Golder Associates Inc.

The National Newark Building 744 Broad Street, 25th Floor Newark, NJ USA 07102 Telephone (973) 645-1922 Fax (973) 645-1588 www.goider.com

July 11, 2008

Project No.: 053-6388 VIA E-MAIL

Mr. Brian Bennett Jerusalem Avenue Property, LLC 720 East Wisconsin Avenue Milwaukee, Wisconsin 53202

RE: GROUNDWATER DATA SUMMARY REPORT FORMER SHOPRITE FACILITY 1121 JERUSALEM AVENUE, UNIONDALE, NEW YORK

Dear Mr. Bennett:

Golder Associates Inc. (Golder) is pleased to present this groundwater monitoring report to Jerusalem Avenue Property, LLC (Owner) summarizing the results of the most recent (January 2008) groundwater monitoring event performed at the above-referenced property (Site).

SITE SETTING AND BACKGROUND

Site Setting

The subject property covers roughly 4.5 acres and is located at 1121 Jerusalem Avenue, Town of Hempstead, Nassau County, Uniondale, New York (Figure 1). The Site is referenced as Lot 269, Block G, Section 50 on the land and tax map of Nassau County. The concrete block and steel building located at the Site was built in 1995/1996, and currently contains a vacant ShopRite store and pizzeria. Immediately adjacent to the Site to the east is an active Wal-Mart shopping center. A large, paved parking lot is located on the south side of the property and shared with the Wal-Mart parcel (Figure 2). The investigation work described herein was not performed on the Wal-Mart leasehold.

According to historic documents, the northern portion of the subject property and the adjacent Wal-Mart parcel was filled during the 1960s and 1970s with a wide variety of materials including construction debris, medical waste, old paint cans, and yard waste. Previous environmental investigations in the former fill area indicated the presence of fill materials and certain constituents in excess of current NYSDEC soil and groundwater criteria.

Regional and Site-Specific Hydrogeology

The Site is located in the Coastal Plain Physiographic Province, which is comprised of inter-bedded sands and clays. These inter-bedded layers form three main aquifers and associated clay confining layers beneath the Site. The most-shallow unit is the Upper Glacial Aquifer, which consists of glacial till and outwash deposited during the Pleistocene ice advances.

The most prolific Long Island water supply source, the Magothy Aquifer, is composed of Cretaceous deltaic sediments, lies beneath the Upper Glacial Aquifer, and serves as a major source of water for Long Island. A semi-confining clay unit underlies the Magothy Aquifer and restricts movement of water into the Lloyd Aquifer, which lies in contact with the bedrock. In addition to these units, Long Island contains numerous smaller aquifers and localized confining layers.

Groundwater quality in these aquifers is generally good, although contamination from nitrates and volatile organic compounds related to gasoline (i.e., benzene, toluene, ethylbenzene, xylene and MTBE) in the Upper Glacial Aquifer is documented in many areas throughout Long Island, including the vicinity of the Site.

Water levels encountered during previous investigations ranged from approximately 15 to 21 feet below ground surface (ft.bgs) in borings across the Site. Groundwater levels identified in the completed, developed monitoring wells were generally similar. Based on these water level data, the groundwater flow direction at the Site is generally toward the south. The horizontal groundwater flow gradient was calculated along the generalized direction of flow between monitoring wells MW-5 and MW-6; and is approximately 0.0021 ft/ft, indicating a relatively flat-lying water table surface, consistent with the Site topography.

Recent Regulatory Background

Golder was initially retained by the Owner to complete an Environmental Review and a Limited Phase II Investigation at the Site. Subsequent investigation activities were performed and included sampling and analysis of eight (8) existing monitoring wells, (Figure 2), as part of two separate mobilization efforts conducted in 2006. The Owner submitted a Site Investigation Report (SIR) describing these previously completed activities to the New York State Department of Environmental Conservation (NYSDEC) in April 2007, voluntarily, and not as part of any specific program with NYSDEC oversight responsibilities. A copy of the SIR is included as Attachment A.

In correspondence dated November 9, 2007 and received by the Owner on November 16, 2007, NYSDEC indicated receipt of the SIR and its intention to designate the Site as a potential inactive hazardous waste

Golder Associates

disposal site. This correspondence was contrary to a previous resolution from the Town of Hempstead, dated March 12, 1991, wherein NYSDEC concluded that the Site would not be listed on the Registry of Inactive Hazardous Waste Disposal Sites.

On behalf of the Owner, Golder contacted NYSDEC to request a meeting to discuss this issue. Following several telephone conversations, NYSDEC informed Golder that a meeting would not be held at this time without the presence of the owner of the adjacent property parcels listed in the NYSDEC correspondence (i.e., Wal-Mart), and that NYSDEC would continue to attempt to contact the Wal-Mart parcel property owners. In the interim, the Owner requested that a synoptic groundwater sampling round be performed in existing monitoring wells located at the Site. NYSDEC has not responded further regarding the Site status as of the time of this report.

METHODOLOGY

Golder mobilized to the Site on January 30, 2008. Following collection of water level information, groundwater samples were obtained from each of the eight existing Site wells using low-flow sampling techniques in accordance with the United States Environmental Protection Agency (USEPA) document entitled Groundwater Sampling Procedure Low Stress Purging and Sampling Procedures (March 1998).

A decontaminated submersible Grundfos pump was placed at the approximate midpoint of the screened interval and set to slowly purge the well Water quality indicator parameters (WQIPs) including pH, temperature, specific conductivity, and turbidity, were measured in the field using a calibrated Horiba U-22 water quality probe and recorded on field sampling forms (Attachment B) and summarized on Table B-1. Once the parameters stabilized, with a minimum of three consecutive readings, samples were collected from each well (including a field duplicate sample) placed in laboratory provided glassware, and transported via courier under appropriate chain-of-custody procedures to TestAmerica, a New York licensed analytical laboratory.

Collected groundwater samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) – EPA8260; semi-volatile organic compounds (SVOCs) – EPA8070, Pesticides and PCBs – EPA8141 and EPA8082, and Target Analyte List (TAL) metals – EPA6010/7470. These parameters were selected based on the results of the previous groundwater samples. Chain-of-custody forms are provided in Attachment C. A summary of detected results is included as Table 1. Actual laboratory data reports can be provided upon request.

Investigation derived waste (IDW), including decontamination water and PPE, were contained within 55gallon DOT-approved drums and staged for future disposal off-Site

Golder Associates

DATA RESULTS AND GENERAL OBSERVATIONS

Detected results from laboratory analyses of groundwater samples collected during the January 2008 monitoring event are summarized on Table 1. Overall, the results are similar when compared to previous results, with the following notable exceptions:

- PCBs were detected slightly above the "PCB total" detection limit in MW-3. This is the same
 well that initially reported the PCB exceedance; however, the recently reported value is two
 orders of magnitude less than the questionable number previously reported in this well. Further,
 the PCB Aroclors reported in this sampling event were different than the Aroclor sdetected in the
 previous sampling event;
- Additional VOC constituents were reported above their respective standards in monitoring well MW-4. Overall, the amount of constituent detections and relative concentrations in MW-4 increased when compared to previous results; and,
- Wells MW-6 and MW-7, located at the downgradient edge of the property, reported VOCs. The samples collected from these wells previously indicated VOCs were not detected above the respective criterion.

CLOSING

We appreciate the continued opportunity to work with Jerusalem Avenue Property, LLC. If you have any questions, or require additional information, please contact either of the undersigned at (973) 645-1922.

Sincerely,

GOLDER ASSOCIATES INC.

Christopher D. Hemingway, P.G. Senior Hydrogeologist

Anthony Savino

Anthony Savino Senior Consultant

TABLES

Uniondale Detected Results Table

	N=Normal		imple ID: ple Date: puplicate:		MW-1 01/31/2008 N			MW-2 01/30/2008 N			MW-3 01/31/2008 N		MW-4 01/30/2008 N			MW-5 01/30/2008 N
Parameter	CAS	TOGS	Unit	Result	Qualifier	ReptLimit	Result	Qualifier	ReptLimit	Result	Qualifier ReptLimit	Result	Qualifier	ReptLimit	Result	Qualifier ReptLimit
Volatile Organics			<u> </u>													
Acetone	67-64-1	50	ug/l									140		120		
Benzene	71-43-2	1	ug/l							4	4					
Chlorobenzene	108-90-7	5	ug/l	40		4				16	4					
Chloroethane	75-00-3	5	ug/l									1200		25		
Chloroform	67-66-3	7	ug/l				0.6	J	1							
cis-1,2-Dichloroethene	156-59-2	5	ug/l									16	J	25		
Cyclohexane	110-82-7	NS	ug/l							9	4					
1,4-Dichlorobenzene	106-46-7	3	ug/l													
1,1-Dichloroethane	75-34-3	5	ug/l									670		25		
Ethylbenzene	100-41-4	5	ug/l							120	4	140		25		
Isopropylbenzene	98-82-8	5	ug/l	3	J	4				29	4	22	J	25		
Methyl Cyclohexane	108-87-2	NS	ug/l							3	J 4					
Methylene Chloride	75-09-2	5	ug/l									52		25		
Toluene	108-88-3	5	ug/l									59		25		
1,1,1-Trichloroethane	71-55-6	5	ug/l									290		25		
Trichloroethene	79-01-6	5	ug/l													
Vinyl Chloride	75-01-4	2	ug/l									28		25		
Xylenes, Total	1330-20-7	NS	ug/l							5	J 12	450		75		
Semivolatile Organics		•														
Acenaphthene	83-32-9	20	ug/l	2	J	5				2	J 5	0.8	J	5		
Anthracene	120-12-7	50	ug/l	1	J	5										
Biphenyl	92-52-4	5	ug/l									0.3	J	5		
Dibenzofuran	132-64-9	NS	ug/l	0.4	J	5				0.9	J 5					
Diethyl Phthalate	84-66-2	50	ug/l													
2,4-Dimethylphenol	105-67-9	50	ug/l									1	J	5		
Di-n-Butyl Phthalate	84-74-2	50	ug/l	0.3	J	5	0.3	J	5	0.5	J 5	0.5	J	5		
Di-n-octyl Phthalate	117-84-0	50	ug/l				0.4	J	5							
Fluoranthene	206-44-0	50	ug/l	1	J	5										
Fluorene	86-73-7	50	ug/l	3	J	5				2	J 5	0.7	J	5		
2-Methylnaphthalene	91-57-6	NS	ug/l	2	J	5				4	J 5	3	J	5		
4-Methylphenol	106-44-5	NS	ug/l									0.8	J	5		
Naphthalene	91-20-3	10	ug/l							32	5	5		5		
N-Nitrosodiphenylamine	86-30-6	50	ug/l	3	J	5				3	J 5	0.8	J	5		
Phenanthrene	85-01-8	50	ug/l	6		5				1	J 5					
Phenol	108-95-2	1	ug/l									0.9	J	5		
Pyrene	129-00-0	50	ug/l	0.9	J	5										

Notes:

TOGS - Division of Water Technical and Operational Guidance Series (1.1.1)

Ambient Water Quality Standards and Guidance Values and

Groundwater Effluent Limitations

NS - No Standard

J - Estimated value

Uniondale Detected Results Table

	N. Normal	Sam	mple ID: ple Date:		MW-6 01/31/2008			MW-7 01/31/2008		MW-8 01/31/2008 FD			
Parameter	CAS	, FD=Field D TOGS	Unit	Result	N Qualifier	ReptLimit	Result	N Qualifier	ReptLimit	Result		Rentl imit	
Volatile Organics	0/10	1000	Onit	Result	Qualifici	ReptEinit	Result	Quanner	ReptEinit	Result	Quanner	ReptEinin	
Acetone	67-64-1	50	ug/l										
Benzene	71-43-2	1	ug/l				0.8	J	1				
Chlorobenzene	108-90-7	5	ug/l	11		1	2		1				
Chloroethane	75-00-3	5	ug/l	0.7	J	1	9		1				
Chloroform	67-66-3	7	ug/l	011	•	-	·		•				
cis-1,2-Dichloroethene	156-59-2	5	ug/l				2		1				
Cyclohexane	110-82-7	NS	ug/l				1		1				
1,4-Dichlorobenzene	106-46-7	3	ug/l	0.5	J	1	1		1				
1,1-Dichloroethane	75-34-3	5	ug/l		-	-	29		1	0.5	J	1	
Ethylbenzene	100-41-4	5	ug/l				-				_		
Isopropylbenzene	98-82-8	5	ug/l										
Methyl Cyclohexane	108-87-2	NS	ug/l				0.8	J	1				
Methylene Chloride	75-09-2	5	ug/l					-					
Toluene	108-88-3	5	ug/l										
1,1,1-Trichloroethane	71-55-6	5	ug/l										
Trichloroethene	79-01-6	5	ug/l				2		1				
Vinyl Chloride	75-01-4	2	ug/l				2		1				
Xylenes, Total	1330-20-7	NS	ug/l										
Semivolatile Organics						•							
Acenaphthene	83-32-9	20	ug/l				0.4	J	5				
Anthracene	120-12-7	50	ug/l										
Biphenyl	92-52-4	5	ug/l										
Dibenzofuran	132-64-9	NS	ug/l										
Diethyl Phthalate	84-66-2	50	ug/l				0.2	J	5				
2,4-Dimethylphenol	105-67-9	50	ug/l										
Di-n-Butyl Phthalate	84-74-2	50	ug/l										
Di-n-octyl Phthalate	117-84-0	50	ug/l										
Fluoranthene	206-44-0	50	ug/l										
Fluorene	86-73-7	50	ug/l				0.4	J	5				
2-Methylnaphthalene	91-57-6	NS	ug/l										
4-Methylphenol	106-44-5	NS	ug/l										
Naphthalene	91-20-3	10	ug/l										
N-Nitrosodiphenylamine	86-30-6	50	ug/l				1	J	5				
Phenanthrene	85-01-8	50	ug/l										
Phenol	108-95-2	1	ug/l										
Pyrene	129-00-0	50	ug/l										

Notes:

TOGS - Division of Water Technical and Operational Guidance Series (1.1.1)

Ambient Water Quality Standards and Guidance Values and

Groundwater Effluent Limitations

NS - No Standard

J - Estimated value

_			
		MW-8	
		01/31/2008	3
		N	
it	Result	Qualifier	ReptLimit
-			
_			
_			
T	0.5	J	1
+	010	<u> </u>	•
-			
-			
_			
-			
-			
_			
+			
-			
+			
-			
+			
-			

	Sample ID: MW-1					MW-2			MW-3			MW-4			MW-5			
	Sample Date:			01/31/2008			01/30/2008		(01/31/2008			01/30/2008			01/30/2008		
	N=Norma	l, FD=Field D	uplicate:		Ν			Ν			Ν			Ν			Ν	
Parameter	CAS	TOGS	Unit	Result	Qualifier Re	ptLimit	Result	Qualifier	r ReptLimit	Result	Qualifie	r ReptLimit	Result	Qualifier	ReptLimit	Result	Qualifier	ReptLimit
Inorganics																		
Aluminum	7429-90-5	NS	ug/l	1000		40	1780		40	85.4	J	40	384		40	104	J	40
Arsenic	7440-38-2	25	ug/l															
Barium	7440-39-3	1000	ug/l	917	(0.22	39.6		0.22	1010		0.22	269		0.22	7.6		0.22
Beryllium	7440-41-7	3	ug/l							0.38	J	0.27						
Cadmium	7440-43-9	5	ug/l															
Calcium	7440-70-2	NS	ug/l	161000		100	11700		100	205000		100	54000		100	5780		100
Chromium	7440-47-3	50	ug/l	8.5	(0.84	23.7		0.84	0.95	J	0.84	3.6	J	0.84	3.2	J	0.84
Cobalt	7440-48-4	NS	ug/l	0.93	J (0.89	1.2	J	0.89							2.7	J	0.89
Copper	7440-50-8	200	ug/l				1.5	J	1.3							2.4	J	1.3
Iron	7439-89-6	300	ug/l	47700		19.3	2030		19.3	50800		19.3	18500		19.3	1050		19.3
Magnesium	7439-95-4	35000	ug/l	10600		42.3	1450		42.3	12600		42.3	5000		42.3	679		42.3
Manganese	7439-96-5	300	ug/l	685	(0.16	17.6		0.16	774		0.16	404		0.16	62.8		0.16
Nickel	7440-02-0	100	ug/l	5.3	J	1.2	15.4		1.2				3	J	1.2	8.2	J	1.2
Potassium	7440-09-7	NS	ug/l	9320		24	934		24	7980		24	3390		24	1090		24
Sodium	7440-23-5	20000	ug/l	27500		339	29600		339	34500		339	29900		339	5340		339
Vanadium	7440-62-2	NS	ug/l	3	J (0.78	4.1	J	0.78	2.5	J	0.78	0.9	J	0.78			
Zinc	7440-66-6	2000	ug/l	28.4		3.6	15.1		3.6	3.7	J	3.6	12		3.6	35.7		3.6
Polychlorinated Bipheny	/ls																	
Aroclor 1262	37324-23-5	NS	ug/l							0.47	J	0.48						
Aroclor 1268	11100-14-4	NS	ug/l							0.38	J	0.48						
Total PCBs		0.09	ug/l		0			0		0.8	5	J		0			0	
Pesticides																		
alpha-BHC	319-84-6	0.01	ug/l										0.021	J	0.048			
alpha-Chlordane	5103-71-9	NS	ug/l	0.0049	J (0.05												
beta-Chlordane	5103-74-2	NS	ug/l										0.023	J	0.048			
4,4-DDD	72-54-8	0.3	ug/l	0.025	J (0.05				0.042	J	0.048	0.053		0.048			
4,4-DDE	72-55-9	0.2	ug/l	0.019	J	0.05				0.02	J	0.048	0.031	J	0.048			
delta-BHC	319-86-8	0.04	ug/l										0.024	J	0.048			
Dieldrin	60-57-1	0.004	ug/l							0.021	J	0.048	0.037	J	0.048	0.0066	J	0.048
gamma-BHC	58-89-9	0.05	ug/l	0.054		0.05				0.036	J	0.048						
Methoxychlor	72-43-5	35	ug/l										0.036	J	0.048			

Notes:

TOGS - Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and

Groundwater Effluent Limitations

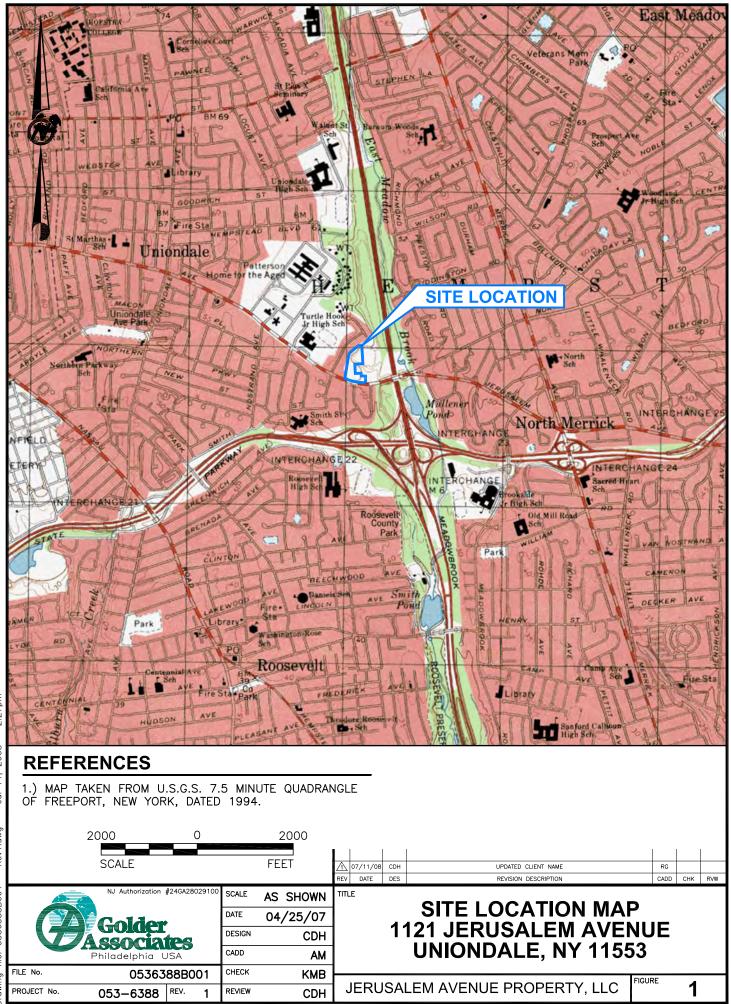
NS - No Standard

J - Estimated value

	MW-6						MW-8		MW-8						
	01/31/2008 N				01/31/2008 N			01/31/200 FD	8		01/31/200 N	18			
Parameter	CAS	, FD=Field D TOGS	Unit	Result		ReptLimit	Result		r ReptLimit	Result		ReptLimit	Result		ReptLimit
Inorganics			1						•						
Aluminum	7429-90-5	NS	ug/l	156	J	40	387		40	1020		40	1020		40
Arsenic	7440-38-2	25	ug/l				6.4	J	4.2						
Barium	7440-39-3	1000	ug/l	196		0.22	171		0.22	37.7		0.22	38.3		0.22
Beryllium	7440-41-7	3	ug/l												
Cadmium	7440-43-9	5	ug/l				0.67	J	0.36						
Calcium	7440-70-2	NS	ug/l	91500		100	58400		100	21100		100	21300		100
Chromium	7440-47-3	50	ug/l	1.2	J	0.84	1.6	J	0.84	3.7	J	0.84	3.8	J	0.84
Cobalt	7440-48-4	NS	ug/l	1.4	J	0.89	7.3		0.89				0.94	J	0.89
Copper	7440-50-8	200	ug/l												
Iron	7439-89-6	300	ug/l	4180		19.3	27700		19.3	1140		19.3	1150		19.3
Magnesium	7439-95-4	35000	ug/l	7260		42.3	5180		42.3	1850		42.3	1870		42.3
Manganese	7439-96-5	300	ug/l	1260		0.16	1820		0.16	15.7		0.16	15.3		0.16
Nickel	7440-02-0	100	ug/l	1.9	J	1.2	1.9	J	1.2	2.6	J	1.2	2.3	J	1.2
Potassium	7440-09-7	NS	ug/l	7330		24	4990		24	3270		24	3280		24
Sodium	7440-23-5	20000	ug/l	25400		339	32400		339	11700		339	11800		339
Vanadium	7440-62-2	NS	ug/l				1.2	J	0.78	1.4	J	0.78	1.7	J	0.78
Zinc	7440-66-6	2000	ug/l	3.6	J	3.6	6	J	3.6	6.5	J	3.6	6.6	J	3.6
Polychlorinated Biphen	yls														
Aroclor 1262	37324-23-5	NS	ug/l												
Aroclor 1268	11100-14-4	NS	ug/l												
Total PCBs		0.09	ug/l		0			0			0			0	
Pesticides															
alpha-BHC	319-84-6	0.01	ug/l	0.02	J	0.048									
alpha-Chlordane	5103-71-9	NS	ug/l	0.0052	J	0.048									
beta-Chlordane	5103-74-2	NS	ug/l				0.011	J	0.048						
4,4-DDD	72-54-8	0.3	ug/l				0.019	J	0.048						
4,4-DDE	72-55-9	0.2	ug/l												
delta-BHC	319-86-8	0.04	ug/l							0.024	J	0.048	0.025	J	0.048
Dieldrin	60-57-1	0.004	ug/l	0.0089	J	0.048	0.013	J	0.048	0.008	J	0.048	0.0088	J	0.048
gamma-BHC	58-89-9	0.05	ug/l												
Methoxychlor	72-43-5	35	ug/l												

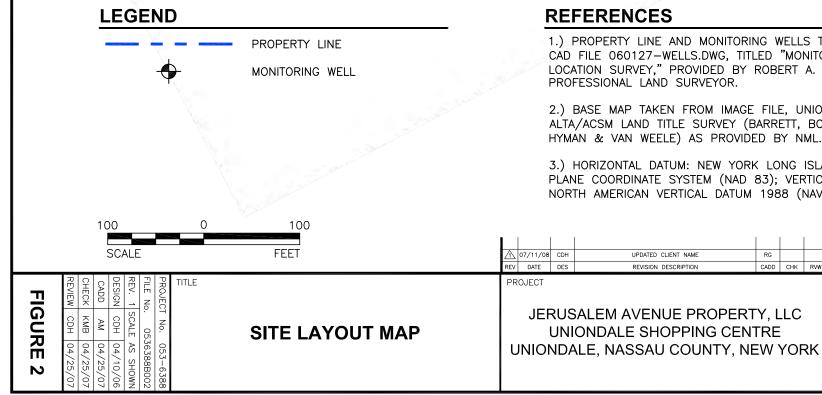
Notes:

TOGS - Division of Water Technical and Operational Guidance Series (1.1.1)


Ambient Water Quality Standards and Guidance Values and

Groundwater Effluent Limitations

NS - No Standard


J - Estimated value

FIGURES

Jrawing file: 0536388B001 - Rev1.dwg Jul 11, 2008 - 2:27pm

1.) PROPERTY LINE AND MONITORING WELLS TAKEN FROM CAD FILE 060127-WELLS.DWG, TITLED "MONITOR WELL LOCATION SURVEY," PROVIDED BY ROBERT A. RYAN PROFESSIONAL LAND SURVEYOR.

2.) BASE MAP TAKEN FROM IMAGE FILE, UNIONDALE -ALTA/ACSM LAND TITLE SURVEY (BARRETT, BONACCI, HYMAN & VAN WEELE) AS PROVIDED BY NML.

3.) HORIZONTAL DATUM: NEW YORK LONG ISLAND STATE PLANE COORDINATE SYSTEM (NAD 83); VERTICAL DATUM: NORTH AMERICAN VERTICAL DATUM 1988 (NAVD 88)

RG

CADD

Golder
Philadelphia USA

ATTACHMENT A

SITE INVESTIGATION REPORT April 2007

Golder Associates

TABLE OF CONTENTS

Cover L	Letter
---------	--------

Table of Contents	1
	, I

SECTION

PAGE	
------	--

1.0	INTRO	TRODUCTION 1							
2.0			ND INFORMATION	2					
	2.1		escription						
	2.2		nal Geology and Hydrogeology						
	2.3	Previo	us Investigations and Results	3					
3.0	FIELD	SAMP	LING AND ANALYSIS PROCEDURES	5					
	3.1	Soil Bo	oring Installation Procedures	5					
	3.2		oring Well Installation Procedures						
	3.3		ampling Procedures						
	3.4		dwater Sampling Procedures						
	3.5		y Assurance/ Quality Control (QA/QC)						
4.0	SITE I	NVEST	IGATION RESULTS	11					
	4.1	Site Fi	ll and Underlying Geologic Units	. 11					
		4.1.1	Site Fill						
		4.1.2	Other Encountered Geologic Units						
	4.2	Site Hy	ydrogeology						
	4.3		nd Groundwater Analytical Results						
		4.3.1	Volatile Organic Compounds (VOCs)						
		4.3.2	Semi-Volatile Organic Compounds (SVOCs)						
		4.3.3	Metals						
		4.3.4	Pesticides and PCBs						
5.0	SUMN	AARY A	AND CONCLUSIONS	16					
	5.1	Fill Ma	aterial	. 16					
	5.2	Ground	dwater	. 16					
	5.3	5.3 Conclusions							

LIST OF TABLES

Table 1	Summary of Well Construction Details
---------	--------------------------------------

- Table 2Summary of Detected Constituents in Soil
- Table 3
 Summary of Detected Constituents in Groundwater

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Layout Map
Figure 3	Interpreted Potentiometric Surface Map

Golder Associates

LIST OF APPENDICES

Appendix A	Soil Boring Logs and Monitoring Well Installation Logs
Appendix B	Well Development Forms
Appendix C	Sample Collection Forms
Appendix D	Laboratory Data Forms

1.0 INTRODUCTION

Golder Associates Inc. (Golder) was retained by Northwestern Mutual Life (NML) to perform a preliminary subsurface investigation (SI) of the property located at 1121 Jerusalem Avenue (Site or "Subject Property") in Uniondale, New York (Figure 1). The objective of this investigation was to characterize the nature and extent of subsurface materials and examine Site groundwater conditions.

Golder understands that NML is considering foreclosing on the subject property at the above-mentioned location. Toward this end, Golder performed a limited Environmental Review (ER) during October 2005 as described in the *Draft Environmental Review Report* submitted to NML November 15, 2005. Based on the results of the ER, particularly a review of historic documents indicating the presence of a non-permitted landfill and constituent levels in soil and groundwater in excess of current New York State Department of Environmental Conservation (NYSDEC) remediation criteria, Golder performed the SI presented herein, which included:

- Installation of eight soil borings and collection of soil samples at five locations based on field information obtained during the SI program;
- Installation, development, and surveying of eight permanent groundwater monitoring wells and collection of groundwater samples from these eight locations; and,
- Analysis of soil and groundwater samples and evaluation of the results.

The following Sections of this report provide a summary of the work completed for the SI, a description of the methodologies employed, and an evaluation and discussion of the data collected during the SI at the above-mentioned Site.

2.0 BACKGROUND INFORMATION

2.1 Site Description

The subject property is located at 1121 Jerusalem Avenue, just west of Meadowbrook Parkway, in Uniondale, Nassau County, New York (Figure 1). The subject property is referenced as Lot 269, Block G, Section 50¹ on the land and tax map of Nassau County, and covers roughly 4.5 acres. The concrete block and steel building located at the Site was built in 1995/1996, and currently contains a vacant ShopRite store, and an active RadioShack and pizzeria (Figure 2). Immediately adjacent to the Site to the east is an active Wal-Mart shopping center. A large, paved parking lot is located on the south side of the property. The investigation work described herein was not performed on the Wal-Mart leasehold as the Wal-Mart leasehold is not part of the subject property, and not under consideration for foreclosure.

According to documents reviewed as part of the ER, the northern portion of the subject property and the adjacent Wal-Mart parcel, was filled during the 1960s and 1970s with a wide variety of materials including construction debris, medical waste, old paint cans, and yard waste. Previous, environmental investigations in the former fill area indicated the presence of fill materials and certain constituents in excess of current NYSDEC soil and groundwater criteria.

2.2 Regional Geology and Hydrogeology

Long Island, New York's present configuration is primarily the result of glaciation which occurred during the Pleistocene Era. The site is located in the Coastal Plain Physiographic Province, which is comprised of interbedded sands and clays. These inter-bedded layers form three main aquifers and associated clay confining layers. The shallowest is the Upper Glacial Aquifer, which consists of glacial till and outwash deposited during the Pleistocene ice advances. The largest of the aquifers, known as the Magothy, lies beneath the Upper Glacial and serves as a major source of water for Long Island. It is composed of Cretaceous deltaic sediments. A semi-confining clay unit underlies the Magothy and restricts movement of water into the Lloyd Aquifer, which lies in contact with the bedrock. In addition to these layers, Long Island contains numerous smaller aquifers and localized confining layers.

¹ This lot and block designation is based on updated information obtained from the Nassau County Department of Assessment and is different than that presented in the survey provided by NML and in the Draft Environmental Review.

Groundwater quality in these aquifers is generally good, although contamination from nitrates and volatile organic compounds related to gasoline (i.e., benzene, toluene, ethylbenzene, xylene and MTBE) in the Upper Glacial Aquifer is documented in many areas throughout Long Island, including the vicinity of the Site.

Regionally, as many as forty seven water monitoring wells (gauging stations) screened primarily in the Upper Glacial Aquifer are maintained and periodically measured by the United States Geological Survey (USGS), and are reported to have an average depth to water of approximately 20 feet below ground surface (ft-bgs).

Three public water supply wells (or well fields) are located within one mile of the subject property. According to the EDR Field Check Report, one of the public water supply wells (or well fields) is owned by the Town of Hempstead Water Department and is located north-northwest of the subject property (upgradient). An additional public supply well (or well field), according to the EDR Field Check Report, is owned and operated by the New York Water Service Corporation, and is located to the south-southeast (downgradient).

2.3 **Previous Investigations and Results**

Golder obtained and reviewed the following documents concerning the Site:

- "Plander Lanes Uniondale's Love Canal, Do You Love Your Canal? Testimony At Public Hearing Before Town Of Hempstead Town Board" Testimony prepared by Daniel Karpen on behalf of the Winthrop Mitchell Block Association, April 1989;
- "Supplemental Soil & Groundwater Investigation At Uniondale Shopping Center Site," Fanning Phillips & Molnar, June 1989;
- "Final Environmental Impact Statement For The Uniondale Shopping Center," Fanning Phillips & Molnar, July 1989;
- "Supplemental Geohydrology Work Plan Uniondale Shopping Center Site, Prepared For Philips International," Fanning Phillips & Molnar, February 1990;
- "Work Plan For Follow Up Soil And Groundwater Investigation Uniondale Shopping Center Site, Prepared for Philips International," Fanning Phillips & Molnar, March 1990;
- "Methane Abatement System Design Uniondale Shopping Center, Uniondale, New York, Prepared For Uniondale Realty Associates C/O Philips International", Envirotrac Ltd., June 1995;
- "Environmental Site Assessment For Phillips International And Northwestern Mutual Life Of ShopRite 1621 Jerusalem Avenue Uniondale, New York 11553 Project No. 85115-0001," ATC Environmental Inc., November 1996.

• "Preliminary Investigation Of Buried Waste Piping, Below-Slab Pipe Hangers And Methane Abatement System Uniondale Shopping Center Jerusalem Avenue, Uniondale, NY, Prepared For Berkman, Henoch, Peterson, & Peddy, P.C.," Simpson Gumpertz & Heger Inc., June 2005

The referenced reports were reviewed and relevant information from these reports is included in this report where applicable. More detailed summaries of selected reports are included in the *Draft Environmental Review* described previously.

3.0 FIELD SAMPLING AND ANALYSIS PROCEDURES

The drilling program was completed by Summit Drilling Inc. (Summit) in two separate mobilization phases. The first phase was conducted January 30th through February 2nd, 2006 and included the advancement of five borings using hollow stem auger (HSA) techniques, continuous soil sampling for lithologic characterization, and installation and development of five permanent monitoring wells. Soil and groundwater samples collected during and subsequent to the drilling work were submitted to CompuChem, a New York certified laboratory, for analysis.

The second phase of drilling work was performed by Summit on March 17th and March 20th, 2006 and included the advancement of three borings using hollow stem auger (HSA) techniques and installation and development of three permanent monitoring wells. Continuous soil sampling using direct push techniques was performed for lithologic characterization prior to advancing each monitoring well boring, however, samples from these borings were not submitted for analysis based on their location and lack of field observations indicating potential impact. Groundwater samples were collected from these three wells subsequent to completion of the drilling program and submitted to Severn Trent Laboratories (STL), a New York certified laboratory, for analysis.

3.1 Soil Boring Installation Procedures

Summit Drilling Inc. (Summit), used 4.25-inch inside-diameter (ID) hollow-stem augers (HSAs) to advance a total of eight environmental soil borings (SB-1, SB-2, SB-3, SB-4, SB-5, SB-6, SB-7, and SB-8) at the locations shown on Figure 2. Continuous split-spoon samples or direct push soil cores were collected at each of the soil boring locations and logged by Golder personnel. Soil boring logs are included as Attachment A.

3.2 Monitoring Well Installation Procedures

A total of eight groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, and MW-8) were installed by Summit in general accordance with NYSDEC protocols following completion of their respective soil borings at the locations shown on Figure 2. The monitoring wells were constructed of 2-inch ID, Schedule 40 PVC riser pipe with varying lengths of 2-inch ID, Schedule 40 PVC 0.010-inch slot size well screen. Monitoring wells MW-1 and MW-2 were installed to approximately 50 feet below ground surface (ft. bgs). All other wells were installed to intersect the observed water table location at the time of drilling (generally 15 to 20 ft.bgs). Following installation of

Golder Associates

the riser and screen, a #1-sized silica sandpack was installed in the borehole annulus from the bottom of the borehole (approximately 1 foot below the screen) to approximately 2.5 feet above the top of the screen. A cement/bentonite grout slurry was then pumped in to the remaining annular space until grout was observed to be flowing from the borehole. A flush mount manhole cover and concrete pad were installed to complete the well at the surface. The wells were secured with locking caps. Monitoring well installation logs are included as Appendix A. A summary of well construction information is included as Table 1.

Well development was performed via continuous cycles of pumping and surging using a submersible pump and bailer. The monitoring wells were developed until relatively turbidity-free (i.e., less than 100 nephelometric turbidity units (NTU)), visually clear groundwater was produced, and indicator parameters stabilized, indicating formation water was obtained. Well development forms are included as Appendix B.

All environmental boring drill cuttings and development water were collected in Department of Transportation (DOT) approved 55-gallon drums, labeled with the boring number, and stored on-Site. KS Engineers, P.C., a New York Registered Land Surveyor, surveyed the elevation of the inner monitoring well casings and boring locations following installation and development. Survey information is included in Table 1.

3.3 Soil Sampling Procedures

Soil samples for laboratory analysis were collected from five of the eight borings in general accordance with the soil sampling procedures as outlined in NYSDEC's *Technical Field Guidance* - *Site Investigation Procedures*. Decontaminated split-spoon samplers were advanced throughout the soil borings. The spoons were retrieved, and then visually screened for soil discoloration or evidence of contamination. In addition, a calibrated Photo-Ionization Detector (PID) was used to screen each soil sample for the presence of volatile constituents. Areas exhibiting the greatest physical evidence of contamination (e.g., PID readings, staining, evidence of fill, etc.) from borings SB-1, SB-2, SB-3, and SB-4 were retained for laboratory analysis. If no visual indications were observed and no PID readings above background were detected, the sample collected immediately above the noted groundwater surface was retained and submitted to the laboratory for analysis.

In general, the PID results from the soil cores collected from the borings were within background levels (i.e., less than 1 - 2 parts per million (ppm)) with maximum PID readings of about 11 -15 ppm, and therefore did not indicate any particular areas of impact. However, soils screened from boring SB-3 exhibited elevated PID readings and odors in several zones as described in the boring log in Appendix A.

A non-homogenized grab sample was collected from areas exhibiting potential impact for VOC analysis. The remaining soil from the sample spoon(s) was then homogenized and placed in sample jars. Due to the generally poor recovery in spoons collected within the fill material, and the volume of soil required for the analyses, soil was collected from two consecutive spoons when necessary. Analytical samples from soil borings SB-1, SB-2, SB-3, and SB-4 (two samples) were submitted to CompuChem and analyzed using USEPA methods for the following parameters: Target Compound List Volatile Organic Compounds (TCL VOCs) – EPA8260; Semi-volatile Organic Compounds (SVOCs) – EPA8070, Pesticides and Polychlorinated Biphenyls (PCBs) – EPA 8141 and EPA8082 and Target Analyte List (TAL) metals – EPA6010/7470. Standard chain-of-custody procedures were maintained throughout the sampling and transportation process. A summary of the constituents detected in these samples is presented in Section 4 and in Table 2. Individual laboratory data sheets are included as Appendix D

3.4 Groundwater Sampling Procedures

Groundwater samples were obtained from the eight monitoring wells using low-flow sampling techniques in accordance with the United States Environmental Protection Agency (USEPA) document entitled *Groundwater Sampling Procedure Low Stress Purging and Sampling Procedures* (March, 1998). This approach was selected in an effort to minimize the turbidity (i.e., the presence of suspended solids) and purge water generated as much as practically possible, and is generally described as follows.

Each well was purged using a decontaminated submersible pump at a rate of approximately 150 milliliters per minute (ml/min). During purging, the water level was monitored and if necessary, the pumping rate adjusted such that water level drawdown was minimized. A clean and calibrated (to manufacturer's specifications) Horiba-U-22 instrument with an in-line flow cell, was attached to the pump discharge tubing. Field parameters (temperature, pH, turbidity, and specific conductance) were monitored during purging until the parameters stabilized over a minimum of three consecutive

readings. Stabilization was considered achieved when pH was within \pm 0.1 standard units; conductivity was within 3%; temperature was within \pm 0.5 degrees; and turbidity was within 10% (and less than 100 NTU). All measurements were recorded in field notebooks and transferred to the sample collection forms presented in Appendix C.

Once parameters stabilized, the flow cell was disconnected from the discharge tubing in order to collect samples directly from the end of the tubing. Samples for VOC analysis were collected first. The pump flow rate was further reduced during the collection of samples for VOCs to minimize volatilization and for metals to minimize turbidity. All sample bottles were filled by allowing the pump discharge to flow gently down the inside of the bottle with minimal turbulence. Care was taken to eliminate headspace in the 40-milliliter (ml) vial for VOC samples. Sample jars were labeled, placed on ice, and transported by courier to either CompuChem (groundwater samples collected from MW-1, MW-2, MW-3, MW-4, and MW-5) or STL laboratories (groundwater samples collected from MW-6, MW-7, and MW-8).

Samples collected from MW-1 through MW-5 were analyzed using USEPA methods for the following parameters: TCL VOCs – EPA8260; SVOCs – EPA8070, Pesticides and PCBs – EPA 8141 and EPA8082, and TAL metals – EPA6010/7470. Samples collected from monitoring wells MW-6 through MW-8 were not analyzed for metals based on the results of the samples collected from MW-1 through MW-5. A summary of the constituents detected in groundwater is presented in Section 4 and on Table 3. Individual laboratory data sheets are included as Appendix D.

3.5 Quality Assurance/ Quality Control (QA/QC)

Individual QA/QC samples (i.e., trip blanks, duplicates, etc.) were not collected during the SI to monitor sampling and laboratory performance. However, the chemical data for samples collected at the Site were validated to identify quality issues which could affect the use of the data for decision making purposes.

A total of eight groundwater and five soil samples were collected for chemical analysis during the sampling event. CompuChem performed all chemical analyses except the March 2006 groundwater samples (MW-6, MW-7, and MW-8) which were analyzed by STL. All chemical analyses were performed following USEPA method guidelines:

Golder Associates

- TCL VOCs following USEPA SW846² Method 8260B <u>Volatile Organic Compounds by Gas</u> <u>Chromatography/Mass Spectrometry (GC/MS)</u> (December, 1996).
- TCL SVOCs following USEPA SW846 Method 8270C <u>Semivolatile Organic Compounds by</u> <u>Gas Chromatography/Mass Spectrometry (GC/MS)</u> (January, 1998).
- TCL Pesticides following USEPA SW846 Method 8081A <u>Organochlorine Pesticides by Gas</u> <u>Chromatography</u> (December 1996).
- PCBs following USEPA SW846 Method 8082 <u>Polychlorinated Biphenyls (PCBs) by Gas</u> <u>Chromatography</u> (December 1996).
- TAL Metals following USEPA SW846 Method 7470/7471 <u>Mercury in Liquid Waste (Manual Cold-Vapor Technique)</u> (September 1994), and Method 6010 <u>Inductively Coupled Plasma-Atomic Emission Spectrometry</u> (December 1996).

Data for VOCs were evaluated following guidelines provided by USEPA Region II Standard Operating Procedure (SOP) No. HW-24, Revision 1, <u>Validating Volatile Organic Compounds by</u> <u>SW-846 Method 8260B</u>, June 1999. Data for SVOCs were evaluated following USEPA Region II SOP No. HW-22, Revision 2, <u>Validating Semivolatile Organic Compounds by SW-846 Method</u> <u>8270C</u>, June 2001. Pesticides were evaluated following USEPA Region II SOP No. HW-23, Revision 0, <u>Organochlorine Pesticides/PCB Analysis</u>, April 1995 and PCBs following USEPA Region II SOP No. HW-23B, Revision 1, <u>Validating PCB Compounds by SW846 8082</u>, May 2002. Data for inorganics were evaluated following guidelines provided by USEPA Region II SOP No. HW-2, Revision 11, <u>Evaluation of Metals Data for the Contract Laboratory Program</u>, January 1992. Chemical results for the samples collected at the Site were qualified on the basis of outlying precision or accuracy parameters, or on the basis of professional judgment

In general, the data generated as part of the January - March 2006 sampling events met the QC criteria established in the respective USEPA methods and Region II SOPs. The following bulleted items highlight qualifications to specific parameters. Although these qualifications were applied to some of the samples collected at the Site, the qualifications may not have been required or applied to all samples collected.

• February 2006 groundwater results for aldrin, beta-BHC, heptachlor, beryllium, and lead were qualified as non-detect (U) due to method blank contamination.

² USEPA, 1996, Test methods for evaluating solid waste, physical/chemical methods (SW-846): 3rd edition, Environmental Protection Agency, National Center for Environmental Publications, Cincinnati, Ohio, accessed at URL http://www.epa.gov/epaoswer/hazwaste/test/sw846.htm

• February 2006 groundwater results for heptachlor and heptachlor epoxide were rejected (R) due to the % difference between the two columns being greater than 100%, as well as interference on the higher column.

Based on the data evaluation and data quality assessment, the analytical data for samples collected at the Site were determined to be acceptable (including estimated data) for their intended use, with the exception of data qualified as **R** (rejected). Generally, acceptable levels of accuracy and precision, based on Laboratory Control Standards (LCS), Matrix Spike / Matrix Spike Duplicates (MS/MSD), and surrogate recoveries, were achieved for the data. In addition, the data completeness (i.e., the ratio of the amount of valid data obtained to the amount expected, including estimated (**J/UJ**) data) was 99.8%).

4.0 SITE INVESTIGATION RESULTS

The following Section describes the results derived from the data collected during this Site Investigation and previous investigations, including information regarding the local (Site) geology, hydrogeology, and soil and groundwater analytical results.

4.1 Site Fill and Underlying Geologic Units

The encountered stratigraphy at the Site, in general, consists of the following, from youngest to oldest;

- 1. Uppermost Cover;
- 2. Fill Material
- 3. Sand (fine to coarse grained, grey or brown) with intermittent bands of clay and occasional gravels)
- 4. Sand (fine to coarse grained, brown to orange) and gravels (fine to medium sized)
- 5. Clay

A description of the Site fill and each geologic unit is provided below.

4.1.1 Site Fill

The uppermost surficial and subsurface materials at the Site can be characterized as follows:

- Uppermost Cover Consists predominately of asphalt and sandy fill with some brick and wood fragments.
- Fill Material This material mainly consists of a heterogeneous mixture of silt, sand, gravel, pebbles, cobbles, reclaimed asphalt, wood chips, concrete, and brick fragments with pieces of glass and porcelain, wire, and fence materials. This material was encountered predominately in borings SB-1, SB-2 and SB-3 which were advanced closest to the reported former landfill/quarry footprint, and ranged in thickness where encountered from 12 ft. bgs adjacent to the south side of the building to as much as approximately 20 ft.bgs within the former landfill footprint.

4.1.2 Other Encountered Geologic Units

Sand with Intermittent Clay Unit

Quaternary sediments which underlie the fill to a depth of approximately 20 to as much as 35 ft.bgs consist of predominantly light-brown, gray, fine to coarse sand with some gravels (fine to medium) some silt (fines) and occasional clay lenses.

Sand and Gravel Unit

This unit is pervasive across the site and typically is encountered between twenty and fifty ft.bgs. Gravel content increases with depth throughout this zone (i.e., fining upward sequence) and the color becomes increasingly yellow-brown with depth. This sand and gravel unit likely comprises the "Upper Glacial Aquifer" at the Site.

Clay Unit

A light white-orange-colored clay was encountered in boring SB-2 below the sand unit at a depth of 49 ft. bgs. Upon encountering this clay unit, the boring was not advanced further. This unit likely represents a confining zone that separates the Upper Glacial Aquifer from the underlying aquifer units.

4.2 Site Hydrogeology

Water levels encountered during drilling ranged from approximately 15 to 21 ft.bgs in borings across the Site. Groundwater levels identified in the completed, developed monitoring wells were generally similar. Figure 3 presents an interpreted groundwater elevation and flow direction map constructed from a synoptic round of water level measurements collected on March 22, 2006 and included on Table 1. Based on these water level data, the groundwater flow direction at the Site is generally toward the south. The horizontal groundwater flow gradient, as calculated along the generalized direction of flow between monitoring wells MW-5 and MW-6, is approximately 0.0021 ft/ft, indicating a relatively flat-lying water table surface, consistent with the Site topography.

4.3 Soil and Groundwater Analytical Results

Analytical results for soil and groundwater samples collected at the previously described soil boring locations and from the permanent monitoring wells are summarized on Tables 2 and 3, and described in the following Sections. Concentrations for soil sample results are expressed as mg/kg (ppm) and

groundwater results are expressed as ug/l or parts per billion (ppb). Soil results are compared to the NYSDEC Recommended Soil Cleanup Objectives (RSCO) presented in TAGM #4046 Groundwater results are compared to the NYSDEC Groundwater Standards/Criteria (GWS) presented in 6 NYCRR Part 703 for GA (GA is the classification for "fresh groundwater" in New York).

4.3.1 Volatile Organic Compounds (VOCs)

VOCs were not detected above the NYSDEC RSCO in the soil samples collected during the SI. VOC detections in soil samples collected during the SI are summarized in Table 2.

VOC detections in groundwater samples collected during the SI are summarized on Table 3. VOCs were detected above the NYSDEC GWS in the groundwater samples collected during the SI as described following:

- Chloroethane was detected above the NYSDEC GWS (50 micrograms per liter (ug/L)) in groundwater sample collected from monitoring well MW-4 (87 ug/L);
- Benzene was detected above the NYSDEC GWS (1.0 ug/L) in the sample collected from monitoring wells MW-1 (4.8 ug/L, estimated), MW-3 (12 ug/L), and MW-4 (27 ug/L),
- Toluene was detected above the NYSDEC GWS (5 ug/L) in the sample collected from monitoring well MW-4 (140 ug/L);
- Chlorobenzene was detected above the NYSDEC GWS (5 ug/L) in the sample collected from monitoring wells MW-1 (37 ug/L) and MW-3 (28 ug/L); and
- Ethylbenzene was detected above the NYSDEC GWS (5 ug/L) in the sample collected in MW-3 (18 ug/L) and MW-4 (130 ug/L).

4.3.2 Semi-Volatile Organic Compounds (SVOCs)

SVOCs detected at or above the laboratory detection limits in soil samples collected during the SI are summarized in Table 2. SVOCs detected above the NYSDEC RSCO are as follows:

- Benzo(a)anthracene was detected above the NYSDEC RSCO (0.224 milligrams per kilogram (mg/kg)) in the soil sample collected from boring SB-3 (0.730 mg/kg);
- Benzo(a)pyrene was detected above the NYSDEC RSCO (0.061 mg/kg) in the soil samples collected from borings SB-1 (0.064 mg/kg, estimated) and SB-3 (0.640 mg/kg);

- Chrysene was detected above the NYSDEC RSCO (0.40 mg/kg) in soil sample collected from boring SB-3 (0.770 mg/kg);and
- Dibenz(a,h)anthracene was detected above the NYSDEC RSCO (0.014 mg/kg) in the soil sample collected from boring SB-3 (0.068 mg/kg).

SVOCs detected at or above the laboratory detection limits in groundwater samples collected during the SI are summarized in Table 3. The only SVOC detected above the NYSDEC GWS (10 ug/L) in groundwater samples collected during the SI was naphthalene (66 ug/L) in monitoring well MW-3.

4.3.3 Metals

Metals detected at or above the laboratory detection limits in soil samples collected during the SI are summarized in Table 2. Metals detected above the NYSDEC RSCO in soil samples collected at the Site are as follows:

- Beryllium was detected (estimated concentrations) above the NYSDEC RSCO (0.16 milligrams per kilogram (mg/kg) or Site background (SB)) in soil samples collected from borings SB-2 (0.21 (J) mg/kg) and SB-3 (0.18 (J) mg/kg);
- Chromium was detected above the NYSDEC RSCO (10 mg/kg or SB) in the soil sample collected from boring SB-2 (39 mg/kg);
- Zinc was detected (estimated) above the NYSDEC RSCO (20 mg/kg) in the soil sample collected from boring SB-1 (330 mg/kg).

It should be noted that NYSDEC RSCO criteria for metals can be established based on site-specific background levels; however, background levels have not been established for this Site.

Metals detections in groundwater samples collected during the SI are summarized on Table 3. No metals above the NYSDEC GWS were reported in groundwater samples collected during the SI. In some instances (i.e., thallium, zinc) where detections were reported, no standard is listed under 6 NYCRR Part 703.

4.3.4 Pesticides and PCBs

Pesticides and polychlorinated biphenyls (PCBs) were not detected above the NYSDEC RSCO in the soil samples collected during the SI. Pesticide and PCB detections in soil samples collected during the SI are summarized in Table 2.

Pesticide and PCB detections in groundwater samples collected during the SI are summarized on Table 3. Pesticides and PCBs were detected above the NYSDEC GWS in the groundwater samples collected during the SI as described following:

- Aldrin was detected (estimated concentration) above the NYSDEC GWS (non-detect) in the groundwater sample collected from monitoring well MW-3 (0.028 ug/L);
- alpha-Chlordane was detected above the NYSDEC GWS (0.10 ug/L) in the groundwater sample collected from monitoring well MW-3 (0.15 ug/L);
- Dieldrin was detected above the NYSDEC GWS (non-detect) in the groundwater samples collected from monitoring wells MW-3 (0.24 ug/L) and MW-4 (0.12 ug/L);
- gamma-Chlordane was detected above the NYSDEC GWS (0.1 ug/L) in the groundwater sample collected from monitoring well MW-3 (0.24 ug/L); and
- PCB (Aroclor 1260) was detected above the NYSDEC GWS (5 ug/L) in the groundwater sample collected from MW-3 (69 ug/L)

5.0 SUMMARY AND CONCLUSIONS

Golder performed the SI presented herein, which included:

- Installation of eight soil borings and collection of soil samples at five locations based on field information obtained during the SI program;
- Installation, development, and surveying of eight permanent groundwater monitoring wells and collection of groundwater samples from these eight locations; and,
- Analysis and interpretation of soil and groundwater sample results.

The following Sections provide a summary of the results derived from this investigation.

5.1 Fill Material

The fill materials noted on-site are generally restricted to the approximate area of the former quarry footprint which includes the Site and the adjacent Wal-Mart leasehold. Soil investigation borings were installed immediately downgradient of the ShopRite (SB-1, SB-3, SB-4) or within the estimated landfill footprint (SB-2). Although recovery within this fill zone was generally poor, soil cores recovered from borings SB-1, SB-2, SB-3, and SB-4 indicated the presence of fill materials at various depths.

In summary:

- The fill is not an indigenous material. The fill layer encountered during this investigation contains man-made items such as reclaimed asphalt, brick fragments, styrofoam, concrete, wire, fence materials and pieces of glass and porcelain.
- Analytical results of samples of fill collected during the SI (Table 2) included exceedances of the NYSDEC RSCO for certain SVOCs and metals. These exceedances are generally limited to soil samples collected from SB-3, which is located at the approximate downgradient fringe of the former landfill footprint. Notably, no VOCs, PCBs, or pesticides were detected above NYSDEC soil clean-up objectives.

5.2 Groundwater

The analytical results of the groundwater samples collected at three monitoring wells (MW-1, MW-3, and MW-4) installed directly downgradient of the former landfill (or within the outer fringes of the former quarry fill area) at the Site (Table 2) indicate VOCs (chloroethane, benzene, toluene,

chlorobenzene, xylene), SVOCs (naphthalene), pesticides (aldrin, alpha-chlordane, dieldrin, and gamma-chlordane), and PCBs (Aroclor 1260) above the respective GWS.

The analytical results of the groundwater samples collected from upgradient monitoring well MW-5 and monitoring well MW-2 (approximate upgradient landfill edge) were less than NYSDEC GWS;

Based on these results, three additional downgradient monitoring wells (MW-6, MW-7, and MW-8) were installed near the southern property boundary. As expected, no fill material was encountered in the borings advanced prior to monitoring well construction. No exceedances of NYSDEC GWS were reported in groundwater sample results from these wells. Furthermore, no detections of pesticides or PCBs were reported. Given these results, it is apparent that the constituent levels detected immediately downgradient of the landfill do not pose a threat to groundwater beyond the property boundary. The absence of these constituents above NYSDEC standards at the property boundary is likely attributable to natural attenuation or dispersion.

5.3 Conclusions

The fill material noted at the Site was encountered in borings SB-1, SB-3, and SB-4 and appears to be marginally contaminated.

Groundwater constituents detected in excess of NYSDEC GWS appear to be related to the former landfill based on upgradient well results. However, groundwater impacts are naturally attenuating or dispersing prior to reaching the downgradient property boundary, indicating that the constituents detected in groundwater at the Site do not appear to pose a current threat to potential downgradient receptors. TABLES

Table 1 1121 Jerusalem Ave. Uniondale, New York Summary of Well Construction Details March 2006 Water Levels

Monitoring Point ID	Date of Well Installation	Date of Measurement	Reference Elevation TOC feet MSL	Depth to Groundwater feet below TOC	Groundwater Elevation feet above MSL	Total Well Depth	Screen Interval (feet)
MW-1	1/30/2006	3/22/06	52.60	20.56	32.04	48.1	38-48
MW-2	1/31/2006	3/22/06	49.06	16.33	32.73	49.8	40-50
MW-3	2/1/2006	3/22/06	52.59	20.56	32.03	31.7	17-32
MW-4	2/2/2006	3/22/06	51.55	19.52	32.03	32.9	18-33
MW-5	2/2/2006	3/22/06	49.62	16.91	32.71	28.8	13-28
MW-6	3/20/2006	3/22/06	46.69	15.39	31.30	30.0	12-30
MW-7	3/20/2006	3/22/06	46.62	18.21	28.41	30.0	15-30
MW-8	3/20/2006	3/22/06	49.97	18.41	31.56	30.0	15-30

Notes:

NM - Not Measured

NA - Not Applicable

TOC - Top of Casing

MSL - Mean Sea Level

Table 2 Summary of Detected Results in Soil Uniondale Shopping Center Uniondale, New York Volatile Organic Compounds

ID		SB-1SS-1			SB-2SS-3			SB-3SS-2			SB-3SS-8			SB-4-SS-1		
Date Sampled		1/30/2006			1/31/2006			2/1/2006			2/1/2006			2/2/2006		
Method (units)	NYSDEC RSCO* (mg/kg)	SW846 8260B (mg/kg)			SW846 8260B (mg/kg)			SW846 8260B (mg/kg)			SW846 8260B (mg/kg)			SW846 8260B (mg/kg)		
		Result		Rept Limit	Result	Qualifier	Rept Limit									
Ethylbenzene	5.5	ND		0.0054	ND		0.0056	0.002	J	0.0054	0.09	J	0.28	ND		0.0057
Toluene	1.5	ND		0.0054	0.0007	J	0.0056	0.0007	J	0.0054	ND		0.28	ND		0.0057
Total TIC		0.999	J		0.164			0.261	J		119.9	J		ND		

Notes:

NYSDEC RSCO - New York State Department of Environmental Conservation Recommended Soil Cleanup Objective per TAGM #4046

*As per TAGM # 4046, Total VOCs <10 mg/kg

ND - No Detection Reported

J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

Table Checked by: BRB Date: 3/2/2006

Table 2 Summary of Detected Results in Soil Uniondale Shopping Center Uniondale, New York Semivolatile Organic Compounds

ID		SB-1SS-1			SB-2SS-3			SB-3SS-2			SB-3SS-8			SB-4-SS-1		
Date Sampled		1/30/2006		1/31/2006			2/1/2006			2/1/2006			2/2/2006			
	NYSDEC															
Method (units)	RSCO (mg/kg)			SW846 8270C (mg/kg)			SW846 8270C (mg/kg)			SW846 8270C (mg/kg)			SW846 8270C (mg/kg)			
		Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit
Acenaphthene	50 **	ND		0.35	ND		0.37	0.13	J	0.36	ND		0.37	ND	U	0.38
Anthracene	50 **	ND		0.35	ND		0.37	0.32	J	0.36	ND		0.37	ND	U	0.38
Benz(a)anthracene	0.224 or MDL	0.068	J	0.35	ND		0.37	<u>0.73</u>		0.36	ND		0.37	ND	U	0.38
Benzo(a)pyrene	0.061 or MDL	<u>0.064</u>	J	0.35	ND		0.37	<u>0.64</u>		0.36	ND		0.37	ND	U	0.38
Benzo(b)fluoranthene	1.1	0.059	J	0.35	ND		0.37	0.57		0.36	ND		0.37	ND	U	0.38
Benzo(ghi)perylene	50 **	ND		0.35	ND		0.37	0.19	J	0.36	ND		0.37	ND	U	0.38
Benzo(k)fluoranthene	1.1	0.067	J	0.35	ND		0.37	0.73		0.36	ND		0.37	ND	U	0.38
bis(2-Ethylhexyl)phthalate	50 **	0.95		0.35	0.28	J	0.37	1.9		0.36	2.9		0.37	0.37	J	0.38
Chrysene	0.4	0.064	J	0.35	ND		0.37	<u>0.77</u>		0.36	ND		0.37	ND	U	0.38
Dibenz(a,h)anthracene	0.014 or MDL	ND		0.35	ND		0.37	<u>0.068</u>	J	0.36	ND		0.37	ND	U	0.38
Di-n-butyl phthalate	8.1	ND		0.35	ND		0.37	ND		0.36	0.04	J	0.37	ND	U	0.38
Di-n-octylphthalate	50 **	0.27	J	0.35	ND		0.37	0.25	J	0.36	ND		0.37	ND	U	0.38
Fluoranthene	50 **	0.12	J	0.35	ND		0.37	1.5		0.36	ND		0.37	ND	U	0.38
Fluorene	50 **	ND		0.35	ND		0.37	0.17	J	0.36	ND		0.37	ND	U	0.38
Indeno (1,2,3-cd)pyrene	3.2	0.032	J	0.35	ND		0.37	0.22	J	0.36	ND		0.37	ND	U	0.38
Naphthalene	13	ND		0.35	ND		0.37	0.036	J	0.36	1		0.37	ND	U	0.38
Phenanthrene	50 **	0.076	J	0.35	ND		0.37	1.3		0.36	0.11	J	0.37	ND	U	0.38
Pyrene	50 **	0.013	J	0.35	ND		0.37	1.6		0.36	ND		0.37	ND	U	0.38
Total TICs		5.64			46.08	J		21.49	J		72.10	J		5.31	J	

Notes:

NYSDEC RSCO - New York State Department of Environmental Conservation Recommended Soil Cleanup Objective per TAGM #4046

** As per TAGM #4046, Total VOCs < 10 ppm, Total Semi-VOCs < 500 ppm, and Individual Semi-VOCs < 50 ppm.

ND - No Detection Reported

J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

Table Checked by: BRB Date: 3/2/2006

Table 2 Summary of Detected Results in Soil Uniondale Shopping Center Uniondale, New York Inorganics

ID			SB-1SS-	1		SB-2SS-	3		SB-3SS-	2		SB-3SS-	8		SB-4-SS	-1
Date Sampled			1/30/200	6		1/31/200	6		2/1/2006	6		2/1/2006	6		2/2/200	6
	NYSDEC RSCO															
Method (units)	(mg/kg)		46 6010B			46 6010B	(mg/kg)	SW8	46 6010B	(mg/kg)	SW84	46 6010B	(mg/kg)	SW8	46 6010B	(mg/kg)
		Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit
Antimony	SB	0.34	J	1.1	0.80	J	1	0.51	J	1	0.16	J	1.1	0.16	J	1.1
Arsenic	7.5 or SB	0.88	*J	1.1	2.8	*	1	3.0	*	1	0.53	*J	1.1	0.29	*J	1.1
Beryllium	0.16 or SB	0.15	J	0.54	0.21	J	0.52	<u>0.18</u>	J	0.52	0.08	J	0.53	0.06	J	0.57
Cadmium	1 or SB	ND		0.54	ND		0.52	0.06	J	0.52	ND		0.53	ND		0.57
Chromium	10 or SB	5.1		1.1	<u>39.0</u>		1	7.8		1	3.8		1.1	2.2		1.1
Copper	25	5.1	*	0.54	3.7	*	0.52	13.7	*	0.52	1.6	*	0.53	1.2	*	0.57
Lead	SB **	15.6	*E	0.32	3.2	*E	0.31	21.7	*E	0.31	1.2	*E	0.32	1.1	*E	0.34
Mercury	0.1	ND		0.036	ND		0.037	0.035		0.033	ND		0.035	0.019		0.038
Nickel	13	ND		4.3	1.8	J	4.2	5.9		4.1	2.2	J	4.3	1.1	J	4.6
Selenium	2	ND		0.54	0.34	N	0.52	ND		0.52	ND		0.53	ND		0.57
Silver	SB	ND		0.54	0.09	J	0.52	ND		0.52	ND		0.53	ND		1.1
Thallium	SB	0.73	JN	1.1	0.41	JN	1	ND		1	ND		1.1	ND		1.1
Zinc	20	<u>330</u>	*	2.2	10.1	*	2.1	35.2	*	2.1	4.9	*	2.1	1.6	*J	2.3

Notes:

NYSDEC RSCO - New York State Department of Environmental Conservation Recommended Soil Cleanup Objective per TAGM #4046

SB - Site Background

**Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 mg/kg.

Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 mg/kg.

* - Indicates analysis is not within the quality control limits.

ND - No Detection Reported.

J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

E - Indicates a value estimated or not reported due to the presence of interferences.

N - Indicates spike sample recovery is not within the quality control limits.

Table Checked by: BRB Date: 3/2/2006

Table 2 Summary of Detected Results in Soil Uniondale Shopping Center Uniondale, New York Pesticides and PCBs

ID			SB-1SS-	1		SB-2SS-	3		SB-3SS-	2		SB-3SS-	8		SB-4-SS	-1
Date Sampled			1/30/200	6		1/31/200	6		2/1/2006	6		2/1/2006	6		2/2/2006	6
Method (units)	NYSDEC	CIMO/	46 8081A	(mg/kg)	CIMO.	46 9091 4	(ma/ka)	S\//9/	6 9091 4	(mg/kg)	S/M/0/	16 9091 4	(mg/kg)	S14/9/	0.001 4	(ma/ka)
Method (units)	RSCO (mg/kg)		1			46 8081A			6 8081A			16 8081A			6 8081A	
		Result	Qualifier	Rept Limit		Qualifier	Rept Limit		Qualifier	Rept Limit		Qualifier	Rept Limit		Qualifier	Rept Limit
4,4'-DDD	2.9	0.073		0.009	.022		0.0019	0.0064		0.0018	ND		0.019	ND		0.0019
4,4'-DDE	2.1	0.025		0.0045	0.0034	Р	0.00092	0.0049		0.0009	ND		0.0092	ND		0.00094
4,4'-DDT	2.1	0.019		13	0.0034	Р	0.0028	ND		0.0027	0.074	Р	0.028	ND		0.0028
Dieldrin	0.044	0.0046		0.0045	ND		0.00092	0.00097	Р	0.0009	0.0091	J	0.0092	ND		0.00094
Endosulfan I	0.9	ND		0.0045	0.00077	JP	0.00092	ND		0.0009	ND		0.0092	ND		0.00094
Heptachlor	0.1	ND		0.0023	ND		0.00047	0.00042	J	0.00046	ND		0.00047	ND		0.00048
Heptachlor Epoxide	0.02	ND		0.0023	0.0011	Р	0.00047	ND		0.00046	ND		0.00047	ND		0.00048
Methoxychlor	*	ND		0.022	ND		0.0046	0.005		0.0045	ND		0.046	ND		0.0047
gamma-Chlordane	0.54 **	0.011		0.0023	.0041	Р	0.00047	0.0035		0.00046	0.01	Р	0.00047	0.00024	J	0.00048
alpha-Chlordane	0.54 **	0.01		0.0045	0.0057	Р	0.00092	0.0062	Р	0.0009	0.0048	J	0.0092	ND		0.00094
Total PCBs	***	ND			0.044			ND			2.4			ND		

Notes:

NYSDEC RSCO - New York State Department of Environmental Conservation Recommended Soil Cleanup Objective per TAGM #4046

** There is no distinction between gamma-Chlordane and alpha-Chlordane.

*** RSCO is 1 mg/kg at surface and 10 mg/kg in subsurface.

ND - No Detection Reported

J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

P - This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations

between the two GC columns. The lower of the two values is reported.

Table Checked by: BRB Date: 3/2/2006

ID			MW-1			MW-2			MW-3			MW-4	
Date Sampled	Standards/Criteria		2/9/2006	1		2/9/2006			2/9/2006			2/9/2006	ô
Method (units)	NYSDEC (µg/L)	SW8	46 8260B	(µg/L)	SW8	46 8260B	(µg/L)	SW8	46 8260B	(µg/L)	SW	846 8260B	(µg/L)
		Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit
Chloroethane	50	ND		5	ND		5	ND		5	<u>87</u>		5
1,1-Dichloroethane	5	ND		5	ND		5	ND		5	4.6	J	5
Chloroform	7	ND		5	2.1	J	5	ND		5	ND		5
Benzene	1	<u>4.8</u>	J	5	ND		5	<u>12</u>		5	<u>27</u>		5
1,2-Dichloroethane	5	ND		5	ND		5	ND		5	1.8	J	5
Toluene	5	ND		5	ND		5	ND		5	<u>140</u>		5
Chlorobenzene	5	<u>37</u>		5	ND		5	<u>28</u>		5	2.7	J	5
Ethylbenzene	5	ND		5	ND		5	<u>18</u>		5	<u>130</u>		5
Tetrachloroethene	5	ND		5	ND		5	ND		5	ND		5
Trichloroethene	5	ND		5	ND		5	ND		5	ND		5
Vinyl Chloride	2	ND		5	ND		5	ND		5	ND		5
cis-1,2-Dichloroethene	NS	NA		NA	NA		NA	NA		NA	NA		NA

Notes:

NYSDEC - New York State Department of Environmental Conservation Groundwater Standards/Criteria per 6 NYCRR Part 703. NS - No Standard.

ND - No Detection Reported.

NA - The analyte was not analyzed.

J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

Table Checked by: PLB Date: 3/9/2006

053-6388

Table 3 Summary of Detected Results in Groundwater Uniondale Shopping Center Uniondale, New York Volatile Organic Compounds

ID			MW-5			MW-6	6		MW-7			MW-8	3
Date Sampled	Standards/Criteria		2/9/2006	6		3/22/20	06		3/22/20	06		3/22/20	06
Method (units)	NYSDEC (µg/L)	SW8	346 8260B	(µg/L)	SW	846 82601	Β (µg/L)	SW	846 8260E	3 (µg/L)	SW	846 8260	Β (µg/L)
		Result	Qualifier	Rept Limit									
Chloroethane	50	ND		5	ND		5.0	7.1		5.0	ND		5.0
1,1-Dichloroethane	5	ND		5	ND		5.0	1.7	J	5.0	ND		5.0
Chloroform	7	ND		5	ND		5.0	ND		5.0	ND		5.0
Benzene	1	ND		5	ND		1.0	0.9	J	1.0	ND		1.0
1,2-Dichloroethane	5	ND		5	ND		2.0	ND		2.0	ND		2.0
Toluene	5	ND		5	ND		5.0	ND		5.0	ND		5.0
Chlorobenzene	5	ND		5	2.4	J	5.0	ND		5.0	ND		5.0
Ethylbenzene	5	ND		5	ND		4.0	ND		4.0	ND		4.0
Tetrachloroethene	5	ND		5	ND		1.0	ND		1.0	0.5	J	1.0
Trichloroethene	5	ND		5	ND		1.0	1.4		1.0	ND		1.0
Vinyl Chloride	2	ND		5	ND		5.0	1.4	J	5.0	ND		5.0
cis-1,2-Dichloroethene	NS	NA		NA	ND		5.0	2.2	J	5.0	ND		5.0

Notes:

NYSDEC - New York State Department of Environmental Conservation Groundwater Standards/Criteria per 6 NYCRR Part 703. NS - No Standard.

ND - No Detection Reported.

NA - The analyte was not analyzed.

J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

Table Checked by: PLB Date: 3/9/2006

Table 3 Summary of Detected Results in Groundwater Uniondale Shopping Center Uniondale New York Semivolatile Organic Compounds

ID			MW-1			MW-2			MW-3			MW-4	
Date Sampled	Standards/Criteria		2/9/2006	;		2/9/2006			2/9/2006			2/9/2006	3
Method (units)	NYSDEC (µg/L)	SW8	46 8270C	(µg/L)	SW8	46 8270C	(µg/L)	SW8	46 8270C	(µg/L)	SW	346 8270C	(µg/L)
		Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit
Acenaphthene	20	3.4	J	10	ND		10	1.5	J	10	ND		10
Anthracene	50	1.4	J	10	ND		10	ND		10	ND		10
bis(2-Ethylhexyl)phthalate	50	5.7	J	10	4.6	J	10	19		10	2.1	J	10
Di-n-butyl phthalate	50	ND		10	ND		10	1.6	J	10	ND		10
Fluorene	50	4.2	J	10	ND		10	1	J	10	ND		10
Naphthalene	10	ND		10	ND		10	<u>66</u>		10	4.8	J	10
N-Nitrosodiphenylamine (1)	NS	2.4	J	10	ND		10	3.9	J	10	ND		10
Phenanthrene	50	9.4	J	10	ND		10	1.3	J	10	ND		10

Notes:

NYSDEC - New York State Department of Environmental Conservation Groundwater Standards/Criteria per 6 NYCRR Part 703. (1) Cannot be separated from Diphenylamine.

ND - No Detection Reported

NS - No Standard

J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

Table Checked by: PLB Date: 3/9/2006

053-6388

Table 3 Summary of Detected Results in Groundwater Uniondale Shopping Center Uniondale New York Semivolatile Organic Compounds

ID			MW-5			MW-6			MW-7	7		MW-8	3
Date Sampled	Standards/Criteria		2/9/2006			3/22/20	06		3/22/20	06		3/22/20	06
Method (units)	NYSDEC (µg/L)	SW8	46 8270C	(µg/L)	SW8	346 82700	C (µg/L)	SW8	346 82700	C (µg/L)	SW8	346 82700	C (µg/L)
		Result	Qualifier	Rept Limit									
Acenaphthene	20	ND		10									
Anthracene	50	ND		10									
bis(2-Ethylhexyl)phthalate	50	1.6	J	10	ND		10	ND		10	ND		10
Di-n-butyl phthalate	50	ND		10									
Fluorene	50	ND		10									
Naphthalene	10	ND		10	ND		10	ND		10	ND		10
N-Nitrosodiphenylamine (1)	NS	ND		10	ND		10	0.5	J	10	ND		10
Phenanthrene	50	ND		10	1.9	J	10	0.3	J	10	1.7	J	10

Notes:

NYSDEC - New York State Department of Environmental Conservation Groundwater Standards/Criteria per 6 NYCRR Part 703. (1) Cannot be separated from Diphenylamine.

ND - No Detection Reported

NS - No Standard

J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

Table Checked by: PLB Date: 3/9/2006

Table 3 Summary of Detected Results in Groundwater Uniondale Shopping Center Uniondale, New York Metals

ID			MW-1			MW-2			MW-3			MW-4			MW-5	
Date Sampled	Standards/Criteria		2/9/2006			2/9/2006	6		2/9/2006			2/9/2006	5		2/9/2006	6
Method (units)	NYSDEC (µg/L)	SW8	46 6010B	(µg/L)	SW8	46 6010B	(µg/L)	SW8	46 6010B	(µg/L)	SW8	46 6010B	(µg/L)	SW8	846 6010B	(µg/L)
		Result	Qualifier	Rept Limit												
Antimony	3	1.2	В	10	ND		10	2.4	В	10	ND		10	ND		10
Arsenic	25	ND		10	ND		10	6.8	В	10	ND		10	ND		10
Chromium	50	6.2	В	10	1.9	В	10	11.1		10	4	В	10	1.3	В	10
Copper	200	1.9	В	5	1.8	В	5	6.4		5	1.3	В	5	0.72	В	5
Nickel	100	5.2	В	40	1.7	В	40	7.6	В	40	2.6	В	40	4.1	В	40
Thallium	NS	8	В	10	ND		10									
Zinc	NS	42.3		20	10.2	В	20	16.3	В	20	7.5	В	20	13.3	В	20
Cyanide	200	2	В	10	ND		10	4.1	В	10	ND		10	ND		10

Notes:

NYSDEC - New York State Department of Environmental Conservation Groundwater Standards/Criteria per 6 NYCRR Part 703.

ND - No Detection Reported

B - Result is estimated

NS - No Standard

MW-6, MW-7 and MW-8 were not analyzed for TAL Metals

Table Checked by:PLBDate: 3/9/2006

Table 3 Summary of Detected Results in Groundwater Uniondale Shopping Center Uniondale, New York Pesticides and PCBs

ID			MW-1			MV	V-2		MW-3			MW-4	
Date Sampled	Standards/Criteria		2/9/200	6		2/9/2	2006		2/9/200	6		2/9/2006	6
Method (units)	NYSDEC (µg/L)	SW	846 8081A	(µg/L)		SW846 808	81A (µg/L)	SM	/846 8081 <i>A</i>	λ (μg/L)	SW8	346 8081A	(µg/L)
		Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit
4,4'-DDD	0.3	0.035	J	0.05	ND		0.05	ND		0.25	0.028	J	0.05
4,4'-DDE	0.2	0.013	JP	0.025	ND		0.025	0.1	JP	0.13	0.048	Р	0.025
4,4'-DDT	0.2	ND		0.075	ND		0.075	ND		0.38	ND		0.075
Aldrin	<0.01	ND		0.016	ND		0.013	0.028	JP	0.063	ND		0.013
alpha-BHC	<0.05	0.017	Р	0.013	ND		0.013	ND		0.063	ND		0.013
alpha-Chlordane	0.1	ND		0.025	ND		0.025	0.15		0.13	0.018	JP	0.025
Dieldrin	<0.01	ND		0.025	ND		0.025	<u>0.24</u>		0.13	<u>0.12</u>	Р	0.025
gamma-Chlordane	0.1	0.0077	J	0.013	ND		0.013	0.24	Р	0.063	0.016		0.013
Heptachlor	<0.01	0.015	R	0.013	ND		0.013	0.03	R	0.063	ND		0.013
Heptachlor Epoxide	<0.01	0.0027	R	0.013	ND		0.013	0.027	R	0.063	ND		0.013
PCBs (Aroclor-1260)	5	ND		0.93	ND		0.93	<u>69</u>		4.7	ND		0.93

Notes:

NYSDEC - New York State Department of Environmental Conservation Groundwater Standards/Criteria per 6 NYCRR Part 703. NA - The analyte was not analyzed.

ND - No Detection Reported

J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.

R - Result is rejected.

P - This flag is used for a Pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported.

Table Checked by: PLB Date: 3/9/2006

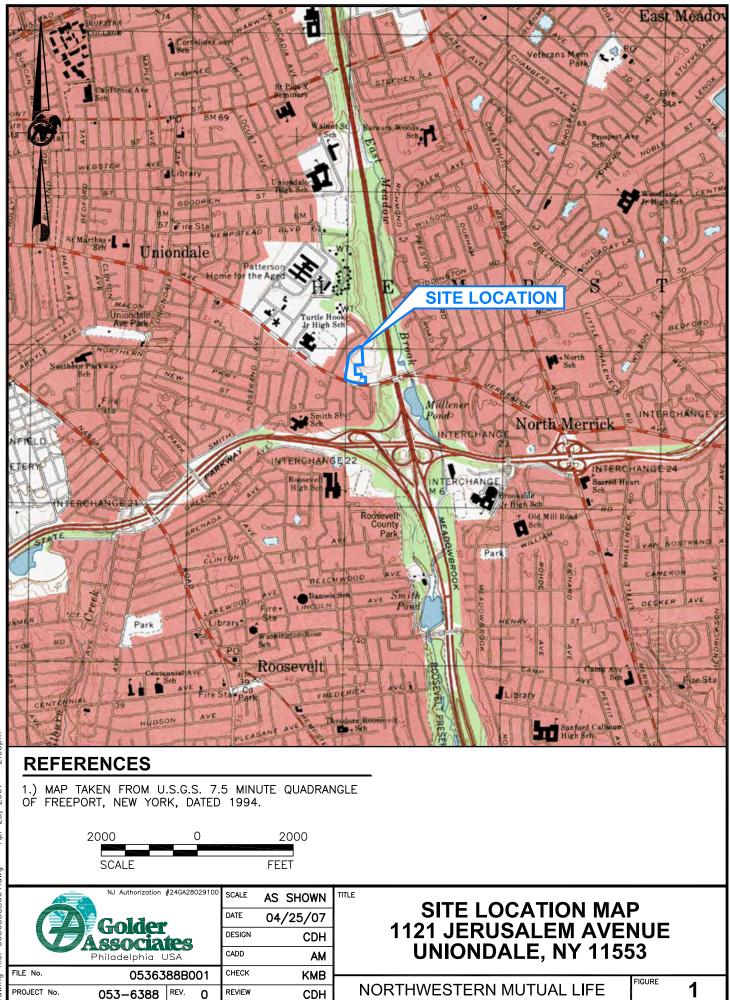
Table 3 Summary of Detected Results in Groundwater Uniondale Shopping Center Uniondale, New York Pesticides and PCBs

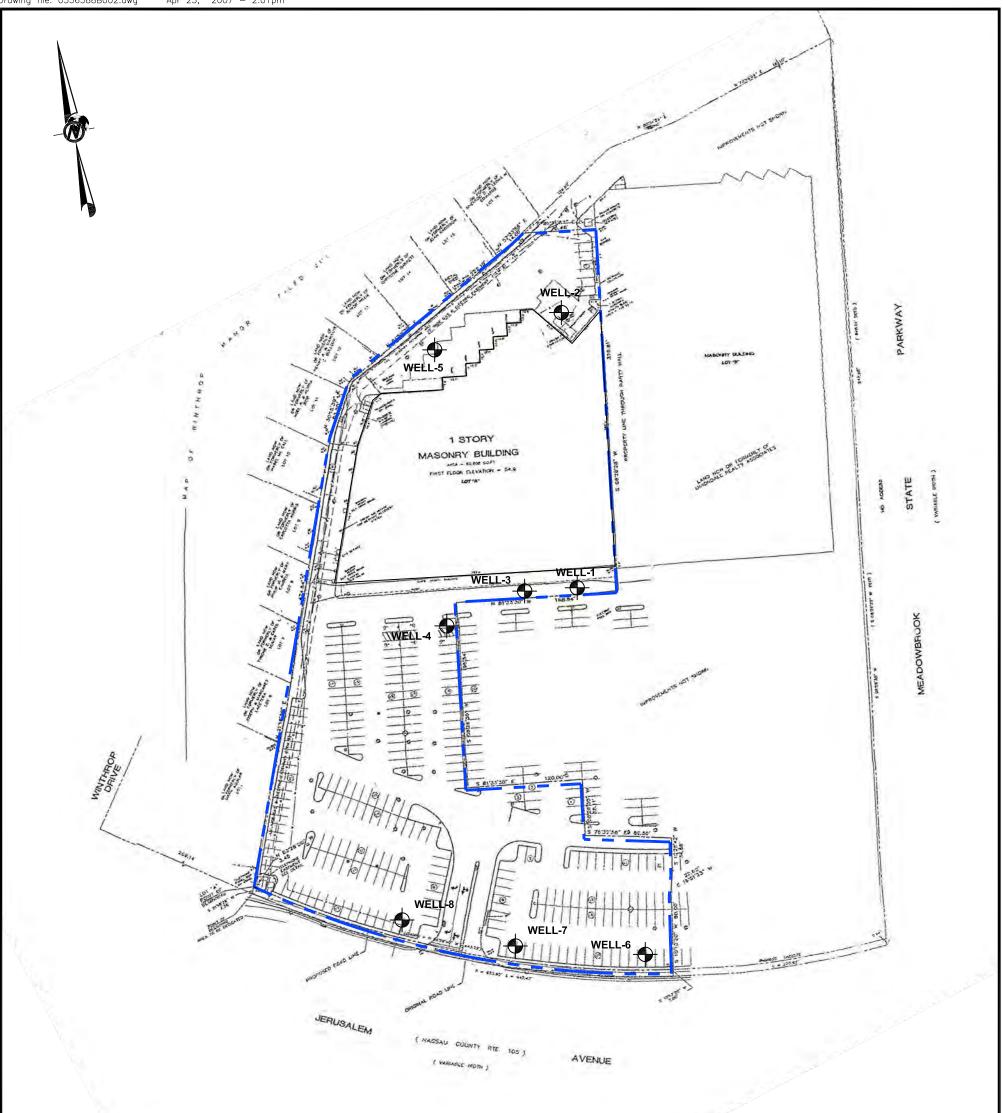
ID			MW-5			MW-6			MW-7			MW-8	
Date Sampled	Standards/Criteria		2/9/2006			3/22/2006			3/22/2006			3/22/2006	
Method (units)	NYSDEC (µg/L)	SW8	46 8081A	(µg/L)	SW846	6 8081/8082	2 (µg/L)	SW846	8081/8082	2 (µg/L)	SW846	6 8081/8082	2 (µg/L)
		Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit	Result	Qualifier	Rept Limit
4,4'-DDD	0.3	ND		0.05	ND		0.05	ND		0.05	ND		0.05
4,4'-DDE	0.2	ND		0.025	ND		0.05	ND		0.05	ND		0.05
4,4'-DDT	0.2	0.018	J	0.075	ND		0.05	ND		0.05	ND		0.05
Aldrin	<0.01	ND		0.013	ND		0.05	ND		0.05	ND		0.05
alpha-BHC	<0.05	ND		0.013	ND		0.05	ND		0.05	ND		0.05
alpha-Chlordane	0.1	ND		0.025	NA		NA	NA		NA	NA		NA
Dieldrin	<0.01	ND		0.025	ND		0.05	ND		0.05	ND		0.05
gamma-Chlordane	0.1	0.02	Р	0.013	ND		0.5	ND		0.5	ND		0.5
Heptachlor	<0.01	ND		0.013	ND		0.05	ND		0.05	ND		0.05
Heptachlor Epoxide	<0.01	ND		0.013	ND		0.05	ND		0.05	ND		0.05
PCBs (Aroclor-1260)	5	ND		0.93	ND		0.5	ND		0.5	ND		0.5

Notes:

NYSDEC - New York State Department of Environmental Conservation Groundwater Standards/Criteria per 6 NYCRR Part 703. NA - The analyte was not analyzed.

ND - No Detection Reported


J - The analyte was reported above the method detection limit; however, the associated numerical value is the approximate concentration of the analyte in the sample.


R - Result is rejected.

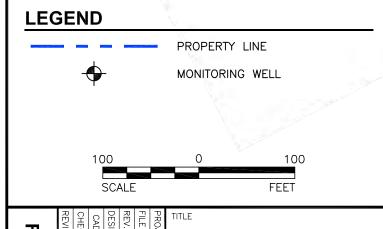
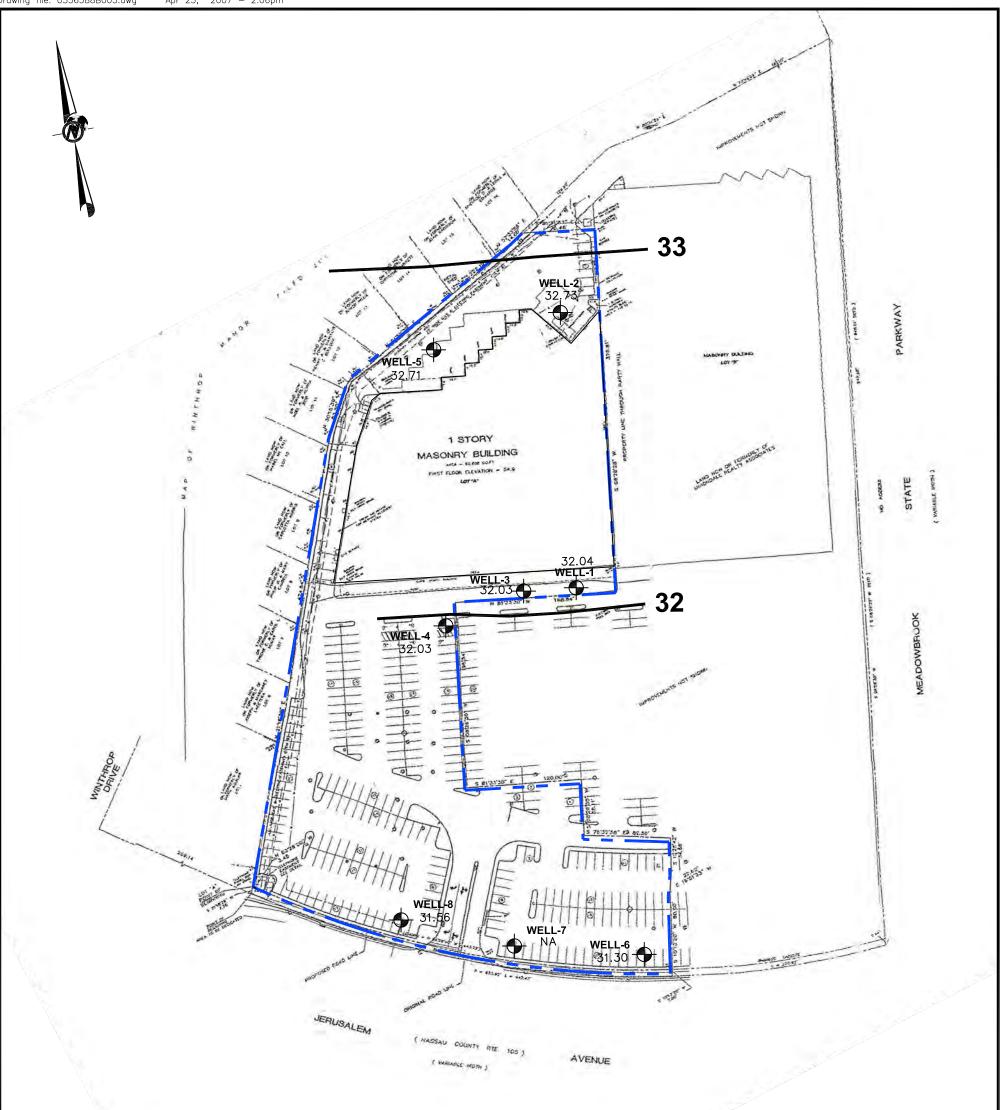

P - This flag is used for a Pesticide/Aroclor target analyte when there is greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported.

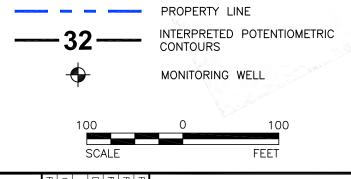
Table Checked by: PLB Date: 3/9/2006

FIGURES

REFERENCES


1.) PROPERTY LINE AND MONITORING WELLS TAKEN FROM CAD FILE 060127-WELLS.DWG, TITLED "MONITOR WELL LOCATION SURVEY," PROVIDED BY ROBERT A. RYAN PROFESSIONAL LAND SURVEYOR.

2.) BASE MAP TAKEN FROM IMAGE FILE, UNIONDALE -ALTA/ACSM LAND TITLE SURVEY (BARRETT, BONACCI, HYMÁN & VAN WEELE) AS PROVIDED BY NML.


3.) HORIZONTAL DATUM: NEW YORK LONG ISLAND STATE PLANE COORDINATE SYSTEM (NAD 83); VERTICAL DATUM: NORTH AMERICAN VERTICAL DATUM 1988 (NAVD 88)

PROJECT

DESIGN PROJECT eview HECK FIGURE 0 Z NORTHWESTERN MUTUAL LIFE SCALE KMB CDH AM CDH No. No. 053-6388 0536388B002 SITE LAYOUT MAP UNIONDALE SHOPPING CENTRE Golder 04/25/07 04/25/07 AS SHOWN 04/10/06 04/25/07 UNIONDALE, NASSAU COUNTY, NEW YORK ssociates Philadelphia USA N

LEGEND

REFERENCES

1.) PROPERTY LINE AND MONITORING WELLS TAKEN FROM CAD FILE 060127-WELLS.DWG, TITLED "MONITOR WELL LOCATION SURVEY," PROVIDED BY ROBERT A. RYAN PROFESSIONAL LAND SURVEYOR.

2.) BASE MAP TAKEN FROM IMAGE FILE, UNIONDALE – ALTA/ACSM LAND TITLE SURVEY (BARRETT, BONACCI, HYMAN & VAN WEELE) AS PROVIDED BY NML.

3.) HORIZONTAL DATUM: NEW YORK LONG ISLAND STATE PLANE COORDINATE SYSTEM (NAD 83); VERTICAL DATUM: NORTH AMERICAN VERTICAL DATUM 1988 (NAVD 88)

TITLE PROJECT DESIGN REV. FILE PROJECT CADD EVIEW HECK FIGURE 0 N NORTHWESTERN MUTUAL LIFE **INTERPRETED** CDH KMB SCALE AM CDH No. UNIONDALE SHOPPING CENTRE POTENTIOMETRIC 0536388B003 Golder UNIONDALE, NASSAU COUNTY, NEW 04/25/07 04/25/07 AS SHOWN 04/10/06 04/25/07 053-6388 ssociates SURFACE MAP YORK Philadelphia USA ω

APPENDIX A

SOIL BORING LOGS AND MONITORING WELL INSTALLATION LOGS

PR(DR AZI	oject Illed (Muth:	N: Uniondale, NY WEATH	IETHO IG: Ma TARTE OMPLE	D: Hollo bile 59 D: 1/30 TED: 1	ow-stem)/06			D/ CC GS TC TE	S ELEVATION C ELEVATIO MPERATURE	3 and 92,88 1: 52.9 N: 52	2.2 E: 9 ft 2.6 ft	SHEET 1 of 2 88 INCLINATION: -90 1,101,099.5 DEPTH W.L.: 48.1 ft ELEVATION W.L.: 4.5 ft DATE W.L.: 2/6/06 TIME W.L.:
	z	SOIL PROFILE	1	<u>т</u>				S	AMPLES			
o uerin (ft)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
Ũ	_	0.0 - 0.5 \ ASPHALT /		*****	52.4 0.5						4.5	
-	- 	0.5 - 2.0 Grayish brown fine to medium sand, some silty clay with small rounded cobblesand wood fragments, dry to moist (FILL)			50.9 2.0	1	SPT	0.0	10 -25 -35		<u>1.5</u> 1.5 <u>0.8</u>	
-		2.0 - 4.0 Grayish brown fine to medium sand, some silty clay with small rounded cobblesand wood fragments, dry to moist (FILL)			48.9 4.0	2	SPT	0.0			2.0	
5 -	-	4.0 - 6.0 Grayish brown fine to medium sand, some silty clay with small rounded cobblesand wood fragments, dry to moist (FILL)			46.9 6.0	3	SPT	0.0	4 -3 -2 -2		<u>0.5</u> 2.0	
-	- 45	6.0 - 8.0 Grayish brown fine to medium sand, some silty clay with small rounded cobblesand wood fragments, dry to moist (FILL)			44.9 8.0	4	SPT	0.0	3 -3 -4 -5		<u>0.3</u> 2.0	
- 10	-	8.0 - 10.0 Grayish brown fine to medium sand, some silty clay with small rounded cobblesand wood fragments, dry to moist (FILL)			42.9 10.0	5	SPT	0.0	7 -10 -12 -9		<u>0.3</u> 2.0	
-	-	10.0 - 12.0 Grayish brown fine to medium sand, some silty clay with small rounded cobblesand wood fragments, dry to moist (FILL)			40.9 12.0	6	SPT	0.0	4 -4 -4 -8		<u>0.3</u> 2.0	
-	— 40 —	12.0 - 14.0 Gray fine to medium SAND with some concrete fragments, wire, and rounded gravels, moist	SP		38.9	7	SPT	10.8	8 -12 -14 -18		<u>0.3</u> 2.0	
15 —	-	14.0 - 16.0 Gray fine to medium SAND with some concrete fragments, wire, and rounded gravels, moist	SP		14.0 36.9	8	SPT	12.2	15 -20 -24 -49		<u>0.3</u> 2.0	
_		16.0 - 18.0 NO RECVOERY; presumed SAND			16.0 34.9	9	SPT	3.1	25 -30 -30 -19		<u>0.0</u> 2.0	
-	- 35	18.0 - 20.0 Yellowish brown fine to coarse SAND with some fine to coarse gravel, moist to wet	SP	0 0	18.0 32.9	10	SPT		5 -6 -8 -10		<u>0.3</u> 2.0	
20 —	_	20.0 - 22.0 Yellowish brown fine to coarse SAND with some fine to coarse gravel, moist to wet	SP	0 0 0	20.0	11	SPT	16.9	10 -6 -8 -11		<u>0.3</u> 2.0	
	— 30	22.0 - 24.0 Yellowish brown fine to coarse SAND with some fine to coarse gravel, moist to wet	SP	0 0 0	22.0	12	SPT	1.2	10 -9 -11 -8		<u>1.0</u> 2.0	
- 25 —	-	24.0 - 26.0 Black and gray fine to medium SAND with trace silty clay and fine to coarse gravel, wet	SP	0 0 0	26.9	13	SPT	1.2	4 -3 -2 -2		<u>0.5</u> 2.0	
	_	26.0 - 28.0 Black and gray fine to medium SAND with trace silty clay and fine to coarse gravel, wet	SP	0 0 0		14	SPT	0.0	10 -8 -6 -5		<u>1.0</u> 2.0	
-	— 25 —	28.0 - 30.0 Black and gray fine to medium SAND with trace silty clay and fine to coarse gravel, wet	SP	• 🔿	28.0	15	SPT	4.7	10 -8 -7 -9		<u>1.3</u> 2.0	
30 —	_	30.0 - 32.0 Black and gray fine to medium SAND with trace sitty clay and fine to coarse gravel and brick, wet	SP	°. ()	30.0 20.9	16	SPT	0.0	6 -5 -5 -4		<u>1.3</u> 2.0	
-	20	32.0 - 34.0 Black and gray fine to medium SAND with trace silty clay and fine to coarse gravel, wet	SP	0.0. 0.0. 0.0.	32.0	17	SPT	4.7	14 -15 -12 -16		<u>1.3</u> 2.0	
- 35	_	34.0 - 36.0 Yellowish brown fine to coarse SAND with fine to coarse gravel, wet	SP	0.0	34.0 16.9	18	SPT	0.0	20 -18 -16 -12		<u>1.3</u> 2.0	
-	- 45	36.0 - 40.0 Yellowish brown fine to coarse SAND with fine to coarse gravel, wet	a-	°. .•. ()	36.0	19	SPT	1.8	18 -15 -20 -23		<u>1.3</u> 2.0	
-	— 15 —		SP	0 0	12.9	20	SPT	3.5	25 -30 -30 -45		<u>1.0</u> 2.0	
40 —	-	Log continued on next page			12.0							
DRII	LING	LE: 1 in = 5 ft COMPANY: Summit Driling, Inc. J. Segreaves				С		KED E	FOR: FGM IY: TIR			Golder

PR(DR AZI	OJECT ILLED I MUTH: CATION	: NML Uniondale DRILL M NUMBER: 053-6388 DRILL R DEPTH: 48.0 ft DATE S N/A DATE C N: Uniondale, NY WEATH SOIL PROFILE	ietho IG: Ma Tarte Omple	D: Hollo bile 59 D: 1/30 ETED: 1	ow-stem			D/ CC GS TC TE	DLE SB ATUM: NAD & DORDS: N: 11 S ELEVATION DC ELEVATION C ELEVATION MPERATURE AMPLES	33 and 92,88 1: 52.9 N: 52	2.2 E 9ft 2.6ft	SHEET 2 of 2 0.88 INCLINATION: -90 1.101,099.5 DEPTH W.L.: 48.1 ft ELEVATION W.L.: 4.5 ft DATE W.L.: 2/6/06 TIME W.L.:
	ELEVATION (ft)	DESCRIPTION	NSCS	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
40 —	_	40.0 - 42.0 Yellowish brown fine to coarse SAND with fine to coarse gravel, wet	SP	° ()	40.0 10.9	21	SPT	4.3	25 -50/2"		<u>1.0</u> 2.0	
	— 10	42.0 - 44.0 Yellowish brown fine to coarse SAND with fine to coarse gravel, wet	SP	° ()	42.0	22	SPT	0.3	20 -25 -30 -32		<u>1.0</u> 2.0	
- 15	-	44.0 - 46.0 Yellowish brown fine to coarse SAND with fine to coarse gravel, wet	SP	0 0	6.9	23	SPT	0.0	40 -30 -50/2"		<u>1.5</u> 2.0	
	-	46.0 - 48.0 Yellowish brown fine to coarse SAND with fine to coarse gravel, wet	SP	°. .•.O	46.0	24	SPT	0.0	50/2"		<u>0.0</u> 2.0	
-	- 5	Boring completed at 48.0 ft		<u></u>	4.9							
 50 -	-											
	- 0											
5	_											
-	-											
-												
50 — -	-											
	- 											
- 65	-											
-	-											
-	— -15 -											
70 —	-											
-	20											
5	-											
-	- 											
-	_											
DRII	LLING	.E: 1 in = 5 ft COMPANY: Summit Driling, Inc. J. Segreaves		·		С		ED E	TOR: FGM BY: TIR			Golder

PR DR AZI	OJECT ILLED [MUTH:	: NML Uniondale DRILL M NUMBER: 053-6388 DRILL R DEPTH: 50.0 ft DATE ST N/A DATE C N: Uniondale, NY WEATHE SOIL PROFILE	IETHOI IG: Ma TARTE OMPLE	D: Holl bile 59 D: 1/3 ETED:	ow-stem 1/06			D/ CC GS TC TE	OLE SB ATUM: NAD 8 DORDS: N: 19 S ELEVATION DC ELEVATION EMPERATURE AMPLES	83 and 93,17 I: 49.4 N: 49	0.8 E: 4ft 9.1ft	SHEET 1 of 2 0.88 INCLINATION: -90 1,101,083.7 DEPTH W.L.: 49.8 ft ELEVATION W.L.: -0.7 ft DATE W.L.: 2/6/06 TIME W.L.:
c	NO								AWFLES			
o verin (ft)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
Ŭ		0.0 - 0.8 CONCRETE			48.7							
	-	0.5 - 2.0 Yellowish brown fine to coarse SAND with			47.4	1	SPT	0.0	N/A		<u>0.3</u> 2.0	
	-	some silty clay, rounded gravel, and concrete fragments, dry (FILL)			2.0							
	-	2.0 - 4.0 Yellowish brown fine to coarse SAND with			45.4	2	SPT	0.0	20 -19 -18 -16		<u>0.3</u> 2.0	
5 —	— 45 —	some silty clay, rounded gravel, and concrete fragments, dry (FILL) 4.0 - 6.0 Yellowish brown fine to coarse SAND with			4.0	3	SPT	0.0	10 -8 -6 -9		<u>0.3</u> 2.0	
	-	some silty clay, rounded gravel, and concrete fragments, dry (FILL)			43.4 6.0	4	SPT	0.0	2 -2 -3 -9		<u>1.0</u> 2.0	
_	-	Yellowish brown fine to coarse SAND and silty clay, with rounded gravel, and concrete fragments, dry (FILL) 8.0 - 10.0			41.4 8.0							
- 0 -	— 40 —	Silty CLAY and SAND with wood fragments and styrofoam (FILL) 10.0 - 12.0			<u>39.4</u> 10.0	5	SPT	0.2	15 -12 -13 -10		<u>0.3</u> 2.0	
	-	NO RECOVERY; concrete fragment impeded sampling, presumed FILL			37.4	6	SPT		10 -15 -40 -18		<u>0.0</u> 2.0	
_	-	12.0 - 14.0 Yellowish brown fine to coarse SAND and silty clay, with rounded gravel, and concrete fragments, dry (FILL)			12.0 35.4	7	SPT	6.1	10 -6 -4 -4		<u>0.3</u> 2.0	
15 —	— 35 -	14.0 - 16.0 Yellowish brown fine to coarse SAND and silty clay, with rounded gravel, and concrete fragments, dry (FILL)			14.0 33.4	8	SPT	11.1	10 -8 -7 -8		<u>0.3</u> 2.0	
	-	16.0 - 18.0 Wood fragments and metal scraps (FILL)			16.0	9	SPT	0.0	10 -8 -7		<u>0.5</u> 2.0	
-	- 30	18.0 - 20.0 NO RECOVERY; concrete and sandstone cobble impeded sampling, presumed FILL, wet			31.4 18.0 29.4	10	SPT	2.0	7 -6 -4 -4		<u>0.0</u> 2.0	
20 -	-	20.0 - 22.0 Gray, yellow, and brown fine to coarse SAND with some fine to medium gravel and wood fragments	SP		20.0	11	ss	31	12 -8 -10 -11		<u>1.0</u> 2.0	
-	-	22.0 - 24.0 Gray, yellow, and brown fine to coarse SAND with some fine to medium gravel and wood fragments	SP		22.0	12	SPT	31	12 -10 -11 -9		<u>1.0</u> 2.0	
25	- 25 -	24.0 - 26.0 Yellowish brown to gray fine to coarse SAND	SP		24.0	13	SPT	6.0	16 -20 -20 -27		<u>1.5</u> 2.0	
-	-	26.0 - 28.0 Yellowish brown fine to coarse SAND with fine to medium gravel	SP	0 0	26.0	14	SPT	15.0	26 -30 -28 -27		<u>2.0</u> 2.0	
-	- 20	28.0 - 30.0 Yellowish brown fine to coarse SAND with fine to medium gravel	SP	° ()	28.0	15	SPT	0.0	11 -14 -20 -26		<u>1.8</u> 2.0	
30 —	-	30.0 - 32.0 Yellowish brown fine to coarse SAND with fine to medium gravel	SP	0 0 0	30.0	16	SPT	0.0	10 -8 -9 -7		<u>1.0</u> 2.0	
-	- - 15	32.0 - 35.0 Advance to 35.0 FT BGS without sampling; SAND and GRAVEL		0 0 0	32.0							
- 15	-	35.0 - 37.0 Yellowish brown fine to coarse SAND with fine to medium gravel	SP	° ()	14.4 35.0 12.4	17	SPT	0.0	10 -12 -15 -11		<u>1.0</u> 2.0	
-	-	37.0 - 39.0 NO SAMPLE; preseumed SAND and GRAVEL		0.00	37.0							
	- 10	Log continued on next page	SP	0.00	39.0	18	SPT	0.0	10 -9 -7 -7			
DRII	LLING	.E: 1 in = 5 ft COMPANY: Summit Driling, Inc. J. Segreaves				С		ED E	TOR: FGM BY: TIR			Golder

PR	OJECT	: NML Uniondale DRILL MI NUMBER: 053-6388 DRILL RI DEPTH: 50.0 ft DATE ST	ETHOD: G: Mobi ARTED:	: Hollov ile 59 : 1/31/	w-stem '06			DA CC GS	S ELEVATION	3 and 93,170	D.8 E 1/ft	: 1,101,083.7 DEPTH W.L.: 49.8 ft ELEVATION W.L.: -0.7 ft
AZI	MUTH:	N/A DATE CC N: Uniondale, NY WEATHE	MPLET	ED: 1/				TC TE	OC ELEVATIO	N: 49	9.1 ft	DATE W.L.: 2/6/06 TIME W.L.:
DEPTH (ft)	ELEVATION (ft)	SOIL PROFILE	NSCS	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	AMPLES BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
40	-	39.0 - 41.0 Yellowish brown fine to coarse sand and fine to coarse gravel (<i>Continued</i>) 41.0 - 45.0 Yellowish brown fine to coarse sand and fine to coarse gravel	SP)	0 0 0	8.4 41.0	18	SPT	0.0	10 -9 -7 -7		<u>1.0</u> 2.0	
45 — -		45.0 - 47.0 Yellowish brown fine to coarse sand and fine to coarse gravel 47.0 - 49.5 Yellowish brown fine to coarse sand and	SP	0 0 0 0	4.4 45.0 2.4 47.0	19	SPT	0.0	7 -9 -10 -10		<u>1.0</u> 2.0	
- 50 -		49.5 - 50.0 Orange brown Silty CLAY	SP CL		-0.1 -0.6							
- 55 — -	- 											
- 60 — -	- 											
65 -	- 											
70 —	- 											
	- 											
	LLING	LE: 1 in = 5 ft COMPANY: Summit Driling, Inc. J. Segreaves				CI	HECK		for: FGM Y: TIR 06			Golder

PR(DRI AZI	DJECT LLED [MUTH:	ML Uniondale DRILL M NUMBER: 053-6388 DRILL R DEPTH: 32.0 ft DATE S N/A DATE C L: Uniondale, NY WEATHI SOIL PROFILE	ig: Mo Farte Omple	bile 58 D: 2/1/ ETED: 2	06	auge	r	CC GS TC TE	ATUM: NAD 8 DORDS: N: 19 SELEVATION DC ELEVATIC MPERATURE AMPLES	92,87 I: 53.0 N: 52	8.9 E: 0ft 2.6ft	2 88 INCLINATION: -90 1,101,045.2 DEPTH W.L.: 31.7 ft ELEVATION W.L.: 20.9 ft DATE W.L.: 2/6/06 TIME W.L.:
	NO 1	SOLEFICILLE							AWF LES			
(₩) 0	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
Í		0.0 - 1.0 ASPHALT			52.0							
1	-	1.0 - 2.0 Gravish brown fine to medium sand some			1.0 51.0	1	SPT	1.5	12 -12		<u>1.0</u> 1.0	
	- 50	silty clay, little fine to coarse gravel, moist (FILL) 2.0 - 4.0			2.0	2	SPT	54	10 -12 -8 -11		0.3	
_		Grayish brown fine to medium sand some silty clay, little fine to coarse gravel and wood fragments , most (FILL)			49.0 4.0						2.0	
5		4.0 - 6.0 Grayish brown fine to medium sand some silty clay, little fine to coarse gravel and wood fragments, most (FILL)			47.0 6.0	3	SPT	64.2	15 -12 -10 -9		<u>0.3</u> 2.0	
-	- 	6.0 - 8.0 NO RECOVERY; wood fragments prevent sampling, presumed FILL			45.0 8.0	4	SPT		50/2"		<u>0.0</u> 2.0	
-	-	8.0 - 10.0 Grayish brown fine to medium sand some silty clay, little fine to coarse gravel and wood fragments; most, slight odor (FILL)			43.0	5	SPT	360	20 -19 -15 -18		<u>1.3</u> 2.0	
-	_	10.0 - 12.0 Grayish brown fine to coarse sand with some fine to coarse gravel and little sitly clay, wood fragments, and traces of brick,			10.0 41.0	6	SPT	578	17 -19 -19 -21		<u>1.3</u> 2.0	
-	- 40				12.0 39.0	7	SPT	57	14 -18 -20 -20		<u>1.3</u> 2.0	
5-	_	clay, wood fragments, and traces of brick, moist (FILL) 14.0 - 16.0 Brownish gray fine to coarse SAND and	SP	0	14.0	8	SPT	48	13 -20 -15 -14		<u>1.8</u> 2.0	
-		fine to coarse gravel, mosit 16.0 - 18.0 Brownish gray fine to coarse SAND and fine to coarse gravel, mosit	SP	0 0 0	37.0 16.0	9	SPT	0	15 -15 -16 -18		<u>1.3</u> 2.0	
_	- 35 -	18.0 - 20.0 Brownish gray fine to coarse SAND and fine to coarse gravel; moist, slight odor	SP	0 0 0	35.0 18.0 33.0	10	SPT	500	28 -8 -3 -21		<u>1.5</u> 2.0	
(20.0 - 22.0 Brownish gray fine to coarse SAND and fine to coarse gravel, saturated	SP	0 0	20.0 31.0	11	SPT	200	7 -7 -8 -6		<u>0.8</u> 2.0	
-	- 30	22.0 - 24.0 Gray and black fine to coarse SAND and fine gravel; wet, odor	SP	0 0 0	22.0	12	SPT	630	8 -6 -6 -4		<u>0.5</u> 2.0	
;	_	24.0 - 26.0 Gray and black fine to coarse SAND and fine gravel, wet, odor	SP	0. 0.	24.0	13	SPT	393	20 -19 -20 -18		<u>1.0</u> 2.0	
-		26.0 - 28.0 Gray and black fine to coarse SAND and fine gravel; wet, odor	SP	0 0	26.0	14	SPT	500	20 -23 -24 -27		<u>1.5</u> 2.0	
-	- 25 -	28.0 - 30.0 Gray and black fine to coarse SAND and fine gravel; wet, odor	SP	0 0 0	28.0	15	SPT	520	7 -7 -9 -7		<u>0.8</u> 2.0	
(-	-	30.0 - 32.0 Gray and black fine to coarse SAND and fine gravel, wet, odor	SP	0 0	23.0 30.0 21.0	16	SPT	2400	8 -7 -7 -6		<u>0.8</u> 2.0	
-	- 20	32.0 - 34.0 Yellowish brown fine to coarse SAND with some fine to coarse rounded gravel, no odor	SP	0 0 0	32.0	17	SPT	0	6 -11 -13 -15		<u>2.0</u> 2.0	
-	_	34.0 - 36.0 Yellowish brown fine to coarse SAND with some fine to coarse rounded gravel, no odor	SP	°. .•. ()	34.0	18	SPT	14	15 -18 -21 -23		<u>1.0</u> 2.0	
-	-	36.0 - 38.0 Yellowish brown fine to coarse SAND with some fine to coarse rounded gravel, no odor	SP	0 0	36.0 15.0	19	SPT	0	15 -15 -18 -19		<u>1.8</u> 2.0	
_	— 15 -	38.0 - 40.0 Yellowish brown fine to coarse SAND with some fine to coarse rounded gravel, no odor	SP	0 0 0	13.0 38.0	20	SPT	1.4	18 -23 -25 -28		<u>1.5</u> 2.0	
) –	-	Log continued on next page			13.0							
RII	LING	.E: 1 in = 5 ft COMPANY: Summit Driling, Inc. J. Segreaves				С		KED B	FOR: FGM BY: TIR			Golder

PR	OJECT	: NML Uniondale DRILL M	ETHO	D: Hollo				DA		3 and	NAVI	SHEET 2 of 2 0.88 INCLINATION: -90 0.4404.045 0 DEDITION: -247.6
DR AZ	ILLED I	NUMBER: 053-6388 DRILL R DEPTH: 32.0 ft DATE ST N/A DATE CO DATE CO u: Uniondale, NY WEATHI	ARTE	D: 2/1/0 TED: 2	06 2/1/06			GS TC	S ELEVATION C ELEVATIO MPERATURE	l: 53.0 N: 52) ft 2.6 ft	: 1,101,045.2 DEPTH W.L.: 31.7 ft ELEVATION W.L.: 20.9 ft DATE W.L.: 2/6/06 TIME W.L.:
	-	SOIL PROFILE		-				S	AMPLES			
DEPTH (ft)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
40	-	40.0 - 45.0 Yellowish brown fine to coarse SAND with some fine to coarse gravel	SP		40.0							
- 45 —	- 10 -	45.0 - 47.0 Yellowish brown fine to coarse SAND with		0 0 0 0	8.0 45.0						0.0	
-	- - -5	some fine to coarse gravel 47.0 - 49.0 Yellowish brown fine to coarse SAND with some fine to coarse gravel	SP SP		6.0 47.0	21	SPT SPT	4.0 3.4	21 -23 -27 -27		0.0 2.0 <u>1.5</u> 2.0	
- 50 —	-	Boring completed at 32.0 ft		• ()	4.0 49.0						2.0	
-	- - 0											
- 55 -												
-												
- 60 — -	+ +											
-												
65 -	-											
75 -												
	LLING	LE: 1 in = 5 ft COMPANY: Summit Driling, Inc. J. Segreaves		<u> </u>		C	HECK		TOR: FGM BY: TIR 106			Golder

PR(DRI AZI	oject Illed I Muth:	: NML Uniondale DRILL M NUMBER: 053-6388 DRILL R DEPTH: 33.0 ft DATE C N/A DATE C V: Uniondale, NY WEATHI	IETHOI IG: Ma TARTE OMPLE	D: Hollo bile 58 D: 2/2/ TED: 2	ow-stem 06 2/2/06			D/ CC GS TC	DLE SB ATUM: NAD 8 DORDS: N: 19 S ELEVATION DC ELEVATION EMPERATURE	83 and 92,84 I: 52.0 N: 52	4.4 E 0ft 2.6ft	SHEET 1 of 2 D 88 INCLINATION: -90 : 1,100,964.0 DEPTH W.L.: 32.9 ft ELEVATION W.L.: 19.7 ft DATE W.L.: 2/6/06 TIME W.L.:
		SOIL PROFILE		inity/Dic	,02y				AMPLES	+0		
o DEPTH (ft)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
_	_	0.0 - 1.0 ASSPHALT 1.0 - 2.0		*****	51.0						4.0	
-	- 50	1.0 - 2.0 Brown fine to medium SAND and Silty CLAY, little to some gravel and brick fragments, dry (FILL) 2.0 - 4.0	r		1.0 50.0 2.0	1	SPT SPT	-	20 -18		<u>1.0</u> <u>1.0</u> <u>1.0</u>	
- 5	_	Brown fine to medium SAND and Silty CLAY, little to some gravel and brick fragments, dry (FILL) 4.0 - 6.0	r		48.0 4.0	3	SPT	-	30 -35 -40 -40		2.0 0.5 2.0	
_		Brown fine to medium SAND and Silty CLAY, little to some gravel and brick fragments, dry (FILL) 6.0 - 8.0	SP	¢	46.0 6.0							
-	— 45 -	Vellowish brown fine to coarse SAND with some fine gravels, moist 8.0 - 10.0 NO RECOVERY; shale cobbles impeded			44.0 8.0	4	SPT	-	30 -35 -40 -44		<u>1.0</u> 2.0	
- 10	-	sampling, presumed SAND and GRAVEL 10.0 - 12.0		0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	42.0 10.0	5	SPT		9 -8 -9 -7		<u>0.0</u> 2.0	
-	- 40	Yellowish brown fine to coarse SAND and fine to coarse gravel, moist 12.0 - 14.0	SP	• () • ()	40.0 12.0	6	SPT	-	10 -9 -9 -8		<u>1.0</u> 2.0	
-	-	Yellowish brown fine to coarse SAND and fine to coarse gravel, moist; 0.5 FT gravel zone, orange 14.0 - 16.0	SP	• () • ()	<u>38.0</u> 14.0	7	SPT	-	10 -9 -15 -11		<u>1.0</u> 2.0	
15	-	NO RECOVERY; shale cobbles impeded sampling, presumed SAND and GRAVEL		e. () 	36.0	8	SPT	-	8 -7 -7 -6		<u>0.0</u> 2.0	
	— 35 _	16.0 - 18.0 Yellowish brown fine to coarse SAND and fine to coarse gravel, moist	SP	° ()	16.0 34.0	9	SPT		10 -11 -9 -7		<u>1.0</u> 2.0	
-	-	18.0 - 20.0 Yellowish brown fine to coarse SAND and fine to coarse gravel, moist	SP	¢ • () • ()	18.0 32.0	10	SPT		20 -25 -21 -22		<u>1.5</u> 2.0	
20 —	-	20.0 - 22.0 Yellowish brown fine to coarse SAND and fine to coarse gravel, moist	SP	¢ • ()	20.0 30.0	11	SPT		3 -4 -5 -5		<u>1.0</u> 2.0	
-	— 30 -	22.0 - 24.0 Grayish brown fine to coarse SAND and fine to coarse gravel, wet	SP	° • ()	22.0 28.0	12	SPT		20 -15 -15 -12		<u>1.5</u> 2.0	
- 25	-	24.0 - 26.0 Grayish brown fine to coarse SAND and fine to coarse gravel, wet	SP	°. ()	24.0	13	SPT		6 -4 -3 -3		<u>0.0</u> 2.0	
-	- 25	26.0 - 28.0 NO RECOVERY; presumed SAND and GRAVEL			26.0	14	SPT		6 -8 -6 -4		<u>1.0</u> 2.0	
-	-	28.0 - 30.0 Grayish brown fine to coarse SAND and fine to coarse gravel; wet, slight odor	SP	¢ • ()	28.0	15	SPT		12 -12 -17 -15		<u>1.5</u> 2.0	
30 —	-	30.0 - 32.0 Grayish brown coarse SAND and fine to coarse gravel, wet	SP	• () • ()	30.0 20.0	16	SPT		10 -10 -8 -9		<u>1.0</u> 2.0	
-	— 20 -	32.0 - 34.0 Grayish brown to yellowish brown coarse SAND and fine to coarse gravel, wet	SP	0. () 0. ()	32.0 18.0	17	SPT		15 -14 -13 -11		<u>1.5</u> 2.0	
- 35	-	34.0 - 40.0 Yellowish brown SAND, coarsening down hole, and fine to coarse gravel			34.0	18	SPT		15 -14 -11 -11		<u>1.5</u> 2.0	
-	- 15		SP									
-	-				12.0							
40 —	-	Log continued on next page			12.0							
DRI	LING	LE: 1 in = 5 ft COMPANY: Summit Driling, Inc. J. Segreaves				С		ED E	TOR: FGM BY: TIR 102			Golder

PR DR AZ	oject Illed I Imuth:	: NML Uniondale DRILL M NUMBER: 053-6388 DRILL R DEPTH: 33.0 ft DATE ST N/A DATE C V: Uniondale, NY WEATHE	ETHOI G: Mo ARTE OMPLE): Hollo bile 58 D: 2/2/ TED: 2	ow-stem 06 2/2/06			DA CC GS TC	OLE SB ATUM: NAD 8 OORDS: N: 19 S ELEVATION DC ELEVATION EMPERATURE	3 and 92,844 1: 52.0 N: 52	4.4 E Dft 2.6ft	SHEET 2 of 2 D 88 INCLINATION: -90 : 1,100,964.0 DEPTH W.L.: 32.9 ft ELEVATION W.L.: 19.7 ft DATE W.L.: 2/6/06 TIME W.L.:
		SOIL PROFILE	_11. 00	ППУЛЬТС	.02y				AMPLES	+0		
DEPTH (ft)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
40	- 10	40.0 - 45.0 Yellowish brown fine to coarse SAND and fine to coarse gravel	SP	• • •	40.0	19	SPT		6 -11 -9 -12		<u>1.5</u> 2.0	
- 45 — -	-	45.0 - 47.0 Orange-brown fine to coarse SAND and fine to coarse gravel	SP	° . ∘ . ∘ . ∘ .	7.0 45.0	20	SPT		10 -9 -8 -8		<u>1.5</u> 2.0	
-	- 5	47.0 - 49.0 Orange-brown fine to coarse SAND and fine to coarse gravel Boring completed at 33.0 ft	SP	• () • ()	5.0 47.0 <u>3.0</u> 49.0	21	SPT		12 -15 -8 -11		<u>1.5</u> 2.0	
50 — - -	- - - 0											
- - 55 —												
-	- 											
60	- - 											
- 65 -	-											
	- 											
70 -	-											
75	- - 											
80-		_E: 1 in = 5 ft							Tor: Fgm			<u> </u>
DRI	LLING	LE: 1 In = 5 π COMPANY: Summit Driling, Inc. J. Segreaves				C		(ED B	BY: TIR			Golder

PR DR AZI	oject Illed [Muth:	: NML Uniondale DRILL M NUMBER: 053-6388 DRILL R DEPTH: 29.0 ft DATE S N/A DATE C N: Uniondale, NY WEATHI SOIL PROFILE	IETHOI IG: Mo TARTE OMPLE	D: Hollo bile 61 D: 2/2/ TED: 2	ow-stem 06 2/2/06			D/ CC GS TC TE	DLE SB ATUM: NAD 8 DORDS: N: 11 S ELEVATION DC ELEVATION MPERATURE AMPLES	3 and 93,13 1: 49.9 N: 49	2.3 E 9ft 9.6ft	SHEET 1 of 2 D 88 INCLINATION: -90 : 1,100,950.9 DEPTH W.L.: 28.8 ft ELEVATION W.L.: 20.8 ft DATE W.L.: 2/6/06 TIME W.L.:
	z	SOIL PROFILE	1	1				3	AWFLES			
o DEPTH (ft)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
_	-	0.0 - 0.5 <u>ASPHALT</u> 0.5 - 2.0 Brown fine to medium SAND with trace			49.4 0.5 47.9	1	SPT		29 -21 -22		<u>1.3</u> 1.5	
-	-	fine gravel and wood fragments, dry 2.0 - 2.5 Black SILT and SAND with wood fragments, slight odor	SP-SM SP		47.4 2.5	2	SPT	4.5	15 -21 -16 -12		<u>1.5</u> 2.0	
- 5	- 45	2.5 - 4.0 Orange brown fine to coarse SAND with trace quartz gravel	SP	°. • ()	45.9 4.0	3	SPT	0.0	5 -7 -5 -4		<u>1.0</u> 2.0	
-		4.0 - 6.0 Orange brown fine to coarse SAND with little fine gravel 6.0 - 8.0	SP	<u>, , , , , , , , , , , , , , , , , , , </u>	43.9 6.0	4	SPT	0.0	4 -6 -9 -12		0.5	
_		Orange brown fine to medium SAND with trace coarse sand and fine gravel 8.0 - 10.0			41.9 8.0							
- 10	- 	Orange fine to coarse SAND with trace fine quartz gravel 10.0 - 10.5	SP SP	<u>ن</u>	39.9 39.4	5	SPT	0.0	29 -22 -17 -23		<u>1.0</u> 2.0	
_	-	Orange fine to coarse SAND with trace fine gravel 10.5 - 12.0 Orange fine SAND	SP	¢	10.5 <u>37.9</u> 12.0	6	SPT	18.0	7 -12 -16 -16		<u>1.4</u> 2.0	
_	_	12.0 - 14.0 Orange fine SAND with little fine quartz gravel	SP	° \	35.9	7	SPT	2.0	19 -22 -26 -17		<u>1.4</u> 2.0	
15 —	- 35	14.0 - 15.0 Orange fine to medium SAND with minor brown silt and trace fine gravel 15.0 - 16.0	SP SP	¢. 💛	14.0 34.9 15.0 33.9	8	SPT	9.0	21 -16 -11 -15		<u>1.2</u> 2.0	
-	-	Brown fine to coarse SAND with little to trace fine gravel 16.0 - 18.0	SP	0. () . ()	16.0	9	SPT	2.0	25 -15 -15 -16		<u>1.5</u> 2.0	
-	-	Orange brown medium to coarse SAND with little fine gravel and trace fine sand, saturated at 17.0 FT BGS 18.0 - 20.0	SP	0 0	31.9 18.0	10	SPT	0.5	17 -19 -16 -13		<u>1.0</u> 2.0	
20	— 30 -	Brown fine to coarse SAND with some to little fine to medium quartz gravel, saturated 20.0 - 22.0	SP		29.9 20.0	11	SPT	0.6	11 -6 -6 -9		<u>1.2</u> 2.0	
_		Brown fine to coarse SAND and fine quartz gravel 22.0 - 23.0 Brown fine to coarse SAND and fine	SP	0.0. 0.0.0	27.9 22.0 26.9	10	ODT		6 -7 -7 -11		1.8	
-	_	23.0 - 24.0 Brown fine to medium SAND with trace	SP SP	¢.0	23.0 25.9 24.0 24.9	12	SPT	0.0	0-7-7-11		2.0	
25	— 25 -	fine quartz gravel 24.0 - 25.0 Brown fine to medium SAND with trace fine quartz gravel	SP-SM	<u> </u>	24.9 25.0 23.9 26.0	13	SPT	0.0	4 -5 -7 -5		0.8 2.0	
-		25.0 - 26.0 Orange and brown micaceous SILT and fine SAND 26.0 - 27.0	SP-SM		22.9 27.0 21.9	14	SPT	0.0	6 -11 -17 -18		<u>1.5</u> 2.0	
- 30 -	- 	Orange and brown micaceous SILT and fine SAND with red staining 27.0 - 28.0	SP SP	ک ک	28.0 20.9 29.0 19.9	15	SPT	3.5	7 -10 -9 -10		<u>2.0</u> 2.0	
	-	Orange fine to medium SAND with trace fine gravel and fine sand 28.0 - 29.0 Orange fine to medium SAND with trace fine gravel and fine sand	SP	°. ()	30.0 17.9	16	SPT	0.0	11 -6 -6 -11		<u>1.0</u> 2.0	
- - 35 -	- - 15	29.0 - 30.0 Orange fine to coarse SAND with trace fine gravel; 0.5 FT gravel zone at 29.0 FT BGS 30.0 - 32.0 Brown fine to medium SAND with 4.0 IN of	SP		32.0							
-		fine to medium gravel at 31.0 FT BGS 32.0 - 36.0 AUGER to 36.0 FT BGS, no sample; presumed SAND	SP	° . • .	13.9 36.0	17	SPT	0.0	18 -22 -23 -17		<u>1.8</u> 2.0	
-		36.0 - 38.0 Brown fine to medium SAND with fine to coarse fine gravel	SP		11.9 38.0 10.9	18	SPT	0.0	23 -22 -17 -23		<u>1.4</u> 2.0	
40 —	- 10	Fine to medium SAND 39.0 - 40.0	SP		39.0 9.9				-		2.0	
LOG	SCAL	Log continued on next page LE: 1 in = 5 ft COMPANY: Summit Driling, Inc. J. Segreaves	I			С		ED B	for: FGM SY: Tir 106			Golder

		: NML Uniondale DRILL M	ETHO	D: Hollo				DA		3 and		SHEET 2 of 2 0.88 INCLINATION: -90
DR AZ	ILLED I	NUMBER:053-6388DRILL RDEPTH:29.0 ftDATE STIN/ADATE CODATE COV:Uniondale, NYWEATHER	ARTE	D: 2/2/(TED: 2	2/2/06			GS TC	DORDS: N: 1 S ELEVATION DC ELEVATIC EMPERATURE	1: 49.9 N: 49	9 ft 9.6 ft	: 1,100,950.9 DEPTH W.L.: 28.8 ft ELEVATION W.L.: 20.8 ft DATE W.L.: 2/6/06 TIME W.L.:
	-	SOIL PROFILE						S	AMPLES			
(t) 40	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	BLOWS per 6 in 140 lb hammer 30 inch drop	N	REC / ATT	COMMENTS
40 -	-	Orange fine to medium SAND with trace fine gravel 40.0 - 42.0 Brown and orange fine to medium SAND	SP	°. ``	40.0 7.9	19	SPT	0.0	22 -26 -17 -21		<u>1.7</u> 2.0	
-	_	 with little coarse sand and gravel 42.0 - 44.0 Brown and orange fine to medium SAND with little coarse sand and gravel 	SP	0 0 0	42.0 5.9	20	SPT	0.0	29 -32 -33 -26		<u>1.0</u> 2.0	
- 45 —	-5	44.0 - 46.0 Orange fine to medium SAND with trace coarse SAND and fine gravel, iron staining evident	SP	°. \`	44.0 3.9	21	SPT	0.0	8 -14 -14 -20		<u>1.8</u> 2.0	
-	-	46.0 - 48.0 Orange fine to medium SAND with trace coarse SAND and fine gravel, iron staining evident	SP	°. •	46.0	22	SPT	0.0	14 -17 -14 -17		<u>2.0</u> 2.0	
-		48.0 - 50.0 Orange fine to medium SAND with little to trace fine gravel and trace coarse sand, iron staining evident	SP	° ()	48.0	23	SPT	0.0	13 -19 -13 -27		<u>2.0</u> 2.0	
50 -	- 0	Boring completed at 29.0 ft		·) . · ·	50.0							
-	-											
- 55 —	5											
-												
-	-											
60 -												
-	-											
- 65 -												
-												
-												
70 -	20											
-												
- 75												
-												
- 80 -												
LOC	G SCAI	LE: 1 in = 5 ft COMPANY: Summit Driling, Inc.	<u> </u>						tor: FGM By: Tir	<u> </u>		Golder
		J. Segreaves					ATE:					Golder

DR AZI	LLED [MUTH:	: NML Uniondale DRILL METHOD: Geoprobe NUMBER: 053-6388 DRILL RIG: Geoprobe DEPTH: 30.0 ft DATE STARTED: 3/17/06 N/A DATE COMPLETED: 3/17/00 V: Uniondale, NY WEATHER: Sunny			GS E TOC	ELEV	: N: 19 Ation Vatio Ature	: 47. N: 46	l ft 5.7 ft	: 1,101,170.6 DEPTH W.L.: 30.0 ft ELEVATION W.L.: 16.7 ft DATE W.L.: 3/22/06 TIME W.L.:
	~	SOIL PROFILE		-			SAMF	LES		
(ff)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	REC / ATT	COMMENTS
0	-	0.0 - 0.5 \ Asphalt /			46.6 0.5					
	- 45 	0.5 - 5.0 Brown, moist, fine to medium SAND, with stratified sandy clay, trace medium gravel	SP			1	GRAB	0.0	<u>2.5</u> 5.0	
5	- 40 	5.0 - 10.0 Reddish-brown SAND and CLAY, little fine to medium gravel	SC		42.1	2	GRAB	0.0	<u>4.0</u> 5.0	
10 — - - -	- 35 	10.0 - 15.0 Brown, moist, fine to medium SAND, trace fine to medium gravel	SP-SM		37.1	3	GRAB	0.0	<u>5.0</u> 5.0	
15 — - - -	 - 30 -	15.0 - 20.0 Brown, wet, fine to medium SAND, trace fine to medium gravel	SP-SM		32.1	4	GRAB	0.0	<u>5.0</u> 5.0	
20 — - -	- 25 	20.0 - 25.0 Grayish-brown, wet, fine to medium SAND, some medium gravel	SP		27.1 20.0 22.1	5	GRAB	0.0	<u>5.0</u> 5.0	
25 — - -	- 20 	25.0 - 30.0 Grayish-brown, wet, fine to medium SAND, some medium to coarse gravel	SP	°.0	25.0	6	GRAB	0.0	<u>5.0</u> 5.0	
30 — - -	- - 15 -	Boring completed at 30.0 ft		<u></u>	17.1					
- 35 — - -	- - 10 									
- 40 —	-									
	SCAL	_E: 1 in = 5 ft		ga ins	PECTO)r: f : tir				

DR AZI	ILLED [MUTH:	N: Uniondale, NY WEATHER: Sunny	6		GS E TOC		ATION VATIO ATURE	: 50. ² N: 46 : 35	l ft 6.6 ft	: 1,101,035.4 DEPTH W.L.: 30.0 ft ELEVATION W.L.: 16.6 ft DATE W.L.: 3/22/06 TIME W.L.:
	z	SOIL PROFILE	1	1			SAMF	LES		
(#)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	REC / ATT	COMMENTS
0	- 50	0.0 - 0.5 ∖ Asphalt /		V / 1././/	49.6 0.5					
	-	0.5 - 5.0 Brown Silty CLAY with stratified fine to medium sand, trace medium to coarse gravel	CLs			1	GRAB	0.0	<u>4.0</u> 5.0	
5 —	- 45	5.0 - 10.0			45.1 5.0					
	-	Brown, wet fine to medium SAND with some medium gravel	SP	° ? ° °		2	GRAB	0.0	<u>4.0</u> 5.0	
10 — - -	— 40 	10.0 - 15.0 Brown, wet fine to medium SAND with some medium gravel	SP		10.0	3	GRAB	0.0	<u>5.0</u> 5.0	
5	- 35 - -	15.0 - 20.0 Brown, wet fine to medium SAND with some medium gravel	SP	0 0 0 0	<u>35.1</u> 15.0	4	GRAB	0.0	<u>5.0</u> 5.0	
	30 	20.0 - 25.0 Brown, wet fine to medium SAND with some medium gravel	SP	° 0 ° 0 ° 0	30.1 20.0 25.1	5	GRAB	0.0	<u>2.0</u> 5.0	
25 — - -	— 25 - - -	25.0 - 30.0 Gray, wet, fine to medium SAND with some medium gravel	SP	° ° °	25.0	6	GRAB	0.0	<u>3.5</u> 5.0	
30 — - -	— 20 - -	Boring completed at 30.0 ft		<u>p</u>	20.1					
- 35 — - -	- 15 -									
10.	-									
40 -										
		LE: 1 in = 5 ft COMPANY: Summit Drilling			PECTO	DR: F : TIF				

LO		N/A DATE COMPLETED: 3/17/0 N: Uniondale, NY WEATHER: Sunny SOIL PROFILE	-		TEM	PERA	VATIO ATURE SAMP	E: 35	F	DATE W.L.: 3/22/06 TIME W.L.:
(#)	ELEVATION (ft)	DESCRIPTION	nscs	GRAPHIC LOG	ELEV. DEPTH (ft)	NUMBER	ТҮРЕ	PID (ppm)	REC / ATT	COMMENTS
0 -	- 50	0.0 - 0.5 Asphalt			<u>49.8</u> 0.5					
	-	0.5 - 5.0 Brown, moist, silty SAND, with little stratified silty Clay, trace med gravel	SP-SM			1	GRAB	0.0	<u>3.5</u> 5.0	
5	— 45 — —	5.0 - 10.0 Brown, moist, fine to medium SAND with trace medium gravel	SP-SM		45.3 5.0	2	GRAB	0.0	<u>4.8</u> 5.0	
- 10 — -	- 40 	10.0 - 15.0 Brown, moist, fine to medium SAND with trace medium gravel			40.3 10.0					
- 15 -	- - - 35	15.0 - 20.0 Brown, wet, fine to medium SAND with trace medium gravel	SP-SM		<u>35.3</u> 15.0	3	GRAB	0.0	5.0	
1 1	-		SP-SM		30.3	4	GRAB	0.0	<u>5.0</u> 5.0	
20 — - -	— 30 — —	20.0 - 25.0 Brown, wet, fine to medium SAND with trace medium gravel	SP-SM		20.0	5	GRAB	0.0	<u>3.5</u> 5.0	
25 — - -	- 25 - -	25.0 - 30.0 Brown, wet, fine to medium SAND with stratified silty SAND, little medium gravel	SP	0 0 0 0	25.3 25.0	6	GRAB	0.0	<u>4.0</u> 5.0	
 30 -	- - 20 -	Boring completed at 30.0 ft			20.3					
- 35 — -	- 									
- - 10 -	-									

APPENDIX B

WELL DEVELOPMENT FORMS

JOB NAME DEVELOPED BY STARTED DEVEL.	Uniondo 17m 3-21-06	118	10 5 2	JOB NO. DATE OF INSTALL. COMPLETED DEVEL.	053-6388 3-20-06 3-21-06	WELL NO. 100-6 SHEET 1 of 1 1
_	DATE		TIME		DATE	TIME
W.L. BEFORE DEVEL.	/	3-21-06	1	W.L. AFTER DEVEL.		1 3-21-06 1
	DEPTH	DATE	TIME		DEPTH	DATE TIME
WELL DEPTH: BEFORE D	DEVEL.			AFTER DEVEL.		WELL DIA. (In) 2
STANDING WATER COLU	MN (FT.)			STANDING WELL VOL	UME	gal.
SCREEN LENGTH	רי			DRILLING WATER LOS	SS	gal.

		VOLUME			RAMETERS		
DATE	E/TIME	REMOVED	SPEC COND.	TEMP.	pН	TURBIDITY	REMARKS (DTW, Pumping Rate, etc.)
		(GALS)	(ms/cm)	(C)	(s.u.)	(NTU)	
3-21.66	1033		0,358	14,25	7.04	NIA	
	1038		0,362	13,44	6,92	NIA	a
	1043		0,363	14.06	6.97	467.0	
	1048		0.363	14.14	6,95	175.0	
	1053		0,372	13,94	6,92	59.5	
	1058		0,364	13,91	6,49	41.6	
	1103		0,362		7,00	24.0	
	1108		0.372	14.09	6.95	9.0	
	1113		0,370	14,17	7.00	8.6	
	1115	44 oga [0.375	14,16	6.93	7.9	· · · · · · ·
		- 9					
							· · · ·
						-	
							· · · · · · · · · · · · · · · · · · ·
		· · · ·					
						· · · ·	
			· · · · · · · · · · · · · · · · · · ·				
.					_		
							·
				= TOTAL	JOLUME RE	MOVED (gal.)	

DEVELOPMENT METHOD:

JOB NAME DEVELOPED BY	Union	ilu li		JOB DATE	NO. E OF INSTALL.	3-20-1	WELL NO. 100-7 SHEET 1 of 1
STARTED DEVEL.	3.2	1-06 / 09	145	COM	PLETED DEVEL.	3-4-06	1 1033
	DATE		TIME)		DATE	TIME
W.L. BEFORE DEVEL.	/	3-21-06 1		W.L.	AFTER DEVEL.		1 3-21-06 1
	DEPTH	DATE	TIME			DEPTH	DATE TIME
WELL DEPTH: BEFORE I	DEVEL.	27,1		AFTE	R DEVEL.		WELL DIA. (In) 27
STANDING WATER COLL	JMN (FT.)			STAN	IDING WELL VOL	.UME	gal.
SCREEN LENGTH		15'		DRILI	LING WATER LOS	SS	gal.
	VOLUME		FIELD PA	RAMETERS			
DATE/TIME	REMOVED	SPEC COND.	TEMP.	pH	TURBIDITY	REMARKS (DT	W, Pumping Rate, etc.)
	(GALS)	(ms/cm)	(C)	(s.u.)	(NTU)		

		(GALS)	(ms/cm)	(C)	(s.u.)	(NTU)	
3-21-06	0953		0;419	12,07	5,63	MA	
	0958		0.388	13,52	6,39	NIN	
	10 03		0.383	19.23	6.61	415.0	
	1008		0,390	14,12	6.77	103.0	
	1013		0:383	14.41	6.85	34.5	
	1018	1 K	0,380	14.45	6.86	8.9	
	1023	i	0.390	14.37	6.82	12.4	
	1028		0,378	14.30	6.85	12.3	
	1033	26 gul	0,377	14.33	6.88	12.0	
							· · · · · · · · · · · · · · · · · · ·
				= TOTAL	VOLUME REI	MOVED (gal.)	

DEVELOPMENT METHOD:

JOB NAME DEVELOPED BY STARTED DEVEL.	Uniondule Bros 3-21-06 1	1120	JOB NO. DATE OF INSTALL. COMPLETED DEVEL.	0536383 3-20-06 3-21-06	WELL NO. mw. S SHEET / of /
	DATE	TIME		DATE	TIME
W.L. BEFORE DEVEL.	13-21.06	/	W.L. AFTER DEVEL.		13-21.06 1
	DEPTH DATE	TIME		DEPTH	DATE TIME
WELL DEPTH: BEFORE	DEVEL.		AFTER DEVEL.		WELL DIA. (In) <u></u> と ´´
STANDING WATER COLU	IMN (FT.)		STANDING WELL VOLU	IME	gal.
SCREEN LENGTH	15		DRILLING WATER LOSS	S	gal.

		VOLUME	·		RAMETERS		
DATE	/TIME	REMOVED	SPEC COND.	TEMP.	ρН	TURBIDITY	REMARKS (DTW, Pumping Rate, etc.)
		(GALS)	(ms/cm)	(C)	(s.u.)	(NTU)	
8-21-04	1120		0.145	12,99	7,71 7,43	NA	
	1125		0.145	12.97	7,43	NIA	ë
	1130		0,152,	12.89	7,17	142.0	
	1135	•	0,151	11.71	7.15	31.3	
	1140		0,150	12,60	7.03	13.3	
	1145	1	0.150	13,12	7.07	6.2	
	1150		0,150	13,10	7103	5,3	
	1155		0,150	13.11	7,62	4.4	人類・
	1200						
						_	·
		· · · ·				12	
						·	
				= TOTAL	VOLUME RE	MOVED (gal.)	

DEVELOPMENT METHOD:

JOB NAME DEVELOPED BY	Uniondale		JOB NO. DATE OF INSTALL.	1-30.06	WELL NO. <u>58-7</u> SHEET <u>7</u> of <u>7</u>
STARTED DEVEL.	2-6-06 1	1020	COMPLETED DEVEL.	2-6.04	1 10 40
	DATE	TIME	-	DATE	TIME
W.L. BEFORE DEVEL.	21.02 1 8.6-1	6 1 1020	W.L. AFTER DEVEL.	20.03	1 2-6.06 1 1045
	DEPTH DATE	TIME		DEPTH	DATE TIME
WELL DEPTH: BEFORE [DEVEL.	48.1	AFTER DEVEL.	48.1	WELL DIA. (In) 2 "
STANDING WATER COLU	IMN (FT.)	27,08'	STANDING WELL VOL	UME	gal.
SCREEN LENGTH	10'		DRILLING WATER LOS	S	570 gal.

		VOLUME			RAMETERS			
DATE	E/TIME	REMOVED			pН	TURBIDITY	REMARKS (DTW, Pumping Rate, etc.)	
		(GALS)	(ms/cm)	(C)	<u>(</u> s.u.)	(NTU)		
-6-06	1020	2	0.718	14.9	7.39	999	grass up adar	
	1022	6	0.771	14.6	7.40	888	0 1	
	1024	10	0.766	15.3	7.42	302		
	1026	20	0.767	15.7	7.42	131		
	1030	25	775.0	15.5	7.39	66		
= - 1	1032	30	0.765	15.4	7.40	45		
	1034	35	0.775	16.0	2.47	33		
-	1036	40	0.767	15.6	7.40	31		
	1638	45	0.767	15.6	7.42	32		
	1040	50	0.766	15.5	7.41	33		
					•			
							· · · · · · · · · · · · · · · · · · ·	
		5						
_								
			50	 = TOTA! '	VOLUME REI	MOVED (gal.)		
						placed		

06 t

pumped

until

1-R

to nows!

Geld

unas

Water

smbilized

carell.

parameter s

FAR

JOB NAME DEVELOPED BY	Union	ola le	JOB NO. DATE OF INSTALL.	1-31-06	WELL NO. <u>58-2</u> SHEET / of /
STARTED DEVEL.	2-6-06	1 0900	COMPLETED DEVEL.	2-6-06	1 0930
	DATE	TIME	-	DATE	TIME
W.L. BEFORE DEVEL.	15.8 1.2-1	6-06 1 0900	W.L. AFTER DEVEL.	49.75 1	2-6-061 0926
	DEPTH DA	TE TIME		DEPTH	DATE TIME
WELL DEPTH: BEFORE	DEVEL.	49.81	AFTER DEVEL.	47.75	WELL DIA. (In) 2 "
STANDING WATER COLU	MN (FT.)	34.01'	STANDING WELL VOL		gal.
SCREEN LENGTH	10'		DRILLING WATER LOS	SS <u>50</u>	gal.

		VOLUME		FIELD PA			
DATE	TIME	REMOVED (GALS)	SPEC COND. (ms/cm)	TÉMP. (C)	pH (s.u.)	TURBIDITY (NTU)	REMARKS (DTW, Pumping Rate, etc.)
2-6-06	0900	2	0.163	12.6	7.14	325	red/brown colored
	0905	10	0.171	12.6	6.77	345	mer
	0007	20	0.173	12.7	6.74	847	
	0910	23	0.174	12.8	6.86	125	
	0912	35	0.175	12.5	6.91	104	
	0915	40	0.174	12.6	6.93	51	
	0917	42	0.176	12.4	6.84	31	
	0718	46	0.176	12.6	6.92	27	
	0920	47	0.176	12.6	6.97	14	·
	0921	48	0.176	12.6	6.96	14	·
	0924	48.54		12.6	6.95	6	
	0926	50	0.176	12.6	6.96	4	
							· · · · · ·
							·
						<u> </u>	
				· .			
			1-				· · · · · · · · · · · · · · · · · · ·
			50	= TOTAL	VOLUME REI	MOVED (gal.)	
VELOPME	NT METHOD	A 2	" prc	PUMPE	W63 0	laced at	the bottom of the wel
unter			out con		Until	Gild sura	uchers stabilizely
_	_	1		T			
							····
TES:							

JOB NAME DEVELOPED BY	Uniondak	JOB NO. DATE OF INSTALL.		WELL NO. $\leq \beta \cdot 3$ SHEET (of (
STARTED DEVEL.	2.6.06 1 1050	COMPLETED DEVEL.	2-6-06	1 1115
	DATE TIME		DATE	TIME
W.L. BEFORE DEVEL.	12.8212-6061 (050	W.L. AFTER DEVEL.	19.641	2-6-061 1115
	DEPTH DATE TIME		DEPTH	DATE TIME
WELL DEPTH: BEFORE [DEVEL. 31.71	AFTER DEVEL.	31.71 W	ELL DIA. (In) _ 之 🔭
STANDING WATER COLU	MN (FT.) //- 89	STANDING WELL VOLU	ME	gal.
SCREEN LENGTH	10'	DRILLING WATER LOS	48	gal.

		VOLUME					
DAT	E/TIME	REMOVED (GALS)	SPEC COND. (ms/cm)	TEMP. (C)	pH (s.u.)	TÜRBIDITY (NTU)	REMARKS (DTW, Pumping Rate, etc.)
-6-06	1049	5	0.987	15.1	7.37	979	grang w/ 54029
	1054	10	1.56	15.4	7.43	702	gray w/ 5krong odor
	1056	20	1.54	15.5	7.53	209	
	1100	25	1.52	15.3	7.45	70	
	1103	30	1.53	15.7	7.43	37	
	1105	35	1.52	15.8	7.44	27	
	1107	42	1.54	15.9	7.95	15	
	110	45	1.54	15.8	7.45	14	· · · · · · · · · · · · · · · · · · ·
	(115	48	1.5(15.8	7.42	15	
			48	= TOTAL '	VOLUME RE	MOVED (gal.)	
	<u></u> `	: 2*					otton of the well a

JOB NAME	Uniondale	JOB NO.		WELL NO5B . ¥
DEVELOPED BY	Em.	DATE OF INST	ALL. 2-2-06	SHEET of
STARTED DEVEL.	2-6-06 / 113	COMPLETED I	DEVEL. 2-6-06	1 1155
	DATE TI	ME	DATE	TIME
W.L. BEFORE DEVEL.	19.7 12.6-06 1	ULL AFTER D	EVEL. 1 17.5	12-6-06 1
	DEPTH DATE	TIME	DEPTH	DATE TIME
WELL DEPTH: BEFORE	DEVEL. 32-8	AFTER DEVEL	. 32.9	WELL DIA. (In)2 "
STANDING WATER COLL	JMN (FT.) 13./	STANDING WE	LL VOLUME	gal.
SCREEN LENGTH	10*	DRILLING WAT	TER LOSS	gal.

	VOLUME	FIELD PARAMETERS				
DATE/TIME	ME REMOVED	SPEC COND.	TÈMP. (C)	pH	TURBIDITY	REMARKS (DTW, Pumping Rate, etc.)
	(GALS)	(ms/cm)		(s.u.)	(NTU)	
1125	5	0.524	14.0	7.6	997	glay in color
1128	10	0.534	14.1	7.43	537	your in color w/ strong adar
1130	20	0,537	14.7	7.44	141	
1133	30	0.541	14.7	7,50	28	
1135	35	0.544	15.0	7.49	16	
1137	46	0.534	14.8	7.49	17	
1146	45	0.539	(4.8	7143	11	
1145	47	0.538	14.9	7,43	10	
1156	49	0.538	14.9	7.44	11	
						······································
						· · · · · · · · · · · · · · · · · · ·
						· · ·
					· · · · · · · · · · · · · · · · · · ·	
		49	= TOTAL	VOLUME REI	MOVED (gal.)	

rantorious/

the

Unty'l

field parameters

1:7080

5the

NOTES:

Water

was

pumped

·

Uniondale	100 34	JOB NO. DATE OF INSTALL.	2-2-06	WELL NO. <u>58-55</u> SHEET
DATE	TIME		6	TIME
16.801 2-6-01	1 0930	W.L. AFTER DEVEL.	16.37	12-6-06 1 1000
DEPTH DATE	TIME		DEPTH	DATE TIME
DEVEL. 25.	8	AFTER DEVEL.	28.8	WELL DIA. (In) 2 "
MN (FT.) 🛛 📝	2,0'	STANDING WELL VOL	JME	gal.
15'		DRILLING WATER LOS	s;	🤊 gal.
	2-6-06 / DATE /6.80/ 2-6-01 DEPTH DATE	2-6-06 0736 DATE TIME 16.801 2-6-01 0930 DEPTH DATE TIME DEVEL. 25.8 25.8	DATE DATE OF INSTALL. 2-6-66 / 0935 DATE TIME /6.80/ 2-6-66 DEPTH DATE DEPTH DATE DEVEL. 25.8 MN (FT.) / 2.5'	DATE OF INSTALL. 2-2-2-06 2-6-06 / 0930 COMPLETED DEVEL. 2-2-06 DATE TIME COMPLETED DEVEL. 2-6-06 J6.80/ 2-6-01 0930 DATE DATE J6.80/ 2-6-01 0930 W.L. AFTER DEVEL. 16.37 DEPTH DATE TIME DEPTH DEPTH DEVEL. 25.8 AFTER DEVEL. 25.8 MN (FT.) /2.0 STANDING WELL VOLUME

	VOLUME		FIELD PA				
DATE/TIME	1	SPEC COND.	(C)	pH (s.u.)	TURBIDITY (NTU)	REMARKS (DTW, Pumping Rate, etc.)	
	(GALS)	(ms/cm)					
0930	5	0.066	9.6	6.63	999	red/brown in color	
0932	10	0.073	9.5	6.61	9999	1	
0933	15	0.073		6.88	635	clearing	
0910	20	0.079	9,4	6.77	192	7	
0943	.30	0.077	9.7	7.76	218		
6945	35	0.074	2.6	7.16	59		
0 950	37	0.079	10.0	7.23	49		
0152	42	0.079	10.0	7.31	42		
0955	45	0.079	10.0	7.45	.41		
6.956	47	0.080	10.0	7.47	37.	· · · · ·	
6957	48	0.079	10.0	7.46	32		
0958	50	0.079	10.0	7.45	28		
	7		1			······································	
	· · · ·						
	·		1				
	· · · · ·						
	!	(†	†				
				t			
		1				·· ·· ···	
	├─── !		t	t	··· · +		
			+	t			
		t		+	+		
	├ ────┤	50			MOVED (gal.)		

2" DEVELOPMENT METHOD: PVC A pun places at battom water u mont Conto nousla until Me paramilar

NOTES:

G:\FORMS\WELLDEV.XLS

APPENDIX C

SAMPLE COLLECTION FORMS

3	Golder	5
	ASSUCIALE	5

Site	UNIOND	ALE	SHOPPING	CENTER	2	_				Golder	1.10
	_ UNION		/			-					
Project N			53-6388			Meter/Type/Ser	ial #:	422	0156	9	
	RING WELL ID:	_	58-1			Meter Calibrate	d @:				-
	Water Prior to		[ft-bmp]: 2	0.17		Sampling Date/	Time:	02.00	106	1615	
	ing Diameter [i	n]:	2**			Sampler(s):		TANY	ASHARK	O AND FRANK MALINKY	-
	e (purging):		0945			Sampling Devic	e:			FLON TUBING	1
Purging [GRU	NDFOS			Sample Charac	teristics:	ODOR,	CLEAR	SOME BR SUSP. SOLIDS.	1
	ake setting:					PID Measurem	ent of Well			NM	16
	Construction W	-				Analytical Para	neters:	VOCS.	SVOCS, F	PESTICIDES, PCBS METALS,	
	Well Depth [ft-	• •	48.00		- 13				ecury, C		
veatner	Conditions: <u>57</u>	LNNY,	40'S, SLIGHT	BREE	Dissolved	Fe+2 result (fiel	d measure Depth To		Approximate	PPM Observetting	
Time	Temperature	pH	Conductance	Turbidity		Potential	Water	Purged	Purge Rate	Observations (PID readings, sample characteristics,	
		1.	Circle One	it the	101	Note - Indicate				equipment problems, etc.)	
[hh:mm]	1	[std]	[S/m] or [mS/cm]	[ntu]	[mg/l]	[mV] *,®	[ft-bmp]	[liters]	[ml/min]	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	
Cr14:7-	14.75	<u>3,53</u>	0.000	91.6	10.63	2.73	20,20	2	320		
0452	17.28	3,86	6.00	83.2	10.56	254	20.17	3,6	320		
6957	18.36	3,99	6.00	110,	10.56	244	20.17	5.2	320		
1002	19,24	4,06	0,00	111.	10,50	242	20,13	6.8	320		
1007	19,59	4,08	0,00	111.0	10.50	242	20.17	8.4	320		
1215	19.15	4.09	Uioo	111.0	10.57	239	20.17	10	325	sample @ 1015	
	1 1				4						
_											
		_									
				· · · · · · · · · · · · · · · · · · ·					· ·		
				· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·							

Depth to \	UNIO	NDAL 05 Purging	3HOPPING E <u>NEWY0</u> 3-6383 5B-2 [ft-bmp]: 15.			Meter/Type/Ser Meter Calibrate Sampling Date/ Sampler(s):	d @:	(122 ()2.09		Sos Co AND FRANK MALINKY
Start Time	e (purging):		404			Sampling Devic	e:			EFLON TUBING
Purging D	evice:	GRUN	UDFOS			Sample Charac	teristics:			
Pump inta	ke setting:					PID Measureme	ent of Well	Headspac	ce (ppm):	NM
	onstruction W	-				Analytical Parar	neters:	/		STICIDES PCBS, METALS,
	Well Depth [ft-	-bmp]:	491.76	ļ						YANIDE
Weather	Conditions:		Specific		Dissolved	Fe+2 result (fiel Redox	d measure Depth To	ment): Volume	<u>P</u> F	Observations
Time [hh:mm]	Temperature	pH [std]	Conductance <u>Circle One</u> [S/m] or [mS/cm]	Turbidity [ntu]	Oxygen [mg/l]	Potential <u>Note - Indicate</u> <u>if (+) or (-)</u> [mV]	Water [ft-bmp]	Purged	Purge Rate	(PID readings, sample characteristics, equipment problems, etc.)
1420	13.82	7.41	.408	999	8.34	+29	15.96	3.0	400	
1425	14.78	67	,407	254	7.67	+60	15.94	2.0	300	
1430	14.03	6.46	, 412	11.2	7.72-	+ 74	15.97		300	
1435	14.63	130	.427	35.2	7.68	+87	15.94		300	
1440	14.66	6.24	,421	16.4	7,70	+94	15.94		300	
1445	14.64	6.21	,423	12.7	7,69	+100	15.94		300	
1450	14.61	6.19	,422	109	7.67	+101	15.94		300	
1455	14.67	6:19	,424	10.8	7.67	+105	15.94	¢ .	380	
1500	14.68	6.20	424	10,3	7.67	7/04	15.94		300	
_										
<u>Comment</u>	<u>s:</u>					TOF				

and a belgmon

Site	LINIOND	JUE ST	IOPPING CE	NTER						Golder			
Location:	UNION	DALE	, NY			-			- <u>,</u>	Associates			
Project N	umber:	05	3-6388			Meter/Type/Seri	ial #:	(122	0156	39			
MONITOR	ING WELL ID:	SI	33			Meter Calibrate	leter Calibrated @:						
Depth to \	Nater Prior to	Purging	[ft-bmp]: 20 ·2	D		Sampling Date/Time:			9.06	1125			
Well Casi	ng Diameter [i	in]:	2''			Sampler(s):		TAN	A SHIPR	KO AND FRANK MALINKY			
Start Time	e (purging):		1042			Sampling Devic	e:			TEFLONTUBING			
Purging D	evice:	GRU	NDFOS			Sample Charac	teristics:	NOO	DOL, BRO	WN SUSP PATET.			
Pump inta	ake setting:		-			PID Measureme	ent of Well	Headspac	e (ppm):	NM			
As-Built C	construction W	ell Dept/	ı [ft-bmp]:			Analytical Parar	neters:	VOLS	SVOL, M	METALS, PESTICIDES, PCBS			
Sounded	Well Depth [ft-	-bmp]:	31.69			_		MER		YANIDE			
Weather	Conditions:	SUNNY		T BREET		Fe+2 result (fiel				РРМ			
Time	Temperature	pН	Specific Conductance	Turbidity	Dissolved Oxygen	Redox Potential	Depth To Water	Volume Purged	Approximate Purge Rate	Observations (PID readings, sample characteristics,			
		1,	Circle One		10%	Note - Indicate		1000		equipment problems, etc.)			
[hh:mm]	[°C]	[std]	جا۔ [S/m] or [mS/cm]	[ntu]	[mg/l]	<u>if (+) or (-)</u> [mV] ¹	[ft-bmp]	[liters]	[mVmin]				
1044	22.40	6.50	0.000	163	10.65	+ 24	2021	1.0	230				
1049	19.98	6.19	0,000	155	10.98	+ 55	20.21	2.4	VARIABL				
1054	19.98	6.11	0.000	153	10.39	1	20.21	4.8	VARIABL				
1059	20,63	6.05	0.000	104	10.05	+73	20,21	6.5	VARIABLE				
1104	20.90	6.00	0.000	/61	9,69	+80	28.22	9.0	VARIABLE				
1109	20.90	5.96	0.000	105	9.80	+82	20.22	13.0	UMRIMBLE				
1114	21.01	5.96	0.000	166	9.81	+89	20.22	16.5	VARIABLE				
1119	21,04	5.91	0,00	164	9.81	+ 89	20.22	19.0	VARIABLE				
								_					
Comment	<u>s:</u>												
					λ. λ	@ 1125							
				R	ampu					· ·			
					(

Site	UNIONO	ale s	HOPPING CA	NTER						Golder
Location:	UNIC		E, NEW YO	RK						Apportance
Project Nu			<u>63-6388</u>			Meter/Type/Seri	al #:	U22	01560	9
	NG WELL ID:		SB-4			Meter Calibrated	d @:			
-	Vater Prior to		[ft-bmp]: 20	1.14		Sampling Date/	Time:	02.0	9.06	1305
Well Casi	ng Diameter [i		2"			Sampler(s):		TANY	A SHAR	
	e (purging):		208			Sampling Device	e:	GRUNI	DECS T	TEFLON TUBING
Purging D		ERUI	NOFOS			Sample Charact				
	ke setting:					PID Measureme	16 C	100 C 100 C		NM
	onstruction W	•				Analytical Paran	neters:			METALS, PESTICIDES, PCB,
	Vell Depth [ft-		32.8 4 40°F				· ·	MERC		YANIDE
Weather (Conditions:	sunn	Specific		Dissolved	Fe+2 result (field	d measure Depth To	ment): Volume		PPM Observations
Time	Temperature	рН	Conductance	Turbidity	Oxygen	Potential	Water	Purged	Purge Rate	(PID readings, sample characteristics,
		.1	Circle One 31.	and and a second	10%	Note - Indicate				equipment problems, etc.)
[hh:mm]	[°C]	[std]	[S/m] or [mS/cm]	[ntu]	[mg/l]	[mV] ×	[ft-bmp]	[liters]	[ml/min]	
1210	15.90	7.05	0.812	9999	0.0	-2	19:29	1.5	300	
1215	16:52	6.72	0,782	520	0,0	-23	19132	3.0	300	
1220	16,70	6,59	0.781	325	0.0	-31	19.36	4.5	30	
1225	16.81	6.66	0,779	308	0.0	-36	19.38	6.0	30	
1230	16.91	6.66	0.783	195	0,0	-42	19.34	7.5	300	
1235	17.01	10.105	0,796	126	0.0	-45	19:36	9.0	300	
1240	17.07	6.2	0,798	99.8	0,0	-47.	19:36	10,5	300	aunp failure
1245	17.05	6.01	0.791	44.6	0.0	-39	19.36	12.0	300	· · · · · · · · · · · · · · · · · · ·
1250	17.36	6.66	0,779	50,7	0.0	-43	19.39	13.5	300	
1255	17:40	6.6	0.781	48,6	0,0	-44	19.39	15.0	300	
1300	17,41	6.08	0,779	49.2	0,0	- 44	19.10	16.5	300	
Comment	<u>s:</u>								· · · ·	• · · · ·

Site	LINIONDA	LES	HOPPING CE	NTER						Golder		
Location:	UNION	JDALE	F, NEW YOK	?K						Associates		
Project N	umber:	05	3-6388			Meter/Type/Ser	ial #:	<u>U22</u>	0156	39		
	ING WELL ID:		56-5			Meter Calibrate	leter Calibrated @:					
	Water Prior to		[ft-bmp]: 16,49	5		Sampling Date/	mpling Date/Time: 02.09.06 1600					
Well Casi	ng Diameter [ii	n]:	211	<u> </u>		Sampler(s):		TANY	A SHAK	2KO AND FRANK MALINKY		
	e (purging):		1509			Sampling Devic	e:	GRUN	10-05 TE	EFLON TUBING		
Purging D	-	<u>BRUI</u>	NOFOS			Sample Charac	teristics:					
	ake setting:					PID Measureme		-		NM		
As-Built Construction Well Depth [ft-bmp]:						Analytical Parar	neters:			ESTICIDES, PCBS MERCURY,		
	Well Depth [ft-	bmp]:	27.76							ETALS		
Weather (Conditions:		Specific		Dissolved	Fe+2 result (fiel Redox				PPM		
Time	Temperature	рH	Conductance Circle One	Turbidity	Oxygen	Potential Note - Indicate	Depth To Water	Purged	Approximate Purge Rate	Observations (PID readings, sample characteristics, equipment problems, etc.)		
[hh:mm]	[°C]	[std]	[S/m] or [mS/cm]	[ntu]	[mg/l]	<u>if (+) or (-)</u> [mV]	[ft-bmp]	[liters]	[ml/min]			
1515	9.85	6.55		999	9.94	+121	16.57		300			
1520	10,15	630		1025	8,72	+125	16,50	-	300			
1525		6.31	. 228	221	8,80	+122	16,50		300			
1530		6.31	. 228	88.9	8.81	+121	16.50		300			
1535		6.34		50.0	8.86	1121	16:50		300			
1540		6.37	.220	035	8,97	+120	16.50		300	TULBIOITY = 235		
1545		6.41	.218	13,3	9.04	+118	16.50		300			
1550		6.44	1219	12.6	9.11	+/19	165					
1555	11.72	6.44	.218	12.1	9.09	+118	16.5					
Comment	<u>s:</u>						·					

GROUNDWATER LOW FLOW PURGE/SAMPLE FIELD INFORMATION FORM

Site	Union	Aule								Golder		
Location:	Vatur Mu-	- 4								Associates		
Project Nu	umber:	05	636388			Meter/Type/Serial #:						
						Meter Calibrated @: O ? Z 5						
	ING WELL ID:				• •	Sampling Date/		3-2	2-06			
			[ft-bmp]: <u>15,3</u> 9	128.	<u>1/</u>	Sampler(s):	FZ	2				
Well Casi	ng Diameter [i			[2	Sampling Devic	e:	hori	55 0.	22 Grandfas, tetlar tubine		
	e (purging):		255		_	Sample Charac	teristics:			2		
Purging D		2			5.	PID Measureme	ent of Well	Headspac	e (ppm):			
	onstruction W	-		oʻ		Analytical Parar	neters:	14		· · · · · · · · · · · · · · · · · · ·		
Sounded	Well Depth [ft-		28,91									
Weather	Conditions:	50	10'1 40'T	-		Fe+2 result (fiel						
Time	Temperature	pН	Specific 37, Conductance	Turbidity	Dissolved Oxygen	Potential	Water	Purged	Approximate Purge Rate			
	f an eine an suit	たのい	Circle One	102	1020	Note Indicate	S.			equipment problems, etc.)		
[hh:mm]	[°C]	[std]	[S/m] or [rfs/em]	THE REPORTS OF THE PARTY	[mg/l]	Note Indicate , If((+):of(-) (mV)	Iff-bmpl	liters]	[ml/min] ^{[2}	equipment problems, etc.)		
1255	14.44	6.74	0.350		3.02	-27	15.44	Post a create de la company	500-1			
1300	14.66	6.52	0,352		1.90	-13	15.41					
1305	15.71	6.51	0.348		1.43	-17	15.41					
1310	15.80	6.62			1,24	- 34	15.41					
1315	15.84	6.73	0,354	6060	1,00	- 45	15.41					
1320	15,57	6.78	0,357	363,0	0.81	-52	15.41					
1325	16.22	6,80		216.0	0,58	-58	15.41					
1330	16.27	6.84	0,355	250.0	1.10	-61	15,41	-				
1335	16.34	6.84	0.354	164,0	0.69	-62	15.41					
1340	16,26	6.84	0,354	148.0	6.70	- 63.	15,41					
1345	16.22	6.84	0,354	146,0	0,71	-63	15.41					
1350	16,42	6.84	0.353	139.0	0,71	-63	15,41					
		9.1								· · · · · · · · · · · · · · · · · · ·		
Comment	<u>s:</u>		L	180/4	0.76		1	μ				
. 15	2,			AL	.621							
15	a phy time			162.8	2							
'				123	, L							

GROUNDWATER LOW FLOW PURGE/SAMPLE FIELD INFORMATION FORM

Site Valuadale Location: MW-7	Associates						
Project Number: 6536385 Meter/Type/Serial #:							
Meter Calibrated @: 0925							
MONITORING WELL ID:							
Depth to Water Prior to Purging [ft-bmp]: 18,21 / 28,72 Sampler(s): F72							
Well Casing Diameter [in]: 2" / Sampling Device: Grand Fost to	tetles huting						
Start Time (purging): 1720 Sample Characteristics:)						
Purging Device: Cruch For 5 PID Measurement of Well Headspace (ppm):							
As-Built Construction Well Depth [ft-bmp]: Analytical Parameters:							
Sounded Well Depth [ft-bmp]: 28,72 ±10%							
Weather Conditions: closely 35° (Fe+2 result (field measurement):							
Time Temperature pH Specific Dissolved Redox Depth To Volume Approximate Time Temperature pH Conductance Turbidity Oxygen Potential Water Purged Purge Rate	Observations (PID readings, sample characteristics,						
Time Temperature pH Conductance Turbidity Oxygen Potential Water Purged Purge Rate 1 0.1 Circle One 40.2 2.3 10.1	(PID readings, sample characteristics, equipment problems, etc.)						
[hh:mm] 44 (°C) [std] [S/m] or [mS/cm] [ntu] [mg/l]							
1120 14,68 6.70 0.375 - 0.93 -66 18,2/ 500 /	n na na mananananan ana karananan ana karananan ana karananan karananan karanan karanan karanan karanan karana Na na na manananan karananan karanan karanan karanan karanan karanan karanan karanan karanan karanan karana kar						
125 15.18 6.70 0.373 - 0.73 -68 18.21							
1130 16.16 6.72 0.375 - 0.49 -78 18.21							
1/35 16.64 6.74 0.374 686.0 0.30 -87 18.21							
1140 16.51 6.71 0.376 330.0 0.32 -87 18.21							
1145 16.58 6.72 0.369 154.0 0.03 -93 18.21							
1150 16.58 672 0.368 1160 0.00 -94 18.21							
1155 16.66 6.72 0.368 103.0 0.02 -93 18.21							
1200 16.56 6.73 1.368 27.1 0.00 -93 18.21							
1205 16.76 6.72 0.369 100.0 0.00 -92 18.21							
	· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·						
Comments: , , , , , 0.61 19.44							
$\frac{\text{Comments:}}{4.82}$							
127 be 104.4							

-1.1

GROUNDWATER LOW FLOW PURGE/SAMPLE FIELD INFORMATION FORM

Site	Uniono	lale								Golder		
Location: Project Nu	umber:	0	536388			_ Meter/Type/Ser	ial <i>#:<u>/</u>1</i>	toriba	022	Those charges		
MONITOR Depth to V Well Casin Start Time Purging D	ING WELL ID: Water Prior to ng Diameter [i ə (purging): vevice:	//\ Purging in]:	<u>w- ε</u> [ft-bmp]: <u>/8.5</u> 2" <u>107</u>	Grundfe	. <u>87</u>	Meter Calibrated @: 0925 hrs Sampling Date/Time: 3.22-06 / 0903 Sampler(s): Fm Sampling Device: Gundles Sample Characteristics: PID Measurement of Well Headspace (ppm):						
	onstruction W	•	n [ft-bmp]: <u>5</u> 28.9	7		Analytical Parar	neters:					
	Conditions:		0~ V 35°	<u> </u>	(, <u>∽ /0%</u> Fe+2 result (fiel	d measure	ement):				
Time	Temperature	рН †0.1	Specific Conductance <u>Circle One</u> 376 [S/m].or [mS/cm]	A 1.	Dissolved Oxygen	Redox Potential Note If.(+) of.(-)	Depth To Water	Volume Purged	Approximate Purge Rate	(PID readings, sample characteristics, equipment problems, etc.)		
0733	14.16	6,70	0.132		5.27	0. 171	18.44		500~1	l The second se The second se		
0938	14,80	6.75	0.132		5.41	144	18,44		500.			
0943	14.96	6.74	0,132		5.56	129	18,45					
0948	15,02	6.75	0,135	675.0	5,93	121	18.44					
0953	15.12	6.75	0.13.6	457.0	5.77	119	18.42					
0 258	15.04	6.75	0,138	354	5,80	. 117	18,43					
1003	15.05	6.76	0,141	350	6.38	116	18.13					
1008	14.83	6.75	0.139	227	6.12	121	18.73					
1013	[5.18	6.74	0.138	192	6.02	119	18.43		· ·			
1018	15.16	6.75	0.138	189	6.05	117	18.43					
1023	15.17	6.74	0.138	180	6.03	119	18.43					
Comment	<u>s:</u>		0.04 .143 2.35	21.7 249 207.3	1.01	108.9	· 133.			19.2 211.2 17 8.8		
/										Page of		

APPENDIX D

LABORATORY DATA FORMS

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Analyzed: 03/23/06 GC Column: RTX-VMS Instrument ID: VOAMS3.i Lab File ID: ca10282.d Lab Sample No: 718492 Lab Job No: P096

Matrix: WATER Level: LOW Purge Volume: 5.0 ml Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS METHOD 8260B

BromomethaneND5.Vinyl ChlorideND5.ChloroethaneND5.Methylene ChlorideND3.AcetoneND5.Carbon DisulfideND5.1,1-DichloroethaneND2.1,1-DichloroethaneND5.trans-1,2-DichloroetheneND5.ChoroformND5.1,2-DichloroethaneND5.1,2-DichloroethaneND5.1,2-DichloroethaneND5.1,2-DichloroethaneND5.2-ButanoneND5.1,1,1-TrichloroethaneND5.Carbon TetrachlorideND5.BromodichloromethaneND1.1,2-DichloropropaneND1.1,2-DichloropropaneND5.Cris-1,3-DichloropropeneND5.Charsen,3-DichloropropeneND5.Charsen,3-DichloropropeneND5.1,1,2-TrichloroethaneND5.1,1,2-TrichloroethaneND5.0SenzeneND5.0SenzeneND5.0SenzeneND5.0SenzeneND5.0SenzeneND5.0SenzeneND5.0SenzeneND5.0SenzeneND5.0SenzeneND5.0SenzeneND5.0Senze	Parameter	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Chlorobenzene 2.4J 5.0	Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1.1-Dichloroethene trans-1.2-Dichloroethene cis-1.2-Dichloroethene Chloroform 1.2-Dichloroethane 2-Butanone 1.1.1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1.2-Dichloropropane cis-1.3-Dichloropropene Frichloroethene Dibromochloromethane 1.1.2-Trichloroethane Enzene trans-1.3-Dichloropropene Bromoform -Methyl-2-Pentanone Hexanone Cetrachloroethene .1.2.2-Tetrachloroethane Oluene Chlorobenzene Schuleroethane	Units: uq/l ND ND ND ND ND ND ND ND ND ND	
StyleneND5.0Xylene (Total)ND5.0			5.0 5.0

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Analyzed: 03/23/06 GC Column: RTX-VMS Instrument ID: VOAMS3.i Lab File ID: ca10283.d

Lab Sample No: 718493 Lab Job No: P096

Matrix: WATER Level: LOW Purge Volume: 5.0 ml Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS METHOD 8260B

Parameter	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>
Chloromethane	ND	5.0
Bromomethane	ND	5.0
Vinyl Chloride	1.4J	5.0
Chloroethane	7.1	5.0
Methylene Chloride	ND	3.0
Acetone	ND	5.0
Carbon Disulfide	ND	5.0
1,1-Dichloroethene	ND	2.0
1,1-Dichloroethane	1 .7 J	5.0
trans-1,2-Dichloroethene	ND	5.0
cis-1,2-Dichloroethene	2.2J	5.0
Chloroform	ND	5.0
1,2-Dichloroethane	ND	2.0
2-Butanone	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon Tetrachloride	ND	2.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	1. 4	1.0
Dibromochloromethane	ND	5.0
1,1,2-Trichloroethane	ND	3.0
Benzene	0.9J	1.0
trans-1,3-Dichloropropene Bromoform	ND	5.0
	ND	4.0
4-Methyl-2-Pentanone 2-Hexanone	ND	5.0
Tetrachloroethene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	1.0
Toluene	ND	1.0
Chlorobenzene	ND	5.0
Ethylbenzene	ND ND	5.0
Styrene	ND	4.0
Xylene (Total)	ND	5.0
Tymono (rocur)	UD	5.0

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Analyzed: 03/23/06 GC Column: RTX-VMS Instrument ID: VOAMS3.i Lab File ID: ca10284.d Lab Sample No: 718494 Lab Job No: P096

Matrix: WATER Level: LOW Purge Volume: 5.0 ml Dilution Factor: 1.0

VOLATILE ORGANICS - GC/MS METHOD 8260B

Parameter	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene trans-1,2-Dichloroethene cis-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$\begin{array}{c} 011123: \ 00000000000000000000000000000000000$
Styrene Xylene (Total)	ND ND	5.0 5.0

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/25/06 GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s20990.d Lab Sample No: 718492 Lab Job No: P096

Matrix: WATER Level: LOW Sample Volume: 990 ml Extract Final Volume: 2.0 ml Dilution Factor: 1.0

SEMI-VOLATILE ORGANICS - GC/MS METHOD 8270C

Parameter	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Phenol	ND	10
2-Chlorophenol	ND	10
2-Methylphenol	ND	10
4-Methylpheno1	ND	10
2-Nitrophenol	ND	10
2,4-Dimethylphenol	ND	10
2,4-Dichlorophenol	ND	10
4-Chloro-3-methylphenol	ND	10
2,4,6-Trichlorophenol	ND	10
2,4,5-Trichlorophenol	ND	10
2,4-Dinitrophenol	ND	40
4-Nitrophenol	ND	40
4,6-Dinitro-2-methylphenol	ND	40
Pentachlorophenol	ND	40

.

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/25/06 GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s20990.d Lab Sample No: 718492 Lab Job No: P096

Matrix: WATER Level: LOW Sample Volume: 990 ml Extract Final Volume: 2.0 ml Dilution Factor: 1.0

SEMI-VOLATILE ORGANICS - GC/MS METHOD 8270C

Parameter		cal Result s: ug/l	Quantitation Limit <u>Units: uq/l</u>
bis(2-Chloroethyl)ether		۲T)	1 0
1,3-Dichlorobenzene	•	ND	1.0 10
1,4-Dichlorobenzene		ND	
1,2-Dichlorobenzene		ND	10 ·
bis(2-chloroisopropyl)ether		ND	10
N-Nitroso-di-n-propylamine		ND	10
Hexachloroethane		ND	1.0
Nitrobenzene		ND ND	1.0
Isophorone			1.0
bis(2-Chloroethoxy)methane		ND ND	10 10
1,2,4-Trichlorobenzene		ND	1.0
Naphthalene		ND	10
4-Chloroaniline		ND	10
Hexachlorobutadiene		ND	2.0
2-Methylnaphthalene	1		
Hexachlorocyclopentadiene			10 10
2-Chloronaphthalene		ND ND	10
2-Nitroaniline		ND	20
Dimethylphthalate		ND	10
Acenaphthylene		ND	10
2,6-Dinitrotoluene		ND	2.0
3-Nitroaniline		ND	20
Acenaphthene		ND	10
Dibenzofuran		ND	10
2,4-Dinitrotoluene		ND	2.0
Diethylphthalate		ND	10
4-Chlorophenyl-phenylether		ND	10
Fluorene		ND	10
4-Nitroaniline		ND	20
N-Nitrosodiphenylamine		ND	10
4-Bromophenyl-phenylether		ND	10
Hexachlorobenzene		ND	1.0
Phenanthrene		1.9J	10
Anthracene		ND	10

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/25/06 GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s20990.d Lab Sample No: 718492 Lab Job No: P096

Matrix: WATER Level: LOW Sample Volume: 990 ml Extract Final Volume: 2.0 ml Dilution Factor: 1.0

SEMI-VOLATILE ORGANICS - GC/MS METHOD 8270C

Parameter	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Carbazole Di-n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine Benzo(a) anthracene Chrysene bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 10 10 10 20 1.0 10 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1
	110	10

7

P096

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/24/06 GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s20972.d Lab Sample No: 718493 Lab Job No: P096

Matrix: WATER Level: LOW Sample Volume: 990 ml Extract Final Volume: 2.0 ml Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: uq/l</u>
Phenol	ND	10
2-Chlorophenol	ND	10
2-Methylphenol	ND	10
4-Methylphenol	ND	10
2-Nitrophenol	ND	10
2,4-Dimethylphenol	ND	10
2,4-Dichlorophenol	ND	10
4-Chloro-3-methylphenol	ND	10
2,4,6-Trichlorophenol	ND	10
2,4,5-Trichlorophenol	ND	10
2,4-Dinitrophenol	ND	40
4-Nitrophenol	ND	40
4,6-Dinitro-2-methylphenol	ND	40
Pentachlorophenol	ND	40

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/24/06 GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s20972.d Lab Sample No: 718493 Lab Job No: P096

Matrix: WATER Level: LOW Sample Volume: 990 ml Extract Final Volume: 2.0 ml Dilution Factor: 1.0

SEMI-VOLATILE ORGANICS - GC/MS METHOD 8270C

Parameter	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
bis(2-Chloroethyl)ether	ND	1.0
1,3-Dichlorobenzene	ND	10
1,4-Dichlorobenzene	ND	10
1,2-Dichlorobenzene	ND	10
bis(2-chloroisopropyl)ether	ND	10
N-Nitroso-di-n-propylamine	ND	1.0
Hexachloroethane	ND	1.0
Nitrobenzene	ND	1.0
Isophorone	ND	10
bis(2-Chloroethoxy)methane	ND	10
1,2,4-Trichlorobenzene	ND	1.0
Naphthalene	ND	10
4-Chloroaniline	ND	10
Hexachlorobutadiene	ND	2.0
2-Methylnaphthalene	ND	10
Hexachlorocyclopentadiene	ND	10
2-Chloronaphthalene	ND	10
2-Nitroaniline	ND	20
Dimethylphthalate	ND	10
Acenaphthylene	ND	10
2,6-Dinitrotoluene	ND	2.0
3-Nitroaniline	ND	20
Acenaphthene	ND	10
Dibenzofuran	NĎ	10
2,4-Dinitrotoluene	ND	2.0
Diethylphthalate	ND	10
4-Chlorophenyl-phenylether	ND	. 10
Fluorene	ND	10
4-Nitroaniline	ND	20
N-Nitrosodiphenylamine	0.5J	10
4-Bromophenyl-phenylether	ND	10
Hexachlorobenzene	ND	1.0
Phenanthrene	0.3J	10
Anthracene	ND	10

9

P096

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/24/06 GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s20972.d Lab Sample No: 718493 Lab Job No: P096

Matrix: WATER Level: LOW Sample Volume: 990 ml Extract Final Volume: 2.0 ml Dilution Factor: 1.0

SEMI-VOLATILE ORGANICS - GC/MS METHOD 8270C

Parameter	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
Carbazole	ND	10
Di-n-butylphthalate	ND	10
Fluoranthene	ND	10
Pyrene	ND	10
Butylbenzylphthalate	ND	10
3,3 ⁷ -Dichlorobenzidine	ND	20
Benzo (a) anthracene	ND	1.0
Chrysene	ND	10
bis(2-Ethylhexyl)phthalate	ND,	10
Di-n-octylphthalate	ND	10
Benzo(b)fluoranthene	ND	1.0
Benzo(k)fluoranthene	ND	1.0
Benzo(a)pyrene	ND	1.0
Indeno(1,2,3-cd)pyrene	ND	1.0
Dibenz(a,h)anthracene	ND	1.0
Benzo(g,h,i)perylene	ND	10

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/24/06 GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s20973.d Lab Sample No: 718494 Lab Job No: P096

Matrix: WATER Level: LOW Sample Volume: 970 ml Extract Final Volume: 2.0 ml Dilution Factor: 1.0

Parameter	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: uq/l</u>
Phenol	ND	10
2-Chlorophenol	ND	10
2-Methylphenol	ND	10
4-Methylphenol	ND	10
2-Nitrophenol	ND	10
2,4-Dimethylphenol	ND	10
2,4-Dichlorophenol	ND	10
4-Chloro-3-methylphenol	ND	10
2,4,6-Trichlorophenol	ND	10
2,4,5-Trichlorophenol	ND	10
2,4-Dinitrophenol	ND	41
4-Nitrophenol	ND	41
4,6-Dinitro-2-methylphenol	ND	41
Pentachlorophenol	ND	41

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/24/06 GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s20973.d Lab Sample No: 718494 Lab Job No: P096

Matrix: WATER Level: LOW Sample Volume: 970 ml Extract Final Volume: 2.0 ml Dilution Factor: 1.0

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Quantitation Limit <u>Units: ug/l</u>
bis(2-Chloroethyl)ether	ND	1.0
1,3-Dichlorobenzene	ND	10
1,4-Dichlorobenzene	ND	10
1,2-Dichlorobenzene	ND	10
bis(2-chloroisopropyl)ether	ND	10
N-Nitroso-di-n-propylamine	ND	1.0
Hexachloroethane	ND	1.0
Nitrobenzene	ND	1.0
Isophorone	ND	10
bis(2-Chloroethoxy)methane	ND	10
1,2,4-Trichlorobenzene	ND	1.0
Naphthalene	ND	10
4-Chloroaniline	ND	10
Hexachlorobutadiene	ND	2.1
2-Methylnaphthalene	ND	10
Hexachlorocyclopentadiene	ND	10
2-Chloronaphthalene	ND	10
2-Nitroaniline	ND	21
Dimethylphthalate	ND	10
Acenaphthylene	ND	10
2,6-Dinitrotoluene	ND	2.1
3-Nitroaniline	ND	21
Acenaphthene	ND	10
Dibenzofuran	ND	10
2,4-Dinitrotoluene	ND	2,1
Diethylphthalate	ND	10
4-Chlorophenyl-phenylether	ND	1.0
Fluorene	ND	10
4-Nitroaniline	ND	21
N-Nitrosodiphenylamine	ND	10
4-Bromophenyl-phenylether	ND	10
Hexachlorobenzene	ND	1.0
Phenanthrene	1.7J	10
Anthracene	ND	10

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/24/06 GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s20973.d Lab Sample No: 718494 Lab Job No: P096

Matrix: WATER Level: LOW Sample Volume: 970 ml Extract Final Volume: 2.0 ml Dilution Factor: 1.0

Parameter	Analytical Result <u>Units: ug/l</u>	Quantitation Limit <u>Units: uq/1</u>
Carbazole Di-n-butylphthalate Fluoranthene Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 21\\ 1.0\\ 10\\ 10\\ 10\\ 10\\ 1.0\\ 1.0\\ 1.0\\ 1$
peuro (3, 11, 1) ber Arette	ND	10

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/24/06 GC Front Column: StxCLP2 GC Rear Column: StxCLP1 Instrument ID: PESTGC4.i Lab Sample ID: **718492** Lab Job No: P096

Matrix: WATER Sample Volume: 990 ml Extract Final Volume: 5.0 ml Dilution Factor: 1.0 Front File ID: wf660487.d Rear File ID: wr660487.d

ORGANOCHLORINE PESTICIDES - GC/ECD METHOD 8081A

		Quantitation
	Analytical Results	Limit
Parameter	<u>Units: ug/l</u>	<u>Units; ug/l Column</u>
Aldrin	ND	0.050 R
alpha-BHC	ND	0.050 R
beta-BHC	ND	0.050 R
delta-BHC	ND	0.050 R
gamma-BHC (Lindane)	ND	0.050 R
Chlordane	ND	0,50 R
4,4'-DDD	ND	0.050 R
4,4'-DDE	ND	0.050 R
4,4'-DDT	ND	0.050 R
Dieldrin	ND	0.050 R
Endosulfan I	ND	0.050 R
Endosulfan II	ND	0.050 R
Endosulfan sulfate	ND	0.050 R
Endrin	ND	0.050 R
Endrin aldehyde	ND	0.050 R
Endrin ketone	ND	0.050 R
Heptachlor	ND	0.050 R
Heptachlor epoxide	ND	0.050 R
Methoxychlor	ND	0.050 R
Toxaphene	ND	0.50 R
· · · ·		· · · · ·

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/24/06 GC Front Column: StxCLP2 GC Rear Column: StxCLP1 Instrument ID: FESTGC4.i Lab Sample ID: **718493** Lab Job No: P096

Matrix: WATER Sample Volume: 990 ml Extract Final Volume: 5.0 ml Dilution Factor: 1.0 Front File ID: wf660488.d Rear File ID: wr660488.d

ORGANOCHLORINE PESTICIDES - GC/ECD METHOD 8081A

		Quantitation	
	Analytical Results	Limit	
Parameter	<u>Units: ug/l</u>	<u>Units: ug/l</u>	<u>Column</u>
Aldrin	ND	0.050	R
alpha-BHC	ND	0.050	R
beta-BHC	ND	0.050	R
delta-BHC	ND	0.050	R
gamma-BHC (Lindane)	ND	0,050	R
Chlordane	ND	0,50	R
4,4'-DDD	ND	0.050	R
4,4'-DDE	ND	0.050	R
4,4'-DDT	ND	0.050	R
Dieldrin	ND	0.050	R
Endosúlfan I	ND	0.050	R
Endosulfan II	ND	0.050	R
Endosulfan sulfate	ND	0.050	R
Endrin	ND	0.050	R
Endrin aldehyde	NĎ	0.050	R
Endrin ketone	ND	0.050	R
Heptachlor	ND	0.050	R
Heptachlor epoxide	ND	0.050	R
Methoxychlor	ND	0.050	R
Toxaphene	ND	0.50	R

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/24/06 GC Front Column: StxCLP2 GC Rear Column: StxCLP1 Instrument ID: PESTGC4.i Lab Sample ID: 718494 Lab Job No: P096

Matrix: WATER Sample Volume: 970 ml Extract Final Volume: 5.0 ml Dilution Factor: 1.0 Front File ID: wf660489.d Rear File ID: wr660489.d

ORGANOCHLORINE PESTICIDES - GC/ECD METHOD 8081A

Parameter	Analytical Results <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u>	<u>Column</u>
Aldrin	ND	0.052	R
alpha-BHC	ND	0.052	R
beta-BHC	ND	0.052	R
delta-BHC	ND	0.052	R
gamma-BHC (Lindane)	ND	0.052	R
Chlordane	ND	0.52	R
4,4'-DDD	ND	0.052	R
4,4'-DDE	ND	0.052	R
4,4'-DDT	ND	0.052	R
Dieldrin	NĎ	0.052	R
Endosulfan I	ND	0,052	R
Endosulfan II	ND	0.052	R
Endosulfan sulfate	ND	0.052	R
Endrin	ND	0.052	R
Endrin aldehyde	ND	0.052	R
Endrin ketone	NĎ	0.052	R
Heptachlor	ND	0.052	R
Heptachlor epoxide	ND	0.052	R
Methoxychlor	ND	0.052	R
Toxaphene	ND	0.52	R

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/23/06 GC Front Column: StxCLP2 GC Rear Column: StxCLP1 Instrument ID: PESTGC9.i Lab Sample ID: 718492 Lab Job No: P096

Matrix: WATER Sample Volume: 990 ml Extract Final Volume: 5.0 ml Dilution Factor: 1.0 Front File ID: vf404362.d Rear File ID: vr404362.d

ORGANOCHLORINE PCBs - GC/ECD METHOD 8082

		Quantitation
	Analytical Results	Limit
Parameter	<u>Units: uq/l</u>	<u>Units: ug/l Column</u>
Aroclor-1016	ND	0.50 R
Aroclor-1221	ND	0.50 R
Aroclor-1232	ND	0.50 R
Aroclor-1242	ND	0.50 R
Aroclor-1248	ND	0,50 R
Aroclor-1254	ND	0.50 R
Aroclor-1260	ND	0.50 R
Aroclor-1262	ND	0.50 R
Aroclor-1268	ND	0.50 R

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/23/06 GC Front Column: StxCLP2 GC Rear Column: StxCLP1 Instrument ID: PESTGC9.1

>

Lab Sample ID: **718493** Lab Job No: P096

Matrix: WATER Sample Volume: 990 ml Extract Final Volume: 5.0 ml Dilution Factor: 1.0 Front File ID: vf404363.d Rear File ID: vr404363.d

ORGANOCHLORINE PCBs - GC/ECD METHOD 8082

Parameter	Analytical Results <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u> <u>Column</u>
Aroclor-1016	ND	0.50 R
Aroclor-1221	ND	0.50 R
Aroclor-1232	ND	0.50 R
Aroclor-1242	ND	0.50 R
Aroclor-1248	ND	050 R
Aroclor-1254	ND	0.50 R
Aroclor-1260	ND	0.50 R
Aroclor-1262	ND	0.50 R
Aroclor-1268	ND	0.50 R

Date Sampled: 03/22/06 Date Received: 03/22/06 Date Extracted: 03/23/06 Date Analyzed: 03/23/06 GC Front Column: StxCLP2 GC Rear Column: StxCLP1 Instrument ID: PESTGC9.i Lab Sample ID: 718494 Lab Job No: P096

Matrix: WATER Sample Volume: 970 ml Extract Final Volume: 5.0 ml Dilution Factor: 1.0 Front File ID: vf404364.d Rear File ID: vr404364.d

ORGANOCHLORINE PCBs - GC/ECD METHOD 8082

Parameter	Analytical Results <u>Units: ug/l</u>	Quantitation Limit <u>Units: ug/l</u> <u>Column</u>
Aroclor-1016	ND	0.52 R
Aroclor-1221	ND	0.52 R
Aroclor-1232	ND	0.52 R
Aroclor-1242	ND	0.52 R
Aroclor-1248	ND	0.52 R
Aroclor-1254	ND	0.52 R
Aroclor-1260	ND	0.52 R
Aroclor-1262	ND	0.52 R
Aroclor-1268	ND	0.52 R

FORM 1 CLIENT SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET SB-1 Method: 8260B Lab Name: COMPUCHEM Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9089 Matrix: (soil/water) WATER Lab Sample ID: 908901 5 (g/ml) ML Sample wt/vol: Lab File ID: 908901B59 Level: (low/med) LOW Date Received: 02/10/06 % Moisture: not dec. _____ Date Analyzed: 02/11/06 GC Column: ZB-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: _____ (uL Soil Extract Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

74-87-3Chlorometha 75-01-4Vinyl Chlor 74-83-9Bromomethar 75-00-3Chloroethar 107-02-8Chloroethar 107-02-8Chloroethar 107-02-8	ride 5.0 ne 5.0 ne 5.0 roethene 5.0 Chloride 5.0 ile 50 Dichloroethene 5.0 roethane 5.0 roethane 5.0 nachloride 5.0 roethane 5.0 roethane 5.0 roethane 5.0 roethane 5.0 roethane 5.0 roethane 5.0 ropropane 5.0 oromethane 5.0 hyl vinyl ether 5.0 Dichloropropene 5.0 hloroethane 5.0 oromethane 5.0 ne 37 ne 5.0	
--	--	--

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS CLIENT SAMPLE NO.

SB-1

Lab Name: COMPUCHEM	Contract: 8260B	
Lab Code: LIBRTY Case No.:	SAS No.: SDG	No.: 9089
Matrix: (soil/water) WATER	Lab Sample ID:	908901
Sample wt/vol: 5 (g/ml) ML	Lab File ID:	908901B59
Level: (low/med) LOW	Date Received	02/10/06
% Moisture: not dec.	Date Analyzed	: 02/11/06
GC Column: ZB-624 ID: 0.32 (mm)	Dilution Facto	pr: 1.0
Soil Extract Volume:(uL)	Soil Aliquot V	/olume:(uL
Number TICs found: 4	CONCENTRATION UNITS (ug/L or ug/Kg) ug/l	

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 103-65-1 4.	UNKNOWN UNKNOWN BENZENE, PROPYL- SUBSTITUTED BENZENE	7.87 9.35 13.40 14.47	37	J J NJ J
5. 6. 7. 8.				······
10 11 12				
13. 14. 15. 16. 17		······································		
18 19				
20. 21. 22. 23.				
24. 25. 26. 27.				
28 29 30				

FORM I VOA-TIC

_

CLIENT SAMPLE NO. FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET SB-2 Method: 8260B Lab Name: COMPUCHEM SAS No.: SDG No.: 9089 Lab Code: LIBRTY Case No.: Lab Sample ID: 908902 Matrix: (soil/water) WATER Lab File ID: 908902B59 5 (q/ml) MLSample wt/vol: Date Received: 02/10/06 Level: (low/med) LÓW Date Analyzed: 02/11/06 % Moisture: not dec. Dilution Factor: 1.0 GC Column: ZB-624 ID: 0.32 (mm) Soil Aliquot Volume: (uL Soil Extract Volume: ____(uL) CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) UG/L 0 CAS NO. 74-87-3-----Chloromethane 5.0 U 75-01-4-----Vinyl Chloride 74-83-9----Bromomethane 5.0 U 5.0 U 75-00-3-----Chloroethane 5.0 U 50 U 107-02-8----Acrolein 5.0 U 5.0 U 75-35-4-----1,1-Dichloroethene 75-09-2-----Methylene Chloride 50 U 107-13-1-----Acrylonitrile 156-60-5-----trans-1,2-Dichloroethene 75-34-3-----1,1-Dichloroethane 5.0 U 5.0 U

75-34-3		J.U	
67-66-3	Chloroform	2.1	Ĵ
71-55-6	1,1,1-Trichloroethane	5.0	-
56-23-5	Carbon Tetrachloride	5.0	
71-43-2	Benzene	5.0	-
107-06-2	1,2-Dichloroethane	5.0	-
79-01-6	Trichloroethene	5.0	-
78-87-5	1,2-Dichloropropane	5.0	
75-27-4	Bromodichloromethane	5.0	
110-75-8	2-chloroethyl vinyl ether	5.0	
10061-01-5	cis-1,3-Dichloropropene	5.0	
108-88-3	Toluene	5.0	
	trans-1,3-Dichloropropene	5.0	-
79-00-5	1,1,2-Trichloroethane	5.0	
127-18-4	Tetrachloroethene	5.0	1
124-48-1	Dibromochloromethane	5.0	-
108-90-7	Chlorobenzene	5.0	-
100-41-4	Ethylbenzene	5.0	
75-25-2	Bromoform	5.0	_
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
		1	1

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SB-2 Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9089 Lab Sample ID: 908902

Lab File ID: 908902B59

Date Received: 02/10/06

Date Analyzed: 02/11/06

Dilution Factor: 1.0

Soil Aliquot Volume: _____(uL

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Contract: 8260B

Number TICs found: 0

Lab Name: COMPUCHEM

Matrix: (soil/water) WATER

Level: (low/med) LOW

% Moisture: not dec.

GC Column: ZB-624 ID: 0.32 (mm)

Soil Extract Volume:_____(uL)

Sample wt/vol: 5 (g/ml) ML

 \mathbf{RT} COMPOUND NAME EST. CONC. 0 CAS NUMBER ==== 1. 2.____ .3..___ 4.___ 6.___ 7.__ 8._ 9.___ 10.____ 11.____ 12.___ 13. 14.___ 15. 16.____ 17. 18. 19. 20. 21. 22. 23. 24. 25.____ 26. 27. 28. 29. 30.

FORM I VOA-TIC

FORM 1

_

CLIENT SAMPLE NO.

VOLATII	FORM 1 LE ORGANICS ANALY	SIS DATA SHEET		I SAMPUL	NO.
				SB-3	
Lab Name: COMPUCHEN	1	Method: 8260E	з І]
Lab Code: LIBRTY	Case No.:	SAS No.:	SDG No.	: 9089	
Matrix: (soil/water	C) WATER	Lab Sa	ample ID: 90	8903	
Sample wt/vol:	5 (g/ml) M	IL Lab Fi	ile ID: 90	8903B59	
Level: (low/med)	LOW	Date F	Received: 02	/10/06	
% Moisture: not dec	c	Date A	Analyzed: 02	/11/06	
GC Column: ZB-624	ID: 0.32 (mm)	Diluti	ion Factor:	1.0	
Soil Extract Volume	e:(uL)	Soil A	Aliquot Volu	me:	(uL
CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug/		Q	
$\begin{array}{c} 75 - 01 - 4 \\ 74 - 83 - 9 \\ 75 - 00 - 3 \\ 107 - 02 - 8 \\ 75 - 35 - 4 \\ 75 - 35 - 4 \\ 107 - 13 - 1 \\ 156 - 60 - 5 \\ 75 - 34 - 3 \\ 67 - 66 - 3 \\ 71 - 55 - 6 \\ 56 - 23 - 5 \\ 71 - 43 - 2 \\ 107 - 06 - 2 \\ 79 - 01 - 6 \\ 79 - 01 - 6 \\ 79 - 01 - 6 \\ 78 - 87 - 5 \\ 75 - 27 - 4 \\ 110 - 75 - 8 \\ 100 - 1 - 5 - \\ 108 - 88 - 3 \\ 100 - 1 - 5 - \\ 108 - 88 - 3 \\ 127 - 18 - 4 \\ 124 - 48 - 1 \\ 108 - 90 - 7 \\ 100 - 41 - 4 \\ 75 - 25 - 2 \end{array}$	Methylene Ch Acrylonitril	de	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.0 U .0 U .0 U .0 U .0 U .0 U .0 U .0 U	

FORM I VOA

FORM 1

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SB-3

Lab Name: COMPUCHEM	Contract: 8260B
Lab Code: LIBRTY Case No.:	SAS No.: SDG No.: 9089
Matrix: (soil/water) WATER	Lab Sample ID: 908903
Sample wt/vol: 5 (g/ml) ML	Lab File ID: 908903B59
Level: (low/med) LOW	Date Received: 02/10/06
% Moisture: not dec.	Date Analyzed: 02/11/06
GC Column: ZB-624 ID: 0.32 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
Number TICs found: 10	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Numb

2. BRANCHED ALKANE	2.68 110 NJ 3.00 200 J
4. 95-63-6 BENZENE, 1,2,4-TRIMETHYL- 1	3.38 180 NJ 3.87 480 NJ 4.04 130 J 4.47 220 J 4.73 120 NJ 4.80 130 J 5.18 110 NJ

FORM I VOA-TIC

CLIENT SAMPLE NO. FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET SB-4 Method: 8260B Lab Name: COMPUCHEM SAS No.: SDG No.: 9089 Case No.: Lab Code: LIBRTY Lab Sample ID: 908904 Matrix: (soil/water) WATER Sample wt/vol: 5 (g/ml) ML Lab File ID: 908904B59 Date Received: 02/10/06 Level: (low/med) LOW % Moisture: not dec. Date Analyzed: 02/11/06 ID: 0.32 (mm) Dilution Factor: 1.0 GC Column: ZB-624 Soil Aliquot Volume: (uL Soil Extract Volume: _____(uL) CONCENTRATION UNITS: 0 CAS NO. COMPOUND (uq/L or uq/Kq) UG/L 74-87-3----Chloromethane 5.0 U 75-01-4-----Vinyl Chloride 5.0 U 74-83-9----Bromomethane 5.0 U 75-00-3----Chloroethane 87 50 ប 107-02-8-----Acrolein 5.0 0 75-35-4-----1,1-Dichloroethene 75-09-2-----Methylene Chloride 5.0 U 107-13-1----Acrylonitrile 50 U 5.0 U 156-60-5-----trans-1,2-Dichloroethene 75-34-3-----1,1-Dichloroethane_____ 4.6 J 5.0 U 5.0 U 71-55-6-----1,1,1-Trichloroethane 5.0 U 56-23-5-----Carbon Tetrachloride 71-43-2----Benzene 27 107-06-2-----1,2-Dichloroethane 79-01-6-----Trichloroethene 1.8 J 5.0 U 5.0 U 5.0 U 78-87-5-----1,2-Dichloropropane 75-27-4----Bromodichloromethane 5.0 U 110-75-8-----2-chloroethyl vinyl ether 5.0 U 10061-01-5----cis-1,3-Dichloropropene 108-88-3-----Toluene 10061-02-6-----Toluene 79-00-5-----1,1,2-Trichloropropene 127-18-4-----Tetrachloroethene 140 5.0 U 5.0 U

FORM I VOA

124-48-1----Dibromochloromethane

79-34-5-----1,1,2,2-Tetrachloroethane

108-90-7-----Chlorobenzene

100-41-4----Ethylbenzene

75-25-2----Bromoform

5.0 U 5.0 U

5.0 U 5.0 U

J

2.7

FORM 1

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SB-4

Lab Name: COMPUCHEM	Contract: 8260B
Lab Code: LIBRTY Case No.:	SAS No.: SDG No.: 9089
Matrix: (soil/water) WATER	Lab Sample ID: 908904
Sample wt/vol: 5 (g/ml) ML	Lab File ID: 908904B59
Level: (low/med) LOW	Date Received: 02/10/06
% Moisture: not dec.	Date Analyzed: 02/11/06
GC Column: ZB-624 ID: 0.32 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
Number TICs found: 10	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

COMPOUND NAME RΤ EST. CONC. 0 CAS NUMBER ______ _____ ===== _____ 1. 95-47-6 BENZENE, 1,2-DIMETHYL-12.29 460 NJ 76 NJ BENZENE, 1,2-DIMETHYL-12.70 2. 95-47-6 BENZENE, (1-METHYLETHYL)-BENZENE, PROPYL-44 NJ 13.01 3. 98-82-8 13.39 53 NJ 4. 103-65-1 BENZENE, 1,2,4-TRIMETHYL-18 NJ 5. 95-63-6 13.45 BENZENE, 1,3,5-TRIMETHYL-23 NJ 13.52 6. 108-67-8 BENZENE, 1-ETHYL-2-METHYL-BENZENE, 1,2,3-TRIMETHYL-BENZENE, 1-ETHENYL-4-METHYL-BENZENE, 1-METHYL-4-(1-METHY 13.73 24 NJ 7. 611-14-3 74 NJ 8. 526-73-8 13.87 9. 622-97-9 10. 99-87-6 14.47 62 NJ 14.80 17 NJ 11.___ 12. 13. 14. 15. 16.__ 17.____ 18.__ 19.__ 20. 21._ 22._ 23.___ 24._ 25._ 26._ 27._ 28. 29._ 30.__

FORM I VOA-TIC

CLIENT SAMPLE NO. FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET SB-5 Method: 8260B Lab Name: COMPUCHEM SAS No.: SDG No.: 9089 Lab Code: LIBRTY Case No.: Lab Sample ID: 908905 Matrix: (soil/water) WATER 5 (g/ml) ML Lab File ID: 908905B59 Sample wt/vol: Date Received: 02/10/06 Level: (low/med) rom% Moisture: not dec. Date Analyzed: 02/11/06 Dilution Factor: 1.0 GC Column: ZB-624 ID: 0.32 (mm) Soil Aliquot Volume: (uL Soil Extract Volume: ____(uL) CONCENTRATION UNITS: 0 CAS NO. COMPOUND (uq/L or uq/Kq) UG/L74-87-3----Chloromethane 5.0 U 75-01-4-----Vinyl Chloride 5.0 U 5.0 U 74-83-9----Bromomethane 75-00-3-----Chloroethane 5.0 U 107-02-8-----Acrolein 50 U 75-35-4-----1,1-Dichloroethene 5.0 U 75-09-2-----Methylene Chloride 5.0 U 107-13-1----Acrylonitrile 50 U 156-60-5----trans-1,2-Dichloroethene 5.0 U 75-34-3-----1,1-Dichloroethane_____ 67-66-3-----Chloroform_____ 5.0 U 5.0 U 5.0 U 71-55-6------1,1,1-Trichloroethane 5.0 U 56-23-5-----Carbon Tetrachloride 5.0 U 71-43-2----Benzene 5.0 U 107-06-2-----1,2-Dichloroethane_ 79-01-6-----Trichloroethene____ 5.0 U 5.0 U 5.0 U 5.0 U 78-87-5-----1,2-Dichloropropane 75-27-4-----Bromodichloromethane 110-75-8-----2-chloroethyl vinyl ether 5.0 U 10061-01-5----cis-1,3-Dichloropropene 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene_ 79-00-5-----1,1,2-Trichloroethane____ 5.0 U 5.0 U 5.0 U 127-18-4-----Tetrachloroethene 5.0 U 124-48-1----Dibromochloromethane 5.0 U 108-90-7-----Chlorobenzene 5,0 U 5.0 U 100-41-4----Ethylbenzene 5.0 U 5.0 U 75-25-2----Bromoform 79-34-5-----1,1,2,2-Tetrachloroethane

FORM I VOA

VOLATILE	FORM 1 ORGANICS ANALYSI:	-	LIENT SAMPLE NO.	
TENT	ATIVELY IDENTIFIE	D COMPOUNDS	SB-5	
Lab Name: COMPUCHEM	(Contract: 8260B		
Lab Code: LIBRTY	Case No.:	SAS No.: SDG	G No.: 9089	
Matrix: (soil/water)	WATER	Lab Sample II	0: 908905	
Sample wt/vol:	5 (g/ml) ML	Lab File ID:	908905B59	
Level: (low/med)	LOŴ	Date Received	d: 02/10/06	
% Moisture: not dec.		Date Analyzed	l: 02/11/06	
GC Column: ZB-624	ID: 0.32 (mm)	Dilution Fact	cor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:(u	ιL

Number TICs found: 0

ł .

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME		EST. CONC.	Q
		== ===========		
1				
Ζ.				
3				·
4		· · · · · · · · · · · · · · · · ·		
5				
U .			· .	
			· · ·	
8			~~~~	<u> </u>
9.				
10				
11	· <u>· · · · · · · · · · · · · · · · · · </u>			
L T D •				
_J.				
I 10.				
1 1 / .				
				·
1 1 2 • 1				
				<u></u>
		·	·	
22.				
43.			ļ	
24.				
25				
26				
27.				
20.		·		
23.				
30.				

FORM I VOA-TIC

CLIENT SAMPLE NO.

Lab Name: COMPUCHEM	Method: 8	270C	SB-1
Lab Code: LIBRTY Cas	se No.: SAS No.:	SDG	No.: 9089
Matrix: (soil/water) WA	ATER	Lab Sample ID:	908901
Sample wt/vol: 50	00 (g/mL) ML	Lab File ID:	908901A64
Level: (low/med) LC	OW	Date Received:	02/10/06
% Moisture: de	ecanted: (Y/N)	Date Extracted	:02/13/06
Concentrated Extract Vo	olume: 500(uL)	Date Analyzed:	02/14/06
Injection Volume: 1	1.0(uL)	Dilution Facto	r: 1.0
GPC Cleanup: (Y/N) N	pH:		

CAS NO.

!

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

		·
62-75-9N-Nitrosodimethylamine	10	U
108-95-2Phenol	10	Ŭ
111-44-4Bis (2-chloroethyl) ether	10	Ŭ
95-57-82-Chlorophenol	10	Ŭ.
541-73-11,3-Dichlorobenzene	10	Ŭ
106-46-71,4-Dichlorobenzene	1.0	Ι υ Ι
95-50-11,2-Dichlorobenzene	10	U I
108-60-12,2'-oxybis(1-Chloropropane)	10	U
621-64-7N-Nitroso-di-N-propylamine	10	U
67-72-1Hexachloroethane	10	υ
98-95-3Nitrobenzene	10	Ŭ
78-59-1Isophorone	1.0	υ
88-75-52-Nitrophenol	1.0	UUUUUUU
105-67-92,4-Dimethylphenol	10	Ŭ
111-91-1Bis (2-chloroethoxy) methane	10	UUUUUUU
120-83-22,4-Dichlorophenol	10	Ŭ I
120-82-11,2,4-Trichlorobenzene	10	U I
91-20-3Naphthalene	10	Ŭ
87-68-3Hexachlorobutadiene	1.0	Ŭ
59-50-74-Chloro-3-methylphenol	10	Ŭ
77-47-4Hexachlorocyclopentadiene	10	Ū
88-06-22,4,6-Trichlorophenol	10	U
91-58-72-Chloronaphthalene	1.0	Ŭ
131-11-3Dimethylphthalate	10	Ū
606-20-22,6-Dinitrotoluene	10	Ŭ
208-96-8Acenaphthylene	10	Ū
83-32-9Acenaphthene	3.4	Ĵ
51-28-52,4-Dinitrophenol	20	Ũ
100-02-74-Nitrophenol	20	Ū
121-14-22,4-Dinitrotoluene	10	U
84-66-2Diethylphthalate	10	U
7005-72-34-Chlorophenyl-phenylether	1.0	U
86-73-7Fluorene	4.2	J
		-
FORM I SV	······································	' <u></u>

8270C

CLIENT SAMPLE NO.

1-----

Lab Name: COMPUCHEM	Method	a: 8270C	SB-1
Lab Code: LIBRTY (Case No.: SAS N	No.: SDG	No.: 9089
Matrix: (soil/water)	WATER	Lab Sample ID:	908901
Sample wt/vol:	500 (g/mL) ML	Lab File ID:	908901A64
Level: (low/med)	LOW	Date Received:	: 02/10/06
% Moisture:	decanted: (Y/N)	Date Extracted	1:02/13/06
Concentrated Extract	Volume: 500(uL)	Date Analyzed:	: 02/14/06
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:	,	
	(O)		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

		·····
534-52-14,6-Dinitro-2-methylphenol	20	U
86-30-6N-Nitrosodiphenylamine (1)	2.4	J
122-66-71,2-Diphenylhydrazine	10	Ū
101-55-34-Bromophenyl-phenylether	10	Ū
118-74-1Hexachlorobenzene	10	Ū
87-86-5Pentachlorophenol	20	Ū
85-01-8Phenanthrene	9.4	J
120-12-7Anthracene	1.4	J
84-74-2Di-n-butylphthalate	10	Ŭ
206-44-0Fluoranthene	10	Ŭ
92-87-5Benzidine	20	U
129-00-0Pyrene	10	U
85-68-7Butylbenzylphthalate	10	U
91-94-13,3'-Dichlorobenzidine	10	U
117-81-7bis (2-ethylhexyl) Phthalate	5.7	J
56-55-3Benzo (a) anthracene	10	Ŭ
218-01-9Chrysene	10	U
117-84-0Di-n-octylphthalate	10	Ū
205-99-2Benzo (b) fluoranthene	10	Ŭ
207-08-9Benzo(k) fluoranthene	10	U
50-32-8Benzo (a) pyrene	10	U
193-39-5Indeno (1, 2, 3-cd) pyrene	10	U
53-70-3Dibenzo(a,h)anthracene	10	U
191-24-2Benzo(q,h,i)perylene	10	U
191-24-2Benzo(g, n, 1) peryrene	. 10	
		I

(1) - Cannot be separated from Diphenylamine

COMPOUND

CAS NO.

FORM I SV

8270C

FORM 1

CLIENT SAMPLE NO.

	FUI	≺lat T				
SEMIVOLATILE	ORGANI	CS AN	ALYSI	S :	DATA	SHEET
TENTATI	IVELY II	DENTI	FIED	CO	MPOUN	IDS

SB-1	

Lab Name: COMPUCHEMMethod: 8270CLab Code: LIBRTYCase No.:Matrix: (soil/water)WATERMatrix: (soil/water)WATERSample wt/vol:500 (g/mL)Sample wt/vol:500 (g/mL)Level: (low/med)LOWMoisture:decanted: (Y/N)Date% Moisture:decanted: (Y/N)DateConcentrated Extract Volume:500 (uL)Injection Volume:1.0 (uL)GPC Cleanup:(Y/N)NpH:

SDG No.: 9089

Lab Sample ID: 908901

Lab File ID: 908901A64

Date Received: 02/10/06

Date Extracted:02/13/06

Date Analyzed: 02/14/06

Dilution Factor: 1.0

Number TICs found: 8

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 108-90-7 3. 4. 5. 6.	UNKNOWN BENZENE, CHLORO- UNKNOWN UNKNOWN UNKNOWN UNKNOWN	====== 3.09 3.18 6.16 6.52 7.05 13.71	58 10 7.4 7.5 4.4 28	NJ J J J
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
29 30	EORM I SV-TIC			

FORM I SV-TIC

COMPOUND

CAS NO.

CLIENT SAMPLE NO.

|-

Lab Name: COMPUCHEM	Method:	8270C	SB-2
Lab Code: LIBRTY (Case No.: SAS No.	: SDG	No.: 9089
Matrix: (soil/water)	WATER	Lab Sample ID:	908902
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	908902A64
Level: (low/med)	LOW	Date Received:	02/10/06
% Moisture:	decanted: (Y/N)	Date Extracted	d:02/13/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	: 02/14/06
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

62-75-9	N-Nitrosodimethylamine	10	U
108-95-2		10	U
	Bis(2-chloroethyl)ether	10	U
	2-Chlorophenol	10	υ
	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
	2,2'-oxybis(1-Chloropropane)	10	Ū
621-64-7	N-Nitroso-di-N-propylamine	10	Ū
	Hexachloroethane	10	Ū
	Nitrobenzene	10	Ū
	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	Ū
105-67-9	2,4-Dimethylphenol	10	Ū
111-91-1	Bis(2-chloroethoxy)methane	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ū
91-20-3	Naphthalene	10	Ū
87-68-3	Hexachlorobutadiene	10	Ū
59-50-7	4-Chloro-3-methylphenol	10	Ū
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ū
91-58-7	2-Chloronaphthalene	10	Ū
131-11-3	Dimethylphthalate	10	Ū
	2,6-Dinitrotoluene	10	U
	Acenaphthylene	10	U
	Acenaphthene	10	U
	2,4-Dinitrophenol	20	U
100-02-7	4-Nitrophenol	20	ט
	2,4-Dinitrotoluene	10	Ū
	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
	Fluorene	10	Ū

FORM I SV

CLIENT SAMPLE NO.

1

		- J 00700	SB-2
Lab Name: COMPUCHEM	Metr	nod: 8270C	
Lab Code: LIBRTY (Case No.: SAS	S No.: SDG	No.: 9089
Matrix: (soil/water)	WATER	Lab Sample ID:	908902
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	908902A64
Level: (low/med)	LOW	Date Received:	: 02/10/06
<pre>% Moisture:</pre>	decanted: (Y/N)	Date Extracted	l:02/13/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	: 02/14/06
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.		CONCENTRATION UNITS (ug/L or ug/Kg) UG/1	

		I
534-52-14,6-Dinitro-2-methylphenol_ 86-30-6N-Nitrosodiphenylamine_(1) 122-66-71,2-Diphenylhydrazine 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene	20 10 10 10 10 20 10	บ บ บ บ บ บ บ
120-12-7Anthracene	10	U
84-74-2Di-n-butylphthalate	10	U
206-44-0Fluoranthene	10	U
92-87-5Benzidine	20	U
129-00-0Pyrene	10	U
85-68-7Butylbenzylphthalate	10	U
91-94-13,3 ¹ -Dichlorobenzidine	10	U
117-81-7bis(2-ethylhexyl)Phthalate	4.6	J
56-55-3Benzo(a)anthracene	. 10	ļυ
218-01-9Chrysene	10	U
117-84-0Di-n-octylphthalate	10	U
205-99-2Benzo(b)fluoranthene	10	U
207-08-9Benzo(k)fluoranthene	10	U
50-32-8Benzo(a)pyrene	10	U
193-39-5Indeno (1, 2, 3-cd) pyrene	10	U
53-70-3Dibenzo(a,h)anthracene	10	U
191-24-2Benzo(g,h,i)perylene	10	U
A Connet be concreted from Diphenylamine		

(1) - Cannot be separated from Diphenylamine

FORM I SV

8270C

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Number TICs found: 1

CLIENT SAMPLE NO.

	LE ORGANICS ANALIS.			
TENTA	ATIVELY IDENTIFIED	COMPOUN	NDS	SB-2
Lab Name: COMPUCHEM	Me	ethod: 8	3270C	
Lab Code: LIBRTY (Case No.:	SAS No.:	: SDG	No.: 9089
Matrix: (soil/water)	WATER		Lab Sample ID:	908902
Sample wt/vol:	1000 (g/mL) ML		Lab File ID:	908902A64
Level: (low/med)	LOW		Date Received:	02/10/06
% Moisture:	decanted: (Y/N)	_	Date Extracted	d: 02/13/06
Concentrated Extract	Volume: 1000(u)	ն)	Date Analyzed:	02/14/06
Injection Volume:	1.0(uL)		Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		·	

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	3.08	16	J
2				
3				
4.				
5		·		
6	·			
1.				<u> </u>
0.				
9. 10.			· ·	
11				
12.				
13.				
Lt.				
				· · · ·
16				
L 1.	<u></u>		·	
18.				<u> </u>
19				
. 20.	·			
21	······································			
43.				
24.				
20.				
27.				
28.				
29		<u> </u>		
30				
<u></u>			l	l

COMPOUND

CAS NO.

CLIENT SAMPLE NO.

Lab Name: COMPUCHEM	Me	thod: 8270C	SB-3
hab Mame. compocition	ine ine	cilou: 02/00	l
Lab Code: LIBRTY	Case No.: S	AS No.: SDG	No.: 9089
Matrix: (soil/water)	WATER	Lab Sample ID	: 908903
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	908903JA64
Level: (low/med)	LOW	Date Received	: 02/10/06
% Moisture:	decanted: (Y/N)	Date Extracted	d:02/13/06
Concentrated Extract	Volume: 1000(uL) Date Analyzed	: 02/16/06
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

		I
62-75-9N-Nitrosodimethylamine	10	υ
108-95-2Phenol	10	U I
111-44-4Bis(2-chloroethyl)ether	10	ΰ
95-57-82-Chlorophenol	10	U
541-73-11,3-Dichlorobenzene	10	Ŭ I
106-46-71,4-Dichlorobenzene	10	Ŭ
95-50-11,2-Dichlorobenzene	10	υ
108-60-12,2'-oxybis(1-Chloropropane)	10	U
621-64-7N-Nitroso-di-N-propylamine	10	U
67-72-1Hexachloroethane	10	lu l
98-95-3Nitrobenzene	10	Ŭ
78-59-1Isophorone	10	U
88-75-52-Nitrophenol	10	U
105-67-92,4-Dimethylphenol	10	U
111-91-1Bis (2-chloroethoxy) methane	10	Ŭ
120-83-22,4-Dichlorophenol	10	U
120-83-2-11,2,4-Dichiolophenoi 120-82-11,2,4-Trichlorobenzene	10	U I
91-20-3Naphthalene	66	
87-68-3Hexachlorobutadiene	10	U U
59-50-74-Chloro-3-methylphenol	10	U
77-47-4Hexachlorocyclopentadiene	10	U
88-06-22,4,6-Trichlorophenol	10	U I
91-58-72-Chloronaphthalene	10	υ I
131-11-3Dimethylphthalate	10	U
606-20-22,6-Dinitrotoluene	10	
208-96-8Acenaphthylene	10	U
83-32-9Acenaphthene	1.5	J
51-28-52,4-Dinitrophenol	20	UUUUU
100-02-74-Nitrophenol	20	U I
121-14-22,4-Dinitrotoluene	10	U
84-66-2Diethylphthalate	10	
7005-72-34-Chlorophenyl-phenylether	10	U I
86-73-7Fluorene	1.0	J
	1	
FORM I SV	l <u></u>	82

FORM I SV

CLIENT SAMPLE NO.

1

Lab Name: COMPUCHEM	Metho	d: 8270C	SB-3
Lab Code: LIBRTY (Case No.: SAS	No.: SDG	No.: 9089
Matrix: (soil/water)	WATER	Lab Sample ID:	908903
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	908903JA64
Level: (low/med)	TOM	Date Received:	02/10/06
% Moisture:	decanted: (Y/N)	Date Extracted	1:02/13/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	02/16/06
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

.

534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine (1)	3.9	J
122-66-7	1,2-Diphenylhydrazine	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	1.3	J
	Anthracene	10	U
	Di-n-butylphthalate	1.6	J
	Fluoranthene	1.0	ប
	Benzidine	20	U
129-00-0		10	U
	Butylbenzylphthalate	10	U
	3,3'-Dichlorobenzidine	10	U
	bis(2-ethylhexyl)Phthalate	19	
	Benzo(a)anthracene	. 10	U
218-01-9	Chrysene	10	U
	Di-n-octylphthalate	10	U
	Benzo(b)fluoranthene	10	U
	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	U
193-39-5	Indeno (1,2,3-cd) pyrene	10	U
	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(q,h,i)perylene	10	U

(1) - Cannot be separated from Diphenylamine

COMPOUND

CAS NO.

FORM I SV

8270C

CLIENT SAMPLE NO.

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SB	 3

Lab Name: COMPUCHEM	Method:	8270C
Lab Code: LIBRTY	Case No.: SAS No.	: SDG No.: 9089
Matrix: (soil/water)	WATER	Lab Sample ID: 908903
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: 908903JA64
Level: (low/med)	LOW	Date Received: 02/10/06
% Moisture:	decanted: (Y/N)	Date Extracted:02/13/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 02/16/06
Injection Volume:	1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N PH:	

Number TICs found: 20

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER COMPOUND NAME			
\$22283322222888888888 822882238884888888888888888888888888888	RT	EST. CONC.	Q
1. 98-82-8 BENZENE, (1-METHYLETHYL) - 2. BRANCHED ALKANE 3. 103-65-1 BENZENE, PROPYL- 4. UNKNOWN 5. 526-73-8 BENZENE, 1,2,3-TRIMETHYL- 6. 496-11-7 INDANE 7. 135-01-3 BENZENE, 1,2-DIETHYL- 8. UNKNOWN 9. 527-84-4 BENZENE, 1-METHYL-2-(1-METHY 10. 933-98-2 BENZENE, 1-ETHYL-2, 3-DIMETHY 11. 488-23-3 BENZENE, 1,2,3,4-TETRAMETHYL 12. 824-22-6 1H-INDENE, 2,3-DIMETHY 13. 767-99-7 BENZENE, 1,2,3,5-TETRAMETHYL 14. 527-53-7 BENZENE, 1,2,3,5-TETRAMETHYL 15. 90-12-0 NAPHTHALENE, 1-METHYL-1-PROPENY 14. 527-53-7 BENZENE, 1,2,3,5-TETRAMETHYL 15. 90-12-0 NAPHTHALENE, 1-METHYL- 16. 0-00-0 N-ETHYL-O-TOLUENESULFONAMIDE 17. 934-34-9 2 (3H) -BENZOTHIAZOLONE 18. BRANCHED ALKANE 19. UNKNOWN 20. 10544-50-0 CYCLIC OCTAATOMIC SULFUR 21.	4.42 4.57 4.89 5.02 5.54 6.15 6.37 6.45 6.80 7.32 7.38 7.64 7.79 7.82 9.68	42 21 99 32 370 97 41 54 100 59 63 22 23 31 19 23 26 47 27	===== NJ J NJ J NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ

FORM I SV-TIC

COMPOUND

CAS NO.

CLIENT SAMPLE NO.

1-

Lab Name: COMPUCHEM	Method:	8270C	SB-4
Lab Code: LIBRTY (Case No.: SAS No	.: SDG	No.: 9089
Matrix: (soil/water)	WATER	Lab Sample ID:	908904
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	908904A64
Level: (low/med)	LOW	Date Received:	: 02/10/06
% Moisture:	decanted: (Y/N)	Date Extracted	d:02/13/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	: 02/14/06
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Č	2

	· · · · · · · · · · · · · · · · · · ·	
62-75-9N-Nitrosodimethylamine	10	υ
108-95-2Phenol	10	υ.
111-44-4Bis(2-chloroethyl)ether	10	υ
95-57-82-Chlorophenol	10	Ū U
541-73-11,3-Dichlorobenzene	10	
106-46-71,4-Dichlorobenzene	10	
95-50-11,2-Dichlorobenzene	10	U I
108-60-12,2'-oxybis(1-Chloropropane)	10	Ū I
621-64-7N-Nitroso-di-N-propylamine	10	υ i
67-72-1Hexachloroethane	10	U
98-95-3Nitrobenzene	10	U
78-59-1Isophorone	10	U
	10	U
88-75-52-Nitrophenol		-
105-67-92,4-Dimethylphenol	10	Ŭ
111-91-1Bis (2-chloroethoxy) methane	10	Ŭ
120-83-22,4-Dichlorophenol	10	Ŭ
120-82-11,2,4-Trichlorobenzene	10	U
91-20-3Naphthalene	4.8	J
87-68-3Hexachlorobutadiene	10	U
59-50-74-Chloro-3-methylphenol	10	U
77-47-4Hexachlorocyclopentadiene	10	U .
88-06-22,4,6-Trichlorophenol	10	U U
91-58-72-Chloronaphthalene	10	U
131-11-3Dimethylphthalate	10	U
606-20-22,6-Dinitrotoluene	10	υ
208-96-8Acenaphthylene	1.0	U
83-32-9Acenaphthene	10	U
51-28-52,4-Dinitrophenol	. 20	U
100-02-74-Nitrophenol	20	Ŭ
121-14-22,4-Dinitrotoluene	10	Ŭ
84-66-2Diethylphthalate	10	Ŭ
7005-72-34-Chlorophenyl-phenylether	10	U I
86-73-7Fluorene	10	UUUUU
99-12-1LIGOLENE		
FORM I CV		' <u> </u>

FORM 1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

1.1

10

20

10

10

10 2.1

10

10

10

10

10

10

10

10

10

U

U

U

U U

J

U

U

U

U

U

U

U

U

U

Lab Name: COMPUCHEM	Method: 8	3270C	SB-4
Lab Code: LIBRTY Case	No.: SAS No.:	s SDG	No.: 9089
Matrix: (soil/water) WAT	ER	Lab Sample ID:	908904
Sample wt/vol: 100	0 (g/mL) ML	Lab File ID:	908904A64
Level: (low/med) LOW	T	Date Received:	02/10/06
% Moisture: dec	anted: (Y/N)	Date Extracted	l:02/13/06
Concentrated Extract Vol	ume: 1000(uL)	Date Analyzed:	02/14/06
Injection Volume: 1.	0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N) N	pH:		
CAS NO. C		TRATION UNITS: or ug/Kg) UG/I	
86-30-6N 122-66-7N 101-55-34 118-74-1H 87-86-5P 85-01-8P 120-12-7A	entachlorophenol henanthrene	_(1)	20 U 10 U 10 U 10 U 10 U 20 U 10 U 10 U 10 U 10 U 10 U

(1) -	Cannot	be	separated	from	Diphenylamine	

206-44-0-----Fluoranthene_____

56-55-3-----Benzo(a)anthracene

117-84-0----Di-n-octylphthalate

205-99-2----Benzo (b) fluoranthene

207-08-9-----Benzo (k) fluoranthene

191-24-2----Benzo(g,h,i)perylene

193-39-5-----Indeno (1, 2, 3-cd) pyrene

53-70-3-----Dibenzo(a,h)anthracene

50-32-8-----Benzo (a) pyrene

92-87-5-----Pyrene 129-00-0-----Pyrene 85-68-7-----Butylbenzylphthalate 91-94-1-----3,3'-Dichlorobenzidine 117-81-7-----bis (2-ethylhexyl)Phthalate

92-87-5----Benzidine

218-01-9-----Chrysene

FORM I SV

8270C

CLIENT SAMPLE NO.

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SB-4

Lab Name: COMPUCHEM	Method: 827	0C
Lab Code: LIBRTY Case No.:	SAS No.:	SDG No.: 9089
Matrix: (soil/water) WATER	La	b Sample ID: 908904
Sample wt/vol: 1000 (g/ml	L) ML La	b File ID: 908904A64
Level: (low/med) LOW	Da	te Received: 02/10/06
<pre>% Moisture: decanted:</pre>	(Y/N) Da	te Extracted:02/13/06
Concentrated Extract Volume:	1000(uL) Da	te Analyzed: 02/14/06
Injection Volume: 1.0(uL)	Di	lution Factor: 1.0
GPC Cleanup: (Y/N) N pH	I:	

Number TICs found: 17

.

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
$\begin{array}{c} 1. \ 108 - 88 - 3\\ 2. \ 100 - 41 - 4\\ 3. \ 95 - 47 - 6\\ 4. \ 108 - 38 - 3\\ 5.\\ 6. \ 103 - 65 - 1\\ 7. \ 611 - 14 - 3\\ 8. \ 95 - 63 - 6\\ 9. \ 95 - 63 - 6\\ 10. \ 526 - 73 - 8\\ 11. \ 611 - 14 - 3\\ 12.\\ 13. \ 141 - 93 - 5\\ 14.\\ 15. \ 2870 - 04 - 4\\ 16.\\ 17.\\ 18.\\ 19.\\ 20.\\ 21.\\ 22.\\ 23.\\ 24.\\ 25.\\ 26.\\ 27.\\ 28.\\ 29.\\ 30.\\ \end{array}$	TOLUENE ETHYLBENZENE BENZENE, 1,2-DIMETHYL- BENZENE, 1,3-DIMETHYL- UNKNOWN BENZENE, PROPYL- BENZENE, 1-ETHYL-2-METHYL- BENZENE, 1,2,4-TRIMETHYL- BENZENE, 1,2,3-TRIMETHYL- BENZENE, 1,2,3-TRIMETHYL- BENZENE, 1-ETHYL-2-METHYL- UNKNOWN BENZENE, 1,3-DIETHYL- UNKNOWN BENZENE, 2-ETHYL-1,3-DIMETHY UNKNOWN UNKNOWN	2.10 3.42 3.56 3.93 4.43 4.89 5.02 5.12 5.31 5.52 5.96 6.16 6.37 6.52 7.32 13.57 15.68	40 130 19 12 25 7.8 10 11	NJ J NJ NJ NJ NJ J J J J J J J J J J J

FORM I SV-TIC

CLIENT SAMPLE NO.

1---

			SB-5
Lab Name: COMPUCHEM	Method:	8270C	C-dc
Lab Code: LIBRTY	Case No.: SAS No.	: SDG	No.: 9089
Matrix: (soil/water)	WATER	Lab Sample ID:	908905
Sample wt/vol:	1000 (g/mL) ML	Lab File ID;	908905A64
Level: (low/med)	LOW	Date Received:	02/10/06
% Moisture:	decanted: (Y/N)	Date Extracted	l:02/13/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	02/14/06
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

		<u> </u>
62-75-9N-Nitrosodimethylamine	10	U
108-95-2Phenol	- 10	Ŭ
111-44-4Bis(2-chloroethyl)ether	- 10	
95-57-82-Chlorophenol	- 10	UU
541-73-11,3-Dichlorobenzene	- 10	Ŭ l
106-46-71,4-Dichlorobenzene	10	U I
95-50-11,2-Dichlorobenzene	10	U I
108-60-12,2'-oxybis(1-Chloropropane)	- 10	U I
621-64-7N-Nitroso-di-N-propylamine	10	UU I
67-72-1Hexachloroethane	- 10	U - U
98-95-3Nitrobenzene	- 10	U I
78-59-1Isophorone	10	Ū
88-75-52-Nitrophenol	- 10	U
105-67-92,4-Dimethylphenol	10	U
111-91-1Bis(2-chloroethoxy)methane	- 10	U
120-83-22,4-Dichlorophenol	- 10	U
120-82-11,2,4-Trichlorobenzene	10	U
91-20-3Naphthalene	10	U
87-68-3Hexachlorobutadiene	10	U
59-50-74-Chloro-3-methylphenol	10	U
77-47-4Hexachlorocyclopentadiene	10	U
88-06-22,4,6-Trichlorophenol	10	U
91-58-72-Chloronaphthalene	10	U
131-11-3Dimethylphthalate	10	U [
606-20-22,6-Dinitrotoluene	10	U
208-96-8Acenaphthylene	10	U
83-32-9Acenaphthene	10	U
51-28-52,4-Dinitrophenol	20	U [
100-02-74-Nitrophenol	20	U
121-14-22,4-Dinitrotoluene	- 10	U
84-66-2Diethylphthalate	- 10	U
7005-72-34-Chlorophenyl-phenylether	10	U U
86-73-7Fluorene	10	U
FORM I SV		
BUDMI CV		

FORM I SV

CLIENT SAMPLE NO.

Lab Name: COMPUCHEM		Method: 82	70C	SB-5
Lab Code: LIBRTY	Case No.:	SAS No.:	SDG	No.: 9089
Matrix: (soil/water)	WATER	La	ab Sample ID:	908905
Sample wt/vol:	1000 (g/mL) ML	Lá	ab File ID:	908905A64
Level: (low/med)	LOW	Da	ate Received:	02/10/06
% Moisture:	decanted: (Y/N)	Da	ate Extracted	1:02/13/06
Concentrated Extract	Volume: 1000	(uL) Da	ate Analyzed:	02/14/06
Injection Volume:	1.0(uL)	D	ilution Facto	or: 1.0
$86-30-6\\122-66-7\\101-55-3\\101-55-3\\18-74-1\\87-86-5\\85-01-8\\20-12-7\\84-74-2\\206-44-0\\92-87-5\\206-44-0\\92-87-5\\129-00-0\\85-68-7\\91-94-1\\117-81-7\\56-55-3\\218-01-9\\117-84-0\\205-99-2\\207-08-9\\50-32-8\\50-32-8\\53-70-3\\191-24-2$	COMPOUND 4,6-Dinitro-2- N-Nitrosodiphe 1,2-Diphenylhy 4-Bromophenyl- Hexachlorobenz Pentachlorobenz Pentachlorophe Phenanthrene Anthracene Di-n-butylphth Fluoranthene Benzidine Pyrene Butylbenzylpht 3,3'-Dichlorok bis(2-ethylhes bis(2-ethylhes Benzo(a)anthra Chrysene Di-n-octylphth Benzo(b)fluora Benzo(a)pyrene Indeno(1,2,3-co Dibenzo(a,h)ar Benzo(g,h,i)pe	CONCENTR (ug/L or -methylphend enylamine_(ydrazine -phenylethen zene enol nalate chalate chalate nalate nalate nalate nalate nalate nalate nalate nalate nalate nalate nalate nalate nalate nalate nalate nalate nalate nalate	1) r te	20 U 10 U
(1) - Cannot be	separated from Di		e	

FORM I SV

.

8270C

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SB-5

Lab Name: COMPUCHEM	Method:	8270C	SB-5
Lab Code: LIBRTY	Case No.: SAS No.	: SDG	No.: 9089
Matrix: (soil/water)	WATER	Lab Sample ID:	908905
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	908905A64
Level: (low/med)	LOW	Date Received:	02/10/06
% Moisture:	decanted: (Y/N)	Date Extracted	:02/13/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	02/14/06
Injection Volume:	1.0(uL)	Dilution Facto	r: 1.0
GPC Cleanup: (Y/N)	N pH:		

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======	================	=====
$\begin{bmatrix} 1\\ 2\\ \vdots\\ \end{bmatrix}$				
			·	
3			· · · · · · · · · · · · · · · · · · ·	
4				
5	· · · · · · · · · · · · · · · · · · ·			
6				
1.				
8	······································			
9				
10		·		
11.	·····			
12.				
13.				
13. 14.				
15.				
	·····			
16				
17				
18.				
19				
20				
21.				
22		·····		
23.				
24				——
25				
26			l	
27.				
28				
29				
30				
	FORM I SV-TIC			·

FORM I SV-TIC

1D GC EXTRACTABLE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

1-

Lab Name: COMPUCHEM	Contract:	8081A-8082	SB-1
had Name. Com bender	0011020102		<u> </u>
Lab Code: LIBRTY Case No.:	SAS No.:	SDG	No.: 9089
Matrix: (soil/water) WATER		Lab Sample ID:	908901
Sample wt/vol: 1000 (g/m	mL) ML	Lab File ID:	
<pre>% Moisture: decanted:</pre>	(Y/N)	Date Received:	02/10/06
Extraction: (SepF/Cont/Sonc) \$	SEPF	Date Extracted	d:02/12/06
Concentrated Extract Volume:	5000(uL)	Date Analyzed:	2/17/06
Injection Volume: 2.0(uL)		Dilution Facto	or: 1.0
GPC Cleanup: (Y/N) N	pH:	Sulfur Cleanur	p: (Y/N) N
CAS NO. COMPOUN	0011022	NTRATION UNITS or ug/Kg) UG/I	

	····	
309-00-2Aldrin 319-85-7beta-BHC 319-84-6alpha-BHC 319-86-8alpha-BHC 319-86-8alpha-BHC 58-89-9alpha-BHC 72-54-8delta-BHC 72-54-8	$\begin{array}{c} 0.016\\ 0.025\\ 0.017\\ 0.013\\ 0.013\\ 0.035\\ 0.035\\ 0.013\\ 0.075\\ 0.025\\ 0.025\\ 0.025\\ 0.050\\ 0.$	U P U U J P U U U U U U U U U U U U U U
53469-21-9Aroclor-1242 12672-29-6Aroclor-1248	0.63	ប ប ប ប J

1D GC EXTRACTABLE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

	SB-2 Contract: 8081A-8082
Lab Name: COMPUCHEM	CONCLACE. 8001A 8002
Lab Code: LIBRTY Case No.:	SAS No.: SDG No.: 9089
Matrix: (soil/water) WATER	Lab Sample ID: 908902
Sample wt/vol: 1000 (g/mL) ML	Lab File ID:
% Moisture: decanted: (Y/N)_	Date Received: 02/10/06
Extraction: (SepF/Cont/Sonc) SEPF	Date Extracted:02/12/06
Concentrated Extract Volume: 5000((uL) Date Analyzed: 02/17/06
Injection Volume: 2.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

309-00-2Aldrin	0.013	U
319-85-7beta-BHC	0.025	-
319-84-6alpha-BHC	- 0.013	
319-86-8delta-BHC	- 0.013	
58-89-9gamma-BHC (Lindane)	- 0.013	
72-54-84,4'-DDD	0.050	-
72-55-94,4'-DDE	- 0.025	
50-29-34,4'-DDT	- 0.025	
50-29-34, 4'-001	- 0.075	-
60-57-1Dieldrin	- 0.025	
959-98-8Endosulfan I	- 0.029	
33213-65-9Endosulfan II	- 0.050	
1031-07-8Endosulfan sulfate	0.050	
72-20-8Endrin	- 0.050	
7421-93-4Endrin Aldehyde	- 0.013	-
76-44-8Heptachlor	- 0.013	
1024-57-3Heptachlor Epoxide	- 0.13	
72-43-5Methoxychlor	•	-
8001-35-2Toxaphene	2.5	
12674-11-2Aroclor-1016	0.93	-
11104-28-2Aroclor-1221	1.3	-
11141-16-5Aroclor-1232	0.93	
53469-21-9Aroclor-1242	0.63	_
12672-29-6Aroclor-1248	0.63	U
11097-69-1Aroclor-1254	0.63	-
11096-82-5Aroclor-1260	0.93	
53494-70-5Endrin Ketone	0.13	U
F102 74 0 gamma Chlordane	0.013	U
5103-74-2gamma-Chlordane 5103-71-9alpha-Chlordane	- 0.025	TT

1D

GC EXTRACTABLE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

Lab Name: COMPUCHEM		Contract:	8081A-8082	SB-3
Lab Code: LIBRTY	Case No.:	SAS No.:	SDG	No.: 9089
Matrix: (soil/water)	WATER		Lab Sample ID:	908903
Sample wt/vol:	1000 (g/mľ) Mľ		Lab File ID:	
% Moisture:	decanted: (Y/N)_		Date Received:	02/10/06
Extraction: (SepF/C	ont/Sonc) SEPF		Date Extracted	:02/12/06
Concentrated Extract	Volume: 5000	(uL)	Date Analyzed:	02/28/06
Injection Volume:	2.0(uL)		Dilution Facto	or: 5.0
GPC Cleanup: (Y/N)	N pH:	_	Sulfur Cleanup	: (Y/N) N
		CONCENT	DADION INITOO	

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

·····			·
309-00-2	Aldrin	0.028	JBP
319-85-7	beta-BHC	0.13	U.
319-84-6	alpha-BHC	0.063	U
319-86-8	delta-BHC	0.063	U
58-89-9	gamma-BHC (Lindane)	0.063	U
72-54-8		0.25	U.
72-55-9	4,4'-DDE	0.12	1
50-29-3	4.4'-DDT	0.38	U
60-57-1	Dieldrin	0.24	1
	Endosulfan I		1
	Endosulfan II	0.25	Ū
	Endosulfan sulfate		1
72-20-8			
· ·	Endrin Aldehyde		
76-44-8		- 0.030	-
	Heptachlor Epoxide		
	Methoxychlor		
8001-35-2		—	-
	Aroclor-1016		-
•	Aroclor-1221		-
	Aroclor-1232		1
	Aroclor-1242	- 3.1	
	Aroclor-1248		
1	Aroclor-1248	- 3.1	ſ
	Aroclor-1254	- 69	
	Endrin Ketone		
			-
	gamma-Chlordane	0.24	P
5T03-/T-A	alpha-Chlordane	0.15	
[

1D

GC EXTRACTABLE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-

Lab Name: COMPUCHEM	Contract:	8081A-8082	SB-4
Lab Code: LIBRTY Case No.:	SAS No.:	SDG	No.: 9089
Matrix: (soil/water) WATER		Lab Sample ID:	908904
Sample wt/vol: 500.0 (g/mL)	ML	Lab File ID:	
<pre>% Moisture: decanted: (Y/)</pre>	N)	Date Received:	02/10/06
Extraction: (SepF/Cont/Sonc) SEPF		Date Extracted	l:02/12/06
Concentrated Extract Volume: 25	00(uL)	Date Analyzed:	02/17/06
Injection Volume: 2.0(uL)		Dilution Facto	or: 1.0
GPC Cleanup: (Y/N) N pH:		Sulfur Cleanup): (Y/N) N

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

		i		
309-00-2	Aldrin		0.013	IJ
319-85-7			0.030	_
319-84-6			0.013	Ū.
319-86-8		—	0.013	Ū
	gamma-BHC (Lindane)		0.013	Ū
72-54-8	4.4'-DDD	[0.028	-
72-55-9	4,4'-DDE	: ·	0.048	
50-29-3			0.075	
60-57-1			0.12	
	Endosulfan I		0.025	_
-	Endosulfan II		0.050	
	Endosulfan sulfate		0.050	-
72-20-8			0.050	
	Endrin Aldehyde		0.050	{
	Heptachlor		0.013	-
	Heptachlor Epoxide	[0.013	-
	Methoxychlor	[0.13	-
8001-35-2		—— [2.5	Ū
	Aroclor-1016		0.93	U
	Aroclor-1221	—	1.3	
	Aroclor-1232		0.93	U
	Aroclor-1242		0.63	
12672-29-6	Aroclor-1248		0.63	U
11097-69-1	Aroclor-1254		0.63	U
	Aroclor-1260		0.93	U
	Endrin Ketone		0.13	1
	qamma-Chlordane		0.016	
	alpha-Chlordane		0.018	JP

1D GC EXTRACTABLE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-

	SB-5
Lab Name: COMPUCHEM	Contract: 8081A-8082
Lab Code: LIBRTY Case No.:	SAS No.: SDG No.: 9089
Matrix: (soil/water) WATER	Lab Sample ID: 908905
Sample wt/vol: 500.0 (g/mL) M	Lab File ID:
% Moisture: decanted: (Y/N	Date Received: 02/10/06
Extraction: (SepF/Cont/Sonc) SEPF	Date Extracted:02/12/06
Concentrated Extract Volume: 250	(uL) Date Analyzed: 02/17/06
Injection Volume: 2.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH: _	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

309-00-2Aldrin	0.013 U
319-85-7beta-BHC	0.025 U
319-84-6alpha-BHC	0.013 U
319-86-8delta-BHC	0.013 U
58-89-9gamma-BHC (Lindane)	0.013 U
72-54-84,4'-DDD	0.050 U
72-55-94,4'-DDE	0.025 U
50-29-34,4'-DDT	0.018 J
60-57-1Dieldrin	0.025 U
959-98-8Endosulfan I	0.025 U
33213-65-9Endosulfan II	0.050 U
1031-07-8Endosulfan sulfate	0.050 U
	0.050 U
72-20-8Endrin	0.050 U
7421-93-4Endrin Aldehyde	0.0092 JBP
76-44-8Heptachlor	0.013 U
1024-57-3Heptachlor Epoxide	
72-43-5Methoxychlor	0.13 U 2.5 U
8001-35-2Toxaphene	= -
12674-11-2Aroclor-1016	0.93 U
11104-28-2Aroclor-1221	1.3 U
11141-16-5Aroclor-1232	0.93 U
53469-21-9Aroclor-1242	0.63 U
12672-29-6Aroclor-1248	0.63 U
11097-69-1Aroclor-1254	0.63 U
11096-82-5Aroclor-1260	0.93 U
53494-70-5Endrin Ketone	0.13 U
5103-74-2gamma-Chlordane	0.020 P
5103-71-9alpha-Chlordane	0.025 U

INORGANIC ANALYSES DATA SHEET

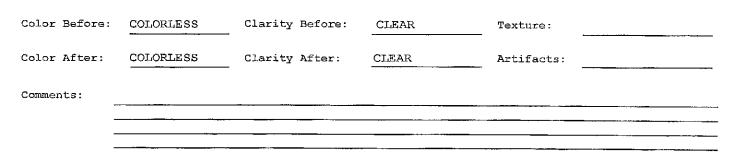
			EPA SAMPLE NO.
			SB-1
Lab Name:	COMPUCHEM	Contract:	
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.: 9089
Matrix (soi)	1/water): WATER	Lab Sample ID:	908901
Level (low/	med): LOW	Date Received:	2/10/2006

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	М
7440-36-0	Antimony	1.2	В		P
7440-38-2	Arsenic	1.4	ש	1	P
7440-41-7	Beryllium	0.30	В	1	P
7440-43-9	Cadmium	0.20	lΩ		P
7440-47-3	Chromium	6.2	ļВ	1	P
7440-50-8	Copper	1.9	В]	P
7439-92-1	Lead	2.7	В		P
7439-97-6	Mercury	0.10	Ιu		CV
7440-02-0	Nickel	5.2	В		P
7782-49-2	Selenium	3.3	ט		P
7440-22-4	Silver	0.50	ע		P
7440-28-0	Thallium	8.0	B		P
7440-66-6	Zinc	42.3			P
57-12-5	Cyanide	2,0	В		AS

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:
Comments:		· · · · · · ·		
-				


INORGANIC ANALYSES DATA SHEET

			1	EPA SAMPLE NO.
				SB-2
Lab Name: <u>COMPUCHEM</u>	c	Contract:	·	
Lab Code: LIBRTY	Case No.:	SAS No.:	SDG No.:	9089
Matrix (soil/water): W	ATER	Lab Sample ID:	908902	
Level (low/med): LOW		Date Received:	2/10/2006	

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	с	Q	м
7440-36-0	Antimony	1.2	Ū		P
7440-38-2	Arsenic	1.4	זע		Р
7440-41-7	Beryllium	0.18	В		P
7440-43-9	Cadmium	0.20	U		P
7440-47-3	Chromium	1.9	В		P
7440-50-8	Copper	1.8	в		P
7439-92-1	Lead	2.0	B	!	P
7439-97-6	Mercury	0.10	ט		CV
7440-02-0	Nickel	1.7	В		P
7782-49-2	Selenium	3.3	JU	1] P.
7440-22-4	Silver	0.50	υ]	P
7440-28-0	Thallium	3.9	U		P
7440-66-6	Zinc	10.2	В		P
57-12-5	Cyanide	0.70	υ		AS

INORGANIC ANALYSES DATA SHEET

				EPA SAMPLE NO.
				SB-3
Lab Name:	COMPUCHEN	4	Contract:	
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG No.: 9089
Matrix (soil	l/water):	WATER	Lab Sample ID:	908903
Level (low/r	med):	LOW	Date Received:	2/10/2006

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	2.4	В	1	⊢ ₽
7440-38-2	Arsenic	6.8	B		P
7440-41-7	Beryllium	0.36	В		P
7440-43-9	Cadmium	0.20	ש		P
7440-47-3	Chromium	11.1	ļ	1	P
7440-50-8	Copper	6.4			P
7439-92-1	Lead	4.5	1		P
7439-97-6	Mercury	0.10	JU		CV
7440-02-0	Nickel	7.6	В	1	P
7782-49-2	Selenium	3.3	U		P
7440-22-4	Silver	0.50	υ	1	P
7440-28-0	Thallium	3.9	U		P
7440-66-6	Zinc	16.3	B		P
57-12-5	Cyanide	4.1	B		AS

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
-				·	
-					
_		····	·····		

INORGANIC ANALYSES DATA SHEET

				EPA SAMPLE NO.
				SB-4
Lab Name:	COMPUCHEM		Contract:	······································
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG No.: 9089
Matrix (soi)	l/water):	WATER	Lab Sample ID;	908904
Level (low/r	med): LOW	7	Date Received:	2/10/2006

% Solids: 0.0

.

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	с	Q	м
7440-36-0	Antimony	1.2	שר		P
7440-38-2	Arsenic] 1.4	ש		P
7440-41-7	Beryllium	0.15	В	1	P
7440-43-9	Cadmium	0.20	ļυ		P
7440-47-3	Chromium	4.0	В		P
7440-50-8	Copper	1.3	в	1	P
7439-92-1	Lead	1.0	U		P
7439-97-6	Mercury	0.10	υ		CV
7440-02-0	Nickel	2.6	В		P
7782-49-2	Selenium	3,3	U I		P
7440-22-4	Silver	0.50	U		P
7440-28-0	Thallium	3.9	U		P
7440-66-6	Zinc	7.5	B.		P
57-12-5	Cyanide	0.70	υ		AS

Color Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Comments:					
		·			
_					
_					

SW846

-1-INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO. SB-5 Lab Name: COMPUCHEM Contract: Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9089 Matrix (soil/water): WATER 908905 Lab Sample ID: Level (low/med): LOW Date Received: 2/10/2006

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	1.2	ש		P
7440-38-2	Arsenic	1.4	ען		P
7440-41-7	Beryllium	0.12	В]	P
7440-43-9	Cadmium	0.20	10	}	P
7440-47-3	Chromium	1.3	В	1	P
7440-50-8	Copper	0.72	B		P
7439-92-1	Lead	1.0	່ງບ	1	P
7439-97-6	Mercury	0,10	טן		cv
7440-02-0	Nickel	4.1	В		P
7782-49-2	Selenium	3.3	ען		P
7440-22-4	Silver	0.50	ו]	P
7440-28-0	Thallium	3.9	יט		P
7440-66-6	Zinc	13.3	B		P
57-12-5	Cyanide	0.70	טן		AS

Color	Before:	COLORLESS	Clarity Before:	CLEAR	Texture:	
Color	After:	COLORLESS	Clarity After:	CLEAR	Artifacts:	
Commen	ts:					
	_					

FORM 1

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

SB-1SS-1 Method: 8260B Lab Name: COMPUCHEM Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9024 Lab Sample ID: 902401 Matrix: (soil/water) SOIL Sample wt/vol: 5.0 (g/mL) G Lab File ID: 902401A90 Date Received: 02/03/06 Level: (low/med) LOW Date Analyzed: 02/06/06 % Moisture: not dec. 7 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL CONCENTRATION UNITS: CAS NO. COMPOUND (uq/L or ug/Kg) UG/KG 0 5.4 U 74-87-3----Chloromethane 75-01-4-----Vinyl Chloride 5.4 U 5.4 U --74-83-9-----Bromomethane 5.4 U 75-00-3----Chloroethane 54 U 5.4 U 107-02-8----Acrolein 75-35-4-----1,1-Dichloroethene 75-09-2-----Methylene Chloride 5.4 U 107-13-1----Acrylonitrile 54 U 5.4 U 156-60-5----trans-1,2-Dichloroethene 5.4 U 75-34-3-----1,1-Dichloroethane 5.4 U 67-66-3-----Chloroform 5.4 U 71-55-6-----1,1,1-Trichloroethane 56-23-5-----Carbon Tetrachloride 71-43-2----Benzene 107-06-2-----1,2-Dichloroethane 79-01-6-----Trichloroethene 78-87-5-----1,2-Dichloropropane 5.4 U 5.4 U 75-27-4----Bromodichloromethane 110-75-8-----2-chloroethyl vinyl ether 5.4 U 10061-01-5----cis-1,3-Dichloropropene____ 5.4 U 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene_ 79-00-5-----1,1,2-Trichloroethane____ 5.4 U 5.4 U 5.4 U 5.4 U 127-18-4----Tetrachloroethene 124-48-1----Dibromochloromethane 5.4 U 108-90-7-----Chlorobenzene 5.4 U 100-41-4----Ethylbenzene 5.4 U 75-25-2----Bromoform 5.4 U 79-34-5-----1,1,2,2-Tetrachloroethane 5.4 U

FORM I VOA

CLIENT SAMPLE NO.

SB-1SS-1

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COMPUCHEMContract: 8260BLab Code: LIBRTYCase No.:SAS No.:Matrix: (soil/water) SOILLab SampSample wt/vol:5.0 (g/mL) GLab FileLevel: (low/med)LOWDate Reg% Moisture: not dec. 7Date AndGC Column: RTX-624ID: 0.32 (mm)DilutionSoil Extract Volume:(uL)Soil Al

Number TICs found: 15

To.: SDG No.: 9024 Lab Sample ID: 902401 Lab File ID: 902401A90 Date Received: 02/03/06 Date Analyzed: 02/06/06 Dilution Factor: 1.0

Soil Aliquot Volume: _____(uL

CONCENTRATION UNITS: (uq/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT		
2. 13151-34-3 3. 1120-21-4 4. 5. 6. 7. 8. 62108-21-8 9. 10. 11. 629-50-5 12. 13. 14.	DECANE, 3-METHYL- UNDECANE UNKNOWN BRANCHED ALKANE STRAIGHT-CHAIN ALKANE BRANCHED ALKANE DECANE, 6-ETHYL-2-METHYL- STRAIGHT-CHAIN ALKANE BRANCHED ALKANE BRANCHED ALKANE BRANCHED ALKANE BRANCHED ALKANE TETRADECANE	12.46 13.10 13.33 13.47 13.79 13.86 13.94 14.16 14.63 14.79 15.03 15.51 15.64 16.01	39 150 44 40 51 96 46 74 170 56 40 45	NJ NJ J J J J J NJ J J J J J J J J J J

FORM I VOA-TIC

CLIENT SAMPLE NO.

SB-2SS-3 Lab Name: COMPUCHEM Method: 8260B Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9024 Matrix: (soil/water) SOIL Lab Sample ID: 902402 Sample wt/vol: 5.0 (q/mL) G Lab File ID: 902402A90 Date Received: 02/03/06 Level: (low/med) LOW Date Analyzed: 02/06/06 % Moisture: not dec. 10 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Extract Volume:_____(uL) Soil Aliquot Volume: (uL CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) UG/KG Q CAS NO. 74-87-3-----Chloromethane 5.6 U 75-01-4----Vinyl Chloride 5.6 U 74-83-9-----Bromomethane 5.6 U 75-00-3-----Chloroethane 5.6 U 56 U 107-02-8-----Acrolein 5.6 U 75-35-4----l,l-Dichloroethene 5.6 U 75-09-2-----Methylene Chloride 56 U 107-13-1----Acrylonitrile 5.6 U 156-60-5-----trans-1,2-Dichloroethene 75-34-3-----1,1-Dichloroethane 5.6 U 5.6 U 5.6 U 67-66-3-----Chloroform 71-55-6-----l,l,l-Trichloroethane 5.6 U 56-23-5-----Carbon Tetrachloride 5.6 U 71-43-2----Benzene 5.6 U 107-06-2-----1,2-Dichloroethane 5.6 U 5.6 U 79-01-6----Trichloroethene 78-87-5-----1,2-Dichloropropane 5.6 U 75-27-4----Bromodichloromethane 110-75-8-----2-chloroethyl vinyl ether 5.6 U 5.6 U 10061-01-5----cis-1,3-Dichloropropene 108-88-3----Toluene 0.66 J 10061-02-6----trans-1,3-Dichloropropene 5.6 U 5.6 U 79-00-5-----1,1,2-Trichloroethane 5.6 U 127-18-4----Tetrachloroethene 5.6 U 124-48-1----Dibromochloromethane 5.6 U 108-90-7-----Chlorobenzene 100-41-4----Ethylbenzene 5.6 U 75-25-2----Bromoform 5.6 U 79-34-5-----1,1,2,2-Tetrachloroethane 5.6 U

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYS		JIENT SAMPLE NO.
TENTATIVELY IDENTIFIE	ED COMPOUNDS	
Lab Name: COMPUCHEM	Contract: 8260B	
Lab Code: LIBRTY Case No.:	SAS No.: SDG	No.: 9024
Matrix: (soil/water) SOIL	Lab Sample ID	902402
Sample wt/vol: 5.0 (g/mL) G	Lab File ID:	902402A90
Level: (low/med) LOW	Date Received	: 02/03/06
% Moisture: not dec. 10	Date Analyzed	: 02/06/06
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:(uL)	Soil Aliquot	Volume:(uL

Number TICs found: 15

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

FORM I VOA-TIC

CLIENT SAMPLE NO.

SB-3SS-2 Method: 8260B Lab Name: COMPUCHEM Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9024 Lab Sample ID: 902403 Matrix: (soil/water) SOIL Sample wt/vol: 5.0 (g/mL) G Lab File ID: 902403A90 Date Received: 02/03/06 Level: (low/med) LOW Date Analyzed: 02/06/06 % Moisture: not dec. 8 Dilution Factor: 1.0 GC Column: RTX-624 ID: 0.32 (mm) Soil Aliquot Volume: ____(uL Soil Extract Volume:_____(uL) CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG 0 CAS NO. COMPOUND 5.4 U 74-87-3-----Chloromethane 5.4 U 75-01-4-----Vinyl Chloride 5.4 U 5.4 U 74-83-9----Bromomethane 75-00-3-----Chloroethane 54 U 107-02-8-----Acrolein 5.4 U 75-35-4-----1,1-Dichloroethene 5.4 U 75-09-2-----Methylene Chloride 54 U 107-13-1-----Acrylonitrile 5.4 U 156-60-5-----trans-1,2-Dichloroethene 5.4 U 5.4 U 5.4 U 5.4 U 5.4 U 5.4 U 75-34-3-----1,1-Dichloroethane_____ 67-66-3-----Chloroform 71-55-6-----1,1,1-Trichloroethane 56-23-5-----Carbon Tetrachloride 5.4 U 71-43-2----Benzene 107-06-2----1,2-Dichloroethane 5.4 U 5.4 U 79-01-6----Trichloroethene 5.4 U 78-87-5-----1,2-Dichloropropane 5.4 U 75-27-4-----Bromodichloromethane 110-75-8-----2-chloroethyl vinyl ether 5.4 U 10061-01-5----cis-1,3-Dichloropropene 5.4 U 108-88-3----Toluene 0.65 J 10061-02-6----trans-1,3-Dichloropropene 5.4 U 5.4 U 5.4 U 127-18-4-----Tetrachloroethene 5.4 U 124-48-1----Dibromochloromethane 5.4 U 108-90-7-----Chlorobenzene 2.0 J 100-41-4----Ethylbenzene 5.4 U 75-25-2-----Bromoform_ 5.4 U 79-34-5-----1,1,2,2-Tetrachloroethane

FORM I VOA

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SB-35S-2

Lab Name: COMPUCHEM	Contract: 8260B	
Lab Code: LIBRTY Case No.:	SAS No.: SDG	No.: 9024
Matrix: (soil/water) SOIL	Lab Sample ID:	902403
Sample wt/vol: 5.0 (g/mL) G	Lab File ID:	902403A90
Level: (low/med) LOW	Date Received	: 02/03/06
% Moisture: not dec. 8	Date Analyzed	02/06/06
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:(uL)	Soil Aliquot V	Jolume:(uL

Number TICs found: 15

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	~
1. 7785-70-8 2. 124-18-5 3. 4. 5. 6. 7. 8. 9. 10. 1120-21-4 11. 12. 13. 14. 15. 629-50-5 16. 17. 18. 19. 20.	(1R) -2, 6, 6-TRIMETHYLBICYCLO [DECANE CYCLIC ALKANE BRANCHED ALKANE BRANCHED ALKANE BRANCHED ALKANE BRANCHED ALKANE BRANCHED ALKANE BRANCHED ALKANE UNDECANE UNKNOWN BRANCHED ALKANE STRAIGHT-CHAIN ALKANE TRIDECANE	=======	22 42 12 14 9.5 13 17 13 12 40 12 9.8 9.3 14	===== NJ NJ J J J J J J J J J J J J J J
21. 22. 23. 24. 25. 26. 27. 28. 29. 30.				

FORM I VOA-TIC

FORM 1

VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SB-3SS-8 Lab Name: COMPUCHEM Method: 8260B Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9024 Matrix: (soil/water) SOIL Lab Sample ID: 902404 Sample wt/vol: 5.0 (q/mL) G Lab File ID: 902404A90 Level: (low/med) Date Received: 02/03/06 MED % Moisture: not dec. 10 Date Analyzed: 02/08/06 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Extract Volume: (5000) (ul) Soil Aliquot Volume: 100(ul) CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) UG/KG COMPOUND Q 74-87-3-----Chloromethane 280 U 75-01-4-----Vinyl Chloride 280 U 74-83-9----Bromomethane 280 U 75-00-3-----Chloroethane 280 U 107-02-8-----Acrolein 2800 U 75-35-4-----1,1-Dichloroethene 280 U

75-09-2	Methylene Chloride	280	U
	Acrylonitrile	2800	U
156-60-5	trans-1,2-Dichloroethene	280	U
75-34-3	1,1-Dichloroethane	280	U
67-66-3	Chloroform	280	U
71-55-6	1,1,1-Trichloroethane	280	U I
56-23-5	Carbon Tetrachloride	280	U
71-43-2	Benzene	280	U
107-06-2	1,2-Dichloroethane	280	U
79-01-6	Trichloroethene	280	U
. 78-87-5	1,2-Dichloropropane	280	U
75-27-4	Bromodichloromethane	280	U
110-75-8	2-chloroethyl vinyl ether	280	U
10061-01-5	cis-1,3-Dichloropropene	280	U
108-88-3	Toluene	280	U
10061-02-6	trans-1,3-Dichloropropene	280	U
	1,1,2-Trichloroethane	280	U
	Tetrachloroethene	280	U
124-48-1	Dibromochloromethane	280	U
	Chlorobenzene	280	U U
100-41-4	Ethylbenzene	90	J
75-25-2	Bromoform	280	U
79-34-5	1,1,2,2-Tetrachloroethane	280	υ
79-34-5	1,1,2,2-Tetrachloroethane	280	U

FORM I VOA

CLIENT SAMPLE NO.

SB-3SS-8

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COMPUCHEM Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9024 Matrix: (soil/water) SOIL Sample wt/vol: 5.0 (g/mL) G Lab File ID: 902404A90 Level: (low/med) MED % Moisture: not dec. 10 GC Column: RTX-624 ID: 0.32 (mm) Soil Extract Volume: 5000(ul)

Number TICs found: 15

Contract: 8260B

Lab Sample ID: 902404

Date Received: 02/03/06

Date Analyzed: 02/08/06

Dilution Factor: 1.0

Soil Aliquot Volume: 100(ul

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

COMPOUND NAME RTEST. CONC. 0 CAS NUMBER _____ ======= 7000|J BRANCHED ALKANE 11.14 1. 5600 J 11.74 BRANCHED ALKANE 2. 11.77 7300 J З. UNKNOWN UNKNOWN OCTANE, 2,6-DIMETHYL-CYCLOHEXANE, (1-METHYLETHYL) 11.85 7500 NJ 4. 2051-30-1 12.03 5900 NJ 5. 696-29-7 12.10 7600 J 6. BRANCHED ALKANE 8100|J BRANCHED ALKANE 12.12 7. 12.46 BENZENE, PROPYL-BRANCHED ALKANE 8. 103-65-1 6500 NJ 6100 J 9. BENZENE, 1,3,5-TRIMETHYL-12.87 10. 108-67-8 17000 NJ CYCLIC ALKANE 12.99 15000 J 11. BENZENE, 1-METHYL-4-(1-METHY 13.60 BENZENE, 1-ETHYL-2, 3-DIMETHY 13.66 12. 99-87-6 13. 933-98-2 6500 NJ 7200 NJ 5500 J 14. SUBSTITUTED BENZENE 13.99 7100 NJ BENZENE, 1-METHYL-2-(1-METHY 15. 527-84-4 14.03 16._____ 17._____ _____ 18._____ -----19.____ 20. – 21.____ 22. 23. 24.____ 25.____ 26._____ 27.____ 28.____ 29.____ 30.____

FORM I VOA-TIC

17

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

SB-4-SS-1 Lab Name: COMPUCHEM Method: 8260B Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9024 Matrix: (soil/water) SOIL Lab Sample ID: 902405 Sample wt/vol: 5.0 (g/mL) G Lab File ID: 902405A90 Level: (low/med) LOW Date Received: 02/03/06 % Moisture: not dec. 12 Date Analyzed: 02/06/06 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Extract Volume:____(uL) Soil Aliquot Volume: _____(uL CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 0 5.7 U 74-87-3-----Chloromethane 75-01-4-----Vinyl Chloride 5.7 U 5.7 U 5.7 U 57 U 5.7 U 5.7 U 5.7 U 5.7 U 74-83-9----Bromomethane 75-00-3-----Chloroethane 107-02-8----Acrolein 75-35-4-----1,1-Dichloroethene 75-09-2-----Methylene Chloride 107-13-1----Acrylonitrile 57 U 156-60-5----trans-1,2-Dichloroethene 5.7 U 75-34-3-----1,1-Dichloroethane_____ 5.7 U 5.7 U 67-66-3-----Chloroform 5.7 U 71-55-6-----1,1,1,1-Trichloroethane 56-23-5-----Carbon Tetrachloride 71-43-2----Benzene 107-06-2----1,2-Dichloroethane 79-01-6-----Trichloroethene 5.7 U 78-87-5-----1,2-Dichloropropane 75-27-4----Bromodichloromethane 5.7 U 5.7 U 110-75-8-----2-chloroethyl vinyl ether 10061-01-5----cis-1,3-Dichloropropene 5.7 U 5.7 U 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene 5.7 Ū 79-00-5-----1,1,2-Trichloroethane 127-18-4-----Tetrachloroethene 5.7 U 5.7 U 124-48-1----Dibromochloromethane 5.7 U 108-90-7-----Chlorobenzene 5.7 U 100-41-4----Ethylbenzene 5.7 U 75-25-2----Bromoform 5.7 U 79-34-5-----1,1,2,2-Tetrachloroethane 5.7 U

FORM I VOA

FORM 1 C VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS			JIENT SAMPLE NO.
Lab Name: COMPUCHEM	(Contract: 8260B	SB-4-SS-1
Lab Code: LIBRTY	Case No.:	SAS No.: SDG	No.: 9024
Matrix: (soil/water)	SOIL	Lab Sample ID:	902405
Sample wt/vol:	5.0 (g/mL) G	Lab File ID:	902405A90
Level: (low/med)	LOW	Date Received	02/03/06
% Moisture: not dec.	12	Date Analyzed	02/06/06
GC Column: RTX-624	ID: 0.32 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot N	Volume:(uL

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		========	============================	
1	· · ·	-	·	
2				<u>.</u>
5.		-		·
0.		-		
· •			· · · · ·	
		_		
<i></i> ,		_1	· · · · · · · · · · · · · · · · · · ·	·
10.				. <u></u> ,
<u> </u>		_[
±2.				
1J.		_ [· ···-
7.4.		-		
		-		
16				
17. 18. 19.				
19		- [
20		-		·
<u>u</u> <u>u</u> <u>u</u>				
22.		-		
20.			· <u>-</u> ,	
		-		
2J.				
26.				
27.				
28				
29		_		
30		_		
		_		ļ

FORM I VOA-TIC

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

1

Lab Name: COMPUCHEM		Method:	8270C	SB-1SS-1
Lab Code: LIBRTY C	ase No.:	SAS No.	: SDG	No.: 9024
Matrix: (soil/water)	SOIL		Lab Sample ID:	902401
Sample wt/vol:	30.0 (g/mL) G	·	Lab File ID:	902401A64
Level: (low/med)	LOW		Date Received:	02/03/06
% Moisture: 7	decanted: (Y/N)	Ν	Date Extracted	1:02/09/06
Concentrated Extract	Volume: 1000	(uL)	Date Analyzed	02/09/06
Injection Volume:	1 .0(uL)		Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:			

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

62-75-9N-Nitrosodimethylamine	350	υ
108-95-2Phenol		Ŭ
111-44-4Bis(2-chloroethyl)ether		ŭ l
95-57-82-Chlorophenol		Ū
541-73-11,3-Dichlorobenzene	1	Ŭ l
106-46-71,4-Dichlorobenzene		υ
95-50-11,2-Dichlorobenzene		τι I
108-60-12,2'-oxybis(1-Chloropropane)	1	Ū I
621-64-7N-Nitroso-di-N-propylamine		Ŭ
67-72-1Hexachloroethane		Ū I
98-95-3Nitrobenzene	350	U U
78-59-1Isophorone	350	τι I
88-75-52-Nitrophenol	350	Ŭ
105-67-92,4-Dimethylphenol	350	U
111-91-1Bis(2-chloroethoxy)methane	350	Ŭ
120-83-22,4-Dichlorophenol	350	U
120-82-11,2,4-Trichlorobenzene	350	U
91-20-3Naphthalene	350	Ŭ
87-68-3Hexachlorobutadiene	350	υ
59-50-74-Chloro-3-methylphenol	·	ΰ
77-47-4Hexachlorocyclopentadiene	350	U
88-06-22,4,6-Trichlorophenol	350	U
91-58-72-Chloronaphthalene	350	U
131-11-3Dimethylphthalate	350	U
606-20-22,6-Dinitrotoluene	350	U
208-96-8Acenaphthylene	350	U
83-32-9Acenaphthene	350	
51-28-52,4-Dinitrophenol	710	U
100-02-74-Nitrophenol	710	υ υ
121-14-22,4-Dinitrotoluene	· · · ·	1 -
84-66-2Diethylphthalate	350	U
7005-72-2- (Chlorophonul phonel-theory	350	U
7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene	350	U
ob-/s-/riuorene	350	טן
	1	

FORM I SV

8270C

ga.

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

Lab Name: COMPUCHEM	Method: 8	270C	SB-1SS-1
Lab Code: LIBRTY Ca	ase No.: SAS No.:	SDG	No.: 9024
Matrix: (soil/water) S	SOIL	Lab Sample ID:	902401
Sample wt/vol:	30.0 (g/mL) G	Lab File ID:	902401A64
Level: (low/med) I	LOW	Date Received:	02/03/06
% Moisture: 7	decanted: (Y/N) N	Date Extracted	1:02/09/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	02/09/06
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		

COMPOUND

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

F24 F2 1 A (Disting 2 methylphone]	710	TJ
534-52-14,6-Dinitro-2-methylphenol	710	0
86-30-6N-Nitrosodiphenylamine_(1)	350	U
122-66-71,2-Diphenylhydrazine	350	U
101-55-34-Bromophenyl-phenylether	350	U
118-74-1Hexachlorobenzene	350	U
87-86-5Pentachlorophenol	710	υ
85-01-8Phenanthrene	76	J
120-12-7Anthracene	350	U
84-74-2Di-n-butylphthalate	350	U
206-44-0Fluoranthene	120	J
92-87-5Benzidine	710	U
129-00-0Pyrene	130	J
85-68-7Butylbenzylphthalate	350	U
91-94-13,3'-Dichlorobenzidine	350	U
117-81-7bis(2-ethylhexyl)Phthalate	950	
56-55-3Benzo(a)anthracene	- 68	J
218-01-9Chrysene	- 64	J
117-84-0Di-n-octylphthalate	270	ĴĴ
205-99-2Benzo(b)fluoranthene	- 59	J
207-08-9Benzo(k) fluoranthene	- 67	J
50-32-8Benzo(a)pyrene	- 64	J
193-39-5Indeno(1,2,3-cd)pyrene	- 32	JJ
53-70-3Dibenzo(a,h) anthracene	- 350	U
		1~
191-24-2Benzo(g,h,i)perylene	_ 350	U

(1) - Cannot be separated from Diphenylamine

8270C

9.6.

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS CLIENT SAMPLE NO.

- 1

	IVEEL IDENTIFIED CONTOO.	NDB	SB-1SS-1
Lab Name: COMPUCHEM	Method:	8270C	
Lab Code: LIBRTY Cas	se No.: SAS No.	: SDG 1	No.: 9024
Matrix: (soil/water) So	OIL	Lab Sample ID:	902401
Sample wt/vol:	30.0 (g/mL) G	Lab File ID:	902401A64
Level: (low/med) L	WO	Date Received:	02/03/06
% Moisture: 7 d	ecanted: (Y/N) N	Date Extracted	:02/09/06
Concentrated Extract V	olume: 1000(uL)	Date Analyzed:	02/09/06
Injection Volume:	1.0(uL)	Dilution Facto	er: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

÷

Number TICs found: 4

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	UNKNOWN UNKNOWN UNKNOWN CYCLIC OCTAATOMIC SULFUR	2.85 3.20 9.70 17.04	150 5000 250 240	
5 6 7 8 9				
10. 11. 12. 13.				
14. 15. 16. 17. 18.				
19. 20. 21. 22. 23.		-		· · · · · · · · · · · · · · · · · · ·
24 25 26 27.				
28 29 30				

FORM I SV-TIC

FORM 1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

|-----

Lab Name: COMPUCHEM	Meth	od: 8270C	SB-2SS-3
Lab Code: LIBRTY (Case No.: SAS	No.: SDG	No.: 9024
Matrix: (soil/water)	SOIL	Lab Sample ID:	902402
Sample wt/vol:	30.0 (g/mL) G	Lab File ID:	902402A64
Level: (low/med)	LOW	Date Received:	02/03/06
% Moisture: 10	decanted: (Y/N) N	Date Extracted	1:02/09/06
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	02/10/06
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

		I
62-75-9N-Nitrosodimethylamine	370	U
108-95-2Phenol	370	U [
111-44-4Bis(2-chloroethyl)ether	370	U
95-57-82-Chlorophenol	370	U
541-73-11,3-Dichlorobenzene	370	U
106-46-71,4-Dichlorobenzene	370	[U
95-50-11,2-Dichlorobenzene	370	ט
108-60-12,2'-oxybis(1-Chloropropane)	370	ט
621-64-7N-Nitroso-di-N-propylamine	370	U U
67-72-1Hexachloroethane	370	U
98-95-3Nitrobenzene	370	U
78-59-1Isophorone	370	U
88-75-52-Nitrophenol	370	U
105-67-92,4-Dimethvlphenol	370	U
111-91-1Bis(2-chloroethoxy)methane	370	U
120-83-22,4-Dichlorophenol	370	U
120-82-11,2,4-Trichlorobenzene	370	U
91-20-3Naphthalene 87-68-3Hexachlorobutadiene	370	ט
87-68-3Hexachlorobutadiene	370	U
59-50-74-Chloro-3-methylphenol	370	U U
77-47-4Hexachlorocyclopentadiene	370	U 1
88-06-22,4,6-Trichlorophenol	370	U U
91-58-72-Chloronaphthalene	370	U
131-11-3Dimethylphthalate	370	υ
606-20-22,6-Dinitrotoluene	370	ע ו
208-96-8Acenaphthylene	370	Ū
83-32-9Acenaphthene	370	Ū
51-28-52,4-Dinitrophenol	730	Ŭ
100-02-74-Nitrophenol	730	Ŭ
121-14-22,4-Dinitrotoluene	370	Ŭ
84-66-2Diethylphthalate	370	U I
7005-72-34-Chlorophenyl-phenylether	370	υ
86-73-7Fluorene	370	U I
FORM I SV		827

8270C

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

.

CLIENT SAMPLE NO.

SEMIVOLATI	LE ORGANICS ANALYS	SIS DATA SHEET			
Lab Name: COMPUCHEM	М	lethod: 8270C		SB-	-288-3
Lab Code: LIBRTY	Case No.:	SAS No.:	SDG	No.: 9	€024
Matrix: (soil/water)	SOIL	Lab Sa	mple ID:	90240)2
Sample wt/vol:	30.0 (g/mL) G	Lab Fi	le ID:	90240	D2A64
Level: (low/med)	LOW	Date R	leceived:	02/03	3/06
% Moisture: 10	decanted: (Y/N) N	N Date E	xtracted	1:02/09	9/06
Concentrated Extract	Volume: 1000(u	ıL) Date A	malyzed:	02/10)/06
Injection Volume:	1.0(uL)	Diluti	on Facto	r: 1.0)
GPC Cleanup: (Y/N)	N pH:				
CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug/			Q
$\begin{array}{c} 86-30-6\\ 122-66-7\\ 101-55-3\\ 101-55-3\\ 118-74-1\\ 87-86-5\\ 85-01-8\\ 20-12-7\\ 84-74-2\\ 206-44-0\\ 92-87-5\\ 129-00-0\\ 85-68-7\\ 91-94-1\\ 117-81-7\\ 56-55-3\\ 218-01-9\\ 117-84-0\\ 205-99-2\\ 205-99-2\\ 205-99-2\\ 207-08-9\\ 50-32-8\\ 193-39-5\\ 53-70-3\\ 191-24-2\end{array}$	4,6-Dinitro-2-m Nitrosodiphen 1,2-Diphenylhyd 4-Bromophenyl-p Hexachlorobenze Pentachlorophen Phenanthrene Di-n-butylphtha Fluoranthene Benzidine Benzidine Benzidine Benzo(a) anthra Benzo(a) anthra Benzo(b) fluora Benzo(a) pyrene Benzo(a) pyrene Benzo(a,h) an Benzo(g,h,i) pe separated from Di	hylamine_(1) drazine phenylether ene nol alate halate halate halate alate nthene nthene d)pyrene thracene rylene		730 370 370 370 370 370 370 370 370 370	U U U U U U U U U U U U U U U U U U U

FORM I SV

8270C

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS CLIENT SAMPLE NO.

SB-2SS-3

Lab Name: COMPUCHEMMethod: 8270CLab Code: LIBRTYCase No.:Matrix: (soil/water) SOILSAS No.:Matrix: (soil/water) SOILLab SamSample wt/vol:30.0 (g/mL) GLevel: (low/med)LOWLevel: (low/med)LOW% Moisture: 10decanted: (Y/N) NConcentrated Extract Volume:1000(uL)Date ArInjection Volume:1.0(uL)GPC Cleanup:(Y/N) NpH: ____

8270C SDG No.: 9024 Lab Sample ID: 902402 Lab File ID: 902402A64 Date Received: 02/03/06 Date Extracted:02/09/06 Date Analyzed: 02/10/06 Dilution Factor: 1.0

Number TICs found: 5

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

RT EST. CONC. 0 COMPOUND NAME CAS NUMBER _____ =================[2.88 540 J UNKNOWN 1. 45000 J 3.31 UNKNOWN 2. 190 NJ 3. 10544-50-0 CYCLIC OCTAATOMIC SULFUR 17.04 180 J UNKNOWN 19.15 4. 170 J 5. STRAIGHT-CHAIN ALKANE 20.24 6. 7._____ 8. 9. 10. 11. 12. 13. 14.____ 15.____ 16.____ 17.____ 18.____ 19.___ 20.__ 21.__ 22.____ 23.____ 24. 25.__ 26.____ 27._ 28. 29. 30.

FORM I SV-TIC

FORM 1

.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

|----

Lab Name: COMPUCHEM		Method:	8270C	SB-3SS-2
Lab Code: LIBRTY (Case No.:	SAS No.	: SDG	No.: 9024
Matrix: (soil/water)	SOIL		Lab Sample ID:	902403
Sample wt/vol:	30.0 (g/mL) G		Lab File ID:	902403 JA6 4
Level: (low/med)	LOW		Date Received:	02/03/06
% Moisture: 8	decanted: (Y/N)	N	Date Extracted	l:02/09/06
Concentrated Extract	Volume: 1000	(uL)	Date Analyzed:	02/10/06
Injection Volume:	1.0(uL)		Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:			
CAS NO.	COMPOUND		NTRATION UNITS: or ug/Kg) UG/H	•

(ug/L or ug/Kg) UG/KG Q

		· · · · · · · · · · · · · · · · ·	<u> </u>
62-75-9	N-Nitrosodimethylamine	360	U I
108-95-2	Phenol	360	U L
	Bis(2-chloroethyl)ether	360	U
95-57-8	2-Chlorophenol	360	U
541-73-1	1,3-Dichlorobenzene	360	U
106-46-7	1,4-Dichlorobenzene	360	U U
95-50-1	1,2-Dichlorobenzene	360	U
108-60-1	2,2'-oxybis(1-Chloropropane)	360	U
621-64-7	2,2'-oxybis(1-Chloropropane) N-Nitroso-di-N-propylamine	360	U U
67-72-1	Hexachloroethane	360	υ
	Nitrobenzene	360	U
	Isophorone	360	U I
88-75-5	2-Nitrophenol	360	U
105-67-9	2,4-Dimethylphenol	360	ט <u>ד</u>
111-91-1	Bis(2-chloroethoxy)methane	360	U I
120-83-2	2,4-Dichlorophenol	360	U
120-82-1	1,2,4-Trichlorobenzene	360	U
91-20-3	Naphthalene	36	J
87-68-3	Hexachlorobutadiene	360	U U
59-50-7	4-Chloro-3-methylphenol	360	U
77-47-4	Hexachlorocyclopentadiene	360	U
88-06-2	2,4,6-Trichlorophenol	360	U
91-58-7	2-Chloronaphthalene	360	U
131-11-3	Dimethylphthalate	360	ט
606-20-2	2,6-Dinitrotoluene	360	ט
	Acenaphthylene	360	U U
83-32-9	Acenaphthene	130	J
51-28-5	2,4-Dinitrophenol	720	U
100-02-7	4-Nitrophenol	720	ן ז
121-14-2	2,4-Dinitrotoluene	360	U I
84-66-2	Diethylphthalate	360	U
7005-72-3	4-Chlorophenyl-phenylether	360	U
86-73-7	Fluorene	170	J
	FORM I SV	l	 82

FORM I SV

8270C

.

FORM 1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

. –

	TT OROTATOO TANTAT	DIO DIIIII DIIDDI			
Lab Name: COMPUCHEM		Method: 8270C		SB-	-3SS-2
Lab Code: LIBRTY	Case No.:	SAS No.:	\mathbf{SDG}	No.: 9	024
Matrix: (soil/water)	SOIL	Lab Sa	mple ID:	90240)3
Sample wt/vol:	30.0 (g/mL) G	Lab Fi	le ID:	90240)3JA64
Level: (low/med)	LOW	Date R	Received:	02/03	3/06
% Moisture: 8	decanted: (Y/N)	N Date E	xtracted	1:02/09	9/06
Concentrated Extract	Volume: 1000	(uL) Date A	malyzed:	02/10	0/06
Injection Volume:	1.0(uL)	Diluti	on Facto	or: 1.0) .
GPC Cleanup: (Y/N)	N pH:	_			
534-52-1 86-30-6 122-66-7 101-55-3 87-86-5 87-86-5 85-01-8	Butylbenzylph 3,3'-Dichloro bis(2-ethylhe: Benzo(a)anthra	-methylphenol enylamine_(1) ydrazine -phenylether zene enol halate thalate thalate acene halate anthene e cd)pyrene nthracene			Q U U U U U U U U U U U U U U U U U U U

(1) - Cannot be separated from Diphenylamine

FORM I SV

8270C

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

pH:

CLIENT SAMPLE NO.

SB-3SS-2 Method: 8270C Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9024 Lab Sample ID: 902403 Lab File ID: 902403JA64 30.0 (q/mL) G Date Received: 02/03/06 Date Extracted:02/09/06 % Moisture: 8 decanted: (Y/N) N Concentrated Extract Volume: 1000(uL) Date Analyzed: 02/10/06 Dilution Factor: 1.0

Number TICs found: 25

GPC Cleanup: (Y/N) N

Injection Volume: 1.0(uL)

Lab Name: COMPUCHEM

Sample wt/vol:

Matrix: (soil/water) SOIL

Level: (low/med) LOW

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

1. UNKNOWN			Q
2.UNKNOWN3.UNKNOWN ALKANE4.UNKNOWN ALKANE5.UNKNOWN ALKANE5.UNKNOWN6.10544-50-0CYCLIC OCTAATOMIC SULFUR7.UNKNOWN PAH8.UNKNOWN ALKANE9.STRAIGHT-CHAIN ALKANE10.UNKNOWN11.STRAIGHT-CHAIN ALKANE12.UNKNOWN13.UNKNOWN14.STRAIGHT-CHAIN ALKANE15.UNKNOWN PAH16.UNKNOWN17.UNKNOWN18.STRAIGHT-CHAIN ALKANE19.UNKNOWN20.STRAIGHT-CHAIN ALKANE21.UNKNOWN23.UNKNOWN24.UNKNOWN	3.22 5.20 7.10 9.71 16.09 17.09 18.24 20.26 20.77 20.93 21.29 21.62 21.69 21.69 21.84 21.89 22.03 22.27 22.44 22.91 23.09 23.13 23.79 24.47 25.11	9800 830 420 700 280 2400 260 250 380 240 720 410 330 680 550 270 350 460 250 260 390 460 250 270 280	IJ IJIJ IJIJ IJIJ IJIJ IJIJ IJ IJ IJ IJ IJ IJ IJ IJ IJ IJ IJ

FORM I SV-TIC

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

SB-3SS-8 Method: 8270C Lab Name: COMPUCHEM Lab Code: LIBRTY Case No.; SAS No.: SDG No.: 9024 Lab Sample ID: 902404 Matrix: (soil/water) SOIL Sample wt/vol: 30.0 (q/mL) G Lab File ID: 902404A64 Level: (low/med) Date Received: 02/03/06 LOW % Moisture: 10 Date Extracted:02/09/06 decanted: (Y/N) N Concentrated Extract Volume: 1000(uL) Date Analyzed: 02/10/06 Dilution Factor: 1.0 Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS:

CAS NO. COM

COMPOUND

(ug/L or ug/Kg) UG/KG

Q

		<u> </u>
62-75-9N-Nitrosodimethylamine	370	U
108-95-2Phenol	370	U
111-44-4Bis(2-chloroethyl)ether	370	U U
95-57-82-Chlorophenol	370	U U
541-73-11.3-Dichlorobenzene	370	U
106-46-71.4-Dichlorobenzene	370	U
95-50-11,2-Dichlorobenzene	370	U
108-60-12,2'-oxybis(1-Chloropropane) 621-64-7N-Nitroso-di-N-propylamine	370	U U
621-64-7N-Nitroso-di-N-propylamine	370	U
67-72-1Hexachloroethane	370	ן - ט
98-95-3Nitrobenzene	370	U
78-59-1Isophorone	370	υ
88-75-52-Nitrophenol	370	U
105-67-92,4-Dimethylphenol	370	υ
111-91-1Bis(2-chloroethoxy)methane	370	U
120-83-22,4-Dichlorophenol	370	υ
120-82-11,2,4-Trichlorobenzene	370	υ
91-20-3Naphthalene	1000	
87-68-3Hexachlorobutadiene	370	U
59-50-74-Chloro-3-methylphenol	370	U I
77-47-4Hexachlorocyclopentadiene	370	U
88-06-22.4.6-Trichlorophenol	370	υ I
91-58-72-Chloronaphthalene	370	U I
131-11-3Dimethylphthalate	370	U
606-20-22,6-Dinitrotoluene	370	U U
208-96-8Acenaphthylene	370	υ
83-32-9Acenaphthene	370	U I
51-28-52,4-Dinitrophenol	730	U
100-02-74-Nitrophenol	730	υ
121-14-22,4-Dinitrotoluene	370	υ
84-66-2Diethylphthalate	370	ΰ
7005-72-34-Chlorophenyl-phenylether	370	Ū
86-73-7Fluorene	370	Ū
FORM T GV		8

FORM I SV

8270C

FORM 1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

87-86-5----Pentachlorophenol

84-74-2----Di-n-butylphthalate

85-68-7-----Butylbenzylphthalate

56-55-3----Benzo(a)anthracene

117-84-0----Di-n-octylphthalate

50-32-8----Benzo(a)pyrene

205-99-2----Benzo(b)fluoranthene

207-08-9----Benzo(k)fluoranthene

193-39-5-----Indeno (1,2,3-cd) pyrene

53-70-3-----Dibenzo(a,h)anthracene

(1) - Cannot be separated from Diphenylamine

191-24-2----Benzo(g,h,i) perylene

91-94-1-----3,3'-Dichlorobenzidine

117-81-7----bis(2-ethylhexyl)Phthalate

85-01-8----Phenanthrene_

206-44-0----Fluoranthene

120-12-7----Anthracene

92-87-5-----Benzidine

218-01-9----Chrysene

129-00-0----Pyrene

CLIENT SAMPLE NO.

730

110

370

370

730

370

370

370

370

370

370

370

370

370

370

370

370

2900

40

Ü

J

Ű

J

IJ

U

U

U

Ü

Ū

U

U

U

U

U

U

Ũ

U

Lab Name: COMPUCHEM	Method: 8270C
Lab Code: LIBRTY Case No.:	SAS No.: SDG No.: 9024
Matrix: (soil/water) SOIL	Lab Sample ID: 902404
Sample wt/vol: 30.0 (g/mL) G	Lab File ID: 902404A64
Level: (low/med) LOW	Date Received: 02/03/06
<pre>% Moisture: 10 decanted: (Y/N)</pre>	N Date Extracted:02/09/06
Concentrated Extract Volume: 1000	(uL) Date Analyzed: 02/10/06
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	<u> </u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
534-52-14,6-Dinitro-2 86-30-6N-Nitrosodiph 122-66-71,2-Diphenylh 101-55-34-Bromophenyl 118-74-1Hexachloroben	enylamine_(1)

FORM I SV

8270C

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SB-3SS-8

SDG No.: 9024

Lab Name: COMPUCHEM Method: 8270C Lab Code: LIBRTY Case No.: SAS No.: Matrix: (soil/water) SOIL Lab Sample ID: 902404 Sample wt/vol: 30.0 (g/mL) G Lab File ID: 902404A64 Date Received: 02/03/06 Level: (low/med) LOW % Moisture: 10 decanted: (Y/N) N Date Extracted: 02/09/06 Concentrated Extract Volume: 1000(uL) Date Analyzed: 02/10/06 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH:

Number TICs found: 25

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================	***************************************			=====
1.	UNKNOWN	3.21	3200	
2.	UNKNOWN	5.05	1600	J
3. 526-73-8	BENZENE, 1,2,3-TRIMETHYL-	5.54	2900	NJ
4.	UNKNOWN	5.86		
5.	UNKNOWN ALKANE	5.95		J
6.	BRANCHED ALKANE	5.99	1700	
7.	BRANCHED ALKANE	6.08		
8.	UNKNOWN ALKANE	6.17		
9.	UNKNOWN	6.44		J
10.	UNKNOWN ALKANE	6.51		
11. 933-98-2	BENZENE, 1-ETHYL-2,3-DIMETHY	6.81	2700	
12. 933-98-2	BENZENE, 1-ETHYL-2,3-DIMETHY	7.35	3600	
13. 934-80-5	BENZENE, 4-ETHYL-1,2-DIMETHY	7.42	2500	
14.	CYCLIC ALKANE	12.59		
15.	CYCLIC ALKANE	13.65		
16.	UNKNOWN CYCLOALKANE	14.05		
17.	UNKNOWN ALKANE	14.10		
18.	UNKNOWN CYCLOALKANE	14.15		
19.	UNKNOWN	14.23		
20.	UNKNOWN	14.37		
21.	STRAIGHT-CHAIN ALKANE	14.46		
22.	UNKNOWN	14.53		
23.	CYCLIC ALKANE	14.64	4200	
24.	UNKNOWN ALKANE	15.04		J
	CYCLIC OCTAATOMIC SULFUR	17.15	7200	NJ
26				
27.				
, 20.				
29.				}
30				
	FORM T GV_TTC			

FORM I SV-TIC

FORM 1 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

	on oncontracto internation		±	
Lab Name: COMPUCHEM	Ме	thod: 8270C		SB-4-SS-1
Lab Code: LIBRTY	Case No.: S	AS No.:	SDG N	o.: 9024
Matrix: (soil/water)	SOIL	Lab	Sample ID:	902405
Sample wt/vol:	30.0 (g/mL) G	Lab	File ID:	902405A64
Level: (low/med)	LOŴ	Date	Received:	02/03/06
% Moisture: 12	decanted: (Y/N) N	Date	Extracted:	02/09/06
Concentrated Extract	Volume: 1000(uL) Date	Analyzed:	02/10/06
Injection Volume:	1.0(uL)	Dilu	tion Factor	: 1.0
GPC Cleanup: (Y/N)	N pH:			
CAS NO.	COMPOUND		'ION UNITS: g/Kg) UG/KG	; Q

		· 1
62-75-9N-Nitrosodimethylamine	380	
108-95-2Phenol	380	
111-44-4Bis(2-chloroethyl)ether	380	
95-57-82-Chlorophenol	380	υ
541-73-11,3-Dichlorobenzene	380	U
106-46-71,4-Dichlorobenzene	380	U
95-50-11,2-Dichlorobenzene	380	U
108-60-12,2'-oxybis(1-Chloropropane)	380	U
621-64-7N-Nitroso-di-N-propylamine	380	
	380	UUUUU
98-95-3Nitrobenzene	380	
	380	Π
78-59-1Isophorone		
88-75-52-Nitrophenol	380	
105-67-92,4-Dimethylphenol	380	U
111-91-1Bis(2-chloroethoxy)methane	380	U I
120-83-22,4-Dichlorophenol	380	U
120-82-11,2,4-Trichlorobenzene	380	U
91-20-3Naphthalene	380	U
87-68-3Hexachlorobutadiene	380	U
59-50-74-Chloro-3-methylphenol	380	U
77-47-4Hexachlorocyclopentadiene	380	U
88-06-22,4,6-Trichlorophenol	380	U
91-58-72-Chloronaphthalene	380	U
131-11-3Dimethylphthalate	380	U
606-20-22,6-Dinitrotoluene	380	U
208-96-8Acenaphthylene	380	U
83-32-9Acenaphthene	380	U
51-28-52,4-Dinitrophenol	750	U U
100-02-74-Nitrophenol	750	U U
121-14-22,4-Dinitrotoluene	380	U
84-66-2Diethylphthalate	380	ט
7005-72-34-Chlorophenyl-phenylether	380	U
86-73-7Fluorene 1 1 1	380	U
FORM I GU		·

FORM I SV

<u>8</u>270C

	SEMIVOLATILE	FORM		рата	SHEET	CLIE	NT SAMPLE NO.
		Official 200	1111111111111111				SB-4-SS-1
Lab Name:	COMPUCHEM		Metł	nod:	8270C	<u> </u>	

Lab Code: LIBRTY Case No.: Matrix: (soil/water) SOIL 30.0 (g/mL) G Sample wt/vol: Level: (low/med) LOW % Moisture: 12 decanted: (Y/N) N Concentrated Extract Volume: 1000(uL)

GPC Cleanup: (Y/N) N pH: ____

Injection Volume: 1.0(uL)

SAS No.: SDG No.: 9024 Lab Sample ID: 902405 Lab File ID: 902405A64 Date Received: 02/03/06 Date Extracted:02/09/06 Date Analyzed: 02/10/06 Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

		·
534-52-14,6-Dinitro-2-methylphenol	750	π
86-30-6N-Nitrosodiphenylamine (1)	380	Ũ
122-66-71, 2-Diphenylhydrazine	380	Ū
101-55-34-Bromophenyl-phenylether	380	Ū
118-74-1Hexachlorobenzene	380	Ŭ
87-86-5Pentachlorophenol	750	U
85-01-8Phenanthrene	380	U
	380	υ
120-12-7Anthracene	380	1 -
84-74-2Di-n-butylphthalate		U
206-44-0Fluoranthene	380	U
92-87-5Benzidine	750	U
129-00-0Pyrene	380	U
85-68-7Butylbenzylphthalate	380	U
91-94-13,3'-Dichlorobenzidine	380	U
117-81-7bis(2-ethylhexyl)Phthalate	370	J
56-55-3Benzo(a)anthracene	380	U
218-01-9Chrysene	380	U
117-84-0Di-n-octylphthalate	380	U
205-99-2Benzo(b)fluoranthene	380	U
207-08-9Benzo(k)fluoranthene	380	U
50-32-8Benzo (a) pyrene	380	U
193-39-5Indeno (1, 2, 3-cd) pyrene	380	U
53-70-3Dibenzo(a,h)anthracene	380	U
191-24-2Benzo (q, h, i) perylene	380	Ū
· · · · · · · · · · · · · · · · · · ·		
	·	ł

(1) - Cannot be separated from Diphenylamine

FORM I SV

8270C

20

	Έ	ORM	1			
SEMIVOLATILE	ORGAN	IICS	ANALYSI	[S	DATA	SHEET
TENTATI	IVELY	IDEI	VTIFIED	CC	MPOUN	JDS

CLIENT SAMPLE NO.

SB-4-SS-1

Lab Name: COMPUCHEM		Methc
Lab Code: LIBRTY	Case No.:	SAS
Matrix: (soil/water)	SOIL	
Sample wt/vol:	30.0 (g/mL) G	
Level: (low/med)	LOW	
% Moisture: 12	decanted: (Y/N)	Ν
Concentrated Extract	Volume: 1000	(uL)
Injection Volume:	1.0(uL)	
GPC Cleanup: (Y/N)	N pH:	

bd: 8270C No.: SDG No.: 9024 Lab Sample ID: 902405 Lab File ID: 902405A64 Date Received: 02/03/06 Date Extracted:02/09/06 Date Analyzed: 02/10/06 Dilution Factor: 1.0

Number TICs found: 2

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
CAS NUMBER 1. 2. 10544-50-0 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 20.	UNKNOWN CYCLIC OCTAATOMIC SULFUR		EST. CONC. 4800 510 	 J
30	FORM T SV-TTC			

FORM I SV-TIC

INORGANIC ANALYSES DATA SHEET

	EPA SAMPLE NO.
	SB-1SS-1
Contract:	· · · · · · · · · · · · · · · · · · ·
SAS No.:	SDG No.: 9024
Lab Sample ID:	902401
Date Received:	2/3/2006
	Contract: SAS No.: Lab Sample ID:

% Solids: 92.8

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	с	Q	м
7440-36-0	Antimony	0.34	в		P
7440-38-2	Arsenic	0.88	B	*	Р
7440-41-7	Beryllium	0.15	в		Р
7440-43-9	Cadmium	0.02	υ		Р
7440-47-3	Chromium	5.1	1		Р
7440-50-8	Copper	5.1	1	*	₽
7439-92-1	Lead	15.6	1	* <u>E</u>	Р
7439-97-6	Mercury	0.018	υ		CV
7440-02-0	Nickel	2.8	В	1	P
7782-49-2	Selenium	0.36	U	N	P
7440-22-4	Silver	0.05	ען]	P
7440-28-0	Thallium	0.73	В	N	P
7440-66-6	Zinc	330		*	P

Color Before:	BROWN	Clarity Before:	 Texture:	COARSE
Color After:	YELLOW	Clarity After:	 Artifacts:	
Comments:			 	
-			 	
-				

INORGANIC ANALYSES DATA SHEET

					SB-2SS-3
Lab Name:	COMPUCHEM	Con	tract:		
Lab Code:	LIBRTY Cas	e No.:	SAS No.:	SDG No.:	9024
Matrix (soil	/water): <u>SOIL</u>	<u></u>	Lab Sample ID:	902402	<u></u>
Level (low/m	ned): <u>LOW</u>		Date Received:	2/3/2006	

% Solids: 90.5

Concentration Units (ug/L or mg/kg dry weight):

MG/KG

EPA SAMPLE NO.

CAS No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	0.80	в		P
7440-38-2	Arsenic	2.8		*	P
7440-41-7	Beryllium	0.21	в		P
7440-43-9	Cadmium	0.02	U		P
7440-47-3	Chromium	39.0		1	P
7440-50-8	Copper	3.7		*	P
7439-92-1	Lead	3.2		*E	P
7439-97-6	Mercury	0.018	Ju	1	cv
7440-02-0	Nickel	1.8	B	1	P
7782-49-2	Selenium	0.34	ע	N	P P
7440-22-4	Silver	0.09	В	ļ	P
7440-28-0	Thallium	0.41	ע	N	P
7440-66-6	Zinc	10.1		*	P

Color Before:	BROWN	Clarity Before:	 Texture:	COARSE
Color After:	YELLOW	Clarity After:	 Artifacts:	
Comments:			 	
-			 	····
-			 	· · · · · · · · · · · · · · · · · · ·

INORGANIC ANALYSES DATA SHEET

			AGAINE ANALIGES DATA SHEET		EPA SAMPLE NO.
					SB-3SS-2
Lab Name:	COMPUCHEM		Contract:		
Lab Code:	LIBRTY	Case No.:	SAS No.:	SDG No.:	9024
Matrix (soi	l/water):	SOIL	Lab Sample ID:	902403	
Level (low/	med): LC	W	Date Received:	2/3/2006	

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	С	Q	м
7440-36-0	Antimony	0.51	в		P
7440-38-2	Arsenic	3.0	1	*	P
7440-41-7	Beryllium	0.18	В	[P
7440-43-9	Cadmium	0.06	В		P
7440-47-3	Chromium	7.8]	P
7440-50-8	Copper	13.7		*	P
7439-92-1	Lead	21.7		*E	P
7439-97-6	Mercury	0.035			CV
7440-02-0	Nickel	5.9			P
7782-49-2	Selenium	0.34	U	N	P
7440-22-4	Silver	0.05	U		P
7440-28-0	Thallium	0.40	lu 🛛	N	P
7440-66-6	Zinc	35.2	1	*	P

Color Before:	BROWN	Clarity Before:	<u> </u>	Texture:	COARSE
Color After:	YELLOW	Clarity After:	• <u>••••••</u> •••••••••••••••••••••••••••••	Artifacts:	
Comments:					
-					
-			- <u></u>		

[%] Solids: 92.2

INORGANIC ANALYSES DATA SHEET

			EPA SAMPLE NO.
			SB-3SS-8
Lab Name:	COMPUCHEM	Contract:	······································
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.: 9024
Matrix (soi)	1/water): SOIL	Lab Sample ID:	902404
Level (low/n	ned): LOW	Date Received:	2/3/2006

% Solids: 90.3

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration	с	Q	м
7440-36-0	Antimony	0.16	B	1	P
7440-38-2	Arsenic	0.53	јв	*	P
7440-41-7	Beryllium	0.08	В	1	P
7440-43-9	Cadmium	0.02	U	1	Þ
7440-47-3	Chromium	3.8	1	1	P
7440-50-8	Copper	1.6	1	*	P
7439-92-1	Lead	1.2	1	*E	P
7439-97-6	Mercury	0.017	U	1	CV
7440-02-0	Nickel	2.2	В		P
7782-49-2	Selenium	0.35	ט	N	P
7440-22-4	Silver	0.05	ש	[P
7440-28-0	Thallium	0.42	ש	N	P
7440-66-6	Zinc	4.9	1	*	P

Color Before:	BROWN	Clarity Before:	 Texture:	COARSE
Color After:	YELLOW	Clarity After:	 Artifacts:	
Comments:			 	
-			 	
-	<u></u>	·····	 	
_				

INORGANIC ANALYSES DATA SHEET

				EPA SAMPLE NO.
				SB-4-SS-1
Lab Name:	COMPUCHEM	Contract:		
Lab Code:	LIBRTY Case No.:	SAS No.:	SDG No.:	9024
Matrix (soil	L/water): SOIL	Lab Sample ID:	902405	
Level (low/n	ned): LOW	Date Received:	2/3/2006	

% Solids: 87.8

Concentration Units (ug/L or mg/kg dry weight):

CAS No.	Analyte	Concentration		Q	м
7440-36-0	Antimony	0.16	B	¦	P
7440-38-2	Arsenic	0.29	B	*	P
7440-41-7	Beryllium	0.06	В		P
7440-43-9	Cadmium	0.02	ען		P
7440-47-3	Chromium	2.2	1		P
7440-50-8	Copper	1.2	1	*	P
7439-92-1	Lead	1.1	1	*E	P
7439-97-6	Mercury	0.019	ש	<u> </u>	CV
7440-02-0	Nickel	1.1	B		P
7782-49-2	Selenium	0.38	U	N	P
7440-22-4	Silver	0.06	ט	<u> </u>	P
7440-28-0	Thallium	0.44	U	N	P
7440-66-6	Zinc	1.6	В	*	P

Color Before:	BROWN	Clarity Before:	 Texture:	COARSE
Color After:	YELLOW	Clarity After:	 Artifacts:	
Comments:	<u></u>		 	
-			 	
-	······································		 	
-				

1D GC EXTRACTABLE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

SB-1SS-1 Contract: 8081A-8082 Lab Name: COMPUCHEM Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9024 Matrix: (soil/water) SOIL Lab Sample ID: 902401 Sample wt/vol: 30.0 (q/mL) G Lab File ID: % Moisture: 7 decanted: (Y/N) N Date Received: 02/03/06 Extraction: (SepF/Cont/Sonc) SONC Date Extracted:02/04/06 Concentrated Extract Volume: 5000(uL) Date Analyzed: 02/24/06 Dilution Factor: 5.0 Injection Volume: 1.0(uL) Sulfur Cleanup: (Y/N) Y GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

Q

309-00-2	Aldrin	2.3	U
319-85-7		4.5	U
319-84-6		2.3	U
319-86-8		2.3	U
58-89-9	gamma-BHC (Lindane)	2.3	U
72-54-8		73	
72-55-9		- 25	
50-29-3	4,4'-DDT	- 19	
60-57-1		- 4.6	
	Endosulfan I	- 4.5	
	Endosulfan II	9.0	U
	Endosulfan sulfate	- 9.0	U
72-20-8		- 9.0	
7421-93-4	Endrin Aldehyde	- 9.0	U
	Heptachlor '	2.3	U
	Heptachlor Epoxide	2.3	
	Methoxychlor		U
8001-35-2		450	U
12674-11-2	Aroclor-1016	- 170	U
11104-28-2	Aroclor-1221	670	U
11141-16-5	Aroclor-1232	- 170	U
53469-21-9	Aroclor-1242	- 110	U
12672-29-6	Aroclor-1248		Ŭ
	Aroclor-1254	- 110	U
11096-82-5	Aroclor-1260		U
53494-70-5	Endrin Ketone	22	U
5103-74-2	gamma-Chlordane	- 11	ļ
5103-71-9	alpha-Chlordane		1

FORM I PEST

1D

EPA SAMPLE NO.

SB-2SS-3

SDG No.: 9024

GC EXTRACTABLE ORGANICS ANALYSIS DATA SHEET

COMPOUND

Lab Name: COMPUCHEM Lab Code: LIBRTY Case No.: SAS No.:

Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) G

% Moisture: 10 decanted: (Y/N) N Extraction: (SepF/Cont/Sonc) SONC

Concentrated Extract Volume: 5000(uL)

Injection Volume: 1.0(uL)

GPC Cleanup: (Y/N) N pH:

CAS NO.

Contract: 8081A-8082

Lab Sample ID: 902402

Lab File ID: Date Received: 02/03/06

Date Extracted:02/04/06

Date Analyzed: 02/24/06

Dilution Factor: 1.0

Sulfur Cleanup: (Y/N) Y

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

309-00-2Aldrin 319-85-7beta-BHC	0.47	
319-85-7beta-BHC		. U
	0.92	-
319-84-6alpha-BHC	0.47	
319-86-8delta-BHC	0.47	
	0.47	
58-89-9gamma-BHC (Lindane)	22	U
72-54-8		
72-55-94,4'-DDE	3.4	
50-29-34,4'-DDT	3.4	
60-57-1Dieldrin	0.92	
959-98-8Endosulfan I	0.77	
33213-65-9Endosulfan IÏ	1.9	
1031-07-8Endosulfan sulfate	1.9	
72-20-8Endrin	1.9	
7421-93-4Endrin Aldehyde	1.9	U
76-44-8Heptachlor	0.47	U
1024-57-3Heptachlor Epoxide	1.1	Р
72-43-5Methoxychlor	4.6	U
8001-35-2Toxaphene	92	U
12674-11-2Aroclor-1016	34	U
11104-28-2Aroclor-1221	140	U
11141-16-5Aroclor-1232	34	U
53469-21-9Aroclor-1242	23	U
12672-29-6Aroclor-1248	23	Ū
11097-69-1Aroclor-1254	23	Ū
11096-82-5Aroclor-1260	44	-
53494-70-5Endrin Ketone	4.6	Ū
5103-74-2gamma-Chlordane	4.1	P
	5.7	P
5103-71-9alpha-Chlordane	5.7	Ľ

FORM I PEST

1D

GC EXTRACTABLE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

Lab Name: COMPU	CHEM			Contra	act:	8081A-8082	SB-3SS-2	
Lab Code: LIBRT		ase No.:		SAS 1	No.:	SDG	No.: 9024	
Matrix: (soil/w	ater)	SOIL				Lab Sample ID:	902403	
Sample wt/vol:		30.0 (g/	mL) G			Lab File ID:	»	
% Moisture: 8		decanted:	(Y/N)	N		Date Received:	02/03/06	
Extraction: (S	epF/Co	nt/Sonc)	SONC			Date Extracted	d:02/04/06	
Concentrated Ex	tract	Volume:	5000((uL)		Date Analyzed:	02/24/06	
Injection Volum	e:	1.0(uL)				Dilution Facto	or: 1.0	
GPC Cleanup:	(Y/N)	N	рН:			Sulfur Cleanup	D: (Y/N) Y	
				00	۱.T.C.ITTIN I	THE REPORT OF		

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

		······
309-00-2Aldrin	0.46	υ
319-85-7beta-BHC	0.90	υ
319-84-6alpha-BHC	0.46	U
319-86-8delta-BHC	0.46	
58-89-9gamma-BHC (Lindane)		
72-54-84,4'-DDD		5
72-55-94,4'-DDE	4.9	
50-29-34,4'-DDB		U
60-57-1Dieldrin		P
959-98-8Endosulfan I	0.90	τ _J
33213-65-9Endosulfan I	1.8	l U I
1031-07-8Endosulfan sulfate	- 1.8	
72-20-8Endrin	1.8	U
7421-93-4Endrin Aldehyde		
76-44-8Heptachlor	0.42	
1024-57-3Heptachlor Epoxide	0.46	
72-43-5Methoxychlor	5.0	
8001-35-2Toxaphene	90	
12674-11-2Aroclor-1016	34	U
11104-28-2Aroclor-1221	140	U
11141-16-5Aroclor-1232	34	U
53469-21-9Aroclor-1242	23	
12672-29-6Aroclor-1248	23	U
11097-69-1Aroclor-1254	23	ប
11096-82-5Aroclor-1260	34	
53494-70-5Endrin Ketone	4.5	
5103-74-2gamma-Chlordane	3.5	
5103-71-9alpha-Chlordane	6.2	P

FORM I PEST

12

SB-3SS-8 Contract: 8081A-8082 Lab Name: COMPUCHEM Lab Code: LIBRTY Case No.: SAS No.: SDG No.: 9024 Matrix: (soil/water) SOIL Lab Sample ID: 902404 30.0 (g/mL) G Sample wt/vol: Lab File ID: % Moisture: 10 decanted: (Y/N) N Date Received: 02/03/06 Extraction: (SepF/Cont/Sonc) SONC Date Extracted:02/04/06 Concentrated Extract Volume: Date Analyzed: 02/24/06 5000(uL) Dilution Factor: 10.0 Injection Volume: 1.0(uL) GPC Cleanup: (Y/N) N Sulfur Cleanup: (Y/N) Y pH:

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

		·
309-00-2Aldrin	4.7	ττ
319-85-7beta-BHC	9.2	
319-84-6alpha-BHC		
319-86-8delta-BHC		
58-89-9gamma-BHC (Lindane)	4.7	1 -
72-54-84,4'-DDD	19	Ū
72-55-94,4'-DDE	9.2	Ŭ
50-29-34,4'-DDT	74	P
60-57-1Dieldrin	9.1	Ĵ
959-98-8Endosulfan I	9.2	-
33213-65-9Endosulfan II	19	U
1031-07-8Endosulfan sulfate	19	
72-20-8Endrin	19	III II
7421-93-4Endrin Aldehyde	19	U U
76-44-8Heptachlor	4.7	· ·
1024-57-3Heptachlor Epoxide	4.7	Ŭ
72-43-5Methoxychlor	46	1 -
8001-35-2Toxaphene	920	
12674-11-2Aroclor-1016		Ū
11104-28-2Aroclor-1221	1400	Ū
11141-16-5Aroclor-1232		U
53469-21-9Aroclor-1242		Ū
12672-29-6Aroclor-1248	230	U
11097-69-1Aroclor-1254	230	υ
11096-82-5Aroclor-1260	2400	
53494-70-5Endrin Ketone	46	U
5103-74-2gamma-Chlordane	1 õ	-
5103-71-9alpha-Chlordane	4.8	1 -
		-
	·	

FORM I PEST

13

EPA SAMPLE NO.

1-

				SB-4-SS-1
Lab Name: COMPUCHEM		Contract:	8081A-8082	
Lab Code: LIBRTY C	Case No.:	SAS No.:	SDG	No.: 9024
Matrix: (soil/water)	SOIL		Lab Sample ID:	902405
Sample wt/vol:	30.0 (g/mL) G		Lab File ID:	
% Moisture: 12	decanted: (Y/N)	Ν	Date Received:	02/03/06
Extraction: (SepF/Co	ont/Sonc) SONC		Date Extracted	l:02/04/06
Concentrated Extract	Volume: 5000	(uL)	Date Analyzed:	02/24/06
Injection Volume:	1.0(uL)		Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		Sulfur Cleanur): (Y/N) Y
		CONTOURN		

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

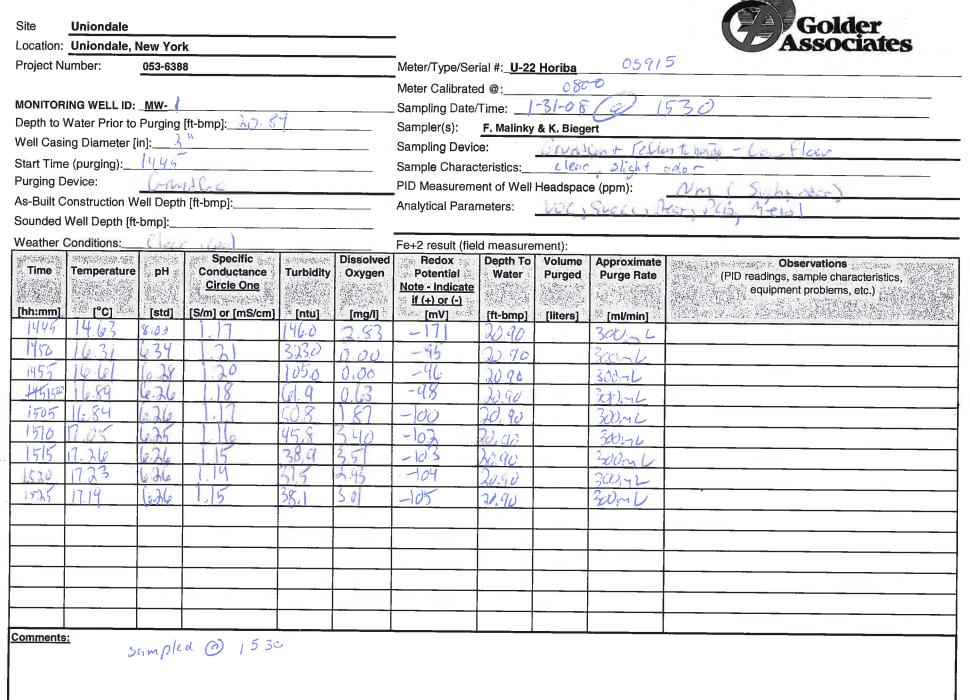
Q

309-00-2Aldrin	0.48 U
319-85-7beta-BHC	0.94 U
319-84-6alpha-BHC	0.48 U
319-86-8delta-BHC	0.48 U
58-89-9gamma-BHC (Lindane)	0.48 U
72-54-84,4'-DDD	1.9 U
72-55-94,4'-DDE	0.94 U
50-29-34,4'-DDT	2.8 U
60-57-1Dieldrin	0.94 U
959-98-8Endosulfan I	0.94 U
33213-65-9Endosulfan II	1.9 U
1031-07-8Endosulfan sulfate	1.9 U
72-20-8Endrin	1,9 U
7421-93-4Endrin Aldehyde	1.9 U
76-44-8Heptachlor	0.48 U
1024-57-3Heptachlor Epoxide	0.48 U
72-43-5Methoxychlor	4.7 U
8001-35-2Toxaphene	94 U
12674-11-2Aroclor-1016	35 U
11104-28-2Aroclor-1221	140 U
11141-16-5Aroclor-1232	35 U
53469-21-9Aroclor-1242	24 U
12672-29-6Aroclor-1248	24 U
11097-69-1Aroclor-1254	24 U
11096-82-5Aroclor-1260	35 U
53494-70-5Endrin Ketone	4.7 U
5103-74-2gamma-Chlordane	0.24 J
5103-71-9alpha-Chlordane	0.94 U

FORM I PEST

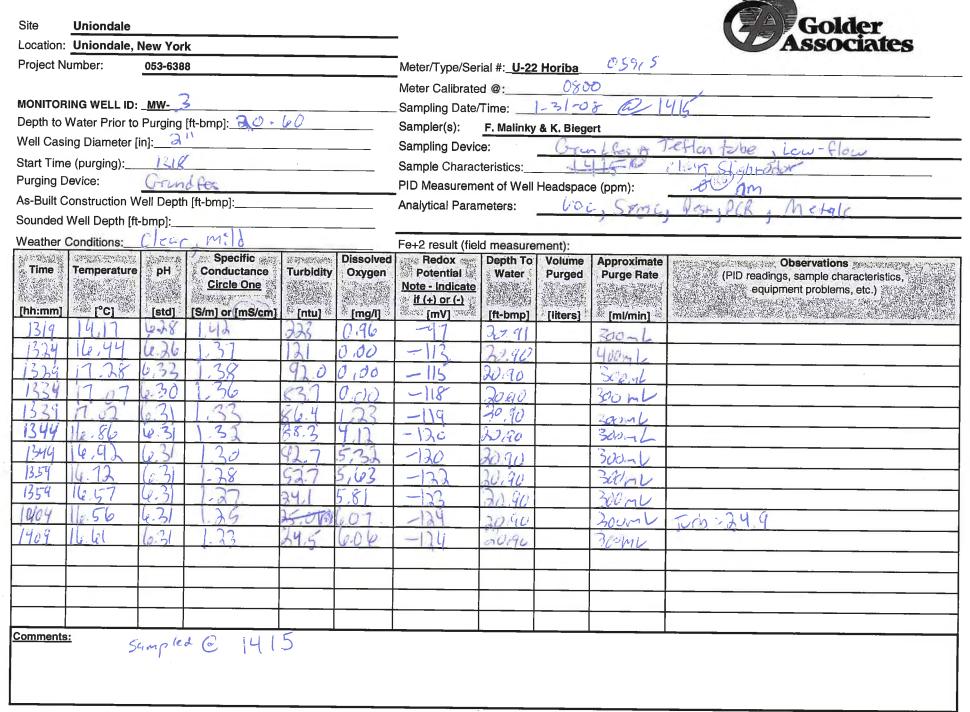
,

ATTACHMENT B

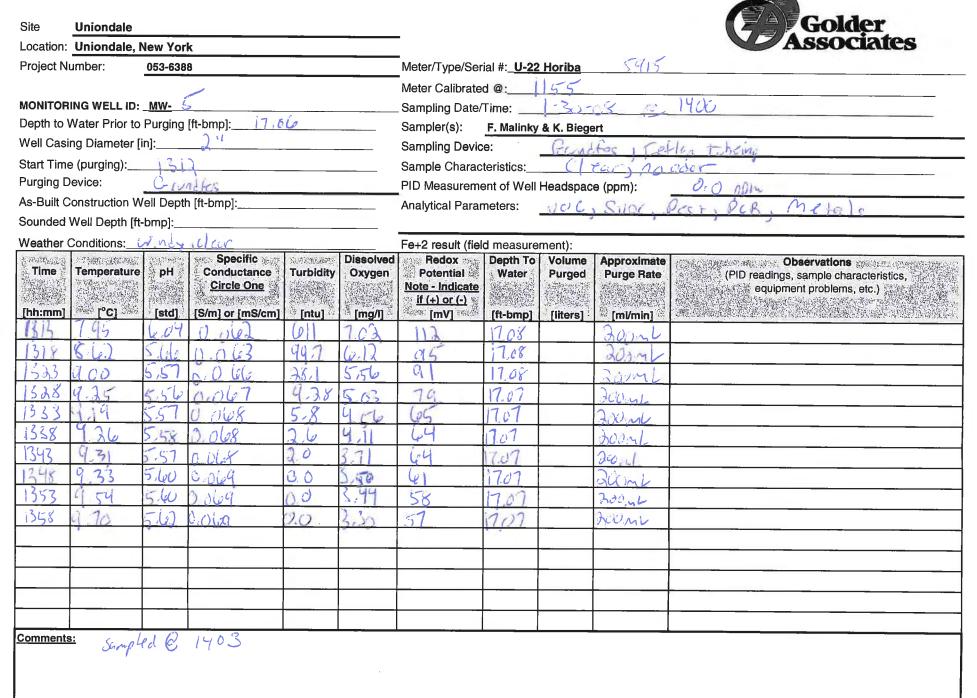

SAMPLING FORMS

	Field Parameters								
Well ID	Date Sampled	Temperature [° C]	pH [std]	Specific Conductance [s/cm]	Turbidity [ntu]	Dissolved Oxygen [mg/l]	Redox Potential [mV]	Depth to Water [ft-btoc]	Notes
MW-1	1/31/08	17.19	6.26	1.15	38.1	3.01	-105	20.84	
MW-2	1/30/08	13.51	5.78	0.228	63.0	2.26	107	16.41	
MW-3	1/31/08	16.61	6.31	1.23	24.5	6.06	-124	20.60	
MW-4	1/30/08	15.08	6.27	0.469	20.9	0.00	-136	20.20	
MW-5	1/30/08	9.70	5.62	0.069	0.0	3.30	57	17.06	
MW-6	1/31/08	16.56	6.42	0.552	7.9	0.00	-43	15.69	
MW-7	1/31/08	16.53	6.50	0.498	34.3	0.00	-128	18.10	
MW-8	1/31/08	16.56	6.01	0.168	31.5	2.65	132	18.76	DUP COLLECTED

Table by: FGM	Date:	02/01/08
Table QC'd by: JML	Date:	02/01/08

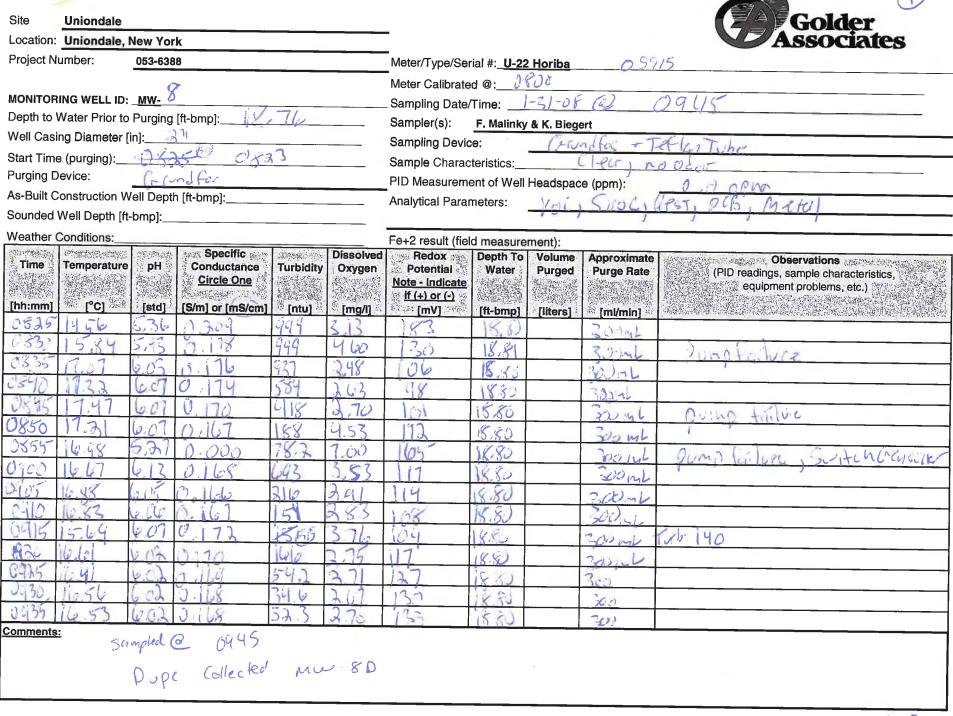

Notes

1. The depth to water was taken prior to purging the well.



Page ___ of ___

Site	Uniondale									Golder
Location:	Uniondale,	New Yor	k			-				Associates
Project N	umber:	053-638	8			- Meter/Type/Ser	ial #: <u>U-22</u>	<u>Horiba</u>	0591.	5
						- Meter Calibrate	1.			
	ING WELL ID:					_Sampling Date/	Time:	-30-0	08 (2)	13.45
	Water Prior to		[ft-bmp]: 16.4	1		Sampler(s):	F. Malinky			
Well Casi	ng Diameter [in]: <u>2"</u>				Sampling Devic		1	- 1	undfor Tefler Thing
	e (purging):	12.0	5			Sample Charac	teristics:	Cl-elir		cll) has less (2014)
Purging D			refer			PID Measureme	ent of Well	Headspac	e (ppm):	0.0 00m
	onstruction W					Analytical Parar		VOG	(VOL)	DCB. PEST. MERCIA
	Well Depth [ft-		49.70			-				
		Net		1		Fe+2 result (fiel				
Time	Temperature	pH	Conductance	Turbidity	Dissolved Oxygen	Redox Potential	Depth To Water	Volume Purged	Approximate Purge Rate	Observations (PID readings, sample characteristics,
		3%	Circle One	Argenter Papping		Note - Indicate				equipment problems, etc.)
[hh:mm]	[°C]	[std]	[S/m] or [mS/cm]	[10 %] [ntu]	[mg/l]	[mV] /	[ft-bmp]	[liters]	[ml/min]	equipment problems, etc.)
1205	1231	5.31	0.300.	53	3.03	142	16.51	0	3 SEMI	A strain of the strain of t
1210	12.76	5.55	0.282	330	2.27	95	16.45		dount	
1215	12:34	515	0.265	180	2.30	92	16.45		BUNK	
1220	1247	5,71	1.255	122	2.37	95	16.45		Joonh	
1235	13210	5.73	1.245	103	2.27	99	16.45		ZOUNL	
1330	1335	5.75	0.236	79.4	3.32	102	6.45		zame	
1235	13,40	5.77	0,230	123	225	104	14-45		Jooml	
1240	12.5	5.78	0.2.28	1.23.0	3.76	107	1645		DOOML	
	12							_		
							_			
Comments	<u> </u>	pled (3 1245					<i>.</i>		
	e and									
-										



Site	Uniondale									Golder							
Location:	Uniondale, I	New Yor	k							Associates							
Project N	umber:	053-638	8			Meter/Type/Serial #: <u>U-22 Horiba</u> 0.591.5											
						Meter Calibrate	d @:	1155									
	ING WELL ID:					Sampling Date/	Time:	-30-	18 01	1509							
	Water Prior to			1.20		Sampler(s):	F. Malinky	& K. Biege	ert)							
	ng Diameter [i					Sampling Devic	e:	(FRM	Star + 1	efter Tube							
	e (purging):					Sample Charac		- i	1265 No) citer							
Purging D			miltos	·			PID Measurement of Well Headspace (ppm):										
	onstruction W		h [ft-bmp]:			Analytical Parameters: NOC SVOK, Dech, PCA, Metale											
	Well Depth [ft-		1 (1						<u></u>]							
weather of	Conditions:	W NI	Specific see	AND REMARKS	Dissolved	Fe+2 result (fiel	d measure Depth To	ment): Volume	Amministration								
Time	Temperature	рН	Conductance	Turbidity	Oxygen	Potential	Water	Purged	Approximate Purge Rate	Observations (PID readings, sample characteristics,							
			Circle One			Note - Indicate				equipment problems, etc.)							
[hh:mm]	[°C]	[std]	[S/m] or [mS/cm]	[ntu]	[mg/l]	[mV]	[ft-bmp]	[liters]	[ml/min]								
1440	12.34	5.89	0.454	101	0.00	-40	19.80		acoml								
1445	13.58	6.32	0,468	92.6	3.10	-110	19.80		300 mL	10mp Failure							
1450	15.10	6.24	01465	35.2	0.00	-123	19.80		300/46								
1455	1512	4-26	0,473	24.2	0.00	-128	14.80		BUDMU								
1500	15,00	627	0.411	213	0.00	-133	19.80		Sound								
1505	15.08	6.37	01419	20,1	0.00	-130	1950		300 me								
								_									
								_									
Comments	- 	and G	1510		<u></u> I												
	Aller	phu C															

Site	Uniondale									Golder							
Location:	Uniondale, N	New Yor	k			-				Associates							
Project N	lumber:	053-638	18			Meter/Type/Serial #:_ <u>U-22 Horiba</u> 05'9/5											
						Meter Calibrated	d @:	0500)								
	RING WELL ID:					_Sampling Date/	Time:	1-31	-08 G	2 1245							
	Water Prior to		[ft-bmp]: 15.60	1		Sampler(s): F. Malinky & K. Biegert											
	ing Diameter [i		<u>2'</u>			Sampling Device	:0:	0.1.	nefos + 1	etter Jube - Low flow							
	e (purging):	120	-			Sample Charact			eorina al	Nor							
Purging D		19-1	andfos			PID Measurement of Well Headspace (ppm):											
	Construction W		n [ft-bmp]:			Analytical Paran	neters:	Vol.	Story DE	2, F. PCh, M-etals							
	Well Depth [ft-	A 1	- (a.l.														
weather (Conditions:	Clear Materia	Specific stor	Salitic State	Dissolved	Fe+2 result (field	d measure Depth To										
Time	Temperature	pH	Conductance	Turbidity	Oxygen	Potential	Water	Volume Purged	Approximate Purge Rate	Observations (PID readings, sample characteristics,							
			Circle One			Note - Indicate				(PID readings, sample characteristics, equipment problems, etc.)							
[hh:mm]		[std]	[S/m] or [mS/cm]	[ntu]		[mV]	[ft-bmp]	[liters]	[ml/min]								
1200	14.71	6.45	0,615	908	2116	-9	15.71		YOOML								
1200	15.61	641	0.546	582	0.00	5	15.71		Ywah								
1210	16.14	642	0.555	99	0.00	-3	15,71		youme								
1215	16.44	(2.4)	0,553	37,	0.00	-76	15.71		YOUML								
1220	1(0,41	442	0,544	19.0	0.00	-24	15,71		Youme								
1275	14.37	le. lh	0.550	10.6	0.00	-31'	15.71		alles -il								
250	16.55	6.42	0,353	8.5	0.0_{\odot}	-35	15.71		Libral.								
1255	14.51	a.uh	0.547	80	50.0	-40	15.11		Hound								
12.40	16.56	10-42	0.552	7.9	0.00	-43	16.71		Youmi								
		<u> '</u>	L	<u> </u>													
	<u>↓</u>	<u> </u>	Ļ]	<u> </u>													
	ļ]	'	ļ]		L]												
	└─── ┤		l	ļ]													
	└─── ┤	<u> </u>	⊢]]		L											
	L	ļ	l		L												
Comments	<u>#</u>	mpled	@ 1245														

Site	Uniondale									Golder								
Location:	Uniondale,	New Yor	k			-				Associates								
Project N	umber:	053-638	8			Meter/Type/Serial #: <u>U-22 Horiba</u> © 5 9 / 5												
						Meter Calibrated @: 0 800												
	ING WELL ID:		100			Sampling Date/Time:31-08 0 125												
	Water Prior to	~		2		Sampler(s):	F. Malinky	& K. Biege	ert									
	ng Diameter [i	1 1.00	<u> </u>		·	Sampling Devic	e:	form.	IG ot	flan June, bay flow								
	e (purging):	1,7171				Sample Characteristics: CICir, Slight occ												
Purging D			Cles			PID Measurement of Well Headspace (ppm):												
As-Built Construction Well Depth [ft-bmp]: Sounded Well Depth [ft-bmp]:						Analytical Paran	neters:	Vair	SVOL.	PCIL, Netals								
		1	0.1					,		-))								
weather	Conditions:	Clear	<u>) (cs)</u> Specific	SUBSECTION	Dissolved	Fe+2 result (field measurement):												
👌 Time 🔕	Temperature	pH	Conductance	Turbidity	Oxygen	Potential	Depth To Water	Volume Purged	Approximate Purge Rate	Observations (PID readings, sample characteristics,								
			Circle One			Note - Indicate		Mare		equipment problems, etc.)								
[hh:mm]	[°C]	[std]	[S/m] or [mS/cm]	[ntu]	[mg/l]	[mV]	[ft-bmp]	[liters]	[ml/min]									
1255	13.76	6.26	0476	9990	3.04	81	18.70		Fort									
1105	16.21	6.39	0,483	760.0	0.35	-99	8.40		yound									
1107	16.46	6.47	0,494	318.0	0.00	-118	18,60		40mL									
1110	16.50	6.44	0 441	97.6	0.00	-122	18.60		Yooml									
1115	16.53	4,50	0,500	47.6	0.00	124	18:00	1	460mi	DTW = 18,60								
1140	16 54	6,49	0,501	38.1	0.00	-124	18.60		400ml									
125	6.49	6.50	0,499	35,4	000	-127	18.60		400ml									
· <u>1130</u>	16,53	6.50	0.498	343	OOO	-128	18,1EC)		Yound									
_																		
							_											
<u>Comments</u>	· Sum pl	ed O	1(35															

Site	Uniondale									Golder ()							
Location:	Uniondale, M	New Yor	k			-				Associates							
Project N	umber:	053-638	/8			Meter/Type/Serial #: U-22 Horiba											
			al			Meter Calibrated @:											
MONITOR	NG WELL ID:	<u>_MW-</u> 👌	5		<u> </u>	_Sampling Date/Time:3_1-01											
			[ft-bmp]:			Sampler(s):	F. Malinky	& K. Biege	ert								
						Sampling Device	e:										
						Sample Charact		L	lean	NO OJOV							
Purging D						PID Measurement of Well Headspace (ppm):											
			h [ft-bmp]:			Analytical Parameters: Uncurside Part PCB Metals											
	Well Depth [ft-	·bmpj:							1 -	1 5 5							
Weather (Conditions:	Min Starting	Specific way		Dissolved	Fe+2 result (field			the second second								
Time	Temperature		Conductance	Turbidity		Potential	Water	Volume Purged	Approximate Purge Rate	Observations (PID readings, sample characteristics.							
			<u>Circle One</u>			Note - Indicate				equipment problems, etc.)							
[hh:mm]	[°C]	[std]	1944	[ntu]	[mg/l]	[mV]	[ft-bmp]	[liters]	[ml/min]	(PID readings, sample characteristics, equipment problems, etc.)							
0940	16:56	0.01	0.168	31.5	2.65	13.7	18.3		Baume	Gapade							
	['	Ļ'															
	ļ!	<u> </u>		<u> </u>	<u> </u>												
	└──── ′	<u> </u>	'		'												
	ļ]	<u> </u>	'	<u> </u>	<u> </u>												
	└─── ┘		ļ!		· _ /												
	⊢]		ļ!		<u> </u>												
	J	<u> </u>	ļ!		L!												
	<u> </u>	\vdash	L!	L]	L!												
	ا	ļ]	l		ļ!												
	ļ	⊢]	ļ		L!												
		l	ļ]		L!												
		L]	L]														
			<u>_</u>														
Comments	÷																

Page $\frac{2}{2}$ of $\frac{2}{2}$

ATTACHMENT C

CHAIN-OF-CUSTODY

Chain of Custody Record

TAL-4142 (0907)

1º

P.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Client		Projor	+ 1400		-		1	112	1.1																
Address Golder ASSOC	Filler	Project Manager Chris Hemilian								,	1	-		D	ate	30.	-0.8		Chain of Custody Number						
Address 200 Century Plury City Mt Lurkl State Project Name and Location (State) UNDA Clothe Drive Order Contract/Purchase Order/Quote No.	5 4C	Telepl	Telephone Number (Area Code)/Fax Number						-			-	Lá	ab Num				+	23	5:	51				
City State Zip	Code	Site C	Site Contact Heak Mal, 1ky Carrier/Wayhill Number								Analysis (Attach list if							3	Pá	ige	1	0	1		
Mt Unrel NT Project Name and Location (State),	08054	Fier	it,	Mal,	ally	Cir	Ø;	L	100	5	1	-	2	A ma	nalys. Dre sp	is (Atta bace is	ach lis need	it if led)	n.,			-			
Uningdelt Downde	I ALY	Carriel	Wayt	ill Nurr	ber	17 N	1			-				-	m	-		*							
Contract/Purchase Order/Quote No.	10/		1			1	<u></u>	nte in		-	-	00	18	2/10	010				1		Sp	ecial	Instr	uction	s/
	÷			Mat	rix		Pre	serva	ers & atives		5	2	1	-	9						Coi	nditio	ns of	Recei	pt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous Sed.	Soil	Unpres. H2SO4	EONH	HCI	NaOH	VaOH	Vac	Som	Pest	PCB	Metho			-		10.17					
MW-2	1-30-08	12.45		X	a su la su l		X	X			X	X	X	V	V	+			-		1 1 -	-	-		
MW-2 MW-5 MW-4 MW-8	1-30-08	1403	e	T			li	1	-		$\frac{1}{1}$		1	11		-	+-+		-	+					
mcu-4	1-30-08	1510		T			11			-	+	$\left \right $	+	++	╎┨╎	-	++						0 7		
	1-31-08	0945		11-							++	$\left \right $	$\left \right $				++			+ +	_			-	
MW-80	1-31-08	09.45					H				++-	\square	+		+ +		+	+	-		191			-	
MW-7	1-31-08	1135					$\left \right $			-					7	-	++	1	-	$\left \right $		-			
mw-6	1-31-08	1245						$\left \right $				+	$\left \right $	-		-			-	197 au	-		-	1	
MW-3	1-31-08	1415									+++	+							+-						
Mw-1	1-31-08	1530					5				H	+			1			-	-			-	2	N.	
TB-1	1-31-08	1530		(Y	Y		+,		+	$\left \right $	V				-							
		112	-++				A,	\sim	-+-	+-	N	V	V	V	V	-		-	+		11				
	1. A.M.						-			-	+			8				-						-	
Possible Hazard Identification			San	ple Dis	posal					1	a-		1								1				
Non-Hazard Flammable Skin Irritant Turn Around Time Required	Poison B	Unknown	1 Per 197 1		To Clien	1 00	Dispos	sal By	Lab		Archi	ve F	or		M	onths	(A fee	may l	be ass	essed	if sample	s are	retaine	1	
24 Hours 48 Hours 7 Days 14 Day	s []. 21 Dave	Othe	-	1	4					pecify)					211113	longer	tian	T mori	(11)	-				
1. Relinquished By		Date 2.1.	<u> </u>	Tin	ne	1.8	eceiv	ed B	,				-	-		- 4	-	17-1	+					10	
2 Holinguished By				-	291-	5				•		Ť	* -							Da	te		Time	1	
	Date		Tim	ne	2. R	eceiv	red By	'	-16-1			13			1.3		-		Da	Date Time		Time	1	-	
3. Relinquished By	Date		Ťim	e	3. Re	eceiv	ed By		1		1	1995		-			-		Da	, Date , Time			-	-	
Comments		:			1	-	1							17	3.1		2						Time		
															- 10	2.2		-	33						

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy