

Quarterly Groundwater Monitoring Report

For

2nd QUARTER – June 2015 NYSDEC Spill # 13-10667

Site:

Vacant Tenant Space @ Nostrand Place 3806 Nostrand Avenue Brooklyn, New York 11235 CNS Job #: D196

Prepared for:

New York State Department of Environmental Conservation
Division of Environmental Remediation, Region 2

1 Hunter's Point Plaza
47-40 21st Street
Long Island City, NY 11101
Attention: Mr. Santosh Mahat

On Behalf of:

Acadia Realty Trust, LLC 1311 Mamaroneck Avenue, Suite 260 White Plains, NY 10605 Attention: Jonathon Asta

Prepared by:

CNS Management Corporation 208 Newtown Road Plainview, NY 11803

June 10, 2015

Table of Contents

1.0	INTRODUCTION	1
2.0	BACKGROUND	1
3.0	FIELD ACTIVITIES	2
4.0	GROUNDWATER MEASUREMENT PARAMETERS	3
5.0	GROUNDWATER ANALYTICAL RESULT INTERPRETATION	4
6.0	CONCLUSIONS	6
7.0	SIGNATURES	6
8.0	PROJECT LIMITATIONS	7

Figure I: Site Location Map

Figure II: Monitoring Well Locations

Appendix A: Laboratory Analytical Data Sheets

1.0 <u>INTRODUCTION</u>

CNS Environmental (CNS) was retained by Acadia Realty Trust, LLC to conduct quarterly groundwater sampling for the property located at 3806 Nostrand Avenue in Brooklyn, New York; referred to hereafter as the "subject site".

The subject site is a vacant tenant space within Nostrand Place, located at 3780-3860 Nostrand Avenue property, improved with six structures constructed in stages between 1959 through 1982, and spans the entire west side of the city-block from Avenue Y south to Avenue Z. The Nostrand Place is currently occupied by commercial tenants, including banks, restaurants, retail stores, medical offices and a parking garage. See Figure I: Site Location Map.

2.0 BACKGROUND

On April 12, 2013 CNS conducted a Phase II Site Investigation at the subject site based upon findings, which identified a historic dry cleaner formerly located within the 3804 Nostrand Avenue tenant space (currently occupied by Chase Bank). Prior to the investigation, a site visit was completed on February 27, 2013 where it was determined that access to the Chase Bank space would not be permitted due to the sensitivity of the operation; therefore CNS determined that the investigation would take place immediately downgradient of the Chase Bank space within the neighboring tenant space located at 3806 Nostrand Avenue. The investigation involved the collection of soil samples and a groundwater sample from one (1) soil boring to investigate soil and groundwater quality at the subject site. Additionally, CNS collected one soil-gas sample, one indoor air sample and one ambient air sample to investigate soil vapor and indoor air quality at the subject site.

Analytical results identified one (1) low-level VOC constituent in soil sample SB01-S1A; however, this detection did not exceed its applicable remediation standard. Groundwater analytical results identified Tetrachloroethene contamination that exceeded its respective NYSDEC TOGS 1.1.1 GA Values within the collected groundwater sample; which is consistent with a release from a dry cleaning operation. Ambient air and indoor air analytical results did not identify any VOC contaminants exceeding the NYSDOH Air Guideline Values or USEPA Generic Screening Levels for Indoor Air; however Tetrachloroethene was identified within the collected indoor air sample that exceeded the NYSDOH 75th percentile level. Analytical results associated with the sub-slab soil gas sample identified the VOC constituents 1,2,4-Trimethylbenzene, Tetrachloroethene and Trichloroethene exceeding their respective USEPA Generic Screening Levels for Shallow Soil Gas.

On August 21, 2013, CNS installed three permanent monitoring wells (NW1 through NW3) and collected a total of eight soil samples. Soil analytical results identified dry cleaning related compounds above the laboratory's minimum detection limit but below their respective NYSDEC Commercial SCO's.

On November 21, 2013, CNS collected three baseline groundwater samples from the three (3) monitoring wells, located in the front sidewalk grade (NW1), rear sidewalk grade (NW2) and basement grade (NW3) of the subject site. Groundwater analytical results identified dry-cleaning related compounds (PCE, DCE and TCE) within monitoring well samples NW2-GW2A (Sidewalk grade to the west) and NW3-GW3A (Basement) exceeding their respective NYSDEC TOGS 1.1.1 GA values. Based upon the findings, CNS contacted the NYSDEC and was issued Spill #13-10667.

Quarterly Groundwater Monitoring – June 2015 3806 Nostrand Avenue, Brooklyn, NY 11235 NYSDEC Spill # 13-10667 CNS Job#: D196 Page 2 of 7

On July 14, 2014, CNS collected three groundwater samples from the three (3) monitoring wells, located in the front sidewalk grade (NW1), rear sidewalk grade (NW2) and basement grade (NW3) of the subject site. Groundwater analytical results identified Dry cleaning related compounds remain present at the subject site from the initial baseline-sampling event. Contaminant decreases were identified within monitoring well NW-3 located within the basement and slight decreases occurred within monitoring well NW-2 located in the rear western portion of the subject site. NW-1 located in the front eastern portion remains below NYSDEC TOGS 1.1.1 GA values.

On October 23, 2014, CNS collected three groundwater samples from the three (3) monitoring wells, located in the front sidewalk grade (NW1), rear sidewalk grade (NW2) and basement grade (NW3) of the subject site. Groundwater analytical results did not identify any contaminates exceeding the NYSDEC TOGS 1.1.1 GA values.

On January 8, 2015, CNS collected three groundwater samples from the three (3) monitoring wells, located in the front sidewalk grade (NW1), rear sidewalk grade (NW2) and basement grade (NW3) of the subject site. Groundwater analytical results identified Dry cleaning related compounds remained present at the subject site from the initial baseline-sampling event. Contaminant increases were identified within monitoring all three monitoring wells when compared to the baseline analytical.

3.0 FIELD ACTIVITIES

On Wednesday, June 3, 2015, CNS collected groundwater samples from three (3) existing monitoring wells NW-1, NW-2 and NW-3 (See Figure II: Monitoring Well Locations). Prior to collecting the groundwater samples, CNS measured the depth to groundwater from the top of the well casings utilizing an electronic Keck Water Level Meter. Previous sampling events occurred on November 21, 2013, April 14, 2014, July 14, 2014, October 23, 2014, and January 8, 2015.

Prior to sampling, the wells were purged of 3 to 5 well volumes utilizing a low flow submersible pump with disposable tubing. In addition, after the final well purge within each monitoring well, measurements for temperature, conductivity, pH, dissolved oxygen and oxygen-reduction potential (ORP) were collected, utilizing a YSI 556 Multi Probe System within non-chemically analyzed clean sample jars. See Table I for Groundwater Measurements.

The collected groundwater samples were collected in accordance with USEPA "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods" (SW-846) and analyzed for VOCs in accordance with NYSDEC Protocols under EPA analytical Methods 8260. The groundwater samples were placed in laboratory supplied glassware, packed in an ice-filled cooler accompanied by chain-of-custody documentation and picked up by Phoenix Environmental Laboratories, Inc. and transported to their facility located at 587 East Middle Turnpike, Manchester, CT 06040. See Appendix A for Laboratory Analytical Data Sheets.

The collected groundwater samples were compared against the NYSDEC's Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Groundwater Effluent Limitations (NYSDEC Groundwater Standards). A summary of the analytical results are presented in Table II herein.

CNS Job#: D196 Page 3 of 7

4.0 GROUNDWATER MEASUREMENT PARAMETERS

As indicated in Table I below, temperature levels ranged between 58.06 °F through 65.33 °F with an average temperature of 61.46 °F. pH levels ranged between 7.87 through 7.93. Dissolved Oxygen levels ranged between 3.76 through 10.57 mg/l. Qualitative ORP levels ranged from -30.2 through 30.2

Table I: Groundwater Measurements

Monitoring Well #	NW-1							
Sampling Event	Q2	Q3	Q4	Q1	Q2			
Date	4/11/2014	7/14/2014	10/23/2014	1/8/2015	6/3/2015			
Depth to Groundwater	11'7"	11'4"	11'6"	13'11"	11'6"			
Time Collected	12:01	12:44	15:59	15:51	16:21			
Temperature (F°)	53.26	63.79	65.08	59.05	61			
Conductivity (m ^s /cm)	0.016	9.56	26.52	21.12	40.87			
Dissolved Oxygen (mg/L)	0.012	2.08	3.80	4.01	4.96			
pH	12.13	7.32	7.98	7.47	7.93			
ORP	7.47	-226.7	58.0	-65.5	30.2			

Monitoring Well #			NW-2		
Sampling Event	Q2	Q3	Q4	Q1	Q2
Date	4/11/2014	7/14/2014	10/23/2014	1/8/2015	6/3/2015
Depth to Groundwater	11'9"	12'	11'8"	12.2'	8'
Time Collected	12:23	11:15	16:28	14:43	16:44
Temperature (F°)	56.87	62.95	64.20	57.72	58.06
Conductivity (m ^s /cm)	0.009	60.53	26.14	20.34	26.76
Dissolved Oxygen (mg/L)	0.005	2.32	3.63	4.06	10.57
рН	12.35	7.32	7.92	7.50	7.93
ORP	7.22	-216.3	216.1	69.8	-30.2

Monitoring Well #	NW-3							
Sampling Event	Q2	Q3	Q4	Q1	Q2			
Date	4/11/2014	7/14/2014	10/23/2014	1/8/2015	6/3/2015			
Depth to Groundwater	3'	3'	3'	3'1"	3'			
Time Collected	12:28	11:58	17.01	15:10	17:39			
Temperature (F°)	52.43	63	66.29	61.11	65.33			
Conductivity (m ^s /cm)	0.012	3.897	14.40	22.44	25.75			
Dissolved Oxygen (mg/L)	0.009	2.38	6.80	4.05	3.76			
рН	12.75	7.15	7.81	7.45	7.87			
ORP	7.76	-207.6	288.4	50.50	-29.3			

Page 4 of 7

5.0 GROUNDWATER ANALYTICAL RESULT INTERPRETATION

The subject site's baseline groundwater sampling event occurred on November 21, 2013. Current analytical results compared to the NYSDEC TOGS 1.1.1 GA values are summarized herein within Table II on the following page. Analytical results associated with this sampling event are as follows:

<u>NW1-GW1E</u>: The constituents cis-1,2,-Dichloroethene, Methyl-tert-butyl ether, and Tetrachloroethene were all detected above the laboratories minimum detection limit; however, the concentrations were not exceeding their respective NYSDEC TOGS 1.1.1 GA values.

Compared to the baseline analytical results, cis-1,2,-Dichloroethene and Methyl-tert-butyl ether are now present and PCE showed a slight increase from 3.6 ppb.

<u>NW2-GW2E</u>: Cis-1,2,-Dichloroethene was detected at 840 ppb, Methyl-tert-butyl ether was detected at 930 ppb, and TCE was detected at 290 ppb, all exceeding their respective NYSDEC TOGS 1.1.1 GA values of 5.0 ppb, respectively.

Compared to the baseline analytical results, cis-1,2,-Dichloroethene, PCE, and TCE have all increased from 230 ppb, 670 ppb, and 130 ppb; respectively.

<u>NW3-GW3E</u>: The constituents cis-1,2,-Dichloroethene, Methyl-tert-butyl ether, Tetrachloroethene, Vinyl chloride were all detected above the laboratories minimum detection limit, with Tetrachloroethene exceeding its NYSDEC TOG 1.1.1 GA value of 5 ppb, with a concentration of 12 ppb.

Compared to the baseline analytical cis-1,2,-Dichloroethene remains present and vinyl chloride is now present. Additionally TCE remains higher then the 5.7 ppb baseline analytical; however, has shown a decrease from the previous quarters to 74 ppb concentration.

CNS Job#: D196 Page 5 of 7

Table II: Groundwater Results Summary

		Monitoring Well # NW-1							
Analyte	Contaminant	Baseline: 11/21/13	Q2: 4/11/14	Q3: 7/14/14	Q4: 10/23/14	Q1: 1/8/2015	Q2: 6/3/2015	NYSDEC GW Standards	
		(15' bgs)	(11'7" bgs)	(11'4" bgs)	(11'6" bgs)	(20' bgs)	(11'6" bgs)	Otanuarus	
	cis-1,2,-Dichloroethene (DCE)	ND	ND	ND	ND	ND	1.6	5	
	Methyl-tert-butyl ether (MTBE)	ND	ND	ND	ND	1.4	1	10	
	Tetrachloroethene (PCE)	3.6	4.6	2.2	ND	16	3.9	5	
voc	Trichloroethene (TCE)	ND	0.24	ND	ND	1	ND	5	
VOC	4-Isopropyltoluene	ND	ND	ND	ND	ND	ND	5	
	trans-1,2,-Dichloroethene	ND	ND	ND	ND	ND	ND	5	
	Acetone	ND	2.3	ND	ND	ND	ND	50	
	Vinyl chloride	ND	ND	ND	ND	ND	ND	2	

				NIVODEO OW				
Analyte	Contaminant	Baseline: 11/21/13	Q2: 4/11/14	Q3: 7/14/14	Q4: 10/23/14	Q1: 1/8/2015	Q2: 6/3/2015	NYSDEC GW Standards
		(15' bgs)	(11'9" bgs)	(12' bgs)	(11' 8' bgs')	(9'2" bgs)	(8' bgs)	otaniaa ao
	cis-1,2,-Dichloroethene (DCE)	230	380	370	ND	ND	840	5
	Methyl-tert-butyl ether (MTBE)	2.8	ND	1.1	ND	ND	ND	10
	Tetrachloroethene (PCE)	670	660	560	ND	940	930	5
voc	Trichloroethene (TCE)	130	110	180	ND	220	290	5
VOC	4-Isopropyltoluene	ND	ND	1.4	ND	ND	ND	5
	trans-1,2,-Dichloroethene	2.6	7.2	5.0	ND	ND	ND	5
	Acetone	ND	13	2.0	ND	ND	ND	50
	Vinyl chloride	ND	ND	ND	ND	ND	ND	2

		Monitoring Well # NW-3								
Analyte	Contaminant	Baseline: 11/21/13	Q2: 4/11/14	Q3:7/14/14	Q4: 10/23/14	Q1: 1/8/2015	Q2: 6/3/2015	NYSDEC GW Standards		
		(3'1" bgs)	(3' bgs)	(3' bgs)	(3' bgs)	(9'2" bgs)	(3' bgs)			
	cis-1,2,-Dichloroethene (DCE)	ND	7.1	1.8	ND	5.3	2.2	5		
	Methyl-tert-butyl ether (MTBE)	2	1.8	2.3	ND	2	2.4	10		
	Tetrachloroethene (PCE)	5.7	72	24	ND	74	12	5		
VOC	Trichloroethene (TCE)	ND	11	2.8	ND	9	ND	5		
****	4-Isopropyltoluene	ND	ND	ND	ND	ND	ND	5		
	trans-1,2,-Dichloroethene	ND	ND	ND	ND	ND	ND	5		
	Acetone	ND	13	ND	ND	ND	ND	50		
	Vinyl chloride	ND	ND	ND	ND	ND	1.3	2		

Notes: All results

All results and guidance values are presented in parts per billion (ppb)

ND = Not Detected above laboratory's Minimum Detection Limit or Method of analysis and instrumentation

NYSDEC GW Standards = NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards & Guidance Values Concentrations exceeding the NYSDEC GW Standards are highlighted in bold RED

Quarterly Groundwater Monitoring – June 2015 3806 Nostrand Avenue, Brooklyn, NY 11235 NYSDEC Spill # 13-10667 CNS Job#: D196 Page 6 of 7

6.0 <u>CONCLUSIONS</u>

Dry cleaning related compounds remain present at the subject site from the initial baseline sampling event. Contaminant increases were identified within monitoring well NW-2, it is CNS's opinion that these increases are likely attributed to the on-going construction activities where structural turbulence is disrupting the shallow groundwater table.

CNS will continue to monitor the groundwater contaminant levels at the subject site. The next groundwater sampling event is scheduled for August of 2015.

7.0 **SIGNATURES**

If you have any questions or require additional information regarding this project, please call me at (516) 932-3228.

Prepared by:	Reviewed and Approved by:
Make:	Chal PRES.
Wala Canario	Charles Powers
Environmental Scientist	President

8.0 PROJECT LIMITATIONS

This report is written for the use of Acadia Realty Trust LLC and its partners. No other party shall have any right to rely on this report or any service provided by CNS Environmental without prior written consent by Acadia Realty Trust LLC and CNS Environmental

The subsurface investigation was performed in accordance with professional standards applicable to the industry today. The results of this assessment and the contents of this report are subject to revision based on future events and/or investigations. CNS Environmental assumes no responsibility for the property owner's actions related to the following:

- Violation of any federal, state or local statute or ordinance relating to identification or disposal of a hazardous substance or its constituents:
- Undertaking of, or arrangement for the handling, removal, treatment, storage, transportation, or disposal of hazardous substances or constituents found or identified, and;
- Changed conditions or hazardous substances or constituents introduced at the properties by Client or third persons to this contract during or after the completion of services provided by this report.

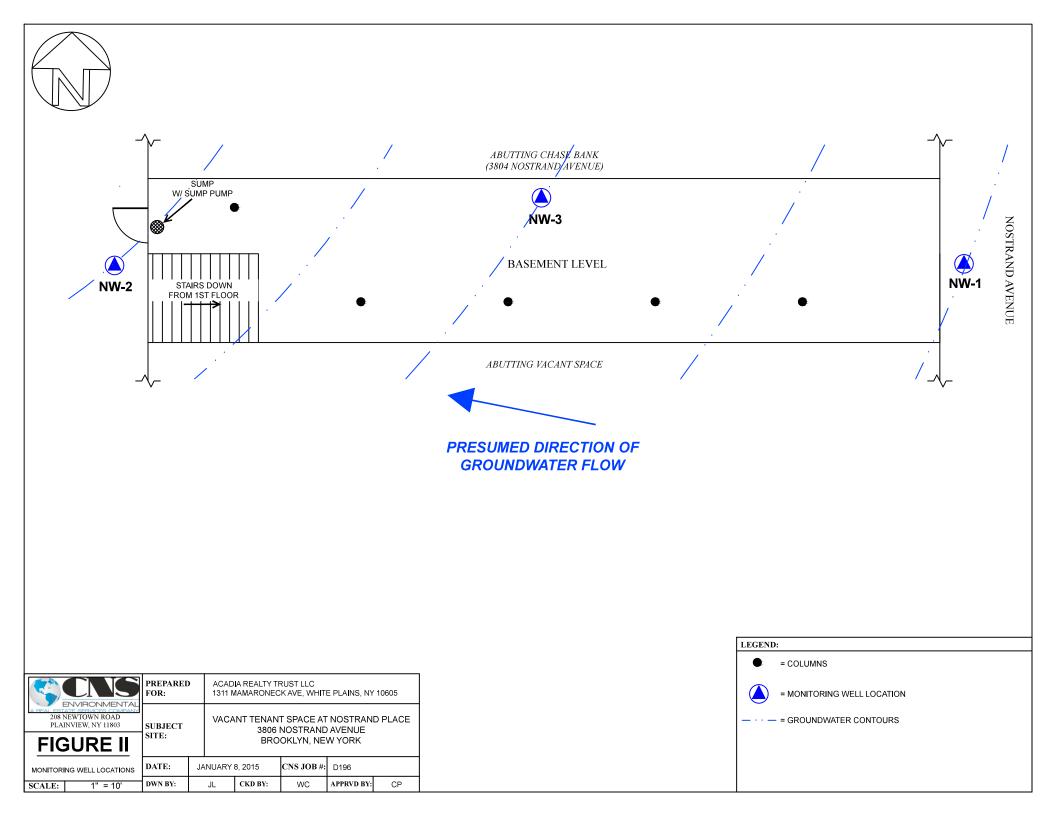
Therefore, the findings, conclusions and recommendations presented herein are based solely on the aforementioned scope of work and information gathering. Incomplete or outstanding information identified throughout this report is considered a limitation to the assessment.

All findings, conclusions and recommendations stated in this report are based upon facts, circumstances and industry-accepted procedures for such services, as they existed at the time this report was prepared. All findings, conclusions and recommendations stated in this reports are based on the data and information provided and observations and conditions that existed on the date and timework was performed. Responses received from local, state, or federal agencies or other out-sourced or other secondary sources of information after the issuance of this report may change certain facts, findings, conclusions or circumstances to the report. A change in fact, circumstance or industry-accepted procedure upon which this report was based may adversely affect the findings, conclusions and recommendations expressed in this report and is considered a limitation.

Figure I

Site Location Map

Subject Site <u>NYCityMap</u>



NYSDEC Spill #: 13-10667 CNS Job#: D196

Figure II

Monitoring Well Locations

NYSDEC Spill #: 13-10667 CNS Job#: D196

Appendix A

Laboratory Analytical Report w/ Chain-of-Custody

Wednesday, June 10, 2015

Attn: Mr. Charles Powers CNS Management Corp 208 Newtown Road Plainview, NY 11803-4307

Project ID: 3780-3860 NOSTRAND AVE

Sample ID#s: BJ26381 - BJ26383

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 10, 2015

FOR: Attn: Mr. Charles Powers CNS Management Corp

208 Newtown Road

Plainview, NY 11803-4307

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:06/03/1516:21Location Code:CNSReceived by:SW06/04/1517:36

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBJ26381
Phoenix ID: BJ26381

Project ID: 3780-3860 NOSTRAND AVE

Client ID: NW1-GW1E

RL/ **PQL** Parameter Result Units Dilution Date/Time Reference Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 06/05/15 MH SW8260C ND 1.0 1 06/05/15 MH SW8260C 1,1,1-Trichloroethane ug/L 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 1 06/05/15 MH SW8260C ND МН SW8260C 1.0 ug/L 1 06/05/15 1,1,2-Trichloroethane ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,1-Dichloroethane ND 1 06/05/15 SW8260C 1,1-Dichloroethene 1.0 ug/L ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,1-Dichloropropene 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 06/05/15 MH SW8260C ND 1.0 06/05/15 MH SW8260C ug/L 1 1,2,3-Trichloropropane ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,2,4-Trimethylbenzene ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane 1.0 ug/L 1 06/05/15 MH SW8260C ND 1.0 1 06/05/15 MH SW8260C ug/L 1,2-Dichlorobenzene ND 0.60 1 06/05/15 MH SW8260C ug/L 1,2-Dichloroethane 1,2-Dichloropropane ND 1.0 ug/L 1 06/05/15 MH SW8260C ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,3,5-Trimethylbenzene ND 06/05/15 SW8260C 1,3-Dichlorobenzene 1.0 ug/L 1 MH ND 06/05/15 SW8260C 1.0 ug/L 1 MH 1,3-Dichloropropane ND 1 06/05/15 SW8260C 1.0 ug/L MH 1,4-Dichlorobenzene SW8260C 2,2-Dichloropropane ND 1.0 ug/L 1 06/05/15 MH ND 06/05/15 SW8260C 2-Chlorotoluene 1.0 ua/L 1 MH ND 5.0 ug/L 06/05/15 MH SW8260C 2-Hexanone SW8260C 2-Isopropyltoluene ND 1.0 ug/L 1 06/05/15 MH 1 06/05/15 SW8260C ND 1.0 ug/L MH 4-Chlorotoluene 4-Methyl-2-pentanone ND 5.0 ug/L 1 06/05/15 MH SW8260C

Page 1 of 9 Ver 2

Client ID: NW1-GW1E

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/05/15	МН	SW8260C
Acrylonitrile	ND	5.0	ug/L	1	06/05/15	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/05/15	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/05/15	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/05/15	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Chloroform	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
cis-1,2-Dichloroethene	1.6	1.0	ug/L	1	06/05/15	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/05/15	МН	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/05/15	МН	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
lexachlorobutadiene	ND	0.40	ug/L	1	06/05/15	MH	SW8260C
sopropylbenzene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
n&p-Xylene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/05/15	MH	SW8260C
Methyl t-butyl ether (MTBE)	1.0	1.0	ug/L	1	06/05/15	MH	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Naphthalene	ND	1.0	ug/L	' 1	06/05/15	MH	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
n-Propylbenzene	ND	1.0	ug/L ug/L	1	06/05/15	MH	SW8260C
o-Xylene	ND	1.0		1	06/05/15	MH	SW8260C
o-Isopropyltoluene			ug/L	•			
sec-Butylbenzene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Styrene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
ert-Butylbenzene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
etrachloroethene	3.9	1.0	ug/L	1	06/05/15	MH	SW8260C
「etrahydrofuran (THF)	ND	2.5	ug/L	1	06/05/15	MH	SW8260C
oluene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
otal Xylenes	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
rans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
rans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/05/15	MH	SW8260C
ans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/05/15	MH	SW8260C
richloroethene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
richlorofluoromethane	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
richlorotrifluoroethane	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
/inyl chloride	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	104		%	1	06/05/15	MH	70 - 130 %
% Bromofluorobenzene	96		%	1	06/05/15	MH	70 - 130 %
% Dibromofluoromethane	111		%	1	06/05/15	MH	70 - 130 %

Page 2 of 9 Ver 2

Project ID: 3780-3860 NOSTRAND AVE

Client ID: NW1-GW1E

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	100		%	1	06/05/15	МН	70 - 130 %

Phoenix I.D.: BJ26381

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

June 10, 2015

Reviewed and Released by: Sarah Bell, Project Manager

Page 3 of 9 Ver 2

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 10, 2015

FOR: Attn: Mr. Charles Powers CNS Management Corp

208 Newtown Road Plainview, NY 11803-4307

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:06/03/1516:44Location Code:CNSReceived by:SW06/04/1517:36

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBJ26381

Phoenix ID: BJ26382

Project ID: 3780-3860 NOSTRAND AVE

Client ID: NW2-GW2E

RL/ **PQL** Parameter Result Units Dilution Date/Time Reference Volatiles 1,1,1,2-Tetrachloroethane ND 20 ug/L 20 06/05/15 MH SW8260C ND 20 20 06/05/15 MH SW8260C 1,1,1-Trichloroethane ug/L 1,1,2,2-Tetrachloroethane ND 10 ug/L 20 06/05/15 MH SW8260C ND 20 20 МН SW8260C ug/L 06/05/15 1,1,2-Trichloroethane ND 20 ug/L 20 06/05/15 MH SW8260C 1,1-Dichloroethane ND 20 20 06/05/15 SW8260C 1,1-Dichloroethene ug/L ND 20 ug/L 20 06/05/15 MH SW8260C 1,1-Dichloropropene 1,2,3-Trichlorobenzene ND 20 ug/L 20 06/05/15 MH SW8260C ND 20 20 06/05/15 MH SW8260C ug/L 1,2,3-Trichloropropane ND 20 ug/L 20 06/05/15 MH SW8260C 1,2,4-Trichlorobenzene ND 20 ug/L 20 06/05/15 MH SW8260C 1,2,4-Trimethylbenzene ND 20 ug/L 20 06/05/15 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane 20 ug/L 20 06/05/15 MH SW8260C ND 20 20 06/05/15 MH SW8260C ug/L 1,2-Dichlorobenzene ND 12 20 06/05/15 MH SW8260C ug/L 1,2-Dichloroethane 1,2-Dichloropropane ND 20 ug/L 20 06/05/15 MH SW8260C ND 20 ug/L 20 06/05/15 MH SW8260C 1,3,5-Trimethylbenzene ND 20 06/05/15 SW8260C 1,3-Dichlorobenzene ug/L 20 MH 20 20 06/05/15 SW8260C ND ug/L MH 1,3-Dichloropropane ND 20 06/05/15 SW8260C ug/L 20 MH 1,4-Dichlorobenzene SW8260C 2,2-Dichloropropane ND 20 ug/L 20 06/05/15 MH ND 20 20 06/05/15 SW8260C 2-Chlorotoluene ua/L MH ND 100 ug/L 20 06/05/15 MH SW8260C 2-Hexanone 20 SW8260C 2-Isopropyltoluene ND ug/L 20 06/05/15 MH 20 20 06/05/15 SW8260C ND ug/L MH 4-Chlorotoluene 100 4-Methyl-2-pentanone ND ug/L 20 06/05/15 MH SW8260C

Page 4 of 9 Ver 2

Project ID: 3780-3860 NOSTRAND AVE

Client ID: NW2-GW2E

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	500	ug/L	20	06/05/15	МН	SW8260C
Acrylonitrile	ND	100	ug/L	20	06/05/15	MH	SW8260C
Benzene	ND	14	ug/L	20	06/05/15	MH	SW8260C
Bromobenzene	ND	20	ug/L	20	06/05/15	MH	SW8260C
Bromochloromethane	ND	20	ug/L	20	06/05/15	MH	SW8260C
Bromodichloromethane	ND	10	ug/L	20	06/05/15	MH	SW8260C
Bromoform	ND	20	ug/L	20	06/05/15	MH	SW8260C
Bromomethane	ND	20	ug/L	20	06/05/15	MH	SW8260C
Carbon Disulfide	ND	100	ug/L	20	06/05/15	МН	SW8260C
Carbon tetrachloride	ND	20	ug/L	20	06/05/15	MH	SW8260C
Chlorobenzene	ND	20	ug/L	20	06/05/15	МН	SW8260C
Chloroethane	ND	20	ug/L	20	06/05/15	МН	SW8260C
Chloroform	ND	20	ug/L	20	06/05/15	МН	SW8260C
Chloromethane	ND	20	ug/L	20	06/05/15	МН	SW8260C
cis-1,2-Dichloroethene	840	100	ug/L	100	06/05/15	МН	SW8260C
cis-1,3-Dichloropropene	ND	8.0	ug/L	20	06/05/15	МН	SW8260C
Dibromochloromethane	ND	10	ug/L	20	06/05/15	МН	SW8260C
Dibromomethane	ND	20	ug/L	20	06/05/15	МН	SW8260C
Dichlorodifluoromethane	ND	20	ug/L	20	06/05/15	МН	SW8260C
Ethylbenzene	ND	20	ug/L	20	06/05/15	МН	SW8260C
Hexachlorobutadiene	ND	8.0	ug/L	20	06/05/15	МН	SW8260C
Isopropylbenzene	ND	20	ug/L	20	06/05/15	MH	SW8260C
m&p-Xylene	ND	20	ug/L	20	06/05/15	MH	SW8260C
Methyl ethyl ketone	ND	100	ug/L	20	06/05/15	MH	SW8260C
Methyl t-butyl ether (MTBE)	ND	20	ug/L	20	06/05/15	MH	SW8260C
Methylene chloride	ND	20	ug/L	20	06/05/15	MH	SW8260C
Naphthalene	ND	20	ug/L	20	06/05/15	MH	SW8260C
n-Butylbenzene	ND	20	ug/L	20	06/05/15	MH	SW8260C
<u>-</u>	ND	20	ug/L	20	06/05/15	MH	SW8260C
n-Propylbenzene	ND	20	ug/L	20	06/05/15	MH	SW8260C
o-Xylene	ND	20		20	06/05/15	MH	SW8260C
p-Isopropyltoluene	ND	20	ug/L	20	06/05/15	МН	SW8260C
sec-Butylbenzene	ND	20	ug/L	20	06/05/15	МН	SW8260C
Styrene	ND	20	ug/L	20	06/05/15		SW8260C
tert-Butylbenzene			ug/L			MH	
Tetrachloroethene	930 ND	100	ug/L	100	06/05/15	MH	SW8260C SW8260C
Tetrahydrofuran (THF)	ND	50	ug/L	20	06/05/15	MH	01102000
Toluene	ND	20	ug/L	20	06/05/15	MH	SW8260C
Total Xylenes	ND	20	ug/L	20	06/05/15	MH	SW8260C
trans-1,2-Dichloroethene	ND	20	ug/L	20	06/05/15	MH	SW8260C
trans-1,3-Dichloropropene	ND	8.0	ug/L	20	06/05/15	MH	SW8260C
trans-1,4-dichloro-2-butene	ND	100	ug/L	20	06/05/15	MH	SW8260C
Trichloroethene	290	20	ug/L	20	06/05/15	MH	SW8260C
Trichlorofluoromethane	ND	20	ug/L	20	06/05/15	MH	SW8260C
Trichlorotrifluoroethane	ND	20	ug/L	20	06/05/15	MH	SW8260C
Vinyl chloride	ND	20	ug/L	20	06/05/15	MH	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	103		%	20	06/05/15	MH	70 - 130 %
% Bromofluorobenzene	97		%	20	06/05/15	MH	70 - 130 %
% Dibromofluoromethane	105		%	20	06/05/15	МН	70 - 130 %

Page 5 of 9 Ver 2

Project ID: 3780-3860 NOSTRAND AVE

Client ID: NW2-GW2E

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	20	06/05/15	МН	70 - 130 %

Phoenix I.D.: BJ26382

Comments:

Volatile Comment:

Elevated reporting limits for volatiles due to the presence of target and/or non-target compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

June 10, 2015

Reviewed and Released by: Sarah Bell, Project Manager

Page 6 of 9 Ver 2

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected BRL=Below Reporting Level

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 10, 2015

FOR: Attn: Mr. Charles Powers

CNS Management Corp 208 Newtown Road Plainview, NY 11803-4307

Sample InformationCustody InformationDateTimeMatrix:WATERCollected by:06/03/1517:39Location Code:CNSReceived by:SW06/04/1517:36

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBJ26381
Phoenix ID: BJ26383

Project ID: 3780-3860 NOSTRAND AVE

Client ID: NW3-GW3E

RL/ **PQL** Parameter Result Units Dilution Date/Time Reference Volatiles 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 1 06/05/15 MH SW8260C ND 1.0 1 06/05/15 MH SW8260C 1,1,1-Trichloroethane ug/L 1,1,2,2-Tetrachloroethane ND 0.50 ug/L 1 06/05/15 MH SW8260C ND МН SW8260C 1.0 ug/L 1 06/05/15 1,1,2-Trichloroethane ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,1-Dichloroethane ND 1 06/05/15 SW8260C 1,1-Dichloroethene 1.0 ug/L ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,1-Dichloropropene 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 06/05/15 MH SW8260C ND 1.0 06/05/15 MH SW8260C ug/L 1 1,2,3-Trichloropropane ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,2,4-Trimethylbenzene ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane 1.0 ug/L 1 06/05/15 MH SW8260C ND 1.0 1 06/05/15 MH SW8260C ug/L 1,2-Dichlorobenzene ND 0.60 1 06/05/15 MH SW8260C ug/L 1,2-Dichloroethane 1,2-Dichloropropane ND 1.0 ug/L 1 06/05/15 MH SW8260C ND 1.0 ug/L 1 06/05/15 MH SW8260C 1,3,5-Trimethylbenzene ND 06/05/15 SW8260C 1,3-Dichlorobenzene 1.0 ug/L 1 MH ND 06/05/15 SW8260C 1.0 ug/L 1 MH 1,3-Dichloropropane ND 1 06/05/15 SW8260C 1.0 ug/L MH 1,4-Dichlorobenzene SW8260C 2,2-Dichloropropane ND 1.0 ug/L 1 06/05/15 MH ND 06/05/15 SW8260C 2-Chlorotoluene 1.0 ua/L 1 MH ND 5.0 ug/L 06/05/15 MH SW8260C 2-Hexanone SW8260C 2-Isopropyltoluene ND 1.0 ug/L 1 06/05/15 MH 1 06/05/15 SW8260C ND 1.0 ug/L MH 4-Chlorotoluene 4-Methyl-2-pentanone ND 5.0 ug/L 1 06/05/15 MH SW8260C

Page 7 of 9 Ver 2

Project ID: 3780-3860 NOSTRAND AVE

Client ID: NW3-GW3E

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	06/05/15	МН	SW8260C
Acrylonitrile	ND	5.0	ug/L	1	06/05/15	MH	SW8260C
Benzene	ND	0.70	ug/L	1	06/05/15	MH	SW8260C
Bromobenzene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	06/05/15	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	06/05/15	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Chloroform	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Chloromethane	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
cis-1,2-Dichloroethene	2.2	1.0	ug/L	1	06/05/15	MH	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	06/05/15	МН	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	06/05/15	МН	SW8260C
Dibromomethane	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	06/05/15	МН	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	06/05/15	МН	SW8260C
Methyl t-butyl ether (MTBE)	2.4	1.0	ug/L	1	06/05/15	МН	SW8260C
Methylene chloride	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Naphthalene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
o-Xylene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Styrene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Tetrachloroethene	12	1.0	ug/L	1	06/05/15	МН	SW8260C
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	06/05/15	МН	SW8260C 1
Toluene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Total Xylenes	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	06/05/15	МН	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	06/05/15	МН	SW8260C
Trichloroethene	2.0	1.0	ug/L	1	06/05/15	МН	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	06/05/15	МН	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	06/05/15	MH	SW8260C
Vinyl chloride	1.3	1.0	ug/L	1	06/05/15	MH	SW8260C
QA/QC Surrogates			~g, _	•	33, 33, 10	.,,,,	21.0200
% 1,2-dichlorobenzene-d4	101		%	1	06/05/15	МН	70 - 130 %
% 1,2-dictilorobenzene-d4 % Bromofluorobenzene	96		%	1	06/05/15	MH	70 - 130 % 70 - 130 %
% Dibromofluoromethane	100		%	1	06/05/15	MH	70 - 130 % 70 - 130 %
	100		70		33,33,10		. 5 100 /5

Page 8 of 9 Ver 2

Project ID: 3780-3860 NOSTRAND AVE

Client ID: NW3-GW3E

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	1	06/05/15	МН	70 - 130 %

Phoenix I.D.: BJ26383

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

June 10, 2015

Reviewed and Released by: Sarah Bell, Project Manager

Page 9 of 9 Ver 2

^{1 =} This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters at this time. RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quanitation) ND=Not Detected BRL=Below Reporting Level

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

QA/QC Data

June 10, 2015			QA/QC Data				SDG I	DG I.D.: GBJ26381				
Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits		
QA/QC Batch 310099 (ug/L),	QC Samp	e No: BJ26192	(BJ26381, BJ26382 (20)Χ, 100)	() , BJ2	6383)						
Volatiles - Water												
1,1,1,2-Tetrachloroethane	ND	1.0	113	86	27.1				70 - 130	30		
1,1,1-Trichloroethane	ND	1.0	119	94	23.5				70 - 130	30		
1,1,2,2-Tetrachloroethane	ND	0.50	99	82	18.8				70 - 130	30		
1,1,2-Trichloroethane	ND	1.0	94	81	14.9				70 - 130	30		
1.1-Dichloroethane	ND	1.0	106	86	20.8				70 - 130	30		
1,1-Dichloroethene	ND	1.0	115	90	24.4				70 - 130	30		
1,1-Dichloropropene	ND	1.0	112	93	18.5				70 - 130	30		
1,2,3-Trichlorobenzene	ND	1.0	106	91	15.2				70 - 130	30		
1,2,3-Trichloropropane	ND	1.0	97	81	18.0				70 - 130	30		
1,2,4-Trichlorobenzene	ND	1.0	106	90	16.3				70 - 130	30		
1,2,4-Trimethylbenzene	ND	1.0	104	84	21.3				70 - 130	30		
1,2-Dibromo-3-chloropropane	ND	1.0	109	90	19.1				70 - 130	30		
1,2-Dibromoethane	ND	1.0	107	83	25.3				70 - 130	30		
1,2-Dichlorobenzene	ND	1.0	101	85	17.2				70 - 130	30		
1,2-Dichloroethane	ND	1.0	110	90	20.0				70 - 130	30		
1,2-Dichloropropane	ND	1.0	103	83	21.5				70 - 130	30		
1,3,5-Trimethylbenzene	ND	1.0	108	88	20.4				70 - 130	30		
1,3-Dichlorobenzene	ND	1.0	105	86	19.9				70 - 130	30		
1,3-Dichloropropane	ND	1.0	102	83	20.5				70 - 130	30		
1,4-Dichlorobenzene	ND	1.0	103	85	19.1				70 - 130	30		
2,2-Dichloropropane	ND	1.0	116	91	24.2				70 - 130	30		
2-Chlorotoluene	ND	1.0	106	86	20.8				70 - 130	30		
2-Hexanone	ND	5.0	90	69	26.4				70 - 130	30	ı	
2-Isopropyltoluene	ND	1.0	113	91	21.6				70 - 130	30	'	
4-Chlorotoluene	ND	1.0	105	85	21.1				70 - 130	30		
4-Methyl-2-pentanone	ND	5.0	102	86	17.0				70 - 130	30		
Acetone	ND	5.0	94	75	22.5				70 - 130	30		
Acrylonitrile	ND	5.0	105	80	27.0				70 - 130	30		
Benzene	ND	0.70	103	85	19.1				70 - 130	30		
Bromobenzene	ND	1.0	104	84	21.3				70 - 130	30		
Bromochloromethane	ND	1.0	102	83	20.5				70 - 130	30		
Bromodichloromethane	ND	0.50	113	89	23.8				70 - 130	30		
Bromoform	ND	1.0	103	84	20.3				70 - 130	30		
Bromomethane	ND	1.0	72	56	25.0				70 - 130	30		
Carbon Disulfide	ND	1.0	116	94	21.0				70 - 130	30	'	
Carbon tetrachloride	ND	1.0	121	95	24.1				70 - 130	30		
Chlorobenzene	ND	1.0	104	84	21.3				70 - 130	30		
Chloroethane	ND	1.0	101	81	22.0				70 - 130	30		
Chloroform	ND	1.0	105	84	22.0				70 - 130	30		
Chloromethane	ND	1.0	53	49	7.8				70 - 130	30		
cis-1,2-Dichloroethene	ND	1.0	103	84	20.3				70 - 130	30	'	
0.5 1/2 DIGITION OCCUPANT	אוט	1.0	103	04	20.5				70 130	50		

QA/QC Data

		Blk	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD
Parameter ^E	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits
cis-1,3-Dichloropropene	ND	0.40	104	84	21.3				70 - 130	30
Dibromochloromethane	ND	0.50	112	91	20.7				70 - 130	30
Dibromomethane	ND	1.0	100	84	17.4				70 - 130	30
Dichlorodifluoromethane	ND	1.0	114	88	25.7				70 - 130	30
Ethylbenzene	ND	1.0	111	87	24.2				70 - 130	30
Hexachlorobutadiene	ND	0.40	113	96	16.3				70 - 130	30
Isopropylbenzene	ND	1.0	106	85	22.0				70 - 130	30
m&p-Xylene	ND	1.0	110	88	22.2				70 - 130	30
Methyl ethyl ketone	ND	5.0	104	79	27.3				70 - 130	30
Methyl t-butyl ether (MTBE)	ND	1.0	108	87	21.5				70 - 130	30
Methylene chloride	ND	1.0	92	75	20.4				70 - 130	30
Naphthalene	ND	1.0	104	90	14.4				70 - 130	30
n-Butylbenzene	ND	1.0	109	88	21.3				70 - 130	30
n-Propylbenzene	ND	1.0	101	81	22.0				70 - 130	30
o-Xylene	ND	1.0	112	90	21.8				70 - 130	30
p-Isopropyltoluene	ND	1.0	111	91	19.8				70 - 130	30
sec-Butylbenzene	ND	1.0	112	91	20.7				70 - 130	30
Styrene	ND	1.0	109	86	23.6				70 - 130	30
tert-Butylbenzene	ND	1.0	110	89	21.1				70 - 130	30
Tetrachloroethene	ND	1.0	105	85	21.1				70 - 130	30
Tetrahydrofuran (THF)	ND	2.5	92	72	24.4				70 - 130	30
Toluene	ND	1.0	102	83	20.5				70 - 130	30
trans-1,2-Dichloroethene	ND	1.0	109	85	24.7				70 - 130	30
trans-1,3-Dichloropropene	ND	0.40	108	88	20.4				70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0	89	72	21.1				70 - 130	30
Trichloroethene	ND	1.0	107	86	21.8				70 - 130	30
Trichlorofluoromethane	ND	1.0	127	100	23.8				70 - 130	30
Trichlorotrifluoroethane	ND	1.0	129	101	24.3				70 - 130	30
Vinyl chloride	ND	1.0	108	86	22.7				70 - 130	30
% 1,2-dichlorobenzene-d4	103	%	100	98	2.0				70 - 130	30
% Bromofluorobenzene	98	%	106	104	1.9				70 - 130	30
% Dibromofluoromethane	101	%	98	99	1.0				70 - 130	30
% Toluene-d8	99	%	98	100	2.0				70 - 130	30
Comment:										

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GBJ26381

June 10, 2015

I = This parameter is outside laboratory lcs/lcsd specified recovery limits.

Wednesday, June 10, 2015

Criteria: None

State: NY

Sample Criteria Exceedences Report

GBJ26381 - CNS

RL Analysis SampNo Acode Phoenix Analyte Criteria Result RLCriteria Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

^{***} No Data to Display ***

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY # 11301

NY Temperature Narration

June 10, 2015

SDG I.D.: GBJ26381

The samples in this delivery group were received at 6°C. (Note acceptance criteria is above freezing up to 6°C)

6°ulits

SUB-SURFACE CHAIN OF CUSTODY

PAGE 1 of 1

CNS Job #:	Client:	Acadia	X P	Sec	File	u	Tru	87								•			A I			Lab Projec	et #:
D196	Site: 3	780-	38	60	5	T/	051	ran	1 A	enue	- Z	m.K	lun			Lai	bora	tory .	Analys	515			
Samplera Sima	ure									(must oil	OPT FC	rmat	9										
Sampling Meth	od:				I	Ι	Τ			Wet W	/e ight	Dry V	Veight									Sample Loca	ntion /
			osite					79	7			er of		ان پڑا								Remark	
Sample ID #	Date	Time	Composite	Grab	Water	Soil		Filtered	Acidified	Iced		Number of Containers	Lab ID Number	85			_						
NWI-GWIE NWZ-GWZE	6/3/15	4 44, 5:395			Х				Х	X		3		X			2	63	Y 3			Front of Bld	a
NWZ-GWZE		4 440			X				X	×		3		X			2	63	83			Rear of Bld	ik.
NW3-GWE	+	5:39p			X				ᅩ	×		3		<u>ኢ</u>			2	03	F3			Basement	<u>.0</u>
															¢								
																↓							
															, a 31,								
														•	-	1		ļ					
																-		<u> </u>					
						-	ļ												_				
																\vdash		<u> </u>					
													_			-		ļ					
													-			-							
							-																
																╁┈┼	_						
							-									+							<u></u>
Sent by (Spenature				Date /	Time	<u></u>	Rec	riy ed/	by: (Si	gnature	egthinspace = egt		L		Date /	/ Time		Res	ults to	<u>_</u>		Telephone:	
ONSO	~						1 /te	///		1	, '	_				1010	V				ro.com	(516) 932-3228	
Sent by: (Signardre	7		ı	Date /	Time	-	Rec	eived	før L	rograj	bry b	y:		A)ate	/ Time		Tur		nd Tir		Fax:	
(3)	7			Date /	1-15	,	(Signa	ture) (N	ne	-		6	1/1	517	-3	6				(516) 932-3288	
	1								U	7				7	7								