

Conor Shea, P.E. Environmental Engineer I New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7015

Subject:

July 2012 through December 2014 System Status Report Soil Vapor Recovery System United Stellar Industries Property 131 Sunnyside Boulevard Site, Plainview, New York

Dear Mr. Shea:

ARCADIS of New York, Inc. (ARCADIS) has prepared this system status report for the Vapor Recovery System (VRS), on behalf of 131 Sunnyside, LLC (Sunnyside), at the United Stellar Industries Property located at 131 Sunnyside Blvd. in Plainview, New York. The following report provides documentation of all monitoring activities and data evaluation conducted between July 1, 2012 and December 31, 2014 (hereinafter referred to as the reporting period).

Background

A letter report, summarizing the results of the VRS pilot test was submitted to the New York State Department of Environmental Conservation (NYSDEC) by ARCADIS on May 11, 2005. The VRS was restarted and is being operated in accordance with the VRS pilot test extension letter originally submitted to the NYSDEC on September 7, 2005, and modified based on the following:

- Revised and submitted by ARCADIS on November 18, 2005 based on NYSDEC comments, dated October 11, 2005.
- ARCADIS responses, dated May 15, 2006 based on NYSDEC comments, dated February 2, 2006.

On September 22, 2009, the NYSDEC accepted the system modifications proposed in the August 20, 2009 submittal, "Air Emission Regulatory Review and Current Status, Related Calculations, and Proposed Modifications to Current System Configuration and Monitoring Procedures" (Regulatory Review). As recommended in ARCADIS of New York, Inc. Two Huntington Quadrangle Suite 1S10 Melville New York 11747 Tel 631 249 7600 Fax 631 249 7610 www.arcadis-us.com

ENVIRONMENT

Date: April 14, 2015

Contact: Steve Feldman

Phone: (631) 391-5244

Email: Steven.Feldman@arcadisus.com

Our ref: NY001422.0004.00005

Conor Shea, P.E. April 14, 2015

the Regulatory Review, the vapor phase granular activated carbon (VPGAC) was taken off-line on December 3, 2009 and the frequency of performance and compliance monitoring was decreased from monthly to quarterly beginning with the Fourth Quarter of 2009. No complications were encountered during the system modification. During this reporting period the system was operated and the following ten performance monitoring events were conducted:

- September 13, 2012
- December 26, 2012
- March 26, 2013
- June 20, 2013
- September 19, 2013
- December 17, 2013
- March 27, 2014
- July, 1, 2014
- October 9, 2014
- December 23, 2014

Operational and volatile organic compound (VOC) data collected during the monitoring events are summarized in Tables 1, 2, and 3. A brief analysis of performance monitoring data is provided below.

Vapor Recovery System Operation

The VRS consists of three vacuum extraction locations (SVE-1, SVE-2 and SVE-3), six induced vacuum/vapor monitoring points (MP-1 through MP-6), a 5-horsepower regenerative blower, and a moisture separator. The two 400 pound VPGACs were removed from system operation on December 3, 2009. Control valves, monitoring gauges, and sample ports were installed as necessary to adjust system operation and provide a means for collecting the data provided within this report. All vapor samples were submitted to Air Toxics Laboratory in Folsom, California for laboratory analysis via Method TO-14 (Direct Inject).

Results

Operational measurements including applied vacuum levels at each extraction point, extraction air flow rates, and photo-ionization detector (PID) readings are summarized in Table 1. In summary, the VRS is operating as designed. Key observations are as follows:

- Air flow rates at the vacuum extraction points measured during this reporting period ranged from approximately 29.4 to 75.3 actual cubic feet per minute (acfm).
- VRS wellhead vacuum measurements during this reporting period ranged from -36.0 to -43.0 inches water column (in.W.C.).
- PID measurements during this reporting period ranged from 0.0 to 0.9 parts per million by volume (ppmv).
- Induced vacuum levels measured at the monitoring point locations (MP-1 through MP-6) are summarized below:
 - Negative vacuum levels were measured in monitoring points MP-1, MP-2, MP-5, and MP-6 during this reporting period.
 - Negative vacuum levels were measured in monitoring point MP-3 during the September 13, 2012, December 26, 2012, June 20, 2013, March 27, 2014, July 1, 2014, October 9, 2014, and December 23, 2014 monitoring events. There was no induced vacuum measured at monitoring point MP-3 during the March 26, 2013, September 19, 2013, and December 17, 2013 monitoring events.
 - Negative vacuum level was measured in monitoring point MP-4 during the September 13, 2012, December 26, 2012, and October 9, 2014 monitoring events. There was no induced vacuum measured at monitoring point MP-4 during the March 26, 2013, June 20, 2013, September 19, 2013, December 17, 2013, March 27, 2014, July 1, 2014, and December 23, 2014 monitoring events.
 - In all, 50 of the 60 recorded measurements exhibited negative vacuum levels.

Due to limited access to the monitoring point locations, monitoring points MP-3 and MP-4 could not be examined to determine the cause of the lack of induced vacuum levels. However, the changes in induced vacuum measured at these monitoring points may be due to seasonal variations and/or changes in atmospheric barometric pressure.

Vapor sample analytical results are summarized in Tables 2 and 3. In all extraction points, VOC concentrations were significantly less than levels observed during the last monitoring event of the pilot test (June 1, 2005), and exhibit asymptotic TVOC concentration curves (Figure 1). A summary of VOC analytical results is as follows:

- During this reporting period, extraction point SVE-1 had trichloroethene (TCE) concentrations ranging from not detected to 250 µg/m³. Total volatile organic compounds (TVOC) concentrations for SVE-1 ranged from below the limits of detection to 400 µg/m³. TCE and TVOC concentrations generally decreased from the previous sampling rounds conducted during the July 2011 through June 2012 operational period. TCE and TVOC concentrations are well below the June 2006 levels (i.e., startup of full-scale VRS operation) for all sampling events completed during this reporting period.
- During this reporting period, extraction point SVE-2 had TCE concentrations ranging from not detected to 480 µg/m³. TVOC concentrations for SVE-2 ranged from below the limits of detection to 650 µg/m³. TCE and TVOC concentrations decreased from the previous sampling rounds conducted during the July 2011 through June 2012 operational period for all sampling events completed during the reporting period. TCE and TVOC concentrations are well below the June 2006 levels for all sampling events completed during this reporting period.
- During this reporting period, no TCE concentrations were found above the limits of detection for extraction point SVE-3. TVOC concentrations for SVE-3 ranged from 16 to 304 µg/m³. TVOC concentrations are well below the June 2006 levels for all sampling events completed during this reporting period.
- During this reporting period, effluent sample EFF-2 had TCE concentrations ranging from below the limits of detection to 590 µg/m³. TVOC concentrations ranged from below the limits of detection to 668 µg/m³. TCE and TVOC concentrations have decreased when compared with the previous sampling rounds conducted during the July 2011 through June 2012 operational period.

 In addition to the field and laboratory analytical results provided herein, ARCADIS calculated and is providing air modeling results for the monitoring events completed during the current reporting period. Air modeling calculations were performed using the effluent concentrations, and the NYSDEC DAR-1 Annual Guidance Concentration (AGC) model. Modeling results are provided in Tables A1 through A8. The effluent concentrations for the September 2014 and December 2014 sampling events were below the limits of detection; therefore, air modeling calculations were not performed for these monitoring events. As shown on the Tables A1 through A8, modeling results indicate that the effluent vapor stream has been below NYSDEC AGCs during the current reporting period.

Conclusions

Based on the results provided herein, ARCADIS concludes the following:

- The VRS operated as intended (i.e., a negative vacuum was maintained and contaminant mass was removed).
- TCE and TVOC concentrations have decreased significantly (from 2006 levels) in each of the three VRS extraction points.
- The highest VOC concentrations were observed in SVE-2 with lower concentrations present at SVE-1 and SVE-3;
- During this reporting period, effluent concentrations have been at low, asymptotic levels (with the most recent results below the limits of detection). These results indicate significant and substantial concentration decreases when compared to system startup (i.e., 2006 levels); and,
- NYSDEC DAR-1 AGC emissions calculations indicate that the effluent vapor stream has been below the NYSDEC AGC limits for the last eight monitoring events.

ARCADIS of New York, Inc. recommends the following based on the results provided herein:

• Continue to operate the VRS to maintain a negative pressure beneath the building slab, thereby mitigating the potential vapor intrusion pathway.

- Discontinue the quarterly collection and laboratory analysis of effluent vapor samples at EFF-2 since TVOCs have decreased to low, asymptotic concentrations, and the current benefit of the VRS is the prevention of vapor intrusion (i.e., as opposed to VOC mass reduction).
- Continue to collect quarterly induced vacuum measurements to document the effectiveness of the VRS in maintaining a negative pressure beneath the building slab.

With NYSDEC approval, we plan to proceed with this revised monitoring approach beginning with the next scheduled performance monitoring event in June 2015. Please contact Ron Stallone (516-935-1100 x223) if you have any questions or need additional information.

Sincerely,

ARCADIS of New York, Inc.

Steves Teldmon

Steve Feldman Principal Scientist

Christina Berardi Tiohy

Christina Berardi Tuohy, P.E. New York Professional Engineer License Number NY-078743-1

^{Copies:} Mr. Ron Stallone, Spiegel Associates Wendy Kuehner, NYSDOH File

Table 1. System Operational Data, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

	SV	E - 1 Extraction	n Well Param	eters	SV	E - 2 Extractio	n Well Param	ieters	SVE - 3 Extraction Well Parameters			
Date	Wellhead Vacuum (in.W.C.)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)	Wellhead Vacuum (in.W.C.)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)	Wellhead Vacuum (in.W.C.)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)
09/13/12	-38.0	2,862	65.5	0.0	-39.0	1,672	38.3	0.0	-38.0	2,271	52.0	0.0
12/26/12	-40.0	3,092	70.8	0.1	-41.0	1,386	31.7	0.1	-38.0	2,625	60.1	0.1
03/26/13	-40.0	3,151	72.2	0.0	-42.0	1,759	40.3	0.0	-40.0	2,724	62.4	0.0
06/20/13	-36.5	2,477	56.7	0.1	-38.1	1,571	36.0	0.1	-36.0	2,133	48.8	0.1
09/19/13	-37.0	2,900	66.4	0.0	-38.0	1,790	41.0	0.0	-36.0	2,510	57.5	0.0
12/17/13	-38.5	3,020	69.2	0.0	-41.0	1,283	29.4	0.0	-40.0	2,420	55.4	0.0
03/27/14	-39.0	3,269	74.9	0.9	-43.0	1,650	37.8	0.3	-40.0	2,514	57.6	0.0
07/01/14 (4)	-38.0	2,840	65.0	0.0	-39.0	1,810	41.4	0.0	-36.0	2,485	56.9	0.0
10/09/14 (5)	-37.0	2,928	67.0	NA ⁽⁶⁾	-39.0	1,746	40.0	NA ⁽⁶⁾	-36.0	2,514	57.6	NA ⁽⁶⁾
12/23/14	-41.0	3,290	75.3	NA	-42.0	1,419	32.5	NA	-40.0	2,513	57.5	NA

Notes:

1. Data in this table corresponds to the current reporting period (July 1, 2012 to December 31, 2014).

2. The air flow rate was calculated by multiplying the measured air velocity in feet per minute by the cross sectional area of the pipe.

3. Per NYSDEC approval the vapor phase carbon treatment (GAC 500) was removed from system operation on December 3, 2009.

4. June 2014 guarterly compliance sampling event was completed on July 1, 2014. Air samples were collected on July 10, 2014.

5. September 2014 quarterly compliance sampling event was completed on October 9, 2014.

6. PID measurements were not collected due to samples SVE-1, SVE-2, and SVE-3 being removed from system operation starting with the performance monitoring event of September 2013, as stated in the July 2011 through June 2012 System Status Report, dated November 27, 2012.

acfm	actual cubic feet per minute
fpm	feet per minute
in. W.C	inches of water column
NA	not applicable
NYSDEC	New York State Department of Environmental Conservation
ppmv	parts per million by volume
	data pat reported

-- data not recorded

	Blower P	arameters		GAC	500 Paramet	ers ⁽³⁾			Disc	harge Parame	eters	
Date	Influent Vacuum (in.W.C.)	Effluent Pressure (in.W.C.)	Influent Pressure (in.W.C.)	Influent Temperature (Degrees F)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)	Discharge Pressure (in.W.C.)	Discharge Temperature (Degrees F)	Air Velocity (fpm)	Air Flow Rate ⁽²⁾ (acfm)	PID Measured Concentration (ppmv)
09/13/12	-57.5	0.0	NA	NA	NA	NA	NA	0.0	119.6	1,858	166.1	0.0
12/26/12	-58.0	0.0	NA	NA	NA	NA	NA	0.0	78.4	1,969	176.1	0.1
03/26/13	-58.0	0.0	NA	NA	NA	NA	NA	0.0	96.6	1,811	161.9	0.0
06/20/13	-56.0	0.0	NA	NA	NA	NA	NA	0.0	114.0	1,655	148.0	0.2
09/19/13	-56.0	0.0	NA	NA	NA	NA	NA	0.0	98.0	1,755	156.9	0.1
12/17/13	-59.5	0.0	NA	NA	NA	NA	NA	0.0	71.3	1,887	168.7	0.0
03/27/14	-60.0	0.0	NA	NA	NA	NA	NA	0.0	93.0	1,984	177.4	
07/01/14 (4)	-56.0	0.0	NA	NA	NA	NA	NA	0.0	103.0	1,685	150.7	0.0
10/09/14 ⁽⁵⁾	-56.0	0.0	NA	NA	NA	NA	NA	0.0	111.3	1,740	155.6	0.1
12/23/14	-60.0	0.0	NA	NA	NA	NA	NA	0.0	83.0	1,840	164.5	0.0

Notes:

1. Data in this table corresponds to the current reporting period (July 1, 2012 to December 31, 2014).

2. The air flow rate was calculated by multiplying the measured air velocity in feet per minute by the cross sectional area of the pipe.

3. Per NYSDEC approval the vapor phase carbon treatment (GAC 500) was removed from system operation on December 3, 2009.

4. June 2014 guarterly compliance sampling event was completed on July 1, 2014. Air samples were collected on July 10, 2014.

5. September 2014 quarterly compliance sampling event was completed on October 9, 2014.

6. PID measurements were not collected due to samples SVE-1, SVE-2, and SVE-3 being removed from system operation starting with the performance monitoring event of September 2013, as stated in the July 2011 through June 2012 System Status Report, dated November 27, 2012.

acfm	actual cubic feet per minute
fpm	feet per minute
in. W.C	inches of water column
NA	not applicable
NYSDEC	New York State Department of Environmental Conservation
ppmv	parts per million by volume
	data pat reported

-- data not recorded

Table 1. System Operational Data, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

	Induced Vacuum Measurements												
. .	MP-1	MP-2	MP-3	MP-4	MP-5	MP-6							
Date	(in.W.C.)	(in.W.C.)	(in.W.C.)	(in.W.C.)	(in.W.C.)	(in.W.C.)							
09/13/12	-0.01	-0.04	-0.02	-0.01	-0.10	-0.05							
12/26/12	-0.01	-0.02	-0.01	-0.01	-0.02	-0.02							
03/26/13	-0.05	-0.04	0.06	0.00	-0.04	-0.04							
06/20/13	-0.05	-0.07	-0.17	0.01	-0.11	-0.09							
09/19/13	-0.06	-0.07	0.01	0.00	-0.11	-0.07							
12/17/13	-0.05	-0.02	0.00	0.00	-0.03	-0.01							
03/27/14	-0.01	-0.07	-0.01	0.02	-0.07	-0.04							
07/01/14 (4)	-0.03	-0.06	-0.03	0.04	-0.06	-0.06							
10/09/14 ⁽⁵⁾	-0.11	-0.13	-0.04	-0.08	-0.12	-0.09							
12/23/14	-0.02	-0.04	-0.05	0.00	-0.03	-0.03							

Notes:

1. Data in this table corresponds to the current reporting period (July 1, 2012 to December 31, 2014).

2. The air flow rate was calculated by multiplying the measured air velocity in feet per minute by the cross sectional area of the pipe.

3. Per NYSDEC approval the vapor phase carbon treatment (GAC 500) was removed from system operation on December 3, 2009.

4. June 2014 guarterly compliance sampling event was completed on July 1, 2014. Air samples were collected on July 10, 2014.

5. September 2014 quarterly compliance sampling event was completed on October 9, 2014.

6. PID measurements were not collected due to samples SVE-1, SVE-2, and SVE-3 being removed from system operation starting with the performance monitoring event of September 2013, as stated in the July 2011 through June 2012 System Status Report, dated November 27, 2012.

oofm	actual aubic fact par minute
acim	
fpm	feet per minute
in. W.C	inches of water column
NA	not applicable
NYSDEC	New York State Department of Environmental Conservation
ppmv	parts per million by volume
	data not recorded

-- data not recorded

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-1 6/1/2005	SVE-1 ⁽³⁾ 6/16/2006	SVE-1 6/30/2006	SVE-1 7/14/2006	SVE-1 7/28/2006	SVE-1 8/11/2006	SVE-1 8/25/2006	SVE-1 9/8/2006	SVE-1 10/5/2006
1.1.1-Trichloroethane		180	150 J	1,100	220	210	340	87	98	110
1.1-Dichloroethane		ND	ND J	ND		20	32	ND	ND	ND
1.1-Dichloroethene		ND	ND	ND	ND			ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1.3.5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2.2.4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	200 J	130	ND	ND	14	ND	100	45
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND J	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	51 J	160	ND	ND	33	ND	ND	ND
cis-1,2-Dichloroethene		380	140 J	160	42	80	180	71	90	130
Cyclohexane		ND								
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	280 J	410	61	70	100	44	52	67
Freon 12		ND	ND J	ND	ND	ND	29	ND	ND	25
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND J	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		310	210 J	220	ND	46	140	ND	60	130
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	32 J	ND	ND	ND	ND	24	ND	ND
trans-1,2-Dichloroethene		22	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		7900	5,200 J	5,900	840	1,400	3,200	980	1,700	3,000
Total VOCs (2)		8,792	6263 J	8,080	1,163	1,826	4,068	1,206	2,100	3,507

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-1 11/3/2006	SVE-1 12/5/2006	SVE-1 4/26/2007	SVE-1 5/29/2007	SVE-1 6/27/2007	SVE-1 7/26/2007	SVE-1 ⁽⁴⁾ 9/6/2007	SVE-1 9/28/2007	SVE-1 10/25/2007
1 1 1-Trichloroethane		76	53	27	34	34	48	28	ND	ND
1 1-Dichloroethane									ND	ND
1 1-Dichloroethene		ND	ND	ND						
1 2 4-Trimethylbenzene		ND	ND		ND	ND	ND	ND	ND	ND
1.2-Dichloropropage		ND	ND		ND	ND	ND	ND	ND	ND
1 3 5-Trimethylbenzene		ND	ND	ND						
2 2 4-Trimethylpentane		ND	ND	ND						
2-Butanone		ND	ND	ND						
2-Propanol		16	12	ND	ND	36	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND						
Acetone		ND	ND	ND						
Benzene		ND	ND	ND						
Carbon Disulfide		ND	ND	ND	ND	ND	ND	28	ND	ND
Chloroform		ND	ND	ND						
cis-1,2-Dichloroethene		110	97	42	71	70	86	52	51	59
Cyclohexane								ND	ND	ND
Ethanol		ND	ND	ND						
Ethyl Benzene		ND	ND	ND						
Freon 113		51	45	ND	ND	ND	ND	ND	ND	ND
Freon 12		29	28	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND						
Hexane		ND	ND	ND						
m,p-Xylene		ND	ND	ND						
Methylene Chloride		ND	ND	ND						
MTBE		ND	ND	ND						
o-Xylene		ND	ND	ND						
Tetrachloroethene		110	ND	ND	38	51	68	ND	ND	ND
Tetrahydrofuran		ND	ND	ND						
Toluene		ND	ND	ND	ND	ND	ND	30	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND						
Trichloroethene		2,300	1,400	650	1,300	1,300	1,700	900	1,300	1,200
Total VOCs (2)		2,692	1,635	719	1,443	1,491	1,902	1,038	1,351	1,259

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents $(units in un/m^3)$	Sample ID:	SVE-1 ⁽⁵⁾	SVE-1	SVE-1 ⁽⁶⁾	SVE-1	SVE-1 ⁽⁷⁾	SVE-1	SVE-1	SVE-1	SVE-1
	Dale.	12/13/2007	12/21/2007	2/3/2006	2/20/2008	4/3/2008	4/30/2008	5/27/2008	0/20/2008	1/23/2008
1.1.1-Trichloroethane		42	59	45	29	ND	36	42	29	33
1.1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	30	ND	ND	22	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	60	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	25	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	16	ND	19
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		76	120	110	84	45	120	140	110	100
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	62	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		33	53	33	28	ND	35	43	40	36
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	64	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	34	ND	ND	17	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		36	100	75	59	ND	66	100	98	91
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		30	71	ND	40	230	ND	ND	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		1,200	2,500	2,000	1,400	700	2,000	2,600	2,200	1,900
Total VOCs (2)		1,417	2,967	2,263	1,640	1,225	2,257	2,941	2,477	2,179

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-1 8/28/2008	SVE-1 9/30/2008	SVE-1 10/30/2008	SVE-1 ⁽⁸⁾ 11/25/2008	SVE-1 ⁽⁹⁾ 1/14/2009	SVE-1 2/25/2009	SVE-1 3/31/2009	SVE-1 ⁽¹⁰⁾ 5/12/2009	SVE-1 5/28/2009
1.1.1 Trichloroothono		4.4	20	ND		ND	ND	ND	ND	
1, 1, 1- I inchioroethane		44 ND	20	ND			ND	ND		ND
1,1-Dichloroethane		ND	ND	ND		ND	ND	ND	ND	ND
		ND	ND	ND		ND	ND	ND	ND	ND
1,2,4- I rimetnyibenzene		ND	ND	94		ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND		ND	ND	ND	ND	ND
		ND	ND	57		ND	ND	ND	ND	ND
2,2,4-1 rimethylpentane		ND	ND	94		ND	ND	ND	ND	ND
2-Butanone		ND	ND	16		ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND		ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	79		ND	ND	ND	ND	ND
Acetone		ND	ND	ND		ND	ND	ND	ND	ND
Benzene		ND	ND	ND		ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND		ND	ND	ND	ND	ND
Chloroform		ND	ND	ND		ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		140	87	56		48	31	44	46	92
Cyclohexane		ND	ND	ND		ND	ND	ND	ND	ND
Ethanol		ND	ND	ND		ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	32		ND	ND	ND	ND	ND
Freon 113		ND	ND	ND		ND	ND	ND	ND	ND
Freon 12		58	40	28		ND	ND	ND	ND	29
Heptane		ND	ND	ND		ND	ND	ND	ND	ND
Hexane		ND	ND	ND		ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	140		ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND		ND	ND	ND	ND	23
MTBE		ND	ND	ND		ND	ND	ND	ND	ND
o-Xylene		ND	ND	78		ND	ND	ND	ND	ND
Tetrachloroethene		120	72	ND		36	ND	38	ND	70
Tetrahydrofuran		ND	ND	63		ND	ND	ND	ND	ND
Toluene		ND	ND	58		ND	ND	ND	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		2,500	1,600	840		880	500	740	720	1,500
Total VOCs (2)		2,862	1,827	1,635	0	964	531	822	766	1,714

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-1 6/30/2009	SVE-1 ⁽¹¹⁾ 8/3/2009	SVE-1 8/31/2009	SVE-1 ⁽¹²⁾ 9/30/2009	SVE-1 12/30/2009	SVE-1 3/25/2010	SVE-1 6/16/2010	SVE-1 9/28/2010	SVE-1 12/8/2010
		ND	ND	ND	ND	ND	ND	ND	ND	
		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
		ND 74	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4- I rimetnyibenzene		74	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5- I rimethylbenzene		26	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4- I rimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		74	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		23	30	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		70	ND	ND	ND	ND	ND	ND	31	ND
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		42	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		36	ND	ND	ND	ND	ND	ND	25	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		180	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		69	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		36	ND	ND	ND	ND	ND	ND	38	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		68	ND	ND	ND	ND	ND	ND	ND	47
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		1,100	310	150	130	83	81	ND	590	240
Total VOCs ⁽²⁾		1,798	340	150	130	83	81	0	684	287

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-1 3/22/2011	SVE-1 6/28/2011	SVE-1 9/29/2011	SVE-1 12/28/2011	SVE-1 3/14/2012	SVE-1 6/28/2012	SVE-1 9/13/2012	SVE-1 12/26/2012	SVE-1 3/26/2013
1 1 1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1 1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1 1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1 2 4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1 2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1.3.5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2 2 4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	50	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	69	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	21	ND	ND	17	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	22	ND	ND	ND	ND	ND	ND
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	110	ND	62	ND	70
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	27	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	98	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	26	ND	ND	43	ND	20	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		270	270	500	300	230	380	170	250	180
Total VOCs (2)		270	365	570	300	383	397	400	250	250

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents	Sample ID:	SVE-1 (13)	SVE-1	SVE-1	SVE-1	SVE-1	SVE-1 (16)	
(units in ug/m ³)	Date:	6/20/2013	9/19/2013	12/17/2013	3/27/2014	7/10/2014	10/9/2014	
				ND	ND	ND		
1,1,1-Irichloroethane			ND	ND	ND	ND		
1,1-Dichloroethane			ND	ND	ND	ND		
1,1-Dichloroethene			ND	ND	ND	ND		
1,2,4-Trimethylbenzene			ND	ND	ND	ND		
1,2-Dichloropropane			ND	ND	ND	ND		
1,3,5-Trimethylbenzene			ND	ND	ND	ND		
2,2,4-Trimethylpentane			ND	ND	ND	ND		
2-Butanone			ND	ND	ND	ND		
2-Propanol			ND	ND	ND	ND		
4-Ethyltoluene			ND	ND	ND	ND		
Acetone			ND	ND	ND	ND		
Benzene			ND	ND	ND	ND		
Carbon Disulfide			ND	ND	ND	ND		
Chloroform			ND	ND	ND	ND		
cis-1,2-Dichloroethene			ND	ND	ND	ND		
Cyclohexane			ND	ND	ND	ND		
Ethanol			ND	ND	43	ND		
Ethyl Benzene			ND	ND	ND	ND		
Freon 113			ND	ND	ND	ND		
Freon 12			ND	ND	ND	ND		
Heptane			ND	ND	ND	ND		
Hexane			ND	ND	ND	ND		
m,p-Xylene			ND	ND	ND	ND		
Methylene Chloride			ND	ND	ND	ND		
MTBE			ND	ND	ND	ND		
o-Xylene			ND	ND	ND	ND		
Tetrachloroethene			ND	ND	ND	ND		
Tetrahydrofuran			ND	ND	ND	ND		
Toluene			ND	25	ND	ND		
trans-1,2-Dichloroethene			ND	ND	ND	ND		
Trichloroethene			ND	ND	ND	ND		
Total VOCs ⁽²⁾		NA	0	25	43	0	NA	

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-2 6/1/2005	SVE-2 ⁽³⁾ 6/16/2006	SVE-2 6/30/2006	SVE-2 7/14/2006	SVE-2 7/28/2006	SVE-2 8/11/2006	SVE-2 8/25/2006	SVE-2 9/8/2006	SVE-2 10/5/2006
1,1,1-Irichloroethane		100	64 J	52	ND	ND	46	ND	39	35
1,1-Dichloroethane		ND	ND J	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND J	ND	ND	ND	ND	ND	ND	ND
2-Propanol		52	150 J	130	ND	ND	27	12	120	41
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND J	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND J	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		690	320 J	290	88	84	160	82	140	100
Cyclohexane										
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		760	580 J	580	190	180	310	ND	ND	250
Freon 12		ND	ND J	ND	ND	ND	ND	170	280	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND J	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND J	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		260	180 J	190	46	39	140	45	120	130
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	30 J	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		12,000	12,000 J	16,000	3,300	3,200	8,100	3,400	6,700	5,500
Total VOCs ⁽²⁾		13,862	13,324 J	17,242	3,624	3,503	8,783	3,709	7,399	6,056

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-2 11/3/2006	SVE-2 12/5/2006	SVE-2 4/26/2007	SVE-2 5/29/2007	SVE-2 6/27/2007	SVE-2 7/26/2007	SVE-2 ⁽⁴⁾ 9/6/2007	SVE-2 9/28/2007	SVE-2 10/25/2007
1,1,1-Trichloroethane		36	ND	ND	29	ND	40	29	ND	ND
1,1-Dichloroethane		ND	ND	ND						
1,1-Dichloroethene		ND	ND	ND						
1,2,4-Trimethylbenzene		ND	ND	ND						
1,2-Dichloropropane		ND	ND	ND						
1,3,5-Trimethylbenzene		ND	ND	ND						
2,2,4-Trimethylpentane		ND	ND	ND						
2-Butanone		ND	ND	ND						
2-Propanol		16	13	ND	ND	170	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND						
Acetone		ND	ND	ND						
Benzene		ND	ND	ND						
Carbon Disulfide		ND	ND	ND						
Chloroform		ND	ND	ND						
cis-1,2-Dichloroethene		89	65	38	300	ND	84	63	ND	ND
Cyclohexane								ND	ND	ND
Ethanol		ND	ND	ND						
Ethyl Benzene		ND	ND	ND						
Freon 113		240	210	110	190	ND	210	170	ND	ND
Freon 12		ND	ND	ND						
Heptane		ND	ND	ND						
Hexane		ND	ND	ND						
m,p-Xylene		ND	ND	ND						
Methylene Chloride		ND	ND	ND	ND	50	ND	ND	ND	ND
MTBE		ND	ND	ND						
o-Xylene		ND	ND	ND						
Tetrachloroethene		130	53	ND	110	ND	130	58	ND	ND
Tetrahydrofuran		ND	ND	ND						
Toluene		ND	21	ND	ND	95	ND	ND	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND						
Trichloroethene		4,200	2,300	1,400	4,300	240	3,700	2,600	3,400	2,100
Total VOCs ⁽²⁾		4,711	2,662	1,548	4,929	555	4,164	2,920	3,400	2,100

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-2 ⁽⁵⁾ 12/13/2007	SVE-2 12/27/2007	SVE-2 ⁽⁶⁾ 2/5/2008	SVE-2 2/26/2008	SVE-2 ⁽⁷⁾ 4/3/2008	SVE-2 4/30/2008	SVE-2 5/27/2008	SVE-2 6/26/2008	SVE-2 7/23/2008
1.1.1-Trichloroethane		ND	29	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	18	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	51	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	60	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	24	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	18	ND	20
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		39	54	43	38	ND	53	60	51	48
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	59	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		76	92	94	97	ND	100	100	73	80
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	82	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	18	28	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		73	210	120	110	ND	89	110	110	100
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	24	ND	210	ND	ND	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		1,600	3,400	2,100	2,000	780	2,500	3,300	2,600	2,400
Total VOCs ⁽²⁾		1,788	3,785	2,381	2,245	1,302	2,770	3,588	2,834	2,648

Constituents	Sample ID:	SVE-2	SVE-2	SVE-2	SVE-2	SVE-2 ⁽⁹⁾	SVE-2	SVE-2	SVE-2 (10)	SVE-2
(units in ug/m ⁺)	Date:	8/28/2008	9/30/2008	10/30/2008	11/25/2008	1/14/2009	2/25/2009	3/31/2009	5/12/2009	5/28/2009
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	66	ND	68	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		63	42	ND	ND	25	21	32	35	59
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		95	63	ND	ND	ND	ND	ND	ND	59
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	27	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	23	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		130	93	ND	45	66	51	58	59	100
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	370	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		2,900	1,800	310	840	1,200	1,200	1,600	1,800	2,700
Total VOCs ⁽²⁾		3,188	2,064	730	953	1,291	1,272	1,690	1,894	2,918

Constituents	Sample ID: SVE-2	SVE-2 (11)	SVE-2	SVE-2 (12)	SVE-2	SVE-2	SVE-2	SVE-2	SVE-2
(units in ug/m ³)	Date: 6/30/2009	8/3/2009	8/31/2009	9/30/2009	12/30/2009	3/25/2010	6/16/2010	9/28/2010	12/8/2010
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	32	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene	32	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	22	28	ND	ND	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	41	ND	ND	ND	ND	ND	ND	ND	20
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol	ND	ND	ND	ND	ND	ND	ND	330	ND
Ethyl Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113	68	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	ND	ND	ND	ND	ND	ND	ND	ND	19
m,p-Xylene	61	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	23	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	49	ND	ND	ND	ND	ND	ND	64	66
Tetrahydrofuran	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	20	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	1,700	480	240	200	160	160	200	840	940
Total VOCs ⁽²⁾	2,048	508	240	200	160	160	200	1,234	1,045

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-2 3/22/2011	SVE-2 6/28/2011	SVE-2 9/29/2011	SVE-2 12/28/2011	SVE-2 3/14/2012	SVE-2 6/28/2012	SVE-2 9/13/2012	SVE-2 12/26/2012	SVE-2 3/26/2013
1 1 1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1 1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1 1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1 2 4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1 2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1.3.5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2 2 4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	18	ND	ND	ND	16	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		460 J	ND	ND	ND	52	ND	68	ND	70
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	95	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	48	48	37	ND	ND	48	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	47	36	ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		ND	650	760	520	650	750	440	480	370
Total VOCs ⁽²⁾		460 J	668	808	568	739	766	650	564	440

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents	Sample ID:	SVE-2	SVE-2	SVE-2	SVE-2	SVE-2	SVE-2 (16)
(units in ug/m ³)	Date:	6/20/2013	9/19/2013	12/17/2013	3/27/2014	7/10/2014	10/9/2014
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	
1,1-Dichloroethane		ND	ND	ND	ND	ND	
1,1-Dichloroethene		ND	ND	ND	ND	ND	
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	
1,2-Dichloropropane		ND	ND	ND	ND	ND	
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	
2-Butanone		ND	ND	ND	ND	ND	
2-Propanol		ND	ND	ND	ND	ND	
4-Ethyltoluene		ND	ND	ND	ND	ND	
Acetone		ND	ND	ND	ND	ND	
Benzene		ND	ND	ND	ND	ND	
Carbon Disulfide		ND	ND	ND	ND	ND	
Chloroform		ND	ND	ND	ND	ND	
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND	
Cyclohexane		ND	ND	ND	ND	ND	
Ethanol		ND	ND	72	60	100	
Ethyl Benzene		ND	ND	ND	ND	ND	
Freon 113		ND	ND	ND	ND	ND	
Freon 12		ND	ND	ND	ND	ND	
Heptane		ND	ND	ND	ND	ND	
Hexane		ND	ND	ND	ND	ND	
m,p-Xylene		ND	ND	ND	ND	ND	
Methylene Chloride		21	ND	ND	ND	ND	
MTBE		ND	ND	ND	ND	ND	
o-Xylene		ND	ND	ND	ND	ND	
Tetrachloroethene		ND	ND	ND	ND	ND	
Tetrahydrofuran		ND	ND	ND	ND	ND	
Toluene		ND	ND	23	ND	ND	
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	
Trichloroethene		100	ND	ND	ND	ND	
Total VOCs (2)		121	0	95	60	100	NA

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-3 6/1/2005	SVE-3 ⁽³⁾ 6/16/2006	SVE-3 6/30/2006	SVE-3 7/14/2006	SVE-3 7/28/2006	SVE-3 8/11/2006	SVE-3 8/25/2006	SVE-3 9/8/2006	SVE-3 10/5/2006
· · · · · · ·										
1,1,1-Irichloroethane		ND	ND J	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND J	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		16	ND J	ND	ND	ND	ND	ND	ND	ND
2-Propanol		46	160 J	150	ND	26	ND	ND	72	32
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND J	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND J	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		390	27 J	150	71	38	60	76	140	170
Cyclohexane										
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		420	130 J	320	110	73	79	93	110	91
Freon 12		ND	ND J	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND J	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND J	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xvlene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		74	ND J	49	ND	ND	ND	ND	34	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND.I	ND	ND	ND	ND	ND	ND	ND
trans-1 2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		1,900	600 J	1,000	290	180	310	270	480	450
Total VOCs (2)		2,846	917 J	1,669	471	317	449	439	836	743

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-3 11/3/2006	SVE-3 12/5/2006	SVE-3 4/26/2007	SVE-3 5/29/2007	SVE-3 6/27/2007	SVE-3 7/26/2007	SVE-3 ⁽⁴⁾ 9/6/2007	SVE-3 9/28/2007	SVE-3 10/25/2007
1 1 1-Trichloroethane		ND	ND	ND						
1 1-Dichloroethane			ND					ND	ND	ND
1,1-Dichloroethane								ND	ND	ND
1,2 4-Trimethylbenzene								ND	ND	ND
1,2,4- Minetrybenzene								ND	ND	ND
1 3 5-Trimethylbenzene			ND			ND		ND	ND	ND
2 2 4-Trimethylpentane		ND	ND			ND		ND	ND	ND
2-Butanone		ND	ND			ND		ND	ND	ND
2-Propanol		14	16	ND	ND	37	ND	ND	ND	ND
4-Ethyltoluene				ND	ND		ND	ND	ND	ND
Acetone		ND	ND	ND						
Benzene		ND	ND	ND						
Carbon Disulfide		ND	ND	ND						
Chloroform		ND	ND	ND						
cis-1.2-Dichloroethene		240	240	180	300	300	420	230	250	270
Cvclohexane								ND	ND	ND
Ethanol		ND	ND	ND						
Ethyl Benzene		ND	ND	ND						
Freon 113		110	100	70	110	120	160	110	100	92
Freon 12		ND	ND	ND						
Heptane		ND	ND	ND						
Hexane		ND	ND	ND						
m,p-Xylene		ND	ND	ND						
Methylene Chloride		ND	ND	ND						
MTBE		ND	ND	ND						
o-Xylene		ND	ND	ND						
Tetrachloroethene		37	ND	ND	34	42	69	ND	55	ND
Tetrahydrofuran		ND	ND	ND						
Toluene		ND	ND	ND						
trans-1,2-Dichloroethene		ND	ND	ND						
Trichloroethene		480	350	210	340	340	460	310	340	260
Total VOCs ⁽²⁾		881	706	460	784	839	1,109	650	745	622

Constituents	Sample ID:	SVE-3 (5)	SVE-3	SVE-3 (6)	SVE-3	SVE-3 (7)	SVE-3	SVE-3	SVE-3	SVE-3
(units in ug/m ³)	Date:	12/13/2007	12/27/2007	2/5/2008	2/26/2008	4/3/2008	4/30/2008	5/27/2008	6/26/2008	7/23/2008
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	38
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	49	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	16	ND	26
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		140	170	110	92	73	93	140	130	140
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	44	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		44	48	44	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		23	ND	ND	ND	41	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		19	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	39	ND						
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	27	96	ND	ND	ND	96
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		130	170	92	71	55	88	110	100	120
Total VOCs (2)		356	427	246	190	358	181	266	230	420

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-3 8/28/2008	SVE-3 9/30/2008	SVE-3 10/30/2008	SVE-3 11/25/2008	SVE-3 ⁽⁹⁾ 1/14/2009	SVE-3 2/25/2009	SVE-3 3/31/2009	SVE-3 ⁽¹⁰⁾ 5/12/2009	SVE-3 5/28/2009
		ND	ND	ND	ND	ND	ND	ND	ND	
		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND			ND	ND		ND
		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimetnyibenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2.2.4 Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4- i rimetnyipentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	21
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	90
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	130 J
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		330	300	110	190	150	93	110	110	78
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	46
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	49
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		50	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	75
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	24
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	23
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	210	ND	ND	ND	ND	ND	120
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		160	160	100	71	100	39	63	56	35
Total VOCs ⁽²⁾		540	460	420	261	250	132	173	166	691 J

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-3 6/30/2009	SVE-3 ⁽¹¹⁾ 8/3/2009	SVE-3 8/31/2009	SVE-3 ⁽¹²⁾ 9/30/2009	SVE-3 12/30/2009	SVE-3 3/25/2010	SVE-3 6/16/2010	SVE-3 9/28/2010	SVE-3 12/8/2010
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		26	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		29	37	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		140	40	ND	28	27	21	ND	210	ND
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	220	74
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	20
m,p-Xylene		52	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		19	ND	ND	ND	ND	ND	ND	ND	29
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		76	28	ND	ND	ND	ND	ND	93	ND
Total VOCs ⁽²⁾		342	105	0	28	27	21	ND	523	123

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	SVE-3 3/22/2011	SVE-3 6/28/2011	SVE-3 9/29/2011	SVE-3 12/28/2011	SVE-3 3/14/2012	SVE-3 6/28/2012	SVE-3 9/13/2012	SVE-3 ⁽¹⁴⁾ 12/26/2012	SVE-3 3/26/2013
1 1 1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND		ND
1 1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND		ND
1.1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND		ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND		ND
1.2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND		ND
1.3.5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND		ND
2.2.4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND		ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND		ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND		ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND		ND
Acetone		ND	ND	ND	ND	ND	ND	ND		ND
Benzene		ND	ND	ND	ND	ND	ND	ND		ND
Carbon Disulfide		ND	22	22	ND	ND	18	16		ND
Chloroform		ND	ND	ND	ND	ND	ND	ND		ND
cis-1,2-Dichloroethene		ND	100	220	160	24	110	ND		68
Cyclohexane		ND	ND	ND	ND	ND	ND	ND		ND
Ethanol		ND	180	ND	760	ND	40	ND		69
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND		ND
Freon 113		ND	ND	ND	ND	ND	ND	ND		ND
Freon 12		ND	ND	ND	ND	ND	ND	ND		ND
Heptane		ND	ND	ND	ND	ND	ND	ND		ND
Hexane		ND	ND	ND	ND	ND	ND	ND		ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND		ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND		ND
MTBE		ND	ND	ND	ND	ND	ND	ND		ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND		ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND		ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND		ND
Toluene		ND	35	ND	ND	ND	ND	ND		ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND		ND
Trichloroethene		ND	34	86	44	ND	44	ND		ND
Total VOCs (2)		ND	371	328	964	24	212	16	NA	137

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents	Sample ID:	SVE-3 (13)	SVE-3 (15)	SVE-3	SVE-3	SVE-3	SVE-3 (16)
(units in ug/m ³)	Date:	6/20/2013	9/19/2013	12/17/2013	3/27/2014	7/10/2014	10/9/2014
1 1 1-Trichloroethane				ND	ND	ND	
1 1-Dichloroethane				ND	ND	ND	
1,1-Dichloroethene				ND	ND	ND	
1,2 4-Trimethylbenzene				ND	ND	ND	
1.2-Dichloropropane				ND	ND	ND	
1 3 5-Trimethylbenzene				ND	ND	ND	
2 2 4-Trimethylpentane				ND	ND	ND	
2-Butanone				ND	ND	ND	
2-Propanol				ND	ND	ND	
4-Ethyltoluene				ND	ND	ND	
Acetone				ND	58	ND	
Benzene				ND	ND	ND	
Carbon Disulfide				ND	ND	ND	
Chloroform				ND	ND	ND	
cis-1,2-Dichloroethene				ND	ND	ND	
Cyclohexane				ND	ND	ND	
Ethanol				120	190	ND	
Ethyl Benzene				ND	ND	ND	
Freon 113				ND	ND	ND	
Freon 12				ND	ND	ND	
Heptane				ND	ND	ND	
Hexane				ND	ND	ND	
m,p-Xylene				ND	28	ND	
Methylene Chloride				20	ND	ND	
MTBE				ND	ND	ND	
o-Xylene				ND	ND	ND	
Tetrachloroethene				ND	ND	ND	
Tetrahydrofuran				ND	ND	ND	
Toluene				57	28	ND	
trans-1,2-Dichloroethene				ND	ND	ND	
Trichloroethene				ND	ND	ND	
Total VOCs (2)		NA	NA	197	304	0	NA

Method TO-14.

Table 2. Summary of Extraction Well Vapor Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Notes:

1.

2. "Total VOCs" represents the sum of individual concentrations of compounds listed in this table. 3. Due to laboratory error, samples SVE-1, SVE-2, and SVE-3 were analyzed outside of the recommended hold time. Although subsequent laboratory testing indicating the results are representative, these results are nonetheless considered estimated, and are noted with a J qualifier. 4. The August 2007 monthly compliance sampling event was completed on September 6, 2007. 5. Sample SVE-1 collected on November 29, 2007 arrived at the laboratory flat. All monthly compliance samples were re-collected on December 13, 2007. 6. Samples collected on January 31, 2008 were delivered to the laboratory outside of the recommended holding time. January monthly compliance sampling was re-conducted on February 5, 2008. 7. Sample SVE-2 collected on March 26, 2008 arrived at the laboratory flat. All monthly compliance samples were re-collected on April 3, 2008. 8. Sample SVE-1 was not collected during the November 2008 operational period due to a lack of a sufficient quantity of sample bags. 9. Samples were not collected during the December 2008 operational period as a result of the system being intermittently offline due to water accumulation in the system knock-out tank. 10. April 2009 monthly compliance sampling was completed on May 12, 2009. 11. July 2009 monthly compliance sampling was completed on August 3, 2009. 12. With prior NYSDEC approval, the frequency of compliance monitoring was decreased from monthly to guarterly beginning with the fourth guarter 2009. 13. Samples SVE-1 and SVE-3 collected during the June 2013 operational period arrived at the laboratory flat. 14. Sample SVE-3 collected during the December 2012 operational period arrived at the laboratory flat. 15. Sample SVE-3 collected during the September 2013 operational period arrived at the laboratory flat. 16. Samples SVE-1, SVE-2, and SVE-3 were removed from system operation starting with the performance monitoring event of September 2013, as stated in the July 2011 through June 2012 System Status Report, dated November 27, 2012. J estimated value LQL laboratory quantification limits NA not applicable ND Analyte not detected at, or above its laboratory quantification limit. NYSDEC New York State Department of Environmental Conservation

Samples collected by ARCADIS personnel on the dates shown and submitted to Air Toxics Laboratories in Folsom, California, for VOC analyses using Direct Inject

- ug/m³ micrograms per cubic meter
- VOC volatile organic compound
- -- not analyzed

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-1 6/30/2006	EFF-1 7/28/2006	EFF-1 8/11/2006	EFF-1 8/25/2006	EFF-1 9/8/2006	EFF-1 10/5/2006	EFF-1 11/3/2006	EFF-1 12/5/2006	EFF-1 4/26/2007
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	28	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		170	58	27	ND	70	46	12	20	61
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		18	ND	ND	ND	ND	ND	ND	ND	54
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	21	79	110	140	140	98	93	68
Cyclohexane										
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	49	72	61	64	74
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		140	54	ND	ND	ND	120	82	160	200
Total VOCs (2)		328	133	106	110	259	378	281	337	457

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-1 5/29/2007	EFF-1 6/27/2007	EFF-1 7/26/2007	EFF-1 ⁽³⁾ 9/6/2007	EFF-1 9/28/2007	EFF-1 10/25/2007	EFF-1 ⁽⁴⁾ 12/13/2007	EFF-1 12/27/2007	EFF-1 ⁽⁵⁾ 2/5/2008
1,1,1-Trichloroethane		ND	ND	120	74	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	17	ND
2-Propanol		39	81	ND	ND	ND	ND	ND	ND	64
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		84	26	440	220	210	160	130	96	92
Cyclohexane					ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	38	42
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	340	220	160	97	53	ND	49
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		18	85	ND	ND	ND	ND	ND	32	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		77	60	ND	ND	ND	ND	ND	63	84
Trichloroethene		390	130	2,800	2,100	2,600	1,100	700	680	590
Total VOCs (2)		608	382	3,700	2,614	2,970	1,357	883	926	921

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-1 2/26/2008	EFF-1 ⁽⁶⁾ 4/3/2008	EFF-1 4/30/2008	EFF-1 5/27/2008	EFF-1 6/26/2008	EFF-1 7/23/2008	EFF-1 8/28/2008	EFF-1 9/30/2008	EFF-1 10/30/2008
1,1,1-Trichloroethane		ND	ND	30	58	36	32	39	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	80
1,2-Dichloropropane		ND	ND	ND	ND	ND	83	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	45
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	66
2-Butanone		ND	ND	ND	ND	ND	21	ND	ND	ND
2-Propanol		ND	ND	ND	52	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	60
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	21	ND	22	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		120	120	97	140	96	81	170	140	45
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	53	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	23
Freon 113		60	58	76	87	76	55	65	42	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	110
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	60
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	50
Toluene		22	ND	ND	ND	ND	210	ND	ND	45
Trichloroethene		820	820	1,200	2,500	2,300	1900	2,900	2,000	350
Total VOCs (2)		1,022	998	1,456	2,858	2,508	2,404	3,174	2,182	934

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-1 11/25/2008	EFF-1 ⁽⁷⁾ 1/14/2009	EFF-1 2/25/2009	EFF-1 3/31/2009	EFF-1 ⁽⁸⁾ 5/12/2009	EFF-1 5/28/2009	EFF-1 6/30/2009	EFF-1 ⁽⁹⁾ 8/3/2009	EFF-1 8/31/2009
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	33	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	21	19	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	83	25	62	79	140	120	24	ND
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	53	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	25	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		56	490	330	580	680	1,600	2,300	520	260
Total VOCs (2)		56	573	355	642	759	1,765	2,527	563	260

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents	Sample ID:	EFF-1 (10)	EFF-1 (10)
(units in ug/m ³)	Date:	9/30/2009	
1,1,1-Trichloroethane		ND	
1,1-Dichloroethane		ND	
1,1-Dichloroethene		ND	
1.2.4-Trimethylbenzene		ND	
1.2-Dichloropropane		ND	
1,3,5-Trimethylbenzene		ND	
2.2.4-Trimethylpentane		ND	
2-Butanone		ND	
2-Propanol		ND	
4-Ethyltoluene		ND	
Acetone		ND	
Benzene		ND	
Carbon Disulfide		ND	
Chloroform		ND	
cis-1.2-Dichloroethene		ND	
Cvclohexane		ND	
Ethanol		ND	
Ethyl Benzene		ND	
Freon 113		ND	
Freon 12		ND	
Heptane		ND	
Hexane		ND	
m n-Xvlene		ND	
Methylene Chloride		ND	
MTRF		ND	
Pronylbenzene			
Totrachloroothono			
Totrabudrofuran			
Teluana			
Trichloroothono		150	
		150	
Total VOCs ⁽²⁾		150	NA

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-2 6/30/2006	EFF-2 7/28/2006	EFF-2 8/11/2006	EFF-2 8/25/2006	EFF-2 9/8/2006	EFF-2 10/5/2006	EFF-2 11/3/2006	EFF-2 12/5/2006	EFF-2 4/26/2007
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	29	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		51	32	29	13	140	65	34	21	52
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	22	ND
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	24	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	53	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		48	ND	ND	ND	ND	ND	ND	19	ND
Trichloroethene		340	51	ND	ND	ND	29	ND	94	ND
Total VOCs (2)		439	189	29	13	140	94	34	156	52

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-2 5/29/2007	EFF-2 6/27/2007	EFF-2 7/26/2007	EFF-2 ⁽³⁾ 9/6/2007	EFF-2 9/28/2007	EFF-2 10/25/2007	EFF-2 ⁽⁴⁾ 12/13/2007	EFF-2 12/27/2007	EFF-2 ⁽⁵⁾ 2/5/2008
1,1,1-Trichloroethane		ND	ND	ND	55	63	ND	60	55	59
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	38	ND	ND	75	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		310	360	540	320	270	190	140	130	150
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	110	280	280	240	210	110	76	110
Freon 12		ND	ND	ND	ND	ND	ND	ND	33	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	130	ND
МТВЕ		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		ND	ND	ND	ND	34	110	150	190	270
Total VOCs (2)		310	508	820	655	682	510	460	614	589

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-2 2/26/2008	EFF-2 ⁽⁶⁾ 4/3/2008	EFF-2 4/30/2008	EFF-2 5/27/2008	EFF-2 6/26/2008	EFF-2 7/23/2008	EFF-2 8/28/2008	EFF-2 9/30/2008	EFF-2 10/30/2008
1,1,1-Trichloroethane		45	47	48	74	48	47	74	45	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	65
1,2-Dichloropropane		ND	ND	ND	ND	ND	41	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	38
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	53
2-Butanone		ND	ND	ND	ND	ND	18	ND	ND	ND
2-Propanol		59	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	50
Acetone		ND	ND	ND	ND	ND	54	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	18	16	26	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		140	140	150	160	120	93	150	110	32
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	57	70	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		99	71	100	98	110	96	120	49	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	95
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	51
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	39
Toluene		32	ND	ND	ND	ND	110	ND	ND	140
Trichloroethene		260	330	570	1,000	1,000	1,300	2,400	1,900	380
Total VOCs (2)		635	645	938	1,350	1,294	1,785	2,744	2,104	943

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-2 11/25/2008	EFF-2 ⁽⁷⁾ 1/14/2009	EFF-2 2/25/2009	EFF-2 3/31/2009	EFF-2 ⁽⁸⁾ 5/12/2009	EFF-2 5/28/2009	EFF-2 6/30/2009	EFF-2 ⁽⁹⁾ 8/3/2009	EFF-2 8/31/2009
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	30	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	20	30	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		35	73	68	92	66	160	120	29	ND
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	53	54	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	21	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		32	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		420	700	510	820	740	1,700	2,500	590	300
Total VOCs (2)		487	773	578	912	806	1,934	2,724	649	300

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-2 ⁽¹⁰⁾ 9/30/2009	EFF-2 12/30/2009	EFF-2 3/25/2010	EFF-2 6/16/2010	EFF-2 9/28/2010	EFF-2 12/8/2010	EFF-2 3/22/2011	EFF-2 6/28/2011	EFF-2 9/29/2011
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND	17	17
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	110	100	63	ND	110
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	ND	ND	ND	ND	64	ND	ND	ND
Ethyl Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	43	ND	ND	ND	35
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		170	81	68	88	580	460	350	ND	520
Total VOCs (2)		170	81	68	88	733	624	413	17	682

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-2 12/28/2011	EFF-2 3/14/2012	EFF-2 6/28/2012	EFF-2 9/13/2012	EFF-2 12/26/2012	EFF-2 3/26/2013	EFF-2 6/20/2013	EFF-2 9/19/2013	EFF-2 12/17/2013
1,1,1-Trichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene		140	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene		95	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-Trimethylpentane		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Propanol		75	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene		200	ND	ND	ND	ND	ND	ND	ND	ND
Acetone		47 J	ND	ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		ND	ND	19	18	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		49	50	56	60	69	49	28	65	26
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethanol		ND	93	ND	ND	ND	57	ND	ND	76
Ethyl Benzene		50	ND	ND	ND	ND	ND	ND	ND	ND
Freon 113		ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12		ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene		180	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND
MTBE		ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene		68	ND	ND	ND	ND	ND	ND	ND	ND
Propylbenzene		35	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran		ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene		33	ND	ND	ND	ND	ND	22	ND	26
Trichloroethene		190	290	390	590	240	230	160	180	100
Total VOCs (2)		1,162 J	433	465	668	309	336	210	245	228

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York.⁽¹⁾

Constituents (units in ug/m ³)	Sample ID: Date:	EFF-2 3/27/2014	EFF-2 7/10/2014	EFF-2 10/9/2014	EFF-2 12/23/2014
1.1.1-Trichloroethane		ND	ND	ND	ND
1.1-Dichloroethane		ND	ND	ND	ND
1.1-Dichloroethene		ND	ND	ND	ND
1.2.4-Trimethylbenzene		ND	ND	ND	ND
1.2-Dichloropropane		ND	ND	ND	ND
1.3.5-Trimethvlbenzene		ND	ND	ND	ND
2.2.4-Trimethylpentane		ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND
2-Propanol		ND	ND	ND	ND
- I-Ethyltoluene		ND	ND	ND	ND
Acetone		48	ND	ND	ND
Benzene		ND	ND	ND	ND
Carbon Disulfide		ND	ND	ND	ND
Chloroform		ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND
Cyclohexane		ND	ND	ND	ND
thanol		170	120	ND	ND
thyl Benzene		ND	ND	ND	ND
reon 113		ND	ND	ND	ND
Freon 12		ND	ND	ND	ND
leptane		ND	ND	ND	ND
Hexane		ND	ND	ND	ND
n,p-Xylene		25	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND
/TBE		ND	ND	ND	ND
o-Xylene		ND	ND	ND	ND
ropylbenzene		ND	ND	ND	ND
Tetrachloroethene		ND	ND	ND	ND
etrahydrofuran		ND	ND	ND	ND
oluene		27	ND	ND	ND
richloroethene		53	140	ND	ND
otal VOCs ⁽²⁾		323	260	0	0

Table 3. Summary of Carbon Effluent Sample Analytical Results, Vapor Recovery System, United Stellar Industries, Plainview, New York⁽¹⁾

Notes:

- 1. Samples collected by ARCADIS personnel on the dates shown and submitted to Air Toxics Laboratories in Folsom, CA for VOC analyses using Direct Inject Method TO-14.
- 2. "Total VOCs" represents the sum of individual concentrations of compounds listed in this table.
- 3. The August 2007 monthly compliance sampling event was completed on September 6, 2007.
- 4. Sample EFF-1 collected on November 29, 2007 arrived at the laboratory flat. All monthly compliance samples were re-collected on December 13, 2007.
- 5. Samples collected on January 31, 2008 were delivered to the laboratory outside of the recommended holding time. January 2008 monthly compliance sampling was re-conducted on February 5, 2008.
- 6. Sample SVE-2 collected on March 26, 2008 arrived at the laboratory flat. All monthly compliance samples were re-collected on April 3, 2008.
- 7. Samples were not collected during the December 2008 operational period as a result of the system being intermittently offline due to water accumulation in the system knock-out tank.
- 8. The April 2009 sampling event was completed on May 12, 2009.
- 9. The July 2009 sampling event was completed on August 3, 2009.
- 10. With prior NYSDEC approval, carbon treatment was removed from system operation on December 3, 2009 therefore, sample location EFF-1 was subsequently removed from system operation.
- 11. With prior NYSDEC approval, the frequency of compliance monitoring was decreased from monthly to quarterly beginning with the fourth quarter 2009.
- J estimated value
- NA not applicable
- ND Analyte not detected at, or above its laboratory quantification limit.
- NYSDEC New York State Department of Environmental Conservation
- VOC volatile organic compound
- ug/m³ micrograms per cubic meter
- -- not analyzed

Figure 1. Extaction Wells And System Effluent TVOCs Concentrations Through December 2014 Vapor Recovery System, United Stellar Industries, Plainview, New York.

G:\APROJECT\Spiegel\Sunnyside\VES Activities\Data\Table_2__3_Spiegel_Vapor_Results_032015.xlsx - Chart-All Results

Date

Table A1. NYSDEC DAR-1 September 13, 2012, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Mass Balance						
Measured Effluent Flowrate =	166.1	ACFM				
		% of Total Flow				
SVE-1 Measured Flowrate (ACFM) =	65.5	0.42				
SVE-2 Measured Flowrate (ACFM) =	38.3	0.25				
SVE-3 Measured Flowrate (ACFM) =	52.0	0.33				
Sum of Individual Flows (ACFM) =	155.8					
		Lab Data		Mass Balance	Actual Effluent	
		(ug/m ³)		Concentration ⁽¹⁾	Concentration	
	SVE-1	SVE-2	SVE-3	(ug/m ³)	(ug/m ³)	
2-Propanol	50	0	0	21	0	
Carbon Disulfide	0	0	16	5	18	
cis-1,2-Dichloroethene	0	0	0	0	60	
Ethanol	62	68	0	43	0	
Methylene Chloride	98	95	0	65	0	
Toluene	20	47	0	20	0	
Trichloroethene	170	440	0	180	590	

Notes/Assumptions:

1. Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow + Lab Data Concentration SVE-3 x SVE-3 % of Total Flow.

Table A1. NYSDEC DAR-1 September 13, 2012, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 09/13/2012 Sampling	Event_		
Discharge Temperature (1)	Т	579	°R
Ambient Temperature ⁽²⁾	Та	527	°R
Stack Diameter	D	4.049	in
Stack Radius	R	0.169	ft
Stack Area	А	0.09	ft ²
Exit Velocity	V	31.0	fps
Exit Flow	Q	166	acfm
Exit Flow	Q	151	scfm
Stack Height	h _s	12	ft
Building Height	h _b	10	ft
Ratio of Heights	h _s /h _b	1.20	
Plume rise credit? $h_s/h_b > 1.5?$	(If no, h _e =h _s)	No	
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²
Effective Stack Height	h _e	12	ft
Reduction Factor? $2.5 > h_s/h_b > 1.5?$		No, do not reduce im	pact
Actual Annual Impact	C _a	RF*6*Q _a /h _e ^{2.25}	
Mass Flow	Q _a	S lbs emitted for last 12	months

Abbreviations:

°R: degrees Rankine

- in: inches
- ft: feet
- fps: feet per second
- acfm: actual cubic feet per minute
- scfm: standard cubic feet per minute
- s: second
- lbs: pounds

Notes/Assumptions:

- 1. The stack discharge temperature is based on recorded parameters.
- 2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A1. NYSDEC DAR-1 September 13, 2012, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Calculation of AGC Based on Actual Effluent Results From 09/13/2012 Sampling Event ⁽¹⁾											
Compounds	Maximum Limit on C_a Maximum Mass Flow (AGC ²) Q_a		Actual Effluent Emissions C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual					
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%					
2-Propanol	7,000	312,683.23	0.00	0.00E+00	0.00000	0.00					
Carbon Disulfide	700	31,268.32	18.00	1.02E-05	0.08938	0.00					
cis-1,2-Dichloroethene	63	2,814.15	60.00	3.40E-05	0.29794	0.01					
Ethanol	45,000	2,010,106.50	0.00	0.00E+00	0.00000	0.00					
Methylene Chloride	60	2,680.14	0.00	0.00E+00	0.00000	0.00					
Toluene	5,000	223,345.17	0.00	0.00E+00	0.00000	0.00					
Trichloroethene	0.2	8.93	590.00	3.34E-04	2.92979	32.79					

Calculation of AGC Based on Influent Results From 09/13/2012 Sampling Event (1)

Compounds	Maximum Limit on C_a Maximum Mass Flow		Influent	Mass Flow per Hour	Mass Flow per Year	Percent of Annual	
	(AGC ⁻) Q _a					• /	
	ug/m°	lb/yr	ug/m°	lb/hr	lb/yr	%	
2-Propanol	7,000	312,683.23	21.03	1.19E-05	0.10442	0.00	
Carbon Disulfide	700	31,268.32	5.34	3.03E-06	0.02652	0.00	
cis-1,2-Dichloroethene	63	2,814.15	0.00	0.00E+00	0.00000	0.00	
Ethanol	45,000	2,010,106.50	42.78	2.43E-05	0.21245	0.00	
Methylene Chloride	60	2,680.14	64.56	3.66E-05	0.32058	0.01	
Toluene	5,000	223,345.17	19.96	1.13E-05	0.09911	0.00	
Trichloroethene	0.2	8.93	179.61	1.02E-04	0.89188	9.98	

Notes/Assumptions:

1. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.

2. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated February 28, 2014.

Abbreviations:

- AGC Allowable Annual Guideline Concentration
- DAR-1 Division of Air Resources-1 Air Guide-1
- lb/yr pounds per year
- lb/hr pounds per hour
- SGC Short-term Guideline Concentrations
- ug/m³ micrograms per cubic meter

Table A2. NYSDEC DAR-1 December 26, 2012, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Mass Balance						
Measured Effluent Flowrate =	176.1	ACFM				
		% of Total Flow				
SVE-1 Measured Flowrate (ACFM) =	70.8	0.44				
SVE-2 Measured Flowrate (ACFM) =	31.7	0.20				
SVE-3 Measured Flowrate (ACFM) =	60.1	0.37				
Sum of Individual Flows (ACFM) =	162.6					
	SVE-1	Lab Data (ug/m ³) SVE-2	SVE-3 (2)	Mass Balance Concentration ⁽¹⁾ (ug/m ³)	Actual Effluent Concentration (ug/m ³)	
cis-1,2-Dichloroethene	0	0		0	69	
Tetrachloroethene	0	48		9	0	
Toluene	0	36		7	0	
Trichloroethene	250	480		202	240	

Notes/Assumptions:

1. Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow.

2. Sample SVE-3 collected on December 26, 2012 arrived at the laboratory flat.

-- not analyzed

Table A2. NYSDEC DAR-1 December 26, 2012, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 12/26/2012 Sampling Ev	rent .		
Discharge Temperature ⁽¹⁾	т	529	٥B
Ambient Temperature ⁽²⁾	Та	501	°R
Stack Diameter	D	4.049	in
Stack Radius	R	0.169	ft
Stack Area	А	0.09	ft ²
Exit Velocity	V	32.8	fps
Exit Flow	Q	176	acfm
Exit Flow	Q	173	scfm
Stack Height	h _s	12	ft
Building Height	h _b	10	ft
Ratio of Heights	h _s /h _b	1.20	
Plume rise credit? $h_s/h_b > 1.5?$	(If no, h _e =h _s)	No	
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²
Effective Stack Height	h _e	12	ft
Reduction Factor? $2.5 > h_s/h_b > 1.5?$		No, do not reduce im	pact
Actual Annual Impact	C _a	RF*6*Q _a /h _e ^{2.25}	
Mass Flow	Q _a	S lbs emitted for last 12	months

Abbreviations:

- °R: degrees Rankine
- in: inches
- ft: feet
- fps: feet per second
- acfm: actual cubic feet per minute
- scfm: standard cubic feet per minute
- s: second
- lbs: pounds

Notes/Assumptions:

1. The stack discharge temperature is based on recorded parameters.

2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A2. NYSDEC DAR-1 December 26, 2012, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Calculation of AGC Based on Actual	Effluent Results From 12/26/2	012 Sampling Event	(1)				
Compounds	Maximum Limit on C_a (AGC ²)	Maximum Limit on C _a Maximum Mass Actual (AGC ²) Flow Q _a Emist		Mass Flow per Hour	Mass Flow per Year	Percent of Annual	
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%	
cis-1,2-Dichloroethene	63	2,814.15	69.00	4.46E-05	0.39091	0.01	
Tetrachloroethene	4.0	178.68	0.00	0.00E+00	0.00000	0.00	
Toluene	5,000	223,345.17	0.00	0.00E+00	0.00000	0.00	
Trichloroethene	0.2	8.93	240.00	1.55E-04	1.35968	15.22	

Calculation of AGC Based on Influent Results From 12/26/2012 Sampling Event (1)

Compounds	Maximum Limit on C _a (AGC ²)	Maximum Mass Flow Q _a	Influent Concentrations C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
cis-1,2-Dichloroethene	63	2,814.15	0.00	0.00E+00	0.00000	0.00
Tetrachloroethene	4.0	178.68	9.37	6.06E-06	0.05306	0.03
Toluene	5,000	223,345.17	7.02	4.54E-06	0.03980	0.00
Trichloroethene	0.2	8.93	202.49	1.31E-04	1.14717	12.84

Notes/Assumptions:

1. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.

2. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated February 28, 2014.

Abbreviations:

- AGC Allowable Annual Guideline Concentration
- DAR-1 Division of Air Resources-1 Air Guide-1
- lb/yr pounds per year
- lb/hr pounds per hour
- SGC Short-term Guideline Concentrations
- ug/m³ micrograms per cubic meter

Table A3. NYSDEC DAR-1 March 26, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Mass Balance						
Measured Effluent Flowrate =	161.9	ACFM				
		% of Total Flow				
SVE-1 Measured Flowrate (ACFM) =	72.2	0.41				
SVE-2 Measured Flowrate (ACFM) =	40.3	0.23				
SVE-3 Measured Flowrate (ACFM) =	62.4	0.36				
Sum of Individual Flows (ACFM) =	174.8					
	SVE-1	Lab Data (ug/m ³) SVE-2	SVE-3	Mass Balance Concentration ⁽¹⁾ (ug/m ³)	Actual Effluent Concentration (ug/m ³)	
cis-1,2-Dichloroethene	0	0	68	24	49	
Ethanol	70	70	69	70	57	
Trichloroethene	180	370	0	160	230	

Notes/Assumptions:

1. Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow + Lab Data Concentration SVE-3 x SVE-3 % of Total Flow.

Table A3. NYSDEC DAR-1 March 26, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 03/26/2013 Sampling E	Event			
Discharge Temperature ⁽¹⁾	т	556	°R	
Ambient Temperature ⁽²⁾	Та	499	°R	
Stack Diameter	D	4.049	in	
Stack Radius	R	0.169	ft	
Stack Area	А	0.09	ft ²	
Exit Velocity	V	30.2	fps	
Exit Flow	Q	162	acfm	
Exit Flow	Q	154	scfm	
Stack Height	h _s	12	ft	
Building Height	h _b	10	ft	
Ratio of Heights	h _s /h _b	1.20		
Plume rise credit? $h_s/h_b > 1.5?$	(If no, h _e =h _s)	No		
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²	
Effective Stack Height	h _e	12	ft	
Reduction Factor? $2.5 > h_s/h_b > 1.5?$		No, do not reduce im	pact	
Actual Annual Impact	C _a	RF*6*Q _a /h _e ^{2.25}		
Mass Flow	Q _a	S lbs emitted for last 12	months	

Abbreviations:

- °R: degrees Rankine
- in: inches
- ft: feet
- fps: feet per second
- acfm: actual cubic feet per minute
- scfm: standard cubic feet per minute
- s: second
- lbs: pounds

Notes/Assumptions:

1. The stack discharge temperature is based on recorded parameters.

2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A3. NYSDEC DAR-1 March 26, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Calculation of AGC Based on Actua	I Effluent Results From 03/26/20	013 Sampling Event	(1)			
Compounds	Maximum Limit on C_a (AGC ²)	Maximum Mass Flow Q _a	Actual Effluent Emissions C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
cis-1,2-Dichloroethene	63	2,814.15	49.00	2.82E-05	0.24697	0.01
Ethanol	45,000	2,010,106.50	57.00	3.28E-05	0.28729	0.00
Trichloroethene	0.2	8.93	230.00	1.32E-04	1.15926	12.98
Calculation of AGC Based on Influe	nt Results From 03/26/2013 Sa	mpling Event ⁽¹⁾				
Compounds	Maximum Limit on C_a (AGC ²)	Maximum Mass Flow Q _a	Influent Concentrations C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ua/m ³	lb/hr	lb/yr	%

	ug/m°	Ib/yr	ug/m°	ID/Nr	ib/yr	%
cis-1,2-Dichloroethene	63	2,814.15	24.26	1.40E-05	0.12230	0.00
Ethanol	45,000	2,010,106.50	69.64	4.01E-05	0.35102	0.00
Trichloroethene	0.2	8.93	159.55	9.18E-05	0.80418	9.00

Notes/Assumptions:

1. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.

2. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated February 28, 2014.

Abbreviations:

- AGC Allowable Annual Guideline Concentration
- DAR-1 Division of Air Resources-1 Air Guide-1
- lb/yr pounds per year
- lb/hr pounds per hour
- SGC Short-term Guideline Concentrations
- ug/m³ micrograms per cubic meter

Table A4. NYSDEC DAR-1 June 20, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Mass Balance						
Measured Effluent Flowrate =	148.0	ACFM				
		% of Total Flow				
SVE-1 Measured Flowrate (ACFM) =	56.7	0.40				
SVE-2 Measured Flowrate (ACFM) =	36.0	0.25				
SVE-3 Measured Flowrate (ACFM) =	48.8	0.35				
Sum of Individual Flows (ACFM) =	141.5					
	SVE-1 (2)	Lab Data (ug/m ³) SVE-2	SVE-3 (2)	Mass Balance Concentration ⁽¹⁾ (ug/m ³)	Actual Effluent Concentration (ug/m ³)	
cis-1,2-Dichloroethene		0		NA	28	
Methylene Chloride		21		NA	0	
Toluene		0		NA	22	
Trichloroethene		100		NA	160	

Notes/Assumptions:

- 1. Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow + Lab Data Concentration SVE-3 x SVE-3 % of Total Flow.
- 2. Samples SVE-1 and SVE-3 collected on June 20, 2013 arrived at the laboratory flat.
- NA not applicable
- -- not analyzed

Table A4. NYSDEC DAR-1 June 20, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 06/20/2013 Sampling E	Event			
Discharge Temperature ⁽¹⁾	т	574	°R	
Ambient Temperature ⁽²⁾	Та	530	°R	
Stack Diameter	D	4.049	in	
Stack Radius	R	0.169	ft	
Stack Area	А	0.09	ft ²	
Exit Velocity	V	27.6	fps	
Exit Flow	Q	148	acfm	
Exit Flow	Q	136	scfm	
Stack Height	h _s	12	ft	
Building Height	h _b	10	ft	
Ratio of Heights	h _s /h _b	1.20		
Plume rise credit? $h_s/h_b > 1.5?$	(If no, h _e =h _s)	No		
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²	
Effective Stack Height	h _e	12	ft	
Reduction Factor? $2.5 > h_s/h_b > 1.5$?		No, do not reduce im	pact	
Actual Annual Impact	C _a	RF*6*Q _a /h _e ^{2.25}		
Mass Flow	Q _a	S lbs emitted for last 12	months	

Abbreviations:

- °R: degrees Rankine
- in: inches
- ft: feet
- fps: feet per second

acfm: actual cubic feet per minute

scfm: standard cubic feet per minute

- s: second
- lbs: pounds

Notes/Assumptions:

1. The stack discharge temperature is based on recorded parameters.

2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A4. NYSDEC DAR-1 June 20, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Calculation of AGC Based on Actual	Effluent Results From 06/20/20	013 Sampling Event	(1)			
Compounds	Maximum Limit on C_a (AGC ²)	Maximum Mass Flow Q _a	Actual Effluent Emissions C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
cis-1,2-Dichloroethene	63	2,814.15	28.00	1.43E-05	0.12506	0.00
Methylene Chloride	60	2,680.14	0.00	0.00E+00	0.00000	0.00
Toluene	5,000	223,345.17	22.00	1.12E-05	0.09826	0.00
Trichloroethene	0.2	8.93	160.00	8.16E-05	0.71462	8.00

Calculation of AGC Based on Influent Results From 06/20/2013 Sampling Event (1)

Compounds	Maximum Limit on C _a (AGC ²)	Maximum Mass Flow Q _a	Influent Concentrations $C_a^{(3)}$	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
cis-1,2-Dichloroethene	63	2,814.15	0.00	0.00E+00	0.00000	0.00
Methylene Chloride	60	2,680.14	21.00	1.07E-05	0.09379	0.00
Toluene	5,000	223,345.17	0.00	0.00E+00	0.00000	0.00
Trichloroethene	0.2	8.93	100.00	5.10E-05	0.44664	5.00

Notes/Assumptions:

1. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.

2. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated February 28, 2014.

3. Samples SVE-1 and SVE-3 collected on June 20, 2013 arrived at the laboratory flat. Influent concentrations assumed equal to SVE-2 lab data concentrations.

Abbreviations:

- AGC Allowable Annual Guideline Concentration
- DAR-1 Division of Air Resources-1 Air Guide-1
- lb/yr pounds per year
- lb/hr pounds per hour
- SGC Short-term Guideline Concentrations
- ug/m³ micrograms per cubic meter

Table A5. NYSDEC DAR-1 September 19, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Mass Balance						
Measured Effluent Flowrate =	156.9	ACFM				
		% of Total Flow				
SVE-1 Measured Flowrate (ACFM) =	66.4	0.40				
SVE-2 Measured Flowrate (ACFM) =	41.0	0.25				
SVE-3 Measured Flowrate (ACFM) =	57.5	0.35				
Sum of Individual Flows (ACFM) =	164.9					
		Lab Data		Mass Balance	Actual Effluent	
		(ug/m ³)		Concentration ⁽¹⁾	Concentration	
	SVE-1	SVE-2	SVE-3 (2)	(ug/m ³)	(ug/m ³)	
cis-1,2-Dichloroethene	0	0		0	65	
Trichloroethene	0	0		0	180	

Notes/Assumptions:

1. Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow.

2. Sample SVE-3 collected on September 19, 2013 arrived at the laboratory flat.

-- not analyzed

Table A5. NYSDEC DAR-1 September 19, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 09/19/2013 Sampling E	vent				
Discharge Temperature ⁽¹⁾	Т	558	°R		
Ambient Temperature ⁽²⁾	Та	525	°R		
Stack Diameter	D	4.049	in		
Stack Radius	R	0.169	ft		
Stack Area	А	0.09	ft ²		
Exit Velocity	V	29.3	fps		
Exit Flow	Q	157	acfm		
Exit Flow	Q	148	scfm		
Stack Height	h _s	12	ft		
Building Height	h _b	10	ft		
Ratio of Heights	h _s /h _b	1.20			
Plume rise credit? $h_s/h_b > 1.5?$	(If no, h _e =h _s)	No			
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²		
Effective Stack Height	h _e	12	ft		
Reduction Factor? $2.5 > h_s/h_b > 1.5$?		No, do not reduce imp	act		
Actual Annual Impact	C _a	RF*6*Q _a /h _e ^{2.25}			
Mass Flow	Qa	S lbs emitted for last 12 r	nonths		

Abbreviations:

- °R: degrees Rankine
- in: inches
- ft: feet
- fps: feet per second
- acfm: actual cubic feet per minute
- scfm: standard cubic feet per minute
- s: second
- lbs: pounds

Notes/Assumptions:

1. The stack discharge temperature is based on recorded parameters.

2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A5. NYSDEC DAR-1 September 19, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Calculation of AGC Based on Actual E	Effluent Results From 09/19/20	013 Sampling Event	1)			
Compounds	Maximum Limit on C_a (AGC ²)	Maximum Mass Flow Q _a	Actual Effluent Emissions C_a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
cis-1,2-Dichloroethene	63	2,814.15	65.00	3.62E-05	0.31669	0.01
Trichloroethene	0.2	8.93	180.00	1.00E-04	0.87698	9.82

Notes/Assumptions:

1. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.

2. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated February 28, 2014.

Abbreviations:

- AGC Allowable Annual Guideline Concentration
- DAR-1 Division of Air Resources-1 Air Guide-1
- lb/yr pounds per year
- lb/hr pounds per hour
- SGC Short-term Guideline Concentrations
- ug/m³ micrograms per cubic meter

Table A6. NYSDEC DAR-1 December 17, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Mass Balance						
Measured Effluent Flowrate =	168.7	ACFM				
		% of Total Flow				
SVE-1 Measured Flowrate (ACFM) =	69.2	0.45				
SVE-2 Measured Flowrate (ACFM) =	29.4	0.19				
SVE-3 Measured Flowrate (ACFM) =	55.4	0.36				
Sum of Individual Flows (ACFM) =	153.9					
	SVE-1	Lab Data (ug/m ³) SVE-2	SVE-3	Mass Balance Concentration ⁽¹⁾ (ug/m ³)	Actual Effluent Concentration (ug/m ³)	
cis-1,2-Dichloroethene	0	0	0	0	26	
Ethanol	0	72	120	57	76	
Methylene Chloride	0	0	20	7	0	
Toluene	25	23	57	36	26	
Trichloroethene	0	0	0	0	100	

Notes/Assumptions:

1. Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow + Lab Data Concentration SVE-3 x SVE-3 % of Total Flow.

Table A6. NYSDEC DAR-1 December 17, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 12/17/2013 Sampling Ev	<u>ent</u>			
Discharge Temperature (1)	т	531	٥R	
Ambient Temperature ⁽²⁾	, Ta	497	°R	
Stack Diameter	D	4.049	in	
Stack Radius	R	0.169	ft	
Stack Area	А	0.09	ft ²	
Exit Velocity	V	31.5	fps	
Exit Flow	Q	169	acfm	
Exit Flow	Q	168	scfm	
Stack Height	h _s	12	ft	
Building Height	h _b	10	ft	
Ratio of Heights	h _s /h _b	1.20		
Plume rise credit? $h_s/h_b > 1.5?$	(If no, h _e =h _s)	No		
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²	
Effective Stack Height	h _e	12	ft	
Reduction Factor? $2.5 > h_s/h_b > 1.5?$		No, do not reduce im	pact	
Actual Annual Impact	C _a	RF*6*Q _a /h _e ^{2.25}		
Mass Flow	Q _a	S lbs emitted for last 12	months	

Abbreviations:

- °R: degrees Rankine
- in: inches
- ft: feet
- fps: feet per second
- acfm: actual cubic feet per minute
- scfm: standard cubic feet per minute
- s: second
- lbs: pounds

Notes/Assumptions:

1. The stack discharge temperature is based on recorded parameters.

2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A6. NYSDEC DAR-1 December 17, 2013, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Compounds	Maximum Limit on C _a (AGC ²)	Maximum Mass Flow Q _a	Actual Effluent Emissions C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
cis-1,2-Dichloroethene	63	2,814.15	26.00	1.63E-05	0.14305	0.01
Ethanol	45,000	2,010,106.50	76.00	4.77E-05	0.41815	0.00
Methylene Chloride	60	2,680.14	0.00	0.00E+00	0.00000	0.00
Toluene	5,000	223,345.17	26.00	1.63E-05	0.14305	0.00
Trichloroethene	0.2	8.93	100.00	6.28E-05	0.55020	6.16

Calculation of AGC Based on Influent Results From 12/17/2013 Sampling Event (1)

Compounds	Maximum Limit on C _a (AGC ²)	Maximum Mass Flow Q _a	Influent Concentrations C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
cis-1,2-Dichloroethene	63	2,814.15	0.00	0.00E+00	0.00000	0.00
Ethanol	45,000	2,010,106.50	56.94	3.58E-05	0.31326	0.00
Methylene Chloride	60	2,680.14	7.20	4.52E-06	0.03961	0.00
Toluene	5,000	223,345.17	36.14	2.27E-05	0.19883	0.00
Trichloroethene	0.2	8.93	0.00	0.00E+00	0.00000	0.00

Notes/Assumptions:

1. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.

2. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated February 28, 2014.

Abbreviations:

AGC Allowable Annual Guideline Concentration

DAR-1 Division of Air Resources-1 Air Guide-1

- lb/yr pounds per year
- lb/hr pounds per hour
- SGC Short-term Guideline Concentrations
- ug/m³ micrograms per cubic meter

Table A7. NYSDEC DAR-1 March 27, 2014, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Mass Balance						
Measured Effluent Flowrate =	177.4	ACFM				
		% of Total Flow				
SVE-1 Measured Flowrate (ACFM) =	74.9	0.44				
SVE-2 Measured Flowrate (ACFM) =	37.8	0.22				
SVE-3 Measured Flowrate (ACFM) =	57.6	0.34				
Sum of Individual Flows (ACFM) =	170.2					
		Lab Data		Mass Balance	Actual Effluent	
		(ug/m³)		Concentration (1)	Concentration	
	SVE-1	SVE-2	SVE-3	(ug/m³)	(ug/m ³)	
Acetone	0	0	58	20	48	
Ethanol	43	60	190	96	170	
m,p-Xylene	0	0	28	9	25	
Toluene	0	0	28	9	27	
Trichloroethene	0	0	0	0	53	

Notes/Assumptions:

1. Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow + Lab Data Concentration SVE-3 x SVE-3 % of Total Flow.

Table A7. NYSDEC DAR-1 March 27, 2014, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Parameters for 03/27/2014 Sampling Event					
Discharge Temperature ⁽¹⁾	т	553	°R		
Ambient Temperature ⁽²⁾	Та	496	°R		
Stack Diameter	D	4.049	in		
Stack Radius	R	0.169	ft		
Stack Area	А	0.09	ft ²		
Exit Velocity	V	33.1	fps		
Exit Flow	Q	177	acfm		
Exit Flow	Q	169	scfm		
Stack Height	h _s	12	ft		
Building Height	h _b	10	ft		
Ratio of Heights	h _s /h _b	1.20			
Plume rise credit? $h_s/h_b > 1.5?$	(If no, h _e =h _s)	No			
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²		
Effective Stack Height	h _e	12	ft		
Reduction Factor? $2.5 > h_s/h_b > 1.5?$		No, do not reduce imp	No, do not reduce impact		
Actual Annual Impact	C _a	RF*6*Q _a /h _e ^{2.25}			
Mass Flow	Q _a	S lbs emitted for last 12	months		

Abbreviations:

- °R: degrees Rankine
- in: inches
- ft: feet
- fps: feet per second
- acfm: actual cubic feet per minute
- scfm: standard cubic feet per minute
- s: second
- lbs: pounds

Notes/Assumptions:

1. The stack discharge temperature is based on recorded parameters.

2. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A7. NYSDEC DAR-1 March 27, 2014, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.

Compounds	Maximum Limit on C_a (AGC ²)	Maximum Mass Flow Q _a	Actual Effluent Emissions C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
Acetone	30,000	1,340,071.00	48.00	3.05E-05	0.26677	0.00
Ethanol	45,000	2,010,106.50	170.00	1.08E-04	0.94481	0.00
m,p-Xylene	100	4,466.90	0.00	0.00E+00	0.00000	0.00
Toluene	5,000	223,345.17	27.00	1.71E-05	0.15006	0.00
Trichloroethene	0.2	8.93	53.00	3.36E-05	0.29456	3.30

Calculation of AGC Based on Influent Results From 03/27/2014 Sampling Event⁽¹⁾

Compounds	Maximum Limit on C _a (AGC ²)	Maximum Mass Flow Q _a	Influent Concentrations C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%
Acetone	30,000	1,340,071.00	19.62	1.24E-05	0.10902	0.00
Ethanol	45,000	2,010,106.50	96.49	6.12E-05	0.53627	0.00
m,p-Xylene	100	4,466.90	9.47	6.01E-06	0.05263	0.00
Toluene	5,000	223,345.17	9.47	6.01E-06	0.05263	0.00
Trichloroethene	0.2	8.93	0.00	0.00E+00	0.00000	0.00

Notes/Assumptions:

1. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.

2. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated February 28, 2014.

Abbreviations:

AGC Allowable Annual Guideline Concentration

DAR-1 Division of Air Resources-1 Air Guide-1

lb/yr pounds per year

lb/hr pounds per hour

SGC Short-term Guideline Concentrations

ug/m³ micrograms per cubic meter

Table A8. NYSDEC DAR-1 July 1, 2014, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.⁽¹⁾

Mass Balance						
Measured Effluent Flowrate =	150.7	ACFM				
		% of Total Flow				
SVE-1 Measured Flowrate (ACFM) =	65.0	0.40				
SVE-2 Measured Flowrate (ACFM) =	41.4	0.25				
SVE-3 Measured Flowrate (ACFM) =	56.9	0.35				
Sum of Individual Flows (ACFM) =	163.4					
		Lab Data		Mass Balance	Actual Effluent	
		(ug/m³)		Concentration (2)	Concentration	
	SVE-1	SVE-2	SVE-3	(ug/m ³)	(ug/m³)	
Ethanol	0	100	0	25	120	
Trichloroethene	0	0	0	0	140	

Notes/Assumptions:

1. June 2014 quarterly compliance sampling event was completed on July 1, 2014. Air samples were collected on July 10, 2014.

Mass balance concentration = Lab Data Concentration SVE-1 x SVE-1 % of Total Flow + Lab Data Concentration SVE-2 x SVE-2 % of Total Flow + Lab Data Concentration SVE-3 x SVE-3 % of Total Flow.

Table A8. NYSDEC DAR-1 July 1, 2014, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.⁽¹⁾

Parameters for 07/01/2014 Sampling E	Event				
Discharge Temperature ⁽²⁾	т	563	٥R		
Ambient Temperature ⁽³⁾	Та	532	°R		
Stack Diameter	D	4.049	in		
Stack Radius	R	0.169	ft		
Stack Area	А	0.09	ft ²		
Exit Velocity	V	28.1	fps		
Exit Flow	Q	151	acfm		
Exit Flow	Q	141	scfm		
Stack Height	h _s	12	ft		
Building Height	h _b	10	ft		
Ratio of Heights	h _s /h _b	1.20			
Plume rise credit? h _s /h _b > 1.5?	(If no, h _e =h _s)	No			
Momentum Flux	Fm = Ta/T * V2 * R2	n/a	ft ⁴ /s ²		
Effective Stack Height	h _e	12	ft		
Reduction Factor? $2.5 > h_s/h_b > 1.5$?		No, do not reduce imp	bact		
Actual Annual Impact	C _a	RF*6*Q _a /h _e ^{2.25}			
Mass Flow	Q _a	S lbs emitted for last 12 r	nonths		

Abbreviations:

- °R: degrees Rankine
- in: inches
- ft: feet
- fps: feet per second
- acfm: actual cubic feet per minute
- scfm: standard cubic feet per minute
- s: second
- lbs: pounds

Notes/Assumptions:

- 1. June 2014 quarterly compliance sampling event was completed on July 1, 2014. Air samples were collected on July 10, 2014.
- 2. The stack discharge temperature is based on recorded parameters.
- 3. The ambient temperature based on www.weather.newsday.com historic temperatures.

Table A8. NYSDEC DAR-1 July 1, 2014, Air Modeling Estimate for Vapor Recovery System, United Stellar Industries, Plainview, NY.⁽¹⁾

Calculation of AGC Based on Actual Ef	fluent Results From 07/01/2	014 Sampling Even	<u>t</u> ⁽²⁾				
Compounds	Maximum Limit on C_a (AGC ³)	Maximum Mass Flow Q _a	Actual Effluent Emissions C _a	Mass Flow per Hour Mass Flow per Year		Percent of Annual	
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%	
Ethanol	45,000	2,010,106.50	120.00	6.35E-05	0.55635	0.00	
Trichloroethene	0.2	8.93	140.00	7.41E-05	0.64907	7.27	
Calculation of AGC Based on Influent F	Results From 07/01/2014 Sa	mpling Event ⁽²⁾					
Compounds	Maximum Limit on C_a (AGC ³)	Maximum Mass Flow Q _a	Influent Concentrations C _a	Mass Flow per Hour	Mass Flow per Year	Percent of Annual	
	ug/m ³	lb/yr	ug/m ³	lb/hr	lb/yr	%	
Ethanol	45,000	2,010,106.50	25.37	1.34E-05	0.11761	0.00	
Trichloroethene	0.2	8.93	0.00	0.00E+00	0.00000	0.00	

Notes/Assumptions:

1. June 2014 quarterly compliance sampling event was completed on July 1, 2014. Air samples were collected on July 10, 2014.

2. Calculations assume that the system will run with the maximum allowable concentrations between quarterly readings.

3. AGC refers to the Annual Guideline Concentration as determined using the hand calculations in the DAR-1 AGC/SGC Tables dated February 28, 2014.

Abbreviations:

- AGC Allowable Annual Guideline Concentration
- DAR-1 Division of Air Resources-1 Air Guide-1
- lb/yr pounds per year
- lb/hr pounds per hour
- SGC Short-term Guideline Concentrations
- ug/m³ micrograms per cubic meter