DEUTSCH RELAYS, INC. SITE SUFFOLK COUNTY EAST NORTHPORT, NEW YORK

SITE MANAGEMENT PLAN

NYSDEC Site Number: 152003

Prepared for:

65 Daly Road LLC 300 Jericho Turnpike, Suite 100 Jericho, NY 11753

Prepared by:

FPM Group, Ltd. 640 Johnson Avenue, Suite 101, Bohemia, NY 11716 (631) 737-6200

Revisions to Final Approved Site Management Plan:

Revision No.	Date Submitted	Summary of Revision	NYSDEC Approval Date
1	July 2022	Modifications to groundwater monitoring network and revision of remaining soil contamination	

CERTIFICATION STATEMENT

I, STEPHANIE O. DAVIS, PG certify that I am currently a Qualified Environmental Professional as in defined in 6 NYCRR Part 375 and that this Site Management Plan and revisions were prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

. Р.С. ДЕР Stylic Opinio June 22, 2022 DATE

TABLE OF CONTENTS

DEUTSCH RELAYS, INC. SITE SUFFOLK COUNTY EAST NORTHPORT, NEW YORK

SITE MANAGEMENT PLAN

ES	EX	ECI	JTIVE SUMMARY	vi
1.0	Intr	odu	ction	1-1
	1.1	Ge	neral	1-1
	1.2	Re	visions	1-4
	1.3	No	tifications	1-5
2.0	Sun	nma	ry of Previous Remedial Investigations and Remedial Actions	2-1
	2.1	Sit	e Location and Description	2-1
	2.2	Ph	ysical Setting	2-1
	2.2.	1	Land Use	2-1
	2.2.2	2	Geology	2-5
	2.2.	3	Hydrogeology	
	2.3	Inv	vestigation and Remedial History	2-10
	2.3.	1	Former Facility Infrastructure and Soil and Soil Vapor Data	2-11
	2.3.	2	Groundwater Investigations and Remediation	2-27
	2.3.	3	Municipal Water Supply Well Monitoring and Assessment	2-31
	2.4	Re	medial Action Objectives	2-35
	2.4.	1	Groundwater RAOs for Public Health and Environmental Protection	2-35
	2.4.	2	Soil RAOs for Public Health and Environmental Protection	
	2.4.	3	Soil Vapor RAOs for Public Health Protection	
	2.5	Re	maining Contamination	
	2.5.	1	Soil	
	2.5.	2	Groundwater	
	2.5.	5	Soil Vapor	2-38
3.0	Inst	itut	ional Control Plan	
	3.1	Ge	neral	
	3.2	Ins	titutional Controls	

	3.3	Site-wide Inspection
4.0	Per	iodic Assessments/Evaluations4-1
	4.1	Climate Change Vulnerability Assessment
	4.2	Soil Vapor Intrusion Evaluation
	4.3	Groundwater Monitoring
	4.3.	1 Groundwater Sampling
5.0.	Rep	porting Requirements
	5.1	Site Management Reports 5-1
	5.2	Periodic Review Report
	5.2.	1 Certification of Institutional Controls
	5.3	Corrective Measures Work Plan
6.0	Ref	Ferences

LIST OF TABLES

1.3.1	Notifications1	-5
4.3.1	Groundwater Monitoring Requirements and Schedule4	2
4.3.1.1	Monitoring Well Construction Details4	-4
5.1.1	Schedule of Inspection Reports5	-1

LIST OF FIGURES

1.1.1	Site Location Map	.1-2
1.1.2	Site Location and Boundaries	.1-3
2.1.1	Site Tax Map Information	.2-2
2.2.1.1	General Site Plan	.2-3
2.2.1.2	Redevelopment Plan	.2-4
2.2.2.1	Generalized Geologic Cross Section	.2-6
2.2.2.2	Generalized Geologic Cross Section Location	.2-7
2.2.3.1	Groundwater Flow Directions	.2-9
2.3.2.1	Monitoring Well Relocation Plan	.2-32
3.2.1	Institutional Control Boundaries	.3-2

LIST OF APPENDICES

А	Environmental Easement and Site Metes and Bounds
В	List of Site Contacts
С	Remaining Contamination
D	Soil, Groundwater, and Soil Vapor Data Tables
E	Soil Boring and Monitoring Well Construction Logs, Groundwater Elevation Data
F	Excavation Work Plan
G	Site Management Forms (Site-Wide Inspection Form, Groundwater Sampling Form, and Canister Sampling Form
Н	Field Sampling Plan
Ι	Quality Assurance Project Plan
J	Health and Safety Plan

LIST OF ACRONYMS

11004	110.11 4
1,1-DCA	1,1-Dichloroethane
1,1,1-TCA	1,1,1-Trichloroethane
ASP	Analytical Services Protocol
CAMP	Community Air Monitoring Plan
CFR	Code of Federal Regulation
Cis-1,2-DCE	cis-1,2-dichloroethene
CLP	Contract Laboratory Program
COC	Certificate of Completion
СР	Commissioner Policy
DER	Division of Environmental Remediation
DO	Dissolved oxygen
ECL	Environmental Conservation Law
ELAP	Environmental Laboratory Approval Program
EWP	Excavation Work Plan
FPM	FPM Group, Ltd.
FS	Feasibility Study
G&M	Geraghty & Miller, Inc.
Gpm	gallons per minute
H2M	Holzmacher, McLendon and Murrell, PC
HASP	Health and Safety Plan
IC	Institutional Control
MCL	Maximum Contaminant Level
MSL	Mean Sea Level

MTBE	Methyl tert butyl ether
	• •
Ng/l NYSDEC	Nanograms per liter
	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYSDOL	New York State Department of Labor
NYSDOT	New York State Department of Transportation
NYCRR	New York Codes, Rules and Regulations
Objectives	NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives
OSHA	Occupational Safety and Health Administration
PCE	Tetrachloroethene
PFAS	Per and polyfluorinated alkyl substances
Ppbv	Parts per billion by volume
PID	Photoionization Detector
PRR	Periodic Review Report
QA/QC	Quality Assurance/Quality Control
QAPP	Quality Assurance Project Plan
RAO	Remedial Action Objective
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
ROD	Record of Decision
SCDHS	Suffolk County Department of Health Services
SCG	Standards, Criteria and Guidelines
SCO	Soil Cleanup Objective
SMP	Site Management Plan
SPDES	State Pollutant Discharge Elimination System
SSDS	Sub-slab Depressurization System
Standards	NYSDEC Class GA Ambient Water Quality Standards
SVI	Soil Vapor Intrusion
SVOC	Semivolatile organic compound
SWAP	Source Water Assessment Program
TCE	Trichloroethene
TCLP	Toxicity Characteristic Leaching Procedure
TPH	Total Petroleum Hydrocarbons
TSCA	Toxic Substances Control Act
Ug/l	Micrograms per liter
Ug/m ³	Micrograms per cubic meter
UST	Underground Storage Tank
VOC	Volatile organic compound
	0 1

ES EXECUTIVE SUMMARY

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring and reporting activities required by this Site Management Plan:

Site Identification: Site #152003 Deutsch Relays, Inc. Site 65 Daly Road, East Northport, NY		NY	
Institutional Controls:	1. The property may be used for restricted residential, commercial, or industrial uses.		
	2. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Suffolk County Department of Health Services to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.		
	3. Data and information pertine reported at the frequency and in a	ent to site management must be a manner as defined in this SMP.	
	4. All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP.		
	5. Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.		
	6. The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 3.2.1, and appropriate actions to address exposures must be implemented.		
	7. Vegetable gardens and farming on the Site are prohibited.		
Inspections:		Frequency	
Site-Wide Inspection		Annually	
Evaluations			
Soil Vapor Intrusion evaluation		Upon change in use/as needed	

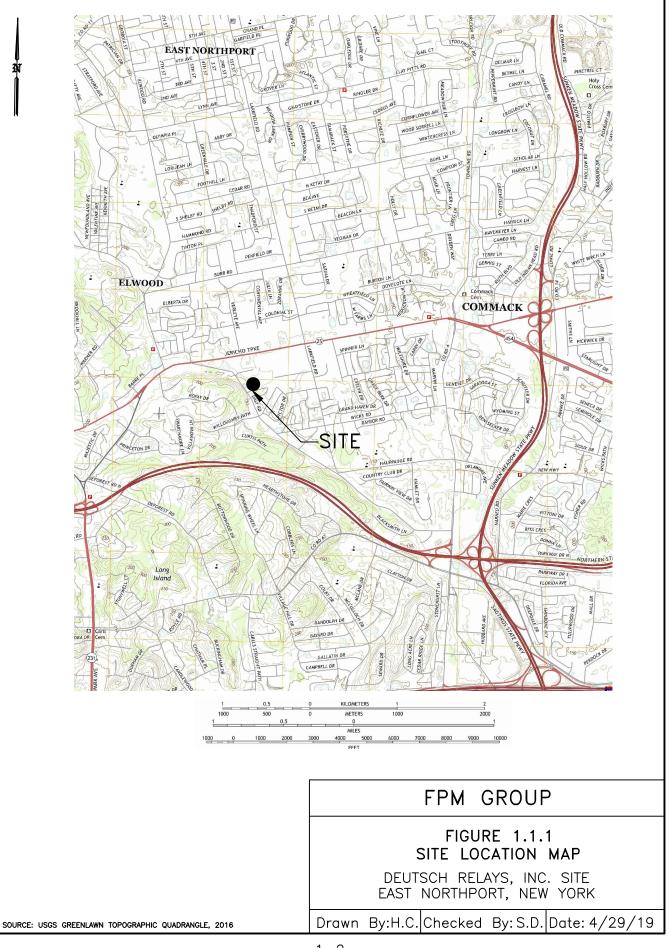
Site Identification: Site #152003 Deutsch Relays, Inc. Site 65 Daly Road, East Northport, NY

Groundwater Monitoring	Once per five quarters
Reporting:	
Inspection Report	Annually
Certification/PRR	Annually (initial)
Final Construction Report	Upon completion of Soil Management/Excavation activities

Further descriptions of the above requirements are provided in detail in the subsequent sections of this Site Management Plan.

1.0 INTRODUCTION

1.1 General


This Site Management Plan (SMP) is a required element of the remedial program for the Deutsch Relays, Inc. Site located in East Northport, Suffolk County, New York; see Figure 1.1.1 for the Site location. The Site (Site No. 152003) is currently in the New York State Inactive Hazardous Waste Disposal Site Remedial Program, which is administered by New York State Department of Environmental Conservation (NYSDEC).

A former owner of the Site, Deutsch Relays, Inc., entered into an Order on Consent on October 5, 1989 (amended Order signed April 30, 1992) with the NYSDEC to remediate the Site. The original Site was approximately 22 acres and included a northern 6.5-acre undeveloped area adjoining Jericho Turnpike, an approximately 10-acre portion of the Site that included the manufacturing area and parking lot, and an approximately four-acre area to the west adjoining Daly Road. In response to a 1997 petition, the Site boundary was modified to include only the western four-acre area, which at that time included three recovery wells, a groundwater treatment building, and a stormwater recharge basin that received discharges of treated groundwater. The northern parcel was sold and subsequently developed by its new owners; this parcel is not further considered in this SMP. The Site presently includes the former manufacturing area, parking lot, and western area and is a 14.31-acre parcel identified on the Suffolk County Tax Map as District 400, Section 215, Block 2, and Lot 55.001. This SMP has been prepared for this 14.31-acre parcel, hereinafter referred to as the Site. The Site location and boundaries are provided in Figure 1.1.2. The boundaries of the Site are more fully described in the metes and bounds site description that is part of the Environmental Easement provided in Appendix A.

After completion of the remedial work, some contamination remains at this Site, which is hereafter referred to as "remaining contamination". Institutional (ICs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Suffolk County Clerk, requires compliance with this SMP and all ICs placed on the site.

This SMP was prepared to manage remaining contamination at the Site until the Environmental Easement is extinguished in accordance with Environmental Conservation Law

(ECL) Article 71, Title 36. This SMP has been approved by the NYSDEC, and compliance with this SMP is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion (COC), release or closure letter;
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the Order on Consent (Index #WI-0213-88-3; Site #152003) for the site, and thereby subject to applicable penalties.

All reports associated with the Site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the Site is provided in Appendix B of this SMP.

This SMP was prepared by FPM Group, Ltd. (FPM), on behalf of 65 Daly Road LLC, in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010, and the guidelines provided by the NYSDEC. This SMP addresses the means for implementing the ICs that are required by the Environmental Easement for the Site.

1.2 Revisions

The SMP was approved by the NYSDEC in January 2021. Since that time there have been changes in Site conditions, including a change of use, modifications to the groundwater monitoring network, and removal of contaminated soil, that necessitated revisions to the SMP. This revised SMP reflects these changes in Site conditions.

Revisions to this SMP will be proposed in writing to the NYSDEC's project manager. Revisions will be necessary upon, but not limited to, further significant changes to the Site conditions. In accordance with the Environmental Easement for the Site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.3 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER – 10 for the following reasons:

- Written 60-day advance notice of any proposed changes in Site use that are required under the terms of the Order on Consent, 6NYCRR Part 375 and/or Environmental Conservation Law.
- 7-day advance notice of any field activity associated with the remedial program.
- Written 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan (EWP).

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the Order on Consent and all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the Site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Table 1.3.1 below includes contact information for the above notification. The information

on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Appendix B.

Name and Title	Contact Information
Melissa Sweet, PE	(518) 402-9614
NYSDEC Project Manager	Melissa.sweet@dec.ny.gov
Chris Engelhardt	(631) 444-0235
NYSDEC Regional HW Engineer	Chris.engelhardt@dec.ny.gov
Kelly Lewandowski	(518) 402-9553
NYSDEC Site Control	kelly.lewandowski@dec.ny.gov

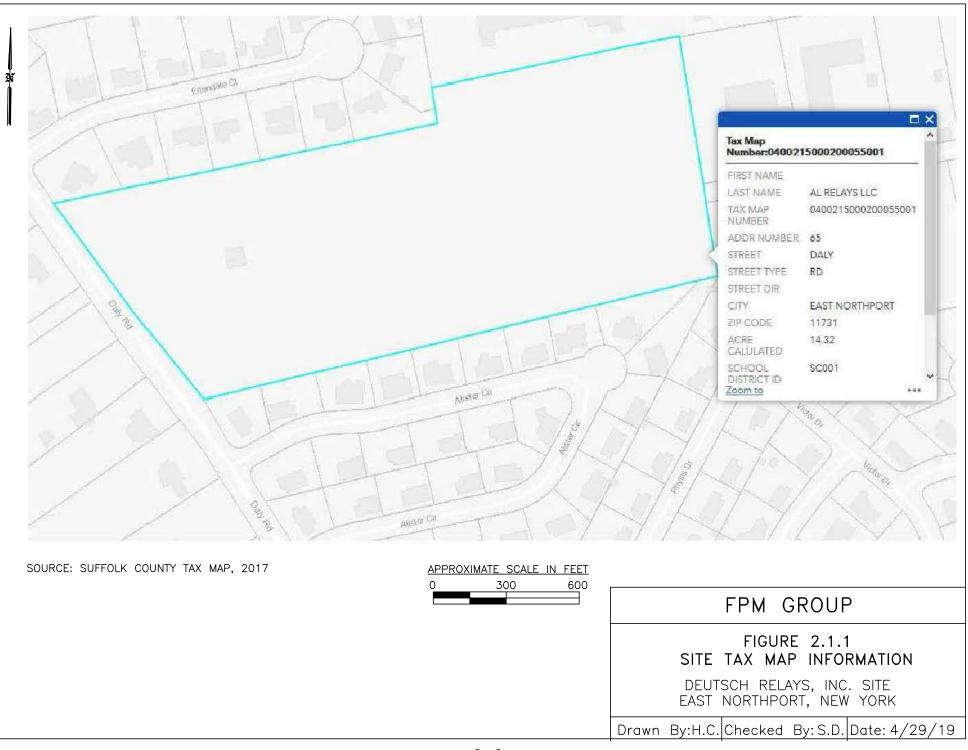
Table 1.3.1: Notifications*

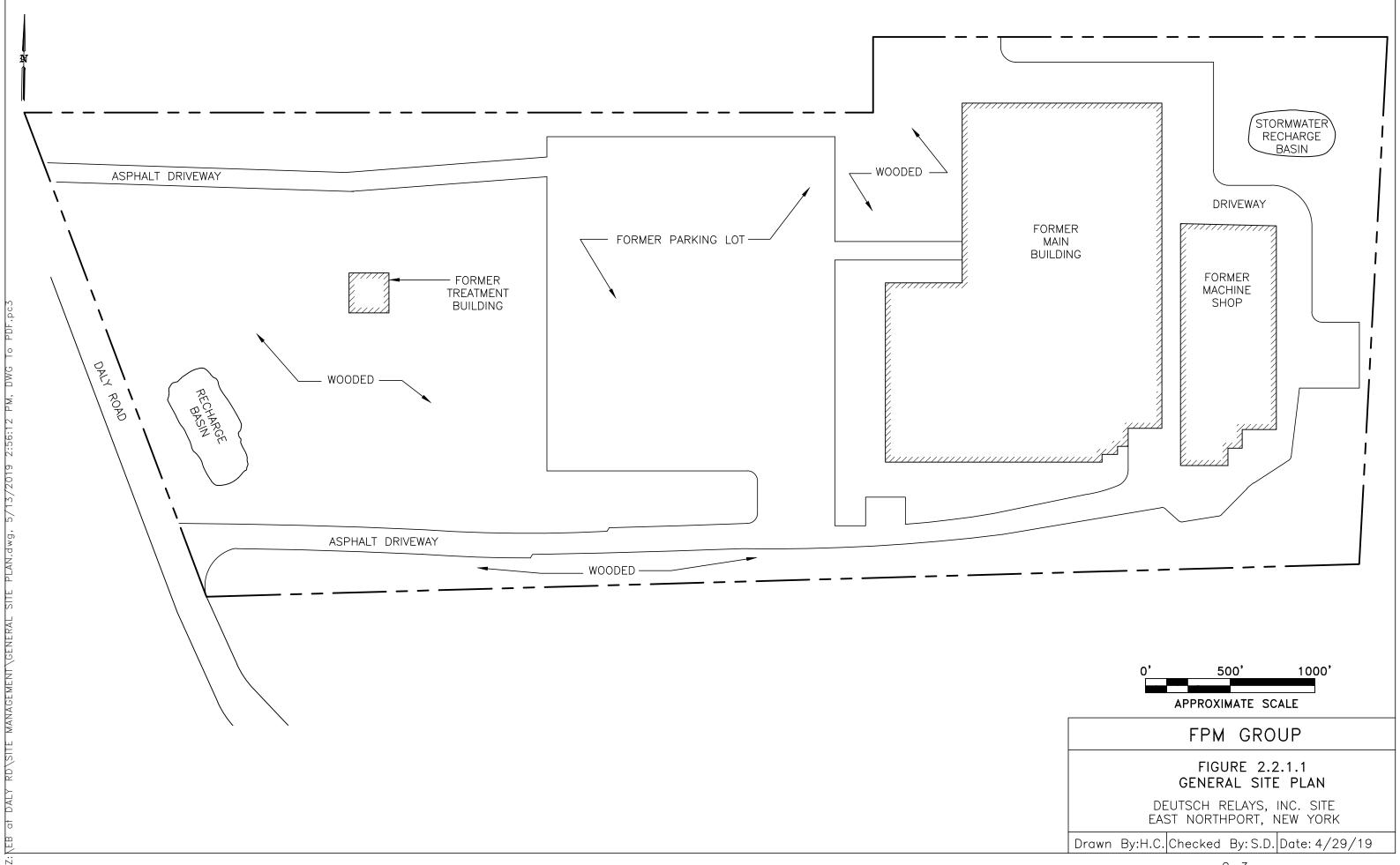
* Note: Notifications are subject to change and will be updated as necessary.

2.0 SUMMARY OF PREVIOUS REMEDIAL INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The Site is located in East Northport, Suffolk County, New York and is identified as District 400, Section 215, Block 2, and Lot 55.001 on the Suffolk County Tax Map (see Figure 2.1.1). The Site is an approximately 14.32-acre area and is bounded by a residential area along Ellendale Court and commercial buildings along Jericho Turnpike to the north, residential properties along Alister Circle to the south, industrial properties along Doyle Court to the east, and residential properties across Daly Road to the west (see previous Figure 1.1.2). The boundaries of the Site are more fully described in Appendix A – Environmental Easement. The owner of the Site parcel at the time of issuance of this SMP is 65 Daly Road LLC.


2.2 Physical Setting


2.2.1 Land Use

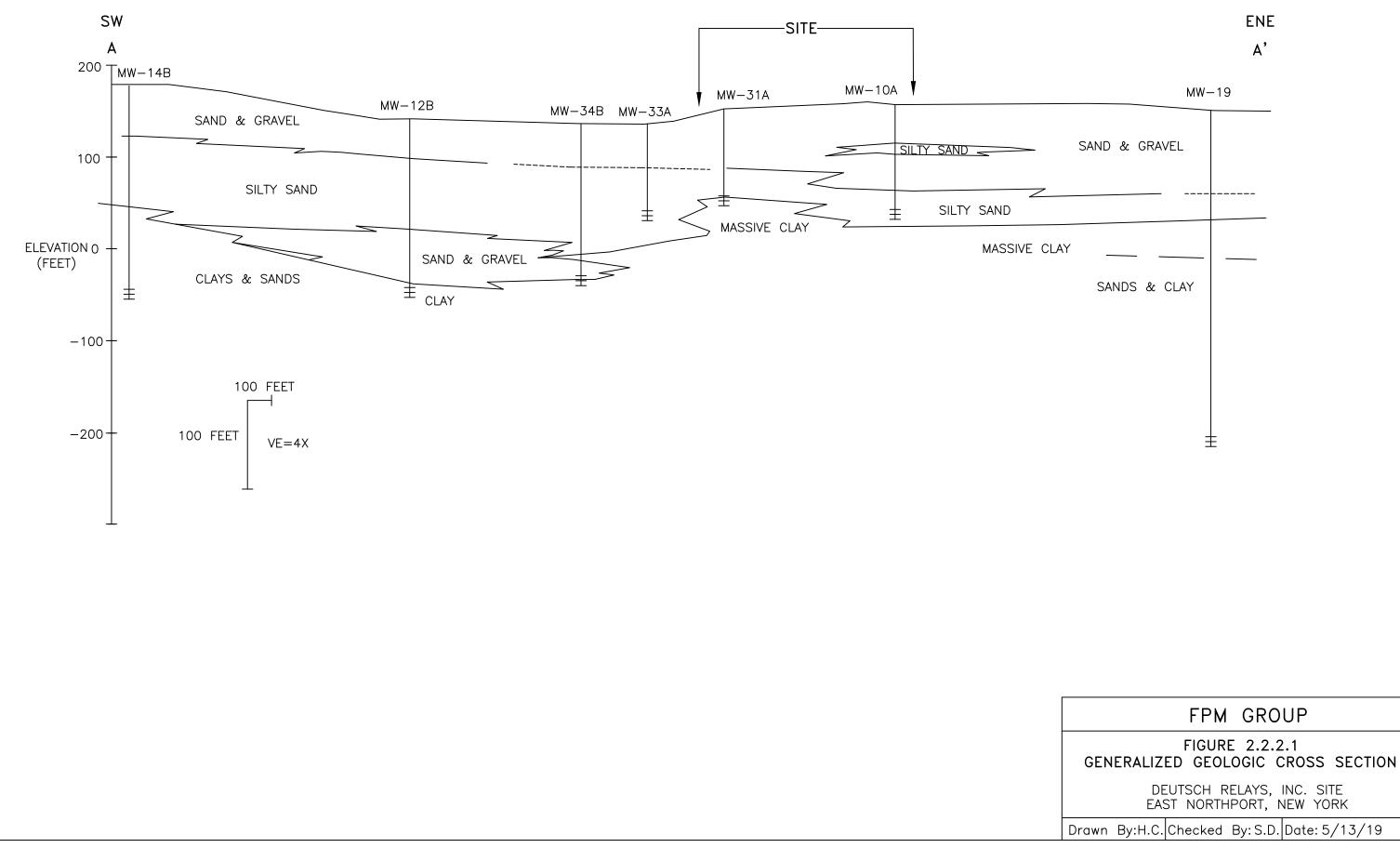
The Site consists of a 14.32-acre property that is currently vacant and undergoing redevelopment. Figure 2.2.1.1 shows the general layout of the Site. The Site was formerly occupied from 1961 to 2001 by a manufacturing plant for electronics components. The former manufacturing buildings were vacant by 2004 and were removed in 2006. The western approximately four-acre portion of the Site where a groundwater remedial system was formerly present was formerly zoned R-10 for residential use and is largely wooded. The remainder of the Site was formerly zoned I-1 for light industrial use and is currently partially paved (former parking lot) and partially cleared (former manufacturing area). At a February 23, 2021 Town of Huntington Town Board meeting, the Town Board adopted Town Board Resolution #2021-102, which changed the zoning for the entire Site from R-10 Residence District and I-1 Light Industry District to R-3M Garden Apartment Special District. The zoning change was made to allow for Site redevelopment for restricted residential purposes.

As part of the proposed redevelopment of the Site with a restricted residential use (residential condominiums and associated amenities), a 60-Day Advance Notification of Site Change of Use was submitted to the NYSDEC on March 13, 2022. The NYSDEC acknowledged receipt of the Change of Use Notification in March 18, 2022 correspondence. Figure 2.2.1.2 shows the planned configuration of the Site following redevelopment.

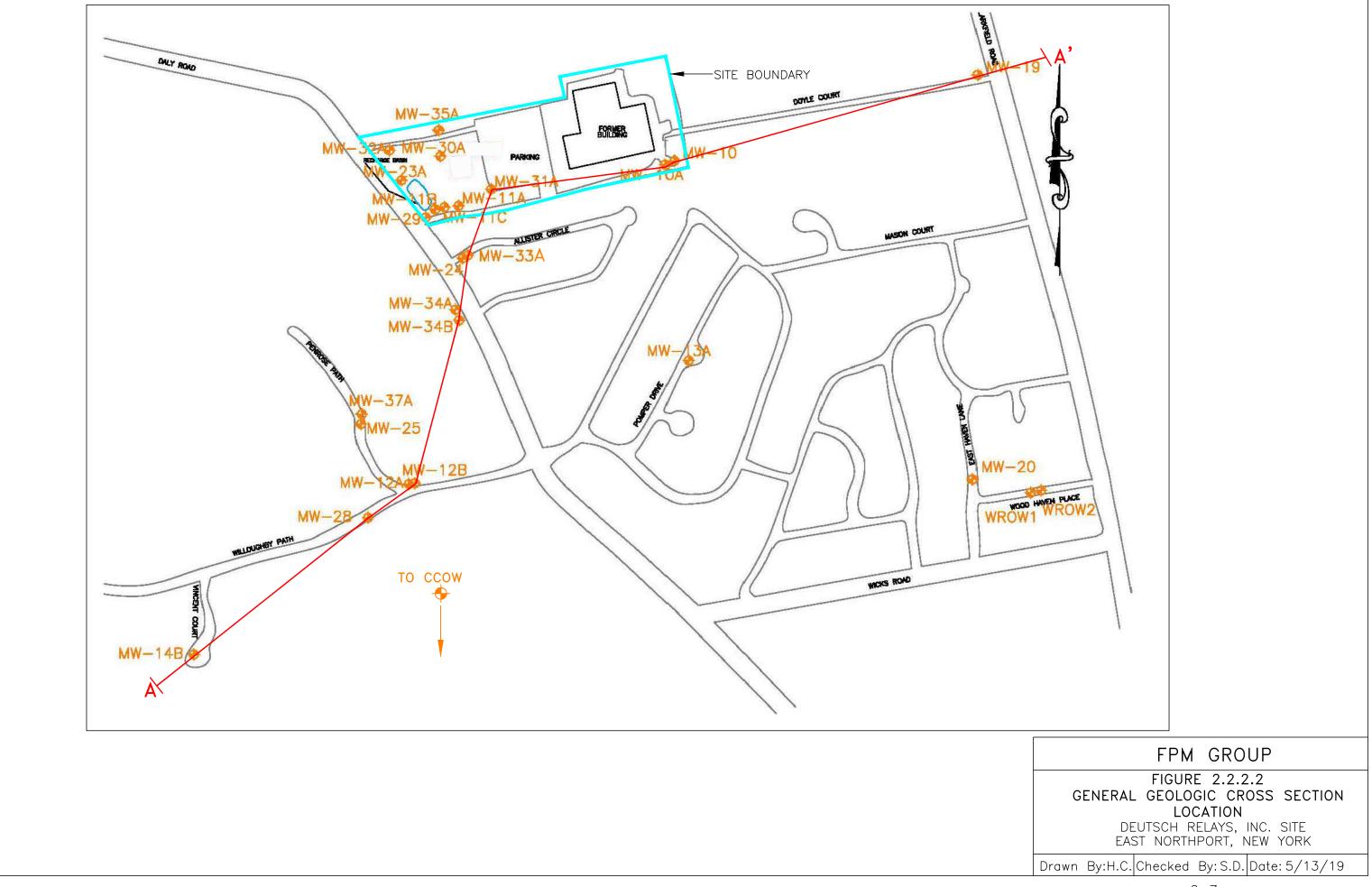
2-3

jel Burman\65 Daly Road\FIG 2.2.1.2 dwg. 6/21/2022 11.43 00 AM. AutoCAD PDF (Hebh

The properties adjoining the Site and in the neighborhood surrounding the Site include residential, commercial, and industrial properties. The properties immediately south of the Site include residential properties; the properties immediately north of the Site include commercial and residential properties; the properties immediately east of the Site include industrial properties; and the properties to the west of the Site, across Daly Road, include residential properties.


2.2.2 Geology

The surface topography of the Site and vicinity was obtained from the USGS Greenlawn, New York Quadrangle (1969). The topographic elevation of the subject property is approximately 160 to 170 feet above mean sea level (MSL) and the property land surface is relatively level, with a slight slope to the south and west. Topographic information is shown on the previously-presented Figure 1.1.1.

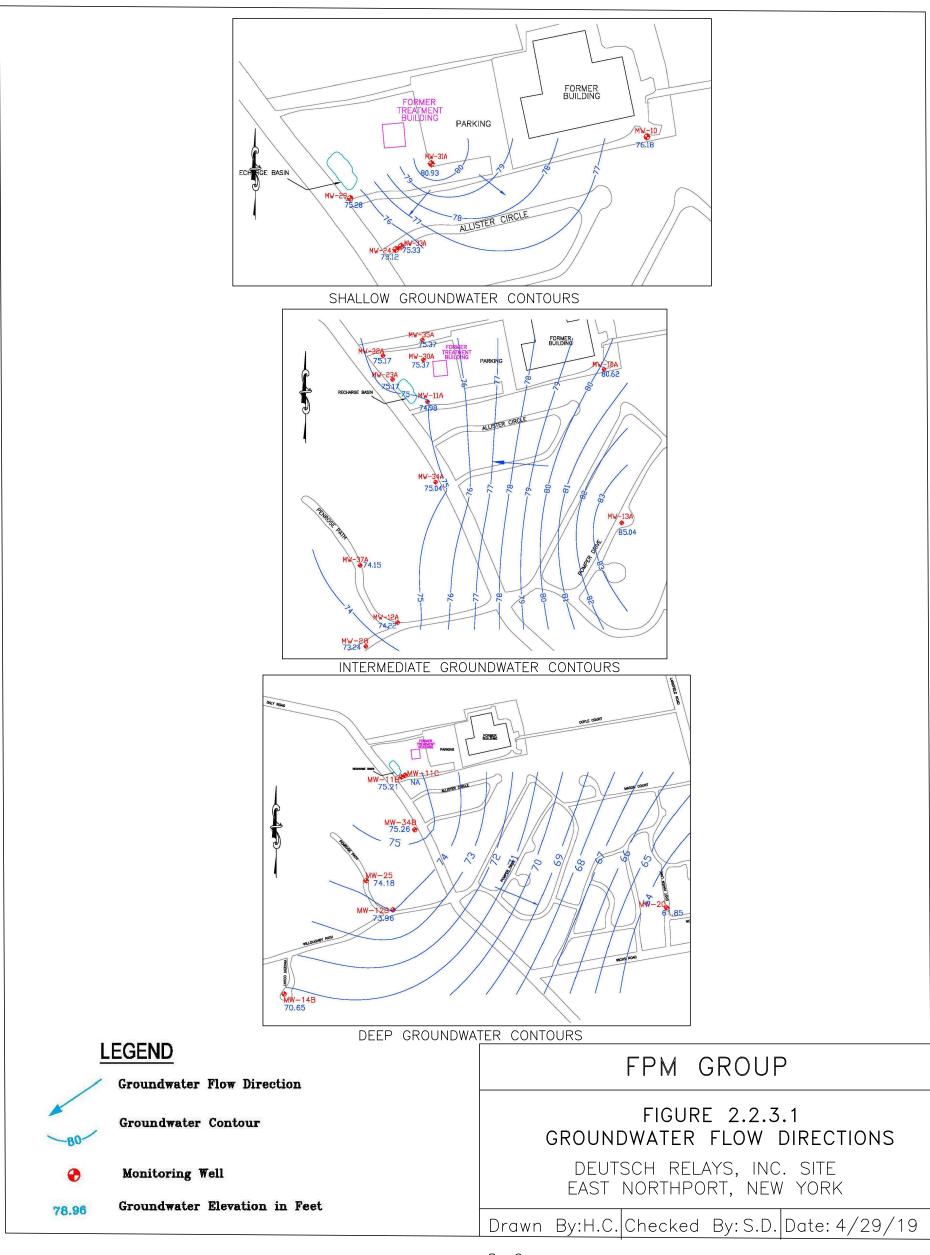

The Site is underlain by unconsolidated Pleistocene glacial deposits (USGS, 1964) consisting primarily of sand and gravel. There are two silty clay layers within the Pleistocene deposits, as identified in the Supplemental Remedial Investigation (SRI) for the Site (Clayton, January 1997). The first layer is approximately 60 to 120 feet below grade and approximately 10 to 30 feet thick. The second layer is approximately 100 to 200 feet below grade and also between 10 and 30 feet thick. The SRI indicates that these layers may not be continuous throughout the Site vicinity. A massive clay layer approximately 80 to over 200 feet thick is present beneath the Pleistocene deposits and separates them from the underlying Cretaceous Magothy Formation, the top of which is approximately 320 to 380 feet below grade.

The Magothy Formation is approximately 600 feet thick in the Site vicinity and is underlain successively by the Clay Member and the Lloyd Sand Member of the Raritan Formation (USGS, 1964). The Lloyd Sand Member overlies bedrock, the top of which is present at a depth of about 1,100 feet below the Site.

A generalized geologic cross section is shown in Figure 2.2.2.1 and is based on the available boring logs and a cross section presented in the SRI. The cross section location is depicted on Figure 2.2.2.2 and copies of the available Site-specific boring logs are provided in Appendix E.

2.2.3 <u>Hydrogeology</u>

Groundwater is present within the Upper Glacial Aquifer (a sole-source aquifer) within the Pleistocene glacial deposits that underlie the Site. The water table elevation in the vicinity of the Site is approximately 75 to 90 feet above mean sea level, or MSL (Clayton, 1997) and the depth to groundwater is approximately 70 to 95 feet below grade.


The regional groundwater flow direction in the Site vicinity is generally to the south (USGS, 2015) but groundwater flow directions beneath the Site are variable and are affected by a groundwater divide located in the Site vicinity. Groundwater flow was also formerly influenced by pumping from two onsite supply wells and discharge to diffusion wells and recharge basins. In general, groundwater flow is to the southwest with a localized southeast component.

Groundwater contour maps based on the most recent complete water level monitoring data (January 2014 from the Bureau Veritas, May 30, 2014 *Groundwater Evaluation Report*) are shown in Figure 2.2.3.1. It should be noted that groundwater is monitored at three levels in the Upper Glacial Aquifer, including the shallow zone (water table to about 20 feet below the water table), the intermediate zone (A-designated wells, approximately 50 feet below the water table), and the deep zone (B-designated wells, approximately 150 feet below the water table). Groundwater elevation data are provided in Table C-1, located in Appendix D, and the available groundwater monitoring well construction logs are also provided in Appendix D. Several of the monitoring wells have been previously decommissioned, as noted on Table C-1. All of the former onsite supply wells, diffusion wells, and groundwater remediation system wells have been decommissioned.

As discussed in Section 2.3 of this SMP, a zone of groundwater impacted by volatile organic compounds (VOCs) that originated from the Site is generally confined within the Upper Glacial Aquifer between the two silty clay layers. Historic groundwater monitoring results indicate that wells screened below the lower silty clay layer (approximately 160 feet below grade) and above the massive clay layer yielded negligible contaminant concentrations.

The potential presence of private water supply wells in the Site vicinity was evaluated in the Remedial Investigation (RI) Report prepared by Geraghty & Miller, Inc. (G&M, June 1992) and further information was provided in the Record of Decision (ROD) for the Site (NYSDEC, March 1995). The Greenlawn Water District, which provides public water in the Site vicinity,

2-9

confirmed the extent of their distribution system and service network in the Site area and it was determined that the great majority of the residences in the area bounded by Jericho Turnpike, Commack Road, Wicks Road, and the west end of Willoughby Path were supplied with public water. The few private supply wells located in this area were sampled and Site-related contaminants were not found. The NYSDEC indicated in the ROD that private well users had been connected or were to be connected to the public water supply to eliminate potential exposures.

Municipal supply wells, including the Elmo Place Well Field, the Kalb Court Well Field (future), the Wicks Road Well Field, the Huntsman Lane Well Field, the Colby Drive Well Field, and the Daly Road Well Field, are present in the Site vicinity. Groundwater studies have been conducted to assess the long-term movement and dispersion of the Site-related VOC groundwater plume in relation to these well fields. Further information concerning these studies is provided in Section 2.3 of this SMP.

2.3 Investigation and Remedial History

The following narrative provides a remedial history summary documenting key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 6.0 - References. Site plans showing the former facility areas and sampling locations are included in Appendix C.

The Site was initially developed starting in 1961 by Filtors, Inc., a predecessor to Deutsch AL, for use in research, design, testing, and manufacture of electronic components. Filtors, Inc.'s facilities included a Main Building, a Machine Shop, and a parking lot that were constructed primarily on the eastern portion of the Site between 1962 and 1966. A stormwater recharge basin was developed on the southwest corner of the Site by 1966 and another stormwater recharge basin was developed on the northeast corner of the Site by 1970. An extension of the Main Building was developed between 1980 and 1985; this addition included the north plating shop, the hermetics area, and a drum storage area. Associated operations included administrative and engineering offices, research and testing laboratories, manufacturing, plating, machining, a waste treatment facility, and building utilities. Operations at the facility were conducted until its closure in 2001, following which the Main Building and Machine Shop were demolished in 2006.

A groundwater remediation system was constructed to the east of the southwestern recharge basin circa 1994 and began operating in 1995. This operation continued until 2007, when

termination of groundwater treatment was approved by the NYSDEC. The groundwater remediation system treatment building was demolished in 2012 following a fire.

Multiple investigations have been performed at the Site and remediation events, including groundwater remediation, tank removals, and contaminated soil and sediment removal, have also occurred. The following sections, which are organized by former facility areas, summarize the investigation and remediation history based on the existing documents. In particular, significant information was obtained from a Clayton Services Group (Clayton) Site Investigation Report (February 2004), James Carrol, a former Deutsch Relay, Inc. employee during an FPM site inspection on July 22, 2004, and from a Phase II investigation conducted by FPM in 2004.

For all of the investigations, the detected concentrations of constituents in the samples were compared to regulatory criteria that were applicable at the time the data were generated, including the NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives (Objectives), the NYSDEC Class GA Effluent Limitations (Limitations), or other criteria, as appropriate. In the following discussions, the data are also compared to current regulatory standards and guidance, including the 6NYCRR Part 375 Soil Cleanup Objectives (SCOs), the NYSDOH Soil Vapor Intrusion (SVI) guidance, and the NYSDEC Class GA Ambient Water Quality Standards (Standards). Figures showing current exceedances of the current regulatory standards and guidance are presented in Appendix C.

2.3.1 Former Facility Infrastructure and Soil and Soil Vapor Data

Western Sanitary Waste Disposal System

A sanitary waste disposal system was present on the west side of the Main Building and included one septic tank, a distribution pool (primary pool) and several overflow leaching pools constructed in approximately 1962. This system was remediated in 1993 by removal of the out-of-service septic tank and associated wastes and remediation of the sediments and liquids in the active septic tank and leaching pools. The NYSDEC approved this remediation on October 29, 1993. This system remained present in 2004 and was assigned SPDES Outfall #001 by the Suffolk County Department of Health Services (SCDHS).

Soil sampling was performed by Geraghty & Miller, Inc. (G&M) in the vicinity of this system in May 1990 (G&M, October 1990), with the samples analyzed for VOCs, semivolatile organic compounds (SVOCs), metals, pesticides, PCBs, and/or select Toxic Characteristic

Leaching Procedure (TCLP) metals. Concentrations of benzo(a)pyrene, beryllium, iron, and/or mercury were noted in several of the samples in exceedance of the NYSDEC Objectives.

A soil boring (SB-1) was performed in the vicinity of the sanitary waste disposal system in November 1992 and samples were analyzed for VOCs, cyanide and select metals, as reported in the Feasibility Study, or FS, (Eder, January 1994). Low levels of VOCs were detected and the metals concentrations were characterized as characteristic of naturally-occurring concentrations. The NYSDEC agreed with this conclusion (NYSDEC, March 1995) and did not require further investigation or remediation in this area.

The sediment in the primary leaching pool (distribution pool) was sampled by the SCDHS in June 2001 (November 13, 2001 SCDHS correspondence) and several VOCs and metals were detected. This leaching pool was remediated on January 10, 2002, as required by the SCDHS. Following remediation, an end-point sample was collected and analyzed for VOCs (including Freon 113), SVOCs, and total petroleum hydrocarbons (TPH). No VOCs or SVOCs were detected and the TPH concentration was low. These data were submitted to the SCDHS and no further remediation was required (February 20, 2002 SCDHS correspondence).

The sediment in the secondary leaching pool in this system was sampled on December 27, 2001 and analyzed for VOCs, with no detections noted. These data were submitted to the SCDHS (January 28, 2002 C3 Real Estate correspondence), which did not require any further work (February 20, 2002 SCDHS correspondence).

During FPM's 2004 Phase II investigation a geophysical survey was performed at the request of the SCDHS to identify any additional leaching pools that may be associated with this system. Three additional leaching pools (LP-7 through LP-9) with sub-grade covers were identified. Under the oversight of the SCDHS all of the leaching pools in this system were inspected. The SCDHS required sampling of the three newly-identified structures (LP-7 through LP-9) for metals, VOCs and cyanide only. The results showed exceedances of the SCDHS Action Levels for several metals, including cadmium, copper, mercury and/or silver, in LP-8 and LP-9.

A "Leaching Pool Closure Request" report (Clayton, May 25, 2005) submitted to the SCDHS documents the investigation, remediation and closure by abandonment of several leaching systems associated with the Site. The western sanitary system was remediated and no further work was required by the SCDHS; this system has been properly abandoned and closed.

Machine Shop Sanitary Waste Disposal System

A sanitary waste disposal system consisting of two leaching pools was located on the east side of the Machine Shop and was likely constructed in the mid-1960s when the Machine Shop building was initially constructed. The SCDHS assigned SPDES Outfall #002 to this system. The sediment in one of the leaching pools was sampled in June 2001 by the SCDHS and analyzed for VOCs and metals. No VOCs were detected but three metals (copper, iron and zinc) were noted to exceed the NYSDEC Objectives. The SCDHS concluded that no appreciable levels of contaminants were found (SCDHS November 13, 2001 correspondence) and did not require any further work on this system.

The sediments in this system were sampled by Volumetric Techniques, LTD (Clayton, May 25, 2005) and analyzed for VOCs and metals in November 2002. None of the VOC detections exceeded the NYSDEC Objectives, but copper, iron and zinc were found above the NYSDEC Objectives.

During FPM's 2004 Phase II Investigation the leaching pools associated with this system were inspected with SCDHS representatives; based on the inspection and a review of the available data, the SCDHS did not require any further sampling. Clayton's May 25, 2005 "Leaching Pool Closure Request" report documents that the Machine Shop septic system was subsequently remediated and no further work was required by the SCDHS; this system has been abandoned and closed.

North Industrial Leaching Pool System

The north industrial leaching pool system consisted of two leaching pools and was constructed in the mid to late 1980s when the northern addition was made to the Main Building. While active, these leaching pools received discharges from the north plating shop and were assigned SPDES Outfall #003 by the SCDHS.

Soil was sampled by G&M at one location (B-3) in the vicinity of this system in May 1990 (G&M, October 1990) and analyzed for VOCs, SVOCs, metals, pesticides, PCBs and select TCLP parameters. Concentrations of iron and zinc were noted above the NYSDEC Objectives.

A soil boring (SB-2) was performed through one of the pools in November 1992 and samples were analyzed for VOCs, cyanide and select metals as reported in the FS (Eder, January 1994). Low levels of VOCs were reportedly detected and the metals concentrations were characterized as characteristic of naturally-occurring concentrations. The NYSDEC agreed with

this conclusion and did not require further investigation or remediation in this area (NYSDEC, March 1995 correspondence).

The SCDHS sampled the sediment in one of the leaching pools in June 2001 and analyzed for VOCs and metals. No VOCs were detected and none of the metals concentrations exceeded the SCDHS Action Levels. The SCDHS concluded that no appreciable levels of contaminants were found and that no further work was required for this system (November 13, 2001 SCDHS correspondence). These two leaching pools were subsequently abandoned by removing the discharge piping and backfilling the structures with sand (January 28, 2002 C3 Real Estate correspondence).

During FPM's 2004 Phase II Investigation the leaching pools associated with this system were inspected with SCDHS representatives and were found to be backfilled. Based on the visual inspection and a review of the available data the SCDHS did not require any further work for this system. The SCDHS has approved the completed abandonment of this system (Clayton, May 25, 2005).

Molding Machine Cooling Water Leaching Pools

The molding machine cooling water leaching pools included four leaching pools on the northwest corner of the Main Building that were constructed in the mid to late 1980s when the northern addition was made to the Main Building. These leaching pools received discharges of non-contact cooling water from the molding machine and were assigned SPDES Outfall #004 by the SCDHS.

The SCDHS sampled the liquid in the system in October 2001 and analyzed for VOCs (including Freon 113) and metals. Freon 113 was the only VOC detected; several metals were also noted. The detected concentrations of Freon 113 and several metals exceeded the NYSDEC Limitations and/or Standards. Although the SCDHS indicated that the detected concentrations of Freon 113 and several metals were indicative of the unpermitted discharge of industrial waste (November 13, 2001 SCDHS correspondence), no further work was required for this system other than the disconnection of the piping from the building and bringing the lids of the overflow pools to grade (February 20, 2002 SCDHS correspondence). This work was subsequently performed (April 25, 2002 SCDHS correspondence).

During FPM's 2004 Phase II Investigation the system was inspected with SCDHS representatives. Based on the visual inspection and the available data, the SCDHS required

sediment sampling, with testing for VOCs, metals and cyanide. None of the detections exceeded the SCDHS Action Levels. The SCDHS approved closure of this system and a SCDHS representative later confirmed that the piping to the system had been disconnected and sealed (April 25, 2002 correspondence) and the system backfilled.

<u>RCRA Wastewater Treatment Area</u>

An underground wastewater treatment system was formerly present on the north side of the Main Building and included a sludge storage tank, a clarifier, an acid wastewater holding tank, and a clearwell. This system was constructed in 1982 and acid/alkali and cyanide-bearing rinse waters generated onsite were treated in this system, with the treated wastewater regularly removed and disposed offsite.

In August 1988, it was decided to segregate the cyanide-bearing wastes prior to disposal and, therefore, the treatment system became unnecessary and required RCRA closure. Closure was performed in 1989 and included removal and disposal of the remaining wastes, power-washing of the containment vessels, removal of the plastic acid wastewater holding tank (the vault was left in place and backfilled), and removal of the clarifier and clearwell structures. Removal of the clearwell and clarifier structures was observed by the SCDHS and no problems were noted. It was noted in the closure report that the floor of the concrete sump holding the acid wastewater tank was worn in one location but did not appear to be significantly damaged. It was noted in a February 9, 1999 SCDHS field inspection report that the former sludge storage tank had also been removed. Closure activities are documented in a Wastewater Treatment System Closure Certification Report (January 1990, Eder Associates Consulting Engineers, P.C.) and the closure certification was accepted by the NYSDEC.

Soil samples were collected from the vicinity of the clearwell and clarifier during closure activities and analyzed for metals and cyanide. Copper and nickel were noted to exceed the NYSDEC Objectives in one soil sample collected from 7 to 9.5 feet below grade next to the clarifier, but no other exceedances of the NYSDEC Objectives were noted.

Additional soil sampling was performed near the former sludge storage tank and a nearby nitric acid tank by G&M in May 1990 (G&M, October 1990). Soil samples were collected at two locations (B-5 and MW-7) and analyzed for VOCs, SVOCs, metals, pesticides, PCBs and select TCLP parameters. Concentrations of iron and/or zinc were noted in both of the samples in exceedance of the NYSDEC Objectives.

During FPM's 2004 Phase II Investigation the former wastewater treatment system area was inspected with SCDHS representatives. Based on the visual inspection and a review of the available data the SCDHS did not require any further sampling in the vicinity of this former system.

Former Fuel Oil USTs and Other Potential USTs

A 10,000-gallon fuel oil underground storage tank (UST) was installed adjoining the south side of the Main Building in the early 1960s and abandoned in place in 1989 by pumping out the contents, cutting open the tank, and filling it with sand. A geophysical investigation performed in August 2003 (Clayton, February 2004) confirmed that this UST remained in place in close proximity to underground utilities and the south supply well's water UST. During FPM's 2004 Phase II investigation the SCDHS requested sampling to confirm the condition of the soil around the UST. Two borings, UST-1 and UST-2, were performed in close proximity to the UST. No visual indications of potential contamination were noted in any of the samples and laboratory testing confirmed the absence of petroleum VOCs and SVOCs.

A 5,000-gallon fuel oil UST was installed to the northeast of the Machine Shop Building in approximately 1971 and was removed in 1989. A geophysical investigation performed in August 2003 in the vicinity of the former UST location confirmed that this UST had been removed. The status of this UST was discussed with the SCDHS in 2004 and no concern was expressed regarding the removed UST area.

Three other USTs were suspected of being present at the facility based on a review of historic site plans, including a 4,000-gallon wastewater tank in the vicinity of the north supply well and two 275-gallon tanks that may have been part of the facility's floor drain system on the south side of the Main Building. The suspected areas of these USTs were subjected to a geophysical survey, including metal detection and ground-penetrating radar, in 2003 (Clayton, February 2004). None of these tanks was identified. Based on the available information, including the historic site plans that represent proposed but not "as-built" conditions, it was concluded that these tanks were never installed.

A SCDHS representative, Mr. John Gladyz, confirmed to FPM in 2004 that all tanks registered at the property had been removed (with the exception of a 10,000-gallon fuel oil UST that was abandoned in place) or were never installed.

Water Supply and Diffusion Wells

Two water supply wells and six diffusion wells were present at the Site in 2004. The supply wells were completed in the Magothy Aquifer at a depth of approximately 450 feet below grade and were used to supply cooling water to the facility. The diffusion wells were completed at varying depths, ranging from approximately 30 to 470 feet below grade, and were used to discharge cooling water from the facility.

Samples of the water from the holding tanks for each of the supply wells were obtained in August 1990 and analyzed for VOCs, metals, and several general parameters. No exceedances of the NYSDEC Standards were noted.

A November 23, 2005 letter from Bureau Veritas (successor to Clayton) to the NYSDEC documents the August 2005 closure of the water supply and diffusion wells. The closures were performed by a licensed well driller in accordance with a NYSDEC-approved work plan and included locating and excavating all of the discharge piping, removing the well pumps and uppermost portion each well casing, backfilling the screens with clean sand, grouting the remainder of each casing to near grade, and backfilling the intervals where casing was removed with clean sand.

Stormwater Catch Basins and Leaching Pools

Eleven stormwater catch basins were formerly present onsite and four of these basins that were open (basins N, R, S and T) were sampled in 2002 (Clayton, May 25, 2005). VOCs and/or metals exceeding NYSDEC Objectives were identified in all four of these catch basins. Basins R and T were subsequently remediated by Clayton.

The remaining 7 of the 11 identified basins had previously been buried or partially filled and were identified from historic site plans, a geophysical investigation, and by excavation. Six of these buried basins were accessed and remediated in 2003 (Clayton, May 25, 2005). Following remediation, end-point samples were collected from the remaining sediment in each of the remediated basins and from one basin that had not undergone remediation (basin Q). Based on the end-point sample results, it was concluded that sediments impacted with cadmium, chromium, copper, nickel, and/or lead remained present in three of the basins: basins W, Z, and AA. Additional sampling was performed at several depths in each of these basins to delineate the depth of impact and, following delineation, additional remediation was performed to remove the remaining impacted materials.

During FPM's 2004 Phase II Investigation each of the stormwater catch basins and leaching pools was accessed and visually inspected with SCDHS oversight. The SCDHS required sediment sampling in several of the leaching pools and catch basins and the results showed that no VOCs or metals exceeded the SCDHS Action Levels.

Stormwater catch basin and leaching pool closure activities were conducted prior to building demolition (Clayton, August 31, 2005) and included backfilling the remaining open leaching pools with clean fill, excavating the piping connecting the systems to the buildings, demolishing the piping, and filling the former connections to the buildings with grout. The systems that were closed included all of the roof drain stormwater pools on the west and south sides of the Main Building and several stormwater leaching pools on the north and east sides of the Main Building.

South Industrial Leaching Pools

Two leaching pools (X and Y) were present on the south side of the Main Building and formerly accepted discharges of tumbling waste from the south plating shop. These pools were sampled in November 2002 and benzene and/or MTBE exceeding NYSDEC Objectives were identified in both pools. These pools were remediated in September 2003; end-point samples indicated that leaching pool X had been adequately remediated but material impacted with cadmium remained present in pool Y. Additional sampling was performed in November 2003 to delineate the depth of the impact and, based on the sampling results, an additional four feet of sediment were removed from pool Y in January 2004.

During FPM's 2004 Phase II Investigation, the SCDHS inspected both of these leaching pools and an adjoining grated stormwater leaching pool (LP-3). A geophysical survey was also performed to locate any subsurface structures that may have been buried in this area. Based on the geophysical results and visual appraisal of the leaching pool conditions, the SCDHS required sampling of the X and Y leaching pools and LP-3. The results indicated exceedances of the SCDHS Action Levels for cadmium and copper in leaching pool Y (LP-1).

The South Industrial system was subsequently remediated (Clayton, May 25, 2005), with post-excavation sample results documenting that the impacts had been removed. This system has been closed.

South Plating Shop

The plating shop at the facility was originally located in the southern portion of the Main Building. Soil sampling was performed beneath the floor of this area in 2002 and September 2003 and several metals, including copper, nickel, zinc, and/or iron, exceeded the NYSDEC Objectives in several samples. The lateral extent and depth of these impacts was not defined.

Additional sub-floor soil sampling (S-5 and S-6) was performed during FPM's 2004 Phase II Investigation. The results indicated that copper, nickel and/or zinc exceeded the NYSDEC Objectives current at that time.

All of the sub-slab soil data were reviewed relative to the current 6NYCRR Part 375 Soil Cleanup Objectives (SCOs) in 2018. The concentrations of copper at two locations exceeded the SCOs for commercial use; these exceedances are shown on Plate 1 in Appendix C.

➢ North Plating Shop

The north plating shop and associated laboratory were constructed in the mid to late 1980s when the north addition was made to the Main Building and were decommissioned and closed in 1996 in accordance with a NYSDEC-approved Closure Plan. Closure was documented in a Closure Report (Environmental Constructors, Inc., January 1996) and including removing and properly disposing all remaining plating chemicals and wastes. The plating tanks, piping, and associated structures (including ductwork) were power-washed and removed from the facility. Following removal of all materials and equipment, the floor and walls of the plating shop and laboratory were power-washed and the wash water properly disposed. Wipe samples collected from the remaining surface of the plating shop and laboratory, and a chip sample collected from the concrete floor of the laboratory were analyzed for pH, cyanide, and RCRA metals. The pH of the tested areas appeared relatively neutral (6.19 to 8.12 pH units) and the concrete floor sample exhibited a pH of 4.19, which does not indicate that the concrete would exhibit the hazardous waste characteristic of corrosivity. Low residual levels of several metals and cyanide were detected; the detected levels were not indicative of hazardous waste characteristics.

Clayton performed one soil boring and collected one sample of the concrete floor in September 2003. Iron was detected in the soil sample at a concentration exceeding its NYSDEC Objective. No VOCs were detected in the soil or concrete.

During FPM's 2004 Phase II Investigation, additional sub-floor soil samples (S-1 through S-4) were collected and the soil in an open utility connection sump in an adjoining utility service

room was also sampled (Sump-1). The sample results indicated that iron, nickel, and/or zinc were present in the samples at levels above the NYSDEC Objectives.

All of the sub-slab soil data from beneath the North Plating Shop were reviewed in 2018 relative to the current 6NYCRR Part 375 SCOs. None of the detections exceeded the SCOs for restricted residential or commercial use.

Main Building Sub-Floor – Other Locations

Sub-floor soils in several areas of the former Main Building were sampled by Environmental Compliance Services (ECS) in 2001; the areas sampled included the clean room along the northeast side of the building, the Bell oven area, the Materials Lab, the Coil Room, the Paint Shop, and the Boiler Room. One VOC (PCE) was detected in one sample from beneath the Coil Room at a low concentration and several metals were detected. None of the detected concentrations exceeded the NYSDEC Objectives (ECS, December 31, 2001).

During FPM's 2004 Phase II Investigation additional sub-floor soil sampling was performed beneath the Main Building and shallow soil samples were collected throughout the property. Samples were selected in consultation with the SCDHS and collected in accordance with the SCDHS guidance concerning redevelopment for residential use (November 20, 2002). At each sample location a shallow (0 to 0.25 feet) soil sample was collected and analyzed. At one location a deeper (0.25 to 0.5 feet) soil sample was also analyzed. The sample results showed no exceedances of the NYSDEC Objectives for VOCs, SVOCs, cyanide, or PCBs. Several metals, including arsenic, copper, iron, nickel, and/or zinc, exceeded the Objectives in several samples.

All of the sub-floor and shallow soil sample data were reviewed relative to the current 6NYCRR Part 375 SCOs. None of the detections exceeded the SCOs for restricted residential or commercial use.

Machine Shop

Sub-floor soil sampling was performed at two locations in the Machine Shop by ECS in 2001 (ECS, December 31, 2001). One boring was performed each in the screw machine area (HB-13) and the punch press area (HB-14). Chromium was detected in the HB-14 sample at a concentration exceeding its NYSDEC Objective, but no other exceedances were noted. Additional soil sampling was performed in the Machine Shop by Clayton in 2003. Iron and zinc were detected exceeding the NYSDEC Objectives.

During FPM's 2004 Phase II Investigation sub-floor soil sampling was performed at two locations in the Machine Shop, SS-15 and SS-16, with testing for VOCs, SVOCs, metals, and cyanide. The sample results did not show any exceedances of the Objectives except for iron.

All of the sub-slab soil data from beneath the Machine Shop were reviewed in 2018 relative to the current 6NYCRR Part 375 SCOs. None of the detections exceeded the SCOs for restricted residential or commercial use.

Drum Storage Areas

Several drum storage areas were formerly present at the facility, including:

- Drum storage shed south of the Main Building
- Chemical storage shed east of the Main Building
- Bermed drum storage area south of the North Plating Shop
- Drum storage area south of the North Plating Shop
- Exterior drum storage area at northeast corner of Main Building
- Exterior Freon storage area on east side of the Main Building

Shallow (0 to 0.5 feet below grade) soil samples were collected from each of these areas in 2003 and analyzed for VOCs, metals and cyanide. Iron was noted in all of the drum storage area soil samples at concentrations exceeding its NYSDEC Objective (Clayton, February 2004).

During FPM's 2004 Phase II Investigation a soil boring was performed in each of the former drum storage areas and the samples were tested for VOCs, SVOCs, metals, and cyanide. The results showed only iron, copper, and/or zinc in excess of the Objectives at several locations.

All of the soil data from the drum storage areas were reviewed relative to the current 6NYCRR Part 375 SCOs in 2018. None of the detections exceeded the SCOs for restricted residential or commercial use.

➢ <u>Floor Drains</u>

Ten floor drains were formerly present in the Main Building and three floor drains were present in the Machine Shop. A drain tracing investigation was conducted in 2003 using geophysical methods but the results were not conclusive.

An August 31, 2005 letter from Clayton to the SCDHS documented closure activities conducted prior to building demolition, which included excavating the piping connecting the former leaching systems to the buildings, demolishing the piping, and filling the former connections to the buildings with grout. The systems that were closed included all of the subsurface leaching

facilities known to be associated with the former facility operations. Building demolition activities included removal of the floor slabs and remaining piping, which appears to have included any remaining floor drain systems; no former floor slabs or piping were observed during FPM's 2018 site inspection (FPM, December 2018).

Stormwater Recharge Basins

Two stormwater recharge basins are present at the Site, including one basin to the west adjoining Daly Road and one basin to the northeast of the former Machine Shop location. The western basin formerly received discharges of treated industrial waste in addition to stormwater runoff. The northeastern basin appeared to have received stormwater runoff, cooling water, and floor drain discharges.

The western basin was sampled in 1995 prior to a planned dredging event and the northeastern recharge basin was sampled in 2003. Metals, including beryllium, chromium, copper, iron, lead, mercury, nickel, and/or zinc were detected in all of the samples at concentrations exceeding the NYSDEC Objectives. The western recharge basin was dredged in April 1996 (Clayton, December 8, 1997) and the removed sediments were disposed offsite. No sediment removal is reported for the northeastern basin.

During FPM's 2004 Phase II Investigation the SCDHS reviewed the available data, observed the recharge basin floors, and requested sediment sampling in the northeastern recharge basin. Sediment in the western basin was also sampled. The sampling results showed one SVOC and several metals in excess of the Objectives.

The sediment data were reviewed in 2018 relative to the current 6NYCRR Part 375 SCOs. As noted on Plate 1 in Appendix C, one detection of copper in the northeastern basin exceeded the SCO for commercial use, and one detection of mercury in the western basin exceeded the SCO for restricted residential use. No other exceedances were noted.

Former Tumbling Waste Lagoon and Sludge-Drying Beds

A tumbling waste lagoon was formerly present to the southeast of the Main Building and formerly received discharges of cyanide-containing waste. Sludge from the lagoon was discharged to two sludge-drying beds located at the southeastern corner of the Site; overflow liquids from the lagoon were routed to the western recharge basin. The discharge to the waste lagoon was assigned SPDES Outfall #001 by the SCDHS. Violations of the effluent limits occurred in 1982, including

exceedances of the limits for copper, nickel, nitrogen, pH and silver and the accumulated sludge was removed from the lagoon on December 27, 1982.

This industrial waste discharge system was discontinued in the late 1970s or early in 1980. An August 1980 site plan for the proposed north addition to the Main Building indicated that the lagoon and sludge-drying beds were to be removed, filled to rough grade with clean fill, covered with three inches of topsoil and seeded. Copies of manifests for disposal of the removed sludge were identified in the SCDHS files.

Soil sampling was performed by G&M in the vicinity of the former lagoon in May 1990 (G&M, October 1990), with the samples analyzed for VOCs, SVOCs, metals, pesticides, PCBs and select TCLP parameters. Concentrations of beryllium, iron, nickel, selenium, and/or zinc were noted in two of the samples in exceedances of the NYSDEC Objectives.

Additional soil sampling was performed in both the former lagoon area (SB-4) and former sludge-drying bed area (SB-3) in November 1992, with the samples analyzed for VOCs, cyanide and select metals. The VOC levels were reportedly low and the metals concentrations were characterized as characteristic of naturally-occurring concentrations (Eder, January 1994). The NYSDEC agreed with this conclusion and did not require further investigation or remediation in this area (NYSDEC, March 1995 correspondence).

During FPM's 2004 Phase II Investigation the SCDHS inspected the former plating waste settling lagoon and sludge-drying beds areas and reviewed the construction of the portions of the former plating waste treatment system located in the loading dock area on the south side of the Main Building. Based on this inspection and review, the SCDHS required sampling in the former sludge-drying beds area, accessing and sampling of a former plating waste settling tank located within the loading dock, and sampling of the soil in proximity to the former plating waste settling tank. The results from these samples, which were tested for VOCs, SVOCs, PCBs, metals, and/or cyanide, indicated no exceedances of the NYSDEC Objectives in the former plating waste tank or its proximity. Exceedances of the NYSDEC Objectives were noted for several metals, including copper, iron, nickel, zinc, and/or mercury, in the former sludge-drying beds.

All of the sample data from the former plating waste settling lagoon, former sludge-drying beds, and former plating waste tank areas were reviewed in 2018 relative to the current 6NYCRR Part 375 SCOs. One detection of copper exceeded the SCO for commercial use, as shown on Plate 1 in Appendix C. No other exceedances were noted.

Electrical Equipment Areas

Several areas formerly containing potential PCB-containing electrical equipment were present at or near the Main Building in 2004, including a transformer vault on the southeast corner of the Main Building, electrical switch gear in the boiler room of the Main building, and a former generator room (empty at that time) in the central-western portion of the Main Building. Additional transformers were present within the Machine Shop and outside of the buildings; these transformers were confirmed to be dry-type or to include oil not manufactured to contain PCBs.

During FPM's 2004 Phase II Investigation, each of the suspect PCB-containing electrical devices was examined by a licensed electrician. The electrical switches in the boiler room were confirmed to be dry-type. The three transformers in the vault were determined to be in an unsafe condition for sampling. In addition, they were confirmed to be LIPA-owned equipment and, therefore, LIPA would be responsible for decommissioning these transformers. Therefore, no sampling of suspect PCB-containing electrical equipment fluids was performed.

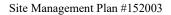
Wipe samples were collected from the floors of the transformer vault and former electrical generator room. The sample results showed no exceedances of the Toxic Substances Control Act (TSCA) surface standard in the former electrical generator room. However, the three samples from the transformer vault on the southeast corner of the Main Building did show exceedances of the TSCA surface standard.

As noted above, the Main Building and Machine shop were demolished in 2006, with all infrastructure removed. During FPM's 2018 site inspection, no visible indication of the former transformer vault was noted.

Former Radioactive Materials Areas

Three x-ray–producing systems were formerly in use at the facility, including a Faxitron Radiographic inspection system and two UPA Technology, Inc. XRF systems. Three electron beam guns used for welding were also formerly present at the facility. Krypton-85 gas was also formerly used in a Tracer-Flow Leak Test Unit in a separate room of the reliability test center in the northwestern portion of the Main Building. This equipment was operated under New York State Department of Labor (NYSDOL) radioactive materials license #2308-1623 and NYSDEC radiation control permit # 1-4726-00361/00035-9, Facility/ Program #24-3.

Most of the x-ray systems and all of the electron beam guns were removed from the facility between 1973 and 1988. The last two x-ray systems were scheduled for removal in early 1995 and were not observed during the 2004 site inspection. The entire Krypton–85 system and the remaining gas cylinders were returned to the manufacturer on October 31, 1994. A radiation survey performed in the former Tracer-Flow room following removal of the equipment showed only background levels of radiation (0.03 to 0.05 millirem per hour). Based on the confirmation of the removal of the radioactive materials, the final survey, and a NYSDEC March 21, 1995 close-out inspection, the NYSDEC approved the termination of the facility's radiation control permit. The NYSDOL license was cancelled on December 7, 1994.


During the 2004 site inspection performed by FPM, radiation screening was performed using a Geiger counter in each of the areas where radiation equipment was formerly used. No areas exhibiting radiation counts above background conditions were noted.

Post-Demolition Soil Sampling

Following the 2006 demolition of the Site buildings the NYSDEC required a supplemental site characterization to evaluate soil conditions in areas where soil impacts were most likely based on former facility operations and/or prior soil vapor sampling results. Fifteen soil borings were performed and two soil samples were tested for Site-related VOCs at each location (Bureau Veritas, January 23, 2013); most of the boring locations were within the footprint of the former Main Building. The results indicated that the targeted VOCs were either not detected or were detected at very low levels, below the NYSDEC SCOs. No further investigation or remedial action was recommended.

Soil Gas

A soil gas survey was performed to the north, northwest and northeast of the Main Building and to the southeast of the Main Building and Machine Shop Building in May 1990 by G&M (May 17, 1990 G&M correspondence) and the soil gas samples were analyzed for Freon 113, 1,1,1trichloroethane (1,1,1-TCA), chloroform, and tetrachloroethene (PCE) using a portable gas chromatograph. The detection limits for these compounds were reported in parts per billion by volume (ppbv): these have been converted to micrograms per cubic meter (ug/m³) and correspond to 3,602 ug/m³, 21,827 ug/m³, 4,883 ug/m³, and 339 ug/m³, respectively. Trichloroethene (TCE) was also analyzed; its detection limit was not reported. The sample results were compared to the USEPA Target Shallow Soil Gas Concentrations corresponding to a risk factor of 1 * 10⁻⁶

(USEPA, November 29, 2002). Several exceedances of the Target Shallow Soil Gas Concentrations were noted for TCE and PCE in the areas to the northwest and northeast of the Main Building and to the south and southeast of the Machine Shop.

During FPM's 2004 Phase II Investigation additional soil gas sampling was performed in accordance with SCDHS standards for soil vapors contaminated by volatile organic chemicals (SCDHS, February 26, 1998). The areas sampled and the number of samples collected were selected in consultation with the SCDHS and included former industrial areas, former tank and chemical storage areas, and areas of the property not formerly used for industrial purposes (beneath the parking lot). The results showed that TCE, PCE, cis-1,2-dichloroethene (cis-1,2-DCE), and/or 1,1,1-TCE were detected at most of the locations.

Additional soil vapor sampling was performed in 2007 and 2008 at five soil vapor monitoring points installed in unpaved areas near the property line to the south and southeast of the former Main Building and Machine Shop (Bureau Veritas, December 9, 2008 letter to the NYSDEC). The samples were tested for chlorinated VOCs and Freon 113. Freon 113 and PCE were detected in nearly all of the samples, with TCE and 1,1,1-TCA also detected at one location. None of the chlorinated VOCs for which the NYSDOH has guidance were detected at elevated levels and it was concluded that additional soil vapor monitoring locations were not warranted.

SVI testing was performed in 2012 at eight residential structures located in proximity to the Site (Environmental Assessment & Remediation, May 22, 2012); copies of the resulting data tables are included in Appendix D. The SVI sampling results indicated no further action was needed at the offsite residences.

Soil Remediation

Soil remediation was conducted in April 2022 in accordance with the Excavation Work Plan (EWP) in this SMP and a March 20, 2022 Notification of Soil Remediation submitted to the NYSDEC. Remediation was conducted in four areas of the Site, including the Western Recharge Basin, Former Plating Shop Area, Former Sludge-Drying Beds, and Northeast Stormwater Recharge Basin, and resulted in the removal and proper offsite disposal of the Site soil that exceeded the SCOs for restricted residential use. Confirmatory sampling was conducted in each remedial excavation and the samples were tested for TAL metals plus mercury. The results documented that none of the remaining soil exceeded the NYSDEC SCOs for restricted residential

use. The remediation procedures and results were documented in a May 2, 2022 report submitted to the NYSDEC. The NYSDEC approved the report in a June 1, 2022 correspondence.

2.3.2 Groundwater Investigations and Remediation

Groundwater was first sampled at the Site by the SCDHS in 1983 and Freon 113 (1,1,2 trichloro-1,2,2 trifluoroethane) was reported at the five locations sampled to the north and south of the buildings. The most elevated levels were detected at locations MW-4 and MW-5 on the north side of the facility to a depth of at least 105 feet below grade. Concentrations of other VOCs, including 1,1,1-TCA, 1,1,2-trichloroethylene, and/or PCE, were also detected in some of the samples.

Additional groundwater sampling was performed by Holzmacher, McLendon and Murrell, PC (H2M) in 1985, which included sampling the two onsite supply wells and a new diffusion well (H2M, August 1985). No VOCs were detected in any of these samples.

Further delineation of the groundwater VOC plume was performed by H2M in January 1986 (H2M, March 1987). The only VOC detected was Freon 113, which was detected in three of the onsite monitoring wells at concentrations ranging from 26 to 55 ug/l and in two of the three offsite monitoring wells at up to 120 ug/l. Freon 113 was not detected in either of the two supply wells or in the diffusion well.

Wells MW-6 through MW-11A were installed at the Site by G&M between May and July 1990 and were sampled in August 1990 (G&M, November 1990) and Freon 113 was found in the onsite wells at concentrations up to 190 ug/l. Several other VOCs were also detected, including PCE, 1,2-DCE, 1,1,1-TCA, but at lower concentrations than Freon 113.

Additional groundwater monitoring wells, including deep wells MW-11B, MW-12B, and MW-14B, were installed in 1991 and sampled in 1992; the results were reported in the RI Report (G&M, June 1992). The groundwater flow directions were confirmed: regional southeast shallow groundwater flow was observed, with localized southwest flow due to onsite groundwater recharge. The intermediate-level groundwater flow (approximately 50 feet below the water table) was to the southwest and the deep-level groundwater flow (approximately 150 feet below the water table) was also to the southwest. Freon 113 concentrations were noted to increase in the intermediate-depth (A-designated) wells relative to the 1990 sampling results, with the highest concentration (780 ug/l) detected at well MW-11A. Freon 113 concentrations in the shallow wells had generally decreased between 1990 and 1992. The highest Freon 113 concentration detected

in the deep-level wells was 490 ug/l at well MW-12B. Other VOCs of concern, including 1,1-DCA, 1,1,1-TCA, chloroform, TCE, and PCE, were also detected but at lower concentrations than Freon 113.

Further groundwater investigation was performed in 1992 to evaluate the potential for northward plume migration and to further define the areal and vertical extent of the plume to the north and east. It was concluded, based on the observed decrease in VOC concentrations, that there were no continuing sources of VOCs present at the Site and that the plume was not migrating to the north. It was also concluded that the plume was moving to the east and southeast, but at significantly lower concentrations than in the Site vicinity.

A Feasibility Study (FS) was prepared in 1994 (Eder, January 1994) and several remedial alternatives were considered to address the groundwater plume. The pump-and-treat alternative was selected in the NYSDEC's Record of Decision (ROD) for the facility (NYSDEC, March 1995) and included restoration of the aquifer within the 500 ug/l total VOC contour using pump-and-treat technology with natural attenuation used to address the remainder of the plume. Groundwater monitoring was required, including monitoring of outpost wells for nearby well fields.

The approximate extent of the VOC groundwater plume was evaluated in mid-1996 shortly prior to the startup of the pump-and treat system. The plume extended somewhat to the east and southeast of the Site and also to the southwest, with the highest VOC concentrations to the southwest. The plume did not appear to extend significantly to the north and concentrations also appeared to be decreasing to the west. The highest VOC concentrations were present in the intermediate-depth (A) wells, approximately 50 feet below the water table and ranged up to 1,545 ug/l total VOCs.

The groundwater remediation system was constructed between 1995 and 1997 and included three recovery wells with a combined flow of just above 250 gallons per minute (gpm). The treatment system included two venturi air strippers. Air effluent treatment was not required and treated groundwater was discharged to the western recharge basin. Construction of the system was documented in the final Remedial Action Construction Report (Clayton, December 8, 1997), which was reviewed and accepted by the NYSDEC (March 4, 1998 NYSDEC correspondence).

The remediation system was operated and monitored from mid-1996 until 2007 and the results were reported quarterly. Total VOC concentrations in the system influent declined steadily

from approximately 500 ug/l in mid-1996 to 10.7 ug/l during the December 2003 monitoring event. Effluent total VOC concentrations remained very low, ranging from non-detect to up to 9.1 ug/l.

A groundwater monitoring well network consisting of 23 wells was formerly present in association with the Site. Clayton (February 2004) reported that 10 of these wells remained open and were utilized for the ongoing groundwater monitoring program at that time. 11 wells had been abandoned in accordance with NYSDEC guidelines, and two wells (MW-4 and MW-5) appeared to have been damaged and/or destroyed and could not be located. As of 2004 groundwater was monitored annually at select site wells and quarterly at the four outpost wells. By 2003 groundwater total VOC concentrations had decreased significantly. Traces of VOCs (less than 5 ug/l) remained present downgradient to the east and southeast of the facility and somewhat higher concentrations (up to 48 ug/l) were present to the southwest. Groundwater in the vicinity of the former high-concentration area at well MW-11A generally contained less than 5 ug/l total VOCs, with a few wells up to 20 ug/l total VOCs. June 2004 monitoring data exhibited a similar trend of overall decreasing VOC levels.

During FPM's 2004 Phase II Investigation groundwater sampling was performed for VOCs at wells not included in the ongoing monitoring program. The results of this sampling were compared to the NYSDEC Standards and two VOCs, PCE and Freon 113, were found at levels somewhat exceeding their Standards in wells MW-10 and MW-10A. VOCs were not detected above the NYSDEC Standards in the other wells that were sampled.

Groundwater remediation was terminated with NYSDEC approval on April 13, 2007 and approval to decommission the system was granted in 2009, as documented in a Bureau Veritas February 18, 2014 report that also includes groundwater monitoring results through November 2013. The remediation system building and remaining system components were demolished in 2012. As of 2013 groundwater flow was the southwest in both the shallow and deep groundwater intervals and to the west-northwest in the intermediate interval. The monitoring data showed that very few wells contained Site-related constituents that exceeded the NYSDEC Standards. The exceedances were all very low and were noted at only five wells on the property and one offsite well, with 14.60 ppb of PCE at MW-10 the highest detection noted.

Groundwater monitoring for emerging contaminants 1,4-dioxane and per- and polyfluorinated alkyl substances (PFAS) was performed by a NYSDEC contractor at select wells in November 2018. Sampling was conducted for well MW-31A, which is a shallow onsite well

located a short distance downgradient of the former facility, and for well MW-12A, which is an intermediate-depth offsite well located somewhat further downgradient of the former facility. Historically, both of these wells were impacted by Freon 113 and other Site-related constituents.

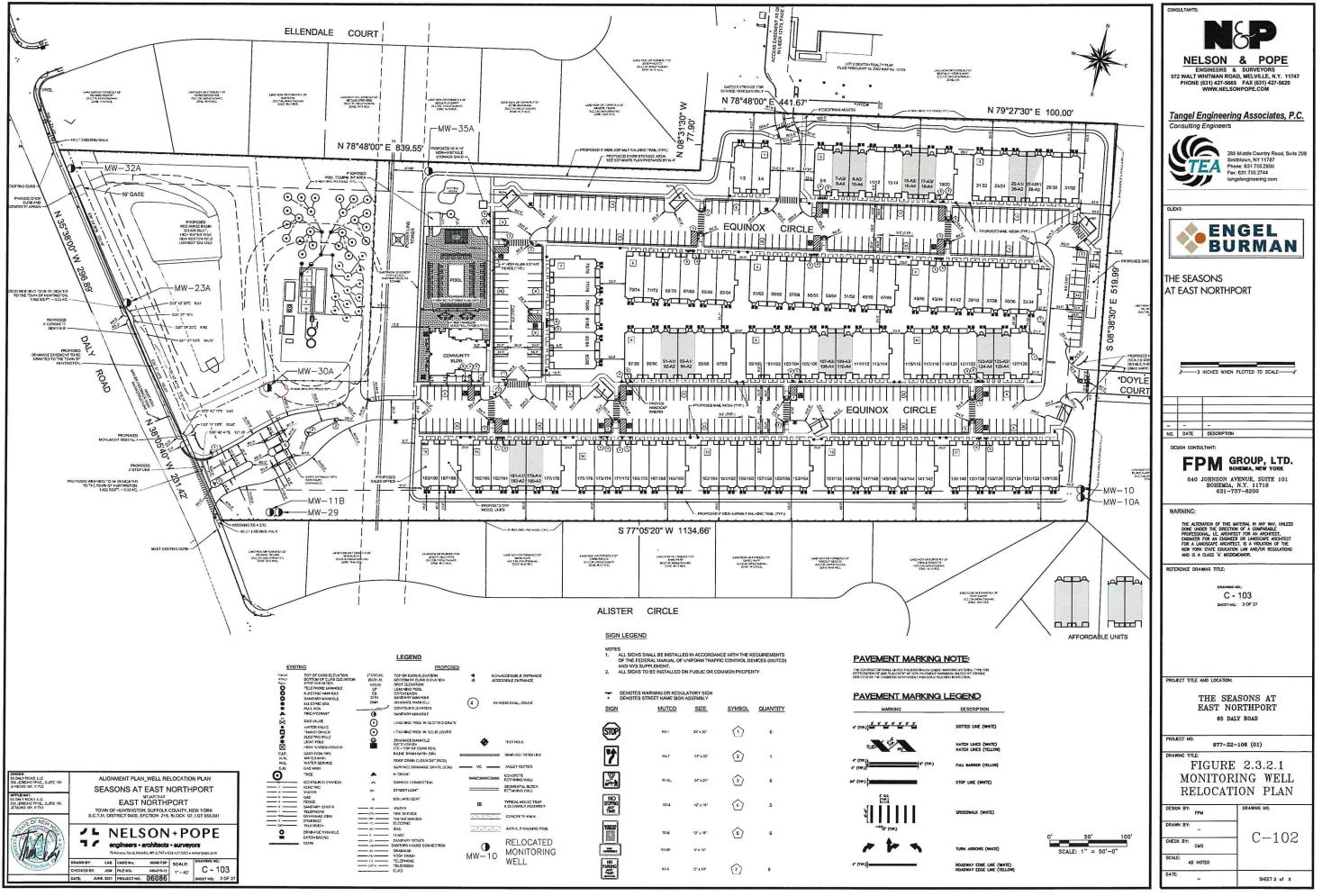
The results indicated 0.41 micrograms per liter (ug/l) of 1,4-dioxane, 8.4 nanograms per liter (ng/l) of PFOA, and 7.0 ng/l of PFOS at offsite well MW-12A, and no detection of 1,4-dioxane (detection limit of 0.035 ug/l), 3.9 ng/l of PFOA, and 2.8 ng/l of PFOS at onsite well MW-31A. Although New York State does not have a Class GA Ambient Water Quality Standard for 1,4-dioxane or PFAS compounds, the New York State Drinking Water Quality Council has recommended a NYS Maximum Contaminant Level (MCL) of 1 ug/l for 1,4-dioxane and 10 nanograms per liter (ng/l) for PFOA and PFOS. Based on this information, the groundwater quality results for emerging contaminants do not suggest any significant contamination.

Groundwater monitoring has been conducted under the SMP, with the most recent monitoring completed in September 2021. As documented in the February 7, 2022 revised data transmittal for this monitoring event, for the shallow wells, the only exceedances of the NYSDEC Standards noted were for Freon 113 and PCE in onsite well MW-10; the detections were slightly above the Standards and generally comparable to prior detections. None of the detections in shallow well MW-24 downgradient of the former recharge basin exceeded the Standards. It was concluded that Site-related impacts in shallow groundwater were now limited to the upgradient side of the Site.

For the intermediate-level wells, exceedances of the NYSDEC Standards were noted for Freon 113 and PCE in onsite well MW-10A and Freon 113 in onsite wells MW-23A and MW-32A. The concentrations were generally comparable to the detections noted during prior sampling events, with some variations. None of the detections in onsite well MW-35A or offsite wells MW-12A or MW-34A exceeded Standards. It was concluded that impacts exceeding applicable Standards in intermediate-level groundwater remained largely confined to the Site.

For the deep wells, exceedances of the NYSDEC Standards were noted for Freon 113 and PCE in onsite well MW-11B (downgradient) and offsite downgradient well MW-34B. An exceedance of the NYSDEC Standard for PCE was also noted in offsite downgradient well MW-12B, located southwest of MW-34B. The detected concentrations are generally comparable to the detections noted during more recent (2013) sampling events, although the concentrations in well MW-12B have shown a significant improvement since implementation of the ROD. The detected

concentrations decreased downgradient from MW-34B to MW-12B. No detections of VOCs were noted in offsite downgradient well MW-20. It was concluded that Site-related impacts in deep groundwater are present onsite and extend downgradient to the southwest; the concentrations decrease to the southwest and have shown decreases in the most downgradient well (MW-12B). Site-related impacts were not identified to the southeast of the Site at MW-20.


In preparation for Site redevelopment, the onsite groundwater monitoring wells were decommissioned in 2022, with NYSDEC concurrence. A proposal for monitoring well decommissioning and relocation was submitted to the NYSDEC on February 9, 2022 and a revised plan was submitted on March 30, 2022, following NYSDEC comments. The NYSDEC approved the revised plan via email on April 4, 2022. The approved plan includes decommissioning and relocation of monitoring wells MW-30A, MW-35A, MW-10, MW-10A, MW-11B, MW-23A, MW-29 and MW-32A. Monitoring wells MW-31A, MW-11A, and MW-11C were to be decommissioned without relocation. Figure 2.3.2.1 shows the locations of the wells to be relocated. Well decommissioning was conducted in May and June 2022 and was documented to the NYSDEC in June 17, 2022 correspondence. Installation of the wells to be relocated is scheduled for later in 2022.

2.3.3 Municipal Water Supply Well Monitoring and Assessment

The presence of several Site-related VOCs in groundwater resulted in the implementation of a groundwater remediation system to eliminate the threat to public water supplies that service the surrounding communities. The municipal supply wells that were identified as potentially at risk included the Wicks Road, Huntsman Lane, Kalb Court, and Colby Drive Well Fields. Several studies to assess the long-term movement and dispersion of the Site-related VOC groundwater plume were performed, including a numerical groundwater model (Clayton, April 4, 1997), a municipal supply well evaluation (Clayton, May 1, 2003), and an evaluation of the plume based upon detections in outpost wells (Clayton and Bureau Veritas, various reports). In addition, an outpost monitoring well network and sampling program were initiated to track the movement of the plume both laterally and vertically.

Outpost monitoring wells were installed in 1995 and were routinely monitored to assess potential impacts to the Huntsman Lane (outpost well MW-19), Wicks Road (outpost wells WROW-1 and WROW-2), and Colby Drive and Kalb Court (outpost well CCOW) well fields.

The outpost wells for each of these well fields were located a minimum of two years hydraulically upgradient of the municipal supply well screen zones and were installed to depths ranging between 301 and 490 feet below grade. For reference, the Huntsman Lane (S-023999), Wicks Road (S-014579) and Colby Drive (S-45935) supply wells are reportedly installed to depths of 612, 512, and 505 feet below grade, respectively. No information pertaining to the construction of the Kalb Court Well Field was available.

In September 2001, routine groundwater monitoring identified 1,1-dichloroethane (DCA) at 1 ug/l and 1,1,1-TCA at 0.5 ug/l in Wicks Road outpost well WROW-2. This detection required, as a stipulation of the NYSDEC-issued ROD, that an assessment be conducted to evaluate potential impacts to the municipal supply wells. The assessment (Clayton, May 1, 2003) reviewed the available information and concluded that the contaminants detected at WROW-2 were not derived from the Site due to the acknowledged groundwater divide located beneath the Site, the absence of the more prevalent site contaminants (Freon 113 and PCE), and the presence of an industrial area (potential source) situated to the east of the Site along Doyle Court.

The Huntsman Lane Well Field was also discussed and it was concluded that the contaminants that were detected did not originate from the Site based upon the absence of the primary contaminants (Freon 113 and PCE) associated with the Site. It was also noted that an industrial area is located between the Site and the Huntsman Lane Well Field; however, no direct evidence attributing these contaminants to offsite sources was reported.

The Colby Drive outpost well had historical (1995-1996) detections of low concentrations of 1,1,1-TCA, low estimated concentrations of PCE, and 1,1-DCA. Freon 113 was not detected and the origin of these constituents was concluded to be from a source other than the Site.

The Municipal Supply Well Assessment Report (Clayton, November 26, 2002) was transmitted to the NYSDEC and the SCDHS. The SCDHS provided comments in a June 22, 2003 correspondence, and concluded that the contaminants would not likely impact the Wicks Road, Huntsman Lane, Colby Court, or Elmo Place Well Fields based upon the results of a Source Water Assessment Program (SWAP) study prepared for the area by the SCDHS.

In 2004 FPM reviewed the available data for the outpost wells. No detections of any of VOCs had been noted in the Colby Drive and Kalb Court Well Fields outpost well since 1996.

The Wicks Road Well Field outpost well WROW-1 showed no detections of any VOCs, with the exceptions of periodic very low (up to 0.3 ug/l) detections of chloroform. Neither Freon

113, PCE, TCE, 1,1-DCA nor 1,1,1-TCA had been detected in this well. The Wicks Road Well Field outpost well WROW-2 showed repeated detections of VOCs, with the exceptions of PCE and Freon 113. The total VOC concentration gradually increased from approximately 0.2 ug/l in 1995/1996 to between approximately 5 and 6 ug/l in 2004.

The Huntsman Lane Well Field outpost well MW-19 showed a variety of VOC detections, with total VOCs in the 20 to 50 ug/l range in 1995 to 1997, decreasing to 1 to 10 ug/l between 1998 and 2001, and increasing to the 5 to 20 ug/l range in 2002 and 2003. 1,1-DCA, 1,1,1-TCA, and TCE were the primary VOCs detected. Freon 113 had not been detected in this well since early 1997.

In 2004 FPM also reviewed output maps from the SWAP model as provided by the SCDHS. These maps indicated that groundwater flow in the Magothy Aquifer, into which the public water supply wells are installed, is to the northeast in the Site vicinity. Particle backtracking was used to evaluate the capture zone of each public supply well for a period of 75 years. None of the 75-year capture zones included the Site, indicating that contaminants originating from the Site would not impact the public supply wells.

During the 2004 investigation FPM obtained raw water quality information from the Greenlawn Water District for the Wicks Road Well Field wells. Well #5 is screened from approximately 456 to 507 feet below grade and well #16 is screened from 575 to 655 feet below grade. The raw water from both wells is sampled on a quarterly basis and analyzed for VOCs. No VOCs were detected in either well in 2002, 2003 or 2004.

The thickness and depth of the massive clay separating the Upper Glacial Aquifer from the underlying Magothy Aquifer were evaluated using onsite and nearby well logs. Logs from four deep onsite supply and diffusion wells (S-72579, S-72996D, S-20746, and S-20649T) were reviewed and indicated the presence of a clay interval ranging from approximately 80 to over 200 feet thick located between approximately 200 and 300 to 400 feet below grade. These data confirmed the presence of a massive clay layer beneath the Site.

A May 30, 2014 report by Bureau Veritas provides a more recent evaluation of potential Siterelated impacts to municipal water supply wells. The conclusions for each well field are as follows:

• The Greenlawn Water District Huntsman Lane well #12, located east (generally crossgradient) of the Site, has exhibited detections of 1,1,1-TCA, TCE and PCE that decreased between 2009

and 2013 but no detections of Freon 113 were noted. Several other potential CVOC sources are located in proximity to this well field.

- Greenlawn Water District Wicks Road well #5, located southeast of the Site, has not shown detections of TCE, PCE or Freon 113 and only one very low detection of 1,1,1-TCA. The deeper of the two outpost wells, WROW-1, has not shown any detections of CVOCs and the shallower outpost well, WROW-2, has shown some CVOCs slightly above 1 ppb.
- The SCWA Daly Road #1 well, located to the south-southeast of the Site, was reportedly installed in 2008 following initial tests in 2006 and 2008. The 2006 and 2008 test data showed CVOCs, including Freon 113, to a depth of 360 feet below grade and no CVOCs below 430 feet below grade. The well was installed into the Magothy Aquifer to between 580 and 640 feet below grade and subsequent data during well operation showed increasing levels of CVOCs, including Freon 113, through 2013. The report concludes that installation and operation of this well may have spread impacts from the Upper Glacial Aquifer into the Magothy Aquifer.
- The Dix Hills Water District Colby Drive well #4-1, located south of the Site, has shown no CVOC detections and outpost well CCOW has shown no CVOCs above 1 ppb and no detections of Freon 113.

Additional information obtained from the SCWA in November 2018 confirms that CVOCs, including Freon 113, PCE and TCE, continue to remain present in raw water pumped from SCWA Daly Road #1 well through at least October 2018. The well appears to be used seasonally, generally from April through October. Groundwater modeling that appears to have been performed prior to well installation, indicated that the zone of contribution to the well was predicted to extend to the west-southwest of the well and did not include the Site vicinity.

2.4 Remedial Action Objectives

2.4.1 <u>Groundwater RAOs for Public Health and Environmental Protection</u> The Remedial Action Objectives (RAOs) for the Site as listed in the March 1995 ROD included only RAOs for groundwater, as follows:

- Mitigate the impacts of contaminated groundwater to the environment and public health.
- Provide for attainment of SCGs for groundwater quality to the extent feasible.

2.4.2 Soil RAOs for Public Health and Environmental Protection

Although no soil RAOs were established in the ROD, Site-specific RAOs that are applicable for soil are as follows:

- Prevent ingestion/direct contact with contaminated soil.
- Prevent migration of contaminants that would result in groundwater contamination.

2.4.3 Soil Vapor RAOs for Public Health Protection

Although no soil vapor ROAs were established in the ROD, Site-specific RAOs that are applicable for soil vapor are as follows:

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at the Site.

2.5 Remaining Contamination

2.5.1 <u>Soil</u>

As discussed in Section 2.3.1, multiple investigations of soil conditions have been conducted on the Site since at least 1990 and the data are contained in several reports. Copies of the data tables from these reports are included in Appendix D. Remedial measures for soil have also been conducted in several areas of the Site, including removal of impacted soil and post-excavation sampling, the results of which are also included in Appendix D.

The data for the soil that remains present onsite following the completion of remedial measures are depicted graphically on Plate 1 in Appendix C. Plate 1 shows all the locations where soil data were collected over multiple investigations and remediation. The results for the remaining soil show no exceedances of the NYSDEC's SCOs for restricted residential use, which is the anticipated use for the Site.

2.5.2 Groundwater

As discussed in Section 2.3.1, groundwater investigations and monitoring have been ongoing at this Site since 1983 and groundwater remediation was conducted from 1996 to 2007. Many of the former groundwater monitoring wells are now abandoned. Copies of the data tables summarizing the groundwater monitoring results are included in Appendix D.

Groundwater was impacted by Site-related VOCs, including Freon 113, 1,1-DCA, 1,1,1-TCA, chloroform, TCE, and PCE. The Site-related VOCs were present in three levels (shallow, intermediate, and deep) of the Upper Glacial Aquifer in the dissolved phase; non-aqueous-phase VOCs were not present. Concentrations of Site-related VOCs have decreased significantly in all three levels of the aquifer and only very low concentrations remain present.

The most recent groundwater data for the onsite and offsite wells are summarized on Plate 2 in Appendix C. Plate 2 shows the most recent data for each of the wells; detections that exceed the NYSDEC Standards are highlighted.

Plate 2 shows the following:

- For the shallow wells, the only exceedances of the NYSDEC Standards are found in onsite well MW-10, where 8.2 ug/l of PCE and 5.2 ug/l of Freon 113 were present in 2021. This well is in immediate proximity to the former manufacturing building locations. No other exceedances of the Standards remain present in the shallow groundwater.
- For the intermediate wells, the only exceedances of the NYSDEC Standards are found in onsite well MW-10A, where 100 ug/l of PCE and 21 ug/l of Freon 113 were present in 2021, onsite well MW-32A, where 71 ug/l of Freon 113 was present in 2021, and onsite well MW-23A, where 42 ug/l of Freon 113 were present in 2021. Well MW-10A is in immediate proximity to the former manufacturing building locations, and wells MW-32A and MW-23A are located on the downgradient side of the Site. No other exceedances of the Standards remain present in the intermediate groundwater.
- For the deep wells, the only exceedances of the NYSDEC Standards are found in onsite well MW-11B, where 19 ug/l of PCE and 16 ug/l of Freon 113 were present in 2021, and offsite wells MW-12B, where 7 ug/l of PCE was present in 2013, and MW-34B, where 22 ug/l of PCE and 14 ug/l of Freon 113 were present in 2021. No detections of Site-related VOCs were found further downgradient in well MW-14B and no other exceedances of the Standards remain present in the deep groundwater.
- No detections of any Site-related VOCs were found during the most recent monitoring event in outpost monitoring wells MW-19, CCOW, or WROW-1. The VOCs 1,1-DCA, 1,1,1-TCA and TCE were found at very low levels (below Standards) in outpost well WROW-2 in 2013. However, neither Freon 113 nor PCE were detected. As discussed in Section 2.3 above, it has previously been concluded that these VOCs were not derived from the Site due to the acknowledged groundwater divide located beneath the Site, the absence of the more prevalent Site contaminants (Freon 113 and PCE), and the presence of an industrial area (potential source) situated to the east of the Site along Doyle Court.

2.5.5 Soil Vapor

Soil vapor sampling was conducted onsite between 2004 and 2008 in the former industrial areas, former tank and chemical storage areas, areas of the property not formerly used for industrial purposes (beneath the parking lot), and in unpaved areas near the property line to the south and southeast of the former Main Building and Machine Shop. TCE, PCE, cis-1,2-DCE, and/or 1,1,1-TCE were detected at most of the locations. In the unpaved areas near the south property line none of the chlorinated VOCs for which the NYSDOH has guidance were detected at elevated levels.

SVI testing performed in 2012 at eight residences near the Site indicated that no further action was needed for any of the residences.

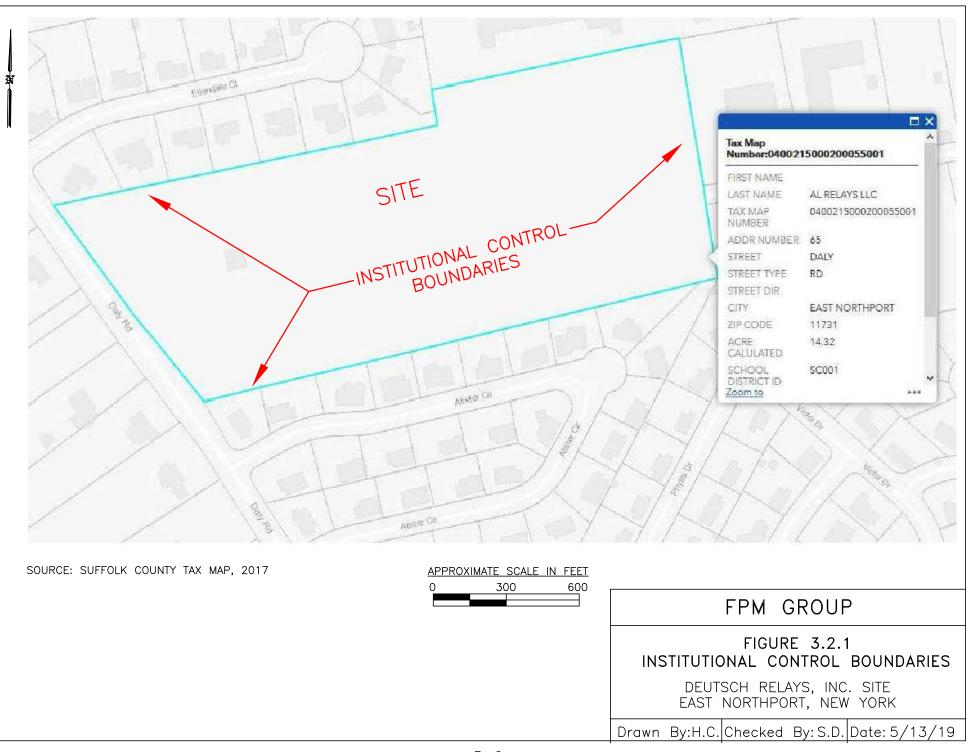
Copies of the data tables summarizing the soil vapor results are included in Appendix D. The soil vapor data for the onsite sampling locations are also summarized on Plate 3 in Appendix C.

3.0 Institutional Control Plan

3.1 General

Since remaining contamination exists at the Site, Institutional Controls (ICs) are required to protect human health and the environment. This IC Plan describes the procedures for the implementation and management of all ICs at the Site. The IC Plan is one component of the SMP and is subject to revision by the NYSDEC.

This plan provides:


- A description of all ICs on the Site;
- The basic implementation and intended role of each IC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of ICs, such as the implementation of the Excavation Work Plan (EWP) (as provided in Appendix F) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the Site; and
- Any other provisions necessary to identify or establish methods for implementing the ICs required by the site remedy, as determined by the NYSDEC.

3.2 Institutional Controls

A series of ICs is required to: (1) prevent future exposure to remaining contamination; and, (2) limit the use and development of the Site to restricted residential, commercial and/or industrial uses only. Adherence to these ICs on the Site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are shown on Figure 3.2.1. These ICs are:

- The property may be used for: restricted residential, commercial, and/or industrial uses;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Suffolk County Department of Health Services to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.

- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 3.2.1, and appropriate actions to address exposures must be implemented; and
- Vegetable gardens and farming on the Site are prohibited.

3.3 Site-wide Inspection

Site-wide inspections will be performed at a minimum of once per year. Modification to the frequency or duration of the inspections will require approval from the NYSDEC. Site-wide inspections will also be performed after all severe weather conditions that may affect the remaining contamination at the Site. A comprehensive site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the Periodic Review Report.

During an inspection, an inspection form will be completed as provided in Appendix G – Site Management Forms. The inspections will determine and document the following:

Compliance with all ICs, including Site usage;

- General Site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- If site records are complete and up to date.

Reporting requirements are outlined in Section 5.0 of this plan.

Inspections will also be performed in the event of an emergency. An inspection of the Site will be conducted within 5 days of the event to verify the effectiveness of the ICs implemented at

the Site by a qualified environmental professional, as determined by the NYSDEC. Written confirmation must be provided to the NYSDEC within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

4.0 Periodic Assessments/Evaluations

4.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given Site and associated remedial systems. Vulnerability assessments provide information so that the Site is prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding. This section briefly summarizes the vulnerability of the Site to severe storms/weather events and associated flooding.

A vulnerability assessment has not been prepared for the Site and a vulnerability assessment is not planned. The Site is not located in a flood plain or low-lying area. All stormwater has previously been managed onsite in recharge basins and leaching pool systems. When the Site is redeveloped all stormwater will continue to be managed onsite using typical groundwater recharge devices; the Site is underlain by sand and gravel, which is conducive to stormwater recharge. The Site surface is relatively level and erosion does not present a concern. If high winds occur it is unlikely that damage may result as the redeveloped Site is unlikely to feature large trees in proximity to the buildings.

4.2 Soil Vapor Intrusion Evaluation

No buildings are currently present on the Site. It is planned to redevelop the Site with a restricted residential use and the new buildings will be constructed with vapor barriers and subslab depressurization systems (SSDSs). An SVI Evaluation and Mitigation Work Plan was submitted to the NYSDEC and NYSDOH in April 2022 and comments were received in June 3, 2022 correspondence. The Work Plan was revised and re-submitted on June 14, 2022 and NYSDEC approval is anticipated.

The Work Plan includes details for the vapor barriers and SSDSs that will be constructed beneath each habitable building, a plan for construction oversight and performance evaluation for each SSDS, and reporting procedures. The Work Plan also includes procedures for conducting

SVI evaluations to determine whether SVI presents a concern and if operation of the SSDSs can be terminated.

Upon completion of the SVI mitigation measures construction, SSDS performance evaluations, and any SVI evaluations, any actions taken or to be taken will be reflected in an update to this SMP.

4.3 Groundwater Monitoring

Groundwater monitoring will be conducted on a periodic (once-per five-quarter) basis to assess the anticipated continued decrease in Site-related VOC concentrations. The sampling locations, required analytical parameters, and schedule are provided in Table 4.3.1 – Groundwater Monitoring Requirements and Schedule below. This Table was updated in 2022 in conjunction with the monitoring well decommissioning and relocation. The NYSDEC will be notified of any modification to the frequency or sampling protocols.

Sampling Locations	Analytical Parameters	Analytical Method	Schedule
MW-10, MW-24,	VOCs	EPA Method	Once every
MW-29, MW-10A,		8260	5 Quarters
MW-12A, MW-32A,			
MW-23A, MW-34A,			
MW-12B, MW-11B,			
MW-34B, and MW-20			

 Table 4.3.1 – Groundwater Monitoring Requirements and Schedule

Detailed sample collection and analytical procedures and protocols are provided in Appendix H – Field Sampling Plan and Appendix I – Quality Assurance Project Plan.

4.3.1 Groundwater Sampling

Groundwater monitoring will be performed once every five quarters to assess the performance of the remedy on a seasonal basis. Modification to the frequency or sampling requirements will require approval from the NYSDEC.

The network of monitoring wells was installed to monitor Site-related groundwater conditions and was designed in consultation with the NYSDEC. The network of wells has been reduced over time as groundwater conditions improved and the full network was no longer

necessary. The network will be further modified during Site redevelopment, with NYSDEC concurrence. The network to be monitored includes three wells to monitor shallow groundwater, five wells to monitor intermediate groundwater, and four wells to monitor the deep groundwater.

The available monitoring well construction logs are provided in Appendix E of this SMP. When the replacement wells are installed later in 2022 the new monitoring well construction logs will be added to Appendix E. Table 4.3.1.1 summarizes the well identification numbers, completion interval, location, depths, diameter, and screened intervals of the wells previously targeted for groundwater monitoring. This table will be updated once the details for the relocated wells become available.

If biofouling or silt accumulation occurs in the Site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced if an event renders a well unusable and the well is required for monitoring. Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of any monitoring well for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent Periodic Review Report. Well decommissioning without replacement will be done only with the prior approval of the NYSDEC. Well abandonment will be performed in accordance with NYSDEC's guidance entitled "CP-43: Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be replaced in kind in the nearest available location, unless otherwise approved by the NYSDEC.

The sampling frequency may only be modified with the approval of the NYSDEC. This SMP will be modified to reflect changes in sampling plans approved by the NYSDEC.

Deliverables for the groundwater monitoring program are specified in Section 5.0 – Reporting Requirements.

Monitoring Well ID	Well Completion Interval	Coordinates (longitude/ latitude)	Well Diameter (inches)	Elevation above mean sea level unless noted as *			
				Top of Casing	Depth to Water (initial)*	Screen Top*	Screen Bottom*
MW-10	shallow	73° 19' 03.58" W 40° 50' 12.01" N	4	169.67	85.00	77.5	87.5
MW-24	shallow	73° 19' 15.59" W 40° 50' 07.66" N	2	142.82	69.58	68	78
MW-29	shallow	73° 19' 17.30" W 40° 50' 09.30" N	2	144.43	72.07	72.0	82.0
MW-10A	intermediate	73° 19' 03.83" W 40° 50' 11.78" N	4	169.38	93.53	118.0	128.0
MW-12A	intermediate	73° 19' 19.36" W 40° 49' 57.69" N	4	145.72	72.79	101.0	110.0
MW-23A	intermediate	73° 19' 19.24" W 40° 50' 11.30" N	2	145.07	71.57	110.0	120.0
MW-32A	intermediate	73° 19' 20.38" W 40° 50' 12.62" N	2	146.12	72.25	110.0	120.0
MW-34A	intermediate	73° 19' 15.59" W 40° 50' 05.73" N	2	143.24	69.42	100.0	110.0
MW-35A	intermediate	73° 19' 16.76" W 40° 50' 13.45" N	2	160.52	86.37	120.0	130.0
MW-11B	deep	73° 19' 16.91" W 40° 50' 09.48" N	4	144.71	71.14	210.1	230.1
MW-12B	deep	73° 19' 18.87" W 40° 49' 57.76" N	4	145.56	73.65	182.5	192.5
MW-14B	deep	73° 19' 31.78" W 40° 49' 49.87" N	4	182.14	112.78	228.7	238.7
MW-20	deep	73° 18' 46.18" W 40° 49' 58.01" N	2	158.35	97.42	232.0	242.0
MW-34B	deep	73° 19' 15.10" W 40° 50' 05.16" N	2	143.26	69.52	162.0	172.0

 Table 4.3.1.1 - Monitoring Well Construction Details

* = Depths from top of casing.

5.0. Reporting Requirements

5.1 Site Management Reports

All site management inspection events will be recorded on the appropriate site management forms provided in Appendix G. These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including media sampling data generated for the Site during the reporting period will be provided in electronic format to the NYSDEC in accordance with the requirements of Table 5.1.1 and summarized in the Periodic Review Report.

 Table 5.1.1: Schedule of Inspection Reports

Task/Report	Reporting Frequency*			
Inspection Report	Annually			

*The frequency of events will be conducted as specified until otherwise modified by the NYSDEC.

All inspections reports will include, at a minimum:

- Date of event or reporting period;
- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Any observations, conclusions, or recommendations; and
- A determination as to whether contaminant conditions have changed since the last reporting event.

Non-routine event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;

- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and

5.2 Periodic Review Report

The Periodic Review Report (PRR) will consist only of the certification as specified in Section 5.2.1, except in the event where there have been changes to the Site or data gathered during the certifying period. Given such an event, the submittal of a comprehensive PRR will be necessary, as specified below.

A PRR will be submitted to the NYSDEC beginning 30 days after the initial 15-month certifying period. The initial certifying period commenced upon issuance of the approval of the original SMP. The first PRR was submitted to the NYSDEC on May 18, 2022 in accordance with the NYSDEC's March 25, 2022 Reminder Notice. The next PRR shall be submitted annually to the NYSDEC or at another frequency as may be subsequently required by the NYSDEC. In the event that the Site is subdivided into separate parcels with different ownership, a single PRR will be prepared that addresses the Site described in Appendix A - Environmental Easement. The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the PRR. The report will include:

- Identification, assessment and certification of all ICs required by the remedy for the Site.
- Results of the required annual site inspections and severe condition inspections, if applicable.
- All applicable site management forms and other records generated for the Site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- A summary of any data and/or information generated during the reporting period, with comments and conclusions, if any.
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the Site-specific ROD;

- Any new conclusions or observations regarding Site contamination based on inspections or data generated;
- Recommendations regarding any necessary changes to the remedy; and
- The overall performance and effectiveness of the remedy.

5.2.1 <u>Certification of Institutional Controls</u>

Within 30 days after the end of each certifying period, as determined by the NYSDEC, the following certification will be provided to the NYSDEC:

"For each institutional control identified for the Site, I certify that all of the following statements are true:

- The institutional control employed at this Site is unchanged from the date the control was put in place, or last approved by the NYSDEC;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the Site will continue to be provided to the NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the Site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the Site is compliant with the environmental easement.
- *The information presented in this report is accurate and complete.*

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, ______, of ______, of ______business address______, am certifying as ______Owner or Owner's Designated Site Representative ______for the Site."

The signed certification will be included in the PRR, if such report is required for the period. Otherwise, the Certification will be submitted as a stand-alone document.

The PRR/Certification will be submitted, in electronic format, to the NYSDEC Central Office, the NYSDEC Regional Office in which the site is located and the NYSDOH Bureau of

Environmental Exposure Investigation. The PRR/Certification may need to be submitted in hardcopy format, as requested by the NYSDEC project manager.

5.3 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an IC, a Corrective Measures Work Plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC. Upon completion of the Corrective Measure, a signed certification form must be submitted to the NYSDEC.

6.0 **REFERENCES**

6NYCRR Part 375, Environmental Remediation Programs. December 14, 2006.

- Bureau Veritas. January 23, 2013. Supplemental Property Characterization Report, Former Deutsch AL Facility.
- Bureau Veritas. February 18, 2014. Fourth Quarter 2013 O&M Progress, Groundwater Remediation System, Former Deutsch Relays Facility.
- Bureau Veritas. May 30, 2014. Groundwater Evaluation, Former Deutsch Relays Facility.
- C3 Real Estate. January 28, 2002. Correspondence concerning the subject property.
- Certilman Balin Adler & Hyman. March 13, 2022. Change of Use Notification.
- Clayton Environmental Consultants, Inc. December 8, 1997. Remedial Action Construction Final Report, Deutsch Relays, Inc., 65 Daly Road, East Northport, New York.
- Clayton Environmental Consultants, Inc. April 4, 1997. Numerical Ground-Water Model for the Deutsch Relays Facility, 65 Daly Road, East Northport, New York.
- Clayton Environmental Consultants, Inc. January 1997. Supplemental Remedial Investigation, Deutsch Relays, Inc.
- Clayton Group Services. November 26, 2002. Evaluation of Potential Impacts to Municipal Supply Wells by Deutsch Relays Facility.
- Clayton Group Services. February 2004. Site Investigation Report, Deutsch Relays, Inc., 65 Daly Road, East Northport, New York.
- Clayton Group Services, Inc. May 1, 2003. Evaluation of Potential Impacts to Municipal Supply Wells, Deutsch Relays Facility, East Northport, New York.
- Clayton Group Services, Inc. April 10, 2003. Assessment of Suspect Asbestos-Containing Material at Deutsch Relays, Inc, 65 Daly Road, East Northport, New York.
- Clayton Group Services, Inc. May 25, 2005. Leaching Pool Closure Request, Deutsch Relays, Inc. Facility.
- Clayton Environmental Consultants, Inc. August 31, 2005. Septic Tank/Leaching Pit Closure, Deutsch Relays, 65 Daly Road, East Northport, New York.
- Eder Associates Consulting Engineers, P.C. January 1994. Draft Feasibility Study, Deutsch Relays, Inc., East Northport, New York.

- Eder Associates Consulting Engineers, P.C. January 1990. Wastewater Treatment System Closure Certification Report.
- Environmental Assessment & Remediation. May 22, 2012. SVI Sampling, Deutsch Relays, Inc., 65 Daly Road, East Northport, New York.
- Environmental Compliance Services, Inc. December 31, 2001. Phase I and 2 Environmental Site Assessment, Deutsch Relays, Inc., 65 Daly Road, East Northport, New York.
- Environmental Constructors, Inc. January 1996. Closure Report of Plating Shop, Laboratory and Drum Storage Areas for Deutsch Relays, Inc., East Northport, New York
- FPM Group. November 2004. Phase II Investigation Report for the Property Located at 65 Daly Road, East Northport, New York.
- FPM Group. March 20,2022. Notification of Soil Remediation, 65 Daly Road, East Northport, New York.
- FPM Group. March 30, 2022. Proposal for Monitoring Well Decommissioning and Relocation, 65 Daly Road, East Northport, New York.
- FPM Group. May 2, 2022. Soil Remediation Report, 65 Daly Road, East Northport, New York.
- FPM Group. May 2022. Periodic Review Report, 65 Daly Road, East Northport, New York.
- FPM Group. June 14, 2022. Soil Vapor Intrusion Evaluation and Mitigation Work Plan, 65 Daly Road, East Northport, New York.
- FPM Group. June 17, 2022. Monitoring Well Decommissioning, 65 Daly Road, East Northport, New York.
- Geraghty & Miller, Inc. October 1990. Soil Boring Program and Monitoring Well Installation, Deutsch Relays, Inc., East Northport, New York.
- Geraghty & Miller, Inc. June 1992. Draft Remedial Investigation Report, Deutsch Relays, East Northport, New York.
- Holzmacher, McLendon and Murrell, P.C. March 1987. *Phase II Intermediate Report and Continued Protocol for Contaminant Plume Identification at Deutsch Relays.*
- Holzmacher, McLendon and Murrell, P.C. August 1985. *Phase I Report and Proposed Phase II Protocol for Deutsch Relays.*
- James Carrol, Former Deutsch Relays, Inc. employee. 2004. *Information concerning the subject property.*

- New York State Department of Environmental Conservation. *Records pertaining to the subject property*.
- New York State Department of Environmental Conservation. March 1995. Record of Decision, Deutsch Relays, Inc., Inactive Hazardous Waste Site Number 152003.
- New York State Department of Environmental Conservation. May 2010. DER-10 Technical Guidance for Site Investigation and Remediation.
- New York State Department of Environmental Conservation. June 1998 and April 2000 addendum. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1.
- New York State Department of Environmental Conservation. March 25, 2022. Reminder Notice for Periodic Review Report, 65 Daly Road, East Northport, New York.
- New York State Department of Environmental Conservation. April 4, 2022. Emailed approval of Proposal for Monitoring Well Decommissioning and Relocation, 65 Daly Road, East Northport, New York.
- New York State Department of Environmental Conservation. June 1, 2022. Approval of Soil Remediation Report, 65 Daly Road, East Northport, New York.
- New York State Department of Environmental Conservation. June 3, 2022. Comments concerning April 2022 Soil Vapor Intrusion Evaluation and Mitigation Work Plan, 65 Daly Road, East Northport, New York.
- Suffolk County Department of Health Services. Records pertaining to the subject property.
- United States Environmental Protection Agency. Records pertaining to the subject property.
- U.S. Department of the Interior. 1967. *Greenlawn, NY 15' Quadrangle*. U.S. Geological Service, National Mapping Division. Reston, VA.
- U.S. Geological Survey. 2015. Water-Table and Potentiometric-Surface Altitudes in the Upper Glacial, Magothy, and Lloyd Aquifers beneath Long Island, New York, April-May 2013.
- U.S. Geological Survey. 1964. *Hydrogeology of the Huntington-Smithtown Area, Suffolk County, New York. Water-Supply Paper 1669-D.*

APPENDIX A ENVIRONMENTAL EASEMENT SITE METES AND BOUNDS

This Appendix includes a copy of the Environmental Easement for this Site, including recording information. The Site's metes and bounds description is also included in this Appendix.

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 10^{+1} day of 12^{-1} , 2022, between Owner, 65 Daly Road LLC, having an office at c/o The Engel Burman Group, 67 Clinton Road, Garden City, New York 11530, County of Nassau, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee"), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 65 Daly Road in the Town of Huntington, County of Suffolk and State of New York, known and designated on the tax map of the County Clerk of Suffolk as tax map parcel numbers: District 0400 Section 215.00 Block 02.00 Lot 055.001, being the same as that property conveyed to Grantor by deed dated May 1, 2019 and recorded in the Suffolk County Clerk's Office in Liber and Page D00013013/968. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 14.31 +/- acres, and is hereinafter more fully described in the Land Title Survey dated June 10, 2019 prepared by Gregory David Peterman, L.L.S. of Nelson & Pope, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Order on Consent Index Number: CO 3-20181123-203, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

 All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Suffolk County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

the institutional controls and/or engineering controls employed at such site:

(i) are in-place;

(2)

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500

Site Number: 152003

With a copy to:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and

communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Grantor's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF Nassau)

On the <u>19</u> day of <u>March</u>, in the year 20 <u>20</u>, before me, the undersigned, personally appeared <u>Strugger</u>, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

ALLICA J. Colabella Notary Public - State of New York

JESSICA F. COLABELLA Notary Public, State of New York No. 01CO6137529 Qualified in Nassau County Commission Expires November 28, 20 J

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting by and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Michael J. Ryan, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the 17^{th} day of 4pnl, in the year $20\overline{20}$, before me, the undersigned, personally appeared Michael J. Ryan, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public - State of New York

JENNIFER ANDALORO Notary Public, State of New York No. 02AN6098246 Qualified in Albany County JU Commission Expires January 14, 20

SCHEDULE "A" PROPERTY DESCRIPTION

ALL THAT CERTAIN TRACT, PIECE OR PARCEL OF LAND SITUATE, LYING AND BEING IN THE TOWN OF HUNTINGTON, COUNTY OF SUFFOLK, STATE OF NEW YORK, LYING GENERALLY SOUTHERLY OF JERICHO TURNPIKE (NYS ROUTE 25) AND GENERALLY EASTERLY OF DALY ROAD, AND BEING MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT THE INTERSECTION FORMED BY THE SOUTHERLY LINE OF JERICHO TURNPIKE (NYS ROUTE 25) AND WESTERLY LINE OF LARKFIELD ROAD (AS WIDENED).

RUNNING THENCE WESTERLY ALONG THE SOUTHERLY LINE OF NYS ROUTE 25 THE FOLLOWING (3) COURSES:

1. SOUTH 79° 45' 00" WEST 378.18 FEET 2. SOUTH 79° 39' 00" WEST 599.93 FEET

3. SOUTH 79° 37' 30" WEST 128.12 FEET TO THE WESTERLY LINE OF LAND NOW OR FORMERLY OF

SEARS ROEBUCK & CO.

 $k=x-1,\dots,N$

THENCE SOUTHERLY ALONG SAID LAND SOUTH 14° 47' 26" EAST, 675.54 FEET TO THE NORTHERLY LINE OF THE MAP OF 44 SMALL FARMS;

THENCE WESTERLY ALONG THE NORTHERLY LINE OF THE MAP OF 44 SMALL FARMS THE FOLLOWING TWO (2) COURSES:

1. SOUTH 80° 44' 14" WEST 200.36 FEET

2. NORTH 14° 47' 26" WEST, 1.13 FEET, TO THE WESTERLY LINE OF THE MAP OF 44 SMALL FARMS AND THE POINT OF BEGINNING;

THENCE SOUTHERLY ALONG SAID LAND SOUTH 08° 38' 30" EAST, 519.99 FEET TO THE NORTHWESTERLY INTERSECTION OF THE MAP OF 44 SMALL FARMS, VICTOR MEADOWS SECTION 3 AND THE MAP OF ROCHELLE WOODS;

THENCE WESTERLY ALONG THE NORTHERLY LINE OF THE MAP OF ROCHELLE WOODS SOUTH 77° 05' 20" WEST, 1,134.66 FEET TO ITS POINT OF INTERSECTION WITH THE EASTERLY BOUNDARY OF DALY ROAD;

THENCE NORTHERLY ALONG SAID EASTERLY BOUNDARY OF DALY ROAD THE FOLLOWING TWO (2) COURSES:

1. NORTH 38° 05' 40" WEST 231.42 FEET;

2. NORTH 33° 38' 00" WEST 296.89 FEET TO THE SOUTHERLY LINE OF THE MAP OF ELLENDALE ESTATES;

THENCE EASTERLY ALONG SAID LINE NORTH 78° 48' 00" EAST, 839.55 FEET TO THE EASTERLY LINE OF THE MAP OF ELLENDALE ESTATES;

THENCE NORTHERLY ALONG SAID LINE NORTH 08° 31' 30" WEST, 77.90 FEET TO THE SOUTHERLY LINE OF PROPOSED LOT 2 ON THE MAP OF DEUTSCH RELAYS PLAT;

THENCE EASTERLY ALONG THE SOUTHERLY LINE OF SAID LOT 2 THE FOLLOWING (2) COURSES: 1. NORTH 78° 48' 00" EAST, 441.67 FEET; 2. NORTH 79° 27' 30" EAST, 100.00 FEET TO THE WESTERLY LINE OF THE MAP OF 44 SMALL FARMS AND THE POINT OR PLACE OF BEGINNING.

AND ALSO DESCRIBED, AS SURVEYED:

BEGINNING AT A POINT ON THE EASTERLY SIDE OF DALY ROAD, DISTANT THE FOLLOWING TWO (2) COURSES FROM THE INTERSECTION FORMED BY THE SOUTHERLY SIDE OF ELLENDALE COURT AND THE EASTERLY SIDE OF DALY ROAD:

1) SOUTHWESTERLY ALONG THE ARC OF A CURVE BEARING TO THE LEFT, HAVING A RADIUS OF 20.00 FEET AND AN ARC LENGTH OF 31.42 FEET;

2) SOUTH 32° 53' 52" EAST, 71.45 FEET TO THE POINT OR PLACE OF BEGINNING;

RUNNING THENCE THE FOLLOWING EIGHT (8) COURSES:

1) NORTH 78° 48' 00" EAST, 839.55 FEET; 2) NORTH 08° 31' 30" WEST, 77.90 FEET;

I ≤ 1^{-∞}

- 3) NORTH 78° 48' 00" EAST, 441.67 FEET;
- 4) NORTH 79° 27' 30" EAST, 100.00 FEET;
 5) SOUTH 08° 38' 30" EAST, 519.99 FEET;
- 6) SOUTH 77° 05' 20" WEST, 1,134.66 FEET;
 7) NORTH 38° 05' 40" WEST, 231.42 FEET;
- 8) NORTH 35° 38' 00" WEST, 296.89 FEET TO THE POINT OR PLACE OF BEGINNING;

EXCEPT THE INTEREST IN THAT PORTION OF LAND THEREOF OVERLAPPING THE PROPERTY BOUNDARY DESCRIBED AS FOLLOWS:

COMMENCING AT A POINT ON THE EASTERLY SIDE OF LOT 1 OF DEUTSCH RELAYS PLAT, SAID POINT BEING THE FOLLOWING SEVEN (7) COURSES FROM THE INTERSECTION FORMED BY THE SOUTHERLY SIDE OF ELLENDALE COURT AND THE EASTERLY SIDE OF DALY ROAD:

1) SOUTHWESTERLY ALONG THE ARC OF A CURVE BEARING TO THE LEFT, HAVING A RADIUS OF 20.00 FEET AND AN ARC LENGTH OF 31.42 FEET;

- 2) SOUTH 32° 53' 52" EAST, 71.45 FEET;
 3) NORTH 78° 48' 00" EAST, 839.55 FEET;
- 4) NORTH 08° 31' 30" WEST, 77.90 FEET;
- 5) NORTH 78° 48' 00" EAST, 441.67 FEET;
 6) NORTH 79° 27' 30" EAST, 100.00 FEET;
- 7) SOUTH 08° 38' 30" EAST, 1.13 FEET TO THE POINT OR PLACE OF BEGINNING;

RUNNING THENCE THE FOLLOWING THREE (3) COURSES:

- SOUTH 08° 38' 30" EAST, 132.93 FEET;
 NORTH 09° 52' 12" WEST, 132.92 FEET;

3) NORTH 80° 44' 14" EAST, 2.85 FEET TO THE POINT OR PLACE OF BEGINNING.

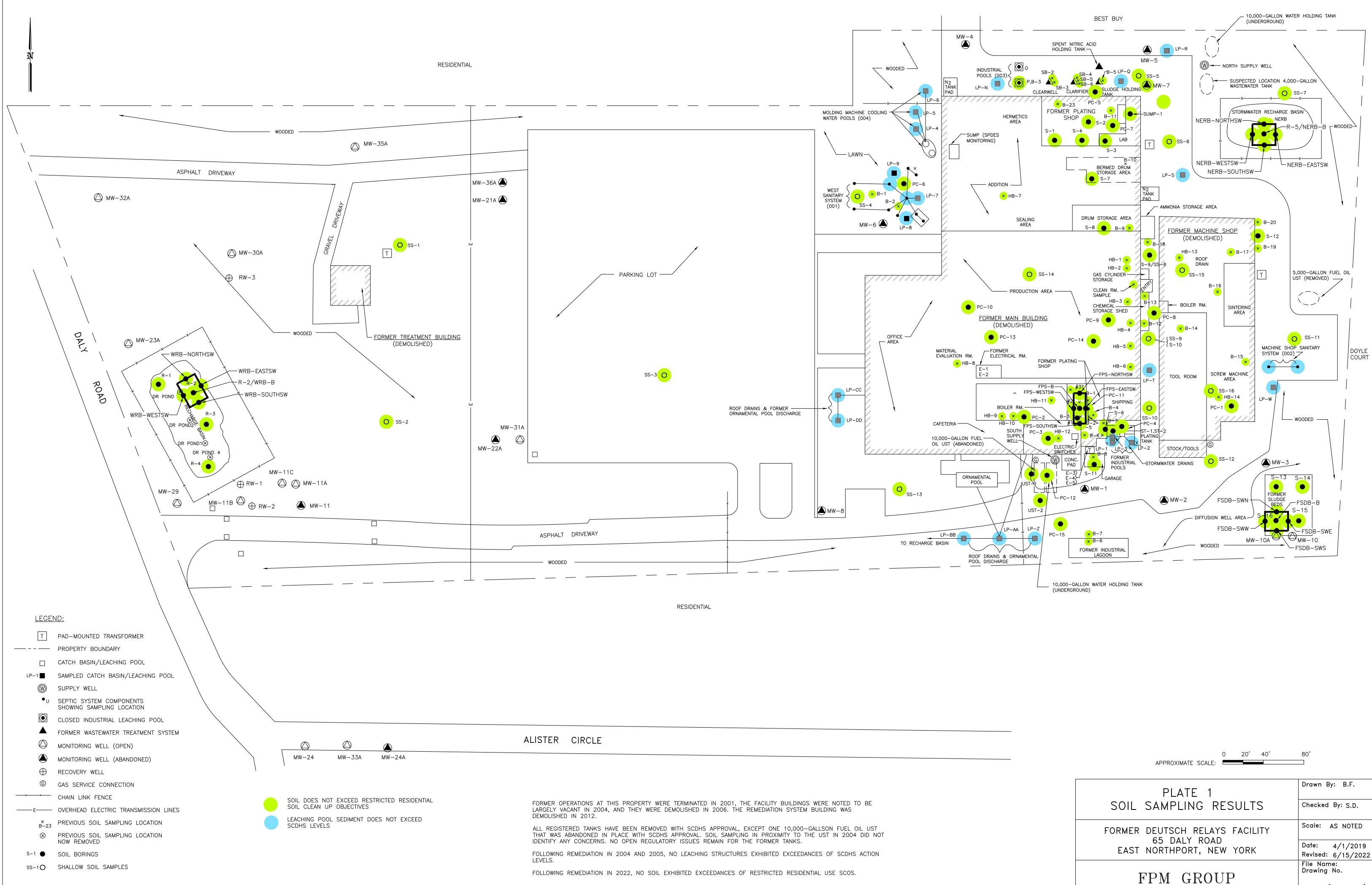
THE AREA OF THE ENVIRONMENTAL EASEMENT DESCRIBED ABOVE CONTAINING 14.31 PLUS OR MINUS ACRES OF LAND.

APPENDIX B

LIST OF SITE CONTACTS

This Appendix includes a listing of all Site contacts necessary for implementation of the SMP.

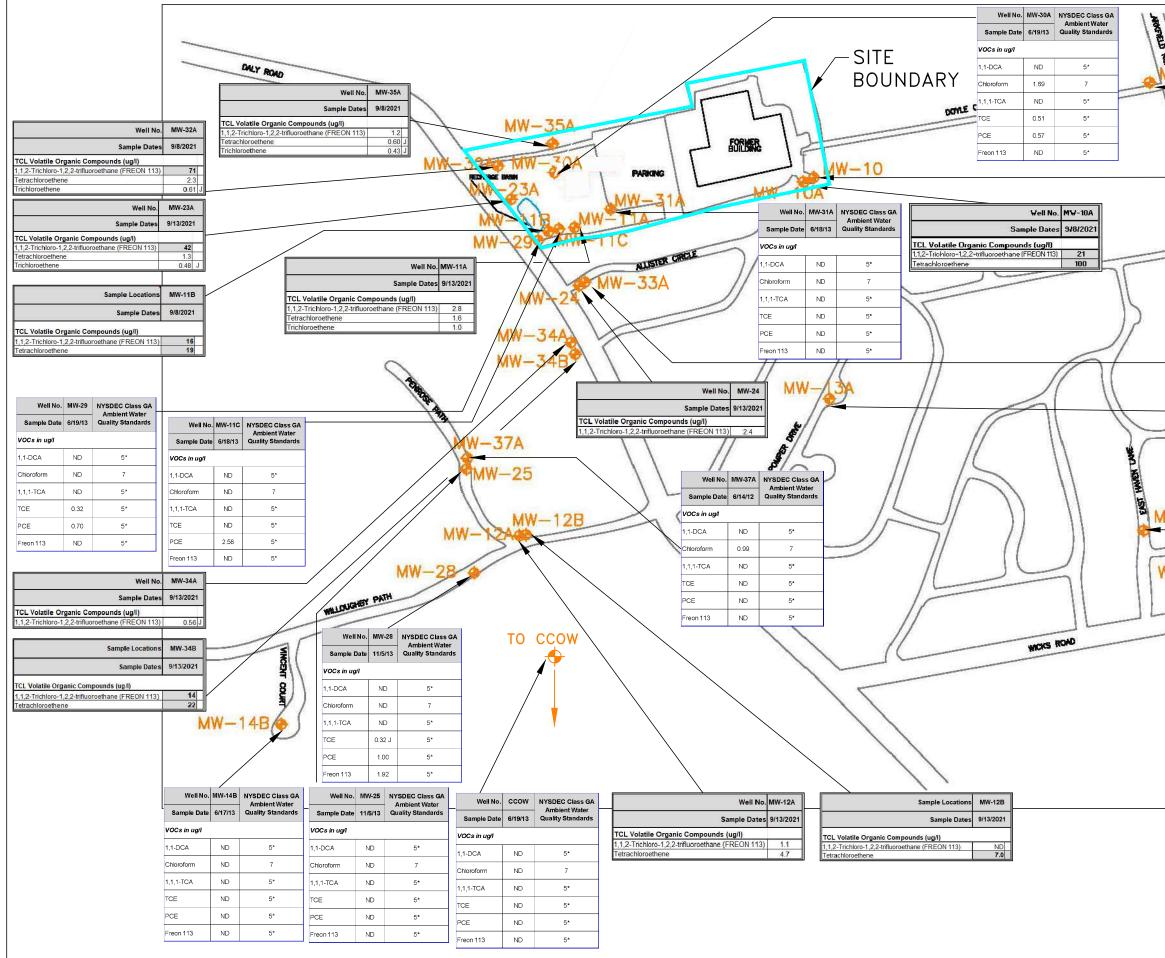
Name/Role	Phone/Email Address
Site Owner and Remedial Party: 65 Daly Road LLC David Burman	(516) 747-1200, david@engelburman.com
Owner/Remedial Party Attorney:	(516) 296-7000,
Barry Cohen, Esq.	bcohen@certilmanbalin.com
Qualified Environmental Professional: FPM Group, Ltd. Stephanie O. Davis, PG	(631) 737-6200, ext. 528 s.davis@fpm-group.com
NYSDEC DER Project Manager:	(518) 402-9614,
Melissa Sweet, PE	melissa.sweet@dec.ny.gov
NYSDEC Regional HW Engineer :	(631) 444-0235,
Chris Engelhardt	Chris.engelhardt@dec.ny.gov
NYSDEC Site Control:	(518) 402-9553,
Kelly Lewandowski	kelly.lewandowski@dec.ny.gov



APPENDIX C

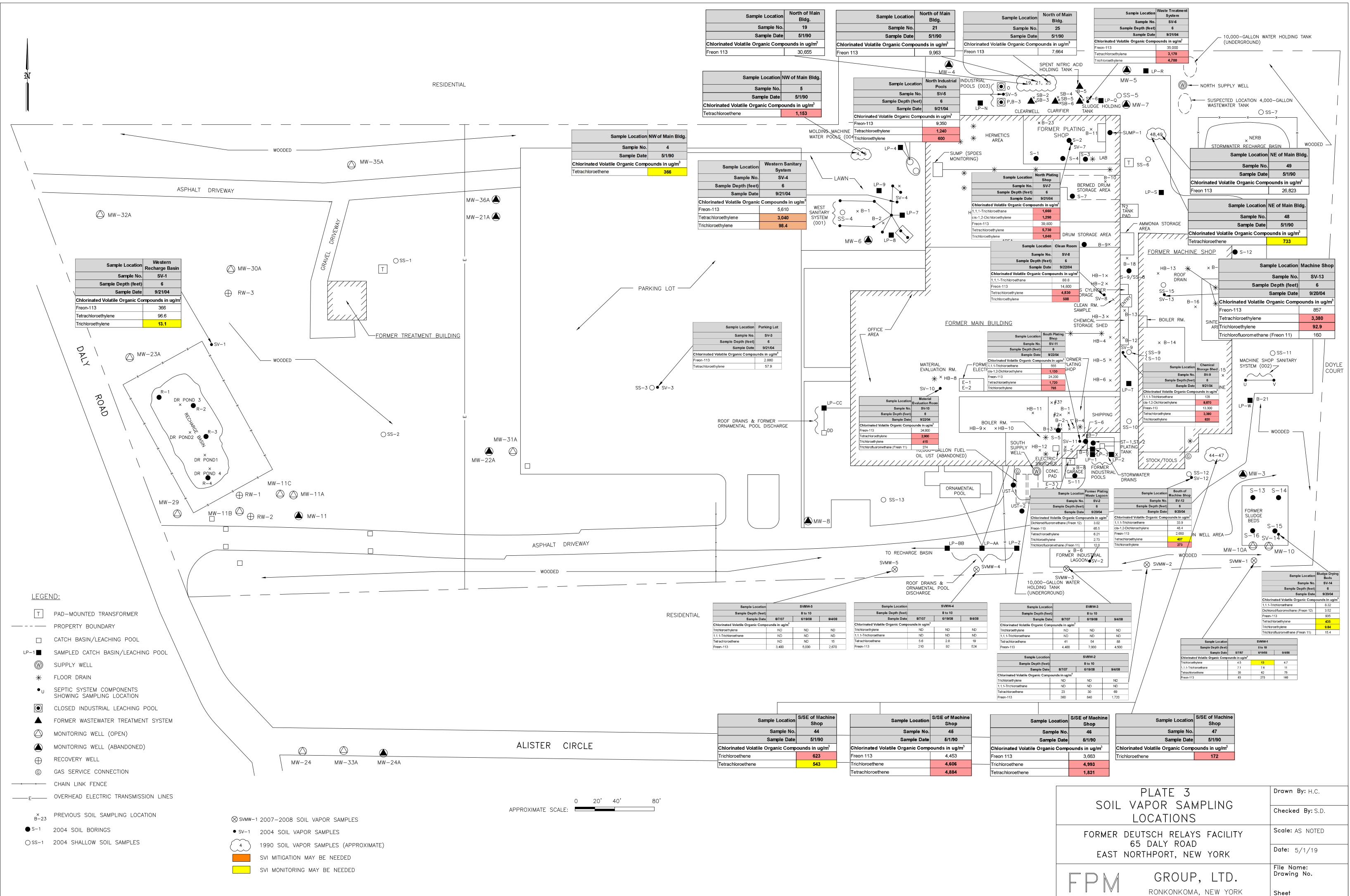
REMAINING CONTAMINATION

This Appendix includes site plans showing the nature and extent of the remaining impacts in soil, groundwater and soil vapor. The data for each of the Site media are shown in relation to applicable regulatory criteria. For soil, these criteria are the 6 NYCRR SCOs for restricted residential use, which is the anticipated use of the Site when it is redeveloped.



Sheet 1____ of ____

New York


Ronkonkoma

FOLLOWING REMEDIATION IN 2022, NO SOIL EXHIBITED EXCEEDANCES OF RESTRICTED RESIDENTIAL USE SCOS.

		Well No. Iple Date	MW-19 6/8/10	NYSDEC C Ambient	Water					
	VOCs		6/8/10	Quality Sta	nuarus					
2	1,1-DC	-	ND	5*						
(-19)	Chlorof		ND	7						
1	1,1,1-T		ND	5*						
1	TCE	0,7	ND	5*						
1	PCE		ND	5*						
	Freon 1	113	ND	5*						
11										
11	2						Well No.	C14210040	MW-10	0/8/000
11				TCL Volat	ile Organ	samp ic Compounds (ug		6/13/2012	6/19/2013	9/8/202
11				1,1,2-Trich Tetrachloro		trifluoroethane (FRE	ON 113)	20.6 0.99	ND 14.60	5.2 8.2
1	/									
	Well No.	MW-33A	Ambi	C Class GA ient Water						
Sam	nple Date	6/20/13	Quality	Standards						
VOCs	in ug/l									
1,1-DC	A	ND		5*		WellNo	MW-13A	NYSDE	C Class GA	1
Chlorof	form	ND		7		Sample Date	6/20/13	Ambie	ent Water Standards	
1,1,1-T	ĊA	ND		5*		VOCs in ug/l	0.24,10			
TCE		0.32 J		5*		1,1-DCA	ND		5*	1
PCE		0.62		5*		Chloroform	ND		7	
Freon 1	113 I	ND		5*		1,1,1-TCA	ND		5*	
	1	11				TCE	ND		5*	
		7 1				PCE	ND		5*	
)(1				Freon 113	ND		5*	-
U		1	1						-]
		1	1				3	Sample L	ocations	MW-20
		1	1							0/13/202
-20		/	1						No.	
	(0)(2)		+		1,1,	Volatile Organi 2-Trichloro-1,2,2-t			ON 113)	<0.31
					Tetr	achloroethene				< 0.25
	NON PI	JCE	1							
W GOON	WR	OW2				Well No.	WROW-2		EC Class GA	
WOOD W OW1	WR	OW2				Well No. Sample Date	WROW-2	— Amb	EC Class GA ient Water y Standards	
WOOD W OW1	WR	OW:						— Amb	ient Water	
WOOD W OW1	WR	OW:	1			Sample Date		— Amb	ient Water	
WOOD W	WR	OW:	1			Sample Date	11/4/13	— Amb	ient Water y Standards	
OWIN	WRW-1			A		Sample Date VOCs in ug/l 1,1-DCA	11/4/13 2.96	— Amb	ient Water y Standards 5*	
Well No. V	+	NYSDE	C Class G ent Water Standard			Sample Date VOCs in ug/I 1,1-DCA Chloroform	11/4/13 2.96 ND	— Amb	ient Water y Standards 5* 7	
Well No. V Imple Date	WROW-1	NYSDE				Sample Date VOCs in ug/l 1,1-DCA Chloroform 1,1,1-TCA	11/4/13 2.96 ND 1.91	— Amb	standards 5* 7 5*	
Well No. V ample Date Es in ug/l	WROW-1	NYSDE	ent Water			Sample Date VOCs in ug/l 1,1-DCA Chloroform 1,1,1-TCA TCE	11/4/13 2.96 ND 1.91 1.12	— Amb	standards 5* 7 5* 5* 5*	
Well No. V ample Date Cs in ug/I DCA	VROW-1 11/4/13	NYSDE	ent Water Standard			Sample Date VOCs in ug/ 1,1-DCA Chloroform 1,1,1-TCA TCE PCE	11/4/13 2.96 ND 1.91 1.12 ND	— Amb	standards 5* 7 5* 5* 5* 5*	
Well No. V imple Date is in ug/I DCA	WROW-1 11/4/13	NYSDE	ent Water Standard 5*			Sample Date VOCs in ug/ 1,1-DCA Chloroform 1,1,1-TCA TCE PCE	11/4/13 2.96 ND 1.91 1.12 ND	— Amb	standards 5* 7 5* 5* 5* 5*	
Well No. V mple Date s in ug/I DCA	WROW-1 11/4/13 ND ND	NYSDE	ent Water Standard 5* 7			Sample Date VOCs in ug/ 1,1-DCA Chloroform 1,1,1-TCA TCE PCE	11/4/13 2.96 ND 1.91 1.12 ND	— Amb	standards 5* 7 5* 5* 5* 5*	
Well No. V mple Date s in ug/I DCA	NROW-1 11/4/13 ND ND ND	NYSDE	ent Water Standard 5* 7 5*			Sample Date VOCs in ug/ 1,1-DCA Chloroform 1,1,1-TCA TCE PCE	11/4/13 2.96 ND 1.91 1.12 ND	— Amb	standards 5* 7 5* 5* 5* 5*	
Well No. V mple Date s in ug/l DCA oform -TCA	WROW-1 11/4/13 ND ND ND ND	NYSDE	5* 5* 5* 5* 5*			Sample Date VOCs in ug/ 1,1-DCA Chloroform 1,1,1-TCA TCE PCE	11/4/13 2.96 ND 1.91 1.12 ND	— Amb	standards 5* 7 5* 5* 5* 5*	
Well No. V mple Date s in ug/I CA oform	NROW-1 11/4/13 ND ND ND ND ND ND	NYSDE	ent Water Standard 5* 7 5* 5* 5*			Sample Date VOCs in ug/ 1,1-DCA Chloroform 1,1,1-TCA TCE PCE	11/4/13 2.96 ND 1.91 1.12 ND	— Amb	standards 5* 7 5* 5* 5* 5*	
Well No. V mple Date s in ug/l ICA oform	NROW-1 11/4/13 ND ND ND ND ND ND	NYSDE	ent Water Standard 5* 7 5* 5* 5*	S		Sample Date VOCs In ug1 1,1-DCA Chloroform 1,1,1-TCA TCE PCE Freon 113	114/13 2.96 ND 1.91 1.12 ND ND	Amb Qualit	standards 5* 7 5* 5* 5* 5*	
Well No. V	NROW-1 11/4/13 ND ND ND ND ND ND	NYSDE	ent Water Standard 5* 7 5* 5* 5*	S	PM	Sample Date VOCs in ug/ 1,1-DCA Chloroform 1,1,1-TCA TCE PCE	114/13 2.96 ND 1.91 1.12 ND ND	Amb Qualit	standards 5* 7 5* 5* 5* 5*	
Well No. V ample Date 2 Cs in ug/l DCA DCA 1 TCA 2 E 2	NROW-1 11/4/13 ND ND ND ND ND ND	NYSDE	ent Water Standard 5* 7 5* 5* 5*	S		Sample Date VOCs in ug/ 1,1-DCA Chloroform 1,1.1-TCA TCE PCE Freon 113 GRC	114//3 2.96 ND 1.91 1.12 ND ND	Amb Qualit	standards 5* 7 5* 5* 5* 5*	
Well No. V ample Date 2 Cs in ug/l DCA DCA 1 TCA 2 E 2	NROW-1 11/4/13 ND ND ND ND ND ND	NYSDE Ambi Quality	ant Water Standard 5* 7 5* 5* 5* 5* 5*	s 		Sample Date VCCs in ug/ 1,1-DCA Chioroform 1,1,1-TCA TCE PCE Freen 113 Freen 113	114473 2.96 ND 1.91 1.12 ND ND	Amb Qualit	ient Water y Standards 5* 7 5* 5* 5* 5* 5*	
Well No. V ample Date 2 Cs in ug/l DCA DCA 1 TCA 2 E 2	NROW-1 11/4/13 ND ND ND ND ND ND	NYSDE Ambi Quality	ant Water Standard 5* 7 5* 5* 5* 5* 5*	s 		Sample Date VOCs in ug/ 1,1-DCA Chloroform 1,1.1-TCA TCE PCE Freon 113 GRC	114473 2.96 ND 1.91 1.12 ND ND	Amb Qualit	ient Water y Standards 5* 7 5* 5* 5* 5* 5*	
Well No. V ample Date 2 Cs in ug/l DCA DCA 1 TCA 2 E 2	NROW-1 11/4/13 ND ND ND ND ND ND	NYSDE Ambi Quality	Standard 5* 7 5* 5* 5* 5* 5* 5* 5* 5* 5* 5* 5*	F NDW/	ATEI	Sample Date VOCS IN UG1 1,1-DCA Chloroform 1,1,1-TCA TCE PCE Freon 113 Freon 113 GRC PLATE R SAM	114473 296 ND 1.91 1.12 ND ND		S* 5* 5* 5* 5* 5* 5* 5*	
Well No. V ample Date is in ug/l DCA roform I-TCA	NROW-1 11/4/13 ND ND ND ND ND ND	NYSDE Ambi Quality	ent Water Standard 5° 7 5° 5° 5° 5° 5° 5° 5° 5°	F NDWA	ATEI Ch F	Sample Date VCCs in ug/ 1,1-DCA Chioroform 1,1,1-TCA TCE PCE Freen 113 Freen 113	1144/13 2.96 ND 1.91 1.91 1.91 1.91 1.91 1.91 1.91 0.01	D C. SI	sient Water y standards 5* 5* 5* 5* 5* 5* 5* 5*	

Drawn By:B.F. Checked By: S.D. Date: 6/20/22

APPENDIX D

SOIL, GROUNDWATER, AND SOIL VAPOR DATA TABLES

This Appendix includes the available tables for soil, groundwater and soil vapor data.

It should be noted that the soil data presented in these tables are compared to regulatory criteria that were applicable at the time the sampling was performed (1989 – 2004), which were the NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives (Objectives) and, for leaching facilities, the SCDHS SOP 9-95 Action Levels and Cleanup Levels. The current regulatory criteria for soil are the Soil Cleanup Objectives (SCOs) described in 6 NYCRR Part 375, which became effective December 14, 2006.

During the 2022 revision of this SMP the soil data on these tables were compared to the 6 NYCRR SCOs for restricted residential use, which is the anticipated use of the Site when it is redeveloped. No soil data exceeding these criteria are noted on Plate 1 in Appendix C as the remaining soil that exceeded these criteria was removed in 2022.

TABLE 3.1.1 WEST SANITARY WASTE DISPOSAL SYSTEM DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location	B-1	В	-2	MW-6	Primary Pool (Initial Sample)	Primary Pool (Post Remediation)	Secondary Pool (Initial Sample)	LP-7	LP-8	LP-9	SCDHS Action	NYSDEC Recommended Soil Cleanup
Sample Depth (feet)	0-2	0-2	6.5-6.7	0-2	-	-	-	24-26	27-29	23-25	Levels	Objectives
Sample Date	5/22/90	5/22/90	5/24/90	5/22/90	6/5/01	1/10/02	12/27/01	9/24/04	9/24/04	9/24/04		
Volatile Organic Compounds in u	g/kg											
Carbon Disulfide	ND	ND	ND	ND	190	ND	ND	ND	ND	ND	-	2,700
Toluene	ND	ND	ND	ND	650	ND	ND	ND	82	ND	3,000	1,500
Tetrachloroethyene	ND	ND	ND	ND	ND	ND	ND	19	ND	ND	2,800	1,400
Ethylbenzene	ND	ND	ND	ND	510	ND	ND	ND	15	ND	11,000	5,500
n-Propylbenzene	ND	ND	ND	ND	110	ND	ND	ND	ND	ND	5,000	3,700
p-Isopropyltoluene	ND	ND	ND	ND	410	ND	ND	ND	46	ND	7,800	10,000
1,3-Dichlorobenzene	ND	ND	ND	ND	1,200	ND	ND	ND	ND	ND	3,200	1,600
n-Butylbenzene	ND	ND	ND	ND	49	ND	ND	ND	17	ND	6,800	10,000
1,2,4,5-Tetramethylbenzene	ND	ND	ND	ND	620	ND	ND	ND	ND	ND	15,000	-
Naphthalene	ND	ND	ND	ND	170	ND	ND	ND	16	ND	15,000	13,000
Xylenes (total)	ND	ND	ND	ND	ND	ND	ND	ND	72	ND	2,400	1,200
Nonane	ND	ND	ND	ND	14,000	ND	ND	NA	NA	NA	-	-
1,3,5-Trimethylbenzene	ND	ND	ND	ND	250	ND	ND	ND	ND	ND	5,200	3,300
1,2,4-Trimethylbenzene	ND	ND	ND	ND	490	ND	ND	ND	24	ND	4,800	10,000
Isopropylbenzene	ND	ND	ND	ND	45	ND	ND	ND	ND	ND	5,200	2,300
Chlorotoluenes	ND	ND	ND	ND	5,900	ND	ND	NA	NA	NA	3,600	-
sec-Butylbenzene	ND	ND	ND	ND	58	ND	ND	ND	ND	ND	10,000	10,000
1,4-Dichlorobenzene	ND	ND	ND	ND	2,000	ND	ND	ND	ND	ND	15,000	8,500
1,2-Dichlorobenzene	ND	ND	ND	ND	1,000	ND	ND	ND	ND	ND	15,000	7,900
1,2,4-Trichlorobenzene	ND	ND	ND	ND	1,000	ND	ND	ND	ND	ND	6,800	3,400
Octane	ND	ND	ND	ND	170	ND	ND	NA	NA	NA	-	-
Decane	ND	ND	ND	ND	3,500	ND	ND	NA	NA	NA	-	-
Semivolatile Organic Compounds	in ug/kg											
Benzoic acid	NA	120 J	NA	NA	NA	ND	NA	NA	NA	NA	-	-
Phenanthrene	NA	70 J	NA	NA	NA	ND	NA	NA	NA	NA	75,000	50,000
Fluoranthene	NA	180 J	NA	NA	NA	ND	NA	NA	NA	NA	75,000	50,000
Pyrene	NA	150 J	NA	NA	NA	ND	NA	NA	NA	NA	75,000	50,000
Benzo(a)anthracene	NA	94 J	NA	NA	NA	ND	NA	NA	NA	NA	6,000	224
Chrysene	NA	110 J	NA	NA	NA	ND	NA	NA	NA	NA	800	400
Benzo(b)fluoranthene	NA	120 J	NA	NA	NA	ND	NA	NA	NA	NA	2,200	224
Benzo(k)fluoranthene	NA	75 J	NA	NA	NA	ND	NA	NA	NA	NA	2,200	224
Benzo(a)pyrene	NA	88 J	NA	NA	NA	ND	NA	NA	NA	NA	22,000	61
Indeno(1,2,3-cd)pyrene	NA	69 J	NA	NA	NA	ND	NA	NA	NA	NA	6,400	3,200

Notes:

Only compounds detected in one or more samples are shown.

NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

- = Not established

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

J = Estimated value

SCDHS = Suffolk County Department of Health Services (9/04 samples only).

TABLE 3.1.1 (CONTINUED) WEST SANITARY WASTE DISPOSAL SYSTEM **DEUTSCH RELAYS, INC. FACILITY** 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location	B-1	B-	2	MW-6	Primary Pool (Initial Sample)	Primary Pool (Post Remediation)	Secondary Pool (Initial Sample)	LP-7	LP-8	LP-9	SCDHS Action	NYSDEC Recommended
Sample Depth (feet)	0-2	0-2	6.5-6.7	0-2	-	-	-	24-26	27-29	23-25	Levels	Soil Cleanup
Sample Date	5/22/90	5/22/90	5/24/90	5/22/90	6/5/01	1/10/02	12/27/01	9/24/04	9/24/04	9/24/04		Objectives
Metals in mg/kg												
Aluminum	6,170	6,370	1,600	13,600	ND	NA	NA	NA	NA	NA	-	-
Arsenic	5.7	3.9	0.44 B	2.4	ND	NA	NA	ND	ND	1.78	25	7.5
Barium	16.6 B	16.3 B	ND	26.8 B	ND	NA	NA	NA	NA	NA	-	300
Beryllium	0.25 B	0.21 B	ND	0.30 B	ND	NA	NA	ND	ND	0.06	8	0.16
Cadmium	ND	ND	ND	ND	3.0	NA	NA	2.28	5.59	32.6	10	10
Chromium	10.3	8.4	ND	15.7	28	NA	NA	5.44	18.1	50.6	100	50
Cobalt	2.6 B	3.0 B	1.0 B	3.6 B	ND	NA	NA	NA	NA	NA	-	30
Copper	ND	ND	ND	ND	270	NA	NA	86.6	283	1,470	500	25
Iron	6,610	6,240	1,750	11,900	ND	NA	NA	NA	NA	NA	-	2,000
Lead	26.4	22.5	ND	18.4	32	NA	NA	12.3	79.8	127	400	400*
Magnesium	ND	ND	127 B	ND	ND	NA	NA	NA	NA	NA	-	-
Manganese	81.4	98.4	24.5	108	ND	NA	NA	NA	NA	NA	-	-
Mercury	ND	0.19	ND	ND	ND	NA	NA	ND	2.03	1.64	2	0.1
Nickel	3.9 B	4.1 B	ND	5.8 B	ND	NA	NA	14.1	36.2	187	1,000	13
Potassium	493 B	461 B	204 B	569 B	ND	NA	NA	NA	NA	NA	-	-
Selenium	0.29 B	0.22 B	ND	0.60 B	ND	NA	NA	NA	NA	NA	-	2
Silver	ND	ND	ND	ND	ND	ND	ND	10.6	57.4	109	100	-
Vanadium	12.2	10.3 B	2.9 B	23.3	ND	NA	NA	ND	NA	NA	-	150
Zinc	ND	ND	ND	35.3	ND	NA	NA	NA	NA	NA	-	20
Total Petroleum Hydrocarbons (M8015DRO) in mg/kg	NA	NA	NA	NA	NA	85	NA	NA	NA	NA	-	-
Pesticides in ug/kg												
4,4'-DDE	NA	71	NA	NA	NA	NA	NA	NA	NA	NA	-	2,100
4,4'-DDD	NA	57	NA	NA	NA	NA	NA	NA	NA	NA	-	2,900
4,4'-DDT	NA	180	NA	NA	NA	NA	NA	NA	NA	NA	-	2,100
alpha-Chlordane	NA	7.4 J	NA	NA	NA	NA	NA	NA	NA	NA	-	540
Cyanide in mg/kg	NA	NA	NA	NA	NA	NA	NA	ND	7.49	5.66	-	-
PCBs in ug/kg					•	•	•					•
PCB 1254	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	-	1.0 (surface) 10.0 (subsurface)
TCLP Metals in ug/l												RCRA Regulatory
Arsenic	ND	44.6	ND	ND	NA	NA	NA	NA	NA	NA	-	5,000
Barium	351 J	412 J	192 J	253 J	NA	NA	NA	NA	NA	NA	-	100,000
Cadmium	10.5 J	6.2 J	ND	ND	NA	NA	NA	NA	NA	NA	-	1,000
Lead	30.1 J	94.4 J	ND	13.6 J	NA	NA	NA	NA	NA	NA	-	5,000

Notes:

Only compounds detected in one or more samples are shown.

NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per kilogram

J = Estimated value

mg/kg = milligrams per kilogram

- = Not established

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

B = Concentration less than the method detection limit but greater than the instrument detection limit.

SCDHS = Suffolk County Department of Health Services = Boxed values exceed SCDHS Action Levels (9/04 samples only).

TABLE 3.2.1 MACHINE SHOP SANITARY WASTE DISPOSAL SYSTEM DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location	Primary Pool	Primary/Secondary Pools	NYSDEC
Sample No.	Outfall 002	Drain#5/6	Recommended Soil
Sample Date	6/5/01	11/25/02	Cleanup Objectives
Volatile Organic Compounds in ug	/kg		
Sec-butylbenzene	ND	219.9	-
P-isopropyltoluene	ND	442.3	-
1,2,4-Trimethylbenzene	ND	93.32	-
1,3,5-Trimethylbenzene	ND	145.33	-
Metals in mg/kg		-	
Aluminum	1,400	NA	-
Barium	13.0	12.49	300
Calcium	9,600	NA	-
Chromium	ND	12.86	50
Copper	64.0	57	25
Iron	3,400	5,956	2,000
Lead	ND	13.63	400*
Magnesium	6,000	NA	-
Manganese	20.0	NA	-
Nickel	ND	12.77	13
Potassium	150	NA	-
Silver	ND	0.99	-
Zinc	31.0	47.54	20

Notes:

Only compounds detected in one or more samples are shown.

NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

- = Not Established

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance has established a residential screening level of 400 mg/kg.

TABLE 3.3.1 NORTH INDUSTRIAL LEACHING POOL SYSTEM DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location	B-3	North Industrial Pool	
Sample Depth (feet)	0-2	—	NYSDEC Recommended Soil Cleanup Objectives
Sample Date	5/22/90	6/5/01	oleanup objectives
Volatile Organic Compounds in ug/kg	ND	ND	-
Metals in mg/kg			
Aluminum	6,750	890	-
Arsenic	1.9 B	ND	7.5
Barium	16.8 B	ND	300
Calcium	ND	730	-
Chromium	10.4	ND	50
Cobalt	2.2 B	ND	30
Copper	ND	56.0	25
Iron	6,490	2,600	2,000
Lead	12	ND	400*
Magnesium	ND	690	-
Manganese	57.8	39.0	-
Nickel	3.9 B	67.0	13
Potasium	486 B	ND	-
Selenium	0.28 B	ND	2
Vanadium	13.3	ND	150
Zinc	24.8	ND	20
TCLP Metals in ug/l			RCRA Regulatory Levels
Arsenic	23.6	NA	5,000
Barium	302 J	NA	100,000
Lead	28.8 J	NA	5,000

Notes:

Only compounds detected in one or more samples are shown.

NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per kilogram

ug/I = micrograms per liter

mg/kg = milligrams per kilogram

- = Not established.

B = Concentration less than the method detection limit but greater than the instrument detection limit.

J = Estimated value

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

TABLE 3.4.1 MOLDING MACHINE COOLING WATER LEACHING POOLS **DEUTSCH RELAYS, INC. FACILITY** 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location	Molding Machine Cooling Water Effluent	NYSDEC Class	Molding Ma	chine Cooling Sediment	Water Pools	SCDHS
Sample No.	SPDES Outfill #4	GA Effluent Limitations	LP-4	LP-5	LP-6	Action Levels
Sample Date	10/2/01	Linitations	9/22/04	9/22/04	9/22/04	
Volatile Organic Compou	ınds in ug/l		Volatile Orga	nic Compoun	ds in ug/kg	
Freon 113	95	5	ND	ND	ND	12,000
Metals in ug/l			Metals in mg	/kg		
Aluminum	2,950	2,000	NA	NA	NA	-
Arsenic	NA	-	0.81	1.24	0.75	25
Cadmium	1,010	10	ND	ND	ND	10
Chromium	NA	-	3.21	5.81	2.54	100
Copper	2,390	1,000	76.8	117	63.7	500
Iron	3,180	600	NA	NA	NA	-
Lead	200	50	3.97	10.5	4.71	400
Magnesium	2,900	35,000	NA	NA	NA	-
Manganese	360	600	NA	NA	NA	-
Mercury	NA	-	ND	ND	ND	2
Nickel	270	200	2.12	4.74	2.76	1,000
Silicon	7,310	-	NA	NA	NA	-
Silver	40	100	2.13	9.33	2.71	100
Strontium	550	-	NA	NA	NA	-
Titanium	140	-	NA	NA	NA	-
Zinc	1,800	5,000	NA	NA	NA	-
Cyanide in mg/kg	NA	-	ND	ND	ND	-

Notes:

Only detected analytes are shown. See laboratory reports for complete data.

ug/l = micrograms per liter

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

ND = Not detected

NA = Not analyzed - = Not established

NYSDEC = New York State Department of Environmental Conservation

SCDHS = Suffolk County Department of Health Services

Bold shaded values exceed NYSDEC Class GA Effluent Limitations (10/2/01 sample) or SCDHS Action Levels (9/22/04 samples).

TABLE 3.5.1 FORMER WASTEWATER TREATMENT SYSTEM DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location		Clear	rwell						Clarifier					Sludge Storage Tank	Nitric Acid Tank Area	NYSDEC
Sample No.	SE		SE			SB-4			SB-5			SB-6		B-5	MW-7	Recommended Soil
Sample Depth (feet)	5.5-7.0	9.5-11	5.5-7	9.5-11	3.0-4.5	7.0-9.5	13.0-14.5	3.0-4.5	7.0-9.5	13.0-14.5	3.0-4.5	7.0-9.5	13.0-14.5	0-2	0-2	Cleanup Objectives
Sample Date	9/1/89	9/1/89	9/1/89	9/1/89	9/1/89	9/1/89	9/1/89	9/1/89	9/1/89	9/1/89	9/1/89	9/1/89	9/1/89	5/22/90	5/22/90	
Volatile Organic Compounds in ug/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	-
Metals in mg/kg									I					II		·
Aluminum	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11,800	5,770	-
Arsenic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.1	1.2 B	7.5
Barium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.6 B	ND	300
Cadmium	0.008	ND	ND	ND	0.005	0.14	0.040	0.006	ND	0.020	ND	0.009	0.005	ND	ND	10
Chromium	2.2	1.4	1.2	1.6	1.1	3.4	3.3	1.3	1.3	4.5	0.35	3.9	2.9	20.2	7.3	50
Cobalt	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.1 B	2.1 B	30
Copper	2.4	2.0	1.1	1.7	0.90	40.0	17.0	0.60	0.80	4.0	0.30	2.1	1.4	ND	ND	25
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11,100	5,190	2,000
Lead	1.9	0.90	0.60	0.65	3.8	1.2	1.8	0.80	1.4	1.6	0.35	0.80	1.1	28.8	5.0	400*
Manganese	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	82.0	53.0	-
Nickel	1.5	1.5	0.75	0.75	0.75	18.0	7.0	0.75	0.50	4.2	ND	1.8	1.7	5.6 B	ND	13
Potasium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	402 B	309 B	-
Selenium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.44 B	0.24 B	2
Silver	ND	ND	ND	ND	ND	0.35	0.15	0.23	0.05	0.35	ND	0.05	0.10	ND	ND	-
Vanadium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24.6	10.7 B	150
Zinc	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	35.6	ND	20
Cyanide in mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	-
TCLP Metals in ug/I																RCRA Regulatory Levels
Arsenic	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	27.2	5,000
Barium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	289 J	239 J	100,000
Chromium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	11.9	5,000
Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.3 J	14.0 J	5,000

Notes:

Only compounds detected in one or more samples are shown.

NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

FPM

TABLE 3.6.1 UNDERGROUND STORAGE TANK SOIL SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location	Abandoned	Fuel Oil UST	
Sample No.	UST-1	UST-2	NYSDEC Recommended Soil
Sample Depth (feet)	14-16	14-16	Cleanup Objectives
Sample Date	9/23/04	9/23/04	
NYSDEC STARS Volatile Organic Compounds in ug/kg	ND	ND	-
NYSDEC STARS Semivolatile Organic Compounds in ug/kg	ND	ND	-

Notes:

Only detected compounds are reported. See laboratory report for complete analytical data.

ND = Not Detected

ug/kg = micrograms per kilogram

NYSDEC = New York State Department of Environmental Conservation

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

TABLE 3.7.1 STORMWATER CATCH BASIN/LEACHING POOL SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Catch Basin No.	N				Q				R		S				т				
Sample No.	Storm Drain #1	LP-N	B-22	CB-Q2		LP-Q		Storm Drain #3	CB-R	LP-R	Storm Drain #4	LP-S	Storm Drain #9	CB-T		LP-T		SCDHS Action	NYSDEC
Sample Date	11/25/02	9/22/04	9/10/03	11/24/03	9/22/04	9/22/04	9/22/04	11/25/02	9/10/03	9/22/04	11/25/02	9/22/04	11/25/02	9/10/03	9/22/04	9/23/04	9/23/04	Levels	Recommended Soi Cleanup Objectives
Sample Depth (feet below base of basin)	-	0-0.5	0-0.5	20	0-0.5	1-2	20	-	0-0.5	0-0.5	-	0-0.5	-	0-0.5	0-0.5	7	11		
/olatile Organic Compounds in ug/kg																			
Fetrachlorethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8	ND	2,800	1,400
Chloroform	55.49	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	600	300
Carbon Tetrachloride	77.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	965.9	ND	ND	ND	ND	1,200	600
Sec-Butylbenzene	127.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	931	ND	ND	ND	ND	10,000	10,000
O-Xylene	158.54	ND	ND	ND	ND	ND	ND	111.8	ND	ND	119.5	ND	5,734.9	ND	ND	ND	ND	2,400	1,200
M-Xylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,485.8	ND	ND	ND	ND	2,400	1,200
MTBE	ND	ND	ND	ND	ND	ND	ND	1,262.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,200	120
Toluene	ND	ND	ND	ND	ND	ND	ND	378.96	ND	ND	ND	ND	427.12	ND	ND	ND	ND	3,000	1,500
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	94.8	ND	ND	ND	ND	4,800	10,000
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	184.3	ND	ND	ND	ND	5,200	3,300
Benzene	ND	ND	ND	ND	ND	ND	ND	322.4	ND	ND	ND	ND	23.77	ND	ND	ND	ND	120	60
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,919.85	ND	ND	ND	ND	800	400
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	536.8	ND	ND	ND	ND	11,000	5,500
Freon 113	NA	ND	40	ND	ND	ND	ND	NA	31	ND	NA	ND	NA	8.19	ND	ND	ND	12,000	6,000
Semivolatile Organic Compounds in mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	-	-
Metals in mg/kg			1	1		1						1		1	1				1
Aluminum	NA	NA	13,100	1,090	NA	NA	NA	NA	6,710	NA	NA	NA	NA	3,040	NA	NA	NA	-	-
Antimony	NA	NA	ND	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	-	-
Arsenic	ND	1.65	4.04	ND	2.42	0.55	0.86	ND	1.91	3.07	ND	3.12	ND	ND	1.04	ND	ND	25	7.5
Barium	6.78	NA	50.9	ND	NA	NA	NA	9.16	22.1	NA	4.58	NA	20	ND	NA	NA	NA	-	300
Berylium	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	NA	ND	NA	ND	ND	ND	ND	8	0.16
Cadmium	2.79	0.99	2.9	ND	0.91	ND	ND	ND	2.19	3.06	2.08	3.54	36.88	1.42	4.35	ND	ND	10	10
Calcium	NA	NA	8,840	695	NA	NA	NA	NA	18,100	NA	NA	NA	NA	17,600	NA	12.7	3.34	-	-
Chromium	1.73	5.58	21.8	6.91	11.9	3.25	9.95	10.61	14.8	16.5	85	15.7	75.6	9.86	33.1	NA	NA	100	50
Cobalt	NA	NA	7.92	ND	NA	NA	NA	NA	4.43	NA	NA	NA	NA	2.93	NA	NA	NA	-	30
Copper	14.61	16.9	67.4	16.3	185	17.1	8.51	24.55	76	116	109.2	178	291.5	28.5	137	26.7	2.61	500	25
Iron	4,966	NA	15,500	2,370	NA	NA	NA	8,922	10,300	NA	6,727	NA	6,047	7,110	NA	NA	NA	-	2,000
Lead	10.47	11.9	51.1	1.75	27.0	2.78	1.41	12.41	21.9	32.3	34.56	13.3	97.3	9.01	40.6	4.75	8.37	400	400*
Magnesium	NA	NA	4,570	465	NA	NA	NA	NA	8,940	NA	NA	NA	NA	1,830	NA	NA	NA	-	-
Manganese	NA	NA	249	35.4	NA	NA	NA	NA	110	NA	NA	NA	NA	86.2	NA	NA	NA	-	-
Mercury	ND	ND	0.313	ND	ND	ND	ND	ND	0.15	0.25	ND	ND	ND	0.073	0.25	ND	ND	2	0.1
Nickel	14.94	10.2	98.9	14.5	148	21.1	10.5	29.34	88.1	123	255.7	548	182.3	23.5	76.9	12.5	1.57	1,000	13
Potassium	NA	NA	801	96.7	NA	NA	NA	NA	290	NA	NA	NA	NA	89.1	NA	NA	NA	-	-
Selenium	ND	NA	ND	ND	NA	NA	NA	ND	ND	NA	ND	NA	ND	ND	NA	NA	NA	-	2
Silver	0.24	ND	8.59	4.35	5.95	1.55	1.61	ND	7.64	13.8	18.82	24.6	21.7	ND	2.59	0.66	ND	100	-
Sodium	NA	NA	279	ND	NA	NA	NA	NA	226	NA	NA	NA	NA	ND	NA	NA	NA	-	-
Titanium	NA	NA	0.163	ND	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA	NA	-	-
Vanadium	NA	NA	41.7	3.16	NA	NA	NA	NA	22.4	NA	NA	NA	NA	5.32	NA	NA	NA	-	150
Zinc	38.3	NA	156	7.15	NA	NA	NA	37.18	80	NA	73.5	NA	83.4	49.2	NA	NA	NA	-	20
Cyanide in mg/kg	NA	ND	ND	4.19	105	7.12	2.11	NA	ND	2.62	NA	ND	NA	ND	0.77	ND	ND	-	-
PCBs (total) in mg/kg	ND	NA	ND	ND	NA	NA	NA	NA	0.642	NA	NA	NA	NA	0.081	0.09	0.52	3.48	-	1.0 (surface) 10.0 (subsurface)

Notes:

Only compounds detected in one or more samples are shown. See laboratory reports for complete data. NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

SCDHS = Suffolk County Department of Health Services

= Boxed values exceed SCDHS Action Levels (2004 samples only)

TABLE 3.7.1 (CONTINUED) STORMWATER CATCH BASIN/LEACHING POOL SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Catch Basin No.			,	N				z						BB		сс				
Catch Basin No.				N				2			AA		E	88		CC		DD		
Sample No.	B-21	CB-W2	CB-W4	CB-W20	LP		CB-Z	CB-Z2	LP-Z	CB-AA	CB-AA2	LP-AA	СВ-ВВ	LP-BB	СВ-СС	LP		CB-DD	SCDHS Action Levels	NYSDEC Recommended Soil
Sample Date	9/10/03	11/24/03	11/24/03	11/24/03	9/22/04	9/22/04	9/9/03	11/25/03	9/23/04	9/10/03	11/24/03	9/23/04	9/9/03	9/23/04	9/10/03	9/23/04	9/23/04	9/9/03	201010	Cleanup Objectives
Sample Depth (feet below base of basin)	0-0.5	2	4	20	8-12	24	0-0.5	2	0-1	0-0.5	2	0-2	0-0.5	0-2	0-0.5	0-2	6-8	0-0.5		
Volatile Organic Compounds in ug/kg																			1	
Tetrachlorethylene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	2,800	1,400
Chloroform	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	600	λ
Carbon Tetrachloride	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	1,200	600
Sec-Butylbenzene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	10,000	10,000
O-Xylene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	2,400	1,200
M-Xylene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	2,400	1,200
MTBE	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	1,200	120
Toluene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	6	ND	ND	3,000	1,500
1,2,4-Trimethylbenzene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	4,800	10,000
1,3,5-Trimethylbenzene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	5,200	3,300
Benzene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	120	60
1,1-Dichloroethylene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	800	400
Ethylbenzene	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	11,000	5,500
Freon 113	15	NA	NA	ND	6	ND	ND	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	12,000	6,000
Semivolatile Organic Compounds in mg/kg	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA		NA		NA	NA	NA	NA	-	-
Metals in mg/kg														L						
Aluminum	2,030	NA	NA	1,010	NA	NA	3,090	NA	NA	1,550	NA	NA	937	NA	3,960	NA	NA	2,290	-	-
Antimony	ND 1.1	NA	NA	ND	NA ND	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	-	-
Arsenic	1.1 ND	NA NA	NA	ND ND	NA	ND NA	ND 23.5	NA	1.03	ND ND	NA	1.08	ND ND	2.08 NA	2.39	1.55	1.55	ND ND	25	7.5
Barium	ND	NA	NA	ND	NA	NA	23.5 ND	NA	NA ND	ND	NA NA	NA ND	ND	NA	14.1 ND	NA ND	NA ND	ND	- 8	0.16
Berylium Cadmium	0.636	NA	NA	ND	ND	ND	2.66	NA	ND 1.19	ND 50,3	0.345	1.11	0.422	0.53	1.15	ND 0.56	ND	ND	10	
Calcium	1,270	NA	NA	2,740	NA	NA	2.00	NA	1.19 NA	329	0.345 NA	NA NA	0.422	0.53 NA	610	0.56 NA	NA	ND 186	-	10
Chromium	1,270	NA	NA	5.71	2.20	1.66	426	6.65	6.98	24	NA	16.7	5.88	6.77	14.8	7.70	5.97	9.05	100	50
Cobalt	5.11	NA	NA	2.85	2.20 NA	NA	3.21	0.05 NA	0.98 NA	24 ND	NA	NA	5.88 ND	NA NA	14.8 ND	NA NA	5.97 NA	9.05	100	30
Copper	2.900	805	70.8	77.3	24.7	3.08	453	NA	59.8	213	NA	121	32.7	36.3	72.5	23.8	9.48	16.9	500	25
Iron	7,000	NA	NA	3,890	NA	5.00 NA	14,300	NA	NA	6,510	NA	NA	2.440	NA	4.940	NA	NA NA	3,300	500	2,000
Lead	89.8	NA	NA	20.6	3.54	0.99	820	32.2	33.3	92.2	NA	36.3	29.6	10.3	233	26.1	2.88	24.2	400	400*
Magnesium	950	NA	NA	1,010	NA NA	NA	931	NA	NA	565	NA	NA	308	NA NA	975	NA	NA	416	400	400
Magnese	62.3	NA	NA	59.4	NA	NA	53	NA	NA	54.1	NA	NA	34.3	NA	39.5	NA	NA	30.9		
Mercury	0.172	NA	NA	0.044	ND	ND	0.174	NA	ND	0.097	NA	ND	0.018	ND	0.231	ND	ND	0.026	2	0.1
Nickel	1,740	104	104	13	3.19	0.93	297	NA	35.1	116	NA	6.33	19	28.6	12.6	4.71	5.02	6.03	1,000	13
Potassium	125	NA	NA	80	NA	NA	172	NA	NA	153	NA	NA	150	NA	473	NA	NA	183	-	-
Selenium	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND		2
Silver	2.52	NA	NA	ND	ND	ND	28.8	NA	0.80	2.84	NA	ND	ND	ND	1.76	ND	ND	ND	100	-
Sodium	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND	-	
Titanium	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA	ND	NA	NA	ND		
Vanadium	12	NA	NA	5.82	NA	NA	245	NA	NA	20.7	NA	NA	4.51	NA	26.7	NA	NA	11	-	150
Zinc	119	NA	NA	33.4	NA	NA	118	NA	NA	45.8	NA	NA	6.5	NA	39	NA	NA	38.4		20
Cyanide in mg/kg	ND	NA	NA	ND	ND	ND	14.4	NA	0.81	ND	NA	0.50	ND	ND	ND	ND	ND	ND	-	-
PCBs (total) in mg/kg	ND	NA	NA	0.041	NA	NA	0.389	NA	0.03	0.176	NA	ND	ND	ND	0.439	ND	ND	ND		1.0 (surface) 10.0 (subsurface)

Notes:

Only compounds detected in one or more samples are shown. See laboratory reports for complete data. NYSDEC = New York State Department of Environmental Conservation ND = NOt Detected NA = Not Analyzed

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives. "The USEPA's Interim Load Guidance establishes a residential screening level of 400 mg/kg. SCDHS = Suffick County Department of Health Services Define Second Define Second S

TABLE 3.8.1 SOUTH INDUSTRIAL LEACHING POOLS **DEUTSCH RELAYS, INC. FACILITY** 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location	Tumbling Waste Pool		х				Y			
Sample No.	LP-3	Storm Drain #7	СВ-Х	LP-2	Storm Drain #8	CB-Y	CB-Y2	LP-1	SCDHS Action	NYSDEC Recommended Soil
Sample Date	9/24/04	11/25/02	9/9/03	9/22/04	11/25/02	9/8/03	11/25/03	9/22/04	Levels	Cleanup Objectives
Sample Depth (feet below base of structure)	0-1	-	0-0.5	0-0.5	-	0-0.5	2	0-0.5		
Volatile Organic Compounds in ug/kg							•		-	
МТВЕ	ND	854.9	ND	ND	ND	ND	NA	ND	1,200	120
Toluene	ND	105.2	ND	ND	ND	ND	NA	ND	3,000	1,500
1,2,4-Trimethylbenzene	ND	120	ND	ND	ND	ND	NA	ND	4,800	10,000
Benzene	ND	309.3	ND	ND	161.13	ND	NA	ND	120	60
Tetrachloroethylene	ND	ND	ND	100	311.4	ND	NA	ND	2,800	1,400
Trichloroethylene	ND	ND	ND	17	ND	ND	NA	ND	1,400	700
Semivolatile Organic Compounds in ug/kg	ND	NA	NA	ND	NA	NA	NA	ND	-	-
Metals in mg/kg										
Aluminum	NA	NA	946	NA	NA	3,780	NA	NA	-	-
Arsenic	2.39	ND	ND	0.71	ND	ND	ND	0.76	25	7.5
Barium	NA	6.02	ND	NA	2.62	18.6	NA	NA	-	300
Cadmium	ND	0.27	0.489	2.13	0.35	10.5	2.94	10.2	10	10
Calcium	NA	NA	273	NA	NA	905	NA	NA	-	-
Chromium	9.23	42.32	8.16	18.9	11.07	25.6	NA	38.8	100	50
Cobalt	NA	NA	ND	NA	NA	6.1	NA	NA	-	30
Copper	26.4	207.8	33	71.4	28.3	140	NA	523	500	25
Iron	NA	4,663	2,800	NA	1,733	8,440	NA	NA	-	2,000
Lead	20.1	50.4	8.16	53.7	15.59	28	NA	43.5	400	400*
Magnesium	NA	NA	259	NA	NA	883	NA	NA	-	-
Manganese	NA	NA	100	NA	NA	51.7	NA	NA	-	-
Mercury	ND	ND	0.018	ND	ND	0.265	NA	0.42	2	0.1
Nickel	17.6	39.71	3.77	49.1	7.29	91.6	NA	97.4	1,000	13
Potassium	NA	NA	97.9	NA	NA	339	NA	NA	-	-
Silver	ND	4.26	ND	0.65	1.33	6.93	NA	24.2	100	-
Vanadium	NA	ND	3.97	NA	ND	13.2	NA	NA	-	150
Zinc	NA	51	52	NA	42.75	127	NA	NA	-	20
Cyanide in mg/kg	2.33	NA	ND	0.57	NA	ND	NA	ND	-	-
PCBs (total) in mg/kg	0.02	NA	ND	0.22	NA	ND	NA	0.15	-	1.0 (surface) 10.0 (subsurface)

Notes:

Only compounds detected in one or more samples are shown.

NYSDEC = New York State Department of Environmental Conservation SCDHS = Suffolk County Department of Health Services

ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per kilogram

mg/kg = miligram Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

= Boxed values exceed SCDHS Action Levels (recent samples only).

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

TABLE 3.9.1 SOUTH PLATING SHOP SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample No.	Old Plating Shop Subsurface Soil #1	Old Plating Shop Subsurface Soil #2	Old Plating Shop Subsurface Soil #3	B-1	B-2	B-3	B-4	B-5	B-6	B-7	Concrete	S-5	S-6	NYSDEC Recommended
Sample Depth (feet below floor)	-	-	-	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.25	0-0.25	Soil Cleanup Objectives
Sample Date	12/12/02	12/12/02	12/12/02	9/8/03	9/8/03	9/9/03	9/9/03	9/9/03	9/9/03	9/9/03	9/10/03	9/20/04	9/22/04	
Volatile Organic Compounds in ug/kg		•						•	•		•			
Chloroform	81.15	137.2	76.92	ND	ND	ND	300							
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.11 J	ND	ND	1,500
Total Xylenes	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.52 J	ND	ND	1,200
Freon-113	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	9	6,000
Semivolatile Organic Compounds in u	ug/kg													
bis(2-ethylhexyl)phthalate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	4,300	50,000
Metals in mg/kg														
Aluminum	NA	NA	NA	3,950	3,510	2,170	3,370	2,450	9,960	5,990	5,250	2,470	2,480	-
Antimony	NA	NA	NA	ND	ND	ND	-							
Arsenic	ND	ND	0.11	1.05	1.11	ND	ND	ND	2.21	1.69	1.9	1.55	1.39	7.5
Barium	5.56	7.8	8.88	11	16.2	ND	13.5	ND	22.9	24.8	26	8.61	9.29	300
Berylium	NA	NA	NA	ND	ND	ND	0.16							
Cadmium	NA	NA	NA	ND	ND	ND	ND	ND	0.365	0.946	ND	ND	1.75	10
Calcium	NA	NA	NA	405	3,280	834	2,460	4,520	4,900	38,100	63,500	1,270	625	-
Chromium	NA	NA	NA	6.68	4.78	3.3	4.09	3.42	11.3	10.7	11.9	4.57	14.8	50
Cobalt	NA	NA	NA	2.35	3.33	25.1	2.62	ND	2.58	3.39	13.8	2.03	1.48	30
Copper	2,985	419.04	17.24	5.33	6.3	22.7	4.45	6.49	36.6	178	106	3.15	122	25
Iron	NA	NA	NA	5,080	4,670	2,630	3,710	2,870	8,980	6,210	4,800	3,620	4,720	2,000
Lead	11.54	10.6	6.5	7.05	3.1	9.82	44.5	18.7	17.5	6.55	4.06	3.07	12.5	400*
Magnesium	NA	NA	NA	646	821	534	931	976	1,270	1,930	3,170	592	432	-
Manganese	NA	NA	NA	94.5	120	56.7	62.4	53	135	110	126	91.2	34.2	-
Mercury	ND	ND	ND	ND	ND	0.013	ND	ND	0.035	0.022	0.541	ND	ND	0.1
Nickel	275.9	38.7	4.5	6.9	3.08	30.5	3.31	2.22	13.5	60.1	19.2	13.1	14.9	13
Potassium	NA	NA	NA	590	318	1,210	601	349	433	445	392	798	152	-
Selenium	1.87	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
Silver	ND	10.8	ND	ND	0.683	5.14	ND	ND	ND	ND	5.09	2.05	2.02	-
Sodium	NA	NA	NA	275	167	223	464	144	124	184	428	551	281	-
Thallium	NA	NA	NA	ND	ND	ND	-							
Vanadium	NA	NA	NA	7.61	6.77	4.33	6.44	5.31	18.4	11	6.01	5.30	10.3	150
Zinc	23.76	16.15	14.3	9.79	11.5	44	8.44	8.32	22.7	23	12.4	7.98	51.0	20
Cyanide in mg/kg	0.5	0.47	ND	1.5	ND	ND	ND	ND	ND	ND	9.13	ND	7.77	-
TCLP Metals in ug/I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	-
PCBs (total) in mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	0.15	1.0 (surface) 10.0 (subsurface)
TPH (M418.1)	NA	NA	20	NA	ND	NA	NA	-						

Notes:

Only compounds detected in one or more samples are shown. NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected NA = Not Analyzed

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram ug/l = micrograms per liter

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives. *The USEPA's Interim Guidance for lead has established a residential screening level of 400 mg/kg.

TABLE 3.10.1 NORTH PLATING SHOP SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample No.	B-11	B-23 Concrete	S-1	S-2	S-3	S-4	Sump-1	NYSDEC
Sample Depth (feet below floor)	2-25	-	0-0.25	0-0.25	0-0.25	0-0.25	0-0.5	Recommended Soil Cleanup Objectives
Sample Date	9/10/03	9/10/03	9/21/04	9/21/04	9/22/04	9/21/04	9/21/04	
Volatile Organic Compound	ds in ug/kg							
Tetrachloroethylene	ND	ND	35	ND	11	26	5	1,400
Freon-113	NA	NA	ND	ND	7	ND	ND	6,000
Semivolatile Organic Compounds in ug/kg	NA	NA	ND	ND	ND	ND	ND	-
Metals in mg/kg								
Aluminum	2,300	NA	6,740	3,060	6,830	7,590	1,170	-
Antimony	ND	NA	ND	ND	ND	ND	1.11	-
Arsenic	ND	NA	2.61	1.49	2.65	3.53	ND	7.5
Barium	ND	NA	16.3	7.97	19.6	18.4	5.46	300
Cadmium	ND	NA	ND	ND	ND	ND	0.94	10
Calcium	9,210	NA	560	1,910	847	392	1,730	-
Chromium	12.2	NA	6.96	5.10	7.06	13.2	2.18	50
Cobalt	ND	NA	2.92	2.26	15.6	3.32	1.15	30
Copper	3.69	NA	4.53	2.73	4.44	5.70	9.67	25
Iron	3,470	NA	<mark>7,910</mark>	3,490	7,800	9,890	2,610	2,000
Lead	1.78	NA	9.73	3.08	8.27	10.7	13.2	400*
Magnesium	723	NA	853	472	943	910	383	-
Manganese	70.5	NA	79.6	52.0	76.5	68.5	40.6	-
Mercury	ND	NA	ND	ND	ND	ND	ND	0.1
Nickel	7.63	NA	4.59	68.7	4.75	5.82	12.6	13
Potassium	317	NA	223	208	310	279	198	-
Selenium	ND	NA	ND	ND	1.26	1.02	ND	2
Sodium	153	NA	347	554	286	342	400	-
Vanadium	4.58	NA	12.2	5.24	12.3	16.2	3.09	150
Zinc	5.47	NA	21.7	8.96	18.9	21.8	47.0	20
Cyanide in mg/kg	ND	NA	ND	ND	ND	ND	ND	-
PCBs (total) in mg/kg	NA	NA	NA	NA	ND	NA	NA	1.0 (surface) 10.0 (subsurface)

Notes:

Only compounds detected in one or more samples are shown.

NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

- = Not established

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

TABLE 3.18.1 MAIN BUILDING SUB-FLOOR SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location			Clean	Room			Bell Oven	Materials Lab	Paint	Shop	Coil Room	Boiler Room	NYSDEC
Sample No.	HB-1	HB-2	HB-3	HB-4	HB-5	HB-6	HB-7	HB-8	HB-9	HB-10	HB-11	HB-12	Recommended Soil Cleanup
Sample Depth (feet)	0-4	0-4	0-4	0-4	0-4	0-4	0-4	0-4	0-4	0-4	0-4	0-4	Objectives
Sample Date	9/7/01	9/7/01	9/7/01	9/7/01	9/7/01	9/7/01	9/7/01	9/7/01	9/7/01	9/7/01	9/7/01	9/7/01	
Volatile Organic Compounds	s in ug/kg												
Tetratrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND	700
Metals in mg/kg													
Barium	NA	NA	NA	6.26	NA	NA	12.3	8.26	NA	NA	7.85	NA	300
Chromium	NA	NA	NA	5.23	NA	NA	6.1	5.42	NA	NA	5.66	NA	50
Lead	NA	NA	NA	3.55	NA	NA	30.7	2.18	NA	NA	1.75	NA	400*
Total Petroleum Hydrocarbons (M418.1) in mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-

Notes:

Only compounds detected in one or more samples are shown. See lab reports for complete data.

NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

NA = Not Analyzed

mg/kg = milligrams per kilogram

ug/kg = micrograms per kilogram

- = No NYSDEC Recommended Soil Cleanup Objective established.

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

					west side of																										
Sample Location	v	West Side o	of Property	у	Main	North	and East	Sides of P	roperty	Be	tween Buildin	gs		Southea	st and Eas	t Sides of	Property					Benea	ath Main B	uilding				Beneath M	achine Shop		
Sample No.	SS	§-1	SS-2	SS-3	Building SS-4	SS-5	SS-6	SS-7	S-12	SS-8/S-9	SS-9/S-10	SS-10	SS-11	SS-12	SS	-13	S-11	S-15	SS-14	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	SS-15	SS-16	NYSDEC Recommended	USEPA Generic Soil Screening
Sample Depth (feet)	0-0.25	0.25-0.5	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0.25-0.5	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	0-0.25	Soil Cleanup Objectives	Levels (Residential)
Sample Date	9/21/04	9/21/04	9/21/04	9/21/04	9/21/04	9/21/04	9/21/04	9/21/04	9/20/04	9/20/04	9/20/04	9/23/04	9/20/04	9/20/04	9/21/04	9/21/04	9/20/04	9/20/04	9/20/04	9/21/04	9/21/04	9/22/04	9/21/04	9/20/04	9/22/04	9/20/04	9/20/04	9/20/04	9/21/04		
/olatile Organic Compounds	in ug/kg											1	1	1			1				11				1		1			I	
Tetrachloroethylene	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	35	ND	11	26	ND	ND	ND	ND	ND	ND	1,400	10,000
Kylene (total)	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	15	ND	13	ND	1,200	160,000,000
Freon-113	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	6	ND	ND	ND	NA	ND	ND	ND	ND	ND	7	ND	ND	9	ND	ND	ND	ND	6,000	-
Semivolatile Organic Compo	unds in ug	/kg				1	1	1	1	1	1		•	•	•	L	•			1					•	•	1	L	L		
bis(2-Ethylhexyl)phthalate	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	4,300	ND	ND	340	ND	50,000	35,000
Metals in mg/kg											•		•	•	•		•				• •		•	•	•	•					
Aluminum	13,000	NA	7,180	1,290	5,490	6,180	2,840	2,220	1,890	4,320	3,670	3,150	2,170	2,160	11,800	NA	2,000	4,630	2,280	6,740	3,060	6,830	7,590	2,470	2,480	5,600	9,630	5,640	5,950	-	-
Arsenic	5.05	4.41	3.09	ND	3.27	2.37	2.34	1.18	1.02	2.00	2.15	1.30	1.47	1.32	13.4	4.95	1.10	2.35	1.77	2.61	1.49	2.65	3.53	1.55	1.39	2.80	4.79	3.93	2.88	7.5	2-5*
Barium	27.4	NA	12.6	3.86	18.6	16.4	21.5	6.65	4.46	12.2	10.6	9.73	7.08	8.70	29.3	NA	9.84	11.4	8.11	16.3	7.97	19.6	18.4	8.61	9.29	17.5	22.6	32.3	17.2	300	5,500
Cadmium	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	1.75	ND	0.66	ND	ND	10	70
Calcium	161	NA	88.9	72.6	1,160	435	1,550	119	526	695	338	227	12,000	2,240	1,210	NA	406	245	1,150	560	1,910	847	392	1,270	625	484	4,320	57,100	867	-	-
Chromium	15.1	NA	6.93	1.81	9.21	6.69	7.69	2.48	3.84	4.76	6.53	5.10	3.58	3.83	17.5	NA	5.72	6.49	3.12	6.96	5.10	7.06	13.2	4.57	14.8	7.12	12.3	25.8	7.42	50	230
Cobalt	3.90	NA	1.88	0.88	2.71	2.94	3.81	1.05	1.13	2.44	2.16	1.91	1.60	1.45	4.01	NA	1.75	2.70	1.48	2.92	2.26	15.6	3.32	2.03	1.48	3.27	3.17	4.10	2.85	30	-
Copper	10.3	NA	6.19	1.38	9.40	4.30	8.03	9.50	2.31	3.98	4.12	3.00	4.16	3.09	13.4	NA	6.87	42.3	2.93	4.53	2.73	4.44	5.70	3.15	122	4.55	57.3	6.80	5.19	25	-
ron	15,300	NA	8,370	1,750	7,110	7,180	5,890	2,480	2,440	4,840	4,540	3,910	3,060	3,000	12,600	NA	2,860	5,840	2,870	7,910	3,490	7,800	9,890	3,620	4,720	6,690	11,700	16,300	6,940	2,000	-
_ead	30.0	NA	21.0	1.32	21.9	8.29	4.29	4.53	2.09	5.35	3.62	2.86	3.88	4.05	26.0	NA	4.79	10.3	2.50	9.73	3.08	8.27	10.7	3.07	12.5	4.58	57.4	5.53	8.80	400**	400
Magnesium	1,270	NA	594	198	829	844	1,580	219	423	535	589	570	7,150	567	1,410	NA	495	682	425	853	472	943	910	592	432	1,050	1,070	1,670	775	-	-
Vanganese	113	NA	39.6	29.3	102	67.1	126	65.2	43.2	48.1	56.7	62.6	86.3	47.3	106	NA	79.2	70.2	54.8	79.6	52.0	76.5	68.5	91.2	34.2	93.4	97.1	112	102	-	-
Nickel	8.33	NA	4.58	1.42	4.91	4.31	5.31	2.15	1.40	3.25	3.33	2.92	2.54	1.97	9.09	NA	3.97	52.4	1.88	4.59	68.7	4.75	5.82	13.1	14.9	4.54	6.39	7.96	4.15	13	1,600
Potassium	329	NA	167	82.4	280	179	600	92.4	90.8	363	205	317	226	159	340	NA	252	175	270	223	208	310	279	798	152	360	572	898	248	-	-
Selenium	1.36	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND	1.26	1.02	ND	ND	ND	1.09	ND	ND	2	390
Silver	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	1.02	ND	ND	ND	ND	ND	2.05	2.02	ND	ND	ND	ND	-	390
Sodium	270	NA	240	264	268	287	300	342	264	293	269	314	290	222	305	NA	311	258	331	347	554	286	342	551	281	314	444	720	820	-	-
/anadium	27.5	NA	16.7	2.95	12.5	11.7	10.3	4.89	4.22	7.50	6.76	6.20	5.53	4.48	23.9	NA	6.49	8.96	4.26	12.2	5.24	12.3	16.2	5.30	10.3	10.0	18.6	13.6	10.8	150	550
Zinc	27.8	NA	12.8	5.95	26.9	21.9	20.7	27.4	6.77	13.4	12.1	9.37	11.7	7.03	31.1	NA	68.4	17.9	7.72	21.7	8.96	18.9	21.8	7.98	51.0	15.1	58.9	16.7	17.9	20	23,000
Cyanide in mg/kg	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	2.57	ND	ND	ND	ND	ND	ND	7.77	ND	ND	ND	ND	-	1,600
PCBs (total) in mg/kg	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	0.15	NA	NA	NA	NA	1.0 (subsurface) 10.0 (subsurface)	-

Notes:

Only detected compounds are reported. See laboratory report for complete data.

ND = Not Detected

ug/kg = micrograms per kilogram

mg/kg = milligrams per kilogram

NYSDEC = New York State Department of Environmental Conservation

USEPA = United Stated Environmental Protection Agency

- = Not established

TABLE 3.18.2 SHALLOW SOIL SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

* = The Suffolk County Department of Health Services has determined that the background level for arsenic in Suffolk County is 2 to 5 mg/kg.
 ** = The USEPA's Interim Lead Hazard Guidance establishes a residential screening level of 400 mg/kg.
 Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

= Boxed values exceed USEPA Generic Soil Screening Levels (Residential).

TABLE 3.11.1 MACHINE SHOP SOIL SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location	HB-13	HB-14	B-14	B-15	B-16	B-17	SS-15	SS-16	11/00550
Sample Depth (feet below floor)	0-4	0-4	0-0.5	0-0.5	0-0.5	0-0.5	0-0.25	0-0.25	NYSDEC Recommended Soil Cleanup Objectives
Sample Date	9/7/01	9/7/01	9/10/03	9/10/03	9/10/03	9/10/03	9/20/04	9/21/04	oleanup objectives
Volatile Organic Compounds in	ug/kg		1				1		
Freon 113	ND	ND	ND	5.82	ND	13	ND	ND	6,100
Tetrachloroethene	35	ND	ND	ND	ND	ND	ND	ND	1,400
Xylene (total)	ND	ND	ND	ND	ND	ND	13	ND	1,200
Semivolatile Organic Compound	s in ug/kg			•	•	•		•	
bis(2-Ethylhexyl)phthlate	ND	ND	ND	ND	ND	ND	340	ND	50,000
Metals in mg/kg									
Aluminum	NA	NA	4,400	5,340	6,170	8,470	5,640	5,950	-
Antimony	NA	NA	ND	ND	ND	ND	ND	ND	-
Arsenic	NA	ND	1.13	1.07	1.36	2.19	3.93	2.88	7.5
Barium	NA	12.1	ND	16.1	12.1	15.4	32.3	17.2	300
Berylium	NA	NA	ND	ND	ND	ND	ND	ND	0.16
Cadmium	NA	ND	ND	ND	ND	ND	ND	ND	10
Calcium	NA	NA	3,890	9,910	4,410	768	57,100	867	-
Chromium	NA	100	5.73	6.74	7.77	12.3	25.8	7.42	50
Cobalt	NA	NA	2.36	2.1	3.4	ND	4.10	2.85	30
Copper	NA	NA	8.39	3.18	3.48	7.59	6.80	5.19	25
Iron	NA	NA	5,190	5,120	6,090	7,970	16,300	6,940	2,000
Lead	NA	28.8	4.94	12.5	4.84	17	5.53	8.80	400*
Magnesium	NA	NA	762	1,080	878	894	1,670	775	-
Manganese	NA	NA	89.8	78	112	95	112	102	-
Mercury	NA	ND	0.018	0.017	0.026	0.036	ND	ND	0.1
Nickel	NA	NA	3.74	4.51	4.67	5.3	7.96	4.15	13
Potassium	NA	NA	243	616	258	397	898	248	-
Selenium	NA	ND	ND	ND	ND	ND	ND	ND	2
Silver	NA	ND	ND	ND	ND	ND	ND	ND	-
Sodium	NA	NA	104	193	114	138	720	820	-
Thallium	NA	NA	ND	ND	ND	ND	ND	ND	-
Vanadium	NA	NA	6.96	7.99	9.69	16.8	13.6	10.8	150
Zinc	NA	NA	12.3	11.3	13.9	47.3	16.7	17.9	20
TPH (M418.1) in mg/kg	ND	190	NA	NA	NA	NA	NA	NA	-
Cyanide in mg/kg	NA	NA	ND	ND	ND	ND	ND	ND	-

Notes:

Only compounds detected in one or more samples are shown.

NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per

mg/kg = milligrams per kilogram

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

FPM

TABLE 3.12.1 DRUM/CHEMICAL STORAGE AREAS SAMPLING DATA DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location		rage Shed ain Building		hemical Storage Sh East of Main Buildin			Storage South of Plating	Drum Storage So	uth of North Plating	Dr	um Storage Northe of Machine Shop	ast		orage East Building	NYSDEC
Sample No.	B-8 S-11 B-12 0-0.5 0-0.25 0-0.5 9/9/03 9/20/04 9/10/03	B-12	B-13	S-10/SS-9	B-10	S-7	B-9	S-8	B-19	B-20	S-12	B-18	S-9/SS-8	Recommended Soil	
Sample Depth (feet)	0-0.5	0-0.25	0-0.5	0-0.5	0-0.25	0-0.5	0-0.25	0-0.5	0-0.25	0-0.5	0-0.5	0-0.25	1-1.5	0-0.25	Cleanup Objectives
Sample Date	9/9/03	9/20/04	9/10/03	9/10/03	9/20/04	9/10/03	9/20/04	9/10/03	9/20/04	9/10/03	9/10/03	9/20/04	9/10/03	9/20/04	
Volatile Organic Compounds	in ug/kg														
cis-1,2-Dichloroethene	ND	ND	58	210	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	250
Ethylbenzene	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND	ND	ND	5,500
Freon 113	ND	ND	ND	ND	ND	ND	ND	8.89	ND	5.93	ND	ND	ND	ND	6,000
Tetrachloroethylene	ND	ND	ND	ND	ND	ND	ND	2.78 J	ND	ND	ND	ND	ND	ND	1,400
Total Xylenes	ND	ND	ND	ND	ND	97	15	ND	ND	ND	ND	ND	ND	ND	1,200
Semivolatile Organic Compounds in ug/kg	NA	ND	NA	NA	ND	NA	ND	NA	ND	NA	NA	ND	NA	ND	-
Metals in mg/kg															
Aluminum	5,240	2,000	18,300	18,800	3,670	5,440	5,600	7,800	9,630	4,880	3,440	1,890	4,360	4,320	-
Antimony	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Arsenic	1.17	1.10	2.85	2.54	2.15	1.33	2.80	2.38	4.79	1.17	ND	1.02	ND	2.00	7.5
Barium	16.3	9.84	29.1	37.2	10.6	15.2	17.5	14.7	22.6	ND	ND	4.46	ND	12.2	300
Berylium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16
Cadmium	ND	ND	ND	ND	ND	ND	ND	ND	0.66	ND	ND	ND	ND	ND	10
Calcium	818	406	421	163	338	9,870	484	1,190	4,320	1,040	359	526	337	695	-
Chromium	8.34	5.72	15.9	16.1	6.53	13	7.12	8.53	12.3	6.23	4.1	3.84	3.96	4.76	50
Cobalt	8.82	1.75	3.47	3.29	2.16	ND	3.27	2.17	3.17	ND	ND	1.13	ND	2.44	30
Copper	16.1	6.87	5.31	5.67	4.12	5.13	4.55	5.05	57.3	3.23	2.24	2.31	2.33	3.98	25
Iron	6,400	2,860	14,400	15,900	4,540	5,700	6,690	7,750	11,700	4,260	3,090	2,440	3,940	4,840	2,000
Lead	13.4	4.79	10.6	8.44	3.62	4.53	4.58	6.1	57.4	5.34	2.92	2.09	2.16	5.35	400*
Magnesium	681	495	1,660	1,580	589	1,350	1,050	1,130	1,070	894	433	423	335	535	-
Manganese	153	79.2	113	130	56.7	82.8	93.4	83.7	97.1	70.3	87.5	43.2	55.2	48.1	-
Mercury	0.023	ND	ND	0.027	ND	ND	ND	0.024	ND	0.017	ND	ND	ND	ND	0.1
Nickel	13.1	3.97	8.73	8.39	3.33	6.6	4.54	5.02	6.39	3.14	2.26	1.40	2.52	3.75	13
Potasium	361	252	496	464	205	657	360	489	572	168	133	90.8	393	363	-
Selenium	ND	ND	ND	ND	ND	ND	ND	ND	1.09	ND	ND	ND	ND	ND	2
Silver	1.09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Sodium	111	311	ND	185	269	161	314	132	444	ND	ND	264	133	293	-
Thallium	ND	ND	0.119	0.121	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Vanadium	18.1	6.49	27.7	27.7	6.76	9.26	10.0	12.6	18.6	7.68	4.98	4.22	6.72	7.50	150
Zinc	60	68.4	25.6	28.7	12.1	14.5	15.1	17.1	58.9	13.7	9.54	6.77	8.11	13.4	20
Cyanide in mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
PCBs in mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	1.0 (surface) 10.0 (subsurface)

Notes:

Only compounds detected in one or more samples are shown. NYSDEC = New York State Department of Environmental Conservation ND = Not Detected NA = Not Analyzed *The USEPA Interim Guidance for lead has established a residential screening level of 400 mg/kg.

ug/kg = micrograms per kilogram mg/kg = milligrams per kilogram - = Not established Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

TABLE 3.13.1 STORMWATER RECHARGE BASINS SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location				Westerr	n Basin						Northeas	stern Basin			
Sample No.	Storm Water Recharge	DRPOND-1	DRPOND-2	DRPOND-3	DRPOND-4	R-1	R-2	R-3	R-4	Stormwater Sump	NERB	R	1-5	SCDHS Action	NYSDEC Recommended Soil
Sample Depth (feet)	-	-	-	-	-	0-0.5	0-0.5	0-0.5	0-0.5	-	0-0.5	0-0.5	0.5-1	Levels	Cleanup Objectives
Sample Date	8/2/90	10/19/95	10/19/95	10/19/95	10/19/95	9/23/04	9/23/04	9/23/04	9/23/04	8/2/90	9/10/03	9/22/04	9/22/04		
Volatile Organic Compounds in ug/kg						•						•			
Methylene chloride	NA	1.3 JB	ND	0.6 JB	ND	ND	ND	ND	ND	NA	ND	ND	ND	200	100
Toluene	NA	ND	2.3	ND	2.0 J	ND	ND	ND	ND	NA	ND	ND	ND	3,000	1,500
Semivolatile Organic Compounds in u	ıg/kg														
Fluoranthene	NA	NA	NA	NA	NA	750	ND	ND	790	NA	NA	ND	ND	75,000	50,000
Benzo(b)fluoranthene	NA	NA	NA	NA	NA	ND	ND	ND	450	NA	NA	ND	ND	2,200	61
Benzo(k)fluoranthene	NA	NA	NA	NA	NA	ND	ND	ND	550	NA	NA	ND	ND	2,200	610
Chrysene	NA	NA	NA	NA	NA	ND	ND	ND	390	NA	NA	ND	ND	800	400
Pyrene	NA	NA	NA	NA	NA	ND	ND	ND	640	NA	NA	ND	ND	75,000	50,000
Metals in mg/kg															
Aluminum	1,920	1,550	5,040	1,950	6,310	6,920	1,250	932	1,950	4,010	2,320	3,740	1,150	-	-
Arsenic	0.65 B	1.3	3.9	1.0	3.9	3.53	ND	1.08	ND	0.70 B	ND	1.66	ND	25	7.5
Barium	5.6 B	5.7	32.6	5.9	32.5	55.4	16.0	9.23	22.0	9.7 B	ND	11.5	3.57	-	300
Berylium	0.17 B	0.12	0.39	0.13	0.42	ND	ND	ND	ND	0.27 B	ND	ND	ND	8	0.16
Cadmium	0.37 B	0.24	7.5	0.36	5.2	ND	ND	ND	ND	ND	ND	0.66	ND	10	10
Calcium	1,76 BJ	152	1,210	156	1,300	261	103	77.3	184	182 BJ	69.4	277	76.8	-	-
Chromium	4.2	14.8	200	15.6	230	18.4	5.77	3.05	6.01	13.7	5.34	13.3	2.59	100	50
Cobalt	0.78 B	0.92	3.8	0.94	4.4	5.67	3.93	1.16	2.48	1.2 B	ND	2.31	ND	-	30
Copper	224 J	91.3	1,000	91.8	953	215	26.7	14.2	43.7	184 J	43.3	306	57.9	500	25
Iron	2,100	5,230	22,500	3,570	13,600	8,910	2,740	3,000	3,690	3,160	3,860	4,980	1,520	-	2,000
Lead	13.6	68.4	616	68.8	529	95.8	12.2	9.74	30.4	67.9	14.5	45.5	6.52	400	400*
Magnesium	296 B	277	1,120	253	1,120	771	182	126	275	378 B	268	594	215	-	-
Manganese	40.6	69.0	95.9	55.4	171	121	314	46.2	89.8	15.5	41.9	66.6	36.3	-	-
Mercury	0.16 J	ND	0.38	ND	0.23	0.30	0.92	ND	ND	ND	0.036	ND	ND	2	0.1
Nickel	3.8 B	14.2	234	18.5	165	31.7	7.75	3.46	8.70	27.7	5.66	18.4	3.44	1,000	13
Potasium	187 B	74.6	267	99.2	327	378	79.1	72.1	121	271 B	112	172	88.0	-	-
Selenium	0.52 B	0.85	1.5	ND	1.2	2.26	ND	ND	1.03	0.51 B	ND	ND	ND	-	2
Silver	ND	1.7	14.7	2.6	13.5	3.01	ND	ND	ND	4.7	ND	0.62	ND	100	-
Sodium	120 B	82.6	146	68.5	203	353	265	219	286	189 B	ND	352	202	-	-
Vanadium	5.4 B	9.1	59.5	8.7	56.9	18.9	4.49	4.02	6.45	12.8	7.29	14.5	3.83	-	150
Zinc	22.9 J	22.7	315	25.9	259	72.6	18.6	9.51	20.7	40.9 J	28.4	61.0	13.1	-	20
Cyanide in mg/kg	NA	ND	ND	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	-	-
PCBs (total) in mg/kg	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	0.08	ND	-	1.0 (surface) 10.0 (subsurface)

Notes:

Only compounds detected in one or more samples are shown. See laboratory reports for complete data.

NYSDEC = New York State Department of Environmental Conservation

SCDHS = Suffolk County Department of Health Services ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per kilogram mg/kg = milligrams per kilogram

- = Not established

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

The USEPA's Interim Guidance screening level for lead in a residential setting is 400 mg/kg. □ = Boxed values exceed SCDHS Action Levels (9/04 samples only).

TABLE 3.14.1 FORMER PLATING WASTE LAGOON/SLUDGE-DRYING BEDS SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location	Former Plat	ting Waste Tank	Former	Plating Wa	ste Lagoon		Former SI	udge-Dry	ving Beds		
Sample No.	ST-1 (In Tank)	ST-2 (Below Grade)	B-6		B-7	S-13	S-14	S-	-15	S-16	NYSDEC Recommended Soil
Sample Depth (feet)	0-1	4	0-2	0-2	65-67	3-5	1-2	0-0.25	8-10	7-9	Cleanup Objectives
Sample Date	9/23/04	9/24/04	5/22/90	5/22/90	5/23/90	9/20/04	9/20/04	9/20/04	9/20/04	9/20/04	
Volatile Organic Compo	ounds in ug/k	g							•		1
Tetrachloroethene	ND	17	ND	ND	ND	ND	ND	ND	ND	ND	1,400
Semivolatile Organic C	ompounds in	ug/kg				•	•	•	•		•
Fluoranthene	ND	ND	NA	70 J	NA	ND	ND	ND	ND	ND	50,000
Pyrene	ND	ND	NA	39 J	NA	ND	ND	ND	ND	ND	50,000
Chrysene	ND	ND	NA	45 J	NA	ND	ND	ND	ND	ND	400
Di-n-octylphthalate	ND	ND	NA	17 J	NA	ND	ND	ND	ND	ND	50,000
Benzo(b)fluoranthene	ND	ND	NA	53 J	NA	ND	ND	ND	ND	ND	224
Benzo(k)fluoranthene	ND	ND	NA	29 J	NA	ND	ND	ND	ND	ND	224
Benzo(a)pyrene	ND	ND	NA	34 J	NA	ND	ND	ND	ND	ND	61
Pesticides in ug/kg	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	-
PCBs in mg/kg	ND	ND	NA	0.042 J	NA	NA	NA	NA	NA	NA	1.0 (surface) 10.0 (subsurface)
Metals in mg/kg											
Aluminum	NA	NA	3,400	5,140	1,550	2,360	4,720	4,630	3,720	4,710	-
Arsenic	1.88	0.97	3.2	2.0 B	0.41 B	1.37	2.76	2.35	1.86	1.93	7.5
Barium	NA	NA	ND	15.8 B	6.8 B	8.49	15.4	11.4	11.5	17.7	300
Berylium	ND	ND	ND	0.21 B	ND	ND	ND	ND	ND	ND	0.16
Calcium	NA	NA	ND	ND	ND	215	1,630	245	321	330	-
Chromium	6.59	3.41	5.5	10.3	ND	11.3	18.1	6.49	8.22	14.1	50
Cobalt	NA	NA	1.8 B	3.0 B	0.75 B	1.61	3.02	2.70	2.61	3.68	30
Copper	3.74	7.02	ND	24.5	ND	10.0	14.7	42.3	136	369	25
Iron	NA	NA	3,730	5,780	1,880	3,630	6,440	5,840	5,060	6,300	2,000
Lead	3.89	4.64	3.5	23.6	ND	5.61	9.31	10.3	10.3	10.7	400*
Magnesium	NA	NA	ND	ND	117 B	430	1,140	682	644	812	-
Manganese	NA	NA	57.2	78.8	43.6	61.5	116	70.2	74.1	91.0	-
Nickel	2.50	11.3	3.8 B	20.2	ND	5.74	16.1	52.4	74.2	158	13
Potassium	NA	NA	254 B	451 B	ND	148	167	175	216	208	-
Selenium	NA	NA	4.1	ND	ND	ND	ND	ND	ND	ND	2
Silver	ND	1.73	ND	2.2	ND	ND	ND	1.02	ND	ND	-
Sodium	NA	NA	ND	ND	198 B	215	228	258	301	236	-
Vanadium	NA	NA	6.1 B	13.9	2.3 B	5.74	10.2	8.96	7.28	9.46	150
Zinc	NA	NA	ND	33.1	ND	13.6	16.7	17.9	25.3	26.6	20
Mercury	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	0.1
Cyanide in mg/kg	ND	0.56	NA	NA	NA	ND	0.52	2.57	3.46	8.50	-
TCLP Metals in ug/l											RCRA Regulatory Levels
Arsenic	NA	NA	ND	25.0	ND	NA	NA	NA	NA	NA	5,000
Barium	NA	NA	240 J	792 J	208 J	NA	NA	NA	NA	NA	100,000
Cadmium	NA	NA	16.9	7.3 J	ND	NA	NA	NA	NA	NA	1,000
Chromium	NA	NA	ND	11.5	ND	NA	NA	NA	NA	NA	5,000
Lead	NA	NA	ND	44.9 J	ND	NA	NA	NA	NA	NA	5,000

Notes:

Only compounds detected in one or more samples are shown. See laboratory reports for complete data.

NYSDEC = New York State Department of Environmental Conservation

ND = Not Detected

NA = Not Analyzed

ug/kg = micrograms per kilogram mg/kg = milligrams per kilogram

- = Not established

Bold shaded values exceed NYSDEC Recommended Soil Cleanup Objectives.

*The USEPA's Interim Lead Guidance establishes a residential screening level of 400 mg/kg.

TABLE 3.15.1 ELECTRICAL ROOM WIPE SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location		Electrical or Room	South	neast Transfo	rmers	TSCA Surface Standard
Sample No.	E-1	E-2	E-3	E-4	E-5	Surface Standard
PCBs in ug/100 cm ²			-			
PCB 1254	1.35	1.43	ND	ND	ND	100
PCB 1260	0.96	1.18	243	418	163	100
Total PCBs	2.31	2.61	243	418	163	100

Notes:

ug/100 cm² = micrograms per 100 square centimeters ND = Not detected TSCA = Toxic Substances Control Act Surface Standard for PCBs as per TSCA regulations 40 CFR 761.125

Bold shaded values exceed TSCA Surface Standard.

Table 1 Summary of Soil Sampling Analytical Results Deutsch Relays-65 Daly Road East Northport, NY BVNA Project No: 12012-000214.00

Location Depth (ft bg) Lab Sample ID Sampling Date Dilution Factor Depth Units	NYSDEC Unrestricted Use Soil Cleanup Objectives (Note 1)	NYSDEC Protection of Groundwater (Note 1)	NYSDEC CP-51 Residential Supplemental Soil Cleanup Objectives (Note 2)	NYSDEC CP-51 Protection of Groundwater Supplemental Soil Cleanup Objectives (Note 2)	9	PC-1 0-44695-11 0/13/2012 1 -22 feet bg. mg/kg	9, 50-5	PC-1)-44695-12 /13/2012 1 2.1 feet bg. mg/kg		PC-2 0-44139-10 9/1/2012 1 42 feet bg. mg/kg	460 9 55-50	PC-2 -44139-11 /1/2012 1 5.7 feet bg. mg/kg	460- 8/3 12-13.	PC-3 44139-7 1/2012 1 8 feet bg. 19/kg	8	PC-3 i0-44139-8 i/31/2012 1 57 feet bg. mg/kg	PC- 460-441 8/30/2 1 20-22 fe mg/k	139-3 012 et bg.	460 8/3 55-5	PC-4 0-44139- 30/2012 1 57 feet b mg/kg	2
					Results	Q MDL	Results	Q MDL	Results	Q MDL	Results	Q MDL	Results	Q MDL	Results	Q MDL	Results Q	MDL	Results	Q	MDL
Volatile Organic Compund	ls (VOCs)																				
1,1,1-Trichloroethane	0.68	0.68	NS	NS	ND	0.00014	ND	0.000	13 ND	0.0001	4 ND	0.00014	ND	0.00012	ND	0.00015	ND	0.00015	ND		0.00016
1,1-Dichloroethane	0.27	0.27	NS	NS	ND	0.00012	ND	0.000	11 ND	0.0001	1 ND	0.00012	ND	0.0001	ND	0.00012	ND	0.00013	ND		0.00014
1,1-Dichloroethene	0.33	0.33	NS	NS	ND	0.0002	ND	0.000	19 ND	0.000	2 ND	0.0002	ND	0.00018	ND	0.00022	ND	0.00022	ND		0.00024
Chloroethane	NS	NS	NS	1.9	ND	0.00035	ND	0.000	33 ND	0.0003	4 ND	0.00035	ND	0.00031	ND	0.00037	ND	0.00039	ND		0.00041
cis-1,2-Dichloroethene	0.25	0.25	NS	NS	ND	0.00012	ND	0.000	11 ND	0.0001	1 ND	0.00012	ND	0.0001	ND	0.00012	ND	0.00013	ND		0.00014
Freon 113	NS	NS	100	6	ND	0.00012	ND	0.000	11 ND	0.0001	1 0.00017	J	ND	0.0001	ND	0.00012	ND	0.00013	ND		0.00014
Tetrachloroethene	1.3	1.3	NS	NS	ND	0.00013	ND	0.000	12 ND	0.0001	2 0.00027	J	0.00013	J	ND	0.00014	0.0002 J		ND		0.00015
trans-1,2-DCE	0.19	0.19	NS	NS	ND	0.00014	ND	0.000	13 ND	0.0001	4 ND	0.00014	ND	0.00012	ND	0.00015	ND	0.00015	ND		0.00016
Trichloroethene	0.47	0.47	NS	NS	ND	0.00013	ND	0.000	12 ND	0.0001	2 ND	0.00013	ND	0.00011	ND	0.00014	ND	0.00014	ND		0.00015
Vinyl chloride	0.02	0.02	NS	NS	ND	0.00036	ND	0.000	34 ND	0.0003	5 ND	0.00036	ND	0.00032	ND	0.00039	ND	0.0004	ND		0.00043

Location Depth (ft bg) Lab Sample ID Sampling Date Dilution Factor Depth Units	NYSDEC Unrestricted Use Soil Cleanup Objectives (Note 1)	NYSDEC Protection of Groundwater (Note 1)	NYSDEC CP-51 Residential Supplemental Soil Cleanup Objectives (Note 2)	NYSDEC CP-51 Protection of Groundwater Supplemental Soil Cleanup Objectives (Note 2)	9 40-4	PC-5 D-44695-17 J/14/2012 1 H1.6 feet bg. mg/kg	460-44 9/14	C-5 1695-18 12012 1 feet bg. //kg	460 9/ 30-3	PC-6 I-44695-9 12/2012 1 I2 feet bg. mg/kg	460- 9/ 50-5	PC-6 44695-10 12/2012 1 2 feet bg. mg/kg	460-4 9/14 40-41.8	C-7 4695-15 1/2012 1 3 feet bg. g/kg	460-4 9/1 50-51.	PC-7 44695-16 14/2012 1 .6 feet bg. ng/kg	**PC **460-446 9/14/20 1 50-51.6 fo mg/k	695-19 012 eet bg.	460- 9/ 10-1	PC-8 -44695-13 13/2012 1 2 feet bg mg/kg	-
					Results	Q MDL	Results	A MDL	Results	Q MDL	Results	Q MDL	Results	Q MDL	Results	Q MDL	Results Q	MDL	Results	Q	MDL
Volatile Organic Compunds	s (VOCs)																				
1,1,1-Trichloroethane	0.68	0.68	NS	NS	ND	0.0001	3 ND	0.00013	ND	0.00013	ND	0.00013	ND	0.00013	ND	0.00016	ND	0.00013	ND		0.00012
1,1-Dichloroethane	0.27	0.27	NS	NS	ND	0.0001	1 ND	0.00011	ND	0.00011	ND	0.00011	ND	0.00011	ND	0.00013	ND	0.00011	ND		0.0001
1,1-Dichloroethene	0.33	0.33	NS	NS	ND	0.000	2 ND	0.00019	ND	0.00019	ND	0.00018	ND	0.00019	ND	0.00023	ND	0.00019	ND		0.00018
Chloroethane	NS	NS	NS	1.9	ND	0.0003	1 ND	0.00033	ND	0.00034	ND	0.00032	ND	0.00032	ND	0.0004	ND	0.00032	ND		0.00031
cis-1,2-Dichloroethene	0.25	0.25	NS	NS	ND	0.0001	1 ND	0.00011	ND	0.00011	ND	0.00011	ND	0.00011	ND	0.00013	ND	0.00011	ND		0.0001
Freon 113	NS	NS	100	6	ND	0.0001	1 ND	0.00011	ND	0.00011	ND	0.00011	ND	0.00011	ND	0.00013	ND	0.00011	ND		0.0001
Tetrachloroethene	1.3	1.3	NS	NS	ND	0.0001	2 ND	0.00012	0.00019	J	ND	0.00012	ND	0.00012	ND	0.00014	ND	0.00012	ND		0.00011
trans-1,2-DCE	0.19	0.19	NS	NS	ND	0.0001	3 ND	0.00013	ND	0.00013	ND	0.00013	ND	0.00013	ND	0.00016	ND	0.00013	ND		0.00012
Trichloroethene	0.47	0.47	NS	NS	ND	0.0001	2 ND	0.00012	ND	0.00012	ND	0.00012	ND	0.00012	ND	0.00014	ND	0.00012	ND		0.00011
Vinyl chloride	0.02	0.02	NS	NS	ND	0.0003	5 ND	0.00034	ND	0.00035	ND	0.00033	ND	0.00033	ND	0.00041	ND	0.00033	ND		0.00032

Notes and Abbreviations:

NS: No Standard

ND: Not Detected

mg/kg: Miligrams per Kilogram

Q: Laboratory Data Qualifier

MDL: Minimum Detection Limit

**: Field duplicate samples

NYSDEC: New York State Department of Environmental Conservation

J : Result is above the MDL but below the calibration range. The concentration provided is an approximate value.

Note 1: This threshold is based on table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives from NYSDEC regulation subpart 375-6: Remedial Program Soil Cleanup Objectives. Units are mg/kg.

Note 2: This threshold is based on Table 1. Supplemental Soil Cleanup Objectives from NYCDEC Policy CP-51/ Soil Clenup Guidance. Units are parts per million, or ppm, which is equivalent to mg/kg.

Table 1 Summary of Soil Sampling Analytical Results Deutsch Relays-65 Daly Road East Northport, NY BVNA Project No: 12012-000214.00

Location Depth (ft bg) Lab Sample ID Sampling Date Dilution Factor Depth Units	NYSDEC Unrestricted Use Soil Cleanup Objectives (Note 1)	NYSDEC Protection of Groundwater (Note 1)	NYSDEC CP-51 Residential Supplemental Soil Cleanup Objectives (Note 2)	NYSDEC CP-51 Protection of Groundwater Supplemental Soil Cleanup Objectives (Note 2)	9/ 40-4	PC-8 -4469! 14/20 ⁻ 1 12 feet mg/kg	12	9 32-3	PC-9 0-4469 /11/201 1 3.6 fee mg/kg	l2 t bg.	460 9/ 50-51	PC-9)-44695 11/201 1 1.6 feet mg/kg	2	460 9/ [,] 45-47	PC-10 -44695-4 11/2012 1 /.3 feet bg. mg/kg	460 9/ [,] 50-52	PC-10 -44695- 11/2012 1 2.2 feet k mg/kg	-	460 9 10-1	PC-11 I-44139-12 I/4/2012 1 12 feet bg. mg/kg	PC- 460-441 9/4/2 1 40-42 fe mg/	39-13 012 et bg.		PC-12 60-44139 8/29/201 1 13.2 feet mg/kg	2
					Results	Q	MDL	Results	Q	MDL	Results	Q	MDL	Results	Q MDL	Results	Q	MDL	Results	Q MDL	Results Q	MDL	Results	Q	MDL
Volatile Organic Compunds	s (VOCs)																								
1,1,1-Trichloroethane	0.68	0.68	NS	NS	ND		0.00013	ND		0.00014	ND		0.00014	ND	0.00013	ND		0.00013	ND	0.00014	ND	0.00015	ND		0.00012
1,1-Dichloroethane	0.27	0.27	NS	NS	ND		0.00011	ND		0.00012	ND		0.00012	ND	0.00011	ND		0.00011	ND	0.00012	ND	0.00013	ND		0.0001
1,1-Dichloroethene	0.33	0.33	NS	NS	ND		0.00019	ND		0.0002	ND		0.00021	ND	0.0002	ND		0.00019	ND	0.0002	ND	0.00022	ND		0.00018
Chloroethane	NS	NS	NS	1.9	ND		0.00033	ND		0.00035	ND		0.00037	ND	0.00034	ND		0.00033	ND	0.00035	ND	0.00039	ND		0.00031
cis-1,2-Dichloroethene	0.25	0.25	NS	NS	ND		0.00011	ND		0.00012	ND		0.00012	ND	0.00011	ND		0.00011	ND	0.00012	ND	0.00013	ND		0.0001
Freon 113	NS	NS	100	6	0.00027	J		ND		0.00012	ND		0.00012	ND	0.00011	ND		0.00011	ND	0.00012	ND	0.00013	ND		0.0001
Tetrachloroethene	1.3	1.3	NS	NS	0.00025	J		ND		0.00013	ND		0.00013	ND	0.00012	ND		0.00012	0.0042	0.00013	ND	0.00014	ND		0.00011
trans-1,2-DCE	0.19	0.19	NS	NS	ND		0.00013	ND		0.00014	ND		0.00014	ND	0.00013	ND		0.00013	ND	0.00014	ND	0.00015	ND		0.00012
Trichloroethene	0.47	0.47	NS	NS	ND		0.00012	ND		0.00013	ND		0.00013	ND	0.00012	ND		0.00012	ND	0.00013	ND	0.00014	ND		0.00011
Vinyl chloride	0.02	0.02	NS	NS	ND		0.00034	ND		0.00037	ND		0.00038	ND	0.00035	ND	1	0.00034	ND	0.00036	ND	0.0004	ND		0.00032

Location Depth (ft bg) Lab Sample ID Sampling Date Dilution Factor Depth Units	NYSDEC Unrestricted Use Soil Cleanup Objectives (Note 1)	NYSDEC Protection of Groundwater (Note 1)	NYSDEC CP-51 Residential Supplemental Soil Cleanup Objectives (Note 2)	NYSDEC CP-51 Protection of Groundwater Supplemental Soil Cleanup Objectives (Note 2)	46) 8/ 55-5	PC-12 0-44139 /29/201 1 57 feet mg/kg	2	46 9 30-	PC-1 0-446 /10/20 1 32 fee mg/k	95-1 012 et bg.	460 9/ 55-56	PC-13 D-44695-2 10/2012 1 6.1 feet bg mg/kg		**46 9/ 55-56	*PC-13 0-44695 10/2012 1 5.6 feet t mg/kg	-	460 9/: 40-4:	PC-14 44139-14 5/2012 1 2 feet bg. ng/kg		PC-14 0-44139 9/5/201 1 -52 feet mg/kg	9-15 2	PC-1 460-441 8/31/20 1 12-13.3 fe mg/k	39-5)12 eet bg.	ε	PC-15 50-44139 8/31/2012 1 -57 feet k mg/kg	9-6 2
					Results	Q	MDL	Results	Ø	MDL	Results	Q N	IDL	Results	Q	MDL	Results	Q MDL	Results	Q	MDL	Results Q	MDL	Results	Q	MDL
Volatile Organic Compund	s (VOCs)																									
1,1,1-Trichloroethane	0.68	0.68	NS	NS	ND		0.00013	ND		0.00015	ND	0	.00014	ND		0.00016	ND	0.00013	ND		0.00014	ND	0.00015	ND		0.00013
1,1-Dichloroethane	0.27	0.27	NS	NS	ND		0.00011	ND		0.00013	ND	0	.00012	ND		0.00013	ND	0.00011	ND		0.00012	ND	0.00013	ND		0.00011
1,1-Dichloroethene	0.33	0.33	NS	NS	ND		0.00018	ND		0.00022	ND		0.0002	ND		0.00023	ND	0.00019	ND		0.0002	ND	0.00022	ND		0.00018
Chloroethane	NS	NS	NS	1.9	ND		0.00032	ND		0.00038	ND	0	.00036	ND		0.0004	ND	0.00034	ND		0.00035	ND	0.00039	ND		0.00032
cis-1,2-Dichloroethene	0.25	0.25	NS	NS	ND		0.00011	ND		0.00013	ND	0	.00012	ND		0.00013	ND	0.00011	ND		0.00012	ND	0.00013	ND		0.00011
Freon 113	NS	NS	100	6	ND		0.00011	ND		0.00013	ND	0	.00012	ND		0.00013	ND	0.00011	ND		0.00012	ND	0.00013	ND		0.00011
Tetrachloroethene	1.3	1.3	NS	NS	ND		0.00012	0.00018	J		ND	0	.00013	ND		0.00015	ND	0.00012	ND		0.00013	0.00015 J		ND		0.00012
trans-1,2-DCE	0.19	0.19	NS	NS	ND		0.00013	ND		0.00015	ND	0	.00014	ND		0.00016	ND	0.00013	ND		0.00014	ND	0.00015	ND		0.00013
Trichloroethene	0.47	0.47	NS	NS	ND		0.00012	ND		0.00014	ND	0	.00013	ND		0.00015	ND	0.00012	ND		0.00013	ND	0.00014	ND		0.00012
Vinyl chloride	0.02	0.02	NS	NS	ND		0.00033	ND		0.00039	ND	0	.00037	ND		0.00041	ND	0.00035	ND		0.00036	ND	0.0004	ND		0.00033

Notes and Abbreviations:

NS: No Standard ND: Not Detected mg/kg: Miligrams per Kilogram Q: Laboratory Data Qualifier MDL: Minimum Detection Limit **: Field duplicate samples

NYSDEC: New York State Department of Environmental Conservation

J : Result is above the MDL but below the calibration range. The concentration provided is an approximate value.

Note 1: This threshold is based on table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives from NYSDEC regulation subpart 375-6: Remedial Program Soil Cleanup Objectives. Units are mg/kg.

Note 2: This threshold is based on Table 1. Supplemental Soil Cleanup Objectives from NYCDEC Policy CP-51/ Soil Clenup Guidance. Units are parts per million, or ppm, which is equivalent to mg/kg.

TABLE 3.19.1 GROUNDWATER SAMPLE RESULTS DEUTSCH RELAYS, INC. FACILITY 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Well No.	MW-10	MW-10A	MW-14B	MW-31A	MW-34B	MW-37A	NYSDEC Class GA Ambient Water
Sample Date	9/27/04	9/27/04	9/27/04	9/27/04	9/27/04	9/27/04	Quality Standards
Volatile Organic Compound	s in ug/l						
1,1,1-Trichloroethane	2	2	ND	ND	ND	ND	5
Tetrachloroethene	100	99	ND	ND	3	ND	5
Trichloroethene	2	3	ND	ND	ND	ND	5
1,2-Dichloroethylene	1 (cis-)	ND	ND	ND	ND	ND	5
Freon-113	47	45	ND	ND	ND	ND	5

Notes:

Only detected parameters are reported. See laboratory report for complete data.

ND = Not Detected

ug/l = micrograms per liter

NYSDEC = New York State Department of Environmental Conservation

Bold shaded values exceed NYSDEC Class GA Ambient Water Quality Standards.

TABLE 1 SOIL CHEMICAL ANALYTICAL DATA FORMER DEUTSCH RELAYS SITE - NYSDEC SITE NO. 152003 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Remedial Area				Fo	ormer Platin	g Sh	op Area					Forr	ner S	Sludge Drying I	Bed Area				375 Soil Cleanup ectives
Sample ID	FPS-B()-6)	FPS-North 2)	SW(0·	FPS- SouthSW	(0-2)	FPS-EastSW(0	-2)	FPS- WestSWI(0-2)	FSDE SWW(FSDB- SWN(10		FSDB- SWE(10)	FSDB-B(15)	FSDB- SWS(10		Unrestricted	Restricted
Sample Depth Below Grade (feet)	0 - 0.	5	0 - 2		0 - 2		0 - 2		0-2	10		10		10	15	10		Use	Residental Use
Sample Date									4/18/2022	2									
Metals in milligrams pe	r kilogran	n								-									
Aluminum	1,230		1,420		784		1,120		1,330	400		283		294	405	270		-	-
Antimony	<0.13	U	<0.13	U	<0.13	U	<0.14	U	<0.12 U	<0.12	U	<0.11	U	<0.14 U	<0.11 U	<0.12	U	-	-
Arsenic	0.53	J	0.63	J	1.1		0.65	J	0.92	0.39	J	0.25	J	<0.096 U	0.22 J	0.15	J	13	16
Barium	4.3		3.7		2.4		3.4		2.1	2.2		1.5	J	0.88 J	1.9	1.2	J	350	400
Beryllium	0.058	J	0.060	J	<0.051	U	<0.055	U	0.053 J	<0.048	U	<0.044	U	<0.053 U	<0.044 U	<0.045	U	7.2	72
Cadmium	<0.10	U	<0.10	U	<0.10	U	<0.11	U	<0.090 U	<0.096	υ	<0.088	U	<0.11 U	0.10 J	<0.090	U	2.5	4.3
Calcium	632		231		67.9	J	309		26.8 J	27.2	J	<13.8	U	21.3 J	18.3 J	14.6	J	-	-
Chromium	1.7	J	1.7	J	1.6	J	2.3		6.6	1.6	J	0.90	J	<0.85 U	1.1 J	1.2	J	-	-
Cobalt	0.57	J	0.77	J	0.56	J	0.63	J	0.78 J	0.59	J	0.38	J	0.22 J	0.61 J	0.42	J	-	-
Copper	14.2		2.5		1.8		13.5		2.0	19.8		10.7		8.5	15.5	49.7		50	270
Iron	1,680		2,050		1,070		2,050		3,100	1,180		511		349	808	652		-	-
Lead	5.5		2.0		0.70	_	6.2		1.3	1.3		0.95		0.42 J	0.70	0.82		63	400
Magnesium	204		241		230		202		231	90.5		47.7	J	45.0 J	93.7	65.6	J	-	-
Manganese	23.7		31.2		18.3		22.3		28.6	31.0		11.1		11.3	27.6	17.1		1600	2000
Nickel	4.7		1.7	J	1.2	J	9.4		1.7	35.1		39.3		4.3	51.7	53.1		30	310
Potassium	79.9	J	73.8	J	71.6	J	73.9	J	55.3 J	55.3	J	34.8	J	33.5 J	42.8 J	32.1	J	-	-
Selenium	<0.11	U	<0.12	U	<0.12	U	<0.12	U	<0.10 U	<0.11	U	<0.10	U	<0.12 U	<0.098 U	<0.10	U	3.9	180
Silver	1.2		<0.081	U	<0.080	U	1.0		0.14 J	0.25	J	0.096	J	<0.083 U	0.11 J	<0.071	U	2	180
Sodium	<40.8	U	<41.4	U	<41.2	U	<44.4	U	<36.4 U	<38.8	U	<35.7	U	<42.7 U	<35.1 U	<36.4	U	-	-
Thallium	<0.037	U	<0.037	U	<0.037	U	<0.04	U	<0.033 U	<0.035	U	<0.032	U	<0.038 U	<0.032 U	<0.033	U	-	-
Vanadium	2.1		2.9		1.6	J	2.4		2.5	1.7		0.59	J	0.50 J	1.1 J	0.79	J	-	-
Zinc	17.1		12.4		<2.7	U	18.6		3.2 J	<2.6	U	<2.4	U	<2.9 U	<2.3 U	3.0	J	109	10000
Mercury	0.019		0.011	J	<0.0085	U	0.029		<0.008 U	<0.008	U	<0.0082	U	<0.0096 U	<0.0083 U	<0.0084	U	0.18	0.81

Notes:

Bold shaded values exceed NYSDEC unrestricted use Soil Cleanup Objective.

"-": No NYSDEC Soil Cleanup Objective established for this analyte

F1 : MS and/or MSD recovery exceeds control limits.

 $\ensuremath{\mathsf{U}}$: Indicates the analyte was analyzed for but not detected.

J : Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

concentration is an approximate

SDG 460-243517-1

TABLE 1 (Continued) SOIL CHEMICAL ANALYTICAL DATA FORMER DEUTSCH RELAYS SITE - NYSDEC SITE NO. 152003 65 DALY ROAD, EAST NORTHPORT, NEW YORK

			No	rthea	astern Stormwate	er Recharge Basi	n Ar	ea				Western St	orm	water Recharg	je Basin Are	a				75 Soil Cleanup ctives
Sample ID NERB- NorthSW(0					NERB- SouthSW(0-6)	NERB-EastSW(NERB-EastSW(0-6)		NERB-B(0-6)	WRB- NorthSW(0-2)	WRB- SouthSW(0-2)		WRB- EastSW(0-2)	WRB- WestSW(0-2)		WRB-B	(2)	Unrestricted	Restricted
Sample Depth Below Grade (feet)	0 - 0.5		0 - 0.5		0 - 0.5	0 - 0.5		0 - 0.5	0 - 0.5	5	0-2	0-2		0-2	0-2		0-2		Use	Residental Use
Sample Date								4/1	8/2022											
Metals in milligrams per	kilogram														-		-			
Aluminum	754		970		970	426		3,300	1,120		1,310	1,100		1,010	1,140		1,150	F1	-	-
Antimony	<0.14	U	<0.15	U	0.16 J	<0.13	U	0.14 J	<0.13	U	<0.12 U	<0.12	U	<0.12 U	<0.12	U	<0.12	U F1	-	-
Arsenic	0.33	J	0.39	J	0.63 J	0.25	J	2.4	0.55	J	0.79 J	0.52	J	0.52 J	0.57	J	1.1		13	16
Barium	2.0		3.4		3.7	1.3	J	8.6	3.5		4.1	6.9		2.8	6.0		6.1		350	400
Beryllium	<0.054	U	<0.057	U	0.056 J	<0.053	U	0.12 J	<0.049	U	0.099 J	0.11	J	0.12 J	0.079	J	0.13	J	7.2	72
Cadmium	0.12	J	0.14	J	0.28 J	<0.10	U	0.49 J	0.13	J	<0.090 U	<0.094	U	<0.093 U	<0.092	U	<0.097	U	2.5	4.3
Calcium	87.8	J	160		390	52.5	J	289	252		<14.1 U	18.4	J	27.2 J	<14.5	U	16.8	J	-	-
Chromium	1.9		2.7		3.6	1.1	J	12.9	3.8		3.7	2.0		2.5	1.9		4.9	F1	-	-
Cobalt	1.0	J	0.69	J	0.51 J	0.21	J	0.99 J	0.60	J	0.93 J	0.69	J	0.94 J	0.93	J	0.83	J	-	-
Copper	27.4		33.3		78.3	7.9		56.8	36.1		20.3	8.6		8.4	16.9		10.9		50	270
ron	1,080		1,180		1,950	785		12,600	2,000		2,110	1,980		1,660	1,580		3,290		-	-
_ead	2.1		4.1		12.4	2.5		10.0	11.9		11.1	5.8		5.6	6.8		7.8	F1	63	400
Magnesium	112		150		157	56.9	J	315	231		113	99.7		143	90.5		80.7	J	-	-
Manganese	46.4		39.8		62.0	9.4		44.1	29.5		57.3	39.2		60.3	45.1		51.5		1600	2000
Nickel	3.9		4.8		3.3	1.1	J	7.3	3.9		3.6	2.7		2.4	2.7		2.5		30	310
Potassium	57.5	J	74.8	J	72.3 J	31.2	J	102	79.4	J	62.8 J	56.2	J	52.1 J	61.0	J	59.8	J	-	-
Selenium	<0.12	U	<0.13	U	<0.11 U	<0.12	U	0.19 J	0.13	J	<0.10 U	<0.11	U	<0.11 U	<0.1	U	<0.11	U	3.9	180
Silver	<0.084	U	<0.09	С	0.17 J	0.30	J	<0.071 U	0.21	J	0.25 J	0.11	J	0.14 J	0.14	J	0.14	J	2	180
Sodium	<43.2	U	<46.0	U	<38.7 U	<42.2	U	<36.4 U	<39.2	U	<36.4 U	<37.9	U	<37.8 U	<37.4	U	<39.1	U	-	-
Thallium	<0.039	U	<0.041	U	<0.035 U	<0.038	U	0.037 J	<0.035	U	<0.033 U	<0.034	U	<0.034 U	<0.034	U	<0.035	U	-	-
/anadium	1.8	J	2.0		3.8	1.6	J	19.8	4.9		3.4	2.5		2.6	2.4		6.8	F1	-	-
Zinc	8.1		11.7		20.8	4.3	J	39.2	14.5		4.8 J	4.5	J	7.3	4.2	J	4.1	J	109	10000
Mercury	0.018	J	0.023		0.0099 J	0.015	J	0.063	0.042		0.025	0.043		0.21	0.036		0.12		0.18	0.81

Notes: Bold shaded values exceed NYSDEC unrestricted use Soil Cleanup Objective. - : No NYSDEC Soil Cleanup Objective established for this analyte. F1 : MS and/or MSD recovery exceeds control limits. U : Indicates the analyte was analyzed for but not detected. J : Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

SDG 460-243517-1

TABLE 2 GROUNDWATER QUALITY PARAMATERS - STABILIZED VALUES

WWATER QUALITT FARAWATERS - STABILIZED V	f
DEUTSCH RELAYS FACILITY 65 DALY ROAD EAST NORTHPORT. LONG ISLAND. NEW YORK	

Well Number	Sample Date	рН	Conductivity (ms)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Comments
	06/26/96	6.47	0.124	0.0	8.36	12.10	
	09/05/96	6.23	0.143 0.153	0.0	6.86 8.87	12.70 11.30	
	03/25/97	7.22	0.138	0.0	10.4	9.60	
	06/26/97	6.61	0.133	0.0	10.09	19.30	Faulty temperature probe
	09/16/97 12/17/97	7.34	0.128	1.0	10.19 0.39	13.70 10.00	Forth de constantes
	12/17/97 03/24/98	6.8	0.142	2.0	0.39	10.00	Faulty dis. oxygen probe
	06/09/98	7.16	0.126	4.0	12.38	11.90	
	09/24/98	6.6	0.150	0.0	10.9	12.00	
	12/03/98 03/17/99	6.67	0.138 0.143	0.0	9.93 10.32	12.30 10.70	
	06/02/99	7.24	0.143	0.0	9.88	14.30	
	09/01/99	6.57	0.130	0.0	14.65	12.80	
	12/29/99	7.1	0.19	1.0	7.3	10.20	
ccow	03/15/00 06/20/00	6.81 7.6	0.140 0.230	3.0	10.2 9.7	11.10 13.00	
	09/12/00	NR	0.230 NR	NR	NR	NR	
	12/19/00	7.6	0.130	NA	8.1	10.00	Faulty turbidity probe
	03/20/01	6.90	0.110	0.0	1	10.10	
	09/18/01 12/13/01	6.77 7.20	0.130 0.106	0.0	0.02 8.23	14.60 12.00	
	06/03/02	7.34	0.120	7.6	5.95	12.00	
	06/24/03	7.58	0.290	143.0	9.71	13.13	
	06/15/04	6.65	0.150	2.5	12.5	12.06	
	06/15/05 06/21/06	- 6.56	- 0.118	- 23.0	- 12.76	- 12.85	Parameters stabilized - data los
	06/21/06	6.28	0.118	23.0	12.76	12.85	
	6/20/2008	6.46	0.193	12.0	10.32	14.32	
	6/10/2009	7.61	0.146	36.4	10.23	13.37	
	6/9/2010 6/7/2011	7.17	0.270 0.340	0.0 320.0	9.89 11.98	12.63 12.00	
	6/11/2011	7.11	0.340	320.0	11.98	12.00	
	06/26/96	6.58	0.021	0.0	11.8	13.60	
	09/05/96	6.58	0.021	0.0	8.81	13.60	
	12/18/96	6.18	0.018	0.0	11.36	12.30	
	03/25/97	6.66	0.021	1.0	10.43	10.90	
	06/26/97 09/16/97	7.75 6.55	0.020	0.0	10.61 9.54	14.30 15.20	
	12/17/97	6.55 NR	0.024 NR	2.0 NR	9.54 NR	15.20 NR	
	03/24/98	6.13	0.022	0.0	10.61	11.30	
	06/09/98	6.55	0.024	8.0	11.73	13.90	
	09/24/98 12/03/98	6.23 6.10	0.023 0.018	0.0	10.72 10.2	13.30 13.00	
	03/17/99	6.09	0.019	0.0	11.3	11.90	
	06/02/99	6.35	0.018	0.0	11.72	12.80	
	09/01/99	6.40	0.230	0.0	14.84	14.90	
	12/29/99 03/15/00	7.40 6.85	0.030 0.015	3.0 44.0	8 10.9	11.90 12.00	
	06/20/00	6.00	0.015	0.0	10.9	13.00	
	09/12/00	6.7	0.02	0	10.7	14	
	12/19/00	5.50	0.020	NA	8.4	12.00	Faulty turbidity probe
	03/20/01 09/18/01	5.09 6.96	0.018 0.020	0.0	0.46	12.20 15.30	
	12/12/01	5.73	0.020	75.0	7.88	11.80	
	03/06/02	5.81	0.020	10.2	11.21	12.31	
	06/03/02	6.81	0.020	105.0	6.18	13.27	
	09/19/02 12/16/02	6.03 5.01	0.027 0.030	1.3	7.29 9.83	15.70 11.60	
	03/06/03	6.34	0.030	0.0	11.4	10.40	
	06/24/03	6.52	0.020	130.0	10.18	13.20	
	09/18/03	-	-	-	-	-	Parameters stabilized - data los pocket PC failure
	12/16/03	6.15	0.020	8.4	11.72	12.20	
	03/30/04	6.07	0.033	0.0	10.87	11.80	
	06/09/04 09/03/04	6.06 4.68	0.020	0.9 55.3	11.77 13.13	12.90 13.09	
VROW-1	12/02/04	6.14	0.020	12.3	11.58	12.00	
	03/31/05	6.20	0.180	22.6	10.75	12.20	
	06/15/05	6.13	0.020	9.4	10.36	13.00	
	09/27/05 11/28/05	6.19 6.21	0.020 0.010	1.8 NA	10.69 10.41	15.50 14.40	Faulty turbidity probe
	12/28/05	6.01	0.026	6.1	11.4	11.40	,, p
	03/29/06	6.09	0.014	11.2	12.15	12.72	
	06/21/06 9/27/2006	6.23 5.69	0.018 0.000	28.0 121.0	14.73 9.34	17.72 16.15	
	9/27/2006	5.69	0.000	121.0	9.34	16.15	
	3/19/2007	6.22	0.018	1.1	11.07	12.50	
	06/12/07	6.26	0.020	16.8	11.9	11.30	
	09/19/07 11/28/07	5.93 6.09	0.260 0.025	11.3 21.7	8.13 12.33	21.30 13.55	
	03/05/08	5.79	0.025	26.8	5.25	15.40	
	06/17/08	5.17	0.031	20.4	6.78	16.50	
	09/24/08	5.11	0.020	4.8	12.02	13.56	
	11/25/08 01/22/09	5.79 5.99	0.026	1.0 37.5	12.85 6.45	13.30 15.72	
	01/22/09	5.99	0.086	7.1	5.79	13.61	
	08/05/09	6.37	0.036	16.2	13.15	16.30	
	10/20/09	5.82	0.020	3.0	8.62	13.98	
	03/09/10 06/09/10	5.95 6.13	0.020 0.024	2.4	20.03	12.91 12.85	
	09/29/10	4.96	0.024	14.4	7.47	12.85	
	12/16/10	5.83	0.026	32.4	14.01	12.93	
	03/01/11	5.61	0.078	58.3	10.25	11.20	New Pumps Installed
	06/07/11	5.40	0.033	6.0	8.27	14.00	
	09/23/11 11/29/11	6.11 5.36	0.06 0.031	1.0	6.01 8.38	23.24 14.45	
	03/30/12	5.30	0.031	0.0	5.05	13.40	
	06/15/12	5.12	0.03	0.0	7.3	14.02	
	09/25/12	5.57	0.029	0.0	6.96	15.95	
	12/06/12 04/01/13	5.57	0.031 0.029	1.8 0.0	15.84 10.91	11.63 8.39	
				0.0	11.8	14.24	
	06/20/13 09/16/13	5.40 5.80	0.027 0.032	0.0	9.83	15.72	

EAST NORTHPORT. LONG ISLAND. NEW YORK											
Well Number	Sample Date	рН	Conductivity (ms)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Comments				
	06/26/96	5.53	0.016	0.0	9.55	13.50					
	09/05/96	5.47	0.021	0.0	9.84	13.20					
	12/18/96	5.39	0.019	0.0	9.96	11.90					
	03/25/97 06/26/97	5.85 6.15	0.023 0.016	22.0	9.55 8.48	11.40 13.50					
	09/16/97	5.84	0.010	0.0	10.44	13.70	Faulty dis. oxygen probe				
	12/17/97	6.77	0.024	0.0	0.5	11.50					
	03/24/98	5.85	0.026	1.0	10.81	11.20					
	06/09/98	6.16	0.022	0.0	11.87	13.20					
	09/24/98	6.03	0.023	0.0	10.72	12.80					
	12/03/98	5.37	0.022	0.0	9.14	12.00					
	03/17/99	5.46	0.240 0.023	0.0	8.96	11.60					
	06/03/99 09/01/99	5.33 5.15	0.330	0.0	9 12.91	13.40 12.40					
	12/29/99	6.65	0.030	6.0	6.13	12.10					
	03/15/00	5.80	0.030	1.0	7.83	12.70					
	06/20/00	6.00	0.030	0.0	9.3	12.00					
	09/12/00	5.8	0.03	0	8.6	14	Faulty turbidity probe				
	12/19/00	5.40	0.040	NA	7.5	12.00					
	03/20/01	4.22	0.500	1.0	0.33	11.90					
	09/18/01	5.13	0.420	0.0	0.2	13.10					
	12/12/01	4.95	0.049	1.3	6.63	12.10					
	03/06/02 06/03/02	5.26 5.57	0.048 0.050	0.5 21.0	9.2 5.42	12.66 12.73					
	09/19/02	4.58	0.050	130.0	6.74	14.00					
	12/13/02	4.30	0.060	21.0	8.37	12.10					
	03/06/03	5.32	0.104	6.3	9.66	11.15					
	06/24/03		0.070	142.0	8.72	13.00	parameters stabilized - data lost - pocket PC failure				
	09/18/03	-	-	-	-	-					
	12/31/03	6.71	0.080	9.8	9.52	12.80					
	03/03/04	5.31	0.074	22.0	8.1	12.10					
	06/09/04	5.02	0.063	13.0	11.1	13.02					
/ROW-2	9/27/2004 12/2/2004	5.43 5.5	0.074	6.3 8.5	11.08 9.68	13.11 12.50					
ROW-2	3/31/2005	5.38	0.080	21.3	9.68	12.50					
	6/15/2005	5.31	0.070	7.4	8.53	13.20					
	9/27/2005	5.45	0.072	0.0	10.8	15.80	Faulty turbidity probe				
	11/28/2005	5.41	0.063	NA	10.86	13.89					
	12/28/2005	5.3	0.063	21.4	8.38	12.10					
	4/14/2006	5.32	0.105	7.3	9.71	13.20					
	6/21/2006	6.02	0.062	26.0	7.56	17.74					
	9/28/2006	6.36	0.034	31.3	5.38	14.87					
	12/19/2006	5.95	0.017	10.0	7.81	13.70					
	3/19/2007 6/14/2007	5.78 4.39	0.098 0.119	1.9 64.4	5.45 6.78	12.60 13.37					
	9/19/2007	5.25	0.200	42.8	16.03	17.73					
	11/28/2007	5.84	0.069	55.0	5.16	13.48					
	3/5/2008	5.41	0.032	3.1	12.78	12.80					
	6/17/2008	5.29	0.045	17.5	10.74	14.60					
	9/24/2008	4.9	0.030	5.4	4.2	14.39					
	11/26/2008	5.96	0.270	1.0	3.4	15.00					
	1/22/2009	6	0.240	32.6	14.66	12.36					
	6/10/2009 8/4/2009	5.32 4.69	0.152 0.108	10.9 3.6	6.42 8.14	15.75 13.90					
	10/20/2009	5.3	0.108	3.6	5.11	14.47					
	3/9/2010	5.63	0.167	6.7	6.7	14.37					
	6/9/2010	5.2	0.186	0.0	12.58	13.60					
	9/28/2010	4.78	0.108	0.1	6.35	13.27					
	12/16/2010	5.03	0.101	0.1	11.28	13.24					
	3/1/2011	5.32	0.446	76.5	9.76	13.00	New Bladder Pump Installed				
	6/7/2011	4.41	0.123	0.0	8.52	14.28					
	9/23/2011 11/29/2011	5.48 4.9	0.118 0.113	2.2 3.3	7.03	18.41 13.39					
	3/30/2012	4.9	0.113	0.0	4.72	14.10					
	06/15/12	4.95	0.115	3.5	7.23	14.52					
	09/25/12	5.17	0.117	10.4	5.11	15.65					
	12/06/12	5.33	0.118	1.8	11.68*	11.70	* Dissolved Oxygen fluctuated betwe 12.13 and 11.68				
	04/01/13	5.41	0.117	0.0	9.00	11.10	Carrow MINE Frank				
	06/20/13	5.11	0.112	0.0	9.51	14.87					
	09/16/13 09/16/13	5.8	0.032	0.0	9.83 11.36	15.72					
	11/04/13	5.26	0.122	0.0	12.60	11.19					
	06/10/98	6.18	0.260	0.0	11.96	14.30					
MW-9A	06/03/99	7.73	0.121	0.0	12.38	13.70					
	06/19/00	6.00	0.070	0.0	10.1	14.00					
	01/25/06	8.20	0.105	0.0	5.24	12.18					
-	06/13/12	5.44	0.096	6.0	7.45	17.05					
/W-10											
	06/19/13	5.46	0.102	3.6	7.77	18.16					
	04/14/06	5.80	0.200	21	6.8	16.20					
	06/21/06	5.73	0.087	12	8.29	16.31					
	12/19/06 01/18/07	5.51 5.98	0.131 0.076	5.4 7	6.46 6.70	15.30 15.94					
	01/18/07 06/12/07	4.72	0.076	145	0.03	15.94					
W-10A	10/11/07	5.40	0.144	128	5.92	17.80					
	01/24/08	5.80	0.207	0.0	8.01	16.36					
	06/19/08	5.09	0.147	20.3	5.64	17.35					
	06/10/09	5.49	0.240	17.7	2.85	16.53					
	06/08/11	5.67	0.228	11.0	6.08	17.03					
	00/40/40	5.63	0.246	8.6	8.97	15.83					
	06/12/12 06/19/13	5.60	0.240	5.2	7.44	16.85					

65 DALY ROAD EAST NORTHPORT. LONG ISLAND. NEW YORK										
Well Number	Sample Date	рН	Conductivity (ms)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Comments			
	06/14/96	5.82	0.071	41.0	7.25	15.70				
	06/26/96 07/11/96	7.05	0.100 0.101	19.0 2.0	6.52 6.37	15.60 15.50				
	07/18/96	6.68	0.070	0.0	6.28	15.80				
	07/25/96	6.49	0.072	3.0	6.47	15.50				
	08/01/96	6.34	0.047	49.0	5.83	15.20				
	08/08/96 08/21/96	6.74 5.98	0.042 0.036	16.0 38.0	6.6 7.71	16.00 15.30				
	08/28/96	5.59	0.045	0.0	8.36	15.00				
	09/05/96	5.86	0.042	0.0	5.87	15.60				
	09/11/96	5.88	0.045	1.0	6.26	15.40				
	09/18/96 09/26/96	4.87 6.22	0.058 0.060	1.0	5.32 5.09	15.10 14.90				
	10/17/96	6.02	0.052	0.0	5.66	15.10				
	11/12/96	6.18	0.053	0.0	7.07	14.40				
	12/17/96	5.44	0.046	10.0	7.27	16.00				
	01/22/97 02/26/97	5.90 5.99	0.037 0.440	1.0	9.03 9.39	14.60 14.70				
	03/26/97	6.54	0.045	1.0	8.03	14.40				
	04/23/97	7.09	0.034	0.0	9.06	15.20				
	05/14/97	6.30	0.036	0.0	11.99	15.00				
	06/25/97 07/15/97	6.03 8.06	0.024 0.031	11.0 0.0	9.82 12.11	16.20 16.70				
	08/28/97	11.42	0.032	11.0	2.67	16.30				
	09/16/97	5.38	0.031	0.0	9.94	16.60	Faulty dis. oxygen probe			
	10/20/97	6.07 7.84	0.027	1.0	1.61 0.01	15.80 14.30				
	12/17/97 03/24/98	5.36	0.028	2.0	8.82	14.30				
W-11A	06/10/98	5.72	0.027	10.0	10.69	16.00				
	09/24/98	4.75	0.025	5.0	8.83	15.90				
	12/03/98	5.35	0.024	1.0	7.34 4.25	15.80				
	03/17/99 06/02/99	5.43 4.42	0.030 0.037	2.0	4.25	15.40 16.10				
	09/01/99	5.10	0.054	3.0	0.57	16.20				
	12/30/99	5.76	0.054	4.0	1.79	16.00				
	03/15/00	5.60	0.038	1.0	2.2	15.60	Faulty turbidity probe			
	06/19/00 09/12/00	6.00 6.0	0.050	0.0	1.5	16.00 16	Paulty turbidity probe			
	12/20/00	6.00	0.060	NA	0.2	15.00				
	03/20/01	4.70	0.060	NA	0.2	16.00				
	09/18/01	5.29	0.060	8.0	0.26	15.80				
	12/12/01 06/03/02	5.32 5.51	0.059 0.060	0.5 49.3	0.79	14.90 16.11				
-	06/24/03	5.66	0.040	41.3	4.32	15.77				
	06/10/04	5.05	0.043	9.8	9.1	15.36				
	06/16/05	4.71	0.001	69.3	8.07	16.84				
	09/27/05 01/26/06	4.65 4.98	0.048 0.037	30.2	2.79 9.11	16.05 15.17				
	06/22/06		15.30							
	12/20/06	6.32	0.060	178.0	2.03 14.00					
	01/19/07	6.95	0.055	14.0	6.16	12.46				
	06/13/07 10/09/07	6.48 5.92	0.100 0.085	56.5 61.5	8.81 4.28	15.60 15.61	Fualty turbidity probe			
	1/22/2008	7.33	0.154	0.0	8.99	12.80				
	6/19/2008	5.87	0.090	39.2	2.21	18.00				
	6/11/2009	6.8	0.066	15.1	3.71	17.53				
	6/9/2011 6/12/2012	5.54 6.50	0.094 0.136	131.0 64.5	2.38 4.39	26.83 15.95				
	6/18/2013	6.42	0.090	107.0	0.51	16.71				
	07/25/96	5.52	0.036	11.0	9.46	16.10				
	10/17/96	6.28	0.039	3.0	9.33	14.80				
	12/17/96	5.85	0.036	10.0	10.43	14.30				
	03/26/97	6.81	0.046	19.0	9.85	13.80				
	06/25/97 09/16/97	5.83 5.42	0.038 0.040	1.0	11.05 10.44	15.30 15.90				
	12/17/97	NR	NR	NR	NR	NR				
	03/24/98	6.09	0.046	1.0	9.35	13.50	-			
	06/10/98	6.26	0.047	0.1	11.11	14.70				
	09/24/98 12/03/98	5.66 5.77	0.045	0.0	9.42 8.66	15.30 14.60				
	03/17/99	5.97	0.040	0.0	8.72	13.70				
	06/02/99	5.09	0.036	0.0	8.94	15.10				
	09/01/99	5.18	0.039	0.0	12.5	15.70				
	12/30/99 03/15/00	6.20 5.00	0.040 0.032	1.0	6.3 9.02	14.70 14.20				
	06/19/00	6.40	0.040	0.0	9	15.00	Faulty turbidity probe			
	09/12/00	5.90	0.400	0.0	9.80	15.00				
V-11B	12/20/00	6.20	0.030	NA	0.4	14.00				
16	03/20/01 09/18/01	5.80 6.79	0.030	NA 0.0	0.2	14.00 14.90				
	12/12/01	5.87	0.039	0.0	6.54	14.50				
	06/03/02	6.20	0.040	16.4	5.26	15.84				
	06/24/03	5.84	0.037	44.0	8.68	14.68				
	06/10/04 06/16/05	5.22	0.031 0.037	0.5	9.95 7.9	14.40 16.43				
	09/27/05	4.93	0.037	13.1	8.38	15.58				
	01/26/06	6.05	0.042	0.0	13.68	14.28				
	06/22/06	5.49	0.030	19.0	10.63	14.99				
	12/20/06	6.12 5.94	0.440	10.8	7.88	13.90 13.82				
	01/19/07 06/13/07	5.94 4.84	0.027	17.3	7.9	13.82	Faulty turbidity probe			
	10/09/07	4.97	0.042	18.8	8.94	15.48				
	01/22/08	5.76	0.167	0.0	9.38	12.08				
	06/18/08	4.36	0.048	1.7	8.51	14.60				
	06/11/09 06/10/10	5.45 5.72	0.039 0.050	0.0 7.8	5.09 7.19	15.25 15.59				
	06/09/11	5.58	0.057	7.1	5.72	19.40				
	06/12/12	5.50	0.072	6.6	7.12	14.96				
	06/18/13	5.76	0.092	4.2	7.25	15.07				

				PORT. LONG ISLAN			
Well Number	Sample Date	рН	Conductivity (ms)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Comments
	06/20/96	7.23	0.135	29.0	5.74	15.70	
	06/26/96 07/11/96	7.57 7.15	0.089	10.0 0.0	4.19 4.42	16.00 15.50	
	07/18/96 07/25/96	6.96 6.81	0.079	1.0	5.83 6.13	16.00 15.70	
	08/01/96	6.84 6.45	0.045	3.0 33.0	5.72	15.80	
	08/21/96	6.58	0.044	11.0	6.35	15.50	
	09/18/96 10/17/96	5.30 6.57	0.052 0.048	27.0 0.0	7.12 8.33	15.30 15.20	
	11/12/96 12/17/96	6.62 5.91	0.038	0.0	9.01 9.52	13.90 14.40	
	03/26/97	7.03	0.039	13.0	7.89	14.00	
	06/25/97 09/16/97	6.28 5.73	0.032	1.0	8.43 9.41	15.60 16.00	Faulty dis. oxygen probe
	12/17/97 03/24/98	7.01 6.52	0.065	0.0	0 9.78	13.60 12.50	
	06/10/98 09/01/99	6.57 6.02	0.071	0.0	11.14 14.93	15.00 16.10	
	12/30/99	6.41	0.070	169.0	7.73	14.70	
MW-11C	06/19/00 09/12/00	6.90 7.00	0.080	0.0 50.0	11.7 12.40	15.00 16.00	Faulty turbidity probe
	12/20/00 03/20/01	6.40 5.50	0.100	NA 11.0	0.40	15.00 15.00	
	09/18/01	5.53	0.120	2.0	0.3	15.00	
	12/12/01 06/03/02	6.55 7.05	0.120	157.0 70.2	7.95 6.09	14.80 15.84	
	06/24/03 06/10/04	6.58 5.71	0.020	0.0 173.0	11.44 11.58	10.40 18.25	Faulty turbidity probe
	06/16/05 09/27/05	5.50 5.64	0.075	34.4 NA	8.48 13.72	16.62 16.04	
	01/26/06	5.42	0.026	0.0	10.43	14.28	
	06/22/06 12/20/06	5.93 5.84	0.052	26.0 55.9	13.38 7.7	15.56 14.60	
	01/19/07 06/13/07	6.28 5.19	0.049	37.3 11.3	11.03 7.94	14.11 15.20	Faulty turbidity probe
	10/09/07 01/22/08	4.57	0.089	33.0	3.92	15.65	
	06/18/08	5.64 4.46	0.181 0.099	0.0 12.8	8.74 7.87	12.76 14.70	
	06/11/09 06/10/10	5.73 5.84	0.065 0.087	11.5 0.0	9.26 5.01	15.25 14.77	
	06/08/11 06/12/12	6.58 5.70	0.078	15.6 7.0	10.69 3.23	14.46 14.70	
	06/18/13	5.95	0.090	4.4	5.79	16.45	
	06/18/96 09/11/96	3.70 4.57	0.220	10.0 0.0	5.8 4.55	14.30 14.60	
	12/17/96 03/25/97	4.75 4.19	0.251	0.0 32.0	4.96 9.04	12.90 12.40	Faulty turbidity/temp.probe
	06/25/97	4.36	0.280	185.0	9.12	25.60	Faulty dis. oxygen probe
	09/17/97 12/17/97	4.60 4.11	0.321 0.456	0.0	10.9 0	14.70 12.90	
	03/24/98 06/09/98	4.49 4.45	0.509	1.0	10.21 11.88	12.70 14.10	
	06/02/99	4.44	0.280	0.0	7.69	14.20	
	09/01/99 12/29/99	4.07 4.55	0.249 0.190	0.0 2.0	10.36 7.18	14.50 14.00	
MW-12A	06/20/00 09/12/00	4.80 4.7	0.240	0.0	7.8	14.00 14	Faulty tubidity probe
	12/19/00 03/20/01	3.70 4.56	0.020	NA 2.0	5.9 0.23	14.00 13.50	
	09/18/01	4.60	0.220	0.0	0.15	14.20	
	12/13/01 06/03/02	4.54 4.28	0.198 0.230	1.6 0.6	2.21 2.7	13.90 14.57	
	06/24/03 06/09/04	4.39 4.53	0.140	142.0 76.6	6.08 8.71	14.63 14.45	
	06/15/05 06/22/06	3.80 4.07	0.377	0.0	4.99 8.59	16.02 14.54	
	06/12/07	4.50	0.170	11.5	4.9	15.60	
	06/08/10 06/14/12	6.27 4.06	0.058 0.219	16.2 0.0	4.51 7.13	16.62 14.21	
	06/17/13				and could not be lo		
	06/18/96 09/11/96	3.80 5.92	0.170 0.196	10.0 0.0	7.50 7.30	15.30 14.90	
	12/17/96 03/25/97	6.46 5.76	0.215	0.0 25.0	6.73 11.51	13.20 11.90	Faulty turbidity probe
	06/25/97 09/17/97	5.68 6.12	0.162	300.0 0.0	9.05 11.87	12.70 14.60	Faulty dis. oxygen probe
	12/17/97	5.85	0.232	0.0	0.00	11.90	
	03/24/98 06/09/98	6.02 6.07	0.206	1.0 0.0	10.28 12.13	12.30 14.10	
	09/24/98 12/03/98	5.96 5.83	0.198 0.181	0.0	8.45 6.46	14.30 13.70	
	03/17/99 06/18/99	5.71	0.178	1.0	6.69 5.96	13.90	
	09/01/99	5.70	0.194	0.0	9.33	14.90	
	12/29/99 03/15/00	6.13 4.97	0.170	0.0	5.84 7.13	13.70 13.50	
	06/20/00 09/12/00	6.20 6.30	0.120	0.0	7.80 8.00	14.00 14.00	Faulty turbidity probe Faulty probe
	12/19/00	5.00	0.120	NA	7.7	13.00	
MW-12B	06/03/02 06/24/03	NA 6.10	NA 0.080	NA 96.6	NA 8.39	NA 16.41	
	06/08/04 06/14/05	5.22 4.98	0.077	0.0	8.88 6.34	14.48 16.15	
	09/27/05 01/27/06	4.97 5.33	0.123	6.3 0.0	6.51 11.28	15.98 14.68	
	06/20/06	5.39	0.081	5.0	8.22	15.50	
	12/18/06 01/18/07	5.52 5.48	0.093 0.075	1.2 0.0	7.06 6.38	14.90 14.66	
	06/14/07 10/10/07	4.69 4.95	0.130 0.140	18.0 16.7	5.12 6.37	15.40 15.96	
	01/23/08	5.58 4.91	0.140	0.0	8.95 8.44	14.31	
	06/10/09	4.99	0.110	35.3	2.27	15.06	
	06/09/10 06/09/11	5.53 5.44	0.138 1.810	39.2 9.7	5.07 5.29	14.15 15.18	
	09/23/11 11/29/11	5.46 5.40	0.175	5.0	8.03	15.21	
	03/30/12	5.48	0.190	0.0	5.54	13.68	
	06/14/12 09/25/12	5.05 5.42	0.202	0.0 8.4	7.75 5.18	14.11 14.92	
	12/06/12 04/01/13	5.67 5.66	0.202	8.6 0.0	10.56 9.63	10.96 14.94	
	06/17/13			Vell is burried and s			

		GRC		SCH RELAYS FA	CILITY	ALUES	
Well	Sample Date	pH	EAST NORTH	PORT. LONG ISLA Turbidity (NTU)	Dissolved Oxygen	Temperature (°C)	Comments
	06/09/98	5.96	0.151	0.0	(mg/L) 10.51	15.70	
	06/03/99	5.84	0.045	0.0	9.62	16.00	
	06/19/00	6.50	0.030	0.0	9.2	16.00	
	06/03/02 06/24/03	6.27 5.95	0.040	15.7 101	5.64 9.39	16.03 15.67	
	06/15/05	5.18	0.046	0.0	8.1	17.03	
	09/27/05	4.67	0.026	0.4	9.09	15.74	
	01/26/06	5.55	0.027	0.0	9.01	14.17	
MW-13A	06/21/06 12/19/06	5.72 5.74	0.026	7 3.6	10.92 8.36	16.05 15.00	
	01/19/07	5.80	0.065	0.0	8.4	14.25	
	06/12/07	5.51	0.080	0.0	9.54	17.60	
	10/10/07	4.80	0.046	0.4	9.9	16.26	
	01/23/08	5.90 4.42	0.079	0.0	10.18	14.43	
	06/18/08 06/10/09	4.42 5.64	0.055	1.4	9.25 3.45	15.27 15.32	
	06/09/10	5.20	0.129	0.0	7.53	14.34	
	06/07/11	5.60	0.189	0.0	8.13	14.32	
	06/12/12	5.32	0.205	0.0	7.47	14.67	
	06/20/13	5.34	0.133	0.0	13.55	15.24	
	06/09/98	10.81	0.527	25.0	13.26	15.70	
	06/03/99	10.50 12.40	0.209	1.0	3.6 2.4	13.70	
	06/21/00 09/27/05	6.10	1.100 0.132	0.0 9.6	9.8	12.00 15.50	
	01/25/06	9.58	0.074	1.30	4.89	12.29	
	12/18/06	8.84	0.148	50.2	9.64	14.90	
	01/18/07	8.85	0.075	25.8	5.50	12.37	
MW-14B	06/14/07	8.99	0.200	29.2	1.43 2.99	13.20	
	10/10/07 01/24/08	8.89 7.19	0.188 0.447	31.9 6.6	6.03	13.74 12.40	
	06/20/08	8.53	0.378	4.8	.34	14.95	
	06/10/09	11.39	1.450	29.2	0	13.82	
	06/09/10	12.02	2.540	42.1	1.08	14.78	
	06/09/11 06/13/12	10.92 10.54	1.030 0.819	28.2 33.4	0.39 0.45	12.91 13.79	
	06/17/13	11.65	2.600	18.8	0.43	19.48	
	06/09/98	8.04	0.088	58.0	12.33	14.70	
MW-17	06/03/99	8.19	0.061	0.0	9.46	12.00	
	06/21/00	11.00	0.170	0.0	5.3	12.00	
	06/09/98	7.54	0.148	80.0	9.79	15.80	
MW-18	06/03/99	7.67	0.224	16.0	9.1	13.70	
	06/21/00	10.60	0.190	0.0	2.3	13.00	Faulty dis. oxygen probe
	09/16/97	10.40	3.000	24.0	11.97	13.70	
	12/17/97	7.96	0.148	20.0	0.46	11.20	
	03/24/98	7.49	0.135				
	06/09/98 09/24/98			23.0	11.38	11.40	
		6.76	0.079	18.0	11.7	13.00	
		6.69	0.113	18.0 16.0	11.7 6.94	13.00 12.80	
	12/03/98 03/17/99			18.0	11.7	13.00	
	12/03/98 03/17/99 06/03/99	6.69 6.61 6.51 7.05	0.113 0.086 0.284 0.171	18.0 16.0 20.0 73.0 124.0	11.7 6.94 0.79 2.61 1.27	13.00 12.80 11.60 10.40 14.10	
	12/03/98 03/17/99 06/03/99 09/01/99	6.69 6.61 6.51 7.05 6.27	0.113 0.086 0.284 0.171 0.180	18.0 16.0 20.0 73.0 124.0 40.0	11.7 6.94 0.79 2.61 1.27 0.46	13.00 12.80 11.60 10.40 14.10 12.80	
	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99	6.69 6.61 6.51 7.05 6.27 7.06	0.113 0.086 0.284 0.171 0.180 0.150	18.0 16.0 20.0 73.0 124.0 40.0 18.0	11.7 6.94 0.79 2.61 1.27	13.00 12.80 11.60 10.40 14.10 12.80 12.00	
	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00	6.69 6.61 6.51 7.05 6.27	0.113 0.086 0.284 0.171 0.180	18.0 16.0 20.0 73.0 124.0 40.0	11.7 6.94 0.79 2.61 1.27 0.46 1.63	13.00 12.80 11.60 10.40 14.10 12.80	Faulty turbidity probe
	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00 09/14/00	6.69 6.61 6.51 7.05 6.27 7.06 6.90 8.00 6.1	0.113 0.086 0.284 0.171 0.180 0.150 0.280 0.200 0.10	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6	13.00 12.80 11.60 10.40 14.10 12.80 12.00 12.10 12.00 16	Fadly turbidity probe
MW-19	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00 09/14/00 12/19/00	6.69 6.61 7.05 6.27 7.06 6.90 8.00 6.1 6.10	0.113 0.086 0.284 0.171 0.180 0.150 0.280 0.200 0.200 0.10 0.090	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3	13.00 12.80 11.60 10.40 14.10 12.80 12.00 12.10 12.00 16 11.00	Faulty turbidity probe
MW-19	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00 09/14/00 12/19/00 03/20/01	6.69 6.61 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73	0.113 0.086 0.284 0.171 0.180 0.150 0.280 0.200 0.200 0.10 0.090 0.915	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6	13.00 12.80 11.60 10.40 14.10 12.80 12.00 12.10 12.00 16 11.00 11.60	Faulty turbidity probe
MW-19	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00 09/14/00 12/19/00 03/20/01 09/18/01	6.69 6.61 6.51 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73 7.53	0.113 0.086 0.284 0.171 0.180 0.280 0.200 0.200 0.10 0.090 0.915 0.330	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67	13.00 12.80 11.60 10.40 12.80 12.00 12.10 12.00 16 11.00 11.60 13.50	Faulty turbidity probe
MW-19	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00 09/14/00 12/19/00 03/20/01	6.69 6.61 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73	0.113 0.086 0.284 0.171 0.180 0.280 0.200 0.150 0.280 0.220 0.10 0.090 0.915 0.330 0.279 0.343	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6	13.00 12.80 11.60 10.40 14.10 12.80 12.00 12.10 12.00 16 11.00 11.60	Faulty turbidity probe
MW-19	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00 09/14/00 12/19/00 03/20/01 09/18/01 12/12/01 03/06/02 06/03/02	6.69 6.61 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73 7.53 8.56 9.02 9.65	0.113 0.086 0.284 0.171 0.180 0.280 0.200 0.10 0.200 0.10 0.995 0.330 0.279 0.343 0.400	18.0 16.0 20.0 73.0 124.0 40.0 81.0 81.0 40 NA 845.0 176.0 186.0 77.6 93.9	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.38	13.00 12.80 11.60 10.40 12.80 12.00 12.10 12.00 12.10 12.10 12.10 11.60 11.60 11.60 11.64 11.64 13.37	
MW-19	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00 09/14/00 12/19/00 03/20/01 09/14/01 12/12/01 03/06/02 06/03/02 06/03/02	6.69 6.61 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73 7.53 8.56 9.02 9.65 7.93	0.113 0.086 0.284 0.171 0.180 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.315 0.330 0.279 0.343 0.400 4.950	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 176.0 186.0 77.6 93.9 999+	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.38 2.14	13.00 12.80 11.60 10.40 14.10 12.20 12.10 12.10 12.10 11.00 11.60 13.50 11.70 11.64 13.37 13.92	Faulty turbidity probe
MW-19	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00 09/14/00 12/19/00 03/20/01 12/19/00 03/20/01 12/12/01 03/06/02 06/03/02 06/24/03 06/15/04	6.69 6.61 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73 7.53 8.56 9.02 9.65	0.113 0.086 0.284 0.171 0.180 0.280 0.200 0.10 0.220 0.10 0.995 0.330 0.279 0.343 0.400	18.0 16.0 20.0 73.0 124.0 40.0 81.0 81.0 40 NA 845.0 176.0 186.0 77.6 93.9	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.38	13.00 12.80 11.60 10.40 12.80 12.00 12.10 12.00 12.10 12.10 12.10 11.60 11.60 11.60 11.64 11.64 13.37	
MW-19	12/03/98 03/17/99 06/03/99 09/01/99 12/29/99 03/15/00 06/20/00 09/14/00 12/19/00 03/20/01 09/18/01 12/12/01 03/06/02 06/03/02 06/24/03 06/15/04 06/15/04 06/15/06	6.69 6.61 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73 7.53 8.56 9.02 9.65 7.93	0.113 0.086 0.284 0.171 0.180 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.315 0.330 0.279 0.343 0.400 4.850	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 176.0 186.0 77.6 93.9 999+	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.38 2.14	13.00 12.80 11.60 10.40 14.10 12.20 12.10 12.10 12.10 11.00 11.60 13.50 11.70 11.64 13.37 13.92	
MW-19	12(33/88) 03/17/99 06/03/99 03/15/00 06/23/06 03/15/00 06/20/00 03/15/00 03/15/00 03/15/00 03/15/00 03/15/00 12/19/00 03/15/00 06/15/04 06/15/06	6.69 6.61 6.51 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73 8.56 9.02 9.65 7.93 7.53 7.40 6.05	0.113 0.086 0.284 0.171 0.180 0.280 0.200 0.150 0.280 0.200 0.190 0.215 0.330 0.279 0.343 0.400 4.430 - - 1.450 1.490	18.0 16.0 20.0 73.0 124.0 40.0 18.0 81.0 81.0 40 NA 845.0 176.0 176.0 176.0 176.0 93.9 999+ 30.9 - 36.2 380.0	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.75 1.36 2.14 9.75 - 0 0	13.00 12.80 11.60 10.40 12.80 12.00 12.00 12.10 12.00 12.10 12.00 12.10 12.00 12.10 11.60 11.60 11.60 11.60 11.60 11.60 11.60 11.60 11.60 11.60 12.00 11.60 12.00 12.00 12.00 12.00 12.00 12.00 11.60 11.60 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 13.50 13.50 13.50 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.0000 12.0000000000	parameters stabilized - data lost
MW-19	12/03/98 03/17/99 06/03/99 03/01/99 12/29/99 03/15/00 06/20/00 03/15/00 03/15/00 03/15/00 03/16/00 03/16/00 06/24/03 06/15/04 06/14/07 06/14/07	6.69 6.61 6.51 7.05 6.27 7.06 6.90 6.10 6.10 6.73 7.53 7.53 7.53 8.56 9.02 9.65 7.93 7.53 7.53 7.53 6.65 6.16	0.113 0.086 0.284 0.171 0.180 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.315 0.330 0.279 0.343 0.400 4.430 4.430 1.450 1.450 0.462	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 186.0 77.6 93.9 999+ 30.9 - 36.2 380.0 50.8	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.36 2.14 9.75 0 0 0 0 0 0 0 0 0 0 0 0 0	13.00 12.80 11.60 10.40 12.80 14.10 12.80 12.10 12.00 12.10 13.50 11.60 13.50 11.60 13.50 11.64 13.37 13.92 22.42 12.73 14.90 15.39	
MW-19	12/03/88 03/17/99 06/03/99 03/01/99 12/29/99 03/15/00 06/20/00 03/15/00 06/24/03 06/24/03 06/24/03 06/15/04 06/15/04 06/16/05 06/14/07	6.69 6.61 6.51 7.05 7.06 6.90 8.00 6.1 6.10 6.73 8.56 9.02 9.65 7.93 7.53 - 7.40 6.05 6.16 6.19	0.113 0.086 0.284 0.171 0.180 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.990 0.915 0.330 0.279 0.343 0.400 4.430 - - - - - - - - - - - - - - - - - - -	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 176.0 176.0 93.9 99.9 99.9 30.9 - 36.2 380.0 50.8 622.0	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.6 0.6 1.75 1.38 2.14 9.76 0 0 0 0 0 0 0 0 0 0 0 0 0	13.00 12.80 11.60 10.40 12.80 12.00 12.10 12.00 16 11.00 11.60 13.50 11.60 13.50 11.64 13.37 13.92 22.42 - 12.73 14.90 15.39 15.34	parameters stabilized - data lost
MW-19	12/03/88 03/17/99 06/03/99 03/17/99 03/15/00 06/20/00 03/15/00 03/15/00 03/15/00 03/15/00 03/15/00 12/19/00 03/15/00 12/19/00 03/15/00 06/03/02 06/03/02 06/15/04 06/15/04 06/15/06 06/14/07 06/19/08	6.69 6.61 6.51 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73 8.56 9.02 9.65 7.53 7.40 6.05 6.16 6.97 7.51	0.113 0.086 0.284 0.171 0.180 0.200 0.200 0.150 0.280 0.200 0.10 0.280 0.200 0.330 0.279 0.343 0.400 4.430 - - 1.450 1.450 1.450 0.678 0.289	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 176.0 176.0 177.6 93.9 999+ 30.9 - 36.2 380.0 50.8 622.0 800*	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.75 1.38 2.14 9.75 - 0 0 0 0 0 0 0 0 0 0	13.00 12.80 11.60 10.40 12.80 12.00 12.00 12.10 12.00 12.10 12.00 11.60 11.60 11.60 11.60 11.60 13.50 11.64 13.37 13.92 22.42 - 12.73 14.90 15.34 18.07	parameters stabilized - data lost
MW-19	12/03/88 03/17/99 06/03/99 06/03/99 03/17/99 03/15/00 06/20/00 06/20/00 06/20/00 06/20/00 06/20/00 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 06/24/03 06/24/03 06/16/05 06/29/06 06/19/06 06/09/09 06/09/09	6.69 6.61 6.51 7.05 7.06 6.90 8.00 6.1 6.10 6.73 8.56 9.02 9.65 7.93 7.53 - 7.40 6.05 6.16 6.19	0.113 0.086 0.284 0.171 0.180 0.200 0.200 0.090 0.915 0.330 0.279 0.343 0.400 4.450 4.430 - 1.450 1.450 0.462 0.678 0.289 0.213	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 176.0 176.0 93.9 99.9 99.9 30.9 - 36.2 380.0 50.8 622.0	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.6 0.6 1.75 1.38 2.14 9.76 0 0 0 0 0 0 0 0 0 0 0 0 0	13.00 12.80 11.60 10.40 14.10 12.00 12.10 12.00 16 11.00 13.50 11.70 11.64 13.37 13.92 22.42	parameters stabilized - data lost
MW-19	12/03/88 03/17/99 06/03/99 03/17/99 03/15/00 06/20/00 03/15/00 03/15/00 03/15/00 03/15/00 03/15/00 12/19/00 03/15/00 12/19/00 03/15/00 06/03/02 06/03/02 06/15/04 06/15/04 06/15/06 06/14/07 06/19/08	6.69 6.61 6.51 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73 7.53 7.53 7.53 7.53 7.53 7.53 7.53 7	0.113 0.086 0.284 0.171 0.180 0.200 0.200 0.150 0.280 0.200 0.10 0.280 0.200 0.330 0.279 0.343 0.400 4.430 - - 1.450 1.450 1.450 0.678 0.289	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 186.0 77.6 939+ 30.9 - - 36.2 380.0 50.8 622.0 800* 0.0	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.38 2.14 9.75 0 0 0 0 0 0 0 1.27 1.27 1.38 2.14 9.75 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	13.00 12.80 11.60 10.40 12.80 12.00 12.00 12.10 12.00 12.10 12.00 11.60 11.60 11.60 11.60 11.60 13.50 11.64 13.37 13.92 22.42 - 12.73 14.90 15.34 18.07	parameters stabilized - data lost
MW-19	12/03/88 03/17/99 06/03/99 03/17/99 03/15/00 06/03/99 03/15/00 06/24/00 06/14/00 06/15/04 06/15/04 06/15/04 06/15/04 06/16/05 06/24/03 06/15/04 06/24/05 06/24/03 06/19/08 06/24/03	6.69 6.61 6.51 7.05 6.27 7.06 8.00 6.1 6.10 6.73 8.60 9.02 9.65 7.93 7.53 8.56 9.02 9.65 6.16 6.16 6.17 7.53 7.40 6.16 6.17 7.51 6.16 6.16 6.16 6.16 6.16 6.17 7.53 7.53 7.53 7.53 7.53 7.53 7.53 7.5	0.113 0.086 0.284 0.171 0.180 0.280 0.200 0.150 0.220 0.200 0.10 0.990 0.330 0.279 0.343 0.400 4.450 4.430 - - 1.450 1.490 0.462 0.678 0.289 0.213 0.210 0.220	18.0 18.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 176.0 176.0 177.6 93.9 999+ 30.9 - - 36.2 380.0 50.8 622.0 800* 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.38 2.14 9.75 - 0 0 0 0.61 11.62 6.75 7.3 4.24	13.00 12.80 11.60 10.40 14.10 12.80 12.00 12.00 12.10 12.00 16 11.00 11.60 13.50 11.70 11.64 13.37 13.92 22.42 - 12.73 14.90 15.39 15.30 14.20 14	parameters stabilized - data lost
MW-19 MW-20	12/03/98 03/17/99 03/07/99 03/07/99 03/15/00 06/02/00 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 06/03/02 06/14/02 06/03/02 06/03/02 06/03/02 06/03/02	6.69 6.61 6.51 7.06 6.90 6.90 6.1 6.10 6.73 7.53 8.56 9.02 9.02 9.02 9.65 7.93 7.53 7.53 7.53 7.53 6.05 6.16 6.97 7.51 6.14 6.14 5.63 6.20 5.67	0.113 0.086 0.284 0.171 0.180 0.200 0.150 0.200 0.150 0.200 0.150 0.200 0.150 0.200 0.150 0.200 0.200 0.330 0.279 0.343 0.430 1.450 1.450 1.450 1.450 0.2213 0.2213 0.2210 0.220 0.220	18.0 16.0 20.0 73.0 124.0 40.0 1124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 186.0 77.6 93.9 999+ 30.9 50.8 622.0 80.0 50.8 602.0 800' 0.0 0.0 0.0 0.0 36.9 167	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.38 2.14 9.75 - 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 0 1.62 1.27 1.27 1.27 1.38 1.38 1.38 1.38 1.38 1.12 1.1	13.00 12.80 11.60 10.40 12.80 14.10 12.80 12.00 12.10 12.00 13.00 11.60 13.50 11.60 13.50 11.60 13.37 13.92 22.42 - 12.73 15.39 15.34 18.07 13.60 14.20 13.00 12.84 13.05	parameters stabilized - data lost
	12/03/88 03/17/99 06/03/99 03/17/99 03/17/99 03/15/00 06/02/00 06/20/00 03/14/00 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 06/20/02 06/20/03 06/20/03 06/20/03 06/09/98 06/03/02 06/20/03	6.69 6.61 6.51 7.05 6.27 7.06 6.90 8.00 6.1 6.10 6.73 7.53 8.56 9.02 9.65 7.93 7.53 - 7.93 7.53 6.16 6.97 7.51 6.14 5.63 6.20 5.57 5.57 5.16	0.113 0.086 0.284 0.171 0.180 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.330 0.279 0.343 0.400 4.450 4.450 4.450 4.450 0.462 0.289 0.2213 0.2213 0.2210 0.240 0.220 0.217	18.0 18.0 20.0 73.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 186.0 77.6 939+ 30.9 - - 36.2 380.0 50.8 622.0 800' 0.0 0.0 0.0 0.0 36.9 167 112	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.76 1.76 1.76 1.76 1.76 0.6 0.67 0 0 0.61 1.162 6.75 7.3 4.24 7.0 10.55	13.00 12.80 11.60 10.40 14.10 12.00 12.00 12.10 12.00 16 11.00 13.50 11.70 11.64 13.37 13.92 22.42 7 7 14.90 15.39 15.34 15.34 15.34 15.34 15.34 13.00 12.86 12.88	parameters stabilized - data lost
	12/03/98 03/17/99 03/07/99 03/07/99 03/15/00 06/02/00 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 03/20/01 06/03/02 06/14/02 06/03/02 06/03/02 06/03/02 06/03/02	6.69 6.61 6.51 7.06 6.90 6.90 6.1 6.10 6.73 7.53 8.56 9.02 9.02 9.02 9.65 7.93 7.53 7.53 7.53 7.53 6.05 6.16 6.97 7.51 6.14 6.14 5.63 6.20 5.67	0.113 0.086 0.284 0.171 0.180 0.200 0.150 0.200 0.150 0.200 0.150 0.200 0.150 0.200 0.150 0.200 0.200 0.330 0.279 0.343 0.430 	18.0 16.0 20.0 73.0 124.0 40.0 1124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 186.0 77.6 93.9 999+ 30.9 50.8 622.0 80.0 50.8 602.0 800' 0.0 0.0 0.0 0.0 36.9 167	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.38 2.14 9.75 - 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 4.9 0 0 0 1.62 1.27 1.27 1.27 1.38 1.38 1.38 1.38 1.38 1.12 1.1	13.00 12.80 11.60 10.40 12.80 14.10 12.80 12.00 12.10 12.00 13.00 11.60 13.50 11.60 13.50 11.60 13.37 13.92 22.42 - 12.73 15.39 15.34 18.07 13.60 14.20 13.00 12.84 13.05	parameters stabilized - data lost
	12/03/88 03/17/99 06/03/99 03/17/99 03/17/99 03/17/99 03/15/00 06/03/09 03/15/00 06/12/00 03/15/00 06/14/00 03/14/00 06/14/00 06/12/01 06/12/01 06/03/02 06/12/00 06/03/02 06/03/02 06/03/02 06/03/02 06/03/02 06/03/02 06/03/02 06/03/02 06/03/02	6.69 6.61 6.51 7.05 7.06 6.90 8.00 6.1 6.10 6.73 7.53 8.56 9.02 9.65 7.93 7.53 7.40 6.05 6.16 6.16 6.17 7.53 7.53 7.40 6.05 6.16 6.14 5.57 5.57 5.16 5.35	0.113 0.086 0.284 0.171 0.180 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.280 0.330 0.279 0.330 0.279 0.330 0.279 0.330 0.400 4.430 - - - - - - - - - - - - - - - - - - -	18.0 18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 176.0 176.0 176.0 176.0 176.0 176.0 176.0 30.9 - - 36.2 380.0 50.8 622.0 800° 0.0 0.0 0.0 0.0 0.0 36.9 167 112 38.4	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.38 2.14 9.76 0 0 0 4.9 0 0.61 1.62 6.75 7.3 4.24 7.0 10.55 5.49	13.00 12.80 11.60 10.40 14.10 12.80 12.00 12.00 12.00 12.00 12.00 12.00 12.00 14.10 11.60 11.60 11.60 11.60 11.70 11.64 13.37 13.92 22.42 - - 12.73 14.90 15.39 15.30 14.20 13.00 12.80 13.00 12.80 13.00 13.00 13.00	parameters stabilized - data lost
	12/03/98 03/17/99 06/02/99 06/02/99 06/02/99 06/02/100 06/20/00 09/14/00 09/14/00 09/14/00 09/14/00 09/14/00 09/14/00 09/14/00 09/14/00 06/20/00 06/24/00 06/09/98 06/09/98 06/24/00	6.69 6.61 6.51 7.05 6.27 7.06 6.90 6.1 6.10 6.73 7.53 8.56 9.02 9.65 7.93 7.53 7.53 7.53 7.53 7.53 6.05 6.16 6.16 6.17 6.17 7.51 6.14 5.63 6.20 5.57 5.16 5.35 5.66	0.113 0.086 0.284 0.171 0.180 0.200 0.150 0.200 0.190 0.990 0.915 0.330 0.279 0.343 0.400 4.430 - - 1.450 0.430 0.462 0.678 0.213 0.213 0.213 0.210 0.220 0.220 0.213 0.213 0.221 0.220 0.253 0.185	18.0 16.0 20.0 73.0 124.0 40.0 18.0 50.0 81.0 40 NA 845.0 176.0 186.0 77.6 93.9 999+ 30.9 - - 36.2 380.0 50.8 622.0 800° 0.0 0.0 0.0 0.0 36.9 112 38.4 37	11.7 6.94 0.79 2.61 1.27 0.46 1.63 3 0.7 7.6 1.3 0.6 0.67 1.12 1.75 1.38 2.14 9.75 0 0 0 0 0 0 0 0 0 0 0 0 0	13.00 12.80 11.60 10.40 12.80 11.60 12.80 12.80 12.80 14.10 12.80 12.10 12.00 12.10 12.00 11.61 13.50 11.70 11.64 13.37 12.73 14.90 15.39 15.39 15.39 15.39 13.60 14.20 13.00 12.84 13.05 12.84 13.05 12.85 14.85	parameters stabilized - data lost

Page 5 of 10

06/12/12 06/14/96 09/26/96 12/17/96 03/26/97 06/25/97 09/16/97

06/14/96 09/26/96 12/17/96 03/26/97 06/25/97 09/16/97

MW-21A

MW-22A

5.80 6.89 5.92 6.40 5.92 4.96

5.50 6.01 6.48 6.95 6.67 5.28

0.130 0.137 0.099 0.084 0.080 0.062

0.025 0.025 0.022 0.030 0.030 0.023

19.0 0.0 10.0 0.0 2.0 0.0

8.0 0.0 0.0 34.0 0.0 41.0

6.5 2.72 3.21 9.11 3.27 11.49

10.3 9.09 9.5 9.72 9.97 10.66

17.70 15.00

13.00 15.60 16.70

17.00 14.80 14.60 13.00 15.10 16.70

Well	Sample Date	pH	Conductivity (ms)	Turbidity (NTU)	Dissolved Oxygen	Temperature	Comments
Number					(mg/L)	(°C)	
	09/26/96	6.81	0.078	0.0	8.13	15.60	
	12/17/96 03/26/97	6.10 7.51	0.034 0.047	0.0 2.0	10.58 9.49	14.40 12.80	
	06/25/97	6.77	0.036	0.0	8.61	15.60	
	09/16/97	5.76	0.035	44.0	10.58	16.30	
	12/17/97	6.12	0.050	0.0	7.68	14.50	
	03/24/98	7.65	0.043	0.0	10.02	12.70	
	06/10/98 06/02/99	6.22 5.40	0.040	0.0	13.06 9.39	15.10 14.60	
	12/30/99	6.46	0.035	1.0	6.14	14.80	
	06/19/00	6.70	0.040	0.0	8.7	14.00	Faulty turbidity probe
	09/12/00	7.4	0.4	0.0	9.3	15	
	12/20/00	6.60	0.040	NA	0.4	13.00	
	03/20/01	6.56	0.047	1.0	0.4	12.70	
	09/18/01 12/12/01	5.53 6.30	0.040	0.0	0.33 6.47	14.90 13.50	
	06/03/02	6.46	0.047	5.7	5.13	15.47	
MW-23A	06/24/03	6.50	0.040	126.0	8.8	14.40	
	06/10/04	5.75	0.077	0.0	10.49	14.19	
	06/15/05	6.19	0.104	0.0	7.76	15.85	
	09/27/05	5.35	0.081	102.0	8.15	14.76	
	01/26/06	5.63	0.070	0.0	7.25	13.71	
	06/22/06 12/19/06	6.23 5.99	0.084	5.0 7.2	10.03 7.59	16.60 14.10	
	01/19/07	6.09	0.083	0.0	7.99	13.48	
	06/13/07	5.44	0.140	1.8	7.31	14.40	
	10/09/07	5.12	0.130	53.4	8.14	14.69	
	01/23/08	5.95	0.233	0.7	9.3	13.50	
	6/18/2008	4.84	0.137	2.1	7.98	14.23	
	6/10/2009	6.19	0.122	2.6	7.37	14.75	
	6/10/2010 6/8/2011	5.96 5.79	0.128	0.0	8.03	13.64 14.01	
	6/13/2012	5.67	0.136	2.1	7.12	13.54	
	9/25/2012	NS	NS	NS	NS	NS	
	6/19/2013	5.69	0.125	1.9	7.45	14.03	
	06/18/96	5.77	0.180	18.0	2.16	16.00	
	09/05/96	5.54	0.167	0.0	2.94	15.80	
	12/18/96	6.59	0.239	0.0	3.66	14.10	
	01/22/97	5.90	0.037	1.0	9.03 4.97	14.60	
	02/26/97	5.91	0.224	0.0	4.97	14.30	
	04/23/97	6.74	0.189	0.0	4.58	14.30	
	06/25/97	5.99	0.135	0.0	3.21	15.60	
	07/15/97	7.55	0.165	0.0	12.3	16.30	
	08/28/97	6.72	0.140	0.0	2.56	16.00	
	09/16/97	5.43	0.153	0.0	10.56	16.20	
	10/20/97	6.00 6.59	0.173	0.0	1.19 4.94	14.30 14.20	
	03/24/98	5.59	0.190	0.0	9.7	13.50	
	06/10/98	5.60	0.149	0.0	11.45	14.80	
	09/24/98	NR	NR	NR	NR	NR	
MW-24	12/03/98	5.48	0.120	0.0	0.8	14.80	
	03/17/99	5.56	0.105	0.0	0.75	14.80 15.10	
	06/02/99 09/01/99	5.73 5.27	0.090	0.0	0.72 0.12	15.30	
	12/30/99	5.55	0.090	2.0	0.93	15.10	
	03/15/00	5.12	0.068	5.0	1.5	14.70	Faulty turbidity probe
	06/19/00	6.10	0.080	0.0	0.9	15.00	
	12/20/00	5.60	0.070	NA	0.3	14.00	
	03/20/01	4.70	0.070	10.0	0.2	15.00	
	09/18/01 12/12/01	6.61 5.06	0.080	38.0 7.1	0.45	15.30 14.60	
	12/12/01 06/03/02	5.06	0.078	7.1	1.5	14.60	
	06/24/03	6.00	0.070	163.0	4.38	15.47	
	06/16/05	5.28	0.066	68.6	9.95	14.86	
	06/22/06	5.09	0.060	10.0	2.98	15.37	
	06/12/07	4.85	0.059	150.0	4.65	16.95	
	6/20/97	5.22	0.030	1.0	10.43	16.00	
	06/13/12	5.17	0.090	1.9	3.89	15.23	
	09/05/96	5.43	0.027	0.0	10.78	16.70	
	12/18/96 03/26/97	6.23	0.028	0.0	8.39 8.96	14.90	
MW-24A	03/26/97 05/14/97	5.61 6.36	0.030	5.0	8.96	14.50 14.60	
	06/25/97	5.89	0.024	0.0	9.91	16.50	
	09/16/97	4.98	0.025	0.0	9.66	16.60	
				1			

DEUTSCH RELAYS FACILITY

65 DALY ROAD EAST NORTHPORT. LONG ISLAND. NEW YORK											
Well Number	Sample Date	рН	Conductivity (ms)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Comments				
	06/18/96	9.70	0.180	20.0	8.7	14.00					
	09/11/96 12/17/96	7.33 10.57	0.204 0.216	36.0 0.0	9.26 7.25	14.20 12.80	Faulty turbidity/temp.probe				
	03/25/97	6.45	0.228	12.0	9.21	11.20					
	06/25/97	6.00	0.198	47.0	9.24	22.00	Faulty dis. oxygen probe				
	09/16/97 12/17/97	6.61 6.44	0.200	9.0 10.0	11.64 0.06	13.80 11.50					
	03/24/98	6.05	0.170	8.0	10.76	11.60					
	06/09/98	6.00	0.140	20.0	12.53	13.00					
	09/01/99	5.04	0.166	25.0	12.1	13.60					
	12/29/99 06/20/00	6.33 6.70	0.130	100.0 3.0	7.35 9.5	12.70 13.00	Faulty turbidity probe				
	09/12/00	6.5	0.110	16	9.6	13.00	Pauly tarbidity probe				
	12/19/00	5.50	0.110	NA	7.6	12.00					
MW-25	03/20/01	6.50	0.105	99.0	0.44	12.10					
	09/18/01	6.65	0.100	78.0	0.34	13.10					
	12/13/01 06/03/02	6.27 6.58	0.096	127.0 88.7	8.03 6.73	12.30 13.51					
	06/24/03	6.18	0.090	170.0	11.82	13.59					
	06/09/04	5.47	0.710	78.0	9.99	13.55					
	06/15/05	6.12	0.088	45.0	10.48	14.84					
	06/22/06	5.96	0.080	160.0	9.9.1	13.71					
	06/12/07 06/09/11	6.67 5.81	0.120	64.9 20.1	10.47 6.17	13.30 14.69					
	09/23/11	6.40	0.206	14.8	7.28	15.65					
	11/29/11	5.75	0.191	26.0	7.7	14.95					
	03/30/12	6.35	0.217	78.3	5.73	12.63					
	06/14/12 09/25/12	5.78 6.17	0.202	60.1 69.6	7.7 4.97	15.39 15.62					
	12/06/12	6.24	0.175	51.7	11.11	11.82					
	04/01/13	NS	NS	NS	NS	NS	Difficulties encountered when lowering the pump. Samples could not be				
		-		-	-		collected.				
	06/17/13	6.53	0.191	40.1	8.48	18.53	In an earlier reading the water				
	09/17/13	6.18	0.228	3.1	10.55	14.83	appeared more turbid than Horiba reading.				
	11/04/13	5.97	0.231	5.5	11.31	13.57					
	06/18/96	10.10	0.300	20.0	10.9	14.00					
	09/11/96	8.69	0.248	26.0	6.45	14.20					
	12/17/96 03/25/97	8.11 9.74	0.223	49.0 7.0	7.48	12.40	Faulty turbidity/temp.probe				
MW-26	06/25/97	7.54	0.227	49.0	8.91	22.20					
	09/17/97	10.36	0.174	5.0	12.62	14.00					
	06/09/98	7.79	0.234	56.0	11.45	13.70					
	06/18/99	5.99	0.190	0.0	7.77	13.80					
	06/20/00	7.20	0.120	0.0	9.4	14.00					
	06/18/96	7.30	0.100	12.0	7.5	14.70					
	09/11/96 12/17/96	6.89 7.33	0.112 0.057	12.0 26.0	8.37 7.21	15.10 13.30	Faulty turbidity/temp.probe				
MW-27	03/25/97	6.70	0.101	33.0	8.41	12.00	r uny unoutyremp.proce				
	06/25/97	5.59	0.060	299.0	10.24	22.30					
	09/17/97	6.70	0.090	1.0	11.82	14.70					
	06/18/96	8.70	0.200	10.0	6.2	14.00					
	09/11/96	7.83	0.174	10.0	7.17	14.10					
	12/17/96	7.72	0.166	0.0	5.81	12.60	Faulty turbidity/temp.probe				
	03/25/97 06/25/97	7.04 6.40	0.161 0.159	6.0 42.0	7.02 9.41	11.50 21.10	Faulty dis. oxygen probe				
	09/17/97	7.43	0.168	8.0	12.29	13.90					
	12/17/97	10.29	0.168	0.0	0.35	11.80					
	03/24/98	9.67	0.151	1.0	10.48	11.90	+				
	06/09/98 12/03/98	7.84 5.75	0.113 0.940	9.0 45.0	11.99 6.91	13.10 13.10					
	03/17/99	5.64	0.112	76.0	6.45	13.00					
	06/02/99	6.25	0.122	38.0	5.58	13.70					
	09/01/99	6.40	0.114	48.0	7.66	13.80					
	12/29/99	6.77	0.110	51.0	4.04	12.80					
	03/15/00 06/20/00	5.14 7.80	0.175 0.120	18.0 4.0	7.04 11	13.10 13.00	Faulty tubidity probe				
MW-28	09/12/00	7.2	0.120	3	11.8	13.00	. any tobary probe				
	12/19/00	6.00	0.120	NA	9.1	12.00					
	03/20/01	6.78	0.180	28.0	0.37	12.40					
	09/18/01	6.60	0.150	15.0 341.0	0.32	13.70					
	12/13/01 06/03/02	6.37 6.86	0.122	341.0 99.9	7.82	13.40 14.05					
	06/24/03	7.00	0.110	219.0	10.43	14.03					
	06/09/04	6.20	0.090	405.0	11.52	13.89					
	06/15/05	6.16	0.980	27.3	10.43	15.39	Deresta D. 1				
	06/22/06	6.80	0.087	0.0	12.68 10.29	14.58 14.00	Pumped 2 well volumes				
	06/13/07 06/08/11	6.30 5.84	0.070	29.3 30.6	10.29	14.00					
	11/29/11	5.46	0.140	7.6	9.87	13.55					
	03/30/12	5.20	0.176	0.0	4.77	12.10					
	06/14/12	5.49	0.162	0.0	10.38	13.41					
	09/25/12	5.71	0.161	0.0	5.41	13.99					
	12/06/12 03/28/13	5.23	0.141 0.219	0.0	13.3 11.44	11.50 10.55	+				
	03/28/13 06/17/13	6.09 5.30	0.219	0.0	9.28	10.55					
	09/17/13	5.90	0.174	0.0	9.49	12.99					
	11/04/13	5.66	0.175	0.0	12.09	11.19					

Page 7 of 10

TABLE 2 GROUNDWATER QUALIT ABILIZED VALUES

Well	Comula		Conductivity	Turbidity	Dissolved	Temperature	T
Number	Sample Date	pH	(ms)	(NTU)	Oxygen (mg/L)	(°C)	Comments
	06/26/96	6.73	0.000	6.0	(ilig/L) 8.01	19.30	
	07/11/96	6.30	0.026	0.0	10.51	16.10	
	07/18/96	5.55	0.028	7.0	9.53	16.40	
	07/25/96 08/01/96	5.64 5.62	0.029	1.0	9.28	15.70 15.40	
	08/08/96	5.91	0.024	0.0	7.7 8.59	16.20	
	08/21/96	5.76	0.023	0.0	8.69	15.40	
	08/28/96	5.01	0.028	0.0	9.36	15.10	
	09/05/96	7.57	0.027	10.0	6.7	15.60	
	09/11/96 10/17/96	5.92 6.33	0.028	0.0	9.4 8.57	15.70 14.70	
	12/17/96	5.44	0.022	10.0	10.74	14.20	
	03/26/97	6.48	0.039	3.0	9.32	13.10	
	06/25/97	5.71	0.029	1.0	10.19	15.20	
	09/16/97 06/10/98	5.37 5.89	0.028	0.0	9.91 11.75	16.20 15.00	
	06/02/99	4.65	0.024	3.0	9.1	14.80	
MW-29	06/19/00	5.80	0.030	0.0	9	15.00	
	06/03/02	6.20	0.040	28.1	5.01	15.49	
	06/24/03	5.92	0.040	51.5	7.87	15.07	
	06/10/04 06/16/05	5.42 5.41	0.053	138.0 42.9	9.81 5.09	14.79 16.55	
	09/27/05	5.09	0.050	14.3	6.94	15.99	
	01/26/06	5.61	0.041	0.0	9.66	14.73	
	06/22/06	5.63	0.050	46.0	9.73	14.91	
	12/20/06	5.92	0.060	16.1	0.98	14.90	
	01/19/07 06/13/07	6.08 4.92	0.041 0.060	8.1 14.3	1.46 0	14.68 15.10	
	10/09/07	4.92	0.060	14.3 36.7	0	15.10	
	1/23/2008	6.08	0.179	7.5	5.32	14.10	
	6/18/2008	5.31	0.076	16.7	4.21	16.80	
	6/11/2009	5.89	0.050	28.5	0	16.96	
	6/8/2010 6/8/2011	5.75 5.22	0.067	49.1 8.8	1.87 1.43	17.03 16.79	
	6/13/2012	5.8	0.069	35.0	0.69	15.91	
	6/19/2013	5.64	0.069	14.6	1.01	16.88	
	10/07/96	7.23	0.143	8.0	3.3	14.80	
	12/17/96	6.41	0.178	10.0	4.51	16.40	
	03/26/97	10.57	0.261	48.0	3.45	13.60	
	04/23/97	11.17	0.243	0.0	5.03	13.80	
	05/14/97 06/25/97	11.35 8.15	0.286	0.0 44.0	12.72 2.85	14.40 15.90	
	07/15/97	8.82	0.076	0.0	12.08	16.90	
	08/28/97	9.73	0.071	8.0	2.72	16.20	
	09/16/97	6.09	0.059	19.0	10.65	16.50	
	10/20/97	6.98	0.057	3.0	2.19	15.10	
	12/17/97 03/24/98	NR 6.06	NR 0.071	NR 18.0	NR 9.37	NR 13.80	
	06/10/98	5.92	0.057	0.0	11.91	15.30	
	09/24/98	NR	NR	NR	NR	NR	
	12/03/98	5.53	0.630	15.0	7.21	14.70	
	03/17/99	5.79	0.069	8.0	7.48 7.42	13.30	
	06/18/99 09/01/99	5.25 5.49	0.071 0.082	0.0 3.0	10.15	15.50 16.90	
	12/30/99	6.10	0.090	24.0	6.1	14.60	
	03/15/00	5.56	0.078	23.0	7.52	14.10	
MW-30A	06/19/00	6.30	0.090	0.0	7.8	15.00	Faulty tubidity probe
	09/14/00	6.1	0.10	40	7.6	16	
	12/20/00 03/20/01	6.30 5.10	0.110 0.120	NA 10.0	0.5	12.00 14.00	
	06/03/02	6.30	0.160	238.0	4.46	17.01	
	06/24/03	6.28	0.117	154.0	7.25	16.66	
	06/09/04	5.44	0.110	16.2	8.54	15.10	
	09/03/04	4.69	0.134	27.4	8.37	15.51	
	06/14/05 09/27/05	5.19 5.03	0.125 0.107	5.4 37.4	5.58 7.03	16.55 16.03	
	03/27/05	5.25	0.084	0.0	13.01	14.41	
	06/21/06	5.51	0.106	38.0	9.21	14.90	
	12/19/06	5.42	0.095	5.5	5.04	17.30	
	01/22/07	5.10	0.081	10.5	5.21 2.33	15.29	
	10/11/07	5.10	0.180	8.2	2.62	16.70	
	01/24/08	5.71	0.149	10.7	6.1	15.66	
	06/18/08	4.91	0.143	8.9	2.09	16.33	
	06/10/09	6.27	0.099	37.6	4.77	16.75	Turbidity > 55 NTU
	06/08/10 06/09/11	5.74 5.59	0.100	44.7 7.6	2.48	16.83 21.14	
	06/09/11	6.00	0.099	158.0	2.27	15.51	
	06/19/13	5.50	0.144	8.9	4.41	17.12	
	12/17/96	9.24	0.175	55.0	2.51	14.40	
	03/26/97	10.38	0.129	33.0	9.3	13.10	
	06/25/97	9.45	0.133	36.0	4.25	16.10	
	09/16/97	7.09	0.179 0.053	31.0	11.43	15.90 15.08	
	09/27/05 01/26/06	5.37 6.00	0.053	126.0 0.0	2.63 2.65	15.08	
	12/20/06	6.64	0.073	31.5	0.35	17.40	
MW-31A	01/22/07	5.58	0.032	14.1	1.3	15.64	
	06/14/07	5.38	0.050	26.2	0	16.00	
	10/11/07	5.98	0.072	32.8	0	17.39 15.59	
	01/24/08 06/19/08	5.68 5.10	0.068	50.0 26.3	6.02 0.73	15.59	
	06/09/09	5.17	0.120	25.5	0.41	17.61	
			0.046	24.7	0.65	17.33	
	06/08/10	6.08					
	06/08/11	5.79	0.045	26.7	0.45	15.10	

EAST NORTHPORT. LONG ISLAND. NEW YORK										
Well Number	Sample Date	pН	Conductivity (ms)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Comments			
	12/17/96	6.41	0.033	10.0	2.58	15.80				
	03/26/97 06/25/97	7.71 7.24	0.105	15.0 1.0	9.76 2.4	12.70 15.00				
	09/16/97 06/10/98	6.14 6.37	0.079	0.0	10.51 12.14	15.90 14.30				
	06/02/99	5.82	0.037	0.0	3.01	14.40				
WW-32A	06/19/00 06/03/02	6.30 6.05	0.040	0.0	6.1 4.19	14.00 14.01				
	06/24/03	6.55	0.070	167	10.91	14.18				
	06/09/04 06/15/05	5.98 5.59	0.068	11.6 0.5	11.81 8.9	13.84 15.72				
	06/21/06	6.21	0.087	20	14.58	15.72				
	06/13/07 06/14/12	5.57 5.93	0.100	10.3	10.75 8.85	14.00				
	10/07/96	7.66	0.133	4.0	3.02	15.00				
	12/18/96	7.55	0.738	0.0	3.75	14.70				
	01/22/97 02/26/97	7.25 7.08	0.635	0.0	3.19 3.26	14.40 14.90				
	03/26/97	6.7	0.581	1.0	5.49	14.30				
	04/23/97 05/14/97	7.58 7.48	0.463 0.513	0.0	4.54	14.90 15.40				
	06/25/97	7.03	0.557	0.0	2.31	15.90				
	07/15/97 08/28/97	7.86	0.553 0.563	0.0	12.54 2.54	16.50 16.30				
	09/16/97	6.33	0.448	0.0	11.61	16.40				
	10/20/97 12/17/97	6.92 7.35	0.413 0.440	1.0	1.21 3.52	15.20 14.90				
	03/24/98	6.66	0.549	5.0	9.86	13.40				
	06/10/98 09/24/98	6.64 NR	0.373 NR	0.0 NR	12.07 NR	15.10 NR				
	12/03/98	6.42	0.196	7.0	0.81	15.00				
	03/17/99 06/02/99	6.45 6.23	0.228	1.0 0.0	0.71	14.80 15.30				
	09/01/99	5.99	0.135	10.0	0.12	15.60				
	12/30/99	6.56 7.45	0.110	34.0 257.0	1.3 1.28	14.90 14.40				
/W-33A	03/15/00 08/22/00	6.4	0.377	8.0	0.9	16.00	Faulty tubidity probe			
-	09/12/00	6.7	0.11	7.0	0.9	16				
	12/20/00 03/20/01	6.8 10.08	0.100	NA 248.0	0.4	14.00 14.9				
	09/18/01	7.72	0.014	60.0 98.0	0.38	16.1 14.7				
	12/12/01 06/03/02	7.71	0.128	94.7	0.63	15.78				
	06/24/03	6.86	0.08	220.0	2.26	15.3 14.91				
-	06/10/04 06/16/05	6.02 5.86	0.81 0.151	83.9 40.6	6.39 0	16.68				
-	09/27/05	5.37	0.069	5.2	0.51	17.26				
	01/26/06 06/22/06	6.02	1.058 0.004	12.5 66.0	8.46 0.72	13.22 15.17				
	12/20/06	5.93	0.071	15.7	0.24	14.70				
	01/19/07 06/12/07	5.94 5.53	0.062	26.3 68.3	2.24 2.29	13.99 15.39				
-	10/10/07	4.98	0.102	21.4	0.31	15.57				
	01/23/08 06/18/08	5.74 4.81	0.166	33.0 12.9	5.77	14.49 15.15				
	06/10/09	6.25	0.096	26.9	2.10	16.13				
	06/10/10 06/08/11	5.72 6.05	0.091 0.102	5.1 9.9	1.80	14.87 15.11				
	06/12/12	5.19	0.098	0.5	0.99	15.31				
	06/20/13	5.68 6.86	0.086	0.0	1.43	14.92				
	12/17/96	7.18	0.153	0.0	3.76	14.60 14.00				
	03/26/97	7.05	0.152	0.0	3.25	13.80				
	06/25/97 09/16/97	6.66 6.63	0.132	0.0	4.13 10.43	15.20 15.50				
	12/17/97	6.87	0.130	0.0	4.51	14.20 11.70				
	03/24/98 06/10/98	5.93 5.81	0.190	0.0	10.7 14.14	11.70				
	09/24/98	NR	NR	NR	NR	NR 13.80				
	12/03/98 03/17/99	5.60 5.57	0.149 0.138	0.0	1.11 1.84	13.80 13.40				
	06/02/99	5.61	0.145	0.0	2.45	13.90				
	09/01/99 12/29/99	5.26 6.00	0.158	1.0 9.0	1.45 2.96	14.10 13.00				
	03/15/00	4.78	0.105	0.0	3.34	13.40	P			
	08/22/00 09/12/00	5.10 5.80	0.100	0.0	4.8 5.00	14.00 14.00	Faulty tubidity probe			
	12/20/00	5.90	0.110	NA	0.40	12.00				
	03/20/01 09/18/01	5.66 5.39	0.113 0.130	0.0	0.21 0.26	13.50 13.50				
		5.04	0.118	0.4	3.94	13.30				
ļ	12/13/01						1			
	12/13/01 06/03/02 06/24/03	5.36 5.35	0.149	16.0 131.0	3.12 4.78	14.08 13.67				
IW-34A	06/03/02 06/24/03 06/09/04	5.36 5.35 5.76	0.090	131.0 0.0	4.78 5.4	13.67 13.30				
W-34A	06/03/02 06/24/03	5.36 5.35	0.090	131.0	4.78	13.67				
W-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06	5.36 5.35 5.76 4.88 4.38 4.79	0.090 0.076 0.106 0.087 0.080	131.0 0.0 0.0 1.8 0.0	4.78 5.4 2.21 3.76 4.51	13.67 13.30 15.25 13.92 12.22				
W-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06 06/22/06	5.36 5.35 5.76 4.88 4.38 4.79 5.05	0.090 0.076 0.106 0.087 0.080 0.175	131.0 0.0 0.0 1.8	4.78 5.4 2.21 3.76 4.51 5.29	13.67 13.30 15.25 13.92 12.22 13.42				
IW-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06 06/22/06 12/19/06 01/19/07	5.36 5.35 5.76 4.88 4.38 4.79 5.05 5.04 5.00	0.090 0.076 0.106 0.087 0.080 0.175 0.159 0.123	131.0 0.0 1.8 0.0 36.0 4.7 0.2	4.78 5.4 2.21 3.76 4.51 5.29 2.73 3.41	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32				
IW-34A	06/03/02 06/24/03 06/09/04 06/16/05 01/26/06 06/22/06 12/19/06 01/19/07 06/12/07	5.36 5.35 5.76 4.88 4.38 4.79 5.05 5.04 5.00 4.87	0.090 0.076 0.106 0.087 0.080 0.175 0.159 0.123 0.251	131.0 0.0 1.8 0.0 36.0 4.7 0.2 17.1	4.78 5.4 2.21 3.76 4.51 5.29 2.73 3.41 6.07	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32 13.82				
W-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06 06/22/06 12/19/06 01/19/07 06/12/07 10/10/07 01/23/08	5.36 5.35 5.76 4.88 4.38 4.38 4.79 5.05 5.04 5.00 4.87 4.27 4.84	0.090 0.076 0.087 0.080 0.175 0.159 0.123 0.251 0.355 0.420	131.0 0.0 1.8 0.0 36.0 4.7 0.2 17.1 5.0 0.0	4.78 5.4 2.21 3.76 4.51 5.29 2.73 3.41 6.07 2.97 7.25	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32 13.82 13.95 13.12				
IW-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06 06/22/06 12/19/06 01/19/07 06/12/07 10/10/07 01/23/08 06/17/08	5.36 5.35 5.76 4.88 4.38 4.79 5.05 5.04 5.00 4.87 4.27 4.84 4.50	0.090 0.076 0.106 0.087 0.080 0.175 0.159 0.123 0.251 0.355 0.420 0.260	131.0 0.0 1.8 0.0 36.0 4.7 0.2 17.1 5.0 0.0 3.7	4.78 5.4 2.21 3.76 4.51 5.29 2.73 3.41 6.07 2.97 7.25 5.00	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32 13.82 13.95 13.12 13.47				
W-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06 06/22/06 12/19/06 01/19/07 06/12/07 10/10/07 01/23/08 06/17/08 06/10/09 06/10/10	5.36 5.35 5.76 4.88 4.38 4.79 5.05 5.04 5.00 4.87 4.27 4.84 4.50 4.65 5.53	0.090 0.076 0.006 0.087 0.080 0.175 0.159 0.123 0.251 0.355 0.420 0.260 0.260 0.116 0.1117	131.0 0.0 1.8 0.0 36.0 4.7 0.2 17.1 5.0 0.0 3.7 0.5 0.1	4.78 5.4 2.21 3.76 4.51 5.29 2.73 3.41 6.07 2.97 7.25 5.00 0.00 3.05	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32 13.82 13.95 13.12 13.47 14.39 12.96				
IW-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06 06/22/06 12/19/06 01/19/07 06/12/07 10/10/07 01/23/08 06/17/08 06/10/09 06/10/10 06/08/11	5.36 5.35 5.76 4.88 4.33 4.79 5.05 5.04 5.00 4.87 4.27 4.87 4.27 4.84 4.50 4.65 5.53 5.76	0.090 0.076 0.106 0.087 0.080 0.175 0.159 0.123 0.251 0.355 0.420 0.260 0.116 0.117 0.109	131.0 0.0 1.8 0.0 38.0 4.7 0.2 17.1 5.0 0.0 3.7 0.5 0.1 0.3	4.78 5.4 2.21 3.76 4.51 5.29 2.73 3.41 6.07 7.25 5.00 0.00 3.06 3.06	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32 13.82 13.82 13.85 13.12 13.47 14.39 12.96 13.77				
IW-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06 06/22/06 12/19/06 01/19/07 06/12/07 10/10/07 01/23/08 06/17/08 06/10/09 06/10/10	5.36 5.35 5.76 4.88 4.38 4.79 5.05 5.04 4.87 4.27 4.84 4.50 4.87 4.27 4.84 4.55 5.53 5.76 6.30 5.59	0.090 0.076 0.006 0.087 0.080 0.175 0.159 0.123 0.251 0.355 0.420 0.260 0.260 0.116 0.1117	131.0 0.0 1.8 0.0 36.0 4.7 0.2 17.1 5.0 0.0 3.7 0.5 0.1	4.78 5.4 2.21 3.76 4.51 5.29 2.73 3.41 6.07 2.97 7.25 5.00 0.00 3.05	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32 13.82 13.95 13.12 13.47 14.39 12.96				
W-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06 06/22/06 01/19/07 06/12/07 01/19/07 01/19/07 01/12/07 01/12/07 01/12/07 06/12/07 01/23/08 06/10/09 06/10/09 06/10/10 06/08/11 09/27/11 11/29/11	5.36 5.35 5.76 4.88 4.38 4.79 5.05 5.04 5.00 4.87 4.87 4.87 4.84 4.50 4.85 5.53 5.76 6.30 5.59 5.70	0.090 0.076 0.106 0.087 0.080 0.175 0.159 0.123 0.251 0.355 0.420 0.260 0.116 0.117 0.109 0.130 0.108	1310 0.0 0.0 1.8 0.0 36.0 4.7 0.2 17.1 5.0 0.0 3.7 0.5 0.1 0.3 28.6 1.7 1.1	4,78 5,4 2,21 3,76 4,51 5,29 2,73 3,41 6,07 2,97 7,25 5,00 0,00 3,05 3,06 3,06 3,06 1,12 7,01	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32 13.95 13.12 13.47 14.39 12.96 13.77 14.89 14.11 13.91				
IW-34A	06/03/02 06/24/03 06/09/04 06/16/05 09/27/05 01/26/06 06/22/06 12/19/06 01/19/07 06/12/07 06/12/07 01/23/08 06/10/09 06/10/09 06/10/10 06/08/11 09/27/11	5.36 5.35 5.76 4.88 4.38 4.79 5.05 5.04 4.87 4.27 4.84 4.50 4.87 4.27 4.84 4.55 5.53 5.76 6.30 5.59	0.090 0.076 0.106 0.087 0.080 0.175 0.159 0.159 0.123 0.251 0.355 0.420 0.260 0.116 0.117 0.109 0.130 0.108	131.0 0.0 1.8 0.0 36.0 4.7 0.2 17.1 5.0 0.0 3.7 0.5 0.1 0.3 28.6 1.7	4.78 5.4 2.21 3.76 4.51 5.29 2.73 3.41 6.07 7.25 5.00 0.00 3.05 3.06 3.66 1.12	13.67 13.30 15.25 13.92 13.22 13.42 13.42 13.82 13.82 13.82 13.82 13.12 13.47 14.39 12.96 13.77 14.89 14.11				
IW-34A	06/03/02 06/03/02 06/03/04 06/03/04 06/03/04 06/02/06 10/02/06 12/19/06 06/12/06 12/19/06 06/12/06 06/12/06 06/12/06 06/12/07 06/12/07 06/12/07 06/12/12 06/12/12 06/12/12 06/12/12	5.36 5.36 5.76 4.88 4.33 4.79 5.05 5.04 4.87 4.27 4.84 4.50 4.65 5.53 5.76 6.30 5.59 5.70 5.59 5.70 5.22 5.22 5.25	0.090 0.076 0.106 0.087 0.080 0.175 0.159 0.123 0.251 0.355 0.420 0.260 0.260 0.116 0.117 0.109 0.103 0.099 0.105 0.112	1310 0.0 0.0 1.8 0.0 36.0 4.7 0.2 17.1 5.0 0.0 0.0 3.7 0.5 0.1 0.5 0.1 1.7 1.7 1.1 0.0 0.0 0.0 7	4.78 5.4 2.21 3.76 4.51 5.29 2.73 3.41 6.07 7.25 5.00 0.00 3.06 3.06 1.12 7.01 3.24 3.47 5.01	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32 13.95 13.12 13.95 13.12 13.95 13.12 13.95 13.12 13.95 13.12 13.95 13.12 14.39 14.49 14.41 13.91 14.46 14.71 12.67				
IW-34A	06/03/02 06/24/03 06/02/04 06/16/05 09/27/05 01/26/06 09/27/05 01/26/06 06/22/06 12/19/06 06/12/07 06/12/07 06/12/07 06/12/07 06/10/09 06/10/10 06/10/09 06/10/10 00/10/10/10 00/10/10 00/10/10/10 00/10/10 00/10/10 00/10/10 00/100	5.36 5.35 5.76 4.88 4.38 4.79 5.05 5.04 4.87 4.27 4.84 4.50 4.87 4.84 4.50 5.53 5.76 6.30 5.59 5.70 5.79 5.29 5.22	0.090 0.076 0.067 0.087 0.080 0.175 0.123 0.251 0.355 0.420 0.260 0.280 0.280 0.117 0.109 0.109 0.108 0.099 0.105	131.0 0.0 0.0 1.8 0.0 36.0 4.7 0.2 17.1 5.0 0.1 3.7 0.5 0.1 0.3 28.6 1.7 1.1 0.0 0.0	4,78 5,4 2,21 3,76 4,51 5,29 2,73 3,41 6,07 2,97 7,25 5,00 0,00 3,05 3,06 3,06 3,06 1,12 7,01 3,24 3,47	13.67 13.30 15.25 13.92 12.22 13.42 13.90 13.32 13.82 13.95 13.12 13.47 14.39 12.96 13.77 14.89 13.77 14.89 13.77 14.89 13.77				

DEUTSCH RELAYS FACILITY 65 DALY ROAD EAST NORTHPORT. LONG ISLAND. NEW YORK

	1		1	PORT. LONG ISLA	Dissolved		
Well Number	Sample Date	рН	Conductivity (ms)	Turbidity (NTU)	Oxygen (mg/L)	Temperature (°C)	Comments
	03/26/97	7.67	0.139	21.0	4.92	13.50	
	06/25/97	7.77	0.124	12.0	5.12	15.50	Faulty probe
	09/16/97	7.20	0.100	12.0	11.09	15.60	
	09/28/05	NA	NA	NA	NA	NA	
	01/27/06	2.10	0.041	0.0	7.78	15.45	
	12/19/06	5.32	0.057	6.9	1.93	16.70	
	01/22/07	4.81	0.045	13.5	3.31	15.49	
	06/14/07	4.33	0.080	3.7	0.49	15.60	
MW-34B	10/10/07	4.88	0.077	11.1	1.31	15.19	
	01/23/08	4.88	0.077	11.1	1.31	15.19	
	06/09/11	5.29	0.066	6.6	3.66	17.02	
	09/27/11	4.72	0.064	75.7	6.99	18.11	
	11/29/11	5.38	0.071	16.1	5.12	14.66	
	03/29/12	5.54	0.057	2.6	5.24	14.97	
	06/13/12	5.23	0.054	0.0	5.19	16.95	
	09/25/12	5.34	0.063	0.0	4.95	15.73	
	12/06/12	5.34	0.065	0.0	10.53	14.53	
	04/01/13	5.08	0.056	0.0	7.82	17.95	
	06/18/13	4.43	0.058	3.0	7.23	15.82	
	09/17/13	5.85	0.063	0.0	9.85	14.56	
	11/04/13	5.57	0.063	0.0	11.51	14.46	
	12/17/96	6.41	0.149	3.0	2.92	14.20	
	03/26/97	7.60	0.165	6.0	3.41	13.10	
	06/25/97	6.94	0.124	0.0	3.69	15.10	
	09/16/97	6.05	0.091	0.0	11.18	15.60	
	06/03/02	5.84	0.049	77.3	4.17	14.86	
	09/19/02	5.60	0.700	60.0	7.57	14.80	
	06/24/03	6.40	0.040	148.0	10.59	14.33	
	06/09/04	5.74	0.037	41.0	11.75	13.87	
	06/15/05	5.48	0.073	3.8	9.36	15.60	
	09/27/05	5.28	0.038	21.5	10.43	14.43	
	01/26/06	5.36	0.030	0.0	10.18	13.27	
MW-35A	6/21/2006	5.78	0.055	26.0	14	13.70	
	12/20/2006	5.87	0.074	15.8	10.66	13.90	
	1/19/2007	6.07	0.063	10.0	10.55	13.46	
	6/13/2007	4.93	0.060	23.7	10.7	13.70	
	10/9/2007	4.47	0.088	140.0	5.67	14.60	
	1/22/2008	5.44	0.120	5.7	10.36	11.46	
	6/18/2008	4.88	0.106	38.1	12.32	13.87	
	6/11/2009	6.52	0.087	22.4	10.05	14.55	
	6/10/2010	6.14	0.095	23.5	13.83	13.33	
	6/9/2011	6.14	0.058	9.5	10.22	13.33	
	6/12/2012	5.19	0.098	0.5	0.99	15.31	
	6/15/2012	5.78	0.136	1.9	10.2	14.25	
	6/19/2013	5.66	0.159	0.0	11.82	15.17	
	12/17/96	6.47	0.108	49.0	4.2	14.70	
MW-36A	03/26/97	7.44	0.127	50.0	8.91	13.80	
	06/25/97	7.06	0.121	47.0	3.69	16.60	
	09/16/97	6.09	0.080	41.0	11.45	16.70	
	12/17/96	6.22	0.132	5.0	7.27	12.20	Faulty turbidity/temp.probe
	03/25/97	5.25	0.152	2.0	8.55	11.50	. sany wronnynemp.p100e
MW-37A	06/25/97	4.95	0.132	90.0	9.51	21.00	
	09/16/97	5.55	0.140	6.0	9.51	13.70	
	06/14/12	4.95	0.102	21.8	7.42	15.82	
	12/18/96	6.13	0.022	0.0	9.15	14.00	
	03/26/97	6.01	0.023	38.0	9.2	13.40	
MW-38A	06/25/97	6.10	0.025	13.0	9.05	15.70	
	09/16/97	5.13	0.027	48.0	10.8	16.20	
	06/10/98	5.90	0.028	0.0	12.95	15.40	

NOTES
1) NR - No reading taken due to insufficient volume of
2) NS- Not Sampled
3) µs - Microisemens
4) NTU - Nephelometric Turbidity Units
5) mgL - Milligrams per Lifer
6) C - Degrees Celcius

6

39	Spruce S	Street * Ea	ast Long	meadow, MA 0	1028 * FAX 4	13/525-6405 * TI	EL. 413/525-2332			
Project Location: 65 Daly Rd., East Northport, N	Y S	Sample Description:						Work Ord	er: 18K1177	
Date Received: 11/28/2018										
Field Sample #: MW12A_112818										
Sample ID: 18K1177-01	S	tart Date/T	ime: 11/2	8/2018 9:00:00	AM					
Sample Matrix: Ground Water	S	top Date/T	ime: 11/2	28/2018 9:30:00)AM					
			1,4-]	Dioxane by isoto	ope dilution G	C/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
1,4-Dioxane	0.41	0.20	0.033	μg/L	1		SW-846 8270D	11/28/18	11/30/18 18:13	IMR
Surrogates		% Reco	very	Recovery Lim	its	Flag/Qual				
1,4-Dioxane-d8		15.4		15-110					11/30/18 18:13	

7

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332								
Project Location: 65 Daly Rd., East Northport, NY	Sample Description:	Work Order:	18K1177					

Date Received: 11/28/2018

Field Sample #: MW31A

Sample ID: 18K1177-02 Sample Matrix: Ground Water

2 Start Date/Time: 11/28/2018 11:00:00AM

er Stop Date/Time: 11/28/2018 11:45:00AM

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	ND	0.22	0.035	μg/L	1		SW-846 8270D	11/28/18	11/30/18 18:33	IMR
Surrogates		% Reco	very	Recovery Limits	5	Flag/Qual				
1,4-Dioxane-d8		20.2		15-110					11/30/18 18:33	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Table of Contents

Work Order: 18K1176

Project Location: 65 Daly Rd., East Northport, NY
Date Received: 11/28/2018

Field Sample #: MW12A_112818

Sample ID: 18K1176-01 Sample Matrix: Ground Water Start Date/Time: 11/28/2018 9:00:00AM

Stop Date/Time: 11/28/2018 9:30:00AM

Sample Description:

		S	Semivola	tile Organic Comp	ounds by - (GC/MS-MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	7.9	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorohexanoic acid (PFHxA)	14	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluoroheptanoic acid (PFHpA)	3.5	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorobutanoic acid (PFBA)	2.2	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorodecanesulfonic acid (PFDS)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluoroheptanesulfonic acid (PFHpS)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorooctanesulfonamide (FOSA)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluoropentanoic acid (PFPeA)	12	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
6:2 Fluorotelomersulfonate (6:2 FTS)	2.7	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
8:2 Fluorotelomersulfonate (8:2 FTS)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorohexanesulfonic acid (PFHxS)	2.1	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorooctanoic acid (PFOA)	8.4	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorooctanesulfonic acid (PFOS)	7.0	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorononanoic acid (PFNA)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorodecanoic acid (PFDA)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
NMeFOSAA	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluoroundecanoic acid (PFUnA)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
NEtFOSAA	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorododecanoic acid (PFDoA)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Perfluorotetradecanoic acid (PFTA)	ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 22:50	KAF
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
13C-PFHxA		88.3		70-130					12/11/18 22:50	
13C-PFDA		86.1		70-130					12/11/18 22:50	
d5-NEtFOSAA		84.3		70-130					12/11/18 22:50	

Project Location: 65 Daly Rd., East Northport, NY

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Table of Contents

Work Order: 18K1176

Date Received:	11/28/2018
----------------	------------

Field Sample #: MW31A

Sample ID: 18K1176-02

Sample Matrix: Ground Water

Start Date/Time:	11/28/2018	11:00:00AM	
Stop Date/Time:	11/28/2018	11:45:00AM	

Sample Description:

		ciiii voia	tile Organic Comp	ounus by - C	30/1013-1015				
Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
2.3	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
3.9	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
2.8	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
ND	2.0	2.0	ng/L	1		SOP 434-PFAAS	12/6/18	12/11/18 23:03	KAF
	% Reco	very	Recovery Limits	\$	Flag/Qual				
	97.0		70-130					12/11/18 23:03	
	106		70-130					12/11/18 23:03	
-	ND ND 2.3 ND ND ND ND ND ND 3.9 2.8 ND ND ND ND ND ND ND ND ND	ND 2.0 ND 2.0 ND 2.0 ND 2.0 2.3 2.0 ND 2.0	ND 2.0 2.0 ND 2.0 2.0 ND 2.0 2.0 ND 2.0 2.0 2.3 2.0 2.0 ND 2.0 2.0 3.9 2.0 2.0 ND 2.0 2.0	ND 2.0 2.0 ng/L ND 2.0 2.0 ng/L ND 2.0 2.0 ng/L ND 2.0 2.0 ng/L 2.3 2.0 2.0 ng/L ND 2.0 2.0 ng/	ND 2.0 2.0 ng/L 1 2.3 2.0 2.0 ng/L 1 ND 2.0 2.0 ng/L <td>ND 2.0 2.0 ng/L 1 ND 2.0 2.0 ng/L 1 ND 2.0 2.0 ng/L 1 ND 2.0 2.0 ng/L 1 2.3 2.0 2.0 ng/L 1 ND 2.0 2.0 ng/L<td>ND 2.0 2.0 ng/L 1 SOP 434-PFAAS ND 2.0 2.0 ng/L 1 SOP 434-PFAAS ND 2.0 2.0 ng/L 1 SOP 434-PFAAS ND 2.0 2.0 ng/L 1 SOP 434-PFAAS 2.3 2.0 2.0 ng/L 1 SOP 434-PFAAS ND 2.0</td><td>Results RL DL Units Dilution Flag/Qual Method Prepared ND 2.0 2.0 ng/L 1 SOP 434-PFAAS 12/6/18 ND 2.0</td><td>ResultsRLDLUnitsDilutionFlag/Qu1MethodPreparetAnalyzetND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.032.32.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.00.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.00.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.00.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.</td></td>	ND 2.0 2.0 ng/L 1 2.3 2.0 2.0 ng/L 1 ND 2.0 2.0 ng/L <td>ND 2.0 2.0 ng/L 1 SOP 434-PFAAS ND 2.0 2.0 ng/L 1 SOP 434-PFAAS ND 2.0 2.0 ng/L 1 SOP 434-PFAAS ND 2.0 2.0 ng/L 1 SOP 434-PFAAS 2.3 2.0 2.0 ng/L 1 SOP 434-PFAAS ND 2.0</td> <td>Results RL DL Units Dilution Flag/Qual Method Prepared ND 2.0 2.0 ng/L 1 SOP 434-PFAAS 12/6/18 ND 2.0</td> <td>ResultsRLDLUnitsDilutionFlag/Qu1MethodPreparetAnalyzetND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.032.32.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.00.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.00.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.00.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.</td>	ND 2.0 2.0 ng/L 1 SOP 434-PFAAS 2.3 2.0 2.0 ng/L 1 SOP 434-PFAAS ND 2.0	Results RL DL Units Dilution Flag/Qual Method Prepared ND 2.0 2.0 ng/L 1 SOP 434-PFAAS 12/6/18 ND 2.0	ResultsRLDLUnitsDilutionFlag/Qu1MethodPreparetAnalyzetND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.032.32.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.02.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.00.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.00.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.03ND2.00.0ng/L1SOP 434-PFAAS12/6/1812/1/18 23.

TABLE 1 SHALLOW GROUNDWATER SAMPLE RESULTS DEUTSCH RELAYS SITE #152003 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Well No.		MW-10			MW-11A		м	W-24		MV	V-29		NYSDEC CLASS GA AMBIENT WATER QUALITY STANDARDS and GUIDANCE
Sample Dates	6/13/2012	6/19/2013	9/8/2021	6/12/2012	6/13/2013	9/13/2021	6/13/2012	9/13/2021	6/8/2011	6/13/2012	6/19/2013	9/13/2021	VALUES
Target Compound List Volatile Organic Compound	s in microgra	ms per liter		•						•	•		
1,1,1-Trichloroethane	ND	0.14 J	<0.24	ND	ND	<0.24	ND	< 0.24	ND	ND	ND	NS***	5
1,1,2,2-Tetrachloroethane	NA	NA	<0.37	NA	NA	< 0.37	NA	< 0.37	NA	NA	NA	NS***	5
1,1,2-Trichloro-1,2,2-trifluoroethane (FREON 113)	20.6	ND	5.2	5.32	ND	2.8	4.27	2.4	1.45	0.82	ND	NS***	5
1,1,2-Trichloroethane	NA	NA	<0.20	NA	NA	<0.20	NA	<0.20	NA	NA	NA	NS***	1
1,1-Dichloroethane	0.53	ND	<0.26	0.30	ND	<0.26	ND	<0.26	ND	ND	ND	NS***	5
1,1-Dichloroethene	NA	NA	<0.26	NA	NA	<0.26	NA	<0.26	NA	NA	NA	NS***	5
1,2,3-Trichlorobenzene	NA	NA	< 0.36	NA	NA	< 0.36	NA	< 0.36	NA	NA	NA	NS***	5
1.2.4-Trichlorobenzene	NA	NA	< 0.37	NA	NA	< 0.37	NA	<0.37	NA	NA	NA	NS***	5
1,2-Dibromo-3-Chloropropane	NA	NA	<0.38	NA	NA	< 0.38	NA	<0.38	NA	NA	NA	NS***	0.04
1.2-Dichlorobenzene	NA	NA	<0.21	NA	NA	<0.21	NA	<0.21	NA	NA	NA	NS***	3
1,2-Dichloroethane	NA	NA	<0.43	NA	NA	<0.43	NA	<0.43	NA	NA	NA	NS***	0.6
1,2-Dichloropropane	NA	NA	< 0.35	NA	NA	< 0.35	NA	<0.35	NA	NA	NA	NS***	1
1,3-Dichlorobenzene	NA	NA	< 0.34	NA	NA	< 0.34	NA	<0.34	NA	NA	NA	NS***	3
1.4-Dichlorobenzene	NA	NA	<0.33	NA	NA	<0.33	NA	<0.33	NA	NA	NA	NS***	3
1,4-Dioxane	NA	NA	<28	NA	NA	<28	NA	<28	NA	NA	NA	NS***	*
2-Butanone (MEK)	NA	NA	<1.9	NA	NA	<1.9	NA	<1.9	NA	NA	NA	NS***	50
2-Hexanone	NA	NA	<1.3	NA	NA	<1.1	NA	<1.1 F1	NA	NA	NA	NS***	50
4-Methyl-2-pentanone (MIBK)	NA	NA	<1.1	NA	NA	<1.3	NA	<1.3	NA	NA	NA	NS***	*
Acetone	NA	NA	<4.4	NA	NA	<4.4	NA	<4.4	NA	NA	NA	NS***	50
Benzene	NA	NA	<0.20	NA	NA	<0.20	NA	<0.20	NA	NA	NA	NS***	30
Bromoform	NA	NA	< 0.20	NA	NA	<0.20	NA	<0.20	NA	NA	NA	NS***	50
Bromomethane	NA	NA	< 0.54	NA	NA	<0.54	NA	<0.55	NA	NA	NA	NS***	5
Carbon disulfide	NA	NA	<0.55	NA	NA	<0.33	NA	<0.33	NA	NA	NA	NS***	*
-	NA	NA	<0.62	NA	NA	<0.02	NA	<0.82	NA NA	NA	NA	NS***	
Carbon tetrachloride	NA		<0.21	NA		<0.21	NA			NA	NA	NS***	5
Chlorobenzene		NA			NA			<0.38	NA				5
Chlorobromomethane	NA	NA	< 0.41	NA	NA	<0.41	NA	<0.41	NA	NA	NA	NS***	*
Chlorodibromomethane	NA	NA	<0.28	NA	NA	< 0.28	NA	<0.28	NA	NA	NA	NS***	**
Chloroethane	NA	NA	< 0.32	NA	NA	< 0.32	NA	<0.32	NA	NA	NA	NS***	7
Chloroform	ND	ND	< 0.33	ND	ND	0.45 J	ND	< 0.33	0.22 J	ND	ND	NS***	/
Chloromethane	NA	NA	<0.40	NA	NA	<0.40	NA	<0.40	NA	NA	NA	NS***	5
cis-1,2-Dichloroethene	NA	NA	<0.22	NA	NA	< 0.22	NA	<0.22	NA	NA	NA	NS***	5
cis-1,3-Dichloropropene	NA	NA	<0.22	NA	NA	<0.22	NA	<0.22	NA	NA	NA	NS***	5
Cyclohexane	NA	NA	< 0.32	NA	NA	< 0.32	NA	<0.32	NA	NA	NA	NS***	
Dichlorobromomethane	NA	NA	< 0.34	NA	NA	< 0.34	NA	<0.34	NA	NA	NA	NS***	5
Dichlorodifluoromethane	NA	NA	<0.31	NA	NA	<0.31	NA	<0.31	NA	NA	NA	NS***	
Ethylbenzene	NA	NA	<0.30	NA	NA	< 0.30	NA	<0.30	NA	NA	NA	NS***	5
Ethylene Dibromide	NA	NA	<0.50	NA	NA	<0.50	NA	<0.50	NA	NA	NA	NS***	0.0006
Isopropylbenzene	NA	NA	<0.34	NA	NA	<0.34	NA	<0.34	NA	NA	NA	NS***	**
Methyl acetate	NA	NA	<0.79	NA	NA	<0.79	NA	<0.79	NA	NA	NA	NS***	*
Methyl tert-butyl ether	NA	NA	<0.22	NA	NA	0.31 J	NA	<0.22	NA	NA	NA	NS***	*
Methylcyclohexane	NA	NA	<0.71	NA	NA	<0.71	NA	<0.71	NA	NA	NA	NS***	*
Methylene Chloride	NA	NA	<0.32	NA	NA	<0.32	NA	<0.32	NA	NA	NA	NS***	5
m-Xylene & p-Xylene	NA	NA	<0.30	NA	NA	<0.30	NA	<0.30	NA	NA	NA	NS***	5
o-Xylene	NA	NA	<0.36	NA	NA	<0.36	NA	<0.36	NA	NA	NA	NS***	5
Styrene	NA	NA	<0.42	NA	NA	<0.42	NA	<0.42	NA	NA	NA	NS***	**
Tetrachloroethene	0.99	14.60	8.2	2.58	ND	1.6	0.45	<0.25	0.88	0.45	0.70	NS***	5
Toluene	NA	NA	<0.38	NA	NA	<0.38	NA	<0.38	NA	NA	NA	NS***	5
trans-1,2-Dichloroethene	NA	NA	<0.24	NA	NA	<0.24	NA	<0.24	NA	NA	NA	NS***	5
trans-1,3-Dichloropropene	NA	NA	<0.22	NA	NA	<0.22	NA	<0.22	NA	NA	NA	NS***	5
Trichloroethene	0.18	0.61	<0.31	2.63	ND	1.0	0.45	<0.31	0.93	0.34	0.32	NS***	5
Trichlorofluoromethane	NA	NA	<0.32	NA	NA	<0.32	NA	< 0.32	NA	NA	NA	NS***	5
Vinyl chloride	NA	NA	<0.17	NA	NA	<0.17	NA	<0.17	NA	NA	NA	NS***	2
Tentatively Identified Compounds	NA	NA	None	NA	NA	None	NA	None	NA	NA	NA	NS***	*

Notes:

NA - Not analyzed

ND - Not detected, MDL not available

J - Estimated concentration

 ** - The principal organic contaminant standard for groundwater of 5 ug/L

NS*** - Well could not be sampled due to damage

F1 - MS and/or MSD recovery exceeds control limits

< - Not detected at or above the noted Method Detection Limit

* - No established standard for this compound < - Not detected at or ab BOLD shaded values exceed NYSDEC Class GA Ambient Water Quality Standard or Guidance Value

TABLE 2 INTERMEDIATE GROUNDWATER SAMPLE RESULTS DEUTSCH RELAYS SITE #152003 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Dates 6/8/2011 6/1/2012 6/1/2012 9/1/2021 6/1/2013 9/1/2013 9/1/2012 9/1/2012 9/1/2013 9/1/2013 9/1/2012 9/1/2013 9/1/2013 9/1/2012 9/1/2013	5
1,1,1-Trichloroethane 1.13 0.44 ND <0.24	5 5 1 5
1,1-Trichloroethane 1.13 0.44 ND <0.24 0.14 J ND ND <0.24 ND <0	5 5 1 5
1,1,2,2-Tetrachloroethane NA NA VA	5 5 1 5
1,1,2-Trichloroe1,2,2-triffuoreethane (FREON 113) 55.20 D 42.50 ND 21 ND 1.1 36.20 D 20.60 ND 42 5.48 J 71 1.41 1.11 0.056 J 4.10 ND 1.1 1,1,2-Trichloroethane NA NA NA NA CO.20 NA NA NA NA NA NA CO.20 NA NA CO.20 NA NA NA CO.20 NA NA CO.20 NA CO.20 NA CO.2	1 5
1,1,2-Trichloroethane NA NA NA NA O.20 NA O.20 NA NA O.20 NA NA O.20 NA O.20 <td>1 5</td>	1 5
1,1-Dichloroethane 0.12 J 2.90 ND <0.26 ND	-
1,1-DichloroetheneNANAVAVAVAVA<0.26NAVA<0.26NAVA<0.26NAVA<0.26NAVA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NANA<0.26NA<0.2	E
1,2,4-Trichlorobenzene NA NA NA <0.37 NA <0.38	5
1,2-Dibromo-3-Chloropropane NA NA NA < NA NA < < NA < NA < < NA < NA < < NA < < NA <	5
1,2-Dichlorobenzene NA NA <0.21	5
1,2-Dichloroethane NA NA VA <0.43 NA <0.43 NA <0.43 NA NA VA <0.43 NA VA <0.43 NA <0.44 NA <0	0.04
	3
	0.6
	1
1,3-Dichlorobenzene NA NA NA <0.34 NA <0.34 NA <0.34 NA NA NA NA <0.34 NA NA <0.34 N	3
1,4-Dichlorobenzene NA NA NA <0.33 NA <0.33 NA <0.33 NA NA <0.33 NA A <0.33 NA <0.33	3
1,4-Dioxane NA NA NA <28 NA <28 NA <28 NA NA <28 NA <28 NA A <28 NA <28 NA <28 NA <28 NA A <28 NA <28	*
2-Butanone (MEK) NA NA NA <1.9 NA <1.9 NA <1.9 NA NA <1.9 NA NA <1.9 N	
2-Hexanone NA NA NA <1.1 NA <1.1 NA NA NA <1.1 NA A NA <1.1 NA A <1.1 NA <1.1 NA A <1.1 NA A <1.1 NA A <1.1 NA A A <1.1 NA A A <1.1 A A A A <1.1 A A A A A A A A A A A A A A A A A A	50
4-Methyl-2-pentanone (MIBK) NA NA NA <1.3 NA <	*
Acetone NA NA NA <4.4 NA <4.4 NA AA NA AA NA <4.4 NA AA NA AA AA NA <4.4 NA AA	50
Benzene NA NA NA <0.20 NA <0.20 NA NA <0.20 NA<	1
Bromoform NA NA NA <0.54 NA <0.54 NA NA <0.54 NA	50
Bromomethane NA NA NA <0.55 NA NA <0.55 NA <0.55 <t< td=""><td>5</td></t<>	5
Carbon disulfide NA NA NA <0.82 NA NA <0.82	*
Carbon tetrachloride NA NA NA <0.21 NA NA <0.21	5
Chlorobenzene NA NA NA <0.38 NA <	5
Chlorobromomethane NA NA NA <0.41 NA	*
Chlorodibromomethane NA NA NA <0.28 NA NA <0.28	J *
Chloroethane NA NA NA Second	
Chloroform 0.23 J ND 0.36 J ND 0.98 J 0.20 J ND <0.33 ND ND 1.2 ND 0.30 1.4	
Chloromethane NA NA NA <0.40 NA <	5
cis-1,2-Dichloroethene NA NA <0.22 NA <	5
cis-1,3-Dichloropropene NA NA NA <0.22 NA NA	5
Dichlorobromomethane NA NA <0.34 NA <0.31 NA <0.31	J 5 **
Dicriorodiluorometnane NA NA NA NA NA NA NA Colorediluorometnane NA NA Colorediluorometnane Colorediluorometnane Colorediluorometnane Colorediluorometnane Colorediluorometnane Colorediluorometnane Colorediluorometnane	5
Environme NA	0.0006
Complete Didivinite NA NA <td>**</td>	**
Inspropriorizene NA	*
Methyl tert-butyl ether NA NA NA NA NA Sc.73 NA	*
Methylicyclohexane NA	
Methylene Chloride NA NA NA NA Sc.71 Sc.71 NA	
m-Xylene & p-Xylene NA NA NA C0.30 NA C	
o-Xylene NA NA NA <0.36 NA <0.	
Styrene NA NA NA <0.42 NA NA <0.42 NA<	
Tetrachloroethene 60.80 D 23.20 13.10 100 ND 4.7 1.57 0.99 1.26 1.3 0.43 J 2.3 2.22 1.87 <0.25 2.49 2.44 0.60	
Toluene NA NA NA <0.38 NA <0.	
trans-1,2-Dichloroethene NA NA <0.24 NA	
trans-1,3-Dichloropropene NA NA <0.22 N	
Trichloroethene 2.04 0.96 0.54 <0.31 ND <0.31 0.19 J 0.18 ND 0.48 J 0.20 J 0.61 J 0.65 0.33 J <0.31 1.34 1.32 0.44	J 5
Trichlorofluoromethane NA NA <0.32 NA <0.32 NA NA <0.32 N	
Vinyl chloride NA NA NA <0.17 NA <0.17 NA NA <0.17 NA NA <0.17 NA NA <0.17	2
Tentatively Identified Compounds NA NA NA NA None NA None NA	*

Notes:

NA - Not analyzed

ND - Not detected, MDL not available

J - Estimated concentration

 ** - The principal organic contaminant standard for groundwater of 5 ug/L NS^{\star\star\star} - Well could not be sampled due to damage

N - Flag indicates presumptive evidence of a compound

< - Not detected at or above the noted Method Detection Limit

* - No established standard for this compound < - Not **BOLD shaded values** exceed NYSDEC Class GA Ambient Water Quality Standard or Guidance Value

TABLE 3 DEEP GROUNDWATER SAMPLE RESULTS DEUTSCH RELAYS SITE #152003 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Locations		MW-11B		MW-111B (duplicate)		MW-12E	3	MW-122B (duplicate)		MW-14B		MV	/-20		MW-34B		NYSDEC CLASS GA AMBIENT WATER
Sample Dates	6/12/2012	6/13/2013	9/8/2021	9/8/2021	9/25/2012	4/1/2013	9/13/2021	9/13/2021	6/13/2012	6/17/2013	9/13/2021	6/12/2012	9/13/2021	9/25/2012	11/5/2013	9/13/2021	QUALITY STANDARDS and GUIDANCE VALUES
Target Compound List Volatile Organic Compoun	ds in micro	ograms per	liter	-			-	-	-	-		-	-	-	-	-	
1,1,1-Trichloroethane	ND	ND	<0.24	<0.24	0.25 J	0.21	J <0.24	< 0.24	ND	ND	NS***	0.13	<0.24	ND	ND	< 0.24	5
1,1,2,2-Tetrachloroethane	NA	NA	< 0.37	< 0.37	NA	NA	< 0.37	< 0.37	NA	NA	NS***	NA	< 0.37	NA	NA	< 0.37	5
1,1,2-Trichloro-1,2,2-trifluoroethane (FREON 113)	8.23	ND	16	15	9.37	6.49	< 0.31	< 0.31	ND	ND	NS***	ND	< 0.31	0.95	ND	14	5
1.1.2-Trichloroethane	NA	NA	<0.20	<0.20	NA	NA	< 0.20	<0.20	NA	NA	NS***	NA	< 0.20	NA	NA	<0.20	1
1,1-Dichloroethane	0.47	ND	<0.26	<0.26	ND	ND	< 0.26	< 0.26	ND	ND	NS***	ND	<0.26	ND	ND	<0.26	5
1.1-Dichloroethene	NA	NA	<0.26	<0.26	NA	NA	<0.26	< 0.26	NA	NA	NS***	NA	< 0.26	NA	NA	<0.26	5
1,2,3-Trichlorobenzene	NA	NA	< 0.36	< 0.36	NA	NA	< 0.36	< 0.36	NA	NA	NS***	NA	< 0.36	NA	NA	< 0.36	5
1,2,4-Trichlorobenzene	NA	NA	< 0.37	< 0.37	NA	NA	< 0.37	< 0.37	NA	NA	NS***	NA	< 0.37	NA	NA	< 0.37	5
1,2-Dibromo-3-Chloropropane	NA	NA	< 0.38	< 0.38	NA	NA	< 0.38	< 0.38	NA	NA	NS***	NA	< 0.38	NA	NA	< 0.38	0.04
1,2-Dichlorobenzene	NA	NA	<0.21	<0.21	NA	NA	<0.21	<0.21	NA	NA	NS***	NA	<0.21	NA	NA	<0.21	3
1,2-Dichloroethane	NA	NA	<0.43	<0.43	NA	NA	<0.43	<0.43	NA	NA	NS***	NA	<0.43	NA	NA	<0.43	0.6
1,2-Dichloropropane	NA	NA	< 0.35	< 0.35	NA	NA	< 0.35	< 0.35	NA	NA	NS***	NA	< 0.35	NA	NA	<0.35	1
1,3-Dichlorobenzene	NA	NA	<0.34	< 0.34	NA	NA	< 0.34	< 0.34	NA	NA	NS***	NA	< 0.34	NA	NA	<0.34	3
1.4-Dichlorobenzene	NA	NA	<0.33	< 0.33	NA	NA	<0.33	<0.33	NA	NA	NS***	NA	< 0.33	NA	NA	<0.33	3
1.4-Dioxane	NA	NA	<28	<28	NA	NA	<28	<28	NA	NA	NS***	NA	<28	NA	NA	<28	*
2-Butanone (MEK)	NA	NA	<1.9	<1.9	NA	NA	<1.9	<1.9	NA	NA	NS***	NA	<1.9	NA	NA	<1.9	50
2-Hexanone	NA	NA	<1.1	<1.1	NA	NA	<1.1	<1.1	NA	NA	NS***	NA	<1.1	NA	NA	<1.1	50
4-Methyl-2-pentanone (MIBK)	NA	NA	<1.3	<1.3	NA	NA	<1.3	<1.3	NA	NA	NS***	NA	<1.3	NA	NA	<1.3	*
Acetone	NA	NA	<4.4	<4.4	NA	NA	<4.4	<4.4	NA	NA	NS***	NA	<4.4	NA	NA	<4.4	50
Benzene	NA	NA	<0.20	<0.20	NA	NA	<0.20	<0.20	NA	NA	NS***	NA	<0.20	NA	NA	<0.20	1
Bromoform	NA	NA	<0.54	<0.54	NA	NA	<0.54	<0.54	NA	NA	NS***	NA	<0.54	NA	NA	<0.54	50
Bromomethane	NA	NA	<0.55	<0.55	NA	NA	<0.55	<0.55	NA	NA	NS***	NA	<0.55	NA	NA	<0.55	5
Carbon disulfide	NA	NA	<0.82	<0.82	NA	NA	<0.82	<0.82	NA	NA	NS***	NA	<0.82	NA	NA	<0.82	*
Carbon tetrachloride	NA	NA	<0.02	<0.02	NA	NA	<0.02	<0.02	NA	NA	NS***	NA	<0.02	NA	NA	<0.02	5
Chlorobenzene	NA	NA	<0.21	<0.38	NA	NA	<0.21	<0.21	NA	NA	NS***	NA	<0.21	NA	NA	<0.21	5
Chlorobromomethane	NA	NA	<0.41	<0.00	NA	NA	<0.00	<0.00	NA	NA	NS***	NA	<0.41	NA	NA	<0.41	*
Chlorodibromomethane	NA	NA	<0.28	<0.28	NA	NA	<0.28	<0.28	NA	NA	NS***	NA	<0.28	NA	NA	<0.28	*
Chloroethane	NA	NA	<0.32	<0.32	NA	NA	<0.32	<0.32	NA	NA	NS***	NA	<0.32	NA	NA	<0.32	**
Chloroform	ND	ND	0.52 J	0.48 J	2.26	1.88	<0.33	< 0.33	ND	ND	NS***	ND	0.57 J	ND ND	ND	0.71 J	7
Chloromethane	NA	NA	<0.40	<0.40	NA	NA	<0.40	<0.33	NA	NA	NS***	NA	< 0.40	NA NA	NA	<0.40	5
cis-1,2-Dichloroethene	NA	NA	<0.40	<0.22	NA	NA	<0.40	<0.40	NA	NA	NS***	NA	<0.22	NA	NA	<0.40	5
cis-1,3-Dichloropropene	NA	NA	<0.22	<0.22	NA	NA	<0.22	<0.22	NA	NA	NS***	NA	<0.22	NA	NA	<0.22	5
Cyclohexane	NA	NA	<0.32	<0.32	NA	NA	<0.22	<0.22	NA	NA	NS***	NA	<0.22	NA	NA	<0.22	*
Dichlorobromomethane	NA	NA	<0.32	<0.32	NA	NA	<0.34	<0.32	NA	NA	NS***	NA	<0.32	NA	NA	<0.34	5
Dichlorodifluoromethane	NA	NA	<0.31	<0.31	NA	NA	<0.31	<0.31	NA	NA	NS***	NA	<0.31	NA	NA	<0.31	**
Ethylbenzene	NA	NA	< 0.30	< 0.30	NA	NA	<0.30	< 0.30	NA	NA	NS***	NA	< 0.30	NA	NA	<0.30	5
Ethylene Dibromide	NA	NA	< 0.50	< 0.50	NA	NA	< 0.50	< 0.50	NA	NA	NS***	NA	< 0.50	NA	NA	< 0.50	0.0006
Isopropylbenzene	NA	NA	< 0.34	< 0.34	NA	NA	< 0.34	< 0.34	NA	NA	NS***	NA	< 0.34	NA	NA	<0.34	**
Methyl acetate	NA	NA	<0.79	<0.79	NA	NA	<0.79	<0.79	NA	NA	NS***	NA	<0.79	NA	NA	<0.79	*
Methyl tert-butyl ether	NA	NA	0.72 J	0.66 J	NA	NA	<0.22	<0.22	NA	NA	NS***	NA	0.41 J	NA NA	NA	<0.22	*
Methylcyclohexane	NA	NA	<0.71	<0.71	NA	NA	<0.22	<0.22	NA	NA	NS***	NA	<0.71	NA	NA	<0.22	*
Methylene Chloride	NA	NA	<0.32	<0.32	NA	NA	<0.71	<0.32	NA	NA	NS***	NA	<0.71	NA	NA	<0.71	5
m-Xylene & p-Xylene	NA	NA	<0.32	<0.32	NA	NA	<0.30	<0.30	NA	NA	NS***	NA	<0.32	NA	NA	<0.30	5
o-Xylene	NA	NA	<0.36	<0.30	NA	NA	<0.36	<0.36	NA	NA	NS***	NA	< 0.36	NA	NA	< 0.36	5
Styrene	NA	NA	<0.30	<0.30	NA	NA	<0.30	<0.30	NA	NA	NS***	NA	<0.30	NA	NA	<0.30	J **
Tetrachloroethene	9.35	9.74	19	<0.42 20	8.28	8.08	7.0	<0.42 6.5	ND	NA	NS***	ND	<0.42	0.97	0.93	<0.42 22	5
Toluene	9.35 NA	9.74 NA	<0.38	<0.38	0.20 NA	NA	<0.38	<0.38	NA	NA	NS***	NA	<0.23	0.97 NA	0.93 NA	<0.38	5
trans-1,2-Dichloroethene	NA	NA	<0.36	<0.36	NA	NA	<0.36	<0.36	NA	NA	NS***	NA	<0.38	NA	NA	<0.36	5
trans-1,2-Dichloropropene	NA	NA	<0.24	<0.24	NA	NA	<0.24	<0.24	NA	NA	NS***	NA NA	<0.24	NA	NA	<0.24	5
Trichloroethene	1.51		1.2	1.2	1.89	2.22	<0.22	<0.22	NA	NA	NS***	NA ND	<0.22	1.20	0.65	0.22 0.38 J	5
	1.51 NA	1.38	<0.32	<0.32	1.89 NA	2.22 NA	<0.31	<0.31	NA	ND	NS***		<0.31	1.20 NA	0.65 NA	<0.32	
Trichlorofluoromethane		NA										NA		_			5
Vinyl chloride	NA	NA	<0.17	<0.17	NA	NA	<0.17	<0.17	NA	NA	NS***	NA	<0.17	NA	NA	<0.17	2
Tentatively Identified Compounds	NA	NA	7.9 JN	I 7.5 JN	NA	NA	None	None	NA	NA	NS***	NA	None	NA	NA	None	

Notes:

NA - Not analyzed

ND - Not detected, MDL not available

J - Estimated concentration

** - The principal organic contaminant standard for groundwater of 5 ug/L NS*** - Well could not be sampled due to damage

N - Flag indicates presumptive evidence of a compound < - Not detected at or above the noted Method Detection Limit

* - No established standard for this compound < - Not detected at or above **BOLD shaded values** exceed NYSDEC Class GA Ambient Water Quality Standard or Guidance Value

TABLE 1 Summary of Constituents Detected

Sample ID	USEPA - Target Shallow	SVMW-1	SVMW-1	PSV-1-IAL	PSV-1-TA	SVMW-2	SVMW-2	PSV-2-IAL	PSV-2-TA	SVMW-3	SVMW-3	PSV-3-IAL*	PSV-3-TA
Lab Sample No.	Soil Gas Concentration Corresponding to Target	720218	756895	2157	766916	720219	756894	3006	766914	720220	75893	3051	766913
Sampling Date	Indoor Air Concentration	8/7/2007	6/19/2008	9/4/2008	9/4/2008	8/7/2007	6/19/2008	9/4/2008	9/4/2008	8/7/2007	6/19/2008	9/4/2008	9/4/2008
Matrix	Where the Soil Gas to	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR
Dilution Factor	Indoor Air Attenuation Factor = 0.1*	1	1		1	2	4			20	31.1		15.4
Units	C _{soil-gas}	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
VOLATILE COMPOUNDS (GC/MS)	-												
Trichloroethene (TCE)	2.2	4.5	13	4.3	4.7	Not Detected							
1,1,1-Trichloroethane	22000	7.1	7.6	14	11	Not Detected	Not Detected	Not Detected	2.4	Not Detected	Not Detected	Not Detected	Not Detected
Tetrachloroethene (PCE)	81	35	62	55	75	23	30	69	37	41	54	Not Detected	88
1,1,2-Trichloro-1,2,2-trifluoroethane	300000	63	270	159	160	360	840	1720	500	4400	7000	289	4500

		DUPLICATE =	DUPLICATE =										50V - TA
Sample ID	USEPA - Target Shallow	(SVMW-3)	(SVMW-3)	DUP-IAL= (PSV-3)	DUP-TA= (PSV-3)	SVMW-4	SVMW-4	PSV-4-IAL	PSV-4-TA	SVMW-5	SVMW-5	PSV-5-IAL	PSV-5-TA
Lab Sample No.	Soil Gas Concentration	720223	756896	2158	766915	720221	756892	3013	766912	720222	756890	2034	766911
Sampling Date	Corresponding to Target	8/7/2007	6/19/2008	9/4/2008	9/4/2008	8/7/2007	6/19/2008	9/4/2008	9/4/2008	8/7/2007	6/19/2008	9/4/2008	9/4/2008
Matrix	Where the Soil Gas to	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR	AIR
Dilution Factor	Indoor Air Attenuation Factor = 0.1*	20	35.9		31	1	1		1.5	20	22		10
Units	C _{soil-gas}	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3
VOLATILE COMPOUNDS (GC/MS)	C C												
Trichloroethene (TCE)	2.2	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
1,1,1-Trichloroethane	22000	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
Tetrachloroethene (PCE)	81	52	81	77	160	5.6	2.8	19	12	Not Detected	Not Detected	15	Not Detected
1,1,2-Trichloro-1,2,2-trifluoroethane	300000	3900	8400	2770	6700	210	92	524	280	3400	5000	2670	2800

Not Detected : constituent was not detected above the laboratory minimum detection limit. * Potentially Damaged Suma Canister

Sample Location		SVMW-5							
Sample Depth (feet)	8 to 10								
Sample Date	8/7/2007	6/19/2008	9/4/08						
Chlorinated Volatile Organic Compo	unds in ug/m ³								
Trichloroethylene	ND	ND	ND						
1,1,1-Trichloroethane	ND	ND	ND						
Tetrachloroethene	ND	ND	15						
Freon-113	3,400	5,000	2,670						

Sample Location	SVMW-4		
Sample Depth (feet)	8 to 10		
Sample Date	8/7/2007 6/19/2008 9/4/08		9/4/08
Chlorinated Volatile Organic Compounds in ug/m ³			
Trichloroethylene	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND
Tetrachloroethene	5.6	2.8	19
Freon-113	210	92	524

9/4/08 9/4/08 ND ND 19 524

Sample Location		SVMW-3	
Sample Depth (feet)	8 to 10		
Sample Date	8/7/2007 6/19/2008 9/4/08		9/4/08
Chlorinated Volatile Organic Compounds in ug/m ³			
Trichloroethylene	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND
Tetrachloroethene	41	54	88
Freon-113	4,400	7,000	4,500

9/4/08 9/4/08 ND ND 88 4,500

Sample Location		SVMW-2	
Sample Depth (feet)		8 to 10	
Sample Date	8/7/2007 6/19/2008 9/4/08		9/4/08
Chlorinated Volatile Organic Compounds in ug/m ³			
Trichloroethylene	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND
Tetrachloroethene	23	30	69
Freon-113	360	840	1,720

Sample Location		SVMW-1	
Sample Depth (feet)		8 to 10	
Sample Date	8/7/2007	6/19/2008	9/4/08
Chlorinated Volatile Organic Compounds in ug/m ³			
Trichloroethylene	4.5	13	4.7
1,1,1-Trichloroethane	7.1	7.6	11
Tetrachloroethene	35	62	75
Freon-113	63	270	160

Sample Location	NE of Main Bldg.	
Sample No.	49	
Sample Date	5/1/90	
Chlorinated Volatile Organic Compounds in ug/m ³		
Freon 113	26,823	

Sample Location	NE of Main Bldg.
Sample No.	48
Sample Date	5/1/90
Chlorinated Volatile Organic Compounds in ug/m ³	
Tetrachloroethene	733

Sample Location	S/SE of Machine Shop	
Sample No.	47	
Sample Date	5/1/90	
Chlorinated Volatile Organic Compounds in ug/m ³		
Trichloroethene	172	

Sample Location	S/SE of Machine Shop	
Sample No.	46	
Sample Date	5/1/90	
Chlorinated Volatile Organic Compounds in ug/m ³		
Freon 113	3,663	
Trichloroethene	4,993	
Tetrachloroethene	1,831	

Sample Location	S/SE of Machine Shop	
Sample No.	45	
Sample Date	5/1/90	
Chlorinated Volatile Organic Compounds in ug/m ³		
Freon 113	4,453	
Trichloroethene	4,606	
Tetrachloroethene	4,884	

Sample Location	S/SE of Machine Shop
Sample No.	44
Sample Date	5/1/90
Chlorinated Volatile Organic Compo	unds in ug/m ³
Trichloroethene	623
Tetrachloroethene	543

Sample Location	North of Main Bldg.	
Sample No.	25	
Sample Date	5/1/90	
Chlorinated Volatile Organic Compounds in ug/m ³		
Freon 113	7,664	

Sample Location	North of Main Bldg.	
Sample No.	21	
Sample Date	5/1/90	
Chlorinated Volatile Organic Compounds in ug/m ³		
Freon 113	9,963	

Sample Location	North of Main Bldg.	
Sample No.	19	
Sample Date	5/1/90	
Chlorinated Volatile Organic Compounds in ug/m ³		
Freon 113	30,655	

Sample Location	NW of Main Bldg.	
Sample No.	5	
Sample Date	5/1/90	
Chlorinated Volatile Organic Compounds in ug/m ³		
Tetrachloroethene	1,153	

Sample Location	NW of Main Bldg.	
Sample No.	4	
Sample Date	5/1/90	
Chlorinated Volatile Organic Compounds in ug/m ³		
Tetrachloroethene	366	

Sample Location	Sludge Drying Beds	
Sample No.	SV-14	
Sample Depth (feet)	6	
Sample Date	9/20/04	
Chlorinated Volatile Organic Compounds in ug/m ³		
1,1,1-Trichloroethane	8.32	
Dichlorodifluoromethane (Freon 12)	3.52	
Freon-113	935	
Tetrachloroethylene	435	
Trichloroethylene	9.84	
Trichlorofluoromethane (Freon 11)	15.4	

Sample Location	Machine Shop
Sample No.	SV-13
Sample Depth (feet)	6
Sample Date	9/20/04
Chlorinated Volatile Organic Compounds in ug/m ³	
Freon-113	857
Tetrachloroethylene	3,380
Trichloroethylene	92.9
Trichlorofluoromethane (Freon 11)	160

Sample Location	South of Machine Shop	
Sample No.	SV-12	
Sample Depth (feet)	6	
Sample Date	9/20/04	
Chlorinated Volatile Organic Compounds in ug/m ³		
1,1,1-Trichloroethane	33.9	
cis-1,2-Dichloroethylene	48.4	
Freon-113	2,650	
Tetrachloroethylene	407	
Trichloroethylene	273	

Sample Location	South Plating Shop				
Sample No.	SV-11				
Sample Depth (feet)	6				
Sample Date	9/22/04				
Chlorinated Volatile Organic Compounds in ug/m ³					
1,1,1-Trichloroethane	555				
cis-1,2-Dichloroethylene	1,130				
Freon-113	24,200				
Tetrachloroethylene	1,720				
Trichloroethylene	765				

Sample Location	Material Evaluation Room				
Sample No.	SV-10				
Sample Depth (feet)	6				
Sample Date	9/22/04				
Chlorinated Volatile Organic Compo	unds in ug/m ³				
Freon-113	24,900				
Tetrachloroethylene	2,900				
Trichloroethylene	415				
Trichlorofluoromethane (Freon 11)	274				

Sample Location	Chemical Storage Shed				
Sample No.	SV-9				
Sample Depth (feet)	6				
Sample Date	9/21/04				
Chlorinated Volatile Organic Compo	unds in ug/m ³				
1,1,1-Trichloroethane	128				
cis-1,2-Dichloroethylene	8,870				
Freon-113	13,300				
Tetrachloroethylene	3,380				
Trichloroethylene	820				

Sample Location	Clean Room					
Sample No.	SV-8					
Sample Depth (feet)) 6					
Sample Date	9/22/04					
Chlorinated Volatile Organic Compounds in ug/m ³						
1,1,1-Trichloroethane	88.8					
Freon-113	14,800					
Tetrachloroethylene	4,830					
Trichloroethylene	508					

Sample Location	North Plating Shop				
Sample No.	SV-7				
Sample Depth (feet)	6				
Sample Date	9/21/04				
Chlorinated Volatile Organic Compounds in ug/m ³					
1,1,1-Trichloroethane	1,660				
cis-1,2-Dichloroethylene	1,290				
Freon-113	39,800				
Tetrachloroethylene	5,730				
Trichloroethylene	1,040				

Sample Location	Waste Treatment System				
Sample No.	SV-6				
Sample Depth (feet)) 6				
Sample Date	9/21/04				
Chlorinated Volatile Organic Compounds in ug/m ³					
Freon-113	35,000				
Tetrachloroethylene	3,170				
Trichloroethylene	4,700				

Sample Location	North Industrial Pools					
Sample No.	SV-5					
Sample Depth (feet)	6					
Sample Date	9/21/04					
Chlorinated Volatile Organic Compounds in ug/m ³						
Freon-113	9,350					
Tetrachloroethylene	1,240					
Trichloroethylene	600					

Sample Location	Western Sanitary System					
Sample No.	SV-4					
Sample Depth (feet)	6					
Sample Date	9/21/04					
Chlorinated Volatile Organic Compounds in ug/m ³						
Freon-113	5,610					
Tetrachloroethylene	3,040					
Trichloroethylene	98.4					

Sample Location	Parking Lot				
Sample No.	SV-3				
Sample Depth (feet)	6				
Sample Date	9/21/04				
Chlorinated Volatile Organic Compounds in ug/m ³					
Freon-113	2,880				
Tetrachloroethylene	57.9				

Sample Location	Former Plating Waste Lagoon					
Sample No.	SV-2					
Sample Depth (feet)	6					
Sample Date	9/20/04					
Chlorinated Volatile Organic Compounds in ug/m ³						
Dichlorodifluoromethane (Freon 12)	3.02					
Freon-113	65.5					
Tetrachloroethylene	6.21					
Trichloroethylene	2.73					
Trichlorofluoromethane (Freon 11)	12.0					

Sample Location	Western Recharge Basin				
Sample No.	SV-1				
Sample Depth (feet)	6				
Sample Date	9/21/04				
Chlorinated Volatile Organic Compounds in ug/m ³					
Freon-113	366				
Tetrachloroethylene	96.6				
Trichloroethylene	13.1				

Client ID	16				16			16			
Lab Sample ID	OA010228121000			BA010228121004			SS010228121005				
Sample Date & Time	2/28/12 10:00							28/12 10:05			
Sample Date & Time End	2/29/12 8:40			2/28/12 10:04 2/29/12 8:35			2/28/12 10:05 2/29/12 8:34				
Sample Date & Time Life	Result	LRL	Q	Result	LRL	Q	Result	LRL	Q		
trans-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.0	0.56	Ū	0.0	0.56	U	0.0	0.56	U		
1,4-Dioxane	0.0	0.72	U	0.0	0.72	Ŭ	0.0	0.72	Ū		
Ethanol	7.9	1.50		520.0	15.00	D	79.0	1.50			
Ethylbenzene	0.0	0.35	U	0.7	0.35		1.5	0.35			
Trichlorofluoromethane	1.2	0.45		1.4	0.35		2.8	0.45			
Hexachlorobutadiene	0.0	0.45	U	0.0	0.45	U	0.0	0.45	U		
n-Hexane	0.0	0.00	U	0.0	0.70	<u>U</u>	0.0	0.70	U		
2,2,4-Trimethylpentane	0.0	0.93	U	0.0	0.93	U U	0.0	0.93	<u>U</u>		
tert-Butyl alcohol	0.0	0.97	U	0.0	0.97	U	0.0	0.97	Ü		
Methylene chloride	0.0	0.69	U	0.0	0.69	Ŭ	0.0	0.69	U		
Benzene	0.6	0.03	0	0.5	0.03		0.0	0.26	U		
Benzyl chloride	0.0	0.20	U	0.0	0.20	U	0.0	0.20	U		
Styrene	0.0	0.34	U U	0.4	0.34	0	0.0	0.34	<u>U</u>		
1,1,2,2-Tetrachloroethane	0.0	0.55	U U	0.4	0.55	U	0.0	0.55	<u>0</u>		
Tetrachloroethene	0.0	0.54	U	2.3	0.54	0	58.0	0.54	0		
Toluene	1.1	0.30		2.3 8.2	0.30	•••••	2.1	0.34			
h	0.0		U	0.0	0.59		0.0	0.59			
1,2,4-Trichlorobenzene		0.59	U U		0.59	U		0.59	U		
1,1,1-Trichloroethane	0.0 0.0		U U	0.0	0.44	U	1.1	0.44	U		
1,1,2-Trichloroethane		0.44				U	0.0		U		
Trichloroethene	0.0	0.21	U	0.0	0.21	U	1.0	0.21			
1,2,4-Trimethylbenzene	0.0	0.39	U	1.0	0.39		1.2	0.39			
1,3,5-Trimethylbenzene	0.0	0.39	U	0.0	0.39	U	0.0	0.39	U		
Vinyl chloride	0.0	0.20	U	0.0	0.20	U	0.0	0.20	U		
o-Xylene	0.0	0.35	U	0.6	0.35		1.4	0.35			
Methyl tert-butyl ether	0.0	0.58	U	0.0	0.58	U	0.0	0.58	U		
1,1,2-Trichlorotrifluoroethane	0.0	0.61	U	46.0	0.61		5000.0	28.00	D		
m-Xylene & p-Xylene	0.5	0.35		2.1	0.35		3.7	0.35			
Bromodichloromethane	0.0	0.54	U	0.0	0.54	U	0.0	0.54	U		
1,2-Dibromoethane (EDB)	0.0	0.61	U	0.0	0.61	U	0.0	0.61	U		
2-Butanone (MEK)	0.0	0.94	U	8.1	0.94		37.0	0.94			
4-Methyl-2-pentanone (MIBK)	0.0	0.82	U	0.0	0.82	U	0.0	0.82	U		
Bromoform	0.0	0.83	U	0.0	0.83	U	0.0	0.83	<u>U</u>		
Bromomethane	0.0	0.31	U	0.0	0.31	U	0.0	0.31	<u>U</u>		
Carbon tetrachloride	0.5	0.25		0.4	0.25		0.0	0.25	U		
Chlorobenzene	0.0	0.37	<u>U</u>	0.0	0.37	<u>U</u>	0.0	0.37	U		
Dibromochloromethane	0.0	0.68	U	0.0	0.68	U	0.0	0.68	U		
Chloroethane	0.0	0.21	U	0.0	0.21	U	0.0	0.21	U		
Chloroform	0.0	0.39	U	0.0	0.39	U	0.8	0.39			
Chloromethane	1.0	0.41		1.1	0.41		0.0	0.41	U		
Cyclohexane	0.0	0.69	<u>U</u>	1.1	0.69	· · · · · · · · ·	0.0	0.69	U		
1,2-Dichlorobenzene	0.0	0.48	U	0.0	0.48	U	0.0	0.48	U		
1,3-Dichlorobenzene	0.0	0.48	U	0.0	0.48	U	0.8	0.48			
1,4-Dichlorobenzene	0.0	0.48	U	0.5	0.48		0.0	0.48	U		
Dichlorodifluoromethane	2.4	0.40		12.0	0.40		0.9	0.40			
1,1-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U		
1,2-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.5	0.32			
1,1-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U		
cis-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U		
trans-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U		
1,2-Dichloropropane	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U		
cis-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U		

Notes: All units in micrograms per cubic meter (µg/m³)

U - Indicates the analyte was analyzed for but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that analyte. The reporting limit can vary dilution factor.

D - Indicates samples was diluted, for dilution factor please see the lab report.

B - method blank contamination

E - estimated results - outside of calibration range

BA - Basement Air Sample

SS - Subslab Air Sample

Client ID	1	20			20			20	
Lab Sample ID	0.40	20 102281213		PA0	20 102281213	16	000		10
Sample Date & Time		28/12 13:44			28/12 13:46		SS010228121348 2/28/12 13:48		
Sample Date & Time End		20/12 13:44 29/12 12:31							
Sample Date & Time End	Result	29/12 12:31 LRL	Q	Z/. Result	29/12 12:3 LRL	Q	Z/ Result	29/12 12:27/ LRL	Q
trans-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.0	0.56	U	0.0	0.56	U	0.0	0.56	U
1.4-Dioxane	0.0	0.30	U	0.0	0.30	U	0.0	0.30	U
Ethanol	8.1	1.50	0	36.0	1.50		2.4	1.50	
Ethylbenzene	0.0	0.35	U	0.0	0.35	U	1.8	0.35	
Trichlorofluoromethane	1.1	0.35		1.1	0.35		1.0	0.35	
Hexachlorobutadiene	0.0	0.45	U	0.0	0.45	U	0.0	0.45	U
n-Hexane	0.0	0.70	U	0.0	0.70	U	0.0	0.70	U
2,2,4-Trimethylpentane	0.0	0.93	U	0.0	0.93	U	0.0	0.93	U
tert-Butyl alcohol	0.0	0.97	U	0.0	0.97	U	0.0	0.97	U
Methylene chloride	0.0	0.69	U	0.0	0.69	U	0.0	0.69	U
Benzene	0.6	0.03	0	0.0	0.03	U	0.0	0.26	U U
Benzyl chloride	0.0	0.83	U	0.0	0.83	U	0.0	0.20	U
Styrene	0.0	0.34	U	0.0	0.34	U	0.0	0.34	U
1,1,2,2-Tetrachloroethane	0.0	0.55	U	0.0	0.55	U	0.0	0.55	U U
Tetrachloroethene	0.0	0.54	U	0.0	0.54	U	3.9	0.54	U
Toluene	1.3	0.34		0.0	0.34	U U	0.8	0.34	
1,2,4-Trichlorobenzene	0.0	0.59	U	0.0	0.59	U	0.0	0.59	U
1,1,1-Trichloroethane	0.0	0.59	U U	0.0	0.39	U U	0.0	0.39	<u>U</u>
1,1,2-Trichloroethane	0.0	0.44	U U	0.0	0.44	U U	0.0	0.44	<u>u</u>
Trichloroethene		0.44	U U	0.0	~~~~~	U	0.0	0.44	U
	0.0				0.21	U			
1,2,4-Trimethylbenzene	0.0	0.39	U	0.0	0.39		1.3	0.39	
1,3,5-Trimethylbenzene	0.0	0.39	U	0.0	0.39	U	0.0	0.39	U
Vinyl chloride	0.0	0.20	U	0.0	0.20	U U	0.0 1.8	0.20	U
o-Xylene	0.0	0.35	U U	0.0	0.35				U
Methyl tert-butyl ether	0.0	0.58		0.0	0.58	U	0.0	0.58	
1,1,2-Trichlorotrifluoroethane	0.0 0.6	0.61	U	<u>1.1</u> 0.0	0.61 0.35		400.0 4.2	6.10 0.35	D
m-Xylene & p-Xylene	0.0	0.35	U	0.0	0.35	U U	4.2 0.0		
Bromodichloromethane			U U	0.0	0.54	U	0.0	0.54	<u>U</u>
1,2-Dibromoethane (EDB)	0.0	0.61 0.94	U U	0.0	0.61	U	45.0	0.61 9.40	U D
2-Butanone (MEK) 4-Methyl-2-pentanone (MIBK)	0.0		U U	0.0	0.94	U U	45.0 0.0	9.40	U
Bromoform	0.0	0.82	U U	0.0	0.82		0.0		U
			U	0.0		U U	0.0	0.83	
Bromomethane Carbon tetrachloride	0.0 0.5	0.31	0	0.0	0.31 0.25	U U	0.0	0.31	U U
Chlorobenzene	0.0	0.25		0.0	0.25	U	0.0	0.25	U
Dibromochloromethane	0.0	0.68	U U	0.0	0.68	<u>0</u>	0.0	0.57	U U
Chloroethane	0.0	0.00	U	0.0	0.00	U	0.0	0.00	U
Chloroform	0.0	0.21	U U	0.0	0.21	U	0.0	0.21	<u>U</u>
	1.0	0.39	0	1.1	0.39		0.0	0.39	<u>U</u>
Chloromethane Cyclohexane		0.41		0.0		U	0.0	0.41	
	0.0		U U	0.0	0.69	<u>U</u>			U
1,2-Dichlorobenzene	0.0	0.48	U U	0.0	0.48		0.0	0.48	U
1,3-Dichlorobenzene	0.0		U U	0.0		U		0.48	
1,4-Dichlorobenzene	0.0 2.4	0.48	U	2.1	0.48	U	0.0	0.48	U U
Dichlorodifluoromethane		0.40	U	0.0	0.40	U	0.0	0.40	U U
1,1-Dichloroethane	0.0	0.32							
1,2-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	<u>U</u>
1,1-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	<u>U</u>
cis-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
trans-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,2-Dichloropropane	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
cis-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U

Notes: All units in micrograms per cubic meter (µg/m³)

U - Indicates the analyte was analyzed for but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that analyte. The reporting limit can vary dilution factor.

D - Indicates samples was diluted, for dilution factor please see the lab report.

B - method blank contamination

E - estimated results - outside of calibration range

BA - Basement Air Sample

SS - Subslab Air Sample

Client ID		18		1	18			18	
Lab Sample ID	040	1022912115	51	BAO	102291211	54	922)102291211	55
Sample Date & Time		29/12 11:51			29/12 11:54			/29/12 11:55	
Sample Date & Time End		/1/12 10:32			/1/12 10:29	r		8/1/12 10:27	
Sample Date & Time Life	Result	LRL	Q	Result	LRL	Q	Result	LRL	Q
trans-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	Ū	0.0	0.36	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.0	0.56	Ū	0.0	0.56	U	0.0	0.56	U
1,4-Dioxane	0.0	0.72	U	0.0	0.72	U	0.0	0.72	U
Ethanol	4.9	1.50	0	270.0	7.50	D	5.3	1.50	0
Ethylbenzene	0.0	0.35	U	3.7	0.35		1.1	0.35	
Trichlorofluoromethane	1.2	0.35	0	1.2	0.35		1.1	0.35	
Hexachlorobutadiene	0.0	0.45	U	0.0	0.45	U	0.0	0.45	U
n-Hexane	0.0	0.85	U	6.0	0.85	0	0.0	0.85	U
2,2,4-Trimethylpentane	0.0	0.93	U	6.6	0.93		0.0	0.93	
tert-Butyl alcohol	0.0	0.93	U	0.0	0.93	U	0.0	0.93	U U
		0.69		0.0	0.69		0.0	0.69	U U
Methylene chloride Benzene	0.0		U	0.0 3.1	0.69	U	0.0		U U
h	0.4	0.26	~					0.26	
Benzyl chloride	0.0	0.83	U	0.0	0.83	U	0.0	0.83	U
Styrene	0.0	0.34	U	0.4	0.34		0.0	0.34	U
1,1,2,2-Tetrachloroethane	0.0	0.55	U	0.0	0.55	U	0.0	0.55	U
Tetrachloroethene	0.0	0.54	U	1.5	0.54		3.8	0.54	
Toluene	1.1	0.30		30.0	0.30		0.5	0.30	
1,2,4-Trichlorobenzene	0.0	0.59	U	0.0	0.59	U	0.0	0.59	U
1,1,1-Trichloroethane	0.0	0.44	U	0.0	0.44	U	0.8	0.44	
1,1,2-Trichloroethane	0.0	0.44	U	0.0	0.44	U	0.0	0.44	U
Trichloroethene	0.0	0.21	U	0.0	0.21	U	0.0	0.21	U
1,2,4-Trimethylbenzene	0.0	0.39	U	3.2	0.39		0.0	0.39	U
1,3,5-Trimethylbenzene	0.0	0.39	U	0.8	0.39		0.0	0.39	U
Vinyl chloride	0.0	0.20	U	0.0	0.20	U	0.0	0.20	U
o-Xylene	0.0	0.35	U	4.1	0.35		0.9	0.35	
Methyl tert-butyl ether	0.0	0.58	U	0.0	0.58	U	0.0	0.58	U
1,1,2-Trichlorotrifluoroethane	0.0	0.61	U	1.3	0.61		34.0	0.61	
m-Xylene & p-Xylene	0.0	0.35	U	13.0	0.35		2.3	0.35	
Bromodichloromethane	0.0	0.54	U	0.0	0.54	U	0.0	0.54	U
1,2-Dibromoethane (EDB)	0.0	0.61	U	0.0	0.61	U	0.0	0.61	U
2-Butanone (MEK)	1.3	0.94		13.0	0.94		39.0	0.94	
4-Methyl-2-pentanone (MIBK)	0.0	0.82	U	0.0	0.82	U	0.0	0.82	U
Bromoform	0.0	0.83	U	0.0	0.83	U	0.0	0.83	U
Bromomethane	0.0	0.31	U	0.0	0.31	U	0.0	0.31	U
Carbon tetrachloride	0.5	0.25		0.5	0.25		0.0	0.25	U
Chlorobenzene	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
Dibromochloromethane	0.0	0.68	U	0.0	0.68	U	0.0	0.68	U
Chloroethane	0.0	0.21	U	0.0	0.21	U	0.0	0.21	U
Chloroform	0.0	0.39	U	0.0	0.39	U	12.0	0.39	
Chloromethane	1.2	0.41		1.0	0.41		0.0	0.41	U
Cyclohexane	0.0	0.69	U	2.4	0.69		0.0	0.69	U
1,2-Dichlorobenzene	0.0	0.48	U	0.0	0.48	U	0.0	0.48	U
1,3-Dichlorobenzene	0.0	0.48	U	0.0	0.48	Ū	0.0	0.48	Ū
1,4-Dichlorobenzene	0.0	0.48	U	0.0	0.48	Ū	0.0	0.48	Ü
Dichlorodifluoromethane	2.4	0.40		2.3	0.40		0.0	0.40	Ü
1,1-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,2-Dichloroethane	0.0	0.32	U	0.4	0.32		0.0	0.32	U
1,1-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	Ū
cis-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
trans-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,2-Dichloropropane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
cis-1,3-Dichloropropene	0.0	0.37	U	0.0	0.36	U	0.0	0.37	U
	0.0	0.00	U	0.0	0.30	0	0.0	0.30	0

Notes: All units in micrograms per cubic meter (µg/m³)

U - Indicates the analyte was analyzed for but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that analyte. The reporting limit can vary dilution factor.

D - Indicates samples was diluted, for dilution factor please see the lab report.

B - method blank contamination

E - estimated results - outside of calibration range

BA - Basement Air Sample

SS - Subslab Air Sample

Client ID	T	11			11			11	
Lab Sample ID	OA0	103011209	23	BAO	103011209	26	SSC	0103011209	27
Sample Date & Time		/1/12 9:23	20		3/1/12 9:26	20		3/1/12 9:27	
Sample Date & Time End		/2/12 8:10			8/2/12 8:05			3/2/12 8:03	
Sample Date & Time End	Result	LRL	Q	Result	LRL	Q	Result	LRL	Q
trans-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.0	0.56	Ū	0.0	0.56	U	0.0	0.56	U
1,4-Dioxane	0.0	0.72	U	0.0	0.72	U	0.0	0.72	Ū
Ethanol	3.5	1.50		120.0	1.50		8.6	1.50	
Ethylbenzene	0.0	0.35	U	1.1	0.35		1.5	0.35	
Trichlorofluoromethane	1.1	0.35	0	1.1	0.35		1.0	0.35	
Hexachlorobutadiene	0.0	0.45	U	0.0	0.45	U	0.0	0.45	U
	0.0	0.85	U	0.0	0.85	U	0.0	0.85	U U
n-Hexane									
2,2,4-Trimethylpentane	0.0	0.93	U U	0.0	0.93	U	0.0	0.93	<u>U</u>
tert-Butyl alcohol	0.0	0.97		0.0	0.97	U	0.0	0.97	U
Methylene chloride Benzene	0.0	0.69 0.26	U	0.0 0.8	0.69 0.26	U	0.0 0.0	0.69 0.26	U U
Benzyl chloride	0.0	0.83	U	0.0	0.83		0.0	0.83	Ŭ
Styrene	0.0	0.34	U	0.0	0.34	U U	0.0	0.34	
1,1,2,2-Tetrachloroethane	0.0	0.55	<u>0</u>	0.0	0.55	U	0.0	0.55	<u>u</u>
Tetrachloroethene	0.0	0.55	U	0.0	0.55	U	1.7	0.55	J
Toluene	0.0	0.34		2.9	0.30		0.6	0.34	
	0.8	0.30					0.6	0.30	U
1,2,4-Trichlorobenzene			U	0.0	0.59	U			
1,1,1-Trichloroethane	0.0	0.44	U	0.0	0.44	U	0.0	0.44	U
1,1,2-Trichloroethane	0.0	0.44	U	0.0	0.44	U	0.0	0.44	U
Trichloroethene	0.0	0.21	U	0.0	0.21	U	0.0	0.21	U
1,2,4-Trimethylbenzene	0.0	0.39	U	0.5	0.39		1.0	0.39	
1,3,5-Trimethylbenzene	0.0	0.39	U	0.0	0.39	U	0.0	0.39	U
Vinyl chloride	0.0	0.20	U	0.0	0.20	U	0.0	0.20	U
o-Xylene	0.0	0.35	U	0.7	0.35		1.4	0.35	
Methyl tert-butyl ether	0.0	0.58	U	0.0	0.58	U	0.0	0.58	U
1,1,2-Trichlorotrifluoroethane	0.0	0.61	U	0.0	0.61	U	20.0	0.61	
m-Xylene & p-Xylene	0.4	0.35		1.9	0.35		3.4	0.35	
Bromodichloromethane	0.0	0.54	U	0.0	0.54	U	0.0	0.54	U
1,2-Dibromoethane (EDB)	0.0	0.61	U	0.0	0.61	U	0.0	0.61	U
2-Butanone (MEK)	0.0	0.94	U	0.0	0.94	U	47.0	0.94	
4-Methyl-2-pentanone (MIBK)	0.0	0.82	U	0.0	0.82	U	0.0	0.82	U
Bromoform	0.0	0.83	U	0.0	0.83	U	0.0	0.83	U
Bromomethane	0.0	0.31	U	0.0	0.31	U	0.0	0.31	U
Carbon tetrachloride	0.4	0.25		0.5	0.25		0.0	0.25	U
Chlorobenzene	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
Dibromochloromethane	0.0	0.68	U	0.0	0.68	U	0.0	0.68	U
Chloroethane	0.0	0.21	U	0.0	0.21	U	0.0	0.21	U
Chloroform	0.0	0.39	U	0.0	0.39	U	0.0	0.39	U
Chloromethane	1.0	0.41		1.0	0.41		0.0	0.41	U
Cyclohexane	0.0	0.69	U	0.0	0.69	U	0.0	0.69	U
1,2-Dichlorobenzene	0.0	0.48	U	0.0	0.48	U	0.0	0.48	U
1,3-Dichlorobenzene	0.0	0.48	U	0.0	0.48	U	1.0	0.48	
1,4-Dichlorobenzene	0.0	0.48	U	0.0	0.48	U	0.0	0.48	U
Dichlorodifluoromethane	2.4	0.40		2.4	0.40		0.0	0.40	Ū
1,1-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	Ū
1,2-Dichloroethane	0.0	0.32	Ŭ	0.0	0.32	U	0.0	0.32	Ŭ
1,1-Dichloroethene	0.0	0.32	<u>0</u>	0.0	0.32	Ŭ	0.0	0.32	Ū
cis-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	Ū
trans-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	Ū
1,2-Dichloropropane	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
cis-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U
	0.0	0.00	0	0.0	0.00	0	0.0	0.00	0

Notes: All units in micrograms per cubic meter (µg/m³)

U - Indicates the analyte was analyzed for but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that analyte. The reporting limit can vary dilution factor.

D - Indicates samples was diluted, for dilution factor please see the lab report.

B - method blank contamination

E - estimated results - outside of calibration range

BA - Basement Air Sample

SS - Subslab Air Sample

Client ID		21			21			21	
Lab Sample ID	040	103011213	204	BAO	103011213	11	222)103011213	12
Sample Date & Time		/1/12 13:04			/1/12 13:11			/1/12 13:12	
Sample Date & Time End		/1/12 13:04 /2/12 12:02			/2/12 13:11		-	/2/12 11:57	
Sample Date & Time End	Result	LRL	Q	Result	LRL	Q	Result	LRL	Q
trans-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	Ū
	0.0	0.56	U	0.0	0.56	U	0.0	0.56	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.0		U	0.0	0.56	U			U U
1,4-Dioxane		0.72	U			U	0.0	0.72	0
Ethanol	4.0	1.50		30.0	1.50		4.8	1.50	
Ethylbenzene	0.0	0.35	U	0.0	0.35	U	2.2	0.35	
Trichlorofluoromethane	1.2	0.45		1.8	0.45		0.0	0.45	U
Hexachlorobutadiene	0.0	0.85	U	0.0	0.85	U	0.0	0.85	U
n-Hexane	0.0	0.70	U	2.2	0.70		1.2 1.7	0.70	
2,2,4-Trimethylpentane	0.0	0.93	U	0.0	0.93	U	1.7	0.93	
tert-Butyl alcohol	0.0	0.97	U	0.0	0.97	U	0.0	0.97	U
Methylene chloride	0.0	0.69	U	3.2	0.69		0.0	0.69	U
Benzene	0.5	0.26		0.8	0.26		1.6	0.26	
Benzyl chloride	0.0	0.83	U	0.0	0.83	U	0.0	0.83	U
Styrene	0.0	0.34	U	0.0	0.34	U	0.0	0.34	U
1,1,2,2-Tetrachloroethane	0.0	0.55	U	0.0	0.55	U	0.0	0.55	U
Tetrachloroethene	0.0	0.54	Ū	0.0	0.54	Ū	3.8	0.54	
Toluene	0.8	0.30		1.9	0.30		1.5	0.30	
1,2,4-Trichlorobenzene	0.0	0.59	U	0.0	0.59	U	0.0	0.59	U
1,1,1-Trichloroethane	0.0	0.44	<u>.</u>	0.0	0.44	Ū	0.0	0.44	<u>ö</u>
1,1,2-Trichloroethane	0.0	0.44	Ū	0.0	0.44	U	0.0	0.44	<u>0</u>
Trichloroethene	0.0	0.21	Ŭ	0.0	0.21	Ŭ	0.9	0.21	
1,2,4-Trimethylbenzene	0.0	0.21	U	0.0	0.21	<u>U</u>	0.9	0.39	• • • • • • • • • • • • • •
1,3,5-Trimethylbenzene	0.0	0.39	U U	0.0	0.39	U	0.9	0.39	
									<u>U</u>
Vinyl chloride	0.0	0.20	U	0.0	0.20	U	0.0	0.20	U
o-Xylene	0.0	0.35	U	0.0	0.35	U	0.5	0.35	
Methyl tert-butyl ether	0.0	0.58	U	0.0	0.58	U	0.0	0.58	U
1,1,2-Trichlorotrifluoroethane	0.0	0.61	U	0.6	0.61		20.0	0.61	
m-Xylene & p-Xylene	0.5	0.35		1.0	0.35		2.5	0.35	
Bromodichloromethane	0.0	0.54	U	0.0	0.54	U	0.0	0.54	U
1,2-Dibromoethane (EDB)	0.0	0.61	U	0.0	0.61	U	0.0	0.61	U
2-Butanone (MEK)	0.0	0.94	U	0.0	0.94	U	41.0	0.94	
4-Methyl-2-pentanone (MIBK)	0.0	0.82	U	0.0	0.82	U	0.0	0.82	U
Bromoform	0.0	0.83	U	0.0	0.83	U	0.0	0.83	U
Bromomethane	0.0	0.31	U	0.0	0.31	U	0.0	0.31	U
Carbon tetrachloride	0.5	0.25		0.5	0.25		0.0	0.25	U
Chlorobenzene	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
Dibromochloromethane	0.0	0.68	U	0.0	0.68	U	0.0	0.68	U
Chloroethane	0.0	0.21	U	0.0	0.21	U U	0.0	0.21	U
Chloroform	0.0	0.39	U	0.0	0.39	U	0.9	0.39	
Chloromethane	1.0	0.41		1.0	0.41		0.0	0.41	U
Cyclohexane	0.0	0.69	U	0.0	0.69	U	0.8	0.69	
1,2-Dichlorobenzene	0.0	0.48	Ū	0.0	0.48	U U	0.0	0.48	U
1,3-Dichlorobenzene	0.0	0.48	Ŭ	0.0	0.48	Ū	0.0	0.48	U
1,4-Dichlorobenzene	0.0	0.48	Ū	0.0	0.48	Ŭ	0.0	0.48	<u>0</u>
Dichlorodifluoromethane	2.2	0.40	····· ·	2.4	0.40		0.0	0.40	U
1,1-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,2-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,1-Dichloroethane	0.0	0.32	U U	0.0	0.32	U U	0.0	0.32	U
cis-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	<u> U </u>
trans-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,2-Dichloropropane	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
cis-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U

Notes: All units in micrograms per cubic meter (µg/m³)

U - Indicates the analyte was analyzed for but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that analyte. The reporting limit can vary dilution factor.

D - Indicates samples was diluted, for dilution factor please see the lab report.

B - method blank contamination

E - estimated results - outside of calibration range

BA - Basement Air Sample

SS - Subslab Air Sample

Client ID	1	15			15			15	
Lab Sample ID	040	103131213 [.]	19	BAO	103131213	22	SSC	0103131213	25
Sample Date & Time		13/12 13:19			13/12 13:22			/13/12 13:25	
Sample Date & Time End	-	14/12 11:35			14/12 11:31			/14/12 11:27	
Sample Date & Time End	Result	LRL	Q	Result	LRL	Q	Result	LRL	Q
trans-1,3-Dichloropropene	0.0	0.36	U	0.0	3.80	U	0.0	17.00	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.0	0.56	Ŭ	0.0	5.90	U	0.0	25.00	U
1,4-Dioxane	0.0	0.72	U	0.0	7.60	U	0.0	33.00	U
Ethanol	6.0	1.50		890.0	290.00	D	180.0	69.00	
Ethylbenzene	0.0	0.35	U	0.0	3.70	Ū	0.0	16.00	U
Trichlorofluoromethane	1.3	0.45		0.0	4.70	U	0.0	20.00	U
Hexachlorobutadiene	0.0	0.85	U	0.0	9.00	U	0.0	39.00	U
n-Hexane	0.0	0.70		0.0	7.40	U	0.0	32.00	U
2,2,4-Trimethylpentane	0.0	0.93		0.0	9.90	U	0.0	42.00	U
tert-Butyl alcohol	0.0	0.97	U U	0.0	10.00	U	0.0	44.00	U
Methylene chloride	1.2	0.69		0.0	7.30	U	0.0	32.00	U
Benzene	0.5	0.00		0.0	2.70	U	0.0	12.00	U
Benzyl chloride	0.0	0.83	U	0.0	8.70	U	0.0	38.00	U
Styrene	0.0	0.34	U	0.0	3.60	U	0.0	15.00	U
1,1,2,2-Tetrachloroethane	0.0	0.55	Ŭ	0.0	5.80	U	0.0	25.00	U
Tetrachloroethene	0.6	0.54	0	0.0	5.70	U	120.0	25.00	
Toluene	1.5	0.34		5.2	3.20		0.0	14.00	U
1,2,4-Trichlorobenzene	0.0	0.59	U	0.0	6.30	U	0.0	27.00	U
1,1,1-Trichloroethane	0.0	0.39	<u>u</u>	0.0	4.60	U U	0.0	20.00	U
1,1,2-Trichloroethane	0.0	0.44	<u></u>	0.0	4.60	U	0.0	20.00	U U
Trichloroethene	0.0	0.44	U	0.0	2.30	U	0.0	9.80	U
1,2,4-Trimethylbenzene	0.0	0.39	<u>U</u>	0.0	4.10	U	0.0	18.00	U
1,3,5-Trimethylbenzene	0.0	0.39	U	0.0	4.10	U	0.0	18.00	U
Vinyl chloride	0.0	0.20	<u>U</u>	0.0	2.20	U U	0.0 0.0	9.30	U U
o-Xylene	0.0	0.35	U U	0.0	3.70			16.00	U U
Methyl tert-butyl ether	0.0	0.58 0.61	U	0.0 100.0	6.10	U	0.0 9800.0	26.00 60.00	 D
1,1,2-Trichlorotrifluoroethane				0.0	6.50				
m-Xylene & p-Xylene	0.7	0.35			3.70	U U	0.0	16.00	U
Bromodichloromethane 1,2-Dibromoethane (EDB)	0.0	0.54	U U	0.0	5.70 6.50	U U	0.0 0.0	24.00 28.00	U U
	0.0	0.61	0		10.00			43.00	U
2-Butanone (MEK) 4-Methyl-2-pentanone (MIBK)	1.0 0.0		U	0.0	8.60	U U	0.0 0.0		
	0.0	0.82		0.0	8.70		0.0	37.00	U U
Bromoform			U			U U		38.00	
Bromomethane	0.0	0.31	U	0.0	3.30 2.70		0.0 0.0	14.00 11.00	U U
Carbon tetrachloride	0.6	0.25		0.0	~~~~~	U U			
Chlorobenzene Dibromochloromethane	0.0	0.37 0.68	U U	0.0	3.90 7.20	U U	0.0	17.00 31.00	U U
h							0.0		
Chloroethane	0.0	0.21	U U	0.0	2.20	U		9.60	U
Chloroform	0.0	0.39	0	0.0	4.10 4.40	U U	0.0 0.0	18.00 19.00	U U
Chloromethane	1.1			0.0				31.00	
Cyclohexane	0.0	0.69	U U		7.30	U	0.0		U
1,2-Dichlorobenzene	0.0	0.48		0.0	5.10	U	0.0	22.00	U
1,3-Dichlorobenzene	0.0	0.48	U	0.0	5.10	U	0.0	22.00	U
1,4-Dichlorobenzene	0.0	0.48	U	13.0	5.10		25.0 0.0	22.00	U
Dichlorodifluoromethane	2.5	~~~~~		0.0	4.20	U		18.00	U U
1,1-Dichloroethane	0.0	0.32	U	0.0	3.40	U	0.0	15.00	
1,2-Dichloroethane	0.0	0.32	U	0.0	3.40	U	0.0	15.00	U
1,1-Dichloroethene	0.0	0.32	U	0.0	3.30	U	0.0	14.00	U
cis-1,2-Dichloroethene	0.0	0.32	U	0.0	3.30	U	0.0	14.00	U
trans-1,2-Dichloroethene	0.0	0.32	U	0.0	3.30	U	0.0	14.00	U
1,2-Dichloropropane	0.0	0.37	U	0.0	3.90	U	0.0	17.00	U
cis-1,3-Dichloropropene	0.0	0.36	U	0.0	3.80	U	0.0	17.00	U

Notes: All units in micrograms per cubic meter (µg/m³)

U - Indicates the analyte was analyzed for but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that analyte. The reporting limit can vary dilution factor.

D - Indicates samples was diluted, for dilution factor please see the lab report.

B - method blank contamination

E - estimated results - outside of calibration range

BA - Basement Air Sample

SS - Subslab Air Sample

Client ID		duplicate		r – –	duplicate			duplicate	
Lab Sample ID		VIX1			VIX2			VIX3	
Sample Date & Time	(0/0/00 0:00		C	0/0/00 0:00		(0/0/00 0:00	
Sample Date & Time End		0/0/00 0:00			0/0/00 0:00			0/0/00 0:00	
	Result	LRL	Q	Result	LRL	Q	Result	LRL	Q
trans-1,3-Dichloropropene	0.0	7.80	U	0.0	17.00	U	0.0	0.36	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.0	12.00	U	0.0	25.00	U	0.0	0.56	U
1,4-Dioxane	0.0	16.00	U	0.0	33.00	U	0.0	0.72	U
Ethanol	2200.0	33.00		160.0	69.00		8.6	1.50	
Ethylbenzene	0.0	7.50	U	0.0	16.00	U	0.0	0.35	U
Trichlorofluoromethane	0.0	9.70	U	0.0	20.00	U	1.5	0.45	
Hexachlorobutadiene	0.0	18.00	U	0.0	39.00	U	0.0	0.85	U
n-Hexane	0.0	15.00	U	0.0	32.00		0.8	0.70	
2,2,4-Trimethylpentane	0.0	20.00	U	0.0	42.00	U U	0.0	0.93	U
tert-Butyl alcohol	0.0	21.00	U	0.0	44.00	U	0.0	0.97	U
Methylene chloride	0.0	15.00	U	0.0	32.00	U	1.4	0.69	
Benzene	0.0	5.50	U	0.0	12.00	U	0.6	0.26	
Benzyl chloride	0.0	18.00	U	0.0	38.00	U	0.0	0.83	U
Styrene	0.0	7.40	U	0.0	15.00	U U	0.0	0.34	U
1,1,2,2-Tetrachloroethane	0.0	12.00	U	0.0	25.00	U	0.0	0.55	U
Tetrachloroethene	0.0	12.00	U	140.0	25.00		0.0	0.54	U
Toluene	0.0	6.50	U	0.0	14.00	U	1.5	0.30	
1,2,4-Trichlorobenzene	0.0	13.00	U	0.0	27.00	U	0.0	0.59	U
1,1,1-Trichloroethane	0.0	9.40	U	0.0	20.00	U	0.0	0.44	U
1,1,2-Trichloroethane	0.0	9.40	U	0.0	20.00	U	0.0	0.44	U
Trichloroethene	0.0	4.60	U	0.0	9.80	U	0.0	0.21	U
1,2,4-Trimethylbenzene	0.0	8.50	U	0.0	18.00	U	0.5	0.39	
1,3,5-Trimethylbenzene	0.0	8.50	U	0.0	18.00	Ū	0.0	0.39	U
Vinyl chloride	0.0	4.40	U	0.0	9.30	Ū	0.0	0.20	Ū
o-Xylene	0.0	7.50	U	0.0	16.00	Ū	0.0	0.35	Ū
Methyl tert-butyl ether	0.0	12.00	U	0.0	26.00	U	0.0	0.58	U
1,1,2-Trichlorotrifluoroethane	110.0	13.00		10000.0	69.00	D	0.7	0.61	
m-Xylene & p-Xylene	0.0	7.50	U	0.0	16.00	U	0.5	0.35	
Bromodichloromethane	0.0	12.00	U	0.0	24.00	U	0.0	0.54	U
1,2-Dibromoethane (EDB)	0.0	13.00	U	0.0	28.00	U	0.0	0.61	U
2-Butanone (MEK)	0.0	20.00	U	0.0	43.00	U	1.0	0.94	
4-Methyl-2-pentanone (MIBK)	0.0	18.00	U	0.0	37.00	U	0.0	0.82	U
Bromoform	0.0	18.00	U	0.0	38.00	U	0.0	0.83	U
Bromomethane	0.0	6.70	U	0.0	14.00	U U	0.0	0.31	U
Carbon tetrachloride	0.0	5.40	U	0.0	11.00	U	0.6	0.25	
Chlorobenzene	0.0	8.00	U	0.0	17.00	U	0.0	0.37	U
Dibromochloromethane	0.0	15.00	U	0.0	31.00	U	0.0	0.68	U
Chloroethane	0.0	4.60	U	0.0	9.60	U	0.0	0.21	U
Chloroform	0.0	8.40	U	0.0	18.00	U	0.0	0.39	U
Chloromethane	0.0	8.90	U	0.0	19.00	U	1.2	0.41	
Cyclohexane	0.0	15.00	U	0.0	31.00	U	0.0	0.69	U
1,2-Dichlorobenzene	0.0	10.00	U	0.0	22.00	U	0.0	0.48	U
1,3-Dichlorobenzene	0.0	10.00	U	0.0	22.00	U	0.0	0.48	U
1,4-Dichlorobenzene	11.0	10.00		29.0	22.00		0.0	0.48	U
Dichlorodifluoromethane	0.0	8.50	U	0.0	18.00	U	2.6	0.40]
1,1-Dichloroethane	0.0	7.00	U	0.0	15.00	U	0.0	0.32	U
1,2-Dichloroethane	0.0	7.00	U	0.0	15.00	U	0.0	0.32	U
1,1-Dichloroethene	0.0	6.90	U	0.0	14.00	U	0.0	0.32	U
cis-1,2-Dichloroethene	0.0	6.90	U	0.0	14.00	U	0.0	0.32	U
trans-1,2-Dichloroethene	0.0	6.90	U	0.0	14.00	U	0.0	0.32	U
1,2-Dichloropropane	0.0	8.00	U	0.0	17.00	U	0.0	0.37	U
cis-1,3-Dichloropropene	0.0	7.80	U	0.0	17.00	U	0.0	0.36	U

Notes: All units in micrograms per cubic meter (µg/m³)

U - Indicates the analyte was analyzed for but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that analyte. The reporting limit can vary dilution factor.

D - Indicates samples was diluted, for dilution factor please see the lab report.

B - method blank contamination

E - estimated results - outside of calibration range

BA - Basement Air Sample

SS - Subslab Air Sample

Client ID Lab Sample ID Sample Date & Time Sample Date & Time End		19 1031912092	27	BAO	19 103191209	~~		19	
Sample Date & Time		1001012001			.79	SS010319120930			
	3/19/12 9:27				19/12 9:29	20		/19/12 9:30	00
	3/	20/12 8:07			20/12 8:03			/20/12 8:02	
	Result	LRL	Q	Result	LRL	Q	Result	LRL	Q
trans-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.0	0.56	Ŭ	0.0	0.56	U	0.0	0.56	U
1,4-Dioxane	0.0	0.72	U	0.0	0.72	Ŭ	0.0	0.72	Ŭ
Ethanol	17.0	1.50		280.0	3.00	D	5.6	1.50	
Ethylbenzene	0.0	0.35	U	0.7	0.35		2.2	0.35	
Trichlorofluoromethane	1.3	0.45		1.3	0.45		1.4	0.45	
Hexachlorobutadiene	0.0	0.85	U	0.0	0.85	U	0.0	0.85	U
n-Hexane	0.0	0.70	Ū	1.0	0.70	ŭ	0.0	0.70	Ŭ
2,2,4-Trimethylpentane	0.0	0.93	Ü.	0.0	0.93	U	0.0	0.93	Ŭ
tert-Butyl alcohol	0.0	0.97	U U	0.0	0.97	Ŭ	0.0	0.97	Ŭ
Methylene chloride	1.1	0.69		0.0	0.69	Ŭ	1.3	0.69	
Benzene	0.3	0.00		0.6	0.26		0.0	0.26	U
Benzyl chloride	0.0	0.83	U	0.0	0.83	U	0.0	0.83	U
Styrene	0.0	0.34	U	0.0	0.34		0.0	0.34	U
1,1,2,2-Tetrachloroethane	0.0	0.55	U	0.4	0.55	U	0.0	0.55	U
Tetrachloroethene	0.0	0.54	U	0.0	0.54	U	1.4	0.55	
Toluene	0.0	0.34	0	3.6	0.34	0	0.8	0.34	
1,2,4-Trichlorobenzene	0.0	0.59		0.0			0.0	0.59	
1,2,4- Inchlorobenzene 1,1,1-Trichloroethane	0.0	0.59	U U	0.0	0.59 0.44	U U	0.0	0.59	U
			U U		0.44		0.5	0.44	
1,1,2-Trichloroethane	0.0	0.44		0.0		U		~~~~~	U
Trichloroethene	0.0	0.21	U	0.0	0.21	U	0.0	0.21	U
1,2,4-Trimethylbenzene	0.0	0.39	U	0.5	0.39		1.0	0.39	
1,3,5-Trimethylbenzene	0.0	0.39	U	0.0	0.39	U	0.0	0.39	U
Vinyl chloride	0.0	0.20	U	0.0	0.20	U	0.0	0.20	U
o-Xylene	0.0	0.35	U	0.7	0.35		1.8	0.35	
Methyl tert-butyl ether	0.0	0.58	U	0.0	0.58	U	0.0	0.58	U
1,1,2-Trichlorotrifluoroethane	0.0	0.61	U	7.2	0.61		1300.0	12.00	D
m-Xylene & p-Xylene	0.4	0.35		1.9	0.35		4.8	0.35	
Bromodichloromethane	0.0	0.54	U	0.0	0.54	U	0.0	0.54	U
1,2-Dibromoethane (EDB)	0.0	0.61	U	0.0	0.61	U	0.0	0.61	U
2-Butanone (MEK)	0.0	0.94	U	1.9	0.94		42.0	19.00	D
4-Methyl-2-pentanone (MIBK)	0.0	0.82	U	0.0	0.82	U	0.0	0.82	U
Bromoform	0.0	0.83	U	0.0	0.83	U U	0.0	0.83	U
Bromomethane	0.0	0.31	U	0.0	0.31	U	0.0	0.31	U
Carbon tetrachloride	0.5	0.25		0.5	0.25		0.0	0.25	U
Chlorobenzene	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
Dibromochloromethane	0.0	0.68	U	0.0	0.68	U	0.0	0.68	U
Chloroethane	0.0	0.21	U U	0.0	0.21	U	0.0	0.21	U
Chloroform	0.0	0.39	U	0.0	0.39	U	7.7	0.39	
Chloromethane	1.2	0.41		1.6	0.41		1.9	0.41	
Cyclohexane	0.0	0.69	U	0.0	0.69	U	0.0	0.69	U
1,2-Dichlorobenzene	0.0	0.48	U	0.0	0.48	U	0.0	0.48	U
1,3-Dichlorobenzene	0.0	0.48	U	0.0	0.48	U	1.2	0.48	
1,4-Dichlorobenzene	0.0	0.48	U	0.0	0.48	U	0.0	0.48	U
Dichlorodifluoromethane	2.4	0.40		2.4	0.40		0.0	0.40	U
1,1-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,2-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,1-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
cis-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
trans-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,2-Dichloropropane	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
cis-1,3-Dichloropropene	0.0	0.36	Ū	0.0	0.36	U	0.0	0.36	U

Notes: All units in micrograms per cubic meter (µg/m³)

U - Indicates the analyte was analyzed for but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that analyte. The reporting limit can vary dilution factor.

D - Indicates samples was diluted, for dilution factor please see the lab report.

B - method blank contamination

E - estimated results - outside of calibration range

BA - Basement Air Sample

SS - Subslab Air Sample

Client ID	T	5		1	5			5	
Lab Sample ID	OA0	103261213	45	BAO	103261213	847	SSC)103261213	48
Sample Date & Time		26/12 13:45			26/12 13:47			26/12 13:48	
Sample Date & Time End	-	27/12 12:06			27/12 12:04			20/12 10:40	-
Sample Date & Time Life	Result	LRL	, Q	Result	LRL	† Q	Result	LRL	Q
trans-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.0	0.56	Ŭ	0.0	0.56	U	0.0	0.56	Ŭ
1,4-Dioxane	0.0	0.72	<u>U</u>	0.0	0.72	U	0.0	0.72	Ū
Ethanol	2.9	1.50		130.0	1.50		18.0	1.50	
Ethylbenzene	0.0	0.35	U	0.8	0.35		1.3	0.35	
Trichlorofluoromethane	1.2	0.35	0	1.2	0.35		1.3	0.35	
Hexachlorobutadiene	0.0	0.45	U	0.0	0.45	U	0.0	0.45	U
	0.0	0.85	U	1.0	0.85	0	0.0	0.85	U
n-Hexane									
2,2,4-Trimethylpentane	0.0	0.93	U	0.0	0.93	U	0.0	0.93	U
tert-Butyl alcohol	0.0	0.97	U	0.0	0.97	U	0.0	0.97	U
Methylene chloride Benzene	0.0	0.69 0.26	U	0.0 0.5	0.69 0.26	U	0.0 0.3	0.69 0.26	U
Benzyl chloride	0.0	0.83	U	0.0	0.83	U	0.0	0.83	U
Styrene	0.0	0.34	<u>U</u>	0.0	0.34	U	0.0	0.34	U
1,1,2,2-Tetrachloroethane	0.0	0.55	<u>0</u>	0.0	0.55	U	0.0	0.55	<u>U</u>
Tetrachloroethene	0.0	0.55	U	7.4	0.54		5.7	0.54	
Toluene	0.0	0.34		2.5	0.34		2.0	0.34	
	0.4	0.30			0.30		2.0 0.0	0.30	
1,2,4-Trichlorobenzene			<u> </u>	0.0		U			U
1,1,1-Trichloroethane	0.0	0.44	<u>U</u>	0.0	0.44	U	0.0	0.44	U
1,1,2-Trichloroethane	0.0	0.44	U	0.0	0.44	U	0.0	0.44	U
Trichloroethene	0.0	0.21	U	0.9	0.21		0.6	0.21	
1,2,4-Trimethylbenzene	0.0	0.39	U	0.4	0.39		0.4	0.39	
1,3,5-Trimethylbenzene	0.0	0.39	U	0.0	0.39	U	0.0	0.39	U
Vinyl chloride	0.0	0.20	U	0.0	0.20	U	0.0	0.20	U
o-Xylene	0.0	0.35	U	1.0	0.35		0.8	0.35	
Methyl tert-butyl ether	0.0	0.58	U	0.0	0.58	U	0.0	0.58	U
1,1,2-Trichlorotrifluoroethane	0.0	0.61	U	1.1	0.61		52.0	0.61	
m-Xylene & p-Xylene	0.0	0.35	U	3.0	0.35		2.6	0.35	
Bromodichloromethane	0.0	0.54	U	0.0	0.54	U	0.0	0.54	U
1,2-Dibromoethane (EDB)	0.0	0.61	U	0.0	0.61	U	0.0	0.61	U
2-Butanone (MEK)	0.0	0.94	U	30.0	0.94		58.0	4.70	D
4-Methyl-2-pentanone (MIBK)	0.0	0.82	U	0.0	0.82	U	0.0	0.82	U
Bromoform	0.0	0.83	U	0.0	0.83	U	0.0	0.83	U
Bromomethane	0.0	0.31	U	0.0	0.31	U	0.0	0.31	U
Carbon tetrachloride	0.4	0.25		0.5	0.25		0.5	0.25	
Chlorobenzene	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
Dibromochloromethane	0.0	0.68	U	0.0	0.68	U	0.0	0.68	U
Chloroethane	0.0	0.21	U	0.0	0.21	U	0.0	0.21	U
Chloroform	0.0	0.39	U	0.0	0.39	U	14.0	0.39	
Chloromethane	1.1	0.41		1.5	0.41		1.5	0.41	
Cyclohexane	0.0	0.69	U	0.0	0.69	U	0.0	0.69	U
1,2-Dichlorobenzene	0.0	0.48	Ū	0.0	0.48	U	0.0	0.48	U
1,3-Dichlorobenzene	0.0	0.48	U	0.0	0.48	Ŭ	0.0	0.48	U
1,4-Dichlorobenzene	0.0	0.48	<u>u</u>	0.0	0.48	Ŭ	0.0	0.48	Ŭ
Dichlorodifluoromethane	2.3	0.40		2.2	0.40		0.7	0.40	
1,1-Dichloroethane	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U
1,2-Dichloroethane	0.0	0.32	U	1.8	0.32		0.9	0.32	
1,1-Dichloroethene	0.0	0.32	U U	0.0	0.32	U	0.9	0.32	U
cis-1,2-Dichloroethene	0.0	0.32	U	0.0	0.32	U	0.0	0.32	U U
						U			
trans-1,2-Dichloroethene	0.0	0.32	<u>U</u>	0.0	0.32		0.0	0.32	U
1,2-Dichloropropane	0.0	0.37	U	0.0	0.37	U	0.0	0.37	U
cis-1,3-Dichloropropene	0.0	0.36	U	0.0	0.36	U	0.0	0.36	U

Notes: All units in micrograms per cubic meter (µg/m³)

U - Indicates the analyte was analyzed for but not detected. The number adjacent to the "U" qualifier indicates the reporting limit for that analyte. The reporting limit can vary dilution factor.

D - Indicates samples was diluted, for dilution factor please see the lab report.

B - method blank contamination

E - estimated results - outside of calibration range

BA - Basement Air Sample

SS - Subslab Air Sample

APPENDIX E

SOIL BORING AND MONITORING WELL CONSTRUCTION LOGS GROUNDWATER ELEVATION DATA

This Appendix includes all of the available boring logs and monitoring well construction logs for the Site wells that have not been previously abandoned. A table with groundwater elevation data is also included in this Appendix.

BORING R	EPORT	48 8 315 W. 519 PLE 9471 BAYM	D FOREST AVE 0000 EXCELSIO HURON STREE ASANT BOME RO EADOWS ROAD,	NUE, LOCUST IR DRIVE, MAI I, SUITE 220 DAD, SUITE 3 SUITE 106,	FINGINEERS, P. VALLEY, NY 115 DISON, WI 53717 JANN ARBOR MI I-C, AUGUSTA, G JACKSONVILLE, TRENTON, BJ	1 OF 3					
DATE STARTE	D: November 2	23, 1992	DATE FINIS	HED: Novembe	r 23, 1992	BORING NO.	MW15				
CLIENT: Deut	tsch Relay					PROJECT NO	.: 563-10	na mana di mangan kata dan kana na kana na mangan daki jang kana na kata na mangang panang kana			
PROJECT NAMI	E & LOCATION	: Deutsch Rel	.ay - East No	orthport		PREPARED B	Y: A. G	iaimo			
DRILLING CON	NTRACTOR: AI	DT		LOGGED BY:	A. Giaimo		DRILLER:	Steve Wolf			
		SOIL SA	MPLER:			MON. WEI	L (MW)				
EQUIPMENT:	CASING:	SPLIT SPOON		CORE BARREL	AUGER	PIPE	CAP	DRILL RIG AND METHOD			
TYPE :	2	2			Hollow Stem			Hollow Stem Auger			
SIZE:		24"			6"						
HAMMER WT/FALL		140 lb/30"			BIT:						
SURFACE ELE	VATION:			SURFACE	CONDITIONS:						
WATER LEVEL	AT	FT. AFI	ER	HRS.		FT. AFTER	F	IRS.			
DEPTH BELOW	OVA			1pl.e		BLOWS/6" OR CORE	STRATA DEPTH/	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20%			
GRADE	READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	TIME	ELEV.	SOME=20-30% AND=35-50%			
0								Sand and large gravel.			
5											
3			<u> </u>								
						a ta a t					
10			and a standard and and a standard a								
								Light brown medium coarse sand.			
		ļ				ada fiyo a ta a thin any give a good a subscription of the subscri					
15											
			<u> </u>								
00											
20		L		İ			н				

.

5		T	l line line line line line line line lin	Ţ	1	1		
DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SCME=0-30% AND=35-50%
			ang				1	
	ana ang ang ang ang ang ang ang ang ang		ana ay ang				-	
25							1	
	and an and a second statement of the second se	american and a subsection of the subsection of			an and the first state of the s		4	
	nan kanala ka						1	Light brown sand some
	and the second						1	large gravel.
	an and a state of the							
30								Light brown sand.
								ffereners for even a constant of four follows or an factor follows are accounted to the factor of the factor of
	nen manin de la company de		***************************************					
						er andra an en		Light brown sand some large gravel.
								TUTER BLUNGT.
35			****		arata hi intera como any			Light brown sand.
	Name and the state of the state							LIGHT DIOWH Salla.
ļ								
	ann an guir a tha an							

						: 		
40								
	a di kata mangangan di kata di kata mangangkan di				······································			
45								
	nantarian caldud antar interaction of the State							
				·····				
50								
	*******	2012/01/2012/00/2012/01/2012/01/2012/01/2012/01/2012/01/2012/01/2012/01/2012/01/2012/01/2012/01/2012/01/2012/0	angelen segen an		**************************************	naan na katalah dalah menandara serangan katalapat per		
	New My David State Contract Contract Contract Contract State					4524-96299996294962949629666299929484888898999992		
						and the second secon		
55								

PROJECT NO. 563-10

OF 3 SHEET 3

DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
60			· · · ·					
60								
		SS-1	64-66	Dry	Full			Light brown medium sand, some fine sand, trace
65								small gravel.
								Light brown medium sand
70		SS-2	69-71	Dry	Full			with rust brown thin strips.
/0								
								
				aniya				
		35-3	73-75	Dry	Full			
75								
			1					
						geneteri a goli spini pina se		
		SS-04	78-79	Dry	Full			Light brown medium sand, wet at 79-80.
80			79-80	Wet		·····		
85								
						· · · · · · · · · · · · · · · · · · ·		
								End of borshols.
	erren az interven, a cua in sin a parameter							
90		 						
2 W	i	İ	i	j	<u> </u>]			

BORING R	EPORT	48 315 W. 519 PLE 9471 BAYM	ER ASSOCIATE 0 FOREST AVE 8000 EXCELSIO HUROM STREE ASANT BOME R EADOWS ROAD, IVERVIEW EXE	SHEET	1 OF 4						
DATE STARTE): November 2	24, 1992	DATE FINIS	HED: Novembe	r 25, 1992	BORING NO.	. MW16	116			
CLIENT: Deut	sch Relay			Malley a reaction of the second second second second second second second second second second second second s	833200 Charles and Charles Charles Charles Charles Control of Control	PROJECT NO).: 563-10	10			
PROJECT NAME	E & LOCATION:	Deutsch Rel	lay - East No	rthport		PREPARED E	3Y: A. G	iaimo			
DRILLING CON	TRACTOR: AL)T	0 00-1	LOGGED BY:	A. Giaimo		DRILLER:	R: Steve Wolf			
	and the second second second second second second second second second second second second second second second	SOIL SA	MPLER:			MON, WE					
EQUIPMENT:	CASING:	SPLIT SPOON		CORE BARREL	AUGER	PIPE	CAP	DRILL RIG AND METHOD			
TYPE:	2	2			Hollow Stem	and a provide a final fraction of the second s		Hollow Stem Auger			
SIZE:		24"			6"	94 de desidade en esta a conserva en esta esta esta esta esta esta esta esta					
HAMMER WT/FALL		140 lb/30"			BIT:		- -				
SURFACE ELEV	ATION:			SURFACE	CONDITIONS:						
WATER LEVEL	AT	FT. AFI	ER	HRS.		FT. AFTER	E	IRS.			
DEPTH			SAN	1PLE		BLOWS/6"	STRATA	DESCRIPTION & REMARKS			
BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	OR CORE TIME	DEPTH/ ELEV.	TRACE=0-10% LITTLE=10-20% SOME=20-30% AND=35-50%			
0								Light brown medium coarse			
								sand.			
Ì											
					· · · · · · · · · · · · · · · · · · ·						
_											
5			W-1W5-424								
10											
15											
}											
			ni ni julija daga gala na sene sa pomor kana na na na se								
20						ļ					

DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%	
					erzentzen en zehlerzek harten mit derreg				
	an to management of the control of the second second second second second second second second second second s								
25								Dark brown medium sand, trace silt.	
					annan Ala-Alimetican caracterity, givy po				
30									
-									
35									
40									
						······································			
45									
					444-05-0 (1993) 				
50									
namen angategen generalen en							Dark brown sand, some 1" round stones trace silt.		
55						alara da sun da ana sun a Calo Milita (Sacara andreanna			

.

Ŕ

a prairie and a second

PROJECT NO. 563-10

SHEET 3 OF 4

e * *

· --

DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
			and an and a subscription of the subscription					
60								
			n bi ka ka ka ka ka ka ka ka ka ka ka ka ka	Net 10 Y Lawrence Taylord Castlandra 1979 1004				
65		ann ga an tha n an		******				
							N (
		an an an an an an an an an an an an an a	al a fight of the fight of the state of the					
	<u>e de la constante de la constan</u>	and a sum of the first first statement of						
70				******				
		Ss-1	70-72	Dry	Full			Light brown sand coarse.
75		SS-2	74-76	Dry	Full			
80		SS-3	79-81	Dry	Full			Rust brown sand medium and coarse.
85		SS -4	05-07					
67		SS-4	85-86	Dry	Full			Light brown and brown coarse sand some pea size gravel.
		-	anta and a state of the			andrinandity cool tables in the strength optic standard and a strength optic standard and a strength optic stan		
90		SS-5	89-91	Dry	Full			Brown sand medium and fine.

Å.

DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
95		SS-6	94-96	Dry	Full			Rust color, medium sand. Wet at 95-96.
				Wet				
100						an an an an an an an an an an an an an a		
					and de la constant a fan de la constant a con			
103								End of borshole.
	L							
105								
110			······································					
						an an an an an an an an an an an an an a		
115								
		<u> </u>						
120								
125								

BORING F	REPORT		ASSOCIATI Locust Valley, N ugusta, GA; Jack	NY; Madison, W	l; Ann Arbor Ml	;	SHEE	T 1 OF 3	
DATE STARTE	D: 8/5/93	alastanaan ay ahaa ay ay ay ay ay ay ay ay ay ay ay ay a	DAT	E FINISHED: 8/	/27/93		BORING	NO. MW-17A	
CLIENT: Deuts	ch Relays: Contin	iental Ave.					PROJECT NO.: 563-12		
PROJECT NAMI	E & LOCATION:	Deutsch, Northpor	rt				PREPARED BY: Mark Ryvkin		
DRILLING CON	TRACTOR: ADT	r		LOGGED BY	Mark Ryvkin]	DRILLER: Carry Ellison	
		SOIL SA	MPLER:	CORE		MON. WE	LL (MW)	DRILL RIG	
EQUIPMENT:	CASING:	S/SPOON		BARREL	AUGER	PIPE	САР	AND METHOD	
TYPE:	bk stl 100 ft					PVC	PVC	Failing 7W	
SIZE:	6.0" I.D.			,		2"	2"	0-100 - HSA 100-415 mud rotary	
HAMMER WT/FALL				BIT: 5 7/8"					
SURFACE ELEV	ATION:					SURFACE CON	DITIONS: Paved		
WATER LEVEL	AT	<u>F</u> T. /	AFTER	HR	S.	FT.	AFTER	HRS.	
DEPTH			SAMI	PLE		BLOWS/6"	STRATA	DESCRIPTION & REMARKS	
BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	OR CORE TIME	DEPTH/ ELEV.	TRACE=0-10% LITTLE=10-20% SOME=20-30% AND=35-50%	
0								Brown f-m SAND, little gravel,	
								trace silt	
25								Brown m-c SAND with gravel	
		i i de la contra con							
50								Yellow-brown m-c SAND with	
	11							gravel	
75									
						ni a 1979 - Hillinon da olia anno maintainean an			
				WT					
100								Getting more clayey	
								Brown f-m SAND little gray f	
		NEW DESIGN POLISICAL AND A CLASS CONTRACTOR	<u></u>	ann fur an Gran an Anna An An An An An An An An An An An An An		enn gesar vermelen del si del inde manufacture e conserve e conserve e conserve e conserve e conserve e conserv		gravel	
		Withdathadianinaneoncoases is sumo momentariation				****			
								California and a large	
125								Getting more clayey	

.

!

}

ţ

DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVER Y	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
							2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
150								
								Light gray m-c SAND
							•	
175			<u></u>					Light brown CLAY with m-c sand
							-	
	en an andra de mandra esta contra da da da da da de contra da da							Changing to dark brown CLAY, tr. sand
200	······································					- 		Red brown CLAY, soft, no sand
200								Ked brown CLAY, son, no sand
225								Brown gray CLAY
				an a suite ann an an an ann an an ann ann an ann ann ann ann ann an a				
								Brown gray CLAY with yellow mottling
						c/ww an <u>a an</u> an an an an an an an an an an an an an		-
250								
								The same with orange mottling
	neo con canactana di Antoni da Contra da Contra da Contra da Contra da Contra da Contra da Contra da Contra da							Gray CLAY
275								
								Gray brown CLAY
•								
			AAAMII Maadaa ka					

DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVER Y	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
325								
								Gray reddish CLAY occasional orange mottling
			997007301301301301304000000000000000000000					
								Gray soft CLAY with brown, orange mottling
							-	
375								Changing to sandy CLAY
-								v.f. SAND with silt
400								Silty clayey SAND
-								Changing to more clayey
425								EOB @ 415'
-								Note: boring log prepared based on cuttings and gamma log data
-								
						ant (Marin Marine Caracteria) and a second s		

BORING R	REPORT		ASSOCIATE Locust Valley, N Igusta, GA; Jacks	Y; Madison, WI	; Ann Arbor MI	;	SHEE	T 1 OF 2	
DATE STARTEI	D: 8/30/93		DATI	E FINISHED: 9/1	0/93		BORING	NO. MW-18	
CLIENT: Deuts	ch Relays						PROJECT	NO.: 563-12	
PROJECT NAME	E & LOCATION:	Deutsch, Northpor	t NW corner of Se	ars Parking Lot			PREPARED E	Y: Mark Ryvkin	
DRILLING CON	TRACTOR: ADT	[LOGGED BY:	Mark Ryvkin]		DRILLER: Carry Ellison	
		SOIL SA	MPLER:	CORE		MON. WE	LL (MW)	DRILL RIG	
EQUIPMENT:	CASING:	S/SPOON		BARREL	AUGER	PIPE	САР	AND METHOD	
TYPE:	blk steel 80					PVC	PVC	Mud rotary	
SIZE:	7½ OD 6.0 ID					2"	2"		
HAMMER WT/FALL				BIT: 5 7/8"					
SURFACE ELEV	ATION:		والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع وا			SURFACE CON	DITIONS: Paved		
WATER LEVEL	AT	FT. /	AFTER	HR	3.	FT.	AFTER	HRS.	
DEPTH			SAMI	°LЕ		BLOWS/6"	STRATA	DESCRIPTION & REMARKS	
BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	OR CORE TIME	DEPTH/ ELEV.	TRACE=0-10% LITTLE=10-20% SOME=20-30% AND=35-50%	
0									
								m-c SAND with gravel	

		apanga Kalandan Balak da Bana ang Kalak Bana da na Kananga Kananga Kananga Kananga Kananga Kananga Kananga Kan							
50									
		99.94.99.447.22.947.28.944.49.47.949.07.27.97.07.07.07.07.07.07.07.07.07.07.07.07.07							
							-	Brown reddish sand CLAY	
100									
<u>u unu u - an</u>		ennet (hey en alter tild afte der ander 2500 (het bei beiden							
								Getting more sandy, loss of water	
150								some boulders	
150								Sandy CLAY, minor loss of water	
								02111, 1000 1000 01 Walci	
								Gray brown dense sandy CLAY	
		12000						Gray brown donse sandy CLAT	
202									
200	1		i				1		

t÷ _____

	1			r				
DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVER Y	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
250								Gray sandy CLAY getting softer, no loss of water
280								Sandy material loss of water
300								Gravelly SAND pieces of gravely clay, no loss water
								White CLAY, coming out in small balls, interbedded with sand layer ½-1 ft thick (as per: drill rate, loss of water, sound of drill but sand layer comprises≈ 1/4 - 1/5 of total
 350								thickness)
4 49 49 49 49 49 49 49 49 49 49 49 49 49			99999999999999999999999999999999999999					
								EOB @365' Note: Boring log prepared based on
						an an an an an an an an an an an an an a	-	analysis of cuttings and gamma log data
						· · · · · · · · · · · · · · · · · · ·		
						ana ang katalon ng kata		
						99/99/99/99/99/99/99/99/99/99/99/99/99/		
						ning of the second second second second second second second second second second second second second second s		

BORING F	REPORT		ASSOCIATI Locust Valley, 1 ugusta, GA; Jack	NY; Madison, W	I; Ann Arbor Mi	[;	SHEE	CT 1 OF 2
DATE STARTEI	D: 9/13/93		E	ATE FINISHED			BORINO	NO. MW-19
CLIENT: Deuts	ch Relays						PROJECT	NO.: 563-12
PROJECT NAMI	E & LOCATION:	: Deutsch Northpor	t; Corner of Baker	field Rd & Doyle	Ct.		PREPARED	BY: Mark Ryvkin
DRILLING CON	TRACTOR: AD	T		LOGGED BY	: Mark Ryvkin	nin (yng genin (in genin genin (in genin genin (in genin genin genin genin (in genin genin genin genin ge		DRILLER: Carry Ellison
		SOIL SA	MPLER:	CORE		MON. WE	LL (MW)	DRILL RIG
EQUIPMENT:	CASING:	S/SPOON		BARREL	AUGER	PIPE	САР	AND METHOD
TYPE:	blk stl 100 ft					PVC		Failing 7W mud rotary
SIZE:	6" ID 80'					2"		
HAMMER WT/FALL		WT		BIT: 5 7/8"			ан Фаннан на 244 м до 226 м сто та тру и 4	
SURFACE ELEV	ATION:					SURFACE CON	DITIONS: Paveo	i
WATER LEVEL	AT I	FT. 2	AFTER	HR	S.	FT.	AFTER	HRS.
DEPTH BELOW GRADE	OVA	TYPE AND	SAMI DEPTH	PLE MOISTURE		BLOWS/6" OR CORE	STRATA DEPTH/	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20%
GRADE	READINGS	NO.	(FROM-TO)	CONTENT	RECOVERY	TIME	ELEV.	SOME=20-30% AND=35-50%
0								Brown m-c SAND little gravel
							-	
							30	Brown m-c SAND and gravel
								boulders
50					- And a sub tradition of the statement of the statement		50	Brown m-c SAND, some gravel
		anna an an an an an an an an an an an an						
100								
							120	Getting more clayey
								Color changed to orange, reddish
		401 L M & C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						from 125 ft orange clays w/ white mottling, drill rate decreased 50%
150							146	Turned to broown gray sandy CLAY
							155	Orange sandy CLAY, dense
							160	Yellow orange SAND and CLAY
								no los of water increased drill rate Drill rate increased
200								

. .

.

			1			-			
	DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVER Y	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
	200								SAND AND CLAY white orange clay with multicolor mottling and bright brown sand
	250							-	Seams of light brown f-w SAND w/
									mica and white clays
	200								
	290 300							-	White addish haven OT ANG inter
									White, reddish, brown CLAYS inter- bedded with brown quartz f-e sand, gravel, a lot of mica
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
	350								Seams of light brown SAND and white, brown, reddish black CLAYS
	370								EOB @ 372'
									Note: Boring log prepared based on analysis of cuttings and gamma log
ŀ									data
								-	
┠	044.024592730760776077607767777777777777777777777								
					910,000 Millio Millio Million Carra Scanara ann an Agaraga		ennen zuen annen en		

CG3651

BORING R	EPORT		ASSOCIATE Locust Valley, N ugusta, GA; Jacks	Y; Madison, WI	; Ann Arbor MI;	;	SHEE	T 1 OF 2		
DATE STARTED) : 10/1/ 93			E FINISHED: 10/			BORING	BORING NO. MW-20		
CLIENT: Deuts	ch Relays						PROJECT	OJECT NO.: 563-12		
PROJECT NAME	& LOCATION: with Wood	Deutsch Northport dhaven	100 ft. to the north	h along E. Haven	La. from corner		PREPARED I	3Y: Mark Ryvkin		
DRILLING CON	FRACTOR: ADT	<u>[</u>		LOGGED BY:	Mark Ryvkin			DRILLER: Carry Ellison		
		SOIL SA	MPLER:	CORE		MON. WE	LL (MW)	DRILL RIG		
EQUIPMENT:	CASING:	S/SPOON		BARREL	AUGER	PIPE	САР	AND METHOD		
TYPE:	blk sti - 100 H					PVE		Mud rotary		
SIZE:	6.0" ID					2:				
HAMMER WT/FALL				BIT: 5 7/8"	4		NA NA TATO CO & CANAL MARKET			
SURFACE ELEV	ATION:					SURFACE CON	DITIONS: Pavec			
WATER LEVEL	AT	FT. /	AFTER	HRS	S.	FT.	AFTER	HRS.		
DEPTH			SAMF	PLE		BLOWS/6"	STRATA	DESCRIPTION & REMARK		
BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	OR CORE TIME	DEPTH/ ELEV.	TRACE=0-10% LITTLE=10-20 SOME=20-30% AND=35-509		
0								m-c brown SAND f-m gravel is		
								of water		
50										
								CLAY		
							1	Brown m-c SAND some gravei		
							1	,		
100							1	White soft sandy CLAY w/ sear		
								of sandy material and some grav		
							1			
							1			
							1			
150						alati da da fan de ante en en en en en en en en en en en en en		f-m white SAND w/ seams of		
								sandy clay		
								vf-m SAND w/ seams of white-		
200								orange brown yellow clays		

DEPTH BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVER Y	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
			Managara and a star and a star a star a star a star a star a star a star a star a star a star a star a star a s					The same as above white SAND with mica
			annotise and an annotice and the second second second				4	mica
								Increase in gravelly material
250								f-m SAND with seams of clay
300								Multi colored clays at 302
								EOB @ 302'
								Note: Boring log prepared based on analysis of cuttings and gamma log
								data
2								
						: 		
						angana wanan agamatan majaran kanacana		
	KACANA YATU MUMUYA KALO MUMUYA YATU MUMUYA	******						

					enerárskálásisza Georgessen a z Azumonena	emaanin hadenii addada addada waxaa add maaraad aa aa amaa		
www.puppinglactory.information						arabatahari metilike kashmarcayyaye.		
		********				M199627-2047/M194177-20104674970276022160221.00221.0022		

						an an an an an an an an an an an an an a		
	and a standard of the standard of t					######################################		

	yton		Con	sultants					Log of Monitor	ing	Well WROW1			
PRO	JECT:	Deu	tsch	Relays				awaratiwa	LOCATION: East Northport, I	VY				
PRO	JECT	10.:	6173	5.08					SURFACE ELEVATION:					
DAT	E STA	RTEC	: 6/	7/95					INITIAL H20 LEVEL: FINAL H20 LEVEL: TOTAL DEPTH: 455 Feet					
DAT	E FIN	SHE	D: 6	/28/95										
DRI	LLING	METH	IOD:	Mud Rotary										
DRI	LLING	COMP	ANY:	Aquifer Dril	lling	and	Testi	ng	GEOLOGIST: Allen Attenboro	ugh				
	O L: PID (ppm) O V						ر س				WELL DIAGRAM			
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION					
5 10 10 25 20 30 40 45 50 65 70 80 905 105 100 120 100 100 <	v NRO₩1−		<u>></u>	0	10	0		COBBLES C-f SAND. COBBLES C-f SAND. COBSLES C-f SAND.	Black, c-f SAND, some Silt, some some Gravel, little Silt some Gravel, little Silt some Gravel, little Silt AVEL, some Sand, trace Silt little Silt, trace Gravel CLAY, trace Gravel, trace Sand		4 Diameter PVC Riser			
65— 70— 75—	ROW1-2							Gray, Gree	n, White, Silty CLAY, some fine Sand					

.

	ayton vironme		Con	sultants					Log) of Monitorin	g Wi	eli Wi	ROWI	
PRO	JECT:	Deu	tsch	Relays					LOCATION:	East Northport, NY				
				PID (ppm)		9								
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DE	ESCRIPTION		WELL	DIAGRA	м
$\begin{array}{c} 80 \\ 80 \\ 90 \\ 90 \\ 90 \\ 95 \\ 90 \\ 210 \\ 210 \\ 220 \\ 225 \\ 30 \\ 45 \\ 55 \\ 60 \\ 75 \\ 80 \\ 75 \\ 80 \\ 95 \\ 90 \\ 310 \\ 35 \\ 40 \\ 35 \\ 40 \\ 55 \\ 60 \\ 35 \\ 40 \\ 55 \\ 60 \\ 55 \\ 60 \\ 55 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 7$	ROW1-3							Silty CLAY White Silty Black, stiff Silty CLAY,	CLAY, little find , CLAY little Sand		4" Diameter PVC Riser			grout
60— 165—	ROW1-5							Silty CLAY.				1111	1111	

•

ROJECT:	Deu	tsch R	lelays			LOCATION: East Northport, NY	1				
			PID (ppm)	90	S						
feet SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM				
						Gray CLAY, little m-f SAND (lignite, mica) Gray SILT, little m-f Sand lignite, mica), trace white Clay light Gray CLAY, little Sand (lignite, white Clay) Black CLAY, little Gray m-f Sand and Silt Gray SAND, some Silt, little Gravel C271.04004435 Gray CLAY, little Silt Gray SAND and Gravel, little Silt End of boring.	A 4" Diameter 10 Slot PVC Screen A 4" Diameter PVC Riser 1 9rout				

Page 3 of 3

	ytor		Con	sultants					Log of Monitoring Well WROW2				
PRO	JECT:	Deu	tsch	Relays					LOCATION: East Northport, NY				
	JECT			the second second second second second second second second second second second second second second second s					SURFACE ELEVATION: MSL				
-				/29/95					INITIAL H20 LEVEL: Below Grade				
	-	the state of the s		/11/95	-				FINAL H20 LEVEL: Below Grade				
DRI	LING	METH	IOD:	Mud Rotary					TOTAL DEPTH: 335 Feet				
				Aquifer Dri	lling	and	Testi	ng	GEOLOGIST: Allen Attenborough				
				PID (ppm)		g							
DEPTH feel	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE		GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION				
$\begin{array}{c c} 5 \\ 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 55 \\ 35 \\ 40 \\ 55 \\ 60 \\ 55 \\ 60 \\ 70 \\ 85 \\ 90 \\ 95 \\ 00 \\ 105 \\ 10$	<u></u>		Λ	0	10	0		Gravel c-f Sand, Brown CLA Brown c-f mud) White CLA	AY and S1LT SAND and Gravel, little Silt (losing Y and Sand SAND, little Silt (mica)				

Clayton

.

Log of Monitoring Well WROW2

Environm		Con	sultants			Log of Monitoring	Well WROW2
PROJECT:	Deu	itsch	Relays			LOCATION: East Northport, NY	
			PID (ppm)	9	S		
DEPTH feet SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
						White CLAY, some Sand Green m-f Sand, some Silt Brown m-f SAND, little white Clay Brown c-f SAND, little Silt -158.84MSL -322 End of Borehole	A Diameter 10 Stot PVC Screen A Diameter 10 Stot PVC Screen A Diameter PVC Riser A A

RO	JECT:	Deu	tsch	Relays				LOCATION: East Northport, NY				-
	÷			PID (ppm)		90	S					
feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		WELL	DIAGRA	М
¹¹ 1 ¹¹ 1 ¹¹ 1 ¹¹ 1 ¹¹ 1 ¹¹ 1 ¹¹ 1 ¹¹	CCOW-1							Brown m-f SAND, some Silt, trace Gravel Brown CLAY, some fine Sand Gray and Black CLAY, little Silt, little Sand Brown CLAY, some fine Sand (some Black Clay)	4" Diameter PVC Riser			grout
վույնությունը։	:COM-3							Brown m-f SAND, some Silt (muscovite mica) Brown CLAY, little Sand				
	COW-3							Brown m-t Sand, some Silt Brown c-t SAND, some Gravel, little Silt		1111	1111	

	yton		Con	sultants			Log of Monitoring	g Well CCOW
PRO	JECT:	Deu	tsch	Relays	1	1	 LOCATION: East Northport, NY	1
	ö			PID (ppm)	8	s		
DEPTH	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
380 390 400 405 400 415 400 415 400 415 400 415 400 415 400 415 400 415 400 415 400 415 400 415 400 415 400 415 400 415 400 415 400 415 400 405 405	COW-4						Y, some Sand SAND, some Gravel, some Clay 480	

Page 3 of 3

Clayton Environmental	Consultants		Log of Monitoring I	Well MW21A				
PROJECT: Deut	sch Relays		LOCATION: East Northport, NY					
PROJECT NO .: (51735.08		SURFACE ELEVATION:					
DATE STARTED:	5/16/95		INITIAL H20 LEVEL: 78.0 Below Grade					
DATE FINISHED	5/22/95	-	FINAL H20 LEVEL: Below Grade					
DRILLING METHO	D: 8 in. Hollow Stem Auger	r	TOTAL DEPTH: 165 Feet					
DRILLING COMPA	NY: Aquifer Drilling and Te	esting	GEOLOGIST: Allen Attenborough					
	PID (ppm) හ	v		WELL DIAGRAM				
DEPTH feet SAMPLE NO. BLOWS/FT.	PROFILE 0 ANTO CONTRACTOR	SOIL CLASS	GEOLOGIC DESCRIPTION					
10- 20- 30- 40- 50- 01 60- 70- 80- MW21-1 90- U2 MW21-2 00- MW21-3 110- 120- MW21-4 30- 110- 10- 10- 10- 10- 10- 10-		Brown.c-f Brown.c-f	SAND, some c-f Gravel, little Silt SAND, little Silt, little f. Gravel 78.0 ft below grade SAND. some Gravel. little Silt	Image: seal seal seal seal seal seal seal seal				

Clayton Environmenta	I Consultants		Log of Monitoring	Well MW22A				
PROJECT: De	utsch Relays		LOCATION: East Northport, NY					
PROJECT NO .:			SURFACE ELEVATION:					
DATE STARTE	D: 5/23/95		INITIAL H20 LEVEL: 76.0 Below Grade					
DATE FINISHE	the second second second second second second second second second second second second second second second s		FINAL H20 LEVEL: Below Grade					
And a state of the	HOD: 8 in. Hollow Stem A	luger	TOTAL DEPTH: 165 ft. Feet					
DRILLING COM	PANY: Aquifer Drilling an	nd Testing	GEOLOGIST: Allen Attenborough					
	PID (ppm)	20 00		WELL DIAGRAM				
DEPTH feet SAMPLE NO. BLOWS/FT.	SI PROFILE	SOIL CLASS	GEOLOGIC DESCRIPTION	2 2				
5 10 15 10 15 20 25 30 30 31 40 45 40 45 55 60 55 60 55 10 55 60 55 10 10 10 10 10 10 10 10 10 10		Dark Brown, dry Silt Yellow (10 Gravel ¥ Water a Yellow (10 Gravel	rr7/6), c-f SAND, little Silt, little f.	A Diameter 10 Stot PVC Screen A Diameter PVC Riser				

PROJECT: De	utsch F					LOG of Monitoring Well MW23A LOCATION: East Northport, NY SURFACE ELEVATION:				
PROJECT NO .: DATE STARTE	61735					SURFACE ELEVATION: INITIAL H20 LEVEL: 64.8 Below Grade				
DATE FINISHE						FINAL H20 LEVEL: B4.8 Below Grade TOTAL DEPTH: 160 Feet				
DRILLING METH		8 in. Hollow Si	tem Au	ger						
DRILLING COM					9	GEOLOGIST: Allen Attenboroug	7h			
		PID (ppm)	8	S				WELL DIAGRAM		
feet SAMPLE NO. BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION		5		
500500500500500500500500500500500500500	0				Brown Org Sand Yellow c- Yellow c-	ganic SILT, some Sand, little Gravel ganic SILT and Coarse Gravel, some f SAND, some Silt, some Gravel f SAND, some Silt, little Gravel evel at 64.8 ft below grade	A" Diameter 10 Stot PVC Screen A" Diameter PVC Riser	sandpack ************************************		

Clay Envir			Con	sultants					Log of Monitoring Well MW24A
PROJE	ECT:	Deu	tsch	Relays					LOCATION: East Northport, NY
PROJE	-			and the second se					SURFACE ELEVATION:
DATE	STA	RTED	: 6/	/5/95					INITIAL H20 LEVEL: 83 ft. Below Grade
DATE				/8/95					FINAL H20 LEVEL: ft. Below Grade
DRILL	ING I	HETH	OD:	8 in. Hollow	Ster	n Aug	ier		TOTAL DEPTH: 165 Feet
	-	-		Aquifer Dri	-	_		ng	GEOLOGIST: Allen Attenborough
				PID (ppm)		00	S		WELL DIAGRAM
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION
$\begin{array}{c} 5 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \\ 35 \\ 40 \\ 45 \\ 50 \\ 55 \\ 60 \\ 55 \\ 60 \\ 55 \\ 60 \\ 55 \\ 70 \\ 75 \\ 80 \\ 90 \\ 95 \\ 90 \\ 95 \\ 100 \\ 115 \\ 100 \\ 115 \\ 100 \\ 115 \\ 100 \\ 115 \\ 100 \\ 115 \\ 100 \\ 115 \\ 100 \\ 115 \\ 100 \\ 115 \\ 100 \\ $								Brown Org Sand Yellow c-f	A Diameter 10 Stat PVC Screen

	iyton ironme		Con	sultants				Log of Monitoring	Well MW11-C
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, NY	
	JECT N							SURFACE ELEVATION:	
				3/05/96				INITIAL H20 LEVEL: Below Grade	2
DAT	EFIN	SHE): 0	6/06/96				FINAL H20 LEVEL: Below Grade	
DRI	LING	METH	OD:	Mud Rotary				TOTAL DEPTH: 159 Feet	
<u> </u>				Aquifer Drilli	ing and	Test	ing	GEOLOGIST: John Gavras	
	÷			PID (ppm)	90	0			WELL DIAGRAM
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	
									2" Diameter PVC Riser2" Diameter PVC Riser2" Diameter PVC Riser

	ayton vironme		Cons	sultants			Log of Monitoring	Well MW11-C
PRO	JECT:	Dev	tsch	Relays, Inc.			 LOCATION: East Northport, NY	
	ġ			PID (ppm)	00	S		
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
								2" Diameter PVC Riser
60	-							
65-								
70	SSI	11	0					

	ironme	ental	Cons	sultants			Log of Monitoring	y non	
PRO	JECT:	Deu	itsch i	Relays, Inc.	1		LOCATION: East Northport, NY		
DEPTH teet	SAMPLE NO.	BLOWS/FT.	VALUES	PID (ppm) PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		YELL DIAGRAI
	1.5'	30	_	0K			B: .25'-1.5', light Tan clayey Silt, little Sand	-	NN
-		62 86					Light Tan, Orange Tan micaceous silty Sand		
80- -	SS2	8	0						
-	1.5'	41 43 63					Orange Tan, m-1 Sand, some micaceous Silt		
85-	SS3 0.92'	17 31 29 34	0				Light Tan/Orange tan, micaceous silty f. Sand, trace Gravel		
- 90 - 90	SS4 0.8'	12 13 28 42	0				Light Tan/Orange tan, micaceous silty m-1 Sand	ser	
95-	SS5 1.83'	11 33 34 44	0				Light Brown micaceous Silt and f.Sand	- 2" Diameter PVC Riser	
100-	SS6 I'	38 79 100 100/4	0				Light Brown micaceous silty 1. Sand		
105-	SS7 1.41'	13 34 25 35	0				A: Light Tan/Orange m-1 Sand, some Silt, trace Gravel		
110-	SS8 1.08'	22 28 33	0				B: Poorly sorted Sand, trace f. Gravel		

Page 3 of 5

N	ayton vironm		Con	sultants					Log of Monitoring	Wel	I MW11-C
PRO	JECT:	Deu	itsch	Relays, Inc.					LOCATION: East Northport, NY		
				PIO (ppm)		90	0				
DEPTH teet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	α	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION		WELL DIAGRAM
-	1.87'	35 38 50						C: Light Br	own micaceous Silt, some f. Sand own micaceous Silt, some Clay n micaceous Silt, trace f. Sand and		
120	SSI0 1.92'	13 25 35 80	0					A: Light Br and Clay	own micacecus Silt, trace f. Sand	_	
125	SSII 1.25'	15 32 44 48	0					L	own micaceous Silt, and 1. Sand n Micaceous Silt and 1. Sand	2" Dlameter PVC Riser —	grout
- 130— - -	SSI2 1.41	30 45 48 81	0					Light Brown	n micaceous Silt and f. Sand	2" Dläme	//////////////////////////////////////
- 135— - -	SSI3	23 44 53 83	0					Light Brow	n micaceous silty m-1 SAND		
- 40 - -	SS14 1.87'	30 38 42 45	0					Light Brown m-1 Gravel	n micaceous silty m-1 SAND, trace	C Screen	
- 145— - -	SSI5 0.825'	23 44 50 83	0					Light Brown	n micaceous silly m-1 SAND	VC Blank 1 2" Diameter 10 Slot PVC Screen	
- 150 - -	SSI8 1.125'	17 40 51 83	0							T2" Diameter PVC Blank	
- 155—										<u> </u>	Page 4 of

Page 4 of 5

	yton ironme		Con	sultants				Log of Monitoring	Well MW11-C
PRO	JECT:	Dev	tsch	Relays, Inc.				LOCATION: East Northport, NY	
				PID (ppm)	9				
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM
							End of	Boring	- sandpack
180-	-								
185-	-								
190-									-
195-	-								

	yton ironme		Cons	sultants				Log of Monitoring	Well MW21A
PRO	JECT:	Dev	tsch	Relays, Inc.				LOCATION: East Northport, NY	
PRO	JECT N	10.:	6173	5.08				SURFACE ELEVATION:	
DAT	E STA	RTED	: 5/	16/95				INITIAL H20 LEVEL: 78.0 Below G	rade
	[7] S. 101896/R. 170 [4]	0.2010/01/02/02/02	1000 - 100000	/22/95				FINAL H20 LEVEL: Below Grade	
				8 in. Hollow Ste	em Auc	ier		TOTAL DEPTH: 165 Feet	
				Aquifer Drilling			na.	GEOLOGIST: Allen Attenborough	
				PID (ppm)					
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM
				0			Brown c-1	SAND, some c-1 Gravel, little Silt	2" Diameter PVC Riser2" Diameter PVC Riser

Cla Env	ayton rironme	ental	Con	sultants			Log of Monitoring	Well MW21A
PRO	JECT:	Dev	tsch	Relays, Inc.			LOCATION: East Northport, NY	
				PID (ppm)	00	S		
DEPTH teet	SAMPLE NO.	BLOWS/FT.	VALUES	PROF ILE	■ GRAPHIC L0G	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
40- - - 40- - - - - - - - - - - - - - -	UI		0				Brown, c-1 SAND, little Silt, little 1. Gravel	2" Diameter PVC Riser

Page 2 of 5

	ayton vironme		Con	sultants					Log of I	Monitoring	Well	MW21A	
PRO	JECT:	Deu	tsch	Relays, Inc.				LC	CATION: East /	Northport, NY			
				PID (ppm)		90	(J)						
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GE	DLOGIC DESCRIPT	ION	5	∜ELL DIAGRAN	1
80- 80- 85-	MW21-1		0					Į Water at 78.	0 ft below grade		C Riser		
90- - - - - - - - - - - - - - - - - - -	U2 MW21-2		0								2" Diameter PVC Riser		pentonite seal
- 100	- - - - -		0								VC Sareen		sandpack
105-	-										← 2" Diameter 10 Slot PVC Screen		
110- - - - - - - - - - - - - - - - - - -	-												

Env				sultants				Log of Monitoring N	Well MW21A
PRO	JECT:	Deu	tsch i	Relays, Inc.				LOCATION: East Northport, NY	
	··		L,	PID (ppm)		-06	SS		
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
- - - 120- - -	MW21-4		0					Brown, c-1 SAND. some Gravel. little Silt	- - - - - -
- 125— -									-
- 130— - -									- - - - -
 135 - -	MW21-5		0						5
- 40- - -	-								
- 145— - -	-								
- 150— - -	-								
155-									

	ayton vironme	ental	Con	sultants				Log of Monitoring Well MW21A	
PRO	JECT:	Dev	tsch	Relays, Inc.				LOCATION: East Northport, NY	
				PID (ppm)		06	Ś		
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION WELL DIAGRAM	
-	MW21-8		0		~			End of Boring	
- 175— -	-								
- 180— - -	-								
185-	-								
190- - - - 195-	-								-

				sultants Relays, Inc.					LOCATION: East Northport, NY	
	JECT N	_							SURFACE ELEVATION:	
				/23/95					INITIAL H20 LEVEL: 78.0 Below G	Grade
1.1.1.2.6.7.4.1				/24/95					FINAL H20 LEVEL: Below Grade	
DRIL	LING	МЕТН	OD:	8 in. Hollow S	ten	n Aug	er		TOTAL DEPTH: 185 ft. Feet	
DRIL	LING	СОМР	ANY:	Aquifer Drilli	ing	and	Testi	ng	GEOLOGIST: Allen Attenborough	
				PID (ppm)		06	S			WELL DIAGRA
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	
									n Organic SILT, little Gravel	THE
								Brown, dry Silt	y, m-1 SAND, some c-f Gravel, little	N N
]								Yellow (10)yr7/8), m-1 SAND, little Silt, little	
-								Gravel		
5-										
-										
-										
-										
-		i d								
10-										
-										
-										
1										
15-										
10										Riser
										2" Diameter PVC
20-										
-										
4										
25-										
-										
-										
30-										
							1.1			

	ayton vironme		Cons	sultants				Log of Monitoring	Wel	MW22A
PRO	JECT:	Deu	tsch .	Relays, Inc.				 LOCATION: East Northport, NY	T	
				PID (ppm)		90	w			
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		WELL DIAGRAM
40- - - - - - - - - - - - - - - - - - -									2" Diameter PVC Riser	//////////////////////////////////////

	ayton vironme		Con	sultants					Log of Monitoring	We	IMW	1224	(
PRO	JECT:	Deu	itsch	Relays, Inc.					LOCATION: East Northport, NY	1			
				PID (ppm)		06	S						
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION		WELL	DIAGR	AM
	MW22-1		0		10	CR	So	¥ Water a Yellow (10 Gravel	t 78.0 lyr7/8), c=1 SAND, little Silt, little 1.	2" Diameter PVC Riser			grout
110-	-										111111		

Page 3 of 5

	ayton vironme		Con	sultants					Log of Ma	onitoring	Well	MW22)	4
PRC	JECT:	Dev	tsch	Relays, Inc.					LOCATION: East No	rthport, NY			
				PID (ppm)		-06	SS						
OEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTIO	Ν	W	ELL DIAGF	IAM
	MW22-3		0					Yellow (10y Gravel	r7/8), c-f SAND, little Sil		-2" Diameter 10 Stot PVC Screen 		→ sandpack → → bentonite seal → → grout - grout - grout - grout

Page 4 of 5

	yton ironme	ental	Cons	sultants				Log of Monitoring Well MW22A
PRO	JECT:	Dev	tsch i	Relays, Inc.				LOCATION: East Northport, NY
				PID (ppm)		ŋ	(1)	creer
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION
	<u>vi</u> 4W22-4		0	0	10		σ	GEOLOGIC DESCRIPTION Book of the second se
100	1	1				1	1	

Clayton Environmental Co	onsultants		Log of Monitoring	Well MW23A
PROJECT: Deutsc	ch Relays, Inc.		LOCATION: East Northport, NY	
PROJECT NO .: 617	735.08		SURFACE ELEVATION:	
DATE STARTED:	5/26/95		INITIAL H20 LEVEL: 64.8 Below Gr	ade
DATE FINISHED:	5/31/95		FINAL H20 LEVEL: Below Grade	
DRILLING METHOD): 8 in. Hollow Stem Aug	er	TOTAL DEPTH: 160 Feet	
DRILLING COMPAN	IY: Aquifer Drilling and T	Testing	GEOLOGIST: Allen Attenborough	
	PID (ppm) 8	S		WELL DIAGRAM
DEPTH feet SAMPLE NO. BLOWS/FT.	PROFILE 0 AND C	SOIL CLASS	GEOLOGIC DESCRIPTION	
 □ /ul>		Brown Org Brown Org Sand Yellow c-1	Ianic SILT, some Sand, little Gravel anic SILT and Coarse Gravel, some f SAND, some Silt, some Gravel	2" Diameter PVC Riser2" Diameter PVC Riser

Cla	ayton vironme	ental	Con	sultants				Log of Monitoring	Well MW23A
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, NY	
				PID (ppm)		00	S		
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
40								¥ Water level at 84.8 ft below grade	2" Diameter PVC Riser

	ayton vironme		Cons	sultants			Log of Monitoring	Well MW23A
PRC	JECT:	Dev	tsch .	Relays, Inc.	1		LOCATION: East Northport, NY	1
				PID (ppm)	06	S		
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
85- - - 90- - - - - - - - - - - - - - - -	MW23A		0					2" Diameter PVC Riser 2" Diameter PVC Riser <td< td=""></td<>

Page 3 of 5

	yton ironme		Con	sultants				Log of Monitoring	J Well MW23A
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, NY	
				PID (ppm)		06	s		
DEPTH teet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
	W23A-:		0						Image: Arrow of the second
	1W23A	4	0						

	ayton vironme		Con	sultants					Log of Monitoring	Well MW23A
PRO	JECT:	Dev	tsch	Relays, Inc.					LOCATION: East Northport, NY	
				PID (ppm)		90	(7)			
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM
	₩23A-:		0	0	10	GR	So	End of Bo	ring	

Clayton Environmenta	I Consultants				Log of Monitoring	Well MW24A
PROJECT: De	utsch Relays, Inc.				LOCATION: East Northport, NY	
PROJECT NO .:	61735.08				SURFACE ELEVATION:	
DATE STARTE	D: <i>6/5/95</i>				INITIAL H20 LEVEL: 83 ft. Below (Grade
DATE FINISHE	D: 6/8/95				FINAL H20 LEVEL: ft. Below Grade	9
	HOD: 8 in. Hollow Stei	m Aug	er		TOTAL DEPTH: 165 Feet	
	PANY: Aquifer Drilling			ng	GEOLOGIST: Allen Attenborough	
	PID (ppm)					
DEPTH feet SAMPLE NO. BLOWS/FT.	1	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM
H → S		89	SO	Brown Orga Sand Yellow c-1	anic SILT, some Sand, little Gravel anic SILT and Coarse Gravel, some SAND, some Silt, some Gravel	2" Diameter PVC Riser

	ayton vironme		Con	sultants				Log	of Monitoring	Wel	I MW24A
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION:	East Northport, NY	1	
	-			PID (ppm)		90	S				
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC D	ESCRIPTION		WELL DIAGRAM
										2" Diameter PVC Riser	

	yton ironme		Con	sultants				Log of Monitor	ing Well MW24A
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, I	VY
	· ·			PID (ppm)		00	S		
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
								¥ Water at 83.0 ft.	2" Diameter PVC Riser 2" Diameter PVC Riser <td< td=""></td<>

	ayton vironme		Con	sultants				Log of Monitoring Well MW24A			
PRO	JECT:	Deu	tsch	Relays, Inc.				 LOCATION: East Northport, NY			
				PID (ppm)		00	S				
DEPTH teet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM		
									Image: State of the state		

Env		ental		sultants					Log of Monitoring Well MW24A	
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, NY	1	
	40.	Ŀ.		PID (ppm)		LOG	SS			
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM	
- - - 60- -								End of Boring	-	
- - 65- - -										
- 70- - -										
- 75 - -										
80										
85-										
90— - - 95—										

Clayton Environmental Consultants		Log of Monitoring Well MW24
PROJECT: Deutsch Relays, Inc.		LOCATION: East Northport, NY
PROJECT NO.: 61735.34		SURFACE ELEVATION:
DATE STARTED: 6/10/96		INITIAL H2o LEVEL: ft. Below Grade
DATE FINISHED: 8/10/98		FINAL H20 LEVEL: ft. Below Grade
DRILLING METHOD: 8 in. Hollow Stem Au	uner	TOTAL DEPTH: 89 Feet
DRILLING COMPANY: Aquifer Drilling and		
	1 7 63 6	
PID (ppm)	3 0	WELL DIAGRAM
BLOWS/FT. VALUES OC CAPHIC LOG GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION
□ ∞ ∞ ∞ ∞ 5 - - - 5 - - - 10 - - - 10 - - - 10 - - - 20 - - - 20 - - - 30 - - - 30 - - - 30 - - - 30 - - -		m-1 SAND, some Silt and Gravel (and cobbles) Brown, SILT, m-1 Sand Orange, m-1 SAND, some Silt Brown, m-1 SAND and Silt, some Gravel (cobbles) Brown, m-1 SAND, little ⁺ Silt

	ayton ironme		Con	sultants				Log	of Monitoring	Well M	1W24
PRO	JECT:	Dev	tsch	Relays, Inc.				LOCATION: E	East Northport, NY		
	2			PID (ppm)		90	S				
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DES	CRIPTION	WEL	L DIAGRAM
40- - - 40- - - - 45- - - - - - - - - - - - - - -	SS1 2.0' SS2 1.1' SS3	8 23 52 85 28 87 00/5 38	0					A:1.8'Brown m-1 SAND, some B:0.4' Brown, micaceous, Si Brown, m-1 SAND, some Silt	Ity CLAY	2" Diameter 10 Stot PVC Screen 2" Diameter PVC Riser 2" Diameter PVC Riser	III

Clay Envir			Con	sultants				Log of Monitoring	Log of Monitoring Well MW24		
PROJ	ECT:	Dev	tsch	Relays, Inc.				LOCATION: East Northport, NY			
		1.17		PID (ppm)		96	S				
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROF ILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM		
- - - 80- -		17 17 17 24 55 7 22 35 43		0	10	C. C. C. C. C. C. C. C. C. C. C. C. C. C	S	Alternating layers of Brown and Yellow, m-1 SAND, trace Silt Brown, m-1 SAND, trace Silt, trace Gravel (micaceous)	Image: standard standa		
115-									Page 3 of 3		

	yton		Con	sultants			Log of Monitoring	Well MW2	25		
PRO	JECT:	Deu	tsch	Relays, Inc.			LOCATION: East Northport, NY				
	JECT N		_	and the second sec			SURFACE ELEVATION:				
DAT	E STA	RTED	: 1/	18/96			INITIAL H20 LEVEL: Below Grade	?			
	EFIN						FINAL H20 LEVEL: Below Grade				
				8 in. Hollow Sten	n Aug	ier	TOTAL DEPTH: 180 ft. bgs Feet				
				Aquifer Drilling							
				PID (ppm)				WELL DIA	GRAM		
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		_		
								2" Diameter PVC Riser	age 1 of 5		

Cla	ayton rironme	ental	Con	sultants				Log of Monitoring	Log of Monitoring Well MW25			
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, NY				
				PID (ppm)		90	0					
OEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM			
40												
50												
55									- 2" Diameter PVC Riser			
60												
65												
70— - - - 75—												

Cla	ayton vironme	ental	Con	sultants				Log of Monitoring Well MW25			
PRO	JECT:	Dev	tsch	Relays, Inc.				LOCATION: East Northport, NY			
				PID (ppm)		06	s				
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROF ILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM		
									2" Diameter PVC Riser		

	ayton vironme		Con	sultants					Log of Monitoring Well MW25		
PRO	JECT:	Deu	tsch	Relays, Inc.					LOCATION: East Northport, NY		
				PID (ppm)		-06	SS				
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	-	GEOLOGIC DESCRIPTION WELL DIAGRAM		
					2			Yellow m	n-1 SAND, some Silt, trace Gravel		
- 125 - -									Riser		
130									- 2" Diameter PVC Riser		
135											
40									→ bent onite seat		
145— - - -								51	Sot PVC Screen		
150— - - 155—	MW28-1								★- 2" Diameter 10 Stot PVC Screen + 2" Diameter 10 Stot PVC Screen		

Page 4 of 5

	ayton vironme	ental	Con	sultants					Log of Monitoring Well MW25		
PRO	JECT:	Deu	tsch	Relays, Inc.					LOCATION: East Northport, NY		
				PID (ppm)	4	2	ŝ				
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	PRAPHIC LUD	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM	
	MW28-2							Yellow m-1	SAND, some Silt		

	yton ironme		Con	sultants				Log of Monitoring	Well MW26
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, NY	
PRO	JECT N	10.:	6173	5.34				SURFACE ELEVATION:	
DAT	E STA	RTED	: 12	/28/95				INITIAL H20 LEVEL: Below Grade	2
DAT	E FINI	SHED): 1/	16/96				FINAL H20 LEVEL: Below Grade	
DRI	LING	METH	OD:	8 in. Hollow Ste	m Aug	ier		TOTAL DEPTH: 210 ft. bgs Feet	
DRI	LING	COMP	ANY:	Aquifer Drilling	and	Testi	ng	GEOLOGIST: Allen Attenborough	
				PID (ppm)	1				WELL DIAGRAM
OEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	
				0			Yellow m-	1 SAND, some Silt, trace Gravel	2" Diameter PVC Riser2" Diameter PVC Riser

	ayton vironme		Con	sultants			Log of Monitoring Well MW26		
PRO	JECT:	Deu	tsch	Relays, Inc.	1	1	LOCATION: East Northport, NY		
	·.			PID (ppm)	00	SS			
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM	
40- - - - - - - - - - - - - - - - - - -								2" Diameter PVC Riser2" Diameter PVC Riser	

	ayton vironme		Con	sultants				Log of Monitoring Well MW26		
PRO	JECT:	Deu	tsch	Relays, Inc.				 LOCATION: East Northport, NY		
				PID (ppm)		90-	ŝ			
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM	
									2" Diameter PVC Riser	

	ayton vironme	ental	Con	sultants			Log of Monitoring	Well MW26
PRO	JECT:	Dev	tsch	Relays, Inc.			LOCATION: East Northport, NY	
			[PID (ppm)	90	S		
OEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	GRAPHTC 1 0G	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
	MW28-1						Brown, m-1 SAND, some Silt, trace Gravel	 2" Diameter 10 Slot PVC Screen 2" Diameter PVC Riser 3" Diameter PVC Riser 3" Diameter PVC Riser 4" Diameter PVC Riser <!--</td-->

	yton		Con	sultants				Log of Monitoring	Log of Monitoring Well MW26		
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, NY			
				PID (ppm)		00	S				
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM		
- - 160 -											
- - 165 — -											
- - 170 - -	MW28-2										
- 175— - -											
- 180 - -											
- 185 — - -								Brown, c-t SAND, some Gravel, sone Silt			
190— - - 195—											

Env		ental		sultants					Log of Monitoring Well MW26			
PRO	JECT:	Dev	tsch	Relays, Inc. PID (ppm)				LUCATION: East Northport, NY				
н	SAMPLE NO.	BLOWS/FT.	ES	PROFILE		GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM			
DEPTH feet	SAMP	BLOW	VALUES	0	10	GRAP	SOIL					
- -	MW28							Brown CLAY, (minor amount of grey clay)				
- 05 -												
- - -								End of Boring				
- 215— - -												
- 20- - -												
- 225 - -												
- 30- - -	-											

Page 6 of 6

Clayton Environment	al Con	sultants				Log of Monitoring Well MW27			
PROJECT: D	eutsch	Relays, Inc.				LOCATION: East Northport, NY			
PROJECT NO .:	6173	5.34				SURFACE ELEVATION:			
DATE START	ED: 1/.	28/98				INITIAL H20 LEVEL: Below Grade			
DATE FINISH						FINAL H20 LEVEL: Below Grade			
		8 in. Hollow Sten	AUG	er		TOTAL DEPTH: 225 Feet			
		Aquifer Drilling			201	GEOLOGIST: Allen Attenborough			
		PID (ppm)							
DEPTH feet SAMPLE NO.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM		
- - - 5-					Dark Brow silt	n, c-1 SAND, some c. Gravel, some			
					Dark Brow	m, c-1 Sand and c. Gravel, little Silt			
-					Yellow, c-	1 SAND, some Silt, little Gravel			
					Yellow, c-	1 SAND, some silt, little 1. Gravel	2" Diameter PVC Riser		

	ayton vironme		Con	sultants				Log of Monitoring	We	ell MW27
PRO	JECT:	Dev	tsch	Relays, Inc.				 LOCATION: East Northport, NY	1	
				PID (ppm)		06	S			
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		WELL DIAGRAM
40- - - - - - - - - - - - - - - - - - -									2" Diameter PVC Riser	

	ayton vironme		Con	sultants				Log of Monitoring	Log of Monitoring Well MW27			
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, NY				
				PID (ppm)		00	υ					
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROF ILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM			
80- - - - - - - - - - - - - - - - - - -								CLAY Yellow, c-1 SAND, some Silt, trace 1. Gravel	2" Diameter PVC Riser			

	ayton vironme	ental	Con	sultants				Log of Monitoring	Log of Monitoring Well MW27		
PRO	JECT:	Dev	tsch	Relays, Inc.				LOCATION: East Northport, NY			
				PID (ppm))G	(J)				
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM		
									Image: PVC Screen Image: PVC Riser Image: PVC Screen Image: PVC Riser Image: PVC Riser Image: PVC Riser Im		
155-	1								Baco 4 of 6		

Env		ental		sultants				Log of Monitoring	Well MW27
PRO	JECT:	Deu	tsch	Relays, Inc.				LOCATION: East Northport, NY	
	ö			PID (ppm)		-06	SS		
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
- - - 160- -									
- 165									
- 170	MW27-2							Yellow, m-1 SAND, little Silt	
- 175— - -									
- 180— - -									
- 185 — - -									
- 190— - -									-
195-	-								

PRO	JECT:	Dev	tsch l	Relays, Inc.				LOCATION: East Northport, NY	••••••••••••••••••••••••••••••••••••••
				PID (ppm)		06	s		
teet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
	MW27-3							CLAY (Clay on Hydropunch)	
5									
- -0 -									
- 5— - -								Tight Silt or Clay	
- -0 - -									
- 5 - -								End of Boring	
- 0 									

	Clayton Environmental Consultants								Log of Monitoring Well MW29		
PRO	JECT:	Dev	tsch	Relays, Inc.				Contract Contract	LOCATION: East Northport, NY		
PRO	JECT N	10.:	6173	5.34					SURFACE ELEVATION:		
DAT	E STA	RTED	: 08	3/12/96					INITIAL H20 LEVEL: Below Grade		
		_		6/12/96					FINAL H20 LEVEL: Below Grade		
				8 in. Hollow :	Sten	Aug	er		TOTAL DEPTH: 111 Feet		
				Aquifer Dril				ng	GEOLOGIST: Allen Attenborough		
				PID (ppm)							
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL	DIAGRAM
			A	0	10				1 SAND, some Gravel, some silt	2" Diameter PVC Riser	Page 1 of 3

Clayton Environme	ental						Log of Monito		Vell MW29
PROJECT:	Dev	tsch	Relays, Inc.				LOCATION: East Northport,	NY	
			PID (ppm)		00	S			
DEPTH feet SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		WELL DIAGRAM
							f SAND, some silt, trace Gravel		2" Diameter PVC Riser
75—									

	yton ironme	Intal	Con	sultants				Log of Monitoring	Well MW29
PRO	JECT:	Dev	tsch	Relays, Inc.				LOCATION: East Northport, NY	
				PID (ppm)		96	S		
DEPTH feet	SAMPLE NO.	BLOWS/FT.	VALUES	PROFILE	10	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
80 - 80 - - 85 - - - 90 - - - - - - - - - - - - - - -									2" Diameter PVC Riser2" Diameter PVC Riser
100 	SS1 2.0'	8 17 22 22	0					Brown, wet CLAY, some m-1 Sand A:1.1', Brown, CLAY, trace f. Sand (wet) B:0.9', Brown, m-1 SAND, some Silt (micaceous) Same	PVC Screen -+
- 105— - - -	SS2 2.0	3 13 43 51	0					End of Boring	- 2" Diameter 10 Siot PVC Screen
110	-								

PROJ	ECT:	DEU	TSCH	ultants <i>RELAYS, IN</i>	IC.			 LOCATION: EAST NORTHPORT				
	ECT N		_					 SURFACE ELEVATION: 155.91 INITIAL H20 LEVEL: (BGS)	(MSL)			
				/10/96 9/12/96				 FINAL H20 LEVEL: 77.06 (BG	S)			
				MUD-ROTAR	?Y			 TOTAL DEPTH: 155 Feet				
				R & L WELL		ILLIN	G	GEOLOGIST: JAMES J. WILKIN	S			
				PID ppm		90	(0		WELL DIAGRAM	1		
feet	Blows	Sample No.	VALUES		200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		Concrete		
									Page	Bentonite grout		

Cla Envi	yton ironme	ental	Con	sultants				Log of Monitorin	ng Well MW-30A
PRO	JECT:	DEL	ITSC	H RELAYS, IN	VC.			LOCATION: EAST NORTHPORT	T, NEW YORK
				PID ppm		90	'n		
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
							Bur		2" Blank PVC2" Blank PVCBentonic groutBentonic grout

ROJ	ECT:	DEU	TSCH	RELAYS, INC.	1		LOCATION: EAST NORTHPORT,	NEW YORK
				PID ppm	-00	S		
feet	Blows	Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
0-	144	ss80	20	20	00.	Bur	10YR 4/6 Dark yellowish brown m-f SAND,	
	170	ss85					Little (-) f Gravel, Trace (-) Silt: quartz and muscovite present.	
	127	ss90						C
	127	5590					10YR 4/6 Dark yellowish brown f SAND, Some Silt, Little (+) Clay: quartz and muscovite, leaves chalky residue in hand, clay is random throughout sample.	2" Blank PVC
	123	\$\$95					2.5Y 5/4 Light olive brown f SAND, And Silt, Trace (–) f Gravel: gritty, clayey texture.	
)	86	ss100				-	Similar	** //////
5	115	ss105					10YR 5/8 Yellowish brown SILT, Some (-) f Sand, Trace (-) Clay: sample lacks the moisture present in previous samples.	ed (0.02) PVC
0-	117	ss110					10YR 5/3 Brown m-f SAND, Some (-) Silt: quartz and muscovite.	- Filter pack (#2

PROJ	IECT:	DEU	TSCH	RELAYS, INC.			LOCATION: EAST NORTHPORT, NEW YORK
				PID ppm	9	ſ	
DEPTH	Blows	Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION
	170	ss120					 7.5YR 5/8 Strong brown m-f SAND, Some (-) Silt: quartz, muscovite and moist. Similar
- 25- - -	131	ss125					Similar
- 30 - -	119	ss130					7.5YR 5/8 Strong brown m-f SAND, Some Silt: appears to be less dense than previous sample.
- 35- -	263	ss135					Split-Spoon lost down hole. No sample collected.
- 40 - -	120	ss140					7.5YR 4/6 Strong brown SILT, Little (+) Clay, Trace (+) f Sand: more clay present in clumps, occasional black inclusions with high frequency of mica.
45 - -	100	ss145					Similar
- 50— -	163	ss150				5	7.5YR 4/6 Strong brown SILT, Little (+) Clay: no sand present, somèwhat finer than previous sample.

Page 4 of 4

PROJECT:	DEUTSCI	H RELAYS, INC.				LOCATION: EAST NORTHPORT, NEW YORK				
	NO.: 6173					SURFACE ELEVATION: 160.49 (MSL)				
	ARTED: 0				INITIAL H20 LEVEL: (BGS)	INITIAL H20 LEVEL: (BGS) FINAL H20 LEVEL: 70.76 (BGS) TOTAL DEPTH: 115 Feet				
	IISHED: 0	MUD-ROTARY								
		R & L WELL DRI		G	GEOLOGIST: JAMES J. WILKIN	IS				
DINIELING		PID ppm								
			C LOG	CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM				
DEPTH feet Blows	Sample No. VALUES	PROFILE	GRAPHIC LOG	SOIL CL						
						2" Blank PVC				

Cla Envi	yton ironme	ental	Cons	sultants				Log of Monitoring	Well MW-31A
PRO	JECT:	DEL	ITSCH	H RELAYS, INC	c.			LOCATION: EAST NORTHPORT, N	EW YORK
				PID ppm		8	ω		
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200		SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
							Bur		2" Blank PVC

PROJ	JECT:	DEU	TSCH	RELAYS, INC.			LOCATION: EAST NORTHPORT, NE	W YORK
				PID ppm	00	S		
DEPTH feet	Blows	Sample No.	VALUES	PROFILE 200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
-						Bur		
80 - - -	118	ss80					2.5Y 5/4 Light olive brown c-f SAND, And (-) f Gravel, Trace Silt: quartz, muscovite and irregular gravel present (moist).	VC
35 - - -	90	ss85					Similar	2" Blank PVC
90 - - -	111	ss90					10YR 5/4 Yellowish brown m-f SAND, Trace (+) Gravel: quartz and muscovite present, well sorted.	
95— - - -	116	ss95					10YR 5/4 Yellowish brown m-f SAND, Little (-) Silt, Trace (-) f Gravel and Clay: predominantly sand, occassional gravel and clay.	(0.02) PVC →★ (0.02) PVC →★
-00 - - -	60	ss100					10YR 5/4 Yellowish brown m-f SAND, And (-) Silt, Trace (-) f Gravel: similar to previous sample.	
05- - - -	101	ss105					10YR 5/6 Yellowish brown m-f SAND, And (-) Silt: no gravel, black inclusions with increased mica.	
110— - -	45	ss110					10YR 6/6 Brownish yellow CLAY, Little Silt: significant clay sample.	Bentonite grout and backfill

				I RELAYS, IN	C.			LOCATION: EAST NORTHPOR SURFACE ELEVATION: 151.11					
_	ECT N		_	/18/96				INITIAL H20 LEVEL: (BGS)	(M3L)				
				9/19/96					FINAL H20 LEVEL: 72.25 (BGS)				
DRILL	ING M	ETH	DD:	MUD-ROTAR	Υ			TOTAL DEPTH: 125 Feet					
DRILL	ING C	OMP	ANY:	R & L WELL	DR1	LLIN	IG	GEOLOGIST: JAMES J. WILK	NS				
				PID ppm		90	S		WELL DIAGRAM				
feet	Blows	Sample No.	VALUES		200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION					
							Bur	No samples taken	- 2" Blank PVC				

Cla Env	yton ironme	ental	Con	sultants				Log of Monito	oring Well	MW-32A
PRO	JECT:	DEL	ITSCI	H RELAYS, IN	VC.			LOCATION: EAST NORTH	PORT, NEW YOF	łK
				PID ppm		00	í			
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		WELL DIAGRAM
	68	\$\$75					Bur		2" Blank PVC	I I

PROJ	ECT:	DEU	TSCH	RELAYS, INC.			LOCATION: EAST NORTHPORT, NE	W YORK
				PID ppm	90	SS		
feet	Blows	Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
-				200			10YR 5/6 Yellowish brown m-f SAND, Some Silt: muscovite and quartz, molds well.	
0 - - -	77	ss80					2.5Y 5/4 Light olive brown m-f SAND, Some (-) Silt: muscovite and quartz, doesn't mold as well.	
5	91	ss85					Multi-colored m-f SAND, Some Silt, Occ. f Gravel: some organic material, muscovite and quartz.	Partonite grout
0	92	ss90					Two discreet layers: 2.5Y 6/4 Light yellowish brown m-f SAND, Some Silt: quartz and muscovite. 10YR 7/4 Very pale brown CLAY, Little (-) Silt: does not appear to be a significant layer.	- 2" Blank PVC
5	94	ss95					7.5YR 5/6 Strong brown m-f SAND, Some (-) Silt, Trace Clay: molds well.	
0 - -	107	ss100					7.5yr 5/6 Strong brown m-f SAND, Some (-) Silt: more coarse than previous sample.	
5	112	ss105					10YR 5/6 Yellowish brown f SAND, And (-) Silt: molds well.	r (0.02) PVC
0	113	ss110					Similar	

Environm PROJECT:	-	-	RELAYS, IN	IC.			LOCATION: EAST NORTHP	ORT, NEW YORK
	Ι		PID ppm		ß			
исти feet Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	Drues (Drues (2000) PAC (2000) PA

Page 4 of 4

	yton ironme		Cons	sultants					Log of Monitorin	g Well MW-33A
PRO	JECT:	DEU	TSCH	RELAYS, IN	IC.				LOCATION: EAST NORTHPORT	, NEW YORK
PRO	JECT N	10.:	61735	5.40					SURFACE ELEVATION: 147.86	(MSL)
DAT	E STA	RTED	: 09	0/23/96					INITIAL H20 LEVEL: (BGS)	
DAT	E FINI	SHED): <i>0</i> 8	9/24/96					FINAL H20 LEVEL: 69.39 (BG	S)
				MUD-ROTAR					TOTAL DEPTH: 105 Feet	
DRIL	LING	COMP	ANY:	R & L WELL	DR.	ILLIN	IG		GEOLOGIST: JAMES J. WILKIN	<i>IS</i>
		No.		PID ppm		C LOG	CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CI			Concrete
							Bur	No sample		Bentonite Grout

	yton ironme		Con	sultants				Log of Monitorin	g Well MW-33A
PRO	JECT:	DEL	ITSCH	H RELAYS, IN	VC.	-		LOCATION: EAST NORTHPORT	, NEW YORK
				PID ppm		90	0		
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
							Bur		2" Blank PVC 2" Blank PVC 2" Blank PVC 2" Blank PVC 3" Blank PVC 3" Blank PVC 4" Blank PVC 4" Blank PVC 5" Blank PVC

PRO	JECT:	DEU	TSCH	RELAYS, INC.	T		LOCATION: EAST NORTHPORT, NEW	I YORK
				PID ppm	00	S		
DEPTH feet	Blows	Sample No.	VALUES	PROFILE 20	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
						Bur		- 2" Blank PVC
80_ - - -	142	ss80					10YR 5/6 Yellowish brown m-f SAND, Some (+) Silt: molds well, quartz and muscovite present.	Slatted (0.02) PVC
85— - - -	100	ss85					7.5YR 5/8 Strong brown f SAND, And Silt: molds well, small black inclusion with increased frequency of mica.	2" Slatted (0
90-	162	ss90					10YR 5/4 Yellowish brown m-f SAND, Little (-) Silt: moist, quartz and mica present, slightly different appearance than previous sample, appears to have a higher percentage of medium size grains.	Hentonite seal
95	175+	ss95					Similar	
-00 - - -	147	ss100					10YR 5/6 m-f SAND, Little Silt: moist, similar to ss95.	Back till
05								

	yton ronme		Cons	sultants				Log of Monitorin	g Well MW-34A
PROJ	IECT:	DEU	TSCH	H RELAYS, INC.		-		LOCATION: EAST NORTHPORT	, NEW YORK
PROJ	IECT N	10.:	61735	5.40				SURFACE ELEVATION: 148.4	(MSL)
				9/26/96				INITIAL H20 LEVEL: (BGS)	
				9/27/96				FINAL H20 LEVEL: 69.42 (BG	S)
				MUD-ROTARY				TOTAL DEPTH: 115 Feet	
DRIL	LING	COMP	ANY:	R & L WELL DF	T			GEOLOGIST: JAMES J. WILKIN	5
				PID ppm	9	S			WELL DIAGRAM
DEPTH feet	Blows	Sample No.	VALUES	PROFILE 0 20	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	Concrete
						Bur	No sample		Dage 1 of 3

Cla Env	yton ironme	ental	Con	sultants				Log of Monitoring	g Well MW-34A
PRO	JECT:	DEL	ITSCH	H RELAYS, IN	IC.			LOCATION: EAST NORTHPORT,	NEW YORK
				PID ppm		90	ഗ		
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
							Bur		2" Blank PVC

PRO	JECT:	DEL	TSCH	RELAYS, INC.	1		LOCATION: EAST NORTHPORT, I	VEW YORK
				PID ppm	90	S		
feet	Blows	Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
-						Bur		
30	93	ss80					Two layers: 2.5Y 6/4 Light yellowish brown m-f SAND, Trace Silt: well sorted, quartz and muscovite present. 5YR 4/6 Yellowish red f SAND, Some (+) Silt, Trace (-) Clay: molds well, somewhat dry.	
35— - -	91	ss85					7.5YR 5/6 Strong brown f SAND, Some (-) Silt: moist.	2" Blank PVC
- 	75	ss90					10YR 5/6 Yellowish brown m-f SAND, Trace (-) Silt: quartz and muscovite present, well sorted.	
)5- - - -	95	ss95					10YR 5/6 Yellowish brown c-f SAND: moist.	
		ss100					10YR 5/4 Yellowish brown m-f SAND: well sorted, moist.	(0.02) PVC
)5- - - -	51	ss105					7.5YR 4/6 Strong brown f SAND, Some Silt: not as moist as previous black inclusions with increased mica.	2" Slatted
10 - - -	50	ss110					7.5YR 5/6 Strong brown SILT, And Clay:	

Page 3 of 3

	onme			sultants	10						540
PROJE		_		RELAYS, IN	VC.				LOCATION: EAST NORTHPORT SURFACE ELEVATION: 148.27		
			-	/08/96					INITIAL H20 LEVEL: (BGS)	(//02)	
				09/96					FINAL H20 LEVEL: 69.52 (BG	5)	
		1.11	2	MUD-ROTAR	7 <i>Y</i> 7				TOTAL DEPTH: 180 Feet		
DRILL	ING C	COMP	ANY:	R & L WELL	L DR.	ILLIN	IG		GEOLOGIST: JAMES J. WILKIN	5	
				PID ppm		90	S			WELL	DIAGRAM
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION		Concrete
							Bur	No sample		2" Blank PVC	Page 1 o

Cla Envi	yton ironme	ental	Con	sultants	22			Log of Monitoring	Well MW-34B
PRO	JECT:	DEL	ITSCI	H RELAYS, IN	VC.			LOCATION: EAST NORTHPORT, N	EW YORK
	-			PID ppm		90	S		
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
							Bur		2" Blank PVC

Cla Envi	yton ironme	ental	Con	sultants				Log of Monitori	ing W	ell MW-34B
PROJ	JECT:	DEU	ITSCH	H RELAYS, IN	С.			LOCATION: EAST NORTHPOR	RT, NEW	YORK
				PID ppm		90	(0			
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		WELL DIAGRAM
	47	ss115					Bur			2" Blank PVC 2" Blank PVC 2" Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC 3. Blank PVC

Page 3 of 5

PRO	JECT:	DEU	TSCH	I RELAYS, INC.	-1		LOCATION: EAST NORTHPORT, NE	W YORK	
				PID ppm	90	SS			
feet	Blows	Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL	DIAGRAM
-							7.5YR 4/4 Brown SILT, Little f (-) Sand, Trace (+) Clay: black inclusions with mica.		
0	170	ss120					7.5YR 4/6 Strong brown m-f SAND, And Silt: molds well, moist, mica and quartz.		
25	68	ss125					Similar to ss115		
-0	94	ss130					7.5YR 5/8 Strong brown c-f SAND, And (-) c-f Gravel: no silt, very coarse, poorly sorted.	PVC	[
35 - - -	98	ss135					10YR 4/6 Dark yellowish brown c-f SAND, Little f Gravel, Trace Silt:	2" Blank PVC	Bentonite grout
-0 - - -	84	ss140					7.5YR 4/8 Strong brown SILT, Little Clay, Trace f Sand: dense, molds well, moist.		
5 - - -		ss145				-	7.5YR 6/6 Reddish yellow Clay, Some (-) Silt:		
50 - -	137	ss150					10YR 5/6 Yellowish brown m-f SAND, Little (-) Silt:		

Page 4 of 5

PROJEC	T:	DEU	TSCH	RELAYS, INC.			LOCATION: EAST NORTHPORT, M	EW YORK
				PID ppm	90	(0		aut -
feet Blows		Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
50 220 50 220 65 120 70 20 75 46 80 - 85 - 90 - 90 - 95 -	0	ss160 ss165 ss170 ss175					Similar to ss145 IOYR 5/6 Yellowish brown c-f SAND, Some Clay: alternating layers. IOYR 5/6 Yellowish brown c-f SAND, Trace (-) Silt: poorly sorted, moist, does not mold. Similar 7.5YR 6/6 Reddish yellow Clay: solid.	

			ultants	10			LOCATION: EAST NORTHPOR	
PROJECT			RELAYS, IN	π.			SURFACE ELEVATION: 165.57	
DATE ST							INITIAL H20 LEVEL: (BGS)	(102)
DATE FI							FINAL H20 LEVEL: 86.37 (B0	<i>SS)</i>
			MUD-ROTAR	?Y			TOTAL DEPTH: 135 Feet	
DRILLIN	G COMP	ANY:	R & L WELL	. DRI	ILLIN	G	GEOLOGIST: JAMES J. WILKI	IS
			PID ppm		90			WELL DIAGRAM
DEPTH feet Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	Concrete
						Bur	No samples taken	

Cla Envi	yton ironme	ental	Con	sultants				Log of Monitoring	g h	Iell MW-35A
PRO	JECT:	DEL	ITSCH	H RELAYS, IN	IC.			LOCATION: EAST NORTHPORT,	NEW	I YORK
				PID ppm		90	S			
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		WELL DIAGRAM
							Bur		6	2" Blank PVC

PRO	ECT:	DEU	TSCH	RELAYS, INC.			LOCATION: EAST NORTHPORT, NEW	V YORK	
				PID ppm	90	S			
feet	Blows	Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL D	IAGRAM
- - - - - - - - - - - - - - - - - - -						Bur			
- 01 - -	107	ss90					10YR 5/8 Yellowish brown m-f SAND, Trace (-) Silt: occ. coarse sand, quartz and muscovite, well sorted.	VC	Bentonite grout
15— - - -	112	ss95					10YR 5/8 Yellowish brown m-f SAND, Trace Silt: dense with thin black layers, quartz and muscovite.	2" Blank PVC	Bentor
-0	86	ss100					10YR 4/6 Dark Yellowish brown m-f SAND, Little Silt, Trace Clay: clay present at bottom of spoon.		
)5	65	ss105					10YR 5/6 Yellowish brown f SAND, Some (+) Silt, Trace Clay: clay present at top of spoon, moist, molds well.		
10- - -	98	ss110					2.5Y 5/4 Light olive brown f SAND, And (+) Silt, Trace (-) Clay: moist, molds well, light in color.		

Page 3 of 4

RO	JECT:	DEU	TSCH	H RELAYS, INC.			LOCATION: EAST NORTHPORT, NE	W YORK
				PID ppm	90	ŝ		
feet	Blows	Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
0	126	ss120					7.5YR 4/4 Brown Clay, And (-) Silt: bottom of spoon is m-f sand. 10YR 4/6 Dark yellowish brown f SAND, Little (+) Silt: moist, molds well.	(0.02) PVC
5	142	ss125					7.5 YR 4/6 Strong brown f SAND, And (+) Silt: moist, dense, mica.	tted
	126	ss130					7.5YR 4/6 Strong brown f SAND, Some (+) Silt: appears more coarse than previous sample.	
- -0 - - -								

Page 4 of 4

	DEU	TSCH	RELAYS, IN	IC.			LOCATION: EAST NORTHPOL	
PROJECT							SURFACE ELEVATION: 162.0	
DATE ST		1 0000208 1					INITIAL H20 LEVEL: (BGS,	
			03/96 MUD-ROTAR	v			FINAL H20 LEVEL: 82.77 (E TOTAL DEPTH: 126 Feet	(200
			R & L WELL	_		G	GEOLOGIST: JAMES J. WILK	INS
DITIELING			PID ppm					
			110 ppm		LOG	CLASS		WELL DIAGRAM
DEPTH feet Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLA	GEOLOGIC DESCRIPTION	
- 5- - 10- - 15-								- 2" Blank PVC

Cla Env	yton ironme	ental	Con	sultants				Log of Mo	onitoring N	Vell	MW-36	A
PRO	JECT:	DEL	ITSCH	H RELAYS, IN	C.			LOCATION: EAST N	NORTHPORT, NE	W YORH	٢	
				PID ppm		90	ю					
DEPTH feet	Blows	Sample No.	VALUES	PROF ILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTIO	ИС		WELL DIAGR	AM
							Bur			2" Blank PVC		Bentonite grout

PRO	JECT:	DEU	TSCH	RELAYS, INC.			LOCATION: EAST NORTHPORT, NE	W YOR	K		
				PID ppm	00	S					
DEPTH feet	Blows	Sample No.	VALUES	PROFILE 20	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION		WELL	DIAGRA	м
- - - 30	150+	ss80			000	Bur	No sample recovered, gravel jammed in spoon.		11111111	11111111	
- - }5— -	91	ss85					10YR 6/6 Brownish yellow c-f SAND, Trace (-) Silt: clean sand, quartz and muscovite.		11111111	1111111	
- - - - -	80	ss90			0 0 0 0		Similar		11111111	1111111	Bentonite grout
- 95— - -	112	ss95					7.5YR 4/6 Strong brown f SAND, Some Silt, Trace Clay: moist and dense	2" Blank PVC	111111	111111	Benton
- 00 	93	ss100					Similar	-	111111		
- 	150	ss105					First half of sample is 10YR 5/6 Yellowish brown CLAY, Some Silt: Second half of sample is 10YR 5/6 f SAND, And Silt: black inclusions with increased mica, moist.	-			
- -	123	ss110					10YR 5/6 Yellowish brown f SAND, Little (+) Silt: mica, quartz.	-			: Seal >

Page 3 of 4

PROJ	ECT:	DEU	TSCH	RELAYS, INC.				LOCATION: EAST NORTHPORT,	NEWYORK
				PID ppm	9	S			0
feet	Blows	Sample No.	VALUES	PROFILE 200	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	C) مط WELL DIAGRAM
							7.5YR 5/6 inclusions v	Strong brown f SAND, And Silt: black with mica.) PVC
20 - - -	91	ss120					Similar		2" Slotted (0.02) PVC
25- - - -	115	ss125					Similar		
30- - - -									
- 35- - -									
- 40 - -									
- 45— -									
- - 50- -									

Page 4 of 4

	yton ronme	ntal	Cons	sultants					Log of Monitoring	g Well MW-37A
PROJ	ECT:	DEU	ITSCH	HRELAYS, IN	VC.				LOCATION: EAST NORTHPORT,	WERE ALL OF THE
-	ECT N								SURFACE ELEVATION: 165.84	(MSL)
				/10/96)/11/96			5 00		INITIAL H20 LEVEL: (BGS) FINAL H20 LEVEL: 87.83 (BGS	.)
				MUD-ROTAF	RY				TOTAL DEPTH: 150 Feet	/
				R & L WEL		ILLIN	IG		GEOLOGIST: JAMES J. WILKINS	
				PID ppm		00	ы			WELL DIAGRAM
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	Concrete
							Bur	No sample	s taken	2

Cla Env	yton ironme	ental	Con	sultants				Log of Monitori	ing Well MW-37A
PRO	JECT:	DEL	ITSCH	H RELAYS, IN	IC.			LOCATION: EAST NORTHPOR	RT, NEW YORK
				PID ppm		90	S		
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
							Bur		2" Blank PVC 2" Blank PVC 2" Blank PVC 2" Blank PVC 3" Blank PVC

Clay Envi	yton ronme	ental	Con	sultants				Log of Monitoring	Well MW-37A
PROJ	ECT:	DEL	ITSCI	H RELAYS, INC	С.			LOCATION: EAST NORTHPORT, N	EW YORK
				PID ppm		90	0		
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
80 80 90 90 1 90 1 105 1 110 110 115 115	154	ss115					Bur		2" Blank PVC 2" Blank PVC 1 <

Page 3 of 4

RO	JECT:	DEU	TSCH	RELAYS, INC.			LOCATION: EAST NORTHPORT, NEW	V YORK
				PID ppm	10G	SS		
feet	Blows	Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
	155	ss120					10YR 4/6 Dark yellowish brown m-f SAND, Some Silt: quartz and mica. 10YR 5/8 Yellowish brown m-f SAND, And Silt, Trace Clay:	- 2" Slotted (0.02) PVC
- 35 - - - - - - - - - - - - - - - - - - -	100	ss135					10YR 4/4 Dark yellowish brown m-f SAND, And Silt:	Bentonite grout and backfill
15- - - 50- -	173	ss145				· · ·	10YR 4/4 Dark yellowish brown c-f SAND, Trace Silt:	Bentonite

Page 4 of 4

	/ton ronme	ntal	Cons	sultants				~	Log of Monitoring	Well MW-38A	
PROJE	ECT:	DEU	TSCH	I RELAYS, IN	VC.				LOCATION: EAST NORTHPORT,		
	ECT N								SURFACE ELEVATION: 149.56	(MSL)	
				/14/96					INITIAL H20 LEVEL: (BGS)		
				15/96	v				FINAL H20 LEVEL: 71.57 (BGS) TOTAL DEPTH: 120 Feet		
				MUD-ROTAR R & L WELL			IG		GEOLOGIST: JAMES J. WILKINS		
UNILL			4141.	PID ppm	DI						
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	SOIL CLASS		GEOLOGIC DESCRIPTION	WELL DIAGRAM	oncrete
							Bur	No sample	s taken		Bentonite grout Bentonite grout

Cla Env	yton ironme	ental	Con	sultants				Log of Monitor	ing V	vell M₩-38A
PRO	JECT:	DEL	ITSCH	H RELAYS, INC				 LOCATION: EAST NORTHPOL	RT, NEI	V YORK
				PID ppm		90	S			
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	200	GRAPHIC LOG	Soil CLASS	 GEOLOGIC DESCRIPTION		WELL DIAGRAM
							DUI			2" Blank PVC 2" Blank PVC 2" Diank PVC 3" Diank PVC

PRO	JECT:	DEL	ITSCH	RELAYS, INC			LOCATION: EAST NORTHPORT,	NEW YORK	
			PID ppm		90	s			
DEPTH feet	Blows	Sample No.	VALUES	PROFILE	000 GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM	
		ss100				Bur	10YR 4/4 Dark yellowish brown SILT, And f Sand, Trace (+) Clay: Similar		

Page 3 of 4

PROJECT: DEUTSCH RELAYS, INC.							LOCATION: EAST NORTHPORT, I	IEW YORK
				PID ppm	90	S		
feet	Blows	Sample No.	VALUES	PROFILE	GRAPHIC LOG	SOIL CLASS	GEOLOGIC DESCRIPTION	WELL DIAGRAM
							10YR 4/4 Dark yellowish brown SILT, Some (-) f Sand, Little (-) Clay:	

Page 4 of 4

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
MW-9	168.50	94.20	9/24/1998	72.00	96.50
	100.05	50.05	12/3/1998 9/24/1998	76.20 67.10	92.30 101.25
MW-9A	168.35	50.85	12/3/1998	83.85	84.50
			9/24/1998	67.90	101.77
			12/3/1998	90.55	79.12
			7/2/2002	88.61	81.06
			8/1/2002	88.94	80.73
			9/18/2002 10/18/2002	89.18 89.32	80.49 80.35
			11/19/2002	89.31	80.36
			12/16/2002	89.29	80.38
			1/7/2003	89.05	80.62
			2/13/2003	88.45	81.22
			3/11/2003	88.45	81.22
			4/8/2003 5/7/2003	88.10 88.14	81.57 81.53
			6/16/2003	87.60	82.07
			7/15/2003	86.50	83.17
			8/20/2003	86.06	83.61
			9/5/2003	86.03	83.64
			10/29/2003	85.35	84.32
			11/25/2003 12/16/2003	88.29 84.25	81.38 85.42
			3/3/2004	ND	ND
			4/9/2004	84.76	84.91
			5/13/2004	84.99	84.68
			6/8/2004	85.79	83.88
			7/22/2004	85.51	84.16
			8/19/2004	85.36 86.41	84.31
			9/3/2004 10/27/2004	86.41	83.26 84.96
			11/17/2004	ND	ND
			12/2/2004	84.60	85.07
			1/20/2005	86.78	82.89
			3/31/2005	85.19	84.48
			4/27/2005	84.53	85.14
			6/14/2005 9/27/2005	85.37 85.21	84.30 84.46
			11/28/2005	87.12	82.55
MW-10	169.67	92.17	12/28/2005	85.36	84.31
			1/25/2006	82.26	87.41
			2/21/2006	82.00	87.67
			3/29/2006	81.84	87.83
			5/3/2006 6/20/2006	81.75 81.36	87.92 88.31
			9/27/2006	81.21	88.46
			12/18/2006	81.18	88.49
			2/16/2007	81.01	88.66
			3/19/2007	82.36	87.31
			6/12/2007	81.69	87.98
			9/19/2007 10/9/2007	82.44 82.75	87.23 86.92
			11/28/2007	83.51	86.16
			1/22/2008	84.29	85.38
			3/5/2008	84.48	85.19
			6/17/2008	84.14	85.53
			9/24/2008 11/25/2008	84.73	84.94 84.83
			1/22/2009	84.84 84.77	84.83
			6/9/2009	85.45	84.22
			8/4/2009	84.80	84.87
			3/9/2010	85.51	84.16
			6/7/2010	82.33	87.34
			9/29/2010	83.54	86.13
			12/7/2010	84.33	85.34
			3/1/2011 6/7/2011	85.60 84.58	84.07 85.09
			9/23/2011	84.39	85.28
			11/29/2011	84.65	85.02
			3/23/2012	85.72	83.95
			9/25/2012	96.40	73.27
			12/6/2012	86.99	82.68
			4/1/2012 6/18/2013	87.65	82.02
			6/18/2013 9/16/2013	87.15 87.00	82.52 82.67
			11/5/2013	87.62	82.05

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			9/24/1998	68.25	101.13
			12/3/1998	81.45	87.93
			7/2/2002	95.18	74.20
			8/1/2002	95.70	73.68
			9/18/2002	95.44	73.94
			10/18/2002	96.33	73.05
			11/19/2002 12/16/2002	96.38 96.37	73.00 73.01
			1/7/2002	96.21	73.01
			3/11/2003	96.04	73.34
			4/8/2003	95.33	74.05
			5/7/2003	95.57	73.81
			6/16/2003	94.75	74.63
			7/15/2003	93.60	75.78
			8/20/2003	92.85	76.53
			9/5/2003	93.49	75.89
			10/29/2003	92.13	77.25
			11/25/2003	95.42	73.96
			12/16/2003	91.03	78.35
			3/3/2004	ND	ND
			4/9/2004 5/13/2004	91.86 92.43	77.52 76.95
			5/13/2004 6/8/2004	92.43	76.95
			7/22/2004	92.56	76.82
			8/19/2004	91.66	77.72
			9/3/2004	92.44	76.94
			10/27/2004	91.06	78.32
			11/17/2004	ND	ND
			12/2/2004	90.76	78.62
			1/20/2005	92.59	76.79
			3/31/2005	90.91	78.47
			4/27/2005	90.19	79.19
			6/14/2005	91.04	78.34
			9/27/2005	90.91	78.47
			11/28/2005	92.89 91.14	76.49 78.24
MW-10A	169.38	51.38	1/25/2006	87.93	81.45
			2/21/2006	88.83	80.55
			3/29/2006	88.83	80.55
			5/3/2006	88.63	80.75
			6/20/2006	87.53	81.85
			9/27/2006	88.09	81.29
			12/18/2006	87.14	82.24
			1/18/2007	87.15	82.23
			2/16/2007	86.98	82.40
			3/19/2007	88.76	80.62
			6/12/2007 9/19/2007	86.44 87.28	82.94 82.10
			10/9/2007	87.59	81.79
			11/28/2007	88.35	81.03
			1/22/2008	88.71	80.67
			3/5/2008	88.77	80.61
			6/17/2008	88.83	80.55
			9/24/2008	89.52	79.86
			11/25/2008	89.54	79.84
			1/22/2009	89.61	79.77
			6/9/2009	90.20	79.18
			8/4/2009	89.50 90.22	79.88
			3/9/2010 6/7/2010	90.22 87.38	79.16 82.00
			9/29/2010	87.38	82.00
			12/7/2010	88.97	80.41
			3/1/2010	88.91	80.47
			6/7/2011	89.50	79.88
			9/23/2011	89.51	79.87
			11/29/2011	89.65	79.73
			3/29/2012	90.61	78.77
			9/25/2012	91.44	77.94
			12/6/2012	91.98	77.4
			4/1/2013	92.54	76.84
			6/18/2013	91.99	77.39
			9/16/2013	92.08	77.3

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			9/24/1998	72.00	73.48
			12/3/1998	72.50	72.98
			3/6/2002 6/3/2002	73.15 73.85	72.33 71.63
			7/2/2002	73.85	71.63
			8/1/2002	75.68	69.80
			9/18/2002	73.70	71.78
			10/18/2002	75.67	69.81
			11/19/2002	76.45	69.03
			12/16/2002 1/7/2003	72.45 76.43	73.03 69.05
			2/13/2003	76.33	69.15
			3/11/2003	76.25	69.23
			4/8/2003	74.98	70.50
			5/7/2003	75.29	70.19
			6/16/2003	75.79 73.20	69.69 72.28
			7/15/2003 8/20/2003	73.20	73.39
			9/5/2003	ND	ND
			10/29/2003	69.51	75.97
			11/25/2003	74.32	71.16
			12/16/2003	74.13	71.35
			3/3/2004 4/9/2004	72.97	72.51
			5/13/2004	73.15	72.33
			6/8/2004	73.10	72.38
			7/22/2004	72.70	72.78
			8/19/2004	72.61	72.87
			9/3/2004	72.58	72.90
			10/27/2004	72.05	73.43
			11/17/2004 12/2/2004	ND 71.06	ND 74.42
			1/20/2005	73.00	72.48
			3/31/2005	70.10	75.38
			4/27/2005	69.24	76.24
			6/14/2005	70.29	75.19
			9/27/2005 11/28/2805	70.10 72.16	75.38 73.32
MW-11A	145.48	47.45	12/28/2005	69.63	75.85
			1/25/2006	69.79	75.69
			2/21/2006	69.72	75.76
			3/29/2006	69.65	75.83
			5/3/2006	69.53	75.95
			6/20/2006 9/27/2006	66.07 69.92	79.41 75.56
			12/18/2006	63.71	81.77
			1/18/2007	63.51	81.97
			2/16/2007	68.51	76.97
			3/19/2007	69.87	75.61
			6/12/2007 9/19/2007	63.31 63.82	82.17 81.66
			9/19/2007	64.11	81.00
			11/28/2007	64.88	80.60
			1/22/2008	65.11	80.37
			3/5/2008	65.15	80.33
			6/17/2008	65.33	80.15
			9/24/2008 11/25/2008	66.17 66.18	79.31 79.30
			1/22/2008	66.29	79.19
			6/9/2009	66.82	78.66
			8/4/2009	66.55	78.93
			3/9/2010	66.80	78.68
			6/7/2010 9/29/2010	64.10 65.04	81.38 80.44
			9/29/2010 12/7/2010	65.04 65.62	80.44 79.86
			3/1/2010	66.01	79.47
			6/7/2011	66.10	79.38
			9/23/2011	65.65	79.83
			11/29/2011	66.41	79.07
			3/29/2012	67.27	78.21
			9/25/2012	89.17	56.31
			12/6/2012 4/1/2013	68.17 MW-11A could	77.31
			6/18/2013	68.69	76.79
			9/16/2013 11/5/2013	MW-11A is MW-11A is	seared shut.

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATEF ELEVATION
			9/24/1998	67.10	77.61
			12/3/1998	67.60	77.11
			3/6/2002	70.30 71.23	74.41
			6/3/2002 7/2/2002	71.23	73.48 72.95
			8/1/2002	72.30	72.41
			9/18/2002	71.52	73.19
			10/18/2002	72.84	71.87
			11/19/2002	73.21	71.50
			12/16/2002	73.21	71.50
			1/7/2003	73.20	71.51
			2/13/2003 3/11/2003	73.15 73.08	71.56 71.63
			4/8/2003	72.26	72.45
			5/7/2003	72.53	72.18
			6/16/2003	71.75	72.96
			7/15/2003	70.62	74.09
			8/20/2003	69.20	75.51
			9/5/2003	70.51	74.20
			10/29/2003	68.90 72.11	75.81 72.60
			12/16/2013	70.87	73.84
			3/3/2004	70.20	74.51
			4/9/2004	70.26	74.45
			5/13/2004	71.03	73.68
			6/8/2004	69.58	75.13
			7/22/2004	69.34	75.37
			8/19/2004 9/3/2004	69.54 69.11	75.17 75.60
			10/27/2004	70.06	74.65
			11/17/2004	ND	ND
			12/2/2004	69.74	74.97
			1/20/2005	69.18	75.53
			3/31/2005	67.42	77.29
			4/27/2005	66.63	78.08
			6/14/2005	67.64	77.07
			9/27/2005 11/28/2005	67.49 71.33	77.22 73.38
MW-11B	144.71	-64.69	12/28/2005	69.35	75.36
			1/25/2006	66.48	78.23
			2/21/2006	65.61	79.10
			3/29/2006	65.64	79.07
			5/3/2006	65.35	79.36
			6/20/2006 9/27/2006	63.69 65.25	81.02 79.46
			12/18/2006	63.36	81.35
			1/18/2007	63.16	81.55
			2/16/2007	65.60	79.11
			3/19/2007	65.38	79.33
			6/12/2007	62.91	81.80
			9/19/2007	63.44	81.27
			10/9/2007	63.76	80.95
			11/28/2007 1/22/2008	64.51 64.79	80.20 79.92
			3/5/2008	64.58	80.13
			6/17/2008	65.00	79.71
			9/24/2008	65.73	78.98
			11/25/2008	65.77	78.94
			1/22/2009	65.89	78.82
			6/9/2009	66.91	77.80
			8/4/2009 3/9/2010	66.66 66.21	78.05 78.50
			6/7/2010	63.69	81.02
			9/29/2010	64.34	80.37
			12/7/2010	65.28	79.43
			3/1/2011	66.70	78.01
			6/7/2011	65.48	79.23
			9/23/2011	66.29	78.42
			11/29/2011	65.30	79.41
			3/29/2012	66.65	78.06
			9/25/2012	67.57	77.14
			12/6/2012	68.77	75.94
			4/1/2013	68.64 68.07	76.07
			6/18/2013 9/16/2013	68.31	76.64 76.40
			11/5/2013	68.84	75.87

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATER ELEVATION	
			9/24/1998	67.90	77.67	
			12/3/1998	68.30	77.27 74.57	
			3/6/2002 6/3/2002	71.00 72.02	73.55	
			7/2/2002	72.51	73.06	
			8/1/2002	73.05	72.52	
			9/18/2002 10/18/2002	72.25 73.57	73.32 72.00	
			11/19/2002	73.92	71.65	
			12/16/2002	73.90	71.67	
			1/7/2003	73.87	71.70	
			2/13/2003 3/11/2003	73.71 73.72	71.86 71.85	
			4/8/2003	72.90	72.67	
			5/7/2003	73.15	72.42	
			6/16/2003 7/15/2003	72.39 71.26	73.18 74.31	
			8/20/2003	70.20	75.37	
			9/5/2003	71.20	74.37	
			10/29/2003	69.93	75.64	
			11/25/2003 12/16/2003	72.56	73.01 74.37	
			3/3/2004	70.85	74.72	
			4/9/2004	70.99	74.58	
			5/13/2004	71.34	74.23	
			6/8/2004 7/22/2004	70.26	75.31 75.55	
			8/19/2004	70.19	75.38	
			9/3/2004	69.90	75.67	
			10/27/2004 11/17/2004	70.86 ND	74.71 ND	
			12/2/2004	70.31	75.26	
			1/20/2005	69.83	75.74	
			3/31/2005	66.05	79.52	
			4/27/2005 6/14/2005	65.38 66.81	80.19 78.76	
			9/27/2005	66.68	78.89	
			11/28/2005	70.78	74.79	
			12/28/2005	70.01	75.56	
			1/25/2006 2/21/2006	65.78 66.40	79.79 79.17	
			3/29/2006	66.36	79.21	
MW-11C	145.57	13.90	5/3/2006	66.09	79.48	
	145.57	10.00	6/20/2006	64.38	81.19	
			9/27/2006 12/18/2006	66.01 63.91	79.56 81.66	
			1/18/2007	63.75	81.82	
			2/16/2007	66.01	79.56	
			3/19/2007 6/12/2007	66.15 63.47	79.42 82.10	
			9/19/2007	64.01	81.56	
			10/9/2007	64.30	81.27	
			11/28/2007	65.09	80.48	
			1/22/2008 3/5/2008	65.35 65.39	80.22 80.18	
			6/17/2008	65.52	80.05	
			9/24/2008	66.24	79.33	
			11/25/2008	66.23	79.34	
			1/22/2009 6/9/2009	66.32 66.37	79.25 79.20	
			8/4/2009	66.13	79.44	
			3/9/2010	66.94	78.63	
			6/7/2010	64.24	81.33	
			9/29/2010 12/7/2010	64.93 65.51	80.64 80.06	
			3/1/2011	66.59	78.98	
			6/7/2011	66.25	79.32	
			9/23/2011 11/29/2011	66.35 66.54	79.22 79.03	
			3/29/2012	67.40	79.03	
			9/25/2012	MW-11C has pumps i sample, but appears to		
			12/6/2012	68.90	76.67	
			4/1/2013	MW-11C has pumps i sample, but appears to when gauging. Unable	nstalled. Okay to be an obstruction	
			6/18/2013	68.87	76.70	
			9/16/2013	MW-11C has pumps i sample, but appears to when gauging. Unable	nstalled. Okay to be an obstruction	
			11/5/2013	MW-11C appears to Unable to guage MW-		

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			9/24/1998	68.25	77.47
			12/3/1998	68.55	77.17
			3/6/2002	71.45	74.27
			6/3/2002 7/2/2002	72.57 72.80	73.15 72.92
			8/1/2002	73.35	72.37
			9/19/2002	73.47	72.25
			10/18/2002	74.90	70.82
			11/19/2002	74.57	71.15
			12/16/2002	74.69	71.03
			1/7/2003	75.45	70.27
			2/13/2003 3/11/2003	74.41	71.31 71.18
			4/8/2003	73.91	71.81
			5/7/2003	74.06	71.66
			6/16/2003	73.38	72.34
			7/15/2003	72.45	73.27
			8/20/2003	71.86	73.86
			9/5/2003 10/29/2003	72.10 70.36	73.62
			11/25/2003	73.20	72.52
			12/16/2003	70.38	75.34
			3/3/2004	71.56	74.16
			4/9/2004	72.56	73.16
			5/13/2004	72.89	72.83
			6/8/2004 7/22/2004	77.15 70.52	68.57
			8/19/2004	72.26	75.20
			9/3/2004	ND	ND
			10/27/2004	73.50	72.22
			11/17/2004	ND	ND
			12/2/2004	72.49	73.23
			1/20/2005	70.75	74.97
			3/31/2005 4/27/2005	69.15 68.42	76.57 77.30
			6/14/2005	69.36	76.36
MW-12A	145.72	45.28	9/27/2005	69.03	76.69
11111-124	140.12		11/28/2005	72.09	73.63
			12/28/2005	70.36	75.36
			1/25/2006 2/21/2006	67.01 67.69	78.71 78.03
			3/29/2006	67.47	78.25
			5/3/2006	67.01	78.71
			6/20/2006	65.35	80.37
			9/27/2006	65.96	79.76
			12/18/2006 2/16/2007	65.25 65.07	80.47 80.65
			3/19/2007	65.90	79.82
			6/12/2007	64.61	81.11
			9/19/2007	65.20	80.52
			10/9/2007	65.48	80.24
			1/28/2007	66.13	79.59
			1/22/2008 3/5/2008	66.45 67.14	79.27 78.58
			6/17/2008	66.69	79.03
			9/24/2008	67.54	78.18
			11/25/2008	67.73	77.99
			1/22/2009	68.48	77.24
			6/9/2009	68.02	77.70
			8/12/2009 3/9/2010	67.83 68.00	77.89 77.72
			6/7/2010	66.25	79.47
			9/29/2010	66.85	78.87
			12/7/2010	66.67	79.05
			3/1/2011	67.67	78.05
			6/7/2011 9/23/2011	67.38 67.79	78.34 77.93
			9/23/2011	67.93	77.79
			3/29/2012	68.62	77.10
			9/25/2012	69.64	76.08
			12/6/2012	70.10	75.62
			4/1/2013	70.55	75.17
		1	6/18/2013	Well is buried. Gaugin	y coula not be

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			9/24/1998	69.15	76.41
			12/3/1998	69.40	76.16
			3/6/2002	72.19	73.37
			6/3/2002	74.25	71.31
			7/2/2002 8/1/2002	73.50 74.05	72.06
			9/19/2002	74.05	71.51
			10/18/2002	74.17	71.39
			11/19/2002	75.33	70.23
			12/16/2002	75.47	70.09
			1/7/2003	74.64	70.92
			2/13/2003	75.32	70.24
			3/11/2003	75.40	70.16
			4/8/2003	74.84	70.72
			5/7/2003	74.94 74.33	70.62 71.23
			6/16/2003 7/15/2003	74.33	72.13
			8/20/2003	72.88	72.68
			9/5/2003	73.60	71.96
			10/29/2003	71.53	74.03
			11/25/2003	74.63	70.93
			12/16/2003	71.25	74.31
			3/3/2004	72.33	73.23
			4/9/2004	73.26	72.30
			5/13/2004	72.89	72.67
			6/8/2004 7/22/2004	71.47	74.09 74.31
			8/19/2004	71.25	74.31
			9/3/2004	ND	ND
			10/27/2004	71.68	73.88
			11/17/2004	ND	ND
			12/2/2004	70.87	74.69
			1/20/2005	71.81	73.75
			3/31/2005	69.92	75.64
			4/27/2005	69.26	76.30
			6/14/2005	70.14	75.42
MW-12B	145.56	-36.33	9/27/2005 11/28/2005	73.50	75.63 72.06
11114-120	145.56	-30.33	12/28/2005	73.50	73.78
			1/25/2006	67.81	77.75
			2/21/2006	66.88	78.68
			3/29/2006	66.69	78.87
			5/3/2006	67.01	78.55
			6/20/2006	66.18	79.38
			9/27/2006	66.67	78.89
			12/18/2006	65.99	79.57
			1/18/2007 2/16/2007	66.09 65.71	79.47 79.85
			3/19/2007	66.57	78.99
			6/12/2007	65.37	80.19
			9/19/2007	65.93	79.63
			10/9/2007	66.20	79.36
			11/28/2007	66.81	78.75
			1/22/2008	67.14	78.42
			3/5/2008	66.49	79.07
			6/17/2008	67.40 68.28	78.16 77.28
			9/24/2008 11/25/2008	68.28 68.44	77.28
			1/22/2009	67.75	77.81
			6/9/2009	68.71	76.85
			8/4/2009	67.56	78.00
			3/9/2010	67.69	77.87
			6/7/2010	65.50	80.06
			9/29/2010	66.17	79.39
			12/7/2010	67.33	78.23
			3/1/2011	68.28	77.28
			6/7/2011	68.08	77.48
			9/23/2011 11/29/2011	68.46 68.65	77.10
			3/29/2011	68.65	76.91
			9/25/2012	70.35	75.21
			12/6/2012	70.90	74.66
			4/1/2013	71.39	74.17
			6/18/2013	Well is buried. Samplin	
			0/18/2013	not be completed.	

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATER ELEVATION
MW-13 Well Closed on	157.93	91.18			
01/07/03					1
			12/3/1998 3/6/2002	71.65 76.28	86.28 81.65
			6/3/2002	77.50	80.43
			7/2/2002	77.70	80.23
			8/1/2002	78.00 78.25	79.93
			9/19/2002 10/18/2002	78.48	79.68 79.45
			11/19/2002	78.55	79.38
			12/16/2002 1/7/2003	78.46 78.24	79.47 79.69
			2/13/2003	77.59	80.34
			3/11/2003	77.66	80.27
			4/8/2003	77.17	80.76
			5/7/2003 6/16/2003	77.25	80.68 81.19
			17/15/03	75.59	82.34
			8/20/2003	74.99	82.94
			9/5/2003 10/29/2003	74.98	82.95 83.72
			11/25/2003	76.95	80.98
			12/16/2003	73.80	84.13
			3/3/2004 4/9/2004	75.70 75.63	82.23 86.91
			5/13/2004	76.21	86.33
			6/8/2004	75.00	87.54
			7/22/2004 8/19/2004	74.70 74.43	87.84 88.11
			9/3/2004	ND	ND
			10/27/2004	74.96	87.58
			11/17/2004 12/2/2004	ND 74.17	ND 88.37
			1/20/2005	75.22	87.32
			3/31/2005	74.13	88.41
			4/27/2005	73.51 74.29	89.03 88.25
			6/14/2005 9/27/2005	74.29	88.48
			11/28/2005	76.23	86.31
MW-13A	162.54	47.72	12/28/2005 1/25/2006	74.51 71.22	88.03 91.32
			2/21/2006	**	**
			3/29/2006	70.89	91.65
			5/3/2006 6/20/2006	70.80	91.74 92.13
			9/27/2006	70.41	91.74
			12/18/2006	71.06	91.48
			1/18/2007 2/16/2007	71.17 70.94	91.37 91.60
			3/19/2007	70.94	91.60
			6/12/2007	70.51	92.03
			9/19/2007 10/9/2007	71.19 71.48	91.35 91.06
			11/28/2007	72.27	90.27
			1/22/2008	73.02	89.52
			3/5/2008 6/17/2008	73.17 72.85	89.37 89.69
			9/24/2008	73.42	89.12
			11/25/2008	73.58	88.96
			1/22/2009 6/9/2009	73.41 74.09	89.13 88.45
			8/4/2009	73.68	88.86
			3/9/2010	74.10	88.44
			6/7/2010 9/29/2010	71.05 72.24	91.49 90.30
			9/29/2010	67.33	95.21
			2/28/2011	74.26	88.28
			6/7/2011	73.36	89.18 89.42
			9/23/2011 11/29/2011	73.12 73.37	89.42
			3/29/2012	74.47	88.07
			9/25/2012	75.30	87.24 86.79
			4/1/2013	76.42	86.12
			6/18/2013	75.82	86.72
			9/16/2013	75.76	86.78

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATER ELEVATION
			12/3/1998	108.35	73.79
			6/1/2002	111.94	70.20
			7/2/2002	112.20	69.94
			8/1/2002	112.90	69.24 68.66
			9/19/2002 10/18/2002	113.48 113.97	68.17
			11/19/2002	114.49	67.65
			12/16/2002	114.76	67.38
			1/7/2003	114.68	67.46
			2/13/2003	114.81	67.33
			3/11/2003	ND	ND
			4/8/2003	114.59	67.55
			5/7/2003	114.67	67.47
			6/16/2003	114.20	67.94
			7/15/2003	113.56	68.58
			8/20/2003 9/5/2003	112.92 112.78	69.22 69.36
			10/29/2003	112.78	70.17
			11/25/2003	113.25	68.89
			12/16/2003	112.09	70.05
			3/3/2004	111.44	70.70
			4/9/2004	110.98	71.16
			5/13/2004	112.43	69.71
			6/8/2004	110.56	71.58
			7/22/2004	110.30	71.84
			8/19/2004 9/3/2004	111.46 ND	70.68 ND
			9/3/2004	ND 111.13	71.01
			11/17/2004	ND	ND
			12/2/2004	110.27	71.87
			1/20/2005	111.06	71.08
			3/31/2005	109.21	72.93
			4/27/2005	108.56	73.58
			6/14/2005	109.43	72.71
			9/27/2005	109.24	72.90
			11/28/2005	111.18	70.96
MW-14B	400.44	40.00	12/28/2005	109.36	72.78
WW-14B	182.14	-46.26	1/25/2006 2/21/2006	107.20	74.94 75.10
			3/29/2006	106.73	75.41
			5/3/2006	ND	ND
			6/20/2006	105.45	76.69
			9/27/2006	105.48	76.66
			12/18/2006	ND	ND
			1/18/2007	105.86	76.28
			2/16/2007	105.53	76.61
			3/19/2007	104.98	77.16
			6/12/2007	104.60	77.54
			9/19/2007 10/9/2007	105.04 105.30	77.10 76.84
			11/28/2007	105.30	76.40
			1/22/2008	105.93	76.21
			3/5/2008	105.90	76.24
			6/17/2008	106.35	75.79
			9/24/2008	107.47	74.67
			11/25/2008	107.70	74.44
			1/22/2009	107.63	74.51
			6/9/2009	107.78	74.36
			8/4/2009 3/9/2010	107.81	74.33 74.63
			6/7/2010	107.51	76.50
			9/29/2010	105.79	76.35
			12/7/2010	106.10	76.04
			3/1/2011	106.90	75.24
			6/7/2011	107.12	75.02
			9/23/2011	108.02	74.12
			11/29/2011	107.95	74.19
			3/29/2012	108.37	73.77
			9/25/2012	109.58	72.56
			12/6/2012	109.99	72.15
			4/1/2013	110.43	71.71
			6/18/2013	109.90	72.24
			9/16/2013	110.48	71.66
			11/5/2013	110.75	71.39
MW-15 Well Closed	173	94.1			
on 01/07/03					

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
MW-17					
Well	174.24		9/24/1998	101.10	73.14
Closed on		-218.76	12/3/1998	111.70	62.54
on 01/07/03			12/16/2002 1/7/2003	119.15 118.85	55.09 55.39
01/07/03			9/24/1998	101.10	60.71
			12/3/1998	99.10	62.71
MW-18			3/13/2002	ND	ND
Well			7/2/2002	105.90	55.91
Closed	161.81	-127.67	8/1/2002	107.60	54.21
on			9/19/2002	107.95	53.86
01/07/03			10/18/2002	107.27	54.54
	1/07/03		11/19/2002 12/16/2002	106.90 106.53	54.91 55.28
			1/7/2003	106.53	55.39
	1		9/24/1998	101.10	62.50
			12/3/1998	100.25	63.35
			6/3/2002	106.10	57.50
			7/2/2002	107.62	55.98
			8/1/2002	109.09	54.51
			9/19/2002	109.60	54.00
			10/18/2002	108.81	54.79
			11/19/2002	108.33	55.27
			12/16/2002	107.80	55.80
			1/7/2003	107.86	55.74
			2/13/2003 3/11/2003	107.58 ND	56.02 ND
			4/8/2003	107.08	56.52
			5/7/2003	107.57	56.03
			6/16/2003	106.16	57.44
			7/15/2003	106.60	57.00
			8/20/2003	105.64	57.96
			9/5/2003	104.80	58.80
			10/29/2003	103.71	59.89
			11/25/2003	107.02	56.58
			12/16/2003	102.70	60.90
			3/3/2004 4/9/2004	102.15	61.45 61.17
			5/13/2004	103.35	60.25
			6/8/2004	102.56	61.04
			7/22/2004	104.05	59.55
			8/19/2004	103.78	59.82
			9/3/2004	ND	ND
			10/27/2004	103.94	59.66
			11/17/2004	ND	ND
			12/2/2004	102.36	61.24
			1/20/2005 3/31/2005	104.91 100.68	58.69 62.92
MW-19	163.6	-127.49	4/27/2005	99.98	63.62
1111-15	100.0	-127.45	6/14/2005	100.83	62.77
			9/27/2005	100.67	62.93
			11/28/2005	102.71	60.89
			12/28/2005	100.93	62.67
			1/25/2006	***	***
			2/21/2006	96.73	66.87
			3/29/2006	97.00	66.60
			5/3/2006	97.04	66.56
			6/20/2006 9/27/2006	98.24 98.00	65.36 65.60
			9/2//2008	96.21	67.39
			2/16/2007	96.05	67.55
			3/19/2007	**	**
			6/21/2007	98.02	65.58
			9/19/2007	98.63	64.97
			10/9/2007	99.58	64.02
			11/28/2007	98.31	65.29
			1/22/2008	98.27	65.33
			3/5/2008	98.31	65.29
			6/17/2008 9/24/2008	99.64 101.66	63.96 61.94
			9/24/2008	99.73	63.87
			6/9/2009	98.78	64.82
			8/4/2009	100.92	62.68
			3/9/2010	99.17	64.43
			6/7/2010	97.25	66.35
			9/29/2010	98.83	64.77
			12/7/2010	106.10	57.50
			2/28/2011	98.48	65.12
			6/7/2011	100.74	62.86
			11/29/2011	99.05	64.55
	1	1	3/29/2012	99.05	64.55

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			12/3/1998	93.95	64.40
			3/6/2002	97.25	61.10
			6/3/2002	99.60	58.75
			7/2/2002 8/1/2002	100.78 102.16	57.57 56.19
			9/19/2002	102.18	55.36
			10/18/2002	102.57	55.78
			11/19/2002	102.11	56.24
			12/16/2002	101.80	56.55
			1/7/2003	101.62	56.73
			2/13/2003	101.33	57.02
			3/11/2003	101.06	57.29
			4/8/2003 5/7/2003	100.00	58.35 58.20
			6/16/2003	100.15	58.33
			7/15/2003	100.02	58.28
			8/20/2003	99.27	59.08
			9/5/2003	98.60	59.75
			10/29/2003	98.63	59.72
			11/25/2003	100.36	57.99
			12/16/2003	96.67	61.68
			3/3/2004	96.02	62.33
			4/9/2004	95.04	63.31
			5/13/2004 6/8/2004	96.56 96.45	61.79 61.90
			7/22/2004	97.53	60.82
			8/19/2004	96.45	61.90
			9/3/2004	ND	ND
			10/27/2004	97.48	60.87
			11/17/2004	ND	ND
			12/2/2004	96.46	61.89
			1/20/2005	98.36	59.99
			3/31/2005	94.31	64.04
			4/27/2005 6/14/2005	93.81 94.58	64.54 63.77
		-73.27	6/14/2005 9/27/2005	94.58	63.77
MW-20	158.35		9/27/2005	97.03	61.32
			12/28/2005	95.36	62.99
			1/25/2006	91.55	66.80
			2/21/2006	90.08	68.27
			3/29/2006	89.79	68.56
			5/3/2006	90.74	67.61
			6/20/2006	91.91	66.44
			9/27/2006	91.95	66.40
			2/16/2007	90.25	68.10 68.27
			2/16/2007 3/19/2007	90.08	68.27
			6/12/2007	91.74	66.61
			9/19/2007	92.36	65.99
			10/9/2007	93.23	65.12
			11/28/2007	92.28	66.07
			1/22/2008	92.08	66.27
			3/5/2008	92.02	66.33
			6/17/2008	93.34	65.01
			9/24/2008 11/25/2008	95.38 94.42	62.97
			1/22/2008	94.42	63.93 65.93
			6/9/2009	92.51	65.84
			8/4/2009	94.41	63.94
			6/7/2010	91.09	67.26
			9/29/2010	92.70	65.65
			12/7/2010	91.94	66.41
			2/28/2011	92.10	66.25
			6/7/2011	94.09	64.26
			9/23/2011	94.35	64.00
			11/29/2011 3/29/2012	93.05 93.07	65.30 65.28
			3/29/2012 9/25/2012	93.07	60.95
			12/6/2012	95.91	62.44
			4/1/2013	95.53	62.82
			6/18/2013	96.50	61.85
			9/16/2013	97.43	60.92
			11/5/2013	97.00	61.35
			12/3/1998	66.80	89.82
MW-21A			7/2/2002	72.70	83.92
Well			8/1/2002	72.91	83.71
Closed	156.62	71.4	9/19/2002	74.27	82.35
on			10/18/2002 11/19/2002	73.38	83.24
01/07/03			11/19/2002	73.29	83.33 83.41
			1/7/2002	13.21	03.41

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			12/3/1998	79.20	76.55
			7/2/2002	83.28	72.47
MW-22A Well			8/1/2002	83.80	71.95
	155.75	10.09	9/19/2002	83.64	72.11
Closed on		10100	10/18/2002	84.20	71.55
01/07/03			11/19/2002	84.67	71.08
			12/16/2002	84.62	71.13
			1/7/2003	84.60	71.15
			12/3/1998	68.65	76.42
			3/6/2002 6/3/2002	71.15 72.25	73.92 72.82
			7/2/2002	72.69	72.38
			8/1/2002	73.17	71.90
			9/19/2002	74.88	70.19
			10/18/2002	73.70	71.37
			11/19/2002	74.10	70.97
			12/16/2002 1/7/2003	74.09 74.09	70.98 70.98
			2/13/2003	73.85	71.22
			3/11/2003	73.95	71.12
			4/8/2003	73.70	71.37
			5/7/2003	73.32	71.75
			6/16/2003	72.58	72.49
			7/15/2003	73.00	72.07
			8/20/2003 9/5/2003	70.79 71.43	74.28 73.64
			10/29/2003	70.86	74.21
			11/25/2003	73.56	71.51
			12/16/2003	ND	ND
			3/3/2004	70.99	74.08
			4/9/2004	70.84	74.23
			5/13/2004 6/8/2004	71.73 70.50	73.34 74.57
			7/22/2004	70.24	74.83
			8/19/2004	71.96	73.11
			9/3/2004	ND	ND
			10/27/2004	71.54	73.53
			11/17/2004	ND	ND
			12/2/2004	71.05	74.02
			1/20/2005 3/31/2005	ND	74.36 ND
			4/27/2005	67.87	77.20
			6/14/2005	68.56	76.51
			9/27/2005	68.42	76.65
			11/28/2005	71.16	73.91
MW-23A	145.07	35.36	12/28/2005	69.41	75.66
			1/25/2006 2/21/2006	66.85 66.75	78.22 78.32
			3/29/2006	66.71	78.36
			5/3/2006	66.45	78.62
			6/20/2006	64.70	80.37
			9/27/2006	66.44	78.63
			12/18/2006	63.57	81.50
			1/18/2007 2/16/2007	63.38 63.49	81.69 81.58
			3/19/2007	**	**
			6/12/2007	63.11	81.96
			9/19/2007	63.77	81.30
			10/9/2007	63.98	81.09
			11/28/2007	64.74	80.33
			1/22/2008 3/5/2008	64.96 65.01	80.11 80.06
			6/17/2008	65.21	79.86
			9/24/2008	65.96	79.11
			11/25/2008	66.03	79.04
			1/22/2009	66.07	79.00
			6/9/2009	66.60	78.47
			8/4/2009 3/9/2010	66.35 67.21	78.72 77.86
			6/7/2010	67.21 63.90	81.17
			9/29/2010	64.71	80.36
			12/7/2010	65.28	79.79
			2/28/2011	63.81	81.26
			6/7/2011	65.90	79.17
			9/23/2011 11/29/2011	65.99	79.08
			3/29/2011	66.21 67.07	78.86 78.00
			9/25/2012	NS	NS
			12/6/2012	68.57	76.50
			4/1/2013	MW-23A could	
			6/18/2013	68.45	76.62
			9/16/2013	68.68	76.39
			11/5/2013	69.21	75.86

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATER ELEVATION	
			9/24/1998	65.75	77.07	
			12/3/1998	66.15	76.67	
			3/6/2002	68.70	74.12	
			6/3/2002	69.91	72.91	
			7/2/2002	70.30	72.52	
			8/1/2002	70.80	72.02	
			9/19/2002 10/18/2002	71.40	71.42 71.34	
			11/19/2002	71.40	71.34	
			12/16/2002	71.70	71.12	
			1/7/2003	71.71	71.11	
			3/11/2003	71.56	71.26	
			4/8/2003	70.66	72.16	
			5/7/2003	70.91	71.91	
			6/16/2003	69.30	73.52	
			7/15/2003	68.53	74.29	
			8/20/2003	68.00	74.82	
			9/5/2003 10/29/2003	69.00	73.82	
			11/25/2003	ND 71.00	ND 71.82	
			12/16/2003	69.37	73.45	
			3/3/2004	68.55	74.27	
			4/9/2004	68.28	74.54	
			5/13/2004	68.27	74.55	
			6/8/2004	68.00	74.82	
			7/22/2004	67.79	75.03	
			8/19/2004	67.04	75.78	
			9/3/2004	ND	ND	
			10/27/2004	68.49	74.33	
			11/17/2004	ND 00.04	ND 74.04	
			12/2/2004 1/20/2005	68.01 68.14	74.81 74.68	
			3/31/2005	65.75	77.07	
			4/27/2005	65.06	77.76	
			6/14/2005	65.54	77.28	
MW-24	142.82	12.82 75.2	9/27/2005	65.19	77.63	
			11/28/2005	67.95	74.87	
			12/28/2005	66.36	76.46	
			1/25/2006	64.32	78.50	
			2/21/2006	64.25	78.57	
			3/29/2006	64.18	78.64	
			5/3/2006 6/20/2006	63.92 62.20	78.90 80.62	
			9/27/2006	63.86	78.96	
			12/18/2006	61.28	81.54	
			2/16/2007	63.14	79.68	
			3/19/2007	64.00	78.82	
			6/12/2007	68.86	73.96	
			9/19/2007	61.43	81.39	
			10/9/2007	61.69	81.13	
			11/28/2007	62.43	80.39	
			1/22/2008 3/5/2008	62.80 62.74	80.02	
			3/5/2008 6/17/2008	62.74 62.93	80.08 79.89	
			9/24/2008	63.68	79.89	
			9/24/2008	63.65	79.14	
			1/22/2009	**	**	
			6/9/2009	64.31	78.51	
			8/4/2009	64.05	78.77	
			3/9/2010	64.20	78.62	
			6/7/2010	61.61	81.21	
			9/29/2010	62.43	80.39	
			12/7/2010	62.98	79.84	
			2/28/2011	63.59	79.23	
			6/7/2011	63.58	79.24	
			9/23/2011	63.72	79.10 78.89	
			11/29/2011 3/29/2012	63.93 64.81	78.01	
			9/25/2012	65.66	77.16	
			12/6/2012	66.24	76.58	
			4/1/2013	66.61	76.21	
			6/18/2013	66.15	76.67	
				9/16/2013 11/5/2013	66.44 67.00	76.38 75.82

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			9/24/1998	65.55	77.85
			12/3/1998	65.95	77.45
			3/6/2002	68.43	74.97
MW-24A Well			6/3/2002	69.89 70.22	73.51 73.18
Closed	143.4	-2.27	7/2/2002		73.18
on	145.4	-2.27	8/1/2002 9/19/2002	70.75 70.40	73.00
01/07/03			10/18/2002	71.45	71.95
01/07/03			11/19/2002	71.64	71.76
			12/16/2002	71.63	71.77
			1/7/2003	71.41	71.99
			9/24/1998	7.60	151.18
			12/3/1998	81.80	76.98
			3/6/2002	84.70	74.08
			6/3/2002	85.85	72.93
			7/2/2002	86.05	72.73
			8/1/2002 9/19/2002	86.62	72.16 72.18
			9/19/2002	86.60 87.37	71.41
			11/19/2002	87.80	70.98
			12/16/2002	87.83	70.95
			1/7/2003	87.78	71.00
			2/13/2003	85.70	73.08
			3/11/2003	87.77	71.01
			4/8/2003	87.09	71.69
			5/7/2003	87.25	71.53
			6/16/2003	86.50	72.28
			7/15/2003	85.50	73.28
			8/20/2003 9/5/2003	86.50 85.30	72.28 73.48
			9/5/2003	85.30	73.48
			11/25/2003	86.37	72.41
			12/16/2003	71.93	86.85
			3/3/2004	84.80	73.98
			4/9/2004	83.67	75.11
			5/13/2004	84.52	74.26
			6/8/2004	84.02	74.76
			7/22/2004	83.75	75.03
			8/19/2004	83.67	75.11
			9/3/2004	ND 00.07	ND
			10/27/2004	83.37 ND	75.41
			11/17/2004 12/2/2004	ND 82.71	ND 76.07
			1/20/2005	83.76	75.02
			3/31/2005	82.32	76.46
			4/27/2005	81.71	77.07
			6/14/2005	82.51	76.27
			9/27/2005	82.36	76.42
MW-25	158.78	14.48	11/28/2005	84.91	73.87
			12/28/2005	83.14	75.64
			1/25/2006	80.27	78.51
			2/21/2006	80.15	78.63
			3/29/2006	80.06	78.72
			5/3/2006 6/20/2006	79.60 78.58	79.18 80.20
			6/20/2006 9/27/2006	78.58	79.46
			9/2//2008	79.32	80.45
			2/16/2007	78.17	80.61
			3/19/2007	79.35	79.43
			6/12/2007	77.81	80.97
			9/19/2007	78.29	80.49
			10/9/2007	78.61	80.17
			11/28/07	79.32	79.46
			1/22/2008	79.53	79.25
			3/5/2008	79.57	79.21
			6/17/2008 9/24/2008	79.81 80.63	78.97 78.15
			9/24/2008	80.63	78.15
			1/22/2008	80.72	78.06
			6/9/2009	81.19	77.59
			8/4/2009	81.02	77.76
			3/9/2010	81.18	77.60
			6/7/2010	78.65	80.13
			9/29/2010	79.36	79.42
			12/7/2010	79.95	78.83
			3/1/2011	89.10	69.68****
			6/7/2011	80.51	78.27
			9/23/2011 11/29/2011	80.76	78.02
			3/29/2011	81.04 81.68	77.74 77.10
			3/29/2012 9/25/2012	81.68 82.75	77.10
			9/25/2012	82.75	75.50
			4/1/2012	83.75	75.03
			6/18/2013	82.19	76.59
			9/16/2013	83.55	75.23

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			12/3/1998	71.20	76.85
			3/6/2002 6/3/2002	74.15	73.90 72.80
MW-26			7/2/2002	75.49	72.56
Well Closed	148.05	18	8/1/2002	76.00	72.05
on	140.00	10	9/19/2002	76.10	71.95
01/07/03			10/18/2002	76.80	71.25
			11/19/2002 12/16/2002	77.23 77.31	70.82 70.74
			1/7/2003	77.29	70.76
			12/3/1998	67.45	76.94
MW-27			3/6/2002	70.43	73.96
Well	144.39	14.67	6/3/2002	71.55	72.84
Closed on	144.55	14.07	7/2/2002 8/1/2002	71.80	72.59 72.09
01/07/03			9/19/2002	ND	ND
			1/7/2003	73.50	70.89
			12/16/2002	73.66	70.73
			9/24/1998	70.90	76.50
			12/3/1998 3/6/2002	71.10 73.98	76.30 73.42
			6/3/2002	75.50	71.90
			7/2/2002	75.30	72.10
			8/1/2002	75.85	71.55
			9/19/2002	76.03	71.37
			10/18/2002 11/19/2002	76.68 77.15	70.72 70.25
			12/16/2002	77.34	70.06
			1/7/2003	77.29	70.11
			2/13/2003	77.19	70.21
			3/11/2003	77.26	70.14
			4/8/2003 5/7/2003	76.60 76.74	70.80 70.66
			6/16/2003	76.26	71.14
			7/15/2003	75.28	72.12
			8/20/2003	74.66	72.74
			9/5/2003	74.75	72.65
			10/29/2003	ND 75.00	ND
			11/25/2003 12/16/2003	75.98 74.54	71.42 72.86
			3/3/2004	ND	ND
			4/9/2004	74.26	73.14
			5/13/2004	73.89	73.51
			6/8/2004	73.24	74.16
			7/22/2004	73.02	74.38
			8/19/2004 9/3/2004	72.56 ND	74.84 ND
			10/27/2004	73.61	73.79
			11/17/2004	ND	ND
			12/2/2004	73.33	74.07
			1/20/2005 3/31/2005	73.47 71.73	73.93 75.67
			4/27/2005	71.02	76.38
			6/14/2005	71.99	75.41
MW-28	147.4	-13.22	9/27/2005	71.70	75.70
			11/28/2005	72.84	74.56
			12/28/2005 1/25/2006	71.15 69.59	76.25 77.81
			2/21/2006	69.47	77.93
			3/29/2006	69.33	78.07
			5/3/2006	68.79	78.61
			6/20/2006	67.96	79.44
			9/27/2006 12/18/2006	68.43 67.75	78.97
			2/16/2007	67.58	79.65 79.82
			3/19/2007	**	**
			6/12/2007	67.15	80.25
			9/19/2007	67.71	79.69
			10/9/2007	67.99	79.41
			11/28/2007 1/22/2008	68.61 68.88	78.79 78.52
			3/5/2008	68.94	78.46
			6/17/2008	69.15	78.25
			9/24/2008	70.00	77.40
			11/25/2008	70.21	77.19
			1/22/2009 6/9/2009	70.21 70.50	77.19 76.90
			8/4/2009	70.36	76.90
			3/9/2010	68.63	78.77
			6/7/2010	68.01	79.39
			9/29/2010	68.61	78.79
			12/7/2010	69.10	78.30
			3/1/2011 6/7/2011	70.09 69.82	77.31 77.58
			9/23/2011	72.50	74.90
			11/29/2011	70.42	76.98
			3/29/2012	71.05	76.35
			9/25/2012	72.14	75.26
			12/6/2012	72.63	74.77
			4/1/2013 6/18/2013	72.15 72.59	75.25 74.81
			9/16/2013	72.93	74.81
			11/5/2013	73.35	74.05

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATER ELEVATION
			9/24/1998	68.50	75.93
			12/3/1998	68.90	75.53
			6/3/2002	71.30	73.13
			7/2/2002	72.44	71.99
			8/1/2002	72.98	71.45
			9/19/2002 10/18/2002	71.48	72.95
			11/19/2002	73.84	70.59
			12/16/2002	73.82	70.61
			1/7/2003	73.80	70.63
			2/13/2003	73.61	70.82
			3/11/2003	ND	ND
			4/8/2003	72.67	71.76
			5/7/2003	72.95	71.48
			6/16/2003 7/15/2003	72.24 70.97	72.19 73.46
			8/20/2003	69.84	74.59
			9/5/2003	71.25	73.18
			10/29/2003	69.50	74.93
			11/25/2003	72.77	71.66
			12/16/2003	71.53	72.90
			3/3/2004	70.60	73.83
			4/9/2004	70.86	73.57
			5/13/2004	71.55	72.88
			6/8/2004 7/22/2004	70.20	74.23 74.47
			8/19/2004	68.74	75.69
			9/3/2004	69.96	74.47
			10/27/2004	70.16	74.27
			11/17/2004	ND	ND
			12/2/2004	68.88	75.55
			1/20/2005	69.96	74.47
			3/31/2005	57.78	86.65
			4/27/2005	57.10	87.33
			6/14/2005 9/27/2005	58.04 57.71	86.39 86.72
			11/28/2005	60.48	83.95
MW-29	144.43	72.8	12/28/2005	60.79	83.64
			1/25/2006	60.70	83.73
			2/21/2006	66.63	77.80
			3/29/2006	66.59	77.84
			5/3/2006	66.41	78.02
			6/20/2006	64.00 66.47	80.43 77.96
			9/27/2006 12/18/2006	62.87	81.56
			1/18/2007	62.68	81.75
			2/16/2007	65.71	78.72
			3/19/2007	66.42	78.01
			6/12/2007	62.41	82.02
			9/19/2007	62.97	81.46
			10/9/2007	63.26	81.17
			11/28/2007	64.02	80.41
			1/22/2008 3/5/2008	64.28 64.33	80.15 80.10
			3/5/2008 6/17/2008	64.33	79.93
			9/24/2008	65.23	79.93
			11/25/2008	65.26	79.17
			1/22/2009	65.35	79.08
			6/9/2009	65.88	78.55
			8/4/2009	65.60	78.83
			3/9/2010	66.02	78.41
			6/7/2010	61.96	82.47
			9/29/2010	63.96 64.54	80.47
			12/7/2010 3/1/2011	64.54 55.60	79.89 88.83****
			6/7/2011	65.13	79.30
			9/23/2011	65.30	79.13
			11/29/2011	65.52	78.91
			3/29/2012	66.31	78.12
			9/25/2012	67.75	76.68
			12/6/2012	67.84	76.59
			4/1/2013	67.95	76.48
			6/18/2013	68.75	75.68
			9/16/2013	67.09	77.34

WW-30A 150.86 41.22 9724/1988 76.35 74.23 12/3/1986 76.35 74.63 36/2002 70.60 74.23 3/6/2002 80.01 70.87 70.13 9712002 80.51 70.13 9/12/2002 81.32 69.49 11/11/12/2002 81.32 69.60 10/18/2002 81.32 69.36 3717203 81.52 69.36 11/12/2003 81.52 69.36 37117203 80.86 70.02 5/7/2033 80.48 70.53 71.52 73.36 95/2003 79.34 71.54 10/24/2003 70.34 71.52 73.36 91/20/14/20/3 71.52 73.36 9/5/2003 79.34 71.54 10/24/2003 70.47 73.22 66/8/2004 77.55 73.23 11/1/22/2004 77.64 73.22 66/8/2004 77.55 73.22 66/8/2004 77.15 73.71 72.25 87.72 72/2006 75.43 75.70 53/22.51 11/2/2/200	WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
 MW-30A 150.86 41.22 41.22 41.22 42.2002 79.200 79.200 70.13 70.2002 80.51 70.37 81.12002 80.13 79.2002 79.52 71.36 10182002 81.32 69.06 12.162003 81.32 69.36 71.72003 81.52 69.38 31.172003 80.48 70.02 57.7003 81.33 69.52003 77.52 73.38 95.2003 73.34 71.52003 71.890 71.90 32.22004 77.890 71.39 91.2122003 70.49 71.30 73.22 61.2004 77.856 72.30 73.36 91.212004 77.856 71.37 71.37 41.22 61.2004 77.856 71.37 71.37 71.22004 77.36 73.30 73.22 61.2004 77.35 73.22004 77.35 73.22004 77.35 73.22004 77.36 73.22004 77.37 73.22005 <l< td=""><td></td><td></td><td></td><td>9/24/1998</td><td>76.60</td><td>74.28</td></l<>				9/24/1998	76.60	74.28
 MW-30A 150.86 41.22 41.23 41.24 41.24 41.25 41.24 41.25 41.25 41.25 41.24 41.25 41.24 41.25 41.25 41.24 41.25 41.24 41.25 41.24 41.25 41.25 41.24 41.25 41.25 41.25 41.24 41.25 41.25 41.25 41.26 <l< td=""><td></td><td></td><td></td><td>12/3/1998</td><td>76.35</td><td>74.53</td></l<>				12/3/1998	76.35	74.53
MW-30A 150.86 41.22 41.22 150.86 41.22 150.86 41.82 150.86 41.22 150.87 41.82 150.88 40.28 150.88 40.28 40.28 150.88 40.28 40.28 40.28 40.28 40.28 40.28 40.28 40.28 40.28 40.28 40.28 40.28 4						
 MW-30A 150.86 41.22 41.22 41.22 41.22 61.22 62.21 63.65 71.2003 62.278 64.60 71.72003 62.278 64.60 71.72003 61.55 69.36 31.155 69.36 31.155 69.36 31.155 69.36 31.155 69.36 71.152 61.62003 71.52 73.36 91.2003 71.64 73.22 61.2004 76.84 71.16 71.17 72.2004 77.35 73.51 11.25 71.52 73.36 91.2004 71.64 73.22 61.2004 76.85 72.25 71.16 71.17 72.2004 77.85 73.85 71.17 72.2004 77.85 73.85 72.51 73.73.85 74.27 12.2004 76.89 74.27 12.2005 76.83 76.83 77.12 92.72006 75.10 75.70 51.20 75.70 75.23 76.63 75.91 75.92 75.92 75.92 75.93 75.93 75.92 75.93 75.92 75.93 75.93 7				0.0.2002		
 MW-30A 150.86 41.22 41.23 41.24 41.24 41.25 41.25 41.25 41.24 41.25 <l< td=""><td></td><td></td><td></td><td></td><td></td><td></td></l<>						
MW-30A 150.86 41.22 10/18/2002 81.39 69.49 06 12/16/2002 83.20 67.68 1/17/2003 82.78 68.10 2/13/2003 81.52 69.36 3/11/2003 81.55 69.33 4/8/2003 80.86 70.02 5/7/2003 80.39 70.34 7/15/2003 79.34 71.54 10/29/2003 ND ND ND 11/25/2003 77.9.4 71.54 10/29/2004 78.98 71.90 3/3/2004 77.64 73.22 6/8/2004 78.54 72.32 7/22/2004 77.80 73.57 11/17/2004 78.56 72.30 0/17/2004 77.80 73.57 3.51 11/17/2004 78.56 72.30 0/12/2004 77.65 73.51 11/17/2004 77.65 73.51 11/17/2004 77.65 73.51 11/17/2004 77.65 73.51 11/17/2004 77.65 73.51 11/17/2005 70.56 80.30 6/14/2005 74.48 76.48 11/28/2005 77.15 79.57 3.31/2005 77.52 75.51 3.31/2005 77.52 73.51 11/17/2004 ND ND 12/2/2004 77.80 73.51 11/17/2004 77.80 73.51 11/17/2004 77.80 73.51 11/17/2005 75.43 75.43 12/2/2005 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 75.16 75.70 5/3/2006 71.15 79.71 11/28/2007 70.31 80.65 11/28/2007 70.31 80.65 11/28/2007 70.31 80.65 11/28/2007 70.31 80.65 11/28/2007 70.31 80.65 11/28/2007 70.31 80.65 11/28/2008 70.67 80.19 3/1/22/00 70.78 80.09 3/1/22/00 70.78 80.09 3/1/22/00 70.78 80.09 3/1/22/00 70.78 79.99 3/1/2011 71.93 78.83 3/3/2010 70.28 78.73 3/3/2011 71.93 78.83 3/3/2010 70.28 78.73 3/3/2011 71.93 78.83 3/3/2010 70.28 79.94 3/3/2011 71.93 78.83 3/3/2011 71.93 78.83 3/3/2011 71.93 78.83 3/3/2011 71.93 78.83 3/3/2011 71.93 78.84 3/3/2011 71.93 78.83 3/3/2011 71.93 78.83 3/3/2011 71.93 78.84 3/3/2011 71.93 78.84 3/3/2011 71.92 79.34 1/22/2008 70.67 80.19 3/1/22/107 70.28 78.74 3/3/2011 71.93 78.84 3/3/2011 71.93 78.84						
 MW-30A 150.86 41.22 11/19/2002 81.82 69.66 12/16/2002 83.20 67.68 11/12003 82.78 68.10 21/12/003 81.52 69.33 41/2003 80.86 70.023 80.86 70.03 80.86 70.52 73.38 9/5/2003 71.52 73.38 9/5/2003 71.52 73.38 9/5/2003 71.52 73.38 9/5/2003 71.90 72.2004 77.91 72.25 81/9/2004 77.85 73.51 11/17/2004 77.90 71.65 71.73 73.51 11/17/2004 71.80 73.66 71.15 79.71 72.25 81/9/2004 70.56 71.67 73.51 11/17/2004 71.57 73.51 11/17/2004 71.6 78.71 72.21 12/2005 75.43 /ul>						
 MW-30A 150.86 41.22 41.23 41.24 41.24 41.24 41.24 41.25 41.25 41.25 41.24 41.24 41.24 41.25 41.25 41.24 41.24 41.24 41.25 41.25 41.24 41.24 41.25 41.25 41.25 41.25 41.24 41.24 41.25 41.26 41.26 41.27 <l< td=""><td></td><td></td><td></td><td></td><td></td><td></td></l<>						
 MW-30A 150.86 41.22 41.22003 81.55 69.33 31/2003 80.86 70.02 5/7/2003 81.33 69.55 71.52003 71.52003 77.52 73.36 9/5/2003 79.34 71.54 9/5/2003 79.34 71.76 71.76 71.76 71.77 71.76 71.77 71.76 71.77 71.76 71.77 71.76 71.77 71.76 71.77 71.77 71.70 <						
 MW-30A 150.86 41.22 41.23 41.24 41.24 41.24 41.25 41.25 41.25 41.24 41.25 41.25 41.25 41.24 41.25 41.26 41.26 41.26 41.26 41.26 41.26 41.26 41.26 41.27 41.26 41.26 41.26 41.26 41.26 41.26 41.26 41.26 41.26 41.27 41.26 41.26 41.26 41.27 41.26 41.26 41.26 41.27 41.26 41.26 41.26 41.26 41.27 41.26 41.26 41.26 41.26 <				1/7/2003	82.78	68.10
MW-30A 150.86 41.22 44/82003 80.86 70.02 5/7/2003 81.33 69.55 6/16/2003 80.38 70.53 7/15/2003 77.52 73.36 9/5/2003 77.52 73.36 9/5/2003 79.34 71.54 10/29/2003 ND NO 11/25/2003 80.49 70.33 12/16/2003 78.98 71.90 3/3/2004 79.10 71.78 4/9/2004 77.80 73.06 5/13/2004 77.9.10 71.78 4/9/2004 77.80 73.06 10/27/2004 77.35 73.51 11/17/2004 77.35 73.51 11/17/2004 77.35 73.51 11/17/2004 77.35 73.51 11/17/2004 77.59 74.27 1/20/2005 74.38 76.48 9/27/2005 74.38 76.48 1/22/2006 75.16 75.70 12/26/2007 75.16 75.76 3/3/2006 75.16 75.76 12/26/2007 75.36 75.63 1/25/2006 75.16 75.76 12/26/2007 75.38 75.63 1/25/2006 75.16 75.76 12/26/2007 75.38 75.63 1/25/2006 75.16 75.76 12/26/2007 75.38 75.63 1/25/2006 75.16 75.76 1/26/2007 75.38 75.63 1/25/2006 75.16 75.76 1/26/2007 75.38 75.63 1/25/2006 75.16 75.70 1/26/2007 73.96 76.80 3/3/2000 75.16 75.76 3/3/2000 75.16 75.76 1/26/2007 73.96 76.80 3/1/22/2006 75.16 75.76 1/26/2007 73.96 76.80 3/1/22/2006 75.16 75.76 1/22/2006 75.23 75.63 1/25/2006 75.16 75.70 1/22/2008 70.87 18.21.5 9/1/22/2008 70.51 67.570 1/22/2008 70.87 18.21.5 9/1/22/2008 70.51 67.50 1/22/2008 70.58 80.28 1/22/2008 70.58 80.28 3/3/2/2008 70.67 80.01 9/2/2/2008 70.58 80.28 3/3/2/2008 70.67 80.01 9/2/2/2008 70.58 80.28 3/3/2/2008 70.57 80.73 1/22/2008 70.58 80.28 3/3/2/2008 70.87 80.09 9/2/2/2008 70.58 70.87 70.39 8/1/22/2008 70.58 80.28 3/3/2/2008 70.57 80.73 8/1/22/2008 70.58 80.28 3/3/2/2008 70.87 80.09 9/2/2/2008 70.58 80.28 3/3/2/2008 70.87 80.09 9/2/2/2008 70.58 80.28 3/3/2/2008 70.57 80.73 1/2/2/2008 70.58 70.87 70.39 1/2/2/2008 70.58 70.87 70.39 1/2/2/2008 70.87 70.39 9/2/2/2008 70.58 70.87 70.39 1/2/2/2008 70.58 70.87 70.39						
 MW-30A 150.86 41.22 41.22 122/2003 71.33 69.55 616/2003 76.30 71.52 73.36 91.52/2003 71.52 73.36 91.52/2003 71.54 71.54 10.29/2003 ND ND ND 11.152/2003 70.39 71.64 72.30 71.81 41.92/2004 77.64 72.32 61.82/2004 77.80 73.36 10.27/2004 77.80 73.36 10.27/2004 77.80 73.06 10.27/2004 77.35 73.51 11.17/2004 77.35 73.51 11.11/7/2004 77.36 73.61 10.27/2004 77.35 73.61 10.27/2005 74.48 76.83 11.22/2006 75.10 75.70 5/32006 74.91 75.95 61/20/2006 75.10 75.97 5/32006 74.91 75.97 6/12/2007 76.81 76.83<td></td><td></td><td></td><td></td><td></td><td></td>						
 MW-30A 150.86 41.22 41.22 12/22/003 17.52 17.38 19/20/003 17.52 17.38 19/20/003 10.76 11/25/2003 ND ND 11/25/2003 11/25/2003 11/25/2003 11/25/2003 11/25/2004 17.84 17.23 11/25/2004 17.85 17.23 11/25/2004 17.86 17.23 11/25/2004 17.86 17.23 11/22/2004 17.85 17.23 11/17/2004 17.36 17.36 11/17/2004 17.35 17.36 11/17/2004 17.35 17.36 11/17/2004 17.35 17.36 11/17/2004 11.33 12/2/2005 17.43 17.64 17.36 17.36 17.37 17.36 17.36 17.36 17.37 17.36 17.36 17.36 17.37 17.36 17.37 17.36 17.36 17.37 17.37 17.38 17.2005 17.43 17.64 17.23 17.36 17.43 17.42 17.44 17.2005 17.43 17.64 17.23 17.56 17.27006 17.16 17.27100 17.23 17.25 17.2510 17.251						
 MW-30A 150.86 41.22 41.22 150.86 41.22 150.86 /ul>						
 MW-30A 150.86 41.22 41.22 126/2003 77.52 73.36 96/2003 77.52 73.36 11/25/2003 ND ND ND 11/25/2003 80.49 70.39 11/26/2003 71.80 73/32004 78.14 77.23 77.24 77.23 77.24 77.23 77.24 77.23 77.24 77.23 77.24 77.24 77.23 77.24 77.23 77.24 77.23 77.25 77.24 77.25 77.25 77.35 77.36 77.36 77.36 77.36 77.36 77.36 77.36 77.36 77.36 77.37.36 77.22004 77.15 79.71 47.272004 77.15 79.71 47.272004 77.35 77.35 77.35 77.35 77.36 77.36 77.37.36 77.272004 77.35 77.36 77.37.36 77.272004 77.35 77.36 77.37.36 77.272004 77.35 77.36 77.373 77.36 77.37 77.37 77.38 77.38 77.272005 77.43 77.44 77.2006 77.15 77.37 77.38 77.272005 77.43 77.43 77.44 77.272005 77.43 77.44 77.272005 77.43 77.44 77.272005 77.43 77.44 77						
MW-30A 150.86 41.22 150.86 41.22 11/25/2003 ND ND ND 11/25/2003 80.49 70.39 12/16/2003 78.98 71.90 3/3/2004 78.56 72.30 4/9/2004 78.56 72.32 6/8/2004 78.54 72.22 6/8/2004 77.95 73.61 10/27/2004 77.35 73.61 10/27/2004 77.35 73.51 11/17/2004 ND ND 12/2/2004 76.59 74.427 12/2/2004 76.59 74.427 1/2/2/2005 74.38 76.48 9/27/2005 74.38 76.48 9/27/2005 75.43 75.43 11/28/2006 75.16 75.76 3/29/2006 75.16 75.76 3/29/2006 75.16 75.76 3/29/2006 70.31 80.55 1/2/8/2007 70.31 80.55						
MW-30A 150.86 41.22 ND ND ND 11/125/2003 80.49 70.39 11/125/2003 78.98 71.90 3/3/2004 79.10 71.76 73.230 5/13/2004 77.64 73.232 6/8/2004 77.91 72.32 6/8/2004 77.91 72.32 7/22/2004 77.91 72.32 71/22/2004 77.91 72.32 19/32004 77.80 73.06 10/27/2004 77.80 73.06 10/27/2004 77.91 72.32 74.22 11/2/2/2004 76.59 74.27 11/7/2004 71.80 73.83 72.51 3/31/2005 71.15 79.71 12/2/2005 74.48 76.48 76.48 76.18 9/37/2005 74.38 76.43 9/27/2005 74.48 76.49 75.70 75.70 75.70 75.70 75.70 75.70 75.70 75.70 75.70 75.70 75.97 6/12/2000 75.16 75.70 75.97 6/20/200						71.54
WW-30A 150.86 41.22 11/16/2003 78.98 71.90 3/3/2004 77.64 73.23 6/8/2004 77.64 73.22 6/8/2004 77.64 73.22 6/8/2004 77.86 73.23 7/22/2004 77.91 72.85 73.25 73.56 73.25 10/27/2004 77.30 73.06 10/27/2004 77.35 73.51 11/17/2004 ND ND ND 12/2/2005 74.68 76.18 10/27/2004 77.35 73.51 11/11/72/04 ND ND 12/2/2006 73.35 72.51 3/31/2005 74.48 76.48 76.48 76.48 92.72/2005 74.68 76.18 9/27/2005 77.43 73.83 12/2/2006 75.10 75.70 57.30 75.38 10.22 11/2/2/2006 75.10 75.97 59.27 6/2/2/2006 75.10 75.97 59.97 6/12/2007 68.71 62.15 9/2/2/2006 75.97 59.97 6/12/2007				10/29/2003		
MW-30A 150.86 41.22 19/2004 79.10 71.78 MW-30A 150.86 41.22 6/8/2004 77.64 73.22 6/8/2004 77.64 73.22 6/8/2004 77.64 73.22 6/8/2004 77.64 72.32 6/8/2004 77.64 72.32 6/8/2004 77.90 72.35 73.51 73.61 73.2004 77.90 72.35 73.51 11/1/7/2004 ND ND ND ND 12/2/2005 74.83 76.48 3/31/2005 71.15 79.71 4/27/2005 75.43 75.43 9/27/2005 75.43 75.43 75.43 75.43 1/28/2006 75.16 75.76 3/29/2006 75.16 75.76 3/29/2006 75.16 75.63 12.16 78.70 2/21/2006 79.17 80.25 9/27/2006 73.14 77.18 77.93 75.63 12.16 78.70 1/1/8/2007 70.31 80.55 11.3				11/25/2003	80.49	70.39
44/92004 78.56 72.30 5/13/2004 77.64 73.22 6/8/2004 77.64 73.22 6/8/2004 77.84 73.22 7/22/2004 77.91 72.32 9/32/004 77.80 73.06 19/22004 77.80 73.61 11/17/2004 ND ND 12/2/2004 76.59 74.27 1/2/2/2005 78.35 72.51 3/31/2005 71.15 73.71 3/31/2005 77.03 73.83 1/28/2005 77.03 73.83 1/28/2006 75.43 75.43 1/28/2006 75.10 75.70 3/29/2006 75.10 75.70 5/3/2006 74.39 75.97 3/12/20/2006 75.10 75.97 3/12/20/2006 75.23 75.63 10/9/2007 69.12 81.76 10/9/2007 69.26 81.60 10/9/2007 70.31 80.28 3/						
MW-30A 150.86 41.22 5/13/2004 77.64 73.22 NW-30A 150.86 41.22 1/22/2004 77.91 72.32 NW-30A 150.86 141.22 1/22/2004 77.91 72.35 1/2/2/2004 77.90 73.06 1/3.06 1/07.72004 77.35 73.61 1/1/7/2004 ND ND ND 1/1.17/2004 ND ND 1/2/2/2005 71.15 79.71 4/27/2005 74.27 1/1.17/2004 ND ND 1/2/2/2005 71.15 79.71 4/27/2005 74.38 76.48 1/1.17/2004 ND ND ND 1/1.17/2004 75.43 75.43 1/1.33 1/1.22/1.2005 75.16 75.75 1/1.33 1/1.22/1.2006 75.10 75.56 1/1.22/1.2006 75.10 75.63 1/1.25 1/1.25/2006 75.16 75.63 1/1.25 1/1.25/2006 76.90 3/1.92/10/10 80.17 80.21 3/1.22/12/2007 76.81 1.33 1/1.22/2000 70.51<						
6/8/2004 78.54 72.35 8/19/2004 77.91 72.35 8/19/2004 77.90 73.61 9/3/2004 77.80 73.66 10/27/2004 77.35 73.51 11/17/2004 ND ND 12/2/2004 77.35 73.51 11/17/2004 ND ND 12/2/2005 74.38 76.48 9/27/2005 74.38 76.48 9/27/2005 74.38 76.48 9/27/2005 74.38 76.48 9/27/2005 74.38 76.43 11/26/2006 75.16 75.76 2/27/2006 75.16 75.76 3/29/2006 75.16 75.76 2/27/2006 73.74 77.18 12/16/2007 70.31 80.55 12/16/2007 70.31 80.55 1/2/2000 70.51 81.33 11/28/2007 70.31 80.65 12/16/2007 70.38 76.39 3/3/20						
MW-30A 150.86 41.22 1722004 77.91 72.85 8/19/2004 77.90 71.81 9/3/2004 77.80 73.06 10/27/2004 77.35 73.61 11/17/2004 ND ND 12/2/2004 76.59 74.27 1/20/2005 71.15 79.71 4/27/2005 71.15 79.71 4/27/2005 74.38 76.48 9/27/2005 74.38 76.48 9/27/2005 75.43 75.43 12/28/2006 75.10 75.76 3/29/2006 75.10 75.78 1/28/2006 75.93 75.63 1/28/2006 75.93 75.63 1/28/2006 75.93 75.63 1/28/2006 75.23 75.63 1/28/2007 73.96 76.90 3/19/2007 73.96 76.90 3/19/2007 70.31 80.55 1/22/2008 70.67 80.19 3/1/2010 70.28 80.28 3/5/2008 70.67 80.19 1/22/2009 71.15 79.34 1/28/2009 71.150 79.36 1/28/2009 70.160 70.87 79.39 1/22/2000 70.160 70.87 79.39 1/						
MW-30A 150.86 41.22 41/9/2004 77.80 73.06 10/27/2004 77.80 73.06 10/27/2004 77.35 73.51 11/17/2004 ND ND 12/2/2000 76.59 74.27 1/20/2005 78.35 72.51 3/31/2005 71.15 79.71 4/27/2005 74.68 76.18 9/27/2005 74.68 76.18 9/27/2005 74.68 76.18 9/27/2005 74.38 76.43 11/28/2005 75.43 75.43 11/28/2006 75.16 75.76 3/29/2006 75.16 75.76 3/29/2006 75.16 75.76 3/29/2006 75.16 75.76 12/16/2007 73.96 76.90 3/19/2007 74.89 75.95 6/2/2006 69.12 81.74 1/18/2007 68.71 82.15 9/19/2007 70.31 80.55 1/2/2008 70.67 80.19 3/19/2007 70.31 80.55 1/22/2008 70.67 80.19 11/28/2008 70.67 80.19 11/28/2008 70.67 80.19 11/28/2008 70.57 80.13 11/28/2007 70.31 80.55 11/28/2008 70.67 80.19 11/28/2007 70.31 80.55 11/28/2008 70.67 80.19 11/28/2007 70.31 80.55 11/28/2008 70.67 80.19 11/28/2007 70.31 80.55 11/28/2008 71.50 79.38 11/28/2007 71.82 79.34 11/28/2007 71.82 79.34 11/28/2007 71.93 78.38 3/9/2010 72.16 78.77 19.99 3/1/2011 71.93 78.38 3/9/2010 72.16 78.71 9/3/2011 71.93 78.38 3/9/2010 72.16 78.71 9/3/2011 71.93 78.38 3/9/2010 72.16 78.71 9/3/2011 71.93 78.38 3/9/2010 72.16 78.71 9/3/2011 71.93 78.38 3/9/2010 72.87 79.99 3/1/2011 71.93 78.38 3/9/2012 72.62 78.24 9/25/2012 47.66 76.76 3/1/29/2012 72.62 78.24 9/25/2012 47.68 76.87 1/1/29/2011 74.64 76.32 6/1/8/2013 74.64 76.32 6/1/8/2013 74.64 76.32						
9/3/2004 77.80 73.06 10/27/2004 77.35 73.51 11/17/2004 ND ND 12/2/2004 76.59 74.27 1/2/2/2005 74.83 72.51 3/31/2005 71.15 79.71 1/2/2/2005 74.68 76.83 9/27/2005 74.68 76.48 9/27/2005 74.48 76.48 9/27/2005 74.48 76.48 9/27/2005 74.48 76.48 9/27/2005 74.33 76.48 9/27/2006 75.10 75.70 2/2/2006 75.10 75.70 5/3/2006 74.91 75.95 6/2/2/2006 73.74 77.12 9/2/2/2006 75.10 75.97 5/3/2006 74.91 75.95 6/2/2/2007 68.71 82.15 9/1/2/2007 70.31 80.58 1/1/8/2007 70.31 80.28 3/2/2007 68.71 82.15 9						
MW-30A 150.86 41.22 11/07/2004 ND ND 12/2/2004 76.59 74.27 1/20/2005 78.35 72.51 3/31/2005 71.15 79.71 3/27/2005 76.56 80.30 6/14/2005 74.48 76.48 11/28/2005 77.03 73.83 12/28/2005 75.43 75.43 11/28/2006 72.16 78.70 2/21/2006 75.10 75.70 5/3/2006 74.91 75.59 5/3/2006 74.91 75.59 6/12/2006 75.23 75.63 12/16/2006 75.23 75.63 12/16/2007 73.96 76.90 3/1/2007 74.89 75.97 6/12/2007 68.71 82.15 11/28/2007 70.38 80.028 3/5/2008 70.68 80.28 3/26/2008 71.50 79.34 11/28/2009 71.62 79.24 6/						
MW-30A 150.86 41.22 12/2/2004 76.59 74.27 1/20/2005 78.35 72.51 13/31/2005 71.15 79.71 1/2/2005 74.30 70.56 80.30 90.30 91.427 91.427 91.427 91.427 91.427 91.427 91.427 91.427 91.427 91.427 91.427 91.427 91.427 91.427 91.438 76.48 91.427 91.427 91.427 91.438 76.48 91.427 91.429 91.429				10/27/2004	77.35	73.51
MW-30A 150.86 41.22 1/20/2005 78.35 72.51 3/31/2005 71.15 79.71 4/27/2005 70.56 80.30 6/14/2005 74.68 76.48 1/22/2005 77.03 73.83 1/228/2005 75.43 75.43 1/228/2005 75.43 75.43 1/228/2006 75.16 75.70 2/21/2006 75.16 75.70 5/32/206 74.31 75.43 1/25/2006 75.16 75.70 5/32/206 75.12 75.23 75.63 1/218/2006 69.12 81.74 1/18/2007 69.10 81.76 1/18/2007 69.10 81.76 1/18/2007 69.10 81.76 1/18/2007 69.26 81.60 1/19/2007 69.26 81.60 1/128/2007 70.31 80.55 1/22/2008 70.68 80.28 3/5/2008 70.67 80.19 8(1/22008 70.58 80.28 3/5/2008 70.67 80.19 8(1/22009 71.62 79.24 6/3/2009 71.62 79.24 6/3/2009 71.62 79.24 6/3/2009 71.62 79.24 6/3/2009 71.98 78.88 3/3/2010 70.28 80.58 1/22/2009 71.62 79.24 6/3/2009 71.98 78.88 3/3/2010 70.28 80.58 1/22/2009 71.62 79.24 6/3/2009 71.98 78.88 3/3/2010 70.28 80.58 1/2/2010 70.87 79.99 1/22/2010 70.87 79.99 1/22/2010 70.87 79.99 3/1/2011 71.42 79.44 9/23/2011 71.52 79.31 1/29/2011 71.52 79.34 1/29/2011 71.52 79.34 1/29/2011 71.52 79.34 1/29/2011 71.52 79.31 1/29/2011 71.52 79.31 1/29/2011 71.52 79.34 1/29/2011 74.06 76.78 1/12/2011 74.06 76.78 1/12/2013 74.54 76.32 1/29/2013 74.54 76.38 1/29/2013 74.54 76.38						
MW-30A 150.86 41.22						
MW-30A 150.86 41.22						
Bit 1/22/005 74.38 76.48 11/28/2005 77.03 73.83 11/28/2005 77.03 73.83 11/28/2005 77.03 73.83 11/28/2005 77.03 73.83 11/28/2005 77.03 73.83 11/28/2006 75.43 75.43 11/28/2006 75.10 75.70 2/21/2006 75.10 75.70 5/3/2006 74.91 75.95 6/20/2006 75.23 75.63 12/18/2006 69.12 81.74 9/27/2006 75.23 75.63 12/18/2006 69.12 81.76 9/27/2006 75.97 81.76 9/19/2007 69.26 81.60 10/9/2007 69.26 81.60 10/9/2007 70.31 80.52 3/5/2008 70.67 80.08 9/24/2008 71.50 79.36 11/25/2008 72.87 77.99 11/25/2008 72.87 77.99						
MW-30A 150.86 41.22 1/28/2005 74.38 76.48 11/28/2005 77.03 73.83 1/28/2005 75.43 75.43 12/28/2005 75.43 75.43 17.64 1/28/2005 75.43 75.43 12/28/2006 72.16 78.70 22/21/2006 75.16 75.76 3/29/2006 75.16 75.75 75.83 17.55 6/20/2006 73.74 77.12 9/27/2006 75.16 75.63 12/18/2007 75.63 12/18/2007 73.96 76.80 21/16/2007 73.96 76.80 21/16/2007 73.96 76.80 3/19/2007 70.31 80.55 12/22/2008 70.53 81.33 11/28/2007 70.31 80.55 12/22/2008 70.56 80.28 3/26/2008 71.50 79.36 11/25/2008 70.57 80.28 3/26/2008 71.50 79.36 11/25/2008 71.50 79.34 80.92 11/25/2008 71.50 79.36 11/25/2008 71.50 79.36 11/25/2008 71.50						
MW-30A 150.86 41.22 11/28/2005 77.03 73.83 1/228/2005 75.43 75.43 75.43 1/25/2006 72.16 78.70 2/21/2006 2/21/2006 75.10 75.70 75.83 3/29/2006 75.10 75.70 5/3/2006 74.49 3/29/2006 75.10 75.70 5/3/2006 74.49 75.95 6/20/2006 73.74 77.12 9/27/2006 75.23 75.63 12/18/2006 69.12 81.74 17.12 9/27/2006 75.93 75.97 6/12/2007 69.10 81.76 11/8/2007 70.38 80.28 3/1/2007 70.31 80.55 1/22/2008 70.58 80.28 3/5/2008 70.67 80.08 9/24/2008 71.50 79.38 1/1/22/2009 71.62 79.24 6/9/2001 70.28 80.58 3/9/2010 72.16 78.70 8.00.88 9/2/2100 70.28 80.58 3/1			41.22			
12282005 75.43 75.43 1/25/2006 72.16 78.70 2/21/2006 75.10 75.76 3/29/2006 75.16 75.95 6/20/2006 73.74 77.12 9/27/2006 75.23 75.63 12/18/2006 69.12 81.74 11/18/2007 73.96 76.90 2/16/2007 73.96 76.90 3/19/2007 74.89 75.87 6/12/2007 68.71 82.15 9/19/2007 69.26 81.60 10/9/2007 70.31 80.55 1/22/2008 70.67 80.19 6/17/2006 70.73 80.28 3/5/2008 70.67 80.19 6/17/2000 71.50 79.36 11/25/2008 71.62 79.24 6/9/2009 71.16 78.70 9/2/2010 70.28 80.28 3/9/2010 70.28 80.58 11/25/2008 71.62 79.24	MW-30A	150.86				
1/25/2006 72.16 78.70 2/21/2006 75.16 75.76 3/29/2006 75.16 75.70 5/3/2006 74.91 75.56 6/20/2006 73.74 77.12 9/27/2006 75.23 75.63 12/18/2006 69.12 81.74 11/8/2007 63.10 81.76 2/16/2007 73.96 76.90 3/19/2007 74.89 75.97 6/12/2007 69.53 81.33 11/28/2007 70.31 80.55 1/22/2008 70.68 80.28 3/5/2008 70.67 80.09 3/4/2009 71.62 79.94 1/22/2009 71.62 79.24 6/9/2009 72.16 77.79 1/22/2009 71.82 79.93 1/22/2009 71.82 79.94 6/9/2009 72.16 78.79 1/22/2010 70.87 79.99 3/1/2011 71.93 78.88 3/9				12/28/2005	75.43	
3/29/2006 75.16 75.75 5/2/2006 74.91 75.95 6/20/2006 73.74 77.12 9/27/2006 75.23 75.63 12/16/2007 75.23 75.63 12/16/2006 69.12 81.74 1/1/8/2007 69.10 81.76 2/16/2007 73.96 76.90 3/19/2007 74.89 75.97 6/12/2007 68.21 81.60 10/9/2007 69.26 81.60 10/9/2007 70.31 80.55 1/22/2008 70.67 80.19 3/5/2008 70.67 80.19 9/1/2/2007 70.31 80.65 1/2/2/008 70.67 80.19 9/2/2/2008 71.50 79.36 11/25/2008 72.16 78.70 9/2/2/2009 71.62 79.24 6/9/2009 72.16 78.71 9/2/2/2010 70.28 80.65 12/7/2010 70.28 78.88				1/25/2006		78.70
5/3/2006 74.91 75.95 6/20/2006 73.74 77.12 9/27/2006 75.23 75.63 12/18/2006 69.12 81.74 11/18/2007 69.10 81.76 2/16/2007 73.96 76.93 3/19/2007 74.89 75.97 6/12/2007 68.71 82.15 9/19/2007 70.36 81.60 10/9/2007 69.26 81.60 10/9/2007 69.26 81.60 10/9/2007 69.26 80.28 3/5/2008 70.67 80.19 6/12/2008 71.50 79.36 11/25/2008 72.87 77.99 9/22/2008 71.50 79.36 11/25/2008 72.16 78.70 9/22/2009 71.16 79.24 6/9/2009 72.16 78.78 3/9/2010 70.28 90.58 12/7/2010 70.87 79.99 3/1/2011 71.92 79.41						
6/20/2006 73,74 77,12 9/27/2006 75,23 75,63 12/18/2007 69,10 81,74 1/18/2007 69,10 81,74 1/18/2007 73,96 76,630 2/16/2007 73,96 76,630 3/19/2007 74,89 75,97 6/12/2007 68,71 82,15 9/19/2007 69,26 81,60 10/9/2007 70,31 80,55 11/28/2008 70,58 80,28 3/3/2008 70,67 80,19 6/17/2008 70,28 80,028 3/2/2008 71,50 79,36 11/28/2008 72,16 77,39 11/25/2008 72,16 78,70 9/24/2009 72,16 78,70 11/25/2010 70,28 80,68 3/9/2010 70,28 78,88 3/9/2010 70,28 78,88 3/9/2010 70,28 79,99 3/1/2011 71,93 78,93 <						
9/27/2006 75.23 75.63 12/18/2006 69.12 81.74 1/18/2007 69.10 81.76 2/16/2007 73.96 76.93 3/19/2007 74.89 75.97 6/12/2007 69.53 81.33 11/28/2007 69.53 81.33 11/28/2007 70.38 80.28 3/5/2008 70.67 80.08 3/5/2008 70.67 80.08 3/5/2008 71.50 77.99 1/22/2009 71.62 79.24 6/9/2009 71.62 79.24 6/9/2009 71.162 79.24 6/9/2009 71.18 77.99 1/22/2009 71.18 78.88 3/9/2010 70.28 80.58 12/7/2010 70.87 79.99 3/1/2011 71.92 79.44 9/23/2010 70.27 79.44 9/23/2011 71.52 79.11 3/29/2012 74.26 78.24 9/2						
12/18/2006 69.12 81.74 1/18/2007 69.10 81.76 2/16/2007 73.96 76.90 3/19/2007 74.89 75.97 6/12/2007 68.71 82.15 9/19/2007 69.26 81.60 10/9/2007 69.23 81.33 11/28/2008 70.58 80.28 3/5/2008 70.67 80.19 6/17/2006 70.78 80.28 3/5/2008 70.67 80.19 6/17/2008 70.78 80.28 3/2/2008 71.50 79.36 11/25/2008 72.16 77.99 1/2/2/2009 71.10 79.24 6/9/2009 72.16 78.70 8/3/2010 70.28 80.38 3/9/2010 70.28 79.38 1/2/2/2010 70.28 79.34 3/2/2011 71.93 78.39 3/1/2011 71.93 78.93 3/1/2011 71.92 79.34 3/2						
1/18/2007 69.10 81.76 2/16/2007 73.96 76.90 3/19/2007 74.89 75.97 6/12/2007 68.71 82.15 9/19/2007 69.26 81.60 10/9/2007 69.53 81.33 11/28/2007 70.31 80.55 1/22/2008 70.58 80.28 3/6/2008 70.67 80.08 9/24/2008 71.50 77.39 1/125/2008 72.16 78.79 1/22/2009 71.62 79.24 6/9/2009 72.16 78.79 1/22/2009 71.62 78.40 9/9/2010 70.21 78.78 3/9/2010 72.16 78.79 1/122/2009 71.62 79.34 6/9/2009 72.16 78.79 3/9/2010 70.28 80.58 1/27/2011 71.42 79.44 9/23/2011 71.52 79.311 3/29/2011 71.52 79.311						
2/16/2007 73.96 76.90 3/19/2007 74.89 75.97 6/12/2007 68.71 82.15 9/19/2007 69.26 81.60 10/9/2007 69.53 81.33 11/28/2007 70.31 80.55 1/22/2008 70.58 80.28 3/5/2008 70.67 80.19 9/24/2008 71.50 79.36 11/25/2008 70.78 80.08 9/24/2008 71.50 79.36 11/25/2008 72.16 78.79 11/25/2009 71.50 79.36 11/25/2009 72.16 78.79 9/24/2010 70.28 80.58 3/9/2010 72.15 78.71 9/29/2010 70.87 79.99 3/1/2011 71.93 78.39 9/27/2010 70.87 79.99 3/1/2011 71.52 79.31 11/25/2012 MV 30-ten stroot at location depicted or may Figure 12/2/2012 MV 30-ten stroot at location depicted o						
319/2007 74.89 75.97 6/12/2007 68.71 82.15 9/19/2007 69.26 81.60 10/9/2007 69.53 81.33 11/28/2007 70.31 80.55 1/22/2008 70.58 80.28 3/5/2008 70.67 80.19 6/17/2006 71.70 80.08 9/24/2008 71.50 79.36 11/25/2008 72.16 78.70 9/24/2009 71.62 79.24 6/9/2009 72.16 78.70 8/4/2009 71.18 78.88 3/9/2010 72.15 78.71 9/29/2010 70.28 80.58 12/7/2010 70.87 79.99 3/1/2011 71.42 79.44 9/23/2011 71.52 78.33 6/7/2011 71.42 79.44 9/25/2012 MV-304 montain to at location depicted mont "game" 9/25/2012 MV-304 montain to at location depicted mont "game" 9/25/2012 MV-304 montain to at loca						
6/12/2007 68.71 82.15 9/19/2007 69.26 81.60 10/9/2007 69.53 81.33 11/28/2007 70.31 80.55 1/22/2008 70.58 80.28 3/5/2008 70.67 80.09 9/24/2008 71.50 79.38 11/22/2009 71.50 79.36 11/22/2009 71.62 79.24 6/9/2009 72.16 78.70 8/4/2009 71.162 79.24 6/9/2009 72.16 78.78 3/9/2010 70.28 80.58 3/9/2010 70.28 80.58 3/1/2011 71.98 78.88 3/9/2010 70.28 80.58 9/2/2010 70.28 80.58 3/1/2011 71.93 78.39 3/1/2011 71.92 79.94 9/23/2011 71.52 79.31 3/9/2012 72.62 78.24 9/25/2012 MV-304 mentotwal locaten depated errore of 79.76						75.97
10/9/2007 69.53 81.33 11/28/2007 70.31 80.55 1/22/2008 70.58 80.28 3/5/2008 70.67 80.19 6/17/2008 70.78 80.08 9/24/2008 71.50 77.99 11/25/2008 72.87 77.99 11/22/2009 71.62 79.24 6/9/2009 72.16 78.70 8/4/2009 72.16 78.70 9/2/21010 70.28 80.58 3/9/2010 72.15 78.71 9/2/2010 70.87 79.99 3/1/2011 71.93 78.83 3/9/2010 72.25 78.71 9/2/2010 70.27 79.99 3/1/2011 71.93 78.93 6/7/2011 71.92 79.44 9/23/2011 71.52 79.11 3/29/2012 72.62 78.24 9/25/2012 MV-304 mentorized location dipided mentorized location dipided mentorized location dipided mentoris flags 12/6/2012				6/12/2007	68.71	82.15
11/28/2007 70.31 80.55 1/22/2008 70.58 80.28 3/5/2008 70.67 80.19 6/17/2009 70.78 80.09 9/24/2008 71.50 79.36 11/25/2008 71.50 79.36 11/25/2008 72.87 77.99 11/25/2009 71.62 79.24 69/2009 72.16 78.70 8/4/2009 72.16 78.71 3/9/2010 70.28 80.58 12/7/2010 70.28 80.58 12/7/2010 70.28 80.58 12/7/2010 70.28 80.58 12/7/2010 70.28 79.39 3/1/2011 71.93 78.93 6/7/2011 71.52 79.31 11/28/2011 71.52 79.31 3/29/2012 72.62 78.24 9/25/2012 4W.30.488.616.06 76.78 9/25/2012 4W.30.488.616.06 76.78 9/25/2012 74.08 76.38						
1/22/2008 70.58 80.28 3/5/2008 70.67 80.19 6/17/2006 70.78 80.08 9/24/2008 71.50 79.36 11/25/2008 71.50 77.99 1/22/2009 71.62 79.24 6/9/2009 72.16 78.70 8/4/2009 71.98 78.88 3/9/2010 72.15 78.71 9/2/20201 70.28 80.58 3/9/2010 72.15 78.74 9/29/2010 70.28 80.58 3/9/2010 72.15 78.43 6/7/2011 71.42 79.44 9/23/2011 71.52 79.31 3/29/2012 72.62 78.24 9/25/2012 MV-30.54 motion and isocial mediate independent one Piger 12/6/2012 MV-30.54 76.78 4/1/2013 74.54 76.32 6/1/8/2013 74.54 76.36						
3/5/2008 70.67 80.19 6/17/2008 70.78 80.08 9/24/2008 71.50 79.36 11/25/2008 72.87 77.99 11/25/2008 72.87 77.99 11/25/2009 72.16 78.70 6/9/2009 72.16 78.70 8/4/2009 72.15 78.71 3/9/2010 72.15 78.71 12/7/2010 70.87 79.99 3/1/2011 71.92 79.44 9/23/2011 71.52 79.31 3/9/2012 72.62 78.24 9/23/2011 71.52 79.31 3/9/2012 72.62 78.24 9/23/2012 74.06 76.78 9/23/2012 74.06 76.78 4/1/2013 74.44 76.32 6/18/2013 74.454 76.32						
6/17/2008 70.78 80.08 9/24/2008 71.50 79.36 11/25/2008 72.87 77.99 11/25/2009 71.62 79.24 6/9/2009 71.66 78.70 8/4/2009 71.98 78.88 3/9/2010 72.15 78.71 9/29/2010 70.28 80.659 12/7/2010 70.87 79.99 3/1/2011 71.42 79.44 9/23/2011 71.52 78.71 11/25/2012 72.62 78.33 6/7/2011 71.75 79.11 3/29/2011 71.52 78.14 11/25/2012 74.08 76.78 4/1/2013 74.40 76.32 9/25/2012 74.08 76.78 4/1/2013 74.40 76.38 6/18/2013 74.40 76.38						
9/24/2008 71.50 79.38 11/25/2008 72.87 77.99 1/22/2009 71.62 79.24 69/2009 72.16 78.70 8/4/2009 71.98 78.88 39/2010 72.15 78.71 9/29/2010 70.28 80.58 12/7/2010 70.87 79.99 3/1/2011 71.92 79.44 9/23/2010 70.87 79.99 3/1/2011 71.93 78.93 6/7/2011 71.52 79.34 9/23/2011 71.52 79.34 9/23/2012 72.62 78.24 9/25/2012 74.06 76.78 11/29/2011 74.50 76.78 12/6/2012 74.06 76.78 4/1/2013 74.54 76.32 6/18/2013 74.54 76.36						
11/25/2008 72.87 77.99 1/22/2009 71.62 79.24 69/2009 72.16 78.70 8/4/2009 71.98 78.88 39/9/2010 70.28 80.58 12/7/2010 70.87 79.99 3/1/2011 71.93 78.93 6/7/2011 71.42 79.44 9/23/2011 71.52 79.34 11/29/2011 71.52 79.34 11/29/2011 71.55 78.11 3/29/2012 72.2 79.34 9/25/2012 W0.30 was not al coation depicted more Figure 12/6/2012 74.08 76.78 4/1/2013 74.54 76.32 6/1/8/2013 74.00 76.86						
1/22/2009 71.62 79.24 6/9/2009 72.16 78.70 8/4/2009 71.98 78.88 3/9/2010 72.15 78.71 9/29/2010 70.28 80.58 12/7/2010 70.87 79.99 3/1/2011 71.42 79.44 9/23/2011 71.52 79.31 11/29/2011 71.52 79.31 3/29/2012 72.62 78.24 9/25/2012 107.30 was strong at local to deplot of map Egar 12/6/2012 74.08 76.78 4/1/2013 74.54 76.36 6/1/8/2013 74.54 76.36						
8/4/2009 71.98 78.88 3/9/2010 72.15 78.71 9/29/2010 70.28 80.59 12/7/2010 70.87 79.99 3/1/2011 71.42 79.44 9/23/2011 71.52 79.31 11/29/2011 71.75 79.11 3/29/2012 72.62 78.24 9/25/2012 W3.03 war at found a braind adjusted may Figure 11/29/2011 12/6/2012 74.08 76.78 4/1/2013 74.54 76.32 6/1/8/2013 74.40 76.36						
8/4/2009 71.98 78.88 3/9/2010 72.15 78.71 9/29/2010 70.28 80.58 12/7/2010 70.87 79.99 3/1/2011 71.93 78.83 6/7/2011 71.42 79.44 9/23/2011 71.52 79.34 11/29/2011 71.75 79.11 3/29/2012 72.62 78.24 9/25/2012 W3.03 wan ard found a boated meter frame Figure 12/6/2012 74.08 76.78 4/1/2013 74.54 76.32 6/1/8/2013 74.40 76.36					72.16	
9/29/2010 70.28 80.58 12/7/2010 70.87 79.99 3/1/2011 71.93 78.93 6/7/2011 71.42 79.44 9/23/2011 71.52 79.34 11/29/2011 71.55 79.11 3/29/2012 72.62 78.24 9/25/2012 Wt 304 was not found a bottom degledato mage Figure 12/6/2012 12/6/2012 74.08 76.78 4/1/2013 74.54 76.36 6/18/2013 74.00 76.86					71.98	
12/7/2010 70.87 79.99 3/1/2011 71.93 78.93 6/7/2011 71.42 79.44 9/23/2011 71.52 79.34 11/29/2011 71.52 79.34 11/29/2011 71.75 79.11 3/29/2012 72.62 78.24 9/25/2012 MV-30X sense frond at location depicted mem (Figure 12/6/2012 74.08 12/6/2012 74.08 76.78 4/1/2013 74.54 76.32 6/18/2013 74.00 76.86						
3/1/2011 71.93 78.93 6/7/2011 71.42 79.44 9/23/2011 71.52 79.34 11/28/2011 71.75 79.11 3/29/2012 72.62 78.24 9/25/2012 WW 30.4 was not found at location depicted on may Figure 12/6/2012 74.08 76.78 4/1/2013 74.54 76.32 6/18/2013 74.00 76.86						
6/7/2011 71.42 79.44 9/23/2011 71.52 79.34 11/29/2011 71.75 79.11 3/29/2012 72.62 78.24 9/25/2012 W130 wan of cond a loadin depender onme Figure 12/6/2012 12/6/2012 74.08 76.78 4/1/2013 74.54 76.36 6/18/2013 74.00 76.86						
9/23/2011 71.52 79.34 11/29/2011 71.75 79.11 3/99/2012 72.62 78.24 9/25/2012 Wr 30.4se not bord at locator dependent of map Figure 12/6/2012 74.08 4/1/2013 74.454 76.32 6/18/2013 74.00 76.86						
11/29/2011 71.75 79.11 3/29/2012 72.62 78.24 9/25/2012 MV-30-4 as not not all bottom digitation rame (Figure 12/6/2012) 74.08 76.78 12/6/2012 74.08 76.78 4/1/2013 74.54 76.32 6/18/2013 74.00 76.86 74.00 76.86						
3/29/2012 72.62 78.24 9/25/2012 Wir 30 was not find at loadino dependence ome Figure 12/6/2012 74.08 76.78 4/1/2013 74.54 76.32 6/18/2013 74.00 76.86						
9/25/2012 MN 30A was not bound at location depicted on may Pigure 12/6/2012 74.08 76.78 4/1/2013 74.54 76.32 6/18/2013 74.00 76.86				3/29/2012	72.62	78.24
4/1/2013 74.54 76.32 6/18/2013 74.00 76.86					MW-30A was not found at local	tion depicted on map (Figure 1).
6/18/2013 74.00 76.86						
0/40/0040 74.00 70.00						
<u>9/16/2013</u> 74.20 76.66 11/5/2013 74.78 76.08						

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
	-		9/24/1998	7.60	147.72
			12/3/1998	66.30	89.02
			6/3/2002	72.49	82.83
			7/2/2002	72.72	82.60
			8/1/2002	73.00	82.32
			9/19/2002	73.95	81.37
			10/18/2002	73.45	81.87
			11/19/2002	73.51	81.81
			12/16/2002 1/7/2003	73.37 73.28	81.95 82.04
			4/8/2003	ND	ND
			5/7/2003	ND	ND
			6/16/2003	ND	ND
			7/15/2003	71.20	84.12
			8/20/2003	71.26	84.06
			9/5/2003	70.66	84.66
			10/29/2003	ND	ND
			11/25/2003	72.01	83.31
			12/16/2003	68.70	86.62
			3/3/2004	70.94	84.38
			4/9/2004 5/13/2004	71.25 ND	84.07 ND
			6/8/2004	69.81	85.51
			7/22/2004	69.57	85.75
			8/19/2004	68.59	86.73
			9/3/2004	69.51	85.81
			10/27/2004	70.12	85.20
			11/17/2004	ND	ND
			12/2/2004	69.20	86.12
			1/20/2005	70.48	84.84
			3/31/2005	70.36	84.96
			4/27/2005	69.66	85.66
			6/14/2005	70.53	84.79
			9/27/2005	70.34	84.98
		59.82	11/28/2005 12/28/2005	73.68 71.96	81.64 83.36
MW-31A	155.32		1/25/2006	67.21	88.11
1111-51A	100.02		2/21/2006	66.25	89.07
			3/29/2006	66.09	89.23
			5/3/2006	65.86	89.46
			6/20/2006	66.14	89.18
			9/27/2006	65.84	89.48
			12/18/2006	67.57	87.75
			1/18/2007	67.87	87.45
			2/16/2007	67.43	87.89
			3/19/2007 6/12/2007	66.66 67.18	88.66 88.14
			9/19/2007	68.06	87.26
			10/9/2007	68.32	87.00
			11/28/2007	69.17	86.15
			1/22/2008	69.96	85.36
			3/5/2008	70.02	85.30
			6/17/2008	69.81	85.51
			9/24/2008	70.38	84.94
			11/25/2008	72.71	82.61
			1/22/2009	70.40	84.92
			6/9/2009 8/4/2009	69.51 70.64	85.81 84.68
			3/9/2010	70.64	84.68
			6/7/2010	68.12	87.20
			9/29/2010	69.30	86.02
			12/7/2010	70.03	85.29
			3/1/2011	103.96	51.36****
			6/7/2011	70.04	85.28
			9/23/2011	70.02	85.30
			11/29/2011	70.37	84.95
			3/29/2012	71.42	83.90
			9/25/2012	72.10	83.22
			12/6/2012	72.69	82.63
			4/1/2013 6/18/2013	73.29 72.79	82.03 82.53
			6/18/2013 9/16/2013		82.53
			9/16/2013	72.73 73.35	82.59

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			12/3/1998	69.05	77.07
			3/6/2002	71.83	74.29
			6/3/2002	72.92	73.20
			7/2/2002	73.27	72.85
			8/1/2002	73.80	72.32
			9/19/2002 10/18/2002	73.67	72.45 71.81
			11/19/2002	74.65	71.47
			12/16/2002	74.80	71.32
			1/7/2003	74.61	71.51
			2/13/2003	74.39	71.73
			3/11/2003	74.51	71.61
			4/8/2003	73.71	72.41
			5/7/2003	73.92	72.20
			6/16/2003	73.10	73.02
			7/15/2003 8/20/2003	72.00 71.43	74.12 74.69
			9/5/2003	72.09	74.03
			10/29/2003	71.08	75.04
			11/25/2003	73.56	72.56
			12/16/2003	68.83	77.29
			3/3/2004	71.60	74.52
			4/9/2004	71.93	74.19
			5/13/2004	72.19	73.93
			6/8/2004 7/22/2004	71.02 70.82	75.10 75.30
			8/19/2004	70.56	75.56
			9/3/2004	70.70	75.42
			10/27/2004	71.36	74.76
			11/17/2004	ND	ND
			12/2/2004	69.98	76.14
			1/20/2005	71.73	74.39
			3/31/2005	69.00	77.12
			4/27/2005	68.19	77.93
			6/14/2005 9/27/2005	69.24 68.89	76.88
			11/28/2005	71.01	75.11
MW-32A	146.12	12 36.51	12/28/2005	69.32	76.80
			1/25/2006	67.26	78.86
			2/21/2006	67.18	78.94
			3/29/2006	67.08	79.04
			5/3/2006	66.87	79.25
			6/20/2006	65.67	80.45
			9/27/2006 12/18/2006	66.86 64.61	79.26 81.51
			2/16/2007	64.43	81.69
			3/19/2007	66.91	79.21
			6/12/2007	64.17	81.95
			9/19/2007	64.78	81.34
			10/9/2007	65.01	81.11
			11/28/2007	65.79	80.33
			1/22/2008	66.02	80.10
			3/5/2008	66.07	80.05
			6/17/2008 9/24/2008	66.25 66.99	79.87
			9/24/2008	67.00	79.13
			1/22/2009	67.02	79.10
			6/9/2009	67.64	78.48
			8/4/2009	67.39	78.73
			3/9/2010	67.63	78.49
			6/7/2010	64.83	81.29
			9/29/2010	65.79	80.33
			12/7/2010	66.32	79.80
			2/28/2011 6/7/2011	66.85 66.98	79.27 79.14
			9/23/2011	67.09	79.14
			11/29/2011	67.25	78.87
			3/29/2012	68.08	78.04
			9/25/2012	69.00	77.12
			12/6/2012 4/1/2013	69.50 MW-32A could	76.62
					r -
			6/18/2013 9/16/2013	69.49	76.63 76.41
			9/10/2013	69.71	/0.41

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			9/24/1998	65.60	77.31
			12/3/1998	66.00	76.91
			3/6/2002 6/3/2002	68.58 69.76	74.33 73.15
			7/2/2002	70.13	72.78
			8/1/2002	70.61	72.30
			9/19/2002	69.65	73.26
			10/18/2002	71.30	71.61
			11/19/2002 12/16/2002	71.63 71.52	71.28 71.39
			1/7/2002	71.52	71.39
			2/13/2003	71.34	71.57
			3/11/2003	71.41	71.50
			4/8/2003	70.14	72.77
			5/7/2003	70.71 69.16	72.20
			6/16/2003 7/15/2003	68.14	74.77
			8/20/2003	67.58	75.33
			9/5/2003	68.94	73.97
			10/29/2003	ND 70.00	ND 70.05
			11/25/2003	70.66	72.25
			3/3/2004	68.42	74.10
			4/9/2004	69.03	73.88
			5/13/2004	69.18	73.73
			6/8/2004	68.92	73.99
			7/22/2004 8/19/2004	67.66 67.85	75.25 75.06
			9/3/2004	67.85 ND	75.06 ND
			10/27/2004	68.34	74.57
			11/17/2004	ND	ND
		12.91 64.23	12/2/2004	67.51	75.40
			1/20/2005	68.07	74.84
			3/31/2005 4/27/2005	65.25	77.66
			6/14/2005	64.64 65.37	78.27 77.54
			9/27/2005	65.03	77.88
MW-33A	142.91		11/28/2005	68.23	74.68
1111-33A	142.51		12/28/2005	66.41	76.50
			1/25/2006 2/21/2006	64.09 64.12	78.82 78.79
			3/29/2006	64.11	78.80
			5/3/2006	66.45	76.46
			6/20/2006	61.78	81.13
			9/27/2006	63.79	79.12
			12/18/2006 1/18/2007	61.80 60.97	81.11 81.94
			2/16/2007	61.21	81.70
			3/19/2007	63.91	79.00
			6/12/2007	60.77	82.14
			9/19/2007 10/9/2007	61.31	81.60 81.32
			11/28/2007	62.37	81.32
			1/22/2008	62.71	80.20
			3/5/2008	62.65	80.26
			6/17/2008	62.84	80.07
			9/24/2008 11/25/2008	63.56 63.69	79.35 79.22
			1/22/2009	63.77	79.22
			6/9/2009	64.19	78.72
			8/4/2009	63.95	78.96
			3/9/2010	64.30	78.61
			6/10/2010	61.42 62.37	81.49 80.54
			9/29/2010 12/7/2010	62.94	79.97
			2/28/2011	63.42	79.49
			6/7/2011	63.50	79.41
			9/23/2011	63.58	79.33
			11/29/2011	63.80	79.11
			3/29/2012 9/25/2012	64.69 65.58	78.22
			9/25/2012	66.30	76.61
			4/1/2013	66.50	76.41
			6/18/2013	66.13	76.78
			9/16/2013	66.31	76.60
			11/5/2013	66.89	76.02

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			9/24/1998	65.20	78.04
			12/3/1998	65.55	77.69
			3/6/2002	68.45	74.79
			6/3/2002	69.63	73.61
			7/2/2002 8/1/2002	69.93 70.60	73.31 72.64
			9/19/2002	70.60	72.64
			10/18/2002	71.05	72.19
			11/19/2002	71.41	71.83
			12/16/2002	71.48	71.76
			1/7/2003	71.41	71.83
			2/13/2003	71.21	72.03
			3/11/2003	ND	ND
			4/8/2003 5/7/2003	ND 70.74	ND 72.50
			6/16/2003	69.59	73.65
			7/15/2003	68.64	74.60
			8/20/2003	68.11	75.13
			9/5/2003	68.91	74.33
			10/29/2003	67.03	76.21
			11/25/2003	70.55	72.69
			12/16/2003	68.97	74.27
			3/3/2004 4/9/2004	68.40 67.95	74.84 75.29
			4/9/2004 5/13/2004	67.95 ND	75.29 ND
			6/8/2004	67.75	75.49
			7/22/2004	67.50	75.74
			8/19/2004	68.91	74.33
			9/3/2004	ND	ND
			10/27/2004	66.59	76.65
			11/17/2004	ND	ND 70.00
			12/2/2004 1/20/2005	66.28 67.83	76.96 75.41
			3/31/2005	65.69	77.55
			4/27/2005	64.94	78.30
			6/14/2005	65.31	77.93
		.24 43.81	9/27/2005	65.09	78.15
MW-34A	143.24		11/28/2005	67.74	75.50
1111- 3 4A	143.24		12/28/2005	66.04	77.20
			1/25/2006	63.94	79.30
			2/21/2006 3/29/2006	63.77	79.47
			5/3/2006	63.55	79.69
			6/20/2006	62.11	81.13
			9/27/2006	63.32	79.92
			12/18/2006	61.60	81.64
			1/18/2007	61.93	81.31
			2/16/2007	63.71	79.53
			3/19/2007 6/12/2007	63.49 61.12	79.75 82.12
			9/19/2007	61.69	82.12 81.55
			10/9/2007	62.03	81.21
			11/28/2007	62.73	80.51
			1/22/2008	62.99	80.25
			3/5/2008	63.08	80.16
			6/17/2008	63.25	79.99
			9/24/2008	63.98	79.26
			11/25/2008	64.03 64.09	79.21 79.15
			6/9/2009	64.59	79.15
			8/4/2009	64.34	78.90
			3/9/2010	64.59	78.65
			6/7/2010	61.98	81.26
			9/29/2010	62.76	80.48
			12/7/2010	63.31	79.93
			2/28/2011	64.07	79.17
			6/7/2011 9/23/2011	63.92 64.15	79.32 79.09
			9/23/2011 11/29/2011	64.20	79.09
			3/29/2011	65.14	79.04
			9/25/2012	67.12	76.12
			12/6/2012	66.74	76.50
			4/1/2013	66.47	76.77
			6/18/2013	66.55	76.69
			9/16/2013	66.80	76.44

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			9/24/1998	65.35	77.91
			12/3/1998	65.70	77.56
			3/6/2002	68.60	74.66
			6/3/2002	69.79	73.47
			7/2/2002	70.03	73.23
			8/1/2002 9/19/2002	70.60 70.34	72.66
			10/18/2002	71.21	72.05
			11/19/2002	71.55	71.71
			12/16/2002	71.62	71.64
			1/7/2003	71.55	71.71
			3/11/2003	ND	ND
			4/8/2003	ND	ND
			5/7/2003	70.91	72.35
			6/16/2003	69.90	73.36
			7/15/2003 8/20/2003	68.97 68.40	74.29 74.86
			9/5/2003	69.08	74.18
			10/29/2003	67.78	75.48
			11/25/2003	70.38	72.88
			12/16/2003	69.13	74.13
			3/3/2004	68.55	74.71
			4/9/2004	68.56	74.70
			5/13/2004	67.20	76.06
			6/8/2004 7/22/2004	67.89 67.64	75.37 75.62
			8/19/2004	67.88	75.38
			9/3/2004	ND	ND
			10/27/2004	68.29	74.97
			11/17/2004	ND	ND
			12/2/2004	66.65	76.61
		-18.32	1/20/2005	67.78	75.48
			3/31/2005	65.96	77.30
			4/27/2005	65.29	77.97
			6/14/2005 9/27/2005	66.14 63.94	77.12
			11/28/2005	66.41	76.85
MW-34B	143.26		12/28/2005	64.97	78.29
			1/25/2006	64.06	79.20
			2/21/2006	**	**
			3/29/2006	63.88	79.38
			5/3/2006	63.46	79.80
			6/20/2006	62.32	80.94
			9/27/2006 12/18/2006	63.39 61.86	79.87 81.40
			1/18/2006	61.80	81.40
	1		2/16/2007	63.48	79.78
			3/19/2007	63.49	79.77
	1		6/12/2007	61.35	81.91
			9/19/2007	61.93	81.33
			10/9/2007	62.23	81.03
			11/28/2007	63.00	80.26
			1/22/2008	63.21	80.05
			3/5/2008 6/17/2008	63.29 63.46	79.97
			9/24/2008	63.46	79.80
			9/24/2008 11/25/2008	64.22	78.97
			1/22/2009	64.34	78.92
			6/9/2009	64.82	78.44
			8/4/2009	64.41	78.85
			3/9/2010	64.81	78.45
			6/7/2010	62.20	81.06
			9/29/2010	62.99	80.27
			12/7/2010 2/28/2011	63.50 63.92	79.76 79.34
			6/7/2011	63.92	79.34
			9/23/2011	64.12	79.14
			11/29/2011	64.43	78.83
			3/29/2012	65.33	77.93
			9/25/2012	67.32	75.94
			12/6/2012	66.84	76.42
			4/1/2013	66.16	77.10
			6/18/2013	66.75	76.51
			9/16/2013	67.00	76.26
		1	11/5/2013	67.56	75.70

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATER ELEVATION
			12/3/1998	83.55	76.95
			6/3/2002	87.44	73.06
			7/2/2002 8/1/2002	87.82 84.50	72.68 76.00
			9/19/2002	87.11	73.39
			10/18/2002	88.79	71.71
			11/19/2002	89.14	71.36
			12/16/2002	89.12	71.38
			1/7/2003	89.11	71.39
			2/13/2003 3/11/2003	88.87 88.95	71.63 71.55
			4/8/2003	88.14	72.36
			5/7/2003	88.37	72.13
			6/16/2003	87.60	72.90
			7/15/2003	86.49	74.01
			8/20/2003	85.53	74.97
			9/5/2003 10/29/2003	86.50 85.10	74.00 75.40
			11/25/2003	88.15	72.35
			12/16/2003	85.71	74.79
			3/3/2004	86.10	74.40
			4/9/2004	86.31	74.19
			5/13/2004 6/8/2004	85.78 85.51	74.72 74.99
			7/22/2004	85.29	75.21
			8/19/2004	ND	ND
			9/3/2004	85.22	75.28
			10/27/2004	86.13	74.37
			11/17/2004	ND	ND
			12/2/2004 1/20/2005	85.21 86.44	75.29 74.06
	160.5	40.94	3/31/2005	83.41	77.09
			4/27/2005	82.78	77.72
			6/14/2005	83.61	76.89
			9/27/2005	84.34	76.16
			11/28/2005	87.38	73.12
MW-35A			12/28/2005 1/25/2006	85.56 82.09	74.94 78.41
			2/21/2006	81.76	78.74
			3/29/2006	81.69	78.81
			5/3/2006	81.50	79.00
			6/20/2006	80.26	80.24
			9/27/2006	ND 79.91	ND 81.60
			12/18/2006 1/18/2007	78.81 78.63	81.69 81.87
			2/16/2007	80.72	79.78
			3/19/2007	81.56	78.94
			6/12/2007	78.39	82.11
			9/19/2007	78.90	81.60
			10/9/2007 11/28/2007	79.24 79.97	81.26 80.53
			1/22/2008	80.27	80.23
			3/5/2008	80.32	80.18
			6/17/2008	80.61	79.89
			9/24/2008	81.18	79.32
			11/25/2008 1/22/2009	81.19 81.29	79.31 79.21
			6/9/2009	81.84	79.21
			8/4/2009	81.59	78.91
			3/9/2010	81.83	78.67
			6/7/2010	79.06	81.44
			9/29/2010	79.94	80.56
			12/7/2010 3/1/2011	85.84 81.60	74.66 78.90
			6/7/2011	81.11	79.39
			9/23/2011	81.21	79.29
			11/29/2011	81.40	79.10
			3/29/2012	82.31	78.19
			9/25/2012	83.17	77.33
			12/6/2012	83.73 81.40	76.77 79.10
			4/1/2013 6/18/2013	81.40	79.10
			9/16/2013	83.85	76.65
			11/5/2013	84.43	76.07

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
			12/3/1998	79.70	77.30
			6/3/2002	83.61	73.39
36A			7/2/2002	83.98	73.02
Well			8/1/2002	84.52	72.48
Closed	157		9/19/2002	84.21	72.79
on 01/07/03			10/18/2002	84.97	72.03
01/01/03			11/19/2002	85.31	71.69
			12/16/2003	85.30	71.70
			1/7/2003 12/3/1998	85.23 83.90	76.95
			3/6/2002	86.76	74.09
			6/3/2002	87.91	72.94
			7/2/2002	88.13	72.72
			8/1/2002	88.68	72.17
			9/19/2002	88.37	72.48
			10/18/2002	89.62	71.23
			11/19/2002	89.85	71.00
			12/16/2002	89.87	70.98
			1/7/2003	89.85	71.00
			2/13/2003 3/11/2003	89.74 89.78	71.11 71.07
			4/8/2003	89.10	71.75
			5/7/2003	89.27	71.58
			6/16/2003	88.69	72.16
			7/15/2003	87.52	73.33
			8/20/2003	ND	ND
			9/5/2003	87.35	73.50
			10/29/2003	86.39	74.46
			11/25/2003	88.47	72.38
			12/16/2003	87.30	73.55
			3/3/2004	86.80	74.05
			4/9/2004	85.36	75.49
			5/13/2004	85.89	74.96
			6/8/2004	86.30	74.55
			7/22/2004 8/19/2004	85.80	75.05
			9/3/2004	85.94 ND	ND
			10/27/2004	86.57	74.28
			11/17/2004	ND	ND
			12/2/2004	85.36	75.49
			1/20/2005	86.59	74.26
			3/31/2005	84.30	76.55
			4/27/2005	83.71	77.14
			6/14/2005	84.51	76.34
			9/27/2005	ND	ND
			11/28/2005	87.74	73.11
MW-37A	160.85	36.24	12/28/2005	85.89	74.96
			1/25/2006	82.24	78.61
			2/21/2006	82.16	78.69
			3/29/2006 5/3/2006	82.07 81.58	78.78 79.27
			6/20/2006		
			9/27/2006	80.56 81.32	80.29 79.53
			12/18/2006	80.31	80.54
			2/16/2007	80.13	80.72
			3/19/2007	81.33	79.52
			6/12/2007	79.75	81.10
			9/19/2007	80.31	80.54
			10/9/2007	80.63	80.22
			11/28/2007	81.23	79.62
			1/22/2008	81.56	79.29
			3/5/2008	81.60	79.25
			6/17/2008	81.84	79.01
			9/24/2008	82.65	78.20
			11/25/2008	82.78	78.07
			1/22/2009	83.04	77.81
			6/9/2009	83.21 83.08	77.64
			8/4/2009 3/9/2010	83.08	77.77 77.66
			6/7/2010	80.71	80.14
			9/29/2010	81.34	79.51
			12/7/2010	81.83	79.02
			3/1/2011	82.91	77.94
			6/7/2011	82.51	78.34
			9/23/2011	82.91	77.94
			11/29/2011	83.03	77.82
			3/29/2012	83.77	77.08
			6/11/2012	84.39	76.46
			9/25/2012	84.76	76.09
			12/6/2012	85.35	75.50
			4/1/2013	85.61	75.24
			6/18/2013	85.20	75.65
			9/16/2013	85.54	75.31

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
MW-38A			12/3/1998	68.30	76.24
Well	144.54	44.56	12/16/2002	73.77	70.77
Closed on 01/07/03	144.54	44.50	1/7/2003	73.69	70.85
			12/3/1998	96.60	61.90
			3/6/2002	98.64	59.86
			6/3/2002 7/2/2002	102.75 106.13	55.75 52.37
			8/1/2002	107.55	50.95
			9/19/2002	107.90	50.60
			10/18/2002	105.07	53.43
			11/19/2002	104.14 103.91	54.36 54.59
			1/7/2003	102.32	56.18
			2/13/2003	103.71	54.79
			3/11/2003	102.90	55.60
			4/8/2003	102.89	55.61
			5/7/2003 6/16/2003	103.22 103.43	55.28 55.07
			7/15/2003	104.29	54.21
			8/20/2003	103.95	54.55
			10/29/2003	102.81	55.69
			11/25/2003 12/16/2003	103.28 99.80	55.22 58.70
			3/3/2004	99.05	59.45
			4/9/2004	100.66	57.84
			5/13/2004	101.71	56.79
			6/8/2004 7/22/2004	100.55 102.45	57.95 56.05
			8/19/2004	103.11	55.39
			9/3/2004	ND	ND
			10/27/2004	102.53	55.97
			11/17/2004 12/2/2004	ND 101.30	ND 57.20
			1/20/2005	102.63	55.87
			3/31/2005	96.34	62.16
			4/27/2005	95.63	62.87
			6/14/2005 9/27/2005	96.58 96.41	61.92 62.09
			11/28/2005	98.37	60.13
WROW 1	158.5	-276.09	12/28/2005	96.64	61.86
			1/25/2006	93.08	65.42
			2/21/2006 3/29/2006	92.65 92.86	65.85
			3/29/2006 5/3/2006	92.86	65.64 66.32
			6/20/2006	96.96	61.54
			9/27/2006	94.69	63.81
			12/18/2006	91.26	67.24
			2/16/2007 3/19/2007	92.09 93.41	66.41 65.09
			6/12/2007	95.25	63.25
			9/19/2007	94.19	64.31
			10/9/2007	95.00	63.50
	1		11/28/2007 1/22/2008	94.80 94.62	63.70 63.88
			3/5/2008	93.19	65.31
			6/17/2008	96.62	61.88
			9/24/2008	97.18	61.32
			11/25/2008	95.23 94.13	63.27 64.37
			6/9/2009	93.86	64.64
			8/4/2009	97.44	61.06
			3/9/2010	94.51	63.99
			9/29/2010 12/7/2010	94.79 93.50	63.71 63.77
			2/28/2011	93.50	65.00
			6/7/2011	98.50	60.00
			9/23/2011	97.42	61.08
			11/29/2011	96.17	62.33
			3/29/2012 9/25/2012	93.48 102.40	65.02 56.10
			12/6/2012	99.43	59.07
			4/1/2013	96.56	61.94
			6/18/2013	100.61	57.89
			9/16/2013	99.85	58.65

WROW 2 158.57 -161.58 924/1998 95.40 63.17 12/3/1998 94.80 63.77 36/2002 97.85 60.72 6/3/2002 100.46 68.111 77.22002 101.20 57.37 8/1/2002 103.95 55.29 9/19/2002 103.95 56.62 11/11/2002 102.28 55.29 17/72003 100.23 55.26 11/12/2002 102.28 56.22 57.70 56.62 311/12003 100.42 55.12 11/12/2003 100.195 56.62 311/12003 100.42 55.12 11/12/2003 100.24 57.73 56.12 57.70 6/162003 100.44 57.73 8/202003 100.44 55.33 61.12 3/3/2004 97.83 61.19 7/15/2004 97.67 60.68 9/9/2004 97.89 60.68 9/9/2004 97.89 60.68 9/9/2004 97.89 60.68 9/9/2004 97.89 60.68 9/9/2004 97.89 60.6	WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATE ELEVATION
WROW 2 158.57 -161.58 158.57 158.57 161.202 178.5 672002 101.20 178.5 672002 101.20 101.20 178.5 672002 101.20 101.22 172003 102.23 56.25 172003 102.23 56.26 172003 102.23 56.26 172003 102.23 56.26 172003 102.23 56.26 172003 102.24 56.26 1712003 102.42 58.67 616/2003 100.42 58.67 577.2003 100.84 577.45 102.24 66.5 61.12 17152003 100.44 56.61 127.2003 100.44 56.61 127.2003 100.44 56.61 127.2003 100.44 56.61 127.2003 100.44 56.61 127.2003 100.44 56.61 127.2003 100.44 56.61 127.2003 100.44 56.61 127.2004 96.65 61.12 37.3004 97.67 60.030 6.62 61.74 57.33 61.18 77.22004 96.65 61.32 17.22004 96.63 63.78 66.72 63.78 66.72 63.78 66.72 63.78 66.72 67.72 67.2006 97.19 63.78 65.61 67.72 67.2006 97.19 65.63 67.72 67.2006 97.19 66.56 67.72 67.2006 97.19 66.56 67.72 67.2006 97.19 66.56 67.72 67.72 67.2006 97.19 66.56 67.72 67.2006 97.19 66.56 67.72 67.2006 97.19 66.56 67.72 67.2006 97.19 66.56 67.72 67.2006 97.19 66.56 67.72 67.2006 97.19 66.56 67.72 67.2006 97.10 67.66 67.72 67.72 67.2006 67.72 67.2006 <td></td> <td></td> <td></td> <td>9/24/1998</td> <td>95.40</td> <td>63.17</td>				9/24/1998	95.40	63.17
 WROW 2 158.57 -161.58 6⁽³⁾/_{17/2002} 100.46 (58.17) 71/22002 103.28 55.29 9⁽¹⁾/_{19/2002} 103.28 55.29 9⁽¹⁾/_{19/2002} 103.28 55.12 11⁽¹⁾/_{19/2002} 102.28 56.29 11⁽¹⁾/_{19/2002} 102.28 56.29 11⁽¹⁾/_{19/2003} 102.23 56.29 11⁽¹⁾/_{19/2003} 102.32 56.62 3⁽¹⁾/_{11/2003} 101.52 57.60 100.44 57.77 100.80 57.703 100.80 57.77 100.84 57.73 8⁽²⁾/₂₀₀₃ 100.44 57.73 8⁽²⁾/₂₀₀₃ 100.44 56.51 11/25/2003 100.44 57.73 8⁽²⁾/₂₀₀₃ 100.44 56.51 11/25/2003 100.45 58.57 11/25/2004 97.67 60.90 11/25/2004 97.83 61.19 71/22004 98.60 58.97 8⁽¹⁾ 8⁽¹⁾ 9⁽²⁾/₂₀₀₄ 97.89 60.63 9⁽²⁾/_{216/2005} 97.34 61.23 11/28/2005 97.34 61.23 11/28/2005 97.34 61.23 12/28/2006 97.74 65.70 11/28/2005 97.34 65.71 57.20 				12/3/1998	94.80	63.77
WROW 2 158.57 -161.58 7/22002 101.20 103.24 55.23 8/1/2002 103.85 56.62 10/18/2002 103.45 55.26 10/18/2002 102.28 56.28 12/16/2002 102.28 56.28 12/12/002 102.28 56.28 12/12/003 101.95 56.62 2/13/2003 100.42 58.67 7/15/2003 100.42 58.67 7/15/2003 100.44 56.76 4/9/2004 96.83 61.12 57.45 6/16/2003 100.44 56.61 12/16/2003 100.44 56.61 12/16/2003 100.44 56.61 12/21/2003 97.87 66.61 12/21/2004 97.83 61.192 4/9/2004 97.83 61.192 4/9/2004 97.83 61.192 4/9/2004 97.83 60.668 9/3/2004 ND ND ND ND 10/27/2004 98.83 60.668 9/3/2004 ND ND ND 10/27/2004 98.63 63.22 1/22/2004 98.63 63.28 1/22/2004 97.87 66.32 63.28 1/22/2004 97.87 66.32 63.28 1/22/2004 97.83 66.11.92 1/22/2004 98.53 63.29 1/22/2004 99.55.3 63.20 1/22/2006 91.56 67.70 67.71 6/12/2007 99.62 67.72 6/12/2007 99.63 65.68 3/22/12/006 91.56 67.71 6/12/2007 99.63 65.68 3/22/2006 91.56 67.72 6/12/2007 99.63 65.68 3/22/2006 91.56 67.72 6/12/2007 99.63 65.68 3/22/2006 91.56 67.72 6/12/2007 90.82 67.72 6/12/2007 90.82 67.72 6/12/2007 90.82 67.72 6/12/2007 90.82 67.73 6/2.84 1/22/2008 92.62 <						
 WROW 2 158.57 -161.58 9/19/2002 103.29 158.57 165.59 128.57 161.58 128.57 158.57 158.58 158.58 158.59 158.59<td></td><td></td><td></td><td></td><td></td>						
WROW 2 158.57 -161.58 9/9/2002 103.95 54.62 10/18/2002 102.88 55.89 12/16/2002 102.28 56.29 2/13/2003 101.95 56.62 2/13/2003 101.95 56.62 2/13/2003 101.95 56.62 2/13/2003 101.95 56.62 2/13/2003 100.42 56.70 4/8/2003 100.42 56.77 6/16/2003 100.42 56.61 11/12/2003 100.44 57.77 6/16/2003 100.44 57.77 6/16/2003 100.44 57.77 6/16/2003 100.44 56.61 11/12/2003 100.44 56.61 11/12/2003 100.44 56.61 12/16/2003 97.30 61.77 6/16/2003 97.30 61.77 6/16/2003 97.30 61.77 6.61.92 4/9/2004 96.83 61.192 4/9/2004 97.89 60.068 9/3/2004 ND ND ND 10/27/2004 96.32 63.78 67.11 11/2/2004 96.32.6 60.31 11/17/2005 94.79 63.78 67.72 67.12 67.20 97.34 61.22 12/2006 99.78 86.79 63.78 67.70 67.72 67.2006 92.94 65.66 67.72 67.72 67.2007 90.85 67.72 67.72 67.2008 92.19 66.58 3/29/2006 91.56 67.77 67.72 67.2007 90.85 67.77 67.72 67.2008 92.88 65.90 10/22007 94.03 64.54 11.22/2008 92.78 65.70 9/12/92007 94.03 64.54 11.22/2008 92.78 65.70 9/12/92007 93.87 65.70 9/12/92007 94.03 65.66 3/2/92006 93.77 65.50 3/2/92007 94.03 65.66 3/2/2008 92.62 65.50 3/2/2008 92.62<						
WROW 2 158.57 -161.58 101.82.002 102.42 101.92.002 102.42 102.28 56.62 21.772003 102.32 56.62 31.772003 102.32 57.65 57.7203 100.80 57.7203 100.80 57.7203 100.80 57.7203 100.84 57.72 61.62003 100.84 57.72 61.62003 100.44 56.7 66.5 61.77 61.62003 100.44 56.7 60.93 61.77 61.62003 100.44 56.7 60.93 61.77 61.62003 100.44 56.7 60.93 61.77 61.62003 70.44 57.77 61.62003 100.44 56.7 60.93 61.77 61.77 61.62003 70.44 57.77 60.66 61.27 37.32004 96.65 61.27 37.32004 97.67 60.93 61.27 61.32004 97.83 61.17 61.22004 97.83 61.17 61.22004 97.84 61.23 61.22 17.22004 96.35 62.22 17.22004 97.84 61.23 17.22004 97.84 61.23 17.22004 97.84 61.23 17.22005 95.58 62.99 17.252006 91.36 67.71 67.21 67.2006 91.36 67.71 67.21 67.2006 92.94 65.58 65.99 17.262006 92.94 65.58 65.99 17.262007 90.62 67.72 67.2006 92.94 65.58 65.99 17.262006 92.94 65.58 65.99 17.262006 92.94 65.68 37.73 62.99 62.84 65.68 37.73 62.99 62.84 65.83 65.77 67.72 67.2006 92.94 65.58 65.99 12.182006 92.94 65.68 37.73 62.99 62.84 65.86 67.72 67.72 67.72 67.2006						
 WROW 2 158.57 -161.58 11/12/2002 102.28 56.29 2/13/2003 101.35 56.29 2/13/2003 101.35 57.7203 100.42 56.77 6/16/2003 100.42 56.77 6/16/2003 100.42 56.77 6/16/2003 100.44 57.77 6/16/2003 100.44 57.77 6/16/2003 100.44 57.73 8/20/2003 101.12 57.76 6/12/2003 100.44 56.61 11/25/2003 100.44 56.61 11/25/2003 100.44 56.61 11/25/2003 102.45 66.12 3/3/2004 96.65 61.92 4/9/2004 97.89 60.68 9/3/2004 ND ND 10/27/2004 96.83 61.192 11/27/2004 97.89 60.68 9/3/2004 ND ND 10/27/2004 96.73 6/14/2005 95.53 63.21 4/27/2006 96.73 6/20206 91.36 67.71 6/20206 91.36 67.72 6/7.20 97.85 92.94 65.63 3/27/2006 92.86 65.90 1/28/2007 90.82 67.72 6/12/2007 90.82 67.72 						
WROW 2 158.57 -161.58 1212/2002 102.28 107/2003 101.12 56.25 2/13/2003 101.12 57.46 57.72003 100.84 57.7203 100.84 57.7203 100.84 57.7203 100.84 57.7203 100.84 57.7203 100.84 57.745 10292003 100.44 58.53 11.125/2003 100.44 58.53 61.74 51.7203 61.7203 61.74 61.74 51.7204 96.65 61.74 61.74 51.7204 97.87 60.66 60.83 97.767 60.93 60.85 61.74 51.7204 98.26 60.311.74 51.7204 98.26 60.321 4.972004 97.8 58.72 7.7212004 98.35 62.22 1202005 95.58 62.22 1202005 95.58 62.29 1272006 91.26 67.20 67.20 97.8 67.72 67.72 67.720 67.72 78.66 79 58.65 77.8 67.72 78.65.90 77.8 67.72 67.72 67.						
 WROW 2 158.57 -161.58 1772003 102.32 56.62 2/3/12/003 101.52 57.76 4/8/2003 100.42 58.62 3/11/2003 100.80 57.77 6/16/2003 100.84 57.77 8/20/2003 101.12 57.73 8/20/2003 101.12 57.73 8/20/2003 101.12 57.73 8/20/2003 102.45 56.51 11/25/2003 102.45 56.51 11/25/2003 102.45 56.192 3/3/2004 96.65 61.92 3/3/2004 96.65 61.92 4/9/2004 97.89 60.68 9/3/2004 ND ND 10/27/2004 98.60 59.97 8/1/22/2004 97.89 60.68 9/3/2004 97.89 60.63 10/27/2004 98.26 60.31 11/117/2004 ND ND 10/27/2004 98.53 63.21 4/27/2005 95.58 62.29 11/28/2007 97.34 61.30 9/27/2006 92.44 67.73 67.21 67.20 96.58 62.99 1/28/2006 91.56 67.71 6/12/2070 96.58 62.99 1/28/2006 91.56 67.72 6/12/2070 92.89 65.63 9/27/2006 92.40 65.79 10/9/2007 94.03 65.50 9/24/2008 97.73 62.84 11				12/16/2002		
WROW 2 158.57 -161.58 -161.59 -161.559 -161.59 -161.59 -161.59 -161						
 WROW 2 158.57 -161.58 -461.58 -162.56 -162.57 -161.58 -162.56 -162.57 -161.58 -162.56 -162.57 -162.56 -162.57 -162.56 -162.57 -163.58 -164.58 <l< td=""><td></td><td></td><td></td><td></td><td></td><td></td></l<>						
WROW 2 158.57 -161.58 -161.58 -161.203 10.0.42 58.15 577203 10.0.42 58.07 7715203 10.0.43 56.612 11/25/2003 10.0.44 56.66 61.122 3/3/2004 96.83 61.12 4/9/2004 96.83 61.12 4/9/2004 96.83 61.12 4/9/2004 96.83 61.12 4/9/2004 97.87 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 60.68 97.8 63.78 67.41 7.222004 96.32 63.78 63.78 67.41 7.222004 97.8 63.78 63.78 67.72 67.42 64.64 65.53 63.78 67.72 67.						
WROW 2 158.57 -161.58 57/2003 100.80 57.77 67/62003 100.84 57.77 8/20/2003 101.12 57.45 8/20/2003 101.12 57.45 8/20/2003 101.12 57.45 8/20/2003 101.12 57.45 8/20/2003 101.04 58.63 61.127 3/3/2004 96.65 61.17 61/9/2004 97.67 60.99 68/2004 97.67 60.99 68/2004 97.67 60.99 68/2004 97.67 60.99 68/2004 97.72 7.22/2004 98.65 60.35 63.20 7.72/2004 98.66 63.5 63.21 12/2/2004 98.66 63.5 63.21 12/2/2004 97.8 6.63.21 12/2/2004 98.35 63.24 47.72/2005 95.29 63.28 12/2/2006 97.8 66.70 12/2/2006 97.8 67.30 37.12/2006 97.8 67.30 37.8 67.21 67.2006 97.8 67.21 67.2006 97.8 67.21 67.2006 97.8 67.21 67.2006 97.8 67.21 67.2006 97.8 67.21 67.2006 97.8 65.99 12.12/2006 97.8 65.99 12.12/2006 97.8 65.99 12.12/2006 97.8 65.99 12.12/2006 97.8 65.99 12.12/2006 97.8 65.99 12.12/2006 97.8 65.59 97.72 67.72 67.720 67.72 67.720 67.73 62.84 17.72008 92.82 65.86 3.37 65.99 12.12/2008 92.82 65.86 65.99 12.12/2008 92.82 65.86 65.99 12.12/2008 92.92 65.86 65.99 12.12/2008 92.92 65.86 65.90 66.77 2.16/2007 90.62 67.72 67.720 67.72 67.720 67.72						
WROW 2 158.57 -161.58 6/16/2003 100.50 58.67 6/17/2006 128.57 158.57 158.57 6/12/2006 158.57 158.57 6/12/2006 158.57 158.57 6/12/2006 158.57 158.57 6/12/2006 158.57 158.57 6/12/2006 158.57 158.57 6/12/2006 158.57 158.57 158.57 6/12/2006 158.57 158.57 6/12/2006 158.57 26/12/2006 95.58 62.22 172/2006 95.58 62.29 63.20 172/52006 97.8 65.29 63.20 172/52006 97.8 65.29 63.20 172/52006 97.9 97.9 12/18/2006 97.8 65.6 67.72 67.72 67.200 92.28 65.66 65.50 3/29/2006 97.78 60.62 67.72 67.72 67.720 67.72 67.720 66.68 3/52008 96.56 66.77 67.72 67.720 67.72 67.720 66.68 3/52008 96.66 66.68 3/52008 96.66 66.69 3/52008 96.62 66.68 3/52008 96.62 66.68 3/52008 96.72 66.68 3/52008 96.72 66.68 3/52008 96.72 66.68 3/52008 96.72 66.68 3/52008 96.72 66.68 3/52019 96.66 66.69 1672010				5/7/2003	100.80	
WROW 2 158.57 -161.58 1/22/2003 101.12 57.45 11/25/2003 100.245 56.12 12/16/2003 97.30 61.192 3/3/2004 96.65 61.92 3/3/2004 96.65 61.92 4/9/2004 97.67 60.99 6/8/2004 97.38 61.19 7/22/2004 97.89 60.68 9.977 89.97 61.92 10/27/2004 98.60 59.97 78.9 60.60 11.12 10/27/2004 98.60 59.97 78.9 60.68 9.37.1005 55.62 222 11.02/2004 99.78 58.79 63.76 10/27/2005 95.53 63.20 11.22/2006 99.78 58.79 63.76 11/26/2005 95.58 62.29 11/26/2005 95.58 62.29 11/26/2005 95.58 62.29 11/26/2006 91.36 67.71 12/26/2005 91.56 67.72 67.30 3/29/2006 91.56 67.72 6/12/2007 92.42						58.07
WROW 2 158.57 -161.58 102.92003 100.04 56.12 11/12/5/2003 97.30 61/12/7 3/3/2004 96.65 61/12/7 3/3/2004 96.65 61/12/7 3/3/2004 97.67 60.98 60/82004 97.89 60.68 9/3/2004 97.67 60.68 9/3/2004 97.89 60.68 9/3/2004 97.89 60.68 9/3/2004 97.89 60.68 9/3/2004 98.60 9/3/2004 ND ND 10/27/2004 98.60 98.60 98.78 58.79 3/31/2005 98.36 63.21 4/27/2005 96.53 63.26 63.26 63.26 63.26 63.26 63.26 63.26 67.21 4/4/2006 97.34 61.23 11/28/2005 97.34 61.23 11/28/2006 91.27 67.30 3/29/2006 91.56 67.21 6/2007 92.66 67.72 6/12/2007 92.68 65.99 12/18/2006 91.26 67.72 6/12/2007 92.68 65.99 12/18/2006 93.03 65.48 11/28/2006 93.27 65.39 66.59 3/27/2006 94.29 66.38 3/27/2006 93.27 65.39 66.59 12/18/2007 93.26 65.93 66.72 6/17/2008 94.22 64.35 9/21/18/2007 93.03 65.48 11/28/2007 93.03 65.54 6/29/201 93.48 65.63 3/24/2008 97.78 60.72 6/12/2007 93.03 65.54 6/29/201 93.48 65.63 65.95 9/21/18/2007 93.03 65.54 6/3200 65.54 6/3200 65.54 6/3200 65.54 6/3200 6.54 1/22/2008 92.26 65.95 6/32008 6/3200 6.54 6/32009 95.12 6.54 6/32009 95.12 6.54 6/32001 93.03 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
WROW 2 158.57 -161.58 11/25/2003 102.45 56.12 12/16/2003 97.30 61.27 12/16/2003 97.30 61.27 3/3/2004 96.65 61.92 4/9/2004 96.65 61.92 4/9/2004 97.63 61.19 11/16/2004 97.67 60.90 6/8/2004 97.38 61.19 11/17/2004 98.60 59.97 8/19/2004 97.89 60.63 11/17/2004 90.26 60.31 11/17/17/2004 98.26 60.31 11/17/2004 98.26 60.31 11/21/2005 95.35 63.222 1/20/2006 99.78 63.78 3/31/2005 97.34 61.23 1/20/2006 91.26 67.30 3/22/2006 91.56 67.71 67.21 67/2006 92.94 65.50 3/22/2006 91.56 67.77 7/21/62/07 96.54 61.29 12/18/2006 90.80 67.77 7/21/20/06 92.48 65.50 9/27/2006						
WROW 2 158.57 -161.58 12/16/2003 97.30 61.27 3/3/2004 96.65 61.92 3/3/2004 96.65 61.92 4/9/2004 97.67 60.90 6///2004 97.67 60.90 6///22004 97.83 61.19 7///22/2004 98.83 61.74 5/13/2004 97.89 60.68 9///32/04 ND ND 10/27/2004 98.80 59.37 63.78 68.79 3/31/2005 95.36 63.21 6///4/2005 94.79 63.78 6/14/2005 94.79 63.78 63.74 6/1.23 12/28/2005 95.58 63.21 4//27/2005 95.29 63.26 63.21 6////22/2005 95.58 62.99 63.28 1/28/2005 97.24 61.23 12/28/2005 95.28 65.99 12/28/2006 91.27 67.30 3/29/2006 91.26 67.72 6//21/2007 92.68 65.59 9/9/20/07 93.06 65.49 11/28/2007 90.						
3'3'2'004 96.65 61:92 4'9'2004 97.67 60.90 6'8'2'004 97.67 60.90 6'8'2'004 97.67 60.90 6'8'2'004 97.88 61:19 7'12'2'2'004 98.60 59.97 8'19'2'004 97.89 60.63 9'3'2004 ND ND 10'27'2004 98.26 60.31 11'17'17004 ND ND 12'2'2004 96.35 62.22 1/20'2005 95.53 63.04 9'27'2006 99.78 63.78 9'27'2005 95.29 63.28 1/26/2005 95.58 62.99 1/26/2006 91.36 67.21 6'20'2006 91.36 67.71 6'20'2006 91.36 67.72 6'12'2006 92.89 65.50 9'2712006 90.80 67.77 6'12'2007 9.62 86.59 12'18'2006 90.80 67.72 6'12'2						
WROW 2 158.57 -161.58 -161.58 -161.204 9.60.3 6.77 6.722004 9.60.60 9.78 9.60.68 9.72004 9.78 9.60.68 9.72004 9.78 9.60.68 9.72004 9.78 6.60.31 11/17/2004 9.78 5.62.22 1/20/2005 9.78 5.85.7 12/31/2005 9.4.79 63.78 6.742005 9.73.4 61.22 12/22006 9.73.4 61.22 12/22/2006 9.73.4 61.22 12/22/2006 9.73.4 61.22 12/22/2006 9.73.4 61.22 12/22/2006 9.73.4 61.22 12/22/2006 9.12.6 0.97.34 61.22 12/22/2006 9.12.6 0.97.34 66.29 12/25/2006 9.12.6 0.97.72 67.72 67.2006 9.2.88 65.79 9.12/18/2006 9.2.78 65.70 9.12/18/2006 9.2.78 65.70 9.12/18/2006 9.2.78 65.70 9.12/18/2006 9.2.78 65.70 9.12/18/2006 9.2.78 65.70 9.12/18/2006 9.2.78 65.70 9.12/18/2006 9.2.78 65.70 9.12/18/2007 9.0.62 67.72 67.72 6/12/2007 9.2.78 65.70 9.12/18/2008 9.65.68 3.57/208 9.62.26 65.50 3.57/208 9.62.26 65.50 3.57/208 9.62.26 65.50 3.57/208 9.63.48 65.00 9.77.8 60.72 60.72 67.72 67.72011 9.50.2 65.73 62.72 67.72011 9.50.2 65.72 67.72011 9.50.2 65.72 67.72011 9.50.2 65.72 67.72011 9.50.2 65.72 67.72011 9.50.2 65.72 67.72011 9.50.2 9.52012 9.40.6 65.79 67.72014 9.60.6 9.78 67.7011 9.60.6 9.78 67.7011						
Image: space of the system of the s						
6/8/2004 97.38 61.19 7/2/22004 98.60 59.97 8/19/2004 97.89 60.68 9/3/2004 ND ND 10/27/2004 98.60 59.97 10/27/2004 98.60 60.31 11/17/2004 ND ND 12/2/2004 96.35 62.22 1/20/2005 99.78 58.79 3/31/2005 95.36 63.21 4/27/2005 94.79 63.78 6/14/2005 95.58 62.29 1/22/20006 95.58 62.99 1/25/2006 92.19 66.33 9/27/2006 92.58 65.29 1/25/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.62 65.50 3/9/2007 94.03 64.54 1/28/2007 93.07 65.50 3/27/2008 94.62 64.33 9/24/2008 97.78 60.79 1/128/2007						
WROW 2 158.57 -161.58 7/22/2004 98.60 97.9 6/19/2004 97.89 60.63 9/3/2004 ND ND						
8/19/2004 97.89 60.68 9/32004 ND ND 10/27/2004 98.26 60.31 11/17/2004 98.26 60.31 11/17/2004 98.35 62.22 1/20/2005 99.78 58.76 3/31/2005 99.78 58.73 9/27/2006 99.78 58.73 9/27/2005 95.53 63.04 9/27/2005 95.53 63.04 9/27/2006 95.53 63.21 1/28/2005 97.34 61.23 1/28/2006 91.26 67.01 5/3/2006 91.26 67.01 5/3/2006 91.26 67.21 6/20/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.48 65.93 9/12/18/2007 9.62 67.72 6/12/2007 9.62 67.85 1/2/16/2007 9.62 65.86 3/3/2008 92.62 65.48 1/22/						59.97
WROW 2 158.57 -161.58 1027/2004 98.26 60.31 11/17/2004 ND ND ND 12/2/2005 99.78 56.6 63.21 12/2/2005 99.78 63.76 63.21 4/27/2005 94.79 63.76 63.24 9/27/2005 95.53 63.04 9/27/2005 95.58 62.29 1/26/2005 97.34 61.23 11/28/2005 97.34 61.23 1/26/2006 92.19 66.38 67.01 5/3/2006 92.19 66.38 2/21/2006 91.36 67.71 6/20/2006 92.94 65.59 9/27/2006 92.94 65.59 9/27/2006 92.86 65.99 12/18/2007 90.62 67.72 6/12/2007 90.62 67.72 6/12/2007 93.09 65.48 1/22/2008 92.78 65.50 3/9/2007 94.03 64.54 1/22/2008 92.73 62.84 1/22/2008 92.73 62.84						
I11/17/2004 ND ND 12/2/2004 96.35 62.22 12/2/2004 96.35 62.22 12/2/2005 99.78 58.79 331/2005 95.36 63.21 4/27/2005 95.53 63.04 9/27/2005 95.29 63.28 11/28/2005 97.34 61.23 12/28/2005 97.34 61.23 12/28/2005 95.58 66.70.11 5/3/29/2006 91.56 67.01 5/3/29/2006 91.36 67.21 6/2/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.58 65.99 12/18/2007 90.85 67.79 3/19/2007 93.07 65.50 10/9/2007 93.07 65.49 11/28/2008 97.78 60.79 9/19/2007 93.02 65.54						
12/2/2004 96.35 62.22 17/2/2005 99.78 58.79 3/31/2005 95.36 63.21 4/27/2005 95.53 63.04 9/27/2005 95.529 63.28 9/27/2005 95.53 63.04 9/27/2005 95.53 63.04 9/27/2005 95.53 63.20 1/28/2005 95.58 62.99 1/28/2006 91.27 67.30 3/29/2006 91.36 67.71 6/20/2006 91.36 67.71 6/20/2006 92.94 65.59 9/27/2006 92.58 65.99 12/18/2007 90.85 67.72 6/20/2006 92.48 65.50 10/9/2007 9.403 64.54 11/28/2007 90.85 67.72 6/12/2008 92.89 65.68 3/3/2008 92.62 65.99 11/28/2007 9.30.3 65.54 1/28/2008 97.73 62.84						
WROW 2 158.57 -161.58						
WROW 2 158.57 -161.58 3/31/2005 95.36 95.36 63.21 4/27/2005 94.79 63.78 95.58 63.24 3/27/2005 95.59 1/28/2005 95.58 62.99 1/25/2006 92.19 66.38 2/21/2006 91.27 67.30 3/29/2016 91.56 67.21 5/32006 91.36 67.21 67.20 92.19 66.38 2/21/2006 91.36 67.21 6/20/200 92.94 65.58 65.99 1/2/8/2006 91.36 67.21 6/20/200 92.94 65.59 1/2/8/2007 90.85 67.72 6/12/2007 90.85 67.72 6/12/2007 90.85 67.72 6/12/2007 90.85 67.72 6/12/2007 90.85 67.72 6/12/2007 90.85 67.72 6/12/2007 90.85 67.72 6/12/2007 90.85 67.72 6/17/200 92.49 90.65 8.3/5/2008 92.78 65.59 1/2/2008 92.78 65.59 9/2/9/201 93.30 65.54 1/122/2008 92.6 65.59 9/2/9/201 93.327 65.39 7/2 2/28/201 93.48 65.03 9/29/2010 93.48 65.03 127/2/201 92.45 65.55 9/29/2010 93.48 65.59 9/29/2010 93.48 65.59 9/29/2		159 57				
4/27/2005 94.79 63.78 WROW 2 158.57 -161.58 97.2005 95.53 63.04 9/27/2005 95.29 63.28 11/28/2005 97.34 61.23 11/28/2005 97.34 61.23 12/28/2006 93.58 62.299 12/26/2006 91.27 67.30 3/29/2006 91.56 67.01 5/3/2006 91.36 67.21 67.20 66.39 9/27/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.94 65.50 9/9/2007 94.03 66.77 8/19/2007 94.03 64.54 1/22/2008 92.78 65.70 10/9/2007 94.03 65.68 3/5/2008 92.42 64.33 <						
WROW 2 158.57 -161.58 6/14/2005 95.53 63.28 11/28/2005 97.34 61.23 12/28/2005 95.29 63.28 12/28/2005 97.34 61.23 12/28/2005 95.58 62.99 2/21/2006 92.19 66.38 2/21/2006 91.56 67.01 5/3/2006 91.36 67.01 5/3/2006 92.38 65.99 12/18/2006 92.94 65.63 9/27/2006 92.68 65.99 12/18/2006 92.94 65.63 9/27/2006 92.78 65.79 3/19/2007 90.85 67.79 9/19/2007 93.07 65.50 10/9/2007 94.03 94.54 11/28/2008 92.78 65.79 9/19/2007 93.07 65.50 10/9/24/2008 97.78 60.79 11/28/2008 97.78 60.79 11/28/2008 97.78 60.79 9/19/2007 93.03 65.54 1/22/2009 93.03 65.54 9/29/2010 93.48<						
WROW 2 158.57 -161.58 9/27/2005 95.29 63.28 11/28/2005 97.34 61.23 11/28/2005 97.34 61.23 12/25/2006 92.19 66.38 62.99 1/25/2006 92.19 66.38 2/21/2006 91.36 67.71 67.30 3/29/2006 91.36 67.21 6/20/2006 92.94 65.63 9/7/7/2006 92.84 65.99 1/218/2006 90.80 67.71 6/12/2007 90.62 67.72 6/12/2007 90.62 67.70 9/19/2007 94.03 64.54 1/28/2007 93.09 65.48 1/22/2008 92.89 65.68 3/3/2000 92.62 64.33 9/24/2008 97.78 60.79 11/28/2007 93.09 95.12 63.45 3/9/24/2008 95.73 62.84 1/22/2008 92.78 60.79 11/25/2008 95.73 62.84 1/22/2009 93.03 65.54 3/9/24/2008 95.73 62.84<						
WROW 2 158.57 -161.58 11/28/2005 97.34 61.23 12/28/2005 95.58 62.99 1/25/2006 92.19 66.38 2/21/2006 91.15 67.01 57/2006 91.16 67.01 5/29/2006 91.36 67.01 57/2006 92.19 66.38 2/21/2006 91.36 67.01 57/2006 91.36 67.01 5/202006 92.94 65.63 9/27/2006 92.94 65.63 9/27/2006 92.58 65.99 12/16/2007 90.62 67.795 3/19/2007 90.85 67.72 6/12/2007 93.09 65.49 11/28/2007 93.09 65.44 11/28/2007 93.09 65.44 11/28/2008 97.78 60.79 11/25/2008 95.73 62.84 1/22/2008 97.78 60.79 11/25/2008 95.73 62.84 1/22/2009 93.27 65.30 9/29/2010 93.48 65.09 9/29/2010 93.48						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WROW 2		-161 58			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	micon 2	100.07	-101.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2/21/2006	91.27	67.30
				3/29/2006	91.56	67.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						67.21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
6/12/2007 92.78 65.79 9/19/2007 94.03 64.54 11/28/2007 94.03 64.54 11/28/2007 93.09 65.68 3/5/2008 92.62 65.68 3/5/2008 94.22 64.35 9/24/2008 97.78 60.79 9/24/2008 97.78 62.84 1/22/2009 93.27 65.30 6/9/2009 93.03 65.54 6/4/2009 93.12 63.45 3/9/2010 93.02 65.59 9/29/2010 93.48 65.09 1/27/2011 92.85 66.72 6/7/2011 93.07 65.42 9/2/2010 9.48 65.09 3/9/2010 9.3.02 65.57 9/23/2011 94.06 63.71 11/20/2011 93.07 65.50 9/23/2011 94.06 64.52 9/26/2012 94.40 60.17 12/6/2012 96.59 61.98 9/26						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
10/9/2007 94.03 64.54 11/22/2007 93.09 65.48 1/22/2008 92.89 65.68 3/5/2008 92.62 65.95 6/17/2008 94.22 64.35 9/24/2008 97.78 60.79 11/25/2008 95.73 62.84 1/22/2009 93.27 65.30 6/9/2009 93.03 65.54 8/4/2009 95.12 63.45 3/9/2010 33.02 65.59 9/29/2010 93.48 65.09 12/7/2011 92.05 65.77 6/7/2011 95.02 63.55 9/23/2011 93.07 65.80 9/23/2011 94.06 63.71 11/29/2011 93.07 65.50 9/23/2011 94.05 64.52 9/25/2012 94.06 60.17 11/29/2011 93.07 65.50 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98						
11/28/2007 93.09 65.48 1/22/2008 92.89 65.68 3/5/2008 92.62 65.95 6/17/2008 94.22 64.35 3/24/2008 95.73 60.79 11/25/2009 93.27 65.30 6/9/2009 93.27 65.30 6/9/2009 93.27 65.30 6/9/2009 93.03 65.54 8/4/2009 95.12 63.45 3/9/2010 93.48 65.09 1/27/2010 92.82 65.72 2/28/2011 92.60 65.97 6/7/2011 92.60 65.97 9/29/2010 93.48 63.71 11/29/2011 92.86 63.71 11/29/2011 94.06 63.71 11/29/2012 94.40 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 9						
1/22/2008 92.89 65.68 3/5/2008 92.62 65.95 6/17/2008 94.22 64.35 9/24/2008 97.78 60.79 11/25/2008 95.73 62.84 1/22/2009 93.27 65.30 6/9/2009 93.03 65.54 8/4/2009 95.12 63.45 3/9/2010 93.02 65.55 9/29/2010 93.48 65.09 12/7/2010 9.285 65.77 6/7/2011 95.02 63.55 9/29/2010 93.48 65.09 12/7/2010 9.285 65.72 2/28/2011 93.07 65.50 9/29/2012 94.05 64.52 9/25/2012 94.40 60.17 11/29/2011 93.07 65.50 9/29/2012 94.40 60.17 12/6/2012 96.59 61.98 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 9/						
3/5/2008 92.62 65.95 6/17/2008 94.22 64.35 9/24/2008 97.78 60.79 11/25/2008 95.73 62.84 1/22/2009 93.27 65.30 6/9/2009 93.33 65.54 8/4/2009 95.12 63.45 3/9/2010 93.48 65.09 9/29/2010 93.48 65.72 2/28/2011 92.60 65.77 2/28/2011 92.60 65.97 6/7/2011 93.02 65.54 9/23/2011 92.60 65.97 2/28/2011 92.80 65.72 2/28/2011 92.80 65.72 9/23/2011 94.86 63.71 11/28/2011 93.07 65.50 3/23/2011 94.46 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 9/12/2012 95.98 62.59 9/12/2012 95.98 62.59 9/						
9/24/2008 97.78 60.79 11/25/2008 95.73 62.84 1/22/2009 93.27 65.30 6/9/2009 93.03 65.54 8/4/2009 95.12 63.45 3/9/2010 93.02 65.55 9/29/2010 93.48 65.09 1/27/2010 92.85 65.72 2/28/2011 92.60 65.97 9/29/2011 92.60 65.97 9/29/2011 92.60 65.97 9/28/2011 92.60 65.97 9/28/2011 94.86 63.371 11/28/2011 94.86 63.371 11/28/2011 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 9/12/2012 98.598 62.59 9/12/2012 95.98 62.59						
11/25/2008 95.73 62.84 1/22/2009 93.27 65.30 6/9/2009 93.03 65.54 8/4/2009 95.12 63.45 8/9/2010 93.48 65.99 9/29/2010 93.48 65.99 12/7/2010 92.485 65.72 2/28/2011 92.60 65.57 9/29/2010 93.48 66.09 10/7/2010 92.460 65.97 2/28/2011 92.60 65.97 9/29/2012 94.40 60.3.71 11/29/2011 93.07 65.50 3/29/2012 94.40 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59		1			94.22	
1/22/2009 93.27 65.30 6/9/2009 93.03 65.54 8/4/2009 95.12 63.45 3/9/2010 93.02 65.55 9/29/2010 93.02 65.55 9/29/2010 93.48 65.09 12/7/2010 92.85 65.77 2/28/2011 92.00 65.57 9/23/2011 95.02 63.71 11/29/2011 93.07 65.50 3/25/2012 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 9/2/2012 98.60 60.17 12/6/2012 96.59 61.98 9/1/2013 95.98 62.59						
6/9/2009 93.03 65.54 8/4/2009 95.12 63.45 3/9/2010 93.02 65.55 9/29/2010 93.48 65.09 12/7/2010 92.48 65.09 12/7/2010 92.85 65.72 2/28/2011 92.60 65.97 6/7/2011 95.02 63.55 9/23/2011 94.86 63.71 11/28/2011 93.07 65.50 3/29/2012 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
8/4/2009 95.12 63.45 3/9/2010 93.02 65.55 9/29/2010 93.48 66.09 12/7/2010 92.85 66.72 2/28/2011 92.60 65.97 6/7/2011 95.02 63.55 9/23/2011 93.07 66.371 11/29/2011 93.07 65.50 3/25/2012 94.60 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59				1/22/2009		65.30
3/9/2010 93.02 65.55 9/29/2010 93.48 65.09 9/27/2010 92.485 65.72 2/28/2011 92.85 65.72 2/28/2011 92.80 63.55 9/23/2011 94.86 63.71 11/29/2011 94.86 63.71 11/29/2012 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
9/29/2010 93.48 65.09 12/7/2010 92.85 65.72 2/28/2011 92.60 65.97 6/7/2011 95.02 63.55 9/23/2011 94.86 63.71 11/29/2011 93.07 65.50 3/29/2012 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
12/7/2010 92.85 65.72 2/28/2011 92.60 65.97 6/7/2011 95.02 63.55 9/23/2011 94.86 63.71 11/29/2011 93.07 65.50 3/29/2012 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
2/28/2011 92.60 65.97 6/7/2011 95.02 63.55 9/23/2011 94.86 63.71 11/29/2011 93.07 65.50 3/29/2012 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
6/7/2011 95.02 63.55 9/23/2011 94.86 63.71 11/29/2011 93.07 65.50 3/29/2012 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
9/23/2011 94.86 63.71 11/29/2011 93.07 65.50 3/29/2012 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
11/29/2011 93.07 65.50 3/29/2012 94.05 64.52 9/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
3/29/2012 94.05 64.52 3/25/2012 98.40 60.17 12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
12/6/2012 96.59 61.98 4/1/2013 95.98 62.59						
12/6/2012 96.59 61.98 4/1/2013 95.98 62.59				9/25/2012	98.40	60.17
				12/6/2012	96.59	61.98
				6/18/2013	102.50	56.07
<u>9/16/2013</u> 98.58 59.99 11/5/2013 98.27 60.30		I				

WELL NO.	TOP-OF- CASING ELEVATION	TOP OF SCREEN ELEVATION	DATE	DEPTH TO GROUNDWATER	RELATIVE GROUNDWATER ELEVATION
			9/24/1998	95.40	165.98
			12/3/1998	94.80	166.58
			6/3/2002	201.37	60.01
			7/2/2002	202.70	58.68
			8/1/2002	204.10	57.28
			9/19/2002 10/18/2002	204.19 204.47	57.19 56.91
			11/19/2002	>200	00.01
			12/16/2002	203.66	57.72
			1/7/2003	ND	ND
			2/13/2003	ND	ND
			3/11/2003	ND	ND
			4/8/2003	>200 202.22	59.16
			5/7/2003 6/16/2003	202.22 201.92	59.16
			7/15/2003	201.32	59.66
			8/20/2003	201.40	59.98
			9/5/2000	200.43	60.95
			10/29/2003	199.32	62.06
			11/25/2003	201.13	60.25
			12/16/2003	198.95	62.43
			3/3/2004	198.35	63.03
			4/9/2004 5/13/2004	199.58 201.63	61.80 59.75
			6/8/2004	198.88	62.50
			7/22/2004	199.20	62.18
			8/19/2004	200.78	60.60
			9/3/2004	ND	ND
ccow	261.38	-217.66	10/27/2004	200.26	61.12
			11/17/2004	ND	ND
			12/2/2004	198.60	62.78
			1/20/2005 3/31/2005	200.17	61.21 64.13
			4/27/2005	197.25	65.60
			6/14/2005	197.43	63.95
			9/27/2005	197.41	63.97
			11/28/2005	199.67	61.71
			12/28/2005	197.75	63.63
			1/25/2006	194.39	66.99
			2/21/2006 3/29/2006	<u>193.98</u> 193.44	67.40 67.94
			5/3/2006	193.44 ND	67.94 ND
			6/20/2006	194.06	67.32
			9/27/2006	194.26	67.12
			12/18/2006	ND	ND
			2/16/2007	194.01	67.37
			3/19/2007	192.70	68.68
			6/12/2007	193.99	67.39
			9/19/2007 10/9/2007	194.70 195.12	66.68 66.26
			11/28/2007	195.12	66.93
			1/22/2008	194.40	66.98
			3/5/2008	194.19	67.19
			6/17/2008	195.27	66.11
			6/9/2009	195.38	66.00
			9/29/2010	164.49	96.89
			12/7/2010	194.22	67.16
			2/28/2011 6/7/2011	194.80 195.85	66.58 65.53
			9/23/2011	195.85	64.48
			11/29/2011	195.52	65.86
			9/25/2012	199.15	62.23
			12/6/2012	197.88	63.50
			4/1/2103	197.81	63.57
			6/18/2013	198.40	62.98
			9/16/2013	199.20	62.18
	1		11/5/2013	199.30	62.08

NOTES

NOTES
1) +- for of-classing elevations obtained from the January 3, 2002 surveying event conducted by Bohas Surveying and Mapping, LLC
2) ND - No Data.
3) NS- Not Sampled.
4) UXAPL - Light Non-Aqueous Phase Liquid (also referred to as free product).
5) Al measurements in feet unless otherwise noted.
6) *- Based on visual observation notes
9)***- nossible field or transcription error
10) MW-4 was paved over
11) MW-12A and MW-12B were noted buried during the 2nd Quarter 2013 GW sampling event.

APPENDIX F EXCAVATION WORK PLAN

As noted in Section 2.5.1 of the Site Management Plan (SMP) for this Site, extensive soil sampling has been performed and only very limited areas of the Site were identified with residual soil, defined as soil with constituents exceeding the 6 NYCRR Part 375-6 Soil Cleanup Objectives (SCOs) for restricted residential use, which is the anticipated use of the Site following redevelopment. The residual soil was removed in 2022 under this EWP and following a Notification to the NYSDEC. The confirmatory sample results demonstrated that the residual soil had been completely removed and the remaining soil did not exceed the SCOs for restricted residential use. The soil remediation work was documented in a May 2, 2022 report that was approved by the NYSDEC.

This Excavation Work Plan (EWP) will continue to be applicable only for identified areas of soil that exceed the SCOs for restricted residential use and is not applicable to other soil on the Site. At present there are no identified areas of residual soil. However, if such areas are identified during redevelopment or other intrusive activities, this EWP will apply

A Community Air Monitoring Plan (CAMP) to be used during activities under this EWP is included in the Health and Safety Plan (HASP) in Appendix J of the SMP.

F.1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter residual contaminated soil, or if residual contaminated soil is identified during onsite activities, the Site owner or their representative will notify the NYSDEC. Table F.1.1 includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Appendix B.

Name/Role	Phone/Email Address
NYSDEC DER Project Manager:	(518) 402-9614,
Melissa Sweet, PE	melissa.sweet@dec.ny.gov
NYSDEC Regional HW Engineer :	(631) 444-0240,
Walter Parish, PE	walter.parish@dec.ny.gov
NYSDEC Site Control:	(518) 402-9553,
Kelly Lewandowski	kelly.lewandowski@dec.ny.gov

* Note: Notifications are subject to change and will be updated as necessary.

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent of excavation(s), plans/drawings for site re-grading, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control;
- A summary of environmental conditions anticipated to be encountered in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction and post-excavation sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A summary of the applicable components of this EWP;
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120;
- A copy of the contractor's health and safety plan (HASP), in electronic format, if it differs from the HASP provided in Appendix J of this SMP;
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

F.2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based (e.g. photoionization detector or PID) soil screening will be performed by a qualified environmental professional during all excavations into

known or potentially contaminated material (remaining contamination). Soil screening will be performed when invasive work is done and will include all excavation and invasive work performed in areas where residual soil has been identified, such as excavations for foundations and utility work.

Soils will be segregated based on previous environmental data and screening results into material that requires offsite disposal and material that requires testing to determine if the material can be reused onsite. Further discussion of offsite disposal of materials and onsite reuse is provided in the following sections of this Appendix.

F.3 SOIL STAGING METHODS

Stockpiles of residual soil will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles of residual soil will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles of residual soil will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by the NYSDEC.

F.4 MATERIALS EXCAVATION AND LOAD-OUT

A qualified environmental professional or person under their supervision will oversee all invasive work involving residual soil and the excavation and load-out of all excavated residual soil.

The owner of the property (remedial party) and its contractors are responsible for safe execution of all invasive and other work performed under this EWP.

The presence of utilities and easements in the residual soil excavation areas will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this EWP is posed by utilities or easements.

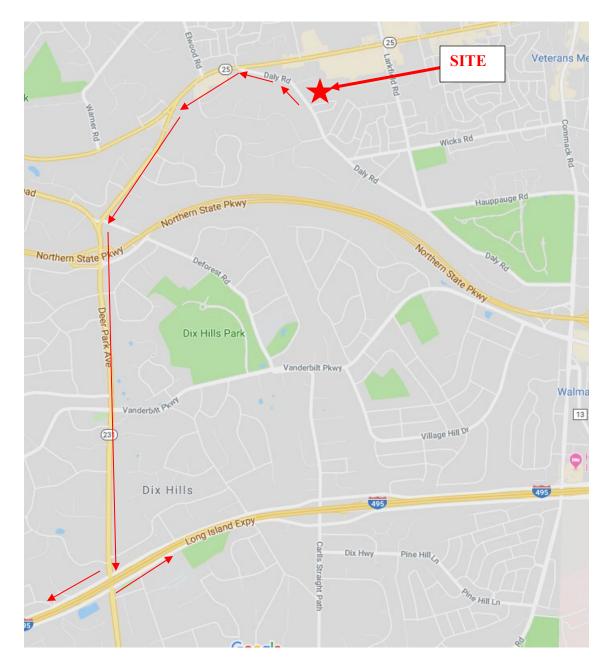
Vehicles loaded with residual soil leaving the Site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and New York State Department of Transportation (NYSDOT) requirements and all other applicable transportation requirements.

A truck wash for trucks loaded with residual soil will be operated onsite, as appropriate. The qualified environmental professional will be responsible for ensuring that all outbound trucks loaded with residual soil will be washed at the truck wash before leaving the Site. Truck wash waters will be collected and disposed of offsite in an appropriate manner.

Locations where vehicles carrying residual soil exit the Site will be inspected daily for evidence of offsite soil tracking. The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the areas of the Site where residual soil is present are clean of soil and other materials derived from the Site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to Site-derived residual soil.

F.5 RESIDUAL SOIL TRANSPORT OFFSITE

All transport of residual soil will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.


Residual soil transported by trucks exiting the Site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

The truck transport route is shown on the map on the next page and is as follows:

- Exit to Daly Road and turn right, heading northwest to Jericho Turnpike (Rt. 25);
- Turn left onto Jericho Turnpike and travel west a short distance to Deer Park Road (Rt. 231);
- Turn left onto Deer Park Road and travel south approximately 2 miles to the Long Island Expressway (Rt. 495); and
- Take the Long Island Expressway east or west to the final destination.

Trucks will be prohibited from stopping and idling in the neighborhood outside the Site. Queuing of trucks will be performed onsite in order to minimize offsite disturbance. Offsite queuing will be prohibited.

Truck Transport Route

All trucks loaded with Site-derived residual soil will exit the vicinity of the Site using only this approved truck route. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) limiting total distance to major highways; (c) promoting safety in access to highways; and (d) overall safety in transport.

F.6 RESIDUAL SOIL DISPOSAL OFFSITE

All residual soil excavated and removed from the Site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. Unregulated offsite management of residual from this Site will not occur without formal NYSDEC approval.

Offsite disposal locations for excavated residual soil will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility, if appropriate (i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc.). Actual disposal quantities and associated documentation will be reported to the NYSDEC in the PRR. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous residual soil taken offsite will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

F.7 RESIDUAL SOIL REUSE ONSITE

The qualified environmental professional will ensure that procedures defined for residual soil reuse in this EWP are followed and that unacceptable material does not remain onsite. Contaminated residual soil that remains present onsite in development areas will be placed below a demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

Any demolition material proposed for reuse onsite will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing onsite will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the Site will not be reused onsite.

F.8 FLUIDS MANAGEMENT

Groundwater is not anticipated to be encountered during excavation activities due to the depth to groundwater (70 to 95 feet below grade). Nevertheless, as liquids to be removed from the Site during excavation activities will be handled, transported and disposed in accordance with

applicable local, State, and Federal regulations. Dewatering, fluids will not be recharged back to the land surface or subsurface of the Site, and will be managed offsite, unless prior approval is obtained from NYSDEC.

In the unlikely event that discharge of water generated during large-scale construction activities is to be directed to surface waters (i.e. a local pond, stream or river), then this discharge will be performed under a SPDES permit.

F.9 COVER SYSTEM

This Site does not require a cover system and no cover system is planned. In the unlikely event that any residual soil exceeding restricted residential or commercial use SCOs is identified onsite and this soil is not completely removed under this EWP, then a cover system may be necessary. If a cover system becomes necessary, then the NYSDEC will be notified and a cover system design will be submitted.

F.10 BACKFILL FROM OFFSITE SOURCES

All materials proposed for import onto the Site will be approved by the qualified environmental professional and will be in compliance with provisions in the SMP prior to receipt at the Site. Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the Site. A Request to Import/Reuse Fill or Soil form, which can be found at <u>http://www.dec.ny.gov/regulations/67386.html</u>, will be prepared and submitted to the NYSDEC project manager allowing a minimum of 5 business days for review.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Based on an evaluation of the land use criteria, the resulting soil quality standards are listed in Table 327-6.8(b) (restricted residential and commercial). Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this Site, will not be imported onto the Site without prior approval by NYSDEC. Solid waste will not be imported onto the Site.

Trucks entering the Site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

F.11 STORMWATER POLLUTION PREVENTION

In the event that redevelopment projects at the Site exceed one acre in size, a Stormwater Pollution Prevention Plan that conforms to the requirements of the NYSDEC Division of Water guidelines and NYS regulations will be developed. For redevelopment projects at the Site that are less than one acre, the following will be performed at a minimum:

- Silt fencing or hay bales will be installed around the entire perimeter of the construction area.
- Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by the NYSDEC. All necessary repairs shall be made immediately.
- Accumulated sediments will be removed as required to keep the barrier and hay bale checks functional.
- All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.
- Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

F.12 EXCAVATION CONTINGENCY PLAN

If underground storage tanks (USTs) or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification

to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the Periodic Review Report.

F.13 ODOR CONTROL PLAN

Based on the nature of the residual soil, objectionable odors are not anticipated during activities subject to this EWP. This odor control plan is capable of controlling emissions of nuisance odors offsite in the unlikely event that any such odors develop. Specific odor control methods to be used on a routine basis will include limiting the areas of open excavations with the potential to produce odors, promptly removing and properly disposing of materials with the potential to produce odors, and temporarily covering areas of odorous materials if encountered.

If nuisance odors are identified at the Site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events within one day of the odor event occurrence. Implementation of all odor controls, including the halt of work, is the responsibility of the remedial party any measures that are implemented will be discussed in the report documenting the excavation activities.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and/or (c) using foams to cover exposed odorous soils, if necessary. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for offsite disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

F.14 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive onsite work involving residual soil will include, at a minimum:

- Dust suppression will be achieved through the use of a dedicated onsite water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- Onsite roads will be limited in total area to minimize the area required for water truck sprinkling.

F.15 OTHER NUISANCES

If required by the local municipality, a plan for rodent control will be developed and utilized by the contractor prior to and during site clearing, site grubbing, and all remedial work.

A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

F.16 REPORTING

A report is to be submitted to the NYSDEC within 90 days of completion of the activities performed under this EWP. This report will contain a summary of the activities performed; a summary of all data gathered and results, information about any residual soil or other contaminated media that was removed from the Site: the volume, contamination levels, and area from which residual materials were removed; and any other information that may be indicate a change to the "remaining contamination" that is at the Site. Such changes may require revision of the SMP.

APPENDIX G

SITE MANAGEMENT FORMS

- Site-Wide Inspection Form
- Groundwater Sampling Form
- Canister Sampling Form

Site-Wide Inspection List Deutsch Relays, Inc. Site 65 Daly Road, East Northport, New York

Date of Inspection: _____

Site-wide inspections will be performed annually, at a minimum. A site-wide inspection shall also be performed after severe events that may affect the monitoring wells.

The following inspection form shall be completed during each site-wide inspection. Supporting documentation shall be attached, as necessary. The completed site-wide inspection checklist and supporting documentation shall be included in the Periodic Review Report (PRR).

Compliance with Institutional Controls

Institutional Controls (ICs) are required for this Site to restrict Site usage and will be implemented with an environmental easement. These ICs are described in Section 3.2 of the Site Management Plan (SMP) and the IC checklist will become applicable following the filing of the environmental easement. The following checklist will be completed during each Site-wide inspection following recording of the environmental easement to confirm compliance with the Site ICs:

- The Site may only be used for restricted residential, commercial, or industrial or uses unless the express written waiver of the NYSDEC or relevant agency is obtained. Confirm that Site usage is compliant with the usage restriction:
- The use of the groundwater underlying the property is prohibited without necessary water quality treatment, as determined by the NYSDOH or SCDHS to render it safe for use as drinking water or for industrial uses, and the user must first notify and obtain written approval to do so from the NYSDEC or relevant agency. Confirm that no unauthorized private wells have been installed:

- Data and information pertinent to site management must be reported at the frequency and in the manner defined in the SMP. Confirm that the required site management information reporting is in compliance with the SMP: ______
- Activities that will disturb the remaining contaminated material must be performed in accordance with the SMP. Confirm that any such activities are compliant with the SMP:
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified in the environmental easement. Confirm that Site access was provided, if applicable:
- The potential for vapor intrusion must be evaluated for any buildings developed in the area of the IC boundaries, and appropriate actions to address exposures must be implemented. Confirm that any buildings developed within the area of the IC boundaries have been evaluated for potential vapor intrusion and, if applicable, and appropriate actions to address exposures have been implemented:
- Vegetable gardens and farming on the Site are prohibited. Confirm that no vegetable gardens or farming are present on the Site:

General Site Conditions

Provide	a written descrij	ption c	of the Sit	e conditions at	the time of the	site-w	ide inspection	n. Attach
digital	photographs	or	other	supporting	information	as	needed:	
Annual	inspections and	certifi	cations	must be condu	cted in accorda	nce wi	th the SMP.	Confirm
complia	nce with annu	ual in	spection	ns and certif	ications:			
Ground	water and other	enviro	onmental	or public heal	th monitoring,	and re	porting of in	formation
thus obt	ained, must be p	erforn	ned in a	manner specifi	ed in the SMP	until tł	ne monitoring	g program
is termi	nated. Confirm	that t	the requi	ired monitorin	g and reporting	g are i	n accordance	with the
SMP:								<u> </u>
					had not limit			
	environmental m		U	e e		U		U

wells, will be protected and replaced as necessary to ensure continued functioning in the manner specified in the SMP until the monitoring program is terminated. Confirm that monitoring devices have been protected and/or replaced:

Provide a discussion and assessment of ongoing groundwater monitoring, well replacement/repair, residual soil management, vapor intrusion evaluations, and other applicable and pertinent activities. Attach supporting documentation as necessary:

Compliance with Schedules

The SMP includes a schedule for groundwater monitoring and site-wide inspections. Discuss compliance with the groundwater monitoring and inspection schedules:

Site Records

The Site records include, but are not limited to, groundwater monitoring reports, site-wide inspection checklists, non-routine notifications to the NYSDEC, regulatory agency correspondence, reports, and the PRR. Confirm that each type of Site record is up to date and provide comments:

Inspector Information

Name and Affiliation of Inspector:
Date of Inspection:
Reason for Inspection:
List additional inspections or activities conducted in association with this inspection:

Well Sampling Form Deutsch Relays, Inc. Site 65 Daly Road, East Northport, New York

Well No.:	Well Diameter:	
Date:	Start Time:	
Weather:	Finish Time:	
Sampled By (full name and affiliation):		
Depth to Bottom of Well:	Feet.	
Depth to Water:	Feet.	
Height of Water Column:	Feet.	
Water Volume in Casing:	Gallons.	
Water Volume to be Purged: Ga	llons.	
Water Volume Actually Purged: G	allons.	
Purge Method:		
Physical Appearance/Comments:		

FIELD MEASUREMENTS:

Time	Gallons	pН	Cond. (uS)	Temp. (°F)	Turbidity (NTU)

Well Maintenance Form Deutsch Relays, Inc. Site 65 Daly Road, East Northport, New York

Well No.:
Nature of Maintenance:
Name and Affiliation of Maintenance Personnel:
Describe Maintenance in detail:
Additional Comments:

Attach all supporting documentation including location of maintenance work, digital photographs, sketches, invoices, equipment instructions, manuals, etc.

CANISTER FIELD SAMPLING RECORD

Project:				
Site Location:				
Sample ID		Canister ID		
Sampler		Canister Volume		
Location		Flow Controller ID		
Height		Flow Controller Setting		
Sample Type (sub-slab, soil gas, amb, indoor)				

Reading	Date	Time	Vacuum
Initial Canister Vacuum			
Final Canister Vacuum			

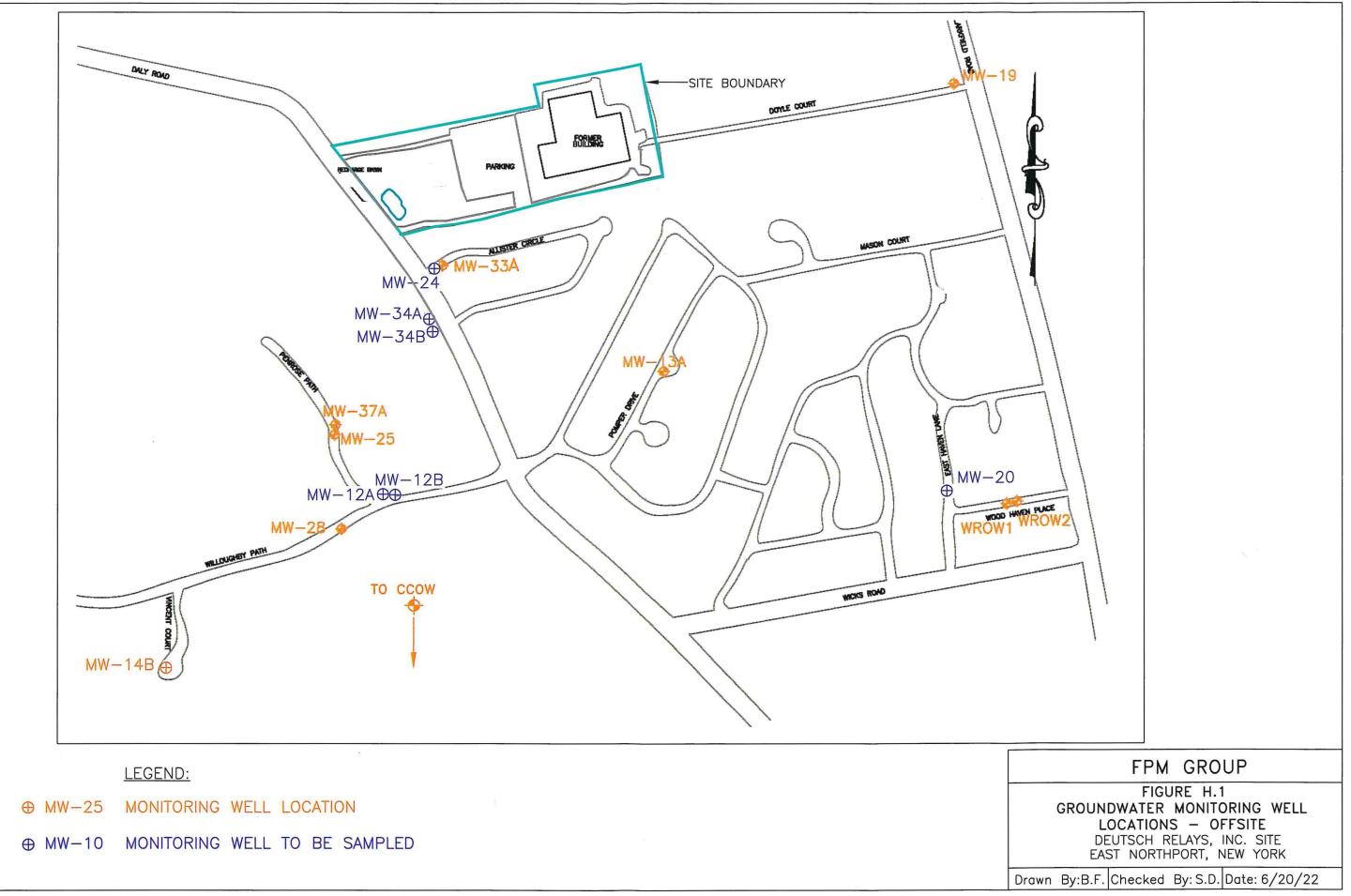
Weather or Ambient Con	ditions:	
Purge Data:		
Helium Check Data:		
Comments:		

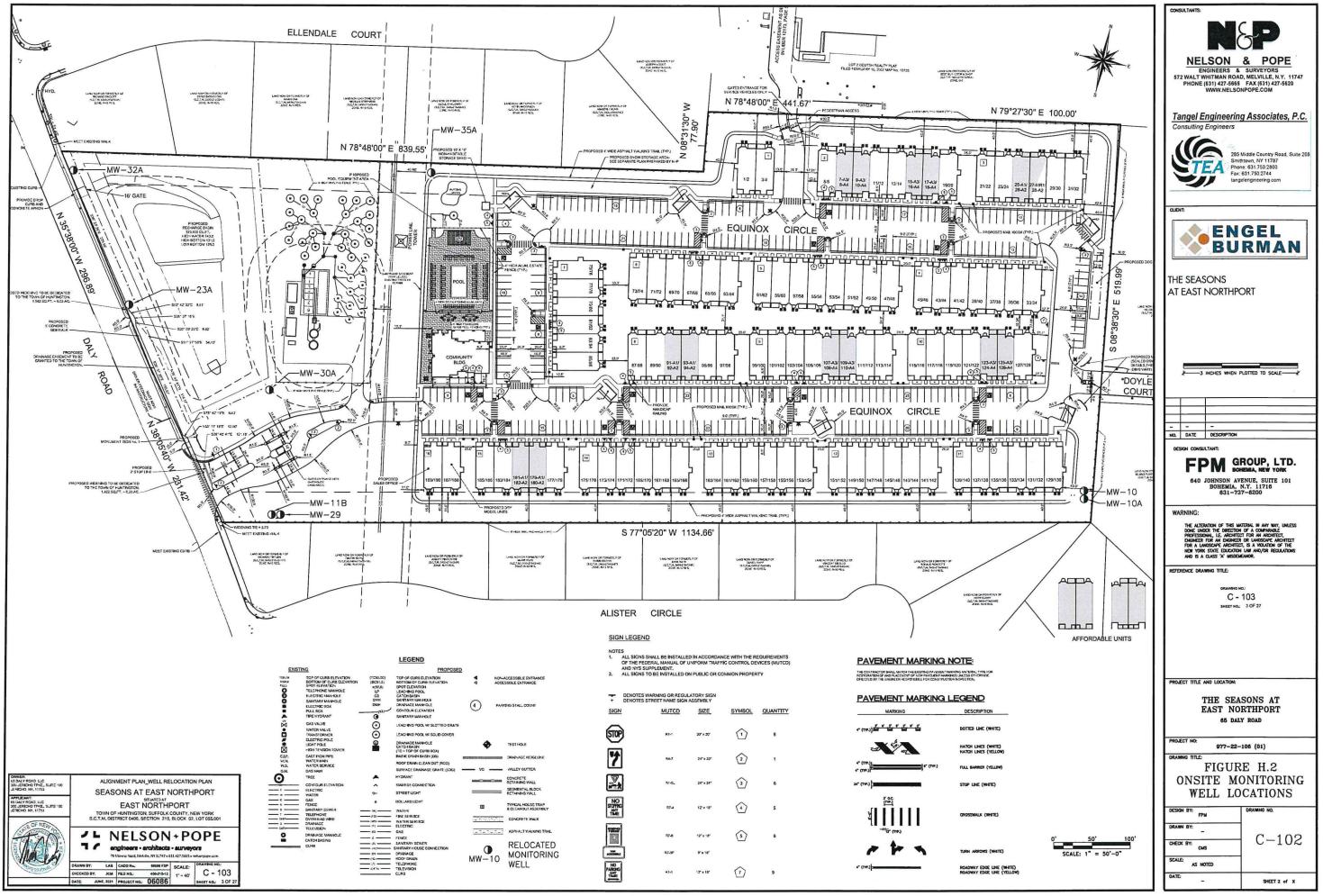
APPENDIX H FIELD SAMPLING PLAN

This Field Sampling Plan (FSP) has been prepared by FPM Group (FPM) for the Deutsch Relays, Inc. Site located at 65 Daly Road, East Northport, New York (hereinafter referred to as the "Site"). The Site is currently in the New York State Inactive Hazardous Waste Disposal Site Remedial Program as Site No. 152003, which is administered by New York State Department of Environmental Conservation (NYSDEC). This FSP is part of the Site Management Plan (SMP) for the Site and includes the field sampling procedures for site management activities. A Quality Assurance Project Plan (QAPP) is also included in the SMP (Appendix I); the QAPP includes quality assurance/quality control (QA/QC) procedures to be used for sampling and analytical activities.

The selected remedial actions for the Site have been completed and are documented in detail in the SMP. Monitoring of the remaining contamination at the Site is detailed in the SMP and includes monitoring of residual groundwater impacts from select volatile organic compounds (VOCs). A plan showing the offsite groundwater monitoring wells is presented on Figure H.1 and the approved locations of the onsite wells that will be relocated in 2022 is shown on Figure H.2.

The Site also includes extremely limited areas of residual soil impacts. The Excavation Work Plan (EWP) provided in Appendix F of the SMP outlines the procedures required to be implemented in the event the remaining residual contamination is disturbed. Soil sampling may be necessary if residual soil is removed.


H.1 Sampling Procedures


Procedures for groundwater monitoring at the Site are described in Section 4.3.1 of the SMP and in the sections below. Soil sampling procedures are described below in the event that soil sampling becomes necessary. All sampling work will be overseen by a qualified environmental professional (QEP).

All sample locations during site management activities will be recorded and identified by unique latitude/longitude coordinates (decimal degrees), as required by the NYSDEC's environmental information management system (EIMS). This information will be included in the electronic data deliverables (EDDs) to be uploaded to the EIMS.

An Analytical Methods/Quality Assurance Summary Table showing the number and types of primary samples by matrix, analytical parameters and methods, QA/QC samples, and sample containers, preservation, and holding times is shown on Table H.1.1.

H-3

TABLE H.1.1 SAMPLING MATRIX DEUTSCH RELAYS, INC. SITE 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location/Type	Matrix	Number/ Frequency	Analysis	Sample Bottles Preservation	Holding Time
Monitoring Wells	Groundwater	12/once-per-five- quarters	VOCs, Method 8260	Two glass VOA vials with HCL	14 days
Soil Samples (if needed)	Soil As needed	As needed	VOCs, Method 8260	One glass VOA vial with MeOH, two Glass VOA vials with water	Frozen within 48 hours of collection, 14 days until analysis
			TAL metals, Methods 6010B and 7471	One 8 ounce Glass w/Teflon Lined Cap	6 months (28 days for mercury)
Sub-slab Soil Vapor/Air	Vapor/Air	As needed	TO-15	Summa cannister	14 days
Equipment blanks	Lab water	One per day of groundwater or soil sampling	VOCs, Method 8260	Two glass VOA vials with HCL	14 days
			TAL metals, Methods 6010B and 7470	One 500 ml Plastic with Nitric Acid	28 days
Trip blanks	Lab water	One per cooler with groundwater or soil VOC samples	Same as primary samples	Two glass VOA vials with HCL	14 days
Blind duplicates	All Matrixes	One per 10 environmental samples	Same as primary samples	Same As Primary Samples	Same as Primary Samples
MS/MSD	Groundwater or soil	One per 20 soil or groundwater samples	Same as primary samples	Same As Primary Samples	Same as Primary Samples

Notes:

VOCs = Volatile organic compounds

MS/MSD = Matrix spike/matrix spike duplicate.

HCL = hydrochloric acid

H.1.1 Groundwater Sampling Procedures

A network of monitoring wells was installed to monitor groundwater conditions at the Site and was modified in 2022 with NYSDEC concurrence. Groundwater monitoring will be performed on a once-per-five-quarter basis at select wells to assess the anticipated continued decrease in Site-related VOC concentrations following the completion of remediation. The select wells are MW-10, MW-24, MW-29, MW-10A, MW-12A, MW-32A, MW-23A, MW-34B, MW-12B, MW-11B, MW-34A, and MW-20. The sampling frequency may not be modified unless the approval of the NYSDEC is first obtained in writing.

At each well to be sampled, the depth to the static water level and depth of the well will be measured. A decontaminated pump with dedicated polyethylene tubing will be used to conduct low-flow purging and sampling. Field parameters, including pH, turbidity, specific conductivity, dissolved oxygen (DO), and temperature, will be monitored during purging and when all stability parameters vary by less than 10 percent and the turbidity is less than 50 NTU, the wells will be sampled. Well sampling forms documenting the well purging and sampling procedures will be completed.

Following purging, sampling will be performed. Samples will be obtained directly from the pump tubing. The retrieved samples will be decanted into laboratory-supplied sample containers. Each sample container will be labeled, and the labeled containers will be placed in a cooler with ice to depress the sample temperature to four degrees Celsius. A chain of custody form will be completed and kept with the cooler to document the sequence of sample possession. At the end of each day, the filled cooler will be transported by FPM or overnight courier to the selected NYSDOH ELAP-certified laboratory. The groundwater samples will be analyzed for VOCs using EPA SW846 Method 8260.

The resulting groundwater chemical analytical data will be used to document groundwater quality. The associated water level data will be used to evaluate the Site-specific groundwater flow direction(s).

H.1.2 Soil Sampling Procedures

In the event that soil sampling becomes necessary, the samples will be obtained utilizing either dedicated or decontaminated soil sampling equipment. The retrieved samples will be visually examined and screened with a calibrated photoionization detector (PID) by the QEP, and then placed into laboratory-provided glassware appropriate for the analysis to be performed. Upon completion of soil sampling, the glassware will be sealed, labeled, managed, transported, and tracked as described in Section H.3 below.

H.1.3 Soil Vapor Intrusion Sampling Procedures

No buildings were present onsite at the time the SMP was prepared and revised in 2022. It is planned to redevelop the Site with a restricted residential use and the new buildings will be constructed with vapor barriers and sub-slab depressurization systems (SSDSs). An SVI Evaluation and Mitigation Work Plan was submitted to the NYSDEC and NYSDOH in April 2022 and comments were received in June 3, 2022 correspondence. The Work Plan was revised and resubmitted on June 14, 2022 and NYSDEC approval is anticipated. If SVI testing is conducted, the sampling procedures will be in accordance with the approved Work Plan and the NYSDOH *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (October 2006 and subsequent updates).

The Work Plan includes details for the vapor barriers and SSDSs that will be constructed beneath each habitable building, a plan for construction oversight and performance evaluation for each SSDS, and reporting procedures. The Work Plan also includes procedures for conducting SVI evaluations to determine whether SVI presents a concern and if operation of the SSDSs can be terminated.

Upon completion of the SVI mitigation measures construction, SSDS performance evaluations, and any SVI evaluations, any actions taken or to be taken will be reflected in an update to this SMP. The SVI sampling procedures in the Work Plan are generally summarized in the following paragraphs.

At each sub-slab implant location to be sampled the manhole covering the sub-slab vapor implant will be opened and polyethylene tubing will be attached to the implant and extended to above grade. One to three implant volumes of air will be purged through the polyethylene tubing using an air pump to ensure that a representative sample is obtained and to confirm the integrity of the bentonite seal of the implant. The purge rate will not exceed 0.2 liters per minute. The seal will be evaluated by confining a helium tracer gas over the implant area and checking with a helium meter. Following purging and the seal integrity check, the sub-slab soil vapor sample will be collected into laboratory-supplied Summa canisters equipped with calibrated flow controller. The flow controller will be set so as not to exceed 0.2 liters per minute and to collect the sample over an approximate 24-hour period, commensurate with the proposed use of the buildings. Upon completion of sampling, the canister will be sealed, labeled, managed, transported, and tracked as described in Section H.3. The sample will be analyzed for VOCs using the TO-15 Method.

Indoor air and outdoor (ambient) air sampling will be performed concurrently with subslab soil vapor sampling. The laboratory-provided Summa canisters for these air samples will be placed at a height of approximately three feet above grade within the building in proximity to the sub-slab vapor sampling locations, and outdoors in proximity to the building. Each canister will be equipped with flow controller such that the canister is filled at a rate of less than 0.2 liters per minute over an approximate 24-hour period, commensurate with the proposed use of the buildings. Upon completion of sampling, the canisters will be sealed, labeled, managed, transported, and tracked as described in Section H.3 below. The indoor air and outdoor air samples will be analyzed for VOCs using the TO-15 low-level Method.

H.2 Quality Assurance/Quality Control Samples

QA/QC procedures will be utilized during site management work to ensure that the resulting chemical analytical data accurately represent conditions at the Site. The following sections include descriptions of the procedures to be used for collection and management of QA/QC samples.

QA/QC samples will be collected and utilized to evaluate the potential for field or laboratory contamination and to evaluate the laboratory's analytical precision and accuracy. The Analytical Methods/Quality Assurance Summary presented on Table H.1.1 shows the number and types of QA/QC samples by matrix, analytical parameters and methods, sample containers, preservation, and holding times. The specific types of QA/QC samples to be collected are described below.

Equipment Blank Samples

Decontamination procedures will be evaluated by the use of equipment blank samples. These samples consist of aliquots of laboratory-supplied water that are poured over or through the dedicated or decontaminated sampling equipment and then submitted to the laboratory for analysis. An equipment blank sample will be prepared for each day that groundwater or soil sampling is conducted at the Site and will be analyzed for the target constituents for that day. The equipment blanks will be labeled in a manner to prevent identification by the analytical laboratory.

Trip Blank Samples

Trip blank samples will be utilized to evaluate the potential for VOC cross-contamination between groundwater or soil samples in the same cooler. Trip blank samples consist of laboratoryprovided containers filled with laboratory water that are sealed in sample bottles at the laboratory and that are transported to and in the field with the other groundwater sample containers. A trip blank will be shipped with each group of groundwater samples and will be managed in the field and analyzed in the laboratory in the same manner as the primary environmental samples.

Blind Duplicate Samples

Blind duplicate samples will be obtained at a frequency of at least one per every 20 groundwater, soil, and vapor/air samples and will be used to attest to the precision of the laboratory. A blind duplicate consists of a separate aliquot of sample collected at the same time, in the same manner, and analyzed for the same parameters as the primary environmental sample. The blind duplicate samples are labeled in a manner such that they cannot be identified by the laboratory. The sample results are compared to those of the associated primary environmental sample to evaluate if the results are similar.

MS/MSD Samples

Matrix spike/matrix spike duplicate (MS/MSD) samples will be collected at a frequency of one per 20 groundwater or soil samples. The purpose of the MS/MSD samples is to confirm the accuracy and precision of laboratory results based on a particular matrix. The MS/MSD results will be evaluated during the preparation of the Data Usability Summary Reports (DUSRs) as discussed in the QAPP (Appendix I).

H.3 Sample Management and Analysis

Each sample container will be labeled with the Site name, sample location, date and time of sampling, and analysis to be performed. The labeled containers for groundwater and/or soil samples will be placed in a cooler with ice to depress the sample temperature to four degrees Celsius. The sealed Summa cannisters will be packed in a shipping container. A chain of custody form will be completed and kept with the cooler or shipping container to document the sequence of sample possession. At the end of each day, the filled cooler/shipping container will be sealed and transported by FPM or overnight courier to the selected NYSDOH ELAP-certified laboratory.

All samples will be submitted to a New York State Department of Health ELAP-certified laboratory under chain of custody. All samples will be analyzed for the targeted analytes as specified in Table H.1.1 and in accordance with the NYS ASP with Category B deliverables.

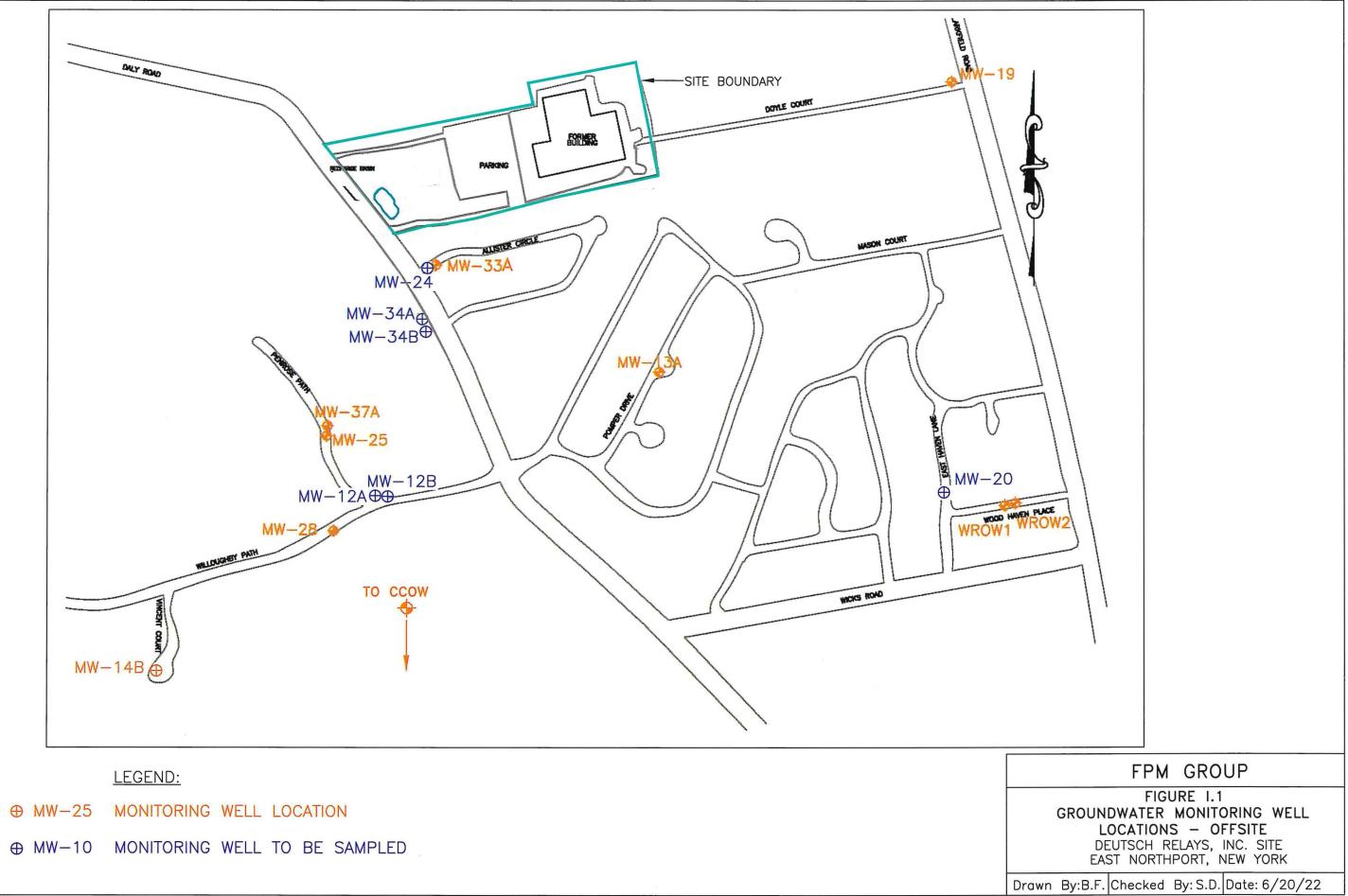
APPENDIX I

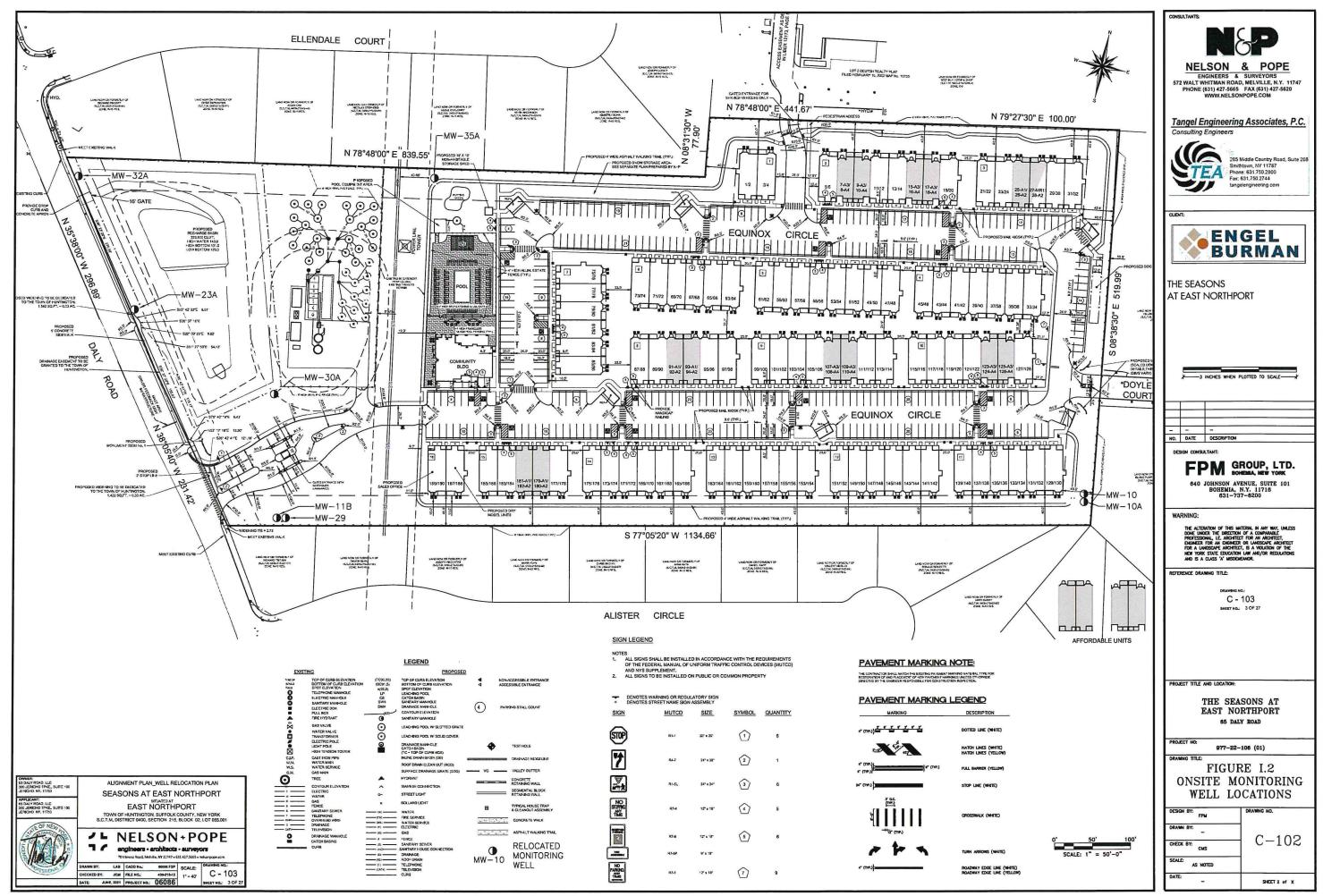
QUALITY ASSURANCE PROJECT PLAN

This Quality Assurance Project Plan (QAPP) has been prepared by FPM Group (FPM) for the Deutsch Relays, Inc. Site located at 65 Daly Road, East Northport, New York (hereinafter referred to as the "Site"). The Site is currently in the New York State (NYS) Inactive Hazardous Waste Disposal Site Remedial Program as Site No. 152003, which is administered by New York State Department of Environmental Conservation (NYSDEC). This QAPP is part of the Site Management Plan (SMP) for the Site and includes the quality assurance and quality control (QA and QC) procedures for Site sampling activities. Sampling procedures are summarized herein and more fully documented in the Field Sampling Plan (FSP, Appendix H to the SMP).

The remedial actions for the Site have been completed and are documented in detail in the SMP. Management of the remaining contamination at the Site is detailed in the SMP and includes groundwater monitoring at select wells for volatile organic compounds (VOCs). Groundwater monitoring will be conducted to document the anticipated continued decline of Site-related VOCs in groundwater. Site plans showing the groundwater monitoring wells are presented on Figures I.1 and I.2.

Following soil remediation in 2022 no areas of residual contaminated soil remain present onsite. The Excavation Work Plan (EWP) provided in Appendix F of the SMP outlines the procedures to be implemented if residual contaminated soil is identified during redevelopment or other intrusive activities onsite. Soil sampling may be necessary if residual soil is identified.


Soil vapor intrusion (SVI) testing may be conducted for new buildings to be constructed on the Site, which is presently vacant. As discussed in Section 4.2 of the SMP and H.1.3 of the FSP, a Work Plan that includes SVI testing has been prepared and submitted to the NYSDEC for approval. The sampling procedures in the Work Plan are outlined in Section H.1.3 of the FSP and below and may be modified based on subsequent work plan(s).


G.1 Data Quality Objectives

The Data Quality Objectives (DQOs) will be applicable to all data-gathering for monitoring activities at the Site. DQOs will be incorporated into sampling, analysis, and QA tasks associated with monitoring activities.

The data users for this project are FPM Group (FPM), the New York State Department of Environmental Conservation (NYSDEC), and the New York State Department of Health (NYSDOH). The Site owner will also be provided with the data. No other data users are

anticipated. The collected data are intended to be used to evaluate groundwater conditions. If potential contaminated soil is identified, soil sampling data may also be used to assess the potential presence of residual soil. SVI testing results are anticipated to be used to evaluate the potential for SVI for new buildings.

I.2 Standards, Criteria, and Guidance

The remedial measures for this Site were consistent with remedial action objectives developed based on the use of the Site and on potential impacts to the surrounding community and environment. The selected standards, criteria and guidance (SCGs) for this Site include:

- For groundwater, the NYSDEC Class GA Ambient Water Quality Standards established in the NYSDEC Water Quality Regulations for Surface Waters and Groundwaters (6 NYCRR Parts 700-705, revised March 8, 1998) have been selected as the SCGs. These standards are well-established water quality standards for fresh groundwater that has the potential to be utilized for water supply.
- For soil, the NYSDEC Part 375-6 Soil Cleanup Objectives have been established as the SCGs. These NYSDEC Objectives are applicable to soil and were formulated to be protective of human health and the environment.
- For sub-slab soil vapor and indoor air, the guidance in the NYSDOH Guidance Document for Evaluating Soil Vapor Intrusion in the State of New York (October 2006, with subsequent updates) is the applicable SCG. This guidance is used to establish no further action, monitoring, and mitigation levels for VOCs in indoor air and sub-slab soil vapor.

I.3 Sampling

Procedures for groundwater monitoring at the Site are described in detail in the FSP and Section 4.3.1 of the SMP. Soil sampling procedures are also provided in the FSP, in the event that soil sampling becomes necessary. SVI testing procedures for new buildings are also provided in the FSP. All sampling work will be overseen by a qualified environmental professional (QEP). All laboratory testing is anticipated to be performed by Alpha Analytical of Westboro, MA, which is NYSDOH-ELAP-certified for all of the anticipated analyses.

All sample locations during site management activities will be recorded and identified by unique latitude/longitude coordinates (decimal degrees), as required by the NYSDEC's environmental information management system (EIMS). This information will be included in the electronic data deliverables (EDDs) to be uploaded to the EIMS.

An Analytical Methods/Quality Assurance Summary Table showing the number and types of primary samples by matrix, analytical parameters and methods, QA/QC samples, and sample containers, preservation, and holding times is shown on Table I.3.1.

Groundwater Sampling Procedures

A network of monitoring wells has been installed to monitor groundwater conditions at the Site; the network was modified in 2022 with NYSDEC concurrence. Groundwater monitoring will be performed on a once-per-five-quarter basis at 12 wells. The sampling frequency may not be modified unless the approval of the NYSDEC is first obtained in writing.

At each well to be sampled, the depth to the static water level and depth of the well will be measured. A decontaminated pump with dedicated polyethylene tubing will be used to purge each ell using low-flow techniques. During purging field parameters, including pH, turbidity, specific conductivity, dissolved oxygen (DO), and temperature, will be monitored. When all stability parameters vary by less than 10 percent and the turbidity is less than 50 NTU, the wells will be sampled. Well sampling forms documenting the well purging and sampling procedures will be completed.

Following purging, sampling will be performed. Samples will be obtained directly from the pump tubing. The retrieved samples will be decanted into laboratory-supplied sample containers. Each sample container will be labeled, and the labeled containers will be placed in a cooler with ice to depress the sample temperature to four degrees Celsius. A chain of custody form will be completed and kept with the cooler to document the sequence of sample possession. At the end of each day, the filled cooler will be transported by FPM or overnight courier to the selected NYSDOH ELAP-certified laboratory. The groundwater samples will be analyzed for VOCs using EPA SW846 Method 8260.

The resulting groundwater chemical analytical data will be used to document groundwater quality and the associated water level data will be used to evaluate the Site-specific groundwater flow direction(s).

Soil Sampling Procedures

In the event that soil sampling becomes necessary, the samples will be obtained utilizing either dedicated or decontaminated soil sampling equipment. The retrieved samples will be visually examined and screened with a calibrated PID by the QEP, and then placed into laboratory-provided glassware. Upon completion of soil sampling, the glassware will be sealed, labeled, managed, transported, and tracked as described below.

TABLE I.3.1 SAMPLING MATRIX DEUTSCH RELAYS, INC. SITE 65 DALY ROAD, EAST NORTHPORT, NEW YORK

Sample Location/Type	Matrix	Number/ Frequency	Analysis	Sample Bottles Preservation	Holding Time
Monitoring Wells	Groundwater	1/once-per-five- quarters	VOCs, Method 8260	Two Glass VOA vials with HCL	14 days
O sil O surriss (if a sed sil)	Soil As needed		TAL metals, Methods 6010B and 7471	One 8 ounce Glass w/Teflon Lined Cap	6 months (28 days for mercury)
Soil Samples (if needed)		As needed	VOCs, Method 8260	One glass VOA vial with MeOH, two glass VOC vials with water	Frozen within 48 hours of collection, 14 days until analysis
Sub-slab Soil Vapor/Air Samples	Vapor/Air	As needed	TO-15	Summa cannister	14 days
Equipment blanks	Lab water	One per day of groundwater or soil sampling	VOCs, Method 8260	Two glass VOA vials with HCL	14 days
			TAL metals, Methods 6010B and 7470	One 500 ml Plastic with Nitric Acid	28 days
Trip blanks	Lab water	One per cooler with VOC soil or groundwater samples	Same as primary samples	Two glass VOA vials with HCL	14 days
Blind duplicates	All Matrixes	One per 10 environmental samples	Same as primary samples	Same As Primary Samples	Same as Primary Samples
MS/MSD	Groundwater or soil	One per 20 soil or groundwater samples	Same as primary samples	Same As Primary Samples	Same as Primary Samples

Notes:

VOCs = Volatile organic compounds

MS/MSD = Matrix spike/matrix spike duplicate.

Soil Vapor Intrusion Sampling Procedures

It is planned to redevelop the Site with a restricted residential use and the new buildings will be constructed with vapor barriers and sub-slab depressurization systems (SSDSs). An SVI Evaluation and Mitigation Work Plan was submitted to the NYSDEC and NYSDOH in April 2022, with comments received in June. The Work Plan was revised and re-submitted on June 14, 2022 and NYSDEC approval is anticipated. The Work Plan includes procedures for conducting SVI evaluations to determine whether SVI presents a concern and if operation of the SSDSs can be terminated. If SVI testing is conducted, the sampling procedures will be in accordance with the approved Work Plan and the NYSDOH *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (October 2006 and subsequent updates). Upon completion of the SVI mitigation measures construction, SSDS performance evaluations, and any SVI evaluations, any actions taken or to be taken will be reflected in an update to this SMP.

SVI sampling will be performed using sub-slab vapor implants, indoor air sampling locations, and outdoor air sampling locations. At each sub-slab implant location to be sampled the manhole covering the sub-slab vapor implant will be opened and polyethylene tubing will be attached to the implant and extended to above grade. One to three implant volumes of air will be purged through the polyethylene tubing using an air pump to ensure that a representative sample is obtained and to confirm the integrity of the bentonite seal of the implant. The purge rate will not exceed 0.2 liters per minute. The seal will be evaluated by confining a helium tracer gas over the implant area and checking with a helium meter. Following purging and the seal integrity check, the sub-slab soil vapor sample will be collected into laboratory-supplied Summa canisters equipped with calibrated flow controller. The flow controller will be set so as not to exceed 0.2 liters per minute and to collect the sample over an approximate 24-hour period, commensurate with the proposed use of the buildings. Upon completion of sampling, the canister will be sealed, labeled, managed, transported, and tracked as described in Section H.3. The sample will be analyzed for VOCs using the TO-15 Method.

Indoor air and outdoor (ambient) air sampling will be performed concurrently with subslab soil vapor sampling. The laboratory-provided Summa canisters for these air samples will be placed at a height of approximately three feet above grade within the building in proximity to the sub-slab vapor sampling locations, and outdoors in proximity to the building. Each canister will be equipped with flow controller such that the canister is filled at a rate of less than 0.2 liters per minute over an approximate 24-hour period, commensurate with the proposed use of the buildings. Upon completion of sampling, the canisters will be sealed, labeled, managed, transported, and

tracked as described in Section H.3 below. The indoor air and outdoor air samples will be analyzed for VOCs using the TO-15 low-level Method.

I.4 Quality Assurance/Quality Control Procedures

QA/QC procedures will be utilized during the site management work to ensure that the resulting chemical analytical data accurately represent conditions at the Site. The following sections include descriptions of the QA/QC procedures to be utilized.

Equipment Decontamination Procedures

All non-disposable equipment (i.e., pumps, etc.) used during sampling activities will be decontaminated by washing in a potable water and Alconox solution and rinsing in potable water prior to use at each location to reduce the potential for cross-contamination. All sampling equipment will be either dedicated disposable equipment or will be decontaminated prior to use at each location. The decontamination procedures utilized for all non-disposable sampling equipment will be as follows:

- 1. The equipment will be scrubbed in a bath of potable water and low-phosphate detergent followed by a potable water rinse;
- 2. The equipment will be rinsed with distilled water; and
- 3. The equipment will be allowed to air dry, if feasible, and wrapped in clean protective materials for storage and transportation.

QA/QC Samples

QA/QC samples will be collected and utilized to evaluate the potential for field or laboratory contamination and to evaluate the laboratory's analytical precision and accuracy. The Analytical Methods/Quality Assurance Summary presented on Table I.3.1 shows the number and types of QA/QC samples by matrix, analytical parameters and methods, sample containers, preservation, and holding times. The specific types of QA/QC samples to be collected are described below.

Decontamination procedures will be evaluated by the use of equipment blank samples. These samples consist of aliquots of laboratory-supplied water that are poured over or through the dedicated or decontaminated sampling equipment and then submitted to the laboratory for analysis. An equipment blank sample will be prepared for each day that groundwater or soil sampling is conducted at the Site and will be analyzed for the target constituents for that day. The equipment blanks will be labeled in a manner to prevent identification by the analytical laboratory.

Trip blank samples will be utilized to evaluate the potential for VOC cross-contamination between groundwater or soil samples in the same cooler. Trip blank samples consist of laboratoryprovided containers filled with laboratory water that are sealed in sample bottles at the laboratory and that are transported to and in the field with the other sample containers. A trip blank will be shipped with each group of groundwater and soil samples and will be managed in the field and analyzed in the laboratory in the same manner as the primary environmental samples.

Blind duplicate samples will be obtained at a frequency of at least one per every 20 groundwater, soil, or soil vapor/air samples and will be used to attest to the precision of the laboratory. A blind duplicate consists of a separate aliquot of sample collected at the same time, in the same manner, and analyzed for the same parameters as the primary environmental sample. The blind duplicate samples are labeled in a manner such that they cannot be identified by the laboratory. The sample results are compared to those of the primary environmental sample to evaluate if the results are similar.

Matrix spike/matrix spike duplicate (MS/MSD) samples will be collected at a frequency of one per 20 groundwater or soil samples. The purpose of the MS/MSD samples is to confirm the accuracy and precision of laboratory results based on a particular matrix. The MS/MSD results will be evaluated during the preparation of the Data Usability Summary Reports (DUSRs) as discussed below.

Chain-of-Custody Procedures

For each day of sampling, chain-of-custody (COC) sheets will be completed and submitted to the laboratory with the samples collected that day. A copy of each COC sheet will be retained by FPM for sample tracking purposes. Each COC sheet will include the project name, the sampler's signature, the sampling locations, and intervals, and the analytical parameters requested.

Data Usability Summary Reports

All chemical analytical results will be evaluated using the sample data packages, sample data summary packages, and case narratives provided by the analytical laboratory. The data evaluation will be performed to verify that the analytical results are of sufficient quality to be relied upon to assess the concentrations of the targeted constituents in the environmental matrices at the Site. A DUSR shall be prepared for each data package following the "Guidance for the Development of Data Usability Summary Reports" provided by the NYSDEC. The anticipated DUSR preparer is Richard Baldwin, PG , who is independent of this project.

I.5 Sample Analysis

All samples will be submitted to Alpha Analytical, which is a NYSDOH ELAP-certified laboratory, or an alternate ELAP-certified laboratory. All samples will be analyzed for the targeted analytes as specified in Table I.3.1 and in accordance with the NYS ASP with Category B deliverables.

The laboratory will follow all calibration procedures and schedules as specified in USEPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.

I.6 Data Evaluation and Reporting

The data collected will be assembled, reviewed, and evaluated following each sampling event. The groundwater samples will be used to assess the anticipated continued improvement in groundwater quality following the completion of remediation at the Site. The soil samples, if collected, will be used to evaluate the potential for residual soil to remain present onsite. The SVI samples will be used to evaluate the potential for SVI for new buildings.

Data reporting will be as specified in Section 5 of the SMP.

I.7 Project Organization

The Project Manager and field supervisor for this project will be Jake Stumm. Mr. Stumm will also serve as the Health and Safety Officer. The overall Program Manager will be Stephanie Davis, PG, and the QAO will be Ben Cancemi, PG. Resumes for these personnel are included at the end of this document. Subcontracted services will consist of laboratory services.

APPENDIX J

HEALTH AND SAFETY PLAN AND COMMUNITY AIR MONITORING PLAN

This worker Health and Safety Plan (HASP) has been prepared by FPM Group (FPM) for New York State Department of Environmental Conservation (NYSDEC) Inactive Hazardous Waste Disposal Site #152003, identified as the Deutsch relays, Inc. Site located at 65 Daly Road, East Northport, New York (Site). This HASP is part of the Site Management Plan (SMP) for the Site and includes measures for the protection of worker health and safety during site management activities, which include monitoring and sampling activities and may include excavations into residual materials.

A Community Air Monitoring Plan (CAMP) is also included in Section J.2 to address potential air emission issues that may affect the Site community.

This HASP and CAMP were prepared for the use of FPM and remedial contractors who may perform work during site management activities. In the event that site management activities are conducted by others, references to FPM and/or FPM personnel in this HASP and CAMP are intended to mean properly qualified, trained, and experienced environmental professionals.

J.1 Worker Health and Safety Plan

J.1.1 Introduction

This HASP has been written for compliance with "OSHA Hazardous Waste Operations Standards (29 CFR 1910.120)", the guidance documents, "Standard Operating Safety Guidelines (Office of Solid Waste and Emergency Response, 1992)" and the "Occupational Safety and Health Guidance Manual for Hazardous Waste Activities" (U.S. Department of Health and Human Services, 1985).

J.1.2 Scope and Applicability of the HASP

This HASP is designed to be applicable to locations where groundwater monitoring, excavation into residual materials, and soil sampling (affected activities) are performed at the Site by all parties that either perform or witness the activities on the Site. This HASP may also be modified or amended to meet specific needs of the proposed work.

This HASP will detail the Site safety procedures, Site background, and safety monitoring. Contractors will be required to adopt this HASP in full or to follow an FPM-approved HASP. The Health and Safety Officer (HSO) will be present at the Site to inspect the implementation of the HASP; however, it is the sole responsibility of the contractor(s) to comply with the HASP.

The HASP has been formulated as a guide to complement professional judgment and experience. The appropriateness of the information presented should always be evaluated with respect to unforeseen Site conditions which may arise.

J.1.3 Site Work Zone and Visitors

The Site work zone (a.k.a. exclusion zone) during the performance of the affected activities will be a 30-foot radius about the work location. This work zone may be extended if, in the judgment of the HSO, Site conditions warrant a larger work zone.

No visitors will be permitted within the work zone without the consent of the HSO. All visitors will be required to be familiar with, and comply with, the HASP. The HSO will deny access to those

whose presence within the work zone is unnecessary or those who are deemed by the HSO to be in non-compliance with the HASP.

All Site workers involved in the affected activities, including contractors, will be required to have 40-hour hazardous material training (eight-hour refresher courses annually), respirator fit test certification, and current medical surveillance as stated in 29 CFR 1910.120.

The HSO will also give an onsite health and safety discussion to all Site personnel, including the contractors, prior to initiating the affected activities. Workers not in attendance during the health and safety talk will be required to have the discussion with the HSO prior to entering the work zone.

Emergency telephone numbers and directions to the nearest hospital are shown in Table J.1.3.1 and will be kept at the Site in the possession of the HSO and will be available to all Site workers and visitors.

J.1.4 Key Personnel/Alternates

The Project Manager for the affected activities is Jake Stumm. Mr. Stumm will also act as the HSO. An assistant project manager and assistant HSO may be designated for field activities.

J.1.5 <u>Site Background</u>

Based on the Site history and previous analyses of samples, the known chemicals of concern present at the Site include select VOCs, copper and mercury. These chemicals are present in groundwater, soil, and/or soil vapor at the Site. Remedial measures have included excavation and disposal of impacted soil and construction and operation of a groundwater extraction and treatment system. The anticipated activities to be conducted under the SMP include groundwater monitoring. If residual soil is identified, then excavation into residual soil and soil sampling may also occur.

J.1.6 <u>Task/Operation Health and Safety Analysis</u>

This section presents health and safety analyses for groundwater monitoring and sampling and potential excavations into residual soil. In general, FPM will employ one to two persons at the Site. No excavation into residual soil, monitoring or sampling will be conducted by contractors without the presence of an FPM representative onsite. In the event that the HSO is not present on the Site, the Assistant HSO will implement the HASP. Levels of personal protection mentioned in this section are defined in Section J.1.9.

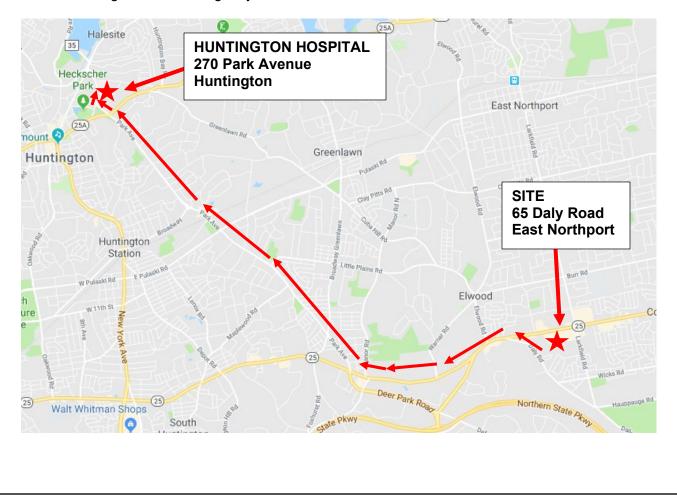
Groundwater Monitoring and Sampling Safety Analysis

Groundwater monitoring and sampling activities will be performed by FPM personnel. In general, FPM will employ one to two persons at the Site. No water level measurements or groundwater sampling activities are anticipated to be performed by contractors.

Organic vapor concentrations will be monitored in the work zone during groundwater sampling utilizing a Photovac MicroTIP photoionization detector (PID). The PID will be "zeroed" by exposing it to ambient air prior to sampling and the upper range will be calibrated using a calibration gas of 98 to 100 parts per million (ppm) isobutylene. Background concentrations will then be established in the work zone prior to initiating work and recorded in the HSO's field book. Upon initiating work, PID readings will be obtained from the vicinity of the sampling areas. At the discretion of the HSO, PID readings may be obtained more frequently. All readings and observations will be recorded in the HSO's field book. PID monitoring will be conducted by FPM personnel.

TABLE J.1.3.1

EMERGENCY TELEPHONE NUMBERS AND DIRECTIONS TO HUNTINGTON HOSPITAL


911
911
-9014
2000
9 90

FPM Contact Personnel (631-737-6200)

Stephanie Davis, PG, Program Manager	Cell # 516-381-3400
John Bukoski, PG, Project Manager	

Directions to Huntington Hospital

Exit the Site onto Daly Road and turn right. Travel approximately one-half mile to Jericho Turnpike (Route 25) and turn left. Travel approximately one mile west on Jericho Turnpike to Park Avenue and turn right onto Park Avenue. Go approximately three miles northwest on Park Avenue. Shortly after crossing Route 25A Huntington Hospital will be on the right at 270 Park Avenue. Follow the signs to the Emergency Room.

Steady-state PID readings greater than five ppm in the worker's breathing zone will require upgrading to Level C personal protective equipment (PPE), as described in Section J.1.9. Upon encountering PID levels greater than 50 ppm above background in the worker's breathing zone, all personnel will be evacuated from the work zone in the upwind direction. Specific evacuation routes will be discussed prior to commencement of work at each location based on the work location and wind direction. Level B conditions are not anticipated to be encountered; however, if Level B conditions arise, no Site work will be performed by FPM or contractors, a complete evaluation of the operation will be performed, and this HASP will be modified.

All personnel will be required to wear chemical-resistant gloves (such as butyl or nitrile) when the potential for dermal contact with groundwater is possible. This will include cleaning and handling of retrieved sampling equipment, water level indicators, pumps, and/or rope from the boreholes or wells. Dermal contact with groundwater and equipment that has been in contact with groundwater will be avoided. For handling sample containers, thin nitrile gloves may be used if dexterity is required. In addition, eye protection will be worn by samplers during periods when the potential for splashing of groundwater is present, such as during well purging.

Excavation into Residual Soil Safety Analysis

Excavation into residual soil is not anticipated during site management activities but may occur during construction or other subsurface activities if residual soil is present. Sampling may also occur if residual soil is disturbed or removed. Excavation, stockpiling, loading, and other activities associated with residual soil will be performed by an environmental remedial contractor with oversight by FPM. Soil sampling, if conducted, will be performed by an FPM environmental professional.

Excavation may involve the use of heavy equipment. Safety concerns include risk of injury due to being struck by equipment, being trapped between moving equipment parts, being struck by dropped materials, and hearing damage due to equipment noise. All personnel will take precautions against these risks when working in the vicinity of heavy equipment by being aware of equipment locations and movement, by wearing steel-toed boots and hard hats, and by using hearing protection if necessary. Site personnel who have not previously worked in the vicinity of heavy equipment will be paired with and experienced person for at least one day to familiarize themselves with heavy equipment operations and safety procedures. All mobile equipment will be equipped with audible alarms to indicate when the equipment is being operated in reverse.

Excavation procedures will result in open excavations at the Site. To minimize risks associated with open excavations, an effort will be made to minimize the number of open excavations. Any inactive excavations will be either closed or barricaded with construction fencing or other devices so as to minimize hazards. At the close of each working day, any excavations that are not closed will be secured. Excavations will not be left open during weekends or following the completion of excavation activities.

Excavation activities in areas of residual soil may result in exposure to subsurface soil vapors. During these activities, a calibrated PID with a 10.6 ev bulb will be used by the HSO to screen vapors in the work zone. The PID will be "zeroed" by exposing it to ambient air prior to excavation activities and the upper range will be calibrated using calibration gas of 98 to 100 ppm isobutylene. Background concentrations will then be established in the work zone prior to the commencement of excavation activities and recorded in the HSO's field book. Level C PPE will be donned if steady-state concentrations exceed five ppm above background. Steady-state readings, for this purpose, will be defined as readings exceeding five ppm above background for a minimum of ten seconds. Level C personal protection may include full-face air-purifying respirators with dust and

organic vapor cartridges (PPE is described in greater detail in Section J.1.9). All FPM and contractor personnel must be properly trained and fit-tested prior to donning respirators. If, at any time, PID readings exceed steady-state levels greater than 50 ppm above background or any conditions exist which the HSO determines will require Level B personal protective equipment, all work at the Site will cease immediately and all personnel will evacuate the work zone. Evacuation will occur in the upwind direction if discernable. Level B conditions are not anticipated to be encountered; however, if Level B conditions arise, no Site work will be performed by environmental professionals or contractors. A complete re-evaluation of the operation will be performed and this HASP will be modified.

To minimize the potential for dust inhalation at the Site, during excavations into residual soil the HSO will assess wind, vegetation, and soil moisture conditions and, if deemed necessary by the HSO, the affected area(s) will be wetted with potable water to suppress dust. If this measure is determined to be ineffective, the HSO may decide to upgrade personal protection to Level C respiratory protection to include respirators with dust cartridges. If extremely windy and dusty conditions exist, the HSO may choose to implement additional dust suppression measures or to postpone the excavation until such time as conditions improve.

All site personnel will be required to wear chemical-resistant nitrile gloves when the potential for dermal contact with Site residual soil is possible. Dermal contact with residual soil and equipment that has been in contact with residual soil will be avoided. Gloves will be periodically examined and will be discarded and replaced if indications of wear or deterioration are noted.

All excavations into residual soil will be inspected and documented daily by the HSO prior to the commencement of work activities. Evidence of cave-ins, sloughing, or surface cracks of excavations will result in the cessation of work until the necessary corrective measures/precautions are undertaken to protect workers.

Although minimal risks are associated with shallow open excavations, the work area will be secured with fencing and other devices to limit access. Any excavations that exceed five feet in depth will be additionally barricaded with construction fencing or other devices at the close of each working day so as to minimize their hazards. There will be no personnel entry into excavations exceeding five feet in depth unless the excavation is properly shored or the sides are laid back to a slope of not more than 1 on 1. A stairway, ladder, ramp, or other safe means of egress will be located in excavations that are four feet or more in depth so as to require no more than 25 feet of lateral travel for workers. Workers will not work in excavations with accumulated water.

Materials or equipment that could affect the stability of excavations or fall into excavations shall be placed at least five feet from the edges of open excavations.

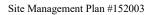
- > Other Safety Considerations
- <u>COVID-19</u>

If the COVOD-19 pandemic is continuing at the time that field work is performed, then appropriate health and safety protocols will be implemented to prevent the spread of the virus. Based on information available at this time, these protocols may include social distancing, wearing of face coverings when working in indoor situations or when social distancing cannot be assured, frequent hand washing, and sanitizing of frequently-touched surfaces. Such protocols are often in place in offices and during travelling and, therefore, this HASP provides specific protocols for field work only. If COVID-19 presents a concern, these protocols will be applicable to all FPM personnel and to subcontractor personnel while they are at the work site.

Social distancing will be accomplished by ensuring that workers remain at least six feet apart, as feasible, during field activities, including travel to and from field sites and while working in the field. This may be accomplished by having workers travel in separate vehicles, establishing separate work stations while onsite, and coordinating closely so that social distancing can be maintained.

Face coverings that fully cover the nose and mouth will be worn at all times while indoor work is performed or when social distancing cannot be assured, such as when travel in separate vehicles is not possible and when working cooperatively in the field with other personnel. Face coverings may be disposable single-use coverings that will be discarded each day or when they become soiled or damaged. FPM will provide disposable single-use coverings for all field personnel as needed. Field personnel may also choose to use cloth face coverings, provided they are maintained by the personnel in a clean and functional condition. If field personnel are working outdoors and alone, where there is no reasonable potential for compromised social distancing, then they do not need to wear a face covering at that time.

Field personnel will be encouraged to wash their hands frequently and potable water and hand soap will be maintained onsite for this purpose. Hand sanitizer may also be used, but only when the potential for sample cross-contamination is not present.


Frequently-touched surfaces, such as door handles, shared hand equipment, and similar items, will be sanitized on a daily basis prior to the start of work and if the affected surfaces become soiled. Commercial sanitizing products will be used for this purpose. Sanitizing will be performed on a limited basis if the potential for sample cross-contamination is present. Steps will be taken to reduce the need for sanitizing by assigning designated personnel to specific hand-held field equipment and wearing disposable gloves when handling shared equipment or frequently-touched surfaces.

These procedures will be reviewed at the time that field work is initiated and modified as needed in accordance with then-current NYSDOH and federal Center for Disease Control (CDC) recommendations and requirements.

Noise

During site management activities that may generate potentially harmful levels of noise, the HSO will monitor noise levels with a Realistictm hand-held sound level meter. Noise levels will be monitored in decibels (dBs) in the A-weighted, slow-response mode. Noise level readings which exceed the 29 CFR 1910.95 permissible noise exposure limits will require hearing protection (see Table J.1.6.1 for Permissible Noise Exposures).

Hearing protection will be available to all Site workers and will be required for exceedance of noise exposure limits. The hearing protection will consist of foam, expansion-fit earplugs (or other approved hearing protection) with a noise reduction rating of at least 29 dB. Hearing protection must alleviate worker exposure to noise to an eight-hour time-weighted average of 85 dB or below. In the event that the hearing protection is inadequate, work will cease until a higher level of hearing protection can be incorporated.

TABLE J.1.6.1 PERMISSIBLE NOISE EXPOSURES*

Duration Per Day	Sound Level dBA
Hours	Slow Response
8	90
6	92
4	95
3	97
2	100
1.5	102
1	105
1/2	110

<u>Notes</u>: When the daily noise exposure is composed of two or more periods of noise exposure of different levels, their combined effect should be considered, rather than the individual effect of each. If the sum of the following fractions: $C_1/T_1+C_2/T_2+....C_n/T_n$ exceeds unity, then, the mixed exposure should be considered to exceed the limit value. C_n indicates the total time of exposure at a specified noise level, and T_n indicates the total time of exposure permitted at that level.

Exposure to impulsive or impact noise should not exceed 140 dB peak sound pressure level.

*Standards derived from 29 CFR 1910.95

Slip/Trip/Fall Preventative Measures

To reduce the potential for slipping, tripping, or falling, the work zone will be kept clear of unnecessary equipment. In addition, all Site workers will be required to wear work boots with adequate tread to reduce the potential for slipping (work boots must be leather or chemical-resistant and contain steel toes and steel shanks).

Insects

Potential insect problems include, but are not limited to stinging insects such as bees, wasps, and hornets, and ticks. Prior to commencement of work, each work area will be surveyed for nests and hives to reduce the possibility of disturbing stinging insects. In addition, each Site worker will be asked to disclose any allergies related to insect stings or bites. The worker will be requested to keep his or her anti-allergy medicine on Site.

Tick species native to Long Island consist of the pinhead-sized deer tick and the much-larger dog tick. Ticks are likely to exist at the Site due to the presence of suitable habitat. All Site workers will be advised to avoid walking through vegetated areas and will be advised to check for ticks on clothing periodically.

Potential Electrical and Other Utility Hazards

Potential electric hazards consist mainly of overhead and underground power lines. Other site utilities that may present hazards include telephone lines, gas lines, sewer lines, water lines, and

other overhead or underground utilities. Prior to commencement of work in the areas of the Site to which this HASP applies, all work locations will be inspected with respect to overhead lines. Work involving heavy equipment will not be performed when the horizontal distance between the equipment and overhead wires is less than 30 feet.

Underground potential utility hazards will be minimized by contacting the One-Call service to provide markouts of the utilities beneath adjoining public streets. A geophysical survey may also be utilized to mark out subsurface utilities prior to intrusive activities.

Heat/Cold Stress

Heat stress may become a concern especially if protective clothing is donned that will decrease natural ventilation. To assist in reducing heat stress, an adequate supply of water or other liquids will be staged on the Site and personnel will be encouraged to rehydrate at least every two hours even if not thirsty. In addition, a shady rest area will be designated to provide shelter during sunny or warm days and Site workers will break for at least 10 minutes every two hours in the rest area, and, in very hot weather, workers wearing protective clothing may be rotated.

Indications of heat stress range from mild (fatigue, irritability, anxiety, decreased concentration, dexterity or movement) to fatal. Medical help will be obtained for serious conditions.

Heat-related problems are:

- <u>Heat rash</u>: caused by continuous exposure to heat and humid air and aggravated by chafing clothes. Decreases ability to tolerate heat.
- <u>Heat cramps</u>: caused by profuse perspiration with inadequate fluid intake and chemical replacement (especially salts). Signs: muscle spasm and pain in the extremities and abdomen.
- <u>Heat exhaustion</u>: caused by increased stress on various organs to meet increased demands to cool the body. Signs: shallow breathing; pale, cool, moist skin; profuse sweating; dizziness and lassitude.
- <u>Heat stroke</u>: the most severe form of heat stress. Can be fatal. Medical help must be obtained immediately. Body must be cooled immediately to prevent severe injury and/or death. Signs: red, hot, dry skin; no perspiration; nausea; dizziness and confusion; strong, rapid pulse; coma.

Cold exposure is a concern if work is conducted during cold weather, marginally cold weather during precipitation periods, or moderate to high wind periods. To assist in reducing cold exposure the following measures will be taken when cold exposure concerns are present:

- All personnel will be required to wear adequate and appropriate clothing. This will include head gear to prevent the high percentage loss of heat that occurs in this area (thermal liners for hard hats if hard hats are required).
- A readily-available warm shelter will be identified near the work zone.
- Work and rest periods will be scheduled to account for the current temperature and wind velocity conditions.

- Work patterns and the physical condition of workers will be monitored and personnel will be rotated, as necessary.
- Indications of cold exposure include shivering, dizziness, numbness, confusion, weakness, impaired judgment, impaired vision, and drowsiness. Medical help will be obtained for serious conditions if they occur.

Cold exposure-related problems are:

- <u>Frost bite</u>: Ice crystal formation in body tissues. The restricted blood flow to the injured part results in local tissue destruction.
- <u>Hypothermia</u>: Severe exposure to cold temperature resulting in the body losing heat at a rate faster than the body can generate heat. The stages of hypothermia are shivering, apathy, loss of consciousness, decreasing pulse and breathing rate, and death.

> <u>The Buddy System</u>

All site management activities will be conducted by pairing off the Site workers in groups of two (or three if necessary). Each person (buddy) will be able to provide his or her partner with assistance, observe his or her partner for signs of chemical, cold, or heat exposure, periodically check the integrity of his or her partner's protective clothing, and notify the HSO or others if emergency help is needed. The buddy system will be instituted at the beginning of each work day. If new workers arrive on Site, a buddy will be chosen prior to the new worker entering the work zone.

Site Communications

Two sets of communication systems will be established at the Site for site management activities: internal communication among personnel onsite, and external communication between onsite and offsite personnel. Internal communication will be used to alert team members to emergencies, pass along safety information such as heat stress check, protective clothing check, etc., communicate changes in the work to be accomplished, and maintain Site control. Due to ambient noise, verbal communications may be difficult at times. The HSO will carry a whistle (and compressed air horn if respirators are donned) to signal Site workers. A single whistle blast will be the signal to immediately evacuate the work zone through the access control point. This signal will be discussed with all Site workers prior to commencement of work.

An external communication system between onsite and offsite personnel will be established to coordinate emergency response, report to the Project Manager, and maintain contact with essential offsite personnel. A field telephone will be available at all times in the HSO's vehicle. In addition, a backup telephone will be identified prior to the commencement of site management activities and this location will be relayed to all Site workers.

General Safe Work Practices

Standing orders applicable during site management operations are as follows:

- No smoking, eating, drinking, or application of cosmetics in the work zone.
- No matches or lighters in the work zone.

- All Site workers will enter/exit work zone through the Site access point.
- Any signs of contamination, radioactivity, explosivity, or unusual conditions will require evacuating the Site immediately and reporting the information to the HSO.
- Loose-fitting clothing and loose long hair will be prohibited in the work zone during heavy equipment operations.
- A signal person will direct the backing of work vehicles.
- Equipment operators will be instructed to check equipment for abnormalities such as oozing liquids, frayed cables, unusual odors, etc.

J.1.7 <u>Personnel Training Requirements</u>

All FPM personnel and contractor personnel conducting site management activities will receive adequate training prior to entering the Site. FPM and contractor personnel will, at a minimum, have completed OSHA-approved, 40-hour hazardous materials Site safety training and OSHA-approved, eight-hour safety refresher course within one year prior to commencing field work. In addition, each worker must have a minimum of three days of field experience under the direct supervision of a trained, experienced supervisor.

Prior to site management field work, the HSO will conduct an in-house review of the project with respect to health and safety with all FPM personnel who will be involved with field work at the Site. The review will include discussions of signs and symptoms of chemical exposure and heat/cold stress that indicate potential medical emergencies. In addition, review of PPE will be conducted to include the proper use of air-purifying respirators.

J.1.8 <u>Medical Surveillance Program</u>

All workers conducting site management activities must participate in a medical surveillance program in accordance with 29 CFR 1910.120. A medical examination and consultation must have been performed within the last twelve months to be eligible for field work.

The content of the examination and consultation will include a medical and work history with special emphasis on symptoms related to the handling of hazardous substances, health hazards, and fitness for duty including the ability to wear required personal protective equipment under conditions (i.e., temperature extremes) that may be expected at the work Site.

All medical examinations and procedures shall be performed by, or under the supervision of, a licensed physician. The physician shall furnish a written opinion containing:

- The results of the medical examination and tests;
- The physician's opinion as to whether the employee has any detected medical conditions which would place the worker at increased risk of material impairment of the employee's health from work in hazardous waste operations;
- The physician's recommended limitations upon the worker assigned to the work; and
- A statement that the worker has been informed by the physician of the results of the medical examination and any further examination or treatment.
- An accurate record of the medical surveillance will be retained. The record will consist of at least the following information:

- The name and social security number of the employee;
- The physician's written opinions, recommended limitations, and results of examinations and tests; and
- Any worker medical complaints related to exposure to hazardous substances.
- J.1.9 Personal Protective Equipment

General Considerations

The two basic objectives of the personal protective equipment (PPE) are to protect the wearer from safety and health hazards, and to prevent the wearer from incorrect use and/or malfunction of the PPE.

Potential Site hazards have been discussed previously in Section J.1.6. The duration of individual site management activities is estimated to be periods of one to two days. All work is expected to be performed during daylight hours and workdays, in general, are expected to be eight to ten hours in duration. Any work performed beyond daylight hours will require the permission of the HSO. This decision will be based on the adequacy of artificial illumination and the type and necessity of the task being performed.

Personal protection levels for the site management activities, based on past work at the Site, are anticipated to be Level D with a very limited possibility of upgrading to Level C. The equipment included for each level of protection is provided as follows:

Level C Protection

Level C personnel protective equipment includes:

- Air-purifying respirator, full-face
- Chemical-resistant clothing includes: Tyvektm (spunbonded olefin fibers) for particulate and limited splash protection or Saranextm (plastic film-laminated Tyvek) for permeation resistance to solvents.
- Coveralls*, or
- Long cotton underwear*
- Gloves (outer), chemical-resistant
- Gloves (inner), chemical-resistant
- Boots (outer), leather or chemical-resistant, steel toe and shank.
- Boot covers (outer), chemical-resistant (disposable)*
- Hard hat (face shield)*
- Escape mask*
- 2-way radio communications (inherently safe)*
- (*) optional

Meeting all of these criteria permits use of Level C protection:

- Oxygen concentrations are not less than 19.5% by volume.
- Measured air concentrations of identified substances will be reduced by the respirator below the substance's threshold limit value (TLV).
- Atmospheric contaminants, liquid splashes, or other direct contact will not adversely affect any body area left unprotected by chemical-resistant clothing.
- Job functions do not require self-contained breathing apparatus.
- Direct readings are below 50 ppm on the PID.

Level D Protection

Personnel protective equipment:

- Coveralls
- Gloves*
- Boots/shoes, leather or chemical-resistant, steel toe and shank
- Safety glasses or chemical splash goggles*
- Hard hat (face shield*)
- Escape mask*
- (*) optional

Meeting any of these criteria allows use of Level D protection:

- No contaminant levels above 5 ppm organic vapors or dusty conditions are present.
- Work functions preclude splashes, immersion, or the reasonable potential for unexpected inhalation of any chemicals above the TLV.
- > Additional Considerations for Selecting Levels of Protection

Another factor that will be considered in selecting the appropriate level of protection is heat and physical stress. The use of protective clothing and respirators increases physical stress, in particular, heat stress on the wearer. Chemical protective clothing greatly reduces natural ventilation and diminishes the body's ability to regulate its temperature. Even in moderate ambient temperatures, the diminished capacity of the body to dissipate heat can result in one or more heat-related problems.

All chemical protective garments can be a contributing factor to heat stress. Greater susceptibility to heat stress occurs when protective clothing requires the use of a tightly-fitted hood against the respirator face piece, or when gloves or boots are taped to the suit. As more body area is covered, less cooling takes place, increasing the probability of heat stress.

Wearing protective equipment also increases the risk of accidents. It is heavy, cumbersome, decreases dexterity, agility, interferes with vision, and is fatiguing to wear. These factors all increase physical stress and the potential for accidents. In particular, the necessity of selecting a level of protection will be balanced against the increased probability of heat stress and accidents.

Donning and Doffing Ensembles

• <u>Donning an Ensemble</u>

A routine will be established and practiced periodically for donning a Level C ensemble. Assistance may be provided for donning and doffing since these operations are difficult to perform alone. Table J.1.9.1 lists sample procedures for donning a Level C ensemble. These procedures should be modified depending on the particular type of suit and/or when extra gloves and/or boots are used.

Doffing an Ensemble

Exact procedures for removing Level C ensembles must be established and followed to prevent contaminant migration from the work area and transfer of contaminants to the wearer's body, the doffing assistant, and others. Doffing procedures are provided in Table J.1.9.2. These procedures should be performed only after decontamination of the suited worker. They require a suitably attired assistant. Throughout the procedures, both worker and assistant should avoid any direct contact with the outside surface of the suit.

Respirator Fit Testing

The fit or integrity of the facepiece-to-face seal of a respirator affects its performance. Most facepieces fit only a certain percentage of the population; thus, each facepiece must be tested on the potential wearer in order to ensure a tight seal. Facial features such as scars, hollow temples, very prominent cheekbones, deep skin creases, dentures or missing teeth, and the chewing of gum and tobacco may interfere with the respirator-to-face seal. A respirator shall not be worn when such conditions prevent a good seal. The worker's diligence in observing these factors shall be evaluated by periodic checks. Fit testing will comply with 29 CFR 1910.1025 regulations.

Inspection

The PPE inspection program will entail five different inspections:

- Inspection and operational testing of equipment received from the factory or distributor;
- Inspection of equipment as it is issued to workers;
- Inspection after use;
- Periodic inspection of stored equipment; and
- Periodic inspection when a question arises concerning the appropriateness of the selected equipment, or when problems with similar equipment arise.

The inspection checklist is provided in Table J.1.9.3. Records will be kept of all inspection procedures. Individual identification numbers will be assigned to all reusable pieces of equipment and records should be maintained by that number. At a minimum, each inspection should record the ID number, date, inspector, and any unusual conditions or findings. Periodic review of these records may indicate an item or type of item with excessive maintenance costs or a particularly high level of down-time.

TABLE J.1.9.1 SAMPLE LEVEL C DONNING PROCEDURES

- 1. Inspect the clothing and respiratory equipment before donning (see Inspection in subsection B.1.7).
- 2. Adjust hard hat or headpiece if worn, to fit user's head.
- 3. Standing or sitting, step into the legs of the suit; ensure proper placement of the feet within the suit; then gather the suit around the waist.
- 4. Put on chemical-resistant safety boots over the feet of the suit. Tape the leg cuff over the tops of the boots.
- 5. Don the respirator and adjust it to be secure, but comfortable.
- 6. Perform negative and positive respirator facepiece seal test procedures.
 - To conduct a negative-pressure test, close the inlet part with the palm of the hand or squeeze the breathing tube so it does not pass air, and gently inhale for about 10 seconds. Any inward rushing of air indicates a poor fit. Note that a leaking facepiece may be drawn tightly to the face to form a good seal, giving a false indication of adequate fit.
 - To conduct a positive-pressure test, gently exhale while covering the exhalation valve to ensure that a positive pressure can be built up. Failure to build a positive pressure indicates a poor fit.
- 7. Depending on type of suit:
 - Put on inner gloves (surgical gloves).
 - Additional overgloves, worn over attached suit gloves, may be donned later.
- 8. Put on hard hat.
- 9. Have assistant observe the wearer for a period of time to ensure that the wearer is comfortable, psychologically stable, and that the equipment is functioning properly.

TABLE J.1.9.2

DOFFING PROCEDURES

- 1. Remove any extraneous or disposable clothing, boot covers, outer gloves, and tape.
- 2. Remove respirator by loosening straps and pulling straps over the top of the head and move mask away from head. Do not pull mask over the top of the head.
- 3. Remove arms, one at a time, from suit, avoiding any contact between the outside surface of the suit and wearer's body and lay the suit out flat behind the wearer. Leave internal gloves on, if any.
- 4. Sitting, if possible, remove both legs from the suit.
- 5. After suit is removed, remove internal gloves by rolling them off the hand, inside out.

TABLE J.1.9.3 PPE INSPECTION CHECKLIST

<u>CLOTHING</u>

Before use:

- Determine that the clothing material is correct for the specified task at hand.
- Visually inspect for imperfect seams, non-uniform coatings, tears, and/or malfunctioning closures.
- Hold up to light and check for pinholes.
- Flex product and observe for cracks or other signs of deterioration.
- If the product has been used previously, inspect inside and out for signs of chemical attack, including discoloration, swelling, and/or stiffness.

During the work task, periodically inspect for:

- Evidence of chemical attack such as discoloration, swelling, stiffening, and softening. Keep in mind, however, that chemical permeation can occur without any visible effects.
- Indication of physical damage, including closure failure, tears, punctures, and/or seam discontinuities.

GLOVES

Before use:

• Pressurize glove to check for pinholes. Either blow into glove, then roll gauntlet toward fingers or inflate glove and hold under water. In either case, no air should escape.

AIR-PURIFYING RESPIRATORS

- Inspect air-purifying respirators before each use to be sure they have been adequately cleaned.
- Check material conditions for signs of pliability, deterioration, and/or distortion.
- Examine cartridges to ensure that they are the proper type for the intended use, the expiration date has not been passed, and they have not been opened or used previously.
- Check faceshields and lenses for cracks, crazing, and/or fogginess.
- Air-purifying respirators will be stored individually in resealable plastic bags.

➢ <u>Storage</u>

Clothing and respirators will be stored properly to prevent damage or malfunction due to exposure to dust, moisture, sunlight, damaging chemicals, extreme temperatures, and impact. Storage procedures are as follows:

• Clothing: Potentially-contaminated clothing will be stored in a well-ventilated area separate from street clothing, with good air flow around each item, if possible. Different types and materials of clothing and gloves will be stored separately to prevent issuing the

wrong materials by mistake, and protective clothing will be folded or hung in accordance with manufacturer's recommendations.

• Respirators: After each use air-purifying respirators will be dismantled, washed, and placed in sealed plastic bags.

PPE Maintenance

Specialized PPE maintenance will be performed only by the factory or an authorized repair person. Routine maintenance, such as cleaning, will be performed by the personnel to whom the equipment is assigned. Respirators will be cleaned at the end of each day with alcohol pads or, preferably, by washing with warm soapy water.

Decontamination Methods

All personnel, clothing, equipment, and samples leaving the work zone area of the Site must be decontaminated to remove any harmful chemicals that may have adhered to them. Decontamination methods either (1) physically remove contaminants (2) inactivate contaminants by chemical detoxification or disinfection/sterilization, or (3) remove contaminants by a combination of both physical and chemical means. In many cases, gross contamination can be removed by physical means involving dislodging/displacement, rinsing, wiping off, and

evaporation. Contaminants that can be removed by physical means include dust, vapors, and volatile liquids. All reusable equipment will be decontaminated by rinsing in a bath of detergent and water (respirators, gloves to be reused). Monitoring equipment will be decontaminated by wiping with paper towels and water. All used PPE to be discarded will be disposed offsite as solid waste.

The effectiveness of the decontamination will be evaluated near the beginning of Site activities and will be modified if determined to be ineffective. Visual observation will be used for this purpose. The HSO will inspect decontaminated materials for discoloration, stains, corrosive effects, visible dirt, or other signs of possible residual contamination.

J.2 Community Air Monitoring Plan

This Community Air Monitoring Plan (CAMP) will be implemented at the Site by FPM during intrusive activities involving residual soil and sampling of impacted Site media. Due to the nature of the residual impacts to groundwater, there is a limited potential for organic vapor emissions as these activities occur. In addition, there is the potential for dust to be associated with excavation and other intrusive activities. To address these concerns, organic vapor monitoring and dust monitoring will be performed.

Any CAMP monitoring results that exceed the action levels described below will be reported (or notice provided by another arrangement acceptable to the NYSDEC) when identified if a NYSDEC representative is present at the Site or within two hours by phone call or email to the NYSDEC Project manager when no NYSDEC representative is onsite. Exceedances of the CAMP action levels will also be summarized in an interim CAMP report, including the duration of the exceedance(s) and any response actions taken.

J.2.1 Organic Vapor Monitoring

Under the CAMP, organic vapor concentrations will be monitored at the boundaries of the work zone. It will be the responsibility of the HSO to implement the plan and to ensure that proper action is taken in the event that any of the established action levels are exceeded.

To monitor organic vapors, a PID will be used and maintained in good operating condition. Calibration of the PID will be performed according to manufacturer's instructions. Background levels of organic vapors will be measured at the work zone boundary prior to beginning work and upwind of the work area periodically using a PID. Monitoring may be performed more frequently at the discretion of the HSO. Organic vapors will be monitored continuously at the downwind perimeter of the work area during ground intrusive activities.


PID readings will be recorded in the field logbook for both background and work area perimeter. Logbook recordings will include the time, location, and PID readings observed. Downwind perimeter levels will be recorded in the log whenever the level reaches 5 ppm above the background along with the action(s) taken to mitigate the level. If the level of organic vapors exceeds 5 ppm above the background at the downwind perimeter of the work area, work activities will be halted and monitoring continued. The vapor emission response plan will then be implemented.

J.2.1.1 Vapor Emission Response Plan

The vapor emission response plan includes the following trigger levels and responses:

• <u>Greater than 5 ppm at perimeter</u>:

In the event the level of organic vapors exceeds 5 ppm above the background at the downwind perimeter of the work area, activities will be halted and monitoring continued. If the organic vapor level then decreases to below 5 ppm above background, work activities can resume but organic vapor readings will be obtained more frequently as directed by the HSO.

• <u>5 ppm to 25 ppm at perimeter and less than 5 ppm at the work zone boundary</u>:

If the level of organic vapors is greater than 5 ppm but less than 25 ppm over background at the downwind perimeter of the work area, activities will be halted, the source of the vapors will be identified and corrective actions will be taken. Monitoring will be continued and activities will resume if the organic vapor concentration at half the distance to the nearest residential or commercial structure, whichever is less, is below 5 ppm over background. More frequent intervals of monitoring will be performed as directed by the HSO.

• <u>Above 25 ppm at perimeter</u>:

If the level of organic vapors is above 25 ppm at the perimeter of the work area, activities will be shut down. Should such a shutdown be necessary, downwind air monitoring will continue as directed by the HSO to confirm that organic vapor concentrations decrease. Actions will be taken to abate the source of vapor emissions and activities will not resume until the source is controlled.

J.2.1.2 Major Vapor Emission Response Plan

The Major Vapor Emission Response Plan shall automatically be placed into effect if:

- Efforts to abate the emission source are unsuccessful and levels above 5 ppm persist for more than 30 minutes in the 20-foot zone; or
- The vapor levels are greater than 10 ppm above background in the 20-foot zone.

Upon activation of the Major Vapor Emission Response Plan, the following activities will be undertaken:

- All emergency response contacts as listed in the HASP will be notified;
- Air monitoring will be conducted at 30-minute intervals within the 20-foot zone. If two successive readings below action levels are measured, air monitoring will be halted or modified as directed by the HSO; or
- If air monitoring readings remain above action levels, work will be halted and further measures taken to reduce organic vapors.

If a Major Vapor Emission Response Plan is implemented, the NYSDEC and NYSODH will be contacted within 24 hours.

J.2.2 <u>Dust Monitoring</u>

Dust monitoring will be performed during intrusive site management activities with the potential to create dust by using a Miniram personal monitor calibrated according to the manufacturer's instructions. The Miniram will be operated continuously at the downwind perimeter of the work zone during intrusive activities and the HSO will record the readings in the field logbook. If measurable dust levels are noted, then readings will also be obtained upwind of the work zone. If the downwind particulate level exceeds the upwind level by more than 100 micrograms per cubic meter (ug/m³), then dust suppression techniques will be employed or work will be halted or controlled such that dust levels are reduced at the downwind perimeter to within 150 ug/m³ of the upwind level.

Reasonable fugitive dust suppression techniques will be employed during all intrusive site management activities that may generate fugitive dust. Particulate (fugitive dust) monitoring will be employed during the handling of potentially contaminated soil or when onsite activities may generate fugitive dust from exposed potentially contaminated soil.

Particulate monitoring will be performed using a real-time particulate monitor and shall monitor particulate matter less than ten microns (PM10) with minimum performance standards in accordance with Appendix 1B of DER-10. Particulate levels will be monitored upwind and immediately downwind of the working area and integrated over a period not to exceed 15 minutes. To ensure the validity of the fugitive dust measurements, appropriate QA/QC measures will be employed, including periodic instrument calibration, operator training, daily instrument performance (span) checks, and record-keeping on daily log sheets.

The action level for fugitive dust will be established at 150 μ g/m³ (15-minute average). If particulate levels are detected in excess of 150 μ g/m³, the upwind background level will be confirmed immediately. If the working area particulate measurement is greater than 100 μ g/m³ above the background level, additional dust suppression techniques will be implemented to reduce the generation of fugitive dust and corrective action will be taken to protect onsite personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of PPE for onsite personnel and implementing additional dust suppression techniques. Should the action level of 150 μ g/m³ continue to be exceeded, work will stop and the NYSDEC will be notified as described in Section J.2 above. The notification will include a description of the control measures implemented to prevent further exceedances.

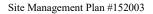
Fugitive dust from contaminated soil that migrates offsite has the potential for transporting contaminants offsite. Although there may be situations when the monitoring equipment does not measure PM10 at or above the action level, visual observation may indicate that dust is leaving the Site. If dust is observed leaving the working area, additional dust suppression techniques will be employed. Activities that have a high dusting potential, such as solidification and treatment involving materials like kiln dust and lime, may require special measures to be considered.

The following techniques have been shown to be effective for controlling the generation and migration of dust during construction activities and will be used as needed during site management activities at the Site:

- Wetting equipment and excavation faces;
- Spraying water on buckets during excavation and dumping;
- Hauling materials in properly tarped or watertight containers'
- Restricting vehicle speeds to 10 mph;
- Covering excavated areas and material after excavation activity ceases; and
- Reducing the excavation size and/or number of excavations.

When techniques involving water application are used, care will be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will be considered to prevent overly wet conditions, conserve water, and provide an effective means of suppressing fugitive dust.

Evaluation of weather conditions is also necessary for proper fugitive dust control. When extreme wind conditions may make dust control ineffective, remedial actions may be suspended until wind speeds are reduced.


J.2.3 Noise Monitoring

Due to the use of heavy equipment, there is a potential for noise to impact the surrounding community during certain site management activities. Work will be performed only during normal working hours when ambient noise levels are elevated due to ongoing activities in the surrounding community, which includes commercial and industrial uses. Therefore, the potential for noise impacts on the surrounding community is low.

However, if pedestrians or residents are present in the Site vicinity, it is possible for noise impacts to occur. To address these concerns and other safety concerns, pedestrians will be barred from entering the work zone. In addition, the HSO will periodically monitor noise levels at the work zone boundary and the closest property boundary with a Realistictm hand-held sound level meter during operation of powered equipment. Noise levels will be monitored in dBs in the A-weighted, slow-response mode. If noise level readings exceed an eight-hour time-weighted average of 85 dB at the work zone boundary or at the closest property boundary, the HSO will take appropriate measures to reduce noise exposure beyond these boundaries. These measures may include extension of the work zone boundary, issuing appropriate hearing protection devices as discussed in Section J.1.6 of this work plan, or other measures, as appropriate. In the event that the noise exposure measures are inadequate, work will cease until noise levels can be reduced to below 85 dB at the work zone boundary and/or at the closest property boundary.

J.2.4 Excavation Safety Issues

Site management activities are not anticipated to result in open excavations or trenches at the Site. However, if excavations are conducted in areas where residual soil is present, then an open excavation or trench may result. Although the majority of the Site is fenced, to minimize risks associated with open excavations and trenches during site management, an effort will be made to minimize the number of open excavations and trenches. Any inactive excavations or trenches will either be closed or will be barricaded with construction fencing or other devices so as to minimize their hazards. Barricades will include fencing materials that completely enclose any open excavations/ trenches and extend to a height of at least three feet above grade. Barricades will be secured by posts driven into the ground or by weighted drums or pylons such that they cannot readily be removed. At the close of each working day, any excavations/trenches that are not closed will also be secured. Excavations/trenches will not be left open during weekends or following the completion of the work.

