

Second Quarter 2018
Quarterly Monitoring Report
Former Zoe Chemical Site
1801 Falmouth Avenue
New Hyde Park, New York
Site No. 1-30-211

July 2018

Prepared for:

SEABOARD ESTATES, INC. c/o BEVERIDGE & DIAMOND, LLC 477 Madison Avenue, 15th Floor New York, NY 10022-5802

and

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
Division of Environmental Remediation
625 Broadway, 12th Floor
Albany, New York 12207

Prepared by:

CA RICH CONSULTANTS, INC. 17 Dupont Street Plainview, NY 11803-1614

e-mail: jproscia@carichinc.com

July 9, 2018

New York State Department of Environmental Conservation

DIVISION OF ENVIRONMENTAL REMEDIATION 625 Broadway, 12th Floor Albany, New York 12207

Attention: Brian Jankauskas, Project Manager

Re: Quarterly Monitoring Report—Second Quarter 2018

Former Zoe Chemical Site

1801 Falmouth Avenue, New Hyde Park, N.Y.

NYSDEC Site No.: 1-30-211

Dear Mr. Jankauskas:

Attached is a copy of our Second Quarter 2018, Quarterly Monitoring Report for the above-referenced Site. The Site currently operates a soil vapor extraction system (SVE) which treats the exhausted air with activated carbon. The system was started-up on September 27, 2016 and has been operating since that time. Carbon change-outs were completed on December 1, 2016, April 14, 2017, August 3, 2017, December 4, 2017, and March 20, 2018.

The next quarterly system sampling and measurements are planned for September 2018.

If there are any questions regarding this report, please do not hesitate to call our office.

Sincerely,

CA RICH CONSULTANTS, INC.

Jessica Proscia Project Manager

cc: see attached distribution

Distribution List

1801 Falmouth Avenue, New Hyde Park, NY - NYSDEC Site #1-30-211

Brian Jankauskas

NYSDEC

Brian.jankauskas@dec.ny.gov

Mark Sergott

New York State Department of Health

Mark.sergott@health.ny.gov

Alali Tamuno, Esq.

NYSDEC

Alali.tamuno@dec.ny.gov

Michael Murphy, Esq. **Beveridge & Diamond, P.C.**mmurphy@bdlaw.com

John Paul, Esq. **Beveridge & Diamond, P.C.**<u>jpaul@bdlaw.com</u>

Laurence Gordon
Seaboard Estates, Inc.
fmrc@optonline.net

Joseph DeFranco
Nassau County Department of Health
jdefranco@health.co.nassau.ny.us

Ca RICH Environmental Specialists

TABLE OF CONTENTS

Section	1	Page
1.0	INTRODUCTION	1
2.0	OPERATIONAL HISTORY OF THE REMEDIATION SYSTEM	3
3.0	SYSTEM MONITORING PROCEDURES AND RESULTS	4
4.0	REMEDIATION SYSTEM EQUIPMENT TERMINATION CRITERIA	6
5.0	CONCLUSIONS	6
	REFERENCES	7

FIGURES

- 1. Site Location Map
- 2. Site Plan
- 3. Location of Former Cesspools
- 4. Previous Groundwater Sample Locations
- 5. Previous Soil Sample Locations
- 6. Previous Soil Vapor Sample Locations
- 7. System Layout

TABLES and DATA PLOTS

- 1. System Data Log Field Form
- 2. Summary of System Analytical Data for Untreated Air
- 3. Summary of System Analytical Data for Mid-Carbon Air
- 4. Summary of System Analytical Data for Treated Air
- 5. Mass Calculation Removals for 1,1,1 TCA

APPENDICES

- A. Monthly Progress Reports
- B. Laboratory Data for System Air Samples

Second Quarter 2018
Quarterly Monitoring Report
Former Zoe Chemical Site
1801 Falmouth Avenue
New Hyde Park, New York
NYSDEC Site No.: 1-30-211

1.0 INTRODUCTION

The following Quarterly Monitoring Report (the Report) has been prepared by CA RICH Consultants, Inc. (CA RICH) for the Former Zoe Chemical Site located at 1801 Falmouth Avenue, New Hyde Park, New York (Figure 1) on behalf of Seaboard Estates, Inc. in accordance with Order on Consent Agreement Index No. W1-1165-12-06. This Report addresses the remediation of the soil vapor beneath the Former Zoe Chemical Site. The goal of this Report is to describe the progress of the on-site soil vapor remediation program at the Former Zoe Chemical Site, which is illustrated on the Site Plan (Figure 2).

1.1 Contaminants of Concern

For the purposes of this Quarterly Monitoring Report, the Contaminants Of Concern (COCs) are Volatile Organic Compounds (VOCs) and include 1,1,1-trichloroethane (TCA) and its degradation products.

1.2 Former Source Areas

As discussed in the Site Characterization Report, (Ref. 1), the primary source suspected for a possible release is the former cesspool(s) that serviced the building prior to Zoe Chemical's connection to municipal sewers in June 1987. Figure 3 of this document illustrates the locations of these suspected former source areas.

1.3 Previous Groundwater Investigations

Four permanent on-Site groundwater monitoring wells were installed in April 2013 as part of the Site Characterization (Ref. 1). The results of the analysis of these samples indicated that the highest contamination occurred in monitoring well MW-4 for TCA at a concentration of 962 ug/l (ppb). The compound perchloroethene (PCE) was detected at 8.0 ug/L in MW-2 and 13.2 ug/L in MW-4. Both MW-1 and MW-4 are located on the eastern half of the Site.

A map illustrating the locations of previous groundwater samples is included on Figure 4.

1.4 Previous Soil Investigations

Interior and exterior soil borings were installed in April, September and October 2013 as part of the Site Characterization (Ref. 1). The soil sampling performed during this investigation did not reveal detections of TCA above Part 375 Commercial Soil Cleanup Objectives (SCOs) either below the floor of the building or in the subject Property lot. No other VOCs or Semi-Volatile Organic Compounds (SVOCs) exceeded their respective Part 375 Commercial SCOs. There were exceedances of pesticides and metals that were identified exceeding their Part 375 Commercial SCOs, which were found in the soil located within the area of the former cesspool. A map illustrating the locations of all the soil boring locations is included on Figure 5.

1.5 Previous Soil Vapor Investigation

Four exterior soil vapor points (SV-1 through SV-4) were installed to eight feet below grade in the eastern parking lot of the Property in September 2013 as part of the Site Characterization (Ref. 1). The results of the soil vapor sampling indicated that the concentration of TCA ranged from 11 ug/m³ in SV-3 to 3,260 ug/m³ in SV-4. Acetone, benzene, chloromethane, cyclohexane, dichlorodifluoromethane, ethanol, ethylbenzene, ethyl acetate, 4-ethyltoluene, heptane, hexane, isopropyl alcohol, methyl ethyl ketone, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,2,4-tremethylpentane, tetrachloroethylene, tetrahydrofuran, toluene, trichloroethylene, trichlorofluoromethane, m & p-xylene, and o-xylene were detected at low concentrations in the indoor air sample. Additionally, similar compounds were detected in the ambient air. TCA was not detected in the ambient air sample.

Four interior sub-slab soil vapor points (SSV-1 through SSV-4) were installed in September 2013 as part of the Site Characterization (Ref. 1). The results for the sub-slab vapor were compared to the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York. The concentration of TCA in SSV-1 was 182,000 ug/m³ and SSV-2 was 18,800 ug/m³, which according to the NYSDOH Decision Matrices are both in the "Mitigation" range. The sub-slab vapor at the SSV-3 location contained a TCA concentration of 31 ug/m³, which is in the "No Further Action" range. Additionally, the sub-slab vapor concentration of TCA in SSV-4 was 400 ug/m³, which is in the "Monitor" range.

A map illustrating the locations of all the interior sub-slab soil vapor points and exterior soil vapor points are included on Figure 6.

1.6 Former Sanitary System Sampling

The former sanitary system was investigated in April 2013 as part of the Site Characterization (Ref. 1). Once the covers were removed, the two 7-foot diameter pools, designated S-1 and S-2 were investigated and found to contain solid bottoms and were likely used as holding tanks. However, as the perched water sample contained detections of contaminants similar to those detected in the soil from the sanitary structures some degree of leakage from the pools may have occurred. On April 25, 2013 a Geoprobe drilling system was utilized to obtain a sample from each of the pools. The Geoprobe drilling identified a solid bottom in sanitary pool S-1 at seven feet and at five feet in S-2. The structures appear to have been backfilled with soil, and therefore, observations detailing the bottom of the structures could not be made. One sample was obtained from each of the pools at the deepest depth above the pool bottoms and sent to the laboratory for analysis. The results indicated that no VOCs were detected exceeding their Part 375 commercial use SCOs in S-1 or S-2. However, S-1 contained ethylbenzene, toluene, and xylenes. S-2 (the pool closest to the building) contained TCA at a concentration of 1,110 ug/kg.

In February 2015, the former cesspools were removed. During this activity, the western pool was found to contain a solid bottom (septic tank), whereas the eastern pool contained perforated walls and a sediment bottom (leaching pool). Confirmatory endpoint samples were collected from the excavation. The endpoint samples were acceptable and the excavation was backfilled with clean quarry sand.

A map illustrating the locations of all the former sanitary systems is included on Figure 3.

2.0 OPERATIONAL HISTORY OF THE REMEDIATION SYSTEM

Installation of the remediation system began in August 2016 and was completed in September 2016. A start-up test was conducted on September 21, 2016. The system was activated and baseline vacuum, flow, and samples were collected. The system was operating properly at the time, but was turned off upon departure.

The components of the system consist of three SVE wells (SVE-1, SVE-2, and SVE-3) located in the parking area to the east of the building and three sub-slab depressurization vents (SSD-4, SSD-5, and SSD-6) located within the building. A detailed description of the system is included in the Construction Completion Report – Part B, (Ref. 2); and system layout drawing is included as Figure 7.

The soil vapor is extracted using an Airtech® Vacuum 4.62 HP regenerative blower located in the storage room within the building. The soil vapor passes through a moisture knock-out drum, into the blower and flows through two vapor-phase carbon drums located in the storage room. The treated air is discharged through a 4-inch PVC pipe that extends above the roof.

The SVE blower has remained in continuous operation since September 27, 2016 to the presentday with the exception of periodic equipment repairs and carbon change-outs as outlined on the maintenance log outlined below.

Maintenance Log						
Dates	SVE system	Comments				
September 21, 2106	Off	System turned on for startup test, system samples collected, system turned off upon departure.				
September 27, 2016	On	System turned on upon arrival and left operating upon departure.				
October 12, 2016	On	Monthly system samples collected				
November 22, 2016	On	Monthly system samples collected				
December 1, 2016	On	Carbon change out.				
December 21, 2016	On	Monthly system samples collected				
January 27, 2017	On	Monthly system samples collected				
February 24, 2017	On	Monthly system samples collected				
March 30, 2017	On	Monthly system samples collected				
April 14, 2017	On	Carbon change out.				
April 28, 2017	On	Monthly system samples collected				
May 26, 2017	On	Monthly system samples collected				
June 30, 2017	On	Monthly system samples collected				

August 3, 2017	On	Carbon change out
September 15, 2017	On	Quarterly system samples collected (Untreated, Mid, and Treated)
October 19, 2017	On	Leaking ball valve repaired
December 4, 2017	On	Carbon change out
December 8, 2017	On	Quarterly system samples collected
December 27, 2017	On	Telemetry System installed
March 20, 2018	On	Carbon change out
March 23, 2018	On	Quarterly system samples collected
June 22, 2018	On	Quarterly system samples collected
July 11, 2018	NA	Carbon change out scheduled

Prior work completed at the Site is summarized on the attached monthly progress reports included in Appendix A.

3.0 SYSTEM MONITORING PROCEDURES AND RESULTS

The system is equipped with gauges and meters that are designed to directly measure flow, vacuum and system run time. Flow and temperature readings are manually collected from the system and PID readings are collected from the pre-carbon, mid-carbon, and post-carbon sampling ports. There are three exterior SVE points and three interior SSD points. Vacuum and flow readings are collected directly from well heads at the SVE points and from the riser at the SSD points. The data acquired during the quarterly monitoring events along with system uptime is summarized on Table 1. The following summarizes the system data acquired during the most recent (June 2018) monitoring event.

June 2018

Vent/Well	Vacuum (inches of water)	Flow (scfm)
SVE-1	-10.0	12
SVE-2	-9.4	9.0
SVE-3	-9.4	8.0
SSD-4	-9.6	55
SSD-5	-9.1	61
SSD-6	-9.4	61
System	-32	114

System Hour Meter = 13,812 hours at 10:07

System influent temperature = 87°F

System effluent temperature = 104°F

Pre-carbon = 0.3 ppm Mid-carbon = 0.0 ppm Post-carbon = 0.0 ppm

3.1 System Sampling

The system is equipped with two 55-gallon drums that contain activated carbon used to treat the soil vapor. Three sample ports were installed within the system piping to collect soil vapor samples for laboratory analysis. One sample port is located on the PVC pipe prior to the first carbon treatment drum, and is identified as the "Untreated Soil Vapor" sample. The second sample port is located on the PVC pipe that connects the first carbon drum to the second carbon drum, and is identified as the "Mid-Carbon" sample. The third and final sample port is located on the PVC vent pipe located up-flow of the second carbon drum, and is identified as the "Treated Soil Vapor" sample. Each of these three soil vapor samples are collected using a six-liter SUMMA canister that is setup to collect a grab sample. In addition, PID readings are measured from each sample port using a 11.7 ev bulb. A copy of the laboratory data is included as Appendix B

Untreated Soil Vapor – The first soil vapor sample collected from the system was conducted on September 21, 2016. The initial untreated soil vapor sample contained a TCA concentration of 87,800 ug/m³. At the end of the fourth quarter 2016, the concentration of TCA was 8,350 ug/m³. At the end of the fourth quarter 2017, the concentration of TCA was 1,630 ug/m³. The most recent sample collected on June 22, 2018 detected a TCA concentration of 993 ug/m³.

Results of the untreated soil vapor sampling program are summarized on Table 2. In addition, plots of the laboratory results versus days in operation are included.

Mid-Carbon Soil Vapor – This sample is used to determine when breakthrough occurs at the first carbon drum, which in turn provides sufficient information to determine when the carbon drums should be replaced. The second quarter 2018 mid-carbon sample was collected on June 22, 2018 and detected a TCA concentration of 1,060 ug/m³. Results of the mid-carbon sampling are summarized on Table 3.

Treated Soil Vapor – A treated soil vapor sample was also collected on June 22, 2018 using a SUMMA canister. The sample detected a TCA concentration of 446 ug/m³. A summary of the laboratory data is summarized on Table 4.

Mass Removal Calculations – The initial TCA concentration at the system startup date (September 21, 2016) equaled 87,800 ug/m³ for the influent sample port. The TCA concentration at the end of the second quarter 2018 was 993 ug/m³. Based upon the measured discharge rate and a linear interpretation of the TCA concentration in the untreated soil vapor, the mass of TCA removed from March 23, 2018 to June 22, 2018 is estimated to be 1.68 pounds and the amount of TCA removed to date equals 64.19 pounds. A summary of TCA removal by the system is included on Table 5.

4.0 REMEDIATION SYSTEM EQUIPMENT TERMINATION CRITERIA

4.1 SVE Unit Termination Criteria

The termination criteria for the SVE system are outlined in the Construction Completion Report Part B. The following termination criteria have been established:

- Once the levels of total VOCs in the raw influent decreases to a near constant or asymptotic concentration (as approved by NYSDEC) and it is demonstrated that shutdown of the system will not result in the migration of unacceptable concentrations of residual vapors to the on-site and off-site structures (as approved by NYSDOH), operation of the system will be suspended.
- A shutdown plan will be submitted to the NYSDEC for review and approval. This plan will discuss the conversion of the system to a soil vapor intrusion mitigation system or proposed sampling activities for complete shutdown of the system. The plan will include concurrent sub-slab vapor/indoor air sampling within occupied spaces to determine whether exposure concerns related to soil vapor intrusion remain.
- The overall remedy must meet the remedial action objectives of the project, and the soil
 vapor measurements must remain protective of the contemplated use of the on-site and
 off-site structures. If any improvements or changes are made to the interior building
 layout in areas outside of the SVE system's radius of influence, additional soil vapor
 intrusion sampling and/or expansion of the SVE system may be warranted. The NYSDEC
 and NYSDOH will be notified in advance of any such plans.

5.0 CONCLUSIONS

The remediation system began operating in September 2016, with weekly system visits conducted to ensure system operation. A telemetry unit was installed in December 2017 to notify CA RICH of any unexpected system shutdowns. The system has been in continuous operations since September 2016 with the exception of carbon drum change outs and unexpected system shutdowns. From March 23, 2018 to June 22, 2018 the system has been operating for 98.53 percent of the time.

During the last quarter the system has removed approximately 1.68 pounds of TCA and 64.19 pounds since system start up in September 2016. The system shall remain in continuous operation. The next system sampling event is scheduled for September 2018.

REFERENCES

- 1. CA RICH Consultants, Inc., <u>Site Characterization Report</u>, Former Zoe Chemical, 1801 Falmouth Avenue, New Hyde Park, New York, NYSDEC Site # 130211, February 2014, Revised July 2014.
- 2. CA RICH Consultants, Inc., <u>Construction Completion Report Part B</u>, Former Zoe Chemical, 1801 Falmouth Avenue, New Hyde Park, New York, NYSDEC Site # 130211, March 2017, Revised June 2017.

FIGURES

TABLES

Table 1 Former Zoe Chemical 1801 Falmouth Avenue New Hyde Park, NY Site No. 1-30-211

SVE System Data Log Field Form

Date	5/17/2017	9/15/2017		12/8/2017	3/23/2018	6/22/2018
System Status on Arrival	On	On		On	On	On
System Status on Departure	On	On		On	On	On
Control Panel Hours	5057.9	7304.4		9317.1	11,660	13,812
Control Panel Hours - Time Recorded	0900	0900		0900	10:27	10:07
Operating Hours Since Last Visit		2246.5		2012.70	2,342.9	2,152
Hours Available Since Last Visit		2904.0		2016.00	2520	2184
Percent Operation (quarterly)		77.4		99.84	92.97	98.53
Moisture Separator Liquid Level (inches)	None	None		4 inch	2 inch	0 inch
Vacuum			Soil			
SVE-1 ("WC) at Wellhead	-2.51	-2.9	l Va	-7.4	-10	-10
SVE-2 ("WC) at Wellhead	-0.008	-0.120	Vapor	-7.0	-7.0	-9.4
SVE-3 ("WC) at Wellhead	-0.066	-0.103	Extr	-7.0	-8.0	-9.4
SVE-4 ("WC) at Wellhead	-4.0	-4.1	acti	-7.2	-9.2	-9.6
SVE-5 ("WC) at Wellhead	-3.9	-4.1	on S	-7.2	-9.3	-9.1
SVE-6 ("WC) at Wellhead	-3.9	-4.1	yste	-7.2	-9.3	-9.4
System Influent ("WC)	-24.0	-24.0	Extraction System Leak Repaired -	-28.0	-32	-32
Temperature						
Influent Temp (°F)	76.2	91	Repa	65	68	87
Effluent Temp (°F)	105	115	airec	94	93	104
Airflow						
SVE-1 (CFM) at Wellhead	47.00	51.69	10/19/17	13.0	11.0	12.0
SVE-2 (CFM) at Wellhead	0.00	0.10	17	7.0	8.0	9.0
SVE-3 (CFM) at Wellhead	2.20	0.25		6.0	7.0	8.0
SVE-4 (CFM) at Wellhead	16.0	30		60	50	55
SVE-5 (CFM) at Wellhead	46.0	35		57	62	61
SVE-6 (CFM) at Wellhead	43.0	45		56	62	61
System Influent (SCFM)	117.0	87.2		95.0	118	114
Volatile Organic Compounds						
Pre-Carbon (ppm)	10.1	0.6		24.0	0.8	0.3
Mid-Carbon (ppm)	1.2	1.5		0.0	0.0	0.0
Post-Carbon (ppm)	2.0	0.4		0.0	0.0	0.0

Notes:

 $Carbon\ changeout\ (Both\ vessels)\ conducted\ on\ 12/1/16,\ 4/14/17,\ 8/3/17,\ 12/4/17,\ 3/20/18,\ 7/11/18$

Magnehelic guage used to collect vacuum readings at SVE-1, SVE-2, SVE-3, SVE-4, SVE-5, SVE-6

Table 2

System Analytical Data for Untreated Air in ug/cubic meter

Date	Days Since System Start Up	PCE	TCE	Vinyl Chloride	Cis-1,2-DCE	1,1,1-TCA	1,1-DCA	Chloroethane	Comments
9/27/2016	0	509	967	1,140	290	87,800	57,900	92,400	System startup
10/12/2016	15	519	408	77.2	< 89.6	23,500	5,910	3,560	
11/22/2016	55	374	494	66.0	170	10,400	3,920	2,930	
12/21/2016	84	249	490	< 24.3	130	8,350	2,290	837	
1/27/2017	120	200	463	< 10.2	55.5	6,380	1,150	124	
2/24/2017	147	112	133	< 5.11	18.4	2,500	595	44.6	
3/30/2017	183	71.9	81.7	< 5.11	< 7.93	4,190	627	41.2	
4/28/2017	211	118	128	< 5.11	14.6	2,610	17.2	44.3	
5/26/2017	239	89.5	88.1	< 2.89	9.36	1,940	413	29.6	
6/30/2017	273	192	138	< 5.11	19.9	2,020	676	49.6	
9/15/2017	348	175	164	< 5.11	18.8	3,090	615	78.1	
12/8/2017	431	114	107	15.6	14.2	1,630	337	282	
3/23/2018	536	69.8	52.2	1.42	6.26	1,040	198	33.2	
6/22/2018	625	93.6	66.6	< 5.11	< 7.93	993	194	24.1	

Notes:

< Non-detect above laboratory reporting limits All samples recorded in micrograms per cubic meter Time 0 = System activation date- 9/27/2016

System Analytic Data for Mid Carbon Samples in ug/cubic meter

Date	Days Since System Start Up	PCE	TCE	Vinyl Chloride	Cis-1,2-DCE	1,1,1-TCA	1,1-DCA	Chloroethane	Comments
9/27/2016	0			No sa	ample colle	cted			System startup
10/12/2016	15			No s	ample colle	cted			
11/22/2016	55	43.4	123	24.6	57.9	5,350	1,790	997	
12/21/2016	84	< 3.39	< 2.69	4.96	6.90	507	395	351	
1/27/2017	120	52.5	235	< 5.11	31.4	2,920	510	48.8	
2/24/2017	147	88.2	167	< 5.11	22.0	1,840	429	28.8	
3/30/2017	183	6.10	15.0	< 1.71	4.08	1,330	429	48.6	
4/28/2017	211	< 1.36	< 1.07	0.787	< 0.793	1.11	< 0.809	26.4	
5/26/2017	239	< 7.12	< 5.64	< 2.68	11.3	2,040	386	26.1	
6/30/2017	273	100	113	< 10.3	17.5	1,710	571	36.9	
9/15/2017	348	< 13.6	22.6	< 5.11	35.6	3,940	1,010	61.0	
12/8/2017	431	< 1.36	< 1.07	11.6	< 0.793	1.10	< 0.809	192	
3/23/2018	536	< 1.36	< 1.07	1.34	< 0.793	< 1.09	< 0.809	28.5	
6/22/2018	625	115	96.2	< 5.11	< 0.793	1,060	200	22.3	

Notes:

< Non-detect above laboratory reporting limits All samples recorded in micrograms per cubic meter Time 0 = System activation date- 9/27/2016

Table 4

System Analytical Data for Treated Air in ug/cubic meter

Date	Days Since System Start Up	PCE	TCE	Vinyl Chloride	Cis-1,2-DCE	1,1,1-TCA	1,1-DCA	Chloroethane	Comments
9/27/2016	0			No S	ample Colle	ected			System startup
10/12/2016	15	< 13.6	< 10.7	34.5	< 7.93	< 10.9	< 0.809	1,830	
11/22/2016	55	< 13.6	< 10.7	14.0	9.44	117	1,940	530	
12/21/2016	84	< 6.78	< 5.37	5.73	< 3.96	< 5.46	< 4.05	594	
1/27/2017	120	< 1.70	< 1.34	1.44	< 0.991	5.38	130	56.7	
2/24/2017	147	< 13.6	< 10.7	< 5.11	64.6	5,320	2,670	54.9	
3/30/2017	183	< 4.52	6.56	1.98	12.6	1,740	220	91.8	
4/28/2017	211	< 1.36	< 1.07	0.856	< 0.793	< 1.09	< 0.809	41.7	
5/26/2017	239	< 2.94	< 2.33	< 1.11	< 1.72	< 2.36	< 1.75	19.3	
6/30/2017	273	< 4.52	< 3.58	1.71	18.8	1,030	1,060	35.9	
9/15/2017	348	< 1.36	< 1.07	1.13	< 0.793	5.67	3.33	81.5	
12/8/2017	431	< 1.36	< 1.07	11.7	< 0.793	3.40	0.850	147	
3/23/2018	536	< 1.36	< 1.07	1.84	< 0.793	<1.09	< 0.809	< 0.528	
6/22/2018	625	< 4.52	< 3.58	1.71	23.1	446	692	30.9	

Notes:

< Non-detect above laboratory reporting limits All samples recorded in micrograms per cubic meter Time 0 = System activation date- 9/27/2016

Table 5

Mass Calculation Removals for 1,1,1 TCA

		Beginning Influent	Ending Influent	Influent Flow	Influent Results	Influent Flow	Days	Minutes	Mass Removed	Mass Removed to Date
Start Date	End Date	Results (ug/m3)	Results (ug/m3)	(scfm)	(lb/cf)	(lb/min)	of Operation	of Operation	(Pounds)	(Pounds)
9/21/2016	10/12/2016	87,800	23,500	220	6.21473E-06	0.001367241	15	21600	29.53	15.63
10/12/2016	11/22/2016	23,500	10,400	156	1.79169E-06	0.000279504	41	59040	16.50	32.13
11/22/2016	12/21/2016	10,400	8,350	156	9.09891E-07	0.000141943	29	41760	5.93	38.06
12/21/2016	1/27/2016	8,350	6,380	156	7.20422E-07	0.000112386	36	51840	5.83	43.89
1/27/2017	2/24/2017	6,380	2,500	156	4.76327E-07	7.43071E-05	28	40320	3.00	46.88
2/24/2017	3/30/2017	2,500	4,190	156	2.86858E-07	4.47498E-05	28	40320	1.80	48.69
3/30/2017	4/28/2017	4,190	2,610	156	3.43043E-07	5.35147E-05	29	41760	2.23	50.92
4/28/2017	5/26/2017	2,610	1,940	156	2.23493E-07	3.48649E-05	28	40320	1.41	52.33
5/26/2017	6/30/2017	1,940	2,020	156	1.84163E-07	2.87295E-05	35	50400	1.45	53.77
6/30/2017	9/15/2017	2,020	3,090	87.2	2.22557E-07	2.51934E-05	77	110880	2.79	56.57
9/15/2017	12/8/2017	3,090	1,630	95.0	2.43782E-07	2.67023E-05	84	120960	3.23	59.80
12/8/2017	3/23/2018	1,630	1,040	118.0	1.34221E-07	1.79632E-05	105	151200	2.72	62.51
3/23/2018	6/22/2018	1,040	993	114.0	9.5921E-08	1.28214E-05	91	131040	1.68	64.19

Notes:

1. Mass removed is determined by adding the influent and effluent results and dividing by two for an average during that time period.

APPENDIX A

Monthly Progress Reports

e-mail: JProscia@carichinc.com

May 14, 2018

brian.jankauskas@dec.ny.gov

NYSDEC

Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7015

Attention: Brian Jankauskas

Re: Monthly Progress Report – April 2018

Former Zoe Chemical Site

1801 Falmouth Avenue, New Hyde Park, NY

Agreement Index No.: W1-1165-12-06

Dear Mr. Jankauskas:

In accordance with the above-referenced Agreement, CA RICH is pleased to provide you with this Monthly Progress Report.

The following activities were performed this past month:

- On April 30, 2018, the revised RIWP was resubmitted to the NYSDEC and NYSDOH with their comments incorporated.
- On April 30, 2018, NYSDEC requested CA RICH to incorporate additional supporting information to the RIWP.

The following will be performed this month:

- The additional NYSDEC comments to the RIWP will be reviewed and incorporated. The revised RIWP will be submitted to the NYSDEC and NYSDOH in May 2018.
- As per the approved Construction Completion Report Part B, a raw, mid, and effluent sample will be obtained from the system on a quarterly basis. The next quarterly monitoring assignment will be performed in June 2018.

Ca RICH Environmental Specialists

If there are any questions regarding this letter, please do not hesitate to call our Office.

Sincerely,

CA RICH CONSULTANTS, INC.

Jessica Rosia

Jessica Proscia Project Manager

cc: Alali Tamuno, Esq. Michael Murphy, Esq. Laurence Gordon John Paul, Esq. Mark Sergott Charlotte Bethoney

Ca RICH Environmental Specialists

email list

Brian Jankauskas@dec.ny.gov

Mark Sergott mark.sergott@health.ny.gov

Alali Tamuno, Esq. <u>alali.tamuno@dec.ny.gov</u>

Michael Murphy, Esq. <u>MMurphy@bdlaw.com</u>

Laurence Gordon <u>fmrc@optonline.net</u>

John Paul, Esq. <u>JPaul@bdlaw.com</u>

Charlotte Bethoney <u>charlotte.bethoney@health.ny.gov</u>

e-mail: JProscia@carichinc.com

June 7, 2018

brian.jankauskas@dec.ny.gov

NYSDEC

Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7015

Attention: Brian Jankauskas

Re: Monthly Progress Report – May 2018

Former Zoe Chemical Site

1801 Falmouth Avenue, New Hyde Park, NY

Agreement Index No.: W1-1165-12-06

Dear Mr. Jankauskas:

In accordance with the above-referenced Agreement, CA RICH is pleased to provide you with this Monthly Progress Report.

The following activities were performed this past month:

 On May 23, 2018, the revised RIWP was resubmitted to the NYSDEC and NYSDOH with their comments incorporated.

The following will be performed this month:

 As per the approved Construction Completion Report – Part B, a raw, mid, and effluent sample will be obtained from the system on a quarterly basis. The next quarterly monitoring assignment will be performed in June 2018.

Ca RICH Environmental Specialists

If there are any questions regarding this letter, please do not hesitate to call our Office.

Sincerely,

CA RICH CONSULTANTS, INC.

Jessica Rosia

Jessica Proscia Project Manager

cc: Alali Tamuno, Esq. Michael Murphy, Esq. Laurence Gordon John Paul, Esq. Mark Sergott Charlotte Bethoney

Ca RICH Environmental Specialists

email list

Brian Jankauskas@dec.ny.gov

Mark Sergott mark.sergott@health.ny.gov

Alali Tamuno, Esq. <u>alali.tamuno@dec.ny.gov</u>

Michael Murphy, Esq. <u>MMurphy@bdlaw.com</u>

Laurence Gordon <u>fmrc@optonline.net</u>

John Paul, Esq. <u>JPaul@bdlaw.com</u>

Charlotte Bethoney <u>charlotte.bethoney@health.ny.gov</u>

APPENDIX B Laboratory Data for System Air Samples

ANALYTICAL REPORT

Lab Number: L1824073

Client: CA RICH CONSULTANTS, INC.

17 Dupont St.

Plainview, NY 11803

NEW HYDE PARK

ATTN: Jessica Proscia
Phone: (516) 576-8844

Project Name: Not Specified

Report Date: 07/02/18

Project Number:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: Not Specified

Project Number: NEW HYDE PARK

Lab Number:

L1824073

Report Date:

07/02/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1824073-01	RAW AIR (6/22/18)	SOIL_VAPOR	1801 FALMOUTH AVE., NEW HYDE PARK, NY	06/22/18 08:30	06/25/18
L1824073-02	MID AIR (6/22/18)	SOIL_VAPOR	1801 FALMOUTH AVE., NEW HYDE PARK, NY	06/22/18 08:35	06/25/18
L1824073-03	EFFLUENT AIR (6/22/18)	SOIL_VAPOR	1801 FALMOUTH AVE., NEW HYDE PARK, NY	06/22/18 08:40	06/25/18

Project Name:Not SpecifiedLab Number:L1824073Project Number:NEW HYDE PARKReport Date:07/02/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:Not SpecifiedLab Number:L1824073Project Number:NEW HYDE PARKReport Date:07/02/18

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on June 21, 2018. The canister certification results are provided as an addendum.

L1824073-01 and -02: The samples have elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the samples.

L1824073-03: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

The WG1131318-3 LCS recovery for benzyl chloride (142%) is above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of this analyte.

Sample Receipt

The cansiter ID numbers were transposed on the CoC for the samples designated MID AIR (6/22/18) (L1824073-02) and EFFLUENT AIR (6/22/18) (L1824073-03).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/02/18

Christopher J. Anderson

AIR

Project Number: NEW HYDE PARK Report Date: 07/02/18

SAMPLE RESULTS

Lab ID: L1824073-01 D Date Collected: 06/22/18 08:30

Client ID: RAW AIR (6/22/18) Date Received: 06/25/18
Sample Location: 1801 FALMOUTH AVE., NEW HYDE PARK, Field Prep: Not Specified

NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 06/30/18 05:15

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	2.00		ND	9.89			10
Chloromethane	ND	2.00		ND	4.13			10
Freon-114	ND	2.00		ND	14.0			10
Vinyl chloride	ND	2.00		ND	5.11			10
1,3-Butadiene	ND	2.00		ND	4.42			10
Bromomethane	ND	2.00		ND	7.77			10
Chloroethane	9.12	2.00		24.1	5.28			10
Ethanol	ND	50.0		ND	94.2			10
Vinyl bromide	ND	2.00		ND	8.74			10
Acetone	14.9	10.0		35.4	23.8			10
Trichlorofluoromethane	ND	2.00		ND	11.2			10
Isopropanol	ND	5.00		ND	12.3			10
1,1-Dichloroethene	ND	2.00		ND	7.93			10
Tertiary butyl Alcohol	ND	5.00		ND	15.2			10
Methylene chloride	ND	5.00		ND	17.4			10
3-Chloropropene	ND	2.00		ND	6.26			10
Carbon disulfide	ND	2.00		ND	6.23			10
Freon-113	ND	2.00		ND	15.3			10
trans-1,2-Dichloroethene	ND	2.00		ND	7.93			10
1,1-Dichloroethane	48.0	2.00		194	8.09			10
Methyl tert butyl ether	ND	2.00		ND	7.21			10
2-Butanone	ND	5.00		ND	14.7			10
cis-1,2-Dichloroethene	ND	2.00		ND	7.93			10

Project Number: NEW HYDE PARK Report Date: 07/02/18

SAMPLE RESULTS

Lab ID: L1824073-01 D Date Collected: 06/22/18 08:30 Client ID: RAW AIR (6/22/18) Date Received: 06/25/18

Client ID: RAW AIR (6/22/18) Date Received: 06/25/18
Sample Location: 1801 FALMOUTH AVE., NEW HYDE PARK, Field Prep: Not Specified

NY

оатріе Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Chloroform	4.74	2.00		23.1	9.77			10
Tetrahydrofuran	ND	5.00		ND	14.7			10
1,2-Dichloroethane	ND	2.00		ND	8.09			10
n-Hexane	ND	2.00		ND	7.05			10
1,1,1-Trichloroethane	182	2.00		993	10.9			10
Benzene	ND	2.00		ND	6.39			10
Carbon tetrachloride	ND	2.00		ND	12.6			10
Cyclohexane	ND	2.00		ND	6.88			10
1,2-Dichloropropane	ND	2.00		ND	9.24			10
Bromodichloromethane	ND	2.00		ND	13.4			10
1,4-Dioxane	ND	2.00		ND	7.21			10
Trichloroethene	12.4	2.00		66.6	10.7			10
2,2,4-Trimethylpentane	ND	2.00		ND	9.34			10
Heptane	ND	2.00		ND	8.20			10
cis-1,3-Dichloropropene	ND	2.00		ND	9.08			10
4-Methyl-2-pentanone	ND	5.00		ND	20.5			10
trans-1,3-Dichloropropene	ND	2.00		ND	9.08			10
1,1,2-Trichloroethane	ND	2.00		ND	10.9			10
Toluene	ND	2.00		ND	7.54			10
Dibromochloromethane	ND	2.00		ND	17.0			10
1,2-Dibromoethane	ND	2.00		ND	15.4			10
Tetrachloroethene	13.8	2.00		93.6	13.6			10
Chlorobenzene	ND	2.00		ND	9.21			10
Ethylbenzene	ND	2.00		ND	8.69			10
p/m-Xylene	ND	4.00		ND	17.4			10
Bromoform	ND	2.00		ND	20.7			10

Project Number: NEW HYDE PARK Report Date: 07/02/18

SAMPLE RESULTS

Lab ID: L1824073-01 D Date Collected: 06/22/18 08:30

Client ID: RAW AIR (6/22/18) Date Received: 06/25/18
Sample Location: 1801 FALMOUTH AVE., NEW HYDE PARK, Field Prep: Not Specified

NY

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Styrene	ND	2.00		ND	8.52			10
1,1,2,2-Tetrachloroethane	ND	2.00		ND	13.7			10
o-Xylene	ND	2.00		ND	8.69			10
4-Ethyltoluene	ND	2.00		ND	9.83			10
1,3,5-Trimethylbenzene	ND	2.00		ND	9.83			10
1,2,4-Trimethylbenzene	ND	2.00		ND	9.83			10
1,3-Dichlorobenzene	ND	2.00		ND	12.0			10
1,4-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2,4-Trichlorobenzene	ND	2.00		ND	14.8			10
Hexachlorobutadiene	ND	2.00		ND	21.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	88		60-140
chlorobenzene-d5	85		60-140

Project Number: NEW HYDE PARK Report Date: 07/02/18

SAMPLE RESULTS

Lab ID: L1824073-02 D Date Collected: 06/22/18 08:35

Client ID: MID AIR (6/22/18) Date Received: 06/25/18
Sample Location: 1801 FALMOUTH AVE., NEW HYDE PARK, Field Prep: Not Specified

NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 06/30/18 04:02

Analyst: RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Dichlorodifluoromethane	ND	2.00		ND	9.89			10
Chloromethane	ND	2.00		ND	4.13			10
Freon-114	ND	2.00		ND	14.0			10
Vinyl chloride	ND	2.00		ND	5.11			10
1,3-Butadiene	ND	2.00		ND	4.42			10
Bromomethane	ND	2.00		ND	7.77			10
Chloroethane	8.46	2.00		22.3	5.28			10
Ethanol	ND	50.0		ND	94.2			10
Vinyl bromide	ND	2.00		ND	8.74			10
Acetone	38.7	10.0		91.9	23.8			10
Trichlorofluoromethane	ND	2.00		ND	11.2			10
Isopropanol	ND	5.00		ND	12.3			10
1,1-Dichloroethene	2.44	2.00		9.67	7.93			10
Tertiary butyl Alcohol	ND	5.00		ND	15.2			10
Methylene chloride	ND	5.00		ND	17.4			10
3-Chloropropene	ND	2.00		ND	6.26			10
Carbon disulfide	ND	2.00		ND	6.23			10
Freon-113	ND	2.00		ND	15.3			10
trans-1,2-Dichloroethene	ND	2.00		ND	7.93			10
1,1-Dichloroethane	49.4	2.00		200	8.09			10
Methyl tert butyl ether	ND	2.00		ND	7.21			10
2-Butanone	ND	5.00		ND	14.7			10
cis-1,2-Dichloroethene	ND	2.00		ND	7.93			10

Dilution

ug/m3

Project Name: Lab Number: L1824073

Project Number: Report Date: **NEW HYDE PARK** 07/02/18

SAMPLE RESULTS

Lab ID: L1824073-02 D Date Collected: 06/22/18 08:35 Client ID: MID AIR (6/22/18)

Date Received: 06/25/18 Sample Location: 1801 FALMOUTH AVE., NEW HYDE PARK, Field Prep: Not Specified NY

ppbV

Sample Depth:

Factor RL Qualifier Results Results MDL **Parameter** RL MDL Volatile Organics in Air - Mansfield Lab Chloroform 5.03 2.00 24.6 9.77 10 Tetrahydrofuran ND 5.00 --ND --10 14.7 1,2-Dichloroethane ND 2.00 ND 8.09 10 n-Hexane 3.43 2.00 12.1 7.05 10 ----1,1,1-Trichloroethane 195 2.00 10 --1060 10.9 Benzene ND 2.00 ND 6.39 10 ----Carbon tetrachloride ND 2.00 ND 10 --12.6 --Cyclohexane ND 2.00 ND 6.88 10 1,2-Dichloropropane ND 2.00 --ND 9.24 10 --Bromodichloromethane ND 2.00 ND --13.4 --10 1,4-Dioxane ND 2.00 ND 7.21 10 --Trichloroethene 17.9 2.00 --96.2 10.7 --10 2,2,4-Trimethylpentane 2.19 2.00 10.2 9.34 10 Heptane ND 2.00 ND 8.20 10 cis-1,3-Dichloropropene ND 2.00 --ND 9.08 --10 4-Methyl-2-pentanone ND 5.00 ND 20.5 10 trans-1,3-Dichloropropene 2.00 ND --ND 9.08 --10 1,1,2-Trichloroethane ND 2.00 ND 10.9 10 Toluene 3.52 2.00 --13.3 7.54 --10 Dibromochloromethane ND 2.00 ND 17.0 10 ----1,2-Dibromoethane ND 2.00 ND 15.4 10

17.0

ND

ND

ND

ND

2.00

2.00

2.00

4.00

2.00

--

__

--

115

ND

ND

ND

ND

13.6

9.21

8.69

17.4

20.7

--

__

--

10

10

10

10

10

Tetrachloroethene

Chlorobenzene

Ethylbenzene

p/m-Xylene

Bromoform

Project Number: NEW HYDE PARK Report Date: 07/02/18

SAMPLE RESULTS

Lab ID: L1824073-02 D Date Collected: 06/22/18 08:35

Client ID: MID AIR (6/22/18) Date Received: 06/25/18
Sample Location: 1801 FALMOUTH AVE., NEW HYDE PARK, Field Prep: Not Specified

NY

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Styrene	ND	2.00		ND	8.52			10
1,1,2,2-Tetrachloroethane	ND	2.00		ND	13.7			10
o-Xylene	ND	2.00		ND	8.69			10
4-Ethyltoluene	ND	2.00		ND	9.83			10
1,3,5-Trimethylbenzene	ND	2.00		ND	9.83			10
1,2,4-Trimethylbenzene	ND	2.00		ND	9.83			10
1,3-Dichlorobenzene	ND	2.00		ND	12.0			10
1,4-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2,4-Trichlorobenzene	ND	2.00		ND	14.8			10
Hexachlorobutadiene	ND	2.00		ND	21.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	93		60-140

Project Number: NEW HYDE PARK Report Date: 07/02/18

SAMPLE RESULTS

Lab ID: L1824073-03 D Date Collected: 06/22/18 08:40

Client ID: EFFLUENT AIR (6/22/18) Date Received: 06/25/18
Sample Location: 1801 FALMOUTH AVE., NEW HYDE PARK, Field Prep: Not Specified

NY

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 06/30/18 03:26

Analyst: RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Dichlorodifluoromethane	0.786	0.667		3.89	3.30			3.333
Chloromethane	ND	0.667		ND	1.38			3.333
Freon-114	0.780	0.667		5.45	4.66			3.333
Vinyl chloride	0.670	0.667		1.71	1.71			3.333
1,3-Butadiene	ND	0.667		ND	1.48			3.333
Bromomethane	ND	0.667		ND	2.59			3.333
Chloroethane	11.7	0.667		30.9	1.76			3.333
Ethanol	17.5	16.7		33.0	31.5			3.333
Vinyl bromide	ND	0.667		ND	2.92			3.333
Acetone	18.3	3.33		43.5	7.91			3.333
Trichlorofluoromethane	ND	0.667		ND	3.75			3.333
Isopropanol	2.90	1.67		7.13	4.10			3.333
1,1-Dichloroethene	7.30	0.667		28.9	2.64			3.333
Tertiary butyl Alcohol	ND	1.67		ND	5.06			3.333
Methylene chloride	ND	1.67		ND	5.80			3.333
3-Chloropropene	ND	0.667		ND	2.09			3.333
Carbon disulfide	ND	0.667		ND	2.08			3.333
Freon-113	ND	0.667		ND	5.11			3.333
trans-1,2-Dichloroethene	2.43	0.667		9.63	2.64			3.333
1,1-Dichloroethane	171	0.667		692	2.70			3.333
Methyl tert butyl ether	ND	0.667		ND	2.40			3.333
2-Butanone	ND	1.67		ND	4.93			3.333
cis-1,2-Dichloroethene	5.82	0.667		23.1	2.64			3.333

06/22/18 08:40

Not Specified

06/25/18

Date Collected:

Date Received:

Field Prep:

Project Name: Lab Number: L1824073

Project Number: NEW HYDE PARK Report Date: 07/02/18

SAMPLE RESULTS

Lab ID: L1824073-03 D

Client ID: EFFLUENT AIR (6/22/18)

Sample Location: 1801 FALMOUTH AVE., NEW HYDE PARK,

NY

	ppbV ug/m3				Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Chloroform	17.5	0.667		85.5	3.26			3.333
Tetrahydrofuran	4.31	1.67		12.7	4.93			3.333
1,2-Dichloroethane	ND	0.667		ND	2.70			3.333
n-Hexane	ND	0.667		ND	2.35			3.333
1,1,1-Trichloroethane	81.8	0.667		446	3.64			3.333
Benzene	ND	0.667		ND	2.13			3.333
Carbon tetrachloride	ND	0.667		ND	4.20			3.333
Cyclohexane	ND	0.667		ND	2.30			3.333
1,2-Dichloropropane	ND	0.667		ND	3.08			3.333
Bromodichloromethane	ND	0.667		ND	4.47			3.333
1,4-Dioxane	ND	0.667		ND	2.40			3.333
Trichloroethene	ND	0.667		ND	3.58			3.333
2,2,4-Trimethylpentane	ND	0.667		ND	3.12			3.333
Heptane	ND	0.667		ND	2.73			3.333
cis-1,3-Dichloropropene	ND	0.667		ND	3.03			3.333
4-Methyl-2-pentanone	ND	1.67		ND	6.84			3.333
rans-1,3-Dichloropropene	ND	0.667		ND	3.03			3.333
1,1,2-Trichloroethane	ND	0.667		ND	3.64			3.333
Toluene	ND	0.667		ND	2.51			3.333
Dibromochloromethane	ND	0.667		ND	5.68			3.333
1,2-Dibromoethane	ND	0.667		ND	5.13			3.333
Tetrachloroethene	ND	0.667		ND	4.52			3.333
Chlorobenzene	ND	0.667		ND	3.07			3.333
Ethylbenzene	ND	0.667		ND	2.90			3.333
o/m-Xylene	ND	1.33		ND	5.78			3.333
Bromoform	ND	0.667		ND	6.90			3.333

06/22/18 08:40

Not Specified

06/25/18

Date Collected:

Date Received:

Field Prep:

Project Name: Lab Number: L1824073

Project Number: NEW HYDE PARK Report Date: 07/02/18

SAMPLE RESULTS

Lab ID: L1824073-03 D

Client ID: EFFLUENT AIR (6/22/18)

Sample Location: 1801 FALMOUTH AVE., NEW HYDE PARK,

NY

Sample Depun.								
		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Styrene	ND	0.667		ND	2.84			3.333
1,1,2,2-Tetrachloroethane	ND	0.667		ND	4.58			3.333
o-Xylene	ND	0.667		ND	2.90			3.333
4-Ethyltoluene	ND	0.667		ND	3.28			3.333
1,3,5-Trimethylbenzene	ND	0.667		ND	3.28			3.333
1,2,4-Trimethylbenzene	ND	0.667		ND	3.28			3.333
1,3-Dichlorobenzene	ND	0.667		ND	4.01			3.333
1,4-Dichlorobenzene	ND	0.667		ND	4.01			3.333
1,2-Dichlorobenzene	ND	0.667		ND	4.01			3.333
1,2,4-Trichlorobenzene	ND	0.667		ND	4.95			3.333
Hexachlorobutadiene	ND	0.667		ND	7.11			3.333

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	86		60-140

Project Name:Not SpecifiedLab Number:L1824073Project Number:NEW HYDE PARKReport Date:07/02/18

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/29/18 16:06

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab for samp	ole(s): 01-	-03 Batch:	: WG11313	318-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Chloroform	ND	0.200		ND	0.977			1

Project Name:Not SpecifiedLab Number:L1824073Project Number:NEW HYDE PARKReport Date:07/02/18

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/29/18 16:06

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	ole(s): 01-	-03 Batch	n: WG11313	18-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: Not Specified Lab Number: L1824073

Project Number: NEW HYDE PARK Report Date: 07/02/18

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 06/29/18 16:06

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01-	-03 Batcl	n: WG11313	18-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Not Specified

Project Number: NEW HYDE PARK

Lab Number:

L1824073

Report Date:

07/02/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch: WG113131	8-3				
Chlorodifluoromethane	89		-		70-130	-		
Propylene	95		-		70-130	-		
Propane	85		-		70-130	-		
Dichlorodifluoromethane	101		-		70-130	-		
Chloromethane	100		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	106		-		70-130	-		
Methanol	94		-		70-130	-		
Vinyl chloride	98		-		70-130	-		
1,3-Butadiene	108		-		70-130	-		
Butane	92		-		70-130	-		
Bromomethane	101		-		70-130	-		
Chloroethane	96		-		70-130	-		
Ethyl Alcohol	94		-		70-130	-		
Dichlorofluoromethane	120		-		70-130	-		
Vinyl bromide	103		-		70-130	-		
Acrolein	91		-		70-130	-		
Acetone	82		-		70-130	-		
Acetonitrile	90		-		70-130	-		
Trichlorofluoromethane	98		-		70-130	-		
iso-Propyl Alcohol	90		-		70-130	-		
Acrylonitrile	98		-		70-130	-		
Pentane	92		-		70-130	-		
Ethyl ether	97		-		70-130	-		

Project Name: Not Specified

Project Number: NEW HYDE PARK

Lab Number: L1824073

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch: WG113131	8-3				
1,1-Dichloroethene	98		-		70-130	-		
tert-Butyl Alcohol	102		-		70-130	-		
Methylene chloride	105		-		70-130	-		
3-Chloropropene	111		-		70-130	-		
Carbon disulfide	105		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	106		-		70-130	-		
trans-1,2-Dichloroethene	103		-		70-130	-		
1,1-Dichloroethane	95		-		70-130	-		
Methyl tert butyl ether	106		-		70-130	-		
Vinyl acetate	101		-		70-130	-		
2-Butanone	107		-		70-130	-		
cis-1,2-Dichloroethene	86		-		70-130	-		
Ethyl Acetate	109		-		70-130	-		
Chloroform	101		-		70-130	-		
Tetrahydrofuran	107		-		70-130	-		
2,2-Dichloropropane	98		-		70-130	-		
1,2-Dichloroethane	93		-		70-130	-		
n-Hexane	100		-		70-130	-		
Isopropyl Ether	99		-		70-130	-		
Ethyl-Tert-Butyl-Ether	98		-		70-130	-		
1,1,1-Trichloroethane	105		-		70-130	-		
1,1-Dichloropropene	99		-		70-130	-		
Benzene	96		-		70-130	-		

Project Name: Not Specified

Project Number: NEW HYDE PARK

Lab Number:

L1824073

07/02/18

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch: WG113131	8-3				
Carbon tetrachloride	105		-		70-130	-		
Cyclohexane	100		-		70-130	-		
Tertiary-Amyl Methyl Ether	105		-		70-130	-		
Dibromomethane	92		-		70-130	-		
1,2-Dichloropropane	98		-		70-130	-		
Bromodichloromethane	108		-		70-130	-		
1,4-Dioxane	107		-		70-130	-		
Trichloroethene	101		-		70-130	-		
2,2,4-Trimethylpentane	102		-		70-130	-		
Methyl Methacrylate	86		-		70-130	-		
Heptane	106		-		70-130	-		
cis-1,3-Dichloropropene	108		-		70-130	-		
4-Methyl-2-pentanone	113		-		70-130	-		
trans-1,3-Dichloropropene	96		-		70-130	-		
1,1,2-Trichloroethane	98		-		70-130	-		
Toluene	103		-		70-130	-		
1,3-Dichloropropane	100		-		70-130	-		
2-Hexanone	119		-		70-130	-		
Dibromochloromethane	119		-		70-130	-		
1,2-Dibromoethane	105		-		70-130	-		
Butyl Acetate	108		-		70-130	-		
Octane	96		-		70-130	-		
Tetrachloroethene	102		-		70-130	-		

Project Name: Not Specified

Project Number: NEW HYDE PARK

Lab Number: L1824073

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-03	Batch: WG11313	18-3				
1,1,1,2-Tetrachloroethane	103		-		70-130	-		
Chlorobenzene	100		-		70-130	-		
Ethylbenzene	102		-		70-130	-		
p/m-Xylene	102		-		70-130	-		
Bromoform	119		-		70-130	-		
Styrene	103		-		70-130	-		
1,1,2,2-Tetrachloroethane	113		-		70-130	-		
o-Xylene	107		-		70-130	-		
1,2,3-Trichloropropane	100		-		70-130	-		
Nonane (C9)	100		-		70-130	-		
Isopropylbenzene	104		-		70-130	-		
Bromobenzene	99		-		70-130	-		
o-Chlorotoluene	99		-		70-130	-		
n-Propylbenzene	102		-		70-130	-		
p-Chlorotoluene	101		-		70-130	-		
4-Ethyltoluene	113		-		70-130	-		
1,3,5-Trimethylbenzene	101		-		70-130	-		
tert-Butylbenzene	110		-		70-130	-		
1,2,4-Trimethylbenzene	120		-		70-130	-		
Decane (C10)	105		-		70-130	-		
Benzyl chloride	142	Q	-		70-130	-		
1,3-Dichlorobenzene	113		-		70-130	-		
1,4-Dichlorobenzene	113		-		70-130	-		

Project Name: Not Specified

Project Number: NEW HYDE PARK

Lab Number:

L1824073

Report Date:

07/02/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	ociated sample(s):	01-03	Batch: WG113131	8-3				
sec-Butylbenzene	108		-		70-130	-		
p-Isopropyltoluene	103		-		70-130	-		
1,2-Dichlorobenzene	113		-		70-130	-		
n-Butylbenzene	113		-		70-130	-		
1,2-Dibromo-3-chloropropane	114		-		70-130	-		
Undecane	106		-		70-130	-		
Dodecane (C12)	106		-		70-130	-		
1,2,4-Trichlorobenzene	112		-		70-130	-		
Naphthalene	104		-		70-130	-		
1,2,3-Trichlorobenzene	104		-		70-130	-		
Hexachlorobutadiene	115		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: Not Specified

Project Number: NEW HYDE PARK

Lab Number: L1824073

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG1131318-5	QC Sample:	L1824073-0	2 Client ID:	MID AIR (6/22/18)
Dichlorodifluoromethane	ND	ND	ppbV	NC		25
Chloromethane	ND	ND	ppbV	NC		25
Freon-114	ND	ND	ppbV	NC		25
Vinyl chloride	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	8.46	9.00	ppbV	6		25
Ethanol	ND	ND	ppbV	NC		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	38.7	38.6	ppbV	0		25
Trichlorofluoromethane	ND	ND	ppbV	NC		25
Isopropanol	ND	ND	ppbV	NC		25
1,1-Dichloroethene	2.44	2.47	ppbV	1		25
Tertiary butyl Alcohol	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
Freon-113	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	49.4	49.0	ppbV	1		25
Methyl tert butyl ether	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

Project Name: Not Specified

Project Number: NEW HYDE PARK

Lab Number:

L1824073

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG1131318-5	QC Sample:	L1824073-0	2 Client ID: MID AIR (6/22/18)
2-Butanone	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Chloroform	5.03	5.04	ppbV	0	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	3.43	3.52	ppbV	3	25
1,1,1-Trichloroethane	195	194	ppbV	1	25
Benzene	ND	ND	ppbV	NC	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	17.9	18.2	ppbV	2	25
2,2,4-Trimethylpentane	2.19	2.18	ppbV	0	25
Heptane	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	3.52	3.63	ppbV	3	25

Lab Duplicate Analysis Batch Quality Control

Project Name: Not Specified

Project Number: NEW HYDE PARK

Lab Number:

L1824073

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-03	QC Batch ID: WG1131318-5	QC Sample:	L1824073-02	Client ID:	MID AIR (6/22/18)
Dibromochloromethane	ND	ND	ppbV	NC		25
1,2-Dibromoethane	ND	ND	ppbV	NC		25
Tetrachloroethene	17.0	17.2	ppbV	1		25
Chlorobenzene	ND	ND	ppbV	NC		25
Ethylbenzene	ND	ND	ppbV	NC		25
p/m-Xylene	ND	ND	ppbV	NC		25
Bromoform	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	ND	ND	ppbV	NC		25
4-Ethyltoluene	ND	ND	ppbV	NC		25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC		25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25

Project Name: Lab Number: L1824073

Project Number: NEW HYDE PARK Report Date: 07/02/18

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk		Flow In mL/min	% RPD
L1824073-01	RAW AIR (6/22/18)	949	6.0L Can	06/21/18	268317	L1822954-02	Pass	-29.3	-4.4	-	-	-	-
L1824073-02	MID AIR (6/22/18)	1691	6.0L Can	06/21/18	268317	L1823140-02	Pass	-29.3	-2.4	-	-	-	
L1824073-03	EFFLUENT AIR (6/22/18)	1841	6.0L Can	06/21/18	268317	L1822954-03	Pass	-29.3	-4.2	-	-	-	-

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/02/18

Air Canister Certification Results

Lab ID: Date Collected: 06/18/18 16:00

Client ID: CAN 949 SHELF 47 Date Received: 06/19/18
Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 06/19/18 18:07

Analyst: RY

		ppbV			ug/m3				
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfiel	d Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1	
Propylene	ND	0.500		ND	0.861			1	
Propane	ND	0.500		ND	0.902			1	
Dichlorodifluoromethane	ND	0.200		ND	0.989			1	
Chloromethane	ND	0.200		ND	0.413			1	
Freon-114	ND	0.200		ND	1.40			1	
Methanol	ND	5.00		ND	6.55			1	
Vinyl chloride	ND	0.200		ND	0.511			1	
1,3-Butadiene	ND	0.200		ND	0.442			1	
Butane	ND	0.200		ND	0.475			1	
Bromomethane	ND	0.200		ND	0.777			1	
Chloroethane	ND	0.200		ND	0.528			1	
Ethanol	ND	5.00		ND	9.42			1	
Dichlorofluoromethane	ND	0.200		ND	0.842			1	
Vinyl bromide	ND	0.200		ND	0.874			1	
Acrolein	ND	0.500		ND	1.15			1	
Acetone	ND	1.00		ND	2.38			1	
Acetonitrile	ND	0.200		ND	0.336			1	
Trichlorofluoromethane	ND	0.200		ND	1.12			1	
Isopropanol	ND	0.500		ND	1.23			1	
Acrylonitrile	ND	0.500		ND	1.09			1	
Pentane	ND	0.200		ND	0.590			1	
Ethyl ether	ND	0.200		ND	0.606			1	
1,1-Dichloroethene	ND	0.200		ND	0.793			1	

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/02/18

Air Canister Certification Results

Lab ID: L1822954-02

Client ID: CAN 949 SHELF 47

Date Collected: 06/18/18 16:00
Date Received: 06/19/18

Sample Location:

Field Prep: Not Specified

Sample Deptn:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
,2-Dichloropropane	ND	0.200		ND	0.924			1

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/02/18

Air Canister Certification Results

Lab ID: L1822954-02

Client ID: CAN 949 SHELF 47

Sample Location:

Date Collected: 06/18/18 16:00 Date Received: 06/19/18

Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1

L1822954

06/18/18 16:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1822954-02

Date Collected: Client ID: CAN 949 SHELF 47 Date Received:

Sample Location:

06/19/18 Field Prep: Not Specified

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L1822954

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1822954-02

Date Collected: 06/18/18 16:00 Client ID: **CAN 949 SHELF 47** Date Received: 06/19/18

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	81		60-140

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/02/18

Air Canister Certification Results

Lab ID: L1822954-02 Date Collected: 06/18/18 16:00

Client ID: CAN 949 SHELF 47 Date Received: 06/19/18

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 06/19/18 18:07

Analyst: RY

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
sfield Lab							
ND	0.200		ND	0.989			1
ND	0.200		ND	0.413			1
ND	0.050		ND	0.349			1
ND	0.020		ND	0.051			1
ND	0.020		ND	0.044			1
ND	0.020		ND	0.078			1
ND	0.100		ND	0.264			1
ND	1.00		ND	2.38			1
ND	0.050		ND	0.281			1
ND	0.500		ND	1.09			1
ND	0.020		ND	0.079			1
ND	0.500		ND	1.74			1
ND	0.050		ND	0.383			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.081			1
ND	0.200		ND	0.721			1
ND	0.500		ND	1.47			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.098			1
ND	0.020		ND	0.081			1
ND	0.020		ND	0.109			1
ND	0.100		ND	0.319			1
ND	0.020		ND	0.126			1
ND	0.020		ND	0.092			1
	Sfield Lab ND ND ND ND ND ND ND ND ND N	ND 0.200 ND 0.200 ND 0.050 ND 0.020 ND 0.020 ND 0.020 ND 0.100 ND 1.00 ND 0.500 ND 0.500 ND 0.500 ND 0.050 ND 0.050 ND 0.020 ND 0.020	Results RL MDL sfield Lab ND 0.200 ND 0.200 ND 0.050 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.100 ND 0.050 ND 0.500 ND 0.020 ND 0.050 ND 0.020 ND 0.020 ND 0.020	Results RL MDL Results sfield Lab ND 0.200 ND ND 0.200 ND ND 0.050 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.100 ND ND 0.050 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 <td>Results RL MDL Results RL Sfield Lab ND 0.989 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 1.00 ND 0.264 ND 1.00 ND 0.281 ND 0.050 ND 0.281 ND 0.500 ND 1.09 ND 0.500 ND 0.079 ND 0.050 ND 0.383 ND 0.020 ND 0.079 ND 0.020 ND 0.072 ND</td> <td>Results RL MDL Results RL MDL Sfield Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 0.100 ND 0.281 ND 0.050 ND 0.079 ND 0.500 ND 0.079 ND 0.050 ND 0.079 <t< td=""><td>Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989 </td></t<></td>	Results RL MDL Results RL Sfield Lab ND 0.989 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 1.00 ND 0.264 ND 1.00 ND 0.281 ND 0.050 ND 0.281 ND 0.500 ND 1.09 ND 0.500 ND 0.079 ND 0.050 ND 0.383 ND 0.020 ND 0.079 ND 0.020 ND 0.072 ND	Results RL MDL Results RL MDL Sfield Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 0.100 ND 0.281 ND 0.050 ND 0.079 ND 0.500 ND 0.079 ND 0.050 ND 0.079 <t< td=""><td>Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989 </td></t<>	Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1822954-02

Date Collected: 06/18/18 16:00 Client ID: **CAN 949 SHELF 47** Date Received: 06/19/18

Sample Location:

Field Prep: Not Specified

	<u> </u>	ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/02/18

Air Canister Certification Results

Lab ID: L1822954-02

Client ID: CAN 949 SHELF 47

Sample Location:

Date Collected:

Lab Number:

06/18/18 16:00

Date Received:

06/19/18

L1822954

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	86		60-140

L1822954

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/02/18

Air Canister Certification Results

Lab ID: L1822954-03

Date Collected: 06/18/18 16:00 Client ID: **CAN 1841 SHELF 48** Date Received: 06/19/18

Sample Location:

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 06/19/18 18:39

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1822954-03

Date Collected: 06/18/18 16:00 Client ID: CAN 1841 SHELF 48 Date Received: 06/19/18

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1822954-03

Date Collected: 06/18/18 16:00 Client ID: CAN 1841 SHELF 48 Date Received: 06/19/18

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1822954-03

Date Collected: 06/18/18 16:00 Client ID: **CAN 1841 SHELF 48** Date Received: 06/19/18

Sample Location: Field Prep: Not Specified

оатріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1822954

Project Number: CANISTER QC BAT **Report Date:**

07/02/18

Air Canister Certification Results

Lab ID: L1822954-03

Client ID: **CAN 1841 SHELF 48** Date Collected: Date Received: 06/18/18 16:00

06/19/18

Field Prep:

Not Specified

Sample Depth:

Sample Location:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	83		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	76		60-140

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/02/18

Air Canister Certification Results

Lab ID: L1822954-03

Date Collected: 06/18/18 16:00 Client ID: **CAN 1841 SHELF 48** Date Received: 06/19/18

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 06/19/18 18:39

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1822954-03

Date Collected: 06/18/18 16:00 Client ID: CAN 1841 SHELF 48 Date Received: 06/19/18

Sample Location:

Field Prep: Not Specified

Sample Deptil.		nnh\/			ug/m3			
Parameter	Results	ppbV RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air by SIM - M			IIIDE					
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

L1822954

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1822954-03

Date Collected: 06/18/18 16:00 Client ID: CAN 1841 SHELF 48 Date Received: 06/19/18

Sample Location: Field Prep: Not Specified

Campic Dopin.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	80		60-140

L1823140

07/02/18

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date:

Air Canister Certification Results

Lab ID: L1823140-02

Date Collected: 06/19/18 16:00 Client ID: CAN 1691 SHELF 57 Date Received: 06/20/18

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 06/20/18 09:07 Analytical Date:

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L1823140

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1823140-02

Date Collected: 06/19/18 16:00 Client ID: CAN 1691 SHELF 57 Date Received: 06/20/18

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1

L1823140

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1823140-02

Date Collected: 06/19/18 16:00 Client ID: CAN 1691 SHELF 57 Date Received: 06/20/18

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1

L1823140

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1823140-02

Date Collected: 06/19/18 16:00 Client ID: CAN 1691 SHELF 57 Date Received: 06/20/18

Sample Location: Field Prep: Not Specified

оатріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L1823140

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1823140-02

Date Collected: 06/19/18 16:00 Client ID: CAN 1691 SHELF 57 Date Received: 06/20/18

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	83		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	82		60-140

L1823140

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 07/02/18

Air Canister Certification Results

Lab ID: L1823140-02

Date Collected: 06/19/18 16:00 Client ID: CAN 1691 SHELF 57 Date Received: 06/20/18

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 06/20/18 09:07

Analyst: RY

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
sfield Lab							
ND	0.200		ND	0.989			1
ND	0.200		ND	0.413			1
ND	0.050		ND	0.349			1
ND	0.020		ND	0.051			1
ND	0.020		ND	0.044			1
ND	0.020		ND	0.078			1
ND	0.100		ND	0.264			1
ND	1.00		ND	2.38			1
ND	0.050		ND	0.281			1
ND	0.500		ND	1.09			1
ND	0.020		ND	0.079			1
ND	0.500		ND	1.74			1
ND	0.050		ND	0.383			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.081			1
ND	0.200		ND	0.721			1
ND	0.500		ND	1.47			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.098			1
ND	0.020		ND	0.081			1
ND	0.020		ND	0.109			1
ND	0.100		ND	0.319			1
ND	0.020		ND	0.126			1
ND	0.020		ND	0.092			1
	Sfield Lab ND ND ND ND ND ND ND ND ND N	ND 0.200 ND 0.200 ND 0.050 ND 0.020 ND 0.020 ND 0.020 ND 0.100 ND 1.00 ND 0.500 ND 0.500 ND 0.500 ND 0.050 ND 0.050 ND 0.020 ND 0.020	Results RL MDL sfield Lab ND 0.200 ND 0.200 ND 0.050 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.100 ND 0.050 ND 0.050 ND 0.020 ND 0.0500 ND 0.020 ND 0.020 ND 0.02	Results RL MDL Results sfield Lab ND 0.200 ND ND 0.200 ND ND 0.050 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.100 ND ND 0.050 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 <td>Results RL MDL Results RL Sfield Lab ND 0.989 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 1.00 ND 0.264 ND 1.00 ND 0.281 ND 0.050 ND 0.281 ND 0.500 ND 1.09 ND 0.500 ND 0.079 ND 0.050 ND 0.383 ND 0.020 ND 0.079 ND 0.020 ND 0.072 ND</td> <td>Results RL MDL Results RL MDL Sfield Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 0.100 ND 0.281 ND 0.050 ND 0.079 ND 0.500 ND 0.079 ND 0.050 ND 0.079 <t< td=""><td>Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989 </td></t<></td>	Results RL MDL Results RL Sfield Lab ND 0.989 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 1.00 ND 0.264 ND 1.00 ND 0.281 ND 0.050 ND 0.281 ND 0.500 ND 1.09 ND 0.500 ND 0.079 ND 0.050 ND 0.383 ND 0.020 ND 0.079 ND 0.020 ND 0.072 ND	Results RL MDL Results RL MDL Sfield Lab ND 0.200 ND 0.989 ND 0.200 ND 0.413 ND 0.050 ND 0.349 ND 0.050 ND 0.051 ND 0.020 ND 0.051 ND 0.020 ND 0.044 ND 0.020 ND 0.044 ND 0.020 ND 0.078 ND 0.100 ND 0.264 ND 0.100 ND 0.281 ND 0.050 ND 0.079 ND 0.500 ND 0.079 ND 0.050 ND 0.079 <t< td=""><td>Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989 </td></t<>	Results RL MDL Results RL MDL Qualifier Sfield Lab ND 0.200 ND 0.989

L1823140

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1823140-02

Date Collected: 06/19/18 16:00 Client ID: CAN 1691 SHELF 57 06/20/18 Date Received:

Sample Location: Field Prep: Not Specified

Sample Depth:		Vdqq			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
etrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

L1823140

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION**

Project Number: CANISTER QC BAT **Report Date:** 07/02/18

Air Canister Certification Results

Lab ID: L1823140-02

Date Collected: 06/19/18 16:00 Client ID: CAN 1691 SHELF 57 Date Received: 06/20/18

Sample Location: Field Prep: Not Specified

• •		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	/lansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	84		60-140

Lab Number: L1824073 **Project Number:** NEW HYDE PARK

Report Date: 07/02/18

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Not Specified

Cooler Information

Project Name:

Custody Seal Cooler

N/A Absent

Container Information			Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1824073-01A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
	L1824073-02A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30)
	L1824073-03A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30)

Project Name:Not SpecifiedLab Number:L1824073Project Number:NEW HYDE PARKReport Date:07/02/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:Not SpecifiedLab Number:L1824073Project Number:NEW HYDE PARKReport Date:07/02/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:Not SpecifiedLab Number:L1824073Project Number:NEW HYDE PARKReport Date:07/02/18

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 1/8/2018 4:15:49 PM

ID No.:17873

Revision 11

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

Page 1 of 1

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

320 Forbes Blvd.	AIR A CHAIN OF CUSTODY Mansfield, MA 02048	NALYSIS Project Information					Date Rec'd in Lab: 60618 Report Information - Data Deliverables						ALPHA Job #: L1824073 Billing Information				
TEL: 508-822-93	300 FAX: 508-822-3288	Project Name:			DF	DFAX						☐ Same as Client info PO#:					
PlainV	John Consultants Outurn Street Lew Ny 11803	Project Location: 1801. Falmouth Aug Project & New Hyde Park NY Project Manager: ALPHA Quote #: Turn-Around Time				Ø A	Other Formats: EMAIL (standard pdf report) Additional Deliverables: Report to: (if otherest than Project Manager)						Regulatory Requirements/Report Lin State/Fed Program Res / Con				
Email TP(0)	have been previously analyzed by Alpha Specific Requirements/Comr ic Target Compound List:		mns B			Ве	Fille	d O	ut			SIM.	D CH WARRANT S	LYSIS			
(Lab Use Only)	Sample ID	End Date St	COLLECT art Time End T	ION Initial me Vacuum	Final Vacuum	Sample Matrix*	Sampler			I D - Flo	70.75	APH SIM	Sullings & Marc	Sample 0	Comments (i.e. Pli		
.02	Mid Air (6/20/18) Mid Air (6/20/18) EFFLUENT AIR (6/20/18)	Gladus - Gladus -	29 -4	830 83C 840	830	5v 5v	77 79 79	6L 6L	10	Na Na Na	XX						
*SAMPLI	E MATRIX CODES SV Oth	= Ambient Air = Soil Vapor/L er = Please Spec Relinquished		of Online	Time	X		ved By:	AL	C. 2	25		3;23	logged in and clock will not guittes are re			