

New York State Department of Environmental Conservation Division of Environmental Remediation

# Former Fresh and Clean Laundry Site Remedial Investigation Report Site No. 130111







## **REMEDIAL INVESTIGATION REPORT**

## FORMER FRESH & CLEAN LAUNDRY GLEN HEAD, NEW YORK

SITE REGISTRY NO. 130111

WORK ASSIGNMENT NO. D007620-37

**Prepared** For

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

By

## D&B ENGINEERS AND ARCHITECTS WOODBURY, NEW YORK

FEBRUARY 2022

## REMEDIAL INVESTIGATION REPORT FORMER FRESH AND CLEAN LAUNDRY GLEN HEAD, NEW YORK

## TABLE OF CONTENTS

| Section |      | Title                                                      | Page |
|---------|------|------------------------------------------------------------|------|
| 1.0     | INTI | RODUCTION                                                  | 1-1  |
|         | 1.1  | Remedial Investigation Report Organization                 | 1-1  |
|         | 1.2  | Project Objectives                                         |      |
|         | 1.3  | Study Area Location and Description                        |      |
|         |      | 1.3.1 Study Area Description and Land Use                  | 1-2  |
|         |      | 1.3.2 Climate                                              | 1-2  |
|         |      | 1.3.3 Topography                                           |      |
|         |      | 1.3.4 Regional Geology and Hydrogeologic Setting           |      |
|         |      | 1.3.5 Water Supply, Waste and Storm Water Disposal         |      |
|         | 1.4  | Site History and Previous Investigations                   | 1-5  |
|         |      | 1.4.1 Site History                                         | 1-5  |
|         |      | 1.4.2 Previous Investigations                              | 1-6  |
| 2.0     | REM  | IEDIAL INVESTIGATION ACTIVITIES                            | 2-1  |
|         | 2.1  | Overview of Field Activities                               | 2-1  |
|         | 2.2  | Remedial Investigation Activities                          | 2-2  |
|         |      | 2.2.1 Geophysical Survey                                   | 2-2  |
|         |      | 2.2.2 Land Survey                                          | 2-3  |
|         |      | 2.2.3 Site Inspections                                     | 2-3  |
|         |      | 2.2.4 Indoor Air/Sub-Slab Soil Vapor Sampling and Exterior |      |
|         |      | Soil Vapor Sampling                                        | 2-4  |
|         |      | 2.2.5 Soil/Sediment Sampling                               | 2-6  |
|         |      | 2.2.6 Shallow Soil Borings                                 | 2-7  |
|         |      | 2.2.7 Deep Soil Borings                                    | 2-8  |
|         |      | 2.2.8 Discrete Depth Groundwater Sampling                  | 2-9  |
|         |      | 2.2.9 Existing Groundwater Monitoring Well Redevelopment   | 2-9  |
|         |      | 2.2.10 Existing Groundwater Monitoring Well Sampling       |      |
|         |      | 2.2.11 Irrigation Well Sampling                            |      |
|         |      | 2.2.12 Cleanout of On-site Underground Structure           | 2-11 |
|         |      | 2.2.13 Investigation Derived Waste                         | 2-12 |
|         | 2.3  | Field Procedures, Analytical Methods and Quality Assurance |      |
|         | 2.4  | Health and Safety Program                                  | 2-13 |
|         | 2.5  | Air Monitoring                                             |      |
|         | 2.6  | Data Usability Summary Report                              | 2-13 |

## TABLE OF CONTENTS (continued)

| Section    |                                               | <u>Title</u> <u>Pag</u>                                                                                                                                                                                                                                                                                                                                                                                          | <u>ge</u>                                                                                   |
|------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 3.0        | PHYS                                          | SICAL CHARACTERISTICS OF THE STUDY AREA                                                                                                                                                                                                                                                                                                                                                                          | ÷                                                                                           |
|            | 3.1<br>3.2                                    | Site Geology                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| 4.0        | NATU                                          | JRE AND EXTENT OF CONTAMINATION4-1                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |
|            | <ul><li>4.1</li><li>4.2</li><li>4.3</li></ul> | Identification of Standards, Criteria and Guidelines.4-1Remedial Investigation4-14.2.1Indoor Air/Sub-Slab Soil Vapor Sampling and Exterior Soil<br>Vapor Sampling Results4-14.2.2Soil/Sediment Sampling Results4-64.2.3Shallow Soil Boring Sample Results4-74.2.4Deep Soil Borings Sample Results4-74.2.5Groundwater Sampling Results4-74.2.6Irrigation Well Sampling Results4-9Data Usability Summary Report4-9 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 5.0        | QUAI                                          | LITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |
|            | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7 | Contaminant Source5-1Receptor Population5-2Surface Soil/Sediment5-2Subsurface Soil5-3Groundwater5-3Indoor Air/Soil Vapor5-4Conclusions5-5                                                                                                                                                                                                                                                                        | 2<br>2<br>3<br>4                                                                            |
| 6.0        | CONO                                          | CLUSIONS AND RECOMMENDATIONS                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| List of Ap | 6.1<br>6.2<br>opendic                         | Conclusions                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |

| Geophysical Survey | A |
|--------------------|---|
| Land Survey Data   | B |
| Field Forms        | C |

## TABLE OF CONTENTS (continued)

| Section   | Title                      | <u>Pa</u> | <u>ige</u> |
|-----------|----------------------------|-----------|------------|
| List of A | ppendices (Continued)      |           |            |
|           | Structure Cleanout Report  | D         |            |
|           | Disposal Information       | Е         |            |
|           | Analytical Results         | F         |            |
|           | Data Validation Checklists | G         |            |
|           |                            |           |            |
| List of F | igures                     |           |            |

| 1-1<br>1-2               | Site Location Map<br>Site Plan                                                                                                                                                                         |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2-1                      | Sample Location Map                                                                                                                                                                                    |
| 3-1                      | Groundwater Contour Map                                                                                                                                                                                |
| 4-1<br>4-2<br>4-3<br>4-4 | VOC Detections in Exterior Soil Vapor, Sub-Slab Soil Vapor, Indoor Air<br>Outdoor Air<br>SCO Exceedances in Soil/Sediment<br>Exceedances in Groundwater On-Site<br>Exceedances in Groundwater Off-Site |
|                          |                                                                                                                                                                                                        |

## List of Tables

| 4-1 | VOC Detections in Exterior Soil Vapor,<br>Sub-slab Soil Vapor, Indoor Air and Outdoor Ambient |     |
|-----|-----------------------------------------------------------------------------------------------|-----|
|     | Air samples                                                                                   | 4-3 |
| 4-2 | VOC Detections in Soil/Sediment Samples                                                       | 4-6 |
| 4-3 | VOC and PFOA Exceedances in Groundwater                                                       | 4-8 |
| 5-1 | Exposure Pathway Status for Human Receptors                                                   | 5-6 |

#### **1.0 INTRODUCTION**

The Former Fresh and Clean Laundry Site (the Site) is a New York State Department of Environmental Conservation (NYSDEC) Class 2 Inactive Hazardous Waste Disposal Site (NYSDEC Site No. 130111), located in the Glen Head, Nassau County, New York. As part of New York State's program to investigate and remediate hazardous waste sites, the NYSDEC issued Work Assignment D007620-37 to D&B Engineers and Architects (D&B) of Woodbury, New York, under D&B's Standby Contract for Engineering Services, to conduct a Remedial Investigation (RI) and Feasibility Study (FS) for the Site.

## 1.1 Remedial Investigation Report Organization

This report presents a description and findings of the RI for the Former Fresh and Clean Laundry Site. Section 1.0 discusses the project objectives, the study area location and description, site background and a review of the site history, including a discussion of previous investigations and a summary of the results. Section 2.0 is a detailed description of the field program undertaken during the remedial investigation phase of the project. Section 3.0 describes the physical characteristics of the study area, including the geology and hydrogeology. Section 4.0 presents the analytical results and discusses the nature and extent of the contamination relative to the standards, criteria, and guidance (SCGs) for the various media sampled. This section also discusses data usability. Section 5.0 contains a qualitative human health exposure assessment based on the investigation findings. Section 6.0 presents conclusions and recommendations. Identification and evaluation of remedial technologies and alternatives, and a recommended remedial action plan for the Site will be provided in the Feasibility Study.

## **1.2 Project Objectives**

The purpose of the RI is to evaluate the nature and extent of contamination at the Former Fresh and Clean Laundry Site to determine whether potential impacts to human health exist and if remediation of contamination is warranted. A primary focus of the investigation is to continue delineating contamination at and near the Site, through soil sampling, sediment sampling, groundwater sampling and on-site soil vapor intrusion investigations.

#### **1.3** Study Area Location and Description

#### 1.3.1 Study Area Description and Land Use

The Site is located at 22 Railroad Avenue in Glen Head, Nassau County, New York. The site location and study area are shown on Figure 1-1. The property is approximately 0.129 acres in size and is developed with a two-story approximately 3,000 square foot building that is used for commercial purposes. See Figure 1-2. The property is bounded to the north by School Street followed by commercial properties, to the south by commercial properties, to the west by a large parking area and Long Island Railroad Glen Head Station and to the east by property owned by the North Shore School District.

#### 1.3.2 Climate

The climate of Nassau County, New York is temperate. The Atlantic Ocean to the south, and Long Island Sound to the north act to moderate seasonal temperature extremes for the County. As a result, winter temperatures are milder and summer temperatures are cooler than those measured for mainland areas at similar latitudes. The average daily temperature ranges from a low of 25.08 degrees Fahrenheit (°F) as measured in January to a high of 83.91 °F as measured in July. The average annual precipitation for the area is approximately 48 inches and the average annual snowfall is approximately 22.5 inches.

#### 1.3.3 Topography

The topography in the vicinity of the study area is significantly sloped towards the east with an approximate 10-foot change in elevation from the west to the east across the Site. Nassau County is part of the Coastal Plain physiographic province. The northern portion of the county, the area in which the Site is located, is characterized by undulating or rolling landscapes. Elevations range from approximately sea level to 340 feet above mean sea level.

#### 1.3.4 <u>Regional Geology and Hydrogeologic Setting</u>

According to published information, the aquifer system in the regional area of the Site is underlain by three hydrogeologic units, the Upper Glacial Formation (UGA), the Magothy Formation, and the Raritan Clay and Lloyd Sand Members of the Raritan Formation which overlie the southeasterly dipping bedrock surface.

The stratigraphy of Long Island generally consists of unconsolidated overburden deposits of clay, silt, sand and gravel overlying a Pre-Mesozoic Age schist and gneiss bedrock. Although some surficial weathering fractures exist, the bedrock is of relatively low permeability and is generally considered to be the lower boundary of the regional groundwater flow regime.

The overburden deposits are classified into three major geologic units. Descending from ground surface, the three units are the Pleistocene deposits (Upper Glacial Unit), the Magothy Formation, and the Raritan Formation. The general hydrogeologic characteristics of each of these units are described below.

The Upper Glacial Formation is composed of upper Pleistocene deposits of the Quaternary period of the Cenozoic era. These deposits consist of glacial till and outwash sediments. The till deposits are poorly permeable and are composed of clay, sand, gravel and boulders. The outwash deposits consist of quartz sand, some lenses of silt and clay and pebble size gravel and boulders. Outwash deposits are moderately to highly permeable. Regionally, the outwash deposits have a maximum thickness of approximately 75 feet. Average horizontal hydraulic conductivity values for the outwash deposits ranging from 230 feet/ day to 270 feet/ day have been reported with a horizontal to vertical hydraulic conductivity ratio of approximately 10:1.

The Magothy Formation consists of upper Cretaceous deposits of the Cretaceous period of the Mesozoic era. These deposits are composed of fine to medium sand interbedded with discontinuous layers and or lenses of coarse sand, silty clay, and clay. The permeability is poor to moderate with some areas of the aquifer exhibiting high permeability. A coarse gravel unit approximately 100 feet in thickness reportedly exists at the base of the Magothy Formation forming a distinct interface between the Magothy Formation and the underlying Raritan Formation. The maximum thickness of the Magothy Formation in the region is approximately 650 feet. Groundwater flow within the unit occurs under both unconfined and semi-confined conditions. The degree of confinement increases with depth primarily due to the effect of stratification and the numerous silt and clay lenses. The majority of the sand layers are poorly to moderately permeable, although some local highly transmissive lenses of coarse gravel exist. Average horizontal hydraulic conductivity values of approximately 50 feet per day and 75 feet per day have been reported for the upper portion of the unit and for the lower basal gravel, respectively. The horizontal to vertical hydraulic conductivity ratio for the unit has been estimated to be approximately 100:1.

The Magothy Aquifer is the principal aquifer for the withdrawal of public drinking water supplies in Nassau County.

The Raritan Clay confining unit forms the upper member of the Raritan Formation. The clay unit consists of solid and silty clay with intermittent lenses of sand. The unit has an average thickness of approximately 175 feet. The vertical hydraulic conductivity of the clay unit has been estimated to be approximately 0.001 feet per day. The clay unit sustains a significant hydraulic head difference between the Magothy Formation and the Lower Raritan Formation and acts as a confining layer over the Lloyd Sand Member.

The Lloyd Sand forms the lower member of the Raritan Formation. The Lloyd Sand member forms a water bearing unit consisting of fine to coarse sand with some discontinuous layers of silty clay and clay. The water bearing unit has an approximate thickness of 150 feet. The permeability is described as low to moderate. An average horizontal hydraulic conductivity

for the unit has been estimated to be approximately 40 feet per day with a horizontal to vertical hydraulic conductivity ratio of approximately 10:1.

#### 1.3.5 Water Supply, Waste and Storm Water Disposal

The study area is serviced by a municipal potable water supply system. The nearest public water supply well is located approximately 500 ft to the north-northwest of the Site on Drumond Place. Based on data collected during a previous Site Characterization completed by Environmental Resource Management (ERM) in the vicinity of the Site, the water supply well is located down gradient of the Site. The well is constructed to a depth of 300 ft bgs and is screened from 255 to 295 ft bgs in the Magothy aquifer. There is also a public supply well located approximately 1.5 miles to the north-northwest (down-gradient) of the Site.

The Site building has a private sanitary system located on-site. Storm water flows from catch basins in the streets into drainage piping which discharges into local recharge basins. Due to the significant difference in elevation from the western portion of the Site and the eastern portion of the Site, during significant rain events, storm water, not collected by catch basins in the streets, has caused flooding in the basement of the building.

#### **1.4** Site History and Previous Investigations

#### 1.4.1 <u>Site History</u>

A building construction date for the Site building is not known; however, based on previous investigations performed at the Site, the building was occupied by a dry cleaner from the early 1950s until 1988. More recently, within the last ten years the building has been occupied by an educational tutor service on the first floor and a consignment store on the basement level.

#### 1.4.2 Previous Investigations

In 1980, the Nassau County Department of Health (NCDH) completed a site investigation of the dry cleaning establishment located at 22 Railroad Avenue, Glen Head. A summary letter dated December 2, 1980, identified contaminated wastewater was being disposed of onto the ground surface or through plumbing into the septic tank system and cesspool. The NCDH ordered the Site occupants to cease discharging of the liquid waste.

A Preliminary Site Assessment (PSA) was completed in September 2000 by Lawler, Matusky & Skelly (LMS), to identify the extent of the Glen Head Groundwater Plume and identify the potential source Sites. The PSA was completed as a multi-site investigation of approximately 40-acres including several former and active dry cleaning and industrial facilities. The PSA identified the Site as FC Cleaners (the Former Fresh and Clean Laundry Site) as a potential source, located at the eastern portion of the Glen Head Groundwater Plume.

A limited Phase II Site Investigation, completed by LMS in September 2000, focused on the on-site subsurface drainage system. A total of four cesspools were identified at the Former Fresh and Clean Laundry Site, three inactive (CP-1, CP-2 and CP-3) and one active cesspool (CP-4). It was concluded by LMS that all four cesspools were impacted by discharges of contaminated wastewater; however, cesspool CP-2 reported the highest VOC contamination with a concentration of PCE of 1,500,000 part per billion (ppb). The main VOC constituents reported above NYSDEC Soil Cleanup Objectives (SCOs) in the cesspools were tetrachloroethene (PCE), 1,2-dichloroethene (1,2-DCE) and trichloroethene (TCE). In addition, low levels of petroleum products were reported above allowable limits, specifically xylenes and 1,2-dichlorobenzene. Several VOCs were reported above their respective SCOs at CP-4; however, these VOCs were present at substantially lower concentrations than the other cesspools.

In December 2003, an Indoor Air Sampling event was completed on-site on behalf of the NCDH. PCE concentrations were evaluated through the use of organic vapor monitoring badges which were monitored for approximately 24 hours. Six locations throughout the on-site building were sampled. Additional sampling was completed on January 13 and 14, 2004.

In March 2004, a Voluntary Investigation and Interim Remedial Measure (IRM) Work Plan for the Former Fresh and Clean Laundry Site was developed on behalf of the NYSDEC pursuant of the requirements of an executed Voluntary Cleanup Agreement. The Work Plan was developed in six tasks. Task 1 was to further evaluate the on-site sanitary system through the influent and effluent discharge piping leaving the septic tanks and sampling of the subgrade pools. Task 2 was the performance of an IRM which included the removal of liquid and sludge from the septic tank and all four cesspools. End point samples collected from CP-1, CP-2, CP-3 and CP-4 were collected between 25-26 feet (ft) bgs. One sample was collected from the storm drain (SD-1).

Following the completion of the IRM, Task 3 was implemented to determine vertical leaching from the Site via soil borings. Soil borings were collected through the center of the cesspool drainage structures using direct push technology equipment. Task 4 included on-site and off-site soil gas investigations to evaluate the potential for migration of vapors, Task 5 was considered to be completed via the previous indoor air sampling events. Task 6 called for a groundwater investigation at and within the vicinity of the Site. The groundwater investigation included the installation of three groundwater monitoring wells, one upgradient and two downgradient of the drainage structures.

In December 2006, Environmental Services Inc. (ESI) completed Task 3 – Soil Boring Delineation Program. Soil samples within the four cesspools were collected from the following depths: CP-1 soil samples collected from 32, 36 and 40 ft. bgs.; CP-2 soil samples were collected from 36, 46 and 60 ft. bgs. and CP-3 and CP-4 soil samples were collected from 29, 33 and 37 ft. bgs. An evaluation of the data concluded that non-aqueous phase liquid (NAPL) did not exist in the subsurface soils beneath the previously impacted and remediated cesspools (CP-1, 2, 3, 4).

In November 2007, Task 4 and the first sampling event of Task 6 were completed by ESI. A technical report submitted to the NYSDEC indicated that a soil vapor study was completed on July 19 and 20, 2007. Samples were collected with summa canisters and analyzed by York Laboratory by Method United State Environmental Protection Agency (USEPA) Method TO- 14A. Several VOCs were detected in the soil vapor. Additionally, three on-site groundwater monitoring wells were installed and sampled in October 2007.

In March 2008, ESI completed an Interim Report letter briefly outlining groundwater investigation activities and sampling results. Based on the findings of the groundwater sampling the report indicated "a few compounds were slightly over regulatory compliance." As a result of the investigation, ESI made the recommendation that further vertical delineation of groundwater contamination was necessary.

In March 2013, CA Rich Consultants Inc. (CARC) completed interior soil sampling and sub-slab vapor sampling event. A total of four sub-slab soil vapor sample locations were installed inside the building along with one interior air sample as part of the sub-slab soil vapor investigation. All samples were analyzed using USEPA Method TO-15 for volatile organic compounds (VOCs). In addition, two soil samples were collected. One sample was collected from an interior floor drain located in the rear of the basement by the garage door of the building and the other soil sample was collected from the overflow cesspool connected to the septic holding tank associated with the Glen Head Elementary School maintenance building. The samples were analyzed using USEPA Method 8260 for VOCs. CARC concluded based of the results of the interior sub-slab soil vapor and interior air samples that VOCs were not detected at concentrations that are indicative of a soil vapor intrusion concern within the building. The results of the interior floor drain, and sanitary cesspool soil samples did not detect VOCs at concentrations that were above existing NYSDEC cleanup objectives for the protection of groundwater.

In September 2014, CARC collected four exterior soil vapor samples around the exterior of the Site building. The samples were analyzed using USEPA Method T0-15 for VOCs. The samples were collected from a depth of eight feet below the ground surface. The soil vapor results indicated elevated concentrations of PCE at 7,140 ug/m<sup>3</sup> and TCE at 196 ug/m<sup>3</sup> at sample location SV-3, which is located in front of Tom's Lawn Mower Service business at 30 Railroad Avenue. The sample locations SV-1, SV-2 and SV-4 also detected PCE, but at significantly lower concentrations ranging between 146 and 150 ug/m<sup>3</sup>. TCE and 1,2-DCE, were detected, but

at low concentrations. CARC made the recommendation in the September 2014 report that further off-site groundwater delineation was necessary.

## 2.0 REMEDIAL INVESTIGATION ACTIVITIES

Provided below is a summary of the field activities conducted as part of the RI. The field activities were performed in accordance with the approved Work Plan, dated January 2018 and amended in October 2019 and were completed between 2018 and 2021.

## 2.1 Overview of Field Activities

The field activities performed within the study area were conducted in a phased approach with the goal of determining the nature and extent of contamination from past hazardous waste disposal activities, ascertain whether completed routes of exposure to Site contaminants exist, and to develop a remedial action, if needed, that will be protective of human health and the environment. To accomplish this goal, several investigation techniques were utilized. Field activities and supporting investigation activities included the following:

- Site Inspection
- Geophysical Survey
- Land Survey
- Indoor Air/Sub-Slab Soil Vapor Sampling and Exterior Soil Vapor Sampling
- Sediment Sampling, Shallow Soil Borings and Subsurface Soil Sampling
- Deep Soil Borings
- Discrete Depth Groundwater Sampling
- Existing Groundwater Monitoring Well Redevelopment
- Existing Groundwater Monitoring Well Sampling
- Irrigation Well Sampling
- Cleanout of On-Site Southern Structure
- Investigation Derived Waste

A detailed description of the field program is presented below.

#### 2.2 Remedial Investigation Activities

The remedial investigation activities included a geophysical survey, land survey by professional land surveyor, site inspection, collection of indoor air/sub-slab soil vapor and exterior soil vapor sampling, sediment sampling, collection of shallow soil borings and subsurface soil sampling, existing groundwater monitoring well redevelopment, existing groundwater sampling, irrigation well sampling, deep soil borings, discrete depth groundwater sampling, underground structure cleanout activities and disposal of investigation derived waste.

Based on the results of the initial sampling, where elevated concentrations of chlorinated VOCs in soil vapor, and indoor air were detected, additional soil, groundwater and soil vapor data was collected in an attempt to identify the source of the on-site contamination.

#### 2.2.1 Geophysical Survey

Prior to undertaking any intrusive activities, a geophysical survey was completed on May 7, 2018 by Advanced Geological Services (AGS). The purpose of the geophysical survey was to: 1) verify the locations of known underground utilities that were identified by New York 811 and non-member utility companies; 2) identify and mark the location of any unknown/unmarked utilities or subsurface structures; and, 3) clear each proposed subsurface sampling location prior to drilling. The geophysical survey was performed using non-intrusive locating techniques including ground penetrating radar and radio frequency utility locating system. All utilities and/or structures that were identified during the survey were marked on the ground using standard utility color codes. A location for each proposed subsurface sampling location, which was clear of utilities and subsurface structures and drilling was identified in white on the ground surface. A geophysical inspection report prepared by AGS is provided in Appendix A.

#### 2.2.2 Land Survey

On May 8, 2018, MEGA Engineers & Land Surveying P.C. (MEGA), a licensed New York State Professional Land Surveyor (PLS) performed a site survey of the Site. The land survey included property features such as property/easement boundaries, building footprints of the Site building and adjoining properties, edges of pavement/vegetation, driveways, underground utilities, geophysical anomalies and existing monitoring well locations and select soil vapor and soil boring sample locations. A land survey drawing and survey information for the existing monitoring wells and soil boring and soil vapor locations is provided in Appendix B.

#### 2.2.3 Site Inspections

D&B conducted an inspection of the visible portions of the concrete floor in the basement of the Site building to determine where dry cleaning equipment may have been previously located; identify any possible former chemical storage areas or additional floor drains; and note any significant cracks in the concrete surface of the floor. As part of this task, D&B also inspected the bilco doors and associated staircase leading down into the basement storage area from the southwestern end of the building, as the entrance was previously inaccessible. D&B identified a drain at the bottom of the stairwell, as well as noted a door that led into the basement building, which was boarded up with wood. Additionally, D&B identified a basement storage room on the northwestern end of the building which also had a drain located within it. During the inspection D&B took photographs and recorded PID readings within the two drains.

Additionally, as part of this task D&B performed an inspection of the adjoining Glen Head School maintenance shop building to determine if any maintenance work was recently being performed or has been performed that may have potentially impacted the Former Fresh and Clean Laundry Site. D&B interviewed school maintenance personnel and performed an inspection and it was determined that the adjoining school property building was utilized as a carpentry building for the school and no maintenance activities or use of chemicals was performed.

#### 2.2.4 Indoor Air/ Sub-Slab Soil Vapor Sampling and Exterior Soil Vapor Sampling

#### Indoor Air/Sub-Slab Soil Vapor Sampling

Two sub-slab soil vapor samples (SSDB-1 and SSDB-2) were collected within the Site building basement on March 14, 2018. In addition, two indoor air samples were collected corresponding to the sub-slab soil vapor samples locations (IADB-1 and IADB-2) and one outdoor ambient air (OADB-1) samples were also collected on March 14, 2018. Subsequent subslab soil vapor, indoor air and ambient air samples were collected at the Site building on February 28, 2019. Indoor air samples IADB-1 and IADB-2 were collected from the basement occupied by the "Tag Sale Warehouse" and two indoor air samples (IADB-3 and IADB-4) were collected from the first floor occupied by Rally Book Distributors. In addition, two sub-lab samples (SSDB-1 and SSDB-2) were collected from the basement. An outdoor ambient air sample (OADB-1) was collected from the rear of the Site building. Indoor air and sub-slab soil vapor sampling was also completed on January 26, 2021 to re-evaluate and confirm soil vapor intrusion at the Site through the collection of prior indoor, ambient air and sub-slab soil vapor samples. Sub-slab soil vapor, indoor air and outdoor ambient air samples were collected to evaluate the potential for soil vapor intrusion at the Site building and evaluate the potential for exposures within the Site building. The sub-slab soil vapor samples were installed by D&B and indoor air and outdoor air samples were collected on the same day. Sample locations are presented on Figure 2-1.

Prior to performing the sub-slab soil vapor sampling, an indoor air quality questionnaire and building inventory was completed by D&B to evaluate the type of structure, floor layout and physical conditions of the Site building, as well as identify and minimize conditions that may have affected or interfered with testing. A ppb range PID was used to help evaluate potential interferences. The completed Indoor Air Quality (IAQ) questionnaire and building inventory is included as Appendix C. In addition, the building floor was inspected for any penetrations. It should be noted that the inspection of the floor was difficult due to the presence of large pieces of furniture, area rugs and household items associated with the current tenant of the space. The concrete slab was cored at each sub-slab soil vapor location. The sub-slab vapor samples were collected using laboratory supplied tubing from beneath the concrete slab. The soil vapor tubing was purged using a photoionization detector (PID) to evacuate a minimum of three volumes of soil vapor. The PID recorded VOC concentrations from the soil vapor tubing in the parts per billion (ppb) range. The sub-slab soil vapor samples were collected in batch certified clean 6-liter SUMMA canisters fitted with laboratory calibrated low-flow regulators that were set to collect the sample over a 1-hour period. Helium was used as a tracer gas to ensure that an adequate surface seal was created during sampling. The outdoor ambient and indoor air samples were collected in batch certified clean 6-liter SUMMA canisters fitted with laboratory calibrated low-flow regulators that were set to collect the sample over a 1-hour period. Helium was used as a tracer gas to ensure that an adequate surface seal was created during sampling. The outdoor ambient and indoor air samples were collected in batch certified clean 6-liter SUMMA canisters fitted with laboratory calibrated low-flow regulators that were set to collect the sample over an 8-hour period. The SUMMA canisters were placed at a height of approximately 3 feet above the floor/ground surface.

#### Exterior Soil Vapor Sampling

Four soil vapor samples (FCSV-01 through FCSV-04) were collected surrounding the exterior of the Site building on May 7, 2018, including two in the parking lot located east of the Site building, one to the west of the Site building, and one south of the Site building at previous soil vapor sampling location SV-3 which historically exhibited elevated VOC concentrations in the vicinity of the adjacent lawnmower repair business. Exterior soil vapor samples were collected to evaluate the potential for off-site soil vapor contamination. The soil vapor probes were installed by Aztech Environmental Services and soil vapor samples were collected on the same day by D&B. Sample locations are presented on Figure 2-1.

The exterior soil vapor probes were set at approximately 8 feet below grade and were constructed using stainless steel screens and Teflon lined polyethylene tubing. The probe screens were approximately 6-inches long, constructed of double-woven stainless-steel wire and installed at the bottom of the boreholes. Filter glass beads were placed around the screened portion of each vapor probe extending from the bottom of the borehole to approximately 1-foot above the screen. Approximately 6 inches of washed sand was then placed directly above the filter glass beads, followed by a bentonite seal above the washed sand to a depth of approximately 1-foot bgs.

After installation of the soil vapor probes, the soil vapor samples were collected for laboratory analysis of VOCs by USEPA Method TO-15. Each probe was connected via Teflon tubing to a laboratory-supplied SUMMA canister. The soil vapor probes were purged using a calibrated PID to evacuate a minimum of three volumes of soil vapor. The PID recorded VOC concentrations from the soil vapor probes in the ppb range. The soil vapor samples were collected in batch certified clean 6-liter SUMMA canisters fitted with laboratory calibrated low-flow regulators that were set to collect the sample over a 1-hour period. Helium was used as a tracer gas to ensure that an adequate surface seal was created during sampling.

#### 2.2.5 Soil/Sediment Sampling

Soil/sediment samples were collected from ten exterior locations (SS-01, SS-02, SS-05 through SS-12) on May 7 through 9, 2018. Sediment samples were also collected from three locations (SS-14 through SS-16) on January 24 and February 28, 2020. These sediment samples were collected from the two floor drains/dry well structures within the Site building, one in the basement storage area in northwestern end of the building (SS-14) and one in the laundry area on the southern end of the building (SS-15). Sample (SS-16) was collected from a floor drain/drywell structure identified at the bottom of the stairwell accessed through the exterior bilco doors, located outside along the southwestern portion of the building. Samples were collected by hand utilizing a decontaminated hand auger. Due to access constraints, sample SS-14 was collected by manually advancing a galvanized hollow pipe within the floor drain leading into the dry well structure. Sediment samples were collected at the following depths of each structure: SS-14 (0-24"), SS-15 (0-3") and SS-16 (0-12"). Sediment sample SS-13 (0-16") was collected on August 3, 2020 from the on-site southern underground structure located to the west of the Site building. The sample was collected using a Geoprobe macrocore sampler liner that was advanced utilizing a hammer. Soil/sediment samples were collected from the uppermost 6 inches, except as noted, of sediment present at the bottom of each sanitary/drainage structure (See Figure 2-1).

Samples collected from each location were screened with a calibrated PID and inspected for indications of contamination (e.g., discoloration, staining, etc.). Geologic descriptions of the soil and field screening results were recorded and included in Appendix C.

All samples were analyzed for Target Compound List (TCL) VOCs+10 by USEPA Method 8260C. The samples were collected and preserved in accordance with USEPA Method 5035 (e.g., En Core® or Terra Core® Sampler). Quality control samples, consisting of matrix spike and matrix spike duplicates were collected at a minimum frequency of one per twenty samples and analyzed for the same parameters as the environmental samples. A field blank was collected on the decontaminated hand auger, as non-disposable sampling equipment was used.

#### 2.2.6 Shallow Soil Borings

Shallow soil borings were completed from six locations (SB-6 through SB-08, SB-10 through SB-12) on May 7 through 9, 2018 through the existing drainage/sanitary structures (see Figure 2-1). Soil borings were collected utilizing direct push sampling to examine subsurface soil quality and determine if the structure was a source of chlorinated VOC contamination to the subsurface. At each shallow boring location, soil samples were collected continuously to a depth of approximately 20 feet below the bottom of the structure.

Subsurface soil samples were screened with a calibrated PID and inspected for indications of contamination (e.g., discoloration, staining, etc.). Geologic descriptions of the soil and field screening results were recorded and included on the boring logs presented in Appendix C. In addition, to the sediment sample collected from each structure, one subsurface soil sample was collected from each soil boring from the interval exhibiting the greatest evidence of contamination based on field screening and submitted for laboratory analysis.

All subsurface soil samples were analyzed for Target Compound List (TCL) VOCs+10 by USEPA Method 8260C to assess Site contaminants of concern. The VOC samples were collected and preserved in accordance with USEPA Method 5035 (e.g. En Core® or Terra Core® Sampler).

#### 2.2.7 Deep Soil Borings

Prior to drilling, each proposed soil boring location was pre-cleared for buried utilities to a minimum depth of 5 feet bgs using hand tools. A total of three deep soil borings (SB-17, SB-18 and SB-19) were advanced at the Site in July and August 2020 (see Figure 2-1 for boring locations).

All soil borings were advanced using hallow stem augers and soil samples were collected using split spoon samplers. In accordance with the NYSDEC-approved scope of work, one sample was selected for laboratory analysis from the unsaturated interval exhibiting the greatest evidence of contamination based on field screening and the second sample was collected from the interval immediately above the groundwater surface. SB-17 was advanced to a total depth of approximately 117 feet bgs, soil boring SB-18 was advanced to a total depth of approximately 118 feet bgs and soil boring SB-19 was advanced to a total depth of approximately 122 feet bgs.

During boring advancement, soil samples were collected utilizing a decontaminated split spoon sampler continuously to a depth of approximately 25 feet below grade for characterization, after which, they were collected at 5-foot intervals until completion of the borehole. SB-17 was completed adjacent to one of the on-site underground structures located to the west of the Site building, SB-18 was completed adjacent to the bilco doors on the west side of the Site building and SB-19 was completed at the adjoining lawnmower/metal sculpting property. The sample locations are depicted on Figure 2-1.

In total, six soil samples were collected for laboratory analysis from SB-17 at (23'-25') and (105'-107'), SB-18 at (11'-13') and (106'-108') and SB-19 at (7'-8') and (110'-112'). Each recovered soil sample was inspected and characterized in accordance with the United Soil Classification System (USCS). In addition, any evidence of contamination, such as staining, sheens or odors, was described and the samples screened for organic vapors using a calibrated PID. Boring logs were generated and are provided in Appendix C.

#### 2.2.8 Discrete Depth Groundwater Sampling

Three discrete-depth groundwater samples (GW-01, GW-02 and GW-03) were collected from the soil boring locations SB-17, SB-18 and SB-19, respectively at the Site on July 28, 30 and August 5, 2020. The discrete-depth groundwater probe locations are depicted on Figure 2-1.

The discrete-depth groundwater samples were collected by installing a temporary well with a slotted PVC screen within the augers of the deep soil borings. Groundwater samples were collected just below the groundwater table at depths ranging from 107 to 112 feet bgs. Prior to sample collection, each discrete-depth groundwater sample location was purged of approximately 1 to 2 gallons using disposable poly tubing and a stainless steel check valve. All groundwater samples were analyzed for TCL VOCs +10 by USEPA Method 8260C.

#### 2.2.9 Existing Groundwater Monitoring Well Redevelopment

Prior to sampling the existing monitoring wells, D&B completed re-development activities. The existing on-site and select off-site monitoring wells were developed by pumping and surging each well for a minimum of two hours or until the turbidity of the groundwater was reduced to at least 50 nephelometric turbidity units (NTUs). Well development water was also monitored for field parameters, including pH, temperature, specific conductance, turbidity, oxidation reduction potential and dissolved oxygen, using a calibrated Horiba U52 multiparameter water quality meter. Development continued until the field parameters stabilized for a minimum of three consecutive readings of 10 percent variability or less. Well development water was containerized in 55-gallon DOT approved drums and staged on-site for subsequent testing and off-site disposal.

## 2.2.10 Existing Groundwater Monitoring Well Sampling

Groundwater sampling of seven (7) existing on-site and off-site monitoring wells was performed on October 2, 3 and 5, 2018 by D&B. The monitoring wells that were sampled

included on-site wells FCMW-01, FCMW-02, FCMW-03 (see Figure 2-1 on-site) and off-site wells MW-1, MW-3, MW-5 and MW-6 (see Figure 4-4 off-site).

A PID headspace reading in each monitoring well was measured prior to groundwater sample collection. Water level data, well diameter, and well depth was used to calculate the volume of standing water contained within each well. The wells were then purged using low-flow purging techniques. During the well purging process, field measurement of pH, temperature, specific conductivity, dissolved oxygen, oxidation reduction potential and turbidity were recorded using a calibrated Horiba U52 multi-parameter water quality meter with flow through cell. Groundwater samples were analyzed for TCL VOCs +10 by USEPA Method 8260C including 1,4-dioxane by USEPA 8270 SIM. In addition, on October 22, 2018, FCMW-01 and FCMW-03 were analyzed for emerging contaminants, per- and polyfluoroalkyl substances (PFAS) by USEPA Method 537 modified.

Groundwater samples were collected from each well using a bladder pump equipped with disposable tubing and transferred from the tubing on the outlet of the pump directly into clean laboratory-supplied sample bottles after the field parameters stabilized for a minimum of three consecutive readings of 10 percent variability or less. The sample containers were labeled and placed in a cooler with bagged ice sufficient to cool the samples to 4 degrees Celsius and submitted to the laboratory under chain-of-custody procedures for laboratory analysis.

Purge water was containerized for off-site disposal. All non-dedicated sampling equipment (e.g., oil/water interface probe, bladder pump, etc.) was decontaminated prior to and between each sampling location.

#### 2.2.11 Irrigation Well Sampling

D&B sampled the irrigation well on the North Shore Country Club property located approximately 1 mile to the west-northwest of the Site on November 11, 2019. Historical records indicate the irrigation well is designated as N-9800 by Nassau County and is screened from approximately 160 to 200 feet bgs. The irrigation well contained a pump and D&B collected

field data parameters including (pH, temperature, specific conductivity, oxidation reduction potential (ORP), dissolved oxygen and turbidity) from the pump outlet prior to collecting a sample for analysis. The sample was analyzed for TCL VOCs by USEPA Method 8260C.

#### 2.2.12 Cleanout of On-Site Underground Structure

During the geophysical survey performed at the Site an anomaly towards the west side of the Site building was identified. It was determined the anomaly was a manhole that was covered over with asphalt. Following the removal of the asphalt and manhole cover, a sediment sample was collected from the bottom of the structure (SS-13), depicted as the southern structure (see Figure 2-1). Initially, a drill rig was utilized to attempt to drill and collect sediment samples inside the structure using HSA. However, due to encountering refusal, it was determined the structure contained a solid bottom. As an alternative sampling method, a sample was collected by advancing a macrocore liner manually into the sediment. Based on the results of the SS-13 sample analysis, the material within the structure was determined to be hazardous. The clean out was performed by Innovative Recycling, Inc. (IRT). The work was performed by completing a confined space entry where the material was hand dug and removed from the structure into approximately twenty (20) 55-gallon drums totaling approximately 5 cubic yards of material. Once the material was removed, the southern structure was pressure washed and cleaned. An attempt was then made to snake the pipes entering/exiting the structure however, the origin of the pipes could not be determined and additional investigation was required.

During the follow-up investigation, it was noted that the southern structure had partially filled with water. As a result, prior to performing the camera work inside the structure, the liquid was removed utilizing a drum vac and nine (9) 55-gallon drums were generated for subsequent off-site disposal. During the second camera scoping effort, it was determined that the three pipes exiting the southern structure lead to an adjacent structure immediately to the north within the parking area. A second manhole was then uncovered. The structure appeared to have a diameter of approximately 8-feet and was also observed to be filled with water. A sediment and a water sample were collected using a decontaminated poly scoop. Additional work associated with the

structure cleanout was completed under a separate contract and a report of the activities is provided in Appendix D.

#### 2.2.13 Investigation Derived Waste

Excess soil generated during deep soil borings and the groundwater generated during groundwater sampling and redevelopment activities were contained on-site in 55-gallon DOT approved drums for proper off-site disposal. Copy of the waste manifests are provided in Appendix E.

### 2.3 Field Procedures, Analytical Methods and Quality Assurance

All investigation and sampling activities were performed in accordance with D&B's Generic Field Activities Plan (FAP) and Generic Quality Assurance Project Plan (QAPP), which have been approved for use on D&B's Standby Contract for Engineering Services with the NYSDEC. In addition, sampling for PFASs and 1,4-dioxane was completed in accordance with NYSDEC's guidance.

All laboratory analysis was performed in accordance with the latest edition of the NYSDEC Analytical Services Protocol by Test America Laboratories of Buffalo, New York, West Sacramento, California, Knoxville, Tennessee or South Burlington, Vermont. These laboratories are New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratories. Category B deliverables were submitted for the project samples in the required NYSDEC Electronic Data Deliverable format.

Quality control samples included matrix spike and matrix spike duplicates and trip blanks. Matrix spike and matrix spike duplicates were collected at a minimum frequency of one per twenty samples and analyzed for the same parameters as the environmental samples. Trip blanks were supplied with each shipment of sample containers for water samples. In accordance with NYSDEC's guidance, a blind duplicate and equipment blank were also collected during collection of samples for PFASs and 1-4,dioxane.

## 2.4 Health and Safety Program

A Generic Health and Safety Plan (HASP) was prepared in accordance with the requirements of the Occupational Safety and Health Administration (OSHA) for the work on D&B's Standby Contract for Engineering Services with NYSDEC. Per the HASP, an information form was also prepared to provide site-specific health and safety information and provide for worker and community protection. Activities conducted as part of the field investigation were conducted in accordance with the HASP and site-specific information form.

## 2.5 Air Monitoring

Air monitoring for dust and organic vapors was conducted during ground intrusive work. The exclusion zone action levels for dust and VOCs in the breathing zone were not exceeded during the performance of work.

#### 2.6 Data Usability Summary Report

Groundwater samples were submitted to TestAmerica Laboratories of Buffalo, New York for the volatile organic compound analysis and by TestAmerica Laboratories, of West Sacramento, California for the PFASs, a NYSDOH ELAP certified laboratory, for analysis. Soil samples were submitted to TestAmerica Laboratories of Buffalo, New York and the air samples to either TestAmerica Laboratories in Knoxville, Tennessee or South Burlington, Vermont. The laboratories performed the analysis in accordance with the latest edition of the NYSDEC Analytical Services Protocol and provided NYSDEC Category B laboratory deliverables packages. A Data Usability Summary Report was prepared for the packages and is discussed in Section 4.0. Data validation checklists are provided in Appendix G.

## 3.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

The geology and hydrogeology of the study area has been determined from information derived during the previous field investigations, limited information collected during this remedial investigation and from literature sources. The field activities performed during this remedial investigation that provided geological information included three soil borings constructed to just below the water table. The locations of all subsurface data points utilized during the Remedial Investigation are shown on Figure 2-1.

## 3.1 Site Geology

The Site is underlain immediately by the Upper Glacial Aquifer (UGA), a Pleistoceneaged unit consisting of glacial till and outwash deposits. The UGA is composed of mainly poorly to moderately sorted fine to coarse sand and gravel with variable amounts of discontinuous lenses of clay and silt zones. It is estimated that the UGA is approximately 275 feet thick in the vicinity of the site and overlies the Magothy aquifer.

Soil borings completed during the RI, indicate that glacial sediments underlying the site, consists primarily of the following: Brown to Tan, fine to coarse sand with some gravel to a depth of approximately 20 feet below grade (fbg). Alternating strata of Gray to Brown, medium to coarse sand with some gravel was encountered to a depth of approximately 35 fbg. Tan to Brown, medium to fine sand with trace subrounded gravel was noted to a depth of approximately 45 fbgs. A transition to Tan to light Tan well sorted fine sand with trace gravel was observed from 75 fbg to the completion of the sampling at 120 fbg. It should be noted that no clay or confining layers were identified within the three soil borings. The stratigraphy encountered in these borings, in general, is representative of the Upper Glacial Unit described in Section 3.1.4.

## 3.2 Site Hydrogeology

The water table during groundwater sampling conducted in October 2018 was encountered in the study area at depths ranging from 98.40 feet bgs at on-site monitoring well FCMW-2 to 124.72 feet bgs at off-site monitoring well MW-5. The groundwater elevations measured in September 2018 indicated a north-northwesterly direction of groundwater flow see Figure 3-1.

## 4.0 NATURE AND EXTENT OF CONTAMINATION

This section presents the analytical results for the sediment, soil, groundwater and indoor air, sub-slab soil vapor and ambient air samples collected during the RI activities for the Former Fresh and Clean Laundry Site. Summary tables of the analytical results are provided in Appendix F.

#### 4.1 Identification of Standards, Criteria and Guidelines

The sediment, soil and groundwater sample results were compared to standards, criteria and guidelines (SCGs) selected for the Site to determine the significance of the analytical data. Air sample data, including sub-slab soil vapor, soil vapor, indoor air and outdoor ambient air data was compared to the New York State Department of Health (NYSDOH) Air Guidance Values (AGVs) presented in the NYSDOH Vapor Intrusion Guidance Document, NYSDOH's Tetrachloroethene (Perc) in Indoor and Outdoor Air September 2013 Fact Sheet ("NYSDOH Perc Fact Sheet"), and NYSDOH's Trichloroethene (TCE) in Indoor and Outdoor Air August 2015 Fact Sheet ("NYSDOH TCE Fact Sheet") and Matrices A, B, and C of the May 2017 Updates to Soil Vapor / Indoor Air Decision Matrices. The sediment and soil data was compared to the Soil Cleanup Objectives (SCOs) for unrestricted use as defined in NYSDEC 6 NYCRR Part 375. The groundwater data was compared to Class GA groundwater standards and guidance values as defined in the NYSDEC June 1998 Division of Water Technical and Operational Guidance Series (1.1.1) – Ambient Water Quality Standards and Guidance Values.

#### 4.2 Remedial Investigation Results

## 4.2.1 <u>Indoor Air/Sub-Slab Soil Vapor Sampling and Exterior Soil Vapor Sampling</u> <u>Results</u>

As part of the RI, twenty-three air samples were collected including: two sub-slab soil vapor samples (SSDB-1 and SSDB-2), two indoor air samples (IADB-1 and IADB-2), and one outdoor ambient air samples (OADB-1) on March 14, 2018; four exterior soil vapor samples (FCSV-01 through FCSV-04) were collected on May 7, 2018; two sub-slab soil vapor samples

(SSDB-1 and SSDB-2), four indoor air samples (IADB-1, IADB-2, IADB-3 and IADB-4) and one outdoor ambient air samples (OADB-1) on February 28, 2019; and, two sub-slab soil vapor samples (SSDB-1 and SSDB-2), four indoor air samples (IADB-1, IADB-2, IADB-3 and IADB-4) and one outdoor ambient air samples (OADB-1) on January 26, 2021. Sub-slab soil vapor, indoor air, ambient air and exterior soil vapor samples were analyzed for VOCs by USEPA Method TO-15. A summary of detected VOCs concentrations in the sub-slab soil vapor, indoor air, ambient air and exterior soil vapor air samples are provided in Tables 4-1 through 4-3 below and depicted on Figure 4-1. VOC concentrations that exceeded the NYSDOH Air Decision Matrices have been denoted on the tables and figures. For exterior soil vapor samples, it should be noted that the NYSDOH Air Decision Matrices are not applicable. Analytical data tables are provided in Appendix F.

Several VOCs were detected in indoor air, sub-slab and exterior soil vapor and outdoor air samples. VOCs that were detected at concentrations significantly higher than other VOC detections included: 1,2-dichloroethene (total), cis-1,2-dichloroethene (cis-1,2-DCE), tetrachloroethene (PCE) and trichloroethene (TCE).

Cis-1,2-DCE, PCE and TCE were detected within the sub-slab soil vapor samples at multiple orders of magnitude higher than their concentrations in outdoor ambient and indoor air samples. The highest concentrations of cis-1,2-DCE, PCE and TCE were detected in sub-slab soil vapor sample location SSDB-2 at concentrations of 2,900 ug/m<sup>3</sup>, 74,000 ug/m<sup>3</sup> and 5,400 ug/m<sup>3</sup>, respectively. Indoor air and sub-slab soil vapor samples were compared to the decision matrices provided by the NYSDOH. Cis-1,2-DCE, PCE and TCE were detected at concentrations within the sub-slab soil vapor samples and co-located indoor air samples for which the NYSDOH Decision Matrices would recommend mitigation. No other VOC compounds from NYSDOH Soil Vapor/Indoor Air Matrices A through C were detected at concentrations that would require monitoring or mitigation. Cis-1,2-DCE, PCE and TCE were also detected within the exterior soil vapor samples at elevated concentrations.

## Table 4-1

## Former Fresh and Clean Laundry Site VOC Detections in Exterior Soil Vapor, Sub-Slab Soil Vapor, Indoor Air and Outdoor **Ambient Air Samples**

| Sample Location            | IADB-1            | IADB-2            | OADB-1            | SSDB-1     | SSDB-2            | FCSV-01           | FCSV-02           | FCSV-03  | FCSV-04           |
|----------------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|----------|-------------------|
| Date                       | 3/14/18           | 3/14/18           | 3/14/18           | 3/14/18    | 3/14/18           | 5/7/18            | 5/7/18            | 5/7/18   | 5/7/18            |
| Sample Type                | Indoor            | Indoor            | Outdoor           | Sub-Slab   | Sub-Slab          | Exterior          | Exterior          | Exterior | Exterior          |
|                            | Air               | Air               | Ambient           | Soil Vapor | Soil Vapor        | Soil              | Soil              | Soil     | Soil              |
|                            |                   |                   | Air               |            | -                 | Vapor             | Vapor             | Vapor    | Vapor             |
| Units                      | ug/m <sup>3</sup> | ug/m <sup>3</sup> | ug/m <sup>3</sup> | ug/m³      | ug/m <sup>3</sup> | ug/m <sup>3</sup> | ug/m <sup>3</sup> | ug/m³    | ug/m <sup>3</sup> |
| 1,1-Dichloroethene         | U                 | U                 | U                 | U          | U                 | U                 | U                 | 1.7      | U                 |
| 1,2,4-Trimethylbenzene     | U                 | U                 | U                 | U          | U                 | 70                | 18 J              | U        | U                 |
| 1,2-Dichloroethene (total) | 62                | 62                | U                 | 580        | 3,100             | 530               | 450               | 690      | 100 J             |
| 1,3,5-Trimethylbenzene     | U                 | U                 | U                 | U          | U                 | 20 J              | U                 | U        | U                 |
| 1,3-Butadiene              | U                 | U                 | U                 | U          | U                 | U                 | 4.3 J             | 15       | 30 J              |
| 2,2,4-Trimethylpentane     | U                 | U                 | 0.41 J            | U          | U                 | 59                | U                 | U        | U                 |
| 4-Ethyltoluene             | U                 | U                 | U                 | U          | U                 | 26 J              | U                 | U        | U                 |
| Acetone                    | U                 | 18 J              | 5.5 J             | U          | U                 | U                 | U                 | U        | U                 |
| Benzene                    | 0.75 J            | 0.76 J            | 0.87              | U          | U                 | 22 J              | U                 | 4.0 J    | U                 |
| Carbon Disulfide           | U                 | 4.8 J             | U                 | U          | U                 | U                 | U                 | U        | U                 |
| Carbon Tetrachloride       | U                 | 0.43 J            | 0.45              | U          | U                 | U                 | U                 | U        | U                 |
| Chloromethane              | U                 | 1.3 J             | 1.0 J             | U          | U                 | U                 | U                 | U        | U                 |
| Cis-1,2-Dichloroethene     | 59                | 59                | U                 | 540        | 2,900             | 500               | 430               | 690      | 100               |
| Cyclohexane                | U                 | U                 | 0.25 J            | U          | U                 | 45                | U                 | U        | U                 |
| Dichlorodifluoromethane    | 2.3 J             | 3.0 J             | 2.1 J             | U          | U                 | U                 | U                 | U        | U                 |
| Ethylbenzene               | U                 | U                 | 0.29 J            | U          | U                 | 110               | 12 J              | U        | U                 |
| Freon 22                   | U                 | U                 | 0.91 J            | U          | U                 | U                 | U                 | U        | U                 |
| Freon TF                   | U                 | U                 | 0.53 J            | U          | U                 | U                 | U                 | U        | U                 |
| Isopropyl alcohol          | 1.4 J             | 3.5 J             | U                 | U          | U                 | U                 | U                 | U        | U                 |
| M,P-Xylene                 | U                 | U                 | 0.89 J            | U          | U                 | 380               | 41 J              | U        | 63 J              |
| Methyl Ethyl Ketone        | U                 | 1.7 J             | 0.60 J            | U          | U                 | U                 | U                 | U        | U                 |
| Methylene Chloride         | 1.2 J             | 1.3 J             | 0.63 J            | U          | U                 | U                 | U                 | U        | U                 |
| N-Butane                   | 7.8               | 10                | 7.9               | U          | U                 | 180               | 21 J              | 71       | 160               |
| N-Heptane                  | U                 | U                 | 0.36 J            | U          | U                 | 80                | U                 | U        | U                 |
| N-Hexane                   | U                 | U                 | 0.74              | U          | U                 | 110               | U                 | 9.2      | U                 |
| N-Propylbenzene            | U                 | U                 | U                 | U          | U                 | 17 J              | U                 | U        | U                 |
| Tetrachloroethene          | 600               | 640               | 1.2 J             | 15,000     | 74,000            | 5,500             | 2,400             | 790      | 12,000            |
| Toluene                    | 1.5               | 1.7               | 1.8               | U          | U                 | 190               | 25                | 2.5 J    | 24 J              |
| Trans-1,2-Dichloroethene   | 2.6               | 3.0               | U                 | 35         | 240 J             | 17 J              | 18                | 19       | U                 |
| Trichloroethene            | 50                | 61                | U                 | 740        | 5,400             | 420               | 330               | 97       | 500               |
| Trichlorofluoromethane     | 1.1               | 1.5 J             | 1.2               | U          | U                 | U                 | U                 | U        | U                 |
| Vinyl Chloride             | 0.56              | 0.75              | U                 | U          | U                 | U                 | U                 | 9.0      | U                 |
| Xylene-O                   | U                 | U                 | 0.28 J            | U          | U                 | 120               | 14 J              | U        | U                 |
| Xylene (total)             | U                 | U                 | 1.2 J             | U          | U                 | 500               | 55 J              | U        | 65 J              |

Notes:

ug/m<sup>3</sup>: micrograms per cubic meter U: Analyzed but not detected

J: Estimated Value BOLD: Exceeds NYSDOH Soil Vapor/Indoor Air Matrices A through C and/or AGVs

## Table 4-1 (continued)

## Former Fresh and Clean Laundry Site

#### VOC Detections in Exterior Soil Vapor, Sub-Slab Soil Vapor, Indoor Air and Outdoor **Ambient Air Samples**

| Ambient Air Samples       |                   |         |                   |                   |                   |                   |                   |  |  |
|---------------------------|-------------------|---------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
| Sample Location           | IADB-1            | IADB-2  | IADB-3            | IADB-4            | OADB-1            | SSDB-1            | SSDB-2            |  |  |
| Date                      | 2/28/19           | 2/28/19 | 2/28/19           | 2/28/19           | 2/28/19           | 2/28/19           | 2/28/19           |  |  |
| Sample Type               | Indoor            | Indoor  | Indoor            | Indoor            | Outdoor           | Sub-slab          | Sub-slab          |  |  |
|                           | Air               | Air     | Air               | Air               | Ambient           | Soil              | Soil              |  |  |
|                           |                   |         |                   |                   | Air               | Vapor             | Vapor             |  |  |
| Units                     | ug/m <sup>3</sup> | ug/m³   | ug/m <sup>3</sup> |  |  |
| 1,1,1-Trichloroethane     | 0.25 J            | 0.24 J  | 0.18 J            | U                 | U                 | U                 | U                 |  |  |
| 1,1,2-Trichloro-1,2,2-    | 0.53 J            | 0.51 J  | 0.51 J            | 0.58 J            | 0.5 J             | U                 | U                 |  |  |
| Trifluoroethane           |                   |         |                   |                   |                   |                   |                   |  |  |
| 1,2-Dichloroethane        | 0.3 J             | 0.22 J  | U                 | U                 | U                 | U                 | U                 |  |  |
| 1,4-Dichlorobenzene       | U                 | U       | 8.9               | 3.2               | U                 | U                 | U                 |  |  |
| 2,2,4-Trimethylpentane    | 0.32 J            | 0.28 J  | 0.27 J            | 0.28 J            | 0.21 J            | U                 | U                 |  |  |
| 2-Hexanone                | U                 | U       | 0.47 J            | U                 | U                 | U                 | U                 |  |  |
| Acetone                   | 15 J              | 23 J    | 30 J              | 24                | 5.3 J             | U                 | U                 |  |  |
| Benzene                   | 0.77              | 0.67    | 0.68              | 0.68              | 0.54 J            | U                 | U                 |  |  |
| Butane                    | 4.5               | 5       | 3.2               | 3                 | 1.9 J             | U                 | U                 |  |  |
| Carbon Disulfide          | 0.13 J            | 0.15 J  | 0.36 J            | 0.61 J            | 0.11 J            | U                 | U                 |  |  |
| Carbon Tetrachloride      | 0.28 J            | 0.43 J  | 0.44 J            | 0.44 J            | 0.38 J            | U                 | U                 |  |  |
| Chlorodifluoromethane     | 1                 | 1.1     | U                 | 45                | 1                 | U                 | U                 |  |  |
| Chloromethane             | 1.6 J             | 1.2 J   | 1.3 J             | 1.5 J             | 1.4 J             | U                 | U                 |  |  |
| Cis-1,2-Dichloroethylene  | 12                | 10      | 5.2               | 4.5               | U                 | 630               | 650               |  |  |
| Cyclohexane               | 0.2 J             | 0.15 J  | 0.19 J            | 0.2 J             | U                 | U                 | U                 |  |  |
| Dichlorodifluoromethane   | 2.6               | 2.5     | 2.4               | 2.5               | 2.5               | U                 | U                 |  |  |
| Ethylbenzene              | 0.31 J            | 0.33 J  | U                 | U                 | U                 | U                 | U                 |  |  |
| Isopropyl alcohol         | 4.1               | 3.7     | 4                 | 5.1               | 2.3 J             | U                 | U                 |  |  |
| M,P-Xylenes               | 0.91              | 1.1     | 0.84 J            | 0.63 J            | U                 | U                 | U                 |  |  |
| Methyl Ethyl Ketone (2-   | 1.3 J             | 2.1 J   | 3.2               | 1.7 J             | 0.79 J            | U                 | U                 |  |  |
| Butanone)                 |                   |         |                   |                   |                   |                   |                   |  |  |
| Methylene Chloride        | 1.7 J             | 1.5 J   | 1.4 J             | 1.9 J             | 1.3 J             | U                 | U                 |  |  |
| N-Heptane                 | 0.31 J            | 0.32 J  | 0.39 J            | 0.35 J            | 0.19 J            | U                 | U                 |  |  |
| N-Hexane                  | 0.56 J            | 0.56 J  | 0.48 J            | 0.64 J            | 0.38 J            | U                 | U                 |  |  |
| O-Xylene(1,2              | 0.31 J            | 0.35 J  | 0.34 J            | U                 | U                 | U                 | U                 |  |  |
| Dimethylbenzene)          | L                 |         |                   |                   |                   |                   |                   |  |  |
| Styrene                   | U                 | U       | U                 | U                 | U                 | 58 J              | U                 |  |  |
| Tert-Butyl Alcohol        | 0.17 J            | 0.28 J  | 1.1 J             | 0.29 J            | U                 | U                 | U                 |  |  |
| Tetrachloroethylene (PCE) | 140               | 130     | 63                | 50                | 1.1 J             | 20,000            | 18,000            |  |  |
| Tetrahydrofuran           | U                 | 0.2 J   | U                 | U                 | U                 | U                 | U                 |  |  |
| Toluene                   | 2 J               | 2.3 J   | 1.5 J             | 1.3 J             | 0.58 J            | U                 | U                 |  |  |
| Trans-1,2-Dichloroethene  | 0.33 J            | 0.3 J   | U                 | U                 | U                 | U                 | 30                |  |  |
| Trichloroethylene (TCE)   | 7.5               | 7       | 3.7               | 2.9               | U                 | 930               | 970               |  |  |
| Trichlorofluoromethane    | 1.2               | 1.2     | 1.2               | 1.2               | 1.2               | U                 | U                 |  |  |
| Xylenes, Total            | 1.2 J             | 1.5 J   | 1.2 J             | 0.63 J            | U                 | U                 | U                 |  |  |

Notes:

Ug/m<sup>3</sup>: micrograms per cubic meter U: Analyzed but not detected

J: Estimated Value

BOLD: Exceeds NYSDOH Soil Vapor/Indoor Air Matrices A through C and/or AGVs

## Table 4-1 (continued)

## Former Fresh and Clean Laundry Site VOC Detections in Indoor Air, Outdoor Ambient Air and Sub-Slab Soil Vapor Samples

| Sample Location            | IADB-1            | IADB-2            | IADB-3            | IADB-4            | OADB-1            | SSDB-1     | SSDB-2            |
|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|
| Date                       | 1/26/21           | 1/26/21           | 1/26/21           | 1/26/21           | 1/26/21           | 1/26/21    | 1/26/21           |
| Sample Type                | Indoor            | Indoor            | Indoor            | Indoor            | Outdoor           | Sub Slab   | Sub Slab          |
|                            | Air               | Air               | Air               | Air               | Ambient           | Soil Vapor | Soil Vapor        |
|                            |                   |                   |                   |                   | Air               |            |                   |
| Units                      | ug/m <sup>3</sup> | ug/m³      | ug/m <sup>3</sup> |
| 1,1,1-Trichloroethane      | 0.42 J            | 0.23 J            | 0.2 J             | U                 | U                 | U          | U                 |
| 1,1,2-Trichloro-1,2,2-     | U                 | U                 | U                 | U                 | 0.63 J            | U          | U                 |
| Trifluoroethane            |                   |                   |                   |                   |                   |            |                   |
| 1,2,4-Trimethylbenzene     | 0.38 J            | 0.44 J            | 0.24 J            | 0.22 J            | U                 | U          | U                 |
| Acetone                    | 18                | 28                | 17                | 17                | 4 J               | 390        | U                 |
| Benzene                    | 0.53 J            | 1.5 J             | 0.69              | 0.53 J            | 0.48 J            | 8.3 J      | U                 |
| Butane                     | 5.7               | 18 J              | 3.9               | 3.1               | 1.8               | 7.6 J      | U                 |
| Carbon Disulfide           | U                 | U                 | U                 | 0.36 J            | U                 | 5.7 J      | U                 |
| Carbon Tetrachloride       | 0.4               | 0.5               | 0.35              | 0.37              | 0.39              | U          | U                 |
| Chlorodifluoromethane      | 1.2 J             | 1.8               | 1.2 J             | 1.5 J             | 1                 | U          | U                 |
| Chloroform                 | U                 | U                 | U                 | U                 | U                 | 5.7 J      | U                 |
| Chloromethane              | 1.6               | 1.6               | 1.5               | 1.5               | 1.2               | U          | U                 |
| Cis-1,2-Dichloroethylene   | 8.6               | 4.6               | 2.6               | 2.2               | U                 | 640        | 1,500             |
| Cyclohexane                | U                 | 0.72              | U                 | U                 | U                 | U          | U                 |
| Cymene                     | U                 | U                 | U                 | U                 | 0.38 J            | U          | U                 |
| Dichlorodifluoromethane    | 2.8               | 2.8               | 2.9               | 2.8               | 2.4 J             | U          | U                 |
| Ethylbenzene               | U                 | U                 | U                 | U                 | 0.34 J            | 6.6 J      | U                 |
| Isopropyl alcohol          | 8.3 J             | 30 J              | 5.2 J             | 3 J               | U                 | 43 J       | U                 |
| M,P-Xylenes                | 2 J               | 2.6               | 1.5 J             | 1 J               | U                 | U          | U                 |
| Methyl Ethyl Ketone        | 1.3 J             | 1.7               | 1.3 J             | 0.98 J            | U                 | 100        | U                 |
| Methyl Isobutyl Ketone (4- | 0.39 J            | U                 | U                 | U                 | U                 | U          | U                 |
| Methyl-2-Pentanone)        |                   |                   |                   |                   |                   |            |                   |
| Methylene Chloride         | U                 | 1.2 J             | U                 | U                 | U                 | U          | U                 |
| Naphthalene                | U                 | U                 | U                 | U                 | 1.5 J             | U          | U                 |
| N-Heptane                  | 0.51 J            | U                 | 0.35 J            | 0.26 J            | U                 | U          | U                 |
| O-Xylene (1,2-             | U                 | U                 | U                 | U                 | 0.61 J            | U          | U                 |
| Dimethylbenzene)           |                   |                   |                   |                   |                   |            |                   |
| Styrene                    | U                 | U                 | U                 | U                 | U                 | 7.5 J      | U                 |
| Tert-Butyl Alcohol         | U                 | 0.51 J            | 0.35 J            | 0.57 J            | U                 | U          | U                 |
| Tetrachloroethylene (PCE)  | 280               | 110 J             | 62                | 44                | U                 | 26,000 D   | 49,000 D          |
| Toluene                    | 1.6               | 4 J               | 1.7               | 1.1               | 1.1               | U          | U                 |
| Trans-1,2-Dichloroethene   | 0.78 J            | U                 | U                 | U                 | U                 | 36         | 160               |
| Trichloroethylene (TCE)    | 17                | 7.4               | 3.7               | 2.7               | U                 | 1,100      | 3,600             |
| Trichlorofluoromethane     | 1.5               | 1.8               | 1.4               | 1.5               | 1.1               | Ú          | Ú                 |
| Xylenes, Total             | 2 J               | 2.6               | 1.5 J             | 1 J               | 0.61 J            | U          | U                 |
|                            | •                 | •                 | •                 |                   | •                 | •          | •                 |

#### 4.2.2 Soil/Sediment Sampling Results

Soil/sediment samples were collected from fourteen locations (SS-01, SS-02, SS-05 through SS-16). All samples were analyzed for TCL VOCs+10. The soil and sediment sample results were compared to NYCRR 6 Part 375 Unrestricted Use SCOs. Compounds that were detected exceeding SCOs in soil and sediment samples above the SCOs are summarized in Table 4-2 below. Figure 4-2 summarizes exceedances of SCGs in soil/sediment samples. Analytical data tables are provided in Appendix F.

#### Table 4-2

| Sample Location<br>Date | SS-02<br>5/7/18 | SS-05<br>5/7/18 | SS-09<br>5/9/18 | SS-13<br>8/3/20 | SS-15<br>2/28/20 | SS-16<br>2/28/20 | NYCRR 6 Part<br>375                          |
|-------------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|----------------------------------------------|
| Sample Type             | Sediment        | Sediment        | Sediment        | Sediment        | Sediment         | Sediment         | Unrestricted<br>Use Soil<br>Cleanup<br>(SCO) |
| Units                   | mg/kg           | mg/kg           | mg/kg           | mg/kg           | mg/kg            | mg/kg            | mg/kg                                        |
| 2-Butanone (MEK)        | <u>1.0 J</u>    | UJ              | 0.049 J         | U               | UJ               | UJ               | 0.12                                         |
| Acetone                 | <u>3.7 J</u>    | UBJ             | <u>0.180 J</u>  | U               | UJ               | <u>0.130 J</u>   | 0.05                                         |
| Cis-1,2-Dichloroethene  | U               | 0.0087          | UJ              | <u>69.0 J</u>   | UJ               | UJ               | 0.25                                         |
|                         | 0.020           | 3.7 D           | UJ              | 7,500           | 3.7              | 0.0066           | 1.3                                          |
| Tetrachloroethene       | 0.039           | <u>3.7 D</u>    | 05              | 7,500           | 0.7              | 0.0000           | 1.5                                          |

## Former Fresh and Clean Laundry Site VOC Detections in Soil/Sediment Samples

mg/kg: milligrams per kilogram U: Analyzed but not detected B: Non-detected based on blank results D: Reported from secondary dilution J: Estimated Value Exceeds Unrestricted Use SCO

As shown above, 2-butanone (MEK) was detected exceeding Unrestricted Use SCOs in sediment sample SS-02 at a concentration of 1.0 mg/kg. Acetone was detected exceeding Unrestricted Use SCO in two soil/sediment samples SS-02 and SS-09 at concentrations of 3.7 mg/kg and 0.18 mg/kg, respectively. Note that acetone and MEK are both known laboratory contaminants. Additionally, PCE was detected exceeding its Unrestricted Use SCO in sediment sample SS-05 at a concentration of 3.7 mg/kg. PCE was also detected in the sample collected from the underground structure on the west side of the Site building indicated the presence of cis-1,2-DCE at 69 mg/kg and PCE at 7,500 mg/kg. These results indicated that there was

hazardous material present within the structure that prompted the removal of the hazardous material out of the structure.

#### 4.2.3 Shallow Soil Borings Sample Results

Soil borings samples were collected from seven locations (SB-05 through SB-08 and SB-10 through SB-12). The subsurface soil samples were analyzed for TCL VOCs+10. The subsurface sample results were compared to NYCRR 6 Part 375 Unrestricted Use SCOs. No compounds exceeded their respective SCOs. Analytical data tables are provided in Appendix F.

#### 4.2.4 <u>Deep Soil Borings Sample Results</u>

Subsurface soil samples were collected from three exterior soil boring locations (SB-17, SB-18 and SB-19). Subsurface soil samples were analyzed for TCL VOCs +10. The subsurface soil results were compared to NYCRR 6 Part 375 Unrestricted Use SCOs. No compounds that were detected exceeded the SCOs. Analytical data tables are provided in Appendix F.

#### 4.2.5 Groundwater Sample Results

Groundwater samples were collected from seven existing monitoring wells (FCMW-1, FCMW-2, FCMW-3, MW-1, MW-3, MW-5 and MW-6). In addition, three discrete-depth groundwater samples were collected from temporary groundwater probe locations (GW-1, GW-2 and GW-3). All groundwater samples collected were analyzed for TCL VOCs +10. Additionally, on-site wells, FCMW-1 and FCMW-3 were analyzed for per- and polyfluoroalkyl substances (PFAS). The groundwater data was compared to Class GA groundwater standards and guidance values and NYSDEC guidance of "Maximum Contaminated Level (MCLs) and Screening Level" for PFOA, PFOS and PFAS. Compounds detected in the existing groundwater monitoring wells above SCGs are summarized in Table 4-3 below. Figures 4-3 and 4-4 summarize the exceedances of NYSDEC Class GA groundwater standards/guidance values and the NYSDOH drinking water standards for PFOA in groundwater. Analytical data tables are provided in Appendix F.

#### Table 4-3

## Former Fresh and Clean Laundry Site VOC and PFOA Exceedances in Groundwater

| Sample Location Date             | FCMW-1<br>10/5/18 | FCMW-2<br>10/2/18 | FCMW-<br>3<br>10/5/18 | MW-1<br>10/3/18 | MW-3<br>10/3/18 | MW-5<br>10/5/18 | GW-01<br>7/28/20 | GW-02<br>7/30/20 | GW-03<br>8/5/20 | NYSDEC<br>Class GA<br>Standard<br>or |
|----------------------------------|-------------------|-------------------|-----------------------|-----------------|-----------------|-----------------|------------------|------------------|-----------------|--------------------------------------|
|                                  |                   |                   |                       |                 |                 |                 |                  |                  |                 | Guidance<br>Value or<br>MCL          |
| Tetrachloroethylene<br>(PCE)     | <u>12</u>         | <u>7.4</u>        | <u>30</u>             | <u>85</u>       | <u>28</u>       | <u>55</u>       | <u>20 J</u>      | <u>85</u>        | <u>8.2</u>      | 5                                    |
| Trichloroethene<br>(TCE)         | U                 | U                 | 0.89J                 | 3.7             | 0.56J           | U               | 1.1              | <u>5.2</u>       | U               | 5                                    |
| Perfluorooctanoic<br>acid (PFOA) | <u>27</u>         | NA                | <u>20</u>             | NA              | NA              | NA              | NA               | NA               | NA              | 10                                   |

Notes:

ug/l: micrograms per liter for PCE ng/l: nanograms for liter PFOA

NA: Not analyzed

Exceeds Class GA Standard/Guidance Value/NYSDEC Maximum Contaminant Levels (MCLs) and Screening Levels

As shown above, PCE was detected in six of the seven samples collected from the groundwater monitoring wells above the NYSDEC Class GA groundwater standard of 5 ug/l ranging from 7.4 ug/l detected in on-site well FCMW-2 to 85 ug/l detected in off-site well MW-1. Other VOCs were either detected below their respective Class GA groundwater standard or guidance value or were non-detect.

PFOA was detected in both on-site groundwater samples FCMW-1 (27 ng/l) and FCMW-3 (20 ng/l) slightly above the NYSDEC standard of 10 ng/l.

As shown above, PCE was detected in all three of the discrete-depth groundwater samples above the NYSDEC Class GA groundwater standard of 5 ug/l ranging from 8.2 ug/l detected in GW-3 to 85 ug/l detected in GW-2. Additionally, TCE was detected slightly above its NYSDEC Class GA Standard of 5 ug/l in GW-2 at 5.2 ug/l.

#### 4.2.6 Irrigation Well Sampling Results

A groundwater sample was collected from the irrigation well (N-9800) located at the North Shore Country Club approximately 1 mile to the west-northwest. The irrigation well was sampled for TCL VOCs +10. All VOCs were non-detect. Analytical data tables are provided in Appendix F.

#### 4.3 Data Usability Summary Report

A total of 13 groundwater samples, 30 soil/sediment samples, 23 soil vapor samples, two field duplicate, six trip blanks and six field blanks were collected for analysis as part of the remedial investigation completed at the Former Fresh and Clean Laundry Site between March 2018 and January 2021. Groundwater and soil/sediment samples were submitted to TestAmerica Laboratories, located in Buffalo, New York for analysis of VOCs by USEPA Method SW846 8620C and 1,4-Dioxane by USEPA Method 8270D SIM. In addition, two groundwater water samples were also submitted to TestAmerica Laboratories, Inc. located in West Sacramento, California for analysis of Per- and Polyfluoroalkyl Substances (PFAs) by USEPA method 537. Indoor air, sub-slab, ambient and soil vapor samples were submitted to TestAmerica Laboratories located in Knoxville, Tennessee and South Burlington, Vermont for analysis of VOCs by USEPA Method TO-15.

TestAmerica Laboratories of Buffalo, New York provided 13 NYSDEC Analytical Services Protocol (ASP) Category B Sample Deliverable Group (SDG) laboratory packages (480-135583, 480-135770, 480-142938, 480-143017, 480-163422, 480-165592, 480-166872, 480-173121, 480-173124, 480-173185, 480-173191, 480-173359, and 480-173515) for review. TestAmerica Laboratories of Knoxville, Tennessee provided one NYSDEC ASP Category B SDG laboratory package, 140-14470, for review. TestAmerica Laboratories of South Burlington, Vermont provided three NYSDEC ASP Category B SDG laboratory packages (200-42649, 200-43364, and 200-57029) for review. TestAmerica Laboratories of Sacramento, California provided one NYSDEC ASP Category B SDG laboratory package, 320-44490, for review. These data packages were reviewed by Ms. Donna Brown, D&B's Quality Assurance/Quality Control (QA/QC) Officer. Ms. Brown meets the New York State Department of Environmental Conservation (NYSDEC) requirements of a data validator as listed in the DER-10 Technical Guidance for Site Investigation and Remediation, dated June 2010. The review of the data was conducted in accordance with NYSDEC 7/05 ASP QA/QC requirements, as well as DER-10.

All samples were analyzed using the proper methods and within the method-specified holding times, in accordance with the 2005 NYSDEC ASP. The internal standard area counts, and spike recoveries were within QC limits except where noted below. Initial and continuing calibrations were analyzed at the method specified frequency and were within QC limits. Raw data confirmed the reported sample results. The following sample results were qualified based on validation of the data:

- Perfluorooctanesulfonic acid (PFOS) was detected in the method blank and was reanalyzed outside of holding time for all water samples. The reanalysis for perfluorooctanesulfonic acid (PFOS) was reported for all water samples and was qualified as estimated (J) in data package 320-44490.
- Perfluorohexanesulfonic acid (PFHxS) was detected in the field blank and method blank. The concentration of perfluorohexanesulfonic acid (PFHxS) in the groundwater samples were over ten times higher than the concentration found in the blank therefore the B qualifier was removed, and the water samples were qualified as estimated (J) in data package 320-44490.
- 1,4-Dioxane in sample FCMW-2 was qualified by the laboratory with an "E" for a bias corrected concentration based on the recovery of the 1,4-Dioxane-d8 isotope. Based upon review of the data 1,4-dioxane was qualified as estimated (J) in sample FCMW-2.
- The following samples VOCs were outside of holding time and were qualified as estimated (J/UJ): samples SB-17 (23'-25'), SB-17 (105'-107'), SB-18 (11'-13'), SB-19 (7'-8'), SB-19 (110'-112'), and all results except SS-12 (0-6") in data package 480-135770.
- Trichloroethene was detected in the method blank, the laboratory "B" qualifier was removed from samples IADB-1, IADB-2, and SSDB-1 based on sample concentrations.
- Isopropyl alcohol was detected in the method blank and qualified as non-detect (UB) in sample OADB-1 in data package 200-42649.

- Acetone was detected in the field blank or trip blank and was qualified as non-detect (UB) in samples FCMW-3, GW-19 (113'-118'), SS-05 (0"-6"), SS-06 (0"-6"), SS-06 (12"-14"), SS-06 (22"-24"), SS-07 (9"-11"), SS-07 (6"-8"), SS-08 (0"-6"), SB-08 (1'-3'), SB-08 (10'-12'), SS-10 (0"-6"), SB-11 (10'-12'), SB-10 (5'-7'), SS-12 (0"-6") and SB-12 (10'-12').
- N-butylbenzene, ethylbenzene,o-xylene, ethylbenzene and o-xylene were detected in the method blanks and were qualified as non-detect (UB) in samples IADB-1, IADB-2, IADB-3, IADB-4, Blind Duplicate in data package 200-57029.
- The percent recovery (%R) for tetrachloroethane was above the QC limit in the matrix spike (MS) and MS duplicate (MSD) and was qualified as estimated (J) in sample GW-1.
- The %Rs were below the QC limit for 2-butanone and acetone in the MS and MSD associated with all samples and were qualified as estimated (J/UJ) in data package 480-135583.
- The %Rs were below the QC limits in the MS and/or MSD for all compounds except 1,1-dichloroethane, 1,1-dichloroethene, bromomethane, carbon disulfide, methyl acetate, methyl tert-butyl ether, methylene chloride and tetrachloroethene. The RPDs were above the QC limits for several compounds in the MS/MSD. The %R was below the QC limit for chloroethane in the LCS associated sample SS-16 (0'-1'). All compounds were qualified as estimated (J/UJ) except 1,1-dichloroethane, 1,1-dichloroethene, bromomethane and carbon disulfide, methyl acetate, methyl tert-butyl ether, methylene chloride and tetrachloroethene in all samples in data package 480-166872.
- The %Rs were below the QC limits for 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2,4-trichlorobenzene, 1,2-dibromoethane, 1,2-dichlorobenzene, 2-butanone, cis-1,3-dichloropropene, ethylbenzene and styrene in the MS and/or MSD. They were qualified as an estimated detection limit (UJ) in samples SB-17 (23'-25') and SB-17 (105'-107').
- The area was above the QC limit for the internal standard 1,4-dichlorobenzene-d4 in samples SS-01 (0-6") and SS-02 (0-6"); and chlorobenzene-d5 in sample SS-02 (0-6"). The following compounds were qualified as estimated bias high (JH) or an estimated detection limit (UJ): 1,2-dibromo-3-chloropropane, 1,4-dichlorobenzene, 1,2-dichlorobenzene in samples SS-01 (0-6") and SS-02 (0-6"); and 1,1,2,2-tetrachloroethane, 1,3-dichlorobenzene, bromoform, chlorobenzene, ethylbenzene, isopropylbenzene, styrene and total xylene in sample SS-02 (0-6").
- Tetrachloroethene exceeded the calibration range in original analysis for samples SS-05 (0-6"), SSDB-1, and SSDB-2. It was reanalyzed and reported from the secondary dilution (D).

• Sample IADB-2 was field duplicated and labeled BLIND DUPLICATE\_1/26/21. The following compounds were qualified as estimated (J) in samples IADB-2 and BLIND DUPLICATE\_1/26/21: benzene, butane, isopropanol, tetrachloroethylene (PCE) and toluene.

Based on the findings of the data validation process, the results have been deemed valid and usable for environmental assessment purposes as qualified above. Copies of the data validation checklists are provided in Appendix G.

## 5.0 QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT

The purpose of this qualitative exposure assessment is to determine: 1) the degree to which on-site contamination poses a threat to human health; 2) the conditions under which the contamination poses the threat; and, 3) the extent of remediation required because of the threat. To determine the degree of exposure and the associated need for remediation, the likelihood of human exposure pathways being completed was evaluated. The findings of this assessment, together with the investigation activities contained in Section 2.0 and the conclusions provided in Section 6.0, will form the basis for determining the need for remediation of the Site.

Exposure to contaminants occurs when an exposure pathway is complete. An exposure pathway has five elements: 1) a contaminant source (e.g., waste disposal area or point of discharge); 2) contaminant release and transport mechanism; 3) a point of exposure (a location where human contact with the medium takes place); 4) a route of exposure (i.e., ingestion, inhalation, or dermal absorption); and 5) a receptor population. An exposure pathway is said to be complete when each of the five elements is present. If one or more of the elements is absent, the pathway is said to be potentially complete. An exposure pathway may be eliminated from consideration if any one of the five elements has not existed in the past, does not exist in the present, and will never exist in the future.

The following sections address each of the five elements of the potential exposure pathways. The first and last elements (contaminant source and receptor population) are discussed in Sections 5.1 and 5.2. The remaining elements of the exposure pathway are discussed in Sections 5.3 through 5.6 in relation to each contaminant medium investigated. Section 5.7 provides conclusions of the exposure assessment.

## 5.1 Contaminant Source

Prior investigations identified several contaminant source areas at the Site. These areas included several on-site dry wells located on the eastern side of the Site building that were remediated. Investigation activities performed during the RI, identified a northern and southern

underground structure west of the Site building that contained heavily impacted material and is likely a source of on-site contamination. Contaminants associated with dry cleaning activities were released from the drainage system and contaminated soil vapor, soil, sediment and groundwater at the Site. Elevated levels of VOCs, primarily PCE were found in shallow soil and sediment samples, PCE and TCE in groundwater and cis-1,2-DCE, PCE and TCE in indoor air, exterior soil vapor and sub-slab soil vapor samples.

The results of this remedial investigation indicate that VOCs are present at concentrations above SCGs in soil/sediment, groundwater, soil vapor and indoor air at the Site.

## 5.2 Receptor Population

The Site is currently occupied and is located in a medium-density commercial/residential area. The property is bounded to the north by School Street followed by commercial properties, to the south by commercial properties, to the west by a large parking area and Long Island Railroad Glen Head Station and to the east by property owned by the North Shore School District. Residential properties are located further west beyond the train tracks, northeast of the Site and south beyond the adjoining commercial properties. The Site and surrounding area are served by public water, the nearest public water supply well is approximately 500 feet north of the Site and is operated by New York American Water. The Site is privately owned, with the basement being currently occupied by a consignment shop and the first floor occupied by an educational tutor service. Potential human receptors at the Site include employees that work within the building, customers of those businesses and construction and/or utility workers. Individuals working in or entering the building could encounter indoor air. Individuals conducting potential future construction activities at the Site could encounter impacted soil/sediment and soil vapor.

### 5.3 Soil/Sediment

Soil/sediment is a potential release and transport mechanism at the Site. VOCs, specifically tetrachloroethene exceeded UU-SCOs in a drywell located on the east and an

underground structured on the west side of the Site building and within shallow soil/sediment collected from a floor drain located inside the Site building. Possible routes of exposure to contaminants in soil/sediment include ingestion, inhalation, and dermal absorption.

Ingestion is a potential exposure route, although it is unlikely that intentional ingestion of soil would occur. Inhalation is a potential exposure route if soil/sediment becomes airborne. Inhalation is possible if soil/sediment is disturbed or left without vegetative cover. The likelihood of exposure to soil/sediment is low under current site conditions and moderate for potential future development that would likely involve excavating, stockpiling, and re-grading soil. This exposure pathway is potentially complete.

Dermal absorption is a potential exposure route, although it is unlikely that contact with the soil/sediment will occur. Since the two potential exposure pathways are located beneath covers, contact is unlikely. Dermal contact with soil/sediment would likely be for a short duration. The likelihood of exposure to soil/sediment is low under current site conditions and moderate for potential future development that would likely involve excavating, stockpiling, and re-grading soils. This exposure pathway is potentially complete.

#### 5.4 Subsurface Soil

Subsurface soil is a not potential release and transport mechanism since there were no exceedances in subsurface soil.

The exposure pathway is incomplete.

## 5.5 Groundwater

Groundwater is another contaminant release and transport mechanism at the Site. The VOCs PCE and TCE were detected at concentrations above SCGs in groundwater samples collected from on-site and off-site wells at the Site.

Groundwater flow on-site and in the immediate vicinity is to the north-northwest. Based on the depth to groundwater, approximately 100 feet below ground surface, it is unlikely that the levels of VOCs in groundwater have any impact on any surface water in the immediate area. Potential groundwater exposure points include the monitoring wells.

Public water is available at and near the Site. Businesses and residences located near the Site obtain potable water from public water supply sources. The nearest public water supply well is located approximately 500 feet to the north-northwest. Public water suppliers would treat water prior to distribution if concentrations of VOCs above standards were found in the public water supply well. Ingestion, inhalation, and dermal contact could occur if groundwater is used for drinking, cooking, bathing, cleaning, or gardening; however, it is unlikely that new supply wells would be developed at the Site.

Due to the restricted access to groundwater at a depth of over 100 feet below ground surface and unlikely development of a new groundwater supply source, exposure to contaminated groundwater emanating from the Site is unlikely. As a result, exposure to groundwater poses a low risk and is a potentially complete pathway.

#### 5.6 Indoor Air/Soil Vapor

Soil vapor is another contaminant release and transport mechanism at the Site. Several VOCs were detected at concentrations above SCGs in the indoor air and sub-slab soil vapor samples collected within the Site building and exterior soil vapor samples around the vicinity of the Site indicated high concentrations of VOCs. Specifically, concentrations in indoor air exceeded the NYSDOH Decision Matrices for indoor air samples collected from the first floor and basement of the Site building.

Possible routes of exposure to soil vapor contaminants include inhalation. Under current site conditions, the likelihood of exposure to vapor contaminants is high. An April 4, 2019, letter from the NYSDOH was sent to the property owner identifying that based on review of available

data, soil vapor intrusion from site-related contaminates appears to be occurring within the Site building. As a result, this exposure pathway is complete.

## 5.7 Conclusions

Exposure to contaminants originating from the Former Fresh and Clean Laundry Site can come from any one of three media, which include surface soil/sediment, groundwater and soil vapor. Table 5-1 provides a summary status of exposure pathways identified at the Site. Based on the RI results and qualitative exposure assessment, current and future exposure to VOCs in shallow soil/sediment is unlikely under current site conditions, however, exposure to contaminated shallow soil/sediment poses a potential risk to human health if the shallow soil/sediment is exposed within the drywell or floor drain located inside the building. Exposure to VOCs in contaminated groundwater under current conditions is unlikely. Exposure to soil vapors under current site conditions is likely and poses a risk to human health and requires mitigation based on the results of this RI investigation.

## TABLE 5-1

## FORMER FRESH AND CLEAN LAUNDRY SITE REMEDIAL INVESTIGATION EXPOSURE PATHWAY STATUS FOR HUMAN RECEPTORS

| Media           | Exposure Point                                                             | Route of Exposure                                | Current<br>Pathway Status             | Future Pathway<br>Status |
|-----------------|----------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|--------------------------|
|                 | Basement floor<br>drain/drywell                                            | Ingestion                                        | Potentially complete                  | Potentially complete     |
| Soil/Sediment   | Basement floor<br>drain/drywell                                            | Inhalation                                       | Potentially complete                  | Potentially complete     |
|                 | Basement floor<br>drain/drywell                                            | Dermal Contact                                   | Potentially complete                  | Potentially complete     |
|                 | Subsurface                                                                 | Ingestion                                        | Potentially complete,<br>but unlikely | Potentially complete     |
| Subsurface Soil | Subsurface                                                                 | Inhalation                                       | Potentially complete,<br>but unlikely | Potentially complete     |
|                 | Subsurface                                                                 | Dermal Contact Potentially compl<br>but unlikely |                                       | Potentially complete     |
|                 | Monitoring wells                                                           | Ingestion Potentially complete,<br>but unlikely  |                                       | Potentially complete     |
| Groundwater     | Monitoring wells                                                           | Inhalation                                       | Potentially complete,<br>but unlikely | Potentially complete     |
|                 | Monitoring wells                                                           | Dermal Contact                                   | Potentially complete,<br>but unlikely | Potentially complete     |
| Soil Vapor      | Basement/first floor or<br>open excavations (such<br>as utility trenches). | Inhalation                                       | Complete                              | Complete                 |

## 6.0 CONCLUSIONS AND RECOMMENDATIONS

The objectives of the RI for the Former Fresh and Clean Laundry Site were to:

- Determine the nature and extent of contamination at the Site;
- Determine whether existing or potential impacts to human health and the environment exist; and
- Determine if remediation is warranted.

A primary focus of the RI was to continue delineating contamination at and near the Site, through soil/sediment sampling, groundwater sampling and on-site soil vapor intrusion investigations.

## 6.1 Conclusions

- Cis-1,2-DCE, PCE and TCE were detected at concentrations in the soil vapor/indoor air at levels requiring mitigation during each of the three completed indoor air sampling events. Elevated concentrations of cis-1,2-DCE, PCE and TCE were also detected within four off-site exterior soil vapor samples collected.
- PCE was detected above UU-SCOs from on-site exterior dry well (SS-05) and one interior floor drain/dry well structure (SS-15). The highest concentrations of PCE was detected within SS-13 associated with the southern underground structure, which was cleaned out. There were no soil exceedances detected in any of the deep soil borings that were completed.
- PCE was detected in six of the seven monitoring wells at concentrations ranging from 7.4 ug/l to 85 ug/l. PCE was also detected in all three discrete groundwater probes at concentrations ranging from 8.2 ug/l to 85 ug/l.

## 6.2 **Recommendations**

• Given the extremely elevated indoor air results of the Site building and as documented in the April 4, 2019, letter from the NYSDOH to the property owner, it is recommended to notify the building owner again of the indoor air exceedances and follow up regarding the recommendation for the installation of a sub-slab depressurization system (SSDS) at the Site building as well as other mitigative measures that can be immediately implemented.

- Based on the presence of elevated levels of VOCs in the exterior soil vapor samples, a soil vapor intrusion investigation on nearby properties should be conducted to evaluate potential impacts. The Department has previously offered to conduct a soil vapor intrusion evaluation at adjoining properties, which was declined. This offer should be renewed.
- Additional investigation to determine the connection between the western underground structures and the Site building to determine if there are any other potential sources of contamination impacting the Site.
- Monitor groundwater quality from the existing network of site monitoring wells following the completion of northern underground structure cleanout and any subsequent remedial activities at the Site.
- Perform additional investigation, as needed, to determine if there are any other remaining sources of contamination on-site that may be impacting soil vapor/indoor air, soil and groundwater quality. Modify the exposure assessment, conclusions and recommendations for the Site as necessary.

FIGURES

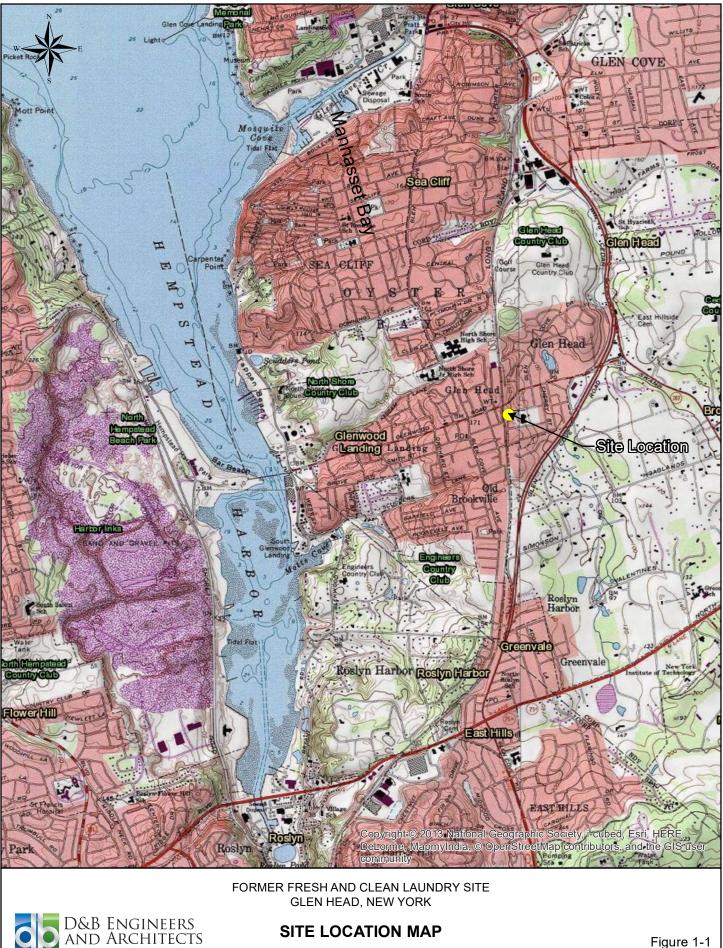
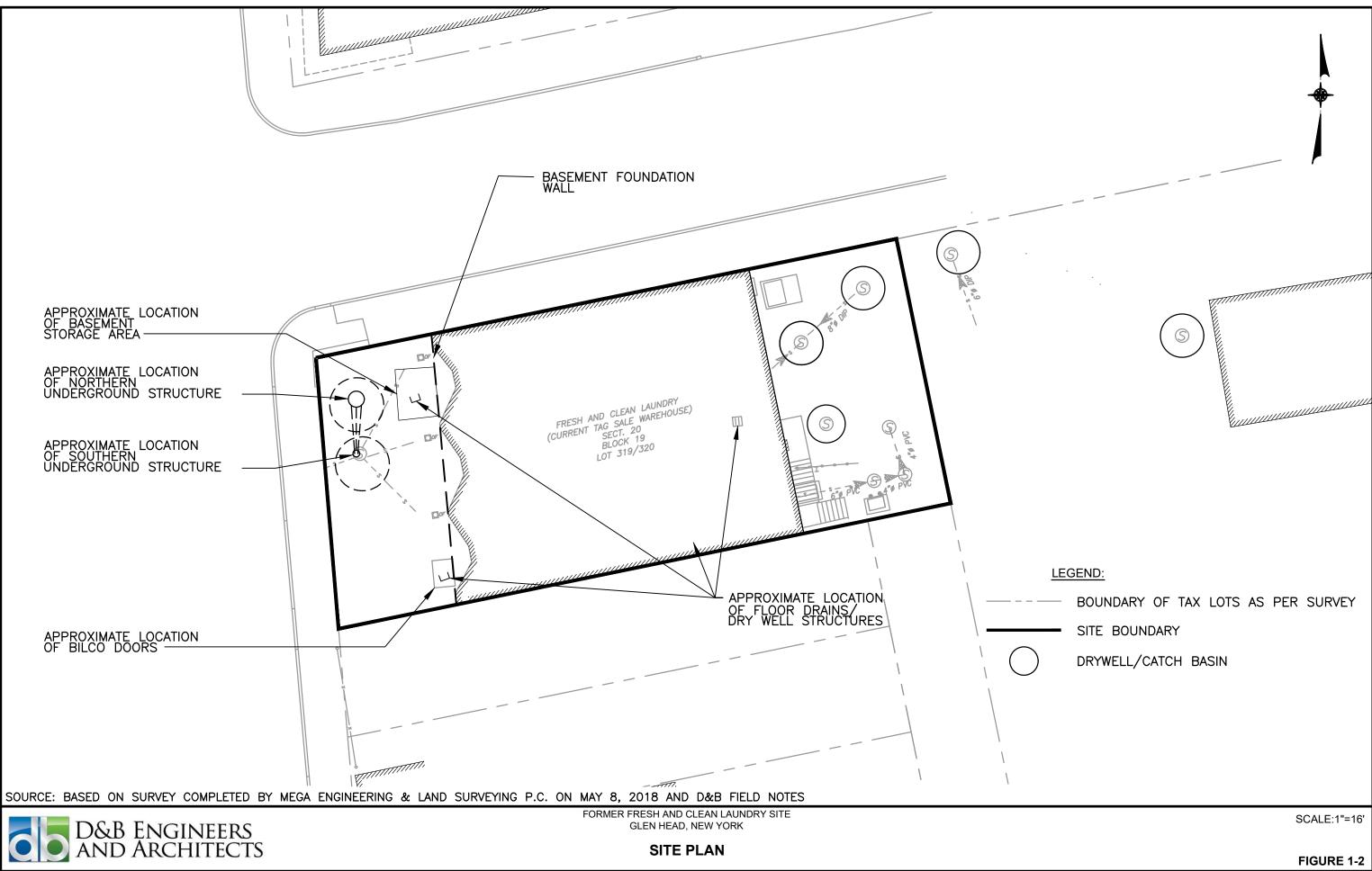
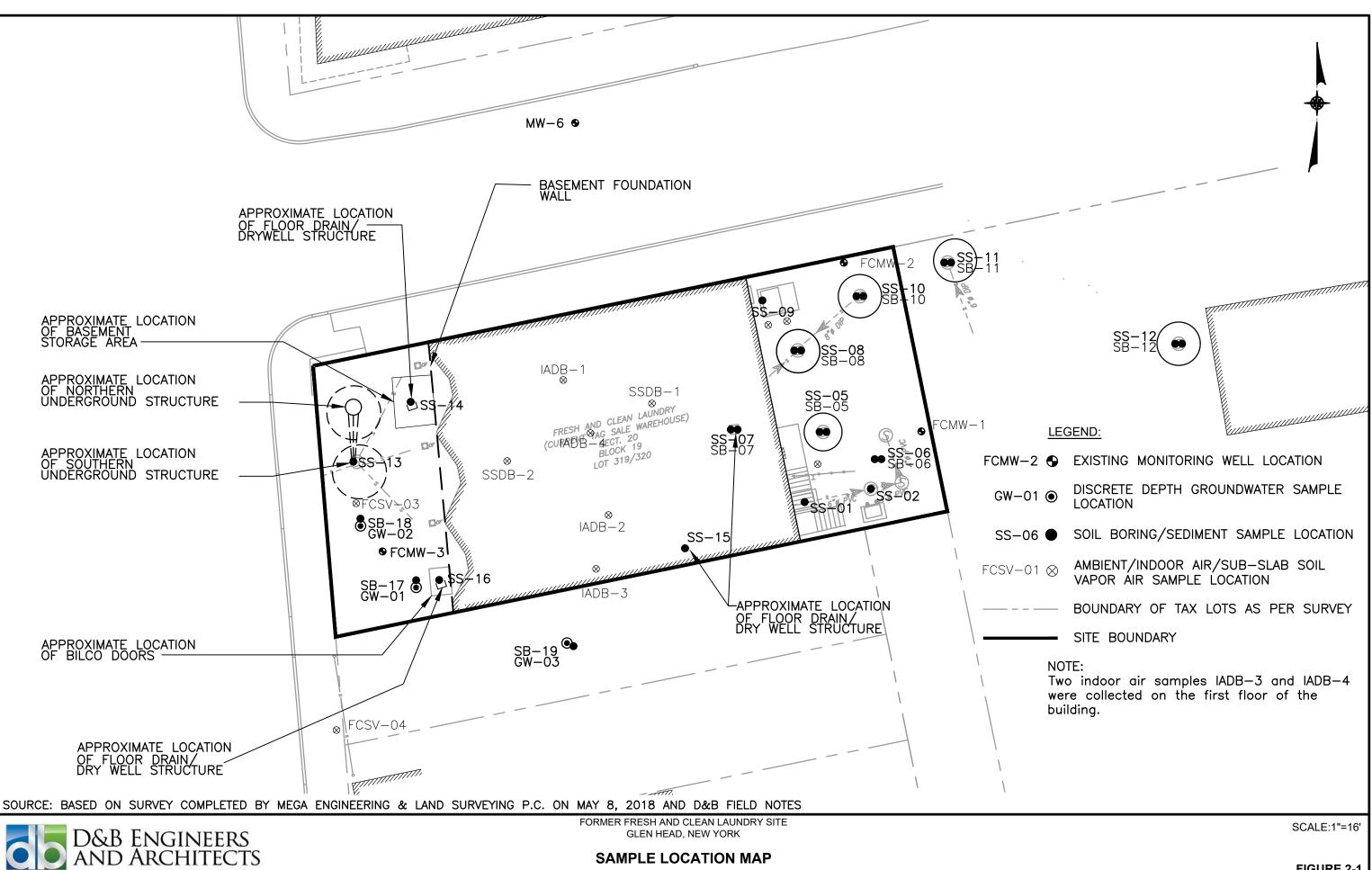





Figure 1-1





**FIGURE 2-1** 



SOURCE: BASED ON SURVEY COMPLETED BY MEGA ENGINEERING & LAND SURVEYING P.C. ON MAY 8, 2018 AND YEC, INC. ON OCTOBER 6, 1999 AND JUNE 27, 2000 AND D&B FIELD NOTES



**GROUNDWATER TABLE CONTOUR MAP** 

FORMER FRESH AND CLEAN LAUNDRY SITE

GLEN HEAD, NEW YORK

## NOTE:

GROUNDWATER ELEVATIONS COLLECTED ON SEPTEMBER 18 AND 19, 2018

## <u>LEGEND:</u> MW-5

| S MONITORING | WELL | LOCATION |
|--------------|------|----------|
|--------------|------|----------|

- 49.12 GROUNDWATER ELEVATION, ft MSL
- -50.00 GROUNDWATER CONTOUR ELEVATION

APPROXIMATE GROUNDWATER

SCALE:1"=100'

FIGURE 3-1



| OADB         | -1 OADB-1    | OADB-1        |                            |          |
|--------------|--------------|---------------|----------------------------|----------|
| 03/14/       | 18 02/28/19  | 01/26/21      | Sample ID                  | FCSV-01  |
| Outdo        | or Outdoor   | Outdoor       | Sampling Date              | 05/07/18 |
| 0.53         |              | 0.63 J        | Sample Type:               |          |
| 0.41         |              | U             | 1,2,4-Trimethylbenzene     | 70       |
| 5.5 J<br>U   | 5.3 J<br>U   | 4 J<br>U      |                            |          |
| 0 87         |              | 048.1         | 1,2-Dichloroethene (total) | 530      |
| 7.9          | 1.9 J        | 1.8           | 1,3,5-Trimethylbenzene     | 20 J     |
| U            | 0.11 J       | U             | 2,2,4-Trimethylpentane     | 59       |
| 0.45         |              | 0.39          | 4-Ethyltoluene             | 26 J     |
| 0.91         |              | 1 J           | Benzene                    | 22 J     |
| 1.0 J        |              | 1.2<br>U      | Cis-1.2-Dichloroethene     | 500      |
| U.25         | . U          | 0.38 J        |                            | 45       |
| 2.1 J        |              | 2.4 J         | Cyclohexane                |          |
| 0.29         |              | 0.34 J        | Ethylbenzene               | 110      |
| 1.6 B        |              | U             | M,P-Xylene                 | 380      |
| 0.89         |              | U             | N-Butane                   | 180      |
| 0.60         |              | U             | N-Heptane                  | 80       |
| 0.63 -<br>U  | J 1.3 J<br>U | U<br>1.5 J    | N-Hex ane                  | 110      |
| 0.36         |              | 1.5 J<br>U    | N-Propylbenzene            | 17 J     |
| 0.74         |              | Ŭ             |                            |          |
| 0.28         | JU           | 0.61 J        | Tetrachloroethene          | 5,500    |
| 1.2 J        |              | U             | Toluene                    | 190      |
| 1.8          | 0.58 J       | 1.1           | Trans-1,2-Dichloroethene   | 17 J     |
| 1.2<br>1.2 J | 1.2<br>U     | 1.1<br>0.61 J | Trichloroethene            | 420      |
| 1.Z J        | U            | 0.013         | Xvlene-O                   | 120      |
|              |              |               | Xylene (total)             | 500      |
|              | /            |               | Xylono (cotal)             | 000      |

|                            | Sample ID     | FCSV-0   |
|----------------------------|---------------|----------|
|                            | Sampling Date | 05/07/1  |
| 4                          | Sample Type:  | Soil Vap |
| 1,2,4-Trimethylbenzene     |               | 18 J     |
| 1,2-Dichloroethene (total) |               | 450      |
| 1,3-Butadiene              |               | 4.3 J    |
| Cis-1,2-Dichloroethene     |               | 430      |
| Ethylbenzene               |               | 12 J     |
| M,P-Xylene                 |               | 41 J     |
| N-Butane                   |               | 21 J     |
| Tetrachloroethene          |               | 2,400    |
| Toluene                    |               | 25       |
| Trans-1,2-Dichloroethene   |               | 18       |
| Trichloroethene            |               | 330      |
| Xylene-O                   |               | 14 J     |
| Xylene (total)             |               | 55 J     |

| Requires | mitigation        | as per | NYSDOH Soil Vapor Matrix A |  |
|----------|-------------------|--------|----------------------------|--|
| - ·      | 10 million (1997) |        | INCODOLLO THE MARY D       |  |

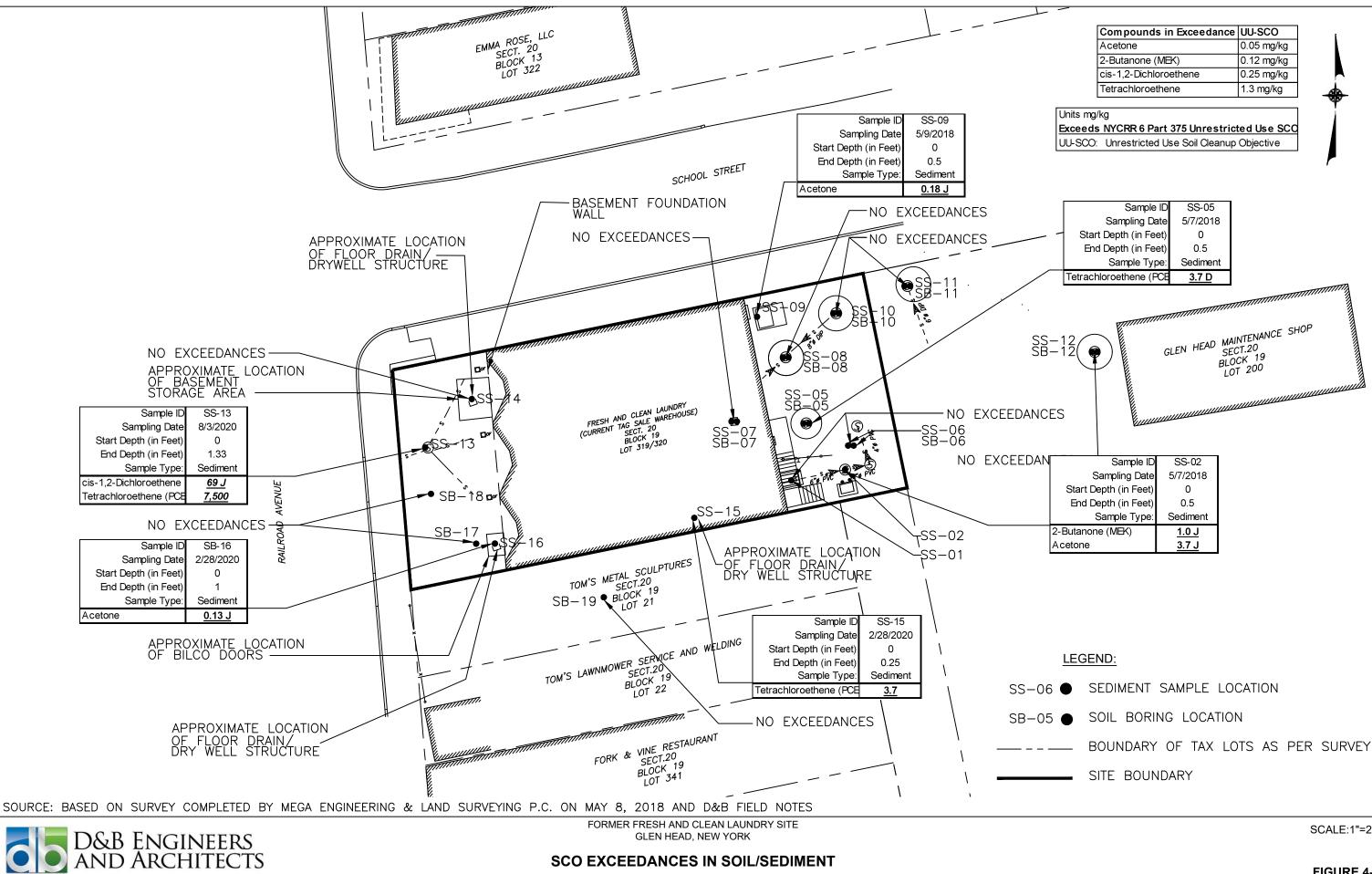
|             |        |          | VIII       | 11 |
|-------------|--------|----------|------------|----|
| Sample ID   |        | IADB-2   | IADB-2     |    |
| mpling Date |        | 02/28/19 | 01/26/21   |    |
| mple Type:  |        |          | Indoor Air |    |
|             | U      | 0.24 J   | 0.23 J     |    |
|             | U      | 0.51 J   | U          |    |
|             | U      | U        | 0.44 J     |    |
|             | U      | 0.22 J   | U          |    |
|             | U      | 0.28 J   | U          |    |
|             | 18 J   | 23 J     | 28         |    |
|             | 0.76 J | 0.67     | 1.5 J      |    |
|             | 10     | 5        | 18 J       |    |
|             | 4.8 J  | 0.15 J   | U          |    |
|             | 0.43 J | 0.43 J   | 0.5        | 1  |
|             | U      | 1.1      | 1.8        |    |
|             | 1.3 J  | 1.2 J    | 1.6        |    |
|             | 59     | 10       | 4.6        |    |
|             | U      | 0.15 J   | 0.72       |    |
|             | 3.0 J  | 2.5      | 2.8        |    |
|             | U      | 0.33 J   | UB         |    |
|             | 3.5 J  | 3.7      | 30 J       |    |
|             | U      | 1.1      | 2.6        |    |
|             | 1.7 J  | 2.1J     | 1.7        |    |
|             | 1.3 J  | 1.5 J    | 1.2 J      | l  |
|             | U      | 0.32 J   | U          |    |
|             | U      | 0.56 J   | U          |    |
|             | U      | 0.35 J   | UB         |    |
|             | U      | 0.28 J   | 0.51J      |    |
|             | 640    | 130      | 110 J      |    |
|             | U      | 0.2 J    | U          |    |
|             | 1.7 J  | 2.3 J    | 4 J        |    |
|             | 3.0 J  | 0.3 J    | U          |    |
|             | 61 B   | 7        | 7.4        |    |
|             | 1.5 J  | 1.2      | 1.8        |    |
|             | 0.75   | U        | U          |    |
|             | U      | 1.5 J    | 2.6        |    |

| Requires mitigation as per NYSDOH Soil Vapor Matrix B |                             |
|-------------------------------------------------------|-----------------------------|
| Samples FCSV-01 through FCSV-04 were not compated to  | NY SDOH Soil Vapor Matrices |
| Qualifiers:                                           |                             |
| All values in ug/m3                                   |                             |
| U: Analyzed but not detected                          |                             |
| J: Estimated value                                    |                             |
| UB: Not detected based on assoicated blank results    |                             |
|                                                       |                             |

- B: Detected in assoicated blank
- D: Reported from secondary dilutio

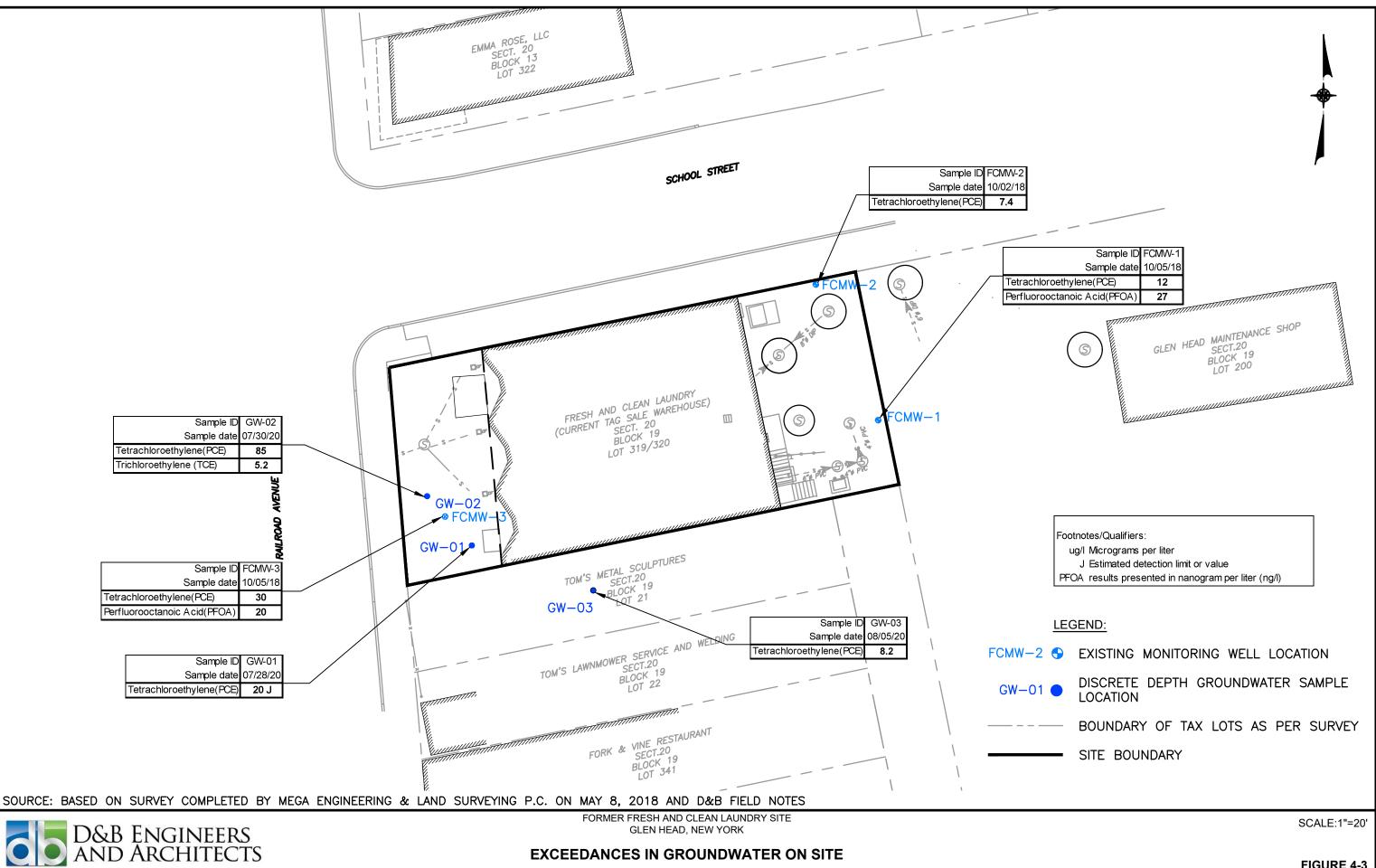
#### NOTE:

TWO INDOOR AIR SAMPLES IADB-3 AND IADB-4 WERE COLLECTED ON THE FIRST FLOOR OF THE BUILDING.


#### LEGEND:

EXTERIOR SOIL VAPOR/ FCSV-01 & SUB-SLAB SOIL VAPOR/ INDOOR AIR/OUTDOOR AIR SAMPLE

BOUNDARY OF TAX LOTS AS PER SURVEY


SITE BOUNDARY

SCALE:1"=20'



| Compounds in Exceedance | UU-SCO     |
|-------------------------|------------|
| Acetone                 | 0.05 mg/kg |
| 2-Butanone (MEK)        | 0.12 mg/kg |
| cis-1,2-Dichloroethene  | 0.25 mg/kg |
| Tetrachloroethene       | 1.3 mg/kg  |

SCALE:1"=20'



e



SOURCE: BASED ON SURVEY COMPLETED BY MEGA ENGINEERING & LAND SURVEYING P.C. ON MAY 8, 2018 AND D&B FIELD NOTES



**EXCEEDANCES IN GROUNDWATER OFF-SITE** 

FORMER FRESH AND CLEAN LAUNDRY SITE

GLEN HEAD, NEW YORK



**APPENDIX A** 

## **GEOPHYSICAL SURVEY**

♦3150\CC10122101\_FormerFreshCleanRI(R04)



3 Mystic Lane Malvern, PA 19355 (610) 722-5500 (ph.) (610) 722-0250 (fax)

May 15, 2018 AGS Ref#: 18-150-1

Anthony Caniano D&B Engineers & Architects, P.C. 330 Crossways Park Drive Woodbury, NY 11797

Subject: Geophysical Investigation Report Railroad Ave Site Glen Head, New York

Dear Mr. Caniano,

Advanced Geological Services (AGS) is submitting this letter report detailing the methods and results of the geophysical investigation conducted at the above referenced site 22 Railroad Avenue, Glen Head, Long Island, New York. The objective of the geophysical investigation was to identify and mark out underground utilities, dry wells, and other identifiable targets of interest within the designated survey areas. The geophysical investigation was conducted May 7, 2018.

## Methods

To achieve the investigation objectives AGS utilized a combination of the ground penetrating radar (GPR) method and the radio frequency (RF) utility locating method.

## Ground Penetrating Radar (GPR) Method

The ground penetrating radar (GPR) method was used to confirm locations of utilities detected using the RF method; and to search for non-metallic utilities, and other potential targets of interest. The GPR method is based upon the transmission of repetitive, radio frequency electromagnetic (EM) pulses into the subsurface. When the transmitted energy of the downgoing wave contacts an interface of dissimilar electrical character, part of the energy is returned to the surface in the form of a reflected signal. This reflected signal is detected by a receiving transducer and is displayed on the screen of the GPR unit as well as being recorded on the internal hard-drive. The received GPR response remains constant as long as the electrical contrast between media is present and constant. Lateral or vertical changes in the electrical properties of the subsurface result in equivalent changes in the GPR responses. The system records a continuous image of the subsurface by plotting two-way travel time of the reflected EM pulse versus distance traveled along the ground surface. Two-way travel time values are then converted to depth using known soil velocity functions. Anthony Caniano May 15, 2018 18-150-1 Page 2

A Geophysical Survey System SIR System 3000 and a 400 megahertz (MHz) antenna were used with a recording window of 60 nanoseconds (ns) to provide the required depth penetration and subsurface detail. The GPR field procedures involved (1) instrument calibration, (2) test run completion, (3) production profile collection and recording.

For this investigation GPR data was collected with a data density sufficient to identify potential underground utilities, and other targets of interest within the designated survey areas. GPR data was analyzed closely for targets in real time.

## Radio Frequency (RF) Utility Locating Method

A Radiodetection RD4000 utility locating instrument was used to search for utilities. This instrument consists of a receiver/tracer and a remote transmitter which operates at multiple radio-frequencies (RF) ranging from 8 kHz to 65 kHz. The receiver unit detects a transmitted RF signal, as well as standard 60 Hz electrical power lines and broad-band RF signals when operated in passive detection modes. This utility tracing instrument is an analog device which provides visual and audible feedback to the operator when a utility coupled with the transmitted signal is crossed. The transmitter produces a radio-frequency signal in the utility to be traced by either induction coupling or direct hook-up. The receiver output varies an audible pitch depending upon how far the utility is from the receiver. By carefully adjusting the gain of the receiver it is possible to determine the location of the utility and to separate it from adjacent utilities. The RF instrument is also capable of providing a depth estimate to the utility being traced based on the vertical gradient of the received RF signal strength.

Passive detection scanning techniques, and direct hook-up techniques were used during this investigation.

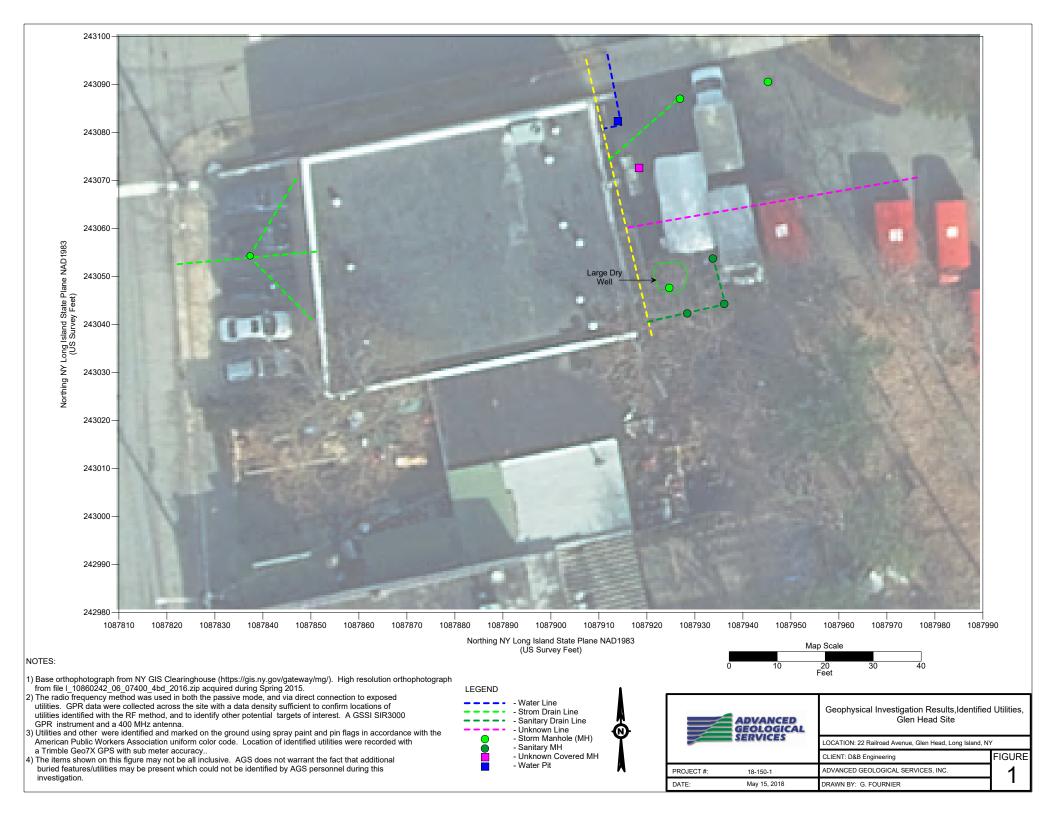
## **Results and Discussion**

The geophysical investigation objectives were achieved utilizing the GPR and RF methods, as well as direct observation of certain features. AGS identified several storm drain lines, a water utility, a natural gas utilities, unknown utilities, and a sanitary drain/septic tank system. A large dry well was observed through it's manhole, and the approximate limits were identified using the GPR methods. A probable paved over manhole was identified with the GPR method and its true nature could not be determined during the geophysical investigation. Features identified during the geophysical investigation are represented on Figure 1.

The identified utilities, limits of the large dry well, and the paved over manhole were marked on the ground using spray paint in accordance with the American Public Workers Association uniform color code. Locations of identified features were recorded as a detailed field map. The results of the geophysical investigation were discussed with the D&B representative at the completion of field work. Anthony Caniano May 15, 2018 18-150-1 Page 3

## Closing

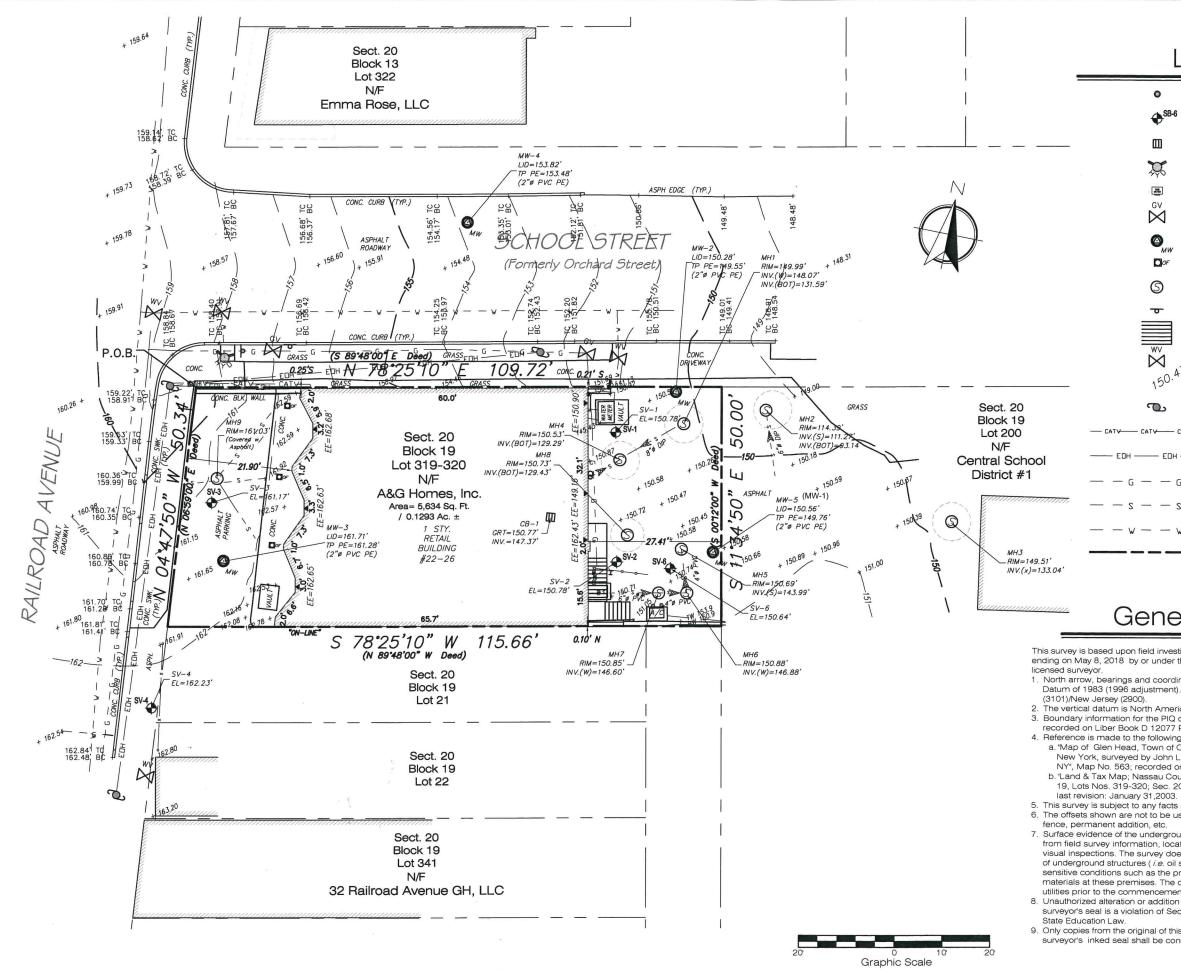
The data collection and interpretation methods used in this investigation are consistent with standard practices applied to similar geophysical investigations. The correlation of geophysical responses with probable subsurface features is based on past results of similar surveys, although it is possible that some variation could exist at this site. Due to the nature of geophysical data, no guarantees can be made or implied regarding the presence or absence of additional utilities, buried structures, etc. or targets beyond those identified.


If you have any questions, please contact me by phone 610-722-5500 or via email. It was a pleasure working with you on this project, and we look forward to conducting geophysical investigations for you in the future.

Sincerely,

Miegory PFori

Greg Fournier Project Geophysicist


Enclosed: Figure 1



**APPENDIX B** 

## LAND SURVEY DATA

♦3150\CC10122101\_FormerFreshCleanRI(R04)



| Bollard         Boring/Test Pit         Catch Basin/Drain         Fire Hydrant         Gas Meter         Gas Valve         Monitoring Well         Oil Fill         Sanitary Manhole         Sign Post         Steps         Water Valve         Spot Elevation         Utility Pole         Catrv         Gas Line         S —                                                                                                                                                                                         | Former Fresh and Clean Laundry<br>Site No. 130111; Sect. 20 Block 19 Lots 319-320<br>22-26 Railroad Avenue, Glen Head, NY<br>Topographic and Location Survey<br>Sheet 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| w — Water Line<br>Right of Way Line<br>eral Notes<br>stigations and survey conducted by MEGA<br>the direct supervision of the undersigned                                                                                                                                                                                                                                                                                                                                                                               | Frederick R. Polybry, P.E.L.S.<br>NY Lic. Subgrout # 02/47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tinates based upon the North American<br>t). The projection is New York - East<br>rican Datum of 1988 (NAVD of 1988).<br>the derived from a deed to A & G Homes, Inc.<br>Pages 353-356 dated February 7th 2006.<br>Ing maps:                                                                                                                                                                                                                                                                                            | NS,DM<br>DM/VS<br>VS,FRP<br>FRP<br>11 = 20'<br>05/08/2018<br>17-535<br>FB 91 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Oyster Bay, County of Nassau and State of<br>L. Bogart, C.E., Glen Head, Long Island,<br>on June 2, 1925.<br>Dunty Dept. of Assessment, Sec. 20, Blk.<br>20, Blk. 13; Sect. 20 Blk. 21"; Tax Maps<br>3,<br>s an accurate title search may disclose.                                                                                                                                                                                                                                                                     | Survey:<br>Drawn:<br>Chkd:<br>Appvd:<br>Scale:<br>Date:<br>Proj.No.:<br>Fld Bk:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| used for the construction of any structure,<br>bund utilities shown have been located<br>lated mark outs, existing utility maps, and<br>bes not serve to show or deny the presence<br>I storage tanks) or any environmentally<br>presence of wetlands or hazardous<br>o contractor shall confirm the location of all<br>ent of excavation.<br>In to a survey map bearing a licensed land<br>action 7209, Subdivision 2 of the New York<br>his survey marked with an original land<br>unsidered to be valid true copies. | <b>MARCHAR STATE</b><br>engineering and land<br>surveying, pc<br>217-44 98th Avenue<br>217-44 98th Avenue<br>217-44 98th Avenue<br>(718) 799-4985 Phone<br>(718) 799-795 Phone<br>(718) 799-7 |

# Grade Sheet



217-44 98th Avenue Queens Village, NY 11429 Ph (718) 799-4985 Fax (866) 343-5888

## Fresh & Clean Laundry - Boring Location

Date of Stake-Out: Job Number: May 8, 2018 17-535 Mr. Anthony Caniano &

Mr. Paul Barusich

Client Contact:

D&D Engineers & Arch, P.C. pbarusich@db-eng.com

Client email Field Crew Compiled/Checked

NS/DM VS/FRP

Notes:

Coordinates based upon NY State Plane Coordinate System -NYLI NAD83(96) in US Survey Feet. Elevations refer to North American Vertical Datum of 1988 (NADV88).

| Boring             |            |              | Elevation in  |                       |  |  |  |
|--------------------|------------|--------------|---------------|-----------------------|--|--|--|
| No.                | Northing   | Easting      | US Survey Ft. | Remarks               |  |  |  |
| MONITORING WELLS   |            |              |               |                       |  |  |  |
| MW-2               | 243,090.49 | 1,087,926.84 | 150.28        | Top of Casing         |  |  |  |
|                    |            |              | 149.55        | Top of 2" \u03e9 Pipe |  |  |  |
| MW-3               | 243,037.01 | 1,087,841.40 | 161.71        | Top of Casing         |  |  |  |
|                    |            |              | 161.28        | Top of 2" \u03e9 Pipe |  |  |  |
| MW-4               | 243,116.36 | 1,087,877.08 | 153.82        | Top of Casing         |  |  |  |
|                    |            |              | 153.48        | Top of 2" \u03e9 Pipe |  |  |  |
| MW-5               | 243,059.23 | 1,087,941.21 | 150.56        | Top of Casing         |  |  |  |
| (MW-1)             |            |              | 149.76        | Top of 2" \u03e9 Pipe |  |  |  |
| <u>SOIL BORING</u> |            |              |               |                       |  |  |  |
| SV-1               | 243,079.66 | 1,087,916.29 | 150.78        | Ground Elevation      |  |  |  |
| SV-2               | 243,053.18 | 1,087,921.98 | 150.78        | Ground Elevation      |  |  |  |
| SV-3               | 243,048.41 | 1,087,836.55 | 161.17        | Ground Elevation      |  |  |  |
| SV-4               | 243,003.90 | 1,087,832.87 | 162.23        | Ground Elevation      |  |  |  |
| SB-6               | 243,054.08 | 1,087,933.18 | 150.64        | Ground Elevation      |  |  |  |
|                    |            |              |               |                       |  |  |  |

**PICTURES:** 



MW-3 & SV-3

HW-5

MW-4

MW-5 (MW-1)



SV-1



SV-2



SB-6

SV-4

Not Available

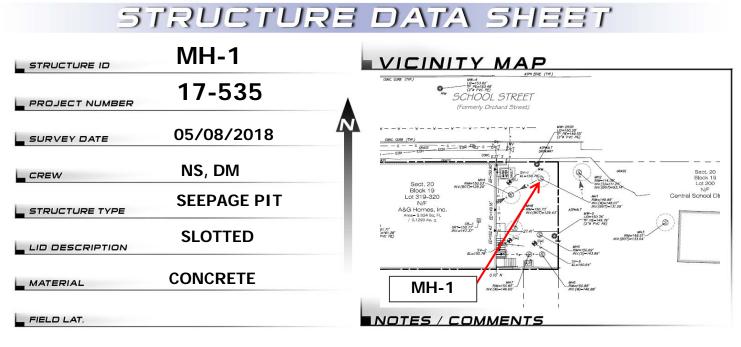
-4

17-535 FORMER FRESH & CLEAN LAUNDRY SITE

# STRUCTURE DATA SHEETS

**EXISTING SITE CONDITION** 

22-26 Railroad Avenue Glen Head, New York


May 2018

SUBMITTED BY





29 Pangborn Place, Hackensack, NJ 07601 / 201-0343-5059 Ph / 201-343-4992 Fx / megaeng@earthlink.net 217-44 98th Avenue, Queens Village, NY 11429 / 718-799-4985 Ph / 866-343-5888 Fx



FIELD LONG.

| STRUCTURE SKETCH |        |             |             |  |  |  |  |
|------------------|--------|-------------|-------------|--|--|--|--|
|                  |        |             |             |  |  |  |  |
| (in feet)        | Invert | NAVD88 Elev | Туре        |  |  |  |  |
| Rim              |        | 149.99      |             |  |  |  |  |
| Pipe 1           | 2.90   | 147.09      | 8" Dia. DIP |  |  |  |  |
| Pipe 2           |        |             |             |  |  |  |  |
| Pipe 3           |        |             |             |  |  |  |  |
| Pipe 4           |        |             |             |  |  |  |  |
| Pipe 5           |        |             |             |  |  |  |  |
| Pipe 6           |        |             |             |  |  |  |  |
| Structure        | 18.4   | 131.59      | CONC.       |  |  |  |  |
| Ceiling          |        |             |             |  |  |  |  |
|                  |        |             | -           |  |  |  |  |

NORTH



POINT NUMBER 915

PIPE 1

SDS PREPARED BY

*SDS DATE* 05/08/18

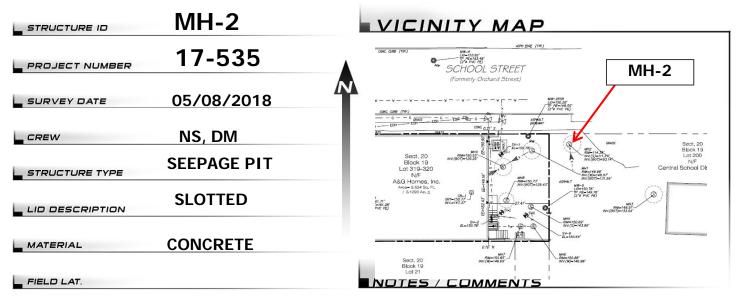
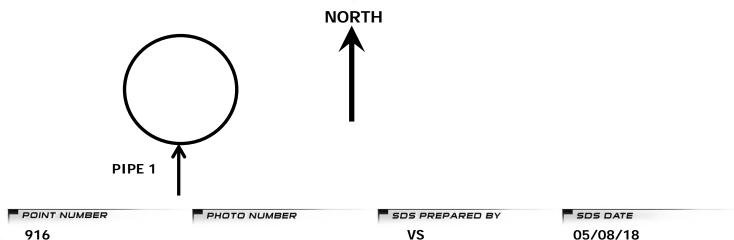

© 2018 This document shall not be altered or used by any firm, corporation or person without the express written permission of MEGA Eng. & LS, P.C.

PHOTO NUMBER



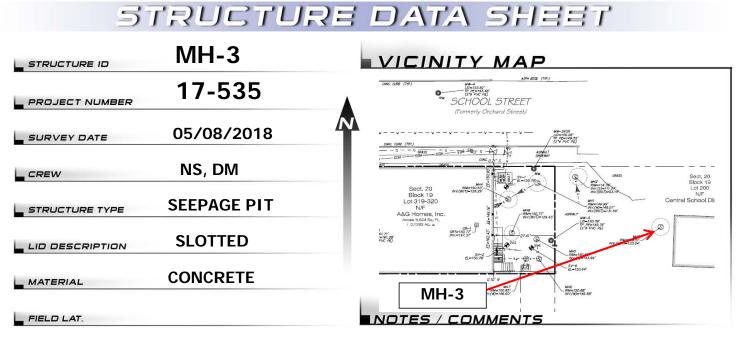
29 Pangborn Place, Hackensack, NJ 07601 / 201-0343-5059 Ph / 201-343-4992 Fx / megaeng@earthlink.net 217-44 98th Avenue, Queens Village, NY 11429 / 718-799-4985 Ph / 866-343-5888 Fx






FIELD LONG.

Ceiling


#### STRUCTURE SKETCH (in feet) Invert NAVD88 Elev Type Rim 114.39 6" Dia. DIP Pipe 1 3.12 111.27 Pipe 2 Pipe 3 Pipe 4 Pipe 5 Pipe 6 Structure 21.25 93.14 CONC.



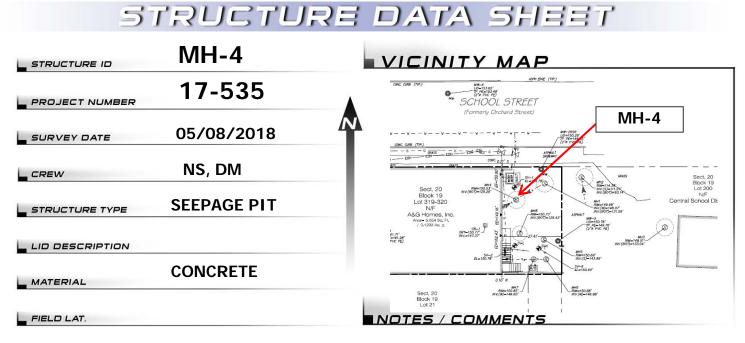




29 Pangborn Place, Hackensack, NJ 07601 / 201-0343-5059 Ph / 201-343-4992 Fx / megaeng@earthlink.net 217-44 98th Avenue, Queens Village, NY 11429 / 718-799-4985 Ph / 866-343-5888 Fx



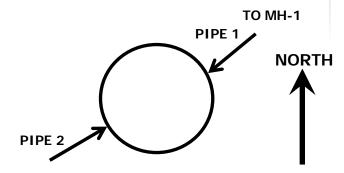
FIELD LONG.


| STRUCTURE SKETCH |        |             |       |  |  |  |
|------------------|--------|-------------|-------|--|--|--|
|                  |        |             |       |  |  |  |
| (in feet)        | Invert | NAVD88 Elev | Туре  |  |  |  |
| Rim              |        | 149.51      |       |  |  |  |
| Pipe 1           |        |             |       |  |  |  |
| Pipe 2           |        |             |       |  |  |  |
| Pipe 3           |        |             |       |  |  |  |
| Pipe 4           |        |             |       |  |  |  |
| Pipe 5           |        |             |       |  |  |  |
| Pipe 6           |        |             |       |  |  |  |
| Structure        | 16.47  | 133.04      | CONC. |  |  |  |
| Ceiling          |        |             |       |  |  |  |
|                  |        |             |       |  |  |  |



POINT NUMBER B19 PDINT NUMBER SDS PREPARED BY VS SDS DATE 05/08/18

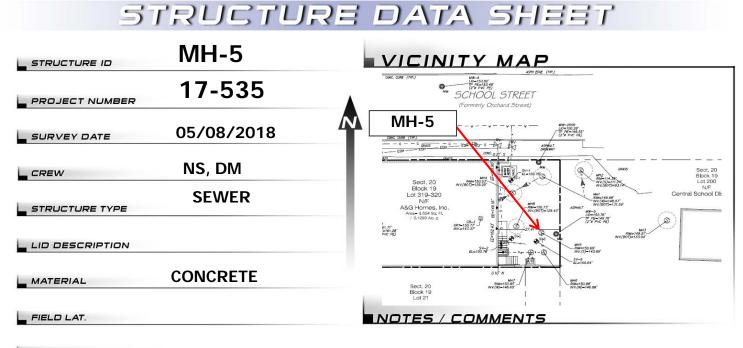



29 Pangborn Place, Hackensack, NJ 07601 / 201-0343-5059 Ph / 201-343-4992 Fx / megaeng@earthlink.net 217-44 98th Avenue, Queens Village, NY 11429 / 718-799-4985 Ph / 866-343-5888 Fx



FIELD LONG.

## STRUCTURE SKETCH


| (in feet) | Invert | NAVD88 Elev | Туре  |
|-----------|--------|-------------|-------|
| Rim       |        | 150.53      |       |
| Pipe 1    |        |             |       |
| Pipe 2    |        |             |       |
| Pipe 3    |        |             |       |
| Pipe 4    |        |             |       |
| Pipe 5    |        |             |       |
| Pipe 6    |        |             |       |
| Structure | 21.24  | 129.29      | CONC. |
| Ceiling   |        |             |       |







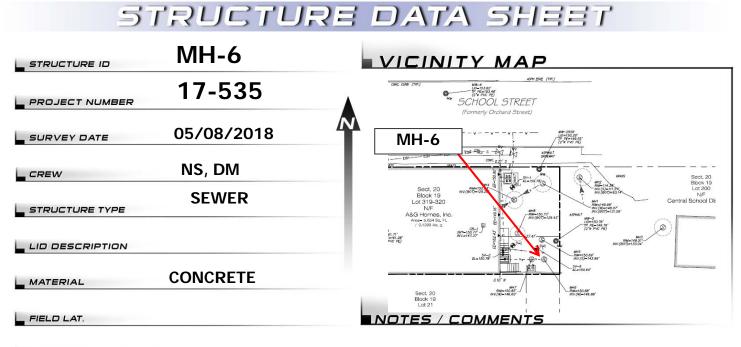
29 Pangborn Place, Hackensack, NJ 07601 / 201-0343-5059 Ph / 201-343-4992 Fx / megaeng@earthlink.net 217-44 98th Avenue, Queens Village, NY 11429 / 718-799-4985 Ph / 866-343-5888 Fx



FIELD LONG.

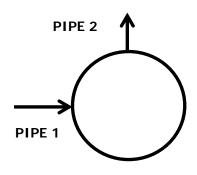
#### STRUCTURE SKETCH (in feet) NAVD88 Elev Type Invert Rim 150.69 143.99 4" Dia. PVC Pipe 1 6.70 Pipe 2 Pipe 3 Pipe 4 Pipe 5 Pipe 6 Structure Ceiling

PIPE 1








29 Pangborn Place, Hackensack, NJ 07601 / 201-0343-5059 Ph / 201-343-4992 Fx / megaeng@earthlink.net 217-44 98th Avenue, Queens Village, NY 11429 / 718-799-4985 Ph / 866-343-5888 Fx



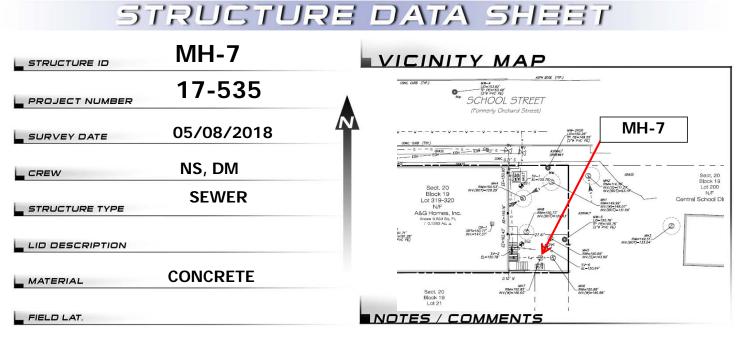
FIELD LONG.

| STRU      | TUR    | <u>e sket</u> ( | =H          |
|-----------|--------|-----------------|-------------|
|           |        |                 |             |
| (in feet) | Invert | NAVD88 Elev     | Туре        |
| Rim       |        | 150.88          |             |
| Pipe 1    | 4.00   | 146.88          | 4" Dia. PVC |
| Pipe 2    |        |                 |             |
| Pipe 3    |        |                 |             |
| Pipe 4    |        |                 |             |
| Pipe 5    |        |                 |             |
| Pipe 6    |        |                 |             |
| Structure |        |                 |             |
| Ceiling   |        |                 |             |





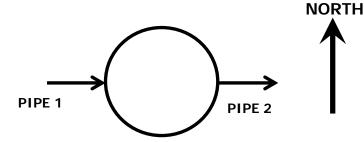





POINT NUMBERPHOTO NUMBERSDS PREPARED BYSDS DATE723VS05/08/18

© 2018 This document shall not be altered or used by any firm, corporation or person without the express written permission of MEGA Eng. & LS, P.C.




29 Pangborn Place, Hackensack, NJ 07601 / 201-0343-5059 Ph / 201-343-4992 Fx / megaeng@earthlink.net 217-44 98th Avenue, Queens Village, NY 11429 / 718-799-4985 Ph / 866-343-5888 Fx



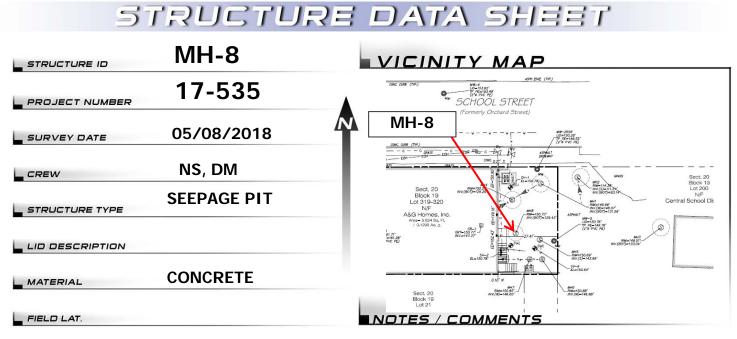
FIELD LONG.

#### STRUCTURE SKETCH (in feet) NAVD88 Elev Invert Туре Rim 150.85 4.25 146.60 6" Dia. PVC Pipe 1 Pipe 2 Pipe 3 Pipe 4 Pipe 5 Pipe 6 Structure Ceiling








POINT NUMBERPHOTO NUMBERSDS PREPARED BY725VS

SDS DATE 05/08/18

©2018 This document shall not be altered or used by any firm, corporation or person without the express written permission of MEGA Eng. & LS, P.C.



29 Pangborn Place, Hackensack, NJ 07601 / 201-0343-5059 Ph / 201-343-4992 Fx / megaeng@earthlink.net 217-44 98th Avenue, Queens Village, NY 11429 / 718-799-4985 Ph / 866-343-5888 Fx



FIELD LONG.

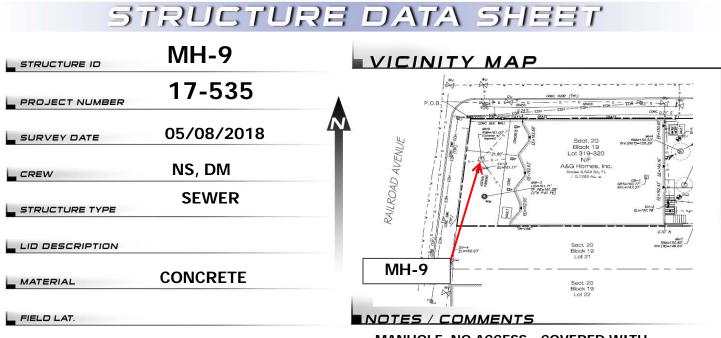
## STRUCTURE SKETCH

| (in feet) | Invert | NAVD88 Elev | Туре  |
|-----------|--------|-------------|-------|
| Rim       |        | 150.73      |       |
| Pipe 1    |        |             |       |
| Pipe 2    |        |             |       |
| Pipe 3    |        |             |       |
| Pipe 4    |        |             |       |
| Pipe 5    |        |             |       |
| Pipe 6    |        |             |       |
| Structure | 21.3   | 129.43      | CONC. |
| Ceiling   |        |             |       |

NORTH



POINT NUMBER 951 PHOTO NUMBER


SDS PREPARED BY

505 DATE 05/08/18

© 2018 This document shall not be altered or used by any firm, corporation or person without the express written permission of MEGA Eng. & LS, P.C.



29 Pangborn Place, Hackensack, NJ 07601 / 201-0343-5059 Ph / 201-343-4992 Fx / megaeng@earthlink.net 217-44 98th Avenue, Queens Village, NY 11429 / 718-799-4985 Ph / 866-343-5888 Fx



FIELD LONG.

## STRUCTURE SKETCH

| (in feet) | Invert | NAVD88 Elev | Туре |
|-----------|--------|-------------|------|
| Rim       |        | 161.30      |      |
| Pipe 1    |        |             |      |
| Pipe 2    |        |             |      |
| Pipe 3    |        |             |      |
| Pipe 4    |        |             |      |
| Pipe 5    |        |             |      |
| Pipe 6    |        |             |      |
| Structure |        |             |      |
| Ceiling   |        |             |      |

MANHOLE NO ACCESS - COVERED WITH ASPHALT - WITH MARK OUT



POINT NUMBER 510 PDINT NUMBER SDS PREPARED BY VS 05/08/18

© 2018 This document shall not be altered or used by any firm, corporation or person without the express written permission of MEGA Eng. & LS, P.C.

**APPENDIX C** 

**FIELD FORMS** 

| d                                                                 |             | D&B<br>and        | Engi<br>Arci       | INEERS<br>HITECTS   | Project No.: 3150-37<br>Project Name: Fresh and Clean                                          | Boring No.: SS-01 (house trap)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich                                         |  |
|-------------------------------------------------------------------|-------------|-------------------|--------------------|---------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Drilling Contractor: Aztech<br>Drill Rig:<br>Date Started: 5/7/18 |             |                   |                    |                     | Geologist: Paul Barusich<br>Drilling Method:<br>Drive Hammer Weight:<br>Date Completed: 5/7/18 | Boring Completion Depth: 1'<br>Ground Surface Elevation: 150.71'<br>Boring Diameter: 2"                                   |  |
| Davidh                                                            |             | Turne             | Dee                | PID Per 6"          | Sampl                                                                                          | e Description                                                                                                             |  |
| <b>Depth</b><br>0'-1'                                             | <b>No</b> . | <b>Type</b><br>HA | <b>Rec.</b><br>12" | <b>(ppm)</b><br>0.0 | Dark brown, fine to medium subang<br>moderately sorted, loose, moist, no                       | gular SAND and organic matter, trace silt,<br>staining, no odor.                                                          |  |
|                                                                   |             |                   |                    |                     |                                                                                                |                                                                                                                           |  |
|                                                                   |             |                   |                    |                     |                                                                                                |                                                                                                                           |  |
|                                                                   |             |                   |                    |                     |                                                                                                |                                                                                                                           |  |
|                                                                   |             |                   |                    |                     |                                                                                                |                                                                                                                           |  |
|                                                                   |             |                   |                    |                     |                                                                                                |                                                                                                                           |  |
| Sample Types:<br>HA = Hand Auger                                  |             |                   |                    |                     | Bottom of structu<br>Sediment sample                                                           | pottom of structure.<br>ure is 3 feet below grade.<br>e SS-01 collected at 0'-0.5' for analysis of<br>TICs (8260C, 5035). |  |

| 0                               |     | )&B<br>ND | Engi<br>Arci | NEERS<br>Hitects    | Project No.: 315<br>Project Name: Fr                                       |                                       | Boring No.: SS-02<br>(Septic Tank)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich                                  |
|---------------------------------|-----|-----------|--------------|---------------------|----------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Drilling<br>Drill Ri<br>Date St | g:  |           | Aztech<br>8  |                     | Geologist: Paul B<br>Drilling Method:<br>Drive Hammer W<br>Date Completed: | <br>eight:                            | Boring Completion Depth: 1'<br>Ground Surface Elevation: 150.74'<br>Boring Diameter: 2"                                |
| Depth                           | No. | Туре      | Rec.         | PID Per 6"<br>(ppm) |                                                                            | Sample                                | Description                                                                                                            |
| 0'-1'                           | 1   | HA        | 12"          | 0.0                 | no odor.                                                                   |                                       | It, poorly sorted, loose, wet, no staining,                                                                            |
| Sample<br>HA = H                |     |           |              | I                   |                                                                            | Bottom of structur<br>Sediment sample | ottom of structure.<br>re is 3.5 feet below grade.<br>SS-02 collected at 0'-0.5' for analysis of<br>ICs (8260C, 5035). |

| d                     |                 | D&B<br>and        | Engi<br>Arci            | NEERS<br>HITECTS                          | Project No.: 3150-37<br>Project Name: Fresh and Clean                                                      | Boring No.: SB-05 (Drywell)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich                                                                         |
|-----------------------|-----------------|-------------------|-------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                     | <b>g:</b> Ge    | oprobe            | : Aztech<br>6610DT<br>8 |                                           | Geologist: Paul Barusich<br>Drilling Method: Direct Push<br>Drive Hammer Weight:<br>Date Completed: 5/8/18 | Boring Completion Depth: 20'<br>Ground Surface Elevation: 150.72'<br>Boring Diameter: 2"                                                               |
|                       |                 |                   |                         | PID Per 6"                                | Sampl                                                                                                      | le Description                                                                                                                                         |
| <b>Depth</b><br>0'-5' | <b>No.</b><br>1 | <b>Type</b><br>GP | <b>Rec.</b><br>36"      | (ppm)<br>0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0 | Brown, fine to medium subangular<br>sorted, loose, moist, no staining, no                                  | SAND, trace silt and brick, moderately o odor.                                                                                                         |
| 5'-10'                | 2               | GP                | 36"                     | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0          | Brown-light tan, fine to medium sul<br>gravel, moderately sorted, loose, n                                 | bangular SAND, trace fine subangular<br>noist, no staining, no odor.                                                                                   |
| 10'-15'               | 3               | GP                | 36"                     | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0          |                                                                                                            | bangular SAND, trace fine to coarse<br>d, loose, moist, no staining, no odor.                                                                          |
| 15'-20'               | 4               | GP                | 36"                     | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0          | Same as above.                                                                                             |                                                                                                                                                        |
| Sample<br>GP = G      |                 |                   |                         |                                           | Bottom of struct                                                                                           | pottom of structure.<br>ure is 21 feet below grade.<br>e SS-05 collected from 0'-0.5' and<br>sample SB-05(6'-8') for analysis of TCL<br>(8260C, 5035). |

|                              |              | )&B<br>ND | Engi<br>Arci          | NEERS<br>Hitects                                                | Project No.: 3150-37<br>Project Name: Fresh and Clean                                                      | Boring No.: SB-06<br>(soil boring near septic tanks)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich          |
|------------------------------|--------------|-----------|-----------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| -                            | <b>g:</b> Ge | oprobe    | Aztech<br>6610DT<br>8 |                                                                 | Geologist: Paul Barusich<br>Drilling Method: Direct Push<br>Drive Hammer Weight:<br>Date Completed: 5/7/18 | Boring Completion Depth: 25'<br>Ground Surface Elevation: 150.74'<br>Boring Diameter: 2"                         |
| Depth                        | No.          | Туре      | Rec.                  | PID Per 6"<br>(ppm)                                             | Samp                                                                                                       | le Description                                                                                                   |
| 0'-5'                        | 1            | HA        | 60"                   | 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0 | 4" Asphalt.<br>4"-5': Brown, fine to medium suba<br>some silt, loose, moist, no staining                   | ngular SAND and fine to coarse GRAVEL,<br>, no odor.                                                             |
| 5'-10'                       | 2            | GP        | 36"                   | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0                                | Same as above.                                                                                             |                                                                                                                  |
| 10'-15'                      | 3            | GP        | 48"                   | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0                    | Same as above.                                                                                             |                                                                                                                  |
| 15'-20'                      | 4            | GP        | 36"                   | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0                                | Brown, fine to medium subangular<br>gravel, moderately sorted, loose, n                                    | SAND, trace fine to medium subrounded noist, no staining, no odor.                                               |
| 20'-25'                      | 5            | GP        | 48"                   | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0                    |                                                                                                            | subangular SAND, trace silt and fine to rately sorted, loose, moist, no staining,                                |
|                              |              |           |                       |                                                                 |                                                                                                            |                                                                                                                  |
| Sample<br>HA = Ha<br>GP = Ge | and A        | uger      |                       | <u> </u>                                                        | soil samples SB                                                                                            | SS-06 collected at 0'-0.5' and subsurface<br>-06(12'-14') and SB-06(22'-24') for<br>VOCs +10 TICs (8260C, 5035). |

|                                  |                 | D&B<br>and        | Engi<br>Arci       | INEERS<br>HITECTS | Project No.: 3150-37<br>Project Name: Fresh and Clean                                                      | Boring No.: SB-07 (floor drain)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich                                                                 |
|----------------------------------|-----------------|-------------------|--------------------|-------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling<br>Drill Rig<br>Date St | <b>g:</b> Ge    | oprobe            |                    |                   | Geologist: Paul Barusich<br>Drilling Method: Direct Push<br>Drive Hammer Weight:<br>Date Completed: 5/8/18 | Boring Completion Depth: 21'<br>Ground Surface Elevation: 150.77'<br>Boring Diameter: 2"                                                           |
| Donth                            | Na              | Turne             | Dee                | PID Per 6"        | Sample                                                                                                     | e Description                                                                                                                                      |
| <b>Depth</b><br>0'-3'            | <b>NO.</b><br>1 | <b>Type</b><br>GP | <b>Rec.</b><br>24" | (ppm)<br>0.0      | Brown, fine to medium subangular sorted, loose, moist, no staining, no                                     | SAND, trace fine subrounded gravel, well odor.                                                                                                     |
| 3'-6'                            | 2               | GP                | 24"                | 0.0               | Same as above.                                                                                             |                                                                                                                                                    |
| 6'-9'                            | 3               | GP                | 36"                | 0.0               | Brown-tan, fine to medium subangu<br>gravel, moderately sorted, loose, m                                   | lar SAND, trace silt and fine subrounded oist, no staining, no odor.                                                                               |
| 9'-12'                           | 4               | GP                | 30"                | 0.0               | Brown, fine to coarse subangular S moderately sorted, loose, moist, no                                     | AND, trace fine subrounded gravel, staining, no odor.                                                                                              |
| 12'-15'                          | 5               | GP                | 30"                | 0.0               | Brown, fine to coarse subangular S moderately sorted, loose, moist, no                                     | AND and fine subrounded GRAVEL, staining, no odor.                                                                                                 |
| 15'-18'                          | 6               | GP                | 36"                | 0.0               | Tan-brown, fine to medium subang<br>subrounded gravel, moderately sort                                     | ular SAND and fine to medium<br>ted, loose, moist, no staining, no odor.                                                                           |
| 18'-21'                          | 7               | GP                | 36"                | 0.0               | Same as above.                                                                                             |                                                                                                                                                    |
| Sample<br>GP = G                 |                 |                   |                    |                   | Bottom of structu<br>Sediment sample                                                                       | ottom of structure.<br>Ire is 3 feet below grade.<br>e SS-07 collected at 0'-0.5' and<br>ample SB-07(9'-11') for analysis of TCL<br>(8260C, 5035). |

| d                              |              | D&B<br>ND | Engi<br>Arci            | INEERS<br>Hitects                            | Project No.: 3150-37<br>Project Name: Fresh and Clean                                                                                           | Boring No.: SB-08<br>(Drywell under asphalt)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich                                                                        |  |
|--------------------------------|--------------|-----------|-------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -                              | <b>g:</b> Ge | oprobe    | : Aztech<br>6610DT<br>8 |                                              | Geologist: Paul Barusich<br>Drilling Method: Direct Push<br>Drive Hammer Weight:<br>Date Completed: 5/9/18                                      | Boring Completion Depth: 20'<br>Ground Surface Elevation: 150.73'<br>Boring Diameter: 2"                                                                               |  |
|                                |              |           |                         | PID Per 6"                                   | Sample                                                                                                                                          | e Description                                                                                                                                                          |  |
| Depth                          | No.          | Туре      | Rec.                    | (ppm)                                        | Camp                                                                                                                                            | e Beschption                                                                                                                                                           |  |
| 0'-5'                          | 1            | GP        | 36"                     | 0.1, 0.1<br>0.0, 0.0<br>0.0, 0.0             | Tan, fine to medium subangular SA<br>gravel, moderately sorted, loose, m                                                                        | ND, trace fine to medium subrounded oist, no staining, no odor.                                                                                                        |  |
| 5'-10'                         | 2            | GP        | 36"                     | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0             | Same as above.                                                                                                                                  |                                                                                                                                                                        |  |
| 10'-15'                        | 3            | GP        | 42"                     | 0.2, 0.1<br>0.0, 0.0<br>0.0, 0.0<br>0.0      | Gray tan-orange tan, fine to medium subangular SAND, trace fine to medium subrounded gravel, poorly sorted, loose, moist, no staining, no odor. |                                                                                                                                                                        |  |
| 15'-20'                        | 4            | GP        | 48"                     | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0 | Light gray-orange, fine to medium s<br>gravel, poorly sorted, loose, moist,                                                                     | subangular SAND, trace fine subrounded no staining, no odor.                                                                                                           |  |
|                                |              |           |                         |                                              |                                                                                                                                                 |                                                                                                                                                                        |  |
| Sample Types:<br>GP = Geoprobe |              |           |                         |                                              | Bottom of structu<br>Sediment sample<br>subsurface soil s                                                                                       | oottom of structure.<br>are is 21.5 feet below grade.<br>e SS-08 collected at 0'-0.5' and<br>amples SB-08(1'-3') and SB-08(10'-12')<br>CL VOCs +10 TICs (8260C, 5035). |  |

| d                                                                 |     | D&B<br>and | Engi<br>Arci | INEERS<br>Hitects   | Project No.: 315<br>Project Name: Fr                                       |                 | Boring No.: SS-09 (water meter pit)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich                               |
|-------------------------------------------------------------------|-----|------------|--------------|---------------------|----------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------|
| Drilling Contractor: Aztech<br>Drill Rig:<br>Date Started: 5/9/18 |     |            |              |                     | Geologist: Paul E<br>Drilling Method:<br>Drive Hammer W<br>Date Completed: | <br>/eight:     | Boring Completion Depth: 1'<br>Ground Surface Elevation: 150.92'<br>Boring Diameter: 2"                              |
| Depth                                                             | No. | Туре       | Rec.         | PID Per 6"<br>(ppm) |                                                                            | Sample          | Description                                                                                                          |
| 0'-1'                                                             | 1   | HA         | 12"          | 0.0, 0.0            |                                                                            |                 | SAND and SILT, trace fine subrounded et, no staining, trace grease-like odor.                                        |
|                                                                   |     |            |              |                     |                                                                            |                 |                                                                                                                      |
|                                                                   |     |            |              |                     |                                                                            |                 |                                                                                                                      |
|                                                                   |     |            |              |                     |                                                                            |                 |                                                                                                                      |
|                                                                   |     |            |              |                     |                                                                            |                 |                                                                                                                      |
|                                                                   |     |            |              |                     |                                                                            |                 |                                                                                                                      |
|                                                                   |     |            |              |                     |                                                                            |                 |                                                                                                                      |
|                                                                   |     |            |              |                     |                                                                            |                 |                                                                                                                      |
|                                                                   |     |            |              |                     |                                                                            |                 |                                                                                                                      |
|                                                                   |     |            |              |                     |                                                                            |                 |                                                                                                                      |
| Sample Types:<br>HA = Hand Auger                                  |     |            |              |                     |                                                                            | Sediment sample | ottom of structure.<br>re is 4 feet below grade.<br>SS-09 collected at 0'-0.5' for analysis of<br>ICs (8260C, 5035). |

|                       |            | )&B<br>ND         | Engi<br>Arci            | INEERS<br>HITECTS                            | Project No.: 3150-37<br>Project Name: Fresh and                                                         | Clean (Drywell near to MW-2)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich                                                                                                                                  |
|-----------------------|------------|-------------------|-------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                     | g: Ge      | oprobe            | : Aztech<br>6610DT<br>8 |                                              | Geologist: Paul Barusich<br>Drilling Method: Direct P<br>Drive Hammer Weight:<br>Date Completed: 5/9/18 |                                                                                                                                                                                                                  |
| Danth                 | Na         | <b>T</b>          | Dee                     | PID Per 6"                                   |                                                                                                         | Sample Description                                                                                                                                                                                               |
| <b>Depth</b><br>0'-5' | <b>NO.</b> | <b>Type</b><br>GP | <b>Rec.</b><br>24"      | <b>(ppm)</b><br>2.1, 1.9                     |                                                                                                         | parse subangular SAND and fine subrounded<br>ed, loose, moist, trace dark gray staining, trace                                                                                                                   |
|                       |            |                   |                         | 0.0, 0.0                                     |                                                                                                         | oarse subangular SAND and fine subrounded<br>ed, loose, moist, no staining, no odor.                                                                                                                             |
| 5'-10'                | 2          | GP                | 30"                     | 0.0, 0.0<br>0.0, 0.0<br>0.0                  |                                                                                                         | n subangular SAND, some fine to medium<br>ately sorted, loose, moist, no staining, no odor.                                                                                                                      |
| 10-15'                | 3          | GP                | 48"                     | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0 | Same as above.                                                                                          |                                                                                                                                                                                                                  |
| 15'-20'               | 4          | GP                | 42"                     | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0      | Orange-tan, fine to coarse<br>moderately sorted, loose, r                                               | subangular SAND and fine subrounded GRAVEL,<br>noist, no staining, no odor.                                                                                                                                      |
|                       |            |                   |                         |                                              |                                                                                                         |                                                                                                                                                                                                                  |
|                       |            |                   |                         |                                              |                                                                                                         |                                                                                                                                                                                                                  |
| Sample<br>GP = G      |            |                   |                         | <u>.</u>                                     | Bottom o<br>Sedimer<br>subsurfa                                                                         | is from bottom of structure.<br>of structure is 18.5 feet below grade.<br>It sample SS-10 collected at 0'-0.5' and<br>ce soil samples SB-10(5'-7') and SB-10(10'-12')<br>sis of TCL VOCs +10 TICs (8260C, 5035). |

| d                     |                 | )&B<br>ND         | Engi<br>Arci          | NEERS<br>HITECTS                        | Project No.: 3150-37<br>Project Name: Fresh and Clean                                                      | Boring No.: SB-11 (Drywell)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich                           |
|-----------------------|-----------------|-------------------|-----------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| -                     | <b>g:</b> Ge    | oprobe            | Aztech<br>6610DT<br>8 |                                         | Geologist: Paul Barusich<br>Drilling Method: Direct Push<br>Drive Hammer Weight:<br>Date Completed: 5/9/18 | Boring Completion Depth: 20'<br>Ground Surface Elevation: 114.39'<br>Boring Diameter: 2"                 |
| Denth                 |                 | -                 | Dua                   | PID Per 6"                              | Sample                                                                                                     | Description                                                                                              |
| <b>Depth</b><br>0'-5' | <b>No.</b><br>1 | <b>Type</b><br>GP | <b>Rec.</b><br>30"    | <b>(ppm)</b><br>0.2, 0.9                | 0-1': Dark brown-gray, fine to mediu<br>matter and fine subrounded gravel,<br>staining, no odor.           | moderately sorted, loose, moist, no                                                                      |
|                       |                 |                   |                       | 0.0, 0.0<br>0.0                         | 1'-2.5': Tan-light gray, fine to mediu<br>matter and fine subrounded gravel, i<br>staining, no odor.       |                                                                                                          |
| 5'-10'                | 2               | GP                | 36"                   | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0        | Tan-light gray, fine to medium subar<br>gravel, moderately sorted, loose, mo                               | ngular SAND, trace fine subrounded<br>bist, no staining, no odor.                                        |
| 10'-15'               | 3               | GP                | 36"                   | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0        | Light gray-orange, fine to medium so<br>gravel, moderately sorted, loose, mo                               | ubangular SAND, trace fine subrounded<br>bist, no staining, no odor.                                     |
| 15'-20'               | 4               | GP                | 42"                   | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0 | Tan, fine to medium subangular SAI<br>gravel, poorly sorted, loose, moist, n                               | ND, trace fine to medium subrounded<br>no staining, no odor.                                             |
|                       |                 |                   |                       |                                         |                                                                                                            |                                                                                                          |
|                       |                 |                   |                       |                                         |                                                                                                            |                                                                                                          |
|                       |                 |                   |                       |                                         |                                                                                                            |                                                                                                          |
|                       |                 |                   |                       |                                         |                                                                                                            |                                                                                                          |
| Sample<br>GP = G      |                 |                   | <u> </u>              |                                         | Sediment sample                                                                                            | re is 21 feet below grade.<br>SS-11 collected at 0'-0.5' and<br>ample SB-11(10'-12') for analysis of TCL |

| d                                                                                 |                           | )&B<br>ND | Engi<br>Arci | INEERS<br>HITECTS                       | Project No.: 3150-37<br>Project Name: Fresh and Clean                                                                                                           | Boring No.: SB-12<br>(Drywell adj. to Glen Head maint.bldg.)<br>Sheet <u>1</u> of <u>1</u><br>By: Paul Barusich                                 |  |  |  |
|-----------------------------------------------------------------------------------|---------------------------|-----------|--------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Drilling Contractor: Aztech<br>Drill Rig: Geoprobe 6610DT<br>Date Started: 5/9/18 |                           |           |              |                                         | Geologist: Paul Barusich<br>Drilling Method: Direct Push<br>Drive Hammer Weight:<br>Date Completed: 5/9/18                                                      | Boring Completion Depth: 20'<br>Ground Surface Elevation: 149.51<br>Boring Diameter: 2"                                                         |  |  |  |
| Depth                                                                             | Depth No. Type Rec. (ppm) |           |              |                                         | Sample Description                                                                                                                                              |                                                                                                                                                 |  |  |  |
| 0'-5'                                                                             | 1                         | GP        | 24"          | 0.0, 0.0                                | 0-1': Dark brown, fine to medium subangular SAND, trace silt and fine subrounded gravel and organic matter, moderately sorted, loose, moist, staining, no odor. |                                                                                                                                                 |  |  |  |
|                                                                                   |                           |           |              | 0.0, 0.0                                | 1'-2': Brown, fine to medium subangular SAND, trace silt and fine subrounded gravel, moderately sorted, loose, moist, no staining, no odor.                     |                                                                                                                                                 |  |  |  |
| 5'-10'                                                                            | 2                         | GP        | 42"          | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0 | Brown, fine subangular SAND and fine to medium subrounded GRAVEL,<br>moderately sorted, loose, moist, no staining, no odor.                                     |                                                                                                                                                 |  |  |  |
| 10'-15'                                                                           | 3                         | GP        | 36"          | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0        | Tan, fine to coarse subangular SAN gravel, moderately sorted, loose, mo                                                                                         | D, some fine to medium subrounded<br>bist, no staining, no odor.                                                                                |  |  |  |
| 15'-20'                                                                           | 4                         | GP        | 36"          | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0        | Same as above.                                                                                                                                                  |                                                                                                                                                 |  |  |  |
|                                                                                   |                           |           |              |                                         |                                                                                                                                                                 |                                                                                                                                                 |  |  |  |
|                                                                                   |                           |           |              |                                         |                                                                                                                                                                 |                                                                                                                                                 |  |  |  |
|                                                                                   |                           |           |              |                                         |                                                                                                                                                                 |                                                                                                                                                 |  |  |  |
| Sample<br>GP = G                                                                  |                           |           |              |                                         | Bottom of structu<br>Sediment sample                                                                                                                            | ottom of structure.<br>re is 16.5 feet below grade.<br>SS-12 collected at 0'-0.5' and<br>le SB-12(10'-12') for analysis of TCL<br>8260C, 5035). |  |  |  |

|                                                                     |     | D&B<br>and | Engi<br>Arci | INEERS<br>Hitects   | Project No.: 3150-37<br>Project Name: Fresh and                                                       | d Clean Boring No.: SS-14<br>Sheet <u>1</u> of <u>1</u><br>By: Tara Judge                                                                                                |  |  |
|---------------------------------------------------------------------|-----|------------|--------------|---------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Drilling Contractor: NA<br>Drill Rig: NA<br>Date Started: 1/24/2020 |     |            |              |                     | Geologist: Keith Robbins<br>Drilling Method: Hand A<br>Drive Hammer Weight:<br>Date Completed: 1/24/2 | AugerGround Surface Elevation: NABoring Diameter: NA                                                                                                                     |  |  |
| Depth                                                               | No. | Туре       | Rec.         | PID Per 6"<br>(ppm) | Sample Description                                                                                    |                                                                                                                                                                          |  |  |
| 0'-2"                                                               | 1   | HA         | 2"           | 100                 | •                                                                                                     | ge, medium to coarse SAND, some subrounded sorted, loose to medium compaction, dry to damp,                                                                              |  |  |
| Sample<br>HA = H                                                    |     |            | L            | 1                   | Bottom                                                                                                | <b>S:</b><br>ths from bottom of structure.<br>of structure is 6-8 feet below grade.<br>ent sample SS-14 collected at 0"-2"<br>llysis of TCL VOCs +10 TICs (8260C, 5035). |  |  |

| D&B ENGINEERS<br>AND ARCHITECTS<br>Drilling Contractor: NA<br>Drill Rig: NA<br>Date Started: 2/28/2020 |     |      |      |                     | Project No.: 315<br>Project Name: Fr                                      |                                                                           | Boring No.: SS-15<br>(Inside antique shop- next to<br>sink/heating and venting system)<br>Sheet <u>1</u> of <u>1</u><br>By: Tara Judge      |  |
|--------------------------------------------------------------------------------------------------------|-----|------|------|---------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                        |     |      |      |                     | Geologist: Keith<br>Drilling Method:<br>Drive Hammer W<br>Date Completed: | hod: Hand AugerGround Surface Elevation: NAner Weight:Boring Diameter: NA |                                                                                                                                             |  |
| Depth                                                                                                  | No. | Туре | Rec. | PID Per 6"<br>(ppm) | Sample Description                                                        |                                                                           |                                                                                                                                             |  |
| 0'-3"                                                                                                  | 1   | HA   | 3"   | 22                  | plastic, tape, rubb                                                       | er, piece of tile, bi<br>iece of aluminum,                                | e to medium sand, trace gravel, some<br>nding plastic strips, small piece of<br>poorly sorted, loose, moist to wet (due to<br>ing, no odor. |  |
| Sample<br>HA = Ha                                                                                      |     |      |      |                     |                                                                           | Bottom of structu<br>Sediment sample                                      | ottom of structure.<br>re is 42 inches below grade.<br>s SS-15 collected at 0"-3"<br>CL VOCs +10 TICs (8260C, 5035).                        |  |

| d                                                                   |     | D&B<br>and | Engi<br>Arci | NEERS<br>Hitects    | Project No.: 3150-37<br>Project Name: Fresh and Clean                                                        | Boring No.: SB-16<br>(Drywell down stairwell in front of store)<br>Sheet <u>1</u> of <u>1</u><br>By: Tara Judge          |  |  |
|---------------------------------------------------------------------|-----|------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Drilling Contractor: NA<br>Drill Rig: NA<br>Date Started: 2/28/2020 |     |            |              |                     | Geologist: Keith Robbins<br>Drilling Method: Hand Auger<br>Drive Hammer Weight:<br>Date Completed: 2/28/2020 | Boring Completion Depth: 25"<br>Ground Surface Elevation: NA<br>Boring Diameter: 2"                                      |  |  |
| Depth                                                               | No. | Туре       | Rec.         | PID Per 6"<br>(ppm) | Sample Description                                                                                           |                                                                                                                          |  |  |
| 0'-1'                                                               | 1   | HA         | 9            | 2.0, 7.2            | metal, damp to moist, no staining, r                                                                         | ter, poorly sorted, loose, small piece of<br>no odor.<br>n to coarse sand, sub-rounded gravel                            |  |  |
| Sample Types:<br>HA = Hand Auger                                    |     |            |              |                     | Bottom of structu<br>Sediment sample                                                                         | ottom of structure.<br>ire is 4 feet below grade.<br>e SS-16 collected at 0'-1'<br>CL VOCs +10 TICs (8260C, 5035).<br>ed |  |  |

| d     | b     | D&<br>AN     | b Ei<br>d A                       | NGINEI<br>Rchite               | ERS<br>ECTS         | <b>Project No.:</b> 3150-37<br><b>Project Name:</b> Former Fresh and<br>Clean                                    |                                                  | Boring No.: SB-17<br>Sheet <u>1</u> of <u>1</u><br>By: Carl Schmidlapp                                                            |  |
|-------|-------|--------------|-----------------------------------|--------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
| (ADT) | g: LM | U6969        | Track M                           | Drilling & Testi<br>ounter HSA | ing, Inc.           | Geologist: Karen Kraft<br>Drilling Method: Hallow Ster<br>Drive Hammer Weight: 1401<br>Date Completed: 7/27/2020 | lbs                                              | Boring Completion<br>Depth: 120'<br>Ground Surface<br>Elevation:<br>Boring Diameter: 4.25"                                        |  |
| Depth | No    | Туре         | Rec.                              | Blow Count                     | PID Per 6"<br>(ppm) | Sample                                                                                                           | e Descrip                                        | otion                                                                                                                             |  |
| 2001  |       | Samp<br>HA = | le Types<br>Hand Au<br>Split spoo | s:<br>ger                      |                     | (23'-25') a<br>(105'-107<br>TCL VOC                                                                              | and subs<br>7') were s<br>Cs +10 by<br>depth gro | ample SB-17 collected at<br>urface soil sample SB-17<br>ubmitted for analysis of<br>USEPA Method 8260C.<br>pundwater sample GW-17 |  |

| C      | b     | D8<br>AN     | kb e<br>Id A                      | NGINE<br>Rchit                 | ERS<br>ECTS         | <b>Project No.:</b> 3150-37<br><b>Project Name:</b> Former Fresh and<br>Clean                                            | Boring No.: SB-18<br>Sheet <u>1</u> of <u>1</u><br>By: Carl Schmidlapp                                                                      |
|--------|-------|--------------|-----------------------------------|--------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| (ADT)  | g: LM | U6969        | Track Mo                          | Drilling & Testi<br>ounter HSA | ing, Inc.           | Geologist: Karen Kraft<br>Drilling Method: Hallow Stem Auger<br>Drive Hammer Weight: 140lbs<br>Date Completed: 7/30/2020 | Boring Completion<br>Depth: 120'<br>Ground Surface<br>Elevation:<br>Boring Diameter: 4.25"                                                  |
| Depth  | No    | Туре         | Rec.                              | Blow Count                     | PID Per 6"<br>(ppm) | Sample Descri                                                                                                            | ption                                                                                                                                       |
| Doptin | 110.  | Samp<br>HA = | le Types<br>Hand Au<br>Split spoo | s:<br>ger                      |                     | (11'-13') and subs<br>18(106'-108') wer<br>TCL VOCs +10 b                                                                | ample SB-18 collected at<br>surface soil sample SB-<br>e submitted for analysis of<br>y USEPA Method 8260C.<br>oundwater sample GW-18<br>d. |

| C                                                                                                                                | b   | D&<br>AN | kb e<br>Id A | NGINE             | EERS<br>ECTS                                 | <b>Project No.:</b> 3150-37<br><b>Project Name:</b> Former Fresh and<br>Clean                                               | Boring No.: SB-19<br>Sheet <u>1</u> of <u>3</u><br>By: Carl Schmidlapp                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----|----------|--------------|-------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Drilling Contractor: Aquifer Drilling & Testing, Inc.<br>(ADT)<br>Drill Rig: LMU6969 Track Mounter HSA<br>Date Started: 8/4/2020 |     |          |              |                   |                                              | Geologist: Carl Schmidlapp<br>Drilling Method: Hallow Stem Auger<br>Drive Hammer Weight: 140lbs<br>Date Completed: 8/5/2020 | Boring Completion<br>Depth: 120'<br>Ground Surface<br>Elevation:<br>Boring Diameter: 4.25" |  |  |
| PID Per 6"                                                                                                                       |     |          |              |                   |                                              | Sample Descrip                                                                                                              | otion                                                                                      |  |  |
| Depth                                                                                                                            | No. |          | Rec.         | Blow Count        | (ppm)                                        |                                                                                                                             |                                                                                            |  |  |
| 0'-2'                                                                                                                            | 1   | HA       | 24"          | NA                | 0.0, 0.0,                                    | Dark-brown light gray fine medium SA                                                                                        |                                                                                            |  |  |
|                                                                                                                                  |     |          | 0.4"         |                   | 0.0, 0.0                                     | stone, poorly sorted, dry, no staining o                                                                                    |                                                                                            |  |  |
| 2-4'                                                                                                                             | 2   | HA       | 24"          | NA                | 0.0, 0.0,<br>0.0, 0.0                        | Dark-brown light orange fine medium s<br>coarse gravel, trace silt, poorly sorted,<br>or odor.                              | damp to dry, no staining                                                                   |  |  |
| 4-5                                                                                                                              | 3   | HA       | 12"          | NA                | 0.0, 0.0                                     | Brown to light orange silty SAND, trace fine gravel, moist to damp, no staining or odor.                                    |                                                                                            |  |  |
| 5'-7'                                                                                                                            | 4   | SS       | 24"          | 18, 21, 17,<br>19 | 0.0, 0.0<br>0.0, 0.0                         | Tan-brown, medium to coarse SAND, some medium to coarse subrounded gravel, loose, dry, no staining or odor.                 |                                                                                            |  |  |
| 7'-9'                                                                                                                            | 5   | SS       | 18"          | 17, 20, 28,<br>31 | 85,90<br>2.1                                 | Orange, medium to fine SAND, loose, dry, high PID, dry, no staining or odor.                                                |                                                                                            |  |  |
| 9'-11'                                                                                                                           | 6   | SS       | 9"           | 27, 30, 25,<br>27 | 1.2, 0.0<br>0.0, 0.0<br>0.0, 0.0             | Tan, medium to coarse SAND and fine to medium subrounded gravel, loose, dry, no odor or staining.                           |                                                                                            |  |  |
| 11'-13'                                                                                                                          | 7   | SS       | 16"          | 28, 27, 27,<br>29 | 0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0<br>0.0, 0.0 | gravel, moist, poorly sorted, loose, no odor or staining.                                                                   |                                                                                            |  |  |
| 13'-15'                                                                                                                          | 8   | SS       | 18"          | 22, 25, 22,<br>22 | 0.0, 0.0<br>0.0                              | Light brown medium to coarse SAND, loose, poorly sorted, moist, no odor or                                                  |                                                                                            |  |  |
| 15'-17'                                                                                                                          | 9   | SS       | 15"          | 21, 20, 21,<br>23 | 0.0, 0.0                                     | Same as above.                                                                                                              |                                                                                            |  |  |
| 17'-19'                                                                                                                          | 10  | SS       | 13"          | 25, 29, 30,<br>35 | 0.0, 0.0                                     | Same as above.                                                                                                              |                                                                                            |  |  |
| 19'-21'                                                                                                                          | 11  | SS       | 17"          | 25, 24, 21,<br>27 | 0.0, 0.0                                     | Gray, medium to coarse SAND, some<br>subrounded gravel, moist, loose, poorl<br>staining.                                    |                                                                                            |  |  |
| 21'-23'                                                                                                                          | 12  | SS       | 13"          | 28, 30, 30,<br>31 | 0.0, 0.0                                     | Gray medium to coarse SAND, trace n<br>gavel, loose, moist, no odor or staining                                             | ].                                                                                         |  |  |
| 23'-25'                                                                                                                          | 13  | SS       | 20"          | 21, 27, 25,<br>30 | 1.1, 2.4,<br>0,0                             | Brown medium to coarse SAND, some poorly sorted, loose, moist, no odor or                                                   |                                                                                            |  |  |
| 25'-27'                                                                                                                          | 14  | SS       | 16"          | 27, 25, 31,<br>30 | 0.0, 0.0,<br>0.0                             | Same as above.                                                                                                              |                                                                                            |  |  |

| d       | b     | D8<br>AN | àb e<br>Id A | NGINI<br>Archit               | EERS<br>Tects         | <b>Project No</b> .: 3150-37<br><b>Project Name:</b> Former Fresh and<br>Clean                                                                                                                                     | Boring No.: SB-19<br>Sheet <u>1</u> of <u>3</u><br>By: Carl Schmidlapp |  |
|---------|-------|----------|--------------|-------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| (ADT)   | J: LM | U6969    | Track M      | Drilling & Test<br>ounter HSA | ing, Inc.             | Geologist: Carl Schmidlapp<br>Drilling Method: Hallow Stem Auger<br>Drive Hammer Weight: 140lbs<br>Date Completed: 8/5/2020Boring Completion<br>Depth: 120'<br>Ground Surface<br>Elevation:<br>Boring Diameter: 4. |                                                                        |  |
| 20' 20' | 15    | SS       | 20"          | 10 20 21                      | PID Per 6"            |                                                                                                                                                                                                                    |                                                                        |  |
| 30'-32' | 15    | 55       | 20"          | 19, 20, 21,<br>22             | 0.0, 0.0,<br>0.0      | Gray/tan medium to coarse SAND, con rounded gravel, loose, moist, no odor                                                                                                                                          |                                                                        |  |
| 35'-37' | 16    | SS       | 22"          | 23, 21, 21,<br>19             | 0.0, 0.0,<br>0.0, 0.0 | Tan/brown medium to fine SAND, race<br>loose, damp, no odor or staining.                                                                                                                                           | e well rounded gravel,                                                 |  |
| 40'-42' | 17    | SS       | 20"          | 18, 21, 21,<br>23             | 0.0, 0.0,<br>0.0, 0.0 | Tan/redish medium to fine SAND, trace medium to coarse we rounded gravel, loose, damp, no odor or staining.                                                                                                        |                                                                        |  |
| 45'-47' | 18    | SS       | 18"          | 20, 19, 25,<br>21             | 0.0, 0.0,<br>0.0      | Light tan, fine SAND, trace subrounded gravel, loose, damp odor or staining.                                                                                                                                       |                                                                        |  |
| 50'-52' | 19    | SS       | 20"          | 20, 21, 25,<br>26             | 0.0, 0.0,<br>0.0      | Light tan fine SAND, well sorted loose, damp, no odor or staining.                                                                                                                                                 |                                                                        |  |
| 55'-57' | 20    | SS       | 16"          | 22, 24, 26,<br>25             | 0.0, 0.0,<br>0.0      | Tan fine SAND, well sorted, moist, loose, no odor or staning                                                                                                                                                       |                                                                        |  |
| 60'-62' | 21    | SS       | 16"          | 21, 21, 23,<br>21             | 0.0, 0.0,<br>0.0      | Same as above.                                                                                                                                                                                                     |                                                                        |  |
| 65'-67' | 22    | SS       | 19"          | 21, 23, 21,<br>19             | 0.0, 0.0,<br>0.0      | Same as above.                                                                                                                                                                                                     |                                                                        |  |
| 70'-72' | 23    | SS       | 18"          | 21, 20, 25,<br>25             | 0.0, 0.0,<br>0.0      | Same as above.                                                                                                                                                                                                     |                                                                        |  |
| 75'-77' | 24    | SS       | 6"           | 20, 20, 23,<br>25             | 0.0, 0.0,<br>0.0      | Tan medium to coarse SAND, trace w damp, no odor or staining.                                                                                                                                                      | ell rounded gravel, loose,                                             |  |
| 80'-82' | 25    | SS       | 14"          | 22, 20, 25,<br>27             | 0.0, 0.0,<br>0.0      | Tan medium to fine SAND, trace well i damp, no odor or staining.                                                                                                                                                   | rounded gravel, loose,                                                 |  |
| 85'-87' | 26    | SS       | 12"          | 25, 24, 26,<br>26             | 0.0, 0.0              | Tan/light tan medium to fine SAND, we odor or staining.                                                                                                                                                            | ell sorted, loose, damp, no                                            |  |
| 90'-92' | 27    | SS       | 18"          | 28, 31, 29,<br>27             | 0.0, 0.0,<br>0.0      | Same as above.                                                                                                                                                                                                     |                                                                        |  |
| 95'-97' | 28    | SS       | 14"          | 24, 23, 20,<br>20             | 0.0, 0.0              | Tan medium to fine SAND, trace well i poorly sorted, damp, no odor or stainir                                                                                                                                      |                                                                        |  |

| C             | b     | D8<br>AN | kb e<br>id A                              | NGINE<br>Rchit                 | EERS<br>Tects          | <b>Project No.:</b> 3150-37<br><b>Project Name:</b> Former Fresh and<br>Clean                                                                                                             | Boring No.: SB-19<br>Sheet <u>1</u> of <u>3</u><br>By: Carl Schmidlapp                                                                          |  |  |
|---------------|-------|----------|-------------------------------------------|--------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (ADT)         | g: LM | U6969    | Track Mo                                  | Drilling & Testi<br>bunter HSA | ing, Inc.              | Geologist: Carl SchmidlappBoring CompletionDrilling Method: Hallow Stem AugerDepth: 120'Drive Hammer Weight: 140lbsGround SurfaceDate Completed: 8/5/2020Elevation:Boring Diameter: 4.25" |                                                                                                                                                 |  |  |
|               |       |          |                                           |                                |                        | Comula Deceri                                                                                                                                                                             |                                                                                                                                                 |  |  |
| 100'-         | 29    | SS       | 12"                                       | 23, 25, 25,                    | PID Per 6"<br>0.0, 0.0 | Sample Descrip                                                                                                                                                                            |                                                                                                                                                 |  |  |
| 102'          | 23    |          | 12                                        | 26, 23, 25, 26, 26             | 0.0, 0.0               |                                                                                                                                                                                           |                                                                                                                                                 |  |  |
| 105'-<br>107' | 30    | SS       | 18"                                       | 20, 23, 25,<br>24              | 0.0, 0.0,<br>0.0       | Same as above.                                                                                                                                                                            |                                                                                                                                                 |  |  |
| 107'-<br>109' | 31    | SS       | 2"                                        | 21, 23, 25,<br>26`             | 0.0                    | Same as above.                                                                                                                                                                            |                                                                                                                                                 |  |  |
| 110'-<br>112' | 32    | SS       | 16"                                       | 20, 21, 24,<br>25              | 0.0, 0.0,<br>0.0       | Light tan medium to fine SAND, well sorted, loose, damp, no odor or staining.                                                                                                             |                                                                                                                                                 |  |  |
| 112'-<br>114' | 33    | SS       | 16"                                       | 20, 22, 23,<br>24              | 0.0, 0.0,<br>0.0       | Light tan medium to fine SAND, well so or staining.                                                                                                                                       | orted, loose, wet, no odor                                                                                                                      |  |  |
| 114'-<br>116' | 34    | SS       | 12"                                       | 25, 28, 28,<br>30              | 0.0, 0.0               | Tan medium to fine SAND, trace medi gravel, wet, no odor or staining.                                                                                                                     | um to fine well rounded                                                                                                                         |  |  |
| 116'-<br>118' | 35    | SS       | 14"                                       | 27, 27, 24,<br>25              | 0.0, 0.0               | Same as above.                                                                                                                                                                            |                                                                                                                                                 |  |  |
| 118'-<br>120' | 36    | SS       | 12"                                       | 27, 26, 25,<br>24              | 0.0, 0.0               | Same as above.                                                                                                                                                                            |                                                                                                                                                 |  |  |
|               | I     | HA =     | <b>le Types</b><br>Hand Au(<br>Split Spoo | ger                            | 1                      | (7'-8') and subsurf<br>19(110'-112') were<br>TCL VOCs +10 by                                                                                                                              | ample SB-19 collected at<br>face soil sample SB-<br>e submitted for analysis of<br>/ USEPA Method 8260C.<br>oundwater sample GW-19<br>3'-118'). |  |  |

| NEW YORK STATE DEPARTMENT OF HEALTH<br>INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY<br>CENTER FOR ENVIRONMENTAL HEALTH         |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| This form must be completed for each residence involved in indoor air testing.                                                            |
| Preparer's Name Paul Barnsich Date/Time Prepared 3/2/18-1130<br>Preparer's Affiliation DB Engineers and Architects Phone No. 516-364-9890 |
|                                                                                                                                           |
| Purpose of Investigation Fridad all assessment                                                                                            |
| 1. OCCUPANT:                                                                                                                              |
| Interviewed: (V) N                                                                                                                        |
| Last Name: Fricke First Name: Doreen                                                                                                      |
| Address:                                                                                                                                  |
| County:                                                                                                                                   |
| Home Phone: Office Phone: <u>516-676-3725</u>                                                                                             |
| Number of Occupants/persons at this location Age of Occupants                                                                             |
| 2. OWNER OR LANDLORD: (Check if same as occupant)                                                                                         |
| Interviewed: D/N                                                                                                                          |
| Last Name:                                                                                                                                |
| Last Name: <u>Catatsie</u> Catuso<br>First Name: <u>Giuseppe</u><br>Address: <u>6 Morris Are. Flex (are 1154)</u>                         |
| County:                                                                                                                                   |
| Home Phone: Office Phone: _ <u>516-972-1195</u>                                                                                           |
|                                                                                                                                           |
| 3. BUILDING CHARACTERISTICS                                                                                                               |

 Residential Industrial
 School
 Commercial/Multi-use

|                                                                                              |                                                                        | 2                                                               |                    |              |    |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------|--------------|----|
| If the property is residen                                                                   | tial, type? (Circle approp                                             | priate response)                                                | 5 39 - 1           | а — <i>а</i> | 6T |
| Ranch<br>Raised Ranch<br>Cape Cod<br>Duplex<br>Modular                                       | 2-Family<br>Split Level<br>Contemporary<br>Apartment House<br>Log Home | 3-Family<br>Colonial<br>Mobile Home<br>Townhouses/Cor<br>Other: | ndos               |              |    |
| If multiple units, how ma                                                                    | any?                                                                   | с"<br>а                                                         |                    | *            |    |
| If the property is comme<br>Business Type(s)                                                 | etail/textboot                                                         | 5                                                               |                    | ñ            |    |
| Does it include reside                                                                       | nces (i.e., multi-use)? Y                                              | / N If yes, he                                                  | ow many?           |              | 2  |
| Other characteristics:                                                                       | 5<br>                                                                  | ₩. <b>F</b>                                                     |                    |              |    |
| Number of floors_                                                                            | Bu                                                                     | ilding age 40+ yea                                              | rs                 |              |    |
| Is the building insulate                                                                     | -d N Ho                                                                |                                                                 | verage / Not Tight |              |    |
| 4. AIRFLOW (V/A<br>Use air current tubes or<br>Airflow between floors                        | .)                                                                     | 18                                                              |                    | be:          |    |
| 4. AIRFLOW (V/A<br>Use air current tubes or                                                  | .)                                                                     | 18                                                              |                    | be:          |    |
| 4. AIRFLOW (N/A<br>Use air current tubes or                                                  | .)                                                                     | 18                                                              |                    | ibe:         |    |
| 4. AIRFLOW (V/A<br>Use air current tubes or<br>Airflow between floors<br>Airflow near source | .)                                                                     | 18                                                              |                    | ibe:         | -  |
| 4. AIRFLOW (V/A<br>Use air current tubes or<br>Airflow between floors                        | .)                                                                     | 18                                                              |                    | ibe:         |    |
| 4. AIRFLOW (V/A<br>Use air current tubes or<br>Airflow between floors<br>Airflow near source | .)                                                                     | 18                                                              |                    | ibe:         |    |
| 4. AIRFLOW (V/A<br>Use air current tubes or<br>Airflow between floors<br>Airflow near source | .)                                                                     | 18                                                              |                    | ibe:         |    |
| 4. AIRFLOW (V/A<br>Use air current tubes or<br>Airflow between floors<br>Airflow near source | .)                                                                     | 18                                                              |                    | ibe:         |    |

5.

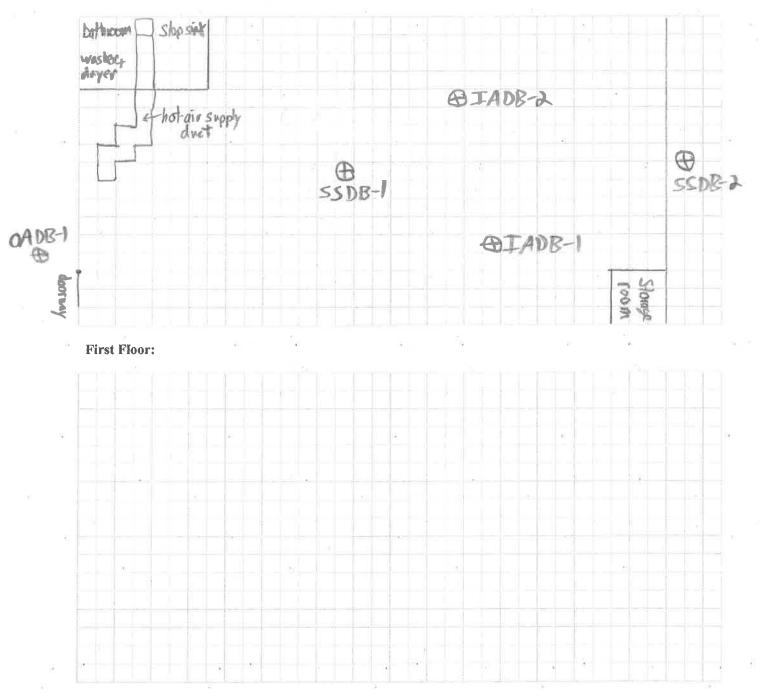
BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

| a. Above grade constru                                                                                            | ction: wood frame                    | ( concrete                              | stone             | brick            |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|-------------------|------------------|
| b. Basement type:                                                                                                 | full                                 | crawlspace                              | slab              | other            |
| c. Basement floor:                                                                                                | concrete                             | dirt                                    | stone             | other            |
| d. Basement floor:                                                                                                | uncovered .                          | + covered                               | covered wit       | n carpet         |
| e. Concrete floor:                                                                                                | unsealed                             | sealed                                  | sealed with       | paint            |
| f. Foundation walls:                                                                                              | poured                               | block                                   | stone             | other            |
| g. Foundation walls:                                                                                              | unsealed                             | sealed                                  | sealed with       |                  |
| h. The basement is:                                                                                               | wet                                  | damp                                    | dry               | moldy            |
| i. The basement is:                                                                                               | finished                             | unfinished                              | partially fin     |                  |
| j. Sump present?                                                                                                  | Y (N) ->                             | Floordrain w                            | / potential c     | drynell          |
| k. Water in sump?                                                                                                 | Y / (N) not applicab                 | le                                      |                   |                  |
| Basement/Lowest level dept                                                                                        | th below grade: $O$                  | (feet)                                  |                   |                  |
| Identify potential soil vapor<br>Floor drain / M                                                                  | entry points and app<br>Mr Crocking. | 14                                      | g., cracks, utili | 6                |
| 6. HEATING, VENTING<br>Type of heating system(s) un<br>Hot air circulation<br>Space Heaters<br>Electric baseboard |                                      | ircle all that app<br>Hot<br>ation Radi |                   | đ                |
| The primary type of fuel us                                                                                       | ed is:                               |                                         | *                 | 50<br>50         |
| Natural Gas<br>Electric<br>Wood                                                                                   | Fuel Oil<br>Propane<br>Coal          | Sola                                    |                   |                  |
| Domestic hot water tank fu                                                                                        | eled by: Small electr                | iz heater, ho                           | thater hear       | ter on Rid floor |
| Boiler/furnace located in:                                                                                        | Basement Out                         | doors 'Main                             | n Floor           | Other            |
| Air conditioning:                                                                                                 | Central Air Wir                      | dow units Open                          | n Windows         | None             |

Are there air distribution ducts present? (

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Y/N


| Itot air supply duct zigzag South/e                                                               | east from    | heater on                     | southern wall      |
|---------------------------------------------------------------------------------------------------|--------------|-------------------------------|--------------------|
|                                                                                                   | 2            |                               |                    |
|                                                                                                   |              |                               |                    |
|                                                                                                   | 17           |                               | 77                 |
| 7. OCCUPANCY                                                                                      | $\bigcirc$   | ,                             |                    |
| Is basement/lowest level occupied? Full-time                                                      | ccasionally  | Seldom                        | Almost Never       |
| Level General Use of Each Floor (e.g., family                                                     | room, bedroe | om, laundry, wo               | orkshop, storage)  |
| Basement Retail/Store                                                                             |              |                               | 2                  |
| 1 <sup>st</sup> Floor Retail                                                                      |              |                               |                    |
| 2 <sup>nd</sup> Floor                                                                             |              | 1                             |                    |
| 3 <sup>rd</sup> Floor                                                                             |              |                               |                    |
| 4 <sup>th</sup> Floor                                                                             | 20           |                               |                    |
|                                                                                                   |              |                               |                    |
| 8. FACTORS THAT MAY INFLUENCE INDOOR AIR                                                          | R QUALITY    | ł                             |                    |
| a. Is there an attached garage?                                                                   |              | Y/N                           |                    |
| b. Does the garage have a separate heating unit?                                                  |              | Y/N/NA                        |                    |
| c. Are petroleum-powered machines or vehicles<br>stored in the garage (e.g., lawnmower, atv, car) |              | Y / N / NA<br>Please specify_ |                    |
| d. Has the building ever had a fire?                                                              | *            | Y (N) When?                   | 51                 |
| e. Is a kerosene or unvented gas space heater present?                                            |              | Y N Where?                    | <b>)</b>           |
| f. Is there a workshop or hobby/craft area?                                                       | Y            | Where & Type                  | ?                  |
| g. Is there smoking in the building?                                                              | Y (N)        | How frequently                | ?                  |
| h. Have cleaning products been used recently?                                                     | (V/N         |                               | Windex + wood oils |
| i. Have cosmetic products been used recently?                                                     |              | When & Type?                  |                    |

| 5                                                                                                                                                                                    |                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| j. Has painting/staining been done in the last 6 months?                                                                                                                             | Y / N Where & When?                                 |
| k. Is there new carpet, drapes or other textiles?                                                                                                                                    | Y / 🕅 Where & When?                                 |
| I. Have air fresheners been used recently?                                                                                                                                           | Y / 😡 When & Type?                                  |
| m. Is there a kitchen exhaust fan?                                                                                                                                                   | Y / N If yes, where vented?                         |
| n. Is there a bathroom exhaust fan?                                                                                                                                                  | (Y)/ N If yes, where vented? Outside.               |
| o. Is there a clothes dryer?                                                                                                                                                         | (Y) N If yes, is it vented outside $(Y)$ N          |
| p. Has there been a pesticide application?                                                                                                                                           | Y / N When & Type?                                  |
| Are there odors in the building?<br>If yes, please describe:                                                                                                                         | Y (N)                                               |
| <b>Do any of the building occupants use solvents at work?</b><br>(e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist | Y /<br>auto body shop, painting, fuel oil delivery, |
| If yes, what types of solvents are used?                                                                                                                                             |                                                     |
| If yes, are their clothes washed at work?                                                                                                                                            | Y / N                                               |
| Do any of the building occupants regularly use or work at a response)                                                                                                                | a dry-cleaning service? (Circle appropriate         |
| Yes, use dry-cleaning regularly (weekly)<br>Yes, use dry-cleaning infrequently (monthly or less)<br>Yes, work at a dry-cleaning service                                              | No<br>Unknown                                       |
| Is there a radon mitigation system for the building/structur<br>Is the system active or passive? Active/Passive                                                                      | re? Y / Date of Installation:                       |
| 9. WATER AND SEWAGE                                                                                                                                                                  |                                                     |
| Water Supply: Public Water Drilled Well Drive                                                                                                                                        | en Well Dug Well Other:                             |
|                                                                                                                                                                                      |                                                     |
| Sewage Disposal: Public Sewer Septic Tank Leach                                                                                                                                      | h Field Dry Well Other:                             |
| Sewage Disposal: Public Sewer Septic Tank Leach                                                                                                                                      |                                                     |
|                                                                                                                                                                                      | tial emergency)                                     |
| 10. RELOCATION INFORMATION (for oil spill residenti                                                                                                                                  | tial emergency)                                     |
| 10. RELOCATION INFORMATION (for oil spill residenti<br>a. Provide reasons why relocation is recommended:                                                                             | riends/family relocate to hotel/motel               |

### **11. FLOOR PLANS**

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

**Basement:** 



#### **12. OUTDOOR PLOT**

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

Glenthead Rd. Fire shop Plus Railroad Are Street schod subject OADB-1 Wind direction building 0-5mp DIKING 10 Gfen Head Elementary School Lawnmower Repair

#### **13. PRODUCT INVENTORY FORM**

Make & Model of field instrument used: <u>PPb</u> RAE 3000

List specific products found in the residence that have the potential to affect indoor air quality.

| Location | Product Description     | Size<br>(units) | Condition   | Chemical Ingredients                                                                                          | Field<br>Instrument<br>Reading<br>(units) (ppb) | Photo **<br><u>Y / N</u> |
|----------|-------------------------|-----------------|-------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------|
| Basement | Silicon lubricants      | MOZ             | 4 (4-units) | petro. distillates, proprine, 14 butave                                                                       | 225                                             | V                        |
|          | Aretone                 | 1g+             | U           | acetone                                                                                                       | 192                                             | Ý                        |
|          | Spectracide waspthornet | 116             | N           | chloroyntos, transalleth nin                                                                                  | 217                                             | - 5/                     |
|          | WD-40                   | 302             | И           | petro. dutillates                                                                                             | 219                                             | 14                       |
|          | 3-11-1-01               | 802             | U (3-Units) | petro, dutillates                                                                                             | 990                                             | Y                        |
|          | DAP Coult/silicon       | 100/02          | U (2-Unity) | Actor duviales, Dipopulae gyrol<br>dipopolate, dien 1900<br>actore, methand, propare, xylene<br>ethyl benzene | 210                                             | ý                        |
|          | Sav-a-ceiling           | 1502            | 4 (2-4415)  | acetore, methanol, propare, xylene                                                                            | 990                                             | 'Y                       |
|          | fel-Glass               | 1202            | n (Junits)  | d-limonere, H-nonyiphanal, tompoxypopen<br>nonyiphenol, ethoxy tated<br>propare, hexare, yso hoseare isomers  | 212                                             | 'Y                       |
|          | Knylon enamal           | 1102            | u (Junit)   | Collo hexane                                                                                                  | 211                                             | /y                       |
| )<br>I   | Rustoleum primer        | Boz             | 4           | propane, n-butyl actate, aretone,<br>netrylethyl Ketoxi ne, etwy benzene                                      | 267                                             |                          |
|          | Kleonstrip acetore      | 11              | uo          | actone                                                                                                        | 277                                             | ý                        |
|          | Atunian Starting Pluid  | 10.702          | N           | carbon dioxide, n-heptane,                                                                                    | 270                                             | Y                        |
|          | Great Statt Gapt Cracks | 1602            |             | polymeric diagrante, polyetrane,<br>prepsymers, isobutane                                                     | 272                                             | × Y                      |
|          | Beto Externe Stripper   | 519             | IX.         | nonoethandanine                                                                                               | 270                                             | Ϋ́                       |
|          | 2                       |                 | ×           | <                                                                                                             | ас                                              | /                        |
|          |                         |                 | (4          |                                                                                                               |                                                 | 34                       |
| .9       |                         |                 |             | (F)                                                                       |                                                 |                          |
|          |                         |                 |             |                                                                                                               |                                                 |                          |
|          |                         |                 |             |                                                                                                               |                                                 |                          |

\* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** \*\* Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

#### 13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: <u>Mb NTF 2000</u> List specific products found in the residence that have the potential to affect indoor air quality.

Field Instrument Photo " Size **Chemical Ingredients Product Description** Condition<sup>\*</sup> Location Reading <u>Y/N</u> (units) (units) Basement petro dutilates 378 WAYD Work (Sunits) 402 nethyl alrhol, bitrex 150 391) deller ĺλ alk, Methanol eth) deeier 1202 1410 M 10 Heptone, ethane, 11 oxybus, 364 Hui 67, etroellan dietore, butane, isolatore, xylene 369 ACLAUDI 1007 Utrimethy/benzere, mesitylene beto - a whiletes, themethy wence 34 7502 ressing ÎΛ butave Orboane propare in-bytyl aletate, acetone 102 Hunits 39 MOSC n-butane, Xlones, PIME, etnylbenzee heavy parattinic on 1, med aliphitic H-C streat, 3000 proprint putilionante popare, n-bilty lactate, autore, 52 y aunts 2 10A STA Pull y etw/ Denzene MEK parntin waxes, chila onated hydrocerban Û netryletier, yumetrylerediphenyl 07 disocyanate U petro-distillates Ŋ 602 alphatic hydro carbons, Kertones (1(3-units) 1002 toluene tetra-flouvoethane, 502 [} bhear buttonyethanel / ethylee, give hervi ี่ ขก ether isophon alco Menes LVPpetro Solvert, polylimethylalowa 502 propener A-butane acetore, sylere IMEK, peto. dutilate TC 6 Nel 07 Dropane

\* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** \*\* Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

### 13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: <u><u>ppb</u> K/+</u>

List specific products found in the residence that have the potential to affect indoor air quality.

| Location | Product Description     | Size<br>(units) | Condition <sup>*</sup> | Chemical Ingredients                                                        | Field<br>Instrument<br>Reading<br>(units) | Photo **<br><u>Y / N</u> |
|----------|-------------------------|-----------------|------------------------|-----------------------------------------------------------------------------|-------------------------------------------|--------------------------|
| Basement | Krylon Enemal           | 1302            | ų                      | propane, hexane, isoherane, isohers                                         | 500                                       | Y                        |
|          | WD-40                   | 1102            | D                      | petro distillates                                                           | 502                                       | 'Y                       |
| •        | Polyarethave from seal. | Doz             | UO .                   | pantim maxes, chloronated hydroxobun<br>isobutone, proprince                | 502                                       | : Y                      |
|          | Super 77spray adhesive  | 16:502          | 1Å                     | aretore, propute, cyclunex, petro                                           | 500                                       | 1/                       |
|          | Wheel I tire spray      | 3202            | Ü                      | D-propoxyethanal/Decylanue oxide,<br>Sadium plotin sutmate, tetrasodum EDTA | 508                                       | X                        |
| - 1      | Antificeze              | Igal            | N                      | ethylene glycol, sodium tetaboute<br>alchols, Clo-14, ethoxy lated          | 510                                       | $\sqrt{1}$               |
|          | Aneso                   | 1202            | N                      | alchols, Clo-191, ethoxy lated                                              | 499                                       | Y                        |
| 14       | Paints                  |                 |                        | 0                                                                           |                                           | /                        |
|          | freased fighting        | 1-991           | ų ×                    | 2 nethoxymethyle thoxy propenol,<br>2,2 Iminodictionanol                    | 500                                       | У                        |
|          | . V                     |                 | • 10                   |                                                                             | •                                         | ./**                     |
|          |                         | ° c             |                        |                                                                             | 2                                         |                          |
|          |                         |                 |                        |                                                                             |                                           |                          |
| -6 T     | (r                      |                 | 30                     | a                                                                           |                                           | e                        |
|          | 2                       |                 |                        | 14                                                                          | a 2                                       |                          |
| •        | N                       |                 | 15 E                   | 8 e                                                                         | G.                                        |                          |
|          | e                       |                 |                        | 8 G. V                                                                      |                                           | a                        |
|          |                         |                 |                        |                                                                             |                                           |                          |
|          |                         |                 |                        |                                                                             |                                           |                          |
|          |                         |                 |                        |                                                                             |                                           |                          |

\* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** \*\* Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

#### NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

| Preparer's Name Keilh Rubing I                                                       | Date/Time Prepared 1/20/2021 0930 |  |  |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Preparer's Name Keith Rubing I<br>Preparer's Affiliation D-16 Engineers + Archiles P | Phone No. 5/6 5/6 4-9890          |  |  |  |  |
| Purpose of Investigation Induor Arrsunpling                                          | es ped of RI Physe II             |  |  |  |  |
| 1. OCCUPANT:                                                                         |                                   |  |  |  |  |
| Interviewed: Y/N                                                                     |                                   |  |  |  |  |
| Last Name: Bruno First Name: Fr                                                      | anK                               |  |  |  |  |
| Address: 22 Rail Avenu                                                               |                                   |  |  |  |  |
| County: N:55 K                                                                       |                                   |  |  |  |  |
| Home Phone:Office Phone:                                                             | 997259                            |  |  |  |  |
| Home Phone: Office Phone: & & & & & & & & & & & & & & & &                            | f Occupants <u>30-75</u>          |  |  |  |  |
| 2. OWNER OR LANDLORD: (Check if same as occupant)                                    |                                   |  |  |  |  |
| Interviewed: Y(N) Not present                                                        |                                   |  |  |  |  |
| Last Name: First Name:                                                               |                                   |  |  |  |  |
| Address:                                                                             |                                   |  |  |  |  |
| County:                                                                              |                                   |  |  |  |  |
| Home Phone: Office Phone:                                                            |                                   |  |  |  |  |
|                                                                                      |                                   |  |  |  |  |
|                                                                                      |                                   |  |  |  |  |

## **3. BUILDING CHARACTERISTICS**

Type of Building: (Circle appropriate response)

| Residential | School | Commercia/Multi-use      |
|-------------|--------|--------------------------|
| Industrial  | Church | Other: Busk store office |

If the property is residential, type? (Circle appropriate response)

| Ranch<br>Raised Ranch<br>Cape Cod<br>Duplex<br>Modular | 2-Family<br>Split Level<br>Contemporary<br>Apartment House<br>Log Home | Mobile Home                                |
|--------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|
| If multiple units, how man                             | ny?                                                                    |                                            |
| If the property is commer                              | ·cial, type?                                                           |                                            |
| Business Type(s)                                       | Bookstore - retail                                                     | /teabus Ks                                 |
| Does it include residen                                | ces (i.e., multi-use)? Y / N                                           | If yes, how many?                          |
| Other characteristics:                                 |                                                                        |                                            |
| Number of floors                                       | - Build                                                                | ing age 40 + yews                          |
| Is the building insulated                              |                                                                        | air tight? Tight / Average / Not Tight     |
|                                                        |                                                                        |                                            |
| 4. AIRFLOW                                             |                                                                        |                                            |
| Use air current tubes or t                             | racer smoke to evaluate a                                              | rflow patterns and qualitatively describe: |
| Airflow between floors                                 | Fura                                                                   | d hol air                                  |
|                                                        |                                                                        |                                            |
|                                                        |                                                                        |                                            |
| Airflow near source                                    | NA                                                                     |                                            |
|                                                        | E.                                                                     |                                            |
|                                                        |                                                                        |                                            |
| Outdoor air infiltration                               | (3) Bushno                                                             | uns while all windows                      |
|                                                        | (1) betha                                                              | un has exhaust for                         |
|                                                        |                                                                        |                                            |
| Infiltration into air ducts                            | Central air co                                                         | ~ ditiva                                   |

## 3

- 9

# 5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

|                                        |                 | -                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|----------------------------------------|-----------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| a. Above grade construction:           | wood frame      | concrete                   | stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | brick                        |
| b. Basement type:                      | ful)            | crawlspace                 | slab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | other                        |
| c. Basement floor:                     | concrete        | dirt                       | stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | other                        |
| d. Basement floor:                     | uncovered -     | covered                    | covered with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carpols Indone artis, 103    |
| e. Concrete floor:                     | unsealed        | sealed                     | sealed with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carpels In Some a rear, this |
| f. Foundation walls:                   | poured          | block                      | stone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | other                        |
| g. Foundation walls:                   | unsealed        | sealed                     | sealed with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |
| h. The basement is:                    | wet             | damp)                      | dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | moldy                        |
| i. The basement is:                    | finished        | unfinished 🤇               | partially finish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed                           |
| j. Sump present?                       | YN              |                            | and the second distance of the second distanc |                              |
| k. Water in sump? Y 🔊                  | not applicable  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Basement/Lowest level depth below g    | rade: NA        | (feet)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Identify potential soil vapor entry po | ints and approx | imate size (e.g.,          | cracks, utility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ports, drains)               |
| None norlos, d                         | This hope       | been seal                  | bd with co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | neede part by                |
| ad top of dran lo                      | ch'lians        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                           |
|                                        |                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 6. HEATING, VENTING and AIR            | CONDITIONIN     | <b>IG</b> (Circle all that | at apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
| Type of heating system(s) used in this |                 | •                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | z)                           |
| -jp                                    | B. (            |                            | note primer,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| (Hot air circulation)                  | Heat pump       | Hot wa                     | ter baseboard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |
| Space Heaters                          | Stream radiatio | n Radian                   | t floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| Electric baseboard                     | Wood stove      | Outdoo                     | or wood boiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Other                        |
| The primary type of fuel used is:      |                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|                                        |                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |

| Electric                        | Propane       | Solar                               |                |
|---------------------------------|---------------|-------------------------------------|----------------|
| Wood                            | Coal          |                                     |                |
| 2) Domestic hot water tank fuel | led by: 🖉 🖉   | Walges ? Hot wate have              | on filet floor |
| Boiler/furnace located in:      |               | utdoors (2) Main Floor 154<br>Floor |                |
| Air conditioning:               | Central Air W | indow units Open Windows            | None           |
|                                 |               |                                     |                |

Are there air distribution ducts present?

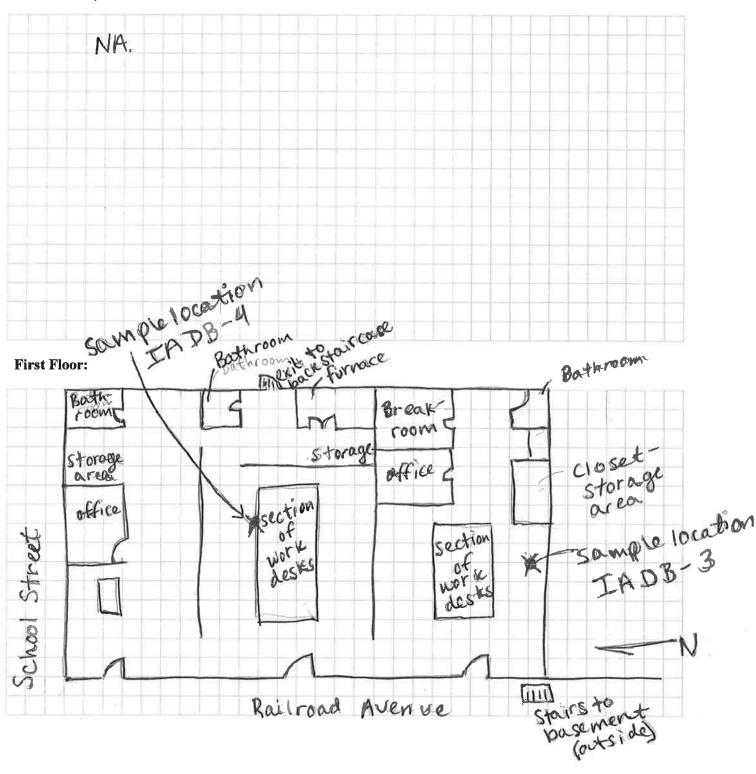
Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

# NA 7. OCCUPANCY Is basement/lowest level occupied? Full-time Occasionally Seldom Almost Never Level General Use of Each Floor (e.g., familyroom, bedroom, laundry, workshop, storage) Retal / Store (TAg SAle) Stope for Backs computer hadrad **Basement** 1<sup>st</sup> Floor 2<sup>nd</sup> Floor 3<sup>rd</sup> Floor 4<sup>th</sup> Floor 8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY a. Is there an attached garage? Y (N) NA b. Does the garage have a separate heating unit? c. Are petroleum-powered machines or vehicles NA stored in the garage (e.g., lawnmower, atv, car) Please specify d. Has the building ever had a fire? When? Where? e. Is a kerosene or unvented gas space heater present? f. Is there a workshop or hobby/craft area? Where & Type? g. Is there smoking in the building? How frequently? YN When & Type? \_\_\_\_\_ horn / bivel h. Have cleaning products been used recently? i. Have cosmetic products been used recently? Y/N

|                                                                                                                                                                                                                                  | 0                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| j. Has painting/staining been done in the last 6 months?                                                                                                                                                                         | Y (N) Where & When?                                                           |
| k. Is there new carpet, drapes or other textiles?                                                                                                                                                                                | Where & When?                                                                 |
| l. Have air fresheners been used recently?                                                                                                                                                                                       | When & Type? La thomas                                                        |
| m. Is there a kitchen exhaust fan?                                                                                                                                                                                               | Y / N If yes, where vented?                                                   |
| n. Is there a bathroom exhaust fan?                                                                                                                                                                                              | (Y) N If yes, where vented? 1 a Aside                                         |
| o. Is there a clothes dryer?                                                                                                                                                                                                     | YN If yes, is it vented outside? Y / N                                        |
| p. Has there been a pesticide application?                                                                                                                                                                                       | Y(N) When & Type? of the in the years<br>Dre time in the years<br>externation |
| Are there odors in the building?     If yes, please describe:                                                                                                                                                                    | Y/N) Pyterminulir /                                                           |
| <b>Do any of the building occupants use solvents at work?</b><br>(e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist<br>If yes, what types of solvents are used? | auto body shop, painting, fuel oil delivery,                                  |
| If yes, are their clothes washed at work?                                                                                                                                                                                        | Y / N                                                                         |
| Do any of the building occupants regularly use or work at a response)<br>Yes, use dry-cleaning regularly (weekly)<br>Yes, use dry-cleaning infrequently (monthly or less)<br>Yes, work at a dry-cleaning service                 | a dry-cleaning service? (Circle appropriate                                   |
| Is there a radon mitigation system for the building/structur<br>Is the system active or passive? Active/Passive                                                                                                                  | re? Y / N Date of Installation:                                               |
| 9. WATER AND SEWAGE                                                                                                                                                                                                              |                                                                               |
| Water Supply: Public Water Drilled Well Drive                                                                                                                                                                                    | on Well Dug Well Other:                                                       |
| Sewage Disposal: Public Sewer Septic Tank Leach                                                                                                                                                                                  | n Field Dry Well Other:                                                       |
| 10. RELOCATION INFORMATION (for oil spill residenti                                                                                                                                                                              | al emergency)                                                                 |
| a. Provide reasons why relocation is recommended:                                                                                                                                                                                | NUR                                                                           |
| <b>b. Residents choose to:</b> remain in home relocate to fr                                                                                                                                                                     | iends/family relocate to hotel/motel NA                                       |
| c. Responsibility for costs associated with reimburseme                                                                                                                                                                          | nt explained? Y / N M                                                         |
| d. Relocation package provided and explained to reside                                                                                                                                                                           | nts? Y/N //A                                                                  |

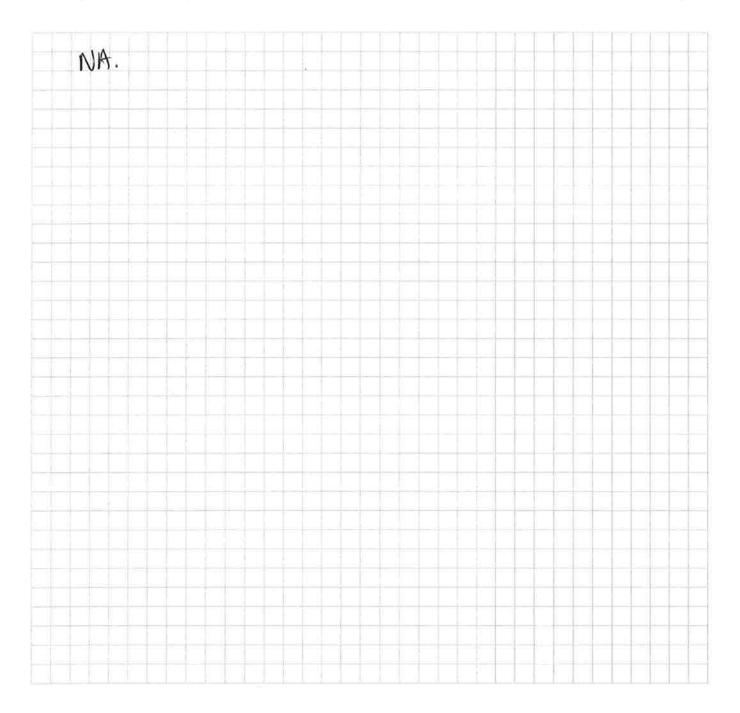
Make & Model of field instrument used: <u>FID</u> and FFG

List specific products found in the residence that have the potential to affect indoor air quality.


| Location | Product Description                              | Size<br>(units) | Condition <sup>*</sup> | Chemical Ingredients                                                                               | Field<br>Instrument<br>Reading<br>(units) ppb | Photo **<br><u>Y / N</u> |
|----------|--------------------------------------------------|-----------------|------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|
| STOP     | Febreeze                                         | 8or             | open/used              | Dialky Sodium<br>Cyclodeatrin, HIroha, Sul Fosucci nate                                            | 8                                             | Y                        |
| Storage  | Lysol toilet cleaner                             | 3202            | open/used              | Cyclodeatrin, Hiroha, Sul Fosucci nate<br>Directhyl Benzyl Ammonium<br>Allyl Childrides,           | 0.0                                           | Ч                        |
|          | windex Glass<br>creaner                          |                 |                        | 7 - HOL ON VELL AL TOMA BUNKING                                                                    | nic                                           | Ч                        |
|          | Clorox disinfeet                                 | 3202            | open/und               | Ammonium Hydroxide<br>sochium hydroxide<br>sochium hydroxide<br>sochium (arbonate, sodtupochioride | 6.0                                           | Ч                        |
|          | Earth Enzyme                                     | 216             | power                  | Sodium Sesquicarbonate                                                                             | 0.0                                           | Ч                        |
|          | Raid Ant Killer                                  | 17.502          | S2                     | pyrethoids, improthin                                                                              | 0.0                                           | Ч                        |
|          | Lysol Spray                                      | 10æ             | used                   | Benzy Ammonium Chlorides                                                                           | Ô. <i>Ô</i>                                   | Ч                        |
|          | Loc tite at hesine in 19                         | 1602            | used                   | heiotane partone<br>Sodivin dodecy i benesuitonate                                                 | 49                                            | Ч                        |
|          | soft scrub eleaner                               | 2402            | used                   | sodium dódecyi beniesuitonate<br>calcium carborote                                                 | 0,0                                           | Y                        |
|          | Krylon spray Paint<br>sustain role Earth         | 1202            | used                   | methyl Acetaste                                                                                    | 0,0                                           | Ч.                       |
|          | glass choomer                                    | Igal            | used,                  | sodium laury sulfate                                                                               | 0.0                                           | У                        |
|          | alamace - Glass<br>Cheaner                       | Igal            | used                   | Akoho (, sodium laury) sulfate                                                                     | 0.0                                           | У                        |
|          | Screen clauing<br>Spray - staples<br>smart value | 802             | used                   | unleptur                                                                                           | 0,0                                           | Y                        |
|          | Disinfectant wipes                               | 1 5.502         | used                   | arcyl directly) benzy lammonium childrid                                                           | <b>ر 0.0</b>                                  | N 1                      |
|          | 409 disinfectant spray                           | 2402            |                        | ethous & Lauramide Oxide                                                                           | $\mathcal{D}_{\alpha}\mathcal{D}$             | Y                        |
|          |                                                  |                 |                        |                                                                                                    |                                               |                          |
|          |                                                  |                 |                        |                                                                                                    |                                               |                          |
|          |                                                  |                 |                        |                                                                                                    |                                               |                          |
|          |                                                  |                 |                        |                                                                                                    |                                               |                          |

\* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** \*\* Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

## **11. FLOOR PLANS**


Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.





Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.



| NEW YORK STATE DEPARTMENT OF HEALTH<br>INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY<br>CENTER FOR ENVIRONMENTAL HEALTH    |
|--------------------------------------------------------------------------------------------------------------------------------------|
| This form must be completed for each residence involved in indoor air testing.                                                       |
| Preparer's Name Tara Judge Date/Time Prepared 1/24/21<br>Preparer's Affiliation D&B Engineers 3 Architects<br>Phone No. 516 364-9898 |
| Purpose of Investigation Indoorair / Substab assessment                                                                              |
| 1. OCCUPANT:                                                                                                                         |
| Interviewed: (Y)/ N                                                                                                                  |
| Last Name: Fricke First Name: Doreen/Garry                                                                                           |
| Address:                                                                                                                             |
| County:                                                                                                                              |
| Home Phone: Office Phone: _516 - 676 - 37 25                                                                                         |
| Number of Occupants/persons at this location $\sim 2$ Age of Occupants $40-60 yp$                                                    |
| 2. OWNER OR LANDLORD: (Check if same as occupant)                                                                                    |
| Interviewed: Y/N                                                                                                                     |
| Last Name: First Name:                                                                                                               |
| Address:                                                                                                                             |
| County:                                                                                                                              |
| Home Phone: Office Phone:                                                                                                            |
| 3. BUILDING CHARACTERISTICS                                                                                                          |
| Type of Building: (Circle appropriate response)                                                                                      |
| ResidentialSchoolCommercial/Multi-useIndustrialChurchOther:                                                                          |

| If the property is residential                         | , type? (Circle appropria                                              | ate response)                               |   |
|--------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|---|
| Ranch<br>Raised Ranch<br>Cape Cod<br>Duplex<br>Modular | 2-Family<br>Split Level<br>Contemporary<br>Apartment House<br>Log Home | Mobile Home                                 |   |
| If multiple units, how many                            | ?_2_                                                                   |                                             |   |
| If the property is commercia                           | al, type?                                                              |                                             |   |
| Business Type(s)                                       | tail / Antiqu                                                          | ul S                                        |   |
| Does it include residence                              | s (i.e., multi-use)? Y /                                               | If yes, how many?                           |   |
| Other characteristics:                                 |                                                                        |                                             |   |
| Number of floors                                       | Build                                                                  | ling age 40+ years                          |   |
| Is the building insulated?                             | Ý/ N How                                                               | air tight? Tight Average? Not Tight         |   |
| 4. AIRFLOW                                             |                                                                        |                                             |   |
| Use air current tubes or trac                          | cer smoke to evaluate a                                                | irflow patterns and qualitatively describe: |   |
| Airflow between floors                                 |                                                                        | *                                           |   |
| None -                                                 |                                                                        |                                             | - |
|                                                        |                                                                        |                                             |   |
| Airflow near source                                    | (1) Garage                                                             | door ()                                     |   |
|                                                        | 0                                                                      |                                             |   |
|                                                        |                                                                        |                                             |   |
| Outdoor air infiltration                               | (1) Garag                                                              | e door                                      |   |
|                                                        | 0                                                                      |                                             |   |
|                                                        |                                                                        |                                             |   |
| Infiltration into air ducts                            |                                                                        |                                             |   |
|                                                        |                                                                        |                                             |   |
|                                                        |                                                                        |                                             |   |

## 5. **BASEMENT AND CONSTRUCTION CHARACTERISTICS** (Circle all that apply)

| a. Above grade construction:           | wood frame     | ( concrete )    | stone                | brick            |
|----------------------------------------|----------------|-----------------|----------------------|------------------|
| a. ANUVE grade construction.           |                | Concrete        | Stone                | UTION .          |
| b. Basement type:                      | full           | crawlspace      | slab                 | other            |
| c. Basement floor:                     | concrete       | dirt            | stone                | other            |
| d. Basement floor:                     | uncovered      | covered         | covered with         | paint (carpets   |
| e. Concrete floor:                     | unsealed       | sealed          | sealed with _        | paint_           |
| f. Foundation walls:                   | poured         | block           | stone                | other            |
| g. Foundation walls:                   | unsealed       | sealed          | sealed with _        |                  |
| h. The basement is:                    | wet            | damp            | dry                  | moldy            |
| i. The basement is:                    | finished       | unfinished      | partially finis      | hed              |
| j. Sump present?                       | YN             |                 |                      |                  |
| k. Water in sump? Y 😡                  | not applicabl  | e               |                      |                  |
| Basement/Lowest level depth below      | grade:         | _(feet)         |                      |                  |
| Identify potential soil vapor entry po | oints and appr | oximate size (e | .g., cracks, utility | v ports, drains) |
| Minor Floor craele                     | ing in         | con cre         | ete = no             | floor drains     |
| ident i fied                           | 5              |                 |                      |                  |

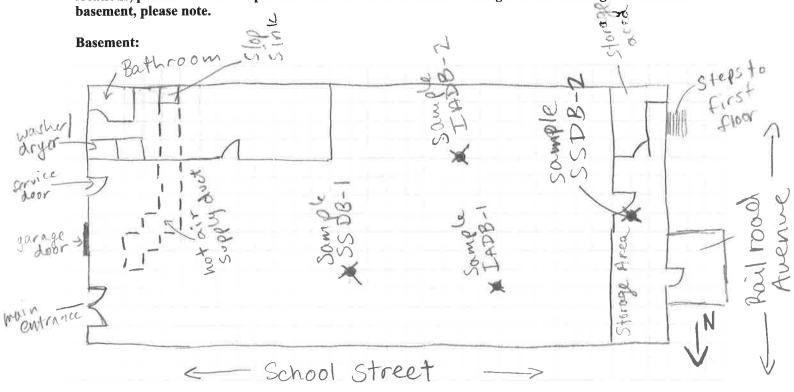
## 6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

## Type of heating system(s) used in this building: (circle all that apply – note primary)

| Hot air circulation<br>Space Heaters<br>Electric baseboard | Heat pump<br>Stream radiation<br>Wood stove | Hot water baseboard<br>Radiant floor<br>Outdoor wood boiler | Other |
|------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|-------|
| The primary type of fuel us                                | ed is:                                      |                                                             |       |
| Natural Gas<br>Electric<br>Wood                            | Fuel Oil<br>Propane<br>Coal                 | Kerosene<br>Solar                                           |       |
| Domestic hot water tank fue                                | eled by: Small eletric                      | hearter                                                     |       |
| Boiler/furnace located in:                                 | Basement Outdoors                           | Main Floor                                                  | Other |
| Air conditioning:                                          | Central Air Window units                    | Open Windows                                                | None  |

## Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.


Ŷ N

| <u>Hot air</u><br>south                                                                                      | ern unit.                                                                       | n feas   | t from                        | heater on         |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------|-------------------------------|-------------------|
| <ol> <li>OCCUP.</li> <li>Is basement/</li> </ol>                                                             |                                                                                 | sionally | Seldom                        | Almost Never      |
| Level                                                                                                        | General Use of Each Floor (e.g., familyrod                                      |          | om, laundry, wo               | orkshop, storage) |
| Basement<br>1 <sup>st</sup> Floor<br>2 <sup>nd</sup> Floor<br>3 <sup>rd</sup> Floor<br>4 <sup>th</sup> Floor | <u>Retail Store</u><br>Office Space                                             |          |                               |                   |
| 8. FACTOR                                                                                                    | <b>AS THAT MAY INFLUENCE INDOOR AIR (</b>                                       | QUALITY  |                               |                   |
| a. Is there                                                                                                  | an attached garage?                                                             |          | Y/N                           |                   |
| b. Does the                                                                                                  | e garage have a separate heating unit?                                          |          | Y/N NA                        |                   |
|                                                                                                              | roleum-powered machines or vehicles<br>n the garage (e.g., lawnmower, atv, car) |          | Y / N / NA<br>Please specify_ |                   |
| d. Has the                                                                                                   | building ever had a fire?                                                       |          | Y When?                       |                   |
| e. Is a kere                                                                                                 | osene or unvented gas space heater present?                                     |          | Y N Where?                    | )                 |
| f. Is there                                                                                                  | a workshop or hobby/craft area?                                                 | Y N      | Where & Type?                 | ?                 |
| g. Is there                                                                                                  | smoking in the building?                                                        | Y N      | How frequently                | ?                 |
| h. Have cl                                                                                                   | eaning products been used recently?                                             | Ŷ N      | When & Type?                  | Windex, woodoils  |
| i. Have cos                                                                                                  | smetic products been used recently?                                             | Y /N     | When & Type?                  |                   |

|                                                                                                                                                                                        | ľà                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| j. Has painting/staining been done in the last 6 months?                                                                                                                               | Y (N) Where & When?                                         |
| k. Is there new carpet, drapes or other textiles?                                                                                                                                      | Y / N Where & When?                                         |
| l. Have air fresheners been used recently?                                                                                                                                             | Y (N) When & Type?                                          |
| m. Is there a kitchen exhaust fan?                                                                                                                                                     | $Y\left(\widehat{N}\right)$ If yes, where vented?           |
| n. Is there a bathroom exhaust fan?                                                                                                                                                    | ()/N If yes, where vented? OUTSide                          |
| o. Is there a clothes dryer?                                                                                                                                                           | $(\hat{Y})$ /N If yes, is it vented outside? $(\hat{Y})$ /N |
| p. Has there been a pesticide application?                                                                                                                                             | Y (N) When & Type?                                          |
| Are there odors in the building?<br>If yes, please describe:                                                                                                                           | Y / N                                                       |
| <b>Do any of the building occupants use solvents at work?</b><br>(e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist | Y (N)<br>auto body shop, painting, fuel oil delivery,       |
| If yes, what types of solvents are used?                                                                                                                                               |                                                             |
| If yes, are their clothes washed at work?                                                                                                                                              | Y / N                                                       |
| <b>Do any of the building occupants regularly use or work at a</b> response)                                                                                                           | a dry-cleaning service? (Circle appropriate                 |
| Yes, use dry-cleaning regularly (weekly)<br>Yes, use dry-cleaning infrequently (monthly or less)<br>Yes, work at a dry-cleaning service                                                | Unknown                                                     |
| Is there a radon mitigation system for the building/structur<br>Is the system active or passive? Active/Passive                                                                        | re? Y (N) Date of Installation:                             |
| 9. WATER AND SEWAGE                                                                                                                                                                    |                                                             |
| Water Supply: Public Water Drilled Well Drive                                                                                                                                          | n Well Dug Well Other:                                      |
| Sewage Disposal: Public Sewer Septic Tank Leach                                                                                                                                        | n Field Dry Well Other:                                     |
| 10. RELOCATION INFORMATION (for oil spill residenti                                                                                                                                    |                                                             |
| a. Provide reasons why relocation is recommended:                                                                                                                                      |                                                             |
|                                                                                                                                                                                        | iends/family relocate to hotel/motel                        |
| c. Responsibility for costs associated with reimburseme                                                                                                                                | nt explained? Y / N                                         |
| d. Relocation package provided and explained to reside                                                                                                                                 | nts? Y / N                                                  |

## **11. FLOOR PLANS**

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.



First Floor: NA

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

certor steps Railroad Avenue Parking lot Sence × \* 111 Wind speed: 5-10 mph Wind direction: WSW Stree School × DADB-1 × Parking let\_x - x - x -Ferries

# Make & Model of field instrument used: PTD 3000 ppb RAF

List specific products found in the residence that have the potential to affect indoor air quality.

| Location     | Product Description                                     | Size<br>(units) | Condition <sup>*</sup> | <b>Chemical Ingredients</b> | Field<br>Instrument<br>Reading<br>(units) | Photo *<br><u>Y / N</u> |
|--------------|---------------------------------------------------------|-----------------|------------------------|-----------------------------|-------------------------------------------|-------------------------|
| Storage      | Krylon sprcy paint                                      | 1002            | used                   |                             | 400/136                                   | Ч                       |
|              | Rustoleum laquer                                        | 1002            |                        |                             | 43                                        | Ч                       |
|              | BPIEXUX can                                             | 1302            |                        |                             | 6.3                                       | У                       |
|              | , 3 m<br>Adhesine spray moised                          | 1602            |                        |                             | 193                                       | Y                       |
|              | Adhesine spruy woised<br>Super Adhesine 3M              | 1602            |                        |                             | ворру                                     | γ                       |
|              | DUDE D STELL HIMDLON                                    | 1002            |                        |                             | 56                                        | У                       |
|              | min wax fast drying<br>polyure thone                    | 11.5            |                        |                             | 56                                        | У                       |
|              | CAMO MOTOR OCL SHE                                      | I Qt.           |                        |                             | 71                                        | У                       |
|              | miniparafast day satin                                  | 802             |                        |                             | 70                                        | Y                       |
|              | Latex enquetaint                                        | 3202            |                        |                             | 72                                        |                         |
|              | or the seas on long<br>max weed killer                  | Igel            |                        |                             | 721                                       |                         |
|              | Softin Enginel BEHR                                     | 1 gal           |                        |                             | 114                                       |                         |
|              | Klean Strip Odor<br>Less mineral Spirits                | Igal            |                        |                             | 207                                       |                         |
|              | BEHR Concete Cleaner                                    | igal            |                        |                             | 110                                       |                         |
|              | Prestove RU                                             | 1921            |                        |                             | 87                                        |                         |
|              | Advanced Auto<br>parts break flueid<br>Rustoleum Primer | 32fb2           |                        |                             | 82                                        |                         |
|              | filler                                                  | 13.75           |                        |                             | 117                                       |                         |
|              | STP Protectant<br>Viny rubber leather                   | 16Ft            |                        |                             | 77                                        |                         |
| $\downarrow$ | Howoline two cycle<br>engineoil                         | Igal            | $\checkmark$           |                             | 221                                       |                         |

\* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** \*\* Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

| Location | Product Description                                              | Size<br>(units) | Condition <sup>*</sup> | Chemical Ingredients | Field<br>Instrument<br>Reading<br>(units) | Photo **<br><u>Y / N</u> |
|----------|------------------------------------------------------------------|-----------------|------------------------|----------------------|-------------------------------------------|--------------------------|
| Storage  | stainless steel<br>polish - Hager by<br>202 Spray                | 1202            | used                   |                      | 110                                       | Y                        |
|          | WD-40 can                                                        | 202             |                        | 2                    | 175                                       | У                        |
|          | WD-40 can<br>Mobil handy                                         | 1202            |                        |                      | 88                                        | У                        |
|          | 00ps - All purpose<br>Cleana                                     | 4.502           |                        |                      | 672                                       | Ч                        |
|          | Caulk hearey buty                                                | 1602            |                        |                      | 00                                        | Ч                        |
|          | Guards smith<br>furniture polish                                 | teoz            |                        |                      | 331                                       | Ч                        |
|          | motoroil -Hess                                                   | 11.             |                        |                      | 109                                       | Y                        |
|          | NAPA Brales Fluid                                                | 3002            |                        |                      | 110                                       | Ý                        |
|          | Formula Shell 10w-30                                             | lat.            |                        |                      | 0.0                                       | Ý                        |
|          | mopar Axel Lube 754                                              | - 1Qt.          |                        |                      | 100                                       | 4                        |
|          | Dertote Einish                                                   | 1202            |                        |                      | 100                                       | 4                        |
|          | Rustoleum Laquer<br>Painters touch<br>Woolite - Heavy            | 1102            |                        |                      | 90                                        |                          |
|          | woolite - Heavy<br>traffic Carpet                                | 2202            |                        |                      | 105                                       |                          |
| (12)     | WD-42ubricant                                                    | 1302            | 802                    |                      | 117                                       |                          |
|          | Prestone - Belt<br>deessing whe<br>Gunne storter Flund           | 1202            | -                      |                      | 85                                        |                          |
|          | 1                                                                |                 |                        |                      | 90,906                                    |                          |
|          | Jet-Go deicer<br>Wind sheild<br>Brakefluid<br>Graphite Lock-case | 2002            |                        |                      | 88                                        |                          |
|          | Brake Fluid Autogaur                                             | 802             |                        |                      | 79                                        |                          |
| Y        | Graphite Lock-case                                               | 302             | ý                      |                      | 79                                        |                          |

\* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** \*\* Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

| Location | Product Description                                                        | Size<br>(units) | Condition <sup>*</sup> | Chemical Ingredients | Field<br>Instrument<br>Reading<br>(units) | Photo **<br><u>Y / N</u> |
|----------|----------------------------------------------------------------------------|-----------------|------------------------|----------------------|-------------------------------------------|--------------------------|
| storage  | Turpentine Steam<br>distite E-2                                            | 1602            | used                   |                      | 93                                        |                          |
|          | John sons brace-<br>fluid                                                  | 1202            |                        |                      | 90                                        |                          |
|          | Turtle augo Buyy                                                           | 1602            |                        |                      | 88                                        |                          |
|          | Rust freat                                                                 | 1602            |                        |                      | 60                                        |                          |
|          | PB blaster-lube                                                            | 1102            |                        |                      | 86pp                                      |                          |
|          | Fuller windshield<br>do-icer<br>Bin I garage door                          | 11.5            |                        |                      | 86ppb<br>95ppb                            |                          |
|          | 3in 1 garage door                                                          | 1202            |                        |                      | 89                                        |                          |
|          | Pointleged Bleach                                                          | 402             |                        |                      | 100                                       |                          |
|          | Rustoleum Hammere<br>Paint                                                 | 132             |                        |                      | 100                                       |                          |
|          | BEHR Servigloss                                                            | 32              |                        |                      | 105                                       |                          |
|          | Fileseal -under-                                                           | 16              |                        |                      | IDG                                       |                          |
|          | Fileseal - under-<br>Coating<br>Armstrong floor<br>polish<br>GUNK - Engine | 32              |                        |                      | 105                                       |                          |
|          | GUNK - Engine<br>degreaser<br>Rustoleum Evanel                             | 15              |                        |                      | 110                                       |                          |
|          | Rustoleum Evenel                                                           | Igal            |                        |                      | 76                                        |                          |
|          | do washred                                                                 | lat             |                        |                      | 80                                        |                          |
|          | Kleanstrip Alcohol<br>Liquid wrench<br>pust solvent                        | ~~              |                        |                      | 90                                        |                          |
|          | Instituz 71 Thread                                                         | 1.702           |                        |                      | 120                                       |                          |
|          | Lactite271-loclur<br>STA Lube - Air tool                                   | 15 fl.          |                        |                      | 107                                       |                          |
|          | BEHR-pains<br>primer                                                       | 1gal            |                        |                      | 56/117                                    |                          |

\* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

\*\* Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

**APPENDIX D** 

## STRUCTURE CLEANOUT REPORT



October 6, 2021

Mr. Joseph Jones New York State Department of Environmental Conservation 625 Broadway Albany, NY 12233

## Re: <u>Former Fresh and Clean Laundry – Investigation and Clean out of Two (2)</u> <u>Subsurface</u> <u>Structures and Disposal of (Hazardous)</u> <u>Waste Contaminated Material – Glen Head, NY</u>

Site: 22-26 Railroad Ave, Glen Head, NY 11545

Dear Mr. Jones,

On April 16, 2021 AB Environmental (ABE) was notified of the above referenced site and given a work authorization to provide the above stated services also including disposal of nine (9) drums of hazardous contaminated material generated previously from a cleaning performed by another vendor. AB Environmental profiled the existing drums, prepared the necessary disposal documentation, obtained approval for disposal along with generator signature for the documents. The nine (9) drums were loaded and removed from the site for proper disposal at Triumvirate Environmental (NYC) LLC, Astoria, NY.

AB then began coordinating the two (2) structure cleanout. On July 8<sup>th</sup>, 2021 ABE dispatched a crew to the site including a Vactor (High Velocity Vacuum Truck), Liquid Vacuum Truck and Box truck with Drums, Materials and a Video Camera to clean out the structures and view the structures from the inside. A total of 28 sludge, (liquid/solid) drums were generated during the clean out. The drums were removed from the site at four (4) instances in accordance with the disposal facilities acceptance volume per trip. Presently all the drums are removed from the site and were delivered for disposal.

If you have any questions please feel free to contact me at 631-567-6545 or kwalsh@abenviro.com.

Sincerely,

Kenneth Walsh Kenneth Walsh Business Manager AB Environmental

> 1599 Ocean Avenue Bohemia, New York 11716 Ph. (631) 567-6545 ~ fax (631) 567-9390 <u>www.abenvironmental.com</u> NYSDEC: 1A002 \* USEPA: NYD987023371



1599 Ocean Avenue Bohemia, New York 11716 Ph. (631) 567-6545 ~ fax (631) 567-9390 www.abenvironmental.com NYSDEC: 1A002 \* USEPA: NYD987023371

# 🛟 eurofins

# Environment Testing America

# **ANALYTICAL REPORT**

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

## Laboratory Job ID: 460-238488-1

Client Project/Site: Former Fresh & Clean Laundry Site:130111

## For:

New York State D.E.C. 625 Broadway 12th Floor Albany, New York 12233-7017

Attn: Joseph Jones

allo M. mail

Authorized for release by: 7/22/2021 10:26:52 AM

Julie Gilmore, Project Manager I (484)685-0865 Julie.Gilmore@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

> I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

guliettimore

Julie Gilmore Project Manager I 7/22/2021 10:26:52 AM

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Detection Summary      | 7  |
| Client Sample Results  | 8  |
| Surrogate Summary      | 10 |
| QC Sample Results      | 11 |
| QC Association Summary | 18 |
| Lab Chronicle          | 20 |
| Certification Summary  | 21 |
| Method Summary         | 22 |
| Sample Summary         | 23 |
| Chain of Custody       | 24 |
| Receipt Checklists     | 26 |
|                        |    |

# Qualifiers

| Qualifiers             |                                                                                            | 3 |
|------------------------|--------------------------------------------------------------------------------------------|---|
| GC/MS VOA<br>Qualifier | Qualifier Description                                                                      | 4 |
| D                      | The reported value is from a dilution.                                                     |   |
| U                      | Analyzed for but not detected.                                                             | 5 |
| Metals                 |                                                                                            |   |
| Qualifier              | Qualifier Description                                                                      |   |
| J                      | Sample result is greater than the MDL but below the CRDL                                   |   |
| U                      | Indicates analyzed for but not detected.                                                   |   |
| Glossary               |                                                                                            | • |
| Abbreviation           | These commonly used abbreviations may or may not be present in this report.                | 0 |
| ¤                      | Listed under the "D" column to designate that the result is reported on a dry weight basis | 0 |
| %R                     | Percent Recovery                                                                           | 3 |
| CFL                    | Contains Free Liquid                                                                       |   |
| CFU                    | Colony Forming Unit                                                                        |   |
| CNF                    | Contains No Free Liquid                                                                    |   |
| DER                    | Duplicate Error Ratio (normalized absolute difference)                                     |   |
| Dil Fac                | Dilution Factor                                                                            |   |
|                        |                                                                                            |   |

| Dil Fac        | Dilution Factor                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| MPN            | Most Probable Number                                                                                        |
| MQL            | Method Quantitation Limit                                                                                   |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| NEG            | Negative / Absent                                                                                           |
| POS            | Positive / Present                                                                                          |
| PQL            | Practical Quantitation Limit                                                                                |
| PRES           | Presumptive                                                                                                 |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |
| TNTC           | Too Numerous To Count                                                                                       |

## Job ID: 460-238488-1

## Laboratory: Eurofins TestAmerica, Edison

Narrative

## CASE NARRATIVE

Case Narrative

## Client: New York State D.E.C.

## Project: Former Fresh & Clean Laundry Site:130111

## Report Number: 460-238488-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### <u>RECEIPT</u>

The samples were received on 07/09/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.4 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

## VOLATILE ORGANIC COMPOUNDS (GC/MS)

Sample SL1 (460-238488-2) was analyzed for Volatile Organic Compounds (GC/MS) in accordance with EPA SW-846 Method 8260D. The samples were prepared on 07/13/2021 and analyzed on 07/14/2021.

The continuing calibration verification (CCV) associated with batch 460-790164 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

The following sample was diluted to bring the concentration of target analytes within the calibration range: SL1 (460-238488-2). Elevated reporting limits (RLs) are provided.

The following sample required a dilution due to the nature of the sample matrix: SL1 (460-238488-2). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

1,2-Dichloroethane-d4 (Surr), 4-Bromofluorobenzene, Dibromofluoromethane (Surr) and Toluene-d8 (Surr) failed the surrogate recovery criteria low for SL1 (460-238488-2). Refer to the QC report for details.

No other difficulties were encountered during the Volatiles analysis.

All other quality control parameters were within the acceptance limits.

#### **TCLP METALS**

## Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

## Job ID: 460-238488-1 (Continued)

## Laboratory: Eurofins TestAmerica, Edison (Continued)

Sample L1 (460-238488-1) was analyzed for TCLP metals in accordance with 6010D. The samples were leached on 07/14/2021, and prepared and analyzed on 07/15/2021.

No other difficulties were encountered during the TCLP metals analysis.

All other quality control parameters were within the acceptance limits.

## TOTAL METALS (ICP)

Sample SL1 (460-238488-2) was analyzed for Total Metals (ICP) in accordance with EPA SW-846 Methods 6010D. The samples were prepared on 07/17/2021 and analyzed on 07/18/2021.

Silver failed the recovery criteria low for the MS of sample 460-238912-1 in batch 460-791109.

Refer to the QC report for details.

No other difficulties were encountered during the Total Metals (ICP) analysis.

All other quality control parameters were within the acceptance limits.

#### TCLP MERCURY

Sample L1 (460-238488-1) was analyzed for TCLP mercury in accordance with EPA SW-846 Methods 1311/7470A. The samples were leached on 07/14/2021, and prepared and analyzed on 07/21/2021.

No difficulties were encountered during the TCLP Hg analysis.

All quality control parameters were within the acceptance limits.

#### TOTAL MERCURY

Sample SL1 (460-238488-2) was analyzed for total mercury in accordance with EPA SW-846 Method 7471B. The samples were prepared and analyzed on 07/15/2021.

Sample SL1 (460-238488-2)[3X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the Hg analysis.

All other quality control parameters were within the acceptance limits.

#### PERCENT SOLIDS/PERCENT MOISTURE

Sample SL1 (460-238488-2) was analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 07/14/2021.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

# **Detection Summary**

## Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

2200000

22.5

28.5

1930

34.1

98.9

594

5.9

4.3 J

54000000

## Client Sample ID: 11

Trichloroethene

Silver

Arsenic

Barium

Lead

Cadmium

Chromium

Selenium

Mercury

Tetrachloroethene

Total/NA

20000 🌣 8260D

20000 🌣 8260D

2 🌣 6010D

3 🌣 7471B

5

| Client Sample ID: L1   |         |           |        |       |       | Lab Sa  | mple ID: 4 | 60-238488-1 |   |
|------------------------|---------|-----------|--------|-------|-------|---------|------------|-------------|---|
| Analyte                | Result  | Qualifier | RL     | MDL   | Unit  | Dil Fac | D Method   | Prep Type   |   |
| Barium                 | 128     | J         | 1000   | 66.0  | ug/L  | 5       | 6010D      | TCLP        |   |
| Mercury                | 0.13    | J         | 0.20   | 0.091 | ug/L  | 1       | 7470A      | TCLP        |   |
| Client Sample ID: SL1  |         |           |        |       |       | Lab Sa  | mple ID: 4 | 60-238488-2 | 5 |
| Analyte                | Result  | Qualifier | RL     | MDL   | Unit  | Dil Fac | D Method   | Prep Type   |   |
| cis-1,2-Dichloroethene | 1200000 |           | 320000 | 84000 | ug/Kg | 20000   | \$ 8260D   | Total/NA    |   |

320000

320000

8.0

12.0

160

3.2

8.0

8.0

16.0

0.26

71000 ug/Kg

120000 ug/Kg

4.5 mg/Kg

2.5 mg/Kg

15.5 mg/Kg

0.28 mg/Kg

5.7 mg/Kg

1.3 mg/Kg

2.7 mg/Kg

0.060 mg/Kg

This Detection Summary does not include radiochemical test results.

## **Client Sample Results**

Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111 Job ID: 460-238488-1

Lab Sample ID: 460-238488-1

## **Client Sample ID: L1** Date Collected: 07/08/21 12:00 Date Received: 07/09/21 17:30

| Method: 6010D - Metal      | s (ICP) - TCLP    |           |      |      |      |   |                |                |         |
|----------------------------|-------------------|-----------|------|------|------|---|----------------|----------------|---------|
| Analyte                    | Result            | Qualifier | RL   | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Silver                     | 50.0              | U         | 50.0 | 28.9 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:41 | 5       |
| Arsenic                    | 75.0              | U         | 75.0 | 16.7 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:41 | 5       |
| Barium                     | 128               | J         | 1000 | 66.0 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:41 | 5       |
| Cadmium                    | 20.0              | U         | 20.0 | 1.6  | ug/L |   | 07/15/21 05:31 | 07/15/21 15:41 | 5       |
| Chromium                   | 50.0              | U         | 50.0 | 24.9 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:41 | 5       |
| Lead                       | 50.0              | U         | 50.0 | 11.8 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:41 | 5       |
| Selenium                   | 100               | U         | 100  | 29.4 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:41 | 5       |
| _<br>Method: 7470A - Merci | ury (CVAA) - TCLP |           |      |      |      |   |                |                |         |
| Analyte                    | • • •             | Qualifier | RL   | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |

#### Result Qualifier Analyte MDL Unit RL 0.20 0.091 ug/L 0.13 J Mercury

## **Client Sample ID: SL1** Date Collected: 07/08/21 12:06 Date Received: 07/09/21 17:30

## 07/21/21 14:02 07/21/21 15:50 Lab Sample ID: 460-238488-2 **Matrix: Solid**

## Percent Solids: 17.8

| Analyte         Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed         Dil Fac           Chioromethane         320000         U         320000         130000         ug/Kg         0         07/13/21 09:49         07/14/21 17:36         20000           Sromomethane         320000         U         320000         120000         ug/Kg         0         07/13/21 09:49         07/14/21 17:36         20000           Chioroethane         320000         U         320000         120000         ug/Kg         0         07/13/21 09:49         07/14/21 17:36         20000           Acetone         1600000         U         320000         1400000         ug/Kg         0         07/13/21 09:49         07/14/21 17:36         20000           Carbon disulfide         320000         U         320000         1300000         ug/Kg         0         07/13/21 09:49         07/14/21 17:36         20000           1-holchoroethane         320000         U         320000         85000         ug/Kg         0         07/13/21 09:49         07/14/21 17:36         20000           1-holchoroethane         320000         U         320000         320000         ug/Kg         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Method: 8260D - Volatile C  | Organic Compo | unds by   | GC/MS   |         |       |    |                |                |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|-----------|---------|---------|-------|----|----------------|----------------|---------|
| Bromomethane         320000         U         320000         180000         ug/Kg         C         07/13/21 09:49         07/14/21 17:36         20000           Vinyl chloride         320000         U         320000         120000         07/13/21 09:49         07/14/21 17:36         20000           Chloroethane         320000         U         320000         120000         07/13/21 09:49         07/14/21 17:36         20000           Acetone         1600000         U         1600000         140000         ug/Kg         07/13/21 09:49         07/14/21 17:36         20000           Carbon disulfide         320000         U         320000         220000         ug/Kg         07/13/21 09:49         07/14/21 17:36         20000           1,1-Dichloroethane         320000         U         320000         85000         ug/Kg         07/13/21 09:49         07/14/21 17:36         20000           1,1-Dichloroethane         320000         U         320000         85000         ug/Kg         07/13/21 09:49         07/14/21 17:36         20000           L-Dichloroethane         320000         U         320000         84000         ug/Kg         07/13/21 09:49         07/14/21 17:36         20000           L-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyte                     | Result        | Qualifier | RL      | MDL     | Unit  | D  | Prepared       | Analyzed       | Dil Fac |
| Vinyl chloride         320000         U         320000         20/07         c         07/14/21 17:36         20000           Chloroethane         320000         U         320000         66000         ug/Kg         c         07/14/21 17:36         20000           Methylene Chloride         320000         U         320000         68000         ug/Kg         c         07/13/21 09:49         07/14/21 17:36         20000           Carbon disulfide         320000         U         320000         220000         ug/Kg         c         07/13/21 09:49         07/14/21 17:36         20000           Carbon disulfide         320000         U         320000         100000         ug/Kg         c         07/13/21 09:49         07/14/21 17:36         20000           1,1-Dichoroethane         320000         U         320000         7700         ug/Kg         c         07/13/21 09:49         07/14/21 17:36         20000           1,1-Dichoroethane         320000         U         320000         77000         ug/Kg         c         07/13/21 09:49         07/14/21 17:36         20000           cis-1,2-Dichloroethane         320000         U         320000         81000         ug/Kg         c         07/13/21 09:49         07/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chloromethane               | 320000        | U         | 320000  | 130000  | ug/Kg | \$ | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Chloroethane         320000         U         320000         120000         ug/Kg         String         O7/13/21 09:49         O7/14/21 17:36         20000           Methylene Chloride         320000         U         320000         1400000         ug/Kg         String         O7/13/21 09:49         O7/14/21 17:36         20000           Acetone         160000         U         320000         ug/Kg         String         O7/13/21 09:49         O7/14/21 17:36         20000           Carbon disulfide         320000         U         320000         ug/Kg         String         O7/13/21 09:49         O7/14/21 17:36         20000           1,1-Dichloroethane         320000         U         320000         ug/Kg         String         O7/13/21 09:49         O7/14/21 17:36         20000           cis-1,2-Dichloroethane         320000         U         320000         BK000         ug/Kg         String         O7/13/21 09:49         O7/14/21 17:36         20000           cis-1,2-Dichloroethane         320000         U         320000         BK000         ug/Kg         String         O7/13/21 09:49         O7/14/21 17:36         20000           1,2-Dichloroethane         320000         U         320000         BK000         ug/Kg <t< td=""><td>Bromomethane</td><td>320000</td><td>U</td><td>320000</td><td>180000</td><td>ug/Kg</td><td>¢</td><td>07/13/21 09:49</td><td>07/14/21 17:36</td><td>20000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bromomethane                | 320000        | U         | 320000  | 180000  | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Methylene Chloride         320000         U         320000         68000         ug/Kg         the         07/13/21         09/49         07/14/21         17.36         20000           Acetone         160000         U         1600000         ug/Kg         the         07/13/21         09:49         07/14/21         17.36         20000           Carbon disulfide         320000         U         320000         ug/Kg         the         07/13/21         09:49         07/14/21         17.36         20000           1,1-Dichloroethane         320000         U         320000         85000         ug/Kg         the         07/13/21         09:49         07/14/21         17.36         20000           1,1-Dichloroethane         320000         U         320000         86000         ug/Kg         the         07/13/21         09:49         07/14/21         17.36         20000           cis1,2-Dichloroethane         320000         U         320000         84000         ug/Kg         the         07/13/21         09:49         07/14/21         17.36         20000           1,2-Dichloroethane         320000         U         320000         81000         ug/Kg         the         07/13/21         09:49 <td< td=""><td>Vinyl chloride</td><td>320000</td><td>U</td><td>320000</td><td>64000</td><td>ug/Kg</td><td>¢</td><td>07/13/21 09:49</td><td>07/14/21 17:36</td><td>20000</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vinyl chloride              | 320000        | U         | 320000  | 64000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Acetone         160000         U         160000         140000         ug/kg         ©         07/13/21 09:49         07/14/21 17:36         20000           Carbon disulfide         320000         U         320000         220000         ug/kg         ©         07/13/21 09:49         07/14/21 17:36         20000           Trichlorofluoromethane         320000         U         320000         55000         ug/kg         ©         07/13/21 09:49         07/14/21 17:36         20000           1.1-Dichloroethane         320000         U         320000         70700         ug/kg         ©         07/13/21 09:49         07/14/21 17:36         20000           cis-1,2-Dichloroethane         320000         U         320000         86000         ug/kg         ©         07/13/21 09:49         07/14/21 17:36         20000           cis-1,2-Dichloroethane         320000         U         320000         81000         ug/kg         ©         07/13/21 09:49         07/14/21 17:36         20000           1,2-Dichloroethane         320000         U         320000         8100         ug/kg         ©         07/13/21 09:49         07/14/21 17:36         20000           1,1-Trichloroethane         320000         U         320000         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chloroethane                | 320000        | U         | 320000  | 120000  | ug/Kg | ☆  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Carbon disulfide         32000         U         32000         22000         ujkg         Display         Display <thdisplay< th="">         Display         <thdispla< td=""><td>Methylene Chloride</td><td>320000</td><td>U</td><td>320000</td><td>68000</td><td>ug/Kg</td><td>☆</td><td>07/13/21 09:49</td><td>07/14/21 17:36</td><td>20000</td></thdispla<></thdisplay<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Methylene Chloride          | 320000        | U         | 320000  | 68000   | ug/Kg | ☆  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Trichlorofluoromethane         32000         U         32000         10000         u/kg         Image: Constraint of the constraint o | Acetone                     | 1600000       | U         | 1600000 | 1400000 | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 1,1-Dichloroethene       320000       U       320000       85000       ug/Kg       ©       07/13/21 09:49       07/14/21 17:36       20000         1,1-Dichloroethane       320000       U       320000       58000       ug/Kg       ©       07/13/21 09:49       07/14/21 17:36       20000         cis-1,2-Dichloroethene       1200000       U       320000       58000       ug/Kg       ©       07/13/21 09:49       07/14/21 17:36       20000         Chloroform       320000       U       320000       84000       ug/Kg       ©       07/13/21 09:49       07/14/21 17:36       20000         2-Butanone (MEK)       1600000       U       320000       81000       ug/Kg       ©       07/13/21 09:49       07/14/21 17:36       20000         1,1-Trichloroethane       320000       U       320000       90000       ug/Kg       ©       07/13/21 09:49       07/14/21 17:36       20000         1,1-Trichloroethane       320000       U       320000       48000       ug/Kg       ©       07/13/21 09:49       07/14/21 17:36       20000         1,2-Dichloroethane       320000       U       320000       48000       ug/Kg       ©       07/13/21 09:49       07/14/21 17:36       20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carbon disulfide            | 320000        | U         | 320000  | 220000  | ug/Kg | ☆  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 1,1-Dichloroethane       32000       U       32000       7700       ug/Kg       © 7/13/21 09:49       07/14/21 17:36       20000         trans-1,2-Dichloroethene       320000       U       320000       84000       ug/Kg       © 07/13/21 09:49       07/14/21 17:36       20000         cls-1,2-Dichloroethene       1200000       320000       84000       ug/Kg       © 07/13/21 09:49       07/14/21 17:36       20000         Chloroform       320000       U       320000       81000       ug/Kg       © 07/13/21 09:49       07/14/21 17:36       20000         2-Butanone (MEK)       1600000       U       1600000       71000       ug/Kg       © 07/13/21 09:49       07/14/21 17:36       20000         1,1-1rrichloroethane       320000       U       320000       10000       ug/Kg       © 07/13/21 09:49       07/14/21 17:36       20000         Carbon tetrachloride       320000       U       320000       110000       ug/Kg       © 07/13/21 09:49       07/14/21 17:36       20000         1,2-Dichloropropane       320000       U       320000       10000       ug/Kg       © 07/13/21 09:49       07/14/21 17:36       20000         1,2-Dichloropropane       320000       U       320000       71000 <t< td=""><td>Trichlorofluoromethane</td><td>320000</td><td>U</td><td>320000</td><td>100000</td><td>ug/Kg</td><td>☆</td><td>07/13/21 09:49</td><td>07/14/21 17:36</td><td>20000</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trichlorofluoromethane      | 320000        | U         | 320000  | 100000  | ug/Kg | ☆  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| trans-1,2-Dichloroethene32000U320005800u/y/kg:::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1-Dichloroethene          | 320000        | U         | 320000  | 85000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| cis-1,2-Dichloroethene         120000         32000         84000         ug/Kg         © 07/13/21 09:49         07/14/21 17:36         20000           Chloroform         320000         U         320000         81000         ug/Kg         © 07/13/21 09:49         07/14/21 17:36         20000           1,2-Dichloroethane         320000         U         320000         81000         ug/Kg         © 07/13/21 09:49         07/14/21 17:36         20000           2-Butanone (MEK)         1600000         U         1600000         10000         ug/Kg         © 07/13/21 09:49         07/14/21 17:36         20000           1,1,1-Trichloroethane         320000         U         320000         90000         ug/Kg         © 07/13/21 09:49         07/14/21 17:36         20000           Carbon tetrachloride         320000         U         320000         10000         ug/Kg         © 07/13/21 09:49         07/14/21 17:36         20000           1,2-Dichloropropane         320000         U         320000         71000         ug/Kg         © 07/13/21 09:49         07/14/21 17:36         20000           Chlorodibromomethane         320000         U         320000         71000         ug/Kg         © 07/13/21 09:49         07/14/21 17:36         20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-Dichloroethane          | 320000        | U         | 320000  | 77000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Chloroform         32000         U         32000         7100         ug/Kg         ©         07/13/21         09:49         07/14/21         17:36         20000           1,2-Dichloroethane         32000         U         32000         81000         ug/Kg         ©         07/13/21         09:49         07/14/21         17:36         20000           2-Butanone (MEK)         1600000         U         1600000         71000         ug/Kg         ©         07/13/21         09:49         07/14/21         17:36         20000           1,1-Trichloroethane         320000         U         320000         10000         ug/Kg         ©         07/13/21         09:49         07/14/21         17:36         20000           Carbon tetrachloride         320000         U         320000         10000         ug/Kg         ©         07/13/21         09:49         07/14/21         17:36         20000           1,2-Dichloropropane         320000         U         320000         71000         ug/Kg         ©         07/13/21         09:49         07/14/21         17:36         20000           1,2-Dichloropropane         320000         U         320000         71000         ug/Kg         ©         07/13/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | trans-1,2-Dichloroethene    | 320000        | U         | 320000  | 58000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 1,2-Dichloroethane       32000       U       32000       8100       ug/kg       ©       07/13/21 09:49       07/14/21 17:36       20000         2-Butanone (MEK)       160000       U       160000       vg/kg       ©       07/13/21 09:49       07/14/21 17:36       20000         1,1-Trichloroethane       32000       U       32000       9000       ug/kg       ©       07/13/21 09:49       07/14/21 17:36       20000         Carbon tetrachloride       32000       U       32000       11000       ug/kg       ©       07/13/21 09:49       07/14/21 17:36       20000         Dichlorobromomethane       32000       U       32000       48000       ug/kg       ©       07/13/21 09:49       07/14/21 17:36       20000         1,2-Dichloropropane       32000       U       320000       7100       ug/kg       ©       07/13/21 09:49       07/14/21 17:36       20000         cis-1,3-Dichloropropane       320000       U       320000       7100       ug/kg       ©       07/13/21 09:49       07/14/21 17:36       20000         Chlorodibromomethane       320000       U       320000       7100       ug/kg       ©       07/13/21 09:49       07/14/21 17:36       20000         1,1,2-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cis-1,2-Dichloroethene      | 1200000       |           | 320000  | 84000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 2-Butanone (MEK)160000U160000071000ug/Kg©07/13/2109:4907/14/2177:36200001,1,1-Trichloroethane32000U3200090000ug/Kg©07/13/2109:4907/14/2117:3620000Carbon tetrachloride320000U320000110000ug/Kg©07/13/2109:4907/14/2117:3620000Dichlorobromomethane320000U32000048000ug/Kg©07/13/2109:4907/14/2117:36200001,2-Dichloropropane320000U32000071000ug/Kg©07/13/2109:4907/14/2117:3620000cis-1,3-Dichloropropane320000U32000071000ug/Kg©07/13/2109:4907/14/2117:3620000Trichloroethane2200000U32000071000ug/Kg©07/13/2109:4907/14/2117:36200001,1,2-Trichloroethane320000U32000071000ug/Kg©07/13/2109:4907/14/2117:36200001,1,2-Trichloroethane320000U32000065000ug/Kg©07/13/2109:4907/14/2117:36200001,1,2-Trichloroethane320000U32000071000ug/Kg©07/13/2109:4907/14/2117:36200001,1,2-Trichloroethane320000U32000065000ug/Kg©07/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chloroform                  | 320000        | U         | 320000  | 71000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 1,1,1-Trichloroethane       320000       U       320000       90000       ug/kg $\div$ 07/13/21       09:49       07/14/21       17:36       20000         Carbon tetrachloride       320000       U       320000       110000       ug/kg $\div$ 07/13/21       09:49       07/14/21       17:36       20000         Dichlorobromomethane       320000       U       320000       48000       ug/kg $\div$ 07/13/21       09:49       07/14/21       17:36       20000         1,2-Dichloropropane       320000       U       320000       71000       ug/kg $\div$ 07/13/21       09:49       07/14/21       17:36       20000         cis-1,3-Dichloropropene       320000       U       320000       71000       ug/kg $\div$ 07/13/21       09:49       07/14/21       17:36       20000         Chlorodibromomethane       320000       U       320000       71000       ug/kg $\div$ 07/13/21       09:49       07/14/21       17:36       20000         1,1,2-Trichloroethane       320000       U       320000       66000       ug/kg $\circ$ 07/13/21       09:49       07/14/21       17:36       20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichloroethane          | 320000        | U         | 320000  | 81000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Carbon tetrachloride32000U3200011000ug/kg©07/13/2109:4907/14/217:362000Dichlorobromomethane32000U320004800ug/kg©07/13/2109:4907/14/2117:3620001,2-Dichloropropane32000U320005800ug/kg©07/13/2109:4907/14/2117:362000cis-1,3-Dichloropropene32000U320007100ug/kg©07/13/2109:4907/14/2117:362000Trichloroethene2200000320007100ug/kg©07/13/2109:4907/14/2117:362000Chlorodibromomethane32000U320007100ug/kg©07/13/2109:4907/14/2117:36200001,1,2-Trichloroethane32000U320006600ug/kg©07/13/2109:4907/14/2117:3620000Enzene32000U320007100ug/kg©07/13/2109:4907/14/2117:3620000Irans-1,3-Dichloropropene32000U320007100ug/kg©07/13/2109:4907/14/2117:3620000Bromoform32000U320007100ug/kg©07/13/2109:4907/14/2117:36200004-Methyl-2-pentanone (MIBK)160000U16000037000ug/kg©07/13/2109:4907/14/2117:36 <td< td=""><td>2-Butanone (MEK)</td><td>1600000</td><td>U</td><td>1600000</td><td>710000</td><td>ug/Kg</td><td>¢</td><td>07/13/21 09:49</td><td>07/14/21 17:36</td><td>20000</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Butanone (MEK)            | 1600000       | U         | 1600000 | 710000  | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Dichlorobromomethane32000U3200048000ug/KgC07/13/21 09:4907/14/21 17:36200001,2-Dichloropropane320000U32000058000ug/KgC07/13/21 09:4907/14/21 17:3620000cis-1,3-Dichloropropene320000U32000071000ug/KgC07/13/21 09:4907/14/21 17:3620000Trichloroethene220000032000071000ug/KgC07/13/21 09:4907/14/21 17:3620000Chlorodibromomethane320000U32000071000ug/KgC07/13/21 09:4907/14/21 17:36200001,1,2-Trichloroethane320000U32000066000ug/KgC07/13/21 09:4907/14/21 17:3620000Benzene320000U32000065000ug/KgC07/13/21 09:4907/14/21 17:3620000trans-1,3-Dichloropropene320000U32000071000ug/KgC07/13/21 09:4907/14/21 17:3620000Bromoform320000U32000071000ug/KgC07/13/21 09:4907/14/21 17:36200004-Methyl-2-pentanone (MIBK)1600000U1600000370000ug/KgC07/13/21 09:4907/14/21 17:36200002-Hexanone1600000U1600000370000ug/KgC07/13/21 09:4907/14/21 17:36200001,1,2,2-Tetrachloroethane320000U320000120000ug/KgC07/13/21 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1,1-Trichloroethane       | 320000        | U         | 320000  | 90000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 1,2-Dichloropropane       320000       U       320000       58000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         cis-1,3-Dichloropropene       320000       U       320000       71000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         Trichloroethene       2200000       U       320000       71000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         Chlorodibromomethane       320000       U       320000       71000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         1,1,2-Trichloroethane       320000       U       320000       66000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         Benzene       320000       U       320000       66000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         trans-1,3-Dichloropropene       320000       U       320000       71000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         Harsh,3-Dichloropropen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carbon tetrachloride        | 320000        | U         | 320000  | 110000  | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| cis-1,3-Dichloropropene320000U32000071000ug/Kg*07/13/2109:4907/14/2117:3620000Trichloroethene220000032000071000ug/Kg*07/13/2109:4907/14/2117:3620000Chlorodibromomethane320000U32000071000ug/Kg*07/13/2109:4907/14/2117:36200001,1,2-Trichloroethane320000U32000066000ug/Kg*07/13/2109:4907/14/2117:3620000Benzene320000U32000066000ug/Kg*07/13/2109:4907/14/2117:3620000Irans-1,3-Dichloropropene320000U32000071000ug/Kg*07/13/2109:4907/14/2117:3620000Bromoform320000U32000071000ug/Kg*07/13/2109:4907/14/2117:36200004-Methyl-2-pentanone (MIBK)1600000U1600000370000ug/Kg*07/13/2109:4907/14/2117:36200002-Hexanone1600000U1600000370000ug/Kg*07/13/2109:4907/14/2117:36200001,1,2,2-Tetrachloroethane320000U320000120000ug/Kg*07/13/2109:4907/14/2117:36200001,1,2,2-Tetrachloroethane320000U320000120000ug/Kg*07/13/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dichlorobromomethane        | 320000        | U         | 320000  | 48000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Trichloroethene220000032000071000ug/kg07/13/2109:4907/14/2177:3620000Chlorodibromomethane320000U32000071000ug/kg07/13/2109:4907/14/2117:36200001,1,2-Trichloroethane320000U32000066000ug/kg07/13/2109:4907/14/2117:3620000Benzene320000U32000065000ug/kg07/13/2109:4907/14/2117:3620000trans-1,3-Dichloropropene320000U32000071000ug/kg07/13/2109:4907/14/2117:3620000Bromoform320000U32000058000ug/kg07/13/2109:4907/14/2117:36200004-Methyl-2-pentanone (MIBK)1600000U1600000ug/kg07/13/2109:4907/14/2117:36200002-Hexanone1600000U1600000370000ug/kg07/13/2109:4907/14/2117:36200001,1,2,2-Tetrachloroethene54000000320000120000ug/kg07/13/2109:4907/14/2117:36200001,1,2,2-Tetrachloroethane320000U32000081000ug/kg07/13/2109:4907/14/2117:36200001,1,2,2-Tetrachloroethane320000U32000081000ug/kg07/13/2109:4907/14/2117:362000010luene320000U32000081000 <td>1,2-Dichloropropane</td> <td>320000</td> <td>U</td> <td>320000</td> <td>58000</td> <td>ug/Kg</td> <td>¢</td> <td>07/13/21 09:49</td> <td>07/14/21 17:36</td> <td>20000</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dichloropropane         | 320000        | U         | 320000  | 58000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Chlorodibromomethane       32000       U       32000       7100       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         1,1,2-Trichloroethane       32000       U       32000       66000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         Benzene       320000       U       320000       66000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         trans-1,3-Dichloropropene       320000       U       320000       71000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         Bromoform       320000       U       320000       71000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         4-Methyl-2-pentanone (MIBK)       1600000       U       1600000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         2-Hexanone       1600000       U       1600000       370000       ug/kg       *       07/13/21       09:49       07/14/21       17:36       20000         1,1,2,2-Tetrachloroethane       320000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cis-1,3-Dichloropropene     | 320000        | U         | 320000  | 71000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 1,1,2-Trichloroethane32000U320006600ug/Kg©07/13/2109:4907/14/2117:362000Benzene32000U320006500ug/Kg©07/13/2109:4907/14/2117:3620000trans-1,3-Dichloropropene320000U32000071000ug/Kg©07/13/2109:4907/14/2117:3620000Bromoform320000U32000058000ug/Kg©07/13/2109:4907/14/2117:36200004-Methyl-2-pentanone (MIBK)1600000U1600000420000ug/Kg©07/13/2109:4907/14/2117:36200002-Hexanone1600000U1600000370000ug/Kg©07/13/2109:4907/14/2117:3620000Tetrachloroethene54000000U320000120000ug/Kg©07/13/2109:4907/14/2117:36200001,1,2,2-Tetrachloroethane320000U32000064000ug/Kg©07/13/2109:4907/14/2117:3620000Toluene320000U32000081000ug/Kg©07/13/2109:4907/14/2117:3620000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trichloroethene             | 2200000       |           | 320000  | 71000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Benzene32000U320006500ug/Kg> 07/13/21 09:4907/14/21 17:3620000trans-1,3-Dichloropropene32000U320007100ug/Kg> 07/13/21 09:4907/14/21 17:3620000Bromoform32000U32000058000ug/Kg> 07/13/21 09:4907/14/21 17:36200004-Methyl-2-pentanone (MIBK)1600000U1600000420000ug/Kg> 07/13/21 09:4907/14/21 17:36200002-Hexanone1600000U1600000370000ug/Kg> 07/13/21 09:4907/14/21 17:36200002-Hexanone1600000U1600000370000ug/Kg> 07/13/21 09:4907/14/21 17:36200001,1,2,2-Tetrachloroethane54000000U32000064000ug/Kg> 07/13/21 09:4907/14/21 17:36200001,1,2,2-Tetrachloroethane320000U32000081000ug/Kg> 07/13/21 09:4907/14/21 17:3620000Toluene320000U32000081000ug/Kg> 07/13/21 09:4907/14/21 17:3620000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chlorodibromomethane        | 320000        | U         | 320000  | 71000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| trans-1,3-Dichloropropene32000U320007100ug/Kg©07/13/2109:4907/14/2117:362000Bromoform32000U320005800ug/Kg©07/13/2109:4907/14/2117:36200004-Methyl-2-pentanone (MIBK)160000U16000042000ug/Kg©07/13/2109:4907/14/2117:36200002-Hexanone160000U16000037000ug/Kg©07/13/2109:4907/14/2117:3620000Tetrachloroethene54000000U3200012000ug/Kg©07/13/2109:4907/14/2117:36200001,1,2,2-Tetrachloroethane32000U3200064000ug/Kg©07/13/2109:4907/14/2117:3620000Toluene320000U32000081000ug/Kg©07/13/2109:4907/14/2117:3620000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2-Trichloroethane       | 320000        | U         | 320000  | 66000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Bromoform         32000         U         32000         5800         ug/Kg         \$\$         07/13/21 09:49         07/14/21 17:36         20000           4-Methyl-2-pentanone (MIBK)         160000         U         160000         42000         ug/Kg         \$\$         07/13/21 09:49         07/14/21 17:36         20000           2-Hexanone         1600000         U         1600000         ug/Kg         \$\$         07/13/21 09:49         07/14/21 17:36         20000           Tetrachloroethene         54000000         320000         120000         ug/Kg         \$\$         07/13/21 09:49         07/14/21 17:36         20000           1,1,2,2-Tetrachloroethane         320000         U         320000         64000         ug/Kg         \$\$         07/13/21 09:49         07/14/21 17:36         20000           1,1,2,2-Tetrachloroethane         320000         U         320000         64000         ug/Kg         \$\$         07/13/21 09:49         07/14/21 17:36         20000           Toluene         320000         U         320000         81000         ug/Kg         \$\$         07/13/21 09:49         07/14/21 17:36         20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzene                     | 320000        | U         | 320000  | 65000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 4-Methyl-2-pentanone (MIBK)       1600000       U       1600000       420000       ug/Kg       \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$07/13/21 09:49       07/14/21 17:36       20000         2-Hexanone       1600000       U       1600000       370000       ug/Kg       \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | trans-1,3-Dichloropropene   | 320000        | U         | 320000  | 71000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 2-Hexanone         160000         U         160000         37000         ug/Kg         \$\$\$\$ 07/13/21 09:49         07/14/21 17:36         20000           Tetrachloroethene         54000000         320000         120000         ug/Kg         \$\$\$\$ 07/13/21 09:49         07/14/21 17:36         20000           1,1,2,2-Tetrachloroethane         320000         U         320000         64000         ug/Kg         \$\$\$\$ 07/13/21 09:49         07/14/21 17:36         20000           Toluene         320000         U         320000         81000         ug/Kg         \$\$\$\$ 07/13/21 09:49         07/14/21 17:36         20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromoform                   | 320000        | U         | 320000  | 58000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Tetrachloroethene         54000000         320000         12000         ug/Kg         \$ 07/13/21 09:49         07/14/21 17:36         20000           1,1,2,2-Tetrachloroethane         320000         U         320000         64000         ug/Kg         \$ 07/13/21 09:49         07/14/21 17:36         20000           Toluene         320000         U         320000         81000         ug/Kg         \$ 07/13/21 09:49         07/14/21 17:36         20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4-Methyl-2-pentanone (MIBK) | 1600000       | U         | 1600000 | 420000  | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 1,1,2,2-Tetrachloroethane       32000       U       32000       64000       ug/Kg       \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Hexanone                  | 1600000       | U         | 1600000 | 370000  | ug/Kg | ₽  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Toluene         32000 U         32000 B100 ug/Kg         \$ 07/13/21 09:49 07/14/21 17:36 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tetrachloroethene           | 5400000       |           | 320000  | 120000  | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| 5 · 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1,2,2-Tetrachloroethane   | 320000        | U         | 320000  | 64000   | ug/Kg | ☆  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Toluene                     | 320000        | U         | 320000  | 81000   | ug/Kg | ☆  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |
| Chlorobenzene 32000 U 32000 7700 ug/Kg © 07/13/21 09:49 07/14/21 17:36 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chlorobenzene               | 320000        | U         | 320000  | 77000   | ug/Kg | ¢  | 07/13/21 09:49 | 07/14/21 17:36 | 20000   |

Eurofins TestAmerica, Edison

**Matrix: Water** 

5

6

# **Client Sample Results**

Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

## Client Sample ID: SL1 Date Collected: 07/08/21 12:06 Date Received: 07/09/21 17:30

Job ID: 460-238488-1

## Lab Sample ID: 460-238488-2 Matrix: Solid

Percent Solids: 17.8

5

| Method: 8260D - Volatile Organ        | nic Compo      | unds by G | GC/MS (Con | tinued)   |           |          |                |                            |         |
|---------------------------------------|----------------|-----------|------------|-----------|-----------|----------|----------------|----------------------------|---------|
| Analyte                               |                | Qualifier | RL         |           | Unit      | D        | Prepared       | Analyzed                   | Dil Fac |
| Ethylbenzene                          | 320000         | U         | 320000     | 97000     | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Styrene                               | 320000         | U         | 320000     | 55000     | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| m-Xylene & p-Xylene                   | 320000         | U         | 320000     | 90000     | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| o-Xylene                              | 320000         | U         | 320000     | 100000    | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 320000         | U         | 320000     | 110000    | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Methyl tert-butyl ether               | 320000         | U         | 320000     | 69000     | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Cyclohexane                           | 320000         | U         | 320000     | 84000     | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Ethylene Dibromide                    | 320000         | U         | 320000     | 61000     | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| 1,3-Dichlorobenzene                   | 320000         | U         | 320000     | 110000    | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| 1,4-Dichlorobenzene                   | 320000         | U         | 320000     | 110000    | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| 1,2-Dichlorobenzene                   | 320000         | U         | 320000     | 71000     | ug/Kg     | ф.       | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Dichlorodifluoromethane               | 320000         | U         | 320000     | 100000    | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| 1,2,4-Trichlorobenzene                | 320000         | U         | 320000     | 87000     | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| 1,4-Dioxane                           | 16000000       | U         | 16000000   | 9100000   |           |          | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| 1,2,3-Trichlorobenzene                | 320000         |           | 320000     | 110000    |           | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| 1,2-Dibromo-3-Chloropropane           | 320000         | U         | 320000     | 68000     | ug/Kg     | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Chlorobromomethane                    | 320000         | U         | 320000     |           | ug/Kg     |          | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Isopropylbenzene                      | 320000         | U         | 320000     | 100000    |           | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Methyl acetate                        | 1600000        | U         | 1600000    | 250000    | 0 0       | ¢        | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Methylcyclohexane                     | 320000         |           | 320000     | 230000    | 0 0       | ¢        | 07/13/21 09:49 |                            | 20000   |
| Tentatively Identified Compound       | Est. Result    | Qualifier | Unit       | D         | RT        | CAS No.  | Prepared       | Analyzed                   | Dil Fac |
| Tentatively Identified Compound       | None           |           | ug/Kg      | ф         |           |          | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Surrogate                             | %Recovery      | Qualifier | Limits     |           |           |          | Prepared       | Analyzed                   | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)          | 0              | D         | 70 - 150   |           |           |          | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Toluene-d8 (Surr)                     | 0              | D         | 68 - 148   |           |           |          | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| 4-Bromofluorobenzene                  | 0              | D         | 62 - 150   |           |           |          | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Dibromofluoromethane (Surr)           | 0              | D         | 54 - 150   |           |           |          | 07/13/21 09:49 | 07/14/21 17:36             | 20000   |
| Method: 6010D - Metals (ICP)          |                |           |            |           |           |          |                |                            |         |
| Analyte                               | Result         | Qualifier | RL         | MDL       | Unit      | D        | Prepared       | Analyzed                   | Dil Fac |
| Silver                                | 22.5           |           | 8.0        | 4.5       | mg/Kg     | ¢        | 07/17/21 20:20 | 07/18/21 17:58             | 2       |
| Arsenic                               | 28.5           |           | 12.0       | 2.5       | mg/Kg     | ¢        | 07/17/21 20:20 | 07/18/21 17:58             | 2       |
| Barium                                | 1930           |           | 160        | 15.5      | mg/Kg     | ¢        | 07/17/21 20:20 | 07/18/21 17:58             | 2       |
| Cadmium                               | 34.1           |           | 3.2        | 0.28      | mg/Kg     | ¢        | 07/17/21 20:20 | 07/18/21 17:58             | 2       |
| Chromium                              | 98.9           |           | 8.0        | 5.7       | mg/Kg     | ¢        | 07/17/21 20:20 | 07/18/21 17:58             | 2       |
| Lead                                  | 594            |           | 8.0        | 1.3       | mg/Kg     | ¢        | 07/17/21 20:20 | 07/18/21 17:58             | 2       |
| Selenium                              | 4.3            | J         | 16.0       | 2.7       | mg/Kg     | ¢        | 07/17/21 20:20 | 07/18/21 17:58             | 2       |
| Method: 7471B - Mercury (CVA          | A)             |           |            |           |           |          |                |                            |         |
| Analyte                               |                | Qualifier | RL         | MDL       | Unit      | D        | Prepared       | Analyzed                   | Dil Fac |
| Mercury                               | 5.9            |           | 0.26       | 0.060     | mg/Kg     | <u>ф</u> | 07/15/21 04:15 | 07/15/21 10:20             | 3       |
| General Chemistry                     |                |           |            |           |           |          |                |                            |         |
| · · · · · · · · · · · · · · · · · · · |                |           |            |           |           |          |                |                            |         |
| Analyte                               | Result         | Qualifier | RL         | RL        | Unit      | D        | Prepared       | Analvzed                   | Dil Fac |
| Analyte<br>Percent Moisture           | Result<br>82.2 | Qualifier | RL<br>1.0  | RL<br>1.0 | Unit<br>% | <u>D</u> | Prepared       | Analyzed<br>07/14/21 08:19 | Dil Fac |

# **Surrogate Summary**

## Method: 8260D - Volatile Organic Compounds by GC/MS Matrix: Solid

|                   |                        |          | Pe       | ercent Surro | ogate Reco |
|-------------------|------------------------|----------|----------|--------------|------------|
|                   |                        | DCA      | TOL      | BFB          | DBFM       |
| Lab Sample ID     | Client Sample ID       | (70-150) | (68-148) | (62-150)     | (54-150)   |
| 460-238488-2      | SL1                    | 0 D      | 0 D      | 0 D          | 0 D        |
| LCS 460-790164/4  | Lab Control Sample     | 101      | 101      | 96           | 103        |
| LCSD 460-790164/5 | Lab Control Sample Dup | 101      | 101      | 97           | 100        |
| MB 460-790164/9   | Method Blank           | 107      | 100      | 97           | 103        |

#### Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene

DBFM = Dibromofluoromethane (Surr)

# **Prep Type: Total/NA**

Eurofins TestAmerica, Edison

8

## Method: 8260D - Volatile Organic Compounds by GC/MS

## Lab Sample ID: MB 460-790164/9 Matrix: Solid

Analysis Batch: 790164

## Client Sample ID: Method Blank Prep Type: Total/NA

| Analysis Batch: 790164                |      |           |          |     |                |   |          |                |          |
|---------------------------------------|------|-----------|----------|-----|----------------|---|----------|----------------|----------|
|                                       |      | MB        |          |     |                | _ |          |                |          |
| Analyte                               |      | Qualifier | RL       | MDL |                | D | Prepared | Analyzed       | Dil Fac  |
| Chloromethane                         | 50   |           | 50       | 20  | 0 0            |   |          | 07/14/21 11:41 | 50       |
| Bromomethane                          | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Vinyl chloride                        | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Chloroethane                          | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Methylene Chloride                    | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Acetone                               | 250  |           | 250      |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Carbon disulfide                      | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Trichlorofluoromethane                | 50   | U         | 50       | 16  | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,1-Dichloroethene                    | 50   | U         | 50       | 13  | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,1-Dichloroethane                    | 50   | U         | 50       | 12  | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| trans-1,2-Dichloroethene              | 50   | U         | 50       | 9.0 | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| cis-1,2-Dichloroethene                | 50   | U         | 50       | 13  | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Chloroform                            | 50   | U         | 50       | 11  | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,2-Dichloroethane                    | 50   | U         | 50       | 13  | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 2-Butanone (MEK)                      | 250  | U         | 250      | 110 | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,1,1-Trichloroethane                 | 50   | U         | 50       | 14  | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Carbon tetrachloride                  | 50   | U         | 50       | 17  | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Dichlorobromomethane                  | 50   | U         | 50       | 7.5 | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,2-Dichloropropane                   | 50   | U         | 50       | 9.0 | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| cis-1,3-Dichloropropene               | 50   | U         | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Trichloroethene                       | 50   | U         | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Chlorodibromomethane                  | 50   | U         | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,1,2-Trichloroethane                 | 50   | U         | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Benzene                               | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| trans-1,3-Dichloropropene             | 50   | U         | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Bromoform                             | 50   | U         | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 4-Methyl-2-pentanone (MIBK)           | 250  |           | 250      |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 2-Hexanone                            | 250  |           | 250      |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Tetrachloroethene                     | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,1,2,2-Tetrachloroethane             | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Toluene                               | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Chlorobenzene                         | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Ethylbenzene                          | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Styrene                               | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| m-Xylene & p-Xylene                   | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| o-Xylene                              | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| Methyl tert-butyl ether               | 50   |           | 50<br>50 |     | ug/Kg          |   |          | 07/14/21 11:41 | 50<br>50 |
| Cyclohexane                           | 50   |           | 50<br>50 |     | ug/Kg<br>ug/Kg |   |          | 07/14/21 11:41 | 50<br>50 |
| Ethylene Dibromide                    | 50   |           | 50       |     | ug/Kg<br>ug/Kg |   |          | 07/14/21 11:41 | 50       |
| 1,3-Dichlorobenzene                   | 50   |           | 50<br>50 |     | ug/Kg<br>ug/Kg |   |          | 07/14/21 11:41 |          |
|                                       |      |           |          |     |                |   |          |                | 50       |
| 1,4-Dichlorobenzene                   | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,2-Dichlorobenzene                   | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50<br>50 |
| Dichlorodifluoromethane               | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,2,4-Trichlorobenzene                | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,4-Dioxane                           | 2500 |           | 2500     |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,2,3-Trichlorobenzene                | 50   |           | 50       |     | ug/Kg          |   |          | 07/14/21 11:41 | 50       |
| 1,2-Dibromo-3-Chloropropane           | 50   | U         | 50       | 11  | ug/Kg          |   |          | 07/14/21 11:41 | 50       |

Eurofins TestAmerica, Edison

## Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

100

97

103

# Lab Sample ID: MB 460-790164/9

# Matrix: Solid

## **Client Sample ID: Method Blank** Prep Type: Total/NA

Job ID: 460-238488-1

Analysis Batch: 790164

Toluene-d8 (Surr)

4-Bromofluorobenzene

Dibromofluoromethane (Surr)

trans-1,3-Dichloropropene

4-Methyl-2-pentanone (MIBK)

Bromoform

2-Hexanone

Tetrachloroethene

|                                 | MB          | MB        |          |     |       |         |          |                |         |
|---------------------------------|-------------|-----------|----------|-----|-------|---------|----------|----------------|---------|
| Analyte                         | Result      | Qualifier | RL       | MDL | Unit  | D       | Prepared | Analyzed       | Dil Fac |
| Chlorobromomethane              | 50          | U         | 50       | 15  | ug/Kg |         |          | 07/14/21 11:41 | 50      |
| Isopropylbenzene                | 50          | U         | 50       | 16  | ug/Kg |         |          | 07/14/21 11:41 | 50      |
| Methyl acetate                  | 250         | U         | 250      | 39  | ug/Kg |         |          | 07/14/21 11:41 | 50      |
| Methylcyclohexane               | 50          | U         | 50       | 36  | ug/Kg |         |          | 07/14/21 11:41 | 50      |
|                                 | MB          | МВ        |          |     |       |         |          |                |         |
| Tentatively Identified Compound | Est. Result | Qualifier | Unit     | D   | RT    | CAS No. | Prepared | Analyzed       | Dil Fac |
| Tentatively Identified Compound | None        |           | ug/Kg    |     |       |         |          | 07/14/21 11:41 | 50      |
|                                 | МВ          | МВ        |          |     |       |         |          |                |         |
| Surrogate                       | %Recovery   | Qualifier | Limits   |     |       |         | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)    | 107         |           | 70 - 150 |     |       |         |          | 07/14/21 11:41 | 50      |

68 - 148

62 - 150

54 - 150

| Lab Sample ID: LCS 460-790164/4 |  |
|---------------------------------|--|
| Matrix: Solid                   |  |

#### Analysis Batch: 790164 Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits Chloromethane 1000 1070 47 - 150 ug/Kg 107 Bromomethane 1000 1090 109 39 - 150 ug/Kg Vinyl chloride 1000 57 - 150 1110 ug/Kg 111 Chloroethane 1000 1090 109 61 - 142 ug/Kg 1000 74 - 127 Methylene Chloride 1040 104 ug/Kg Acetone 5000 4910 ug/Kg 98 56 - 127 Carbon disulfide 1000 1100 ug/Kg 110 67 - 134 Trichlorofluoromethane 1000 1200 120 66 - 133 ug/Kg 1.1-Dichloroethene 1000 1080 108 72 - 128 ug/Kg 1,1-Dichloroethane 1000 1050 ug/Kg 105 79 - 124 trans-1,2-Dichloroethene 1000 1070 107 77 - 127 ug/Kg cis-1,2-Dichloroethene 1000 1060 106 80 - 120 ug/Kg Chloroform 1000 1050 ug/Kg 105 80 - 120 1,2-Dichloroethane 1000 998 ug/Kg 100 62 - 132 2-Butanone (MEK) 5000 5010 ug/Kg 100 65 - 131 1000 1060 106 1,1,1-Trichloroethane 73 - 121 ug/Kg Carbon tetrachloride 1000 1010 101 68 - 123 ug/Kg 77 - 120 1000 993 99 Dichlorobromomethane ug/Kg 1,2-Dichloropropane 1000 1040 104 78 - 125 ug/Kg cis-1,3-Dichloropropene 1000 100 997 ug/Kg 71 - 132 Trichloroethene 1000 1030 ug/Kg 103 77 - 120 Chlorodibromomethane 1000 953 ug/Kg 95 74 - 120 1,1,2-Trichloroethane 1000 983 ug/Kg 98 79 - 120 ug/Kg Benzene 1000 1040 104 80 - 120

Eurofins TestAmerica, Edison

68 - 132

62 - 121

80 - 120

80 - 121

73 - 120

97

90

102

100

99

974

901

5120

4990

993

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

1000

1000

5000

5000

1000

8

# Prep Type: Total/NA

07/14/21 11:41

07/14/21 11:41

07/14/21 11:41

# **Client Sample ID: Lab Control Sample**

## Job ID: 460-238488-1

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

| Method: 8260D | Volatile Organic Compounds by | / GC/MS (Continued) |
|---------------|-------------------------------|---------------------|
|               |                               |                     |

## Lab Sample ID: LCS 460-790164/4 Matrix: Solid

## Analysis Batch: 790164

| Analysis Batch. 750104                    | Spike | LCS    | LCS       |       |   |      | %Rec.    | 5 |
|-------------------------------------------|-------|--------|-----------|-------|---|------|----------|---|
| Analyte                                   | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |   |
| 1,1,2,2-Tetrachloroethane                 | 1000  | 1080   |           | ug/Kg |   | 108  | 74 - 138 |   |
| Toluene                                   | 1000  | 1010   |           | ug/Kg |   | 101  | 80 - 120 |   |
| Chlorobenzene                             | 1000  | 992    |           | ug/Kg |   | 99   | 80 - 120 |   |
| Ethylbenzene                              | 1000  | 960    |           | ug/Kg |   | 96   | 72 - 121 |   |
| Styrene                                   | 1000  | 967    |           | ug/Kg |   | 97   | 74 - 124 |   |
| m-Xylene & p-Xylene                       | 1000  | 958    |           | ug/Kg |   | 96   | 72 - 120 | 8 |
| o-Xylene                                  | 1000  | 949    |           | ug/Kg |   | 95   | 72 - 123 |   |
| 1,1,2-Trichloro-1,2,2-trifluoroetha<br>ne | 1000  | 1280   |           | ug/Kg |   | 128  | 63 - 137 |   |
| Methyl tert-butyl ether                   | 1000  | 1010   |           | ug/Kg |   | 101  | 77 - 125 |   |
| Cyclohexane                               | 1000  | 1200   |           | ug/Kg |   | 120  | 76 - 125 |   |
| Ethylene Dibromide                        | 1000  | 986    |           | ug/Kg |   | 99   | 80 - 120 |   |
| 1,3-Dichlorobenzene                       | 1000  | 1050   |           | ug/Kg |   | 105  | 80 - 120 |   |
| 1,4-Dichlorobenzene                       | 1000  | 1030   |           | ug/Kg |   | 103  | 80 - 120 |   |
| 1,2-Dichlorobenzene                       | 1000  | 1040   |           | ug/Kg |   | 104  | 80 - 120 |   |
| Dichlorodifluoromethane                   | 1000  | 1300   |           | ug/Kg |   | 130  | 45 - 145 |   |
| 1,2,4-Trichlorobenzene                    | 1000  | 1080   |           | ug/Kg |   | 108  | 70 - 138 |   |
| 1,4-Dioxane                               | 20000 | 21000  |           | ug/Kg |   | 105  | 80 - 126 |   |
| 1,2,3-Trichlorobenzene                    | 1000  | 1090   |           | ug/Kg |   | 109  | 70 - 145 |   |
| 1,2-Dibromo-3-Chloropropane               | 1000  | 959    |           | ug/Kg |   | 96   | 73 - 131 |   |
| Chlorobromomethane                        | 1000  | 1040   |           | ug/Kg |   | 104  | 80 - 121 |   |
| lsopropylbenzene                          | 1000  | 975    |           | ug/Kg |   | 98   | 67 - 125 |   |
| Methyl acetate                            | 2000  | 1980   |           | ug/Kg |   | 99   | 41 - 150 |   |
| Methylcyclohexane                         | 1000  | 1270   |           | ug/Kg |   | 127  | 61 - 136 |   |

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 101       |           | 70 - 150 |
| Toluene-d8 (Surr)            | 101       |           | 68 - 148 |
| 4-Bromofluorobenzene         | 96        |           | 62 - 150 |
| Dibromofluoromethane (Surr)  | 103       |           | 54 - 150 |

## Lab Sample ID: LCSD 460-790164/5 Matrix: Solid

## Analysis Batch: 790164

|                          | Spike | LCSD   | LCSD      |       |   |      | %Rec.    |     | RPD   |
|--------------------------|-------|--------|-----------|-------|---|------|----------|-----|-------|
| Analyte                  | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Chloromethane            | 1000  | 1040   |           | ug/Kg |   | 104  | 47 - 150 | 3   | 30    |
| Bromomethane             | 1000  | 1050   |           | ug/Kg |   | 105  | 39 - 150 | 3   | 30    |
| Vinyl chloride           | 1000  | 1080   |           | ug/Kg |   | 108  | 57 - 150 | 3   | 30    |
| Chloroethane             | 1000  | 1060   |           | ug/Kg |   | 106  | 61 - 142 | 3   | 30    |
| Methylene Chloride       | 1000  | 1040   |           | ug/Kg |   | 104  | 74 - 127 | 0   | 30    |
| Acetone                  | 5000  | 5000   |           | ug/Kg |   | 100  | 56 - 127 | 2   | 30    |
| Carbon disulfide         | 1000  | 1050   |           | ug/Kg |   | 105  | 67 - 134 | 4   | 30    |
| Trichlorofluoromethane   | 1000  | 1170   |           | ug/Kg |   | 117  | 66 - 133 | 3   | 30    |
| 1,1-Dichloroethene       | 1000  | 1050   |           | ug/Kg |   | 105  | 72 - 128 | 3   | 30    |
| 1,1-Dichloroethane       | 1000  | 1030   |           | ug/Kg |   | 103  | 79 - 124 | 2   | 30    |
| trans-1,2-Dichloroethene | 1000  | 1030   |           | ug/Kg |   | 103  | 77 - 127 | 4   | 30    |
| cis-1,2-Dichloroethene   | 1000  | 1020   |           | ug/Kg |   | 102  | 80 - 120 | 5   | 30    |
| Chloroform               | 1000  | 1030   |           | ug/Kg |   | 103  | 80 - 120 | 2   | 30    |

## Eurofins TestAmerica, Edison

**Client Sample ID: Lab Control Sample Dup** 

Prep Type: Total/NA

5

8

# Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

## Lab Sample ID: LCSD 460-790164/5 Matrix: Solid

## Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

| Analysis Batch: 790164                 |                   |                   |                |             |                   |                |   |           | Prep ly              | pe: Tot | al/IN/      |
|----------------------------------------|-------------------|-------------------|----------------|-------------|-------------------|----------------|---|-----------|----------------------|---------|-------------|
| Analyte                                |                   |                   | Spike<br>Added |             | LCSD<br>Qualifier | Unit           | D | %Rec      | %Rec.<br>Limits      | RPD     | RPI<br>Limi |
| 1,2-Dichloroethane                     |                   |                   | 1000           | 997         |                   | ug/Kg          |   | 100       | 62 - 132             | 0       | 30          |
| 2-Butanone (MEK)                       |                   |                   | 5000           | 4910        |                   | ug/Kg          |   | 98        | 65 - 131             | 2       | 30          |
| 1,1,1-Trichloroethane                  |                   |                   | 1000           | 1030        |                   | ug/Kg          |   | 103       | 73 - 121             | 3       | 30          |
| Carbon tetrachloride                   |                   |                   | 1000           | 973         |                   | ug/Kg          |   | 97        | 68 - 123             | 3       | 30          |
| Dichlorobromomethane                   |                   |                   | 1000           | 978         |                   | ug/Kg          |   | 98        | 77 - 120             | 2       | 30          |
| 1,2-Dichloropropane                    |                   |                   | 1000           | 995         |                   | ug/Kg          |   | 99        | 78 - 125             | 5       | 30          |
| cis-1,3-Dichloropropene                |                   |                   | 1000           | 985         |                   | ug/Kg          |   | 99        | 71 - 132             | 1       | 30          |
| Trichloroethene                        |                   |                   | 1000           | 1000        |                   | ug/Kg          |   | 100       | 77 - 120             | 3       | 30          |
| Chlorodibromomethane                   |                   |                   | 1000           | 947         |                   | ug/Kg          |   | 95        | 74 - 120             | 1       | 30          |
| 1,1,2-Trichloroethane                  |                   |                   | 1000           | 992         |                   | ug/Kg          |   | 99        | 79 - 120             | 1       | 30          |
| Benzene                                |                   |                   | 1000           | 1030        |                   | ug/Kg          |   | 103       | 80 - 120             | 1       | 30          |
| trans-1,3-Dichloropropene              |                   |                   | 1000           | 980         |                   | ug/Kg          |   | 98        | 68 - 132             | 1       | 30          |
| Bromoform                              |                   |                   | 1000           | 874         |                   | ug/Kg          |   | 87        | 62 - 121             | 3       | 30          |
| 4-Methyl-2-pentanone (MIBK)            |                   |                   | 5000           | 5090        |                   | ug/Kg          |   | 102       | 80 - 120             | 1       | 30          |
| 2-Hexanone                             |                   |                   | 5000           | 4930        |                   | ug/Kg          |   | 99        | 80 - 120             |         | 30          |
| Tetrachloroethene                      |                   |                   | 1000           | 963         |                   | ug/Kg          |   | 96        | 73 - 120             | 3       | 30          |
| 1,1,2,2-Tetrachloroethane              |                   |                   | 1000           | 1050        |                   | ug/Kg          |   | 105       | 74 - 138             | 3       | 30          |
| Toluene                                |                   |                   | 1000           | 1030        |                   | ug/Kg          |   | 103       | 80 - 120             | 0       | 30          |
| Chlorobenzene                          |                   |                   | 1000           | 989         |                   | ug/Kg<br>ug/Kg |   | 99        | 80 - 120<br>80 - 120 | 0       | 30          |
| Ethylbenzene                           |                   |                   | 1000           | 951         |                   | ug/Kg<br>ug/Kg |   | 95        | 72 - 121             | 1       | 30          |
| Styrene                                |                   |                   | 1000           | 958         |                   | ug/Kg<br>ug/Kg |   | 95<br>96  | 72 - 121             |         | 30          |
| ,                                      |                   |                   | 1000           | 958         |                   |                |   | 90<br>96  | 74 - 124             | 0       | 30          |
| m-Xylene & p-Xylene<br>o-Xylene        |                   |                   | 1000           | 902         |                   | ug/Kg          |   | 90<br>94  | 72 - 120             | 1       | 30          |
|                                        |                   |                   | 1000           | 940<br>1220 |                   | ug/Kg          |   |           | 63 - 137             | 5       | 30          |
| 1,1,2-Trichloro-1,2,2-trifluoroetha ne |                   |                   | 1000           | 1220        |                   | ug/Kg          |   | 122       | 03-137               | 5       | 30          |
| Methyl tert-butyl ether                |                   |                   | 1000           | 1000        |                   | ug/Kg          |   | 100       | 77 - 125             | 1       | 30          |
| Cyclohexane                            |                   |                   | 1000           | 1130        |                   | ug/Kg          |   | 113       | 76 - 125             | 6       | 30          |
| Ethylene Dibromide                     |                   |                   | 1000           | 1010        |                   | ug/Kg          |   | 101       | 80 - 120             | 2       | 30          |
| 1,3-Dichlorobenzene                    |                   |                   | 1000           | 1030        |                   | ug/Kg          |   | 103       | 80 - 120             | 2       | 30          |
| 1,4-Dichlorobenzene                    |                   |                   | 1000           | 1000        |                   | ug/Kg          |   | 100       | 80 - 120             | 3       | 30          |
| 1,2-Dichlorobenzene                    |                   |                   | 1000           | 1020        |                   | ug/Kg          |   | 102       | 80 - 120             | 2       | 30          |
| Dichlorodifluoromethane                |                   |                   | 1000           | 1300        |                   | ug/Kg          |   | 130       | 45 - 145             | 0       | 30          |
| 1,2,4-Trichlorobenzene                 |                   |                   | 1000           | 1080        |                   | ug/Kg          |   | 108       | 70 - 138             | 0       | 30          |
| 1,4-Dioxane                            |                   |                   | 20000          | 22500       |                   | ug/Kg          |   | 112       | 80 - 126             | 7       | 30          |
| 1.2.3-Trichlorobenzene                 |                   |                   | 1000           | 1090        |                   | ug/Kg<br>ug/Kg |   | 109       | 80 - 120<br>70 - 145 | 0       | 30          |
| 1,2-Dibromo-3-Chloropropane            |                   |                   | 1000           | 930         |                   | ug/Kg<br>ug/Kg |   | 93        | 73 - 131             | 3       | 30          |
| Chlorobromomethane                     |                   |                   | 1000           | 930<br>1010 |                   | ug/Kg<br>ug/Kg |   | 93<br>101 | 80 - 121             | 3       | 30          |
| Isopropylbenzene                       |                   |                   | 1000           | 967         |                   | ug/Kg<br>ug/Kg |   | 97        | 67 - 121             | 3<br>1  | 30          |
| Methyl acetate                         |                   |                   | 2000           | 1987        |                   | ug/Kg<br>ug/Kg |   | 97<br>99  | 67 - 125<br>41 - 150 | 0       | 30          |
| · · · · · · · · · · · · · · · · · · ·  |                   |                   |                |             |                   |                |   |           |                      | 6       | 30          |
| Methylcyclohexane                      |                   |                   | 1000           | 1200        |                   | ug/Kg          |   | 120       | 61 - 136             | 0       | 30          |
| Surrogate                              | LCSD<br>%Recovery | LCSD<br>Qualifier | Limits         |             |                   |                |   |           |                      |         |             |
| 1,2-Dichloroethane-d4 (Surr)           | 101               |                   | 70 - 150       |             |                   |                |   |           |                      |         |             |
| Toluene-d8 (Surr)                      | 101               |                   | 68 - 148       |             |                   |                |   |           |                      |         |             |
|                                        | 101               |                   | 00-140         |             |                   |                |   |           |                      |         |             |

| Toluene-d8 (Surr)           | 101 | 68 - 148 |  |
|-----------------------------|-----|----------|--|
| 4-Bromofluorobenzene        | 97  | 62 - 150 |  |
| Dibromofluoromethane (Surr) | 100 | 54 - 150 |  |

Eurofins TestAmerica, Edison

## Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

## Method: 6010D - Metals (ICP)

## Lab Sample ID: MB 460-790427/1-A **Matrix: Water** Analysis Batch: 790529

| MI           | 3 MB        |      |      |      |   |                |                |         |
|--------------|-------------|------|------|------|---|----------------|----------------|---------|
| Analyte Resu | t Qualifier | RL   | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |
| Silver 10.   | D U         | 10.0 | 5.8  | ug/L |   | 07/15/21 05:31 | 07/15/21 15:12 | 1       |
| Arsenic 15.  | ) U         | 15.0 | 3.3  | ug/L |   | 07/15/21 05:31 | 07/15/21 15:12 | 1       |
| Barium 20    | ) U         | 200  | 13.2 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:12 | 1       |
| Cadmium 4.   | ) U         | 4.0  | 0.33 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:12 | 1       |
| Chromium 10. | ) U         | 10.0 | 5.0  | ug/L |   | 07/15/21 05:31 | 07/15/21 15:12 | 1       |
| Lead 10.     | ) U         | 10.0 | 2.4  | ug/L |   | 07/15/21 05:31 | 07/15/21 15:12 | 1       |
| Selenium 20. | ) U         | 20.0 | 5.9  | ug/L |   | 07/15/21 05:31 | 07/15/21 15:12 | 1       |

## Lab Sample ID: LCS 460-790427/2-A ^2 Matrix: Water

| Analysis Batch: 790529 |       |        |           |      |   |      | Prep Batch: | 790427 |
|------------------------|-------|--------|-----------|------|---|------|-------------|--------|
|                        | Spike | LCS    | LCS       |      |   |      | %Rec.       |        |
| Analyte                | Added | Result | Qualifier | Unit | D | %Rec | Limits      |        |
| Silver                 | 500   | 492.4  |           | ug/L |   | 98   | 80 - 120    |        |
| Arsenic                | 5000  | 5018   |           | ug/L |   | 100  | 80 - 120    |        |
| Barium                 | 10000 | 10510  |           | ug/L |   | 105  | 80 - 120    |        |
| Cadmium                | 1000  | 1090   |           | ug/L |   | 109  | 80 - 120    |        |
| Chromium               | 5000  | 5260   |           | ug/L |   | 105  | 80 - 120    |        |
| Lead                   | 5000  | 5454   |           | ug/L |   | 109  | 80 - 120    |        |
| Selenium               | 1000  | 1000   |           | ug/L |   | 100  | 80 - 120    |        |

## Lab Sample ID: MB 460-791006/1-A ^2 Matrix: Solid Analysis Batch: 791109

MB MB Analyte **Result Qualifier** RL MDL Unit п Prepared Analyzed Dil Fac Silver 2.0 U 2.0 1.1 mg/Kg 07/17/21 20:20 07/18/21 16:01 2 Arsenic 3.0 U 3.0 0.62 mg/Kg 07/17/21 20:20 07/18/21 16:01 2 2 Barium 40.0 U 40.0 3.9 mg/Kg 07/17/21 20:20 07/18/21 16:01 Cadmium 0.80 U 0.80 0.069 mg/Kg 07/17/21 20:20 07/18/21 16:01 2 1.4 mg/Kg Chromium 2.0 U 2.0 07/17/21 20:20 07/18/21 16:01 2 2 Lead 2.0 U 2.0 0.32 mg/Kg 07/17/21 20:20 07/18/21 16:01 Selenium 4.0 U 4.0 0.68 mg/Kg 07/17/21 20:20 07/18/21 16:01 2

## Lab Sample ID: LCSSRM 460-791006/2-A Matrix: Solid Analysis Batch: 791109

## **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 791006

## **Client Sample ID: Lab Control Sample** Prep Type: Total/NA Prep Batch: 791006

|          | Spike | LCSSRM | LCSSRM    |       |   |       | %Rec.       |  |
|----------|-------|--------|-----------|-------|---|-------|-------------|--|
| Analyte  | Added | Result | Qualifier | Unit  | D | %Rec  | Limits      |  |
| Silver   | 33.6  | 19.43  |           | mg/Kg |   | 57.8  | 48.2 - 73.5 |  |
| Arsenic  | 140   | 143.5  |           | mg/Kg |   | 102.5 | 82.9 - 117. |  |
|          |       |        |           |       |   |       | 9           |  |
| Barium   | 202   | 213.9  |           | mg/Kg |   | 105.9 | 81.2 - 118. |  |
|          |       |        |           |       |   |       | 3           |  |
| Cadmium  | 97.9  | 101.2  |           | mg/Kg |   | 103.3 | 80.0 - 119. |  |
|          |       |        |           |       |   |       | 5           |  |
| Chromium | 60.4  | 61.10  |           | mg/Kg |   | 101.2 | 80.3 - 119. |  |
|          |       |        |           |       |   |       | 7           |  |
| Lead     | 56.7  | 63.29  |           | mg/Kg |   | 111.6 | 82.9 - 116. |  |
|          |       |        |           |       |   |       | 9           |  |

## Eurofins TestAmerica, Edison

Job ID: 460-238488-1

Prep Type: Total/NA

Prep Batch: 790427

Prep Type: Total/NA

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

LCSSRM LCSSRM

36.65

**Result Qualifier** 

MDL Unit

28.9 ug/L

16.7 ug/L

66.0 ug/L

1.6 ug/L

24.9 ug/L

11.8 ug/L

29.4 ug/L

Unit

mg/Kg

Spike

Added

LB LB Result Qualifier

50.0 U

75.0 U

1000 U

20.0 U

50.0 U

50.0 U

100 U

35.5

## Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

Method: 6010D - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 460-791006/2-A

Lab Sample ID: LB 460-790055/1-E ^5

Matrix: Solid

Matrix: Water

Analyte

Analyte

Arsenic

Barium

Lead

Cadmium

Chromium

Selenium

**Matrix: Water** 

Analysis Batch: 790529

Silver

Selenium

Analysis Batch: 791109

Analysis Batch: 790529

Job ID: 460-238488-1

Prep Type: Total/NA

Prep Batch: 791006

Prep Type: TCLP

Dil Fac

5

5

5

5

5

5

5

Prep Batch: 790427

**Client Sample ID: Lab Control Sample** 

D %Rec

Prepared

D

%Rec.

Limits

3

**Client Sample ID: Method Blank** 

Analyzed

103.2 77.5 - 122.

07/15/21 05:31 07/15/21 15:45

07/15/21 05:31 07/15/21 15:45

07/15/21 05:31 07/15/21 15:45

07/15/21 05:31 07/15/21 15:45

07/15/21 05:31 07/15/21 15:45

07/15/21 05:31 07/15/21 15:45

07/15/21 05:31 07/15/21 15:45

# 9 10 11 12 13

## Client Sample ID: Method Blank Prep Type: TCLP Prep Batch: 790427

|          | LB     | LB        |      |      |      |   |                |                |         |  |
|----------|--------|-----------|------|------|------|---|----------------|----------------|---------|--|
| Analyte  | Result | Qualifier | RL   | MDL  | Unit | D | Prepared       | Analyzed       | Dil Fac |  |
| Silver   | 50.0   | U         | 50.0 | 28.9 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:49 | 5       |  |
| Arsenic  | 75.0   | U         | 75.0 | 16.7 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:49 | 5       |  |
| Barium   | 1000   | U         | 1000 | 66.0 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:49 | 5       |  |
| Cadmium  | 20.0   | U         | 20.0 | 1.6  | ug/L |   | 07/15/21 05:31 | 07/15/21 15:49 | 5       |  |
| Chromium | 50.0   | U         | 50.0 | 24.9 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:49 | 5       |  |
| Lead     | 50.0   | U         | 50.0 | 11.8 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:49 | 5       |  |
| Selenium | 100    | U         | 100  | 29.4 | ug/L |   | 07/15/21 05:31 | 07/15/21 15:49 | 5       |  |

RL

50.0

75.0

1000

20.0

50.0

50.0

100

## Method: 7470A - Mercury (CVAA)

Lab Sample ID: LB 460-790296/1-B ^5

| Lab Sample ID: MB 460-791686<br>Matrix: Water<br>Analysis Batch: 791747 | 6/1 <b>-A</b> |           |       |      |        |      |        |       | Clie   | ent Samp   | ole ID: Method<br>Prep Type: To<br>Prep Batch: | otal/NA |
|-------------------------------------------------------------------------|---------------|-----------|-------|------|--------|------|--------|-------|--------|------------|------------------------------------------------|---------|
| -                                                                       | MB            | MB        |       |      |        |      |        |       |        |            |                                                |         |
| Analyte                                                                 | Result        | Qualifier |       | RL   | I      | MDL  | Unit   | D     | P      | repared    | Analyzed                                       | Dil Fac |
| Mercury                                                                 | 0.20          | U         |       | 0.20 | 0      | .091 | ug/L   |       | 07/2   | 1/21 14:02 | 07/21/21 15:32                                 | 1       |
| _<br>Lab Sample ID: LCS 460-79168                                       | 6/2-A         |           |       |      |        |      |        | Clien | it Sai | mple ID:   | Lab Control S                                  | Sample  |
| Matrix: Water                                                           |               |           |       |      |        |      |        |       |        | - C        | Prep Type: To                                  |         |
| Analysis Batch: 791747                                                  |               |           |       |      |        |      |        |       |        |            | Prep Batch:                                    | 791686  |
| -                                                                       |               |           | Spike |      | LCS    | LCS  |        |       |        |            | %Rec.                                          |         |
| Analyte                                                                 |               |           | Added |      | Result | Qua  | lifier | Unit  | D      | %Rec       | Limits                                         |         |
| Mercury                                                                 |               |           | 5.00  |      | 4.94   |      |        | ua/L  |        | 99         | 80 - 120                                       |         |

Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111 Job ID: 460-238488-1

| Lab Sample ID: LB 460-790296/1-C                   | ;      |           |                |       |                     |       |       | Clien  | t Samp   | ole ID: Metho   | d Blan |
|----------------------------------------------------|--------|-----------|----------------|-------|---------------------|-------|-------|--------|----------|-----------------|--------|
| Matrix: Water                                      |        |           |                |       |                     |       |       |        |          | Prep Type       | : TCL  |
| Analysis Batch: 791747                             |        |           |                |       |                     |       |       |        |          | Prep Batch:     | 79168  |
| -                                                  | LB     | LB        |                |       |                     |       |       |        |          |                 |        |
| Analyte                                            | Result | Qualifier |                | RL    | MDL                 | Unit  | D     | Pre    | pared    | Analyzed        | Dil Fa |
| Mercury                                            | 0.20   | U         |                | 0.20  | 0.091               | ug/L  |       | 07/21/ | 21 14:02 | 07/21/21 16:16  |        |
| lethod: 7471B - Mercury (CV                        | AA)    |           |                |       |                     |       |       |        |          |                 |        |
| Lab Sample ID: MB 460-790422/1-/                   | 4      |           |                |       |                     |       |       | Clien  | t Samp   | ole ID: Metho   | d Blan |
| Matrix: Solid                                      |        |           |                |       |                     |       |       |        |          | Prep Type: T    |        |
| Analysis Batch: 790490                             |        |           |                |       |                     |       |       |        |          | Prep Batch:     |        |
|                                                    | MB     | MB        |                |       |                     |       |       |        |          |                 |        |
| Analyte                                            | Result | Qualifier |                | RL    | MDL                 | Unit  | D     | Pre    | pared    | Analyzed        | Dil Fa |
| Mercury                                            | 0.017  | U         |                | 0.017 | 0.0040              | mg/Ko | g     | 07/15/ | 21 04:15 | 07/15/21 09:01  |        |
| Lab Sample ID: LCSSRM 460-7904                     | 22/2-A | ^40       |                |       |                     |       | Clien | t Sam  | ple ID:  | Lab Control     | Sampl  |
|                                                    |        |           |                |       |                     |       |       |        |          | Prep Type: T    |        |
| Matrix: Solid                                      |        |           |                |       |                     |       |       |        |          | Prep Batch:     |        |
|                                                    |        |           |                |       |                     |       |       |        |          |                 |        |
|                                                    |        |           | Spike          | LCS   | SRM LC              | SSRM  |       |        |          | %Rec.           |        |
| Matrix: Solid<br>Analysis Batch: 790490<br>Analyte |        |           | Spike<br>Added |       | SRM LC:<br>esult Qu |       | Unit  | D 9    | %Rec     | %Rec.<br>Limits |        |

# **QC Association Summary**

Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111 Job ID: 460-238488-1

# 2 3 4 5

| Batch<br>39965 |    |
|----------------|----|
| 39965          |    |
|                | 8  |
|                | 9  |
| Batch          |    |
|                |    |
| Batch          |    |
|                | 13 |
|                |    |

## Prep Batch: 789965

**GC/MS VOA** 

| Lab Sample ID            | Client Sample ID                        | Prep Type | Matrix | Method | Prep Batc |
|--------------------------|-----------------------------------------|-----------|--------|--------|-----------|
| 460-238488-2             | SL1                                     | Total/NA  | Solid  | 5035   |           |
| nalysis Batch: 790164    | l i i i i i i i i i i i i i i i i i i i |           |        |        |           |
| Lab Sample ID            | Client Sample ID                        | Prep Type | Matrix | Method | Prep Batc |
| 460-238488-2             | SL1                                     | Total/NA  | Solid  | 8260D  | 78996     |
| MB 460-790164/9          | Method Blank                            | Total/NA  | Solid  | 8260D  |           |
| LCS 460-790164/4         | Lab Control Sample                      | Total/NA  | Solid  | 8260D  |           |
| LCSD 460-790164/5        | Lab Control Sample Dup                  | Total/NA  | Solid  | 8260D  |           |
| letals                   |                                         |           |        |        |           |
| each Batch: 790055       |                                         |           |        |        |           |
| -<br>Lab Sample ID       | Client Sample ID                        | Prep Type | Matrix | Method | Prep Batc |
| LB 460-790055/1-E ^5     | Method Blank                            | TCLP      | Water  | 1311   |           |
| each Batch: 790296       |                                         |           |        |        |           |
| Lab Sample ID            | Client Sample ID                        | Prep Type | Matrix | Method | Prep Batc |
| 460-238488-1             | L1                                      | TCLP      | Water  | 1311   |           |
| LB 460-790296/1-B ^5     | Method Blank                            | TCLP      | Water  | 1311   |           |
| LB 460-790296/1-C        | Method Blank                            | TCLP      | Water  | 1311   |           |
| Prep Batch: 790422       |                                         |           |        |        |           |
| Lab Sample ID            | Client Sample ID                        | Prep Type | Matrix | Method | Prep Bato |
| 460-238488-2             | SL1                                     | Total/NA  | Solid  | 7471B  |           |
| MB 460-790422/1-A        | Method Blank                            | Total/NA  | Solid  | 7471B  |           |
| LCSSRM 460-790422/2-A ^4 | Lab Control Sample                      | Total/NA  | Solid  | 7471B  |           |
| Prep Batch: 790427       |                                         |           |        |        |           |
| Lab Sample ID            | Client Sample ID                        | Prep Type | Matrix | Method | Prep Batc |
| 460-238488-1             | L1                                      | TCLP      | Water  | 3010A  | 79029     |
| LB 460-790055/1-E ^5     | Method Blank                            | TCLP      | Water  | 3010A  | 79005     |
| LB 460-790296/1-B ^5     | Method Blank                            | TCLP      | Water  | 3010A  | 79029     |
| MB 460-790427/1-A        | Method Blank                            | Total/NA  | Water  | 3010A  |           |
| LCS 460-790427/2-A ^2    | Lab Control Sample                      | Total/NA  | Water  | 3010A  |           |
| Analysis Batch: 790490   | )                                       |           |        |        |           |
| Lab Sample ID            | Client Sample ID                        | Prep Type | Matrix | Method | Prep Bato |
| 460-238488-2             | SL1                                     | Total/NA  | Solid  | 7471B  | 79042     |
| MB 460-790422/1-A        | Method Blank                            | Total/NA  | Solid  | 7471B  | 79042     |
| LCSSRM 460-790422/2-A ^4 | Lab Control Sample                      | Total/NA  | Solid  | 7471B  | 79042     |
| Analysis Batch: 790529   | )                                       |           |        |        |           |
| Lab Sample ID            | Client Sample ID                        | Prep Type | Matrix | Method | Prep Bato |
| 460-238488-1             | L1                                      | TCLP      | Water  | 6010D  | 79042     |
| LB 460-790055/1-E ^5     | Method Blank                            | TCLP      | Water  | 6010D  | 79042     |
| LB 460-790296/1-B ^5     | Method Blank                            | TCLP      | Water  | 6010D  | 79042     |
|                          | Method Blank                            | Total/NA  | Water  | 6010D  | 79042     |
| MB 460-790427/1-A        |                                         |           |        |        |           |

# **QC Association Summary**

Prep Type

Matrix

Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

**Client Sample ID** 

Job ID: 460-238488-1

Method

9

# Prep Batch

| 460-238488-2          | SL1                | Total/NA  | Solid  | 3050B  |            |
|-----------------------|--------------------|-----------|--------|--------|------------|
| MB 460-791006/1-A ^2  | Method Blank       | Total/NA  | Solid  | 3050B  |            |
| LCSSRM 460-791006/2-A | Lab Control Sample | Total/NA  | Solid  | 3050B  |            |
| nalysis Batch: 79110  | 9                  |           |        |        |            |
| Lab Sample ID         | Client Sample ID   | Ргер Туре | Matrix | Method | Prep Batch |
| 460-238488-2          | SL1                | Total/NA  | Solid  | 6010D  | 791006     |
| MB 460-791006/1-A ^2  | Method Blank       | Total/NA  | Solid  | 6010D  | 791006     |
| LCSSRM 460-791006/2-A | Lab Control Sample | Total/NA  | Solid  | 6010D  | 791006     |
| rep Batch: 791686     |                    |           |        |        |            |
| Lab Sample ID         | Client Sample ID   | Ргер Туре | Matrix | Method | Prep Batch |
| 460-238488-1          | L1                 | TCLP      | Water  | 7470A  | 790296     |
| LB 460-790296/1-C     | Method Blank       | TCLP      | Water  | 7470A  | 790296     |
| MB 460-791686/1-A     | Method Blank       | Total/NA  | Water  | 7470A  |            |
|                       |                    |           |        |        |            |

#### Analysis Batch: 791747

**Metals** 

Prep Batch: 791006

Lab Sample ID

| Lab Sample ID<br>460-238488-1 | Client Sample ID   | Prep Type<br>TCLP | Matrix<br>Water | Method 7470A | Prep Batch<br>791686 |
|-------------------------------|--------------------|-------------------|-----------------|--------------|----------------------|
| LB 460-790296/1-C             | Method Blank       | TCLP              | Water           | 7470A        | 791686               |
| MB 460-791686/1-A             | Method Blank       | Total/NA          | Water           | 7470A        | 791686               |
| LCS 460-791686/2-A            | Lab Control Sample | Total/NA          | Water           | 7470A        | 791686               |

### **General Chemistry**

#### Analysis Batch: 790169

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 460-238488-2  | SL1              | Total/NA  | Solid  | Moisture |            |

#### Eurofins TestAmerica, Edison

# Lab Chronicle

Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111 Job ID: 460-238488-1

# Lab Sample ID: 460-238488-1 Matrix: Water 4 5 6 7 0

**Client Sample ID: L1** Date Collected: 07/08/21 12:00 Date Received: 07/09/21 17:30

|                                                        | Batch                                                                                       | Batch                                               |            | Dilution           | Batch            | Prepared                      |                |                                                         |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|------------|--------------------|------------------|-------------------------------|----------------|---------------------------------------------------------|
| Prep Type                                              | Туре                                                                                        | Method                                              | Run        | Factor             | Number           | or Analyzed                   | Analyst        | Lab                                                     |
| TCLP                                                   | Leach                                                                                       | 1311                                                |            |                    | 790296           | 07/14/21 12:30                | JDP            | TAL EDI                                                 |
| TCLP                                                   | Prep                                                                                        | 3010A                                               |            |                    | 790427           | 07/15/21 05:31                | GMC            | TAL EDI                                                 |
| TCLP                                                   | Analysis                                                                                    | 6010D                                               |            | 5                  | 790529           | 07/15/21 15:41                | CDC            | TAL EDI                                                 |
| TCLP                                                   | Leach                                                                                       | 1311                                                |            |                    | 790296           | 07/14/21 12:30                | JDP            | TAL EDI                                                 |
| TCLP                                                   | Prep                                                                                        | 7470A                                               |            |                    | 791686           | 07/21/21 14:02                | RBS            | TAL EDI                                                 |
| TCLP                                                   | Analysis                                                                                    | 7470A                                               |            | 1                  | 791747           | 07/21/21 15:50                | RBS            | TAL EDI                                                 |
| Date Collecter<br>Date Receiver                        |                                                                                             |                                                     |            |                    |                  |                               |                | Matrix: Soli                                            |
|                                                        |                                                                                             |                                                     |            | Dilution           | Batch            | Prepared                      |                | Matrix: Soli                                            |
|                                                        | d: 07/09/21 1                                                                               | 7:30                                                | Run        | Dilution<br>Factor | Batch<br>Number  | Prepared<br>or Analyzed       | Analyst        | Matrix: Soli                                            |
| Date Received                                          | d: 07/09/21 1<br>Batch                                                                      | 7:30<br>Batch                                       | Run        |                    |                  | •                             | Analyst<br>NZP |                                                         |
| Prep Type<br>Total/NA                                  | d: 07/09/21 1<br>Batch<br>Type<br>Analysis                                                  | 7:30<br>Batch<br>Method<br>Moisture                 | Run        |                    | Number           | or Analyzed<br>07/14/21 08:19 | NZP            | Lab<br>TAL EDI                                          |
| Prep Type<br>Total/NA                                  | d: 07/09/21 1 Batch Type Analysis DIE ID: SL1                                               | 7:30<br>Batch<br>Method<br>Moisture                 | <u>Run</u> |                    | Number           | or Analyzed<br>07/14/21 08:19 | NZP            | Lab<br>TAL EDI<br>Imple ID: 460-238488-2                |
| Prep Type<br>Total/NA<br>Client Samp<br>Date Collected | d: 07/09/21 1<br>Batch<br>Type<br>Analysis<br>ple ID: SL1<br>d: 07/08/21 1                  | 7:30<br>Batch<br>Method<br>Moisture                 | Run        |                    | Number           | or Analyzed<br>07/14/21 08:19 | NZP            | Lab<br>TAL EDI                                          |
| Prep Type                                              | d: 07/09/21 1<br>Batch<br>Type<br>Analysis<br>ple ID: SL1<br>d: 07/08/21 1<br>d: 07/09/21 1 | 7:30<br>Batch<br>Method<br>Moisture<br>2:06<br>7:30 | <u>Run</u> | Factor1            | Number<br>790169 | or Analyzed<br>07/14/21 08:19 | NZP            | Lab<br>TAL EDI<br>Imple ID: 460-238488-<br>Matrix: Soli |
| Prep Type<br>Total/NA<br>Client Samp<br>Date Collected | d: 07/09/21 1<br>Batch<br>Type<br>Analysis<br>ple ID: SL1<br>d: 07/08/21 1                  | 7:30<br>Batch<br>Method<br>Moisture                 | Run        |                    | Number           | or Analyzed<br>07/14/21 08:19 | NZP            | Lab<br>TAL EDI<br>Imple ID: 460-238488-<br>Matrix: Soli |

| Prep Type | Туре     | Method | Run | Factor | Number | or Analyzed    | Analyst | Lab     |
|-----------|----------|--------|-----|--------|--------|----------------|---------|---------|
| Total/NA  | Prep     | 5035   |     |        | 789965 | 07/13/21 09:49 | YXG     | TAL EDI |
| Total/NA  | Analysis | 8260D  |     | 20000  | 790164 | 07/14/21 17:36 | MZS     | TAL EDI |
| Total/NA  | Prep     | 3050B  |     |        | 791006 | 07/17/21 20:20 | GAE     | TAL EDI |
| Total/NA  | Analysis | 6010D  |     | 2      | 791109 | 07/18/21 17:58 | CDC     | TAL EDI |
| Total/NA  | Prep     | 7471B  |     |        | 790422 | 07/15/21 04:15 | TJS     | TAL EDI |
| Total/NA  | Analysis | 7471B  |     | 3      | 790490 | 07/15/21 10:20 | TJS     | TAL EDI |

#### Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

# Accreditation/Certification Summary

Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

### Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

| Authority                         | Program             | Identification Number | Expiration Date |
|-----------------------------------|---------------------|-----------------------|-----------------|
| Connecticut                       | State               | PH-0200               | 09-30-22        |
| DE Haz. Subst. Cleanup Act (HSCA) | State               | N/A                   | 12-31-21        |
| Georgia                           | State               | 12028 (NJ)            | 06-30-22        |
| Massachusetts                     | State               | M-NJ312               | 06-30-22        |
| New Jersey                        | NELAP               | 12028                 | 06-30-22        |
| New York                          | NELAP               | 11452                 | 04-01-22        |
| Pennsylvania                      | NELAP               | 68-00522              | 02-28-22        |
| Rhode Island                      | State               | LAO00132              | 12-30-21        |
| USDA                              | US Federal Programs | P330-20-00244         | 11-03-23        |

Job ID: 460-238488-1

# **Method Summary**

#### Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

| lethod   | Method Description                  | Protocol | Laboratory |
|----------|-------------------------------------|----------|------------|
| 260D     | Volatile Organic Compounds by GC/MS | SW846    | TAL EDI    |
| 010D     | Metals (ICP)                        | SW846    | TAL EDI    |
| 470A     | Mercury (CVAA)                      | SW846    | TAL EDI    |
| 471B     | Mercury (CVAA)                      | SW846    | TAL EDI    |
| loisture | Percent Moisture                    | EPA      | TAL EDI    |
| 311      | TCLP Extraction                     | SW846    | TAL EDI    |
| 010A     | Preparation, Total Metals           | SW846    | TAL EDI    |
| 050B     | Preparation, Metals                 | SW846    | TAL EDI    |
| 035      | Closed System Purge and Trap        | SW846    | TAL EDI    |
| 470A     | Preparation, Mercury                | SW846    | TAL EDI    |
| 471B     | Preparation, Mercury                | SW846    | TAL EDI    |

#### Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

# Sample Summary

### Client: New York State D.E.C. Project/Site: Former Fresh & Clean Laundry Site:130111

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 460-238488-1  | L1               | Water  | 07/08/21 12:00 | 07/09/21 17:30 |
| 460-238488-2  | SL1              | Solid  | 07/08/21 12:06 | 07/09/21 17:30 |

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 460-238488-1  | L1               | Water  | 07/08/21 12:00 | 07/09/21 17:30 |
| 460-238488-2  | SL1              | Solid  | 07/08/21 12:06 | 07/09/21 17:30 |

Job ID: 460-238488-1

777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

| $\mathbf{O}$            | I |
|-------------------------|---|
| Ŭ                       | I |
| Ū.                      | I |
| $\underline{\Phi}$      |   |
| 3                       |   |
| $\overline{\mathbf{A}}$ | I |
| +                       | I |
|                         |   |
| JU I                    | I |

| THE LEADER IN ENVIRONMENTAL TESTING                              | CHAIN OF CUSTODY / ANALYSIS                                       | S REQUEST                                                             |
|------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------|
| a                                                                | ) en (                                                            | Site/Project Identification                                           |
| SUMM INV                                                         |                                                                   |                                                                       |
| Company AB Enliconments)                                         | 139934/CIMSW                                                      | Regulatory Program:                                                   |
| Address                                                          | Analysis Turnaround Time Analysis REC                             | AMALYSIS REQUESTED (ENTER "X: BELOW TO INDICATE REQUEST) LAB USE ONLY |
| 1599 REEN AIR                                                    | 79                                                                | Project No:                                                           |
| City Rikomic State                                               | Rush Charges Authorized For:                                      |                                                                       |
| 7-6505 631.                                                      | 1                                                                 | 53636                                                                 |
| Sample Identification                                            | Date Time Matrix Cont.                                            | Sample                                                                |
| 17                                                               | 7/8/01/2/20 2 1 1 ×                                               |                                                                       |
| 27.1                                                             | 718/21 124 56 2 ×                                                 |                                                                       |
|                                                                  |                                                                   |                                                                       |
|                                                                  |                                                                   | VV                                                                    |
|                                                                  |                                                                   |                                                                       |
|                                                                  |                                                                   |                                                                       |
|                                                                  |                                                                   |                                                                       |
| -                                                                | 460-238488 Chain of Custody                                       |                                                                       |
|                                                                  |                                                                   |                                                                       |
| I<br>Preservation Used: 1 = ICE, 2 = HCl, 3 = H <sub>3</sub> SO. | . 4 = HNO., 5 = NaOH Soil: V                                      |                                                                       |
|                                                                  | her W                                                             |                                                                       |
| Special Instructions                                             |                                                                   | Water Metals Filtered (Yes/No)?                                       |
| Relinquished by Company                                          | IV Date / Time A Received by                                      | Company                                                               |
| Rusz A                                                           | vies 119.12                                                       | Z                                                                     |
| Relinquisped by Company<br>2) 2                                  | Heceived Dy<br>1, 2, 1, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | or company                                                            |
| Relinquished by Company                                          | Pate / Time Recei                                                 | by Company 1/9/2/                                                     |
| Indu                                                             | Date / Time                                                       | by Company                                                            |
| 4)                                                               | 4)                                                                |                                                                       |
| Laboratory Certifications: New Jersey (12028),                   | New York (11452), Pennsylvania (68-522),                          | Connecticut (PH-0200), Rhode Island (132). TAL - 0016 (0814)          |

5

Δ

8 2

6

2

Massachusetts (M-NJ312), North Carolina (No. 578)

| Number of Coolers:              | 2                 |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|---------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------------|---------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|------------|------------------|---------------|-------|-------|
| EAW                             |                   |                                                                                                                           | IR Gun #     |              | Cooler Temperatures | mpera         | tures                             |                                                                                                                   |              |            |                  |               |       |       |
| Cooler #1: 7                    | CORREC            |                                                                                                                           |              | Cooler #4:   | Mar<br>S (          | CORRECTED     |                                   | Ŭ                                                                                                                 | Cooler #7:   | RAW<br>C   | CORRECTED        |               |       |       |
| Cooler #2:<br>Cooler #3:        | y y               | 9 9                                                                                                                       | 5 0          | Cooler #5: _ | y y                 | 4             |                                   | 5 Ŭ                                                                                                               | Cooler #8: _ | y y        | Q Q              |               |       |       |
| Ammonia                         | onia COD          | Nitrate<br>Nitrite                                                                                                        | *<br>Metals  | Hardness     | Pest                | EPH or<br>QAM | Phenols                           | Sulfide                                                                                                           | TKN          | TOC        | Total<br>Cyanide | Total<br>Phos | Other | Other |
| TALS Sample Number (pH<2)       | <2) (pH<2)        | 2) (pH<2)                                                                                                                 | (pH<2)       | (pH<2)       | (pH 5-9)            | (pH<2)        | (pH<2)                            | (6 <hq)< td=""><td>(pH&lt;2)</td><td>(pH&lt;2)</td><td>(pH&gt;12)</td><td>(pH&lt;2)</td><td></td><td></td></hq)<> | (pH<2)       | (pH<2)     | (pH>12)          | (pH<2)        |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               | 1                                 |                                                                                                                   | 1            |            |                  |               |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|                                 |                   |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
|                                 | _                 | _                                                                                                                         |              |              |                     |               | ╡                                 |                                                                                                                   |              |            |                  |               |       |       |
|                                 | adjustmer         | If pH adjustments are required record the information below:                                                              | lired record | d the infor  | mation be           | iow:          |                                   |                                                                                                                   |              |            |                  |               |       |       |
| Sample No(s). adjusted:         | ted:              |                                                                                                                           |              |              |                     |               |                                   |                                                                                                                   |              |            |                  |               |       |       |
| Preservative Name/Conc.:        | nc.:              |                                                                                                                           |              |              | Volur               | ne of Pres    | Volume of Preservative used (ml): | sed (ml):                                                                                                         |              |            |                  |               |       |       |
| Lot # of Preservative(s):<br>Th | e(s):<br>The annr | t):<br>The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted | ect Manade   | r and Dens   | artment Ms          | nader sho     | Expirati                          | Expiration Date: _<br>                                                                                            | it the same  | Jas which  | Mere nH          | adiusted      |       |       |
|                                 | - U)<br>- +       | Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.             | Metal analy  | sis which a  | ire out of c        | ompliance     | must be a                         | acidified a                                                                                                       | t least 24   | hours prio | r to analys      | is.           |       |       |
| EDS-WI-038, Rev 4.1             | Initials:         | X                                                                                                                         | and          | 2 J          |                     |               | Date                              | N                                                                                                                 | 921          |            |                  |               |       |       |

Page 25 of 27

7/22/2021

Client: New York State D.E.C.

#### Login Number: 238488 List Number: 1 Creator: Rivera, Kenneth

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| Radioactivity either was not measured or, if measured, is at or below background | N/A    |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or<br>ampered with. | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| s the Field Sampler's name present on COC?                                       | True   |         |
| There are no discrepancies between the sample IDs on the containers and he COC.  | True   |         |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| /OA sample vials do not have headspace or bubble is <6mm (1/4") in<br>diameter.  | True   |         |
| f necessary, staff have been informed of any short hold time or quick TAT needs  | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   |         |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | True   |         |
| Chlorine Residual checked.                                                       | N/A    |         |

List Source: Eurofins TestAmerica, Edison

| Login Sample Rece                                                                                                           | ipt Check | klist |                                           | 2      |
|-----------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------------------------------------------|--------|
| Client: New York State D.E.C.                                                                                               |           |       | Job Number: 460-238488-1                  |        |
| Login Number: 238488<br>List Number: 2<br>Creator: Miller, Jill K                                                           |           |       | List Source: Eurofins TestAmerica, Edison | 4<br>5 |
| Question                                                                                                                    | Answer    | Cor   | nment                                     |        |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>,</td> <td></td> <td></td> <td></td> | ,         |       |                                           |        |
| The cooler's custody seal, if present, is intact.                                                                           |           |       |                                           |        |
| Sample custody seals, if present, are intact.                                                                               |           |       |                                           | 8      |
| The cooler or samples do not appear to have been compromised or tampered with.                                              |           |       |                                           | 9      |
| Samples were received on ice.                                                                                               |           |       |                                           | 4.0    |
| Cooler Temperature is acceptable.                                                                                           |           |       |                                           |        |
| Cooler Temperature is recorded.                                                                                             |           |       |                                           |        |
| COC is present.<br>COC is filled out in ink and legible.                                                                    |           |       |                                           |        |
| COC is filled out with all pertinent information.                                                                           |           |       |                                           |        |
| Is the Field Sampler's name present on COC?                                                                                 |           |       |                                           | 40     |
| There are no discrepancies between the containers received and the COC.                                                     |           |       |                                           | 13     |
| Samples are received within Holding Time (excluding tests with immediate HTs)                                               |           |       |                                           |        |
| Sample containers have legible labels.                                                                                      |           |       |                                           | 15     |
| Containers are not broken or leaking.                                                                                       |           |       |                                           |        |
| Sample collection date/times are provided.                                                                                  |           |       |                                           |        |
| Appropriate sample containers are used.                                                                                     |           |       |                                           |        |
| Sample bottles are completely filled.                                                                                       |           |       |                                           |        |
| Sample Preservation Verified.                                                                                               |           |       |                                           |        |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                                            |           |       |                                           |        |

<6mm (1/4").

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

Containers requiring zero headspace have no headspace or bubble is

### **APPENDIX E**

## **DISPOSAL INFORMATION**

3531413 418

| NON-HAZARDOUS<br>WASTE MANIFEST       1. Generator ID Number       2. Page 1 of       3. Emergency Response Phone       4. Waste Tracking Number         5. Generator's Name and Mailing Address<br>NY SDEC       1       3. Emergency Response Phone       4. Waste Tracking Number         5. Generator's Name and Mailing Address       Att: Joseph Jones       Generator's Site Address (if different than mailing address)         NY SDEC       625 Broadway<br>Albany NY 12233       Att: Joseph Jones       Generator's Site Address (if different than mailing address)         Generator's Phone:       518       402-3044       Enerator's Phone:       U.S. EPA ID Number         Innovative Recycling Technologies, Inc.       N Y R 0 0 0 1 3 4 9       U.S. EPA ID Number         7. Transporter 2 Company Name       U.S. EPA ID Number       U.S. EPA ID Number | 940                           |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|--|--|
| NY SDEC     NY SDEC       625 Broadway     Albany NY 12233       Generator's Phone:     518       6. Transporter 1 Company Name     U.S. EPA ID Number       Innovative Recycling Technologies, Inc.     N Y R 0 0 0 1 3 4 9       7. Transporter 2 Company Name     U.S. EPA ID Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 940                           |  |  |  |  |  |  |  |  |  |
| 6. Transporter 1 Company Name     U.S. EPA ID Number       Innovative Recycling Technologies, Inc.     N Y R 0 0 0 1 3 4 9       7. Transporter 2 Company Name     U.S. EPA ID Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 940<br>381                    |  |  |  |  |  |  |  |  |  |
| Innovative Recycling Technologies, Inc. NYR000134940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |  |  |  |  |  |  |  |  |  |
| 8. Designated Facility Name and Site Address     Republic Environmental Systems (PA), LLC     2869 Sandstone Drive     Hatfield PA 19440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                             |  |  |  |  |  |  |  |  |  |
| Facility's Phone: 215 822-8995 PAD085690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 592                           |  |  |  |  |  |  |  |  |  |
| 9. Waste Shipping Name and Description         10. Containers         11. Total         12. Unit           No.         Type         Quantity         Wt./Vol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | here such                     |  |  |  |  |  |  |  |  |  |
| 1. Non-DOT Regulated Material     3 IDM     600 p       2.     2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |  |  |  |  |  |  |  |  |  |
| 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |  |  |  |  |  |  |  |  |  |
| 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |  |  |  |  |  |  |  |  |  |
| <ul> <li>13. Special Handling Instructions and Additional Information</li> <li>11.39.3 1</li> <li>11.39.3 1</li> <li>11.445.48.49</li> <li>11.445.48.49</li> <li>14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations.</li> </ul>                                                                                                                                                                                                                                                                                                                                        | J, packaged,                  |  |  |  |  |  |  |  |  |  |
| Generator's/Offeror's Printed/Typed Name<br>Anthony Lanino agent for NY TOEC Signature (Anim 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Day Year<br>26   19           |  |  |  |  |  |  |  |  |  |
| International Shipments       Import to U.S.       Export from U.S.       Port of entry/exit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |  |  |  |  |  |  |  |  |  |
| 16. Transporter Acknowledgment of Receipt of Materials       Transporter 1 Printed/Typed Name       BRANCIS       Transporter 2 Printed/Typed Name       Signature       Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Day Year<br>26 19<br>Day Year |  |  |  |  |  |  |  |  |  |
| E EJ Boohlunn Sals (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Day Year                      |  |  |  |  |  |  |  |  |  |
| 17a. Discrepancy Indication Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ull Rejection                 |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |  |  |  |  |  |  |  |  |  |
| 17b. Alternate Facility (or Generator)     U.S. EPA ID Number       Facility's Phone:     17c. Signature of Alternate Facility (or Generator)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Day Year                      |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |  |  |  |  |  |  |  |  |  |
| 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day Your                      |  |  |  |  |  |  |  |  |  |
| VALVEY MAN Synaulie Man 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 08 19                         |  |  |  |  |  |  |  |  |  |

. . .

|                     | 1                                                                                                         | 1.2.5                                                   |                                   |                                |                                      |                           | 10                         | 13               | 413                   | 39301           |  |
|---------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------|--------------------------------|--------------------------------------|---------------------------|----------------------------|------------------|-----------------------|-----------------|--|
| A                   | NON-HAZARDOUS<br>WASTE MANIFEST                                                                           | 1. Generator ID Number                                  | 2. Pag                            | e 1 of 3. Emerg<br>(267)       | ency Responsed                       | se Phone                  | 4. Waste T                 | racking Nur<br>4 | mber<br>2669          |                 |  |
|                     | 5. Generator's Name and Mailir<br>625 Broadway<br>Albany NY 1223:<br>Generator's Phone:                   |                                                         | ,I                                | Sixth A                        | rs Site Addre<br>Weinue &<br>ork: NY | W. 9th S                  | than mailing addr<br>freet | ess)             |                       |                 |  |
|                     | 6. Transporter 1 Company Nam                                                                              | ®<br>cling Technologies, Inc.                           |                                   |                                |                                      |                           | U.S. EPA ID<br>NYR         |                  | ) 1 3 4 9             | 4 0             |  |
| a l                 | 7. Transporter 2 Company Name<br>Republic Environmental Systems (Trans Group)LLC<br>PAD 9 8 2 6 6 1 3 8 1 |                                                         |                                   |                                |                                      |                           |                            |                  |                       |                 |  |
|                     | 8. Designated Facility Name an<br>2869 Sandstone I<br>Hatfleid PA 1944<br>Facility's Phone: 215 82        | 0                                                       |                                   |                                |                                      |                           |                            |                  | 56905                 | 92              |  |
|                     | 9. Waste Shipping Name                                                                                    |                                                         |                                   |                                | 10. Con                              |                           | 11. Total                  | 12. Unit         | 5                     |                 |  |
| -                   | 1Non Hazardou                                                                                             | s Groundwater                                           |                                   |                                | No.                                  | Туре                      | Quantity                   | Wt./Vol.         |                       |                 |  |
| GENERATOR           | Non-DOT Requ                                                                                              | ulated Material                                         |                                   |                                | 1                                    | DM                        | 200                        | P                |                       |                 |  |
| <br>GEI             | 2.                                                                                                        | ¥-                                                      |                                   |                                |                                      |                           |                            |                  |                       |                 |  |
|                     | 3.                                                                                                        |                                                         | 54 <u>6</u> 1                     |                                |                                      |                           |                            |                  |                       |                 |  |
|                     | 4.                                                                                                        |                                                         |                                   |                                |                                      |                           |                            |                  |                       |                 |  |
|                     | 13. Special Handling Instruction<br>Doct 5648                                                             | 3 2 - 20<br>'S CERTIFICATION: I hereby declare Ih       | at the contents of this consign   | ment are fully and             | accurately de                        | escribed abov             | e by the proper sh         | ipping name      | , and are classified, | packaged,       |  |
|                     | marked and labeled/placard<br>Generator's/Offeror's Printed/Ty                                            | ed, and are in all respects in proper conc<br>roed Name | lition for transport according to | applicable interr<br>Signature | ational and na                       | ational govern            | mental regulations         |                  |                       | Day Year        |  |
| *                   | As agent of<br>15 International Shipments                                                                 | NYSDEC Carl                                             | Schmidloff                        | Curl                           | fel                                  | wold                      |                            |                  | ~                     | 30 20           |  |
| INT'L               | Transporter Signature (for expo                                                                           | Import to U.S.                                          | Export                            | from U.S.                      |                                      | entry/exit:<br>wing U.S.: |                            |                  |                       |                 |  |
|                     | 16. Transporter Acknowledgmer                                                                             | nl of Receipt of Materials                              |                                   |                                |                                      |                           |                            |                  |                       | 2               |  |
| TRANSPORTER         | Transporter 1 Printed/Typed Na                                                                            | ennedy                                                  |                                   | Signature                      | lle                                  | , Ke                      | rned                       | <u>}</u>         | Month                 | Day Year        |  |
| TRA                 | JESSICA<br>17. Discrepancy                                                                                | PHUNG                                                   |                                   | IJer                           | NCa                                  | jh.                       | 1                          | •                | 10                    | 12/20           |  |
| Î                   | 17a, Discrepancy Indication Spa                                                                           | ace Quantity                                            | Туре                              |                                | Residue                              | /                         | Parlial Rej                | ection           | 🔲 Fu                  | II Rejection    |  |
| ו<br>ב              | 17b. Alternale Facility (or Gener                                                                         | rator)                                                  |                                   | Manif                          | est Reference                        | Number:                   | U.S. EPA ID                | Number           |                       |                 |  |
|                     | Facility's Phone:                                                                                         |                                                         |                                   |                                |                                      |                           | ĩ                          |                  |                       |                 |  |
| DESIGNATED FACILITY | 17c. Signature of Alternate Facil                                                                         | lity (or Generator)                                     | ×                                 | 1                              |                                      |                           |                            |                  | Month                 | Day Year        |  |
| - DESIG             |                                                                                                           |                                                         |                                   |                                | V                                    |                           | -                          | )                |                       |                 |  |
|                     |                                                                                                           | Operator: Certification of receipt of mat               | erials covered by the manifest    |                                | in Item 17a                          | 11                        |                            | $\nearrow$       |                       | In Cast         |  |
| ¥                   | Printed/Typed Name                                                                                        | ACVERA                                                  | MM                                | Signature                      | 0                                    | M                         |                            |                  | Month                 | Bay Year<br>320 |  |

|                     | 12/24                                                                                                                                                                                                         | 47            | 20561                            |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|
| 4                   |                                                                                                                                                                                                               | Tracking Nu   |                                  |
|                     | 5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing ad                                                                                                                |               | 2837                             |
|                     | NYSDEC<br>625 Broadway<br>Albany NY 12233<br>Glen Head NY 11545                                                                                                                                               | Site:22-2     | 6 Railroad Ave.                  |
|                     | Generator's Phone:<br>6. Transporter 1 Company Name<br>U.S. EPA                                                                                                                                               | D Number      |                                  |
|                     | Innovative Recycling Technologies, Inc. N.Y.I                                                                                                                                                                 | 0.0.5         | 0134940                          |
|                     | 7. Transporter 2 Company Name U.S. EPA                                                                                                                                                                        | D Number      | -                                |
|                     | 8. Designated Facility Name and Site Address U.S. EPA                                                                                                                                                         |               | 2661381                          |
|                     | Republic Environmental Systems (PA), LLC<br>2869 Sandstone Drive                                                                                                                                              |               |                                  |
|                     | Hatfield PA 19440                                                                                                                                                                                             |               | 5690592                          |
|                     | 10 Containers 11 Tetel                                                                                                                                                                                        | 12. Unit      | 5690592                          |
|                     | 9. Waste Shipping Name and Description 9. Waste Shipping Name and Description Quantity                                                                                                                        | Wt./Vol.      |                                  |
| GENERATOR           | Non-DOT Regulated Material                                                                                                                                                                                    | P             |                                  |
| ENE                 |                                                                                                                                                                                                               |               |                                  |
| 6                   | б<br>                                                                                                                                                                                                         |               |                                  |
|                     | 3.                                                                                                                                                                                                            |               |                                  |
|                     |                                                                                                                                                                                                               |               | and the second                   |
|                     | 4.                                                                                                                                                                                                            |               |                                  |
|                     |                                                                                                                                                                                                               |               |                                  |
|                     | 13. Special Handling Instructions and Additional Information                                                                                                                                                  |               |                                  |
|                     | 9.11                                                                                                                                                                                                          |               |                                  |
|                     | 708689-20                                                                                                                                                                                                     |               | G                                |
|                     |                                                                                                                                                                                                               |               |                                  |
|                     | 14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper                                                        | shipping name | e, and are classified, packaged, |
|                     | marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulatio<br>Generator's/Offeror's Printed/Typed Name | 15.           | Month Day Year                   |
| ¥                   | Keith Robins agent for MSDEC Heith Robins                                                                                                                                                                     | 5             | 12/16/20                         |
| INT'L               | Let 15. International Shipments Import to U.S. Export from U.S. Port of entry/exit:                                                                                                                           |               |                                  |
|                     |                                                                                                                                                                                                               |               |                                  |
| TRANSPORTER         | Transporter 1 Printed/Typed Name Signature                                                                                                                                                                    |               | Month Day Year                   |
| NSP                 | Transpecter 2 Printed/Typed Name Signature                                                                                                                                                                    |               | Month Day Year                   |
| TRA                 | E MARS BROAD                                                                                                                                                                                                  |               | 1218 2020                        |
|                     | 17. Discrepancy 17a. Discrepancy Indication Space                                                                                                                                                             |               |                                  |
|                     | 17a. Discrepancy Indication Space Quantity Type Residue Partial F                                                                                                                                             | lejection     | Full Rejection                   |
|                     | Manifest Reference Number:                                                                                                                                                                                    |               |                                  |
| μ                   | LT25. Alternate Facility (or Generator) U.S. EPA I                                                                                                                                                            | ) Number      |                                  |
| FAC                 | Facility's Phone:                                                                                                                                                                                             |               |                                  |
| DESIGNATED FACILITY | 17c. Signature of Alternate Facility (or Generator)                                                                                                                                                           |               | Month Day Year                   |
| SIGN                | Sign                                                                                                                                                                                                          |               |                                  |
| Ű                   |                                                                                                                                                                                                               | ~             | 2                                |
|                     | 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a                                                                          | 1             |                                  |
|                     | Printed/Typed Name A A A A A A A A A A A A A A A A A A A                                                                                                                                                      | _             | Month Day Year                   |
| Ÿ                   | VIAUVEVENIUN DIV                                                                                                                                                                                              |               | 10/070C                          |

169-BLC-O 6 10498 (Rev. 9/09)

-. . . . . .

DESIGNATED FACILITY TO GENERATO

. -

10

|             |              | 586.88<br>int or type.                                                                                         | -20                         |                                              | (1 <sup>4 la</sup> ) | 1                | c                                  |                        |                          | 1                     | Form                 | 0561<br>Approved. C | 12<br>DMB No. 20 | JJ<br>050-0039 |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|----------------------|------------------|------------------------------------|------------------------|--------------------------|-----------------------|----------------------|---------------------|------------------|----------------|
|             | UNIF         | All a second | 1. Generator ID Num         | er<br>10748                                  | 187                  | 2. Page 1 of     |                                    | gency Response         | Phone                    | 4. Manifest T         | racking Nu           | 452                 |                  |                |
|             | 5. Ge        | nerator's Name and Mailin                                                                                      | 7.151                       |                                              | 2 D                  | epn Jones        | Generat                            | or's Site Address      | (if different th         | an mailing address    | 27 116 Car 1086      | TUL                 |                  |                |
|             | 63<br>Al     | PERFEC<br>25 Broadway<br>Ibany NY 12233<br>Irato's Phone: 5 1 4                                                |                             | - 3 0 4 4                                    |                      |                  |                                    | ar Fresh an<br>Head NY |                          | Laundry Sil           | le:22-2              | S Railroad          | d Ave.           |                |
|             | 6. Tra       | ansporter 1 Company Nam<br>Inovative Recyc                                                                     | e<br>cling Technol          | ogies, Inc.                                  |                      |                  |                                    |                        |                          | U.S. EPA ID N         | 000                  | ) 1 3 4             | 194              | 0              |
|             | R            | epublic Environ                                                                                                | imental Syst                | ems (Trans                                   | Group)LLC            | ,                |                                    |                        |                          | U.S. EPAID N          | 883                  | 2661                | 38               | ti a           |
|             | R<br>21<br>H | esignated Facility Name an<br>epitiolic Environm<br>369 Sandstone E<br>atfield PA 1944<br>ity's Phone: 215 82  | iental System<br>rrive<br>) | s (PA), LLC                                  |                      |                  |                                    |                        |                          |                       |                      | 569(                | 5.9              | 2              |
|             | 9a.<br>HM    | 9b. U.S. DOT Description                                                                                       | on (including Proper S      | nipping Name, Haza                           | rd Class, ID Numbe   | er,              |                                    | 10. Contai<br>No.      | iners<br>Type            | 11. Total<br>Quantity | 12. Unit<br>Wt./Vol. | 13. V               | Vaste Codes      |                |
| 2           | 757          | INAGO77, Haza                                                                                                  |                             |                                              | v.                   |                  |                                    |                        | 1.100                    |                       |                      | D039                | -009             | T              |
| RATO        | M            | 9, PGHI,(D039,<br>ERG#171                                                                                      | Lou Visusci                 | воя о е и тутет не                           | ł.                   |                  |                                    | 20                     | DМ                       | 10,000                | p                    |                     |                  | İ              |
| GENERATOR   |              | 2.                                                                                                             |                             |                                              |                      |                  |                                    |                        |                          |                       |                      |                     |                  |                |
|             |              |                                                                                                                |                             |                                              |                      |                  |                                    |                        |                          |                       |                      |                     |                  |                |
|             |              | 3.                                                                                                             |                             |                                              |                      |                  |                                    |                        | 1                        |                       |                      |                     |                  |                |
|             |              |                                                                                                                |                             |                                              |                      |                  |                                    |                        |                          |                       |                      |                     |                  |                |
|             |              | 4.                                                                                                             |                             |                                              |                      |                  |                                    |                        |                          |                       |                      |                     |                  |                |
|             |              |                                                                                                                |                             |                                              |                      |                  |                                    |                        |                          |                       |                      |                     |                  |                |
|             | ,<br>D       | GENERATOR'S/OFFERC                                                                                             | R'S CERTIFICATION           | : I hereby declare the spects in proper con- | dition for transport | according to ap  | plicable int                       | emational and na       |                          |                       |                      |                     |                  |                |
|             | Gene         | Exporter, I certify that the<br>I certify that the waste min<br>erator's/Offeror's Printed/T                   | nimization statement in     | lentified in 40 CFR 2                        | 62.27(a) (if I am a  | large quantity g |                                    |                        | nall quantity g          | enerator) is true.    |                      | Mon                 | ith Day          | Year           |
| ¥           |              | Keith Ri                                                                                                       | bins as                     | agent f                                      | r NYSDE              | C I              |                                    | Keit                   | th Ro                    | lino                  |                      | 1/2                 | 2116             | 120            |
| 1.LNI       |              | nternational Shipments<br>nsporter signature (for expo                                                         | Import to I                 |                                              |                      | Export from      | n U.S.                             |                        | ntry/exit:<br>ving U.S.: |                       |                      |                     |                  |                |
| -           | 17.7         | Transporter Acknowledgme                                                                                       | nt of Receipt of Materia    | ls                                           |                      |                  |                                    | Date lea               | ving 0.0.                |                       |                      |                     |                  |                |
| TRANSPORTER | Tran         | sporter 1 Printed/Typed Na                                                                                     |                             | -jY                                          | 6                    | 5                | Signature                          | · Ola                  | Ka                       | noe M                 |                      | Mon<br>1 1 ~        | th Day           | Year           |
| ANSF        | Tran         | sporter 2 Printed/Typed Na                                                                                     |                             |                                              |                      |                  | Signature                          | no                     |                          | may                   | • 2                  | Mor                 |                  | Year           |
| * TR        | 18.0         | Discrepancy                                                                                                    | SKA                         | -                                            |                      |                  |                                    | IFX                    | ×                        | 2)                    |                      | 11                  | 2 19             | 1 202          |
|             |              | . Discrepancy Indication Sp                                                                                    | ace Quant                   | ty                                           | Птуре                |                  |                                    | Residue                |                          | Partial Rej           | jection              | [                   | Full Reje        | ection         |
| 1           | 18b.         | Alternate Facility (or Gene                                                                                    | rator)                      |                                              |                      |                  | 1                                  | Manifest Reference     | ce Number:               | U.S. EPA ID 1         | Number               |                     |                  |                |
| FACILITY    |              |                                                                                                                |                             |                                              |                      |                  |                                    |                        |                          | 0.0. 21 1101          |                      |                     |                  |                |
| ED FA       | Faci<br>18c. | ility's Phone:<br>. Signature of Alternate Fac                                                                 | ility (or Generator)        |                                              |                      |                  |                                    |                        |                          |                       |                      | Mo                  | nth Day          | Year           |
| GNA         | 10           | Normaliana Weste Depart N                                                                                      | fannen an Bitatha al d      |                                              |                      |                  |                                    |                        |                          |                       |                      | Ì                   | ]                | Ì              |
| DESIGNATED  | 19.1         | Hazardous Waste Report N                                                                                       |                             | Codes (i.e., codes for<br>2.                 | nazardous waste      | treatment, dispo | Sector of the sector of the sector | ecycling systems)      | }                        | < 4.                  |                      |                     |                  |                |
| 1           |              | $-\frac{1}{1}$                                                                                                 | <u>t/</u>                   |                                              |                      | $\sim 1$         |                                    |                        | $\frown$                 |                       | $\overline{}$        | )                   |                  |                |
| +           | Prin         | Designated Facility Owner<br>ited/Typed Name                                                                   | ALIA                        | F]/4                                         | ardous materials co  |                  | anifest exc<br>Signature           |                        | em 18a                   | X/1/2/                |                      | Ma                  | nth Day          | A Vear         |

| EPA Form 8700-22 (Rev. | 12-17) | Prévious | editions | are | obsolete. |
|------------------------|--------|----------|----------|-----|-----------|
|                        |        |          |          |     |           |

DESIGNATED FACILITY TO EPA's e-MANIFEST SYSTEM

### **APPENDIX F**

# ANALYTICAL RESULTS

| Sample ID                              | IADB-1     | IADB-1        | IADB-1    | IADB-2     | IADB-2        | IADB-2    |               |
|----------------------------------------|------------|---------------|-----------|------------|---------------|-----------|---------------|
| Sampling Date                          | 03/14/18   | 02/28/19      | 01/26/21  | 03/14/18   | 02/28/19      | 01/26/21  | NYSDOH        |
|                                        |            |               |           |            |               |           | Air Guideline |
| Sample Type:<br>Units                  | Indoor     | Indoor        | Indoor    | Indoor     | Indoor        | Indoor    | Value         |
| Units                                  | ug/m3      | ug/m3         | ug/m3     | ug/m3      | ug/m3         | ug/m3     | ug/m3         |
| 1,1,1-Trichloroethane                  | U          | 0.25 J        | 0.42 J    | U          | 0.24 J        | 0.23 J    |               |
| 1,1,2,2-Tetrachloroethane              | U          | 0.20 U        | U U       | U          | U.210         | U         |               |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane  | U          | 0.53 J        | U         | Ŭ          | 0.51 J        | Ŭ         |               |
| 1,1,2-Trichloroethane                  | U          | U             | U         | U          | U             | Ŭ         |               |
| 1,1-Dichloroethane                     | U          | U             | U         | U          | U             | Ŭ         |               |
| 1,1-Dichloroethene                     | U          | U             | U         | U          | U             | Ŭ         |               |
| 1,2,4-Trichlorobenzene                 | U          | U             | U         | U          | Ŭ             | U         |               |
| 1,2,4-Trimethylbenzene                 | U          | U             | 0.38 J    | U          | U             | 0.44 J    |               |
| 1,2-Dibromoethane (Ethylene Dibromide) | U          | U             | U         | U          | U             | U         |               |
| 1,2-Dichlorobenzene                    | U          | U             | U         | U          | U             | U         |               |
| 1,2-Dichloroethane                     | U          | 0.3 J         | U         | U          | 0.22 J        | U         |               |
| 1,2-Dichloropropane                    | U          | U             | U         | U          | U             | U         |               |
| 1,2-Dichlorotetrafluoroethane          | U          | U             | U         | U          | U             | U         |               |
| 1,3,5-Trimethylbenzene (Mesitylene)    | U          | U             | U         | U          | U             | U         |               |
| 1,3-Butadiene                          | U          | U             | U         | U          | U             | U         |               |
| 1,3-Dichlorobenzene                    | U          | U             | U         | U          | U             | U         |               |
| 1,4-Dichlorobenzene                    | U          | U             | U         | U          | U             | U         |               |
| 1,4-Dioxane (P-Dioxane)                | U          | U             | U         | U          | U             | U         |               |
| 2,2,4-Trimethylpentane                 | U          | 0.32 J        | U         | U          | 0.28 J        | U         |               |
| 2-Chlorotoluene                        | U          | U             | U         | U          | U             | U         |               |
| 2-Hexanone                             | U          | U             | U         | U          | U             | U         |               |
| 4-Ethyltoluene                         | U          | U             | U         | U          | U             | U         |               |
| Acetone                                | U          | 15 J          | 18        | 18 J       | 23 J          | 28        |               |
| Allyl Chloride (3-Chloropropene)       | U          | U             | U         | U          | U             | U         |               |
| Benzene                                | 0.75 J     | 0.77          | 0.53 J    | 0.76 J     | 0.67          | 1.5 J     |               |
| Benzyl Chloride                        | U          | U             | U         | U          | U             | U         |               |
| Bromodichloromethane                   | U          | U             | U         | U          | U             | U         |               |
| Bromoethene                            | U          | U             | U         | U          | U             | U         |               |
| Bromoform                              | U          | U             | U         | U          | U             | U         |               |
| Bromomethane                           | U          | U             | U         | U          | U             | U         |               |
| Butane                                 | 7.8        | 4.5           | 5.7       | 10         | 5             | 18 J      |               |
| Carbon Disulfide                       | U          | 0.13 J        | U         | 4.8 J      | 0.15 J        | U         |               |
| Carbon Tetrachloride                   | U          | 0.28 J        | 0.4       | 0.43 J     | 0.43 J        | 0.5       |               |
| Chlorobenzene                          | U          | U             | U         | U          | U             | U         |               |
| Chlorodifluoromethane                  | U          | 1             | 1.2 J     | U          | 1.1           | 1.8       |               |
| Chloroethane                           | U          | U             | U         | U          | U             | U         |               |
| Chloroform                             | U          | U             | U         | U          | U             | U         |               |
| Chloromethane                          | U<br>59    | 1.6 J         | 1.6       | 1.3 J      | 1.2 J         | 1.6       |               |
| Cis-1,2-Dichloroethylene               | 59<br>U    | 12            | 8.6<br>U  | 59<br>U    | 10<br>U       | 4.6<br>U  |               |
| Cis-1,3-Dichloropropene<br>Cyclohexane | U          | U<br>0.2 J    | U         | U          | 0.15 J        | 0.72      |               |
| Cyclonexane<br>Cymene                  | U          | 0.2 J<br>U    | U         | U          | 0.15 J<br>U   | 0.72<br>U |               |
| Dibromochloromethane                   | U          | U             | U         | U          | U             | U         |               |
| Dichlorodifluoromethane                | 2.3 J      | 2.6           | 2.8       | 3.0 J      | 2.5           | 2.8       |               |
| Ethylbenzene                           | 2.3 J<br>U | 2.0<br>0.31 J | ∠.o<br>UB | 3.0 J<br>U | 2.5<br>0.33 J | 2.0<br>UB |               |
| Hexachlorobutadiene                    | U          | 0.31 J<br>U   | U U U     | U          | 0.33 J<br>U   | UB<br>U   |               |
| nexacilioropulatiene                   | U          | U             | U         | U          | U             | U         |               |

See next page for qualifiers and notes.



| Sample ID                                 | IADB-1     | IADB-1     | IADB-1     | IADB-2     | IADB-2     | IADB-2            |                         |
|-------------------------------------------|------------|------------|------------|------------|------------|-------------------|-------------------------|
| Sampling Date                             | 03/14/18   | 02/28/19   | 01/26/21   | 03/14/18   | 02/28/19   | 01/26/21          | NYSDOH<br>Air Guideline |
| Sample Type:                              | Indoor     | Indoor     | Indoor     | Indoor     | Indoor     | Indoor            | Value                   |
| Units                                     | ug/m3      | ug/m3      | ug/m3      | ug/m3      | ug/m3      | ug/m3             | ug/m3                   |
| Isopropyl alcohol                         | 1.4 J      | 4.1        | 8.3 J      | 3.5 J      | 3.7        | 30 J              |                         |
| Isopropylbenzene (Cumene)                 | U          | U          | U          | U          | U          | U                 |                         |
| M,P-Xylenes                               | U          | 0.91       | 2 J        | U          | 1.1        | 2.6               |                         |
| Methyl Ethyl Ketone (2-Butanone)          | U          | 1.3 J      | 1.3 J      | 1.7 J      | 2.1 J      | 1.7               |                         |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentar | U          | U          | 0.39 J     | U          | U          | U                 |                         |
| Methyl Methacrylate                       | U          | U          | U          | U          | U          | U                 |                         |
| Methylene Chloride                        | 1.2 J      | 1.7 J      | U          | 1.3 J      | 1.5 J      | 1.2 J             | 60                      |
| Naphthalene                               | U          | U          | U          | U          | U          | U                 |                         |
| N-Butylbenzene                            | U          | U          | U          | U          | U          | U                 |                         |
| N-Heptane                                 | U          | 0.31 J     | 0.51 J     | U          | 0.32 J     | U                 |                         |
| N-Hexane                                  | U          | 0.56 J     | U          | U          | 0.56 J     | U                 |                         |
| N-Propylbenzene                           | U          | U          | U          | U          | U          | U                 |                         |
| O-Xylene (1,2-Dimethylbenzene)            | U          | 0.31 J     | UB         | U          | 0.35 J     | UB                |                         |
| Sec-Butylbenzene                          | U          | U          | U          | U          | U          | U                 |                         |
| Styrene                                   | U          | U          | U          | U          | U          | U                 |                         |
| T-Butylbenzene                            | U          | U          | U          | U          | U          | U                 |                         |
| Tert-Butyl Alcohol                        | U          | 0.17 J     | U          | U          | 0.28 J     | 0.51 J            |                         |
| Tert-Butyl Methyl Ether                   | U          | U          | U          | U          | U          | U                 |                         |
| Tetrachloroethylene (PCE)                 | <u>600</u> | <u>140</u> | <u>280</u> | <u>640</u> | <u>130</u> | <u>110 J</u>      | 30                      |
| Tetrahydrofuran                           | U          | U          | U          | U          | 0.2 J      | U                 |                         |
| Toluene                                   | 1.5 J      | 2 J        | 1.6        | 1.7 J      | 2.3 J      | 4 J               |                         |
| Trans-1,2-Dichloroethene                  | 2.6 J      | 0.33 J     | 0.78 J     | 3.0 J      | 0.3 J      | U                 |                         |
| Trans-1,3-Dichloropropene                 | U          | U          | U          | U          | U          | U                 |                         |
| Trichloroethylene (TCE)                   | <u>50</u>  | <u>7.5</u> | <u>17</u>  | <u>61</u>  | <u>7</u>   | <u>7.4</u><br>1.8 | 2                       |
| Trichlorofluoromethane                    | 1.1 J      | 1.2        | 1.5        | 1.5 J      | 1.2        |                   |                         |
| Vinyl Chloride                            | 0.56       | U          | U          | 0.75       | U          | U                 |                         |
| Xylenes, Total                            | U          | 1.2 J      | 2 J        | U          | 1.5 J      | 2.6               |                         |
|                                           |            |            |            |            |            |                   |                         |

Qualifiers:

U: Analyzed but not detected

J: Estimated value

UB: Not detected based on assoicated blank results

D: Reported from secondary dilution

#### Notes:

ug/m3: Micrograms per cubic meter

--: No guideline value

Exceeded NYSDOH Air Guideline Value



| Sample ID                                   | IADB-3           | IADB-3    | IADB-4           | IADB-4      |                |
|---------------------------------------------|------------------|-----------|------------------|-------------|----------------|
| Sampling Date                               |                  | 01/26/21  | 02/28/19         | 01/26/21    | NYSDOH         |
| Sample Type:                                |                  | Indoor    | Indoor           | Indoor      | Air Guideline  |
| Units                                       | ug/m3            | ug/m3     | ug/m3            | ug/m3       | Value<br>ug/m3 |
|                                             | uginio           | uginio    | uginio           | ugino       | ug/ms          |
| 1,1,1-Trichloroethane                       | 0.18 J           | 0.2 J     | U                | U           |                |
| 1,1,2,2-Tetrachloroethane                   | U                | U         | U                | U           |                |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane       | 0.51 J           | U         | 0.58 J           | U           |                |
| 1,1,2-Trichloroethane                       | U                | U         | U                | U           |                |
| 1,1-Dichloroethane                          | U                | U         | U                | U           |                |
| 1,1-Dichloroethene                          | U                | U         | U                | U           |                |
| 1,2,4-Trichlorobenzene                      | U                | U         | U                | U           |                |
| 1,2,4-Trimethylbenzene                      | U                | 0.24 J    | U                | 0.22 J      |                |
| 1,2-Dibromoethane (Ethylene Dibromide)      | U                | U         | U                | U           |                |
| 1,2-Dichlorobenzene                         | U                | U         | U                | U           |                |
| 1,2-Dichloroethane                          | U                | U         | U                | U           |                |
| 1,2-Dichloropropane                         | U                | U         | U                | U           |                |
| 1,2-Dichlorotetrafluoroethane               | U                | U         | U                | U           |                |
| 1,3,5-Trimethylbenzene (Mesitylene)         | U                | U         | U                | U           |                |
| 1,3-Butadiene                               | U                | U         | U                | U           |                |
| 1,3-Dichlorobenzene                         | U                | U         | U                | U           |                |
| 1,4-Dichlorobenzene                         | 8.9              | U         | 3.2              | U           |                |
| 1,4-Dioxane (P-Dioxane)                     | U                | U         | U                | U           |                |
| 2,2,4-Trimethylpentane                      | 0.27 J           | U         | 0.28 J           | U           |                |
| 2-Chlorotoluene                             | U                | U         | U                | U           |                |
| 2-Hexanone                                  | 0.47 J           | U         | U                | U           |                |
| 4-Ethyltoluene                              | U                | U         | U                | U           |                |
| Acetone                                     | 30 J             | 17<br>U   | 24<br>U          | 17          |                |
| Allyl Chloride (3-Chloropropene)<br>Benzene | U<br>0.68        | 0.69      | 0.68             | U<br>0.53 J |                |
|                                             | 0.00<br>U        | 0.69<br>U | 0.00<br>U        | 0.53 J<br>U |                |
| Benzyl Chloride<br>Bromodichloromethane     | U                | U         | U                | U           |                |
| Bromoethene                                 | U                | U         | U                | U           |                |
| Bromoform                                   | U                | U         | U                | U           |                |
| Bromomethane                                | U                | U         | U                | U           |                |
| Butane                                      | 3.2              | 3.9       | 3                | 3.1         |                |
| Carbon Disulfide                            | 0.36 J           | 0.0<br>U  | 0.61 J           | 0.36 J      |                |
| Carbon Tetrachloride                        | 0.30 J<br>0.44 J | 0.35      | 0.01 J<br>0.44 J | 0.37        | -              |
| Chlorobenzene                               | U.14 0           | U.00      | U                | U.57        |                |
| Chlorodifluoromethane                       | U                | 1.2 J     | 45               | 1.5 J       |                |
| Chloroethane                                | Ŭ                | U         | U                | U           |                |
| Chloroform                                  | U                | U         | U                | Ŭ           |                |
| Chloromethane                               | 1.3 J            | 1.5       | 1.5 J            | 1.5         |                |
| Cis-1,2-Dichloroethylene                    | 5.2              | 2.6       | 4.5              | 2.2         |                |
| Cis-1,3-Dichloropropene                     | U                | U         | U                | U           |                |
| Cyclohexane                                 | 0.19 J           | U         | 0.2 J            | U           |                |
| Cymene                                      | U                | U         | U                | U           |                |
| Dibromochloromethane                        | U                | U         | U                | U           |                |
| Dichlorodifluoromethane                     | 2.4              | 2.9       | 2.5              | 2.8         |                |
| Ethylbenzene                                | U                | UB        | U                | UB          |                |
| Hexachlorobutadiene                         | U                | U         | U                | U           |                |

See next page for qualifiers and notes.



| Sample ID                                 | IADB-3     | IADB-3     | IADB-4     | IADB-4     | NYSDOH        |
|-------------------------------------------|------------|------------|------------|------------|---------------|
| Sampling Date                             | 02/28/19   | 01/26/21   | 02/28/19   | 01/26/21   | Air Guideline |
| Sample Type:                              | Indoor     | Indoor     | Indoor     | Indoor     | Value         |
| Units                                     | ug/m3      | ug/m3      | ug/m3      | ug/m3      | ug/m3         |
| Isopropyl alcohol                         | 4          | 5.2 J      | 5.1        | 3 J        |               |
| Isopropylbenzene (Cumene)                 | U          | U          | U          | U          |               |
| M,P-Xylenes                               | 0.84 J     | 1.5 J      | 0.63 J     | 1 J        |               |
| Methyl Ethyl Ketone (2-Butanone)          | 3.2        | 1.3 J      | 1.7 J      | 0.98 J     |               |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentar | U          | U          | U          | U          |               |
| Methyl Methacrylate                       | U          | U          | U          | U          |               |
| Methylene Chloride                        | 1.4 J      | U          | 1.9 J      | U          | 60            |
| Naphthalene                               | U          | U          | U          | U          |               |
| N-Butylbenzene                            | U          | U          | U          | U          |               |
| N-Heptane                                 | 0.39 J     | 0.35 J     | 0.35 J     | 0.26 J     |               |
| N-Hexane                                  | 0.48 J     | U          | 0.64 J     | U          |               |
| N-Propylbenzene                           | U          | U          | U          | U          |               |
| O-Xylene (1,2-Dimethylbenzene)            | 0.34 J     | UB         | U          | UB         |               |
| Sec-Butylbenzene                          | U          | U          | U          | U          |               |
| Styrene                                   | U          | U          | U          | U          |               |
| T-Butylbenzene                            | U          | U          | U          | U          |               |
| Tert-Butyl Alcohol                        | 1.1 J      | 0.35 J     | 0.29 J     | 0.57 J     |               |
| Tert-Butyl Methyl Ether                   | U          | U          | U          | U          |               |
| Tetrachloroethylene (PCE)                 | <u>63</u>  | <u>62</u>  | <u>50</u>  | <u>44</u>  | 30            |
| Tetrahydrofuran                           | U          | U          | U          | U          |               |
| Toluene                                   | 1.5 J      | 1.7        | 1.3 J      | 1.1        |               |
| Trans-1,2-Dichloroethene                  | U          | U          | U          | U          |               |
| Trans-1,3-Dichloropropene                 | U          | U          | U          | U          |               |
| Trichloroethylene (TCE)                   | <u>3.7</u> | <u>3.7</u> | <u>2.9</u> | <u>2.7</u> | 2             |
| Trichlorofluoromethane                    | 1.2        | 1.4        | 1.2        | 1.5        |               |
| Vinyl Chloride                            | U          | U          | U          | U          |               |
| Xylenes, Total                            | 1.2 J      | 1.5 J      | 0.63 J     | 1 J        |               |
|                                           |            |            |            |            |               |

Qualifiers:

U: Analyzed but not detected

J: Estimated value

UB: Not detected based on assoicated blank

D: Reported from secondary dilution

Notes:

ug/m3: Micrograms per cubic meter

-- : No guideline value

Exceeded NYSDOH Air Guideline Value



| Sample ID                               | OADB-1    | OADB-1           | OADB-1           |               |
|-----------------------------------------|-----------|------------------|------------------|---------------|
| Sampling Date                           |           | 02/28/19         | 01/26/21         | NYSDOH        |
|                                         |           |                  |                  | Air Guideline |
| Sample Type:<br>Units                   |           | Outdoor<br>ug/m3 | Outdoor<br>ug/m3 | Value         |
| Units                                   | ug/ms     | ug/ms            | ug/ms            | ug/m3         |
| 1,1,1-Trichloroethane                   | U         | U                | U                |               |
| 1,1,2,2-Tetrachloroethane               | Ŭ         | Ŭ                | Ŭ                |               |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane   | 0.53 J    | 0.5 J            | 0.63 J           |               |
| 1,1,2-Trichloroethane                   | U         | U                | U                |               |
| 1,1-Dichloroethane                      | U         | U                | U                |               |
| 1,1-Dichloroethene                      | U         | U                | U                |               |
| 1,2,4-Trichlorobenzene                  | U         | U                | U                |               |
| 1,2,4-Trimethylbenzene                  | U         | U                | U                |               |
| 1,2-Dibromoethane (Ethylene Dibromide)  | U         | U                | U                |               |
| 1,2-Dichlorobenzene                     | U         | U                | U                |               |
| 1,2-Dichloroethane                      | U         | U                | U                |               |
| 1,2-Dichloropropane                     | U         | U                | U                |               |
| 1,2-Dichlorotetrafluoroethane           | U         | U                | U                |               |
| 1,3,5-Trimethylbenzene (Mesitylene)     | U         | U                | U                |               |
| 1,3-Butadiene                           | U         | U                | U                |               |
| 1,3-Dichlorobenzene                     | U         | U                | U                |               |
| 1,4-Dichlorobenzene                     | U         | U                | U                |               |
| 1,4-Dioxane (P-Dioxane)                 | U         | U                | U                |               |
| 2,2,4-Trimethylpentane                  | 0.41 J    | 0.21 J           | U                |               |
| 2-Chlorotoluene                         | U         | U                | U                |               |
| 2-Hexanone                              | U         | U                | U                |               |
| 4-Ethyltoluene                          | U         | U                | U                |               |
| Acetone                                 | 5.5 J     | 5.3 J            | 4 J              |               |
| Allyl Chloride (3-Chloropropene)        | U         | U                | U                |               |
| Benzene                                 | 0.87      | 0.54 J           | 0.48 J           |               |
| Benzyl Chloride                         | U         | U                | U                |               |
| Bromodichloromethane                    | U         | U                | U                |               |
| Bromoethene                             | U         | U                | U                |               |
| Bromoform                               | U         | U                | U                |               |
| Bromomethane<br>Butane                  | U<br>7.9  | U<br>1.9 J       | U<br>1.8         |               |
| Carbon Disulfide                        | 7.9<br>U  | 0.11 J           | 1.0<br>U         |               |
| Carbon Disuinde<br>Carbon Tetrachloride | 0.45      | 0.11 J<br>0.38 J | 0.39             |               |
| Chlorobenzene                           | 0.45<br>U | 0.38 J<br>U      | 0.39<br>U        |               |
| Chlorodifluoromethane                   | 0.91 J    | 1                | 1 J              | _             |
| Chloroethane                            | U.91 9    | ' U              | U                |               |
| Chloroform                              | U         | U                | U                |               |
| Chloromethane                           | 1.0 J     | 1.4 J            | 1.2              |               |
| Cis-1,2-Dichloroethylene                | U         | U                | U                |               |
| Cis-1,3-Dichloropropene                 | U         | U                | U                |               |
| Cyclohexane                             | 0.25 J    | U                | U                |               |
| Cymene                                  | U         | U                | 0.38 J           |               |
| Dibromochloromethane                    | U         | U                | U                |               |
| Dichlorodifluoromethane                 | 2.1 J     | 2.5              | 2.4 J            |               |
| Ethylbenzene                            | 0.29 J    | U                | 0.34 J           |               |
| Hexachlorobutadiene                     | U         | U                | U                |               |

See next page for qualifiers and notes.



| Sample ID                                 | OADB-1   | OADB-1   | OADB-1   | NYSDOH        |
|-------------------------------------------|----------|----------|----------|---------------|
| Sampling Date                             | 03/14/18 | 02/28/19 | 01/26/21 | Air Guideline |
| Sample Type:                              | Outdoor  | Outdoor  | Outdoor  | Value         |
| Units                                     |          | ug/m3    | ug/m3    | ug/m3         |
| Isopropyl alcohol                         | UB       | 2.3 J    | U        |               |
| Isopropylbenzene (Cumene)                 | U        | U        | U        |               |
| M,P-Xylenes                               | 0.89 J   | U        | U        |               |
| Methyl Ethyl Ketone (2-Butanone)          | 0.60 J   | 0.79 J   | U        |               |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentar | U        | U        | U        |               |
| Methyl Methacrylate                       | U        | U        | U        |               |
| Methylene Chloride                        | 0.63 J   | 1.3 J    | U        | 60            |
| Naphthalene                               | U        | U        | 1.5 J    |               |
| N-Butylbenzene                            | U        | U        | U        |               |
| N-Heptane                                 | 0.36 J   | 0.19 J   | U        |               |
| N-Hexane                                  | 0.74     | 0.38 J   | U        |               |
| N-Propylbenzene                           | U        | U        | U        |               |
| O-Xylene (1,2-Dimethylbenzene)            | 0.28 J   | U        | 0.61 J   |               |
| Sec-Butylbenzene                          | U        | U        | U        |               |
| Styrene                                   | U        | U        | U        |               |
| T-Butylbenzene                            | U        | U        | U        |               |
| Tert-Butyl Alcohol                        | U        | U        | U        |               |
| Tert-Butyl Methyl Ether                   | U        | U        | U        |               |
| Tetrachloroethylene (PCE)                 | 1.2 J    | 1.1 J    | U        | 30            |
| Tetrahydrofuran                           | U        | U        | U        |               |
| Toluene                                   | 1.8      | 0.58 J   | 1.1      |               |
| Trans-1,2-Dichloroethene                  | U        | U        | U        |               |
| Trans-1,3-Dichloropropene                 | U        | U        | U        |               |
| Trichloroethylene (TCE)                   | U        | U        | U        | 2             |
| Trichlorofluoromethane                    | 1.2      | 1.2      | 1.1      |               |
| Vinyl Chloride                            | U        | U        | U        |               |
| Xylenes, Total                            | 1.2 J    | U        | 0.61 J   |               |
|                                           |          |          |          |               |

Qualifiers:

U: Analyzed but not detected

J: Estimated value

Notes:

ug/m3: Micrograms per cubic meter

-- : No guideline value

D: Reported from secondary dilution

UB: Not detected based on assoicated blank

Exceeded NYSDOH Air Guideline Value



| Sample ID                              | SSDB-1   | SSDB-1   | SSDB-1   | SSDB-2   | SSDB-2   | SSDB-2   |                        |
|----------------------------------------|----------|----------|----------|----------|----------|----------|------------------------|
| Sampling Date                          |          | 02/28/19 | 01/26/21 | 03/14/18 | 02/28/19 | 01/26/21 | NYSDOH                 |
| Sample Type:                           | Sub slab | Air Guideline<br>Value |
| Units                                  | ug/m3                  |
|                                        | uginio   | agino    | ughite   | ugino    | ughite   | ugino    | ug/mo                  |
| 1,1,1-Trichloroethane                  | U        | U        | U        | U        | U        | U        |                        |
| 1,1,2,2-Tetrachloroethane              | U        | U        | U        | U        | U        | U        |                        |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane  | U        | U        | U        | U        | U        | U        |                        |
| 1,1,2-Trichloroethane                  | U        | U        | U        | U        | U        | U        |                        |
| 1,1-Dichloroethane                     | U        | U        | U        | U        | U        | U        |                        |
| 1,1-Dichloroethene                     | U        | U        | U        | U        | U        | U        |                        |
| 1,2,4-Trichlorobenzene                 | U        | U        | U        | U        | U        | U        |                        |
| 1,2,4-Trimethylbenzene                 | U        | U        | U        | U        | U        | U        |                        |
| 1,2-Dibromoethane (Ethylene Dibromide) | U        | U        | U        | U        | U        | U        |                        |
| 1,2-Dichlorobenzene                    | U        | U        | U        | U        | U        | U        |                        |
| 1,2-Dichloroethane                     | U        | U        | U        | U        | U        | U        |                        |
| 1,2-Dichloropropane                    | U        | U        | U        | U        | U        | U        |                        |
| 1,2-Dichlorotetrafluoroethane          | U        | U        | U        | U        | U        | U        |                        |
| 1,3,5-Trimethylbenzene (Mesitylene)    | U        | U        | U        | U        | U        | U        |                        |
| 1,3-Butadiene                          | U        | U        | U        | U        | U        | U        |                        |
| 1,3-Dichlorobenzene                    | U        | U        | U        | U        | U        | U        |                        |
| 1,4-Dichlorobenzene                    | U        | U        | U        | U        | U        | U        |                        |
| 1,4-Dioxane (P-Dioxane)                | U        | U        | U        | U        | U        | U        |                        |
| 2,2,4-Trimethylpentane                 | U        | U        | U        | U        | U        | U        |                        |
| 2-Chlorotoluene                        | U        | U        | U        | U        | U        | U        |                        |
| 2-Hexanone                             | U        | U        | U        | U        | U        | U        |                        |
| 4-Ethyltoluene                         | U        | U        | U        | U        | U        | U        |                        |
| Acetone                                | U        | U        | 390      | U        | U        | U        |                        |
| Allyl Chloride (3-Chloropropene)       | U        | U        | U        | U        | U        | U        |                        |
| Benzene                                | U        | U        | 8.3 J    | U        | U        | U        |                        |
| Benzyl Chloride                        | U        | U        | U        | U        | U        | U        |                        |
| Bromodichloromethane                   | U        | U        | U        | U        | U        | U        |                        |
| Bromoethene                            | U        | U        | U        | U        | U        | U        |                        |
| Bromoform                              | U        | U        | U        | U        | U        | U        |                        |
| Bromomethane                           | U        | U        | U        | U        | U        | U        |                        |
| Butane                                 | U        | U        | 7.6 J    | U        | U        | U        |                        |
| Carbon Disulfide                       | U        | U        | 5.7 J    | U        | U        | U        |                        |
| Carbon Tetrachloride                   | U        | U        | U        | U        | U        | U        |                        |
| Chlorobenzene                          | U        | U        | U        | U        | U        | U        |                        |
| Chlorodifluoromethane                  | U        | U        | U        | U        | U        | U        |                        |
| Chloroethane                           | U        | U        | U        | U        | U        | U        |                        |
| Chloroform                             | U        | U        | 5.7 J    | U        | U        | U        |                        |
| Chloromethane                          | U        | U        | U        | U        | U        | U        |                        |
| Cis-1,2-Dichloroethylene               | 540      | 630      | 640      | 2900     | 650      | 1500     |                        |
| Cis-1,3-Dichloropropene                | U        | U        | U        | U        | U        | U        |                        |
| Cyclohexane                            | U        | U        | U        | U        | U        | U        |                        |
| Cymene                                 | U        | U        | U        | U        | U        | U        |                        |
| Dibromochloromethane                   | U        | U        | U        | U        | U        | U        |                        |
| Dichlorodifluoromethane                | U        | U        | U        | U        | U        | U        |                        |
| Ethylbenzene                           | U        | U        | 6.6 J    | U        | U        | U        |                        |
| Hexachlorobutadiene                    | U        | U        | U        | U        | U        | U        |                        |

See next page for qualifiers and notes.



| Sample ID                                 | SSDB-1       | SSDB-1       | SSDB-1         | SSDB-2       | SSDB-2       | SSDB-2         |                         |
|-------------------------------------------|--------------|--------------|----------------|--------------|--------------|----------------|-------------------------|
| Sampling Date                             | 03/14/18     | 02/28/19     | 01/26/21       | 03/14/18     | 02/28/19     | 01/26/21       | NYSDOH<br>Air Guideline |
| Sample Type:                              | Sub slab     | Sub slab     | Sub slab       | Sub slab     | Sub slab     | Sub slab       | Value                   |
| Units                                     | ug/m3        | ug/m3        | ug/m3          | ug/m3        | ug/m3        | ug/m3          | ug/m3                   |
| Isopropyl alcohol                         | U            | U            | 43 J           | U            | U            | U              |                         |
| Isopropylbenzene (Cumene)                 | U            | U            | U              | U            | U            | U              |                         |
| M,P-Xylenes                               | U            | U            | U              | U            | U            | U              |                         |
| Methyl Ethyl Ketone (2-Butanone)          | U            | U            | 100            | U            | U            | U              |                         |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentar | U            | U            | U              | U            | U            | U              |                         |
| Methyl Methacrylate                       | U            | U            | U              | U            | U            | U              |                         |
| Methylene Chloride                        | U            | U            | U              | U            | U            | U              | 60                      |
| Naphthalene                               | U            | U            | U              | U            | U            | U              |                         |
| N-Butylbenzene                            | U            | U            | U              | U            | U            | U              |                         |
| N-Heptane                                 | U            | U            | U              | U            | U            | U              |                         |
| N-Hexane                                  | U            | U            | U              | U            | U            | U              |                         |
| N-Propylbenzene                           | U            | U            | U              | U            | U            | U              |                         |
| O-Xylene (1,2-Dimethylbenzene)            | U            | U            | U              | U            | U            | U              |                         |
| Sec-Butylbenzene                          | U            | U            | U              | U            | U            | U              |                         |
| Styrene                                   | U            | 58 J         | 7.5 J          | U            | U            | U              |                         |
| T-Butylbenzene                            | U            | U            | U              | U            | U            | U              |                         |
| Tert-Butyl Alcohol                        | U            | U            | U              | U            | U            | U              |                         |
| Tert-Butyl Methyl Ether                   | U            | U            | U              | U            | U            | U              |                         |
| Tetrachloroethylene (PCE)                 | <u>15000</u> | <u>20000</u> | <u>26000 D</u> | <u>74000</u> | <u>18000</u> | <u>49000 D</u> | 30                      |
| Tetrahydrofuran                           | U            | U            | U              | U            | U            | U              |                         |
| Toluene                                   | U            | U            | U              | U            | U            | U              |                         |
| Trans-1,2-Dichloroethene                  | 35 J         | U            | 36             | 240 J        | 30 J         | 160            |                         |
| Trans-1,3-Dichloropropene                 | U            | U            | U              | U            | U            | U              |                         |
| Trichloroethylene (TCE)                   | <u>740</u>   | <u>930</u>   | <u>1100</u>    | <u>5400</u>  | <u>970</u>   | <u>3600</u>    | 2                       |
| Trichlorofluoromethane                    | U            | U            | U              | U            | U            | U              |                         |
| Vinyl Chloride                            | U            | U            | U              | U            | U            | U              |                         |
| Xylenes, Total                            | U            | U            | U              | U            | U            | U              |                         |
|                                           |              |              |                |              |              |                |                         |

Qualifiers:

U: Analyzed but not detected

J: Estimated value

UB: Not detected based on assoicated blank

D: Reported from secondary dilution

Notes:

ug/m3: Micrograms per cubic meter

-- : No guideline value

**Exceeded NYSDOH Air Guideline Value** 



| Sample ID                              | FCSV-01             | FCSV-02             | FCSV-03             | FCSV-04             |                         |
|----------------------------------------|---------------------|---------------------|---------------------|---------------------|-------------------------|
| Sampling Date                          | 05/07/18            | 05/07/18            | 05/08/18            | 05/08/18            | NYSDOH<br>Air Guideline |
|                                        |                     |                     |                     |                     | Value                   |
| Sample Type:<br>Units                  | Soil Vapor<br>ug/m° | Soil Vapor<br>ug/m° | Soil Vapor<br>ug/m° | Soil Vapor<br>ug/m³ | ug/m <sup>3</sup>       |
|                                        | -                   |                     |                     | -                   | ugini                   |
| 1,1,1-Trichloroethane                  | U                   | U                   | U                   | U                   |                         |
| 1,1,2,2-Tetrachloroethane              | U                   | U                   | U                   | U                   |                         |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane  | U                   | U                   | U                   | U                   |                         |
| 1,1,2-Trichloroethane                  | U                   | U                   | U                   | U                   |                         |
| 1,1-Dichloroethane                     | U                   | U                   | U                   | U                   |                         |
| 1,1-Dichloroethene                     | U                   | U                   | 1.7                 | U                   |                         |
| 1,2,4-Trichlorobenzene                 | U                   | U                   | U                   | U                   |                         |
| 1,2,4-Trimethylbenzene                 | 70                  | 18 J                | U                   | U                   |                         |
| 1,2-Dibromoethane (Ethylene Dibromide) | U                   | U                   | U                   | U                   |                         |
| 1,2-Dichlorobenzene                    | U                   | U                   | U                   | U                   |                         |
| 1,2-Dichloroethane                     | U                   | U                   | U                   | U                   |                         |
| 1,2-Dichloropropane                    | U                   | U                   | U                   | U                   |                         |
| 1,2-Dichlorotetrafluoroethane          | U                   | U                   | U                   | U                   |                         |
| 1,3,5-Trimethylbenzene (Mesitylene)    | 20 J                | U                   | U                   | U                   |                         |
| 1,3-Butadiene                          | U                   | 4.3 J               | 15                  | 30 J                |                         |
| 1,3-Dichlorobenzene                    | U                   | U                   | U                   | U                   |                         |
| 1,4-Dichlorobenzene                    | U                   | U                   | U                   | U                   |                         |
| 1,4-Dioxane (P-Dioxane)                | U                   | U                   | U                   | U                   |                         |
| 2,2,4-Trimethylpentane                 | 59                  | U                   | U                   | U                   |                         |
| 2-Chlorotoluene                        | U                   | U                   | U                   | U                   |                         |
| 2-Hexanone                             | U                   | U                   | U                   | U                   |                         |
| 4-Ethyltoluene                         | 26 J                | U                   | U                   | U                   |                         |
| Acetone                                | U                   | U                   | U                   | U                   |                         |
| Allyl Chloride (3-Chloropropene)       | U                   | U                   | U                   | U                   |                         |
| Benzene                                | 22 J                | U                   | 4.0 J               | U                   |                         |
| Benzyl Chloride                        | U                   | U                   | U                   | U                   |                         |
| Bromodichloromethane                   | U                   | U                   | U                   | U                   |                         |
| Bromoethene                            | U                   | U                   | U                   | U                   |                         |
| Bromoform                              | U                   | U                   | U                   | U                   |                         |
| Bromomethane                           | U                   | U                   | U                   | U                   |                         |
| Butane                                 | 180                 | 21 J                | 71                  | 160                 |                         |
| Carbon Disulfide                       | U                   | U                   | U                   | U                   |                         |
| Carbon Tetrachloride                   | U                   | U                   | U                   | U                   |                         |
| Chlorobenzene                          | U                   | U                   | U                   | U                   |                         |
| Chlorodifluoromethane                  | U                   | U                   | U                   | U                   |                         |
| Chloroethane                           | U                   | U                   | U                   | U                   |                         |
| Chloroform                             | U                   | U                   | U                   | U                   |                         |
| Chloromethane                          | U                   | U                   | U                   | U                   |                         |
| Cis-1,2-Dichloroethylene               | 500                 | 430                 | 690                 | 100                 |                         |
| Cis-1,3-Dichloropropene                | U                   | U                   | U                   | U                   |                         |
| Cyclohexane                            | U                   | U                   | U                   | U                   |                         |
| Cymene                                 | 45                  | U                   | U                   | U                   |                         |
| Dibromochloromethane                   | U                   | U                   | U                   | U                   |                         |
| Dichlorodifluoromethane                | U                   | U                   | U                   | U                   |                         |
| Ethylbenzene                           | 110                 | 12 J                | U                   | U                   |                         |
| Hexachlorobutadiene                    | U                   | U                   | U                   | U                   |                         |

See next page for qualifiers and notes.



| Sample ID<br>Sampling Date<br>Sample Type:<br>Units | 05/07/18<br>Soil Vapor | FCSV-02<br>05/07/18<br>Soil Vapor<br>ug/m° | FCSV-03<br>05/08/18<br>Soil Vapor<br>ug/m <sup>°</sup> | FCSV-04<br>05/08/18<br>Soil Vapor<br>ug/m° | NYSDOH<br>Air Guideline<br>Value<br>ug/m <sup>3</sup> |
|-----------------------------------------------------|------------------------|--------------------------------------------|--------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|
| Isopropyl alcohol                                   | U                      | U                                          | U                                                      | U                                          |                                                       |
| Isopropylbenzene (Cumene)                           | U                      | U                                          | U                                                      | U                                          |                                                       |
| M,P-Xylenes                                         | 380                    | 41 J                                       | U                                                      | 63 J                                       |                                                       |
| Methyl Ethyl Ketone (2-Butanone)                    | U                      | U                                          | U                                                      | U                                          |                                                       |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentar           | U                      | U                                          | U                                                      | U                                          |                                                       |
| Methyl Methacrylate                                 | U                      | U                                          | U                                                      | U                                          |                                                       |
| Methylene Chloride                                  | U                      | U                                          | U                                                      | U                                          | 60                                                    |
| Naphthalene                                         | U                      | U                                          | U                                                      | U                                          |                                                       |
| N-Butylbenzene                                      | U                      | U                                          | U                                                      | U                                          |                                                       |
| N-Heptane                                           | 80                     | U                                          | U                                                      | U                                          |                                                       |
| N-Hexane                                            | 110                    | U                                          | 9.2                                                    | U                                          |                                                       |
| N-Propylbenzene                                     | 17 J                   | U                                          | U                                                      | U                                          |                                                       |
| O-Xylene (1,2-Dimethylbenzene)                      | 120                    | 14 J                                       | U                                                      | U                                          |                                                       |
| Sec-Butylbenzene                                    | U                      | U                                          | U                                                      | U                                          |                                                       |
| Styrene                                             | U                      | U                                          | U                                                      | U                                          |                                                       |
| T-Butylbenzene                                      | U                      | U                                          | U                                                      | U                                          |                                                       |
| Tert-Butyl Alcohol                                  | U                      | U                                          | U                                                      | U                                          |                                                       |
| Tert-Butyl Methyl Ether                             | U                      | U                                          | U                                                      | U                                          |                                                       |
| Tetrachloroethylene (PCE)                           | <u>5,500</u>           | <u>2,400</u>                               | <u>790</u>                                             | <u>12,000</u>                              | 30                                                    |
| Tetrahydrofuran                                     | U                      | U                                          | U                                                      | U                                          |                                                       |
| Toluene                                             | 190                    | 25                                         | 2.5 J                                                  | 24 J                                       |                                                       |
| Trans-1,2-Dichloroethene                            | 17 J                   | 18                                         | 19                                                     | U                                          |                                                       |
| Trans-1,3-Dichloropropene                           | U                      | U                                          | U                                                      | U                                          |                                                       |
| Trichloroethylene (TCE)                             | <u>420</u>             | <u>330</u>                                 | <u>97</u>                                              | <u>500</u>                                 | 2                                                     |
| Trichlorofluoromethane                              | U                      | U                                          | U                                                      | U                                          |                                                       |
| Vinyl Chloride                                      | U                      | U                                          | 9.0                                                    | U                                          |                                                       |
| Xylenes, Total                                      | 500                    | 55 J                                       | U                                                      | 65 J                                       |                                                       |

Qualifiers:

U: Analyzed but not detected

J: Estimated value

UB: Not detected based on assoicated blank

D: Reported from secondary dilution

Notes:

ug/m3: Micrograms per cubic meter

-- : No guideline value

**Exceeded NYSDOH Air Guideline Value** 



| Sampler Date<br>Sampler Type:S7/2018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/72018S7/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample ID                                                                                                       | SS-01 | SS-02    | SS-05      | SS-06 | SS-07 | NYCRR 6 Part 375 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------|----------|------------|-------|-------|------------------|
| Sart Dopth (in Feet)<br>Ed Dopth (in Feet)<br>Bample Type:<br>units0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second se |       |          |            |       |       |                  |
| End Depity in Feet)         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |       |          |            |       |       |                  |
| Sample Type:         Soil/Sediment<br>mg/kg         Soil/Sediment<br>Soil/Sediment         Soil/Sediment<br>mg/kg           11,3:Dichlorobersene         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U |                                                                                                                 |       |          |            |       |       |                  |
| Unitsmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kgmg/kg1,1,1-Trichloro-thaneUUUU0.081,1,2-Trichloro-1,2,2-trilloro-thaneUUUU0.01,1,2-Trichloro-thaneUUUUUUUU0.071,1-Dichloro-thaneUUUUUU0.071,1-Dichloro-thaneUUUUUU0.071,1-Dichloro-thaneUUUUUU0.071,2-Dichloro-thaneUUUUUU0.011,2-Dichloro-thaneUUUUUU0.01,2-Dichloro-thaneUUUUUU1,2-Dichloro-thaneUUUUUU1,2-Dichloro-thaneUUUUUUUU1,2-Dichloro-thaneUUUUUUUU1,2-Dichloro-thaneUUUUUUUU1,2-Dichloro-thaneUUUUUU1,2-Dichloro-thaneUUUUUU1,2-Dichloro-thaneUUUUUU1,2-Dichloro-thaneUUUUUU1,2-Dichloro-thaneUUUUUU1,2-Dichloro-thaneUUUUUU1,2-Dichloro-thaneUUUUUU1,2-Dichloro-thane<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |       |          |            |       |       |                  |
| 1,1,1-Trichloroethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |       |          |            |       |       |                  |
| 1,1,2-TrichlorosthaneUUUUUUUUU1,1,2-TrichlorosthaneUUUUUUUU1,1-DichlorosthaneUUUUUUUUUU0.331,1-DichlorosthaneUUUUUUUUUU0.331,2-TrichlorosthaneUUUUUUUU0.331,2-TrichlorosthaneUUUUUUUU0.331,2-DichlorosthaneUUUUUUUU0.021,2-DichlorosthaneUUUUUUUU0.021,2-DichlorosthaneUUUUUUUU0.021,2-DichlorosthaneUUUUUUUU0.021,2-DichlorosthaneUUUUUUUU0.021,2-DichlorosthaneUUUUUUUU0.021,2-DichlorosthaneUUUUUUUU0.021,2-DichlorosthaneUUUUUUUU0.022-DichlorosthaneUUUUUUUU0.022-DichlorosthaneUUUUUUUU0.022-DichlorosthaneUUUUUUUU0.022-DichlorosthaneUUUUUUUU0.022-DichlorosthaneUUUUUUUU0.022-DichlorosthaneUUUUUUUU0.022-DichlorosthaneUUUUUUUU0.022-DichlorosthaneUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |       |          |            |       |       |                  |
| 1,1,2-TrichisorestaneUUUUUU1,1,2-TrichisorestaneUUUUUUUU0.271,1-DichiorestaneUUUUUUUU0.231,1-DichiorestaneUUUUUUUU0.331,2-Distrome-SchloropopaneUUUUUUUU0.021,2-Distrome-SchloropopaneUUUUUUUU0.021,2-Distrome-SchloropopaneUUUUUUUU0.021,2-Distrome-SchloropopaneUUUUUU0.021.021,2-Distrome-SchloropopaneUUUUUUUU0.021,2-Distrome-SchloropopaneUUUUUU0.022.401,2-Distrome-SchloropopaneUUUUUU0.022.401,2-Distrome-SchloropopaneUUUUUU0.022.401,2-Distrome-SchloropopaneUUUUUU0.022.401,2-Distrome-SchloropopaneUUUUUU0.022.401,2-Distrome-SchloropopaneUU0.051UUUU0.022-Butanone (MEK)UU0.051UUUU0.020.022-Butanone (MEK)UUUUUUUU0.020.02BromedichoromethaneUUUUUUUU0.020.02BromedichoromethaneUUUUUUUU0.020.02BromedichoromethaneUUUUUUUU0.020.02<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | -     | -        |            | -     |       |                  |
| 1,1-2-inchloroethaneUUUUUUU1,1-DichloroethaneUUUUU0.271,1-DichloroethaneUUUU0.271,2-DichloroeschloropropaeUUUU0.01,2-DichloroeschloropropaeUUUU1,2-DichloroeschloroeschloropropaeUUUU0.01,2-DichloroesthaneUUUU0.00.00.01,2-DichloroesthaneUUUU0.021,3-DichloroesthaneUUUU0.02.401,2-DichloroesthaneUUUU0.01,3-DichloroesthaneUUUU0.01,3-DichloroesthaneU0.034 JUUU2-DichloroesthaneU0.0351 JUUU2-DichloroesthaneUUUU2-DichloroesthaneUUUU2-DichloroesthaneUUUU2-DichloroesthaneUUUU2-DichloroesthaneUUUU2-DichloroesthaneUUUU2-DichloroesthaneUUUU2-Dic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | -     |          |            | -     |       |                  |
| 11-DichloroethaneUUUUU0.271.1-DichloroethaneUUUU0.331.2-Diromo-S-chloropropaneUUUUU0.311.2-Diromo-S-chloropropaneUUUUUUUU0.011.2-Diromo-S-chloropropaneUUUUUUUU0.021.2-Diromo-S-chloropropaneUUUUUUUU0.021.2-DirohorobanzeneUUUUUUUU0.021.2-DirohorobanzeneUUUUUUUU0.021.2-DirohorobanzeneUUUUUUUU0.021.2-DirohorobanzeneUUUUUUUU0.022-Bexanoe (MEK)U0.051UUUUUU0.052-Bexanoe (MEK)U0.051UUUUUU0.05BerneneUU0.02JUUUUU0.06BromodichloromethaneUUUUUUUU0.06BromodichloromethaneUUUUUUUU0.06BromodichloromethaneUUUUUUUU0.07BromodichloromethaneUUUUUUUU0.07Carbon disulfideUUUUUUUU0.037ChloroberaneUUUUUUUU0.037ChloroberaneUUUUUUUU0.05BromodichloromethaneUUUUUU0.025BromodichloromethaneUU </th <th></th> <th>-</th> <th>-</th> <th></th> <th>-</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | -     | -        |            | -     |       |                  |
| 1-DichloroetheneUUUU0.331.2.4-TrichlorobareneUUUUUUUU1.2-DichoroethaneUUUUUUUU1.2-DichoroethaneUUUUUUUU0.021.2-DichoroethaneUUUUUUUU0.021.2-DichoroethaneUUUUUUUU0.021.2-DichoroethaneUUUUUUUU0.021.2-DichoroethaneUUUUUUUU1.3-DichoroethaneUUUUUUUU1.3-DichoroethaneUUUUUUUU2-Butanoe (MEK)UU0.054 JUUUU2-HexanoneUU0.054 JUUUUAcetoneUUUUUUUUBromotichloromethaneUUUUUUUUBromotichloromethaneUUUUUUBromotichloromethaneUUUUUUBromotichloromethaneUUUUUUBromotichloromethaneUUUUUUCarbon terzcholedUUUUUUCarbon terzcholedUUUUUUCarbon terzcholedUUUUUUCarbon terzcholedUUUUUUChioroformUUUU <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | -     | -        |            |       |       |                  |
| 12.4-TichlorobenzeneUUUUUU1.2-Dibrome-haneUUUUUIII1.2-Dibrome-haneUUUUUIIII1.2-Dibrome-haneUUUUUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | -     | -        |            | -     |       | -                |
| 12-Distrome-3-chloropropaneUUUUUUUUUU12-DishorobareneUUUUUUUUUU0.0212-DishorobareneUUUUUUUU0.0212-DishorobareneUUUUUUUU0.0212-DishorobareneUUUUUUUU0.0213-DishorobareneUUUUUUUU0.0214-DishorobareneUUUUUUUU0.022Haxanone (MEK)UU0.034 JUUUU0.0122HexanoneUU0.034 JUUUU0.06AcetoneUU3.7 JUUSUUSUU0.06BromodishloromethaneUUUUUUUUBromodishloromethaneUUUUUUUUBromodishloromethaneUUUUUUUUBromodishloromethaneUUUUUUBromodishloromethaneUUUUUUUUCarbon tetrachlorideUUUUUUChlorobenzeneUUUUUUUUChloroberzeneUUUUUUUUChloroberzeneUUUUUUUUChloroberzeneUUUUUUUUChloroberzeneUUUUUUUUChloroberzeneUUUU<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                               | -     | -        |            | -     |       |                  |
| 12-DichorobethaneUUUUUU1.2-DichorosethaneUUUU0.021.2-DichorosethaneUUUU0.021.2-DichorosethaneUUUU0.021.3-DichorosethaneUUUUU0.021.3-DichorosethaneUUUUUU2.401.3-DichorosethaneUU0.051UUUUUU0.012-Butanone (MEK)U0.051UUUUUU0.052-HexanoeU0.051UUUU0.050.05BenzeneUU0.034UUUUUU0.05BenzeneUUUUUUUU0.060.06BromodichloromethaneUUUUUUUU0.06BromodichloromethaneUUUUUUUU0.06BromodichloromethaneUUUUUUUU0.076ChlorosthaneUUUUUUUU0.076ChlorosthaneUUUUUUUU0.076ChlorosthaneUUUUUUUU0.025CichtorosthaneUUUUUUUU0.025CichtorosthaneUUUUUUUU0.025CichtorosthaneUUUUUUUU0.006DibroodiloromethaneUUUUUUUU0.0015StyreneUUUUUUUUUU <td< th=""><th></th><th>-</th><th>-</th><th></th><th>-</th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | -     | -        |            | -     |       |                  |
| 12-DichlorobenzeneUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |       |          |            | -     |       |                  |
| 1.2.DichloroptropaneUUUUU0.021.3.DichloroptropaneUUUU0.021.3.DichlorobenzeneUUUUU0.011.3.DichlorobenzeneUUUUUU0.012.Butanone (MIBK)U0.034 JUUUUU0.052.HexanoneU0.034 JUUUUUU0.053.ActoneU3.7.JUUUUUU0.06BenzeneUU0.01UUUU0.060.06BromodichloromethaneUUUUUUUU0.06BromodichloromethaneUUUUUUUU0.06BromodichloromethaneUUUUUUUU0.06Carbon disulfideU0.02 JHUUUU0.06Carbon disulfideU0.02 HIUUUU0.06ChloroformUUUUUUUU0.06ChloroformUUUUUUUU0.07ChloroformUUUUUUUU0.07ChloroformUUUUUUUU0.025cis-1,3-DichloropropeneUUUUUU0.0010.001IbinorofihaneUUUUUUUU0.001IbinorofihaneUUUUUUUU0.001IbinorofihaneUUUUUUUU0.001IbinorofihaneUUUUUUUU0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | -     | -        |            | -     |       |                  |
| 1.2-DichloropropaneUUUUUU1.3-DichlorobenzeneUUUUUUUU2.401.4-DichlorobenzeneUU1.1UUUUUU2.402-Butanone (MEK)UU1.1UUUUUU0.122-HexanoneUU0.051 JUUUUUU0.122-HexanoneUU0.051 JUUUUUU0.122-HexanoneUU0.051 JUUUUUU0.058-nzeneUU3.7 JUBJUUUU0.05BrondichloromethaneUUUUUUUU0.06BrondichloromethaneUUUUUUUU0.05BrondisulfideUUUUUUUUCarbon tetrachlorideUUUUUUUUChlorobenzeneUUUUUUUUChlorobentaneUUUUUUUUChlorobenzeneUUUUUUUUChlorobentaneUUUUUUChlorobentaneUUUUUUChlorobentaneUUUUUUChlorobentaneUUUUUUChlorobentaneUUUUUUChlorobentaneUUUUUUDichlorofihuoromethaneUUUUUU<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |       |          |            | -     |       |                  |
| 13-DichlorobenzeneUUUUU2.401.4-DichlorobenzeneUJ1.10UJUJ1.802-Butanone (MEK)U0.051 JUUUJ0.122-HexanoneUU0.051 JUUU0.014-Methyl-2-Pentanone (MIBK)0.051 JUUUU0.05BenzeneUU0.01UUUU0.05BromodichloromethaneUUUUUU0.06BromodichloromethaneUUUUUUUU0.06BromodichloromethaneUUUUUUUUCarbon disulfideUUUUUUUUCarbon disulfideUUUUUUUUChlorobenzeneUUUUUUUUChlorobenzeneUUUUUUUUChlorobenzeneUUUUUUUUChlorobenzeneUUUUUUUUChlorobenzeneUUUUUUChlorobenzeneUUUUUUUUChlorobentaneUUUUUUChlorobenzeneUUUUUUChlorobeneneUUUUUUChlorobeneneUUUUUU <t< th=""><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |       | -        |            |       |       |                  |
| 1.4-DichlorobenzeneUUUUUUUU1.802-Buxanone (MEK)UU0.051 JUUUU0.124-Metnyl-2-Pentanone (MIBK)U0.034 JUUUUUUAcetoneUU3.7 JUUUUUU0.05BenzeneUUUUUUUUUUBromofuntaneUUUUUUUUBromofulchloromethaneUUUUUUUUBromofultaneUUUUUUUUBromofultaneUUUUUUUUCarbon tetrachlorideUUUUUUUUChlorobenzeneUUUUUUUUChloroformUUUUUUUUChloromethaneUUUUUUUUChloroformUUUUUUUUChloroformUUUUUUChloroformUUUUUUUUChloroformUUUUUUChloroformUUUUUUChloroformUUUUUUChloroformUUUUUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | -     | -        |            | -     |       |                  |
| 2-Butanone (MEK)UU1UU0.122-HexanoneU0.051 JUUUAcetoneUJ3.7 JUBJUBJUJJ0.05BrenzeneUUUUU0.06BromodichloromethaneUUUU0BromodichloromethaneUUUUUBromodichloromethaneUUUUUUBromodichloromethaneUUUUUUUBromodichloromethaneUUUUUUUBromodichloromethaneUUUUUUUCarbon disulfideUUUUUUUChlorobenzeneUUUUUUUChloroformUUUUUUUChloroformUUUUUUUChloroformUUUUUUUChloroformUUUUUUUDichlorofromethaneUUUUUUUDichloroffluoromethaneUUUUUUUDichloroffluoromethaneUUUUUUUDichloroffluoromethaneUUUUUUUMethyleet-LolychexaneUUUUU <th></th> <th>-</th> <th></th> <th></th> <th>-</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | -     |          |            | -     |       |                  |
| 2-HexanoneU0.051 JUUU4-Methyl-2-Pentanone (MIBK)U0.034 JUUUUU0.05BenzeneUUUUUUUUU0.060.066BromodichloromethaneUUUUUUUU0.06BromodichloromethaneUUUUUUUU0.06BromoformUUUUUUU0.06BromoformUUUUUUUU0.07BromoformUUUUUUUU0.07Carbon tetrachorideUUUUUUUU0.076ChlorobenzeneUUUUUUUU0.076ChloroformUUUUUUUU0.037ChloroformUUUUUUUU0.037ChloroformUUUUUUUU0.037ChloroformUUUUUUUU0.037ChloroformUUUUUUUU0.037ChloroformeUUUUUUUU0.0037ChloroformeUUUUUUUU0.001CyclohexaneUUUUUUUU0.003DibromochloromethaneUUUUUUUU0.037DichlorofflaromethaneUUUUUUUU0.037DichlorofflaromethaneUUUUUUUU0.033BromoformethaneUUUUUUUU0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |       |          |            | -     |       |                  |
| 4-Methyl-2-Pentanone (MIBK)UU0.034 JUUUUAcctoreUJJUUUUUUUU0.066BenzeneUUUUUUU0.066BromodichloromethaneUUUUUUUUUU0.06BromodichloromethaneUUUUUUUUUU0.07BromodithaneUUUUUUUUUU0.07BromothaneUU0.028 JHUUUUUU0.07Carbon disulfideUU0.028 JHUUUUUU0.07ChlorobetnaneUUUUUUUU0.017.00ChlorobetnaneUUUUUUUU0.017.00ChlorobetnaneUUUUUUUU0.0250.025Cis1,2-DichloroethaneUUUUUUUU0.025Cis1,2-DichloroethaneUUUUUUUU0.025Cis1,2-DichloroethaneUUUUUUUU0.015DibromochloromethaneUUUUUUUU0.003DichlorofthaneUUUUUUUUUU0.015BromodichloroethaneUUUUUUUUUU0.031ChloroethaneUUUUUUUUUU0.031DichlorofthaneUUUUUUUUUU0.031BromodichloroethaneUUUUUUUUUU <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |          |            |       |       |                  |
| AcetoneUU3.7 JUBJUBJUU0.05BenzeneUUUUU0.06BromotichloromethaneUUUUUBromotichloromethaneUUUUUUUCarbon disulfideU0.028 JHUUUCarbon disulfideU0.028 JHUUU0.076Charbon tetrachlorideUUUU0.076ChlorobenzeneUUUU0.076ChloroformUUUUU0.37ChloroformUUUUU0.37ChloroformUUUUU0.25cis-1,2-DichloropteneUUUU0.25cis-1,2-DichloropteneUUUUDibromchlaneUUUUDichlorodifluoromethaneUUUDichlorodifluoromethaneUUUBrethylecteteU0.083 JHUUMethylectateUUUUMethylectoheneUUUUDichlorodifluoromethaneUUUMethylectoheneUUUUTichlorodifluoromethaneUUU <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |       |          |            |       |       |                  |
| BenzeneUUUUUU0.06BromodichloromethaneUUUUUBromoformUUUUUUUUUBromonethaneUUUUUUUUCarbon disulfideUU0.028 JHUUUUUUCarbon tetrachlorideUUUUUUUUCarbon tetrachlorideUUUUUUUUChlorobenzeneUUUUUUUUChlorobethaneUUUUUUUUChlorobethaneUUUUUUUUChlorobethaneUUUUUUUUCis-1,2-DichloroptopeneUUUUUUUUDichloropthaneUUUUUUUUDichloropthaneUUUUUUUUDichloropthaneUUUUUUUUDichloropthaneUUUUUUUUDichloropthaneUUUUUUUUDichloropthaneUUUUUUUUDichloropthaneUUUUUUUUDichloropthaneUUUUUUUUDichloropthaneUUUUUUUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                               | -     |          | -          | -     |       |                  |
| BromodichloromethaneUUUUUUBromoformUUJUUUBromomethaneUUUUUUUCarbon disulfideUU0.028 JHUUUUUUCarbon tetrachlorideUUUUUUU0.76ChlorobenzeneUUUUUUUU0.76ChlorothaneUUUUUUUU0.76ChlorothaneUUUUUUUU0.76ChlorothaneUUUUUUUU0.77ChlorothaneUUUUUUUUChlorothaneUUUUUUUUChlorothaneUUUUUUUUDishonochloromethaneUUUUUUUUDichorothaneUUUUUUUUDichorothaneUUUUUUUUBromodifuoromethaneUUUUUUDichorothonethaneUUUUUUUUBromodifuoromethaneUUUUUUUUBromodifuoromethaneUUUUUUBromodifuoromethaneUUUUUUBromodifuoromethaneUUUUUUBromodifuoromethaneUUUUUUBromochloromethaneUUUU <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |          |            |       |       |                  |
| BromoformIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndicationIndication <t< th=""><th></th><th>-</th><th>-</th><th></th><th>-</th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | -     | -        |            | -     |       |                  |
| BromomethaneIndicationIndicationIndicationIndicationIndicationCarbon disulfideIndicationIndicationIndicationIndicationIndicationCarbon tetrachlorideIndicationIndicationIndicationIndicationIndicationChlorobenzeneIndicationIndicationIndicationIndicationIndicationChlorobethaneIndicationIndicationIndicationIndicationIndicationChlorobethaneIndicationIndicationIndicationIndicationIndicationChlorobethaneIndicationIndicationIndicationIndicationIndicationChlorobethaneIndicationIndicationIndicationIndicationIndicationChlorobethaneIndicationIndicationIndicationIndicationIndicationCyclohexaneIndicationIndicationIndicationIndicationIndicationDibrorodifluoromethaneIndicationIndicationIndicationIndicationIndicationDishorodifluoromethaneIndicationIndicationIndicationIndicationIndicationBethyleneIndicationIndicationIndicationIndicationIndicationBethyleneIndicationIndicationIndicationIndicationIndicationBethyleneIndicationIndicationIndicationIndicationIndicationBethyleneIndicationIndicationIndicationIndicationIndicationBethy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |       | -        |            |       |       |                  |
| Carbon tetrachlorideUUUUU0.76ChlorobenzeneUUUUU1.10ChloroethaneUUUUU1.10ChloroethaneUUUUU0.037ChloromthaneUUUUU0.37ChloronethaneUUUUU0.37ChloronethaneUUUUU0.25cis-1,2-DichloroptpeneUUUUU0.25CyclohexaneUUUUU0.25DibromochloromethaneUUUUUDichlorodifluoromethaneUUUUUBethylenzeneUUUUUMethyl-tert-butyl-etherUUUUUMethylene ChlorideUUUUU0.05StyreneUUUUUU0.05TolueneUUUUU0.19TrichlorotheneUUUUUU0.19TrichlorotheneUUUUU0.47TrichlorotheneUUUUU0.47TrichlorotheneUUUUU0.47TrichlorotheneUUUUU0.47 <th>Bromomethane</th> <th>U</th> <th>U</th> <th></th> <th>U</th> <th>U</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bromomethane                                                                                                    | U     | U        |            | U     | U     |                  |
| ChlorobenzeneUUUUUU1.10ChloroethaneUUUUUChloroformUUUUUU0.37ChloroethaneUUUUU0.37cis-1,2-DichloroetheneUUUU0.25cis-1,3-DichloropropeneUUUU0.25cis-1,3-DichloroethaneUUUUCyclohexaneUUUUUDibromochloromethaneUUUUDichlorodifluoromethaneUUUUEthylbenzeneU0.033 JHUUUBethyl AcetateU0.033 JHUUUMethyl-tert-butyl-etherUUUUMethylene ChlorideUUUUTolueneUUUUTolueneUUUUTolueneUUUUTrichloroetheneUUUUTrichloroetheneUUUUTrichloroetheneUUUUTrichloroetheneUUUUTrichloroetheneUUUUTichloroetheneUU0.011 <td< th=""><th>Carbon disulfide</th><th>U</th><th>0.028 JH</th><th>U</th><th>U</th><th>U</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon disulfide                                                                                                | U     | 0.028 JH | U          | U     | U     |                  |
| ChloroethaneIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Carbon tetrachloride                                                                                            | U     | U        | U          | U     | U     | 0.76             |
| ChloroformUUUUU0.37ChloromethaneUUUUUUcis-1,2-DichloroetheneUUU0.0087UU0cis-1,3-DichloropropeneUUUUU0.25cis-1,3-DichloropropeneUUUUU00.25cis-1,3-DichloropropeneUUUUUU00.25CyclohexaneUUUUUUDibromochloromethaneUUUUUUDichlorodifluoromethaneUUUUUUBethylbenzeneUUUUUUMethyl-tert-butyl-etherUUUUUUMethylcyclohexaneUUUUUU0.05StyreneUUUUUU0.05Tolene0.0045 J0.0393.7 DU0.00066 J0.00045 J0.70TolenorotheneUUUUUUU0.19TrichloroetheneUUUUUUU0.47TrichloroetheneUUU0.011UU0.47TrichloroetheneUUU0.089UUUDichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chlorobenzene                                                                                                   | U     | U        | U          | U     | U     | 1.10             |
| Chloromethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chloroethane                                                                                                    | U     | U        | U          | U     | U     |                  |
| cis-1,2-Dichloroethene         U         U         U         0.0087         U         U         0.25           cis-1,3-Dichloropropene         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloroform                                                                                                      | U     | U        | U          | U     | U     | 0.37             |
| cis-1,3-DichloropropeneUUUUUUCyclohexaneUUUUUUDichorochloromethaneUUUUUDichlorodifluoromethaneUUUUUEthylbenzeneU0.0033 JHUUUUUU1.00IsopropylbenzeneU0.089 JUUUMethyl AcetateU0.089 JUUU0.93Methylcert-butyl-etherUUUUU0.93Methylene ChlorideUUUU0.05StyreneUUUUUUTetrachloroethene0.0045 J0.039 <b>3.7</b> DU0.00065 J0.00045 JTolueneUUUUU0.19Trans-1,3-DichloropropeneUUUU0.19TrichloroetheneUUUU0.47TrichlorofluoromethaneUU0.011U0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloromethane                                                                                                   | U     | U        | U          | U     | U     |                  |
| Cyclohexane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U <th< th=""><th>cis-1,2-Dichloroethene</th><th>U</th><th>U</th><th>0.0087</th><th>U</th><th>U</th><th>0.25</th></th<>                                                                                                                                                                                                                                                                                                                                                                  | cis-1,2-Dichloroethene                                                                                          | U     | U        | 0.0087     | U     | U     | 0.25             |
| Dibromochloromethane         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cis-1,3-Dichloropropene                                                                                         | U     | U        | U          | U     | U     |                  |
| Dichlorodifluoromethane         U         U         U         U         U         U         U         U         I           Ethylbenzene         U         0.0033 JH         U         U         U         U         J         1.00           Isopropylbenzene         U         UJ         UJ         U         U         U         J            Methyl Acetate         U         0.089 J         U         U         U         U             Methyl Acetate         U         U         U         U         U         U         U             Methyl Acetate         U         U         U         U         U         U         U             Methyl Acetate         U         U         U         U         U         U         U               Methyl Acetate         U         U         U         U         U         U <t< th=""><th>Cyclohexane</th><th>-</th><th>-</th><th>U</th><th>U</th><th>U</th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cyclohexane                                                                                                     | -     | -        | U          | U     | U     |                  |
| Ethylbenzene         U         0.0033 JH         U         U         U         1.00           Isopropylbenzene         U         UJ         U         U         U            Methyl Acetate         U         0.089 J         U         U         U            Methyl-tert-butyl-ether         U         U         U         U         U         0.93           Methylcyclohexane         U         U         U         U         U         0.05           Styrene         U         U         U         U         U         0.05           Styrene         0.0045 J         0.039 <b>3.7</b> D         U         0.015         1.30           Toluene         U         0.025 J         U         0.00066 J         0.00045 J         1.30           trans-1,2-Dichloroethene         U         U         U         U         U         0.19           trans-1,3-Dichloropropene         U         U         U         U             Trichloroethene         U         U         U         U             Trichloroethene         U         U         0.011         U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibromochloromethane                                                                                            | U     | -        | U          | U     | U     |                  |
| Isopropylbenzene         U         UJ         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dichlorodifluoromethane                                                                                         | U     | -        | U          | U     | U     |                  |
| Methyl Acetate         U         0.089 J         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                               | -     |          |            | -     |       | 1.00             |
| Methyl-tert-butyl-ether         U         U         U         U         U         0.93           Methylcyclohexane         U         U         U         U         U         U         U         0.93           Methylcyclohexane         U         U         U         U         U         U         U         U         0.05           Methylene Chloride         U         U         U         U         U         U         0.05           Styrene         U         UJ         U         U         U         U            Tetrachloroethene         0.0045 J         0.039 <b>3.7 D</b> U         0.015         1.30           Toluene         U         0.025 J         U         0.00066 J         0.00045 J         0.70           trans-1,2-Dichloroethene         U         U         U         U         U         0.19            trans-1,3-Dichloropropene         U         U         U         0.011         U         U         0.47           Trichloroethene         U         U         0.089         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | -     |          |            | -     |       |                  |
| Methylcyclohexane         U         U         U         U         U         U           Methylene Chloride         U         U         U         U         U         U         U         0.05           Styrene         U         UJ         U         U         U         U         U         0.05           Tetrachloroethene         0.0045 J         0.039 <b>3.7 D</b> U         0.015         1.30           Toluene         U         0.025 J         U         0.00066 J         0.00045 J         0.70           trans-1,2-Dichloroethene         U         U         U         U         U         0.19           trans-1,3-Dichloropropene         U         U         U         U         U         U         0.47           Trichloroethene         U         U         0.089         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                               |       |          |            |       |       |                  |
| Methylene Chloride         U         U         U         U         U         U         0.05           Styrene         U         UJ         UJ         U         U         U         U            Tetrachloroethene         0.0045 J         0.039 <b>3.7 D</b> U         0.015         1.30           Toluene         U         0.025 J         U         0.00066 J         0.00045 J         0.70           trans-1,2-Dichloroethene         U         U         U         U         U         0.19           trans-1,3-Dichloropropene         U         U         U         U         U         0.19           Trichloroethene         U         U         U         U         U         U         0.47           Trichloroethene         U         U         0.089         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | -     | -        |            | -     |       | 0.93             |
| Styrene         U         UJ         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         I.30           Toluene         U         0.0045 J         0.039 <u>3.7 D</u> U         0.0015         1.30           Toluene         U         0.025 J         U         0.00066 J         0.00045 J         0.70           trans-1,2-Dichloroethene         U         U         U         U         U         0.19           trans-1,3-Dichloropropene         U         U         U         U         U         U         0.47           Trichloroethene         U         U         0.089         U         U         0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | -     | -        |            | -     |       | 0.67             |
| Tetrachloroethene         0.0045 J         0.039         3.7 D         U         0.015         1.30           Toluene         U         0.025 J         U         0.00066 J         0.00045 J         0.70           trans-1,2-Dichloroethene         U         U         U         U         U         0.015         1.30           trans-1,2-Dichloroethene         U         U         U         U         0.00066 J         0.00045 J         0.70           trans-1,3-Dichloropropene         U         U         U         U         U         U         0.19           trichloroethene         U         U         U         U         U         U         0.47           Trichlorofluoromethane         U         U         0.089         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | -     | -        |            | -     |       |                  |
| Toluene         U         0.025 J         U         0.00066 J         0.00045 J         0.70           trans-1,2-Dichloroethene         U         U         U         U         U         0.19           trans-1,3-Dichloropropene         U         U         U         U         U         U         0.70           Trichloroethene         U         U         U         U         U         0.19           Trichloroethene         U         U         U         U         U         0.70           Trichloroethene         U         U         0.011         U         U         0.47           Trichloroethene         U         U         0.089         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |       |          |            |       |       |                  |
| trans-1,2-Dichloroethene         U         U         U         U         0.19           trans-1,3-Dichloropropene         U         U         U         U         U            Trichloroethene         U         U         0.011         U         U         0.47           Trichloroefluoromethane         U         U         0.089         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |       |          |            |       |       |                  |
| trans-1,3-Dichloropropene         U         U         U         U            Trichloroethene         U         U         0.011         U         0.47           Trichlorofluoromethane         U         U         0.089         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |       |          |            |       |       |                  |
| Trichloroethene         U         U         0.011         U         U         0.47           Trichlorofluoromethane         U         U         0.089         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |       |          |            |       |       |                  |
| Trichlorofluoromethane U U 0.089 U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |       |          | -          |       |       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |       |          |            |       |       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vinyl chloride                                                                                                  | U     | U        | 0.009<br>U | U     | U     | 0.02             |
| Xylenes, Total         U         UJ         U         U         U         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |       |          |            |       |       |                  |
| Footnotes/Qualifiers: -: No standard B: Non-detected based on blank results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | Ŧ     |          | 0          | -     |       |                  |

ug/kg: Micrograms per kilogram

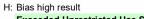
U: Analyzed for but not detected

J: Estimated value or limit

D: Reported from secondary dilution

H: Bias high result




| Sample ID                             | SS-08         | SS-09                | SS-10         | SS-11         | SS-12             | NYCRR 6 Part 375 |
|---------------------------------------|---------------|----------------------|---------------|---------------|-------------------|------------------|
| Sample ID<br>Sampling Date            | 5/9/2018      | 5/9/2018             | 5/9/2018      | 5/9/2018      | 5/9/2018          | Unrestricted     |
| Start Depth (in Feet)                 | 0             | 0                    | 0             | 0             | 0                 | Use Soil         |
| End Depth (in Feet)                   | 0.5           | 0.5                  | 0.5           | 0.5           | 0.5               | Cleanup          |
| Sample Type:                          | Soil/Sediment | Soil/Sediment        | Soil/Sediment | Soil/Sediment | Soil/Sediment     | Objectives (SCO) |
| Units                                 | mg/kg         | mg/kg                | mg/kg         | mg/kg         | mg/kg             | mg/kg            |
| 1,1,1-Trichloroethane                 | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.68             |
| 1,1,2,2-Tetrachloroethane             | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| 1,1,2-Trichloroethane                 | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| 1,1-Dichloroethane                    | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.27             |
| 1,1-Dichloroethene                    | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.33             |
| 1,2,4-Trichlorobenzene                | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| 1,2-Dibromo-3-chloropropane           | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| 1,2-Dibromoethane                     | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| 1,2-Dichlorobenzene                   | UJ            | UJ                   | UJ            | UJ            | UJ                | 1.10             |
| 1,2-Dichloroethane                    | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.02             |
| 1,2-Dichloropropane                   | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| 1,3-Dichlorobenzene                   | UJ            | UJ                   | UJ            | UJ            | UJ                | 2.40             |
| 1,4-Dichlorobenzene                   | UJ            | UJ                   | UJ            | UJ            | UJ                | 1.80             |
| 2-Butanone (MEK)                      | UJ            | 0.049 J              | UJ            | UJ            | UJ                | 0.12             |
| 2-Hexanone                            | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| 4-Methyl-2-Pentanone (MIBK)           | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Acetone                               | UB            | <u>0.18</u> <u>J</u> | UJ            | UJ            | UB                | 0.05             |
| Benzene                               | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.06             |
| Bromodichloromethane                  | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Bromoform                             | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Bromomethane                          | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Carbon disulfide                      | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Carbon tetrachloride<br>Chlorobenzene | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.76<br>1.10     |
| Chloroethane                          | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Chloroform                            | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.37             |
| Chloromethane                         | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| cis-1,2-Dichloroethene                | 0.00091 J     | UJ                   | UJ            | UJ            | UJ                | 0.25             |
| cis-1,3-Dichloropropene               | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Cyclohexane                           | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Dibromochloromethane                  | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Dichlorodifluoromethane               | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Ethylbenzene                          | UJ            | UJ                   | UJ            | UJ            | UJ                | 1.00             |
| Isopropylbenzene                      | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Methyl Acetate                        | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Methyl-tert-butyl-ether               | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.93             |
| Methylcyclohexane                     | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Methylene Chloride                    | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.05             |
| Styrene                               | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Tetrachloroethene                     | 0.031 J       | UJ                   | 0.00095 J     | 0.0007 J      | UJ                | 1.30             |
| Toluene                               | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.70             |
| trans-1,2-Dichloroethene              | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.19             |
| trans-1,3-Dichloropropene             | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Trichloroethene                       | 0.0013 J      | UJ                   | UJ            | UJ            | UJ                | 0.47             |
| Trichlorofluoromethane                | UJ            | UJ                   | UJ            | UJ            | UJ                |                  |
| Vinyl chloride                        | UJ            | UJ                   | UJ            | UJ            | UJ                | 0.02             |
| Xylenes, Total                        | UJ<br>• No o  | UJ                   | UJ            | UJ<br>Di Nar  | UJ                | 0.26             |
| Footnotes/Qualifiers:                 | : No s        | tandard              |               | B: Non-       | detected based on | DIANK RESULTS    |

ug/kg: Micrograms per kilogram

U: Analyzed for but not detected

J: Estimated value or limit

D: Reported from secondary dilution





| Sample ID                             | SS-13              | SS-14                | NYCRR 6 Part 375                |                                     |
|---------------------------------------|--------------------|----------------------|---------------------------------|-------------------------------------|
| Sample D<br>Sampling Date             | 8/3/2020           | 1/24/2020            | <mark>SS-15</mark><br>2/28/2020 | Unrestricted                        |
| Start Depth (in Feet)                 | 0                  | 0                    | 0                               | Use Soil                            |
| End Depth (in Feet)                   | 1.33               | 2                    | 0.25                            | Cleanup                             |
| Sample Type:                          | Soil/Sediment      | Z<br>Soil/Sediment   | Soil/Sediment                   | Objectives (SCO)                    |
| Units                                 | mg/kg              | mg/kg                | mg/kg                           | mg/kg                               |
|                                       |                    |                      |                                 |                                     |
| 1,1,1-Trichloroethane                 | U                  | U                    | UJ                              | 0.68                                |
| 1,1,2,2-Tetrachloroethane             | U                  | U                    | UJ                              |                                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | U                  | U                    | UJ                              |                                     |
| 1,1,2-Trichloroethane                 | U                  | U                    | UJ                              |                                     |
| 1,1-Dichloroethane                    | U                  | U                    | U                               | 0.27                                |
| 1,1-Dichloroethene                    | U                  | U                    | U                               | 0.33                                |
| 1,2,4-Trichlorobenzene                | U                  | U                    | UJ                              |                                     |
| 1,2-Dibromo-3-chloropropane           | U                  | U                    | UJ                              |                                     |
| 1,2-Dibromoethane                     | U                  | U                    | UJ                              |                                     |
| 1,2-Dichlorobenzene                   | U                  | U                    | UJ                              | 1.10                                |
| 1,2-Dichloroethane                    | U                  | U                    | UJ                              | 0.02                                |
| 1,2-Dichloropropane                   | U                  | U                    | UJ                              |                                     |
| 1,3-Dichlorobenzene                   | U                  | U                    | UJ                              | 2.40                                |
| 1,4-Dichlorobenzene                   | U                  | U                    | UJ                              | 1.80                                |
| 2-Butanone (MEK)                      | U                  | U                    | UJ                              | 0.12                                |
| 2-Hexanone                            | U                  | U                    | UJ                              |                                     |
| 4-Methyl-2-Pentanone (MIBK)           | U                  | U                    | UJ                              |                                     |
| Acetone                               | U                  | U                    | UJ                              | 0.05                                |
| Benzene                               | U                  | U                    | UJ                              | 0.06                                |
| Bromodichloromethane                  | U                  | U                    | UJ                              |                                     |
| Bromoform                             | U                  | U                    | UJ                              |                                     |
| Bromomethane                          | U                  | U                    | U                               |                                     |
| Carbon disulfide                      | U                  | U                    | U                               |                                     |
| Carbon tetrachloride                  | U                  | U                    | UJ                              | 0.76                                |
| Chlorobenzene                         | U                  | U                    | UJ                              | 1.10                                |
| Chloroethane                          | U                  | U                    | UJ                              |                                     |
| Chloroform                            | U                  | U                    | UJ                              | 0.37                                |
| Chloromethane                         | U                  | U                    | UJ                              |                                     |
| cis-1,2-Dichloroethene                | <u>69</u> <u>J</u> | 0.0075               | UJ                              | 0.25                                |
| cis-1,3-Dichloropropene               | U                  | U                    | UJ                              |                                     |
| Cyclohexane                           | U                  | U                    | UJ                              |                                     |
| Dibromochloromethane                  | U                  | U                    | UJ                              |                                     |
| Dichlorodifluoromethane               | U                  | U                    | UJ                              |                                     |
| Ethylbenzene                          | U                  | U                    | UJ                              | 1.00                                |
| Isopropylbenzene                      | U                  | U                    | UJ                              |                                     |
| Methyl Acetate                        | U                  | U                    | U                               |                                     |
| Methyl-tert-butyl-ether               | U                  | U                    | U                               | 0.93                                |
| Methylcyclohexane                     | U                  | U                    | UJ                              | 0.07                                |
| Methylene Chloride                    | U                  | U                    | U                               | 0.05                                |
| Styrene                               | U<br>7 500         | U                    | UJ                              |                                     |
| Tetrachloroethene                     | <u>7,500</u>       | 0.1                  | <u>3.7</u>                      | 1.30                                |
| Toluene                               | U                  | U                    | UJ                              | 0.70                                |
| trans-1,2-Dichloroethene              | U                  | U                    | UJ                              | 0.19                                |
| trans-1,3-Dichloropropene             | U                  | U<br>0.0006          | UJ                              |                                     |
| Trichloroethene                       | U                  | 0.0096               | UJ                              | 0.47                                |
| Trichlorofluoromethane                | U                  | U                    | UJ                              |                                     |
| Vinyl chloride                        | U                  | U                    | UJ                              | 0.02                                |
| Xylenes, Total                        | U                  | U                    | UJ                              | 0.26                                |
| Footnotes/Qualifiers:                 |                    | tandard              |                                 | Non-detected based on blank results |
| ug/kg: Micrograms per kilogram        |                    | yzed for but not det |                                 | Bias high result                    |

J: Estimated value or limit

D: Reported from secondary dilution



| Sample ID                             | SB-06    | SB-06     | SB-07           | SB-07     | SB-08             | NYCRR 6 Part 375 |
|---------------------------------------|----------|-----------|-----------------|-----------|-------------------|------------------|
| Sampling Date                         | 5/7/2018 | 5/7/2018  | 5/8/2018        | 5/8/2018  | 5/9/2018          | Unrestricted     |
| Start Depth (in Feet)                 | 12       | 22        | 6               | 9         | 1                 | Use Soil         |
| End Depth (in Feet)                   | 14       | 24        | 8               | 11        | 3                 | Cleanup          |
| Sample Type:                          |          |           | Subsurface Soil |           | -                 | Objectives (SCO) |
| Units                                 | mg/kg    | mg/kg     | mg/kg           | mg/kg     | mg/kg             | mg/kg            |
|                                       |          |           |                 |           |                   |                  |
| 1,1,1-Trichloroethane                 | U        | U         | U               | U         | UJ                | 0.68             |
| 1,1,2,2-Tetrachloroethane             | U        | U         | U               | U         | UJ                |                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | U        | U         | U               | U         | UJ                |                  |
| 1,1,2-Trichloroethane                 | U        | U         | U               | U         | UJ                |                  |
| 1,1-Dichloroethane                    | U        | U         | U               | U         | UJ                | 0.27             |
| 1,1-Dichloroethene                    | U        | U         | U               | U         | UJ                | 0.33             |
| 1,2,4-Trichlorobenzene                | U        | U         | U               | U         | UJ                |                  |
| 1,2-Dibromo-3-chloropropane           | U        | U         | U               | U         | UJ                |                  |
| 1,2-Dibromoethane                     | U        | U         | U               | U         | UJ                |                  |
| 1,2-Dichlorobenzene                   | U        | U         | U               | U         | UJ                | 1.10             |
| 1,2-Dichloroethane                    | U        | U         | U               | U         | UJ                | 0.02             |
| 1,2-Dichloropropane                   | U        | U         | U               | U         | UJ                |                  |
| 1,3-Dichlorobenzene                   | U        | U         | U               | U         | UJ                | 2.40             |
| 1,4-Dichlorobenzene                   | U        | U         | U               | U         | UJ                | 1.80             |
| 2-Butanone (MEK)                      | UJ       | UJ        | UJ              | UJ        | UJ                | 0.12             |
| 2-Hexanone                            | U        | U         | U               | U         | UJ                |                  |
| 4-Methyl-2-Pentanone (MIBK)           | U        | U         | U               | U         | UJ                |                  |
| Acetone                               | UBJ      | UBJ       | UBJ             | UBJ       | UB                | 0.05             |
| Benzene                               | U        | U         | U               | U         | UJ                | 0.06             |
| Bromodichloromethane                  | U        | U         | U               | U         | UJ                |                  |
| Bromoform                             | U        | U         | U               | U         | UJ                |                  |
| Bromomethane                          | U        | U         | U               | U         | UJ                |                  |
| Carbon disulfide                      | U        | U         | U               | U         | UJ                |                  |
| Carbon tetrachloride                  | U        | U         | U               | U         | UJ                | 0.76             |
| Chlorobenzene                         | U        | U         | U               | U         | UJ                | 1.10             |
| Chloroethane                          | U        | U         | U               | U         | UJ                |                  |
| Chloroform                            | U        | U         | U               | U         | UJ                | 0.37             |
| Chloromethane                         | U        | U         | U               | U         | UJ                |                  |
| cis-1,2-Dichloroethene                | U        | U         | U               | U         | UJ                | 0.25             |
| cis-1,3-Dichloropropene               | U        | U         | U               | U         | UJ                |                  |
| Cyclohexane                           | U        | U         | U               | U         | UJ                |                  |
| Dibromochloromethane                  | U        | U         | U               | U         | UJ                |                  |
| Dichlorodifluoromethane               | U        | U         | U               | U         | UJ                |                  |
| Ethylbenzene                          | U        | U         | U               | U         | UJ                | 1.00             |
| lsopropylbenzene                      | U        | U         | U               | U         | UJ                |                  |
| Methyl Acetate                        | U        | 0.0043 J  | U               | U         | UJ                |                  |
| Methyl-tert-butyl-ether               | U        | U         | U               | U         | UJ                | 0.93             |
| Methylcyclohexane                     | U        | U         | U               | U         | UJ                |                  |
| Methylene Chloride                    | U        | U         | U               | U         | UJ                | 0.05             |
| Styrene                               | U        | U         | U               | U         | UJ                |                  |
| Tetrachloroethene                     | 0.0091   | 0.0033 J  | 0.0044 J        | 0.00073 J | UJ                | 1.30             |
| Toluene                               | U        | 0.00046 J | U               | U         | UJ                | 0.70             |
| trans-1,2-Dichloroethene              | U        | U         | U               | U         | UJ                | 0.19             |
| trans-1,3-Dichloropropene             | U        | U         | U               | U         | UJ                |                  |
| Trichloroethene                       | U        | U         | U               | U         | UJ                | 0.47             |
| Trichlorofluoromethane                | U        | U         | U               | U         | UJ                |                  |
| Vinyl chloride                        | U        | U         | U               | U         | UJ                | 0.02             |
| Xylenes, Total                        | U        | U         | U               | U         | UJ                | 0.26             |
| Footnotes/Qualifiers:                 | No sta   | andard    |                 | B: Non-d  | letected based on | blank results    |

ug/kg: Micrograms per kilogram

Analyzed for but not detected Estimated value or limit

H: Bias high result

Exceeded Unrestricted Use SCO

D: Reported from secondary dilution



| Sample ID                             | SB-08    | SB-10    | SB-10           | SB-11    | SB-12            | NYCRR 6 Part 375 |
|---------------------------------------|----------|----------|-----------------|----------|------------------|------------------|
| Sampling Date                         | 5/9/2018 | 5/9/2018 | 5/9/2018        | 5/9/2018 | 5/9/2018         | Unrestricted     |
| Start Depth (in Feet)                 | 10       | 5        | 10              | 10       | 10               | Use Soil         |
| End Depth (in Feet)                   | 10       | 7        | 12              | 10       | 10               | Cleanup          |
| Sample Type:                          |          | -        | Subsurface Soil |          |                  | Objectives (SCO) |
| Units                                 | mg/kg    | mg/kg    | mg/kg           | mg/kg    | mg/kg            | mg/kg            |
|                                       |          | ing/kg   | ing/kg          | iiig/kg  | ilig/kg          | ilig/kg          |
| 1,1,1-Trichloroethane                 | UJ       | UJ       | UJ              | UJ       | U                | 0.68             |
| 1,1,2,2-Tetrachloroethane             | UJ       | UJ       | UJ              | UJ       | U                |                  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | UJ       | UJ       | UJ              | UJ       | U                |                  |
| 1,1,2-Trichloroethane                 | UJ       | UJ       | UJ              | UJ       | U                |                  |
| 1,1-Dichloroethane                    | UJ       | UJ       | UJ              | UJ       | U                | 0.27             |
| 1,1-Dichloroethene                    | UJ       | UJ       | UJ              | UJ       | U                | 0.33             |
| 1,2,4-Trichlorobenzene                | UJ       | UJ       | UJ              | 0.0026 J | U                |                  |
| 1,2-Dibromo-3-chloropropane           | UJ       | UJ       | UJ              | UJ       | U                |                  |
| 1,2-Dibromoethane                     | UJ       | UJ       | UJ              | UJ       | U                |                  |
| 1,2-Dichlorobenzene                   | UJ       | UJ       | UJ              | UJ       | U                | 1.10             |
| 1,2-Dichloroethane                    | UJ       | UJ       | UJ              | UJ       | U                | 0.02             |
| 1,2-Dichloropropane                   | UJ       | UJ       | UJ              | UJ       | U                |                  |
| 1,3-Dichlorobenzene                   | UJ       | UJ       | UJ              | UJ       | U                | 2.40             |
| 1,4-Dichlorobenzene                   | UJ       | UJ       | UJ              | UJ       | U                | 1.80             |
| 2-Butanone (MEK)                      | UJ       | UJ       | UJ              | UJ       | U                | 0.12             |
| 2-Hexanone                            | UJ       | UJ       | UJ              | UJ       | U                |                  |
| 4-Methyl-2-Pentanone (MIBK)           | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Acetone                               | UB       | UB       | UJ              | UB       | UB               | 0.05             |
| Benzene                               | UJ       | UJ       | UJ              | UJ       | U                | 0.06             |
| Bromodichloromethane                  | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Bromoform                             | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Bromomethane<br>Carbon disulfide      | UJ<br>UJ | UJ<br>UJ | UJ              | UJ       | U<br>U           |                  |
| Carbon tetrachloride                  | UJ       | UJ       | UJ              | UJ       | U                | <br>0.76         |
| Chlorobenzene                         | UJ       | UJ       | UJ              | UJ<br>UJ | U                | 1.10             |
| Chloroethane                          | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Chloroform                            | UJ       | UJ       | UJ              | UJ       | U                | 0.37             |
| Chloromethane                         | UJ       | UJ       | UJ              | UJ       | U                |                  |
| cis-1,2-Dichloroethene                | 0.001 J  | UJ       | UJ              | UJ       | U                | 0.25             |
| cis-1,3-Dichloropropene               | 0.001 J  | UJ       | UJ              | UJ       | U                |                  |
| Cyclohexane                           | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Dibromochloromethane                  | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Dichlorodifluoromethane               | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Ethylbenzene                          | UJ       | UJ       | UJ              | UJ       | Ŭ                | 1.00             |
| Isopropylbenzene                      | UJ       | UJ       | UJ              | UJ       | Ŭ                |                  |
| Methyl Acetate                        | UJ       | UJ       | UJ              | UJ       | Ŭ                |                  |
| Methyl-tert-butyl-ether               | UJ       | UJ       | UJ              | UJ       | U                | 0.93             |
| Methylcyclohexane                     | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Methylene Chloride                    | UJ       | UJ       | UJ              | UJ       | U                | 0.05             |
| Styrene                               | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Tetrachloroethene                     | 0.13 J   | UJ       | 0.0026 J        | 0.0059 J | U                | 1.30             |
| Toluene                               | UJ       | UJ       | UJ              | UJ       | U                | 0.70             |
| trans-1,2-Dichloroethene              | UJ       | UJ       | UJ              | UJ       | U                | 0.19             |
| trans-1,3-Dichloropropene             | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Trichloroethene                       | 0.003 J  | UJ       | UJ              | UJ       | U                | 0.47             |
| Trichlorofluoromethane                | UJ       | UJ       | UJ              | UJ       | U                |                  |
| Vinyl chloride                        | UJ       | UJ       | UJ              | UJ       | U                | 0.02             |
| Xylenes, Total                        | UJ       | UJ       | UJ              | UJ       | U                | 0.26             |
| Footnotes/Qualifiers:                 | : No sta | andard   |                 | B: Non-d | etected based on | blank results    |

ug/kg: Micrograms per kilogram

U: Analyzed for but not detected J: Estimated value or limit

D: Reported from secondary dilution

H: Bias high result



| Sample ID                                | SB-17     | SB-18             | SB-18     | SB-19    | SB-19              | NYCRR 6 Part 375        |
|------------------------------------------|-----------|-------------------|-----------|----------|--------------------|-------------------------|
| Sampling Date                            | 7/27/2020 | 7/29/2020         | 7/30/2020 | 8/3/2020 | 8/5/2020           | Unrestricted            |
| Start Depth (in Feet)                    | 105       | 11                | 106       | 7        | 110                | Use Soil                |
| End Depth (in Feet)                      | 107       | 13                | 108       | 8        | 112                | Cleanup                 |
| Sample Type:                             | Soil      | Soil              | Soil      | Soil     | Soil               | <b>Objectives (SCO)</b> |
| Units                                    | mg/kg     | mg/kg             | mg/kg     | mg/kg    | mg/kg              | mg/kg                   |
| 1,1,1-Trichloroethane                    | UJ        | UJ                | U         | UJ       | UJ                 | 0.68                    |
| 1,1,2,2-Tetrachloroethane                | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane    | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| 1,1,2-Trichloroethane                    | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| 1,1-Dichloroethane                       | UJ        | UJ                | U         | UJ       | UJ                 | 0.27                    |
| 1,1-Dichloroethene                       | UJ        | UJ                | U         | UJ       | UJ                 | 0.33                    |
| 1,2,4-Trichlorobenzene                   | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| 1,2-Dibromo-3-chloropropane              | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| 1,2-Dibromoethane                        | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| 1,2-Dichlorobenzene                      | UJ        | UJ                | U         | UJ       | UJ                 | 1.10                    |
| 1,2-Dichloroethane                       | UJ        | UJ                | U         | UJ       | UJ                 | 0.02                    |
| 1,2-Dichloropropane                      | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| 1,3-Dichlorobenzene                      | UJ        | UJ                | U         | UJ       | UJ                 | 2.40                    |
| 1,4-Dichlorobenzene                      | UJ        | UJ                | U         | UJ       | UJ                 | 1.80                    |
| 2-Butanone (MEK)                         | UJ        | UJ                | U         | UJ       | UJ                 | 0.12                    |
| 2-Hexanone                               | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| 4-Methyl-2-Pentanone (MIBK)              | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Acetone                                  | 0.0057 J  | 0.011 J           | U         | UJ       | UJ                 | 0.05                    |
| Benzene                                  | UJ        | UJ                | U         | UJ       | UJ                 | 0.06                    |
| Bromodichloromethane                     | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Bromoform                                | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Bromomethane                             | UJ        | UJ                | U<br>U    | UJ       | UJ                 |                         |
| Carbon disulfide<br>Carbon tetrachloride | UJ<br>UJ  | UJ                | U         | UJ       | UJ                 | <br>0.76                |
| Chlorobenzene                            | UJ        | UJ                | U         | UJ       | UJ                 | 1.10                    |
| Chloroethane                             | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Chloroform                               | UJ        | UJ                | U         | UJ       | UJ                 | 0.37                    |
| Chloromethane                            | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| cis-1,2-Dichloroethene                   | UJ        | UJ                | U         | UJ       | UJ                 | 0.25                    |
| cis-1,3-Dichloropropene                  | UJ        | UJ                | Ŭ         | UJ       | UJ                 |                         |
| Cyclohexane                              | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Dibromochloromethane                     | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Dichlorodifluoromethane                  | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Ethylbenzene                             | UJ        | UJ                | U         | UJ       | UJ                 | 1.00                    |
| Isopropylbenzene                         | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Methyl Acetate                           | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Methyl-tert-butyl-ether                  | UJ        | UJ                | U         | UJ       | UJ                 | 0.93                    |
| Methylcyclohexane                        | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Methylene Chloride                       | UJ        | UJ                | U         | UJ       | UJ                 | 0.05                    |
| Styrene                                  | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Tetrachloroethene                        | UJ        | 0.0015 J          | U         | 0.0046 J | UJ                 | 1.30                    |
| Toluene                                  | UJ        | UJ                | U         | UJ       | UJ                 | 0.70                    |
| trans-1,2-Dichloroethene                 | UJ        | UJ                | U         | UJ       | UJ                 | 0.19                    |
| trans-1,3-Dichloropropene                | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Trichloroethene                          | UJ        | UJ                | U         | UJ       | UJ                 | 0.47                    |
| Trichlorofluoromethane                   | UJ        | UJ                | U         | UJ       | UJ                 |                         |
| Vinyl chloride                           | UJ        | UJ                | U         | UJ       | UJ                 | 0.02                    |
| Xylenes, Total                           | UJ .      | UJ<br>Na atandard | U         | UJ<br>D. | UJ<br>Nan dataatad | 0.26                    |
| Footnotes/Qualifiers:                    | :         | No standard       |           | B:       | Non-detected       | based on blank results  |

ug/kg: Micrograms per kilogram

U: Analyzed for but not detected

H: Bias high result

Exceeded Unrestricted Use SCO

J: Estimated value or limit D: Reported from secondary dilution

#### Page 1 of 1

# Table 3 Former Fresh and Clean Laundry Glen Head, New York Summary of Monitoring Well Groundwater Sample Analytical Results Volatile Organic Compounds and 1,4-Dioxane

| Sample ID                                         | FCMW-1    | FCMW-2     | FCMW-3    | MW-1      | MW-3      | MW-5      | MW-6     | NYSDEC Class GA   |
|---------------------------------------------------|-----------|------------|-----------|-----------|-----------|-----------|----------|-------------------|
| Sample ID<br>Sample date                          |           | 10/02/18   | 10/05/18  | 10/03/18  | 10/03/18  | 10/05/18  | 10/02/18 | Standard          |
| Sample date                                       | 10/05/16  | 10/02/10   | 10/05/10  | 10/03/10  | 10/03/10  | 10/05/16  | 10/02/10 | or Guidance Value |
| Units                                             | ug/l      | ug/l       | ug/l      | ug/l      | ug/l      | ug/l      | ug/l     | ug/l              |
| 01113                                             | ugn       | ugn        | ugn       | ugn       | ugn       | ugn       | ugn      | ugn               |
| 1,1,1-Trichloroethane                             | U         | U          | U         | U         | U         | U         | U        | 5                 |
| 1,1,2,2-Tetrachloroethane                         | U         | U          | Ŭ         | Ŭ         | U         | Ŭ         | Ŭ        | 5                 |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane             | Ŭ         | Ŭ          | Ŭ         | Ŭ         | Ŭ         | Ŭ         | Ŭ        | 5                 |
| 1,1,2-Trichloroethane                             | U         | U          | U         | U         | U         | U         | U        | 1                 |
| 1,1-Dichloroethane                                | U         | U          | U         | U         | U         | U         | U        | 5                 |
| 1,1-Dichloroethene                                | U         | U          | U         | U         | U         | U         | U        | 5                 |
| 1,2,4-Trichlorobenzene                            | U         | U          | U         | U         | U         | U         | U        | 5                 |
| 1,2-Dibromo-3-Chloropropane                       | U         | U          | U         | U         | U         | U         | U        | 0.04              |
| 1,2-Dibromoethane (Ethylene Dibromide)            | U         | U          | U         | U         | U         | U         | U        | 0.0006            |
| 1,2-Dichlorobenzene                               | U         | U          | U         | U         | U         | U         | U        | 3 ++              |
| 1,2-Dichloroethane                                | U         | U          | U         | U         | U         | U         | U        | 0.6               |
| 1,2-Dichloropropane                               | U         | U          | U         | U         | U         | U         | U        | 1                 |
| 1,3-Dichlorobenzene                               | U         | U          | U         | U         | U         | U         | U        | 3 ++              |
| 1,4-Dichlorobenzene                               | U         | U          | U         | U         | U         | U         | U        | 3 ++              |
| 2-Hexanone                                        | U         | U          | U         | U         | U         | U         | U        | 50                |
| Acetone                                           | U         | U          | 3.2 J     | U         | U         | U         | U        | 50                |
| Benzene                                           | U         | U          | U         | U         | U         | U         | U        | 1                 |
| Bromodichloromethane                              | U         | U          | U         | U         | U         | U         | U        | 50                |
| Bromoform                                         | U         | U          | U         | U         | U         | U         | U        | 50                |
| Bromomethane                                      | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Carbon Disulfide                                  | U         | U          | U         | U         | U         | U         | U        | 60                |
| Carbon Tetrachloride                              | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Chlorobenzene                                     | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Chloroethane                                      | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Chloroform                                        | U         | U          | U         | U         | U         | U         | U        | 7                 |
| Chloromethane                                     | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Cis-1,2-Dichloroethylene                          | U         | U          | 0.98 J    | 3.6       | U         | U         | U        | 5                 |
| Cis-1,3-Dichloropropene                           | U         | U          | U         | U         | U         | U         | U        | 0.4               |
| Cyclohexane                                       | U         | U          | U         | U         | U         | U         | U        |                   |
| Dibromochloromethane                              | U         | U          | U         | U         | U         | U         | U        | 50                |
| Dichlorodifluoromethane                           | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Ethylbenzene                                      | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Isopropylbenzene (Cumene)                         | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Methyl Acetate                                    | U         | U          | U         | U         | U         | U         | U        |                   |
| Methyl Ethyl Ketone (2-Butanone)                  | U         | U          | U         | U         | U         | U         | U        | 50                |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)     | U         | U          | U         | U         | U         | U         | U        |                   |
| Methylcyclohexane                                 | U         | U          | U         | U         | U         | U         | U        |                   |
| Methylene Chloride                                | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Styrene                                           | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Tert-Butyl Methyl Ether                           | U         | U          | U         | U         | U         | U         | U        | 10                |
| Tetrachloroethylene(PCE)                          | <u>12</u> | <u>7.4</u> | <u>30</u> | <u>85</u> | <u>28</u> | <u>55</u> | 3.6      | 5                 |
| Toluene                                           | U         | U          | U         | U         | U         | U         | U        | 5                 |
| Trans-1,2-Dichloroethene                          | U         | U          | U<br>U    | U<br>U    | U<br>U    | U         | U        | 5                 |
| Trans-1,3-Dichloropropene                         | U<br>U    | U<br>U     | -         | -         | -         | U         | U        | 0.4               |
| Trichloroethylene (TCE)<br>Trichlorofluoromethane | U         | U          | 0.89 J    | 3.7       | 0.56 J    | U<br>U    | U<br>U   | 5                 |
|                                                   | U         | U          | U<br>U    | U<br>U    | U<br>U    | U         | U<br>U   | 5<br>2            |
| Vinyl Chloride<br>Xylenes, Total                  | U         | U          | U         | U         | U         | U         | U<br>U   | 2<br>5 +          |
| Aylenes, Total                                    | U         | U          | U         | U         | U         | U         | U        | 5 <del>†</del>    |
| 1,4-Dioxane (P-Dioxane)                           | 0.88      | 1.2 J      | 0.11 J    | 0.2 J     | 0.38      | 0.55      | 0.17 J   |                   |
|                                                   | 0.00      | 1.2 J      | U. I I J  | U.2 J     | 0.00      | 0.00      | 0.17 J   |                   |

Footnotes/Qualifiers:

ug/I Micrograms per liter

U Compound was analyzed for but not detected

J Estimated detection limit or value

+ Applies to each isomer individually

++ Applies to sum of isomer

Exceeds Class GA Standard/Guidance value



# Table 3 (continued) Former Fresh and Clean Laundry Glen Head, New York Summary of Monitoring Well Groundwater Sample Analytical Results Volatile Organic Compounds

| Sample ID                                         | -        | GW-01              | GW-02      | GW-03           | NYSDEC Class GA   |
|---------------------------------------------------|----------|--------------------|------------|-----------------|-------------------|
|                                                   |          |                    |            |                 |                   |
| Sample date                                       | 11/26/19 | 07/28/20           | 07/30/20   | 08/05/20        | Standard          |
|                                                   |          |                    |            |                 | or Guidance Value |
| Units                                             | ug/l     | ug/l               | ug/l       | ug/l            | ug/l              |
|                                                   |          |                    |            |                 |                   |
| 1,1,1-Trichloroethane                             | U        | U                  | U          | U               | 5                 |
| 1,1,2,2-Tetrachloroethane                         | U        | U                  | U          | U               | 5                 |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane             | U        | U                  | U          | U               | 5                 |
| 1,1,2-Trichloroethane                             | U        | U                  | U          | U               | 1                 |
| 1,1-Dichloroethane                                | U        | U                  | U          | U               | 5                 |
| 1,1-Dichloroethene                                | U        | U                  | U          | U               | 5                 |
| 1,2,4-Trichlorobenzene                            | U        | U                  | Р          | U               | 5                 |
| 1,2-Dibromo-3-Chloropropane                       | U        | U                  | U          | U               | 0.04              |
| 1,2-Dibromoethane (Ethylene Dibromide)            | U        | U                  | U          | U               | 0.0006            |
| 1,2-Dichlorobenzene                               | U        | U                  | U          | U               | 3 ++              |
| 1,2-Dichloroethane                                | U        | U                  | U          | U               | 0.6               |
| 1,2-Dichloropropane                               | U        | U                  | U          | U               | 1                 |
| 1,3-Dichlorobenzene                               | U        | U                  | U          | U               | 3 ++              |
| 1,4-Dichlorobenzene                               | U        | U                  | U          | U               | 3 ++              |
| 2-Hexanone                                        | U        | U                  | U          | U               | 50                |
| Acetone                                           | U        | 6 J                | 21 J       | UB              | 50                |
| Benzene                                           | U        | U                  | U          | U               | 1                 |
| Bromodichloromethane                              | U        | U                  | U          | U               | 50                |
| Bromoform                                         | U        | U                  | U          | U               | 50                |
| Bromomethane                                      | U        | U                  | U          | U               | 5                 |
| Carbon Disulfide                                  | U        | U                  | U          | U               | 60                |
| Carbon Tetrachloride                              | U        | U                  | U          | U               | 5                 |
| Chlorobenzene                                     | U        | U                  | U          | U               | 5                 |
| Chloroethane                                      | U        | U                  | U          | U               | 5                 |
| Chloroform                                        | U        | 4.8                | U          | 2 J             | 7                 |
| Chloromethane                                     | U        | U                  | U          | U               | 5                 |
| Cis-1,2-Dichloroethylene                          | U        | U                  | 4.4        | U               | 5                 |
| Cis-1,3-Dichloropropene                           | U        | U                  | U          | U               | 0.4               |
| Cyclohexane                                       | U        | U                  | U          | U               |                   |
| Dibromochloromethane                              | U        | U                  | U          | U               | 50                |
| Dichlorodifluoromethane                           | U        | U                  | U          | U               | 5                 |
| Ethylbenzene                                      | U        | U                  | U          | U               | 5                 |
| Isopropylbenzene (Cumene)                         | U        | U                  | U          | U               | 5                 |
| Methyl Acetate                                    | U        | U                  | U          | U               |                   |
| Methyl Ethyl Ketone (2-Butanone)                  | U        | U                  | U          | 11 J            | 50                |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)     | U        | U                  | U          | U               |                   |
| Methylcyclohexane                                 | U        | U                  | U          | U               | <br>F             |
| Methylene Chloride                                | U        | U                  | U          | 2.8 J           | 5                 |
| Styrene<br>Tort Butul Mothyl Ethor                | U        | U<br>U             | U<br>U     | U<br>U          | 5                 |
| Tert-Butyl Methyl Ether                           | U<br>U   | -                  | _          | _               | 10                |
| Tetrachloroethylene(PCE)<br>Toluene               | U        | <u>20</u> <u>J</u> | <u>85</u>  | <u>8.2</u><br>U | 5                 |
| Trans-1,2-Dichloroethene                          | U        | U<br>U             | U<br>U     | U               | 5<br>5            |
| Trans-1,2-Dichloropropene                         | U        | U                  | U          |                 |                   |
|                                                   | UU       | 0<br>1.1           | -          | U               | 0.4<br>5          |
| Trichloroethylene (TCE)<br>Trichlorofluoromethane | U        |                    | <u>5.2</u> | U<br>U          |                   |
| Vinyl Chloride                                    | UU       | U<br>U             | U<br>U     | U               | 5<br>2            |
|                                                   | U        | U                  | U          | U               | 2<br>5 +          |
| Xylenes, Total                                    | U        | U                  | U          | U               | + 6               |
|                                                   |          |                    |            |                 |                   |

Footnotes/Qualifiers:

ug/I Micrograms per liter

U Compound was analyzed for but not detected

J Estimated detection limit or value



UB Non detect based on blank results + Applies to each isomer individually

++ Applies to sum of isomer

Exceeds Class GA Standard/Guidance value

**APPENDIX G** 

# **DATA VALIDATION CHECKLISTS**



| Project Name:                | NYSDEC -Fresh and Clean Laundry                                             |
|------------------------------|-----------------------------------------------------------------------------|
| Project Number:              | 3150-37                                                                     |
| Sample Date(s):              | October 22, 2018                                                            |
| Sample Team:                 | PB                                                                          |
| Matrix/Number<br>of Samples: | <u>Water/2</u><br>Field Duplicate/1<br><u>Trip Blank/0</u><br>Field Blank/1 |
| Analyzing<br>Laboratory:     | TestAmerica, Laboratories, Sacramento, CA                                   |
| Analyses:                    | Per-and Polyfluoroalkyl Substances (PFAS): by EPA 537 (modified)            |
| Laboratory<br>Report No:     | 320-44490 Date:11/12/18                                                     |
|                              |                                                                             |

### DATA VALIDATION CHECKLIST

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                    | Reported |     | Performance<br>Acceptable |     | Not      |  |
|--------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|--|
|                                                                    | No       | Yes | No                        | Yes | Required |  |
| 1. Sample results                                                  |          | Х   |                           | Х   |          |  |
| 2. Parameters analyzed                                             |          | Х   |                           | Х   |          |  |
| 3. Method of analysis                                              |          | Х   |                           | Х   |          |  |
| 4. Sample collection date                                          |          | Х   |                           | Х   |          |  |
| 5. Laboratory sample received date                                 |          | Х   |                           | Х   |          |  |
| 6. Sample analysis date                                            |          | Х   |                           | Х   |          |  |
| 7. Copy of chain-of-custody form signed by<br>Lab sample custodian |          | Х   |                           | Х   |          |  |
| 8. Narrative summary of QA or sample problems provided             |          | Х   |                           | Х   |          |  |

QA - quality assurance

#### Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.



# Custody Numbers:320-44490 SAMPLE AND ANALYSIS LIST

|                    | Lab ID      | Sample<br>Collection<br>Date | Parent<br>Sample | Analysis |             |      |      |  |
|--------------------|-------------|------------------------------|------------------|----------|-------------|------|------|--|
| Sample ID          |             |                              |                  | VOC      | 1,4-Dioxane | PFAS | MISC |  |
| FCMW-3             | 320-44490-1 | 10/22/2018                   |                  |          |             | Х    |      |  |
| BLIND<br>DUPLICATE | 320-44490-2 | 10/22/2018                   | FCMW-1           |          |             | Х    |      |  |
| FIELD BLANK        | 320-44490-3 | 10/22/2018                   |                  |          |             | Х    |      |  |
| FCMW-1             | 320-44490-4 | 10/22/2018                   |                  |          |             | Х    |      |  |



#### **ORGANIC ANALYSES** PFAS

|                                                       | Rep | oorted |    | ormance<br>eptable | Not         |
|-------------------------------------------------------|-----|--------|----|--------------------|-------------|
|                                                       | No  | Yes    | No | Yes                | Required    |
| 1. Holding times                                      |     | Х      | Х  | Х                  |             |
| 2. Blanks                                             |     |        |    |                    |             |
| A. Method blanks                                      |     | Х      | Х  |                    |             |
| B. Field blanks                                       |     | Х      | Х  |                    |             |
| 3. Matrix spike (MS) %R                               |     | Х      |    | Х                  |             |
| 4. Matrix spike duplicate (MSD) %R                    |     | Х      |    | Х                  |             |
| 5. MS/MSD precision (RPD)                             |     | Х      |    | Х                  |             |
| 6. Laboratory control sample (LCS)                    |     | Х      |    | Х                  |             |
| 7. Surrogate spike recoveries                         |     | Х      |    | Х                  |             |
| 8. Internal standard retention times and areas        |     | Х      |    | Х                  |             |
| 9. Initial calibration RRF's and %RSD's               |     | Х      |    | Х                  |             |
| 10. Continuing calibration RRF's and %D's             |     | Х      |    | Х                  |             |
| 11. Field duplicates RPD                              |     | Х      |    | Х                  |             |
| Cs - volatile organic compounds %D - percent differer | nce |        | RR | F - relative respo | onse factor |

 $VO\overline{Cs}$  - volatile organic compounds - percent difference %D %R - percent recovery %RSD - percent relative standard deviation

RRF - relative response factor RPD - relative percent difference

#### Comments:

Performance was acceptable, with the following exception:

- Perfluorooctanesulfonic acid (PFOS) was detected in the method blank and was reanalyzed 1. outside of holding time for all water samples. The reanalysis for perfluorooctanesulfonic acid (PFOS) was reported for all water samples and was qualified as estimated (J).
- 2. Perfluorohexanesulfonic acid (PFHxS) was detected in the field blank and method blank. The concentration of perfluorohexanesulfonic acid (PFHxS) in the groundwater samples were over ten times higher than the concentration found in the blank therefore the B qualifier was removed, and the water samples were qualified as estimated (J).



#### Laboratory Numbers: 320-44490 Qualifier Sample ID Analyte(s) Reason(s) PFA All water samples Perfluorooctanesulfonic acid J method blank and was (PFOS) reanalyzed outside of holding and reanalysis reported All water samples. Perfluorohexanesulfonic acid J Results over ten times (PFHxS) higher than the concentration found in the blank, B removed

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 11/19/18 |
|---------------------------------------|-------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                |



| Project Name:            | NYSDEC -Fresh and Clean Laundry                                                              |               |
|--------------------------|----------------------------------------------------------------------------------------------|---------------|
| Project Number:          | 3150-37                                                                                      |               |
| Sample Date(s):          | October 2, 2018                                                                              |               |
| Sample Team:             | PB                                                                                           |               |
| Matrix/Number            | Water/4                                                                                      |               |
| of Samples:              | <u>Trip Blank/ 1</u>                                                                         |               |
|                          | Field Blank/ 1                                                                               |               |
| Analyzing<br>Laboratory: | TestAmerica Laboratories, Buffalo, NY                                                        |               |
| Analyses:                | <u>Volatile Organic Compounds (VOCs):</u> USE<br><u>1,4-Dioxane:</u> USEPA SW-846 Method 827 |               |
| Laboratory<br>Report No: | 480-142938                                                                                   | Date:10/19/18 |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                                      | Repo | orted |    | mance<br>ptable | Not      |  |
|--------------------------------------------------------------------------------------|------|-------|----|-----------------|----------|--|
|                                                                                      | No   | Yes   | No | Yes             | Required |  |
| 1. Sample results                                                                    |      | Х     |    | Х               | -        |  |
| 2. Parameters analyzed                                                               |      | Х     |    | Х               |          |  |
| 3. Method of analysis                                                                |      | Х     |    | Х               |          |  |
| 4. Sample collection date                                                            |      | Х     |    | Х               |          |  |
| 5. Laboratory sample received date                                                   |      | Х     |    | Х               |          |  |
| 6. Sample analysis date                                                              |      | Х     |    | Х               |          |  |
| <ol> <li>Copy of chain-of-custody form signed by<br/>Lab sample custodian</li> </ol> |      | Х     |    | Х               |          |  |
| <ol> <li>Narrative summary of QA or sample<br/>problems provided</li> </ol>          |      | Х     |    | Х               |          |  |

QA - quality assurance

#### Comments:



# Custody Numbers:480-142938 SAMPLE AND ANALYSIS LIST

|             |              | Sample             | Parent |     | Analysis    |     | Analysis |  |  |
|-------------|--------------|--------------------|--------|-----|-------------|-----|----------|--|--|
| Sample ID   | Lab ID       | Collection<br>Date | Sample | VOC | 1,4-Dioxane | MET | MISC     |  |  |
| TRIP BLANK  | 480-142938-1 | 10/2/2018          |        | Х   |             |     |          |  |  |
| MW-6        | 480-142938-2 | 10/2/2018          |        | Х   | X           |     |          |  |  |
| FCMW-2      | 480-142938-3 | 10/2/2018          |        | Х   | X           |     |          |  |  |
| MW-1        | 480-142938-4 | 10/3/2018          |        | Х   | X           |     |          |  |  |
| MW-3        | 480-142938-6 | 10/3/2018          |        | Х   | Х           |     |          |  |  |
| FIELD BLANK | 480-142938-9 | 10/3/2018          |        | Х   | Х           |     |          |  |  |

Pages 2/4



#### ORGANIC ANALYSES VOCS & 1,4-Dioxane

|                                                                                                | Rep | oorted    |    | rmance<br>ptable                         | Not      |
|------------------------------------------------------------------------------------------------|-----|-----------|----|------------------------------------------|----------|
|                                                                                                | No  | Yes       | No | Yes                                      | Required |
| 1. Holding times                                                                               |     | Х         |    | Х                                        | •        |
| 2. Blanks                                                                                      |     |           |    |                                          |          |
| A. Method blanks                                                                               |     | Х         | Х  |                                          |          |
| B. Trip blanks                                                                                 |     | Х         |    | Х                                        |          |
| C. Field blanks                                                                                |     | Х         | Х  |                                          |          |
| 3. Matrix spike (MS) %R                                                                        |     |           |    |                                          | Х        |
| 4. Matrix spike duplicate (MSD) %R                                                             |     |           |    |                                          | Х        |
| 5. MS/MSD precision (RPD)                                                                      |     |           |    |                                          | Х        |
| 6. Laboratory control sample (LCS)                                                             |     | Х         |    | Х                                        |          |
| 7. Surrogate spike recoveries                                                                  |     | Х         |    | Х                                        |          |
| 8. Instrument performance check                                                                |     | Х         |    | Х                                        |          |
| 9. Internal standard retention times and areas                                                 |     | Х         |    | Х                                        |          |
| 10. Initial calibration RRF's and %RSD's                                                       |     | Х         |    | Х                                        |          |
| 11. Continuing calibration RRF's and %D's                                                      |     | Х         |    | Х                                        |          |
| 12. Transcriptions – quant report vs. Form I                                                   |     | Х         |    | Х                                        |          |
| 13. Field duplicates RPD                                                                       |     |           |    |                                          | Х        |
| Cs - volatile organic compounds %D - percent differe<br>- percent recovery %RSD - percent rela |     | deviation |    | F - relative respo<br>D - relative perco |          |

#### Comments:

Performance was acceptable, with the following exception:

- 2C. Acetone was detected in the field blank and carbon disulfide was detected in the method blank. They were not detected in the samples therefore qualification of the data was not necessary.
- 12. 1,4-Dioxane in sample FCMW-2 was qualified by the laboratory with an "E" for a bias corrected concentration based on the recovery of the 1,4-Dioxane-d8 isotope. Based upon review of the data 1.4-dioxane was qualified as estimated (J) in sample FCMW-2.



| <b>QUALIFICATION SUMMAR</b> | Y           | Laboratory Numbers: 480-142938 |                                                                                        |  |  |
|-----------------------------|-------------|--------------------------------|----------------------------------------------------------------------------------------|--|--|
| Sample ID                   | Analyte(s)  | Qualifier                      | Reason(s)                                                                              |  |  |
| VOCs &1,4-Dioxone           |             |                                |                                                                                        |  |  |
| FCMW-2                      | 1,4-Dioxane | J                              | Bias corrected concentration<br>based on the recovery of the<br>1,4-Dioxane-d8 isotope |  |  |
|                             |             |                                |                                                                                        |  |  |
|                             |             |                                |                                                                                        |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 11/1/18 |
|---------------------------------------|------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br               |

Pages 4/4



| Project Name:            | NYSDEC -Fresh and Clean Laun                                           | dry                                                      |
|--------------------------|------------------------------------------------------------------------|----------------------------------------------------------|
| Project Number:          | 3150-37                                                                |                                                          |
| Sample Date(s):          | October 5, 2018                                                        |                                                          |
| Sample Team:             | PB                                                                     |                                                          |
| Matrix/Number            | Water/3                                                                |                                                          |
| of Samples:              | Field Duplicate/0                                                      |                                                          |
|                          | <u>Trip Blank/ 1</u>                                                   |                                                          |
|                          | <u>Field Blank/0</u>                                                   |                                                          |
| Analyzing<br>Laboratory: | TestAmerica Laboratories, Buffalo                                      | , NY                                                     |
| Analyses:                | <u>Volatile Organic Compounds (VO<br/>1,4-Dioxane:</u> USEPA SW-846 Me | <u>Cs):</u> USEPA SW-846 Method 8260C<br>ethod 8270D SIM |
| Laboratory<br>Report No: | 480-143017                                                             | Date:10/26/18                                            |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

| Performance |      |                                           | Nat                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |
|-------------|------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |      |                                           |                                                                                                                                                                                                                   | Not                                                                                                                                                                                                                                                                           |
| No          | Yes  | No                                        | Yes                                                                                                                                                                                                               | Required                                                                                                                                                                                                                                                                      |
|             | Х    |                                           | Х                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |
|             | Х    |                                           | Х                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |
|             | Х    |                                           | Х                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |
|             | Х    |                                           | Х                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |
|             | Х    |                                           | Х                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |
|             | Х    |                                           | Х                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |
|             | Х    |                                           | Х                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |
|             | Х    |                                           | Х                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                               |
|             | Repo | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | Reported     Acce       No     Yes     No       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X | $\begin{tabular}{ c c c c } \hline Reported & Acceptable \\ \hline No & Yes & No & Yes \\ \hline X & X & X \\ \hline \end{array}$ |

QA - quality assurance

Comments:



# Custody Numbers:480-143017 SAMPLE AND ANALYSIS LIST

|            |              | Sample             | Parent | Analysis |             | s    |      |
|------------|--------------|--------------------|--------|----------|-------------|------|------|
| Sample ID  | Lab ID       | Collection<br>Date | Sample | VOC      | 1,4-Dioxane | PFAS | MISC |
| FCMW-1     | 480-143017-1 | 10/5/2018          |        | Х        | Х           |      |      |
| FCMW-3     | 480-143017-2 | 10/5/2018          |        | Х        | Х           |      |      |
| TRIP BLANK | 480-143017-3 | 10/5/2018          |        | Х        | Х           |      |      |
| MW-5       | 480-143017-4 | 10/5/2018          |        | Х        | Х           |      |      |



#### ORGANIC ANALYSES VOCS & 1,4-Dioxane

|                                                                                                | Rep | oorted    |    | Performance<br>Acceptable                |          |
|------------------------------------------------------------------------------------------------|-----|-----------|----|------------------------------------------|----------|
|                                                                                                | No  | Yes       | No | Yes                                      | Required |
| 1. Holding times                                                                               |     | Х         |    | Х                                        |          |
| 2. Blanks                                                                                      |     |           |    |                                          |          |
| A. Method blanks                                                                               |     | Х         | Х  |                                          |          |
| B. Trip blanks                                                                                 |     | Х         |    | Х                                        |          |
| C. Field blanks                                                                                |     |           |    |                                          | Х        |
| 3. Matrix spike (MS) %R                                                                        |     | Х         |    | Х                                        |          |
| 4. Matrix spike duplicate (MSD) %R                                                             |     | Х         |    | Х                                        |          |
| 5. MS/MSD precision (RPD)                                                                      |     | Х         |    | Х                                        |          |
| 6. Laboratory control sample (LCS)                                                             |     | Х         |    | Х                                        |          |
| 7. Surrogate spike recoveries                                                                  |     | Х         |    | Х                                        |          |
| 8. Instrument performance check                                                                |     | Х         |    | Х                                        |          |
| 9. Internal standard retention times and areas                                                 |     | Х         |    | Х                                        |          |
| 10. Initial calibration RRF's and %RSD's                                                       |     | Х         |    | Х                                        |          |
| 11. Continuing calibration RRF's and %D's                                                      |     | Х         |    | Х                                        |          |
| 12. Transcriptions – quant report vs. Form I                                                   |     | Х         |    | Х                                        |          |
| 13. Field duplicates RPD                                                                       |     |           |    |                                          | Х        |
| Cs - volatile organic compounds %D - percent differe<br>- percent recovery %RSD - percent rela |     | deviation |    | F - relative respo<br>D - relative perce |          |

#### Comments:

Performance was acceptable, with the following exception:

2C. Acetone was detected in the TRIP BLANK and carbon disulfide was detected in the method blank. Acetone was qualified as non-detect (UB) in sample FCMW-3.



| QUALIFICATION SUMMARY |             | Laboratory Numbers: 480-143017 |                                                                                        |  |  |
|-----------------------|-------------|--------------------------------|----------------------------------------------------------------------------------------|--|--|
| Sample ID             | Analyte(s)  | Qualifier                      | Reason(s)                                                                              |  |  |
| VOCs &1,4-Dioxone     |             |                                |                                                                                        |  |  |
| FCMW-2                | 1,4-Dioxane | J                              | Bias corrected concentration<br>based on the recovery of the<br>1,4-Dioxane-d8 isotope |  |  |
|                       |             |                                |                                                                                        |  |  |
|                       |             |                                |                                                                                        |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 11/1/18 |
|---------------------------------------|------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br               |

Pages 4/4



| Project Name:                | NYSDEC -Fresh and Clean Laundry                                             |
|------------------------------|-----------------------------------------------------------------------------|
| Project Number:              | 3150-37                                                                     |
| Sample Date(s):              | November 26, 2019                                                           |
| Sample Team:                 | KR                                                                          |
| Matrix/Number<br>of Samples: | <u>Water/1</u><br>Field Duplicate/0<br><u>Trip Blank/1</u><br>Field Blank/0 |
| Analyzing<br>Laboratory:     | TestAmerica Laboratories, Buffalo, NY                                       |
| Analyses:                    | Volatile Organic Compounds (VOCs): USEPA SW-846 Method 8260C                |
| Laboratory<br>Report No:     | 480-163422 Date:1/08/2020                                                   |
|                              |                                                                             |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                    | Reported |     | Performance<br>Acceptable |     | Not      |
|--------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                                    | No       | Yes | No                        | Yes | Required |
| 1. Sample results                                                  |          | Х   |                           | Х   |          |
| 2. Parameters analyzed                                             |          | Х   |                           | Х   |          |
| 3. Method of analysis                                              |          | Х   |                           | Х   |          |
| 4. Sample collection date                                          |          | Х   |                           | Х   |          |
| 5. Laboratory sample received date                                 |          | Х   |                           | Х   |          |
| 6. Sample analysis date                                            |          | Х   |                           | Х   |          |
| 7. Copy of chain-of-custody form signed by<br>Lab sample custodian |          | Х   |                           | Х   |          |
| 8. Narrative summary of QA or sample problems provided             |          | Х   |                           | Х   |          |

QA - quality assurance

#### Comments:



# Custody Numbers:480-163422 SAMPLE AND ANALYSIS LIST

|            |              | Sample<br>Collection | Parent |     | Analysi     | s    |      |
|------------|--------------|----------------------|--------|-----|-------------|------|------|
| Sample ID  | Lab ID       | Date                 | Sample | VOC | 1,4-Dioxane | PFAS | MISC |
| TRIP BLANK | 480-163422-1 | 11/26/2019           |        | Х   |             |      |      |
| N-9800     | 480-163422-2 | 11/26/2019           |        | Х   |             |      |      |



#### **ORGANIC ANALYSES** VOCS

|                                                                                              | Reported |           | Performance<br>Acceptable |                                          | Not      |  |
|----------------------------------------------------------------------------------------------|----------|-----------|---------------------------|------------------------------------------|----------|--|
|                                                                                              | No       | Yes       | No                        | Yes                                      | Required |  |
| 1. Holding times                                                                             |          | Х         |                           | Х                                        |          |  |
| 2. Blanks                                                                                    |          |           |                           |                                          |          |  |
| A. Method blanks                                                                             |          | Х         |                           | Х                                        |          |  |
| B. Trip blanks                                                                               |          | Х         |                           | Х                                        |          |  |
| C. Field blanks                                                                              |          |           |                           |                                          | Х        |  |
| 3. Matrix spike (MS) %R                                                                      |          |           |                           |                                          | Х        |  |
| 4. Matrix spike duplicate (MSD) %R                                                           |          |           |                           |                                          | Х        |  |
| 5. MS/MSD precision (RPD)                                                                    |          |           |                           |                                          | Х        |  |
| 6. Laboratory control sample (LCS)                                                           |          | Х         |                           | Х                                        |          |  |
| 7. Surrogate spike recoveries                                                                |          | Х         |                           | Х                                        |          |  |
| 8. Instrument performance check                                                              |          | Х         |                           | Х                                        |          |  |
| 9. Internal standard retention times and areas                                               |          | Х         |                           | Х                                        |          |  |
| 10. Initial calibration RRF's and %RSD's                                                     |          | Х         |                           | Х                                        |          |  |
| 11. Continuing calibration RRF's and %D's                                                    |          | Х         |                           | Х                                        |          |  |
| 12. Transcriptions – quant report vs. Form I                                                 |          | Х         |                           | Х                                        |          |  |
| 13. Field duplicates RPD                                                                     |          |           |                           |                                          | Х        |  |
| Cs - volatile organic compounds%D - percent differe- percent recovery%RSD - percent relation |          | leviation |                           | F - relative respo<br>D - relative perco |          |  |

Comments:

Performance was acceptable.



| QUALIFICATION SUMMARY                       |            | Laboratory Numbers: 480-163422 |  |  |  |  |  |
|---------------------------------------------|------------|--------------------------------|--|--|--|--|--|
| Sample ID                                   | Analyte(s) | Analyte(s) Qualifier Reason(s) |  |  |  |  |  |
| VOCs                                        |            |                                |  |  |  |  |  |
| No qualification of the data was necessary. |            |                                |  |  |  |  |  |
|                                             |            |                                |  |  |  |  |  |
|                                             |            |                                |  |  |  |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 4/16/2020 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                 |

Pages 4/4



| Project Name:<br>Project Number: | NYSDEC -Fresh and Clean Laundry<br>3150-37                           |
|----------------------------------|----------------------------------------------------------------------|
| Sample Date(s):                  | July 28, 2020                                                        |
| Sample Team:                     | KK                                                                   |
| Matrix/Number<br>of Samples:     | Water/1 (GW-1)<br>Field Duplicate/0<br>Trip Blank/0<br>Field Blank/1 |
| Analyzing<br>Laboratory:         | TestAmerica Laboratories, Buffalo, NY                                |
| Analyses:                        | Volatile Organic Compounds (VOCs): USEPA SW-846 Method 8260C         |
| Laboratory<br>Report No:         | 480-173124 Date:8/05/2020                                            |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                    | Reported |     | Performance<br>Acceptable |     | Not      |
|--------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                                    | No       | Yes | No                        | Yes | Required |
| 1. Sample results                                                  |          | Х   |                           | Х   |          |
| 2. Parameters analyzed                                             |          | Х   |                           | Х   |          |
| 3. Method of analysis                                              |          | Х   |                           | Х   |          |
| 4. Sample collection date                                          |          | Х   |                           | Х   |          |
| 5. Laboratory sample received date                                 |          | Х   |                           | Х   |          |
| 6. Sample analysis date                                            |          | Х   |                           | Х   |          |
| 7. Copy of chain-of-custody form signed by<br>Lab sample custodian |          | Х   |                           | Х   |          |
| 8. Narrative summary of QA or sample problems provided             |          | Х   |                           | Х   |          |

QA - quality assurance

#### Comments:



# ORGANIC ANALYSES VOCS

|                                                                                              | Reported |           | Performance<br>Acceptable |                                          | Not      |  |
|----------------------------------------------------------------------------------------------|----------|-----------|---------------------------|------------------------------------------|----------|--|
|                                                                                              | No       | Yes       | No                        | Yes                                      | Required |  |
| 1. Holding times                                                                             |          | Х         |                           | Х                                        |          |  |
| 2. Blanks                                                                                    |          |           |                           |                                          |          |  |
| A. Method blanks                                                                             |          | Х         |                           | Х                                        |          |  |
| B. Trip blanks                                                                               |          |           |                           |                                          |          |  |
| C. Field blanks                                                                              |          | Х         | Х                         |                                          |          |  |
| 3. Matrix spike (MS) %R                                                                      |          | Х         | Х                         |                                          |          |  |
| 4. Matrix spike duplicate (MSD) %R                                                           |          | Х         | Х                         |                                          |          |  |
| 5. MS/MSD precision (RPD)                                                                    |          | Х         |                           | Х                                        |          |  |
| 6. Laboratory control sample (LCS)                                                           |          | Х         |                           | Х                                        |          |  |
| 7. Surrogate spike recoveries                                                                |          | Х         |                           | Х                                        |          |  |
| 8. Instrument performance check                                                              |          | Х         |                           | Х                                        |          |  |
| 9. Internal standard retention times and areas                                               |          | Х         |                           | Х                                        |          |  |
| 10. Initial calibration RRF's and %RSD's                                                     |          | Х         |                           | Х                                        |          |  |
| 11. Continuing calibration RRF's and %D's                                                    |          | Х         |                           | Х                                        |          |  |
| 12. Transcriptions – quant report vs. Form I                                                 |          | Х         |                           | Х                                        |          |  |
| 13. Field duplicates RPD                                                                     |          |           |                           |                                          | Х        |  |
| Cs - volatile organic compounds%D - percent differe- percent recovery%RSD - percent relation |          | deviation |                           | F - relative respo<br>D - relative perce |          |  |

#### Comments:

Performance was acceptable, with the following exceptions:

- 2C. Methylene chloride was detected in the field blank. No qualification of the data was necessary.
- 3&4. The %Rs were above the QC limits for 1,2-dichloropropane, 2-hexanone, 4-methyl-2-pentanone, and tetrachloroethene in the MS and MSD associated with the samples. Tetrachloroethane was qualified as estimated (J) in sample GW-1.



| <b>QUALIFICATION SUMMAR</b> | Laboratory Numbers: 480-173124 |           |                                                |  |  |
|-----------------------------|--------------------------------|-----------|------------------------------------------------|--|--|
| Sample ID                   | Analyte(s)                     | Qualifier | Reason(s)                                      |  |  |
| VOCs                        |                                |           |                                                |  |  |
| GW-1                        | Tetrachloroethane              | J         | %R was above the QC limit<br>in the MS and MSD |  |  |
|                             |                                |           |                                                |  |  |
|                             |                                |           |                                                |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 8/19/2020 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                 |

Pages 3/3



| Project Name:<br>Project Number: | NYSDEC -Fresh and Clean Laundry<br>3150-37                               |
|----------------------------------|--------------------------------------------------------------------------|
| Sample Date(s):                  | July 30, 2020                                                            |
| Sample Team:                     | KR                                                                       |
| Matrix/Number<br>of Samples:     | Water/ 1 (GW-2)<br>Field Duplicate/ 0<br>Trip Blank/ 0<br>Field Blank/ 0 |
| Analyzing<br>Laboratory:         | TestAmerica Laboratories, Buffalo, NY                                    |
| Analyses:                        | Volatile Organic Compounds (VOCs): USEPA SW-846 Method 8260C             |
| Laboratory<br>Report No:         | 480-173191 Date:8/13/2020                                                |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                    | Reported |     | Performance<br>Acceptable |     | Not      |
|--------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                                    | No       | Yes | No                        | Yes | Required |
| 1. Sample results                                                  |          | Х   |                           | Х   |          |
| 2. Parameters analyzed                                             |          | Х   |                           | Х   |          |
| 3. Method of analysis                                              |          | Х   |                           | Х   |          |
| 4. Sample collection date                                          |          | Х   |                           | Х   |          |
| 5. Laboratory sample received date                                 |          | Х   |                           | Х   |          |
| 6. Sample analysis date                                            |          | Х   |                           | Х   |          |
| 7. Copy of chain-of-custody form signed by<br>Lab sample custodian |          | Х   |                           | Х   |          |
| 8. Narrative summary of QA or sample problems provided             |          | Х   |                           | Х   |          |

QA - quality assurance

#### Comments:



# ORGANIC ANALYSES VOCS

|                                                                                                | Reported |           | Performance<br>Acceptable |                                          | Not      |  |
|------------------------------------------------------------------------------------------------|----------|-----------|---------------------------|------------------------------------------|----------|--|
|                                                                                                | No       | Yes       | No                        | Yes                                      | Required |  |
| 1. Holding times                                                                               |          | Х         |                           | Х                                        |          |  |
| 2. Blanks                                                                                      |          |           |                           |                                          |          |  |
| A. Method blanks                                                                               |          | Х         |                           | Х                                        |          |  |
| B. Trip blanks                                                                                 |          |           |                           |                                          | Х        |  |
| C. Field blanks                                                                                |          |           |                           |                                          | Х        |  |
| 3. Matrix spike (MS) %R                                                                        |          |           |                           |                                          | Х        |  |
| 4. Matrix spike duplicate (MSD) %R                                                             |          |           |                           |                                          | Х        |  |
| 5. MS/MSD precision (RPD)                                                                      |          |           |                           |                                          | Х        |  |
| 6. Laboratory control sample (LCS) %R                                                          |          | Х         | Х                         |                                          |          |  |
| 7. Surrogate spike recoveries                                                                  |          | Х         |                           | Х                                        |          |  |
| 8. Instrument performance check                                                                |          | Х         |                           | Х                                        |          |  |
| 9. Internal standard retention times and areas                                                 |          | Х         |                           | Х                                        |          |  |
| 10. Initial calibration RRF's and %RSD's                                                       |          | Х         |                           | Х                                        |          |  |
| 11. Continuing calibration RRF's and %D's                                                      |          | Х         |                           | Х                                        |          |  |
| 12. Transcriptions – quant report vs. Form I                                                   |          | Х         |                           | Х                                        |          |  |
| 13. Field duplicates RPD                                                                       |          |           |                           |                                          | Х        |  |
| Cs - volatile organic compounds %D - percent differe<br>- percent recovery %RSD - percent rela |          | deviation |                           | F - relative respo<br>D - relative perce |          |  |

#### Comments:

Performance was acceptable, with the following exceptions:

6. The %R was above the QC limit for 2-butanone in the LCS duplicate associated with the sample. It was not detected in the sample therefore qualification of the data was not necessary.



| QUALIFICATION SUMMARY                       |            | Laboratory Num | bers: 480-173191 |
|---------------------------------------------|------------|----------------|------------------|
| Sample ID                                   | Analyte(s) | Qualifier      | Reason(s)        |
| VOCs                                        |            |                |                  |
| No qualification of the data was necessary. |            |                |                  |
|                                             |            |                |                  |
|                                             |            |                |                  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 8/18/2020 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                 |

Pages 3/3



| Project Name:<br>Project Number: | NYSDEC -Fresh and Clean Laundry<br>3150-37 |                           |
|----------------------------------|--------------------------------------------|---------------------------|
| Sample Date(s):                  | May 9, 2018                                |                           |
| Sample Team:                     | PB                                         |                           |
| Matrix/Number of Samples:        | <u>Soil/ 9</u><br>Field Blank/ <u>1</u>    |                           |
| Analyzing<br>Laboratory:         | TestAmerica Laboratories, Buffalo, NY      | Z                         |
| Analyses:                        | Volatile Organic Compounds (VOCs):         | USEPA SW-846 Method 8260C |
| Laboratory<br>Report No:         | 480-135583                                 | Date:5/22/18              |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                    | Reported |     | Performance<br>Acceptable |     | Not      |
|--------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                                    | No       | Yes | No                        | Yes | Required |
| 1. Sample results                                                  |          | Х   |                           | Х   |          |
| 2. Parameters analyzed                                             |          | Х   |                           | Х   |          |
| 3. Method of analysis                                              |          | Х   |                           | Х   |          |
| 4. Sample collection date                                          |          | Х   |                           | Х   |          |
| 5. Laboratory sample received date                                 |          | Х   |                           | Х   |          |
| 6. Sample analysis date                                            |          | Х   |                           | Х   |          |
| 7. Copy of chain-of-custody form signed by<br>Lab sample custodian |          | Х   |                           | Х   |          |
| 8. Narrative summary of QA or sample problems provided             |          | Х   |                           | Х   |          |

QA - quality assurance

#### Comments:



## Custody Numbers:480-135583 SAMPLE AND ANALYSIS LIST

|               |               | Sample             | Sample<br>Collection Parent |     | A    | nalysis |     |      |
|---------------|---------------|--------------------|-----------------------------|-----|------|---------|-----|------|
| Sample ID     | Lab ID        | Collection<br>Date | Sample                      | VOC | SVOC | РСВ     | MET | MISC |
| SS-01(0-6")   | 480-135583-1  | 5/7/2018           |                             | Х   |      |         |     |      |
| SS-02(0-6")   | 480-135583-2  | 5/7/2018           |                             | Х   |      |         |     |      |
| SS-05(0-6")   | 480-135583-3  | 5/7/2018           |                             | Х   |      |         |     |      |
| SS-06(0-6")   | 480-135583-4  | 5/7/2018           |                             | Х   |      |         |     |      |
| SB-06(12-14') | 480-135583-5  | 5/7/2018           |                             | Х   |      |         |     |      |
| SB-06(22-24') | 480-135583-6  | 5/7/2018           |                             | Х   |      |         |     |      |
| FIELD BLANK   | 480-135583-7  | 5/8/2018           |                             | Х   |      |         |     |      |
| SS-07(0-6")   | 480-135583-8  | 5/8/2018           |                             | Х   |      |         |     |      |
| SB-07(9-11')  | 480-135583-9  | 5/8/2018           |                             | Х   |      |         |     |      |
| SB-07(6-8')   | 480-135583-10 | 5/8/2018           |                             | Х   |      |         |     |      |



# ORGANIC ANALYSES VOCS

|                                                                                                | Reported |           |    | Performance<br>Acceptable                |          |
|------------------------------------------------------------------------------------------------|----------|-----------|----|------------------------------------------|----------|
|                                                                                                | No       | Yes       | No | Yes                                      | Required |
| 1. Holding times                                                                               |          | Х         |    | Х                                        |          |
| 2. Blanks                                                                                      |          |           |    |                                          |          |
| A. Method blanks                                                                               |          | Х         |    | Х                                        |          |
| B. Trip blanks                                                                                 |          |           |    |                                          | Х        |
| C. Field blanks                                                                                |          | Х         | Х  |                                          |          |
| 3. Matrix spike (MS) %R                                                                        |          | Х         | Х  |                                          |          |
| 4. Matrix spike duplicate (MSD) %R                                                             |          | Х         | Х  |                                          |          |
| 5. MS/MSD precision (RPD)                                                                      |          | Х         |    | Х                                        |          |
| 6. Laboratory control sample (LCS)                                                             |          | Х         | Х  |                                          |          |
| 7. Surrogate spike recoveries                                                                  |          | Х         |    | Х                                        |          |
| 8. Instrument performance check                                                                |          | Х         |    | Х                                        |          |
| 9. Internal standard retention times and areas                                                 |          | Х         | Х  |                                          |          |
| 10. Initial calibration RRF's and %RSD's                                                       |          | Х         |    | Х                                        |          |
| 11. Continuing calibration RRF's and %D's                                                      |          | Х         |    | Х                                        |          |
| 12. Transcriptions – quant report vs. Form I                                                   |          | Х         |    | Х                                        |          |
| 13. Field duplicates RPD                                                                       |          |           |    |                                          | Х        |
| Cs - volatile organic compounds %D - percent differe<br>- percent recovery %RSD - percent rela |          | leviation |    | F - relative respo<br>D - relative perce |          |

#### Comments:

Performance was acceptable, with the following exception:

- 2C. Acetone was detected in the field blank. Acetone was qualified as non-detect (UB) in samples SS-05(0-6"), SS-06(0-6"), SS-06(12-14"), SS-06(22-24"), SS-07(9-11") and SS-07(6-8").
- 3. The %R was above QC limits for 1,1,2,2-tetrachloroethane in the MS and MSD associated with all samples. It was not detected, and qualification of the data was not necessary.
- 4. The %Rs were below the QC limit for 2-butanone and acetone in the MS and MSD associated with all samples and were qualified as estimated (J/UJ).
- 6. The %R was above the QC limit for isopropylbenzene in the LCS. It was not detected, and qualification of the data was not necessary.
- 9. The area was above the QC limit for the internal standard 1,4-dichlorobenzene-d4 in samples SS-01(0-6") and SS-02(0-6"); and chlorobenzene-d5 in sample SS-02(0-6"). The following compounds were qualified as estimated bias high (JH) or an estimated detection limit (UJ): 1,2-dibromo-3-chloropropane, 1,4-dichlorobenzene, 1,2-dichlorobenzene in samples SS-01(0-6") and SS-02(0-6"); and 1,1,2,2-tetrachloroethane, ,1,3-dichlorobenzene, bromoform, chlorobenzene, ethylbenzene, isopropylbenzene, styrene and total xylene in sample SS-02(0-6").
- 12. Tetrachloroethene exceeded the calibration range in original analysis for sample SS-05(0-6"). It was reanalyzed and reported from the secondary dilution (D).



## DATA VALIDATION AND

| QUALIFICATION SUMMARY         Laboratory Numbers: 480-135583                                |                                                                                                                                                   |           |                                                                                              |  |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------|--|--|--|
| Sample ID                                                                                   | Analyte(s)                                                                                                                                        | Qualifier | Reason(s)                                                                                    |  |  |  |
| VOCs                                                                                        |                                                                                                                                                   |           |                                                                                              |  |  |  |
| SS-05(0-6"), SS-06(0-6"), SS-<br>06(12-14"), SS-06(22-24"),<br>SS-07(9-11") and SS-07(6-8") | Acetone                                                                                                                                           | UB        | Detected in the field blank                                                                  |  |  |  |
| All samples                                                                                 | 2-Butanone and acetone                                                                                                                            | J/UJ      | The %Rs were below the QC limit in the MS and MSD                                            |  |  |  |
| SS-01(0-6") and SS-02(0-6")                                                                 | 1,2-Dibromo-3-<br>chloropropane, 1,4-<br>dichlorobenzene, 1,2-<br>dichlorobenzene                                                                 | JH/UJ     | The area was above the QC limit for the internal standard                                    |  |  |  |
| SS-02(0-6")                                                                                 | 1,1,2,2-Tetrachloroethane,<br>1,3-dichlorobenzene,<br>bromoform, chlorobenzene,<br>ethylbenzene,<br>isopropylbenzene, styrene and<br>total xylene |           |                                                                                              |  |  |  |
| SS-05(0-6")                                                                                 | Tetrachloroethene                                                                                                                                 | D         | Exceeded the calibration<br>range, reanalyzed and<br>reported from the secondary<br>dilution |  |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 6/4/18 |
|---------------------------------------|-----------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | 12mm Br               |



| Project Name:            | NYSDEC -Fresh and Clean Laundry                            |    |
|--------------------------|------------------------------------------------------------|----|
| Project Number:          | 3150-37                                                    |    |
| Sample Date(s):          | May 9, 2018                                                |    |
| Sample Team:             | PB                                                         |    |
| Matrix/Number            | <u>Soil/11</u>                                             |    |
| of Samples:              | Field Duplicate/ 0                                         |    |
| Analyzing<br>Laboratory: | TestAmerica Laboratories, Buffalo, NY                      |    |
| Analyses:                | Volatile Organic Compounds (VOCs): USEPA SW-846 Method 826 | 0C |
| Laboratory<br>Report No: | 480-135770 Date:5/22/18                                    |    |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                                      | Repo | orted |    | mance<br>ptable | Not      |
|--------------------------------------------------------------------------------------|------|-------|----|-----------------|----------|
|                                                                                      | No   | Yes   | No | Yes             | Required |
| 1. Sample results                                                                    |      | Х     |    | Х               |          |
| 2. Parameters analyzed                                                               |      | Х     |    | Х               |          |
| 3. Method of analysis                                                                |      | Х     |    | Х               |          |
| 4. Sample collection date                                                            |      | Х     |    | Х               |          |
| 5. Laboratory sample received date                                                   |      | Х     |    | Х               |          |
| 6. Sample analysis date                                                              |      | Х     |    | Х               |          |
| <ol> <li>Copy of chain-of-custody form signed by<br/>Lab sample custodian</li> </ol> |      | Х     |    | Х               |          |
| 8. Narrative summary of QA or sample problems provided                               |      | Х     |    | Х               |          |

QA - quality assurance

#### Comments:



# Custody Numbers:480-135770 SAMPLE AND ANALYSIS LIST

|                |               | Sample             | ple<br>Parent |     | A    | nalysis |     |      |
|----------------|---------------|--------------------|---------------|-----|------|---------|-----|------|
| Sample ID      | Lab ID        | Collection<br>Date | Sample        | VOC | SVOC | РСВ     | MET | MISC |
| SS-09 (0-6")   | 480-135770-1  | 5/9/2018           |               | Х   |      |         |     |      |
| SS-08 (0-6")   | 480-135770-2  | 5/9/2018           |               | Х   |      |         |     |      |
| SB-08 (1-3')   | 480-135770-3  | 5/9/2018           |               | Х   |      |         |     |      |
| SB-08 (10-12') | 480-135770-4  | 5/9/2018           |               | Х   |      |         |     |      |
| SS-10 (0-6")   | 480-135770-5  | 5/9/2018           |               | Х   |      |         |     |      |
| SB-10 (10-12') | 480-135770-6  | 5/9/2018           |               | Х   |      |         |     |      |
| SS-11 (0-6")   | 480-135770-7  | 5/9/2018           |               | Х   |      |         |     |      |
| SB-11 (10-12') | 480-135770-8  | 5/9/2018           |               | Х   |      |         |     |      |
| SB-10 (5-7')   | 480-135770-9  | 5/9/2018           |               | Х   |      |         |     |      |
| SS-12 (0-6")   | 480-135770-10 | 5/9/2018           |               | Х   |      |         |     |      |
| SB-12 (10-12') | 480-135770-11 | 5/9/2018           |               | Х   |      |         |     |      |



# ORGANIC ANALYSES VOCS

|                                                                                                                      | Reported |           |    | Performance<br>Acceptable                |          |
|----------------------------------------------------------------------------------------------------------------------|----------|-----------|----|------------------------------------------|----------|
|                                                                                                                      | No       | Yes       | No | Yes                                      | Required |
| 1. Holding times                                                                                                     |          | Х         | Х  |                                          |          |
| 2. Blanks                                                                                                            |          |           |    |                                          |          |
| A. Method blanks                                                                                                     |          | Х         |    | Х                                        |          |
| B. Trip blanks                                                                                                       |          |           |    |                                          | Х        |
| C. Field blanks                                                                                                      |          | Х         | Х  |                                          |          |
| 3. Matrix spike (MS) %R                                                                                              |          |           |    |                                          | Х        |
| 4. Matrix spike duplicate (MSD) %R                                                                                   |          |           |    |                                          | Х        |
| 5. MS/MSD precision (RPD)                                                                                            |          |           |    |                                          | Х        |
| 6. Laboratory control sample (LCS)                                                                                   |          | Х         |    | Х                                        |          |
| 7. Surrogate spike recoveries                                                                                        |          | Х         |    | Х                                        |          |
| 8. Instrument performance check                                                                                      |          | Х         |    | Х                                        |          |
| 9. Internal standard retention times and areas                                                                       |          | Х         |    | Х                                        |          |
| 10. Initial calibration RRF's and %RSD's                                                                             |          | Х         |    | Х                                        |          |
| 11. Continuing calibration RRF's and %D's                                                                            |          | Х         |    | Х                                        |          |
| 12. Transcriptions – quant report vs. Form I                                                                         |          | Х         |    | Х                                        |          |
| 13. Field duplicates RPD                                                                                             |          |           |    |                                          | Х        |
| OCs - volatile organic compounds     %D - percent difference       R - percent recovery     %RSD - percent relations |          | deviation |    | F - relative respo<br>D - relative perco |          |

#### Comments:

Performance was acceptable, with the following exception:

- 1. All samples were prepared outside of holding time and all results except SS-12(0-6") were qualified as estimated (J/UJ).
- 2C. Acetone was detected in the field blank collected in data package 135583 associated with this sampling event. Acetone was qualified as non-detect (UB) in samples SS-08 (0-6"), SB-08 (1-3'), SB-08 (10-12'), SS-10 (0-6"), SB-11 (10-12'), SB-10 (5-7'), SS-12 (0-6") and SB-12 (10-12').



## Laboratory Numbers: 480-135770

| Sample ID                                                                                                            | Analyte(s) | Qualifier | Reason(s)                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------------------------------------------------------------------------------------------------------|
| VOCs                                                                                                                 |            |           |                                                                                                           |
| All samples except SS-12(0-6")                                                                                       | All VOCs   | J/UJ      | Prepared outside of holding time                                                                          |
| SS-08 (0-6"), SB-08 (1-3'),<br>SB-08 (10-12'), SB-11 (10-<br>12'), SB-10 (5-7'), SS-12 (0-<br>6") and SB-12 (10-12') | Acetone    | UB        | Detected in the field blank<br>collected in data package<br>135583 associated with this<br>sampling event |
|                                                                                                                      |            |           |                                                                                                           |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 6/4/18 |
|---------------------------------------|-----------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br              |



| Project Name:            | NYSDEC -Fresh and Clean Laundry                                                                 |              |
|--------------------------|-------------------------------------------------------------------------------------------------|--------------|
| Project Number:          | 3150-37                                                                                         |              |
| Sample Date(s):          | January 24, 2020                                                                                |              |
| Sample Team:             | KR                                                                                              |              |
| Matrix/Number            | <u>Soil/1</u>                                                                                   |              |
| of Samples:              | Field Duplicate/0                                                                               |              |
|                          | <u>Trip Blank/ 0</u>                                                                            |              |
|                          | Field Blank/0                                                                                   |              |
| Analyzing<br>Laboratory: | TestAmerica Laboratories, Buffalo, NY                                                           |              |
| Analyses:                | <u>Volatile Organic Compounds (VOCs):</u> USEP.<br><u>1,4-Dioxane:</u> USEPA SW-846 Method 8270 |              |
| Laboratory<br>Report No: | 480-165592                                                                                      | Date:2/06/20 |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                                      | Repo | Reported |    | rmance<br>ptable | Not      |
|--------------------------------------------------------------------------------------|------|----------|----|------------------|----------|
|                                                                                      | No   | Yes      | No | Yes              | Required |
| 1. Sample results                                                                    |      | Х        |    | Х                |          |
| 2. Parameters analyzed                                                               |      | Х        |    | Х                |          |
| 3. Method of analysis                                                                |      | Х        |    | Х                |          |
| 4. Sample collection date                                                            |      | Х        |    | Х                |          |
| 5. Laboratory sample received date                                                   |      | Х        |    | Х                |          |
| 6. Sample analysis date                                                              |      | Х        |    | Х                |          |
| <ol> <li>Copy of chain-of-custody form signed by<br/>Lab sample custodian</li> </ol> |      | Х        |    | Х                |          |
| <ol> <li>Narrative summary of QA or sample<br/>problems provided</li> </ol>          |      | Х        |    | Х                |          |

QA - quality assurance

Comments:



# Custody Numbers:480-165592 SAMPLE AND ANALYSIS LIST

|               | Sample Collection Parent Analysis |                    |        |     | S           |      |      |
|---------------|-----------------------------------|--------------------|--------|-----|-------------|------|------|
| Sample ID     | Lab ID                            | Collection<br>Date | Sample | VOC | 1,4-Dioxane | PFAS | MISC |
| SS-14 (0-2ft) | 480-165592-1                      | 1/24/2020          |        | Х   |             |      |      |



### ORGANIC ANALYSES VOCS & 1,4-Dioxane

|                                                                                                                  | Reported |           |    | rmance<br>eptable                        | Not      |
|------------------------------------------------------------------------------------------------------------------|----------|-----------|----|------------------------------------------|----------|
|                                                                                                                  | No       | Yes       | No | Yes                                      | Required |
| 1. Holding times                                                                                                 |          | Х         |    | Х                                        |          |
| 2. Blanks                                                                                                        |          |           |    |                                          |          |
| A. Method blanks                                                                                                 |          | Х         | Х  |                                          |          |
| B. Trip blanks                                                                                                   |          |           |    |                                          | Х        |
| C. Field blanks                                                                                                  |          |           |    |                                          | Х        |
| 3. Matrix spike (MS) %R                                                                                          |          |           |    |                                          | Х        |
| 4. Matrix spike duplicate (MSD) %R                                                                               |          |           |    |                                          | Х        |
| 5. MS/MSD precision (RPD)                                                                                        |          |           |    |                                          | Х        |
| 6. Laboratory control sample (LCS)                                                                               |          | Х         |    | Х                                        |          |
| 7. Surrogate spike recoveries                                                                                    |          | Х         |    | Х                                        |          |
| 8. Instrument performance check                                                                                  |          | Х         |    | Х                                        |          |
| 9. Internal standard retention times and areas                                                                   |          | Х         |    | Х                                        |          |
| 10. Initial calibration RRF's and %RSD's                                                                         |          | Х         |    | Х                                        |          |
| 11. Continuing calibration RRF's and %D's                                                                        |          | Х         |    | Х                                        |          |
| 12. Transcriptions – quant report vs. Form I                                                                     |          | Х         |    | Х                                        |          |
| 13. Field duplicates RPD                                                                                         |          |           |    |                                          | Х        |
| OCs - volatile organic compounds     %D - percent differe       R - percent recovery     %RSD - percent relation |          | leviation |    | F - relative respo<br>D - relative perco |          |

### Comments:

Performance was acceptable, with the following exception:

2B. Chloroform was detected in the method blank. No qualification of the data was necessary.



| QUALIFICATION SUMMARY                       |            | Laboratory Numbers: 480-165592 |           |  |  |
|---------------------------------------------|------------|--------------------------------|-----------|--|--|
| Sample ID                                   | Analyte(s) | Qualifier                      | Reason(s) |  |  |
| VOCs                                        |            |                                |           |  |  |
| No qualification of the data was necessary. |            |                                |           |  |  |
|                                             |            |                                |           |  |  |
|                                             |            |                                |           |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 4/16/20 |
|---------------------------------------|------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br               |

Pages 4/4



| Project Name:                                                                 | NYSDEC -Fresh and Clean Laundry       |                |  |  |                                                 |  |  |
|-------------------------------------------------------------------------------|---------------------------------------|----------------|--|--|-------------------------------------------------|--|--|
| Project Number:                                                               | 3150-37                               |                |  |  |                                                 |  |  |
| Sample Date(s):February 28, 2020Sample Team:KR                                |                                       |                |  |  |                                                 |  |  |
|                                                                               |                                       |                |  |  | Matrix/Number Soil/ 2 [SS-15(0-3) & SB-16(0-1)] |  |  |
| of Samples:                                                                   | Field Duplicate/ 0                    |                |  |  |                                                 |  |  |
|                                                                               | <u>Trip Blank/ 1</u>                  |                |  |  |                                                 |  |  |
|                                                                               | Field Blank/ 1                        |                |  |  |                                                 |  |  |
| Analyzing<br>Laboratory:                                                      | TestAmerica Laboratories, Buffalo, NY |                |  |  |                                                 |  |  |
| Analyses: <u>Volatile Organic Compounds (VOCs):</u> USEPA SW-846 Method 8260C |                                       |                |  |  |                                                 |  |  |
| Laboratory<br>Report No:                                                      | 480-166872                            | Date:3/10/2020 |  |  |                                                 |  |  |
|                                                                               |                                       |                |  |  |                                                 |  |  |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                                      |          |     | Performance |     |          |  |
|--------------------------------------------------------------------------------------|----------|-----|-------------|-----|----------|--|
|                                                                                      | Reported |     | Acceptable  |     | Not      |  |
|                                                                                      | No       | Yes | No          | Yes | Required |  |
| 1. Sample results                                                                    |          | Х   |             | Х   |          |  |
| 2. Parameters analyzed                                                               |          | Х   |             | Х   |          |  |
| 3. Method of analysis                                                                |          | Х   |             | Х   |          |  |
| 4. Sample collection date                                                            |          | Х   |             | Х   |          |  |
| 5. Laboratory sample received date                                                   |          | Х   |             | Х   |          |  |
| 6. Sample analysis date                                                              |          | Х   |             | Х   |          |  |
| <ol> <li>Copy of chain-of-custody form signed by<br/>Lab sample custodian</li> </ol> |          | Х   |             | Х   |          |  |
| <ol> <li>Narrative summary of QA or sample<br/>problems provided</li> </ol>          |          | Х   |             | Х   |          |  |

QA - quality assurance

#### Comments:



#### **ORGANIC ANALYSES** VOCS

|                                                                                              | Reported |           | Performance<br>Acceptable |                                          | Not      |  |
|----------------------------------------------------------------------------------------------|----------|-----------|---------------------------|------------------------------------------|----------|--|
|                                                                                              | No       | Yes       | No                        | Yes                                      | Required |  |
| 1. Holding times                                                                             |          | Х         |                           | Х                                        |          |  |
| 2. Blanks                                                                                    |          |           |                           |                                          |          |  |
| A. Method blanks                                                                             |          | Х         |                           | Х                                        |          |  |
| B. Trip blanks                                                                               |          | Х         |                           | Х                                        |          |  |
| C. Field blanks                                                                              |          | Х         |                           | Х                                        |          |  |
| 3. Matrix spike (MS) %R                                                                      |          | Х         | Х                         |                                          |          |  |
| 4. Matrix spike duplicate (MSD) %R                                                           |          | Х         | Х                         |                                          |          |  |
| 5. MS/MSD precision (RPD)                                                                    |          | Х         | Х                         |                                          |          |  |
| 6. Laboratory control sample (LCS)                                                           |          | Х         | Х                         |                                          |          |  |
| 7. Surrogate spike recoveries                                                                |          | Х         |                           | Х                                        |          |  |
| 8. Instrument performance check                                                              |          | Х         |                           | Х                                        |          |  |
| 9. Internal standard retention times and areas                                               |          | Х         |                           | Х                                        |          |  |
| 10. Initial calibration RRF's and %RSD's                                                     |          | Х         |                           | Х                                        |          |  |
| 11. Continuing calibration RRF's and %D's                                                    |          | Х         |                           | Х                                        |          |  |
| 12. Transcriptions – quant report vs. Form I                                                 |          | Х         |                           | Х                                        |          |  |
| 13. Field duplicates RPD                                                                     |          |           |                           |                                          | Х        |  |
| Cs - volatile organic compounds%D - percent differe- percent recovery%RSD - percent relation |          | leviation |                           | F - relative respo<br>D - relative perco |          |  |

#### Comments:

Performance was acceptable, with the following exception:

3-6. The %Rs were below the QC limits in the MS and/or MSD for all compounds except 1,1dichloroethane, 1,1-dichloroethene, bromomethane, carbon disulfide, methyl acetate, methyl tertbutyl ether, methylene chloride and tetrachloroethene. The RPDs were above the QC limits for several compounds in the MS/MSD. The %R was below the QC limit for chloroethane in the LCS associated sample SB-16(0-1). All compounds were qualified as estimated (J/UJ) except 1,1dichloroethane, 1,1-dichloroethene, bromomethane and carbon disulfide, methyl acetate, methyl tert-butyl ether, methylene chloride and tetrachloroethene in all samples.



| QUALIFICATION | I SUMMARY Labo                                                                                                                                                                             | pratory Numbers: 480-166872 |                                                       |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|--|--|
| Sample ID     | Analyte(s)                                                                                                                                                                                 | Qualifier                   | Reason(s)                                             |  |  |
| VOCs          |                                                                                                                                                                                            |                             |                                                       |  |  |
| All samples   | All compounds except 1,1-dichloroethane,<br>1,1-dichloroethene, bromomethane, carbon<br>disulfide, methyl acetate, methyl tert-butyl<br>ether, methylene chloride and<br>tetrachloroethene | J/UJ                        | The %Rs were below the QC limits in the MS and/or MSD |  |  |
|               |                                                                                                                                                                                            |                             |                                                       |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 4/21/20 |
|---------------------------------------|------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | 1 Br Br                |

Pages 3/3



| Project Name:            | NYSDEC -Fresh and Clean Laundry            |                    |  |  |  |  |
|--------------------------|--------------------------------------------|--------------------|--|--|--|--|
| Project Number:          | 3150-37                                    |                    |  |  |  |  |
| Sample Date(s):          | July 27 & 28, 2020                         |                    |  |  |  |  |
| Sample Team:             | KK                                         |                    |  |  |  |  |
| Matrix/Number            | <u>Soil/2</u>                              |                    |  |  |  |  |
| of Samples:              | Field Duplicate/ 0                         |                    |  |  |  |  |
|                          | <u>Trip Blank/ 0</u>                       |                    |  |  |  |  |
|                          | Field Blank/ 1                             |                    |  |  |  |  |
| Analyzing<br>Laboratory: | TestAmerica Laboratories, Buffalo, NY      |                    |  |  |  |  |
| Analyses:                | Volatile Organic Compounds (VOCs): USEPA S | W-846 Method 8260C |  |  |  |  |
| Laboratory<br>Report No: | 480-173121                                 | Date:8/13/20       |  |  |  |  |
|                          |                                            |                    |  |  |  |  |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                                      | Reported |     | Performance<br>Acceptable |     | Not      |
|--------------------------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                                                      | No       | Yes | No                        | Yes | Required |
| 1. Sample results                                                                    |          | Х   |                           | Х   |          |
| 2. Parameters analyzed                                                               |          | Х   |                           | Х   |          |
| 3. Method of analysis                                                                |          | Х   |                           | Х   |          |
| 4. Sample collection date                                                            |          | Х   |                           | Х   |          |
| 5. Laboratory sample received date                                                   |          | Х   |                           | Х   |          |
| 6. Sample analysis date                                                              |          | Х   |                           | Х   |          |
| <ol> <li>Copy of chain-of-custody form signed by<br/>Lab sample custodian</li> </ol> |          | Х   |                           | Х   |          |
| <ol> <li>Narrative summary of QA or sample<br/>problems provided</li> </ol>          |          | Х   |                           | Х   |          |

QA - quality assurance

Comments:



### Custody Numbers:480-173121 SAMPLE AND ANALYSIS LIST

|                 |              | Sample             | Parent |     | Analysi     | S    |      |
|-----------------|--------------|--------------------|--------|-----|-------------|------|------|
| Sample ID       | Lab ID       | Collection<br>Date | Sample | VOC | 1,4-Dioxane | PFAS | MISC |
| SB-17 (23-25)   | 480-173121-1 | 7/27/2020          |        | Х   |             |      |      |
| SB-17 (105-107) | 480-173121-2 | 7/28/2020          |        | Х   |             |      |      |
| Field Blank     | 480-173121-5 | 7/28/2020          |        | Х   |             |      |      |



|                                                                                                | Reported |           | Performance<br>Acceptable |                                          | Not      |  |
|------------------------------------------------------------------------------------------------|----------|-----------|---------------------------|------------------------------------------|----------|--|
|                                                                                                | No       | Yes       | No                        | Yes                                      | Required |  |
| 1. Holding times                                                                               |          | Х         |                           | Х                                        |          |  |
| 2. Blanks                                                                                      |          |           |                           |                                          |          |  |
| A. Method blanks                                                                               |          | Х         |                           | Х                                        |          |  |
| B. Trip blanks                                                                                 |          |           |                           |                                          | Х        |  |
| C. Field blanks                                                                                |          | Х         | Х                         |                                          |          |  |
| 3. Matrix spike (MS) %R                                                                        |          | Х         | Х                         |                                          |          |  |
| 4. Matrix spike duplicate (MSD) %R                                                             |          | Х         | Х                         |                                          |          |  |
| 5. MS/MSD precision (RPD)                                                                      |          | Х         |                           | Х                                        |          |  |
| 6. Laboratory control sample (LCS)                                                             |          | Х         |                           | Х                                        |          |  |
| 7. Surrogate spike recoveries                                                                  |          | Х         |                           | Х                                        |          |  |
| 8. Instrument performance check                                                                |          | Х         |                           | Х                                        |          |  |
| 9. Internal standard retention times and areas                                                 |          | Х         |                           | Х                                        |          |  |
| 10. Initial calibration RRF's and %RSD's                                                       |          | Х         |                           | Х                                        |          |  |
| 11. Continuing calibration RRF's and %D's                                                      |          | Х         |                           | Х                                        |          |  |
| 12. Transcriptions – quant report vs. Form I                                                   |          | Х         |                           |                                          |          |  |
| 13. Field duplicates RPD                                                                       |          |           |                           |                                          | Х        |  |
| Cs - volatile organic compounds %D - percent differe<br>- percent recovery %RSD - percent rela |          | leviation |                           | F - relative respo<br>D - relative perce |          |  |

#### Comments:

Performance was acceptable, with the following exception:

- 1. Samples SB-17 (23-25) and SB-17 (105-107) was preserved outside the holding time and all VOCs were qualified as estimated (J/UJ).
- 2B. Methylene chloride was detected in the field blank. No qualification of the data was necessary.
- 3&4. The %Rs were below the QC limits for 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, 1,2,4trichlorobenzene, 1,2-dibromoethane, 1,2-dichlorobenzene, 2-butanone, cis-1,3dichloropropene, ethylbenzene and styrene in the MS and/or MSD. They were qualified as an estimated detection limit (UJ) in samples SB-17 (23-25) and SB-17 (105-107).



#### DATA VALIDATION AND

| <b>QUALIFICATION SUMMA</b> | RY Labo                       | oratory N | umbers: 480-173121            |  |  |  |  |
|----------------------------|-------------------------------|-----------|-------------------------------|--|--|--|--|
| Sample ID                  | Analyte(s)                    | Qualifier | Reason(s)                     |  |  |  |  |
| VOCs                       |                               |           |                               |  |  |  |  |
| SB-17 (23-25) and SB-17    | All VOCs                      | J/UJ      | Preserved outside the holding |  |  |  |  |
| (105-107)                  |                               |           | time                          |  |  |  |  |
|                            |                               |           |                               |  |  |  |  |
| SB-17 (23-25) and SB-17    | 1,1,2,2-Tetrachloroethane,    | UJ        | The %Rs were below the        |  |  |  |  |
| (105-107)                  | 1,1,2-trichloroethane, 1,2,4- |           | QC limits in the MS and/or    |  |  |  |  |
|                            | trichlorobenzene, 1,2-        |           | MSD                           |  |  |  |  |
|                            | dibromoethane, 1,2-           |           |                               |  |  |  |  |
|                            | dichlorobenzene, 2-butanone,  |           |                               |  |  |  |  |
|                            | cis-1,3-dichloropropene,      |           |                               |  |  |  |  |
|                            | ethylbenzene and styrene      |           |                               |  |  |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 8/19/2020 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                 |

Pages 4/4



| Project Name:             | NYSDEC -Fresh and Clean Laundry                           |                       |
|---------------------------|-----------------------------------------------------------|-----------------------|
| Project Number:           | 3150-37                                                   |                       |
| Sample Date(s):           | July 29, 2020                                             |                       |
| Sample Team:              | KK                                                        |                       |
| Matrix/Number of Samples: | <u>Soil/2</u><br><u>Field Duplicate/0</u><br>Trip Blank/1 |                       |
|                           | Field Blank/0                                             |                       |
| Analyzing<br>Laboratory:  | TestAmerica Laboratories, Buffalo, NY                     |                       |
| Analyses:                 | Volatile Organic Compounds (VOCs): USEP                   | A SW-846 Method 8260C |
| Laboratory<br>Report No:  | 480-173185                                                | Date:8/13/20          |
|                           |                                                           |                       |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

| No |     |                                      | ptable                               | Not                                                                                                                                                 |  |
|----|-----|--------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    | Yes | No                                   | Yes                                  | Required                                                                                                                                            |  |
|    | Х   |                                      | Х                                    |                                                                                                                                                     |  |
|    | Х   |                                      | Х                                    |                                                                                                                                                     |  |
|    | Х   |                                      | Х                                    |                                                                                                                                                     |  |
|    | Х   |                                      | Х                                    |                                                                                                                                                     |  |
|    | Х   |                                      | Х                                    |                                                                                                                                                     |  |
|    | Х   |                                      | Х                                    |                                                                                                                                                     |  |
|    | Х   |                                      | Х                                    |                                                                                                                                                     |  |
|    | Х   |                                      | Х                                    |                                                                                                                                                     |  |
|    |     | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X | X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X |  |

QA - quality assurance

Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.



### Custody Numbers:480-173185 SAMPLE AND ANALYSIS LIST

|                    |              | Sample             | Parent |     | Analysi     | S    |      |
|--------------------|--------------|--------------------|--------|-----|-------------|------|------|
| Sample ID          | Lab ID       | Collection<br>Date | Sample | VOC | 1,4-Dioxane | PFAS | MISC |
| SS-18 (Trip Blank) | 480-173185-1 | 7/29/2020          |        | Х   |             |      |      |
| SS-18 (11-13)      | 480-173185-2 | 7/29/2020          |        | Х   |             |      |      |
| SS-18 (106-108)    | 480-173185-3 | 7/29/2020          |        | X   |             |      |      |



### ORGANIC ANALYSES VOCS

|                                                                                                | Reported |           | Performance<br>Acceptable |                                          | Not      |  |
|------------------------------------------------------------------------------------------------|----------|-----------|---------------------------|------------------------------------------|----------|--|
|                                                                                                | No       | Yes       | No                        | Yes                                      | Required |  |
| 1. Holding times                                                                               |          | Х         | Х                         |                                          |          |  |
| 2. Blanks                                                                                      |          |           |                           |                                          |          |  |
| A. Method blanks                                                                               |          | Х         |                           | Х                                        |          |  |
| B. Trip blanks                                                                                 |          | Х         | Х                         |                                          |          |  |
| C. Field blanks                                                                                |          |           |                           |                                          | Х        |  |
| 3. Matrix spike (MS) %R                                                                        |          |           |                           |                                          | Х        |  |
| 4. Matrix spike duplicate (MSD) %R                                                             |          |           |                           |                                          | Х        |  |
| 5. MS/MSD precision (RPD)                                                                      |          |           |                           |                                          | Х        |  |
| 6. Laboratory control sample (LCS) & LCS<br>duplicate %R and RPD                               |          | Х         | X                         |                                          |          |  |
| 7. Surrogate spike recoveries                                                                  |          | Х         |                           | Х                                        |          |  |
| 8. Instrument performance check                                                                |          | Х         |                           | Х                                        |          |  |
| 9. Internal standard retention times and areas                                                 |          | Х         |                           | Х                                        |          |  |
| 10. Initial calibration RRF's and %RSD's                                                       |          | Х         |                           | Х                                        |          |  |
| 11. Continuing calibration RRF's and %D's                                                      |          | Х         |                           | Х                                        |          |  |
| 12. Transcriptions – quant report vs. Form I                                                   |          | Х         |                           | Х                                        |          |  |
| 13. Field duplicates RPD                                                                       |          |           |                           |                                          | Х        |  |
| Cs - volatile organic compounds %D - percent differe<br>- percent recovery %RSD - percent rela |          | deviation |                           | F - relative respo<br>D - relative perce |          |  |

Comments:

Performance was acceptable, with the following exceptions:

- 1. Sample SB-18(11-13) was preserved outside the holding time and all VOCs were qualified as estimated (J/UJ).
- 2B. Methylene chloride was detected in the trip blank. No qualification of the data was necessary.
- 6. The %R was above the QC limit for 2-butanone in the LCS and LCS duplicate associated with the soil samples. It was not detected in the samples therefore qualification of the data was not necessary.



#### DATA VALIDATION AND QUALIFICATION SUMMARY

| QUALIFICATION SUMMARY |            | Laboratory Numbers: 480-173185 |                                    |  |  |
|-----------------------|------------|--------------------------------|------------------------------------|--|--|
| Sample ID             | Analyte(s) | Qualifier                      | Reason(s)                          |  |  |
| VOCs                  |            |                                |                                    |  |  |
| SB-18(11-13)          | All VOCs   | J/UJ                           | Preserved outside the holding time |  |  |
|                       |            |                                |                                    |  |  |
|                       |            |                                |                                    |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 8/18/2020 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                 |

Pages 4/4



| Project Name:                | NYSDEC -Fresh and Clean Laundry                                                          |                         |
|------------------------------|------------------------------------------------------------------------------------------|-------------------------|
| Project Number:              | 3150-37                                                                                  |                         |
| Sample Date(s):              | August 3, 2020                                                                           |                         |
| Sample Team:                 | CS                                                                                       |                         |
| Matrix/Number<br>of Samples: | <u>Soil/2</u><br><u>Field Duplicate/0</u><br><u>Trip Blank/0</u><br><u>Field Blank/0</u> |                         |
| Analyzing<br>Laboratory:     | TestAmerica Laboratories, Buffalo, NY                                                    |                         |
| Analyses:                    | Volatile Organic Compounds (VOCs): USI                                                   | EPA SW-846 Method 8260C |
| Laboratory<br>Report No:     | 480-173359                                                                               | Date:8/13/20            |
|                              |                                                                                          |                         |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                    | Reported |     | Performance<br>Acceptable |     | Not      |
|--------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                                    | No       | Yes | No                        | Yes | Required |
| 1. Sample results                                                  |          | Х   |                           | Х   |          |
| 2. Parameters analyzed                                             |          | Х   |                           | Х   |          |
| 3. Method of analysis                                              |          | Х   |                           | Х   |          |
| 4. Sample collection date                                          |          | Х   |                           | Х   |          |
| 5. Laboratory sample received date                                 |          | Х   |                           | Х   |          |
| 6. Sample analysis date                                            |          | Х   |                           | Х   |          |
| 7. Copy of chain-of-custody form signed by<br>Lab sample custodian |          | Х   |                           | Х   |          |
| 8. Narrative summary of QA or sample problems provided             |          | Х   |                           | Х   |          |

QA - quality assurance

Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.



### Custody Numbers:480-173359 SAMPLE AND ANALYSIS LIST

|               |              | Sample<br>Collection | Parent |     | Analysi     | s    |      |
|---------------|--------------|----------------------|--------|-----|-------------|------|------|
| Sample ID     | Lab ID       | Date                 | Sample | VOC | 1,4-Dioxane | PFAS | MISC |
| SS-13 (0-16") | 480-173359-1 | 8/03/2020            |        | Х   |             |      |      |
| SS-19 (7-8)   | 480-173359-2 | 8/03/2020            |        | X   |             |      |      |



# ORGANIC ANALYSES VOCS

|                                                                                                 | Reported |           |    | Performance<br>Acceptable                |          |
|-------------------------------------------------------------------------------------------------|----------|-----------|----|------------------------------------------|----------|
|                                                                                                 | No       | Yes       | No | Yes                                      | Required |
| 1. Holding times                                                                                |          | Х         | Х  |                                          |          |
| 2. Blanks                                                                                       |          |           |    |                                          |          |
| A. Method blanks                                                                                |          | Х         |    | Х                                        |          |
| B. Trip blanks                                                                                  |          |           |    |                                          | Х        |
| C. Field blanks                                                                                 |          |           |    |                                          | Х        |
| 3. Matrix spike (MS) %R                                                                         |          |           |    |                                          | Х        |
| 4. Matrix spike duplicate (MSD) %R                                                              |          |           |    |                                          | Х        |
| 5. MS/MSD precision (RPD)                                                                       |          |           |    |                                          | Х        |
| 6. Laboratory control sample (LCS)                                                              |          | Х         |    | Х                                        |          |
| 7. Surrogate spike recoveries                                                                   |          | Х         |    | Х                                        |          |
| 8. Instrument performance check                                                                 |          | Х         |    | Х                                        |          |
| 9. Internal standard retention times and areas                                                  |          | Х         |    | Х                                        |          |
| 10. Initial calibration RRF's and %RSD's                                                        |          | Х         |    | Х                                        |          |
| 11. Continuing calibration RRF's and %D's                                                       |          | Х         |    | Х                                        |          |
| 12. Transcriptions – quant report vs. Form I                                                    |          | Х         |    | Х                                        |          |
| 13. Field duplicates RPD                                                                        |          |           |    |                                          | Х        |
| OCs - volatile organic compounds%D - percent differeR - percent recovery%RSD - percent relation |          | leviation |    | F - relative respo<br>D - relative perce |          |

#### Comments:

Performance was acceptable, with the following exception:

1. Sample SB-19 (7-8) was preserved outside the holding time and all VOCs were qualified as estimated (J/UJ).



#### DATA VALIDATION AND QUALIFICATION SUMMARY

| QUALIFICATION SUMMARY |            | Laboratory Numbers: 480-173359 |                                    |  |  |
|-----------------------|------------|--------------------------------|------------------------------------|--|--|
| Sample ID             | Analyte(s) | Qualifier                      | Reason(s)                          |  |  |
| VOCs                  |            |                                |                                    |  |  |
| SB-19 (7-8)           | All VOCs   | J/UJ                           | Preserved outside the holding time |  |  |
|                       |            |                                |                                    |  |  |
|                       |            |                                |                                    |  |  |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 8/19/2020 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                 |

Pages 4/4



| Project Name:<br>Project Number: | NYSDEC -Fresh and Clean Laundry<br>3150-37                                                                          |                     |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------|
| Sample Date(s):                  | August 5, 2020                                                                                                      |                     |
| Sample Team:                     | CS                                                                                                                  |                     |
| Matrix/Number<br>of Samples:     | <u>Soil/1 [SB-19 (110-112)]</u><br><u>Water/1 [</u> GW-19 (113-118)]<br><u>Trip Blank/1</u><br><u>Field Blank/0</u> |                     |
| Analyzing<br>Laboratory:         | TestAmerica Laboratories, Buffalo, NY                                                                               |                     |
| Analyses:                        | Volatile Organic Compounds (VOCs): USEPA S                                                                          | SW-846 Method 8260C |
| Laboratory<br>Report No:         | 480-173515                                                                                                          | Date:8/19/20        |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                    | Reported Performance |     |    | Not |          |
|--------------------------------------------------------------------|----------------------|-----|----|-----|----------|
|                                                                    | No                   | Yes | No | Yes | Required |
| 1. Sample results                                                  |                      | Х   |    | Х   |          |
| 2. Parameters analyzed                                             |                      | Х   |    | Х   |          |
| 3. Method of analysis                                              |                      | Х   |    | Х   |          |
| 4. Sample collection date                                          |                      | Х   |    | Х   |          |
| 5. Laboratory sample received date                                 |                      | Х   |    | Х   |          |
| 6. Sample analysis date                                            |                      | Х   |    | Х   |          |
| 7. Copy of chain-of-custody form signed by<br>Lab sample custodian |                      | Х   |    | Х   |          |
| 8. Narrative summary of QA or sample problems provided             |                      | Х   |    | Х   |          |

QA - quality assurance

#### Comments:

The data packages have been reviewed in accordance with the NYSDEC 6/05 ASP Quality Assurance/ Quality Control (QA/QC) requirements. A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA National Functional Guidelines of Organic Data Review, January 2017, method performance criteria and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.



### ORGANIC ANALYSES VOCS

|                                                                                                | Reported |           |    | Performance<br>Acceptable                |          |
|------------------------------------------------------------------------------------------------|----------|-----------|----|------------------------------------------|----------|
|                                                                                                | No       | Yes       | No | Yes                                      | Required |
| 1. Holding times                                                                               |          | Х         | Х  |                                          |          |
| 2. Blanks                                                                                      |          |           |    |                                          |          |
| A. Method blanks                                                                               |          | Х         |    | Х                                        |          |
| B. Trip blanks                                                                                 |          | Х         | Х  |                                          |          |
| C. Field blanks                                                                                |          |           |    |                                          | X        |
| 3. Matrix spike (MS) %R                                                                        |          |           |    |                                          | Х        |
| 4. Matrix spike duplicate (MSD) %R                                                             |          |           |    |                                          | Х        |
| 5. MS/MSD precision (RPD)                                                                      |          |           |    |                                          | X        |
| 6. Laboratory control sample (LCS) & LCS<br>duplicate %R and RPD                               |          | Х         | Х  |                                          |          |
| 7. Surrogate spike recoveries                                                                  |          | Х         |    | Х                                        |          |
| 8. Instrument performance check                                                                |          | Х         |    | Х                                        |          |
| 9. Internal standard retention times and areas                                                 |          | Х         |    | Х                                        |          |
| 10. Initial calibration RRF's and %RSD's                                                       |          | Х         |    | Х                                        |          |
| 11. Continuing calibration RRF's and %D's                                                      |          | Х         |    | Х                                        |          |
| 12. Transcriptions – quant report vs. Form I                                                   |          | Х         |    | Х                                        |          |
| 13. Field duplicates RPD                                                                       |          |           |    |                                          | Х        |
| Cs - volatile organic compounds %D - percent differe<br>- percent recovery %RSD - percent rela |          | deviation |    | F - relative respo<br>D - relative perce |          |

Comments:

Performance was acceptable, with the following exception:

- 1. Samples SB-19 (110-112) was preserved outside the holding time and all VOCs were qualified as estimated (J/UJ).
- 2B. Acetone was detected in the trip blank. Acetone was qualified as non-detect (UB) in sample GW-19(113-118).
- 6. The %R was above the QC limit for 2-butanone (MEK) in the LCS associated with samples GW-3 (113-118)] and Trip Blank. It was not detected above the reporting limit.



#### DATA VALIDATION AND QUALIFICATION SUMMARY

|            | Laboratory N           | umbers: 480-173515                               |
|------------|------------------------|--------------------------------------------------|
| Analyte(s) | Qualifier              | Reason(s)                                        |
|            |                        |                                                  |
| All VOCs   | J/UJ                   | Preserved outside the holding                    |
|            |                        | time                                             |
|            |                        |                                                  |
| Acetone    | UB                     | Detected in the trip blank                       |
|            |                        |                                                  |
|            |                        |                                                  |
|            | Analyte(s)<br>All VOCs | Analyte(s)     Qualifier       All VOCs     J/UJ |

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 8/20/2020 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                 |

Pages 3/3



| Project Name:             | NYSDEC -Fresh and Clean Laundry   |                 |
|---------------------------|-----------------------------------|-----------------|
| Project Number:           | 3150-37                           |                 |
| Sample Date(s):           | March 14, 2018                    |                 |
| Matrix/Number of Samples: | <u>Air/ 5</u>                     |                 |
| Analyzing Laboratory:     | TestAmerica, South Burlington, VT |                 |
| Analyses:                 | VOC by EPA TO-15                  |                 |
| Laboratory Report No:     | 200-42649                         | Date: 3/22/2018 |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                 | Reported Performance |     |    | Not |          |
|-----------------------------------------------------------------|----------------------|-----|----|-----|----------|
|                                                                 | No                   | Yes | No | Yes | Required |
| 1. Sample results                                               |                      | Х   |    | Х   |          |
| 2. Parameters analyzed                                          |                      | Х   |    | Х   |          |
| 3. Method of analysis                                           |                      | Х   |    | Х   |          |
| 4. Sample collection date                                       |                      | Х   |    | Х   |          |
| 5. Laboratory sample received date                              |                      | Х   |    | Х   |          |
| 6. Sample analysis date                                         |                      | Х   |    | Х   |          |
| 7. Copy of chain-of-custody form signed by Lab sample custodian |                      | Х   |    | Х   |          |
| 8. Narrative summary of QA or sample problems provided          |                      | Х   |    | Х   |          |

QA - quality assurance

Comments:

A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA Hazardous Waste Support Branch Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method T0-15, July 2014, method performance criteria, and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.



#### Custody Numbers:200-42649 SAMPLE AND ANALYSIS LIST

|           |             | Sample<br>Collection | Parent |     | Analysi     | S    |      |
|-----------|-------------|----------------------|--------|-----|-------------|------|------|
| Sample ID | Lab ID      | Date                 | Sample | VOC | 1,4-Dioxane | PFAS | MISC |
| OADB-1    | 200-42649-1 | 03/14/2018           |        | Х   |             |      |      |
| IADB-1    | 200-42649-2 | 03/14/2018           |        | Х   |             |      |      |
| IADB-2    | 200-42649-3 | 03/14/2018           |        | Х   |             |      |      |
| SSDB-1    | 200-42649-4 | 03/14/2018           |        | Х   |             |      |      |
| SSDB-2    | 200-42649-5 | 03/14/2018           |        | Х   |             |      |      |



| ۱/ | 0 | ~ |
|----|---|---|
| V  | υ | し |

|                                                         | Reported |     | Performance<br>Acceptable |                   | Not          |  |
|---------------------------------------------------------|----------|-----|---------------------------|-------------------|--------------|--|
|                                                         | No       | Yes | No                        | Yes               | Required     |  |
| 1. Holding times                                        |          | Х   |                           | Х                 | -            |  |
| 2. Method blanks                                        |          | Х   | Х                         |                   |              |  |
| 3. Surrogate %R                                         |          |     |                           |                   | Х            |  |
| 3. Laboratory Control Sample (LCS) spike %R             |          | Х   |                           | Х                 |              |  |
| 4. Instrument performance check                         |          | Х   |                           | Х                 |              |  |
| 5. Internal standard retention times and areas          |          | Х   |                           | Х                 |              |  |
| 6. Initial calibration RRF's and %RSD's                 |          | Х   |                           | Х                 |              |  |
| 7. Continuing calibration RRF's and %D's                |          | Х   |                           | Х                 |              |  |
| 8. Transcriptions – quant report vs. Form I             |          | Х   |                           | Х                 |              |  |
| OCs - volatile organic compounds %D - percent different | ence     |     | R                         | RF - relative res | ponse factor |  |

 %R - percent recovery
 %RSD - percent relative standard deviation

RRF - relative response factor RPD - relative percent difference

#### Comments:

Performance was acceptable, except the following:

2. Trichloroethene was detected in the method blank, the laboratory "B" qualifier was removed from samples IADB-1, IADB-2, and SSDB-1 based on sample concentrations. Isopropyl alcohol was detected in the method blank and qualified as non-detect (UB) in sample OADB-1.

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 3/12/2019 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | 12m M Br                 |



| Project Name:             | NYSDEC -Fresh and Clean Laundry   |                 |  |
|---------------------------|-----------------------------------|-----------------|--|
| Project Number:           | 3150-37                           |                 |  |
| Sample Date(s):           | May 7 & 8, 2018                   |                 |  |
| Matrix/Number of Samples: | <u>Air/4</u> (FCSV-01 to -04)     |                 |  |
| Analyzing Laboratory:     | TestAmerica, South Burlington, VT |                 |  |
| Analyses:                 | <u>VOC</u> by EPA TO-15           |                 |  |
| Laboratory Report No:     | 200-43364                         | Date: 5/18/2018 |  |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                             | Reported |     | Performance<br>Acceptable |     | Not      |
|-----------------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                                             | No       | Yes | No                        | Yes | Required |
| 1. Sample results                                                           |          | Х   |                           | Х   |          |
| 2. Parameters analyzed                                                      |          | Х   |                           | Х   |          |
| 3. Method of analysis                                                       |          | Х   |                           | Х   |          |
| 4. Sample collection date                                                   |          | Х   |                           | Х   |          |
| 5. Laboratory sample received date                                          |          | Х   |                           | Х   |          |
| 6. Sample analysis date                                                     |          | Х   |                           | Х   |          |
| 7. Copy of chain-of-custody form signed by Lab sample custodian             |          | Х   |                           | Х   |          |
| <ol> <li>Narrative summary of QA or sample<br/>problems provided</li> </ol> |          | Х   |                           | Х   |          |

QA - quality assurance

Comments:

A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA Hazardous Waste Support Branch Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method T0-15, July 2014, method performance criteria, and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.



VOC

|                                                       | Reported |     | Performance<br>Acceptable |                   | Not      |  |
|-------------------------------------------------------|----------|-----|---------------------------|-------------------|----------|--|
|                                                       | No       | Yes | No                        | Yes               | Required |  |
| 1. Holding times                                      |          | Х   |                           | Х                 |          |  |
| 2. Method blanks                                      |          | Х   |                           | Х                 |          |  |
| 3. Laboratory Control Sample (LCS) spike %R           |          | Х   |                           | Х                 |          |  |
| 4. Instrument performance check                       |          | Х   |                           | Х                 |          |  |
| 5. Internal standard retention times and areas        |          | Х   |                           | Х                 |          |  |
| 6. Initial calibration RRF's and %RSD's               |          | Х   |                           | Х                 |          |  |
| 7. Continuing calibration RRF's and %D's              |          | Х   |                           | Х                 |          |  |
| 8. Transcriptions – quant report vs. Form I           |          | Х   |                           | Х                 |          |  |
| OCs - volatile organic compounds %D - percent differe |          |     |                           | RF - relative res | 1        |  |

%R - percent recovery

 percent difference %RSD - percent relative standard deviation

RRF - relative response factor RPD - relative percent difference

Comments:

Performance was acceptable.

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 5/31/2018 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                 |



| Project Name:             | NYSDEC -Fresh and Clean Laundry |                 |  |  |
|---------------------------|---------------------------------|-----------------|--|--|
| Project Number:           | 3150-37                         | 3150-37         |  |  |
| Sample Date(s):           | February 28, 2019               |                 |  |  |
| Matrix/Number of Samples: | <u>Air/7</u>                    |                 |  |  |
| Analyzing Laboratory:     | TestAmerica, Knoxville, TN      |                 |  |  |
| Analyses:                 | VOC by EPA TO-15                |                 |  |  |
| Laboratory Report No:     | 140-14470                       | Date: 3/14/2019 |  |  |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                             | Reported |     | Performance<br>Acceptable |     | Not      |
|-----------------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|
|                                                                             | No       | Yes | No                        | Yes | Required |
| 1. Sample results                                                           |          | Х   |                           | Х   |          |
| 2. Parameters analyzed                                                      |          | Х   |                           | Х   |          |
| 3. Method of analysis                                                       |          | Х   |                           | Х   |          |
| 4. Sample collection date                                                   |          | Х   |                           | Х   |          |
| 5. Laboratory sample received date                                          |          | Х   |                           | Х   |          |
| 6. Sample analysis date                                                     |          | Х   |                           | Х   |          |
| 7. Copy of chain-of-custody form signed by Lab sample custodian             |          | Х   |                           | Х   |          |
| <ol> <li>Narrative summary of QA or sample<br/>problems provided</li> </ol> |          | Х   |                           | Х   |          |

QA - quality assurance

Comments:

A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA Hazardous Waste Support Branch Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method T0-15, July 2014, method performance criteria, and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.



### Custody Numbers:140-14470 SAMPLE AND ANALYSIS LIST

|           |             | Sample             | Parent |     | Analysi     | S    |      |
|-----------|-------------|--------------------|--------|-----|-------------|------|------|
| Sample ID | Lab ID      | Collection<br>Date | Sample | VOC | 1,4-Dioxane | PFAS | MISC |
| SSDB-1    | 140-14470-1 | 03/14/2018         |        | Х   |             |      |      |
| SSDB-2    | 140-14470-2 | 03/14/2018         |        | Х   |             |      |      |
| OADB-1    | 140-14470-3 | 03/14/2018         |        | Х   |             |      |      |
| IADB-1    | 140-14470-4 | 03/14/2018         |        | Х   |             |      |      |
| IADB-2    | 140-14470-5 | 03/14/2018         |        | Х   |             |      |      |
| IADB-3    | 140-14470-6 | 03/14/2018         |        | Х   |             |      |      |
| IADB-4    | 140-14470-7 | 03/14/2018         |        | Х   |             |      |      |



VOC

|                                                | Rep | Reported |    | rmance<br>eptable | Not      |
|------------------------------------------------|-----|----------|----|-------------------|----------|
|                                                | No  | Yes      | No | Yes               | Required |
| 1. Holding times                               |     | Х        |    | Х                 |          |
| 2. Method blanks                               |     | Х        |    | Х                 |          |
| 3. Surrogate %R                                |     |          |    |                   | Х        |
| 3. Laboratory Control Sample (LCS) spike %R    |     | Х        |    | Х                 |          |
| 4. Instrument performance check                |     | Х        |    | Х                 |          |
| 5. Internal standard retention times and areas |     | Х        |    | Х                 |          |
| 6. Initial calibration RRF's and %RSD's        |     | Х        |    | Х                 |          |
| 7. Continuing calibration RRF's and %D's       |     | Х        |    | Х                 |          |
| 8. Transcriptions – quant report vs. Form I    |     | Х        |    | Х                 |          |

VOCs - volatile organic compounds %R - percent recovery %D - percent difference %RSD - percent relative standard deviation RRF - relative response factor RPD - relative percent difference

Comments:

Performance was acceptable.

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 6/28/2021 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | 1 Bm M Br                |



| Project Name:             | NYSDEC -Fresh and Clean Laundry            |                |  |
|---------------------------|--------------------------------------------|----------------|--|
| Project Number:           | 3150-37                                    |                |  |
| Sample Date(s):           | January 26, 2021                           |                |  |
| Matrix/Number of Samples: | <u>Air/ 7</u><br><u>Blind duplicate/ 1</u> |                |  |
| Analyzing Laboratory:     | TestAmerica, South Burlington, VT          |                |  |
| Analyses:                 | <u>VOC</u> by EPA TO-15                    |                |  |
| Laboratory Report No:     | 200-57029                                  | Date: 2/5/2021 |  |

# ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

|                                                                    | Reported |     | Performance<br>Acceptable |     | Not      |  |
|--------------------------------------------------------------------|----------|-----|---------------------------|-----|----------|--|
|                                                                    | No       | Yes | No                        | Yes | Required |  |
| 1. Sample results                                                  |          | Х   |                           | Х   |          |  |
| 2. Parameters analyzed                                             |          | Х   |                           | Х   |          |  |
| 3. Method of analysis                                              |          | Х   |                           | Х   |          |  |
| 4. Sample collection date                                          |          | Х   |                           | Х   |          |  |
| 5. Laboratory sample received date                                 |          | Х   |                           | Х   |          |  |
| 6. Sample analysis date                                            |          | Х   |                           | Х   |          |  |
| 7. Copy of chain-of-custody form signed by<br>Lab sample custodian |          | Х   |                           | Х   |          |  |
| 8. Narrative summary of QA or sample problems provided             |          | Х   |                           | Х   |          |  |

QA - quality assurance

Comments:

A validation was conducted on the data package and any applicable qualification of the data was determined using the USEPA Hazardous Waste Support Branch Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method T0-15, July 2014, method performance criteria, and D&B Engineers and Architects, P.C. professional judgment. The qualification of data discussed within this data validation checklist did not impact the usability of the sample results.



#### Custody Numbers:200-57029 SAMPLE AND ANALYSIS LIST

| Sample ID                  | Lab ID      | Sample<br>Collection<br>Date | Parent<br>Sample | Analysis |             |      |      |  |
|----------------------------|-------------|------------------------------|------------------|----------|-------------|------|------|--|
|                            |             |                              |                  | VOC      | 1,4-Dioxane | PFAS | MISC |  |
| OADB-1                     | 200-57029-1 | 01/26/2021                   |                  | Х        |             |      |      |  |
| SSDB-1                     | 200-57029-2 | 01/26/2021                   |                  | Х        |             |      |      |  |
| SSDB-2                     | 200-57029-3 | 01/26/2021                   |                  | Х        |             |      |      |  |
| IADB-1                     | 200-57029-4 | 01/26/2021                   |                  | Х        |             |      |      |  |
| IADB-2                     | 200-57029-5 | 01/26/2021                   |                  | Х        |             |      |      |  |
| IADB-3                     | 200-57029-6 | 01/26/2021                   |                  | Х        |             |      |      |  |
| IADB-4                     | 200-57029-7 | 01/26/2021                   |                  | Х        |             |      |      |  |
| BLIND<br>DUPLICATE_1/26/21 | 200-57029-8 | 01/26/2021                   | IADB-2           | Х        |             |      |      |  |



| ۱/ | 0 | 2 |
|----|---|---|
| V  | υ | J |

|                                                         | Reported |     | Performance<br>Acceptable |                   | Not          |  |
|---------------------------------------------------------|----------|-----|---------------------------|-------------------|--------------|--|
|                                                         | No       | Yes | No                        | Yes               | Required     |  |
| 1. Holding times                                        |          | Х   |                           | Х                 |              |  |
| 2. Method blanks                                        |          | Х   | X                         |                   |              |  |
| 3. Laboratory Control Sample (LCS) spike %R             |          | Х   |                           | Х                 |              |  |
| 4. Instrument performance check                         |          | Х   |                           | Х                 |              |  |
| 5. Internal standard retention times and areas          |          | Х   |                           | Х                 |              |  |
| 6. Initial calibration RRF's and %RSD's                 |          | Х   |                           | Х                 |              |  |
| 7. Continuing calibration RRF's and %D's                |          | Х   |                           | Х                 |              |  |
| 8. Transcriptions – quant report vs. Form I             |          | Х   |                           | Х                 |              |  |
| OCs - volatile organic compounds %D - percent different | ence     |     | R                         | RF - relative res | ponse factor |  |

%R - percent recovery %RSD - percent relative standard deviation RPD - relative percent difference

#### Comments:

Performance was acceptable, except the following:

Tetrachloroethene exceeded the calibration range in samples SSDB-1 and SSDB-2 and were reanalyzed at a secondary dilution. Tetrachloroethene was reported from the secondary dilution (D) for samples SSDB-1 and SSDB-2.

Sample IADB-2 was field duplicated and labeled BLIND DUPLICATE\_1/26/21. The following compounds were qualified as estimated (J) in samples IADB-2 and BLIND DUPLICATE\_1/26/21: benzene, butane, isopropanol, tetrachloroethylene (PCE), and toluene.

2. N-butylbenzene, ethylbenzene, and o-xylene were detected in the method blanks. Ethylbenzene and o-xylene were qualified as non-detect (UB) based on method blank results in samples IADB-1, IADB-2, IADB-3, IADB-4, Blind Duplicate.

| VALIDATION PERFORMED BY & DATE:       | Donna M. Brown 2/24/2021 |
|---------------------------------------|--------------------------|
| VALIDATION PERFORMED BY<br>SIGNATURE: | Rom M Br                 |