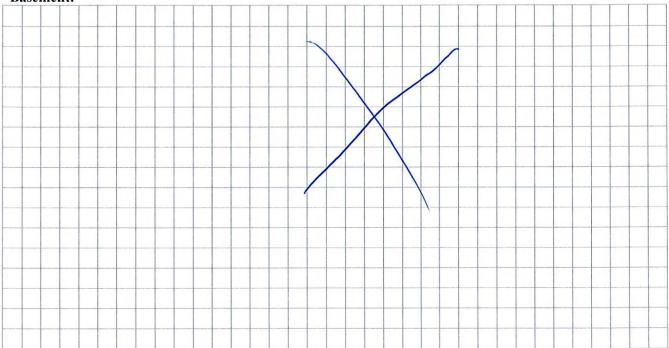
TABLE 1 SITE CHARACTERIZATION ANALYTICAL PROGRAM

	Sample	VOCs (USEPA 8260B) and										
	Matrix	Metals (USEPA 6010/7470)										
No. of Samples		10										
Field Duplicate	Aqueous	1										
MS/MSD		2										
Total No. of Analyses 13												
NOTE: USEPA =	U.S. Env	ironmental Protection Agency.										
MS/MSD= Matrix spike/matrix spike duplicate.												
Laboratory quality control samples will be collected at a rate												
of 1 per 20 samples, p	er matrix.	of 1 per 20 samples, per matrix.										

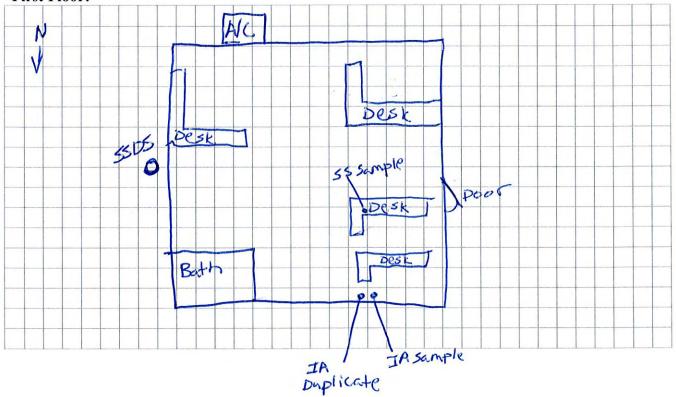
USEPA METHOD 8260B (VOCs)					
Analyte	Reporting Limit µg/L				
1,1,1,2-Tetrachloroethane	0.07				
1,1,1-Trichloroethane	0.04				
1,1,2,2-Tetrachloroethane	0.20				
1,1,2-Trichloroethane	0.08				
1,1-Dichloroethane	0.03				
1,1-Dichloroethene	0.03				
1,1-Dichloropropene	0.12				
1,2,3-Trichloropropane	0.09				
1,2-Dibromo-3-chloropropane	0.50				
1,2-Dibromoethane	0.10				
1,2-Dichlorobenzene	0.05				
1,2-Dichloroethane	0.02				
1,2-Dichloropropane	0.02				
1,3-Dichlorobenzene	0.05				
1,3-Dichloropropane	0.08				
1,4-Dichlorobenzene	0.04				
2,2-Dichloropropane	0.08				
2-Butanone	0.70				
2-Chlorotoulene	0.08				
2-Hexanone	0.40				
4-Chlorotoulene	0.06				
4-Methyl-2-pentanone	1.2				
Acetone	10				
Benzene	0.03				
Bromobenzene	0.11				
Bromochloromethene	0.09				
Bromodichloromethane	0.03				
Bromoform	0.20				
Bromomethane	0.03				
Carbon disulfide	0.04				
Carbon tetrachloride	0.02				
Chlorobenzene	0.03				
Chloroethane	0.09				
Chloroform	0.04				
Chloromethane	0.05				
<i>cis</i> -1,2-dichloroethene	0.06				
cis-1,3-dichloropropene	0.04				
Dibromochloromethane	0.07				
Dibromomethane	0.01				
Dichlorodifluoromethane	0.11				
Ethylbenzene	0.03				
Isopropylbenzene	0.10				
Methlyene chloride	0.08				
n-Propylbenzene	0.10				
Styrene	0.27				
Tetrachloroethene	0.05				
Toluene	0.08				
trans-1,2-dichloroethene	0.04				
trans-1,3-dichloropropene	0.04				
Trichloroethene	0.02				
Vinyl chloride	0.04				
Xylene (Total)	1.0				

TABLE 2 ANALYTE LIST AND ANALYTICAL REPORTING LIMITS

USEPA METHOD 6010/7470 (METALS)					
Analyte	Reporting Limit µg/L				
Aluminum	0.0061				
Antimony	0.0021				
Arsenic	0.0025				
Barium	0.00014				
Beryllium	0.000053				
Cadmium	0.00017				
Calcium	0.017				
Chromium	0.00055				
Cobalt	0.00069				
Copper	0.0013				
Iron	0.0028				
Lead	0.00088				
Magnesium	0.0061				
Manganese	0.00021				
Mercury (Method 7470)	0.000012				
Nickel	0.0012				
Potassium	0.055				
Selenium	0.0017				
Silver	0.0008				
Sodium	0.0054				
Thallium	0.0026				
Vanadium	0.0013				
Zinc	0.0021				

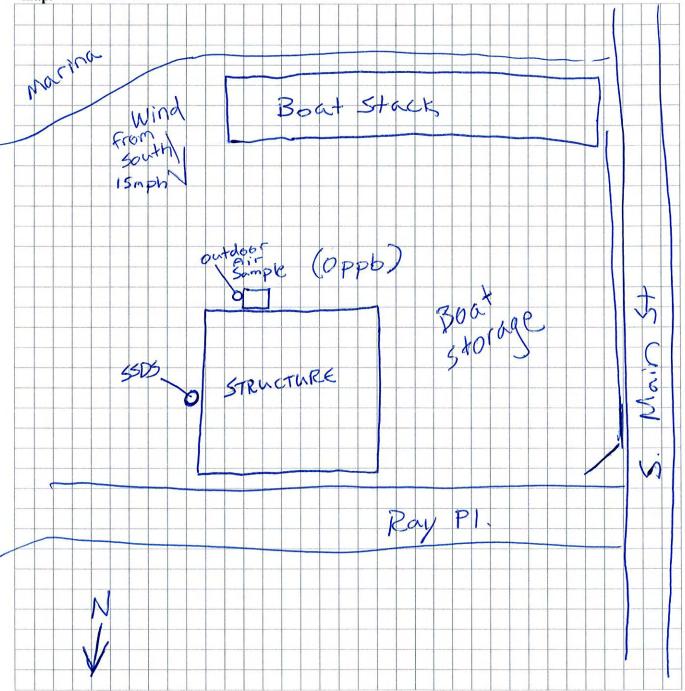

APPENDIX F

HISTORICAL SOIL VAPOR INTRUSION AIR MONITORING FORMS


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:


First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

This page intentionally left blank

Appendix B

Site-Wide Inspection Forms

This page intentionally left blank

SITE-WIDE INSPECTION	Day:Fr	riday	Date:	11/2	20/15		
NYSDEC	Temperature: (F)	58	(am)	62	(pm)		
	Wind Direction:	NW	(am)	NW	(pm)		
METAL ETCHING SITE	Weather:	(am) Sc	attered	clouds			
NYSDEC Site # 130110		(pm) Sc	attered	clouds			
Contract # D-007624.09	Arrive at site	11:30	(am)				
Freeport, New York	Leave site:	14:30	(pm)				
	•						
	ecurity						
Evidence of vandalism (wells, protective cover damage	?):						
None							
Evidence of cover system intrusion (ruts, burrows, exc	avations):						
None							
Evidence of penetrations (poles, posts, stakes):							
None							
General site condition (gates, access, storm drains):							
Electric gate is functioning, storm drains appear to be funct heavy traffic through gate.	ioning, though cracki	ng in cond	crete of	eastern dra	ain due to		
Additional Comments:							
Permeable pavement test: Warehouse area- 5 gallons,	spread, did not soa	ak in imm	ediately	7			
Office area- 5 gallons, spread, did not soak in immediately							

SITE-WIDE INSPECTION

Asphalt Cover				
Evidence of settlement, rutting, potholes:				
Some rutting due to site use				
Evidence of cracking, distortion, or disintegration:				
Some disintegration, due to site use				
Additional Comments:				
Drainage System				
Evidence of damage to storm drains:				
Cracking around storm drain, but appears to be functioning.				
Evidence of stockpiles on porous pavement areas:				
None.				
Evidence of ponding on porous pavement areas:				
Some evidence of ponding				
Evidence of spilled liquids:				
Evidence of spilled liquids, due to site use				
Additional Comments:				
Sub-Slab Depressurization Systems Are there any new cracks in the slab that have not been sealed? If so, describe:				
None.				

SITE-WIDE INSPECTION	Day:	Friday	_Date: _	11/20/15
Are there any new cracks in structure walls? If so, descri	be:			
None.				
	<u> </u>			
Does system PVC pipe appear to be compromised in any	way? If so, de	escribe:		
No.				
Does manometer read within range marked?				
Yes.				
Is fan making any abnormal noises?				
No.				
Is contact information on SSDS up to date?				
Yes.				
Has the building use changed since the last inspection?				
No.				
Has building heating, ventilation and air conditioning cha	nged since the	e last inspect	tion?	
No.				

١

Office SSDS with contact information

Concrete around storm drain (office).

INSPECTION PHOTOLOG

Manometer on system.

Cracked concrete around storm drain next to warehouse building.

SITE-WIDE INSPECTION

Cracked concrete next to warehouse.

Evidence of ponding/puddling near warehouse building.

SITE-WIDE INSPECTION

Spilled liquids southeast of warehouse building on asphalt cover.

Site overview, south of warehouse, looking west.

Area in front of warehouse

Stone cover area

Some minor disintegration of permeable pavement

SITE-WIDE INSPECTION	Day: _	_Wedne	sday_	_Date: _	_5.18.16_
NYSDEC	Temperature: (F)	61 F	(am)	65 F	(pm)
	Wind Direction:	S ~9mph	(am)	S ~9mph	(pm)
METAL ETCHING SITE	Weather:	(am) ov			
NYSDEC Site # 130110		(pm) su	nny		
Contract # D-007624.09	Arrive at site	1000	(am)		
Freeport, New York	Leave site:	1300	(pm)		
Site 9	Security				
Evidence of vandalism (wells, protective cover damag					
No Evidence of vandalism.	•				
Evidence of cover system intrusion (ruts, burrows, ex	cavations):				
None noted.					
Evidence of penetrations (poles, posts, stakes):					
None noted in area of permeable pavement.					
General site condition (gates, access, storm drains):					
Access is same as usual; storm drains appear to be effect disintegrating.	tive, though the concre	ete of the	one by t	he entry w	ay is
Additional Comments:					
None.					

SITE-WIDE INSPECTION

Asphalt Cover
Evidence of settlement, rutting, potholes:
Yes, settlement noted where there has been ponding. Some photos taken. Slight pothole noted near the office building.
Evidence of cracking, distortion, or disintegration:
Slight disintegration noted near warehouse / MW-8 cluster.
Additional Comments:
None.
Drainage System
Evidence of damage to storm drains:
Concrete surrounding drains severely cracking and disintegrating. Drain itself is clear. Drain near office is in good shape, no damage noted.
Evidence of stockpiles on porous pavement areas:
None – just normal boat storage. Some cement blocks sitting on pallets.
Evidence of ponding on porous pavement areas:
Yes, in main traffic area – near office and warehouse.
Evidence of spilled liquids:
Yes, some near warehouse area.
Additional Comments:
None.
Sub-Slab Depressurization Systems
Are there any new cracks in the slab that have not been sealed? If so, describe:
None noted.

SITE-WIDE INSPECTION

Are there any new cracks in structure walls? If so, describe:

None noted.

Does system PVC pipe appear to be compromised in any way? If so, describe:

Pipe cracked near top vent

Does manometer read within range marked?

Manometer liquid color has faded, but still reads within range.

Is fan making any abnormal noises?

No - it is running, sounds normal.

Is contact information on SSDS up to date?

Yes - toll free # for DEC noted.

Has the building use changed since the last inspection?

No.

Has building heating, ventilation and air conditioning changed since the last inspection?

No.

This page intentionally left blank

Appendix C

Monitoring Well Purge Logs

This page intentionally left blank

Well I.D.:	Personnel:	Client:	
MW-4	MM/SS	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	good	51 F / overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Solinist Tape	11.18.15	тос	
Sumist Tape			
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	

	Purge Time:
11.19.16	1321-1349
Purge Method:	Field Technician:
low flow w/ Grundfos, purge to ground	MM/SS

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
12.81	0.16	flush				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
5.26	1.21	Submersible				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:				
7.55	3.62	Grundfos				

Water Quality Parameters									
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1325	5.19	0.0	0.3	7.16	-63	19.31	0.361	5.55	16.7
1329	5.19	1.2	0.3	7.06	-45	19.51	0.370	3.14	0.0
1333	5.19	2.4	0.3	7.05	-32	19.75	0.375	2.40	0.0
1337	5.19	3.6	0.3	7.03	-30	19.79	0.376	2.27	0.0
1341	5.19	4.8	0.3	7.04	-29	19.82	0.375	2.22	0.0
1345	5.19	6.0	0.3	7.05	-28	19.86	0.380	2.07	0.0
1349	5.19	7.2	0.3	7.06	-27	19.89	0.384	1.99	0.0

Total Quantity of Water Removed (lit	ters): 7.2	Sampling Time:	1355
Samplers:	MM/SS	Split Sample With:	-
Sampling Date:	11.19.16	Sample Type:	GW grab

Well I.D.:	Personnel:	Client:	
MW-5R	MM/SS	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	59 F / overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Solinist Tape	11.18.15	TOC	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	
flush	12.55	2"	

	Purge Time:
11.18.15	1220 - 1255
	Field Technician:
Low flow w/Grundfos	MM/SS

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
12.99	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
2.36	1.70	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
10.63	5.10	Grundfos			

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
1220	2.31	0	0.3	6.54	-137	20.00	1.44	3.36	0.0
1225	2.33	1.5	0.3	6.55	-137	20.07	1.59	1.16	0.0
1230	2.33	3.0	0.3	6.55	-140	20.11	1.66	0.82	0.0
1235	2.33	4.5	0.3	6.55	-141	20.11	1.65	0.66	0.0
1240	2.33	6.0	0.3	6.55	-142	20.13	1.65	0.57	0.0
1245	2.33	7.5	0.3	6.55	-144	20.11	1.65	0.59	0.0
1250	2.33	9.0	0.3	6.55	-145	20.11	1.65	0.62	0.0
1255	2.33	10.5	0.3	6.55	-145	20.11	1.65	0.63	0.0

Total Quantity of Water Removed (liter	r s): 11	Sampling Time:	1255
Samplers:	SS/MM	Split Sample With:	-
Sampling Date:	11.19.15	Sample Type:	grab, gw
		_	

COMMENTS AND OBSERVATIONS: Clear throughout, no odors/sheen

Well I.D.:	Personnel:	Client:	
MW-06	MM/SS	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	59 F / overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 11.181.5	Measurement Ref: TOC	
-	-		

	Purge Time:
11.19.15	1205-1229
J	Field Technician:
low flow w/Grundfos	SS/MM

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
13.30	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
3.66	1.54	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
9.64	4.63	Grundfos			

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1209	3.73	0	0.3	6.98	-129	19.91	1.77	7.84	0.0
1213	3.75	1.5	0.3	6.95	-126	20.21	1.76	3.87	0.0
1217	3.76	3.0	0.3	6.95	-124	20.30	1.75	3.56	0.0
1221	3.75	4.5	0.3	6.95	-124	20.33	1.75	3.34	0.0
1225	3.75	6.0	0.3	6.94	-124	20.37	1.75	3.30	0.0
1229	3.75	7.5	0.3	6.94	-125	10.36	1.74	3.17	0.0

Total Quantity of Water Removed (lite	ers): 7.50	Sampling Time:	1235
Samplers:	MM/SS	Split Sample With:	-
Sampling Date:	11.19.15	Sample Type:	gw grab

Well I.D.:	Personnel:	Client:	
MW-08SR	MM/SS	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	59 F / Overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 11.18.15	Measurement Ref: TOC	
-	-		

Purge Date:	Purge Time:
11.18.15	1255
	Field Technician:
low flow	MM/SS

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
12.96	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
4.60	1.34	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
8.36	4.01	Grundfos			

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1259	5.41	1	0.25	7.09	-31	20.29	0.780	6.51	0.3
1303	5.41	2	0.25	7.09	-12	20.36	0.760	4.69	0
1307	5.41	3	0.25	7.10	-8	20.41	0.750	4.16	0
1311	5.41	4	0.25	7.10	-5	20.48	0.728	3.46	0
1315	5.41	5	0.25	7.11	-4	20.49	0.717	3.10	0
1319	5.41	6	0.25	7.12	-6	20.52	0.706	2.75	0
1323	5.41	7	0.25	7.13	-9	20.56	0.696	2.48	0
1327	5.41	8	0.25	7.14	-12	20.59	0.681	2.90	0
1331	5.41	9	0.25	7.14	-13	20.59	0.677	2.07	0
1335	5.41	10	0.25	7.15	-17	20.58	0.673	1.83	0
1350	5.41	11	0.25	7.15	-32	20.58	0.684	3.52	0
1354	5.41	12	0.25	7.15	-22	20.59	0.671	3.33	0
1358	5.41	13	0.25	7.15	-18	20.68	0.657	3.06	0
[

Total Quantity of Water Removed (lit	ers): 13.0	Sampling Time:	1405
Samplers:	MM/SS	Split Sample With:	
Sampling Date:	11.20.15	Sample Type:	GW grab

COMMENTS AND OBSERVATIONS:

started gray and silty, cleared quickly

Well I.D.:	Personnel:	Client:	
MW-08DR	MM/SS	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	59 F / Overcast	
	-		
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 11.18.16	Measurement Ref: TOC	
-	-		

Purge Date:	Purge Time:
11.18.16	1158-1238
J	Field Technician:
low flow Grundfos	MM/SS

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
20.82	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
4.30	2.64	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
16.52	3.63	Grundfos			

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1202	4.46	0	0.25	6.53	-14	17.97	1.13	8.45	0.0
1206	4.46	1.0	0.25	6.59	-33	18.12	1.14	7.43	0.0
1210	4.46	2.0	0.25	6.59	-39	18.16	1.18	6.57	0.0
1214	4.46	3.0	0.25	6.59	-40	18.17	1.17	6.09	0.0
1218	4.46	4.0	0.25	6.59	-44	18.19	1.19	5.37	0.0
1222	4.46	5.0	0.25	6.60	-46	18.18	1.20	4.69	0.0
1226	4.46	6.0	0.25	6.60	-48	18.19	1.21	5.11	0.0
1230	4.46	7.0	0.25	6.60	-49	18.20	1.21	3.98	0.0
1234	4.46	8.0	0.25	6.60	-51	18.16	1.22	3.68	0.0
1238	4.46	9.0	0.25	6.60	-52	18.17	1.22	3.38	0.0

Total Quantity of Water Removed (lit	ters): 9.00	Sampling Time:	1240
Samplers:	MM/SS	Split Sample With:	
Sampling Date:	11.20.15	Sample Type:	GW grab

Well I.D.:	Personnel:	Client:	
MW-09S	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	Measurement Ref: TOC	
	J. J		

	Purge Time:
17-May-16	1235
J	Field Technician:
low flow/Grundfos sub. pump	HW/EC

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
14.92	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
5.18	1.56	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
9.74	4.68	Grundfos			

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)

Total Quantity of Water Removed (lite	ers): 16.80	Sampling Time:	1322
Samplers:	HW/EC	Split Sample With:	
Sampling Date:	5/17/2016	Sample Type:	GW Grab

COMMENTS AND OBSERVATIONS: * cleaned horiba

Well I.D.:	Personnel:	Client:	
MW-9D	MM/SS	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	59 F / overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Solinist Tape	11.18.15	TOC	
Solinist Tape Stick Up/Down (ft):	11.18.15 Gauge Time:	TOC Well Diameter (in):	

Purge Date:	Purge Time:
11.18.15	1517
J	Field Technician:
low flow w/ Grundfos	MM/SS

	Well Volume	
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:
32.03	0.16	flush
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:
2.76	4.68	Submersible
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:
29.27	14.05	Grundfos

		Wa	ter Quality	/ Paramet	ers			
DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
2.82	1	0.25	6.27	-37	18.14	1.45	2.47	92.0
2.82	2	0.25	6.25	-39	18.22	1.40	1.99	29.1
2.82	3	0.25	6.25	-41	18.30	1.34	1.78	5.0
2.82	4	0.25	6.25	-43	18.29	1.30	1.68	0
2.82	5	0.25	6.25	-45	18.30	1.29	1.63	0
2.82	6	0.25	6.25	-46	18.31	1.29	1.60	0
	(ft btoc) 2.82 2.82 2.82 2.82 2.82 2.82 2.82	(ft btoc)(L)2.8212.8222.8232.8242.825	DTW (ft btoc)Volume (L)Rate (Lpm)2.8210.252.8220.252.8230.252.8240.252.8250.25	DTW (ft btoc) Volume (L) Rate (Lpm) pH (pH units) 2.82 1 0.25 6.27 2.82 2 0.25 6.25 2.82 3 0.25 6.25 2.82 4 0.25 6.25 2.82 5 0.25 6.25	DTW (ft btoc) Volume (L) Rate (Lpm) pH (pH units) ORP (mV) 2.82 1 0.25 6.27 -37 2.82 2 0.25 6.25 -39 2.82 3 0.25 6.25 -41 2.82 4 0.25 6.25 -43 2.82 5 0.25 6.25 -45	(ft btoc)(L)(Lpm)(pH units)(mV)(°C)2.8210.256.27-3718.142.8220.256.25-3918.222.8230.256.25-4118.302.8240.256.25-4318.292.8250.256.25-4518.30	DTW (ft btoc) Volume (L) Rate (Lpm) pH (pH units) ORP (mV) Temp. (°C) Cond. (mS/cm) 2.82 1 0.25 6.27 -37 18.14 1.45 2.82 2 0.25 6.25 -39 18.22 1.40 2.82 3 0.25 6.25 -41 18.30 1.34 2.82 4 0.25 6.25 -43 18.29 1.30 2.82 5 0.25 6.25 -45 18.30 1.29	DTW (ft btoc) Volume (L) Rate (Lpm) pH (pH units) ORP (mV) Temp. (°C) Cond. (mS/cm) DO (mg/L) 2.82 1 0.25 6.27 -37 18.14 1.45 2.47 2.82 2 0.25 6.25 -39 18.22 1.40 1.99 2.82 3 0.25 6.25 -41 18.30 1.34 1.78 2.82 4 0.25 6.25 -43 18.29 1.30 1.68 2.82 5 0.25 6.25 -45 18.30 1.29 1.63

Total Quantity of Water Removed (liters): 6.0	Sampling Time:	1545
Samplers:	MM/SS	Split Sample With:	-
Sampling Date:	11.19.15	Sample Type:	GW grab

Well I.D.:	Personnel:	Client:	
MW-10S	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	Overcast / 60 F	
O a server all'as as Marstle a st	Course Dates	Measurement Ref:	
Sounding Method:	Gauge Date:	weasurement Ref.	
Sounding Method: Solinist Tape	17-May-16	TOC	
-	•		

	Purge Time:
17-May-16	1117
Purge Method:	Field Technician:
low flow w/ Grundfos	HW/EC

	Well Volume	
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:
14.42	0.16	flush
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:
5.70	1.40	Submersible
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:
8.72	4.19	Grundfos

			Wa	ter Quality	/ Paramet	ers			
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)

Total Quantity of Water Removed (I	iters):	Sampling Time:	1200
Samplers:	HW/EC	Split Sample With:	Duplicate
Sampling Date:	5/17/2016	Sample Type:	GW grab
		_	

Well I.D.:	Personnel:	Client:	
MW-10M	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	Overcast,60 F	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	Measurement Ref: TOC	
	-		

	Purge Time:
17-May-16	1450
J	Field Technician:
low flow w/Grundfos	HW/EC

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
26.66	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
5.45	3.39	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
21.21	10.18	Grundfos		

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)

Total Quantity of Water Removed (li	ters): 18	Sampling Time:	1100
Samplers:	HW/EC	Split Sample With:	none
Sampling Date:	5/17/2016	Sample Type:	GW grab

Well I.D.:	Personnel:	Client:	
MW-10D	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	cloudy	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	Measurement Ref: TOC	
-	J. J		

	Purge Time:
17-May-16	1030
	Field Technician:
low flow w/ Grundfos	HW/EC

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
32.91	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
5.84	4.33	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
27.07	12.99	Grundfos		

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)

Total Quantity of Water Removed (I	Sampling Time:	1108	
Samplers:	HW/EC	Split Sample With:	ms/msd
Sampling Date:	5/17/2016	Sample Type:	GW grat

Well I.D.:	Personnel:	Client:	
MW-11S	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	Measurement Ref: TOC	
-	J		

	Purge Time:
17-May-16	1342
J	Field Technician:
low flow Grundfos	HW/EC

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
14.91	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
4.00	1.75	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
10.91	5.24	Grundfos		

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)

Total Quantity of Water Removed (liters):

HW/EC	
5/17/2016	

Sampling Time:
Split Sample With:
Sample Type:

1405	
NA	
GW Grab	

COMMENTS AND OBSERVATIONS:

Samplers:

Sampling Date:

Well I.D.:	Personnel:	Client:	
MW-11D	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	60 F / overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	Measurement Ref: TOC	
-	-		

	Purge Time:
17-May-16	1345
J	Field Technician:
low flow Grundfos	HW/EC

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
30.00	0.163	flush				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
4.10	4.22	Submersible				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:				
25.90	12.67	Grundfos				

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)

Total Quantity of Water Removed (liters):	Sampling Time:	1410
Samplers:	EC/HW	Split Sample With:	NA
Sampling Date:	5/17/2016	 Sample Type:	GW Grab
		_	

Well I.D.:	Personnel:	Client:	
MW-4	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	stripped screws	overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	Measurement Ref: TOC	
	-		

	Purge Time:
17-May-16	1137
Purge Method:	Field Technician:
low flow w/ Grundfos, purge to ground	HW/EC

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
12.84	0.16	flush				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
6.04	1.09	Submersible				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:				
6.80	3.26	Grundfos				

	Water Quality Parameters								
Time	DTW	Volume	Rate	pH	ORP	Temp. (°C)	Cond.	DO (m.m.(l.)	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)		(mS/cm)	(mg/L)	(ntu)
1138	6.42	0.0	0.4	7.29	3	13.16	0.329	0.00	0.0
1141	6.45	1.2	0.4	7.25	10	13.13	0.335	0.00	0.0
1144	6.48	2.4	0.4	7.25	2	13.13	0.336	0.00	0.0
1147	6.50	3.6	0.4	7.25	-5	13.12	0.335	0.00	0.0
1150	6.49	4.8	0.4	7.25	-9	13.13	0.337	0.00	0.0
1153	6.49	6.0	0.4	7.25	-13	13.12	0.336	0.00	0.0
1156	6.50	7.2	0.4	7.25	-16	13.11	0.338	0.00	0.0
			-						

Total Quantity of Water Removed (lite	rs): 7.2	Sampling Time:	1158
Samplers:	HW/EC	Split Sample With:	-
Sampling Date:	2.17.16	Sample Type:	GW grab
		_	

Well I.D.:	Personnel:	Client:	
MW-5R	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	65 F / sun & clouds	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 18-May-16	Measurement Ref: TOC	
	U U		

	Purge Time:
18-May-16	1200
	Field Technician:
Low flow w/Grundfos	HW/EC

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
13.11	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
2.06	1.77	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
11.05	5.30	Grundfos		

Water Quality Parameters									
Time	DTW (ft btoo)	Volume	Rate	pH (nH unita)	ORP	Temp. (°C)	Cond.	DO (mg/l)	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(0)	(mS/cm)	(mg/L)	(ntu)
1202	3.01	0	0.4	7.03	-149	13.40	1.79	2.20	37.6
1205	2.58	1.2	0.4	6.96	-151	13.61	1.87	0.00	9.8
1208	2.58	2.4	0.4	6.96	-158	13.55	1.90	0.00	5.4
1211	2.58	3.6	0.4	6.95	-161	13.52	1.91	0.00	5.4
1214	2.55	4.8	0.4	6.94	-166	13.66	1.92	0.00	7.8
1217	2.54	6.0	0.4	6.94	-170	13.82	1.93	0.00	5.2

Total Quantity of Water Removed (liters): 6	Sampling Time:	1217
Samplers:	HW/EC	Split Sample With:	-
Sampling Date:	5.18.16	Sample Type:	grab, gw

Well I.D.:	Personnel:	Client:	
MW-06	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good - screws stripped	overcast, ~65F	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 18-May-16	Measurement Ref: TOC	
-	-		

	Purge Time:
18-May-16	1100
J	Field Technician:
low flow w/Grundfos	HW/EC

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
13.49	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
4.14	1.50	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
9.35	4.49	Grundfos		

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1102	4.16	0	0.4	7.21	-147	13.60	1.56	2.98	83.0
1105	4.41	1.2	0.4	7.21	-150	13.55	1.52	0.38	56.4
1108		2.4	0.4	7.21	-153	13.51	1.49	0.00	27.1
1111	4.46	3.6	0.4	7.22	-155	13.45	1.46	0.00	19.6
1117	4.46	6.0	0.4	7.23	-156	13.34	1.43	0.00	12.1
1120	4.46	7.2	0.4	7.23	-157	13.31	1.41	0.00	9.3
1123	4.46	8.4	0.4	7.23	-157	13.35	1.40	0.00	8.5
1126	4.47	9.6	0.4	7.23	-157	13.41	1.40	0.00	7.9
1129	4.47	10.8	0.4	7.23	-157	13.48	1.39	0.00	7.4

Total Quantity of Water Removed (lit	ters): 10.80	Sampling Time:	1129
Samplers:	HW/EC	Split Sample With:	-
Sampling Date:	5.18.16	Sample Type:	gw grab

Well I.D.:	Personnel:	Client:	
MW-08SR	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	mostly sunny / 65F	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 18-May-16	Measurement Ref: TOC	
.	•		

	Purge Time:
18-May-16	1150
	Field Technician:
low flow	HW/EC

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
12.97	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
5.34	1.22	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
7.63	3.66	Grundfos		

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1153	8.44	0	0.4	7.47	-3	14.95	0.832	7.01	0
1156	8.51	1.2	0.4	7.52	15	14.93	0.775	0.00	0
1159	8.54	2.4	0.4	7.54	27	14.92	0.758	0.00	0
1202	8.56	3.6	0.4	7.55	33	14.92	0.752	0.00	0
1205	8.56	4.8	0.4	7.55	37	14.91	0.749	0.00	0
1208	8.57	6.0	0.4	7.56	39	14.91	0.748	0.00	0
1211	8.57	7.2	0.4	7.56	40	14.90	0.748	0.00	0

Total Quantity of Water Removed (li	ters): 7.2	Sampling Time:	1215
Samplers:	HW/EC	Split Sample With:	
Sampling Date:	5/18/2016	Sample Type:	GW grab

COMMENTS AND OBSERVATIONS: pump at higher rate due to fault on control box

Well I.D.:	Personnel:	Client:	
MW-08DR	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	Overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Solinist Tape	18-May-16	TOC	
Solinist Tape Stick Up/Down (ft):	18-May-16 Gauge Time:	TOC Well Diameter (in):	

	Purge Time:
18-May-16	1100
	Field Technician:
low flow Grundfos	HW/EC

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
30.86	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
5.41	4.07	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
25.45	4.65	Grundfos			

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1104	5.65	0	0.4	6.94	-78	15.32	1.53	8.95	0.0
1107	5.65	1.2	0.4	6.95	-82	15.32	1.54	7.20	0.0
1110	5.66	2.4	0.4	6.96	-86	15.33	1.55	4.82	0.0
1113	5.67	3.6	0.4	6.96	-87	15.33	1.54	7.18	0.0
1116	5.67	4.8	0.4	6.96	-88	15.40	1.55	3.39	0.0
1119	5.69	6.0	0.4	6.97	-90	15.33	1.55	0.00	0.0
1122	5.70	7.2	0.4	6.97	-91	15.33	1.55	0.00	0.0
1125	5.71	8.4	0.4	6.97	-92	15.34	1.55	0.00	0.0
1128	5.71	9.6	0.4	6.97	-93	15.34	1.56	0.00	0.0

Total Quantity of Water Removed (li	ters): 9.60	Sampling Time:	1130
Samplers:	HW/EC	Split Sample With:	
Sampling Date:	5/18/2016	Sample Type:	GW grab

COMMENTS AND OBSERVATIONS: pump at higher rate due to fault on control box

pumped stopped at 1112.

Well I.D.:	Personnel:	Client:	
MW-09S	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Solinist Tape	17-May-16	TOC	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	

	Purge Time:
17-May-16	1235
Purge Method:	Field Technician:
low flow/Grundfos sub. pump	HW/EC

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
14.92	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
5.18	1.56	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
9.74	4.68	Grundfos			

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	рН (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1237	5.35	0.0	0.4	7.41	-93	15.12	0.526	0.00	>1000
1240	5.35	1.2	0.4	7.4	-106	15.18	0.526	0.10	691
1243	5.34	2.4	0.4	7.4	-113	15.44	0.529	0.65	325
1246	5.34	3.6	0.4	7.39	-116	15.68	0.534	0.00	250
1249	5.34	4.8	0.4	7.38	-118	15.86	0.539	0.00	192
1252	5.34	6.0	0.4	7.38	-119	15.81	0.543	0.00	177
1255	5.18	7.2	0.4	7.37	-121	15.92	0.554	0.00	138
1258	5.18	8.4	0.4	7.35	-122	15.89	0.366	0.00	131
1301	5.18	9.6	0.4	7.35	-122	15.71	0.368	0.00	109
1304	5.18	10.8	0.4	7.33	-124	15.84	0.584	0.00	99.8
1307	5.18	12.0	0.4	7.32	-125	15.82	0.591	0.00	71.6
1310	5.18	13.2	0.4	7.29	-124	15.53	0.390	0.00	105*
1313	5.18	14.4	0.4	7.30	-125	15.00	0.630	0.00	49
1316	5.18	15.6	0.4	7.31	-127	14.87	0.623	0.00	46
1319	5.2	16.8	0.4	7.29	-128	14.86	0.627	0.00	31

Total Quantity of Water Removed (li	ters): 16.80	Sampling Time:	1322
Samplers:	HW/EC	Split Sample With:	
Sampling Date:	5/17/2016	Sample Type:	GW Grab

COMMENTS AND OBSERVATIONS: * cleaned horiba

Well I.D.:	Personnel:	Client:	
MW-9D	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	60 F / overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	Measurement Ref: TOC	
-	J		

	Purge Time:
17-May-16	1226
J	Field Technician:
low flow w/ Grundfos	HW/EC

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
32.04	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
5.06	4.32	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
26.98	12.95	Grundfos			

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1227	5.32	0	0.4	6.98	-108	15.60	1.24	8.55	>1000
1232		1.2	0.4	6.78	-121	15.50	1.88	0.00	59
1237	5.28	2.4	0.4	6.83	-106	15.52	1.87	0.00	108
1240	5.28	3.6	0.4	6.83	-109	15.50	1.91	0.00	74
1243	5.28	4.8	0.4	6.86	-120	15.51	1.93	0.00	24
1246	5.28	6	0.4	6.87	-124	15.50	1.92	0.00	14
1249	5.28	7.2	0.4	6.87	-126	15.50	1.96	0.00	9.0

1252 -GW grab

Total Quantity of Water Removed (lit	ers): 7.2	Sampling Time:
Samplers:	HW/EC	Split Sample With:
Sampling Date:	5/17/2016	Sample Type:

Well I.D.:	Personnel:	Client:	
MW-10S	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	Overcast / 60 F	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	TOC	
-	•		

Purge Date:	Purge Time: 1117
17-May-16	1117
Purge Method:	Field Technician: HW/EC
low flow w/ Grundfos	HW/EC

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
14.42	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
5.70	1.40	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
8.72	4.19	Grundfos		

			Wa	ter Quality	/ Paramet	ers			
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1118	8.06	0	0.5	7.59	-153	13.52	0.835	12.93	19.5
1121	8.92	1.5	0.5	7.45	-171	13.35	0.882	6.69	218
1127		4.5	0.5	7.40	-147	14.06	0.934	0.97	63.5
1130	6.83	6.0	0.5	7.34	-162	14.08	0.958	0.36	37.1
1133	6.80	7.5	0.5	7.30	-167	14.03	1.00	0.03	11.4
1135	6.80	8.5	0.5	7.29	-170	14.07	1.04	0.12	6.2
1138	6.80	10.0	0.5	7.25	-172	14.08	1.08	0.09	3.7
1141	6.80	11.5	0.5	7.19	-173	14.04	1.11	0.00	2.6
1144		13.0	0.5	7.18	-175	13.97	1.15	0.00	1.4

Total Quantity of Water Removed (li	ters): 13.00	Sampling Time:	1200
Samplers:	HW/EC	Split Sample With:	Duplicate
Sampling Date:	5/17/2016	Sample Type:	GW grab
-		-	

Well I.D.:	Personnel:	Client:	
MW-10M	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	Overcast,60 F	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	Measurement Ref: TOC	
	-		

	Purge Time:
17-May-16	1450
J	Field Technician:
low flow w/Grundfos	HW/EC

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
26.66	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
5.45	3.39	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
21.21	10.18	Grundfos		

			Wa	ter Quality	/ Paramet	ers			
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1039	6.00	0	0.3	6.79	13	15.11	1.710	6.36	263.0
1042	6.25	0.9	0.3	6.77	-26	15.13	1.750	0.10	47.9
1045	6.25	1.8	0.3	6.75	-51	15.14	1.750	0.00	40.5
1048	6.26	3.6	0.3	6.75	-63	15.15	1.75	0.00	22.7
1051	6.27	4.8	0.3	6.75	-66	15.14	1.75	0.00	18.2
1054	6.27	6.15	0.3	6.74	-68	15.14	1.75	0.00	13
1057	6.31	7.5	0.3	6.74	-70	15.14	1.75	0.00	9.4

Total Quantity of Water Removed (lite	ers): 7.5	Sampling Time:	1100
Samplers:	HW/EC	Split Sample With:	none
Sampling Date:	5/17/2016	Sample Type:	GW grab

Well I.D.:	Personnel:	Client:	
MW-10D	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	cloudy	
Sounding Method:	Gauge Date:	Measurement Ref:	
	17 May 16	TOO	
Solinist Tape	17-May-16	TOC	
Solinist Tape Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	

	Purge Time:
17-May-16	1030
J	Field Technician:
low flow w/ Grundfos	HW/EC

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
32.91	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
5.84	4.33	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
27.07	12.99	Grundfos			

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
1038	6.05	0.0	0.3	6.74	-95	16.05	0.873	1.46	247
1041	6.05	0.9	0.3	6.67	-125	16.04	0.720	0.00	144
1044	6.05	1.8	0.3	6.69	-129	16.17	0.651	0.00	132
1047	6.08	2.7	0.3	6.67	-65	16.22	0.524	0.00	116
1050	6.11	3.6	0.3	6.71	-99	16.17	0.506	0.00	80.0
1053	6.11	4.5	0.3	6.66	-110	16.29	0.497	0.00	55.9
1056	6.12	5.4	0.3	6.7	-112	16.31	0.503	0.00	49.5
1059	6.12	6.3	0.3	6.69	-110	16.35	0.511	0.00	36.0
1102	6.12	7.2	0.3	6.69	-107	16.40	0.529	0.00	29.0
1105	6.12	8.1	0.3	6.69	-106	16.41	0.537	0.00	23.7

): 8.10	Sampling Time:	1108
HW/EC	Split Sample With:	ms/msd
5/17/2016	Sample Type:	GW grab
	HW/EC	HW/EC Split Sample With:

Well I.D.:	Personnel:	Client:	
MW-11S	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Solinist Tape	17-May-16	TOC	
Solinist Tape Stick Up/Down (ft):	17-May-16 Gauge Time:	TOC Well Diameter (in):	

	Purge Time:
17-May-16	1342
	Field Technician:
low flow Grundfos	HW/EC

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
14.91	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
4.00	1.75	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
10.91	5.24	Grundfos			

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1345	4.11	0.0	0.5	7.58	-202	15.01	1.03	0.00	>1000
1348	4.13	1.5	0.5	7.61	-208	14.98	1.05	0.00	229
1351	4.13	3.0	0.5	7.63	-213	14.96	1.05	0.00	82.9
1354	4.13	4.5	0.5	7.64	-217	14.95	1.06	0.00	51.0
1357	4.13	6.0	0.5	7.64	-218	14.93	1.06	0.00	28.1
1400	4.13	7.5	0.5	7.64	-220	14.93	1.07	0.00	9.2
1403	4.14	9.0	0.5	7.65	-221	14.93	1.07	0.00	4.3

Total Quantity of Water Removed (li	ters): 9.00	Sampling Time:	1405
Samplers:	HW/EC	Split Sample With:	NA
Sampling Date:	5/17/2016	Sample Type:	GW Grab

Well I.D.:	Personnel:	Client:	
MW-11D	HW/EC	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	60 F / overcast	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: 17-May-16	Measurement Ref: TOC	
-	-		

	Purge Time:
17-May-16	1345
J	Field Technician:
low flow Grundfos	HW/EC

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
30.00	0.163	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
4.10	4.22	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
25.90	12.67	Grundfos			

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1349	4.21	4.0	1	6.44	118	15.48	3.46	0.09	260
1352	4.18	7.0	1	6.43	124	15.51	3.49	0.00	184
1355	4.18	10.0	1	6.43	113	15.56	3.50	0.00	126
1358		13.0	1	6.42	109	15.56	3.51	0.00	79.7
1401	4.15	16.0	1	6.43	104	15.54	3.51	0.00	61.1
1404	4.14	19.0	1	6.42	106	15.56	3.51	0.00	29.7
1407	4.14	22.0	1	6.42	106	15.56	3.51	0.00	22.9
1410	4.14	25.0	1	6.42	105	15.56	3.52	0.00	12.8

Total Quantity of Water Removed (lit	ters): 25.00	Sampling Time:	1410
Samplers:	EC/HW	Split Sample With:	NA
Sampling Date:	5/17/2016	Sample Type:	GW Grab

Appendix D

Daily Field Reports

This page intentionally left blank

DAILY FIELD REPORT	Day:_	_Wednesday_	_ Date:	_11/18/15_	
	Tempera	ature: (F)	55	(am) 60	(pm)
R STATE OF OFFORTUNITY CONSERVATION Conservation	Wind E	Direction:	ESE	(am) ESE	(pm)
Project Name Metal Etching Site (130110)	N	Weather:	Sunny Sunny		
Contract #: D007624-09	Arriv	ve at site	11:00	(am)	
Freeport, New York	Le	ave site:	16:00	(pm)	
HEALTH & SAFETY:					
Are there any changes to the Health & Safety Plan (If yes, list the deviation under items for concern)	?	Yes () N	No (x)		
Are monitoring results at acceptable levels?	Soil	Yes (x) n	n/a()	* No()	
		· · /	n/a()	* No()	
OTHER ITEMS:	Air	()	n/a(x) No, provide	* No() e comments	
Site Sketch Attached:Yes ()No (Photos Taken:Yes ()No (
DESCRIPTION OF DAILY WORK PERFORMED					

DESCRIPTION OF DAILY WORK PERFORMED:

S. Soldner arrived onsite at 12:00. Completed a full round of monitoring well gauging from 12:20-12:55 (high tide at 12:56). Set up air canisters for indoor and outdoor air collection. Outdoor air can was set up off of the NE corner of the office building 3' off the ground at 13:55. Indoor air can was set up in office building on a table by the west wall at 14:00. Duplicate was also set up here. No odors were observed in the office building. Left the site at 14:30.

PROJECT TOTALS: N/A SAMPLING (Soil/Water/Air) Contractor Sample ID:	QA/QC:	Description:

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

Contractor and personnel: Contractor equipment: NA

VISITORS TO SITE:

None.

DAILY FIELD REPORT

PROJECT SCHEDULE ISSUES:

• NA

PROJECT BUDGET ISSUES:

• • NA

ITEMS OF CONCERN:

• NA

COMMENTS:

None.

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Stephen Soldner

Signature:

PHOTO LOG

DAILY FIELD REPORT		Day:Thurs	day Date:	Date:_11/19/15			
		Temperature: (F)	58	(am)	60	(pm)	
Rew YORK STATE OF OPPORTUNITY Department of Environmental Conservation		Wind Direction:	SE	(am)	SE	(pm)	
Project Name Metal Etching Site (130110)		Weather:	Sunny Sunn		(am) (pm)		
Contract #: D007624-09		Arrive at site	11:00	(am)			
Freeport, New York		Leave site:	16:00	(pm)			
HEALTH & SAFETY:							
Are there any changes to the Health & Safety Plar (If yes, list the deviation under items for concern)	n?	Yes ()	No (x)				
Are monitoring results at acceptable levels?	Soil	Yes (x)	n/a ()	* No	. ,		
	Waters Air	Yes(x) Yes()	n/a() n/a(x)	* No * No	· · ·		
OTHER ITEMS:			 If No, provide 		()		
	(x) (x)						

DESCRIPTION OF DAILY WORK PERFORMED:

M. Miller arrived onsite at 11:30 am. S. Soldner was onsite. Started groundwater sampling at MWs -05R and -06 at 12:00 (High tide at 13:59). Purged wells with submersible pumps low-flow until field parameters stabilized. Collected groundwater samples for laboratory analysis of VOCs (8260C), Metals and Hg (6010C/7471A), Chloride and Sulfate, TOC, Nitrate, as N, and Sulfide. Purged and sampled monitoring wells MW-04, MW-10D, MW-10M, MW-10S, MW-09S, and MW-09D using same methods and for same analyses. Submersible pumps and water interface probes were decontaminated using alconox between wells. A rinse blank was collected off of a submersible pump following completion of sampling at 1600.

S. Soldner closed air canisters to complete sampling at 13:18.

Packed up cans and cooler. Left site at 16:30 to replenish ice and ship cooler/air cans.

<u>PROJECT TOTALS:</u> N/A SAMPLING (Soil/Water/Air)		
Contractor Sample ID:	QA/QC:	Description:
130110-MW-06		Groundwater- all samples analyzed for metals VOCs, chloride, sulfate, TOC, Nitrate, and sulfide
130110-MW-05R		Groundwater
130110-MW-04		Groundwater
130110-MW-10D		Groundwater
130110-MW-10M		Groundwater
130110-MW-10S		Groundwater
130110-MW-09S	Duplicate	Groundwater- duplicate analyzed for VOCs and metals only

DAILY FIELD REPORT		Day:Thursday Date:_11/19/15
130110-MW-09D		Groundwater
130110-RB-111915		Rinsate- analyzed for metals and VOCs
130110-OA-111915		Outdoor air- VOCs
130110-IA-111915	Duplicate	Indoor air- VOCs

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

Contractor and personnel: Contractor equipment: NA

VISITORS TO SITE:

None.

PROJECT SCHEDULE ISSUES:

• NA

PROJECT BUDGET ISSUES:

• NA

ITEMS OF CONCERN:

• NA

COMMENTS:

None.

•

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Megan Miller

Signature: Meyan Millen

PHOTO LOG

DAILY FIELD REPORT	Day:F	riday Date:	11/20/15	
	Temperature: (F)	58	(am) 62	(pm)
REW YORK STATE OF OFFORTUNITY CONSErvation	Wind Direction:	NW	(am) NW	(pm)
Project Name Metal Etching Site (130110)	Weather:		ered Clouds ered Clouds	(am) (pm)
Contract #: D007624-09	Arrive at site	11:30	(am)	
Freeport, New York	Leave site:	14:30	(pm)	
HEALTH & SAFETY:				
Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)	Yes ()	No (x)		
Are monitoring results at acceptable levels?	Soil Yes (x)	n/a ()	* No()	
	Waters Yes (x)	n/a ()	* No() * No()	
OTHER ITEMS:	Air Yes()	n/a(x) ● If No, provide	* No() e comments	
Site Sketch Attached: Yes () No (x Photos Taken: Yes (x) No (with inspection rep) *provided			

DESCRIPTION OF DAILY WORK PERFORMED:

M. Miller and S. Soldner arrived onsite at 11:30. Started groundwater sampling at MWs -08DR and -11S at 11:40 (High tide at 14:59). Purged wells with submersible pumps low-flow until field parameters stabilized. Collected groundwater samples for laboratory analysis of VOCs (8260C), Metals and Hg (6010C/7471A), Chloride and Sulfate, TOC, Nitrate, as N, and Sulfide. Purged and sampled monitoring wells MW-08SR and MW-11D using same methods and for same analyses. Submersible pumps and water interface probes were decontaminated using alconox between wells. A rinse blank was collected off of a submersible pump following completion of sampling at 1400.

Packed up cooler. Left site at 14:30 to replenish ice and ship cooler.

PROJECT TOTALS: N/A SAMPLING (Soil/Water/Air Contractor Sample ID:	D QA/QC:	Description:
130110-MW-08SR		Groundwater- all samples analyzed for metals VOCs, chloride, sulfate, TOC, Nitrate, and sulfide
130110-MW-08DR		Groundwater
130110-MW-11S		Groundwater
130110-MW-11D		Groundwater
130110-RB-112015		Rinsate- analyzed for metals and VOCs

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

DAILY FIELD REPORT

Contractor and personnel: NA Contractor equipment: NA

VISITORS TO SITE:

None.

PROJECT SCHEDULE ISSUES:

• NA

PROJECT BUDGET ISSUES:

• NA

ITEMS OF CONCERN:

• NA

COMMENTS:

None.

•

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Megan Miller

Megan Miller Signature:

PHOTO LOG

DAILY FIELD REPORT	C	Day: Tuesday_	Date: _5.1	7.16_
	Temperature: (F)	61 F	(am) 61 F	(pm)
B C STATE OF OFFORTUNITY C STATE OF OFFORTUNITY C STATE OF C STATE OF Environmental Conservation	Wind Direction:	~11 mph NE	(am) ~11 mph NE	(pm)
Project Name Metal Etching Site (130110)	Weather:	С	Cloudy Overcast	(am) (pm)
Contract #: D007624-09	Arrive at site	0945	(am)	
Freeport, New York	Leave site:	1445	(pm)	
HEALTH & SAFETY:				
Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)	Yes ()	No (x)		
Are monitoring results at acceptable levels? Soil Wa Air OTHER ITEMS:	l Yes() ters Yes() Yes()	n/a (x) n/a (x) n/a (x) • <i>If No, provid</i>	* No() * No() * No() e comments	
Site Sketch Attached:Yes ()No (x)Photos Taken:Yes ()No (x)		, piona		

DESCRIPTION OF DAILY WORK PERFORMED:

PROJECT TOTALS: N/A SAMPLING (Soil/Water/Air)

Contractor Sample ID:	QA/QC:	Description:
MW-10D-0516	MS/MSD	VOCs / Metals
MW-10S-0516	duplicate	VOCs / Metals
MW-10M-0516		VOCs / Metals
MW-04-0516		VOCs / Metals
MW-09S-0516		VOCs / Metals
MW-09D-0516		VOCs / Metals
MW-11D-0516		VOCs / Metals
MW-11D-0516		VOCs / Metals
Rinseblank-0516		VOCs / Metals (taken from pump)

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

Contractor and personnel: EA – Hilary Williams and Emily Cummings Contractor equipment: groundwater sampling equipment

VISITORS TO SITE:

Eric Talochino

PROJECT SCHEDULE ISSUES:

• NA

PROJECT BUDGET ISSUES:

• NA

ITEMS OF CONCERN:

None

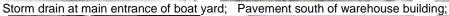
COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Hilary Williams

Signature: Hilary Williams


DAILY FIELD REPORT

Day: Tuesday_ Date: _5.17.16_

PHOTO LOG

Slight ponding on pavement

Ponding outisde of warehouse building;

pavement south of office building

Pavement on east side of site

Storm drain west of warehouse building

Crack in exhaust pipe of SSDS;

clear liquid in manometer

DAILY FIELD REPORT		Day	: Wednesday_	_ Date:	_5.18	3.16_
		Temperature: (F)	61 F	(am)	65 F	(pm)
R STATE OF OPPORTUNITY Conservation		Wind Direction:	~9 mph S	(am)	~9 mph S	(pm)
Project Name Metal Etching Site (130110)		Weather:		rcast, sun tly sunny	I	(am) (pm)
Contract #: D007624-09		Arrive at site	1000	(am)		
Freeport, New York		Leave site:	1300	(pm)		
HEALTH & SAFETY:						
Are there any changes to the Health & Safety Plan (If yes, list the deviation under items for concern)	!?	Yes ()	No (x)			
Are monitoring results at acceptable levels?	Soil	Yes ()	n/a (x)	* No	()	
	Waters Air		n/a (x)	* No * No		
OTHER ITEMS:	All	Yes ()	n/a (x) • If No, prov	ide comme	• •	
Site Sketch Attached:Yes ()No (Photos Taken:Yes (x)No	(x) ()					

DESCRIPTION OF DAILY WORK PERFORMED:

PROJECT TOTALS: N/A SAMPLING (Soil/Water/Air)

Contractor Sample ID:	QA/QC:	Description:
MW-06-0516		VOCs / Metals
MW-08D-0516		VOCs / Metals
MW-08S-0516		VOCs / Metals
MW-05R-0516		VOCs / Metals

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

Contractor and personnel: EA – Hilary Williams and Emily Cummings Contractor equipment: groundwater sampling equipment

VISITORS TO SITE:

Eric Talochino

PROJECT SCHEDULE ISSUES:

None

PROJECT BUDGET ISSUES:

• NA

ITEMS OF CONCERN:

• None

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

Site inspection / photos

SITE REPRESENTATIVE:

Name: Hilary Williams

Signature: *Hilary Williams*

PHOTO LOG

Appendix E

Data Usability Summary Reports

This page intentionally left blank

DATA USABILITY SUMMARY REPORT METAL ETCHING, FREEPORT, LONG ISLAND, NEW YORK

Client:	EA Engineering, Science & Technology, Inc., Syracuse, New York
SDG:	15K0954
Laboratory:	Con-Test Analytical Laboratory, East Longmeadow, Massachusetts
Site:	Metal Etching, Freeport, Long Island, New York
Date:	February 4, 2016

		VOC	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	130110-MW-06	15K0954-01	Water
2	130110-MW-05R	15K0954-02	Water
3	130110-MW-04	15K0954-03	Water
4	130110-MW-10D	15K0954-04	Water
5	130110-MW-10M	15K0954-05	Water
5MS	130110-MW-10MMS	15K0954-05MS	Water
5MSD	130110-MW-10MMSD	15K0954-05MSD	Water
6	130110-MW-10S	15K0954-06	Water
7	130110-MW-09S	15K0954-07	Water
8	130110-MW-09D	15K0954-08	Water
9	130110-RB-111915	15K0954-09	Water
10	130110-DUP	15K0954-10	Water
11	TRIP BLANK	15K0954-11	Water

A Data Usability Summary Review was performed on the analytical data for nine water samples, one aqueous equipment blank sample and one aqueous trip blank sample collected on November 19, 2015 by EA Engineering at the Metal Etching site in Freeport, Long Island, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" and the Standard Methods for the Examination of Water and Wastewater.

Specific method references are as follows:

<u>Analysis</u> VOCs	Method References		
VOCs	USEPA SW-846 Method 8260C		

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 4, September 2014: Validating Volatile Organic Compounds by SW-846 Method 8260B & 8260C;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There was no rejection of data.

Overall the data is acceptable for the intended purposes as qualified for the following deficiencies.

- Four compounds were qualified as estimated in one sample due to low MS/MSD recoveries.
- Vinyl chloride was qualified as estimated in two samples due to poor field duplicate precision.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS %R/MSD %R/ RPD	Qualifier
5	Chloromethane	61.7%/65.2%/OK	J/UJ
1	Dichlorodifluoromethane	30.9%/29.4%/OK	I/UI
	2,2-Dichloropropane	65.9%/OK/OK	J/UI
	Vinyl chloride	67.3%/OK/OK	I/UI

Laboratory Control Samples

The LCS samples exhibited acceptable %R values

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples were free of contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples	
130110-RB-111915	None - ND	-		-	2	
TRIP BLANK	None - ND	1.00	- er		~	

GC/MS Tuning

• All criteria were met.

Initial Calibration

The initial calibration exhibited acceptable %RSD values and/or correlation coefficients and • mean RRF values.

Continuing Calibration

The continuing calibrations exhibited acceptable %D and RRF values.

Compound Quantitation

• Several samples were analyzed at various dilutions due to excessive foaming and/or high concentrations of target compounds. The reporting limits were adjusted accordingly. No action was required.

Internal Standard (IS) Area Performance

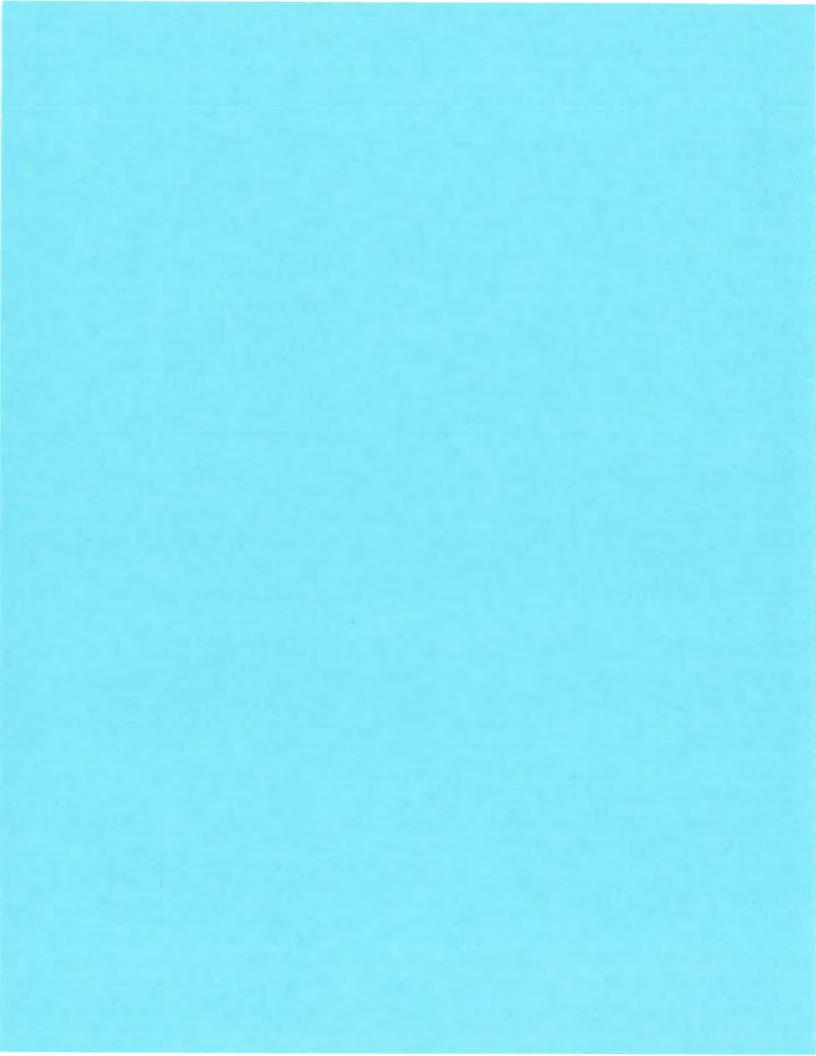
All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

Field duplicate results are summarized below. For a high RPD >30% for water samples, results are considered estimated and qualified (J). A high %RPD may indicate a potential bias due to poor laboratory instrument precision.

	VOC			
Compound	130110-MW-09S ug/L	130110-DUP ug/L	RPD	Qualifier
cis-1,2-Dichloroethylene	1600	1300	21%	None
Vinyl chloride	250	180	33%	I
1,1-Dichloroethene	4.5	2.1U	NC	None
trans-1,2-Dichloroethene	8.6	1.5U	NC	None

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.


Signed:

lancy bleaver Dated: 2/8/16

Nancy Weaver Senior Chemist

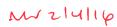
Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- $U \equiv$ The analyte was analyzed for, but was not detected above the sample reporting limit.
- $R \equiv$ The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

1 - FORM I ANALYSIS DATA SHEET

130110-MW-06

Laboratory:	Con-Test An	alytical Laborato	гу	Work Order:	15K0954			
Client:	EA Enginee	ring, Science & To	ech	Project:	Freeport, NY			
Matrix:	Ground Wate	er Lat	poratory ID:	15K0954-01	File ID:	VE3	31043.D	
Sampled:	11/19/15 12:	35 Pre	epared:	11/25/15 12:46	Analyzed:	11/2	8/15 03:20	
Solids:		Pre	eparation:	SW-846 5030B	Dilution:	2		
Initial/Final:	5 mL / 5 mL	_						
Batch:	B136329	Sequence:	S010304	Calibration:	1500328	_	ument:	GCMSVOA5
CAS N	10.	COMPOUND		CO	NC. (µg/L)	MDL	RL	Q
67-64	-1	Acetone				9.7	100	
107-13	3-1	Acrylonitrile				1.2	10	
994-0	5-8	tert-Amyl Methyl	Ether (TAME)			0.18	1.0	
71-43	-2	Benzene				0.16	2.0	
108-8	6-1	Bromobenzene				0.30	2.0	
74-97	-5	Bromochloromet	hane			0.45	2.0	
75-27-	-4	Bromodichlorom	ethane			0.18	1.0	
75-25-	-2	Bromoform				0.42	2.0	
74-83-	-9	Bromomethane				1.9	4.0	
78-93-	-3	2-Butanone (ME	K)			4.7	40	
75-65-	-0	tert-Butyl Alcoho	I (TBA)			4.3	40	
104-5	1-8	n-Butylbenzene				0.20	2.0	
135-98	8-8	sec-Butylbenzen	e			0.22	2.0	
98-0 6-	-6	tert-Butylbenzen	е		3.8	0.22	2.0	
637-92	2-3	tert-Butyl Ethyl E	ther (TBEE)			0.15	1.0	
75-15-	-0	Carbon Disulfide				2.0	8.0	
56-23-	-5	Carbon Tetrachle	oride			0.24	10	
108-90	0-7	Chlorobenzene				0.32	2.0	
124-48	8-1	Chlorodibromom	ethane			0.20	1.0	
75-00-	-3	Chloroethane				0.56	4.0	
67-66-	-3	Chloroform				0.44	4.0	
74-87-	-3	Chloromethane				0.65	4.0	
95-49-	-8	2-Chlorotoluene				0.24	2.0	
106-43	3-4	4-Chlorotoluene				0.26	2.0	
96-12-	-8	1,2-Dibromo-3-cl	nloropropane (D	BCP)		0.68	10	
106-93	3-4	1,2-Dibromoetha	ne (EDB)			0.18	1.0	
74-95-	-3	Dibromomethane	9			0.32	2.0	
95-50-	-1	1,2-Dichlorobenz	ene			0.20	2.0	
541-73		1,3-Dichlorobenz				0.34	2.0	


MZ14114

I

1.- FORM I ANALYSIS DATA SHEET

130110-MW-06

Laboratory:	Con-Test Ar	nalytical Laborat	огу	Work Order:	15K0954			
Client:	EA Enginee	ring, Science &	Tech	Project:	Freeport, NY	/		
Matrix:	Ground Wat	ter La	aboratory ID:	15K0954-01	File ID:	VE3	31043.D	
Sampled:	11/19/15 12	:35 P	repared:	11/25/15 12:46	Analyzed:	11/2	8/15 03:20	
Solids:			reparation:	SW-846 5030B	Dilution:	2		
Initial/Final: Batch:	5 mL / 5 mL B136329	Sequence:	S010304	Calibration:	1500328	Inetr	ument:	GCMSVOA5
CASI					NC. (μg/L)	MDL	RL	Q
106-4	46-7	1,4-Dichlorobe				0.30	2.0	
110-5		trans-1,4-Dichle				0.34	4.0	
75-7 ⁻			omethane (Freon	12)		0.36	4.0	
75-34		1,1-Dichloroeth		1 12)		0.32	2.0	
107-0		1,2-Dichloroeth				0.39	2.0	
75-35		1,1-Dichloroeth				0.42	2.0	
156-5		cis-1,2-Dichloro	-			0.29	2.0	
156-6	60-5	trans-1,2-Dichle	-			0.30	2.0	
78-87	7-5	1,2-Dichloropro	-			0.26	2.0	
142-2	28-9	1,3-Dichloropro	pane			0.22	1.0	
594-2	20-7	2,2-Dichloropro	pane			0.32	2.0	¥-05
563-5	58-6	1,1-Dichloropro	pene			0.26	4.0	
1006	61-01-5	cis-1,3-Dichlor	opropene			0.12	1.0	
1006	51-02-6	trans-1,3-Dichl	oropropene			0.22	1.0	
60-29	9-7	Diethyl Ether				0.44	4.0	
108-2	20-3	Diisopropyl Eth	er (DIPE)			0.36	1.0	
123-9	91-1	1,4-Dioxane				53	100	
100-	41-4	Ethylbenzene				0.26	2.0	
87-68	8-3	Hexachlorobut	adiene			0.34	1.0	
591-7	78-6	2-Hexanone (M	IBK)			3.0	20	
98-82	2-8	Isopropylbenze	ene (Cumene)		2.2	0.24	2.0	
99-87	7-6	p-Isopropyltolu	ene (p-Cymene)			0.25	2.0	
1634	-04-4	Methyl tert-But	yl Ether (MTBE)			0.18	2.0	
75-09	9-2	Methylene Chl	oride			6.4	10	
108-		4-Methyl-2-per	itanone (MIBK)			2.9	20	
91-20	0-3	Naphthalene				0.24	4.0	
103-0		n-Propylbenze	ne			0.22	2.0	
100-4		Styrene				0.30	2.0	
630-2	20-6	1,1,1,2-Tetrach	nloroethane			0.24	2.0	

۱

1 - FORM I ANALYSIS DATA SHEET

130110-MW-06

Laboratory:	Con-Test A				15K0954			
Client:	EA Enginee	ering, Science	& Tech	Project:	Freeport, NY	/		
Matrix:	Ground Wa	ater	Laboratory ID:	15K0954-01	File ID:	VE33	31043.D	
Sampled:	11/19/15 12	2:35	Prepared:	11/25/15 12:46	Analyzed:	11/28	8/15 03:20	i -
Solids:			Preparation:	SW-846 5030B	Dilution:	2		
Initial/Final:	5 mL / 5 ml							
Batch:	B136329	Sequenc	ce: S01030	04 Calibration:	1500328	Instru	ment:	GCMSVOA5
CAS N	10.	COMPOUND)	CO	NC. (µg/L)	MDL	RL	Q
79-34	-5	1,1,2,2-Tetra	chloroethane			0.26	1.0	
127-1	8-4	Tetrachloroe	thylene			0.34	2.0	
109-9	9-9	Tetrahydrofu	ran			2.1	20	
108-8	8-3	Toluene				0.20	2.0	
87-61	-6	1,2,3-Trichlo	robenzene			0.28	10	
120-8	32-1	1,2,4-Trichlo	robenzene			0.38	2.0	
108-7	/0-3	1,3,5-Trichlo	robenzene			0.34	2.0	
71-55	5-6	1,1,1-Trichlo	roethane			0.19	2.0	
79-00)-5	1,1,2-Trichlo	roethane			0.23	2.0	
79-01	-6	Trichloroethy	lene			0.40	2.0	
75-69)-4	Trichlorofluo	romethane (Freor	n 11)		0.29	4.0	
96-18	3-4	1,2,3-Trichlo	ropropane			0.38	4.0	
76-13	3-1	1,1,2-Trichlo	ro-1,2,2-trifluoroe	thane (Freon 1		0.28	2.0	
95-63	3-6	1,2,4-Trimeth	nylbenzene			0.36	2.0	
108-6	57-8	1,3,5-Trimetł	nylbenzene			0.20	2.0	
75-01	-4	Vinyl Chlorid	e			0.27	4.0	
10838	83/106423	m+p Xylene				0.50	4.0	
95-47	/-6	o-Xylene				0.26	2.0	

89

l

MZIYIIG

1 - FORM I ANALYSIS DATA SHEET

130110-MW-05R

Client: Matrix:	EA Enginee							
Matrix		ring, Science &	G Tech	Project:	Freeport, NY			
INICITIA.	Ground Wat	er	Laboratory ID:	15K0954-02	File ID:	VE	331044.D	
Sampled:	11/19/15 12	:55	Prepared:	11/25/15 12:46	Analyzed:	11/2	28/15 03:46	
Solids:			Preparation:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL							
Batch:	B136329	Sequence		Calibration:	1500328	Insti	rument:	GCMSVOA5
CAS.I	NO.	COMPOUND		COI	NC. (µg/L)	MDL	RL	Q
67-64	l-1	Acetone				4.9	50	
107-1	3-1	Acrylonitrile				0.58	5.0	
994-0)5-8	tert-Amyl Met	hyl Ether (TAME)			0.091	0.50	
71-43	3-2	Benzene				0.079	1.0	
108-8	86-1	Bromobenzen	e			0.15	1.0	
74-97	-5	Bromochloror	nethane			0.22	1.0	
75-27	/-4	Bromodichlor	omethane			0.088	0.50	
75-25	5-2	Bromoform				0.21	1.0	
74-83	3-9	Bromomethar	ne			0.94	2.0	
78-93	8-3	2-Butanone (M	MEK)			2.4	20	
75-65	5-0	tert-Butyl Alco	ohol (TBA)			2.2	20	
104-5	51-8	n-Butylbenzei	ne			0.10	1.0	
135-9	8-8	sec-Butylbenz	zene			0.11	1.0	
98-06	5-6	tert-Butylbenz	ene			0.11	1.0	
637-9	2-3	tert-Butyl Ethy	/I Ether (TBEE)			0.075	0.50	
75-15	5-0	Carbon Disulf	ide			1.0	4.0	
56-23	J-5	Carbon Tetrae	chloride			0.12	5.0	
108-9	0-7	Chlorobenzer	ne			0.16	1.0	
124-4	8-1	Chlorodibrom	omethane			0.10	0.50	
75-00)-3	Chloroethane				0.28	2.0	
67-66	5-3	Chloroform				0.22	2.0	
74-87	'-3	Chloromethar	ne			0.32	2.0	
95-49	-8	2-Chlorotolue	ne			0.12	1.0	
106-4	3-4	4-Chlorotolue	ne			0.13	1.0	
96-12	2-8	1,2-Dibromo-3	3-chloropropane (D	BCP)		0.34	5.0	
106-9	3-4	1,2-Dibromoe	thane (EDB)			0.089	0.50	
74-95	i-3	Dibromometh	ane			0.16	1.0	
95-50)-1	1,2-Dichlorob	enzene			0.10	1.0	
541-7	/3-1	1,3-Dichlorob	enzene			0.17	1.0	

nw 214/1p

2

130110-MW-05R

Laboratory:	Con-Test Analytical Laboratory EA Engineering, Science & Tech		Wo	ork Order:	15K09	54						
Client:	EA Enginee	ring, Science	& Tech		Pro	oject:	Freep	ort, NY				
Matrix:	Ground Wa	ter	Laboratory	ID:	15K0954-02		File ID):	VE	331044.D		
Sampled:	11/19/15 12	:55	Prepared:		11/25/15 12:	46	Analyz	zed:	11/2	28/15 03:46		
Solids:			Preparation	n:	SW-846 503	0B	Dilutio	n:	1			
Initial/Final:	5 mL / 5 mL											
Batch:	B136329	Sequen	ce: S	010304	Calit	pration;	15003	28	Inst	rument:	GCMSVOA5	
CAS N	0.	COMPOUND)			CON	C. (μg/L)		MDL	RL	Q	-
106-40	6-7	1,4-Dichlorol	benzene						0.15	1.0		
110-5	7-6	trans-1,4-Dic	hloro-2-bute	ene					0.17	2.0		
75-71-	-8	Dichlorodiflu	oromethane	(Freon	12)				0.18	2.0		
75-34-	-3	1,1-Dichloro	ethane						0.16	1.0		
107-00	6-2	1,2-Dichloro	ethane						0.19	1.0		
75-35-	-4	1,1-Dichloro	ethylene						0.21	1.0		
156-59	9-2	cis-1,2-Dichl	oroethylene						0.15	1.0		
156-60	0-5	trans-1,2-Dic	chloroethyle	ne					0.15	1.0		
78-87-	-5	1,2-Dichloro	propane						0.13	1.0		
142-28	8-9	1,3-Dichloro	propane						0.11	0.50		
594-20	0-7	2,2-Dichloro	propane						0.16	1.0	V-05	
563-58	8-6	1,1-Dichloro	propene						0.13	2.0		
10061	-01-5	cis-1,3-Dichl	oropropene						0.062	0.50		
10061	-02-6	trans-1,3-Dic	hloroproper:	ne					0.11	0.50		
60-29-	-7	Diethyl Ether	r						0.22	2.0		
108-20	0-3	Diisopropyl E	Ether (DIPE))					0.18	0.50		
123-91	1-1	1,4-Dioxane							26	50		
100-4	1-4	Ethylbenzen	e						0.13	1.0		
87-68-	-3	Hexachlorob	utadiene						0.17	0.50		
591-78	8-6	2-Hexanone	(MBK)						1.5	10		
98-82-	-8	Isopropylber	zene (Cum	ene)					0.12	1.0		
99-87-	-6	p-Isopropylto	oluene (p-Cy	/mene)					0.12	1.0		
1634-0	04-4	Methyl tert-B	utyl Ether (N	MTBE)			1.4		0.090	1.0		
75-09-	-2	Methylene C	hloride						3.2	5.0		
108-10	0-1	4-Methyl-2-p	entanone (N	MIBK)					1.5	10		
91-20-	-3	Naphthalene	•						0.12	2.0		
103-6	5-1	n-Propylben:	zene						0.11	1.0		
100-42	2-5	Styrene							0.15	1.0		
630-20	0-6	1,1,1,2-Tetra	achloroethar	ne					0.12	1.0		

m zlylle

130110-MW-05R

Laboratory:	Con-Test A	Con-Test Analytical Laboratory				ork Order:	15K0954			
Client:	EA Engine	ering, Scier	nce & Tech	ı. -	Pro	oject:	Freeport, N	(
Matrix:	Ground Wa	ater	Labor	atory ID:	15K0954-02		File ID:	VE331044.D		
Sampled:	11/19/15 1:	2:55	Prepa	ared:	11/25/15 12:46		Analyzed:	11/28	8/15 03:46	
Solids:			Ргера	ration:	SW-846 503	0B	Dilution:	1		
Initial/Final:	5 mL / 5 ml			~~ (~~ ~			4 500000			00000000
Batch:	B136329		lence:	S010304	Calib	pration:	1500328		ument:	GCMSVOA5
CAS NO. COMPOUND				CONC	С. (µg/L)	MDL	RL	Q		
79-34	4-5	1,1,2,2-Te	etrachloro	ethane				0.13	0.50	
127-1	18-4	Tetrachlo	roethylen	9				0.17	1.0	
109-9	99-9	Tetrahydr	rofuran					1.1	10	
108-8	88-3	Toluene						0.10	1.0	
87-61	1-6	1,2,3-Tric	hlorobenz	ene				0.14	5.0	
120-8	82-1	1,2,4-Tric	hlorobenz	ene				0.19	1.0	
108-7	70-3	1,3,5-Tric	hlorobenz	ene				0.17	1.0	
71-55	5-6	1,1,1 -Tri c	hloroetha	ne				0.094	1.0	
79-00	0-5	1,1,2-Tric	hloroetha	ne				0.12	1.0	
79-01	1-6	Trichloroe	ethylene					0.20	1.0	
75-69	9-4	Trichlorof	luorometh	ane (Freon	11)			0.15	2.0	
96-18	8-4	1,2,3-Tric	hloroprop:	ane				0.19	2.0	
76-13	3-1	1,1,2-Tric	hloro-1,2,	2-trifluoroeth	ane (Freon 1 ⁻			0.14	1.0	
95-63	3-6	1,2,4-Trin	nethylben	zene			1.1	0.18	1.0	
108-6	6 7-8	1,3,5-T ri n	nethylben	zene				0.10	1.0	
75-01	1-4	Vinyl Chlo	oride					0.13	2.0	
1083	83/106423	m+p Xyle	ne					0.25	2.0	
95-47	7-6	o-Xylene						0.13	1.0	

101

130110-MW-04

Laboratory:	Con-Test Ar	alytical Laborator	ý	Work Order:	15K0954			
Client:	EA Enginee	ring, Science & Te	ch	Project:	Freeport, N	(
Matrix:	Ground Wat	er Lab	oratory ID:	15K0954-03	File ID:	VE33	31045.D	
Sampled:	11/19/15 13:	55 Pre	pared:	11/25/15 12:46	Analyzed:	11/28	8/15 04:13	
Solids:		Pre	paration:	SW-846 5030B	Dilution:	1		
Initial/Final: Batch:	5 mL / 5 mL B136329	Sequence	S010304	Calibration:	1500328	Inclu	mont	GCMSVOA5
CAS N		Sequence:	3010304		С. (µg/L)	MDL	iment:	Q
					or (h84r)		_	
67-64-		Acetone				4.9	50	
107-13 994-0		Acrylonitrile				0.58	5.0	
71-43-		tert-Amyl Methyl I	Ether (TAME)			0.091	0.50	
108-86		Benzene Bromobenzene				0.079 0.15	1.0 1.0	
74-97-		Bromochlorometh	ane			0.15	1.0	
74-97-		Bromodichlorome				0.22	0.50	
75-25-		Bromoform				0.000	1.0	
76 28		Bromomethane				0.94	2.0	
78-93-		2-Butanone (MEk	0			2.4	20	
75-65-		tert-Butyl Alcohol				2.2	20	
104-51		n-Butylbenzene				0.10	1.0	
135-98		sec-Butylbenzene	÷			0.11	1.0	
98-06-		tert-Butylbenzene		- 10		0.11	1.0	
637-92	2-3	tert-Butyl Ethyl Et	her (TBEE)			0.075	0.50	
75-15-	-0	Carbon Disulfide				1.0	4.0	
56-23-	-5	Carbon Tetrachlo	ride			0.12	5.0	
108-90	0-7	Chlorobenzene				0.16	1.0	
124-48	8-1	Chlorodibromome	ethane			0.10	0.50	
75-00-	-3	Chloroethane				0.28	2.0	
67-66-	-3	Chloroform				0.22	2.0	
74-87-	-3	Chloromethane				0.32	2.0	
95-49-	-8	2-Chlorotoluene				0.12	1.0	
106-43	3-4	4-Chlorotoluene				0.13	1.0	
96-12-	-8	1,2-Dibromo-3-ch	loropropane ([DBCP)		0.34	5.0	
106-93	3-4	1,2-Dibromoethar	ne (EDB)			0.089	0.50	
74-95-	-3	Dibromomethane				0.16	1.0	
95-50-	-1	1,2-Dichlorobenz	ene			0.10	1.0	
541-73	3-1	1,3-Dichlorobenze	ene			0.17	1.0	

NW 214/14

130110-MW-04

Laboratory:		alytical Laborator		Work Order:				
Client:	EA Engineer	ing, Science & Te	ech	Project:	Freeport, N	IY		
Matrix:	Ground Wate	er Lab	oratory ID:	15K0954-03	File ID:	VE33	1045.D	
Sampled:	11/19/15 13:	55 Pre	pared:	11/25/15 12:46	Analyzed:	11/28	3/15 04:13	
Solids:		Pre	paration:	SW-846 5030B	Dilution:	1		
Initial/Final: Batch:	5 mL / 5 mL B136329	Sequence:	S01030	04 Calibration:	1500328	Instru	ment:	GCMSVOA
CAS N		COMPOUND			NC. (µg/L)	MDL	RL	Q
106-46	3-7	1,4-Dichlorobenz	ene			0.15	1.0	
110-57		trans-1,4-Dichloro				0.17	2.0	
75-71-		Dichlorodifluorom		in 12)		0.18	2.0	
75-34-		1,1-Dichloroethar		···-,		0.16	1.0	
107-06		1,2-Dichloroethar				0.19	1.0	
75-35-		1,1-Dichloroethyl				0.21	1.0	
156-59) -2	cis-1,2-Dichloroe	thylene			0.15	1.0	
156-60)-5	trans-1,2-Dichloro	oethylene			0.15	1.0	
78-87-	-5	1,2-Dichloropropa	ane			0.13	1.0	
142-28	3- 9	1,3-Dichloropropa	ane			0.11	0.50	
594 -2 0)-7	2,2-Dichloropropa	ane			0.16	1.0	¥ 05
563-58	3-6	1,1-Dichloroprope	ene			0.13	2.0	
10061	-01-5	cis-1,3-Dichlorop	ropene			0.062	0.50	
10061	-02-6	trans-1,3-Dichlor	opropene			0.11	0.50	
60-29-	.7	Diethyl Ether				0.22	2.0	
108-20)-3	Diisopropyl Ether	(DIPE)			0.18	0.50	
123-91	1-1	1,4-Dioxane				26	50	
100-41	1-4	Ethylbenzene				0.13	1.0	
87-68-	-3	Hexachlorobutad	iene			0.17	0.50	
591-78	3-6	2-Hexanone (MB	K)			1.5	10	
98-82-	-8	Isopropylbenzene	e (Cumene)			0.12	1.0	
99-87-	-6	p-Isopropyltoluen	ne (p-Cymene)		0.12	1.0	
1634-0	04-4	Methyl tert-Butyl	Ether (MTBE)		0.090	1.0	
75-09-	-2	Methylene Chlori	de			3.2	5.0	
108-10		4-Methyl-2-penta	none (MIBK)			1.5	10	
91-20-		Naphthalene				0.12	2.0	
103-65	5-1	n-Propylbenzene	•			0.11	1.0	
100-42	2-5	Styrene				0.15	1.0	

130110-MW-04

Laboratory: Client: Matrix: Sampled:	EA Engine Ground Wa				rk Order: nject: 46	15K0954 Freeport, NY File ID: VE331045.D Analyzed: 11/28/15 04:1			
Solids: Initial/Final:	5 mL / 5 m	L	·	SW-846 503		Dilution:	1		CONDUCAT
Batch:	B136329	Sequenc COMPOUND	e: S01030	4 Calib	oration: CONC	1500328 . (µg/L)	MDL	ment: RL	GCMSVOA5
79-34 127-1 109-9 108-8 87-61 120-8 108-7 71-55 79-00 79-01 75-69 96-18	18-4 99-9 38-3 1-6 32-1 70-3 5-6 0-5 1-6 9-4	1,1,2,2-Tetrad Tetrachloroet Tetrahydrofur Toluene 1,2,3-Trichlor 1,2,4-Trichlor 1,1,1-Trichlor 1,1,2-Trichlor Trichloroethy Trichlorofluor 1,2,3-Trichlor	nylene an obenzene obenzene oethane oethane ene omethane (Freon	11)			0.13 0.17 1.1 0.10 0.14 0.19 0.17 0.094 0.12 0.20 0.15 0.19	0.50 1.0 10 5.0 1.0 1.0 1.0 1.0 2.0 2.0	
76-13 95-63 108-6 75-01 1083 95-47	3-6 37-8 1-4 83/106423	1,1,2-Trichlor 1,2,4-Trimeth 1,3,5-Trimeth Vinyl Chloride m+p Xylene o-Xylene	ylbenzene	thane (Freon 1			0.14 0.18 0.10 0.13 0.25 0.13	1.0 1.0 2.0 2.0 1.0	

130110-MW-10D

Laboratory:	Con-Test A	nalytical Laborato	гу	Work Order:	15K0954			
Client:	EA Enginee	ering, Science & T	ech	Project:	Freeport, NY	/		
Matrix:	Ground Wa	ter La	boratory ID:	15K0954-04	File ID:	VE3	31046.D	
Sampled:	11/19/15 13	:57 Pr	epared:	11/25/15 12:46	Analyzed:	11/2	8/15 04:39	
Solids:			eparation:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL		0010204	O a libration a	1500200	lu e tu		COMEVIOAE
Batch:	B136329	Sequence:	S010304		1500328		ument:	GCMSVOA5
CASI	NO.	COMPOUND		CON	С.(µg/L)	MDL	RL	Q
67-64	4-1	Acetone				4.9	50	
107-1	13-1	Acrylonitrile				0.58	5.0	
994-0)5-8	tert-Amyl Methyl	Ether (TAME)			0.091	0.50	
71-43	3-2	Benzene				0.079	1.0	
108-8	36-1	Bromobenzene				0.15	1.0	
74-97	7-5	Bromochlorome	thane			0.22	1.0	
75-27	7-4	Bromodichlorom	ethane			0.088	0.50	
75-25	5-2	Bromoform				0.21	1.0	
74-83	3-9	Bromomethane				0.94	2.0	
78-93	3-3	2-Butanone (ME	K)			2.4	20	
75-65	5-0	tert-Butyl Alcoho	ol (TBA)			2.2	20	
104-5	51-8	n-Butylbenzene				0.10	1.0	
135-9	98-8	sec-Butylbenzer	ne			0.11	1.0	
98-06	6-6	tert-Butylbenzer	ie			0.11	1.0	
637-9	92-3	tert-Butyl Ethyl B	Ether (TBEE)			0.075	0.50	
75-15	5-0	Carbon Disulfide	•			1.0	4.0	
56-23	3-5	Carbon Tetrachl	oride			0.12	5.0	
108-9	90-7	Chlorobenzene				0.16	1.0	
124-4	48-1	Chlorodibromon	nethane			0.10	0.50	
75-00)-3	Chloroethane				0.28	2.0	
67-66	3-3	Chloroform				0.22	2.0	
74-87	7-3	Chloromethane				0.32	2.0	
95-49	9-8	2-Chlorotoluene				0.12	1.0	
106-4	13-4	4-Chlorotoluene				0.13	1.0	
96-12	2-8	1,2-Dibromo-3-c	hloropropane (E	DBCP)		0.34	5.0	
106-9		1,2-Dibromoetha	ane (EDB)			0.089	0.50	
74-95		Dibromomethan	. ,			0.16	1.0	
95-50		1,2-Dichloroben				0.10	1.0	
541-7		1,3-Dichloroben				0.17	1.0	
0.17						2.17		

119

4

NW 2/4/16

130110-MW-10D

Client:EA Engineering, Science & TechProject:Freeport, NYMatrix:Ground WaterLaboratory ID:15K0954-04File ID:VE33104Sampled:11/19/15 13:57Prepared:11/25/15 12:46Analyzed:11/28/15Solids:Preparation:SW-846 5030BDilution:1Initial/Final:5 mL / 5 mLEntryEntryEntry	04:39
Sampled: 11/19/15 13:57 Prepared: 11/25/15 12:46 Analyzed: 11/28/15 Solids: Preparation: SW-846 5030B Dilution: 1 Initial/Final: 5 mL / 5 mL 5 mL 5 mL 5 mL	04:39
Solids: Preparation: SW-846 5030B Dilution: 1 Initial/Final: 5 mL / 5 mL	
Initial/Final: 5 mL / 5 mL	nt: GCMSVOA5
	nt: GCMSVOA5
	nt: GCMSVOA5
Batch: B136329 Sequence: S010304 Calibration: 1500328 Instrume	
CAS NO. COMPOUND CONC. (µg/L) MDL	RL Q
106-46-7 1,4-Dichlorobenzene 0.15	1.0
110-57-6 trans-1,4-Dichloro-2-butene 0.17	2.0
75-71-8Dichlorodifluoromethane (Freon 12)0.18	2.0
75-34-3 1,1-Dichloroethane 0.16	1.0
107-06-2 1,2-Dichloroethane 0.19	1.0
75-35-4 1,1-Dichloroethylene 0.21	1.0
156-59-2 cis-1,2-Dichloroethylene 0.15	1.0
156-60-5 trans-1,2-Dichloroethylene 0.15	1.0
78-87-5 1,2-Dichloropropane 0.13	1.0
142-28-9 1,3-Dichloropropane 0.11	0.50
594-20-7 2,2-Dichloropropane 0.16	1.0 ¥-05
563-58-6 1,1-Dichloropropene 0.13	2.0
10061-01-5 cis-1,3-Dichloropropene 0.062	0.50
10061-02-6 trans-1,3-Dichloropropene 0.11	0.50
60-29-7 Diethyl Ether 0.22	2.0
108-20-3Diisopropyl Ether (DIPE)0.18	0.50
123-91-1 1,4-Dioxane 26	50
100-41-4 Ethylbenzene 0.13	1.0
87-68-3 Hexachlorobutadiene 0.17	0.50
591-78-6 2-Hexanone (MBK) 1.5	10
98-82-8 Isopropylbenzene (Cumene) 0.12	1.0
99-87-6 p-Isopropyltoluene (p-Cymene) 0.12	1.0
1634-04-4 Methyl tert-Butyl Ether (MTBE) 0.090	1.0
75-09-2 Methylene Chloride 3.2	5.0
108-10-1 4-Methyl-2-pentanone (MIBK) 1.5	10
91-20-3 Naphthalene 0.12	2.0
103-65-1 n-Propylbenzene 0.11	1.0
100-42-5 Styrene 0.15	1.0
630-20-6 1,1,1,2-Tetrachloroethane 0.12	1.0

130110-MW-10D

Laboratory:	Con-Test A	Con-Test Analytical Laboratory EA Engineering, Science & Tech			Work O	rder:	15K0954			
Client:	EA Engine	ering, Science	e & Tech		Project:		Freeport, N	(
Matrix:	Ground Wa	iter	Laborator	ry ID: 15	K0954-04		File ID:	VE33	31046.D	
Sampled:	11/19/15 13	3:57	Prepared	: 11	/25/15 12:46		Analyzed: 11/28/15 04:			
Solids:			Preparati	on: SV	V-846 5030B		Dilution:	1		
Initial/Final:	5 mL / 5 ml	-								
Batch:	B136329	Sequer	nce:	S010304	Calibratio	n:	1500328	Instru	iment:	GCMSVOA5
CAS	10.	COMPOUN	D			CONC.	(µg/L)	MDL	RL	Q
79-34	5	1,1,2,2-Tetr	achloroetha	ane				0.13	0.50	
127-1	8-4	Tetrachloro	ethylene					0.17	1.0	
109-9	9-9	Tetrahydrof	uran					1.1	10	
108-8	8-3	Toluene						0.10	1.0	
87-61	-6	1,2,3-Trichle	orobenzene	•				0.14	5.0	
120-8	2-1	1,2,4-Trichle	orobenzene	•				0.19	1.0	
108-7	'0-3	1,3,5-Trichle	orobenzene	9				0.17	1.0	
71-55	-6	1,1,1-Trichle	oroethane					0.094	1.0	
79-00	-5	1,1,2-Trichle	oroethane					0.12	1.0	
79-01	-6	Trichloroeth	ylene					0.20	1.0	
75-69	-4	Trichloroflu	promethane	e (Freon 11)				0.15	2.0	
96-18	-4	1,2,3-Trichle	oropropane	,				0.19	2.0	
76-13	-1	1,1,2-Trichle	o ro-1,2,2- tri	ifluoroethane	(Freon 1			0.14	1.0	
95-63	-6	1,2,4-T ri me	thylbenzen	e				0.18	1.0	
108-6	57-8	1,3,5-Trime	thylbenzen	е				0.10	1.0	
75-01	-4	Vinyl Chlori	de					0.13	2.0	
10838	33/106423	m+p Xylene)					0.25	2.0	
95-47	-6	o-Xylene						0.13	1.0	<i></i>

130110-MW-10M

Laboratory:	Con-Test An	alytical Labo	Con-Test Analytical Laboratory EA Engineering, Science & Tech			Order:	15K0954			
Client:	EA Engineer	ing, Science	& Tech		Projec	:t:	Freeport, NY	/		
Matrix:	Ground Wate	ər	Laborato	ry ID:	15K0954-05		File ID:	VE3	31047.D	
Sampled:	11/19/15 14:	55	Prepared	1:	11/25/15 12:46		Analyzed:	11/2	8/15 05:06	
Solids:			Preparati	ion:	SW-846 5030B		Dilution:	1		
Initial/Final:	5 mL / 5 mL	Foguer		5010204	Calibrat	ianii	1500229	Inote	mont	COMEVOAE
Batch:	B136329	Sequer		S010304	Calibrat		1500328		ument:	GCMSVOA5
CAS NO	0.	COMPOUN				CONC	С. (µg/L)	MDL	RL	Q
6 7- 64-	1	Acetone						4.9	50	
107-13	3-1	Acrylonitrile						0.58	5.0	
994-05	5-8	tert-Amyl Me	ethyl Ethe <mark>r</mark>	(TAME)				0.091	0.50	
71-43-2	2	Benzene						0.079	1.0	
108-86	5-1	Bromobenze	ene					0.15	1.0	
74-97-	5	Bromochlore	omethane					0.22	1.0	
75-27-4	4	Bromodichle	oromethane	е				0.088	0.50	
75-25-2	2	Bromoform						0.21	1.0	
74-83-9	9	Bromometha	ane					0.94	2.0	
78-93-3	3	2-Butanone	(MEK)					2.4	20	
75-65-0	0	tert-Butyl Ale	cohol (TBA	\ }				2.2	20	
104-51	-8	n-Butylbenz	ene					0.10	1.0	
135-98	-8	sec-Butylbe	nzene					0.11	1.0	
98-06-0	6	tert-Butylbei	nzene					0.11	1.0	
637-92	2-3	tert-Butyl Et	hyl Ether (1	TBEE)				0.075	0.50	
75-15-0	0	Carbon Disu	ılfide					1.0	4.0	
56-23-5	5	Carbon Tetr	achloride					0.12	5.0	
108-90	-7	Chlorobenze	ene					0.16	1.0	
124-48	-1	Chlorodibro	momethan	е				0.10	0.50	
75-00-3	3	Chloroethan	e					0.28	2.0	
67-66-3	3	Chloroform						0.22	2.0	
74-87-3	3	Chlorometha	ane				ИJ	0.32	2.0	MS-09
95-49-8	8	2-Chlorotolu	iene					0.12	1.0	
106-43		4-Chlorotolu						0.13	1.0	
96-12-8	8	1,2-Dibromo	-3-chlorop	ropane (D	BCP)			0.34	5.0	
106-93		1,2-Dibromo	-					0.089	0.50	
74-95-3		Dibromome		-				0.16	1.0	
95-50-1		1,2-Dichloro						0.10	1.0	
541-73		1,3-Dichloro						0.17	1.0	

No 2/4/14

130110-MW-10M

Laboratory:	Con-Test An	alytical Laborator	у	Work Orde	r: 15K0954			
Client:	EA Engineer	ing, Science & Te	ech	Project:	Freeport,	NY		
Matrix:	Ground Wate	er Lab	oratory ID:	15K0954-05	File ID:	VE3	31047.D	
Sampled:	11/19/15 14:	55 Pre	pared:	11/25/15 12:46	Analyzed:	11/2	8/15 05:06	
Solids: Initial/Final:	5 mL / 5 mL	Pre	paration:	SW-846 5030B	Dilution:	1		
Batch:	B136329	Sequence:	S010304	4 Calibration:	1500328	Instru	ument:	GCMSVOA5
CAS	NO	COMPOUND		C	ONC. (µg/L)	MDL	RL	Q
106-4	6-7	1,4-Dichlorobenz	епе			0.15	1.0	
110-5	57-6	trans-1,4-Dichlor	o-2-butene			0.17	2.0	
75-71	-8	Dichlorodifluoron	nethane (Freor	n 12)	U L	0.18	2.0	MS-09
75-34	-3	1,1-Dichloroetha	ne			0.16	1.0	
107-0)6-2	1,2-Dichloroetha	ne			0.19	1.0	
75-35	5-4	1,1-Dichloroethyl	ene			0.21	1.0	
156-5	59-2	cis-1,2-Dichloroe	thylene			0.15	1.0	
156-6	60-5	trans-1,2-Dichlor	oethylene			0.15	1.0	
78-87	-5	1,2-Dichloroprop	ane			0.13	1.0	
142-2	28-9	1,3-Dichloroprop	ane			0.11	0.50	
594-2	20-7	2,2-Dichloroprop	ane		UJ	0.16	1.0	V-05
563-5	i8-6	1,1-Dichloroprop	ene			0.13	2.0	
10061	1-01-5	cis-1,3-Dichlorop	горепе			0.062	0.50	
10061	1-02-6	trans-1,3-Dichlor	opropene			0.11	0.50	
60-29)-7	Diethyl Ether				0.22	2.0	
108-2	20-3	Diisopropyl Ether	(DIPE)			0.18	0.50	
123-9)1-1	1,4-Dioxane				26	50	
100-4	1-4	Ethylbenzene				0.13	1.0	
87-68	3-3	Hexachlorobutad	iene			0.17	0.50	
591-7	/8-6	2-Hexanone (MB	К)			1.5	10	
98-82	2-8	Isopropylbenzen	e (Cumene)			0.12	1.0	
99-87	-6	p-Isopropyltoluer	ne (p-Cymene)			0.12	1.0	
1634-	-04-4	Methyl tert-Butyl	Ether (MTBE)			0.090	1.0	
75-09)-2	Methylene Chlori	de			3.2	5.0	
108-1	0-1	4-Methyl-2-penta	none (MIBK)			1.5	10	
91-20)-3	Naphthalene				0.12	2.0	
103-6	5-1	n-Propylbenzene	2			0.11	1.0	
100-4	2-5	Styrene				0.15	1.0	
630-2	20-6	1,1,1,2-Tetrachic	roethane			0.12	1.0	

130110-MW-10M

Laboratory: Client: Matrix: Sampled: Solids: Initial/Final: Batch:		4:55	& Tech Laboratory ID: Prepared: Preparation:	Proje 15K0954-05 11/25/15 12:46 SW-846 50306	3 3	15K0954 Freeport, NY File ID: Analyzed: Dilution: 1500328	Y VE331047.D 11/28/15 05:06 1 Instrument: GCMSVOA5				
CASIN	10.	COMPOUND)		CONC	С. (µg/L)	MDL	RL	Q		
79-34 127-1 109-9 108-8 87-61 120-8 108-7 71-55 79-00 79-01 75-69 96-18 76-13 95-63 108-6	8-4 9-9 8-3 -6 2-1 0-3 -6 -5 -6 -4 -4 -1	Tetrachloroe Tetrahydrofu Toluene 1,2,3-Trichlo 1,2,4-Trichlo 1,3,5-Trichlo 1,1,1-Trichlo 1,1,2-Trichlo Trichloroethy Trichlorofluo 1,2,3-Trichlo	robenzene robenzene robenzene roethane roethane vlene romethane (Freon ropropane ro-1,2,2-trifluoroet hylbenzene		4	.7	0.13 0.17 1.1 0.10 0.14 0.19 0.17 0.094 0.12 0.20 0.15 0.19 0.14 0.18 0.10	0.50 1.0 10 1.0 5.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 1.0			
75-01 10838 95-47	33/106423	Vinyl Chlorid m+p Xylene o-Xylene	e			ЦЈ	0.13 0.25 0.13	2.0 2.0 1.0			

130110-MW-10S

Laboratory:	Con-Test A	nalytical Labo	pratory	Work Order:	15K0954			
Client:	EA Enginee	ering, Science	& Tech	Project:	Freeport, NY			
Matrix:	Ground Wa	ter	Laboratory ID:	15K0954-06	File ID:	VE3	31048.D	
Sampled:	11/19/15 15	i:40	Prepared:	11/25/15 12:46	Analyzed:	11/2	8/15 05:33	
Solids:			Preparation:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL							
Batch:	B136329	Sequer	nce: S010304	Calibration:	1500328	Instr	ument:	GCMSVOA5
CASI	NO.	COMPOUN	D	CON	IC. (µg/L)	MDL	RL	Q
67-64	1-1	Acetone				4.9	50	
107-1	13-1	Acrylonitrile				0.58	5.0	
994-0)5-8	tert-Amyl Mo	ethyl Ether (TAME)			0.091	0.50	
71-43	3-2	Benzene				0.079	1.0	
108-8	36-1	Bromobenzo	ene			0.15	1.0	
74-97	7-5	Bromochlor	omethane			0.22	1.0	
75-27	7-4	Bromodichle	promethane			0.088	0.50	
75-25	5-2	Bromoform				0.21	1.0	
74-83	3-9	Bromometha	ane			0.94	2.0	
78-93	3-3	2-Butanone	(MEK)			2.4	20	
75-65	5-0	tert-Butyl Al	cohol (TBA)			2.2	20	
104-5	51-8	n-Butylbenz	ene			0.10	1.0	
135-9	98-8	sec-Butylbe	nzene			0.11	1.0	
98-06	6-6	tert-Butylbe	nzene			0.11	1.0	
637-9	92-3	tert-Butyl Et	hyl Ether (TBEE)			0.075	0.50	
75-15	5-0	Carbon Disu	ulfide			1.0	4.0	
56-23	3-5	Carbon Tetr	achloride			0.12	5.0	
108-9	90-7	Chlorobenzo	ene			0.16	1.0	
124-4	18-1	Chlorodibro	momethane			0.10	0.50	
75-00)-3	Chloroethar	ie			0.28	2.0	
67-66	5-3	Chloroform				0.22	2.0	
74-87	7-3	Chlorometh	ane			0.32	2.0	
95-49	9-8	2-Chlorotolu	Jene			0.12	1.0	
106-4	13-4	4-Chlorotolu	Jene			0.13	1.0	
96-12	2-8	1,2-Dibromo	o-3-chloropropane (DBCP)		0.34	5.0	
106-9			pethane (EDB)	-		0.089	0.50	
74-95		Dibromome				0.16	1.0	
95-50		1,2-Dichloro				0.10	1.0	
541-7		1,3-Dichloro				0.17	1.0	

134

6

MIZIAIIP

130110-MW-10S

Client Ex Engineering, Science & Tech Project: Preperd, NY Matrix: Ground Water Laboratory ID: 15K0954-06 File ID: VE331048.D Sampled: 11/19/15 15-40 Preparation: SV-845 5030B Dilution: 1 Batch: B136329 Sequence: S010304 Catibration: 1500328 Instrume. GCMSV05 CAS NO COMPOUND CONC.(upf.) MDL RL Q 106-46-7 1,4-Dichlorozbutenzene 0.15 1.0 1.0 1.0 106-46-7 1,4-Dichlorozbutenzene 0.16 1.0 1.0 1.0 75-73-8 Dichlorodifluoromethane (Freen 12) 0.18 2.0 1.0 75-84-3 1,1-Dichlororethylene 0.13 1.0 1.0 156-59-2 cis-1,2-Dichlororethylene 0.13 1.0 1.0 166-40-5 trans-1,4-Dichlororpopene 0.16 1.0 1.0 176-354 1,2-Dichlororpopene 0.13 2.0 1.0 176-84-7 1,2-Dichlororpopene 0.16 1.0 1.0 1.0	Laboratory:	Con-Test A	nalytical Laborator	y	Work Order:	15K0954			
Sampled: 11/19/15 15-30 Preparation: SVF-345 50308 Dilution: 1 Bitle/Finite: 5ml / 5 mL Bitle/Sine Sequence: S010304 Calibration: 1500328 Instrumer GCMSVOA5 CAS NO COMPOUND CONC. (upL) MDL RL Q 106-46-7 1,4-Dichlorobenzene 0.15 1.0 110-57-1 Tars:1.4-Dichloro-2-butene 0.16 1.0 170-76-2 1,2-Dichloroethylene 0.16 1.0 175-71-8 Dichloroethylene 0.15 1.0 176-75-14 Dichloroethylene 0.15 1.0 176-75-15 Dichloroethylene 0.15 1.0 176-75-14 Dichloroethylene 0.15 1.0 176-75-15 Dichloropropane 0.11 0.50 176-75-14 Dichloropropane 0.13 1.0 176-75-15 1.2-Dichloropropane 0.13 1.0 176-75-75 1.2-Dichloropropane 0.11 0.50 176-75 1.2-Dichloropropane	Client:	EA Enginee	ering, Science & Te	ch	Project:	Freeport, N	IY		
Selds: Preparation: SW-846 5030B Diution: 1 Initia//Final: B136329 Sequence: S010304 Calibration: 1500328 Instrumet: GCMSVOA5 CAS NO. COMPOUND CONC. (gr/L) MDL RL Q 106-46-7 1,4-Dichlorobenzene 0.15 1.0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 <th>Matrix:</th> <th>Ground Wa</th> <th>ter Lab</th> <th>oratory ID:</th> <th>15K0954-06</th> <th>File ID:</th> <th>VE33</th> <th>1048.D</th> <th></th>	Matrix:	Ground Wa	ter Lab	oratory ID:	15K0954-06	File ID:	VE33	1048.D	
Initial/Finit: B 136329 Sequence: S0 1030 Calibration: 1500328 Instrummt GCMSV0A5 CAS NO. COMPOUND CONC. (up/L) MDL RL Q 106-46-7 1,4-Dichlorobenzene 0.15 1.0	Sampled:	11/19/15 15	5:40 Pre	pared:	11/25/15 12:46	Analyzed:	11/28	/15 05:33	
B136329 Sequence: S01030 Calibration: 1500328 Insturmer COMPOAD CAS NO. COMPOUND COMC. (aprl.) MDL RL Q 106-46-7 1,4-Dichlorobenzene 0.15 1.0 110-57-6 trans-1,4-Dichloro-2-butene 0.17 2.0 75-71-8 Dichlorodifluoromethane (Freon 12) 0.18 2.0 75-34.3 1,1-Dichloroethane 0.19 1.0 107-06-2 1,2-Dichloroethylene 0.15 1.0 165-59-2 cis-1,2-Dichloroethylene 0.15 1.0 156-60-5 trans-1,2-Dichloroethylene 0.15 1.0 166-59-2 cis-1,2-Dichlorophylene 0.13 1.0 172-28-1 1.2-Dichlorophylene 0.13 1.0 186-60-5 trans-1,2-Dichlorophylene 0.13 1.0 198-75 1,2-Dichlorophypene 0.16 1.0 .0 10051-01-5 cis-1,3-Dichlorophypene 0.16 1.0 .0 10061-02-6 trans-1,3-Dichlorophypene 0.	Solids:			paration:	SW-846 5030B	Dilution:	1		
CAS NO. COMPOUND CONC. (ug/L) MDL RL Q 106-46-7 1,4-Dichlorobenzene 0.15 1.0 110-57-6 trans-1,4-Dichloro-2-butene 0.17 2.0 75-71-8 Dichlorodifluoromethane (Freon 12) 0.18 2.0 75-34-3 1,1-Dichloroethane 0.16 1.0 107-06-2 1,2-Dichloroethylene 0.21 1.0 75-35-4 1,1-Dichloroethylene 0.15 1.0 156-60-5 trans-1,2-Dichloroethylene 0.15 1.0 166-60-5 trans-1,2-Dichloroethylene 0.15 1.0 78-87-5 1,2-Dichloropropane 0.11 0.50 594-20-7 2,2-Dichloropropane 0.13 1.0 142-28-9 1,3-Dichloropropane 0.13 2.0 10061-01-5 cis-1,3-Dichloropropane 0.16 1.0 V05 563-58-6 1,1-Dichloropropene 0.13 2.0 100 1008-10-5 cis-1,3-Dichloropropene 0.18 0.50 123-91				001000		1500000	1		00101/045
106-46-7 1,4-Dichlorobenzene 0.15 1.0 110-57-6 trans-1,4-Dichloro-2-butene 0.17 2.0 75-71-8 Dichlorodfluoromethane (Freon 12) 0.18 2.0 75-34-3 1,1-Dichloroethane 0.16 1.0 107-06-2 1,2-Dichloroethylene 0.15 1.0 75-35-4 1,1-Dichloroethylene 0.15 1.0 156-59-2 cis-1,2-Dichloroethylene 0.15 1.0 156-60-5 trans-1,2-Dichloroethylene 0.15 1.0 156-60-5 trans-1,2-Dichloroethylene 0.15 1.0 78-87.5 1,2-Dichloropropane 0.11 0.50 594-20-7 2,2-Dichloropropane 0.16 1.0 V45 563-58-6 1,1-Dichloropropene 0.13 2.0 10061-01-5 cis-1,3-Dichloropropene 0.062 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 50 60-29-7 Diethyl Ether (DIPE) 0.18 0.50 123-91-1 1.4-Dioxane 26 50 <				S010304					
110-57-6 trans-1,4-Dichloro-2-butene 0.17 2.0 75-71-8 Dichlorodifluoromethane (Freon 12) 0.18 2.0 75-34-3 1,1-Dichloroethane 0.16 1.0 107-06-2 1,2-Dichloroethylene 0.21 1.0 75-35-4 1,1-Dichloroethylene 0.21 1.0 156-59-2 cis-1,2-Dichloroethylene 0.15 1.0 156-80-5 trans-1,2-Dichloroethylene 0.13 1.0 142-28-9 1,3-Dichloropropane 0.11 0.50 584-56 1,1-Dichloropropane 0.13 2.0 10061-01-5 cis-1,3-Dichloropropane 0.13 0.10 10061-02-60 trans-1,3-Dichloropropene 0.10 0.50 10061-01-5 cis-1,3-Dichloropropene 0.11 0.50 10061-01-5 cis-1,3-Dichloropropene 0.18 0.50 10061-02-60 pisopropyl Ether (DIPE) 0.18 0.50 10061-02-60 pisopropyl Ether (DIPE) 0.18 0.50 123-91-1 1,4-Dioxane 2.6 50 123-91-1 1,4-Dioxane 1.5 1.0<	CAS N	NO.	COMPOUND		CO	NC. (µg/L)	MDL	RL	Q
75-71-8 Dichlorodifluoromethane (Freon 12) 0.18 2.0 75-34-3 1,1-Dichloroethane 0.16 1.0 107-06-2 1,2-Dichloroethylene 0.21 1.0 75-35-4 1,1-Dichloroethylene 0.21 1.0 156-59-2 cis-1,2-Dichloroethylene 0.15 1.0 156-60-5 trans-1,2-Dichloroethylene 0.13 1.0 78-87-5 1,2-Dichloroppane 0.13 1.0 142-28-9 1,3-Dichloroppane 0.13 1.0 583-58-6 1,1-Dichloroppopene 0.13 2.0 10061-01-5 cis-1,3-Dichloroppopene 0.11 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.13 2.0 10061-02-8 trans-1,3-Dichloroppopene 0.11 0.50 10061-02-8 trans-1,3-Dichloroppopene 0.13 0.0 10061-02-8 Disopropyl Ether (DIPE) 0.18 0.50 123-91-1 1,4-Dioxane 0.13 1.0 123-91-1 1,4-Dioxane 0.13 1.0 137-91-5 1.5 1.0 0.99 <td< td=""><td>106-4</td><td>16-7</td><td>1,4-Dichlorobenz</td><td>ene</td><td></td><td></td><td>0.15</td><td>1.0</td><td></td></td<>	106-4	16-7	1,4-Dichlorobenz	ene			0.15	1.0	
7534-3 1,1-Dichloroethane 0.16 1.0 107-06-2 1,2-Dichloroethylene 0.19 1.0 7535-4 1,1-Dichloroethylene 0.15 1.0 156-59-2 cis-1,2-Dichloroethylene 0.15 1.0 156-60-5 trans-1,2-Dichloroethylene 0.13 1.0 142-28-9 1,3-Dichloropropane 0.11 0.50 594-20-7 2,2-Dichloropropane 0.16 1.0 ¥05 563-58-6 1,1-Dichloropropane 0.13 2.0 10061-01-5 cis-1,3-Dichloropropane 0.11 0.50 10061-02-6 trans-1,3-Dichloropropene 0.12 0.0 10061-02-6 trans-1,3-Dichloropropene 0.18 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 1008-20-7 Diethyl Ether (DIPE) 0.18 0.50 108-20-3 Disopropyl Ether (DIPE) 0.18 0.50 102-3 Hexachlorobutadiene 0.17 0.50 103-75-6 2-Hexanone (MBK) 1.5 10 103-88-8 Isopropyltoluene (p-Cymene) 0.12	110-5	57-6	trans-1,4-Dichloro	o-2-butene			0.17	2.0	
107-06-2 1.1-Dichloroethylene 0.19 1.0 75-35-4 1.1-Dichloroethylene 0.21 1.0 156-59-2 cis-1,2-Dichloroethylene 0.15 1.0 156-60-5 trans-1,2-Dichloroethylene 0.13 1.0 78-87-5 1,2-Dichloroppane 0.13 1.0 142-28-9 1,3-Dichloroppane 0.16 1.0 563-58-6 1,1-Dichloroppane 0.13 2.0 10061-01-5 cis-1,3-Dichloroppane 0.062 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.011 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.13 0.0 10061-02-6 trans-1,3-Dichloroppopene 0.18 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.18 0.50 1008-02-3 Diisopropyl Ether (DIPE) 0.18 0.50 123-91-1 1,4-Dioxane 1.0 0.50 123-91-3 Hexachlorobuladiene 0.12 1.0 100-41-4 Ethylbenzene (Cumene) 1.0 0.50 <	75-71	1-8	Dichlorodifluorom	ethane (Freor	12)		0.18	2.0	
75-35-4 1,1-Dichloroethylene 0.21 1.0 155-89-2 cis-1,2-Dichloroethylene 0.15 1.0 155-60-5 trans-1,2-Dichloroethylene 0.13 1.0 78-87-5 1,2-Dichloroppane 0.13 1.0 142-28-9 1,3-Dichloroppane 0.11 0.50 594-20-7 2,2-Dichloroppane 0.13 2.0 563-58-6 1,1-Dichloroppopene 0.062 0.50 10061-01-5 cis-1,3-Dichloroppopene 0.11 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.13 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.13 0.50 10061-02-6 trans-1,3-Dichloroppopene 0.18 0.50 1008-02-3 Diisopropyl Ether (DIPE) 0.18 0.50 123-91-1 1,4-Dioxane 2.6 50 100-41-4 Ethylbenzene (MBK) 1.5 10 100-41-4 Ethyloenzene (Cumene) 0.12 1.0 98-82-8 Isopropylboursene (Cumene) 1.0 0.990 1.0 99-87-6 p-Isopropyltoluene (p-Cymene) 1.0	75-34	1-3	1,1-Dichloroethar	ne			0.16	1.0	
156-59-2 0.15 1.0 156-60-5 trans-1,2-Dichloroethylene 0.15 1.0 78-87-5 1,2-Dichloroppane 0.13 1.0 142-28-9 1,3-Dichloroppane 0.11 0.50 594-20-7 2,2-Dichloroppane 0.16 1.0 V-65 563-58-6 1,1-Dichloroppane 0.13 2.0 10061-01-5 cis-1,3-Dichloroppane 0.062 0.50 10061-01-5 cis-1,3-Dichloroppane 0.11 0.50 0.11 0.50 10061-02-6 trans-1,3-Dichloroppane 0.062 0.50 0.50 10061-02-5 trans-1,3-Dichloropropene 0.11 0.50 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 0.50 10061-02-6 trans-1,3-Dichloropropene 0.12 2.0 0.50 108-20-3 Diisopropyl Ether (DIPE) 0.18 0.50 0.50 123-91-1 1,4-Dioxane 1.0 0.11 0.10 123-91-1 1,4-Dioxane 1.0 1.0	107-0)6-2	1,2-Dichloroethar	ne			0.19	1.0	
156-60-5 trans-1,2-Dichloroethylene 0.15 1.0 78-87-5 1,2-Dichloropropane 0.13 1.0 142-28-9 1,3-Dichloropropane 0.11 0.50 594-20-7 2,2-Dichloropropane 0.13 2.0 563-58-6 1,1-Dichloropropene 0.13 2.0 10061-01-5 cis-1,3-Dichloropropene 0.062 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 10061-02-7 Diethyl Ether 0.22 2.0 108-20-3 Disopropyl Ether (DIPE) 0.18 0.50 123-91-1 1,4-Dioxane 2.6 50 100-41-4 Ethylbenzene 0.13 1.0 108-82-8 Isopropyltoluene (Currene) 0.12 1.0 98-82-8 Isopropyltoluene (p-Cymene) 0.12 1.0 103-87-68 p-Isopropyltoluene (MIBK) 1.5 10	75-35	5-4	1,1-Dichloroethyle	ene			0.21	1.0	
78-87-5 1,2-Dichloropropane 0.13 1.0 142-28-9 1,3-Dichloropropane 0.11 0.50 594-20-7 2,2-Dichloropropane 0.16 1.0 563-58-6 1,1-Dichloropropene 0.13 2.0 10061-01-5 cis-1,3-Dichloropropene 0.062 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 60-29-7 Diethyl Ether 0.22 2.0 108-20-3 Diisoproyl Ether (DIPE) 0.18 0.50 100-41-4 Ethylbenzene 0.13 1.0 100-41-4 Ethylbenzene 0.13 1.0 98-82-8 Isopropylbenzen (Cumene) 0.12 1.0 99-87-6 p-lsopropylbenzen (Cumene) 0.12 1.0 99-87-6 p-lsopropylbenzen (Cumene) 0.22 5.0 1634-04-4 Methyl tert-Bulyl Ether (MTBE) 1.0 0.090 1.0 75-09-2 Methylene Chloride 3.2 5.0 5.0 108-10-11 4-Methyl-2-pentanone (MIBK) 1.5 10 1.0 103-655-1 n-Propylbenzene	156-5	59-2	cis-1,2-Dichloroe	thylene			0.15	1.0	
142-28-9 1,3-Dichloropropane 0.11 0.50 594-20-7 2,2-Dichloropropane 0.16 1.0 V-05 563-58-6 1,1-Dichloropropene 0.13 2.0 10061-01-5 cis-1,3-Dichloropropene 0.062 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 60-29-7 Diethyl Ether 0.22 2.0 108-20-3 Diisopropyl Ether (DIPE) 0.18 0.50 100-41-4 Ethylbenzene 0.13 1.0 100-41-4 Ethylbenzene 0.13 1.0 98-82-8 Isopropylbenzene (Curmene) 0.12 1.0 99-87-6 p-lsopropylbeluene (p-Cyrmene) 0.12 1.0 1634-04-4 Methyl tert-Bulyl Ether (MTBE) 1.0 0.090 1.0 75-09-2 Methylene Chloride 3.2 5.0 10 108-10-1 4-Methyl-2-pentanone (MIBK) 1.5 10 10 91-20-3 Naphthalene 0.12 2.0 10 103-65-1	156-6	30-5	trans-1,2-Dichloro	pethylene			0.15	1.0	
594-20-7 2,2-Dichloropropane 0.16 1.0 ¥05 563-58-6 1,1-Dichloropropene 0.13 2.0 10061-01-5 cis-1,3-Dichloropropene 0.062 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 60-29-7 Diethyl Ether 0.22 2.0 108-20-3 Diisopropyl Ether (DIPE) 0.18 0.50 123-91-1 1,4-Dioxane 26 50 100-41-4 Ethylbenzene 0.13 1.0 87-68-3 Hexachlorobutadiene 0.17 0.50 591-78-6 2-Hexanone (MBK) 1.5 10 98-82-8 Isopropylbenzene (Cumene) 0.12 1.0 99-87-6 p-Isopropylbenzene (Cumene) 0.12 1.0 99-87-6 p-Isopropylbenzene (MIBK) 1.5 10 1634-04-4 Methyl terl-Butyl Ether (MTBE) 1.0 0.090 1.0 108-10-1 4-Methyl-2-pentanone (MIBK) 1.5 10 1.0 103-65-1 n-Propylbenzene 0.11 1.0 1.0	78-87	7-5	1,2-Dichloropropa	ane			0.13	1.0	
563-58-6 1,1-Dichloropropene 0.13 2.0 10061-01-5 cis-1,3-Dichloropropene 0.062 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 60-29-7 Diethyl Ether 0.22 2.0 108-20-3 Diisopropyl Ether (DIPE) 0.18 0.50 123-91-1 1,4-Dioxane 26 50 100-41-4 Ethylbenzene 0.13 1.0 87-68-3 Hexachlorobutadiene 0.17 0.50 591-78-6 2-Hexanone (MBK) 1.5 10 98-82-8 Isopropylbenzene (Cumene) 0.12 1.0 99-87-6 p-Isopropyltoluene (p-Cymene) 1.0 0.090 1.0 1634-04-4 Methyl tert-Butyl Ether (MTBE) 1.0 0.090 1.0 75-09-2 Methylene Chloride 3.2 5.0 108-10-1 4-Methyl-2-pentanone (MIBK) 1.5 10 91-20-3 Naphthalene 0.12 2.0 103-65-1 n-Propylbenzene 0.11 1.0	142-2	28-9	1,3-Dichloropropa	ane			0.11	0.50	
10061-01-5 cis-1,3-Dichloropropene 0.062 0.50 10061-02-6 trans-1,3-Dichloropropene 0.11 0.50 60-29-7 Diethyl Ether 0.22 2.0 108-20-3 Diisopropyl Ether (DIPE) 0.18 0.50 123-91-1 1,4-Dioxane 26 50 100-41-4 Ethylbenzene 0.13 1.0 87-68-3 Hexachlorobutadiene 0.17 0.50 591-78-6 2-Hexanone (MBK) 1.5 10 98-82-8 Isopropylbenzene (Currene) 0.12 1.0 99-87-6 p-Isopropylbuluene (p-Cymene) 0.12 1.0 1634-04-4 Methyl tert-Butyl Ether (MTBE) 1.0 0.090 1.0 75-09-2 Methylene Chloride 3.2 5.0 108-10-1 4-Methyl-2-pentanone (MIBK) 1.5 10 91-20-3 Naphthalene 0.12 2.0 103-65-1 n-Propylbenzene 0.11 1.0	594-2	20-7	2,2-Dichloropropa	ane			0.16	1.0	¥-05
10061-02-6trans-1,3-Dichloropropene0.110.5060-29-7Diethyl Ether0.222.0108-20-3Diisopropyl Ether (DIPE)0.180.50123-91-11,4-Dioxane2650100-41-4Ethylbenzene0.131.087-68-3Hexachlorobutadiene0.170.50591-78-62-Hexanone (MBK)1.51098-82-8Isopropylbenzene (Currene)0.121.099-87-6p-Isopropyltoluene (p-Cyrrene)0.121.01634-04-4Methyl tert-Butyl Ether (MTBE)1.00.0901.075-09-2Methylene Chloride3.25.0108-10-14-Methyl-2-pentanone (MIBK)1.51091-20-3Naphthalene0.122.0103-65-1n-Propylbenzene0.111.0	563-5	58-6	1,1-Dichloroprope	ene			0.13	2.0	
60-29-7 Diethyl Ether 0.22 2.0 108-20-3 Diisopropyl Ether (DIPE) 0.18 0.50 123-91-1 1,4-Dioxane 26 50 100-41-4 Ethylbenzene 0.13 1.0 87-68-3 Hexachlorobutadiene 0.17 0.50 591-78-6 2-Hexanone (MBK) 1.5 10 98-82-8 Isopropylbenzene (Cumene) 0.12 1.0 99-87-6 p-Isopropylbulene (p-Cymene) 0.12 1.0 1634-04-4 Methyl tert-Butyl Ether (MTBE) 1.0 0.090 1.0 75-09-2 Methylene Chloride 3.2 5.0 108-10-1 4-Methyl-2-pentanone (MIBK) 1.5 10 91-20-3 Naphthalene 0.12 2.0 103-65-1 n-Propylbenzene 0.11 1.0	1006	1-01-5	cis-1,3-Dichlorop	ropene			0.062	0.50	
108-20-3Diisopropyl Ether (DIPE)0.180.50123-91-11,4-Dioxane2650100-41-4Ethylbenzene0.131.087-68-3Hexachlorobutadiene0.170.50591-78-62-Hexanone (MBK)1.51098-82-8Isopropylbenzene (Cumene)0.121.099-87-6p-Isopropyltoluene (p-Cymene)0.121.01634-04-4Methyl tert-Butyl Ether (MTBE)1.00.0901.075-09-2Methylene Chloride3.25.0108-10-14-Methyl-2-pentanone (MIBK)1.51091-20-3Naphthalene0.122.0103-65-1n-Propylbenzene0.111.0	1006	1-02-6	trans-1,3-Dichlore	opropene			0.11	0.50	
123-91-11,4-Dioxane2650100-41-4Ethylbenzene0.131.087-68-3Hexachlorobutadiene0.170.50591-78-62-Hexanone (MBK)1.51098-82-8Isopropylbenzene (Cumene)0.121.099-87-6p-Isopropyltoluene (p-Cymene)0.121.01634-04-4Methyl tert-Butyl Ether (MTBE)1.00.0901.075-09-2Methylene Chloride3.25.0108-10-14-Methyl-2-pentanone (MIBK)1.51091-20-3Naphthalene0.122.0103-65-1n-Propylbenzene0.111.0	60-29	9-7	Diethyl Ether				0.22	2.0	
100-41-4Ethylbenzene0.131.087-68-3Hexachlorobutadiene0.170.50591-78-62-Hexanone (MBK)1.51098-82-8Isopropylbenzene (Cumene)0.121.099-87-6p-Isopropyltoluene (p-Cymene)0.121.01634-04-4Methyl tert-Butyl Ether (MTBE)1.00.0901.075-09-2Methylene Chloride3.25.0108-10-14-Methyl-2-pentanone (MIBK)1.51091-20-3Naphthalene0.122.0103-65-1n-Propylbenzene0.111.0	108-2	20-3	Diisopropyl Ether	(DIPE)			0.18	0.50	
87-68-3Hexachlorobutadiene0.170.50591-78-62-Hexanone (MBK)1.51098-82-8Isopropylbenzene (Cumene)0.121.099-87-6p-Isopropyltoluene (p-Cymene)0.121.01634-04-4Methyl tert-Butyl Ether (MTBE)1.00.0901.075-09-2Methylene Chloride3.25.0108-10-14-Methyl-2-pentanone (MIBK)1.51091-20-3Naphthalene0.122.0103-65-1n-Propylbenzene0.111.0	123-9	91-1	1,4-Dioxane				26	50	
591-78-62-Hexanone (MBK)1.51098-82-8Isopropylbenzene (Cumene)0.121.099-87-6p-Isopropyltoluene (p-Cymene)0.121.01634-04-4Methyl tert-Butyl Ether (MTBE)1.00.0901.075-09-2Methylene Chloride3.25.0108-10-14-Methyl-2-pentanone (MIBK)1.51091-20-3Naphthalene0.122.0103-65-1n-Propylbenzene0.111.0	100-4	1-4	Ethylbenzene				0.13	1.0	
98-82-8 Isopropylbenzene (Cumene) 0.12 1.0 99-87-6 p-Isopropyltoluene (p-Cymene) 0.12 1.0 1634-04-4 Methyl tert-Butyl Ether (MTBE) 1.0 0.090 1.0 75-09-2 Methyl-chloride 3.2 5.0 108-10-1 4-Methyl-2-pentanone (MIBK) 1.5 10 91-20-3 Naphthalene 0.12 2.0 103-65-1 n-Propylbenzene 0.11 1.0	87-68	3-3	Hexachlorobutad	iene			0.17	0.50	
99-87-6 p-lsopropyltoluene (p-Cymene) 0.12 1.0 1634-04-4 Methyl tert-Butyl Ether (MTBE) 1.0 0.090 1.0 75-09-2 Methylene Chloride 3.2 5.0 108-10-1 4-Methyl-2-pentanone (MIBK) 1.5 10 91-20-3 Naphthalene 0.12 2.0 103-65-1 n-Propylbenzene 0.11 1.0	591-7	78-6	2-Hexanone (MB	K)			1.5	10	
1634-04-4Methyl tert-Butyl Ether (MTBE)1.00.0901.075-09-2Methylene Chloride3.25.0108-10-14-Methyl-2-pentanone (MIBK)1.51091-20-3Naphthalene0.122.0103-65-1n-Propylbenzene0.111.0	98-82	2-8	lsopropylbenzene	e (Cumene)			0.12	1.0	
75-09-2Methylene Chloride3.25.0108-10-14-Methyl-2-pentanone (MIBK)1.51091-20-3Naphthalene0.122.0103-65-1n-Propylbenzene0.111.0	99-87	7-6	p-Isopropyltoluen	e (p-Cymene)			0.12	1.0	
108-10-14-Methyl-2-pentanone (MIBK)1.51091-20-3Naphthalene0.122.0103-65-1n-Propylbenzene0.111.0	1634-	-04-4	Methyl tert-Butyl	Ether (MTBE)		1.0	0.090	1.0	
91-20-3 Naphthalene 0.12 2.0 103-65-1 n-Propylbenzene 0.11 1.0	75-09	9-2	Methylene Chlori	de			3.2	5.0	
103-65-1 n-Propylbenzene 0.11 1.0	108-1	10-1	4-Methyl-2-penta	none (MIBK)			1.5	10	
	91-20)-3	Naphthalene				0.12	2.0	
100-42-5 Styrene 0.15 1.0	103-6	35-1	n-Propylbenzene				0.11	1.0	
	100-4	12-5	Styrene				0.15	1.0	
630-20-6 1,1,1,2-Tetrachloroethane 0.12 1.0	630-2	20-6	1,1,1,2-Tetrachlo	roethane			0.12	1.0	

N 214/14

130110-MW-10S

Laboratory:	Con-Test A	nalytical Labora	itory	Work O	rder:	15K0954			
Client:	EA Engine	ering, Science 8	Tech	Project:		Freeport, NY	(
Matrix:	Ground Wa	ater	aboratory ID:	15K0954-06		File ID:	VE33	1048.D	
Sampled:	11/19/15 1	5:40	Prepared:	11/25/15 12:46		Analyzed:	11/28	8/15 05:33	
Solids:		I	Preparation:	SW-846 5030B		Dilution:	1		
Initial/Final:	5 mL / 5 ml								
Batch:	B136329	Sequence	e: S01030	4 Calibratio	n:	1500328	Instru	ment:	GCMSVOA5
CAS N	ю.	COMPOUND			CONC.	(µg/L)	MDL	RL	Q
79-34-	-5	1,1,2,2-Tetrac	hloroethane				0.13	0.50	
127-18	8-4	Tetrachloroeth	nylene				0.17	1.0	
109-99	9-9	Tetrahydrofur	an				1.1	10	
108-88	8-3	Toluene					0.10	1.0	
87-61-	-6	1,2,3-Trichlor	obenzene				0.14	5.0	
120-82	2-1	1,2,4-Trichlor	obenzene				0.19	1.0	
108-70	0-3	1,3,5-Trichlor	obenzene				0.17	1.0	
71-55-	-6	1,1,1-Trichlor	bethane				0.094	1.0	
79-00-	-5	1,1,2-Trichlor	bethane				0.12	1.0	
79-01-	-6	Trichloroethyl	ene				0.20	1.0	
75-69-	-4	Trichlorofluoro	omethane (Freon	11)			0.15	2.0	
96-18-	-4	1,2,3-Trichlor	opropane				0.19	2.0	
76-13-	-1	1,1,2-Trichlore	o-1,2,2-trifluoroet	hane (Freon 1			0.14	1.0	
95-63-	-6	1,2,4-Trimeth	lbenzene				0.18	1.0	
108-67	7-8	1,3,5-Trimethy	lbenzene				0.10	1.0	
75-01-	-4	Vinyl Chloride					0.13	2.0	
10838	3/106423	m+p Xylene					0.25	2.0	
95-47-	-6	o-Xylene					0.13	1.0	

136

6

1

NW 214/16

130110-MW-09S

aboratory:		alytical Labora	-	Work Order:	15K0954 Freeport, N	,		
Client:	Ground Wat			Project: 15K0954-07	File ID:		31052.D	
Matrix:			Laboratory ID:				3/15 07:19	
ampled:	11/19/15 14		Prepared:	11/25/15 12:46	Analyzed:		5/15/07.19	
Solids: nitial/Final:	5 mL / 5 mL	I	Preparation:	SW-846 5030B	Dilution:	1		
Batch:	B136329	Sequence	e: \$010304	Calibration:	1500328	Instru	iment:	GCMSVOA5
CASI	NO.	COMPOUND		CON	С. (µg/L)	MDL	RL	Q
67-64	l-1	Acetone				4.9	50	
107-1	3-1	Acrylonitrile				0.58	5.0	
994-0)5-8	tert-Amyl Meth	yl Ether (TAME)			0.091	0.50	
71-43	3-2	Benzene				0.079	1.0	
108-8	36-1	Bromobenzen	e			0.15	1.0	
74-97	7-5	Bromochloron	nethane			0.22	1.0	
75-27	7-4	Bromodichloro	omethane			0.088	0.50	
75-25	5-2	Bromoform				0.21	1.0	
74-83	3-9	Bromomethan	e			0.94	2.0	
78-93	3-3	2-Butanone (N	IEK)			2.4	20	
75-65	5-0	tert-Butyl Alco	hol (TBA)			2.2	20	
104-5	51-8	n-Butylbenzer	ie			0.10	1.0	
135-9	98-8	sec-Butylbenz	ene			0.11	1.0	
98-06	5-6	tert-Butylbenz	ene			0.11	1.0	
637-9	92-3	tert-Butyl Ethy	I Ether (TBEE)			0.075	0.50	
75-15	5-0	Carbon Disulf	ide			1.0	4.0	
56-23	3-5	Carbon Tetrac	chloride			0.12	5.0	
108-9	90-7	Chlorobenzen	e			0.16	1.0	
124-4	8-1	Chlorodibrom	omethane			0.10	0.50	
75-00)-3	Chloroethane				0.28	2.0	
67-66	3-3	Chloroform				0.22	2.0	
74-87	7-3	Chloromethar	e			0.32	2.0	
95-49) -8	2-Chlorotolue	ne			0.12	1.0	
106-4	13-4	4-Chlorotolue	ne			0.13	1.0	
96-12	2-8	1,2-Dibromo-3	3-chloropropane (D	BCP)		0.34	5.0	
106-9	93-4	1,2-Dibromoe	thane (EDB)			0.089	0.50	
74-95	5-3	Dibromometh	ane			0.16	1.0	
95-50)-1	1,2-Dichlorob	enzene			0.10	1.0	
541-7	73-1	1,3-Dichlorob	enzene			0.17	1.0	

130110-MW-09S

Laboratory:	Con-Test Ar	nalytical Laborator	У	Work Order:	15K0954			
Client:	EA Enginee	ring, Science & Te	ech	Project:	Freeport, N	Y		
Matrix:	Ground Wat	ter Lat	ooratory ID:	15K0954-07	File ID:	VE33	31052.D	
Sampled:	11/19/15 14	:58 Pre	pared:	11/25/15 12:46	Analyzed:	11/28/15 07:19		
Solids:			paration:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL		01000	Oslibertises	1500200	let e terre		COMEVOAE
Batch:	B136329	Sequence:	S010304		1500328		iment:	GCMSVOA5
CASI	NO.	COMPOUND		COr	NC. (µg/L)	MDL	RL	Q
106-4	46-7	1,4-Dichlorobenz	ene			0.15	1.0	
110-5	57-6	trans-1,4-Dichlor	o-2-butene			0.17	2.0	
75-71	1-8	Dichlorodifluoron	nethane (Freor	12)		0.18	2.0	
75-34	4-3	1,1-Dichloroetha	ne			0.16	1.0	
107-0)6-2	1,2-Dichloroetha	ne			0.19	1.0	
75-35	5-4	1,1-Dichloroethy	lene		4.5	0.21	1.0	
156-6	60-5	trans-1,2-Dichlor	oethylene		8.6	0.15	1.0	
78-87	7-5	1,2-Dichloroprop	ane			0.13	1.0	
142-2	28-9	1,3-Dichloroprop	ane			0.11	0.50	
594-2	20-7	2,2-Dichloroprop	ane			0.16	1.0	V-05
563-5	58-6	1,1-Dichloroprop	ene			0.13	2.0	
10061	1-01-5	cis-1,3-Dichlorop	ropene			0.062	0.50	
10061	1-02-6	trans-1,3-Dichlor	opropene			0.11	0.50	
60-29	9-7	Diethyl Ether				0.22	2.0	
108-2	20-3	Diisopropyl Ethe	r (DIPE)			0.18	0.50	
123-9	91-1	1,4-Dioxane				26	50	
100-4	1-4	Ethylbenzene				0.13	1.0	
87-68	3-3	Hexachlorobutad	liene			0.17	0.50	
591-7	78-6	2-Hexanone (MB	K)			1.5	10	
98-82	2-8	Isopropylbenzen	e (Cumene)			0.12	1.0	
99-87	7-6	p-Isopropyltoluer	ne (p-Cymene)			0.12	1.0	
1634-	-04-4	Methyl tert-Butyl	Ether (MTBE)			0.090	1.0	
75-09) -2	Methylene Chlor	ide			3.2	5.0	
108-1	10-1	4-Methyl-2-penta	none (MIBK)			1.5	10	
91-20)-3	Naphthalene				0.12	2.0	
103-6	55-1	n-Propylbenzene	•			0.11	1.0	
100-4	12-5	Styrene				0.15	1.0	
630-2		1,1,1,2-Tetrachlo	roethane			0.12	1.0	
7 9 -34		1,1,2,2-Tetrachlo				0.13	0.50	

m 21411p

130110-MW-09S

Laboratory: Con-Test Analytical Laboratory				Work Order:	15K0954			
Client:	EA Engine	ering, Science	& Tech	Project:	Freeport, N	Y		
Matrix:	Ground Wa	ater	Laboratory ID:	15K0954-07	File ID:	VE33	1052.D	
Sampled:	11/19/15 14	4:58	Prepared:	11/25/15 12:46	Analyzed:	11/28	8/15 07:19)
Solids:			Preparation:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 ml							
Batch:	B136329	Sequer	ice: S01030	4 Calibration:	1500328	Instru	ment:	GCMSVOA5
CAS NO	0.	COMPOUN	D	CO	NC. (µg/L)	MDL	RL	Q
127-18	3-4	Tetrachloroe	ethylene			0.17	1.0	
109-99	9-9	Tetrahydrof	uran			1.1	10	
108-88	3-3	Toluene				0.10	1.0	
87-61-0	6	1,2,3-Trichle	probenzene			0.14	5.0	
120-82	2-1	1,2,4-Trichle	probenzene			0.19	1.0	
108-70)-3	1,3,5-Trichle	probenzene			0.17	1.0	
71-55-0	6	1,1,1-Trichle	proethane			0.094	1.0	
79-00-{	5	1,1,2-Trichle	proethane			0.12	1.0	
79-01-0	6	Trichloroeth	ylene			0.20	1.0	
75-69-4	4	Trichlorofluc	promethane (Freon	11)		0.15	2.0	
96-18-4	4	1,2,3-Trichle	propropane			0.19	2.0	
76-13-1	1	1,1,2-Trichle	oro-1,2,2-trifluoroet	hane (Freon 1 [°]		0.14	1.0	
95-63-0	6	1,2,4-Trime	thylbenzene			0.18	1.0	
108-67	7-8	1,3,5-Trime	thylbenzene			0.10	1.0	
108383	3/106423	m+p Xylene	!			0.25	2.0	
95-47-0	6	o-Xylene				0.13	1.0	

130110-MW-09S

Laboratory:	Laboratory: Con-Test Analytical Laboratory				der: 15K0954			
Client:	Client: EA Engineering, Science & Tech			Project:	Freeport, N	Y		
Matrix:	Ground Water	. Labor	atory ID:	15K0954-07RE1	File ID:	VE33	34018.D	
Sampled:	11/19/15 14:5	8 Prepa	red:	11/30/15 07:05	Analyzed:	11/30)/15 14:14	
Solids:		Prepa	ration:	SW-846 5030B	Dilution:	100		
Initial/Final:	5 mL / 5 mL							
Batch:	B136427	Sequence:	S010305	Calibratior	n: 1500328	Instru	iment:	GCMSVOA5
CASI	10. C	OMPOUND			CONC. (µg/L)	MDL	RL	Q
156-5	i9-2 c	is-1,2-Dichloroethy	ylene		1600	15	100	
75-01	-4 V	/inyl Chloride			250 🍠	13	200	

130110-MW-09D

Laboratory:	Con-Test Ar	nalytical Labo	atory	Work Order:	15K0954			
Client:	EA Enginee	ring, Science	& Tech	Project:	Freeport, NY	•		
Matrix:	Ground Wat	er	Laboratory ID:	15K0954-08	File ID:	VE33	31050.D	
Sampled:	11/19/15 15	:45	Prepared:	11/25/15 12:46	Analyzed:	11/28	8/15 06:26	
Solids:			Preparation:	SW-846 5030B	Dilution:	10		
Initial/Final:	5 mL / 5 mL		0010004		1500000	la star		001001045
Batch:	B136329	Sequen			1500328		ument:	GCMSVOA5
CAS N	NO.	COMPOUNE	, 	CON	С. (µg/L)	MDL	RL	Q
67-64-		Acetone				49	500	
107-13		Acrylonitrile				5.8	50	
994-0		tert-Amyl Me	thyl Ether (TAME)			0.91	5.0	
71-43	-2	Benzene				0.79	10	
108-8	6-1	Bromobenze	ne			1.5	10	
74-97-	-5	Bromochloro	methane			2.2	10	
75-27-	/-4	Bromodichlo	romethane			0.88	5.0	
75-25-	-2	Bromoform				2.1	10	
74-83-	-9	Bromometha	ne			9.4	20	
78-93-	-3	2-Butanone	(MEK)			24	200	
75-65	-0	tert-Butyl Alc	ohol (TBA)			22	200	
104-5	i 1- 8	n-Butylbenze	ene			1.0	10	
135-98	8-8	sec-Butylber	izene			1.1	10	
98-06	-6	tert-Butylber	zene			1.1	10	
637-92	2-3	tert-Butyl Eth	yl Ether (TBEE)			0.75	5.0	
75-15	-0	Carbon Disu	lfide			10	40	
56-23-	-5	Carbon Tetra	achloride			1.2	50	
108-90	0-7	Chlorobenze	ne			1.6	10	
124-48	8-1	Chlorodibror	nomethane			1.0	5.0	
75-00-	-3	Chloroethan	e			2.8	20	
67-66	-3	Chloroform				2.2	20	
74-87-	-3	Chlorometha	ine			3.2	20	
95-49	-8	2-Chlorotolu	ene			1.2	10	
106-43	-3-4	4-Chlorotolu	ene			1.3	10	
96-12-	-8	1,2-Dibromo	-3-chloropropane (E	DBCP)		3.4	50	
106-93			ethane (EDB)			0.89	5.0	
74-95		Dibromomet	· · · ·			1.6	10	
95-50-		1,2-Dichloro				1.0	10	
541-7		1,3-Dichloro				1.7	10	

Y

130110-MW-09D

Laboratory:	Con-Test An	alytical Laboratory	,	Work Order:	15K0954			
Client:	EA Engineer	ing, Science & Te	ch	Project:	Freeport, N	Y		
Matrix:	Ground Wate	er Labo	oratory ID:	15K0954-08	File ID:	VE33	VE331050.D	
Sampled:	11/19/15 15:	45 Prep	bared:	11/25/15 12:46	Analyzed:	11/28	8/15 06:26	ì
Solids: Initial/Final:	5 mL / 5 mL	Prep	paration:	SW-846 5030B	Dilution:	10		
Batch:	B136329	Sequence:	S01030	4 Calibration:	1500328	Instru	iment:	GCMSVOA
CASI	NO.	COMPOUND		cc	NC. (µg/L)	MDL	RL	Q
106-4	16-7	1,4-Dichlorobenze	ene			1.5	10	
110-5	57-6	trans-1,4-Dichloro	-2-butene			1.7	20	
75-71	I-8	Dichlorodifluorom	ethane (Freo	n 12)		1.8	20	
75-34	1-3	1,1-Dichloroethan	e			1.6	10	
107-0)6-2	1,2-Dichloroethan	e			1.9	10	
75-35	5-4	1,1-Dichloroethyle	ene			2.1	10	
156-5	59-2	cis-1,2-Dichloroet	hylene		180	1.5	10	
156-6	30-5	trans-1,2-Dichloro	ethylene			1.5	10	
78-87	7-5	1,2-Dichloropropa	ne			1.3	10	
142-2	28-9	1,3-Dichloropropa	ne			1.1	5.0	
594-2	20-7	2,2-Dichloropropa	ne			1.6	10	_V-05
563-5	58-6	1,1-Dichloroprope	ne			1.3	20	
10061	1-01-5	cis-1,3-Dichloropr	opene			0.62	5.0	
10061	1-02-6	trans-1,3-Dichloro	propene			1.1	5.0	
60-29)-7	Diethyl Ether				2.2	20	
108-2	20-3	Diisopropyl Ether	(DIPE)			1.8	5.0	
123-9	€1-1	1,4-Dioxane				260	500	
100-4	1-4	Ethylbenzene				1.3	10	
87-68	3-3	Hexachlorobutadi	ene			1.7	5.0	
591-7	78-6	2-Hexanone (MBI	<)			15	100	
98-82	2-8	Isopropylbenzene	(Cumene)			1.2	10	
99-87	7-6	p-Isopropyltoluen	e (p-Cymene)		1.2	10	
1634-	-04-4	Methyl tert-Butyl	Ether (MTBE))		0.90	10	
75-09	9-2	Methylene Chlorid	le			32	50	
108-1	10-1	4-Methyl-2-pentar	none (MIBK)			15	100	
91-20)-3	Naphthalene				1.2	20	
103-6	35-1	n-Propylbenzene				1.1	10	
100-4	12-5	Styrene				1.5	10	
630-2	20-6	1,1,1,2-Tetrachlor	oethane			1.2	10	

m 2/4/14

J

130110-MW-09D

Laboratory:		Analytical Labo	•			Order:	15K0954			
Client:	5	ering, Science			Proje	ect:	Freeport, NY			
Matrix:	Ground Wa	ater	Labora	tory ID:	15K0954-08		File ID:		81050.D	
Sampled:	11/19/15 1	5:45	Prepar	ed:	11/25/15 12:46	3	Analyzed:	11/28	8/15 06:26	
Solids:			Prepar	ation:	SW-846 5030	3	Dilution:	10		
Initial/Final:	5 mL / 5 ml						1500000			00101010
Batch:	B136329	Sequer	ice:	S010304	Calibra		1500328	_	iment:	GCMSVOA5
CAS	NO.	COMPOUN	D			CONC	C. (μg/L)	MDL	RL	Q
79-34	1-5	1,1,2,2-Tetr	achloroe	thane				1.3	5.0	
127-1	18-4	Tetrachloro	ethylene			3	20	1.7	10	
109-9	9-9	Tetrahydrof	uran					11	100	
108-8	38-3	Toluene						1.0	10	
87-61	1-6	1,2,3-Trichl	orobenze	ene				1.4	50	
120-8	32-1	1,2,4-Trichl	orobenze	ene				1.9	10	
108-7	70-3	1,3,5-Trichl	orobenze	ene				1.7	10	
71-55	5-6	1,1,1-Trichl	oroethan	e				0.94	10	
79-00)-5	1,1,2-Trichl	oroethan	e				1.2	10	
79-01	1-6	Trichloroeth	ylene			1	80	2.0	10	
75-69	9-4	Trichloroflu	orometha	ane (Freon ⁻	11)			1.5	20	
96-18	3-4	1,2,3-Trichl	oropropa	ne				1.9	20	
76-13	3-1	1,1,2-Trichl	oro-1,2,2	-trifluoroeth	ane (Freon 1			1.4	10	
95-63	3-6	1,2,4-T ri me	thylbenz	ene				1.8	10	
108-6	37-8	1,3,5-Trime	thylbenz	ene				1.0	10	
75-01	1-4	Vinyl Chlori	de					1.3	20	
1083	83/106423	m+p Xylene	;					2.5	20	
95-47	7-6	o-Xylene						1.3	10	

J

130110-RB-111915

Laboratory: Client:		nalytical Labor	-	Work Order:	15K0954	/		
	_	ring, Science &		Project:	Freeport, N			
Matrix:	Water		Laboratory ID:	15K0954-09	File ID:		31049.D	
Sampled:	11/19/15 16		Prepared:	11/25/15 12:46	Analyzed:		3/15 05:59	
Solids: Initial/Final:	5 mL / 5 mL		Preparation:	SW-846 5030B	Dilution:	1		
Batch:	B136329	Sequenc	e: S010304	Calibration:	1500328	Instru	iment:	GCMSVOA
CAS	NO.	COMPOUND		CON	С. (µg/L)	MDL	RL	Q
67-64	¥-1	Acetone				4.9	50	
107-1	13-1	Acrylonitrile				0.58	5.0	
994-0)5-8	tert-Amyl Met	hyl Ether (TAME)			0.091	0.50	
71-43	3-2	Benzene				0.079	1.0	
108-8	36-1	Bromobenzei	ne			0.15	1.0	
74-97	7-5	Bromochloro	nethane			0.22	1.0	
75-27	7-4	Bromodichlor	omethane			0.088	0.50	
75-25	5-2	Bromoform				0.21	1.0	
74-83	3-9	Bromometha	ne			0.94	2.0	
78-93	3-3	2-Butanone (MEK)			2.4	20	
75-65	5-0	tert-Butyl Alco	ohol (TBA)			2.2	20	
104-5	51-8	n-Butylbenze	ne			0.10	1.0	
135-9	98-8	sec-Butylben:	zene			0.11	1.0	
98-06	3-6	tert-Butylben:	zene			0.11	1.0	
637-9	92-3	tert-Butyl Ethy	yl Ether (TBEE)			0.075	0.50	
75-15	5-0	Carbon Disul	fide			1.0	4.0	
56-23	3-5	Carbon Tetra	chloride			0.12	5.0	
108-9	90-7	Chlorobenzer	ne			0.16	1.0	
124-4	18-1	Chlorodibrom	omethane			0.10	0.50	
75-00)-3	Chloroethane				0.28	2.0	
67-66	5-3	Chloroform				0.22	2.0	
74-87	7-3	Chlorometha	ne			0.32	2.0	
95-49	9-8	2-Chlorotolue	ne			0.12	1.0	
106-4	13-4	4-Chlorotolue	ne			0.13	1.0	
96-12	2-8	1,2-Dibromo-	3-chloropropane (C	DBCP)		0.34	5.0	
106-9	93-4	1,2-Dibromoe	thane (EDB)			0.089	0.50	
74-95	5-3	Dibromometh	ane			0.16	1.0	
95-50)-1	1,2-Dichlorob	enzene			0.10	1.0	
541-7	/3-1	1,3-Dichlorob	enzene			0.17	1.0	

NU 214/16

q

130110-RB-111915

_aboratory:		nalytical Laboratory		Work Order:	15K0954			
Client:	_	ring, Science & Teo		Project:	Freeport, N			
Matrix:	Water		oratory ID:	15K0954-09	File ID:		1049.D	
Sampled:	11/19/15 16	•	ared:	11/25/15 12:46	Analyzed:	11/28	/15 05:59	
Solids:		-	aration:	SW-846 5030B	Dilution:	1		
nitial/Final: Batch:	5 mL / 5 mL B136329	Sequence:	S010304	4 Calibration:	1500328	Instru	ment:	GCMSVOA5
CASIN		COMPOUND			С. (µg/L)	MDL	RL	Q
106-4	l6-7	1,4-Dichlorobenze	ne			0.15	1.0	
110-5	57-6	trans-1,4-Dichloro	-2-butene			0.17	2.0	
75-71	1-8	Dichlorodifluorome	ethane (Freo	n 12)		0.18	2.0	
75-34	I-3	1,1-Dichloroethan	е			0.16	1.0	
107-0)6-2	1,2-Dichloroethan	е			0.19	1.0	
75-35	5-4	1,1-Dichloroethyle	ne			0.21	1.0	
156-5	59-2	cis-1,2-Dichloroeth	nylene			0.15	1.0	
156-6	60-5	trans-1,2-Dichloro	ethylene			0.15	1.0	
78-87	7-5	1,2-Dichloropropa	ne			0.13	1.0	
142-2	28-9	1,3-Dichloropropa	ne			0.11	0.50	
594-2	20-7	2,2-Dichloropropa	ne			0.16	1.0	¥-05
563-5	58-6	1,1-Dichloroprope	ne			0.13	2.0	
10061	1-01-5	cis-1,3-Dichloropro	opene			0.062	0.50	
10061	1-02-6	trans-1,3-Dichloro	propene			0.11	0.50	
60-29	9-7	Diethyl Ether				0.22	2.0	
108-2	20-3	Diisopropyl Ether	(DIPE)			0.18	0.50	
123-9	91-1	1,4-Dioxane				26	50	
100-4	11-4	Ethylbenzene				0.13	1.0	
87-68	3-3	Hexachlorobutadie	ene			0.17	0.50	
591-7	78-6	2-Hexanone (MBk	()			1.5	10	
98-82	2-8	Isopropylbenzene	(Cumene)			0.12	1.0	
99-87	7-6	p-lsopropyltoluene	e (p-Cymene))		0.12	1.0	
1634-	-04-4	Methyl tert-Butyl E	ther (MTBE)	I.		0.090	1.0	
75-09	9-2	Methylene Chlorid	le			3.2	5.0	
108-1	10-1	4-Methyl-2-pentar	one (MIBK)			1.5	10	
91-20)-3	Naphthalene				0.12	2.0	
103-6	35-1	n-Propylbenzene				0.11	1.0	
100-4	42-5	Styrene				0.15	1.0	
630-2	20-6	1,1,1,2-Tetrachlor	oethane			0.12	1.0	

muzlylip

130110-RB-111915

Laboratory: Client: Matrix:	Con-Test Analytical Laboratory EA Engineering, Science & Tech Water Laboratory ID: 11/19/15 16:00 Prepared:				Work Order: Project: 954-09	15K0954 Freeport, N` File ID:	VE33	31049.D 3/15 05:59	
Sampled: Solids:	111011010	0.00	Preparetion:		/15 12:46 46 5030B	Analyzed: Dilution:	1	10 00.08	
Initial/Final:	5 mL / 5 ml	L	гтератация.	300-0	40 00000	Dilution.	I		
Batch:	B136329	Sequer	nce: S01	0304	Calibration;	1500328	Instru	ment:	GCMSVOA5
CAS NO	D .	COMPOUN	D		CO	NC. (µg/L)	MDL	RL	Q
79-34-	5	1,1,2,2-Tetr	achloroethane				0.13	0.50	
127-18	-4	Tetrachloro	ethylene				0.17	1.0	
109-99	-9	Tetrahydrof	uran				1.1	10	
108-88	-3	Toluene					0.10	1.0	
87-61-6	6	1,2,3-Trichle	orobenzene				0.14	5.0	
120-82	:-1	1,2,4-Trichle	orobenzene				0.19	1.0	
108-70	-3	1,3,5-Trichle	orobenzene				0.17	1.0	
71-55-6	6	1,1,1-Trichle	proethane				0.094	1.0	
79-00-5	5	1,1,2-Trichle	proethane				0.12	1.0	
79-01-6	6	Trichloroeth	ylene				0.20	1.0	
75-69-4	4	Trichloroflue	promethane (Fr	eon 11)			0.15	2.0	
96-18-4	4	1,2,3-Trichle	oropropane				0.19	2.0	
76-13-1	1	1,1,2-Trichle	oro-1,2,2-trifluo	roethane (Fr	eon 1		0.14	1.0	
95-63-6	6	1 ,2,4-Tri me	thylbenzene				0.18	1.0	
108-67	-8	1,3,5-T ri me	thylbenzene				0.10	1.0	
75-01-4	4	Vinyl Chlori	de				0.13	2.0	
108383	3/106423	m+p Xylene	•				0.25	2.0	
95-47-6	6	o-Xylene					0.13	1.0	

130110-Dup

Laboratory:	Con-Test A	nalytical Labor	atory	Work Order:	15K0954			
Client:	EA Enginee	ring, Science	& Tech	Project:	Freeport, NY	,		
Matrix:	Ground Wat	ter	Laboratory ID:	15K0954-10	File ID:	VE3	31051.D	
Sampled:	11/19/15 00	:00	Prepared:	11/25/15 12:46	Analyzed:	11/2	8/15 06:53	
Solids:			Preparation:	SW-846 5030B	Dilution:	10		
Initial/Final: Batch:	5 mL / 5 mL B136329		xe: S010304	Calibration	1500209	lucotes		COMEVIONE
		Sequence			1500328		ument:	GCMSVOA5
CAS N		COMPOUND	, 	CON	IC. (µg/L)	MDL	RL	Q
67-64-		Acetone				49	500	
107-13		Acrylonitrile				5.8	50	
994-0		tert-Amyl Me	thyl Ether (TAME)			0.91	5.0	
71-43-	-2	Benzene				0.79	10	
108-80	6-1	Bromobenze	ne			1.5	10	
74-97-	-5	Bromochloro	methane			2.2	10	
75-27-	-4	Bromodichlo	omethane			0.88	5.0	
75-25-	-2	Bromoform				2.1	10	
74-83-	-9	Bromometha	ne			9.4	20	
78-93-	-3	2-Butanone (MEK)			24	200	
75-65-	-0	tert-Butyl Alc	ohol (TBA)			22	200	
104-51	1-8	n-Butylbenze	ne			1.0	10	
135-98	8-8	sec-Butylben	zene			1.1	10	
98-06-	-6	tert-Butylben:	zene			1.1	10	
637-92	2-3	tert-Butyl Eth	yl Ether (TBEE)			0.75	5.0	
75-15-	-0	Carbon Disul	fide			10	40	
56-23-	-5	Carbon Tetra	chloride			1.2	50	
108-90	0-7	Chlorobenze	ne			1.6	10	
124-48	8-1	Chlorodibrom	omethane			1.0	5.0	
75-00-	-3	Chloroethane	•			2.8	20	
67-66-	-3	Chloroform				2.2	20	
74-87-	-3	Chlorometha	ne			3.2	20	
95-49-	-8	2-Chlorotolue	ene			1.2	10	
106-43	3-4	4-Chlorotolue	ne			1.3	10	
96-12-	-8	1,2-Dibromo-	3-chloropropane (C	BCP)		3.4	50	
106-93	3-4	1,2-Dibromoe	ethane (EDB)			0.89	5.0	
74-95-	-3	Dibromometh	ane			1.6	10	
95-50-	-1	1,2-Dichlorob	enzene			1.0	10	
541-73	3-1	1,3-Dichlorob	enzene			1.7	10	

mzlylip

130110-Dup

Laboratory:	Con-Test Ar	nalytical Labora	atory	Work Order:	15K0954			
Client:	EA Enginee	ring, Science &	Tech	Project:	Freeport, N	ł –		
Matrix:	Ground Wat	ter	Laboratory ID:	15K0954-10	File ID:	VE33	1051.D	
Sampled:	11/19/15 00	:00	Prepared:	11/25/15 12:46	Analyzed:	11/28	8/15 06:53	
Solids:			Preparation:	SW-846 5030B	Dilution:	10		
Initial/Final:	5 mL / 5 mL B136329		e: S01030	4 Calibration	1500328	Instru	ment:	GCMSVOA5
Batch:		Sequenc COMPOUND		- 58	1500328 IC. (µg/L)	MDL	RL	Q
106-4		1,4-Dichlorob				1.5	10	
110-5			hloro-2-butene	40)		1.7	20	
75-71			promethane (Freo	n 12)		1.8	20	
75-34		1,1-Dichloroe				1.6	10	
107-0		1,2-Dichloroe				1.9 2.1	10 10	
75-35		1,1-Dichloroe	-		1300	2.1 1.5	10	
156-5 156-6		cis-1,2-Dichlo	-		1300	1.5 1.5	10	
		trans-1,2-Dicl				1.3	10	
78-87 142-2		1,2-Dichlorop	-			1.5	5.0	
594-2		1,3-Dichlorop 2,2-Dichlorop	-			1.6	10	¥-05
563-5		1,1-Dichlorop	-			1.3	20	y 00
	1-01-5	cis-1,3-Dichlo	-			0.62	5.0	
	1-02-6	trans-1,3-Dicl				1.1	5.0	
60-29		Diethyl Ether				2.2	20	
108-2		Diisopropyl E				1.8	5.0	
123-9		1,4-Dioxane				260	500	
100-4		Ethylbenzene	9			1.3	10	
87-68		Hexachlorobu				1.7	5.0	
591-7		2-Hexanone				15	100	
98-82			zene (Cumene)			1.2	10	
99-87			luene (p-Cymene)		1.2	10	
1634-			utyl Ether (MTBE)			0.90	10	
75-09) -2	Methylene Cl				32	50	
108-1		-	entanone (MIBK)			15	100	
91-20)-3	Naphthalene				1.2	20	
103-6	65-1	n-Propylbenz	ene			1.1	10	
100-4	42-5	Styrene				1.5	10	
630-2	20-6	1,1,1,2-Tetra	chloroethane			1.2	10	

171

130110-Dup

Laboratory:	Con-Test A	Analytical Lab	oratory		Wor	k Order:	15K0954			
Client:	EA Engine	ering, Science	e & Tech	ı	Proj	ect:	Freeport, NY	(
Matrix:	Ground Wa	ater	Labor	atory ID:	15K0954-10		File ID:	VE33	31051.D	
Sampled:	11/19/15 0	0:00	Ргера	red:	11/25/15 12:4	-6	Analyzed:	11/28	8/15 06:53	6
Solids:			Prepa	ration:	SW-846 5030	B	Dilution:	10		
Initial/Final:	5 mL / 5 m									
Batch:	B136329	Seque	nce:	S010304	4 Calib	ration:	1500328	Instru	iment:	GCMSVOA5
CAS	NO.	COMPOUN	D			CONC	: (μg/L)	MDL	RL	Q
79-34	4-5	1,1,2,2-Tetr	achloro	ethane				1.3	5.0	
127-	18-4	Tetrachloro	ethylene	Э				1.7	10	
109-	99-9	Tetrahydrof	uran					11	100	
108-	88-3	Toluene						1.0	10	
87-6	1-6	1,2,3-Trichl	orobenz	ene				1.4	50	
120-	82-1	1,2,4-Trichl	orobenz	ene				1.9	10	
108-	70-3	1,3,5-Trichl	orobenz	ene				1.7	10	
71-5	5-6	1,1,1-Trichl	oroetha	ne				0.94	10	
79-00	0-5	1,1,2-Trichl	oroetha	ne				1.2	10	
79-0	1-6	Trichloroeth	ylene					2.0	10	
75-69	9-4	Trichloroflu	orometh	ane (Freon	11)			1.5	20	
96-18	8-4	1,2,3-Trichl	oroprop	ane				1.9	20	
76-1	3-1	1,1,2-Trichl	ого-1,2,	2-trifluoroet	hane (Freon 1			1.4	10	
95-63	3-6	1,2,4-T r ime	th ylben :	zene				1.8	10	
108-	67-8	1,3,5-Trime	th ylben :	zene				1.0	10	
75-0	1-4	Vinyl Chlori	de			1	80 J	1.3	20	
1083	883/106423	m+p Xylene	•					2.5	20	
95-4	7-6	o-Xylene						1.3	10	

Trip Blank

Laboratory:	Con-Test Ar	nalytical Labo	ratory	Work Or	der:	15K0954			
Client:	EA Enginee	ring, Science	& Tech	Project:		Freeport, NY	,		
Matrix:	Trip Blank V	Vater	Laboratory ID:	15K0954-11		File ID:	VE	331040.D	
Sampled:	11/19/15 00	:00	Prepared:	11/25/15 12:46		Analyzed:	11/2	28/15 02:00	
Solids:			Preparation:	SW-846 5030B		Dilution:	1		
Initial/Final:	5 mL / 5 mL								
Batch:	B136329	Sequen	ce: S0103	04 Calibration	n:	1500328	Inst	rument:	GCMSVOA5
CAS N	0.	COMPOUN)		CONC.	(µg/L)	MDL	RL	Q
67-64-	-1	Acetone					4.9	50	
107-13	3-1	Acrylonitrile					0.58	5.0	
994-05	5-8	tert-Amyl Me	thyl Ether (TAME)			0.091	0.50	
71-43-	-2	Benzene					0.079	1.0	
108-86	5-1	Bromobenze	ne				0.15	1.0	
74-97-	-5	Bromochloro	methane				0.22	1.0	
75-27-	-4	Bromodichlo	romethane				0.088	0.50	
75-25-	-2	Bromoform					0.21	1.0	
74-83-	-9	Bromometha	ine				0.94	2.0	
78-93-	-3	2-Butanone	(MEK)				2.4	20	
75-65-	-0	tert-Butyl Ald	ohol (TBA)				2.2	20	
104-51	1-8	n-Butylbenze	ene				0.10	1.0	
135-98	8-8	sec-Butylber	izene				0.11	1.0	
98-06-	-6	tert-Butylber	izene				0.11	1.0	
637-92	2-3	tert-Butyl Eth	nyl Ether (TBEE)				0.075	0.50	
75-15-	-0	Carbon Disu	lfide				1.0	4.0	
56-23-	-5	Carbon Tetra	achloride				0.12	5.0	
108-90)-7	Chlorobenze	ene				0.16	1.0	
124-48	8-1	Chlorodibror	nomethane				0.10	0.50	
75-00-	-3	Chloroethan	e				0.28	2.0	
67-66-	-3	Chloroform					0.22	2.0	
74-87-	-3	Chlorometha	ane				0.32	2.0	
95-49-	-8	2-Chlorotolu	ene				0.12	1.0	
106-43	3-4	4-Chlorotolu	ene				0.13	1.0	
96-12-	-8	1,2-Dibromo	-3-chloropropane	(DBCP)			0.34	5.0	
106-93	3-4	1,2-Dibromo	ethane (EDB)				0.089	0.50	
74-95-	-3	Dibromomet	hane				0.16	1.0	
95-50-	-1	1,2-Dichloro	benzene				0.10	1.0	
541-73	3-1	1,3-Dichloro	benzene				0.17	1.0	

N 214/11/

Trip Blank

Laboratory:	Con-Test Ar	nalytical Labo	ratory	Work Order:	15K0954			
Client:	EA Enginee	ring, Science	& Tech	Project:	Freeport, NY			
Matrix:	Trip Blank V	Vater	Laboratory ID:	15K0954-11	File ID:	VE33	31040.D	
Sampled:	11/19/15 00	:00	Prepared:	11/25/15 12:46	Analyzed:	11/28	3/15 02:00	
Solids:			Preparation:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL				1500000			001101/015
Batch:	B136329	Sequen			1500328	_	iment:	GCMSVOA5
CAS NO	0	COMPOUNI)	C0	NC. (µg/L)	MDL	RL	Q
106-46	5-7	1,4-Dichloro	benzene			0.15	1.0	
110-57	-6	trans-1,4-Dic	chloro-2-butene			0.17	2.0	
75-71-8	8	Dichlorodiflu	oromethane (Freo	n 12)		0.18	2.0	
75-34-3	3	1,1-Dichloro	ethane			0.16	1.0	
107-06	5-2	1,2-Dichloro	ethane			0.19	1.0	
75-35-4	4	1,1-Dichloro	ethylene			0.21	1.0	
156-59	-2	cis-1,2-Dichl	oroethylene			0.15	1.0	
156-60)-5	trans-1,2-Dio	chloroethylene			0.15	1.0	
78-87-	5	1,2-Dichloro	propane			0.13	1.0	
142-28	-9	1,3-Dichloro	propane			0.11	0.50	
594-20)-7	2,2-Dichloro	propane			0.16	1.0	¥-05
563-58	3-6	1,1-Dichloro	propene			0.13	2.0	
10061-	-01-5	cis-1,3-Dichl	loropropene			0.062	0.50	
10061-	-02-6	trans-1,3-Die	chloropropene			0.11	0.50	
60-29-	7	Diethyl Ethe	r			0.22	2.0	
108-20)-3	Diisopropyl I	Ether (DIPE)			0.18	0.50	
123-91	-1	1,4-Dioxane				26	50	
100-41	-4	Ethylbenzen	e			0.13	1.0	
87-68-3	3	Hexachlorot	outadiene			0.17	0.50	
591-78	3-6	2-Hexanone	(MBK)			1.5	10	
98-82-	8	Isopropylber	nzene (Cumene)			0.12	1.0	
99-87-	6	p-Isopropylte	oluene (p-Cymene)		0.12	1.0	
1634-0)4-4	Methyl tert-E	Butyl Ether (MTBE))		0.090	1.0	
75-09-2	2	Methylene C	Chloride			3.2	5.0	
108-10)-1	4-Methyl-2-p	pentanone (MIBK)			1.5	10	
91 - 20-	3	Naphthalene	e			0.12	2.0	
103-65	5-1	n-Propylben	zene			0.11	1.0	
100-42	2-5	Styrene				0.15	1.0	
630-20)-6	1,1,1,2-Tetra	achloroethane			0.12	1.0	

Trip Blank

Laboratory: Client:		nalytical Labo	-			Vork Order: Project:	15K0 Free	0954 port, NY				
Matrix:	Trip Blank V	Water	Laborato	ory ID:	15K0954-1	11	File	ID:	VE3	331040.D		
Sampled:	11/19/15 00	0:00	Prepare	d:	11/25/15 1	2:46	Anal	yzed:	11/2	28/15 02:00		
Solids:			Preparat	tion:	SW-846 50)30B	Dilut	ion:	1			
Initial/Final:	5 mL / 5 ml	-										
Batch:	B136329	Sequer	nce:	S010304	Ca	libration:	1500)328	Inst	rument:	GCMSVOA	\ 5
CAS NO	Э.	COMPOUN	D			CO	NC. (µg/L))	MDL	RL	Q	
79-34-	5	1,1,2,2-Tetr	achloroeth	nane				t	0.13	0.50		
127-18	-4	Tetrachloro	ethylene					I	0.17	1.0		
109-99	-9	Tetrahydrof	uran						1.1	10		
108-88	-3	Toluene						I	0.10	1.0		
87-61-0	6	1,2,3-Trichle	orobenzen	e				I	0.14	5.0		
120-82	!-1	1,2,4-Trichle	orobenzen	e				(0.19	1.0		
108-70)-3	1,3,5-Trichle	orobenzen	e				I	0.17	1.0		
71-55-0	6	1,1,1-Trichle	oroethane					C).094	1.0		
79-00-	5	1,1,2-Trichle	oroethane					1	0.12	1.0		
79-01-0	6	Trichloroeth	nylene					I	0.20	1.0		
75-69-4	4	Trichloroflue	oromethan	ie (Freon 1	11)			I	0.15	2.0		
96-18-4	4	1,2,3-Trichl	oropropan	е					0.19	2.0		
76-13-	1	1,1,2-Trichl	oro-1,2,2-t	rifluoroeth	ane (Freon	1			0.14	1.0		
95-63-	6	1,2,4-Trime	thylbenzer	ne					0.18	1.0		
108-67	-8	1,3,5-T rime	thylbenzer	ne					0.10	1.0		
75-01-4	4	Vinyl Chlori	de						0.13	2.0		
108383	3/106423	m+p Xylene	•						0.25	2.0		
95-47-	6	o-Xylene							0.13	1.0		

179

DATA USABILITY SUMMARY REPORT METAL ETCHING, FREEPORT, LONG ISLAND, NEW YORK

Client:	EA Engineering, Science & Technology, Inc., Syracuse, New York
SDG:	15K1033
Laboratory:	Con-Test Analytical Laboratory, East Longmeadow, Massachusetts
Site:	Metal Etching, Freeport, Long Island, New York
Date:	February 4, 2016

VOC									
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix						
1	130110-MW-08SR	15K1033-01	Water						
2	130110-MW-08DR	15K1033-02	Water						
3	130110-MW-11S	15K1033-03	Water						
4	130110-MW-11D	15K1033-04	Water						
5	130110-RB-111915	15K1033-05	Water						
6	TRIP BLANK	15K1033-06	Water						

A Data Usability Summary Review was performed on the analytical data for four water samples, one aqueous equipment blank sample and one aqueous trip blank sample collected on November 20, 2015 by EA Engineering at the Metal Etching site in Freeport, Long Island, New York. The samples were analyzed under Environmental Protection Agency (USEPA) 'Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions' and the Standard Methods for the Examination of Water and Wastewater.

Specific method references are as follows:

Analysis	Method References
VOCs	USEPA SW-846 Method 8260C

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 4, September 2014: Validating Volatile Organic Compounds by SW-846 Method 8260B & 8260C;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

Organics

- Data Completeness
- Holding times and sample preservation

- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There was no rejection of data.

Overall the data is acceptable for the intended purposes as qualified for the following deficiencies.

• Acetone was qualified as estimated in all samples due to a high continuing calibration %D value.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• A MS/MSD sample was not collected.

Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
B136579-BS1	Acetone	42.5%	None	See CCAL

Method Blank

• The method blanks were free of contamination.

<u>Field Blank</u>

• The field QC samples were free of contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
130110-RB-111915	None - ND				1
TRIP BLANK	None - ND			e	

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibration exhibited acceptable %RSD values and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The following table presents compounds that exceeded 30 percent difference (%D) and/or RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
12/01/15	Acetone	46.5%	J/UJ	All Samples

Compound Quantitation

EDS Sample ID #2 was analyzed at a 25X dilution due to high concentrations of cis-1,2-• dichloroethene and tetrachloroethylene. The reporting limits were adjusted accordingly. No action was required by the reviewer.

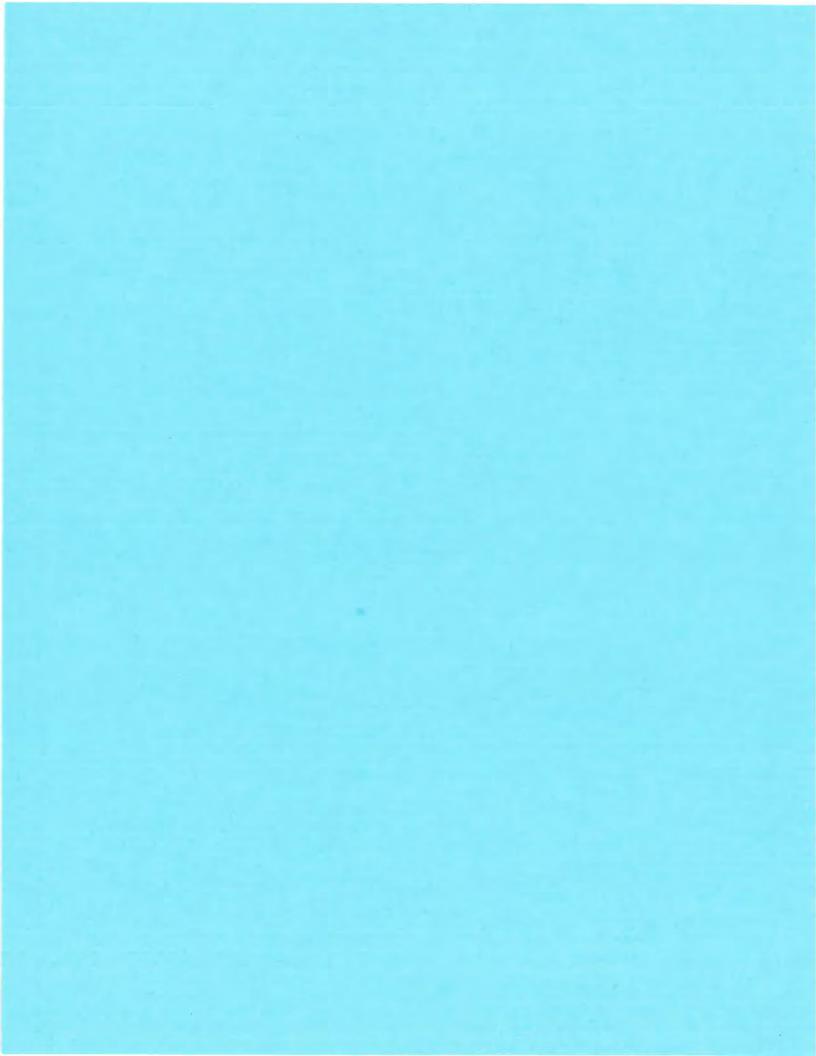
Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

Field duplicate samples were not collected. •

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.


Signed:

Mancy Weaver Dated: 2/8/16

Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- $R \equiv 1$ The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

130110-MW-08SR

Matrix:Ground WaterSampled:11/20/15 14:05Solids:Initial/Final:Initial/Final:5 mL / 5 mLBatch:B136579CAS NO.	Prepared: Preparation: Sequence: S010378	Project: 15K1033-01 12/01/15 11:07 SW-846 5030B Calibration:	Freeport, NY File ID: Analyzed: Dilution:		20115011.D)1/15 14:19	
Sampled: 11/20/15 14:05 Solids: Initial/Final: 5 mL / 5 mL Batch: B136579 CAS NO. CC	Prepared: Preparation: Sequence: S010378	12/01/15 11:07 SW-846 5030B	Analyzed:	12/0		
Solids: Initial/Final: 5 mL / 5 mL Batch: B136579 CAS NO. CC	Preparation: Sequence: S010378	SW-846 5030B	-)1/15 14:19	
Initial/Final: 5 mL / 5 mL Batch: B136579 CAS NO. CC	Sequence: S010378		Dilution:	1		
Batch: B136579	•	Calibration:				
CAS NO. CO	•	Calibration:				
	MIDOLINID		1500330	Insti	rument:	GCMSVOA6
	OMPOUND	CONC.	. (μg/L)	MDL	RL	Q
67-64-1 Ac	etone		UJ	4.9	50	L-04, V-05-
107-13-1 Act	rylonitrile			0.58	5.0	
994-05-8 ter	t-Amyl Methyl Ether (TAME)			0.091	0.50	
71-43-2 Be	nzene			0.079	1.0	
108-86-1 Bro	omobenzene			0.15	1.0	
74-97-5 Bro	omochloromethane			0.22	1.0	
75-27-4 Bro	omodichloromethane			0.088	0.50	
75-25-2 Bro	omoform			0.21	1.0	V-05
74-83-9 Bro	omomethane			0.94	5.0	
78-93-3 2-E	Butanone (MEK)			2.4	20	
75-65-0 ter	t-Butyl Alcohol (TBA)			2.2	20	V-05
104-51-8 n-E	Butylbenzene			0.10	1.0	
135-98-8 sec	c-Butylbenzene			0.11	1.0	
98-06-6 ter	t-Butylbenzene			0.11	1.0	
637-92-3 ter	t-Butyl Ethyl Ether (TBEE)			0.075	0.50	
75-15-0 Ca	rbon Disulfide			1.0	4.0	
56-23-5 Ca	rbon Tetrachloride			0.12	5.0	
108-90-7 Ch	lorobenzene			0.16	1.0	
124-48-1 Ch	lorodibromomethane			0.10	0.50	
75-00-3 Ch	loroethane			0.28	2.0	
67-66-3 Ch	loroform			0.22	2.0	
74-87-3 Ch	loromethane			0.32	2.0	
95-49-8 2-0	Chlorotoluene			0.12	1.0	
106-43-4 4-0	Chlorotoluene			0.13	1.0	
96-12-8 1,2	2-Dibromo-3-chloropropane (Dl	BCP)		0.34	5.0	
106-93-4 1,2	2-Dibromoethane (EDB)			0.089	0.50	
74-95-3 Dib	promomethane			0.16	1.0	
95-50-1 1,2	2-Dichlorobenzene			0.10	1.0	
541-73-1 1,3	3-Dichlorobenzene			0.17	1.0	

130110-MW-08SR

Laboratory:		nalytical Laborato	•	Work Order:	15K1033			
Client:	-	ring, Science & 1		Project:	Freeport, N			
Matrix:	Ground Wa		aboratory ID:	15K1033-01	File ID:		20115011.	
Sampled:	11/20/15 14	:05 Pr	repared:	12/01/15 11:07	Analyzed:	12/01	1/15 14:19)
Solids:	E and / E and		reparation:	SW-846 5030B	Dilution:	1		
Initial/Final: Batch:	5 mL / 5 mL B136579	Sequence:	S01037	8 Calibration:	1500330	Instru	iment:	GCMSVOA6
CASI		COMPOUND			NC. (µg/L)	MDL	RL	Q
106-4	46-7	1,4-Dichlorober	izene			0.15	1.0	
110-5	57-6	trans-1,4-Dichlo	pro-2-butene			0.17	2.0	
75-71	1-8	Dichlorodifluoro	methane (Freo	n 12)		0.18	2.0	
75-34	4-3	1,1-Dichloroeth	ane			0.16	1.0	
107-0	06-2	1,2-Dichloroeth	ane			0.19	1.0	
75-35	5-4	1,1-Dichloroeth	ylene			0.21	1.0	
156-5	59-2	cis-1,2-Dichloro	ethylene		1.4	0.15	1.0	
156-6	60-5	trans-1,2-Dichlo	proethylene			0.15	1.0	
78-87	7-5	1,2-Dichloropro	pane			0.13	1.0	
142-2	28- 9	1,3-Dichloropro	pane			0.11	0.50	
594-2	20-7	2,2-Dichloropro	pane			0.16	1.0	
563-5	58-6	1,1-Dichloropro	pene			0.13	2.0	
1006	1-01-5	cis-1,3-Dichloro	propene			0.062	0.50	
1006	1-02-6	trans-1,3-Dichlo	propropene			0.11	0.50	
60-29) -7	Diethyl Ether				0.22	2.0	
108-2	20-3	Diisopropyl Ethe	er (DIPE)			0.18	0.50	
123-9	91-1	1,4-Dioxane				26	50	
100-4	11-4	Ethylbenzene				0.13	1.0	
87-68	3-3	Hexachlorobuta	diene			0.17	0.50	
591-7	78-6	2-Hexanone (M	BK)			1.5	10	
98-82	2-8	Isopropylbenze	ne (Cumene)			0.12	1.0	
99-87	7-6	p-Isopropyltolue	ene (p-Cymene))		0.12	1.0	
1634-	-04-4	Methyl tert-Buty	l Ether (MTBE)		1.4	0.090	1.0	
75-09	9-2	Methylene Chlo	ride			3.2	5.0	
108-1	10-1	4-Methyl-2-peni	tanone (MIBK)			1.5	10	
91-20)-3	Naphthalene				0.12	2.0	
103-6	35-1	n-Propylbenzen	e			0.11	1.0	
100-4	12-5	Styrene				0.15	1.0	
630-2	20-6	1,1,1,2-Tetrach	loroethane			0.12	1.0	

130110-MW-08SR

Matrix: Ground Water Laboratory ID: 15K1033-01 File ID: VF120115011.D Sampled: 11/20/15 14:05 Prepared: 12/01/15 11:07 Analyzed: 12/01/15 14:19 Solids: Preparation: SW-846 5030B Dilution: 1 1 Initial/Final: 5 mL / 5 mL B136579 Sequence: S010378 Calibration: 1500330 Instrument: GCMSVOA6 CAS NO COMPOUND COMPOUND CONC. (µg/L) MDL RL Q 79-34-5 1,1,2,2-Tetrachloroethane 0.13 0.50 0.17 1.0 127-18-4 Tetrachloroethane 1.1 10 0.10 1.0 109-99-9 Tetrachloroethane 0.10 1.0 0.10 1.0 108-88-3 Toluene 0.10 1.0 0.10 0.10	
Solids: Preparation: SW-846 5030B Dilution: 1 Initial/Final: 5 mL / 5 mL 5 mL / 5 mL 6CMSVOA6 Batch: B136579 Sequence: S010378 Calibration: 1500330 Instrument: GCMSVOA6 CAS NO. COMPOUND CONC. (µg/L) MDL RL Q 79-34-5 1,1,2,2-Tetrachloroethane 0.13 0.50 127-18-4 Tetrachloroethylene 0.17 1.0 109-99-9 Tetrahydrofuran 1.1 10 108-88-3 Toluene 0.10 1.0	
Initial/Final: 5 mL / 5 mL Sequence: $S010378$ Calibration: 1500330 Instrument: GCMSVOA6 CAS NO. COMPOUND CONC. (µg/L) MDL RL Q 79-34-5 1,1,2,2-Tetrachloroethane 0.13 0.50 127-18-4 Tetrachloroethylene 0.17 1.0 109-99-9 Tetrahydrofuran 1.1 10 108-88-3 Toluene 0.10 1.0	
Batch: B136579 Sequence: S010378 Calibration: 1500330 Instrument: GCMSVOA6 CAS NO. COMPOUND CONC. (µg/L) MDL RL Q 79-34-5 1,1,2,2-Tetrachloroethane 0.13 0.50 1017 1.0 100	
CAS NO. COMPOUND CONC. (µg/L) MDL RL Q 79-34-5 1,1,2,2-Tetrachloroethane 0.13 0.50 127-18-4 Tetrachloroethylene 0.17 1.0 109-99-9 Tetrahydrofuran 1.1 10 108-88-3 Toluene 0.10 1.0	
79-34-5 1,1,2,2-Tetrachloroethane 0.13 0.50 127-18-4 Tetrachloroethylene 0.17 1.0 109-99-9 Tetrahydrofuran 1.1 10 108-88-3 Toluene 0.10 1.0	
127-18-4Tetrachloroethylene0.171.0109-99-9Tetrahydrofuran1.110108-88-3Toluene0.101.0	_
109-99-9 Tetrahydrofuran 1.1 10 108-88-3 Toluene 0.10 1.0	
108-88-3 Toluene 0.10 1.0	
87-61-6 1,2,3-Trichlorobenzene 0.14 5.0	
120-82-1 1,2,4-Trichlorobenzene 0.19 1.0	
108-70-3 1,3,5-Trichlorobenzene 0.17 1.0	
71-55-6 1,1,1-Trichloroethane 0.094 1.0	
79-00-5 1,1,2-Trichloroethane 0.12 1.0	
79-01-6 Trichloroethylene 2.3 0.20 1.0	
75-69-4Trichlorofluoromethane (Freon 11)0.152.0	
96-18-4 1,2,3-Trichloropropane 0.19 2.0	
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 1 0.14 1.0	
95-63-6 1,2,4-Trimethylbenzene 0.18 1.0	
108-67-8 1,3,5-Trimethylbenzene 0.10 1.0	
75-01-4 Vinyl Chloride 0.13 2.0	
108383/106423 m+p Xylene 0.25 2.0	
95-47-6 o-Xylene 0.13 1.0	

52

130110-MW-08DR

Laboratory:	Con-Test A	nalytical Labo	ratory	v	/ork Order:	15K1033			
Client:	EA Enginee	ering, Science	& Tech	Р	roject:	Freeport, NY			
Matrix:	Ground Wa	ter	Laboratory ID:	15K1033-0	2	File ID:	VF1	20115014.	C
Sampled:	11/20/15 12	2:40	Prepared:	12/01/15 1	1:07	Analyzed:	12/0)1/15 15:37	
Solids:			Preparation:	SW-846 50	30B	Dilution:	25		
Initial/Final:	5 mL / 5 mL								
Batch:	B136579	Sequen	ce: S0103	378 Ca	libration:	1500330	Instr	rument:	GCMSVOA6
CASIN	10.	COMPOUN)		CONC). (µg/L)	MDL	RL	Q
67-64	-1	Acetone				CN	120	1200	1-04, V-05-
10 7-1	3-1	Acrylonitrile					14	120	
994-0)5-8	tert-Amyl Me	ethyl Ether (TAM	E)			2.3	12	
71-43	8-2	Benzene					2.0	25	
108-8	6-1	Bromobenze	ne				3.8	25	
74-97	'-5	Bromochloro	methane				5.6	25	
75-27	'-4	Bromodichlo	romethane				2.2	12	
75-25	j-2	Bromoform					5.2	25	V-05
74-83	-9	Bromometha	ine				24	120	
78-93	-3	2-Butanone	(MEK)				59	500	
75-65	i-0	lert-Butyl Alo	ohol (TBA)				54	500	V-05
104-5	51-8	n-Butylbenzo	ene				2.5	25	
135-9	8-8	sec-Butylber	izene				2.8	25	
98-06	-6	tert-Butylber	izene				2.8	25	
637-9	2-3	tert-Butyl Etl	nyl Ether (TBEE))			1.9	12	
75-15	i-0	Carbon Disu	lfide				26	100	
56-23	-5	Carbon Tetra	achloride				3.0	120	
108-9	0-7	Chlorobenze	ene				4.0	25	
124-4	-8-1	Chlorodibror	nomethane				2.5	12	
75-00	-3	Chloroethan	е				7.0	50	
67-66	-3	Chloroform					5.5	50	
74-87	-3	Chlorometha	ane				8.1	50	
95-49	-8	2-Chlorotolu	ene				3.0	25	
106-4	3-4	4-Chlorotolu	ene				3.2	25	
96-12	2-8	1,2-Dibromo	-3-chloropropan	e (DBCP)			8.4	120	
106-9	3-4	1,2-Dibromo	ethane (EDB)				2.2	12	
74-95	i-3	Dibromomet	hane				4.0	25	
95-50)-1	1,2-Dichloro	benzene				2.5	25	
541-7	'3-1	1,3-Dichloro	benzene				4.2	25	

130110-MW-08DR

Laboratory:	Con-Test Ar	nalytical Labo	ratory	Work Order:	15K1033			
Client:	EA Enginee	ring, Science	& Tech	Project:	Freeport, NY			
Matrix:	Ground Wat	er	Laboratory ID:	15K1033-02	File ID:	VF12	20115014.	D
Sampled:	11/20/15 12:	:40	Prepared:	12/01/15 11:07	Analyzed:	12/0	1/15 15:37	
Solids:			Preparation:	SW-846 5030B	Dilution:	25		
Initial/Final:	5 mL / 5 mL							
Batch:	B136579	Sequen	ce: S010378		1500330		ument:	GCMSVOA6
CAS NO).	COMPOUNE)	COI	NC. (µg/L)	MDL	RL	Q
106-46	-7	1,4-Dichloro	benzene			3.8	25	
110-57	-6	trans-1,4-Dic	chloro-2-butene			4.2	50	
75-71-8	3	Dichlorodiflu	oromethane (Freor	n 12)		4.5	50	
75-34-3	3	1,1-Dichloro	ethane			4.0	25	
107-06	-2	1,2-Dichloro	ethane			4.8	25	
75-35-4	1	1,1-Dichloro	ethylene			5.2	25	
156-59	-2	cis-1,2-Dichl	oroethylene		250	3.7	25	
156-60	-5	trans-1,2-Dic	chloroethylene			3.8	25	
78-87-5	5	1,2-Dichloro	propane			3.2	25	
142-28	-9	1,3-Dichloro	propane			2.8	12	
594-20	-7	2,2-Dichloro	propane			4.0	25	
563-58	-6	1,1-Dichloro	propene			3.2	50	
10061-	01-5	cis-1,3-Dichl	oropropene			1.6	12	
10061-	02-6	trans-1,3-Die	chloropropene			2.8	12	
60-29-7	7	Diethyl Ethe	r			5.6	50	
108-20	-3	Diisopropyl I	Ether (DIPE)			4.5	12	
123-91	-1	1,4-Dioxane				660	1200	
100-41	-4	Ethylbenzen	e			3.2	25	
87-68-3	3	Hexachlorob	outadiene			4.2	12	
591-78	-6	2-Hexanone	(MBK)			38	250	
98-82-8	3	Isopropylber	nzene (Cumene)			3.0	25	
99-87-6	5	p-Isopropylte	oluene (p-Cymene)			3.1	25	
1634-0	4-4	Methyl tert-E	Butyl Ether (MTBE)			2.2	25	
75-09-2	2	Methylene C	hloride			80	120	
108-10	-1	4-Methyl-2-p	entanone (MIBK)			37	250	
91-20-3	3	Naphthalene	•			3.0	50	
103-65	-1	n-Propylben	zene			2.8	25	
100-42	-5	Styrene				3.8	25	
630-20	-6	1,1,1,2-Tetra	achloroethane			3.0	25	

130110-MW-08DR

Laboratory: Client: Matrix: Sampled: Solids: Initial/Final:		2:40	•	12/0	Work Ord Project: 1033-02 01/15 11:07 -846 5030B	ler:	15K1033 Freeport, NY File ID: Analyzed: Dilution:	VF12	20115014. 1/15 15:37	
Batch:	B136579	Sequer	nce: Si	010378	Calibration	:	1500330	Instru	iment:	GCMSVOA6
CASIN	10.	COMPOUN	D			CONC.	(µg/L)	MDL	RL	Q
79-34	5	1,1,2,2-Tetr	achloroethan	e				3.2	12	
127-1	8-4	Tetrachloro	ethylene			97	0	4.2	25	
109-9	9-9	Tetrahydrof	uran					27	250	
108-8	8-3	Toluene						2.5	25	
87-61	-6	1,2,3-Trichl	orobenzene					3.5	120	
120-8	2-1	1,2,4-Trichl	orobenzene					4.8	25	
108-7	'0-3	1,3,5-Trichl	orobenzene					4.2	25	
71-55	i-6	1,1,1-Trichl	oroethane					2.4	25	
79-00	-5	1,1,2-Trichl	oroethane					2.9	25	
79-01	-6	Trichloroeth	iylene			15	0	5.0	25	
75-69	-4	Trichloroflu	oromethane (Freon 11)				3.7	50	
96-18	-4	1,2,3-Trichl	oropropane					4.8	50	
76-13	-1	1,1,2-Trichl	oro-1,2,2-trifl	uoroethane (Freon 1			3.5	25	
95-63	-6	1,2,4-Trime	thylbenzene					4.5	25	
108-6	7-8	1,3,5-Trime	thylbenzene					2.5	25	
75-01	-4	Vinyl Chlori	de					3.3	50	
10838	83/106423	m+p Xylene	÷					6.2	50	
95-47	-6	o-Xylene						3.2	25	

130110-MW-11S

Laboratory:	Con-Test Ar	nalytical Laborate	o ry	Work Order:	15K1033			
Client:	EA Enginee	ring, Science &	Fech	Project:	Freeport, NY			
Matrix:	Ground Wat	te r La	aboratory ID:	15K1033-03	File ID:	VF12	20115012.1	D
Sampled:	11/20/15 12	:40 Pi	repared:	12/01/15 11:07	Analyzed:	12/0	1/15 14:45	
Solids:			reparation:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL		6010270	Oslibestien	1500220	la e tas		COMEVIONE
Batch:	B136579	Sequence:	S010378		1500330		ument:	GCMSVOA6
CAS N	10.	COMPOUND		CON	С. (µg/L)	MDL	RL	Q
67-64-		Acetone			UJ	4.9	50	L-04, V-05
107-13		Acrylonitrile				0.58	5.0	
994-05		tert-Amyl Methy	I Ether (TAME)			0.091	0.50	
71-43-		Benzene				0.079	1.0	
108-86		Bromobenzene				0.15	1.0	
74-97-		Bromochlorome				0.22	1.0	
75-27-	-4	Bromodichloror	nethane			0.088	0.50	
75-25-	-2	Bromoform				0.21	1.0	V-05
74-83-	-9	Bromomethane				0.94	5.0	
78-93-	-3	2-Butanone (MI	EK)			2.4	20	
75-65-	-0	tert-Butyl Alcoh	ol (TBA)			2.2	20	V-05
104-51	1-8	n-Butylbenzene	!			0.10	1.0	
135-98	8-8	sec-Butylbenze	ne			0.11	1.0	
98-06-	-6	tert-Butylbenze	ne			0.11	1.0	
637-92	2-3	tert-Butyl Ethyl	Ether (TBEE)			0.075	0.50	
75-15-	-0	Carbon Disulfid	e			1.0	4.0	
56-23-	-5	Carbon Tetrach	loride			0.12	5.0	
108-90	0-7	Chlorobenzene				0.16	1.0	
124-48	8-1	Chlorodibromor	nethane			0.10	0.50	
75-00-	-3	Chloroethane				0.28	2.0	
67-66-	-3	Chloroform				0.22	2.0	
74-87-	-3	Chloromethane				0.32	2.0	
95-49-	-8	2-Chlorotoluene	•			0.12	1.0	
106-43	3-4	4-Chlorotoluene	9			0.13	1.0	
96-12-	-8	1,2-Dibromo-3-	chloropropane ([DBCP)		0.34	5.0	
106-93	3-4	1,2-Dibromoeth	ane (EDB)			0.089	0.50	
74-95-	-3	Dibromomethar	ne			0.16	1.0	
95-50-	-1	1,2-Dichlorober	izene			0.10	1.0	
541-73	3-1	1,3-Dichlorober	izene			0.17	1.0	

130110-MW-11S

Laboratory:	Con-Test A	nalytical Labo	oratory	Work Order:	15K1033			
Client:	EA Enginee	ering, Science	& Tech	Project:	Freeport, NY	/		
Matrix:	Ground Wa	iter	Laboratory ID:	15K1033-03	File ID:	VF12	20115012.	D
Sampled:	11/20/15 12	2:40	Prepared:	12/01/15 11:07	Analyzed:	12/0	1/15 14:45	
Solids:			Preparation:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL		004007		4500000			
Batch:	B136579	Sequen			1500330		ument:	GCMSVOA6
CAS N	10.	COMPOUN	D	COI	NC. (µg/L)	MDL	RL	Q
106-46	6-7	1,4-Dichloro	benzene			0.15	1.0	
110-57	7-6	trans-1,4-Die	chloro-2-butene			0.17	2.0	
75-71-	-8	Dichlorodiflu	oromethane (Free	n 12)		0.18	2.0	
75-34-	-3	1,1-Dichloro	ethane			0.16	1.0	
107-06	6-2	1,2-Dichloro	ethane			0.19	1.0	
75-35-	-4	1,1-Dichloro	ethylene			0.21	1.0	
156-59	9-2	cis-1,2-Dich	loroethylene			0.15	1.0	
156-60	0-5	trans-1,2-Die	chloroethylene			0.15	1.0	
78-87-	-5	1,2-Dichloro	propane			0.13	1.0	
142-28	8-9	1,3-Dichloro	propane			0.11	0.50	
594-20	0-7	2,2-Dichloro	propane			0.16	1.0	
563-58	8-6	1,1-Dichloro	propene			0.13	2.0	
10061	-01-5	cis-1,3-Dich	loropropene			0.062	0.50	
10061	-02-6	trans-1,3-Die	chloropropene			0.11	0.50	
60-29-	-7	Diethyl Ethe	r			0.22	2.0	
108-20	0-3	Diisopropyl	Ether (DIPE)			0.18	0.50	
123-91	1-1	1,4-Dioxane				26	50	
100-41	1-4	Ethylbenzen	ie			0.13	1.0	
87-68-	-3	Hexachlorot	outadiene			0.17	0.50	
591-78	8-6	2-Hexanone	(MBK)			1.5	10	
98-82-	-8	Isopropylber	nzene (Cumene)			0.12	1.0	
99-87-	-6	p-Isopropylte	oluene (p-Cymene))		0.12	1.0	
1634-0	04-4	Methyl tert-E	Butyl Ether (MTBE)			0.090	1.0	
75-09-	-2	Methylene C	Chloride			3.2	5.0	
108-10	D-1	4-Methyl-2-p	pentanone (MIBK)			1.5	10	
91-20-	-3	Naphthalene	e			0.12	2.0	
103-65	5-1	n-Propylben	zene			0.11	1.0	
100-42	2-5	Styrene				0.15	1.0	
630-20	0-6	1,1,1,2-Tetra	achloroethane			0.12	1.0	

3

NW 214116

130110-MW-11S

Laboratory:	Con-Test A	nalytical Labora	-			15K1033			
Client:	EA Engine	ering, Science &	a Tech	Pro	oject:	Freeport, N	(
Matrix:	Ground Wa	ater	Laboratory ID:	15K1033-03		File ID:	VF12	20115012.	D
Sampled:	11/20/15 12	2:40	Prepared:	12/01/15 11:	07	Analyzed:	12/0	1/15 14:45	j
Solids:			Preparation:	SW-846 503	0B	Dilution:	1		
Initial/Final: Batch:	5 mL / 5 ml B136579	L Sequenc	e: S0103	78 Calil	pration:	1500330	Instru	iment:	GCMSVOA6
CASI	NO.	COMPOUND			CONC)_ (μ g/L)	MDL	RL	Q
79-34	4-5	1,1,2,2-Tetrad	chloroethane				0.13	0.50	
127-1	18-4	Tetrachloroet	hylene				0.17	1.0	
109-9	99-9	Tetrahydrofur	an				1.1	10	
108-8	38-3	Toluene					0.10	1.0	
87-61	1-6	1,2,3-Trichlor	obenzene				0.14	5.0	
120-8	32-1	1,2,4-Trichlor	obenzene				0.19	1.0	
108-7	70-3	1,3,5-Trichlor	obenzene				0.17	1.0	
71-55	5-6	1,1,1-Trichlor	oethane				0.094	1.0	
79-00)-5	1,1,2-Trichlor	oethane				0.12	1.0	
79-01	1-6	Trichloroethyl	ene				0.20	1.0	
75-69) -4	Trichlorofluor	omethane (Freo	n 11)			0.15	2.0	
96-18	3-4	1,2,3-Trichlor	opropane				0.19	2.0	
76-13	3-1	1,1,2-Trichlor	o-1,2,2-trifluoroe	thane (Freon 1			0.14	1.0	
95-63	3-6	1,2,4-Trimeth	ylbenzene				0.18	1.0	
108-6	67-8	1,3,5-Trimeth	ylbenzene				0.10	1.0	
75-01	1-4	Vinyl Chloride	9				0.13	2.0	
1083	83/106423	m+p Xylene					0.25	2.0	
95-47	7-6	o-Xylene					0.13	1.0	

130110-MW-11D

Laboratory:	Con-Test A	nalytical Labo	ratory	Work Order:	15K1033			
Client:	EA Enginee	ering, Science	& Tech	Project:	Freeport, NY	•		
Matrix:	Ground Wa	ter	Laboratory ID:	15K1033-04	File ID:	VF1	20115013.	D
Sampled:	11/20/15 13	3:30	Prepared:	12/01/15 11:07	Analyzed:	12/0	1/15 15:11	
Solids:			Preparation:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL							
Batch:	B136579	Sequen	ce: S01037	8 Calibration:	1500330	Instr	ument:	GCMSVOA6
CAS N	0.	COMPOUN	D	CO	NC. (μ g/L)	MDL	RL	Q
67-64-	1	Acetone			UJ	4.9	50	L-04, V-05
107-13	3-1	Acrylonitrile				0.58	5.0	
994-05	5-8	tert-Amyl Me	ethyl Ether (TAME)			0.091	0.50	
71-43-	2	Benzene				0.079	1.0	
108-86	6-1	Bromobenze	ene			0.15	1.0	
74-97-	5	Bromochloro	omethane			0.22	1.0	
75-27-	4	Bromodichlo	romethane			0.088	0.50	
75-25-	2	Bromoform				0.21	1.0	¥=05
74-83-	9	Bromometha	ane			0.94	5.0	
78-93-	3	2-Butanone	(MEK)			2.4	20	
75-65-	0	tert-Butyl Ald	cohol (TBA)			2.2	20	¥-05
104-51	-8	n-Butylbenzo	ene			0.10	1.0	
135-98	3-8	sec-Butylber	nzene			0.11	1.0	
98-06-	6	tert-Butylber	zene			0.11	1.0	
637-92	2-3	tert-Butyl Etl	nyl Ether (TBEE)			0.075	0.50	
75-15-	0	Carbon Disu	lfide			1.0	4.0	
56-23-	5	Carbon Tetra	achloride			0.12	5.0	
108-90)-7	Chlorobenze	ene			0.16	1.0	
124-48	3-1	Chlorodibror	nomethane			0.10	0.50	
75-00-		Chloroethan				0.28	2.0	
67-66-		Chloroform				0.22	2.0	
74-87-		Chlorometha	ane			0.32	2.0	
95-49-		2-Chlorotolu				0.12	1.0	
106-43		4-Chlorotolu				0.13	1.0	
96-12-			-3-chloropropane ((DBCP)		0.34	5.0	
106-93			ethane (EDB)	· -· /		0.089	0.50	
74-95-		Dibromomet				0.16	1.0	
95-50-		1,2-Dichloro				0.10	1.0	
541-73		1,3-Dichloro				0.17	1.0	
0412/0	~ 1	r,o bienioro	JUNEONG	1		5.17	1.0	

NW 21411p

130110-MW-11D

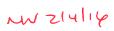
Laboratory:	Con-Test A	nalytical Labor	atory	Work Order:	15K1033			
Client:	EA Enginee	ering, Science a	& Tech	Project:	Freeport, N	Y		
Matrix:	Ground Wa	iter	Laboratory ID:	15K1033-04	File ID:	VF12	0115013.	D
Sampled:	11/20/15 13	3:30	Prepared:	12/01/15 11:07	Analyzed:	12/01	1/15 15:11	
Solids:			Preparation:	SW-846 5030B	Dilution:	1		
Initial/Final: Batch:	5 mL / 5 mL B136579		xe: S01037	8 Calibration:	1500330	Inotra	iment:	GCMSVOA6
CASI		Sequenc COMPOUND			С. (µg/L)	MDL	RL	Q
106-4	46-7	1,4-Dichlorob	enzene			0.15	1.0	
110-5			hloro-2-butene			0.17	2.0	
75-71			promethane (Free	n 12)		0.18	2.0	
75-34		1,1-Dichloroe		···· · /		0.16	1.0	
107-0		1,2-Dichloroe				0.19	1.0	
75-35	5-4	1,1-Dichloroe				0.21	1.0	
156-5	59-2	cis-1,2-Dichlo	proethylene			0.15	1.0	
156-6	60-5	trans-1,2-Dic	hloroethylene			0.15	1.0	
78-87	7-5	1,2-Dichlorop	propane			0.13	1.0	
142-2	28-9	1,3-Dichlorop	oropane			0.11	0.50	
594-2	20-7	2,2-Dichlorop	oropane			0.16	1.0	
563-5	58-6	1,1-Dichlorop	oropene			0.13	2.0	
1006	1-01-5	cis-1,3-Dichlo	propropene			0.062	0.50	
1006	1-02-6	trans-1,3-Dic	hloropropene			0.11	0.50	
60-29) -7	Diethyl Ether				0.22	2.0	
108-2	20-3	Diisopropyl E	ther (DIPE)			0.18	0.50	
123-9	91-1	1,4-Dioxane				26	50	
100-4	¥1 - 4	Ethylbenzene	e			0.13	1.0	
87-68	3-3	Hexachlorob	utadiene			0.17	0.50	
591-7	78-6	2-Hexanone	(MBK)			1.5	10	
98-82	2-8	Isopropylben	zene (Cumene)			0.12	1.0	
99-87	7-6	p-Isopropylto	luene (p-Cymene))		0.12	1.0	
1634-		Methyl tert-B	utyl Ether (MTBE)			0.090	1.0	
75-09		Methylene Cl				3.2	5.0	
108-1			entanone (MIBK)			1.5	10	
91-20		Naphthalene				0.12	2.0	
103-6		n-Propylbenz	ene			0.11	1.0	
100-4		Styrene				0.15	1.0	
630-2	20-6	1,1,1,2-Tetra	chloroethane			0.12	1.0	

130110-MW-11D

Laboratory: Client:		Analytical Labo ering, Science	-	Work Proje	c Order: ect:	15K1033 Freeport, N	Y		
Matrix:	Ground Wa	ater	Laboratory ID:	15K1033-04		File ID:	VF12	0115013.	D
Sampled:	11/20/15 1	3:30	Prepared:	12/01/15 11:03	7	Analyzed:	12/01	1/15 15:11	
Solids:			Preparation:	SW-846 5030	3	Dilution:	1		
Initial/Final:	5 mL / 5 m								
Batch:	B136579	Sequen	ice: \$01037	78 Calibra	ation:	1500330	Instru	ment:	GCMSVOA6
CAS	NO.	COMPOUN	D		CONC	С. (µg/L)	MDL	RL	Q
79-34	1-5	1,1,2,2-Tetra	achloroethane				0.13	0.50	
127-1	8-4	Tetrachloroe	ethylene			1.5	0.17	1.0	
109-9	99-9	Tetrahydrofi	uran				1.1	10	
108-8	38-3	Toluene					0.10	1.0	
87-61	1-6	1,2,3-Trichlo	probenzene				0.14	5.0	
120-8	32-1	1,2,4-Trichlo	probenzene				0.19	1.0	
108-7	70-3	1,3,5-Trichlo	probenzene				0.17	1.0	
71-55	5-6	1,1,1-Trichlo	proethane				0.094	1.0	
79-00)-5	1,1,2-Trichlo	proethane				0.12	1.0	
79-01	1-6	Trichloroeth	ylene				0.20	1.0	
75-69)-4	Trichlorofluc	promethane (Freon	11)			0.15	2.0	
96-18	3-4	1,2,3-Trichlo	propropane				0.19	2.0	
76-13	3-1	1,1,2-Trichlo	pro-1,2,2-trifluoroet	thane (Freon 1			0.14	1.0	
95-63	3-6	1,2,4-Trimet	hylbenzene				0.18	1.0	
108-6	§7-8	1,3,5-Trimet	hylbenzene				0.10	1.0	
75-01	-4	Vinyl Chlorid	le				0.13	2.0	
10838	83/106423	m+p Xylene					0.25	2.0	
95-47	7-6	o-Xylene					0.13	1.0	

130110-RB-111915

Laboratory:	Con-Test A	nalytical Labo	ratory	Work	Order:	15K1033			
Client:	EA Enginee	ering, Science	& Tech	Projec	t:	Freeport, NY			
Matrix:	Ground Wa	ter	Laboratory ID:	15K1033-05		File ID:	VF1	120115009.0	D
Sampled:	11/20/15 14	1:00	Prepared:	12/01/15 11:07		Analyzed:	12/0	01/15 13:28	
Solids:			Preparation:	SW-846 5030B		Dilution:	1		
Initial/Final:	5 mL / 5 mL								
Batch:	B136579	Sequen		78 Calibrati		1500330		rument:	GCMSVOA6
CAS N	0.	COMPOUNI)		CONC.	(µg/L)	MDL	RL	Q
67-64-	-1	Acetone				UJ	4.9	50	L-04, V-05
107-13	3-1	Acrylonitrile					0.58	5.0	
994-0	5-8	tert-Amyl Me	thyl Ether (TAME)			0.091	0.50	
71-43-	-2	Benzene					0.079	1.0	
108-80	6-1	Bromobenze	ene				0.15	1.0	
74-97-	-5	Bromochloro	methane				0.22	1.0	
75-27-	-4	Bromodichlo	romethane				0.088	0.50	
75-25-	-2	Bromoform					0.21	1.0	-∀-05-
74-83-	-9	Bromometha	ine				0.94	5.0	
78-93-	-3	2-Butanone	(MEK)				2.4	20	
75-65-	-0	tert-Butyl Ald	cohol (TBA)				2.2	20	V-05
104-5	1-8	n-Butylbenzo	ene				0.10	1.0	
135-98	8-8	sec-Butylber	izene				0.11	1.0	
98-06-	-6	tert-Butylber	izene				0.11	1.0	
637-92	2-3	tert-Butyl Etł	yl Ether (TBEE)				0.075	0.50	
75-15-	-0	Carbon Disu	lfide				1.0	4.0	
56-23-	-5	Carbon Tetra	achloride				0.12	5.0	
108-90	0-7	Chlorobenze	ene				0.16	1.0	
124-48	8-1	Chlorodibror	nomethane				0.10	0.50	
75-00-	-3	Chloroethan	e				0.28	2.0	
67-66-	-3	Chloroform					0.22	2.0	
74-87-	-3	Chlorometha	ane				0.32	2.0	
95-49-	-8	2-Chlorotolu	ene				0.12	1.0	
106-43	3-4	4-Chlorotolu	ene				0.13	1.0	
96-12-	-8	1,2-Dibromo	-3-chloropropane	(DBCP)			0.34	5.0	
106-93	3-4	1,2-Dibromo	ethane (EDB)				0.089	0.50	
74-95-	-3	Dibromomet	hane				0.16	1.0	
95-50-	·1	1,2-Dichloro	benzene				0.10	1.0	
541-73	3-1	1,3-Dichloro	benzene				0.17	1.0	


82

5

nu zlylip

130110-RB-111915

Laboratory:	Con-Test A	nalytical Laboratory		Work Order:	15K1033			
Client:	EA Enginee	ering, Science & Tec	:h	Project:	Freeport, N	(
Matrix:	Ground Wa	ter Labo	ratory ID:	15K1033-05	File ID:	VF12	0115009.	D
Sampled:	11/20/15 14	:00 Prep	ared:	12/01/15 11:07	Analyzed:	12/01	/15 13:28	
Solids:		Prep	aration:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL							
Batch:	B136579	Sequence:	S01037	'8 Calibration:	1500330	Instru	ment:	GCMSVOA6
CAS	NO.	COMPOUND		CON	С. (µg/L)	MDL	RL	Q
106-4	46-7	1,4-Dichlorobenze	ne			0.15	1.0	
110-5	57-6	trans-1,4-Dichloro-	-2-butene			0.17	2.0	
75-7	1-8	Dichlorodifluorome	ethane (Fred	n 12)		0.18	2.0	
75-34	4-3	1,1-Dichloroethane	e			0.16	1.0	
107-0	06-2	1,2-Dichloroethane	9			0.19	1.0	
75-35	5-4	1,1-Dichloroethyle	ne			0.21	1.0	
156-5	59-2	cis-1,2-Dichloroeth	nylene			0.15	1.0	
156-6	60-5	trans-1,2-Dichloro	ethylene			0.15	1.0	
78-87	7-5	1,2-Dichloropropa	ne			0.13	1.0	
142-2	28-9	1,3-Dichloropropa	ne			0.11	0.50	
594-2	20-7	2,2-Dichloropropa	ne			0.16	1.0	
563-5	58-6	1,1-Dichloroprope	ne			0.13	2.0	
1006	61-01-5	cis-1,3-Dichloropro	opene			0.062	0.50	
1006	61-02-6	trans-1,3-Dichloro	propene			0.11	0.50	
60-29	9-7	Diethyl Ether				0.22	2.0	
108-2	20-3	Diisopropyl Ether ((DIPE)			0.18	0.50	
123-9	91-1	1,4-Dioxane				26	50	
100-4	41-4	Ethylbenzene				0.13	1.0	
87-68	8-3	Hexachlorobutadie	ene			0.17	0.50	
591-7	78-6	2-Hexanone (MBK	()			1.5	10	
98-82	2-8	Isopropylbenzene	(Cumene)			0.12	1.0	
99-8	7-6	p-Isopropyltoluene	e (p-Cymene)		0.12	1.0	
1634	1-04-4	Methyl tert-Butyl E	ther (MTBE)		0.090	1.0	
75-09	9-2	Methylene Chlorid	е			3.2	5.0	
108-	10-1	4-Methyl-2-pentan	one (MIBK)			1.5	10	
91-20	0-3	Naphthalene				0.12	2.0	
103-0	65-1	n-Propylbenzene				0.11	1.0	
	42-5	Styrene				0.15	1.0	
	20-6	1,1,1,2-Tetrachlor				0.12	1.0	

130110-RB-111915

Laboratory: Client:	EA Engine	nalytical Labora ering, Science &	-	Work Projec		15K1033 Freeport, NY			
Matrix:	Ground Wa	ater	aboratory ID:	15K1033-05		File ID:	VF12	0115009.	D
Sampled:	11/20/15 14	4:00 I	Prepared:	12/01/15 11:07		Analyzed:	12/01	1/15 13:28	
Solids:			Preparation:	SW-846 5030B		Dilution:	1		
Initial/Final:	5 mL / 5 ml		C0102			1500220	Inotes	mont	GCMSVOA6
Batch:	B136579	Sequence	e: S01037	78 Calibrat		1500330		iment:	
CAS	NO.	COMPOUND			CONC	. (μg/L)	MDL	RL	Q
79-34	1-5	1,1,2,2-Tetrac	hloroethane				0.13	0.50	
127-1	18-4	Tetrachloroeth	ylene				0.17	1.0	
109-9	9-9	Tetrahydrofura	n				1.1	10	
108-8	38-3	Toluene					0.10	1.0	
87-61	i-6	1,2,3-Trichloro	benzene				0.14	5.0	
120-8	32-1	1,2,4-Trichloro	benzene				0.19	1.0	
108-7	70-3	1,3,5-Trichloro	benzene				0.17	1.0	
71-55	5-6	1,1,1-Trichlor	oethane				0.094	1.0	
79-00)-5	1,1,2-Trichlor	bethane				0.12	1.0	
79-01	1-6	Trichloroethyl	ene				0.20	1.0	
75-69	9-4	Trichlorofluoro	methane (Freor	n 11)			0.15	2.0	
96-18	3-4	1,2,3-Trichlor	propane				0.19	2.0	
76-13	3-1	1,1,2-Trichlore	o-1,2,2-trifluoroe	thane (Freon 1			0.14	1.0	
95-63	3-6	1,2,4-Trimeth	lbenzene				0.18	1.0	
108-6	67-8	1,3,5-Trimeth	lbenzene				0.10	1.0	
75-01	1-4	Vinyl Chloride					0.13	2.0	
1083	83/106423	m+p Xylene					0.25	2.0	
95-47	7-6	o-Xylene					0.13	1.0	

Trip Blank

Laboratory:	Con-Test A	nalytical Labo	ratory	Work Order:	15K1033			
Client:	EA Enginee	ering, Science	& Tech	Project:	Freeport, NY			
Matrix:	Trip Blank \	Vater	Laboratory ID:	15K1033-06	File ID:	VF1	20115008.0	D
Sampled:	11/20/15 14	:30	Prepared:	12/01/15 11:07	Analyzed:	12/0)1/15 13:02	
Solids:			Preparation:	SW-846 5030B	Dilution:	1		
Initial/Final:	5 mL / 5 mL							
Batch:	B136579	Sequen			1500330		rument:	GCMSVOA6
CAS N	0.	COMPOUNE)	CON	IC. (µg/L)	MDL	RL	Q
67-64-	-1	Acetone			67	4.9	50	L-04; V-05
107-13	3-1	Acrylonitrile				0.58	5.0	
994-05	5-8	tert-Amyl Me	thyl Ether (TAME)			0.091	0.50	
71-43-	-2	Benzene				0.079	1.0	
108-86	6-1	Bromobenze	ne			0.15	1.0	
74-97-	-5	Bromochloro	methane			0.22	1.0	
75-27-	-4	Bromodichlo	romethane			0.088	0.50	
75-25-	-2	Bromoform				0.21	1.0	V-05
74-83-	-9	Bromometha	ine			0.94	5.0	
78-93-	-3	2-Butanone	(MEK)			2.4	20	
75-65-	-0	tert-Butyl Alc	ohol (TBA)			2.2	20	V-05
104-51	1-8	n-Butylbenze	ene			0.10	1.0	
135-98	8-8	sec-Butylber	izene			0.11	1.0	
98-06-	-6	tert-Butylben	zene			0.11	1.0	
637-92	2-3	tert-Butyl Etł	yl Ether (TBEE)			0.075	0.50	
75-15-	-0	Carbon Disu	lfide			1.0	4.0	
56-23-	-5	Carbon Tetra	achloride			0.12	5.0	
108-90)-7	Chlorobenze	ne			0.16	1.0	
124-48	3-1	Chlorodibror	nomethane			0.10	0.50	
75-00-	-3	Chloroethan	e			0.28	2.0	
67-66-	-3	Chloroform				0.22	2.0	
74-87-	-3	Chlorometha	ine			0.32	2.0	
95-49-	-8	2-Chlorotolu	ene			0.12	1.0	
106-43	3-4	4-Chlorotolu	ene			0.13	1.0	
96-12-	-8	1,2-Dibromo	-3-chloropropane ([DBCP)		0.34	5.0	
106-93	3-4	1,2-Dibromo	ethane (EDB)			0.089	0.50	
74-95-	-3	Dibromomet	hane			0.16	1.0	
95-50-	-1	1,2-Dichloro	benzene			0.10	1.0	
541-73	3-1	1,3-Dichloro	benzene			0.17	1.0	

 φ

90

112/4/14

Trip Blank

Laboratory:	Con-Test A	nalytical Labo	oratory	Work O	rder:	15K1033			
Client:	EA Enginee	ering, Science	e & Tech	Project:		Freeport, NY			
Matrix:	Trip Blank \	Water	Laboratory ID:	15K1033-06		File ID:	VF1	20115008.	D
Sampled:	11/20/15 14	4:30	Prepared:	12/01/15 11:07		Analyzed:	12/0)1/15 13:02	
Solids:			Preparation:	SW-846 5030B		Dilution:	1		
Initial/Final:	5 mL / 5 mL								
Batch:	B136579	Sequer	nce: S01037	8 Calibratio	n.	1500330	Inst	rument:	GCMSVOA6
CASI	10.	COMPOUN	D		CONC.	(μ g/L)	MDL	RL	Q
106-4	-6-7	1,4-Dichloro	obenzene				0.15	1.0	
110-5	7-6	trans-1,4-Di	chloro-2-butene				0.17	2.0	
75-71	-8	Dichlorodifl	uoromethane (Freo	n 12)			0.18	2.0	
75-34	-3	1,1-Dichloro	bethane				0.16	1.0	
107-0	6-2	1,2-Dichloro	bethane				0.19	1.0	
75-35	-4	1,1-Dichloro	bethylene				0.21	1.0	
156-5	i9-2	cis-1,2-Dich	loroethylene				0.15	1.0	
156-6	0-5	trans-1,2-Di	chloroethylene				0.15	1.0	
78-87	-5	1,2-Dichloro	propane				0.13	1.0	
142-2	8-9	1,3-Dichlord	propane				0.11	0.50	
594-2	20-7	2,2-Dichloro	propane				0.16	1.0	
563-5	8-6	1,1-Dichloro	propene				0.13	2.0	
10061	1-01-5	cis-1,3-Dich	lloropropene				0.062	0.50	
10061	1-02-6	trans-1,3-Di	ichloropropene				0.11	0.50	
60-29)-7	Diethyl Ethe	F				0.22	2.0	
108-2	.0-3	Diisopropyl	Ether (DIPE)				0.18	0.50	
123-9	91-1	1,4-Dioxane	9				26	50	
100-4	-1-4	Ethylbenzer	ne				0.13	1.0	
87-68	-3	Hexachloro	butadiene				0.17	0.50	
591-7	'8-6	2-Hexanone	e (MBK)				1.5	10	
98-82	2-8	Isopropylbe	nzene (Cumene)				0.12	1.0	
99-87	-6	p-Isopropyli	toluene (p-Cymene)			0.12	1.0	
1634-	-04-4	Methyl tert-	Butyl Ether (MTBE)			0.090	1.0	
75-09	-2	Methylene (Chloride				3.2	5.0	
108-1	0-1	4-Methyl-2-	pentanone (MIBK)				1.5	10	
91-20	-3	Naphthalen	е				0.12	2.0	
103-6	5-1	n-Propylber	nzene				0.11	1.0	
100-4	2-5	Styrene					0.15	1.0	
630-2	20-6	1,1,1,2-Tetr	achloroethane				0.12	1.0	

mu ziulip

91

 φ

Trip Blank

Laboratory: Client: Matrix: Sampled: Solids:	EA Engine Trip Blank 11/20/15 1	4:30	e & Tech.	tory ID: ed:			15K1033 Freeport, NY File ID: Analyzed: Dilution:	VF12	20115008. 1/15 13:02	
Initial/Final: Batch:	5 mL / 5 m B136579	L Seque	nce:	S010378	Calib	ration:	1500330	Instru	ıment:	GCMSVOA6
CAS	NO.	COMPOUN	ID			CONC	. (μg/L)	MDL	RL	Q
79-34	1-5	1,1,2,2-Teti	rachloroe	thane				0.13	0.50	
127-1	8-4	Tetrachloro	ethylene					0.17	1.0	
109-9	9-9	Tetrahydrof	furan					1.1	10	
108-8	38-3	Toluene						0.10	1.0	
87-61	I-6	1,2,3-Trichl	orobenze	ene				0.14	5.0	
120-8	32-1	1,2,4-Trichl	orobenze	ene				0.19	1.0	
108-7	70-3	1,3,5-Trichl	orobenze	ene				0.17	1.0	
71-55	5-6	1,1,1-Trichl	oroethan	e				0.094	1.0	
79-00)-5	1,1,2-Trichl	oroethan	e				0.12	1.0	
7 9 -01	1-6	Trichloroet	nylene					0.20	1.0	
75-69	9-4	Trichloroflu	orometha	ane (Freon 1	1)			0.15	2.0	
96-18	3-4	1,2,3-Trichl	oropropa	ne				0.19	2.0	
76-13	3-1	1,1,2-Trichl	loro-1,2,2	-trifluoroeth	ane (Freon 1			0.14	1.0	
95-63	3-6	1,2,4-Trime	ethylbenz	ene				0.18	1.0	
108-6	67-8	1,3,5-T ri me	ethylbenz	ene				0.10	1.0	
75-01	1-4	Vinyl Chlor	ide					0.13	2.0	
1083	83/106423	m+p Xylen	e					0.25	2.0	
95-47	7-6	o-Xylene						0.13	1.0	

ŕ

92

b

no zielie

DATA USABILITY SUMMARY REPORT METAL ETCHING, FREEPORT, LONG ISLAND, NEW YORK

Client:	EA Engineering, Science and Technology, Syracuse, New York
SDG:	15K1053
Laboratory:	Con-Test Analytical Laboratory, East Longmeadow, Massachusetts
Site:	Metal Etching, Freeport, Long Island, New York
Date:	February 4, 2016

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	130110-OA-111915	15K1053-01	Air
2	130110-IA-111915	15K1053-02	Air
3	130110-DUP-111915	15K1053-03	Air

A Data Usability Summary Review was performed on the analytical data for three air samples collected on November 19, 2015 by EA Engineering at the Metal Etching site in Freeport, Long Island, New York. The samples were analyzed under "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition January 1999, EPA/625/R-96/010B", Compendium Method TO-15, "Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS)".

The data have been evaluated according to the protocols and quality control (QC) requirements of the USEPA Region II Data Review Standard Operating Procedure (SOP) Number HW-31, Revision 4, October 2006: Validating Air Samples - Volatile Organic Analysis of Ambient Air in Canister and the reviewer's professional judgment.

Organics

The following items/criteria were reviewed for this report:

- Data Completeness
- Cover letter, Narrative, and Data Reporting Forms
- Canister Certification Blanks
- Canister Certification Pressures Differences
- Chains-of-Custody and Traffic Reports
- Holding Times
- Laboratory Control Samples
- Surrogate Spike Recoveries
- GC/MS Tuning
- Method Blank
- Initial Calibration
- Continuing Calibration
- Compound Quantitation

- Internal Standard (IS) Area Performance
- Field Duplicate Sample Precision

The items listed above were technically in compliance with the method and SOP criteria with the exceptions discussed in the text below. The data have been reviewed according to the procedures outlined above and qualified accordingly.

Overall Evaluation of Data and Potential Usability Issues

There were no rejections of data.

Overall the remaining data is acceptable for the intended purposes. Data were qualified for the following deficiencies.

 Benzyl chloride was qualified as estimated in all samples due to a high continuing calibration %D value.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Cover letter, Narrative, and Data Reporting Forms

• All criteria were met

Canister Certification Blanks

• The canister certification blanks were free of contamination.

Canister Certification Pressures Differences

• All criteria were met.

Chains-of-Custody and Traffic Reports

• All criteria were met

Holding Times

• All samples were analyzed within 30 days for air samples.

Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
B136527-BS1	Benzyl Chloride	137%	None	All ND

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

GC/MS Tuning

• All criteria were met.

Method Blank

• The method blanks were free of contamination.

Field and Trip Blanks

• Feld QC samples were not collected.

Initial Calibration

• All initial calibrations exhibited acceptable %RSD and/or correlation coefficients and average RRF values.

Continuing Calibration

 The following table presents compounds that exceeded 30 percent deviation (%D) and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
11/24/15	Benzyl chloride	36.6%	J/UJ	All Samples

Compound Quantitation

EDS Sample ID #2 was analyzed at a 20X dilution for ethanol due to a high concentration. • The reporting limits were adjusted accordingly. No action was taken.

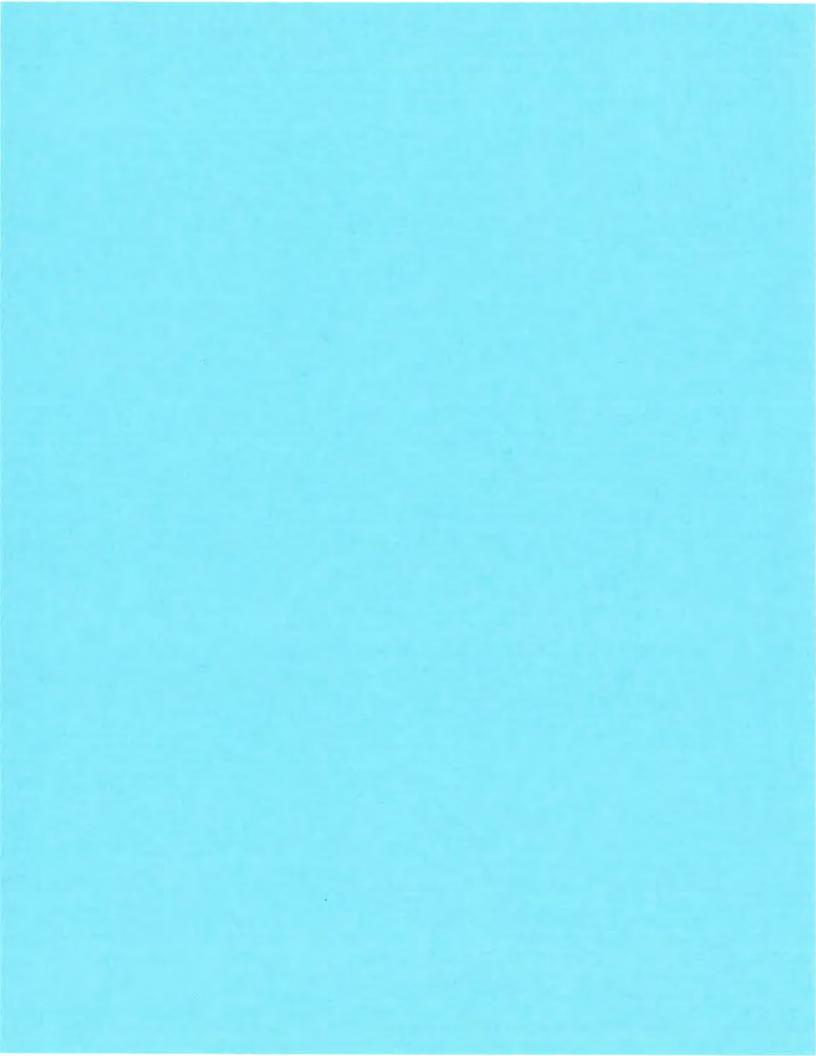
Internal Standard (IS) Area Performance

All criteria were met. •

Field Duplicate Sample Precision

• Field duplicate results are summarized below.

Compound	130110-IA-111915 ppbv	130110-DUP-111915 ppbv	RPD	Qualifier
Acetone	24	23	4%	None
Benzene	0.16	0.17	6%	None
1,3-Butadiene	0.086	0.076	12%	None
Carbon tetrachloride	0.072	0.071	1%	None
Chloromethane	0.65	0.67	3%	None
Cyclohexane	0.14	0.15	7%	None
Dichlorodifluoromethane	0.13	0.13	0%	None
Ethyl acetate	0.30	0.30	0%	None
Ethylbenzene	0.081	0.087	7%	None
Heptane	0.18	0.18	0%	None
Naphthalene	0.019U	0.036	NC	None
Styrene	0.084	0.12	35%	None
Toluene	14	14	0%	None
Trichlorofluoromethane	0.20	0.20	0%	None
1,2,4-Trimethylbenzene	0.14	0.15	7%	None
1,3,5-Trimethylbenzene	0.046	0.051	10%	None
Vinyl acetate	0.89	0.76	16%	None
m,p-Xylene	0.30	0.31	3%	None
o-Xylene	0.11	0.12	9%	None
Ethanol	270	270	0%	None


Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

any Weaver Dated: 2/8/16 Nancy Weaver Senior Chemist

Data Qualifiers

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

130110-OA-111915

Laboratory:	Con-Test A	nalytical La	boratory	Work Order	: 15K1053			
Client:	EA Enginee	ering, Scien	ce & Tech	Project:	Freeport, N	Y		
Matrix:	Ambient Ai	r	Laboratory ID:	15K1053-01	File ID:	F112	410.D	
Sampled:	11/19/15 13	3:17	Prepared:	11/24/15 13:22	Analyzed:	11/24	/15 19:26	
Solids:			Preparation:	TO-15 Prep	Dilution:	0.702		
nitial/Final: Batch:	400 mL / 40 B136527		ence: S01011	6 Calibration:	1400057	Instru	ment:	SYSF
CAS		COMPOU			NC. (ppbv)	MDL	RL	Q
67-64		Acetone			8.3	0.49	1.4	
71-43		Benzene			0.15	0.018	0.035	
100-4		Benzyl ch	loride		u.iu	0.0068	0.035	
75-27		-	hloromethane			0.0076	0.035	
75-25		Bromofori				0.0067	0.035	
74-83		Bromome				0.024	0.035	
106-9		1,3-Butad				0.018	0.035	
78-93		2-Butanor				0.026	1.4	
75-15	5-0	Carbon D				0.012	0.35	
56-23	8-5	Carbon Te	etrachloride		0.069	0.0085	0.035	
108-9	0-7	Chlorober	izene			0.012	0.035	
75-00)-3	Chloroeth	ane			0.013	0.035	
67-66	5-3	Chlorofor	n			0.0082	0.035	
74-87	/-3	Chlorome	thane		0.50	0.015	0.070	
110-8	32-7	Cyclohexa	ane		0.12	0.020	0.035	
124-4	8-1	Dibromoc	hloromethane			0.0093	0.035	
106-9	93-4	1,2-Dibro	moethane (EDB)			0.0079	0.035	
95-50)-1	1,2-Dichlo	probenzene			0.0093	0.035	
541-7	73-1	1,3-Dichlo	probenzene			0.0078	0.035	
106-4	16-7	1,4-Dichle	probenzene			0.0088	0.035	
75-71	1-8	Dichlorod	ifluoromethane (Fred	on 12)	0.13	0.015	0.035	
75-34	1-3	1,1-Dichlo	proethane			0.0099	0.035	
107-0)6-2	1,2-Dichlo	proethane			0.0098	0.035	
75-35	5-4	1,1-Dichle	proethylene			0.0086	0.035	
156-5	59-2	cis-1,2-Di	chloroethylene			0.013	0.035	
156-6	30-5	trans-1,2-	Dichloroethylene			0.0093	0.035	
78-87	7-5	1,2-Dichle	propropane			0.012	0.035	
1006	1-01-5	cis-1,3-Di	chloropropene			0.0093	0.035	
1006	1-02-6	trans-1,3-	Dichloropropene			0.0094	0.035	

NW 214116

l

130110-OA-111915

Laboratory:	Con-Test A	nalytical La	boratory	Work C	rder:	15K1053			
Client:	EA Enginee	ering, Scien	ce & Tech	Project		Freeport, N	Y		
Matrix:	Ambient Ai	r	Laboratory ID:	15K1053-01		File ID:	F112	410.D	
Sampled:	11/19/15 13	3:17	Prepared:	11/24/15 13:22		Analyzed:	11/24	1/15 19:26	
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702		
Initial/Final:	400 mL / 40		00404			1400057	la star		CVOF.
Batch:	B136527	Sequ		16 Calibratio		1400057		ment:	SYSF
CAS N	10.	COMPOU	ND		CONC	. (ppbv)	MDL	RL	Q
76-14	-2	1,2-Dichlo	ro-1,1,2,2-tetrafluo	roethane (Freon			0.0084	0.035	
123-9)1-1	1,4-Dioxai	ne				0.23	0.35	
64-17-	-5	Ethanol			4	.9	0.63	1.4	
141-78	'8-6	Ethyl Acet	ate		0.0	074	0.026	0.035	
100-4	1-4	Ethylbenz	ene		0.0	058	0.0097	0.035	
622-9	6-8	4-Ethyltolu	lene				0.0079	0.035	
142-82	2-5	Heptane			0	.17	0.011	0.035	
87-68-	-3	Hexachlor	obutadiene				0.013	0.035	
110-54	64-3	Hexane					0.062	1.4	
591-78	'8-6	2-Hexano	ne (MBK)				0.0090	0.035	
67-63-	-0	Isopropan	ol				0.043	1.4	
1634-0	-04-4	Methyl ter	t-Butyl Ether (MTBI	Ξ)			0.011	0.035	
75-09-	-2	Methylene	Chloride				0.043	0.35	
108-10	0-1	4-Methyl-2	2-pentanone (MIBK)			0.0084	0.035	
91-20-	-3	Naphthale	ne				0.019	0.035	
115-0	17-1	Propene					0.11	1.4	
100-42	2-5	Styrene			0.	058	0.0068	0.035	
79-34-	-5	1,1,2,2-Te	trachloroethane				0.0084	0.035	
127-18	8-4	Tetrachlor	oethylene				0.010	0.035	
109-99	9-9	Tetrahydro	ofuran				0.015	0.035	
108-8	8-3	Toluene			1	1.0	0.011	0.035	
120-82	2-1	1,2,4-Tricl	nlorobenzene				0.013	0.035	
71-55-	-6	1,1,1-Tricl	loroethane				0.0063	0.035	
79-00-	-5	1,1,2-Tricl	nloroethane				0.011	0.035	
79-01-	-6	Trichloroe	thylene				0.010	0.035	
75-69-	-4	Trichlorofl	uoromethane (Fred	on 11)	0	.20	0.012	0.14	
76-13-	-1	1,1,2-Tricl	nloro-1,2,2-trifluoro	ethane (Freon 1			0.0098	0.14	
95-63-	-6	1,2,4-Trim	ethylbenzene		0.	078	0.0086	0.035	
108-6	57-8	1,3,5-Trim	ethylbenzene				0.0070	0.035	

29

1

NW 214/14

130110-OA-111915

Laboratory:	Con-Test A	nalytical Labo	pratory	Work Order:	15K1053			
Client:	EA Engine	ering, Science	e & Tech	Project:	Freeport, N	Y		
Matrix:	Ambient Ai	r	Laboratory ID:	15K1053-01	File ID:	F112	2410.D	
Sampled:	11/19/15 1	3:17	Prepared:	11/24/15 13:22	Analyzed:	11/2	4/15 19:26	
Solids:			Preparation:	TO-15 Prep	Dilution:	0.702		
Initial/Final:	400 mL / 4	00 mL						
Batch:	B136527	Sequer	nce: S010116	Calibration:	1400057	Instru	ument:	SYSF
CASI	NO.	COMPOUN	D	co	NC. (ppbv)	MDL	RL	Q
108-0)5-4	Vinyl Acetat	e			0.018	0.70	
		Vinyl Chlori	ah			0.015	0.035	
75-01	1-4	VINYI CHION	16			0.010	0.000	
	-20-7P/M	m&p-Xylene			0.22	0.018	0.070	

1

130110-IA-111915

Laboratory:	: Con-Test	Analytical Laborate	огу	Work Orde	r: 15K	1053				
Client:	EA Engine	ering, Science &	Tech	Project:	Free	eport, N	(
Matrix:	Indoor air	La	aboratory ID:	15K1053-02	File	ID:	F112	412.D		
Sampled:	11/19/15 1	3:18 P	repared:	11/24/15 13:22	Anal	lyzed:	11/24	4/15 20:55		
Solids:		Р	reparation:	TO-15 Prep	Dilut	tion:	0.702			
Initial/Final:		60 mL								
Batch:	B136527	Sequence:	S010116	Calibration;	1400	0057	Instru	ument:	SYSF	
C/	AS NO.	COMPOUND		C(ONC. (ppbv)	MDL	RL	Q	
6	7-64-1	Acetone			24		0.49	1.4		
7	1-43-2	Benzene			0.16		0.018	0.035		
10	00-44-7	Benzyl chloride)		L	15	0.0068	0.035		
7!	5-27-4	Bromodichloror	methane				0.0076	0.035		
7	5-25-2	Bromoform					0.0067	0.035		
74	4-83-9	Bromomethane)				0.024	0.035		
10	06-99-0	1,3-Butadiene			0.086		0.018	0.035		
78	8-93-3	2-Butanone (M	EK)				0.026	1.4		
7:	5-15-0	Carbon Disulfic	le				0.012	0.35		
50	6-23-5	Carbon Tetrach	nloride		0.072		0.0085	0.035		
10	08-90-7	Chlorobenzene)				0.012	0.035		
7	5-00-3	Chloroethane					0.013	0.035		
6	7-66-3	Chloroform					0.0082	0.035		
74	4-87-3	Chloromethane)		0.65		0.015	0.070		
1	10-82-7	Cyclohexane			0.14		0.020	0.035		
1:	24-48-1	Dibromochloro	methane				0.0093	0.035		
11	06-93-4	1,2-Dibromoeth	nane (EDB)				0.0079	0.035		
9	5-50-1	1,2-Dichlorobe	nzene				0.0093	0.035		
54	41-73-1	1,3-Dichlorobe	nzene				0.0078	0.035		
10	06-46-7	1,4-Dichlorobe	nzene				0.0088	0.035		
7	5-71-8	Dichlorodifluor	omethane (Freon	12)	0.13		0.015	0.035		
7	5-34-3	1,1-Dichloroeth	ane				0.0099	0.035		
10	07-06-2	1,2-Dichloroeth	nane				0.0098	0.035		
7:	5-35-4	1,1-Dichloroeth	lylene				0.0086	0.035		
1!	56-59-2	cis-1,2-Dichlor	oethylene				0.013	0.035		
1	56-60-5	trans-1,2-Dichle	oroethylene				0.0093	0.035		
7	8-87-5	1,2-Dichloropro	opane				0.012	0.035		
10	0061-01-5	cis-1,3-Dichlor	opropene				0.0093	0.035		
1	0061-02-6	trans-1,3-Dichl	oropropene				0.0094	0.035		

45

2

NU214/16

130110-IA-111915

Laboratory:	Con-Test A	nalytical Lab	oratory	Work C	order:	15K1053			
Client:	EA Enginee	ering, Scienc	e & Tech	Project	:	Freeport, N	Y		
Matrix:	Indoor air		Laboratory ID:	15K1053-02		File ID:	F112	412.D	
Sampled:	11/19/15 13	3:18	Prepared:	11/24/15 13:22		Analyzed:	11/24	4/15 20:55	
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702		
Initial/Final:	400 mL / 40		0040			1 100057			0/05
Batch:	B136527	Seque		116 Calibrati		1400057		iment:	SYSF
CASIN	10.	COMPOU			CONC	- (ppbv)	MDL	RL	Q
76-14	-2	1,2-Dichlor	o-1,1,2,2-tetrafluo	proethane (Freon			0.0084	0.035	
123-9)1-1	1,4-Dioxan	e				0.23	0.35	
141-7	'8-6	Ethył Aceta	ate		0	.30	0.026	0.035	
100-4	1-4	Ethylbenze	ne		0.	081	0.0097	0.035	
622-9	6-8	4-Ethyltolu	ene				0.0079	0.035	
142-8	2-5	Heptane			0	.18	0.011	0.035	
87-68	3-3	Hexachlor	butadiene				0.013	0.035	
110-5	64-3	Hexane					0.062	1.4	
591-7	/8-6	2-Hexanor	e (MBK)				0.0090	0.035	
67-63	-0	Isopropano	bl				0.043	1.4	
1634-	-04-4	Methyl tert	-Butyl Ether (MTE	BE)			0.011	0.035	
75-09	-2	Methylene	Chloride				0.043	0.35	
108-1	0-1	4-Methyl-2	-pentanone (MIBI	K)			0.0084	0.035	
91-20)-3	Naphthale	ne				0.019	0.035	
115-0)7-1	Propene					0.11	1.4	
100-4	2-5	Styrene			0.	084	0.0068	0.035	
7 9 -34	-5	1,1,2,2-Tet	rachloroethane				0.0084	0.035	
127-1	8-4	Tetrachlore	pethylene				0.010	0.035	
109-9	9-9	Tetrahydro	furan				0.015	0.035	
108-8	8-3	Toluene				14	0.011	0.035	
120-8	32-1	1,2,4-Trich	lorobenzene				0.013	0.035	
71-55	5-6	1,1,1-Trich	loroethane				0.0063	0.035	
79-00)-5	1,1,2-Trich	loroethane				0.011	0.035	
79-01	-6	Trichloroet	hylene				0.010	0.035	
75-69)-4	Trichloroflu	oromethane (Fre	eon 11)	C	.20	0.012	0.14	
76-13	3-1	1,1,2-Trich	loro-1,2,2-trifluor	oethane (Freon 1			0.0098	0.14	
95-63	8-6	1,2,4-Trim	ethylbenzene		C	.14	0.0086	0.035	
108-6	57-8	1,3,5-T rim	ethylbenzene		0	.046	0.0070	0.035	
108-0)5-4	Vinyl Aceta	ate		ſ	.89	0.018	0.70	

2

NU214116

130110-IA-111915

Laboratory:	Con-Test A	Analytical Labo	ratory	Work Or	der: 15K1053			
Client:	EA Engine	ering, Science	& Tech	Project:	Freeport, N	(
Matrix:	Indoor air		Laboratory ID:	15K1053-02	File ID:	F112	2412.D	
Sampled:	11/19/15 1	3:18	Prepared:	11/24/15 13:22	Analyzed:	11/24	4/15 20:55	
Solids: Initial/Final:	400 mL / 4	00 mL	Preparation:	TO-15 Prep	Dilution:	0.702		
Batch:	B136527	Sequen	ce: S010116	Calibratio	n: 1400057	Instru	ument:	SYSF
CASI					0010 (1)			
	N O.	COMPOUNI	J		CONC. (ppbv)	MDL	RL	Q
75-01		Vinyl Chlorid			CONC. (ppbv)	MDL 0.015	RL 0.035	Q
75-01			le		0.30			u

130110-IA-111915

	CAS NO.								
B136527		COMPOUND			CONC. (ppbv)	MDL	RL		Q
	B136527	Sequence:	S010116	Calibration	n: 1400057	Instr	ument:	SYSF	
400 mL / 40	al: 400 mL / 400) mL							
		Pre	paration:	TO-15 Prep	Dilution:	20			
11/19/15 13	11/19/15 13:	18 Pre	pared:	11/24/15 13:22	Analyzed:	11/2	4/15 21:34		
Indoor air	Indoor air	Lab	oratory ID:	15K1053-02RE1	File ID:	F112	2413.D		
EA Enginee	EA Engineer	ing, Science & Te	ch	Project:	Freeport, N	Y			
	y: Con-Test An	alytical Laborator	y	Work Or	der: 15K1053				
			-	Con-Test Analytical Laboratory EA Engineering, Science & Tech					

2

130110-DUP-111915

Laboratory:	Con-Test An	alytical Labo	ratory	Work Orde	er: 18	5K1053			
Client:	EA Engineei	ing, Science	& Tech	Project:	Fi	reeport, N	Y		
Matrix:	Indoor air		Laboratory ID:	15K1053-03	Fi	le ID:	F1124	414.D	
Sampled:	11/19/15 00:	00	Prepared:	11/24/15 13:22	A	nalyzed:	11/24	/15 22:24	
Solids:			Preparation:	TO-15 Prep	D	ilution:	0.702		
Initial/Final:	400 mL / 400								
Batch:	B136527	Sequen	ce: S01011	6 Calibration:	14	400057	Instru		SYSF
CAS NO	0.	COMPOUNI)	С	ONC. (pp	bv)	MDL	RL	Q
67-64-	1	Acetone			23		0.49	1.4	
71-43-2	2	Benzene			0.17		0.018	0.035	
100-44	I-7	Benzyl chlor	ide			UJ	0.0068	0.035	
75-27-4	4	Bromodichlo	romethane				0.0076	0.035	
75-25-2	2	Bromoform					0.0067	0.035	
74-83-9	9	Bromometha	ine				0.024	0.035	
106-99	9-0	1,3-Butadier	e		0.076		0.018	0.035	
78-93-3	3	2-Butanone	(MEK)				0.026	1.4	
75-15-0	0	Carbon Disu	lfide				0.012	0.35	
56-23-	5	Carbon Tetra	achloride		0.071		0.0085	0.035	
108-90)-7	Chlorobenze	ene				0.012	0.035	
75-00-3	3	Chloroethan	e				0.013	0.035	
67-66-3	3	Chloroform					0.0082	0.035	
74-87-3	3	Chlorometha	ane		0.67		0.015	0.070	
110-82	2-7	Cyclohexane	e		0.15		0.020	0.035	
124-48	3-1	Dibromochlo	oromethane				0.0093	0.035	
106-93	3-4	1,2-Dibromo	ethane (EDB)				0.0079	0.035	
95-50-	1	1,2-Dichloro	benzene				0.0093	0.035	
541-73	3-1	1,3-Dichloro	benzene				0.0078	0.035	
106-46	6-7	1,4-Dichloro	benzene				0.0088	0.035	
75-71-	8	Dichlorodiflu	oromethane (Freo	n 12)	0.13		0.015	0.035	
75-34-	3	1,1-Dichloro	ethane				0.0099	0.035	
107-06	5-2	1,2-Dichloro	ethane				0.0098	0.035	
75-35-	4	1,1-Dichloro	ethylene				0.0086	0.035	
156-59) -2	cis-1,2-Dich	loroethylene				0.013	0.035	
156-60)-5	trans-1,2-Die	chloroethylene				0.0093	0.035	
78-87-	5	1,2-Dichloro	propane				0.012	0.035	
10061-	-01-5	cis-1,3-Dich	loropropene				0.0093	0.035	
10001	-02-6	trans-1,3-Di					0.0094	0.035	

MJ214/16

130110-DUP-111915

Laboratory:	Con-Test A	nalytical La	boratory	Wor	k Order:	15K1053			
Client:	EA Engine	ering, Scien	ce & Tech	Proj	ect:	Freeport, N	Y		
Aatrix:	Indoor air		Laboratory ID	: 15K1053-03		File ID:	F112	414.D	
Sampled:	11/19/15 00	0:00	Prepared:	11/24/15 13:2	2	Analyzed:	11/24	4/15 22:24	
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702		
Initial/Final:	400 mL / 40		201			1400057			0)/05
Batch:	B136527	Sequ		0116 Calibi	ation:	1400057		iment:	SYSF
CAS N	10.	COMPOU			CONC	C. (ppbv)	MDL	RL	Q
76-14-	-2	1,2-Dichlo	ro-1,1,2,2-tetraflu	oroethane (Freon			0.0084	0.035	
123-9	1-1	1,4-Dioxa	ne				0.23	0.35	
141-78	8-6	Ethyl Acet	ate		C).30	0.026	0.035	
100-4	1-4	Ethylbenz	ene		0	.087	0.0097	0.035	
622-90	6-8	4-Ethyltolu	Jene				0.0079	0.035	
142-8	2-5	Heptane			C).18	0.011	0.035	
87-68-	-3	Hexachlor	obutadiene				0.013	0.035	
110-54	4-3	Hexane					0.062	1.4	
591-78	8-6	2-Hexano	ne (MBK)				0.0090	0.035	
67-63-	-0	Isopropan	ol				0.043	1.4	
1634-0	04-4	Methyl ter	t-Butyl Ether (MT	BE)			0.011	0.035	
75-09-	-2	Methylene	e Chloride				0.043	0.35	
108-1	0-1	4-Methyl-2	2-pentanone (MIE	BK)			0.0084	0.035	
91-20-	-3	Naphthale	ene		0	.036	0.019	0.035	
115-0	7-1	Propene					0.11	1.4	
100-43	2-5	Styrene			C).12	0.0068	0.035	
79-34-	-5	1,1,2,2-T€	trachloroethane				0.0084	0.035	
127-1	8-4	Tetrachlor	oethylene				0.010	0.035	
109-99	9-9	Tetrahydr	ofuran				0.015	0.035	
108-8	8-3	Toluene				14	0.011	0.035	
120-82	2-1	1,2,4-Tricl	nlorobenzene				0.013	0.035	
71-55	-6	1,1,1-Tricl	nloroethane				0.0063	0.035	
79-00-	-5	1,1,2-Tric	hloroethane				0.011	0.035	
79-01	-6	Trichloroe	thylene				0.010	0.035	
75-69	-4	Trichlorof	uoromethane (Fr	eon 11)	().20	0.012	0.14	
76-13·	-1	1,1,2-Tric	hloro-1,2,2-trifluo	roethane (Freon 1			0.0098	0.14	
95-63	-6	1,2,4-Trim	ethylbenzene		().15	0.0086	0.035	
108-6	7-8	1,3,5-Trim	ethylbenzene		0	.051	0.0070	0.035	
108-0	5-4	Vinyl Ace	ate		(0.76	0.018	0.70	

m 214/16

130110-DUP-111915

Laboratory:	Con-Test /	Analytical Lab	oratory	Work Ord	ler: 15K1053			
Client:	EA Engine	ering, Science	e & Tech	Project:	Freeport, N	Y		
Matrix:	Indoor air		Laboratory ID:	15K1053-03	File ID:	F112	2414.D	
Sampled:	11/19/15 0	0:00	Prepared:	11/24/15 13:22	Analyzed:	11/2	4/15 22:24	
Solids: Initial/Final:	400 mL / 4	00 mL	Preparation:	TO-15 Prep	Dilution:	0.702		
Batch:	B136527	Seque	nce: S01011	6 Calibration	: 1400057	Instr	ument:	SYSF
CASI	NO.	COMPOUN	iD		CONC. (ppbv)	MDL	RL	Q
75-01	1-4	Vinyl Chlori	de			0.015	0.035	
1330	-20-7P/M	m&p-Xylen	e		0.31	0.018	0.070	
					0.12	0.010	0.035	

130110-DUP-111915

64-17	7-5	Ethanol			270	18	40		
CASI	NO.	COMPOUND			CONC. (ppbv)	MDL	RL		Q
Batch:	B136527	Sequence:	S010116	Calibratio	n: 1400057	/ Instr	ument:	SYSF	
Initial/Final:	400 mL / 400) mL							
Solids:		Prep	aration:	TO-15 Prep	Dilution:	20			
Sampled:	11/19/15 00:	00 Prep	ared:	11/24/15 13:22	Analyze	d: 11/2	4/15 23:03	3	
Matrix:	Indoor air	Labo	ratory ID:	15K1053-03RE1	File ID:	F112	2415.D		
Client:	EA Engineer	ing, Science & Tec	:h	Project:	Freeport	, NY			
Laboratory:	Con-Test An	alytical Laboratory		Work Or	der: 15K1053	3			

DATA USABILITY SUMMARY REPORT METAL ETCHING, FREEPORT, LONG ISLAND, NEW YORK

Client:	EA Engineering, Science & Technology, Inc., Syracuse, New York
SDG:	16E0858
Laboratory:	Con-Test Analytical Laboratory, East Longmeadow, Massachusetts
Site:	Metal Etching, Freeport, Long Island, New York
Date:	July 28, 2016

		VOC	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-05R-0516	16E0858-01	Water
2	MW-06-0516	16E0858-02	Water
3	MW-10S-0516	16E0858-03	Water
4	MW-10D-0516	16E0858-04	Water
4MS	MW-10D-0516MS	16E0858-04MS	Water
4MSD	MW-10D-0516MSD	16E0858-04MSD	Water
5	MW-10M-0516	16E0858-05	Water
6	MW-04-0516	16E0858-06	Water
7	MW-09S-0516	16E0858-07	Water
8	MW-09D-0516	16E0858-08	Water
9	MW-08S-0516	16E0858-09	Water
10	MW-08D-0516	16E0858-10	Water
11	MW-11S-0516	16E0858-11	Water
12	MW-11D-0516	16E0858-12	Water
13	RINSEBLANK-0516	16E0858-13	Water
14	DUP-0516	16E0858-14	Water

A Data Usability Summary Review was performed on the analytical data for thirteen water samples and one aqueous equipment blank sample collected on May 17-18, 2016 by EA Engineering at the Metal Etching site in Freeport, Long Island, New York. The samples were analyzed under Environmental Protection Agency (USEPA) 'Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions'' and the Standard Methods for the Examination of Water and Wastewater.

Specific method references are as follows:

Analysis	Method References
VOCs	USEPA SW-846 Method 8260C

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-24, Revision 4, September 2014: Validating Volatile Organic Compounds by SW-846 Method 8260B & 8260C;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Field Duplicate sample precision

Overall Usability Issues:

There was no rejection of data.

Overall the data is acceptable for the intended purposes as qualified for the following deficiencies.

- Three compounds were qualified as estimated in one sample due to low MS/MSD recoveries.
- Five compounds were qualified as estimated due to high continuing calibration %D values.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS %R/MSD %R/ RPD	Qualifier
4	Bromomethane	63.0%/65.6%/OK	J/UJ
	Dichlorodifluoromethane	45.1%/47.3%/OK	J/UJ
	Methyl acetate	52.8%/53.0%/OK	J/UJ

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples were free of contamination.

Blank ID	Compound	Conc. ug/L	Action Level ug/L	Qualifier	Affected Samples
RINSEBLANK-0516	None - ND		*	÷	(m)

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibration exhibited acceptable %RSD values and/or correlation coefficients and mean RRF values.

Continuing Calibration

The following table presents compounds that exceeded 20 percent deviation (%D) and/or • RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
05/27/16	tert-Butyl alcohol	37.4%	J/UJ	All Samples
	Chloromethane	24.2%	J/UJ	
	1,4-Dioxane	27.9%	J/UJ	
	2-Hexanone	24.0%	J/UJ	
	4-Methyl-2-pentanone	23.9%	J/UJ	

Compound Quantitation

Several samples were analyzed at various dilutions due to excessive foaming and/or high concentrations of target compounds. The reporting limits were adjusted accordingly. No action was required.

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria.

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. •

	V	ОС		
Compound	MW-10S-0516 ug/L	DUP-0516 ug/L	RPD	Qualifier
tert-Butyl alcohol	29	30	3%	None
Methyl tert-butyl ether	11	12	9%	None

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Mancy Weaver Dated: 7/29/16

Senior Chemist

Data Qualifiers

- $J \equiv The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.$
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- $U \equiv$ The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

Page 9 of 77

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-05R-0516

Sampled: 5/18/2016 12:17

Sample Description:

Sample ID: 16E0858-01

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone		ND	50	μg/L	4		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Acrylonitrile		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
tert-Amyl Methyl Ether (TAME)		ND	0.50	μg/L	4		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Benzene		ND	1.0	μg/L	ii.		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Bromobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Bromochloromethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Bromodichloromethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Bromoform		ND	1_0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Bromomethane		ND	2,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
2-Butanone (MEK)		ND	20	μg/L	i i		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
tert-Butyl Alcohol (TBA)	NJ	NB	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
n-Butylbenzene		ND	1.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
sec-Butylbenzene		ND	1.0	μg/L	- ii		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
tert-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
tert-Butyl Ethyl Ether (TBEE)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Carbon Disulfide		ND	4.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Carbon Tetrachloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Chlorobenzene		ND	1.0	μg/L	0		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Chlorodibromomethane		ND	0.50	μg/L	ă.		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Chloroethane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Chloroform		ND	2,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Chloromethane	UJ	NB	2_0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
2-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
4-Chlorotoluene		ND	1.0	µg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,2-Dibromo-3-chloropropane (DBCP)		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,2-Dibromoethane (EDB)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Dibromomethane		ND	1.0	μg/L	1 .		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,2-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,3-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,4-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
trans-1,4-Dichloro-2-butene		ND	5.0	μg/L	St -		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Dichlorodifluoromethane (Freon 12)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,1-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,2-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,1-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
cis-1,2-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
trans-1,2-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,2-Dichloropropane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,3-Dichloropropane		ND	0.50	µg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
2,2-Dichloropropane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,1-Dichloropropene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
cis-1,3-Dichloropropene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
trans 1,3 Dichloropropone		ND	0.50	μg/L	1		3W-846 8260C	5/26/16	5/28/16 3.59	EEH
Diethyl Ether		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-05R-0516 Sample ID: 16E0858-01

Sampled: 5/18/2016 12:17

Sample Description:

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	0_50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,4-Dioxane	UJ	ND	100	μg/L	· 1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Ethylbenzene		ND	1_0	μg/L	-T		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Hexachlorobutadiene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
2-Hexanone (MBK)	UJ	NRD	10	μg/L	4		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Isopropylbenzene (Cumene)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
p-Isopropyltoluene (p-Cymene)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Methyl Acetate		ND	1.0	μg/L	L.		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Methyl tert-Butyl Ether (MTBE)		1.3	1.0	μ g/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Methyl Cyclohexane		1.1	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Methylene Chloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
4-Methyl-2-pentanone (MIBK)	UJ	NB	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Naphthalene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
n-Propylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Styrene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,1,1,2-Tetrachloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,1,2,2-Tetrachloroethane		ND	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Tetrachloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Tetrahydrofuran		ND	10	μg/L	ĩ	R-05	SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Toluene		ND	1.0	μg/L			SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,2,3-Trichlorobenzene		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,2,4-Trichlorobenzene		ND	1.0	μg/L	ĩ		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,3,5-Trichlorobenzene		ND	1.0	μg/L	A.		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,1,1-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,1,2-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Trichloroethylene		ND	1.0	μg/L	4.		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Trichlorofluoromethane (Freon 11)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,2,3-Trichloropropane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	1.0	μg/L	Ĵ.		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,2,4-Trimethylbenzene		1.0	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
1,3,5-Trimethylbenzene		ND	1.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Vinyl Chloride		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
m+p Xylene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
o-Xylene		ND	1.0	μg/L	4.		SW-846 8260C	5/26/16	5/28/16 3:59	EEH
Surrogates			% Recovery	Recovery Limits	S	Flag/Qual				
1,2-Dichloroethane-d4			115	70-130					5/28/16 3:59	
Toluene-d8			97.8	70-130					5/28/16 3:59	
4-Bromofluorobenzene			99.0	70-130					5/28/16 3:59	

Nur 7128116

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016

Field Sample #: MW-06-0516

Sample Description:

Sampled: 5/18/2016 11:29

Sample ID: 16E0858-02

Sample Matrix: Ground Water

Sample Flags: DL-01

Analyte	R	lesults	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone		ND	100	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Acrylonitrile		ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
tert-Amyl Methyl Ether (TAME)		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Benzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Bromobenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Bromochloromethane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Bromodichloromethane		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Bromoform		ND	2_0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Bromomethane		ND	4.0	μ g /L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
2-Butanone (MEK)		ND	40	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
tert-Butyl Alcohol (TBA)	UJ	NÐ	40	μ <u>ε</u> /L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
n-Butylbenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
sec-Butylbenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
tert-Butylbenzene		2.6	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
tert-Butyl Ethyl Ether (TBEE)		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Carbon Disulfide		ND	8.0	г <i>а</i> – µg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Carbon Tetrachloride		ND	10	г <i>в</i> – µg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Chlorobenzene		ND	2.0	µg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Chlorodibromomethane		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Chloroethane		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Chloroform		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Chloromethane	UJ	ND	4.0	μg/L μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
2-Chlorotoluene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
4-Chlorotoluene		ND	2.0	μg/L μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,2-Dibromo-3-chloropropane (DBCP)		ND	10	μg/L μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,2-Dibromoethane (EDB)		ND	1.0		2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Dibromomethane		ND	2.0	µg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,2-Dichlorobenzene		ND	2.0	µg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1.3-Dichlorobenzene			2.0	μg/L	2		SW-846 8260C	5/26/16		
1,4-Dichlorobenzene		ND		μg/L					5/28/16 7:34 5/28/16 7:34	EEH
trans-1,4-Dichloro-2-butene		ND	2.0	µg/L	2		SW-846 8260C	5/26/16		EEH
Dichlorodifluoromethane (Freon 12)		ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
• • •		ND	4.0	µg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,1-Dichloroethane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,2-Dichloroethane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,1-Dichloroethylene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
cis-1,2-Dichloroethylene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
trans-1,2-Dichloroethylene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,2-Dichloropropane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,3-Dichloropropane		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
2,2-Dichloropropane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,1-Dichloropropene		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
cis-1,3-Dichloropropene		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
trans-1,3-Dichloropropene		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Diethyl Ether		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016

Work Order: 16E0858

Sampled: 5/18/2016 11:29

Sample Description:

Field Sample #: MW-06-0516 Sample ID: 16E0858-02

Sample	Flags:	DL-01
--------	--------	-------

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,4-Dioxane	UJ	ND	200	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Ethylbenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Hexachlorobutadiene		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
2-Hexanone (MBK)	UJ	NHD-	20	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Isopropylbenzene (Cumene)		2.4	2.0	µ <u>р</u> /L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
p-Isopropyltoluene (p-Cymene)		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Methyl Acetate		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Methyl tert-Butyl Ether (MTBE)		ND	2 0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Methyl Cyclohexane		3.4	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Methylene Chloride		ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
4-Methyl-2-pentanone (MIBK)	45	NB	20	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Naphthalene		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
n-Propylbenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Styrene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,1,1,2-Tetrachloroethane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,1,2,2-Tetrachloroethane		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Tetrachloroethylene		ND	2 0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Tetrahydrofuran		ND	20	μg/L	2	R-05	SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Toluene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,2,3-Trichlorobenzene		ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,2,4-Trichlorobenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,3,5-Trichlorobenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,1,1-Trichloroethane		ND	2 0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,1,2-Trichloroethane		ND	2 0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Trichloroethylene		ND	2 0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Trichlorofluoromethane (Freon 11)		ND	4 0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,2,3-Trichloropropane		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,2,4-Trimethylbenzene		ND	2 0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
1,3,5-Trimethylbenzene		ND	2 0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Vinyl Chloride		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
m+p Xylene		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
o-Xylene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 7:34	EEH
Surrogates			% Recovery	Recovery Limit	\$	Flag/Qual				
1,2-Dichloroethane-d4			111	70-130					5/28/16 7:34	
Toluene-d8			98.4 97.9	70-130					5/28/16 7:34 5/28/16 7:34	
4-Bromofluorobenzene			91.9	70-130					5/26/10 7:34	

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 Sample Description:

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-10S-0516

Sampled: 5/17/2016 12:00

Sample ID: 16E0858-03

				Volatile Organic Co	mpounds by G	CANO		_		
Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone		ND	50	μg/L	1	Flag/Quar	SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Acrylonitrile		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
tert-Amyl Methyl Ether (TAME)		ND	0.50	<i>гв –</i> µg/L	i		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Benzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Bromobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Bromochloromethane		ND	1.0	μg/L	ĩ		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Bromodichloromethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Bromoform		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Bromomethane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
2-Butanone (MEK)		ND	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
ert-Butyl Alcohol (TBA)	J	29	20	μg/L	ii ii		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
n-Butylbenzene		ND	1.0	μg/L	i		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
sec-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
ert-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
ert-Butyl Ethyl Ether (TBEE)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Carbon Disulfide		ND	4.0		1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Carbon Tetrachloride		ND	5.0	µg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Chlorobenzene		ND	1.0	µg/L	î		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Chlorodibromomethane			0.50	µg/L /I	-		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Chloroethane		ND		µg/L	1					
		ND	2.0	μg/L α	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Chloroform	u J	ND	2.0	μg/L α	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Chloromethane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
2-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
4-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,2-Dibromo-3-chloropropane (DBCP)		ND	5.0	μg/L	<u>ji</u>		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,2-Dibromoethane (EDB)		ND	0.50	µg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Dibromomethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,2-Dichlorobenzene		ND	1.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,3-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,4-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
rans-1,4-Dichloro-2-butene		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Dichlorodifluoromethane (Freon 12)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,1-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,2-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,1-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
cis-1,2-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
rans-1,2-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,2-Dichloropropane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,3-Dichloropropane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
2,2-Dichloropropane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
1,1-Dichloropropene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
cis-1,3-Dichloropropene		ND	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
trans-1,3-Dichloropropene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
Diethyl Ether		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:26	EEH
									Page 15	of 77

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-10S-0516 Sample ID: 16E0858-03

Sampled: 5/17/2016 12:00

Sample Description:

Sample Matrix: Ground Water

Date/Time Date Units Method Analyte Results RL Dilution Flag/Qual Prepared Analyzed Analyst Diisopropyl Ether (DIPE) ND 0.50 SW-846 8260C 5/26/16 5/28/16 4:26 EEH μg/L 1 1,4-Dioxane 45 ND 100 μg/L 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH Ethylbenzene ND 1.0 μg/L 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH Hexachlorobutadiene ND 0.50 SW-846 8260C 5/26/16 5/28/16 4:26 EEH μg/L 1 2-Hexanone (MBK) UJ ND 10 μg/L 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH Isopropylbenzene (Cumene) ND SW-846 8260C 5/26/16 5/28/16 4:26 1.0 μg/L 1 EEH p-Isopropyltoluene (p-Cymene) ND SW-846 8260C 1:0 μg/L ì 5/26/16 5/28/16 4:26 EEH Methyl Acetate ND 1.0 μg/L SW-846 8260C 5/26/16 5/28/16 4:26 EEH 1 Methyl tert-Butyl Ether (MTBE) 5/28/16 4:26 11 1.0 μg/L 1 SW-846 8260C 5/26/16 EEH Methyl Cyclohexane ND 1.0 μg/L 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH Methylene Chloride ND 5.0 SW-846 8260C 5/26/16 5/28/16 4:26 EEH μg/L 4-Methyl-2-pentanone (MIBK) ルゴ NØ 10 μg/L 1 SW-846 8260C 5/26/16 5/28/16 4:26 **EEH** Naphthalene ND SW-846 8260C 5/26/16 5/28/16 4:26 EEH 2.0 μg/L 1 n-Propylbenzene ND SW-846 8260C 5/28/16 4:26 EEH 1.0 μg/L 5/26/16 1 Styrene ND 1.0 μg/L 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH 1,1,1,2-Tetrachloroethane ND SW-846 8260C 5/26/16 5/28/16 4:26 1.0 μg/L EEH 1,1,2,2-Tetrachloroethane ND 0.50 SW-846 8260C 5/26/16 5/28/16 4:26 EEH $\mu g/L$ Tetrachloroethylene ND 1.0 μg/L 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH Tetrahydrofuran ND 10 μg/L ï R-05 SW-846 8260C 5/26/16 5/28/16 4:26 EEH Toluene ND 1.0 SW-846 8260C 5/26/16 5/28/16 4:26 EEH μg/L 1 1,2,3-Trichlorobenzene ND μg/L SW-846 8260C 5/26/16 5/28/16 4:26 EEH 5.0 1 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH 1.3.5-Trichlorobenzene ND SW-846 8260C 5/26/16 5/28/16 4:26 1.0 μg/L 1 EEH 1.1.1-Trichloroethane ND 1.0 SW-846 8260C 5/26/16 5/28/16 4:26 EEH μg/L 1 1,1,2-Trichloroethane ND 1.0 μg/L 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH Trichloroethylene ND 1.0 SW-846 8260C 5/26/16 5/28/16 4:26 EEH μg/L 0 Trichlorofluoromethane (Freon 11) ND 2.0 1 SW-846 8260C 5/26/16 5/28/16 4:26 **EEH** μg/L 1,2,3-Trichloropropane ND 2.0 SW-846 8260C 5/26/16 5/28/16 4:26 EEH μg/L 1 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1.0 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH μg/L (Freon 113) 1,2,4-Trimethylbenzene ND 1.0 SW-846 8260C 5/26/16 5/28/16 4:26 μg/L 1 EEH 1,3,5-Trimethylbenzene ND 1.0 μg/L SW-846 8260C 5/26/16 5/28/16 4:26 EEH 1 Vinyl Chloride SW-846 8260C ND 2.0 μg/L 1 5/26/16 5/28/16 4:26 EEH m+p Xylene ND 2.0 $\mu g/L$ 1 SW-846 8260C 5/26/16 5/28/16 4:26 EEH o-Xylene ND SW-846 8260C 5/26/16 5/28/16 4:26 1.0 μg/L 1 EEH Surrogates % Recovery **Recovery Limits** Flag/Qual 1,2-Dichloroethane-d4 112 70-130 5/28/16 4:26 Toluene-d8 97.6 70-130 5/28/16 4:26 4-Bromofluorobenzene 98.8 70-130 5/28/16 4:26

Ц

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-10D-0516 Sample Description:

Work Order: 16E0858

Sampled: 5/17/2016 11:08

Sample ID: 16E0858-04

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone		ND	50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Acrylonitrile		ND	5.0	μg/L	<u>1</u>		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
tert-Amyl Methyl Ether (TAME)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Benzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Bromobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Bromochloromethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Bromodichloromethane		ND	0.50	μg/L	ũ.		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Bromoform		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Bromomethane	UJ	ND	2.0	μg/L	(1)	M S-0 9	SW-846 8260C	5/26/16	5/28/16 4:52	EEH
2-Butanone (MEK)		ND	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
tert-Butyl Alcohol (TBA)	UJ	-ND	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
n-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
sec-Butylbenzene		ND	1.0	µg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
tert-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
tert-Butyl Ethyl Ether (TBEE)		ND	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Carbon Disulfide		ND	4.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Carbon Tetrachloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Chlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Chlorodibromomethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Chloroethane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Chloroform		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Chloromethane	UJ	MB	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
2-Chlorotoluene		ND	1.0	μg/L	Ľ		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
4-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,2-Dibromo-3-chloropropane (DBCP)		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,2-Dibromoethane (EDB)		ND	0.50	μg/L			SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Dibromomethane		ND	1,0	μg/L	Û		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,2-Dichlorobenzene		ND	1.0	μg/L	Ď		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,3-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,4-Dichlorobenzene		ND	1.0	μg/L	Ť,		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
trans-1,4-Dichloro-2-butene		ND	5.0	μg/L	Ĩ		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Dichlorodifluoromethane (Freon 12)	uj	CR4	2.0	μg/L	1	MS-09	SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,1-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,2-Dichloroethane		ND	1.0	μg/L	ĩ		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,1-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
cis-1,2-Dichloroethylene		ND	1.0	μg/L	Ĩ.		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
trans-1,2-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,2-Dichloropropane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,3-Dichloropropane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
2,2-Dichloropropane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,1-Dichloropropene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
cis-1,3-Dichloropropene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
trans-1,3-Dichloropropene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Diethyl Ether		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
									Page 18	of 77

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-10D-0516 Sample ID: 16E0858-04

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Sample Description:

Sampled: 5/17/2016 11:08

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	0,50	μg/L	î		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,4-Dioxane	UJ	ND	100	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Ethylbenzene		ND	1,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Hexachlorobutadiene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
2-Hexanone (MBK)	UJ	ND	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Isopropylbenzene (Cumene)	_	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
p-Isopropyltoluene (p-Cymene)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Methyl Acetate	UJ	NØ	1.0	μg/L	1	MS-09	SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Methyl tert-Butyl Ether (MTBE)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Methyl Cyclohexane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Methylene Chloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
4-Methyl-2-pentanone (MIBK)	ИJ	ND	10	μg/L	3		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Naphthalene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
n-Propylbenzene		ND	1.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Styrene		ND	1.0	μg/L	i.		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,1,1,2-Tetrachloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,1,2,2-Tetrachloroethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Tetrachloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Tetrahydrofuran		ND	10	μg/L	1	R-05	SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Toluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,2,3-Trichlorobenzene		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,2,4-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,3,5-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,1,1-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,1,2-Trichloroethane		ND	1.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Trichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Trichlorofluoromethane (Freon 11)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,2,3-Trichloropropane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	1.0	μg/L	$\underline{1}_{2}$		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,2,4-Trimethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
1,3,5-Trimethylbenzene		ND	1,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Vinyl Chloride		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
m+p Xylene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
o-Xylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 4:52	EEH
Surrogates			% Recovery	Recovery Limits	6	Flag/Qual				
1,2-Dichloroethane-d4			111	70-130					5/28/16 4:52	
Toluene-d8			98.4	70-130					5/28/16 4:52	
4-Bromofluorobenzene			99.0	70-130					5/28/16 4:52	

hur 7/28/16

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY

Date Received: 5/19/2016 Field Sample #: MW-10M-0516 Sample Description: Sampled: 5/17/2016 11:00 Work Order: 16E0858

5

Sample ID: 16E0858-05

Analyte		Results	RL		Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone		ND	50		μg/L	1	Flag/Quat	SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Acrylonitrile		ND	5.0		μց/L μց/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
tert-Amyl Methyl Ether (TAME)		ND	0.50			14		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Benzene		ND	1.0		µg/L	28 16		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Bromobenzene		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	
Bromochloromethane		ND	1.0	575	µg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH EEH
Bromodichloromethane		ND	0.50		μg/L	1		SW-846 8260C	5/26/16		
Bromoform		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19 5/28/16 5:19	EEH
Bromomethane					μg/L	24 24					EEH
2-Butanone (MEK)		ND	2.0		μg/L	3		SW-846 8260C SW-846 8260C	5/26/16	5/28/16 5:19	EEH
tert-Butyl Alcohol (TBA)	43	ND	20		μg/L				5/26/16	5/28/16 5:19	EEH
n-Butylbenzene		MD	20		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
		ND	1.0		µg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
sec-Butylbenzene		ND	1.0		μg/L	31		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
tert-Butylbenzene		ND	1.0		µg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
tert-Butyl Ethyl Ether (TBEE)		ND	0.50		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Carbon Disulfide		ND	4.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Carbon Tetrachloride		ND	5.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Chlorobenzene		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Chlorodibromomethane		ND	0,50		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Chloroethane		ND	2.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Chloroform		ND	2.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Chloromethane	ИJ	₿¥Ð	2.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
2-Chlorotoluene		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
4-Chlorotoluene		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,2-Dibromo-3-chloropropane (DBCP)		ND	5.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,2-Dibromoethane (EDB)		ND	0.50		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Dibromomethane		ND	1.0		μg/L	3 .		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,2-Dichlorobenzene		ND	1.0		μg/L	ă.		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,3-Dichlorobenzene		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,4-Dichlorobenzene		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
trans-1,4-Dichloro-2-butene		ND	5.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Dichlorodifluoromethane (Freon 12)		ND	2.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,1-Dichloroethane		ND	1.0		μg/L	(1)		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,2-Dichloroethane		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,1-Dichloroethylene		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
cis-1,2-Dichloroethylene		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
trans-1,2-Dichloroethylene		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,2-Dichloropropane		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,3-Dichloropropane		ND	0.50		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
2,2-Dichloropropane		ND	1.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,1-Dichloropropene		ND	2.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
cis-1,3-Dichloropropene		ND	0.50		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
trans-1,3-Dichloropropene		ND	0.50		µg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Diethyl Ether		ND	2.0		μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
-					ro' 2	152		5	0.20.10	Page 21	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-10M-0516 Sample Description: Sampled: 5/17/2016 11:00 Work Order: 16E0858

5

Sample ID: 16E0858-05

Sample Matrix: Ground Water

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,4-Dioxane	UJ	ND	100	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Ethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Hexachlorobutadiene		ND	0.50	μg/L	Ĩ.		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
2-Hexanone (MBK)	UJ	₿¥Ð	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Isopropylbenzene (Cumene)		ND	1.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
p-Isopropyltoluene (p-Cymene)		ND	1.0	μg/L	<u>a</u>		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Methyl Acetate		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Methyl tert-Butyl Ether (MTBE)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Methyl Cyclohexane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Methylene Chloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
4-Methyl-2-pentanone (MIBK)	ИJ	স্ব	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Naphthalene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
n-Propylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Styrene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,1,1,2-Tetrachloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,1,2,2-Tetrachloroethane		ND	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Tetrachloroethylene		5.2	1.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Tetrahydrofuran		ND	10	μg/L	3	- R=05	SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Toluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,2,3-Trichlorobenzene		ND	5.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,2,4-Trichlorobenzene		ND	1.0	μg/L	ĩ		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,3,5-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,1,1-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,1,2-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Trichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Trichlorofluoromethane (Freon 11)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,2,3-Trichloropropane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,2,4-Trimethylbenzene		ND	1.0	μg/L	ΞĨ.		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
1,3,5-Trimethylbenzene		ND	1.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Vinyl Chloride		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
m+p Xylene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
o-Xylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:19	EEH
Surrogates			% Recovery	Recovery Limits	;	Flag/Qual				
1,2-Dichloroethane-d4			114	70-130					5/28/16 5:19	
Toluene-d8			99.9	70-130					5/28/16 5:19	
4-Bromofluorobenzene			101	70-130					5/28/16 5:19	

In Fleship

39 Spruce Stree 6405 * TEL 413/525-2332

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-04-0516

Sampled: 5/17/2016 11:58

Sampl

ND

ND

NØ

ND

45

2.0

2.0

2.0

1.0

1.0

5.0

0.50

1.0

1.0

1.0

1.0

5.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

0.50

1.0

2.0

0.50

0.50

2.0

Chloroethane

Chloroform

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1.4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethylene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Diethyl Ether

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

cis-1,2-Dichloroethylene

trans-1,2-Dichloroethylene

trans-1.4-Dichloro-2-butene

Dichlorodifluoromethane (Freon 12)

1,2-Dibromo-3-chloropropane (DBCP)

1,2-Dibromoethane (EDB)

Sample ID: 16E0858-06									
Sample Matrix: Ground Water									
				Volatile Organic Co	mpounds by G	GC/MS			
								Date	Date/Time
Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed
Acetone		ND	50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
Acrylonitrile		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
tert-Amyl Methyl Ether (TAME)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
Benzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
Bromobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
Bromochloromethane		ND	1.0	μg/L	3.		SW-846 8260C	5/26/16	5/28/16 5:46
Bromodichloromethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
Bromoform		ND	1.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 5:46
Bromomethane		ND	2.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 5:46
2-Butanone (MEK)		ND	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
tert-Butyl Alcohol (TBA)	UJ	ND	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
n-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
sec-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
tert-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
tert-Butyl Ethyl Ether (TBEE)		ND	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
Carbon Disulfide		ND	4.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
Carbon Tetrachloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
Chlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46
Chlorodibromomethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46

1

1

1

1

1

1

Г

1

1

1

1

ĩ

1

1

ï

Ŀ

ł

I.

Ŀ

Ĩ

i

t

Ï

t

 $\mu g/L$

μg/L

 $\mu g/L$

µg/L

 $\mu g/L$

μg/L

μg/L

μg/L

 $\mu g/L$

μg/L

μg/L

μg/L

μg/L

µg/t

μg/L

SW-846 8260C

SW-846 82600

SW-846 8260C

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

et * East Longmeadow,	MA 01028	* FAX	413/525-	6405
le Description:				

Work Order: 16E0858

Analyst

EEH

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5.46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

5/28/16 5:46

Page 24 of 77

NW 7128/16

Work Order: 16E0858

Date

Prepared

5/26/16

Date/Time

Analyzed

5/28/16 5:46

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-04-0516 Sample ID: 16E0858-06

Sampled: 5/17/2016 11:58

Volatile Organic Compounds by GC/MS RL Units Method Analyte Results Dilution Flag/Qual Diisopropyl Ether (DIPE) ND 0.50 µg/L 1 SW-846 8260C

Sample Description:

Sample Matrix: Ground Water

1,2-Dichloroethane-d4 Toluene-d8			112 99.2	70-130 70-130			5. C.		5/28/16 5:46 5/28/16 5:46	
Surrogates			% Recovery	Recovery Limits		Flag/Qual				
o-Xylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
m+p Xylene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Vinyl Chloride		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
1,3,5-Trimethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113) 1,2,4-Trimethylbenzene		ND ND	1.0	μg/L μg/L	1		SW-846 8260C SW-846 8260C	5/26/16 5/26/16	5/28/16 5:46 5/28/16 5:46	EEH EEH
1,2,3-Trichloropropane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Trichlorofluoromethane (Freon 11)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
•		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Trichloroethylene		ND	1.0	μg/L	1		SW-846 8260C		5/28/16 5:46	EEH
1,1,2-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16 5/26/16	5/28/16 5:46	EEH
1,1,1-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
1,3,5-Trichlorobenzene		ND	1.0	μg/L			SW-846 8260C	5/26/16	5/28/16 5:46	EEH
1,2,3- Trichlorobenzene		ND	5.0	μg/L	1				5/28/16 5:46	EEH
1,2,3-Trichlorobenzene		ND	1.0	μg/L	4		SW-846 8260C SW-846 8260C	5/26/16 5/26/16	5/28/16 5:46	EEH
Toluene				μg/L		Sector-				
Tetrahydrofuran		ND	1.0 10	μg/L ug/I	1	R-05-	SW-846 8260C	5/26/16	5/28/16 5:46	EEH EEH
Tetrachloroethylene		ND		μg/L			SW-846 8260C	5/26/16	5/28/16 5:46	
1,1,2,2-Tetrachloroethane		ND	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
1,1,1,2-Tetrachloroethane		ND	1.0	μg/L	i.		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Styrene		ND	1.0	μg/L μg/I	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
n-Propylbenzene		ND	1.0				SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Naphthalene		ND	2.0	μg/L	i.		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
4-Methyl-2-pentanone (MIBK)	UJ	ND	10	μg/L μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Methylene Chloride		ND	5.0	μg/L μg/L	24 10		SW-846 8260C	5/26/16	5/28/10 5:46	EEH
Methyl Cyclohexane		ND	1.0	μg/L ug/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Methyl tert-Butyl Ether (MTBE)		ND	1.0		1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Methyl Acetate		ND	1.0	μg/L μg/L	3		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
p-Isopropyltoluene (p-Cymene)		ND	1.0	μg/L μg/L	i		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Isopropylbenzene (Cumene)		ND	1.0	րց/L µg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	ÉEH
2-Hexanone (MBK)	UJ	ND	10	րց/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Hexachlorobutadiene		ND	0.50	μg/L μg/L	a a		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
Ethylbenzene		ND	1.0	μg/L μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH
1,4-Dioxane	UJ	ND	100	μg/L	1		SW-846 8260C	5/26/16	5/28/16 5:46	EEH

D

Analyst

EEH

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL 413/525-2332

Volatile Organic Compounds by GC/MS

Sample Description:

Sampled: 5/17/2016 13:22

Project Location: Freeport, NY Date Received: 5/19/2016

Field Sample #: MW-098-0516

Sample ID: 16E0858-07

Sample Matrix: Ground Water

Sample Flags: DL-01

							_		
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analy
Acetone	ND	100	μg/L	2	T tag/Quar	SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Acrylonitrile	ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
ert-Amyl Methyl Ether (TAME)	ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEF
Benzene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Bromobenzene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEF
Bromochloromethane	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
Bromodichloromethane	ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEF
Bromoform	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEI
Bromomethane	ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEI
-Butanone (MEK)	ND	40	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEI
ert-Butyl Alcohol (TBA)	ND	40	μ g /L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
-Butylbenzene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEI
ec-Butylbenzene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEI
ert-Butylbenzene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEF
ert-Butyl Ethyl Ether (TBEE)	ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
arbon Disulfide	ND	8.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
arbon Tetrachloride	ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
hlorobenzene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
hlorodibromomethane	ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
hloroethane	ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
hloroform	ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
hloromethane	NÐ	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
-Chlorotoluene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
-Chlorotoluene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
,2-Dibromo-3-chloropropane (DBCP)	ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
2-Dibromoethane (EDB)	ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
Dibromomethane	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
,2-Dichlorobenzene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
,3-Dichlorobenzene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
,4-Dichlorobenzene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
ans-1,4-Dichloro-2-butene	ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE.
ichlorodifluoromethane (Freon 12)	ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
,1-Dichloroethane	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
,2-Dichloroethane	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
,1-Dichloroethylene	ND	2.0	ື μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
is-1,2-Dichloroethylene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
ans-1,2-Dichloroethylene	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
2-Dichloropropane	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
3-Dichloropropane	ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
2-Dichloropropane	ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
,1-Dichloropropene	ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
is-1,3-Dichloropropene	ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
rans-1,2-Dichloropropene	ND	1.0	µg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE
Diethyl Ether	ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EE

Work Order: 16E0858

Date/Time

Date

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Freeport, NY Date Received: 5/19/2016

Field Sample #: MW-09S-0516

Sample ID: 16E0858-07

Sample Matrix: Ground Water

Sample Flags: DL-01

Sample Description: Sampled: 5/17/2016 13:22

Volatile Organic Compounds by GC/MS

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,4-Dioxane	レゴ	ND	200	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Ethylbenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Hexachlorobutadiene		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
2-Hexanone (MBK)	UJ	NÐ	20	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Isopropylbenzene (Cumene)		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
p-Isopropyltoluene (p-Cymene)		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Methyl Acetate		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Methyl tert-Butyl Ether (MTBE)		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Methyl Cyclohexane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Methylene Chloride		ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
4-Methyl-2-pentanone (MIBK)	UJ	₿#D	20	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Naphthalene		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
n-Propylbenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Styrene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,1,1,2-Tetrachloroethane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,1,2,2-Tetrachloroethane		ND	1.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Tetrachloroethylene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Tetrahydrofuran		ND	20	μg/L	2	R-03	SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Toluene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,2,3-Trichlorobenzene		ND	10	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,2,4-Trichlorobenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,3,5-Trichlorobenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,1,1-Trichloroethane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,1,2-Trichloroethane		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Trichloroethylene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Trichlorofluoromethane (Freon 11)		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,2,3-Trichloropropane		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,2,4-Trimethylbenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
1,3,5-Trimethylbenzene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Vinyl Chloride		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
m+p Xylene		ND	4.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
o-Xylene		ND	2.0	μg/L	2		SW-846 8260C	5/26/16	5/28/16 8:00	EEH
Surrogates			% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4			113	70-130					5/28/16 8:00	
Toluene-d8 4-Bromofluorobenzene			98,2 98.5	70-130 70-130					5/28/16 8:00	
DIOHOHUUUUUUUUUUU			70.3	/0-130					5/28/16 8:00	

No 7/28/14

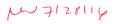
39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY

Date Received: 5/19/2016

Field Sample #: MW-09D-0516


Sample Description:

Sampled: 5/17/2016 12:52

Sample ID: 16E0858-08

Sample Matrix: Ground Water Sample Flags: RL-11

				_						
Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Acetone		ND	200	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Acrylonitrile		ND	20	<i>гз –</i> µg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
ert-Amyl Methyl Ether (TAME)		ND	2.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Benzene		ND	4_0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Bromobenzene		ND	4_0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Bromochloromethane		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Bromodichloromethane		ND	2.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Bromoform		ND	4.0	μ g/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Bromomethane		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
-Butanone (MEK)		ND	80	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
ert-Butyl Alcohol (TBA)	UJ	ND	80	μ g /L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
n-Butylbenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
ec-Butylbenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
ert-Butylbenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
ert-Butyl Ethyl Ether (TBEE)		ND	2.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Carbon Disulfide		ND	16	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Carbon Tetrachloride		ND	20	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
hlorobenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
hlorodibromomethane		ND	2.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Chloroethane		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Chloroform		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Chloromethane	45	MD	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
-Chlorotoluene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
-Chlorotoluene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,2-Dibromo-3-chloropropane (DBCP)		ND	20	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,2-Dibromoethane (EDB)		ND	2.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Dibromomethane		ND	4,0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,2-Dichlorobenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,3-Dichlorobenzene		ND	4_0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,4-Dichlorobenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
rans-1,4-Dichloro-2-butene		ND	20	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Dichlorodifluoromethane (Freon 12)		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEF
,1-Dichloroethane		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	ÉEH
,2-Dichloroethane		ND	4.0	µg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,1-Dichloroethylene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEF
is-1,2-Dichloroethylene		110	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
ans-1,2-Dichloroethylene		ND	4.0	µg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,2-Dichloropropane		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,3-Dichloropropane		ND	2.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,2-Dichloropropane		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
,1-Dichloropropene		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEF
sis-1,3-Dichloropropene		ND	2.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEF
rans-1,3-Dichloropropene		ND	2.0	µg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEt
Diethyl Ether		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EE

\$

Page 30 of 77

Ì

Work Order: 16E0858

Date/Time

Date

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

Project Location: Freeport, NY Date Received: 5/19/2016

Field Sample #: MW-09D-0516

Sample ID: 16E0858-08

Sample Matrix: Ground Water

Sample Flags: RL-11

Sampled: 5/17/2016 12:52

Sample Description:

Volatile Organic Compounds by GC/MS

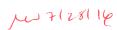
Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	2.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,4-Dioxane	45	NE	400	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Ethylbenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Hexachlorobutadiene		ND	2.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
2-Hexanone (MBK)	45	ND	40	μg/L μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Isopropylbenzene (Cumene)		ND								
p-Isopropyltoluene (p-Cymene)			4.0	µg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Methyl Acetate		ND	4.0	µg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Methyl tert-Butyl Ether (MTBE)		ND	4.0	µg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Methyl Cyclohexane		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Methylene Chloride		ND	20	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
4-Methyl-2-pentanone (MIBK)	UJ	ND	40	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Naphthalene		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
n-Propylbenzene		ND	4,0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Styrene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,1,1,2-Tetrachloroethane		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,1,2,2-Tetrachloroethane		ND	2_0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Tetrachloroethylene		3300	200	μg/L	200		SW-846 8260C	5/31/16	5/31/16 14:19	EEH
Tetrahydrofuran		ND	40	μg/L	4	R-05	SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Toluene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,2,3-Trichlorobenzene		ND	20	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,2,4-Trichlorobenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,3,5-Trichlorobenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,1,1-Trichloroethane		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,1,2-Trichloroethane		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Trichloroethylene		41	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Trichlorofluoromethane (Freon 11)		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,2,3-Trichloropropane		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
(Freon 113)		ЦD	1.0	μg·L	-		511-040 02000	5/20/10	5/20/10 0.27	BEII
1,2,4-Trimethylbenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
1,3,5-Trimethylbenzene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Vinyl Chloride		10	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
m+p Xylene		ND	8.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
o-Xylene		ND	4.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 8:27	EEH
Surrogates			% Recovery	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4			110	70-130					5/28/16 8:27	
1,2-Dichloroethane-d4			114	70-130					5/31/16 14:19	
Toluene-d8			97,4	70-130					5/28/16 8:27	
Toluene-d8			100	70-130					5/31/16 14:19	
4-Bromofluorobenzene			100	70-130					5/28/16 8:27	
4-Bromofluorobenzene			101	70-130					5/31/16 14:19	

Nº 7/28/11p

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016


Sampled: 5/18/2016 12:15

Sample Description:

Field Sample #: MW-08S-0516 Sample ID: 16E0858-09

Sample Matrix: Ground Water

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone		ND	50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Acrylonitrile		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
tert-Amyl Methyl Ether (TAME)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Benzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Bromobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Bromochloromethane		ND	1,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Bromodichloromethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Bromoform		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Bromomethane		ND	2,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
2-Butanone (MEK)		ND	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
tert-Butyl Alcohol (TBA)	UJ	ND	20	μg/L	11.		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
n-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
sec-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
tert-Butylbenzene		ND	1,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
tert-Butyl Ethyl Ether (TBEE)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Carbon Disulfide		ND	4.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Carbon Tetrachloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Chlorobenzene		ND	1,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Chlorodibromomethane		ND	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Chloroethane		ND	2.0	μ g /L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Chloroform		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Chloromethane	47	NB	2,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
2-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
4-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,2-Dibromo-3-chloropropane (DBCP)		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,2-Dibromoethane (EDB)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Dibromomethane		ND	1.0	μg/L	240		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,2-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,3-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,4-Dichlorobenzene		ND	1.0	μg/L	a		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
trans-1,4-Dichloro-2-butene		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Dichlorodifluoromethane (Freon 12)		ND	2.0	нв~ µg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,1-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,2-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,1-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
cis-1,2-Dichloroethylene		2.2	1.0	дд µg/L	16		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
trans-1,2-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,2-Dichloropropane		ND	1.0	μg/L μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,3-Dichloropropane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
2,2-Dichloropropane		ND	1.0	μg/L μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,1-Dichloropropene		ND	2.0	µg/L µg/L	-1		SW-846 8260C	5/26/16	5/28/16 6:13	ЕЕН
cis-1,3-Dichloropropene		ND	0.50	μg/L	18		SW-846 8260C	5/26/16	5/28/16 6:13	ЕЕН
trans-1,3-Dichloropropene		ND	0.50				SW-846 8260C	5/26/16	5/28/16 6:13	
Diethyl Ether		ND	2.0	µg/L	1		SW-846 8260C	5/26/16		
Dieuty Dure		ND	2.0	μg/L	1		3 W-040 820UL	3/20/10	5/28/16 6:13	EEH

0

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016 Sample Description:

Sampled: 5/18/2016 12:15

Work Order: 16E0858

0

Field Sample #: MW-08S-0516 Sample ID: 16E0858-09

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,4-Dioxane	UJ	ND	100	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Ethylbenzene		ND	1.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Hexachlorobutadiene		ND	0.50	μg/L	i.		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
2-Hexanone (MBK)	UJ	ND	10	μg/L	3		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Isopropylbenzene (Cumene)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
p-Isopropylioluene (p-Cymene)		ND	1.0	μg/L	à		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Methyl Acetate		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Methyl tert-Butyl Ether (MTBE)		1.5	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Methyl Cyclohexane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Methylene Chloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
4-Methyl-2-pentanone (MIBK)	hJ	NB	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Naphthalene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
n-Propylbenzene		ND	1.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Styrene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,1,1,2-Tetrachloroethane		ND	1.0	μg/L	ä		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,1,2,2-Tetrachloroethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Tetrachloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Tetrahydrofuran		ND	10	μg/L	a.	P. 05	SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Toluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,2,3-Trichlorobenzene		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,2,4-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,3,5-Trichlorobenzene		ND	1,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,1,1-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,1,2-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Trichloroethylene		1,1	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Trichlorofluoromethane (Freon 11)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,2,3-Trichloropropane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,2,4-Trimethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
1,3,5-Trimethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Vinyl Chloride		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
m+p Xylene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
o-Xylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:13	EEH
Surrogates			% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4			114	70-130					5/28/16 6:13	
Toluene-d8 4-Bromofluorobenzene			98.3 98.2	70-130					5/28/16 6:13 5/28/16 6:13	
4-DIVINUITUOIODENZENE			98.2	70-130					5/28/10 0:13	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016

516 Sampled: 5/18/2016 11:30

Sample Description:

Field Sample #: MW-08D-0516

Sample ID: 16E0858-10

Sample Matrix: Ground Water

Sample Flags: RL-11

Analyte		Results	RL		Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone		ND	500		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Acrylonitrile		ND	50		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
tert-Amyl Methyl Ether (TAME)		ND	5.0		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Benzene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Bromobenzene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Bromochloromethane		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Bromodichloromethane		ND	5.0		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Bromoform		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Bromomethane		ND	20		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
2-Butanone (MEK)		ND	200		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
tert-Butyl Alcohol (TBA)	uЈ	NO	200		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
n-Butylbenzene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
sec-Butylbenzene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
tert-Butylbenzene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
tert-Butyl Ethyl Ether (TBEE)		ND	5.0		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Carbon Disulfide		ND	40		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Carbon Tetrachloride		ND	50		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Chlorobenzene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Chlorodibromomethane		ND	5.0		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Chloroethane		ND	20		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Chloroform		ND	20	245	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Chloromethane	UJ	DRA	20		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
2-Chlorotoluene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
4-Chlorotoluene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,2-Dibromo-3-chloropropane (DBCP)		ND	50		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,2-Dibromoethane (EDB)		ND	5.0		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Dibromomethane		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,2-Dichlorobenzene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,3-Dichlorobenzene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,4-Dichlorobenzene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
trans-1,4-Dichloro-2-butene		ND	50		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Dichlorodifluoromethane (Freon 12)		ND	20		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,1-Dichloroethane		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,2-Dichloroethane		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,1-Dichloroethylene		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
cis-1,2-Dichloroethylene		24	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
trans-1,2-Dichloroethylene	8	ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,2-Dichloropropane		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,3-Dichloropropane		ND	5.0		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
2,2-Dichloropropane		ND	10		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,1-Dichloropropene		ND	20		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
cis-1,3-Dichloropropene		ND	5.0		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
trans-1,3-Dichloropropene	_	ND	5.0		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Diethyl Ether		ND	20		μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
-					r. 8					Page 36	

10

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016

Field Sample #: MW-08D-0516

Sample Description:

Sampled: 5/18/2016 11:30

Sample ID: 16E0858-10

Sample Matrix: Ground Water

Sample Flags: RL-11

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	5.0	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,4-Dioxane	UJ	ND	1000	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Ethylbenzene		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Hexachlorobutadiene		ND	5.0	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
2-Hexanone (MBK)	47	CR4	100	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Isopropylbenzene (Cumene)		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
p-Isopropyltoluene (p-Cymene)		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Methyl Acetate		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Methyl tert-Butyl Ether (MTBE)		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Methyl Cyclohexane		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Methylene Chloride		ND	50	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
4-Methyl-2-pentanone (MIBK)	いゴ	₿¥Ð	100	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Naphthalene		ND	20	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
n-Propylbenzene		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Styrene		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,1,1,2-Tetrachloroethane		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,1,2,2-Tetrachloroethane		ND	5.0	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Tetrachloroethylene		400	10	µg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Tetrahydrofuran		ND	100	μg/L	10	R-05	SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Toluene		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,2,3-Trichlorobenzene		ND	50	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,2,4-Trichlorobenzene		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,3,5-Trichlorobenzene		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,1,1-Trichloroethane		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,1,2-Trichloroethane		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Trichloroethylene		15	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Trichlorofluoromethane (Freon 11)		ND	20	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,2,3-Trichloropropane		ND	20	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,2,4-Trimethylbenzene		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
1,3,5-Trimethylbenzene		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Vinyl Chloride		ND	20	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
m+p Xylene		ND	20	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
o-Xylene		ND	10	μg/L	10		SW-846 8260C	5/26/16	5/28/16 8:54	EEH
Surrogates			% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4			109	70-130					5/28/16 8:54	
Toluene-d8			100	70-130					5/28/16 8:54	
4-Bromofluorobenzene			99.4	70-130					5/28/16 8:54	

Work Order: 16E0858

10

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-11S-0516 Sample Description:

Sampled: 5/17/2016 14:05

Sample ID: 16E0858-11

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone		ND	50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Acrylonitrile		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
tert-Amyl Methyl Ether (TAME)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Benzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Bromobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Bromochloromethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Bromodichloromethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Bromoform		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Bromomethane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
2-Butanone (MEK)		ND	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
tert-Butyl Alcohol (TBA)	uσ)ARD	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
n-Butylbenzene		1.7	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
sec-Butylbenzene		2.0	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
tert-Butylbenzene		ND	1_0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
tert-Butyl Ethyl Ether (TBEE)		ND	0.50	μg/L	4		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Carbon Disulfide		ND	4.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Carbon Tetrachloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Chlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Chlorodibromomethane		ND	0.50	μg/L	ũ.		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Chloroethane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Chloroform		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Chloromethane	UJ	ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
2-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
4-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,2-Dibromo-3-chloropropane (DBCP)		ND	5.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,2-Dibromoethane (EDB)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Dibromomethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,2-Dichlorobenzene		ND	1.0	μg/L	ă.,		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,3-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,4-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
trans-1,4-Dichloro-2-butene		ND	5.0	μg/L	ă.		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Dichlorodifluoromethane (Freon 12)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,1-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,2-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,1-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
cis-1,2-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
trans-1,2-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,2-Dichloropropane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,3-Dichloropropane		ND	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
2,2-Dichloropropane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,1-Dichloropropene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
cis-1,3-Dichloropropene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
trans-1,3-Dichloropropene		ND	0.30	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6.40	EEH
Diethyl Ether		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
									Page 39	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-11S-0516 Sample Description:

Work Order: 16E0858

Sampled: 5/17/2016 14:05

Sample ID: 16E0858-11

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	0.50	μg/L	Ĩ.		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,4-Dioxane	uΙ	CR4.	100	μg/L	(1)		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Ethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Hexachlorobutadiene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
2-Hexanone (MBK)	UJ	CTM	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Isopropylbenzene (Cumene)		1.0	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
p-Isopropyltoluene (p-Cymene)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Methyl Acetate		ND	1,0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Methyl tert-Butyl Ether (MTBE)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Methyl Cyclohexane		2.1	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Methylene Chloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
4-Methyl-2-pentanone (MIBK)	45	ŊD	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Naphthalene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
n-Propylbenzene		ND	1.0	μg/L	(1)		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Styrene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,1,1,2-Tetrachloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,1,2,2-Tetrachloroethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Tetrachloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Tetrahydrofuran		ND	10	μg/L	1	R-05-	SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Toluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,2,3-Trichlorobenzene		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,2,4-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,3,5-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,1,1-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,1,2-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Trichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Trichlorofluoromethane (Freon 11)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,2,3-Trichloropropane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	1.0	μg/L	Ę		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,2,4-Trimethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
1,3,5-Trimethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Vinyl Chloride		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
m+p Xylene		ND	2.0	μg/L	L		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
o-Xylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 6:40	EEH
Surrogates			% Recovery	Recovery Limits	3	Flag/Qual				
1,2-Dichloroethane-d4			110	70-130					5/28/16 6:40	
Toluene-d8			98.6	70-130					5/28/16 6:40	

Analyst EEH

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-11D-0516

Sampled: 5/17/2016 14:10

Sample Description:

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

Diethyl Ether

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

ND

ND

ND

ND

ND

ND

0,50

1.0

2.0

0.50

0.50

2.0

hloromethane \mathcal{V} \mathcal{YD} 2.0 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ 7.07 ChlorotolueneND1.0 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ 7.07 ChlorotolueneND1.0 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ 7.07 2-Dibromo-3-chloropropane (DBCP)ND5.0 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ 7.07 2-Dibromoethane (EDB)ND0.50 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ 7.07 2-DichlorobenzeneND1.0 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ 7.07 2-DichlorobenzeneND1.0 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ 7.07 3-DichlorobenzeneND1.0 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ 7.07 4-DichlorobenzeneND1.0 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ 7.07 1-DichlorobenzeneND1.0 μ_g/L 1SW-846 8260C $5/26/16$ $5/28/16$ <t< th=""></t<>								
		V	olatile Organic Co	mpounds by G	IC/MS			
A notato	Deculto	DI	IInito	Dilution	Flag/Qual	Mathod		
					Flag/Qual			
•								
• • • • •								
				<u>, 1</u>				
	1							
tort Buly Moodor (1511)	110							
-								
·								
			. –					
			μg/L					
			μg/L					
Chloroform	1	2.0	μg/L	1				5/28/16 7:07
	J ND	2.0	μg/L	1		SW-846 8260C		5/28/16 7:07
2-Chlorotoluene	ND	1.0	μg/L	3		SW-846 8260C	5/26/16	5/28/16 7:07
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 7:07
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	ā.		SW-846 8260C	5/26/16	5/28/16 7:07
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
1,2-Dichlorobenzene	ND	1.0	μg/L	(1 /		SW-846 8260C	5/26/16	5/28/16 7:07
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
trans-1,4-Dichloro-2-butene	ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
cis-1,2-Dichloroethylene	1.6	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07
1.2 Dishloronrongne		0.50	· · · · //			0111 046 02600	FIDEILE	5/00/1 C 3:03

μg/L

μg/L

μg/L

 $\mu g/L$

 $\mu g/L$

μg/L

1

t

1

1

ï

Ŀ

SW-846 8260C

SW-846 8260C

SW-846 8260C

SW-846 8260C

SW 846 8260C

SW-846 8260C

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/26/16

5/28/16 7:07

5/28/16 7:07

5/28/16 7:07

5/28/16 7:07

5/28/16 7:07

5/28/16 7:07

Work Order: 16E0858

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: MW-11D-0516

Sampled: 5/17/2016 14:10

Sample Description:

Sample ID: 16E0858-12

Volatile	Organic	Compounds	by	GC/MS

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	0.50	µg/L	1	A AND S	SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,4-Dioxane	UJ	ND	100	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Ethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Hexachlorobutadiene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
2-Hexanone (MBK)	UJ	ND	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Isopropylbenzene (Cumene)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
p-Isopropyltoluene (p-Cymene)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Methyl Acetate		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Methyl tert-Butyl Ether (MTBE)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Methyl Cyclohexane		ND	1.0	μg/L	t.		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Methylene Chloride		ND	5.0	μg/L	Ť		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
4-Methyl-2-pentanone (MIBK)	ИJ	NE	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Naphthalene		ND	2.0	µg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
n-Propylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Styrene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,1,1,2-Tetrachloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,1,2,2-Tetrachloroethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Tetrachloroethylene		2.8	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Tetrahydrofuran		ND	10	μg/L	1	Bas	SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Toluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,2,3-Trichlorobenzene		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,2,4-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,3,5-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,1,1-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,1,2-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Trichloroethylene		1.3	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Trichlorofluoromethane (Freon 11)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,2,3-Trichloropropane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,2,4-Trimethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
1,3,5-Trimethylbenzene		ND	1.0	μg/L	I		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Vinyl Chloride		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
m+p Xylene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
o-Xylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 7:07	EEH
Surrogates			% Recovery	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4			113	70-130					5/28/16 7:07	
Toluene-d8			98.5 100	70-130					5/28/16 7:07	
4-Bromofluorobenzene			100	70-130					5/28/16 7:07	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL, 413/525-2332

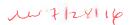
Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY

Date Received: 5/19/2016 Field Sample #: RINSE BLANK-0516

Sampled: 5/17/2016 14:30

Sample Description:


Work Order: 16E0858

13

Page 45 of 77

Sample ID: 16E0858-13 Sample Matrix: Drinking Water

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone		ND	50	μg/L	a.		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Acrylonitrile		ND	5.0	µg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
tert-Amyl Methyl Ether (TAME)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Benzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Bromobenzene		ND	1.0	μg/L	a -		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Bromochloromethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Bromodichloromethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Bromoform		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Bromomethane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
2-Butanone (MEK)		ND	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
tert-Butyl Alcohol (TBA)	UJ	ND	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
n-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
sec-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
tert-Butylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
tert-Butyl Ethyl Ether (TBEE)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Carbon Disulfide		ND	4.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Carbon Tetrachloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Chlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Chlorodibromomethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Chloroethane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Chloroform		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Chloromethane	UJ	NHO	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
2-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
4-Chlorotoluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,2-Dibromo-3-chloropropane (DBCP)		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,2-Dibromoethane (EDB)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Dibromomethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,2-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,3-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,4-Dichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
trans-1,4-Dichloro-2-butene		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Dichlorodifluoromethane (Freon 12)		ND	2.0	μg/L	E		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,1-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,2-Dichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,1-Dichloroethylene		ND	1.0	μg/L	L		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
cis-1,2-Dichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
trans-1,2-Dichloroethylene		ND	1.0	- μg/L	E .		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,2-Dichloropropane		ND	1.0	μg/L	Ē		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,3-Dichloropropane		ND	0.50	μg/L	r.		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
2,2-Dichloropropane		ND	1.0	μg/L	5 1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,1-Dichloropropene		ND	2.0	րց/Ե µg/L	n E		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
cis-1,3-Dichloropropene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
trans-1,3-Dichloropropene		ND	0.50	րց/Ե µg/Ն	1		SW 846 8260C	5/26/16	5/28/16 2:12	
Diethyl Ether					i.			5/26/16		
Dientyt Emer		ND	2.0	μg/L	16		SW-846 8260C	2/20/10	5/28/16 2:12	EEH

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL 413/525-2332

Volatile Organic Compounds by GC/MS

Project Location: Freeport, NY

Date Received: 5/19/2016 Field Sample #: RINSE BLANK-0516

Sampled: 5/17/2016 14:30

Sample Description:

Sample ID: 16E0858-13 Sample Matrix: Drinking Water

Work Order: 16E0858

12

Analyte		Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,4-Dioxane	UJ	ND	100	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Ethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Hexachlorobutadiene		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
2-Hexanone (MBK)	UJ	NID	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	ÉEH
Isopropylbenzene (Cumene)		ND	1.0	µg/L	ι		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
p-Isopropyltoluene (p-Cymene)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Methyl Acetate		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Methyl tert-Butyl Ether (MTBE)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Methyl Cyclohexane		ND	1.0	μg/L	4		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Methylene Chloride		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
4-Methyl-2-pentanone (MIBK)	UJ	NT	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Naphthalene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
n-Propylbenzene		ND	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Styrene		ND	1.0	μg/L	Ť		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,1,1,2-Tetrachloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,1,2,2-Tetrachloroethane		ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Tetrachloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Tetrahydrofuran		ND	10	μg/L	1	R-05-	SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Toluene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,2,3-Trichlorobenzene		ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,2,4-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,3,5-Trichlorobenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,1,1-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,1,2-Trichloroethane		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Trichloroethylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Trichlorofluoromethane (Freon 11)		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,2,3-Trichloropropane		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,2,4-Trimethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
1,3,5-Trimethylbenzene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Vinyl Chloride		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
m+p Xylene		ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
o-Xylene		ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 2:12	EEH
Surrogates			% Recovery	Recovery Limits	8	Flag/Qual				
1,2-Dichloroethane-d4			111	70-130					5/28/16 2:12	
Toluene-d8			99.0	70-130					5/28/16 2:12	
4-Bromofluorobenzene			99.0	70-130					5/28/16 2:12	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Work Order: 16E0858

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: DUP-0516 Sample ID: 16E0858-14

Sampled: 5/17/2016 00:00

Sample Description:

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

	5				T -11		B.F413	Date	Date/Time	A
Analyte	Res		RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	N		50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Acrylonitrile	N		5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
tert-Amyl Methyl Ether (TAME)	N		0.50	µg/L	ļ		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Benzene	N		1.0	µg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Bromobenzene	• N	D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Bromochloromethane	N	D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Bromodichloromethane	N	D	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Bromoform	N	D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Bromomethane	N	D	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
2-Butanone (MEK)	N	D	20	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
tert-Butyl Alcohol (TBA)	J 3	0	20	μg/L	Ĭ		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
n-Butylbenzene	N	D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
sec-Butylbenzene	N	D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
tert-Butylbenzene	N	D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
tert-Butyl Ethyl Ether (TBEE)	N	D	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Carbon Disulfide	N	D	4.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Carbon Tetrachloride	N	D	5.0	μg/L	ĩ		SW-846 8260C	5/26/16	5/28/16 3:32	ÉEH
Chlorobenzene	N	D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Chlorodibromomethane	N	D	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Chloroethane	N	D	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Chloroform	N	D	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Chloromethane	UJ N	Ø	2.0	μg/L	ä		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
2-Chlorotoluene	N		1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
4-Chlorotoluene	N	D	1.0	μg/L	51		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,2-Dibromo-3-chloropropane (DBCP)	N		5.0	μg/L	ä		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,2-Dibromoethane (EDB)	N		0.50	на µg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Dibromomethane	N		1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,2-Dichlorobenzene	N		1.0	μg/L μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,3-Dichlorobenzene	N		1.0				SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,4-Dichlorobenzene	N			µg/L			SW-846 8260C	5/26/16	5/28/16 3:32	EEH
trans-1,4-Dichloro-2-butene			1.0	μg/L	1					
,	N		5.0	μg/L α	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
Dichlorodifluoromethane (Freon 12)	N		2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,1-Dichloroethane	N		1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,2-Dichloroethane		D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,1-Dichloroethylene		D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
cis-1,2-Dichloroethylene		D	1.0	μg/L	<u>3</u>		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
trans-1,2-Dichloroethylene	N	D	1.0	µg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,2-Dichloropropane		D	1.0	µg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,3-Dichloropropane	N	D	0,50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
2,2-Dichloropropane	N	D	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
1,1-Dichloropropene	N	D	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
cis-1,3-Dichloropropene	N	D	0.50	µg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
trans 1,3 Dichloropropene	N	D	0.50	μg/L	1		EW-846 8260C	5/26/16	5/28/16 3:32	EEH
Diethyl Ether	N	D	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
					28116				Page 48	3 of 77

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL 413/525-2332

Project Location: Freeport, NY Date Received: 5/19/2016 Field Sample #: DUP-0516 Sample Description: Sampled: 5/17/2016 00:00 Work Order: 16E0858

Date/Time

Date

14

Field Sample #: DUP-0516 Sample ID: 16E0858-14

v	olatile Organic Co	mpounds by G	C/MS
RL	Units	Dilution	Flag/Qual

υJ	Results ND	RL 0.50	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
иJ	ND	0.50							
UJ		0.00	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	M	100	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	0.50	μg/L	4		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
UJ	ND	10	μg/L	Ĩ.		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1.		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	12	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	ĩ.		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
UJ	ND	10	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0		1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1 0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	L		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	0.50	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	10		Ì.	- R-05	SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	5.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0		1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	2.0		1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	2.0		1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1.		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	2.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
	ND	1.0	μg/L	1		SW-846 8260C	5/26/16	5/28/16 3:32	EEH
		% Recovery	Recovery Limits		Flag/Qual				
		112	70-130					5/28/16 3:32	_
		97.9	70-130					5/28/16 3:32	
			い て	ν 10 μg/L ND 1.0 μg/L ND 5.0 μg/L ND 1.0 μg/L ND 2.0 μg/L <	μp 10 μg/L 1 ND 1.0 μg/L 1 ND 5.0 μg/L 1 ND 2.0 μg/L 1 ND 1.0 μg/L 1 ND<	VT JDP 10 µg/L 1 ND 1.0 µg/L 1 ND 1.0 µg/L 1 ND 1.0 µg/L 1 12 1.0 µg/L 1 ND 1.0 µg/L 1 ND 1.0 µg/L 1 ND 5.0 µg/L 1 ND 5.0 µg/L 1 ND 2.0 µg/L 1 ND 1.0 µg/L 1		M MB 10 μg/L 1 SW-846 8260C 5/26/16 ND 1.0 μg/L 1 SW-846 8260C 5/26/16 ND 5.0 μg/L 1 SW-846 8260C 5/26/16 ND 1.0 μg/L 1 SW-846 8260C 5/26/16 </td <td>以口 10 199 10 199 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 0.50 µg/L 1 SW-346 8260C 5/26/16 5/28/16</td>	以口 10 199 10 199 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 1.0 µg/L 1 SW-346 8260C 5/26/16 5/28/16 3.32 ND 0.50 µg/L 1 SW-346 8260C 5/26/16 5/28/16

This page intentionally left blank

Appendix F

Air Sampling Forms

This page intentionally left blank

FIELD AIR SAMPLING FORM

	R	EA Engineering a Science & Technol 6712 Brooklawn P Syracuse, NY 132	logy arkway, Suite 10		Project #: Project Name: Location: Project Manager:	1490709 NYSDEC Metal I Freeport, NY Robert Casey	
Sample Location	Information:						
Site ID Number: 13011	10				Sampler(s):	\$. Soldner	
PID Meter Used: (Model, Serial #)		1			Building I.D. No.:	Office	
SUMMA Canister	r Record:			~			
INDOC	OR AIR	INDOOR AIF	R DUPLICATE	SUBSLA	SOIL GAS	OUTDO	OOR AIR
Flow Regulator No.:	3589	Flow Regulator No.:	3589	Flow Regulator No.:		Flow Regulator No.:	3172
Canister Serial No.:	2029	Canister Serial No.:	2030	Canister Serial No.:		Canister Serial No.:	1505
Start Date/Time:	1/18/15/400	Start Date/Time:	418/15/400	Start Date/Time:		Start Date/Time:	1/18/15
Start Pressure: (inches Hg)	-\$30'	Start Pressure: (inches Hg)	-30+	Start Pressure: (inches Hg)		Start Pressure: (inches Hg)	-30 ⁺
	1/19/15	Stop Date/Time:	-30 ⁺ W19/15 1318	Stop Date/Time:		Stop Date/Time:	1/19/15
Stop Pressure:	-8	Stop Pressure:	-8	Stop Pressure:		Stop Pressure: (inches Hg)	-8
(inches Hg) Sample ID:	-0	(inches Hg) Sample ID:	- 0	(inches Hg) Sample ID:		Sample ID:	0
130110 - 1A Other Sampling I Story/Level	and the second second	13010 - AD		Story/Level		130110 - 6	Cast
Room	ACCIO	Room		Room		Distance from Building	20'
Indoor Air Temp (°F)	office 60°	Indoor Air Temp		Indoor Air Temp		Intake Height Above Ground Level (ft.)	3'
Barometric		Barometric Pressure?		Barometric Pressure?		Intake Tubing Used?	No
Pressure? Intake Height Above Floor Level (ft.)	24 ft	Intake Height Above Floor Level (ft.)		Intake Height Above Floor Level (ft.)	1	Distance to nearest Roadway	30'
Noticeable Odor?	No	Noticeable Odor?		Noticeable Odor?		Noticeable Odor?	\$Paint-
PID Reading (ppb)	-	PID Reading (ppb)		PID Reading (ppb)		PID Reading (ppb)	-
Duplicate Sample?		Duplicate Sample?		Duplicate Sample?		Duplicate Sample?	No
Duplicate Sample?	-					Duplicate Sample?	No

anage

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Metal Etching		_ Site Code:	130110	Operable Unit: 001
Building Code: OFFICE-01	Building Name:	Office		
Address: 435 South Main Street			Apt/Suite No:	
City:Freeport	State: NY	Zip: 11520	County: Na	issau
Contact Information				
Preparer's Name: Megan Miller			_ Phone No:	(315)431-4610
Preparer's Affiliation: EA Engineering, So	cience, and Techno.	logy	Company Code	e:EAEST
Purpose of Investigation:			Date of Inspec	ction: Nov 18, 2015
Contact Name: Eric Talochino			Affiliation:	MANAGER
Phone No: (516) 225-6474 Alt	Phone No: (516) 54	16-8880	Email:	
Number of Occupants (total): Nu	mber of Children:			
Occupant Interviewed?	C Owner Occu	pied?		Owner Interviewed?
Owner Name (if different): Dante Grover			Owner Phone:	(516) 225-6475
Owner Mailing Address:				
If Commercial or Industrial Facility, Select Operation OFFICE/PROF BUILDING Number of Floors: <u>1</u> Approx. Year Con Describe Overall Building 'Tightness' and Airflows Foundation Description	nstruction:	_ 🛛 🖾 Buildi	ect Structure Ty	pe:
Foundation Type: NO BASEMENT/SLAB	Fe	oundation Dept	h (bgs):	Unit: FEET
Foundation Floor Material: POURED CONCE	ETE FO	oundation Floor	Thickness: 6	; ;
Foundation Wall Material:	Fo	oundation Wall	Thickness:	Unit: INCHES
Floor penetrations? Describe Floor Penetra	tions:			
Wall penetrations? Describe Wall Penetrat	ions:	A 21.		
Basement is: Baseme Describe Foundation Condition (cracks, seepage,	etc.): No evidence	of faults	in foundatio	
Radon Mitigation System Installed?	🔀 VOC Mitigatio	on System Insta	lled?	☑ Mitigation System On?
Heating/Cooling/Ventilation Systems				
Heating System: NONE	Heat Fuel Type:	ELECTRIC		Central A/C Present?
Vented Appliances		the D F	T	
Water Heater Fuel Type: Water Htr Vent Location:		othes Dryer Fue) CLOTHES DRYER
	Dr	ver Vent Locatio	I NC	DNE

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

		PI	RODUCT INVEN	ITORY		
Building Nam	e:Office		Bldg Cod	e: OFFICE-01	Date:	
Bldg Address:	435 South Main Stree	et			Apt/Suite No:	
Bldg City/Stat	e/Zip: Freeport NY, 11	520				
Make and Mo	del of PID:			Date of	Calibration:	
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingree	dients PID Reading	COC Y/N?
						Г
						Г
						Ē
						Г
						Γ
						Г

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site?

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

ite Name: Metal Etching	
uilding Code: OFFICE-01 Build	ding Name:Office
ddress: 435 South Main Street	Apt/Suite No:
ity: Freeport	State: NY Zip: 11520 County: Nassau
actors Affecting Indoor Air Quailty	
requency Basement/Lowest Level is Occupied?: FULL TI	ME Floor Material: CARPET
☐ Inhabited? ☐ HVAC System On?	T Bathroom Exhaust Fan? T Kitchen Exhaust Fan?
Alternate Heat Source: NONE	☐ Is there smoking in the building?
Air Fresheners? Description/Location of Air Fr	reshener:
	ng Products: generic antibacterial cleaners
Cosmetic Products Used Recently?: Description of Cosme	tic Products:
New Carpet or Furniture? Location of New Carpet/Furn	iture:
Recent Dry Cleaning? Location of Recently Dry Clea	ned Fabrics:
Recent Painting/Staining? Location of New Painting:	
Solvent or Chemical Odors? Describe Odors (if any):	
이 것 같은 이렇게 이가 안에 가지 않는 것 같아. 정말했다.	
Do Any Occupants Use Solvents At Work? If So, List Solve	
Recent Pesticide/Rodenticide? Description of Last Use:	
Describe Any Household Activities (chemical use,/storage, unve	ented appliances, hobbies, etc.) That May Affect Indoor Air Quality:
Office space is only used during normal b within the facility and a small bathroom	ented appliances, hobbies, etc.) That May Affect Indoor Air Quality: usiness hours. There are two desks located space. The layout is completely open. There is he building that is currently functioning.
Office space is only used during normal b within the facility and a small bathroom	usiness hours. There are two desks located space. The layout is completely open. There is
Office space is only used during normal b within the facility and a small bathroom an active SSDS system installed outside t	usiness hours. There are two desks located space. The layout is completely open. There is
Office space is only used during normal b within the facility and a small bathroom an active SSDS system installed outside t Any Prior Testing For Radon? If So, When?: Any Prior Testing For VOCs? If So, When?:	usiness hours. There are two desks located space. The layout is completely open. There is
Office space is only used during normal b within the facility and a small bathroom an active SSDS system installed outside t Any Prior Testing For Radon? If So, When?: Any Prior Testing For VOCs? If So, When?: ampling Conditions	usiness hours. There are two desks located space. The layout is completely open. There is
Office space is only used during normal b within the facility and a small bathroom an active SSDS system installed outside t Any Prior Testing For Radon? If So, When?: Any Prior Testing For VOCs? If So, When?: ampling Conditions	usiness hours. There are two desks located space. The layout is completely open. There is he building that is currently functioning.

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Building Code: OFF1	ACCE-01 AC	dress: 435 Sout	h Main Street F	reeport, NY 115	20
Sampling Informa	tion				
Sampler Name(s):	Stephen Soldner		Sampler Comp	any Code: EAEST	
Sample Collection Date	e: Nov 19, 2015		Date Samples	Sent To Lab: <u>Nov</u>	19, 2015
Sample Chain of Custo	dy Number: Doc #3	78 SDG 15K1053	Outdoor Air Sa	mple Location ID:	OA-111915
SUMMA Canister I	nformation				
Sample ID:	130110-IA-111915	130110-Dup-	130110-0A-1		
Location Code:	IA-111915	Dup-111915	OA-111915		
Location Type:	FIRST FLOOR	FIRST FLOOR	OUTDOOR		
Canister ID:	2029	2030	1505		
Regulator ID:	3589	3589	3172		
Matrix:	Indoor Air	Indoor Air	Ambient Outd		
Sampling Method:	SUMMA AIR SAMPLII	SUMMA AIR SA	SUMMA AIR SA		
Sampling Area Inf	0				
Slab Thickness (inches):					
Sub-Slab Material:					
Sub-Slab Moisture:					
Seal Type:					
Seal Adequate?:					
Sample Times and	Vacuum Readings				
Sample Start Date/Time:	11/18/2015 14:	11/18/2015 🛔	11/18/2015 🖬		
Vacuum Gauge Start:	-30	-30	-30		
Sample End Date/Time:	11/19/2015 13:	11/19/2015 🛔	11/19/2015		
Vacuum Gauge End:	-8	-8	-8		
Sample Duration (hrs):	23.3	23.3	23.3		
Vacuum Gauge Unit:	in(hg)	in(hg)	in(hg)		
Sample QA/QC Rea	adings				
Vapor Port Purge:					
Purge PID Reading:					
Purge PID Unit:					
Tracer Test Pass:					
Sample start	and end times should	be entered using	the following forn	nat: MM/DD/YYY	Ү НН:ММ

	201		ING LEVEL LAYO		
	click the box with the b etch should be in a stan			ch of the lowest building level .	Clear Ima
THE SK	eten should be in a stan	idaru image id	innat (.jpg, .prig, .tin)		
			Design Sketch		
			lines and Recommen		
 Identify a 	nd label the locations of all	sub-slab, indooi	r air, and outdoor air san	nples on the layout sketch.	
 Measure 	the distance of all sample	locations from id	lentifiable features, and	include on the layout sketch.	
Identify reader	oom use (bedroom, living ro	oom, den, kitche	n, etc.) on the layout ske	etc	
 Identify the 	ne locations of the following	features on the	layout sketch, using the	appropriate symbols:	
B or F	Boiler or Furnace	0		etrations (label appropriately)	
HW	Hot Water Heater	XXXXXXXX		w inside or outside outer walls as appro-	opriate)
FP	Fireplaces	######	Areas of broken-up co		
WS	Wood Stoves	• SS-1	Location & label of sub	o-slab samples	
W/D	Washer / Dryer	• IA-1	Location & label of ind	oor air samples	
	Sumps	• OA-1	Location & label of out	door air samples	
S					
s @	Floor Drains	• PFET-1		any pressure field test holes.	

 Plaaca	click the box with the	hlue horder bol	elow to upload a sketch of the first floor of the building.	
	etch should be in a star			r Imag
		y		
				.*

			Design Sketch	
	Desig	in Sketch Guide	lelines and Recommended Symbology	
 Identify a	and label the locations of a	all sub-slab indoo	or air, and outdoor air samples on the layout sketch.	
 and and				
 			identifiable features, and include on the layout sketch.	
 Identify r 	oom use (bedroom, living	room, den, kitche	nen, etc.) on the layout sket	
 Identify t 	he locations of the following	ng features on the	e layout sketch, using the appropriate symbols:	
B or F	Boiler or Furnace	0	Other floor or wall penetrations (label appropriately)	
 HW	Hot Water Heater	XXXXXXX		
FP	Fireplaces	######		
 ws	Wood Stoves	• SS-1	Location & label of sub-slab samples	
 W/D	Washer / Dryer	• IA-1	Location & label of indoor air samples	
S	Sumps	• OA-1	Location & label of outdoor air samples	
@	Floor Drains		Location and label of any pressure field test holes.	

1.1.1.1	1		OUTDOOR	PLOT LAY	OUT SI	KETCH				
PI	ease clic	k the box with the blue	e border below	to upload a s	ketch o	f the out	tdoor pl	ot of the b	ouilding	
as	well as	the surrounding area. 1	The sketch sho	uld be in a sta	ndard ir	mage fo	rmat (.jp	g, .png, .t	iff)	Clear Imag
	annen manna inn									
								1. · · · · · · · · · · · · · · · · · · ·		
									andaraan in a station in the	
(
and any area and and any										
				Design Sketch						
		Desigr	n Sketch Guide	lines and Rec	ommen	ded Sym	nbology			
	Identify a	nd label the locations of al	l sub-slab, indooi	r air, and outdoo	or air sam	ples on th	he layout	sketch.		
	Measure	the distance of all sample	locations from id	lentifiable featu	es, and i	nclude on	the lavo	ut sketch.		
		oom use (bedroom, living r								
							to oursha	de:		
		e locations of the following								
	B or F HW	Boiler or Furnace Hot Water Heater	0	Other floor or					oo opproart-	
	FP	Fireplaces	XXXXXXX #######	Perimeter Dra Areas of broke			ouiside	outer walls	as appropria	le)
	ws	Wood Stoves	• SS-1	Location & lat			ples			
	W/D	Washer / Dryer	● IA-1	Location & lat						
	S	Sumps	• OA-1	Location & lat						
	@	Floor Drains	PFET-1	Location and				est holes		
		A COLONAL CONTRACTOR				,				

Appendix G

Institutional Controls/Engineering Controls Certifications

This page intentionally left blank

Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form

	Site Details		Box
0:4- 4			
Site r	Name Metal Etching Co., Inc.		
City/T Count	ddress: 435 South Main Street Zip Code: 11520 own: Freeport ty: Nassau creage: 2.3		
Repor	ting Period: November 12, 2015 to November 12, 2016		
		YES	NO
. Is	the information above correct?	D	
lf I	NO, include handwritten above or on a separate sheet.		
To me	your knowledge has some or all of the site property been sold, subdivided, erged, or undergone a tax map amendment during this Reporting Period?		ø
To Re	your knowledge has there been any change of use at the site during this porting Period (see 6NYCRR 375-1.11(d))?		Ø
To dis	your knowledge have any federal, state, and/or local permits (e.g., building, charge) been issued for or at the property during this Reporting Period?		Ø
lf y tha	you answered YES to questions 2 thru 4, include documentation or eviden at documentation has been previously submitted with this certification for	ce m.	
То	your knowledge is the site currently undergoing development?		ø
	• .	x	Box 2
		YES	Box 2 NO
ls t	he current site use consistent with the use(s) listed below? mmercial and Industrial	YES	
ls ti Cor	he current site use consistent with the use(s) listed below? mmercial and Industrial all ICs/ECs in place and functioning as designed?		NO
Is ti Cor Are THE .	mmercial and Industrial	⊠ ⊠ act the	
Is ti Cor Are THE	mmercial and Industrial all ICs/ECs in place and functioning as designed? ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and conta	⊠ ⊠ act the	NO

SITE NO. 130110

Description of Institutional Controls

Parcel 62-44-24 Owner BWM High & Dry Inc.

Institutional Control

Ground Water Use Restriction Landuse Restriction Site Management Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for any buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitoring of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-44-25

BWM High & Dry Inc.

Site Management Plan

Ground Water Use Restriction Landuse Restriction

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for any buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitoring of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e)

provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-144

Freeport Creek Associates

Ground Water Use Restriction Landuse Restriction Site Management Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in ' conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for any buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitoring of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-145

Freeport Creek Associates

Ground Water Use Restriction Landuse Restriction Site Management Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for any buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitoring of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-155

Apache Realty Corporation

Ground Water Use Restriction Landuse Restriction Site Management Plan

Imposition of an institutional control in the form of an environmental notice requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for any buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitoring of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-157

Apache Realty Corporation

Ground Water Use Restriction Landuse Restriction Site Management Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for any buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitoring of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs. 62-45-158

Freeport Creek Associates

Monitoring Plan Site Management Plan

Ground Water Use Restriction Landuse Restriction

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.: EL14000001 (Freeport Creek Assoc.), EL14000002 (BWM High&Dry), EL14000003(Apache Realty Corp.)

Site management plan (SMP)has been developed which includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for any buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitoring of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-54

BWM High & Dry Inc.

Ground Water Use Restriction Landuse Restriction Site Management Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place. ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.: EL14000001 (Freeport Creek Assoc.), EL14000002 (BWM High&Dry), EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for any buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitoring of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

Box 4

Description of Engineering Controls

Engineering Control

Parcel 62-44-24

> Cover System Fencing/Access Control Vapor Mitigation

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP.

Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. 62-44-25

Vapor Mitigation Cover System Fencing/Access Control

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP.

Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings.

62-45-144

Vapor Mitigation Cover System Fencing/Access Control

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed ; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP.

Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings.

62-45-145

Vapor Mitigation Cover System Fencing/Access Control

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a Parcel **Engineering Control** demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or ; and any underlying remaining contamination is disturbed. Procedures for the temporarily removed inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP. Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. 62-45-155 Vapor Mitigation Cover System Fencing/Access Control Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed? ; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP. Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. 62-45-157 Vapor Mitigation Cover System Fencing/Access Control Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed? ; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP. Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. 62-45-158 Vapor Mitigation Cover System Fencing/Access Control Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is

demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed ; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP.

Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of

Parcel the buildings. 62-45-54

Vapor Mitigation Cover System Fencing/Access Control

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed ; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP.

Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings.

Box 5

Periodic Review Report (PRR) Certification Statements

1. I certify by checking "YES" below that:

a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification, including data and material prepared by previous contractors for the current certifying period, if any;

b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

P

 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:

(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;

(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;

(c) nothing has occurred that would constitute a failure to comply with the Site Management Plan, or equivalent if no Site Management Plan exists.

YES NO

P

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address these issues.

Signature Standby Consultant/Contractor

12/14

IC/EC CERTIFICATIONS Professional Engineer Signature I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I DONALD CONAN at EA ENGINEERING, P.C. print name 6712 BROOKLAWN PKWY SYRACUSE NY. 13211 (print am certifying as a Professional Engineer. 12/19/16 Signature of Professional Engineer Date

Box 6