LOVE CLEANERS

416 Clinton Street Hempstead, New York

May 17, 2013

Remedial Investigation Report

Conducted by:

CONKLIN SERVICES & CONSTRUCTION INC.

Remedial Investigation Report

Primary Contact: Sean Morgan, PE Address: 94 Stewart Avenue

Newburgh, NY 12550

Phone: 845-561-1512 Fax Number: 845-561-1204

E-mail Address: <u>sean@conklinservices.com</u>

TABLE OF CONTENTS

1. INTRODUCTION

- 1.1 Authorization
- **1.2** Site Description

2. SCOPE OF WORK

3. SITE ACTIVITIES

- 3.1 Soil Boring Investigation
- 3.1.1 Sample Locations
- 3.1.2 Soil Sampling
- 3.2 Air Sampling

4. SOIL AND AIR SAMPLING ANALYTICAL RESULTS

- 4.1 Soil Volatile Organic Compounds
- **4.2 Air Volatile Organic Compounds** Error! Bookmark not defined.

5. CONCLUSIONS & RECOMMENDATIONS

- 5.1 Conclusions
- 5.2 Recommendations
- 6. LIMITATION OF DAMAGES

1. INTRODUCTION

1.1 Authorization

Conklin Services & Construction Inc., (CSC) of Newburgh, New York, was contracted by Mark Wieboldt to perform a remedial investigation at 416 Clinton Street, Hempstead, New York (See Figure 1).

1.2 Site Description

The property currently consists of one (1) building that is currently utilized as a laundromat. The exterior of the subject property has an asphalt paved parking area/driveway. Water service is supplied by public water supply and an onsite well. Based on conversation with the operator, the onsite well is utilized for the air conditioning units only. A municipal sewer services the building discharges. The water discharge from the washing machines is to onsite recharge galleries.

Surrounding properties in the immediate vicinity consist of mixed residential and commercial properties. A municipal well field is located to the east of the subject property.

2.0 SCOPE OF WORK

The scope of work performed by CSC included the following:

- Two (2) soil borings were installed on the western edge of the property. One of the borings was also adjacent to an identified drywell.
- Two (2) soil vapor monitoring points were installed adjacent to the soil borings.
- A sub-slab monitoring point was installed within the existing laundromat building.
- Soil samples from the soil borings were collected for laboratory analysis by a New York State Certified laboratory.
- Air samples from the soil monitoring points, sub-slab monitoring point, indoor air and ambient air were collected for laboratory analysis by a New York State Certified laboratory.
- A compilation of the site data analysis was utilized in the preparation of a Remedial Investigation Report.

The subsequent sections detail the remedial investigation, soil & air analytical results, and investigative findings.

3.0 SITE ACTIVITIES

CSC conducted the soil boring investigation on February 18, 2013. Below is a description of the site activities. Soil boring logs, illustrating the soils encountered, can be found in Appendix B.

3.1 Soil Boring Investigation

3.1.3 **Sample Locations**

Soil boring and vapor monitoring point locations were selected to further delineate known soil gas impacts reported in a previous investigation performed by EA Science & Technology in May 2009. The soil borings and vapor monitoring points were installed utilizing a track mounted direct push Geoprobe. CSC personnel performed oversight of the advancement of a 2" outer diameter sampling tube with a plastic liner into the overburden, at four (4) foot intervals, to a maximum depth of sixteen (16) feet below grade. A total of two (2) bore holes were installed (See Figure 2). Soil was scanned utilizing a Photoionization Detector (PID) for volatile organic compounds. Below is a description of the field observations from each soil boring.

Field Observations

Soil Boring 1-SB-13

Soil boring 1-SB-13 was extended to a depth of sixteen (16) feet below grade and was located west of the drywell. Wet soil was encountered starting at eleven (11) feet below grade and was saturated at fifteen (15) feet below grade. PID readings were non-detect throughout the entire advancement of the boring. A soil sample was collected approximately eleven (11) feet below grade. The soils present within the boring consisted of shallow clay sand layer to approximately the one 1 foot depth and the remaining soils consisted of coarse sand and fine gravel.

Soil Boring 2-SB-13

Soil boring 2-SB-13 was extended to a depth of twelve (12) feet below grade and placed on western edge of the property. Moist soils were encountered starting at six (6) feet below grade and wet soils were encountered at thirteen (13) feet below grade. PID readings were non-detect throughout the entire boring.

Vapor Points

VP-1

VP-1 was extended to a depth of eight (8) feet below grade and west of 1-SB-13, A shallow wet clay was encountered to a depth of five (5) feet below grade. PID readings were non-detect throughout the entire boring. No soil sample was collected from the vapor monitoring point. A PVC monitoring point was installed for future air sampling. From depth of five (5) thru eight (8) feet a course sand and gravel was encountered.

VP-2

VP-1 was extended to a depth of eight (8) feet below grade and in the vicinity of 2-SB-13. PID readings were non-detect throughout the entire boring. No soil sample was collected from the vapor monitoring point. PVC monitoring point was installed for future air sampling. The soils present within the boring consisted of a course sand with medium – large gravel.

3.1.2 Soil Sampling

Measurable PID readings were not observed in soil borings 1-SB-13 or 2-SB-13.

One (1) soil sample was collected from each of the soil borings (1-SB-13 and 2-SB-13). Soil samples were placed into laboratory provided sampling jars and submitted for analysis to Phoenix Environmental Laboratories. The soil samples were analyzed for EPA Method 8260 (volatile organic compounds).

3.2 Air Sampling

Air samples were collected from the two (2) soil vapor monitoring points (VP-1 and VP-2), one (1) sub-slab monitoring point, one (1) indoor air sample and one (1) ambient air sample. Vapor monitoring points and the sub-slab monitoring point were purged utilizing an air sampling pump prior to connection of summa canisters. During the air sampling precipitation did start to occur.

All air samples were collected in six (6) liter laboratory supplied summa canisters. Air flow was regulated utilizing laboratory supplied regulators. Air samples were submitted for analysis to Phoenix Environmental Laboratories. All air samples were analyzed for EPA Method TO15 (volatile organic compounds).

A tracer gas was utilized in the collection of the sub-slab sample. Sample tubing was extended through a plastic container. Helium tracer gas was regulated into the container. During the purging of the sub-slab monitoring point, the sample pump effluent was monitored for helium concentrations. The maximum helium concentration detected was 7.9%.

Indoor air was collected at typical air breathing height and was collected adjacent to the sub-slab monitoring point. The outdoor ambient air was collected at the ground level also adjacent to the sub-slab monitoring point.
7

4.0 SOIL AND AIR SAMPLING ANALYTICAL RESULTS

Soil sampling at the site was conducted in accordance with NYSDEC Guidance Document CP-51. The soil analytical results were reviewed and compared to the CP-51 / Soil Cleanup Guidance for unrestricted use. Below are the descriptions based on the results for both soils and vapor sampling. Laboratory analytical data sheets are provided in Appendix A.

4.1 Soil Volatile Organic Compounds

The following details the laboratory results for the soil samples submitted (Table 1). As the data in the following tables indicates, volatile organic compounds were not present at detectable levels in either 1-SB-13 or 2-SB-13.

4.2 Air Volatile Organic Compounds

The following details the laboratory results for the air samples collected. The analytical results indicate that the air has been impacted by numerous volatile organic compounds. Compounds reported over the detection limits generally include petroleum compounds, solvents, ethanol and chlorinated compounds.

The New York State Department of Health (NYSDOH) currently has air standards for three volatile organic compounds that are within the analyte list for TO-15. The compounds include methylene chloride, Tetrachloroethene (PCE) and trichloroethene (TCE).

The NYSDOH's Methylene chloride's air guideline value is 100 mcg/m³. Reported analytical results for all air samples collected were below the guideline values.

The NYSDOH's PCE air guideline value is 60 mcg/m³. Reported analytical results for air samples collected from the sub-slab, indoor air and ambient air were below the guideline values. The reported analytical results for both the soil gas monitoring points were significantly higher the guideline values.

The NYSDOH's TCE air guideline value is 5 mcg/m³. Reported analytical results for air samples collected from the sub-slab, indoor air and ambient air were below the guideline values. The reported analytical results for both of the soil gas monitoring points were significantly higher the guideline values.

5.0 CONCLUSIONS & RECOMMENDATIONS

5.1 Conclusions

The following summarizes the findings of the investigation and laboratory analytical results reported above.

Geological Conditions- The observed soils consisted mainly of gravel & sand. The shallow soils encountered in VP-1 and 1-SB-13 showed evidence of clay. Clay was not reported during previous investigations and also was not observed during the installation of the other soil boring and vapor monitoring points installed as part of this investigation.

Groundwater-Groundwater was encountered at a shallower depth then previously observed during the EA investigation. The decreased depth to water may be attributed to seasonal fluctuation as well as affects of groundwater recharge after the recent hurricanes.

Soil analytical results- The soil analytical results were similar to previous investigations performed at the site. The reported concentrations of adsorbed compounds indicate that there is no significant mass absorbed to the soils. The soils at the site largely consist of sand and gravel, which do not generally have large adsorption capacities.

Air analytical results- The analytical results indicate that the samples from the sub-slab, ambient and indoor locations are below NYSDOH air guideline values as defined in the NYSDOH CEH BEEI Soil Vapor Intrusion Guidance (October 2006). The reported concentrations of the vapor monitoring points were significantly higher than the NYSDOH air guideline values. The concentrations of TCE and PCE, when combined with previous reported data, for the most part, follow a logical distribution. The most recent air result for the sub-slab is an outlier with respect to the distribution. The result for the sub-slab is believed to be artificially low based on the tracer gas detection, but not to the extent to fall within unexpected results.

5.2 Recommendations

Due to the confirmed presence of soil gas contamination in the overburden soil it is recommended that;

- 1) Short term SVE pilot testing be performed
- 2) Additional soil vapor investigation to further delineate the impacted areas
- 3) Confirmation sampling be performed on the sub-slab

In the submitted Remedial Investigation Workplan, CSC indicated that the SVE test would be performed within the area of the building footprint. However, the combination of the low concentrations of VOC's in the sub-slab and the very high concentrations near the onsite drywell, it would not be advised or advantageous to potentially induce vapor that could migrate below the slab.

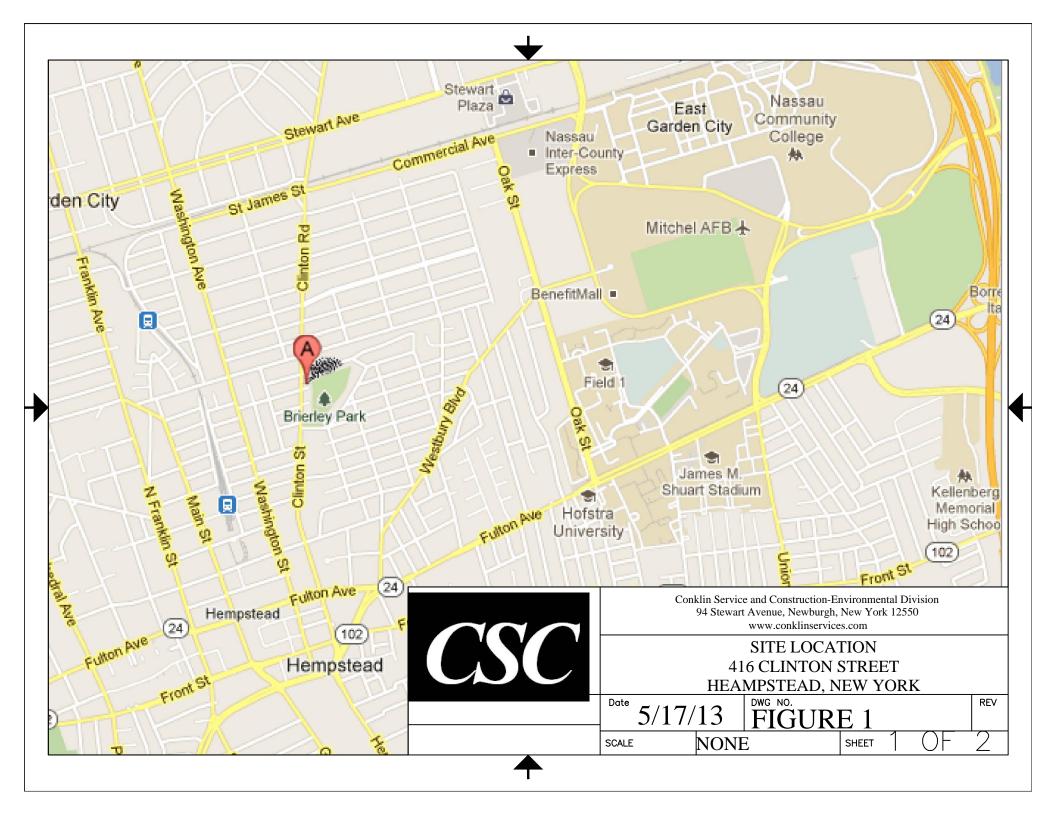
Instead of performing the test within the current building footprint it is proposed to perform the test near the highest observed soil vapor results (VP-1). The existing monitoring points VP-1, VP-2 and the subslab monitoring point will be utilized as vacuum monitoring points. One additional monitoring point will be installed in the direction of Clinton Street. The additional monitoring point will serve multiple purposes.

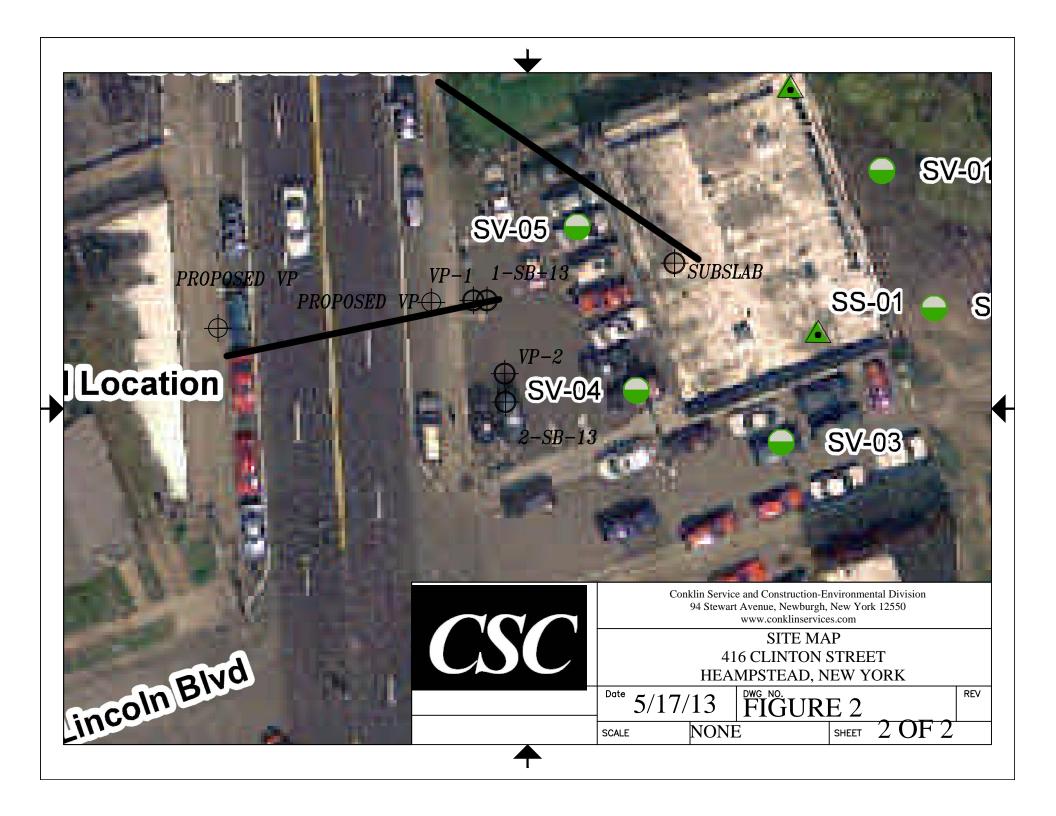
The additional monitoring point will be utilized to

- 1) Vacuum monitoring point during the pilot test
- 2) Further delineate soil vapor impacts
- 3) Investigate the shallow clay for adsorbed mass

Additional soil vapor investigations will be limited to two additional monitoring points. One monitoring point will be located onsite and as previously indicated will be utilized in the pilot test. The second monitoring point will be located across Clinton Street. A map of the proposed monitoring points is located in Figure 3.

One additional confirmation sampling will be performed on the sub-slab monitoring point. The confirmation sampling will be performed prior to the pilot test.


Once the above recommendations or a modified plan, based on regulatory agency review is accomplished, an evaluation and further remedial actions, if applicable will be determined.


6.0 LIMITATION OF DAMAGES

This report is based on a limited number of invasive samples and analyses. The conclusions presented in this report are based only on the observations made during this investigation and data provided by others. Conditions may vary significantly with time, particularly, with respect to conclusions presented or extrapolated from this report. Therefore, the conclusions and recommendations set forth herein are applicable only to the facts and conditions described at the time of this report.

In performing its services, CSC uses that degree of care and skill exercised under similar conditions. The standard of care shall be judged exclusively as of the time these services are rendered and not according to later standards. CSC's findings and conclusions must be considered not as scientific certainties, but rather as opinions concerning the significance of the limited data available. Specifically, CSC does not and cannot represent that the site contains no hazardous materials, oil, or other latent conformance to these standards.

CSC shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld or not fully disclosed. CSC believes that all information contained in this report is factual, but no guarantee is made or implied. CSC shall not be responsible for any loss, damage, or liability arising from any negligence of others in the interpretation or use of any results, report, or communication.

Volatile Organic Compounds (USEPA Method 8260) soil February 17, 2013

Compound	URU	1-SB-13	2-SB-13	
	(ppb)	(ppb)	(ppb)	
1,1,1,2 Tetrachloroethane		ND	ND	
1,1,1-Trichloroethane	680	ND	ND	
1,1,2,2 Tetrachloroethane		ND	ND	
1,1,2-Trichloroethane		ND	ND	
1,1 Dichloroethane	270	ND	ND	
1,1 Dichloroethene	330	ND	ND	
1,1 Dichloropropane		ND	ND	
1,2,3 Trichlorobenzene		ND	ND	
1,2,3 Trichloropropane		ND	ND	
1,2,4 Trimethylbenzene	3600	ND	ND	
1,2 Dibromo-3-chloropropane		ND	ND	
1,2 Dibromoethane	20	ND	ND	
1,2 Dichlorobenzene	1100	ND	ND	
1,2 Dichloroethane	20	ND	ND	
1,2 Dichloropropane		ND	ND	
1,3,5 Trimethylbenzene	8400	ND	ND	
1,3 Dichlorobenzene	2400	ND	ND	
1,3 Dichloropropane		ND	ND	
1,4 Dichlorobenzene	1800	ND	ND	
2,2 Dichloropropane		ND	ND	
2-Chlorotoluene		ND	ND	
2 Isopropyltoluene		ND	ND	
4-Chlorotoluene		ND	ND	
4 Methyl-2-pentanone		ND	ND	
Acetone	50	ND	ND	
Acrylonitrile		ND	ND	
Benzene	60	ND	ND	
Bromobenzene		ND	ND	
Bromochloromethane		ND	ND	
Bromodichloromethane		ND	ND	
Bromoform		ND	ND	
Bromomethane		ND	ND	
Carbon Disulfide		ND	ND	
Carbon Tetrachloride	760	ND	ND	
Chlorobenzene	1100	ND	ND	
Chloroethane		ND	ND	
Chloroform	370	ND	ND	
Chloromethane	050	ND	ND	
Cis-1,2 Dichloroethene	250	ND	ND	
Cis-1,3 Dichloropropene		ND	ND	
Dibromochloromethane		ND	ND	
Dibromomethane		ND	ND	
Dichlorodifluoromethane	10.00	ND	ND	
Ethylbenzene	1000	ND	ND	

Volatile Organic Compounds (USEPA Method 8260) soil February 17, 2013

Compound 	URU (ppb)	1-SB-13 (ppb)	2-SB-13 (ppb)	
Hexachlorobutadiene		ND	ND	
Isopropylbenzene	330	ND	ND	
m&p-Xylene		ND	ND	
Methyl Ethyl Ketone	120	ND	ND	
Methyl tert-butyl ether (MTBE)	930	ND	ND	
Methylene Chloride	50	ND	ND	
Naphthalene	12000	ND	ND	
n-Butylbenzene	12000	ND	ND	
n-Propylbenzene	3900	ND	ND	
o-Xylene		ND	ND	
p-Isopropyltoluene		ND	ND	
sec-Butylbenzene	11000	ND	ND	
Styrene		ND	ND	
tert-Butylbenzene	5900	ND	ND	
Tetrachloroethene	1300	ND	ND	
Tetrahydrofuran (THF)		ND	ND	
Toluene	700	ND	ND	
Total Xylenes	260	ND	ND	
Trans-1,2-Dichloroethene	190	ND	ND	
Trans-1,3 Dichloropropene		ND	ND	
trans-1,4-dichloro-2-butene		ND	ND	
Trichloroethene	470	ND	ND	
Trichlorofluoromethane		ND	ND	
Trichlorotrifluoroethane		ND	ND	
Vinyl Chloride	20	ND	ND	

NS=Not Sampled ND=Not Detected URU=Unrestricted Use

Volatile Organic Compounds (USEPA Method T015) Air February 19, 2013

Compound	URU	VF		VF		Indo	or Air	Sub	Slab	Amb	pient
·	(ppbv)	(ppbv)	mg/M ³								
1,1,1,2 Tetrachloroethane		ND	ND								
1,1,1-Trichloroethane		ND	ND								
1,1,2,2 Tetrachloroethane		ND	ND								
1,1,2-Trichloroethane		ND	ND								
1,1 Dichloroethane		ND	ND								
1,1 Dichloroethene		ND	ND								
1,2,4 Trichlorobenzene		ND	ND								
1,2,4 Trimethylbenzene		3.62	17.8	2.40	11.80	0.24	1.18	0.57	2.80	ND	ND
1,2 Dibromoethane (EDB)		ND	ND								
1,2 Dichlorobenzene		ND	ND								
1,2 Dichloroethane		ND	ND								
1,2 Dichloropropane		ND	ND								
1,2 Dichlorotetraflouroethane		ND	ND								
1,3,5 Trimethylbenzene		1.09	5.36	0.85	4.18	ND	ND	ND	ND	ND	ND
1,3 Butadiene		ND	ND								
1,3 Dichlorobenzene		ND	ND								
1,4 Dichlorobenzene		ND	ND								
1,4 Dioxane		ND	ND								
2 Hexanone(MBK)		ND	ND								
4 Ethyltoluene		0.83	4.08	0.5	2.46	ND	ND	ND	ND	ND	ND
4 Isopropyltoluene		0.45	2.47	0.32	1.76	0.23	1.26	0.24	1.32	ND	ND
4 Methyl-2-pentanone(MBK)		1.94	7.94	3.76	15.4	ND	ND	ND	ND	ND	ND
Acetone		14.3	33.9	29.7	70.5	12.1	28.7	8.75	20.8	1.9	4.51
Acrylonitrile		ND	ND								
Benzene		2.47	7.88	2.02	6.45	0.33	1.05	ND	ND	0.38	1.21
Benzyl chloride		ND	ND								
Bromodichloromethane		1	6.7	0.42	2.81	ND	ND	ND	ND	ND	ND
Bromoform		ND	ND								
Bromomethane		ND	ND								
Carbon Disulfide		1.33	4.14	0.35	1.09	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride		0.04	0.251	0.05	0.314	0.1	0.629	0.06	0.377	0.09	0.566
Chlorobenzene		ND	ND								

Volatile Organic Compounds (USEPA Method T015) Air February 19, 2013

Compound	URU	VF	P-1	VF	P-2	Indo		Sub		Amb	ient
	(ppbv)	(ppbv)	mg/M ³								
Chloroethane		ND	ND								
Chloroform		1.9	9.27	3.69	18	0.5	2.44	0.57	2.78	ND	ND
Chloromethane		ND	ND	ND	ND	1.07	2.21	ND	ND	0.62	1.28
Cis-1,2 Dichloromethane		24.3	96.3	5.22	20.7	ND	ND	ND	ND	ND	ND
Cis-1,3 Dichloromethane		ND	ND								
Cyclohexane		1.96	6.74	2.09	7.19	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND								
Dichlorodifluoromethane		0.47	2.32	0.45	2.22	0.52	2.57	0.28	1.38	0.51	2.52
Ethanol		8.47	15.9	28.6	53.8	138	260	74.2	140	6.87	12.9
Ethyl Acetate		1	3.6	0.42	1.51	ND	ND	0.39	1.4	ND	ND
Ethylbenzene		1.15	4.99	0.96	4.17	ND	ND	0.37	1.6	ND	ND
Hepatane		3.99	16.3	1.97	8.07	ND	ND	0.74	3.03	ND	ND
Hexachlorobutadiene		ND	ND								
Hexane		6.75	23.8	5.51	19.4	0.58	2.04	2.3	8.1	ND	1.8
Isopropylalcohol		ND	ND	ND	ND	7.87	19.3	4.3	10.6	0.51	1.7
Isopropylbenzene		0.31	1.52	0.27	1.33	ND	ND	ND	ND	0.69	ND
m,p-Xylene		3.44	14.9	2.8	12.2	0.31	1.34	1.03	4.47	ND	1.39
Methyl Ethyl Ketone		3.67	10.8	3.9	11.5	0.39	1.15	0.67	1.97	0.32	ND
Methyl tert-butyl ether (MTBE)		ND	ND	ND	ND	ND	ND	1.34	4.83	ND	ND
Methylene Chloride		0.42	1.46	0.31	1.08	0.45	1.56	ND	ND	ND	1.32
N-Butylbenzene		0.93	5.1	0.48	2.63	ND	ND	ND	ND	0.38	ND
o-Xylene		1.52	6.6	1.24	5.38	ND	ND	0.47	2.04	ND	ND
Propylene		71	122	16.8	28.9	ND	ND	ND	ND	ND	ND
sec-Butylbenzene		0.46	2.52	0.36	1.97	ND	ND	ND	ND	ND	ND
Styrene		0.55	2.34	0.48	2.04	ND	ND	0.55	2.34	ND	ND
Tetrachloroethene		171000	1,160,000	914	6200	0.25	<mark>1.69</mark>	7.02	47.6	0.06	0.407
Tetrahydrofuran		0.51	1.5	0.87	2.56	ND	ND	ND	ND	ND	ND
Toluene		3.19	12	3.81	14.3	0.57	2.15	1.1	4.14	0.69	2.6
Trans-1,2-Dichloroethane		5.79	22.9	1.8	7.13	ND	ND	ND	ND	ND	ND
Trans-1,3 Dichloropropene		ND	ND								
Trichloroethene		112	<mark>601</mark>	45.5	244	ND)	ND ND	0.1	0.537	ND	ND)
Trichlorofluoromethane		0.47	2.64	0.39	2.19	0.25	1.4	ND	ND	0.24	1.35
Trichlorotrifluoroethane		ND	ND								
Vinyl Chloride		ND	ND								

NS=Not Sampled ND=Not Detected URU=Unrestricted Use

CONKLIN SERVICES & CONSTRUCTION INC.

94 Stewart Avenue · Newburgh, NY 12550 (845) 561-1512· Fax (845) 561-1204 www.pumpandtank.com

SOIL BORING LOG

DDOI	ECOT NI	NATE /T	OCAT	ION	DDO IECE MUMBED	DODING	NIIMBED	CHEET 1 OF 1		
PROJE Love C		MIE/L	UCAT.	IUN	PROJECT NUMBER	2-SB-13	G NUMBER	SHEET 1 OF 1		
Love C	icancis				CONTRACTOR Conklin Services & Constructi DRILLER		SUBSURFACE M Direct Push SUBSURFACE E			
					HELPER SM		Earthprobe 200 SURFACE ELEVATION			
					START			ATION		
				T	COMPLETED		LOGGED BY SM			
SAMPLE TYPE	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE RECOVER	SAMPLE DEPTH (ft)	DESCRIPTION OF SUBSI MATERIALS and COND		FIELD INSTRUMENT READINGS (ppm)	BORE HOLE/WELL CONSTRUCTION (not to scale)		
				0	Asphalt					
				.5	D 1 1/2					
				1.0 1.5	Brown sandy silt Trace gravel					
				2						
				2.5	Tan coarse Sand med		0.0			
				3.5	Gravel		0.0			
				4						
				4.5	tan					
				5	Gravel sand					
				5.5 6	Moist					
				6.5	1120100		0.0			
				7 7.5						
				8						
				8.5	sand					
				9.5						
				10			0.0			
				10.55	Coarse sand					
				11 11.5	Brown					
				12	Fine Gravel					
				12.5 13	Wet Gravel		0.0			
				13.5	THE GIAVEI		0.0			
				14						
				14.5 15						
				15.55						
				16						
				16.5 17						
				17.5						
				18						
				18.5 19						
				19.5						
				20						

CONKLIN SERVICES & CONSTRUCTION INC.

94 Stewart Avenue · Newburgh, NY 12550 (845) 561-1512· Fax (845) 561-1204 www.pumpandtank.com

SOIL BORING LOG

PROJI Love C	ECT NA	ME/L	OCAT	ION	PROJECT NUMBER	BORIN 0 1-sb-13	G NUMBER	SHEET 1 OF 1		
hove o					CONTRACTOR Conklin Services & Construct DRILLER HELPER SM START 10:20 COMPLETED	•	SUBSURFACE METHOD Direct Push SUBSURFACE EQUIPMENT Earthprobe 200 SURFACE ELEVATION LOGGED BY SM			
SAMPLE TYPE	SAMPLE NUMBER	SAMPLE INTERVAL	SAMPLE RECOVER	SAMPLE DEPTH (ft)	DESCRIPTION OF SUBS MATERIALS and CON		FIELD INSTRUMENT READINGS (ppm)	BORE HOLE/WELL CONSTRUCTION (not to scale)		
				0	Asphalt					
				.5	Brown Clay					
				1.0	Fine gravel		0.0			
				1.5						
				2	Sand					
				2.5						
				3	Large Gravel					
				3.5						
				4						
				4.5	Como		0.0			
				5 5.5	Same		0.0			
				6						
				6.5						
				7						
				7.5	Brown		0.0			
				8			0.0			
				8.5						
				9						
				9.5	Brown damp					
			-	10	Course sand					
				10.55	Gravel					
				11	-					
				11.5	Same wett gravel					
				12						
—				12.5						
\vdash				13						
				13.5						
				14.5			0.0			
				15			0.0			
				15.55						
				16	Brown coarse					
				16.5						
				17						
			-	17.5						
				18						
				18.5						
				19						
				19.5						
				20						

Thursday, February 28, 2013

Attn: Mr Sean Morgan Conklin Services & Construction 94 Stewart Avenue Newburgh, NY 12550

Project ID: LOVE CLEANERS Sample ID#s: BD38590 - BD38591

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007 NH Lab Registration #213693-A,B RI Lab Registration #63

VT Lab Registration #VT11301

PA Lab Registration #68-03530

NJ Lab Registration #CT-003

NY Lab Registration #11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

February 28, 2013

SDG I.D.: GBD38590

BD38590 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

BD38591 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 28, 2013

FOR: Attn: Mr Sean Morgan

Conklin Services & Construction

94 Stewart Avenue Newburgh, NY 12550

Sample InformationCustody InformationDateTimeMatrix:SOLIDCollected by:02/17/130:00Location Code:CONKLINReceived by:SW02/21/1316:36

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GBD38590

Phoenix ID: BD38590

Project ID: LOVE CLEANERS

269906

Client ID: 1-SB-13

P.O.#:

RL/ Parameter Result **PQL** Units Date/Time Βv Reference Percent Solid 02/21/13 E160.3 96 % JL Volatiles 1,1,1,2-Tetrachloroethane ND 5.2 SW8260 02/23/13 H/J ug/Kg 1.1.1-Trichloroethane ND 5.2 ug/Kg 02/23/13 SW8260 1,1,2,2-Tetrachloroethane ND 5.2 ug/Kg 02/23/13 SW8260 02/23/13 H/J SW8260 1,1,2-Trichloroethane ND 5.2 ug/Kg ND 5.2 02/23/13 H/J SW8260 1.1-Dichloroethane ug/Kg ND 5.2 02/23/13 H/J SW8260 1,1-Dichloroethene ug/Kg 1,1-Dichloropropene ND 5.2 ug/Kg 02/23/13 H/J SW8260 SW8260 1,2,3-Trichlorobenzene ND 5.2 02/23/13 H/J ug/Kg 1,2,3-Trichloropropane ND 5.2 ug/Kg 02/23/13 H/J SW8260 ND 02/23/13 H/J SW8260 1,2,4-Trichlorobenzene 5.2 ug/Kg ND 5.2 02/23/13 H/J SW8260 1,2,4-Trimethylbenzene ug/Kg ND 5.2 02/23/13 H/J SW8260 1,2-Dibromo-3-chloropropane ug/Kg ND 5.2 02/23/13 H/J SW8260 1P ug/Kg 1,2-Dibromoethane ND 5.2 02/23/13 H/J SW8260 1,2-Dichlorobenzene ug/Kg ND 02/23/13 H/J SW8260 1,2-Dichloroethane 5.2 ug/Kg 1,2-Dichloropropane ND 5.2 ug/Kg 02/23/13 H/J SW8260 ND 5.2 H/J SW8260 1,3,5-Trimethylbenzene ug/Kg 02/23/13 ND H/J SW8260 1,3-Dichlorobenzene 5.2 02/23/13 ug/Kg 1,3-Dichloropropane ND 5.2 ug/Kg 02/23/13 H/J SW8260 ND 5.2 02/23/13 H/J SW8260 1,4-Dichlorobenzene ug/Kg ND 5.2 SW8260 2,2-Dichloropropane ug/Kg 02/23/13 H/J 2-Chlorotoluene ND 5.2 ug/Kg 02/23/13 H/J SW8260 ND 26 H/J SW8260 2-Hexanone ug/Kg 02/23/13 2-Isopropyltoluene ND 5.2 ug/Kg 02/23/13 H/J SW8260 4-Chlorotoluene ND 5.2 ug/Kg 02/23/13 H/.I SW8260 SW8260 4-Methyl-2-pentanone ND 26 ug/Kg 02/23/13 H/J

Page 1 of 6 Ver 1

Project ID: LOVE CLEANERS

Client ID: 1-SB-13

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference
Acetone	ND	26	ug/Kg	02/23/13	H/J	SW8260
Acrylonitrile	ND	10	ug/Kg	02/23/13	H/J	SW8260
Benzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromobenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromochloromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromodichloromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromoform	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromomethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Carbon Disulfide	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Carbon tetrachloride	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Chlorobenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Chloroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Chloroform	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Chloromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
cis-1,2-Dichloroethene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
cis-1,3-Dichloropropene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260 ¹
Dibromochloromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Dibromomethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Dichlorodifluoromethane	ND	5.2	ug/Kg ug/Kg	02/23/13	H/J	SW8260
						SW8260
Ethylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	
Hexachlorobutadiene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Isopropylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
m&p-Xylene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Methyl Ethyl Ketone	ND	26	ug/Kg	02/23/13	H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	02/23/13	H/J	SW8260
Methylene chloride	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Naphthalene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
n-Butylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
n-Propylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
o-Xylene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
p-Isopropyltoluene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
sec-Butylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Styrene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
tert-Butylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Tetrachloroethene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	02/23/13	H/J	SW8260 ¹
Toluene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Total Xylenes	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
trans-1,2-Dichloroethene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
trans-1,3-Dichloropropene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	02/23/13	H/J	SW8260
Trichloroethene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Trichlorofluoromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Trichlorotrifluoroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Vinyl chloride	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
QA/QC Surrogates			-			
% 1,2-dichlorobenzene-d4	97		%	02/23/13	H/J	70 - 130 %
% Bromofluorobenzene	93		%	02/23/13	H/J	70 - 130 %
% Dibromofluoromethane	110		%	02/23/13	H/J	70 - 130 %
% Toluene-d8	95		%	02/23/13	H/J	70 - 130 %

Page 2 of 6 Ver 1

Phoenix I.D.: BD38590

Project ID: LOVE CLEANERS Phoenix I.D.: BD38590

Client ID: 1-SB-13

RL/

Parameter Result PQL Units Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

1P = This parameter is pending certification by NY NELAC for this matrix.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 28, 2013

Reviewed and Released by: Rashmi Makol, Project Manager

Page 3 of 6 Ver 1

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 28, 2013

FOR: Attn: Mr Sean Morgan

Conklin Services & Construction

94 Stewart Avenue Newburgh, NY 12550

Sample Informat	<u>ion</u>	Custody Informa	<u>tion</u>	<u>Date</u>	<u>Time</u>
Matrix:	SOLID	Collected by:		02/17/13	0:00
Location Code:	CONKLIN	Received by:	SW	02/21/13	16:36

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GBD38590

Phoenix ID: BD38591

Project ID: LOVE CLEANERS

269906

Client ID: 2-SB-13

P.O.#:

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Percent Solid	97		%	02/21/13	JL	E160.3
<u>Volatiles</u>						
1,1,1,2-Tetrachloroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,1,1-Trichloroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,1,2-Trichloroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,1-Dichloroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,1-Dichloroethene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,1-Dichloropropene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,2,3-Trichlorobenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,2,3-Trichloropropane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,2,4-Trichlorobenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,2,4-Trimethylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,2-Dibromoethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260 1P
1,2-Dichlorobenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,2-Dichloroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,2-Dichloropropane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,3,5-Trimethylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,3-Dichlorobenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,3-Dichloropropane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
1,4-Dichlorobenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
2,2-Dichloropropane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
2-Chlorotoluene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
2-Hexanone	ND	26	ug/Kg	02/23/13	H/J	SW8260
2-Isopropyltoluene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260 ¹
4-Chlorotoluene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
4-Methyl-2-pentanone	ND	26	ug/Kg	02/23/13	H/J	SW8260

Page 4 of 6 Ver 1

Client ID: 2-SB-13

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference
Acetone	ND	26	ug/Kg	02/23/13	H/J	SW8260
Acrylonitrile	ND	10	ug/Kg	02/23/13	H/J	SW8260
Benzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromobenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromochloromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromodichloromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromoform	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Bromomethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Carbon Disulfide	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Carbon tetrachloride	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Chlorobenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Chloroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Chloroform	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Chloromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
cis-1,2-Dichloroethene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
cis-1,3-Dichloropropene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260 1
Dibromochloromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Dibromomethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Dichlorodifluoromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Ethylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Hexachlorobutadiene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Isopropylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
m&p-Xylene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Methyl Ethyl Ketone	ND	26	ug/Kg	02/23/13	H/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	02/23/13	H/J	SW8260
Methylene chloride	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Naphthalene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
n-Butylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
n-Propylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
o-Xylene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
p-Isopropyltoluene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
sec-Butylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Styrene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
tert-Butylbenzene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Tetrachloroethene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	02/23/13	H/J	SW8260 1
Toluene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Total Xylenes	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
trans-1,2-Dichloroethene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
trans-1,3-Dichloropropene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	02/23/13	H/J	SW8260
Trichloroethene	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Trichlorofluoromethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Trichlorotrifluoroethane	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
Vinyl chloride	ND	5.2	ug/Kg	02/23/13	H/J	SW8260
QA/QC Surrogates		V. <u> </u>	~»··\A	32/20/10	, 3	2220
% 1,2-dichlorobenzene-d4	100		%	02/23/13	H/J	70 - 130 %
% Bromofluorobenzene	95		%	02/23/13	H/J	70 - 130 % 70 - 130 %
% Dibromofluoromethane	101		%	02/23/13	H/J	70 - 130 %
% Toluene-d8	96		%	02/23/13	H/J	70 - 130 %

Page 5 of 6 Ver 1

Phoenix I.D.: BD38591

Project ID: LOVE CLEANERS Phoenix I.D.: BD38591

Client ID: 2-SB-13

RL/

Parameter Result PQL Units Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

1P = This parameter is pending certification by NY NELAC for this matrix.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

This sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 28, 2013

Reviewed and Released by: Rashmi Makol, Project Manager

Page 6 of 6 Ver 1

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

QA/QC Data

February 28, 2013		QA/QC Dat		SDG I.D.: GBD38590						
Parameter	Blank	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 221980, QC San	nple No: BD38590 (B	D38590, BD38591)								
Volatiles - Solid		,								
1,1,1,2-Tetrachloroethane	ND	105	102	2.9	102	99	3.0	70 - 130	30	
1,1,1-Trichloroethane	ND	106	105	0.9	105	107	1.9	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	86	86	0.0	82	82	0.0	70 - 130	30	
1,1,2-Trichloroethane	ND	103	109	5.7	100	103	3.0	70 - 130	30	
1,1-Dichloroethane	ND	88	87	1.1	87	97	10.9	70 - 130	30	
1,1-Dichloroethene	ND	97	97	0.0	100	101	1.0	70 - 130	30	
1,1-Dichloropropene	ND	93	96	3.2	92	95	3.2	70 - 130	30	
1,2,3-Trichlorobenzene	ND	86	93	7.8	83	90	8.1	70 - 130	30	
1,2,3-Trichloropropane	ND	86	88	2.3	89	94	5.5	70 - 130	30	
1,2,4-Trichlorobenzene	ND	81	87	7.1	78	81	3.8	70 - 130	30	
1,2,4-Trimethylbenzene	ND	90	93	3.3	83	84	1.2	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	94	88	6.6	91	96	5.3	70 - 130	30	
1,2-Dibromoethane	ND	100	108	7.7	99	106	6.8	70 - 130	30	
1,2-Dichlorobenzene	ND	92	97	5.3	87	92	5.6	70 - 130	30	
1,2-Dichloroethane	ND	106	107	0.9	107	108	0.9	70 - 130	30	
1,2-Dichloropropane	ND	94	98	4.2	92	97	5.3	70 - 130	30	
1,3,5-Trimethylbenzene	ND	89	94	5.5	85	86	1.2	70 - 130	30	
1,3-Dichlorobenzene	ND	88	95	7.7	82	86	4.8	70 - 130	30	
1,3-Dichloropropane	ND	96	93	3.2	95	91	4.3	70 - 130	30	
1,4-Dichlorobenzene	ND	87	94	7.7	82	85	3.6	70 - 130	30	
2,2-Dichloropropane	ND	100	97	3.0	96	95	1.0	70 - 130	30	
2-Chlorotoluene	ND	88	93	5.5	85	87	2.3	70 - 130	30	
2-Hexanone	ND	74	75	1.3	76	72	5.4	70 - 130	30	
2-Isopropyltoluene	ND	88	91	3.4	86	88	2.3	70 - 130	30	
4-Chlorotoluene	ND	84	91	8.0	81	83	2.4	70 - 130	30	
4-Methyl-2-pentanone	ND	91	98	7.4	94	97	3.1	70 - 130	30	
Acetone	ND	71	69	2.9	74	69	7.0	70 - 130	30	I,m
Acrylonitrile	ND	84	90	6.9	87	99	12.9	70 - 130	30	
Benzene	ND	93	94	1.1	93	94	1.1	70 - 130	30	
Bromobenzene	ND	97	99	2.0	91	93	2.2	70 - 130	30	
Bromochloromethane	ND	100	102	2.0	103	105	1.9	70 - 130	30	
Bromodichloromethane	ND	108	109	0.9	101	108	6.7	70 - 130	30	
Bromoform	ND	109	112	2.7	101	102	1.0	70 - 130	30	
Bromomethane	ND	103	88	15.7	99	97	2.0	70 - 130	30	
Carbon Disulfide	ND	88	89	1.1	95	97	2.1	70 - 130	30	
Carbon tetrachloride	ND	106	110	3.7	102	106	3.8	70 - 130	30	
Chlorobenzene	ND	94	97	3.1	92	92	0.0	70 - 130	30	
Chloroethane	ND	99	99	0.0	98	100	2.0	70 - 130	30	
Chloroform	ND	106	102	3.8	103	104	1.0	70 - 130	30	
Chloromethane	ND	83	83	0.0	83	87	4.7	70 - 130	30	
cis-1,2-Dichloroethene	ND	102	95	7.1	100	100	0.0	70 - 130	30	

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
cis-1,3-Dichloropropene	ND	94	97	3.1	92	95	3.2	70 - 130	30	
Dibromochloromethane	ND	108	103	4.7	101	99	2.0	70 - 130	30	
Dibromomethane	ND	101	106	4.8	99	104	4.9	70 - 130	30	
Dichlorodifluoromethane	ND	89	101	12.6	87	90	3.4	70 - 130	30	
Ethylbenzene	ND	90	94	4.3	90	91	1.1	70 - 130	30	
Hexachlorobutadiene	ND	86	88	2.3	87	93	6.7	70 - 130	30	
Isopropylbenzene	ND	90	93	3.3	85	86	1.2	70 - 130	30	
m&p-Xylene	ND	87	95	8.8	87	88	1.1	70 - 130	30	
Methyl ethyl ketone	ND	67	66	1.5	76	71	6.8	70 - 130	30	1
Methyl t-butyl ether (MTBE)	ND	98	97	1.0	101	100	1.0	70 - 130	30	
Methylene chloride	ND	93	96	3.2	95	96	1.0	70 - 130	30	
Naphthalene	ND	93	94	1.1	90	94	4.3	70 - 130	30	
n-Butylbenzene	ND	81	83	2.4	78	78	0.0	70 - 130	30	
n-Propylbenzene	ND	89	95	6.5	84	85	1.2	70 - 130	30	
o-Xylene	ND	95	100	5.1	90	90	0.0	70 - 130	30	
p-Isopropyltoluene	ND	86	91	5.6	81	84	3.6	70 - 130	30	
sec-Butylbenzene	ND	86	91	5.6	83	86	3.6	70 - 130	30	
Styrene	ND	90	98	8.5	88	92	4.4	70 - 130	30	
tert-Butylbenzene	ND	93	97	4.2	88	91	3.4	70 - 130	30	
Tetrachloroethene	ND	93	94	1.1	91	89	2.2	70 - 130	30	
Tetrahydrofuran (THF)	ND	93	97	4.2	96	100	4.1	70 - 130	30	
Toluene	ND	93	102	9.2	92	97	5.3	70 - 130	30	
trans-1,2-Dichloroethene	ND	100	98	2.0	101	99	2.0	70 - 130	30	
trans-1,3-Dichloropropene	ND	101	105	3.9	98	101	3.0	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	91	85	6.8	84	79	6.1	70 - 130	30	
Trichloroethene	ND	103	111	7.5	101	105	3.9	70 - 130	30	
Trichlorofluoromethane	ND	107	108	0.9	106	108	1.9	70 - 130	30	
Trichlorotrifluoroethane	ND	99	101	2.0	105	102	2.9	70 - 130	30	
Vinyl chloride	ND	90	94	4.3	89	93	4.4	70 - 130	30	
% 1,2-dichlorobenzene-d4	98	102	100	2.0	99	102	3.0	70 - 130	30	
% Bromofluorobenzene	95	101	102	1.0	101	101	0.0	70 - 130	30	
% Dibromofluoromethane	101	106	99	6.8	107	106	0.9	70 - 130	30	
% Toluene-d8	97	99	104	4.9	98	103	5.0	70 - 130	30	
Comment:										

A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 40-160%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

February 28, 2013

I = This parameter is outside laboratory lcs/lcsd specified recovery limits.

m = This parameter is outside laboratory ms/msd specified recovery limits.

Thursday, February 28, 2013 Requested Criteria: 375

Sample Criteria Exceedences Report GBD38590 - CONKLIN

Page 1 of 1

State: NY

RLAnalysis SampNo Acode Phoenix Analyte Criteria Result RL Criteria Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

February 28, 2013

SDG I.D.: GBD38590

The samples in this delivery group were received at 4° C. (Note acceptance criteria is above freezing up to 6° C)

			<u> </u>	NY/	NJ CHA	AIN	OF C	UST	OD.	Y RE	ECO	RD	([0	u)(C	V+J	ρ				Т	emp		Р	g /	of	7
PHC)FMX			507.5			50.5						1	ιı	Data De	livery	<u>:</u>									7
		L SIGN			st Middle Tu nail: info@p	•		om	_{Ј, I} иа Fax (ncnes 860) 6	ter, C i 45-08	i ∙060 23	40		Fa	x #:										-
Environme	ntal Laborat	ories, in	<i>ic.</i>		Client	t Seı	rvices	(860)	645	5-872	6				15 e	nail:	5 €	lan	e	<u>C</u>	<u>:~K</u>	110	- 50	enci	ce	
Customer:	C5°C						Project	::		00	c c	10	ent	<u>ラ</u>				_	Pro	ject F	P.O:	2	60	190	6	
Address: 94 Sterat AM Newbush NT				_	Report	to:	5	Car	10	C	ant	K/11	15e	~11	C 63.	Car	Pho	ne #	ŧ:							
	Newso	44 N	7			-	Invoice	to:		25	<u>. </u>							-	Fax	:#:						
Sampler's Signature	Client Sample - Ir	nformation - I	Identifica	tion _ Date:			Analysis Reques								$\overline{//}$	//				dieutois			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Stril Stril
Matrix Code: DW=drinking water GW=groundwater	WW =wastewater SL =sludge	S=soil/solid A=air	O=oil X=othe	r					//	//	//			//				Moito Solico	rdi S			No ori				jari otte
Phoenix Sample #	Customer S Identifica		Sample Matrix	Date Sampled	Time Sampled		/	//	/	//		/	//	//						Triber of the second	No. St. St. St. St. St. St. St. St. St. St	No.			10 A. S.	Sein Botte
38590	1-515-13	7	5	2/17		X											Î	1								
38591	2-53-1	3	S	2/17		人		_									١									
						_			_		<u> </u>							<u> </u> `						Ш		
				-		<u> </u>												ļ								
						╂			_	ļ	ļ	_				ļ	ļ	<u> </u>	i e							
						-		-		ļ		<u> </u>				4		ļ	ļ							
			<u></u>						-		ļ				-	_	-					\sqcup				
						 	-		-	+	<u> </u>		<u> </u>	<u>. </u>		_										
						ļ —				-	 	ļ			$-\parallel$	-	-				\vdash	$\vdash \vdash$				
									-						-	_	-			.						
						╂—		-			<u> </u>				\dashv		-	<u> </u>	-		\vdash	$\vdash\vdash$				
Relinquished by:		Accepted	i by:∬		<u>Date</u>			Time:			around		NJ.	es. Cri	toria		NY	<u>l</u> rogs	· CA (<u> </u>			Form Phoen		d Dani	
		1000	20	`	7.9			19:0		┥╡	Day* Days	*	\square	lon-Re	s. Criter			CP-51	Soil			□Te	Excel		тер	Jit
				21/13 16		1636		3 Days* 5 Days 10 Days		s* Impac Clean			ct to GW Soil Let nup Criteria			NY375 Unrestricted Soil			ed	☐ PDF ☐ GIS/Key						
Comments, Special	Requirements or	Regulations:	:							10 Days GW			W Cri	eria			NY375 Residential				EQuIS NJ Hazsite EDD					
		_								* SURCHARGE APPLIES					□N			Soil NY375 Restricted Non-Residential Soil				□	NY EZ Other	Z EDD		")
										Sta	ıte wh	iere s	samp	les we	ere col	ected	l:		Ν	4	_		NJ Re NY En Other	educed hance		v. * SP B) *

Thursday, February 28, 2013

Attn: Mr Sean Morgan Conklin Services & Construction 94 Stewart Avenue Newburgh, NY 12550

Project ID: LOVE CLEANERS
Sample ID#s: BD38581 - BD38585

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Time

14:00

16:36

Analysis Report

February 28, 2013

FOR: Attn: Mr Sean Morgan

Conklin Services & Construction

94 Stewart Avenue Newburgh, NY 12550

Sample Information

Matrix: **AIR**

Location Code: **CONKLIN** Rush Request: Standard

P.O.#: 269907

Custody Information Collected by: SM

Received by: SW Analyzed by:

02/19/13 02/21/13

Date

see "By" below

<u>-aboratory Data</u>

SDG ID: GBD38581

Phoenix ID: BD38581

Project ID: **LOVE CLEANERS**

Client ID: UP-1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trimethylbenzene	3.62	0.204	17.8	1.00	02/22/13	KCA	TO15	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,2-dichloropropane	ND	0.216	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/22/13	KCA	TO15	
1,3,5-Trimethylbenzene	1.09	0.204	5.36	1.00	02/22/13	KCA	TO15	
1,3-Butadiene	ND	0.452	ND	1.00	02/22/13	KCA	TO15	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dioxane	ND	0.278	ND	1.00	02/22/13	KCA	TO15	
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/22/13	KCA	TO15	1
4-Ethyltoluene	0.83	0.204	4.08	1.00	02/22/13	KCA	TO15	1
4-Isopropyltoluene	0.45	0.182	2.47	1.00	02/22/13	KCA	TO15	1
4-Methyl-2-pentanone(MIBK)	1.94	0.244	7.94	1.00	02/22/13	KCA	TO15	
Acetone	14.3	0.421	33.9	1.00	02/22/13	KCA	TO15	
Acrylonitrile	ND	0.461	ND	1.00	02/22/13	KCA	TO15	
Benzene	2.47	0.313	7.88	1.00	02/22/13	KCA	TO15	
Benzyl chloride	ND	0.193	ND	1.00	02/22/13	KCA	TO15	
Bromodichloromethane	1	0.149	6.70	1.00	02/22/13	KCA	TO15	

Page 1 of 15 Ver 1 Client ID: UP-1

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference	
Bromoform	ND	0.097	ND	1.00	02/22/13	KCA	TO15	
Bromomethane	ND	0.258	ND	1.00	02/22/13	KCA	TO15	
Carbon Disulfide	1.33	0.321	4.14	1.00	02/22/13	KCA	TO15	
Carbon Tetrachloride	0.04	0.040	0.251	0.25	02/22/13	KCA	TO15	
Chlorobenzene	ND	0.217	ND	1.00	02/22/13	KCA	TO15	
Chloroethane	ND	0.379	ND	1.00	02/22/13	KCA	TO15	
Chloroform	1.9	0.205	9.27	1.00	02/22/13	KCA	TO15	
Chloromethane	ND	0.484	ND	1.00	02/22/13	KCA	TO15	
Cis-1,2-Dichloroethene	24.3	0.252	96.3	1.00	02/22/13	KCA	TO15	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13	KCA	TO15	1
Cyclohexane	1.96	0.291	6.74	1.00	02/22/13	KCA	TO15	
Dibromochloromethane	ND	0.117	ND	1.00	02/22/13	KCA	TO15	
Dichlorodifluoromethane	0.47	0.202	2.32	1.00	02/22/13	KCA	TO15	
Ethanol	8.47	0.531	15.9	1.00	02/22/13	KCA	TO15	1
Ethyl acetate	1	0.278	3.60	1.00	02/22/13	KCA	TO15	1
Ethylbenzene	1.15	0.230	4.99	1.00	02/22/13	KCA	TO15	
Heptane	3.99	0.244	16.3	1.00	02/22/13	KCA	TO15	
Hexachlorobutadiene	ND	0.094	ND	1.00	02/22/13	KCA	TO15	
Hexane	6.75	0.284	23.8	1.00	02/22/13	KCA	TO15	
Isopropylalcohol	ND	0.407	ND	1.00	02/22/13	KCA	TO15	
Isopropylbenzene	0.31	0.204	1.52	1.00	02/22/13	KCA	TO15	
m,p-Xylene	3.44	0.230	14.9	1.00	02/22/13	KCA	TO15	
Methyl Ethyl Ketone	3.67	0.339	10.8	1.00	02/22/13	KCA	TO15	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	02/22/13	KCA	TO15	
Methylene Chloride	0.42	0.288	1.46	1.00	02/22/13	KCA	TO15	
n-Butylbenzene	0.93	0.182	5.10	1.00	02/22/13	KCA	TO15	1
o-Xylene	1.52	0.230	6.60	1.00	02/22/13	KCA	TO15	
Propylene	71	0.581	122	1.00	02/22/13	KCA	TO15	1
sec-Butylbenzene	0.46	0.182	2.52	1.00	02/22/13	KCA	TO15	1
Styrene	0.55	0.235	2.34	1.00	02/22/13	KCA	TO15	
Tetrachloroethene	171000	0.037	1160000	0.25	02/22/13	KCA	TO15	
Tetrahydrofuran	0.51	0.339	1.50	1.00	02/22/13		TO15	1
Toluene	3.19	0.266	12.0	1.00	02/22/13	KCA	TO15	
Trans-1,2-Dichloroethene	5.79	0.252	22.9	1.00	02/22/13		TO15	
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13	KCA	TO15	
Trichloroethene	<mark>112</mark>	0.047	601	0.25	02/22/13	KCA	TO15	
Trichlorofluoromethane	0.47	0.178	2.64	1.00	02/22/13	KCA	TO15	
Trichlorotrifluoroethane	ND	0.130	ND	1.00	02/22/13		TO15	
Vinyl Chloride	ND	0.098	ND	0.25	02/22/13	KCA	TO15	
QA/QC Surrogates								
% Bromofluorobenzene	112	%	112	%	02/22/13	KCA	TO15	

Page 2 of 15 Ver 1

Phoenix I.D.: BD38581

Project ID: LOVE CLEANERS Phoenix I.D.: BD38581

Client ID: UP-1

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 28, 2013

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 3 of 15 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 28, 2013

FOR: Attn: Mr Sean Morgan

Conklin Services & Construction

94 Stewart Avenue Newburgh, NY 12550

Sample Information **Custody Information** Date Time Matrix: AIR Collected by: SM 02/19/13 13:54 Received by: Location Code: **CONKLIN** SW 02/21/13 16:36

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GBD38581

Phoenix ID: BD38582

Project ID: LOVE CLEANERS

269907

Client ID: SUB SLAB

P.O.#:

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trimethylbenzene	0.57	0.204	2.80	1.00	02/22/13	KCA	TO15	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,2-dichloropropane	ND	0.216	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/22/13	KCA	TO15	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	02/22/13	KCA	TO15	
1,3-Butadiene	ND	0.452	ND	1.00	02/22/13	KCA	TO15	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dioxane	ND	0.278	ND	1.00	02/22/13	KCA	TO15	
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/22/13	KCA	TO15	1
4-Ethyltoluene	ND	0.204	ND	1.00	02/22/13	KCA	TO15	1
4-Isopropyltoluene	0.24	0.182	1.32	1.00	02/22/13	KCA	TO15	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	02/22/13	KCA	TO15	
Acetone	8.75	0.421	20.8	1.00	02/22/13	KCA	TO15	
Acrylonitrile	ND	0.461	ND	1.00	02/22/13	KCA	TO15	
Benzene	ND	0.313	ND	1.00	02/22/13	KCA	TO15	
Benzyl chloride	ND	0.193	ND	1.00	02/22/13	KCA	TO15	
Bromodichloromethane	ND	0.149	ND	1.00	02/22/13	KCA	TO15	

Page 4 of 15 Ver 1

Client ID: SUB SLAB

Client ID: SUB SLAB								
Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference	
Bromoform	ND	0.097	ND	1.00	02/22/13	KCA	TO15	
Bromomethane	ND	0.258	ND	1.00	02/22/13	KCA	TO15	
Carbon Disulfide	ND	0.321	ND	1.00	02/22/13	KCA	TO15	
Carbon Tetrachloride	0.06	0.040	0.377	0.25	02/22/13	KCA	TO15	
Chlorobenzene	ND	0.217	ND	1.00	02/22/13	KCA	TO15	
Chloroethane	ND	0.379	ND	1.00	02/22/13	KCA	TO15	
Chloroform	0.57	0.205	2.78	1.00	02/22/13	KCA	TO15	
Chloromethane	ND	0.484	ND	1.00	02/22/13	KCA	TO15	
Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13	KCA	TO15	1
Cyclohexane	ND	0.291	ND	1.00	02/22/13	KCA	TO15	
Dibromochloromethane	ND	0.117	ND	1.00	02/22/13	KCA	TO15	
Dichlorodifluoromethane	0.28	0.202	1.38	1.00	02/22/13	KCA	TO15	
Ethanol	74.2	E 0.531	140	1.00	02/22/13	KCA	TO15	1
Ethyl acetate	0.39	0.278	1.40	1.00	02/22/13	KCA	TO15	1
Ethylbenzene	0.37	0.230	1.60	1.00	02/22/13	KCA	TO15	
Heptane	0.74	0.244	3.03	1.00	02/22/13	KCA	TO15	
Hexachlorobutadiene	ND	0.094	ND	1.00	02/22/13	KCA	TO15	
Hexane	2.3	0.284	8.10	1.00	02/22/13	KCA	TO15	
Isopropylalcohol	4.3	0.407	10.6	1.00	02/22/13	KCA	TO15	
Isopropylbenzene	ND	0.204	ND	1.00	02/22/13	KCA	TO15	
m,p-Xylene	1.03	0.230	4.47	1.00	02/22/13	KCA	TO15	
Methyl Ethyl Ketone	0.67	0.339	1.97	1.00	02/22/13	KCA	TO15	
Methyl tert-butyl ether(MTBE)	1.34	0.278	4.83	1.00	02/22/13	KCA	TO15	
Methylene Chloride	ND	0.288	ND	1.00	02/22/13	KCA	TO15	
n-Butylbenzene	ND	0.182	ND	1.00	02/22/13	KCA	TO15	1
o-Xylene	0.47	0.230	2.04	1.00	02/22/13	KCA	TO15	
Propylene	ND	0.581	ND	1.00	02/22/13	KCA	TO15	1
sec-Butylbenzene	ND	0.182	ND	1.00	02/22/13	KCA	TO15	1
Styrene	0.55	0.235	2.34	1.00	02/22/13	KCA	TO15	
Tetrachloroethene	7.02	0.037	<mark>47.6</mark>	0.25	02/22/13	KCA	TO15	
Tetrahydrofuran	ND	0.339	ND	1.00	02/22/13	KCA	TO15	1
Toluene	1.1	0.266	4.14	1.00	02/22/13	KCA	TO15	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15	
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13	KCA	TO15	
Trichloroethene	0.1	0.047	0.537	0.25	02/22/13	KCA	TO15	
Trichlorofluoromethane	ND	0.178	ND	1.00	02/22/13	KCA	TO15	
Trichlorotrifluoroethane	ND	0.130	ND	1.00	02/22/13	KCA	TO15	
Vinyl Chloride	ND	0.098	ND	0.25	02/22/13	KCA	TO15	
QA/QC Surrogates% Bromofluorobenzene	104	%	104	%	02/22/13	KCA	TO15	

Page 5 of 15 Ver 1

Client ID: SUB SLAB

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 28, 2013

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 6 of 15 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

P.O.#:

February 28, 2013

FOR: Attn: Mr Sean Morgan

Conklin Services & Construction

94 Stewart Avenue Newburgh, NY 12550

Sample Information **Custody Information** Date Time Collected by: Matrix: AIR SM 02/19/13 13:48 Received by: Location Code: **CONKLIN** SW 02/21/13 16:36

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GBD38581 Phoenix ID: BD38583

Project ID: LOVE CLEANERS

Client ID: INDOOR AIR

269907

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference)
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trimethylbenzene	0.24	0.204	1.18	1.00	02/22/13	KCA	TO15	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,2-dichloropropane	ND	0.216	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/22/13	KCA	TO15	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	02/22/13	KCA	TO15	
1,3-Butadiene	ND	0.452	ND	1.00	02/22/13	KCA	TO15	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dioxane	ND	0.278	ND	1.00	02/22/13	KCA	TO15	
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/22/13	KCA	TO15	1
4-Ethyltoluene	ND	0.204	ND	1.00	02/22/13	KCA	TO15	1
4-Isopropyltoluene	0.23	0.182	1.26	1.00	02/22/13	KCA	TO15	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	02/22/13	KCA	TO15	
Acetone	12.1	0.421	28.7	1.00	02/22/13	KCA	TO15	
Acrylonitrile	ND	0.461	ND	1.00	02/22/13	KCA	TO15	
Benzene	0.33	0.313	1.05	1.00	02/22/13	KCA	TO15	
Benzyl chloride	ND	0.193	ND	1.00	02/22/13	KCA	TO15	
Bromodichloromethane	ND	0.149	ND	1.00	02/22/13	KCA	TO15	

Page 7 of 15 Ver 1

% Bromofluorobenzene

107

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference	
Bromoform	ND	0.097	ND	1.00	02/22/13	KCA	TO15	_
Bromomethane	ND	0.258	ND	1.00	02/22/13	KCA	TO15	
Carbon Disulfide	ND	0.321	ND	1.00	02/22/13	KCA	TO15	
Carbon Tetrachloride	0.1	0.040	0.629	0.25	02/22/13	KCA	TO15	
Chlorobenzene	ND	0.217	ND	1.00	02/22/13	KCA	TO15	
Chloroethane	ND	0.379	ND	1.00	02/22/13	KCA	TO15	
Chloroform	0.5	0.205	2.44	1.00	02/22/13	KCA	TO15	
Chloromethane	1.07	0.484	2.21	1.00	02/22/13	KCA	TO15	
Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13	KCA	TO15	1
Cyclohexane	ND	0.291	ND	1.00	02/22/13	KCA	TO15	
Dibromochloromethane	ND	0.117	ND	1.00	02/22/13	KCA	TO15	
Dichlorodifluoromethane	0.52	0.202	2.57	1.00	02/22/13	KCA	TO15	
Ethanol	138	E 0.531	260	1.00	02/22/13	KCA	TO15	1
Ethyl acetate	ND	0.278	ND	1.00	02/22/13	KCA	TO15	1
Ethylbenzene	ND	0.230	ND	1.00	02/22/13	KCA	TO15	
Heptane	ND	0.244	ND	1.00	02/22/13	KCA	TO15	
Hexachlorobutadiene	ND	0.094	ND	1.00	02/22/13	KCA	TO15	
Hexane	0.58	0.284	2.04	1.00	02/22/13	KCA	TO15	
Isopropylalcohol	7.87	0.407	19.3	1.00	02/22/13	KCA	TO15	
Isopropylbenzene	ND	0.204	ND	1.00	02/22/13	KCA	TO15	
m,p-Xylene	0.31	0.230	1.34	1.00	02/22/13	KCA	TO15	
Methyl Ethyl Ketone	0.39	0.339	1.15	1.00	02/22/13	KCA	TO15	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	02/22/13	KCA	TO15	
Methylene Chloride	0.45	0.288	1.56	1.00	02/22/13	KCA	TO15	
n-Butylbenzene	ND	0.182	ND	1.00	02/22/13	KCA	TO15	1
o-Xylene	ND	0.230	ND	1.00	02/22/13	KCA	TO15	
Propylene	ND	0.581	ND	1.00	02/22/13	KCA	TO15	1
sec-Butylbenzene	ND	0.182	ND	1.00	02/22/13	KCA	TO15	1
Styrene	ND	0.235	ND	1.00	02/22/13	KCA	TO15	
Tetrachloroethene	0.25	0.037	1.69	0.25	02/22/13	KCA	TO15	
Tetrahydrofuran	ND	0.339	ND	1.00	02/22/13	KCA	TO15	1
Toluene	0.57	0.266	2.15	1.00	02/22/13	KCA	TO15	
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15	
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13	KCA	TO15	
Trichloroethene	ND	0.047	ND	0.25	02/22/13	KCA	TO15	
Trichlorofluoromethane	0.25	0.178	1.40	1.00	02/22/13	KCA	TO15	
Trichlorotrifluoroethane	ND	0.130	ND	1.00	02/22/13	KCA	TO15	
Vinyl Chloride	ND	0.098	ND	0.25	02/22/13	KCA	TO15	
QA/QC Surrogates								
0/ B // I	407	0.4	407	0.4	00/00/40	1/0 /	TO 45	

107

Page 8 of 15 Ver 1

02/22/13

KCA TO15

Client ID: INDOOR AIR

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected

BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 28, 2013

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 9 of 15 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Time

Analysis Report

February 28, 2013

FOR: Attn: Mr Sean Morgan

Conklin Services & Construction

94 Stewart Avenue Newburgh, NY 12550

Sample Information **Custody Information** Date Matrix: AIR Collected by: SM 02/19/13

14:01 Received by: Location Code: **CONKLIN** SW 02/21/13 16:36

Analyzed by: Rush Request: Standard see "By" below

_aboratory Data SDG ID: GBD38581 Phoenix ID: BD38584

Project ID: **LOVE CLEANERS**

269907

Client ID: UP-2

P.O.#:

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trimethylbenzene	2.4	0.204	11.8	1.00	02/22/13	KCA	TO15	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,2-dichloropropane	ND	0.216	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/22/13	KCA	TO15	
1,3,5-Trimethylbenzene	0.85	0.204	4.18	1.00	02/22/13	KCA	TO15	
1,3-Butadiene	ND	0.452	ND	1.00	02/22/13	KCA	TO15	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dioxane	ND	0.278	ND	1.00	02/22/13	KCA	TO15	
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/22/13	KCA	TO15	1
4-Ethyltoluene	0.5	0.204	2.46	1.00	02/22/13	KCA	TO15	1
4-Isopropyltoluene	0.32	0.182	1.76	1.00	02/22/13	KCA	TO15	1
4-Methyl-2-pentanone(MIBK)	3.76	0.244	15.4	1.00	02/22/13	KCA	TO15	
Acetone	29.7	0.421	70.5	1.00	02/22/13	KCA	TO15	
Acrylonitrile	ND	0.461	ND	1.00	02/22/13	KCA	TO15	
Benzene	2.02	0.313	6.45	1.00	02/22/13	KCA	TO15	
Benzyl chloride	ND	0.193	ND	1.00	02/22/13	KCA	TO15	
Bromodichloromethane	0.42	0.149	2.81	1.00	02/22/13	KCA	TO15	

Page 10 of 15 Ver 1 Client ID: UP-2

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference	
Bromoform	ND	0.097	ND	1.00	02/22/13	KCA	TO15	_
Bromomethane	ND	0.258	ND	1.00	02/22/13	KCA		
Carbon Disulfide	0.35	0.321	1.09	1.00	02/22/13	KCA	TO15	
Carbon Tetrachloride	0.05	0.040	0.314	0.25	02/22/13	KCA	TO15	
Chlorobenzene	ND	0.217	ND	1.00	02/22/13	KCA	TO15	
Chloroethane	ND	0.379	ND	1.00	02/22/13	KCA	TO15	
Chloroform	3.69	0.205	18.0	1.00	02/22/13	KCA	TO15	
Chloromethane	ND	0.484	ND	1.00	02/22/13	KCA	TO15	
Cis-1,2-Dichloroethene	5.22	0.252	20.7	1.00	02/22/13	KCA	TO15	
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13	KCA	TO15	1
Cyclohexane	2.09	0.291	7.19	1.00	02/22/13	KCA	TO15	
Dibromochloromethane	ND	0.117	ND	1.00	02/22/13	KCA	TO15	
Dichlorodifluoromethane	0.45	0.202	2.22	1.00	02/22/13	KCA	TO15	
Ethanol	28.6	0.531	53.8	1.00	02/22/13	KCA	TO15	1
Ethyl acetate	0.42	0.278	1.51	1.00	02/22/13	KCA	TO15	1
Ethylbenzene	0.96	0.230	4.17	1.00	02/22/13	KCA	TO15	
Heptane	1.97	0.244	8.07	1.00	02/22/13	KCA	TO15	
Hexachlorobutadiene	ND	0.094	ND	1.00	02/22/13	KCA	TO15	
Hexane	5.51	0.284	19.4	1.00	02/22/13	KCA	TO15	
Isopropylalcohol	ND	0.407	ND	1.00	02/22/13	KCA	TO15	
Isopropylbenzene	0.27	0.204	1.33	1.00	02/22/13	KCA	TO15	
m,p-Xylene	2.8	0.230	12.2	1.00	02/22/13	KCA	TO15	
Methyl Ethyl Ketone	3.9	0.339	11.5	1.00	02/22/13	KCA	TO15	
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	02/22/13	KCA	TO15	
Methylene Chloride	0.31	0.288	1.08	1.00	02/22/13	KCA	TO15	
n-Butylbenzene	0.48	0.182	2.63	1.00	02/22/13	KCA	TO15	1
o-Xylene	1.24	0.230	5.38	1.00	02/22/13	KCA	TO15	
Propylene	16.8	0.581	28.9	1.00	02/22/13	KCA	TO15	1
sec-Butylbenzene	0.36	0.182	1.97	1.00	02/22/13	KCA	TO15	1
Styrene	0.48	0.235	2.04	1.00	02/22/13	KCA	TO15	
Tetrachloroethene	914	0.037	6200	<u>0.25</u>	02/22/13	KCA	TO15	
Tetrahydrofuran	0.87	0.339	2.56	1.00	02/22/13	KCA	TO15	1
Toluene	3.81	0.266	14.3	1.00	02/22/13		TO15	
Trans-1,2-Dichloroethene	1.8	0.252	7.13	1.00	02/22/13		TO15	
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13		TO15	
Trichloroethene	45.5	0.047	244	0.25	02/22/13	KCA		
Trichlorofluoromethane	0.39	0.178	2.19	1.00	02/22/13		TO15	
Trichlorotrifluoroethane	ND	0.130	ND	1.00	02/22/13		TO15	
Vinyl Chloride	ND	0.098	ND	0.25	02/22/13	KCA	TO15	
QA/QC Surrogates								
% Bromofluorobenzene	106	%	106	%	02/22/13	KCA	TO15	

Page 11 of 15 Ver 1

Client ID: UP-2

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 28, 2013

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 12 of 15 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

February 28, 2013

FOR: Attn: Mr Sean Morgan

Conklin Services & Construction

94 Stewart Avenue Newburgh, NY 12550

Sample Information **Custody Information** Date Time Matrix: AIR Collected by: SM 02/19/13 14:07 Received by: Location Code: **CONKLIN** SW 02/21/13 16:36

Analyzed by: see "By" below

Laboratory Data

SDG ID: GBD38581

Phoenix ID: BD38585

Project ID: LOVE CLEANERS

Standard

269907

Client ID: AMBIENT

Rush Request:

P.O.#:

Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference	
Volatiles (TO15)								
1,1,1,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	1
1,1,1-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1,2,2-Tetrachloroethane	ND	0.146	ND	1.00	02/22/13	KCA	TO15	
1,1,2-Trichloroethane	ND	0.183	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,1-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trichlorobenzene	ND	0.135	ND	1.00	02/22/13	KCA	TO15	
1,2,4-Trimethylbenzene	ND	0.204	ND	1.00	02/22/13	KCA	TO15	
1,2-Dibromoethane(EDB)	ND	0.130	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichloroethane	ND	0.247	ND	1.00	02/22/13	KCA	TO15	
1,2-dichloropropane	ND	0.216	ND	1.00	02/22/13	KCA	TO15	
1,2-Dichlorotetrafluoroethane	ND	0.143	ND	1.00	02/22/13	KCA	TO15	
1,3,5-Trimethylbenzene	ND	0.204	ND	1.00	02/22/13	KCA	TO15	
1,3-Butadiene	ND	0.452	ND	1.00	02/22/13	KCA	TO15	
1,3-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dichlorobenzene	ND	0.166	ND	1.00	02/22/13	KCA	TO15	
1,4-Dioxane	ND	0.278	ND	1.00	02/22/13	KCA	TO15	
2-Hexanone(MBK)	ND	0.244	ND	1.00	02/22/13	KCA	TO15	1
4-Ethyltoluene	ND	0.204	ND	1.00	02/22/13	KCA	TO15	1
4-Isopropyltoluene	ND	0.182	ND	1.00	02/22/13	KCA	TO15	1
4-Methyl-2-pentanone(MIBK)	ND	0.244	ND	1.00	02/22/13	KCA	TO15	
Acetone	1.9	0.421	4.51	1.00	02/22/13	KCA	TO15	
Acrylonitrile	ND	0.461	ND	1.00	02/22/13	KCA	TO15	
Benzene	0.38	0.313	1.21	1.00	02/22/13	KCA	TO15	
Benzyl chloride	ND	0.193	ND	1.00	02/22/13	KCA	TO15	
Bromodichloromethane	ND	0.149	ND	1.00	02/22/13	KCA	TO15	

Page 13 of 15 Ver 1

Client ID: AMBIENT

Parameter Parameter	ppbv Result	ppbv RL	ug/m3 Result	ug/m3 RL	Date/Time	Ву	Reference
Bromoform	ND	0.097	ND	1.00	02/22/13	KCA	TO15
Bromomethane	ND	0.258	ND	1.00	02/22/13	KCA	TO15
Carbon Disulfide	ND	0.321	ND	1.00	02/22/13	KCA	TO15
Carbon Tetrachloride	0.09	0.040	0.566	0.25	02/22/13	KCA	TO15
Chlorobenzene	ND	0.217	ND	1.00	02/22/13	KCA	TO15
Chloroethane	ND	0.379	ND	1.00	02/22/13	KCA	TO15
Chloroform	ND	0.205	ND	1.00	02/22/13	KCA	TO15
Chloromethane	0.62	0.484	1.28	1.00	02/22/13	KCA	TO15
Cis-1,2-Dichloroethene	ND	0.252	ND	1.00	02/22/13	KCA	TO15
cis-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13	KCA	TO15 1
Cyclohexane	ND	0.291	ND	1.00	02/22/13	KCA	TO15
Dibromochloromethane	ND	0.117	ND	1.00	02/22/13	KCA	TO15
Dichlorodifluoromethane	0.51	0.202	2.52	1.00	02/22/13	KCA	TO15
Ethanol	6.87	0.531	12.9	1.00	02/22/13	KCA	TO15 1
Ethyl acetate	ND	0.278	ND	1.00	02/22/13	KCA	TO15 1
Ethylbenzene	ND	0.230	ND	1.00	02/22/13	KCA	TO15
Heptane	ND	0.244	ND	1.00	02/22/13	KCA	TO15
Hexachlorobutadiene	ND	0.094	ND	1.00	02/22/13	KCA	TO15
Hexane	0.51	0.284	1.80	1.00	02/22/13	KCA	TO15
Isopropylalcohol	0.69	0.407	1.70	1.00	02/22/13	KCA	TO15
Isopropylbenzene	ND	0.204	ND	1.00	02/22/13	KCA	TO15
m,p-Xylene	0.32	0.230	1.39	1.00	02/22/13	KCA	TO15
Methyl Ethyl Ketone	ND	0.339	ND	1.00	02/22/13	KCA	TO15
Methyl tert-butyl ether(MTBE)	ND	0.278	ND	1.00	02/22/13	KCA	TO15
Methylene Chloride	0.38	0.288	1.32	1.00	02/22/13	KCA	TO15
n-Butylbenzene	ND	0.182	ND	1.00	02/22/13	KCA	TO15 1
o-Xylene	ND	0.230	ND	1.00	02/22/13	KCA	TO15
Propylene	ND	0.581	ND	1.00	02/22/13	KCA	TO15 1
sec-Butylbenzene	ND	0.182	ND	1.00	02/22/13	KCA	TO15 1
Styrene	ND	0.235	ND	1.00	02/22/13	KCA	TO15
Tetrachloroethene	0.06	0.037	0.407	0.25	02/22/13	KCA	TO15
Tetrahydrofuran	ND	0.339	ND	1.00	02/22/13	KCA	TO15 1
Toluene	0.69	0.266	2.60	1.00	02/22/13	KCA	TO15
Trans-1,2-Dichloroethene	ND	0.252	ND	1.00	02/22/13		TO15
trans-1,3-Dichloropropene	ND	0.220	ND	1.00	02/22/13	KCA	TO15
Trichloroethene	ND	0.047	ND)	0.25	02/22/13	KCA	TO15
Trichlorofluoromethane	0.24	0.178	1.35	1.00	02/22/13	KCA	TO15
Trichlorotrifluoroethane	ND	0.130	ND	1.00	02/22/13		TO15
Vinyl Chloride	ND	0.098	ND	0.25	02/22/13	KCA	TO15
QA/QC Surrogates % Bromofluorobenzene	106	%	106	%	02/22/13	KCA	TO15

Page 14 of 15 Ver 1

Client ID: AMBIENT

ppbv ppbv ug/m3 ug/m3
Parameter Result RL Result RL Date/Time By Reference

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

February 28, 2013

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 15 of 15 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG I.D.: GBD38581

QA/QC Report

February 28, 2013

QA/QC Data

Parameter	Blank ppbv	Blank ug/m3	LCS %	Sample Result ug/m3	Sample Dup ug/m3	Sample Result ppbv	Sample Dup ppbv	DUP RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 222083, QC San	nnle No: BD3	8581 (BD3	8581 BD38582 BD	38583 F	3D3858	4 BD3	3585)				
Volatiles	npic No. bbo	3301 (DD	0301, 0030302, 00	30303, L	D0000	T, DD3	3000)				
1,1,1,2-Tetrachloroethane	ND	ND	115	ND	ND	ND	ND	NC	70 - 130	20	
1,1,1,2-Tetrachioroethane	ND ND	ND	107	ND	ND	ND	ND	NC	70 - 130 70 - 130	20 20	
1,1,2,2-Tetrachloroethane	ND ND	ND	107	ND	ND	ND	ND	NC	70 - 130	20	
1,1,2-Trichloroethane	ND ND	ND	112	ND	ND	ND	ND	NC	70 - 130	20	
1,1-Dichloroethane	ND	ND	106	ND	ND	ND	ND	NC	70 - 130	20	
1,1-Dichloroethene	ND	ND	110	ND	ND	ND	ND	NC	70 - 130	20	
1,2,4-Trichlorobenzene	ND	ND	82	ND	ND	ND	ND	NC	70 - 130	20	
1,2,4-Trimethylbenzene	ND	ND	113	17.8	17.3	3.62	3.52	2.8	70 - 130	20	
1,2-Dibromoethane(EDB)	ND	ND	116	ND	ND	ND	ND	NC	70 - 130	20	
1,2-Dichlorobenzene	ND	ND	99	ND	ND	ND	ND	NC	70 - 130	20	
1,2-Dichloroethane	ND	ND	106	ND	ND	ND	ND	NC	70 - 130	20	
1,2-dichloropropane	ND	ND	107	ND	ND	ND	ND	NC	70 - 130	20	
1,2-Dichlorotetrafluoroethane	ND	ND	107	ND	ND	ND	ND	NC	70 - 130	20	
1,3,5-Trimethylbenzene	ND	ND	107	5.36	5.16	1.09	1.05	3.7	70 - 130	20	
1,3-Butadiene	ND	ND	104	ND	ND	ND	ND	NC	70 - 130	20	
1,3-Dichlorobenzene	ND	ND	102	ND	ND	ND	ND	NC	70 - 130	20	
1,4-Dichlorobenzene	ND	ND	99	ND	ND	ND	ND	NC	70 - 130	20	
1,4-Dioxane	ND	ND	115	ND	ND	ND	ND	NC	70 - 130	20	
2-Hexanone(MBK)	ND	ND	110	ND	ND	ND	ND	NC	70 - 130	20	
4-Ethyltoluene	ND	ND	108	4.08	4.27	0.83	0.87	4.7	70 - 130	20	
4-Isopropyltoluene	ND	ND	126	2.47	3.73	0.45	0.68	40.7	70 - 130	20	
4-Methyl-2-pentanone(MIBK)	ND	ND	115	7.94	6.84	1.94	1.67	15.0	70 - 130	20	
Acetone	ND	ND	105	33.9	45.6	14.3	19.2	29.3	70 - 130	20	
Acrylonitrile	ND	ND	111	ND	ND	ND	ND	NC	70 - 130	20	
Benzene	ND	ND	91	7.88	8.72	2.47	2.73	10.0	70 - 130	20	
Benzyl chloride	ND	ND	111	ND	ND	ND	ND	NC	70 - 130	20	
Bromodichloromethane	ND	ND	119	6.70	5.22	1	0.78	24.7	70 - 130	20	
Bromoform	ND	ND	131	ND	ND	ND	ND	NC	70 - 130	20	ı
Bromomethane	ND	ND	105	ND	ND	ND	ND	NC	70 - 130	20	
Carbon Disulfide	ND	ND	98	4.14	4.20	1.33	1.35	1.5	70 - 130	20	
Carbon Tetrachloride	ND	ND	113	0.251	0.251	0.04	0.04	0.0	70 - 130	20	
Chlorobenzene	ND	ND	102	ND	ND	ND	ND	NC	70 - 130	20	
Chloroethane	ND	ND	99	ND	ND	ND	ND	NC	70 - 130	20	
Chloroform	ND	ND	107	9.27	9.08	1.9	1.86	2.1	70 - 130	20	
Chloromethane	ND	ND	93	ND	ND	ND	ND	NC	70 - 130	20	
Cis-1,2-Dichloroethene	ND	ND	101	96.3	94.7	24.3	23.9	1.7	70 - 130	20	
cis-1,3-Dichloropropene	ND	ND	123	ND	ND	ND	ND	NC	70 - 130	20	
Cyclohexane	ND	ND	92	6.74	7.88	1.96	2.29	15.5	70 - 130	20	
Dibromochloromethane	ND	ND	127	ND	ND	ND	ND	NC	70 - 130	20	
Dichlorodifluoromethane	ND	ND	109	2.27	2.37	0.46	0.48	4.3	70 - 130	20	
Ethanol	ND	ND	89	15.9	17.7	8.47	9.38	10.2	70 - 130	20	

	Blank	Blank	LCS	Result	Sample Dup	Result	Dup	DUP	% Rec	% RPD
Parameter	ppbv	ug/m3	%	ug/m3	ug/m3	ppbv	ppbv	RPD	Limits	Limits
Ethyl acetate	ND	ND	100	3.60	3.78	1	1.05	4.9	70 - 130	20
Ethylbenzene	ND	ND	108	4.99	5.21	1.15	1.2	4.3	70 - 130	20
Heptane	ND	ND	108	16.3	14.5	3.99	3.55	11.7	70 - 130	20
Hexachlorobutadiene	ND	ND	86	ND	ND	ND	ND	NC	70 - 130	20
Hexane	ND	ND	96	23.8	26.1	6.75	7.41	9.3	70 - 130	20
Isopropylalcohol	ND	ND	94	ND	1.94	ND	0.79	NC	70 - 130	20
Isopropylbenzene	ND	ND	114	1.28	1.57	0.26	0.32	20.7	70 - 130	20
m,p-Xylene	ND	ND	112	14.9	15.3	3.44	3.53	2.6	70 - 130	20
Methyl Ethyl Ketone	ND	ND	103	10.8	10.7	3.67	3.63	1.1	70 - 130	20
Methyl tert-butyl ether(MTBE)	ND	ND	108	ND	ND	ND	ND	NC	70 - 130	20
Methylene Chloride	ND	ND	97	1.56	1.53	0.45	0.44	2.2	70 - 130	20
n-Butylbenzene	ND	ND	118	5.10	4.88	0.93	0.89	4.4	70 - 130	20
o-Xylene	ND	ND	109	6.60	6.60	1.52	1.52	0.0	70 - 130	20
Propylene	ND	ND	94	114	126	66.5	73.5	10.0	70 - 130	20
sec-Butylbenzene	ND	ND	118	2.08	2.47	0.38	0.45	16.9	70 - 130	20
Styrene	ND	ND	107	2.34	2.43	0.55	0.57	3.6	70 - 130	20
Tetrachloroethene	ND	ND	119	4840	3160	714	466	42.0	70 - 130	20
Tetrahydrofuran	ND	ND	100	1.50	1.89	0.51	0.64	22.6	70 - 130	20
Toluene	ND	ND	114	12.0	10.9	3.19	2.9	9.5	70 - 130	20
Trans-1,2-Dichloroethene	ND	ND	104	22.9	22.1	5.79	5.59	3.5	70 - 130	20
trans-1,3-Dichloropropene	ND	ND	109	ND	ND	ND	ND	NC	70 - 130	20
Trichloroethene	ND	ND	118	827	655	154	122	23.2	70 - 130	20
Trichlorofluoromethane	ND	ND	115	2.70	2.41	0.48	0.43	11.0	70 - 130	20
Trichlorotrifluoroethane	ND	ND	114	ND	ND	ND	ND	NC	70 - 130	20
Vinyl Chloride	ND	ND	103	ND	ND	ND	ND	NC	70 - 130	20
% Bromofluorobenzene	101	101	103	112	107	112	107	4.6	70 - 130	20

I = This parameter is outside laboratory lcs/lcsd specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director

February 28, 2013

Thursday, February 28, 2013 Requested Criteria: None

Sample Criteria Exceedences Report GBD38581 - CONKLIN

Page 1 of 1

State: NY

RL Analysis
SampNo Acode Phoenix Analyte Criteria Result RL Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

PHOENIX
Environmental Laboratories, Inc.

CHAIN OF CUSTODY RECORD

AIR ANALYSES

P.O. #	Page	of	<i>j</i> .
Data Delivery:			, –
T-1 T-1. #1			

I TIOLIVIA WAS		AIR ANALISES								Data Delivery:							
Environmental Laboratories, Inc.		800-827-5426							☐ Fax #:								
587 East Mi	email: greg@phoenixlabs.com								Kemail: Sear & Carklin Sensing								
leli	ephone: 860.645.1102 • Fax: 860.645.0823		Ser.	1000						☐ Phone #	t:						
Report to: S	Invoice to:	Project Name:				(Celeaner)											
Customer: Carring								Criteria Requested: Deliverable:									
Address:	94 Stewart An							мср 🗆									
· · · · · · · · · · · · · · · · · · ·	194 Stevent An	Sampled by:	CLAI	سر س	erzn			State where	e samples o	collected:	M		Air	mposite (C)	.		
			4.7	ļ						<u></u>		12.3	ndoor	Comp			
			Canister	Outgoing Canister	Incoming Canister	Flow Regulator	Flow Controller Setting	Sampling	C		Canister	Canister Pressure at	Ambient/I	Soil Gas Grab (G)		15	
Phoenix ID#	Client Sample ID	Canister ID #	Size (L)	Pressure (" Hg)	Pressure ("Hg)	ID#	(mL/min)	Start Time	Sampling End Time	Sample Start Date	Start (" Hg)		Am	Soil C Grab	TO-14	T0-15	
		THIS SECTION FOR LAB USE													NALYSES		
38581	UP- 515	371	<u>وا</u>	-30	0 *	0331	170	1.29	3.00	2/9/13	フフ	ーフ		<u>X</u> _		メ	
38582	545 56a5 357	215	<u>ط</u>	-30	0	5354	170	MA	1:54		27	Q	9	X		X	
38583		495	6	-30	-5	4990	170	1:18	1:48		30)	-9	X			X	
38584	UD-2	11250	6	-30	0	3411	170	1:30	2:01		29	- 5		X		X	
	Ampiont	11292	6	-30	0	अर्ज	170	1231	21,02	1/	28	.~ ž	X	,		7	
	VP-2	357	(0	-30		4481	170	,									
			is .														
				4,											1		
Relinquished by	v.	Accepted by:	17	<u> </u>		Date:		Time:	Data For	mat:							
		 	2.91.12 12:00			Excel				☐ GISKey ☐							
	My	1000				-		i	PDF	D2		Other:					
[N	B/	Charactise 2/21/19					113	1636	1 101	7		Other.	<u> </u>				
	CTIONS, OC REQUIREMENTS, REGULATORY INFORMATION		10	20	2011	7	A.	and the second of									
3	po 269967				/	I			I attest that all media released by Phoenix Environmental Laboratories, Inc. have been								
	59 371 No VEE							received in good working condition and agree to the terms and condition back of this document:							unnons d	ыный оп те	
	AND THE RESERVE OF THE PROPERTY OF THE PROPERT																
		nber:			Signature: Date:												