

Nathan Putnam
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway
Albany, New York 12233-7015

Subject:

July 2011 through June 2012 System Status Report Soil Vapor Recovery System United Stellar Industries Property 131 Sunnyside Boulevard Site, Plainview, New York

Dear Mr. Putnam:

of New York, Inc. (ARCADIS) has prepared this system status report for the Vapor Recovery System (VRS), on behalf of 131 Sunnyside, LLC (Sunnyside) and the Estate of Gertrude Discount (Discount), at the United Stellar Industries Property located at 131 Sunnyside Blvd. in Plainview, New York. A letter report, summarizing the results of the VRS pilot test was submitted to the New York State Department of Environmental Conservation (NYSDEC) by ARCADIS on May 11, 2005. The VRS was restarted and is being operated in accordance with the VRS pilot test extension letter originally submitted to the NYSDEC on September 7, 2005, with NYSDEC comments, dated October 11, 2005, then revised and submitted by ARCADIS on November 18, 2005, with NYSDEC comments, dated February 2, 2006 and ARCADIS responses, dated May 15, 2006.

On September 22, 2009, the NYSDEC accepted the system modifications proposed in the August 20, 2009 submittal, "Air Emission Regulatory Review and Current Status, Related Calculations, and Proposed Modifications to Current System Configuration and Monitoring Procedures" (Regulatory Review). As recommended in the Regulatory Review, the vapor phase granular activated carbon (VPGAC) was taken off-line on December 3, 2009 and the frequency of performance and compliance monitoring was decreased from monthly to quarterly beginning with the fourth quarter 2009. No complications were encountered during the system modification. The following report provides documentation of all monitoring activities completed during the period beginning on July 1, 2011 and ending on June 30, 2012. During this reporting period (July 1, 2011 to June 30, 2012) the system was operated and the following four performance monitoring events were performed:

ARCADIS of New York, Inc.
Two Huntington Quadrangle
Suite 1S10
Melville
New York 11747
Tel 631 249 7600
Fax 631 249 7610
www.arcadis-us.com

ENVIRONMENT

Date:

November 27, 2012

Contact:

Doug Smolensky

Phone:

(631) 391-5290

Email:

doug.smolensky@arcadisus.com

Our ref

NY001422.0004.00002

ARCADIS

Nathan Putnam

November 26, 2012

- September 29, 2011
- December 28, 2011
- March 14, 2012
- June 28, 2012

Operational and volatile organic compound (VOC) data collected during the monitoring events are summarized in Tables 1, 2, and 3. A brief analysis of performance monitoring data is provided below.

Vapor Recovery System Operation

The VRS consists of three vacuum extraction locations (SVE-1, SVE-2 and SVE-3), six induced vacuum/vapor monitoring points (MP-1 through MP-6), a 5-horsepower regenerative blower, and a moisture separator. The two 400 pound VPGACs were removed from system operation on December 3, 2009. Control valves, monitoring gauges, and sample ports were installed as necessary to adjust system operation and provide a means for collecting the data provided within this report. All vapor samples were submitted to Air Toxics Laboratory in Folsom, CA for laboratory analysis via Method TO-14 (Direct Inject).

Article I. Results

Operational measurements including applied vacuum levels at each extraction point, extraction air flow rates, and photo-ionization detector (PID) readings are summarized in Table 1. In summary, the VRS is operating as designed. Key observations are as follows:

- Air flow rates at the vacuum extraction points measured during this reporting period ranged from approximately 31.6 to 78.2 actual cubic feet per minute (acfm).
- VRS wellhead vacuum measurements during this reporting period ranged from -36.0 inches water column (i.w.c.) to -42.0 i.w.c.
- PID measurements during this reporting period were 0.0 parts per million (ppm).

ARCADIS

Nathan Putnam

November 26, 2012

- Induced vacuum levels measured at the monitoring point locations (MP-1 through MP-6) are summarized below:
 - Negative vacuum levels were measured in monitoring points MP-1, MP-2,
 MP-5, and MP-6 during this reporting period.
 - Negative vacuum levels were measured in monitoring point MP-3 during the December 2011 to March 2012 monitoring events. There was no induced vacuum measured at monitoring point MP-3 during the September 29, 2011 and June 28, 2012 monitoring events.
 - Negative vacuum level was measured in monitoring point MP-4 during the December 28, 2011 monitoring event. There was no induced vacuum measured at monitoring point MP-4 during the September 29, 2011, March 14, 2012, and June 28, 2012 monitoring events.
 - o In all, 19 of the 24 measurements taken, showed negative vacuum levels.

Due to limited access to the monitoring point locations, monitoring points MP-3 and MP-4 could not be examined to determine the cause of the lack of induced vacuum levels. However, the changes in induced vacuum measured at these monitoring points may be due to seasonal variations and/or changes in atmospheric barometric pressure.

Vapor sample analytical results are summarized in Tables 2 and 3. In all extraction points, VOC concentrations were significantly less than levels observed during the last monitoring event of the pilot test (June 1, 2005). A summary of VOC analytical results is as follows:

• During this reporting period, extraction point SVE-1 had Trichloroethene (TCE) concentrations ranging from 230 ug/m³ to 500 ug/m³. Total volatile organic compounds (TVOC) concentrations for SVE-1 ranged from 300 ug/m³ to 570 ug/m³. TCE and TVOC concentrations remained consistent with the previous sampling rounds conducted during the October 2009 to June 2011 operational period for all sampling events completed during this reporting period. TCE and TVOC concentrations are well below the June 2006 levels for all sampling events completed during this reporting period.

ARCADIS

Nathan Putnam

November 26, 2012

- During this reporting period, extraction point SVE-2 had TCE concentrations ranging from 520 ug/m³ to 760 ug/m³. TVOC concentrations for SVE-2 ranged from 568 ug/m³ to 808 ug/m³. TCE and TVOC concentrations remained consistent with the previous sampling rounds conducted during the October 2009 to June 2011 operational period for all sampling events completed during the reporting period. TCE and TVOC concentrations are well below the June 2006 levels for all sampling events completed during this reporting period.
- During this reporting period, extraction point SVE-3 had TCE concentrations ranging from not detected to 86 ug/m³. TVOC concentrations for SVE-3 remained consistent with the previous sampling rounds conducted during the October 2009 to June 2011 operational period for all sampling events completed during the reporting period. TCE and TVOC concentrations are well below the June 2006 levels for all sampling events completed during this reporting period.
- In addition to the field and laboratory analytical results provided herein, ARCADIS calculated and is providing air modeling results for the monitoring events completed during the current reporting period. Air modeling calculations were performed using the effluent concentrations, and the NYSDEC DAR-1 Annual Guidance Concentration (AGC) model. Modeling results are provided in Tables A1 through A4. As shown on the Tables A1 through A4, modeling results indicate that the effluent vapor stream has been below NYSDEC AGCs during the last four monitoring events.

Article II. Conclusions

ARCADIS has drawn the following conclusions based on the results provided herein:

- The VRS operated as intended (i.e., a negative vacuum was maintained and contaminant mass was removed).
- TCE and TVOC concentrations have decreased significantly (from 2006 levels) in each of the three VRS extraction points.
- The highest VOC concentrations were observed in SVE-2 with lower concentrations present at SVE-1 and SVE-3; and,

 NYSDEC DAR-1 AGC emissions calculations indicate that the effluent vapor stream has been below the NYSDEC AGC limits for the last four monitoring events.

ARCADIS of New York, Inc. recommends the following based on the results provided herein:

- · Continued operation of the VRS;
- Eliminate influent vapor sample collection from all individual extraction points (SVE-1 through SVE-3). Influent concentrations from individual extraction points have remained constant over the past four years of system operation and are not used for the evaluation of system performance. Note that this does not preclude the implementation of non-routine monitoring events to collect additional data if system troubleshooting is required. Total effluent samples would continue to be collected on a quarterly basis to document vapor concentrations recovered from the system. We would like to proceed with this revised strategy beginning with the next scheduled performance monitoring event of December 2012.

Please call if you have questions or require additional information, or to provide your approval.

Sincerely,

ARCADIS of New York, Inc.

Douglas A. Smolensky
Associate Vice President

Christina Berardi Mohys

Christina Berardi Tuohy, P.E. New York Professional Engineer License Number NY-078743-1

Copies:

Fred Werfel, Spiegel Associates Renata Ockerby - NYSDOH File

Table 1. System Operational Data, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

	SVI	E - 1 Extraction	n Well Param	eters	SVI	E - 2 Extraction	n Well Param	eters	SVE - 3 Extraction Well Parameters			
Date	Wellhead Vacuum (in.W.C.)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)	Wellhead Vacuum (in.W.C.)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)	Wellhead Vacuum (in.W.C.)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)
09/29/11	-36.0	2,950	67.6	0.0	-38.0	1,660	38.0	0.0	-36.0	2,380	54.5	0.0
28/12/11	-38.0	2,996	68.6	0.0	-40.0	1,380	31.6	0.0	-38.0	2,693	61.7	0.0
03/14/12	-40.0	3,413	78.2	0.0	-42.0	2,476	56.7	0.0	-40.0	2,915	66.7	0.0
06/28/12	-38.0	2,939	67.3	0.0	-39.0	1,836	42.0	0.0	-38.0	2,592	59.4	0.0

Notes:

- 1. Data in this table corresponds to the current reporting period (July 1, 2011 to June 30, 2012).
- 2. The air flow rate was calculated by multiplying the measured air velocity in feet per minute by the cross sectional area of the pipe.
- 3. With prior New York State Department of Environmental Conservation approval, carbon treatment was removed from system operation on December 3, 2009. Therefore, GAC 500 was subsequently removed from system operation.

NA Not applicable.

Table 1. System Operational Data, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

	Blower Pa	Blower Parameters		GAC	500 Paramete	ers ⁽³⁾		Discharge Parameters					
Date	Influent Vacuum (in.W.C.)	Effluent Pressure (in.W.C.)	Influent Pressure (in.W.C.)	Influent Temperature (Degrees F)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)	Discharge Pressure (in.W.C.)	Discharge Temperature (Degrees F)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)	
09/29/11	-58.0	0.0	NA	NA	NA	NA	NA	0.0	100.5	1,738	155.4	0.0	
28/12/11	-58.0	0.0	NA	NA	NA	NA	NA	0.0	84.8	1,748	156.3	0.0	
03/14/12	-58.0	0.0	NA	NA	NA	NA	NA	0.0	93.6	1,890	169.0	0.0	
06/28/12	-56.0	0.0	NA	NA	NA	NA	NA	0.0	105.0	1,881	168.2	0.0	

Notes:

- 1. Data in this table corresponds to the current reporting period (July 1, 2011 to June 30, 2012).
- 2. The air flow rate was calculated by multiplying the measured air velocity in feet per minute by the cross sectional area of the pipe.
- 3. With prior New York State Department of Environmental Conservation approval, carbon treatment was removed from system operation on December 3, 2009. Therefore, GAC 500 was subsequently removed from system operation.

NA Not applicable.

Table 1. System Operational Data, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

			Induced Vacuun	n Measurements		
	MP-1	MP-2	MP-3	MP-4	MP-5	MP-6
Date	(in.W.C.)	(in.W.C.)	(in.W.C.)	(in.W.C.)	(in.W.C.)	(in.W.C.)
09/29/11	-0.05	-0.08	0.00	0.00	-0.07	-0.07
28/12/11	-0.09	-0.05	-0.02	-0.01	-0.07	-0.08
03/14/12	-0.02	-0.03	-0.01	0.00	-0.04	-0.04
06/28/12	-0.04	-0.05	0.00	0.01	-0.04	-0.04

Notes:

- 1. Data in this table corresponds to the current reporting period (July 1, 2011 to June 30, 2012).
- 2. The air flow rate was calculated by multiplying the measured air velocity in feet per minute by the cross sectional area of the pipe.
- 3. With prior New York State Department of Environmental Conservation approval, carbon treatment was removed from system operation on December 3, 2009. Therefore, GAC 500 was subsequently removed from system operation.

NA Not applicable.

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-1 ⁽³⁾ 6/16/2006	SVE-1 6/30/2006	SVE-1 7/14/2006	SVE-1 7/28/2006	SVE-1 8/11/2006	SVE-1 8/25/2006	SVE-1 9/8/2006	SVE-1 10/5/2006	SVE-1 11/3/2006
1,1,1-Trichloroethane		150 J	1,100	220	210	340	87	98	110	76
1,1-Dichloroethane		ND J	ND	ND	20	32	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		200 J	130	ND	ND	14	ND	100	45	16
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND J	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		51 J	160	ND	ND	33	ND	ND	ND	ND
cis-1,2-Dichloroethene		140 J	160	42	80	180	71	90	130	110
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		280 J	410	61	70	100	44	52	67	51
Freon 12		ND J	ND	ND	ND	29	ND	ND	25	29
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND J	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		210 J	220	ND	46	140	ND	60	130	110
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		32 J	ND	ND	ND	ND	24	ND	ND	ND
Trichloroethene		5,200 J	5,900	840	1,400	3,200	980	1,700	3,000	2,300
Total VOCs ⁽²⁾		6263 J	8,080	1,163	1,826	4,068	1,206	2,100	3,507	2,692

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-1 12/5/2006	SVE-1 4/26/2007	SVE-1 5/29/2007	SVE-1 6/27/2007	SVE-1 7/26/2007	SVE-1 ⁽⁴⁾ 9/6/2007	SVE-1 9/28/2007	SVE-1 10/25/2007	SVE-1 ⁽⁵⁾ 12/13/2007
1,1,1-Trichloroethane		53	27	34	34	48	28	ND	ND	42
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		12	ND	ND	36	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	28	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		97	42	71	70	86	52	51	59	76
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		45	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		28	ND	ND	ND	ND	ND	ND	ND	33
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND.	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	38	51	68	ND	ND	ND	36
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	30	ND	ND	30
Trichloroethene		1,400	650	1,300	1,300	1,700	900	1,300	1,200	1,200
Total VOCs (2)		1,635	719	1,443	1,491	1,902	1,038	1,351	1,259	1,417

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-1 12/27/2007	SVE-1 ⁽⁶⁾ 2/5/2008	SVE-1 2/26/2008	SVE-1 ⁽⁷⁾ 4/3/2008	SVE-1 4/30/2008	SVE-1 5/27/2008	SVE-1 6/26/2008	SVE-1 7/23/2008	SVE-1 8/28/2008
1,1,1-Trichloroethane		59	45	29	ND	36	42	29	33	44
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		30	ND	ND	22	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	60	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	25	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	16	ND	19	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		120	110	84	45	120	140	110	100	140
Ethanol		ND	ND	ND	62	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		53	33	28	ND	35	43	40	36	58
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	64	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		34	ND	ND	17	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		100	75	59	ND	66	100	98	91	120
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		71	ND	40	230	ND	ND	ND	ND	ND
Trichloroethene		2,500	2,000	1,400	700	2,000	2,600	2,200	1,900	2,500
Total VOCs ⁽²⁾		2,967	2,263	1,640	1,225	2,257	2,941	2,477	2,179	2,862

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-1 9/30/2008	SVE-1 10/30/2008	SVE-1 ⁽⁸⁾ 11/25/2008	SVE-1 ⁽⁹⁾ 1/14/2009	SVE-1 2/25/2009	SVE-1 3/31/2009	SVE-1 ⁽¹⁰⁾ 5/12/2009	SVE-1 5/28/2009	SVE-1 6/30/2009
1,1,1-Trichloroethane		28	ND		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND		ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND		ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	94		ND	ND	ND	ND	ND	74
1,2-Dichloropropane		ND	ND		ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	57		ND	ND	ND	ND	ND	26
2,2,4-Trimethylpentane		ND	94		ND	ND	ND	ND	ND	ND
2-Butanone		ND	16		ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND		ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	79	40-10	ND	ND	ND	ND	ND	74
Acetone		ND	ND	no re	ND	ND	ND	ND	ND	ND
Benzene		ND	ND		ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND		ND	ND	ND	ND	ND	23
Chloroform		ND	ND		ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		87	56		48	31	44	46	92	70
Ethanol		ND	ND		ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	32		ND	ND	ND	ND	ND	42
Freon 113		ND	ND		ND	ND	ND	ND	ND	ND
Freon 12		40	28		ND	ND	ND	ND	29	36
Heptane		ND	ND		ND	ND	ND	ND	ND	ND
Hexane		ND	ND		ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	140		ND	ND	ND	ND	ND	180
Methylene Chloride		ND	ND		ND	ND	ND	ND	23	ND
MTBE		ND	ND		ND	ND	ND	ND	ND	ND
o-Xylene		ND	78		ND	ND	ND	ND	ND	69
Tetrachloroethene		72	ND		36	ND	38	ND	70	36
Tetrahydrofuran		ND	63		ND	ND	ND	ND	ND	ND
Toluene		ND	58		ND	ND	ND	ND	ND	68
Trichloroethene		1,600	840		880	500	740	720	1,500	1,100
Total VOCs (2)		1,827	1,635		964	531	822	766	1,714	1,798

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-1 ⁽¹¹⁾ 8/3/2009	SVE-1 8/31/2009	SVE-1 ⁽¹²⁾ 9/30/2009	SVE-1 12/30/2009	SVE-1 3/25/2010	SVE-1 6/16/2010	SVE-1 9/28/2010	SVE-1 12/8/2010	SVE-1 3/22/2011
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		30	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	31	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	25	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	38	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	47	ND
Trichloroethene		310	150	130	83	81	ND	590	240	270
Total VOCs (2)		340	150	130	83	81	ND	684	287	270

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-1 6/28/2011	SVE-1 9/29/2011	SVE-1 12/28/2011	SVE-1 3/14/2012	SVE-1 6/28/2012
1,1,1-Trichloroethane		ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND
Acetone		69	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND
Carbon Disulfide		ND	21	ND	ND	17
Chloroform		ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	22	ND	ND	ND
Ethanol		ND	ND	ND	110	ND
Ethyl Benzene		ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND
Freon 12		ND	27	ND	ND	ND
Heptane		ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND
Toluene		26	ND	ND	43	ND
Trichloroethene		270	500	300	230	380
Total VOCs (2)		365	570	300	383	397

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-2 ⁽³⁾ 6/16/2006	SVE-2 6/30/2006	SVE-2 7/14/2006	SVE-2 7/28/2006	SVE-2 8/11/2006	SVE-2 8/25/2006	SVE-2 9/8/2006	SVE-2 10/5/2006	SVE-2 11/3/2006
1,1,1-Trichloroethane		64 J	52	ND	ND	46	ND	39	35	36
1,1-Dichloroethane		ND J	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND J	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		150 J	130	ND	ND	27	12	120	41	16
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND J	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND J	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		320 J	290	88	84	160	82	140	100	89
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		580 J	580	190	180	310	ND	ND	250	240
Freon 12		ND J	ND	ND	ND	ND	170	280	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND J	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND J	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		180 J	190	46	39	140	45	120	130	130
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		30 J	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		12,000 J	16,000	3,300	3,200	8,100	3,400	6,700	5,500	4,200
Total VOCs (2)		13,324 J	17,242	3,624	3,503	8,783	3,709	7,399	6,056	4,711

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-2 12/5/2006	SVE-2 4/26/2007	SVE-2 5/29/2007	SVE-2 6/27/2007	SVE-2 7/26/2007	SVE-2 ⁽⁴⁾ 9/6/2007	SVE-2 9/28/2007	SVE-2 10/25/2007	SVE-2 ⁽⁵⁾ 12/13/2007
1,1,1-Trichloroethane	· ···	ND	ND	29	ND	40	29	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		13	ND	ND	170	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		65	38	300	ND	84	63	ND	ND	39
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		210	110	190	ND	210	170	ND	ND	76
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	50	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		53	ND	110	ND	130	58	ND	ND	73
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		21	ND	ND	95	ND	ND	ND	ND	ND
Trichloroethene		2,300	1,400	4,300	240	3,700	2,600	3,400	2,100	1,600
Total VOCs ⁽²⁾		2.662	1,548	4,929	555	4,164	2,920	3,400	2,100	1,788

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-2 12/27/2007	SVE-2 ⁽⁶⁾ 2/5/2008	SVE-2 2/26/2008	SVE-2 ⁽⁷⁾ 4/3/2008	SVE-2 4/30/2008	SVE-2 5/27/2008	SVE-2 6/26/2008	SVE-2 7/23/2008	SVE-2 8/28/2008
1,1,1-Trichloroethane		29	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	18	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	51	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	60	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	24	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	18	ND	20	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		54	43	38	ND	53	60	51	48	63
Ethanol		ND	ND	ND	59	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		92	94	97	ND	100	100	73	80	95
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	82	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	18	28	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		210	120	110	ND	89	110	110	100	130
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	24	ND	210	ND	ND	ND	ND	ND
Trichloroethene		3,400	2,100	2,000	780	2,500	3,300	2,600	2,400	2,900
Total VOCs (2)		3,785	2,381	2,245	1,302	2,770	3,588	2,834	2,648	3,188

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-2 9/30/2008	SVE-2 10/30/2008	SVE-2 11/25/2008	SVE-2 ⁽⁹⁾ 1/14/2009	SVE-2 2/25/2009	SVE-2 3/31/2009	SVE-2 ⁽¹⁰⁾ 5/12/2009	SVE-2 5/28/2009	SVE-2 6/30/2009	SVE-2 (11) 8/3/2009
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	32	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	32	ND
Acetone		66	ND	68	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	22	28
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		42	ND	ND	25	21	32	35	59	41	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		63	ND	ND	ND	ND	ND	ND	59	68	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	27	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	61	ND
Methylene Chloride		ND	23	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	23	ND
Tetrachloroethene		93	ND	45	66	51	58	59	100	49	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	370	ND	ND	ND	ND	ND	ND	20	ND
Trichloroethene		1,800	310	840	1,200	1,200	1,600	1,800	2,700	1,700	480
Total VOCs (2)		2,064	730	953	1,291	1,272	1,690	1,894	2,918	2,048	508

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-2 8/31/2009	SVE-2 ⁽¹²⁾ 9/30/2009	SVE-2 12/30/2009	SVE-2 3/25/2010	SVE-2 6/16/2010	SVE-2 9/28/2010	SVE-2 12/8/2010	SVE-2 3/22/2011
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	20	ND
Ethanol		ND	ND	ND	ND	ND	330	ND	460 J
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	19	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	64	66	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		240	200	160	160	200	840	940	ND
Total VOCs (2)		240	200	160	160	200	1,234	1,045	460 J

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-2 6/28/2011	SVE-2 9/29/2011	SVE-2 12/28/2011	SVE-2 3/14/2012	SVE-2 6/28/2012
1,1,1-Trichloroethane		ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND
Carbon Disulfide		18	ND	ND	ND	16
Chloroform		ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	52	ND
Ethyl Benzene		ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND
Tetrachloroethene		ND	48	48	37	ND
Tetrahydrofuran		ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND
Trichloroethene		650	760	520	650	750
Total VOCs (2)		668	808	568	739	766

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-3 ⁽³⁾ 6/16/2006	SVE-3 6/30/2006	SVE-3 7/14/2006	SVE-3 7/28/2006	SVE-3 8/11/2006	SVE-3 8/25/2006	SVE-3 9/8/2006	SVE-3 10/5/2006	SVE-3 11/3/2006
1,1,1-Trichloroethane		ND J	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND J	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND J	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		160 J	150	ND	26	ND	ND	72	32	14
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND J	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND J	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		27 J	150	71	38	60	76	140	170	240
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		130 J	320	110	73	79	93	110	91	110
Freon 12		ND J	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND J	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND J	ND	ND	ND	ND	ND	ND	ND	ND
MTBÉ		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND J	49	ND	ND	ND	ND	34	ND	37
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND J	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		600 J	1,000	290	180	310	270	480	450	480
Total VOCs (2)		917 J	1,669	471	317	449	439	836	743	881

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-3 ⁽¹¹⁾ 8/3/2009	SVE-3 8/31/2009	SVE-3 ⁽¹²⁾ 9/30/2009	SVE-3 12/30/2009	SVE-3 3/25/2010	SVE-3 6/16/2010	SVE-3 9/28/2010	SVE-3 12/8/2010	SVE-3 3/22/2011
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		37	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		40	ND	28	27	21	ND	210	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	220	74	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	20	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	29	ND
Trichloroethene		28	ND	ND	ND	ND	ND	93	ND	ND
Total VOCs (2)		105	ND	28	27	21	ND	523	123	ND

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	SVE-3 6/28/2011	SVE-3 9/29/2011	SVE-3 12/28/2011	SVE-3 3/14/2012	SVE-3 6/28/2012
1,1,1-Trichloroethane		ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND
Carbon Disulfide		22	22	ND	ND	
Chloroform		ND				18 ND
cis-1,2-Dichloroethene		100	ND	ND	ND	ND
Ethanol			220 ND	160	24	110
		180 ND	ND	760	ND	40
Ethyl Benzene		ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND
Toluene		35	ND	ND	ND	ND
Trichloroethene		34	86	44	ND	44
Total VOCs (2)		371	328	964	24	212

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Notes:

- 1. Samples collected by ARCADIS personnel on the dates shown and submitted to Air Toxics Laboratories in Folsom, CA for VOC analyses using Direct Inject Method TO-14. Only VOCs detected at or above their respective laboratory quantification limits at any sample location during the project are presented in this table.
- "Total VOCs" represents the sum of individual concentrations of compounds listed in this table.
- 3. Due to laboratory error, samples SVE-1, SVE-2, and SVE-3 were analyzed outside of the recommended hold time. Although subsequent laboratory testing indicating the results are representative, these results are nonetheless considered estimated, and are noted with a J qualifier.
- The August, 2007 monthly compliance sampling event was completed on September 6, 2007.
- Sample SVE-1 collected on November 29, 2007 arrived at the laboratory flat. All monthly compliance samples were re-collected on December 13, 2007.
- 6. Samples collected on January 31, 2008 were delivered to the laboratory outside of the recommended holding time. January monthly compliance sampling was re-conducted on February 5, 2008.
- 7. Sample SVE-2 collected on March 26, 2008 arrived at the laboratory flat. All monthly compliance samples were re-collected on April 3, 2008.
- 8. Sample SVE-1 was not collected during the November 2008 operational period due to a lack of a sufficient quantity of sample bags.
- 9. Samples were not collected during the December 2008 operational period as a result of the system being intermittently offline due to water accumulation in the system knock-out tank.
- 10. April monthly compliance sampling was completed on May 12, 2009.
- 11. July monthly compliance sampling was completed on August 3, 2009.
- 12. With prior approval, the frequency of compliance monitoring was decreased from monthly to quarterly beginning with the fourth quarter 2009.
- J Estimated value.
- ND Analyte not detected at, or above its laboratory quantification limit.
- ug/m³ Micrograms per cubic meter.
- VOC Volatile organic compound.
- -- Not analyzed.

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	EFF-1 6/30/2006	EFF-1 7/28/2006	EFF-1 8/11/2006	EFF-1 8/25/2006	EFF-1 9/8/2006	EFF-1 10/5/2006	EFF-1 11/3/2006	EFF-1 12/5/2006	EFF-1 4/26/2007
A A A Table we offer a		ND	ND	ND	ND	ND	ND			
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	28	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		170	58	27	ND	70	46	12	20	61
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		18	ND	ND	ND	ND	ND	ND	ND	54
Carbon Disulfide		ND	ND -	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	21	79	110	140	140	98	93	68
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND .	ND	49	72	61	64	74
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		140	54	ND	ND	ND	120	82	160	200
Total VOCs (2)		328	133	106	110	259	378	281	337	457

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	EFF-1 11/25/2008	EFF-1 ⁽⁷⁾ 1/14/2009	EFF-1 2/25/2009	EFF-1 3/31/2009	EFF-1 ⁽⁸⁾ 5/12/2009	EFF-1 5/28/2009	EFF-1 6/30/2009	EFF-1 ⁽⁹⁾ 8/3/2009	EFF-1 8/31/2009
(driits iii ug/iii)	Date.	11/23/2006	1/14/2009	2/25/2009	3/3//2009	3/12/2009	3/20/2009	0/30/2009	0/3/2009	0/31/2009
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	33	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	21	19	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	83	25	62	79	140	120	24	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	53	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	25	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		56	490	330	580	680	1,600	2,300	520	260
Total VOCs (2)		56	573	355	642	759	1,765	2,527	563	260

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	EFF-2 2/26/2008	EFF-2 ⁽⁶⁾ 4/3/2008	EFF-2 4/30/2008	EFF-2 5/27/2008	EFF-2 6/26/2008	EFF-2 7/23/2008	EFF-2 8/28/2008	EFF-2 9/30/2008	EFF-2 10/30/2008
1,1,1-Trichloroethane		45	47	48	74	48	47	74	45	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	65
1,2-Dichloropropane		ND	ND	ND	ND	ND	41	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	38
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	53
2-Butanone		ND	ND	ND	ND	ND	18	ND	ND	ND
2-Propanol		59	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	50
Acetone		ND	ND	ND	ND	ND	54	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	18	16	26	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		140	140	150	160	120	93	150	110	32
Ethanol		ND	57	70	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		99	71	100	98	110	96	120	49	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	95
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	51
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	39
Toluene		32	ND	ND	ND	ND	110	ND	ND	140
Trichloroethene		260	330	570	1,000	1,000	1,300	2,400	1,900	380
Total VOCs (2)		635	645	938	1,350	1,294	1,785	2,744	2,104	943

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	EFF-2 11/25/2008	EFF-2 ⁽⁷⁾ 1/14/2009	EFF-2 2/25/2009	EFF-2 3/31/2009	EFF-2 ⁽⁸⁾ 5/12/2009	EFF-2 5/28/2009	EFF-2 6/30/2009	EFF-2 ⁽⁹⁾ 8/3/2009	EFF-2 8/31/2009
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	30	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	20	30	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		35	73	68	92	66	160	120	29	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	53	54	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	21	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		32	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		420	700	510	820	740	1,700	2,500	590	300
Total VOCs (2)		487	773	578	912	806	1,934	2,724	649	300

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Constituents (units in ug/m³)	Sample ID: Date:	EFF-2 (10) 9/30/2009	EFF-2 12/30/2009	EFF-2 3/25/2010	EFF-2 6/16/2010	EFF-2 9/28/2010	EFF-2 12/8/2010	EFF-2 3/22/2011	EFF-2 6/28/2011	EFF-2 9/29/2011
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	17	17
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	110	100	63	ND	110
Ethanol		ND	ND	ND	ND	ND	64	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	43	ND	ND	ND	35
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		170	81	68	88	580	460	350	ND	520
Total VOCs (2)		170	81	68	88	733	624	413	17	682

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York. (1)

Notes:

- Samples collected by ARCADIS personnel on the dates shown and submitted to Air Toxics Laboratories in Folsom, CA for VOC analyses using Direct Inject
 Method TO-14. Only VOCs detected at or above their respective laboratory quantification limits at any sample location during the project are presented in this table.
- 2. "Total VOCs" represents the sum of individual concentrations of compounds listed in this table.
- The August monthly compliance sampling event was completed on September 6, 2007.
- 4. Sample EFF-1 collected on November 29, 2007 arrived at the laboratory flat. All monthly compliance samples were re-collected on December 13, 2007.
- 5. Samples collected on January 31, 2008 were delivered to the laboratory outside of the recommended holding time. January monthly compliance sampling was re-conducted on February 5, 2008.
- 6. Sample SVE-2 collected on March 26, 2008 arrived at the laboratory flat. All monthly compliance samples were re-collected n April 3, 2008.
- 7. Samples were not collected during the December 2008 operational period as a result of the system being intermittently offline due to water accumulation in the system knock-out tank.
- 8. The April 2009 sampling event was completed on May 12, 2009.
- 9. The July 2009 sampling event was completed on August 3, 2009.
- 10. With prior New York State Department of Environmental Conservation approval, carbon treatment was removed from system operation on December 3, 2009.
 Therefore, sample location EFF-1 was subsequently removed from system operation.
- 11. With prior approval, the frequency of compliance monitoring was decreased from monthly to quarterly beginning with the fourth quarter 2009.
- J Estimated value.
- ND Analyte not detected at, or above its laboratory quantification limit.
- VOC Volatile organic compound.
- ug/m3 Micrograms per cubic meter.
- Not analyzed.

Table A1. NYSDEC DAR-1 September 29, 2011, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Measured Effluent Flowrate =	155.4	ACFM			
	10011	% of Total Flow			
SVE-1 Measured Flowrate (ACFM) =	67.5	0.42			
SVE-2 Measured Flowrate (ACFM) =	38.0	0.24			
SVE-3 Measured Flowrate (ACFM) =	54.5	0.34			
Sum of Individual Flows (ACFM) =	160.0				
		Lab Data		Mass Balance	Actual Effluent
		(ug/m³)		Concentration (1)	Concentration
	SVE-1	SVE-2	SVE-3	(ug/m ³)	(ug/m ³)
n 12	27	0	0	11	0
loroethene	500	760	86	421	520
achloroethene	0	48	0	11	35
,2-Dichloroethene	22	0	220	84	110
on Disulfide	21	0	22	16	17

^{1.} Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow + Lab Data Concentration SVE-3 x SVE-3 % of Total Flow.

Table A1. NYSDEC DAR-1 September 29, 2011, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 09/29/2011 Sampling Ev	vent		
Discharge Temperature (1)	Т	560	°R
Ambient Temperature (2)	Та	521	°R
Stack Diameter	D	4.049	in
Stack Radius	R	0.169	ft
Stack Area	Α	0.09	ft ²
Exit Velocity	V	29.0	fps
Exit Flow	Q	155	acfm
Exit Flow	Q	146	scfm
Stack Height	h_s	12	ft
Building Height	h _b	10	ft
Ratio of Heights	h_s/h_b	1.20	
Plume rise credit? h _s /h _b > 1.5?	(If no, h _e =h _s)	No	
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²
Effective Stack Height	h _e	12	ft
Reduction Factor? 2.5 > h _s /h _b > 1.5?		No, do not reduce in	npact
Actual Annual Impact	C_a	RF*6*Q _a /h _e ^{2.25}	
Mass Flow	Q_a	S lbs emitted for last 12	2 months

Abbreviations:

°R: Degrees Rankine

in: Inches

ft: Feet

fps: Feet per second

acfm: Actual cubic feet per minute

scfm: Standard cubic feet per minute

s: Second

lbs: Pounds

- 1. The stack discharge temperature is based on recorded parameters.
- 2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A1. NYSDEC DAR-1 September 29, 2011, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Calculation of AGC Based on Actual	Effluent Results From 09/29/2	011 Sampling Event	(1)			
Compounds	Maximum Limit on C_a (AGC ²)	Maximum Mass Flow Q _a	Actual Effluent Emissions C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/ m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
Freon 12	12,000	536,028.40	0.00	0.00E+00	0.00000	0.00
Trichloroethene	0.5	22.33	520.00	2.85E-04	2.49777	11.18
Tetrachloroethene	1	44.67	35.00	1.92E-05	0.16812	0.38
cis-1,2-Dichloroethene	63	2,814.15	110.00	6.03E-05	0.52837	0.02
Carbon Disulfide	700	31,268.32	17.00	9.32E-06	0.08166	0.00

Calculation of AGC Based on Influent Results From 09/29/2011 Sampling Event (1)

Compounds	Maximum Limit on C_a (AGC 2)	Maximum Mass Flow Q _a	Influent Concentrations C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
Freon 12	12,000	536,028.40	11.39	6.25E-06	0.05471	0.00
Trichloroethene	0.5	22.33	420.73	2.31E-04	2.02094	9.05
Tetrachloroethene	1	44.67	11.40	6.25E-06	0.05476	0.12
cis-1,2-Dichloroethene	63	2,814.15	84.22	4.62E-05	0.40454	0.01
Carbon Disulfide	700	31,268.32	16.35	8.97E-06	0.07855	0.00

Notes/Assumptions:

- 1. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.
- 2. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated October 18, 2010.

Abbreviations:

ug/m3: micrograms per cubic meter

lb/yr: pounds per year lb/hr: pounds per hour

Table A2. NYSDEC DAR-1 December 28, 2011, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 12/28/2011 Sampling Ev	ent		
Discharge Temperature (1)	Т	544	°R
Ambient Temperature (2)	Та	492	°R
Stack Diameter	D	4.049	in
Stack Radius	R	0.169	ft
Stack Area	Α	0.09	ft ²
Exit Velocity	V	29.1	fps
Exit Flow	Q	156	acfm
Exit Flow	Q	151	scfm
Stack Height	h_s	12	ft
Building Height	h_b	10	ft
Ratio of Heights	h _s /h _b	1.20	
Plume rise credit? h _s /h _b > 1.5?	(If no, $h_e=h_s$)	No	
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²
Effective Stack Height	h _e	12	ft
Reduction Factor? 2.5 > h _s /h _b > 1.5?		No, do not reduce im	pact
Actual Annual Impact	C_{a}	RF*6*Q _a /h _e ^{2,25}	
Mass Flow	Q_a	S lbs emitted for last 12	months

Abbreviations:

°R: Degrees Rankine

in: Inches ft: Feet

fps: Feet per second

acfm: Actual cubic feet per minute

scfm: Standard cubic feet per minute

s: Second lbs: Pounds

- 1. The stack discharge temperature is based on recorded parameters.
- 2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A2. NYSDEC DAR-1 December 28, 2011, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Compounds		Maximum Mass Flow	Actual Effluent	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
·	(AGC²) ug/m³	Q _a lb/yr	Emissions C _a ug/m³	lb/hr	lb/yr	%
thanol	45,000	2,010,106.50	0.00	0.00E+00	0.00000	0.00
richloroethene	0.5	22.33	190.00	1.08E-04	0.94437	4.23
etrachloroethene	1	44.67	0.00	0.00E+00	0.00000	0.00
is-1,2-Dichloroethene	63	2,814.15	49.00	2.78E-05	0.24355	0.01
-Propanol	7,000	312,683.23	75.00	4.26E-05	0.37278	0.00
oluene	5,000	223,345.17	33.00	1.87E-05	0.16402	0.00
cetone	30,000	1,340,071.00	47.00	2.67E-05	0.23361	0.00
thyl Benzene	1,000	44,669.03	50.00	2.84E-05	0.24852	0.00
n,p-Xylene	100	4,466.90	180.00	1.02E-04	0.89466	0.02
-Xylene	100	4,466.90	68.00	3.86E-05	0.33798	0.01
,3,5-Trimethylbenzene	290	12,954.02	95.00	5.39E-05	0.47218	0.00
,2,4-Trimethylbenzene	290	12,954.02	140.00	7.94E-05	0.69585	0.01
ropylbenzene	1,000	44,669.03	35.00	1.99E-05	0.17396	0.00
		(4)				
Calculation of AGC Based on Influer Compounds	Maximum Limit on C	Sampling Event (1) Sampling Event (1) Sampling Event (1) Sampling Event (1)	Influent Concentrations C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annua
		a Maximum Mass Flow		Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	Maximum Limit on C	a Maximum Mass Flow Q _a	Concentrations C _a		•	
Compounds	Maximum Limit on C (AGC ²) ug/m ³	Maximum Mass Flow Q _a lb/yr 2,010,106.50 22.33	Concentrations C _a ug/m ³ 289.64 245.38	lb/hr	lb/yr	%
Compounds thanol richloroethene etrachloroethene	Maximum Limit on C (AGC ²) ug/m ³ 45,000 0.5	Q _a Maximum Mass Flow Q _a lb/yr 2,010,106.50 22.33 44.67	Concentrations C _a ug/m ³ 289.64 245.38 9.37	1.64E-04 1.39E-04 5.32E-06	lb/yr 1.43959 1.21962 0.04657	% 0.00 5.46 0.10
thanol richloroethene etrachloroethene is-1,2-Dichloroethene	Maximum Limit on C (AGC²) ug/m³ 45,000 0.5 1 63	Q _a lb/yr 2,010,106.50 22.33 44.67 2,814.15	Concentrations C _a ug/m ³ 289.64 245.38 9.37 60.98	1.64E-04 1.39E-04 5.32E-06 3.46E-05	1.43959 1.21962 0.04657 0.30307	% 0.00 5.46 0.10 0.01
Compounds Sthanol Frichloroethene Setrachloroethene is-1,2-Dichloroethene -Propanol	Maximum Limit on C (AGC ²) ug/m ³ 45,000 0.5 1 63 7,000	Q _a Maximum Mass Flow Q _a lb/yr 2,010,106.50 22.33 44.67 2,814.15 312,683.23	Concentrations C _a ug/m ³ 289.64 245.38 9.37 60.98 0.00	1.64E-04 1.39E-04 5.32E-06 3.46E-05 0.00E+00	1.43959 1.21962 0.04657 0.30307 0.00000	% 0.00 5.46 0.10 0.01 0.00
thanol richloroethene etrachloroethene is-1,2-Dichloroethene -Propanol	Maximum Limit on C (AGC²) ug/m³ 45,000 0.5 1 63 7,000 5,000	Q _a lb/yr 2,010,106.50 22.33 44.67 2,814.15	Concentrations C _a ug/m ³ 289.64 245.38 9.37 60.98 0.00 0.00	1.64E-04 1.39E-04 5.32E-06 3.46E-05	1.43959 1.21962 0.04657 0.30307 0.00000 0.00000	% 0.00 5.46 0.10 0.01 0.00
thanol richloroethene etrachloroethene is-1,2-Dichloroethene -Propanol oluene cetone	Maximum Limit on C (AGC²) ug/m³ 45,000 0.5 1 63 7,000 5,000 30,000	Q _a lb/yr 2,010,106.50 22.33 44.67 2,814.15 312,683.23 223,345.17 1,340,071.00	Concentrations C _a ug/m ³ 289.64 245.38 9.37 60.98 0.00 0.00 0.00	1.64E-04 1.39E-04 5.32E-06 3.46E-05 0.00E+00 0.00E+00	1.43959 1.21962 0.04657 0.30307 0.00000 0.00000	% 0.00 5.46 0.10 0.01 0.00 0.00
thanol richloroethene etrachloroethene is-1,2-Dichloroethene -Propanol oluene cetone	Maximum Limit on C (AGC²) ug/m³ 45,000 0.5 1 63 7,000 5,000	Q _a Maximum Mass Flow Q _a Ib/yr 2,010,106.50 22.33 44.67 2,814.15 312,683.23 223,345.17	Concentrations C _a ug/m ³ 289.64 245.38 9.37 60.98 0.00 0.00	1.64E-04 1.39E-04 5.32E-06 3.46E-05 0.00E+00 0.00E+00	1.43959 1.21962 0.04657 0.30307 0.00000 0.00000	% 0.00 5.46 0.10 0.01 0.00
thanol richloroethene etrachloroethene is-1,2-Dichloroethene -Propanol oluene cetone thyl Benzene	Maximum Limit on C (AGC²) ug/m³ 45,000 0.5 1 63 7,000 5,000 30,000	Q _a lb/yr 2,010,106.50 22.33 44.67 2,814.15 312,683.23 223,345.17 1,340,071.00	Concentrations C _a ug/m ³ 289.64 245.38 9.37 60.98 0.00 0.00 0.00	1.64E-04 1.39E-04 5.32E-06 3.46E-05 0.00E+00 0.00E+00	1.43959 1.21962 0.04657 0.30307 0.00000 0.00000	% 0.00 5.46 0.10 0.01 0.00 0.00
Compounds Sthanol Frichloroethene Setrachloroethene is-1,2-Dichloroethene	Maximum Limit on C (AGC²) ug/m³ 45,000 0.5 1 63 7,000 5,000 30,000 1,000	Q _a Maximum Mass Flow Q _a Ib/yr 2,010,106.50 22.33 44.67 2,814.15 312,683.23 223,345.17 1,340,071.00 44,669.03	Concentrations C _a ug/m ³ 289.64 245.38 9.37 60.98 0.00 0.00 0.00 0.00	1.64E-04 1.39E-04 5.32E-06 3.46E-05 0.00E+00 0.00E+00 0.00E+00	1.43959 1.21962 0.04657 0.30307 0.00000 0.00000 0.00000	% 0.00 5.46 0.10 0.01 0.00 0.00 0.00 0.00
Compounds Cithanol Cirichloroethene Cetrachloroethene Cetrachloro	Maximum Limit on C (AGC²) ug/m³ 45,000 0.5 1 63 7,000 5,000 30,000 1,000 100	A Maximum Mass Flow Q _a Ib/yr 2,010,106.50 22.33 44.67 2,814.15 312,683.23 223,345.17 1,340,071.00 44,669.03 4,466.90	Concentrations C _a ug/m ³ 289.64 245.38 9.37 60.98 0.00 0.00 0.00 0.00 0.00 0.00	1.64E-04 1.39E-04 5.32E-06 3.46E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00	1.43959 1.21962 0.04657 0.30307 0.00000 0.00000 0.00000 0.00000 0.00000	% 0.00 5.46 0.10 0.01 0.00 0.00 0.00 0.00
Compounds Ethanol Frichloroethene Fetrachloroethene Fetrachloroethene Forpanol Foluene Foucetone Ethyl Benzene Fouch,p-Xylene -Xylene	Maximum Limit on C (AGC²) ug/m³ 45,000 0.5 1 63 7,000 5,000 30,000 1,000 100 100	A Maximum Mass Flow Q _a lb/yr 2,010,106.50 22.33 44.67 2,814.15 312,683.23 223,345.17 1,340,071.00 44,669.03 4,466.90 4,466.90	Concentrations C _a ug/m ³ 289.64 245.38 9.37 60.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1.64E-04 1.39E-04 5.32E-06 3.46E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	1.43959 1.21962 0.04657 0.30307 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	% 0.00 5.46 0.10 0.01 0.00 0.00 0.00 0.00 0.00

Table A2. NYSDEC DAR-1 December 28, 2011, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Notes/Assumptions:

- 1. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.
- 2. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated October 18, 2010.

Abbreviations:

ug/m3: micrograms per cubic meter

lb/yr: pounds per year lb/hr: pounds per hour

Table A3. NYSDEC DAR-1 March 14, 2012, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Measured Effluent Flowrate =	169.0	ACFM			
		% of Total Flow			
SVE-1 Measured Flowrate (ACFM) =	78.2	0.39			
SVE-2 Measured Flowrate (ACFM) =	56.7	0.28			
SVE-3 Measured Flowrate (ACFM) =	66.7	0.33			
Sum of Individual Flows (ACFM) =	201.6				
		Lab Data		Mass Balance	Actual Effluent
		(ug/m ³)		Concentration (1)	Concentration
	SVE-1	SVE-2	SVE-3	(ug/m ³)	(ug/m ³)
anol	110	52	0	57	93
chloroethene	230	650	0	272	290
rachloroethene	0	37	0	10	0
1,2-Dichloroethene	0	0	24	8	50
uene	43	0	0	17	0
uone	10				

^{1.} Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow + Lab Data Concentration SVE-3 x SVE-3 % of Total Flow.

Table A3. NYSDEC DAR-1 March 14, 2012, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 03/14/2012 Sampling E	vent		
Discharge Temperature (1)	Т	553	°R
Ambient Temperature (2)	Та	535	°R
Stack Diameter	D	4.049	in
Stack Radius	R	0.169	ft
Stack Area	Α	0.09	ft ²
Exit Velocity	V	31.5	fps
Exit Flow	Q	169	acfm
Exit Flow	Q	161	scfm
Stack Height	h _s	12	ft
Building Height	h _b	10	ft
Ratio of Heights	h_s/h_b	1.20	
Plume rise credit? h _s /h _b > 1.5?	(If no, $h_e=h_s$)	No	
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²
Effective Stack Height	h _e	12	ft
Reduction Factor? $2.5 > h_s/h_b > 1.5$?		No, do not reduce in	npact
Actual Annual Impact	C_a	RF*6*Q _a /h _e ^{2.25}	
Mass Flow	Q_{a}	S lbs emitted for last 12	months

Abbreviations:

°R: Degrees Rankine

in: Inches

ft: Feet

fps: Feet per second

acfm: Actual cubic feet per minute scfm: Standard cubic feet per minute

s: Second lbs: Pounds

- 1. The stack discharge temperature is based on recorded parameters.
- 2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A4. NYSDEC DAR-1 June 28, 2012, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 06/28/2012 Sampling E	vent		
Discharge Temperature (1)	T	565	°R
Ambient Temperature (2)	Ta	532	°R
Stack Diameter	D	4.049	in
Stack Radius	R	0.169	ft
Stack Area	Α	0.09	ft ²
Exit Velocity	V	31.4	fps
Exit Flow	Q	168	acfm
Exit Flow	Q	157	scfm
Stack Height	h _s	12	ft
Building Height	h _b	10	ft
Ratio of Heights	${\sf h_s/h_b}$	1.20	
Plume rise credit? $h_s/h_b > 1.5$?	(If no, h _e =h _s)	No	
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²
Effective Stack Height	h _e	12	ft
Reduction Factor? $2.5 > h_s/h_b > 1.5$?		No, do not reduce in	npact
Actual Annual Impact	C _a	RF*6*Q _a /h _e ^{2.25}	i
Mass Flow	Q_a	S lbs emitted for last 12	2 months

Abbreviations:

Degrees Rankine

in: Inches

ft: Feet

fps: Feet per second

acfm: Actual cubic feet per minute

scfm: Standard cubic feet per minute

Second s: lbs: Pounds

- 1. The stack discharge temperature is based on recorded parameters.
- 2. The ambient temperature based on www.weather.newsday.com historic temperatures.