

Third Quarter 2019 Quarterly Monitoring Report Former Zoe Chemical Site 1801 Falmouth Avenue New Hyde Park, New York Site No. 1-30-211

October 2019

Prepared for:

SEABOARD ESTATES, INC. c/o BEVERIDGE & DIAMOND, LLC 477 Madison Avenue, 15th Floor New York, NY 10022-5802

and

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12207

Prepared by:

CA RICH CONSULTANTS, INC. 17 Dupont Street Plainview, NY 11803-1614

e-mail: jproscia@carichinc.com

October 9, 2019

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12207

Attention: Brian Jankauskas, Project Manager

Re: Quarterly Monitoring Report—Third Quarter 2019 Former Zoe Chemical Site 1801 Falmouth Avenue, New Hyde Park, N.Y. <u>NYSDEC Site No.: 1-30-211</u>

Dear Mr. Jankauskas:

Attached is a copy of our Third Quarter 2019, Quarterly Monitoring Report for the abovereferenced Site. The Site currently operates a soil vapor extraction system (SVE) which treats the exhausted air with activated carbon. The system was started-up on September 27, 2016 and has been operating since that time.

The next quarterly system sampling and measurements are planned for December 2019.

If there are any questions regarding this report, please do not hesitate to call our office.

Sincerely,

CA RICH CONSULTANTS, INC.

ssica Prosida

Jessica Proscia Project Manager

cc: see attached distribution

Distribution List

1801 Falmouth Avenue, New Hyde Park, NY - NYSDEC Site #1-30-211

Brian Jankauskas NYSDEC Brian.jankauskas@dec.ny.gov

Mark Sergott New York State Department of Health Mark.sergott@health.ny.gov

Alali Tamuno, Esq. NYSDEC Alali.tamuno@dec.ny.gov

Michael Murphy, Esq. Beveridge & Diamond, P.C. mmurphy@bdlaw.com

John Paul, Esq. Beveridge & Diamond, P.C. jpaul@bdlaw.com

Laurence Gordon Seaboard Estates, Inc. fmrc@optonline.net

Charlotte Bethoney New York State Department of Health Charlotte.bethoney@health.ny.gov

TABLE OF CONTENTS

Sectior	1	Page
1.0	INTRODUCTION	1
2.0	OPERATIONAL HISTORY OF THE REMEDIATION SYSTEM	3
3.0	SYSTEM MONITORING PROCEDURES AND RESULTS	4
4.0	REMEDIATION SYSTEM EQUIPMENT TERMINATION CRITERIA	5
5.0	CONCLUSIONS	6
	REFERENCES	7

FIGURES

- 1. Site Location Map
- 2. Site Plan
- 3. Location of Former Cesspools
- 4. Previous Groundwater Sample Locations
- 5. Previous Soil Sample Locations
- 6. Previous Soil Vapor Sample Locations
- 7. System Layout

TABLES and DATA PLOTS

- 1. System Data Log Field Form
- 2. Summary of System Analytical Data for Untreated Air
- 3. Summary of System Analytical Data for Mid-Carbon Air
- 4. Summary of System Analytical Data for Treated Air
- 5. Mass Calculation Removals for 1,1,1 TCA
- 6. Maintenance Log

APPENDICES

- A. Monthly Progress Reports
- B. Laboratory Data for System Air Samples

Third Quarter 2019 Former Zoe Chemical Site Site No.: 1-30-211

Third Quarter 2019 Quarterly Monitoring Report Former Zoe Chemical Site 1801 Falmouth Avenue New Hyde Park, New York NYSDEC Site No.: 1-30-211

1.0 INTRODUCTION

The following Quarterly Monitoring Report (the Report) has been prepared by CA RICH Consultants, Inc. (CA RICH) for the Former Zoe Chemical Site located at 1801 Falmouth Avenue, New Hyde Park, New York (Figure 1) on behalf of Seaboard Estates, Inc. in accordance with Order on Consent Agreement Index No. W1-1165-12-06. This Report addresses the remediation of the soil vapor beneath the Former Zoe Chemical Site. The goal of this Report is to describe the progress of the on-site soil vapor remediation program at the Former Zoe Chemical Site, which is illustrated on the Site Plan (Figure 2).

1.1 Contaminants of Concern

For the purposes of this Quarterly Monitoring Report, the Contaminants Of Concern (COCs) are Volatile Organic Compounds (VOCs) and include 1,1,1-trichloroethane (TCA) and its degradation products.

1.2 Former Source Areas

As discussed in the Site Characterization Report, (Ref. 1), the primary source suspected for a possible release is the former cesspool(s) that serviced the building prior to Zoe Chemical's connection to municipal sewers in June 1987. Figure 3 of this document illustrates the locations of these suspected former source areas.

1.3 Previous Groundwater Investigations

Four permanent on-Site groundwater monitoring wells were installed in April 2013 as part of the Site Characterization (Ref. 1). The results of the analysis of these samples indicated that the highest contamination occurred in monitoring well MW-4 for TCA at a concentration of 962 ug/l (ppb). The compound perchloroethene (PCE) was detected at 8.0 ug/L in MW-2 and 13.2 ug/L in MW-4. Both MW-1 and MW-4 are located on the eastern half of the Site.

A map illustrating the locations of previous groundwater samples is included on Figure 4.

1.4 Previous Soil Investigations

Interior and exterior soil borings were installed in April, September and October 2013 as part of the Site Characterization (Ref. 1). The soil sampling performed during this investigation did not reveal detections of TCA above Part 375 Commercial Soil Cleanup Objectives (SCOs) either below the floor of the building or in the subject Property lot. No other VOCs or Semi-Volatile Organic Compounds (SVOCs) exceeded their respective Part 375 Commercial SCOs. There were exceedances of pesticides and metals that were identified exceeding their Part 375 Commercial SCOs, which were found in the soil located within the area of the former cesspool. A map illustrating the locations of all the soil boring locations is included on Figure 5.

1.5 Previous Soil Vapor Investigation

Four exterior soil vapor points (SV-1 through SV-4) were installed to eight feet below grade in the eastern parking lot of the Property in September 2013 as part of the Site Characterization (Ref. 1). The results of the soil vapor sampling indicated that the concentration of TCA ranged from 11 ug/m³ in SV-3 to 3,260 ug/m³ in SV-4. Acetone, benzene, chloromethane, cyclohexane, dichlorodifluoromethane, ethanol, ethylbenzene, ethyl acetate, 4-ethyltoluene, heptane, hexane, isopropyl alcohol, methyl ethyl ketone, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,2,4-tremethylpentane, tetrachloroethylene, tetrahydrofuran, toluene, trichloroethylene, trichlorofluoromethane, m & p-xylene, and o-xylene were detected at low concentrations in the indoor air sample. Additionally, similar compounds were detected in the ambient air. TCA was not detected in the ambient air sample.

Four interior sub-slab soil vapor points (SSV-1 through SSV-4) were installed in September 2013 as part of the Site Characterization (Ref. 1). The results for the sub-slab vapor were compared to the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York. The concentration of TCA in SSV-1 was 182,000 ug/m³ and SSV-2 was 18,800 ug/m³, which according to the NYSDOH Decision Matrices are both in the "Mitigation" range. The sub-slab vapor at the SSV-3 location contained a TCA concentration of 31 ug/m³, which is in the "No Further Action" range. Additionally, the sub-slab vapor concentration of TCA in SSV-4 was 400 ug/m³, which is in the "Monitor" range.

A map illustrating the locations of all the interior sub-slab soil vapor points and exterior soil vapor points are included on Figure 6.

1.6 Former Sanitary System Sampling

The former sanitary system was investigated in April 2013 as part of the Site Characterization (Ref. 1). Once the covers were removed, the two 7-foot diameter pools, designated S-1 and S-2 were investigated and found to contain solid bottoms and were likely used as holding tanks. However, as the perched water sample contained detections of contaminants similar to those detected in the soil from the sanitary structures some degree of leakage from the pools may have occurred. On April 25, 2013 a Geoprobe drilling system was utilized to obtain a sample from each of the pools. The Geoprobe drilling identified a solid bottom in sanitary pool S-1 at seven feet and at five feet in S-2. The structures appear to have been backfilled with soil, and therefore, observations detailing the bottom of the structures could not be made. One sample was obtained from each of the pools at the deepest depth above the pool bottoms and sent to the laboratory for analysis. The results indicated that no VOCs were detected exceeding their Part 375 commercial use SCOs in S-1 or S-2. However, S-1 contained ethylbenzene, toluene, and xylenes. S-2 (the pool closest to the building) contained TCA at a concentration of 1,110 ug/kg.

In February 2015, the former cesspools were removed. During this activity, the western pool was found to contain a solid bottom (septic tank), whereas the eastern pool contained perforated walls and a sediment bottom (leaching pool). Confirmatory endpoint samples were collected from the excavation. The endpoint samples were acceptable and the excavation was backfilled with clean quarry sand.

A map illustrating the locations of all the former sanitary systems is included on Figure 3.

2.0 OPERATIONAL HISTORY OF THE REMEDIATION SYSTEM

Installation of the remediation system began in August 2016 and was completed in September 2016. A start-up test was conducted on September 21, 2016. The system was activated and baseline vacuum, flow, and samples were collected. The system was operating properly at the time, but was turned off upon departure.

The components of the system consist of three SVE wells (SVE-1, SVE-2, and SVE-3) located in the parking area to the east of the building and three sub-slab depressurization vents (SSD-4, SSD-5, and SSD-6) located within the building. A detailed description of the system is included in the Construction Completion Report – Part B, (Ref. 2); and system layout drawing is included as Figure 7.

The soil vapor is extracted using an Airtech® Vacuum 4.62 HP regenerative blower located in the storage room within the building. The soil vapor passes through a moisture knock-out drum, into the blower and flows through two vapor-phase carbon drums located in the storage room. The treated air is discharged through a 4-inch PVC pipe that extends above the roof.

The SVE blower has remained in continuous operation since September 27, 2016 to the presentday with the exception of periodic equipment repairs and carbon change-outs as outlined on the maintenance log detailed in Table 6.

Prior work completed at the Site is summarized on the attached monthly progress reports included in Appendix A.

3.0 SYSTEM MONITORING PROCEDURES AND RESULTS

The system is equipped with gauges and meters that are designed to directly measure flow, vacuum and system run time. Flow and temperature readings are manually collected from the system and PID readings are collected from the pre-carbon, mid-carbon, and post-carbon sampling ports. There are three exterior SVE points and three interior SSD points. Vacuum and flow readings are collected directly from well heads at the SVE points and from the riser at the SSD points. The data acquired during the quarterly monitoring events along with system uptime is summarized on Table 1. The following summarizes the system data acquired during the most recent (September 2019) monitoring event.

September 2019

Vent/Well	Vacuum (inches of water)	Flow (scfm)
SVE-1	-11.0	15.0
SVE-2	-11.0	8.0
SVE-3	-11.0	5.0
SSD-4	-11.0	32
SSD-5	-11.0	22
SSD-6	-11.0	55
System	-30	114

System Hour Meter = 23,644 hours at 9:01 System influent temperature = 83.3°F System effluent temperature = 97.8°F Pre-carbon = 0.0 ppm Mid-carbon = 0.0 ppm Post-carbon = 0.0 ppm

3.1 System Sampling

The system is equipped with two 55-gallon drums that contain activated carbon used to treat the soil vapor. Three sample ports were installed within the system piping to collect soil vapor samples for laboratory analysis. One sample port is located on the PVC pipe prior to the first carbon treatment drum, and is identified as the "Untreated Soil Vapor" sample. The second sample port is located on the PVC pipe that connects the first carbon drum to the second carbon drum, and is identified as the "Mid-Carbon" sample. The third and final sample port is located on the PVC vent pipe located up-flow of the second carbon drum, and is identified as the "Treated Soil Vapor" sample. Each of these three soil vapor samples are collected using a six-liter SUMMA canister that is setup to collect a grab sample. In addition, PID readings are measured from each sample port using a 11.7 ev bulb. A copy of the laboratory data is included as Appendix B

Untreated Soil Vapor – The first soil vapor sample collected from the system was conducted on September 21, 2016. The initial untreated soil vapor sample contained a TCA concentration of 87,800 ug/m³. At the end of the fourth quarter 2016, the concentration of TCA was 8,350 ug/m³. At the end of the fourth quarter 2017, the concentration of TCA was 1,630 ug/m³. At the end of the fourth quarter 2018, the concentration of TCA was 693 ug/m³. The most recent sample collected on September 13, 2019, detected a TCA concentration of 726 ug/m³.

Results of the untreated soil vapor sampling program are summarized on Table 2. In addition, plots of the laboratory results versus days in operation are included.

Third Quarter 2019 Former Zoe Chemical Site Site No.: 1-30-211

Mid-Carbon Soil Vapor – This sample is used to determine when breakthrough occurs at the first carbon drum, which in turn provides sufficient information to determine when the carbon drums should be replaced. The third quarter 2019 mid-carbon sample was collected on September 13, 2019 and detected a TCA concentration of 2,100 ug/m³. Results of the mid-carbon sampling are summarized on Table 3.

Treated Soil Vapor – A treated soil vapor sample was also collected on September 13, 2019 using a SUMMA canister. The sample detected a TCA concentration of <1.09 ug/m³. A summary of the laboratory data is summarized on Table 4.

Mass Removal Calculations – The initial TCA concentration at the system startup date (September 21, 2016) equaled 87,800 ug/m³ for the influent sample port. The TCA concentration at the end of the second quarter 2019 was 1,000 ug/m³. Based upon the measured discharge rate and a linear interpretation of the TCA concentration in the untreated soil vapor, the mass of TCA removed from June 24, 2019 to September 13, 2019 is estimated to be 1.30 pounds and the amount of TCA removed to date equals 71.60 pounds. A summary of TCA removal by the system is included on Table 5.

4.0 REMEDIATION SYSTEM EQUIPMENT TERMINATION CRITERIA

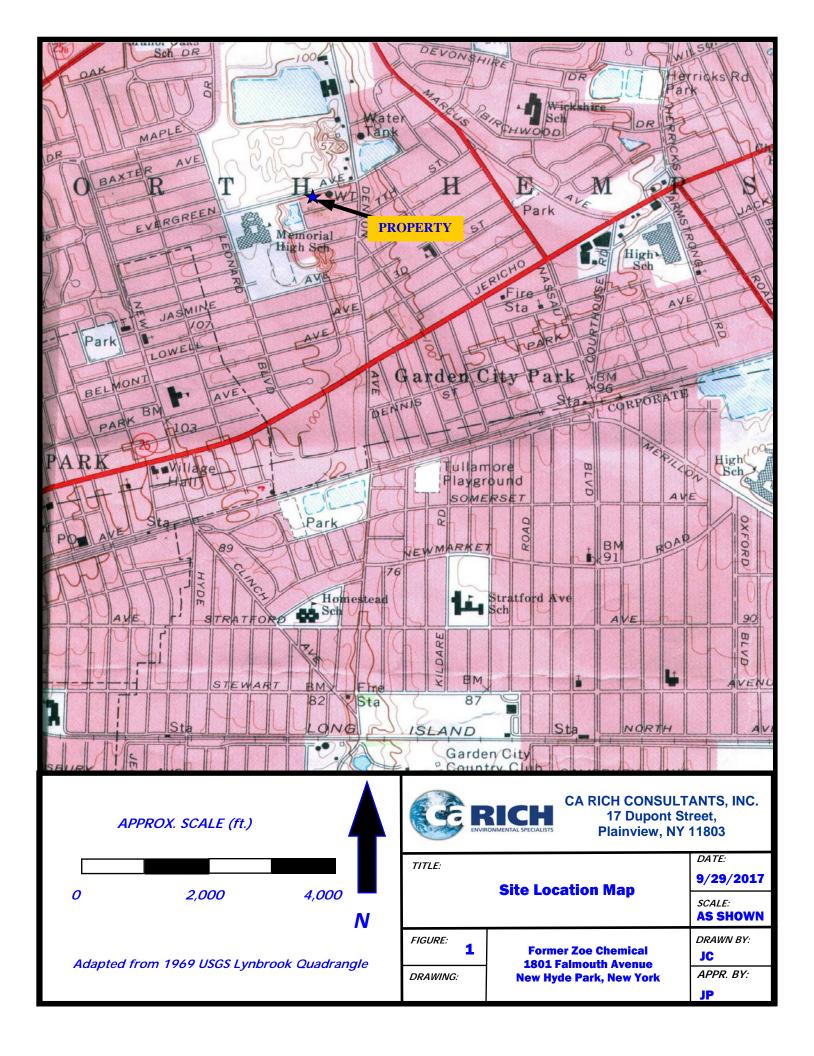
4.1 SVE Unit Termination Criteria

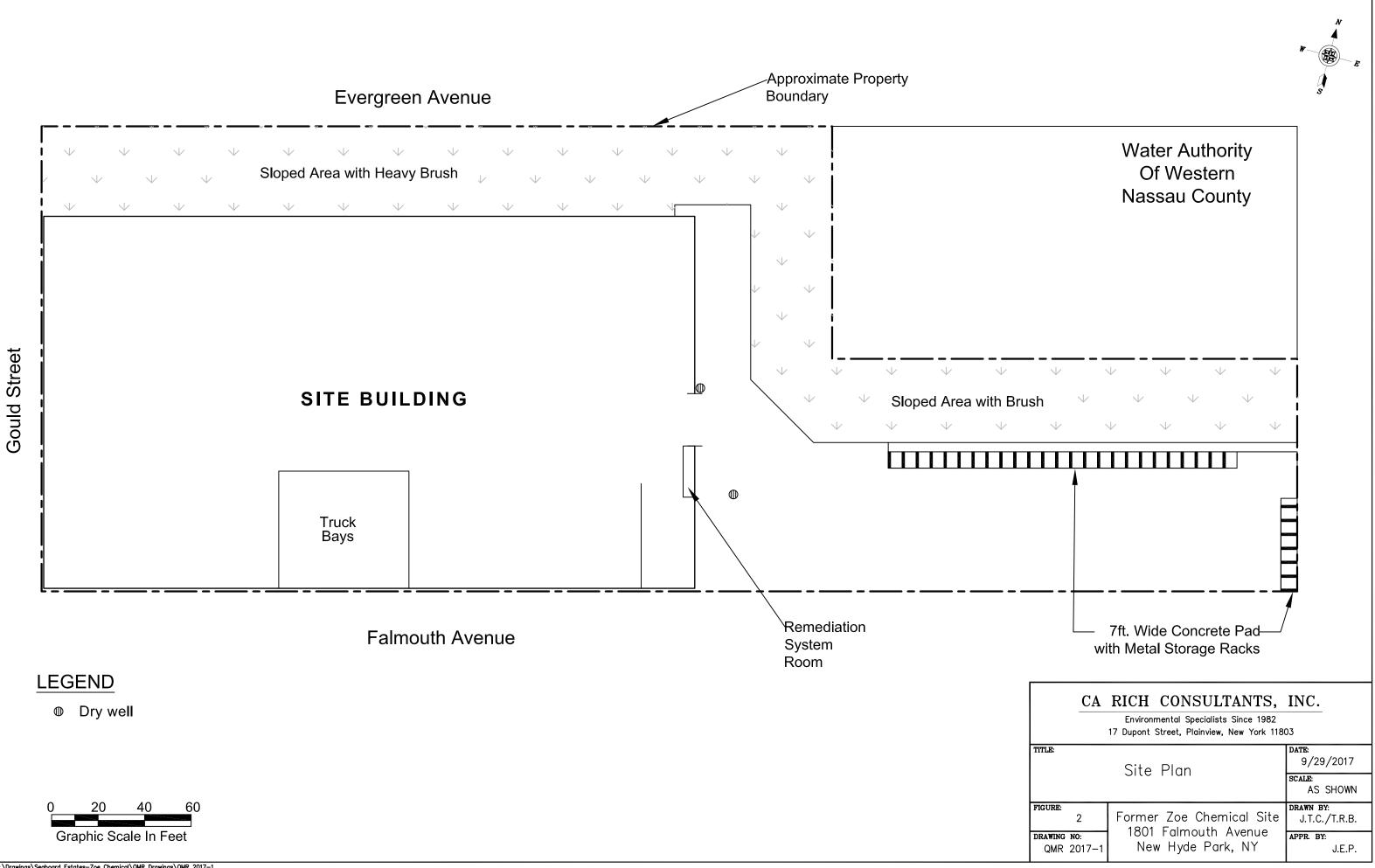
The termination criteria for the SVE system are outlined in the Construction Completion Report Part B. The following termination criteria have been established:

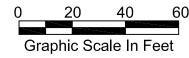
- Once the levels of total VOCs in the raw influent decreases to a near constant or asymptotic concentration (as approved by NYSDEC) and it is demonstrated that shutdown of the system will not result in the migration of unacceptable concentrations of residual vapors to the on-site and off-site structures (as approved by NYSDOH), operation of the system will be suspended.
- A shutdown plan will be submitted to the NYSDEC for review and approval. This plan will discuss the conversion of the system to a soil vapor intrusion mitigation system or proposed sampling activities for complete shutdown of the system. The plan will include concurrent sub-slab vapor/indoor air sampling within occupied spaces to determine whether exposure concerns related to soil vapor intrusion remain.
- The overall remedy must meet the remedial action objectives of the project, and the soil
 vapor measurements must remain protective of the contemplated use of the on-site and
 off-site structures. If any improvements or changes are made to the interior building
 layout in areas outside of the SVE system's radius of influence, additional soil vapor
 intrusion sampling and/or expansion of the SVE system may be warranted. The NYSDEC
 and NYSDOH will be notified in advance of any such plans.

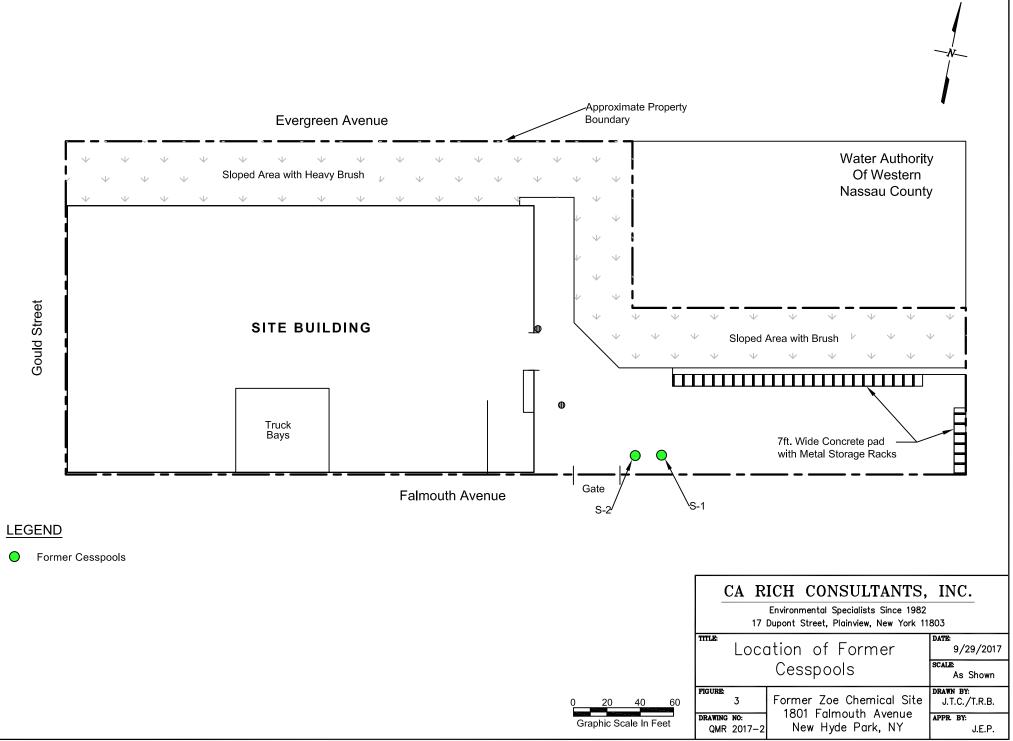
5.0 CONCLUSIONS

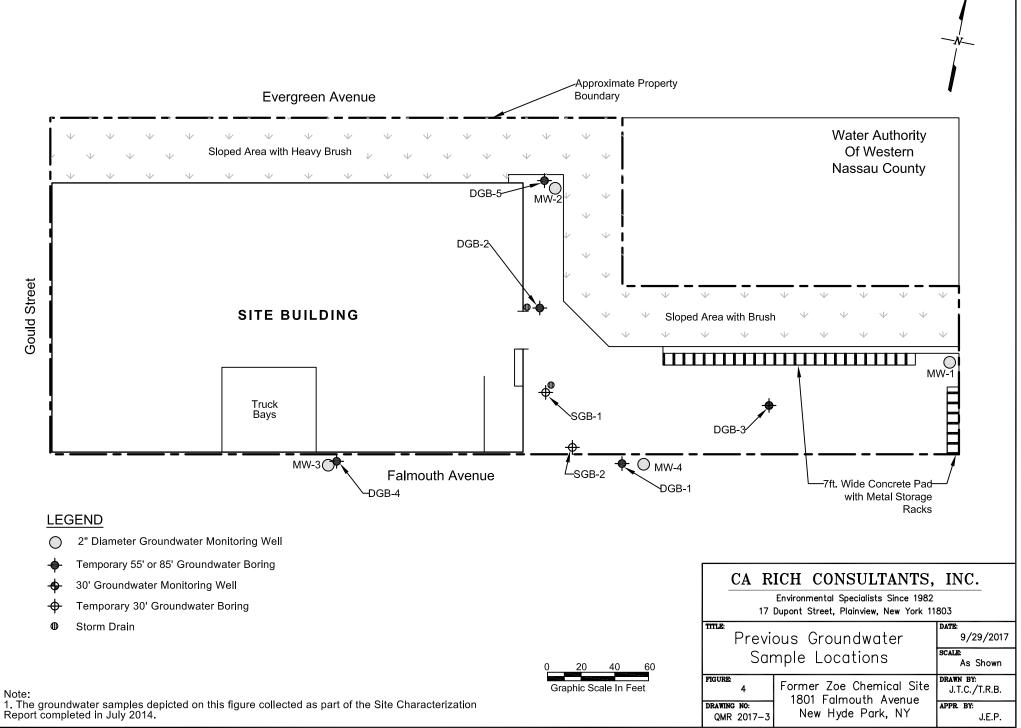
The remediation system began operating in September 2016, with weekly system visits conducted to ensure system operation. A telemetry unit was installed in December 2017 to notify CA RICH of any unexpected system shutdowns. The system has been in continuous operations since September 2016 with the exception of carbon drum change outs and unexpected system shutdowns. From June 24, 2019 to September 13, 2019 the system has been operating for 89.76 percent of the time.

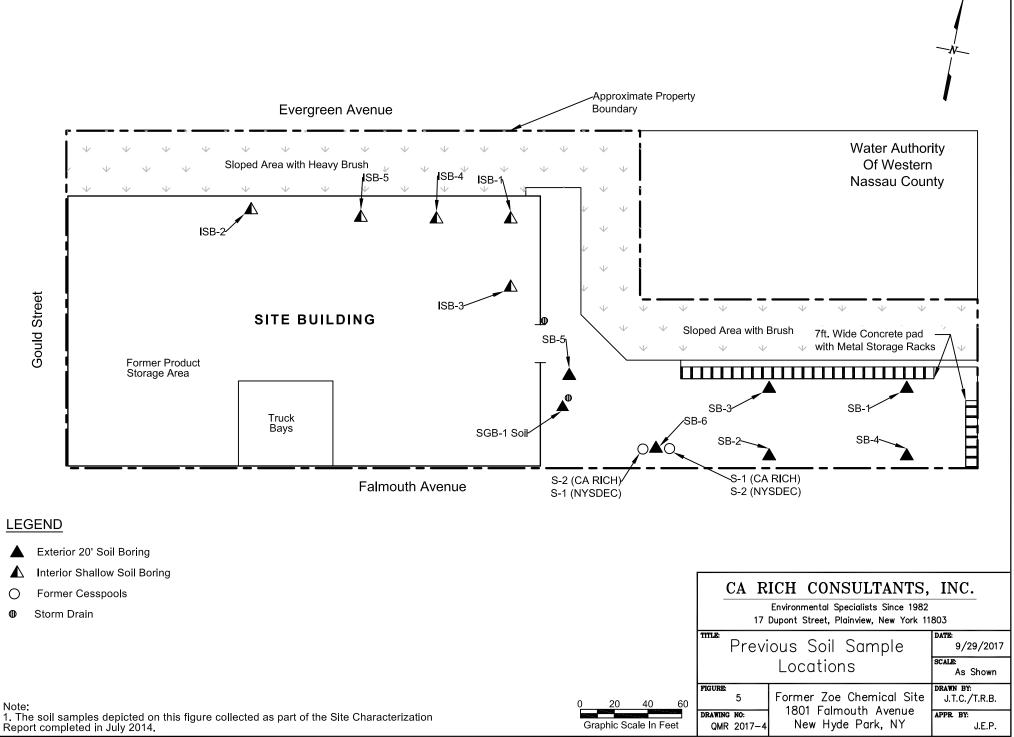

During the last quarter the system has removed approximately 1.30 pounds of TCA and 71.60 pounds since system start up in September 2016. The system shall remain in continuous operation. The next system sampling event is scheduled for December 2019.

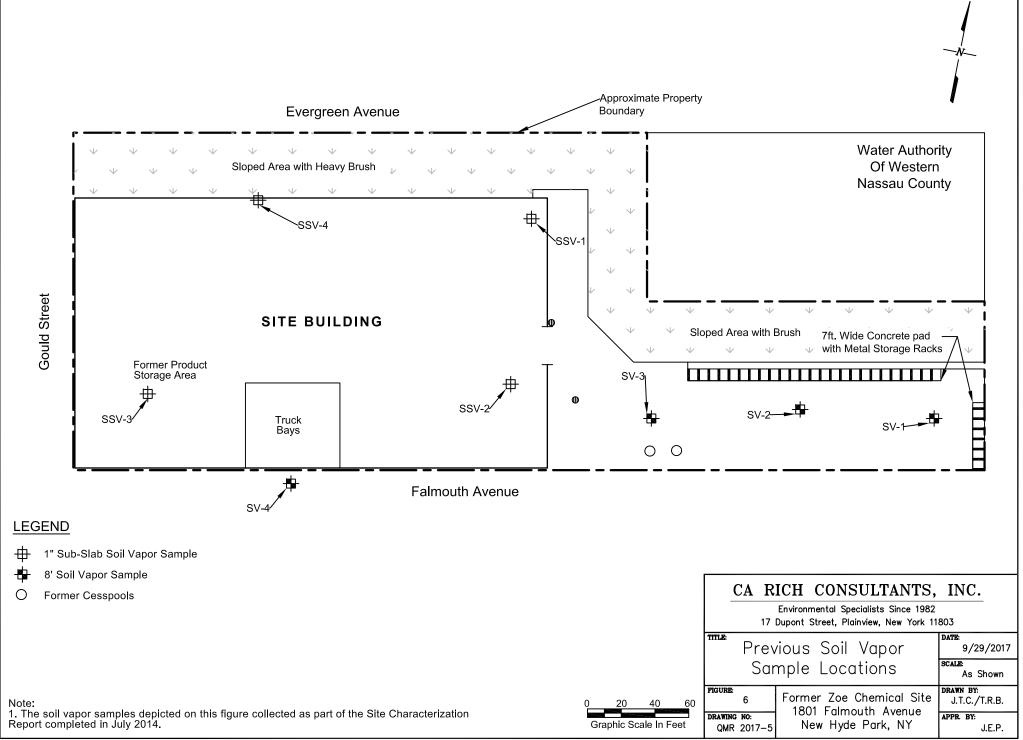

Additionally, a Remedial Investigation Feasibility Study was prepared for the Site and submitted to the NYSDEC and NYSDOH on July 24, 2019.


REFERENCES


- 1. CA RICH Consultants, Inc., <u>Site Characterization Report</u>, Former Zoe Chemical, 1801 Falmouth Avenue, New Hyde Park, New York, NYSDEC Site # 130211, February 2014, Revised July 2014.
- CA RICH Consultants, Inc., <u>Construction Completion Report Part B</u>, Former Zoe Chemical, 1801 Falmouth Avenue, New Hyde Park, New York, NYSDEC Site # 130211, March 2017, Revised June 2017.


FIGURES





H: \Drawings\Seaboard Estates-Zoe Chemical\QMR Drawings\QMR 2017-6

TABLES

Table 1 Former Zoe Chemical 1801 Falmouth Avenue New Hyde Park, NY Site No. 1-30-211 SVE System Data Log Field Form

Date		5/17/2017	9/15/2017		12/8/2017	3/23/2018	6/22/2018	9/6/2018	12/4/2018	3/21/2019	6/24/2019	9/13/2019
System Statu	System Status on Arrival		On		On	On	On	On	On	On	On	On
System Statu	on Departure	On	On		On	On	On	On	On	On	On	On
Control Pane	Hours	5057.9	7304.4		9317.1	11,660	13,812	15,177	17,249	19,621	21,899	23,644
Control Pane	Hours - Time Recorded	0900	0900		0900	10:27	10:07	8:43	9:52	10:40	10:32	9:01
Operating Ho	urs Since Last Visit		2246.5		2012.70	2,342.9	2,152	1,365	2,072	2,372	2,278	1,745
Hours Availa	ble Since Last Visit		2904.0		2016.00	2520	2184	1824	2136	2568	2280	1944
Percent Oper	ation (quarterly)		77.4		99.84	92.97	98.53	74.84	97.00	92.37	99.91	89.76
Moisture Sep	arator Liquid Level (inches)	None	None		4 inch	2 inch	0 inch	0 inch	0 inch	0 inch	0 inch	0 inch
Vacuum				Soil								
	SVE-1 ("WC) at Wellhead	-2.51	-2.9	l Vapor	-7.4	-10	-10	-8.0	-9.2	-8.0	-8.0	-11
	SVE-2 ("WC) at Wellhead	-0.008	-0.120	por	-7.0	-7.0	-9.4	-7.5	-9.2	-8.0	-8.0	-11
	SVE-3 ("WC) at Wellhead	-0.066	-0.103	Extraction	-7.0	-8.0	-9.4	-7.5	-9.0	-8.0	-8.0	-11
	SVE-4 ("WC) at Wellhead	-4.0	-4.1	acti	-7.2	-9.2	-9.6	-8.0	-4.1	-8.0	-8.0	-11
	SVE-5 ("WC) at Wellhead	-3.9	-4.1	on S	-7.2	-9.3	-9.1	-8.0	-4.1	-8.0	-8.0	-11
	SVE-6 ("WC) at Wellhead	-3.9	-4.1	. <mark>System</mark>	-7.2	-9.3	-9.4	-7.5	-4.1	-8.0	-8.0	-11
	System Influent ("WC)	-24.0	-24.0	n L	-28.0	-32	-32	-32	-24	-24	-30	-30
Temperature				Leak								
	Influent Temp (°F)	76.2	91	Rep	65	68	87	86.3	59.6	66.4	94.8	83.3
	Effluent Temp (°F)	105	115	Repaired	94	93	104	95	73.9	67.4	111	97.8
Airflow												
	SVE-1 (CFM) at Wellhead	47.00	51.69	10/19	13.0	11.0	12.0	14.5	14.0	15.42	16.4	15.0
	SVE-2 (CFM) at Wellhead	0.00	0.10	17	7.0	8.0	9.0	5.3	12.24	8.89	6.00	8.0
	SVE-3 (CFM) at Wellhead	2.20	0.25		6.0	7.0	8.0	14.35	7.0	10.0	6.9	5.0
	SVE-4 (CFM) at Wellhead	16.0	30		60	50	55	40	17	31.2	25	32
	SVE-5 (CFM) at Wellhead	46.0	35		57	62	61	24	19	21	29	22
	SVE-6 (CFM) at Wellhead	43.0	45		56	62	61	57	32	54	30	55
System Influent (SCFM)		117.0	87.2		95.0	118	114	113	111	111	100	114
Volatile Organic Compounds												
	Pre-Carbon (ppm)	10.1	0.6		24.0	0.8	0.3	0.0	0.0	0.0	0.0	0.0
1	Mid-Carbon (ppm)	1.2	1.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Post-Carbon (ppm)	2.0	0.4		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

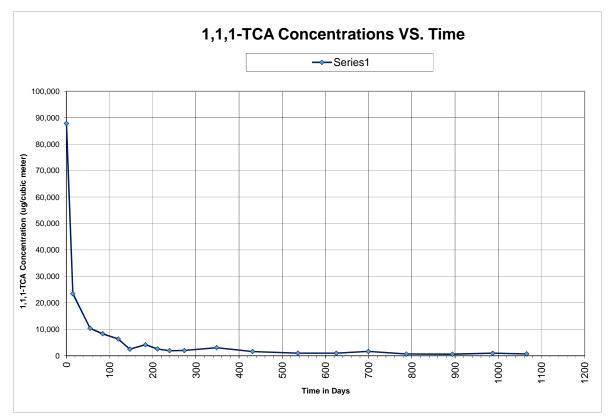
Notes:

Carbon changeout (Both vessels) conducted on 12/1/16, 4/14/17, 8/3/17, 12/4/17, 3/20/18, 7/11/18, 9/20/18, 1/7/19, 7/25/19

Magnehelic guage used to collect vacuum readings at SVE-1, SVE-2, SVE-3, SVE-4, SVE-5, SVE-6

Former Zoe Chemical Site 1801 Falmouth Avenue New Hyde Park, New York Site No. 1-30-211

System Analytical Data for Untreated Air in ug/cubic meter


Date	Days Since System Start Up	PCE	TCE	Vinyl Chloride	Cis-1,2-DCE	1,1,1-TCA	1,1-DCA	Chloroethane	Comments
9/27/2016	0	509	967	1,140	290	87,800	57,900	92,400	System startup
10/12/2016	15	519	408	77.2	< 89.6	23,500	5,910	3,560	
11/22/2016	55	374	494	66.0	170	10,400	3,920	2,930	
12/21/2016	84	249	490	< 24.3	130	8,350	2,290	837	
1/27/2017	120	200	463	< 10.2	55.5	6,380	1,150	124	
2/24/2017	147	112	133	< 5.11	18.4	2,500	595	44.6	
3/30/2017	183	71.9	81.7	< 5.11	< 7.93	4,190	627	41.2	
4/28/2017	211	118	128	< 5.11	14.6	2,610	17.2	44.3	
5/26/2017	239	89.5	88.1	< 2.89	9.36	1,940	413	29.6	
6/30/2017	273	192	138	< 5.11	19.9	2,020	676	49.6	
9/15/2017	348	175	164	< 5.11	18.8	3,090	615	78.1	
12/8/2017	431	114	107	15.6	14.2	1,630	337	282	
3/23/2018	536	69.8	52.2	1.42	6.26	1,040	198	33.2	
6/22/2018	625	93.6	66.6	< 5.11	< 7.93	993	194	24.1	
9/6/2018	699	178.0	138	< 10.3	< 15.9	1,660	347	107	
12/4/2018	787	58.7	45.9	<2.56	5.47	693	162	31.7	
3/21/2019	894	53.6	38.0	1.19	4.12	617	133	18.3	
6/24/2019	987	95.6	64.0	< 1.28	6.19	1,000	191	23.1	
9/13/2019	1066	65.3	59.1	< 5.11	< 7.93	726	137	37.2	

Notes:

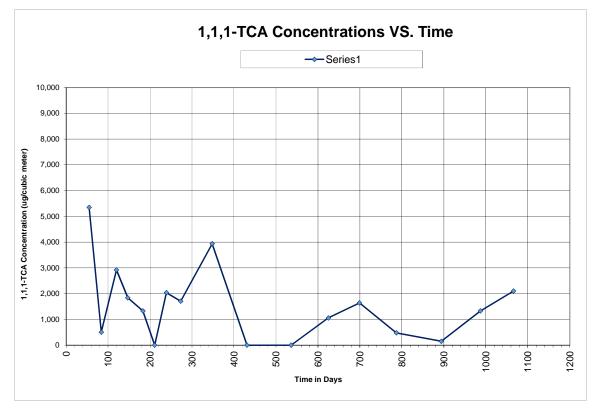
< Non-detect above laboratory reporting limits

All samples recorded in micrograms per cubic meter

Time 0 = System activation date- 9/27/2016

Former Zoe Chemical Site 1801 Falmouth Avenue New Hyde Park, New York Site No. 1-30-211

Table 3


System Analyticl Data for Mid Carbon Samples in ug/cubic meter

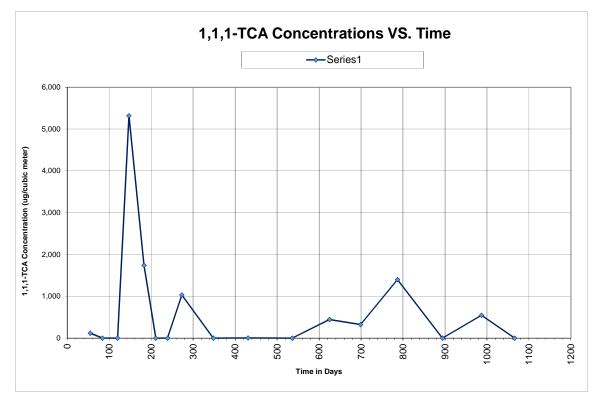
		-							4
Date	Days Since System Start Up	PCE	TCE	vinyl Chloride	Cis-1,2-DCE	1,1,1-TCA	1,1-DCA	Chloroethane	Comments
9/27/2016	0				ample colle		`	<u> </u>	System startup
10/12/2016	15				ample colle				
11/22/2016	55	43.4	123	24.6	57.9	5,350	1,790	997	
12/21/2016	84	< 3.39	< 2.69	4.96	6.90	507	395	351	
1/27/2017	120	52.5	235	< 5.11	31.4	2,920	510	48.8	
2/24/2017	147	88.2	167	< 5.11	22.0	1,840	429	28.8	
3/30/2017	183	6.10	15.0	< 1.71	4.08	1,330	429	48.6	
4/28/2017	211	< 1.36	< 1.07	0.787	< 0.793	1.11	< 0.809	26.4	
5/26/2017	239	< 7.12	< 5.64	< 2.68	11.3	2,040	386	26.1	
6/30/2017	273	100	113	< 10.3	17.5	1,710	571	36.9	
9/15/2017	348	< 13.6	22.6	< 5.11	35.6	3,940	1,010	61.0	
12/8/2017	431	< 1.36	< 1.07	11.6	< 0.793	1.10	< 0.809	192	
3/23/2018	536	< 1.36	< 1.07	1.34	< 0.793	< 1.09	< 0.809	28.5	
6/22/2018	625	115	96.2	< 5.11	< 0.793	1,060	200	22.3	
9/6/2018	699	104	131	< 10.3	<15.9	1,640	400	103	
12/4/2018	787	41.8	33.0	<2.56	4.0	480	116	23.6	
3/21/2019	894	< 1.36	< 1.07	1.06	4.40	154	162	15.4	
6/24/2019	987	39.1	69.9	< 1.71	6.74	1,330	177	19.7	
9/13/2019	1066	< 9.7	10.3	< 3.66	6.46	2,100	174	38.8	

Notes:

< Non-detect above laboratory reporting limits All samples recorded in micrograms per cubic meter

Time 0 = System activation date- 9/27/2016

Former Zoe Chemical Site 1801 Falmouth Avenue New Hyde Park, New York Site No. 1-30-211


System Analytical Data for Treated Air in ug/cubic meter

	Days Since System	Ë	щ.	Vinyl Chloride	Cis-1,2-DCE	,1,1-TCA	1,1-DCA	Chloroethane	
Date	Start Up	PCE	тсе	Vir	Ci	1,1	1,1	ch	Comments
9/27/2016	0			No S	ample Colle	ected			System startup
10/12/2016	15	< 13.6	< 10.7	34.5	< 7.93	< 10.9	< 0.809	1,830	
11/22/2016	55	< 13.6	< 10.7	14.0	9.44	117	1,940	530	
12/21/2016	84	< 6.78	< 5.37	5.73	< 3.96	< 5.46	< 4.05	594	
1/27/2017	120	< 1.70	< 1.34	1.44	< 0.991	5.38	130	56.7	
2/24/2017	147	< 13.6	< 10.7	< 5.11	64.6	5,320	2,670	54.9	
3/30/2017	183	< 4.52	6.56	1.98	12.6	1,740	220	91.8	
4/28/2017	211	< 1.36	< 1.07	0.856	< 0.793	< 1.09	< 0.809	41.7	
5/26/2017	239	< 2.94	< 2.33	< 1.11	< 1.72	< 2.36	< 1.75	19.3	
6/30/2017	273	< 4.52	< 3.58	1.71	18.8	1,030	1,060	35.9	
9/15/2017	348	< 1.36	< 1.07	1.13	< 0.793	5.67	3.33	81.5	
12/8/2017	431	< 1.36	< 1.07	11.7	< 0.793	3.40	0.850	147	
3/23/2018	536	< 1.36	< 1.07	1.84	< 0.793	< 1.09	< 0.809	< 0.528	
6/22/2018	625	< 4.52	< 3.58	1.71	23.1	446	692	30.9	
9/6/2018	699	< 6.78	< 5.37	5.93	17.8	324	858	81.3	
12/4/2018	787	< 6.78	14.2	<2.56	10.6	1,400	191	23.6	
3/21/2019	894	< 1.36	< 1.07	0.846	< 0.793	< 1.09	< 0.809	13.5	
6/24/2019	987	3.61	< 1.79	0.882	8.05	546	240	19.3	
9/13/2019	1066	< 1.36	< 1.07	3.3	4.92	< 1.09	173	36.2	

Notes:

< Non-detect above laboratory reporting limits

All samples recorded in micrograms per cubic meter Time 0 = System activation date- 9/27/2016

Former Zoe Chemical Site 1801 Falmouth Avenue New Hyde Park, New York Site No. 1-30-211

Mass Calculation Removals for 1,1,1 TCA

		Beginning Influent	Ending Influent	Influent Flow	Influent Results	Influent Flow	Days	Minutes	Mass Removed	Mass Removed to Date
Start Date	End Date	Results (ug/m3)	Results (ug/m3)	(scfm)	(lb/cf)	(lb/min)	of Operation	of Operation	(Pounds)	(Pounds)
9/21/2016	10/12/2016	87,800	23,500	220	6.21473E-06	0.001367241	15	21600	29.53	15.63
10/12/2016	11/22/2016	23,500	10,400	156	1.79169E-06	0.000279504	41	59040	16.50	32.13
11/22/2016	12/21/2016	10,400	8,350	156	9.09891E-07	0.000141943	29	41760	5.93	38.06
12/21/2016	1/27/2016	8,350	6,380	156	7.20422E-07	0.000112386	36	51840	5.83	43.89
1/27/2017	2/24/2017	6,380	2,500	156	4.76327E-07	7.43071E-05	28	40320	3.00	46.88
2/24/2017	3/30/2017	2,500	4,190	156	2.86858E-07	4.47498E-05	28	40320	1.80	48.69
3/30/2017	4/28/2017	4,190	2,610	156	3.43043E-07	5.35147E-05	29	41760	2.23	50.92
4/28/2017	5/26/2017	2,610	1,940	156	2.23493E-07	3.48649E-05	28	40320	1.41	52.33
5/26/2017	6/30/2017	1,940	2,020	156	1.84163E-07	2.87295E-05	35	50400	1.45	53.77
6/30/2017	9/15/2017	2,020	3,090	87.2	2.22557E-07	2.51934E-05	77	110880	2.79	56.57
9/15/2017	12/8/2017	3,090	1,630	95.0	2.43782E-07	2.67023E-05	84	120960	3.23	59.80
12/8/2017	3/23/2018	1,630	1,040	118.0	1.34221E-07	1.79632E-05	105	151200	2.72	62.51
3/23/2018	6/22/2018	1,040	993	114.0	9.5921E-08	1.28214E-05	91	131040	1.68	64.19
6/22/2018	9/6/2018	993	1,660	113.0	1.13807E-07	1.50225E-05	76	109440	1.64	65.84
9/6/2018	12/4/2018	1,660	693	111.0	1.25262E-07	1.62632E-05	89	128160	2.08	67.92
12/4/2018	3/21/2019	693	617	111.0	6.25219E-08	8.09658E-06	107	154080	1.25	69.17
3/21/2019	6/24/2019	617	1,000	100.0	6.97323E-08	8.26328E-06	95	136800	1.13	70.30
6/24/2019	9/13/2019	1,000	726	114.0	8.50897E-08	1.11184E-05	81	116640	1.30	71.60

Notes:

1. Mass removed is determined by adding the influent and effluent results and dividing by two for an average during that time period.

Former Zoe Chemical 1801 Falmouth Avenue New Hyde Park, New York Site No. 1-30-211

Maintenance Log

Dates	SVE System	Comments
September 21, 2106	off	System turned on for startup test, system samples collected, system turned off upon departure
September 27, 2016	On	System turned on upon arrival and left operating upon departure
October 12, 2016	On	Monthly system samples collected
November 22, 2016	On	Monthly system samples collected
December 1, 2016	On	Carbon change out
December 21, 2016	On	Monthly system samples collected
January 27, 2017	On	Monthly system samples collected
February 24, 2017	On	Monthly system samples collected
March 30, 2017	On	Monthly system samples collected
April 14, 2017	On	Carbon change out
April 28, 2017	On	Monthly system samples collected
May 26, 2017	On	Monthly system samples collected
June 30, 2017	On	Monthly system samples collected
August 3, 2017	On	Carbon change out
September 15, 2017	On	Quarterly system samples collected (Untreated, Mid, and Treated)
October 19, 2017	On	Leaking ball valve repaired
December 4, 2017	On	Carbon change out
December 8, 2017	On	Quarterly system samples collected (Untreated, Mid, and Treated)
December 27, 2017	On	Telemetry System installed
March 20, 2018	On	Carbon change out
March 23, 2018	On	Quarterly system samples collected
June 22, 2018	On	Quarterly system samples collected
July 11, 2018	On	Carbon change out
September 6, 2018	On	Quarterly system samples collected
September 20, 2018	On	Carbon change out
December 4, 2018	On	Quarterly system samples collected (Untreated, Mid, and Treated)
January 7, 2019	On	Carbon change out
January 7, 2019	On	Insulation installed around exterior SVE system piping
March 21, 2019	On	Quarterly system samples collected (Untreated, Mid, and Treated)
June 24,2019	On	Quarterly system samples collected (Untreated, Mid, and Treated)
July 25, 2019	On	Carbon change out
September 13, 2019	On	Quarterly system samples collected (Untreated, Mid, and Treated)

APPENDIX A

Monthly Progress Reports

e-mail: JProscia@carichinc.com

August 13, 2019

brian.jankauskas@dec.ny.gov

NYSDEC Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7015

Attention: Brian Jankauskas

Re:

Monthly Progress Report – July 2019 Former Zoe Chemical Site 1801 Falmouth Avenue, New Hyde Park, NY Agreement Index No.: W1-1165-12-06

Dear Mr. Jankauskas:

In accordance with the above-referenced Agreement, CA RICH is pleased to provide you with this Monthly Progress Report.

The following activities were performed this past month:

- On July 24, 2019, a Remedial Investigation/Feasibility Study was submitted to the NYSDEC and NYSDOH.
- On July 26, 2019, a Quarterly Monitoring Report was submitted to the NYSDEC and NYSDOH.

The following will be performed this month:

• As per the approved Construction Completion Report – Part B, a raw, mid, and effluent sample will be obtained from the system on a quarterly basis. The next quarterly monitoring assignment will be performed in September 2019.

Ca RICH Environmental Specialists

'If there are any questions regarding this letter, please do not hesitate to call our Office.

Sincerely,

CA RICH CONSULTANTS, INC.

Jessica Prosica

Jessica Proscia Project Manager

cc: Alali Tamuno, Esq. Michael Murphy, Esq. Laurence Gordon John Paul, Esq. Mark Sergott Charlotte Bethoney

Ca RICH Environmental Specialists

email list

Brian Jankauskas	brian.jankauskas@dec.ny.gov
Mark Sergott	mark.sergott@health.ny.gov
Alali Tamuno, Esq.	alali.tamuno@dec.ny.gov
Michael Murphy, Esq.	MMurphy@bdlaw.com
Laurence Gordon	fmrc@optonline.net
John Paul, Esq.	JPaul@bdlaw.com
Charlotte Bethoney	charlotte.bethoney@health.ny.gov

e-mail: JProscia@carichinc.com

September 6, 2019

brian.jankauskas@dec.ny.gov

NYSDEC Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7015

Attention: Brian Jankauskas

Re:

Monthly Progress Report – August 2019 Former Zoe Chemical Site 1801 Falmouth Avenue, New Hyde Park, NY Agreement Index No.: W1-1165-12-06

Dear Mr. Jankauskas:

In accordance with the above-referenced Agreement, CA RICH is pleased to provide you with this Monthly Progress Report.

The following activities were performed this past month:

• Communications with the EPA for their proposed sampling at the Site.

The following will be performed this month:

- As per the approved Construction Completion Report Part B, a raw, mid, and effluent sample will be obtained from the system on a quarterly basis. The next quarterly monitoring assignment will be performed in September 2019.
- On July 24, 2019, a Remedial Investigation/Feasibility Study was submitted to the NYSDEC and NYSDOH. Once reviewed, their comments will be incorporated.

Ca RICH Environmental Specialists

If there are any questions regarding this letter, please do not hesitate to call our Office.

Sincerely,

CA RICH CONSULTANTS, INC.

Jessica Dosia

Jessica Proscia Project Manager

cc: Alali Tamuno, Esq. Michael Murphy, Esq. Laurence Gordon John Paul, Esq. Mark Sergott Charlotte Bethoney

Ca RICH Environmental Specialists

email list

Brian Jankauskas	brian.jankauskas@dec.ny.gov
Mark Sergott	mark.sergott@health.ny.gov
Alali Tamuno, Esq.	alali.tamuno@dec.ny.gov
Michael Murphy, Esq.	MMurphy@bdlaw.com
Laurence Gordon	fmrc@optonline.net
John Paul, Esq.	JPaul@bdlaw.com
Charlotte Bethoney	charlotte.bethoney@health.ny.gov

APPENDIX B

Laboratory Data for System Air Samples

ANALYTICAL REPORT

Lab Number:	L1942593
Client:	CA RICH CONSULTANTS, INC.
	17 Dupont St.
	Plainview, NY 11803
ATTN: Phone:	Jessica Proscia (516) 576-8844
Project Name:	FORMER ZOE CHEMICAL
Project Number:	Not Specified
Report Date:	09/24/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:09241916:17

Project Name:FORMER ZOE CHEMICALProject Number:Not Specified

 Lab Number:
 L1942593

 Report Date:
 09/24/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1942593-01	RAW AIR (9/13/19)	SOIL_VAPOR	1801 FALMOUTH AVE., NEW HYDE PARK, NY	09/13/19 09:01	09/17/19
L1942593-02	MID AIR (9/13/19)	SOIL_VAPOR	1801 FALMOUTH AVE., NEW HYDE PARK, NY	09/13/19 09:06	09/17/19
L1942593-03	EFFLUENT AIR (9/13/19)	SOIL_VAPOR	1801 FALMOUTH AVE., NEW HYDE PARK, NY	09/13/19 09:11	09/17/19

Project Name:FORMER ZOE CHEMICALProject Number:Not Specified

Lab Number: L1942593 Report Date: 09/24/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:FORMER ZOE CHEMICALProject Number:Not Specified

 Lab Number:
 L1942593

 Report Date:
 09/24/19

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on September 9, 2019. The canister certification results are provided as an addendum.

L1942593-02: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 09/24/19

AIR

Project Name:	FORMER ZOE CHEMICAL	Lab Number:	L1942593
Project Number:	Not Specified	Report Date:	09/24/19

Lab ID: Client ID: Sample Location:	L1942593-01 D RAW AIR (9/13/19) 1801 FALMOUTH AVE., NEW HYDE PARK, NY	Date Collected: Date Received: Field Prep:	09/13/19 09:01 09/17/19 Not Specified
Sample Depth:			
	Soil_Vapor 48,TO-15		

Matrix: Anaytical Method: Analytical Date: 09/22/19 01:16 Analyst:

	ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
Dichlorodifluoromethane	2.84	2.00		14.0	9.89			10
Chloromethane	ND	2.00		ND	4.13			10
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	2.00		ND	14.0			10
Vinyl chloride	ND	2.00		ND	5.11			10
1,3-Butadiene	ND	2.00		ND	4.42			10
Bromomethane	ND	2.00		ND	7.77			10
Chloroethane	14.1	2.00		37.2	5.28			10
Ethyl Alcohol	ND	50.0		ND	94.2			10
Vinyl bromide	ND	2.00		ND	8.74			10
Acetone	ND	10.0		ND	23.8			10
Trichlorofluoromethane	ND	2.00		ND	11.2			10
iso-Propyl Alcohol	ND	5.00		ND	12.3			10
1,1-Dichloroethene	2.05	2.00		8.13	7.93			10
tert-Butyl Alcohol	ND	5.00		ND	15.2			10
Methylene chloride	ND	5.00		ND	17.4			10
3-Chloropropene	ND	2.00		ND	6.26			10
Carbon disulfide	ND	2.00		ND	6.23			10
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	2.00		ND	15.3			10
trans-1,2-Dichloroethene	ND	2.00		ND	7.93			10
1,1-Dichloroethane	33.8	2.00		137	8.09			10
Methyl tert butyl ether	ND	2.00		ND	7.21			10
2-Butanone	ND	5.00		ND	14.7			10
cis-1,2-Dichloroethene	ND	2.00		ND	7.93			10

Project Name:	FORMER ZOE CHEMICAL	Lab Number:	L1942593
Project Number:	Not Specified	Report Date:	09/24/19

Lab ID:	L1942593-01 D	Date Collected:	09/13/19 09:01
Client ID:	RAW AIR (9/13/19)	Date Received:	09/17/19
Sample Location:	1801 FALMOUTH AVE., NEW HYDE PARK,	Field Prep:	Not Specified
	NY		

Sample Depth:	ppbV		ug/m3				Dilution	
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	5.00		ND	18.0			10
Chloroform	5.30	2.00		25.9	9.77			10
Tetrahydrofuran	ND	5.00		ND	14.7			10
1,2-Dichloroethane	ND	2.00		ND	8.09			10
n-Hexane	ND	2.00		ND	7.05			10
1,1,1-Trichloroethane	133	2.00		726	10.9			10
Benzene	ND	2.00		ND	6.39			10
Carbon tetrachloride	ND	2.00		ND	12.6			10
Cyclohexane	ND	2.00		ND	6.88			10
1,2-Dichloropropane	ND	2.00		ND	9.24			10
Bromodichloromethane	ND	2.00		ND	13.4			10
Xylene (Total)	ND	2.00		ND	8.69			10
1,4-Dioxane	ND	2.00		ND	7.21			10
Frichloroethene	11.0	2.00		59.1	10.7			10
2,2,4-Trimethylpentane	ND	2.00		ND	9.34			10
Heptane	ND	2.00		ND	8.20			10
cis-1,3-Dichloropropene	ND	2.00		ND	9.08			10
4-Methyl-2-pentanone	ND	5.00		ND	20.5			10
rans-1,3-Dichloropropene	ND	2.00		ND	9.08			10
1,1,2-Trichloroethane	ND	2.00		ND	10.9			10
Toluene	ND	2.00		ND	7.54			10
,2-Dichloroethene (total)	ND	2.00		ND	7.93			10
2-Hexanone	ND	2.00		ND	8.20			10
Dibromochloromethane	ND	2.00		ND	17.0			10
1,3-Dichloropropene, Total	ND	2.00		ND	9.08			10
,2-Dibromoethane	ND	2.00		ND	15.4			10

Project Name:	FORMER ZOE CHEMICAL	Lab Number:	L1942593
Project Number:	Not Specified	Report Date:	09/24/19

Lab ID:	L1942593-01 D	Date Collected:	09/13/19 09:01
Client ID:	RAW AIR (9/13/19)	Date Received:	09/17/19
Sample Location:	1801 FALMOUTH AVE., NEW HYDE PARK,	Field Prep:	Not Specified
	NY	•	•

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Tetrachloroethene	9.65	2.00		65.4	13.6			10
Chlorobenzene	ND	2.00		ND	9.21			10
Ethylbenzene	ND	2.00		ND	8.69			10
p/m-Xylene	ND	4.00		ND	17.4			10
Bromoform	ND	2.00		ND	20.7			10
Styrene	ND	2.00		ND	8.52			10
1,1,2,2-Tetrachloroethane	ND	2.00		ND	13.7			10
o-Xylene	ND	2.00		ND	8.69			10
4-Ethyltoluene	ND	2.00		ND	9.83			10
1,3,5-Trimethylbenzene	ND	2.00		ND	9.83			10
1,2,4-Trimethylbenzene	ND	2.00		ND	9.83			10
Benzyl chloride	ND	2.00		ND	10.4			10
1,3-Dichlorobenzene	ND	2.00		ND	12.0			10
1,4-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2-Dichlorobenzene	ND	2.00		ND	12.0			10
1,2,4-Trichlorobenzene	ND	2.00		ND	14.8			10
Hexachlorobutadiene	ND	2.00		ND	21.3			10

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	110		60-140
Bromochloromethane	110		60-140
chlorobenzene-d5	110		60-140

Project Name:	FORMER ZOE CHEMICAL	Lab Number:	L1942593
Project Number:	Not Specified	Report Date:	09/24/19

Lab ID: Client ID: Sample Location:	L1942593-02 D MID AIR (9/13/19) 1801 FALMOUTH AVE., NEW HYDE PARK, NY	Date Collected: Date Received: Field Prep:	09/13/19 09:06 09/17/19 Not Specified
Sample Depth:			

Matrix:SoiAnaytical Method:48,Analytical Date:09/2Analyst:TS

Soil_Vapor od: 48,TO-15 : 09/22/19 00:40

	ppbV			ug/m3			Dilu	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Dichlorodifluoromethane	2.68	1.43		13.3	7.07			7.143
Chloromethane	ND	1.43		ND	2.95			7.143
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	1.43		ND	10.0			7.143
Vinyl chloride	ND	1.43		ND	3.66			7.143
1,3-Butadiene	ND	1.43		ND	3.16			7.143
Bromomethane	ND	1.43		ND	5.55			7.143
Chloroethane	14.7	1.43		38.8	3.77			7.143
Ethyl Alcohol	ND	35.7		ND	67.3			7.143
Vinyl bromide	ND	1.43		ND	6.25			7.143
Acetone	12.4	7.14		29.5	17.0			7.143
Trichlorofluoromethane	ND	1.43		ND	8.04			7.143
iso-Propyl Alcohol	ND	3.57		ND	8.78			7.143
1,1-Dichloroethene	3.24	1.43		12.8	5.67			7.143
tert-Butyl Alcohol	ND	3.57		ND	10.8			7.143
Methylene chloride	ND	3.57		ND	12.4			7.143
3-Chloropropene	ND	1.43		ND	4.48			7.143
Carbon disulfide	ND	1.43		ND	4.45			7.143
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	1.43		ND	11.0			7.143
trans-1,2-Dichloroethene	ND	1.43		ND	5.67			7.143
1,1-Dichloroethane	43.1	1.43		174	5.79			7.143
Methyl tert butyl ether	ND	1.43		ND	5.16			7.143
2-Butanone	ND	3.57		ND	10.5			7.143
cis-1,2-Dichloroethene	1.63	1.43		6.46	5.67			7.143

Project Name:	FORMER ZOE CHEMICAL	Lab Number:	L1942593
Project Number:	Not Specified	Report Date:	09/24/19

Lab ID:	L1942593-02 D	Date Collected:	09/13/19 09:06
Client ID:	MID AIR (9/13/19)	Date Received:	09/17/19
Sample Location:	1801 FALMOUTH AVE., NEW HYDE PARK,	Field Prep:	Not Specified
	NY		

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Ethyl Acetate	ND	3.57		ND	12.9			7.143
Chloroform	6.91	1.43		33.7	6.98			7.143
Tetrahydrofuran	ND	3.57		ND	10.5			7.143
1,2-Dichloroethane	ND	1.43		ND	5.79			7.143
n-Hexane	ND	1.43		ND	5.04			7.143
1,1,1-Trichloroethane	384	1.43		2100	7.80			7.143
Benzene	3.72	1.43		11.9	4.57			7.143
Carbon tetrachloride	ND	1.43		ND	9.00			7.143
Cyclohexane	ND	1.43		ND	4.92			7.143
1,2-Dichloropropane	ND	1.43		ND	6.61			7.143
Bromodichloromethane	ND	1.43		ND	9.58			7.143
Xylene (Total)	ND	1.43		ND	6.21			7.143
1,4-Dioxane	ND	1.43		ND	5.15			7.143
Trichloroethene	1.92	1.43		10.3	7.69			7.143
2,2,4-Trimethylpentane	ND	1.43		ND	6.68			7.143
Heptane	ND	1.43		ND	5.86			7.143
cis-1,3-Dichloropropene	ND	1.43		ND	6.49			7.143
4-Methyl-2-pentanone	ND	3.57		ND	14.6			7.143
trans-1,3-Dichloropropene	ND	1.43		ND	6.49			7.143
1,1,2-Trichloroethane	ND	1.43		ND	7.80			7.143
Toluene	ND	1.43		ND	5.39			7.143
1,2-Dichloroethene (total)	1.63	1.43		6.46	5.67			7.143
2-Hexanone	ND	1.43		ND	5.86			7.143
Dibromochloromethane	ND	1.43		ND	12.2			7.143
1,3-Dichloropropene, Total	ND	1.43		ND	6.49			7.143
1,2-Dibromoethane	ND	1.43		ND	11.0			7.143

Project Name:	FORMER ZOE CHEMICAL	Lab Number:	L1942593
Project Number:	Not Specified	Report Date:	09/24/19

Lab ID:	L1942593-02 D	Date Collected:	09/13/19 09:06
Client ID:	MID AIR (9/13/19)	Date Received:	09/17/19
Sample Location:	1801 FALMOUTH AVE., NEW HYDE PARK,	Field Prep:	Not Specified
	NY	. leid i lepi	

Sample Depth:								
		ppbV			ug/m3			Dilutior
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Tetrachloroethene	ND	1.43		ND	9.70			7.143
Chlorobenzene	ND	1.43		ND	6.59			7.143
Ethylbenzene	ND	1.43		ND	6.21			7.143
p/m-Xylene	ND	2.86		ND	12.4			7.143
Bromoform	ND	1.43		ND	14.8			7.143
Styrene	ND	1.43		ND	6.09			7.143
1,1,2,2-Tetrachloroethane	ND	1.43		ND	9.82			7.143
o-Xylene	ND	1.43		ND	6.21			7.143
4-Ethyltoluene	ND	1.43		ND	7.03			7.143
1,3,5-Trimethylbenzene	ND	1.43		ND	7.03			7.143
1,2,4-Trimethylbenzene	ND	1.43		ND	7.03			7.143
Benzyl chloride	ND	1.43		ND	7.40			7.143
1,3-Dichlorobenzene	ND	1.43		ND	8.60			7.143
1,4-Dichlorobenzene	ND	1.43		ND	8.60			7.143
1,2-Dichlorobenzene	ND	1.43		ND	8.60			7.143
1,2,4-Trichlorobenzene	ND	1.43		ND	10.6			7.143
Hexachlorobutadiene	ND	1.43		ND	15.3			7.143

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	119		60-140
Bromochloromethane	107		60-140
chlorobenzene-d5	117		60-140

Project Name:	FORMER ZOE CHEMICAL	Lab Number:	L1942593
Project Number:	Not Specified	Report Date:	09/24/19

Lab ID: Client ID: Sample Location:	L1942593-03 EFFLUENT AIR (9/13/19) 1801 FALMOUTH AVE., NEW HYDE PARK, NY	Date Collected: Date Received: Field Prep:	09/13/19 09:11 09/17/19 Not Specified
Sample Depth:			

Matrix:SoilAnaytical Method:48,7Analytical Date:09/2Analyst:TS

Soil_Vapor 48,TO-15 09/22/19 00:03 TS

	ррьV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Dichlorodifluoromethane	2.81	0.200		13.9	0.989			1
Chloromethane	0.266	0.200		0.549	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.574	0.200		4.01	1.40			1
Vinyl chloride	1.29	0.200		3.30	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	13.7	0.200		36.2	0.528			1
Ethyl Alcohol	5.19	5.00		9.78	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	0.472	0.200		2.65	1.12			1
so-Propyl Alcohol	1.03	0.500		2.53	1.23			1
1,1-Dichloroethene	4.46	0.200		17.7	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	0.921	0.200		3.65	0.793			1
1,1-Dichloroethane	42.7	0.200		173	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	1.24	0.200		4.92	0.793			1

Project Name:	FORMER ZOE CHEMICAL	Lab Number:	L1942593
Project Number:	Not Specified	Report Date:	09/24/19

Lab ID:	L1942593-03	Date Collected:	09/13/19 09:11
Client ID:	EFFLUENT AIR (9/13/19)	Date Received:	09/17/19
Sample Location:	1801 FALMOUTH AVE., NEW HYDE PARK,	Field Prep:	Not Specified
	NY		

Sample Depth:		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.462	0.200		2.26	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.794	0.200		2.54	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Xylene (Total)	ND	0.200		ND	0.869			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,2-Dichloroethene (total)	2.16	0.200		8.56	0.793			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,3-Dichloropropene, Total	ND	0.200		ND	0.908			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1

Project Name:	FORMER ZOE CHEMICAL	Lab Number:	L1942593
Project Number:	Not Specified	Report Date:	09/24/19

Lab ID:	L1942593-03	Date Collected:	09/13/19 09:11
Client ID:	EFFLUENT AIR (9/13/19)	Date Received:	09/17/19
Sample Location:	1801 FALMOUTH AVE., NEW HYDE PARK, NY	Field Prep:	Not Specified

Dilution Factor			ug/m3			ppbV			
	Qualifier	MDL	RL	Results	MDL	RL	Results	Parameter	
							Lab	Volatile Organics in Air - Mansfie	
1			1.36	ND		0.200	ND	Tetrachloroethene	
1			0.921	ND		0.200	ND	Chlorobenzene	
1			0.869	ND		0.200	ND	Ethylbenzene	
1			1.74	ND		0.400	ND	p/m-Xylene	
1			2.07	ND		0.200	ND	Bromoform	
1			0.852	ND		0.200	ND	Styrene	
1			1.37	ND		0.200	ND	1,1,2,2-Tetrachloroethane	
1			0.869	ND		0.200	ND	o-Xylene	
1			0.983	ND		0.200	ND	4-Ethyltoluene	
1			0.983	ND		0.200	ND	1,3,5-Trimethylbenzene	
1			0.983	ND		0.200	ND	1,2,4-Trimethylbenzene	
1			1.04	ND		0.200	ND	Benzyl chloride	
1			1.20	ND		0.200	ND	1,3-Dichlorobenzene	
1			1.20	ND		0.200	ND	1,4-Dichlorobenzene	
1			1.20	ND		0.200	ND	1,2-Dichlorobenzene	
1			1.48	ND		0.200	ND	1,2,4-Trichlorobenzene	
1			2.13	ND		0.200	ND	Hexachlorobutadiene	
		 	0.983 1.04 1.20 1.20 1.20 1.48	ND ND ND ND ND ND	 	0.200 0.200 0.200 0.200 0.200 0.200	ND ND ND ND ND	1,2,4-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene	

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	124		60-140
Bromochloromethane	108		60-140
chlorobenzene-d5	117		60-140

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	03 Batch	: WG12870)39-4			
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1

Method Blank Analysis Batch Quality Control

			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air -	Mansfield La	ab for samp	ole(s): 01-	03 Batch:	WG12870	39-4			
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroe	ethane	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene		ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
Vinyl acetate		ND	1.00		ND	3.52			1
2-Butanone		ND	0.500		ND	1.47			1
Xylene (Total)		ND	0.200		ND	0.869			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
2,2-Dichloropropane		ND	0.200		ND	0.924			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1
n-Hexane		ND	0.200		ND	0.705			1
Isopropyl Ether		ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether		ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)		ND	0.200		ND	0.793			1
1,1,1-Trichloroethane		ND	0.200		ND	1.09			1
1,3-Dichloropropene, Total		ND	0.200		ND	0.908			1
1,1-Dichloropropene		ND	0.200		ND	0.908			1
Benzene		ND	0.200		ND	0.639			1
Carbon tetrachloride		ND	0.200		ND	1.26			1

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for sam	ple(s): 01-	03 Batch	: WG12870	39-4			
Cyclohexane	ND	0.200		ND	0.688			1
Tertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1

Method Blank Analysis Batch Quality Control

		ug/m3				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	03 Batch	: WG12870	39-4			
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1

Report Date: 09/24/19

Method Blank Analysis Batch Quality Control

ppbV			ug/m3			-	Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
ab for samp	ole(s): 01-	03 Batcl	n: WG12870	39-4			
ND	0.200		ND	1.28			1
ND	0.200		ND	1.39			1
ND	0.200		ND	1.48			1
ND	0.200		ND	1.05			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	Lab for samp ND ND ND ND ND ND	Results RL .ab for sample(s): 01- ND 0.200 ND 0.200	Results RL MDL .ab for sample(s): 01-03 Batch ND 0.200 ND 0.200	Results RL MDL Results ab for sample(s): 01-03 Batch: WG12870 ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab for sample(s): 01-03 Batch: WG1287039-4 ND 0.200 ND 1.28 ND 0.200 ND 1.39 ND 0.200 ND 1.48 ND 0.200 ND 1.05 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab for sample(s): 01-03 Batch: WG1287039-4 VG1287039-4 VG1287039-4	Results RL MDL Results RL MDL Qualifier Lab for sample(s): 01-03 Batch: WG1287039-4 ND 0.200 ND 1.28 ND 0.200 ND 1.39 ND 0.200 ND 1.48 ND 0.200 ND 1.05 ND 0.200 ND 1.48

Project Name: FORMER ZOE CHEMICAL

Project Number: Not Specified

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-03	Batch: WG128703	9-3					
Chlorodifluoromethane	96		-		70-130	-			
Propylene	85		-		70-130	-			
Propane	90		-		70-130	-			
Dichlorodifluoromethane	118		-		70-130	-			
Chloromethane	101		-		70-130	-			
1,2-Dichloro-1,1,2,2-tetrafluoroethane	113		-		70-130	-			
Methanol	160	Q	-		70-130	-			
Vinyl chloride	106		-		70-130	-			
1,3-Butadiene	121		-		70-130	-			
Butane	81		-		70-130	-			
Bromomethane	102		-		70-130	-			
Chloroethane	97		-		70-130	-			
Ethyl Alcohol	121		-		40-160	-			
Dichlorofluoromethane	100		-		70-130	-			
Vinyl bromide	96		-		70-130	-			
Acrolein	102		-		70-130	-			
Acetone	87		-		40-160	-			
Acetonitrile	85		-		70-130	-			
Trichlorofluoromethane	119		-		70-130	-			
iso-Propyl Alcohol	77		-		40-160	-			
Acrylonitrile	106		-		70-130	-			
Pentane	87		-		70-130	-			
Ethyl ether	102		-		70-130	-			

Lab Number: L1942593 Report Date: 09/24/19

Project Number: Not Specified

FORMER ZOE CHEMICAL

Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab As	sociated sample(s):	01-03	Batch: WG128703	9-3				
1,1-Dichloroethene	120		-		70-130	-		
tert-Butyl Alcohol	122		-		70-130	-		
Methylene chloride	108		-		70-130	-		
3-Chloropropene	99		-		70-130	-		
Carbon disulfide	98		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		-		70-130	-		
trans-1,2-Dichloroethene	95		-		70-130	-		
1,1-Dichloroethane	89				70-130	-		
Methyl tert butyl ether	94		-		70-130	-		
Vinyl acetate	86		-		70-130	-		
2-Butanone	88		-		70-130	-		
cis-1,2-Dichloroethene	93		-		70-130	-		
Ethyl Acetate	89		-		70-130	-		
Chloroform	104		-		70-130	-		
Tetrahydrofuran	78		-		70-130	-		
2,2-Dichloropropane	97		-		70-130	-		
1,2-Dichloroethane	102		-		70-130	-		
n-Hexane	104		-		70-130	-		
Isopropyl Ether	96		-		70-130	-		
Ethyl-Tert-Butyl-Ether	94		-		70-130	-		
1,2-Dichloroethene (total)	94		-			-		
1,2-Dichloroethene (total)	94		-			-		
1,1,1-Trichloroethane	113		-		70-130	-		

Lab Number: L1942593 Report Date: 09/24/19

Project Number: Not Specified

FORMER ZOE CHEMICAL

Project Name:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s):	01-03	Batch: WG128703	9-3				
1,1-Dichloropropene	107		-		70-130	-		
Benzene	102		-		70-130	-		
Carbon tetrachloride	118		-		70-130	-		
Cyclohexane	102		-		70-130	-		
Tertiary-Amyl Methyl Ether	96		-		70-130	-		
Dibromomethane	102		-		70-130	-		
1,2-Dichloropropane	96		-		70-130	-		
Bromodichloromethane	113		-		70-130	-		
1,4-Dioxane	99		-		70-130	-		
Trichloroethene	104		-		70-130	-		
2,2,4-Trimethylpentane	102		-		70-130	-		
Methyl Methacrylate	68		-		40-160	-		
Heptane	99		-		70-130	-		
cis-1,3-Dichloropropene	110		-		70-130	-		
4-Methyl-2-pentanone	100		-		70-130	-		
trans-1,3-Dichloropropene	95		-		70-130	-		
1,1,2-Trichloroethane	102		-		70-130	-		
Toluene	84		-		70-130	-		
1,3-Dichloropropane	90		-		70-130	-		
2-Hexanone	93		-		70-130	-		
Dibromochloromethane	98		-		70-130	-		
1,2-Dibromoethane	92		-		70-130	-		
Butyl Acetate	78		-		70-130	-		

Lab Control Sample Analysis

Batch Quality Control

Project Number: Not Specified

Lab Number: L1942593 Report Date: 09/24/19

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-03 Batch: WG1287039-3 Octane 78 70-130 --Tetrachloroethene 86 70-130 --1.1.1.2-Tetrachloroethane 88 70-130 --Chlorobenzene 87 70-130 --Ethylbenzene 82 70-130 --70-130 p/m-Xylene 86 --Bromoform 94 70-130 --Styrene 85 70-130 --1,1,2,2-Tetrachloroethane 95 70-130 _ -70-130 o-Xylene 91 --1,2,3-Trichloropropane 88 70-130 --Nonane (C9) 80 70-130 --Isopropylbenzene 85 70-130 --70-130 Bromobenzene 89 -o-Chlorotoluene 80 70-130 -n-Propylbenzene 83 70-130 _ p-Chlorotoluene 83 70-130 --4-Ethyltoluene 70-130 99 --1,3,5-Trimethylbenzene 70-130 113 -tert-Butylbenzene 85 70-130 --1,2,4-Trimethylbenzene 99 70-130 --Decane (C10) 87 70-130 --Benzyl chloride 70-130 91 --

Project Name:

Project Number: Not Specified

FORMER ZOE CHEMICAL

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ciated sample(s):	01-03	Batch: WG128703	9-3				
1,3-Dichlorobenzene	97		-		70-130	-		
1,4-Dichlorobenzene	94		-		70-130	-		
sec-Butylbenzene	93		-		70-130	-		
p-Isopropyltoluene	87		-		70-130	-		
1,2-Dichlorobenzene	101		-		70-130	-		
n-Butylbenzene	100		-		70-130	-		
1,2-Dibromo-3-chloropropane	105		-		70-130	-		
Undecane	102		-		70-130	-		
Dodecane (C12)	109		-		70-130	-		
1,2,4-Trichlorobenzene	112		-		70-130	-		
Naphthalene	96		-		70-130	-		
1,2,3-Trichlorobenzene	104		-		70-130	-		
Hexachlorobutadiene	117		-		70-130	-		

Project Name: FORMER ZOE CHEMICAL

Project Number:

Serial_No:09241916:17 Lab Number: L1942593

Report Date: 09/24/19

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1942593-01	RAW AIR (9/13/19)	545	2.7L Can	09/09/19	301399	L1939276-05	Pass	-28.8	-4.1	-	-	-	-
L1942593-02	MID AIR (9/13/19)	359	2.7L Can	09/09/19	301399	L1939276-05	Pass	-29.7	0.0	-	-	-	-
L1942593-03	EFFLUENT AIR (9/13/19)	238	2.7L Can	09/09/19	301399	L1939276-05	Pass	-29.1	0.0	-	-	-	-

Project Number:	CANISTER QC E	BAT				R	eport D	Date: ()9/24/19
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L1939276-05 CAN 143 SHEL	F 14				Date	Collecte Receive Prep:		08/28/19 16:00 08/29/19 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 08/29/19 19:25 RY								
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in A	Air - Mansfield Lab								
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	0.500		ND	1.23			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:09241916:17

L1939276

Lab Number:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1939276-05	Date Collected:	08/28/19 16:00
Client ID:	CAN 143 SHELF 14	Date Received:	08/29/19
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mansfield	Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1939276-05	Date Collected:	08/28/19 16:00
Client ID:	CAN 143 SHELF 14	Date Received:	08/29/19
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in Air - Mansfield L	ab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1939276-05	Date Collected:	08/28/19 16:00
Client ID:	CAN 143 SHELF 14	Date Received:	08/29/19
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
lsopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial	_No:092	41916:17
Project Name:	BATCH CANIST	ER CERTI	FICATION	I		La	b Num	ber:	L1939276
Project Number:	CANISTER QC	ЗАТ				Re	eport D	Date:	09/24/19
		Air Can	ister Ce	rtification	Results				
Lab ID: Client ID: Sample Location:	L1939276-05 CAN 143 SHEL	F 14					Collecte Receive Prep:		08/28/19 16:00 08/29/19 Not Specified
Sample Depth:			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air - Mansfield Lab								
Ta stational a la stificad O sa		Re	sults	Qualifier	Units	RDL		Dilutic Facto	
Tentatively Identified Con	npounds								

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	98		60-140
chlorobenzene-d5	97		60-140

		Air Can	ister Cer	rtificatio	on Results	6			
	L1939276-05 CAN 143 SHEL	F 14					Collecte Receive Prep:		08/28/19 16:0 08/29/19 Not Specified
Anaytical Method: Analytical Date:	Air 48,TO-15-SIM 08/29/19 19:25 RY								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	by SIM - Mansfie	eld Lab							
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.050		ND	0.349			1
Vinyl chloride		ND	0.020		ND	0.051			1
1,3-Butadiene		ND	0.020		ND	0.044			1
Bromomethane		ND	0.020		ND	0.078			1
Chloroethane		ND	0.100		ND	0.264			1
Acetone		ND	1.00		ND	2.38			1
Trichlorofluoromethane		ND	0.050		ND	0.281			1
Acrylonitrile		ND	0.500		ND	1.09			1
1,1-Dichloroethene		ND	0.020		ND	0.079			1
Methylene chloride		ND	0.500		ND	1.74			1
Freon-113		ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene		ND	0.020		ND	0.079			1
1,1-Dichloroethane		ND	0.020		ND	0.081			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.020		ND	0.079			1
Chloroform		ND	0.020		ND	0.098			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		ND	0.100		ND	0.319			1
Carbon tetrachloride		ND	0.020		ND	0.126			1
1,2-Dichloropropane		ND	0.020		ND	0.092			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Serial_No:09241916:17

L1939276

09/24/19

Lab Number:

Report Date:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L1939276-05	Date Collected:	08/28/19 16:00
Client ID:	CAN 143 SHELF 14	Date Received:	08/29/19
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
lsopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

		Serial_No:09	9241916:17
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1939276
Project Number:	CANISTER QC BAT	Report Date:	09/24/19
	Air Canister Certification Results		

Air Canister Certification Results

Lab ID:	L1939276-05	Date Collected:	08/28/19 16:00
Client ID:	CAN 143 SHELF 14	Date Received:	08/29/19
Sample Location:		Field Prep:	Not Specified

Sample Depth:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL MD		Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	98		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	95		60-140

Project Name: FORMER ZOE CHEMICAL Project Number: Not Specified

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
NA	Present/Intact

Container Information

Container Info	ormation		Initial	Final	Temp		Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C Pres	Seal	Date/Time	Analysis(*)
L1942593-01A	Canister - 2.7 Liter	NA	NA		Y	Absent		TO15-LL(30)
L1942593-02A	Canister - 2.7 Liter	NA	NA		Y	Absent		TO15-LL(30)
L1942593-03A	Canister - 2.7 Liter	NA	NA		Y	Absent		TO15-LL(30)

YES

Serial_No:09241916:17

Project Name: FORMER ZOE CHEMICAL

Project Number: Not Specified

Lab Number: L1942593

Report Date: 09/24/19

GLOSSARY

Acronyms

···· ·	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA NI	- N-Nitrosodiphenylamine/Diphenylamine.
NP	- Not Ignitable.
RL	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
KL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Footnotes

Report Format: Data Usability Report

Project Name: FORMER ZOE CHEMICAL

Project Number: Not Specified

Lab Number: L1942593 Report Date: 09/24/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Project Name:FORMER ZOE CHEMICALProject Number:Not Specified

 Lab Number:
 L1942593

 Report Date:
 09/24/19

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8**: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:09241916:17

	AIR A <i>CHAIN OF CUSTODY</i> Iansfield, MA 02048 0 FAX: 508-822-3288	field, MA 02048 Project Information				emical	Date Rec'd in Lab: 9/18/19 Report Information - Data Deliverables						ALPHA Job #: L1942593 Billing Information				
Plandi Phone: 516 - 5 Fax: Email: JProse These samples ha	ch Consultants, Inc. WPont Street WWY 11803 DG-8844 ig Ocatiching, com we been previously analyzed by Alpha Specific Requirements/Com	Project # Project M ALPHA C Turn-A D Standa Date Du	New anager: J Duote #: round Tin	Hyde Essica	Pork, J Prosci	NY a		EX Criteria Chi (Default base Other Form AIL (stand ditional Del t to: of otheren	i <i>d on Regu</i> nats: ard pdf i liverable	report) s:	oria Indicab	od)		a/Fed	N	equirements/l Program SIS	Report Lim Res / Com
ALPHA Lab ID (Lab Use Only)	Sample ID	II Col	0.01	s Bel LECTIO	N			Sampler's	1.22	ut ID Can	I D - Flow	10.15	APH amount	Suntaine Sases	a Alercapteria by	Sample Com	ments (i.e. P
4259301	Raw Air (glislig) Mid Air (glislig)	9/13/19 9/13/19	9:00 9:05	9:01 9:06	-30	-4 -4	SV SV	AL AL	2.7 2.7	545 359	Contraction and states	X					
,03	Efficient Ar Calislia)alıslı 9	9:10	q:11	~30	-4	SV	JP	<i>२.</i> ७	238	NA	X					
*SAMPL	E MATRIX CODES	AA = Ambier SV = Soil Va Other = Please	por/Landfill					C	Containe	Туре						Please print clea completely. San logged in and fur	ples can not t
ge"39 of 39 ^{ray (2}	J-Sep-15)	Relinqui	shed By	ACTIN	gli7	119 19 19	000	Dece US	ived By:	by All	M	59	Date/Tim 17/1 19 a	9 1	000)	clock will not star guiltes are resolv submitted are su Terms and Cond See reverse side	ved. All sample bject to Alpha' itions.