
FINAL SITE CHARACTERIZATION REPORT

Love Cleaners Site (1-30-187) Nassau County, Hempstead, New York

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation

Prepared by:

EA ENGINEERING, P.C. and Its Affiliate EA SCIENCE and TECHNOLOGY

May 2009

Site Characterization Report Love Cleaners Site (1-30-187) Village of Hempstead, Nassau County, New York

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211 (315) 431-4610

Christopher J. Canonica, P.E., Program Manager

Date

EA Engineering, P.C.

28 May 2009

Jennifer Martin Bouchard, Project Manager

Date

EA Science and Technology

May 2009 Revision: FINAL

EA Project No.: 14368.34

CONTENTS

I .I.	O T2	F FIGU	RES	Page	
		F TABI			
1.	INTRODUCTION1				
	1.1 1.2 1.3 1.4 1.5	Site Cl Report Site H	t Background	1 1	
		1.5.1 1.5.2 1.5.3 1.5.4 1.5.5 1.5.6 1.5.7 1.5.8 1.5.9	Topography Geology and Hydrology Wetlands and Floodplain Historical Use Historical Topographic Maps Aerial Photographs Fire Insurance Maps City Directory Listings Environmental Lien Search	4 5 5 6 6	
2.	SITI	E INVE	STIGATION ACTIVITIES	8	
	2.1 Geophysical Survey2.2 Soil Vapor Sampling				
		2.2.1 2.2.2	Soil Vapor Point Installation		
2.3 Sub-Slab Vapor and Soil Sampling		lab Vapor and Soil Sampling	10		
		2.3.1 2.3.2 2.3.3	Sub-Slab Vapor Point Installation Sub-Slab Vapor Sampling Sub-Slab Soil Sampling	11	
	2.4 2.5 2.6	Subsui	e Soil Samplingrface Soil Sampling	12	
		2.6.1	Groundwater Sampler Installation	13	

	2.6.2	Groundwater Sampling	13		
2.7 2.8					
FIEI	LD INV	ESTIGATION RESULTS	15		
3.1 3.2					
	3.2.1 3.2.2				
3.3 3.4 3.5 3.6 3.7	Surface Subsur Ground	e Soil Sample Resultsrface Soil Sample Resultsdwater Sampling Results	16 17 18		
SUN	UMMARY OF FINDINGS AND CONCLUSIONS				
4.1 4.2 4.3 4.4 4.5	Chlorinated Volatile Organic Compounds in Soil				
	4.5.1 4.5.2				
APPENDIX A: ENVIRONMENTAL DATA RESOURCES, INC. DATABASE REPOR					
APPENDIX B: DAILY FIELD REPORTS					
APPENDIX C: GEOPHYSICAL SURVEY REPORT					
APPENDIX D: SOIL BORING SAMPLING LOGS					
APPENDIX G: DATA USABILITY SUMMARY REPORT - PROVIDED ON CD APPENDIX H: LARORATORY ANALYICAL DATA _ FORM Is _ PROVIDED ON CD					
	2.8 FIEI 3.1 3.2 3.3 3.4 3.5 3.6 3.7 SUN 4.1 4.2 4.3 4.4 4.5 PPEN PPEN PPEN PPEN PPEN PPEN PPEN PPE	2.7 Site Su 2.8 Data V FIELD INV 3.1 Geolog 3.2 Soil V 3.2.1 3.2.2 3.3 Sub-Sl 3.4 Surfac 3.5 Subsur 3.6 Groun 3.7 Data U SUMMAR 4.1 Summ 4.2 Chlori 4.3 Groun 4.4 Soil V 4.5 Conclu 4.5.1 4.5.2 PPENDIX A: PPENDIX A: PPENDIX C: PPENDIX E: PPENDIX F: PPENDIX G:	2.8 Data Validation		

LIST OF FIGURES

<u>Number</u>	<u>Title</u>	
1	Site location map.	
2	Soil vapor and sub-slab soil gas sample locations.	
3	Typical temporary soil vapor point construction diagram.	
4	Typical sub-slab vapor sample point construction diagram.	
5	Surface, subsurface, and sub-slab soil sampling locations.	
6	Groundwater sampling locations.	
7	Volatile organic compounds in soil vapor samples.	
8	Volatile organic compounds in sub-slab vapor samples.	
9	Contaminants of concern detected in groundwater samples	

LIST OF TABLES

Number	<u>Title</u>
1	Site characterization analytical program.
2	Summary of volatile organic compounds in soil vapor samples, 18 November 2008.
3	Summary of volatile organic compounds in sub-slab vapor samples, 18 November 2008.
4	Summary of semivolatile organic compounds in sub-slab soil samples, 21 November 2008.
5	Summary of metals in sub-slab soil samples, 21 November 2008.
6	Summary of pesticides in sub-slab soil samples, 21 November 2008.
7	Summary of volatile organic compounds in surface soil samples, 17 November 2008.
8	Summary of semivolatile organic compounds in surface soil samples, 17 November 2008.
9	Summary of metals in surface soil samples, 17 November 2008.
10	Summary of pesticides in surface soil samples, 17 November 2008.
11	Summary of volatile organic compounds in subsurface soil samples, 17-19 November 2008.
12	Summary of semivolatile organic compounds in subsurface soil samples, 17-19 November 2008.
13	Summary of metals in subsurface soil samples, 17-19 November 2008.
14	Summary of pesticides in subsurface soil samples, 17-19 November 2008.
15	Summary of detected volatile organic compounds in groundwater samples, 1-9 December 2008.
16	Summary of target analyte list metals in groundwater samples, 2-3 December 2008.
17	Summary of pesticides in groundwater samples, 2-3 December 2008.

EA Project No.: 14368.34 Revision: FINAL

EA Engineering, P.C. and its Affiliate EA Science and Technology

List of Tables, Page 2 of 2 May 2009

Summary of polychlorinated biphenyls in groundwater samples, 2-3 December 2008.

Page 1 of 22 May 2009

1. INTRODUCTION

1.1 PROJECT BACKGROUND

The New York State Department of Environmental Conservation (NYSDEC) tasked EA Engineering, P.C., and its affiliate EA Science and Technology (EA) to perform a Site Characterization at the Love Cleaners site (NYSDEC Site No. 1-30-187), a potential inactive hazardous waste disposal site. The site consists of a commercial property located at 416 Clinton Street in Hempstead, Nassau County, New York (Figure 1).

The site characterization activities were conducted under the NYSDEC State Superfund Standby Contract (Work Assignment No. D004438-34). EA completed the field investigation program during November and December 2008.

1.2 SITE CHARACTERIZATION OBJECTIVES

The general purpose of a site characterization is to investigate and identify known or potentially suspected impacted areas at a site. The site characterization activities documented in this report were designed to assess groundwater at and down gradient of the site; and to determine if site contamination was impacting the nearby potable well field, evaluate soil vapor conditions at the site, and the potential for soil vapor intrusion both on-site and at surrounding properties, as well as an evaluation of on-site surface and subsurface soil. These objectives were met through the implementation of the field investigation program documented in Section 2 of this report.

1.3 REPORT ORGANIZATION

This site characterization report will discuss the procedures and findings of the field investigation program, summarize the laboratory analytical data; define applicable standards, criteria, and guidance (SCGs) thresholds for the site and determine if those SCGs have been exceeded; and provide a summary of the findings and conclusions for the site.

This site characterization report is separated into four sections. Section 1 provides a summary of the objectives of this site characterization and a summary of historical information reviewed prior to the initiation of the field investigation program. Section 2 provides a summary of the procedures and techniques used to complete the field investigation program. Section 3 presents a discussion of the applicable SCGs for the site, the results of the field investigation program, and the nature and extent of contaminants of concern (COCs) identified during the field investigation program. Section 4 presents a summary of findings for the site characterization and recommendations based on the available data collected.

Additional field investigation documentation, sampling forms, monitoring data, and other auxiliary documentation are provided in the following appendixes:

- Appendix A—Environmental Data Resources, Inc. Database Report Provided on CD
- Appendix B—Daily Field Reports
- Appendix C—Geophysical Survey Report
- Appendix D—Soil Boring Sampling Logs
- Appendix E—Groundwater Sampling Forms
- Appendix F—Soil Vapor and Sub-slab Vapor Sampling Forms
- Appendix G—Data Usability Summary Report (DUSR) Provided on CD
- **Appendix H**—Laboratory Analytical Data Form Is Provided on CD.

1.4 SITE HISTORY

According to information provided by the NYSDEC, the Love Cleaners site has historically operated as a dry cleaner facility with known tetrachloroethene (PCE) contamination in the onsite soils. PCE has not been used on the site since the dry cleaning business closed in 1999. The site sits adjacent to the Clinton Street well field, where four active potable water supply wells are within 550 ft of the site. The nearest wells to the site are Well 6R (125 ft), Well 8 (265 ft), Well 4 (400 ft), and Well 5 (550 ft).

Volatile organic compounds (VOCs) have impacted all of the wells at the Clinton Street well field, with several wells being abandoned or redrilled due to particularly high levels of PCE and trichloroethene (TCE). Water samples from Well 1R detected PCE concentrations as high as 99 $\mu g/L$ and TCE as high as 36 $\mu g/L$, as compared to their respective drinking water standards of 5.0 $\mu g/L$. VOC concentrations in Well 1R have exceeded applicable drinking water standards for 25 years. During the first quarter of 2007, samples collected from Well 5 revealed TCE concentrations of up to 10.1 $\mu g/L$. In addition, elevated concentrations of VOCs have been detected in Wells 4 and 8. Well treatment systems have been installed on the affected supply wells and the drinking water supplied to the distribution system meets all applicable standards.

The site is currently operating as a laundromat under the name "The Laundry Palace." In 1997, while operating under the name of "Love Cleaners," an unpermitted floor drain was discovered and closed under Nassau County's Underground Injection Control protocol. Prior to closing, one soil sample was taken from the drain and found to contain 21 μ g/kg of PCE, 21,000 μ g/kg of #2 fuel oil, and 42,000 μ g/kg of lubricating oil. The detected levels are below current soil cleanup objectives.

Also in 1997, an on-site wastewater treatment machine was observed discharging a mist out of the north window of the facility. A sample of the mist was collected and found to contain 33,000 μ g/L of PCE. In addition, a surface soil sample beneath the window was found to contain 0.78 mg/kg of PCE. A new evaporator was placed on the dry cleaning machine and no further action was required.

1.5 RECORDS REVIEW

A radius map report was obtained from Environmental Data Resources, Inc. (EDR). The EDR

Page 3 of 22 May 2009

report was obtained to supplement information provided by the NYSDEC. An electronic copy of the EDR database report is presented in its entirety in Appendix A.

The subject site is identified within the Dry Cleaners, Resource Conservation and Recovery Act (RCRA)-Generator, Facility Index System/Facility Registry System (FINDS), and New York Manifest databases. These databases are solely for informational purposes and do not indicate that a release has occurred or that the site has been contaminated from a release.

- The Dry Cleaners database is a listing of all registered dry cleaning facilities.
- The RCRA Generator listing for the subject site identifies the subject site as a generator of hazardous waste. The site was listed as a non-generator for 2006, small quantity generator in 1999, and as a large quantity generator in 1994. Small quantity generators generate between 100 and 1,000 kg of hazardous waste per month. Large quantity generators generate over 1,000 kg of hazardous waste per month. A number of minor written violations were reported for the subject site.
- The FINDS database contains both facility information and "pointers" to other sources that contain more detail.
- The New York Manifest is a facility and manifest data document that lists and tracks hazardous waste from the generator through transporters to a transportation, storage, and disposal facility.

The EDR report noted that a south adjacent site was listed as a LTANK site, indicating that overfill of an underground storage tank (UST) at the gas station/repair facility had caused gasoline to flow into the adjacent storm water sewer. Under separate listings, this property was identified as a NY Spills site, involving soil contamination from a waste oil tank and as a UST site containing three 8,000 gallon USTs.

A site located 191 ft to the north of the site, identified as Pit Stop, was listed as a UST site containing three USTs of unknown size. The same site was also listed separately as a FINDS, NY Manifest, RCRA generator, LTANK, and NY Spills site. Limited information was available within the EDR report regarding these listings.

An additional nearby site, Brooks and Chisholm, was listed in the RCRA-Generator, FINDS, and New York Manifest databases.

Another notable site, the Paisley Solvents and Chemicals, Inc. site, was listed on the National Priorities List (NPL), CONSENT list and Record of Decision (ROD), FINDS, Comprehensive Environmental Response, Compensation, and Liability Act Information System (CERCLIS), US ENG CONTROLS, and RCRA-NonGen list databases. It is documented that this site historically distributed a number of chemicals from its facility, including TCE and PCE. Sampling beneath chemical storage tanks indicated contamination of several VOCs. The Paisley Solvents and

EA Project No.: 14368.34

Revision: FINAL Page 4 of 22 May 2009

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Chemicals, Inc. site is located approximately 0.8 miles to the northeast of the subject site at a topographically higher elevation.

- The NPL database, also known as Superfund, is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund program. The source of this database is the United States Environmental Protection Agency (USEPA).
- The CONSENT list is a list of major legal settlements that establish responsibility and standards for cleanup at NPL sites. Released periodically by U.S. District Courts after settlement by parties to litigation matters.
- ROD documents mandate a permanent remedy at an NPL site containing technical and health information to aid the clean-up.
- US ENG CONTROLS is a listing of listing of sites with engineering controls in place.

The location of these sites relative to Love Cleaners and the Clinton Street well field is illustrated in the EDR Radius Report, included electronically in Appendix A.

1.5.1 Topography

The subject site is located on the U.S. Geological Survey (USGS) Lynbrook, New York 7.5-minute topographic quadrangle map, dated 1969 (EDR, 2008¹) (Appendix A).

Elevation at the site is approximately 60 ft above mean sea level. No natural surface water features are noted on the topographic map.

1.5.2 Geology and Hydrology

A review of the geologic map of New York, Lower Hudson Sheet published by the University of the State of New York, the State Education Department, dated 1970, indicates this area is made up of coastal plain deposits which may be up to 2,000-ft thick. The site appears to be located on the Monmouth and Matawan groups within the Magothy formation, which consists of silty clay, glauconitic sandy clay, sand, and gravel units. Based on available data from the nearby Clinton Street well field, unconsolidated deposits underlying the site consist of sand and gravel mixtures up to approximately 65 ft below ground surface (bgs), before clay units occur. Groundwater was encountered at NYSDEC Superfund sites within close proximity to the Love Cleaners site at approximately 25-30 ft bgs.

¹ 2008. Environmental Data Resources.

Page 5 of 22 May 2009

1.5.3 Wetlands and Floodplain

A review of information from the U.S. Department of the Interior National Wetland Inventory Map of Nassau County, New York, indicates no wetland areas are located on the subject site. In addition, the subject site is not located in an area designated as a floodplain on the Flood Insurance Rate Map, Panel 36059C0228F, for the subject site (EDR, 2008) (Appendix A).

1.5.4 Historical Use

The following discussions are presented for the purpose of compiling historical information on the activities that occurred on the subject site.

Based upon a review of historical information as included in the following sections, the subject site appears to have been historically utilized as a residence from initial development until the mid- to late-1960s. The current structure was constructed in 1969 and had been utilized historically as a dry cleaner from that time until at least 1997.

1.5.5 Historical Topographic Maps

Historic USGS topographic maps dated 1900, 1918, 1947, 1967, 1979, and 1994 were reviewed. Copies of the topographic maps are included in the EDR as Appendix A. The results of the review are included in the following table:

Date	Source	416 Clinton Street	Adjacent Properties
1900	USGS	The subject site is not developed.	No adjacent properties or structures appear within the vicinity of the subject site.
1918	USGS	The subject site is not developed.	No adjacent properties or structures appear within the vicinity of the subject site.
1947	USGS	The subject site appears to be developed with a small residential/commercial structure.	Small adjacent residential/commercial structures are shown to the north, west, and south. The well field is shown to the east.
1955	USGS	The subject site is not developed.	No adjacent properties or structures appear within the vicinity of the subject site. The well field is shown to the east.
1967	USGS	The subject site is not developed.	No adjacent properties or structures appear within the vicinity of the subject site. The well field is shown to the east.
1979	USGS	The subject site is not developed.	No adjacent properties or structures appear within the vicinity of the subject site. The well field is shown to the east.
1994	USGS	The subject site is not developed.	No adjacent properties or structures appear within the vicinity of the subject site. The well field is shown to the east.

Page 6 of 22 May 2009

1.5.6 Aerial Photographs

Aerial photographs dated 1957, 1966, 1974, 1980, and 1994 were reviewed. Copies of the aerial photographs are provided in Appendix A. Observations made from the reviewed aerial photographs are presented in the following table:

Date	Source	416 Clinton Street	Adjacent Properties
1957	EDR	Developed with apparent residential structure.	Commercial properties are to the south beyond adjacent roadway, residential property to the north and west beyond adjacent roadway, and public park/well field to the east
1966	EDR	Developed with apparent residential structure.	Commercial properties are to the south beyond adjacent roadway, residential property to the north and west beyond adjacent roadway, and public park/well field to the east.
1976	EDR	Developed with current existing structure.	Commercial properties are to the west and south beyond adjacent roadways, residential property to the north, and public park/well field to the east.
1987	EDR	Developed with current existing structure.	Commercial properties are to the west and south beyond adjacent roadways, residential property to the north, and public park/well field to the east.
1994	EDR	Developed with current existing structure.	Commercial properties are to the west and south beyond adjacent roadways, residential property to the north, and public park/well field to the east.

1.5.7 Fire Insurance Maps

Sanborn Fire Insurance Maps dated 1919, 1925, 1936, 1950, 1961, 1963, and 1970 were reviewed. Copies of the Sanborn Maps are provided in Appendix A. Observations made from the reviewed Fire Insurance Maps are presented in the following table:

Date	Source	416 Clinton Street	Adjacent Properties
1919	EDR	Developed with a series of commercial structures including a pool parlor and tailor.	Commercial structures to the north and south and west beyond adjacent roadways. Undeveloped land to the east.
1925	EDR	Undeveloped	Undeveloped to north, south, east, and west.
1936	EDR	Developed with residential structure.	Residential structures to north and west beyond roadway, vacant land to south, and public park/well field to the east.
1950	EDR	Developed with residential structure.	Residential structures to north and west beyond roadway, vacant land to south, and public park/well field to the east.
1961	EDR	Developed with residential structure and garage.	Filling Station to the south, residential structures to north and west beyond roadway, public park/well field to the east.
1963	EDR	Developed with residential structure and garage.	Filling Station to the south, residential structures to north and west beyond roadway, public park/well field to the east.
1970	EDR	Developed with current existing structure.	Commercial properties are to the west and south beyond adjacent roadways, residential property to the north, and public park/well field to the east.

1.5.8 City Directory Listings

A city directory abstract was obtained from EDR for the subject site and adjacent properties including listings dated 1972, 1977, 1982, 1987, 1992, and 1997 were reviewed. Copies of the abstract report are included in Appendix A. Listings are summarized in the following table:

Date	Source	416 S. Clinton Street	Adjacent Properties of Concern
1972	EDR	Glen Drive In Cleaners	B&M Getty Servicenter (404 S. Clinton)
		Glen French Cleaners	
1977	EDR	Love Cleaners	Tony's Service Station (404 S. Clinton)
1982	EDR	Love Cleaners	Tony's Service Station (404 S. Clinton)
		Valentine Valet Cleaners	
1987	EDR	Love Cleaners	Westbury Metro (404 S. Clinton)
		Apple Maintenance	
1992	EDR	Love Cleaners	RNY Service Station Inc (404 S. Clinton)
1997	EDR	Love Cleaners	RNY Service Station Inc (404 S. Clinton)

1.5.9 Environmental Lien Search

An environmental lien search report was obtained from EDR in order to review transfers of ownership of the subject property for the presence of environmental liens restricting use of the property. No liens were noted within the environmental lien search report. A copy of the report is provided in Appendix A.

EA Project No.: 14368.34 Revision: FINAL Page 8 of 22 May 2009

2. SITE INVESTIGATION ACTIVITIES

Field investigation activities were conducted in accordance with EA's Generic Field Activities Plan (EA, 2007²) and as outlined in the Site Characterization Work Plan (EA, 2008³), with the exception of the deviations specifically identified in the following sections. In accordance with the site specific Health and Safety Plan, health and safety officer responsibilities were assigned to one of the team members throughout the field program to ensure that personnel were protected from both physical and chemical health hazards. Appropriate protective clothing was worn by all field personnel while performing all intrusive activities for protection against contamination and to prevent cross-contamination between sample locations and matrices.

EA's approach to implementing the site characterization included field sampling activities designed to evaluate the presence or absence of COCs at the site, and to determine the concentrations of potential COCs through laboratory analysis. Sampling along the north wall of the building was meant to re-evaluate the area where a dry cleaning machine discharged a mist as referenced in the 1997 Nassau County Inspection report and discussed in Section 1.4 of this report.

The field investigation program was performed between November and December 2008 and included the following activities:

- *Geophysical Survey*—Use of Geophysical survey consisting of Ground Penetrating Radar (GPR) and Electromagnetic (EM) surveys at the site to locate and identify underground utilities, cables, and other anomalies that may be located at the proposed environmental soil boring locations
- Soil Vapor and Sub-slab Vapor Sampling and Analysis—Installation of six soil vapor points and two sub-slab vapor sampling points with subsequent sampling and analysis, as well as soil sampling, screening, and analysis.
- Surface, Subsurface, and Sub-Slab Soil Sampling and Analysis—Soil sampling, screening, collection, and analysis of four surface soil samples from the eastern and northern portions of the site; 10 subsurface soil samples from within soil borings completed at the site; and two locations beneath the concrete slab of the subject structure.
- *In-situ Groundwater Sampling*—Collection of depth-discrete groundwater samples utilizing direct-push hydropunch and slotted-rod technologies; sampling performed at 13 locations surrounding Love Cleaners and within the town of Hempstead well fields at 10 ft depth intervals between 30 and 100 ft bgs.

² 2007. EA Engineering, P.C. and Its Affiliate EA Science and Technology. *Generic Field Activities Plan for Work Assignments*. September.

³ 2008. EA Engineering, P.C. and Its Affiliate EA Science and Technology. *Site Characterization Work Plan, Love Cleaners Site (1-30-187), Hempstead, Nassau County, New York.* October

Page 9 of 22 May 2009

• *Site Survey*—Survey of site sampling locations utilizing a Global Positioning System device for the preparation of a site base map.

Copies of daily field reports are provided in Appendix B. A summary of the site characterization sampling and analytical program including quality assurance sampling and analytical methodologies performed is provided in Table 1.

2.1 GEOPHYSICAL SURVEY

Before beginning the subsurface field investigation activities, a private property geophysical survey was performed by Nova Geophysical Services of Douglaston, New York. The survey was completed on 17 November 2008 to clear locations for the installation of soil borings, soil vapor points, and *in-situ* groundwater sampling points.

GPR and EM surveys were performed at the site to locate and identify underground utilities, cables, and other anomalies that may have been located at the proposed soil boring locations. NOVA cleared and marked all identified anomalies and proposed boring locations at the site. In addition to clearing the proposed installation locations, the underground piping and associated drainage structures were identified in the areas to the west of Love Cleaners. Results of the Geophysical Survey are included in Appendix C.

2.2 SOIL VAPOR SAMPLING

Soil vapor samples were collected from various locations surrounding the site in order to assess potential impacts of solvent related VOCs to subsurface soil vapors and to assess the potential for vapor intrusion of COCs into surrounding structures.

2.2.1 Soil Vapor Point Installation

On 17 November 2008, EA oversaw the installation of six soil vapor sampling points. Land Air Water Environmental Services (LAWES) of Center Moriches, New York utilized a trackmounted Geoprobe® to install the borings to 8 ft bgs. Once the sampling depth was reached, the 6-in. stainless steel sampling screen was attached to a dedicated section of 0.25-in. diameter Teflon tubing and placed in the open borehole. The borehole was then backfilled with sand to a minimum of 6 in. above the screened interval. Granular bentonite pellets were then used to backfill to the ground surface, hydrated concurrently with placement. Soil vapor sample locations are provided as Figure 2. A typical construction diagram for soil vapor points is provided as Figure 3.

2.2.2 Soil Vapor Sampling

The soil vapor points were allowed to set for 24 hours prior to sampling. Helium tracer gas testing was conducted at the sampling locations to ensure that the soil vapor samples were not affected by ambient air being drawn into the Summa® canisters. Soil vapor sampling and helium testing were performed in accordance with the New York State Department of Health (NYSDOH)

May 2009

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. Soil vapor samples were collected using 6 liter Summa® canisters, regulated to collect for a 2-hour sampling interval.

Soil vapor samples were shipped to Con-Test Analytical Laboratory (Con-Test) in East Longmeadow, Massachusetts, which is a NYSDOH-Environmental Laboratory Approval Program (ELAP) certified laboratory. Con-Test analyzed the soil vapor samples for VOCs using USEPA Method TO-15. Upon completion of the sampling, the sample tubing was pulled out of the ground and disposed of off-site. The boring holes located in paved areas were resurfaced with concrete and cold-patch. Soil vapor boring logs are provided in Appendix D, while soil vapor sampling logs are provided in Appendix F.

2.3 SUB-SLAB VAPOR AND SOIL SAMPLING

Sub-slab vapor samples were collected from two locations at the Love Cleaners site. Samples were collected from beneath the sub-slab within the partial basement location along the southern portion of the structure and from the slab-on grade portion along the northern portion of the structure. Samples were collected to assess contamination of COCs within the sub-slab environment and the potential for soil vapor intrusion into the structure. In addition, subsurface soil samples were collected from the soils beneath the building foundation following completion of sub-slab vapor sampling. Sub-slab vapor sample locations are provided as Figure 2. A typical construction diagram for sub-slab vapor points is provided as Figure 4. Sub-slab vapor sampling forms are included in Appendix F.

2.3.1 Sub-slab Vapor Point Installation

The following procedures were followed for the installation of the sub-slab vapor points within the Love Cleaners structure.

- A visual assessment of the condition of the floor was completed. The location of the subslab vapor point was selected to be out of the line of traffic, away from major cracks and other floor penetrations (sumps, pipes, etc.), and a minimum of at least 5 ft from an exterior wall.
- Once the location was determined, a 1/4-in. diameter hole was drilled approximately 2 in. below the concrete floor slab using an electric hammer drill. A 1-in. diameter drill bit was then used to over drill the top 1/2 in. of the borehole to create an annular space for the surface seal.
- Concrete dust and flooring material was swept away from the drill hole and wiped with a dampened towel.
- Teflon-lined polyethylene tubing (1/4-in. outside diameter × 1/8-in. inside diameter and approximately 3-ft long) was then inserted into the borehole drilled in the floor, extending no further than 2 in. below the bottom of the floor slab.

EA Project No.: 14368.34 Revision: FINAL Page 11 of 22

EA Engineering, P.C. and Its Affiliate EA Science and Technology

May 2009

- Melted beeswax was then poured around the tubing at the floor penetration and allowed to set tightly around the tubing.
- A dedicated 60-cm³ syringe was then used to purge approximately 100 ml of air/vapor from the sampling point. The syringe was capped and the purge air released outside the building. The purge air was discharged into a ppbRAE and the associated reading was recorded on the field sampling form.
- A 6-L Summa[®] canister (provided by an independent laboratory) with a vacuum gauge and flow controller were connected to the sample tubing using a compression fitting and placed on the floor adjacent to the sampling point. The canisters were batch certified clean in accordance with USEPA Method TO-15 and under a vacuum pressure of no less than -25 in. of mercury or a replacement canister was used. Flow controllers were regulated to collect at 0.2 L/minute over a 24-hour collection period.
- The serial number of the canister and associated regulator were recorded on the field sampling form. Sample identification including, sample start date/time, vacuum gauge pressure, and required analysis (USEPA Method TO-15) were recorded on the canister identification tag and the field sampling form.
- A digital photograph was taken of the canister setup and the surrounding area.

2.3.2 Sub-Slab Vapor Sampling

Two sub-slab vapor samples were collected from the temporary sub-slab vapor point installed at the Love Cleaners structure on 20 November 2008. One duplicate sample was collected from sample location 1-30-181-SS02 by using a stainless steel "T" to split the flow from the sub-slab environment into two separate Summa® canisters. Following the 24-hour collection period, the canister valves were closed to terminate sample collection. Flow controller ending gauge pressures and sample end times were recorded on the canister identification tags and the field sampling forms. Once sample collection was terminated, the canister and flow controller were removed from the sample tubing and placed into a shipping box. All pertinent sample information was recorded on the associated chain of custody and repackaged into the originating box.

The sub-slab vapor samples were sent to Con-Test for VOC analysis by USEPA Method TO-15. Upon completion of the sampling, the temporary sub-slab sampling point was removed to allow for collection of a sub-slab soil sample.

2.3.3 Sub-Slab Soil Sampling

Sub-slab soil samples were collected from each location following completion of sub-slab vapor sampling. Samples were collected by over drilling the vapor sample hole with a larger diameter drill bit to allow for collection of sub-slab soils by hand or stainless steel spoon. Upon

EA Project No.: 14368.34 Revision: FINAL Page 12 of 22

May 2009

EA Engineering, P.C. and Its Affiliate EA Science and Technology

completion of the sampling, the temporary sub-slab sampling point was removed and sealed with hydraulic cement.

The soil samples were jarred, placed on ice, and sent under standard chain of custody to Mitkem Laboratories (Mitkem) for VOC analysis by USEPA Method 8260B, semivolatile organic compounds (SVOCs) by USEPA Method 8270C, target analyte list (TAL) metals by USEPA Method 6010/7470, and pesticides/polychlorinated biphenyls (PCBs) by USEPA Method 8081/8082. Mitkem is an approved NYSDOH ELAP-certified laboratory.

2.4 SURFACE SOIL SAMPLING

On 17 November 2008, EA collected surface soil samples from four locations to the east and north of the Love Cleaners structure (Figure 5). Samples were collected with stainless steel spoons from the ground surface to a depth of approximately 2 in. bgs and were composited within a stainless steel bowl in order to produce a homogenized mixture. Organic vegetation and any trash or debris present in the surface soils were removed prior to sampling.

Surface soil samples were packed on ice submitted under standard chain of custody to Mitkem of Warwick, Rhode Island, for analysis for VOCs by USEPA Method 8260B, SVOCs by USEPA Method 8270C, TAL metals by USEPA Method 6010/7470, and pesticides/PCBs by USEPA Method 8081/8081 in accordance with the NYSDEC Analytical Services Protocol (ASP).

2.5 SUBSURFACE SOIL SAMPLING

On 17-19 November 2008, EA oversaw the installation of 10 soil borings for the collection of subsurface soil samples (Figure 5). A total of 10 soil borings were installed by LAWES using a track-mounted Geoprobe® and direct-push technologies. Soil borings were installed to assess subsurface conditions relative to historic dry cleaning operations at the site. Soil samples were recovered using a 5-ft macro-core and a dedicated acetate sleeve, and were sampled continuously until reaching the soil-groundwater interface (approximate 15-20 ft bgs). Soil samples were screened at 1 ft intervals using a photoionization detector (PID). Each soil sample was described and logged identifying its geologic characteristics, features, PID readings, and properties. The Unified Soil Classification System was used to characterize the soil samples. Soil boring logs are provided in Appendix C.

Soil samples were collected from locations that illustrated elevated PID readings, or where visual staining or odors were detected. Locations that did not exhibit elevated PID readings, staining, or odors were sampled at the soil-groundwater interface. Subsurface soil samples were packed on ice submitted under standard chain of custody to Mitkem analysis for VOCs USEPA Method 8260B, SVOCs by USEPA Method 8270C, TAL metals by USEPA Method 6010/7470, and pesticides/PCBs by USEPA Method 8081/8082 in accordance with the NYSDEC Analytical Services Protocol (ASP).

May 2009

2.6 IN-SITU GROUNDWATER SAMPLING

Discrete-depth groundwater samples were collected at locations surrounding the site and within the town of Hempstead well field to assess groundwater impacts of COCs at various depths. The *in-situ* sampling was performed at 13 locations and involved collecting samples at depths ranging from 30 to 100 ft bgs (Figure 6). Groundwater samples were collected at 10-ft intervals.

2.6.1 Groundwater Sampler Installation

The drive rods equipped with a hydropunch sampler were advanced to the desired sampling depth intervals and retracted to expose a 5 ft section of 1-in. diameter stainless steel screen. Depending upon depth to water, a peristaltic pump and associated tubing or a length of tubing equipped with a check valve at the bottom was then inserted into the rods to draw groundwater into the tubing. After purging one calculated volume of water from the sample interval, a groundwater sample was collected.

Flowing sands within the subsurface adversely impacted sampling equipment, as the extended stainless steel screen was bent and destroyed during *in-situ* hydropunch sampling. As such, EA, in accordance with the NYSDEC representative, altered the *in-situ* sampling procedure to include use of a 2.5 ft section of slotted rod equipped with a drive point to collect groundwater samples instead of an extended section of stainless steel screen. Samples were collected with the slotted rods from the top of the water table (30 ft bgs) continuously to the final interval of 100 ft bgs. Groundwater sampling procedures, including the use of a peristaltic pump and/or a length of tube equipped with a stop valve remained the same. Groundwater sampling forms are included in Appendix E.

2.6.2 Groundwater Sampling

The depth-discrete groundwater samples were packed in a cooler with ice and shipped under standard chain of custody to Mitkem for VOC analysis by USEPA Method 8260. In addition, selected samples from the 30 ft bgs interval were also submitted for analysis by USEPA Method 8270 for SVOCs, USEPA Method 6010/7470 for TAL metals, and USEPA Method 8081/8082 for pesticides/PCBs.

As a result of chemical reactions between the hydrochloric acid preservative within the VOC vials and sandy material in the groundwater samples, numerous samples collected arrived at the analytical laboratory unable to be analyzed due to the presence of large air bubbles within the sample containers. In order to obtain accurate analytical data, EA, in conjunction with the NYSDEC representative, determined that the first three sample locations (GP-01, GP-06, and GP-07) would be re-sampled. Following completion of the re-sampled locations, *in-situ* sampling was completed with depth-discrete groundwater samples being unpreserved.

EA Project No.: 14368.34

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Revision: FINAL Page 14 of 22 May 2009

2.7 SITE SURVEY

The site soil borings, soil vapor points, and *in-situ* groundwater sampling locations were surveyed using a Global Positioning System device upon completion by EA on 21 November 2008. Horizontal and vertical coordinates for each location were integrated onto a site base map. The horizontal positions were tied in to the North American Datum 1983 and Universal Transverse Mercator Zone 18N coordinate system.

2.8 DATA VALIDATION

Upon receipt of the analytical data packages from Mitkem and Con-Test Laboratories, EA reviewed the packages for completeness and noted any corrective actions. The full data packages and electronic data deliverables (EDDs) were submitted to Environmental Data Services, Inc. for validation.

EA Project No.: 14368.34 Revision: FINAL Page 15 of 22 May 2009

3. FIELD INVESTGATION RESULTS

This section presents the results of the field sampling activities conducted during the site investigation program. Laboratory analytical data were reported using Category B deliverables and the standard EDD; copies of the Form I analytical data sheets are provided in Appendix G. The analytical data collected during the site investigation program were validated by Environmental Data Services, Inc., an independent third party.

SCGs are promulgated requirements and non-promulgated guidance which govern activities that may affect the environment and are widely used at different stages of investigation and remediation of a site. The SCGs applicable for the data set of this site characterization are 6 New York Code of Rules and Regulations (NYCRR) Subpart 375-6 Soil Cleanup Objectives (unrestricted-use), and Division of Water Technical and Operational Guidance Series 1.1.1.

3.1 GEOLOGY AND HYDROLOGY

Based on available data from the nearby Clinton Street well field, unconsolidated deposits underlying the site consist of sand and gravel mixtures up to approximately 65 ft bgs, before clay units occur. Groundwater was encountered at NYSDEC Superfund sites within close proximity to the Love Cleaners site at approximately 25-30 ft bgs. Data collected during field activities at the Love Cleaners site revealed similar geologic and hydrological characteristics.

The majority of the on-site subsurface geology, to a depth of approximately 30 ft bgs, was classified as silty sand and course sand with gravel. Groundwater was encountered with the subsurface soil borings at depths ranging from 14.5 ft bgs (SB-03 and SB-04) and 19 ft bgs (SB-05, SB-06, and SB-09)

3.2 SOIL VAPOR AND SUB-SLAB VAPOR SAMPLING RESULTS

Currently there are no applicable SCGs for soil vapor and/or sub-slab vapor. The vapor analytical data results are used to make decisions based on relative concentration values typically observed in outdoor ambient air conditions.

3.2.1 Soil Vapor Results

Numerous VOCs were detected within the soil vapor samples collected from the site. Solvent related analytes such as PCE and TCE were detected across the site. Concentrations of PCE were detected in all samples, ranging from $51 \,\mu\text{g/m}^3$ (SV-02) to $19,000 \,\mu\text{g/m}^3$ (SV-05). TCE was detected at a concentration of $530 \,\mu\text{g/m}^3$ in sample SV-05. To a lesser extent, cis-1,2-dichloroethene (DCE), a breakdown compound of TCE, was detected in SV-05 ($92 \,\mu\text{g/m}^3$). In addition, several petroleum-related analytes were detected within the soil vapor samples collected at the site. A summary of the VOCs in soil vapor samples collected at the site is shown in Table 2. Figure 7 illustrates the soil vapor VOC results for PCE, TCE, cis-1,2-DCE, 1,1,1-trichloroethane (1,1,1-TCA), carbon tetrachloride, and vinyl chloride.

Page 16 of 22 May 2009

3.2.2 Sub-slab Vapor Results

Two sub-slab vapor samples were collected from beneath the concrete slab within the Love Cleaners structure. These sub-slab vapor samples reported concentrations of PCE and TCE within the sub-slab environment beneath the subject structure. PCE concentrations were detected at concentrations of 4,100 μ g/m³ within SS-02 and 5,700 μ g/m³ within sample SS-01. TCE concentrations ranged from 2.8 μ g/m³ at SS-01 to 21 μ g/m³ at SS-02. A summary of the VOCs detected in the sub-slab vapor samples collected at the site is shown in Table 3. Figure 8 illustrates the soil vapor VOC results for PCE, TCE, *cis*-1,2-DCE, 1,1,1-TCA, carbon tetrachloride, and vinyl chloride.

3.3 SUB-SLAB SOIL SAMPLE RESULTS

Following completion of sub-slab vapor sampling, soil samples were collected from beneath the concrete slab and submitted for analysis of VOCs, SVOCs, TAL metals, and pesticides/PCBs.

No VOCs or PCBs were detected above the laboratory method detection limits within the sub-slab soil samples submitted for analysis. No SVOCs were detected above their corresponding SCGs. A summary of the SVOCs detected within the sub-slab soil samples collected at the site is shown in Table 4.

Four TAL metals were detected above the NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use) within the sub-slab soil samples submitted for analysis. Copper was detected above its SCG of 50 mg/kg within both sub-slab samples. Zinc was detected above its SCG of 109 mg/kg within both sub-slab samples. In addition, lead and silver were detected above their applicable SCGs within the basement sub-slab sample. A summary of the TAL metals detected within the sub-slab soil samples collected at the site is shown in Table 5.

One pesticide analyte was detected at levels above the NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use) within the sub-slab soil samples submitted for analysis. 4,4'-Dichlorodiphenyldichloroethylene was detected above its SCG of 0.0033 mg/kg within the slab on grade sample at a level of 0.27 mg/kg. A summary of the pesticides detected within the sub-slab soil samples collected at the site is shown in Table 6.

3.4 SURFACE SOIL SAMPLE RESULTS

Surface soil samples were collected from three locations to the east of the Love Cleaners structure and one location to the north of the structure. Samples were submitted for analysis of VOCs, SVOCs, TAL metals, pesticides, and PCBs.

No VOCs were detected above the laboratory method detection limits within the surface soil samples submitted for analysis. Napthalene was detected with the Rinsate Blank submitted with the samples, but was not detected within any surface soil samples. A summary of the VOCs detected within the surface soil samples collected at the site is shown in Table 7.

EA Project No.: 14368.34 Revision: FINAL Page 17 of 22

May 2009

EA Engineering, P.C. and Its Affiliate EA Science and Technology

No SVOCs were detected above the NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use) within the surface soil samples submitted for analysis. Low levels of some analytes were detected at levels well below corresponding guidance values. A summary of the SVOCs detected within the surface soil samples collected at the site is shown in Table 8.

Five TAL metals were detected above the NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use) within the surface soil samples submitted for analysis. Arsenic was detected slightly above its corresponding SCG of 13 mg/kg at SS-03 (13.50 mg/kg) and at SS-04 (13.20 mg/kg). Copper was detected slightly above its corresponding SCG of 50 mg/kg at sample SS-04 (57.6 mg/kg). Lead was detected above its corresponding SCG of 63 mg/kg at three sample locations, ranging from 124 mg/kg (SS-03) to 246 mg/kg (SS-04). Mercury was detected slightly above its corresponding SCG of 0.18 mg/kg at SS-03 (0.190 mg/kg) and at SS-04 (0.27 mg/kg). Zinc was detected above its corresponding SCG of 109 mg/kg at all four sample locations, ranging from 110 mg/kg (SS-02) to 307 mg/kg (SS-04). A summary of the TAL metals detected within the surface soil samples collected at the site is shown in Table 9.

Three pesticides were detected above the NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use) within the surface soil samples submitted for analysis. 4,4'-dichlorodiphenyldichloroethylene was detected slightly above it corresponding SCG of 0.0033 mg/kg at SS-02 (0.00450 mg/kg) and SS-04 (0.00430 mg/kg). 4,4'-dichlorodiphenyltrichloroethane was detected above its corresponding SCG of 0.0033 mg/kg within all surface soil samples at levels ranging from 0.0090 mg/kg (SS-03) to 0.0450 mg/kg (SS-04). Dieldrin was detected above its corresponding SCG of 0.005 mg/kg within SS-04 (0.0110 mg/kg). A summary of the pesticides detected within the surface soil samples collected at the site is shown in Table 10.

No PCBs were detected above the laboratory method detection limits within the surface soil samples submitted for analysis.

3.5 SUBSURFACE SOIL SAMPLE RESULTS

Subsurface soil samples were collected from 10 locations onsite. Samples were collected from intervals as determined by PID readings, staining and odors, and general depth relative to the soil groundwater interface. Samples were submitted for analysis of VOCs, SVOCs, TAL metals, pesticides, and PCBs.

No VOCs were detected above the NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use) within the surface soil samples submitted for analysis. A summary of the VOCs detected within the surface soil samples collected at the site is shown in Table 11.

No SVOCs were detected above the NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use) within the subsurface soil samples submitted for analysis. Low levels of some analytes were detected at levels well below corresponding SCGs. A summary of the SVOCs detected within the surface soil samples collected at the site is shown in Table 12.

May 2009

No PCBs were detected above the laboratory method detection limits within the subsurface soil samples submitted for analysis.

One TAL metal was detected above the NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use) within the subsurface soil samples submitted for analysis. Lead was detected slightly above its corresponding SCG of 63 mg/kg at SB-02 (80 mg/kg). This sample was collected from just above the soil groundwater interface. Several other TAL metals were detected at levels below their corresponding SCG. A summary of the TAL metals detected within the subsurface soil samples collected at the site is shown in Table 13.

No pesticide analytes were detected above the NYCRR Subpart 375-6 Soil Cleanup Objectives (unrestricted-use) within the subsurface soil samples submitted for analysis. Low levels of some analytes were detected at levels well below corresponding SCGs. A summary of the pesticides detected within the surface soil samples collected at the site is shown in Table 14.

3.6 GROUNDWATER SAMPLING RESULTS

Groundwater samples were collected from 13 locations along the boundaries of the Love Cleaners site and within the Clinton Street well field in order to determine if COCs, including PCE and TCE, were adversely impacting water quality for the public supply wells located near the site. Samples were collected at each location for VOCs from discrete depths ranging from 30 to 100 ft bgs, and from five locations for SVOCs, TAL metals, pesticides, and PCBs from 30 ft bgs only.

Two VOCs were detected at levels above their applicable SCG. Acetone was detected above the SCG of 50 μ g/L at GP01 within the 90 ft bgs discrete interval at a level of 110 μ g/L. Napthalene was detected above the SCG of 10 μ g/L at GP02 within the 100 ft bgs discrete interval at a level of 12 μ g/L. No other VOCs were detected at levels above Technical and Operational Guidance Series 1.1.1 NYSDEC Ambient Water Quality Standards (AWQS) for Class GA waters.

Contaminants of concern at the site, including PCE and TCE, were detected at low concentrations at select sample locations and depths.

- PCE was detected at GP02 at levels ranging from 1.1 μg/L (90 ft bgs) to 3.5 μg/L (100 ft bgs). PCE was also detected at GP04 at levels ranging from 1 μg/L (90 ft bgs) to 2.1 μg/L (80 ft bgs). Additionally, PCE was detected at GP09 within the 30 ft (3.9 μg/L) and 50 ft (2.8 μg/L) discrete sample intervals.
- TCE was detected at GP13 only, at levels ranging from 1.2 μ g/L (100 ft bgs) to 1.4 μ g/L (90 ft bgs).

Figure 9 illustrates the COC VOC detections at various discrete sampling depths at the site. A summary of the VOCs detected within the groundwater samples collected at the site is shown in Table 15.

EA Project No.: 14368.34 Revision: FINAL Page 19 of 22

May 2009

EA Engineering, P.C. and Its Affiliate EA Science and Technology

No SVOCs were detected above the laboratory method detection limits within the groundwater samples submitted for analysis

Several TAL metals were detected above their applicable SCGs within the groundwater samples collected from the 30 ft bgs discrete interval. Antimony was detected above its AWQS value of 3 μ g/L at GP03 (5.6 μ g/L). Iron was detected above its AWQS value of 300 μ g/L at three locations, ranging from 519 μ g/L at GP-08 to 2,680 μ g/L at GP-10. Mercury was detected slightly above its AWQS value of 0.7 μ g/L at GP-08 (0.82650 μ g/L). Manganese was detected above its AWQS value of 300 μ g/L at each sample location, with results ranging from 1,900 μ g/L (GP-05) to 3,880 μ g/L (GP-02). Sodium was detected above its AWQS value of 20,000 μ g/L at each sample location, with results ranging from 25,000 μ g/L (GP-05) to 31,300 μ g/L (GP-03). Thallium was detected above its AWQS value of 0.5 μ g/L at two locations, including detections of 9.5 μ g/L at GP-02 and 8.2 μ g/L at GP-03. A summary of the TAL metals detected within the groundwater samples collected at the site is shown in Table 16.

One pesticide was detected above its applicable SCG within the groundwater samples collected from the 30 ft bgs discrete interval. Dieldrin was detected at two sample locations ranging from 0.110 μ g/L (GP-03) to 0.140 μ g/L (GP-05). The AWQS standard for dieldrin is 0.004 μ g/L. It should also be noted that dieldrin was detected within duplicate sample GP-DUP03 at a level of 0.10 μ g/L. The duplicate sample was collected as a split along with sample GP-03. A summary of the pesticides detected within the groundwater samples collected at the site is shown in Table 17.

No PCBs were detected at levels above their corresponding SCGs within the groundwater samples collected from the 30 ft bgs discrete interval. Arochlor 1248 was detected at GP-05 at a level of 1 μ g/L, well below the AWQS value of 5 μ g/L. A summary of the PCBs detected within the groundwater samples collected at the site is shown in Table 18.

3.7 DATA USABILITY SUMMARY

All analytical data results were submitted to Environmental Data Services, Inc. for validation. This validation included a review of pertinent quality assurance/quality control (QA/QC) data such as sample extraction and analysis, holding times, calibration, a review of laboratory blanks and QA/QC sample results, and a review of the analytical case narrative. A DUSR was prepared which includes a compliance chart, a list of samples included in each sample delivery group, and recalculations of sample results. Nonconforming QA/QC results were evaluated with respect to their implications for data reliability and usability, and data results were flagged accordingly on the results sheets. These qualifiers were entered into the site-specific database and appear in the summary tables presented in this report. DUSRs for the analytical data packages are provided in Appendix G.

In addition, the laboratory followed the QA/QC holding time and reporting requirements as defined in the NYSDEC ASP of June 2000.

EA Project No.: 14368.34 Revision: FINAL Page 20 of 22 May 2009

4. SUMMARY OF FINDINGS AND CONCLUSIONS

This chapter provides a summary of the conditions at the Love Cleaners site, as determined by the completion of the site characterization activities.

4.1 SUMMARY OF IMPACTS AT LOVE CLEANERS SITE

The following sections briefly summarize the environmental impacts at the Love Cleaners site. The impacts associated with the evaluated environmental media are based on analytical results and their comparison with the appropriate SCGs. COCs observed during the site characterization activities consist of chlorinated VOCs (CVOCs), namely PCE (historically used at dry cleaning operations), and its associated breakdown compounds TCE and *cis*-1,2-DCE.

4.2 CHLORINATED VOLATILE ORGANIC COMPOUNDS IN SOIL

Subsurface soil samples were collected from 10 locations at the site. Surface soil samples were collected from four locations surrounding the Love Cleaners structure. Sub-slab soil samples were collected from two locations beneath the foundation of the Love Cleaners structure.

Analytical results indicate that no CVOCs were detected within the soil samples collected during this site characterization. These results are consistent with the low-level detections encountered in surface soil and soil within the former floor drain which were analyzed during a remedial action initiated by Nassau County in 1997. Therefore, surface, subsurface, and sub-slab soil are not expected to pose an immediate or potential exposure risk to either human health or the environment.

4.3 GROUNDWATER QUALITY

Analytical results from the groundwater sampling program completed under this site characterization did not reveal concentrations of CVOCs in groundwater above the applicable SCGs.

Low levels of PCE were detected at GP-09, located immediately south of the Love Cleaners site. PCE was detected at relatively shallow depths of 30 and 50 ft bgs, which would indicate the potential for minimal groundwater contamination from the historic dry cleaning operations at the site. However, neither of these detections were above SCGs; therefore, they are not considered potential impacts to human health or the environment.

PCE and TCE were detected at levels below applicable SCGs at three additional locations. PCE was detected at levels below its SCG of 5 μ g/L from 90 to 100 ft bgs within GP-02. PCE was also detected below its SCG from 70 to 100 ft bgs within GP03. TCE was detected below its SCG of 5 μ g/L from 80 to 100 ft bgs.

Page 21 of 22 May 2009

The levels encountered within the deeper sample intervals suggests that the groundwater impacts to the Clinton Street well field are likely not a result of contamination from the Love Cleaners Site. The clay unit observed within the boring logs for selected wells at the Clinton Street well field indicated a clay unit between 60 and 65 ft bgs, which would likely result in higher CVOC readings just above this layer. Because PCE and TCE were not detected at this interval, it is likely that the low level detections deeper in the aquifer are a result of contamination other than the Love Cleaners site.

4.4 SOIL VAPOR AND SUB-SLAB VAPOR ASSESSMENT

CVOCs have been identified within soil vapor in areas surrounding Love Cleaners. PCE and TCE were detected in all of the sub-slab samples collected from beneath the Love Cleaners building foundation.

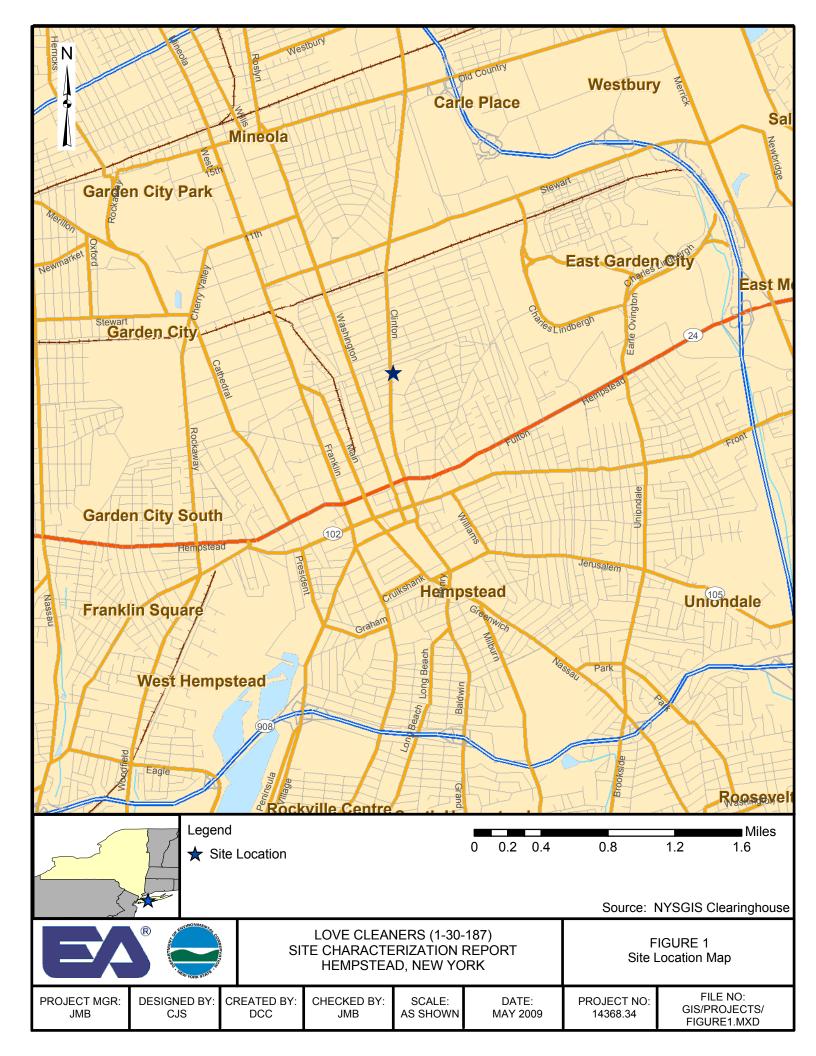
PCE was also detected within all six soil vapor samples, while TCE was detected within five samples, and cis-1,2-DCE at SV-05 only. PCE and TCE were detected at lower concentrations in soil vapor sample SV-01, which was collected east of the site and away from suspected contamination areas. PCE and TCE were detected at their highest concentrations of 19,000 μ g/m³ and 530 μ g/m³, respectively, at sample SV-05.

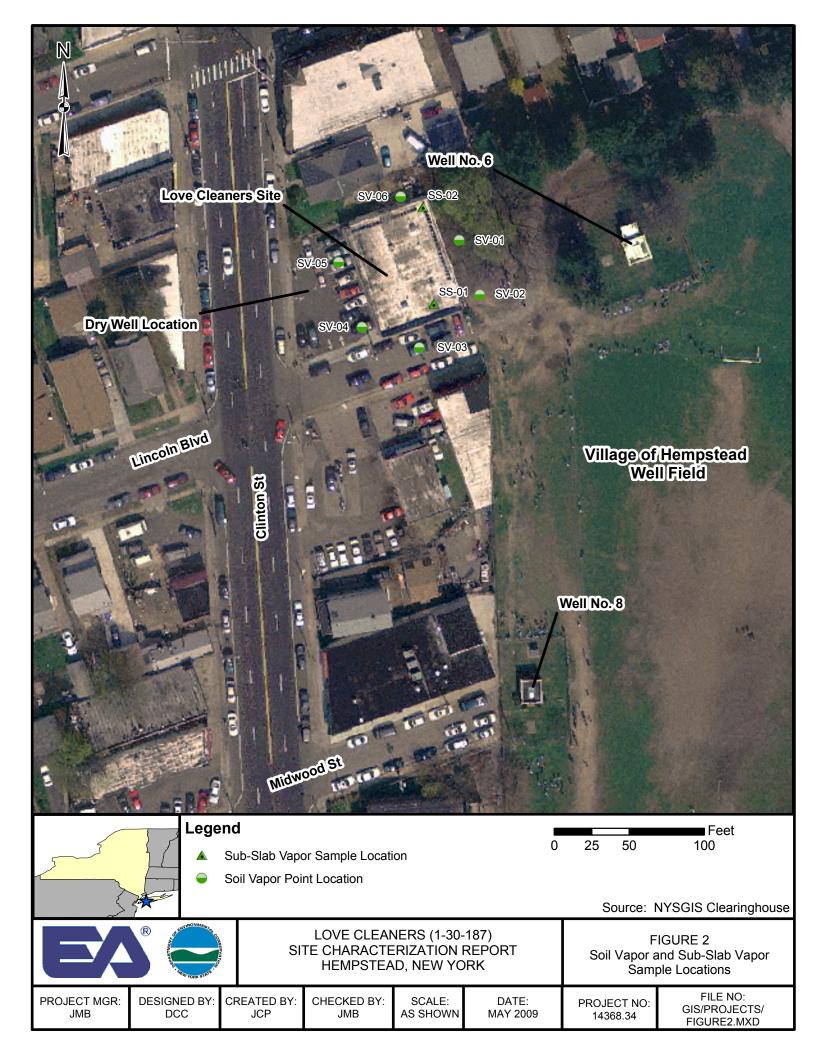
4.5 CONCLUSIONS AND RECOMMENDATIONS

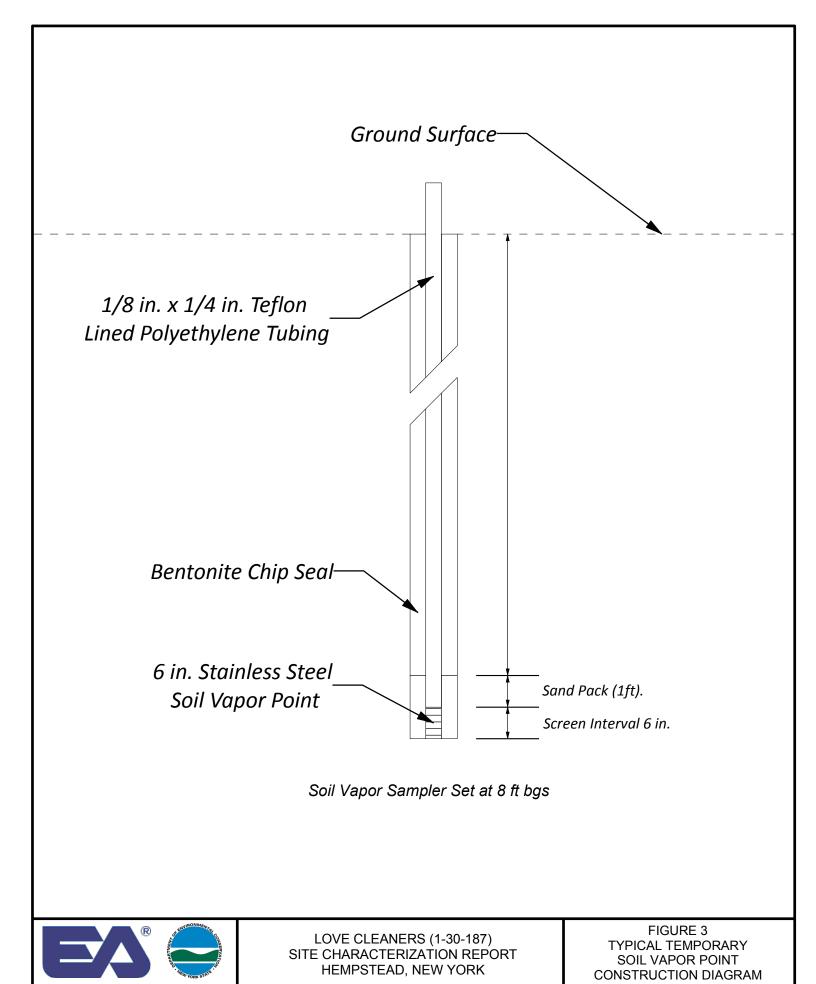
Based on the site data collected during this site characterization, EA concludes the following regarding COC impacts and the necessity for further investigation.

4.5.1 Groundwater

Only slight impacts were observed to groundwater quality at the site. Of the detections of COCs within groundwater, there is no distinguishable pattern for impact. No source area was detected within the soil samples analyzed as part of this site characterization. As a result, it appears that no further action is required regarding the potential for groundwater at the Love Cleaners site to impact water quality at the Clinton Street well field.

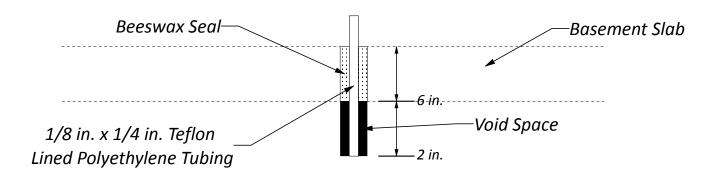

4.5.2 Soil Vapor


The concentrations of CVOCs including PCE and TCE observed in the soil vapor adjacent to and beneath the Love Cleaners structure are significant when compared with the NYSDOH action levels for vapor intrusion. However, as previously noted, no source area has been identified at the site based on the groundwater and soil samples analyzed as part of this site characterization. In order to fully assess human exposures to COCs in indoor air, a complete vapor intrusion evaluation should be performed in accordance with NYSDOH Guidance.


EA Project No.: 14368.34

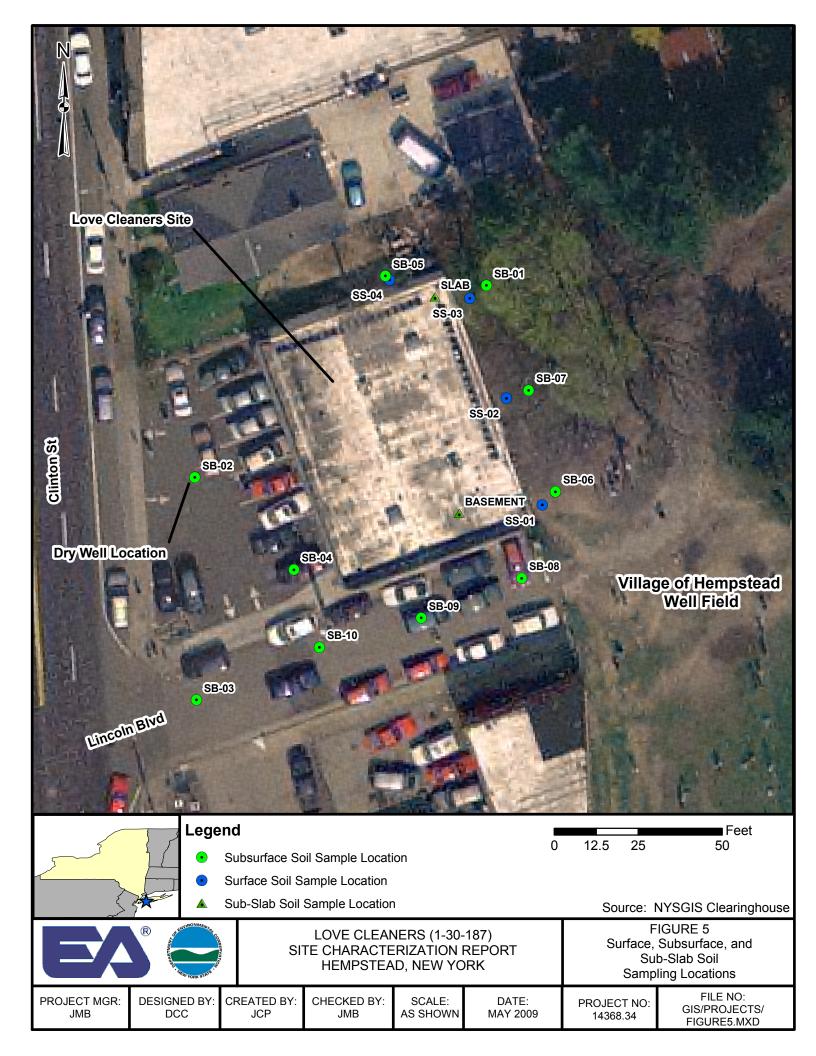
EA Engineering, P.C. and Its Affiliate EA Science and Technology Revision: FINAL Page 22 of 22 May 2009

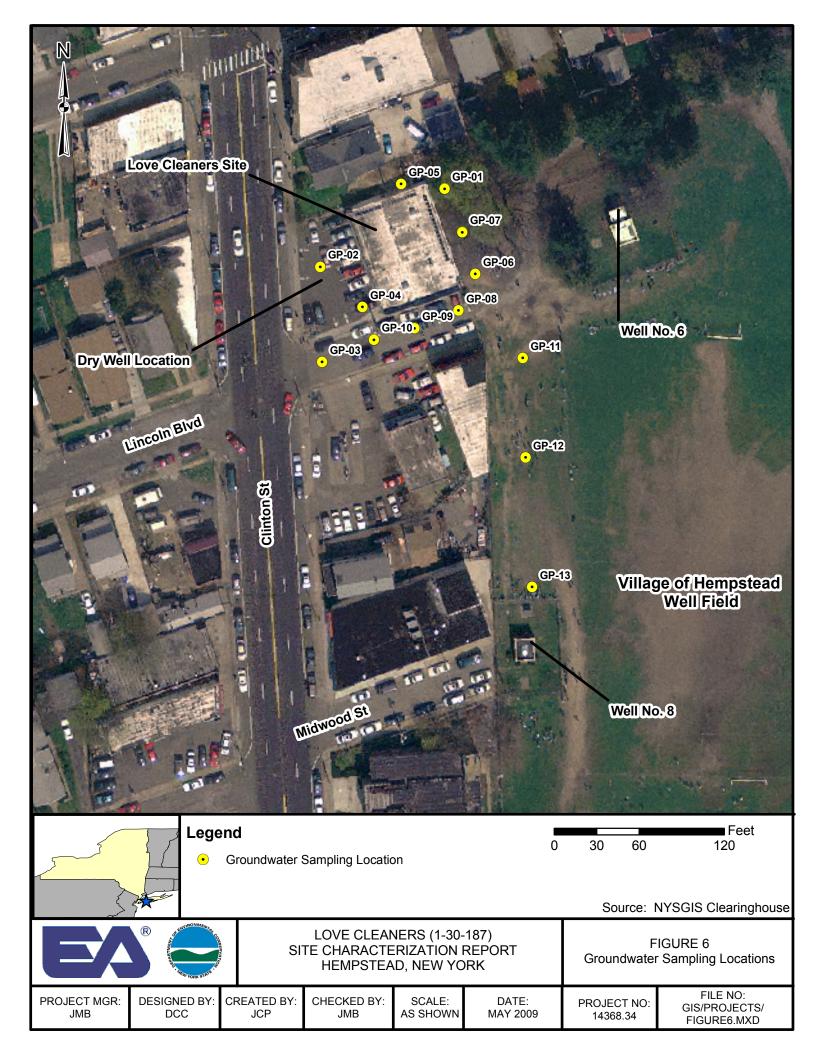
Potential exists for off-site migration of soil vapor to the north, south, and west of Love Cleaners. As such, EA further recommends that soil vapor samples be collected further to the south and west of the site to evaluate the potential for further off-site migration and vapor intrusion in the residential and commercial structures located to the southwest of Love Cleaners. In addition, EA recommends a soil vapor intrusion investigation of the private residence to the north of the site, as COCs, including PCE, were found at elevated levels within the soil vapor sample nearest to the residence.

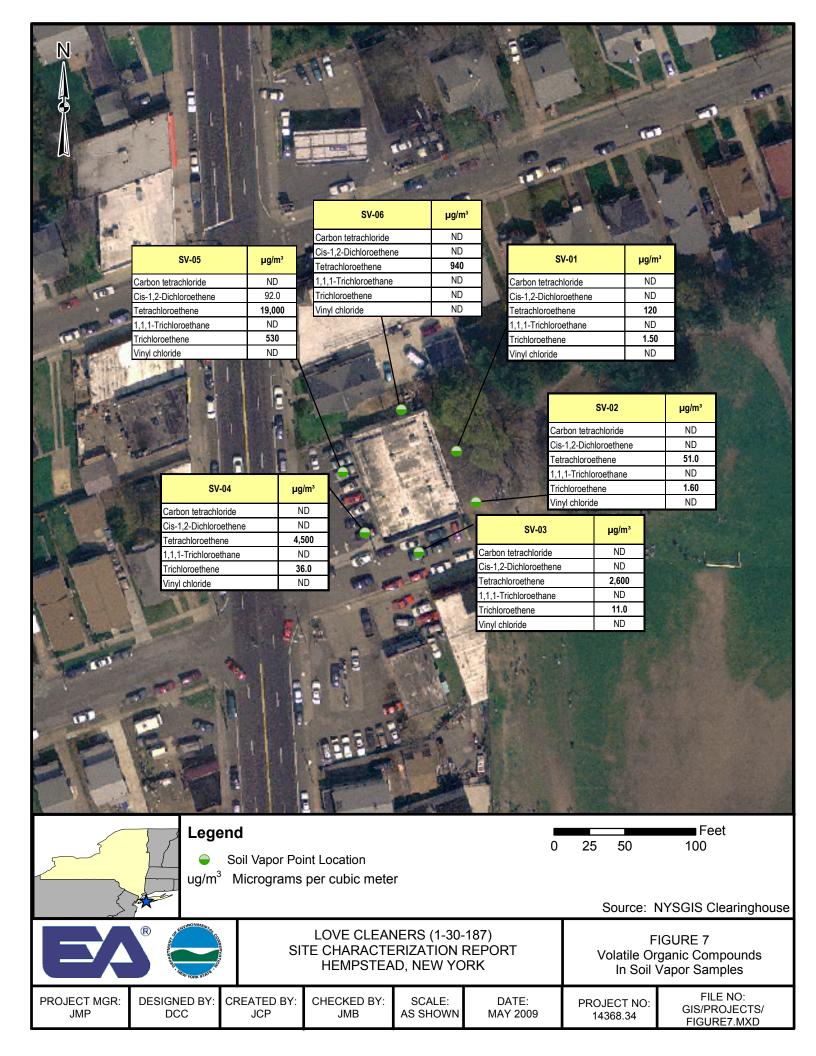


DESIGNED BY: MJS CREATED BY: DCC CHECKED BY: JMB NOT TO SCALE DATE: MAY 2009 PROJECT NO: 14368.34

FILE NO: GIS/PROJECTS/ FIGURE3.MXD






LOVE CLEANERS (1-30-187) SITE CHARACTERIZATION REPORT HEMPSTEAD, NEW YORK FIGURE 4
TYPICAL SUB-SLAB VAPOR
SAMPLE POINT
CONSTRUCTION DIAGRAM

PROJECT MGR: JMB DESIGNED BY: MJS CREATED BY: DCC CHECKED BY: JMB NOT TO SCALE DATE: MAY 2009 PROJECT NO: 14368.34

FILE NO: GIS/PROJECTS/ FIGURE4.MXD

Sub-Slab Vapor Sample Location ug/m³ Micrograms per cubic meter Non-Detect ŇD

0 20 40 80

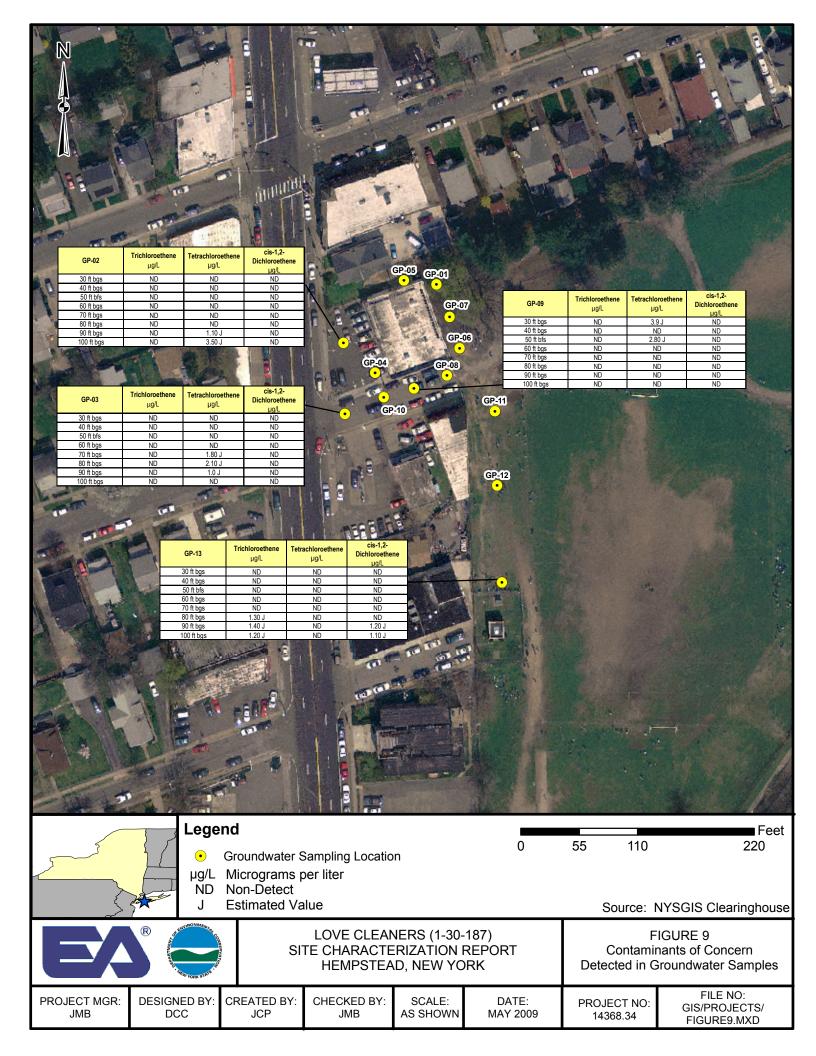
LOVE CLEANERS (1-30-187) SITE CHARACTERIZATION REPORT HEMPSTEAD, NEW YORK

FIGURE 8 Volatile Organic Compounds In Sub-Slab Vapor Samples

Source: NYSGIS Clearinghouse

PROJECT MGR: **JMP**

DESIGNED BY: DCC


CREATED BY: **JCP**

CHECKED BY: JMB

SCALE: AS SHOWN

DATE: MAY 2009 PROJECT NO: 14368.34

FILE NO: GIS/PROJECTS/ FIGURE8.MXD

TABLE 1 SITE CHARACTERIZATION ANALYTICAL PROGRAM

	W 1 . 11 . 0	g : 1 : 1 o	TAL Metals	D (DCD							
	Volatile Organic	Semivolatile Organic	USEPA	Pesticides/ PCBs							
	Compound	Compound	Method	USEPA Method							
Sample Matrix	USEPA Method 8260B	USEPA Method 8270C	6010/7470	8081/8082							
GROUNDWATER SAMPLING PROGRAM											
No. of Samples	104	5	5	5							
Field Duplicate	5	1	1	1							
Trip Blank (a)	3										
Rinsate Blank (b)	7	2	2	2							
MS/MSD	10	2	2	2							
Total No. of Analyses	129	10	10	10							
	SOIL SAM	IPLING PROGRAM									
No. of Samples	16	16	16	16							
Field Duplicate	1	1	1	1							
Rinsate Blank (b)	1	1	1	1							
MS/MSD	2	2	2	2							
Total No. of Analyses	20	20	20	20							
	AIR/SOIL VAPO	R SAMPLING PROGRAM	M								
	Volatile Organic										
	Compound USEPA										
	Method TO-15										
No. of Samples	8										
Field Duplicate	1										
Rinsate Blank (b)											
MS/MSD											
Total No. of Analyses	9										

^a Trip Blanks are required for volatile organic compound sampling of aqueous media at a rate of one per sample shipment.

NOTE: TAL = Target analyte list.

USEPA = U.S. Environmental Protection Agency.

PCB = Polychlorinated Biphenyls

MS/MSD = Matrix spike/matrix spike duplicate.

Laboratory quality control samples will be collected at a rate of 1 per 20 samples, per matrix.

^b One rinsate blank per day of sampling with a field device that requires field documentation.

TABLE 2 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL VAPOR SAMPLES, 18 NOVEMBER 2008

	1-30-187-SV-0	1	1-30-187-SV-02	2	1-30-187-SV-03	}	1-30-187-SV-04	1	1-30-187-SV-0	5	1-30-187-SV-0	6
Analyte					USEPA M	ethoc	l TO-15 (μg/m³)					
Acetone	34.0		13.0		24.0		16.0		33.0		22.0	
Benzene	36.0		1.80		3.90		1.90		3.40		3.90	
1,3-Butadiene	0.810		(<0.220)	U	0.830		(<0.220)	U	(<2.20)	U	0.710	
2-Butanone	6.90		1.60		4.80		3.60		7.60		4.50	
Carbon disulfide	1.20		(<0.320)	U	1.20		0.920		(<3.20)	U	1.30	
Chloroform	(<0.480)	U	(<0.480)	U	9.0		49.0		9.90		0.710	
Chloromethane	(<0.20)	U	0.970		(<0.20)	U	(<0.20)	U	(<2.0)	U	(<0.20)	
Cyclohexane	5.20		0.450		1.60		0.690		(<3.40)	U	1.80	
Dichlorodifluoromethane	2.0		2.30		2.60		2.60		(<5.0)	U	2.30	
Cis-1,2-Dichloroethene	(<0.40)	U	(<0.40)	U	(<0.40)	U	(<0.40)	U	92.0		(<0.40)	U
Trans-1,2-Dichloroethene	(<0.40)	U	(<0.40)	U	(<0.40)	U	(<0.40)	U	4.80		(<0.40)	U
Ethanol	11.0		4.80		6.80		7.0		10.0		6.70	
Ethylbenzene	190.0		5.30		25.0		4.60		13.0		20.0	
4-Ethyl toluene	83.0		2.70		18.0		2.10		9.30		14.0	
N-Heptane	47.0		1.70		7.50		1.50		4.80		7.80	
Hexane	25.0		2.90		6.50		3.70		5.20		6.40	
2-Hexanone	(<0.40)	U	(<0.40)	U	1.40		1.10		(<4.0)	U	1.40	
Isopropyl alcohol	1.70		0.780		0.970		1.90		(<2.40)	U	1.10	
Methyl tert butyl ether	0.790		(<0.360)	U	(<0.360)	U	(<0.360)	U	(<3.60)	U	(<0.360)	U
Methylene chloride	5.20		6.80		1.20		7.50		(<7.0)	U	1.20	U
4-Methyl-2-Pentanone	(<0.40)	U	(<0.40)	U	(<0.40)	U	0.690		(<4.0)	U	(<0.40)	U
Propylene	7.20		(<0.180)	U	6.10		(<0.180)	U	7.0		(<0.180)	U
Styrene	2.0		(<0.420)	U	(<0.420)	U	(<0.420)	U	(<4.20)	U	(<0.420)	U
1,1,2,2-Tetrachloroethane	(<0.680)	U	3.40		(<0.680)	U	(<0.680)	U	(<6.80)	U	(<0.680)	U
Tetrachloroethene	120		51.0		2,600		4,500		19,000		940	
Tetrahydrofuran	9.10		(<0.30)	U	(<0.30)	U	(<0.30)	U	(<3.0)	U	(<0.30)	U
Toluene	600.0		19.0		65.0		17.0		42.0		56.0	
Trichloroethene	1.50		1.60		11.0		36.0		530.0		(<0.540)	U
Trichlorofluoromethane	1.70		2.20		1.80		7.20		7.20		3.80	
Trichlorotrifluoroethane	(<0.760)	U	(<0.760)	U	(<0.760)	U	0.860		(<0.760)	U	(<0.760)	U
1,2,4-Trimethylbenzene	270.0		10.0		82.0		8.0		39.0		65.0	
1,3,5-Trimethylbenzene	95.0		3.100		23.0		2.80		11.0		19.0	
M-P Xylenes	570.0		20.0		97.0		16.0		55.0		78.0	
O Xylene	220.0		7.0		40.0		7.20		21.0		33.0	

NOTE: USEPA = United States Environmental Protection Agency

ug/m³ = micrograms per cubic meter

U = Analyzed but not reported at a concentration above the reporting limit. Sample quantitation limits are shown as (<___).</p>

Bold values indicate that the analyte was detected.

Project No.: 14368.34 Revision: FINAL Table 3, Page 1 of 1 May 2009

TABLE 3 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SUB-SLAB VAPOR SAMPLES, 18 NOVEMBER 2008

	1-30-187-SS-01		1-30-187-SS-02		1-30-187-SS-DUI	y a
Analyte			USEPA Method TO-15	$(\mu g/m^3)$		
Acetone	16.0		23.0		17.0	
Benzene	0.480		0.330		0.430	
2-Butanone	3.70		4.0		4.20	
Chloroform	1.80		11.0		9.20	
Chloromethane	(<0.20)	U	(<0.20)	U	0.40	
Dichlorodifluoromethane	2.40		2.70		2.50	
Ethanol	3.70		7.20		5.80	
Hexane	0.50	U	0.580		1.70	
2-Hexanone	0.640		0.650		0.820	
Isopropyl alcohol	1.30		1.70		4.20	
Methylene chloride	1.50	U	1.70	U	5.30	
Tetrachloroethene	5,700		4,100		4,500	
Toluene	0.50		2.10		3.60	
Trichloroethene	2.80		21.0		18.0	
Trichlorofluoromethane	1.50		4.80		3.60	
Trichlorotrifluoroethane	1.10		1.30		(<0.760)	U
1,2,4-Trimethylbenzene	(<0.50)	U	0.740		0.730	
M-P Xylenes	(<0.860)	U	1.30		1.60	

^aDuplicate sample was collected with SS-02

NOTE: USEPA = United States Environmental Protection Agency

ug/m³ = micrograms per cubic meter

U = Analyzed but not reported at a concentration above the reporting limit. Sample quantitation limits are shown as (<___).

Bold values indicate that the analyte was detected.

Project No.: 14368.34 Revision: FINAL Table 4, Page 1 of 1 May 2009

TABLE 4 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS IN SUBSLAB SOIL SAMPLES, 21 NOVEMBER 2008

	1-30-187-BASEMENT		1-30-187-SLAB		6 NYCRR Part 375 Guidelines Unrestricted Use (ppm)							
Analyte		USEPA Method 6010/7470 (mg/kg)										
Bis(2-ethylhexyl)phthalate	0.56		3.6		NA							
Butylbenzylphthalate	0.16		0.17		NA							
Di-n-butylphthalate	(<0.380)	U	0.19		NA							
Phenol	0.072		(<0.340)	U	0.33							

NOTE: NYCRR = New York Code of Rules and Regulations

ppm = Parts per million

USEPA = United States Environmental Protection Agency

mg/kg = Milligrams per kilogram (ppm)

NA = Not applicable

U = Analyzed but not reported at a concentration above the reporting limit. Sample quantitation limits are shown as (<___).

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services, Inc.

Only analytes that were detected in at least one sample are shown.

TABLE 5 SUMMARY OF METALS IN SUBSLAB SOIL SAMPLES, 21 NOVEMBER 2008

	1-30-187-BASEME	NT	1-30-187-SLAB		6 NYCRR Part 375 Guidelines Unrestricted Use (ppm)
Analyte		USEP	A Method 6010/7470 (mg/kg)	
Aluminum	4,390	J	6,610	J	NA
Antimony	10.80	J	(<0.660)	UJ	NA
Arsenic	6.50		2.70		13.0
Barium	46.30	J	51.50	J	350
Beryllium	0.270	J	0.440	J	7.20
Cadmium	1.40	J	0.910	J	2.50
Calcium	31,700		42,000		NA
Chromium	27.80	J	15.60	J	31.0
Cobalt	6.80	J	7.90	J	NA
Copper	515.0	J	187.0	J	50
Iron	28,200	J	9,270	J	NA
Lead	108.0	J	16.60	J	63.0
Magnesium	2,610	J	4,550	J	NA
Manganese	225.0	J	425.0	J	1,600
Mercury	0.0420	J	0.150		0.180
Nickel	19.80	J	19.70	J	30
Potassium	862.0		987.0		NA
Selenium	3.50		1.30		3.90
Silver	6.70		1.20		2.0
Sodium	444.0		492.0		NA
Thallium	(<1.0)	UJ	(<0.660)	UJ	
Vanadium	7.30	J	26.50	J	NA
Zinc	603.0	J	165.0	J	109.0

NOTE: NYCRR = New York Code of Rules and Regulations

ppm = Parts per million

USEPA = United States Environmental Protection Agency

mg/kg = Milligrams per kilogram (ppm)

J = Concentration is an estimated value.

J = Analyzed but not reported at a concentration above the reporting limit. Sample quantitation limits are shown as (<___).</p>

NA = Not applicable

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services, I

Only analytes that were detected in at least one sample are shown.

Project No.: 14368.34 Revision: FINAL Table 6, Page 1 of 1 May 2009

TABLE 6 SUMMARY OF PESTICIDES IN SUBSLAB SOIL SAMPLES, 21 NOVEMBER 2008

	1-30-187-BASEMENT		1-30-187-SLAB		6 NYCRR Part 375 Guidelines Unrestricted Use (ppm)
Analyte			USEPA Method 8081A (mg/kg)	
alpha-Chlordane	(<0.0020)	U	0.00260	J	NA
gamma-Chlordane	0.00560		0.00320	J	NA
4,4'-DDE	(<0.00380)	U	0.0270	J	0.0033
Heptachlor	(<0.0020)	U	0.00180	J	0.042

NOTE: NYCRR = New York Code of Rules and Regulations

ppm = Parts per million

USEPA = United States Environmental Protection Agency

mg/kg = Milligrams per kilogram (ppm) J = Concentration is an estimated value.

U = Analyzed but not reported at a concentration above the reporting limit. Sample quantitation limits are shown as (<___).

NA = Not applicable

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services, Inc.

Only analytes that were detected in at least one sample are shown.

Project No.: 14368.34 Revision: FINAL Table 7, Page 1 of 1 May 2009

TABLE 7 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SURFACE SOIL SAMPLES, 17 NOVEMBER 2008

	1-30-187-SS-01	1-30-187-SS-02	1-30-187-SS-03	1-30-187-SS-04	1-30-187-RB01 ^a	NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use (ppm)
Analyte			USEPA Method	d 8260B (mg/kg)		
Naphthalene	(<0.00530) UJ	(<0.00610) UJ	(<0.00620) UJ	(<0.00650) UJ	1.90	NA NA

Rinsate Blank results illustrated inµg/L (micrograms per liter - parts per billion)

NOTE: NYCRR = New York Code of Rules and Regulations

ppm = Part per million

USEPA = United States Environmental Protection Agency

mg/kg = Milligrams per kilogram (ppm)

U = Analyzed but not reported at a concentration above the reporting limit. Sample quantitation limits are shown as (<).

J = Concentration is an estimated value.

NA = Not applicable

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services, Inc.

Project No.: 14368.34 Revision: FINAL Table 8, Page 1 of 1 May 2009

TABLE 8 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS IN SURFACE SOIL SAMPLES, 17 NOVEMBER 2008

Analyte	1-30-187-SS-01		1-30-187-SS-02		1-30-187-SS-0		1-30-187-SS-04 8270C (mg/kg)		1-30-187-RB01	a	NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use (ppm)
Acenaphthene	(<0.370)	U	0.410		(<430)	U	0.310	J	(<10)	U	20
Anthracene	(<0.370)	U	(<410)	U	(<430)	U	0.290	J	(<10)	IJ	100
Benzo(a)anthracene	(<0.370)	U	(<410)	U	0.130	J	0.440		(<10)	U	1
Benzo(a)pyrene	(<0.370)	U	0.110	J	0.170	J	0.320	J	(<10)	U	1
Benzo(b)fluoranthene	0.120	J	0.170	J	0.260	J	0.450		(<10)	U	1
Benzo(g,h,i)perylene	0.10	J	0.10	J	0.170	J	0.220	J	(<10)	U	100
Benzo(k)fluoranthene	(<0.370)	U	(<410)	U	0.150	J	0.240	J	(<10)	U	0.8
Bis(2-ethylhexyl)phthalate	1.20		0.550		1.0		1.10		(<10)	U	NA
Butylbenzylphthalate	0.210	J	(<410)	U	0.150	J	(<420)	U	(<10)	U	NA
Chrysene	(<0.370)	U	0.130	J	0.230	J	0.460		(<10)	U	1
Dibenzofuran	(<0.370)	U	(<410)	U	(<430)	U	0.210	J	(<10)	U	NA
Di-n-butylphthalate	(<0.370)	U	0.520		0.240	J	(<420)	U	(<10)	U	NA
Fluoranthene	0.140	J	0.220	J	0.320	J	1.20		(<10)	U	100
Fluorene	(<0.370)	U	(<410)	U	(<430)	U	0.340	J	(<10)	U	30
Indeno(1,2,3-cd)pyrene	(<0.370)	U	(<410)	U	0.140	J	0.190	J	(<10)	U	0.5
Phenanthrene	(<0.370)	U	(<410)	U	(<430)	U	1.20		(<10)	U	100
Phenol	(<0.370)	U	0.0810	J	0.0840	J	0.090	J	(<10)	U	0.33
Pyrene	(<0.370)	U	0.170	J	0.240	J	0.830		(<10)	U	100

^a Rinsate Blank results illustrated inµg/L (micrograms per liter - parts per billion)

NOTE: NYCRR = New York Code of Rules and Regulations

ppm = Parts per million

USEPA = United States Environmental Protection Agency

mg/kg = Milligrams per kilogram (ppm) J = Concentration is an estimated value.

U = Analyzed but not reported at a concentration above the reporting limit. Sample quantitation limits are shown as (<___).

NA = Not applicable

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services, Inc.

Project No.: 14368.34 Revision: FINAL Table 9, Page 1 of 1 May 2009

TABLE 9 SUMMARY OF METALS IN SURFACE SOIL SAMPLES, 17 NOVEMBER 2008

	1-30-187-SS-(1	1-30-187-SS-02		1-30-187-SS-03		1-30-187-SS-0	4	1-30-187-RB01	a	NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use (ppm)	
Analyte					USEPA Method 6010/7470 (mg/kg)							
Aluminum	4,130		8,500		12,300		11,800		(<200)	U	NA	
Antimony	0.190	J	0.130	J	0.530	J	0.360	J	6.60	J	NA	
Arsenic	3.30		3.50		13.50		13.20		(<20)	U	13	
Barium	20.10		29.40		41.60		152.0		(<200)	U	350	
Beryllium	0.20		0.370		0.490		0.490		(<5.0)	U	7.2	
Cadmium	0.330		0.20	J	0.370		0.780		(<5.0)	U	2.5	
Calcium	1,210		1,790		1,100		4,640		(<800)	U	NA	
Chromium	9.50		12.40		22.60		18.70		(<20)	U	31	
Cobalt	1.80		3.90		4.30		4.20		(<50)	U	NA	
Copper	16.70		16.70		33.60		57.60		(<30)	U	50	
Iron	7,930	J	11,400	J	20,900	J	14,400	J	(<200)	U	NA	
Lead	135.0		61.80		124.0		246.0		(<10)	U	63	
Magnesium	946.0		2,310		1,820		2,890		(<500)	U	NA	
Manganese	78.60		130		222.0		204.0		10.40	J	1,600	
Mercury	0.0790		0.0740		0.190		0.270		(<0.20)	U	0.18	
Nickel	5.80		9.10		13.30		11.90		(<50)	U	30	
Potassium	269.0		616.0		620		622.0		(<1000)	U	NA	
Selenium	1.0		1.90		3.10		2.50		(<30)	U	3.9	
Silver	(<1.0)	U	(<1.40)	U	(<1.60)	U	(<1.70)	U	0.660	J	2	
Sodium	21.80	J	49.20		40.40	J	46.90	J	111.0	J	NA	
Thallium	(<0.70)	U	(<0.90)	U	(<1.10)	U	(<1.10)	U	(<20)	U	NA	
Vanadium	10.50		17.10		35.0		24.60		(<50)	U	NA	
Zinc	218.0		110		192.0		307.0		21.10	J	109	

^a Rinsate Blank results illustrated inµg/L (micrograms per liter - parts per billion)

NOTE: NYCRR = New York Code of Rules and Regulations

ppm = Parts per million

USEPA = United States Environmental Protection Agency

mg/kg = Milligrams per kilogram (ppm)

U = Analyzed but not reported at a concentration above the reporting limit. Sample quantitation limits are shown as (<___).

NA = Not applicable

J = Concentration is an estimated value.

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services, Inc.

Project No.: 14368.34 Revision: FINAL Table 10, Page 1 of 1 May 2009

TABLE 10 SUMMARY OF PESTICIDES IN SURFACE SOIL SAMPLES, 17 NOVEMBER 2008

									NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use
	1-30-187-SS-0	l	1-30-187-SS-02	2	1-30-187-SS-03	3	1-30-187-SS-04		(ppm)
Analyte				USEF	PA Method 8081A (1	mg/kg	()		
alpha-Chlordane	(<0.00190)	U	(<0.00210)	U	0.00230	J	0.0280	J	0.094
gamma-Chlordane	0.00330	J	(<0.00210)	U	(<0.00220)	U	0.020		NA
4,4'-DDE	(<0.00370)	U	0.00450		(<0.00420)	U	0.00430	J	0.0033
4,4'-DDT	0.0140		0.0280		0.0090		0.0450		0.0033
Dieldrin	(<0.00370)	U	(<0.0040)	U	(<0.00420)	U	0.0110		0.005
Endosulfan II	(<0.00370)	U	0.00440	J	(<0.00420)	U	(<0.00420)	U	2.4
Endrin aldehyde	(<0.00370)	U	0.030		(<0.00420)	U	(<0.00420)	U	2.4
Heptachlor epoxide	(<0.00190)	U	0.00250		(<0.00220)	U	0.00370		0.042

^a Rinsate Blank results illustrated in μg/L (micrograms per liter - parts per billion)

NOTE: NYCRR = New York Code of Rules and Regulations

ppm = Parts per million

USEPA = United States Environmental Protection Agency

mg/kg = Milligrams per kilogram (ppm)

U = Analyzed but not reported at a concentration above the reporting limit. Sample quantitation limits are shown as (<).

J = Concentration is an estimated value.

NA = Not applicable

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services, Inc.

TABLE 11 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SUBSURFACE SOIL SAMPLES, 17-19 NOVEMBER 2008

Analyte	1-30-187-SB01(18	3-23)	1-30-187-SB02(12-17)			1-30-187-SB04(15-2		`	5) 1	1-30-187-SB06(20-2		NYSDEC Part 375 Soil Cleanup Objectives Unrestricted Use (ppm)
Acetone	(<0.00480)	UJ	0.0240 J	(<0.0050)	R	1	R	(<0.00540) R	, T	(<0.00530)	R	0.05
Accione	(<0.00400)	03	0.0240 3	(<0.0030)	IX	(<0.0030)	I	(*0.003 *1 0) K	_	(< 0.00330)	I	0.03
Analyte	1-30-187-SB07(20)-25)	1-30-187-SB08(20-25)	1-30-187-SB09(18-	20)	1-30-187-SB10(16-2	20)	1-30-187-SB-DUP ^a				
			` /			,	_	1	=			0.05
Acetone	(<0.00570)	R	(<0.00480) R	(<0.00540)	R	(<0.00510)	R	(<0.00510) R				0.05

Duplicate sample was collected with 1-30-187-SB02(12-17)

NOTE: NYSDEC = New York State Department of Environmental Conservation

ppm = Parts per million

USEPA = Environmental Protection Agency mg/kg = Milligrams per kilogram (ppm)

U = Non-detect, detection below the method detection limit. Method detection limit illustrated as (<_)

J = Concentration is estimated.

R = Rejected value

Data provided by Mitkem Laboratories. Data Validation Provided by Environmental Data Services Inc.

Only analytes that were detected in at least one sample are shown.

TABLE 12 SUMMARY OF SEMIVOLATILE ORGANIC COMPOUNDS IN SUBSURFACE SOIL SAMPLES, 17-19 NOVEMBER 2008

			4 20 40 7 GD0044				1 20 10 7 GD01/1			25)	1-30-187-SB06(20-	2.5	NYSDEC Part 375 Soil Cleanup Objectives
Analyte	1-30-187-SB01(1	8-23)	1-30-187-SB02(12	2-17)	1-30-187-SB03(1			1-30-187-SB04(15-20) 1-30-187-SB05(20-25) SEPA Method 8270C (mg/kg)				25)	Unrestricted Use (ppm)
	(<0.200)	U	0.150	J	(<0.250)	U		U	(<0.370)	U	(<0.370)	1.1	1
Benzo(a)anthracene	(<0.390)	_		-	(<0.350)	_	(<0.360)	_	` '		` ′	U	1
Benzo(a)pyrene	(<0.390)	U	0.150	J	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	UJ	•
Benzo(b)fluoranthene	(<0.390)	U	0.250	J	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	U	1
Benzo(g,h,i)perylene	(<0.390)	U	0.140	J	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	U	100
Benzo(k)fluoranthene	(<0.390)	U	(<0.390)	U	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	UJ	0.8
Bis(2-ethylhexyl)phthalate	(<0.390)	U	0.590		(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	UJ	NA
Butylbenzylphthalate	(<0.390)	U	0.120	J	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	U	NA
Chrysene	(<0.390)	U	0.170	J	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	U	1
Dibenzo(a,h)anthracene	(<0.390)	U	(<0.390)	U	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	U	0.33
Di-n-butylphthalate	(<0.390)	U	0.270	J	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	U	NA
Fluoranthene	(<0.390)	U	0.250	ī	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	U	100
Indeno(1,2,3-cd)pyrene	(<0.390)	U	0.110	J	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	U	0.5
		_		-		_	` /	_	` ′			-	NA
Methylnaphthalene	(<0.390)	U	(<0.390)	U	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	U	
Phenol	0.0760	J	(<0.390)	U	(<0.350)	U	(<0.360)	U	0.0790	J	(<0.370)	U	0.33
Pyrene	(<0.390)	U	0.210	J	(<0.350)	U	(<0.360)	U	(<0.370)	U	(<0.370)	UJ	100
	1-30-187-SB07(2	20-25)	1-30-187-SB08(20	0-25)			1-30-187-SB10(16-20)		1-30-187-SB-DUP		NYSDEC Part 375 Soil Cleanup Objectives Unrestricted Use (ppm)		
Analyte							d 8270C (mg/kg)				(F.		
Benzo(a)anthracene	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	0.80	J	1		
Benzo(a)pyrene	(<0.400)	UJ	(<0.370)	UJ	(<0.360)	UJ	(<0.360)	UJ	0.640	J	1		
Benzo(b)fluoranthene	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	0.840	J	1		
Benzo(g,h,i)perylene	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	0.380		100		
Benzo(k)fluoranthene Bis(2-ethylhexyl)phthalate	(<0.400) (<0.400)	UJ	(<0.370) (<0.370)	UJ	(<0.360) (<0.360)	UJ	(<0.360) (<0.360)	UJ	0.50 1.40		0.8 NA		
	(<0.400)	U	(<0.370)	UJ	(<0.360)	U	(<0.360)	UJ	(<0.370)	U	NA NA		
Butylbenzylphthalate Chrysene	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	0.910	J	INA 1		
Dibenzo(a,h)anthracene	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	0.910	J	0.33		
Di-n-butylphthalate	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	(<0.370)	U	NA	-	
Fluoranthene	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	2.40	I	100		
Indeno(1,2,3-cd)pyrene	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	0.330	J	0.5		
Methylnaphthalene	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	0.10	J	NA		
Phenol	(<0.400)	U	(<0.370)	U	(<0.360)	U	(<0.360)	U	(<0.370)	U	0.33		
Pyrene	(<0.400)	UJ	(<0.370)	UJ	(<0.360)	UJ	(<0.360)	UJ	1.50	J	100		
^a Dumlicata samula vuos sal	1 4 1 34 1 20 1	on on	00/10 15										

* Duplicate sample was collected with 1-30-187-SB02(12-17

NOTE: NYSDEC = New York State Department of Environmental Conservation

ppm = Parts per million
USEPA = United States Environmental Protection Agency

mg/kg = Milligrams per kilogram (ppm)
U = Non-detect, detection below the method detection limit. Method detection limit illustrated as (<_)

Concentration is an estimated value.

NA Not applicable

Data provided by Mitkem Laboratories. Data Validation Provided by Environmental Data Services Inc.

Only analytes that were detected in at least one sample are shown.

Bolded values indicate that analyte was detected above NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use

TABLE 13 SUMMARY OF METALS IN SUBSURFACE SOIL SAMPLES, 17-19 NOVEMBER 2008

	1-30-187-SB01(18	3-23)	1-30-187-SB02(12	-17)	1-30-187-SB03(1	5-20)	1-30-187-SB04(1	5-20)	1-30-187-SB05(2	0-25)	1-30-187-SB06(20	-25)	NYSDEC Part 375 Soil Cleanup Objectives Unrestricted Use (ppm)
Analyte						U	SEPA Method 827	ОС (m	ig/kg)				
Aluminum	905.0		1,710		955.0		1,680		929.0		1,340		NA
Arsenic	0.850	J	2.10		0.950		1.20		0.60	J	0.980		13
Barium	3.90	J	21.30	J	3.6	J	5.50	J	4.0	J	4.50	J	350
Beryllium	0.110	J	0.12	J	0.110	J	0.140	J	0.10	J	0.140	J	7.2
Cadmium	0.0380	J	0.16	J	(<0.230)	U	0.0170	J	0.0330	J	(<0.220)	U	2.5
Calcium	91.60		386.0	J	74.60		114.0		65.60		78.40		NA
Chromium	3.80		23.90	J	2.30		3.70		4.40	1	4.90		30
Cobalt	2.10	J	1.10	J	0.730	J	0.890	J	5.50	1	0.890	J	NA
Copper	2.0		11.90		1.80		2.50		1.90		1.50		50
Iron	5,590	J	14.900	J	4.030	J	5,060	J	3.180	J	4,450	J	NA
Lead	1.40		80	J	1.20	Ė	1.20	Ť	1.20	Ť	1.0	Ė	63
Magnesium	50.20		353.0	J	97.50	1	210	1	72.70	1	130		NA
Manganese	145.0		42.50		77.10		138.0		218.0		47.0		1.600
Mercury	0.0120	J	0.0290	J	(<0.0370)	U	0.0110	J	(<0.0450)	U	(<0.0440)	U	0.18
Nickel	2.20	J	4.30	,	2.30	J	3.0	Ť	2.20	-	2.60		30
Potassium	47.40	,	146.0		74.70	,	139.0		56.60	1	71.20		NA
Selenium	0.720	J	2.20		0.80	J	0.760	J	0.680	J	0.70	J	3.9
Sodium	6.50	J	23.50	J	(<45.0)	U	8.60	J	8.40	J	4.30	J	NA
	3.90	J	8.90	J	2.10	J	3.70	,	2.10	,	3.90	J	NA NA
Vanadium Zinc	4.10	-	39.50		3.0	J	5.30	+	5.70	+-	3.20	_	109
Analyte	1-30-187-SB07(20)-25)	1-30-187-SB08(20	-25)			1-30-187-SB10(1 d 8270C (mg/kg)	6-20)	1-30-187-SB-DI	∪P³	NYSDEC Part 375 Cleanup Objectiv Unrestricted Use (p	es	
Aluminum	1,390	1	771.0		789.0	letiio	8,580	1	915.0	1	NA		
Arsenic	1 10		0.580	J	0.470	J	1.30		1.10	1	13		
Barium	5.60	J	2.40	J	4.20	J	16.40		5.70	J	350		
Beryllium	0.170	J	0.0960	J	0.110	J	0.530		0.10	J	7.2		
Cadmium	0.023	J	0.0160	J	0.020	J	0.0950	J	0.0860	J	2.5		
Calcium	110		60.10		20.40	J	2810	-	84.50	J	NA 20		
Chromium	4.80 1.50	J	2.40 1.20	J	2.60 0.730	J	20.50 2.90	-	4.30 0.80	J	30 NA		
Cobalt Copper	2.60	J	1.50	J	2.60	J	19.80	+	4.50	J	50		
Iron	5.410	J	3.410	J	2.600	J	5.910	J	4,820	J	NA NA		
Lead	1.70		0.710		1.10		2.60	-	3.20	J	63		
Magnesium	130		54.10		135.0		257.0		105.0	J	NA		
Manganese	69.10		27.30		71.80		170		60.80		1,600		
Mercury	(<0.0440)	U	0.010	J	(<0.0390)	U	0.0090	J	0.0130	J	0.18		
Nickel Potassium	3.20 85.10	-	1.20 38.20	J	2.10 85.40	J	8.90 132.0	-	2.20 77.40	J	NA		
Selenium	0.830	J	(<1.40)	U	85.40 (<1.40)	U	(<1.10)	U	//.40 (<1.50)	U	3.9		
Sodium	9.10	J	(<48.0)	U	4.80	J	226.0	1	(<52.0)	U	NA		
Vanadium	4.40	Ė	1.90	J	2.0	J	4.10		3.90	Ť	NA		
Zinc	4.80		3.70		4.10		4.70		17.70		109		

¹ Duplicate sample was collected with 1-30-187-SB02(12-17)
NOTE: NYSDEC = New York State Department of Environmental Conservation

NYSDEC = New York State Department of Environmental Co-ppm = Parts per million USEPA = United States Environmental Protection Agency mg/kg = Milligrams per kilogram (ppm) NA = Not applicable J = Concentration is an estimated value.

= Non-detect, detection below the method detection limit. Method detection limit illustrated as (<_)

Data provided by Mitkem Laboratories. Data Validation Provided by Environmental Data Services Inc.

Only analytes that were detected in at least one sample are shown.

Bolded values indicate that analyte was detected above NYCRR Part 375 Soil Cleanup Objectives - Unrestricted Use

TABLE 14 SUMMARY OF PESTICIDES IN SUBSURFACE SOIL SAMPLES, 17-19 NOVEMBER 2008

Analyte	1-30-187-SB01(1	8-23)	1-30-187-SB02(12	2-17)	1-30-187-SB03(15		1-30-187-SB04(15		`)-25)	1-30-187-SB06(20	-25)	NYSDEC Part 375 Soil Cleanup Objectives Unrestricted Use (ppm)
gamma- BHC (Lindane)	(<0.0020)	U	0.00270		(<0.00180)	U	(<0.00190)	U	(<0.00190)	U	(<0.00190)	U	NA
alpha- Chlordane	(<0.0020)	U	0.00250	J	(<0.00180)	U	(<0.00190)	U	(<0.00190)	U	(<0.00190)	U	0.094
gamma- Chlordane	(<0.0020)	U	0.00490	J	(<0.00180)	U	(<0.00190)	U	(<0.00190)	U	(<0.00190)	U	NA
Endosulfan sulfate	(<0.00390)	U	0.00440	J	(<0.00350)	U	(<0.00370)	U	(<0.00380)	U	(<0.00370)	U	2.4
Endrin ketone	(<0.00390)	U	(<0.00390)	U	(<0.00350)	U	(<0.00370)	U	(<0.00380)	U	(<0.00370)	U	NA
	1 20 107 SD07/2) 25)	1 20 107 5000/20	25)	1 20 107 CD00/10	20)	1 20 107 SD10/14	s 20)	1-30-187-SB-DU	ı D a	NYSDEC Part 375 Cleanup Objectiv Unrestricted Use (p	es	
Analyte	1-30-18/-SBU/(20	J-23)	1-30-187-SB08(20)-23)			1-30-187-SB10(16 d 8081A (mg/kg)	5-20)	1-30-16/-3B-DC) F	Omestricted Ose (pm)	
gamma- BHC (Lindane)	(<0.00210)	U	(<0.00190)	U	(<0.00190)	U	(<0.00180)	U	0.0020	I	NA		
alpha- Chlordane	(<0.00210)	U	(<0.00190)	U	(<0.00190)	U	(<0.00180)	U	0.00330	J	0.094		
gamma- Chlordane	(<0.00210)	U	(<0.00190)	U	(<0.00190)	U	(<0.00180)	U	0.0065	J	NA		
Endosulfan sulfate	(<0.00410)	U	(<0.00360)	U	(<0.00360)	U	(<0.00360)	U	0.00610	J	2.4		
Endrin ketone	(<0.00410)	U	(<0.00360)	U	(<0.00360)	U	(<0.00360)	U	0.00410		NA		

^a Duplicate sample was collected with 1-30-187-SB02(12-17)

NOTE: NYSDEC = New York State Department of Environmental Conservation

ppm = Parts per million

USEPA = United States Enivronmental Protection Agency

mg/kg = Milligrams per kilogram (ppm)

U = Non-detect, detection below the method detection limit. Method detection limit illustrated as (<_)

NA = Not applicable

J = Concentration is an estimated value.

Data provided by Mitkem Laboratories. Data Validation Provided by Environmental Data Services Inc.

Only analytes that were detected in at least one sample are shown.

Analytes	1-30-187-GP01	(30)	1-30-187-GP01	1 (40)	1-30-187-GP01	(50)	1-30-187-GP01		1-30-187-GP0 EPA Method 82		1-30-187-GP01	(80)	1-30-187-GP01	(90)	1-30-187-GP01	(100)	1-30-187-GP-DU	JP01ª	NYSDEC Ambient Water Quality Standards Class GA (ug/L)
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	110.0	J	(<5.0)	UR	(<5.0)	UR	50
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	18.0	J	(<5.0)	UR	(<5.0)	UR	NA NA
	()		()	UK	()	_	()		()		(,				(,		(/		
n- Butylbenzene	(<5.0)	U	(<5.0)		(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
cis-1,2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Methylene chloride	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Naphthalene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	10
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	Ü	(<5.0)	II	(<5.0)	U	(<5.0)	II	(<5.0)	II	(<5.0)	IJ	(<5.0)	U	(<5.0)	U	5
1.1.1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
,,	()		(,		()		()			U	(,	-	(,	_ ~	(/		(/	_	
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
m,p- Xylene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Xylene (Total)	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
			1																NYSDEC Ambient Water
	1-30-187-GP02	2 (30)	1-30-187-GP02	2 (40)	1-30-187-GP02	(50)	1-30-187-GP02		1-30-187-GP02	(/	1-30-187-GP02	2 (80)	1-30-187-GP02	(90)	1-30-187-GP02	(100)	1-30-187-GP-DU	/P04 ^b	Quality Standards
Analytes									EPA Method 82	60B (μg/	/								Class GA (µg/L)
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	50
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	NA
n- Butylbenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
cis-1,2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Methylene chloride	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Naphthalene	(<5.0)	U	(<5.0)	U	(<5.0)	U	1.60	J	(<5.0)	U	1.20	J	(<5.0)	U	12.0		(<5.0)	U	10
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	1.10	J	3.50	J	(<5.0)	U	5
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,1,1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
m,p- Xylene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Xylene (Total)	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
								_				_		_					
																			NYSDEC Ambient Water
	1-30-187-GP03	(30)	1-30-187-GP03	3 (40)	1-30-187-GP03	(50)	1-30-187-GP03		1-30-187-GP0		1-30-187-GP03	8 (80)	1-30-187-GP03	(90)	1-30-187-GP03	(100)	1-30-187-GP-DU)P03°	Quality Standards
Analytes									EPA Method 82	60B (μg/	,								Class GA (µg/L)
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	50
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	NA
n- Butylbenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
cis-1,2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Methylene chloride	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Naphthalene	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	10
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,1,1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
		U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
m,p- Xylene Xylene (Total)	(<5.0) (<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	Ü	(<5.0)	TI	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	5

^a Duplicate sample was collected with 1-30-187-GP01 (40)

b Duplicate sample was collected with 1-30-187-GP02 (50)

^c Duplicate sample was collected with 1-30-187-GP03 (30)

NOTE: NYSDEC = New York State Department of Environmental Conservation

μg/L = Micrograms per Liter

USEPA = United States Enivronmental Protection Agency

= Non-detect, detection below the method detection limit. Method detection limit illustrated as (<_) U

R = Rejected value

NA = Not applicable

= Concentration is an estimated value.

Data provided by Mitkem Laboratories. Data Validation Provided by Environmental Data Services Inc. Only analytes that were detected in at least one sample are shown. Bolded values indicate that analyte was detected above NYSDEC TOGS 1.1.1 Ambient Water Quality Standards for Class GA waters.

	1-30-187-GP0-	4 (30)	1-30-187-GP04 ((40)	1-30-187-GP04 ((50)	1-30-187-GP04 ((60)	1-30-187-GP04	(/	1-30-187-GP04	(80)	1-30-187-GP04 (90)	1-30-187-GP04	(100)	1-30-187-GP-DUP0	1ª	NYSDEC Ambient Water Quality Standards
Analytes									USEPA Method 8	3260B (μg/L)								Class GA (µg/L)
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	28.0	J	10	J	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	50
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	7.20	J	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	NA
n- Butylbenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
cis-1,2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Methylene chloride	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	II	(<5.0)	U	(<5.0)	U	5
Naphthalene	1.0	J	(<5.0)	U	(<5.0)	U	(<5.0)	U	1.30	J	4.20	I	3.10	I	2.20	I	(<5.0)	II	10
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	1.80	J	2.10	ı	1.0	1	(<5.0)	U	(<5.0)	II	5
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	II	(<5.0)	U	(<5.0)	U	5
		U		U		U		_	()		(,	-	()	U	(,	-	(,	_~	
1,2,3- Trichlorobenzene	(<5.0)		(<5.0)		(<5.0)		(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,1,1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
m,p- Xylene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Xylene (Total)	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
	1																	_	
	1-30-187-GP0	5 (30)	1-30-187-GP05 ((40)	1-30-187-GP05 ((50)	1-30-187-GP05 (1-30-187-GP05	(70)	1-30-187-GP05	(80)	1-30-187-GP05 (90)	1-30-187-GP05	(100)	NYSDEC Ambient Wate Quality Standards Class		
Analytes									od 8260B (μg/L)								GA (μg/L)	_	
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR		UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR		_	
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR		UR	(<5.0)	UR		_	
n- Butylbenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5	-	
cis-1,2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5	-	
Methylene chloride Naphthalene	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	5 10	-	
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5	-	
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5	-	
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U		-	
1.1.1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5	-	
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
m,p- Xylene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	Ü	(<5.0)	U	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	U	5		
Xylene (Total)	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
	` '																		
Analytes	1-30-187-GP0	6 (30)	1-30-187-GP06 ((40)	1-30-187-GP06 ((50)	1-30-187-GP06 (,	1-30-187-GP06 od 8260B (µg/L)	(70)	1-30-187-GP06	(80)	1-30-187-GP06 (90)	1-30-187-GP06	(100)	NYSDEC Ambient Wate Quality Standards Class GA (μg/L)	r	
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	13	J	(<5.0)	UR	(<5.0)	UR			
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR		UR	(<5.0)	UR			
n- Butylbenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U			
cis-1,2- Dichloroethene	(<5.0)	Ü	(<5.0)	U	(<5.0)	U	(<5.0)	Ü	(<5.0)	U	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	U	5		
Methylene chloride	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Naphthalene	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	10		
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
1,1,1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
m,p- Xylene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Xylene (Total)	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
a Duplicate sample was collected with 1-	-30-187-GP04 (40))																	

	1-30-187-GP07 ((30)	1-30-187-GP0	7 (40)	1-30-187-GP0	7 (50)	1-30-187-GP07	· · · /	1-30-187-GP07 (70)	1-30-187-GP07 (80)	1-30-187-GP07 (90)	1-30-187-GP07 (100)	NYSDEC Ambient Water Quality Standards		
Analytes							USEPA	Metho	d 8260B (μg/L)								Class GA (µg/L)		
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	50		
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	NA		
n- Butylbenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
cis-1.2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Methylene chloride	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	Ü	(<5.0)	U	(<5.0)	Ü	(<5.0)	U	5		
Naphthalene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	10		
Tetrachloroethene	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Toluene	(<5.0)	U	(<5.0)	Ü	(<5.0)	U	(<5.0)	U	(<5.0)	Ü	(<5.0)	Ū	(<5.0)	Ü	(<5.0)	Ü	5		
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	Ü	(<5.0)	U	(<5.0)	U	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	U	5		
1.1.1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	5		
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	U	(<5.0)	II	5		
m,p- Xylene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Xylene (Total)	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Aylelle (Total)	(<3.0)	U	(<3.0)	U	(<5.0)	U	(<3.0)	U	(5.0)	-	(5.0)	U	(5.0)	0	(5.0)	- 0			
	1-30-187-GP08 ((30)	1-30-187-GP0	8 (40)	1-30-187-GP08	8 (50)	1-30-187-GP08	(60)	1-30-187-GP08 (1-30-187-GP08 (3	80)	1-30-187-GP08 (S	90)	1-30-187-GP08 (100)	1-30-187-GP-DUPC)2ª	NYSDEC Ambient Water Quality Standards
Analytes									USEPA Metho		40 /								Class GA (µg/L)
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	50
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	NA
n- Butylbenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
cis-1,2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Methylene chloride	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Naphthalene	(<5.0)	UJ	3.10	J	(<5.0)	UJ	(<5.0)	UJ	2.60	J	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	10
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,2,3- Trichlorobenzene	(<5.0)	U	2.30	J	(<5.0)	U	(<5.0)	U	2.00	J	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,1,1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
m,p- Xylene	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	U	(<5.0)	Ü	5
Xylene (Total)	(<5.0)	U	(<5.0)	Ü	(<5.0)	U	(<5.0)	U	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Trylene (Total)	(5.0)		(0.0)	Ü	(5.0)	Ü	(3.0)	Ü	(5.0)	-	(0.0)		(3.0)	U	(0.0)		(0.0)		, ,
Analytes	1-30-187-GP09 ((30)	1-30-187-GP0	9 (40)	1-30-187-GP09	9 (50)	1-30-187-GP09		1-30-187-GP09 ('	70)	1-30-187-GP09 (8	80)	1-30-187-GP09 (S	90)	1-30-187-GP09 (100)	NYSDEC Ambient Water Quality Standards Class GA (µg/L)		
Acetone	5.50	J	5.90	J	(<5.0)	UR	6.20	J	5.30	J	(<5.0)	UR	(<5.0)	UR	4.70	J	50		
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	NA		
n- Butylbenzene	(<5.0)	UK	(<5.0)	U	(<5.0)	UK	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	II	NA 5		
cis-1,2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Methylene chloride		U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U		U		U	5		
	(<5.0)	_	(_							(<5.0)	U	(<5.0)	U			
Naphthalene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)		(<5.0)		10		
Tetrachloroethene	3.90	J	(<5.0)	U	2.80	J	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
1,1,1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
m,p- Xylene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
Xylene (Total)	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5		
a Duplicate sample was collected with 1	-30-187-GP08 (40)				_										•				

I	1-30-187-GP10	(30)	1-30-187-GP10	0 (40)	1-30-187-GP10 (50)	1-30-187-GP10 ((60)	1-30-187-GP10	(70)	1-30-187-GP10	(80)	1-30-187-GP10	(90)	1-30-187-GP10	(100)	NYSDEC Ambient Water
		(/								(/		/		()		()	Quality Standards
Analytes	(# 0)	x rm	(# 0)	I v rm	(# 0)	I v vo		_	od 8260B (µg/L)								Class GA (µg/L)
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	
2- Butanone	(<5.0) (<5.0)	UR U	(<5.0)	UR U	(<5.0)	UR U	(<5.0)	UR U	(<5.0)	UR U	(<5.0) (<5.0)	UR U	(<5.0)	UR U	(<5.0)	UR U	
n- Butylbenzene	(<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	5
cis-1,2- Dichloroethene	(<5.0)	U		U		U		U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Methylene chloride Naphthalene	(<5.0)	UJ	(<5.0) (<5.0)	UJ	(<5.0) (<5.0)	UJ	(<5.0) (<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,1,1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	II	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
m,p- Xylene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Xylene (Total)	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	
33,1000 (1000)	(+10)		(2.0)		(\$10)		(0.0)										
	1-30-187-GP11	(30)	1-30-187-GP11	1 (40)	1-30-187-GP11 (50)	1-30-187-GP11 ((60)	1-30-187-GP11	(70)	1-30-187-GP11	(08)	1-30-187-GP11	(90)	1-30-187-GP11	(100)	NYSDEC Ambient Water
	1-30-107-GI II	(50)	1-30-107-0111	1 (40)	1-30-107-0111 (50)				(70)	1-30-107-01111	(00)	1-30-107-0111	(70)	1-30-107-0111	(100)	Quality Standards
Analytes									od 8260B (µg/L)								Class GA (µg/L)
Acetone	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	R	(<5.0)	U	(<5.0)	U	(<5.0)	R	50
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	R	(<5.0)	UR	(<5.0)	UR	(<5.0)	R	NA
n- Butylbenzene	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	U	(<5.0)	UR	(<5.0)	UR	(<5.0)	U	5
cis-1,2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Methylene chloride	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Naphthalene	(<5.0)	U	2.10	J	(<5.0)	U	(<5.0)	U	(<5.0)	UJ	(<5.0)	U	(<5.0)	U	(<5.0)	U	10
Tetrachloroethene	(<5.0)	UJ	(<5.0)	U	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	U	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	U	5
Toluene	(<5.0)	U	2.80	J	(<5.0)	U	(<5.0)	U	3.50	J	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	UJ	(<5.0)	U	(<5.0)	U	(<5.0)	UJ	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1,1,1- Trichloroethane	(<5.0)	UJ	(<5.0)	U	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	U	(<5.0)	UJ	(<5.0)	UJ	1.30	J	5
Trichloroethene	(<5.0) (<5.0)	U	(<5.0) 2.50	U J	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	5
m,p- Xylene Xylene (Total)	(<5.0)	U	2.50	J	(<5.0) (<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0) (<5.0)	U	
Ayiene (Total)	(<5.0)	U	2.30	J	(<5.0)	U	(<5.0)	U	(~5.0)	U	(~5.0)	U	(~5.0)	U	(0.0)	U)
	1 20 197 GD12	(30)	1 20 197 GD1	2 (40)	1 20 197 GP12 (50)	1 20 187 CD12 ((60)	1 20 187 CD12	(70)	1 20 197 GP12	(80)	1 20 197 GP12	(00)	1 20 187 GP12	(100)	NYSDEC Ambient Water
	1-30-187-GP12	(30)	1-30-187-GP12	2 (40)	1-30-187-GP12 (50)	1-30-187-GP12 (1-30-187-GP12	(70)	1-30-187-GP12	(80)	1-30-187-GP12	(90)	1-30-187-GP12	(100)	Quality Standards
Analytes		(30)					USEPA		1-30-187-GP12 od 8260B (μg/L)	(70)	1-30-187-GP12	(80)	1-30-187-GP12	(90)	1-30-187-GP12	(100)	Quality Standards Class GA (μg/L)
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	USEPA (<5.0)	Metho UR	od 8260B (μg/L) (<5.0)	UR	(<5.0)	UR	(<5.0)	UR	15.0	J	Quality Standards Class GA (µg/L) 50
Acetone 2- Butanone	(<5.0) (<5.0)	UR UR	(<5.0) (<5.0)	UR UR	(<5.0) (<5.0)	UR UR	USEPA (<5.0) (<5.0)	Metho UR UR	od 8260B (μg/L) (<5.0) (<5.0)	UR UR	(<5.0) (<5.0)	UR UR	(<5.0) (<5.0)	UR UR	15.0 (<5.0)	J UR	Quality Standards Class GA (µg/L) 50 NA
Acetone 2- Butanone n- Butylbenzene	(<5.0) (<5.0) (<5.0)	UR UR U	(<5.0) (<5.0) (<5.0)	UR UR U	(<5.0) (<5.0) (<5.0)	UR UR U	USEPA (<5.0) (<5.0) (<5.0)	Metho UR UR U	d 8260B (μg/L) (<5.0) (<5.0) (<5.0)	UR UR U	(<5.0) (<5.0) (<5.0)	UR UR U	(<5.0) (<5.0) (<5.0)	UR UR U	15.0 (<5.0) (<5.0)	J UR U	Quality Standards Class GA (μg/L) 50 NA 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene	(<5.0) (<5.0) (<5.0) (<5.0)	UR UR U	(<5.0) (<5.0) (<5.0) (<5.0)	UR UR U	(<5.0) (<5.0) (<5.0) (<5.0)	UR UR U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Wetho UR UR U	od 8260B (μg/L) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U	(<5.0) (<5.0) (<5.0) (<5.0)	UR UR U	(<5.0) (<5.0) (<5.0) (<5.0)	UR UR U	15.0 (<5.0) (<5.0) (<5.0)	J UR U	Quality Standards Class GA (µg/L) 50 NA 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Wethon UR UR U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0)	J UR U	Quality Standards Class GA (μg/L) 50 NA 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Wethon UR UR U U U U U U U U U U U U U U U U	od 8260B (μg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 10
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U UJ	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Metho UR UR U U U U U U U	od 8260B (μg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U UJ	Quality Standards Class GA (µg/L) 50 NA 5 5 5 10
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	od 8260B (μg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 5 10 5 5 5 5 5 6 5 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichlorobenzene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U UJ UJ U	Quality Standards Class GA (μg/L) 50 NA 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichlorobenzene 1,1,1- Trichloroethane	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	dd 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U U U U U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichlorobenzene 1,1,1- Trichloroethane Trichloroethene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U U U U U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene 1,2,3- Trichloroethane 1,1,1- Trichloroethane mp- Xylene mp- Xylene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR U U U U U U U U U U U U U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichlorobenzene 1,1,1- Trichloroethane Trichloroethene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U U U U U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene 1,2,3- Trichloroethane 1,1,1- Trichloroethane mp- Xylene mp- Xylene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Metho UR UR U U U U U U U U U U U U U U U U	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene 1,2,3- Trichloroethane 1,1,1- Trichloroethane mp- Xylene mp- Xylene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene 1,2,3- Trichloroethane 1,1,1- Trichloroethane mp- Xylene mp- Xylene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 5 5 5 5 5 5 5 5 5 5 7 5 7 8 8 8 8
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichlorobenzene 1,1,1- Trichloroethane Trichloroethene m,p- Xylene Xylene (Total)	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene 1,2,3- Trichloroethane 1,1,1- Trichloroethane Trichloroethene xylene xylene Xylene Analytes	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UU U U UJ U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5	Metho UR UR U U U U U U U U U U U U U U U U	d 8260B (μg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U U U U	Quality Standards Class GA (µg/L) S0 NA 5 5 5 10 5 5 5 5 5 5 NSDEC Ambient Water Quality Standards Class GA (µg/L)
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichloroethane Trichloroethene Trichloroethene Xylene Xylene Analytes Acetone	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UU U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U U U U U U U U U U	Quality Standards Class GA (μg/L) 50 NA 5 5 5 5 10 5 5 5 5 5 5 7 7 8 NYSDEC Ambient Water Quality Standards Class GA (μg/L) 50
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichlorobenzene 1,1,1- Trichloroethane Trichloroethene m,p- Xylene Xylene (Total) Analytes Acetone 2- Butanone	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UU U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Metho UR UR UU U U U U U U U U U U U U U U U	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UR UV	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.	J UR UR UV	Quality Standards Class GA (µg/L) S0 NA S S S S S S S S S
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene 1,2,3- Trichloroethane 1,1,1- Trichloroethane Trichloroethene Trichloroethane Trichloroethene Trichloroethene Trichloroethene Map- Xylene Xylene Xylene 2- Butanone 1- Butylbenzene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV UJ	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Methou UR	d 8260B (μg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UV	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.	J UR UR U U U U U U U U U U U U U U U U	Quality Standards Class GA (µg/L) S0 NA S S S S S S S S S
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,1,3- Trichloroethane Trichloroethane Trichloroethene Mp. Xylene Xylene Analytes Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR U U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UR U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Wethou UR	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UV U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UU U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UR UV	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR UV	Quality Standards Class GA (μg/L) 50 NA 5 5 5 5 10 5 5 5 5 5 5 7 5 7 7 NYSDEC Ambient Water Quality Standards Class GA (μg/L) 50 NA 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene 1,2,3- Trichloroethane 1,1,1- Trichloroethane 1,1,1- Trichloroethane xylene Xylene Analytes Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Methylene chloride	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR (30)	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Wetho	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR (70) UR (70)	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR U U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR UV	Quality Standards Class GA (μg/L) 50 NA 5 5 5 10 5 5 5 5 5 5 5 5 5 NYSDEC Ambient Water Quality Standards Class GA (μg/L) 50 NA 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichloroethane Trichloroethene Trichloroethene 1,1,1- Trichloroethane Trichloroethene Mylene Xylene Xylene Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UU U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR U U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Wethoo	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UR UV	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UU U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.	J UR UR U	Quality Standards Class GA (µg/L) NA 5 5 10 5 5 5 5 5 5 NYSDEC Ambient Water Quality Standards Class GA (µg/L) 5 NA 5 5 10 NA 5 5 5 5 10 NYSDEC Ambient Water Standards Class GA (µg/L) 5 5 10 10
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,1,3- Trichloroethane Trichloroethane Trichloroethene Mapp- Xylene Xylene (Total) Analytes Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UU U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UU U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Wethon	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J UR U U U U U U U U U U U U U U U U U	Quality Standards Class GA (µg/L) 50 NA 5 5 10 5 5 10 5 5 5 5 5 5 7 8 NYSDEC Ambient Water Quality Standards Class GA (µg/L) NA 5 5 5 10 NYSDEC Ambient Water 0 NA 5 10 10 10 10 10 10 10 10 10 10 10 10 10
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene 1,2,3- Trichloroethene 1,1,1- Trichloroethene 1,1,1- Trichloroethene 1,1,1- Trichloroethene m,p- Xylene Xylene Xylene (Total) Analytes Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Maphthalene Tetrachloroethene Tetrachloroethene Tetrachloroethene Toluene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR U U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UJ	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Wethon	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR U U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UU U	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	J	Quality Standards Class GA (µg/L) 50 NA 5 5 5 5 10 5 5 5 5 5 5 5 5 NYSDEC Ambient Water Quality Standards Class GA (µg/L) 50 NA 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Methylene Xylene Xylene Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,2,3- Trichloroethene	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UU U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Wethor UR	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UU U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.	J	Quality Standards Class GA (µg/L) NA 5 5 10 5 5 5 5 5 5 5 5 NYSDEC Ambient Water Quality Standards Class GA (µg/L) 5 5 10 NA 5 5 5 5 5 5 10 NYSDEC Ambient Water Quality Standards Class GA (µg/L) 5 5 5 5 5 5 5 5 5 5 5 5 5
Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene 1,1,1- Trichloroethane Trichloroethene Mylene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Mylene Analytes Acetone 2- Butanone n- Butylbenzene cis-1,2- Dichloroethene Methylene chloride Naphthalene Tetrachloroethene Toluene Toluene 1,2,3- Trichloroethane	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UJ	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UV	USEPA (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	Metho UR UR UU	d 8260B (µg/L) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR U U U U U U U U U U U U U U U U U	(<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0)	UR UR UV	15.0 (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.0) (<5.	J	Quality Standards Class GA (μg/L) S0 NA 5 5 5 10 5 5 5 5 5 NYSDEC Ambient Water Quality Standards Class GA (μg/L) NA 5 5 5 5 5 5 5 5 5 5 5 5 5

Analytes	1-30-187-RI	B-02	1-30-187-RB	103	1-30-187-RE		1-30-187-RB0		1-30-187-RB	806	1-30-187-RE	807	1-30-187-RB	08	NYSDEC Ambient Water Quality Standards Class GA (µg/L)
Acetone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	307
2- Butanone	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	(<5.0)	UR	
n- Butylbenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
cis-1.2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Methylene chloride	(<5.0)	U	(<5.0)	U	(<5.0)	U	1.40	J	(<5.0)	U	1.50	J	(<5.0)	U	5
Naphthalene	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	U	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	(<5.0)	UJ	10
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Toluene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1.2.3- Trichlorobenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
1.1.1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Trichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
m,p- Xylene	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Xylene (Total)	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	(<5.0)	U	5
Ayiene (Total)	(<5.0)	- 0	(<5.0)	U	(<5.0)	0			(<0.0)	0	(<5.0)	10	(<0.0)	10	,
	1-30-187-TRIP		1-30-187-TRIP B			BLANK	Water Quality Standards	t							
Analytes	(# 0)	_	SEPA Method 826	4.0	,	LVID	Class GA (µg/L)								
Acetone	(<5.0)	U	(<5.0)	UR	(<5.0)	UR	50								
2- Butanone n- Butylbenzene	(<5.0) (<5.0)	U	(<5.0) (<5.0)	UR U	(<5.0) (<5.0)	UR U	NA 5	-							
cis-1.2- Dichloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	5								
Methylene chloride	(<5.0)	U	(<5.0)	U	(<5.0)	U	5	-							
Naphthalene	(<5.0)	Ü	(<5.0)	Ü	(<5.0)	Ü	10								
Tetrachloroethene	(<5.0)	U	(<5.0)	U	(<5.0)	U	5								
Toluene	(<5.0)	U	1.20	J	(<5.0)	UJ	5								
1,2,3- Trichlorobenzene	(<5.0)	U	(<5.0)	U	(<5.0)	U	5								
1,1,1- Trichloroethane	(<5.0)	U	(<5.0)	U	(<5.0)	U	5								
	(<5.0)	U	(<5.0)	U	(<5.0)	U	5								
Trichloroethene															
Trichloroethene m,p- Xylene Xylene (Total)	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	(<5.0) (<5.0)	U	5								

TABLE 16 SUMMARY OF TARGET ANALYTE LIST METALS IN GROUNDWATER SAMPLES, 2-3 DECEMBER 2008

									NYSDEC Ambient
	1-30-187-GP02 (3	30)	1-30-187-GP03	(30)	1-30-187-GP05 (30)	1-30-187-GP08 (3	30)	Water Quality
Analytes			USEPA M	lethod (5010/7470 (ug/L)				Standard Class GA (µg/L)
Aluminum	(<200)	U	(<200)	U	(<200)	U	(<200)	U	NA
Antimony	(<20)	U	5.60	J	(<20)	U	(<20)	U	3
Arsenic	(<20)	U	(<20)	U	(<20)	U	(<20)	U	25
Barium	33.90	J	42.00	J	40.10	J	51.20	J	1,000
Cadmium	0.40	J	(<5.0)	U	0.310	J	(<5.0)	U	5
Calcium	16,700		16,500		16,400		16,600		NA
Chromium	(<20)	U	(<20)	U	(<20)	U	(<20)	U	50
Cobalt	5.0	J	9.80	J	42.40	J	15.90	J	NA
Copper	(<30)	U	9.70	J	(<30)	U	11.0	J	200
Iron	121.0	J	240		637.0		519.0		300
Magnesium	3,010		3,270		3,280		3,280		35,000
Manganese	3,880		3,250		1,900		2160		300
Mercury	(<0.20)	U	(<0.20)	UJ	(<0.20)	U	0.82650	J	0.7
Nickel	20.60	J	14.40	J	15.0	J	12.70	J	100
Potassium	3,720		3,000		2,810		2,990		NA
Selenium	(<30)	U	(<30)	U	(<30)	U	(<30)	U	10
Silver	(<30)	U	0.640	J	(<30)	U	(<30)	U	50
Sodium	30,700		31,300		25,000		31,100		20,000
Thallium	9.50	J	8.20	J	(<20)	U	(<20)	U	0.5
Zinc	28.10	J	43.50	J	58.90		49.90	J	2,000
									NYSDEC Ambient
	1-30-187-GP10 (3	30)	1-30-187-GP-DU	JP03 ^a	1-30-187-RB0	3	1-30-187 RB 04	ļ.	NYSDEC Ambient Water Quality
	1-30-187-GP10 (3	30)		•		3	1-30-187 RB 04	ļ	Water Quality Standard
Analytes	·	30)	USEPA M	lethod (5010/7470 (ug/L)				Water Quality Standard Class GA (µg/L)
Aluminum	390		USEPA M (<200)	lethod (6010/7470 (ug/L) (<200)	U	(<200)	U	Water Quality Standard Class GA (µg/L) NA
Aluminum Antimony	390 (<20)	U	USEPA M (<200) (<20)	lethod (UUU)	6010/7470 (ug/L) (<200) 4.90	U J	(<200) (<20)	U U	Water Quality Standard Class GA (µg/L) NA 3
Aluminum Antimony Arsenic	390 (<20) (<20)	U	USEPA M (<200) (<20) (<20)	U U U U	6010/7470 (ug/L) (<200) 4.90 (<20)	U J U	(<200) (<20) (<20)	U U U	Water Quality Standard Class GA (µg/L) NA 3 25
Aluminum Antimony Arsenic Barium	390 (<20) (<20) 62.70	U U J	USEPA M (<200) (<20) (<20) (<20) 42.50	U U U U J	6010/7470 (ug/L) (<200) 4.90 (<20) (<200)	U J U	(<200) (<20) (<20) (<200)	U U U	Water Quality Standard Class GA (µg/L) NA 3 25 1,000
Aluminum Antimony Arsenic Barium Cadmium	390 (<20) (<20) 62.70 (<5.0)	U	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140	U U U U	6010/7470 (ug/L) (<200) 4.90 (<20) (<200) (<5.0)	U J U U U U	(<200) (<20) (<20) (<200) (<5.0)	U U U	Water Quality Standard Class GA (µg/L) NA 3 25 1,000 5
Aluminum Antimony Arsenic Barium Cadmium Calcium	390 (<20) (<20) 62.70 (<5.0) 16,800	U U U	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100	U U U U J J	(<200) (<200) (<20) (<20) (<20) (<20) (<5.0) 151.0	U J U U U U	(<200) (<20) (<20) (<200) (<5.0) (<800)	U U U U U	Water Quality Standard Class GA (µg/L) NA 3 25 1,000 5 NA
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium	390 (<20) (<20) 62.70 (<5.0) 16,800	U U J	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20)	U U J J U U	(<200) (<200) (<20) (<20) (<20) (<200) (<5.0) 151.0 (<20)	U J U U J U U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<20)	U U U U U U	Water Quality Standard Class GA (µg/L) NA 3 25 1,000 5 NA 50
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt	390 (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90	U U J U	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30	U U J U J J J J J J J J J J J J J J J J	(<200) (<200) (<20) (<20) (<20) (<200) (<5.0) 151.0 (<20) (<50)	U J U U U U U U U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<20) (<50)	U U U U U U U	Water Quality Standard Class GA (µg/L) NA 3 25 1,000 5 NA 50 NA
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30	U U U	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50	U U J J U U	(<200) (<200) (<20) (<20) (<20) (<5.0) 151.0 (<20) (<50) (<50) (<30)	U U U U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<20) (<50) (<30)	U U U U U U U U	Water Quality Standard Class GA (µg/L) NA 3 25 1,000 5 NA 50 NA 200
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30 2,680	U U J U	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50 240	U U J U J J J J J J J J J J J J J J J J	(<200) (<200) (<20) (<20) (<20) (<5.0) 151.0 (<20) (<50) (<30) (<30) (<200)	U U U U U U U U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<20) (<50) (<30) (<200)		Water Quality Standard Class GA (μg/L) NA 3 25 1,000 5 NA 50 NA 200 300
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30 2,680 3,520	U U J U	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50 240 3,180	U U J U J J J J J J J J J J J J J J J J	(<200) (<200) (<200) (<200) (<200) (<5.0) 151.0 (<20) (<50) (<50) (<30) (<200)	U U U U U U U U U U U U U U U U U U U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<20) (<50) (<30) (<200) (<500)	U U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA (μg/L) NA 3 25 1,000 5 NA 50 NA 200 300 35,000
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30 2,680 3,520 3,030	J D D	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50 240 3,180 4,770	U U U J J J J J J J J	(<200) (<200) (<200) (<200) (<200) (<5.0) 151.0 (<20) (<50) (<50) (<30) (<200) (<500)	U U U U U U U U U U U U U U U U U U U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<20) (<50) (<30) (<200) (<500)	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water Quality Standard Class GA (μg/L) NA 3 25 1,000 5 NA 50 NA 200 300 35,000 300
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Mercury	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30 2,680 3,520 3,030 (<0.20)	U U U J J U U U U U U U U U U U U U U U	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50 240 3,180 4,770 (<0.20)	U U J J J U J U J U J U J U J U J U J U	(<200) (<200) (<20) (<20) (<20) (<5.0) 151.0 (<20) (<50) (<30) (<200) (<500) (<500) (<500)	U U U U U U U U U U U U U U U U U U U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<20) (<50) (<30) (<200) (<500) 1.90	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Water Quality Standard Class GA (μg/L) NA 3 25 1,000 5 NA 50 NA 200 300 35,000 300 0.7
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Mercury Nickel	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30 2,680 3,520 3,030 (<0.20)	J D D	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50 240 3,180 4,770 (<0.20) 20.50	U U U J J J J J J J J	(<200) (<200) (<200) (<200) (<200) (<5.0) 151.0 (<20) (<50) (<50) (<50) (<30) (<200) (<500) (<500) (<500) (<500) (<500) (<500) (<500) (<500) (<50)	U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<50) (<30) (<200) (<500) 1.90 0.0290 (<50)	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water Quality Standard Class GA (μg/L) NA 3 25 1,000 5 NA 50 NA 200 300 35,000 300 0.7 100
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Mercury Nickel Potassium	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30 2,680 3,520 3,030 (<0.20) 20.80 3,220	T U U U U U U U U U U U U U U U U U U U	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50 240 3,180 4,770 (<0.20) 20.50 3,350	U U J J U J U J U J J J J J J J J J J J	(<200) (<200) (<200) (<200) (<200) (<5.0) 151.0 (<20) (<50) (<50) (<30) (<200) (<500) (<500) (<500) (<500) (<500) (<0.20) (<500) (<0.20) (<0.20) (<1000)	U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<50) (<30) (<200) (<500) 1.90 0.0290 (<50) (<1000)		Water Quality Standard Class GA (μg/L) NA 3 25 1,000 5 NA 50 NA 200 300 35,000 300 0.7 100 NA
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Mercury Nickel Potassium Selenium	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30 2,680 3,520 3,030 (<0.20) 20.80 3,220 7.70	U U J U J U	USEPA M (<200) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50 240 3,180 4,770 (<0.20) 20.50 3,350 (<30)	U U J J U J U J U J U J U J U J U J U U J U	(<200) (<200) (<200) (<200) (<200) (<5.0) 151.0 (<20) (<50) (<50) (<30) (<200) (<500) (<500) (<500) (<500) (<0.20) (<500) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20)	U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<50) (<30) (<200) (<500) 1.90 0.0290 (<50) (<1000)	1 U U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA (µg/L) NA 3 25 1,000 5 NA 50 NA 200 300 35,000 300 0.7 100 NA 10
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Mercury Nickel Potassium Selenium Silver	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30 2,680 3,520 3,030 (<0.20) 20.80 3,220 7.70 (<30)	T U U U U U U U U U U U U U U U U U U U	USEPA M (<200) (<20) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50 240 3,180 4,770 (<0.20) 20.50 3,350 (<30) (<30)	U U J J U J U J U J J J J J J J J J J J	(<200) (<200) (<200) (<200) (<200) (<5.0) 151.0 (<20) (<50) (<50) (<30) (<200) (<500) (<500) (<1000) (<1000) (<30) (<30)	U	(<200) (<20) (<20) (<20) (<200) (<5.0) (<800) (<50) (<50) (<30) (<200) (<500) 1.90 0.0290 (<50) (<1000) (<30) (<30)	U	Water Quality Standard Class GA (μg/L) NA 3 25 1,000 5 NA 50 NA 200 300 35,000 300 0.7 100 NA 10 50
Aluminum Antimony Arsenic Barium Cadmium Calcium Chromium Cobalt Copper Iron Magnesium Manganese Mercury Nickel Potassium Selenium	390 (<20) (<20) (<20) 62.70 (<5.0) 16,800 16.40 67.90 7.30 2,680 3,520 3,030 (<0.20) 20.80 3,220 7.70	U U J U J U	USEPA M (<200) (<20) (<20) 42.50 0.140 16,100 (<20) 12.30 6.50 240 3,180 4,770 (<0.20) 20.50 3,350 (<30)	U U J J U J U J U J U J U J U J U J U U J U	(<200) (<200) (<200) (<200) (<200) (<5.0) 151.0 (<20) (<50) (<50) (<30) (<200) (<500) (<500) (<500) (<500) (<0.20) (<500) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20) (<0.20)	U	(<200) (<20) (<20) (<200) (<5.0) (<800) (<50) (<30) (<200) (<500) 1.90 0.0290 (<50) (<1000)	1 U U U U U U U U U U U U U U U U U U U	Water Quality Standard Class GA (µg/L) NA 3 25 1,000 5 NA 50 NA 200 300 35,000 300 0.7 100 NA 10

^a Duplicate sample was collected with 1-30-187-GP03 (30)

NOTE: NYSDEC = New York State Department of Environmental Conservation

μg/L = Micrograms per Liter

USEPA = United States Enivronmental Protection Agency

U = Non-detect, detection below the method detection limit. Method detection limit illustrated as (<_)

NA = Not applicable

J = Concentration is an estimated value.

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services Inc. Only analytes that were detected in at least one sample are shown.

Bolded values indicate that analyte was detected above NYSDEC TOGS 1.1.1 Ambient Water Quality Standards for Class GA waters.

Project No.: 14368.34 Revision: FINAL Table 17, Page 1 of 1 May 2009

TABLE 17 SUMMARY OF PESTICIDES IN GROUNDWATER SAMPLES, 2-3 DECEMBER 2008

Analytes	1-30-187-GP02 (3	50)	1-30-187-GP03 (3 USEPA N	 1-30-187-GP05 (3 od 8082 (ug/L)	0)	1-30-187-GP08 (3	0)	NYSDEC Ambient Water Quality Standard Class GA (µg/L)
Dieldrin	(<0.10)	UJ	0.110	0.140		(<0.10)	UJ	0.004
Endosulfan I	0.110	J	0.110	0.0890		(<0.050)	UJ	NA
				ī				
Analytes	1-30-187-GP10 (3	50)	1-30-187-GPDUP USEPA N	1-30-187 RB 03	i	1-30-187-RB04		NYSDEC Ambient Water Quality Standard Class GA (μg/L)
Dieldrin	(<0.10)	IJ	0.10	 (<0.10)	U	(<0.10)	U	0.004
Endosulfan I	0.10	J	0.0950	(<0.050)	U	(<0.050)	U	NA

^a Duplicate sample was collected with 1-30-187-GP03 (30)

Note: NYSDEC = New York State Department of Environmental Conservation

 μ g/L = Micrograms per Liter

USEPA = United States Enivronmental Protection Agency

U = Non-detect, detection below the method detection limit. Method detection limit illustrated as (<_)

J = Concentration is an estimated value.

NA = Not applicable

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services Inc. Only analytes that were detected in at least one sample are shown.

Bolded values indicate that analyte was detected above NYSDEC TOGS 1.1.1 Ambient Water Quality Standards for Class GA waters.

TABLE 18 SUMMARY OF POLYCHLORINATED BIPHENYLS IN GROUNDWATER SAMPLES, 2-3 DECEMBER 2008

Analytes	1-30-187-GP02 (30)		1-30-187-GP03 (30 USEPA		1-30-187-GP05 (30))	1-30-187-GP08 (30))	NYSDEC Ambient Water Quality Standard Class GA (µg/L)
Aroclor-1016	(<1.0)	UJ	(<1.0)	U	(<1.0)	U	(<1.0)	UJ	5
Aroclor-1221	(<1.0)	UJ	(<1.0)	U	(<1.0)	U	(<1.0)	UJ	5
Aroclor-1232	(<1.0)	UJ	(<1.0)	U	(<1.0)	U	(<1.0)	UJ	5
Aroclor-1242	(<1.0)	UJ	(<1.0)	U	(<1.0)	U	(<1.0)	UJ	5
Aroclor-1248	(<1.0)	UJ	(<1.0)	U	1.0		(<1.0)	UJ	5
Aroclor-1254	(<1.0)	UJ	(<1.0)	U	(<1.0)	U	(<1.0)	UJ	5
Aroclor-1260	(<1.0)	UJ	(<1.0)	U	(<1.0)	U	(<1.0)	UJ	5
	` , ,		(11)				<u> </u>		
	1-30-187-GP10 (30)		1-30-187-DUP03 ^a	ı .	1-30-187-RB03		1-30-187 RB 04		NYSDEC Ambient Water Quality
Analytes	1-30-187-GP10 (30)		1-30-187-DUP03 ^a		1-30-187-RB03 180082 (ug/L)		1-30-187 RB 04		
Analytes Aroclor-1016	1-30-187-GP10 (30) (<1.0)	U	1-30-187-DUP03 ^a			U	1-30-187 RB 04 (<1.0)	U	Water Quality Standard
•		U	1-30-187-DUP03 ^a USEPA	Method	1 80082 (ug/L)	U		U	Water Quality Standard Class GA (μg/L)
Aroclor-1016	(<1.0)	_	1-30-187-DUP03 ^a USEPA (<1.0)	Method U	1 80082 (ug/L) (<1.0)		(<1.0)	+	Water Quality Standard Class GA (µg/L) 5
Aroclor-1016 Aroclor-1221	(<1.0) (<1.0)	U	1-30-187-DUP03 ^a USEPA (<1.0) (<1.0)	Method U U	(<1.0) (<1.0)	U	(<1.0) (<1.0)	U	Water Quality Standard Class GA (µg/L) 5
Aroclor-1016 Aroclor-1221 Aroclor-1232	(<1.0) (<1.0) (<1.0)	U U	1-30-187-DUP03 ^a USEPA (<1.0) (<1.0) (<1.0)	Method U U U	(<1.0) (<1.0) (<1.0) (<1.0)	U	(<1.0) (<1.0) (<1.0)	U U	Water Quality Standard Class GA (µg/L) 5 5 5
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242	(<1.0) (<1.0) (<1.0) (<1.0)	U U U	1-30-187-DUP03 ^a USEPA (<1.0) (<1.0) (<1.0) (<1.0)	Method U U U U	(<1.0) (<1.0) (<1.0) (<1.0) (<1.0) (<1.0)	U U U	(<1.0) (<1.0) (<1.0) (<1.0)	U U U	Water Quality Standard Class GA (µg/L) 5 5 5 5

^a Duplicate sample was collected with 1-30-187-GP03 (30)

NOTE: NYSDEC = New York State Department of Environmental Conservation

μg/L = Micrograms per Liter

USEPA = United States Enivronmental Protection Agency

U = Non-detect, detection below the method detection limit. Method detection limit illustrated as (<_)

J = Concentration is an estimated value.

Data provided by Mitkem Laboratories. Data Validation provided by Environmental Data Services Inc. Only analytes that were detected in at least one sample are shown. Bolded values indicate that analyte was detected above NYSDEC TOGS 1.1.1 Ambient Water Quality Standards for Class GA waters.

Appendix A

Environmental Data Resources, Inc. Database Report – Provided on CD

Appendix B Daily Field Reports

DAILY OBSERVATION REPORT

NYSDEC

Temperature: (F) 40

Wind Direction:

Arrive at site

(am)

(am)

(am)

Day: Monday

Date: 11/17/08 45 (pm)

(pm)

Project Name: Love Cleaners

Weather: (am) sunny

W

(pm) sunny

750

NYSDEC Site # 1-30-187

Contract # D-044368-34 Hempstead, New York

Leave site: 430 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

 Soil
 Yes (x) n/a ()
 * No ()

 Waters
 Yes () n/a (X)
 * No ()

 Air
 Yes () n/a (x)
 * No ()

If No, provide comments

OTHER ITEMS:
Site Sketch Attached:

Photos Taken:

Yes() No(x) Yes(X) No()

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 7:50 AM. Drillers on site 8:00 AM. Geophysical Surveyor onsite 8:30 AM to clear proposed sample locations.

After sample locations cleared, drillers begin work by installing 6 soil vapor points to 8 ft, by driving an expendable point to 8 feet, then inserting stainless steel screen and Teflon lined tubing to ground surface. Sand fill over screen and bentonite seal at surface completed all vapor points.

One soil boring completed to water table (18 ft) sample collected from 18-23 ft for VOC/SOC/Metals/PCB/Pesticides

After Drillers offsite, 4 surface soil samples collected from locations to the east and north of the Former Love Cleaners Structure. Rinse Blank collected after sampling for all analysis from steel bowl/trowel.

Left site 4:30 PM.

PROJECT TOTALS:

SAMPLING (Soil/Water/Air) Contractor Sample ID:	DEC Sample ID:	Description:
SB-01 (18-23)		VOC/SVOC/Pesticides/PCBs/Metals Sub. Soil
SS-01, SS-02, SS-03, SS-04		VOC/SVOC/Pesticides/PCBs/Metals Surface Soils

Daily Observation Report Page 1 of 1

Day: Monday Date: 11/17/08 **DAILY OBSERVATION REPORT CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:** (Name of contractor) personnel: David Crandall/Jim Peterson (Name of Subcontractor) personnel: Scott and Ernesto with LAWES (Name of contractor) equipment: PID (*Indicates active equipment) Other Subcontractors: **VISITORS TO SITE:** 1. Bob Corcoran with DEC **PROJECT SCHEDULE ISSUES: PROJECT BUDGET ISSUES:** None. **ITEMS OF CONCERN: COMMENTS:**

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: David Crandall

cc:

Daily Observation Report Page 2 of 2

DAILY PHOTOLOG

Geoprobe work

Day: Monday Date: 11/17/08

Soil vapor point installation

Jarring surface soil composite samples

Daily Observation Report Page 3 of 3

DAILY OBSERVATION REPORT

NYSDEC

Temperature: (F) 40

Wind Direction:

(am)

(am)

Day: Tuesday

Date: 11/18/08 45 (pm)

(pm)

W

Project Name: Love Cleaners

Weather: (am) sunny

-

(pm) sunny

W

NYSDEC Site # 1-30-187

Arrive at site

645 (am)

Contract # D-044368-34 Hempstead, New York

Leave site: 330 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Soil Waters Yes (x) n/a () * No ()

Air

Yes () n/a (X) * No ()
Yes () n/a (x) * No ()

• If No, provide comments

OTHER ITEMS:

Photos Taken:

Site Sketch Attached:

Yes () No (x) Yes (X) No ()

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 6:45 AM. Drillers on site 7:00 AM. While Drillers prepped, leak tested SV-01 and purged SV-02 through SV-06, then set up SUMMA Canisters for sampling. Canisters sampled for close to 2 hours, with exception of SV-02, which achieved pressure of -1 within 1 hour and was shut off prior to reaching 0 pressure.

Began geoprobe work at SB-02 located in drywell in front of former drycleaners structure. Drywell determined to be 12 ft deep and full of water to approx. 5 ft bgs. Set cores on dirt bottom of drywell and then drove down to collect sample.

5 additional soil borings completed throughout the day. Samples collected at each boring for VOC/SVOC/Metals/PCB/Pesticides.

3 borings left to complete prior to initiating groundwater sampling via HydroPunch.

Drillers, DEC Rep, and EA left site @ 3:45 PM.

PROJECT TOTALS:

SAMPLING (Soil/Water/Air) Contractor Sample ID:	DEC Sample ID:	Description:
SB-02 through SB-07		VOC/SVOC/Pesticides/PCBs/Metals Sub. Soil
SV-01 Through SV-06		VOCs by TO-15 for soil vapor.

Daily Observation Report Page 1 of 1

Day: Tuesday Date: 11/18/08 **DAILY OBSERVATION REPORT CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:** (Name of contractor) personnel: David Crandall/Jim Peterson (Name of Subcontractor) personnel: Tony and Ernesto with LAWES (Name of contractor) equipment: PID, ppbRAE, Helium detector, helium, gilair pump (*Indicates active equipment) Other Subcontractors: **VISITORS TO SITE:** 1. Bob Corcoran with DEC **PROJECT SCHEDULE ISSUES: PROJECT BUDGET ISSUES:** None. **ITEMS OF CONCERN: COMMENTS:**

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: David Crandall

cc:

Daily Observation Report Page 2 of 2

DAILY PHOTOLOG

Soil vapor point leak test/purge

Day: Tuesday Date: 11/18/08

Soil vapor sampling

Geoprobing within drywell

View within drywell

Daily Observation Report Page 3 of 3

DAILY OBSERVATION REPORT

NYSDEC

Temperature: (F) 30

(am)

35 (pm)

Date: 11/19/08

Project Name: Love Cleaners

Wind Direction:

W (am)

Day: Wednesday

W (pm)

Weather:

: (am) sunny

(pm) sunny

NYSDEC Site # 1-30-187

Arrive at site

645 (am)

Contract # D-044368-34 Hempstead, New York

Leave site:

420 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Soil Waters Yes (x) n/a () Yes () n/a (X)

* No()

* No ()

Waters Air

Yes () n/a (x)

n/a (x) * No ()

If No, provide comments

OTHER ITEMS:

Site Sketch Attached: Photos Taken:

Yes () Yes (X)

No(x) No()

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 6:40 AM. Drillers on site 6:50 AM. Begin day by completing 3 remaining soil borings in roadway to South of the former Love Cleaners. Collected soil samples from each boring at the soil/groundwater table interface.

After completion of borings, began hydropunch sampling by driving rod full 100 feet, extending screen, collect sample, and pull up 10 feet and then collect sample from next interval up to 30 feet. Collected headspace PID reading from each depth and purged three calculated rod volumes for each sample, as discussed with DEC Representative onsite.

Able to collect samples to 60 feet. Will redrive to 50 ft and continue sampling to 30 ft on 11/20.

2 additional soil borings completed throughout the day. Samples collected at each boring for VOC/SVOC/Metals/PCB/Pesticides.

GW samples collected from GP01 (SB01) from 100, 90, 80, 70, 60 feet for VOCs. Rinse blank collected at end of day VOCs.

Drillers and EA left site at 4:20 PM, EA to UPS to ship out soil samples on ice to Mitkem Laboratories

PROJECT TOTALS:

SAMPLING (Soil/Water/Air) Contractor Sample ID:	DEC Sample ID:	Description:
SB-09 through SB-10		VOC/SVOC/Pesticides/PCBs/Metals Sub. Soil
GP01 (100 up to 60 feet)		VOCs for Groundwater

Daily Observation Report Page 1 of 1

Day: Wednesday Date: 11/19/08 **DAILY OBSERVATION REPORT CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:** (Name of contractor) personnel: David Crandall/Jim Peterson (Name of Subcontractor) personnel: Tony and Ernesto with LAWES (Name of contractor) equipment: PID (*Indicates active equipment) Other Subcontractors: **VISITORS TO SITE:** 1. Bob Corcoran with DEC **PROJECT SCHEDULE ISSUES: PROJECT BUDGET ISSUES:** None. **ITEMS OF CONCERN: COMMENTS:**

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: David Crandall

cc:

Daily Observation Report Page 2 of 2

DAILY PHOTOLOG

Subsurface soil collection

Day: Wednesday Date: 11/19/08

Purging hydropunch location

Purging hydropunch for sample collection

Daily Observation Report Page 3 of 3

DAILY OBSERVATION REPORT

NYSDEC Temperature: (F) 30 (am) 35 (pm)

Wind Direction: W (am) W (pm)

Day: Thursday

Date: 11/20/08

Project Name: Love Cleaners Weather: (am) sunny

(pm) sunny

NYSDEC Site # 1-30-187

Contract # D-044368-34Arrive at site645 (am)Hempstead, New YorkLeave site:430 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? Yes () No (x) (If yes, list the deviation under items for concern)

Are monitoring results at acceptable levels? Soil Yes (x) n/a () * No ()

Waters Yes () n/a (X) * No () Air Yes () n/a (x) * No ()

OTHER ITEMS:

• If No, provide comments

Site Sketch Attached: Yes () No (x) Photos Taken: Yes (X) No ()

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 6:45 AM. Drillers on site 6:50 AM. Begin day by completing hydropunch sampling at GP-01 with extended screen. After sample collection, screen was destroyed.

Following discussions with drillers and DEC rep., decided to utilize a slotted rod for sample collection, and to drive rod to 30 ft, sample and extend down in 10-ft increments to 100 ft. This process should allow for more productive sample collection, without having to redrive points to each sample depth. Rod continues to be purged of calculated volume prior to each sample collection.

Was able to complete entire sample spectrum for GP-07 and to complete 30-70 feet for GP-06, will redrive to 80 ft and complete GP-06 sampling on 11-21.

Also met with manager at Laundry Palace and installed SS-01 (first floor) and SS-02 (basement, along with SS-DUP) sub-slab sample points and initiated sampling. Samplers to be picked up after 24 hours and forwarded to ConTest Labs for analysis. Rinse Blank collected at end of day from slotted rod for VOCs.

Drillers and EA left site at 4:30 PM

PROJECT TOTALS:

SAMPLING (Soil/Water/Air)

Contractor Sample ID: DEC Sample ID: Description:

GP01 (50, 40, 30 ft) GP07 (30-100 ft) GP06 (30-70 ft) **VOCs for Groundwater**

Daily Observation Report Page 1 of 1

Day: Thursday Date: 11/20/08 **DAILY OBSERVATION REPORT CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:** (Name of contractor) personnel: David Crandall/Jim Peterson (Name of Subcontractor) personnel: Tony and Ernesto with LAWES (Name of contractor) equipment: PID (*Indicates active equipment) Other Subcontractors: **VISITORS TO SITE:** 1. **PROJECT SCHEDULE ISSUES: PROJECT BUDGET ISSUES:** None. **ITEMS OF CONCERN: COMMENTS: ATTACHMENT(S) TO THIS REPORT:**

Daily Observation Report Page 2 of 2

SITE REPRESENTATIVE:

Name: David Crandall

cc:

DAILY PHOTOLOG

Destroyed hydropunch screen

Daily Observation Report Page 3 of 3

Day: Thursday Date: 11/20/08

NYSDEC

Temperature: (F) 30

Wind Direction:

(am)

(am)

Day: Friday

35 (pm)

W

Date: 11/21/08

(pm)

Project Name: Love Cleaners

Weather: (am) sunny

NYSDEC Site # 1-30-187

(pm) sunny

W

Contract # D-044368-34 Hempstead, New York

Arrive at site 645 (am)

Leave site: 1200 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Yes (x) * No () n/a () Waters * No () Yes () n/a (X) Yes ()

Air

Soil

n/a (x) * No () If No, provide comments

OTHER ITEMS:

Photos Taken:

Site Sketch Attached:

No(x)Yes (Yes (X) No (

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 6:45 AM. Drillers on site 6:50 AM. Finish completing GP-06 Sampling (80-100 ft.) Then set up and complete all sample depths at GP08 (top interval collected for Metals, VOCs, SVOCs, Pesticides/PCBs (MS/MSD Collected for all).

Collected sub-slab samples around 11:00 AM. Also collected soil samples from locations where sub-slab samples were collected, after stopping air sampling. All holes then filled with hydraulic cement and areas cleared of any debris.

Drillers and EA left site at 12:00 PM. Canisters and Soil/GW samples sent to respective labs for analysis.

PROJECT TOTALS:

O A MOL INIO (O - 'I/M- (- .../ A '...)

Contractor Sample ID:	DEC Sample ID:	Description:	
GP06 (80-100 ft)		VOCs for Groundwater	
GP08 (30-100 ft)		30 FT (voc/svoc/metals/pest/pcb) all others VOC only (MS/MSD at 30 FT) Duplicate01 @ 40ft.	
SS-01/SS-02 Basement/Slab		SubSlab indoor air for VOCs by TO-15 grab soil samples from beneath floor at SS locations	

DAILY OBSERVATION REPORT Day: Friday Date: 11/21/08 **CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:** (Name of contractor) personnel: David Crandall/Jim Peterson (Name of Subcontractor) personnel: Tony and Ernesto with LAWES (Name of contractor) equipment: PID (*Indicates active equipment) Other Subcontractors: **VISITORS TO SITE:** 1. **PROJECT SCHEDULE ISSUES: PROJECT BUDGET ISSUES:** None. **ITEMS OF CONCERN: COMMENTS: ATTACHMENT(S) TO THIS REPORT:**

Daily Observation Report Page 2 of 2

SITE REPRESENTATIVE:

Name: David Crandall

cc:

DAILY PHOTOLOG

Slotted rod used for sample collection

Day: Friday Date: 11/21/08

View of slots on sample rod

Slotted rod

Drive point at end of rod

DAILY OBSERVATION REPORT Day: Monday Date: 12/1/08 55 Temperature: (F) 50 (am) (pm) **NYSDEC** Wind Direction: W (am) (pm) **Project Name: Love Cleaners** Weather: (am) sunny (pm) sunny NYSDEC Site # 1-30-187 Contract # D-044368-34 Arrive at site 650 (am) Leave site: Hempstead, New York 415 (pm) **HEALTH & SAFETY:** Are there any changes to the Health & Safety Plan? Yes () No (x) (If yes, list the deviation under items for concern) Are monitoring results at acceptable levels? Soil Yes (x) * No () n/a () Waters * No () Yes () n/a (X) Air Yes () n/a (x) * No () **OTHER ITEMS:** If No, provide comments Site Sketch Attached: Yes (No(x)Photos Taken: Yes (X) No (

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 650am. Drillers on site 500. Resample GP-01, GP-07 (all depths) and GP-06 (30-70) using same methods as previous week (had to be resampled due to issues with preservative in previous samples).

Drillers and EA left site at 415pm

PROJECT TOTALS:

SAMPLING (Soil/Water/Air) Contractor Sample ID:	DEC Sample ID:	Description:
GP-01 (30-100)		VOCs for Groundwater
GP-07 (30-100)		VOCs for Groundwater
GP-06 (30-70)		VOCs for Groundwater

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: David Crandall

(Name of Subcontractor) personnel: Tony and Ernesto with LAWES

(Name of contractor) equipment: PID

(*Indicates active equipment)
Other Subcontractors:

VISITORS TO SITE: 1.
PROJECT SCHEDULE ISSUES:
PROJECT BUDGET ISSUES: None.
ITEMS OF CONCERN:
COMMENTS:
ATTACHMENT(S) TO THIS REPORT:
SITE REPRESENTATIVE:

Day: Monday Date: 12/1/08

DAILY PHOTOLOG

Name: David Crandall

cc:

DAILY OBSERVATION REPORT

NYSDEC

Temperature: (F) 40

Weather:

(am)

(am)

(pm)

(am) sunny (pm) sunny

400

Day: Tuesday

45 (pm)

Date: 12/2/08

Project Name: Love Cleaners

Wind Direction: NW NW (pm)

NYSDEC Site # 1-30-187

Arrive at site

Contract # D-044368-34 Hempstead, New York

650 (am) Leave site:

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Soil Yes (x) * No () n/a () Waters * No () Yes () n/a(X)* No () Air Yes () n/a (x)

OTHER ITEMS:

If No, provide comments

Site Sketch Attached: Yes (No(x)Photos Taken: Yes (X) No (

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 650am. Drillers on site 500. Complete sampling of GP-06 (80-100 ft.) Complete full sampling of GP-08 (Full Suite @ 30 ft, MS/MSD for entire suite), and GP-03 (Full Suite @ 30 ft., DUP-03 for entire suite). Rinsate Blank for day collected after GP-08 sampling for VOC/SVOC/Metals/PCB/Pesticides.

Drillers leave site @ 330 pm. EA prepped samples for shipment left site at 430pm to pick up additional ice and ship samples to Mitkem Lab via UPS.

PROJECT TOTALS:

SAMPLING (Soil/Water/Air) Contractor Sample ID:	DEC Sample ID:	Description:
GP-06 (70-100)		VOCs for Groundwater
		VOC/SVOC/Metals/PCB/Pesticides for Groundwater at 30 ft. (MS/MSD at 30 ft.)
GP-08 (30-100)		VOCs for Groundwater at all other depths
		VOC/SVOC/Metals/PCB/Pesticides for Groundwater at 30 ft. (DUP03 at 30 ft.)
GP-03 (30-100)		VOCs for Groundwater at all other depths

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

Day: Tuesday Date: 12/2/08

(Name of contractor) personnel: David Crandall

(Name of Subcontractor) personnel: Tony and Ernesto with LAWES

(Name of contractor) equipment: PID

(*Indicates active equipment)
Other Subcontractors:

VISITORS TO SITE:

1

PROJECT SCHEDULE ISSUES:

PROJECT BUDGET ISSUES:

None.

ITEMS OF CONCERN:

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: David Crandall

cc:

DAILY PHOTOLOG

NYSDEC

Temperature: (F) 30

(am)

(am)

Day: Wednesday

40 (pm)

NW

Date: 12/3/08

(pm)

Project Name: Love Cleaners

Weather: (am) sunny

NW

NYSDEC Site # 1-30-187

(pm) sunny

Contract # D-044368-34

Arrive at site

Wind Direction:

650 (am)

Hempstead, New York

Leave site: 315 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Soil Yes (x) * No () n/a () Waters * No () Yes () n/a(X)Yes ()

Air

* No () n/a (x) If No, provide comments

OTHER ITEMS:

Site Sketch Attached: Yes (No(x)Photos Taken: Yes (X) No (

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 650am. Drillers on site 700. Complete full sampling of GP-10 (Full Suite @ 30 ft). GP-05 (Full Suite @ 30 ft.) and GP02 (30-70ft. - Full Suite @ 30 ft, VOC DUP04 @ 50 ft, MS/MSD @ 40ft.) Rinsate Blank for day collected after sampling for VOC/SVOC/Metals/PCB/Pesticides.

Drillers leave site @ 300 pm. EA prepped samples for shipment left site at 315 pm to pick up additional ice and ship samples to Mitkem Lab via UPS.

PROJECT TOTALS:

SAMPLING (Soil/Water/Air) Contractor Sample ID:	DEC Sample ID:	Description:
GP-02 (30-70)		VOC/SVOC/Metals/PCB/Pesticides for Groundwater at 30 ft. VOCs for Groundwater at all other depths (MS/MSD @ 40, DUP04 at 50)
GP-05(30-100)		VOC/SVOC/Metals/PCB/Pesticides for Groundwater at 30 ft. VOCs for Groundwater at all other depths
GP-10 (30-100)		VOC/SVOC/Metals/PCB/Pesticides for Groundwater at 30 ft. VOCs for Groundwater at all other depths

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

Day: Wednesday Date: 12/3/08

(Name of contractor) personnel: David Crandall

(Name of Subcontractor) personnel: Tony and Ernesto with LAWES

(Name of contractor) equipment: PID

(*Indicates active equipment)
Other Subcontractors:

VISITORS TO SITE:

1

PROJECT SCHEDULE ISSUES:

PROJECT BUDGET ISSUES:

None.

ITEMS OF CONCERN:

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: David Crandall

cc:

DAILY PHOTOLOG

NYSDEC

Temperature: (F) 30 (am)

Day: Thursday

40 (pm)

Date: 12/4/08

Project Name: Love Cleaners

NW Wind Direction:

(am)

NW (pm)

Weather: (am) sunny

NYSDEC Site # 1-30-187

Arrive at site

650 (am)

(pm) sunny

Contract # D-044368-34 Hempstead, New York

Leave site: 315 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Soil

Yes (x) n/a ()

* No ()

Waters Air

* No () Yes () n/a (X) Yes () n/a(x)* No ()

If No, provide comments

OTHER ITEMS:

Site Sketch Attached: Photos Taken:

Yes (No(x)Yes (X) No (

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 650am. Drillers on site 700. Redrive At GP02 to 80ft. and complete VOC sampling to 90 ft. Due to sand entering slotted rod, had to pull rods and redrive to 100 ft to get final sample. Complete full sampling of GP-04 (all VOC). Had to redrive rods between 70 and 80 ft. due to sand in rods. MS/MSD collected at 30ft., GP-DUP05 collected at 40ft. Rinsate Blank for day collected after sampling for VOC

Drillers leave site @ 330 pm. EA offsite at 345pm.

PROJECT TOTALS:

SAMPLING (Soil/Water/Air) **Contractor Sample ID: DEC Sample ID: Description:** VOCs for Groundwater at all depths GP-02 (80-100) VOCs for Groundwater at all depths (ms/msd at 30 ft., GP-04 (30-100) GP-DUP05 at 40 ft)

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: David Crandall

(Name of Subcontractor) personnel: Tony and Ernesto with LAWES

(Name of contractor) equipment: PID

(*Indicates active equipment) Other Subcontractors:

DAILY PHOTOLOG

Day: Thursday Date: 12/4/08

NYSDEC

Temperature: (F) 30 Day: Friday (am)

(am)

Date: 12/5/08 40 (pm)

Wind Direction:

NW

NW (pm)

Project Name: Love Cleaners

Weather:

(am) sunny (pm) sunny

NYSDEC Site # 1-30-187

Arrive at site

Contract # D-044368-34 Hempstead, New York

650 (am)

Leave site:

1200 (pm)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan?

(If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Soil

Yes (x) n/a ()

* No ()

Waters Air

* No () Yes () n/a (X) Yes () n/a(x)* No ()

If No, provide comments

OTHER ITEMS:

Site Sketch Attached: Photos Taken:

Yes (No(x)Yes (X) No (

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 650 am. Drillers on site 700. Complete full hydropunch sampling at GP09 for VOCs (MS/MSD collected at 30ft) Rinsate Blank for day collected after sampling for VOC

Drillers leave site @ 1200 pm. EA offsite at 1200 pm to ship samples to lab and travel back to Syracuse.

PROJECT TOTALS:

SAMPLING (Soil/Water/Air)

Contractor Sample ID: DEC Sample ID: **Description:**

GP-09 (30-100)

VOCs for Groundwater at all depths (MS/MSD @ 30ft.)

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: David Crandall

(Name of Subcontractor) personnel: Tony and Ernesto with LAWES

(Name of contractor) equipment: PID

(*Indicates active equipment) Other Subcontractors:

VISITORS TO SITE:

DAILY OBSERVATION REPORT	Day: Friday	Date: 12/5/08
PROJECT SCHEDULE ISSUES:		
PROJECT BUDGET ISSUES: None.		
ITEMS OF CONCERN:		
COMMENTS:		
ATTACHMENT(S) TO THIS REPORT:		
SITE REPRESENTATIVE:		
Name: David Crardall cc:		

DAILY PHOTOLOG

NYSDEC

Temperature: (F) 15 (am)

(am)

(am)

Day: Monday

25 (pm)

NW

Date: 12/8/08

(pm)

Project Name: Love Cleaners

Wind Direction: NW

> Weather: (am) sunny

NYSDEC Site # 1-30-187

Arrive at site

Contract # D-044368-34 Hempstead, New York

Leave site: 330 (pm)

(pm) sunny

650

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Soil Yes (x) * No () n/a () * No () Waters Yes () n/a(X)Yes () n/a(x)* No () Air

If No, provide comments

OTHER ITEMS:

Photos Taken:

Site Sketch Attached: Yes (No(x)Yes (X) No (

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 650 am. Drillers on site 745 am due to accident on LIE. Complete full hydropunch sampling at GP11 and GP12 for VOCs. Groundwater Parameters collected at each location from 30, 50, 70, and 90 feet. Rinsate Blank for day collected after sampling for VOC.

Opened and inspected monitoring well to north of Laundry Palace for potential sampling (see photo). Pried open cap and revealed 3 inch well filled with sand and debris. Will be unable to sample well for VOCs.

Drillers leave site @ 330 pm. EA offsite at 330 pm.

PROJECT TOTALS:

SAMPLING (Soil/Water/Air) **Contractor Sample ID: DEC Sample ID: Description:** VOCs for Groundwater at all depths GP-11 (30-100) VOCs for Groundwater at all depths GP-12 (30-100)

(Name of contractor) equipment: PID (*Indicates active equipment)

Other Subcontractors:

VISITORS TO SITE:

1

PROJECT SCHEDULE ISSUES:

PROJECT BUDGET ISSUES:

None.

ITEMS OF CONCERN:

COMMENTS:

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: David Crandall

cc:

DAILY PHOTOLOG

Daily Observation Report Page 2 of 2

Day: Monday Date: 12/8/08

NYSDEC

Temperature: (F) 45 (am)

Day: Tuesday

Na (pm)

Date: 12/9/08

Wind Direction: NW (am)

(pm)

Project Name: Love Cleaners

Weather:

(am) sunny

(pm) sunny

NYSDEC Site # 1-30-187

Contract # D-044368-34

Arrive at site

650 (am)

Hempstead, New York

Leave site:

1100 (am)

HEALTH & SAFETY:

Are there any changes to the Health & Safety Plan? (If yes, list the deviation under items for concern)

Yes () No (x)

Are monitoring results at acceptable levels?

Soil

Yes (x) n/a () * No ()

Waters Air

* No () Yes () n/a (X) Yes () n/a(x)

* No () If No, provide comments

OTHER ITEMS:

Site Sketch Attached: Photos Taken:

Yes (No(x)No (Yes (X)

DESCRIPTION OF DAILY WORK PERFORMED:

Arrive on site 650 am. Drillers on site 720 am. Complete full hydropunch sampling at GP13 for VOCs. Groundwater Parameters collected from 30, 50, 70, and 90 feet. Rinsate Blank for day collected after sampling for VOC.

Drillers leave site @ 1100 am. EA offsite at 1100 am to ship samples and travel back to Syracuse.

PROJECT TOTALS:

SAMPLING (Soil/Water/Air)

Contractor Sample ID:

DEC Sample ID:

Description:

GP-13 (30-100)

VOCs for Groundwater at all depths

(Name of contractor) equipment: PID (*Indicates active equipment)

Other Subcontractors:

VISITORS TO SITE:

PROJECT BUDGET ISSUES: None. ITEMS OF CONCERN: COMMENTS: ATTACHMENT(S) TO THIS REPORT: SITE REPRESENTATIVE: Name: David Creadall Ccc:

Day: Tuesday Date: 12/9/08

Page 2 of 2

DAILY OBSERVATION REPORT

PROJECT SCHEDULE ISSUES:

DAILY PHOTOLOG

Daily Observation Report

Appendix C Geophysical Survey Report

NOVA GEOPHYSICAL SERVICES

SUBSURFACE MAPPING SOLUTIONS

56-01 Marathon Parkway, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.nova-gsi.com

November 18, 2008

David Crandall Scientist II EA Engineering, P.C. and its affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, NY 13211 (P) 315-431-4610 (F) 315-431-4280 (C) 315-383-6623

Re: Geophysical Survey Report

Love Cleaners
412 Clinton Street

Hempstead, New York 11550

Dear Mr. Crandall:

Nova Geophysical Services (NOVA) is pleased to provide findings of our geophysical survey at the above referenced project location located at 412 Clinton Street, Hempstead, New York (the "Site"). Please see Figure 1 for Site Location.

INTRODUCTION TO GEOPHYSICAL SURVEY

NOVA performed a Geophysical survey consisting of Ground Penetrating Radar (GPR) and Electromagnetic (EM) surveys at the Site to locate and identify underground utilities, cables and other anomalies that may be located at the proposed environmental soil boring locations, on November 17^{th,} 2008. NOVA cleared and marked all identified anomalies and proposed boring locations at the Site. The equipment selected for this investigation included a Geonics EM-61 Pipe and Cable Locator (an electromagnetic (EM) metal detector), MALA 250 MHz and Conquest Concrete Image 1000 MHz ground-penetrating radar (GPR) units.

A GPR system consists of a radar control unit, control cable and a transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz to 1000 MHz. The trigger pulse is sent to the transmitter electronics in the transducer via the control cable. The transmitter electronics amplify the trigger pulses into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast

EA Engineering, P.C. and its affiliate EA Science and Technology

Geophysical Survey Report Love Cleaners 412 Clinton Street Hempstead, New York 11550

(void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

GEOPHYSICAL METHODS

The project Site was first investigated using the Geonics EM-61 metal detector. The metal detector was used in a reconnaissance investigation for evidence of metallic objects that could represent USTs or other major anomalies. The instrument was carried along bi-directional traverses spaced approximately 4 feet apart across the project Site. The metal detector was also carried along 5-foot traverses over the Site. Metal detector anomalies were marked on the ground for further investigation with GPR.

GPR data profiles were collected over each metal-detector anomaly with a large enough areal extent to represent an anomaly. These profiles were inspected for reflections that are indicative of anomalies.

PHYSICAL CONDITIONS

Nova observed following physical conditions at the time of the survey: The proposed soil borings were located within the site building.

The weather:

Clear, sunny approximately 35 degrees

Surface: Asphalt paved parking lot, public street (concrete paved), unpaved and landscaped areas.

The Site: The Site contains a one-story commercial building constructed slab-on-grade, with a full basement along the southern half of the structure. The Site surrounded by asphalt paved parking lot and Clinton Street to the west, Lincoln Boulevard and commercial property to the south, commercial and residential property to the north and landscaped and unpaved areas (Brierley Park) to the east

RESULTS

The results of the geophysical survey identified the following anomalies located at the project Site:

- Nova's Conquest Concrete image GPR confirmed that utility (power lines) were located along the south side of the site building facing Lincoln Boulevard.
- Multiple minor anomalies identified throughout the proposed soil boring locations at the Site appearing to be reflection of concrete blocks of building foundation.

EA Engineering, P.C. and its affiliate EA Science and Technology

Geophysical Survey Report Love Cleaners 412 Clinton Street Hempstead, New York 11550

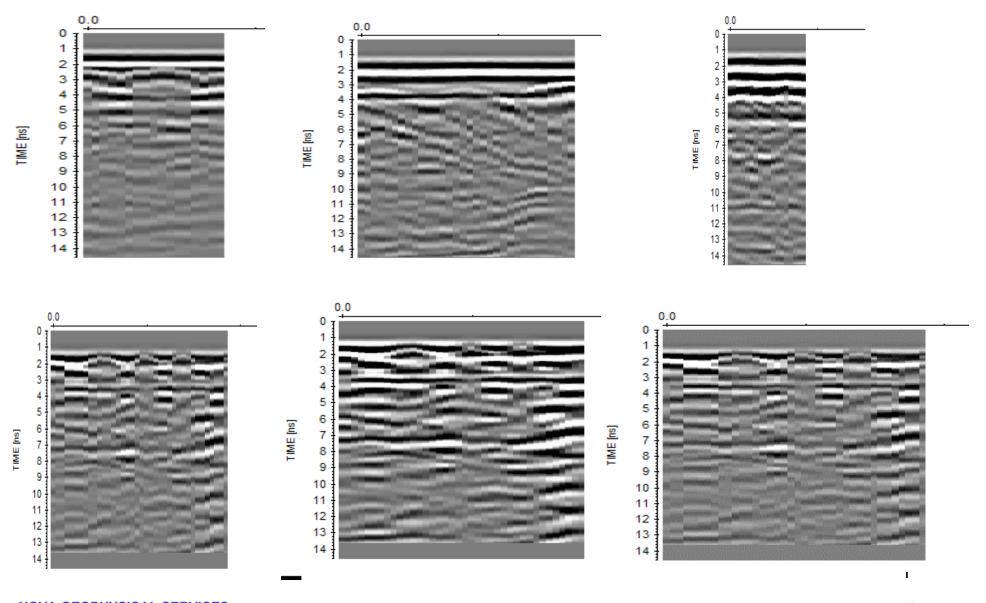
- Geophysical survey identified anomalies located within the asphalt paved parking lot portion of the Site facing Clinton Street.
- The Geophysical survey also confirmed that anomalies consistant with main water, gas and electric lines were located along the Lincoln Boulevard of the Site.
- Nova cleared and marked all proposed environmental soil boring locations at the Site.

If you have any questions please do not hesitate to contact the undersigned.

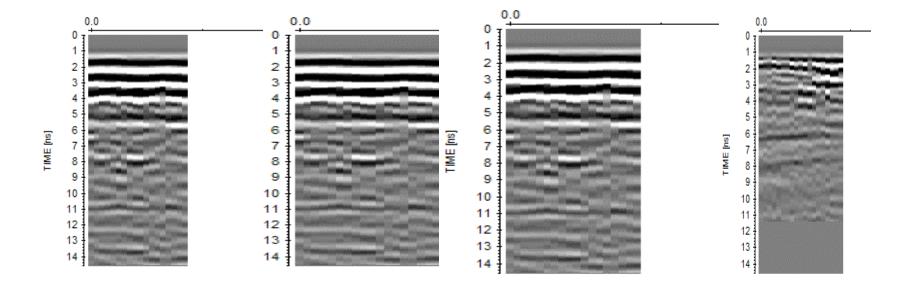
Sincerely,

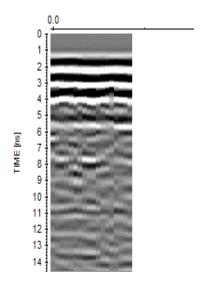
NOVA Geophysical Services

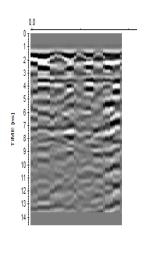
Levent Eskicakit, P.G., E.P. Senior Environmental Engineer

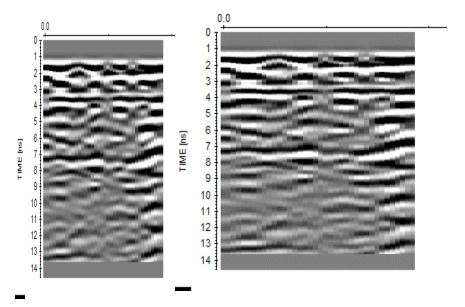

Attachments:

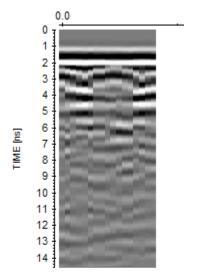
Site Location Map Geophysical Images

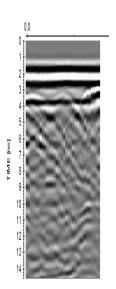

H:\Documents\LECE\Langan\Report\Geophysical Survey Report, Love Cleaners, Clinton Street, Hempstead, NY.doc

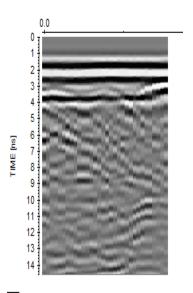

Love Cleaners

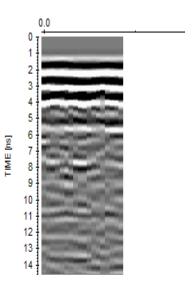



Love Cleaners

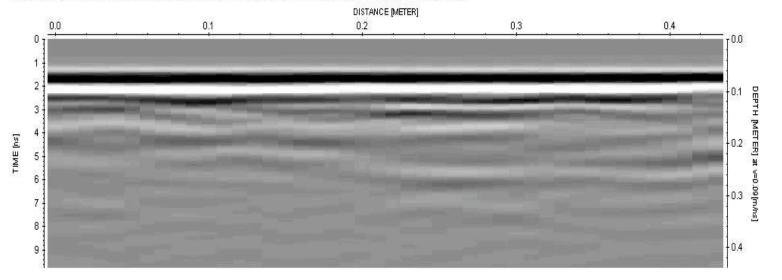

Love Cleaners

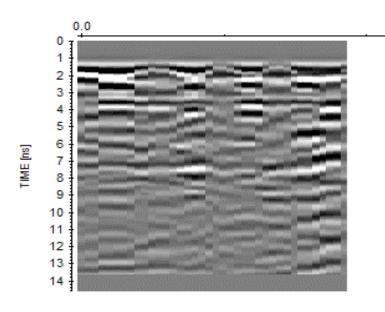


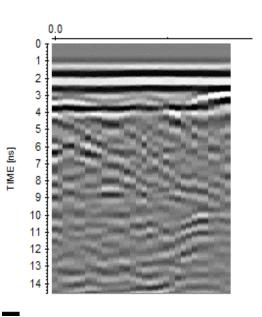




Love Cleaners







Love Cleaners

Appendix D Soil Boring Sampling Logs

	У,	R EA Engi	neering	, PC		Job. No. 14368.34		New York Sta Environment		Location: Love Cleaners Site						
_		EA Scien			nology			Push - GeoPre		tion		g Number:				
		9			0,							SB-01				
C 1:		LOG OF SOIL I	BORING	ł		Sampling M	lethod: Macr	o-Core			Sheet 1	l of 15				
Coordi	nates: Elevatio	.n.			<u></u>						Dril	ling				
	Below St					Water Lev.					Start	Finish				
Referer	nce Eleva	tion:				Time						-				
Referer	nce Descr	iption:									1404	1502				
DI	Feet		PID	Depth		Surface Cor	ditions: Ton	soil								
	Drvn/Ft.	Well	(ppm)	in	USCS	Weather: C	Surface Conditions: Top soil Weather: Clear									
(140-lb)	Recvrd	Diagram	HNu	Feet	Log	Temperatur										
			0.0	0			rown/black top s	soil								
			0.0													
<u> </u>			0.0	1		1 F 21 P	-:11									
 	5/3			2		1.5 - 3' Brown	siity sand									
			0.0													
]		0.0	3		3 - 25' Brown 8	gravelly course sa	and								
			0.0													
<u> </u>			0.0	4												
				5												
			0.0													
	5/4		0.0	6												
			0.0													
<u> </u>			0.0	7												
				8												
			0.0													
			0.0	9												
	5/4.5		0.0													
<u> </u>			0.0	10												
 				11												
	-		0.0													
			0.0	12												
			0.0													
<u> </u>			0.0	13		1										
	5/4			14												
	1		0.0													
]		0.0	15												
<u> </u>			0.0			ļ										
<u> </u>			0.0	16												
	1			17		1										
			0.0													
0.0 18 18' Groundwater																
<u> </u>				10		18 - 23' Sample		(01.000)								
	-		0.0	19		-	0B (VOC), 8270C	,	∩Be)							
	1			20		6010, 7470, 8081, 8082 (TAL Metals, Pesticides, PCBs)										
			1	-	 	1										

Ernesto/Scott

Driller:

LAWES

	V	R EA Engi	neering	, P.C			Job. No. Client: New York State Department of 14368.34 Environmental Conservation						Location: Love Cleaners Site				
_		EA Scien			ıoloş	3 y			Push - GeoPro	Soil Boring	Number:						
		LOG OF SOIL F	RORING				Sampling M	lethod: Macr	o-Core	SB-01							
Coordi		LOG OF SOIL I	OKING				Samping iv	ietilou. Maci	0-0016			Sheet 2	of 15				
Surface Elevation:												Drill					
Casing	Below St	urface:					Water Lev.					Start	Finish				
	ice Eleva						Time					1404	1500				
Keierer	ice Descr	iption:									+	1404	1502				
Blow	Feet	X47 11	PID	Depth			Surface Conditions: Top soil										
Counts	Drvn/Ft.	Well Diagram	(ppm)	in	Į		Weather: C	lear									
(140-lb)	Recvrd	Diagram	HNu	Feet	I	og	Temperatui	re: 50 F									
			0.0	20													
			0.0	21													
	5/4			22													
			0.0														
			0.0	23	\vdash												
				24													
			0.0														
				25													
				26													
				20													
				27													
				28													
				29													
				30													
				24													
				31													
				32													
				33													
				34	-												
				34													
				35													
				36	$\vdash \downarrow$												
				37	\vdash		-										
				· ·	\vdash												
				38													
					LI								·				
				39	\vdash												
				40	\vdash												
Logged	by:			JCP				Date:	11/1	7/08							

LAWES Driller: Ernesto/Scott

		R EA Engi	neering	PC		Job. No. 14368.34		New York Sta Environment		Location: Love Cleaners Site					
_	Y /	EA Scien			ology			Push - GeoPro		111011	Soil Boring	g Number:			
		LOC OF COIL I	PODING			C 1: 1	(-111. M	- C	SB	SB-02					
Coordi		LOG OF SOIL I	BORING			Sampling N	lethod: Macro	o-Core			Sheet 3	3 of 15			
	e Elevatio	n:									Dril	ling			
Casing	Below St	urface:				Water Lev.					Start	Finish			
	nce Eleva					Time									
Referen	nce Descr	iption:									0805	0819			
Blow	Feet	Well	PID	Depth			Surface Conditions: Asphalt - through grated dry well								
Counts	Drvn/Ft.	Diagram	(ppm)	in	USCS		Weather: Partly cloudy								
(140-lb)	Recvrd	Diagram	Hnu	Feet	Log	Temperatur									
				0		Boring took pl	ace through dry v	well 12' below gra	ıde.						
				1											
				1											
	1			2											
						<u> </u>									
				3						•					
				4											
				5											
				3											
				6											
				7											
				0											
				8											
				9											
				10											
				11											
				12		12 - 13 5' Sotor	rated black detrit	116							
	1		1.6	14		12 - 10.0 Oatu	accu plack utill	uo							
	1		2.1	13											
	5/4.5		2.1			13.5 - 17' Brow	n gravelly cours	e sand							
	0, 1.0		2.9	14		<u> </u>									
	-			15											
	1		3.0	15											
			0.1	16											
			9.6												
				17		12 - 17' Sampl									
				10			OB (VOC), 8270C		CD.						
	-			18		6010, 7470, 808	1, 8082 (TAL Met	tals, Pesticides, Po	JBS)						
	1			19		SS-Dup-01 Col	lected from same	location							
	1					1 12 30									
]			20											
Logged	by:			JCP		_	Date:	11/18	8/08	_					

Ernesto/Tony

Driller:

LAWES

	Y	R EA Engi	neering	z, P.C.		Job. No. 14368.34									
_	-/-	EA Scien			ology	Drilling Me	thod: Direct		Soil Boring SB-						
		LOG OF SOIL I	BORING			Sampling N	lethod: Macro	o-Core			Sheet 4 of 15				
Coordi	nates: Elevatio											Drilling			
	Below St					Water Lev.					Start	Finish			
Referer	nce Eleva	tion:				Time									
Referer	nce Descr	iption:									0820	0850			
	Feet	Well	PID	Depth			Surface Conditions: Asphalt								
	Drvn/Ft.	Diagram	(ppm)	in	USC										
(140-10)	Recvrd		Hnu	Feet 0	Log	Temperatur 0 - 1' Asphalt	e: 35 F								
			0.0	O		0-1 Aspitan									
			0.0	1		1 - 20' Brown	gravelly course sa	and							
	5/4.5		0.0	2											
			0.0	3											
			0.0												
			0.0	4											
			0.0	5											
	5/4.5		0.0	6											
				7											
			0.0												
			0.0	8											
	_		0.0	9		+									
	5/4.5		0.0												
	,		0.0	10		+									
			0.0	11											
			-	12											
			0.0	12											
			0.0	13											
	5/3.5			14											
			0.0			14.5' Groundy									
			0.0	15		15 - 20' Sampl		(CLIOC)							
				16			0B (VOC), 8270C 1, 8082 (TAL Met		CBs)						
			0.0						*						
			0.0	17		1									
			0.0	18											
			0.0	10											
			0.0	19											
				20											
Logged	by:			JCP			Date:	11/1	8/08	<u> </u>					

Driller:

Ernesto/Tony

LAWES

		R					-	Client:	New York Sta		Location:					
_			gineering				14368.34		Environment	tion		aners Site				
		EA Scie	ence and	l Techi	nolog	gy	Drilling Method: Direct Push - GeoProbe					Soil Boring Number: SB-04				
Coordi		LOG OF SOIL	BORING	ŗ			Sampling M	Method: Macr	o-Core	Sheet 5 of 15						
	Elevatio											Dri	lling			
	Below St						Water Lev.					Start	Finish			
	ice Eleva						Time									
	ice Descr											0950	1015			
Blow	Feet	Well	PID	Depth				nditions: As _l	ohalt							
Counts (140-lb)	Drvn/Ft.	Diagram	(ppm)	in			Weather: Clear Temperature: 40 F									
(140-10)	Recvrd	-	Hnu	Feet	I	Log		re: 40 F								
			0.0	0			0 - 1' Asphalt									
				1			1 - 20' Brown	gravelly course s	and							
			0.0	1			1 - 20 DIOWII	graverry course's	anu							
	5/4			2												
			0.0													
			0.0	3												
			0.0													
			0.0	4												
			0.0													
			0.0	5												
	5/1															
			0.0	6												
				7												
			0.0	/												
				8												
			0.0	_												
			0.0	9												
	5/2		0.0													
	3/2		0.0	10												
			0.0	11												
				10												
			0.0	12												
				13												
			0.0	10			†									
	5/4		0.0	14												
			0.0				14.5' Groundy	water								
			0.0	15			15 - 20' Sampl									
			0.0					0B (VOC), 8270C								
			0.0	16			6010, 7470, 808	81, 8082 (TAL Me	tals, Pesticides, P	CBs)						
			0.0	17												
				18												
			0.0	10	\vdash		 									
				19			1									
			0.0													
				20												
Logged	by:			JCP		•	_	Date:	11/1	8/08						
Drilling	Contrac	tor:	L	AWES			_	Driller:	Ernesto	o/Tony	_					

·														
EA Engineering, P.C. EA Science and Technology						Job. No.	Client:	New York St	ate Departme	ent of	Location:			
						14368.34 Environmental Conservation					Love Cleaners Site			
						Drilling Method: Direct Push - GeoProbe					Soil Boring Number: SB-05			
						Drining Metilot. Direct 1 ton - Geof tobe								
LOG OF SOIL BORING						Sampling Method: Macro-Core					Sheet 6 of 15			
Coordinates:														
Surface Elevation:											Drilling			
						Water Lev.					Start	Finish		
						Time								
Reference Description:											1051	1148		
Blow Feet PID Depth S							Surface Conditions: Top soil							
210		Well		in USCS										
	Drvn/Ft. Recvrd	- Diagram	(ppm) Hnu	Feet Log		Temperature: 40 F								
	Recviu			0	Log	0 - 1' Dark brown/black top soil (fill material)								
				O										
]		2.3	1		1 - 3' Dark brown gravelly silty sand (fill material)								
	5/2		2.3											
			2.1	2										
			0.0	3		3 - 25' Brown gravelly course sand								
				4										
				5										
	5/4.5			3										
				6										
			1.2											
				7										
	5/4.5		0.5	8										
			-	0										
			0.0	,										
				10										
			2.1											
				11										
	5/3.5		3.2	12										
				13										
				14										
			0.0											
				15				•				·		
				16										
				17										
			0.0	1/										
				18										
			0.0											
]		0.0	19		19' Groundwa	ater							
			0.0											
			1	20										
<u> </u>														
Logged	by:			JCP		_ .	Date:	11/1	.8/08					

Ernesto/Tony

Driller:

LAWES

_	Y	R EA Engi	neering	z. P.C.			Job. No. 14368.34		New York Sta Environment		Loca Love Clea	
-		EA Scien			nolo	ogy			Push - GeoPro		Soil Boring SB-	g Number:
		LOG OF SOIL B	ORING				Sampling M	fethod: Macro	o-Core			
Coordi	nates:										Sheet 7	
	Elevatio										Dril	
Casing	Below St	urface:					Water Lev.				Start	Finish
Referen	ice Eleva ice Descr	tion:					Time				 1051	1148
Kelelel	ice Desci										1051	1140
Blow	Feet	XA7 11	PID	Depth			Surface Cor	nditions: Top	soil		 L	
Counts	Drvn/Ft.	Well Diagram	(ppm)	in			Weather: C					
(140-lb)	Recvrd	Diagram	Hnu	Feet		Log	Temperatur					
			0.0	20			20 - 25' Sample				 	
				21				OB (VOC), 8270C		?D_\		
			0.0	21			0010, 7470, 000	1, 0002 (1 AL Me)	tals, Pesticides, PC	LDS)		
	5/2		7.0	22								
			7.2									
			6.9	23								
			-	24								
			3.2	24								
				25								
				26								
				<u> </u>								
				27								
				28								
				29								
				30								
				31								
				32								
				33								
				34								
				35								
				36								
				37								
				5,								
				38							 	
				39								
			<u> </u>	40								
				10								
Logged	by			ICP			_	Date:	aa /a/	2 /00		
Logged	υy.			JCP				Date.	11/18	5/ Uð		

LAWES Driller: Ernesto/Tony

	Y	R EA Engi	neering	g, P.C.			Job. No. 14368.34		New York Sta Environment			Locat Love Clea	
- -		EA Scien	nce and	Techr	rolog	y	Drilling Me	thod: Direct	Push - GeoPr	obe		Soil Boring SB-	
		LOG OF SOIL E	BORING				Sampling M	lethod: Macro	o-Core			Sheet 8	
Coordi	nates: Elevatio	m·										Drill	
Casing	Below St	ırface:					Water Lev.					Start	Finish
	ice Eleva						Time					1212	1406
Keierei	ice Descr	ipuon:										1312	1406
	Feet	Well	PID	Depth				ditions: Top	soil	·	<u>'</u>	•	
	Drvn/Ft. Recvrd	Diagram	(ppm) Hnu	in Feet	_	SCS og	Weather: C Temperatur						
	Recviu			0	1.	og		own/black top s	soil				
			0.0					, 1					
			0.0	1	-		1.5 - 3' Brown	cilty cand					
	5/4		0.0	2			1.5-5 blown	sitty saliu					
			0.0										
			0.0	3			3 - 25' Brown §	gravelly course sa	and				
			0.0	4									
			0.0										
	- /-		0.0	5									
	5/2		0.0	6									
				7									
			0.0	/									
			0.0	8									
				Q	-								
	5/4.5		0.0	,									
	3/4.3		0.0	10									
				11									
			0.0										
			0.0	12									
			0.0	13									
	5/4.5		0.0										
	,		0.0	14	$\vdash \vdash$								
			0.0	15									
			0.0	16									
			0.0	16									
			0.0	17									
				18									
			0.0	10									
			0.0	19			19' Groundwa	ter					
			-	20									
Logged	by:			JCP				Date:	11/1	8/08	_		

Driller:

Ernesto/Tony

LAWES

Coordinates	_	Y	R EA Engi					Job. No. 14368.34		New York Sta Environment			Loca Love Clea	
Coordinates Surface	- -		EA Scier	nce and	Techi	nolo	ogy	Drilling Me	thod: Direct	Push - GeoPro	obe			
Coording			LOG OF SOIL E	BORING				Sampling M	fethod: Macro	o-Core			Sheet 9	of 15
Casing Reference Electrons Reference Descriptions: Next Next Next New Next New Ne			<u></u>									•		
Time							•	Water Lev.						
Bit Counts Diagram Fest Casholin	Referen	ice Eleva	tion:					Time						
Counts Drow/Fit Diagram Diag	Referen	ice Descr	iption:				•						1312	1406
Counts Drow/Fit Diagram Diag	Blow	Feet		PID	Depth			Surface Cor	nditions: Top	soil				
Section Continue	Counts	Drvn/Ft.						Weather: C	lear					
Analyses: \$2600, VCC), \$27CC (SVCC)	(140-lb)	Recvrd	Diagram	Hnu	_		Log							
				0.0	20					(CV10C)				
5/4 00 22				0.0	21						CBs)			
100 23 100		5/4			22									
100				0.0										
25 26 27 28 29 29 29 29 29 20 20 20				0.0	23									
25 26 27 28 29 29 29 29 29 20 20 20					24									
26				0.0										
27 28 29 29 29 29 20 20 20 20					25									
27 28 29 29 29 29 20 20 20 20					26									
28					20									
29					27									
29				-	20									
30 31 32 33 34 34 35 35 36 37 38 39 39 39 39 39 39 39					28									
31 32 33 34 34 35 35 36 36 37 37 38 38 39 39 39 39 39 30 39 30 30 30 30 30 30 30 30 30 30 30 30 30					29									
31 32 33 34 34 35 35 36 36 37 37 38 38 39 39 39 39 39 30 39 30 30 30 30 30 30 30 30 30 30 30 30 30					20									
32 33 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					30									
33					31									
33														
34					32									
35 36 37 38 39 39 39 39 30 39 30 30					33									
35 36 37 38 39 39 39 39 30 39 30 30														
36 37 38 39 39 39 39 30 39 30 30					34									
37 38 39 39 39 39 30 30 30 30					35									
37 38 39 39 39 39 30 30 30 30														
38 39 39 39 30 39 30 30 30 30 30 30 30 30 30 30 30 30 30					36									
38 39 39 39 30 39 30 30 30 30 30 30 30 30 30 30 30 30 30					37									
39 S S S S S S S S S S S S S S S S S S S														
					38									
					39									
40														
					40								_	
Logged by: ICP Date: 11/18/08				<u> </u>	<u> </u>									

Ernesto/Tony

Driller:

LAWES

		R EA Engi	neering	, P.C		Job. No. 14368.34	Client:	New York Sta Environment			Loca Love Cles	ation:
-		EA Scien			nology		thod: Direct	Push - GeoPre		HOIT	Soil Boring	g Number:
		LOG OF SOIL I	PODING			Compalin a N	Method: Macr	o Como			SB	-07
Coordi		LUG OF SOIL I	DOMING			Sampling N	nemou: Macr	o-core			Sheet 1	0 of 15
Surface	Elevatio											ling
Casing	Below St	urface:				Water Lev.					Start	Finish
Referer	nce Eleva nce Descr	tion:				Time					1422	1502
Kererer	ice Desci										1422	1302
Blow	Feet	Well	PID	Depth			nditions: Top	soil		I	<u> </u>	
	Drvn/Ft.	Diagram	(ppm)	in	USC							
(140-10)	Recvrd		Hnu	Feet	Log	Temperatu		•1				
			0.0	0		0 - 1' Dark bro	own/black top so	11				
			0.0	1		1 - 1.5' Brown	silty sand					
	5/3.5		0.0			1.5 - 25' Brow	n gravelly course	sand				
	0/ 3.3		0.0	2								
			-	2								
			0.0	3								
			0.0	4								
			0.0									
			0.0	5								
	5/5			6								
			0.0									
			0.0	7								
				0								
			0.0	8								
			0.0	9								
	5/4.5		0.0									
	0/ 1.0		0.0	10								
	-			11								
			0.0									
			0.0	12								
			0.0									
			0.0	13								
	5/4		0.0	14		+						
			0.0									
			0.0	15						<u> </u>		
				16								
			0.0	16								
	1		0.0	17								
			0.0									
			0.0	18		10 El C 1	vakou					
	1			19		18.5' Groundw	vater					
			0.0									
				20				_				
Logged	by:			JCP		_	Date:	11/1	8/08	_		

Ernesto/Tony

Driller:

LAWES

		R EA Engi	neering	z, P.C.			Job. No. 14368.34		New York Sta Environment			Loca Love Clea	
_	Y ,	EA Scien			nolo	ogy			Push - GeoPro			Soil Boring SB	g Number:
		LOG OF SOIL B	ORING				Sampling M	fethod: Macro	o-Core				
Coordi												Sheet 1	
	Elevatio						*** *	Τ				Dril	
Casing	Below Si ice Eleva	urtace:					Water Lev. Time					Start	Finish
Referen	ice Eieva ice Descr	intion:					Time					1422	1502
referen	ice Desci											1422	1302
Blow	Feet	Well	PID	Depth			Surface Cor	nditions: Top	soil			Į.	
Counts	Drvn/Ft.	Diagram	(ppm)	in				artly cloudy					
(140-lb)	Recvrd	Diagram	Hnu	Feet		Log	Temperatur						
			0.0	20			20 - 25' Sample						
				24				0B (VOC), 8270C		3D.)			
			0.0	21			6010, 7470, 808	1, 8082 (1 AL Mei	tals, Pesticides, PC	_BS)			
	5/3.5			22									
			0.0										
			0.0	23									
			0.0	24									
			-	25									
				23									
				26									
				27									
				28									
				29									
				30									
				31									
				32									
				32									
				33									
				34									
				05									
				35									
				36									
				37									
				38									
			-	39									
				37									
				40									
Logged	by:			JCP			_	Date:	11/18	8/08	_		

LAWES Driller: Ernesto/Tony

_	Y	EA Engi	nce and	Techr	nology		lethod: Direct	Environment Push - GeoPr	ate Departme tal Conservati obe	Loca Love Clea Soil Boring SB-	nners Site 3 Number:
Coordi	nates:	LOG OF SOIL	BORING			Sampling	Method: Macr	o-Core		Sheet 12	
	Elevatio									Dril	
Casing	Below St	ırface:				Water Lev	7.			Start	Finish
	nce Eleva					Time				0725	0024
Keierei	nce Descr	iption:								0735	0824
DI	Feet		PID	Depth		Surface C	onditions: As ₁	nhalt			
	Drvn/Ft.	Well	(ppm)	in	US	CS Weather:		J. L.			
	Recvrd	Diagram	Hnu	Feet	Log						
				0		0 - 1' Aspha					
			0.0			Î					
			0.0	1		1 - 25' Brow	n gravelly course s	and			
	5/4										
	′ -		0.0	2							
			-	3							
	1		0.0	3	$\vdash \vdash$						
				4							
			0.0								
			0.0	5							
	5/4.5		0.0								
	,		0.0	6							
				_							
			0.0	7							
				8							
			0.0								
			0.0	9							
	5/4.5		0.0								
	0, 1.0		0.0	10							
				11							
			0.0	11							
				12							
			0.0								
			0.0	13							
	5/4		0.0								
	-/ -		0.0	14							
				15							
			0.0	13							
				16							
			0.0								
]		0.0	17							
			0.0								
			0.0	18		18' Groundy	vater				
				10							
			0.0	19							
				20							
	<u> </u>									 	
Logged	by:			JCP			Date:	11/1	9/08	 	

Ernesto/Tony

Driller:

LAWES

_	Y	R EA Engi	neering	g, P.C.			Job. No. 14368.34		New York Sta Environment		Loca Love Clea	tion: aners Site
-	Y	EA Scien			nolo	ogy		thod: Direct	Push - GeoPro	obe		g Number:
		LOG OF SOIL B	ORING				Sampling M	lethod: Macro	o-Core		Sheet 1	
Coordii Surface	nates: Elevatio	n:									Dril	
	Below St						Water Lev.				Start	Finish
Referer	ice Eleva	tion:					Time					
Referen	ice Descr	iption:									0735	0824
Blow	Feet	*** **	PID	Depth			Surface Cor	nditions: Asp	halt			
Counts	Drvn/Ft.	Well	(ppm)	in		USCS	Weather: C	lear				
(140-lb)	Recvrd	Diagram	Hnu	Feet		Log	Temperatur					
			0.0	20			20 - 25' Sample					
				21				0B (VOC), 8270C	(SVOC) tals, Pesticides, PC	~Be)		
	5/4		0.0				0010,7470,000	1, 0002 (171L ME)	iais, i esticides, i c	203)		
	5/4		0.0	22			Note: MS-MSI) sample taken fr	om same location	1		
				23								
			0.0									
			0.0	24								
				25								
				26								
				L								
				27								
				28								
				29								
				30								
				30								
				31								
				32								
				33								
				-								
				34								
					lacksquare							
				35								
				36								
				37								
				38								
				38								
				39								
				40								
			<u> </u>	<u> </u>								
Logged	by:			JCP				Date:	11/19	9/08		

LAWES Driller: Ernesto/Tony

EA Science and Technology LOG OF SOIL BORING Coordinates: Surface Elevation: Casing Below Surface: Reference Elevation: Reference Description: Blow Feet Ocunts Dryn/Ft. Blow F		y .	R EA Engi	neering	r. P.C.		Job. No. 14368.34		New York Sta			Loca Love Clea	
LOG OF SOIL BORNG Sampling Method: Macro-Core	_	Y ,				nology						Soil Boring	g Number:
Coordinates:			LOG OF SOIL F	BORING			Sampling N	Method: Macro	o-Core				
Sample Start Sta													
Seference Elevation:							747 - 1 T	T		1	1		
Blow Counts Diagram Feet Counts Coun												Start	rinisn
Counts DenyFt Diagram Feet Log Temperature: 30 F							111110					0853	0939
Counts DenyFt Diagram Feet Log Temperature: 30 F				Invi	ъ .			1	1 1.				
Hou Feet Log Temperature: 30 F									halt				
5/4 5/4			Diagram										
5/4 5/4 0					_								
5/4 5/4				0.0									
5/4.5 5/4.5 6.0 6.0 6.0 7 6.0 8 6.0 9 10 10 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11				0.0	1				sand				
1		5/4		0.0	2		1.5 20 BIOW	it gravery course	Starte				
5/4.5 5/4.5 5/4.5 5/4.5 5/4.5 5/4.5 5/4.5 6.0 6.0 7				0.0									
5/4.5 5/4.5 6.0 6.0 7 8 0.0 9 0.0 10 0.0 11 0.0 11 0.0 13 0.0 14 0.0 15 0.0 16 0.0 16 0.0 17 0.0 18 0				0.0	3								
5/4.5 5/4.5 6.0 6.0 7 8 0.0 9 0.0 10 0.0 11 0.0 11 0.0 13 0.0 14 0.0 15 0.0 16 0.0 16 0.0 17 0.0 18 0					4								
5/4.5 5/4.5 5/4.5 5/4.5 5/4.5 6.0 6.0 7 0.0 8 0.0 9 0.0 10 0.0 11 0.0 11 0.0 12 0.0 13 0.0 14 0.0 15 0.0 16 16 16 16 16 16 17 18 18 18 18 18 18 18 18 18				0.0									
5/4.5 5/4.5 5/4.5 5/4.5 6.0 6.0 7 6.0 8 6.0 6.0 7				0.0	5								
5/4.5 5/4.5 5/4.5 6.0 10 10 10 10 10 10 10 10 10		5/4.5		0.0	6								
5/4.5 5/4.5				0.0									
5/4.5 0.0 9 0.0 10 0.0 11 0.0 12 0.0 13 0.0 14 0.0 15 0.0 15 0.0 16				0.0	7								
5/4.5 0.0 9 0.0 10 0.0 11 0.0 12 0.0 13 0.0 14 0.0 15 0.0 15 0.0 16				0.0	8								
5/4.5 0.0 10 0.0 11 0.0 12 0.0 13 0.0 14 0.0 14 0.0 15 0.0 16				0.0									
0.0 11				0.0	9								
5/3 0.0 12 0.0 13 0.0 14 0.0 15 16		5/4.5			10								
5/3 0.0 12 0.0 13 0.0 14 0.0 15 16				0.0									
5/3				0.0	11								
5/3					12		+						
5/3				0.0									
0.0 14 0.0 15 0.0 16				0.0	13								
0.0		5/3		1	14								
16				0.0									
16				0.0	15					<u> </u>			
0.0	 				16								
				0.0	10								
0.0 17				0.0	17								
18 - 20' Sample taken: 0942 Analyses: 8260B (VOC), 8270C (SVOC)					18		18 - 201 Camp	a takan: 0042	Analyses: 8260E	R (VOC) 8270C	(SVOC)		
0.0 10 - 20 Sample taken: 0942 Analyses: 0200B (VOC), 8270C (SVOC) 6010, 7470, 8081, 8082 (TAL Metals, Pesticides, PCBs)				0.0	10				,	, ,	(5,00)		
0.0 19 19' Groundwater				0.0	19		19' Groundwa	ter					
GeoProbe could not push past 20'					20		GeoProbe cou	ld not push past 2	20'				
					20								
Logged by: JCP Date: 11/19/08	Logged h	w.		-	ICP			Date:	11 /1	Q / NQ			

Driller:

Ernesto/Tony

LAWES

	Y	R EA Engi	neering	g, P.C.			Job. No. 14368.34		New York Sta Environment		Loca Love Clea	
_		EA Scien	nce and	Techi	nolog	3y	Drilling Me	thod: Direct	Push - GeoPro	obe	Soil Boring SB-	
		LOG OF SOIL I	BORING				Sampling M	lethod: Macro	o-Core		Sheet 1	
Coordi												
	Elevatio Below St						Water Lev.				Dril Start	ling Finish
	ice Eleva						Time				Start	riiisii
Referen	ice Dievu	iption:					11110				1018	1119
Blow	Feet	Well	PID	Depth				nditions: Asp	halt			
Counts (140-lb)	Drvn/Ft.	Diagram	(ppm)	in			Weather: C					
(110 10)	Recvrd		Hnu	Feet	L	Log	Temperatur 0 - 1' Asphalt	e: 35 F				
			0.0	0			0-1 Aspilan					
			0.0	1			1 - 3' Brown si	lty sand				
	5/4.5		0.0	2								
			0.0	3			3 - 20' Brown g	gravelly course sa	and			
				4								
			0.0									
			0.0	5								
	5/3		0.0	6								
			0.0									
			0.0	7								
				8								
			0.0									
			1.4	9								
	5/4.5		1.4									
	,		0.4	10								
				11	-							
			0.3	-								
			0.3	12								
			0.3									
			0.5	13								
	5/4			14								
			2.4	17	\vdash							
			1.4	15								
			1.4									
			1.7	16			16' Groundwat					
				17			16 - 20' Sample	e taken: 1122 DB (VOC), 8270C	(SVOC)			
			1.1	1/	\vdash			1, 8082 (TAL Met		CBs)		
			1.3	18				,				
			1.3				-		•	-	 	
			0.8	19	igspace							
				20	\vdash							
				20	\vdash							
Logged	byy		•	ICP				Date:	11/1	0.700		

Logged by.	<u> </u>	Date.	11/19/08
Drilling Contractor:	LAWES	Driller:	Ernesto/Tony

_	Y	R EA Engi					Job. No. 14368.34		New York Sta Environment	al Conserva		Locat Love Clea	
_		EA Scien	nce and	Techi	nolog	5y	Drilling Me	thod: Direct I	Push - GeoPro	be		Soil Boring SV-	
C 1:		LOG OF SOIL E	ORING				Sampling M	lethod: Drive	n Point			Sheet 1	of 6
Coordii Surface	nates: Elevatio										-	Drill	ing
Casing	Below S	urface:					Water Lev.					Start	Finish
	ice Eleva						Time					1020	1020
Keierei	ice Desci											1020	1038
Blow	Feet	Well	PID	Depth			Surface Cor	nditions: Top	Soil			L	
Counts (140-lb)	Drvn/Ft.	Diagram	(ppm)	in			Weather: C						
(110 10)	Recvrd		HNu	Feet	L	og	Temperatur		nd set sample scr	een at 8'			
				0				Sand fill 7.5' to 2		ceruro			
				1				Bentonite seal 2'	to grade				
		 		2									
				3									
				4									
				4									
				5									
				6									
			-	7									
				8									
				9									
				10									
				11									
				12									
				13									
				14									
				15									
				16									
				17									
				17									
				18									
				19									
				19									
				20									
		<u> </u>											
Logged	bv:			ICP				Date:	11/17	7/08			

Ernesto/Scott

Driller:

LAWES

		R FΔ Fr	ngin	eering	PC			Job. No. 14368.34		New York Sta Environment			Loca Love Clea	
-				ce and		2016) (T)			Push - GeoPro		1011		
		EA SC	cien	ce and	recin	1010	ygy				be		Soil Boring SV	
Coordii		LOG OF SO	IL B	ORING				Sampling M	lethod: Drive	n Point			Sheet	2 of 6
	Elevatio	n:											Dril	ling
	Below S						•	Water Lev.					Start	Finish
Referen	ce Eleva	tion:						Time						
Referen	ice Desci	ription:					•						1040	1105
Blow	Feet	747 11		PID	Depth			Surface Cor	nditions: Top	Soil				
Counts	Drvn/Ft.	Well		(ppm)	in		USCS	Weather: C	lear					
	Recvrd	Diagram	1	HNu	Feet		Log	Temperatur	re: 50 F					
					0			Drove point to	8' below grade a	nd set sample scr	een at 8'			
									Sand fill 7.5' to 2			-		
					1				Bentonite seal 2'	to grade				
		<u> </u>												
					2									
					3									
					4									
					5									
					6									
					0									
			-		7									
					,									
		ļļ.			8									
					9									
					10									
					11									
					12									
					13									
					14									
					14									
					15									
					10									
					16									
					17									
					18									
					19							-		
					20									
Logged	by:				JCP			_	Date:	11/17	7/08	_		

LAWES Driller: Ernesto/Scott

		R								New York Sta			Locat		
-				neering				14368.34		Environment	al Conserv	ation	Love Clea	ners Site	
_				ce and		nolo	ogy	Drilling Me	thod: Direct I	Push - GeoPro	be		Soil Boring SV-		
		LOG OF SC)II. Re	ORING				Sampling Method: Driven Point							
Coordi	Coordinates:								remou. Dire				Sheet 3	Sheet 3 of 6	
Surface	Elevatio	n:					•						Drill	Drilling	
Casing	Below S	urface:						Water Lev.					Start	Finish	
	ice Eleva							Time							
Referen	ice Desci	ription:											1125	1138	
Blow	Feet	TA7 11		PID	Depth			Surface Cor	nditions: Aspl	halt	l				
Counts	Drvn/Ft.	Well Diagran		(ppm)	in		USCS	Weather: C							
(140-lb)	Recvrd	Diagran	11	HNu	Feet		Log	Temperatui							
					0					nd set sample scr	een at 8'				
					1				Sand fill 7.5' to 2						
					1				Bentonite seal 2'	to grade					
					2										
					3										
					4										
					5										
					5										
					6										
					7										
					8										
					9										
					10										
					11										
					12	\vdash									
					14	H									
					13										
					14										
					15	\vdash									
					15										
					16										
					17										
						Ш									
					18										
					19	\vdash									
					19										
					20										
Logged	by:				JCP				Date:	11/1	7/08				

LAWES Driller: Ernesto/Scott

		R EA E	ngin	eering	PC			Job. No. 14368.34		New York Sta Environment			Loca Love Clea	
-				ce and		2010	NOTE:			Push - GeoPro		1011		
(·		EA SO	cien	ce and	recni	1010	ygy				be		Soil Boring SV	
LOG OF SOIL BORING Coordinates:								Sampling Method: Driven Point					Sheet	4 of 6
	Elevatio	n:					•						Drilling	
	Below S							Water Lev.					Start	Finish
Referen	erence Elevation:							Time						
Referen	eference Description:												1237	1251
Blow	Feet	747 11		PID	Depth			Surface Cor	nditions: Aspl	nalt			L.	
Counts	Drvn/Ft.	Well		(ppm)	in		USCS	Weather: C	lear					
(140-lb)	Recvrd	Diagram	1	HNu	Feet		Log	Temperatur	e: 50 F					
					0			Drove point to	8' below grade a	nd set sample scr	een at 8'			
									Sand fill 7.5' to 2	1				
					1				Bentonite seal 2'	to grade				
		 												
					2									
					3									
					4									
					5									
					3									
					6									
					7									
					8									
					9									
					10									
					11									
					11									
					12									
					13									
					14									
												-		
					15									
					16									
					177									
					17									
					18									
					10									
					19									
					<u> </u>									
					20									
Logged	by:				JCP				Date:	11/17	7/08			

LAWES Driller: Ernesto/Scott

	Y	®	EA E	Engir	neering	g, P.C.		Job. No. 14368.34	Client:	New York Sta Environment			Loca Love Cle	ation:
_	-//		EA S	Scien	ce and	Techr	ology		ethod: Direct	Push - GeoPro	be			g Number:
Coordi		LOG	OF SO	OIL B	ORING			Sampling Method: Driven Point					Sheet	
	Surface Elevation:												Drilling	
Casing	Casing Below Surface:						Water Lev.					Start	Finish	
Referer	nce Eleva	tion:	,					Time						
Referer	nce Descr	ription	1:										1327	1340
Blow	Feet				PID	Depth		Surface Cor	l nditions: Asp	halt				
Counts	Drvn/Ft.	_	Well		(ppm)	in	USCS							
	Recvrd	D	Diagrai	m	HNu	Feet	Log	Temperatur						
						0				nd set sample scr	een at 8'			
						1			Sand fill 7.5' to 2					
	ł					1			Bentonite seal 2	to grade				
	1					2								
]													
						3								
	ł					4								
	ł					5								
	1													
						6								
	l					7								
						8								
	1													
]					9								
						10								
	ł					11								
	l													
						12								
	1					13		 						
	1					14	\vdash	+						
	1							1						
						15								
	1					16		 						
	ł					17								
	1							1						
						18								
	I					19		1						
	1					20		1						
								†						
Logged	by:					JCP			Date:	11/1	7/08			
		tow.	,					_	Driller:			_		
Drilling	Contrac	tor:			L	AWES		_	Driner:	Ernesto)/Scott	_		

		R								New York Sta			Loca	
-				neering				14368.34		Environment	al Conserva	ation	Love Clea	
		EA S	cien	ce and	Techi	nolo	ogy	Drilling Me	thod: Direct l	Push - GeoPro	be		Soil Boring SV-	
		LOG OF SO	OIL B	ORING				Sampling Method: Driven Point						
Coordinates:								1 0					- Sheet 6	
	Elevatio	_											Drill	
Casing	Below S	urface:					ı	Water Lev.					Start	Finish
	ice Eleva						•	Time					1202	1017
Keferer	ice Desci	ription:					•						1302	1316
Blow	Feet	TA7 11		PID	Depth			Surface Cor	nditions: Top	Soil				
Counts	Drvn/Ft.	Well		(ppm)	in		USCS	Weather: C						
(140-lb)	Recvrd	Diagran	11	HNu	Feet		Log	Temperatui						
					0					nd set sample scr	een at 8'			
									Sand fill 7.5' to 2					
					1				Bentonite seal 2'	to grade				
		 			2									
					3									
					4									
					5									
					6									
					7									
					/									
					8									
					9									
					10									
					11									
		}			12									
					14									
					13									
					14									
					15									
		-			16									
					16									
					17									
					18									
					19									
					20									
		<u> </u>												
Logged	by:				JCP				Date:	11/1	7/08			

LAWES Driller: Ernesto/Scott

Appendix E Groundwater Sampling Forms

Well I.D.:	EA Personnel:	Client:
GP01	DC	NYSDEC
Location:	Surface Conditions	Weather:
Love Cleaners	Grass	50F - Sunny
Sampling Method:	Start Time:	Date:
Direct Push - Slotted Screen Sampled	8:00	12/1/2008
with Poly Tubing equipped with check	End Time:	Well Diameter (in):
valve and peristaltic pump	10:50	.5"

	Hydropunch Sampling Information											
Time (hrs)	Depth (ft bgs)	Volume (G)	PID (ppm)	Analysis	Sample ID							
845	40	0.1	0	VOC	1-30-187-GP01 (30)							
910	40	0.2	0	VOC	1-30-187-GP01 (40)							
921	50	0.3	0	VOC	1-30-187-GP01 (50)							
930	60	0.4	0	VOC	1-30-187-GP01 (60)							
945	70	0.5	0	VOC	1-30-187-GP01 (70)							
955	80	0.6	0	VOC	1-30-187-GP01 (80)							
1013	90	0.7	0	VOC	1-30-187-GP01 (90)							
1028	100	0.8	0	VOC	1-30-187-GP01 (100)							

Total Quantity of Water Removed (gal):	3.6	Sampling Time:	
Samplers:	DC	Split Sample With:	
Sampling Date:	12/1/2008	Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:			
COMMENTS AND OBSERVATIONS.			

Well I.D.:	EA Personnel:	Client:
GP02	DC	NYSDEC
Location:	Surface Conditions	Weather:
Love Cleaners	Asphalt Parking Lot	40F - Sunny
Sampling Method:	Start Time:	Date:
Direct Push - Slotted Screen Sampled	1300 12-3-08	12-3-08 to 12-4-08
with Poly Tubing equipped with check	End Time:	Well Diameter (in):
valve and peristaltic pump	1100 12-4-08	.5"

	Hydropunch Sampling Information												
Time	Depth	Volume	PID										
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID								
1315	30	0.1	0	VOC, SVOC, Metal, Pest/PCB	1-30-187-GP02 (30)								
1325	40	0.2	0	VOC	1-30-187-GP02 (40)								
1335	50	0.3	0	VOC	1-30-187-GP02 (50)								
1350	60	0.4	0	VOC	1-30-187-GP02 (60)								
1405	70	0.5	0	VOC	1-30-187-GP02 (70)								
850	80	0.6	0	VOC	1-30-187-GP02 (80)								
910	90	0.7	0	VOC	1-30-187-GP02 (90)								
1025	100	0.8	0	VOC	1-30-187-GP02 (100)								

Total Quantity of Water Removed (gal):	3.6	Sampling Time:	
Samplers:	DC	Split Sample With:	
Sampling Date:	12-3 to 12-4	Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:			
pullout and redrive rods between	een 90 and 100 feet (Roo	ds full of sand)	
MS/MSD @ 40ft., DUP04 @ 5	50ft.		

Well I.D.:	EA Personnel:	Client:
GP04	DC	NYSDEC
Location:	Surface Conditions	Weather:
Love Cleaners	Grass	45F - Sunny
Sampling Method:	Start Time:	Date:
Direct Push - Slotted Screen Sampled	13:00	12/2/2008
with Poly Tubing equipped with check	End Time:	Well Diameter (in):
valve and peristaltic pump	15:00	.5"

	Hydropunch Sampling Information											
Time	Depth											
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID							
1330	30	0.1	0	VOC, SVOC, Metal, Pest/PCB	1-30-187-GP03 (30)							
1350	40	0.2	0	VOC	1-30-187-GP03 (40)							
1400	50	0.3	0	VOC	1-30-187-GP03 (50)							
1410	60	0.4	0	VOC	1-30-187-GP03 (60)							
1420	70	0.5	0	VOC	1-30-187-GP03 (70)							
1430	80	0.6	0	VOC	1-30-187-GP03 (80)							
1440	90	0.7	0	VOC	1-30-187-GP03 (90)							
1500	100	0.8	0	VOC	1-30-187-GP03 (100)							

Total Quantity of Water Removed (gal):	3.6	Sampling Time:	
Samplers:	DC	Split Sample With:	
Sampling Date:	12/2/2008	Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:	DUP03 collected at 30 ft		

Well I.D.:	EA Personnel:	Client:	
GP04	DC	NYSDEC	
Location:	Surface Conditions	Weather:	
Love Cleaners	Asphalt Parking Lot	45F - Sunny	
Sampling Method:	Start Time:	Date:	
Direct Push - Slotted Screen Sampled	12:00	12/4/2008	
with Poly Tubing equipped with check	End Time:	Well Diameter (in):	
valve and peristaltic pump	15:00	.5"	

	Hydropunch Sampling Information						
Time Depth Volume PID							
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID		
1245	30	0.1	0	VOC	1-30-187-GP04 (30)		
1255	40	0.2	0	VOC	1-30-187-GP04 (40)		
1305	50	0.3	0	VOC	1-30-187-GP04 (50)		
1320	60	0.4	0	VOC	1-30-187-GP04 (60)		
1335	70	0.5	0	VOC	1-30-187-GP04 (70)		
1400	80	0.6	0	VOC	1-30-187-GP04 (80)		
1415	90	0.7	0	VOC	1-30-187-GP04 (90)		
1430	100	0.8	0	VOC	1-30-187-GP04 (100)		

Total Quantity of Water Removed (gal):	3.6	Sampling Time:	
Samplers:	DC	Split Sample With:	
Sampling Date:	12/4/2008	Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:	Rinse Blank 05	from slotted road at completion (1	500)
MS/MSD @ 30ft., DUP05@ 40	oft.		,

Well I.D.:	EA Personnel:	Client:	
GP05	DC	NYSDEC	
Location:	Surface Conditions	Weather:	
Love Cleaners	Grass	40F - Sunny	
Sampling Method:	Start Time:	Date:	
Direct Push - Slotted Screen Sampled	10:00	12/3/2008	
with Poly Tubing equipped with check	End Time:	Well Diameter (in):	
valve and peristaltic pump	11:50	.5"	

	Hydropunch Sampling Information							
Time	Depth	Volume	PID					
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID			
1015	40	0.1	0	VOC, SVOC, Metal, Pest/PCB	1-30-187-GP05 (30)			
1020	40	0.2	0	VOC	1-30-187-GP05 (40)			
1028	50	0.3	0	VOC	1-30-187-GP05 (50)			
1036	60	0.4	0	VOC	1-30-187-GP05 (60)			
1045	70	0.5	0	VOC	1-30-187-GP05 (70)			
1055	80	0.6	0	VOC	1-30-187-GP05 (80)			
1110	90	0.7	0	VOC	1-30-187-GP05 (90)			
1130	100	0.8	0	VOC	1-30-187-GP05 (100)			

Total Quantity of Water Removed (gal):	3.6	Sampling Time:	
Samplers:	DC	Split Sample With:	
Sampling Date:	12/3/2008	Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:			

Well I.D.:	EA Personnel:	Client:	
GP06	DC	NYSDEC	
Location:	Surface Conditions	Weather:	
Love Cleaners	Grass	55F Sunny / 40F Sunny	
Sampling Method:	Start Time:	Date:	
Direct Push - Slotted Screen Sampled	14:15 (12/1/08)	12/1/08 to 12/2/08	
with Poly Tubing equipped with check	End Time:	Well Diameter (in):	
valve and peristaltic pump	9:15 (12/2/08)	.5"	

Hydropunch Sampling Information						
Time Depth Volume PID						
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID	
1430	40	0.1	0	VOC	1-30-187-GP06 (30)	
1438	40	0.2	0	VOC	1-30-187-GP06 (40)	
1446	50	0.3	0	VOC	1-30-187-GP06 (50)	
1456	60	0.4	0	VOC	1-30-187-GP06 (60)	
1515	70	0.5	0	VOC	1-30-187-GP06 (70)	
810	80	0.6	0	VOC	1-30-187-GP06 (80)	
900	90	0.7	0	VOC	1-30-187-GP06 (90)	
915	100	0.8	0	VOC	1-30-187-GP06 (100)	

Total Quantity of Water Removed (gal):	3.6	Sampling Time:	
Samplers:	DC	Split Sample With:	
Sampling Date:	12-1 to 12-2	Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:			

Well I.D.:	EA Personnel:	Client:	
GP07	DC	NYSDEC	
Location:	Surface Conditions	Weather:	
Love Cleaners	Grass	55F - Sunny	
Sampling Method:	Start Time:	Date:	
Direct Push - Slotted Screen Sampled	11:05	12/1/2008	
with Poly Tubing equipped with check	End Time:	Well Diameter (in):	
valve and peristaltic pump	14:10	.5"	

	Hydropunch Sampling Information						
Time Depth Volume PID							
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID		
1115	40	0.1	0	VOC	1-30-187-GP07 (30)		
1122	40	0.2	0	VOC	1-30-187-GP07 (40)		
1129	50	0.3	0	VOC	1-30-187-GP07 (50)		
1257	60	0.4	0	VOC	1-30-187-GP07 (60)		
1308	70	0.5	0	VOC	1-30-187-GP07 (70)		
1323	80	0.6	0	VOC	1-30-187-GP07 (80)		
1345	90	0.7	0	VOC	1-30-187-GP07 (90)		
1405	100	0.8	0	VOC	1-30-187-GP07 (100)		

Total Quantity of Water Removed (gal)	3.6	Sampling Time:	
Samplers:	DC	Split Sample With:	
Sampling Date:	12/1/2008	Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:			

Well I.D.:	EA Personnel:	Client:	
GP08	DC	NYSDEC	
Location:	Surface Conditions	Weather:	
Love Cleaners	Asphalt Road	40F - Sunny	
Sampling Method:	Start Time:	Date:	
Direct Push - Slotted Screen Sampled	9:30	12/2/2008	
with Poly Tubing equipped with check	End Time:	Well Diameter (in):	
valve and peristaltic pump	12:00	.5"	

	Hydropunch Sampling Information							
Time	Depth	Volume	PID					
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID			
945	40	0.1	0	VOC/SVOC/Metals/Pest/PCB	1-30-187-GP08 (30)			
1020	40	0.2	0	VOC	1-30-187-GP08 (40)			
1028	50	0.3	0	VOC	1-30-187-GP08 (50)			
1040	60	0.4	0	VOC	1-30-187-GP08 (60)			
1050	70	0.5	0	VOC	1-30-187-GP08 (70)			
1100	80	0.6	0	VOC	1-30-187-GP08 (80)			
1120	90	0.7	0	VOC	1-30-187-GP08 (90)			
1140	100	0.8	0	VOC	1-30-187-GP08 (100)			

Total Quantity of Water Removed (gal):	3.6	Sampling Time:	
Samplers:	DC	Split Sample With:	
Sampling Date:	12/2/2008	Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS: Rinse Blank for all parameters	collected off of slotted r	od at 1200. MS/MSD @ 30 ft. GP-	DI IPO2 @ 40 ft
Tallise Blank for all parameters	S CONSCIECT ON ON SHOULED IT	50 at 1200. M3/M3D @ 30 It. GF-	DUF 02 & 40 II.

Well I.D.:	EA Personnel:	Client:	
GP09	DC	NYSDEC	
Location:	Surface Conditions	Weather:	
Love Cleaners		35F - Sunny	
Sampling Method:	Start Time:	Date:	
Direct Push - Slotted Screen Sampled	7:15	12/5/2008	
with Poly Tubing equipped with check	End Time:	Well Diameter (in):	
valve and peristaltic pump	10:45	.5"	

Hydropunch Sampling Information							
Time	Depth	Volume	PID				
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID		
830	40	0.1	0	VOC	1-30-187-GP09 (30)		
840	40	0.2	0	VOC	1-30-187-GP09 (40)		
850	50	0.3	0	VOC	1-30-187-GP09 (50)		
900	60	0.4	0	VOC	1-30-187-GP09 (60)		
910	70	0.5	0	VOC	1-30-187-GP09 (70)		
930	80	0.6	0	VOC	1-30-187-GP09 (80)		
950	90	0.7	0	VOC	1-30-187-GP09 (90)		
1020	100	0.8	0	VOC	1-30-187-GP09 (100)		

Total Quantity of Water Removed (gal):	3.6	Sampling Time:	
Samplers:	DC	Split Sample With:	
Sampling Date:		Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:			

Well I.D.:	EA Personnel:	Client:	
GP10	DC	NYSDEC	
Location:	Surface Conditions	Weather:	
Love Cleaners	Asphalt Roadway	35F - Sunny	
Sampling Method:	Start Time:	Date:	
Direct Push - Slotted Screen Sampled	7:40	12/3/2008	
with Poly Tubing equipped with check	End Time:	Well Diameter (in):	
valve and peristaltic pump	9:30	.5"	

Hydropunch Sampling Information						
Time	Depth	Volume	PID			
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID	
755	40	0.1	0	VOC/SVOC/Metals/Pest/PCB	1-30-187-GP10 (30)	
806	40	0.2	0	VOC	1-30-187-GP10(40)	
815	50	0.3	0	VOC	1-30-187-GP10 (50)	
820	60	0.4	0	VOC	1-30-187-GP10 (60)	
830	70	0.5	0	VOC	1-30-187-GP10 (70)	
845	80	0.6	0	VOC	1-30-187-GP10 (80)	
900	90	0.7	0	VOC	1-30-187-GP10 (90)	
920	100	0.8	0	VOC	1-30-187-GP10(100)	

Total Quantity of Water Removed (gal): Samplers:	3.6 DC	Sampling Time: Split Sample With:	
Sampling Date:	12/3/2008	Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:	Rinse Blank 04	collected after sampling @ 930	

Well I.D.:	EA Personnel:	Client:	
GP11	DC	NYSDEC	
Location:	Surface Conditions	Weather:	
Love Cleaners	Grass	20F - Clear	
Sampling Method:	Start Time:	Date:	
Direct Push - Slotted Screen Sampled	8:00	12/9/2008	
with Poly Tubing equipped with check	End Time:	Well Diameter (in):	
valve and peristaltic pump	11:20	.5"	

Hydropunch Sampling Information							
Time	Depth	Volume	PID				
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID		
850	40	0.1	0	VOC	1-30-187-GP11 (30)		
900	40	0.2	0	VOC	1-30-187-GP11 (40)		
910	50	0.3	0	VOC	1-30-187-GP11 (50)		
920	60	0.4	0	VOC	1-30-187-GP11 (60)		
940	70	0.5	0	VOC	1-30-187-GP11 (70)		
1000	80	0.6	0	VOC	1-30-187-GP11 (80)		
1015	90	0.7	0	VOC	1-30-187-GP11 (90)		
1040	100	0.8	0	VOC	1-30-187-GP11 (100)		

Total Quantity of Water Removed (gal)	3.6	Sampling Time:		
Samplers:	DC	Split Sample With:		
Sampling Date:	12/9/2008	Sample Type:	Groundwater	
COMMENTS AND OBSERVATIONS:				

Well I.D.:	EA Personnel:	Client:
GP12	DC	NYSDEC
Location:	Surface Conditions	Weather:
Love Cleaners	Grass	25F - Sunny
Sampling Method:	Start Time:	Date:
Direct Push - Slotted Screen Sampled	12:00	12/8/2008
with Poly Tubing equipped with check	End Time:	Well Diameter (in):
valve and peristaltic pump	15:00	.5"

Hydropunch Sampling Information						
Time	Depth	Volume	PID			
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID	
1250	40	0.1	0	VOC	1-30-187-GP12 (30)	
1300	40	0.2	0	VOC	1-30-187-GP12 (40)	
1310	50	0.3	0	VOC	1-30-187-GP12 (50)	
1320	60	0.4	0	VOC	1-30-187-GP12 (60)	
1330	70	0.5	0	VOC	1-30-187-GP12 (70)	
1350	80	0.6	0	VOC	1-30-187-GP12 (80)	
1410	90	0.7	0	VOC	1-30-187-GP12 (90)	
1440	100	0.8	0	VOC	1-30-187-GP12 (100)	

Total Quantity of Water Removed (gal):	3.6	Sampling Time:		
Samplers:	DC	Split Sample With:		
Sampling Date:	12/8/2008	Sample Type:	Groundwater	
COMMENTS AND OBSERVATIONS:				

Well I.D.:	EA Personnel:	Client:
GP13	DC	NYSDEC
Location:	Surface Conditions	Weather:
Love Cleaners	grass	40F - Clear
Sampling Method:	Start Time:	Date:
Direct Push - Slotted Screen Sampled	7:50	12/9/2008
with Poly Tubing equipped with check	End Time:	Well Diameter (in):
valve and peristaltic pump	10:45	.5"

Hydropunch Sampling Information						
Time	Depth	Volume	PID			
(hrs)	(ft bgs)	(G)	(ppm)	Analysis	Sample ID	
805	40	0.1	0	VOC	1-30-187-GP13 (30)	
815	40	0.2	0	VOC	1-30-187-GP13 (40)	
825	50	0.3	0	VOC	1-30-187-GP13 (50)	
835	60	0.4	0	VOC	1-30-187-GP13 (60)	
845	70	0.5	0	VOC	1-30-187-GP13 (70)	
905	80	0.6	0	VOC	1-30-187-GP13(80)	
925	90	0.7	0	VOC	1-30-187-GP13 (90)	
1025	100	0.8	0	VOC	1-30-187-GP13(100)	

Total Quantity of Water Removed (gal): Samplers:	3.6 DC	Sampling Time: Split Sample With:	
Sampling Date:		Sample Type:	Groundwater
COMMENTS AND OBSERVATIONS:	Rinse Blank 07	collected from slotted rod prior to	sampling
Redrive point between 90 and 10	00 (sand in rods)		

Appendix F Soil Vapor and Sub-Slab Vapor Sampling Forms

R EA Engineering and Its Affiliate EA Science & Technology				Project #:	14368.34
			•	Project Name:	NYSDEC - Love Cleaners
	6712 Brooklawn F	-		Location:	Hempstead, NY
Complete Continue	Syracuse, NY 132	11		Project Manager:	RC/JMB
Sample Location Information:	Ι.			 	-
Site ID Number:	1-30-187			Sampler(s):	DC, JP
PID Meter Used (Model, Serial #) :□	PPB RAG	-		Soil Vapor I.D. No.:	5V-01
SUMMA Canister Record:				-	
<u> </u>	POR POINT			DUPLICATE SAMP	LE (IF COLLECTED)
Flow Regulator No.: 3200			Flow Regulator No.:		
Canister Serial No.: 3768			Canister Serial No.:		******
Start Date/Time: 11/18/08	0730		Start Date/Time:		
Start Pressure:			Start Pressure:		
(inches Hg)			(inches Hg)		
Stop Date/Time: 11/14/08	0923		Stop Date/Time:		
Stop Pressure: (inches Hg)			Stop Pressure: (inches Hg)		
Sample ID: /- 3/- /87	-SV-01		Sample ID:		
Helium percentage achieved in enclosure for	1		Depth to sample point	+	
Tracer Gas Test:	100%	6	Deput to sample point	•	8'
Tracer Gas test result (% of Helium):	. 0 %	, ,	Nearest Groundwater	Elevation:	18'
Noticeable Odor?	No		Additional info:		
Purge Volume PID Reading (ppb)	O PP	ß			
Duplicate Sample?	No				
Outdoor Ambient Temperature:	~35° F	-			
Wind Direction:	W				
Comments:	•		-		
				<u></u>	
-					
Sampler Signature:					

	EA Engineering and Its Affiliate EA Science & Technology		Project #: Project Name:	14368.34 NYSDEC - Love Cleaners	
	6712 Brooklawn Parkway, Suite 104	Į.	Location:	Hempstead, NY	
	Syracuse, NY 13211		Project Manager: RC/JMB		
Sample Location Information:	•				
Site ID Number:	1-30-187		Sampler(s):	DC, JP	
PID Meter Used (Model, Serial #) :□	PPB RAE		Soil Vapor I.D. No.:	5V-02	
SUMMA Canister Record:					
SOIL VAP	OR POINT		DUPLICATE SAMP	LE (IF COLLECTED)	
Flow Regulator No.: 322		Flow Regulator No.:			
Canister Serial No.: 3524		Canister Serial No.:			
Start Date/Time: 11/16/06 C	2737	Start Date/Time:			
Start Pressure: (inches Hg) – 29	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Start Pressure: (inches Hg)		-	
11.1.1.1	64/2 D	1			
Stop Date/Time: // 4 / U D Stop Pressure:	0430	Stop Date/Time: Stop Pressure:			
(inches Hg)		(inches Hg)			
Sample ID: /-31-187-	SV-02	Sample ID:			
Other Sampling Information:		-			
Helium percentage achieved in enclosure for Tracer Gas Test:		Depth to sample point	: 	ઇ '	
Tracer Gas test result (% of Helium):		Nearest Groundwater	Elevation:	18'	
Noticeable Odor?		Additional info:			
Nonecapie Odor;	N_0	Tractional 200.			
Purge Volume PID Reading (ppb)					
	7.2 P.PM				
Purge Volume PID Reading (ppb)					
Purge Volume PID Reading (ppb) Duplicate Sample?	7.2 P.PM				
Purge Volume PID Reading (ppb) Duplicate Sample? Outdoor Ambient Temperature:	7.2 P.PM No ~35°F				
Purge Volume PID Reading (ppb) Duplicate Sample? Outdoor Ambient Temperature: Wind Direction:	7.2 P.PM No ~35°F				
Purge Volume PID Reading (ppb) Duplicate Sample? Outdoor Ambient Temperature: Wind Direction:	7.2 P.PM No ~35°F				
Purge Volume PID Reading (ppb) Duplicate Sample? Outdoor Ambient Temperature: Wind Direction:	7.2 P.PM No ~35°F				
Purge Volume PID Reading (ppb) Duplicate Sample? Outdoor Ambient Temperature: Wind Direction:	7.2 P.PM No ~35°F				
Purge Volume PID Reading (ppb) Duplicate Sample? Outdoor Ambient Temperature: Wind Direction:	7.2 P.PM No ~35°F				
Purge Volume PID Reading (ppb) Duplicate Sample? Outdoor Ambient Temperature: Wind Direction:	7.2 P.PM No ~35°F				
Purge Volume PID Reading (ppb) Duplicate Sample? Outdoor Ambient Temperature: Wind Direction:	7.2 P.PM No ~35°F				

R	EA Science & Technology			Project #: Project Name:	14368.34 NYSDEC - Love Cleaners
	6712 Brooklawn I Syracuse, NY 132	Parkway, Suite 104 11		Location:	Hempstead, NY
Sample Location Information:	Sylucuse, IVI 152			Project Manager:	RC/JMB
Site ID Number:	1-30-187			Sampler(s):	DC, JP
PID Meter Used (Model, Serial #) :□	PPB CM			Soil Vapor I.D. No.:	54-03
SUMMA Canister Record:					
SOIL VAP	OR POINT			DUPLICATE SAMP	LE (IF COLLECTED)
Flow Regulator No.: 3036			Flow Regulator No.:		
Canister Serial No.: 4407			Canister Serial No.:		
Start Date/Time: 11/18/08	0744		Start Date/Time:		
Start Pressure: (inches Hg) - 30 +			Start Pressure: (inches Hg)		
Stop Date/Time: 11/18/04	0944		Stop Date/Time:		
Stop Pressure: (inches Hg)			Stop Pressure: (inches Hg)		
Sample ID: /- 31-18	7- SV-03		Sample ID:		
Other Sampling Information:				_	
Helium percentage achieved in enclosure for Tracer Gas Test:		·	Depth to sample point		8'
Tracer Gas test result (% of Helium):			Nearest Groundwater	Elevation:	18'
Noticeable Odor?	No		Additional info:		·
Purge Volume PID Reading (ppb)	2.5 P	PM			
Duplicate Sample?	NO				
Outdoor Ambient Temperature:	~ 35°F	-			
Wind Direction:	W				
Comments:			<u> </u>		
		·········			
					- 184
	•				
	··				
			· · · · · · · · · · · · · · · · · · ·		
Sampler Signature:		· .			

EA Engineering and Its Affiliate EA Science & Technology 6712 Brooklawn Parkway, Suite 104			Project #: Project Name: Location:	14368.34 NYSDEC - Love Cleaners Hempstead, NY
	Syracuse, NY 13211		Project Manager:	-
Sample Location Information:				
Site ID Number:	1-30-187		Sampler(s):	DC, JP
PID Meter Used (Model, Serial #) :□	PPB RAE		Soil Vapor I.D. No.:	SV-04
SUMMA Canister Record:				-
SOIL VAP	OR POINT	1	DUPLICATE SAMP	PLE (IF COLLECTED)
Flow Regulator No.: 3191		Flow Regulator No.:		
Canister Serial No.: 3754		Canister Serial No.:		
Start Date/Time: 11/18/04	0748	Start Date/Time:		
Start Pressure: (inches Hg) - 30 +	,	Start Pressure: (inches Hg)		
111.1.1	0948	Stop Date/Time:		
Stop Date/Time: 1/4/0% Stop Pressure: 4	- 110	Stop Date/Time: Stop Pressure:		
(inches Hg)		(inches Hg)		
Sample ID:	-54-04	Sample ID:		
Other Sampling Information:			_	
Helium percentage achieved in enclosure for Tracer Gas Test:		Depth to sample point	:	8'
Tracer Gas test result (% of Helium):		Nearest Groundwater Elevation:		18'
Noticeable Odor?		Additional info:		
Purge Volume PID Reading (ppb)	1,000			
Duplicate Sample?	۸)۵			
Outdoor Ambient Temperature:	~35° F			
Wind Direction:	\sim			
Comments:	<u> </u>	•		
		•		
		·- ·		
			·•	· · · · · · · · · · · · · · · · · · ·
Sampler Signature:				

	EA Engineering and Its Affiliate		Project #:	14368.34
	EA Science & Technology		Project Name:	NYSDEC - Love Cleaners
	6712 Brooklawn Parkway, Suite 104		Location:	Hempstead, NY
	Syracuse, NY 13211		Project Manager:	-
Sample Location Information:	0,1400,000,000		Project Manager.	RC/ JIVID
Site ID Number:	1-30-187		<u> </u>	TV IP
PID Meter Used (Model, Serial #) :□			Sampler(s):	DC, JP SV-05
SUMMA Canister Record:	PPB RAE		Soil Vapor I.D. No.:	5V-05
	POR POINT		DUPLICATE SAMP	LE (IF COLLECTED)
Flow Regulator No.: 3176		Flow Regulator No.:		
Canister Serial No.: 5360		Canister Serial No.:		
Start Date/Time: 11/18/08	0757	Start Date/Time:		
Start Pressure: (inches Hg) - 29		Start Pressure: (inches Hg)	-	
Mulan	<i>9953</i>	-		
Stop Date/Time: //8/0% Stop Pressure:	<u> </u>	Stop Date/Time: Stop Pressure:		
(inches Hg) — 4		(inches Hg)		
	7-54-05	Sample ID:		
Other Sampling Information:		[A		
Helium percentage achieved in enclosure for Tracer Gas Test:		Depth to sample point	t:	8'
Tracer Gas test result (% of Helium);		Nearest Groundwater	Elevation:	18'
Noticeable Odor?	No	Additional info:		
Purge Volume PID Reading (ppb)	,2			
Duplicate Sample?	٠, ٨			
o uparine oranga.	NO			
Outdoor Ambient Temperature:	~35°F			
Wind Direction:				
C	W			
Comments:				
				
				
			·	-
Sampler Signature:				l l

	EA Engineering and Its Affiliate	Project #:	14368.34			
		Project Name: NYSDEC - Love Cleaners				
6712 Brooklawn Parkway, Suite 104			′			
Syracuse, NY 13211			Location:	Hempstead, NY		
Sample Location Information:	Syracuse, IVI 13211		Project Manager:	RC/JMB		
	. 30 . 4		<u> </u>	7		
Site ID Number: 1-30-187			Sampler(s):	DC, JP		
PID Meter Used (Model, Serial #) :□	PPB RAE		Soil Vapor I.D. No.:	5V-04		
SUMMA Canister Record:						
SOIL VAP	DUPLICATE SAMPLE (IF COLLECTED)					
Flow Regulator No.: 3/22		Flow Regulator No.:				
Canister Serial No.: 3874	Canister Serial No.:					
Start Date/Time: 11/18/07	0803	Start Date/Time:				
Start Pressure:	Start Pressure:					
!i	.	(inches Hg)				
Stop Date/Time: 11/8/07 Stop Pressure:	1003	Stop Date/Time:				
Stop Pressure: -/O		Stop Pressure: (inches Hg)				
Sample ID: -3 -18- Other Sampling Information:	7- SV- 04	Sample ID:				
Helium percentage achieved in enclosure for		Depth to sample point	•			
Tracer Gas Test:				8'		
racer Gas test result (% of Helium):		Nearest Groundwater Elevation:		18'		
Noticeable Odor?	No	Additional info:				
Purge Volume PID Reading (ppb)	,		•			
Duplicate Sample?	0.0					
Duplicate Santplet	No					
Outdoor Ambient Temperature:						
	^ 35°F					
Wind Direction:	\mid ω					
Comments:						
						
	.					
Sampler Signature:						

FIELD AIR SAMPLING FORM

					Project #:	14368.34				
EA Science & Technology			Project Name:	NYSDEC - Love Cleaners						
6712 Brooklawn Parkway, Suite 104			Location:	Hempstead, NY						
	Syracuse, NY 13211			3	Project Manager:	RC/JMB				
Sample Location Information:										
SIL IDAY	-30-187		4		C 1 ()	0/15	D			
Site ID Number: PID Meter Used:			p. 4	7	Sampler(s):	1000	150000			
PID Meter Used: (Model, Serial #)		0.		Building I.D. No.: LOVE CLEAN						
SUMMA Canister Record: 5465/46					SS-DUPOI					
INDOOR AIR - FIRST FLOOR INDOOR AIR		BASEMENT	SUBSLAB SOIL GAS Z							
Flow Regulator No.:		Flow Regulator No.:	3175	Flow Regulator No.:	148 3019	Flow Regulator No.:	3178			
Canister Serial No.:		Canister Serial No.:	1808	Canister Serial No.:	1487	Canister Serial No.:	1216			
Start Date/Time:		Start Date/Time:	11/20/08 1157	Start Date/Time:	11/20/08	Start Date/Time:	1144			
Start Pressure: (inches Hg)	X	Start Pressure: (inches Hg)	-28	Start Pressure: (inches Hg)	-29	Start Pressure: (inches Hg)	-27			
Stop Date/Time:		Stop Date/Time:	11/20/08/11/8	Stop Date/Time:	11/2/108	Stop Date/Time:	11/21/08/102			
Stop Pressure:		Stop Pressure:	1119	Stop Pressure:	1100	Stop Pressure:	7700			
(inches Hg)	- 4	(inches Hg)	-6,5	(inches Hg)	-8	(inches Hg)	-7.5			
Sample ID:		Sample ID: -30 - 87		Sample ID: -30-187	-55-0)	Sample ID: 187	-SS-DUPOL			
Other Sampling I	nformation:									
Story/Level	7577	Story/Level	First Floor Slob.	Basement or Crawl Space?	Bsmt.	Direction from Building				
Room		Sko Thickness		Floor Slab Thickness (inches) [if present]	51	Distance from Building				
Indoor Air Temp (°F)	2.7	Pot Entry	. 1	Potential Vapor Entry Points Observed?	M: not	Intake Height Above Ground Level (ft.)				
Barometric Pressure?		Barometric Pressure?		Ground Surface Condition (Crawl Space Only)		Intake Tubing Used?				
Intake Height Above Floor Level (ft.)		Intake Height Above Floor Level (ft.) Intake DCPT	5.5	If slab, intake Depth If Crawl Space, intake height	5.5	Distance to nearest Roadway				
Noticeable Odor?		Noticeable Odor?		Noticeable Odor?		Noticeable Odor?				
PID Reading (ppb)		PID Reading (ppb)	100	PID Reading (ppb)	17	PID Reading (ppb)				
Duplicate Sample?		Duplicate Sample?		Duplicate Sample?	DUPOI	Duplicate Sample?				
SS01 SS02	collec	ted for	n Nein	om be Freleil	hind I Ast in ?	Pryers in 1	Journal Party Rom.			
Sampler Signature	5:									

Appendix G

Data Usability Summary Report - Provided on CD

Appendix H

Laboratory Analytical Data – Form Is – Provided on CD