PERIODIC REVIEW REPORT No. 5 November 2016 – November 2017

Metal Etching Co. Site (130110) Freeport, Nassau County, New York

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E, Section A

Prepared by:

EA ENGINEERING, P.C. and Its Affiliate EA SCIENCE and TECHNOLOGY

January 2018

This page intentionally left blank

Periodic Review Report No. 4 November 12, 2016 – November 12, 2017 Metal Etching Co., Inc. Site (130110)

Freeport Nassau County, New York

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7017

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211 (315) 431-4610

> January 2018 Version: FINAL EA Project No. 14907.09

This page left intentionally blank

Periodic Review Report No. 4 November 12, 2016 – November 12, 2017 Metal Etching Co., Inc. Site (130110)

Freeport Nassau County, New York

Prepared for

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7017

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211 (315) 431-4610

là

Donald Conan, P.E. Vice President

Uesan Miller

Megan Miller Project Manager

12 January 2018 Date

12 January 2018 Date

January 2018 Version: FINAL EA Project No. 14907.09 This page left intentionally blank

TABLE OF CONTENTS

Page

LIST C	OF FIG	URES	iii
LIST (OF TAE	BLES	iv
LIST C	OF ACF	RONYMS AND ABBREVIATIONS	V
ES. EZ	XECUT	TIVE SUMMARY	ES-1
1.	INTRO	ODUCTION	1-1
	1.1 1.2	SITE BACKGROUND REMEDIAL HISTORY	1-1
		1.2.1 Summary of Remedial Actions	1-4
		1.2.1.1 Remaining Contamination1.2.1.2 Final Engineering Report1.2.1.3 Site Management Plan	1-5 1-5 1-6
	1.3 1.4 1.5	SITE GEOLOGY AND HYDROGEOLOGY SITE MANAGEMENT OBJECTIVES PERIODIC REVIEW REPORT	1-6 1-6 1-7
2.	EVAL PROT	UATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND ECTIVENESS	2-1
	2.1	SITE INSPECTION	2-1
		 2.1.1 Site Cover 2.1.2 Site Security 2.1.3 Sub-Slab Depressurization Systems	2-1 2-1 2-1
	2.2 2.3 2.4	MONITORING PLAN COMPLIANCE REPORT CONFIRM COMPLIANCE WITH MONITORING PLAN GROUNDWATER MONITORING	2-1 2-2 2-2
		 2.4.1 Groundwater Monitoring and Sampling 2.4.2 Volatile Organic Compounds 2.4.3 Inorganic Compounds 2.4.4 Monitored Natural Attenuation Parameters 2.4.5 Per/Poly Fluorinated Alkyl Substances and 1,4-Dioxane 	2-2 2-3 2-4 2-4 2-5
	2.5	INDOOR AIR MONITORING	2-5

	2.6	CONFIRM THAT PERFORMANCE STANDARDS ARE BEING MET	2-6
3.	INSTI PLAN	TUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION REPORT	3-1
	3.1	INSTITUTIONAL CONTROL/ENGINEERING CONTROL REQUIREMEN	JTS 3-1
	3.2	INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION FORM	3-1
4.	COST	EVALUATION	4-1
	4.1	SUMMARY OF COSTS	4-1
5.	RECO	MMENDATIONS	. 5-1
	5.1 5.2 5.3	GROUNDWATER MONITORING INDOOR AIR MONITORING SITE INSPECTION AND MAINTENANCE	5-1 5-1 5-1
		5.3.1 Site Cover5.3.2 Sub-Slab Depressurization Systems	5-1 5-1
	5.4	SUMMARY	5-2
6.	REFE	RENCES	6-1
APPE APPE APPE	NDIX A NDIX E NDIX (A: SITE MANAGEMENT PLAN B: SITE INSPECTION FORMS C: MONITORING WELL PURGING/SAMPLING LOGS	

- APPENDIX D: DAILY FIELD REPORTS
- APPENDIX E: DATA USABILITY SUMMARY REPORTS
- APPENDIX F: AIR SAMPLING FORMS
- APPENDIX G: INSTITUTIONAL/ENGINEERING CONTROL CERTIFICATIONS

LIST OF FIGURES

Number

Title

- Site Location and Boundary Map
 Shallow Groundwater Contours Low Tide Conditions (April 2017)
- 3 Tetrachloroethene Isopleths (April 2017)

LIST OF TABLES

<u>Number</u>	Title
1	Summary of Detected Volatile Organic Compounds in Groundwater
2	Summary of Detected Inorganic Compounds in Groundwater
3	Summary of Monitored Natural Attenuation Parameters in Groundwater
4	Summary of Detected 1,4 Dioxane and Per/Poly Fluorinated Alkyl Substances Compounds in Groundwater
5	Summary of Detected Volatile Organic Compounds in Soil Vapor

LIST OF ACRONYMS AND ABBREVIATIONS

AMSL	Above mean sea level
AWQS	Ambient water quality standard
bgs	Below ground surface
btoc	Below top of casing
CVOC	Chlorinated volatile organic compound
DCE	Dichloroethene
DO	Dissolved oxygen
EA	EA Engineering, P.C. and Its Affiliate EA Science and Technology
EC	Engineering controls
EPA	United States Environmental Protection Agency
ft	Feet (foot)
ft ²	Square feet (foot)
hr	Hour(s)
IC	Institutional controls
in.	Inch(es)
Metal Etching	Metal Etching, Co., Inc.
mg/L	Milligrams per liter
MNA	Monitored natural attenuation
MTBE	Methyl tert-butyl ether
mV	Millivolts
No.	Number
NTU	Nephelometric turbidity units
NYSDEC	New York State Department of Environmental of Conservation
NYSDOH	New York State Department of Health
O&M	Operation and maintenance
ORP	Oxidation-reduction potential
PCE	Tetrachloroethene
PFAS	Poly fluorinated alkyl substances
ppt	Parts per trillion
PRR	Periodic review report
RA	Remedial action

RI	Remedial investigation	
ROD	Record of Decision	
SCG	Standards, criteria, and guidance	
SCO	Soli cleanup objectives	
SIMI		
SSDS	Sub-slab depressurization system	
SVI	Soil vapor intrusion	
TAL	Target analyte list	
TCE	Trichloroethene	
ICL	Themoroeulene	
UST	Underground storage tank	
VC	Vinyl chloride	
VOC	Volatile organic compound	
WC	Water column	
yd ³	Cubic yard(s)	

ES. EXECUTIVE SUMMARY

The New York State Department of Environmental Conservation (NYSDEC) tasked EA Engineering, P.C. and its Affiliate EA Science and Technology (EA) to provide site management services from August 21, 2012 to January 25, 2018 at the Metal Etching Co., Inc. (Metal Etching) site (Site Number [No.] 130110) in Freeport, Nassau County, New York (Figure 1). This Work Assignment is being conducted under NYSDEC Standby Engineering Services Contract No. D007624-09.1.

Post-closure monitoring and facility maintenance program activities were conducted at the Metal Etching site in April 2017 in accordance with the New York State Inactive Hazardous Waste Disposal Site Remedial Program and as stipulated in the Record of Decision (NYSDEC 2007) and Site Management Plan (EA 2014a).

ES.1 REMEDY EVALUATION

Groundwater Monitoring

Concentrations of primary chlorinated volatile organic compounds (CVOCs) were consistently detected in groundwater samples collected from the deep wells within the former source area (MW-09D and MW-08DR) during the monitoring period. Concentrations of *cis*-1,2-dichloroethene, tetrachloroethene, trichloroethene, and vinyl chloride were detected exceeding the respective NYSDEC Ambient Water Quality Standard (AWQS) in samples collected in April 2017 in shallow and deep wells at the site.

Based upon monitored natural attenuation (MNA) parameter data generated during this monitoring period, there is continued potential for natural attenuation to occur within the aquifer. Water quality parameters (dissolved oxygen and oxidation reduction potential), and concentrations of total organic carbon, dissolved oxygen, nitrate, and chloride provide moderately favorable conditions for reductive dechlorination of CVOCs to occur.

Soil Vapor Intrusion Monitoring

The sub-slab depressurization system at the site office building was operational for the monitoring period. Indoor and outdoor air of the office building was monitored during the April 2017 event and will continue to be monitored on an annual basis. No detections of site-related CVOCs were identified in the indoor air samples collected as part of the monitoring program.

Site Inspection and Maintenance

A site inspection was completed on April 27, 2017. Site cover material was observed to be in fair condition with some disturbance. There is some evidence of disintegration of the porous pavement cover south of the main office building.

The site cover materials continue to provide protection to human health and the environment

from contaminants of concern at this time. In addition, infiltration of the permeable pavement was observed to be slow in high traffic areas due to the accumulation of sediment and debris within the pavement system.

ES.2 RECOMMENDATIONS

- Site management tasks should continue during the next period. This includes semi-annual site inspections, maintenance (as needed), semi-annual groundwater monitoring and sampling with annual collection of MNA parameters, and annual indoor air monitoring.
- Sweeping/vacuuming of permeable pavement should be completed annually.

1. INTRODUCTION

A periodic review process is commonly implemented at environmental remediation sites to evaluate the effectiveness of the selected remedy and to determine if the remedy continues to be protective of human health and the environment, as set forth in the Site Management Plan (SMP) (EA Engineering, P.C. and its affiliate EA Science and Technology [EA] 2014a). The objectives of the periodic review for sites in the State Superfund Program are as follows:

- Evaluate if chosen remedy is performing properly and effectively, and is protective of public health and the environment.
- Determine compliance with the Record of Decision (ROD) (New York State Department of Environmental Conservation [NYSDEC] 2007) and the SMP (EA 2014a).
- Evaluate treatment system and recommend repairs, if necessary.
- Evaluate the current state and condition of the remedy.
- Determine that the intent of the institutional controls continues to be met, the engineering controls remain in-place, and both are effective and protect public health and the environment.
- Evaluate the operation and maintenance (O&M) costs of the remedy.

1.1 SITE BACKGROUND

The site is located adjacent to Freeport Creek at 435 South Main Street, Freeport, Nassau County, New York. The Metal Etching Co., Inc. (Metal Etching) site is a Class 4 site that was reclassified in April 2014, and is listed on the NYSDEC Registry of Inactive Hazardous Waste Sites (Site No. 130110).

The Metal Etching property is a 2.25-acre L-shaped area, bounded by Ray Street East and a commercial property to the north, Freeport Creek to the south and east, and Main Street and Ray Street East to the west (Figure 1). The site is currently owned by Freeport Creek Associates, Apache Realty Corporation, and BWM High & Dry; it is leased by Main Street Marina, 500 South Main Street, Freeport, New York. The Metal Etching property is designated as Section 62, Block 45, and Lots 24, 54, 144, 145, 155, 157, and 158 on the tax maps. The site is currently used as a boat dealership, marina, and boat storage yard. Boat maintenance operations at the site are conducted in a single 2,400 square foot (ft²) warehouse building located on the northeast corner of the property. A smaller, 1,200 ft² building, located on the western portion of the property, has been restored, and is used for office space for the boat dealership. Minor boat restoration activities are performed within the warehouse building, as well as a sprung structure that was installed west of the warehouse building; activities include engine rebuilds, sanding, and painting/varnishing.

The former Metal Etching buildings at the site were erected prior to 1954; however, the exact date of construction is unknown. These connected buildings occupied approximately 26,650 ft² of the property (approximately 60 percent of the Metal Etching portion of the site). Aside from the warehouse building, which was originally a portion of the Metal Etching quarters, the Metal Etching buildings were demolished in 2001; however, the concrete slabs and footings of the buildings remained in place at the site. A 6-inch thick concrete slab covering an approximate area of 7,750 ft² was the foundation of the Metal Etching plating slab and is visible to the west of the warehouse building.

Historical site operations consisted of handbag manufacturing which involved decorative plating with nickel, chromium, and cadmium; followed by the manufacturing of other metal products including nameplates, instrument panels, rulers, and miscellaneous plated products. All products were etched or printed. The process of etching included anodizing, chromate conversion, and chrome/nickel plating. All operations terminated in 1999, and facility buildings were demolished around 2001.

1.2 REMEDIAL HISTORY

A remedial investigation (RI) was performed to characterize the nature and extent of contamination at the site. The RI/Feasibility Study report prepared by Environmental Resource Management (2007) for the Metal Etching site is summarized below:

- The top 7 feet (ft) of soil in three separate areas across the site contained concentrations of metals exceeding the standards, criteria, and guidance (SCGs) used for the site.
- Concentrations of volatile organic compounds (VOCs) in soil varied across the site.
- Groundwater contained concentrations of VOCs exceeding the SCGs across the site; the highest concentrations were detected in samples collected above the clay layer west and south of the 2,400 ft² warehouse building. Both tetrachloroethene (PCE) and breakdown contaminants trichloroethene (TCE), dichloroethene (DCE), and vinyl chloride (VC) were detected in site groundwater samples, indicating that degradation was occurring at the site.
- Soil vapor intrusion (SVI) sampling completed in 2004 indicated that both PCE and TCE were present beneath the slabs of the 1,200 ft² office building and the warehouse building. A sub-slab depressurization system (SSDS) was installed in each building to address the potential SVI.
- One underground storage tank (UST) was removed from the western area of the site in 1990, prior to the RI. Two additional potential USTs were identified during the RI; the first was identified east of the office building, and the second was identified south of the warehouse building.

- Sediment samples collected from south of the southeast bulkhead in Freeport Creek contained concentrations of chromium and nickel at concentrations exceeding their SCGs.
- Sediment samples collected from within an existing storm drain contained metals exceeding their respective SCGs.

NYSDEC issued a ROD for the Metal Etching site in March 2007. The specific elements of this alternative (as presented in the ROD [NYSDEC 2007]) are identified below:

- A remedial design program to provide the details necessary for the construction, operation, maintenance, and monitoring of the remedial program. This program included delineating the boundaries of sediment excavation within Freeport Creek.
- Hot spot excavation, to the extent practicable, of VOC and metals contaminated soil to the depth of groundwater table.
- Removal of sediment from the onsite stormwater system and disposal at an approved offsite facility.
- Determination of the presence, closure, and removal of USTs onsite in accordance with NYSDEC regulations.
- Areas not previously covered, and where excavation was not practicable, were to receive a cover of asphalt or ballast underlain by a demarcation layer.
- Limited sediment removal from Freeport Creek upon completion of the additional Freeport Creek Study and delineation of site-related contamination in the area of SED-04.
- A long-term groundwater monitoring program to confirm the effectiveness of the remedy.
- Establishment of an institutional control that requires: (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning, (b) compliance with the approved SMP (EA 2014a), (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by New York State Department of Health (NYSDOH), and (d) submission of a periodic certification of institutional controls (ICs) and engineering controls (ECs) to the NYSDEC by the property owner.
- Development of a SMP.
- Requirement of the property owner to submit a periodic certification of ICs and ECs prepared and submitted by a professional engineer, or such other expert acceptable to the NYSDEC, until the NYSDEC notifies the property owner in writing that this certification

is no longer needed. This submittal will: (a) contain certification that the ICs and ECs put in place are still in place, and are either unchanged from the previous certification or are compliant with NYSDEC-approved modifications, (b) allow the NYSDEC access to the site, and (c) state that nothing has occurred that will impair the ability of the controls to protect public health or the environment, or constitute a violation or failure to comply with the site management plan unless otherwise approved by the NYSDEC.

1.2.1 Summary of Remedial Actions

The remedial action (RA) selected by the ROD (NYSDEC 2007) included excavation and disposal of soil/fill exceeding soil cleanup objectives (SCOs), construction of a soil cover system of asphalt or permeable pavement to prevent human exposure to contaminated soil/fill remaining, removal and disposal of contaminated sediment from the onsite stormwater system, and from a limited area within Freeport Creek.

The site was remediated in accordance with the NYSDEC-approved remedial design, which was part of Contract Documents dated August 2010, and Addendums dated September 28, 2010, September 30, 2010, and October 1, 2010.

The following is a summary of the RAs performed at the site:

- 1. Excavation of 2,684 cubic yards (yd³) of soil/fill exceeding SCOs within identified excavation limits, to low-tide groundwater elevation, approximately 5 ft below ground surface (bgs).
- 2. Construction and maintenance of a soil cover system consisting of a geotextile demarcation layer covered by asphalt or permeable pavement to prevent human exposure to contaminated soil/fill remaining at the site.
- 3. Execution and recording of three Environmental Notices to restrict land use to commercial or industrial uses, and prevent future exposure to any contamination remaining at the site.
- 4. Removal of approximately 2 yd³ of sediment from the onsite stormwater system and disposal at an approved offsite facility.
- 5. Closure and removal of four USTs onsite in accordance with NYSDEC regulations.
- 6. Limited removal of approximately 183 yd³ of sediment from delineated area within Freeport Creek and disposal at an approved offsite facility.
- Development and implementation of a SMP for long-term management of remaining contamination as required by the Environmental Notices, which include plans for:
 (1) ICs/ECs, (2) monitoring, (3) O&M, and (4) reporting.

8. Remedial activities were completed at the site in January 2012.

1.2.1.1 Remaining Contamination

Per the ROD (NYSDEC 2007), excavation depth was limited by the low-tide groundwater elevation; therefore, known contamination remains at the site. Mirafi[®] 180N/O non-woven geotextile was installed over the footprints of all excavations to demarcate the extent of removal and remaining contamination. The majority of the excavations were completed at a depth of 5 ft; two small excavations were completed at a depth of 1 ft.

During the RI, VOC and metals contamination was identified in various locations throughout the site deeper than the maximum excavation depth of 5 ft. Concentrations of metals and VOCs exceeded the SCOs at sampling intervals 7 to 8 ft bgs and 12 ft bgs. A confining clay layer was identified 31 to 38 ft bgs across the site.

Endpoint soil samples were collected at the excavation bottom and sidewall boundaries during the remedial action. VOCs detected in endpoint soil samples with concentrations exceeding the site-specific SCOs included xylenes, 1,2-DCE as a combination of *cis*- and *trans*-1,2-DCE, and toluene (south of the warehouse building).

Metals detected in endpoint soil samples collected near the warehouse building with concentrations exceeding the site-specific SCOs include chromium, copper, nickel, and zinc.

Near the office building, zinc was detected in endpoint samples exceeding the site-specific SCO.

Many of the endpoint samples collected northeast and east of the warehouse building contained copper, nickel, and zinc exceeding the site-specific SCOs. One sample directly east of the warehouse building contained chromium at a concentration exceeding the site-specific SCOs.

Sediment was removed from a 2 ft excavation within Freeport Creek directly adjacent to the easternmost portion of the southern bulkhead. Endpoint samples collected following dredging activities contained arsenic, copper, and mercury at concentrations exceeding their respective SCGs.

A full discussion of remaining contamination including tables and figures can be found in the Final Engineering Report (EA 2014b).

1.2.1.2 Final Engineering Report

The Final Engineering Report (EA 2014b) was completed in October 2012 following the RA, and updated in April 2014 to include the Environmental Notices. The Final Engineering Report details the remedial activities conducted at the Metal Etching site.

1.2.1.3 Site Management Plan

The SMP was originally completed by EA in August 2012 and provided direction for maintenance and monitoring of the remedy selected by the ROD (NYSDEC 2007) for the Metal Etching site. The SMP (EA 2014a) was revised in April 2014 to include the Environmental Notices as an appendix and to update the groundwater monitoring well network based on field changes. A full copy of the SMP is provided in Appendix A.

1.3 SITE GEOLOGY AND HYDROGEOLOGY

The site is located adjacent to Freeport Creek at an elevation of 5 ft above mean sea level (AMSL). Freeport Creek and site groundwater is tidally influenced and ranges from 5 to 2.5 ft bgs at the site.

The top 3 to 4 ft of soil at the site consists of compacted fill material which includes sand, gravel, brick and wood debris. Fill is underlain by organics and shells to approximately 11 ft bgs. Some fill was excavated, disposed offsite, and replaced with clean granular fill during the 2011 RA. Glacial outwash sediments including sand and silt form the layer beneath the fill to a layer of clay at approximately 31 to 38 ft bgs. The glacial outwash is underlain by the Magothy formation, which consists of sand and gravel with some clayey sands.

Depth to groundwater ranges from 3 to 5 ft bgs and is highly influenced by tides, as discussed in the RI Report (Environmental Resource Management 2007). Groundwater flow is to the southeast across the site during low tide, and to the northwest during high tide. Groundwater flow as observed during the April 2017 monitoring event is shown in Figure 2, respectively.

1.4 SITE MANAGEMENT OBJECTIVES

Environmental monitoring points at the Metal Etching site have been maintained and sampled during the monitoring period in accordance with the SMP (EA 2014a). This included collection of groundwater samples at various locations across the site, inspection of the site cover material, and site maintenance. Indoor air and outdoor air samples were collected in April 2017. Sampling locations, sampling methodology, list of analytes, analytical methods, cover material inspection methodology, and site maintenance objectives are documented in the SMP.

The following are objectives of the monitoring and maintenance program:

- Collect representative groundwater samples and evaluate the data to confirm the remedy continues to be effective in protecting public health and the environment.
- Collect indoor air samples and evaluate the data to monitor effectiveness of the existing SSDS and determine necessity.
- Periodically inspect the site and provide routine maintenance, as necessary.

• Document and report this information to the NYSDEC.

1.5 PERIODIC REVIEW REPORT

The purpose of this Periodic Review Report (PRR) is to summarize the results of the April 2017 groundwater monitoring and site inspection event; and to provide sufficient documentation that the remedy remains in place, is performing properly and effectively, and is protective of public health and the environment. Specifically, this report provides the following information:

- Results of groundwater and indoor air monitoring
- Evaluation of the current groundwater quality conditions
- Results of site inspections
- Maintenance activities performed to date.

This page left intentionally blank

2. EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

2.1 SITE INSPECTION

Inspection of the site and its appurtenances was conducted on April 27, 2017. Findings and observations were recorded on the site-specific inspection forms, which are provided in Appendix B.

2.1.1 Site Cover

Overall, the site was in good condition. There were several spots that appeared to show settling/rutting of the porous pavement to the south of the site's office building and around the warehouse. There is also evidence of some disintegration of the porous pavement cover south of the main office building.

The storm drain located at the sites entry way shows damage due to heavy use, and should be replaced. There is some evidence of ponding on the porous pavement that was noticeable due to recent rain.

2.1.2 Site Security

The site was generally found to be in good condition during the April 2017 inspection. There was no evidence of vandalism. The front fence along Ray Street East and Main Street was fully intact. The gate is operational but should be repaired or replaced. The concrete around the entrance storm drain shows considerable damage, storm water is ponding at this location and the area appeared to be backed up. There was no obvious evidence of any spilled liquids onsite. Monitoring wells are in generally good condition and serving the intended purpose.

2.1.3 Sub-Slab Depressurization Systems

The sub-slab depressurization system on the office building was in operation at the time of the site inspections. The manometer read 4.6 inches (in.) of water column (WC) in April 2017. The exhaust pipe was observed to be cracked at the exhaust end of the pipe near the elbow during the April 2017 inspection; damage is not affecting system operation. The system on the warehouse was decommissioned in 2014 and is not currently in operation due to building use.

2.2 MONITORING PLAN COMPLIANCE REPORT

This PRR assesses whether the Metal Etching site has been remediated and managed as set forth in the SMP (EA 2014a) and ROD (NYSDEC 2007). The Monitoring Plan includes a description of the methods and rationale to be used for assessing the remedy effectiveness, including the following elements:

• Sampling and analysis of all appropriate media (e.g., groundwater, indoor air).

- Assessing compliance with applicable NYSDEC SCGs, particularly Ambient Water Quality Standard (AWQS).
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

2.3 CONFIRM COMPLIANCE WITH MONITORING PLAN

The following table identifies the SMP monitoring plan requirements on an annual and semi-annual basis for the first year of the plan, and demonstrates compliance with the monitoring plan has been achieved prior to the end of the reporting period.

	Required Frequency		
Monitoring Program Activity	Semi-Annually	Annually	Compliance Dates
Groundwater Monitoring/Sampling	Х		April 2017
Site Cover Inspection	Х		April 2017
Indoor Air Monitoring		Х	April 2017

2.4 GROUNDWATER MONITORING

2.4.1 Groundwater Monitoring and Sampling

Semi-annual groundwater monitoring including gauging and sampling has been continuously performed at the site since completion of the RA in 2012. During the reporting period (November 2016 through November 2017), one groundwater monitoring and gauging event was completed at the site in April 2017.

The site monitoring well network has changed since the completion of the RA. Monitoring wells MW-01 and MW-05, which were originally included in the SMP (EA 2014a) monitoring well network, have not been located onsite since the completion of the RA. A records review indicates these monitoring wells had not been sampled since before the RA, and were likely either paved over or decommissioned. In addition, a concrete pad was poured by the property owner to the west of the warehouse building between Fall 2012 and Spring 2013, which covered monitoring well cluster MW-8. In July 2013, monitoring wells MW-08SR and MW-08DR were installed off the southwest corner of the warehouse, and MW-05R was installed to the southeast of the warehouse. In April 2014, two monitoring wells, MW-11S and MW-11D, were installed along Ray Street behind the warehouse to serve as high tide down-gradient monitoring points. Monitoring well locations are shown on Figures 2 and 3.

The Metal Etching site is located directly adjacent to Freeport Creek, which connects to the Atlantic Ocean through a series of salt marshes; and therefore, is tidally influenced. Due to the proximity of the site to these waters, site groundwater elevation is tidally influenced, and typically ranges between 3 to 5 ft bgs. A groundwater gauging event in April 2017 took place

	Well Casing	Depth to Water	Water Elevation
Well	Elevation	(ft btoc)	(ft AMSL)
Identification	(ft AMSL)	April 28, 2017	April 28, 2017
MW-06	4.34	3.80	0.54
MW-05R	4.02	5.50	-1.48
MW-04	6.02	5.45	0.57
MW-08DR	5.24	5.49	-0.25
MW-08SR	5.41	4.80	0.61
MW-9D	4.16	4.96	-0.80
MW-9S	4.27	4.96	-0.69
MW-10D	5.30	5.91	-0.61
MW-10M	5.37	6.02	-0.65
MW-10S	5.09	5.37	-0.28
MW-11S	4.05	—	—
MW-11D	3.96		—
NOTE: btoc = Below top of casing			
AMSL = Above mean sea level			

during low tide conditions. Water elevation data for the April 2017 gauging event are summarized in the following table.

Interpreted groundwater potentiometric surface flow patterns for the April 2017 gauging event is presented in Figure 2. Groundwater fluctuates with the tides, and typically flows from northwest to southeast across the site during low tides and southeast to northwest during high tides. The April 2017 gauging event took place at low tide, with groundwater flowing in a southeast direction.

Groundwater monitoring wells were sampled in April 2017 during this monitoring period. Each well was purged using low-flow techniques (submersible pumps), and water quality readings were allowed to stabilize prior to sample collection. Purge forms are provided in Appendix C. and daily field reports are provided in Appendix D. Samples were submitted to Con-Test Analytical Laboratory, in East Longmeadow, Massachusetts for analysis of volatile organic compounds (VOCs) by United States Environmental Protection Agency (EPA) Method 8260C, and metals/mercury by EPA Method 6010B/7470A, and monitored natural attenuation parameters including chloride, nitrate, sulfate, sulfide, total organic carbon (TOC), and dissolved gasses; methane, ethane and ethane, per the Site Management Plan and recommendations from previous monitoring events. In addition, per NYSDEC request, groundwater samples were analyzed for per/poly fluorinated alkyl substances (PFAS) by USEPA Method E537, and 1,4-Dioxane by EPA Method 8270D select ion monitoring (SIM) for an isolated sampling event. Groundwater sampling results were compared to NYSDEC AWOS for Class GA waters (NYSDEC 1998). Analytical results are summarized in Tables 1 through 4. Figure 3 shows the interpreted PCE isopleths from April 2017. Data usability summary reports are provided in Appendix E.

2.4.2 Volatile Organic Compounds

Seventeen VOCs were detected during the April 2017 groundwater sampling event; 5 of the 17

VOCs, including Acetone, *cis*-1,2-DCE, PCE, TCE, *trans*-1,2-DCE and VC were detected at concentrations exceeding the NYSDEC AWQS. The groundwater exceedances were detected at monitoring wells MW-08DR and MW-09D. Historically the majority of groundwater exceedances were detected at monitoring wells MW-08DR, MW-09D, MW-09S, MW-10M, and MW-10S. CVOCs have typically exceeded the AWQS in MW-09S during high tide events; this may be evidence of the residual soil source (e.g., sorbed or diffused CVOCs in soil) known to remain in the area of monitoring well sets MW-08R, MW-09 and MW-10 that historically impacted shallow groundwater during high tide.

2.4.3 Inorganic Compounds

Prior to collecting groundwater samples, monitoring wells were purged until the turbidity readings as measured using a Horiba U-52 were less than 50 nephelometric turbidity units (NTU). Based on the unfiltered analyses, six organic compounds (arsenic, copper, iron, magnesium, manganese, and sodium) were detected at concentrations greater than their applicable NYSDEC AWQS during the April 2017 groundwater sampling event. Aluminum, barium, calcium, copper, iron, magnesium, manganese, nickel, potassium, sodium, and zinc were detected in all twelve monitoring wells and remained consistent compared to historical events.

2.4.4 Monitored Natural Attenuation Parameters

As part of the groundwater monitoring program, groundwater samples collected in April 2017 were submitted for MNA parameter analysis including chloride, sulfate, sulfide, nitrate, and total organic carbon and are summarized along with prior sampling results in Table 3.

Discussed are the notable monitored natural attenuation parameters:

- A total organic carbon concentration less than 20 milligrams per liter (mg/L) is a limiting factor in the availability of electron donors required for reductive dechlorination of chlorinated VOCs. Total organic carbon was detected at concentrations greater than 20 mg/L in MW-05R (21.9 mg/L) in April 2017.
- If nitrate concentrations are less than 1 mg/L, along with dissolved oxygen (DO) concentrations less than 0.5 mg/L and increased sulfide concentrations, it can be concluded that anaerobic conditions exist at the site. Nitrate concentrations were less than 1 mg/L at all but one, MW-11D (4.55mg/L) of the monitoring wells at the site. DO was less than 0.5 mg/L in all but one, MW-04 (6.2mg/L). Sulfide was non-detect at all sampling locations.
- Sulfate concentrations greater than 20 mg/L can cause competitive exclusion of reductive dechlorination. *Sulfate concentrations were less than 20 mg/L in MW-04, MW-05R, MW-08SR, MW-09S, MW-10D, and MW-11S.*
- Chloride was detected above 250 mg/L in five of the twelve site monitoring wells; however, it is a major contributor to the ion composition of natural seawater, typically

found at concentrations of roughly 19,000 mg/L. Therefore, it is not a reliable metric for measuring MNA in sites influenced by tides.

• Natural attenuation of the CVOCs present in the groundwater at the site primarily occurs under anaerobic conditions that are reflected by DO concentrations below 0.5 mg/L and oxidation-reduction potential (ORP) less than 0.0 millivolts (mV). ORP was less than 0.0 mV along with DO detected at less than 0.5 mg/L in MW-05R, MW-06, MW-08DR, MW-09S, MW-09D, MW-10M, MW-10S, and MW-11S.

2.4.5 Per/Poly Fluorinated Alkyl Substances and 1,4-Dioxane

Analytical results associated with groundwater samples that were collected in April 2017 and submitted for PFAS analysis are summarized in **Table 4**.

Presented are exceedances of applicable criteria:

- 1,4-dioxane was detected in MW-10S at a concentration of 0.45 parts per billion (ppb), which exceeds the EPA's Integrated Risk Information System 2013 for drinking water of 0.35 ppb.
- PFAS were detected above the EPA health advisory level of 70 parts per trillion (ppt) combined concentrations of PFOA and PFOS for drinking water in 7 of the 12 site monitoring wells: MW-04, MW-05R, MW-06, MW-10M, MW-10S, MW-11D, and MW-11S.

2.5 INDOOR AIR MONITORING

The SMP (EA 2014a) required annual indoor air sampling in both the office and warehouse buildings during the heating season to monitor the effectiveness of the SSDSs; however, both systems were damaged during Superstorm Sandy in 2012. A SVI evaluation was conducted in November 2013 and March 2014 to determine the continued necessity of the SSDSs in both buildings. Indoor air, outdoor air, and sub-slab vapor samples were collected in November 2013 from both buildings and again in March 2014 from the warehouse building to confirm results, and it was determined the warehouse SSDS could be shut down with no further monitoring unless building use changes.

In April 2017, indoor air and outdoor air samples were collected from the office building. Samples were collected using laboratory clean-certified Summa® canisters regulated for a 24-hr sample collection. Samples were submitted to Con-Test Analytical Laboratory, of East Longmeadow, Massachusetts for analysis of VOCs using EPA Method TO-15. Air sampling forms are provided in Appendix F.

Results were compared to NYSDOH Air Guidance Values (2006). Analytical results are summarized in Table 5. Data usability summary reports are provided in Appendix E.

During the April 2017 sampling event, various VOCs were detected, but none were detected above NYSDOH Air Guidelines, and no detections of site-related CVOCs were observed.

2.6 CONFIRM THAT PERFORMANCE STANDARDS ARE BEING MET

Tables 1 through 4 provide a summary of groundwater results for the reporting period. Natural attenuation of primary CVOC compounds (PCE/TCE) is a long-term process and will continue to be monitored. Previous soil vapor intrusion monitoring indicated the presence of TCE and PCE beneath the slab in the office building, which is regularly occupied during business hours, indicated the office SSDS needed to be returned to operation. PCE concentrations in the indoor air were non-detect during the April 2017 sampling event, and TCE ranged from 0.23 microgram per cubic meter (μ g/m3) to 0.25 μ g/m3, indicating that the SSDS is serving its purpose.

3. INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION PLAN REPORT

As previously noted, the SMP is included in Appendix A of this PRR and includes the ICs/ECs Plan. The SMP was revised in April 2014 to include the environmental notices and the updated groundwater monitoring well network. ICs and ECs at the Metal Etching site currently include the following:

- EC—Cover system that includes permeable and standard asphalt pavement areas, rip rap, and concrete building slabs/foundations that prevent incidental contact or ingestion of remaining contaminated subsurface soil at the majority of the site. An excavation work plan included as an appendix to the SMP, identifies the procedures and protocols required to be implemented should the cover system be breached, penetrated, or temporarily removed, and any underlying remaining contamination is disturbed.
- EC—O&M of the SSDSs in the site buildings.
- IC—Establishment of Environmental Notices and compliance with the SMP.

3.1 INSTITUTIONAL CONTROL/ENGINEERING CONTROL REQUIREMENTS AND COMPLIANCE

Determination of compliance with the ICs and ECs at the Metal Etching site is made on the following criteria:

- The ICs and ECs applied at the site are in place and unchanged since completion of the remedial activities and issuance of the SMP.
- No changes or occurrences of activity have impaired or impacted the ability of such controls to protect human health and the environment, or constitute a violation or failure to comply with any element of the SMP for such controls.
- Access to the Metal Etching site will continue to be provided to the NYSDEC for evaluation of the remedy, including access to the site monitoring network and other controls (e.g., SSDS) for continued monitoring and/or maintenance.

3.2 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS CERTIFICATION FORM

The IC/EC certification forms from the owner and EA are included as Appendix G of this PRR.

This page left intentionally blank

4. COST EVALUATION

4.1 SUMMARY OF COSTS

Costs for EA site management services, including groundwater monitoring and sampling, site inspection, and air sampling was \$47,836 for this reporting period. A breakdown of major costs for November 2016 to November 2017 is provided in the following table.

Site Management Activity	EA Cost Incurred for the period of November 2016 – November 2017
Monitoring, Sampling, Inspection, Oversight, Supplies/Equipment, Travel, and Reporting (EA)	\$34,005
Analytical Laboratory (Con-Test Analytical)	\$12,384
Data Validation (EDS, Inc.)	\$1,447

The monitoring, sampling, inspection, oversight, and reporting costs, which are billed by EA, include costs associated with project management, quality assurance, and periodic reporting throughout the reporting period. These monitoring and reporting costs are based on fiscal data generated and tracked by an EA internal financial management system, and includes travel expenses, equipment/supply costs, and other direct charges.

The analytical costs, billed by Con-Test Analytical of East Longmeadow, Massachusetts covered semi-annual groundwater analyses and annual air analyses. Under the next performance monitoring period Con-Test Analytical will again be providing analytical services for the groundwater monitoring and sampling program. Data generated during the reporting period was validated by Environmental Data Services, Inc. of Williamsburg, Virginia.

This page left intentionally blank

5. RECOMMENDATIONS

5.1 GROUNDWATER MONITORING

Semi-annual groundwater monitoring should continue during the next monitoring period. VOCs, such as PCE, TCE, and *cis*-1,2-DCE, are consistently detected in monitoring wells located near the former source area (MW-09S, MW-09D, MW-08SR, and MW-08DR). Inorganics, such as copper, iron, magnesium, manganese, and sodium are consistently detected at concentrations greater than respective NYSDEC AWQS across the site monitoring well network, although sodium is expected to be due to the salinity of the groundwater in this area.

Further sampling is necessary to identify consistent trends during both high and low tides, and to identify an effective long-term management strategy for residual contaminants. In addition, chloride concentrations may not be indicative of groundwater quality as related to the natural attenuation process due to the natural salinity of the groundwater. The MNA parameters analyte list should be supplemented with methane, ethane, and ethene to better understand natural attenuation at the site.

Groundwater monitoring for CVOCs at the site has been completed twice annually for the last four years; groundwater samples from the site monitoring wells have been analyzed for MNA parameters four times up to the end of this reporting period. It is recommended that biannual monitoring for VOCs and annual monitoring for MNA parameters be completed for an additional year before evaluating for the need for additional groundwater treatment.

5.2 INDOOR AIR MONITORING

Onsite indoor and outdoor air monitoring was completed in April 2017 and should continue during the next monitoring period to support continued operation of the SSDS at the site office building, and ensure the system is providing adequate mitigation for vapor intrusion.

5.3 SITE INSPECTION AND MAINTENANCE

5.3.1 Site Cover

The site cover system and surrounding areas were observed to be in good condition with minimal damage during the inspections. Although some minor areas exist where the cover material has been punctured due to ongoing site activities, the damage does not pose a threat to human health.

5.3.2 Sub-Slab Depressurization Systems

The warehouse's SSDS system will remain out of operation as long as building use does not change. Despite a crack in the exhaust pipe, the office system is fully functioning and is to remain in operation.

5.4 SUMMARY

The following actions are recommended:

- Site management tasks should continue at a reduced frequency. Site inspections and groundwater sampling should be conducted annually. The first site inspection and groundwater sampling event of the next reporting period (November 2017 November 2018) will be completed in early 2018.
- Groundwater samples should also be submitted for PFAS analysis.
- Sweeping of permeable pavement should be completed annually.

6. REFERENCES

- EA Engineering, P.C., and Its Affiliate EA Science and Technology. 2014a. *SMP. Final.* Metal Etching Site, Nassau County, Freeport, New York. April.
- ——. 2014b. *Final Engineering Report. Final.* Metal Etching State Superfund Site, Nassau County, Freeport, New York. April.
- Environmental Resource Management. 2007. *Remedial Investigation Report, Metal Etching Co. Inc. Site (NYSDEC Site No. 1-30-110).* Freeport, New York. January.
- New York State Department of Environmental Conservation (NYSDEC). 1998. Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June.
- ——. 2007. Record of Decision, Metal Etching Site, Freeport, Nassau County, Site Number 130110. March.
- New York State Department of Health (NYSDOH). 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. Division of Environmental Health Assessment, Center for Environmental Health. October.

This page left intentionally blank
Figures

This page intentionally left blank

Legend

- Site Boundary
 - PropertyParcels
- Existing Buildings

★ Site Location

Figure 1 Site Location and Boundary Map Freeport Metal Etching Periodic Review Report Freeport, New York This page intentionally left blank

1 inch = 75 feet

Legend

- Existing Monitoring Well
- Shallow Groundwater Contours
- (0.5) Groundwater Elevation in ft amsl
- Groundwater Flow Direction

Note: MW-11S and MW-11D were gauged approximately one hour after the other monitoring wells due to access issue and therefore, are not included in the contour map. Figure 2 Shallow Groundwater Contours Low Tide Conditions April 2017 Metal Etching Site (130110) Freeport, New York

Map Date: 11/14/2017 Projection: NAD 1983 State Plane New York Long Island FIPS 3104 Feet

This page intentionally left blank

This page intentionally left blank

Tables

This page intentionally left blank

	Location ID									MW-04	-									
	Lab ID	12K0749-0	2	13E0755-07	7	13K0947-0	2	14F0194-0	7	14K0664-04	4	15E0606-0	7	15K0954-03	3	16E0858-0	6	SC34122-0	1	NYSDEC Ambient
Parameter List USEPA	Sample Type	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Standard Class
Method 8260C	Sample Date	11/19/2012	2	5/20/2013		11/21/2013	;	6/3/2014		11/11/2014	ł	5/12/2015		11/19/2015	;	5/17/2016		4/27/2017		$GA^{(a)}(\mu\sigma/l)$
	Tidal Phase	Ebb		Low/Flood		High/Ebb		Flood/High	ı	Ebb		Low		High		Low		Low		0A (μg/l)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	(<0.3)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	(<0.4)	U	5 (s)
Acetone	μg/l	(<50)	U	(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U	(<0.8)	U	50 (g)
Benzene	μg/l																	(<0.3)	U	1 (s)
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	R	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ			5 (s)
Chloromethane	μg/l																	(<0.4)	U	
cis-1,2-dichloroethene	μg/l	(<1.0)	U	1.1		1.1		2.4		(<1.0)	U	1.1	U	(<0.15)	U	(<0.15)	U	0.64	J	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	(<0.6)	U	
Di-isopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	(<0.29)	U	5 (s)
Ethanol	μg/l																	(<31)	U	
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	(<0.4)	U	5 (s)
M,P-xylene	μg/l																	(<0.4)	U	5 (s)
methyl ethyl keytone	μg/l																	(<1.1)	U	50 (g)
Methylcyclohexane	μg/l															(<0.63)	U			
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.09)	U	(<0.24)	U	5 (s)
Naphthalene	μg/l																	(<0.4)	U	10 (g)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.4)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.3)	U	5 (s)
O-xylene	μg/l																	(<0.3)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.3)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	(<0.3)	U	10 (g)
Tert-butyl alcohol	μg/l																	(<5.9)	U	
Tetrachloroethene	μg/l	2		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	1.28		5(s)
trans-1,2-dichloroethene	µg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.4)	U	5(s)
Trichloroethene	μg/l	1		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	(<0.5)	U	5 (s)
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	(<0.5)	U	2 (s)
(a) 6 NYCRR Part 703.5 Cl	lass GA Groundwate	er Quality Regula	ations,	as presented in	the Di	vision of Water	Techi	nical and Operati	onal	Guidance Series	1.1.1,	1998, as amende	ed.							

Agency

Identification

---'= Not analyzed

NYSDEC = New York State Department of Environmental Conservation.

 $\mu g/l$ = micrograms per liter = parts per billion (ppb).

U = The analyte was analyzed for, but was not detected above the sample reporting limit.

= The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. J

= The analyte was not detected above the sample reporting limit; and the reporting limit is approximate. UJ

R = Non-detect result rejected due to exceedence of 20% deviation and/or average RRF values < 0.05 in the initial or continuing calibration. The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.

Data provided by Con-Test Analytical Laboratory from 2016-2016. Only analytes that were detected in at least one sample are shown.

2017 Data is provided by Eurofins Spectrum Analytical. Concentration values in **BOLD** indicate that analyte was detected above the NYSDEC Ambient Water Quality Standards (s) or Guidance Values (g).

	Location ID							MW-05R								
	Lab ID	13K0947-0	3	14F0194-02	2	14K0664-01	1	15E0606-01	1	15K0954-02	2	16E0858-0	1	SC34122-1	1	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	r	Groundwate	er	Groundwate	er	Standard Class
Withou 8200C	Sample Date	11/21/2013		6/3/2014		11/11/2014		5/12/2015		11/19/2015		5/18/2016		4/28/2017		$GA^{(a)}(\mu g/l)$
	Tidal Phase	High/Ebb		Flood/High	1	Ebb		Low		High		Low		Low		G/1 (μg/1)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	(<0.3)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	1		(<1.0)	U	1.2		1.1		1		(<0.36)	U	5 (s)
Acetone	μg/l	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U	(<0.80)	U	50 (g)
Benzene	μg/l											-		0.38	J	1 (s)
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ			5 (s)
Chloromethane	μg/l													0.41	J	
cis-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.3)	U	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	2.7		(<0.18)	U	(<0.18)	U	(<0.6)	U	
Diisopropyl ether	μg/l	0.88		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	(<0.29)	U	5 (s)
Ethanol	μg/l													(<31)	U	
Isopropylbenzene	μg/l	2.7		2.9		1.9		1.9		(<0.12)	U	(<0.12)	U	0.82	J	5 (s)
M,P-xylene	μg/l													0.53	J	5 (s)
methyl ethyl keytone	μg/l													3.89		50 (g)
Methylcyclohexane	μg/l											1.1				
Methyl tert-butyl ether	μg/l	4.3		3.4		2		2.6		1.4		1.3		1.28		5 (s)
Naphthalene	μg/l													(<0.35)	U	10 (g)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	0.61	J	5 (s)
N-propylbenzene	μg/l	1		1.3		(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.34)	U	5 (s)
O-xylene	μg/l													0.61	J	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	1.1		(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	0.55	J	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	0.61	J	10 (g)
Tert-butyl alcohol	μg/l													(<5.9)	U	
Tetrachloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	(<0.6)	U	5(s)
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.4)	U	5(s)
Trichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	(<0.5)	U	5 (s)
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	(<05)	U	2 (s)

	Location ID									MW-06										
	Lab ID	12K0749-0	1	13E0755-01	1	13K0947-0	1	14F0194-0		14K0664-0	7	15E0606-0	2	15K0954-0	1	16E0858-0	2	SC34122-0	6	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er	Groundwate	er	Groundwate	r	Groundwate	r	Groundwate	er	Standard Class								
Method 6200C	Sample Date	11/19/2012	2	5/20/2013		11/21/2013		6/3/2014		11/11/2014	÷	5/12/2015		11/19/2015	5	5/18/2016		4/26/2017		$GA^{(a)}(\mu\sigma/l)$
	Tidal Phase	Ebb		Low/Flood		High/Ebb		Flood/High	I	Ebb		Low		High		Low		Low		0.11 (µg/1)
1,1-dichloroethene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.42)	U	(<0.32)	U	(<0.3)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.36)	U	(<0.36)	U	(<0.4)	U	5 (s)
Acetone	μg/l	(<50)	U	(<100)	U	(<100)	$\mathbf{U}\mathbf{J}$	(<100)	U	(<100)	U	(<100)	U	(<9.7)	U	(<9.7)	U	(<0.8)	U	50 (g)
Benzene	μg/l																	0.34	J	1 (s)
Butyl alcohol, tert-	μg/l	(<20)	U	(<40)	UJ	(<40)	R	(<40)	R	(<40)	U	(<40)	U	(<4.3)	U	(<4.3)	UJ			5 (s)
Chloromethane	μg/l																	(<0.4)	U	
cis-1,2-dichloroethene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.29)	U	(<0.29)	U	(<0.3)	U	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<4.0)	U	(<4.0)	U	(<4.0)	UJ	(<4.0)	U	(<4.0)	U	(<0.36)	U	(<0.36)	U	(<0.6)	U	
Diisopropyl ether	μg/l	< 0.5	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.36)	U	(<0.29)	U	5 (s)
Ethanol	μg/l																	(<31)	U	
Isopropylbenzene	μg/l	(<1.0)	U	2.8		2.1		3		2.2		4.4	D	2.2		2.4	D	2.32		5 (s)
M,P-xylene	μg/l																	1.88	J	5 (s)
methyl ethyl keytone	μg/l																	(<1.1)	U	50 (g)
Methylcyclohexane	μg/l															3.4	D			
Methyl tert-butyl ether	μg/l	1.5		3		(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	(<0.34)	U	5 (s)
Naphthalene	μg/l																	(<0.5)	U	10 (g)
N-Butylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.3)	U	0.81	J	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.22)	U	(<0.26)	U	(<0.34)	U	5 (s)
O-xylene	μg/l																	0.47	J	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.22)	U	(<0.26)	U	0.87	J	
Tert-butylbenzene	μg/l	1.1		(<2.0)	U	2.2		3.6		3		3.7	D	3.8		2.6	D	1.98		10 (g)
Tert-butyl alcohol	μg/l																	(<5.9)	U	
Tetrachloroethene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.34)	U	(<0.34)	U	(<0.6)	U	5(s)
Toluene	μg/l																	0.87	J	5(s)
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.3)	U	(<0.3)	U	(<0.4)	U	5(s)
Trichloroethene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.4)	U	(<0.4)	U	(<0.5)	U	5 (s)
Vinyl chloride	μg/l	(<2.0)	U	(<4.0)	U	(<4.0)	U	(<4.0)	U	(<4.0)	U	(<4.0)	U	(0.27)	U	(0.27)	U	(<0.5)	U	2 (s)

	Location ID	MW-08D								MW-08DR	ł							MW-08S		
	Lab ID	12K0749-0	6	13K0947-10	0	14F0194-11	l	14K0664-1	1	15E0606-13	3	15K1033-0	2	16E0858-1	0	SC34122-1	3	12K0749-0	7	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er	Standard Class																
Method 8200C	Sample Date	11/20/2012	2	11/21/2013		6/4/2014		11/11/2014	ļ	5/13/2015		11/20/201	5	5/18/2016		4/28/2017		11/20/2012	2	$GA^{(a)}(\mu\sigma/l)$
	Tidal Phase	Flood		High/Ebb		Flood/High	l	Ebb		Ebb		High		Low		Low		Flood		G/1 (μg/1)
1,1-dichloroethene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<5.2)	U	(<1.6)	U	(<1.62)	U	(<1.0)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<4.5)	U	(<1.8)	U	(<1.78)	U	(<1.0)	U	5 (s)
Acetone	μg/l	(<50)	U	(<1,000)	UJ	(<500)	U	(<1,000)	U	(<250)	U	(<120)	UJ	(<49)	U	(<4.02)	U	74		50 (g)
Benzene	µg/l															(<1.42)	U			1 (s)
Butyl alcohol, tert-	μg/l	(<20)	R	(<400)	R	(<200)	R	(<400)	U	(<100)	U	(<54)	U	(<22)	UJ			(<20)	R	5 (s)
Chloromethane	μg/l															7.95	J			
cis-1,2-dichloroethene	μg/l	52		220		(<10)	U	450		97	D	250		24	D	15.7		85		5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<40)	U	(<20)	UJ	(<40)	U	(<10)	U	(<4.5)	U	(<1.8)	U	(<2.92)	U	(<2.0)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(<10)	U	(<5.0)	U	(<10)	U	(<2.5)	U	(<12.0)	U	(<1.8)	U	(<1.43)	U	(<0.5)	U	5 (s)
Ethanol	μg/l															571	J			
Isopropylbenzene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<3.0)	U	(<1.2)	U	(<1.8)	U	(<1.0)	U	5 (s)
M,P-xylene	μg/l															(<1.9)	U			5 (s)
methyl ethyl keytone	μg/l															(<5.35)	U			50 (g)
Methylcyclohexane	μg/l													(<6.3)	U					
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<2.2)	U	(<0.9)	U	(<1.18)	U	1.5		5 (s)
Naphthalene	μg/l															(<1.76)	U			10 (g)
N-Butylbenzene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<25)	U	(<1.5)	U	(<2.06)	U	(<1.0)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<2.8)	U	(<1.3)	U	(<1.72)	U	(<1.0)	U	5 (s)
O-xylene	μg/l															(<1.42)	U			5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<2.8)	U	(<1.3)	U	(<1.63)	U	(<1.0)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<2.8)	U	(<1.1)	U	(<1.58)	U	(<1.0)	U	10 (g)
Tert-butyl alcohol	μg/l															(<29.5)	U			
Tetrachloroethene	μg/l	1,900		750		1,900		530		93	D	970		400	D	142		100		5(s)
Toluene	μg/l															(<1.5)	U			5(s)
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<20)	U	(<10)	U	(<20)	U	(<5.0)	U	(<3.8)	U	(<1.5)	U	(<1.88)	U	(<1.0)	U	5(s)
Trichloroethene	μg/l	70		630		73		200		12	D	150		15	D	10.8		140		5 (s)
Vinyl chloride	μg/l	3.3		(<40)	U	(<20)	U	(<40)	U	(<10)	U	(<3.3)	U	(<1.3)	U	3.7	J	(<2.0)	U	2 (s)

	Location ID							MW-08SR	1						
	Lab ID	13K0947-0	9	14F0194-10)	14K0664-10	0	15E0606-12	2	15K1033-01	1	16E0858-0	9	SC34122-1	2
Method 8260C	Sample Type	Groundwate	er	Groundwate	er	Groundwate	r	Groundwate	er	Groundwate	r	Groundwate	er	Groundwate	er
Miculou 0200C	Sample Date	11/21/2013		6/4/2014		11/11/2014		5/13/2015		11/19/2015		5/18/2016		4/28/2017	
	Tidal Phase	High/Ebb		Flood/High	1	Ebb		Ebb		High		Low		Low	
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	(<0.32)	U
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	(<0.36)	U
Acetone	μg/l	(<50)	U	(<50)	U	(<50)	U	(<50)	U	(<4.9)	UJ	(<4.9)	U	(<0.80)	U
Benzene	μg/l													(<0.28)	U
Butyl alcohol, tert-	μg/l	130	J	(<20)	R	(<20)	U	44		(<2.2)	U	(<2.2)	UJ		
Chloromethane	μg/l													(<0.37)	U
cis-1,2-dichloroethene	μg/l	6.3		5.4		2.4		2.5		1.4		2.2		1.46	
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	(<0.58)	U
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	(<0.29)	U
Ethanol	μg/l													(<30.9)	U
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	(<0.36)	U
M,P-xylene	μg/l													(<0.38)	U
methyl ethyl ketone	μg/l													(<1.07)	U
Methylcyclohexane	μg/l											(<0.63)	U		
Methyl tert-butyl ether	μg/l	8.3		3.8		2.2		7.6		1.4		1.5		0.56	J
Naphthalene	μg/l													(<0.35)	U
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.41)	U
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.34)	U
O-xylene	μg/l													(<0.28)	U
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.33)	U
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	(<0.32)	U
Tert-butyl alcohol	μg/l													(<5.9)	U
Tetrachloroethene	μg/l	2.4		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	(<0.57)	U
Toluene	μg/l													(<0.3)	U
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.38)	U
Trichloroethene	μg/l	5.2		1.6		1.4		1		2.3		1.1		0.92	J
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	(<0.47)	U

	Location ID									MW-09D										
	Lab ID	12K0749-0	8	13E0755-02	2	13K0947-0	8	14F0194-09	9	14K0664-09	9	15E0606-1	1	15K0954-0	8	16E0858-0	8	SC34122-0	8	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er	Groundwate	r	Groundwate	er	Groundwate	r	Standard Class										
Method 8200C	Sample Date	11/20/2012	2	5/20/2013		11/21/2013		6/4/2014		11/11/2014	ł	5/13/2015		11/19/2015	;	5/17/2016		4/27/2017		$GA^{(a)}(\mu g/l)$
	Tidal Phase	Flood		Low/Flood		High/Ebb		Flood/High	ı	Ebb		Ebb		High		Low		Low		ΟΛ (μg/l)
1,1-dichloroethene	μg/l	2		(<2.0)	U	(<2.0)	U	(<5.0)	U	(<25)	U	(<5.0)	U	(<2.1)	U	(<0.63)	U	(<1.62)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<5.0)	U	(<25)	U	(<5.0)	U	(<1.8)	U	(<0.72)	U	(<1.78)	U	5 (s)
Acetone	μg/l	250		(<100)	U	(< 100)	UJ	(<250)	U	(<1,200)	U	(<250)	U	(<49)	U	(<19)	U	(<4.02)	U	50 (g)
Benzene	μg/l			-														(<1.42)	U	1 (s)
Butyl alcohol, tert-	μg/l	(<20)	R	(<40)	R	(<40)	R	(<100)	R	(<500)	U	(<100)	U	(<22)	U	(<8.7)	UJ			5 (s)
Chloromethane	μg/l			-														5.9	J	
cis-1,2-dichloroethene	μg/l	530		12		260		72		160		190	D	180		110	D	241		5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(4.0)	U	(<4.0)	U	(<10)	UJ	(<50)	U	(<10)	U	(<1.8)	U	(<0.72)	U	(<2.92)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(<1.0)	U	(<1.0)	U	(<2.5)	U	(<12)	U	(<2.5)	U	(<5.0)	U	(<0.72)	U	(<1.43)	U	5 (s)
Ethanol	μg/l			-														342	J	
Isopropylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<5.0)	U	(<25)	U	<5.0)	U	(<1.2)	U	(<0.48)	U	(<1.8)	U	5 (s)
M,P-xylene	μg/l			-														(<1.9)	U	5 (s)
methyl ethyl keytone	μg/l			-														(<5.35)	U	50 (g)
Methylcyclohexane	μg/l			-											U	(<2.5)	U			
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	<5.0)	U	(<25)	U	<5.0)	U	(<0.9)	U	(<0.36)	U	(<1.18)	U	5 (s)
Naphthalene	μg/l			-														(<1.76)	U	10 (g)
N-Butylbenzene	μg/l	(<1.0)		(<2.0)	U	(<2.0)	U	<5.0)	U	(<25)	U	<5.0)	U	(<10)	U	(<0.6)	U	(<2.06)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	<5.0)	U	(<25)	U	<5.0)	U	(<1.1)	U	(<0.52)	U	(<1.72)	U	5 (s)
O-xylene	μg/l			-														(<1.42)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	<5.0)	U	(<25)	U	<5.0)	U	(<1.1)	U	(<0.52)	U	(<1.63)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<2.0)	U	(<2.0)	U	(<5.0)	U	(<25)	U	(<5.0)	U	(<1.1)	U	(<0.44)	U	(<1.58)	U	10 (g)
Tert-butyl alcohol	μg/l			-														46.6	J	
Tetrachloroethene	μg/l	89		160		430		2,300		510		340	D	320		3,300	D	232		5(s)
Toluene	μg/l			-														(<1.5)	U	5(s)
trans-1,2-dichloroethene	μg/l	2.3		(<2.0)	U	3.5		(<5.0)	U	(<25)	U	(<5.0)	U	(<1.5)	U	(<0.6)	U	3.3	J	5(s)
Trichloroethene	μg/l	180		27		240		220		250		220	D	180		41	D	118		5 (s)
Vinyl chloride	μg/l	48		(<4.0)	U	7.3		(<10)	U	(<50)	U	(<10)	U	(<1.3)	U	10	D	7.2		2 (s)

	Location ID									MW-09S										
	Lab ID	12K0749-1	0	13E0755-03	3	13K0947-07	7	14F0194-08	3	14K0664-08	8	15E0606-08	}	15K0954-0	7	16E0858-0	7	SC34122-0	7	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	r	Groundwate	er	Groundwate	er	Groundwate	r	Standard Class
Withou 8200C	Sample Date	11/19/2012	2	5/20/2013		11/21/2013		6/4/2014		11/11/2014	ł	5/12/2015		11/19/2015	;	5/17/2016		4/27/2017		$GA^{(a)}(\mu\sigma/l)$
	Tidal Phase	Ebb		Low/Flood		High/Ebb		Flood/High	l	Ebb		Low		High		Low		Low		G/1 (μg/1)
1,1-dichloroethene	μg/l	1.8		(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	4.5		(<0.32)	U	(<0.32)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.36)	U	(<0.36)	U	5 (s)
Acetone	μg/l	1,700		(<50)	U	58	J	(< 200)	U	(<50)	U	150		(<4.9)	U	(<9.7)	U	(<0.80)	U	50 (g)
Benzene	μg/l																	(<0.28)	U	1 (s)
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	R	(< 20)	R	(< 80)	R	(<20)	U	(< 20)	U	(<2.2)	U	(<4.3)	UJ			5 (s)
Chloromethane	μg/l																	(<0.37)	U)	
cis-1,2-dichloroethene	μg/l	1,300		(<1.0)	U	220	J	86		(<1.0)	U	(<1.0)	U	1,600		(<0.29)	U	0.53	J	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	U	(<1.0)	U	(< 8.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.36)	U	(<0.58)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(< 0.5)	U	(< 2.0)	U	(< 0.5)	U	(< 0.5)	U	(<0.5)	U	(<0.36)	U	(<0.29)	U	5 (s)
Ethanol	μg/l																	(<30.9)	U	
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.24)	U	(<0.36)	U	5 (s)
M,P-xylene	μg/l			-														(<0.38)	U	5 (s)
methyl ethyl keytone	μg/l			-														(<1.07)	U	50 (g)
Methylcyclohexane	μg/l															(<1.3)	U			
Methyl tert-butyl ether	μg/l	1.1		(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.18)	U	(<0.24)	U	5 (s)
Naphthalene	μg/l			-														(<0.35)	U	10 (g)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.3)	U	(<0.41)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.26)	U	(<0.34)	U	5 (s)
O-xylene	μg/l			-														(<0.33)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.26)	U	(<0.33)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.22)	U	(<0.34)	U	10 (g)
Tert-butyl alcohol	μg/l			-														(<5.9)	U	
Tetrachloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.34)	U	(<0.57)	U	5(s)
Toluene	μg/l																	(<0.3)	U	5(s)
trans-1,2-dichloroethene	μg/l	4.7		(<1.0)	U	1.3		(< 4.0)	U	(<1.0)	U	(<1.0)	U	8.6		(<0.3)	U	(<0.38)	U	5(s)
Trichloroethene	μg/l	5.2		(<1.0)	U	(<1.0)	U	(< 4.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.4)	U	(<0.5)	U	5 (s)
Vinyl chloride	μg/l	290		(< 2.0)	U	100	J	94		(< 2.0)	U	(< 2.0)	U	250	J	(<0.27)	U	1.35		2 (s)

	Location ID									MW-10D										
	Lab ID	12K0749-03	3	13E0755-04	1	13K0947-0	6	14F0194-0	5	14K0664-02	2	15E0606-05	5	15K0954-04	4	16E0858-0	4	SC34122-0	5	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	er	Standard Class
Method 8200C	Sample Date	11/19/2012	2	5/20/2013		11/21/2013		6/3/2014		11/11/2014	ł	5/12/2015		11/19/2015		5/17/2016		4/27/2017		$GA^{(a)}(\mu g/l)$
	Tidal Phase	Ebb		Low/Flood		High/Ebb		Flood/High	l	Ebb		Low		High		Low		Low		GI (μg/l)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	(<0.32)	U	5 (s)								
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	(<0.36)	U	5 (s)								
Acetone	μg/l	(<50)	U	(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U	(<0.80)	U	50 (g)
Benzene	μg/l																	(<0.28)	U	1 (s)
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	R	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ			5 (s)
Chloromethane	μg/l																	(<0.37)	U	
cis-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.33)	U	5 (s)								
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	UJ	(<2.0)	UJ	(<2.0)	U	(<0.18)	U	(<0.18)	UJ	(<0.58)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	(<0.29)	U	5 (s)								
Ethanol	μg/l																	(<30.9)	U	
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	(<0.36)	U	5 (s)								
M,P-xylene	μg/l																	(<0.38)	U	5 (s)
methyl ethyl keytone	μg/l																	(<1.07)	U	50 (g)
Methylcyclohexane	μg/l															(<0.63)	U			
Methyl tert-butyl ether	μg/l	1.1		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.09)	U	(<0.24)	U	5 (s)
Naphthalene	μg/l																	(<0.35)	U	10 (g)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.41)	U	5 (s)								
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.34)	U	5 (s)								
O-xylene	μg/l																	(<0.28)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.33)	U									
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	(<0.32)	U	10 (g)								
Tert-butyl alcohol	μg/l																	(<5.9)	U	
Tetrachloroethene	μg/l	(<1.0)	U	(<1.0)	U	15		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	1.89		5(s)
Toluene	μg/l																	(<0.3)	U	5(s)
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.38)	U	5(s)								
Trichloroethene	μg/l	(<1.0)	U	(<1.0)	U	3.3		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	(<0.5)	U	5 (s)
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	(<0.47)	U	2 (s)								

	Location ID									MW-10M										
	Lab ID	12K0749-04	4	13E0755-06	5	13K0947-0	5	14F0194-06	5	14K0664-0	5	15E0606-06	5	15K0954-0	5	16E0858-0	5	SC34122-04	4	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	r	Standard Class
Method 0200C	Sample Date	11/20/2012		5/20/2013		11/21/2013		6/3/2014		11/11/2014	ł	5/12/2015		11/19/2015		5/17/2016		4/27/2017		$GA^{(a)}(\mu\sigma/l)$
	Tidal Phase	Flood		Low/Flood		High/Ebb		Flood/High	l	Ebb		Low		High		Low		Low		G/1 (μg/1)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	(<0.32)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	(<0.36)	U	5 (s)
Acetone	μg/l	(<50)	U	(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U	(<0.8)	U	50 (g)
Benzene	μg/l																	(<0.28)	U	1 (s)
Butyl alcohol, tert-	μg/l	(<20)	R	32	J	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ			5 (s)
Chloromethane	μg/l																	(<0.37)	U	
cis-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	1.2		(<1.0)	U	(<0.15)	U	(<0.15)	U	0.43	J	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	UJ	(<2.0)	U	(<2.0)	UJ	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	(<0.58)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	(<0.29)	U	5 (s)
Ethanol	μg/l																	(<30.9)	U	
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	(<0.36)	U	5 (s)
M,P-xylene	μg/l																	(<0.38)	U	5 (s)
methyl ethyl ketone	μg/l																	(<1.07)	U	50 (g)
Methylcyclohexane	μg/l														U	(<0.63)	U			
Methyl tert-butyl ether	μg/l	2.9		3		(<1.0)	U	1.1		(<1.0)	U	1		(<0.09)	U	(<0.09)	U	0.67	J	5 (s)
Naphthalene	μg/l																	(<0.35)	U	10 (g)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	UJ	(<1.0)	U	(<0.15)	U	(<0.41)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.34)	U	5 (s)
O-xylene	μg/l																	(<0.28)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.33)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	(<0.32)	U	10 (g)
Tert-butyl alcohol	μg/l																	(<5.9)	U	
Tetrachloroethene	μg/l	2.5		(<1.0)	U	5.8		9.2		7.2	J	7.9		4.7		5.2		0.7	J	5(s)
Toluene	μg/l																	(<0.3)	U	5(s)
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.38)	U	5(s)
Trichloroethene	μg/l	(<1.0)	U	(<1.0)	U	1.6		(<1.0)		(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	(<0.5)	U	5 (s)
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<0.13)	U	(<0.13)	U	(<0.47)	U	2 (s)

	Location ID									MW-10S										
	Lab ID	12K0749-0	5	13E0755-05	5	13K0947-04	1	14F0194-03		14K0664-03	3	15E0606-03	3	15K0954-0	6	16E0858-0	3	SC34122-0	3	NYSDEC Ambient
Parameter List USEPA Method 8260C	Sample Type	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	r	Groundwate	er	Groundwate	er	Standard Class
Method 6200C	Sample Date	11/20/2012		5/20/2013		11/21/2013		6/3/2014		11/11/2014		5/12/2015		11/19/2015		5/17/2016		4/26/2017		GA ^(a) (µg/l)
	Tidal Phase	Flood		Low/Flood		High/Ebb		Flood/High		Ebb		Low		High		Low		Low		(181)
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	(<0.32)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	(<0.36)	U	5 (s)
Acetone	μg/l	190		(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<4.9)	U	(<4.9)	U	(<0.80)	U	50 (g)
Benzene	μg/l							-				-						(<0.28)	U	1 (s)
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	R	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	29	J			5 (s)
Chloromethane	μg/l							-				-						(<0.37)	U	
cis-1,2-dichloroethene	μg/l	1.4		(<1.0)	U	(<1.0)	U	4.7		(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.33)	U	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	(<0.58)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	(<0.29)	U	5 (s)
Ethanol	μg/l							-										(<30.9)	U	
Ethylbenzene	μg/l							-										(<0.33)	U	5 (s)
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	(<0.36)	U	5 (s)
M,P-xylene	μg/l							-										(<0.38)	U	5 (s)
methyl ethyl ketone	μg/l							-										(<1.07)	U	50 (g)
Methylcyclohexane	μg/l							-								(<0.63)	U			
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<1.0)	U	2.5		3.8		(<1.0)	U	2.3		1		11		1.26		5 (s)
Naphthalene	μg/l							-										(<0.35)	U	10 (g)
N-Butylbenzene	μg/l							-						(<1.0)	U	(<0.15)	U	(<0.41)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.34)	U	5 (s)
O-xylene	μg/l							-										(<0.28)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.33)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	(<0.32)	U	10 (g)
Tert-butyl alcohol	μg/l							-										(<5.9)	U	
Tetrachloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	(<0.57)	U	5(s)
Toluene	μg/l							-										(<0.3)	U	5(s)
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.38)	U	5(s)
Trichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	(<0.5)	U	5 (s)
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	2.1		(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	(<0.47)	U	2 (s)

	Location ID						MW	-11D					
	Lab ID	14F0194-1	3	14K0664-1	2	15E0606-0	9	15K1033-0	4	16E0858-1	2	SC34122-0	9
Parameter List USEPA Method 8260C	Sample Type	Groundwate	er										
Method 8200C	Sample Date	6/4/2014		11/11/2014	4	5/13/2015		11/20/2015	5	5/17/2016		4/28/2017	
	Tidal Phase	Flood/High	ı	Ebb		Ebb		High		Low		Low	
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	(<0.32)	U
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	(<0.36)	U
Acetone	μg/l	(<50)	U	(<50)	U	(<50)	U	(<4.9)	UJ	(<4.9)	U	(<0.80)	U
Benzene	μg/l											(<0.28)	
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ		
Chloromethane	μg/l											(<0.37)	U
cis-1,2-dichloroethene	μg/l	1.6		2		1.2		(<0.15)	U	1.6		0.98	J
Dichlorodifluoromethane	μg/l	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	(<0.58)	U
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	(<0.29)	U
Ethanol	μg/l											(<30.9)	U
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.12)	U	(<0.12)	U	(<0.36)	U
M,P-xylene	μg/l											(<0.338)	U
methyl ethyl ketone	μg/l											(<1.07)	U
Methylcyclohexane	μg/l									(<0.63)	U		
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.09)	U	(<0.24)	U
Naphthalene	μg/l											(<0.35)	U
N-Butylbenzene	μg/l							(<1.0)	U	(<0.15)	U	(<0.41)	U
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.34)	U
O-xylene	μg/l											(<0.28)	U
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.33)	U
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	(<0.32)	U
Tert-butyl alcohol	μg/l											(<5.9)	U
Tetrachloroethene	μg/l	22		9.6		4.3		1.5		2.8		1.32	
Toluene	μg/l											(<0.3)	U
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.38)	U
Trichloroethene	μg/l	1.3		1.9		1.1		(<0.2)	U	1.3		0.8	J
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	(<0.47)	U

	Location ID						MW	-115					
	Lab ID	14F0194-12	2	14K0664-13	3	15E0606-10)	15K1033-03	3	16E0858-1	1	SC34122-1	0
Parameter List USEPA	Sample Type	Groundwate	er	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	er
Method 8200C	Sample Date	6/4/2014		11/11/2014		5/13/2015		11/20/2015		5/17/2016		4/28/2017	
	Tidal Phase	Flood/High	1	Ebb		Ebb		High		Low		Low	
1,1-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.21)	U	(<0.16)	U	(<0.32)	U
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.18)	U	(<0.18)	U	(<0.36)	U
Acetone	μg/l	(<50)	U	(<50)	U	(<50)	U	(<4.9)	UJ	(<4.9)	U	(<0.80)	U
Benzene	μg/l											(<0.28)	U
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	U	(<20)	U	(<2.2)	U	(<2.2)	UJ		
Chloromethane	μg/l											(<0.37)	U
cis-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.33)	U
Dichlorodifluoromethane	μg/l	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<0.18)	U	(<0.18)	U	(<0.58)	U
Diisopropyl ether	μg/l	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.18)	U	(<0.29)	U
Ethanol	μg/l											(<30.9)	U
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	1.1		(<0.12)	U	1		0.8	J
M,P-xylene	μg/l											(<0.38)	U
methyl ethyl ketone	μg/l											(<1.07)	U
Methylcyclohexane	μg/l									2.1			
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.09)	U	(<0.09)	U		
Naphthalene	μg/l											(<0.35)	U
N-Butylbenzene	μg/l							(<1.0)	U	1.7		1.08	
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.13)	U	(<0.34)	U
O-xylene	μg/l											(<0.28)	U
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	1.2		(<0.11)	U	2		1.04	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.11)	U	(<0.11)	U	0.54	J
Tert-butyl alcohol	μg/l											(<5.9)	U
Tetrachloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.17)	U	(<0.17)	U	(<0.57)	U
Toluene	μg/l											(<0.3)	U
trans-1,2-dichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.15)	U	(<0.15)	U	(<0.38)	U
Trichloroethene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<0.2)	U	(<0.2)	U	(<0.5)	U
Vinyl chloride	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<0.13)	U	(<0.13)	U	(<0.47)	U

								DUPLICA	ATE	SAMPLES										
	Lab ID	12K0749-0	9	13E0755-08	3	13K0947-11	l	14F0194-04	ł	14K0664-06	5	15E0606-04	4	15K0954-10	0	16E0858-1	4	SC34122-0	2	
	Sample Name	130110-DUP-1	112	0110-MW-DUP0)1-05	130110-DUP-1	113	130110-DUP-0	614	130110-DUP-1	114	DUP-05121	5	130110-DU	Р	DUP-0516		DUP-1-051	7	NYSDEC Ambient
Parameter List USEPA	Parent Sample ID	30110-MW-09E)- 111	30110-MW-09S	-051	30110-MW-098	-111	30110-MW-10S	-061	30110-MW-10M	1-111	MW-04-051	5	130110-MW-0	09S	MW-10S-05	16	MW-04-051	17	Water Quality
Method 8260C	Sample Type	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Standard Class
	Sample Date	11/19/2012		5/20/2013		11/21/2013		6/3/2014		11/11/2014		5/12/2015		11/19/2015	;	5/17/2016		4/27/2017		GA ^(a) (µg/l)
	Tidal Phase	Ebb		Low/Flood		High/Ebb		Flood/High	l	Ebb		Low		High		Low		Low		
1,1-dichloroethene	μg/l	2		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<2.1)	U	(<0.16)	U	(<0.32)	U	5 (s)
1,2,4-trimethylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.8)	U	(<0.18)	U	(<0.36)	U	5 (s)
Acetone	μg/l	310		(<50)	U	(<50)	UJ	(<50)	U	(<50)	U	(<50)	U	(<49)	U	(<4.9)	U	(<0.80)	U	50 (g)
Benzene	µg/l																	(<0.28)	U	1 (s)
Butyl alcohol, tert-	μg/l	(<20)	R	(<20)	R	(<20)	R	(<20)	R	(<20)	U	(<20)	U	(<22)	U	30	J			5 (s)
Chloromethane	μg/l																	(<0.37)	U	
cis-1,2-dichloroethene	μg/l	470		(<1.0)	U	36	J	5.8		(<1.0)	U	(<1.0)	U	1,300		(<0.15)	U	0.7	J	5 (s)
Dichlorodifluoromethane	μg/l	(<2.0)	U	(<2.0)	U	(<2.0)	U	(<2.0)	UJ	(<2.0)	U	(<2.0)	U	(<1.8)	U	(<0.18)	U	(<0.58)	U	
Diisopropyl ether	μg/l	(<0.5)	U	(< 0.5)	U	(< 0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<5.0)	U	(<0.18)	U	(<0.29)	U	5 (s)
Ethanol	µg/l																	(<30.9)	U	
Isopropylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.2)	U	(<0.12)	U	(<0.36)	U	5 (s)
M,P-xylene	μg/l																	(<0.38)	U	5 (s)
methyl ethyl ketone	µg/l																	(<1.07)	U	50 (g)
Methylcyclohexane	μg/l															(<0.63)	U			
Methyl tert-butyl ether	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	4.9	U	(<1.0)	U	2.1	U	(<0.9)	U	12		(<0.24)	U	5 (s)
Naphthalene	μg/l																	(<0.35)	U	10 (g)
N-Butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U		U	(<10)	U	(<0.15)	U	(<0.41)	U	5 (s)
N-propylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.1)	U	(<0.13)	U	(<0.34)	U	5 (s)
O-xylene	μg/l																	(<0.28)	U	5 (s)
Sec-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.1)	U	(<0.13)	U	(<0.33)	U	
Tert-butylbenzene	μg/l	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.1)	U	(<0.11)	U	(<0.32)	U	10 (g)
Tert-butyl alcohol	μg/l																	(<5.9)	U	
Tetrachloroethene	μg/l	79		(<1.0)	U	(<1.0)	U	(<1.0)	U	2.4	J	(<1.0)	U	(<1.7)	U	(<0.17)	U	1.02		5(s)
Toluene	µg/l																	(<0.3)	U	5(s)
trans-1,2-dichloroethene	µg/l	2.3		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.5)	U	(<0.15)	U	(<0.38)	U	5(s)
Trichloroethene	μg/l	170		(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<1.0)	U	(<2)	U	(<0.2)	U	(<0.5)	U	5 (s)
Vinyl chloride	μg/l	49		(< 2.0)	U	16	J	2.7		(<2.0)	U	(<2.0)	U	180	J	(<0.13)	U	(0.47)	U	2 (s)

This page intentionally left blank

	Location ID				-	ubic 2 Suilli	iui y	of Dettettu	mo	MW-04	Joun	us in Groun	ana						—	
	Lotation ID	12K0749-0	12	13E0755-0	7	13K0947-0	2	14F0194-0	17	14K0664-0	14	15E0606-0	7	15K0954-0	3	16E0858-0	6	SC34122-0	1	
	Lab ID Somulo Truno	Groundwat	or	Groundwat	or	Groundwat	2 2r	Groundwat	or	Groundwat	or	Groundwat	or.	Groundwate) ar	Groundwat	or	Groundwate	or	NYSDEC
Parameter List	Sample Type	11/19/201	2	5/20/2013		11/21/201	3	6/3/2014	.01	11/11/201	4	5/12/2015		11/19/2014	5	5/17/2016		4/27/2017		Ambient Water
USEPA Method	Sample Date	Ebb	2	Low/Eloo	, 1	High/Ebb	,	Elood/Hig	h	Ebb		J/12/2013		High	,	J/1//2010	,	4/2//2017		Quality Standar
5010C	Tidal Phase	0.1	1	0.79	4	0.25	1	0.05		2.5	1	0.86	1	n aa	1	L0w	1	LOW		Class GA ^(a) (mg/
Auminum	mg/I	0.1		0.78	TI	0.35	TI	0.95	TT	2.5	TT	0.86	TI	0.23		0.091		0.509	Ļ	
Antimony	mg/l	NA < 0.01	П	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	0.0022	J	0.003 (s)
Barium	mg/l	0.01	0	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0023	J	1 (s)
Bervllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0003)	U	(<0.0003)	U	(<0.0003)	U	0.003 (s)
Cadmium	mg/l	0.0051	Ŭ	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	0.005 (s)
Calcium	mg/l	NA		69	Ŭ	27	Ű	18	Ŭ	12	Ŭ	14	Ū	(<0.0007)	0	(<0.0007)	0	22.6	0	
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.03		0.011		(<0.0008)	U	(<0.0008)	U	0.0095	\vdash	0.05 (s)
Cobolt	mg/l		-		-		_								Ŭ		Ŭ	0.0023	J	0.005 (s)
Copper	mg/l	0.29		0.047		0.015		0.012		0.039		0.019		(<0.0047)	U	(<0.0047)	U	0.0064		0.2 (s)
ron	mg/l	NA		13		1.6		1.5		7.8		1.9		0.43		0.23		1.21	R06	0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.015		< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U	0.025 (s)
Magnesium	mg/l	NA		22		6.6		3.9		2.7		2.6	В	2.1		3.4		4.36		35 (s)
Manganese	mg/l	3.5		0.44		0.18		0.13		0.27		0.14		0.076		0.068		0.295		0.3 (s)
Nickel	mg/l	0.17		0.011		< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.0052		0.1 (s)
Potassium	mg/l	NA		11		8		4.9		4.3		4		4.5		3.8		4.35		
Selenium	mg/l																	(<0.0042)	U	0.010 (s)
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	0.0014	J	0.0006 (s)
Sodium	mg/l	NA		320		150		140		97		77		57		59		48.5		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0038)	U	(<0.0038)	U	(<0.0011)	U	
Zinc	mg/l	0.24		0.059		< 0.02	U	< 0.02	U	0.049		< 0.02	U	(<0.0094)	U	(<0.0094)	U	0.0092		2 (s)
a) 6 NYCRR Part [*] NOTE:	703.5 Class GA Gro EPA = U.S. EI ID = Identifi '= Not ana NYSDEC = Nw Y mg/l = milligr U = Non-d R06 = MRL r J = Detect B = Analyt NA = Analyt	undwater Quali vironmental Pr cation alyzed 'ork State Depair ams per liter = etect, detection aised to correla ed above the Ma e is found in the not analyzed for	ty Re rotection parts below te to be ethod e asso or dur	gulations, as pro- ion Agency. It of Environme s per million (pj v the method de batch QC report Detection Limit ciated blank as ing this samplin	ntal C pm). etectic ing li it but well a ng eve	ed in the Divisio Conservation. on limit. Analyte mits. below the Repc as in the sample ent.	e inclu rting	Water Technica uded in the ana limit; therefore	lysis, l	Operational Gu but not detected It is an estimate	idano l at or d cor	r above the MD	1998, L. ? J-Fl	as amended. ag).						
	Data provided by C	on-Test Analyt	ICAI L	aboratory from	2012	-2016. Only and	uytes	that were detec	ted in	at least one sar	npie	are shown.								

2017 data is provided by Eurofins Spectrum Analytical. Concentration values in **BOLD** indicate that analyte was detected above the NYSDEC Ambient Water Quality Standards (s) or Guidance Values (g).

	Location ID							MW-05R	2							
	Lab ID	13K0947-0)3	14F0194-0)2	14K0664-0)1	15E0606-0)1	15K0954-0)2	16E0858-0	1	SC34122-	11	NVCDEC
Donomoton I int	Sample Type	Groundwat	er	Groundwa	er	Groundwat	er	Groundwat	er	Groundwat	er	Groundwat	er	Groundwa	ter	Ambient Water
USEPA Method	Sample Date	11/21/201	3	6/3/2014		11/11/201	4	5/12/2015	5	11/19/201	5	5/18/2016	j	4/28/201	7	Quality Standard
6010C	Tidal Phase	High/Ebb)	Flood/Hig	h	Ebb		Low		High		Low		Low		Class GA(a) (mg/l)
Aluminum	mg/l	< 0.05	U	0.098		< 0.05	U	0.11		(<0.043)	U	0.093		0.135		
Antimony	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	0.059		(<0.045)	U	(<0.045)	U	0.0022	J	0.003 (s)
Arsenic	mg/l	0.012		< 0.01	U	0.035		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0038	J	0.005 (s)
Barium	mg/l	0.3		0.15		0.19		0.19		0.19		0.26		0.252		1 (s)
Beryllium	mg/l	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	0.003 (s)						
Cadmium	mg/l	< 0.004	U	(<0.0007)	U	(<0.0007)	U	0.0018	J	0.005 (s)						
Calcium	mg/l	130		87		94		93		73		100		117		
Chromium	mg/l	< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.0047	J	0.05 (s)						
Cobalt	mg/l													0.0036	J	0.005 (s)
Copper	mg/l	< 0.01	U	0.019		0.015		0.017		0.018		(<0.0047)	U	0.0218		0.2 (s)
Iron	mg/l	6.7		5.8		8.6		13		10		17		20.6	R06	0.3 (s)
Lead	mg/l	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U	0.025 (s)						
Magnesium	mg/l	36		22		20		19	В	17		23		24.9		35 (s)
Manganese	mg/l	0.51		0.3		0.49		0.61		0.45		0.82		0.929		0.3 (s)
Nickel	mg/l	< 0.01	U	0.012		(<0.0036)	U	0.0058		0.1 (s)						
Potassium	mg/l	38		23		20		18		26		17		18		
Selenium	mg/l													0.005	J	0.010 (s)
Silver	mg/l	< 0.005	U	(<0.0029)	U	(<0.0029)	U	0.0006	J	0.0006 (s)						
Sodium	mg/l	300		280		260		230		200		240		221		20 (s)
Thallium	mg/l	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U	0.001 (s)						
Vanadium	mg/l	0.017		0.012		< 0.01	U	< 0.01	U	0.018		(<0.0038)	U	0.0035	J	
Zinc	mg/l	< 0.02	U	0.053		0.061		0.0191		2 (s)						

					1	able 2 Sullin	iai y	of Detected	mo	game Comp	oun	us in Ground	uwa	tei						
	Location ID									MW-06										
	Lab ID	12K0749-0)1	13E0755-0)1	13K0947-0	1	14F0194-0	1	14K0664-0	7	15E0606-0	2	15K0954-0	1	16E0858-0	2	SC34122-0	6	NVEDEC
lanamatan Tiat	Sample Type	Groundwat	er	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Ambient Water
SEPA Method	Sample Date	11/19/201	2	5/20/2013	3	11/21/201	3	6/3/2014		11/11/2014	1	5/12/2015		11/19/201	5	5/18/2016		4/26/2017	'	Quality Standard
010C	Tidal Phase	Ebb		Low/Floo	d	High/Ebb		Flood/Higl	h	Ebb		Low		High		Low		Low		Class GA ^(a) (mg/l)
luminum	mg/l	0.06		1.5		< 0.05	U	0.31		< 0.05	U	0.11		0.057		0.13		0.113		
ntimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	(<0.0016)	U	0.003 (s)
rsenic	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.037		< 0.01	U	(<0.0078)	U	(<0.0078)	U	(<0.0014)	U	0.005 (s)
arium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.0063)	U	(<0.0063)	U	0.0082		1 (s)
eryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	0.003 (s)
admium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U	0.005 (s)
alcium	mg/l	NA		86		110		110		80		70		71		70		130		
hromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.0013	J	0.05 (s)
obolt	mg/l																	(<0.0008)	U	0.005 (s)
opper	mg/l	< 0.01	U	0.032		< 0.01	U	0.017		0.017		0.039		(<0.0047)	U	(<0.0047)	U	0.0035	J	0.2 (s)
on	mg/l	NA		20		6.8		9.5		5		5.7		4.3		4.5		6.16	R06	0.3 (s)
ead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U	0.025 (s)
lagnesium	mg/l	NA		20		38		30		23		20	В	20		20		36.6		35 (s)
langanese	mg/l	0.24		0.21		0.41		0.38		0.29		0.24		0.24		0.25		0.335		0.3 (s)
lickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.0014	J	0.1 (s)
otassium	mg/l	NA		11		29		16		20		11		20		11		15.7		
elenium	mg/l																	(<0.0042)	U	0.010 (s)
ilver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U	0.0006 (s)
odium	mg/l	NA		250		310		310		220		210		220		200		233		20 (s)
hallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U	0.001 (s)
anadium	mg/l	< 0.01	U	< 0.01	U	0.012		< 0.01	U	< 0.01	U	< 0.01	U	0.017		(<0.0038)	U	0.002	J	
inc	mg/l	< 0.02	U	0.042	1	< 0.02	U	0.022		0.023		0.022		(<0.0094)	U	0.05		0.0042	J	2 (s)

						able 2 Summ	iui y	of Dettettu	moi	Same Comp	Jun	15 III OTOUIIC	1114							
	Location ID	MW-08D								MW-08DF	(MW-08S		P
	Lab ID	12K0749-0	16	13K0947-1	0	14F0194-1	1	14K0664-1	1	15E0606-12	3	15K1033-0	2	16E0858-10)	SC34122-1	3	12K0749-0	7	NYSDEC
Domomotor I jet	Sample Type	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er (Groundwate	er	Groundwate	r	Groundwate	er	Groundwate	er	Ambient Water
ISEPA Method	Sample Date	11/20/2012	2	11/21/2012	3	6/4/2014		11/11/2014	ŧ	5/13/2015		11/20/2015	5	5/18/2016		4/28/2017		11/20/2012	2	Quality Standard
010C	Tidal Phase	Flood		High/Ebb		Flood/High	a	Ebb		Ebb		High		Low		Low		Flood		Class GA ^(a) (mg/l)
luminum	mg/l	0.32		< 0.05	U	0.073	\square	< 0.05	U	0.13		(<0.043)	U	0.12		0.0355		2.2		
Antimony	mg/l	NA	\Box	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	(<0.0016)	U	NA	\Box	0.003 (s)
Arsenic	mg/l	< 0.01	U	0.011		< 0.01	U	0.024		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0018	J	< 0.01	U	0.005 (s)
Barium	mg/l	0.1		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.0063)	U	(<0.0063)	U	0.0173	\Box	0.2	\Box	1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	< 0.004	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U	< 0.004	U	0.005 (s)
Calcium	mg/l	NA		98		95	\square	49		50		43	Г	70		52.4		NA	Π	P
Chromium	mg/l	0.041		< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.0019	J	0.21	Π	0.05 (s)
Cobalt	mg/l			· `		· '	\square	· '		· · · ·			Г			0.0021	J	· - '	Π	0.005 (s)
Copper	mg/l	0.015		< 0.01	U	0.014	\square	0.017		0.019		(<0.0047)	U	(<0.0047)	U	0.0113		0.064	Π	0.2 (s)
ron	mg/l	NA		9.5		12	\square	6		12		5.1	Г	11		5.36	R06	NA	Π	0.3 (s)
.ead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U	0.01	Π	0.025 (s)
Aagnesium	mg/l	NA		26		35	\square	18		12	В	14	Г	18		12.2		NA	Π	35 (s)
Aanganese	mg/l	2.1		1.1		1.4	\square	0.79		0.74		0.73	Г	0.93		0.447		0.73	Π	0.3 (s)
Nickel	mg/l	0.022		< 0.01	U	0.011	\square	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.01		0.032	Π	0.1 (s)
otassium	mg/l	NA		12		12	\square	8.8		6.5		6	Г	9.4		7.75		NA	Π	I
selenium	mg/l			· `		· '	\square	· '					Г			(<0.0042)	U	í '	Π	0.010 (s)
silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U	< 0.005	U	0.0006 (s)
sodium	mg/l	NA		220		390	\square	170		140		140	Г	220		141		NA	Π	20 (s)
hallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U	< 0.05	U	0.001 (s)
/anadium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0038)	U	(<0.0038)	U	(<0.0011)	U	0.032	Π	
linc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	0.028	<u>г</u>	< 0.02	U	(<0.0094)	U	(<0.0094)	U	0.0024	J	< 0.02	U	2 (s)

	Location ID							MW-08SI	R						Ï		
	Lab ID	13K0947-0)9	14F0194-1	0	14K0664-1	0	15E0606-1	2	15K1033-0	1	16E0858-0	19	SC34122-1	2		NVSDEC
Domonuton I int	Sample Type	Groundwat	er	Groundwat	er	Groundwat	er	Groundwat	er	Groundwat	er	Groundwat	er	Groundwat	er		Ambient Water
USEPA Method	Sample Date	11/21/201	3	6/4/2014		11/11/2014	4	5/13/2015	5	11/19/201	5	5/18/2016	5	4/28/2017	7		Quality Standard
6010C	Tidal Phase	High/Ebb	•	Flood/Hig	h	Ebb		Ebb		High		Low		Low			Class GA ^(a) (mg/l)
Aluminum	mg/l	0.11		1.1		0.24		0.83		(<0.043)	U	0.079		0.0174	J		
Antimony	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	0.059		(<0.045)	U	(<0.045)	U	(<0.0016)	U		0.003 (s)
Arsenic	mg/l	0.023		0.023		0.037		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0024	J		0.005 (s)
Barium	mg/l	0.14		0.23		0.14		0.19		0.11		0.17		0.127			1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U		0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U		0.005 (s)
Calcium	mg/l	110		92		60		94		48		70		56.2			
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	(<0.0009)	U		0.05 (s)
Cobalt	mg/l													(<0.0008)	U		0.005 (s)
Copper	mg/l	< 0.01	U	0.053		0.042		0.069		0.014		(<0.0047)	U	0.026			0.2 (s)
Iron	mg/l	4.1		6.9		1.9		3.5		0.19		0.19		0.0698	R06,J	ī	0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U		0.025 (s)
Magnesium	mg/l	23		18		11		16	В	8.1		12		8.57			35 (s)
Manganese	mg/l	0.62		1.2		0.24		1.6		0.22		0.05		0.0112			0.3 (s)
Nickel	mg/l	0.073		0.08		0.023		0.069		(<0.0036)	U	(<0.0036)	U	0.0051			0.1 (s)
Potassium	mg/l	18		11		9.6		7.6		6		6.5		5.82			
Selenium	mg/l													(<0.0042)	U		0.010 (s)
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U		0.0006 (s)
Sodium	mg/l	160		130		89		79		70		81		65.8			20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U		0.001 (s)
Vanadium	mg/l	< 0.01	U	0.02		0.012		0.014		(<0.0038)	U	(<0.0038)	U	0.006			
Zinc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	< 0.02	U	(<0.0094)	U	(<0.0094)	U	0.0032	J		2 (s)

							- v												-	
	Location ID									MW-09D		-								
	Lab ID	12K0749-0)8	13E0755-0	2	13K0947-0	8	14F0194-0	9	14K0664-0	9	15E0606-1	1	15K0954-0	8	16E0858-0	8	SC34122-0	8	NYSDEC
Parameter List	Sample Type	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Ambient Water
USEPA Method	Sample Date	11/20/201	2	5/20/2013		11/21/2013	3	6/4/2014		11/11/2014	4	5/13/2015	;	11/19/2015	5	5/17/2016		4/27/2017		Quality Standard
6010C	Tidal Phase	Flood		Low/Flood	ł	High/Ebb		Flood/High	1	Ebb		Ebb		High		Low		Low		Class GA ^(a) (mg/l)
Aluminum	mg/l	0.74		0.64		< 0.05	U	0.34		1.5		0.33		0.17		0.17		0.286		
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	(<0.0016)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	0.031		0.014		< 0.01	U	< 0.01	U	< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0044		0.005 (s)
Barium	mg/l	0.086		< 0.05	U	0.18		0.066		0.11		< 0.05	U	0.082		(<0.0063)	U	0.295		1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U	0.005 (s)
Calcium	mg/l	NA		28		140		96		81		43		33		75		42.3		
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.018		< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.0022	J	0.05 (s)
Cobalt	mg/l																	0.0025	J	0.005 (s)
Copper	mg/l	< 0.01	U	0.19		0.25		0.17		0.65		0.18		0.16		0.019		0.379		0.2 (s)
Iron	mg/l	NA		26		78		31		45		22		14		15		11.4	R06	0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	0.042		< 0.01	U	0.016		< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U	0.025 (s)
Magnesium	mg/l	NA		8.5		66		42		46		16	В	14		26		17.6		35 (s)
Manganese	mg/l	1.3		0.98		5.9		2.7		3.6		1.4		1.2		0.93		0.986		0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	0.032		0.011		0.017		< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.004	J	0.1 (s)
Potassium	mg/l	NA		4.7		14		8.3		9.8		4.7		4.9		7.4		5.39		
Selenium	mg/l																	(<0.0042)	U	0.010 (s)
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	0.0051		< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U	0.0006 (s)
Sodium	mg/l	NA		110		300		440		300		190		140		240		160		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	0.015		0.017		< 0.01	U	0.023		< 0.01	U	0.012		(<0.0038)	U	0.0014	J	
Zinc	mg/l	< 0.02	U	0.22		0.69		0.066		0.26		0.059		0.18		(<0.0094)	U	0.686		2 (s)

Table 2 Summary of Detected Inorganic Compounds in Groundwater

	Location ID									MW-09S										
	Lab ID	12K0749-1	0	13E0755-0	3	13K0947-0	7	14F0194-0	8	14K0664-0	18	15E0606-0	8	15K0954-0	7	16E0858-0	7	SC34122-0	17	NVEDEC
Paramatan List	Sample Type	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwat	er	Ambient Water								
USEPA Method	Sample Date	11/19/201	2	5/20/2013		11/21/2013	3	6/4/2014		11/11/201	4	5/12/2015		11/19/201	5	5/17/2016		4/27/2017	'	Quality Standard
6010C	Tidal Phase	Ebb		Low/Flood	ł	High/Ebb		Flood/Higl	1	Ebb		Low		High		Low		Low		Class GA(a) (mg/l)
Aluminum	mg/l	0.55		0.86		1.5		0.069		0.27		0.48		0.16		0.29		1.11		
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	(<0.0016)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	0.013		0.022		< 0.01	U	0.021		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0032	J	0.005 (s)
Barium	mg/l	0.38		0.14		0.061		0.24		0.21		0.25		0.5		0.26		0.861		1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	0.0006	J	0.005 (s)
Calcium	mg/l	NA		33		44		56		33		43		70		44		34.2		
Chromium	mg/l	< 0.01	U	< 0.01	U	0.025		< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.0104		0.05 (s)
Cobalt	mg/l																	0.0022	J	0.005 (s)
Copper	mg/l	< 0.01	U	< 0.01	U	0.28		0.016		0.085		0.45		0.12		0.26		1.32		0.2 (s)
Iron	mg/l	NA		6.8		11		7.2		4		5.3		13		2.4		3.67	R06	0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	0.012		0.025 (s)
Magnesium	mg/l	NA		8.3		10		16		5.7		7.7	В	13		7.6		6.34		35 (s)
Manganese	mg/l	2.2		0.31		0.46		0.62		0.3		0.49		0.74		0.44		0.388		0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.0037	J	0.1 (s)
Potassium	mg/l	NA		9.4		15		13		9.4		6.5		16		7.2		5.32		
Selenium	mg/l																	(<0.0042)	U	0.010 (s)
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U	0.0006 (s)
Sodium	mg/l	NA		250		150		190		91		88		130		90		60		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	< 0.01	U	0.013		0.012		< 0.01	U	< 0.01	U	0.012		(<0.0038)	U	0.0046	J	
Zinc	mg/l	< 0.02	U	0.059		0.43		0.022		0.12		0.31		0.18		0.24		0.618		2 (s)

	Location ID						- i			MW-10D)									
	Lab ID	12K0749-0	13	13E0755-0	4	13K0947-0	6	14F0194-0	5	14K0664-0	2	15E0606-0	5	15K0954-0	4	16E0858-0	4	SC34122-0	5	
	Sample Type	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwat	er	NYSDEC
Parameter List	Sample Date	11/19/201	2	5/20/2013		11/21/2013	3	6/3/2014		11/11/201	4	5/12/2015		11/19/201	5	5/17/2016		4/27/2017	'	Quality Standard
6010C	Tidal Phase	Ebb		Low/Flood	ł	High/Ebb		Flood/Higl	h	Ebb		Low		High		Low		Low		Class GA ^(a) (mg/l)
Aluminum	mg/l	0.64		0.13		< 0.05	U	0.21		0.18		0.76		(<0.043)	U	0.15		0.0262		
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	(<0.0016)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.012		0.024		(<0.0078)	U	(<0.0078)	U	0.0024	J	0.005 (s)
Barium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.0063)	U	(<0.0063)	U	0.0158		1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U	0.005 (s)
Calcium	mg/l	NA		9.8		24		12		11		27		11		34		60.6		
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.035		(<0.0008)	U	(<0.0008)	U	(<0.0009)	U	0.05 (s)
Cobalt	mg/l																	0.0016	J	0.005 (s)
Copper	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.073		(<0.0047)	U	(<0.0047)	U	0.003	J	0.2 (s)
Iron	mg/l	NA		6.7		8.7		4.7		8.5		44		6		9.5		14.3	R06	0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U	0.025 (s)
Magnesium	mg/l	NA		4.6		13		5.7		4.6		10	В	4.9		20		34.7		35 (s)
Manganese	mg/l	0.31		0.47		0.7		0.34		0.33		1.4		0.34		0.75		1.7		0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.019		(<0.0036)	U	(<0.0036)	U	0.0048	J	0.1 (s)
Potassium	mg/l	NA		2.5		5.3		3.1		2.6		5.2		3.1		6.2		11.4		
Selenium	mg/l																	(<0.0042)	U	0.010 (s)
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U	0.0006 (s)
Sodium	mg/l	NA		44		96		71		62		130		52		130		302	GS1,	20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0038)	U	(<0.0038)	U	(<0.0011)	U	
Zinc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	< 0.02	U	0.023		0.078		0.033		0.094		0.007		2 (s)

	Location ID						- i			MW-10M	[
	Lah ID	12K0749-0	14	13E0755-0	6	13K0947-0	5	14F0194-0	6	14K0664-0	15	15E0606-0	6	15K0954-0	5	16E0858-0	5	SC34122-0	4	
	Sample Type	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwat	er	NYSDEC
Parameter List	Sample Date	11/20/201	2	5/20/2013		11/21/2013	3	6/3/2014		11/11/201	4	5/12/2015		11/19/201	5	5/17/2016		4/27/2017		Ambient Water Quality Standard
6010C	Tidal Phase	Flood		Low/Flood	ł	High/Ebb		Flood/Higl	1	Ebb		Low		High		Low		Low		Class GA ^(a) (mg/l)
Aluminum	mg/l	0.82		0.23		0.72		0.18		0.7		0.69		0.76		0.21		0.589		
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	0.06		(<0.045)	U	(<0.045)	U	(<0.0016)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	0.035		0.01		< 0.01	U	0.041		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0017	J	0.005 (s)
Barium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.0063)	U	(<0.0063)	U	0.0092		1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U	0.005 (s)
Calcium	mg/l	NA		75		72		110		93		59		57		59		46.2		
Chromium	mg/l	0.01		< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.01		(<0.0008)	U	0.0058		0.05 (s)
Cobalt	mg/l																	(<0.0008)	U	0.005 (s)
Copper	mg/l	< 0.01	U	0.01		< 0.01	U	0.016		0.077		0.027		0.013		(<0.0047)	U	0.0136		0.2 (s)
Iron	mg/l	NA		53		3.5		2		6.6		3		3		0.93		2.96	R06	0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U	0.025 (s)
Magnesium	mg/l	NA		14		18		27		23		18	В	19		20		14.8		35 (s)
Manganese	mg/l	0.34		0.24		0.8		0.43		0.34		0.22		0.22		0.28		0.321		0.3 (s)
Nickel	mg/l	< 0.01	U	0.012		< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.004	J	0.1 (s)
Potassium	mg/l	NA		12		10		14		12		9.9		9.6		10		9.08		
Selenium	mg/l																	(<0.0042)	U	0.010 (s)
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U	0.0006 (s)
Sodium	mg/l	NA		210		170		390		320		240		230		240		168		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	0.015		(<0.0038)	U	0.0024	J	
Zinc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	< 0.02	U	0.052		< 0.02	U	0.024		(<0.0094)	U	0.0036	J	2 (s)

	Location ID		_							MW-10S										
	Lab ID	12K0749-0	15	13E0755-0	5	13K0947-0	4	14F0194-0	3	14K0664-0	13	15E0606-0	3	15K0954-0	6	16E0858-0	3	SC34122-0	3	NVEDEC
Domonuoton I int	Sample Type	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Ambient Water
USEPA Method	Sample Date	11/20/2012	2	5/20/2013		11/21/2013	3	6/3/2014		11/11/201	4	5/12/2015		11/19/2015	5	5/17/2016		4/26/2017		Quality Standard
6010C	Tidal Phase	Flood		Low/Flood	1	High/Ebb		Flood/Higl	1	Ebb		Low		High		Low		Low		Class GA ^(a) (mg/l)
Aluminum	mg/l	1		0.078		< 0.05	U	0.35		0.085		0.22		0.12		0.13		0.148		
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	0.056		(<0.045)	U	(<0.045)	U	(<0.0016)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	0.014		0.019		< 0.01	U	0.037		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0054		0.005 (s)
Barium	mg/l	0.35		0.13		0.24		0.25		0.24		0.71		0.46		0.58		0.292		1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	0.003 (s)						
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U	0.005 (s)						
Calcium	mg/l	NA		39		100		80		53		110		72		120		72.2		
Chromium	mg/l	0.014		< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.0016	J	0.05 (s)
Cobalt	mg/l																	(<0.0008)	U	0.005 (s)
Copper	mg/l	0.02		< 0.01	U	< 0.01	U	0.011		0.061		0.027		0.011		(<0.0047)	U	0.0076		0.2 (s)
Iron	mg/l	NA		1.6		5.7		5.9		5.2		11		2.4		3.2		5.17	R06	0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U	0.025 (s)						
Magnesium	mg/l	NA		6		16		12		7.5		15	В	9.6		19		11.3		35 (s)
Manganese	mg/l	1.1		0.14		0.46		0.59		0.33		1.1		0.35		0.62		0.396		0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	0.044		0.001	J	0.1 (s)						
Potassium	mg/l	NA		7.9		23		12		8.7		12		15		14		11.5		
Selenium	mg/l																	(<0.0042)	U	0.010 (s)
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U	0.0006 (s)						
Sodium	mg/l	NA		220		210		190		160		220		180		150		120		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U		U	0.001 (s)						
Vanadium	mg/l	0.013		< 0.01	U	< 0.01	U	0.011		< 0.01	U	< 0.01	U	0.012		(<0.0038)	U	0.0032	J	
Zinc	mg/l	< 0.02	U	0.064		0.046		0.037		(<0.0094)	U	0.0185		2 (s)						

	Location ID						MW	-11D					
	Lab ID	14F0194-1	3	14K0664-1	2	15E0606-0	9	15K1033-0	4	16E0858-1	2	SC34122-0)9
Donomotor List	Sample Type	Groundwate	er	Groundwat	er	Groundwate	er	Groundwat	er	Groundwat	er	Groundwat	er
USEPA Method	Sample Date	6/4/2014		11/11/201	4	5/13/2015		11/20/201	5	5/17/2016	i	4/28/2017	7
6010C	Tidal Phase	Flood/Higl	1	Ebb		Ebb		High		Low		Low	
Aluminum	mg/l	0.6		< 0.05	U	0.18		(<0.043)	U	0.082		1.1	
Antimony	mg/l	< 0.05	U	< 0.05	U	0.056		(<0.045)	U	(<0.045)	U	(<0.0016)	U
Arsenic	mg/l	< 0.01	U	0.04		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0039	J
Barium	mg/l	< 0.05	U	0.058		0.053		0.061		0.058		0.0411	
Beryllium	mg/l	< 0.004	U	0.0044		< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U
Calcium	mg/l	110		110		130		110		150		78	
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.0123	
Cobalt	mg/l											0.0024	J
Copper	mg/l	0.017		0.021		0.027		(<0.0047)	U	(<0.0047)	U	0.0154	
Iron	mg/l	7.8		13		2.8		0.55		0.4		8.98	R06
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U
Magnesium	mg/l	40		35		33	В	29		36		17.9	
Manganese	mg/l	4.1		3.6		3.2		1.8		2.5		2.28	
Nickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.0031	J
Potassium	mg/l	15		21		12		10		14		10.8	
Selenium	mg/l											(<0.0042)	U
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U
Sodium	mg/l	430		290		340		300		440		387	GS1,
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U
Vanadium	mg/l	< 0.01	U	0.011		< 0.01	U	(<0.0038)	U	(<0.0038)	U	0.0034	J
Zinc	mg/l	< 0.02	U	0.038		< 0.02	U	(<0.0094)	U	0.024		0.0136	

	Location ID	Location ID MW-11S											
Donomoton I ist	Lab ID	14F0194-12		14K0664-13		15E0606-10		15K1033-03		16E0858-11		SC34122-10	
	Sample Type	Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater	
USEPA Method	Sample Date	6/4/2014		11/11/201	4	5/13/2015		11/20/2013	5	5/17/2016		4/28/2017	
6010C	Tidal Phase	Flood/Hig	h	Ebb		Ebb		High		Low		Low	
Aluminum	mg/l	1.3		1.1		0.74		0.77		0.23		0.0579	
Antimony	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	(<0.045)	U	(<0.045)	U	(<0.0016)	U
Arsenic	mg/l	< 0.01	U	0.049		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0026	J
Barium	mg/l	0.097		0.11		0.061		0.083		(<0.0063)	U	0.0253	
Beryllium	mg/l	< 0.004	U	0.0054		< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U
Calcium	mg/l	95		94		59		85		57		50	
Chromium	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	(<0.0009)	U
Cobalt	mg/l											0.0018	J
Copper	mg/l	< 0.01	U	0.014		0.018		(<0.0047)	U	(<0.0047)	U	(<0.0023)	U
Iron	mg/l	50		30		34		31		38		31	R06
Lead	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U
Magnesium	mg/l	23		36		20	В	36		13		15.1	
Manganese	mg/l	1.6		1		0.8		0.86		0.85		0.755	
Nickel	mg/l	< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.0022	J
Potassium	mg/l	8.9		23		8		15		6.4		7.5	
Selenium	mg/l											(<0.0042)	U
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U
Sodium	mg/l	280		480	D	200		350		140		141	
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U
Vanadium	mg/l	< 0.01	U	0.013		< 0.01	U	(<0.0038)	U	(<0.0038)	U	(<0.0011)	U
Zinc	mg/l	< 0.02	U	< 0.02	U	< 0.02	U	(<0.0094)	U	(<0.0094)	U	(<0.0016)	U

Table 2 Summary of Detected Inorganic Compounds in Groundwater
	Location ID		DUPLICATE SAMPLES																	
	Lab ID	12K0749-0	9	13E0755-0	8	13K0947-1	1	14F0194-0	4	14K0664-0	6	15E0606-0	4	15K0954-1	0	16E0858-1	4	SC34122-0	2	
	Sample Type	130110-DUP-	1112	110-MW-DUP	01-0	130110-DUP-1	113	130110-DUP-0	0614	130110-DUP-1	1114	DUP-05121	5	130110-DU	P	DUP-0516	j	DUP-1-051	7	NVEDEC
Donomoton List	Sample Date	30110-MW-09I	D-111	30110-MW-095	8-051	30110-MW-095	5-111	30110-MW-105	S-061	80110-MW-10N	A-11	MW-04		130110-MW-	09S	MW-10S-05	16	MW-04-051	17	Ambient Water
USEPA Method	Tidal Phase	11/19/2012	2	5/20/2013		11/21/2013	;	6/3/2014		11/11/2014	1	5/12/2015		11/19/201	5	5/17/2016		4/27/2017	'	Quality Standard
6010C	Tidal Phase	Flood/Higl	h	Ebb		Flood/High	1	Ebb		Ebb		Ebb		High		Low		Low		Class GA ^(a) (mg/l)
Aluminum	mg/l	1.6		2.7		2		0.29		0.55		0.22		0.1		0.14		0.516		
Antimony	mg/l	NA		< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	0.055		(<0.045)	U	(<0.045)	U	(<0.0016)	U	0.003 (s)
Arsenic	mg/l	< 0.01	U	0.015		0.033		< 0.01	U	0.041		< 0.01	U	(<0.0078)	U	(<0.0078)	U	0.0014	J	0.005 (s)
Barium	mg/l	0.096		0.17		0.1		0.25		< 0.05	U	0.72		0.49		0.58		0.0045	J	1 (s)
Beryllium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.001)	U	(<0.001)	U	(<0.0003)	U	0.003 (s)
Cadmium	mg/l	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	< 0.004	U	(<0.0007)	U	(<0.0007)	U	(<0.0004)	U	0.005 (s)
Calcium	mg/l	NA		36		40		79		92		110		70		120		21.7		
Chromium	mg/l	0.013		0.015		0.15		< 0.01	U	< 0.01	U	< 0.01	U	(<0.0008)	U	(<0.0008)	U	0.0083		0.05 (s)
Cobalt	mg/l																	(<0.0008)	U	0.005 (s)
Copper	mg/l	0.012		0.014		0.88		< 0.01	U	0.043		0.025		0.072		(<0.0047)	U	0.0077		0.2 (s)
Iron	mg/l	NA		12		19		5.9		4.3		11		13		3.1		1.24	R06	0.3 (s)
Lead	mg/l	< 0.01	U	< 0.01	U	0.014		< 0.01	U	< 0.01	U	< 0.01	U	(<0.0025)	U	(<0.0025)	U	(<0.0062)	U	0.025 (s)
Magnesium	mg/l	NA		9.6		9.4		11		23		15	В	13		19		4.15		35 (s)
Manganese	mg/l	1.4		0.35		0.42		0.59		0.33		1.1		0.74		0.63		0.306		0.3 (s)
Nickel	mg/l	< 0.01	U	< 0.01	U	0.098		< 0.01	U	< 0.01	U	< 0.01	U	(<0.0036)	U	(<0.0036)	U	0.0035	J	0.1 (s)
Potassium	mg/l	NA		10		15		11		13		12		17		14		4.16		
Selenium	mg/l																	(<0.0042)	U	0.010 (s)
Silver	mg/l	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	< 0.005	U	(<0.0029)	U	(<0.0029)	U	(<0.0006)	U	0.0006 (s)
Sodium	mg/l	NA		260		130		180		320		220		130		150		47.5		20 (s)
Thallium	mg/l	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	< 0.05	U	(<0.022)	U	(<0.022)	U	(<0.0021)	U	0.001 (s)
Vanadium	mg/l	< 0.01	U	0.011		0.016		0.011		< 0.01	U	< 0.01	U	0.014		(<0.0038)	U	0.0011	J	
Zinc	mg/l	< 0.02	U	0.088		0.87		< 0.02	U	0.026		0.034		0.12		(<0.0094)	U	0.0087		2 (s)

Table 2 Summary of Detected Inorganic Compounds in Groundwater

This page intentionally left blank

			MW (A								
	Well ID	101/05/00.00		101/00/17 02			-04	15770054		0.004100	0.1
	Lab ID	12K0/49-02		13K0947-02		14K0664-0	04	15K0954-0	03	SC34122-	01
	Sample Type	Groundwate	ſ	Groundwate	r	Groundwat	ter	Groundwa	ter	Groundwa	ter
	Sample Date	11/19/2012		11/21/2013		11/11/201	4	11/19/201	.5	4/27/201	7
USEPA Parameters List	Tidal Phase	Ebb		High/Ebb		Ebb		High	-	Low	
ORP	mV	23		45		-88		-27		23	
Dissolved Oxygen	mg/l	1.01		2.34		0		1.99		6.2	
		Chlori	de, N	Nitrate, Sulfate by	' USE	EPA Method E30	0.0				
Chloride	mg/l	3400		170		58		8.81		13.3	
Nitrate	mg/l	0.54		(< 0.05)	U	0.13		0.06		0.435	O09
Sulfate	mg/l	330		39		11		13.1		17.9	
				Sulfide by USE	PA S	M4500					
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U			(<0.066)	U
		Total	Orga	nic Carbon by US	SEPA	Method SM531	0B				
Total organic carbon	mg/l	5.2		3.2		3.2		2		2.66	
		Ethane, Ethene, and Methane by USEPA Method EC3									
Ethane	µg/l									(<3.48)	U
Ethene	µg/l									(<4.58)	U
Methane	μg/l	3									
NOTE:	USEPA = Uni ID = Ider NYSDEC = Nev ORP = Oxi mg/l = mil mV = mill = Not GS1 = San 009 = Sam J = Dete U = Nor D = Dilt Data provided by C 2017 data is provid	ted States Environn titification v York State Depar dation-Reduction P ligrams per Liter = livolts analyzed. nple dilution require ple was analyzed of cted above the met h-detect, detection h ution sample Con-Test Analytical led by Eurofins Spe or in ROL D identifi	nental tment otent part: ed for utside hod d below Labo	l Protection Agency of Environmental (ial s per billion (ppb). high concentration the EPA recomme letection limit but but the method detection pratory from 2012-2 n Analytical.	Conse of tan nded l below t on lim	rvation. rget analytes to be v holding time as per h reporting limit; th hit. Only analytes that v	within the client rec herefore, were deter	instrument calibra juest. result is an estimate cted in at least one	tion range ed concen sample ar	e. tration (CLP J-flag e shown.	<u>y</u>).

	Well ID				N	1W-05R					
	Lab ID	13K0947-03	3	14K0664-01	l	15K0954-	02	SC34122-	-11		
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ter	Groundwa	iter		
	Sample Date	11/21/2013		11/11/2014		11/19/201	5	4/28/201	7		
USEPA Parameters List	Tidal Phase	High/Ebb		Ebb		High		Low			
ORP	mV	-112		-120		-145		-139			
Dissolved Oxygen	mg/l	2.01		0		0.63		0			
	C	hloride, Nitrate,	Sulfa	te by USEPA Me	ethod	E300.0					
Chloride	mg/l	510		380		260		312	GS1,D		
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	0.15		(<0.009)	O09, U		
Sulfate	mg/l	(< 2)	U	(< 2)	U	(<3.0)	U	0.615	J		
		Sulfid	le by	USEPA SM4500							
Sulfide	mg/l	(< 2)	U	(< 2)	U			(<0.066)	U		
	Т	otal Organic Car	bon ł	by USEPA Metho	od SN	45310B					
Total organic carbon	mg/l	12		12		11		21.9			
	Et	hane, Ethene, and	ane, Ethene, and Methane by USEPA Method EC3								
Ethane	µg/l							469			
Ethene	μg/l							36			
Methane	μg/l							31			

	Well ID					MW	-06				
	Lab ID	12K0749-01	1	13K0947-01	l	14K0664-	07	15K0954-	01	SC34122-	06
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ter	Groundwa	ter	Groundwa	ter
	Sample Date	11/19/2012		11/21/2013		11/11/201	4	11/19/201	5	4/26/201	7
USEPA Parameters List	Tidal Phase	Ebb		High/Ebb		Ebb		High		Low	
ORP	mV	-66		-133		-119		-125		-107	
Dissolved Oxygen	mg/l	0		0.94		0		3.17		0	
		Chlor	ide, N	litrate, Sulfate by	/ USE	EPA Method E30	0.0				
Chloride	mg/l	810		320		340		248		348	GS1,D
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	(< 0.05)	U	0.057		0.029	O09,J
Sulfate	mg/l	75		44		(< 2)	U	66		5.5	
				Sulfide by USE	PA S	M4500					
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U			(<0.066)	U
		Total	Orga	nic Carbon by U	SEPA	Method SM531	0B				
Total organic carbon	mg/l	22		11		13		12		13.6	
		Ethane	e, Eth	ene, and Methan	e by l	USEPA Method I	EC3				
Ethane	μg/l									252	
Ethene	μg/l									28	
Methane	μg/l									27	

	Well ID				M	W-08DR				MW-08I)
	Lab ID	13K0947-10)	14K0664-11		15K1033-(02	SC34122-	13	12K0749-0	06
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ter	Groundwa	ter	Groundwa	ter
	Sample Date	11/21/2013		11/11/2014		11/20/201	5	4/28/201	7	11/20/201	2
USEPA Parameters List	Tidal Phase	High/Ebb		Ebb		High		Low		Flood	
ORP	mV	-9		70		-52		-45		-69	
Dissolved Oxygen	mg/l	0		0		3.38		0		0	
	Chloride, Nitrate, Sulfate by USEPA Method E300.0										
Chloride	mg/l	350		310		251		217	GS1,D	1200	
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	0.1		0.109	O09	(< 0.05)	U
Sulfate	mg/l	63		34		41.7		43.8		180	
				Sulfide by USE	PA S	M4500					
Sulfide	mg/l	(< 2)	U	(< 2)	U			(<0.066)	U	(< 2)	U
		Total	Orga	nic Carbon by US	SEPA	Method SM531	0B				
Total organic carbon	mg/l	2.1		2.6		2		4.78		8.1	
Ethane, Ethene, and Methane by USEPA Method EC3											
Ethane	µg/l							3			
Ethene	µg/l							22			
Methane	μg/l							31			

	Well ID				Μ	W-08SR				MW-08	S
	Lab ID	13K0947-09)	14K0664-10)	15K1033-	01	SC34122-	12	12K0749-	07
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ter	Groundwa	ter	Groundwa	ter
	Sample Date	11/21/2013		11/11/2014		11/19/201	5	4/28/201	7	11/20/201	12
USEPA Parameters List	Tidal Phase	High/Ebb		Ebb		High		Low		Flood	
ORP	mV	-57		-52		-18		90		-136	
Dissolved Oxygen	mg/l	0		0		3.06		0		0	
	Chloride, Nitrate, Sulfate by USEPA Method E300.0										
Chloride	mg/l	240		55		32.5		41.1		2100	
Nitrate	mg/l	(< 0.05)	U	0.18		(<0.049)	U	0.204	009	(< 0.05)	U
Sulfate	mg/l	92		46		28.3		10.7		220	
				Sulfide by USE	PA S	M4500					
Sulfide	mg/l	(< 2)	U	(< 2)	U			(<0.066)	U	(< 2)	U
		Total	Orga	nic Carbon by U	SEPA	Method SM531	0B				
Total organic carbon	mg/l	9.9		4.5		3.9		4.4		11	
Ethane, Ethene, and Methane by USEPA Method EC3											
Ethane	µg/l							(<2.16)	U		
Ethene	µg/l							(<3.48)	U		
Methane	μg/l							(<4.58)	U		

	Well ID					MW-	09S				
	Lab ID	12K0749-10)	13K0947-07	7	14K0664-0)8	15K0954-	07	SC34122-	07
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ter	Groundwa	ter	Groundwa	iter
	Sample Date	11/19/2012		11/21/2013		11/11/201	4	11/19/201	5	4/27/201	7
USEPA Parameters List	Tidal Phase	Ebb		High/Ebb		Ebb		High		Low	
ORP	mV	-286		-111		-108		-103		-41	
Dissolved Oxygen	mg/l	0		0.90		0		2.59		0	
	Chloride, Nitrate, Sulfate by USEPA Method E300.0										
Chloride	mg/l	2000		160		51		109		42.1	
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	(< 0.05)	U	0.071		(<0.009)	O09, U
Sulfate	mg/l	41		20		(< 2)	U	4.89		(<0.307)	U
				Sulfide by USE	PA S	M4500					
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U			(<0.066)	U
		Total	Orga	nic Carbon by U	SEPA	Method SM531	0B				
Total organic carbon	mg/l	49		21		9		6.1		9.13	
	Ethane, Ethane, and Methane by USEPA Method EC3										
Ethane	µg/l									(<2.16)	U
Ethene	µg/l									(<3.48)	U
Methane	µg/l									(<4.58)	U

Table 3 Summary of Monitored Natural Attenuation Parameters In Groundwater

	Well ID					MW-	09D				
	Lab ID	12K0749-08	3	13K0947-08	3	14K0664-0	09	15K0954-	08	SC34122-	-08
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ter	Groundwa	ter	Groundwa	iter
	Sample Date	11/20/2012		11/21/2013		11/11/201	4	11/19/201	5	4/27/201	7
USEPA Parameters List	Tidal Phase	Flood		High/Ebb		Ebb		High		Low	
ORP	mV	-120		-15		-9		-46		-35	
Dissolved Oxygen	mg/l	0		3.34		0.18		1.6		0	
	Chloride, Nitrate, Sulfate by USEPA Method E300.0										
Chloride	mg/l	730		750		890		292		310	GS1,D
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	(< 0.05)	U	0.075		(<0.009)	009,U
Sulfate	mg/l	57		120		100	D	42.7		36.6	
				Sulfide by USE	PA S	M4500					
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U			(<0.066)	U
		Total	Orga	nic Carbon by US	SEPA	Method SM531	0B				
Total organic carbon	mg/l	13		13		0.78		0.69		4.33	
		Ethane, Ethene, and Methane by USEPA Method EC3									
Ethane	µg/l									(<2.16)	U
Ethene	µg/l									(<3.48)	U
Methane	μg/l									(<4.58)	U

	Well ID					MW-	10D				
	Lab ID	12K0749-03	;	13K0947-06	6	14K0664-0	02	15K0954-0	04	SC34122-	-05
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ter	Groundwa	ter	Groundwa	ater
	Sample Date	11/19/2012		11/21/2013		11/11/201	4	11/19/201	5	4/27/201	17
USEPA Parameters List	Tidal Phase	Ebb		High/Ebb		Ebb		High		Low	
ORP	mV	13		-36		96		-35		15	
Dissolved Oxygen	mg/l	0		0.90		0		0.51		0	
		Chlori	ide, N	Nitrate, Sulfate by	/ USI	EPA Method E30	0.0				
Chloride	mg/l	180		230		110		93.6		610	GS1,D
Nitrate	mg/l	0.075		(< 0.05)	U	(< 0.05)	U	0.072		0.846	O09
Sulfate	mg/l	23		14		2		5.73		61.4	GS1,D
				Sulfide by USE	PA S	M4500					
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U			(<0.066)	U
		Total	Orga	nic Carbon by US	SEPA	Method SM531	0B				
Total organic carbon	mg/l	1.7		(< 0.5)	U	(< 0.5)	U	(<0.16)	U	1.09	
		Ethane	, Eth	ene, and Methan	e by I	USEPA Method I	EC3				
Ethane	µg/l									(<2.16)	U
Ethene	µg/l									(<3.48)	U
Methane	μg/l									(<4.58)	U

	Well ID					MW-1	10M				
	Lab ID	12K0749-04	ļ	13K0947-05	5	14K0664-0	05	15K0954-	05	SC34122-	04
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ter	Groundwa	ter	Groundwa	ıter
	Sample Date	11/20/2012		11/21/2013		11/11/201	4	11/19/201	5	4/27/201	7
USEPA Parameters List	Tidal Phase	Flood		High/Ebb		Ebb		High		Low	
ORP	mV	8		87		8		27		-9	
Dissolved Oxygen	mg/l	0		0		0		0.28		0	
		Chlori	ide, N	Nitrate, Sulfate by	/ USE	EPA Method E30	0.0				
Chloride	mg/l	380		330		630		378		170	GS1,D
Nitrate	mg/l	0.31		(< 0.05)	U	0.55		0.43		0.252	009
Sulfate	mg/l	120		59		65	D	64.2		34.6	
				Sulfide by USE	PA S	M4500					
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U			(<0.066)	U
		Total	Orga	nic Carbon by US	SEPA	Method SM531	0B				
Total organic carbon	mg/l	4.6		1.2		3.1		2.1		3.42	
		Ethane	, Eth	ene, and Methan	e by l	USEPA Method I	EC3				
Methane	µg/l									(<2.16)	U
Ethane	µg/l							-		(<3.48)	U
Ethene	µg/l									(<4.58)	U

	Well ID					MW-	10S				[
	Lab ID	12K0749-05	5	13K0947-04	1	14K0664-0	03	15K0954-	06	SC34122-	-03
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ter	Groundwa	ter	Groundwa	ater
	Sample Date	11/20/2012		11/21/2013		11/11/201	4	11/19/201	5	4/26/201	7
USEPA Parameters List	Tidal Phase	Flood		High/Ebb		Ebb		High		Low	
ORP	mV	-123		-124		-49		-118		-114	
Dissolved Oxygen	mg/l	0		0.94		0		0.25		0	
Chloride, Nitrate, Sulfate by USEPA Method E300.0											
Chloride	mg/l	1700		240		59		99.4		56.4	GS1,D
Nitrate	mg/l	(< 0.05)	U	(< 0.05)	U	(< 0.05)	U	(<0.049)	U	0.015	O09,J
Sulfate	mg/l	180		140		26		24.2		25.2	
				Sulfide by USE	PA S	M4500					
Sulfide	mg/l	(< 2)	U	(< 2)	U	(< 2)	U			(<0.066)	U
		Total	Orga	nic Carbon by U	SEPA	Method SM531	0B				
Total organic carbon	mg/l	6.5		7.2		5.3		2.4		8.18	
		Ethane, Ethene, and Methane by USEPA Method EC3									
Ethane	µg/l									158	
Ethene	µg/l									(<3.48)	U
Methane	µg/l									(<4.58)	U

	Table 3 Summary (of Monitored	Natural	Attenuation	Parameters	In (Groundwater
--	-------------------	--------------	---------	-------------	------------	------	--------------------

		ĩ					
	Well ID			MW-11I)		
	Lab ID	14K0664-12	2	15K1033-04	ł	SC34122-	09
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	iter
	Sample Date	11/11/2014		11/20/2015		4/28/201	7
USEPA Parameters List	Tidal Phase	Ebb		High		Low	
ORP	mV	48		86		138	
Dissolved Oxygen	mg/l	0		0.29		0	
	Chloride, Nitr	ate, Sulfate by U	SEPA	A Method E300.0			
Chloride	mg/l	690		728		526	GS1,D
Nitrate	mg/l	1.4		3.4		4.55	O09
Sulfate	mg/l	80		80.5		104	GS1,D
	S	ulfide by USEPA	SM4	4500			
Sulfide	mg/l	(< 2)	U			(<0.066)	U
	Total Organic	Carbon by USEI	PA M	lethod SM5310B			
Total organic carbon	mg/l	2.3		1.1		4.23	
	Ethane, Ethene	e, and Methane by	y USI	EPA Method EC3	3		
Ethane	µg/l					(<2.16)	U
Ethene	µg/l					14	
Methane	μg/l					29	

	Well ID			MW-118	5		
	Lab ID	14K0664-13	3	15K1033-03	3	SC34122-	-10
	Sample Type	Groundwate	r	Groundwate	r	Groundwa	ater
	Sample Date	11/11/2014		11/20/2015		4/28/201	.7
USEPA Parameters List	Tidal Phase	Ebb		High		Low	
ORP	mV	-195		-187		-172	
Dissolved Oxygen	mg/l	0		0.62		0	
	Chloride, Nitr	ate, Sulfate by U	SEPA	A Method E300.0			
Chloride	mg/l	870		670		217	GS1,D
Nitrate	mg/l	(< 0.05)	U	0.082		(<0.009)	009,U
Sulfate	mg/l	63		64.9		13.4	
	S	ulfide by USEPA	SM4	4500			
Sulfide	mg/l	(< 2)	U			(<0.066)	U
	Total Organic	Carbon by USEI	PA M	lethod SM5310B			
Total organic carbon	mg/l	4.1		3.5		4.98	
	Ethane, Ethene	e, and Methane by	y USI	EPA Method EC3	3		
Ethane	μg/l					(<2.16)	U
Ethene	μg/l					(<3.48)	U
Methane	μg/l					(<4.58)	U

T-11-46-w of Dotootod Bon/Doly Fluowingtod Allyri Subst OF (DEAS) Con ada in Cr . .

Table 4	Summary of	Detected Per	7 P 0	y Fluorinate	a A	ikyi Substan	ces (PFAS) Com	pow	ads in Grour	ldwa	ater		
	Location ID	MW-04		MW-05R		MW-06		MW-08DR		MW-08SR MW-09D)	
	Lab ID	17E00076-01 17E0006-11		17E0006-06 17E0006-13		17E0006-12 17E0006-08				Guidance				
	Sample Type	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwat	er	Values
	Sample Date	4/27/2017	Ē.,	4/28/2017	/	4/26/2017		4/28/2017		4/28/2017		4/27/2017	1	
Parameter List 8270D / E537	Tidal Phase	Low		Low		Low		Low		Low		Low		
1,4-Dioxane	ppb	(<0.033)	U	(<0.033)	U	(<0.033)	U	(<0.033)	U	(<0.033)	U	(<0.033)	U	0.35 1
Perfluorooctanesulfonic acid (PFOS)	ng/l	7.6		18		24		16		11		7.3		70 ²
Perfluoroundecanoic Acid (PFUnA)	ng/l		U		U		U	2.5		4.7		3.3		
Perfluoropentanoic Acid (PFPeA)	ng/l	16		11		10		8		6.7		4		
Perfluorohexanoic acid (PFHxA)	ng/l	29	Ļ		U	27	Ļ	ļ	U	L	U		U	
Perfluorododecanoic acid (PFDoA)	ng/l		U		U		U	L	U	L	U	 	U	
Perfluorooctanoic acid (PFOA)	ng/l	160		63		170		26		26		9.3		70 ²
Perfluorodecanoic acid (PFDA)	ng/l	34		22		4.3		7.3		11		4.9		
Perfluorohexanesulfonic acid (PFHxS)	ng/l		U	3.9		5.2		4.4		9.4		L	U	
Perfluorobutanesulfonic acid (PFBS)	ng/l	75		4.3		10		170		69		13		
Perfluoroheptanoic acid (PFHpA)	ng/l	64			U	54			U	<u> </u>	U	L	U	
Perfluorononanoic acid (PFNA)	ng/l	92		28		16		5.9		9.2		2.9		
		> TIV 000		100	_	N 10 10 10 10 10 10 10 10 10 10 10 10 10	_	NUL 100		NUV 11D	_	NUN 110	. 1	
	Location ID	MW-095	-	MW-10D	,	MW-10M		MW-105	-	MW-11D	~	MW-115		
	Lab ID	T/E0006-0	7	T/E0006-0	15	T/E0006-04	4	T/E0006-0	3	17E0006-0	9	T/E0006-1	.0	Guidance
	Sample Type	Groundwat	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwate	er	Groundwat	er	Values
	Sample Date	4/2//2017		4/2//2017	/	4/2//2017		4/26/2017		4/28/2017		4/28/2017		
Parameter List 8270D / E537	Tidal Phase	LOW	11	L0W	II	LOW	11	LOW	_	LOW	TI	LOW	11	0.05
I,4-Dioxane	рро	(<0.055)	U	(<0.032)	U	(<0.055)	U	0.45	\vdash	(<0.055)	U	(<0.055)	U	0.35 .
Perfluorooctanesulfonic acid (PFOS)	ng/i	9.8	-	5.8	II	18	п	20	\vdash	TI	п	63	J	./0 ~
Perfluoroundecanoic Acid (PFUnA)	ng/i	3.9		2.0	U	0.2	U	2.1	\vdash	7.1	U	4.2	U	
Perfluoropentanoic Acid (PFPeA)	ng/1	/.0	п	3.9	11	9.2	п	9.0	II	/.1	п	4.5	TI	
Perfluorohexanoic acid (PFHxA)	ng/1	- 25	U		U		U		U		U	 	U	
Perfluorododecanoic acid (PFDoA)	ng/i	2.5	-	17	U	96	U	52	U	32	U	9.7	U	
Perfluorooctanoic acid (PFOA)	ng/1	15		1 /		35		16	\vdash	32	TI	9./	11	./0 -
Perfluorodecanoic acid (PFDA)	ng/i	15	TI		U	33		7.1	\vdash	4.9	0	22	U I	
Pertluorohexanesultonic acid (PFHxS)	ng/i	15	U	27	0	2.2	-	/.1	\vdash	4.0		22	J	
Perfluorobutanesulfonic acid (PFBS)	ng/i	15	п	2.7	II	23	-	3	II	3.3	п	3.7	II	
Perfluoroheptanoic acid (PFHpA)	ng/l	8.2	0	26	0	32		18	0	3.3	0		U	
Permuorononanoic acid (PFNA)	lig/i	0.2		2.0		32		18		3.5		L		
	Location ID	DUP-01	-	r			_		_		_			
	Lah ID	17E0006-0	2											
	Sample Type	Groundwat	er											Guidance
	Sample Type	4/27/2017	-											Values
Perometer List \$270D / E527	Tidal Phase	Low	_											
1 4-Dioxane	nnh	(<0.033)	U											0.35 1
Parfuaroactanesulfonic acid (PEOS)	ng/l	8.3												70.2
Perfluorooctanesunonic acid (PEUnA)	ng/]	0	U											/0
Perfluoropentanoic Acid (PEPeA)	ng/l	16												
Perfluorohevanoic acid (PEHyA)	ng/l	28	\square											
Perfluorododecanoic acid (PEDoA)	ng/l		U											
Perfluorooctanoic acid (PEOA)	ng/l	160												70 ²
Perfluorodecanoic acid (PFDA)	ng/l	30	\square											
Perfluorohexanesulfonic acid (PFHxS)	ng/l		U											
Perfluorobutanesulfonic acid (PFBS)	ng/l	90												
Perfluorobentanoic acid (PEHnA)	ng/l	64												
Perfluorononanoic acid (PFNA)	ng/l	95												
Note:				11										<u></u>
¹ Environmental Protection Agency (EPA)'s Inte ² EPA health advisory level for drinking water - Values shown in bold exceed the guidance value Data provided by Con-Test Analytical. = Not analyzed.	egrated Risk Inform combined concentra indicated.	ation System (IR ations of PFOA a	IS) 20 nd PF	113 for drinking w	vater ro	epresenting a 1 x	10-6	ancer risk level						
U = The analyte was analyzed for, but was not de	stected above the sa	mple reporting liv	mit.		4		1.							

J = The analyte was positively identified; the associa ppb = parts per billion ng/l = nanograms per liter = parts per trillion (ppt) fied; the associated numerical value is the approximate concentration of the analyte in the sample.

This page intentionally left blank

Table 5 Sum	mary of Dete	cted Volatile Orga	nic Compounds in S	Soil Vapor	
	Sample ID	130110-JA-111915	130110-DUP-111915	130110-OA-111915	

	Sample ID	130110-IA-111	915	130110-DUP-11	1915	130110-OA-111	.915	
	Lab ID	17E0096-01	ļ	17E0096-02	2	17E0096-03		NYSDOH Indoor Air
	Sample Type	Indoor Air		Indoor Air Dup	licate	Outdoor Air		Guidance Values ^(a)
Parameter List EPA Method TO-15	Sample Date	4/27/2017		4/27/2017		4/27/2017		$(\mu g/m^3)$
Acetone	μg/m ³	14		6.4		12		
Benzene	$\mu g/m^3$	0.23		0.19		0.23		
1,3-Butadiene	$\mu g/m^3$	0.13		< 0.035		0.12		
2-Butanone (MEK)	$\mu g/m^3$	2		<1.4		1.6		
Carbon Tetrachloride	$\mu g/m^3$	0.06		0.064		0.062		
Chloroethane	µg/m ³	0.051		< 0.035		0.051		
Chloroform	$\mu g/m^3$	0.067		< 0.035		0.067		
Chloromethane	$\mu g/m^3$	0.95		0.57		0.91		
Cyclohexane	$\mu g/m^3$	0.16		< 0.035		0.15		
Dichlorodifluoromethane (Freon 12)	$\mu g/m^3$	0.18		0.16		0.17		
Ethanol	µg/m ³	40		4.9		43		
Ethyl Acetate	μg/m ³	0.64		< 0.035		0.7		
Ethylbenzene	$\mu g/m^3$	0.17		0.15		0.15		
4-Ethyltoluene	$\mu g/m^3$	0.051		< 0.035		0.074		
Heptane	$\mu g/m^3$	0.21		0.081		0.22		
Hexane	$\mu g/m^3$	<1.4		<1.4		2.5		
2-Hexanone (MBK)	μg/m ³	0.11		< 0.035		0.053		
Isopropanol	$\mu g/m^3$	14		5		7.7		
Naphthalene	μg/m ³	0.054		< 0.035		< 0.035		
Propylene	μg/m ³	0.25		< 0.035		0.18		
1,1,2,2-Tetrachloroethane	$\mu g/m^3$	0.079		< 0.035		0.074		
Tetrachloroethylene	$\mu g/m^3$	0.036		< 0.035		< 0.035		30
Tetrahydrofuran	$\mu g/m^3$	3.9		0.7		3.7		
Trichloroethylene	$\mu g/m^3$	0.25		0.23		0.23		5
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	$\mu g/m^3$	0.21		0.088		0.17		
1,2,4-Trimethylbenzene	$\mu g/m^3$	0.063		< 0.035		0.055		
Vinyl Chloride	μg/m ³	0.65		0.7		0.59		
m&p-Xylene	$\mu g/m^3$	0.25		0.2		0.23		
o-Xylene	$\mu g/m^3$	0.47		0.51		0.38		
(a) NYSDOH Guidance for Evaluating Soil Vapor Intrus NOTE: ID = Identification	ion in the State of N	ew York. August 2	015.1	Table 3.1 Indoor Air	guideli	ne values derived by	the N	YSDOH.

NYSDOH = New York State Department of Health

 $\mu g/m^3 =$ microgram per cubic meter

---- = No applicable guideline value.

D = The analyte was diluted.
 U = The analyte was diluted.

The duplicate sample was collected at 130110-DUP-111915.

Table includes only those volatile organic compounds detected in one or more samples. Analytical data results reported by Con-Test Analytical, Inc. using EPA Method TO-15.

This page intentionally left blank

Appendix A

Site Management Plan

This page intentionally left blank

Metal Etching Site NASSAU COUNTY, FREEPORT, NEW YORK

Site Management Plan

NYSDEC Site Number: 130110

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau E 625 Broadway Albany, New York 12233-7017

Prepared by: EA Engineering, P.C. and its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315)-431-4610

Revisions to Final Approved Site Management Plan:

Revision #	Submitted Date	Summary of Revision	DEC Approval Date
1	04/11/14	Incorporation of Environmental Notices	

AP	RIL	2014

TABLE OF CONTENTS

Page

LIST OF FIGURES	V V
1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM 1-	1
1.1 INTRODUCTION	1
1.1.1 General 1- 1.1.2 Purpose 1- 1.1.3 Revisions 1-	1 1 2
1.2 SITE BACKGROUND	2
1.2.1 Site Location and Description.1-21.2.2 Site History1-21.2.3 Geologic Conditions1-2	2 3 3
1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS.1-41.4 SUMMARY OF REMEDIAL ACTIONS.1-6	4 6
1.4.1 Removal of Contaminated Materials from the Site 1-7 1.4.2 Site-Related Treatment Systems 1-8 1.4.3 Remaining Contamination 1-7	7 8 9
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN	1
2.1 INTRODUCTION	1
2.1.1 General	1 1
2.2 ENGINEERING CONTROLS	1
2.2.1 Engineering Control Systems	1
2.2.1.1 Final Cover System2-2.2.1.2 Sub Slab Depressurization Systems2-	1 2
2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems 2-2	2

Page

2.2.2.1 Composite Cover System 2.2.2.2 Sub-Slab Depressurization Systems	
2.3 INSTITUTIONAL CONTROLS	2-2
2.3.1 Excavation Work Plan2.3.2 Soil Vapor Intrusion Evaluation	2-4 2-4
2.4 INSPECTIONS AND NOTIFICATIONS	
2.4.1 Inspections	2-5 2-5
2.5 CONTINGENCY PLAN	
2.5.1 Emergency Telephone Numbers.2.5.2 Map and Directions to Nearest Health Facility.2.5.3 Response Procedures	2-6 2-7 2-9
2.5.3.1 Spill Procedures 2.5.3.2 Evacuation Plan	2-9 2-9
3.0 SITE MONITORING PLAN	
3.1 INTRODUCTION	
3.1.1 General3.1.2 Purpose and Schedule	3-1 3-1
3.2 COVER SYSTEM MONITORING 3.3 MEDIA MONITORING PROGRAM	
3.3.1 Groundwater Monitoring	
3.3.1.1 Sampling Protocol3.3.1.2 Monitoring Well Repairs, Replacement And Decommissioning	3-3 3-5
3.3.2 Indoor Air Monitoring	
3.4 SITE-WIDE INSPECTION 3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL 3.6 MONITORING REPORTING REOUIREMENTS	3-8 3-9 3-10

Page

4.0 OPERATION AND MAINTENANCE PLAN	4-1
4.1 INTRODUCTION 4.2 SUB-SLAB DEPRESSURIZATION SYSTEM OPERATION AND MAINTENA	4-1 ANCE4-1
4.2.1 Scope	4-1
4.2.1.3 System Operation: Equipment Maintenance	4-2
4.3 ENGINEERING CONTROL SYSTEM PERFORMANCE MONITORING	4-2
4.3.1 General Equipment Monitoring4.3.2 Sampling Event Protocol	4-2 4-3
4.4 MAINTENANCE AND PERFORMANCE MONITORING REPORTING REQUIREMENTS	4-5
4.4.1 Maintenance Reports	4-5
5.0 INSPECTIONS, REPORTING, AND CERTIFICATIONS	5-1
5.1 SITE INSPECTIONS	5-1
 5.1.1 Inspection Frequency 5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports 5.1.3 Evaluation of Records and Reporting	
5.4 CORRECTIVE MEASURES PLAN	5-4

APPENDIX A:	ENVIRONMENTAL NOTICES
APPENDIX B:	EXCAVATION WORK PLAN
APPENDIX C:	MONITORING WELL CONSTRUCTION DETAILS
APPENDIX D:	FIELD FORMS
APPENDIX E:	QUALITY ASSURANCE PROJECT PLAN
APPENDIX F:	HISTORICAL SOIL VAPOR INTRUSION AIR MONITORING
	FORMS

LIST OF FIGURES

Number	Title
1	Site location and boundary map.
2	Cross sections.
3	Extent of remedial action performed.
4	Groundwater contours June 2008.
5	Remedial Investigation soil and sediment sample locations.
5A	Remedial Investigation soil sample results - metals.
5B	Remedial Investigation sediment sample results - metals.
5C	Remedial Investigation soil sample results - VOCs.
6A	Remedial Investigation groundwater sample results - metals.
6B	Remedial Investigation groundwater sample results - VOCs
7	Remedial Investigation soil vapor data.
8	Documentation soil and sediment sample locations.
8A	Documentation sample locations with exceedences of unrestricted levels in EX3.
8B	Documentation sample locations with exceedences of unrestricted levels in EX1, -4, and -5.
8C	Documentation sample locations with exceedences of unrestricted levels in EX2 and -6.
9	Documentation soil and sediment sample locations.
9A	Documentation sample locations with exceedences of site-specific SCOs in EX3.
9B	Documentation sample locations with exceedences of site-specific SCOs in EX1, EX4, and EX5.

- 9C Documentation sample locations with exceedences of site-specific action levels in EX2 and EX6.
 9D Documentation sample locations with exceedences of site-specific action levels in EX7
 10 Location of cover system types.
 11 Area of soil vapor concern.
 12 Groundwater monitoring well network.
 13 Baseline post-remediation groundwater quality.
- 14 Location of remedial treatment systems.

LIST OF TABLES

<u>Number</u>	Title
1	Remedial Investigation soil contamination summary.
2	Remedial Investigation groundwater contamination summary.
3	Remedial Investigation soil vapor data summary.
4	Remedial Investigation sediment contamination summary.
5A	Site-specific soil cleanup objectives.
5B	Site-specific sediment cleanup objectives.
6A	Summary of remaining soil contamination above unrestricted levels for volatile organic compounds.
6B	Summary of remaining soil contamination above unrestricted levels for metals.
7A	Summary of remaining soil contamination above site-specific soil cleanup objectives for volatile organic compounds.
7B	Summary of remaining soil contamination above site-specific soil cleanup objectives for metals.
8	Summary of remaining sediment contamination above site-specific cleanup objectives.
9A	Summary of site groundwater contamination above site-specific cleanup objectives for volatile organic compounds.
9B	Summary of site groundwater contamination above site-specific cleanup objectives for metals.

SITE MANAGEMENT PLAN

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM

1.1 INTRODUCTION

This document is required as an element of the remedial program at the Metal Etching Co, Inc. site under the New York State (NYS) Inactive Hazardous Waste Disposal Site Remedial Program administered by New York State Department of Environmental Conservation (NYSDEC). The Class 2 inactive hazardous waste disposal site (Site No. 130110) was remediated in accordance with the Record of Decision (ROD) (NYSDEC 2007)¹.

1.1.1 General

EA Engineering, P.C., and its affiliate EA Science and Technology (EA), along with its Joint Venture Partner, The Louis Berger Group, Inc. (Berger) were tasked by the NYSDEC to oversee the remediation of a 1.05 acre property located in Freeport, Nassau County, New York. The Remedial Party, EA and Berger, was required to investigate and oversee the remediation of contaminated media at the site. A figure showing the site location and boundaries of this 1.05-acre site is provided in Figure 1. The boundaries of the site are more fully described in the metes and bounds site descriptions that are part of three Environmental Notices (ENs) recorded with Nassau County in March 2014 and included in Appendix A. One EN was filed for each of the three parcels that make up the site.

After completion of the remedial work described in the Remedial Action Work Plan, some contamination was left in the subsurface at this site, which is hereafter referred to as remaining contamination. This Site Management Plan (SMP) was prepared to manage remaining contamination at the site until the ENs are extinguished. All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in NYS.

This SMP was prepared by EA in accordance with the requirements in NYSDEC Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation (NYSDEC 2010)² and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the institutional controls (ICs) and engineering controls (ECs) that are required by the ENs for the site.

1.1.2 Purpose

The site contains contamination left after completion of the remedial action. ECs have been incorporated into the site remedy to control exposure to remaining contamination during the use

^{1.} NYSDEC. 2007. Record of Decision. March.

^{2.} NYSDEC. 2010. DER-10 Technical Guidance for Site Investigation and Remediation.

of the site to ensure protection of public health and the environment. Each of the three ENs recorded with the Nassau County Clerk requires compliance with this SMP and all ECs and ICs placed on the site. The ICs place restrictions on site use; and mandate operation, maintenance, monitoring, and reporting measures for all ECs and ICs. This SMP specifies the methods necessary to ensure compliance with all ECs and ICs required by the ENs for contamination that remains at the site. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the ENs and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to manage remaining contamination at the site after completion of the remedial action, including: (1) implementation and management of all ECs and ICs; (2) media monitoring; and (3) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports. To address these needs, this SMP includes two plans: (1) an EC/IC Plan for implementation and management of EC/ICs; and (2) a Monitoring Plan for implementation of site monitoring.

This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the ENs. Failure to properly implement the SMP is a violation of the ENs.
- Failure to comply with this SMP is also a violation of ECL, 6 New York Code of Rules and Regulations Part 375 and, thereby, subject to applicable penalties.

1.1.3 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. In accordance with the ENs for the site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.2 SITE BACKGROUND

1.2.1 Site Location and Description

The Metal Etching site is a Class 2 Site listed on the NYSDEC Registry of Inactive Hazardous Waste Sites (No. 1-30-110). The site is located adjacent to Freeport Creek at 435 South Main Street, Freeport, Nassau County, New York. A site location map is presented in Figure 1. The site is currently owned by Freeport Creek Associates and leased by Main Street Marina, 500 South Main Street, Freeport, New York. The Metal Etching property is designated as Section 62, Block 45, and Lots 144, 145, and 158 on the tax maps. The Metal Etching property is a 1.05 acre L-shaped area, bounded by Ray Street East and a commercial property to the north, Freeport

Creek to the south and east, and Main Street and Ray Street East to the west. Figure 1 depicts the site boundaries. The boundaries of the site are more fully described in Appendix A – Environmental Notices.

The site is currently used as a boat dealership, marina, and boat storage yard. Operations at the site are conducted in a single 2,400 ft² building located on the northeast corner of the property. A smaller 1,200 ft² building, located on the western portion of the property, has been restored and is used for office space for the boat dealership. Minor boat restoration activities are performed within the 2,400 ft² building and include engine rebuilds, sanding, and painting/varnishing. Prior to remediation, most areas of the site grounds were concrete or asphalt paved. Portions of the site adjacent to Freeport Creek were covered with gravel. Soil cover was observed on a small stretch of land on the southern property beneath a two-story boat rack.

1.2.2 Site History

The former Metal Etching buildings at the site were erected prior to 1954; however, the exact date of construction is unknown. These connected buildings occupied approximately 26,650 ft² of the property (approximately 60 percent of the Metal Etching portion of the site). Aside for the 2,400 ft² building, which was a portion of the Metal Etching quarters, the Metal Etching buildings were demolished in 2001; however, the concrete slabs and footings of the buildings remained in place at the site. A 6-in. thick concrete slab covering an approximate area of 7,750 ft² was the foundation of the Metal Etching plating slab and is visible to the west of the 2,400 ft² building.

Prior to 1966, the site operated as Flores Manufacturing, which manufactured handbags. The manufacturing process included decorative plating with nickel, chromium, and cadmium. From 1966 to 1999, Metal Etching Corporation manufactured metal nameplates, instrument panels, rulers, and miscellaneous plated products. All products were etched or printed. The process of etching included anodizing, chromate conversion, and chrome/nickel plating. From 1973 to 1982, Metal Etching Co. operated under the name of Plastic Associates, as a wholly owned subsidiary. From July 1982 to June 1999, Metal Etching Co., Inc. was the entity that operated the site. In the later years of the operation of Metal Etching Co., Inc., several of the metal coating operations were discontinued; i.e., chromate conversion (discontinued in 1997), chrome plating (discontinued in 1997), and anodizing (discontinued in 1998). All operations terminated in 1999 and Metal Etching Co., Inc. abandoned the premises during September of 1999. The facility buildings were demolished around 2001. During the demolition, limited decontamination and/or investigation was performed under the oversight of NYSDEC Resource Conservation and Recovery Act personnel. Two 4,000 gal aboveground storage tanks (ASTs), which formerly contained ferric chloride, were decontaminated and removed from the site during demolition activities.

1.2.3 Geologic Conditions

The top 3-4 ft of soil at the site consists of compacted fill material which includes sand, gravel, and brick and wood debris. Fill is underlain by organics and shells to approximately 11 ft below

EA Project No.: 14474.37

	Version: FINAL
EA Engineering, P.C. and its Affiliate	Page 1-4
EA Science and Technology	April 2014

ground surface (bgs). A geologic cross section of the site is provided in Figure 2. Some fill was excavated, disposed offsite, and replaced with clean granular fill during the 2011 remedial action. In areas depicted on Figure 3, fill has been excavated, disposed offsite and replaced with clean granular fill.

Depth to groundwater ranges from 3 to 5 ft bgs and is highly influenced by tides, as discussed in the remedial investigation (RI) report (Environmental Resource Management [ERM] 2007)³. Groundwater flow is to the southeast across the site. Overburden and bedrock groundwater flow is shown in Figure 4.

1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS

A RI was performed to characterize the nature and extent of contamination at the site. The results of the RI are described in detail in the RI Report $(ERM 2007)^3$.

Generally, the RI determined that, based on the standards, criteria, and guidance (SCGs) used for the site, surface soil, subsurface soil, groundwater, and sediment contained metals and volatile organic compounds (VOCs) contamination that was to be addressed in the remedy selection. Soil vapor contained VOC contamination which was addressed by an interim remedial measure (IRM) conducted at the site prior to the remedial action.

Below is a summary of site conditions when the RI was performed in 2007.

Soil

Site soil was analyzed for VOCs and metals during the RI. Analytical results indicated that the site soil contained concentrations of VOCs and metals exceeding their SCGs. Metals were detected exceeding their SCGs in the top 7 ft of soil; specifically, nickel, copper, and zinc were detected at concentrations exceeding their SCGs. VOC contamination varied across the site. The eastern area was contaminated with petroleum related compounds including ethylbenzene, chlorobenzene, and xylene. Samples collected from the western area contained xylene and naphthalene exceeding their SCGs. Contaminants tetrachloroethene (PCE) (non-detect [ND] to 4.3 mg/kg), trichloroethene (TCE) (ND to 10 mg/kg), and methyl tert butyl ether (MTBE) (ND to 1.5 mg/kg) were the predominant VOCs detected in soil samples above their SCGs in the eastern central area of the site. The western central area of the site contained only TCE above its SCG.

Table 1 and Figures 5-5D show site soil sampling results from the RI.

EA Project No.: 14474.37

³ ERM. 2007. Remedial Investigation Report Metal Etching Co. Inc. Site (NYSDEC Site No. 1-30-110), Freeport, New York. Environmental Resource Management. January.

Site-Related Groundwater

Groundwater samples were collected from 10 on-site monitoring wells at the water table interface and three monitoring wells installed directly above the clay layer. Samples collected from all on-site monitoring wells contained concentrations of VOCs including MTBE and PCE; and PCE breakdown contaminants TCE, dichloroethene (DCE), and vinyl chloride (VC). Samples collected from above the clay layer contained higher concentrations of PCE, TCE, DCE, and VC than samples collected from the water table interface. Concentrations of PCE from samples collected above the clay layer ranged from ND to 1,600 μ g/L, while concentrations of PCE from samples collected at the water table interface ranged from ND to 250 μ g/L. The highest concentrations of PCE and breakdown contaminants were detected in monitoring wells located west and south of the 2,400 ft² building in monitoring wells MW-02S/D and MW-07S/D. The distribution and concentrations of breakdown contaminants across the site indicated that degradation was occurring at the site.

MTBE was detected in groundwater samples across the site at concentrations ranging from ND to 2,100 μ g/L. The highest groundwater concentration of MTBE was collected as a grab sample at boring SB-21, south of MW-02S/D in the area of a suspected underground storage tank (UST) southwest of the 2,400 ft² building.

Table 2 and Figures 6A and 6B show the groundwater sampling results from the RI.

Site-Related Soil Vapor Intrusion

The potential for vapor intrusion in on-site buildings was evaluated prior to the remedial action. Subslab vapor samples collected in July 2004 indicated that both PCE and TCE were present in subslab air beneath both on-site buildings (office building and warehouse building). The smaller office building subslab vapor sample contained PCE at a concentration of 292 μ g/m³ and TCE at a concentration of 187 μ g/m³. The subslab vapor sample from the larger warehouse building contained PCE at a concentration of 5,772 μ g/m³ and TCE at a concentration of 16,014 μ g/m³. Indoor air samples collected from both buildings did not contain detections of PCE or TCE. Potential vapor intrusion was addressed by the installation of sub-slab depressurization systems in March 2005 at the two on-site buildings prior to the remedial action; however, site soil vapor will continue to be monitored as part of the EC/IC Plan as discussed in Section 2.0.

Table 3 and Figure 7 show the soil vapor sampling results from the RI.

Underground Storage Tanks

One UST was removed from the western area of the site in 1990, prior to the RI. This tank contained heating fuel. During the RI, two additional potential USTs were identified on the site. One was identified east of the smaller building and the other was identified south of the larger building. Contents were unknown prior to the remedial action.

Sediment

Sediment within Freeport Creek surrounding the perimeter of the site was sampled during the RI. Two of the eight samples contained metals (i.e., nickel, chromium, and zinc) exceeding their respective SCGs. The sample collected from sediment just below the outfall in the northeastern part of the site contained nickel at a concentration of 40.4 mg/kg, exceeding the Effect Range-Low (ER-L) of 20.9 mg/kg. The sample collected south of the southeastern bulkhead contained chromium (127 mg/kg) and nickel (28.4 mg/kg) at concentrations exceeding their respective ER-L values (81 mg/kg and 20.9 mg/kg, respectively), as well as zinc (425 mg/kg) exceeding the Effect Range-Medium (ER-M) of 410 mg/kg. ER-L is the 10th percentile on a series of data that is ranked from the lowest, or least toxic concentrations, to the highest, or more toxic concentrations. ER-M is the 50th percentile on this continuum.

In addition to sediment within Freeport Creek, sediment from within an existing storm drain was sampled during the RI. The samples contained metals (i.e., nickel, copper, and zinc) exceeding their respective SCGs. Table 4 and Figure 5D show the sediment sampling results from the RI.

1.4 SUMMARY OF REMEDIAL ACTIONS

The site was remediated in accordance with the NYSDEC-approved remedial design, which was part of the Contract Documents dated August 2010 and addendums dated September 28, 2010, September 30, 2010, and October 1, 2010.

The following is a summary of the remedial actions performed at the site:

- Excavation of 2,684 yd³ of soil/fill exceeding soil cleanup objectives (SCOs) listed in Table 5A within identified excavation limits, to low-tide groundwater elevation, approximately 5 ft bgs.
- Construction and maintenance of a soil cover system consisting of a geotextile demarcation layer covered by asphalt or permeable pavement to prevent human exposure to contaminated soil/fill remaining at the site.
- Execution and recording of three ENs to restrict land use to commercial or industrial uses, and prevent future exposure to any contamination remaining at the site.
- Removal of approximately 2 yd³ of sediment from the on-site storm water system and disposal at an approved offsite facility.
- Closure and removal of four USTs on-site in accordance with NYSDEC regulations.
- Limited removal of approximately 183 yd³ of sediment from delineated area within Freeport Creek and disposal at an approved offsite facility.

• Development and implementation of a SMP for long-term management of remaining contamination as required by the ENs, which include plans for: (1) IC/ECs, (2) monitoring, (3) operation and maintenance, and (4) reporting.

Remedial activities were completed at the site in January 2012.

1.4.1 Removal of Contaminated Materials from the Site

Soil and sediment hot spots were identified on-site and delineated during design activities prior to the remedial construction. Hot spot locations were based on soil sample collection and analysis performed during the 2007 RI (ERM 2007)³ and the 2008 additional site investigation.

Soil

Remedial activities at the site consisted of excavation and offsite disposal of contaminated soils from within excavation areas EX-1 through EX-7 shown on Figure 3. Asphalt and concrete top layers within excavation limits were saw-cut using walk-behind saw equipment, broken up by a CAT 320 excavator, and disposed of offsite. Remnant foundation walls encountered within excavation areas were removed to the bottom of the excavation limits, broken up, and disposed of offsite along with other construction and demolition (C&D) debris. Approximately 240 tons of C&D materials were removed and disposed offsite at 110 Sand Landfill in Melville, NY.

Soil within excavation areas EX1, EX3, EX4, EX5, and EX6 was removed down to 5 ft bgs. Soil within excavation area EX2 was removed down to 1 ft bgs. Contaminated soil from the excavation areas was removed using a CAT 320 excavator and disposed offsite at 110 Sand Landfill. During excavation within EX6, fuel-impacted soil was encountered directly to the west of excavation limit points EX6-7 and EX6-8. Excavation area EX6 was extended an additional 9 ft to the east of excavation limit points EX6-7 and EX6-8, down to approximately 5 ft bgs to remove visual impacts. Two additional USTs were uncovered within EX3, to the east side of the one-story brick office building. All product from within the USTs was pumped and disposed of at International Petroleum Corporation of Delaware. Cleaned USTs were delivered to Gershow Recycling in Freeport, NY.

During excavation in the vicinity of excavation limit points EX5-11, EX5-12, and EX5-13, down to 5 ft bgs, two USTs were encountered. These USTs were found to extend within the footprint of excavation area EX1. The area to the west of points EX5-11 and EX5-13, and entire excavation area EX1 were excavated down to the bottom of the USTs (approximately 5 ft bgs), and then further excavated another 2-3 ft below the bottom of the USTs to remove visually impacted soils.

Approximately 5,500 tons of contaminated soil was excavated and disposed off-site. This includes approximately 110 tons of fuel-impacted soil encountered within EX1 and EX6, and C&D materials. The fuel-impacted soil encountered at excavations EX1 and EX6 were segregated from other excavated soil, characterized, and disposed at 110 Sand Landfill, following disposal facility approval.

In addition, during excavation activities, monitoring wells MW02S/MW02D, MW03S/MW03D, and MW07S/MW07D were decommissioned, removed, and disposed of offsite in accordance with the Contract Documents. Monitoring wells MW-08S and MW-08D replaced MW-02S and MW-02D; monitoring wells MW-09S and MW-09D replaced MW-07S and MW-07D; and monitoring wells MW-10D replaced MW-03S and MW-03D.

Storm Drain Sediment

Sediment from within an 18-in. reinforced-concrete storm pipe located in the east portion of the site was cleaned out on May 16, 2011 using a vactor truck (2100 Series DEC 1A-727).

No sediment or wash water was observed to flow out of the pipe into Freeport Creek from the outfall end. Following pipe clean out activities, water that had been pumped from the manhole during clean out activities was decanted from the vactor truck back into the manhole, then sediment from the vactor truck was loaded into 55 gal drums. Seven drums were packed with sediment and staged on-site until disposal at Residuals Management Services, Inc. (RMS) in Deer Park, NY on October 3, 2011.

Freeport Creek Contaminated Sediment

Dredging of contaminated sediment located in the 40 ft \times 60 ft targeted area within Freeport Creek (delineated by excavation limit points EX7-1 through EX7-4) was performed between 11 and January 20, 2012. Wood-finger docks were removed prior to dredging and restored following dredging activities. A turbidity barrier was installed prior to dredging operations to prevent migration of sediment outside of the targeted area and was removed following completion of dredging activities.

Pre- and post-dredging surveys of the dredging area were performed by Alphonse Pesce Land Surveying to verify the sediment removal limits and the volume of sediment removed. Dredging was performed by Hancock Bulkhead by means of clamshell boom mechanical dredging equipment. Sediment removal progressed in a grid pattern within the targeted area. AARCO removed sediment from the on-site barge and transported it to 110 Sand Landfill. Approximately 250 tons of dredged sediment were transported and disposed offsite.

A list of the ER-Ls and ER-Ms for the primary contaminants of concern is provided in Table 5B.

A figure showing areas where excavation was performed is shown in Figure 3.

1.4.2 Site-Related Treatment Systems

Two sub-slab depressurization systems (SSDSs) that were installed in March 2005 in the on-site buildings remain. The SSDS that was installed in the office building was not operational from October 2012 until April 2014, when it was repaired. The SSDS that was installed in the warehouse building has not been operational since October 2012. Both systems were damaged during Superstorm Sandy in October 2012. Post-remedial action termination sampling was

EA Project No.: 14474.37

	Version: FINAL
EA Engineering, P.C. and its Affiliate	Page 1-9
EA Science and Technology	April 2014

conducted in November2013 and March 2014 to assess current soil vapor conditions. An evaluation of the need for repairing the warehouse SSDS to return to operational status and/or a decision to decommission the warehouse SSDS will be made in the near future dependent upon the results of the termination sampling events, and in consultation with NYSDEC and New York State Department of Health (NYSDOH). No additional long-term treatment systems were installed as part of the site remedy.

1.4.3 Remaining Contamination

Per the ROD, excavation depth was limited by the low-tide groundwater elevation; therefore, known contamination remains at the site. Mirafi[®] 180N/O non-woven geotextile was installed at a depth of 5 ft in excavation areas EX3, EX4, EX5, and EX6; it was installed at a depth of 1 ft in excavation areas EX1 and EX2.

During the RI, VOC and metals contamination was identified in various locations throughout the site deeper than the maximum excavation depth of 5 ft. Concentrations of metals and VOCs exceeded the SCOs at sampling intervals 7-8 ft bgs and 12 ft bgs. VOCs (i.e., xylene and naphthalene) were identified in the western area of the site near excavation EX3 7-8 ft bgs and 12 ft bgs. Various VOCs including TCE, benzene, toluene, and MTBE were identified in the central area of the site near excavation EX5 within intervals 7-8 ft bgs and 12 ft bgs. Xylenes were identified 7-8 ft bgs and 12 ft bgs in the northeast area of the site near an existing electrical conduit. Ethylbenzene, xylene, and chlorobenzene were identified 8 ft bgs in the southeast area of the site.

Metals including chromium, copper, nickel, and zinc were identified at concentrations exceeding the SCOs in soil within the central portion of the site 7-8 ft bgs and 12 ft bgs. Copper, nickel, and zinc were identified in soil within the east area of the site 7-8 ft bgs and 12 ft bgs. A confining clay layer was identified 31-38 ft bgs across the site.

Confirmation soil samples were collected at the excavation boundaries following remediation work. VOCs detected in confirmation soil samples with concentrations exceeding the site-specific SCGs include xylenes (north sidewall of EX1 and south central area of EX5); and 1,2-DCE as a combination of *cis*- and *trans*-1,2-DCE, and toluene (south central area of EX5).

Metals detected in confirmation soil samples with concentrations exceeding the site-specific SCGs include chromium, copper, nickel, and zinc. Some confirmation samples collected from the bottom of excavations EX1 and EX2 contained all four metals at concentrations in exceedance of the site-specific SCGs.

Of the three confirmation samples collected from the bottom of EX3, only one sample contained zinc at a concentration exceeding the site-specific SCGs. Four of the five side wall samples from EX3 contained zinc at a concentration exceeding the site-specific SCGs as well.

EA Project No.: 14474.37
The bottom sample collected from EX4 contained chromium, copper, and zinc at concentrations exceeding the SCGs, while only one of the three side wall samples from EX4 contained a concentration of zinc exceeding the site-specific SCGs.

A majority of the bottom samples of EX5 contained a concentration of copper exceeding the sitespecific SCGs, while the northwest quadrant contained chromium and the northeast quadrant contained nickel at concentrations exceeding the respective site-specific SCGs. A majority of side samples from EX5 contained concentrations of copper and zinc exceeding the site-specific SCGs, while 4 of 13 samples contained concentrations of nickel exceeding the site-specific SCGs. Only one side wall sample from EX5 contained chromium at a concentration exceeding the site-specific SCGs.

Excavation EX6 consisted of a northern and southern portion separated by the utility right-ofway. Both bottom samples in the northern portion and all three of the bottom samples in the southern portion contained concentrations of copper and zinc exceeding the site-specific SCGs. One of the northern bottom samples and two of the three southern bottom samples contained nickel at a concentration greater than the site-specific SCGs. All side wall samples collected from EX6 contained concentrations of zinc exceeding the site-specific SCGs, while all but two (along the northern and northwestern excavation boundary) contained concentrations of copper exceeding the site-specific SCGs. All but two of the side wall samples collected from the southern portion of EX6 and one of the side wall samples collected from the northern portion of EX6 (along the boundary with the right-of-way) contained nickel at a concentration exceeding the site-specific SCGs. One side wall sample along the southern boundary of EX6 contained a concentration of chromium at a concentration exceeding the site-specific SCGs.

EX7 was a 2 ft excavation within Freeport Creek. Documentation samples collected following dredging activities contained copper and mercury exceeding their respective ER-Ls of 34 mg/Kg and 0.15 mg/Kg. Sample location EX7P2 contained copper at a concentration of 299 mg/Kg exceeding the Effects Range-High (ER-H) of 270 mg/Kg. Sample location EX7P3 contained mercury at a concentration of 1.86 mg/Kg exceeding the ER-H of 0.71 mg/Kg. Four of the five documentation samples collected from EX7 contained concentrations of arsenic which exceeded the ER-L of 8.2 mg/Kg. Concentrations ranged from 8.48 mg/Kg in EX7P5 to 17.2 mg/Kg in EX7P2.

Tables 6A and 6B, and Figures 8-8C summarize the results of all soil samples remaining at the site after completion of remedial action that exceed the unrestricted levels for VOCs and metals, respectively. Tables 7A and 7B, and Figures 9-9C summarize the remaining soil contamination that exceeds the site-specific SCOs for VOCs and metals, respectively. Table 8 and Figure 9D summarizes the results of all sediment samples remaining at the site after completion of dredging activities that exceed the ER-L and ER-H.

Since contaminated soil and groundwater remain beneath the site after completion of the remedial action, ECs and ICs are required to protect human health and the environment. These ECs and ICs are described in the following sections. Long-term management of these ECs and ICs, and residual contamination will be performed under this SMP.

2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION

2.1.1 General

Since remaining contaminated soil exists beneath the site, ECs and ICs are required to protect human health and the environment. This EC/IC Plan describes the procedures for the implementation and management of all EC/ICs at the site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

2.1.2 Purpose

This plan provides:

- A description of all EC/ICs on the site
- The basic implementation and intended role of each EC/IC
- A description of the key components of the ICs set forth in the ENs
- A description of the features to be evaluated during each required inspection and periodic review
- A description of plans and procedures to be followed for implementation of EC/ICs, such as the implementation of the Excavation Work Plan (EWP) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the site remedy, as determined by the NYSDEC.

2.2 ENGINEERING CONTROLS

2.2.1 Engineering Control Systems

2.2.1.1 Final Cover System

Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised of a geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in Appendix B outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in Section 4 of this SMP. A figure showing the location of the different cover types is provided as Figure 10.

2.2.1.2 Sub-Slab Depressurization Systems

Exposure to indoor air impacted with VOCs within the site buildings was prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. Both systems remained in operation until October 2012, but became inoperable due to a large storm, Superstorm Sandy, that resulted in site flooding. The office building was renovated following the flooding and re-occupied beginning in 2013. The SSDS at this building was repaired in April 2014 and is again operational.

2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

2.2.2.1 Composite Cover System

The composite cover system is a permanent control; the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

2.2.2.2 Sub-Slab Depressurization Systems

The SSDSs will be monitored on an annual basis to determine whether the systems remain necessary at the site, or if the remedial action objectives were achieved.

2.3 INSTITUTIONAL CONTROLS

A series of ICs is required by the ROD to: (1) implement, maintain and monitor EC systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to commercial or industrial uses only. Adherence to these ICs on the site is required by the ENs and will be implemented under this SMP. These ICs are:

- Compliance with the ENs and this SMP by the Grantor and the Grantor's successors and assigns.
- All ECs must be operated and maintained as specified in this SMP.

EA Project No.: 14474.37

- All ECs on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.
- Groundwater and indoor air monitoring must be performed as defined in this SMP.
- Submission of a periodic certification of institutional and ECs to the NYSDEC by the property owner.
- Data and information pertinent to site management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP.

ICs identified in the ENs may not be discontinued without an amendment to or extinguishment of the ENs.

The site has a series of ICs in the form of site restrictions. Adherence to these ICs is required by the ENs. Site restrictions that apply to the Controlled Property are:

- The property may only be used for commercial use provided that the long-term ECs and ICs included in this SMP are employed. The property may also be used for industrial use, in conformance of local zoning.
- The property may not be used for a higher level of use, such as unrestricted use without additional remediation and amendment of the ENs, as approved by the NYSDEC.
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP.
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use.
- The potential for vapor intrusion must be evaluated for any buildings developed within the site boundaries, and any potential impacts that are identified must be monitored or mitigated.
- Vegetable gardens and farming on the property are prohibited.
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This

certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.3.1 Excavation Work Plan

The site has been remediated for commercial or industrial uses. Any future intrusive work that will penetrate the soil cover or cap, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system will be performed in compliance with the EWP that is attached as Appendix B to this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) prepared for the site. A sample HASP is attached as Appendix B-1 to the EWP that is in current compliance with DER-10, and 29 Code of Federal Regulations (CFR) 1910, 29 CFR 1926, and all other applicable federal, state, and local regulations. Based on future changes to state and federal health and safety requirements, and specific methods employed by future contractors, the HASP and CAMP will be updated and re-submitted with the notification provided in Section A-1 of the EWP. Any intrusive construction work will be performed in compliance with the EWP, HASP, and CAMP; and will be included in the periodic inspection and certification reports submitted under the Site Management Reporting Plan (Section 5).

The site owner and associated parties preparing the remedial documents submitted to the State, and parties performing this work, are completely responsible for the safe performance of all intrusive work, the structural integrity of excavations, proper disposal of excavation de-water, control of runoff from open excavations into remaining contamination, and for structures that may be affected by excavations (such as building foundations and bridge footings). The site owner will ensure that site development activities will not interfere with, or otherwise impair or compromise, the ECs described in this SMP.

2.3.2 Soil Vapor Intrusion Evaluation

Prior to the construction of any enclosed structures within the area identified on Figure 11, a soil vapor intrusion (SVI) evaluation will be performed to determine whether any mitigation measures are necessary to eliminate potential exposure to vapors in the proposed structure. Alternatively, a SVI mitigation system may be installed as an element of the building foundation without first conducting an investigation. This mitigation system will include a vapor barrier and passive SSDS that is capable of being converted to an active system.

Prior to conducting a SVI investigation or installing a mitigation system, a work plan will be developed and submitted to the NYSDEC and NYSDOH for approval. This work plan will be developed in accordance with the most recent NYSDOH Guidance for Evaluating Vapor Intrusion in the State of New York (NYSDOH 2006)⁴. Measures to be employed to mitigate

⁴ New York State Department of Health. 2006. *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*. New York State Department of Health, Division of Environmental Health Assessment, Center for Environmental Health. October.

potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (un-validated) SVI sampling data will be forwarded to the NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for follow-up action, such as mitigation. Validated SVI data will be transmitted to the property owner within 30 days of validation. If any indoor air test results exceed NYSDOH guidelines, relevant NYSDOH fact sheets will be provided to all tenants and occupants of the property within 15 days of receipt of validated data.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the next Periodic Review Report.

2.4 INSPECTIONS AND NOTIFICATIONS

2.4.1 Inspections

Inspections of all remedial components installed at the site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. A comprehensive site-wide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether ECs continue to perform as designed
- If these controls continue to be protective of human health and the environment
- Compliance with requirements of this SMP and the ENs
- Achievement of remedial performance criteria
- Sampling and analysis of appropriate media during monitoring events
- If site records are complete and up to date
- Changes, or needed changes, to the remedial or monitoring system.

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

2.4.2 Notifications

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

- 60-day advance notice of any proposed changes in site use in accordance with the ROD.
- 15-day advance notice of any proposed ground-intrusive activities pursuant to the EWP.
- Notice within 48-hours of any damage or defect to the foundations structures that reduces or has the potential to reduce the effectiveness of other ECs and likewise any action to be taken to mitigate the damage or defect.
- Notice within 48-hours of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the site, including a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action shall be submitted to the NYSDEC within 45 days and shall describe and document actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of all approved work plans and reports, including this SMP
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing.

2.5 CONTINGENCY PLAN

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

2.5.1 Emergency Telephone Numbers

In the event of any environmentally-related situation or unplanned occurrence requiring assistance, the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to the NYSDEC project manager. These emergency contact lists must be maintained in an easily accessible location at the site.

Emergency Contact Numbers					
Medical, Fire, and Police:	911				
	(800) 272-4480				
One Call Center:	(3 day notice required for utility markout)				
Poison Control Center:	(800) 222-1222				
Pollution Toxic Chemical Oil Spills:	(800) 424-8802				
NYSDEC Spills Hotline	(800) 457-7362				

Contact Numbers					
NYSDEC Division of Environmental	518-402-9814				
Remediation	510 102 9011				
Eric Hausamann (SSDS) 518-402-9814					
NOTE: Contact numbers subject to change and should be updated as necessary					

2.5.2 Map and Directions to Nearest Health Facility

Site Location: Metal Etching Site Nearest Hospital Name: South Nassau Communities Hospital Hospital Location: 1 Healthy Way, Oceanside, New York 11572 Hospital Telephone: 516-632-3000

Directions to the Hospital:

- 1. Go north on S Main Street.
- 2. Take 1st left onto Atlantic Avenue.
- 3. Turn right onto S Bayview Avenue.
- 4. Turn left onto W Merrick Road.
- 5. Turn left onto Healthy Way.
- Total Distance: 3.6 miles

Total Estimated Time: 10 minutes

Map Showing Route from the site to the Hospital:

*Map is from maps.google.com

2.5.3 Response Procedures

As appropriate, the fire department and other emergency response group will be notified immediately by telephone of the emergency. The emergency telephone number list is found at the beginning of this Contingency Plan. The list will also be posted prominently at the site and made readily available to all personnel at all times.

2.5.3.1 Spill Procedures

In the event that a hazardous substance is released on the site, all site personnel shall be notified immediately. If the substance poses an immediate threat to human health and the environment, evacuation and notification of the appropriate authorities including the NYSDEC Spill Response team (listed in previous table) may be necessary. If the release is minimal and does not pose a health risk, the leak shall be contained and the spilled material shall be cleaned up with appropriately sized absorbent pads. Materials used to contain the substance shall be disposed of properly.

2.5.3.2 Evacuation Plan

If site evacuation is necessary, site personnel shall exit the site on Main Street. All site personnel shall be notified of the evacuation.

3.0 SITE MONITORING PLAN

3.1 INTRODUCTION

3.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the site, the soil cover system, and all affected site media identified below. Monitoring of other ECs is described in Chapter 4, Operation and Maintenance Plan. This Monitoring Plan may only be revised with the approval of NYSDEC.

3.1.2 Purpose and Schedule

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor)
- Assessing compliance with applicable NYSDEC SCGs, particularly ambient groundwater standards and Part 375 SCOs for soil
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency
- Information on all designed monitoring systems (e.g., well logs)
- Analytical sampling program requirements
- Reporting requirements
- Quality Assurance (QA)/Quality Control (QC) requirements
- Inspection and maintenance requirements for monitoring wells and SSDS
- Monitoring well decommissioning procedures
- Annual inspection and periodic certification.

Semi-annual monitoring of the performance of the remedy and overall reduction in contamination on-site will be conducted for the first year. The frequency thereafter will be determined by NYSDEC. Trends in contaminant levels in air, soil, and/or groundwater in the affected areas, will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. Monitoring programs are summarized in the following table and outlined in detail in Sections 3.2 and 3.3 below.

Monitoring/Inspection Schedule						
Monitoring Program	Frequency ⁽¹⁾	Matrix	Analysis			
Groundwater	Semi-Annually (For first year)	Water	VOCs and Metals			
Site Cover Inspection	Semi-Annually (For first year)	NA	NA			
SSDS/Indoor AirAnnually for SSDS/As recommended by State Agencies for indoor air (During heating season)AirVOCs						
(1) The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH						

3.2 COVER SYSTEM MONITORING

For the first year of monitoring, the cover system will be inspected on a semi-annual basis and after large storm events to ensure proper drainage, and to look for sedimentation issues. The inspector will also note whether the asphalt and porous pavement has settled unevenly, been overloaded, or otherwise disturbed. The porous pavement will be checked for signs of clogging by soil or debris or chemical sealers. Rip-rap areas will be inspected for disturbance and effectiveness. Concrete surrounding the slotted drains at the site entrances will be inspected for cracking or crumbling.

3.3 MEDIA MONITORING PROGRAM

Groundwater and indoor air will be monitored as part of the management of this site.

3.3.1 Groundwater Monitoring

The network of monitoring wells has been installed to monitor both upgradient and downgradient groundwater conditions at the site. The network of on-site wells was designed and installed during the RI. A total of 10 wells were installed including three monitoring well clusters of one shallow and one deep well, three single shallow wells, and one single deep micro well. Deep wells were installed to a maximum of 33 ft bgs, which is the depth of the top of the clay layer observed during the soil boring investigation. Shallow wells were installed to 13 ft bgs to intercept any light non-aqueous phase liquid that may have been present. All wells were constructed with 10 ft of screen. Well locations were selected based on the geophysical, soil boring and groundwater investigations which took place as part of the RI and field observations. Wells are located throughout the site. Figure 12 show the shallow and deep monitoring well arrays.

As noted in Section 1.4.1, monitoring wells MW02S/MW02D, MW03S/MW03D, and MW07S/MW07D were decommissioned during soil excavation activities. These monitoring wells were replaced with monitoring wells MW-08S and MW-08D, MW-09S and MW-09D, and

MW-10S and MW-10D following cover installation in similar locations and to similar depths as the original wells. Monitoring well construction details for all wells present at the site are included in Appendix C.

New monitoring wells were last sampled on December 14, 2011. Samples were analyzed for oil and grease (Method E1664A), polychlorinated biphenyls (PCBs) and pesticides (Method E608), metals and mercury (Methods SW6010B and SW7470A, respectively,) VOCs (Method SW8260B), and semivolatile organic compounds (Method SW8270C). Results of the initial post-remedial groundwater sampling are shown on Figure 13.

Groundwater monitoring is to be performed twice per year for the first year and as directed by NYSDEC thereafter. Groundwater is to be analyzed for metals and mercury (Methods 6010B and SW7470A) and VOCs (Method 8260B). The following monitoring wells are to be sampled as part of the groundwater monitoring program for the Metal Etching site.

Monitoring Wells at the Metal Etching Site						
On-site Monitoring Wells	Well Depth (ft bgs)					
MW-06	13					
MW-04	13					
MW-05R	13					
MW-08SR	14					
MW-08DR	31					
MW-09S	14					
MW-09D	32					
MW-10S	14					
MW-10D	32					
Off-site Monitoring Wells	Well Depth (ft bgs)					
MW-11S	15					
MW-11D	30					

The sampling frequency may be modified with the approval of the NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by the NYSDEC.

The groundwater monitoring well network is shown in Figure 12. Figure 13 and Tables 9A and 9B provide a summary of the post-remaining groundwater quality for VOCs and metals, respectively.

Deliverables for the groundwater monitoring program are specified below.

3.3.1.1 Sampling Protocol

All monitoring well sampling activities will be recorded in a field book and a groundwater sampling log presented in Appendix D. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network.

EA Project No.: 14474.37

Prior to sampling, all monitoring wells shall be inspected and gauged to obtain the static water levels for the site. Monitoring well purging will be performed and groundwater samples will be collected from the monitoring wells using a submersible pump and dedicated section of polyethylene tubing. A water quality meter (Horiba U-52 or similar) with flow-through cell (flushed with distilled water before use at each well) will be used during well purging for field measurement of pH, specific conductance, temperature, Eh, turbidity, and dissolved oxygen. Each well shall be purged three well volumes or until field parameters stabilize, whichever occurs first. Purge water is to be discharged to the ground surface near the well. In the event that a strong odor or sheen is evident, water is to be drummed, characterized, handled, and disposed of at a licensed treatment, storage, and disposal facility.

The following procedures will be used for monitoring well groundwater sampling:

- Wear appropriate personal protective equipment as specified in the site-specific HASP Addendum (Appendix B-1). In addition, samplers will use new nitrile sampling gloves for the collection of each sample.
- Unlock and remove the well cap.
- Measure the static water level in the well with an electronic water level indicator.
- The water level indicator will be washed with Alconox detergent and water, then rinsed with deionized water between individual monitoring wells to prevent cross-contamination.
- Calculate the volume of water in the well.
- Place polyethylene sheeting around the well casing to prevent contamination of sampling equipment in the event sampling equipment is dropped.
- Purge 3-5 well volumes of water from the well or until water quality parameters are stabilized, using the method described below.
- Pump with a submersible pump equipped with new polyethylene tubing dedicated to each well. Set pump intake at the approximate mid-point of the monitoring wells screened interval and start pump.
- Allow field parameters of pH, reduction-oxidation potential (Eh), dissolved oxygen, specific conductivity, turbidity, and temperature to stabilize before sampling. Purging will be considered complete if the following conditions are met:
 - Consecutive pH readings are ± 0.1 pH units of each other
 - Consecutive dissolved oxygen readings are ± 10 percent of each other
 - Consecutive Redox readings are ± 0.10 units of each other
 - \circ Consecutive measured specific conductance is ± 3 percent of each other

• Turbidity < 50 Nephelometric turbidity units

If these parameters are not met after purging a volume equal to 3-5 times the volume of standing water in the well, the EA Project Manager will be contacted to determine the appropriate action(s).

- If the well is purged dry before the required volumes are removed, the well may be sampled when it recovers (recovery period up to 24 hours).
- Place analytical samples in cooler and chill to 4°C. Samples will be shipped to the analytical laboratories within 24 hours.
- Pump will be decontaminated and the polyethylene suction/discharge line will be properly discarded.
- Re-lock well cap.
- Fill out field sampling form, labels, custody seals, and chain-of-custody forms.

Groundwater samples will be placed in appropriate sample containers, sealed, and submitted to the laboratory for analysis.

3.3.1.2 Monitoring Well Repairs, Replacement, and Decommissioning

If biofouling or silt accumulation occurs in the on-site and/or offsite monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan), if an event renders the wells unusable.

Well decommissioning procedures are as follows:

- Measure total depth of the well to ensure the well depth is consistent with the recorded construction depth.
- Remove the steel manhole or steel stickup protective casing with an effort being made to ensure that the riser does not splinter and/or become structurally unstable for pulling.
- The bottom of the casing shall be punctured and the casing freed from the hole using suitable equipment (i.e., drill rig cable system). Well materials shall be disposed of at a licensed disposal facility.
- The well shall be tremie-grouted with a cement bentonite grout while removing the casing. The grout shall be completed to a depth of approximately 5 ft below grade.

- A bentonite seal shall be placed on top of the grout.
- The remaining riser shall be sealed with a Portland cement plug to the ground surface.

In the event the casing or well screen is severed during casing pulling, or if a borehole collapse occurs, the remaining materials will be removed by over-drilling using the conventional augering method described below:

- Overdrilling shall be conducted by either using a hollow-stem auger with outward facing carbide cutting teeth with a diameter 2 in. larger than the casing and/or using a hollow-stem auger fitting with a plug used to grind the well materials which will be brought to the surface by the auger. Spoils shall be drummed and disposed of at a licensed disposal facility.
- Overdrilling shall be advanced 0.5 ft beyond the original bore depth.
- Once the desired drilling depth has been completed (using open ended hollow-stem auger method) the casing and screen shall be retrieved from the center of the augers.
- As the augers are being retracted, cement-bentonite grout shall be pumped down the center of the augers.
- Bore hole shall be grouted and sealed with bentonite and Portland cement as described above.

Replacement wells shall be constructed using methods consistent with those used during the RI. Monitoring well construction logs are provided in Appendix C.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent periodic report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's Commissioner Policy – 43 Groundwater Monitoring Well Decommissioning Policy (NYSDEC 2009)⁵. Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

⁵ NYSDEC. 2009. Commissioner Policy–43 Groundwater Monitoring Well Decommissioning Policy. 3 November.

3.3.2 Indoor Air Monitoring

Indoor air sampling is to take place in the existing office building and warehouse (Figure 14), as discussed in Section 1.3 of this plan, on-site on an annual basis to monitor effectiveness of SSDSs and potential SVI. Samples are to be analyzed by an Environmental Laboratory Analytical Program-certified laboratory for VOCs using U.S. Environmental Protection Agency (EPA) Method TO-15. In accordance with the NYSDOH guidance for evaluating SVI, the analysis for the indoor air samples is to achieve detection limits of 0.25 μ g/m³ for each compound.

Prior to collection of indoor air, an inspection of general site conditions is to be performed. The inspection is to include the following activities:

- Completion of the NYSDOH Indoor Air Quality Questionnaire and Building Inventory included in Indoor Air Sampling and Analysis Guidance (NYSDOH 2006)⁴. A sample of the questionnaire is provided in Appendix D. As directed by NYSDEC, a limited product inventory will be prepared. Sections 1 through 12 of the questionnaire will be completed with the exception of Section 4. In addition, a floor plan sketch of the first floor will not be required.
- Documentation of weather conditions outside and temperature inside.
- Ambient air (indoor and outdoor) screening using field equipment (i.e., parts per billion photoionization detector).
- Selection of air sampling locations.

An active approach, utilizing laboratory batch-certified Summa canisters, regulated for an 8-hour sample collection, will be used to monitor the indoor air conditions. An associated outdoor ambient air sample shall be collected during the same time period as the indoor air sample. The following procedures will be used for all indoor and outdoor air sampling:

- Visually assess the building to be sampled. Select an area for indoor air sampling that is approximately 3-4 ft above the floor surface, out of the line of traffic, and away from any vents or windows. Select an area for outdoor air sampling that is approximately 3-4 ft above the ground surface, out of the line of traffic, and in the vicinity of the building to be sampled.
- Place a canister in the selected sample location. The canister must be certified clean in accordance with EPA Method TO-15 and under a vacuum pressure of no more than -30 in. of mercury in Hg. Flow controllers must be set for an 8-hour collection period.
- Record the serial number of the canister and associated regulator on the chain-of-custody form and field notebook/sample form. Assign a sample identification on the canister

identification tag and record this on chain-of-custody and field notebook/sample form. For the property owner's privacy, do not use a sample identifier containing the name of the property owner or the address of the property.

- Record the gauge pressure; the vacuum gauge pressure must read -25 in Hg or less, or the canister cannot be used.
- Record the start time on the chain-of-custody form and on the air sampling form (Appendix D), and take a digital photograph of canister setup and the surrounding area.

To terminate the sample collection:

- Close the canister valve; record the stop time on the chain-of-custody form and in the field notebook/sample form.
- Record the final gauge pressure and disconnect the pressure gauge/flow controller from the canister.
- Install the plug on the canister inlet fitting and place the sample container in the original box.
- Complete the sample collection log with the appropriate information, and log each sample on the chain-of-custody form.

3.4 SITE-WIDE INSPECTION

Site-wide inspections will be performed on a regular schedule at a minimum of once a year. Sitewide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, an inspection form will be completed (Appendix D). The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage
- An evaluation of the condition and continued effectiveness of ECs
- General site conditions at the time of the inspection
- The site management activities being conducted including, where appropriate, sampling and a health and safety inspection
- Compliance with permits and schedules included in the Operation and Maintenance Plan
- Confirm that site records are up to date.

• Confirm that site use has not changed since the previous inspection.

SSDS inspections will take place as part of the annual site-wide inspection and are discussed in Section 4.0 of this plan.

3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL

All sampling and analyses will be performed in accordance with the requirements of the Quality Assurance Project Plan (QAPP) prepared for the site (Appendix E). Main components of the QAPP include:

- QA/QC Objectives for Data Measurement
- Sampling Program:
 - Sample containers will be properly washed, decontaminated, and appropriate preservative will be added (if applicable) prior to their use by the analytical laboratory. Containers with preservative will be tagged as such.
 - Sample holding times will be in accordance with the NYSDEC Analytical Services Protocol requirements.
 - Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will be collected as necessary.
- Sample Tracking and Custody
- Calibration Procedures:
 - All field analytical equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.
 - The laboratory will follow all calibration procedures and schedules as specified in EPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.
- Analytical Procedures
- Preparation of a Data Usability Summary Report, which will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method.
- Internal QC and Checks
- QA Performance and System Audits
- Preventative Maintenance Procedures and Schedules

• Corrective Action Measures.

3.6 MONITORING REPORTING REQUIREMENTS

Forms and any other information generated during regular monitoring events and inspections will be kept on file. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the Periodic Review Report, as specified in the Reporting Plan of this SMP.

All monitoring results will be reported to NYSDEC on a periodic basis in the Periodic Review Report. A letter report will also be prepared subsequent to each sampling event. The report will include, at a minimum:

- Date of event
- Personnel conducting sampling
- Description of the activities performed
- Type of samples collected (e.g., groundwater, indoor air, etc.)
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.)
- Sampling results in comparison to appropriate standards/criteria
- A figure illustrating sample type, sampling locations, and analytical results
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format)
- Any observations, conclusions, or recommendations
- A determination as to whether groundwater conditions have changed since the last reporting event.

Data will be reported in hard copy or digital format as determined by NYSDEC. A summary of the monitoring program deliverables are summarized below.

Schedule of Monitoring/Inspection Reports					
Task Reporting Frequency ⁽¹⁾					
Letter Inspection and Monitoring Report	Twice a year for the first year only				
Periodic Review Report January 2014 (first), annually after ⁽¹⁾					
(1) The frequency of events will be conducted as specified until otherwise approved by NYSDEC					

4.0 OPERATION AND MAINTENANCE PLAN

4.1 INTRODUCTION

This Operation and Maintenance Plan describes the measures necessary to operate, monitor, and maintain the mechanical components of the remedy in place at the site. This Operation and Maintenance Plan:

- Includes the steps necessary to allow individuals unfamiliar with the site to operate and maintain the SSDSs
- Includes an operation and maintenance contingency plan
- Will be updated periodically to reflect changes in site conditions or the manner in which the SSDSs are operated and maintained.

Information on non-mechanical ECs (i.e., soil cover system) is provided in Section 2 -Engineering and Institutional Control Plan. A copy of this Operation and Maintenance Plan, along with the complete SMP, will be kept at the site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of the SMP.

4.2 SUB-SLAB DEPRESSURIZATION SYSTEM OPERATION AND MAINTENANCE

There are two SSDSs on-site: one in the small office building and another in the larger warehouse building. The systems serve to reduce sub-slab pressure and vent built-up soil gas outside of the building. The systems consist of slotted screen installed beneath the slabs, connected to polyvinyl chloride pipe, an in-line ventilation fan, and an exterior exhaust point. The pipe for the smaller office building runs up the exterior wall and vents above the roof of the building. The pipe for the larger warehouse building runs up an interior wall, along the ceiling, and out through an existing hole in a window. Both vent fans are outside of the buildings. Both exhaust points are covered with rain caps. System locations are shown on Figure 14. Both systems ran continuously from March 2005 until October 2012 when Superstorm Sandy caused flooding on the site. The system for the office building was repaired in April 2014; the warehouse building system is currently being evaluated for termination and/or repair by the NYSDEC and NYSDOH.

4.2.1 Scope

Typically, SSDSs are continuously operational, and require minimal maintenance and oversight; however, annual inspections are required to verify continuous and effective operation. The following sections detail system startup, inspections, and maintenance.

4.2.1.2 System Startup and Testing

Prior to system startup, the building slab, including the system slab and wall penetration and any gaps between the slab and the walls are to be sealed with a polyurethane sealant. After the fan is turned on, the operating pressure is to be marked on the pressure gauge located on the vertical pipe. The pressure is to be checked weekly during continuous operation, until the pressure is observed to be the same during two consecutive weeks.

Following system startup, a field test is to be conducted to check negative pressure beneath the slab. Starting approximately 5 ft from the system, a ¹/₄-in. diameter hole is to be drilled completely through the concrete slab. The vacuum is to be measured using a handheld electric manometer at the test location. This is to be repeated an additional 5 ft from each previous test hole, until the furthest possible point on the slab has been tested. Each previously tested hole is to be filled with fast-setting concrete prior to the succeeding test. The system is working properly if all points tested show a pressure drop of 0.5 Pa or higher.

The system testing described above will be conducted if, in the course of the SSDS lifetime, significant changes are made to the system, and the system must be restarted.

4.2.1.3 System Operation: Equipment Maintenance

In the event that the annual inspection discussed in Section 4.3 reveals system failure or potential for system failure, the building owner and NYSDEC SSDS contact should be notified immediately. Faulty parts of the system should be replaced if possible, or cracks should be sealed using a polyurethane sealant. Depending on the complexity of the problem, an experienced professional should be consulted to return the system to service.

4.3 ENGINEERING CONTROL SYSTEM PERFORMANCE MONITORING

Sub-slab depressurization systems have been installed to mitigate possible SVI into occupied buildings. While the systems involve very little in the way of operation and maintenance, monitoring is necessary to verify system functionality and effectiveness. An annual inspection described in Section 4.3.1 will serve to verify that the system components are in working condition and are not compromised in any way. Annual air sampling as discussed in Section 4.3.2 will serve to verify that the system is effectively mitigating vapor intrusion.

4.3.1 General Equipment Monitoring

An annual inspection will be performed on both systems in conjunction with the annual site-wide inspection discussed in Section 3.4 of this plan. The inspection is to include the following:

• Inspect all visible system components, including the system piping, fans, manometer, etc. Note any cracks in piping or other operational issues

- Inspect slab for cracks, noting location and size of gaps, or where seals have begun to fail
- Make sure that contact information on the SSDS is up to date
- Note changes in building use and changes in heating, ventilation and air conditioning.

Inspection frequency is subject to change with the approval of the NYSDEC. Unscheduled inspections and/or sampling may take place when a suspected failure of the SSDS has been reported or an emergency occurs that is deemed likely to affect the operation of the system. Monitoring deliverables for the SSDS are specified later in this plan.

A complete list of components to be checked is provided in the Inspection Checklist, which is part of the site-wide inspection form presented in Appendix D. If any equipment readings are not within their typical range, if any equipment is observed to be malfunctioning, or the system is not performing within specifications, maintenance and repair as per the Operation and Maintenance Plan are required immediately, and the SSDS is to be restarted.

4.3.2 Sampling Event Protocol

Indoor air monitoring is to take place on an annual basis, and is discussed in Section 3.3.2 of this plan. In the event that indoor air monitoring indicates VOC contamination in the air, or per NYSDEC's request, a full sub-slab soil vapor intrusion evaluation is to be completed. This would include the collection of an indoor air sample, a sub-slab air sample, and an outdoor air sample. The indoor sample is to be collected as discussed in Section 3.3.2. The following procedures will be used for collection of sub-slab soil vapor samples:

- Visually assess the condition of the floor. Select an area for sampling that is out of the line of traffic and away from major cracks and other floor penetrations (sumps, pipes, etc.). Refer to historical sample forms (Appendix F) for ideal sample locations.
- Drill a ³/₈-in. diameter hole completely through the concrete floor slab using an electric hammer drill.
- Sweep concrete dust away from the drill hole and wipe the floor with a dampened towel. Concrete dust can be cleaned up with a vacuum equipped with a high efficiency particulate air filter only after the sample tubing is properly sealed and sample collection has begun.
- Insert the Teflon-lined polyethylene tubing (¼-in. inside diameter × ¾-in. outside diameter, approximately 3-ft long) into the hole drilled in the floor, extending no further than 2 in. below the bottom of the floor slab.
- Pour the melted beeswax around the tubing at the floor penetration, packing it in tightly around the tubing.

- Attach a syringe to the sample tube and purge approximately 100 mL of air/vapor. The syringe will be capped and the air released outside the building as to not interfere with the indoor air sample collection.
- Place a canister on the floor adjacent to the sample tube. The canister will be a 6-L canister (provided by an independent laboratory) with a vacuum gauge and flow controller. The canister must be certified clean in accordance with EPA Method TO-15 and under a vacuum pressure of no more than -30 in. of mercury in HG. Flow controllers must be set for a 24-hour collection period.
- Record the serial number of the canister and associated regulator on the chain-of-custody form and field notebook/sample form. Assign a sample identification on the canister identification tag and record this on the chain-of-custody form and field notebook/sample form. For the property owner's privacy, do not use a sample identifier containing the name of the property owner or the address of the property.
- Record the gauge pressure; the vacuum gauge pressure must read -25 in Hg or less, or the canister cannot be used.
- Record the start time on the chain-of-custody form and on the field record of air sampling (Appendix D), and take a digital photograph of canister setup and the surrounding area.

To complete the sample collection:

- Close the canister valve and record the stop time on the chain-of-custody form and in the field notebook/sample form.
- Record the final gauge pressure and disconnect the sample tubing and the pressure gauge/flow controller from the canister, if applicable.
- Install the plug on the canister inlet fitting and place the sample container in the original box.
- Complete the sample collection log with the appropriate information, and log each sample on the chain-of-custody form.
- Remove the temporary subsurface probe and properly seal the hole in the slab with hydraulic cement.

Field QC samples will include duplicates and trip blanks. Field duplicates will be collected at the rate of 1 duplicate per 20 original samples (20 percent). Field duplicates will be collected by installing an in-line "tee," which will essentially split the flow coming from the sample tubing penetrating the floor to two canisters set up adjacent to each other and each collecting vapors at identical flow rates.

Concurrently with the indoor air and sub-slab soil vapor monitoring program, one outdoor ambient air sample will be collected each day that indoor air monitoring occurs. The ambient air samples will be collected during the same 8-hour period as the indoor air samples, which represent outdoor air conditions for the sampling area. The ambient air samples will be collected in a laboratory batch-certified Summa canister regulated for an 8-hour sample collection. A section of Teflon or polyethylene tubing that is identified as laboratory- or food-grade will be extended from the Summa canister to collect the ambient air sample from the breathing zone at approximately 3-5 ft above ground surface. Consistent with the indoor and sub-slab vapor sampling, the collecting rate of the outdoor air sample will be less than 0.2 L per minute.

Air samples will be analyzed by an Environmental Laboratory Analytical Program-certified laboratory for VOCs using EPA Method TO-15. In accordance with the NYSDOH Indoor Air Sampling and Analysis Guidance, the analysis for indoor and outdoor air samples will achieve a minimum reporting limit of $0.25 \ \mu g/m^3$. The analysis for sub-slab soil vapor samples will achieve minimum reporting limit of $5 \ \mu g/m^3$ for structures with full slab foundations, and a minimum 1 $\mu g/m^3$ for structures with less than a full slab foundation. For specific parameters identified by NYSDOH, where the selected parameters may have a higher detection limit (e.g., acetone), the higher detection limits will be designated by NYSDOH. The analytical turnaround time will be 14 days from receipt of sample containers. Analytical results will be provided as an electronic data deliverable.

4.4 MAINTENANCE AND PERFORMANCE MONITORING REPORTING REQUIREMENTS

Maintenance reports and any other information generated during regular operations at the site will be filed on-site. All reports, forms, and other relevant information generated will be available upon request to the NYSDEC and submitted as part of the Periodic Review Report, as specified in the Section 5 of this SMP.

4.4.1 Maintenance Reports

During each maintenance event, a form will be completed which will include, but not be limited to, the following information:

- Date
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities
- Presence of leaks
- Date of leak repair
- Other repairs or adjustments made to the system

- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet)
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

5. INSPECTIONS, REPORTING AND CERTIFICATIONS

5.1 SITE INSPECTIONS

5.1.1 Inspection Frequency

All inspections will be conducted at the frequency specified in the schedule provided in Section 3 Monitoring Plan of this SMP. At a minimum, a site-wide inspection will be conducted twice a year. Inspections of remedial components (SSDS in this case) will also be conducted when a breakdown of any treatment system component has occurred or whenever a severe condition has taken place, such as an erosion or flooding event that may affect the ECs.

5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports

A general site-wide inspection form will be completed during the site-wide inspection (Appendix D). This form is subject to NYSDEC revision.

All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format in the Periodic Review Report.

5.1.3 Evaluation of Records and Reporting

The results of the inspection and site monitoring data will be evaluated as part of the EC/IC certification to confirm that the:

- EC/ICs are in place, are performing properly, and remain effective
- The Monitoring Plan is being implemented
- Operation and maintenance activities are being conducted properly; and, based on the above items
- The site remedy continues to be protective of public health and the environment and is performing as designed in the Remedial Action Work Plan and Final Engineering Report.

5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

After the last inspection of the reporting period, a qualified environmental professional will prepare the following certification:

For each IC/EC identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the ICs and ECs required by the remedial program was performed under my direction
- The IC and/or EC employed at this site is unchanged from the date the control was put in place, or last approved by the NYSDEC
- Nothing has occurred that would impair the ability of the control to protect the public health and environment
- Nothing has occurred that would constitute a violation or failure to comply with any SMP for this control
- Access to the site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document
- Use of the site is compliant with the ENs
- The EC systems are performing as designed and are effective
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative]. The signed certification will be included in the Periodic Review Report described below.

For each IC identified for the site, I certify that all of the following statements are true:

- The IC employed at this site is unchanged from the date the control was put in place, or last approved by the NYSDEC
- Nothing has occurred that would impair the ability of the control to protect the public health and environment
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control

- Access to the site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document
- Use of the site is compliant with the ENs.
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner or Owner's Designated Site Representative]

5.3 PERIODIC REVIEW REPORT

A Periodic Review Report will be submitted to the NYSDEC every year, beginning 18 months after approval of the Final Engineering Report. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Appendix A (Environmental Notices). The report will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. Media sampling results will also incorporated into the Periodic Review Report. The report will include:

- Identification, assessment, and certification of all ECs/ICs required by the remedy for the site
- Results of the required annual site inspections and severe condition inspections, if applicable
- All applicable inspection forms and other records generated for the site during the reporting period in electronic format
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions
- Data summary tables and graphical representations of contaminants of concern by media (e.g., groundwater, soil vapor), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends

- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific Remedial Action Work Plan, ROD or Decision Document;
 - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - The overall performance and effectiveness of the remedy.

The Periodic Review Report will be submitted, in electronic-copy format, to the NYSDEC Central Office and Regional Office in which the site is located, and in electronic format to NYSDEC Central and Regional Offices, and the NYSDOH Bureau of Environmental Exposure Investigation.

5.4 CORRECTIVE MEASURES PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an IC/EC, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC.

	FREE SITE FR	FREEPORT METAL ETCHING SITE MANAGEMENT PLAN FREEPORT, NEW YORK			FIGURE 1 Site Location and Boundary Map		0 25 50		Feet 100	
· The role state	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37	DA APRIL	TE: _ 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\SMP\FIG1	

Approximate Locations of Former Buildings

Source: NYS GIS Clearing House

- Surveyed Location of Excavated Underground Storage Tanks 1 and 2 ---- Excavation Area Boundaries
- Approxmate Location of Excavated Underground Storage Tanks 3 and 4
 - Cross Section

PROJECT MGR: RSC

and the

DESIGNED BY: RSC

CREATED BY: MEM

CHECKED BY: RSC

PROJECT NO:

14474.37

FILE NO:

G:\MegalEtching\ SMP\Fig4

SCALE: AS SHOWN

DATE:

APRIL 2014

Monitoring Well (Groundwater Elevation ft amsl)

Groundwater Contours

Groundwater Flow Direction

	58-69	NYSDEC	0.50	2.50 7.0	0 12.00	
	Constituent	RSCOs				
	Chromium	50	6.7	3 2	2.8 3.5	
7.00 12.00	Copper	NA 25	9.7	3.6	1.5 4.1	
	Nickel	13	4.5	2.2 0 2.3	U 2.2 U	
7 1.7 1.8		20	1231	4.0 4		
1 2.5 U 2.5	58-52	RSCOB	0.50	2.50	.00 12.00	
1 4.2 U 3.8 U	Chromium	50	[100]	34	7 7	
14.2 0 3.8 0	Chromium(Hexavalent)	NA	NA	NA (1907	NA NA	
7.00 12.00	Copper Nickel	25	6.2	[180]	<u>5.3 [45]</u> 7 U 4 1 U	
	Zinc	20	[48]	[1200] [350] [150]	
2.3 2.1 NA NA	SB01	NYSDEC	0.50	2.50 7	.00 12.00	
3.4 3.3	Constituent	RSCOa				
<u>4.7 U 9.9</u>	Chromium	50	14	13	14 3.4	
	Copper	25	[530]	[5700] [.	220] 15	
	Nickel	13	9	9.3	6.9 5 U	
		20	[140]			
	58-55	RSCOs	0.50	2.50 7.0	12.00	
///	Chromium	50	27	18 6	.1 6.6	
/ /	Chromium(Hexavalent)	NA	NA	NA I	4 NA	
	Nickel	13	[15]	[14] 4.7	U 4.9 U	
	Zinc	20	[130]	[95] [2	6] 13	
. /	SB68	NYSDEC	0.50	2.50 7.	00 12.00	
	Constituent	RSCOs				
	Chromium	50	42	7.3	3.4 5.5	
/	Copper	25	MA [540]	<u>[35]</u> [1	60] <u>24</u>	
	Nickel	13	10	4.4 2.2	2 U 3	
A		20	1200			
	SB-02	NYSDEC RSCOr	0.50	2.50 7	.00 12.00	
94 /	Constituent	£0		1 [1200]	17 05	
/.	Chromium(Hexavalent)	NA	NÁ	24.3	NA NA	
RE	Copper	25	[30]	[1600]	[93] [44] [24] 78	
2	Zinc	20	[110]	[1200] [30 [42]	
	CP_01	MYEDEC	7.00		60 12 00	1
	Genetituent	RSCOs	7.00			
· / ·	Chromium	50	22	[57]	13 15	
_	Chromium(Hexavalent)	NA 25	NA Tean	4.56 U	NA NA 1801 11	
	Nickel	13	[20]	[71]	[13] 5.2 U	
	Zinc	20	[360]	[1600][240] 13	
	SB04	NYSDEC	0.50	2.50 7.00	12.00	
	Constituent	13008				
	Chromium Chromium(Hexavalent)	50 NA	14 NA	5.7 22 NA NA	22 NA	
	Copper	25	[39]	[40] [100	10	
	Nickel Zinc	13	5 0	5 0 [15	9.9 7317	
	58-54	NYSDEC	0.50	2 50 70	0 1 1 2 0 0 1	
	Constituent	RSCOa	0.50	2.50 /.0	/2.00	
٨	Chromium	50	3.6	9.9	24 14	
	Chromium(Hexavalent) Conner	NA 25	NA 16	NA 1	1A NA 07 4 4	
-	Nickel	13	5.1 L	9.9 [1	5 4.7	
	Zinc	20	14	[94] [26	0] 17	
	.SB-56	NYSDEC RSCOs	8.00	14.00 24	.00 38.00	
	Constituent				71 50	
	Chromium(Hexavalent)	NA	NA	NA	NA NA	
	Copper	25	[57]	3.3 U [69] <u>3.5</u>	
	Zinc	20	[150]	5.6 U 5	5 U 13	
	58-05	NYSDEC	0 50	2 50 7 00	12.00	
	Constituent	RSCOs				
	Chromium	50	30	11 8.8	1.9	
<	Chromium(Hexavalent) Copper	NA 25	NA 1871	NA NA [69] 9.6	NA 2.9	
	Nickel	13	9.3	7.7 5 U	4.2 U	
\sim	21/10	20	1/0]	<u>107][[</u> 34]	** U	
	SB-49	NYSDEC RSCOs	0.50	2.50 7.00	12.00	
	Constituent	50	14	9.5 14		
	Chromium(Hexavalent)	NA	NA	NA N	NA	
\sim	Copper	25	[32]	17 [25	[37]	
	Zinc	20	[73]	[160] [84	[54]	
7.00 12.00	58-08	RSCOs	0.50	2.50 7.0	0 12.00	
5 3.6 9	Constituent	50	14	12	3.1 3.4	
IA NA NA	Chromium(Hexavalent)	NA	NA	NA	VA NA	
6 4.7 U 4.5 U	Nickel	25	[81] [34]	6.7 5.2	U 4.5 U	
3] [50] 4.5 U	Zinc	20	[110	[46] 5.2	U 4.5 U	
.50 7.00 12.00	SB-36	NYSDFC	0.50	2.50 7	00 12.00	
	Constituent	RSCOs		<i>"</i>		
8.5 3.6 7.7	Chromium	50	23	6	12 3.1	MAP DERIVED FROM
na NA NA 110] 22 [837]	Corromium(Hexavalent) Copper	NA 25	NA [65]	9.6 7	MA NA 64] 2.2 U	TOPOGRAPHIC MAP OF
[20] 4.6 U 5 U	Nickel	13	[20]	4.9 U	9.9 3.7 U	DESCRIBED PROPERTY
[/#]] [24][[130]	LinC	20	[420]	<u>[] [] [] [1</u>	+0] J.7 U	AND
						LUI NUS. 24 & 25
						MAP UF SUNSHINE DADV
						SITUATED AT
						FREEPORT
						TOWN OF HEMPSTEAD
						NASSAU COUNTY, NEW YORK
						NASSAU COUNTY CASE NO. 1528
						FILF12 JUNE 4 1921

GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATIO

Legend SB-57 🔴

[]

U

Soil boring location

Concentrations of constituents are shown in milligrams per kilogram (mg/kg)

Detected soil concentration is above NYSDEC TAGM SCO's Not Detected at indicated detection limit

Note: Map was developed for the 2007 Remedial Investigation by Environmental Remedial Management, Inc.

RSC

RSC

1447437

APRIL 2014

AS SHOWN

G:\Projects\SMP\FIG5B

02					0	0/01/01	
tituent				$\frac{1}{70}$		8/24/04	
nium	(r	ng/kg)	<u> </u>	/0		6.0	
ury	(r	ng/kg)	0.	/1	0	.065 J	
	(r	ng/kg)	5	1.6	8	.8 J	
	(r	ng/kg)	4	10	9	3.2 J	
-03							
tituent	U	nits	E	R-M	0	8/24/04	
mium	(r	mg/kg)	3	70	3	5.3	
ury	(r	ng/kg)	0	.71	0	0.059U J	
e	(r	ng/kg)	5	1.6	3	5.2 J	
	(r	ng/kg)	4	10	5	9.7 J	
_07							
-07 stituent	ιlι	Jnits	E	IR-N	/ (08/24/04	
mium	(ma/ka)) 3	370		3.4	
urv		ma/ka)).71).047U J	
el	$\frac{1}{1}$	ma/ka)		51.6	+	1 4 J	
(mg/k)		mg/kg)) 410 16.5 J		16.5 J		
7_08							
nstitue	nt	Units		ER-	- M	08/24/04	
romiun	n 1	(ma/k	a)	370)	6.5	
rcurv		(ma/k)	a)	0.7	1	0.089 J	
:kel		(ma/k)	<u>a)</u>	51.6	6	2.6 J	
C		(ma/k	<u>9)</u> a)	410		26.5 J	
		(*** 57	57				
						TOPOGRAPHIC MAP OF ESCRIBED PROPERTY AND LOT NOS. 24 & 25 SUNSTILLE PARK SITUATED AT TOWN GF EMESTEAD SSAU COUNTY, NEW YORK WISHU COUNTY MAP NO. 179 USAU COUNTY MAP NO. 179 SSAU COUNTY MAP NO. 179 SSAU COUNTY OF MAP NO. 170 STATUS OF MAP NO. 170 STATU	
Legend							
◆ SED-07	Se	diment sample locat	ion				
ER-M	ER-M Effect Range-Median- Values derived from NYSDEC Technical Guidance for Screening Contaminated Sediments (NYSDEC 1999)						
Note: Map was deve	oped f	or the 2007 Remedial In	vestiga	tion by Enviror	nmenta	al Remedial Management, Inc.	

DEC RSCOs & 12.00 STERN USA ACKGROUND		0.50	2.50	7.00
ACKONOUND EA	270 11	260 11	270 11	260 11
1500	270 0	260 0	270 0	200 0
5500	270 11	260 11	270 11	260 11
3500	270 0	200 0	270 0	250 0
1200	2/0 0	260 0	2/0 0	80 3
120	[450]	260 U	60 J	250 0
13000	100 J	260 U	200 J	640
1400	270 Ū	260 Ü	270 Ū	200 J
700	200 J	260 U	80 J	[730]
300	270 U	260 U	270 U	250 U
	60 J	260 U	270 U	70 J
200	270 U	260 U	270 U	250 U
1700	270 11	260 11	270 11	250 11
	2/0 0	200 0	2/0 0	200 0
DEC RSCOs & ASTERN USA ACKGROUND	0.50	2.50	7.00	12.00
60	240 U	250 U	250 U	260 U
1500	240 11	250 U	360	80 ./
5500	240 11	250 U	5200	1500
1200	240 11	250 11	[4000]	[1700]
1200	240 0	250 0	250 1	260 11
120	240 0	250 0	230 0	200 0
13000	240 0	250 0	0700	2000
1400	240 0	250 0	250 0	260 0
700	240 U	250 U	250 U	260 U
300	240 U	250 U	250 U	260 U
	240 U	250 U	250 U	260 U
200	240 U	250 U	250 U	260 U
1700	240 Ú	250 Ú	250 Ú	260 U
.700	v	0		
DEC RSCO® & ASTERN USA MACKGROUND	0.50	2.50	7.00	12.00
60	250 U	260 U	250 U	260 U
1500	250 11	260 11	250 1	260 U
5500	250 //	1600	200 /	260 1
1000	250 0	1000	200 0	260 11
1200	250 0	[2000]	00 J	200 0
120	250 U	260 U	250 U	260 U
13000	250 U	1200	3800	350
1400	250 U	260 U	250 U	260 U
700	250 U	260 U	250 U	260 U
300	250 U	260 U	250 U	260 U
	250 11	260 1	250 11	260 11
200	250 1	260 /	250 1	260 11
200	200 0	200 0	200 0	200 0
1700	250 U	200 U	200 U	20U U
DEC RSCOs & ASTERN USA ACKGROUND	8.00	14.00	24.00	38.00
DEC RSCOs & ASTERN USA ACKGROUND 60	8.00 260 L	14.00 / 260 (24.00	38.00 / 230 U
DEC RSCOs & ASTERN USA ACKGROUND 60 1500	8.00 260 L 270	14.00 / 260 (260 (24.00 / 250 L / 250 L	38.00 / 230 U / 230 U
DEC RSCOs & ASTERN USA ACKGROUND 60 1500 5500	8.00 260 L 270 [14000	14.00 / 260 (260 (260 (280	24.00 J 250 L J 250 L J 250 L	38.00 / 230 U / 230 U / 230 U
DEC RSC0s & ASTERN USA ACKGROUND 60 1500 5500 1200	8.00 260 L 270 [14000 [15000	14.00 / 260 (260 (260 (320	24.00 1 250 U 1 250 U 250 U 250 U 250 U	38.00 / 230 U / 230 U / 230 U / 230 U
DEC RSCOs & ASTERN USA ACKGROUND 60 1500 5500 1200 120	8.00 260 L 270 [14000 [15000 260 L	14.00 / 260 () 260 () 260 () 280] 320 / 260 (24.00 <i>J</i> 250 U <i>J</i> 250 U <i>250</i> U <i>250</i> U <i>250</i> U <i>250</i> U	38.00 / 230 U / 230 U / 230 U / 230 U / 230 U
DEC RSC0s & ASTERN USA ACKGROUND 60 1500 5500 1200 1200 13000	8.00 260 L 270 [14000 [15000 260 L 11000	14.00 260 (260 (280 280 280 280 280 280 280 280 280 280	24.00 / 250 L / 250 L / 250 L 250 L 250 L / 250 L / 250 L / 250 L	38.00 230 U 230 U 230 U 230 U 230 U 230 U
DEC RSC0s & ASTERN USA ACKGROUND 60 1500 5500 1200 1200 13000 1400	8.00 260 U 270 [14000 [15000 260 U 11000 260 U	14.00 260 0 260 0 280 280 280 280 280 280 280 280 280 28	24.00 / 250 L / 250 L	38.00 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U
DEC RSC0s & ASTERN USA ACKGROUND 60 1500 5500 1200 1200 1200 13000 14000 700	8.00 260 U 270 [14000 [15000 260 U 11000 260 U 260 U	14.00 260 (260 (280 280 280 260 (280 260 (260 (260 (24.00 1 250 U 250 U 250 U 250 U 250 U 250 U 1 250 U 1 250 U 250 U	38.00 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U 230 U
DEC RSC0s & ASTERN USA ACKGROUND 60 1500 5500 1200 1200 13000 1400 700	8.00 260 U 270 [14000 [15000 260 U 260 U 260 U 260 U	14.00 260 (260 (260 (260 (7 280 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 700 7	24.00 250 U 250 U	38.00 230 U 230 U
DEC RSC0s & ASTERN USA ACKGROUND 60 1500 5500 1200 1200 13000 1400 700 300	8.00 260 L 270 [14000 260 L 260 L 260 L 260 L 260 L 260 L	14.00 260 (260 (24.00 / 250 U / 250 U 250 U	38.00 230 U 230 U
DEC RSC0s & ASTERN USA ACKGROUND 600 1500 1200 1200 13000 1400 3000	8.00 260 L 270 [14000 [15000 260 L 260 L 260 L 260 L 260 L 260 L 260 L	14.00 260 (260 (24.00 / 250 U / 250 U 250 U	38.00 230 U 230 U
DEC RSC0s & ASTERN USA ACXGROUND 1500 1500 1200 1200 1200 1400 700 300 2000	8.00 260 U 270 [14000 [15000 260 U 260 U 260 U 260 U 260 U 260 U	14.00 260 (260 (260))))))))))))))))))))))))))))))))))))	24.00 250 U 250 U	38.00 230 U 230 U
DEC RSC0s & ASTERN USA ACKGROUND 60 1500 5500 1200 1200 13000 1400 300 200 1700	8.00 260 (270 [14000 [15000 260 (260 (277)))))))))))))))))))))))))))))))))))	14.00 260 (260 (260))))))))))))))))))))))))))))))))))))	24.00 250 U 250 U	38.00 230 U 230 U
DEC RSC0s & SSTERN USA 4CKGROUND 60 1500 1200 1200 13000 1400 700 3000 200 1700 200 1700 200 1700 200 1700	8.00 260 L 270 [14000 260 L 260	14.00 260 (260 (260))))))))))))))))))))))))))))))))))))	24.00 250 U 250 U	38.00 230 U 230 U
DEC RSC03 & ASTERN USA ACKGROUND 60 1500 1200 1200 13000 1400 700 200 1700 200 1700 200 1700	8.00 260 (270 [14000 [15000 260 (260 (2	14.00 260 (260 (260))))))))))))))))))))))))))))))))))))	24.00 250 U 250 U	38.00 230 U 230 U
DEC RSC03 & ASTERN USA ACKGROUND 600 1500 1200 1200 1200 1200 1200 1200 12	8.00 260 L 270 [14000 [15000 260 L 260	14.00 260 () 260 () 260 () 1200 260 () 260 (24.00 250 U 250 U	38.00 230 U 230 U
DEC RSC0s & ASTERN USA ACKGROUND 600 1500 1200 1200 13000 1400 700 200 200 200 0 1700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.00 260 L 270 [14000 [15000 260 L 260	14.00 260 () 260 () 250 ()	24.00 250 U 250 U	38.00 1 230 U 230 U
DEC RSC03 & X5TERN USA 45TERN USA 4600 1500 1200 1200 1200 1200 1200 1200 12	8.00 260 L 270 [14000 260 L 260 L 270	14.00 260 () 260 () 250 ()	24.00 250 U 250 U	38.00 230 U 230 U
DEC RSC0s & STERN USA ASTERN USA ACKGROUND 1500 5500 1200 1200 13000 1400 1400 1200 1700 200 1700 200 1700 200 1700 200 5500 60 5500 5500 1200 1000 1000 1000 1000 100	8.00 260 L 270 [14000 260 L 260 L 250 U 250 U 250 U 250 U 250 U 250 U	14.00 260 U 260 U 260 U 260 U 260 U 260 U 260 U 260 U 260 U 260 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U	24.00 250 U 250 U	38.00 1 230 U 230 U
DEC RSC03 & KSTERN USA KSTERN USA 60 1500 1500 1200 1200 13000 1400 13000 1400 13000 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 200 200 200 200 200 200 200 200	8.00 260 L 270 [14000 15000 260 L 260 L 250	14.00 260 (1 260 (1))))))))))))))))))))))))))))))))))))	24.00 250 U 250 U	38.00 1 230 U 1 230 U 2 230 U 1 230 U 2 230 U 2 30 U
DEC RSC08 & XSTERN USA ACKGROUND 60 15000 12000 12000 12000 12000 12000 12000 17000 2000 17000 2000 17000 2000 17000 2000 17000 2000 17000 2000 17000 2000 1700 2000 20	8.00 260 U 270 [14000 260 U 260 U 260 U 260 U 260 U [3700 0.50 250 U [2800] 250 U 250 U	14.00 280 (1 280 (1))))))))))))))))))))))))))))))))))))	24.00 250 U 250 U	38.00 230 U 230 U
DEC RSC03 & KSTERN USA KSTERN USA 4000000000000000000000000000000000000	8.00 260 U 270 14000 260 U 260 U 250 U	14.00 280 (1 280	24.00 250 L 250 L 25	38.00 230 U 230 U
DEC RSC08 & XSTERN USA ACKGROUND 60 1500 1200 1200 1200 13000 200 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 200 200 200 200 200 200	8.00 260 L 2777 260 L 260	14.00 200 (1 200 (1)))))))))))))))))))))))))))))))))))	24.00 250 L 250 L 25	38.00 230 U 230 U
DEC RSC03 & KSTERN USA KSTERN USA ACKRCNUM 60 1500 1200 1200 1200 13000 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 200 200 200 200 200 200 200 200	8.00 260 L 2777 [14000 260 L 260 L 250 U 250	14.00 280 (1 280 (1))))))))))))))))))))))))))))))))))))	24.00 1 250 L 1 250 L 2 2 50 L 2 50	38.00 1 230 U 230 U
DEC RSC03 & KSTERN USA KSTERN USA ACKGROUND 1500 1200 1200 1200 13000 1400 1400 1700 200 200 1700 200 1700 1700 1700	8.00 280 L 2777 280 L 280	14.00 260 (1 280 (1))))))))))))))))))))))))))))))))))))	24.00 1 250 L 250 L	38.00 1230 U 2330 U
DEC RSC03 & KSTERN USA KSTERN USA ACKRCNUM 60 1500 1200 1200 1200 13000 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 200 200 200 200 200 200 200 200	8.00 280 L 277 114000 280 L 280 L 250 U 250	14.00 280 (1) 280 (2) 280 (2) 322 280 (2) 280 (24.00 1 250 L 1 250 L 2 50 L	38.00 1230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230
DEC RSC03 & KSTERN USA ACKGROUND 4000 15000 1200 1200 13000 1200 14000 14000 100	8.00 260 L 2777 260 L 260 L 250 U 250	14.00 260 (1 260 (1 250 (1) (1 250 (1))))))))))))))))))))))))))))))))))))	24.00 250 L 250 L 25	38.00 1230 U 2330 U 1230 U 230
DEC RSC03 & KSTERN USA KSTERN USA 60 1500 1200 1200 1200 13000 1400 1400 1700 200 1700 200 1700 13000 1700 200 13000 13000 13000 1200 13000 1200 13000 1200 13000 1200 12	8.00 280 L (11000 280 L 280 L 28	14.00 260 (1) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 260 (2) 250 (2)	24.00 250 U 250 U	38.00 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 1230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230 1/2 230
DEC RSC03 & KSTERN USA KSTERN USA AKKROUND 1500 5500 1200 13000 1200 13000 1400 1400 1700 200 1700 200 1700 1500 1500 1500 1200 1200 1200 1200 12	8.00 280 L 277 277 280 L 280 L	14.00 280 (1 280 (1))))))))))))))))))))))))))))))))))))	24.00 250 U 250 U	38.00 1230 U 230 U 230 <td< td=""></td<>
DEC RSC03 & KSTERN USA KSTERN USA 1500 1200 1200 1200 1400 1400 1400 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1200 1	8.00 200 L 277 270 L 270 L 280 L 270 L	14.00 1 280 1 280 1 250 1	24.00 250 L 250 L 25	38.00 38.00 1230 U 230 U
DEC RSC03 & KSTERN USA KSTERN USA ACKROUND 1500 5500 1200 1200 13000 1400 1400 1400 1700 200 200 1700 200 1700 200 1700 17	8.00 260 L 277 270 L 270 L 270 L 280 L	14.00 1260 (1) 2261 (2) 2261 (2) 2261 (2) 2261 (2) 2261 (2) 2261 (2) 2261 (2) 2260 (2) 2260 (2) 2260 (2) 2260 (2) 2260 (2) 2260 (2) 2260 (2) 2260 (2) 2250 (2) 250 (2) 25	24.00 1 250 L 250 L	38.00 2330 U 2300 U 2300
DEC RSC03 & KSTERN USA KSTERN USA 1500 1200 1200 1200 1200 1400 1400 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1200 1	8.00 200 L 277 270 L 270 L 280 L	14.00 1 280 1 280 1 280 2 3 28 2 2 2 2	24.00 1 250 L 250 L	38.00 1230 U 230 U 230 <t< th=""></t<>
DEC RSC03 & KSTERN USA KSTERN USA ACKGROUND 1500 1500 1200 1200 1200 1200 1200 1200	8.00 260 L 277 270 L 280 L 270 L	14.00 1 260 (1 2	24.00 1 250 L 250 L	38.00 1 230 U 230
DEC RSC03 & KSTERN USA MCKRRUND USA MCKRRUND USA 1500 1200 1200 1200 1200 1200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1200 1	8.00 260 (L 277 (14000 280 (L 280 (L) (L 280 (L)	14.00 2 260 U 2 250 U 2 50 U 2 60	24.00 1 250 L 250 L	38.00 1230 U 230 U 230 <t< th=""></t<>
DEC RSC03 & XSTERN USA KSTERN USA 1500 1500 1200 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 1000 1000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 13000 1200 1000	8.00 260 L 277 (14000 260 L 260 L 270 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 250 U 270 U	14.00 280 (1) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 250 (2) 2	24.00 1 250 L 1 250	38.00 1 230 U 230
DEC RSC03 & KSTERN USA KSTERN USA 600 1500 1200 1200 1200 1200 1200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1200 1	8.00 260 (L 277 (14000 280 (L 280 (L)	14.00 1 260 L 2 261 L 2 2 2 2 L 2 L	24.00 250.0 25	38.00 1 230 U 2330 U 2330 U 2330 U 2330 U 2330 U 2330 U 2330 U 2330 U 12300 U 2330 U 12300 U 2330 U 2300 U 2330 U 2300 U 2300 U
DEC RSC03 & STERN USA STERN USA STERN USA 1500 1200 1200 13000 1400 13000 1400 13000 1400 13000 13000 13000 13000 1000 1	8.00 260 L 277 276 276 L 110000 260 L 260 L 270 U 250 U 250 U 250 U 250 U 250 U 270 U	14.00 280 (I 280	24.00 1 250 L 1 250	38.00 1 230 11 230 12 <td< th=""></td<>
DEC RSC0s & KSTERN USA KSTERN USA 600 1500 1200 1200 1200 1200 1200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 200 1700 200 200 200 200 200 200 200 200 200	8.00 280 L 277 280 L 280 L 270 U 270 U	14.00 1260 [260 2 260 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 280 2 250 1 260 1 260 1 260 1 200 3<	24.00 250.0 25	38.00 1 230 U 2330 U 2330 U 2300 U 2330 U 2300 U 2300 U <
DEC RSC03 & STERN USA (STERN USA) (STERN U	8.00 280 L 277 280 L 280 L 270 U 280 L 270 U 270 U	14.00 260 (1) 260 (2) 260 (2) 260 (2) 270 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 280 (2) 250 (2) 260 (2) 260 (2) 260 (2) 260 (2) 2	24.00 2500 U 250 U	38.00 1 230 1 2330 1 2330 1 2330 1 2330 1 2330 1 2330 1 2330 1 2330 1 2330 1 2330 1 2330 1 2330 1 2330 1 230 <t< th=""></t<>
DEC RSC03 & KSTERN USA KSTERN USA 600 1500 1200 1200 1200 13000 1400 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1700 200 1200 1	8.00 200 L 277 270 L 270 L 280 L 270 U 270 U	14.00 2800 280 <	24.00 250.0 25	38.00 1 230 U 1 230 U 1230 1 230 U 1230 U 230 U 230 U 230 U 250 U 230 U 230
DEC RSC03 & XSTERN USA KSTERN USA 1500 1200 1200 1200 1400 1400 1400 1400 1400 1400 100 1	8.00 280 1 277 280 1 280 1 270 1	14.00 2600 [1 2600	24.00 2250 U 2250 U 2550 U	38.00 1 230 U 2330 U 2330 U <
DEC RSC03 & KSTERN USA KSTERN USA ACKROUND 1500 5500 1200 1200 13000 1400 1400 1700 200 1700 1200 1700 1200 1700 1200 12	8.00 280 L 277 L 280 L 270 U 270 U 270 U 270 U 270 U 270 U 270 U 270 L 270	14.00 2800 280 <	24.00 250.0 25	38.00 1 230 U 2 330 U

TOPOGRAPHIC MAP OF

TOPOGRAPHIC MAP OF DESCRIBED PROPERTY AND LOT NOS. 24 & 25 MAP OF SUNSHINE PARK STUATED AT FREEPORT TOWN OF HEMPSTEAD NASSAU COUNTY, NEW YORK MASSAU COUNTY CASE NO. 1538 FLED: JUNE 4, 1921

GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT

: Elevations shown established from Benchmark 22011 EL 9.642 from the Massau County Department of Public Works Benchmark Book. U.S.C. & C.S. Datum.

HORIZONTAL DATUM IS N.A.D. 1927 EST NASSAU COUNTY GIS GPS MONUMENTS BLISHED FRO BEARINGS SHOWN TAKEN FROM RECORD DESCRIPTIONS. ABSTRACT OF TITLE AND EASEMENTS FOR SUBJECT PARCEL AND ADJOINNE PARCELS NOT FROVIDED FOR THE PREPERATION OF THIS SURVEY. ABSENCE OF EASEMENTS DOES NOT DENY THE EXISTENCE OF SAME.

SB-56

Soil Boring location exceeding the NYSDEC RSCO (Recomended Soil Cleanup Objective per TAGM 4046) Concentrations reported in micrograms per kilogram (ug/mg)

MW-07S			10/07/04
Constituent	Units	NYSDEC TOGS	
Aluminum	(ug/l)		64.5
Antimony	(ug/l)	3	[11.3]
Barium	(ug/l)	1000	310
Cadmium	(ug/l)	5	[6.2]
Calcium	(ug/l)		229000
Chromium	(ug/l)	50	2.0
Cobalt	(ug/l)		0.89
Iron	(ug/l)	300	[29200]
Magnesium	(ug/l)	35000	[58200]
Manganese	(ug/l)	300	[761]
Nickel	(ug/l)	100	2.8
Potassium	(ug/l)		31000
Sodium	(ug/l)	20000	[198000]
Vanadium	(ug/l)		0.60

MW-05		NYSDEC	10/08/04
Constituent	Units	TOGS	
Aluminum	(ug/l)		96.8
Antimony	(ug/l)	3	[7.2]
Barium	(ug/l)	1000	[1050]J
Cadmium	(ug/l)	5	3.6
Calcium	(ug/l)		128000
Chloride	(mg/l)	250	[400]J
Chromium	(ug/l)	50	0.90
Chromium (Hexavalent)	(mg/l)	0.050	[0.069]J
Iron	(ug/l)	300	[17400]J
Lead	(ug/l)	25	6.2
Magnesium	(ug/l)	35000	[37800]
Manganese	(ug/l)	300	[529]
Nickel	(ug/l)	100	4.6
Potassium	(ug/l)		31300
Sodium	(ug/l)	20000	[243000]
Vanadium	(ug/l)		2.6
Zinc	(ug/l)	2000	7.2

WW-07D		NYSDEC	10/07/04
Constituent	Units	TOGS	
Aluminum	(ug/l)		227
Antimony	(ug/l)	3	[4.1]
Barium	(ug/l)	1000	23.2
Cadmium	(ug/l)	5	1.3
Calcium	(ug/l)		18200
Chromium	(ug/l)	50	3.5
Cobalt	(ug/l)		1.7
ron	(ug/l)	300	[6370]
Magnesium	(ug/l)	35000	4740
Manganese	(ug/l)	300	[680]
Nickel	(ug/l)	100	3.6
Potassium	(ug/l)		2740
Sodium	(ug/l)	20000	[42400]
Zinc	(ua/l)	2000	9.8

CREEK

TOPOGRAPHIC MAP OF DESCRIBED PROPERTY AND LOT NOS. 24 & 25 MAP OF SUNSHINE PARK SITUATED AT FREEPORT TOWN OF HEMPSTEAD NASSAU COUNTY, NEW YORK NASSAU COUNTY MAP NO. 179 NASSAU COUNTY CASE NO. 1528 FILED: JUNE 4, 1921

GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

end	
MW-05 🔶	Monitoring Well Location
[]	Detected groundwater concentration is above NYSDEC TOGS Class GA Groundwater Standard
J	Estimated value

MW-01		NYSDEC	10/08/04
Constituent	Units	TOGS	
Methyl Tert Butyl Ether (MTB	E) (ug/l)	10	4J
Tetrachloroethene	(ug/l)	5	[13]
Trichloroethene	(ug/l)	5	3J

MW-05			10/08/04
Constituent	Units	NYSDEC TOGS	
Cyclohexane	(ug/l)		2J
Isopropylbenzene	(ug/l)	5	2J
Methyl Tert Butyl Ether (MTBE)	(ug/l)	10	[54]

MW-07D Constituent	Units	NYSDEC TOGS	10/07/04
Tetrachloroethene	(ug/l)	5	[1600]
Trichloroethene	(ug/l)	5	[25]J
cis-1,2-Dichloroethene	(ug/l)	5	4J

7S tuent	Units	NYSDEC TOGS	10/07/04
exane	(ug/l)		4J
Tert Butyl Ether (MTBE)	(ug/l)	10	[10]J
Cyclohexane	(ug/l)		8J
hloroethene	(ug/l)	5	3J
8	(ug/l)	5	2J
roethene	(ug/l)	5	[5]J
hloride	(ug/l)	2	[400]
2-Dichloroethene	(ug/l)	5	[370]
1.2-Dichloroethene	(ua/l)	5	31

MAP DERIVED FROM

TOPOGRAPHIC MAP OF DESCRIBED PROPERTY AND LOT NOS. 24 & 25 MAP OF SUNSHINE PARK SITUATED AT FREEPORT TOWN OF HEMPSTEAD NASSAU COUNTY, NEW YORK MASSAU COUNTY, NEW YORK MASSAU COUNTY MAP NO. 179 NASSAU COUNTY MAP NO. 179 NASSAU COUNTY MAP NO. 1528 FILED: JUNE 4, 1921 GUARANTEED ONLY TO:

GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

ena	
MW-05 🔶	Monitoring Well Location
[]	Detected groundwater concentration is above NYSDEC TOGS Class GA Groundwater Standard
J	Estimated value

	03/31/05	
3)	3.6J	
3)	1	
3)	1.1	
3)	0.57	
3)	2.2	
3)	2.3J	
3)	0.65	
3)	2.3	
3)	0.88	
3)	3.1	
3)	1.7	
		/

4-ER-B Constituent	Units	03/31/05
Acetone	(ug/m3)	4.4J
Benzene	(ug/m3)	1.1
Benzene, 1,2,4-trimethyl	(ug/m3)	1.2
Chloromethane	(ug/m3)	0.73
Dichlorodifluoromethane	(ug/m3)	2.8
Ethanol	(ug/m3)	3.4J
Ethylbenzene	(ug/m3)	0.75
m+p-Xylene	(ug/m3)	2.4
o-Xylene	(ug/m3)	0.7
Toluene	(ug/m3)	3.3
Trichlorofluoromethane	(ug/m3)	2
o-Xylene Toluene Trichlorofluoromethane	(ug/m3) (ug/m3) (ug/m3)	0.7 3.3 2

Ň

	Units	08/27/04
pethane	(ug/m3)	136.95
	(ug/m3)	11.94
	(ug/m3)	89.55
	(ug/m3)	11.37
4-trimethyl	(ug/m3)	15.29
5-trimethyl-	(ug/m3)	4.12J
de	(ug/m3)	10.25
	(ug/m3)	4.47J
romethane	(ug/m3)	4.83J
	(ug/m3)	6.60J
	(ug/m3)	20.50
oride	(ug/m3)	1.97J
	(ug/m3)	5.37J
	(ug/m3)	8.07
	(ug/m3)	7.34J
•	(ug/m3)	6.10J
	(ug/m3)	38.72
nene	(ug/m3)	219.75
	(ug/m3)	21.56
methane	(ug/m3)	3.76J
	(ug/m3)	27.83

435-SM-2400 Constituent	Units	03/31/05
2-Butanone	(ua/m3)	12
Acetone	(ug/m3)	1800E
Benzene	(ug/m3)	30
Benzene, 1,2,4-trimethyl	(ug/m3)	320
Benzene, 1,3,5-trimethyl-	(ug/m3)	110
Cyclohexane	(ug/m3)	14
Dichlorodifluoromethane	(ug/m3)	13
Ethanol	(ug/m3)	120J
Ethylbenzene	(ug/m3)	290
Isopropanol	(ug/m3)	10
m+p-Xylene	(ug/m3)	1200
Methyl Tertiary Butyl Ether	(ug/m3)	390
n-Heptane	(ug/m3)	30
n-Hexane	(ug/m3)	64
n-Propylbenzene	(ug/m3)	87
o-Xylene	(ug/m3)	320
p-Ethyltoluene	(ug/m3)	410
Styrene	(ug/m3)	400
Tetrachloroethene	(ug/m3)	1
Toluene	(ug/m3)	370
Trichloroethene	(ug/m3)	2
Trichlorofluoromethane	(ug/m3)	21

			1, 2-I Be Be Ca
/I-AA uent	Units	03/31/05	n-1
e	(ug/m3)	24	n-1
ne	(ug/m3)	0.83	Pr
ne, 1,2,4-trimethyl	(ug/m3)	2.7	Те
ne, 1,3,5-trimethyl-	(ug/m3)	1.1	To
methane	(ug/m3)	0.72	tra
methane	(ug/m3)	1.2J	Tri
odifluoromethane	(ug/m3)	3.1	Tri
	(ug/m3)	1.5	Xv
enzene	(ug/m3)	2.2	
ylene	(ug/m3)	9.3	
пе	(ug/m3)	2.6	
e	(ug/m3)	11	
rofluoromethane	(ug/m3)	1.5	

SG-02		
Constituent	Units	07/15/04
1,1,1-Trichloroethane	(ug/m3)	35.19J
2-Butanone	(ug/m3)	56.92J
Acetone	(ug/m3)	84.80
Benzene	(ug/m3)	4.79J
Benzene, 1,2,4-trimethyl	(ug/m3)	634.13
Benzene, 1,3,5-trimethyl-	(ug/m3)	321.00
Carbon disulfide	(ug/m3)	129.24
cis-1,2-Dichloroethene	(ug/m3)	283.88
n-Heptane	(ug/m3)	29.14J
o-Xylene	(ug/m3)	28.75J
p-Ethyltoluene	(ug/m3)	702.95
Propylene	(ug/m3)	10.46J
Tetrachloroethene	(ug/m3)	5771.83
Toluene	(ug/m3)	14.66J
trans-1,2-Dichloroethene	(ug/m3)	33.46J
Trichloroethene	(ug/m3)	16014.00
Trichlorofluoromethane	(ug/m3)	10.84J
Xylene (total)	(ug/m3)	63.40J

MAP DERIVED FROM TOPOGRAPHIC MAP OF

AND

MAP OF SITUATED AT

OF HEMPSTER WASSAU COUNTY MAP NO. 179 ASSAU COUNTY CASE NO. 1528 FILED: JUNE 4. 1921 GUARANTEED ONLY TO: NEW YORK STATE DEPARTMENT

4-President-SG = 4 President-Soil Gas = 435 South Main-Soil Gas 435-SM-SG 3-Ray-SG = 3 Ray-Soil Gas

DESIGNED BY: RSC

CREATED BY:

MEM

CHECKED BY:

RSC

PROJECT NO

14474.37

PROJECT MGR:

RSC

ন্

FILE NO: G:\Projects\Fig8

SCALE:

AS SHOWN

DATE:

APRIL 2014

---- Excavation Area Boundaries

	T1 SW Chromi T1 B1 Chromium Nickel T1 B2 Chromium Nickel	1 mg/ um 11. mg/kg 6.75 47.2 mg/kg 5.35 33		EX3	EX3 SM Chromit		mg/kg 3.34 T2 B1 Chromium Lead T2 B2 Chromium EX3 Chromium EX3 B3 Chromium	mg/ SW6 omium g/ 5.8 EX3 Chro
EX3 B1 Chromiun	mg/kg h 4.17			£			EX3 B2 Chromium	
	EX3 SW2 Chromium	mg/kg 4.63	EX3 SW3 Chromium	mg/k	g	EX3 SW4 Chromium	mg/k 5.24	<u>g</u>
	FREEPORT METAL ET SITE MANAGEMENT I FREEPORT, NEW YO PROJECT MGR: DESIGNED BY: RSC RSC	CHING PLAN DRK CREATED BY: MEM	FIGUR Documentation Locations with of Unrestricted L CHECKED BY: RSC	E 8A on Sample Exceedences Levels in EX-3 PROJECT NO: 14474.37	0 5 10 DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\Fig8	Leg - •

jend

Source: NYS GIS Clearing House

- Documentation Sample Location
- ---- Excavation Area Boundaries

		Street and Street	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37	DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\Fig	_{ј8В} Е х	xcavation Ar	ea Boundarie	es
5-5-5			SIT FF	E MANAGEMENT PL REEPORT, NEW YOF	_AN RK	with Exceedences	ample Locations s of Unrestricted (-1, -4, & -5	0 15	30	60	• D	- ocumentatio	n Sample Lo	cation
			FREI	EPORT METAL ETCI	HING	FIGUR	RE 8B			East	Leaen	d	Sour	ce: NYS GIS Clearing House
6		Copper	73.8	Zinc	314	Zinc		183 Lead		81.4			m,p-Xylene	780
- 141		Chromium	8.1	Lead	101	Lead		121 Coppe	r	84.9			Zinc	166
-1-1-1		EX5 B1	mg/kg	Copper	449	Copper		92.2 Chrom	ium	27.6			Copper	168
Company Contraction		The second second		Chromium	28.7	Chromiu	- m 2	20.9 EX5 S	W4	mg/kg			Chromium	18.4
at a lot of	La La	Zinc	178	EX5 SW2	mg/kg	EX5 SW	3 n	ng/kg	1 1		Zinc	133	EX5 B2	mg/kg
Zinc	135	Chromium	7.15			,		Stor .	XI	/ /	Copper	221		
Lead	68.3	EX5 SW1	mg/kg	///	1				X		Chromium	12.6		1000
Chromium	15.8	Chiom					57.				EX5 SW5	mg/kg	Toluene	
EX1 SW2	mg/kg	EX5 SV Chromi	v/ m	178				1		1	1 4		III,p Aylene	1500
wielculy	0.227			ng/kg	///			11	- 1	18 al	Copper	120	CIS 1,2-DCE	<u> </u>
Marcura	/0./	100 - 2					2	0	1	AF	Conner	120	Chromum	6.3
Lood	105	5 / E .	1.	AREA	/				11		EX5 SW6	mg/kg	EX5 B4	mg/kg
Chromium	29.8					XX	EX5	120	T	1			I INGLES	
T3 B1	mg/kg						0	•	Y VA	1 201-		9	Lead	430
TAD		0 0							1	120	Zinc	193		10.1
Zinc	158		1	1 1 -			YY				Nickel	42.6	EX5 B3	
Chromium	12	•	9	3021		/ 1	1		-	N. K.	Lead	80.3		ma /lea
T4 B1	mg/kg	0			mal		4	1 martin	1 1 -		Copper	266		
and the second s	r 1	EX3	- T		5		4		-		Chromium	7.24	1. Site	
o-Xylene	1,000		-	1	1	fo	-1	-	11	2112	EX5 SW8	mg/kg	1 · · ·	
m,p Xylene	2,100		10 A			O	EX1		Y	SA			the second se	
1,2,4- Trimethylbenzene	20,000		- 101	1 A A		Burn	1.1			Lead	65.8		Chromium	4.33
Nickel	32.7	1			' Fait			1	64	Chromium	6.75		EX5 B5	mg/kg
Copper	107	11	No.	R. A	1 Parts			d		EX5 SW9	mg/kg	Nickel	31.8	
Chromium	71.6		1.1.	9		EX4			/		1.	Copper	114	1-4-4
EX1 SW1	mg/kg		11	T	alan I	VI		A	M.C	1		Chromium	30.3	
Er a	17	All A	Chromium	78.3	V. 1		1	X		-	1	EX5 B7	mg/kg	1014
Chromium	9.12	a said	EX4 B1	mg/kg	1		11111				/		Lead	117
EX4 SW1	mg/kg	2	1 2 1	1 TY	ALCO.				/	//	1		Copper	53.7
A State of the	2	Ray Str					511			L			Chromium	17.2
Chromium		8.19	let	2		Silver Vin a	8.75		12				EX5 SW/12	mg/kg
EX4 SW2]	mg/kg				NICKEI	110	201		15.7	0		Chromium	10.8
	, iiiiuiii	5.89		_	S S S S S S S S S S S S S S S S S S S		0.191	Zinc		345	EX6S		EX5 SW12	mg/kg
EX4	SW3	3 80			- I	ead	227	Nickel		56.4			Zinc	116
	614/2					Copper	1190	Coppe	r	953			Copper	152
Ň			10 51			Chromium	218	Chrom	ium	61.3	Chromium	15.8	Chromium	34.2
		1 00		the second	E	X5 SW10	mg/kg	EX5 B	5	mg/kg	EX5 SW11	mg/kg	EX5 B8	mg/kg

5		I NO				ma/ka	VEN R1	mg/kg	EX6N SW2	mg/kg	EX6N B2	m	o/ko		n	ng/kg	
31	Ņ				Thromium	8.65 (hromium	20	Chromium	10.8	Chromium	1	0.1	Barium		572	
20			//	mg/kg I	and	865	onner	102	Copper	162	Conner	5	4.9	Chromium		14.1	
Charles of	\$	Chromium	+	11.2		00. 3	ead	102	Lead	254	Lead	6	33	Copper		314	
100	-	Zinc		132			inc	114	Mercury	0.22	Zinc	1	46	Lead		275	
1	LL I	Enic	THE OWNER WATCHING	102		Ľ		114	Zinc	371				Zinc		399	
10									Line	0/1							
212	EX6 SV	V6	mg/kg				10	- >								EX6N SW5	mg/kg
15	Arsenic	2	17.6			1 Saider							1		-	Chromium	32.2
10	Chrom	um	9.43		1 I			1					1			Copper	149
100	Copper		76.1	and the second	C. A.	P		1								Lead	113
440	Lead		81	- California	CIPAL				2							Zinc	168
True I	Zinc		159	and in	(Pes)	100	• Y	À			a/ka						
25	EX6 B1		mg/kg				1		Chromin		16			100			
100	Chromit	um	6.98			18 /			Conner		15					-	
	Copper		56.7			1 /	·	L2	Copper	0	1.5					EX6 SW4	mg/kg
	Lead		739			1			EX6 SW	/5 m⊈	g/kg					Chromium	16.1
	Zinc		280				10000000		Arsenic	1	7.9			10.11	/	Copper	283
			/1			NU			Chromiu	ım 9 .	.09		100			Lead	82.3
	EX6 B2		mg/kg				-		Copper	2	20	-	-			Nickel	596
1	Chromit	um	12.1		_	~				Con M	200					Zinc	358
	Copper		55.8 90.6							A DOMESTIC					-	EX2 B3	mg/kg
	Zino		80.0		ALC: NO.		\rightarrow	1000							-	Chromium	21.2
	Zinc	1000	127										/			Copper	77.1
	100	THE	X6 SW7	mg/kg		7.		EX6S		1	10	-				Lead	72.7
6.1		0	Chromium	18.4						-		1	Nº1				/1
			Copper	1670			~ /0	2					19.000			EX2 B2	mg/kg
- 3		I	ead	107				0	1	- 1						Correct	91.5
	1000	Ν	Nickel	41.3	- 10-		1			p 🛷		10.				Logd	171
	17	Z	Zinc	473	1.		1		T		/		-			Moroury	0.121
		11114	1111	11111				1000			EX2		<	100		Nickel	52.4
1	A	E	X6 B3	mg/kg	5	1		1				1	1			Zinc	447
Ì	1	A	Arsenic	25.2	EX6 SW1	mg/l	g EX6 SW	2 n	ng/kg				0				
Ĭ	lan.		Chromium	12.4	Chromium	22	Chromiu	m s	86.3 EX	(6 SW3	mg/kg	~		1	1.4	EX2 B4	mg/kg
	1 P		ead	206	Copper	285	Copper	2	430 Ch	iromium	19.8			1	1	Chromium	60.1
10		Ν	Aercury	0.348	Lead	75.	Lead		7 0.6 Le	ad	107		EX2 B1	r	ng/kg	Copper	288
N	<u>)</u> /	N	Nickel	45.3	• Nickel	39.	Nickel	,	7 1.1 Ni	ckel	122	100	Chromiu	m	32.4	Lead	71.6
	X 4	Z	Zinc	264	Zinc	215	Zinc		558 Zi	nc	281	100	Copper		482	Nickel	244
	Ļ			and the second se			1 1 1			-	-	5	Zinc	100	365	Zinc	256
					EREE		HING	FIGL	IRE 8C			— — — — — — —		aend		Sou	ce: NYS GIS Clea
	2			R Josephine Reality	SITE		PLAN	Document Locations with	Exceedences of	0 10	20		-`	30114			
5					FR	EEPURI, NEW YO		Unrestricted Le	vels in EX-2 & -6		20	4 0		Docum	entatic	on Sample Lo	cation
				The POWL STATE	PROJECT MGR:	DESIGNED BY:	CREATED BY:	CHECKED BY:	PROJECT NO:	DATE:	SCALE:	FILE NO:			ation Ar	a Roundari	20
		2 Ale			RSC	RSC	MEM	RSC	14474.37	APRIL 2014	AS SHOWN	G:\Projects\Fig	8C		αιιστι ΑΙ		29

earing House

		FREE SITE FR	PORT METAL ETC MANAGEMENT PI EEPORT, NEW YOF	HING LAN RK	FIGU Documenta Sedment Sam	IRE 9 ation Soil & aple Locations	Feet 0 15 30 60			
	· · · · · · · · · · · · · · · · · · ·	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37	DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\Fig9	

gend

Source: NYS GIS Clearing House

Documentation Sample Locations

- Excavation Area Boundaries

5	FREE SITE FR	PORT METAL ETC MANAGEMENT PI EEPORT, NEW YOI	FIGU Documentation S with Excee Site-Spec E	RE 9A Sample Locations edances of cific SCO's X3	0 12.5 25 50			Leg •	
	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37	DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\Fig9A	NOTE:

gend

Source: NYS GIS Clearing House

Documentation Sample Locations

Excavation Area Boundaries

: VOC results in ug/kg, Metals results in mg/kg

NOTE: VOC results in ug/kg, Metals results in mg/kg

CREATED BY: MEM

CHECKED BY:

RSC

PROJECT NO:

14474.37

PROJECT MGR:

RSC

the second

DESIGNED BY:

RSC

FILE NO: G:\Projects\Fig9C

SCALE:

AS SHOWN

DATE:

APRIL 2014

--- Excavation Area Boundaries

NOTE: VOC results in ug/kg, Metals results in mg/kg

2 And

_egend

Source: NYS GIS Clearing House

• Documentation Sample Locations

---- Excavation Area Boundaries

*Wells not surveyed; locations approximate

RSC

and the

G:\MegalEtching\ SMP\Fig13

AS SHOWN

NOTE: Results are in ug/L

*Wells not surveyed; locations approximate

5	FREE SITE FR	PORT METAL ETC MANAGEMENT PI EEPORT, NEW YOI	HING LAN RK	FIGUF Location of Treatment	RE 14 Remedial Systems	0 20	40	Feet 80	Lege
	PROJECT MGR: RSC	DESIGNED BY: RSC	CREATED BY: MEM	CHECKED BY: RSC	PROJECT NO: 14474.37	DATE: APRIL 2014	SCALE: AS SHOWN	FILE NO: G:\Projects\SMP\FIG12	

end

Source: NYS GIS Clearing House

Location of Sub Slab Depressurization System

	Maximum			Protection of
	Detected	TAGM RSCO	Direct Contact	Groundwater
Chemical	Concentration	Level	Criteria	Criteria
	V	OCs (µg/kg)		
Trans-1,2-dichloroethene	300	300	2,000,000	300
Benzene	1,400	60	24,000	60
Chlorobenzene	3,700	2,700	2,000,000	1700
Ethylbenzene	14,000	5,500	8,000,000	5500
Methyl-tert-butyl ether	1,500	120	-	120
Naphthalene	25,000	13,000	300,000	13000
Tetrachloroethene	4,300	1,400	800,000	1400
Toluene	78,000	1,500	20,000,000	1500
Trichloroethene	10,000	700	64,000	700
Xylene	15,000	1,200	200,000,000	1200
Vinyl Chloride	1,800	200	-	120
NOTE: TAGM = Technical and	Administrative Guida	ance Memorandum		
RSCO = Recommende	d Soil Cleanup Objec	tive		
VOC = Volatile Orga	nic Compound			
$\mu g/kg = Micrograms p$	er kilogram			
Direct Contact Criteria	Values obtained from	TAGM #4046 EPA	Health Based Column	1.
Protection of Groundwa	ter Criteria obtained f	from the TAGM #40	46 Protection of Grou	ndwater.

TABLE 1 REMEDIAL INVESTIGATION SOIL CONTAMINATION SUMMARY

EA Engineering, P.C. and Its Affiliate EA Science and Technology

	Maximum	Eastern US			Frequency of
	Concentration	Background ¹	New York	NYSDEC	Detection Above
Constituent	(mg/kg)	(mg/kg)	Region ² (mg/kg)	RSCO (mg/kg)	RSCOs
		METAI	_S		
Arsenic	29	<0.1 - 73	3 - 12	7.5 or SB	11/273
Barium	970	10 - 1500	15 - 600	300 or SB	1/273
Beryllium	1	<1 - 7	0 - 1.75	0.16 or SB	12/273
Cadmium	78	N/A	0.1 - 1	10	2/273
Calcium	72000	100 - 280000	130 - 35000	SB	5/273
Chromium	2200	1 - 1000	1.5 - 40	50	40/273
Chromium-Hexavalent	218			50	-
Cobalt	91	0.3 - 70	2.5 - 60	30 or SB	3/273
Copper	5700	<1 - 700	<1 - 50	25 or SB	91/273
Iron	43000	100 ->100000	2000 - 550000	2,000 or SB	239/273
Lead	3900	<10 - 300	200 - 500	SB	6/273
Magnesium	22000	50 - 50000	100 - 5000	SB	0/273
Nickel	1300	<5 - 700	0.5 - 25	13 or SB	52/273
Selenium	6.7	< 0.1 - 3.9	<0.1 - 3.9	2 or SB	11/273
Zinc	3600	<5 - 2900	9 - 50	20 or SB	126/273

1. Shacklette, HT and JG Boerngen, 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States, USGS Professional Paper 1270

2. Background Concentrations of 20 Elements in Soils with Special Regard for New York State, E. Carol McGovern, NYSDEC Wildlife Resources Center. These values are the same as the background concentrations listed in TAGM 4046.

NOTE: NYSDEC = New York State Department of Environmental Conservation

mg/kg = Milligram per kilogram

SB = Site Background

Shaded cells represent chemicals detected above both Eastern US Background and New York Region Background.

		MW-01	MW-02D	MW-02S	MW-03D	MW-03S	MW-04	MW-05	MW-06	MW-07D	MW-07S
	Screening	C1292-03	C1282-03	C1282-02	C1282-05	C1282-04	C1292-04	C1292-01	C1292-02	C1282-07	C1282-06
Constituents	Levels ¹	10/8/2004	10/7/2004	10/7/2004	10/7/2004	10/7/2004	10/8/2004	10/8/2004	10/8/2004	10/7/2004	10/7/2004
Constituents	Lievens	10/8/2004	10/7/2004	VOLATILE O	RGANIC COM	POUNDS (ug/L)	10/8/2004	10/8/2004	10/8/2004	10/7/2004	10/7/2004
Banzana	1900			· of the office		6 I	,				
Benzene 1 methylethyl	1700					03		2 1	1 1		
Benzene, 1-mentyletilyi-	na				2 1			2 3	1 J		
Chlorobonzono	50				2 3	1.1					
ais 1.2 Dishlaraathylana	50		7 1	29		22	1.1			4.1	370
Custakawana	lia		7 3	38		32	1 J	2.1		4 J	370
Ethona 1.2 diablara (E)	na			1.1		1 J		2 J			4 J
Mathylayalahayana	na			1.5		2 1					91
Methylcyclonexane Methylcyclonexane	na	4.1	4 1	16	2 1	120	140	54	22		8 J
Tatraahlaraathylana	na	4 J	4 J	26	2 J	150	2 1		35	1600	2 1
Teluene	020	15	2 1	50			5.5			1000	21
Tricklane atherian a	920 400 a	2.1	3 J	17			5 1			25	2 J
Vinul ablanida	400 a	31	10	17		20	3 1			23	3 J
v inyi chioride	na			5 J	ODGINEGO	29	7				400
	1 (0	1	SI	EMIVOLATILE	E ORGANIC CC	DMPOUNDS (µg	(/L)	1	1		
2-Methylnaphthalene	42										1 J
Acenaphthene	66								3 J		2 J
Bis(2-ethylhexyl)phthalate (BEHP)	na			IJ							1 J
Carbazole	na										I J
Dibenzofuran	na										I J
Fluorene	25								3 J		1 J
Naphthalene	160					2 J					6 J
N-Nitrosodiphenylamine	na										15
Phenanthrene	15										2 J
	-			-	METALS (µg/I	.)	-				
Aluminum	na	26.4	959	1170	158	210	94.6	96.8	150	227	64.5
Antimony	na	5.1	3.8	13.9		3.1	2.7	7.2	2.5	4.1	11.3
Arsenic	630	2.4				3.2	2.5		3.8		
Barium	na	51 J			34.2	76.7	37.1 J	1050 J		23.2	310
Cadmium	77		3	15.9		1.4		3.6	0.33	1.3	6.2
Calcium	na	36200	56500	59700	24400	76000	90900	128000	196000	18200	229000
Chloride	na					190 J		400 J			
Chromium	na	0.73	23.8	9.6	4	4.6	14.7	0.9		3.5	2
Chromium (Hexavalent)	540							0.069 J			
Cobalt	na	1.6	3.1		0.31	0.53	0.33		0.33	1.7	0.89
Copper	34		28.3								
Iron	na	462 J	14700	79800	892	6410	171 J	17400 J	1200 J	6370	29200
Lead	80							6.2			
Magnesium	na	38300	10200	9670	15600	38400	10000	37800	30400	4740	58200
Manganese	na	1100	1220	859	380	224	21.3	529	183	680	761
Nickel	82	3	65.4	21.6	2.8	3.8	16.5	4.6	0.53	3.6	2.8
Potassium	na	15400	6810	7020	6450	26000	10800	31300	12000	2740	31000
Selenium	na			7.7							ļ
Silver	na			20.9							
Sodium	na	339000	82300	42000	142000	197000	63500	243000	35600	42400	198000
Vanadium	na			1.3		2.8		2.6			0.6
Zinc	660	3.1	48.2	29	2.8	3.4 J	10.9	7.2	l	9.8	
				P	ESTICIDES (µg	/L)					
Endrin ketone	na										0.079 J
1 Screening Levels shown were obtained fr	om New Vork	State Department of	f Environmental Con	servation Water Ou	ality Regulations: Si	urface Water and Gr	undwater Classifies	tions and Standards	(New York State Co	des Rules and Rem	lations: Title 6

TABLE 2 REMEDIAL INVESTIGATION GROUNDWATER CONTAMINATION SUMMARY

ards (New York State Codes, Rules and Regulations; Title 6, Chapter X Parts 700-706, Amendments through August 4, 1999) - Fish Propagation (saline waters) values used unless otherwise noted.

NOTE: µg I = Micrograms per liter J = Estimated value. The value was designated as estimated as a result of the data validation criteria. Also used to indicate when an organic compound is present, but the concentration is less than the Contract Required Quantitation Limit (CRQL). The value is usable as an estimated result. na = Not Available a = Human Consumption of Fish (saline) value used

No qualifier indicates the analyte was positively identified at the associated numerical value which is the concentration of the analyte in the sample.

All screening levels are multiplied by 10 to adjust for ground water to surface water dilution (see text). Only detected values are shown on this table

Soil Gas Survey Sample Point Identification	Sample Serial Number	Installation Date/Time	Initial Reading	Sustained Reading
Gore Sorbers				
GS-01	452988	7/15/2004 / 8:16:00 AM	0.0 ppm	0.0 ppm
GS-02	452989	7/16/2004 / 9:00:00 AM	9.5 ppm	9.5 ppm
GS-03	452990	7/16/2004 / 9:15:00 AM	0.6 ppm	0.6 ppm
GS-04	452991	7/16/2004 / 10:20:00 AM	0.0 ppm	0.0 ppm
GS-05	452992	7/16/2004 / 10:30:00 AM	0.0 ppm	0.0 ppm
GS-06	452993	7/16/2004 / 11:00:00 AM	0.0 ppm	0.0 ppm
GS-07	452994	7/16/2004 / 11:30:00 AM	0.9 ppm	0.9 ppm
GS-08	452995	7/16/2004 / 11:45:00 AM	0.0 ppm	0.0 ppm
GS-09	452996	7/16/2004 / 12:50:00 PM	30 ppm	30 ppm
GS-10	452997	7/16/2004 / 1:29:00 PM	1.5 ppm	1.5 ppm
NOTE: ppm = parts per million.				

TABLE 3 REMEDIAL INVESTIGATION SOIL VAPOR DATA SUMMARY

TABLE 4 REMEDIAL INVESTIGATION SEDIMENT CONTAMINATION SUMMARY

	ER-L mg/kg (Metals);	ER-M mg/kg (Metals);	SED-01 C1024-01 8/24/2004	SED-01 C1024-09 8/24/2004	SED-02 C1024-02 8/24/2004	SED-03 C1024-03 8/24/2004	SED-04 C1024-04 8/24/2004	SED-05 C1024-05 8/24/2004	SED-07 C1024-07 8/24/2004	Background SED-06 C1024-06 8/24/2004	Locations SED-08 C1024-08 8/24/2004
	ug/kg (PCBs, VOCs, SVOCs)	ug/kg (PCBs, VOCs, SVOCs)	Primary	Duplicate	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Acetone	NA	NA	24	17	18	13 U	36	13 U	7	560	17
Carbon disulfide	NA	NA	14 U	12 U	13 U	13 U	7	13 U	12 U	87	13 U
Methylene chloride	NA	NA	14 U	12 U	10	13 U	19 U	13 U	12 U	19	10
Methyl-tert-butyl-ether	NA	NA	14 U	12 U	13 U	13 U	19 U	3	13 U	42 U	12 U
Sum of Constituents			24	17	SVOCs (ng/kg)	0	45	5	1	751	21
2-Methylnaphthalene	70	670	480 U	400 U	410 U	430 U	610 U	430 U	390 U	1400 U	430 U
4-Methylphenol	NA	NA	480 U	400 U	86	430 U	610 U	430 U	390 U	1400 U	430 U
Acenaphthene	16	500	110	80	410 U	430 U	610 U	260	390 U	1400 U	430 U
Acetophenone	NA 85.3	NA 1100	480 U	42	410 U	430 U	610 U	430 0	390 U 390 U	1400 U 1400 U	430 U 430 U
Benzaldehyde	NA	NA	130	69	410 U	430 U	610 U	430 U	390 U	1400 U	430 U
Benzo(a)anthracene	261	1600	1100	930	340	61	410	3000	390 U	350	430 U
Benzo(a)pyrene	430	1600	1200	940	380	64	250	3000	390 U	410	430 U
Benzo(b)fluoranthene	NA	NA	2200	1600	620	95	490	4000	43 200 U	750	76
Benzo(gni)peryiene Benzo(k)fluoranthene	NA	NA	740	570	250	430 0	160	2000	390 U 390 U	250	430 U 430 U
Bis(2-ethylhexyl)phthalate	NA	NA	6000	1700	690	100	1000	270	160	1400	240
Butyl benzyl phthalate	NA	NA	810	400	120	430 U	610 U	430 U	390 U	1400 U	430 U
Carbazole	NA	NA	200	140	50	430 U	610 U	390	390 U	1400 U	430 U
Chrysene Dibenzo(a b)anthroacno	384	2800	1400	1500	430	420 11	350	3400	390 U	550	420 11
Dibenzofuran	03.4 NA	260 NA	65	51	410 U	430 U 430 U	610 U	130	390 U 390 U	1400 U 1400 U	430 U 430 U
Dimethyl phthalate	NA	NA	140	93	410 U	430 U	610 U	430 U	390 U	1400 U	430 U
Di-n-butyl phthalate	NA	NA	310	250	410 U	430 U	610 U	430 U	390 U	1400 U	430 U
Di-n-octyl phthalate	NA	NA	91	53	410 U	430 U	610 U	430 U	390 U	1400 U	430 U
Fluoranthene	600	5100	2500	1900	650 410 U	110	510 610 U	5100	390 U	470	61
Indeno(1.2.3-cd)pyrene	NA	540 NA	740	570	240	430 U 430 U	610 U	1700	390 U 390 U	330	430 U 430 U
Naphthalene	160	2100	480 U	400 U	410 U	430 U	610 U	50	390 U	1400 U	430 U
Pentachlorophenol	NA	NA	1200 U	73	1000 U	1100 U	1500 U	1100 U	970 U	3500 U	1100 U
Phenanthrene	240	1500	1600	1400	410	58	610 U	3200	390 U	160	430 U
Pyrene Sum of Constituents	665	2600	23316	2300	910 5452	130	<u> </u>	33780	42	930 5880	75
Sum of Constituents			25510	134/1	Pest/PCBs (ug/kg)	005	01/0	55760	245	5000	510
4,4'-DDD	NA	NA	4.1	10	4.1 U	3.7	6.1 U	4.3 U	3.9 U	14 U	4.3 U
4,4'-DDE	2.2	27	2.3	19	4.1 U	4.2	4.3	4.3 U	3.9 U	14 U	4.3 U
4,4'-DDT	1.58	46.1	4.8 U	8.2	4.1 U	4.3 U	6.1 U	4.3 U	3.9 U	14 U	4.3 U
Aldrin almha BUC	NA	NA	2.5 U	2 U 2 U	2.1 U	2.2 U	3.1 U	2.2 U	2 U	7.1 U	2.2 U
alpha-Chlordane	0.5	6	2.5 U	2 U 2 U	2.10	19	31U	12	2 U 2 U	7.1 U	2.2 U
Dieldrin	0.02	8	4.8 U	4 U	4.1 U	4.3 U	6.1 U	4.3 U	3.9 U	14 U	4.3 U
Endosulfan I	NA	NA	2.5 U	2 U	2.1 U	2.2 U	3.1 U	2.2 U	2 U	7.1 U	2.2 U
Endosulfan sulfate	NA	NA	4.8 U	4 U	4.1 U	4.3 U	6.1 U	4.3 U	3.9 U	14 U	4.3 U
Endrin aldenyde Endrin ketone	0.02	45	4.8 U 4 8 U	1/ 4 U	4.1 U 4 1 U	4.3 U	8.9	4.5 U	3.90	14 U	4.5 U
gamma-Chlordane	0.5	6	1.7	12	2.5	2.3	3.1 U	2.2 U	2 U	7.1 U	2.2 U
Heptachlor epoxide	NA	NA	2.5 U	2 U	2.1 U	2.2 U	3.1 U	2.2 U	2 U	7.1 U	2.2 U
Methoxychlor	NA	NA	25 U	14	21 U	22 U	12	22 U	20 U	71 U	22 U
Aroclor 1254	22.1	180	96	2300	/0 Motols (mg/kg)	80	170	43 U	39 U	140 U	43 U
Aluminum	NA	NA	3560	5120	2950	1310	8200	1670	1050	17800	1740
Arsenic	8.2	70	6.3	5.6	5.2	2.7	15	5.1	0.77	26	1.6
Barium	NA	NA	23.5	18.6	8	5	52.8	7.6	3.6	67.5	6.4
Beryllium	NA	NA	0.39	0.35	0.34	0.12	0.79	0.15	0.077	1.5	0.15
Cadmium	1.2 NA	9.6 NA	0.42	0.64	0.18	1.1 UJ	1	0.93 UJ	0.96	1	0.096
Chromium	81	370	34.7	9030	16	3.3	127	14.4	3.4	89.2	6.5
Cobalt	NA	NA	2.6	3	1.8	0.43	5.6	1	0.3	6.7	0.7
Copper	34	270	285	261	52.3	30.1	290	57.8	39	338	17.5
Iron ¹	2%	4%	11000	10500	6040	4840	21400	7100	1910	39300	3210
Lead	46.7	218	63.8	105	98.6	17.1	134	19	6	154	15.2
Managenesa 1	160	1100	64.2	8390	26.5	2200	116	28.0	12.1	268	25.6
Mercury	460	0.71	2.5	0.083	0.065	0.12 UI	0.39	0.11 UJ	0.094 UJ	0.61	0.089
Nickel	20.9	51.6	15.4	40.4	8.8	3.2	28.4	2.3	1.4	26.8	2.6
Potassium	NA	NA	627	585	450	230	1850	358	284	5730	479
Silver	1	3.7	0.67	0.69	0.33	0.22	1.8	0.39	1500	3.4	0.13
Souium Thallium	NA	NA	4990	3940	2080	2 1 111	6200	4/3	1580	55500 4.8	3260 0.76
Vanadium	NA	NA	31.5	20.6	10.6	9.4	40.7	7.5	3.4	81.7	5.9
Zinc	150	410	338	315	93.2	59.7	425	46.5	16.5	417	26.5
	Above Effects Range	Low (ER-L) and abov	e SED-06 & SED-08	08							
NA	Not applicable	wedium (ER-M) and a	above SED-06 & SED-	-08							
U :	Chemical was not det	ected at indicated chen	nical limit.								
 Persaud, D., Jaagumagi, R., and A. 	Hayton, 1992. Guideli	ines for the Protection	and Managament of A	quatic Sediment Qua	lity in Ontario. Ontaric	Ministry of the Envi	ronment, Queen's Prir	ter for Ontario.			

1. Persaud, D., Jagumagi, R., and A. Hayton, 1992. Guidelines for the Protection and Managament of Aquatic Sediment Quality in Ontario. Ontario Ministry of the Environment, Queen's Printer for Ontario.

TABLE 5A SITE-SPECIFIC SOIL AND GROUNDWATER CLEANUP OBJECTIVES

	Standards, Criteria, and	
Constituent	Guidance	Units
VOLATILE ORGANI	C COMPOUNDS - SOII	L
Tetrachloroethylene (PCE)	1.4	mg/Kg
Trichloroethylene (TCE)	0.7	mg/Kg
1,2-Dichloroethylene (DCE)	0.3	mg/Kg
Vinyl Chloride	0.2	mg/Kg
Benzene	0.06	mg/Kg
Toluene	1.5	mg/Kg
Ethylbenzene	5.5	mg/Kg
Xylene	1.2	mg/Kg
Naphthalene	13	mg/Kg
Chlorobenzene	17	mg/Kg
INORGANICS	(METALS) - SOIL	
Chromium	50	mg/Kg
Copper	25	mg/Kg
Nickel	13	mg/Kg
Zinc	20	mg/Kg
VOLATILE ORGANIC CON	APOUNDS - GROUNDV	VATER
Tetrachloroethylene (PCE)	5	µg/L
Trichloroethylene (TCE)	5	μg/L
1,2-Dichloroethylene (DCE)	5	µg/L
Vinyl Chloride	2	µg/L
Methyl Tert Butyl Ether (MTBE)	10	μg/L
INORGANICS (META	ALS) - GROUNDWATE	R
Chromium	50	µg/L
Copper	200	µg/L
Nickel	100	µg/L
Zinc	2000	µg/L
NOTE: Soil Cleanup Objectives develo	ped for 2007 Record of Deci	sion

TABLE 5B SITE-SPECIFIC SEDIMENT CLEANUP OBJECTIVES

Constituent	Effects Range-Low	Effects Range-High	Units
	INORGANICS	S (METALS)	
Arsenic	8.2	70	mg/Kg
Cadmium	1.2	9.6	mg/Kg
Chromium	81	370	mg/Kg
Copper	34	270	mg/Kg
Iron ^(a)	2%	4%	mg/Kg
Lead	46.7	218	mg/Kg
Manganese ^(a)	460	1100	mg/Kg
Mercury	0.15	0.71	mg/Kg
Nickel	20.9	51.6	mg/Kg
Silver	1	3.7	mg/Kg
Zinc	150	410	mg/Kg
a) Persaud, D., Ja Managament of A Environment, Out	agumagi, R., and A. Haytor Aquatic Sediment Quality in een's Printer for Ontario	n, 1992. Guidelines for the Ontario. Ontario Ministry	Protection and of the

	Sample ID	EX1SW1		EX1SW2		T3B1		T4B1		EX2B1		EX2B2		EX2B3		
	Lab ID	C3524-03		C3524-04		C3524-01		C3524-02		C3109-07		C3109-08		C3109-09		D 427511 4141
Paramatar List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Part 3/5 Unrestricted
EPA Method 8260B	Sample Date	8/25/2011		8/25/2011		8/25/2011		8/25/2011		7/21/2011		7/21/2011		7/21/2011		Objectives
1,2,4-Trimethylbenzene	(µg/kg)	20,000	D	3.2	D		U		U		U		U		U	3,600
cis-1,2-Dichloroethylene	$(\mu g/kg)$	· · · · ·	U		U		U		U		U		U		U	250
m,p-Xylene	(µg/kg)	2,100	D		D		U		U		U		U		U	260 ^(a)
o-Xylene	(µg/kg)	1,000	D		D		U		U		U		U		U	260 ^(a)
Toluene	(µg/kg)	13					U		U		U		U		U	700
	Sample ID	FX2B4		FX3B1		EX3B2		EX3B3		EX3SW1		EX3SW2		EX3SW3		
	Lab ID	C3109-10		C3068-06		C3068-07		C3109-02		C3068-01		C3068-02		C3068-03		Part 375 Unrestricted
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Use Soil Cleanup
EPA Method 8260B	Sample Date	7/21/2011		7/19/2011		7/19/2011		7/21/2011		7/19/2011		7/19/2011		7/19/2011		Objectives
1,2,4-Trimethylbenzene	(µg/kg)		U		U		U		U		U		U		U	3,600
cis-1,2-Dichloroethylene	(µg/kg)		U		U		U		U		U		U		U	250
m,p-Xylene	(µg/kg)		U		U		U		U		U		U		U	260 ^(a)
o-Xylene	(µg/kg)		U		U		U		U		U		U		U	260 ^(a)
Toluene	(µg/kg)		U		U		U		U		U		U		U	700
	Sample ID	EX3SW/		EX3SW5		EX3SW6		EX3SW7		T1B1		T1B2		T1SW1		
	Lab ID	C3068-04		C3068-05		C3109-01		C3153-06		C3153-01		C3153-02		C3153-05		Part 275 Unrestricted
Baramatar List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Lico Soil Cloonup
FPA Method 8260B	Sample Type	7/19/2011		7/19/2011		7/21/2011		7/27/2011		7/27/2011		7/27/2011		7/27/2011		Objectives
1 2 4-Trimethylbenzene	(ug/kg)		U		U		U		U		U		U		U	3 600
cis-1 2-Dichloroethylene	(µg/kg)		U		U		U		U		U		U		U	250
m.p-Xvlene	(µg/kg)		U		U		U		U		U		U		U	260 ^(a)
o-Xvlene	(µg/kg)		U		U		U		U		U		U		U	260 ^(a)
Toluene	(µg/kg)		U		U		U		U		U		U		U	700
	Sampla ID	T2D1		TIDI		EV/P1	1	EV/SW1		EVASW2		EV/SW2		EV5D1		
	Lab ID	C3153-03		C3153-04		C3473-06		C3473-01		C3473-02		C3473-03		C3265-04		Dort 275 Unreatriated
Baramatar List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Lico Soil Cloonup
FPA Method 8260B	Sample Date	7/27/2011		7/27/2011		8/22/2011		8/22/2011		8/22/2011		8/22/2011		8/4/2011		Objectives
1 2 4-Trimethylbenzene	(ug/kg)	7.5	1	31		0/22/2011	П	11	I	0/22/2011	П	0/22/2011	П	0/ 0/2011	II	3 600
cis-1 2-Dichloroethylene	(µg/kg)	1.5	II	51	П	17	I	1.1	J.		U		U		U	250
m n-Xylene	(µg/kg)		U		U	1.7	U	7.2	I		U		U		U	260 ^(a)
o-Xvlene	(µg/kg)		U	14	I		U	1.0	J		U		U		U	260 ^(a)
Toluene	(µg/kg)		U		Ŭ		U	1.1	J		U		U		U	700
			_												_	
	Sample ID	EX5B2		EX5B3		EX5B4		EX5B5		EX5B6		EX5B7		EX5B8		
	Lab ID	C3265-05		C3355-04		C3355-05		C3355-09		C3473-08		C3622-04		C3622-05		Part 375 Unrestricted
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Use Soil Cleanup
EPA Method 8260B	Sample Date	8/4/2011	D	8/11/2011	11	8/11/2011	D	8/22/2011	11	8/22/2011	T	9/7/2011	T	9/7/2011	11	Objectives
1,2,4-1rimethylbenzene	(µg/kg)	2,700	D	1.4	U	1,300	D		U	1.9	J	2.4	J		U	3,600
cis-1,2-Dichloroethylene	(µg/kg)	=00	U	1.4	J	390	JD		U	22		1.9	J		U	250
m,p-Aylene	(μg/kg)	780	JD		U	1,500	D		U		U		U		U	260 ^(a)
o-Ayiene	(μg/kg)	2	U		U	460	JD		U	2.2	U	1.6	U		U	260
TOTACHE	(U2/K2)	2	IJ		U	1.000			U	2.3	J	1.0	IJ		U .	/00

TABLE 6A SUMMARY OF REMAINING SOIL CONTAMINATION ABOVE UNRESTRICTED LEVELS FOR VOCs

(a) Standards, Criteria, and Guidance is for total xylenes

NOTE: EPA = U.S. Enivronmental Protection Agency.

ID = Identification

J

μg/kg = micrograms per kilogram = parts per billion (ppb).

D = Indicates the reported value was obtained by analysis at a secondary dilution factor.

U = Non-detect, detection below the method detection limit.

= Indicates the reported value was less than the Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit.

Data provided by Chemtech Consulting Group. Only analytes included in Table 1 of the ROD are included

Concentration values in BOLD indicate that analyte was detected above the site specific standards, criteria, and guidance.

Sample ID EXSW1 EXSW2 EXSW2 EXSW3 EXSW5 EXSW5 EXSW6 EXSW1																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sample ID	EX5SW1	EX5SW2	EX5SW3		EX5SW4		EX5SW5		EX5SW6		EX5SW7			
Parameter ist EPA Method S208 Sample Type Soil Soil Soil Soil Soil Soil Soil Operation 12-A.Tinndbybezene (upkg) U 8.3 U 4.3 3 U		Lab ID	C3265-01	C3265-02	C3265-03		C3355-01		C3355-02		C3355-03		C3355-06		Part 375 Unrestricted	
IDP. Method S203B Sample Date 8/4/2011 8/4/2011 8/4/2011 8/4/2011 8/1/2011<	Parameter List	Sample Type	Soil	Soil	Soil		Soil		Soil		Soil		Soil		Use Soil Cleanup	
12,4-Transhyberome (ug b) U 8.3 U 4.3 J U U U U 2.64 16-2)-Dickhone/lue (ug b) U	EPA Method 8260B	Sample Date	8/4/2011	8/4/2011	8/4/2011		8/11/2011		8/11/2011		8/11/2011		8/22/2011		Objectives	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2,4-Trimethylbenzene	(µg/kg)	U	8.3	1	U	4.3 J	J	U	J		U		U	3,600	
mp-Sylenc (ug-kg) U	cis-1,2-Dichloroethylene	(µg/kg)	U	l	J	U	l	U	ι	J		U		U	250	
System (µkha) (µ (µ) (µ (µ) (µ (µ) (µ (µ)	m,p-Xylene	(µg/kg)	U	21	1	U	l	U	ι	J		U		U	260 ^(a)	
Tolume (µgkg) U <th< td=""><td>o-Xylene</td><td>(µg/kg)</td><td>U</td><td>l</td><td>J</td><td>U</td><td>l</td><td>U</td><td>ι</td><td>J</td><td></td><td>U</td><td></td><td>U</td><td>260^(a)</td></th<>	o-Xylene	(µg/kg)	U	l	J	U	l	U	ι	J		U		U	260 ^(a)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Toluene	(µg/kg)	U	U	1	U	τ	U	τ	J		U		U	700	
Sample ID EXSW9 EXSW9 EXSW10 EXSW12 EXSW13 EXSW13 EXSW13 EXSW14 EXSW12 EXSW15 EXSW13 EXSW15 EXSW15 EXSW15 EXSW15 EXSW15 EXSW15 EXSW15 EXSW15 EXSW16 EXSW15 EXSW16 EXSW1		G 1 ID	ENCONO	ENCOMO	ENCOUTO	- T	ENCOULI	_	ENCOULD	-	ENCOURTS		EV(D)			
Lam C.335-40 ¹ C.335-40 ¹ C.335-40 ¹ C.332-40 ¹ C.302-40 ¹ C.302-40 ² <thcloana< th=""> <thcloana< <="" td=""><td></td><td>Sample ID</td><td>EX55W8</td><td>EX58W9</td><td>EX55W10</td><td></td><td>EX58W11</td><td>_</td><td>EX58W12</td><td>_</td><td>EX58W13</td><td></td><td>EX6B1</td><td></td><td>D</td></thcloana<></thcloana<>		Sample ID	EX55W8	EX58W9	EX55W10		EX58W11	_	EX58W12	_	EX58W13		EX6B1		D	
Barneter List Statile		Lab ID	03355-07	03355-08	0.54/3-0/	_	0.0022-03	_	0.3622-01	-	0.3622-02		03109-03		Part 375 Unrestricted	
LEPA Method \$2,000 Subject to the second secon	Parameter List	Sample Type	8/16/2011	8/16/2011	0/7/2011	_	0/7/2011	_	5011	-	0/7/2011		7/21/2011		Use Soil Cleanup	
1.2.4-11methylenzene (ig.kg) 0	EPA Method 8260B	Sample Date	8/10/2011	8/10/2011	9///2011		9/ //2011		9/ //2011	T	9/7/2011	T	//21/2011		Objectives	
Disk-1-ZDARINORCHY/ene (µµkg) U U 3.4 J U U U 200 mp-Xylene (µµkg) U <td>1,2,4-Trimethylbenzene</td> <td>(µg/kg)</td> <td>0</td> <td></td> <td></td> <td>U</td> <td></td> <td>U</td> <td></td> <td>J</td> <td>4.5</td> <td>J</td> <td></td> <td>U</td> <td>3,600</td>	1,2,4-Trimethylbenzene	(µg/kg)	0			U		U		J	4.5	J		U	3,600	
mp. 2xylene (ug/kg) U <thu< th=""> U U</thu<>	cis-1,2-Dichloroethylene	(µg/kg)	0		33	T	3.4 J	J	(J		U		U	250 2 co(a)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	m,p-Xylene	(µg/kg)	0		5.9	J	1	U	1	J		U		U	260 ^(a)	
Indicine (igg.kg) (i) <	o-Xylene	(µg/kg)	0		2.5	J		U	1	J		U		U	260 ^(a)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Toluene	(µg/kg)	0		13	_	2.6 J	J	1	J		U		U	700	
Parameter List EPA Method 8260B Lab ID Sample Date C 3109-04 C 3109-04 C 3109-04 C 3100-05 Part 375 Unrestricted Use Soil Part		Sample ID	EX6B2	EX6B3	EX6SW1		EX6SW2		EX6SW3		EX6SW4		EX6SW5			
Parameter List EPA Method 8260B Sample Type Soil Soil Soil Soil Soil Soil Soil Soil Wasses L2-Frimethylbenzene (ug/kg) U U U 33 U U U U 0		Lab ID	C3109-04	C3109-05	C3100-01		C3100-02		C3100-03		C3100-04		C3100-05		Part 375 Unrestricted	
EPA Method 8260B Sample Date 7/21/2011 7/21/2011 7/20/2011 8/2/2011	Parameter List	Sample Type	Soil	Soil	Soil		Soil		Soil		Soil		Soil		Use Soil Cleanup	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EPA Method 8260B	Sample Date	7/21/2011	7/21/2011	7/20/2011		7/20/2011		7/20/2011		7/20/2011		7/20/2011		Objectives	
Initial Problem U b U	1 2 4-Trimethylbenzene	(µg/kg)	U	I	1		33		I	J		U		U	3.600	
Bar Development Operation	cis-1 2-Dichloroethylene	(µg/kg)	U	T	I	-	1	II.	I	T		U		U	250	
Carlot Construction Constructin Construction Constru	m p-Xylene	(µg/kg)	U	31		-	I	U	I	T		U		U	260 ^(a)	
Foluene (ig:kg) 3.2 J U <thu< th=""> U U</thu<>	o-Xvlene	(µg/kg)	U	I I	I		T	U	T	J		Ū		Ū	260 ^(a)	
Sample ID EX6SW6 EX6SW7 EX6NB1 EX6NB2 EX6NSW2 EX6NSW3 Parameter List Sample Type Soil	Toluene	(µg/kg)	3.2 J	L L	J		t	U	t	J		Ū		Ū	700	
Sample ID EX6SW6 EX6NP EX6NB1 EX6NB2 EX6NSW1 EX6NSW2 EX6NSW3 Parameter List Lab ID C3100-06 C3265-15 C3265-16 C3265-07 C3265-08 Parameter List Soil Soil<		(F88)		<u> </u>	·			~ 1		~ _						
Lab ID C3100-06 C3109-06 C3265-15 C3265-16 C3265-07 C3265-08 Part 375 Unrestricted Parameter List EPA Method 8260B Sample Type Soil Use VI U U U U U U U U U U U U U U U Objectives L2,4-Trimethylbenzene (µg/kg) U U U U U U U U 250 np-Xylene (µg/kg) U U U U U U U U U 260 ⁶⁰ robuene (µg/kg) U U U U U U		Sample ID	EX6SW6	EX6SW7	EX6NB1		EX6NB2		EX6NSW1		EX6NSW2		EX6NSW3			
Parameter List EPA Method 8260B Sample Type Sample Date Soil		Lab ID	C3100-06	C3109-06	C3265-15		C3265-16		C3265-06		C3265-07		C3265-08		Part 375 Unrestricted	
EPA Method 8260B Sample Date 7/20/2011 7/21/2011 8/4/2011 8/4/2011 8/4/2011 8/4/2011 8/4/2011 0bjectives 1,2,4-Trimethylbenzene (µg/kg) U U U U U U 3,600 cis-1,2-Dichloroethylene (µg/kg) U U U U U U 250 m.p-Xylene (µg/kg) U U U U U 20 260 ⁶⁰ o-Xylene (µg/kg) U U U U U U U 2.0 260 ⁶⁰ roluene (µg/kg) U U U U U U U 0 0 0 2.0 260 ⁶⁰ roluene (µg/kg) U U U U U U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Parameter List	Sample Type	Soil	Soil	Soil		Soil		Soil		Soil		Soil		Use Soil Cleanup	
1.2.4-Trimethylbenzene (μg/kg) U U U U U U U U U 39 3,600 cis.1.2-Dichloroethylene (μg/kg) U U U U U U U 250 m.p-Xylene (μg/kg) U U U U U U 260 ^(a) o-Xylene (μg/kg) U U U U U U U U 2.06 ^(b) Toluene (μg/kg) U U U U U U U 0	EPA Method 8260B	Sample Date	7/20/2011	7/21/2011	8/4/2011		8/4/2011		8/4/2011		8/4/2011		8/4/2011		Objectives	
cis-1,2-Dichloroethylene (μg/kg) U 260 ^(a) o-Xylene (μg/kg) U U U U U U U U U U U 20 260 ^(a) o-Xylene (μg/kg) U U U U U U U U U U 20 20(^{a)} Toluene Sample ID EX6NSW4 EX6NSW5 EX6NSW6 EX6NSW6 EX6NSW6 EX6NSW6 Mart 375 Unrestricted Vise Soil Cleanup Objectives Part 375 Unrestricted Use Soil Cleanup Objectives 3,600 Soil	1,2,4-Trimethylbenzene	(µg/kg)	U	U	J 1	U	l	U	U	J		U	39		3,600	
m.p-Xylene (μg/kg) U U U U U U U U 200 260 ^(a) o-Xylene (μg/kg) U U U U U U U U 200 260 ^(a) Toluene (μg/kg) U U U U U U U U 2.1 J 260 ^(a) Toluene (μg/kg) U U U U U U U U U U 0	cis-1,2-Dichloroethylene	(µg/kg)	U	U	J	U	τ	U	τ	J		U		U	250	
o-Xylene (μg/kg) U U U U U U U U U U U U 2.1 J 260 ^(h) Toluene (μg/kg) U U U U U U U U U U 2.1 J 260 ^(h) Toluene (μg/kg) U U U U U U U U U U U U U U U U 0 0 0 700 Sample TD EX6NSW4 EX6NSW5 EX6NSW5 C3265-13 C3265-14 Soil Soil <th <="" colspa="6" td=""><td>m,p-Xylene</td><td>(µg/kg)</td><td>U</td><td>l</td><td>J</td><td>U</td><td>l</td><td>U</td><td>l</td><td>J</td><td></td><td>U</td><td>20</td><td></td><td>260^(a)</td></th>	<td>m,p-Xylene</td> <td>(µg/kg)</td> <td>U</td> <td>l</td> <td>J</td> <td>U</td> <td>l</td> <td>U</td> <td>l</td> <td>J</td> <td></td> <td>U</td> <td>20</td> <td></td> <td>260^(a)</td>	m,p-Xylene	(µg/kg)	U	l	J	U	l	U	l	J		U	20		260 ^(a)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	o-Xylene	(µg/kg)	U	l	J 1	U	ι	U	ι	J		U	2.1	J	260 ^(a)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Toluene	(µg/kg)	U	l	J	U	ι	U	l	J		U		U	700	
Sample Dr Dot Ox305-09 C3265-13 C3265-14 Part 375 Unrestricted Use Soil Cleanup Objectives Parameter List Sample Type Soil Soil Soil Objectives		Sample ID	EX6NSW/	EX6NSW5	EX6NSW6	- 11		_		_		_		_		
List Colored Colored Colored Colored Colored Colored Colored Parameter List Sample Type Soil Soil<		Lab ID	C3265-09	C3265-13	C3265-14	-									Dort 275 Unrestricted	
FPA Method 8260B Sample Date 8/4/2011 Solid Solid Objectives Objectives<	Baramatar List	Sample Type	Soil	Soil	CJ20J-14 Soil	-									Liss Soil Cleanup	
L1A Method bookb Sample Back Order (1 Order (1<	EPA Method 8260B	Sample Date	8/4/2011	8/4/2011	8/4/2011	-									Objectives	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2.4 Trimethylbonzone	(ug/kg)	0/4/2011	0/4/2011	0/4/2011	Ш									3 600	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ais 1.2 Diabloroathylena	(µg/kg)	11		T I	U U									250	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m n-Yylene	(µg/kg)	11	т Т	, T	U									250 260 ^(a)	
U U U 260°	n.p-Aylene	(µg/kg)	11		T I	U U									260 ^(a)	
Toluene (ug/kg) II II II II II 700	Toluene	(µg/kg)	11	т Т	, T	U									700	

	Sample ID	EX1SW1		EX1SW2		T3B1		T4B1		EX2B1		EX2B2		EX2B3		Part 375
	Lab ID	C3524-03		C3524-04		C3524-01		C3524-02		C3109-07		C3109-08		C3109-09		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	8/25/2011		8/25/2011		8/25/2011		8/25/2011		7/21/2011		7/21/2011		7/21/2011		Objectives
Arsenic	(mg/kg)	4.490		5.410		3.110		1.840		3.080	*	3.300	*	6.840	*	13
Barium	(mg/kg)	14.8		23.5		50.7		7.740		32.6		107		38.8		350
Chromium (Total)	(mg/kg)	71.6		15.8		29.8		12.0		32.4		91.5		21.2		1 ^(a) , 30 ^(b)
Copper	(mg/kg)	107		34.3		105		3.700		482		631		77.1		50
Lead	(mg/kg)	22.2		68.3		70.7		2.440		61.6		171		72.7		63
Mercury	(mg/kg)	0.056		0.105		0.227			U	0.058		0.121		0.077		0.18
Nickel	(mg/kg)	32.7	1	12.3		28.6		8.520		21.2		52.4		12.4		30
Silver	(mg/kg)	0.433	J	0.437		0.542			U	0.272	J	0.263	J	0.201	J	2
Zinc	(mg/kg)	45.2		135		103		158		365		442		96.5		109
	a 1 m	EVADA	_	EVADI		EVADA		EVADA		DUAGUU		ENGQUE		EMAGINIA		D : 075
	Sample ID	EX2B4		EX3B1		EX3B2		EX3B3		EX3SW1		EX3SW2		EX3SW3		Part 375
	Lab ID	C3109-10		C3068-06		C3068-07		C3109-02		C3068-01		C3068-02		C3068-03		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soll Cleanup
EPA Method 6010B/7471A	Sample Date	//21/2011		7/19/2011		//19/2011	_	//21/2011		7/19/2011		//19/2011		//19/2011	_	Objectives
Arsenic	(mg/kg)	6.93	*	1.270		1.510		2.16	*	2.150		6.950		4.090		13
Barium	(mg/kg)	32.4	\square	12.0		6.900		8.270		28.3		13.9		24.3		350
Chromium (Total)	(mg/kg)	60.1		4.170		5.110		5.850		5.330		4.630		6.970		1 ^(a) , 30 ^(b)
Copper	(mg/kg)	288		4.100		2.960		3.810		2.850		5.460		11.4		50
Lead	(mg/kg)	71.6		11.4		3.370		5.740		17.8		5.130		40.2		63
Mercury	(mg/kg)	0.084		0.094	*	0.013	*	0.013		0.036	*	0.012	*	0.031	*	0.18
Nickel	(mg/kg)	244		3.690		3.510		3.740		3.120		3.230		4.670		30
Silver	(mg/kg)		U	0.155	J	0.159	J		U		U	0.146	J	0.259	J	2
Zinc	(mg/kg)	256		22.0		11.8		14.8		33.0		16.5		35.2		109
	Sample ID	EX3SW4		EX3SW5		EX3SW6		EX3SW7		T1B1		T1B2		T1SW1		Port 275
	Lah ID	C3068-04		C3068-05		C3109-01		C3153-06		C3153-01		C3153-02		C3153-05		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	7/19/2011		7/19/2011		7/21/2011		7/27/2011		7/27/2011		7/27/2011		7/27/2011		Objectives
Arsenic	(mg/kg)	2 310	Γ	1 220		0.6	I*	1 130		1 610		2.810		3 510		13
Barium	(mg/kg)	16.6	1	13.7		8 180	5	7 410		16.4		18.6		20.2		350
Chromium (Total)	(mg/kg)	5 240	1	3 980		2,500		3 340		6 750		5 350		11.4		1 ^(a) 30 ^(b)
Copper	(mg/kg)	3 900	+	6 600		6 870		2.880		10.1		13.6		4 770		50
Lead	(mg/kg)	8 780		31.0		2.620		2.720		26.1		18.6		5 580		63
Mercury	(mg/kg)	0.018	*	0.064	*	0.004	Ĭ	0.005	Ĭ	0.049		0.072		0.013		0.18
Nickel	(mg/kg)	3 490	+	3 430		3 850	3	3 730		47.2		33.0		6.420		30
Silver	(mg/kg)	0.216	T	0.178	T	5.050	П	5.150	II	-11.2	П	55.0	II	0.420	II	2
Zinc	(mg/kg)	22.8	5	59.6	5	11.7	0	10.7	*	62.1	*	38.6	*	17.2	*	109
(a) Mala sin frankriger allert Changing and	(mg/kg)	22.0	<u> </u>	tel Changi an is hele	d	II./		10.7		02.1		58.0		17.2		107
(a) value is for the about Chromium I	out is considered to I	be met it uie analysis	101 10	tai Chronnum is belo	w me	specific SCOBULD C	D	mations exceed this	specii							

TABLE 6B SUMMARY OF REMAINING SOIL CONTAMINATION ABOVE UNRESTRICTED LEVELS FOR METALS

(b) Value is for trivalent Chromium but is considered to be met if the analysis for total Chromium is below the specific SCOTALICIZED concentrations exceed this specific SCO

NOTE: EPA = U.S. Enivronmental Protection Agency.

Identification

U

J

mg/kg = Millirgrams per kilogram * = Indicates the duplicate a

= Indicates the duplicate analysis was not within the control limits.

= Non-detect, detection below the method detection limit.

= Indicates the reported value was less than the Contract Required Detection Limit , but greater than or equal to the Method Detection Limit.

N = Indicates the spiked sample recovery was not within the control limits.

Data provided by Chemtech Consulting Group. Only analytes that were detected in at least one sample are shown.

Concentration values inBOLD indicate that analyte was detected above the site specific standards, criteria, and guidance.

	Sample ID	T2D1		T2D2		EV/D1		EV4SW1		EVASW2		EV/SW2		EV5D1		D (275
	Lab ID	C3153-03		C3153-04		C3473-06		C3473-01		C3473-02		C3473-03		C3265-04		Part 3/5
Paramatar List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Type	7/27/2011		7/27/2011		8/22/2011		8/22/2011		8/22/2011		8/22/2011		8/4/2011		Objectives
Arsenic	(mg/kg)	2 240	Г	1 820	Г	0.88	Ť	2 500	1	2,620		0.67	Ť	4 040		13
Barium	(mg/kg)	34.7		13.0		20.4	J	13.6		1 370	I	6.170	J	27.7		350
Chromium (Total)	(mg/kg)	54.7		10.0		20.4		0.120		0.100	3	3.999		21.1	*	1(a) 20(b)
Campan	(ing/kg)	5.050		4.010		/8.3		9.120		8.190		3.890		8.1 72.0		10,300
	(mg/kg)	14.1		5.950		45.8		22.5		3.100	τ÷	3.770	*	73.8		50
Lead	(mg/kg)	120		20.9		4.860	Ť	34.4	Ŧ	0.53	J≁	1.580	Ť	52.2	4	0.19
Mercury	(mg/kg)	0.042		0.090		0.015		0.078		0.018	**	0.010	J	0.061	Ŷ	0.18
NICKEI	(mg/kg)	6.120	T.Y	5.070	**	5.700	Y	8.160	T.T.		U	10.8	**	8.420	**	30
Silver	(mg/kg)	52.0	U	07.0	U	0.16	J	(2.0	U	4 200	U	14.0	U	(2.5	U	2
Zinc	(mg/kg)	53.9	Ŧ	27.3	Ŧ	28.2		63.8		4.380		14.9		62.5		109
	Sample ID	EX5B2		EX5B3		EX5B4		EX5B5		EX5B6		EX5B7		EX5B8		Part 375
	Lab ID	C3265-05		C3355-04		C3355-05		C3355-09		C3473-08		C3622-04		C3622-05		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	8/4/2011		8/11/2011		8/11/2011		8/22/2011		8/22/2011		9/7/2011		9/7/2011		Objectives
Arsenic	(mg/kg)	2 620		2 220		2 440		1 560		2 560		3 440	Ν	3 090	Ν	13
Barium	(mg/kg)	25.6		35.2		20.1		11.200		34.8		30.9		36.8		350
Chromium (Total)	(mg/kg)	18.4	*	10.1		6.300		4.330		61.3		30.3		34.2		1(a) 30(b)
Copper	(mg/kg)	168		44.1		18.4		4 240		953		114		152		50
Lead	(mg/kg)	48.6		458		32.1		4 170		50.9	*	40.5		62.4		63
Mercury	(mg/kg)	0.096	*	0.036		0.032		0.048		0.055		0.034		0.069		0.18
Nickel	(mg/kg)	11.0		5 180		4 770		3 220		56.4		31.8		14.4		30
Silver	(mg/kg)	11.0	U	5.100	U	0.18	Ĭ	5.220	U	0.84		0110	U		U	2
Zinc	(mg/kg)	166	Ŭ	66.5	Ŭ	39.7		10.6	Ŭ	345		88.6	Ň	116	N	109
	(
	Sample ID	EX5SW1		EX5SW2		EX5SW3		EX5SW4		EX5SW5		EX5SW6		EX5SW7		Part 375
	Sample ID Lab ID	EX5SW1 C3265-01		EX5SW2 C3265-02		EX5SW3 C3265-03		EX5SW4 C3355-01		EX5SW5 C3355-02		EX5SW6 C3355-03		EX5SW7 C3355-06		Part 375 Unrestricted Use
Parameter List	Sample ID Lab ID Sample Type	EX5SW1 C3265-01 Soil		EX5SW2 C3265-02 Soil		EX5SW3 C3265-03 Soil		EX5SW4 C3355-01 Soil		EX58W5 C3355-02 Soil		EX58W6 C3355-03 Soil		EX5SW7 C3355-06 Soil		Part 375 Unrestricted Use Soil Cleanup
Parameter List EPA Method 6010B/7471A	Sample ID Lab ID Sample Type Sample Date	EX5SW1 C3265-01 Soil 8/4/2011		EX5SW2 C3265-02 Soil 8/4/2011		EX5SW3 C3265-03 Soil 8/4/2011		EX5SW4 C3355-01 Soil 8/11/2011		EX5SW5 C3355-02 Soil 8/11/2011		EX5SW6 C3355-03 Soil 8/11/2011		EX5SW7 C3355-06 Soil 8/22/2011		Part 375 Unrestricted Use Soil Cleanup Objectives
Parameter List EPA Method 6010B/7471A Arsenic	Sample ID Lab ID Sample Type Sample Date (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690		EX5SW2 C3265-02 Soil 8/4/2011 5.300		EX5SW3 C3265-03 Soil 8/4/2011 6.600		EX5SW4 C3355-01 Soil 8/11/2011 2.920		EX5SW5 C3355-02 Soil 8/11/2011 3.970		EX5SW6 C3355-03 Soil 8/11/2011 1.940		EX5SW7 C3355-06 Soil 8/22/2011 1.740		Part 375 Unrestricted Use Soil Cleanup Objectives 13
Parameter List EPA Method 6010B/7471A Arsenic Barium	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6		EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6		EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0		EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4		EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9		EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total)	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15	*	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7	*	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9	*	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6		EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300		EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b)
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230	*	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449	*	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2	*	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221		EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120		EX58W7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7	*	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101	*	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121	*	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5		EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6		EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085	*	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124	*	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174	*	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097		EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035		EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170	*	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7	*	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4	*	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7		EX58W5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480		EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180		EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver	Sample ID Lab ID Sample Type Sample Date (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35		EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220	U	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc	Sample ID Lab ID Sample Type Sample Date (mg/kg)	EX5SW1 C3265-01 Soil 8:4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133	1	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3		EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0	U	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C2265 02	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C32/5.00	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C32207	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 EX5SW12	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 G22.2020	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6BI	U	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03	U	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc Parameter List	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type	EX5SW1 C3265-01 Soil 8:4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil	U	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date	EX5SW1 C3265-01 Soil 8:4/2011 1.690 13.6 7.15 8:230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6BI C3109-03 Soil 7/21/2011	U	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36	U *	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7	*	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/1/6/2011 3.090 30.2	*	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 50.2	*	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5		EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total)	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample ID Lab ID Sample Date (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240	*	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 2012 2012 2012 2012 2012 2012 2012 201	*	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 50.2 218	*	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980	U *	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b)
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper	Sample ID Lab ID Sample Type Sample Date (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8:4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240 266	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750 62.4	* V	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 50.2 218 1190	* V	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8 20.1		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8 33.9	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2 53.7	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980 56.7	U *	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50
Parameter List EPA Method 6010B/7471A Arsenic Barium Copper Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240 266 80.3	*	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750 62.4 65.8	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 Soil 9/7/2011 7.270 50.2 218 1190 227	*	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8 20.1 36.0		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8 33.9 53.5	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2 53.7 117	U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980 5.67 739		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240 266 80.3 0.079	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750 62.4 65.8 0.068	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 EX5SW10 C3473-07 Soil 9/7/2011 7.270 Soil 9/7/2011 7.270 Soi2 218 1190 227 0.191	*	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8 20.1 36.0 0.024		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8 33.9 53.5 0.070	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2 53.7 117 0.081		EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980 56.7 739 0.109		Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel	Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240 266 80.3 0.079 42.6	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750 62.4 65.8 0.068 10.7	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 EX5SW10 C3473-07 Soil 9/7/2011 7.270 Soi2 218 1190 227 0.191 110	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8 20.1 36.0 0.024 9.550		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8 33.9 53.5 0.070 12.8	J	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2 53.7 117 0.081 11.7		EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980 56.7 739 0.109 6.450	U *	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30
Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver Zinc Parameter List EPA Method 6010B/7471A Arsenic Barium Chromium (Total) Copper Lead Mercury Nickel Silver	Sample ID Lab ID Sample Type Sample Date (mg/kg) Sample ID Lab ID Sample Type Sample Date (mg/kg) (mg/kg)	EX5SW1 C3265-01 Soil 8/4/2011 1.690 13.6 7.15 8.230 31.7 0.085 3.170 178 EX5SW8 C3355-07 Soil 8/16/2011 3.450 38.7 7.240 266 80.3 0.079 42.6	* * U	EX5SW2 C3265-02 Soil 8/4/2011 5.300 59.6 28.7 449 101 0.124 14.7 314 EX5SW9 C3355-08 Soil 8/16/2011 3.090 30.2 6.750 62.4 65.8 0.068 10.7	* * U	EX5SW3 C3265-03 Soil 8/4/2011 6.600 81.0 20.9 92.2 121 0.174 10.4 183 EX5SW10 C3473-07 Soil 9/7/2011 7.270 50.2 218 1190 227 0.191 110 8.750	* * U	EX5SW4 C3355-01 Soil 8/11/2011 2.920 25.9 27.6 84.9 81.4 0.057 15.7 0.75 99.0 EX5SW11 C3622-03 Soil 9/7/2011 2.820 22.5 15.8 20.1 36.0 0.024 9.550		EX5SW5 C3355-02 Soil 8/11/2011 3.970 63.4 12.6 221 48.5 0.097 8.480 0.35 133 EX5SW12 C3622-01 Soil 9/7/2011 8.260 43.2 10.8 33.9 53.5 0.070 12.8	J N U	EX5SW6 C3355-03 Soil 8/11/2011 1.940 20.9 7.300 120 33.6 0.035 4.180 22.3 EX5SW13 C3622-02 Soil 9/7/2011 4.430 51.5 17.2 53.7 117 0.081 11.7	N U U	EX5SW7 C3355-06 Soil 8/22/2011 1.740 12.4 4.780 11.2 22.8 0.036 3.220 25.0 EX6B1 C3109-03 Soil 7/21/2011 4.36 19.9 6.980 56.7 739 0.109 6.450	U U U U	Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2 109 Part 375 Unrestricted Use Soil Cleanup Objectives 13 350 1 ^(a) , 30 ^(b) 50 63 0.18 30 2

	Sample ID	EX6B2		EX6B3		EX6SW1		EX6SW2		EX6SW3		EX6SW4		EX6SW5		Part 375
	Lab ID	C3109-04		C3109-05		C3100-01		C3100-02		C3100-03		C3100-04		C3100-05		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	7/21/2011		7/21/2011		7/20/2011		7/20/2011		7/20/2011		7/20/2011		7/20/2011		Objectives
Arsenic	(mg/kg)	11.2	*	25.2	*	9.760		4.640		7.630		11.6		17.9		13
Barium	(mg/kg)	59.7		59.6		35.0		39.7		44.2		30.5		45.5		350
Chromium (Total)	(mg/kg)	12.1		12.4		22.0		86.3		19.8		16.1		9.090		1 ^(a) , 30 ^(b)
Copper	(mg/kg)	55.8		40.9		285		2430		49.5		283		220		50
Lead	(mg/kg)	80.6		206		75.9		70.6		107		82.3		51.5		63
Mercury	(mg/kg)	0.117		0.348		0.142		0.087		0.079		0.091		0.051		0.18
Nickel	(mg/kg)	16.3		45.3		39.9		71.1		122		596		11.2		30
Silver	(mg/kg)		U		U		U	0.602			U		U		U	2
Zinc	(mg/kg)	127		264		215		558		281		358		84.3		109
				I		I				I				I		
	Sample ID	EX6SW6		EX6SW7		EX6NB1		EX6NB2		EX6NSW1		EX6NSW2		EX6NSW3		Part 375
	Lab ID	C3100-06		C3109-06		C3265-15		C3265-16		C3265-06		C3265-07		C3265-08		Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Soil Cleanup
EPA Method 6010B/7471A	Sample Date	7/20/2011	1	7/21/2011		8/4/2011	-	8/4/2011		8/4/2011		8/4/2011	r	8/4/2011	1	Objectives
Arsenic	(mg/kg)	17.6		7.03	Ŷ	4.610		4.220		4.060		4.300		3.210		13
Barium	(mg/kg)	24.3		65.7		94.2		26.8		572		126		28.5		350
Chromium (Total)	(mg/kg)	9.430		18.4		20	*	10.1	*	14.1	*	10.8	*	8.65	*	1(a), 30(b)
Copper	(mg/kg)	76.1		1670		102		54.9		314		162		23.6		50
Lead	(mg/kg)	81.0		107		146		63.3		275		254		86.5		63
Mercury	(mg/kg)	0.049		0.118			U*	0.075	*	0.052	*	0.22	*	0.092	*	0.18
Nickel	(mg/kg)	23.2		41.3		11.3		14.6		10.8		11.5		5.420		30
Silver	(mg/kg)		U		U		U		U		U	0.684			U	2
Zinc	(mg/kg)	159		473		114		146		399		371		69.0		109
	Sample ID	EX6NSW4		EX6NSW5		EX6NSW6	1									Part 375
	Lab ID	C3265-09		C3265-13		C3265-14										Unrestricted Use
Parameter List	Sample Type	Soil		Soil		Soil										Soil Cleanup
EPA Method 6010B/7471A	Sample Date	8/4/2011		8/4/2011		8/4/2011										Objectives
Arsenic	(mg/kg)	2.030		5.120		2.420	1									13
Barium	(mg/kg)	27.6		45.4		18.6										350
Chromium (Total)	(mg/kg)	11.2	*	32.2	*	9.16	*									1 ^(a) . 30 ^(b)
Copper	(mg/kg)	13.8		149		61.5										50
Lead	(mg/kg)	58.2		113		46.6										63
Mercury	(mg/kg)	0.034	*	0.085	*	0.051	*									0.18
Nickel	(mg/kg)	7.790	1	19.3		8.060										30
Silver	(mg/kg)		U	0.161	J		U									2
Zinc	(mg/kg)	132		168		75.7										109

	Canala ID	EV1CW1		EVICUO		T2D1	1	T4D1		EV2D1	T	EVODO	1	EV3D2	1	
	Sample ID	EXISWI		EXISW2		1381		14B1		EA2BI	_	EA2B2		EA2B3		
	Lab ID	C3524-03		C3524-04		C3524-01		C3524-02		C3109-07		C3109-08		C3109-09		Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Standards, Criteria, and
EPA Method 8260B	Sample Date	8/25/2011		8/25/2011		8/25/2011		8/25/2011		7/21/2011		7/21/2011		7/21/2011		Guidance
Benzene	(µg/kg)		U	U	1		U		U		U		U		U	60
Chlorobenzene	(µg/kg)		U	U	ſ		U		U		U		U		U	17,000
cis 1,2- Dichloroethylene	(µg/kg)		U	U			U		U		U		U		U	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		U	U			U		U		U		U		U	300 ^(a)
Ethylbenzene	(µg/kg)	570	D	U			U		U		U		U		U	5,500
Methyl tert-butyl ether	(µg/kg)	2	J	U			U	4	J		U		U		U	120
Naphthalene	(µg/kg)	13,000	D	U	1		U		U		U		U		U	13,000
Tetrachloroethylene (PCE)	(µg/kg)		U	U	ſ		U		U		U		U		U	1,400
Toluene	(µg/kg)	13		U			U		U		U		U		U	1,500
Trichloroethylene (TCE)	(µg/kg)		U	U	1		U		U		U		U		U	700
Vinyl chloride	(µg/kg)		U	U	ſ		U		U		U		U		U	200
m,p- Xylene	(µg/kg)	2,100	D	U	1		U		U		U		U		U	1,200 ^(b)
o- Xylene	(µg/kg)	1,000	D	U	ſ		U		U		U		U		U	1,200 ^(b)
				• •						•						· · · · ·
	Sample ID	EX2B4		EX3B1		EX3B2		EX3B3		EX3SW1		EX3SW2		EX3SW3		
	Lab ID	C3109-10		C3068-06		C3068-07		C3109-02		C3068-01		C3068-02		C3068-03		Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil		Soil		Soil		Standards, Criteria, and
EPA Method 8260B	Sample Date	7/21/2011		7/19/2011		7/19/2011		7/21/2011		7/19/2011		7/19/2011		7/19/2011		Guidance
Benzene	(µg/kg)		U	U			U		U		U		U		U	60
Chlorobenzene	(µg/kg)		U	U			U		U		U		U		U	17,000
cis 1,2- Dichloroethylene	(µg/kg)		U	U			U		U		U		U		U	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		U	U			U		U		U		U		U	300 ^(a)
Ethylbenzene	(µg/kg)		U	U	1		U		U		U		U		U	5,500
Methyl tert-butyl ether	(µg/kg)		U	U	ſ		U		U		U		U		U	120
Naphthalene	(µg/kg)	3	J	U			U		U		U		U		U	13,000
Tetrachloroethylene (PCE)	(µg/kg)		U	U	1		U		U		U		U	6		1,400
Toluene	(µg/kg)		U	U	ſ		U		U		U		U		U	1,500
Trichloroethylene (TCE)	(µg/kg)		U	U	1		U		U		U		U		U	700
Vinyl chloride	$(\mu g/kg)$		U	U			U		U		U		U		U	200
m,p- Xylene	(µg/kg)		U	U			U		U		U		U		U	1,200 ^(b)
o- Xylene	(ug/kg)		U	U	ſ		U		U		U		U		U	1 200 ^(b)
 (a) SCG is for the sum of cis 1,2-DCE and traits (b) SCG is for total Xylenes NOTE: EPA = U.S. Enivronmental I ID = Identification μg/kg = micrograms per kilog U = Non-detect, detection D = Indicates the reported 	ans 1,2-DCE Protection Agency. gram = parts per b b below the method d value was obtaine	illion (ppb). detection limit. ed by analysis at a sec	condar	y dilution factor.												

TABLE 7A SUMMARY OF REMAINING SOIL CONTAMINATION ABOVE SITE-SPECIFIC SOIL CLEANUP OBJECTIVES FOR VOCs

J = Indicates the reported value was less than the Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit.

Data provided by Chenter Consulting Group. Only analytes included in Table 1 of the ROD are included Concentration values in**BOLD** indicate that analyte was detected above the site specific standards, criteria, and guidance.

	Sample ID	EX3SW4		EX3SW5		EX3SW6		EX3SW7		T1B1	T1B2		T1SW1	
	Lab ID	C3068-04		C3068-05		C3109-01		C3153-06		C3153-01	C3153-02		C3153-05	Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil	Soil		Soil	Standards Criteria and
EPA Method 8260B	Sample Date	7/19/2011		7/19/2011		7/21/2011		7/27/2011		7/27/2011	7/27/2011		7/27/2011	Guidance
Benzene	(µg/kg)		U		U		U		U	U	ſ	U	U	60
Chlorobenzene	(ug/kg)		U		U		U		U	U	ſ	U	U	17.000
cis 1.2- Dichloroethylene	(µg/kg)		U		U		U		U	U	ſ	U	U	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		U		U		U		U	U	1	U	U	300 ^(a)
Ethylbenzene	(µg/kg)		U		U		U		U	U	ſ	U	U	5,500
Methyl tert-butyl ether	(ug/kg)		U		U		U		U	U	ſ	U	U	120
Naphthalene	(µg/kg)		U		U		U		U	U	ſ	U	U	13,000
Tetrachloroethylene (PCE)	(µg/kg)		U		U		U		U	U	1	U	U	1,400
Toluene	(µg/kg)		U		U		U		U	U	1	U	U	1,500
Trichloroethylene (TCE)	(µg/kg)		U		U		U		U	U	ſ	U	U	700
Vinvl chloride	(µg/kg)		U		U		U		U	U	ſ	U	U	200
m,p- Xylene	(µg/kg)		U		U		U		U	U	1	U	U	1 200 ^(b)
o- Xylene	(µg/kg)		U		U		U		U	U	ſ	U	U	1 200 ^(b)
	(1-0-0/									1 1 1		_		-,=
	Sample ID	T2B1		T2B2		EX4B1		EX4SW1		EX4SW2	EX4SW3		EX5B1	
	Lab ID	C3153-03		C3153-04		C3473-06		C3473-01		C3473-02	C3473-03		C3265-04	Site Specific
Parameter List	Sample Type	Soil		Soil		Soil		Soil		Soil	Soil		Soil	Standards, Criteria, and
EPA Method 8260B	Sample Date	7/27/2011		7/27/2011		8/22/2011		8/22/2011		8/22/2011	8/22/2011		8/4/2011	Guidance
Benzene	(µg/kg)		U		U		U		U	U	ſ	U	U	60
Chlorobenzene	(µg/kg)		U		U		U		U	U	ſ	U	U	17,000
cis 1,2- Dichloroethylene	(µg/kg)		U		U	1.7	J		U	U	ſ	U	U	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)		U		U		U		U	U	ſ	U	U	300 ^(a)
Ethylbenzene	(µg/kg)		U		U		U		U	U	ſ	U	U	5,500
Methyl tert-butyl ether	(µg/kg)		U		U		U		U	U	ſ	U	U	120
Naphthalene	(µg/kg)		U	81	J		U		U	U	ſ	U	U	13,000
Tetrachloroethylene (PCE)	(µg/kg)		U		U	96	D	3	J	U	ſ	U	U	1,400
Toluene	(µg/kg)		U		U		U	1.1	J	U	ſ	U	U	1,500
Trichloroethylene (TCE)	(µg/kg)	5.2	J	3.4	J	12			U	U	ſ	U	U	700
Vinyl chloride	(µg/kg)		U		U		U		U	U	ſ	U	U	200
m,p- Xylene	(µg/kg)		U		U		U	7.2	J	U	ſ	U	U	1,200 ^(b)
o- Xylene	(µg/kg)		U	1.4	J		U	1	J	U	ſ	U	U	1,200 ^(b)
	Comula ID	EV(D)		EV5D2		EV5D4		EVEDS		EV5D(EV(D7	T	EV50W1	1
	Jah ID	C2265.05		C2255 04		C2255_05		C2472.09		C2622.04	C2622.05	-	C2265 01	a:, a
Demonstern Liet	Lab ID Semula Tuma	C3203-03		C3353-04		C3333-03		C34/3-08		C3022-04	C3022-03	-	C3203-01	Site Specific
Farameter List	Sample Date	8/4/2011		8/11/2011		8/11/2011		8/22/2011		0/7/2011	9/7/2011	-	8/4/2011	Standards, Criteria, and
EFA Method 8200B	Sample Date	0/4/2011	ТI	0/11/2011	ТI	0/11/2011	TI	8/22/2011	II	9/7/2011	9/ //2011	II	0/4/2011	Guidance
Chlanchannan	(µg/kg)		U		U		U		U	U	r	U	U	17,000
chlorobenzene	(µg/kg)		U	1.4	U	200	U m	22	U	10 1	·	U	U	17,000
cis 1,2- Dichloroethylene	(µg/kg)		U	1.4	J	390	JD	22	TI	1.9 J	r	U	U	300 ^(a)
Trans 1,2- Dichloroethylene	(µg/kg)	420	U		U	3.4	J		U	U	r	U	U	300
Ethylbenzene	(µg/kg)	430	JD		U	340	JD		U	U	r	U	U	5,500
Metnyi tert-butyi ether	(µg/kg)	470	U		U	21	U		U	10 1		U	U	120
Tatrachi (DOD)	(µg/kg)	4/0	JD		U	51	U	24	U	1.9 J		U	0	13,000
Telvene (PCE)	(μg/kg)	2	U		U	1.6	J	26	T			U	U	1,400
Tricklass d. L. (TOT)	(µg/kg)	2	J		U	1,600		2.3	J	1.0 J		U	0	1,500
Irichloroethylene (TCE)	(µg/kg)		U		U	14	U	36	TT	0	r l	U	U	700
Vinyl chloride	(µg/kg)	70.0	U		U	14	U		U	0		U	U	200
m,p- Xylene	(µg/kg)	/80	1D		U	1,500	D		U	U		U	U	1,200(6)
o- Xylene	(µg/kg)		U		U	460	JD		U	U		U	U	1,200

	Sample ID	EX5SW2	EX5SW3	EX5SW/	EX28W2	EX5SW6	EX5SW7	EX228W8	
	Lab ID	C3265-02	C3265-03	C3355-01	C3355-02	C3355-03	C3473-07	C3355-07	Site Specific
Doromotor List	Sample Type	CJ20J-02 Soil	C5205-05	Soil	Soil	Soil	Soil	Soil	Stee Specific Standarda Critaria and
EDA Mathad 8260D	Sample Type	8/4/2011	8/4/2011	8/11/2011	8/11/2011	8/11/2011	8/22/2011	8/16/2011	Guidanaa
Damage a	(ug/kg)	0/4/2011	0/4/2011	0/11/2011	0/11/2011	0/11/2011	0/22/2011	0/10/2011	Guidalice
Benzene	(µg/kg)		U	U	0	U	U	U	17,000
Chlorobenzene	(µg/kg)		U	U	0	U	22	U	17,000
cis 1,2- Dichloroethylene	(µg/kg)		U	U	U	U	33	U	300(a)
trans 1,2- Dichloroethylene	(µg/kg)	0.0	U	U	U	U	1.9 J	U	300 (4)
Etnylbenzene	(µg/kg)	9.2	U	U	U	U	U	U	5,500
Methyl tert-butyl ether	(µg/kg)	1 20	U	U	U	U	U	U	120
Naphthalene	(µg/kg)	2.9 J	U	U	U	6	0	U	13,000
Tetrachioroethylene (PCE)	(µg/kg)	L L	U	U	U	U	2.1 J	U	1,400
Toluene	(µg/kg)	L	U	U	U	U	13	U	1,500
Trichloroethylene (TCE)	(µg/kg)	l	U	U	U	U	U	U	700
Vinyl chloride	(µg/kg)	l	U	U	U	U	8.1	U	200
m,p- Xylene	(µg/kg)	21	U	U	U	U	5.9 J	U	1,200(6)
o- Xylene	(µg/kg)	U	U	U	U	U	2.5 J	U	1,200(6)
	Sample ID	EX28W0	EX5SW10	EX58W11	EX58W12	EX6B1	EX6B2	EX6B3	1
	Lab ID	C3355-08	C3622-03	C3622-01	C3622-02	C3109-03	C3109-04	C3109-05	Site Specific
Parameter List	Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Standards Criteria and
EPA Method 8260B	Sample Date	8/16/2011	9/7/2011	9/7/2011	9/7/2011	7/21/2011	7/21/2011	7/21/2011	Guidance
Benzene	(µg/kg)	1	U	U	U	U	U	U	60
Chlorobenzene	(µg/kg)		U	U	U U	U	U	U U	17 000
cis 1.2- Dichloroethylene	(µg/kg)	I	3.4 I	U	U	U	U	U	200 ^(a)
trans 1.2- Dichloroethylene	(µg/kg)		J.4 J	U	U U	U	U	U U	300 ^(a)
Ethylbanzana	(µg/kg)		U	U	0	U	U	U	5 500
Mathyl tart butyl athar	(µg/kg)	U	U	U U	U	U	U U	U U	120
Naphthalana	(µg/kg)	3.6 1	U U	U U	24 1	U	U U	U U	120
Tatrachlaracthulana (DCE)	(µg/kg)	5.0 J	U	U U	2.4 J	U	U	U U	1 400
Teluana	(µg/kg)		26 1	U U	U U	U	2.2 1	U U	1,400
Trichloroathylana (TCE)	(µg/kg)	T	2.0 J	U U	U	U	J.2 J	U U	700
Vinyl chloride	(µg/kg)		U U	U	U U	U	U	U U	200
m n. Vulana	(µg/kg)		U	U	0	U	U	2.1 I	1 200 ^(b)
o- Xylene	(µg/kg)	U	U	U	U	U	U	5.1 J	1,200 1,200 ^(b)
0- Ayielle	(µg/kg)		0	0	0	0	0	0	1,200
	Sample ID	EX6SW1	EX6SW2	EX6SW3	EX6SW4	EX6SW5	EX6SW6	EX6SW7	
	Lab ID	C3100-01	C3100-02	C3100-03	C3100-04	C3100-05	C3100-06	C3109-06	Site Specific
Parameter List	Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Standards, Criteria, and
EPA Method 8260B	Sample Date	7/20/2011	7/20/2011	7/20/2011	7/20/2011	7/20/2011	7/20/2011	7/21/2011	Guidance
Benzene	(µg/kg)	U	U	U	U	U	U	U	60
Chlorobenzene	(µg/kg)	U	U	U	U	U	U	U	17,000
cis 1,2- Dichloroethylene	(µg/kg)	U	U	U	U	U	U	U	300 ^(a)
trans 1,2- Dichloroethylene	(µg/kg)	U	U	U	U	U	U	U	300 ^(a)
Ethylbenzene	(µg/kg)	U	U	U	U	U	U	U	5,500
Methyl tert-butyl ether	(µg/kg)	U	U	U	U	U	U	U	120
Naphthalene	(µg/kg)	U	7.3	U	U	U	U	U	13,000
Tetrachloroethylene (PCE)	(µg/kg)	U	U	U	U	U	U	U	1,400
Toluene	(µg/kg)	U	U	U	U	U	U	U	1,500
Trichloroethylene (TCE)	(µg/kg)	U	U	U	U	U	U	U	700
Vinyl chloride	(µg/kg)	U	U	U	U	U	U	U	200
m,p- Xylene	(µg/kg)	U	U	U	U	U	U	U	1,200 ^(b)
o- Xylene	(µg/kg)	U	U	U	U	U	U	U	1,200 ^(b)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Parameter List EPA Method 8260BSample DateSoilSoilSoilSoilSoilSoilSoilSoilSoilSoilStandards, Criteria, GuidanceBenzene($\mu g/kg$)UUUUUUUUGuidanceChlorobenzene($\mu g/kg$)UUUUUUUU00cis 1,2-Dichloroethylene($\mu g/kg$)UUUUUUU00trans 1,2-Dichloroethylene($\mu g/kg$)UUUUUU00Fibulbenzene($\mu g/kg$)UUUUUUU000 ^(a) Fibulbenzene($\mu g/kg$)UUUUUUU00 ^(a) Fibulbenzene($\mu g/kg$)UUUUUUU00 ^(a) Fibulbenzene($\mu g/kg$)UUUUUUU00 ^(a)	
EPA Method 8260B Sample Date 8/4/2011 8/4/2011 8/4/2011 8/4/2011 8/4/2011 8/4/2011 Guidance Benzene (µg/kg) U U U U U U U U 0 <t< td=""><td>Parameter List</td></t<>	Parameter List
Benzene ($\mu g/kg$) U U U U U U U U 0 0 60 Chlorobenzene ($\mu g/kg$) U U U U U U U U 0 0 17,000 cis 1,2- Dichloroethylene ($\mu g/kg$) U U U U U U U 300 ^(a) trans 1,2- Dichloroethylene ($\mu g/kg$) U U U U U U U 300 ^(a) Fibr/benzene ($\mu g/kg$) U U U U U U U U U 300 ^(a)	EPA Method 8260B
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzene
cis 1,2- Dichloroethylene (µg/kg) U U U U U U U 300 ^(a) trans 1,2- Dichloroethylene (µg/kg) U U U U U U U U 300 ^(a) Ethylhenzene (µg/kg) U U U U U U U U S00 ^(a)	Chlorobenzene
trans 1,2- Dichloroethylene(µg/kg)UUUUUU0Ethylhenzene(µg/kg)UUUUUU00	cis 1,2- Dichloroethylene
Ethylhenzene $(\mu\sigma/kg)$ II	trans 1,2- Dichloroethylene
	Ethylbenzene
Methyl tert-butyl ether (μg/kg) U U U U U U U 120	Methyl tert-butyl ether
Naphthalene (μg/kg) U U U U 35 U U 13,000	Naphthalene
Tetrachloroethylene (PCE) (μg/kg) U U U U U 1,400	Tetrachloroethylene (PCE)
Toluene (μg/kg) U U U U U U U 1,500	Toluene
Trichloroethylene (TCE) (μg/kg) U U U U U U 700	Trichloroethylene (TCE)
Vinyl chloride (μg/kg) U U U U U U U U 200	Vinyl chloride
m,p- Xylene (μg/kg) U U U U 20 U U 1,200 ^(b)	m,p- Xylene
0- Xylene (μg/kg) U U U U U 2.1 J U U 1,200 ^(b)	o- Xylene
Seconds ID EV(A)(W)(
Sample ID EXXISSO	
Lau ID C3205-14 Site Specific Site Specific	Demonster Lint
FDA Meter 2020 Some Data 9/4/011	Farameter List
PA Method 8200B Sample Date 6/4/2011	EPA Method 8260B
DELIZE (µg kg) 0 0 0 C[h]arsharano (µg kg) 0 0 0 0	Chlorohongono
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ciliolobelizelle
$c_{1}c_{2}$ Demote $(\mu g \kappa g)$ 0 trans 1.2 Disklarger thuman $(\mu g \kappa g)$ 0 $200^{(3)}$	trans 1.2. Dichloroethylene
$\frac{1}{500}$	Ethylbenzene
Lui notizitati atta (1978) 0 Mathul tart butul athar (1978) 10	Mathyl tart butyl athar
Nanthalana (μ_0/μ_0) U	Naphthalana
Tatrachlorastivlana (QCE) (μ_{2}/κ_{2}) 0 1,0000	Tetrachloroethylene (PCE)
$\frac{1}{1,000}$	Toluana
$\frac{1}{100000} \frac{1}{10000000000000000000000000000000000$	Trichloroethylene (TCF)
$\frac{1}{2} \frac{1}{2} \frac{1}$	Vinyl chloride
$\frac{1}{100^{(b)}}$	m n- Xylene
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0- Xylene

n-			<u></u>						·			-n
	Sample ID	EX1SW1	EX1SW2	T3B1	T4B1		EX2B1	ļ	EX2B2	EX2B3		
	Lab ID	C3524-03	C3524-04	C3524-01	C3524-02		C3109-07		C3109-08	C3109-09		0'' 0 'C
Parameter List	Sample Type	Soil	Soil	Soil	Soil		Soil		Soil	Soil		Site Specific Stendards, Criteria
FPA Method 6010/7470	Sample Date	8/25/2011	8/25/2011	8/25/2011	8/25/2011		7/21/2011		7/21/2011	7/21/2011		and Guidance
Chromium (total)	(mg/kg)	71.6	15.8	29.8	12.0	+-	32.4	$ \rightarrow$	91.5	21.2	—	50
Copper	(mg/kg)	107	34.3	105	3.700	+	482	\vdash	631	77.1	+	25
Nickel	(mg/kg)	32.7	12.3	28.6	8.520	+	21.2	\vdash	52.4	12.4	+	13
Zinc	(mg/kg)	45.2	135	103	158		365		442	96.5	+	20
	Comple ID	EV2D4	EV2D1	EVapa	EVaba	—	EVacuut		ENSONS	ENagura	_	
	Lab ID	C2100.10	C2068.06	EX3B2 C2068_07	C2100.02	\rightarrow	C2068.01	\rightarrow	EX35W2	EX35W3		
Domono atom Lint	Lab ID Sample Type	C3109-10 Soil	C3008-00	C3008-07	Colup-02	+	C3000-01	\rightarrow	C3006-02	Soil		Site Specific
Farameter List	Sample Date	7/21/2011	7/19/2011	7/19/2011	7/21/2011	+	7/19/2011	$\neg \neg$	7/19/2011	7/19/2011		Standards, Criteria,
Chromium (total)	(mg/kg)	60.1	4 170	5 110	5.850	+-	5 330	+	4 630	6 970	—	50
Copper	(mg/kg)	288	4.1/0	2 960	3.810	+	2 850	\vdash	5 460	11.4	+	25
Nickel	(mg/kg)	200	3 690	3 510	3 740	+	3 120	\vdash	3 230	4 670	+	13
Zinc	(mg/kg)	256	22.0	11.8	14.8	+	33.0	\vdash	16.5	35.2	+	20
	(_					╧	
	Sample ID	EX3SW4	EX3SW5	EX3SW6	EX3SW7		T1B1		T1B2	T1SW1		<u> </u>
	Lab ID	C3068-04	C3068-05	C3109-01	C3153-06	\rightarrow	C3153-01]	C3153-02	C3153-05		Site Specific
Parameter List	Sample Type	Soil	Soil	Soil	Soil	\rightarrow	Soil]	Soil	Soil		Standards, Criteria,
EPA Method 6010/7470	Sample Date	7/19/2011	7/19/2011	7/21/2011	7/27/2011	<u> </u>	7/27/2011	<u> </u>	7/27/2011	7/27/2011	—	and Guidance
Chromium (total)	(mg/kg)	5.240	3.980	2.500	3.340	\rightarrow	6.75	\square	5.35	11.4	\perp	50
Copper	(mg/kg)	3.900	6.600	6.870	2.880	_	10.1	\square	13.6	4.77	—	25
Nickel	(mg/kg)	3.490	3.430	3.850	3.730		47.2	\square	33	6.42	—	13
Zinc	(mg/kg)	22.8	59.6	11.7	<u>' </u>	0	62.1	╨	38.6	17.2	┶	20
	Sample ID	T2B1	T2B2	EX4B1	EX4SW1	T	EX4SW2		EX4SW3	EX5B1		1
	Lab ID	C3153-03	C3153-04	C3473-06	C3473-01		C3473-02	-	C3473-03	C3265-04		Site Specific
Parameter List	Sample Type	Soil	Soil	Soil	Soil		Soil	Ţ	Soil	Soil		Standards, Criteria,
EPA Method 6010/7470	Sample Date	7/27/2011	7/27/2011	8/22/2011	8/22/2011		8/22/2011		8/22/2011	8/4/2011		and Guidance
Chromium (total)	(mg/kg)	5.05	4.01	78.3	9.120	T	8.190		3.890	1	U	50
Copper	(mg/kg)	14.1	5.95	45.8	22.5		3.100		3.770	73.8	1	25
Nickel	(mg/kg)	6.12	5.07	5.700	8.160			U	10.8	8.420		13
Zinc	(mg/kg)	53.9	27.3	28.2	63.8	\Box	4.380		14.9	62.5		20
	Sample ID	EV5D2										
	Lab ID	C3265-05	-									Site Same 6
Poromatar List	Sample Type	Soil	-									Site Specific
EPA Method 6010/7470	Sample Date	8/4/2011	-									and Guidance
Chromium (total)	(mg/kg)	0/1/2011	a									50
Copper	(mg/kg)	168	-									25
Nickel	(mg/kg)	11.0	-									13
Zinc	(mg/kg)	166	-									20
NOTE: EDA -US Emirror	meretal Protection A							_				20
NOIE: EPA - U.S. Emvior	mental Protection Ag	gency.										
Identification	1.1											
mg/kg = Millirgrams	per kilogram											
Data provided by Chemter	- Consulting Group	O-by applying that war		la ara shouyn								
		I HILV ALLALVIES HILL.		A MARINA MARINA A A A A A A A A A A A A A A A A A A								

TABLE 7B SUMMARY OF REMAINING SOIL CONTAMINATION ABOVE SITE-SPECIFIC SOIL CLEANUP OBJECTIVES FOR METALS
	Sample ID	FX5B3		FX5B4		FX5B5	EX5B6		EX5B7		FX5SW1		FX5SW2		
	Lah ID	C3355-04		C3355-05		C3473-08	C3622-04		C3622-05		C3265-01		C3265-02		Site Specific
Parameter List	Sample Type	Soil		Soil		Soil	Soil		Soil		Soil		Soil		Standards Criteria
EPA Method 6010/7470	Sample Date	8/11/2011		8/11/2011		8/22/2011	9/7/2011		9/7/2011		8/4/2011		8/4/2011		and Guidance
Chromium (total)	(mg/kg)	10.1		6.300		61.3	30.3		34.2			U		U	50
Copper	(mg/kg)	44.1		18.4		953	114		152		8.230		449	_	25
Nickel	(mg/kg)	5.180		4.770		56.4	31.8		14.4		3.170		14.7		13
Zinc	(mg/kg)	66.5		39.7		345		U	ſ	U	178		314		20
														_	l.
	Sample ID	EX5SW3		EX5SW4		EX5SW5	EX5SW6		EX5SW7		EX5SW8		EX5SW9		
	Lab ID	C3265-03		C3355-01		C3355-02	C3355-03		C3473-07		C3355-07		C3355-08		Site Specific
Parameter List	Sample Type	Soil		Soil		Soil	Soil		Soil		Soil		Soil		Standards, Criteria,
EPA Method 6010/7470	Sample Date	8/4/2011		8/11/2011		8/11/2011	8/11/2011		8/22/2011	-	8/16/2011		8/16/2011		and Guidance
Chromium (total)	(mg/kg)		U	27.6		12.6	7.300		218		7.240		6.750		50
Copper	(mg/kg)	92.2		84.9		221	120		1190		266		62.4		25
Nickel	(mg/kg)	10.4		15.7		8.480	4.180		110		42.6		10.7		13
Zinc	(mg/kg)	183		99.0		133	22.3		311		193		107		20
	Sample ID	EX58W10		FX58W11		EX5SW12	EY6B1		EX6B2		EY6B3		EX6SW1	1	
	Lab ID	C3622-03		C3622-01		C3622-02	C3109-03		C3109-04		C3109-05		C3100-01		Sita Spacifia
Paramatar List	Sample Type	C3022-03		C3022-01		C3022-02	Colop-05		C3109-04		Colog-05		C5100-01		Site Specific Standarda, Critaria
FRA Method 6010/7470	Sample Date	9/7/2011		9/7/2011		9/7/2011	7/21/2011		7/21/2011		7/21/2011		7/20/2011		and Guidance
Chromium (total)	(mg/kg)	15.8		10.8		17.2	6.080	Ι	121/2011		12.4	1	22.0	1	50
Copper	(mg/kg)	20.1		10.8		53.7	0.980 56 7	+	55.8		12.4		22.0		25
Nickel	(mg/kg)	0.550		12.8		11.7	6.450	+	16.3		40.3		30.0		13
Zing	(mg/kg)	9.550	ΤT	12.0	II	11./ II	280	+	10.3		45.5		215		20
Zinc	(IIIg/Kg)		U		U	0	280	_	127		204		213		20
	Sample ID	EX6SW2		EX6SW3		EX6SW4	EX6SW5		EX6SW6		EX6SW7		EX6NB1		
	Lab ID	C3100-02		C3100-03		C3100-04	C3100-05		C3100-06		C3109-06		C3265-15		Site Specific
Parameter List	Sample Type	Soil		Soil		Soil	Soil		Soil		Soil		Soil		Standards, Criteria,
EPA Method 6010/7470	Sample Date	7/20/2011		7/20/2011		7/20/2011	7/20/2011		7/20/2011		7/21/2011		8/4/2011		and Guidance
Chromium (total)	(mg/kg)	86.3		19.8		16.1	9.090		9.430		18.4			U	50
Copper	(mg/kg)	2430		49.5		283	220		76.1		1670		102		25
Nickel	(mg/kg)	71.1		122		596	11.2		23.2		41.3		11.3		13
Zinc	(mg/kg)	558		281		358	84.3		159		473		114		20
	Coursela ID	EV(MD)		EVOICWI		EVOICIU2	EVOIDW2		EVOICUU		EVOIDUS		EVONEWIC	1	
	Sample ID	C2265_16		C2265.06		EX0INSW2	EX0NSW3		EX0INSW4		EA0INSW3		C2265 14		a:. a
	Lab ID Samula Tuna	C3203-10		C3203-00		C3203-07	C3203-08		C3203-09		C3203-13		C3203-14		Site Specific
Parameter List	Sample Type	8/4/2011		8/4/2011		8/4/2011	8/4/2011		8/4/2011		8/4/2011		8/4/2011	_	Standards, Criteria,
Chromium (tots)	(mg/kg)	0/4/2011	П	0/4/2011	II	0/4/2011	0/4/2011	T	0/4/2011	Τĭ	0/4/2011	Τĭ	0/4/2011	Τī	50
Copper	(mg/kg)	54.0	U	214	U	162	22.6		12.8	U	140	0	61.5	U	25
Niekol	(mg/kg)	54.9		10.8		102	23.0	_	13.0		149	<u> </u>	01.5 8.060		12
Zing	(mg/kg)	14.0	-	10.8		271	5.420	+	1.790		19.5	-	8.000	\vdash	15
Zinc	(mg/kg)	146		399		3/1	69.0		152		168		75.7		20

	Sample ID	Sample ID EX7P1		EX7P2		EX7P3		EX7P4		EX7P5			Effects Dongo	
	Lab ID D1315-01			D1315-02		D1315-03		D1315-04		D1315-05				
Parameter List	Sample Type	Sediment		Sediment		Sediment	Sediment		Sediment		Effects Range	Effects Range		
EPA Method 6010/7470	Sample Date	1/27/2012		1/27/2012		1/27/2012		1/27/2012		1/27/2012		Low (mg/kg)	(mg/kg)	
Arsenic	(mg/kg)	13.3		17.2		10.9		3.81		8.48		8.2	70	
Cadmium	(mg/kg)	0.512		0.981		4.04		0.123	J	0.309	J	1.2	9.6	
Chromium	(mg/kg)	40.7		55.2		97.4		17.4		42.6		81	370	
Copper	(mg/kg)	177		299		134		42.2		91.5		34	270	
Iron ^(a)	(mg/kg)	14000		21100		21900		5630		11900		2%	4%	
Lead	(mg/kg)	46.8		76.1		228		24.5		40.9		46.7	218	
Mercury	(mg/kg)	0.373		0.492		1.86	D	0.152		0.202		0.15	0.71	
Nickel	(mg/kg)	15.8		16.7		23.3		5.28		15.3		20.9	51.6	
Silver	(mg/kg)		U		U	4.05			U		U	1	3.7	
Zinc	(mg/kg)	141		318		206		44.8		100		150	410	
NOTE: EPA = U.S. En	uvronmental Protect	ion Agency												

TABLE 8 SUMMARY OF REMAINING SEDIMENT CONTAMINATION ABOVE SITE-SPECIFIC CLEANUP OBJECTIVES FOR METALS

mg/kg = Millirgrams per kilogram

= Indicates the reported value was less than the Contract Required Detection Limit, but greater than or equal to the Method Detection Limit.

D = Indicates the reported value is from a dilution.

U = Non-detect, detection below the method detection limit.

Data provided by Chemtech Consulting Group. Only analytes that were detected in at least one sample are shown.

Concentration values in BOLD indicate that analyte was detected above the Effects Range-Low. Concentration values in ITALICS indicate that analyte was detected above the Effects Range-Median.

J

TABLE 9A SUMMARY OF GROUNDWATER CONTAMINATION ABOVE SITE-SPECIFIC CLEANUP OBJECTIVES FOR VOCs

	Sample ID	MW-08S		MW-08D		MW-09S		MW-09D		MW-10S C5040-05		MW-10D C5040-06		Duplicate C5040-07		Trip Blank C5040-21		NYSDEC Ambient Water Ouality
Parameter List	Sample Type	Groundwater	r	Groundwate	Groundwater		Groundwater	r	Groundwate	er	Groundwate	r	Groundwater		QA/QC		Standard Class GA	
EPA Method 8260B	Sample Date	12/14/2011		12/14/2011	12/14/2011			12/14/2011		12/14/2011		12/14/2011		12/14/2011		NA		(µg/L)
Acetone	(µg/L)	(<25)	U	(<25)	U	44		(<25)	U	4	J	(<25)	U	47		(<25)	U	50 (g)
cis-1,2-Dichloroethene	(µg/L)	8.4		50		82		51		6.9		(<5.0)	U	67		(<5)	U	5 (s)
Methyl tert-butyl ether	(µg/L)	3	J	(<5.0)	U	2	J	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5)	U	10 (g)
Tetrachloroethene (PCE)	(µg/L)	390	D	3,000	D	7		1,200	D	5.6		6.7		7		(<5)	U	5 (s)
trans-1,2-Dichloroethene	(µg/L)	(<5.0)	U	1	J	(<5.0)	U	1.9	J	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5)	U	5 (s)
Trichloroethene (TCE)	(µg/L)	9.4		140	JD	14		180	JD	(<5.0)	U	(<5.0)	U	7		(<5)	U	5 (s)
Vinyl chloride	(µg/L)	(<5.0)	U	(<5.0)	U	88		10		(<5.0)	U	(<5.0)	U	75		(<5)	U	2 (s)
 ID = Identification QA/QC = Quality assuran NA = Not applicable NYSDEC = New York Statug/L = micrograms provide U = Non-detect, d J = Indicates the Duplicate sample was collep Data provided by Chemtech Concentration values in BO April 2014 Revision - New 	ce/quality control be Department of Ei er Liter = parts pe etection below the reported value was cted at MW-09S. I Consulting Group CD indicate that a monitoring wells b	nvironmental Conse er billion (ppb). e method detection l less than the Contra s obtained by analysi b. Only analytes that malyte was detected MW-11S and MW-1	rvatior imit. act Rec is at a s were c above 1D wi	uired Detection Li econdary dilution f letected in at least the NYSDEC Amb I be sampled in Sn	mit, but factor. one samp pient Wa ring 201	greater than or equa ole are shown. ter Quality Standard 4' data will be provi	l to th l (g) g ided ii	e Instrument Detecti uidance value, (s) sta n a letter renort and/	ion Lin andard	nit. value. rdic Review Renor	1							

		1011 000		NUL AOD		1011 000				100		101/100		D II I		NVSDEC Ambient	
	Sample ID	MW-085		MW-08D		MW-098		MW-09D		MW-108		MW-10D		Duplicate		Water Quality	
	Lab ID	C5040-01	C5040-01 C5040-02		C5040-03		C5040-04		C5040-05		C5040-06		C5040-07		Standard		
Parameter List	Sample Type	Groundwater		Groundwater		Groundwater	Groundwater			Groundwater		Groundwater		Groundwater		Class GA	
EPA Method 6010/7470	Sample Date	12/14/2011		12/14/2011	12/14/2011		12/14/2011			12/14/2011		12/14/2011		12/14/2011		(µg/L)	
Aluminum	(µg/L)	485		65.5		1,010		1,570		903		550		995	T		
Arsenic	(µg/L)	(<10)	U	(<10)	U	(<10)	U	(<10)	U	5.76	J	(<10)	U	(<10)	U	25 (s)	
Barium	(µg/L)	81.6		35.5	J	119		46.2	J	71.1		13.2	J	116		1,000 (s)	
Boron	(µg/L)	188		169		554		73.6		779		74.4		573		1,000 (s)	
Cadmium	(µg/L)	0.709	J	1.41	J	1.37	J	0.853	J	(<3)	U	(<3)	U	1.46	J	5 (s)	
Calcium	(µg/L)	32,700		100,000		60,300		36,000		33,200		13,500		58,300			
Chromium (total)	(µg/L)	58.5		5.69		11.9		12.5		12.5		6.57		68.8		50 (s)	
Copper	(µg/L)	15.5		7.91	J	6.8	J	4.64	J	12.3		(<10)	U	(<10)	U	200 (s)	
Iron	(µg/L)	11,800		21,500		21,900		14,500		3,950		2,080		22,000		300 (s)	
Lead	(µg/L)	3	J	(<6)	U	(<6)	U	3.68	J	4.13	J	(<6)	U	3.01	J	25 (s)	
Magnesium	(µg/L)	3,480		10,200		19,600		7,740		3,430		6,010		19,200		35,000 (g)	
Manganese	(µg/L)	239		1,050		807		1,980		106		227		778		300 (s)	
Nickel	(µg/L)	20.4		10.4	J	(<20)	U	7.17	J	6.11	J	(<20)	U	30.9		100 (s)	
Potassium	(µg/L)	4,150.0		7,370		14,000		3,880		6,950		3,340		14,200			
Silver	(µg/L)	(<5)	U	(<5)	U	(<5)	U	(<5)	U	(<5)	U	1.61	J	1.51	J	50 (s)	
Sodium	(µg/L)	105,000		106,000		227,000		63,600		144,000		66,400		225,000		20,000 (s)	
Thallium	(µg/L)	2.55	J	2.43	J	(<20)	U	(<20)	U	(<20)	U	(<20)	U	2.73	J	0.5 (g)	
Vanadium	(µg/L)	(<20)	U	(<20)	U	(<20)	U	(<20)	U	8.46	J	(<20)	U	(<20)	U		
Zinc	(µg/L)	22.8		21		24.1		13.9	J	15.7	J	18.3	J	17.3	J	2,000 (g)	
NOTE: EPA = U.S. Enivronm	nental Protection Age	ency.															
ID = Identification	1																
NYSDEC = New York State	e Department of Envi	ironmental Conserva	tion.														
μg/L = micrograms pe	er Liter = parts per b	oillion (ppb).															
= No applicable	e standard																
U = Non-detect, d	etection below the m	ethod detection limit															
J = Indicates the reported value was less than the Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit.																	
Duplicate was collected at MW-09S.																	
Duplicate was enlected at it in volume. Data movided by Chemitech Consulting Group. Only analytes that were detected in at least one sample are shown.																	
Concentration values in BO	LD indicate that ana	lyte was detected ab	ove the	NYSDEC Ambient V	Vater	Ouality Standard (g) s	uidar	ce value. (s) standar	d value	e.							
April 2014 Revision - New	monitoring wells MV	V-11S and MW-11D	will be	sampled in Spring 20)14; d	ata will be provided in	n a let	ter report and/or Per	iodic F	Review Report.							

TABLE 9B SUMMARY OF GROUNDWATER CONTAMINATION ABOVE SITE-SPECIFIC CLEANUP OBJECTIVES FOR METALS

Metal Etching Co. Site (130110) Freeport, New York

APPENDIX A

ENVIRONMENTAL NOTICES

Metal Etching Owner: Apache Realty Corporation Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 155 and 157

ENVIRONMENTAL NOTICE

THIS ENVIRONMENTAL NOTICE is made the $5^{-1/4}$ day of <u>Marcel</u> 2014, by the New York State Department of Environmental Conservation (Department), having an office for the transaction of business at 625 Broadway, Albany, New York 12233.

WHEREAS, a parcel of real property located at the address of 435 Main Street and 24 Ray Street in the Incorporated Village of Freeport, Town of Hempstead, County of Nassau and State of New York, known and designated on the tax map of the County Clerk of Nassau as tax map parcel numbers: Section 62. Block 45 Lot 155, being the same as that property conveyed to Grantor by deed dated March 15, 1983 and recorded in the Nassau County Clerk's Office in Liber 9463 at Page 571 and Section 62. Block 45 Lot 157, being the same as that property conveyed to Grantor by deed dated August 2, 1983 and recorded October 4, 1983 in Liber 9505 at Page 357, comprising approximately 0.81 +/- acres, being more particularly described in the Property Description attached hereto and made a part hereof in Appendix "A,", and hereinafter referred to as "the Property" is the subject of a remedial program performed by the Department; and

WHEREAS, the Department approved a cleanup to address contamination disposed at the Property and such cleanup was conditioned upon certain limitations.

NOW, THEREFORE, the Department provides notice that:

1. h.

FIRST, the part of lands subject to this Environmental Notice is as shown on a survey map dated April 12, 2013 prepared by MJ Engineering and Land Surveying, P.C., attached to this Notice as Appendix "B" and made a part hereof.

SECOND, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, where contamination remains at the Property subject to the provisions of the Site Management Plan ("SMP"), there shall be no disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results or may result in a significantly increased threat of harm or damage at any site as a result of exposure to soils. A violation of this provision is a violation of 6 NYCRR 375-1.1 1(b)(2).

THIRD, no person shall disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of engineering controls required for the Remedy, including but not limited to those engineering controls described in the SMP and listed below, unless in each instance they first obtain a written waiver of such prohibition from the Department or Relevant Agency.

FOURTH, the remedy was designed to be protective for Commercial or Industrial uses. Therefore, any use for purposes other than Commercial or Industrial uses without the express written waiver of such prohibition by the Relevant Agency may result in a significantly Metal Etching Owner: Apache Realty Corporation Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 155 and 157

increased threat of harm or damage at any site.

4 6

FIFTH, the no person shall use the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Department or Relevant Agency. Use of the groundwater without appropriate treatment may result in a significantly increased threat of harm or damage at any site.

SIXTH, it is a violation of 6 NYCRR 375-1.11(b) to use the Property in a manner inconsistent with this environmental notice.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

By:

Robert W. Schick, P.E., Director Division of Environmental Remediation

STATE OF NEW YORK) ss: COUNTY OF ALBANY)

On the <u>5</u> day of <u>Mach</u>, in the year 20_, before me, Robert W. Schick, the undersigned, personally appeared, and is personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

State of New Notary Public York

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenected, County Commission Express August 22, 20

Metal Etching Owner: Apache Realty Corporation Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 155 and 157

Appendix A

METES AND BOUNDS DESCRIPTION

ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND SITUATE, LYING AND BEING IN THE INCORPORATED VILLAGE OF FREEPORT, COUNTY OF NASSAU AND STATE OF NEW YORK MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT ON THE EASTERLY SIDE OF SOUTH MAIN STREET AT ITS INTERSECTION WITH THE DIVISION LINE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE SOUTH AND LANDS NOW OR FORMERLY FREEPORT CREEK ASSOCIATES TO THE NORTH, BEING 113.10' SOUTHERLY FROM THE CORNER FORMED BY THE INTERSECTION OF THE EASTERLY SIDE OF SOUTH MAIN STREET AND THE SOUTHERLY SIDE OF RAY STREET;

RUNNING THENCE ALONG SAID DIVISION LINE THE FOLLOWING TWO (2) COURSES:

1) S 86°19'00" E, 331.25' TO A POINT; 2) N 12°15'00" W, 199.17' TO A POINT ON THE SOUTH SIDE OF RAY STREET;

THENCE ALONG RAY STREET IN PART AND LANDS NOWOR FORMERLY BWMHIGH & DRY INC. THE FOLLOWING TWO (2) COURSES:

1) N 77°45'00" E, 33.26' TO A POINT; 2) S 60°06'00" E, 146.22' TO A POINT AT THE WESTERLY EDGE OF FREEPORT CREEK;

THENCE RUNNING ALONG FREEPORT CREEK THE FOLLOWING THIRTEEN (13) COURSES:

S 27°30'08" E, 3.52' TO A POINT;
 S 46°43'34" E, 19.95' TO A POINT;
 S 54°48'18" E, 13.53' TO A POINT;
 S 13°15'20" E, 12.03' TO A POINT;
 S 10°14'04" W, 20.87' TO A POINT;
 S 31°12'03" W, 13.01' TO A POINT;
 S 35°49'59" W, 17.03' TO A POINT;
 S 47°18'43" W, 23.33' TO A POINT;
 S 62°36'32" W, 23.33' TO A POINT;
 S 70°16'31" W, 40.11' TO A POINT;
 S 86°19'00" E, 9.70' TO A POINT;
 S 61°16'44" W, 95 3' TO A POINT;

4) ¹⁰⁴

13) S 61°16'43"W, 95.3' TO A POINT ON THE DMSION UNE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE NORTH AND LANDS NOW OR FORMERLY OF FREEPORT MOTOR INN & BOAT RENTAL TO THE SOUTH; THENCE ALONG SAID DIMENSION LINE N 77°43'08" W, 289.63' TO A POINT AT THE EASTERLY SIDE OF SOUTH MAIN STREET;

THENCE NORTHERLY ALONG THE EAST SIDE OF SOUTH MAIN STREET N 04°35'45" E, 15.95' TO THE POINT AND PLACE OF BEGINNING CONTAINING 0.81 ACRES OF LAND, MORE OR LESS.

BEING AND INTENDING TO DESCRIBE THE SAME PARCEL CONVEYED TO APACHE REALTY CORP., FROM FREEPORT CREEK PROPERTIES, INC. BY DEED DATED AUGUST 2, 1983 AND RECORDED IN LIBER 9505 AT PAGE 357 AT THE NASSAU COUNTY CLERK'S OFFICE AND ALSO THAT PARCEL CONVEYED TO APACHE REALTY CORP., FROM FREDERICK J. VALENTINE BY DEED DATED MARCH 15, 1983 AND RECORDED IN LIBER 9463 AT PAGE 571 AT THE NASSAU COUNTY CLERK'S OFFICE.

APPENDIX B

SURVEY

- 1) MAP PREPARED FROM A FIELD SURVEY CONDUCTED BY M.J. ENGINEERING AND LAND SURVEYING P.C., DATED JUNE 2008 AND UPDATED OCTOBER 2012.
- 2) PARCELS SURVEYED IS FURTHER REFERENCED TO THE TOWN OF FREEPORT SECTION 62, BLOCK 45, LOTS 155 AND 157. 3) UNDERGROUND UTILITY LOCATIONS SHOWN HEREON ARE APPROXIMATE IN NATURE ONLY, AND SUBJECT TO VERIFICATION BY EXCAVATION.
- 4) SUBJECT TO ANY AND ALL RIGHTS, EASEMENTS, RESTRICTIONS, OR COVENANTS OF RECORD.
- 5) VERTICAL DATUM BASED UPON NAVO 88 TRANSFERRED TO THE SITE BY CONVENTIONAL METHODS.
- 6) BUILDING HEIGHTS SHOWN ARE MEASURED FROM GRADE. 7) SITE IS LOCATED 480'± SOUTH OF THE INTERSECTION OF ATLANTIC AVE AT THE INTERSECTION OF MAIN ST. AND RAY ST

8) NORTH REFERENCE SHOWN HEREON PER DEED REFERENCE ONE. 9) THIS SURVEY HAS BEEN REVISED WITH THE BENEFIT OF TITLE REPORT PREPARED BY FRONTIER ABSTRACT AND RESEARCH SERVICES AS AGENT FOR CHICAGO TITLE INSURANCE COMPANY, COMMITMENT NO. 5032264, DATED OCTOBER

1057-

KIM-191

E 16V=-4.02 12" ROP

S NV=-2.87 "0" KOU

W HV=-4.07 2" RSH

DEED REFERENCES:

2, 2012.

- 1) CONVEYANCE FROM FREEPORT CREEK PROPERTIES, INC. TO APACHE REALTY CORP. DATED AUGUST 2, 1983 IN THE NASSAU COUNTY CLERK'S OFFICE IN LIBER 9505 OF DEEDS, PAGE 357 AS FILED ON OCTOBER 4, 1983.
- 2) CONVEYANCE FROM FREDERICK J. VALENTINE TO APACHE REALTY CORP. DATED MARCH 15, 1983 IN THE NASSAU COUNTY CLERK'S OFFICE IN LIBER 9463 OF DEEDS, PAGE 571 AS FILED MARCH 22, 1983.

MAP REFERENCES:

LOVERSTE

- 1) MAP ENTITLED "DESCRIPTIVE PROPERTY", PREPARED BY VITO A. VALENTI, DATED APRIL 1,
- 2) MAP ENTITLED "MAP OF PROPERTY SITUATED AT FREEPORT TOWN OF HEMPSTEAD
- NASSAU COUNTY-N.Y.", PREPARED BY BALDWIN & CORNELIUS, P.C. DATED AUGUST 2, 1985 LAST REVISED NOVEMBER 21, 1988.
- 3) MAP ENTITLED " MAP OF SUNSHINE PARK AT FREEPORT, NEW YORK" DATED JUNE 4. 1921 FILED IN NASSAU COUNTY CLERK'S OFFICE AS MAP NUMBER 179.

MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS: BEGINNING AT A POINT ON THE EASTERLY SIDE OF SOUTH MAIN STREET AT ITS INTERSECTION WITH THE DIVISION LINE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE SOUTH AND LANDS NOW OR FORMERLY FREEPORT CREEK ASSOCIATES TO THE NORTH,

BEING 113.10' SOUTHERLY FROM THE CORNER FORMED BY THE INTERSECTION OF THE EASTERLY SIDE OF SOUTH MAIN STREET AND THE SOUTHERLY SIDE OF RAY STREET; RUNNING THENCE ALONG SAID DIVISION LINE THE FOLLOWING TWO (2) COURSES:

1) S 86'19'00" E, 331.25' TO A POINT; N 12'15'00" W, 199.17' TO A POINT ON THE SOUTH SIDE OF RAY

THENCE ALONG RAY STREET IN PART AND LANDS NOW OR FORMERLY BWM HIGH & DRY INC. THE FOLLOWING TWO (2) COURSES:

1) N 77*45'00" E, 33.26' TO A POINT;

2) S 60'06'00" E, 146.22' TO A POINT AT THE WESTERLY EDGE OF FREEPORT CREEK; THENCE RUNNING ALONG FREEPORT CREEK THE FOLLOWING THIRTEEN (13) COURSES:

1)	S	27'30'08"	E,	3.52' 1	TO A	F	POINT;
2)	S	46"43'34"	E,	19.95	TO	A	POINT;
3)	S	54'48'18"	Ε,	13.53'	TO	A	POINT;
4)	S	13'15'20"	Ε,	12.03'	TO	A	POINT;
5)	S	06'14'04"	₩.	20.87	TO	A	POINT;
5)	S	31"12'03"	W,	13.01'	TO	A	POINT;
7)	S	35'49'59"	W,	17.03'	TO	A	POINT;
B)	S	47'18'43"	W,	23.33'	TO	A	POINT;
9)	S	62'36'32"	W,	23.33'	TO	A	POINT;
10)	S	71'43'13"	W,	27.02	TO	A	POINT;
11)	S	70"16'31"	W,	40.11	TO	A	POINT;
12)	S	85'19'00"	Ε,	9.70' 1	O A	F	POINT;

RETAINING -

ERICK PAVERS

+ CONCRETE -----

RECOR

RETAKINE -15:41

BRICK PAVERS

BRICK PILLAR

P.O.B. OF ENVIRONMENTAL

<u>S 86°19'00"</u>

EASEMENT AREA

WAL

13) S 61"16'43"W, 95.3' TO A POINT ON THE DIVISION LINE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE NORTH AND LANDS NOW OR FORMERLY OF FREEPORT MOTOR INN & BOAT RENTAL TO THE SOUTH; THENCE ALONG SAID DIVISION LINE N 77"43'08" W, 289.63' TO A POINT AT THE EASTERLY SIDE OF SOUTH MAIN STREET:

THENCE NORTHERLY ALONG THE EAST SIDE OF SOUTH MAIN STREET N 04'35'45" E, 15.95' TO THE POINT AND PLACE OF BEGINNING CONTAINING 0.81 ACRES OF LAND, MORE OR

BEING AND INTENDING TO DESCRIBE THE SAME PARCEL CONVEYED TO APACHE REALTY CORP., FROM FREEPORT CREEK PROPERTIES, INC. BY DEED DATED AUGUST 2, 1983 AND RECORDED IN LIBER 9505 AT PAGE 357 AT THE NASSAU COUNTY CLERK'S OFFICE AND ALSO THAT PARCEL CONVEYED TO APACHE REALTY CORP., FROM FREDERICK J. VALENTINE BY DEED DATED MARCH 15, 1983 AND RECORDED IN LIBER 9463 AT PAGE 571 AT THE NASSAU COUNTY CLERK'S OFFICE.

17-535

ONE STORY

RRICK

BUILDING

802 NP. 17 8

1,706 56

-3.07

STRE

MAIN

SOUTH

N 04°35'45"E

15.95'

10. RIPARIAN RIGHTS AND EASEMENTS TO OTHERS OVER FREEPORT CREEK.

- 12. RIGHTS OF THE UNITED STATES GOVERNMENT, THE STATE OF NEW YORK AND NASSAU COUNTY OR ANY OF THEIR DEPARTMENTS OR AGENCIES TO REGULATE AND CONTROL THE USE OF PIERS. BULKHEADS, LAND UNDER WATER AND LAND ADJACENT THERETO, AND TO TAKE LAND NOW OR FORMERLY UNDER WATER WITHOUT COMPENSATION.
- 13. RIGHTS OF THE UNITED STATES GOVERNMENT TO ESTABLISH HARBOR, BULKHEAD OR PIERHEAD LINES OR TO CHANGE OR ALTER ANY SUCH EXISTING LINES AND TO REMOVE OR COMPEL THE REMOVAL OF FILL AND IMPROVEMENTS THEREON INCLUDING BUILDINGS OR OTHER STRUCTURES, FROM LAND NOW OR FORMERLY LYING BELOW THE HIGH WATER MARK OF FREEPORT CREEK.

PARCEL A (LIBER 9505, PAGE 357)

15. EASEMENTS CONTAINED IN THAT CERTAIN DECLARATION OF EASEMENT OF RIGHT OF WAY RECORDED IN LIBER 9505 OF DEEDS, PAGE 364 AS SHOWN HEREON DOES AFFECT THE PREMISES HEREIN DESCRIBED.

CERTIFIED TO:

BENGEMARK A

11 = 7.54

"X" OUT ON EVERYNAME DONNE" KUT

1) THE PEOPLE OF THE STATE OF NEW YORK ACTING THROUGH THEIR COMMISSIONER OF THE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

2) APACHE REALTY CORP

3) FRONTIER ABSTRACT & RESEARCH SERVICES, INC AS AN AGENT OF CHICAGO TITLE INSURANCE COMPANY

UNAUTHORIZED ALTERATIONS OR ADDITION TO THE SURVEY MAP IS A VIOLATION OF SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW. COPIES OF THIS SURVEY MAP NOT BEARING THE LAND SURVEYOR'S SEAL AND SIGNED WITH RED INK SHALL NOT BE CONSIDERED VALID COPIES.

CERTIFICATION INDICATED OR IMPLIED HEREON SHALL ONLY RUN TO THE PARTY FOR WHOM THIS SURVEY WAS PREPARED FOR AND ON THEIR BEHALF TO THE ADDITIONAL PARTIES LISTED HEREON, CERTIFICATIONS SHOWN HEREON ARE NOT TRANSFERABLE TO ADDITIONAL PARTIES OR SUBSEQUENT OWNERS NOT LISTED HEREON.

Metal Etching Owner: BWM High & Dry, Inc. Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 24 and 54

ENVIRONMENTAL NOTICE

THIS ENVIRONMENTAL NOTICE is made the 5^{-4} day of $\cancel{MARCH}_{20}20^{-4}$, by the New York State Department of Environmental Conservation (Department), having an office for the transaction of business at 625 Broadway, Albany, New York 12233.

WHEREAS, a parcel of real property located at the address of South End Place and 16 South End Place in the Incorporated Village of Freeport, Town of Hempstead, County of Nassau and State of New York, known and designated on the tax map of the County Clerk of Nassau as tax map parcel numbers: Section 62. Block 45 Lot(s) 24 and 54, being the same as that property conveyed to Grantor by deed dated December 26, 2000 and recorded in the Nassau County Clerk's Office in Liber 11291 at Page 972, comprising approximately 0.35 +/- acres, and hereinafter more fully described in property description and attached hereto as Appendix "A," attached to this notice and made a part hereof, and hereinafter referred to as "the Property" is the subject of a remedial program performed by the Department; and

WHEREAS, the Department approved a cleanup to address contamination disposed at the Property and such cleanup was conditioned upon certain limitations.

NOW, THEREFORE, the Department provides notice that:

FIRST, the part of lands subject to this Environmental Notice is as shown on a survey map dated April 12, 2013 prepared by M J Engineering and Land Surveying, P.C. attached to this Notice as Appendix "B" and made a part hereof.

SECOND, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, where contamination remains at the Property subject to the provisions of the Site Management Plan ("SMP"), there shall be no disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results or may result in a significantly increased threat of harm or damage at any site as a result of exposure to soils. A violation of this provision is a violation of 6 NYCRR 375-1.1 1(b)(2).

THIRD, no person shall disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of engineering controls required for the Remedy, including but not limited to those engineering controls described in the SMP and listed below, unless in each instance they first obtain a written waiver of such prohibition from the Department or Relevant Agency.

FOURTH, the remedy was designed to be protective for Commercial or Industrial uses. Therefore, any use for purposes other than Commercial or Industrial uses without the express written waiver of such prohibition by the Relevant Agency may result in a significantly increased threat of harm or damage at any site.

Metal Etching Owner: BWM High & Dry, Inc. Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 24 and 54

FIFTH, the no person shall use the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Department or Relevant Agency. Use of the groundwater without appropriate treatment may result in a significantly increased threat of harm or damage at any site.

SIXTH, it is a violation of 6 NYCRR 375-1.11(b) to use the Property in a manner inconsistent with this environmental notice.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

By:

Robert W. Schick, P.E., Director Division of Environmental Remediation

STATE OF NEW YORK) ss: COUNTY OF ALBANY)

On the 5 day of 1/4 in the year 20/4, before me, Robert W. Schick, the undersigned, personally appeared, and is personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenested: County Commission Express August 22, 2014

Metal Etching Owner: BWM High & Dry, Inc. Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 24 and 54

Appendix A

METES AND BOUNDS DESCRIPTION

ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND SITUATE, LYING AND BEING IN THE INCORPORATED VILLAGE OF FREEPORT, COUNTY OF NASSAU AND STATE OF NEW YORK MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE CORNER FORMED BY THE INTERSECTION OF THE SOUTHERLY SIDE OF RAY STREET AND THE EASTERLY SIDE OF SOUTH END PLACE;

THENCE FROM SAID POINT OF BEGINNING RUNNING NORTHERLY ALONG THE EAST SIDE OF SOUTH END PLACE N 5°02'40" E, 74.86' TO A POINT ;

THENCE NORTH S 84°57" 20 E, 102' +/- TO A POINT AT THE WESTERLY EDGE OF FREEPORT CREEK;

THENCE RUNNING ALONG FREEPORT CREEK THE FOLLOWING FOUR (4) COURSES:

 S 13°22'30" W, 29.69' TO A POINT;
 S 59°50'30" E, 71.68' TO A POINT;
 S 21°46'50" E, 71.68' TO A POINT;
 S 41°03'10" W, 29.19' TO A POINT ON THE DIVISION LINE BETWEEN FREEPORT CREEK AND LANDS NOW OR FORMERLY OF APACHE REALTY CORP. TO THE SOUTH AND THE LANDS HEREIN DESCRIBED TO THE NORTH;

THENCE ALONG SAID DIVISION LINE THE FOLLOWING TWO (2) COURSES:

1) N 60°06' W, 181.71' TO A POINT; 2) S 77°45' W, 12.96' TO THE PLACE AND POINT OF BEGINNING CONTAINING 0.35 ACRES OF LAND MORE OR LESS.

BEING AND INTENDING TO DESCRIBE THE SAME PARCEL CONVEYED TO BWM HIGH & DRY INC., FROM AL GROVER AND ROSEMARIE GROVER, HUSBAND AND WIFE BY DEED DATED DECEMBER 26, 2000 AND RECORDED IN LIBER 11291 AT PAGE 972 AT THE NASSAU COUNTY CLERK'S OFFICE.

APPENDIX B

SURVEY

MAIN ST. AND RAY ST EAST.

COMMITMENT NO. 5032429, DATED OCTOBER 4, 2012.

- DRY INC. DATED DECEMBER 26, 2000 IN THE NASSAU COUNTY CLERK'S OFFICE IN LIBER 11291 OF DEEDS, PAGE 972 AS RECORDED ON

- REVISED NOVEMBER 21, 1988.

S 59'50'30" E, 71.68' TO A POINT;

S 41°03'10" W, 29.19' TO A POINT ON THE DIVISION LINE BETWEEN

Metal Etching Owner: Freeport Creek Associates Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 144,145 and 158

ENVIRONMENTAL NOTICE

THIS ENVIRONMENTAL NOTICE is made the $\frac{14}{2019}$ day of <u>M4401</u> 2019, by the New York State Department of Environmental Conservation (Department), having an office for the transaction of business at 625 Broadway, Albany, New York 12233.

WHEREAS, a parcel of real property located at the address of 435 Main Street; 325 Main Street and Ray Street in the Town of Hempstead, County of Nassau and State of New York, known and designated on the tax map of the County Clerk of Nassau as tax map parcel numbers: Section 62. Block 45 Lot(s) 144, 145 and 158, being the same as that property conveyed to Grantor by deed dated February 2, 1987 and recorded in the Nassau County Clerk's Office in Liber 9804 at Page 549, comprising approximately 1.08 +/- acres, and hereinafter more fully described in the Property Description and attached hereto as Appendix "A," attached to this notice and made a part hereof, and hereinafter referred to as "the Property" is the subject of a remedial program performed by the Department; and

WHEREAS, the Department approved a cleanup to address contamination disposed at the Property and such cleanup was conditioned upon certain limitations.

NOW, THEREFORE, the Department provides notice that:

FIRST, the part of lands subject to this Environmental Notice is as shown on a survey map dated April 12, 2013 prepared by M J Engineering and Land Surveying, P.C., attached to this Notice as Appendix "B" and made a part hereof.

SECOND, unless prior written approval by the Department or, if the Department shall no longer exist, any New York State agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency," is first obtained, where contamination remains at the Property subject to the provisions of the Site Management Plan ("SMP"), there shall be no disturbance or excavation of the Property which threatens the integrity of the engineering controls or which results or may result in a significantly increased threat of harm or damage at any site as a result of exposure to soils. A violation of this provision is a violation of 6 NYCRR 375-1.1 1(b)(2).

THIRD, no person shall disturb, remove, or otherwise interfere with the installation, use, operation, and maintenance of engineering controls required for the Remedy, including but not limited to those engineering controls described in the SMP and listed below, unless in each instance they first obtain a written waiver of such prohibition from the Department or Relevant Agency.

FOURTH, the remedy was designed to be protective for Commercial or Industrial uses. Therefore, any use for purposes other than Commercial or Industrial uses without the express written waiver of such prohibition by the Relevant Agency may result in a significantly increased threat of harm or damage at any site.

Metal Etching Owner: Freeport Creek Associates Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 144,145 and 158

FIFTH, the no person shall use the groundwater underlying the Property without treatment rendering it safe for drinking water or industrial purposes, as appropriate, unless the user first obtains permission to do so from the Department or Relevant Agency. Use of the groundwater without appropriate treatment may result in a significantly increased threat of harm or damage at any site.

SIXTH, it is a violation of 6 NYCRR 375-1.11(b) to use the Property in a manner inconsistent with this environmental notice.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below.

By:

Robert W. Schick, P.Ě., Director Division of Environmental Remediation

STATE OF NEW YORK) ss: COUNTY OF ALBANY)

On the 5 day of 4 and 5, in the year 20/4, before me, Robert W. Schick, the undersigned, personally appeared, and is personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenectedy County Commission Express August 22, 2014

Metal Etching Owner: Freeport Creek Associates Site No. 130110 435 South Main Street Nassau County, NY Tax Map ID: Section 62, Block 45, Lots 144,145 and 158

Appendix A

METES AND BOUNDS DESCRIPTION

ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND SITUATE, LYING AND BEING IN THE INCORPORATED VILLAGE OF FREEPORT, COUNTY OF NASSAU AND STATE OF NEW YORK MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT FORMED BY THE INTERSECTION OF THE EASTERLY SIDE OF SOUTH MAIN STREET AND THE SOUTHERLY SIDE OF RAY STREET;

RUNNING THENCE FROM SAID POINT OF BEGINNING EASTERLY, ALONG THE SOUTHERLY SIDE OF RAY STREET, N 77°45' E, 285.71' TO A POINT AT THE DIVISION LINE BETWEEN THE HEREIN DESCRIBED PARCEL TO THE WEST AND LANDS NOW OR FORMERLY OF APACHE REALTY CORP TO THE EAST;

THENCE ALONG SAID DIVISION LINE S 12°15'00" E, 199.17' TO A POINT;

THENCE CONTINUING ALONG SAID DMSION LINE N 86°19'00" W, 331.25' TO A POINT ON THE EASTERLY BOUNDS OF SOUTH MAIN STREET;

THENCE NORTHERLY ALONG THE EAST SIDE OF SOUTH MAIN STREET, N 04°35'45" E, 113.10' TO THE POINT AND PLACE OF BEGINNING;

CONTAINING 1.08 ACRES OF LAND MORE OR LESS.

BEING AND INTENDING TO DESCRIBE THE SAME PARCEL CONVEYIED TO FREEPORT CREEK ASSOCIATES FROM GLORIA STERN AND MIRIAM SOMMERFIELD BY DEED DATED FEBRUARY 2, 1987 AND RECORDED IN LIBER 9804 AT PAGE 549 AT THE NASSAU COUNTY CLERK'S OFFICE.

APPENDIX B

SURVEY

- DATED JUNE 2008 AND UPDATED OCTOBER 2012.
- LOTS 144, 145, AND 148.
- TO VERIFICATION BY EXCAVATION.
- ST. AND RAY ST EAST.
- ABSTRACT AND RESEARCH SERVICES AS AGENT FOR CHICAGO TITLE INSURANCE COMPANY,

- NASSAU COUNTY CLERK'S OFFICE IN LIBER 9804 OF DEEDS,

YORK MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

APPENDIX B

EXCAVATION WORK PLAN

APPENDIX B – EXCAVATION WORK PLAN

B-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the Department. Currently, this notification will be made to:

David Chiusano, Project Manager Site Remediation Engineer New York State Department of Conservation 625 Broadway 12th Floor Albany, New York 12233-7017

Email: djchiusa@gw.dec.state.ny.us

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control,
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP,
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120,

- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix B-1 of this document,
- Identification of disposal facilities for potential waste streams,
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

B-2 SOIL SCREENING METHODS

Prior to intrusive soil screening, on-site utilities shall be field located. Soil screening is to take place prior to any excavation or disposal of soil from within the site boundaries. Soil boring methods are recommended for soil screening at the site, due to asphalt/porous pavement cover; however, depending on the extent of the planned excavation, test pit methods may be used, following saw-cutting of asphalt. Soil samples shall be collected at a minimum of one per 500 cubic yards of planned soil excavation, and analyzed for VOCs by EPA Method 8260B, SVOCs by EPA Method 8270C, and TAL Metals and mercury by EPA Method 6010/7470, or per the disposal facility's requirements, if applicable.

Visual, olfactory and instrument-based soil screening will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal, material that requires testing, material that can be returned to the subsurface, and material that can be used as cover soil.

B-3 STOCKPILE METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC.

B-4 MATERIALS EXCAVATION AND LOAD OUT

Asphalt, porous pavement, or concrete shall be saw-cut, removed and stockpiled prior to excavation of underlying soil. Excavated soil shall be stockpiled separate from asphalt or concrete debris prior to load out. Excavations left open overnight or longer shall be surrounded by temporary construction fencing. A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material. The owner of the property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

If site conditions during excavation activities require that trucks drive over bare soil, a truck wash will be operated on-site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete. Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking. The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

B-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be washed prior to leaving the site if necessary. Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Trucks leaving the site shall go north on S Main Street and turn right on Mill Road. Continue right onto East Avenue, and then straight onto Guy Lombardo Avenue. Turn onto Sunrise Highway in either direction, depending on destination.

Map courtesy of maps.google.com

All trucks loaded with site materials will exit the vicinity of the site using only these approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development. Trucks will be prohibited from stopping and idling in the neighborhood outside the project site. Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

B-6 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of

soil/fill from this site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the preexcavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

B-7 MATERIALS REUSE ON-SITE

Analytical results from soil screening activities which are completed in accordance with section B-2 of this EWP will be used to determine if reuse is appropriate. Chemical criteria for on-site reuse of material have been approved by NYSDEC and are listed in Table 4 of the SMP. The qualified environmental professional will ensure that procedures defined for materials reuse in the SMP are followed and that unacceptable material does not remain on-site. Soil slated for reuse is to be stockpiled distinctly separate from soil to be disposed off-site.

On-site material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines. Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

B-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, but will be managed off-site.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

B-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system will be restored in a manner that complies with the Contract Documents. The demarcation layer, consisting of non-woven geotextile or equivalent material will be replaced to provide a visual reference to the top of the 'Remaining Contamination Zone', the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this Site Management Plan. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the 'Remaining Contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the Site Management Plan.

B-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site. The source of backfill supply shall be approved by the NYSDEC. The facility shall be operating under a valid NYSDEC Mining Permit or other applicable regulatory authority for the duration of the site work.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site. Material shall not contain man-made fills, trash, refuse, backfills from previous construction, root or other organic matter, frozen material, or any other deleterious materials. Material shall not contain free liquids when delivered, or placed and compacted.

All materials shall be sampled for Target Compound List (TCL) VOCs by USEPA Method 8260, TCL SVOCs by USEPA Method 8270, polychlorinated biphenyls (PCBs) by USEPA Method 8082, and TAL Metals by USEPA Method 6010/7000 series. All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.8(d) included as Table B-1. Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are listed in Table 1 of the SMP. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

B-11 STORMWATER POLLUTION PREVENTION

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC. All necessary repairs shall be made immediately. Accumulated sediments will be removed as required to keep the barrier and hay bale check functional. All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials. Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering. Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

B-12 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

All UST removal work shall be performed in accordance with Section 5.5 of the NYSDEC DER-10: Technical Guidance for Site Investigation and Remediation (May 2010). All UST removal work shall also comply with applicable local, county, state, and federal regulations. Ten days' notice must be provided to the NYSDEC DER prior to the closure of a regulated UST.

The contractor shall monitor the site with an explosimeter and an organic vapor detector to indicate the presence and concentration of flammable vapors and gas. The atmosphere in the bottom, middle, and top of the excavation shall be monitored with the explosimeter regularly until the tank is removed from the site. If unsafe working conditions exist at any point during removal, work shall be suspended immediately until it is determined that conditions are acceptable for resuming work.

During excavation, extreme caution shall be exercised in order to maintain the integrity of the UST. The contractor shall provide shoring and bracing where necessary to support existing structures. Excavated material shall be placed in a separate stockpile, sampled, and submitted for acceptance by an approved disposal facility.

Removal of each tank shall consist of opening the tank, cleaning the interior, removal of tank from the site, and disposal. This includes removal and disposal of all

service lines associated with each UST back to their source. Disposal shall be in strict accordance with NYSDEC and applicable local, county, state, and federal regulations. The contractor shall remove all liquid and sludge from the tank using explosion proof pumps. All equipment must be bonded to the tank and the tank must be grounded to a separate ground when purging the tank with compressed air or inert gas under pressure. The contractor shall avoid leakage from the tanks onto the surrounding soil by properly pumping the contents of the tanks into permitted transport vehicles. Transport vehicles for tank contents shall not remain on-site for more than 24 hours. The removed contents shall be disposed of according to appropriate federal, state, and local laws. If leakage or spillage occurs, the contractor shall immediately notify the NYSDEC Spill Case Hotline, and the Nassau County health department within 15 minutes.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for full a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the periodic reports prepared pursuant to Section 5 of the SMP.

B-13 COMMUNITY AIR MONITORING PLAN

Community air monitoring will be implemented to monitor for VOC and particulate levels at the perimeter of the work area. Total VOCs will be monitored continuously at the downwind perimeter of the work area daily using approved instrumentation. If total VOC levels exceed 5 parts per million (ppm) above background at the work area perimeter, work activities will be halted and monitoring continued. All readings will be recorded and available to the NYSDEC and New York State Department of Health (NYSDOH) personnel to review.

Because the site is in a densely populated area, with active commercial buildings adjacent to the site, a fixed monitoring station shall be located at the site perimeter, regardless of wind direction.

Exceedances of action levels listed in the Community Air Monitoring Plan will be reported to NYSDEC and NYSDOH Project Managers.

B-14 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors offsite. Specific odor control methods to be used as necessary will include odor masking agents. If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the property owner's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

B-15 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

B-16 OTHER NUISANCES

A plan for rodent control will be developed and utilized by the contractor prior to and during site clearing and site grubbing, and during all remedial work. A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.
APPENDIX C

MONITORING WELL CONSTRUCTION DETAILS

ERM-Northeast

WELL: MW-01

520 Broadhallow Road, Melville, NY 11747

ERM-Northeast

WELL: MW-04

520 Broadhallow Road, Melville, NY 11747

Project Name & Location	Project No.		Wate	er Level(s)		Site Elevation Datum (feet)
Metal Etching	0011475.2		(ft below top of PVC casing)			
Drilling Company	Foreman		Level			Ground Elevation (feet)
Delta Well And Pump			Date	Time	(feet)	
Surveyor					()	Top of Protective Steel Cap Elevation (feet)
Donald G. Dekenipp						7.41
Date and Time of Completion	Geologist					Top of Riser Pipe Elevation (feet)
9/13/04 \ 13:54	Mike Men	des	10/7/2004	7:53	5.49	7.07
				CON	ISTRU	ICTION DETAILS
Generalized Soil Description	<u>*Elevation</u>	**Depth			PROTEC	CTIVE STEEL CAP FLUSH WITH GROUND
						GROUND SURFACE
	╞───╪					
	7.07	0.00	<		WATEI	R TIGHT CAP WITH LOCK
	Γ	_		<	PROTE	CTIVE STEEL CASING CEMENTED IN PLACE
				<	BENTC	DNITE-CEMENT GROUT
	6.07 5.07 4.07	1.00 - 2.00 3.00 -		<	BENTC	DNITE SEAL
	-	-				DIAMETER: 2"
						MATERIAL: <u>PVC</u>
				<	WELL S	SCREEN
						SLOT SIZE:. <u>010</u>
						DIAMETER: <u>2</u>
						MATERIAL: <u>PVC</u>
				<	SAND	PACK
						TYPE: <u>#1 Morrie Sand</u>
	-5.93	13.00		<	BOTTC	DM CAP
	\Box \Box					
					BOTTC	DM OF BOREHOLE
KEWAKK5						
* Elevation (feet) above mean sea	a level unless no	ted	** Depth in f	eet below g	round s	surface

ERM-Northeast 520 Broadhallow Road, Melville, NY 11747

WELL: MW-05

Project Name & Location	Proiect No.		Wate	r Level(s)		Site Elevation Datum (feet)
Metal Etching	0011475	,	(# haloze to	n of PVC casing)		········
Drilling Company	Foreman	•	()1 <i>below</i> 10p	oj r v C cusii	level	Ground Elevation (feet)
Delta Well And Pump	,		Date	Time	(feet)	
Surveyor					Top of Protective Steel Cap Elevation (feet) 5.48	
Date and Time of Completion	Ceologist					Ton of Ricer Ding Flavation (feet)
9/13/04 \ 14:59	Mike Me	endes	10/7/2004	7:44	3.92	5.16
				<u>CON</u>	ISTRU	ICTION DETAILS
Generalized Soil Description	<u>*Elevation</u>	<u>**Depth</u>			PROTEC	CTIVE STEEL CAP FLUSH WITH GROUND
						GROUND SURFACE
	E 1 (0.00				
	5.16	0.00			DECTE	CTIVE STEEL CASING CENTRED IN DIACE
				<	PROTE	CTIVE STEEL CASING CEMENTED IN PLACE
				<	BENTC	DNITE-CEMENT GROUT
	4.16	1.00				
	4.10	1.00				
	2.17	2 00		<	BENTC	DNITE SEAL
	- 3.16	2.00			DICED	
		- 3.00		S	RISER	DIAMETER: 2"
						MATERIAL PVC
						MATERIAL <u>TVC</u>
				<	WELLS	SCREEN
						SLOT SIZE:. <u>010</u>
						DIAMETER: 2
						MATERIAL: <u>PVC</u>
				_	CAND	DACY
				~~~~~~~~~~	SAND	TYPE: #1 Morrie Sand
						<u></u>
	-13.00	13.00		<	BOTTO	DM CAP
					BOTTC	OM OF BOREHOLE
REMARKS						
* Elevation (feet) above mean sea	a level unless i	noted	** Depth in fe	eet below g	round s	urface

# **ERM-Northeast**

WELL: MW-06

520 Broadhallow Road, Melville, NY 11747



	Geolo	ogic L	.og an	d W MV	/ell Cons V-08 D/S	truction	Details	
		5.1	Old Dock I	Envi Boad	roTrac Ltd.	Vork 11080		
Client NYSOEC Haz Wash			OID DOCK I	Nuau,	Tapitalik, ivew	Depth to Wate	er Site	Elevation
Sile Name	<u> </u>	Address				Dale DT	W	
Freeport Metal Etchi	ng	435 South M	lain Street, Fre	eport, N	Y			
Drilling Company:		Method						
AARCO Date Started		Date Comple	quiped w/ rotai eled	ry auger			Méasunng	Point Elevation
11/10/2011		11/10/11	0100.					
Completion Depth:		ENVIROTR/	AC Geologist			1		
31		Michael Ros	e					
WELL	DEPTH	2	SAMPLES			001 050	001071011	
CONSTRUCTION (NTS)	(leet below	Keco-	BIOWS	PID		SULDES	CRIPTION	
(113)	grade)	(inches)	6 inches	(ppm)				
MW-08D / S								
		NA	NA	NA	0 <u>'-5'</u> (Pre-cleared) Fill matenal, concre to medium grained	ete and brick intermix I sand Dry to moist,	sed with brown to blac petroleum odor	k coarse
		NA	NA	313.2	<u>6'-30'</u> Fill matenal, brown gravel Wet at 6'	to black medium to	fine grained sand with	I SOME
	10 	NA	NA	NM				
	20							
		1						
	30							
		1						
Concrete								
						Deteile		
Gravel Pack					Bottom of Well Screen material	<u>Details:</u> 31', 14 2", 10-	, slot schedule 40 PVC	
					Casing material:	2" sch	edule 40 PVC	
Screen					Sand Pack	Mone #	#1	
End Cap					Surface Seal:	1-4° 10* bo	ll-down manhole	
NTS - Not to Scale	N	A - Nol Appli	cable	NM - N	lot Measured	DTW - Depth to V	Water DTP -	Depth to Product



	Geolo	ogic L	.og an	d W	/ell Cons v-09 s/D	truct	ion De	tails
		5	Old Dock I	Envi Road	roTrac Ltd.	Vork 11	980	
Client				toad,	rapitalik, itew	Depth	to Water	Sile Elevation
NYSDEC Haz Waste	e					(fl. from n	neasuring pl.)	
Site Name:		Address. 425 South M	lan Skool, Er	anort N	v	Dale	DTW	
Drilmo Company:	ug	Method:	an aneer, Fre	sepon, n	t.	1		
AARCO		Geoprobe e	quiped w/ rota	ry auger				Measuring Point Elevation
Date Starled.		Date Compl	eled:					
11/11/2011 Completion Depth:		11/11/11 ENV/IPOTR/	AC Geologict			{	1	
31		Michael Ros	ie ie					
WELL	DEPTH		SAMPLES					·
CONSTRUCTION	(feet below	Reco-	Blows			S	DIL DESCRIPTI	ON
(NTS)	grade)	very	per Supehoo	PID				
		(incres)	Unicites					
		NA	NA	NA	<u>0'-5'</u> (Pre-cleared) Fill material, concre to medium grained	ete and brick i sand Dry t	i intermixed with ο moist, petrole	brown to black coarse um odor
		NA	NA	313.2	<u>6'-30'</u> Fill material, brown gravel Wet at 6'	i to black me	dium to fine gra	ned sand with some
		NA	NA	NM				
	20				1			
	30				-			
LEGEND.								
Concrete								
Concrete								
Bentonite Seal					Well Construction Bottom of Well: Screen material:	Details:	32', 14' 2". 10-siol sch	edule 40 PVC
					Casing material:		2" schedule 4	) PVC
Screen					Sand Pack		Mone #1 1'-4'	
End Cap					Surface Seal		10" boll-down	manhole
NTS - Nol to Scale	N	A - Not Appli	cable	NM - N	lol Measured	DTW - D	Depth to Water	DTP - Depth to Product



	Geolo	ogic L	.og an	d W	lell Cons	truction <b>D</b>	etails
				M	W-10S		
		5.		Envi	roTrac Ltd.	Vork 110PD	
Client				vau,	Tapnank, New	Depth to Water	Sile Elevation
NYSDEC Haz Wasl	e	Address				(ft. from measuring pt.	<u>1</u>
Freeport Metal Etch	ing	435 South M	lain Street, Fre	eport, N	Y		-
Drilling Company		Method.			(1-0 II)		
Date Started		Date Compl	eted:	y auger			Measuring Point Elevation
11/10/2011		11/10/11	AC Coolooiati		_	4	
15'		Michael Ros					
WELL	DEPTH		SAMPLES			001 DE0.074	
(NTS)	(leet below l grade)	Reco- very	per	PID		SULDESCRI	PTION
		(inches)	6 inches	(ppm)			
MW-10S		NA	NA	NA	<u>0'-5'</u> (Pre-cleared) Ftll material, concre to medium grained	ete and brick intermoxed v sand. Dry to moist, petr	vith brown to black coarse oleum odor
		NA	NA	313 2	<u>6'-30'</u> Fill material, brown gravel, Wet <b>at</b> 6'	lo black medium to fine g	grained sand with some
	20	NA	NA	NM	-		
	30				-		
LEGEND							
Concrete							
Bentonite Sea	1				Well Construction	Details:	
Gravel Pack					Screen material:	2*, 10-slot	schedule 40 PVC
Screen					Casing material: Sand Pack:	2" scheduk Morie #1	9 40 PVC
End Cap					Bentonite Seal Surface Seal:	1'-4' 10" bott-do	wn manhole
NTS - Not to Scale	N.	I A - Nol Appl	cabie	NM - N	Tot Measured	DTW - Depth to Wate	ar DTP - Depth to Product



	Geolo	gic L	og an	d W	ell Cons	truction <b>D</b>	etails
				M	W-10D		
		5.0	d Dock R	Envi Road	roTrac Ltd. Yaphank New	York 11980	
Client [,]						Depth to Water	Site Elevation
NYSDEC Haz Waste	1	å delanan.				(R. from measuring p	<u>L)  </u>
Site Name: Freeport Melal Elchir	าต	Address: 435 South M	lain Street, Fre	eeport. N	IY	Dale DI W	-
Drilling Company.		Method	nunad w/ rola	n auger		1	Magnuring Brint Flourition
Date Started:		Date Comple	aled:	ry auger			Messening Fornt Lievation
11/11/2011		11/11/11					
Completion Depth		ENVIROTRA Michael Ros	AC Geologisl				
WELL	DEPTH	Inicitael 1403	SAMPLES			<u> </u>	
CONSTRUCTION (NTS)	(feet below grade)	Reco- very (inches)	Blows per 6 inches	PID (ppm)		SOIL DESCR	אסודים
MW-10D		NA	NA	NM	0 <u>'-5'</u> (Pre-cleared) Fill material, concru to medium grained	ele and brick intermixed sand Dry to moist, pet	with brown to black coarse roleum odor.
		NA	NA	NM	<u>6'-30'</u> Fill matenal, brown gravel. Wel at 6'	) to black medium to fine	grained sand with some
		NA	NA	NM			
LEGEND.							
Concrete							
Bentonite Seal					Well Construction Bottom of Well:	Details. 32'	
Gravel Pack					Screen material Casing material:	2", 10-słol 2" schedu	schedule 40 PVC le 40 PVC
End/Top Cap					Sano Pack. Bentonite Seal: Surface Seal.	Mone #1 1'-4' 10° bolt-do	own manhole
NTS - Nol to Scale	N	A - Not Appli	cable	NM - 1	Not Measured	DTW - Depth to Wat	er DTP - Depth to Product



# **APPENDIX D**

# **FIELD FORMS**

SITE-WIDE INSPECTION	Day:	Date:	
NYSDEC	Temperature: (F)	(am)	(pm)
	Wind Direction:	(am)	(pm)
METAL ETCHING SITE	Weather:	(am)	
NYSDEC Site # 130110		, , , , , , , , , , , , , , , , , , ,	
Contract #	Arrive at site	(am)	
Freeport, New York	Leave site:	(pm)	
Cite	<u> </u>		
Site	Security		
Evidence of vandalism (wells, protective cover dam	age):		
Evidence of cover system intrusion (ruts, burrows,	excavations):		
	,		
Evidence of penetrations (poles, posts, stakes):			
General site condition (gates, access, storm drains)	:		
Additional Comments:			

SITE-WIDE INSPECTION	Day:	Date:
	Asphalt Cover	
Evidence of settlement, rutting, potholes:	•	
Evidence of cracking, distortion, or disintegrat	ion:	
Additional Comments:		
D	rainage System	
Evidence of damage to storm drains:	<b>.</b>	
Evidence of stockpiles on porous pavement ar	eas:	
Evidence of ponding on porous pavement area	as:	
Evidence of spilled liquids (well tampering/ver	nt blowout):	
Additional Comments:		
Sub-Slab D	epressurization	Systems

acks in the slab that have not been sealed? If so, describe: e there any new

Are there any new cracks in structure walls? If so, describe:

#### SITE-WIDE INSPECTION

Day:	

Date:

Does system PVC pipe appear to be compromised in any way? If so, describe:

Does manometer read within range marked?

Is fan making any abnormal noises?

Is contact information on SSDS up to date?

Has the building use changed since the last inspection?

Has building heating, ventilation and air conditioning changed since the last inspection?

# **Inspection Photolog**



### Metal Etching Co., Inc. Site No. 130110 GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	Personnel:	Client:
		NYSDEC
Location:	Well Condition:	Weather:
Metal Etching Co., Inc. Site		
Sounding Method:	Gauge Date:	Measurement Ref:

Purge Date:	Purge Time:
Purge Method:	Field Technician:

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:				

			Wa	ter Quality	y Paramet	ers			
Time (hrs)	DTW (ft btoc)	Volume (Gal)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO mg/L)	Turbidity (ntu)

Total Quantity of Water Removed (gal):	Sampling Time:	
Samplers:	Split Sample With:	
Sampling Date:	Sample Type:	
COMMENTS AND OBSERVATIONS:		

#### NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing. Preparer's Name _____ Date/Time Prepared _____ Preparer's Affiliation _____ Phone No. Purpose of Investigation 1. OCCUPANT: Interviewed: Y / N Last Name: _____ First Name: _____ Address: County: Home Phone: Office Phone: 
 Number of Occupants/persons at this location
 Age of Occupants ______
 2. OWNER OR LANDLORD: (Check if same as occupant ) Interviewed: Y / N Last Name: First Name: Address: County: _____ Office Phone: _____ Home Phone: _____

#### **3. BUILDING CHARACTERISTICS Type of**

Buildir	uilding: (Circle appropriate response)										
	Residential	School	Commercial	l/Multi-use							
	Industrial	Church	Other:								
If the <b>p</b>	property is resid	ential, type? (C	Circle appropr	iate response)							
Ranch											
Raised	Ranch	2-Family Split Level		Colonial							
Cape C	od	Contempora	ry	Mobile Home							
Duplex		Apartment H	Iouse	Townhouses/Condos							
Modula	ır	Log Home		Other:							
If mul	tinle units how	v many?									

### If multiple units, how many?

If the property is commercial, type? Business Type(s) Does it include residences (i.e., multi-use)? Y / N If yes, how many?

#### **Other characteristics:**

Building age Number of floors Is the building insulated? Y / N How air tight? Tight / Average / Not Tight

### 4. AIRFLOW

### Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors Airflow near source Outdoor air infiltration Infiltration into air ducts

a. Above grade construction	: wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with _	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with _	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partia	lly finished
j. Sump present?	Y / N			
k. Water in sump?	Y / N / not applicable			

Basement/Lowest level depth below grade: _____(feet) Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

#### 6. HEATING, VENTING and AIR CONDITIONING

Type of heating system(s) used in this building: (circle all that apply –note primary)
Hot air circulation - Heat pump - Hot water baseboard - Space Heaters - Stream radiation - Radiant floor - Electric baseboard - Wood stove - Outdoor wood boiler - Other ______
The primary type of fuel used is:
Natural Gas - Fuel Oil - Kerosene - Electric - Propane - Solar - Wood - Coal
Domestic hot water tank fueled by: ______
Boiler/furnace located in: Basement - Outdoors - Main Floor - Other ______
Air conditioning: Central Air - Window units - Open Windows - None
Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

### **5. BASEMENT AND CONSTRUCTION CHARACTERISTICS** (Circle all that apply)

# 7. OCCUPANCY Is basement/lowest level occupied? Full-time - Occasionally - Seldom - Almost Never

## Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage)

Basement		
1 st Floor		
2 rd Floor	······	
4 th Floor		
8. FACTORS THAT MAY INFLUENCE INDOOR AII	R QUALI	ГҮ
a. Is there an attached garage?		Y / N
b. Does the garage have a separate heating unit?		Y / N / NA
c. Are petroleum-powered machines or vehicles		Y / N / NA
stored in the garage (e.g., lawnmower, atv, car)	Please s	pecify
d. Has the building ever had a fire?	Y / N	When?
e. Is a kerosene or unvented gas space heater present?	Y / N	Where?
f. Is there a workshop or hobby/craft area?	Y / N	Where & Type?
g. Is there smoking in the building?	Y / N	How frequently?
h. Have cleaning products been used recently?	Y / N	When & Type?
i. Have cosmetic products been used recently?	Y / N	When & Type?
months?	Y / N	When & Type?
k. Is there new carpet, drapes or other textiles?	Y / N	Where & When?
l. Have air fresheners been used recently?	Y / N	When & Type?
		If yes, where vented?
m. Is there a kitchen exhaust fan?	Y / N	If was with one wants d?
n. Is there a bathroom exhaust fan?	Y / N	If yes, where vented?
o. Is there a clothes dryer?	Y / N	If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y / N	When &Type?
Are there odors in the building? Y / N If yes, please describe:		

### Do any of the building occupants use solvents at work? Y / N

(e.g., chemical manufacturing or laboratory, auto mechanic or auto body shop, painting, fuel oil delivery, boiler mechanic, pesticide application, cosmetologist)

If yes, what types of solvents are used? If yes, are their clothes washed at work? Y / N

# **Do any of the building occupants regularly use or work at a dry-cleaning service?** (Circle appropriate response)

Yes, use dry-cleaning regularly (weekly) No

Yes, use dry-cleaning infrequently (monthly or less) Unknown

Yes, work at a dry-cleaning service

# **Is there a radon mitigation system for the building/structure?** Y / N Date of Installation: **Is the system active or passive?** Active/Passive

#### 9. WATER AND SEWAGE

Water Supply: Public Water Drilled Well Driven Well Dug Well Other: ______ Sewage Disposal: Public Sewer Septic Tank Leach Field Dry Well Other: ______

#### **10. RELOCATION INFORMATION (for oil spill residential emergency)**

□.a. Provide reasons why relocation is recommended:

□.**b. Residents choose to:** remain in home relocate to friends/family relocate to hotel/motel

.c. Responsibility for costs associated with reimbursement explained? Y / N

**d. Relocation package provided and explained to residents?** Y / N

### **11. FLOOR PLANS**

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

#### **Basement:**

### **First Floor:**

### **12. OUTDOOR PLOT**

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings. Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

	_ <b>_</b>																				
<u> </u>												 									
						-		-	-						_			_	_	_	
<u> </u>												 									
															_			_	_	_	
<u> </u>			 	 	 					 									_		
<u> </u>			 	 	 					 		 									
<u> </u>			 	 	 	L		L	L	 		 									
<u> </u>			 	 	 					 		 									
						-		-	-										_		

# **13. PRODUCT INVENTORY FORM**

Make & Model of field instrument used: ____

List specific products found in the residences that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	<b>Condition</b> *	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y / N

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible. BTSA\Sections\SIS\Oil Spills\Guidance Docs\Aiproto4.doc

### FIELD AIR SAMPLING FORM

Consultant			Project #:		
			Project Name:		
Address			Location:		
Location			Project Manager:		
Sample Location Information:					
Site ID Number: PID Meter Used:			Sampler(s):		
(Model, Serial #)			Building I.D. No.:		
SUMMA Canister Record:					
INDOOR AIR - FIRST FLOOR	INDOOR AIR - BASEMENT	SUBSLAB	SOIL GAS	OUTDOOR AIR	
Flow Regulator No.:	Flow Regulator No.:	Flow Regulator No.:		Flow Regulator No.:	
Canister Serial No.:	Canister Serial No.:	Canister Serial No.:		Canister Serial No.:	
Start Date/Time:	Start Date/Time:	Start Date/Time:		Start Date/Time:	
Start Pressure: (inches Hg)	Start Pressure:	Start Pressure:		Start Pressure:	
(incirco 11g)		(incino rig)			
Stop Date/Time:	Stop Date/Time:	Stop Date/Time:		Stop Date/Time:	
Stop Pressure: (inches Hø)	Stop Pressure: (inches Hg)	Stop Pressure:		Stop Pressure: (inches Hg)	
Sample ID:	Sample ID:	Sample ID:		Sample ID:	
*	*	*		1	
Other Sampling Information:					
Story/Level	Story/Level	Basement or		Direction	
<b>n</b>	P	Crawl Space?		from Building	
Koom	Room	(inches) [if present]		from Building	
				0	
Indoor Air Temp	Indoor Air Temp	Potential Vapor		Intake Height Above	
(°F)		Entry Points Observed?		Ground Level (ft.)	
Barometric	Barometric Pressure?	Ground Surface		Intake Tubing	
Pressure?		Condition (Crawl		Used?	
Intaka Haisht Abaya	Intaka Haight Abaya	Space Only)		Distance to	
Floor Level (ft.)	Floor Level (ft.)	If Crawl Space, intake		nearest Roadway	
		height			
Nationable Oder?	Nationable Odar?	National-Od2		Nationable Odar?	
PID Reading (ppb)	PID Reading (ppb)	PID Reading (ppb)	<u> </u>	PID Reading (ppb)	
Duplicate Sample?	Duplicate Sample?	Duplicate Sample?		Duplicate Sample?	
Comments:					
Sampler Signature:					

# **APPENDIX E**

# **QUALITY ASSURANCE PROJECT PLAN**

### **1. PURPOSE AND OBJECTIVES**

### 1.1 PURPOSE

This Quality Assurance Project Plan (QAPP) is for the site management work done for the Metal Etching site in the city of Freeport, Nassau County, New York (New York State Department of Environmental Conservation [NYSDEC] Site No. 130110). This QAPP contains site-specific procedures for the collection, analysis, and evaluation of data that will be legally and scientifically defensible.

## 1.2 QUALITY ASSURANCE PROJECT PLAN OBJECTIVES

This QAPP provides site-specific information and standard operating procedures applicable to all work performed at the site that. The information includes definitions and goals for data quality and required types and quantities of quality assurance (QA)/quality control (QC) samples. The procedures address sampling protocols; field documentation; sample handling, custody, and shipping; instrument calibration and maintenance; auditing; data reduction, validation, and reporting; corrective action requirements; and QA reporting. The Site Management Plan contains a site description and information on site field activities; such as, sample locations, sampling procedures, analytical methods, and reporting limits.

### 2. PROJECT ORGANIZATION AND RESPONSIBILITIES

While all personnel involved in an investigation and the generation of data are implicitly a part of the overall project management and QA/QC program, certain members of the Project Team have specifically designated responsibilities. Project responsibilities are summarized below.

## 2.1 CONSULTANT

The consultant responsible for site management will provide field support during groundwater sampling activities and evaluation of analytical data. The roles required in this project include:

- **Project QA/QC Officer**—The QA/QC Officer provides guidance on technical matters and reviews technical documents relating to the project. They assess the effectiveness of the QA/QC program and recommend modifications when applicable. Additionally, the QA/QC Officer may delegate technical guidance to specially trained individuals under his direction.
- **Project Manager**—The Project Manager provides overall coordination and preparation of the project activities. This includes coordination with NYSDEC, budget control, subcontractor performance, implementation of the QAPP, and allocation of resources and staffing to implement both the QA/QC program and the site Health and Safety Plan.
- *Site Manager*—The Site Manager will serve as the on-site contact person for field activities and tests. They will be responsible for coordinating the field activities, including inspecting and replacing equipment, preparing daily and interim reports, scheduling sampling and inspections, and coordinating shipment and receipt of samples and containers.

## 2.2 LABORATORY

Laboratory analyses for this project will be performed by an Environmental Laboratory Analytical Program (ELAP) certified laboratory. The laboratory will have its own provisions for conducting an internal QA/QC review of the data before they are released. The laboratories' contract supervisors will contact the consultant's Project Manager with any sample discrepancies or data concerns.

Electronic data deliverable formatted QA/QC reports will be filed by the analytical laboratories when data are submitted to the consultant. Corrective actions will be reported to the consultant's Project Manager along with the QA/QC report. The laboratories may be contacted directly by the consultant or NYSDEC personnel to discuss QA concerns. The consultant will act as laboratory coordinator on this project and all correspondence from the laboratories will be coordinated with the consultant's Project Manager.

### 3. SAMPLING RATIONALE, DESIGNATION, AND CONTAINERS

### 3.1 SAMPLING RATIONALE

The sampling rationale is presented for groundwater monitoring in the Site Management Plan. Laboratory quality control samples including field duplicates, matrix spike, and matrix spike duplicates are to be collected at a frequency of 1 per 20 samples. Field duplicates are two samples of the same matrix, which are collected, to the extent possible, from the same location at the same time using the same techniques. Field duplicates provide information on the precision of the sampling and analysis process. Matrix spike and matrix spike duplicates are two additional samples of the same matrix fortified with the analyte(s) of interest and analyzed to monitor measurement bias associated with the sample matrix.

The remedial investigation laboratory program includes the number of samples for each sample location, as well as QA/QC samples (Table 1).

### **3.2 SAMPLE DESIGNATION**

Field samples collected from the site will be assigned a unique sample tracking number. Sample/designation will be an alpha-numeric code, which will identify each sample by the site identification, matrix sampled, location number, and date of collection.

The following terminology will be used for the sample identification:

### • Groundwater Samples

— NYSDEC SITE ID-MW-XX

### **3.3 SAMPLE CONTAINERS**

Types of sample containers and preservatives required for sample collection will be determined by the analyzing laboratory. Sample containers will be properly washed, decontaminated, and the appropriate preservative will be added by the analytical laboratory. Containers with preservative will be labeled accordingly.

### **3.4 SAMPLE HOLDING TIMES**

Sample holding times will be in accordance with the NYSDEC Analytical Services Protocol (ASP) requirements. All samples shall be transferred to the analytical laboratory with enough time for the lab to process the samples before the holding time is expired.

### 3.5 SAMPLE TRACKING AND CUSTODY

The laboratory must satisfy the sample chain-of-custody requirements by implementing the following Standard Operating Procedures for laboratory/sample security:

- Samples are stored in a secure area
- Access to the laboratory is through a monitored area
- Visitors sign a visitor's log and are escorted while in the laboratory
- Only the designated sample custodians have keys to sample storage area(s)
- Transfers of samples in and out of storage are documented.

# 4. ANALYTICAL LABORATORY

The data collected during this investigation will be used to determine the presence and concentration of volatile organic compounds (VOCs) and metals in groundwater.

Groundwater samples collected during execution of the QAPP will be submitted to the approved analytical laboratory. The laboratory must be a New York State Department of Health ELAPcertified laboratory, meeting specifications for documentation, data reduction, and reporting. Preliminary analytical results will be provide within 14 days of sample receipt and full NYSDEC Analytical Services Protocol Category B deliverables and associated electronic data deliverables (EDDs) in Equis format will be provided to the consultant within 30 days of sample receipt.

## 4.1 CALIBRATION PROCEDURES AND FREQUENCY

Instruments and equipment used in this investigation are controlled by a formal calibration program, which verifies that equipment is of the proper type, range, accuracy, and precision to provide data compatible with specified requirements. Instruments and equipment that measure a quantity, or whose performance is expected at a stated level, are subject to calibration. Calibration is performed using reference standards or externally by calibration agencies or equipment manufacturers.

## 4.1.1 Calibration System

The following sections contain a discussion of the elements comprising the calibration system.

## **4.1.1.1 Calibration Procedures**

Written procedures are used for all instruments and equipment subject to calibration. Whenever possible, recognized procedures, such as those published by the American Society of Testing and Materials or United States Environmental Protection Agency (USEPA), or procedures provided by manufacturers, are adopted. If established procedures are not available, a procedure is developed considering the type of equipment, stability characteristics of the equipment, required accuracy, and the effect of operational error on the quantities measured.

## **4.1.1.2 Calibration Frequency**

Calibration frequency is based on the type of equipment, inherent stability, manufacturer's recommendations, values provided in recognized standards, intended data use, specified analytical methods, effect of error upon the measurement process, and prior experience.

## 4.1.1.3 Calibration Reference Standards

Two types of reference standards will be used by the standby laboratories for calibration:

- *Physical standards*, such as weights for calibrating balances and certified thermometers for calibrating working thermometers, refrigerators and ovens, are generally used for periodic calibration.
- *Chemical standards*, such as Standard Reference Materials provided by the National Institute of Standards and Technology or USEPA. These may include vendor-certified materials traceable to National Institute of Standards and Technology or USEPA Standard Reference Materials. These are primarily used for operational calibration.

# 4.1.1.4 Calibration Failure

Equipment that cannot be calibrated or becomes inoperable is removed from service. Such equipment must be repaired and satisfactorily recalibrated before re-use. For laboratory equipment that fails calibration, analysis cannot proceed until appropriate corrective action is taken and the analyst achieves an acceptable calibration.

Laboratory managers are responsible for development and implementation of a contingency plan for major equipment failure. The plan includes guidelines on waiting for repairs, use of other instrumentation, subcontracting analyses, and evaluating scheduled priorities.

## 4.1.1.5 Calibration Records

Records are prepared and maintained for each piece of equipment subject to calibration. Records demonstrating accuracy of preparation, stability, and proof of continuity of reference standards are also maintained. Copies of the raw calibration data are kept with the analytical sample data.

## 4.1.2 Operational Calibration

Operational calibration is generally performed as part of the analytical procedure and refers to those operations in which instrument response (in its broadest interpretation) is related to analyte concentration. Included is the preparation of a standard response (calibration) curve and often the analysis of blanks.

# 4.1.2.1 Preparation of Calibration Curve

Preparation of a standard calibration curve is accomplished by the analysis of calibration standards, which are prepared by adding the analyte(s) of interest to the solvent that is introduced into the instrument. The concentrations of the calibration standards are chosen to cover the working range of the instrument or method. Sample measurements are made within this working range. The calibration curve is prepared by plotting or regressing the instrument responses versus the analyte concentrations. Concentrations of the analyzed samples are back-calculated from the calibration curve.

### 4.1.2.2 Blanks

Reagent and/or solvent blanks are analyzed to assess if the materials used to prepare the standards are free from interfering substances that could affect the analysis. A method blank is prepared whenever samples are processed through steps that are not applied to the calibration standards.

### 4.1.3 Periodic Calibration

Periodic calibrations are performed for equipment (e.g., balances, thermometers) that is required in the analytical method, but that is not routinely calibrated as part of the analytical procedure.

### 4.2 FIELD EQUIPMENT CALIBRATION

The procedures and frequencies for the calibration of field equipment are provided below in the table below.

FIELI	D INSTRUMENTATION CALIBRA	ATION FREQUENCY								
Instrument	Frequency of Calibration Check	Calibration Standard								
pH Meter	Prior to use – daily	Commercially prepared pH buffer solutions (4.01, 7.00, 10.00)								
Conductivity Meter	Prior to use – daily	Commercially prepared saline solution (12.9 mS/cm)								
Water Level Meter	Prior to initiating field work	100-ft engineer's tape								
Dissolved Oxygen Meter	Per sampling event	Saturation								
Photoionization Detector	Prior to use – daily	100 ppm isobutylene								
Turbidity	Prior to use – daily	10 NTU, 200 NTU								
NOTE: NTU = Nephelometric turbidity units.										

### 5. ANALYTICAL TEST PARAMETERS

This QAPP will require the analysis of aqueous samples using USEPA Method 8260B for VOCs, and USEPA Method 6010/7470 for metals. Compound lists for each analytical method are included in Table 2.

### 6. ANALYTICAL DATA VALIDATION

The laboratory will review data prior to its release from the laboratory. Objectives for review are in accordance with the QA/QC objectives stated in the NYSDEC Division of Environmental Remediation-10 (DER-10). The laboratories are required to evaluate their ability to meet these objectives. Outlying data will be flagged in accordance with laboratory standard operating procedures and corrective action will be taken to rectify the problem.

In order to ensure the validity of analytical data generated by a project, it will be validated by an entity independent from the analysts and the project. The resumes of the personnel providing the data validation services shall be submitted for approval under a separate cover.

# TABLE 1 SITE CHARACTERIZATION ANALYTICAL PROGRAM

	Sample	VOCs (USEPA 8260B) and									
	Matrix	Metals (USEPA 6010/7470)									
No. of Samples		10									
Field Duplicate	Aqueous	1									
MS/MSD		2									
Total No. of An	Total No. of Analyses 13										
NOTE: USEPA =	U.S. Env	ironmental Protection Agency.									
MS/MSD= Matrix spike/matrix spike duplicate.											
Laboratory quality control samples will be collected at a rate											
of 1 per 20 samples, p	er matrix.										

USEPA METHOD 8260B (VOCs)	
Analyte	Reporting Limit µg/L
1,1,1,2-Tetrachloroethane	0.07
1,1,1-Trichloroethane	0.04
1,1,2,2-Tetrachloroethane	0.20
1.1.2-Trichloroethane	0.08
1.1-Dichloroethane	0.03
1 1-Dichloroethene	0.03
1.1-Dichloropropene	0.12
1.2.3-Trichloropropane	0.09
1 2-Dibromo-3-chloropropane	0.50
1 2-Dibromoethane	0.10
1 2-Dichlorobenzene	0.05
1 2-Dichloroethane	0.02
1.2-Dichloropropane	0.02
1 3-Dichlorobenzene	0.02
1 3-Dichloropropane	0.05
1.4-Dichlorobenzene	0.00
2 2-Dichloropropage	0.04
2.2-Diemotopiopane	0.08
2 Chlorotoulene	0.70
2-Chiorotoutene	0.08
2-riexaliolie	0.40
4-Chiofotoulene	0.06
4-Methyl-2-pentanone	1.2
Acetone	10
Benzene	0.03
Bromobenzene	0.11
Bromocnioromethene	0.09
Bromodicnioromethane	0.03
Bromoform	0.20
Bromomethane	0.03
Carbon disulfide	0.04
Carbon tetrachloride	0.02
Chlorobenzene	0.03
Chloroethane	0.09
Chloroform	0.04
Chloromethane	0.05
<i>cis</i> -1,2-dichloroethene	0.06
cis-1,3-dichloropropene	0.04
Dibromochloromethane	0.07
Dibromomethane	0.01
Dichlorodifluoromethane	0.11
Ethylbenzene	0.03
Isopropylbenzene	0.10
Methlyene chloride	0.08
n-Propylbenzene	0.10
Styrene	0.27
Tetrachloroethene	0.05
Toluene	0.08
trans-1,2-dichloroethene	0.04
trans-1,3-dichloropropene	0.04
Trichloroethene	0.02
Vinyl chloride	0.04
Xylene (Total)	10
	1.0

### TABLE 2 ANALYTE LIST AND ANALYTICAL REPORTING LIMITS

USEPA METHOD 6010/7470 (METALS)	
Analyte	Reporting Limit µg/L
Aluminum	0.0061
Antimony	0.0021
Arsenic	0.0025
Barium	0.00014
Beryllium	0.000053
Cadmium	0.00017
Calcium	0.017
Chromium	0.00055
Cobalt	0.00069
Copper	0.0013
Iron	0.0028
Lead	0.00088
Magnesium	0.0061
Manganese	0.00021
Mercury (Method 7470)	0.000012
Nickel	0.0012
Potassium	0.055
Selenium	0.0017
Silver	0.0008
Sodium	0.0054
Thallium	0.0026
Vanadium	0.0013
Zinc	0.0021
## **APPENDIX F**

## HISTORICAL SOIL VAPOR INTRUSION AIR MONITORING FORMS

This page intentionally left blank

#### **11. FLOOR PLANS**

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

**Basement:** 



#### **First Floor:**



#### **12. OUTDOOR PLOT**

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.



Appendix B

**Site Wide Inspection Forms** 

This page intentionally left blank

#### SITE-WIDE INSPECTION

Day
-----

NYSDEC	Temperature: (F)	55	(am)	65	(pm)	
	Wind Direction:		(am)		(pm)	
METAL ETCHING SITE	Weather:	(am) ove	ercast /	mist & fog		
NYSDEC Site # 130110		(pm) ove	ercast			
Contract # D-007624.09	Arrive at site	1130	(am)			
Freeport, New York	Leave site:		(pm)			
Site 9	Socurity					
Evidence of vandalism (wells, protective cover damag	e):					
No, wells are in good condition.						
Evidence of cover system intrusion (ruts, burrows, ex	cavations):					
Rutting and depressions in cover.						
Evidence of penetrations (poles, posts, stakes):						
Yes, but not in a permeable pavement area.						
General site condition (gates, access, storm drains):						
The gate is operational but needs repairs or to be replaced. The concrete around the entrance storm drains is severely broken. There is stormwater ponding and becomes backed up.						
Additional Comments:						
Should repair the site entry way storm drain.						

#### SITE-WIDE INSPECTION

Asphalt Cover
Evidence of settlement, rutting, potholes:
Yes, rutting in high traffic areas around painting shop.
Evidence of cracking, distortion, or disintegration:
Some breakdown on pad in front of the painting tent and to the left of the office, toward the boat racks.
Additional Comments:
Drainage System
Evidence of damage to storm drains:
Yes, the entry way is damaged due to heavy use.
Evidence of stockpiles on porous pavement areas:
No.
Evidence of ponding on porous pavement areas:
Yes, several places where ponding is occurring, noticeable with recent rains.
Evidence of spilled liquids:
No.
Additional Comments:
Sub-Slab Depressurization Systems
Are there any new cracks in the slab that have not been sealed? If so, describe:
No.
Are there any new cracks in structure walls? If so, describe:
No.

#### SITE-WIDE INSPECTION

Does system PVC pipe appear to be compromised in any way? If so, describe:
Near the top effluent, some cracking at the elbow.
Does manometer read within range marked?
Does manometer read within range marked?
No color left in manometer.
Is fan making any abnormal noises?
No.
Is contact information on SSDS up to date?
Yes.
Has the building use changed since the last inspection?
No
Has building heating, ventilation and air conditioning changed since the last inspection?
No.

This page intentionally left blank

Appendix C

**Monitoring Well Purge Logs** 

This page intentionally left blank



Well I.D.:	Personnel:	Client:	
MW-4	EC/KT	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	stripped screws	Overcast / 60F	
Sounding Method:	Gauge Date:	Measurement Ref:	
Solinist Tape	See Comments	TOC	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	
flush	See Comments	2"	

Purge Date:	Purge Time:
27-Apr-17	1520
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
See Comments	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
See Comments	#VALUE!	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
#VALUE!	#VALUE!	Bladder Pump		

Water Quality Parameters									
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
1523			0.3	6.80	-21	15.40	0.322	11.97	569.0
1526		0.9	0.3	6.71	19	14.45	0.319	9.10	316.0
1529		1.8	0.3						
1532		2.7	0.3	6.64	38	15.47	0.314	7.24	122.0
1535		3.6	0.3	6.63	40	14.17	0.314	7.30	65.5
1538		4.5	0.3	6.63	35	13.17	0.319	6.91	35.5
1541		5.4	0.3	6.62	32	13.13	0.320	6.77	4.4
1544		6.3	0.3	6.60	28	12.47	0.321	6.38	3.4
1547		7.2	0.3	6.59	26	12.71	0.321	6.22	2.7
1550		8.1	0.3	6.58	23	12.62	0.321	6.23	2.4
1553		9.0	0.3	6.57	23	12.48	0.321	6.2	2.2

Total Quantity of Water Removed (	L): 9.0	Sampling Time:	1553
Samplers:	EC/KT	Split Sample With:	DUP1-0517
Sampling Date:	4/27/2017	Sample Type:	Grab

COMMENTS AND OBSERVATIONS 0.2 ppt Salinity; DUP1-0517 Collected here



Well I.D.:	Personnel:	Client:	
MW-5R	EC/KT	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	Fog, Cloudy / 55F	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: See Comments	Measurement Ref: TOC	
Sounding Method: Solinist Tape Stick Up/Down (ft):	Gauge Date: See Comments Gauge Time:	Measurement Ref: TOC Well Diameter (in):	

Purge Date:	Purge Time:
28-Apr-17	0534
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume				
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:		
See Comments	0.16	flush		
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:		
See Comments	#VALUE!	Submersible		
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:		
#VALUE!	#VALUE!	Bladder Pump		

Water Quality Parameters									
Time (hrs)	DTW (ft btoc)	Volume (L)	Rate (Lpm)	pH (pH units)	ORP (mV)	Temp. (°C)	Cond. (mS/cm)	DO (mg/L)	Turbidity (ntu)
538			0.3	6.42	-136	10.41	1.58	0.00	17.4
541		0.9	0.3	6.40	-137	10.35	1.60	0.00	16.3
544		1.8	0.3	6.40	-137	10.34	1.61	0.00	14.9
547		2.7	0.3	6.37	-138	10.30	1.62	0.00	13.9
550		3.6	0.3	6.36	-138	10.26	1.63	0.00	11.1
553		4.5	0.3	6.36	-138	10.24	1.63	0.00	11.9
556		5.4	0.3	6.35	-139	10.22	1.64	0.00	10.9
559		6.3	0.3	6.35	-139	10.20	1.65	0.00	9.6

Total Quantity of Water Removed (L):	6	Sampling Time:	559
Samplers:	EC/KT	Split Sample With:	N/A
Sampling Date:	4/28/2017	Sample Type:	Grab
COMMENTS AND OBSERVATIONS:	4 cycles/min	0.075 L/Cycle	
	Sailinity 0.8 ppt @	0546	
Unable to gauge wells due to PFOA sample	ing protocol		



Well I.D.:	Personnel:	Client:	
MW-06	EC/KT	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	No Bolts	Overcast / 60F	
Sounding Method:	Gauge Date:	Measurement Ref:	
Sounding Method: Solinist Tape	Gauge Date: See Comments	Measurement Ref: TOC	
Sounding Method: Solinist Tape Stick Up/Down (ft):	Gauge Date: See Comments Gauge Time:	Measurement Ref: TOC Well Diameter (in):	

Purge Date:	Purge Time:
26-Apr-17	1458
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
See Comments	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
See Comments	#VALUE!	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
#VALUE!	#VALUE!	Bladder Pump			

Water Quality Parameters									
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
1458			0.3	6.3	-99	12.77		7.58	125.0
1506		0.9	0.3	6.02	-104	12.24		0.00	52.2
1509		1.8	0.3	5.97	-103	12.21	1.960	0.00	50.2
1512		2.7	0.3	5.95	-102	12.12	1.970	0.00	43.3
1515		3.6	0.3	5.95	-102	12.15	1.960	0.00	39.1
1518		4.5	0.3	5.93	-101	11.97	1.970	0.00	34.1
1521		5.4	0.3	5.92	-102	11.92	1.960	0.00	30.1
1524		6.3	0.3	5.94	-101	11.96	1.950	0.00	27.4
1527		7.2	0.3	5.94	-102	11.95	1.940	0.00	25.2
1530		8.1	0.3	5.94	-104	11.86	1.940	0.00	22.5
1533		9.0	0.3	5.95	-105	11.82	1.930	0.00	19.5
1536		9.9	0.3	5.98	-106	11.81	1.930	0.00	19.4
1539		10.8	0.3	5.98	-107	11.77	1.920	0.00	17.9

Total Quantity of Water Removed (L	<b>_):</b> 10.80	Sampling
Samplers:	EC/KT	Split Sam
Sampling Date:	4/26/2017	Sample T

 bling Time:
 1539

 Sample With:
 N/A

 ble Type:
 Grab

COMMENTS AND OBSERVATIONS:

230'/100 Flow



Well I.D.:	Personnel:	Client:
MW-08SR	EC/KT	NYSDEC
Location:	Well Condition:	Weather:
Metal Etching Co., Inc. Site	Good	Sunny / 75 F
Sounding Method:	Gauge Date:	Measurement Ref:
Sounding Method: Solinist Tape	Gauge Date: See Comments	Measurement Ref: TOC
Sounding Method: Solinist Tape Stick Up/Down (ft):	Gauge Date: See Comments Gauge Time:	Measurement Ref: TOC Well Diameter (in):

Purge Date:	Purge Time:
28-Apr-17	1400
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
See Comments	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
See Comments	#VALUE!	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
#VALUE!	#VALUE!	Bladder Pump			

Water Quality Parameters									
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
1412			0.3	7.35	78	16.90	0.525	0.00	116.0
1415		0.9	0.3	7.27	76	16.25	0.532	0.00	94.9
1418		1.8	0.3	7.24	74	15.80	0.534	0.00	82.1
1421		2.7	0.3	7.22	74	15.59	0.535	0.00	57.4
1426		3.6	0.3	7.23	73	15.47	0.534	0.00	25.5
1429		4.5	0.3	7.18	77	15.42	0.534	0.00	15.2
1432		5.4	0.3	7.23	78	15.30	0.534	0.00	11.4
1436		6.3	0.3	7.21	80	15.27	0.534	0.00	8.0
1442		7.2	0.3	7.30	76	16.21	0.524	0.00	7.4
1448		8.1	0.3	7.20	83	17.61	0.528	0.00	9.9
1451		9	0.3	7.20	86	15.65	0.529	0.00	8.2
1454		9.9	0.3	7.18	88	15.44	0.530	0.00	5.6
1457		10.8	0.3	7.18	89	15.44	0.530	0.00	4.6
1500		11.7	0.3	7.18	88	15.35	0.530	0.00	4.8
1503		12.6	0.3	7.18	88	15.32	0.530	0.00	4.5
1506		13.5	0.3	7.18	89	15.32	0.531	0.00	3.8
1516		15.3	0.3	7.18	90	15.16	0.53	0.00	3.6

Total Quantity of Water Removed (	<b>L):</b> 15.3
Samplers:	EC/KT
Sampling Date:	4/28/2017

Sampling Time:	1516
Split Sample With:	None
Sample Type:	Grab

COMMENTS AND OBSERVATIONS Pump stopped at 1445



Well I.D.:	Personnel:	Client:
MW-08DR	EC/KT	NYSDEC
Location:	Well Condition:	Weather:
Metal Etching Co., Inc. Site	Good	Sunny / 75F
Sounding Method:	Gauge Date:	Measurement Ref:
<b>Sounding Method:</b> Solinist Tape	Gauge Date: See Comments	Measurement Ref: TOC
Sounding Method: Solinist Tape Stick Up/Down (ft):	Gauge Date: See Comments Gauge Time:	Measurement Ref: TOC Well Diameter (in):

Purge Date:	Purge Time:
28-Apr-17	1410
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
See Comments	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
See Comments	#VALUE!	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
#VALUE!	#VALUE!	Bladder Pump			

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
1417			0.3	6.13	41	20.76	1.33	2.06	76.3
1418		0.9	0.3	6.05	21	21.18	1.25	0.00	74.0
1421		1.8	0.3	5.97	7	21.37	1.22	0.00	74.2
1423		2.7	0.3	5.95	-2	20.75	1.18	0.00	65.8
1426		3.6	0.3	5.93	-5	20.62	1.16	0.00	61.6
1429		4.5	0.3	5.92	-8	20.44	1.12	0.00	61.5
1432		5.4	0.3	5.93	-18	20.11	1.06	0.00	51.1
1435		6.3	0.3	5.93	-19	19.99	1.05	0.00	47.1
1438		7.2	0.3	5.93	-23	19.59	1.02	0.00	42.4
1441		8.1	0.3	5.94	-28	19.14	0.928	0.00	35.5
1444									
1448		9.0	0.3	5.98	-32	19.81	0.928	0.00	22.1
1451		9.9	0.3	5.96	-30	19.75	0.864	0.00	20.7
1454		10.8	0.3	5.96	-32	19.70	0.875	0.00	16.0
1457		11.7	0.3	6.00	-34	19.64	0.883	0.00	13.2
1500		12.6	0.3	5.97	-36	19.83	0.880	0.00	10.3
1503		13.5	0.3	5.98	-38	19.62	0.870	0.00	9.5
1506		14.4	0.3	5.98	-40	19.59	0.864	0.00	9.4
1509		15.3	0.3	5.99	-42	19.59	0.861	0.00	7.5
1512		16.2	0.3	6.00	-43	19.61	0.859	0.00	7.6
1515		17.1	0.3	6.01	-45	19.59	0.857	0.00	7.8
Total Quan	titur of Motor	Domovod (I	١.	17 10		Compling 7	- inc	4.6	
Fotal Quan	tity of water	Removed (L	.): 	17.10	Sampling Time:		ime:	1515	
Samplers:	ata.	-	EC	////	Split Sample With:				ne
Sampling D	ale:		4/28/	2017		Sample Ty	Je.	G	au
COMMENT	S AND OBSE	ERVATIONS:		ID-113		CPM - 4	0.075L/Cycl	e	
		Salinity - 0.6	ppt @ 1430			Changed ba	attery at 1443	}	



Well I.D.:	Personnel:	Client:	
MW-09S	EC/KT	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	Overcast / 60F	
Sounding Method:	Gauge Date:	Measurement Ref:	
<b>Sounding Method:</b> Solinist Tape	Gauge Date: See Comments	Measurement Ref: TOC	
Sounding Method: Solinist Tape Stick Up/Down (ft):	Gauge Date: See Comments Gauge Time:	Measurement Ref: TOC Well Diameter (in):	

Purge Date:	Purge Time:
27-Apr-17	1715
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
See Comments	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
See Comments	#VALUE!	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
#VALUE!	#VALUE!	Bladder Pump			

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
1732			0.3	6.26	3	14.50	0.536	0.00	0
1735		0.9	0.3	6.28	-3	14.29	0.525	0.00	0
1738		1.8	0.3	6.3	-8	14.25	0.473	0.00	1000
1741		2.7	0.3	6.3	-12	14.23	0.450	0.00	735
1744		3.6	0.3	6.31	-14	14.25	0.441	0.00	594
1747		4.5	0.3	6.33	-19	14.23	0.428	0.00	358
1750		5.4	0.3	6.34	-23	14.22	0.420	0.00	264
1753		6.3	0.3	6.34	-25	14.23	0.417	0.00	226
1756		7.2	0.3	6.34	-29	14.22	0.420	0.00	180
1759			0.3					0.00	
1800		8.1	0.3	6.47	-19	14.41	0.405	0.00	220
1803		9.0	0.3	6.45	-15	14.28	0.448	0.00	341
1806		9.9	0.3	6.32	-22	14.21	0.439	0.00	287
1809		10.8	0.3	6.35	-26	14.17	0.437	0.00	196
1812		11.7	0.3	6.35	-30	14.16	0.440	0.00	135
1815		12.6	0.3	6.36	-32	14.16	0.439	0.00	95.0
1818		13.5	0.3	6.37	-34	14.14	0.439	0.00	82.3
1821		14.4	0.3	6.36	-37	14.15	0.444	0.00	60.6
1824		15.3	0.3	6.36	-38	14.15	0.449	0.00	62.1
1827		16.2	0.3	6.36	-40	14.15	0.454	0.00	51.2
1830		17.1	0.3	6.38	-41	14.16	0.457	0.00	49.7

Total Quantity of Water Removed (L	): 17.10	Sampling Time:	1830
Samplers:	EC/KT	Split Sample With:	None
Sampling Date:	4/27/2017	Sample Type:	Grab
_			

COMMENTS AND OBSERVATIONS:

Cleaned Horiba Water Parameter Monitor at 1759 and 1802



Well I.D.:	Personnel:	Client:	
MW-9D	EC/KT	NYSDEC	
Location:	Well Condition:	Weather:	
Metal Etching Co., Inc. Site	Good	Overcast / 50F	
Sounding Method:	Gauge Date:	Measurement Ref:	
Solinist Tape	See Comments	тос	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	
a 1	0	O.I.	

Purge Date:	Purge Time:
27-Apr-17	1725
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
See Comments	0.16	flush				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
See Comments	#VALUE!	Submersible				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:				
#VALUE!	#VALUE!	Bladder Pump				

Water Quality Parameters									
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
1731			0.3	6.37	1	16.22	0.792	12.90	573
1734		0.9	0.3	6.23	9	16.23	0.755	9.21	538
1737		1.8	0.3	6.1	13	16.23	0.761	6.27	484
1740		2.7	0.3	6.02	15	16.06	0.776	0.00	683
1747		3.6	0.3	6.05	8	15.89	0.753	0.00	448
1750		4.5	0.3	6.02	-1	15.83	0.795	0.00	291
1753		5.4	0.3	6.02	-7	15.81	0.819	0.00	236
1756		6.3	0.3	6.03	-11	15.78	0.833	0.00	231
1759		7.2	0.3	6.05	-9	15.82	0.865	0.00	146
1802		8.1	0.3	6.05	-22	15.72	0.892	0.00	137
1805		9	0.3	6.06	-28	15.7	0.907	0.00	129
1808		9.9	0.3	6.06	-28	15.69	0.911	0.00	130
1811		10.8	0.3	6.07	-29	15.67	0.922	0.00	128
1814		11.7	0.3	6.1	-20	15.74	0.947	0.00	76.5
1817		12.6	0.3	6.09	-30	15.66	0.969	0.00	43.3
1820		13.5	0.3	6.10	-34	15.66	0.972	0.00	41.9
1823		14.4	0.3	6.10	-35	15.61	0.973	0.00	47.9
1				P					

Total Quantity of Water Removed (L):	
Samplers:	
Sampling Date:	

 14.4
 Sampling Time:

 Split Sample With:

 7
 Sample Type:

1823 None Grab

COMMENTS AND OBSERVATIONS Dark grey water to start with sheen

EC/KT

4/27/2017



Department of Environmental Conservation

#### Metal Etching Co., Inc. Site No. 130110 GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	Personnel:	Client:			
MW-10S	EC/KT	NYSDEC			
Location:	Well Condition:	Weather:			
Metal Etching Co., Inc. Site	Good	Sunny / 60F	Sunny / 60F		
Sounding Method:	Gauge Date:	Measurement Ref:			
Sounding Method: Solinist Tape	Gauge Date: See Comments	Measurement Ref: TOC			
Sounding Method: Solinist Tape Stick Up/Down (ft):	Gauge Date: See Comments Gauge Time:	Measurement Ref: TOC Well Diameter (in):			

Purge Date:	Purge Time:
26-Apr-17	1630
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
See Comments	0.16	flush				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
See Comments	#VALUE!	Submersible				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:				
#VALUE!	#VALUE!	Bladder Pump				

Water Quality Parameters									
Time   DTW   Volume   Rate   pH   ORP   Temp.   Cond.   DO								DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
1637			0.3	6.63	-73	13.22	0.798	0.00	108.0
1640		0.9	0.3	6.59	-90	12.76	0.796	0.00	34.8
1643		1.8	0.3	6.55	-97	12.64	0.803	0.00	13.5
1646		2.7	0.3	6.52	-101	12.54	0.811	0.00	10.4
1649		3.6	0.3	6.50	-105	12.52	0.814	0.00	13.6
1652		4.5	0.3	6.49	-107	12.51	0.814	0.00	13.6
1655		5.4	0.3	6.49	-110	12.50	0.814	0.00	15.0
1658		6.3	0.3	6.49	-112	12.53	0.815	0.00	15.2
1701		7.2	0.3	6.50	-114	12.53	0.816	0.00	14.0

Total Quantity of Water Removed (	L): 7.2
Samplers:	EC/KT
Sampling Date:	4/26/2017

Sampling Time: Split Sample With: Sample Type:

1701 None Grab

COMMENTS AND OBSERVATIONS 0.4 ppt - Salinity @ 1652



Well I.D.:	Personnel:	Client:
MW-10M	EC/KT	NYSDEC
Location:	Well Condition:	Weather:
Metal Etching Co., Inc. Site	Good	Overcast / 60F
Sounding Method:	Gauge Date:	Measurement Ref:
Sounding Method: Solinist Tape	Gauge Date: See Comments	Measurement Ref: TOC
Sounding Method: Solinist Tape Stick Up/Down (ft):	Gauge Date: See Comments Gauge Time:	Measurement Ref: TOC Well Diameter (in):

Purge Date:	Purge Time:
27-Apr-17	1315
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
See Comments	0.16	flush				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
See Comments	#VALUE!	Submersible				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:				
#VALUE!	#VALUE!	Bladder Pump				

Water Quality Parameters									
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
1334			0.3	6.17	63	15.61	1.440	16.10	253.0
1341		0.9	0.3	6.29	40	15.63	0.967	0.00	171.0
1344		1.8	0.3	6.25	24	15.65	0.963	0.00	101.0
1347		2.7	0.3	6.2	22	15.78	1.06	0.00	97.6
1350		3.6	0.3	6.19	17	15.80	1.08	0.00	95.2
1353		4.5	0.3	6.17	11	15.79	1.11	0.00	95
1356		5.4	0.3	6.17	8	15.72	1.14	0.00	93.0
1359		6.3	0.3	6.16	4	15.65	1.17	0.00	86.2
1402		7.2	0.3	6.16	2	15.62	1.19	0.00	85.8
1405		8.1	0.3	6.16	3	15.65	1.37	0.00	85.9
1408		9	0.3	6.16	-2	15.52	1.39	0.00	81.0
1411		9.9	0.3	6.15	-4	15.51	1.40	0.00	81.9
1414		10.8	0.3	6.25	-9	15.38	1.44	0.00	16.3
1417		11.7	0.3	6.19	3	15.28	1.43	0.00	18.8
1420		12.6	0.3	6.19	-2	15.23	1.43	0.00	18.9
1423		13.5	0.3	6.16	-5	15.21	1.43	0.00	15.7
1426		14.4	0.3	6.16	-6	15.22	1.42	0.00	13.0
1429		15.3	0.3	6.15	-8	15.23	1.42	0.00	12.4
1432		16.2	0.3	6.15	-9	15.18	1.43	0.00	12.2

 Samplers:
 EC/KT

 Sampling Date:
 4/27/2017

Sampling Time:1432Split Sample With:NoneSample Type:Grab

COMMENTS AND OBSERVATIONS Cleaned Horiba at 1334

Salinity 0.7 ppt at 1411



Well I.D.:	Personnel:	Client:
MW-10D	EC/KT	NYSDEC
Location:	Well Condition:	Weather:
Metal Etching Co., Inc. Site	Good	
Sounding Method:	Gauge Date:	Measurement Ref:
Solinist Tape	See Comments	TOC
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
fluin la	Can Commonte	0"

Purge Date:	Purge Time:
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
See Comments	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
See Comments	#VALUE!	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
#VALUE!	#VALUE!	Bladder Pump			

			Wa	ter Quality	/ Paramet	ers			
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(*C)	(mS/cm)	(mg/L)	(ntu)
1340			0.3	6.65	-67	15.28	0.588	1.01	700
1343		0.9	0.3	6.49	-58	15.05	0.588	0.00	580
1346		1.8	0.3	6.27	-46	14.96	0.585	0.00	536
1349		2.7	0.3	6.13	-36	14.94	0.580	0.00	513
1352		3.6	0.3	6.05	-30	14.94	0.575	0.00	475
1355		4.5	0.3	5.96	-25	14.96	0.571	0.00	441
1300		5.4	0.3	5.92	-21	14.94	0.565	0.00	432
1401		7.2	0.3	5.68	-10	14.97	0.566	0.00	303
1404		8.1	0.3	5.85	-1	15.04	0.500	0.00	320
1407		9.0	0.3	5.84	-1	15.04	0.572	0.00	308
1413		9.9	0.3	5.85	-3	15.07	0.576	0.00	291
1416		10.8	0.3	5.90	22	15.23	0.578	0.00	283
1419		11.7	0.3	5.81	9	15.10	0.586	0.00	325
1422		12.6	0.3	5.80	6	15.07	0.588	0.00	251
1425		13.5	0.3	5.81	4	15.10	0.593	0.00	222
1428		14.4	0.3	5.8	3	15.10	0.595	0.00	215
1431		15.3	0.3	5.79	2	15.08	0.600	0.00	207
1434		16.2	0.3	5.8	2	15.11	0.606	0.00	196
1437		17.1	0.3	5.81	20	15.20	0.607	0.00	188
1440		18.0	0.3	5.78	13	15.11	0.615	0.00	180
1443		18.9	0.3	5.72	9	15.10	0.627	0.00	161
1446		19.8	0.3	5.77	7	15.13	0.635	0.00	156
1449		20.7	0.3	5.76	7	15.11	0.648	0.00	150
1452		21.6	0.3	5.76	7	15.10	0.667	0.00	149
1455		22.5	0.3	5.76	7	15.11	0.677	0.00	130
1458		23.4	0.3	5.75	6	15.10	0.691	0.00	136
1501		24.3	0.3	5.74	6	15.10	0.710	0.00	126
1504		25.2	0.3	5.81	24	15.21	0.713	0.00	115
1507		26.1	0.3	5.77	16	15.12	0.742	9.57	130
1510		27.0	0.3	5.76	14	15.07	0.766	9.05	116.0
1513		27.9	0.3	5.75	10	15.09	0.79	0.09	107
1510		20.0	0.3	5.75	12	15.07	0.824	7.59	107
1572		30.6	0.3	5.74	10	15.00	0.024	7.53	06.8
1525		31.5	0.3	5.73	10	15.07	0.879	6.59	92.1
1528		32.4	0.3	5.74	10	15.08	0.897	6.24	89.8
1531		33.3	0.3	5.74	10	15.09	0.910	6.03	90.5
1534		34.2	0.3	5.73	10	15.13	0.964	5.39	83.2
1536		35.1	0.3	5.73	9	15.12	0.989	5.13	83
1539		36.0	0.3	5.73	10	15.14	1.030	4.76	78.3
1542		36.9	0.3	5.73	9	15.16	1.050	4.52	78.3
1545		37.8	0.3	5.73	10	15.19	1.07	4.35	77.9
1548		38.7	0.3	5.73	10	15.19	1.300	4.84	72.9
1551		39.6	0.3	5.72	10	15.19	1.360	3.56	70.4
1554		40.5	0.3	5.72	9	15.23	1.430	3.10	68
1557		41.4	0.3	5.72	9	15.20	1.500	2.71	64
1600		42.3	0.3	5.72	9	15.13	1.860	1.81	56
1603		43.2	0.3	5.72	9	15.12	1.820	1.82	55.3
1606		44.1	0.3	5.75	9	15.14	1.720	1.89	57.3
1619		45	0.3	5.71	20	15.25	1.960	0.00	53.1
1622		45.9	0.3	5.70	18	15.22	2.010	0.00	64.4
1625		46.8	0.3	5.70	18	15.20	2.020	0.00	58.3
1628		47.7	0.3	5.70	17	15.05	2.100	0.00	47.4
1631		48.0	0.3	5.70	10	15.04	2.150	0.00	45
1034		49.5	0.3	5.72	15	15.02	2.200	0.00	44.Z
l	1	1		1	1	1	I	1	1
Total Ouen	tity of Wator	Removed (	· ·	40 5		Sampling T	ime:	10	334
Samplere	any or water	itemoved (I	<b>-,</b> .	-+3.5 /KT	-	Solit Samo	In With	10	ne ne
Sampling F	)ate:		4/27	/2017	-	Sample Tv	ne.	6	rah
camping L			7/21/		-	campic Ty		0	

COMMENTS AND OBSERVATIONS: 0.3 ppt salinity at purge start Cleaned horiba at 1435 and 1501 Unable to gauge wells due to PFOA sampling protocol



Well I.D.:	Personnel:	Client:
MW-11S	EC/KT	NYSDEC
Location:	Well Condition:	Weather:
Metal Etching Co., Inc. Site	Good	Fog / 60F
Sounding Method:	Gauge Date:	Measurement Ref:
Solinist Tape	See Comments	TOC
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
flush	See Comments	2"

Purge Date:	Purge Time:
28-Apr-17	320
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
See Comments	0.16	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
See Comments	#VALUE!	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
#VALUE!	#VALUE!	Bladder Pump			

Water Quality Parameters									
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
0324			0.3	6.39	-149	14.99	1.21	6.21	>1000
0327		0.9	0.3	6.53	-186	14.40	1.05	0.00	>1000
0330		1.8	0.3	6.57	-186	14.42	1.03	0.00	>1000
0338		2.7	0.3	6.50	-113	14.49	1.06	0.00	>1000
0341		3.6	0.3	6.57	-189	14.28	1.04	0.00	>1000
0345		4.5	0.3	6.61	-200	14.24	1.02	0.00	>1000
0348		5.4	0.3	6.63	-205	14.04	1.01	0.00	900
0350		6.3	0.3	6.64	-208	13.99	1.01	0.00	>1000
0353		7.2	0.3	6.56	-139	13.88	1.01	0.00	745
0356		8.1	0.3	6.57	-188	13.87	1.01	0.00	589
0359		9.0	0.3	6.62	-204	13.80	1.00	0.00	415
0402		9.9	0.3	6.64	-208	13.77	1.00	0.00	312.0
0405		10.8	0.3	6.67	-212	13.7	1.00	0.00	256.0
0408		11.7	0.3	6.69	-212	13.66	1.00	0.00	194.0
0411		12.6	0.3	6.71	-212	13.62	0.997	0.00	155.0
0418		13.5	0.3	6.75	-212	13.57	0.996	0.00	152.0
0428		14.4	0.3	6.71	-113	13.41	1.06	0.00	253.0
0431		15.3	0.3	6.80	-128	13.32	1.06	0.00	223.0
0434		16.2	0.3	6.85	-136	13.25	1.06	0.00	254.0
0437		17.1	0.3	6.89	-143	13.20	1.06	0.00	217.0
0440		18.0	0.3	6.93	-153	13.2	1.06	0.00	182.0
0443		18.9	0.3	6.94	-155	13.18	1.06	0.00	144.0
0446		19.8	0.3	6.95	-157	13.18	1.06	0.00	130.0
0449		20.7	0.3	6.95	-159	13.17	1.06	0.00	118.0
0452		21.6	0.3	6.98	-160	13.2	1.05	0.00	96.2
0455		22.5	0.3	6.98	-163	13.13	1.03	0.00	87.2
0507		23.4	0.3	6.97	-167	13.17	1.05	0.00	64.8
0510		24.3	0.3	6.98	-168	13.11	1.04	0.00	54.6
0513		25.2	0.3	6.98	-170	13.10	1.05	0.00	49.7
0516		26.1	0.3	6.98	-170	13.08	1.06	0.00	46.6
0519		27.0	0.3	6.98	-172	13.09	1.05	0.00	48.4

# EC/KT Sa Samplers: EC/KT Sp Sampling Date: 4/28/2017 Sa

Sampling Time: Split Sample With: Sample Type: 0519 MS/MSD

COMMENTS AND OBSERVATIONS 0.6 ppt salinity; emptied and cleaned Horiba at 333

turbid with red/brown tint to start



Well I.D.:	Personnel:	Client:			
MW-11D	EC/KT	NYSDEC			
Location:	Well Condition:	Weather:			
Metal Etching Co., Inc. Site	Good	Overcast/60F	Overcast/60F		
Sounding Method:	Gauge Date:	Measurement Ref:			
Sounding Method: Solinist Tape	Gauge Date: See Comments	Measurement Ref: TOC			
Sounding Method: Solinist Tape Stick Up/Down (ft):	Gauge Date: See Comments Gauge Time:	Measurement Ref: TOC Well Diameter (in):			

Purge Date:	Purge Time:
28-Apr-17	332
Purge Method:	Field Technician:
Low Flow Bladder Pump	EC/KT

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
See Comments	0.163	flush			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
See Comments	#VALUE!	Submersible			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Designation:			
#VALUE!	#VALUE!	Bladder Pump			

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temp.	Cond.	DO	Turbidity
(hrs)	(ft btoc)	(L)	(Lpm)	(pH units)	(mV)	(°C)	(mS/cm)	(mg/L)	(ntu)
0332			0.3	6.53	153	15.15	1.96	0.63	12.8
0335		0.9	0.3	6.40	156	14.76	1.99	0.00	14.4
0338		1.8	0.3	6.33	157	14.6	2.00	0.00	12.8
0341		2.7	0.3	6.25	156	14.41	2.02	0.00	12.2
0344		3.6	0.3	6.23	154	14.29	2.03	0.00	11.6
0347		4.5	0.3	6.22	149	14.24	2.04	0.00	11.6
0350		5.4	0.3	6.21	146	14.15	2.05	0.00	11.6
0353		6.3	0.3	6.20	141	14.16	2.06	0.00	11.5
0356		7.2	0.3	6.19	138	14.12	2.07	0.00	11.4

Total Quantity of Water Removed (L):	7.2	Sampling Time:	0356
Samplers:	EC/KT	Split Sample With:	None
Sampling Date:	4/28/2017	Sample Type:	Grab
COMMENTS AND OBSERVATIONS:	4 cycles per minute	0.075 L/cycle	

COMMENTS AND OBSERVATIONS:

Appendix D

**Daily Field Reports** 

This page intentionally left blank

DAILY FIELD REPORT	Day: <u>W</u>	<u>/ednesday</u> Date: <u>26 April 2017</u>
R	Temperature: (F)	52-62
	Wind Direction:	NE
Project Name: Metal Etching, Inc.	Weather:	(am) overcast, rain
NYSDEC Site # 130110		(pm) overcast, light rain
Contract # D007624-09	Arrive at site:	1400 (pm)
Location: Freeport, New York	Leave site:	1800 (pm)
HEALTH & SAFETY:		
Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)	Yes ()	No (x)
Are monitoring results at acceptable levels? Soil	Yes ( )	n/a(x) * No()
Water	rs Yes ()	n/a(x) * No()
OTHER ITEMS:	res ( )	If No, provide comments
Site Sketch Attached:Yes ( )No ( x )Photos Taken:Yes ( )No ( x )		

#### DESCRIPTION OF DAILY WORK PERFORMED:

K. Thapa and E. Cummings (EA) on site for groundwater sampling. Sampled 2 wells during low tide.

Sample ID	<u>QA/QC</u>	Description
MW-06-0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS
MW-10S-0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS

#### CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

EA personnel: Kritika Thapa, Emily Cummings

#### VISITORS TO SITE:

None

#### PROJECT SCHEDULE ISSUES:

None

#### PROJECT BUDGET ISSUES:

None.

#### **ITEMS OF CONCERN:**

#### DAILY FIELD REPORT

#### COMMENTS:

None

ATTACHMENT(S) TO THIS REPORT:

None

#### SITE REPRESENTATIVE:

Name: Emily Cummings



DAILY FIELD REPORT	Day:	Thursday Date:	27 April 2017
®	Temperature: (F)	55-65	
	Wind Direction:	SSE	
Project Name: Metal Etching, Inc.	Weather:	(am) overcast	
NYSDEC Site # 130110		(pm) overcast	
Contract # D007624-09	Arrive at site:	1200 (am)	
Location: Freeport, New York	Leave site:	1800 (pm)	
HEALTH & SAFETY:			
Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)	? Yes ( )	No (x)	
Are monitoring results at acceptable levels?	Soil Yes ( )	n/a(x) *No	( )
	Waters Yes () Air Yes ()	n/a(x) *No n/a(x) *No	( )
OTHER ITEMS:	•	If No, provide commer	nts
Site Sketch Attached:Yes ( )No (Photos Taken:Yes ( )No (	x ) x )		

#### **DESCRIPTION OF DAILY WORK PERFORMED:**

K. Thapa and E. Cummings (EA) on site for groundwater sampling. Sampled 5 wells during low tide and conducted site wide inspection.

Sample ID	<u>QA/QC</u>	Description
MW-04 – 0517	DUP-01-0517	VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS
MW-09S – 0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS
MW-09D – 0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS
MW-10M – 0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS
MW-10D – 0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS

#### CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

EA personnel: Kritika Thapa, Emily Cummings

#### DAILY FIELD REPORT

#### **VISITORS TO SITE:**

None

PROJECT SCHEDULE ISSUES:

None

#### PROJECT BUDGET ISSUES:

None.

ITEMS OF CONCERN: None

#### COMMENTS:

#### None ATTACHMENT(S) TO THIS REPORT:

None

#### SITE REPRESENTATIVE:

Name: Emily Cummings



Evidence of ponding water onsite.



#### DAILY FIELD REPORT



Cracked pavement at site.



Onsite system.



Manometer from onsite system.

### Day: Thursday Date: 27 April 2017

This page intentionally left blank

DAILY FIELD REPORT	D	Day: <u>Friday</u> Date: <u>28 April 2017</u>
®	Temperature: (F)	) 55-75
	Wind Direction:	: SSW
Project Name: Metal Etching, Inc.	Weather:	: (am) overcast
NYSDEC Site # 130110		(pm) clear, sun
Contract # D007624-09	Arrive at site:	: 0300- (am) 0600
Location: Freeport, New York	Leave site:	: 1300- (pm) 1700
HEALTH & SAFETY:		
Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)	Yes ()	No (x)
Are monitoring results at acceptable levels?	Soil Yes ( )	) n/a(x) *No()
	Waters Yes ()	n/a(x) * No()
OTHER ITEMS:	All 163 ( ) •	If No, provide comments
Site Sketch Attached:Yes ( )No (Photos Taken:Yes ( )No (	x ) x )	

#### **DESCRIPTION OF DAILY WORK PERFORMED:**

K. Thapa and E. Cummings (EA) on site for groundwater sampling. Sampled 5 wells during low tide.

Sample ID	<u>QA/QC</u>	Description
MW-05R – 0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS
MW-08SR – 0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS
MW-08DR – 0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS
MW-11S – 0517	MS/MSD	VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS
MW-11D – 0517		VOCs / Metals / MNA – methane, ethane, ethene, chloride, sulfate, sulfide, TOC, nitrate, 1,4-dioxane, PFAS

#### CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

EA personnel: Kritika Thapa, Emily Cummings

#### DAILY FIELD REPORT

#### VISITORS TO SITE:

None

#### PROJECT SCHEDULE ISSUES:

None

#### **PROJECT BUDGET ISSUES:**

None.

### ITEMS OF CONCERN:

None

#### COMMENTS:

#### None ATTACHMENT(S) TO THIS REPORT:

None

#### SITE REPRESENTATIVE:

Name: Emily Cummings

Appendix E

# **Data Usability Summary Reports**

This page intentionally left blank


#### DATA USABILITY SUMMARY REPORT METAL ETCHING, FREEPORT, LONG ISLAND, NEW YORK

Client:	EA Engineering, Science & Technology, Inc., Syracuse, New York
SDG:	17E0006
Laboratory:	Con-Test Analytical Laboratory, East Longmeadow, Massachusetts
Site:	Metal Etching, Freeport, Long Island, New York
Date:	September 20, 2017

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-04-0517	17E0006-01	Water
2	DUP1-0517	17E0006-02	Water
3	MW-10S-0517	17E0006-03	Water
4	MW-10M-0517	17E0006-04	Water
5	MW-10D-0517	17E0006-05	Water
6	MW-06-0517	17E0006-06	Water
7	MW-9S-0517	17E0006-07	Water
8	MW-9D-0517	17E0006-08	Water
9	MW-11D-0517	17E0006-09	Water
10	MW-11S-0517	17E0006-10	Water
10MS	MW-11S-0517MS	17E0006-10MS	Water
10MSD	MW-11S-0517MSD	17E0006-10MSD	Water
11	MW-05R-0517	17E0006-11	Water
12	MW-8SR-0517	17E0006-12	Water
13	MW-8DR-0517	17E0006-13	Water
14	RB1	17E0006-14	Water
15	RB2	17E0006-15	Water
16*	TRIP BLANK 1	17E0006-16	Water
17†	FIELD BLANK 01	17E0006-17	Water
18†	FIELD BLANK 02	17E0006-18	Water

* - SVOC only † - PFC only

A Data Usability Summary Review was performed on the analytical data for thirteen water samples, two aqueous field blank samples, two aqueous equipment blank samples and on aqueous trip blank sample collected on April 26-28, 2017 by EA Engineering at the Metal Etching site in Freeport, Long Island, New York. The samples were analyzed under Environmental Protection Agency (USEPA) 'Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions' and the USEPA Method for PFCs.

Specific method references are as follows:

<u>Analysis</u> SVOCs (1,4-Dioxane) PFCs <u>Method References</u> USEPA SW-846 Method 8270D USEPA Method 537 The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-35A, Revision 0, June 2015: Semivolatile Data Validation;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

### Organics

- Data Completeness
- Holding times and sample preservation
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Method blank and field blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Target Compound Identification
- Internal standard area and retention time summary forms
- Compound Quantitation
- Field Duplicate sample precision

### **Overall Usability Issues:**

There was no rejection of data.

Overall the data is acceptable for the intended purposes as qualified for the following deficiencies.

- NEtFOSAA was qualified as estimated in one sample due to a low surrogate recovery.
- PFOS and PFHxS were qualified as estimated in one sample due to high MS/MSD recoveries.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

### Data Completeness

- The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.
- The cooler temperatures were 15.9°C and 13.1°C which is slightly high (>4° $\pm$ 2°C). No action was taken on this basis.

## Semivolatile Organic Compounds (1,4-Dioxane)

### Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

#### GC/MS Tuning

• All criteria were met.

#### Initial Calibration

• The initial calibration exhibited acceptable %RSD values and/or correlation coefficients and mean RRF values.

#### **Continuing Calibration**

• The continuing calibration exhibited acceptable %D values and RRF values.

#### Method Blank

• The method blanks were free of contamination.

### Field Blank

• The field QC samples were free of contamination.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
RB1	None - ND		2	<u> </u>
RB2	None - ND		- 21	
TRIP BLANK 1	None - ND	24	12. I	÷

#### Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

### Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

### Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

### Target Compound Identification

• All mass spectra and quantitation criteria were met.

### Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

### **Compound Quantitation**

• All criteria were met.

### Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

SVOC							
Compound	MW-04-0517 ug/L	DUP1-0517 ug/L	RPD	Qualifier			
None	ND	ND	÷.	2			

### Perfluorinated Compounds (PFCs)

### Holding Times

• All samples were extracted within 14 days for water samples and analyzed within 28 days.

### Initial Calibration

• All relative percent difference (%RSD) and/or correlation coefficients criteria were met.

### **Continuing Calibration**

• All percent difference (%D) criteria were met.

### Method Blank

• The method blanks were free of contamination.

### Field QC Blank

• The field QC samples were free of contamination.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
RB1	None - ND		(e:	8
RB2	None - ND	N.55		
FIELD BLANK 01	None - ND	1.55		
FIELD BLANK 02	None - ND	<u></u>	( <del>4</del> 2	=

### Surrogate Spike Recoveries

• The following table presents surrogate percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). For severely low surrogate recoveries (<10%), non-detected results in the affected samples are rejected (R) and are unusable for project objectives.

Sample ID	Surrogate	%R	Qualifier
17	d5-NEtFOSAA	44.5%	UJ

### Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS %R/MSD %R/ RPD	Qualifier
10	PFOS	159%/136%/OK	J
	PFHxS	133%/OK/OK	-

### Laboratory Control Sample (LCS)

• The LCS samples exhibited acceptable percent recoveries (%R).

#### Target Compound Identification

• All mass spectra and quantitation criteria were met.

#### Internal Standard (IS) Area Performance

 The following table presents samples that exceeded the -50%/+100% area criteria for internal standard areas. Non-detected results for the associated compounds are considered estimated and qualified (UJ). Positive results for the associated compounds are considered estimated and qualified (J). Non-detected compounds that exceed the lower limit by -25% area criteria are considered rejected (R) and unusable for project objectives.

Sample ID	Internal Standard	Area Count	Qualifier
6	d3-NMeFOSAA	High	None - Sample ND
9	d3-NMeFOSAA	High	None - Sample ND
13	d3-NMeFOSAA	High	None - Sample ND

#### Compound Quantitation

• All criteria were met.

### Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

	F	PFCs		
Compound	MW-04-0517 ng/L	DUP1-0517 ng/L	RPD	Qualifier
PFOA	160	160	0%	None
PFOS	7.6	8.3	9%	
PFNA	92	95	3%	
PFHxA	29	28	4%	
PFHpA	64	64	0%	
PFDA	34	30	13%	
PFBS	75	90	18%	
PFPeA	16	16	0%	

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

<u>Haughleaver</u> Dated: <u>912117</u> Nancy Weaver

Senior Chemist

### **Data Qualifiers**

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.



## MW-04-0517

Laboratory:	Con-Test Ar	nalytical Labo	Work Order: 17E0006						
Client:	EA Enginee	ring, Science	& Tech	Project:		1490709 - M	etal Etchin	g Co. Inc.	
Matrix:	Ground Wat	ег	Laboratory ID:	17E0006-01		File ID:	F050	8033.D	
Sampled:	04/27/17 15:	:53	Prepared:	05/02/17 03:16		Analyzed:	05/08	8/17 21:36	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1	mL							
Batch:	B175818	Sequend	ce: S014666	Calibratio	n:	1700170	Instru	iment:	GCMSSV6
CAS NO	<b>)</b> .	COMPOUNE	)		CONC. (	µg/L)	MDL	RL	Q
123-91	-1	1,4-Dioxane					0.033	0.20	

## DUP1-0517

Laboratory:	Con-Test Analyti	ical Labo	ratory	Work	Order:	17E0006			
Client:	EA Engineering,	Science	& Tech	Projec	:t:	1490709 - M	etal Etch	ning Co. Inc.	
Matrix:	Ground Water		Laboratory ID:	17E0006-02		File ID:	F0	508034.D	
Sampled:	04/27/17 00:00		Prepared:	05/02/17 03:16		Analyzed:	05	/08/17 21:55	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1 mL								
Batch:	B175818	Sequen	ce: S014666	Calibrat	ion	1700170	Ins	strument:	GCMSSV6
	). CO	MPOUNE	)		CONC.	(µg/L)	MDL	RL	Q
123-91-	1 1,4-	-Dioxane					0.033	0.20	

## MW-10S-0517

Laboratory:	Con-Test Analyti	ical Labor	atory	Work O	rder:	17E0006			
Client:	EA Engineering, Science & Tech			Project:	t: 1490709 - Metal Etching Co. Inc.				
Matrix:	Ground Water		Laboratory ID:	17E0006-03		File ID:	F0	508035.D	
Sampled:	04/26/17 17:01		Prepared:	05/02/17 03:16		Analyzed:	05	/08/17 22:15	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1010 mL / 1 mL								
Batch:	B175818	Sequenc	e: S014666	Calibratio	n:	1700170	Ins	trument:	GCMSSV6
CAS NO	). CO	MPOUND	)		CONC. (	μ <b>g/L)</b>	MDL	RL	Q
123-91-	1 1,4-	-Dioxane			0.45	5	0.032	0.20	

### MW-10M-0517

Laboratory:	Con-Test Analytic	cal Labora	tory	Work C	order:	17E0006			
Client:	EA Engineering,	Science &	Tech	Project	:	1490709 - M	etal Etch	ing Co. Inc.	
Matrix:	Ground Water	L	_aboratory ID:	17E0006-04		File ID:	F0	508036.D	
Sampled:	04/27/17 14:32	F	Prepared:	05/02/17 03:16		Analyzed:	05/	08/17 22:34	
Solids:		F	Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1 mL								
Batch:	B175818	Sequence	e: S014666	Calibratio	on:	1700170	Inst	rument:	GCMSSV6
CAS NO	). CON	POUND			CONC.	(µg/L)	MDL	RL	Q
123-91-	1,4-[	Dioxane					0.033	0.20	

67

## MW-10D-0517

Laboratory:	Con-Test Analy	tical Labor	atory	Work O	rder:	17E0006			
Client:	EA Engineering	, Science	& Tech	Project:		1490709 - M	etal Etchin	g Co. Inc.	
Matrix:	Ground Water		Laboratory ID:	17E0006-05		File ID:	F050	)8037.D	
Sampled:	04/27/17 16:34		Prepared:	05/02/17 03:16		Analyzed:	05/0	8/17 22:53	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1010 mL / 1 mL								
Batch:	B175818	Sequence	ce: S014666	Calibratio	n:	1700170	Instru	ument:	GCMSSV6
CAS NO	). CO	MPOUNE			CONC.	(µg/L)	MDL	RL	Q
123-91-	-1 1,4	-Dioxane					0.032	0.20	

5

### MW-06-0517

Laboratory:	Con-Test Analyt	ical Laboı	atory	Work O	rder:	17E0006			
Client:	EA Engineering,	Science	& Tech	Project	;	1490709 - M	etal Etchir	ng Co. Inc.	
Matrix:	Ground Water		Laboratory ID:	17E0006-06		File ID:	F05	08038.D	
Sampled:	04/26/17 15:39		Prepared:	05/02/17 03:16		Analyzed:	05/0	8/17 23:12	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1 mL								
Batch:	B175818	Sequence	e: S014666	Calibratio	on:	1700170	Instr	ument:	GCMSSV6
CAS NO	). CO	MPOUNE	)		CONC.	(µg/L)	MDL	RL	Q
123-91-	·1 1,4·	-Dioxane					0.033	0.20	

75

ų

## MW-9S-0517

Laboratory:	Con-Test Analy	ytical Labo	ratory	Work	Order:	17E0006			
Client:	EA Engineering	g, Science	& Tech	Proje	ct:	1490709 - M	etal Etchi	ng Co. Inc.	
Matrix:	Ground Water		Laboratory ID:	17E0006-07		File ID:	F05	08039.D	
Sampled:	<b>04/27/17</b> 18:30		Prepared:	05/02/17 03:16	i	Analyzed:	05/0	8/17 23:32	
Solids:			Preparation:	SW-846 35100	>	Dilution:	1		
Initial/Final:	1000 mL / 1 mL	-							
Batch:	B175818	Sequen	ce: S014666	Calibra	tion	1700170	Instr	ument:	GCMSSV6
CAS NO	). CC	OMPOUNE	)		CONC.	(µg/L)	MDL	RL	Q
123-91-	1 1.4	4-Dioxane					0.033	0.20	

## MW-9D-0517

Laboratory:	Con-Test Ana	lytical Labor	atory	Work Oi	rder:	17E0006			
Client:	EA Engineerir	ng, Science	& Tech	Project:		1490709 - M	etal Etchin	g Co. Inc.	
Matrix:	Ground Water	r	Laboratory ID:	17E0006-08	I	File ID:	F050	)8040.D	
Sampled:	04/27/17 18:2	3	Prepared:	05/02/17 03:16		Analyzed:	05/0	8/17 23:51	
Solids:			Preparation:	SW-846 3510C	1	Dilution:	1		
Initial/Final:	1000 mL / 1 m	ηL							
Batch:	B175818	Sequenc	e: S014666	Calibratio	n:	1700170	Instru	ument:	GCMSSV6
CAS N	o. c	OMPOUND	)		CONC. (µ	ug/L)	MDL	RL	Q
123-91	-1 1	,4-Dioxane					0.033	0.20	

### MW-11D-0517

Laboratory:	Con-Test Ana	alytical Laboi	ratory	Work O	rder:	17E0006			
Client:	EA Engineeri	ing, Science	& Tech	Project:		1490709 - M	etal Etchin	g Co. Inc.	
Matrix:	Ground Wate	эr	Laboratory ID:	17E0006-09		File ID:	F050	8041.D	
Sampled:	04/28/17 03:5	56	Prepared:	05/02/17 03:16		Analyzed:	05/09	9/17 00:10	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1 r	nL							
Batch:	B175818	Sequence	ce: S014666	Calibratio	on:	1700170	Instru	ment:	GCMSSV6
CAS NO	). (	COMPOUNE	)		CONC. (j	µg/L)	MDL	RL	Q
123-91	-1	1,4-Dioxane					0.033	0.20	

## MW-11S-0517

Laboratory:	Con-Test Ana	lytical Labo	atory	Work O	rder:	17E0006			
Client:	EA Engineerin	ng, Science	& Tech	Project:		1490709 - M	etal Etchi	ng Co. Inc.	
Matrix:	Ground Water		Laboratory ID:	17E0006-10		File ID:	F05	08042.D	
Sampled:	04/28/17 05:19	9	Prepared:	05/02/17 03:16		Analyzed:	05/0	09/17 00:29	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1 m	L							
Batch:	B175818	Sequence	ce: S014666	Calibratio	n:	1700170	Inst	rument:	GCMSSV6
CAS NO	). C	OMPOUND	)		CONC. (	µg/L)	MDL	RL	Q
123-91-	.1 1	,4-Dioxane					0.033	0.20	

10

### MW-05R-0517

Laboratory:	Con-Test Analyti	ical Labor	ratory	Work C	rder:	17E0006			
Client:	EA Engineering,	Science	& Tech	Project	:	1490709 - M	etal Etchi	ng Co. Inc.	
Matrix:	Ground Water		Laboratory ID:	17E0006-11		File ID:	F05	08043.D	
Sampled:	04/28/17 05:59		Prepared:	05/02/17 03:16		Analyzed:	05/0	09/17 00:48	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1 mL								
Batch:	B175818	Sequence	ce: S014666	Calibratio	on:	1700170	Instr	rument:	GCMSSV6
CAS NO	). COI	MPOUND	)		CONC.	(µg/L)	MDL	RL	Q
123-91-	·1 1,4-	Dioxane					0.033	0.20	

## MW-8SR-0517

Laboratory:	Con-Test Analytic	cal Labora	atory	Work C	)rder:	17E0006			
Client:	EA Engineering,	Science &	Tech	Project	:	1490709 - M	etal Etchin	g Co. Inc.	
Matrix:	Ground Water	l	Laboratory ID:	17E0006-12		File ID:	F050	)8044.D	
Sampled:	04/28/17 15:16	F	Prepared:	05/02/17 03:16		Analyzed:	05/0	9/17 01:07	
Solids:		F	Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1 mL								
Batch:	B175818	Sequence	e: S014666	Calibratio	on:	1700170	Instru	ument:	GCMSSV6
CASINC	). CON	MPOUND			CONC.	(µg/L)	MDL	RL	Q
123-91-	-1 1,4-[	Dioxane					0.033	0.20	

12

### MW-8DR-0517

Laboratory:	Con-Test Ar	nalytical Labo	ratory	Work C	)rder:	17E0006			
Client:	EA Enginee	ring, Science	& Tech	Project	:	1490709 - N	letal Etchir	ng Co. Inc.	
Matrix:	Ground Wat	er	Laboratory ID:	17E0006-13		File ID:	F05	08045.D	
Sampled:	04/28/17 15	:15	Prepared:	05/02/17 03:16		Analyzed:	05/0	9/17 01:27	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1	mL							
Batch:	B175818	Sequen	ce: S014666	Calibratio	on:	1700170	Instr	ument:	GCMSSV6
CAS NO	).	COMPOUNE	)		CONC.	(μ <b>g/L)</b>	MDL	RL	Q
123-91-	-1	1,4-Dioxane					0.033	0.20	

RB1

Laboratory:	Con-Test Ana	lytical Labo	ratory	Wo <b>r</b> k Or	der:	17E0006			
Client:	EA Engineerin	ng, Science	& Tech	Project:		1490709 - M	letal Etchin	g Co. Inc.	
Matrix:	Ground Water	г	Laboratory ID:	17E0006-14		File ID:	F050	8046.D	
Sampled:	04/28/17 13:0	0	Prepared:	05/02/17 03:16		Analyzed:	05/0	9/17 01:46	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1 m	ηL							
Batch:	B175818	Sequenc	ce: S014666	Calibratior	n:	1700170	Instru	iment:	GCMSSV6
CAS NO	). (	OMPOUNE	)		CONC. (	μ <b>g/L)</b>	MDL	RL	Q
123-91-	-1 1	,4-Dioxane					0.033	0.20	

14

## RB2

Laboratory:	Con-Test Analy	tical Labor	atory	Wo <b>r</b> k O	rder:	17E0006			
Client:	EA Engineering	, Science	& Tech	Project:	:	1490709 - M	etal Etchir	ng Co. Inc.	
Matrix:	Ground Water		Laboratory ID:	17E0006-15		File ID:	F05	08047.D	
Sampled:	04/28/17 12:00		Prepared:	05/02/17 03:16		Analyzed:	05/0	9/17 02:05	
Solids:			Preparation:	SW-846 3510C		Dilution:	1		
Initial/Final:	1000 mL / 1 mL								
Batch:	B175818	Sequenc	se: S014666	Calibratio	on:	1700170	Instr	ument:	GCMSSV6
CAS NO	o, co	MPOUND	)		CONC. (	(µg/L)	MDL	RL	Q
123-91-	-1 1,4	-Dioxane					0.033	0.20	

15

## TRIP Blank 1

123-9	1-1	1.4-Dioxane					0.033	0.20		
CAS N	0.	COMPOUND	)		CONC. (	µg/L)	MDL	RL	Q	
Batch:	B175818	Sequenc	ce: S014666	Calibratio	n:	1700170	Instru	iment:	GCMSSV6	
Initial/Final:	1000 mL / 1 i	mL								
Solids:			Preparation:	SW-846 3510C		Dilution:	1			
Sampled:	04/28/17 15:	00	Prepared:	05/02/17 03:16		Analyzed:	05/0	9/17 02:24		
Matrix:	Trip Blank W	/ater	Laboratory ID:	17E0006-16		File ID:	F050	8048.D		
Client:	EA Engineer	ring, Science	& Tech	Project:		1490709 - M	etal Etchin	g Co. Inc.		
Laboratory:	Con-Test An	alytical Labor	atory	Work O	rder:	17E0006				

16

115

NW 9/20/17



## MW-04-0517

Laborate	огу:	Con-Test A	nalytical Labo	ratory		Work Order:	17E0006			
Client:		EA Enginee	ering, Science	& Tech		Project:	1490709 - M	etal Etching	g Co. Inc.	
Matrix:		Ground Wa	iter	Laboratory I	D: 17E00	06-01	File ID:	lims	export file	es full-015
Sample	d:	04/27/17 15	5:53	Prepared:	05/09/	17 14:56	4:56 Analyzed:		3/17 02:23	5
Solids:				Preparation:	EPA 5	37	Dilution:	1		
Initial/Fi	nal:	250 mL / 1 i	mL							
Batch:		B176442	Sequen	ce: S01	4095	Calibration:	1700165	Instru	ment:	HPLC1
		).	COMPOUNE	D		CO	NC. (ng/L)	MDL	RL	Q
	2058-94	4-8	Perfluoround	lecanoic acid (	(PFUnA)				2.0	
	72629-9	94-8	Perfluorotride	ecanoic acid (I	PFTrDA)				2.0	
	376-06-	-7	Perfluorotetra	adecanoic aci	d (PFTA)				2.0	
	335-67-	·1	Perfluoroocta	anoic acid (PF	OA)		160		2.0	
	1763-23	3-1	Perfluoroocta	anesulfonic ac	id (PFOS)		7.6		2.0	
	375-95-	-1	Perfluoronon	nanoic acid (PF	FNA)		92		2.0	
	307-24-	4	Perfluorohex	anoic acid (PF	HxA)		29		20	
	355-46-	4	Perfluorohex	anesulfonic ad	id (PFHxS)				2.0	
	375-85-	9	Perfluorohep	otanoic acid (P	FHpA)		64		20	
	307-55-	1	Perfluorodod	lecanoic acid (	PFDoA)				2.0	
	335-76-	2	Perfluorodec	anoic acid (PF	DA)		34		2.0	
	375-73-	5	Perfluorobuta	anesulfonic ac	id (PFBS)		75		2.0	
			NEtFOSAA						2.0	
			NMeFOSAA						2.0	
	2706-90	)-3	Perfluoropen	itanoic acid (Pl	FPeA)		16		2.0	

## DUP1-0517

Laboratory:	Con-Test A	Analytical Laborat	огу	Work Or	der: 17E0006			
Client:	EA Engine	ering, Science &	Tech	Project:	1490709 -	- Metal Etching	g Co. Inc.	
Matrix:	Ground Wa	ater L	aboratory ID:	17E0006-02	File ID:	lims	export file	es full-001
Sampled:	04/27/17 0	0:00 P	repared:	05/09/17 14:56	Analyzed:	05/13	3/17 02:36	3
Solids:		Р	reparation:	EPA 537	Dilution:	1		
Initial/Final:	250 mL / 1	mL						
Batch:	B176442	Sequence	S014095	5 Calibration	1700165	Instru	ment:	HPLC1
CAS	NO.	COMPOUND			CONC. (ng/L)	MDL	RL	Q
2058	8-94-8	Perfluorounded	anoic acid (PFU	nA)			2.0	
7262	29- <b>94-</b> 8	Perfluorotrideca	anoic acid (PFTrl	DA)			2.0	
376-06-7		Perfluorotetrad	ecanoic acid (PF	TA)			2.0	
335-	67-1	Perfluorooctand	pic acid (PFOA)		160		2.0	
1763	3-23-1	Perfluorooctane	esulfonic acid (Pf	FOS)	8.3		2.0	
375-	95-1	Perfluorononan	oic acid (PFNA)		95		2.0	
307-	24-4	Perfluorohexan	oic acid (PFHxA)	)	28		20	
355-	46-4	Perfluorohexan	esulfonic acid (P	FHxS)			2.0	
375-	85-9	Perfluoroheptar	noic acid (PFHpA	N)	64		20	
307-	55-1	Perfluorododec	anoic acid (PFDo	DA)			2.0	
335-	76-2	Perfluorodecan	oic acid (PFDA)		30		2.0	
375-	73-5	Perfluorobutane	esulfonic acid (Pf	-BS)	90		2.0	
		NEtFOSAA					2.0	
		NMeFOSAA					2.0	
2706	5-90 <b>-</b> 3	Perfluoropentar	noic acid (PFPeA	.)	16		2.0	

## MW-10S-0517

Laborat	ory:	Con-Test A	nalytical Labo	oratory	Work	Order:	1 <b>7E0</b> 006			
Client:		EA Enginee	ering, Science	e & Tech	Proje	ct:	1490709 - N	letal Etching	g Co. Inc.	
Matrix:		Ground Wa	ter	Laboratory ID:	17E0006-03		File ID:	lims	export file	s full-017
Sample	d:	04/26/17 17	7:01	Prepared:	05/09/17 14:56	7 14:56 Analyzed:		05/13	05/13/17 02:48	
Solids:				Preparation:	EPA 537		Dilution:	1		
Initial/Fi	nal:	250 mL / 1 r	mL							
Batch:		B176442	Sequen	ice: \$014095	Calibra	tion:	1700165	Instru	ment:	HPLC1
		).	COMPOUND	D		CONC.	(ng/L)	MDL	RL	Q
	2058-94	4-8	Perfluoround	decanoic acid (PFUr	nA)	2.1			2.0	
	72629-9	94-8	Perfluorotrid	lecanoic acid (PFTr	DA)				2.0	
	376-06-	-7	Perfluorotetr	adecanoic acid (PF	TA)				2.0	
	335-67-	·1	Perfluoroocta	anoic acid (PFOA)		52			2.0	
	1763-23	3-1	Perfluoroocta	anesulfonic acid (PF	OS)	26			2.0	
	375-95-	·1	Perfluoronon	nanoic acid (PFNA)		18			2.0	
	307-24-	4	Perfluorohex	(anoic acid (PFHxA)					20	
	355-46-	4	Perfluorohex	anesulfonic acid (Pl	FHxS)	7.1			2.0	
	375-85-	9	Perfluorohep	otanoic acid (PFHpA	)				20	
	307-55-	1	Perfluorodod	lecanoic acid (PFDc	A)				2.0	
	335-76-	2	Perfluorodec	anoic acid (PFDA)		16			2.0	
	375-73 <b>-</b>	5	Perfluorobuta	anesulfonic acid (PF	BS)	5.0			2.0	
			NEtFOSAA						2.0	
			NMeFOSAA						2.0	
	2706-90	)-3	Perfluoropen	ntanoic acid (PFPeA	)	9.8			2.0	

## MW-10M-0517

Laboratory:	Con-Test A	nalytical Labo	ratory	Work	Order: 17E00	06		
Client:	EA Enginee	ring, Science	& Tech	Projec	t: 14907	09 - Metal Etch	ning Co. Inc.	
Matrix:	Ground Wa	ter	Laboratory ID:	17E0006-04	File ID	: lim	ns export file	es full-018
Sampled:	04/27/17 14	:32	Prepared:	05/09/17 14:56	Analyz	ed: 05	/13/17 03:01	
Solids:			Preparation:	EPA 537	Dilutio	n: 1		
Initial/Final:	250 mL / 1 r	nL						
Batch:	B176442	Sequen	ce: S01409	05 Calibrat	on: 170010	65 Ins	trument:	HPLC1
CAS N	Ю.	COMPOUNE	)		CONC. (ng/L)	MDL	RL	Q
2058-9	94-8	Perfluoround	lecanoic acid (PFL	JnA)			2.0	
72629	-94-8	Perfluorotride	ecanoic acid (PFT	rDA)			2.0	
376-06	6-7	Perfluorotetra	adecanoic acid (P	FTA)			2.0	
335-67	7-1	Perfluoroocta	anoic acid (PFOA)	I	86		2.0	
1763-2	23-1	Perfluoroocta	anesulfonic acid (F	PFOS)	18		2.0	
375-95	5-1	Perfluoronon	anoic acid (PFNA	)	32		2.0	
307-24	4-4	Perfluorohex	anoic acid (PFHx/	۹)			20	
355-46	6-4	Perfluorohex	anesulfonic acid (	PFHxS)	2.2		2.0	
375-85	5-9	Perfluorohep	otanoic acid (PFHp	A)	26		20	
307-55	5-1	Perfluorodod	lecanoic acid (PFE	DoA)			2.0	
335-76	6-2	Perfluorodec	anoic acid (PFDA)	)	35		2.0	
375-73	3-5	Perfluorobuta	anesulfonic acid (F	PFBS)	23		2.0	
		NEtFOSAA					2.0	
		NMeFOSAA					2.0	
2706-9	90-3	Perfluoropen	tanoic acid (PFPe	A)	9.2		2.0	

## MW-10D-0517

Laborat	o <b>r</b> y:	Con-Test A	nalytical Labo	ratory	Wo <b>r</b> k Or	der: 17E0006			
Client:		EA Enginee	ering, Science	& Tech	Project:	1490709	- Metal Etching	Co. Inc.	
Matrix:		Ground Wa	ter	Laboratory ID:	17E0006-05	File ID:	lims e	export file	s full-014
Sample	d:	04/27/17 16	3:34	Prepared:	05/09/17 14:56	Analyzed	: 05/13	05/13/17 02:10	
Solids:				Preparation:	EPA 537	Dilution:	1		
Initial/Fi	nal:	250 mL / 1 i	mL						
Batch:		B176442	Sequen	ce: S014095	Calibration	n: 1700165	Instru	ment:	HPLC1
	CAS NO	).	COMPOUNE	)		CONC. (ng/L)	MDL	RL	Q
	2058-94	1-8	Perfluoround	lecanoic acid (PFUr	ıA)			2.0	
	72629-9	94-8	Perfluorotride	ecanoic acid (PFTrE	DA)			2.0	
	376-06-	7	Perfluorotetra	adecanoic acid (PF	ГА)			2.0	
	335-67-	1	Perfluoroocta	anoic acid (PFOA)		17		2.0	
	1763-23	3-1	Perfluoroocta	anesulfonic acid (PF	OS)	5.8		2.0	
	375-95-	1	Perfluoronon	anoic acid (PFNA)		2.6		2.0	
	307-24-	4	Perfluorohex	anoic acid (PFHxA)				20	
	355-46-	4	Perfluorohex	anesulfonic acid (Pl	=HxS)			2.0	
	375-85-	9	Perfluorohep	tanoic acid (PFHpA	)			20	
	307-55-	1	Perfluorodod	ecanoic acid (PFDo	A)			2.0	
	335-76-	2	Perfluorodec	anoic acid (PFDA)				2.0	
	375-73-	5	Perfluorobuta	anesulfonic acid (PF	BS)	2.7		2.0	
			NEtFOSAA					2.0	
			NMeFOSAA					2.0	
	2706-90	)-3	Perfluoropen	tanoic acid (PFPeA	)	3.9		2.0	

5

Ne gizoliz

### MW-06-0517

Laborat	огу:	Con-Test A	nalytical Labo	pratory		Work Order:	17E0006			
Client:		EA Enginee	ring, Science	e & Tech		Project:	1490709 - M	letal Etching	g Co. Inc.	
Matrix:		Ground Wat	ter	Laboratory ID:	17E000	6-06	File ID:	lims	export file	s full-022
Sample	d:	04/26/17 15	:39	Prepared:	05/09/17 14:56		Analyzed:	05/13	8/17 04:18	
Solids:				Preparation:	EPA 53	7	Dilution:	1		
Initial/Fi	nal:	250 mL / 1 r	nL							
Batch:		B176442	Sequen	ice: S01409	5	Calibration:	1700165	Instru	ment:	HPLC1
		).	COMPOUND	D		CONC	;. (ng/L)	MDL	RL	Q
	2058-94	4-8	Perfluoround	decanoic acid (PFl	JnA)				2.0	
	72629-9	94-8	Perfluorotrid	lecanoic acid (PFT	rDA)				2.0	
	376-06-	-7	Perfluorotetra	radecanoic acid (P	FTA)				2.0	
	335-67-	-1	Perfluoroocta	anoic acid (PFOA)		1	70		2.0	
	1763-23	3-1	Perfluoroocta	anesulfonic acid (F	PFOS)	2	24		2.0	
	375-95-	-1	Perfluoronon	nanoic acid (PFNA	)	1	16		2.0	
	307-24-	4	Perfluorohex	kanoic acid (PFHx/	<b>A</b> )	2	27		20	
	355-46-	-4	Perfluorohex	kanesulfonic acid (	PFHxS)	5	.2		2.0	
	375-85-	.9	Perfluorohep	otanoic acid (PFHp	A)	5	54		20	
	307-55-	·1	Perfluorodod	decanoic acid (PFE	DoA)				2.0	
	335-76-	2	Perfluorodec	canoic acid (PFDA)	i	4	.3		2.0	
	375-73-	5	Perfluorobuta	anesulfonic acid (F	PFBS)	1	0		2.0	
			NEtFOSAA						2.0	
			NMeFOSAA						2.0	
	2706-90	)-3	Perfluoropen	ntanoic acid (PFPe	A)	1	0		2.0	

þ

### MW-9S-0517

Laborate	огу:	Con-Test Ar	nalytical Labo	ratory	Wo	ork Order:	17E0006			
Client:		EA Enginee	ering, Science	& Tech	Pro	ject:	1490709 - M	etal Etcł	hing Co. Inc.	
Matrix:		Ground Wal	ter	Laboratory ID:	17E0006-07		File ID:	lin	ns export files	s full-013
Sample	d:	04/27/17 18	:30	Prepared:	05/09/17 14:	56	Analyzed: 05/13/17 01:57			
Solids:				Preparation:	EPA 537		Dilution:	1		
Initial/Fi	nal:	250 mL / 1 r	nL							
Batch:		B176442	Sequen	ce: S014095	Calib	oration:	1700165	Ins	strument:	HPLC1
	CAS NO	).	COMPOUNE	D		CONC.	(ng/L)	MDL	RL	Q
	2058-94	4-8	Perfluoround	decanoic acid (PFUr	ıA)	3.9	)		2.0	
	72629-9	94-8	Perfluorotride	ecanoic acid (PFTr[	DA)				2.0	
	376-06-	-7	Perfluorotetr	adecanoic acid (PF	TA)				2.0	
	335-67-	-1	Perfluoroocta	anoic acid (PFOA)		15			2.0	
	1763-23	3-1	Perfluoroocta	anesulfonic acid (PF	OS)	9.8	;		2.0	
	375-95-	-1	Perfluoronon	nanoic acid (PFNA)		8.2			2.0	
	307-24-	-4	Perfluorohex	anoic acid (PFHxA)					20	
	355-46-	-4	Perfluorohex	anesulfonic acid (P	FHxS)				2.0	
	375-85-	-9	Perfluorohep	otanoic acid (PFHpA	.)				20	
	307-55-	-1	Perfluorodod	lecanoic acid (PFDc	DA)	2.5	1		2.0	
	335-76-	-2	Perfluorodec	anoic acid (PFDA)		15			2.0	
	375-73-	-5	Perfluorobuta	anesulfonic acid (PF	BS)	15			2.0	
			NEtFOSAA						2.0	
			NMeFOSAA						2.0	
	2706-90	)-3	Perfluoropen	ntanoic acid (PFPeA	)	7.6			2.0	

### MW-9D-0517

Laborat	ory:	Con-Test A	nalytical Labo	oratory	Work	Order: 17	E0006		
Client:		EA Enginee	ering, Science	& Tech	Projec	t: 149	90709 - Metal E	tching Co. Inc.	
Matrix:		Ground Wa	ter	Laboratory ID:	17E0006-08	File	e ID:	lims export file	s full-020
Sample	d:	04/27/17 18	3:23	Prepared:	05/09/17 14:56	An	alyzed:	05/13/17 03:52	
Solids:				Preparation:	EPA 537	Dil	ution: 1		
Initial/Fi	nal:	250 mL / 1 r	mL						
Batch:		B176442	Sequen	ce: \$014095	calibrat	ion: 170	00165	Instrument:	HPLC1
	CAS NO	).	COMPOUN	D		CONC. (ng/	L) MD	L RL	Q
	2058-94	4-8	Perfluoround	decanoic acid (PFU	nA)	3.3		2.0	
	72629-9	94-8	Perfluorotrid	ecanoic acid (PFTrl	DA)			2.0	
	376-06-	-7	Perfluorotetr	adecanoic acid (PF	TA)			2.0	
	335-67-	-1	Perfluorooct	anoic acid (PFOA)		9.3		2.0	
	1763-23	3-1	Perfluorooct	anesulfonic acid (Pl	FOS)	7.3		2.0	
	375-95-	·1	Perfluoronor	nanoic acid (PFNA)		2.9		2.0	
	307-24-	4	Perfluorohex	anoic acid (PFHxA)	)			20	
	355-46-	4	Perfluorohex	anesulfonic acid (P	FHxS)			2.0	
	375-85-	9	Perfluorohep	otanoic acid (PFHpA	N)			20	
	307-55-	1	Perfluorodod	lecanoic acid (PFDo	DA)			2.0	
	335-76-	2	Perfluorodec	anoic acid (PFDA)		4.9		2.0	
	375-73-	5	Perfluorobut	anesulfonic acid (Pl	FBS)	13		2.0	
			NEtFOSAA					2.0	
			NMeFOSAA					2.0	
	2706-90	)-3	Perfluoropen	ntanoic acid (PFPeA	.)	4.0		2.0	

perglaslit

### MW-11D-0517

Laborate	ory:	Con-Test A	nalytical Labo	ratory		Work Order:	17E0006			
Client:		EA Enginee	ering, Science	& Tech		Project:	1490709 - M	letal Etching	g Co. Inc.	
Matrix:		Ground Wa	ter	Laboratory ID:	17E000	6-09	File ID:	lims	export file	s full-023
Sampleo	d:	04/28/17 03	3:56	Prepared:	05/09/17	7 14:56	Analyzed:	05/13	3/17 04:30	
Solids:				Preparation:	EPA 537	7	Dilution:	1		
Initial/Fi	nal:	250 mL / 1 r	mL							
Batch:		B176442	Sequen	ce: S01409	15	Calibration:	1700165	Instru	iment:	HPLC1
		).	COMPOUND	)		CONC	;. (ng/L)	MDL	RL	Q
	2058-94	4-8	Perfluoround	lecanoic acid (PFI	JnA)				2.0	
	72629-9	94-8	Perfluorotrid	ecanoic acid (PFT	rDA)				2.0	
	376-06-	.7	Perfluorotetr	adecanoic acid (P	FTA)				2.0	
	335-67-	-1	Perfluoroocta	anoic acid (PFOA)		3	32		2.0	
	1763-23	3-1	Perfluoroocta	anesulfonic acid (F	PFOS)	7	77		2.0	
	375-95-	·1	Perfluoronon	anoic acid (PFNA	)	3	.3		2.0	
	307-24-	4	Perfluorohex	anoic acid (PFHx/	۹)				20	
	355-46-	4	Perfluorohex	anesulfonic acid (	PFHxS)	4	.8		2.0	
	375-85-	9	Perfluorohep	tanoic acid (PFHp	A)				20	
	307-55-	-1	Perfluorodod	lecanoic acid (PF	DoA)				2.0	
	335-76-	2	Perfluorodec	anoic acid (PFDA	)				2.0	
	375-73-	5	Perfluorobuta	anesulfonic acid (F	PFBS)	3	.5		2.0	
			NEtFOSAA						2.0	
			NMeFOSAA						2.0	
	2706-90	)-3	Perfluoropen	tanoic acid (PFPe	A)	7	.1		2.0	

### MW-11S-0517

Laboratory	y:	Con-Test Ar	nalytical Labo	pratory		Work Order:	17E0006			
Client:		EA Enginee	ring, Science	e & Tech		Project:	1490709 - N	letal Etc	hing Co. Inc.	
Matrix:		Ground Wat	ter	Laboratory ID:	17E0006	5-10	File ID:	lir	lims export files full-026	
Sampled:		04/28/17 05	:19	Prepared:	05/09/17	14:56	Analyzed:	0	5/13/17 05:09	
Solids:				Preparation:	EPA 537	,	Dilution:	1		
Initial/Fina	al:	250 mL / 1 n	nL							
Batch:		B176442	Sequen	nce: S014095	(	Calibration:	1700165	In	strument:	HPLC1
C	CAS NO	).	COMPOUND	D		CONC	. (ng/L)	MDL	RL	Q
2	2058-94	-8	Perfluoround	decanoic acid (PFUn	A)				2.0	
7	72629-9	94-8	Perfluorotride	lecanoic acid (PFTrD	A)				2.0	
З	376-06-	7	Perfluorotetra	radecanoic acid (PF1	-A)				2.0	
3	335-67-	1	Perfluoroocta	anoic acid (PFOA)		9.	.7		2.0	
1	1763-23	3-1	Perfluoroocta	anesulfonic acid (PF	OS)	6	3 7		2.0	MS-24
3	375 <b>-</b> 95-	1	Perfluoronon	nanoic acid (PFNA)					2.0	
3	30 <b>7-2</b> 4-	4	Perfluorohex	xanoic acid (PFHxA)					20	
3	355-46-	4	Perfluorohex	xanesulfonic acid (PF	HxS)	2	2 <b>J</b>		2.0	
3	375-85-9	9	Perfluorohep	ptanoic acid (PFHpA)	)				20	
3	307-55-	1	Perfluorodod	decanoic acid (PFDo	A)				2.0	
3	335-76-2	2	Perfluorodec	canoic acid (PFDA)					2.0	
3	375-73-	5	Perfluorobuta	anesulfonic acid (PF	BS)	3.	7		2.0	
			NEtFOSAA						2.0	
			NMeFOSAA						2.0	
2	2706-90	-3	Perfluoropen	ntanoic acid (PFPeA)	ł	4.	3		2.0	
### MW-05R-0517

Laborat	ory:	Con-Test Ar	nalytical Labo	oratory	Work	Order: 17E000	)6		
Client:		EA Enginee	ring, Science	e & Tech	Projec	t: 149070	9 - Metal Etchir	ng Co. Inc.	
Matrix:		Ground Wat	ter	Laboratory ID:	17E0006-11	File ID:	lims	export file	es full-024
Sample	d:	04/28/17 05	:59	Prepared:	05/09/17 14:56	Analyze	ed: 05/1	3/17 04:43	6
Solids:				Preparation:	EPA 537	Dilution	: 1		
Initial/Fi	nal:	250 mL / 1 r	mL						
Batch:		B176442	Sequen	nce: S014095	Calibrat	on: 170016	5 Instr	ument:	HPLC1
		<b>)</b> .	COMPOUND	D		CONC. (ng/L)	MDL	RL	Q
	2058-94	4-8	Perfluoround	decanoic acid (PFUr	ıA)			2.0	
	72629-9	94-8	Perfluorotrid	lecanoic acid (PFTr	DA)			2.0	
	376-06-	-7	Perfluorotetr	radecanoic acid (PF	TA)			2.0	
	335-67-	-1	Perfluoroocta	tanoic acid (PFOA)		63		2.0	
	1763-23	3-1	Perfluoroocta	tanesulfonic acid (Pf	OS)	18		2.0	
	375-95-	-1	Perfluoronon	nanoic acid (PFNA)		28		2.0	
	307-24-	-4	Perfluorohex	xanoic acid (PFHxA)	I.			20	
	355-46-	-4	Perfluorohex	xanesulfonic acid (P	FHxS)	3.9		2.0	
	375-85-	-9	Perfluorohep	ptanoic acid (PFHpA	.)			20	8
	307-55-	-1	Perfluorodod	decanoic acid (PFDo	DA)			2.0	
	335-76-	-2	Perfluorodec	canoic acid (PFDA)		22		2.0	
	375-73-	-5	Perfluorobuta	tanesulfonic acid (PF	BS)	4.3		2.0	
			NEtFOSAA					2.0	
			NMeFOSAA	A Contraction of the second se				2.0	
	2706-90	0-3	Perfluoropen	ntanoic acid (PFPeA	)	11		2.0	

### MW-8SR-0517

Laborate	ory:	Con-Test Ar	nalytical Labo	oratory		Work Order:	17E0006			
Client:		EA Enginee	ring, Science	& Tech		Project:	1490709 - M	etal Etching	g Co. Inc.	
Matrix:		Ground Wat	ter	Laboratory ID:	17E000	6-12	File ID:	lims	export file	es full-021
Sample	d:	04/28/17 15	:16	Prepared:	05/09/1	7 14:56	Analyzed:	05/13	/17 04:05	i
Solids:				Preparation:	EPA 53	7	Dilution:	1		
Initial/Fi	nal:	250 mL / 1 п	nL							
Batch:		B176442	Sequen	ce: S0140	95	Calibration:	1700165	Instru	ment:	HPLC1
	CAS NO	).	COMPOUNE	D		CONC	C. (ng/L)	MDL	RL	Q
	2058-94	4-8	Perfluoround	decanoic acid (PF	UnA)	2	4.7		2.0	
	72629-9	94-8	Perfluorotrid	lecanoic acid (PF	rDA)				2.0	
	376-06-	7	Perfluorotetra	radecanoic acid (F	PFTA)				2.0	
	335-67-	1	Perfluoroocta	anoic acid (PFOA	)	:	26		2.0	
	1763-23	3-1	Perfluoroocta	anesulfonic acid (	PFOS)		11		2.0	
	375-95-	1	Perfluoronon	nanoic acid (PFNA	N)	ç	9.2		2.0	
	307-24-	4	Perfluorohex	kanoic acid (PFHx	A)				20	
	355-46-	4	Perfluorohex	kanesulfonic acid	(PFHxS)	g	9.4		2.0	
	375-85-	9	Perfluorohep	otanoic acid (PFH	pA)				20	
	307-55-	1	Perfluorodod	decanoic acid (PF	DoA)				2.0	
	335-76-	2	Perfluorodec	canoic acid (PFDA	)		11		2.0	
	375-73-	5	Perfluorobuta	anesulfonic acid (	PFBS)	(	59		2.0	
			NEtFOSAA						2.0	
			NMeFOSAA						2.0	
	2706-90	)-3	Perfluoropen	ntanoic acid (PFP)	eA)	6	6.7		2.0	

12

### MW-8DR-0517

Laborate	ory:	Con-Test Ar	nalytical Labo	ratory		Work Order:	17E0006			
Client:		EA Enginee	ring, Science	& Tech		Project:	1490709 - M	etal Etc	hing Co. Inc.	
Matrix:		Ground Wat	ter	Laboratory ID:	17E0006	-13	File ID:	lir	ms export files	full-025
Sample	d:	04/28/17 15	:15	Prepared:	05/09/17	14:56	Analyzed:	05	5/13/17 04:56	
Solids:				Preparation:	EPA 537		Dilution:	1		
Initial/Fi	nal:	250 mL / 1 n	nL							
Batch:		B176442	Sequen	ce: S014095	C	alibration:	1700165	Ins	strument:	HPLC1
	CAS NO	).	COMPOUND	D		CONC.	(ng/L)	MDL	RL	Q
	2058-94	4-8	Perfluoround	decanoic acid (PFUr	nA)	2.5	5		2.0	
	72629-9	94-8	Perfluorotride	ecanoic acid (PFTr	DA)				2.0	
	376-06-	-7	Perfluorotetra	adecanoic acid (PF	TA)				2.0	
	335-67-	·1	Perfluoroocta	anoic acid (PFOA)		26	5		2.0	
	1763-23	3-1	Perfluoroocta	anesulfonic acid (PF	OS)	16	5		2.0	
	375-95-	·1	Perfluoronon	nanoic acid (PFNA)		5.9	)		2.0	
	307-24-	4	Perfluorohex	anoic acid (PFHxA)					20	
	355-46-	4	Perfluorohex	anesulfonic acid (P	FHxS)	4.4	ł		2.0	
	375-85-	9	Perfluorohep	otanoic acid (PFHpA	)				20	
	307-55-	1	Perfluorodod	lecanoic acid (PFDc	A)				2.0	
	335-76-	2	Perfluorodec	anoic acid (PFDA)		7.3	3		2.0	
	375-73-	5	Perfluorobuta	anesulfonic acid (PF	BS)	170	0		2.0	
			NEtFOSAA						2.0	
			NMeFOSAA						2.0	
	2706-90	)-3	Perfluoropen	ntanoic acid (PFPeA	)	8.0	)		2.0	

## RB1

Laborate	ory:	Con-Test A	nalytical Labo	oratory		Work Order:	17E0006			
Client:		EA Enginee	ering, Science	& Tech		Project:	1490709 - N	tetal Etching	g Co. Inc.	
Matrix:		Ground Wa	ter	Laboratory ID:	17E000	6-14	File ID:	lims	export file	es full-011
Sample	d:	04/28/17 13	3:00	Prepared:	05/09/1	7 14:56	Analyzed:	05/13	3/17 01:32	2
Solids:				Preparation:	EPA 53	7	Dilution:	1		
Initial/Fi	nal:	250 mL / 1 i	mL							
Batch:		B176442	Sequen	nce: S0140	95	Calibration:	1700165	Instru	ment:	HPLC1
	CAS NO	),	COMPOUN	D		CONC	). (ng/L)	MDL	RL	Q
	2058-94	4-8	Perfluoround	decanoic acid (PF	UnA)				2.0	
	72629-9	94-8	Perfluorotrid	lecanoic acid (PF	TrDA)				2.0	
	376-06-	-7	Perfluorotetr	radecanoic acid (I	PFTA)				2.0	
	335-67-	·1	Perfluorooct	anoic acid (PFOA	N)				2.0	
	1763-23	3-1	Perfluorooct	anesulfonic acid	(PFOS)				2.0	
	375-95-	·1	Perfluoronor	nanoic acid (PFN)	۹)				2.0	
	307-24-	4	Perfluorohex	kanoic acid (PFH)	κA)				20	
	355-46-	4	Perfluorohex	kanesulfonic acid	(PFHxS)				2.0	
	375-85-	9	Perfluorohep	otanoic acid (PFH	pA)				20	
	307-55-	1	Perfluorodoc	decanoic acid (PF	DoA)				2.0	
	335-76-	2	Perfluorodec	canoic acid (PFD/	۹)				2.0	
	375-73-	5	Perfluorobut	anesulfonic acid	(PFBS)				2.0	
			NEtFOSAA						2.0	
			NMeFOSAA	,					2.0	
	2706-90	)-3	Perfluoroper	ntanoic acid (PFP	eA)				2.0	

14

### RB2

Laborate	ory:	Con-Test A	nalytical Labo	pratory	Wo <b>rk</b> O	rder: 1	7E0006		
Client:		EA Enginee	ering, Science	& Tech	Project:	14	490709 - Metal	Etching Co.	Inc.
Matrix:		Ground Wa	ter	Laboratory ID:	17E0006-15	Fi	ïle ID:	lims expo	rt files full-012
Sample	d:	04/28/17 12	2:00	Prepared:	05/09/17 14:56	A	nalyzed:	05/13/17 0	)1:45
Solids:				Preparation:	EPA 537	D	vilution:	1	
Initial/Fi	nal:	250 mL / 1 i	mL						
Batch:		B176442	Sequen	ce: \$014095	Calibratio	vn: 17	700165	Instrument	: HPLC1
	CAS NO	).	COMPOUNE	D		CONC. (ng	g/L) M	DL F	RL Q
	2058-94	1-8	Perfluoround	decanoic acid (PFUn	A)			2	2.0
	72629-9	94-8	Perfluorotrid	ecanoic acid (PFTrD	PA)			2	2.0
	376-06-	7	Perfluorotetra	adecanoic acid (PF1	ΓA)			2	2.0
	335-67-	1	Perfluoroocta	anoic acid (PFOA)				2	2.0
	1763-23	3-1	Perfluoroocta	anesulfonic acid (PF	OS)			2	2.0
	375-95-	1	Perfluoronon	nanoic acid (PFNA)				2	2.0
	307-24-	4	Perfluorohex	(PFHxA)				2	20
	355-46-	4	Perfluorohex	anesulfonic acid (PF	FHxS)			2	2.0
	375-85-	9	Perfluorohep	otanoic acid (PFHpA	)			2	20
	307-55-	1	Perfluorodod	lecanoic acid (PFDo	A)			2	2.0
	335-76-	2	Perfluorodec	anoic acid (PFDA)				2	2.0
	375-73-	5	Perfluorobuta	anesulfonic acid (PF	BS)			2	2.0
			NEtFOSAA					2	2.0
			NMeFOSAA					2	2.0
	2706-90	)-3	Perfluoropen	ntanoic acid (PFPeA)	)			2	2.0

### Field Blank 01

Laborato	ory:	Con-Test Ar	nalytical Labor	ratory		Work Order:	17E0006			
Client:		EA Enginee	ring, Science	& Tech		Project:	1490709 - Meta	I Etching Co	o. Inc.	
Matrix:		Water		Laboratory ID:	17E0006-	17	File ID:	lims exp	ort fil	es full-009
Sampled	l:	04/28/17 00	:00	Prepared:	05/09/17	14:56	Analyzed:	05/13/17	01:0	7
Solids:				Preparation:	EPA 537		Dilution:	1		
Initial/Fin	nal:	250 mL / 1 n	nL							
Batch:		B176442	Sequence	ce: \$014095	Ca	alibration	1700165	Instrumer	nt:	HPLC1
	CAS NO	•	COMPOUNE	0		CONC. (	(ng/L) N	IDL	RL	Q
	2058-94	-8	Perfluoround	lecanoic acid (PFUn	A)				2.0	
	72629-9	4-8	Perfluorotride	ecanoic acid (PFTrD	A)				2.0	
	376-06-	7	Perfluorotetra	adecanoic acid (PF1	TA)				2.0	
	335-67-	1	Perfluoroocta	anoic acid (PFOA)					2.0	
	1763-23	-1	Perfluoroocta	anesulfonic acid (PF	OS)				2.0	
	375-95-	1	Perfluoronon	nanoic acid (PFNA)					2.0	
	307-24-	4	Perfluorohex	anoic acid (PFHxA)					20	
	355-46⊣	4	Perfluorohex	anesulfonic acid (PF	HxS)				2.0	
	375-85-9	9	Perfluorohep	otanoic acid (PFHpA	)				20	
	307-55-	1	Perfluorodod	lecanoic acid (PFDo	A)				2.0	
	335-76-2	2	Perfluorodec	anoic acid (PFDA)					2.0	
	375-73-	5	Perfluorobuta	anesulfonic acid (PF	BS)				2.0	
			NEtFOSAA						2.0	UJ
			NMeFOSAA						2.0	
	2706-90	-3	Perfluoropen	ntanoic acid (PFPeA)	)				2.0	

### Field Blank 02

Laboratory: Cor		Con-Test A	con-Test Analytical Laboratory				17E0006			
Client:		EA Enginee	ering, Science	& Tech		Project:	1490709 - M	etal Etching	g Co. Inc.	
Matrix:		Water		Laboratory ID	: 17E000	06-18	File ID:	lims	export file	es full-010
Sample	d;	04/28/17 00	):00	Prepared:	05/09/1	7 14:56	Analyzed:	05/13	3/17 01:19	)
Solids:				Preparation:	EPA 53	37	Dilution:	1		
Initial/Fi	nal:	250 mL / 1 i	mL							
Batch:		B176442	Sequen	ce: S014	4095	Calibration:	1700165	Instru	iment:	HPLC1
	CAS NO	).	COMPOUNE	)		CON	C. (ng/L)	MDL	RL	Q
-	2058-94	4-8	Perfluoround	lecanoic acid (I	PFUnA)				2.0	
	72629-9	94-8	Perfluorotrid	ecanoic acid (F	PFTrDA)				2.0	
	376-06-	.7	Perfluorotetr	adecanoic acid	(PFTA)				2.0	
	335-67-	-1	Perfluoroocta	anoic acid (PF0	DA)				2.0	
	1763-23	3-1	Perfluoroocta	anesulfonic aci	d (PFOS)				2.0	
	375-95-	1	Perfluoronon	anoic acid (PF	NA)				2.0	
	307-24-	4	Perfluorohex	anoic acid (PF	HxA)				20	
	355-46-	4	Perfluorohex	anesulfonic ac	id (PFHxS)				2.0	
	375-85-	9	Perfluorohep	otanoic acid (PF	-HpA)				20	
	307-55-	1	Perfluorodod	lecanoic acid (f	PFDoA)				2.0	
	335-76-	2	Perfluorodec	anoic acid (PF	DA)				2.0	
	375-73-	5	Perfluorobuta	anesulfonic aci	d (PFBS)				2.0	
			NEtFOSAA						2.0	
			NMeFOSAA						2.0	
	2706-90	)-3	Perfluoropen	itanoic acid (PF	PeA)				2.0	

This page intentionally left blank



#### DATA VALIDATION SUMMARY REPORT METAL ETCHING, FREEPORT, LONG ISLAND, NEW YORK

Client:	EA Engineering, Science & Technology, Inc., Syracuse, New York
SDG:	17E0096
Laboratory:	Con-Test Analytical Laboratory, East Longmeadow, Massachusetts
Site:	Metal Etching, Freeport, Long Island, New York
Date:	September 20, 2016

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	IA-0417	17E0096-01	Air
2	OA-0417	17E0096-02	Air
3	DUP-0417	17E0096-03	Air

A Data Usability Summary Review was performed on the analytical data for three air samples collected on April 27, 2017 by EA Engineering at the Metal Etching site in Freeport, Long Island, New York. The samples were analyzed under the "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition January 1999, EPA/625/R-96/010B", Compendium Method TO-15".

Specific method references are as follows:

Analysis	Method References
VOCs	USEPA Method TO-15

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-31, Revision 6, June 2014: Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

#### Organics

- Data Completeness
- Canister Certification Blanks
- Canister Certification Pressures Differences
- Chains-of-Custody and Traffic Reports
- Holding Times and sample preservation
- Laboratory Control Sample (LCS) recoveries

- Surrogate Recoveries
- GC/MS Tuning
- Method Blank Contamination
- Initial and Continuing Calibration Summaries
- Compound Quantitation
- Internal Standard (IS) Area Performance
- Field Duplicate Sample Precision

#### Data Usability Assessment

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the following deficiencies.

• Isopropanol was qualified as estimated in all samples due to low LCS recovery.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

#### Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

### Volatile Organic Compounds (VOCs)

#### **Canister Certification Blanks**

• The batch blank checks were non-detect or < RL.

#### **Canister Certification Pressures Differences**

• All criteria were met.

#### Chains-of-Custody and Traffic Reports

• All criteria were met

### Holding Times

• All samples were analyzed within 30 days for air samples.

#### Laboratory Control Samples

• The following table presents LCS percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
B176681-BS1	Isopropanol	69.1%	J	1, 2, 3

#### Surrogate Recoveries

• All samples exhibited acceptable surrogate percent recoveries (%R).

### GC/MS Tuning

• All criteria were met.

#### Method Blank

• The method blanks were free of contamination.

#### Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

#### **Continuing Calibration**

• The continuing calibrations exhibited acceptable %D and RRF values.

### **Compound Quantitation**

• All criteria were met.

#### Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

#### **Field Duplicate Sample Precision**

Field duplicate results are summarized below. The precision was acceptable. •

Compound	IA-0417 ppbV	DUP-0417 ppbV	RPD	Qualifier
Acetone	14	12	15%	None
Benzene	0.23	0.23	0%	
1,3-Butadiene	0.13	0.12	8%	
2-Butanone	2.0	1.6	22%	
Carbon Tetrachloride	0.060	0.062	3%	
Chloroethane	0.051	0.051	0%	
Chloroform	0.067	0.067	0%	
Chloromethane	0.95	0.91	4%	
Cyclohexane	0.16	0.15	6%	
Dichlorodifluoromethane	0.18	0.17	6%	
Ethyl Acetate	0.64	0.70	9%	
Ethylbenzene	0.17	0.15	13%	
4-Ethyltoluene	0.051	0.074	37%	
Heptane	0.21	_ 0.22	5%	
Hexane	1.4U	2.5	NC	
2-Hexanone	0.11	0.053	70%	None - <5X RL
Isopropanol	14	7.7	58%	None - See LCS
Naphthalene	0.054	0.035U	NC	None
Styrene	0.25	0.18	33%	
Tetrachloroethylene	0.079	0.074	7%	
Tetrahydrofuran	0.036	0.035U	NC	
Toluene	3.9	3.7	5%	
Trichlorofluoromethane	0.25	0.23	8%	
1,2,4-Trimethylbenzene	0.21	0.17	21%	
1,3,5-Trimethylbenzene	0.063	0.055	14%	
m,p-Xylene	0.65	0.59	10%	
o-Xylene	0.25	0.23	8%	

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Many Weaver Dated: 9121117

Senior Chemist

### Data Qualifiers

- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method.
- UJ = The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise.
- J = The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL).
- $J^+$  = The result is an estimated quantity, but the result may be biased high.
- J- = The result is an estimated quantity, but the result may be biased low.
- R = The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- NJ = The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.



### IA-0417

Laboratory:	Con-Test Ana	alytical Labor	Work O	rder:	17E0096					
Client:	EA Engineeri	ing, Science	& Tech	Project:		1490709 -	Metal Etchin	ıg Co. Inc.		
Matrix:	indoor air		Laboratory ID:	17E0096-01		File ID:	F050	0716.D		
Sampled:	04/27/17 00:0	00	Prepared:	05/07/17 14:33		Analyzed:	05/0	8/17 00:45		
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702			
Initial/Final:	400 mL / 400	mL								
Batch:	B176681	Sequenc	e: S014082	Calibratio	n:	1700016	Instru	ument:	SYSF	
CAS NO	). (	COMPOUND			CONC. (p	opbv)	MDL	RL	Q	
67-64-1	,	Acetone			14		0.49	1.4		
71-43-2	: 1	Benzene			0.23		0.018	0.035		
100-44-	7 !	Benzyl chlori	le				0.0068	0.035		
75-27-4	. 8	Bromodichlor	omethane				0.0076	0.035		
75-25-2	. 6	Bromoform					0.0067	0.035		
74-83-9	E	Bromometha	ne				0.024	0.035		
106-99-	0 ·	1,3-Butadiene	9		0.13		0.018	0.035		
78-93-3		2-Butanone (i	MEK)		2.0		0.026	1.4		
75-15-0	(	Carbon Disuli	ïde				0.012	0.35		
56-23-5	(	Carbon Tetra	chloride		0.060	)	0.0085	0.035		
108-90-	7 (	Chlorobenzer	ie				0.012	0.035		
75-00-3	(	Chloroethane			0.051	1	0.013	0.035		
67-66-3	C	Chloroform			0.067	7	0.0082	0.035		
74-87-3	(	Chloromethar	le		0.95		0.015	0.070		
110-82-	7 (	Cyclohexane			0.16		0.020	0.035		
124-48-	1 [	Dibromochlor	omethane				0.0093	0.035		
106-93-	4 1	1,2-Dibromoe	thane (EDB)				0.0079	0.035		
95-50-1	1	1,2-Dichlorob	enzene				0.0093	0.035		
541-73-	1 1	1,3-Dichlorob	enzene				0.0078	0.035		
106-46-	7 1	4-Dichlorob	enzene				0.0088	0.035		
75-71-8	C	Dichlorodifluo	romethane (Freon	12)	0.18		0.015	0.035		
75-34-3	1	I,1-Dichloroe	thane				0.0099	0.035		
107-06-2	2 1	,2-Dichloroe	thane				0.0098	0.035		
75-35-4	1	,1-Dichloroe	thylene				0.0086	0.035		
156-59-2	2 c	sis-1,2-Dichlo	roethylene				0.013	0.035		
156-60-5	5 ti	rans-1,2-Dict	loroethylene				0.0093	0.035		
78-87-5	1	,2-Dichlorop	ropane				0.012	0.035		
10061-0	1-5 c	is-1,3-Dichlo	ropropene				0.0093	0.035		
10061-0	2-6 ti	rans-1,3-Dich	loropropene				0.0094	0.035		
76-14-2	1	,2-Dichloro-1	,1,2,2-tetrafluoroet	hane (Freon			0.0084	0.035		

per 9120/17

## IA-0417

Laboratory:	Con-Test Ar	nalytical Labo	ratory	Work Or	der:	17E0096				
Client:	EA Enginee	ring, Science	& Tech	Project:		1490709 -	Metal Etchir	ig Co. Inc.		
Matrix:	indoor air		Laboratory ID:	17E0096-01		File ID:	F050	0716.D		
Sampled:	04/27/17 00	:00	Prepared:	05/07/17 14:33		Analyzed:	05/0	8/17 00:45		
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702			
Initial/Final:	400 mL / 40	0 mL								
Batch:	B176681	Sequen	ce: \$014082	Calibration	n	1700016	Instr	ument:	SYSF	
CAS NO	).	COMPOUNE	)		CONC.	(ppbv)	MDL	RL	Q	
123-91-	-1	1,4-Dioxane					0.23	0.35		
141-78-	-6	Ethyl Acetate	e		0.6	4	0.026	0.035		
100-41-	4	Ethylbenzene	е		0.1	7	0.0097	0.035		
622-96-	-8	4-Ethyltoluer	ie		0.05	51	0.0079	0.035		
142-82-	-5	Heptane			0.2	1	0.011	0.035		
87-68-3	6	Hexachlorob	utadiene				0.013	0.035		
110-54-	-3	Hexane					0.062	1.4		
591-78-	6	2-Hexanone	(MBK)		0.1	1	0.0090	0.035		
67-63-0	1	Isopropanol			14	J	0.043	1.4		
1634-04	1-4	Methyl tert-B	utyl Ether (MTBE)				0.011	0.035		
75-09-2		Methylene Cl	hloride				0.043	0.35		
108-10-	1	4-Methyl-2-p	entanone (MIBK)				0.0084	0.035		
91-20-3		Naphthalene			0.05	4	0.019	0.035		
115-07-	1	Propene					0.11	1.4		
100-42-	5	Styrene			0.2	5	0.0068	0.035		
79-34-5		1,1,2,2-Tetra	chloroethane				0.0084	0.035		
127-18-	4	Tetrachloroet	thylene		0.07	9	0.010	0.035		
109-99-	9	Tetrahydrofu	ran		0.03	6	0.015	0.035		
108-88-	3	Toluene			3.9		0.011	0.035		
120-82-	1	1,2,4-Trichlor	robenzene				0.013	0.035		
71-55-6		1,1,1-Trichlor	roethane				0.0063	0.035		
79-00-5		1,1,2-Trichlor	roethane				0.011	0.035		
79-01-6		Trichloroethy	lene				0.010	0.035		
75-69-4		Trichlorofluor	romethane (Freon 1	1)	0.25	5	0.012	0.14		
76-13-1		1,1,2-Trichlor	ro-1,2,2-trifluoroetha	ane (Freon 1			0.0098	0.14		
95-63-6		1,2,4-Trimeth	ylbenzene		0.21	1	0.0086	0.035		
108-67-	8	1,3,5-Trimeth	ylbenzene		0.06	3	0.0070	0.035		
108-05-	4	Vinyl Acetate					0.018	0.70		
75-01-4		Vinyl Chloride	e				0.015	0.035		
1330-20	)-7P/M	m&p-Xylene			0.65	5	0.018	0.070		

## IA-0417

Laboratory:	Con-Test Analy	tical Labo	ratory		Work Orde	er: ·	17E0096				
Client:	EA Engineering	, Science	& Tech		Project:		1490709 - M	etal Etchi	ng Co. Inc.		
Matrix:	indoor air		Laboratory ID:	17E009	6-01	F	File ID:	F05	0716.D		
Sampled:	04/27/17 00:00		Prepared:	05/07/17	7 14:33	/	Analyzed:	05/0	08/17 00:45		
Solids:			Preparation:	TO-15 P	rep	(	Dilution:	0.702			
Initial/Final:	400 mL / 400 m	L									
Batch:	B176681	Sequen	ce: S0140	32 (	Calibration:	1	1700016	Inst	rument:	SYSF	
CAS NO	). CC	OMPOUNE	)		CC	ONC. (p	pbv)	MDL	RL		Q
95-47-6	o->	Kylene				0.25		0.010	0.035		

### OA-0417

Laboratory:	Con-Test Ar	alytical Labo	Work Order: 17E0096							
Client:	EA Enginee	ring, Science	& Tech	Project	t:	1490709 -	Metal Etching	g Co. Inc.		
Matrix:	Ambient Air		Laboratory ID:	17E0096-02		File ID:	F050	715.D		
Sampled:	04/27/17 00:	:00	Prepared:	05/07/17 14:33		Analyzed:	05/07	7/17 23:58		
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702			
Initial/Final:	400 mL / 400	0 mL								
Batch:	B176681	Sequen	ce: S01408	32 Calibrati	on:	1700016	Instru	iment:	SYSF	
CAS NO	D.	COMPOUNE	)		CONC. (p	ppbv)	MDL	RL	Q	
67-64-1	1	Acetone			6.4		0.49	1.4		
71-43-2	2	Benzene			0.19	)	0.018	0.035		
100-44	-7	Benzył chlori	ide				0.0068	0.035		
75-27-4	1	Bromodichlo	romethane				0.0076	0.035		
75-25-2	2	Bromoform					0.0067	0.035		
74-83-9	•	Bromometha	ine				0.024	0.035		
106-99-	-0	1,3-Butadien	e				0.018	0.035		
78-93-3	3	2-Butanone (	(MEK)				0.026	1.4		
75-15-0	)	Carbon Disu	lfide				0.012	0.35		
56-23-5	5	Carbon Tetra	achloride		0.064	4	0.0085	0.035		
108-90-	-7	Chlorobenze	ne				0.012	0.035		
75-00-3	3	Chloroethane	e				0.013	0.035		
67-66-3	3	Chloroform					0.0082	0.035		
74-87-3	3	Chlorometha	ine		0.57		0.015	0.070		
110-82-	-7	Cyclohexane	<b>)</b>				0.020	0.035		
124-48-	-1	Dibromochlo	romethane				0.0093	0.035		
106-93-	-4	1,2-Dibromo	ethane (EDB)				0.0079	0.035		
95-50-1	1	1,2-Dichlorot	penzene				0.0093	0.035		
541-73-	-1	1,3-Dichlorot	penzene				0.0078	0.035		
106-46-	-7	1,4-Dichlorot	penzene				0.0088	0.035		
75-71-8	3	Dichlorodiflu	oromethane (Freo	n 12)	0.16		0.015	0.035		
75-34-3	3	1,1-Dichloroe	ethane				0.0099	0.035		
107-06-	-2	1,2-Dichloroe	ethane				0.0098	0.035		
75-35-4	1	1,1-Dichloroe	ethylene				0.0086	0.035		
156-59-	-2	cis-1,2-Dichle	oroethylene				0.013	0.035		
156-60-	-5	trans-1,2-Dic	hloroethylene				0.0093	0.035		
78-87-5	5	1,2-Dichlorop	propane				0.012	0.035		
10061-0	01-5	cis-1,3-Dichlo	oropropene				0.0093	0.035		
10061-0	02-6	trans-1,3-Dic	hloropropene				0.0094	0.035		
76-14-2	2	1,2-Dichloro-	1,1,2,2-tetrafluoro	ethane (Freon			0.0084	0.035		

## OA-0417

Laboratory:	Con-Test Ar	Con-Test Analytical Laboratory		Work O	rder:	17E0096				
Client:	EA Enginee	ring, Science	& Tech	Project:		1490709 -	Metal Etchin	g Co. Inc.		
Matrix:	Ambient Air		Laboratory ID:	17E0096-02		File ID:	F050	0715.D		
Sampled:	04/27/17 00	:00	Prepared:	05/07/17 14:33		Analyzed:	05/0	7/17 23:58		
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702			
Initial/Final:	400 mL / 40	0 mL								
Batch:	B176681	Sequen	ce: S01408	2 Calibratio	n;	1700016	Instr	ument:	SYSF	
CAS NO	<b>D</b> .	COMPOUND	0		CONC.	(ppbv)	MDL	RL	Q	
123-91-	-1	1,4-Dioxane					0.23	0.35		
64-17-5	5	Ethanol			4.9	)	0.63	1.4		
141-78-	-6	Ethyl Acetate	e				0.026	0.035		
100-41	-4	Ethylbenzen	e		0.1	5	0.0097	0.035		
622-96-	-8	4-Ethyltoluer	ne				0.0079	0.035		
142-82-	-5	Heptane			0.08	31	0.011	0.035		
87-68-3	3	Hexachlorob	utadiene				0.013	0.035		
110-54-	-3	Hexane					0.062	1.4		
591-78-	-6	2-Hexanone	(MBK)				0.0090	0.035		
67-63-0	)	Isopropanol			5.0	1	0.043	1.4		
1634-04	4-4	Methyl tert-B	utyl Ether (MTBE)				0.011	0.035		
75-09-2	2	Methylene C	hloride				0.043	0.35		
108-10-	-1	4-Methyl-2-p	entanone (MIBK)				0.0084	0.035		
91-20-3	}	Naphthalene	,				0.019	0.035		
115-07-	-1	Propene					0.11	1.4		
100-42-	-5	Styrene					0.0068	0.035		
79-34-5	5	1,1,2,2-Tetra	chloroethane				0.0084	0.035		
127-18-	-4	Tetrachloroe	thylene				0.010	0.035		
109-99-	-9	Tetrahydrofu	ran				0.015	0.035		
108-88-	-3	Toluene			0.70	D	0.011	0.035		
120-82-	-1	1,2,4-Trichlo	robenzene				0.013	0.035		
71-55-6	5	1,1,1-Trichlor	roethane				0.0063	0.035		
79-00-5	5	1,1,2-Trichlor	roethane				0.011	0.035		
79-01-6	;	Trichloroethy	lene				0.010	0.035		
75-69-4		Trichlorofluor	romethane (Freon	11)	0.23	3	0.012	0.14		
76-13-1		1,1,2-Trichlor	ro-1,2,2-trifluoroeth	nane (Freon 1			0.0098	0.14		
95-63-6	i	1,2,4-Trimeth	ylbenzene		0.08	8	0.0086	0.035		
108-67-	8	1,3,5-Trimeth	ylbenzene				0.0070	0.035		
108-05 <b>-</b>	4	Vinyl Acetate	)				0.018	0.70		
75-01-4		Vinyl Chloride	e				0.015	0.035		

# New 9/20/17

## OA-0417

Laboratory:	Con-Test A	nalytical Labo	ratory	Work	Order:	17E0096				
Client:	EA Enginee	ring, Science	& Tech	Projec	:t:	1490709 - M	etal Etch	ing Co. Inc.		
Matrix:	Ambient Air		Laboratory ID:	17E0096-02		File ID:	FO	50715.D		
Sampled:	04/27/17 00	:00	Prepared:	05/07/17 14:33		Analyzed:	05/	07/17 23:58		
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702	2		
Initial/Final:	400 mL / 40	0 mL								
Batch:	B176681	Sequen	ce: \$014082	Calibrat	ion:	1700016	Inst	rument:	SYSF	
CAS NO	).	COMPOUND	)		CONC.	(ppbv)	MDL	RL		Q
1330-20	)-7P/M	m&p-Xylene			0.7	0	0.018	0.070		
95-47-6	i	o-Xylene			0.2	0	0.010	0.035		

### DUP-0417

Laboratory:	Con-Test Ar	nalytical Labo	ratory	Work Order: 17E0096				
Client:	EA Enginee	ring, Science	& Tech	Project:	1490709	- Metal Etchin	g Co. Inc.	
Matrix:	Air		Laboratory ID:	17E0096-03	File ID:	F050	)717.D	
Sampled:	04/27/17 00:	:00	Prepared:	05/07/17 14:33	Analyzed	: 05/0	8/17 01:33	
Solids:			Preparation:	TO-15 Prep	Dilution:	0.702		
Initial/Final:	400 mL / 400	0 mL						
Batch:	B176681	Sequen	ce: S014082	2 Calibration	1700016	Instru	iment:	SYSF
CAS NO	D.	COMPOUNE	)		CONC. (ppbv)	MDL	RL	Q
67-64-	1	Acetone			12	0.49	1.4	
71-43-2	2	Benzene			0.23	0.018	0.035	
100-44	-7	Benzyl chlori	de			0.0068	0.035	
75-27-4	4	Bromodichlo	romethane			0.0076	0.035	
75-25-2	2	Bromoform				0.0067	0.035	
74-83-9	9	Bromometha	ne			0.024	0.035	
106-99	-0	1,3-Butadien	e		0.12	0.018	0.035	
78-93-3	3	2-Butanone (	MEK)		1.6	0.026	1.4	
75-15-0	)	Carbon Disu	lfide			0.012	0.35	
56-23-5	5	Carbon Tetra	chloride		0.062	0.0085	0.035	
108-90	-7	Chlorobenze	ne			0.012	0.035	
75-00-3	3	Chloroethane	9		0.051	0.013	0.035	
67-66-3	3	Chloroform			0.067	0.0082	0.035	
74-87-3	3	Chlorometha	ne		0.91	0.015	0.070	
110-82	-7	Cyclohexane	•		0.15	0.020	0.035	
124-48	-1	Dibromochlo	romethane			0.0093	0.035	
106-93	-4	1,2-Dibromoe	ethane (EDB)			0.0079	0.035	
95-50-1	1	1,2-Dichlorot	oenzene			0.0093	0.035	
541-73	-1	1,3-Dichlorot	penzene			0.0078	0.035	
106-46	-7	1,4-Dichlorot	penzene			0.0088	0.035	
75-71-8	3	Dichlorodiflue	promethane (Freon	12)	0.17	0.015	0.035	
75-34-3	3	1,1-Dichloroe	ethane			0.0099	0.035	
107-06	-2	1,2-Dichloroe	ethane			0.0098	0.035	
75-35-4	1	1,1-Dichloroe	ethylene			0.0086	0.035	
156-59	-2	cis-1,2-Dichlo	proethylene			0.013	0.035	
156-60	-5	trans-1,2-Dic	hloroethylene			0.0093	0.035	
78-87-5	5	1,2-Dichlorop	propane			0.012	0.035	
10061-0	01-5	cis-1,3-Dichle	propropene			0.0093	0.035	
10061-0	02-6	trans-1,3-Dic	hloropropene			0.0094	0.035	
76-14-2	2	1,2-Dichloro-	1.1.2.2-tetrafluoroe	thane (Freon		0.0084	0.035	

Lev glzoliz

### DUP-0417

Laboratory:	Con-Test An	alytical Labor	ratory	Work Or	der:	17E0096				
Client:	EA Engineer	ring, Science	& Tech	Project:		1490709 -	Metal Etchi	ng Co. Inc.		
Matrix:	Air		Laboratory ID:	17E0096-03		File ID:	F05	0717.D		
Sampled:	04/27/17 00:	:00	Prepared:	05/07/17 14:33		Analyzed:	05/0	8/17 01:33		
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702			
Initial/Final:	400 mL / 400	) mL								
Batch:	B176681	Sequenc	ce: S014082	Calibratio	n:	1700016	Instr	ument:	SYSF	
CASING	D.	COMPOUNE	)		CONC.	(ppbv)	MDL	RL	Q	
123-91	-1	1,4-Dioxane					0.23	0.35		
141-78	-6	Ethyl Acetate	è		0.7	0	0.026	0.035		
100-41	-4	Ethylbenzen	e		0.1	5	0.0097	0.035		
622-96-	-8	4-Ethyltoluer	e		0.07	74	0.0079	0.035		
142-82	-5	Heptane			0.2	2	0.011	0.035		
87-68-3	3	Hexachlorob	utadiene				0.013	0.035		
110-54	-3	Hexane			2.5	5	0.062	1.4		
591-78-	-6	2-Hexanone	(MBK)		0.05	53	0.0090	0.035		
67-63-0	)	Isopropanol			7.7	、ゴ	0.043	1.4		
1634-04	4-4	Methyl tert-B	utyl Ether (MTBE)				0.011	0.035		
75-09-2	2	Methylene C	hloride				0.043	0.35		
108-10-	-1	4-Methyl-2-p	entanone (MIBK)				0.0084	0.035		
91-20-3	}	Naphthalene					0.019	0.035		
115-07-	-1	Propene					0.11	1.4		
100-42-	-5	Styrene			0.13	8	0.0068	0.035		
79-34-5	5	1,1,2,2-Tetra	chloroethane				0.0084	0.035		
127-18-	-4	Tetrachloroe	thylene		0.07	'4	0.010	0.035		
109-99-	-9	Tetrahydrofu	ran				0.015	0.035		
108-88-	-3	Toluene			3.7	,	0.011	0.035		
120-82-	-1	1,2,4-Trichlo	robenzene				0.013	0.035		
71-55-6	5	1,1,1-Trichlo	roethane				0.0063	0.035		
79-00-5	5	1,1,2-Trichlo	roethane				0.011	0.035		
<b>79-0</b> 1-6	5	Trichloroethy	lene				0.010	0.035		
75-69-4	ł	Trichlorofluor	omethane (Freon 1	1)	0.23	3	0.012	0.14		
76-13-1		1,1,2-Trichlo	ro-1,2,2-trifluoroetha	ane (Freon 1			0.0098	0.14		
95-63-6	5	1,2,4-Trimeth	ylbenzene		0.1	7	0.0086	0.035		
108-67-	-8	1,3,5-Trimeth	ylbenzene		0.05	5	0.0070	0.035		
108-05-	-4	Vinyl Acetate					0.018	0.70		
75-01-4	Ļ	Vinyl Chloride	Э				0.015	0.035		
1330-20	0-7P/M	m&p-Xylene			0.59	Э	0.018	0.070		

## DUP-0417

Laboratory:	Con-Test Ana	lytical Labor	atory	Work O	rder:	17E0096				
Client:	EA Engineerir	ng, Science	& Tech	Project:		1490709 - M	etal Etch	ing Co. Inc.		
Matrix:	Air		Laboratory ID:	17E0096-03		File ID:	F0	50717.D		
Sampled:	04/27/17 00:0	0	Prepared:	05/07/17 14:33		Analyzed:	05/	08/17 01:33		
Solids:			Preparation:	TO-15 Prep		Dilution:	0.702	2		
Initial/Final:	400 mL / 400 i	mL								
Batch:	B176681	Sequenc	e: S014082	Calibratio	n:	1700016	Inst	trument:	SYSF	
CAS NO	). C	OMPOUND			CONC. (	ppbv)	MDL	RL		Q
95-47-6	0	-Xylene			0.23	3	0.010	0.035		

This page intentionally left blank



#### DATA USABILITY SUMMARY REPORT METAL ETCHING, FREEPORT, LONG ISLAND, NEW YORK

Client:	EA Engineering, Science & Technology, Inc., Syracuse, New York
SDG:	SC34122
Laboratory:	Eurofins Spectrum Analytical, Agawam, Massachusetts
Site:	Metal Etching, Freeport, Long Island, New York
Date:	October 16, 2017

		VOC	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	MW-04-0517	SC34122-01	Water
2	DUP-1-0517	SC34122-02	Water
3	MW-10S-0517	SC34122-03	Water
4	MW-10M-0517	SC34122-04	Water
5	MW-10D-0517	SC34122-05	Water
6	MW-06-0517	SC34122-06	Water
7	MW-9S-0517	SC34122-07	Water
8	MW-9D-0517	SC34122-08	Water
9	MW-11D-0517	SC34122-09	Water
10	MW-11S-0517	SC34122-10	Water
10MS	MW-11S-0517MS	SC34122-10MS	Water
10MSD	MW-11S-0517MSD	SC34122-10MSD	Water
11	MW-05R-0517	SC34122-11	Water
12	MW-8SR-0517	SC34122-12	Water
13	MW-8DR-0517	SC34122-13	Water
14	RB-1	SC34122-14	Water
15	RB-2	SC34122-15	Water
16	TRIP BLANK	SC34122-16	Water

A Data Usability Summary Review was performed on the analytical data for thirteen water samples, two aqueous rinsate blank samples, and one aqueous trip blank sample collected on April 26-28, 2017 by EA Engineering at the Metal Etching site in Freeport, Long Island, New York. The samples were analyzed under Environmental Protection Agency (USEPA) *"Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions"* and the *Standard Methods for the Examination of Water and Wastewater.* 

Specific method references are as follows:

Analysis	Method References
VOCs	USEPA SW-846 Method 8260C

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number HW-33A, Revision 0, July 2015: Low/Medium Volatile Data Validation;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

#### Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Tentatively Identified Compounds (TICs)
- Field Duplicate sample precision

#### **Data Usability Assessment**

There was no rejection of data.

Overall the data is acceptable for the intended purposes as qualified for the following deficiencies.

- Four compounds were qualified as estimated in all samples due to high continuing calibration %D values.
- Several compounds were qualified as nondetected in several samples due to method blank contamination.
- Acetone was qualified as nondetected in eleven samples due to rinsate blank contamination.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedences of QC criteria.

### Data Completeness

• The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

### Volatile Organic Compounds (VOC)

#### Holding Times

• All samples were analyzed within 14 days for preserved water samples.

#### GC/MS Tuning

• All criteria were met.

#### Initial Calibration

• All %RSD and/or correlation coefficients and mean RRF criteria were met.

#### **Continuing Calibration**

The following table presents compounds that exceeded percent deviation (%D) criteria and/or RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).</li>

CCAL Date	Compound	%D/RRF	Qualifier	Affected Samples
5/8/17	2,2-Dichloropropane	79.4%	J/UJ	All Samples
	Trans-1,3-Dichloropropene	26.6%		-
	Ethyl tert-Butyl Ether	22.9%		
	Trans-1,4-Dichloro-2-Butene	52.6%		

### Method Blank

• The method blanks exhibited the following contamination.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
	_	ug/L		
1707574-BLK1	Naphthalene	0.98	U	11
	n-Propylbenzene	0.44	U	6-7, 10, 11
	1,2,4-Trimethylbenzene	0.98	U	7, 11
	1,3,5-Trimethylbenzene	0.51	U	10

### Field Blank

	1	/OCs		
Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
RB-1	Acetone	6.14	U	1-3, 5, 7-13
RB-2	Acetone	5.39	None	See RB-1
TRIP BLANK	None - ND	-	-	

Field QC results are summarized below.

#### Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate %R values.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J). Results are valid and usable, however possibly biased.

MS/MSD Sample ID	Compound	MS %R/MSD %R/ RPD	Qualifier
10	2,2-Dichloropropane	33%/34%/OK	None - See CCAL

#### Laboratory Control Samples

• The following table presents LCS samples that exhibited percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

LCS ID	Compound	%R	Qualifier	Affected Samples
1707574-BS1	2,2-Dichloropropane	179%	None	All Associated ND
	Trans-1,4-Dichloro-2-Butene	153%	[]	

#### Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

### **Target Compound Identification**

All mass spectra and quantitation criteria were met. ٠

### **Compound Quantitation**

EDS Sample 13 was analyzed at a 5X dilution due to high concentrations of target • compounds. Reporting limits were adjusted accordingly. No action was required.

## **Tentatively Identified Compounds (TICs)**

TICs were not reported. •

## **Field Duplicate Sample Precision**

Field duplicate results are summarized below. The precision was acceptable. •

		/OC		
Compound	MW-04-0517 ug/L	DUP-1-0517 ug/L	RPD	Qualifier
cis-1,2-Dichloroethene	0.64	0.70	9%	None
Tetrachloroethene	1.28	1.02	23%	

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Many Weaver Dated: 10/17/17 Nancy Weaver

Senior Chemist

### **Data Qualifiers**

- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the sample reporting limit; and the reporting limit is approximate.
- U = The analyte was analyzed for, but was not detected above the sample reporting limit.
- R = The sample results is rejected due to serious deficiencies. The presence or absence of the analyte cannot be verified.



SW846 8260C

MW-04-0517

۱

Laboratory:	Eurofins Spectrun	n Analytic	<u>al, Inc MA</u>		SDG:	<u>SC34122</u>			
Client:	EA Engineering, S	<u>Science, &amp;</u>	Technology - Syrac	use	Project:	Metal Etching - Fr	eport, NY		
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC3412</u>	2-01	File ID:	<u>3412201.D</u>		
Sampled:	04/27/17 15:53		Prepared:	05/05/17	7 10:28	Analyzed:	05/08/17 23:06		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	5 ml / 5 ml		
Batch:	<u>1707574</u>	Sequence	e: <u>\$704321</u>		Calibration:	1704041	Instrument:	HPV1	
Reported to:	MDL	Dilution:	1						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	2.06 🗸	0.80	10.0	8
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.41	0.41	1.00	U
135-98-8	sec-Butylbenzene	0.33	0.33	1.00	U
98-06-6	tert-Butylbenzene	0.32	0.32	1.00	U
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon 12)	0.58	0.58	2.00	U
75-34-3	1.1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.64	0.33	1.00	J
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 11 7	0.42	1.00	K
563-58-6	1.1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1,3-Dichloropropene	0.36	0.36	0.50	U

## NWIOLIG 17

SW846 8260C

MW-04-0517

£.

Laboratory:	Eurofins Spectrum Analytical, I	nc MA		SDG:	<u>SC34122</u>			1	
Client:	EA Engineering, Science, & Tec	chnology - Syracu	ise	Project:	Metal Etcl	hing - Freeport	NY		
Project Number:	<u>1490709</u>			Received:	04/29/17	09:30			
Matrix:	Ground Water La	boratory ID:	<u>SC3412</u>	2-01	File ID:	3412	201.D		
Sampled:	04/27/17 15:53 Pre	enared:	05/05/1	7 10.28	Analyzed	05/0	8/17 23:06		
% Solide:	<u></u>	paretion:	CW/044	5020 Watar MS	Initial/Ein	alı fimi	15 ml		
70 Sonds.			<u>3 W 040</u>	<u>3030 water wis</u>	Initial/rin	al. <u>5 iiii</u>	/ 5 ml		
Batch:	<u>1707574</u> Sequence:	<u>S704321</u>		Calibration:	1704041	Instr	ument:	HPVI	
Reported to:	MDL Dilution:	1							
CAS NO.	COMPOUND			RESULT (µ	g/l)	MDL	MRL	Q	
10061-02-6	trans-1,3-Dichloropropene			0.35	uJ	0.35	0.50	X	
100-41-4	Ethylbenzene			0.33		0.33	1.00	U	
87-68-3	Hexachlorobutadiene			0.47		0.47	0.50	U	
591-78-6	2-Hexanone (MBK)			0.53	1	0.53	2.00	U	
98-82-8	Isopropylbenzene			0.36		0.36	1.00	U	
99-87-6	4-Isopropyltoluene			0.28		0.28	1.00	U	-
1634-04-4	Methyl tert-butyl ether			0.24		0.24	1.00	U	
108-10-1	4-Methyl-2-pentanone (MIBK)			0.52		0.52	2.00	U	
75-09-2	Methylene chloride		· · · · · · · · · · · · · · · · · · ·	0.66		0.66	2.00	U	
91-20-3	Naphthalene			0.35		0.35	1.00	U	
103-65-1	n-Propylbenzene			0.34		0.34	1.00	U	
100-42-5	Styrene			0.40		0.40	1.00	U	
630-20-6	1,1,1,2-Tetrachloroethane			0.38		0.38	1.00	U	
79-34-5	1,1,2,2-Tetrachloroethane			0.33	111	0.33	0.50	U	
127-18-4	Tetrachloroethene			1.28		0.57	1.00		-
108-88-3	Toluene			0.30		0.30	1.00	U	
87-61-6	1,2,3-Trichlorobenzene			0.38		0.38	1.00	U	
120-82-1	1,2,4-Trichlorobenzene			0.38		0.38	1.00	U	
71-55-6	1,1,1-Trichloroethane			0.51		0.51	1.00	U	
108-70-3	1,3,5-Trichlorobenzene			0.30		0.30	1.00	U	
79-00-5	1,1,2-Trichloroethane			0.33		0.33	1.00	U	
79-01-6	Trichloroethene			0.50		0.50	1.00	U	

75-69-4	Trichlorofluoromethane (Freon 11)	0.49	0.49	1.00	U
96-18-4	1,2,3-Trichloropropane	0.29	0.29	1.00	U
95-63-6	1,2,4-Trimethylbenzene	0.36	0.36	1.00	U
108-67-8	1,3,5-Trimethylbenzene	0.43	0.43	1.00	U
75-01-4	Vinyl chloride	0.47	0.47	1.00	U
179601-23-1	m,p-Xylene	0.38	0.38	2.00	U
95-47-6	o-Xylene	0.28	0.28	1.00	U
109-99-9	Tetrahydrofuran	1.06	1.06	2.00	U
60-29-7	Ethyl ether	0.37	0.37	1.00	U
994-05-8	Tert-amyl methyl ether	0.49	0.49	1.00	U
637-92-3	Ethyl tert-butyl ether	0.33 UJ	0.33	1.00	K
108-20-3	Di-isopropyl ether	0.29	0.29	1.00	U
75-65-0	Tert-Butanol / butyl alcohol	5.90	5.90	10.0	U
110-57-6	trans-1,4-Dichloro-2-butene	0.82 UJ	0.82	5.00	K
123-91-1	1,4-Dioxane	11.4	11.4	20.0	U
64-17-5	Ethanol	30.9	30.9	200	U

SDG SC34122 Page 35 / 1868

New coliblit

SW846 8260C

DUP-1-0517

Laboratory:	Eurofins Spectrur	<u>n Analytic</u>	<u>al, Inc MA</u>	SDG:	<u>SC34122</u>		
Client:	EA Engineering,	<u>Science, &amp;</u>	Technology - Syracı	<u>ise</u> Project:	Metal Etching - Fr	eeport, NY	
Project Number:	1490709			Received:	04/29/17 09:30		
Matrix:	Ground Water		Laboratory ID:	<u>SC34122-02</u>	File ID:	<u>3412202.D</u>	
Sampled:	04/27/17 00:00		Prepared:	05/05/17 10:28	Analyzed:	05/08/17 23:36	
% Solids:			Preparation:	SW846 5030 Water MS	Initial/Final:	5 ml / 5 ml	
Batch:	<u>1707574</u>	Sequence	<u>\$704321</u>	Calibration:	1704041	Instrument:	HPVI
Reported to:	MDL	Dilution:	1				

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	I,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	1.51 ~	0.80	10.0	8
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.41	0.41	1.00	U
135-98-8	sec-Butylbenzene	0.33	0.33	1.00	U
98-06-6	tert-Butylbenzene	0.32	0.32	1.00	U
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	υ
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.58	0.58	2.00	U
75-34-3	1,1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.70	0.33	1.00	j
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2.2-Dichloropropane	0.42 4 1	0.42	1.00	ملحل
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	U
0061-01-5	cis-1.3-Dichloropropene	0.36	0.36	0.50	Ľ

Nuliolibli7

SW846 8260C

DUP-1-0517

Laboratory:	Eurofins Spectrum	<u>Analytica</u>	al, Inc MA		SDG:	<u>SC34122</u>			2
Client:	EA Engineering, S	cience, &	Technology - Sy	racuse	Project:	Metal Etching - Fr	eeport, NY		
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC341</u> 2	22-02	File ID:	3412202.D		
Sampled:	04/27/17 00:00		Prepared:	05/05/1	<u>7 10:28</u>	Analyzed:	05/08/17 23:36		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	: <u>\$7043</u>	21	Calibration:	1704041	Instrument:	<u>HPV1</u>	
Reported to:	MDL	Dilution:	1						

CAS NO.	COMPOUND	RESULT (μg/l)	MDL	MRL	Q
10061-02-6	trans-1,3-Dichloropropene	0.35 UJ	0.35	0.50	ملا
100-41-4	Ethylbenzene	0.33	0.33	1.00	U
87-68-3	Hexachlorobutadiene	0.47	0.47	0.50	U
591-78-6	2-Hexanone (MBK)	0.53	0.53	2.00	U
98-82-8	Isopropylbenzene	0.36	0.36	1.00	U
99-87-6	4-Isopropyltoluene	0.28	0.28	1.00	U
1634-04-4	Methyl tert-butyl ether	0.24	0.24	1.00	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.52	0.52	2.00	U
75-09-2	Methylene chloride	0.66	0.66	2.00	U
91-20-3	Naphthalene	0.35	0.35	1.00	U
103-65-1	n-Propylbenzene	0.34	0.34	1.00	U
100-42-5	Styrene	0.40	0.40	1.00	U
630-20-6	1,1,1,2-Tetrachloroethane	0.38	0.38	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane	0.33	0.33	0.50	U
127-18-4	Tetrachloroethene	1.02	0.57	1.00	
108-88-3	Toluene	0.30	0.30	1.00	U
87-61-6	1,2,3-Trichlorobenzene	0.38	0.38	1.00	U
120-82-1	1,2,4-Trichlorobenzene	0.38	0.38	1.00	U
71-55-6	1,1,1-Trichloroethane	0.51	0.51	1.00	U
108-70-3	1,3,5-Trichlorobenzene	0.30	0.30	1.00	U
79-00-5	I,1,2-Trichloroethane	0.33	0.33	1.00	U
79-01-6	Trichloroethene	0.50	0.50	1.00	U
75-69-4	Trichlorofluoromethane (Freon 11)	0.49	0.49	1.00	U
96-18-4	1,2,3-Trichloropropane	0.29	0.29	1.00	U
95-63-6	1,2,4-Trimethylbenzene	0.36	0.36	1.00	U
108-67-8	1,3,5-Trimethylbenzene	0.43	0.43	1.00	U
75-01-4	Vinyl chloride	0.47	0.47	1.00	U
179601-23-1	m,p-Xylene	0.38	0.38	2.00	U
95-47-6	o-Xylene	0.28	0.28	1.00	U
109-99-9	Tetrahydrofuran	1.06	1.06	2.00	U
60-29-7	Ethyl ether	0.37	0.37	1.00	U
994-05-8	Tert-amyl methyl ether	0.49	0.49	1.00	Ŭ
637-92-3	Ethyl tert-butyl ether	0.33 UJ	0.33	1.00	X
108-20-3	Di-isopropyl ether	0.29	0.29	1,00	U
75-65-0	Tert-Butanol / butyl alcohol	5.90	5.90	10.0	Ŭ
110-57-6	trans-1,4-Dichloro-2-butene	0.82 4 5	0.82	5.00	X
123-91-1	1,4-Dioxane	11.4	11.4	20.0	U
64-17-5	Ethanol	30.9	30.9	200	U U

SDG SC34122 Page 37 / 1868

perioli6/17

SW846 8260C

MW-10S-0517

								2
Laboratory:	Eurofins Spectrum	n Analytica	<u>al, Inc MA</u>	SDG:	<u>SC34122</u>			2
Client:	EA Engineering,	Science, &	Technology - Syracu	se Project:	Metal Etching - Fr	eeport, NY		
Project Number:	1490709			Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC34122-03</u>	File ID:	<u>3412203.D</u>		
Sampled:	04/26/17 17:01		Prepared:	05/05/17 10:28	Analyzed:	05/09/17 00:06		
% Solids:			Preparation:	SW846 5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	1707574	Sequence	: <u>\$704321</u>	Calibration:	1704041	Instrument:	<u>HPV1</u>	
Reported to:	MDL	Dilution:	<u>1</u>					

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	12.7 🛰	0.80	15.0	+
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.41	0.41	1.00	U
135-98-8	sec-Butylbenzene	0.33	0.33	1.00	U
98-06-6	tert-Butylbenzene	0.32	0.32	1.00	U
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.58	0.58	2.00	U
75-34-3	1,1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.33	0.33	1.00	U
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 VJ	0.42	1.00	b
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1,3-Dichloropropene	0.36	0.36	0.50	U

reviolicliz
SW846 8260C

Eurofins Spectrum Analytical, Inc. - MA

MW-10S-0517

3

Project Number:1490709Matrix:Ground WaterLaboratory ID: $SC3412$ Sampled: $04/26/17 17:01$ Prepared: $05/05/1$ % Solids:Preparation: $SW846$ Batch: $1707574$ Sequence: $S704321$ Reported to:MDLDilution:1 $CAS NO.$ COMPOUND $I$ $10061-02-6$ trans-1,3-Dichloropropene $100-41-4$ Ethylbenzene $87-68-3$ Hexachlorobutadiene $591-78-6$ 2-Hexanone (MBK) $98-82-8$ Isopropylbenzene $99-87-6$ 4-Isopropyltoluene $1634-04-4$ Methyl tert-butyl ether $108-10-1$ $4$ -Methyl-2-pentanone (MIBK) $75-09-2$ Methylene chloride $91-20-3$ Naphthalene $103-65-1$ $n$ -Propylbenzene $103-65-1$ $n$ -Propylbenzene $103-65-1$ $n$ -Propylbenzene $100-42-5$ Styrene $630-20-6$ $1,1,1,2$ -Tetrachloroethane $127-18-4$ Tetrachloroethane $127-18-4$ Tetrachloroethane $120-82-1$ $1,2,4$ -Trichlorobenzene $120-82-1$ $1,2,4$ -Trichlorobenzene $120-82-1$ $1,2,4$ -Trichlorobenzene	Received:         04/29/1           2-03         File ID:           7 10:28         Analyze           5030 Water MS         Initial/F           Calibration:         170404           RESULT (µg/l)         0.35           0.33         0.47           0.53         0.53	<u>3412:</u> ed: <u>35/09</u> inal: <u>5 ml /</u> <u>MDL</u> 0.35	203.D )/17 00:06 / 5 ml iment:	<u>HPV1</u>
Matrix:Ground WaterLaboratory ID:SC3412Sampled: $04/26/17 17:01$ Prepared: $05/05/1$ % Solids:Preparation:SW846Batch: $1707574$ Sequence: $S704321$ Reported to:MDLDilution:1CAS NO.COMPOUNDImage: Comparison of the second s	2-03         File ID:           7 10:28         Analyze           5030 Water MS         Initial/F           Calibration:         170404           RESULT (µg/l)         0.35           0.33         0.47           0.53         0.53	<u>3412</u> ed: <u>05/09</u> inal: <u>5 ml /</u> I Instru <u>MDL</u> 0.35	203.D 2/17 00:06 2/ 5 ml iment: MBL	<u>HPV1</u>
Sampled: $04/26/17 17:01$ Prepared: $05/05/1$ % Solids:Preparation: $SW846$ Batch: $1707574$ Sequence: $S704321$ Reported to:MDLDilution:1CAS NO.COMPOUND110061-02-6trans-1,3-Dichloropropene110061-02-6trans-1,3-Dichloropropene198-82-8Hexachlorobutadiene199-87-62-Hexanone (MBK)98-82-8Isopropylbenzene99-87-64-Isopropyltoluene1634-04-4Methyl tert-butyl ether108-10-14-Methyl-2-pentanone (MIBK)75-09-2Methylene chloride91-20-3Naphthalene103-65-1n-Propylbenzene91-20-3Styrene630-20-61,1,1,2-Tetrachloroethane127-18-4Tetrachlorobenzene108-88-3Toluene87-61-61,2,3-Trichlorobenzene108-88-3Toluene87-61-61,2,4-Trichlorobenzene120-82-11,2,4-Trichlorobenzene	7 10:28         Analyze           5030 Water MS         Initial/F           Calibration:         170404           RESULT (μg/l)         0.35           0.33         0.47           0.53         0.53	ed: 05/09 inal: <u>5 ml /</u> I Instru MDL 0.35	9/17 00:06 / 5 ml ument:	<u>HPV1</u>
% Solids:Preparation: $\underline{SW846}$ Batch:1707574Sequence: $\underline{S704321}$ Reported to:MDLDilution:1CAS NO.COMPOUND10061-02-6trans-1,3-Dichloropropene100-41-4Ethylbenzene $\overline{S7-68-3}$ 87-68-3Hexachlorobutadiene $\overline{S91-78-6}$ 2-Hexanone (MBK) $\overline{98-82-8}$ Isopropylbenzene99-87-64-Isopropyltoluene $\overline{1634-04-4}$ 108-10-14-Methyl-2-pentanone (MIBK) $\overline{75-09-2}$ 91-20-3Naphthalene $\overline{103-65-1}$ 100-42-5Styrene $\overline{630-20-6}$ 1,1,1,2-Tetrachloroethane $\overline{79-34-5}$ 1,2,2-Tetrachloroethane $\overline{127-18-4}$ Tetrachlorobenzene $\overline{108-88-3}$ Toluene $\overline{120-82-1}$ 1,2,4-Trichlorobenzene $\overline{120-82-1}$ 1,2,4-Trichlorobenzene $\overline{120-82-1}$ 1,2,5,61,1,1,2-Tetrachloroethane	5030 Water MS         Initial/F           Calibration:         170404           RESULT (μg/l)         0.35           0.33         0.47           0.53         0.53	inal:         5 ml /           Instru         Instru           MDL         0.35	/ 5 ml iment:	<u>HPV1</u>
Batch: $1707574$ Sequence: $S704321$ Reported to:MDLDilution:1CAS NO.COMPOUND10061-02-6trans-1,3-Dichloropropene100-41-4Ethylbenzene87-68-3Hexachlorobutadiene591-78-62-Hexanone (MBK)98-82-8Isopropylbenzene99-87-64-Isopropyltoluene1634-04-4Methyl tert-butyl ether108-10-14-Methyl-2-pentanone (MIBK)75-09-2Methylene chloride91-20-3Naphthalene103-65-1n-Propylbenzene100-42-5Styrene630-20-61,1,1,2-Tetrachloroethane127-18-4Tetrachloroethene108-88-3Toluene87-61-61,2,3-Trichlorobenzene120-82-11,2,4-Trichlorobenzene120-82-11,2,4-Trichlorobenzene	Calibration: <u>170404</u> <u>RESULT (μg/l)</u> 0.35 μ7 0.33 0.47 0.53	MDL 0.35	iment:	<u>HPV1</u>
NumberInterpretSequence:Sequence:Sequence:Reported to:MDLDilution:110061-02-6trans-1,3-Dichloropropene100-41-4Ethylbenzene87-68-3Hexachlorobutadiene591-78-62-Hexanone (MBK)98-82-8Isopropylbenzene99-87-64-Isopropyltoluene1634-04-4Methyl tert-butyl ether108-10-14-Methyl-2-pentanone (MIBK)75-09-2Methylene chloride91-20-3Naphthalene103-65-1n-Propylbenzene100-42-5Styrene630-20-61,1,1,2-Tetrachloroethane79-34-51,1,2,2-Tetrachloroethane127-18-4Tetrachloroethene108-88-3Toluene87-61-61,2,3-Trichlorobenzene120-82-11,2,4-Trichlorobenzene120-82-11,2,4-Trichlorobenzene	RESULT (μg/l)           0.35         μ.7           0.33         0.47           0.53         μ.7	MDL 0.35	MDI	
Reported to:MDLDilution:1CAS NO.COMPOUND10061-02-6trans-1,3-Dichloropropene100-41-4Ethylbenzene87-68-3Hexachlorobutadiene591-78-62-Hexanone (MBK)98-82-8Isopropylbenzene99-87-64-Isopropylbenzene99-87-64-Isopropylbulene1634-04-4Methyl tert-butyl ether108-10-14-Methyl-2-pentanone (MIBK)75-09-2Methylene chloride91-20-3Naphthalene103-65-1n-Propylbenzene100-42-5Styrene630-20-61,1,1,2-Tetrachloroethane79-34-51,1,2,2-Tetrachloroethane127-18-4Tetrachloroethene108-88-3Toluene87-61-61,2,3-Trichlorobenzene120-82-11,2,4-Trichlorobenzene21-55.61,1,1 Trighlaraethane	RESULT (μg/l) 0.35 μ7 0.33 0.47 0.53	MDL 0.35	MDI	
CAS NO.COMPOUND $10061-02-6$ trans-1,3-Dichloropropene $100-41-4$ Ethylbenzene $87-68-3$ Hexachlorobutadiene $591-78-6$ 2-Hexanone (MBK) $98-82-8$ Isopropylbenzene $99-87-6$ 4-Isopropylbenzene $99-87-6$ 4-Isopropylbenzene $1634-04-4$ Methyl tert-butyl ether $108-10-1$ 4-Methyl-2-pentanone (MIBK) $75-09-2$ Methylene chloride $91-20-3$ Naphthalene $103-65-1$ n-Propylbenzene $100-42-5$ Styrene $630-20-6$ 1,1,1,2-Tetrachloroethane $127-18-4$ Tetrachloroethene $108-88-3$ Toluene $87-61-6$ 1,2,3-Trichlorobenzene $120-82-1$ 1,2,4-Trichlorobenzene $121-55.6$ 1,1,1 zrieblaraethene	RESULT (μg/l) 0.35 μ.7 0.33 0.47 0.53	MDL 0.35	MDI	
10061-02-6trans-1,3-Dichloropropene $100-41-4$ Ethylbenzene $87-68-3$ Hexachlorobutadiene $591-78-6$ 2-Hexanone (MBK) $98-82-8$ Isopropylbenzene $99-87-6$ 4-Isopropyltoluene $1634-04-4$ Methyl tert-butyl ether $108-10-1$ 4-Methyl-2-pentanone (MIBK) $75-09-2$ Methylene chloride $91-20-3$ Naphthalene $103-65-1$ n-Propylbenzene $100-42-5$ Styrene $630-20-6$ 1,1,1,2-Tetrachloroethane $127-18-4$ Tetrachloroethene $108-88-3$ Toluene $87-61-6$ 1,2,3-Trichlorobenzene $120-82-1$ 1,2,4-Trichlorobenzene $121-55.6$ 1,1,1 Trighlargethene	0.35 <b>u</b> 7 0.33 0.47 0.53	0.35	IVIKL	Q
100-41-4Ethylbenzene $87-68-3$ Hexachlorobutadiene $591-78-6$ 2-Hexanone (MBK) $98-82-8$ Isopropylbenzene $99-87-6$ 4-Isopropylboluene $1634-04-4$ Methyl tert-butyl ether $108-10-1$ 4-Methyl-2-pentanone (MIBK) $75-09-2$ Methylene chloride $91-20-3$ Naphthalene $103-65-1$ n-Propylbenzene $100-42-5$ Styrene $630-20-6$ 1,1,1,2-Tetrachloroethane $79-34-5$ 1,1,2,2-Tetrachloroethane $127-18-4$ Tetrachloroethene $108-88-3$ Toluene $87-61-6$ 1,2,3-Trichlorobenzene $120-82-1$ 1,2,4-Trichlorobenzene $120-82-1$ 1,2,4-Trichlorobenzene	0.33 0.47 0.53		0.50	N
87-68-3Hexachlorobutadiene $591-78-6$ 2-Hexanone (MBK) $98-82-8$ Isopropylbenzene $99-87-6$ 4-Isopropyltoluene $1634-04-4$ Methyl tert-butyl ether $108-10-1$ 4-Methyl-2-pentanone (MIBK) $75-09-2$ Methylene chloride $91-20-3$ Naphthalene $103-65-1$ n-Propylbenzene $100-42-5$ Styrene $630-20-6$ $1,1,1,2$ -Tetrachloroethane $79-34-5$ $1,1,2,2$ -Tetrachloroethane $127-18-4$ Tetrachloroethene $108-88-3$ Toluene $87-61-6$ $1,2,3$ -Trichlorobenzene $120-82-1$ $1,2,4$ -Trichlorobenzene $121-55.6$ $1,1,1$ -Trighlorgethene	0.47	0.33	1.00	U
591-78-6       2-Hexanone (MBK)         98-82-8       Isopropylbenzene         99-87-6       4-Isopropyltoluene         1634-04-4       Methyl tert-butyl ether         108-10-1       4-Methyl-2-pentanone (MIBK)         75-09-2       Methylene chloride         91-20-3       Naphthalene         103-65-1       n-Propylbenzene         100-42-5       Styrene         630-20-6       1,1,2-Tetrachloroethane         79-34-5       1,1,2,2-Tetrachloroethane         108-88-3       Toluene         87-61-6       1,2,3-Trichlorobenzene         120-82-1       1,2,4-Trichlorobenzene	0.53	0.47	0.50	U
98-82-8       Isopropylbenzene         99-87-6       4-Isopropyltoluene         1634-04-4       Methyl tert-butyl ether         108-10-1       4-Methyl-2-pentanone (MIBK)         75-09-2       Methylene chloride         91-20-3       Naphthalene         103-65-1       n-Propylbenzene         100-42-5       Styrene         630-20-6       1,1,2-Tetrachloroethane         79-34-5       1,1,2-Tetrachloroethane         127-18-4       Tetrachloroethene         108-88-3       Toluene         87-61-6       1,2,3-Trichlorobenzene         120-82-1       1,2,4-Trichlorobenzene         120-82-1       1,2,4-Trichlorobenzene		0.53	2.00	U
99-87-6       4-Isopropyltoluene         1634-04-4       Methyl tert-butyl ether         108-10-1       4-Methyl-2-pentanone (MIBK)         75-09-2       Methylene chloride         91-20-3       Naphthalene         103-65-1       n-Propylbenzene         100-42-5       Styrene         630-20-6       1,1,1,2-Tetrachloroethane         79-34-5       1,1,2,2-Tetrachloroethane         127-18-4       Tetrachloroethene         108-88-3       Toluene         87-61-6       1,2,3-Trichlorobenzene         120-82-1       1,2,4-Trichlorobenzene	0.36	0.36	1.00	U
1634-04-4       Methyl tert-butyl ether         108-10-1       4-Methyl-2-pentanone (MIBK)         75-09-2       Methylene chloride         91-20-3       Naphthalene         103-65-1       n-Propylbenzene         100-42-5       Styrene         630-20-6       1,1,1,2-Tetrachloroethane         79-34-5       1,1,2,2-Tetrachloroethane         108-88-3       Toluene         87-61-6       1,2,3-Trichlorobenzene         120-82-1       1,2,4-Trichlorobenzene	0.28	0.28	1.00	U
108-10-1       4-Methyl-2-pentanone (MIBK)         75-09-2       Methylene chloride         91-20-3       Naphthalene         103-65-1       n-Propylbenzene         100-42-5       Styrene         630-20-6       1,1,1,2-Tetrachloroethane         79-34-5       1,1,2,2-Tetrachloroethane         108-88-3       Toluene         87-61-6       1,2,3-Trichlorobenzene         120-82-1       1,2,4-Trichlorobenzene	1.26	0.24	1.00	
75-09-2       Methylene chloride         91-20-3       Naphthalene         103-65-1       n-Propylbenzene         100-42-5       Styrene         630-20-6       1,1,1,2-Tetrachloroethane         79-34-5       1,1,2,2-Tetrachloroethane         127-18-4       Tetrachloroethene         108-88-3       Toluene         87-61-6       1,2,3-Trichlorobenzene         120-82-1       1,2,4-Trichlorobenzene	0.52	0.52	2.00	U
91-20-3         Naphthalene           103-65-1         n-Propylbenzene           100-42-5         Styrene           630-20-6         1,1,1,2-Tetrachloroethane           79-34-5         1,1,2,2-Tetrachloroethane           127-18-4         Tetrachloroethene           108-88-3         Toluene           87-61-6         1,2,3-Trichlorobenzene           120-82-1         1,2,4-Trichlorobenzene	0.66	0.66	2.00	U
103-65-1         n-Propylbenzene           100-42-5         Styrene           630-20-6         1,1,1,2-Tetrachloroethane           79-34-5         1,1,2,2-Tetrachloroethane           127-18-4         Tetrachloroethene           108-88-3         Toluene           87-61-6         1,2,3-Trichlorobenzene           120-82-1         1,2,4-Trichlorobenzene	0.35	0.35	1.00	U
100-42-5         Styrene           630-20-6         1,1,1,2-Tetrachloroethane           79-34-5         1,1,2,2-Tetrachloroethane           127-18-4         Tetrachloroethene           108-88-3         Toluene           87-61-6         1,2,3-Trichlorobenzene           120-82-1         1,2,4-Trichlorobenzene           71-55.6         1,1,1 Trichlorobenzene	0.34	0.34	1.00	U
630-20-6         1,1,1,2-Tetrachloroethane           79-34-5         1,1,2,2-Tetrachloroethane           127-18-4         Tetrachloroethene           108-88-3         Toluene           87-61-6         1,2,3-Trichlorobenzene           120-82-1         1,2,4-Trichlorobenzene           71-55.6         1,1,1 Trichlorobenzene	0.40	0.40	1.00	U
79-34-5       1,1,2,2-Tetrachloroethane         127-18-4       Tetrachloroethane         108-88-3       Toluene         87-61-6       1,2,3-Trichlorobenzene         120-82-1       1,2,4-Trichlorobenzene         71-55.6       1,1,1 Trichloroethane	0.38	0.38	1.00	
127-18-4         Tetrachloroethene           108-88-3         Toluene           87-61-6         1,2,3-Trichlorobenzene           120-82-1         1,2,4-Trichlorobenzene           71-55-6         1,1,1 Trichloroethene	0.33	0.33	0.50	<u> </u>
108-88-3         Toluene           87-61-6         1,2,3-Trichlorobenzene           120-82-1         1,2,4-Trichlorobenzene           71-55.6         1,1,1 Trichlorobenzene	0.57	0.57	1.00	<u>U</u>
87-61-6         1,2,3-Trichlorobenzene           120-82-1         1,2,4-Trichlorobenzene           71-55-6         1.1.1 Trichloropthage	0.30	0.30	1.00	
120-82-1     1,2,4-Trichlorobenzene       71 55 6     1,1,1 Trichloropthare	0.38	0.38	1.00	11
71 55 6   1 1 Trichlereathana	0.38	0.38	1.00	U
/ 1=3,3=0 I.I.I.I=IFICNIOFOEINANE	0.51	0.51	1.00	1
108-70-3 1.3.5-Trichlorobenzene	0.30	0.30	1.00	
79-00-5 1.1.2-Trichloroethane	0.33	0.33	1.00	
79-01-6 Trichloroethene	0.50	0.50	1.00	11
75-69-4 Trichlorofluoromethane (Freon 11)	0.50	0.49	1.00	
96-18-4 1.2.3-Trichloropropage	0.29	0.29	1.00	11
95-63-6 1.2.4-Trimethylbenzene	0.36	0.36	1.00	
108-67-8 1.3.5-Trimethylbenzene	0.43	0.43	1.00	U
75-01-4 Vinvl chloride	0.43	0.47	1.00	
179601-23-1 m.n-Xylene	0.38	0.38	2.00	
95-47-6 o-Xvlene	0.28	0.30	1.00	1
109-99-9 Tetrahydrofiuran	1.06	1.06	2.00	
60-29-7 Ethyl ether	0.37	0.37	1.00	
994-05-8 Tert-amyl methyl ether	0.07	0.37	1.00	
637-92-3 Ethyl tert-hutyl ether	0.22 1.7	0.32	1.00	
108-20-3 Di-isonronyl ether	0.00	0.33	1.00	
75-65-0 Tert-Butanol / butul alcohol	5 00	5.00	1.00	
110-57-6 trans_1 4-Dichloro_2 hutana		0.90	5.00	
123-91-1   4-Dioyane	0.82 1. 7	11.4	20.0	
64-17.5 Ethanol	0.82 UJ	11.4	20.0	U

SDG:

SC34122

SDG SC34122 Page 39 / 1868

Laboratory:

revioliblit

MW-10M-0517

Laboratory:	Eurofins Spectrum Analytical, Inc MA		SDG:	SC34122		4
Client:	EA Engineering, Science, & Technology	- Syracuse	Project:	Metal Etching	- Freeport, NY	
Project Number:	1490709		Received:	04/29/17 09:30	)	
Matrix:	Ground Water Laboratory	D: SC34	4122-04	File ID:	3412204 D	
Complete		<u> </u>	<u>5/17 10 20</u>		05/00/17 00 26	
Sampled:	04/2//17/14:32 Prepared:	<u>05/0</u>	5/17/10:28	Analyzed:	05/09/17 00:36	
% Solids:	Preparation:	<u>SW8</u>	46 5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>	
Batch:	<u>1707574</u> Sequence: <u>S7</u>	04321	Calibration:	1704041	Instrument:	HPV1
Reported to:	MDL Dilution: <u>1</u>					
CAS NO.	COMPOUND		RESULT ()	μg/l)	MDL MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113	)	0.53		0.53 1.00	U
67-64-1	Acetone		0.80		0.80 10.0	U
107-13-1	Acrylonitrile		0.47		0.47 0.50	U
71-43-2	Benzene		0.28		0.28 1.00	U
108-86-1	Bromobenzene		0.33		0.33 1.00	U
74-97-5	Bromochloromethane		0.34		0.34 1.00	U
75-27-4	Bromodichloromethane		0.42		0.42 0.50	U
75-25-2	Bromoform		0.42		0.42 1.00	U
74-83-9	Bromomethane	0.90		0.90 2.00	U	
78-93-3	2-Butanone (MEK)	1.07		1.07 2.00	U	
104-51-8	n-Butylbenzene	0.41		0.41 1.00	U	
135-98-8	sec-Butylbenzene	0.33		0.33 1.00	U	
98-06-6	tert-Butylbenzene	0.32		0.32 1.00	U	
75-15-0	Carbon disulfide		0.41		0.41 2.00	U
56-23-5	Carbon tetrachloride		0.44		0.44 1.00	U
108-90-7	Chlorobenzene		0.25		0.25 1.00	U
75-00-3	Chloroethane		0.59		0.59 2.00	U
67-66-3	Chloroform		0.33		0.33 1.00	U
74-87-3	Chloromethane		0.37		0.37 2.00	U
95-49-8	2-Chlorotoluene		0.32		0.32 1.00	U
106-43-4	4-Chlorotoluene		0.32		0.32 1.00	U
96-12-8	1,2-Dibromo-3-chloropropane		0.86		0.86 2.00	U
124-48-1	Dibromochloromethane		0.32		0.32 0.50	U
106-93-4	1,2-Dibromoethane (EDB)		0.20		0.20 0.50	U
74-95-3	Dibromomethane		0.31		0.31 1.00	U
95-50-1	1,2-Dichlorobenzene		0.28		0.28 1.00	U
541-73-1	1,3-Dichlorobenzene		0.31		0.31 1.00	U
106-46-7	1,4-Dichlorobenzene		0.27		0.27 1.00	U
75-71-8	Dichlorodifluoromethane (Freon12)		0.58		0.58 2.00	U
75-34-3	1,1-Dichloroethane		0.32	(	0.32 1.00	U
107-06-2	1,2-Dichloroethane		0.28	0.28 0		U
75-35-4	1.1-Dichloroethene		0.69	(	0.69 1.00	U
156-59-2	cis-1,2-Dichloroethene		0.43	(	0.33 1.00	J
156-60-5	trans-1,2-Dichloroethene		0.38	(	0.38 1.00	U
78-87-5	1,2-Dichloropropane		0.29	(	).29 1.00	U
142-28-9	1,3-Dichloropropane		0.21	0.21 0.21 1.00		
594-20-7	2,2-Dichloropropane		0.42	UJ (	).42 1.00	ملا
563-58-6	1,1-Dichloropropene		0.58	(	).58 1.00	U
10061-01-5	cis-1,3-Dichloropropene		0.36	(	0.36 0.50	U

#### NW 10/16/17

SW846 8260C

Eurofins Spectrum Analytical. Inc. - MA

MW-10M-0517

4

Eurorutory.	Euronna apeeurum Anaryticat, me MA	300.	30.34122		N
Client:	EA Engineering, Science, & Technology - Syracuse	Project:	Metal Etching -	- Freeport, NY	
Project Number:	1490709	Received;	04/29/17 09:30		
Matrix:	Ground Water Laboratory ID: S	<u>C34122-04</u>	File ID:	3412204.D	
Sampled:	04/27/17 14:32 Prepared: 0'	5/05/17 10:28	Analyzed:	05/09/17 00:36	
% Solids:	Preparation: C	W846 5030 Water MS	Initial/Final:	5 ml / 5 ml	
70 Solids.		w 840 5050 water 1015	initial/rinai.	<u>5 mi / 5 mi</u>	100
Batch:	<u>1707574</u> Sequence: <u>S704321</u>	Calibration:	1704041	Instrument:	HPV1
Reported to:	MDL Dilution: <u>1</u>				
CAS NO.	COMPOUND	RESULT (µ	ıg/l) M	MDL MRL	Q
10061-02-6	trans-1,3-Dichloropropene	0.35	43	0.35 0.50	K
100-41-4	Ethylbenzene	0.33		0.33 1.00	U
87-68-3	Hexachlorobutadiene	0.47		0.47 0.50	U
591-78-6	2-Hexanone (MBK)	0.53		0.53 2.00	U
98-82-8	Isopropylbenzene	0.36		0.36 1.00	U
99-87-6	4-Isopropyltoluene	0.28		0.28 1.00	U
1634-04-4	Methyl tert-butyl ether	0.67		0.24 1.00	1
108-10-1	4-Methyl-2-pentanone (MIBK)	0.52		0.52 2.00	1
75-09-2	Methylene chloride	0.66	(	2.00	U
91-20-3	Naphthalene	0.35		0.35 1.00	<u> </u>
103-65-1	n-Propylbenzene	0.34		) 34 1.00	U
100-42-5	Styrene	0.40		0.40 1.00	U
630-20-6	1.1.1.2-Tetrachloroethane	0.10		) 38 1.00	<u> </u>
79-34-5	1 1 2 2-Tetrachloroethane	0.33		) 33 0 50	U
127-18-4	Tetrachloroethene	0.70		) 57 1.00	1
108-88-3	Toluene	0.30		30 1.00	J
87-61-6	1.2.3-Trichlorobenzene	0.38		38 1.00	U
120-82-1	1.2.4-Trichlorobenzene	0.38		38 1.00	U
71-55-6	1.1.1-Trichloroethane	0.58	(	) 51 1.00	U
108-70-3	1.3.5-Trichlorobenzene	0.30		1.00	<u>U</u>
79-00-5	1 1 2-Trichloroethane	0.33		1.00	U
79-01-6	Trichloroethene	0.50		50 1.00	<u> </u>
75-69-4	Trichlorofluoromethane (Freon 11)	0.30		1.00	<u> </u>
96-18-4	1.2.3-Trichloronronane	0.49		) 29 1.00	
95-63-6	1.2.4-Trimethylbenzene	0.29		36 1.00	
108-67-8	1.3.5-Trimethylbenzene	0.30		1.00	
75-01-4	Vinyl chloride	0.43		1.00	U
179601-23-1	m n-Xylene	0.4/		38 2.00	
05_47_6	o.Yylene	0.38		2.00	0
100_00 0	Tetrahydrofuran	0.28		06 2.00	
60_20_7	Ethyl ether	0.27		2.00	U
994_05_8	Tert-amyl methyl ether	0.37		1.00	
637-02-3	Ethyl tert-butyl ether	0.49		1.47 1.00	
109 20 2	Di isopropul ether	0.33	•• J (	1.00	
75 45 0	Tort Putopol / butul slocksl	0.29		1.29 1.00	
110 57 6	tenna 1.4 Dicklore 2 huters	5.90	1.1	10.0	
122 01 1	Lans-1,4-Dichloro-2-butene	0.82		1.82 5.00	<u> </u>
123-91-1	Literal	11.4		1.4 20.0	
04-17-5	Etnañol	30.9	3	0.9 200	U

SDG:

<u>SC34122</u>

SDG SC34122 Page 41 / 1868

Laboratory:

Leviol16/17

SW846 8260C

MW-10D-0517

5

Laboratory:	Eurofins Spectrun	n Analytic	al, Inc MA	SDG:	<u>SC34122</u>			
Client:	EA Engineering, S	Science, &	Technology - Syracu	se Project:	Metal Etching - Freeport, NY			
Project Number:	1490709			Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory 1D:	<u>SC34122-05</u>	File ID:	<u>3412205.D</u>		
Sampled:	04/27/17 16:34		Prepared:	05/05/17 10:28	Analyzed:	05/09/17 01:06		
% Solids:			Preparation:	SW846 5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	<u>. \$704321</u>	Calibration:	1704041	Instrument:	<u>HPV1</u>	
Reported to:	MDL	Dilution:	1					

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	4.94 🗸	0.80	10.0	r
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.41	0.41	1.00	U
135-98-8	sec-Butylbenzene	0.33	0.33	1.00	U
98-06-6	tert-Butylbenzene	0.32	0.32	1.00	U
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.58	0.58	2.00	U
75-34-3	1.1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.33	0.33	1.00	U
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2.2-Dichloropropane	0.42 V J	0.42	1.00	K
563-58-6	1.1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1,3-Dichloropropene	0.36	0.36	0.50	U

reviolible 7

SW846 8260C

MW-10D-0517

5

Laboratory:	Eurofins Spectrum Analytical, Inc MA	SDG:	SDG: <u>SC34122</u>			
Client:	EA Engineering, Science, & Technology - Syrac	use Project:	Metal Etching	- Freeport, NY		
Project Number:	1490709	Received:	04/29/17 09:3	0		
Matrix:	Ground Water Laboratory 1D:	<u>SC34122-05</u>	File ID:	3412205.D		
Sampled:	04/27/17 16:34 Prepared:	05/05/17 10:28	Analyzed:	05/09/17 01:06		
% Solids:	Preparation:	SW846 5030 Water MS	Initial/Final:	5 ml / 5 ml		
Batch:	1707574 Sequence: \$704321	Calibration	1704041	Instrument	HPVI	
Daten.	<u>1707574</u> Sequence. <u>3704521</u>	Canoration.	1704041	instrument.		
Reported to:	MDL Dilution: 1					
CAS NO.	COMPOUND	RESULT	(µg/l)	MDL MRL	Q	
10061-02-6	trans-1.3-Dichloropropene	0.3	5 uJ	0.35 0.50	1 miles	
100-41-4	Ethylbenzene	0.33	3	0.33 1.00	U	
87-68-3	Hexachlorobutadiene	0.4	7	0.47 0.50	U	
591-78-6	2-Hexanone (MBK)	0.53	3	0.53 2.00	U	
98-82-8	Isopropylbenzene	0.30	5	0.36 1.00	U	
99-87-6	4-Isopropyltoluene	0.28	3	0.28 1.00	U	
1634-04-4	Methyl tert-butyl ether	0.24	1	0.24 1.00	U	
108-10-1	4-Methyl-2-pentanone (MIBK)	0.52	2	0.52 2.00	U	
75-09-2	Methylene chloride	0.60	5	0.66 2.00	U	
91-20-3	Naphthalene	0.35	5	0.35 1.00	U	
103-65-1	n-Propylbenzene	0.34	1	0.34 1.00	U	
100-42-5	Styrene	0.40	)	0.40 1.00	U	
630-20-6	1,1,1,2-Tetrachloroethane	0.38	3	0.38 1.00	U	
79-34-5	1.1.2.2-Tetrachloroethane	0.33	3	0.33 0.50	U	
127-18-4	Tetrachloroethene	1.89	>	0.57 1.00		
108-88-3	Toluene	0.30		0.30 1.00	1	
87-61-6	1.2.3-Trichlorobenzene	0.34	2	0.38 1.00	U	
120-82-1	1.2.4-Trichlorobenzene	0.38	2	0.38 1.00	U U	
71-55-6	1.1.1-Trichloroethane	0.51		0.51 1.00	U U	
108-70-3	1.3.5-Trichlorobenzene	0.3(		0.30 1.00		
79-00-5	1 1 2-Trichloroethane	0.30	2	0.33 1.00		
79-01-6	Trichloroethene	0.50		0.50 1.00	U	
75-69-4	Trichlorofluoromethane (Freon 11)	0.50		0.49 1.00		
96-18-4	1.2.3-Trichloropropage	0.15	)	0.29 1.00	U	
95-63-6	1.2.4-Trimethylbenzene	0.36		0.36 1.00	1	
108-67-8	1.3.5-Trimethylbenzene	0.43		0.43 1.00		
75-01-4	Vinyl chloride	0.43	7	0.47 1.00		
179601-23-1	m p-Xylene	0.38	2	0.38 2.00		
95-47-6	o-Xylene	0.30		0.28 1.00	U	
109-99-9	Tetrahydrofiuran	1.06		1.06 2.00	U	
60-29-7	Fthyl ether	0.37	,	0.37 1.00	U	
994-05-8	Tert-amyl methyl ether	0.37	,	0.49 1.00	11	
637-92-3	Ethyl tert-butyl ether	0.42	47	0.33 1.00		
108-20-3	Di-isopropyl ether	0.55		0.20 1.00		
75_65_0	Tert-Butanol / butyl alcohol	5.00		5.00 10.0		
110-57-6	trans-1 4-Dichloro-2-butene	0.90	41	0.82 5.00		
172_01_1	1 4-Dioyane	11.4	~ ~ /	11 4 30.0		
64_17 5	Ethonol	11.4		20.0 20.0	0	
04-1/-3	Ethanol			30.9 200	U	

SDG SC34122 Page 43 / 1868

perioliblit

SW846 8260C

MW-06-0517

Laboratory:	Eurofins Spectrur	n Analytic	<u>al, Inc M</u>	A		SDG:	<u>SC34122</u>			P
Client:	EA Engineering, S	<u>Science, &amp;</u>	: Technolog	<u>gy - Syracu</u>	se	Project:	Metal Etching - Fre	eeport, NY		
Project Number:	<u>1490709</u>					Received:	04/29/17 09:30			
Matrix:	Ground Water		Laborator	y ID:	<u>SC3412</u>	2-06	File ID:	<u>3412206.D</u>		
Sampled:	04/26/17 15:39		Prepared:		05/05/1	7 10:28	Analyzed:	05/09/17 01:37		
% Solids:			Preparatio	on:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	e:	<u> 8704321</u>		Calibration:	1704041	Instrument:	HPV1	
Reported to:	MDL	Dilution:		1						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	0.80	0.80	10.0	U
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.34	0.28	1.00	J
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.81	0.41	1.00	J
135-98-8	sec-Butylbenzene	0.87	0.33	1.00	J
98-06-6	tert-Butylbenzene	1.98	0.32	1.00	
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon 12)	0.58	0.58	2.00	U
75-34-3	1,1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1.1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.33	0.33	1.00	U
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	<u> </u>
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 4 1	0.42	1.00	K
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	1
10061-01-5	cis-1 3-Dichloropropene	0.36	0.36	0.50	U U

Milliolif

Eurofins Spectrum Analytical, Inc. - MA

MW-06-0517

q

Client:	EA Engineering, Science. &	use Project:	Metal Etching - Freeport, NY			
Project Number:	<u>1490709</u>		Received:	04/29/17 09:30	)	
Matrix:	Ground Water	Laboratory ID:	<u>SC34122-06</u>	File ID:	3412206.D	
Sampled:	04/26/17 15:39	Prepared:	05/05/17 10:28	Analyzed:	05/09/17 01:37	
% Solids:		Preparation:	SW846 5030 Water MS	Initial/Final:	5 ml / 5 ml	
Datah	1707574			150.10.11	<u>5 mi / 5 mi</u>	1.00.00
Datch:	<u>170/374</u> Sequence	2: <u>5704321</u>	Calibration:	1704041	Instrument:	HPVI
		1				
CAS NO.	COMPOUND		RESULT	(μg/l) i	MDL MRL	. Q
10061-02-6	trans-1,3-Dichloropropene		0.35	UJ	0.35 0.50	
100-41-4	Ethylbenzene		0.33		0.33 1.00	U
87-68-3	Hexachlorobutadiene		0.47		0.47 0.50	U
591-78-6	2-Hexanone (MBK)		0.53		0.53 2.00	U
98-82-8	Isopropylbenzene		2.32		0.36 1.00	
99-87-6	4-lsopropyltoluene		0.28		0.28 1.00	U
1634-04-4	Methyl tert-butyl ether		0.84		0.24 1.00	J
108-10-1	4-Methyl-2-pentanone (MIB	K)	0.52		0.52 2.00	U
75-09-2	Methylene chloride		0.66		0.66 2.00	U
91-20-3	Naphthalene		0.51		0.51 1.00	U
103-65-1	n-Propylbenzene		0.78	u	0.34 1.00	1
100-42-5	Styrene		0.40		0.40 1.00	U
630-20-6	1,1,1,2-Tetrachloroethane		0.38		0.38 1.00	U
79-34-5	1,1,2,2-Tetrachloroethane		0.33		0.33 0.50	U
127-18-4	Tetrachloroethene		0.57		0.57 1.00	U
108-88-3	Toluene		0.87		0.30 1.00	J
87-61-6	1,2,3-Trichlorobenzene		0.38		0.38 1.00	U
120-82-1	1,2,4-Trichlorobenzene		0.38		0.38 1.00	U
71-55-6	1.1.1-Trichloroethane		0.51		0.51 1.00	U
108-70-3	1,3,5-Trichlorobenzene		0.30		0.30 1.00	U
79-00-5	1,1,2-Trichloroethane		0.33		0.33 1.00	U
79-01-6	Trichloroethene		0.50		0.50 1.00	U
75-69-4	Trichlorofluoromethane (Fre	on 11)	0.49		0.49 1.00	U
96-18-4	1.2.3-Trichloropropane		0.29		0.29 1.00	1
95-63-6	1.2.4-Trimethylbenzene		0.36		0.36 1.00	U U
108-67-8	1.3.5-Trimethylbenzene		0.43		0.43 1.00	U U
75-01-4	Vinyl chloride		0.47		0.47 1.00	U
179601-23-1	m.p-Xvlene		1.88		0.38 2.00	I
95-47-6	o-Xvlene		0.47		0.28 1.00	1
109-99-9	Tetrahydrofuran		1.06		1.06 2.00	, J
60-29-7	Ethyl ether		0.37		0.37 1.00	U U
994-05-8	Tert-amyl methyl ether		0.37		0.49 1.00	11
637-92-3	Ethyl tert-butyl ether		0.33	14-7	0.33 1.00	
108-20-3	Di-isonronyl ether		0.00		0.00 1.00	
75-65-0	Tert-Butanol / butyl alcohol		5.00		5 00 100	
110-57-6	trans-1 4-Dichloro-2-butene		0.07	107	0.00	
123-91-1	1 4-Dioxane		11.4		11.4 20.0	
64-17-5	Fthanol		20.0		20.0 20.0	
0111-5	Landion		50.9		200	0

SDG:

<u>SC34122</u>

SDG SC34122 Page 45 / 1868

Laboratory:

Wielisli7

SW846 8260C

MW-9S-0517

7

Laboratory:	Eurofins Spectrun	urofins Spectrum Analytical, Inc MA		SDG:	<u>SC34122</u>		1
Client:	EA Engineering, S	Science, & Te	chnology - Syracu	se Project:	Metal Etching - Fr		
Project Number:	1490709			Received:	04/29/17 09:30		
Matrix:	Ground Water	La	aboratory ID:	<u>SC34122-07</u>	File ID:	<u>3412207.D</u>	
Sampled:	04/27/17 18:30	Pr	repared:	05/05/17 10:28	Analyzed:	05/09/17 02:07	
% Solids:		Pr	eparation:	SW846 5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>	
Batch:	1707574	Sequence:	<u>8704321</u>	Calibration:	1704041	Instrument:	HPV1
Reported to:	MDL	Dilution:	1				

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	16.7 V	0.80	20.0	V
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.41	0.41	1.00	U
135-98-8	sec-Butylbenzene	0.33	0.33	1.00	U
98-06-6	tert-Butylbenzene	0.34	0.34	1.00	U
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	I,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.58	0.58	2.00	U
75-34-3	1,1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.53	0.33	1.00	J
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	Ŭ
78-87-5	I,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 UJ	0.42	1.00	J.
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1.3-Dichloropropene	0.36	0.36	0.50	<u> </u>

### New ioliplit

SW846 8260C

MW-98-0517

Laboratory:	Eurofins Spectrum Analytical, Inc MA		SDG:	<u>SC34122</u>	1		
Client:	EA Engineering, Science, & Technology - Syl	racuse	Project:	Metal Etchin	g - Freeport	<u>, NY</u>	
Project Number:	1490709		Received:	04/29/17 09:	30		
Matrix:	Ground Water Laboratory ID:	<u>SC3412</u>	2-07	File ID:	3412	207.D	
Sampled:	04/27/17 18:30 Prepared:	05/05/17	10:28	Analyzed:	05/0	9/17 02:07	
% Solids:	Preparation	SW846	5030 Water MS	Initial/Final:	5 ml	/ 5 ml	
Detel	1707574 0 07042	<u>3 W 040 .</u>			5 111	<u>/ 5 mi</u>	
Batch:	1/0/5/4 Sequence: $5/0432$	<u>21</u>	Calibration:	1704041	Instr	ument:	<u>HPV1</u>
Reported to:	MDL Dilution: 1						
CAS NO.	COMPOUND		RESULT (	ug/l)	MDL	MRL	Q
10061-02-6	trans-1,3-Dichloropropene		0.35	ИЈ	0.35	0.50	N/
100-41-4	Ethylbenzene		0.40		0.33	1.00	J
87-68-3	Hexachlorobutadiene		0.47		0.47	0.50	U
591-78-6	2-Hexanone (MBK)		0.53		0.53	2.00	U
98-82-8	Isopropylbenzene		0.36		0.36	1.00	U
99-87-6	4-Isopropyltoluene		0.28		0.28	1.00	U
1634-04-4	Methyl tert-butyl ether		0.24		0.24	1.00	U
108-10-1	4-Methyl-2-pentanone (MIBK)		0.52		0.52	2.00	U
75-09-2	Methylene chloride		0.66		0.66	2.00	U
91-20-3	Naphthalene		0.35		0.35	1.00	U
103-65-1	n-Propylbenzene		0.36	4	0.34	1.00	1
100-42-5	Styrene		1.46		0.40	1.00	
630-20-6	1,1,1,2-Tetrachloroethane		0.38		0.38	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane		0.33		0.33	0.50	U
127-18-4	Tetrachloroethene		0.57		0.57	1.00	U U
108-88-3	Toluene		0.30		0.30	1.00	U
87-61-6	1.2.3-Trichlorobenzene		0.38		0.38	1.00	1
120-82-1	1.2.4-Trichlorobenzene		0.38		0.38	1.00	U
71-55-6	1.1.1-Trichloroethane		0.50		0.51	1.00	U
108-70-3	1.3.5-Trichlorobenzene		0.30		0.30	1.00	1
79-00-5	1.1.2-Trichloroethane		0.33		0.33	1.00	U
79-01-6	Trichloroethene		0.50		0.50	1.00	U
75-69-4	Trichlorofluoromethane (Freon 11)		0.50		0.50	1.00	
96-18-4	1.2.3-Trichloropropage		0.29		0.29	1.00	U
95-63-6	1 2 4-Trimethylbenzene		0.45	1.4	0.25	1.00	
108-67-8	1 3 5-Trimethylbenzene		0.43	M.	0.30	1.00	11
75-01-4	Vinyl chloride		1 35		0.45	1.00	0
179601-23-1	m n-Xylene		0.38		0.47	2.00	
95-47-6	o-Xviene		0.30		0.38	1.00	
109-99-9	Tetrahydrofiuran		1.04		1.06	2.00	
60-29-7	Ethyl ether		0.27		0.37	1.00	
994-05-8	Tert-amyl methyl ether		0.37		0.07	1.00	U
637-92-3	Ethyl tert-butyl ether		0.33	41	0.33	1.00	
108-20-3	Di-isopronyl ether		0.33		0.33	1.00	
75-65-0	Tert-Butanol / butyl alcohol		5.00		5.00	10.0	
110-57-6	trans-1 4-Dichloro-2-butene		0.90	47	0.90	5.00	0
123-91-1	1 4-Diovane		11.4	~ /	11.4	3.00	
64_17_5	Ethanol		20.0		70.0	20.0	0
U+-17-3			50.9		30.9	200	U

SDG SC34122 Page 47 / 1868

per ioliblit

MW-9D-0517

									C/
Laboratory:	Eurofins Spectrur	n Analytic	al <u>, Inc MA</u>		SDG:	<u>SC34122</u>			X
Client:	EA Engineering,	Science, &	Technology - Sy	racuse	Project:	Metal Etching - Fr	eeport, NY		
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC341</u>	22-08	File ID:	<u>3412208.D</u>		
Sampled:	04/27/17 18:23		Prepared:	05/05/1	7 10:28	Analyzed:	05/09/17 02:37		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	e: <u>\$7043</u>	321	Calibration:	1704041	Instrument:	<u>HPV1</u>	
Reported to:	MDL	Dilution:	5						

CAS NO.	COMPOUND	RESULT (µg/I)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	2.66	2.66	5.00	U
67-64-1	Acetone	59.4 <b>L</b>	4.02	60.0	8
107-13-1	Acrylonitrile	2.33	2.33	2.50	U
71-43-2	Benzene	1.42	1.42	5.00	U
108-86-1	Bromobenzene	1.66	1.66	5.00	U
74-97-5	Bromochloromethane	1.69	1.69	5.00	U
75-27-4	Bromodichloromethane	2.08	2.08	2.50	υ
75-25-2	Bromoform	2.12	2.12	5.00	U
74-83-9	Bromomethane	4.48	4.48	10.0	U
78-93-3	2-Butanone (MEK)	5.35	5.35	10.0	U
104-51-8	n-Butylbenzene	2.06	2.06	5.00	U
135-98-8	sec-Butylbenzene	1.63	1.63	5.00	U
98-06-6	tert-Butylbenzene	1.58	1.58	5.00	U
75-15-0	Carbon disulfide	2.06	2.06	10.0	U
56-23-5	Carbon tetrachloride	2.18	2.18	5.00	U
108-90-7	Chlorobenzene	1.24	1.24	5.00	U
75-00-3	Chloroethane	2.94	2.94	10.0	U
67-66-3	Chloroform	1.63	1.63	5.00	U
74-87-3	Chloromethane	5.90	1.84	10.0	J
95-49-8	2-Chlorotoluene	1.58	1.58	5.00	U
106-43-4	4-Chlorotoluene	1.58	1.58	5.00	U
96-12-8	1,2-Dibromo-3-chloropropane	4.32	4.32	10.0	U
124-48-1	Dibromochloromethane	1.58	1.58	2.50	U
106-93-4	1,2-Dibromoethane (EDB)	1.01	1.01	2.50	U
74-95-3	Dibromomethane	1.54	1.54	5.00	U
95-50-1	1,2-Dichlorobenzene	1.38	1.38	5.00	U
541-73-1	1,3-Dichlorobenzene	1.57	1.57	5.00	U
106-46-7	1,4-Dichlorobenzene	1.36	1.36	5.00	U
75-71-8	Dichlorodifluoromethane (Freon12)	2.92	2.92	10.0	U
75-34-3	1.1-Dichloroethane	1.62	1.62	5.00	U
107-06-2	1,2-Dichloroethane	1.38	1.38	5.00	U
75-35-4	1,1-Dichloroethene	3.46	3.46	5.00	U
156-59-2	cis-1,2-Dichloroethene	241	1.64	5.00	
156-60-5	trans-1,2-Dichloroethene	3.30	1.88	5.00	J
78-87-5	1,2-Dichloropropane	1.46	1.46	5.00	U
142-28-9	1,3-Dichloropropane	1.07	1.07	5.00	U
594-20-7	2,2-Dichloropropane	2.09 W J	2.09	5.00	H
563-58-6	1,1-Dichloropropene	2.89	2.89	5.00	U
10061-01-5	cis-1,3-Dichloropropene	1.80	1.80	2.50	U

# Mulilit

SW846 8260C

MW-9D-0517

q

Laboratory:	Eurofins Spectru	<u>m Analytical, Inc</u>	<u>с МА</u>		SDG:	<u>SC34122</u>				D
Client:	EA Engineering.	Science, & Tech	nology - Syrac	use	Project:	Metal Etchi	ng - Free	eport, NY		
Project Number:	1490709				Received:	04/29/17 09	0:30			
Matrix:	Ground Water	Labo	oratory ID:	<u>SC3412</u>	2-08	File ID:		3412208.D		
Sampled:	04/27/17 18:23	Prep	ared:	05/05/1	7 10:28	Analyzed:		05/09/17 02:37		
% Solids:		Prep	aration	SW846	5030 Water MS	Initial/Fina	l:	5 ml / 5 ml		
Batch:	1707574	Sequence:	<u>\$704321</u>		Calibration:	1704041		Instrument:	HPVI	
Reported to:	MDL	Dilution:	5							
CAS NO.	COMPOUND		_		RESULT (µ	ıg/l)	MDL	MRL		Q
10061-02-6	trans-1,3-Dichloi	ropropene			1.74	NJ	1.74	2.50	1	V
100-41-4	Ethylbenzene				1.64		1.64	5.00		U
87-68-3	Hexachlorobutad	liene			2.35		2.35	2.50		U
501 50 (	2.11 (3.05									

100-41-4	Ethylbenzene	1.64	1.64	5.00	U
87-68-3	Hexachlorobutadiene	2.35	2.35	2.50	U
591-78-6	2-Hexanone (MBK)	2.64	2.64	10.0	U
98-82-8	Isopropylbenzene	1.80	1.80	5.00	U
99-87-6	4-Isopropyltoluene	1.40	1.40	5.00	U
1634-04-4	Methyl tert-butyl ether	1.18	1.18	5.00	U
108-10-1	4-Methyl-2-pentanone (MIBK)	2.58	2.58	10.0	U
75-09-2	Methylene chloride	3.30	3.30	10.0	U
91-20-3	Naphthalene	1.76	1.76	5.00	U
103-65-1	n-Propylbenzene	1.72	1.72	5.00	U
100-42-5	Styrene	2.02	2.02	5.00	U
630-20-6	1,1,1,2-Tetrachloroethane	1.89	1.89	5.00	U
79-34-5	1,1,2,2-Tetrachloroethane	1.65	1.65	2.50	U
127-18-4	Tetrachloroethene	232	2.85	5.00	
108-88-3	Toluene	1.50	1.50	5.00	U
87-61-6	1,2,3-Trichlorobenzene	1.88	1.88	5.00	U
120-82-1	1,2,4-Trichlorobenzene	1.89	1.89	5.00	U
71-55-6	1,1,1-Trichloroethane	2.54	2.54	5.00	U
108-70-3	1,3,5-Trichlorobenzene	1.48	1.48	5.00	U
79-00-5	1,1,2-Trichloroethane	1.65	1.65	5.00	U
79-01-6	Trichloroethene	118	2.48	5.00	
75-69-4	Trichlorofluoromethane (Freon 11)	2.44	2.44	5.00	U
96-18-4	1,2,3-Trichloropropane	1.46	1.46	5.00	U
95-63-6	1,2,4-Trimethylbenzene	1.78	1.78	5.00	U
108-67-8	1,3,5-Trimethylbenzene	2.16	2.16	5.00	U
75-01-4	Vinyl chloride	7.20	2.36	5.00	
179601-23-1	m,p-Xylene	1.90	1.90	10.0	U
95-47-6	o-Xylene	1.42	1.42	5.00	U
109-99-9	Tetrahydrofuran	5.30	5.30	10.0	U
60-29-7	Ethyl ether	1.87	1.87	5.00	U
994-05-8	Tert-amyl methyl ether	2.46	2.46	5.00	U
637-92-3	Ethyl tert-butyl ether	1.66 UJ	1.66	5.00	K
108-20-3	Di-isopropyl ether	1.43	1.43	5.00	U
75-65-0	Tert-Butanol / butyl alcohol	46.6	29.5	50.0	J
110-57-6	trans-1,4-Dichloro-2-butene	4.10 11	4.10	25.0	V
123-91-1	1,4-Dioxane	57.0	57.0	100	U
64-17-5	Ethanol	342	154	1000	J

SDG SC34122 Page 49 / 1868

perioliplit

SW846 8260C

MW-11D-0517

									a
Laboratory:	Eurofins Spectru	m Analytic	<u>al, Inc MA</u>		SDG:	<u>SC34122</u>			1
Client:	EA Engineering,	Science, &	Technology - Syraci	<u>use</u>	Project:	Metal Etching - F	reeport, NY		
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC3412</u>	22-09	File ID:	3412209.D		
Sampled:	04/28/17 03:56		Prepared:	<u>05/05/1</u>	7 10:28	Analyzed:	05/09/17 03:07		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	:: <u>\$704321</u>		Calibration:	1704041	Instrument:	<u>HPV1</u>	
Reported to:	MDL	Dilution:	1						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	5.33 🗸	0.80	10.0	Y
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.41	0.41	1.00	U
135-98-8	sec-Butylbenzene	0.33	0.33	1.00	U
98-06-6	tert-Butylbenzene	0.32	0.32	1.00	U
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon 12)	0.58	0.58	2.00	U
75-34-3	1,1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.98	0.33	1.00	J
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 47	0.42	1.00	X
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1.3-Dichloropropene	0.36	0.36	0.50	11

New coliblit

SW846 8260C

MW-11D-0517

Laboratory:	Eurofins Spectrum	n Analytic	al, Inc MA		SDG:	SC34122			9
Client:	EA Engineering,	Science, &	Technology - Syracu	ise	Project:	Metal Etching - Fr	eeport, NY		
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC3412</u>	22-09	File ID:	<u>3412209.D</u>		
Sampled:	04/28/17 03:56		Prepared:	05/05/1	7 10:28	Analyzed:	05/09/17 03:07		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	1707574	Sequence	<u>\$704321</u>		Calibration:	1704041	Instrument:	<u>HPV1</u>	
Reported to:	MDL	Dilution:	1						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
10061-02-6	trans-1,3-Dichloropropene	0.35 WJ	0.35	0.50	X
100-41-4	Ethylbenzene	0.33	0.33	1.00	U
87-68-3	Hexachlorobutadiene	0.47	0.47	0.50	U
591-78-6	2-Hexanone (MBK)	0.53	0.53	2.00	U
98-82-8	Isopropylbenzene	0.36	0.36	1.00	U
99-87-6	4-Isopropyltoluene	0.28	0.28	1.00	U
1634-04-4	Methyl tert-butyl ether	0.24	0.24	1.00	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.52	0.52	2.00	U
75-09-2	Methylene chloride	0.66	0.66	2.00	U
91-20-3	Naphthalene	0.35	0.35	1.00	U
103-65-1	n-Propylbenzene	0.34	0.34	1.00	U
100-42-5	Styrene	0.40	0.40	1.00	U
630-20-6	1,1,1,2-Tetrachloroethane	0.38	0.38	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane	0.33	0.33	0.50	U
127-18-4	Tetrachloroethene	1.32	0.57	1.00	
108-88-3	Toluene	0.30	0.30	1.00	U
87-61-6	1,2,3-Trichlorobenzene	0.38	0.38	1.00	U
120-82-1	1,2,4-Trichlorobenzene	0.38	0.38	1.00	U
71-55-6	1,1.1-Trichloroethane	0.51	0.51	1.00	U
108-70-3	1,3,5-Trichlorobenzene	0.30	0.30	1.00	U
79-00-5	1,1,2-Trichloroethane	0.33	0.33	1.00	U
79-01-6	Trichloroethene	0.80	0.50	1.00	J
75-69-4	Trichlorofluoromethane (Freon 11)	0.49	0.49	1.00	U
96-18-4	1,2,3-Trichloropropane	0.29	0.29	1.00	U
95-63-6	1,2,4-Trimethylbenzene	0.36	0.36	1.00	U
108-67-8	1,3,5-Trimethylbenzene	0.43	0.43	1.00	U
75-01-4	Vinyl chloride	0.47	0.47	1.00	U
179601-23-1	m,p-Xylene	0.38	0.38	2.00	U
95-47-6	o-Xylene	0.28	0.28	1.00	U
109-99-9	Tetrahydrofuran	1.06	1.06	2.00	U
60-29-7	Ethyl ether	0.37	0.37	1.00	U
994-05-8	Tert-amyl methyl ether	0.49	0.49	1.00	U
637-92-3	Ethyl tert-butyl ether	0.33 WJ	0.33	1.00	X
108-20-3	Di-isopropyl ether	0.29	0.29	1.00	U
75-65-0	Tert-Butanol / butyl alcohol	5.90	5.90	10.0	U
110-57-6	trans-1,4-Dichloro-2-butene	0.82 47	0.82	5.00	K
123-91-1	1,4-Dioxane	11.4	11.4	20.0	U
64-17-5	Ethanol	30.9	30.9	200	11

SDG SC34122 Page 51 / 1868

Meriolichi7

SW846 8260C

MW-118-0517

									10
Laboratory:	Eurofins Spectru	m Analytica	al, Inc MA		SDG:	SC34122			1 *
Client:	EA Engineering,	Science, &	Technology - Syracu	ise	Project:	Metal Etching - Fr	reeport, NY		
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC3412</u>	22-10	File ID:	<u>3412210.D</u>		
Sampled:	04/28/17 05:19		Prepared:	<u>05/05/1</u>	7 10:28	Analyzed:	05/09/17 03:37		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	:: <u>\$704321</u>		Calibration:	1704041	Instrument:	HPV1	
Reported to:	MDL	Dilution:	1						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	3.85 4	0.80	10.0	8
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	1.08	0.41	1.00	
135-98-8	sec-Butylbenzene	1.04	0.33	1.00	
98-06-6	tert-Butylbenzene	0.54	0.32	1.00	J
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon 12)	0.58	0.58	2.00	U
75-34-3	1,1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.33	0.33	1.00	U
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 47	0.42	1.00	H
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1.3-Dichloropropene	0.36	0.36	0.50	U II

# NWIOLINI,7

SW846 8260C

MW-11S-0517

Laboratory:	Eurofins Spectru	m Analytical,	Inc MA		SDG:	<u>SC34122</u>		0
Client:	EA Engineering,	Science, & Te	echnology - Syracı	use	Project:	Metal Etching - Fr	eeport. NY	
Project Number:	1490709				Received:	04/29/17 09:30		
Matrix:	Ground Water	L	aboratory ID:	<u>SC3412</u>	2-10	File 1D:	<u>3412210.D</u>	
Sampled:	04/28/17 05:19	Pi	repared:	05/05/17	7 10:28	Analyzed:	05/09/17 03:37	
% Solids:		Pr	reparation	SW846	5030 Water MS	Initial/Final	5 ml / 5 ml	
Batch:	1707574	Sequence:	<u>\$704321</u>		Calibration:	1704041	Instrument:	HPV1
Reported to:	MDL	Dilution:	1					

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
10061-02-6	trans-1,3-Dichloropropene	0.35 WT	0.35	0.50	x
100-41-4	Ethylbenzene	0.33	0.33	1.00	U
87-68-3	Hexachlorobutadiene	0.47	0.47	0.50	U
591-78-6	2-Hexanone (MBK)	0.53	0.53	2.00	U
98-82-8	lsopropylbenzene	0.80	0.36	1.00	J
99-87-6	4-Isopropyltoluene	0.28	0.28	1.00	U
1634-04-4	Methyl tert-butyl ether	0.24	0.24	1.00	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.52	0.52	2.00	U
75-09-2	Methylene chloride	0.66	0.66	2.00	U
91-20-3	Naphthalene	0.35	0.35	1.00	U
103-65-1	n-Propylbenzene	0.39 🗸	0.34	1.00	1
100-42-5	Styrene	0.40	0.40	1.00	U
630-20-6	1,1,1,2-Tetrachloroethane	0.38	0.38	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane	0.33	0.33	0.50	U
127-18-4	Tetrachloroethene	0.57	0.57	1.00	U
108-88-3	Toluene	0.30	0.30	1.00	U
87-61-6	1,2,3-Trichlorobenzene	0.38	0.38	1.00	U
120-82-1	1,2,4-Trichlorobenzene	0.38	0.38	1.00	U
71-55-6	1,1,1-Trichloroethane	0.51	0.51	1.00	U
108-70-3	1,3,5-Trichlorobenzene	0.30	0.30	1.00	U
79-00-5	1,1,2-Trichloroethane	0.33	0.33	1.00	U
79-01-6	Trichloroethene	0.50	0.50	1.00	U
75-69-4	Trichlorofluoromethane (Freon 11)	0.49	0.49	1.00	U
96-18-4	1,2,3-Trichloropropane	0.29	0.29	1.00	U
95-63-6	1,2,4-Trimethylbenzene	0.36	0.36	1.00	U
108-67-8	1,3,5-Trimethylbenzene	0.57 🔽	0.43	1.00	1
75-01-4	Vinyl chloride	0.47	0.47	1.00	U
179601-23-1	m,p-Xylene	0.38	0.38	2.00	U
95-47-6	o-Xylene	0.28	0.28	1.00	U
109-99-9	Tetrahydrofuran	1.06	1.06	2.00	U
60-29-7	Ethyl ether	0.37	0.37	1.00	U
994-05-8	Tert-amyl methyl ether	0.49	0.49	1.00	U
637-92-3	Ethyl tert-butyl ether	0.33 U J	0.33	1.00	K
108-20-3	Di-isopropyl ether	0.29	0.29	1.00	U
75-65-0	Tert-Butanol / butyl alcohol	5.90	5.90	10.0	U
110-57-6	trans-1,4-Dichloro-2-butene	0.82 UJ	0.82	5.00	K
123-91-1	1,4-Dioxane	11.4	11.4	20.0	U
64-17-5	Ethanol	30.9	30.9	200	U

SDG SC34122 Page 53 / 1868

New 10/16/17

SW846 8260C

MW-05R-0517

Laboratory	Eurofine Spectru	m Analytics	al Inc MA	SDG:	\$C34122			11
Client:	FA Engineering	Science &	Technology - Syracu	spo.	Metal Etching - F	reenort NV		
Project Number	1490709	Science, a	Teennology - Synded	Received:	04/29/17 09.30			
Matrix:	Ground Water		Laboratory ID:	SC34122-11	File ID:	3412211 D		
Sampled:	04/28/17 05:59		Prenared:	05/05/17 10:28	Analyzed:	05/00/17 04:07		
% Solids:	04/20/17 03.37		Preparation:	<u>05/05/17 10.28</u> SW/846 5030 Water MS	Initial/Final:	5 ml / 5 ml		
Ratch:	1707574	Secuence	\$704321	Calibration:	1704041	Instrument:		
Daten.	<u>1101514</u>	Bull	. <u>370-321</u>	Canoration.	1704041	instrument.	111 11	
Reported to:	MDL	Dilution:						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	39.4 L	0.80	40.0	15
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.38	0.28	1.00	J
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	3.89	1.07	2.00	
104-51-8	n-Butylbenzene	0.61	0.41	1.00	J
135-98-8	sec-Butylbenzene	0.55	0.33	1.00	J
98-06-6	tert-Butylbenzene	0.61	0.32	1.00	J
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.41	0.37	2.00	J
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.58	0.58	2.00	U
75-34-3	1,1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.33	0.33	1.00	U
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0,21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 W 7	0.42	1.00	X
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1.3-Dichloropropene	0.36	0.36	0.50	<u> </u>

rescoliplit

MW-05R-0517

									11
Laboratory:	Eurofins Spectru	m Analytic:	<u>al, Inc MA</u>		SDG:	<u>SC34122</u>			
Client:	EA Engineering,	Science, &	Technology - Syracu	use	Project:	Metal Etching - Fi	eeport, NY		
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC3412</u>	22-11	File ID:	<u>3412211.D</u>		
Sampled:	04/28/17 05:59		Prepared:	<u>05/05/1</u>	7 10:28	Analyzed:	05/09/17 04:07		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	:: <u>\$704321</u>		Calibration:	1704041	Instrument:	HPV1	
Reported to:	MDL	Dilution:	1						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
10061-02-6	trans-1,3-Dichloropropene	0.35 WJ	0.35	0.50	X
100-41-4	Ethylbenzene	0.33	0.33	1.00	U
87-68-3	Hexachlorobutadiene	0.47	0.47	0.50	U
591-78-6	2-Hexanone (MBK)	0.53	0.53	2.00	U
98-82-8	Isopropylbenzene	0.82	0.36	1.00	J
99-87 <b>-</b> 6	4-Isopropyltoluene	0.28	0.28	1.00	U
1634-04-4	Methyl tert-butyl ether	1.28	0.24	1.00	
108-10-1	4-Methyl-2-pentanone (MIBK)	0.52	0.52	2.00	U
75-09-2	Methylene chloride	0.66	0.66	2.00	U
91-20-3	Naphthalene	0.61 🗸	0.35	1.00	8
103-65-1	n-Propylbenzene	0.72 🔽	0.34	1.00	×
100-42-5	Styrene	0.40	0.40	1.00	U
630-20-6	1,1,1,2-Tetrachloroethane	0.38	0.38	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane	0.33	0.33	0.50	U
127-18-4	Tetrachloroethene	0.57	0.57	1.00	U
108-88-3	Toluene	0.30	0.30	1.00	U
87-61-6	1,2,3-Trichlorobenzene	0.38	0.38	1.00	U
120-82-1	1,2,4-Trichlorobenzene	0.38	0.38	1.00	U
71-55-6	1,1,1-Trichloroethane	0.51	0.51	1.00	U
108-70-3	1,3,5-Trichlorobenzene	0.30	0.30	1.00	U
79-00-5	1,1,2-Trichloroethane	0.33	0.33	1.00	U
79-01-6	Trichloroethene	0.50	0.50	1.00	U
75-69-4	Trichlorofluoromethane (Freon 11)	0.49	0.49	1.00	U
96-18-4	1,2,3-Trichloropropane	0.29	0.29	1.00	U
95-63-6	1,2,4-Trimethylbenzene	1.43 🗸	0.36	1.00	
108-67-8	1,3,5-Trimethylbenzene	0.43	0.43	1.00	U
75-01-4	Vinyl chloride	0.47	0.47	1.00	U
179601-23-1	m,p-Xylene	0.53	0.38	2.00	J
95-47-6	o-Xylene	0.61	0.28	1.00	J
109-99-9	Tetrahydrofuran	1.06	1.06	2.00	U
60-29-7	Ethyl ether	0.37	0.37	1.00	U
994-05-8	Tert-amyl methyl ether	0.49	0.49	1.00	U
637-92-3	Ethyl tert-butyl ether	0.33 (4 7	0.33	1.00	V
108-20-3	Di-isopropyl ether	0.29	0.29	1.00	U
75-65-0	Tert-Butanol / butyl alcohol	5.90	5.90	10.0	U
110-57-6	trans-1,4-Dichloro-2-butene	0.82 4.7	0.82	5.00	X
123-91-1	1.4-Dioxane	11.4	11.4	20.0	U
64-17-5	Ethanol	30.9	30.0	200	<u> </u>

SDG SC34122 Page 55 / 1868

Le colibliz

MW-8SR-0517

							12-
Laboratory:	Eurofins Spectru	m Analytica	<u>al, Inc MA</u>	SDG:	<u>SC34122</u>		
Client:	EA Engineering.	<u>Science, &amp;</u>	Technology - Syracu	ise Project:	Metal Etching - Fi	reeport, NY	
Project Number:	1490709	190709			04/29/17 09:30		
Matrix:	Ground Water		Laboratory ID:	<u>SC34122-12</u>	File ID:	<u>3412212.D</u>	
Sampled:	04/28/17 15:16		Prepared:	05/05/17 10:28	Analyzed:	05/09/17 04:38	
% Solids:			Preparation:	<u>SW846 5030 Water MS</u>	Initial/Final:	<u>5 ml / 5 ml</u>	
Batch:	<u>1707574</u>	Sequence	: <u>\$704321</u>	Calibration:	1704041	Instrument:	HPV1
Reported to:	MDL	Dilution:	1				

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	2.28 4	0.80	10.0	V
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.41	0.41	1.00	U
135-98-8	sec-Butylbenzene	0.33	0.33	1.00	U
98-06-6	tert-Butylbenzene	0.32	0.32	1.00	U
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.58	0.58	2.00	U
75-34-3	1.1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1.2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	1.46	0.33	1.00	
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	I,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 L J	0.42	1.00	X
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1,3-Dichloropropene	0.36	0.36	0.50	U

#### NW, olibli7

MW-8SR-0517

										17
Laboratory:	Eurofins Spectru	<u>m Analytical, Inc</u>	<u>c MA</u>		SDG:	<u>SC34122</u>				14
Client:	EA Engineering,	Science, & Tech	nology - Syraci	use	Project:	Metal Etching	g - Freeport	<u>, NY</u>		
Project Number:	1490709				Received:	04/29/17 09:	30			
Matrix:	Ground Water	Labo	oratory 1D:	<u>SC3412</u>	22-12	File ID:	3412	212.D		
Sampled:	<u>04/28/17 15:16</u>	Prep	ared:	<u>05/05/1</u>	7.10:28	Analyzed:	05/09	9/17 04:38		
% Solids:		Ргер	aration:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml</u>	/ 5 ml		
Batch:	<u>1707574</u>	Sequence:	<u>\$704321</u>		Calibration:	1704041	Instr	ument:	<u>HPV1</u>	
Reported to:	MDL	Dilution:	<u> </u>							
CAS NO.	COMPOUND				RESULT (µ	ıg/l)	MDL	MRL		Q
10061-02-6	trans-1,3-Dichlor	opropene			0.35	U7	0.35	0.50		X
100-41-4	Ethylbenzene				0.33		0.33	1.00		U

10001-02-0	trans-1,3-Dichloropropene	0.35 🗸 /	0.35	0.50	
100-41-4	Ethylbenzene	0.33	0.33	1.00	U
87-68-3	Hexachlorobutadiene	0.47	0.47	0.50	U
591-78-6	2-Hexanone (MBK)	0.53	0.53	2.00	U
98-82-8	Isopropylbenzene	0.36	0.36	1.00	U
99-87-6	4-Isopropyltoluene	0.28	0.28	1.00	U
1634-04-4	Methyl tert-butyl ether	0.56	0.24	1.00	J
108-10-1	4-Methyl-2-pentanone (MIBK)	0.52	0.52	2.00	U
75-09-2	Methylene chloride	0.66	0.66	2.00	U
91-20-3	Naphthalene	0.35	0.35	1.00	U
103-65-1	n-Propylbenzene	0.34	0.34	1.00	U
100-42-5	Styrene	0.40	0.40	1.00	U
630-20-6	1,1,1,2-Tetrachloroethane	0.38	0.38	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane	0.33	0.33	0.50	U
127-18-4	Tetrachloroethene	0.57	0.57	1.00	U
108-88-3	Toluene	0.30	0.30	1.00	U
87-61-6	1,2,3-Trichlorobenzene	0.38	0.38	1.00	U
120-82-1	1,2,4-Trichlorobenzene	0.38	0.38	1.00	U
71-55-6	1,1,1-Trichloroethane	0.51	0.51	1.00	U
108-70-3	1,3,5-Trichlorobenzene	0.30	0.30	1.00	U
79-00-5	1,1,2-Trichloroethane	0.33	0.33	1.00	U
79-01-6	Trichloroethene	0.92	0.50	1.00	J
75-69-4	Trichlorofluoromethane (Freon 11)	0.49	0.49	1.00	U
96-18-4	1,2,3-Trichloropropane	0.29	0.29	1.00	U
95-63-6	1,2,4-Trimethylbenzene	0.36	0.36	1.00	U
108-67-8	1,3,5-Trimethylbenzene	0.43	0.43	1.00	U
75-01-4	Vinyl chloride	0.47	0.47	1.00	U
179601-23-1	m,p-Xylene	0.38	0.38	2.00	U
95-47-6	o-Xylene	0.28	0.28	1.00	U
109-99-9	Tetrahydrofuran	1.06	1.06	2.00	U
60-29-7	Ethyl ether	0.37	0.37	1.00	U
994-05-8	Tert-amyl methyl ether	0.49	0.49	1.00	U
637-92-3	Ethyl tert-butyl ether	0.33 U J	0.33	1.00	x
108-20-3	Di-isopropyl ether	0.29	0.29	1.00	U
75-65-0	Tert-Butanol / butyl alcohol	5.90	5.90	10.0	U
110-57-6	trans-1,4-Dichloro-2-butene	0.82 1	0.82	5.00	V
123-91-1	1,4-Dioxane	11.4	11.4	20.0	U
64-17-5	Ethanol	30.9	30.9	200	U

NIOLIGLIT

MW-8DR-0517

								12	
Laboratory:	Eurofins Spectrur	n Analytic	al, Inc MA		SDG:	<u>SC34122</u>		· · · · ·	
Client:	EA Engineering,	Science, &	Technology - Syracı	ise	Project:	Metal Etching - Fr	reeport, NY		
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC3412</u>	22-13	File ID:	<u>3412213.D</u>		
Sampled:	04/28/17 15:15		Prepared:	05/05/1	7 10:28	Analyzed:	05/09/17 05:08		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	<u>\$704321</u>		Calibration:	1704041	Instrument:	HPV1	
Reported to:	MDL	Dilution:	5						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	2.66	2.66	5.00	U
67-64-1	Acetone	82.0 4	4.02	100	×
107-13-1	Acrylonitrile	2.33	2.33	2.50	U
71-43-2	Benzene	1.42	1.42	5.00	U
108-86-1	Bromobenzene	1.66	1.66	5.00	U
74-97-5	Bromochloromethane	1.69	1.69	5.00	U
75-27-4	Bromodichloromethane	2.08	2.08	2.50	U
75-25-2	Bromoform	2.12	2.12	5.00	U
74-83-9	Bromomethane	4.48	4.48	10.0	U
78-93-3	2-Butanone (MEK)	5.35	5.35	10.0	U
104-51-8	n-Butylbenzene	2.06	2.06	5.00	U
135-98-8	sec-Butylbenzene	1.63	1.63	5.00	U
98-06-6	tert-Butylbenzene	1.58	1.58	5.00	U
75-15-0	Carbon disulfide	2.06	2.06	10.0	U
56-23-5	Carbon tetrachloride	2.18	2.18	5.00	U
108-90-7	Chlorobenzene	1.24	1.24	5.00	U
75-00-3	Chloroethane	2.94	2.94	10.0	U
67-66-3	Chloroform	1.63	1.63	5.00	U
74-87-3	Chloromethane	7.95	1.84	10.0	J
95-49-8	2-Chlorotoluene	1.58	1.58	5.00	U
106-43-4	4-Chlorotoluene	1.58	1.58	5.00	U
96-12-8	1,2-Dibromo-3-chloropropane	4.32	4.32	10.0	U
124-48-1	Dibromochloromethane	1.58	1.58	2.50	U
106-93-4	1,2-Dibromoethane (EDB)	1.01	1.01	2.50	U
74-95-3	Dibromomethane	1.54	1.54	5.00	U
95-50-1	1,2-Dichlorobenzene	1.38	1.38	5.00	U
541-73-1	1,3-Dichlorobenzene	1.57	1.57	5.00	U
106-46-7	1,4-Dichlorobenzene	1.36	1.36	5.00	U
75-71-8	Dichlorodifluoromethane (Freon 12)	2.92	2.92	10.0	U
75-34-3	1,1-Dichloroethane	1.62	1.62	5.00	U
107-06-2	1,2-Dichloroethane	1.38	1.38	5.00	U
75-35-4	1,1-Dichloroethene	3.46	3.46	5.00	U
156-59-2	cis-1,2-Dichloroethene	15.7	1.64	5.00	
156-60-5	trans-1,2-Dichloroethene	1.88	1.88	5.00	U
78-87-5	1,2-Dichloropropane	1.46	1.46	5.00	U
142-28-9	1,3-Dichloropropane	1.07	1.07	5.00	U
594-20-7	2,2-Dichloropropane	2.09 UJ	2.09	5.00	N
563-58-6	1,1-Dichloropropene	2.89	2.89	5.00	U
0061-01-5	cis-1,3-Dichloropropene	1.80	1.80	2.50	U

Mioliplit

SW846 8260C

Eurofins Spectrum Analytical, Inc. - MA

MW-8DR-0517

13

Client:	EA Engineering, Science,	<u>&amp; Technology - Syrac</u>	use Project:	Project: Metal Etching - Freeport. NY					
Project Number:	1490709		Received:	04/29/17 09:30					
Matrix:	Ground Water	Laboratory ID:	<u>SC34122-13</u>	File 1D:	3412213.D				
Sampled:	04/28/17 15:15	Prepared:	05/05/17 10:28	Analyzed:	05/09/17 05:08				
% Solids:		Preparation:	SW846 5030 Water MS	Initial/Final:	5 ml / 5 ml				
D-(-)	1707574 0				<u>5 mi / 5 mi</u>				
Batch:	<u>1/0/5/4</u> Sequent	ce: $5/04321$	Calibration:	1704041	Instrument:	HPVI			
Reported to:	MDL Dilution	n: <u>5</u>							
CAS NO.	COMPOUND		RESULT (	μg/l) N	ADL MRL	Q			
10061-02-6	trans-1,3-Dichloropropene		1.74	UT	1.74 2.50	K			
100-41-4	Ethylbenzene		1.64		1.64 5.00	U			
87-68-3	Hexachlorobutadiene		2.35		2.35 2.50	U			
591-78-6	2-Hexanone (MBK)		2.64		2.64 10.0	U			
98-82-8	Isopropylbenzene		1.80		1.80 5.00	U			
99-87-6	4-Isopropyltoluene		1.40		1.40 5.00	U			
1634-04-4	Methyl tert-butyl ether		1.18		1.18 5.00	U			
108-10-1	4-Methyl-2-pentanone (MI	BK)	2.58	2	2.58 10.0	U			
75-09-2	Methylene chloride		3.30		3.30 10.0	U			
91-20-3	Naphthalene		1.76		1.76 5.00	U			
103-65-1	n-Propylbenzene		1.72		1.72 5.00	U			
100-42-5	Styrene		2.02	2	2.02 5.00	U			
630-20-6	1,1,1,2-Tetrachloroethane		1.89		1.89 5.00	U			
79-34-5	1,1,2,2-Tetrachloroethane		1.65	1	1.65 2.50	U			
127-18-4	Tetrachloroethene		142	2	2.85 5.00				
108-88-3	Toluene		1.50	1	1.50 5.00	U			
87-61-6	1,2,3-Trichlorobenzene		1.88	1	1.88 5.00	U			
120-82-1	1,2,4-Trichlorobenzene		1.89	1	1.89 5.00	U			
71-55-6	1,1,1-Trichloroethane		2.54	2	2.54 5.00	U			
108-70-3	1,3,5-Trichlorobenzene		1.48	1	1.48 5.00	U			
79-00-5	1,1,2-Trichloroethane		1.65	1	1.65 5.00	U			
79-01-6	Trichloroethene		10.8	2	2.48 5.00				
75-69-4	Trichlorofluoromethane (Fi	reon 11)	2.44	2	2.44 5.00	U			
96-18-4	1,2,3-Trichloropropane		1.46		.46 5.00	U			
95-63-6	1,2,4-Trimethylbenzene		1.78	1	.78 5.00	U			
108-67-8	1,3,5-Trimethylbenzene		2.16	2	2.16 5.00	U			
75-01-4	Vinyl chloride		3.70	2	2.36 5.00	J			
179601-23-1	m,p-Xylene		1.90	1	.90 10.0	U			
95-47-6	o-Xylene		1.42		.42 5.00	U			
109-99-9	Tetrahydrofuran		5.30	5	5.30 10.0	U			
60-29-7	Ethyl ether		1.87	1	.87 5.00	U			
994-05-8	Tert-amyl methyl ether		2.46	2	2.46 5.00	U			
637-92-3	Ethyl tert-butyl ether		1.66	uJ I	.66 5.00	K			
108-20-3	Di-isopropyl ether		1.43	1	.43 5.00	U			
75-65-0	Tert-Butanol / butyl alcoho	1	29.5	2	.9.5 50.0	U			
110-57-6	trans-1,4-Dichloro-2-buten	e	4.10	uJ 4	.10 25.0	X			
123-91-1	1,4-Dioxane		57.0	5	7.0 100	U			
64-17-5	Ethanol		571		154 1000	J			

SDG:

<u>SC34122</u>

SDG SC34122 Page 59 / 1868

Laboratory:

NWiolibli7

RB-1

									1.1
Laboratory:	Eurofins Spectru	n Analytic	al, Inc MA		SDG:	<u>SC34122</u>			19
Client:	EA Engineering,	A Engineering, Science, & Technology - Syracuse			Project:	Metal Etching - Freeport. NY			
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Ground Water		Laboratory ID:	<u>SC341</u> 2	22-14	File ID:	<u>3412214.D</u>		
Sampled:	04/28/17 13:00		Prepared:	05/05/1	7_10:28	Analyzed:	05/09/17 05:38		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	5 ml / 5 ml		
Batch:	<u>1707574</u>	Sequence	<u>\$704321</u>		Calibration:	1704041	Instrument:	<u>HPV1</u>	
Reported to:	MDL	Dilution:	1						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	6.14	0.80	10.0	J
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.41	0.41	1.00	U
135-98-8	sec-Butylbenzene	0.33	0.33	1.00	U
98-06-6	tert-Butylbenzene	0.32	0.32	1.00	U
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.58	0.58	2.00	U
75-34-3	1,1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.33	0.33	1.00	U
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 41	0.42	1.00	X
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1.3-Dichloropropene	0.36	0.36	0.50	U

NW 10/16/17

RB-1

14

Laboratory:	Eurofins Spectrum Analytical, Inc MA	SDG:	<u>SC34122</u>		1.1
Client:	EA Engineering, Science, & Technology - Syrac	euse Project:	Metal Etching -	Freeport, NY	
Project Number:	1490709	Received:	04/29/17 09:30		
Matrix:	Ground Water Laboratory ID:	<u>SC34122-14</u>	File ID:	3412214.D	
Sampled:	<u>04/28/17 13:00</u> Prepared:	05/05/17 10:28	Analyzed:	05/09/17 05:38	
% Solids:	Preparation:	SW846 5030 Water MS	Initial/Final:	5 ml / 5 ml	
Batch:	<u>1707574</u> Sequence: <u>S704321</u>	Calibration:	1704041	Instrument:	HPV1
Reported to:	MDL Dilution: 1				
CAS NO.	COMPOUND	RESULT (	μg/l) Ν	1DL MRL	Q
10061-02-6	trans-1,3-Dichloropropene	0.35	UJ 0	0.35 0.50	K
100-41-4	Ethylbenzene	0.33	0	0.33 1.00	U
87-68-3	Hexachlorobutadiene	0.47	0	0.47 0.50	U
591-78-6	2-Hexanone (MBK)	0.53	0	0.53 2.00	U
98-82-8	lsopropylbenzene	0.36	0	0.36 1.00	U
99-87-6	4-Isopropyltoluene	0.28	0	0.28 1.00	U
1634-04-4	Methyl tert-butyl ether	0.24	0	0.24 1.00	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.52	0	0.52 2.00	U
75-09-2	Methylene chloride	0.66	0	0.66 2.00	U
91-20-3	Naphthalene	0.35	0	.35 1.00	U
103-65-1	n-Propylbenzene	0.34	0	0.34 1.00	U
100-42-5	Styrene	0.40	0	.40 1.00	U
630-20-6	1,1,1,2-Tetrachloroethane	0.38	0	.38 1.00	U
79-34-5	1,1,2,2-Tetrachloroethane	0.33	0	0.33 0.50	U
127-18-4	Tetrachloroethene	0.57	0	.57 1.00	U
108-88-3	Toluene	0.30	0	.30 1.00	U
87-61-6	1,2,3-Trichlorobenzene	0.38	0	.38 1.00	U
120-82-1	1.2.4-Trichlorobenzene	0.38	0	.38 1.00	U
71-55-6	1,1,1-Trichloroethane	0.51	0	.51 1.00	U
108-70-3	1,3,5-Trichlorobenzene	0.30	0	.30 1.00	U
79-00-5	1,1,2-Trichloroethane	0.33	0	.33 1.00	U
79-01-6	Trichloroethene	0.50	0	.50 1.00	U
75-69-4	Trichlorofluoromethane (Freon 11)	0.49	0	.49 1.00	U
96-18-4	1,2,3-Trichloropropane	0.29	0	.29 1.00	U
95-63-6	1,2,4-Trimethylbenzene	0.36	0	.36 1.00	U
108-67-8	1,3,5-Trimethylbenzene	0.43	0	.43 1.00	U
75-01-4	Vinyl chloride	0.47	0	.47 1.00	U
179601-23-1	m.p-Xylene	0.38	0	.38 2.00	U
95-47-6	o-Xylene	0.28	0	.28 1.00	U
109-99-9	Tetrahydrofuran	1.06	1	.06 2.00	U
60-29-7	Ethyl ether	0.37	0	.37 1.00	U
994-05-8	Tert-amyl methyl ether	0.49	0	.49 1.00	U
637-92-3	Ethyl tert-butyl ether	0.33	NJ 0	.33 1.00	V
108-20-3	Di-isopropyl ether	0.29	0	.29 1.00	U
75-65-0	Tert-Butanol / butyl alcohol	5.90	5	.90 10.0	U
110-57-6	trans-1,4-Dichloro-2-butene	0.82	<b>UJ</b> 0	.82 5.00	X

SDG SC34122 Page 61 / 1868

I,4-Dioxane

Ethanol

123-91-1

64-17-5

Neriolipli7

11.4

30.9

11.4

30.9

20.0

200

U

U

RB-2

15

boratory:	Eurofins Spectrum Analytical, Inc MA		SDG:	<u>SC34122</u>			. I.,
ent:	EA Engineering, Science, & Technology - S	Syracuse	Project:	Metal Etching	- Freeport	<u>, NY</u>	
oject Number:	1490709		Received:	04/29/17 09:3	0		
atrix:	Ground Water Laboratory ID	: SC3	4122-15	File ID:	3412	2215.D	
moled	04/28/17 12:00 Prepared:	05/0	5/17 10:28	Analyzed:	05/0	9/17 06:08	
a wi	<u>04/28/17/12.00</u> Trepared.	05/0	<u>5/17/10.28</u>	Anaryzeu.	05/0	/////00.00	
Solids:	Preparation:	<u>SW8</u>	346 5030 Water MS	Initial/Final:	5 m	/ 5 ml	
tch:	<u>1707574</u> Sequence: <u>S704</u>	321	Calibration:	1704041	lnstr	ument:	<u>HPV1</u>
ported to:	MDL Dilution: 1						
CAS NO.	COMPOUND		RESULT (J	ug/l)	MDL	MRL	Q
76-13-1	1.1.2-Trichlorotrifluoroethane (Freon 113)		0.53		0.53	1.00	U
67-64-1	Acetone		5.39		0.80	10.0	l
107-13-1	Acrylonitrile		0.47		0.47	0.50	U
71-43-2	Benzene		0.28		0.28	1.00	υ
108-86-1	Bromobenzene		0.33		0.33	1.00	1
74-97-5	Bromochloromethane		0.34		0.34	1.00	1
75-27-4	Bromodichloromethane		0.42		0.42	0.50	1
75-25-2	Bromoform		0.42		0.42	1.00	
74-83-9	Bromomethane		0.90		0.90	2.00	U
78-93-3	2-Butanone (MEK)		1.07		1.07	2.00	
104-51-8	n-Butylbenzene		0.41		0.41	1.00	U
135-98-8	sec-Butylbenzene		0.33		0.33	1.00	U
98-06-6	tert-Butylbenzene		0.32	1	0.32	1.00	U
75-15-0	Carbon disulfide		0.41		0.41	2.00	U
56-23-5	Carbon tetrachloride		0.44		0.44	1.00	U
108-90-7	Chlorobenzene		0.25		0.25	1.00	1
75-00-3	Chloroethane		0.59	1	0.59	2.00	
67-66-3	Chloroform		0.33	1	0.33	1.00	U
74-87-3	Chloromethane		0.37		0.37	2.00	U
95-49-8	2-Chlorotoluene		0.32		0.37	1.00	
106-43-4	4-Chlorotoluene		0.32		0.32	1.00	
96-12-8	1.2-Dibromo-3-chloropropage		0.86		0.86	2.00	
124-48-1	Dibromochloromethane		0.32		0.32	0.50	
106-93-4	L2-Dibromoethane (EDB)		0.20		0.20	0.50	
74-95-3	Dibromomethane		0.20		0.31	1.00	
95-50-1	1 2-Dichlorohenzene		0.31		0.28	1.00	<u> </u>
541_73_1	1.3-Dichlorobenzene		0.20		0.31	1.00	
106-46-7	1.4-Dichlorobenzene		0.31		0.27	1.00	
75-71-8	Dichlorodifluoromethane (Freon 12)		0.27		0.58	2.00	
75-34-3	1 1-Dichloroethane		0.30		0.32	1.00	
107_06_2	1.1.2.Dichloroethane		0.52		0.28	1.00	
75_35_4	1 1-Dichloroethene		0.20		0.69	1.00	
156-50-2	cis-1 2-Dichloroethere		0.09		0.33	1.00	
156-60-5	trans_1.2-Dichloroethene		0.33		0.38	1.00	
78,87.5	1 2-Dichloropropage		0.30		0.20	1.00	
142_28_0	1.3-Dichloropropage		0.29		0.21	1.00	
504_20.7	2.2-Dichloropropane		0.21	47	0.42	1.00	
563-58-6			0.42		0.58	1.00	
0-06-00	1,1-Diemotopropene		0.58		0.30	1.00	0

**RB-2** 

								15
Laboratory:	Eurofins Spectrur	n Analytic	al, Inc MA		SDG:	<u>SC34122</u>		
Client:	EA Engineering, S	Science, &	Technology - Syracu	se	Project:	Metal Etching - Fr	eeport, NY	
Project Number:	1490709				Received:	04/29/17 09:30		
Matrix:	Ground Water		Laboratory ID:	<u>SC3412</u>	22-15	File ID:	<u>3412215.D</u>	
Sampled:	04/28/17 12:00		Prepared:	05/05/1	7 10:28	Analyzed:	05/09/17 06:08	
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>	
Batch:	<u>1707574</u>	Sequence	:: <u>\$704321</u>		Calibration:	1704041	Instrument:	<u>HPV1</u>
Reported to:	MDL	Dilution:	1					

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
10061-02-6	trans-1,3-Dichloropropene	0.35 47	0.35	0.50	X
100-41-4	Ethylbenzene	0.33	0.33	1.00	U
87-68-3	Hexachlorobutadiene	0.47	0.47	0.50	U
591-78-6	2-Hexanone (MBK)	0.53	0.53	2.00	U
98-82-8	Isopropylbenzene	0.36	0.36	1.00	U
99-87-6	4-Isopropyltoluene	0.28	0.28	1.00	U
1634-04-4	Methyl tert-butyl ether	0.24	0.24	1.00	U
108-10-1	4-Methyl-2-pentanone (MIBK)	0.52	0.52	2.00	U
75-09-2	Methylene chloride	0.66	0.66	2.00	U
91-20-3	Naphthalene	0.35	0.35	1.00	U
103-65-1	n-Propylbenzene	0.34	0.34	1.00	U
100-42-5	Styrene	0.40	0.40	1.00	U
630-20-6	1,1,1,2-Tetrachloroethane	0.38	0.38	1.00	U
79-34-5	1,1,2,2-Tetrachloroethane	0.33	0.33	0.50	U
127-18-4	Tetrachloroethene	0.57	0.57	1.00	U
108-88-3	Toluene	0.30	0.30	1.00	U
87-61-6	1,2,3-Trichlorobenzene	0.38	0.38	1.00	U
120-82-1	1,2,4-Trichlorobenzene	0.38	0.38	1.00	U
71-55-6	1,1,1-Trichloroethane	0.51	0.51	1.00	U
108-70-3	1,3,5-Trichlorobenzene	0.30	0.30	1.00	U
79-00-5	1,1,2-Trichloroethane	0.33	0.33	1.00	U
79-01-6	Trichloroethene	0.50	0.50	1.00	U
75-69-4	Trichlorofluoromethane (Freon 11)	0.49	0.49	1.00	U
96-18-4	1,2,3-Trichloropropane	0.29	0.29	1.00	U
95-63-6	1,2,4-Trimethylbenzene	0.36	0.36	1.00	U
108-67-8	1,3,5-Trimethylbenzene	0.43	0.43	1.00	U
75-01-4	Vinyl chloride	0.47	0.47	1.00	U
179601-23-1	m,p-Xylene	0.38	0.38	2.00	U
95-47-6	o-Xylene	0.28	0.28	1.00	U
109-99-9	Tetrahydrofuran	1.06	1.06	2.00	U
60-29-7	Ethyl ether	0.37	0.37	1.00	U
994-05-8	Tert-amyl methyl ether	0.49	0.49	1.00	U
637-92-3	Ethyl tert-butyl ether	0.33 kJ	0.33	1.00	X
108-20-3	Di-isopropyl ether	0.29	0.29	1.00	U
75-65-0	Tert-Butanol / butyl alcohol	5.90	5.90	10.0	U
110-57-6	trans-1,4-Dichloro-2-butene	0.82 47	0.82	5.00	V
123-91-1	1,4-Dioxane	11.4	11.4	20.0	U
64-17-5	Ethanol	30.9	30.9	200	U

SDG SC34122 Page 63 / 1868

purioliblit

SW846 8260C

Trip Blank

										6
Laboratory:	Eurofins Spectrun	n Analytic	<u>al, Inc N</u>	<u>1A</u>		SDG:	<u>SC34122</u>			Ψ
Client:	EA Engineering, S	<u>Science, &amp;</u>	Technolo	<u>gy - Syracu</u>	<u>se</u>	Ргојест:	Metal Etching - Fre	eport, NY		
Project Number:	1490709					Received:	04/29/17 09:30			
Matrix:	Aqueous		Laborato	ry ID:	<u>SC3412</u>	2-16	File ID:	<u>3412216.D</u>		
Sampled:	04/28/17 00:00		Prepared	:	05/05/1	7_10:28	Analyzed:	05/09/17 06:39		
% Solids:			Preparati	on:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	:	<u> 8704321</u>		Calibration:	1704041	Instrument:	HPV1	
Reported to:	MDL	Dilution:		1						

CAS NO.	COMPOUND	RESULT (µg/l)	MDL	MRL	Q
76-13-1	1,1,2-Trichlorotrifluoroethane (Freon 113)	0.53	0.53	1.00	U
67-64-1	Acetone	0.80	0.80	10.0	U
107-13-1	Acrylonitrile	0.47	0.47	0.50	U
71-43-2	Benzene	0.28	0.28	1.00	U
108-86-1	Bromobenzene	0.33	0.33	1.00	U
74-97-5	Bromochloromethane	0.34	0.34	1.00	U
75-27-4	Bromodichloromethane	0.42	0.42	0.50	U
75-25-2	Bromoform	0.42	0.42	1.00	U
74-83-9	Bromomethane	0.90	0.90	2.00	U
78-93-3	2-Butanone (MEK)	1.07	1.07	2.00	U
104-51-8	n-Butylbenzene	0.41	0.41	1.00	U
135-98-8	sec-Butylbenzene	0.33	0.33	1.00	U
98-06-6	tert-Butylbenzene	0.32	0.32	1.00	U
75-15-0	Carbon disulfide	0.41	0.41	2.00	U
56-23-5	Carbon tetrachloride	0.44	0.44	1.00	U
108-90-7	Chlorobenzene	0.25	0.25	1.00	U
75-00-3	Chloroethane	0.59	0.59	2.00	U
67-66-3	Chloroform	0.33	0.33	1.00	U
74-87-3	Chloromethane	0.37	0.37	2.00	U
95-49-8	2-Chlorotoluene	0.32	0.32	1.00	U
106-43-4	4-Chlorotoluene	0.32	0.32	1.00	U
96-12-8	1,2-Dibromo-3-chloropropane	0.86	0.86	2.00	U
124-48-1	Dibromochloromethane	0.32	0.32	0.50	U
106-93-4	1,2-Dibromoethane (EDB)	0.20	0.20	0.50	U
74-95-3	Dibromomethane	0.31	0.31	1.00	U
95-50-1	1,2-Dichlorobenzene	0.28	0.28	1.00	U
541-73-1	1,3-Dichlorobenzene	0.31	0.31	1.00	U
106-46-7	1,4-Dichlorobenzene	0.27	0.27	1.00	U
75-71-8	Dichlorodifluoromethane (Freon12)	0.58	0.58	2.00	U
75-34-3	1,1-Dichloroethane	0.32	0.32	1.00	U
107-06-2	1,2-Dichloroethane	0.28	0.28	1.00	U
75-35-4	1,1-Dichloroethene	0.69	0.69	1.00	U
156-59-2	cis-1,2-Dichloroethene	0.33	0.33	1.00	U
156-60-5	trans-1,2-Dichloroethene	0.38	0.38	1.00	U
78-87-5	1,2-Dichloropropane	0.29	0.29	1.00	U
142-28-9	1,3-Dichloropropane	0.21	0.21	1.00	U
594-20-7	2,2-Dichloropropane	0.42 UJ	0.42	1.00	K
563-58-6	1,1-Dichloropropene	0.58	0.58	1.00	U
10061-01-5	cis-1,3-Dichloropropene	0.36	0.36	0.50	U

~~10/16/17

Trip Blank

14

Laboratory:	Eurofins Spectrur	n <u>Analytic</u>	al, Inc MA		SDG:	<u>SC34122</u>		• •	
Client:	EA Engineering,	Science, &	Technology - Syracu	ise	Project:	Metal Etching - Fr	eeport, NY		
Project Number:	1490709				Received:	04/29/17 09:30			
Matrix:	Aqueous		Laboratory ID:	<u>SC3412</u>	2-16	File ID:	<u>3412216.D</u>		
Sampled:	04/28/17 00:00		Prepared:	05/05/1	7 10:28	Analyzed:	05/09/17 06:39		
% Solids:			Preparation:	<u>SW846</u>	5030 Water MS	Initial/Final:	<u>5 ml / 5 ml</u>		
Batch:	<u>1707574</u>	Sequence	:: <u>\$704321</u>		Calibration:	1704041	Instrument:	<u>HPV1</u>	
Reported to:	MDL	Dilution:	1						

CAS NO. COMPOUND	RESULT (µg/l)	MDL	MRL	Q
10061-02-6 trans-1,3-Dichloropropene	0.35 WJ	0.35	0.50	X
100-41-4 Ethylbenzene	0.33	0.33	00.1	U
87-68-3 Hexachlorobutadiene	0.47	0.47	0.50	U
591-78-6 2-Hexanone (MBK)	0.53	0.53	2.00	U
98-82-8 Isopropylbenzene	0.36	0.36	1.00	U
99-87-6 4-Isopropyltoluene	0.28	0.28	1.00	U
1634-04-4 Methyl tert-butyl ether	0.24	0.24	1.00	U
108-10-1 4-Methyl-2-pentanone (MIBK)	0.52	0.52	2.00	U
75-09-2 Methylene chloride	0.66	0.66	2.00	U
91-20-3 Naphthalene	0.35	0.35	1.00	U
103-65-1 n-Propylbenzene	0.34	0.34	1.00	U
100-42-5 Styrene	0.40	0.40	1.00	U
630-20-6 1,1,1,2-Tetrachloroethane	0.38	0.38	1.00	U
79-34-5 1,1,2,2-Tetrachloroethane	0.33	0.33	0.50	U
127-18-4 Tetrachloroethene	0.57	0.57	1.00	U
108-88-3 Toluene	0.30	0.30	1.00	U
87-61-6 1,2,3-Trichlorobenzene	0.38	0.38	1.00	U
120-82-1 1,2,4-Trichlorobenzene	0.38	0.38	1.00	U
71-55-6 1.1.1-Trichloroethane	0.51	0.51	1.00	U
108-70-3 1,3,5-Trichlorobenzene	0.30	0.30	1.00	U
79-00-5 1,1,2-Trichloroethane	0.33	0.33	1.00	U
79-01-6 Trichloroethene	0.50	0.50	1.00	U
75-69-4 Trichlorofluoromethane (Freon 11)	0.49	0.49	1.00	U
96-18-4 1,2,3-Trichloropropane	0.29	0.29	1.00	U
95-63-6 1,2,4-Trimethylbenzene	0.36	0.36	1.00	U
108-67-8 1,3,5-Trimethylbenzene	0.43	0.43	1.00	U
75-01-4 Vinyl chloride	0.47	0.47	1.00	U
179601-23-1 m,p-Xylene	0.38	0.38	2.00	U
95-47-6 o-Xylene	0.28	0.28	1.00	U
109-99-9 Tetrahydrofuran	1.06	1.06	2.00	U
60-29-7 Ethyl ether	0.37	0.37	1.00	U
994-05-8 Tert-amyl methyl ether	0.49	0.49	1.00	U
637-92-3 Ethyl tert-butyl ether	0.33 U J	0.33	1.00	K
108-20-3 Di-isopropyl ether	0.29	0.29	1.00	U
75-65-0 Tert-Butanol / butyl alcohol	5.90	5.90	10.0	U
110-57-6 trans-1,4-Dichloro-2-butene	0.82 47	0.82	5.00	U
123-91-1 1,4-Dioxane	11.4	11.4	20.0	U
64-17-5 Ethanol	30.9	30.9	200	U

SDG SC34122 Page 65 / 1868

~ woliblet

This page intentionally left blank

Appendix F

**Air Sampling Forms** 

This page intentionally left blank

#### FIELD AIR SAMPLING FORM

Science & Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, NY 13211       Project Name:       NYSDEC Metal Etching Location:         Sample Location Information:       Sampler(s):       Freeport, NY         Site ID Number: 130110       Sampler(s):       EC/KT         PID Metr Used: Model, Serial #)       Building LD. No:       01 (Office)         SUMMA Canister Record:       Building LD. No:       01 (Office)         SUMMA Canister Record:       Sampler(s):       EC/KT         Flow Regulator No:       3015       Flow Regulator No:       3489         Flow Regulator No:       2023       Canister Serial No:       1071       Canister Serial No:         Start Date/Time:       4/26/17/1444       Start Date/Time:       4/26/17/1440       Start Date/Time:       510 Pressure: (inches Hg)       -30       (inches Hg)       -30       (inches Hg)       -30       (inches Hg)       -30       Stort Pressure: (inches Hg)       Stort Pressure: (inche	g Site
6712 Brooklawn Parkway, Suite 104 Syracuse, NY 13211       Location: Freeport, NY         Sample Location Information:         Sample Location Information:         Site 1D Number: 130110       Sampler(9):       EC/ACT         PID Meter Used: (Model, Serial #)       Building ID. No:       01 (Office)         SUMMA Canister Record:         INDOOR AIR       DUPLICATE SAMPLE         Flow Regulator No:       34895       Flow Regulator No:       34899       Flow Regulator No:         Sint Pressure:       Start Pressure:       Start Pressure:       (inches Hg)       -30       Stort Pressure:       (inches Hg)       -30       (inches Hg)       -30       Stort Pressure:       (inches Hg)       -30 <td></td>	
Syracuse, NY 13211     Project Manager:     Megan Miller       Sample Location Information:     Sampler(s):     EC/KT       Site ID Number: 130110     Sampler(s):     EC/KT       PD Meter Used: (Model, Serial #)     Building I.D. No.:     01 (Office)       SUMMA Canister Record:     DUPLICATE SAMPLE     Flow Regulator No.:     01 (Office)       SUMMA Canister Record:     INDOOR AIR     DUPLICATE SAMPLE     01 (Office)       Flow Regulator No.:     3015     Flow Regulator No.:     3489     Flow Regulator No.:       Canister Serial No.:     2023     Canister Serial No.:     2221     Canister Serial No.:     1071     Canister Serial No.:       Start Date/Time:     4/26/17/1444     Start Date/Time:     4/26/17/1440     Start Date/Time:     Start Date/Time:       Start Pressure:     (inches Hg)     -30     (inches Hg)     -30     (inches Hg)       Stop Date/Time:     4/27/17/1443     Stop Date/Time:     4/27/17/1439     Stop Date/Time:     5top Pressure:       Stop Date/Time:     4/27/17/1443     Stop Pressure:     (inches Hg)     -10     (inches Hg)       Stop Pressure:     (inches Hg)     -7,5     (inches Hg)     -10     (inches Hg)       Start Pressure:     (inches Hg)     -7,5     (inches Hg)     10     Sample ID:	
Sample Location Information:       Image: Sampler (s):       EC/KT         Site ID Number: 130110       Sampler(s):       EC/KT         DD Meter Used: (Model, Serial #)       Building I.D. No.:       01 (Office)         SUMMA Canister Record:       Building I.D. No.:       01 (Office)         SUMMA Canister Record:       INDOOR AIR       DUPLICATE SAMPLE         INDOOR AIR       OUTDOOR AIR       DUPLICATE SAMPLE         Flow Regulator No.:       3015       Flow Regulator No.:       3489         Start Pressure:       (anister Serial No.:       1071       Canister Serial No.:         Start Date/Time:       4/26/17/1444       Start Date/Time:       4/26/17/1440       Start Pressure:         Start Pressure:       (inches Hg)       -30       (inches Hg)       -30       finne:         Stort Pressure:       (inches Hg)       -30       (inches Hg)       -30       (inches Hg)       Stort Pressure:       (inches Hg)       Stort Pressure:       (inches Hg)       -10       (inches Hg)       Stort Pressure:       (inches Hg)       Stor Date/Time:       Stort Pressure:       (inches Hg)       -10       (inches Hg)       Stort Pressure:       Stort Pressure:       (inches Hg)       -10       (inches Hg)       Stor Date/Time:       Stor Pressure:       (inches Hg)	
Site ID Number: 130110       Sampler(s):       EC/KT         PID Meter Used: (Model, Serial #)       Building LD. No.:       01 (Office)         SUMMA Canister Record:       Building LD. No.:       01 (Office)         SUMMA Canister Record:       INDOOR AIR       OUTDOOR AIR       DUPLICATE SAMPLE         Flow Regulator No.:       3015       Flow Regulator No.:       3489       Flow Regulator No.:         Canister Serial No.:       2023       Canister Serial No.:       1071       Canister Serial No.:         Start Date/Time:       4/26/17/1444       Start Date/Time:       4/26/17/1440       Start Date/Time:         Start Date/Time:       4/26/17/1444       Start Date/Time:       Start Date/Time:       Start Date/Time:         Stop Date/Time:       4/27/17/1443       Stop Date/Time:       4/27/17/1439       Stop Date/Time:       Stop Pressure: (inches Hg)       -30         Stop Date/Time:       4/27/17/1443       Stop Date/Time:       4/27/17/1439       Stop Pressure: (inches Hg)       -10       (inches Hg)         Stop Pressure:       Stop Pressure:       Stop Pressure: (inches Hg)       -10       (inches Hg)         Stop Pressure:       Stop Pressure:       Stop Pressure: (inches Hg)       -10       (inches Hg)         Stop Pressure:       Stop Pressure: <t< th=""><th></th></t<>	
And DA Mandel, Post Disc.       Description       Description <thdescription< th=""> <thdescr< td=""><td></td></thdescr<></thdescription<>	
(Model, Serial #)       Building I.D. No.:       01 (Office)         SUMMA Canister Record:       INDOOR AIR       OUTDOOR AIR       DUPLICATE SAMPLE       Intake Height Above         Flow Regulator No.:       3015       Flow Regulator No.:       3495       Flow Regulator No.:       3489       Flow Regulator No.:       Canister Serial No.:       1071       Canister Serial No.:       Canister Serial No.:       1071       Canister Serial No.:       Start Date/Time:       4/26/17/1440       Start Date/Time:       4/26/17/1440       Start Date/Time:       4/26/17/1440       Start Date/Time:       4/26/17/1440       Start Date/Time:       Start Date/Time:       4/26/17/1440       Start Pressure:       (inches Hg)       -30       (inches Hg)       -10       (inches Hg)<	
SUMMA Canister Record:           INDOOR AIR         OUTDOOR AIR         DUPLICATE SAMPLE           Flow Regulator No.:         3015         Flow Regulator No.:         3495         Flow Regulator No.:         3489         Flow Regulator No.:           Canister Serial No.:         2023         Canister Serial No.:         2021         Canister Serial No.:         1071         Canister Serial No.:           Start Date/Time:         4/26/17/1444         Start Date/Time:         4/26/17/1440         Start Pressure:         (inches Hg)         -30         -30         (inche	
INDOOR AIROUTDOOR AIRDUPLICATE SAMPLEFlow Regulator No.:3015Flow Regulator No.:3495Flow Regulator No.:3489Flow Regulator No.:Canister Serial No.:2023Canister Serial No.:2221Canister Serial No.:1071Canister Serial No.:Start Date/Time:4/26/17/1440Start Date/Time:4/26/17/1440Start Date/Time:4/26/17/1440Start Pressure: (inches Hg)Start Date/Time:4/26/17/1440Start Date/Time:Start Pressure: (inches Hg)Start Pressure: (inches Hg)Start Pressure: (inches Hg)Start Pressure: (inches Hg)Start Pressure: (inches Hg)Stop Date/Time:4/27/17/1439Stop Date/Time:Stop Date/Time:Stop Date/Time:4/27/17/1443Stop Date/Time:4/27/17/1439Stop Date/Time:4/27/17/1439Stop Date/Time:Stop Pressure: (inches Hg)Stop Pressure: <br< td=""><td></td></br<>	
Flow Regulator No.:       3015       Flow Regulator No.:       3495       Flow Regulator No.:       3489       Flow Regulator No.:         Canister Serial No.:       2023       Canister Serial No.:       2221       Canister Serial No.:       1071       Canister Serial No.:         Start Date/Time:       4/26/17/1444       Start Date/Time:       4/26/17/1440       Start Date/Time:       5/26/27/1440       Start Date/Time:       5/26/27/1440       Start Date/Time:       5/26/27/17/1440       Start Pressure:       (inches Hg)       -30       (inches Hg)       -10       (inches Hg)	
Canister Serial No.:       2023       Canister Serial No.:       2221       Canister Serial No.:       1071       Canister Serial No.:         Start Date/Time:       4/26/17/1444       Start Date/Time:       4/26/17/1440       Start Pressure:       (inches Hg)       -30       Stort Pressure:       (inches Hg)       -30       Stor Pressure:       (inches Hg)       -30       Stor Pressure:       (inches Hg)       -6       Stor Pressure:       (inches Hg)       -10       Stor Pressure:       (inches Hg)       -10       Stor Pressure:       (inches Hg)       -10       Stor Pressure:       Stor Pressure:       (inches Hg)       -10       Stor Pressure:	
Start Date/Time:4/26/17/1444Start Date/Time:4/26/17/1440Start Date/Time:4/26/17/1440Start Date/Time:Start Pressure: (inches Hg)-30Start Pressure: (inches Hg)Start Pressure: (inches Hg)Stop Pressure: <b< td=""><td></td></b<>	
Start Pressure:       Stop Date/Time:       4/27/17/1439       Stop Date/Time:       4/27/17/1439       Stop Date/Time:       4/27/17/1439       Stop Date/Time:       4/27/17/1439       Stop Pressure:	
Stop Date/Time:       4/27/17 / 1443       Stop Date/Time:       4/27/17 / 1439       Stop Date/Time:       4/27/17 / 1439       Stop Date/Time:         Stop Pressure: (inches Hg)       -6       Stop Pressure: (inches Hg)       Stop Pressure: (inches Hg)	
Stop Pressure: (inches Hg)       Sample ID:     Intake Height Above     Sample ID:     OUP-0417     Sample ID:       Story/Level     Ground level     Direction from Building     WEST     Direction from Building     Direction from Building     Direction from Building     Distance from B	
Sample ID:       IA-0417       Sample ID:       IA-0417       Sample ID:       DUP-0417       Sample ID:         Other Sampling Information:       Story/Level       Ground level       Direction from Building       WEST       Direction from Building       WEST       Direction from Building       Direction from Building       Direction from Building       Intake Height Above	
Other Sampling Information:     Direction from Building     WEST     Direction from Building     Direction from Building       Story/Level     Ground level     Direction from Building     WEST     Direction from Building     Direction from Building       Room     Distance from Building     3 ft     Distance from Building     Distance from Building     Distance from Building       Indoor Air Temp     Intake Height Above     Intake Height Above     Intake Height Above	
Story/Level     Ground level     Direction from Building     WEST     Direction from Building     Direction from Building     Direction from Building       Room     Office     Distance from Building     3 ft     Distance from Building     Distance from Building     Distance from Building     Distance from Building     Distance from Building       Indoor Air Temp     Intake Height Above     Intake Height Above     Intake Height Above	
Room     Distance from Building     Distance from Building     Distance from Building     Distance from Building     Distance from Building       Indoor Air Temp     Intake Height Above     Intake Height Above     Intake Height Above	
Koom     Distance     Distance     Distance       office     from Building     3 ft     from Building     3 ft       Indoor Air Temp     Intake Height Above     Intake Height Above     Intake Height Above	
Indoor Air Temp     Intake Height Above     Intake Height Above	
(°F) 68 deg Ground Level (ft.) 3 ft Ground Level (ft.) 3 ft Ground Level (ft.)	
Barometric     Intake Tubing     Intake Tubing     Intake Tubing     Intake Tubing       Pressure?     no     Used?     no     Used?	
Intake Height Above Floor Level (ft.)Distance to nearest RoadwayDistance to nearest RoadwayDistance to nearest RoadwayDistance to nearest RoadwayDistance to nearest Roadway	
Noticeable Odor? no Noticeable Odor? no Noticeable Odor? no Noticeable Odor?	
PID Reading (ppb)     0     PID Reading (ppb)     0     PID Reading (ppb)       D     V     V     V     V	
Duplicate Sample? Duplicate Sample? no Duplicate Sample? yes Duplicate Sample?	

This page intentionally left blank

# Appendix G

# Institutional Controls/Engineering Controls Certifications

This page intentionally left blank



Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form

NEW YORK STATE

Site	Site Details •		Box 1
Site	e Name Metal Etching Co., Inc.		
Site City Cou Site	e Address: 435 South Main Street Zip Code: 11520 y/Town: Freeport unty:Nassau e Acreage: 2.3		
Re	porting Period: November 12, 2016 to November 12, 2017		
		YES	NO
1.	Is the information above correct?	¥	
	If NO, include handwritten above or on a separate sheet.		
2.	To your knowledge has some or all of the site property been sold, subdivid merged, or undergone a tax map amendment during this Reporting Period	ded, 1?   □	A
3.	To your knowledge has there been any change of use at the site during th Reporting Period (see 6NYCRR 375-1.11(d))?	is □	×
4.	To your knowledge have any federal, state, and/or local permits (e.g., buil discharge) been issued for or at the property during this Reporting Period	ding, ?          □	×
	If you answered YES to questions 2 thru 4, include documentation of that documentation has been previously submitted with this certification of the set of	r evidence ition form.	
5.	To your knowledge is the site currently undergoing development?		×
			Box 2
		YES	NO
5.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	×	
7.	Are all ICs/ECs in place and functioning as designed?	×	
IF T	THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below C PM regarding the development of a Corrective Measures Work Plan to	and contact the address these iss	ues.

#### SITE NO. 130110

#### Description of Institutional Controls

Parcel 62-44-24 Owner BWM High & Dry Inc.

Institutional Control

Ground Water Use Restriction Landuse Restriction Site Management Plan Monitoring Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatmen as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitori of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-44-25

BWM High & Dry Inc.

Site Management Plan Monitoring Plan

Ground Water Use Restriction Landuse Restriction

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatmen as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for a buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitori of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

Box 3
SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-144

Freeport Creek Associates

Ground Water Use Restriction Landuse Restriction Site Management Plan Monitoring Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatmen as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitori of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-145

Freeport Creek Associates

Ground Water Use Restriction Landuse Restriction Site Management Plan Monitoring Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatmen as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitori of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-155

Apache Realty Corporation

Ground Water Use Restriction Landuse Restriction Site Management Plan Monitoring Plan

Imposition of an institutional control in the form of an environmental notice requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatmen as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for i buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitori of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-157

Apache Realty Corporation

Ground Water Use Restriction Landuse Restriction Site Management Plan Monitoring Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatmen as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for ; buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitori of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No.

01)to include recorded ENs. 62-45-158

Freeport Creek Associates

Site Management Plan Monitoring Plan Ground Water Use Restriction Landuse Restriction

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatmen as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apach Realty Corp.)

Site management plan (SMP)has been developed which includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for a buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitori of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No. 01)to include recorded ENs.

62-45-54

BWM High & Dry Inc.

Ground Water Use Restriction Landuse Restriction Site Management Plan Monitoring Plan

Imposition of an institutional control in the form of an environmental notice that requires (a) limiting the use and development of the property to commercial use, which will also permit industrial use, in conformance of local zoning; (b) compliance with the approved site management plan; (c) restricting the use of groundwater as a source of potable or process water, without necessary water quality treatmen as determined by NYSDOH; and (d) submission of a periodic certification of institutional and engineering controls to the Department by the property owner. The required control, in the form of 3 environmental notices (EN)are in place.ENs were recorded in the Nassau County Clerk's Office on 3/25/14 and 3/28/14 as doc. ref Nos.:EL14000001(Freeport Creek Assoc.),EL14000002(BWM High&Dry),EL14000003(Apache Realty Corp.)

A site management plan (SMP)has been developed and includes the following institutional and engineering controls: (a) management of the final cover system to restrict excavation below the soil cover's demarcation layer, pavement, or buildings. Excavated soil will be tested, properly handled to protect the health and safety of workers and the nearby community, and will be properly managed in a manner acceptable to the Department; (b) continued evaluation of the potential for vapor intrusion for a buildings developed on the site, including provision for mitigation of any impacts identified; (c) monitori of soil vapor and groundwater; (d) identification of any use restrictions on the site; and (e) provisions for the continued proper operation and maintenance of the components of the remedy.

SMP prepared by the Department and finalized in October 2012. SMP revised in April 2014 (Rev No.

01)to include recorded ENs.

Box 4

## Description of Engineering Controls

Parcel 62-44-24 **Engineering Control** 

Cover System Fencing/Access Control

Vapor Mitigation

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised o geotextile demarcation layer, topped by a minimum of 12 in. of asphalt

pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed&#59; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP.

Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings.

62-44-25

## Vapor Mitigation Cover System Fencing/Access Control

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised or geotextile demarcation layer, topped by a minimum of 12 in. of asphalt

pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed&#59; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP.

Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings.

62-45-144

Vapor Mitigation Cover System Fencing/Access Control

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised or geotextile demarcation layer, topped by a minimum of 12 in. of asphalt

pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed&#59; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP.

Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings.

62-45-145

Vapor Mitigation Cover System Fencing/Access Control

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised o

**Engineering Control** Parcel geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed &#59; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP. Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. 62-45-155 Vapor Mitigation Cover System Fencing/Access Control Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised o geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed & #59; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP. Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. 62-45-157 Vapor Mitigation Cover System Fencing/Access Control Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised o geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed &#59; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP. Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. 62-45-158 Vapor Mitigation Cover System Fencing/Access Control Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised o geotextile demarcation layer, topped by a minimum of 12 in. of asphalt pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed & #59; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP. Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings. 62-45-54

Parcel

## Engineering Control Vapor Mitigation Cover System Fencing/Access Control

Final Cover System: Exposure to remaining contamination in soil/fill at the site is prevented by a demarcation layer and asphalt and porous pavement cover system placed over the site. This cover system is comprised or geotextile demarcation layer, topped by a minimum of 12 in. of asphalt

pavement, porous pavement, or rip-rap. The EWP that appears in the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated, or temporarily removed&#59; and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in the SMP.

Sub-Slab Depressurization Systems: Exposure to indoor air impacted with VOCs within the site buildings is prevented by the two existing SSDSs, which were installed in the site buildings in March 2005. The systems serve to reduce the pressure beneath the building slabs by venting potentially impacted soil vapor outside of the buildings.

Periodic Review Report (PRR) Certification Statements			
I certify by checking "YES" below that:			
<ul> <li>a) the Periodic Review report and all attachments were prepared under the dir reviewed by, the party making the certification, including data and material pre contractors for the current certifying period, if any;</li> </ul>	rection of, pared by	and previous	
<ul> <li>b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gen engineering practices; and the information presented is accurate and compete</li> </ul>	d in this co nerally acc	ertificatio epted	
engineering practices, and the mormation presented is accurate and compete.	YES	NO	
	X		
If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:			
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;			
(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;			
<ul> <li>(b) nothing has occurred that would impair the ability of such Control, to protective the environment;</li> </ul>	ct public h	ealth an	
<ul> <li>(b) nothing has occurred that would impair the ability of such Control, to prote the environment;</li> <li>(c) nothing has occurred that would constitute a failure to comply with the Site or equivalent if no Site Management Plan exists.</li> </ul>	ct public h Manager	nealth and ment Plai	
<ul> <li>(b) nothing has occurred that would impair the ability of such Control, to prote the environment;</li> <li>(c) nothing has occurred that would constitute a failure to comply with the Site or equivalent if no Site Management Plan exists.</li> </ul>	ct public h Manager YES	nealth and ment Plai NO	
<ul> <li>(b) nothing has occurred that would impair the ability of such Control, to prote the environment;</li> <li>(c) nothing has occurred that would constitute a failure to comply with the Site or equivalent if no Site Management Plan exists.</li> </ul>	ct public h Manager YES	nealth and ment Plai NO	
<ul> <li>(b) nothing has occurred that would impair the ability of such Control, to prote the environment;</li> <li>(c) nothing has occurred that would constitute a failure to comply with the Site or equivalent if no Site Management Plan exists.</li> </ul> IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address	ct public f Manager YES M these iss	nealth and ment Plai NO □ ues.	
<ul> <li>(b) nothing has occurred that would impair the ability of such Control, to prote the environment;</li> <li>(c) nothing has occurred that would constitute a failure to comply with the Site or equivalent if no Site Management Plan exists.</li> </ul> IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address	ct public h Manager YES 가 these iss	nealth and ment Plai NO □ ues.	
<ul> <li>(b) nothing has occurred that would impair the ability of such Control, to prote the environment;</li> <li>(c) nothing has occurred that would constitute a failure to comply with the Site or equivalent if no Site Management Plan exists.</li> <li>IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address</li> <li>Signature of Standby Consultant/Contractor</li> </ul>	ct public h Manager YES M these iss	nealth and ment Plai NO ues.	
<ul> <li>(b) nothing has occurred that would impair the ability of such Control, to prote the environment;</li> <li>(c) nothing has occurred that would constitute a failure to comply with the Site or equivalent if no Site Management Plan exists.</li> <li>IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address</li> <li>Signature of Standby Consultant/Contractor</li> </ul>	ct public f Manager YES M these iss	nealth and ment Plai NO ues.	

Box 6 **IC/EC CERTIFICATIONS Professional Engineer Signature** I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. ame EA Engineering, P.C. 6712 Brooklawn Pkwy Donald print name Syracuse NY 13211 (print business address) am certifying as a Professional Engineer. Mal 12/20/17 Signature of Professional Engineer Date E)