APPENDIX E

MONITORING WELL BORING LOG/CONSTRUCTION LOGS/ MONITORING WELL SAMPLING LOGS

SEP 2 | 1995

BORING REPORT

E STARTED: 8-11-92

PDER ASSOCIATES CONSULTING ENGINEERS, P.C. 480 POREST AVERUE, LOCUST VALLEY, NY 11560 8000 EXCELSION DRIVE, HADISON, WI 53717 315 W. HINGE STREET, SUITE 220, AME ARBOR MI 48104

519 PLEASART HOME ROAD, SUITE 3-C, AUGUSTA, GA 30907

DATE FINISHED: 8-12-92

SHEET 1 OF 4 2XD BORING NO.

		-\- C			PROJECT NO.: 961-01.2				
CLIENT: Fai		-	_						
PROJECT NAME		~	rge Basin			FREPARED BY:			
DRILLING CON	TRACTOR: A	DT		LOGGED BY:	K. McHale		DRILLER:	R. Bauman	
EQUIPMENT:	CASING:	SOIL S	AMPLER:	CORE BARREL	AUGER	MON. WELL	CAP	DRILL RIG	
		SPOON		_					
TYPE:		Standard						Mobile B-61 Hollow Stem	
SIZE:		2" x 24"							
HAMMER WI/FALL		140/30		BIT:					
SURFACE ELEV	ATION:			SURFACI	CONDITIONS	:			
WATER LEVEL	AT	FT. A	FTER	HRS.		FT. AFTER		ERS	
DEPTH			SAM	PLE		BLOWS/6"	STRATA	DESCRIPTION & REMARKS	
BELOW GRADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	OR CORE TIME	DEPTH/ ELEV.	TRACE=0-10% LITTLE=10-20% SOME=20-30% AND=35-50%	
0									
	- -			_					
			<u> </u>						
		-							
			<u> </u>						
5									
								Light brown fine to coarse sand and gravel with trace	
	0_	SS-1	5-7	D	12"	87		pebbles.	
ı									
l									
10							GW		
	<u> </u>	\$ S-2	10-12		0"	9.5		No recovery.	
		J3-4	10-12		0.	86			
15									
7.3									
			45.1-						
	0	S S-3	15-17		0"	46		No recovery.	
	_								
	_								
20									

DEPTH BELOW	AVO	TYPE AND	DEPTH	MOISTURE		BLOWS/6" OR CORE	STRATA DEPTH/	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20%
GRADE	READINGS	NO.	(FROM-TO)	CONTENT	RECOVERY	TIME	ELEV.	SCME=0-30% AND=35-50%
							_	Light brown fine to coarse sand and gravel
	0	SS-4	20-22	М	14"	27		with trace pebbles.
1			-				1	
							†	
1)								
25				_				
ı			_	_		·	abla	Light brown fine to coarse sand and gravel
	0	SS-5	25-27	£	8"	27		with trace pebbles.
	_						1	
						<u> </u>	1	
					-	_		
30				_				
								Light brown fine to
	0	SS-6	30-32	W	10"	20		coarse gravel with some medium to coarse sand and
ľ			-					pebbles.
l l								
	-							
35								
))	3.5	SS-7	35-37	W	6"	46		Light brown fine to coarse gravel with some
			-	_				medium to coarse sand and
-			_				GW	pebbles.
40								
					_			
	0	SS-8	40-42	w	10"	27		Coarse gravel and pebbles with trace light brown
								sand.
			-					
45								
<u> </u>								
								Course sways and mabbles
	7	SS-9	45-47	W	3"	34		Coarse gravel and pebbles with trace light brown
	_							sand
50								
						_		
	10	SS-10	50-52	w	6"	40		Coarse gravel and pebbles
						<u> </u>		with trace light brown sand.
					-			
55						_		

		T						1
DEPTH BELOW RADE	OVA READINGS	TYPE AND NO.	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SCME=0-30% AND=35-50%
]	,
	0	SS-11	55-57	w	0	39		No recovery.
]	
60			<u>-</u>					
	0	SS-12	60-62	W	6"	42		Coarse gravel and pebbles.
								, ,
65								
	4	SS-13	65-67	3	18"	47		Brown coarse sand and gravel.
٠								, ST. 17.
70								
							G₩	
	0	SS-14	70-72	¥	3"	42		Brown coarse sand and gravel.
								622.02.
75								
								•
	1.5	SS-15	75-77	¥	24"	32	'	Orange sand, gravel, and pebbles.
								pennies.
80								
								·
	0	SS-16	80-82	W	0	45		No recovery.
85								
٠						· · · · · · · · · · · · · · · · · · ·		
	0	SS-17	85-87	W	3"	200+		Well rounded pebbles and gravel.
90		_				-		

PROJECT NAME: Old Recharge Basin BORING NO. 2XD PROJECT NO. 961-01.2 SHEET 4 OF 4

DEFTR EILON TIPE AND DEFTE MOISTURE ELONG/F TIME TIPE TIPE									
SS-18 90-92 W 24" 40	BELOW					RECOVERY	OR CORE	DEPTH/	TRACE=0-10% LITTLE=10-20%
5 SS-18 90-92 4 24 40 3 SS-19 95-97 W 14 20 5 SS-20 100-102 W 16 80 CL Light brown clay trace acioning & 112 - 101.75. 6 SS-21 105-107 W 18 73 CL Light brown clay & 106-106.8 EXC & 115 EXC & 106.8 EXC & 107 110 110 115	r —								
3 SS-19 99-97 W 14" 20 Bloom very fine to fine sand trace grawal and pubbles, size files.		6	SS-18	90-92	W	24"	40	1	and pebbles.
3 SS-19 95-97 W 14" 20 3 SS-19 95-97 W 14" 20 5 SS-20 100-102 W 16" 80 CL Light brown clay trace silt and grey/orange coloring 8 101 - 101.75. 6 SS-21 105-107 W 18" 75 CL Light brown clay 8 106-106.8 EDB 6 107		<u> </u>	1					†	
3 SS-19 95-97 W 14" 20 8 Sown very fine to fine and trace gravel and pubbles. mice flecs. 100 5 SS-20 100-102 W 16" 80 CL Light brown clay trace silt and gray/orange coloring 8 101 - 101.75. 6 SS-21 105-107 W 18" 75 CL Light brown clay 6 106-106.8 EDB 6 107	1								
3 SS-19 95-97 W 14" 20 8 Sown very fine to fine and trace gravel and pubbles. mice flecs. 100 5 SS-20 100-102 W 16" 80 CL Light brown clay trace silt and gray/orange coloring 8 101 - 101.75. 6 SS-21 105-107 W 18" 75 CL Light brown clay 6 106-106.8 EDB 6 107								Į	
100 S SS-20 100-102 W 16" SO CL Light brown clay trace sitt and providing @ 101 - 101.75. 105 SS-21 105-107 W 18" 75 CL Light brown clay @ 106-106.8 ZOS @ 107	95							G#I	
100 5 SS-20 100-102 W 16" 80 CL Light brown clay trace silt and grey/orange coloring @ 101 - 101.75. 8 SS-21 105-107 W 18" 75 CL Light brown clay @ 106-106.8 ZDB @ 107]	
100 S SS-20 100-102 W 16" SO CL Light brown clay trace sitt and providing @ 101 - 101.75. 105 SS-21 105-107 W 18" 75 CL Light brown clay @ 106-106.8 ZOS @ 107		3	SS-19	95-97	w	14"	20	1	Brown very fine to fine
100 10 16" 80 CL Light brown clay trace silt and grey/orange coloring @ 101 - 101.75. 105			00 27		<u> </u>]	sand trace gravel and
105 SS-20 100-102 W 16" 80 CL Light brown clay trace sit and grey/orange coloring \$ 101 - 101.75.				-					peddies, miss free.
105 SS-20 100-102 W 16" 80 CL Light brown clay trace sit and grey/orange coloring \$ 101 - 101.75.									
105 8 SS-21 105-107 W 18" 75 CL light brown clay @ 106-106.8 110	100								
105 8 SS-21 105-107 W 18" 75 CL light brown clay @ 106-106.8 110									
105 8 SS-21 105-107 W 18" 75 CL light brown clay @ 106-106.8 110		5	SS-20	100-102	w	16"	80	CL	Light brown clay trace
105 8 SS-21 105-107 W 18" 75 CL Light brown clay 8 106-106.8 EXDS 6 107			30 30						silt and grey/orange
8 SS-21 105-107 W 18" 75 CL Light brown clay @ 106-106.8 EOB @ 107								<u> </u>	Coloring & 101
110 SS-21 105-107 W 18" 75 CL Light brown clay € 106-106.8 EXX € 107								G₩	
8 SS-21 105-107 W 18" 75 CL Light brown clay @ 106-106.8 ECB @ 107	105	Ì			_				
110 115 106.8 EDB & 107									Liecs.
110 115 106.8 EDB & 107	1	8	SS-21	105-107	w	18"	75	CIL	Light brown clay @ 106-
115		<u> </u>							106.8
120			· ·						
120					ļ]	
120	110						<u> </u>		
120						1			
120									
120	1								
120									
120									
	115								
]	
								1	
				<u> </u>					
			 					,	
125	120								
125	\								
125									
125									
125								1	
	125							1	

BORING REPORT

EDER ASSOCIATES CONSULTING ENGINEERS. P.C. 480 POREST AVERUE, LOCUST VALLEY, NY 11560 8000 EXCELSION DRIVE, MADISON, WI 53717 315 W. HUROW STREET, SUITE 220, ANN ARBOR, MI 48104

519 PLEASANT BOME ROAD, SUITE 3-C, AUGUSTA, GA 30907

8I, 8S

1

OF

3

SHEET

£ STARTED: 8-12-92 DATE FINISHED: 8-13-92 BORING NO. CLIENT: Fairchild Republic Corporation PROJECT NO. : 961-01.2 PREPARED BY: Kevin McHale PROJECT NAME & LOCATION: Old Recharge Basin DRILLING CONTRACTOR: ADT LOGGED BY: K. McHale DRILLER: R. Bauman SOIL SAMPLER: MON. WELL (MW) EQUIPMENT: CASING: CORE DRILL RIG AND METHOD SPLIT BARREL AUGER PIPE CAP SPOON Mobile B-61 Hollow Stem Standard TYPE: Auger 2" x 24" SIZE: HAMMER 140/30 BIT: WT/FALL SURFACE ELEVATION: SURFACE CONDITIONS: WATER LEVEL AT FT. AFTER HRS. FT. AFTER HRS. BLOWS/6" DEPTH SAMPLE STRATA DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% BELOW OVA OR CORE DEPTH/ GRADE READINGS TYPE AND DEPTH MOISTURE TIME ELEV. SOME=20-30% AND=35-50% (FROM-TO) CONTENT RECOVERY NO. 0 5 Light brown coarse sand, 8-15 gravel and pebbles. SS-1 5-7 12" 22-32 10 G₩ As above. SS-2 10-12 D 12" 31 15 S**S**-3 As above. 15-17 D 11" 46 20 ہے

PROJECT NAME: Old Recharge Basin BORING NO. 81, 8S PROJECT NO. 961-01.2 SHEET 2 OF 3

DEPTH BELOW GRADE	OVA READINGS	TYPE AND	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
								Brown fine sand.
		SS-4	20-22	ם	3"	57	Ī	<i>'</i>
							1	
	-						1	
25			_					
					-		4	
		SS-5	25-27	u	12"	24		Brown medium to coarse
					·			sand and gravel.
		 					<u> </u> 	
20					_	.	<u> </u>	
30	 	SS-6	30-32	W	12**	15	ł	As above.
		35-6	30-32		12"		Ì	
}								
			<u> </u>					
35				-				
							ļ	
		SS-7	35-37	u	10*	27		As above.
			_					
							ļ	
40					_		GH	
		ļ					ļ	
		S S-8	40-42	u	4"	46		As above.
45								
]	Coarse gravel and
		ss-9	45-47	u	64	56		pebbles.
]	
50							-	
u 		ss-10	50-52	ų	20"	27		Brown coarse sand, gravel and pebbles.
		ļ]	
→ 55	1			ļ				

PROJECT NAME: Old Recharge Basin BORING NO. 81, 85 PROJECT NO. 961-01.2 SHEET 3 OF 3

DEPTH BELOW GRADE	OVA READINGS	TYPE AND	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
								,
		SS-11	55-57	w	10"	29		Coarse gravel and pebbles.
							G₩	
60								
						_		
		SS-12	60-62	w	6"	26		As above.
								EOB & 62.
			_		_			
65								
						-	1	
	<u></u>							
70								
							'	
	<u> </u>							
75								
						-		
80				<u> </u>				
				_				
85				<u> </u>				
							1	
				_	-	_		
						<u> </u>		
90		_						

EDER ASSOCIATES CONSULTING ENGINEERS, P.C. 480 FOREST AVERUE, LOCUST VALLEY, BY 11560 8000 EXCELSIOR DRIVE, MADISON, WI 53717 BORING REPORT 315 W. HURCH STREET, SUITE 220, ANN ARBOR, MI 48104 OF SHEET 1 519 PLEASART BOME ROAD, SUITE 3-C, AUGUSTA, GA 30907 TE STARTED: 8-13-92 BORING NO. 9I, 9S DATE FINISHED: 8-13-92 PROJECT NO.: CLIENT: Fairchild Republic Corporation 961-01.2 PREPARED BY: Kevin McHale PROJECT NAME & LOCATION: Old Recharge Basin DRILLER: R. Bauman DRILLING CONTRACTOR: ADT LOGGED BY: K. McHale SOIL SAMPLER: MON. WELL (MW) DRILL RIG EQUIPMENT: CASING: CORE CAP AND METHOD PIPE SPLIT AUGER BARREL SPOON Mobile B-61 Hollow Stem Standard TYPE: Auger 2" x 24" SIZE: 140/30 BIT: HAMMER WT/FALL SURFACE ELEVATION: SURFACE CONDITIONS: FT. AFTER FT. AFTER WATER LEVEL AT HRS. STRATA DESCRIPTION & REMARKS BLOWS/6" DEPTH SAMPLE TRACE=0-10% LITTLE=10-20% OR CORE DEPTH/ BELOW OVA TYPE AND MOISTURE ELEV. SOME=20-301 AND=35-501 GRADE READINGS DEPTH TIME RECOVERY (FROM-TO) NO. CONTENT

3

0								
								
								
5								
						6-11		Brown fine to coarse sand and gravel trace pebbles.
	0.3	SS-1	5-7	М	6"	15-17		and graver crace pennies.
		·						
10								
							G₩	
	0.8	SS-2	10-12	м	12"	44		As above.
ļ							·	
				<u> </u>				
15				<u> </u>				
	1.0	SS-3	15-17	м	16"	40		As above.
						70		
								
20								

PROJECT NAME: Old Recharge Basin BORING NO. 91, 95 PROJECT NO. 961-01.2 SHEET 2 OF 3

DEPTH BELOW GRADE	OVA READINGS	TYPE AND	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SOME=0-30% AND=35-50%
								Red/orange and brown fine
	2.6	SS-4	20-22	М	12"	34		to coarse sand, gravel and pebbles.
l								
25				<u> </u>				
							A	
	2.6	ss-5	25-27	¥	10**	20		As above.
30								
						<u> </u>		Brown fine to coarse
	2.5	55.4	70.72			7/		sand, gravel with trace pebbles.
	2.5	SS-6	30-32	.	8"	34		
35								
	2.9	SS-7	35-37	¥ .	10*	39	GW	As above.
40								
	2.6	\$5-8	40-42	¥	14"	36		As above.
45								
	2 .6	55-9	45-47	V	10*	42		As above.
						· _]	
50								
							₩AM	
	1.4	SS-10	50-52	V	6#	29		As above.
55		ļ]					

PROJECT NAME: Old Recharge Basin BORING NO. 91, 95 PROJECT NO. 961-01.2 SHEET 3 OF 3

DEPTH BELOW GRADE	OVA READINGS	TYPE AND	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SCHE=0-30% AND=35-50%
	ļ	<u> </u>						,
	2.2	SS-11	55-57	W	16"	62		As above.
							G₩	
60		<u> </u>		<u> </u>				
	1.2	SS-12	60-62	¥	10"	58		As above.
								EOB @ 62.
65		 						
		<u> </u>						
		<u> </u>						
		<u> </u>		· · · · · · · · · · · · · · · · · · ·				
70								
75							l	
							1	
						<u> </u>		
		 				<u> </u>		
80								
		ļ						
	<u></u>							
0 =								
<u>85</u>	 	 	 					
		 -						
90	1							

BORING REPORT

EDER ASSOCIATES CONSULTING ENGINEERS, P.C. 480 FOREST AVENUE, LOCUST VALLEY, NY 11560 8000 EXCELSIOR DRIVE, MADISON, VI 53717 315 W. HURON STREET, SUITE 220, ANN ARBOR MI 48104 519 PLEASANT HOME ROAD, SUITE 3-C, AUGUSTA, GA 30907

SHEET 1 OF 4

E STARTED	E STARTED: 10-19-92 DATE FINISHED: 10-19-92						BORING NO. 100			
CLIENT: Fair	rchild Repu	blic Company	,			PROJECT NO.:	961-01.2			
PROJECT NAME	& LOCATION	: Old Recha	rge Basin			PREPARED BY:	Kevin Mc	late		
DRILLING CONT	TRACTOR: A	OT		LOGGED BY: Kevin McHale DRILLE			DRILLER:	Cary Ellison		
	CACINO.	SOIL S	AMPLER:			MON. WELL (MV)				
EQUIPMENT:	CASING:	SPLIT SPOON		CORE BARREL	AUGER	PIPE	CAP	DRILL RIG		
TYPE:		STD						Mobile 8-61 HDX		
SIZE:		2" x 24"]		
HAMMER WT/FALL		140/30		BIT:						
SURFACE ELEVA	TION:			SURFACE	CONDITIONS	:				
WATER LEVEL A	NT	FT. A	FTER	HRS.		FT. AFTER		HRS.		
DEPTH BELOW	OVA		SAM	PLE		8LOWS/6" OR CORE	STRATA DEPTH/	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20%		
GRADE	READINGS	TYPE AND	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	TIME	ELEVO.00	SOME=20-30% AND=35-50%		
o								Dark brown medium sand and topsoil.		
[0_	ss-1	0-2	М	411	26		topsort.		
5										
<u> </u>								Ì		
}			_							
}										
}	0	ss-2	7-9	м .	12"	36	CL	Light grey silty sandy		
10	<u> </u>							clay with trace gravel and pebbles.		
10						<u> </u>				
										
	0	ss-3	12-14	М	10"	36"		Fine to coarse brown sand		
15								and gravel; trace peobles.		
							GW			
				J						
	0	ss-4	17-19	м	14"	29		As Above.		
20										

DEPTH						01 01 0 1 / 11		
) BELO₩	OVA	TYPE AND	DEPTH	MOISTURE	[BLOWS/6" OR CORE	STRATA DEPTH/	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20%
GRADE	READINGS	NO.	(FROM-TO)	CONTENT	RECOVERY	TIME	ELEV.	SOME=0-30% AND=35-50%
	L]	,
							1	,
1							1	Fine to coarse brown sand
1					441		ł	and gravel; trace pebbles.
1	0	\$\$-5	22-24	M M	16*	44	}	perotes.
25)	
				,,			(
{								
)) }								
ļ <u></u>	0	SS-6	27-29	¥	64	38	ı	As above.
30 _	'	<u> </u>						•
}								
1								
1 ,								
1	0	ss-7	32-34	u_	16#	21		As above.
35								
1 }								
r							GW	
4	0	ss-8	37-39	u	14#	17		As above.
40								
-								
<u> </u>								
		ļ						
{								
	0	s s-9	42-44	u	14"	26		As above.
45								
	_							
{ }					 			
	0	\$\$-10	47-49	u	16"	17	·	As above.
50								
								
								
<u>"</u>	0	ss-11	52-54	u	18"	28		As above.
55								

DEPTH BELOW GRADE	OVA READINGS	TYPE AND	DEPTH (FROM-TO)	MOISTURE CONTENT	RECOVERY	BLOWS/6" OR CORE TIME	STRATA DEPTH/ ELEV.	DESCRIPTION & REMARKS TRACE=0-10% LITTLE=10-20% SCME=0-30% AND=35-50%
								,
	·							Fine to coarse brown sand and gravel; trace
1	0	SS-12	57-59	W	12"	17		pebbles.
60							1	
							1	·
							1	
Ĭ						-	1	
	0	ss-13	62-64	u	4*	15	1	As above.
65							1	
							1	
	0	SS-14	67-69	v	12"	17]	As above.
70						_ _		
							GW	
							Ì	
	0	SS-15	72-74	u	14**	22		As above.
75								
							1	
	0	SS-16	77-79	<u>u</u>	14"	22	1	As above.
80								
	<u> </u>						1	
					-		1	
1]	
l	0	ss-17	82-84	V	12"	125]	As above with orange
85						-	1	staining.
]	a wage
· •	0	\$S-18	87-89	<u> </u>	12"	40	S₩	fine to coarse brown sand.
90								

STRATA DESCRIPTION & REMARKS BLOWS/6" DEPTH BELOW OVA TYPE AND DEPTH MOISTURE OR CORE DEPTH/ TRACE=0-10% LITTLE=10-20% SCME=0-30% AND=35-50% GRADE READINGS NO. (FRON-TO) CONTENT RECOVERY TIME ELEV. Fine Brown sand trace SW gravel. 40 0 SS-19 92-94 14" 95 SM Fine brown sand with little silt. EOB 2 99.0 0 \$\$-20 97-99 W 12" 36 100 105 110 115 120 **125**

LOCKING INTERNAL — PLUG	PROTECTIVE	
7 PROTECTIVE		LEV.
⑤ —		
6"ø BOREHOLE		
3—		
<u>DEPTH</u> 90 		

eder associates consulting engineers, p.c. MONITORING WELL CONSTRUCTION INFORMATION
JOB No. 961-01.2 CLIENT Fairchild
LOCATION Old Recharge Basin
DATE 8-12-92 WELL No. 2XD
HYDROGEOLOGIST Kevin McHale
DRILLING CONTRACTORADT
1.) SCREEN TYPE Stainless Steel
SLOTTED LENGTH 10.0 ft.
SLOT SIZE 0.010 inches
2.) SOLID PIPE TYPEPVC
SOLID PIPE LENGTH 80 ft.
PIPE & SCREEN DIA4.0In.
JOINT TYPE-SLIP/GLUED THREADED/
3.) TYPE OF BACKFILL AROUND SCREEN
#2 Morie Sand
4.) TYPE OF LOWER SEAL (IF INSTALLED)
Bentonite Pellets
5.) TYPE OF BACKFILL Bentonite/Cement Grout
HOW INSTALLED Tremie Pipe
6.) TYPE OF SURFACE SEAL (IF INSTALLED)
None
7.) PROTECTIVE CASING - YES _/ NO
LOCKING CAP YES NO
8.) CONCRETE SEAL - YES/ NO
9.) DRILLING METHOD Hollow Stem Auger
10.) ADDITIVES USED (IF ANY) None
WATER LEVEL CHECKS*

DATE	TIME	DEPTH TO WATER	REMARKS

^{*} FROM TOP OF WELL CASING

LOCKING INTERNAL — PLUG	PROTECTIVE
7 PROTECTIVE	ELEV
⑤ —	
6"ø BOREHOLE	
DEPTH 15.0	
DEPTH 17.0	
3—	
DEPTH 35.0 DEPTH 35.5	
3	

eder associates consulting engineers, p.c. MONITORING WELL CONSTRUCTION INFORMATION
JOB No. 961-01.2 CLIENT Fairchild
LOCATION Old Recharge Basin
DATE 8-13-92 WELL No. 85
HYDROGEOLOGIST Kevin McHale
DRILLING CONTRACTOR ADT
1.) SCREEN TYPE Stainless Steel
SLOTTED LENGTH15.0 ft.
SLOT SIZE 0.010 inches
2.) SOLID PIPE TYPEPVC
SOLID PIPE LENGTH20 ft.
PIPE & SCREEN DIA4.0 In.
JOINT TYPE-SLIP/GLUED THREADED/
3.) TYPE OF BACKFILL AROUND SCREEN
#2 Morie Sand
4.) TYPE OF LOWER SEAL (IF INSTALLED)
Bentonite Pellets
5.) TYPE OF BACKFILL Bentonite/Cement Grout
HOW INSTALLED Tremie Pipe
6.) TYPE OF SURFACE SEAL (IF INSTALLED)
None
7.) PROTECTIVE CASING - YES _/ NO
LOCKING CAP YES NO
8.) CONCRETE SEAL - YES/ NO
9.) DRILLING METHOD Hollow Stem Auger
10.) ADDITIVES USED (IF ANY) None

WATER LEVEL CHECKS*

DATE	TIME	DEPTH TO WATER	REMARKS
8-18-92	0730	24.15	

^{*} FROM TOP OF WELL CASING

LOCKING INTERNAL — PLUG	PROTECTIVE
PROTECTIVE	FLEV.
(5)——	
6"ø BOREHOLE	
DEPTH 42	
4	
DEPTH 47	
<u> </u>	
DEPTH 60	
DEPTH 61	<u> </u>
	[] :

ede	r asso	ciates	consulting	engineers,	p.c.
MONTTOPING	WEIT.	CONST	TRUCTTON T	INFORMATION	

_
_
_
_
_
•
-
_
<u>_</u>
_
_
_
_
-

WATER LEVEL CHECKS*

DATE	TIME	DEPTH TO WATER	REMARKS
8-18-92	0745	23.85	
	<u> </u>		

FROM TOP OF WELL CASING

LOCK INTERI PI			PROTECTIVE
PROTECT STEEL CAS	IVE		ELEV.
	5-		
6"ø BOREHOLE			
DEPTH	15	×	
<u>DEPTH</u>	<u>17</u>		
	3		
DEPTH	35		
DEPTH	35.5		No.

eder associates consulting engineers, p.c. MONITORING WELL CONSTRUCTION INFORMATION
JOB No. 961-02.2 CLIENT Fairchild
LOCATION Old Recharge Basin
DATE 8-14-92 WELL No. 9S
HYDROGEOLOGIST Kevin McHale
DRILLING CONTRACTORADT
1.) SCREEN TYPE <u>Stainless Steel</u>
SLOTTED LENGTH15.0 ft.
SLOT SIZE
2.) SOLID PIPE TYPEPVC
SOLID PIPE LENGTH 20ft.
PIPE & SCREEN DIA. 4.0 In.
JOINT TYPE-SLIP/GLUED THREADED/
3.) TYPE OF BACKFILL AROUND SCREEN
#2 Morie Sand
4.) TYPE OF LOWER SEAL (IF INSTALLED)
Bentonite Pellets
5.) TYPE OF BACKFILL Bentonite/Cement Grout
HOW INSTALLED Tremie Pipe
6.) TYPE OF SURFACE SEAL (IF INSTALLED)
None.
7.) PROTECTIVE CASING - YES _/ NO
LOCKING CAP YES NO
8.) CONCRETE SEAL - YES/_ NO
9.) DRILLING METHOD Hollow Stem Auger
10.) ADDITIVES USED (IF ANY) None.

WATER LEVEL CHECKS*

DATE	TIME	DEPTH TO WATER	REMARKS
8-18-92	0700	25.52	
	_		

FROM TOP OF WELL CASING

LOCKING INTERNAL — PLUG	PROTECTIVE
PROTECTIVE	FLEV.
⑤ —	
6"¢ BOREHOLE	
DEPTH 46.5	
3	
DEPTH 60	
DEPTH 61	

eder associates consulting engineers, p.c. MONITORING WELL CONSTRUCTION INFORMATION
JOB No. 961-01.2 CLIENT Fairchild
LOCATION Old Recharge Basin
DATE 8-14-92 WELL No. 91
HYDROGEOLOGIST Kevin McHale
DRILLING CONTRACTORADT
1.) SCREEN TYPE Stainless Steel
SLOTTED LENGTH10.0 ft.
SLOT SIZE <u>0.010 inches</u>
2.) SOLID PIPE TYPE PVC
SOLID PIPE LENGTH 50 ft.
PIPE & SCREEN DIA4.0 In.
JOINT TYPE-SLIP/GLUED THREADED/
3.) TYPE OF BACKFILL AROUND SCREEN
#2 Morie Sand
4.) TYPE OF LOWER SEAL (IF INSTALLED)
Bentonite Pellets
5.) TYPE OF BACKFILL Bentonite/Cement Grout
HOW INSTALLED Tremie Pipe
6.) TYPE OF SURFACE SEAL (IF INSTALLED)
None
7.) PROTECTIVE CASING - YES _/_ NO
LOCKING CAP YES NO
8.) CONCRETE SEAL - YES NO
9.) DRILLING METHOD Hollow Stem Auger
10.) ADDITIVES USED (IF ANY) None.
WATER LEVEL CHECKS*

DATE	TIME	DEPTH TO WATER	REMARKS
8-18-92	0715	25.47	

^{*} FROM TOP OF WELL CASING

		MONITOR	eder a	ssociates co L CONSTRUC	nsulting engineers, p.c.
LOCKING INTERNAL	_PROTECTIVE	JOB No.	<u>961-01</u>	.2 CLIENT	Fairchild
PLUG	COVER	LOCATIO	N Old R	echarge Ba	sin
		DATE 10	-19-92	WE	LL No. 10 s
7 PROTECTIVE	FLEV.		OLOGIST	Kevin Mo	Hale
STEEL CASING		DRILLIN	G CONTR	ACTOR AD	T
® -	×	1.) SCR	EEN TYP	E Stainl	ess Steel
	\bowtie	SL	OTTED L	ENGTH 15.	0ft
\bowtie	\bowtie	SL	OT SIZE	0.010 i	nches
	\bowtie	2.) SOL	ID PIPE	TYPE PVC	
(5)		so	LID PIPI	E LENGTH _	19.0ft.
	X				4.0 In.
\bowtie		JO	INT TYPI	E-SLIP/GLU	ED THREADED_
\bowtie	Ø				OUND SCREEN
\bowtie	\bowtie	_#	2 Morie	Sand	
6"ø BOREHOLE	\bowtie	4.) TYP	E OF LOV	VER SEAL (IF INSTALLED)
	X	B	entonite	Slurry	
DEPTH 13.0	\bowtie				_
		5.) TYP	E OF BAC	KFILL Ber	tonite/Cement Grout
4					Pipe
DEPTH 16.0	**	6.) TYP:	e of sur	RFACE SEAL	(IF INSTALLED)
			None		
	Andrews Control Control Control	7.) PRO	CECTIVE	CASING -	res <u>/</u> No
		LOC	KING CAF	YES	/ NO
湯 量	50 N 50 N 50 N 50 N	8.) CON	CRETE SE	AL - YES	NO
		9.) DRI	LLING ME	THOD Holl	low Stem Auger
	<u>- 648</u> - 68				
		10.) ADI	DITIVES	USED (IF A	NY) None.
DEPTH 34.0					
DEPTH 35.0				-	
	<u> </u>		R LEVEL CH		
	ì	DATE	TIME	DEPTH TO WATER	REMARKS

FROM TOP OF WELL CASING

1300

25.10

Before Development

10-21-92

LOCKING INTERNAL — PLUG	PROTECTIVE
7 PROTECTIVE	FLEV.
⑤ —	
6"ø BOREHOLE	
DEPTH 43.5	
O	
DEPTH 47	
3—	
DEPTH 60	
DEPTH 60	

eder associates consulting engineers, p.c. MONITORING WELL CONSTRUCTION INFORMATION
JOB No. 961-01.2 CLIENT Fairchild
LOCATION Old Recharge Basin
DATE 10-19-92 WELL No. 10 I
HYDROGEOLOGIST Kevin McHale
DRILLING CONTRACTOR ADT
1.) SCREEN TYPE Stainless Steel
SLOTTED LENGTH 10.0 ft.
SLOT SIZE <u>0.010 inches</u>
2.) SOLID PIPE TYPE PVC
SOLID PIPE LENGTH 50.0 ft.
PIPE & SCREEN DIA. 4.0 In.
JOINT TYPE-SLIP/GLUED THREADED
3.) TYPE OF BACKFILL AROUND SCREEN
#2 Morie Sand
4.) TYPE OF LOWER SEAL (IF INSTALLED)
Bentonite Slurry
5) ==== == ===========================
5.) TYPE OF BACKFILL Bentonite/Cement Grout
HOW INSTALLED <u>Tremie Pipe</u>
6.) TYPE OF SURFACE SEAL (IF INSTALLED)
None
7.) PROTECTIVE CASING - YES _/ NO
LOCKING CAP YES NO
8.) CONCRETE SEAL - YES/ NO
9.) DRILLING METHOD Hollow Stem Auger
10.) ADDITIVES USED (IF ANY) None.

WATER LEVEL CHECKS*

DATE	TIME	DEPTH TO	REMARKS
10-21-92	1310	25.25	Before Development
			_

FROM TOP OF WELL CASTING

		MONITOR	eder as	sociates cor L CONSTRUC	nsulting engineers, p.c.
LOCKING INTERNAL —	_PROTECTIVE	JOB No.	961-01	.2 CLIENT	Fairchild
PLUG	COVER	LOCATIO	N <u>Old R</u>	echarge Ba	sin
		DATE 10	-20 - 92	WE	LL No. <u>10 D</u>
7 PROTECTIVE	ELEV.	HYDROGE	OLOGIST	Kevin Mc	Hale
STEEL CASING		DRILLING	G CONTR	ACTOR <u>AD</u>	T
® 		1.) SCRI	EEN TYP	E <u>Stainl</u>	ess Steel
	X	SLO	OTTED L	ENGTH 10.	0 <u>ft</u>
\bowtie	\bowtie	SLO	OT SIZE	0.010 i	nches
(5)————	\bowtie	2.) SOL:	ID PIPE	TYPE PVC	
	\bowtie	son	LID PIP	E LENGTH _	84.0 ft.
\bowtie		PI	PE & SC	REEN DIA.	4.0 In.
\bowtie	X	JO	INT TYP	E-SLIP/GLU	ED THREADED
\bowtie	\bowtie	3.) TY	PE OF B	ACKFILL ARG	OUND SCREEN
\bowtie		_#2	Morie	Sand	
6" BOREHOLE	\bowtie	4.) TYPE	OF LO	WER SEAL (IF INSTALLED)
×		<u>B</u> €	entonit	e Slurry	
<u>DEPTH 78.0 X</u>		5.) TYPE	OF BAC	CKFILL Ben	tonite/Cement Grout
4		HOW	INSTAL	LED <u>Tremie</u>	Pipe
DEPTH 81.0		6.) TYPE	OF SU	RFACE SEAL	(IF INSTALLED)
Single-red Fit First Fit Single-red Fit Fit			None		
		7.) PROT	ECTIVE	CASING - Y	YES / NO
③ 		LOCE	CING CA	P YES	/ NO
		8.) CONC	CRETE SI	EAL - YES _	NO
₩ ≣		9.) DRII	LING M	ETHOD Holl	low Stem Auger
		10.) ADE	DITIVES	USED (IF A	ANY) None
DEPTH 94.0					
DEPTH 95.0					
DEF III J. S.	<u>- = = = = = = = = = = = = = = = = = = =</u>		R LEVEL C		
	1	DATE	TIME	DEPTH TO WATER	REMARKS
	∭ :	10-21-92	1320	25.00	Before Development
	-				peaerobineur
	├				

FROM TOP OF WELL CASING

WELLCONS 092392

LOCKING INTERNAL — PLUG	PROTECTIVE
7 PROTECTIVE	FLEV.
<u></u>	
6"# BOREHOLE	
DEPTH 17.0	
3	
DEPTH 35.0	
<u>DEPTH 35.0</u>	

eder associates consulting engineers, p.c. MONITORING WELL CONSTRUCTION INFORMATION
JOB No. 961-01.2 CLIENT Fairchild
LOCATION Old Recharge Basin
DATE 10-28-92 WELL No. 11 S
HYDROGEOLOGIST <u>Kevin McHale</u>
DRILLING CONTRACTORADT
1.) SCREEN TYPEStainless Steel
SLOTTED LENGTH 15.0 ft
SLOT SIZE 0.010 inches
2.) SOLID PIPE TYPE PVC
SOLID PIPE LENGTH 20.0 ft.
PIPE & SCREEN DIA4.0In.
JOINT TYPE-SLIP/GLUED THREADED
3.) TYPE OF BACKFILL AROUND SCREEN
#2 Morie Sand
4.) TYPE OF LOWER SEAL (IF INSTALLED)
Bentonite Slurry
5.) TYPE OF BACKFILL Bentonite/Cement Grout
HOW INSTALLED Tremie Pipe
6.) TYPE OF SURFACE SEAL (IF INSTALLED)
None
7.) PROTECTIVE CASING - YES _/ NO
LOCKING CAP YES NO
8.) CONCRETE SEAL - YES/ NO
9.) DRILLING METHOD Hollow Stem Auger
10.) ADDITIVES USED (IF ANY) None
WATER LEVEL CHECKS*

DATE	TIME	DEPTH TO WATER	REMARKS
10-28-92	1058	19.22	
ļ	 		
		 	

FROM TOP OF WELL CASING

LOCKING INTERNAL — PLUG	PROTECTIVE
7 PROTECTIVE	ELEV.
⑤ —	
6"ø BOREHOLE DEPTH 43.0	
DEPTH 46.0	
3—	
DEPTH 59.0 DEPTH 59.0	

eder associates consulting engineers, p.c. MONITORING WELL CONSTRUCTION INFORMATION
JOB No. 961-01.2 CLIENT Fairchild
LOCATION Old Recharge Basin
DATE 10-27-92 WELL No. 11 I
HYDROGEOLOGIST Kevin McHale
DRILLING CONTRACTOR ADT
1.) SCREEN TYPE Stainless Steel
SLOTTED LENGTH 10.0 ft.
SLOT SIZE 0.010 inches
2.) SOLID PIPE TYPE PVC
SOLID PIPE LENGTH 49.0 ft.
PIPE & SCREEN DIA. 4.0 In.
JOINT TYPE-SLIP/GLUED THREADED/
3.) TYPE OF BACKFILL AROUND SCREEN
#2 Morie Sand
4.) TYPE OF LOWER SEAL (IF INSTALLED)
Bentonite Slurry
5.) TYPE OF BACKFILL Bentonite/Cement Grout
HOW INSTALLEDTremie Pipe
6.) TYPE OF SURFACE SEAL (IF INSTALLED)
7.) PROTECTIVE CASING - YES _/_ NO
LOCKING CAP YES NO
8.) CONCRETE SEAL - YES/ NO
9.) DRILLING METHOD Hollow Stem Auger
10.) ADDITIVES USED (IF ANY) None

WATER LEVEL CHECKS'

DATE	TIME	DEPTH TO WATER	REMARKS
10-28-92	1011	18.98	

FROM TOP OF WELL CASING

LOCKING INTERNAL — PLUG	PROTECTIVE
PROTECTIVE	ELEV.
⑤ ——	
6"# BOREHOLE	
DEPTH 77.0	
•	
DEPTH 80.0	
3—	
DEPTH 92.5	
DEPTH 94.0	

I to the second second
eder associates consulting engineers, p.c. MONITORING WELL CONSTRUCTION INFORMATION
JOB No. 961-01.2 CLIENT Fairchild
LOCATION Old Recharge Basin
DATE 11-03-92 WELL No. 11 D
HYDROGEOLOGIST Kevin McHale
DRILLING CONTRACTOR ADT
1.) SCREEN TYPE Stainless Steel
SLOTTED LENGTH 10.0 ft.
SLOT SIZE 0.010 inches
2.) SOLID PIPE TYPE PVC
SOLID PIPE LENGTH 82.5 ft.
PIPE & SCREEN DIA. 4.0 In.
JOINT TYPE-SLIP/GLUED THREADED
3.) TYPE OF BACKFILL AROUND SCREEN
#2 Morie Sand
4.) TYPE OF LOWER SEAL (IF INSTALLED)
Bentonite Slurry
5.) TYPE OF BACKFILL Bentonite/Cement Grout
HOW INSTALLED Tremie Pipe
6.) TYPE OF SURFACE SEAL (IF INSTALLED)
None
7.) PROTECTIVE CASING - YES / NO
LOCKING CAP YES/ NO
8.) CONCRETE SEAL - YES _/ NO
9.) DRILLING METHOD Hollow Stem Auger
10.) ADDITIVES USED (IF ANY) None

WATER LEVEL CHECKS"

TIME 9	DEPTH TO WATER	REMARKS
0900	19.05	
		WATER

FROM TOP OF WELL CASING

CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3
WELL No./OWNER	1S / Fairchild
SAMPLING POINT	Monitoring Well #15
SAMPLE I.D. No.	FRC-1S-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	3/1/93 TIME 1220
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	24.60 FT. BELOW MEASURING POINT 77.90
WELL DIAMETER	_2.0INCHES
	37.87 FT. BELOW MEASURING POINT 77.90
	SAMPLING INFORMATION
PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECOVE SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY 400 TEMPERATURE 52 SAMPLES ANALYZED FOR	
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°F	6.5 6.5 400 400 400 50 52 52

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	1D / Fairchild
SAMPLING POINT	Monitoring Well #1D
SAMPLE I.D. No.	FRC-1D-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	3/1/93 TIME 1238
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	24.73 FT. BELOW MEASURING POINT
WELL DIAMETER	1.5 INCHES
TOTAL WELL DEPTH	58.55 FT. BELOW MEASURING POINT 77.96
	
T	SAMPLING INFORMATION
PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECOVER SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY 400 TEMPERATURE 55	GAL/MIN. PURGING TIME MIN. REMOVED: 3
∦	OR TCL-VOCs (524.2), SVOCs, Pest/PCBs; TAL Metals
<u> </u>	ved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate IPPED <u>IEA / 3-2-93</u>
	SKETCH, WELL-HEAD SKETCH, ETC.
1	Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°C	6.6 6.6 6.7 400 400 400 53 54 55

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	2S / Fairchild
SAMPLING POINT	Monitoring Well #2S FRC-2S-02-MS, FRC-2S-02-MSD
SAMPLE I.D. No.	FRC-2S-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	3/1/93 TIME 1630
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	24.57 FT. BELOW MEASURING POINT
WELL DIAMETER	2.0 INCHES
TOTAL WELL DEPTH	37.83 FT. BELOW MEASURING POINT 76.78
ſ	SAMPLING INFORMATION
DUDGING METHOD Rai	ler, Dedicated
	GAL/MIN. PURGING TIME MIN.
J	REMOVED: 3 GALLONS: 6
	VERY Good Recovery
SAMPLE APPEARANCE	Clear
N .	None
CONDUCTIVITY	pH _7.4
TEMPERATURE53	°F. Bottle set #40; Dup = 41; MS = 52; MSD = 53
SAMPLES ANALYZED FO	OR TCL-VOCs (524.2), SVOCs, Pest/PCBs; TAL Metals
(Total plus dissolv	ved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
LABORATORY/DATE SH	IPPED <u>IEA / 3-2-93</u>
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond.	6.9 7.3 7.4
T°F	54 54 53

CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3
WELL No./OWNER	2D / Fairchild
SAMPLING POINT	Monitoring Well #2D
SAMPLE I.D. No.	FRC-2D-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	3-1-93 TIME 1645
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	24.62 FT. BELOW MEASURING POINT 76.83
WELL DIAMETER	1.5 INCHES
TOTAL WELL DEPTH	58.59 FT. BELOW MEASURING POINT
T	SAMPLING INFORMATION
PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECO SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY TEMPERATURE 53 SAMPLES ANALYZED FOR	iler, Dedicated GAL/MIN. PURGING TIME MIN. REMOVED:3 GALLONS:9.9 VERYGOOD RECOVERY ClearNone pH7.3°FBottle set #6 ORTCL-VOCs (524.2), SVOCs, Pest/PCBs; TAL Metals Ved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate IPPEDIEA / 3-2-93
	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
Cond. T°F	7.4 7.5 7.3 53 53

EDER ASSOCIATES CONSULTING ENGINEERS, P.C.

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 519 Pleasant Home Road, Augusta, GA 30907 326 South State Street, Ann Arbor, MI 48104 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	2XD / Fairchild
SAMPLING POINT	Monitoring Well #2XD
SAMPLE I.D. No.	FRC-2XD-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	2/26/93 TIME 1545
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	23.81 FT. BELOW MEASURING POINT
WELL DIAMETER	4 INCHES
TOTAL WELL DEPTH	88.40 FT. BELOW MEASURING POINT 75.99
	
	SAMPLING INFORMATION
II.	Submersible pump
1	4 GAL/MIN. PURGING TIME 39 MIN.
	REMOVED: 3 GALLONS: 126.0
lf .	VERY Fair Recovery
	Clear
ll .	None 7. 7. 3
	μs pH <u>7.3</u>
\	°F
SAMPLES ANALIZED FO	ORTCL-VOCs (524.2), SVOCs, Pest/PCBs; TAL Metals
(Total plus dissolv	ved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
LABORATORY/DATE SHI	IPPED IEA / 2-27-93
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
Cond. T°C	7.1 7.3 7.3 700 600 600 51 50 51

EDER ASSOCIATES CONSULTING ENGINEERS, P.C.

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 519 Pleasant Home Road, Augusta, GA 30907 326 South State Street, Ann Arbor, MI 48104 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

WELL No./OWNER 3S / Fairchild SAMPLING POINT Monitoring Well #3S SAMPLE I.D. No. FRC-3S-02 SAMPLED BY KM, AG, KB DATE SAMPLED 2/26/93 TIME 1420 WELL USE Groundwater Monitoring STATIC WATER ELEV. 24.14 FT. BELOW MEASURING POINT 75.82 WELL DIAMETER 2.0 INCHES TOTAL WELL DEPTH 38.85 FT. BELOW MEASURING POINT 75.82
SAMPLE I.D. No. FRC-3S-02 SAMPLED BY KM, AG, KB DATE SAMPLED 2/26/93 TIME 1420 WELL USE Groundwater Monitoring STATIC WATER ELEV. 24.14 FT. BELOW MEASURING POINT 75.82 WELL DIAMETER 2.0 INCHES
DATE SAMPLED 2/26/93 TIME 1420 WELL USE Groundwater Monitoring STATIC WATER ELEV. 24.14 FT. BELOW MEASURING POINT 75.82 WELL DIAMETER 2.0 INCHES
WELL USE Groundwater Monitoring STATIC WATER ELEV. 24.14 FT. BELOW MEASURING POINT 75.82 WELL DIAMETER 2.0 INCHES
STATIC WATER ELEV. 24.14 FT. BELOW MEASURING POINT
WELL DIAMETER 2.0 INCHES
TOTAL WELL DEPTH 38.85 FT. BELOW MEASURING POINT 75.82
SAMPLING INFORMATION
PURGING METHOD Bailer, Dedicated
PURGING RATE GAL/MIN. PURGING TIME MIN.
No. CASING VOLUMES REMOVED: 3 GALLONS: 6.6
WELL DRAWDOWN/RECOVERY Good Recovery
SAMPLE APPEARANCE Slightly cloudy
ODORS OBSERVED None
CONDUCTIVITY 100 µs pH 7.0
TEMPERATURE 50 °F.
SAMPLES ANALYZED FOR TCL-VOCs (524.2), SVOCs, Pest/PCBs; TAL Metals
(Total plus dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
LABORATORY/DATE SHIPPED <u>IEA / 2-27-93</u>
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.
<u>1 Vol. (1)</u> <u>2 Vol. (2)</u> <u>3 Vol. (3)</u>
рн 6.9 7.0 7.0
" Tond. 100 100 100 100

,	CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3		
1	WELL No./OWNER	3D / Fairchild		
,	SAMPLING POINT	Monitoring Well #3D		
,	SAMPLE I.D. No.	FRC-3D-02 SAMPLED BY KM, AG, KB		
1	DATE SAMPLED	2/26/93 TIME 1430		
١	WELL USE	Groundwater Monitoring		
	STATIC WATER ELEV.	24.42 FT. BELOW MEASURING POINT 76.09		
1	WELL DIAMETER	1.5 INCHES		
•	TOTAL WELL DEPTH	59.35 FT. BELOW MEASURING POINT76.09		
		SAMPLING INFORMATION		
ı		PURGING METHOD Bailer, Dedicated		
		GAL/MIN. PURGING TIME MIN.		
		REMOVED: 3 GALLONS: 10.2		
l	WELL DRAWDOWN/RECO	VERY Good Recovery		
	SAMPLE APPEARANCE	Cloudy		
ĺ	ODORS OBSERVED	None		
Ì	CONDUCTIVITY 300	μs pH 7.0		
Ì	TEMPERATURE51	°F		
	SAMPLES ANALYZED F	OR TCL-VOCs (524.2), SVOCs, Pest/PCBs; TAL Metals		
	(Total plus dissol	ved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate		
	LABORATORY/DATE SH	IPPED <u>IEA / 2-27-93</u>		
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.				
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)		
7	'pH	6.9 7.0 7.0		
	Cond. T°F	300 300 300 50 51 51		

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3		
WELL No./OWNER	4S / Fairchild		
SAMPLING POINT	Monitoring Well #4S		
SAMPLE I.D. No.	FRC-4S-02 SAMPLED BY KM. AG. KB		
DATE SAMPLED	2/26/93 TIME 1245		
WELL USE	Groundwater Monitoring		
STATIC WATER ELEV.	24.60 FT. BELOW MEASURING POINT		
WELL DIAMETER	2.0 INCHES		
TOTAL WELL DEPTH	38.77 FT. BELOW MEASURING POINT		
T	SAMPLING INFORMATION		
PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECOVE SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY 100 µ	GAL/MIN. PURGING TIME MIN. REMOVED: 3 GALLONS: 2.2 VERY Good Recovery Clear None 4s pH 7.1		
4	TEMPERATURE52 °F. Bottle set #26		
SAMPLES ANALYZED FOR TCL-VOCs (524.2), SVOCs, Pest/PCBs; TAL Metals			
(Total plus dissolv LABORATORY/DATE SHI	yed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate IPPEDIEA / 2-27-93		
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.		
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)		
Cond. T°C	7.0 6.8 7.1 100 100 100 52 52 52		

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3			
WELL No./OWNER	4D / Fairchild			
SAMPLING POINT	Monitoring Well #4D			
SAMPLE I.D. No.	FRC-4D-02 SAMPLED BY KM, AG, KB			
DATE SAMPLED	2/26/93 TIME 1300			
WELL USE	Groundwater Monitoring			
STATIC WATER ELEV.	24.64 FT. BELOW MEASURING POINT			
WELL DIAMETER	1.5 INCHES			
TOTAL WELL DEPTH	59.30 FT. BELOW MEASURING POINT			
1	SAMPLING INFORMATION			
Dimerika Mamuon na i	3 m - 3 !			
PURGING METHOD Bailer, Dedicated PURGING RATEGAL/MIN. PURGING TIMEMIN.				
			lf .	REMOVED: 3 GALLONS: 3.4
WELL DRAWDOWN/RECO	VERYGood Recovery			
SAMPLE APPEARANCE	Clear			
	None			
11	0 μs pH <u>6.8</u>			
TEMPERATURE °F Bottle set #11 SAMPLES ANALYZED FOR TCL-VoCs, SVOCs, Pest/PCBs; TAL Metals (Total plus dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate				
			LABORATORY/DATE SH	IPPED <u>IEA / 2-27-93</u>
			COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
il en	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)			
рн	6.6 6.8 6.8			
Cond. T°F	200 300 300 52 51 52			

	CLIENT/ PROJECT NO.	The Fairchild Corporation Job #961-01.3
		5S / Fairchild
		Monitoring Well #5S
		FRC-5S-02 SAMPLED BY KM, AG, KB
		3/1/93 TIME 1420
		Groundwater Monitoring
		19.52 FT. BELOW MEASURING POINT 74.03
		2.0 INCHES
		38.91 FT. BELOW MEASURING POINT 74.30
	TOTAL WALL DATE.	II. BELOW MERCONING FORM
7		SAMPLING INFORMATION
	PURGING METHOD <u>Ba</u>	iler, Dedicated
	PURGING RATE	GAL/MIN. PURGING TIME MIN.
	No. CASING VOLUMES	REMOVED: 3 GALLONS: 9
l	WELL DRAWDOWN/RECO	VERY Good Recovery
	SAMPLE APPEARANCE	Clear
	ODORS OBSERVED	None
	CONDUCTIVITY 60	0 μs pH 6.5
١	TEMPERATURE57	°F. Bottle set #36
	SAMPLES ANALYZED F	OR TCL-VOCS (524.2), SVOCS, PEST/PCBs; TAL Metals
	(Total and dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
	LABORATORY/DATE SH	IPPED <u>IEA / 3-2-93</u>
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
_	рн	6.1 6.3 6.5
	Cond. T°F	400 600 56 56 57

1	CLIENT/ PROJECT NO.	The Fairchild Corporation #961-01.3	
	·	5D/Fairchild	
		Monitoring Well #5D	
		FRC-5D-02 SAMPLED BY KM, AG, KB	
		3/1/93 TIME 14:45	
		Groundwater Monitoring	
:	STATIC WATER ELEV.	19.32 FT. BELOW MEASURING POINT 73.75	
١	WELL DIAMETER	1.5 INCHES	
•	TOTAL WELL DEPTH	59.76 FT. BELOW MEASURING POINT 73.75	
1		SAMPLING INFORMATION	
I			
l	PURGING METHOD Bai	ler, Dedicated	
Į	PURGING RATE	GAL/MIN. PURGING TIME MIN.	
	No. CASING VOLUMES	REMOVED: 3 GALLONS: 12	
	WELL DRAWDOWN/RECO	VERY Good Recovery	
ĺ	SAMPLE APPEARANCE	Clear	
}	ODORS OBSERVED Non	<u>e</u>	
	CONDUCTIVITY 200	<u>us</u> pH <u>6.3</u>	
	TEMPERATURE57	°F. Bottle Set #36	
ľ	SAMPLES ANALYZED F	OR TCL-VOCs, SVOCs, PEST/PCBs; TAL Metals	
Į	(Total & Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate		
1	LABORATORY/DATE SH	IPPED <u>IEA/3/2/93</u>	
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.	
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	
,	pH	6.2 6.2 6.3	
١	Cond.	200 200 54 56 57	

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	6S / Fairchild
SAMPLING POINT	Monitoring Well #6S
SAMPLE I.D. No.	FRC-6S-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	3/1/93 TIME <u>1845</u>
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	12.21 FT. BELOW MEASURING POINT 65.60
WELL DIAMETER	2.0 INCHES
TOTAL WELL DEPTH	35.90 FT. BELOW MEASURING POINT65.60
1	SAMPLING INFORMATION
PURGING RATE	ler, DedicatedGAL/MIN. PURGING TIME MIN.
N .	REMOVED: 3 GALLONS: 11.0 VERY Good Recovery
11	Clear
II .	None
CONDUCTIVITY	pH <u>5.9</u>
TEMPERATURE51	°F. Bottle set #24
SAMPLES ANALYZED F	OR TCL-VOCS (524.2), SVOCS, PEST/PCBs; TAL Metals
(Total and Dissolv LABORATORY/DATE SH	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate IPPED IEA / 3-2-93
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
H	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°F	6.2 6.1 5.9 51 50 51

CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3		
WELL NO./OWNER	6D / Fairchild		
SAMPLING POINT	Monitoring Well #6D		
SAMPLE I.D. No.	FRC-6D-02 SAMPLED BY KM, AG, KB		
DATE SAMPLED	3/1/93 TIME 1930		
WELL USE	Groundwater Monitoring		
STATIC WATER ELEV.	11.95 FT. BELOW MEASURING POINT 65.28		
WELL DIAMETER	1.5 INCHES		
TOTAL WELL DEPTH	57.45 FT. BELOW MEASURING POINT 65.28		
T	SAMPLING INFORMATION		
DIRECTION NUMBEROOF DE			
li e	iler, Dedicated		
<u> </u>	GAL/MIN. PURGING TIME MIN.		
ľ	REMOVED: 3 GALLONS: 13.5		
Y	VERYGood Recovery		
11	Clear		
N .	None		
JI	pH <u>5.9</u>		
}	°F. Bottle set #39		
SAMPLES ANALYZED F	OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals		
(Total and Dissolve	(Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate		
LABORATORY/DATE SH	IPPED <u>IEA / 3-2-93</u>		
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.		
V	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)		
ρH	5.9 5.9		
Cond. T°F	52 52 52		

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	7S / Fairchild
SAMPLING POINT	Monitoring Well #7S
SAMPLE I.D. No.	FRC-7S-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	3/1/93 TIME 1105
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	27.10 FT. BELOW MEASURING POINT80.29
WELL DIAMETER	2.0 INCHES
TOTAL WELL DEPTH	38.95 FT. BELOW MEASURING POINT 80.29
1	SAMPLING INFORMATION
PURGING RATE No. CASING VOLUMES	ailer, DedicatedGAL/MIN. PURGING TIME MIN. REMOVED: 3 GALLONS: 5.3 VERY Good Recovery
1	Clear
ODORS OBSERVED	None
N .	μs pH <u>6.3</u>
H	or TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals
(Total and Dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate IPPED IEA / 3-2-93
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°C	6.7 5.8 6.3 200 200 200 49 50 50

CLIENT/ PROJECT No.	The Fairchild Corporation #961-0.3
WELL No./OWNER	7D / Fairchild
SAMPLING POINT	Monitoring Well #7D
SAMPLE I.D. No.	FRC-7D-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	3/1/93 TIME 1055
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	26.82 FT. BELOW MEASURING POINT 80.05
WELL DIAMETER	1.5 INCHES
TOTAL WELL DEPTH	59.25 FT. BELOW MEASURING POINT 80.05
1 .	SAMPLING INFORMATION
DYDATUS MERIOD De	Tana Baddankad
1	ler, Dedicated
1	GAL/MIN. PURGING TIME MIN.
Ji	REMOVED: 3 GALLONS: 9.6
	VERY
	Clear
li .	None
lì .	0 μs pH <u>5.9</u>
TEMPERATURE5	1 °F. Bottle set #2
SAMPLES ANALYZED F	OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals
(Total and Dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
LABORATORY/DATE SH	IPPED <u>IEA / 3-2-93</u>
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH	6.6 6.5 5.9
Cond. T°F	300 200 200 47 50 51

CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3
WELL No./OWNER	8S / Fairchild
SAMPLING POINT	Monitoring Well #8S
SAMPLE I.D. No.	FRC-8S-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	2/25/93 TIME 1215
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	23.82 FT. BELOW MEASURING POINT 75.77
WELL DIAMETER	4 INCHES
TOTAL WELL DEPTH	34.80 FT. BELOW MEASURING POINT 75.77
Sample set 14	
1	SAMPLING INFORMATION
ii a	Submersible Pump
J .	GAL/MIN. PURGING TIME 4 MIN. REMOVED: 3 GALLONS: 20.0
II .	
lf .	VERY Good Recovery
	Slight rust color
	None 0 μs pH 6.8
]	°F. Bottle set #14
Ni .	OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals
	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
	IPPED <u>IEA / 2-27-93</u>
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
ll l	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
T pH	6.7 6.8 6.8
Cond. T°F	900 900 900 _ 52 52 52

	CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
	WELL No./OWNER	7S / Fairchild
	SAMPLING POINT	Monitoring Well #7S
	SAMPLE I.D. No.	FRC-7S-01 SAMPLED BY KM, AG, KB
]	DATE SAMPLED	12/3/92 TIME 0900
1	WELL USE	Groundwater Monitoring
į	STATIC WATER ELEV.	27.98 FT. BELOW MEASURING POINT80.29
1	WELL DIAMETER	2.0 INCHES
•	TOTAL WELL DEPTH	38.95 FT. BELOW MEASURING POINT 80.29
7		SAMPLING INFORMATION
	PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECO SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY 200 TEMPERATURE 58 SAMPLES ANALYZED F (Total and Dissolv	Agaller, Dedicated GAL/MIN. PURGING TIME MIN. REMOVED: 3 GALLONS: 5.3 VERY ClearNone #s pH6.0°F. OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
	LABORATORY/DATE SH	
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
	∠pH	6.2 6.1 6.0
	Cond. T°C	100 200 200 58 57 58

CLIENT/ PROJECT No. The Fairchild Co	rporation #961-01.3
WELL No./OWNER 1D / Fairchild	
SAMPLING POINT Monitoring Well	#1D
SAMPLE I.D. No. <u>FRC-1D-01</u> SA	MPLED BY KM, AG, KB
DATE SAMPLED <u>12/3/92</u> TIME	0800
WELL USE <u>Groundwater Moni</u>	toring
STATIC WATER ELEV25.54 FT. BELOW	MEASURING POINT77.96
WELL DIAMETER 1.5 INCHES	
TOTAL WELL DEPTH	MEASURING POINT77.96
SAMPLING I	
PURGING METHOD <u>Bailer, Dedicated</u>	
PURGING RATEGAL/MIN. PU	RGING TIME MIN.
No. CASING VOLUMES REMOVED: 3	GALLONS: 10
WELL DRAWDOWN/RECOVERY	
SAMPLE APPEARANCE <u>Clear</u>	
ODORS OBSERVED None	
CONDUCTIVITY 500 µs pH 6.3	
TEMPERATURE 58 °F.	
SAMPLES ANALYZED FOR	Cs. Pest/PCBs; TAL Metals
(Total plus dissolved), Cyanide, Alk	alinity, Sulfate, Nitrate, Phosphate
LABORATORY/DATE SHIPPED <u>IEA / 12-4-</u>	93
COMMENTS, LOCATION SKETCH, WELL-HEAD	SKETCH, ETC.
1 Vol. (1) 2 Vo	1. (2) 3 Vol. (3)
¶ pH 6.3	6.3
Cond. 500 T°C 58	500 500 _ 57 58

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3		
WELL No./OWNER	2S / Fairchild		
SAMPLING POINT	Monitoring Well #2S		
SAMPLE I.D. No.	FRC-2S-01 SAMPLED BY KM, AG, KB		
DATE SAMPLED	12/3/92 TIME 2015		
WELL USE	Groundwater Monitoring		
STATIC WATER ELEV.			
WELL DIAMETER	2.0 INCHES		
TOTAL WELL DEPTH			
Ĭ	SAMPLING INFORMATION		
PURGING METHOD Bai	ler, Dedicated		
	GAL/MIN. PURGING TIME MIN.		
1	REMOVED: 3 GALLONS: 6		
	VERY		
II.	Clear		
	None		
CONDUCTIVITY1,0	00 μs pH <u>6.8</u>		
II .	°F		
SAMPLES ANALYZED FO	OR <u>TCL-VOCs, SVOCs, Pest/PCBs; TAL Metals</u>		
(Total plus dissolution)	(Total plus dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate		
LABORATORY/DATE SH	IPPED <u>IEA / 12-4-92</u>		
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.		
I	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)		
рн	6.7 6.8 6.8		
Cond. T°F	900 900 1,000 56 55 59		

CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3		
WELL No./OWNER	2D / Fairchild		
SAMPLING POINT	Monitoring Well #2D		
SAMPLE I.D. No.	FRC-2D-01 SAMPLED BY KM, AG, KB		
DATE SAMPLED	12/3/92 TIME 2300		
WELL USE	Groundwater Monitoring		
STATIC WATER ELEV.	25.53 FT. BELOW MEASURING POINT 76.83		
WELL DIAMETER	1.5 INCHES		
TOTAL WELL DEPTH	58.59 FT. BELOW MEASURING POINT 76.83		
1	SAMPLING INFORMATION		
Я	iler, Dedicated		
ľ	GAL/MIN. PURGING TIME MIN.		
No. CASING VOLUMES	REMOVED: 3 GALLONS: 9.9		
WELL DRAWDOWN/RECO	VERY		
SAMPLE APPEARANCE	Clear		
ODORS OBSERVED	None		
CONDUCTIVITY	0 μs pH 7.2		
TEMPERATURE57	°F		
SAMPLES ANALYZED F	OR TCL-VOCs, SVOCs, Pest/PCBs; TAL Metals		
(Total plus dissol	(Total plus dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate		
LABORATORY/DATE SH	IPPED <u>IEA / 12-4-92</u>		
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.		
Į.	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)		
pH Cond.	7.0 7.2 7.2 600 600 700		

WELL SAMPLING LOG

CLIENT/ PROJECT No. The Fairchild Corporation #961-01.3

WELL No./OWNER	2XD / Fairchild	
SAMPLING POINT	Monitoring Well #2XD	
SAMPLE I.D. No.	FRC-2XD-01 SAMPLED BY KM, AG, KB	
DATE SAMPLED	12/2/92 TIME 1600	
WELL USE	Groundwater Monitoring	
STATIC WATER ELEV.	24.72 FT. BELOW MEASURING POINT	
WELL DIAMETER	4 INCHES	
TOTAL WELL DEPTH	88.40 FT. BELOW MEASURING POINT 75.99	
1	SAMPLING INFORMATION	
PURGING METHOD4	* Submersible pump	
PURGING RATE5	GAL/MIN. PURGING TIME <u>26</u> MIN.	
No. CASING VOLUMES	REMOVED: 3 GALLONS: 126.0	
WELL DRAWDOWN/RECO	VERY <u>Good Recovery</u>	
II .	Clear	
ODORS OBSERVED	None	
CONDUCTIVITY500	μs pH <u>6.9</u>	
TEMPERATURE58_	°F	
SAMPLES ANALYZED FOR <u>TCL-VOCs, SVOCs, Pest/PCBs; TAL Metals</u>		
(Total plus dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate		
LABORATORY/DATE SHIPPED <u>IEA / 12-3-92</u>		
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.	
1	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	
pH pH	6.9 6.9	
Cond. T°C	500 500 500 56 57 58	

CLIENT/ PROJECT No. The Fairchild Corporation #961-01.3	_	
WELL No./OWNER 3S / Fairchild		
SAMPLING POINT Monitoring Well #3S		
SAMPLE I.D. No. FRC-3S-01 SAMPLED BY KM, AG, TB		
DATE SAMPLED 12/2/92 TIME 1015		
WELL USE <u>Groundwater Monitoring</u>		
STATIC WATER ELEV. 25.01 FT. BELOW MEASURING POINT 75.82	,-	
WELL DIAMETER 2.0 INCHES		
TOTAL WELL DEPTH 38.85 FT. BELOW MEASURING POINT 75.82		
SAMPLING INFORMATION		
PURGING METHOD Bailer, Dedicated		
PURGING RATEGAL/MIN. PURGING TIMEMIN.		
No. CASING VOLUMES REMOVED: 3 GALLONS: 6.6		
WELL DRAWDOWN/RECOVERY		
SAMPLE APPEARANCE Slightly cloudy brown		
ODORS OBSERVEDNone		
CONDUCTIVITY 100 µs pH 6.1		
TEMPERATURE 61 °F.		
SAMPLES ANALYZED FOR		
(Total plus dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate		
LABORATORY/DATE SHIPPED <u>IEA / 12-3-92</u>		
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.		
1 Vol. (1) 2 Vol. (2) 3 Vol. (3)		
₩ pH 6.3 6.1 6.1		
Cond. 100 100 100 T°F 60 61 61		

	CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3
	SAMPLING POINT	Monitoring Well #3D
	SAMPLE I.D. No.	FRC-3D-01 SAMPLED BY KM, AG, KB
	DATE SAMPLED	12/2/92 TIME 1035
•	WELL USE	Groundwater Monitoring
	STATIC WATER ELEV.	25.31 FT. BELOW MEASURING POINT 76.09
1	WELL DIAMETER	1.5 INCHES
1	TOTAL WELL DEPTH	59.35 FT. BELOW MEASURING POINT 76.09
		SAMPLING INFORMATION
	DIDCING METHOD Ba	iler, Dedicated
		GAL/MIN. PURGING TIME MIN.
Ì		REMOVED: 3 GALLONS: 10.2
		VERY
	SAMPLE APPEARANCE	Clear
١	ODORS OBSERVED	None
l	CONDUCTIVITY 400	μs pH <u>6.7</u>
	TEMPERATURE59	°F
	SAMPLES ANALYZED FO	OR <u>TCL-VOCs, SVOCs, Pest/PCBs; TAL Metals</u>
	(Total plus dissolution)	ved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
l	LABORATORY/DATE SH	IPPED <u>IEA / 12-3-92</u>
l	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
	рн	6.6 6.7 6.7
	Cond. T°F	400 400 400 60 58 59
П		

	CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3	
	WELL No./OWNER	4S / Fairchild	
	SAMPLING POINT	Monitoring Well #4S	
	SAMPLE I.D. No.	FRC-4S-01 SAMPLED BY KM, AG, KB	
	DATE SAMPLED	12/2/92 TIME 0825	
•	WELL USE	Groundwater Monitoring	
	STATIC WATER ELEV.	25.54 FT. BELOW MEASURING POINT75.5	8
1	WELL DIAMETER	2.0 INCHES	
,	TOTAL WELL DEPTH	38.77 FT. BELOW MEASURING POINT	8
7		SAMPLING INFORMATION	
	DUDGING MEMUOD B	ailan Badimakad	
Ì	1	iler, Dedicated	
Ì		GAL/MIN. PURGING TIME MIN.	
Ì		REMOVED: 3 GALLONS: 2.2	
Ì		/ERY	
Ì		Clear	
		None	
		<u>4s</u> pH <u>5.9</u>	
	TEMPERATURE58	°F	
	SAMPLES ANALYZED FO	OR <u>TCL-VOCs, SVOCs, Pest/PCBs; TAL Metal</u>	<u>.s</u>
	(Total plus dissolv	ved), Cyanide, Alkalinity, Sulfate, Nitra	ite, Phosphate
	LABORATORY/DATE SHI	IPPED <u>IEA / 12-3-92</u>	
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.	
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	
	рН	5.9 5.9 5.9	
	Cond. T°C	100 100 100 58 58 58	
	,		

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	4D / Fairchild
SAMPLING POINT	Monitoring Well #4D
SAMPLE I.D. No.	FRC-4D-01 SAMPLED BY KM, AG, KB
DATE SAMPLED	12/2/92 TIME 0915
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	25.53 FT. BELOW MEASURING POINT
WELL DIAMETER	<u>1.5</u> INCHES
TOTAL WELL DEPTH	59.30 FT. BELOW MEASURING POINT 75.52
Ĭ	SAMPLING INFORMATION
PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECO	ler, DedicatedGAL/MIN. PURGING TIME MIN. REMOVED: 3 GALLONS: 3.4 VERY
	<u>Clear</u>
	None
II.	0 μs pH <u>6.2</u>
N .	OR TCL-VOCs, SVOCs, Pest/PCBs; TAL Metals
	ved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
Į.	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°F	6.1 6.2 6.2 300 300 300 58 58 58

CLI	[ENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3
WEI	LL No./OWNER	5S / Fairchild
SAM	APLING POINT	Monitoring Well #5S
SAM	MPLE I.D. No.	FRC-5S-01 SAMPLED BY KM, AG, KB
DAT	TE SAMPLED	12/2/92 TIME 1730
WEI	LL USE	Groundwater Monitoring
STA	ATIC WATER ELEV.	20.25 FT. BELOW MEASURING POINT 74.03
WEI	LL DIAMETER	2.0 INCHES
TOT	CAL WELL DEPTH	38.91 FT. BELOW MEASURING POINT 74.30
1		SAMPLING INFORMATION
PU No WI SI	URGING RATE CASING VOLUMES ELL DRAWDOWN/RECO AMPLE APPEARANCE	iler, Dedicated GAL/MIN. PURGING TIME MIN. REMOVED: 3 GALLONS: 9 VERY
II .		None 0 μs pH <u>6.3</u>
11		°F.
11		OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals
il		ved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate IPPED <u>IEA / 12-3-92</u>
<u>cc</u>	OMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
\		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pi Co T	ond.	6.4 6.4 6.3 700 600 600 58 58 59

	CLIENT/ PROJECT NO.	The Fairchild Corporation #961-01.3	
	WELL No./OWNER	5D / Fairchild	
	SAMPLING POINT	Monitoring Well #5D	
	SAMPLE I.D. No.	FRC-5D-01 SAMPLED BY KM, AG, KB	
	DATE SAMPLED	12/2/92 TIME 1800	
1	WELL USE	Groundwater Monitoring	
	STATIC WATER ELEV.	20.13 FT. BELOW MEASURING POINT	
1	WELL DIAMETER	1.5 INCHES	
r	TOTAL WELL DEPTH	59.76 FT. BELOW MEASURING POINT	
	·		
1		SAMPLING INFORMATION	
	PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECO SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY 100 TEMPERATURE 59	iler, Dedicated GAL/MIN. PURGING TIMEMIN. REMOVED: 3 GALLONS: 12 VERY ClearNone pH	-
	(Total and Dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate	-
	LABORATORY/DATE SH	4	
ľ	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.	
ı	l 	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	
	Cond. T°C	6.2 6.2 6.2 100 100 100 59 59 59	

WELL No./OWNER 5S / Fairchild SAMPLING POINT Monitoring Well #6S SAMPLE I.D. No. FRC-6S-01 SAMPLED BY KM, AG, KB DATE SAMPLED 12/3/92 TIME 1200 WELL USE Groundwater Monitoring STATIC WATER ELEV. 13.06 FT. BELOW MEASURING POINT 65.60 WELL DIAMETER 2.0 INCHES TOTAL WELL DEPTH 35.90 FT. BELOW MEASURING POINT 65.60 SAMPLING INFORMATION PURGING METHOD Bailer, Dedicated PURGING RATE GAL/MIN. PURGING TIME MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 11.0 WELL DRAWDOWN/RECOVERY SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs ph 5.3 TEMPERATURE 58 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cvanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	CLIENT/ PROJECT No.	The Fairchild	Corporation	#961-01.3	
SAMPLE I.D. NO. FRC-6S-01 SAMPLED BY KM, AG, KB DATE SAMPLED 12/3/92 TIME 1200 WELL USE Groundwater Monitoring STATIC WATER ELEV. 13.06 FT. BELOW MEASURING POINT 65.60 WELL DIAMETER 2.0 INCHES TOTAL WELL DEPTH 35.90 FT. BELOW MEASURING POINT 65.60 SAMPLING INFORMATION PURGING METHOD Bailer, Dedicated PURGING RATE GAL/MIN. PURGING TIME MIN. NO. CASING VOLUMES REMOVED: 3 GALLONS: 11.0 WELL DRAWDOWN/RECOVERY SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs pH 5.3 TEMPERATURE 58 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBS; TAL Metals (Total and Dissolved), Cvanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)					
DATE SAMPLED 12/3/92 TIME 1200 WELL USE Groundwater Monitoring STATIC WATER ELEV. 13.06 FT. BELOW MEASURING POINT 65.60 WELL DIAMETER 2.0 INCHES TOTAL WELL DEPTH 35.90 PT. BELOW MEASURING POINT 65.60 SAMPLING INFORMATION PURGING METHOD Bailer, Dedicated PURGING RATE GAL/MIN. PURGING TIME MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 11.0 WELL DRAWDOWN/RECOVERY SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs pH 5.3 TEMPERATURE 58 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBS; TAL Metals (Total and Dissolved), Cvanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	SAMPLING POINT	Monitoring Wel	1 #6S		
STATIC WATER ELEV. 13.06 FT. BELOW MEASURING POINT 65.60 WELL DIAMETER 2.0 INCHES TOTAL WELL DEPTH 35.90 FT. BELOW MEASURING POINT 65.60 SAMPLING INFORMATION PURGING METHOD Bailer. Dedicated PURGING RATE GAL/MIN. PURGING TIME MIN. NO. CASING VOLUMES REMOVED: 3 GALLONS: 11.0 WELL DRAWDOWN/RECOVERY SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 \(\psi \) S PH 5.3 TEMPERATURE 58 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBS; TAL Metals (Total and Dissolved), Cvanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	SAMPLE I.D. No.	FRC-6S-01 SA	MPLED BY KM, A	G, KB	
STATIC WATER ELEV. 13.06 FT. BELOW MEASURING POINT 65.60 WELL DIAMETER 2.0 INCHES TOTAL WELL DEPTH 35.90 FT. BELOW MEASURING POINT 65.60 SAMPLING INFORMATION PURGING METHOD Bailer, Dedicated PURGING RATEGAL/MIN. PURGING TIME MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 11.0 WELL DRAWDOWN/RECOVERY SAMPLE APPEARANCEClear ODORS OBSERVED None CONDUCTIVITY 200 \(\mu \text{s} \) PH 5.3 TEMPERATURE 58 °F. SAMPLES ANALYZED FORTCL_VOCS, SVOCS, PEST/PCBS; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	DATE SAMPLED	12/3/92	TIME _1200		
WELL DIAMETER 2.0 INCHES TOTAL WELL DEPTH 35.90 FT. BELOW MEASURING POINT 65.60 SAMPLING INFORMATION PURGING METHOD Bailer, Dedicated PURGING RATEGAL/MIN. PURGING TIME MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 11.0 WELL DRAWDOWN/RECOVERYSAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 \(\text{LS} \) PH 5.3 TEMPERATURE 58 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	WELL USE	Groundwater M	Monitoring		
SAMPLING INFORMATION PURGING METHOD Bailer, Dedicated PURGING RATEGAL/MIN. PURGING TIME MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 11.0 WELL DRAWDOWN/RECOVERY SAMPLE APPEARANCEClear ODORS OBSERVEDNone CONDUCTIVITY200 \(\psi \) PH5.3 TEMPERATURE58°F. SAMPLES ANALYZED FOR TCLVOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cvanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA /	STATIC WATER ELEV.	13.06 FT.	BELOW MEASURIN	G POINT <u>6</u>	5.60
SAMPLING INFORMATION PURGING METHOD Bailer, Dedicated PURGING RATEGAL/MIN. PURGING TIMEMIN. No. CASING VOLUMES REMOVED:3 GALLONS:11.0 WELL DRAWDOWN/RECOVERY SAMPLE APPEARANCEClear ODORS OBSERVEDNone CONDUCTIVITY200 \(\mu s \)PH5.3 TEMPERATURE58°F. SAMPLES ANALYZED FORCVOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED	WELL DIAMETER	2.0	INCHES		
PURGING METHOD Bailer, Dedicated PURGING RATE	TOTAL WELL DEPTH	35.90 FT.	BELOW MEASURI	NG POINT 6	5.60
PURGING METHOD Bailer, Dedicated PURGING RATE					
PURGING RATEGAL/MIN. PURGING TIMEMIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 11.0 WELL DRAWDOWN/RECOVERY SAMPLE APPEARANCEClear ODORS OBSERVEDNone CONDUCTIVITY200 \(\psi_\sigma\) pH5.3 TEMPERATURE58°F. SAMPLES ANALYZED FORTCLVOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED	<u> </u>				
SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs ph 5.3 TEMPERATURE 58 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	PURGING RATE No. CASING VOLUMES	GAL/MIN.	PURGING TIME GALLONS:	11.0	
CONDUCTIVITY 200 µs pH 5.3 TEMPERATURE 58 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 5 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	II .				
CONDUCTIVITY 200 µs pH 5.3 TEMPERATURE 58 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 5 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	ODORS OBSERVED	None			
SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	13				
(Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	TEMPERATURE58	°F			
LABORATORY/DATE SHIPPED <u>IEA / 12-4-92</u> COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	SAMPLES ANALYZED FO	OR <u>TCL-VOCS, S</u>	SVOCS. PEST/PCE	s: TAL Metals	<u> </u>
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	(Total and Dissolve	<u>ed), Cyanide, <i>I</i></u>	Alkalinity, Sul	<u>fate, Nitrate</u>	e, Phosphate
1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	LABORATORY/DATE SH	IPPED <u>IEA / 1</u> 2	2-4-92	<u> </u>	
	COMMENTS, LOCATION	SKETCH, WELL-	HEAD SKETCH, ET	<u>:C.</u>	
= 7nu 5.4 5.2 5.2		1 Vol. (1)	2 Vol. (2)	3 Vol. (3)	
	pН	5.4	5.3	5.3	
Cond. 200 200 200 T°F 57 58 58					

	CLIENT/ PROJECT NO.	The Fairchild Corporation Job #961-01.3
		6D / Fairchild
		Monitoring Well #6D FRC-6D-Dup; FRC-6D-01-MS, FRC-6D-01-MSD FRC-6D-01 SAMPLED BY KM, AG, KB
		12/10/92 TIME 1500
		Groundwater Monitoring
	STATIC WATER ELEV.	12.96 FT. BELOW MEASURING POINT 65.28
,	WELL DIAMETER	_1.5 INCHES
•	TOTAL WELL DEPTH	57.45 FT. BELOW MEASURING POINT 65.28
		SAMPLING INFORMATION
	DIDCING METHOD De	ristaltic Pump
		5 GAL/MIN. PURGING TIME 54 MIN.
l		REMOVED: 3 GALLONS: 13.5
	WELL DRAWDOWN/RECO	VERYGood Recovery
l	SAMPLE APPEARANCE	Clear
	ODORS OBSERVED	None
	CONDUCTIVITY 300	μs pH <u>5.5</u>
١	TEMPERATURE	°F
l	SAMPLES ANALYZED FO	OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals
I	(Total and Dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
ĺ	LABORATORY/DATE SH	IPPED <u>IEA / 12-10-92</u>
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
7	pH Cond.	5.6 5.6 5.5 300 300 300

CLIENT/ PROJECT No.	The Fairchild Corporation #961-0.3
WELL NO./OWNER	7D / Fairchild
SAMPLING POINT	Monitoring Well #7D
SAMPLE I.D. No.	FRC-7D-01 SAMPLED BY KM, AG, KB
DATE SAMPLED	12/3/92 TIME 0930
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	27.70 FT. BELOW MEASURING POINT 80.05
WELL DIAMETER	1.5 INCHES
TOTAL WELL DEPTH	59.25 FT. BELOW MEASURING POINT 80.05
1	SAMPLING INFORMATION
PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECO	ler, DedicatedGAL/MIN. PURGING TIME MIN. REMOVED: 3 GALLONS: 9.6 VERYClear
1	None
N.	0 μs pH 6.0
	7 °FOFOF. TAL Metals
]	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
LABORATORY/DATE SH	
	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°F	6.0 6.0 6.0 200 200 200 57 58 57

	CLIENT/ PROJECT NO.	The rationita corporation Job #961-01.3
	WELL No./OWNER	8S / Fairchild
	SAMPLING POINT	Monitoring Well #8S
	SAMPLE I.D. No.	FRC-8S-01 SAMPLED BY KM, AG, KB
	DATE SAMPLED	<u>12/2/92</u> TIME <u>1215</u>
	WELL USE	Groundwater Monitoring
	STATIC WATER ELEV.	24.77 FT. BELOW MEASURING POINT
	WELL DIAMETER	4 INCHES
	TOTAL WELL DEPTH	34.80 FT. BELOW MEASURING POINT 75.77
		SAMPLING INFORMATION
	PURGING METHOD 4"	Submersible Pump
	PURGING RATE5	GAL/MIN. PURGING TIME4 MIN.
	No. CASING VOLUMES	REMOVED: 3 GALLONS: 20.0
	 WELL DRAWDOWN/RECO	VERY <u>Good Recovery</u>
		Slightly cloudy brown
l	ļ	None
	,	0 µs _ pH _ 6.7
		°F
		OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals
	(Total and dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
	LABORATORY/DATE SH	IPPED <u>IEA / 12-3-92</u>
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
1	рн	6.7 6.7
	Cond. T°F	500 600 500 59 59 59
-12		

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	8I / Fairchild
SAMPLING POINT	Monitoring Well #8I
SAMPLE I.D. No.	FRC-81-01 SAMPLED BY KM, AG, KB
DATE SAMPLED	12/2/92 TIME 1140
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	24.45 FT. BELOW MEASURING POINT
WELL DIAMETER	4 INCHES
TOTAL WELL DEPTH	59.22 FT. BELOW MEASURING POINT 75.45
T	SAMPLING INFORMATION
PURGING RATE5 NO. CASING VOLUMES WELL DRAWDOWN/RECOVE SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY500 TEMPERATURE57 SAMPLES ANALYZED FO	"Submersible pump GAL/MIN. PURGING TIME14 MIN. REMOVED:3 GALLONS:69.0 VERYGood
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
II.	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°C	6.8 6.8 6.7 500 500 500 58 58 57

WELL SAMPLING LOG

CLIENT/ PROJECT No. The Fairchild Corporation #961-01.3

WELL NO./OWNER	9S / Fairchild
SAMPLING POINT	Monitoring Well #95
SAMPLE I.D. No.	FRC-9S-01 SAMPLED BY KM, AG, KB
DATE SAMPLED	12/3/92 TIME 1530
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	25.58 FT. BELOW MEASURING POINT77.50
WELL DIAMETER	4.0 INCHES
TOTAL WELL DEPTH	34.80 FT. BELOW MEASURING POINT 77.50
	CAMPLEY A TURONY STOY
1	SAMPLING INFORMATION
PURGING METHOD 4	" Submersible Pump
PURGING RATE5	GAL/MIN. PURGING TIME4 MIN.
No. CASING VOLUMES	REMOVED: 3 GALLONS: 18.5
WELL DRAWDOWN/RECO	VERY Good Recovery
SAMPLE APPEARANCE	Clear
ODORS OBSERVED	None
CONDUCTIVITY 100	<u>μs</u> pH <u>5.9</u>
TEMPERATURE57	°F
SAMPLES ANALYZED F	OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals
(Total and Dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
LABORATORY/DATE SH	IPPED <u>IEA / 12-4-92</u>
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH	6.1 6.0 5.9
Cond. T°F	100 100 100 64 66 57
T°F after 1 and 2 vo	olumes may indicate a pump overheating during purging

CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3
WELL No./OWNER	9I / Fairchild
SAMPLING POINT	Monitoring Well #9I
SAMPLE I.D. No.	FRC-91-01 SAMPLED BY KM, AG, KB
DATE SAMPLED	12/3/92 TIME 1500
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	25.67 FT. BELOW MEASURING POINT 77.60
WELL DIAMETER	4 INCHES
TOTAL WELL DEPTH	_59.90 FT. BELOW MEASURING POINT77.60
	SAMPLING INFORMATION
DITTO ATTION ATTION	Culmanaihla Dum
ì	Submersible Pump
	GAL/MIN. PURGING TIME14 MIN.
	REMOVED: 3 GALLONS: 68.0
	VERY Good Recovery
	Clear
	None
ł.	μs pH <u>6.6</u>
	9°F
SAMPLES ANALYZED F	OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals
(Total and Dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
LABORATORY/DATE SH	IPPED <u>IEA /12-4-92</u>
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
1	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
рН	6.7 6.6 6.6
Cond.	900 900 900 59 59 59

CLIENT/ PROJECT No. The Fairchild Corporation #961-01.3			
WELL No./OWNER 10S / Fairchild			
SAMPLING POINT Monitoring Well #10S			
SAMPLE I.D. No. FRC-10S-01 SAMPLED BY KM, AG, KB			
DATE SAMPLED 12/3/92 TIME 1815			
WELL USE <u>Groundwater Monitoring</u>	 		
STATIC WATER ELEV. 24.74 FT. BELOW MEASURING POINT74.37			
WELL DIAMETER 4 INCHES			
TOTAL WELL DEPTH 33.75 FT. BELOW MEASURING POINT 74.37			
SAMPLING INFORMATION			
PURGING METHOD 4" Submersible Pump			
PURGING RATE <u>5</u> GAL/MIN. PURGING TIME <u>4</u> MIN.			
No. CASING VOLUMES REMOVED: 3 GALLONS: 18.0			
WELL DRAWDOWN/RECOVERY Good Recovery			
SAMPLE APPEARANCE			
ODORS OBSERVEDNone			
CONDUCTIVITY 500 µs pH 6.4			
TEMPERATURE			
SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals			
(Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate			
LABORATORY/DATE SHIPPED <u>IEA / 12-4-92</u>			
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.			
1 Vol. (1) 2 Vol. (2) 3 Vol. (3)			
¶ pH 6.7 6.4 6.4			
Cond. 500 500 500			

(CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3	
1	WELL No./OWNER	10I / Fairchild	
	SAMPLING POINT	Monitoring Well #10I	
i	SAMPLE I.D. No.	FRC-101-01 SAMPLED BY KM. AG. KB	
1	DATE SAMPLED	<u>12/3/92</u> TIME <u>1730</u>	
١	WELL USE	Groundwater Monitoring	
:	STATIC WATER ELEV.	24.70 FT. BELOW MEASURING POINT 74.81	
١	WELL DIAMETER	4.0 INCHES	
•	TOTAL WELL DEPTH		
1	<u>, ——</u>	SAMPLING INFORMATION	
	PURGING RATE5 No. CASING VOLUMES WELL DRAWDOWN/RECO SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY 20 TEMPERATURE 55 SAMPLES ANALYZED F (Total and Dissolv LABORATORY/DATE SH		— — — —
		SKETCH, WELL-HEAD SKETCH, ETC.	
-		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	
	pH Cond. T°F	6.9 6.7 6.6 200 200 200 51 51 55	

7

The Fairchild Corporation Job #961-01.3			
10D / Fairchild			
Monitoring Well #10D			
FRC-10-D-01-DUP; FRC-10D-01-MS; FRC-10D-01-MSD FRC-10D-01 SAMPLED BY KM, AG, KB			
12/3/92 TIME 1700			
Groundwater Monitoring			
24.29 FT. BELOW MEASURING POINT 74.70			
_4.0 INCHES			
92.07 FT. BELOW MEASURING POINT 74.70			
SAMPLING INFORMATION			
PURGING METHOD 4" Submersible Pump			
PURGING RATE <u>5</u> GAL/MIN. PURGING TIME <u>27</u> MIN.			
No. CASING VOLUMES REMOVED: 3 GALLONS: 135			
WELL DRAWDOWN/RECOVERY Good Recovery			
SAMPLE APPEARANCE Clear			
None			
0 μs pH 6.8			
°F			
SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals			
(Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate			
LABORATORY/DATE SHIPPED <u>IEA / 12-4-92</u>			
SKETCH, WELL-HEAD SKETCH, ETC.			
1 Vol. (1) 2 Vol. (2) 3 Vol. (3)			
6.5 6.6 6.8			
200 200 55 58 58 58			

CLIENT/ PROJECT No.	The Fairc	hild C	<u>orporation</u>	<u>#961-</u>	01.3	
WELL No./OWNER	11S / Fairchild					
SAMPLING POINT	AMPLING POINTMonitoring Well #11S					
SAMPLE I.D. No.	FRC-11S-01	SAM	PLED BY	KM, AG,	K <u>B</u>	
DATE SAMPLED	12/4/92	TIME	0100			
WELL USE	Groundwate	er Mon	itoring			
STATIC WATER ELEV.	<u>18.74</u> FT.	BELOW	MEASURING	POINT .	72.53	
WELL DIAMETER	4.0 IN	CHES				
TOTAL WELL DEPTH	34.85 FT.	BELOW	MEASURING	POINT .	72.53	
						<u></u>
1	SAM	PLING	INFORMATIO	<u>)N</u>		
DUDGING METHOD 44	l submansib]	_			
PURGING METHOD 4" submersible pump						
PURGING RATE 5GAL/MIN. PURGING TIME 7 MIN.						
No. CASING VOLUMES REMOVED: 3 GALLONS: 32						
WELL DRAWDOWN/RECOVERY <u>Good Recovery</u> SAMPLE APPEARANCE <u>Clear</u>						
1						
ODORS OBSERVED Nor						
CONDUCTIVITY 200	_					
TEMPERATURE60						
SAMPLES ANALYZED FO	OR TCL-VOCS	<u>, svoc</u>	S, PEST/PC	Bs: TAL	<u>Metals</u>	
(Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate						
LABORATORY/DATE SHIPPED <u>IEA/12-4-92</u>						
COMMENTS, LOCATION	COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.					
	1 Vol. (1)	<u>2</u>	Vol. (2)	3 Vo	1. (3)	
рН	5.9		6.1		5.9	
Cond. T°C	200 61		200 60		0 0 60	

WELL NO./OWNER 11D / Fairchild SAMPLING POINT Monitoring Well #11D SAMPLE I.D. No. FRC-11D-01 SAMPLED BY KM, AG, KB DATE SAMPLED 12/3/92 TIME 2330 WELL USE Groundwater Monitoring STATIC WATER ELEV. 18.88 FT. BELOW MEASURING POINT 72.61 WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 92.03 FT. BELOW MEASURING POINT 72.61 SAMPLING INFORMATION PURGING METHOD 4" Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 29 MIN. NO. CASING VOLUMES REMOVED: 3 GALLONS: 145 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs ph 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED 1EA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3		
SAMPLE I.D. No. FRC-11D-01 SAMPLED BY KM, AG, KB DATE SAMPLED 12/3/92 TIME 2330 WELL USE Groundwater Monitoring STATIC WATER ELEV. 18.88 FT. BELOW MEASURING POINT 72.61 WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 92.03 FT. BELOW MEASURING POINT 72.61 SAMPLING INFORMATION PURGING METHOD 4" Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 29 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 145 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs ph 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED 1EA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	WELL No./OWNER	11D / Fairchild		
DATE SAMPLED 12/3/92 TIME _2330 WELL USE Groundwater Monitoring STATIC WATER ELEV. 18.88 FT. BELOW MEASURING POINT 72.61 WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 92.03 FT. BELOW MEASURING POINT 72.61 SAMPLING INFORMATION PURGING METHOD 4" Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME _29 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 145 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 \(\psi \)s pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved). Cvanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	SAMPLING POINT	Monitoring Well #11D		
WELL USE Groundwater Monitoring STATIC WATER ELEV. 18.88 FT. BELOW MEASURING POINT 72.61 WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 92.03 FT. BELOW MEASURING POINT 72.61 SAMPLING INFORMATION PURGING METHOD 4" Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 29 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 145 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	SAMPLE I.D. No.	FRC-11D-01 SAMPLED BY KM, AG, KB		
STATIC WATER ELEV. 18.88 FT. BELOW MEASURING POINT 72.61 WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 92.03 FT. BELOW MEASURING POINT 72.61 SAMPLING INFORMATION PURGING METHOD 4" Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 29 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 145 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 \(\psi \) pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	DATE SAMPLED	12/3/92 TIME 2330		
WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 92.03 FT. BELOW MEASURING POINT 72.61 SAMPLING INFORMATION PURGING METHOD 4" Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 29 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 145 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED 1EA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	WELL USE	Groundwater Monitoring		
SAMPLING INFORMATION PURGING METHOD 4" Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 29 MIN. NO. CASING VOLUMES REMOVED: 3 GALLONS: 145 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 \(\ps\) pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	STATIC WATER ELEV.	18.88 FT. BELOW MEASURING POINT		
SAMPLING INFORMATION PURGING METHOD 4" Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 29 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 145 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.	WELL DIAMETER	4.0 INCHES		
PURGING METHOD	TOTAL WELL DEPTH	92.03 FT. BELOW MEASURING POINT 72.61		
PURGING METHOD4" Submersible Pump PURGING RATE5GAL/MIN. PURGING TIME29 MIN. No. CASING VOLUMES REMOVED:3 GALLONS:145				
PURGING RATE _5 _ GAL/MIN. PURGING TIME _29 _ MIN. No. CASING VOLUMES REMOVED: _3 _ GALLONS: _145 WELL DRAWDOWN/RECOVERY _ Good Recovery SAMPLE APPEARANCE _ Clear ODORS OBSERVED _ None CONDUCTIVITY _ 200 \(\psi \) _ pH 5.7 TEMPERATURE 56 _ °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED _ IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) _2 Vol. (2) _3 Vol. (3)	1	SAMPLING INFORMATION		
PURGING RATE _5 _ GAL/MIN. PURGING TIME _29 _ MIN. No. CASING VOLUMES REMOVED: _3 _ GALLONS: _145 WELL DRAWDOWN/RECOVERY _ Good Recovery SAMPLE APPEARANCE _ Clear ODORS OBSERVED _ None CONDUCTIVITY _ 200 \(\psi \) _ pH 5.7 TEMPERATURE 56 _ °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED _ IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) _2 Vol. (2) _3 Vol. (3)	DVDGING MEMUOD	All Culomongible Dumin		
No. CASING VOLUMES REMOVED: 3 GALLONS: 145 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 \(\mu \) pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)				
WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 µs ph 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)				
SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 200 \(\mu \s \) pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)				
ODORS OBSERVED None CONDUCTIVITY 200 \(\mu \) pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	WELL DRAWDOWN/RECOVERYGood Recovery			
CONDUCTIVITY 200 µs pH 5.7 TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	SAMPLE APPEARANCE			
TEMPERATURE 56 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	ODORS OBSERVED N	one		
SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	CONDUCTIVITY 200	<u>μs</u> pH5.7		
SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 12-4-92 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	TEMPERATURE56	°F		
LABORATORY/DATE SHIPPED <u>IEA / 12-4-92</u> COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	SAMPLES ANALYZED F	OR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals		
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	(Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate			
1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	LABORATORY/DATE SHIPPED <u>IEA / 12-4-92</u>			
· · · · · · · · · · · · · · · · · · ·	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.		
■ pH 6.4 6.0 5.7		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)		
	рН	6.4 6.0 5.7		
Cond. 200 200 200 T°F 56 57 56				

(CLIENT/ PROJECT No.	ENT/ PROJECT No. The Fairchild Corporation Job #961-01.3			
1	WELL No./OWNER 11I/ Fairchild				
SAMPLING POINT Monitoring Well #11I					
;	SAMPLE I.D. No.	FRC-11I-01 S	AMPLED BY KM.	AG, KB	
1	DATE SAMPLED	12/4/92	TIME _0030		
١	WELL USE	Groundwater M	Monitoring		
;	STATIC WATER ELEV.	18.54 FT. B	ELOW MEASURING	POINT	
١	WELL DIAMETER	<u>4.0</u> I	NCHES 48.3 x	: 3	
•	TOTAL WELL DEPTH	_58.61 F	T. BELOW MEASUR	ING POINT	
			NG INFORMATION		
	PURGING METHOD 4" Submersible Pump				
	PURGING RATE <u>5</u> GAL/MIN. PURGING TIME <u>16</u> MIN.				
ĺ	No. CASING VOLUMES REMOVED: 3 GALLONS: 79.3				
	WELL DRAWDOWN/RECOVERY Good Recovery				
l	SAMPLE APPEARANCE	Clear			
	ODORS OBSERVED				
۱					
	TEMPERATURE 58				
	SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals				
	(Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate				
Ì	LABORATORY/DATE SHIPPED				
	COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.				
		1 Vol. (1)	2 Vol. (2)	3 Vol. (3)	
	рН	6.0	5.9	5.9	
	Cond. T°F	200 59	200 57	200 58	
- 1	A A'	J J	<i>J</i> /	3 0	

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	MW12S / Fairchild
SAMPLING POINT	Monitoring Well #MW-12S
SAMPLE I.D. No.	FRC-MW-12S-01 SAMPLED BY KM, AG, KB
DATE SAMPLED	12/3/92 TIME 1300
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	14.42 FT. BELOW MEASURING POINT 66.40
WELL DIAMETER	2.0 INCHES
TOTAL WELL DEPTH	20.0 FT. BELOW MEASURING POINT 66.40
1	SAMPLING INFORMATION
PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECOMMENTED SAMPLE APPEARANCE ODORS OBSERVED NOT CONDUCTIVITY 400 TEMPERATURE 58 SAMPLES ANALYZED FOR CONDUCTIVITY ANALYZE	Aciler, Dedicated GAL/MIN. PURGING TIME MIN. REMOVED:3
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°C	7.2 7.3 7.3 500 400 400 58 58 58

WELL SAMPLING LOG

CLIENT/ PROJECT No. The Fairchild Corporation #961-01.3

1	WELL No./OWNER	8I / Fairchild
į	SAMPLING POINT	Monitoring Well #8I
į	SAMPLE I.D. No.	FRC-81-02 SAMPLED BY KM, AG, KB
]	DATE SAMPLED	2/25/93 TIME
١	WELL USE	Groundwater Monitoring
į	STATIC WATER ELEV.	23.51 FT. BELOW MEASURING POINT
1	WELL DIAMETER	4 INCHES
•	TOTAL WELL DEPTH	59.22 FT. BELOW MEASURING POINT
1		SAMPLING INFORMATION
		Submersible pump
ļ		GAL/MIN. PURGING TIME14 MIN.
		REMOVED: 3 GALLONS: 69.0
		VERY Good Recovery
		Slightly turbid
l		None
	CONDUCTIVITY 60	<u>0 μs</u> pH <u>6.9</u>
l	TEMPERATURE52	°FBottle set #13
	SAMPLES ANALYZED F	OR TCL-VOCS (524.2), SVOCS, PEST/PCBs; TAL Metals
ļ	(Total and Dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
	LABORATORY/DATE SH	IPPED <u>IEA /2-27-93</u>
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
4	PH	6.8 6.9 6.9
	Cond.	600 500 6 00 52 52 52

WELL SAMPLING LOG

CLIENT/ PROJECT No. The Fairchild Corporation #961-01.3

WELL No./OWNER 95	S / Fairchild		
SAMPLING POINT Mc	onitoring Well #9S		
SAMPLE I.D. No. FI	RC-9S-02 SAMPLED BY KM, AG, KB		
DATE SAMPLED	2-25-93 TIME 1015		
WELL USE GI	roundwater Monitoring		
STATIC WATER ELEV. 2	24.70 FT. BELOW MEASURING POINT		
WELL DIAMETER	4.0 INCHES		
TOTAL WELL DEPTH	34.80 FT. BELOW MEASURING POINT		
	SAMPLING INFORMATION		
PURGING RATE3 No. CASING VOLUMES REWELL DRAWDOWN/RECOVER	Submersible Pump GAL/MIN. PURGING TIME7 MIN. REMOVED:3 GALLONS:18.5 CRYGood Recovery Slightly cloudy		
	None		
CONDUCTIVITY 400 µ	<u>pH 6.3</u>		
TEMPERATURE52	°F. Bottle set #50		
SAMPLES ANALYZED FOR	TCL-VOCS (524.2), SVOCS, PEST/PCBs; TAL Metals		
(Total and Dissolved	(Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate		
LABORATORY/DATE SHIPPED IEA / 2-27-93			
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.			
1	Vol. (1) 2 Vol. (2) 3 Vol. (3)		
T°F	6.6 6.3 6.3 400 400 400 51 52 52 umes may indicate a pump overheating during purging		

	CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3	
WELL No./OWNER		9I / Fairchild	
SAMPLING POINT		Monitoring Well #9I	
	SAMPLE I.D. No.	FRC-91-02 SAMPLED BY KM, AG, KB	
	DATE SAMPLED	2/25/93 TIME 9:45	
	WELL USE	Groundwater Monitoring	
	STATIC WATER ELEV.	24.80 FT. BELOW MEASURING POINT 77.60	
	WELL DIAMETER	_4 INCHES	
	TOTAL WELL DEPTH	59.90 FT. BELOW MEASURING POINT 77.60	
		SAMPLING INFORMATION	
	PURGING METHOD Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 14 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 68.0 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Clear ODORS OBSERVED None CONDUCTIVITY 700 \(\mu\)s pH 7.1 TEMPERATURE 51 °F. Bottle set #51 SAMPLES ANALYZED FOR TCL-VOCS (524.2), SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA /2-27-93		
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.	
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	
	pH Cond. T°F	7.3 7.1 7.1 600 600 700 51 51 51	

F3-45-

EDER ASSOCIATES CONSULTING ENGINEERS, P.C.

480 Forest Avenue, Locust Valley, NY 11560
8000 Excelsior Drive, Madison, WI 53717
519 Pleasant Home Road, Augusta, GA 30907
326 South State Street, Ann Arbor, MI 48104
9471 Baymeadows Road, Jacksonville, FL 32256
427 Riverview Executive Park, Trenton, NJ 08611

(CLIENT/ PROJECT No.	The Fairchild Corpor	<u>ration #961-01</u>	. . 3
	·	10S / Fairchild		
	SAMPLING POINT	Monitoring Well #10S		
:	SAMPLE I.D. No.	FRC-10S-02 SAMPI	LED BY KM. AG.	KB
I	DATE SAMPLED	2/26/93 TIME 103	· >	
ī	VELL USE	Groundwater Monit	oring	
		23.8 FT. BELOW MEASU		
ī	VELL DIAMETER	_4 INCHES		
	TOTAL WELL DEPTH	33.75 FT. BELOW MEAS	SURING POINT	74.37
1		SAMPLING INFO	RMATION	
I				
	PURGING METHOD	Submersible Pump		
	PURGING RATE5	GAL/MIN. PURGI	NG TIME 4	_ MIN.
	No. CASING VOLUMES	REMOVED: 3 GAL	LONS: <u>18.0</u>	<u> </u>
I	WELL DRAWDOWN/RECO	VERY Good Recovery		
	SAMPLE APPEARANCE	Slightly Turbid		
	ODORS OBSERVED	None		
		<u>μs</u> pH <u>7.2</u>		
ľ	TEMPERATURE53	°F. Bottle set	#	
Ì		OR TCL-VOCS (524.2),		
	(Total and Dissolv	<u>ed), Cyanide, Alkalin</u>	ity, Sulfate, 1	Nitrate, Phosphate
LABORATORY/DATE SHIPPED <u>IEA / 2-27-93</u>			<u></u>	
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SK	ETCH, ETC.	
		1 Vol. (1) 2 Vol	. (2) 3 Vol	. (3)
7	рн			7.2
	Cond. T°C	400 40 52 5	0 400 3 5:	

CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3
WELL No./OWNER	10I / Fairchild
SAMPLING POINT	Monitoring Well #10I
SAMPLE I.D. No.	FRC-10I-02 SAMPLED BY KM. AG. KB
DATE SAMPLED	<u>2/26/93</u> TIME <u>1000</u>
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	23.68 FT. BELOW MEASURING POINT
WELL DIAMETER	4.0 INCHES
TOTAL WELL DEPTH	92.07 FT. BELOW MEASURING POINT 74.70
1	SAMPLING INFORMATION
PURGING RATE5 No. CASING VOLUMES WELL DRAWDOWN/RECO SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY 20 TEMPERATURE 53 SAMPLES ANALYZED F (Total and Dissolv LABORATORY/DATE SH	4" Submersible Pump GAL/MIN. PURGING TIME27MIN. REMOVED:3GALLONS: _135 VERYGood RecoverySlightly turbid
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°F	7.5 7.6 7.5 200 200 200 52 53 53

### ##################################		CLIENT/ PROJECT No. T	<u> </u>	
SAMPLING POINT Monitoring Well #10D SAMPLE I.D. No. FRC-10D-02 SAMPLED BY KM, AG, KB DATE SAMPLED 2/26/93 TIME 1100 WELL USE Groundwater Monitoring STATIC WATER ELEV. 23.36 FT. BELOW MEASURING POINT 74.81 WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 59.20 FT. BELOW MEASURING POINT 74.81 SAMPLING INFORMATION PURGING METHOD Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 27 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 135 WELL DRAWDOWN/RECOVERY Good RECOVERY SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 \(\text{\text{MS}} \) ph 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 COND.				
DATE SAMPLED 2/26/93 TIME 1100 WELL USE Groundwater Monitoring STATIC WATER ELEV. 23.36 FT. BELOW MEASURING POINT 74.81 WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 59.20 FT. BELOW MEASURING POINT 74.81 SAMPLING INFORMATION PURGING METHOD Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 27 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 135 WELL DRAWDOWN/RECOVERY GOOD RECOVERY SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 \(\mu \text{s} \) PH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 — COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 7.6 COND. 300 300 300				
STATIC WATER ELEV. 23.36 FT. BELOW MEASURING POINT 74.81 WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 59.20 FT. BELOW MEASURING POINT 74.81 SAMPLING INFORMATION PURGING METHOD Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 27 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 135 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 \(\mu \) BH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 " COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 COND.		SAMPLE I.D. No. <u>F</u>	FRC-10D-02 SAMPLED BY KM, AG, KB	
STATIC WATER ELEV. 23.36 FT. BELOW MEASURING POINT 74.81 WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 59.20 FT. BELOW MEASURING POINT 74.81 SAMPLING INFORMATION PURGING METHOD Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 27 MIN. NO. CASING VOLUMES REMOVED: 3 GALLONS: 135 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 \(\psi\) PH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 COND.		DATE SAMPLED _	2/26/93 TIME 1100	
WELL DIAMETER 4.0 INCHES TOTAL WELL DEPTH 59.20 FT. BELOW MEASURING POINT 74.81 SAMPLING INFORMATION	,	WELL USE _	Groundwater Monitoring	
SAMPLING INFORMATION PURGING METHOD Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 27 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 135 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 \(\mu\)s pH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 7.6 COND. 300 300 300	1	STATIC WATER ELEV	23.36 FT. BELOW MEASURING POINT	
SAMPLING INFORMATION PURGING METHOD Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 27 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 135 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 \(\psi\) pH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 — COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 COND. 300 300 300	1	WELL DIAMETER _	4.0 INCHES	
PURGING METHOD Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 27 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 135 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 \(\psi\) pH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300	•	TOTAL WELL DEPTH _	59.20 FT. BELOW MEASURING POINT74.81	
PURGING METHOD Submersible Pump PURGING RATE 5 GAL/MIN. PURGING TIME 27 MIN. No. CASING VOLUMES REMOVED: 3 GALLONS: 135 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 \(\psi\) pH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300				
PURGING RATE	1	1		
PURGING RATE	I			
PURGING RATE	I	PURGING METHOD	Submersible Pump	
No. CASING VOLUMES REMOVED: 3 GALLONS: 135 WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 μs pH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300	I			
WELL DRAWDOWN/RECOVERY Good Recovery SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 μs ph 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300	I	ll .		
SAMPLE APPEARANCE Very slightly turbid ODORS OBSERVED None CONDUCTIVITY 300 \(\mu \) pH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300	l			
ODORS OBSERVED None CONDUCTIVITY 300 \(\mu \s \) pH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300		•		
CONDUCTIVITY 300 \(\mu \) pH 7.6 TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300				
TEMPERATURE 51 °F. SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300		II .		
SAMPLES ANALYZED FOR TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals (Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED IEA / 2-27-93 COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300	l			
(Total and Dissolved), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED <u>IEA / 2-27-93</u> COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300	l			
LABORATORY/DATE SHIPPED <u>IEA / 2-27-93</u> COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300		SAMPLES ANALYZED FOR	R TCL-VOCS, SVOCS, PEST/PCBs; TAL Metals	 .
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3) PH 7.6 7.6 7.6 Cond. 300 300 300		(Total and Dissolved	<u>i), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphat</u>	<u>ce</u>
pH 7.6 7.6 7.6 7.6 Cond. 300 300		LABORATORY/DATE SHIP	PPED <u>IEA / 2-27-93</u>	
pH 7.6 7.6 7.6 Cond. 300 300		COMMENTS, LOCATION S	SKETCH, WELL-HEAD SKETCH, ETC.	
Cond. 300 300		1	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)	
	7	·u •		
		II .		

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	11S / Fairchild
SAMPLING POINT	Monitoring Well #11S
SAMPLE I.D. No.	FRC-11S-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	2/24/93 TIME 1435
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	18.05 FT. BELOW MEASURING POINT 72.53
WELL DIAMETER	4.0 INCHES
TOTAL WELL DEPTH	34.85 FT. BELOW MEASURING POINT 72.53
1	SAMPLING INFORMATION
PURGING RATE 5 No. CASING VOLUMES WELL DRAWDOWN/RECO SAMPLE APPEARANCE ODORS OBSERVED No CONDUCTIVITY 100 TEMPERATURE 52 SAMPLES ANALYZED FO (Total and Dissolve LABORATORY/DATE SH	Submersible pump GAL/MIN. PURGING TIME7 MIN. REMOVED:3 GALLONS:32 VERYGood Recovery
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC. 1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°C	7.1 6.5 6.3 100 100 100 50 51 52

(CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3
١	WELL No./OWNER	11I/ Fairchild
		Monitoring Well #11I FRC-11I-02-D; FRC-11I-02-MS; FRC-11I-02-MSD FRC-11I-02 SAMPLED BY KM, AG, KB
		Groundwater Monitoring
		17.83 FT. BELOW MEASURING POINT 72.31
1	WELL DIAMETER	_4.0 INCHES 48.3 x 3
	TOTAL WELL DEPTH	58.61 FT. BELOW MEASURING POINT 72.31
1		SAMPLING INFORMATION
	DIRCING METHOD	Submersible Pump
		GAL/MIN. PURGING TIME16 MIN.
		REMOVED: 3 GALLONS: 79.3
	WELL DRAWDOWN/RECO	VERY Good Recovery
١		Clear
		None
١		μs pH <u>6.2</u>
		°F. Bottle set #7; Dup = 8; MS = 15; MSD = 16
I	SAMPLES ANALYZED F	OR TCL-VOCS (524.2), SVOCS, PEST/PCBs; TAL Metals
	(Total and Dissolv	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
ı	LABORATORY/DATE SH	IPPED <u>IEA / 2-25-93</u>
	COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
		1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
1	pH Cond.	6.2 6.1 6.2 200 200 200
	T°F	200 200 200 52 52 51

CLIENT/ PROJECT No.	The Fairchild	<u>Corporation</u>	<u>Job #961-01.3</u>
SAMPLING POINT	Monitoring We	ll #11D	
SAMPLE I.D. No.	FRC-11D-02	SAMPLED BY <u>KM</u>	, AG, KB
DATE SAMPLED	2/24/93	TIME _1325	
WELL USE	<u>Groundwater</u>	Monitoring	
STATIC WATER ELEV.	<u>18.12</u> FT. F	BELOW MEASURING	POINT 72.61
WELL DIAMETER	4.0	INCHES	
TOTAL WELL DEPTH	92.03	FT. BELOW MEASU	RING POINT 72.61
	<u>SAMPLI</u>	ING INFORMATION	
	9	_	
PURGING METHOD			
PURGING RATE5_	GAL/MIN.	PURGING TIME	30 MIN.
No. CASING VOLUMES	REMOVED: >3	GALLONS: <u>1</u>	50
WELL DRAWDOWN/RECO	VERYGood R	ecovery	
SAMPLE APPEARANCE	<u>Clear</u>	_ _	
ODORS OBSERVED N	one		
CONDUCTIVITY 200	_μspH _	6.2	·
TEMPERATURE52	°F <u>Bo</u>	ttle set #018	
1			EST/PCBs; TAL Metals
(Total and Dissolv	ed), Cyanide,	Alkalinity, Sul	fate, Nitrate, Phosphate
LABORATORY/DATE SH	IPPED <u>IEA /</u>	2-25-93	
COMMENTS, LOCATION	SKETCH, WELL-	HEAD SKETCH, ET	<u>C.</u>
	1 Vol. (1)	2 Vol. (2)	3 Vol. (3)
рн	7.5	6.6	6.2
Cond. T°F	200 52	200 52	200 52
	-		

CLIENT/ PROJECT No.	The Fairchild Corporation #961-01.3
WELL No./OWNER	MW12S / Fairchild
SAMPLING POINT	Monitoring Well #MW-12S
SAMPLE I.D. No.	FRC-MW-12S-02 SAMPLED BY KM, AG, KB
DATE SAMPLED	3/1/93 TIME 1830
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	13.41 FT. BELOW MEASURING POINT 66.40
WELL DIAMETER	2.0 INCHES
TOTAL WELL DEPTH	20.0 FT. BELOW MEASURING POINT 66.40
1	SAMPLING INFORMATION
1	ailer, Dedicated
	GAL/MIN. PURGING TIME MIN.
No. CASING VOLUMES	REMOVED: 3 GALLONS: 3
WELL DRAWDOWN/RECOV	VERY Good Recovery
SAMPLE APPEARANCE	Very Turbid, dark gray color
ODORS OBSERVED Pet	troleum odor
CONDUCTIVITY	рн
TEMPERATURE 45	°F. Bottle set #23
SAMPLES ANALYZED FO	OR TCL-VOCS (524.2), SVOCS, PEST/PCBs; TAL Metals
(Total and Dissolve	ed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate
LABORATORY/DATE SHI	IPPED <u>IEA / 2-27-93</u>
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
рн	7.1 7.2 7.4
Cond. T°C	46 45 45

CLIENT/ PROJECT No.	The Fairchild Corporation Job #961-01.3
WELL No./OWNER	1S / Fairchild
SAMPLING POINT	Monitoring Well #1S
SAMPLE I.D. No.	FRC-1S-01 SAMPLED BY KM. AG, KB
DATE SAMPLED	<u>12/3/92</u> TIME <u>0710</u>
WELL USE	Groundwater Monitoring
STATIC WATER ELEV.	25.43 FT. BELOW MEASURING POINT 77.90
WELL DIAMETER	_2.0 INCHES
TOTAL WELL DEPTH	37.87 FT. BELOW MEASURING POINT 77.90
	SAMPLING INFORMATION
PURGING RATE No. CASING VOLUMES WELL DRAWDOWN/RECOVE SAMPLE APPEARANCE ODORS OBSERVED CONDUCTIVITY TEMPERATURE SAMPLES ANALYZED FOR	GAL/MIN. PURGING TIME MIN. REMOVED: 3 GALLONS: 6.0 VERY Clear None pH 6.1 °F. OR TCL-VOCs, SVOCs, Pest/PCBs; TAL Metals Yed), Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate PPED IEA /12-4-92
COMMENTS, LOCATION	SKETCH, WELL-HEAD SKETCH, ETC.
	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)
pH Cond. T°F	6.1 6.1 6.1 500 400 500 57 61 59

APPENDIX F

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: South Pond
DEPTH OF SAMPLE	Surface
SAMPLE I.D. No.	FRC-SW1-01-SUR SAMPLED BY KM/MS/KB
DATE SAMPLED	12-7-92 TIME 1130
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL

SAMPLING INFORMATION
COLLECTION METHOD Grab Sampler
SAMPLE APPEARANCE Slightly cloudy
ODORS OBSERVED None
CONDUCTIVITY 200 µs pH 7.2
TEMPERATURE 43 °F.
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
(total/dissolved), TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,
Nitrate, Phosphate.
LABORATORY/DATE SHIPPED <u>IEA/12-8-92</u>
COMMENTS, LOCATION SKETCH

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: South Pond
DEPTH OF SAMPLE	6 feet (midway between surface and bottom)
SAMPLE I.D. No.	FRC-SW1-01-MID SAMPLED BY KM/MS/KB
DATE SAMPLED	12-7-92 TIME 1145
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL

SAMPLING INFORMATION	
COLLECTION METHOD Grab Sampler	
SAMPLE APPEARANCE Slightly cloudy	
ODORS OBSERVED None	
CONDUCTIVITY 200 µs pH 7.3	
TEMPERATURE 43 °F.	
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals	
(total/dissolved), TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,	
Nitrate, Phosphate.	
LABORATORY/DATE SHIPPED <u>IEA/12-8-92</u>	
COMMENTS, LOCATION SKETCH	

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: South Pond
DEPTH OF SAMPLE	Surface
SAMPLE I.D. No.	FRC-SW2-01-SUR SAMPLED BY KM/MS/KB
DATE SAMPLED	<u>12-7-92</u> TIME <u>1400</u>
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL

SAMPLING INFORMATION
COLLECTION METHOD Grab Sampler
SAMPLE APPEARANCE Slightly cloudy
ODORS OBSERVED None
CONDUCTIVITY 200 µs pH 7.4
TEMPERATURE43°F.
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
(total/dissolved), TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,
Nitrate, Phosphate.
LABORATORY/DATE SHIPPED <u>IEA/12-8-92</u>
COMMENTS, LOCATION SKETCH
COMPENSATION SINDICH

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: South Pond
DEPTH OF SAMPLE	7 feet (midway between surface and bottom)
SAMPLE I.D. No.	FRC-SW2-01-MID SAMPLED BY KM/MS/KB
DATE SAMPLED	12-7-92 TIME <u>1430</u>
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL

SAMPLING INFORMATION	
COLLECTION METHOD Grab Sampler	
SAMPLE APPEARANCE Slightly cloudy	
ODORS OBSERVED None	
CONDUCTIVITY 200 µs pH 7.4	
TEMPERATURE 43 °F.	
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals	
_(total/dissolved), TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,	
Nitrate, Phosphate.	
LABORATORY/DATE SHIPPED <u>IEA/12-8-92</u>	
COMMENTS, LOCATION SKETCH	

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

Fairchild Republic Co./961-01.3
Old Recharge Basins - Farmingdale, NY: South Pond
Surface
FRC-SW3-01-SUR SAMPLED BY KM/MS/KB
12-7-92 TIME 1600
52.59 FT. ABOVE MEAN SEA LEVEL

SAMPLING INFORMATION	
COLLECTION METHOD Grab Sampler	
SAMPLE APPEARANCE Slightly cloudy	
ODORS OBSERVED None	
CONDUCTIVITY 200 µs pH 7.4	
TEMPERATURE 42 °F.	
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals	
(total/dissolved), TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,	
Nitrate, Phosphate.	
LABORATORY/DATE SHIPPED	
COMMENTS, LOCATION SKETCH	

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

SURFACE WATER SAMPLING LOG

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: South Pond
DEPTH OF SAMPLE	7.5 feet (midway between surface and bottom)
SAMPLE I.D. No.	FRC-SW3-01-MID SAMPLED BY KM/MS/KB
DATE SAMPLED	12-7-92 TIME 1630
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL
SAMPLING INFORMATION COLLECTION METHOD Grab Sampler SAMPLE APPEARANCE Slightly cloudy ODORS OBSERVED None CONDUCTIVITY 200 µs ph 7.3 TEMPERATURE 42 °F. SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals (total/dissolved), TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate. LABORATORY/DATE SHIPPED IEA/12-8-92	

COMMENTS, LOCATION SKETCH

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: North Pond
DEPTH OF SAMPLE	Surface
SAMPLE I.D. No.	FRC-SW4-01-SUR SAMPLED BY KM/MS/KB
DATE SAMPLED	12-7-92 TIME 1715
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL
	SAMPLING INFORMATION
COLLECTION METHOD	Grab Sampler
SAMPLE APPEARANCE	Slightly cloudy
ODORS OBSERVED	None
CONDUCTIVITY 200	<u>иs</u> рн <u>7.5</u>
TEMPERATURE 42	°F.
SAMPLES ANALYZED FO	R TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
(total/dissolved),	TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,
Nitrate, Phosphate	··
LABORATORY/DATE SHI	PPED
COMMENTS, LOCATION	<u>SKETCH</u>

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: North Pond
DEPTH OF SAMPLE	15 feet (midway between surface and bottom)
SAMPLE I.D. No.	FRC-SW4-01-MID SAMPLED BY KM/MS/KB
DATE SAMPLED	_12-7-92
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL
	SAMPLING INFORMATION

SAMPLING INFORMATION	
	
COLLECTION METHOD Grab Sampler	
SAMPLE APPEARANCE Slightly cloudy	
ODORS OBSERVED None	
CONDUCTIVITY 200 µs ph 7.3	
TEMPERATURE 42 °F.	
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals	
(total/dissolved), TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,	
Nitrate, Phosphate.	
LABORATORY/DATE SHIPPED <u>IEA/12-8-92</u>	
COMMENTS, LOCATION SKETCH	

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: North Pond
DEPTH OF SAMPLE	Surface
SAMPLE I.D. No.	FRC-SW5-01-SUR SAMPLED BY KM/MS/KB
DATE SAMPLED	12-7-92 TIME 1830
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL
	SAMPLING INFORMATION
COLLECTION METHOD	Grab Sampler
SAMPLE APPEARANCE	Slightly cloudy
ODORS OBSERVED	None
CONDUCTIVITY 200	<u>µs</u> рн <u>7.3</u>
TEMPERATURE 42	°F.
SAMPLES ANALYZED FO	R TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
_(total/dissolved),	TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,
Nitrate, Phosphate	·
LABORATORY/DATE SHI	PPED <u>IEA/12-8-92</u>
CONGRANGE LOCATION	CVETCU
COMMENTS, LOCATION	<u> </u>

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

SURFACE WATER SAMPLING LOG

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: North Pond
DEPTH OF SAMPLE	5 feet (midway between surface and bottom)
SAMPLE I.D. No.	FRC-SW5-01-MID SAMPLED BY KM/MS/KB
DATE SAMPLED	12-7-92 TIME 1900
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL
<u>.</u>	

SAMPLING INFORMATION
COLLECTION METHOD Grab Sampler
SAMPLE APPEARANCE Slightly cloudy
ODORS OBSERVED None
CONDUCTIVITY 200 μs pH 7.4
TEMPERATURE 42 °F.
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
(total/dissolved), TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,
Nitrate, Phosphate.
LABORATORY/DATE SHIPPED IEA/12-8-92

COMMENTS, LOCATION SKETCH

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, NY: North Pond
DEPTH OF SAMPLE	Surface
SAMPLE I.D. No.	FRC-SW6-01-SUR SAMPLED BY KM/MS/KB
DATE SAMPLED	12-7-92 TIME 1930
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL

SAMPLING INFORMATION		
COLLECTION METHOD Grab Sampler		
SAMPLE APPEARANCE Slightly cloudy		
ODORS OBSERVED None		
CONDUCTIVITY 200 μs pH 7.4		
TEMPERATURE 42 °F.		
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals		
(total/dissolved), TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,		
Nitrate, Phosphate.		
LABORATORY/DATE SHIPPED <u>IEA/12-8-92</u>		
COMMENTS, LOCATION SKETCH		

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 River View Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale NY: North Pond
DEPTH OF SAMPLE	9 feet (midway between surface and bottom)
SAMPLE I.D. No.	FRC-SW6-01-MID SAMPLED BY KM/MS/KB
DATE SAMPLED	<u>12-7-92</u> TIME <u>1945</u>
STATIC WATER ELEV.	52.59 FT. ABOVE MEAN SEA LEVEL
	
	SAMPLING INFORMATION
COLLECTION METHOD	Grab Sampler
SAMPLE APPEARANCE	Slightly cloudy
ODORS OBSERVED	None
CONDUCTIVITY 200	<u>иs</u> рн <u>7.3</u>
TEMPERATURE42	°F.
SAMPLES ANALYZED FO	R TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
<u>(total/dissolved)</u> ,	TCL Pest/PCBs, Cyanide, Alkalinity, Sulfate,
Nitrate, Phosphate	
LABORATORY/DATE SHI	PPED
COMMENTS, LOCATION	<u>SKETCH</u>

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

SURFACE WATER SAMPLING LOG

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: South Pond
DEPTH OF SAMPLE	Surface
SAMPLE I.D. No.	FRC-SW1-02-SUR SAMPLED BY Kevin McHale/Keith Butler
DATE SAMPLED	3-2-93 TIME 1030
STATIC WATER ELEV.	52.53 FT. ABOVE MEAN SEA LEVEL
	SAMPLING INFORMATION
COLLECTION METHOD	Grab Sampler
SAMPLE APPEARANCE	Slightly Cloudy
ODORS OBSERVED	None
CONDUCTIVITY20	0 μS pH
TEMPERATURE3	3°F
SAMPLES ANALYZED FO	OR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
(Total/Dissolved),	TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,
<u>Phosphate</u>	
LABORATORY/DATE SH	IPPED <u>IEA/3-3-93</u>
COMMENTS LOCATION	CVETOU

COMMENTS, LOCATION SKETCH

A 1 ft2 hole was chopped in the 3 inch thick ice to obtain this sample.

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

SURFACE WATER SAMPLING LOG

SORI ACE WATER SAMPLING LOG	
CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: South Pond
DEPTH OF SAMPLE	8 feet (midway between surface and bottom).
SAMPLE I.D. No.	FRC-SW1-02-MID SAMPLED BY Kevin McHale/Keith Butler
DATE SAMPLED	<u>3-2-93</u> TIME <u>1045</u>
STATIC WATER ELEV.	_52.53 FT. ABOVE MEAN SEA LEVEL
<u>SAMPLING_INFORMATION</u>	
COLLECTION METHOD	Peristaltic Pump
SAMPLE APPEARANCE	Slightly Cloudy
·	

SAMPLING INFORMATION COLLECTION METHOD Peristaltic Pump SAMPLE APPEARANCE Slightly Cloudy ODORS OBSERVED None CONDUCTIVITY 200 \(\mu \text{S} \) pH 7.3 TEMPERATURE 33 °F. SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals (Total/Dissolved), TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate, Phosphate LABORATORY/DATE SHIPPED 1EA/3-3-93

COMMENTS, LOCATION SKETCH

A 1 ft² hole was chopped in the 3 inch thick ice to obtain this sample.

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

SURFACE WATER SAMPLING LOG

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: South Pond
DEPTH OF SAMPLE	Surface
SAMPLE I.D. No.	FRC-SW2-02-SUR SAMPLED BY Kevin McHale/Keith Butler
DATE SAMPLED	<u>3-2-93</u> TIME <u>1130</u>
STATIC WATER ELEV.	52.53 FT. ABOVE MEAN SEA LEVEL
	SAMPLING INFORMATION
COLLECTION METHOD	Grab Sampler
SAMPLE APPEARANCE	Slightly Cloudy
ODORS OBSERVED	None
	0 μS pH <u>7.4</u>
TEMPERATURE3	3°F
	OR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
(Total/Dissolved),	TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,
<u>Phosphate</u>	
LABORATORY/DATE SHIPPED <u>IEA/3-3-93</u>	
_	
COMMENTS, LOCATION	SKETCH

 $^{"}$ A 1 ft 2 hole was chopped in the 3 inch thick ice to obtain this sample.

EL3162

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3	
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: South Pond	
DEPTH OF SAMPLE	4 feet (Midway between surface and bottom)	
SAMPLE I.D. No.	FRC-SW2-02-MID SAMPLED BY Kevin McHale/Keith Butler	
DATE SAMPLED		
STATIC WATER ELEV.	_52.53 FT. ABOVE MEAN SEA LEVEL	
	SAMPLING INFORMATION	
COLLECTION METHOD	Peristaltic Pump	
SAMPLE APPEARANCE	Slightly Cloudy	
ODORS OBSERVED	None	
CONDUCTIVITY 200 µS pH 7.3		
TEMPERATURE33°F		
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals		
(Total/Dissolved),	TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,	
Phosphate		
	IPPED IEA/3-3-93	
·		
COMMENTS, LOCATION	SKETCH	
A 1 ft ² hole was ch	copped in the 3 inch thick ice to obtain this sample.	

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

SURFACE WATER SAMPLING LOG

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: South Pond
DEPTH OF SAMPLE	<u>Surface</u>
SAMPLE I.D. No.	FRC-SW3-02-SUR SAMPLED BY Kevin McHale/Keith Butler
DATE SAMPLED	
STATIC WATER ELEV.	52.53 FT. ABOVE MEAN SEA LEVEL
	SAMPLING INFORMATION
COLLECTION METHOD	Grab Sampler
SAMPLE APPEARANCE	Slightly Cloudy
ODORS OBSERVED	None
CONDUCTIVITY 200	0 μS pH <u>7.3</u>
TEMPERATURE3:	3°F
SAMPLES ANALYZED FO	OR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
(Total/Dissolved).	TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,
Phosphate	
LABORATORY/DATE SH. 	IPPED <u>IEA/3-3-93</u>
COMMENTS, LOCATION	SKETCH

A 1 ft² hole was chopped in the 3 inch thick ice to obtain this sample.

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: South Pond
DEPTH OF SAMPLE	6 feet (Midway between surface and bottom)
SAMPLE I.D. No.	FRC-SW3-02-MID SAMPLED BY Kevin McHale/Keith Butler
DATE SAMPLED	<u>3-2-93</u> TIME <u>1150</u>
STATIC WATER ELEV.	52.53 FT. ABOVE MEAN SEA LEVEL
•	SAMPLING INFORMATION
COLLECTION METHOD	Peristaltic Pump
SAMPLE APPEARANCE	Slightly Cloudy
ODORS OBSERVED	None
CONDUCTIVITY20	0 μS pH
TEMPERATURE3	3°F
SAMPLES ANALYZED F	OR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
(Total/Dissolved),	TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,
<u>Phosphate</u>	
LABORATORY/DATE SH	IPPED _ IEA/3-3-93
	
COMMENTS, LOCATION	SKETCH
A 1 ft ² hole was ch	copped in the 3 inch thick ice to obtain this sample.
I	

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road; Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: North Pond
DEPTH OF SAMPLE	Surface
SAMPLE I.D. No.	FRC-SW4-02-SUR SAMPLED BY Kevin McHale/Keith Butler
DATE SAMPLED	<u>3-2-93</u> TIME <u>1530</u>
STATIC WATER ELEV.	53.45 FT. ABOVE MEAN SEA LEVEL

<u>SAMPLING INFORMATION</u>	
COLLECTION METHOD Grab Sampler	
SAMPLE APPEARANCE Slightly Cloudy	
ODORS OBSERVED None	
CONDUCTIVITY 200 µS pH 7.3	
TEMPERATURE°F	
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals	
(Total/Dissolved), TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,	
Phosphate	
LABORATORY/DATE SHIPPED <u>IEA/3-3-93</u>	
COMMENTS, LOCATION SKETCH	

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

SURFACE WATER SAMPLING LOG

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3	
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: North Pond	
DEPTH OF SAMPLE	9 feet (Midway between surface and bottom)	
SAMPLE I.D. No.	FRC-SW4-02-MID SAMPLED BY Kevin McHale/Keith Butler	
DATE SAMPLED	<u>3-2-93</u> TIME <u>1550</u>	
STATIC WATER ELEV.	53.45 FT. ABOVE MEAN SEA LEVEL	
	SAMPLING INFORMATION	
COLLECTION METHOD	Peristaltic Pump	
SAMPLE APPEARANCE	Slightly Cloudy	
	None	
	0 μs pH	
TEMPERATURE3	3 °F	
SAMPLES ANALYZED FO	OR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals	
(Total/Dissolved),	TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,	
Phosphate		
	IPPED <u>IEA/3-3-93</u>	
,		
COMMENTS, LOCATION SKETCH		

EL3162

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: North Pond
DEPTH OF SAMPLE	Surface
SAMPLE I.D. No.	FRC-SW5-02-SUR SAMPLED BY Kevin McHale/Keith Butler
DATE SAMPLED	
STATIC WATER ELEV.	53.45 FT. ABOVE MEAN SEA LEVEL
<u>, </u>	
	SAMPLING INFORMATION
COLLECTION METHOD	Grab Sampler
SAMPLE APPEARANCE	Slightly Cloudy
ODORS OBSERVED	None
	0 μS pH
TEMPERATURE3	3 °F
SAMPLES ANALYZED F	OR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals
(Total/Dissolved),	TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,
Phosphate	
LABORATORY/DATE SH	IPPED <u>IEA/3-3-93</u>
COMMENTS, LOCATION	SKETCH

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3				
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: North Pond				
DEPTH OF SAMPLE	7 feet (Midway between surface and bottom)				
SAMPLE I.D. No.	FRC-SW5-02-MID SAMPLED BY Kevin McHale/Keith Butler				
DATE SAMPLED					
STATIC WATER ELEV.	_53.45 FT. ABOVE MEAN SEA LEVEL				
	SAMPLING INFORMATION				
COLLECTION METHOD	Peristaltic Pump				
SAMPLE APPEARANCE	Slightly Cloudy				
ODORS OBSERVED None					
CONDUCTIVITY 200 \(\mu S \) pH 7.4					
TEMPERATURE 33 °F.					
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals					
(Total/Dissolved), TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,					
Phosphate					
LABORATORY/DATE SHIPPED					
COMMENTS, LOCATION	SKETCH				

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	IENT/ PROJECT No. Fairchild Republic Co./961-01.3					
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: North Pond					
DEPTH OF SAMPLE SAMPLE I.D. No. DATE SAMPLED STATIC WATER ELEV.	Surface FRC-SW6-02-SUR-DUP; FRC-SW6-02-SUR-MS; FRC-SW6-02-SUR-MSE FRC-SW6-02-SUR SAMPLED BY Kevin McHale/Keith Butler 3-2-93 TIME 1400 53.45 FT. ABOVE MEAN SEA LEVEL					
COLLEGIZON METHOD	SAMPLING INFORMATION Grab Sampler					
1	Slightly Cloudy					
li .	None					
	CONDUCTIVITY 200 µS pH 7.3					
}	TEMPERATURE 33 °F.					
SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals						
(Total/Dissolved), TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,						
Phosphate						
LABORATORY/DATE SHIPPED <u>IEA/3-3-93</u>						
COMMENTS, LOCATION	SKETCH					

480 Forest Avenue, Locust Valley, NY 11560 8000 Excelsior Drive, Madison, WI 53717 326 South State Street, Ann Arbor, MI 4810 4519 Pleasant Home Road, Augusta, GA 30907 9471 Baymeadows Road, Jacksonville, FL 32256 427 Riverview Executive Park, Trenton, NJ 08611

CLIENT/ PROJECT No.	Fairchild Republic Co./961-01.3				
LOCATION	Old Recharge Basins - Farmingdale, N.Y.: North Pond				
DEPTH OF SAMPLE	7 feet (Midway between surface and bottom)				
SAMPLE I.D. No.	FRC-SW6-02-MID SAMPLED BY Kevin McHale/Keith Butler				
DATE SAMPLED	<u>3-2-93</u> TIME <u>1345</u>				
STATIC WATER ELEV.	53.45 FT. ABOVE MEAN SEA LEVEL				
_	SAMPLING INFORMATION				
COLLECTION METHOD	Peristaltic Pump				
SAMPLE APPEARANCE	Slightly Cloudy				
ODORS OBSERVED	None				
CONDUCTIVITY 200 µS pH 7.3					
TEMPERATURE33 °F					
SAMPLES ANALYZED F	SAMPLES ANALYZED FOR TCL VOCs (EPA Method 524.2), SVOCs, TAL Metals				
(Total/Dissolved),	TCL PEST/PCBs, Cyanide, Alkalinity, Sulfate, Nitrate,				
Phosphate					
	IPPED				
,					
COMMENTS, LOCATION	SKETCH				

APPENDIX G

EAST FARMINGDALE FIRE DEPARTMENT
WELL CONSTRUCTION AND WELL SAMPLING LOGS

CLIENT/ PROJECT No.	Fairchild 961-6.1				
WELL No./OWNER	W-19East Farmingdale Fire District				
SAMPLING POINT	<u>W-19</u>				
SAMPLE I.D. No.	FRC-W19-01 SAMPLED BY A. Giaimo/Karen Savo				
DATE SAMPLED	9/17/93 TIME 12:00				
WELL USE	MW				
STATIC WATER ELEV.	22.79 FT. BELOW MEASURING POINT				
WELL DIAMETER	4INCHES				
TOTAL WELL DEPTH	32.10 FT. BELOW MEASURING POINT				
	SAMPLING INFORMATION				
PURGING METHOD 2" submersible pump-purging/dedicated bailer for sampling PURGING RATE3GAL/MIN. PURGING TIME8 MIN. No. CASING VOLUMES REMOVED:3+ GALLONS:24 WELL DRAWDOWN/RECOVERY Good SAMPLE APPEARANCE Slightly turbid ODORS OBSERVED None CONDUCTIVITY 300					
LABORATORY/DATE SHIPPED 9/17/93					
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.					
]	1 Vol. (1) 2 Vol. (2) 3 Vol. (3)				
Cond. T°F	7.9 7.9 7.7 300 300 300 62 63 62				

WELL SAMPLING LOG

961-6.1

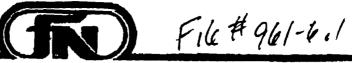
CLIENT/ PROJECT No. ____Fairchild

WELL No./OWNER	W-21 East Farmingdale Fire District					
SAMPLING POINT	W-21					
SAMPLE I.D. No.	FRC-W21-01 SAMPLED BY A. Giaimo/Karen Savo					
DATE SAMPLED	9/17/93 TIME11:00					
WELL USE	<u>MW</u>					
STATIC WATER ELEV.	21.95 FT. BELOW MEASURING POINT					
WELL DIAMETER	_4 INCHES					
TOTAL WELL DEPTH	33.31 FT. BELOW MEASURING POINT					
	SAMPLING INFORMATION					
PURGING METHOD 2"	submersible pump-purging/dedicated bailer for sampling					
PURGING RATE3	PURGING RATE 3 GAL/MIN. PURGING TIME 7.5 MIN.					
No. CASING VOLUMES	REMOVED: 3+ GALLONS: 22.5					
well drawdown/reco	VERYGood					
SAMPLE APPEARANCE	Clear					
ODORS OBSERVED	None					
CONDUCTIVITY2	00 pH <u>6.7</u>					
TEMPERATURE	60 °F					
SAMPLES ANALYZED F	OR					
LABORATORY/DATE SHIPPED 9/17/93						
COMMENTS, LOCATION SKETCH, WELL-HEAD SKETCH, ETC.						
1 Vol. (1) 2 Vol. (2) 3 Vol. (3)						
Н	7.7 6.7					
Cond. T°F	200 200 200 60 60 60					
L						

- Job Number 6069.7

Feniey & Nicol Co. Inc.

Page_/_d/_


			(516) 589-4900 - (718) 204-400	2 Emritorimental Services Divis
	Fige			DATE 9-4-97
CHENT	6. FAR m	insidale F	Re Oast	PERMIT NO
	930		St E Formingdale	
WELL NO	50	USE	7	BORE HOLE DIAMETER BY
WEUL NO			AULORS	CAMBLE METHOD
	WEIHON -	MANUAL THE	THE PROPERTY	SAMPLE METHOD DEPTH TO WATER
CASING:			12.00	POPUL DENTIL SEL
	DUC	Ounneter	44" Length_ 15"	TOTAL DEPTH
SCREEN:			40.44	A ~ 4
Typ	<u> </u>		4" Slot 120 Length	<u> </u>
GRAVEL!	ACK		CASING BEAL	·
SECURITY		I was the state of	FINISH	
	WOUNDED!		THE RESERVE OF THE PERSON	TEM CE SOLUTION STATE OF THE SECOND STATE OF T
	OHE CANAL	HALL SO IN ST	MINTED THE PROPERTY OF THE PARTY OF THE PART	TIONIDE SOILBRIENARIOS TO THE STATE OF THE S
0			Topsuil	•
3.				•
			med- course be	loun Stand
			NATO COVIENCE OF	-
	 			
	 			
				
	 			
<u> </u>	ļ			
0'	ļ			
			Light BEAWS 5	and the
	l	1-4	Inter Parison St	and some retrie
			WIGHT DETERMINE	
]		,	·
		」		•
<u> </u>		الارافت الرا		
		· -		
	 	 .		
201				
 	}			1
ļ			£	+ Reown Fine SAND.
 	 		come oder, Light	+ BROWN Fine SAND.
. }	 	 년	Jane 200.01	
75"	 			
	ļ			
		리타,		
<u> </u>		- ⋅[""		
				
	ļ	1::: 1		
	<u> </u>			
	<u> </u>	 사~ㅋ		
	<u> </u>			
	<u> </u>	ا' 'ا		
		<u> </u>		
ļ				
		 -		
	T	1		

5165864988

HENLEY & NICOL ENV.

F-360 T-503 P-009

SEP 16 '93 14:16

Page of

_	Job	Job Number		Co.inc.			Pageol
		445 Brook Avenue, Deer Park, New York 11729 (516) 586-4900 PROJECT E. Farming On. P. F. D.			16) 586-4900 · (718) 204-49	DATE 11-17-92	nented Bervices Division
		CLIENT _ LOCATION				PERMIT NO. DRILLER J. Onnue	
	WELL NO. FN-21 USE DRILLING METHOD			USE	· · · · · · · · · · · · · · · · · · ·	BORE HOLE DIAMETER SAMPLE METHOD	CINAL
	1 '	Casing: Type Ecology	PYC	_Digmeter	- å	DEPTH TO WATER 21	
		Type GRAVEL P	ACK	_	Blot <u>C20</u> Length CASING SEA	<u>20</u>	
	D		ELOWS PREST	TOESKIN - CO		ANOVERSE ASSESSMENTS	
	1	Ì		3	rand + Topsvil.		
				[[一]		al Land	
`					brown silty .	sanor / grana	
	-4	•					
					Ton relay so	Maravel	
	-				Ton rely su		
						(
						•	
	20					_	
•	1				Tan med-coor	se gravel	
1					Se		
	24				·		

APPENDIX H

EAST FARMINGDALE FIRE DEPARTMENT PCE AND TCE RESULTS

PEDNEAULT ASSOCIATES, INC. TESTING LABORATORIES 1615 NINTH AVENUE - P.O. BOX 205 - BOHEMIA, N.Y. 11716 - (516) 467-8477 AFTER 5 PM (516) 567-5579

October 24, 1990

TO: East Farmingdale Fire Department 930 Conklin Street East Farmingdale, NY 11735

RE: 930 Conklin Street, East Farmingdale, NY.

•	Sam	pling Point				
		-			· · · · · · · · · · · ·	
FN-2 FN-5						
Paramet	ers	1	2	<u>3</u>	4	5
Benzene	ppb	1020	1066	24528	544	31061
Toluene	ppb	1212	1485	73290	678	88770
Xylene	ppb	343	6190	23572	152	45198
<u>Ethylbenzene</u>	ppb	101	1938	9192	29.4	19344
Chlorobenzene	ррь	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorobenzene	ppb	<1.0	<1.0	130	<1.0 , 404	<1.0
Tetrachloroethylene •	ррб	5327	12143	-	52.4	670
					1944	State State

JOHN PEDNEAULT Lab Director

PEDNEAULT ASSOCIATES, INC. TESTING LABORATORIES 1815 NINTH AVENUE P.O. BOX 205 · BOHEMIA, N.Y. 11716 · (516) 467-8477 AFTER 5 P.M. (516) 567-5579

October 24, 1990

TO: East Farmingdale Fire Department 930 Conklin Street East Farmingdale, NY 11735

RE: 930 Conklin Street, East Farmingdale, NY.

Date: Collected 9/28/90	Analyzed	9/28-10	0/4/90	Report	10/24/9	<u> </u>
•	Sampli	ing Point		~		
1 FN-6						
3		, , , , , , , , , , , , , , , , , , ,				
4		· · · · · ·				
Parameters		1	2	3	4	<u>5</u>
Benzene	ррь	1829	<1.0			
Toluene	ppb	3434	<1.0		<u> </u>	
Xulene	ррь	22490	<1.0	·		ļ
Ethylbenzene	ppb	7889	<1.0		 	ļ
Chlorobenzene	ppb	<1.0	<1.0		<u> </u>	
Dichlorobenzene	ррь	<1.0	<1.0		 	
Tetrachloroethylene	ppb	37.2	<1.0			
<u> </u>						
				 	 	
	S. S					
					·	
						··.

JOHN PEDNEAULT Lab Director

1,046

APPENDIX I

FIRE DEPARTMENT DRAWDOWN CALCULATIONS

Monitoring wells FN-19 and FN-21 are located approximately 300 and 450 downgradient of pumping well FN-17. The downgradient extent of the well FN-17 capture zone was estimated at 90 to 120 feet using the following equation:

$$x = \frac{Q}{2\pi TI}$$

Where:

- X downgradient extent of the capture zone, feet
- Q pumping rate, cubic feet per day
- T aquifer transmissivity square ft/day
- I local groundwater gradient

The Upper Glacial aquifer at the site consists of gravelly, medium to coarse sand with a total saturated thickness of approximately 70 feet. The transmissivity of the Upper Glacial Aquifer was estimated at 20,000 to 25,000 square feet/day based on soil descriptions from boring logs and literature data.

The groundwater gradient in the Upper Glacial Aquifer in the area was estimated at 0.0012 based on Eder's August 25, 1993 water level contour map.

The Well FN-17 pumping rate was assumed at 90 gpm based on the data available for the Fire Department site from NYSDEC's files (Stony Brook, NY).

The calculation indicates that monitoring wells FN-19 and FN-21 are not likely to be affected by pumping fire station well FN-17.

APPENDIX J

FISH AND WILDLIFE IMPACT ANALYSIS REPORT

THE FAIRCHILD CORPORATION EAST FARMINGDALE, NEW YORK

BASELINE
FISH & WILDLIFE
IMPACT ANALYSIS REPORT

PROJECT #961-6.1 OCTOBER 1993

BY:

ORLAND BLANCHARD PhD AND
EDER ASSOCIATES CONSULTING ENGINEERS, P.C.
LOCUST VALLEY, NEW YORK

CONTENTS

	<u>P</u>	<u>age</u>
1.0	INTRODUCTION	1
2.0	SITE FLORA AND FAUNA	2
3.0	FISH AND WILDLIFE RESOURCES IN THE VICINITY OF THE SITE	6
1.0	FISH AND WILDLIFE RESOURCE VALUE	8
5.0	RI DATA EVALUATION	10
5.0	CONCLUSIONS	14
7.0	REFERENCES	16

TABLES

No.	<u>Description</u>
1	Sediment Criteria Derived for a Variety of Environmental Protection Objectives (NYSDEC 1989)
2	Sediment Criteria for Metals ug/g (ppm) Except Iron Which is in Percent

DRAWINGS

No.	Description
1	Topographic Map
2	Covertype Map

APPENDICES

APPENDIX A - GERAGHTY & MILLER INC. ANALYTICAL DATA TABLES 3.1-3.11

1.0 INTRODUCTION

A baseline fish and wildlife impact analysis (FWIA) was performed as part of the Remedial Investigation of the Old Recharge Basin Site in East Farmingdale, New York. The analysis was performed in accord with NYSDEC's June 18, 1991 Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites guidance document. Steps I, IIA and IIB of the FWIA were performed in accord with NYCDEC Division of Fish and Wildlife guidance.

The FWIA objective is to identify fish and wildlife resources at and near the site, determine if exposure pathways exist, and evaluate potential impact. The Step 1 investigation identifies and assesses fish and wildlife resources. A reconnaissance of the site and its environs is required and resources must be described. Step 2 consists of a contaminant specific impact analysis. Pathways must be investigated and environmental risk-based standards are compared to site contaminant data.

This report is based on aerial photo interpretation, ecological site reconnaissance on September 29 and October 1, 18 and 21 supported by inquiries and literature reviews to obtain ecological information on the site and its environs. This report contains information and drawings required by the NYSDEC FWIA guidance document.

2.0 SITE FLORA AND FAUNA

A recharge basin originally constructed as a gravel mine occupies most of the site. The remainder of the site supports a mixture of weedy, mostly alien, trees, shrubs, and herbs. The basin pond is deep and the basin sides are steep, allowing virtually no hydrophytic vegetation to become established. There are several exposed peninsulas (land areas) of varying size in the basin. The level parts sometimes support vegetation that is similar to, but sparser than vegetation found on the upland. Chemical characteristics of the pond were reported by Geraghty & Miller Inc., in 1992 and Eder Associates Consulting Engineers, P.C., in 1993. Drawing 1 shows the location of the site and the regional topography.

The small abundance of plant life noted in the pond consists of the macrophytic alga <u>Nitella</u> and clumps of unidentified filamentous green algae. No aquatic vascular plants were observed, either submerged, floating, or emergent.

The following water birds were seen on or near the pond: Canada Goose (Branta canadensis), Double-crested Cormorant (Phalacrocorax auritus), Black Duck (Anas rubripes), and Mallard (Anas platyrhynchos). These birds, except perhaps for the Cormorant, were probably all "loafing" because the pond is too deep for dabblers. An immature Night Heron (Nycticorax sp.) flew up from the site but it was unclear whether it had been roosting outside the basin or fishing at the water's edge. A Ring-billed Gull (Larus delawarensis) flew over the site several times.

Several additional pond-associated animal observations were noteworthy including Raccoon (Procyon lotor) tracks near the water's edge; frogs (Rana sp.) jumping from shore into a stagnant area near the south end; and Whirligig Beetles (Gyrinidae, Gyrinus) in a large group at the water's surface near the shore. We also have anecdotal evidence of large goldfish in the pond but none were observed.

The upland vegetation included the following herbaceous plants: Common Mullein (Verbascum thapsus), Asters (Aster sp.), Mugwort (Artemisia vulgaris), Purple Top (Tridens flavus), Goldenrods (Solidago sp.), Butter-and-Eggs (Linaria vulgaris), Giant Reed (Phragmites australis), and Knotweeds (Polygonum sp.). Shrubs and vines including Multiflora Rose (Rosa multiflora), Poison Ivy (Toxicodendron radicans), Oriental Bittersweet (Celastrus orbiculatus) and Virginia Creeper (Parthenocissus sp.); while trees included Cottonwood (Populus deltoides), Black Locust (Robinia pseudoacacia), Black Willow (Salix nigra), White Willow (Salix alba), White Mulberry (Morus alba), Silver Maple (Acer saccharinum), Tree-of-Heaven (Ailanthus altissima), Black Cherry (Prunus serotina), Acacia (Albizia julibrissin).

The following birds were observed: Prairie Warbler (<u>Dendroica discolor</u>), Northern Mockingbird (<u>Mimus polyglottos</u>), Killdeer (<u>Charadrius vociferus</u>), Northern Cardinal (<u>Cardinalis cardinalis</u>), Song Sparrow (<u>Melospiza melodia</u>) and House Sparrow (<u>Passer domesticus</u>). Other animals included Garter Snake (<u>Thamnophis sirtalis</u>) and three or four butterfly species.

3.0 FISH AND WILDLIFE RESOURCES IN THE VICINITY OF THE SITE

NYSDEC's FWIA guidance requires characterization of resources within two miles of the site, with a more intensive characterization of the area within one-half mile of the site.

3.1 Resources Within One-half Mile of the Site

Based on aerial photos, USGS topographic maps, and site reconnaissance, over 50 percent of the area within one-half mile of the site's boundaries is totally or virtually without vegetation. Plant life has been replaced by residential and commercial structures and paved areas. Drawing 2 is a covertype map showing the community types within a half mile of the site. The vegetation is virtually entirely the result of human disturbance or management. The community types that we have discerned are based on Reschke's (1990) categorization: "Mowed Lawn" (M on the map), "Mowed Lawn with Trees" (MT), "Water Recharge Basin" (WR), and "Gravel Mine" (G); and-by stretching Reschke's definitions a bit--"Paved Road/Path" (P) and "Urban Vacant Lot" (U). All of these community types are classified by the New York Natural Heritage Program as "S5", meaning that they are "demonstrably secure" in New York State. The site is best characterized as an abandoned Gravel Mine (G).

The Mowed Lawn with Trees (MT) vegetation is characteristic of suburban residential areas and consists of a large variety of mostly planted, native, and exotic trees, ornamental shrubs and turfgrasses, and accompanying lawn weeds. Characteristic animal species include Gray Squirrel (Sciurus carolinensis), American Robin (Turdus migratorius), Mourning Dove (Zenaida macroura), and Mockingbird. Areas marked as "MT" on the covertype map are generally residential, and represent vegetation intermingled with houses, swimming pools, streets, and driveways.

Mowed Lawn (M) includes the extensive closely cropped grassy areas around the airport runways, a golf driving range, a neighborhood playground, and grassed areas around some commercial establishments. This grass was usually planted as turf, but grass round the runways may show that the grass survive constant mowing while other plants do not. American Robin and Killdeer might be expected on such sites, although the airport uses of perched Great Horned Owls in an effort to reduce bird populations.

The category Urban Vacant Lot (U) encompasses a series of successional stages ranging from being grass-and-forb to shrubby or partially wooded, all of which developed on land with disrupted soil. The plant species composition in this habitat is like that of the upland part of the site, with fairly high diversity, but poor quality. The majority of the plants are alien, weedy species. Animals to be expected include Mourning Dove, Field Sparrow (Spizella pusilla), and Eastern Cottontail (Sylvilagus floridanus). Some of these communities also have some aspects of Reschke's "Successional Old Field" community type.

The Reschke community "Paved Road/Path" (P) (created to accommodate situations where plants grow in cracks in the surface) applies to little used or abandoned parking lots and these occupy a significant part of the half-mile radius area. The dominant plant is Mugwort, though Evening Primrose (Oenothera sp.), Goldenrods, and Spotted Knapweed (Centaurea maculosa) are common. Birds in any significant numbers would not be expected.

There are several Water Recharge Basins (WR) in the half-mile area, although technically that category in Reschke is limited to the aquatic community within these basins. The basins are fenced and locked, but aerial photos and examination from a distance show only one basin with substantial standing water. The others, though they occasionally receive stormwater runoff, appear dry and with little hydrophytic vegetation. Much of the vegetation appears to consist of introduced weeds.

There were no state or federally protected species seen within the half mile radius area.

3.2 Resources within Two Miles of the Site

A two-mile radius from the site periphery (see Drawing 1) includes the rest of the airport, several large cemeteries, a small college campus, and part of a state park that is largely a golf course.

The southwest quadrant of the circle intersects two branches of the headwaters of Massapequa Creek. Parts of these are NYSDEC-regulated wetlands, as shown on the map. Beitel (1976) has described the wetlands flora and the creek vegetation.

There is partially degraded pine-barrens vegetation in the northeast quadrant in parts of the undeveloped Pinelawn Cemetery. Cryan & Turner (1981, p. 32) mapped this area (their boundaries shown on the accompanying map) as "Oak Brush Plains." Other areas that they identified (e.g. at Edgewood) have been treated as a rare community, "Pitch Pine-Scrub Oak Barrens" (Reschke, 1990, p. 47), but a letter from M. Scheibel of NYSDEC did not mention the rare community type. It is our understanding that this area is scheduled for development.

A rare plant species, Hairy Small-leafed Tick Trefoil (<u>Desmodium ciliare</u>) was found in an abandoned community formerly called Breslau situated between the two southern arms of the airport's intersecting runways. It is classified by the New York Natural Heritage Program as S2S3, meaning that it is known from as many as 100 occurrences (Young, 1992). NYSDEC classified it as threatened (1990). The species is known in at least 11 other counties in the state (Young, 1992).

The August 10, 1993 letter from M. Scheibel identified three rare plant species from the general area, and one animal species. The plants, Sandplain Gerardia (<u>Agalinis acuta</u>), Southern Yellow Flax (<u>Linum medium var. texanum</u>) and Collins' Sedge (<u>Carex collinsii</u>) have not been seen within the areas covered by the Huntington and Amityville USGS topographic maps since the 1920s (Gerardia, Sedge) or 1930s (Flax). None were found during the field investigation. Collins' Sedge would most likely have been found in the Massapequa Creek drainage, but it drops its fruit early in the season and could easily be overlooked in October. The Flax occurs

in dry uplands and might have occurred in the remnant pine barrens at Pinelawn. The Gerardia might have also occurred. We did not observe it in late September when it could still have been in flower. R. Zaremba from The Nature Conservancy, an expert on the Sandplain Gerardia, searched in the Pinelawn area a few years ago without success.

The larvae of the rare Coastal Barrens Buck Moth (<u>Hemileuca maia maia</u>) reported by Scheibel feed on a common pine-barrens shrub called Scrub Oak (<u>Quercus ilicifolia</u>), which occurs with varying density in the Pinelawn property although none were seen.

We contacted personnel both at the New York State Parks (Long Island State Park Region), and the State University of New York's Farmingdale campus to determine if ecological or natural history studies have been done at Bethpage State Park or the Farmingdale campus. Relevant work has not been done at either location.

3.3 Observation of Stress

There is no visual evidence, in either the landscape or the biota, of toxic contaminants, or any absence of organisms that could be attributed to contamination. Petroleum-stained surface soil was observed in various parts of the basin property, and a release from a service station along the east side of the basin was reported to the county health department by a Fairchild representative in the 1980s. Buildings, concrete, and asphalt are prevalent in this area and the plants and animals are characteristic of residential and other culturally disturbed habitats. This area is an unremarkable fish and wildlife resource.

4.0 FISH AND WILDLIFE RESOURCE VALUE

4.1 Value of Habitat to Associated Fauna

The aquatic habitat of the water-filled basin seems able to support plant life (algae) and animals (fish, presumably tadpoles and beetle larvae), but, in general, the diversity and biomass are low. Low diversity and biomass are expected in a deep, steep-sided groundwater-fed, low-nutrient, artificial pond, and contamination is not a necessary causal factor. The pond has little to offer to higher trophic-level organisms.

The three waterfowl species observed are common Long Island waterfowl. Wade et al. (1990) in a winter 1989 waterfowl survey of 22 freshwater ponds and bays in Brookhaven, recorded 1623 Mallards, 1451 Black Ducks and 1290 Canada Geese compared to of 407, 386, and 182 for the next most numerous species.

Neither the Night Heron nor the Double-crested Cormorant has been confirmed to breed in the interior of Long Island (Andrle & Carroll, 1988) and therefore neither would be expected to do so at the site. Of the upland birds recorded at the site, only the Killdeer and the Prairie Warbler are not common in densely populated residential areas. The Killdeer probably nests in numbers in the remote parts of the airport, and perhaps on the site proper, while the Warbler probably breeds in the pine barrens remnant in the Pinelawn Cemetery. The individual at the site, however, was more likely a migrant.

Habitat value, wildlife abundance and diversity within a half mile of the site are very low due to nearly total development of the area.

4.2 Value of Resources to Human Beings

The site is fenced and locked because of its physical hazards and it is not accessible for recreational purposes. The site can not be legally hunted because of the proximity of roads and populated areas.

There is virtually no current or evident potential use for the meager fish and wildlife resources, except attracting suburbia-associated birds to backyard feeders, or the study of birds and mammals in residential areas. Groundwater recharge basins sometimes support raccoons and breeding birds but, they are typically surrounded by a locked fence and are legally inaccessible to human use.

There are wooded parts of the Pinelawn Cemetery, Bethpage State Park and the upper parts of two tributaries to Massapequa Creek within two miles of the site. Bethpage State Park is used almost exclusively for golf and Massapequa Creek is used to a limited extent for hiking. The small creeks may also be used for recreation. All three areas might be used for birding and other nature-related recreation. There is no visual evidence to suggest that any of these areas are affected by contamination.

5.0 RI DATA EVALUATION

In September and October 1988, Geraghty & Miller, Inc. (G&M) collected 15 surface sediment samples and 20 deep sediment samples from 16 borings in the recharge basin (B-9 through B-16 in the north pond and B-1 through B-8 in the south pond). The samples were analyzed for the TCL/TAL list and EP toxicity metals and data are presented in G&M's April 1992 Work Plan for the Remedial Investigation/Feasibility Study of the Old Recharge Basin.

The surface sediment results were compared to the December 1989 NYSDEC Draft Cleanup Criteria for Aquatic Sediments (summarized on Tables 1 and 2) to assess potential environmental risk associated with site contaminants. These criteria are based on aquatic toxicity and bioaccumulation risk. Fishing is not permitted in this or other recharge basins and wildlife, but not human, bioaccumulation associated with fish consumption was considered in the evaluation. The criteria assume that the contaminants could become bioavailable in the sediment interstitial pore water, which is a conservative assumption. The standards also assume that aquatic populations are present and exposed to the bioavailable contaminant mass, but this assumption has not been demonstrated by the RI data.

A significant number of samples exhibited cadmium concentrations exceeding the limit of tolerance (LOT). Other metals exceeded the LOT in less than 50% of the samples. Most of the samples contained PCBs at concentrations exceeding the fish bioaccumulation criterion for accumulation factors ranging from 1 to 10 and 0.1 to 1. A conservative organic carbon (OC) content of 0.5 percent was assumed and used to compare the sediment organics data to the aquatic sediment criteria. NYSDEC representatives stated that this is a reasonable value for Long Island soil. Phenanthrene concentrations in seven of 15 surface sediment samples exceeded the aquatic criteria. None of the other base neutral/acid extractable or volatile organic compounds were found at levels significantly above aquatic criteria or at a significant number of sample locations. Detection limits for some of the samples are above the aquatic criteria due to matrix interference.

Sixteen sediment samples were analyzed for EP toxicity metals and all of the sample concentrations were below the RCRA hazardous waste criteria.

Geraghty & Miller collected 30 surface water samples from 11 locations at the Old Recharge Basin (Tables 3.9 - 3.11 in Appendix A). The aquatic standards and guidance values for many volatile organic and base neutral compounds were below the typical ASP detection limits. Concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) exceeded the aquatic guidance values of 1 ppb and 11 ppb respectively, in most of the samples. The mean of PCE concentrations exceeding the standard is 42.9 ppb. The highest PCE concentration, 66 ppb, was detected in a sample from the south pond. The mean of TCE concentrations exceeding the standard is 14.9 ppb. The highest TCE concentration, 22 ppb, was detected in a sample from the south pond. Aluminum is the only metal found in a significant number of samples at concentrations above the standard.

6.0 CONCLUSIONS

Based on the Step I, IIA, and IIB Impact Analysis:

- Most of the half mile area around the site is densely developed and devoid of vegetation, and virtually all of the vegetation that is present is the result of recent or continuing human impact. The plant and animal life at and within half mile of the site is sparse and/or low in diversity and biomass. There is no evidence of offsite environmental receptors.
- The sparse environment at the site and in the immediate vicinity of the basin is most evidently attributable to low nutrients and/or deep water (aquatic habitats) and profound soil disturbance and/or management (terrestrial habitats). The site and half mile radius supports little in the way of significant fish and wildlife, and the fish and wildlife value for humans based on resources and land use is judged to be negligible.
- Basin sediment contamination was characterized in 1988 by Geraghty and Miller. Metals and PCBs are present in portions of the basin at concentrations exceeding state aquatic sediment criteria. Ecological data collected as part of the FWIA do not suggest that there is substantial aquatic life in the basin. The physical basin characteristics are a dominant control on the aquatic habitat and the basin would not be expected to be capable of supporting substantial or diverse resources. Fish were not observed during several FWIA site inspections, and their absence would imply zero bioaccumulation risk. RI surface water sampling results indicated TCE and PCE at levels exceeding state aquatic surface water standards. The TCE and PCE levels are likely to be decreasing with time since the discharge to the basin was discontinued in the early 1980s. The low levels of VOCs do not suggest that air is a significant exposure pathway. There is no evidence of any significant offsite environmental receptor exposure pathways.

7.0 REFERENCES

- Andrle, R.F. and J.R. Carroll, eds. 1988. The Atlas of Breeding Birds in New York State.
- Beitel, J. 1976. A Vegetative Survey of the Freshwater Wetlands of Nine Major Streams in Southwestern Suffolk County and Southern Nassau County, New York. Unpublished report for the Environmental Defense Fund, Inc.
- Cryan, J.F. and J.L. Turner. 1981. A landscape imperiled: the Long Island Oak brush plains. The Heath Hen 1: 2-34.
- Eder Associates Consulting Engineers, P.C., May 1993, Old Recharge Basin Remedial Investigation Report.
- raghty & Miller, Inc. April 1992, Work Plan for the Remedial Investigation/Feasibility Study of the Old Recharge Basin Fairchild Republic Company, East Farmingdale, New York.
- New York State Department of Environmental Conservation. 1990. Protected Native Plants. (Booklet).
- Reschke, C. 1990. Ecological Communities of New York State. New York Natural Heritage Program, Latham, New York.
- Wade, M.C., N.R. Giffen and J. Pavacic. 1990. Town of Brookhaven, New York, 1990 Natural Resources Inventory. Department of Planning, Environment and Development, Brookhaven.
- Young, S., ed. 1992. New York Natural Heritage Program New York Rare Plant Status List. New York Natural Heritage Program, Latham, New York.

THE FAIRCHILD CORPORATION EAST FARMINGDALE, NEW YORK

TABLE 1

<u>SEDIMENT CRITERIA EXCEEDANCE SUMMARY METALS'</u>

Constituent	NYSDEC Sediment Criteria (ppm)	Number of Samples Exceeding Standard	Mean of Values Exceeding Standards (ppm)	Highest Concentration (ppm)	Boring Location with Highest Concentration	NYSDEC Limit of Tolerance (ppm)	% of Samples Exceeding Limit of Tolerance
Arsenic	5	80%	13.6	34.3	B-11	33	7%
Cadmium	0.8	100%	61.3	267	B-10	10	80%
Copper	19	93%	434.1	1,130	B-15	114	47%
Iron	24000	40%	44,366	46,600	B-16	40000	7%
Lead	27	80%	303.3	864	B-9	250	40%
Manganese	428	53%	973.4	1,730	B-10	1100	20%
Mercury	0.11	67%	1.95	6.5	B-9	2	13%
Nickel	22	47%	52.3	90.2	B-10	90	7%
Zinc	85	93%	2,021	7,470	B-9	800	50%

NOTES:

¹ Surface sediment sampling results are compared to NYSDEC's December 1989 Sediment Criteria.

FAIRCHILD INDUSTRIES, INC. EAST FARMINGDALE, NEW YORK

TABLE 1
SEDIMENT CRITERIA FOR A VARIETY OF ENVIRONMENTAL PROTECTION OBJECTIVES (NYSDEC 1989)

	AQUATIC TOXICITY BASIS					WILDLIFE RESIDUE BASIS			
SUBSTANCE	Log K(ow)	FRESHWATER	AWQS/QV/C*	SEDIMENT	OC =0.5%	AWQS/GV/C*	SEDIMENT	OC 0.5%	
		OR MARINE	ug/l	CRITERION	CRITERION	ug/l	CRITERION	Criterion	
		F or M	<u> </u>	ug/gOC	ug/kg (1)		ug/gOC	ug/kg	
Acenapthene	4.33	F		730**	3650				
Aniiene		F	4	0.0662**	0.331		}		
		(M		0.248**	0.124				
Aldrin and Dieldrin	5.0	F&M		Į.		1			
	}	F&M	0.084+	8.4	42	0.0077+	0.77	3.85	
Azinphosmethyi	2.4	F	0.005++	0.001	0.005		{		
	j	М	0.01++	0.003	0.015				
Azobenzene	3.82	F&M	}			l			
Benzene	2.0	F&M				' i	İ		
Benzo(a)pyrene	6.04	F				'			
and other PAH's (2)	[M			}	·	}		
Benzidene	1.4	F	0.1++	0.003	0.015				
Bis(2-chloro-ethyl)ether	1.73	F&M			{				
Bis(2-ethylhexyl)phthalate	5.3	F	0.6++	119.7	598.5	}			
Carbofuran	2.26	F	1++	0.2	1.0	{	}		
Carbon tetrachloride	2.64	F&M			[[ļ		
Chlordane	2.78	F&M			·	Į.	Į.		
	}	F&M	0.01+	0.008	0.030	0.01+	0.008	0.30	
Chlorobenzene	2.84	F&M	5++	3.5	16.5	1			
Chloro-o-toluidine	About 2.0	F&M			•	Ì	}		
Chloropyrifos	5.11	(F		3.22**	16.1	1	ì		
• •	1	[M		0.44**	2.2		1		
DDT, DDD, and DDE	6.0	F&M				0.001++	1)		
	ĺ	F&M			į į		0.828**	4.14	
	ſ	F&M	<0.05+	<50	<250	Į.			
Dieldrin	5.0	F	10.00	19.5**	97.5	į.	[
	1	M		5.77**	28.85	[ļ		
Diazinon	1.92	F	0.08++	0.007	0.035	ĺ	Į		
Dichlorobenzenes	3.38	F&M	5++	12	60]	1		
1,2-Dichloroethane	1.48	F&M			·		}		
1,1-Dichloroethylene	1.48	F&M		}	.	j	ì		
2,6-Dinitrotoluene	2.05	F&M		Ì	{	1	i		
Diphenylhydrazine	3.03	F&M		(}	ł	1		
Endosulfan	3.55	F	0.009++	0.03	0.15	. }	{		
		M	0.001++	0.004	0.02	1	(
Endrin	5.6	F&M	0.002++	0.8	4	0.0019+	0.8	4.0	
-	S	F	Ì	1.04**	5.2	i	l		
	{	{ m }	ì	0.215**	1.075	Ì	ł		
Ethyl Parathion	2.1	F	ſ	0.081**	0.405		ł		
Heptachlor &	4.4	F&M	0.001++	0.03	0.15	0.0038+	0.1	0.5	
Heptachlor Epoxide	l	l F	ļ	1		ſ	ł		
	1	(м (· ((ſ	}		
Hexachlorobenzene	6.18	F&M	<5+	<7568	<37840	0.008+	12	60	
Heptachlorobutadiene	3.74	F&M		Į		0.07+	0.4	2.0	
		į F	1++	5.4	27	Į			
	}	l M	0.3++	1.6	8	l	Į		
Hexachlorocyclohexanes	3.8	F	ľ	0.157**	0.785	J	[
	1	F	0.01++	0.08]	ļ		
	-[M	0.004++	0.03		ļ	j		
	J	F&M		ļ		0.23+	1.5	7.5	

FAIRCHILD INDUSTRIES, INC. EAST FARMINGDALE, NEW YORK

TABLE 1
SEDIMENT CRITERIA FOR A VARIETY OF ENVIRONMENTAL PROTECTION OBJECTIVES (NYSDEC 1989)

			JATIC TOXICIT	Y BASIS		WIL	DLIFE RESIDU	E BASIS
SUBSTANCE	Log K(ow)	FRESHWATER	AWQS/GV/C*	SEDIMENT	OC =0.5%	AWQS/GV/C*	SEDIMENT	OC 0.5%
	}	OR MARINE	ug/l	CRITERION	CRITERION	ug/I	CRITERION	Criterion
	<u> </u>	F or M	<u> </u>	ug/gOC	ug/kg (1)	<u> </u>	ug/gOC	บg/kg
Hexachlorocyclopentadiene	3.99	F	0.45++	4.4	22			
	,	M	0.07++	0.7	i .	[
lsodecyldiphenyl phosphate	5.4	F	1.73++	434	2170	}	ľ	
Linear aikylbenzene sulfonates	3.97 (3)	F	40++	373	1865		1	
Malathion	2.2	F&M	0.1++	0.02	1.0			
Methoxychlor	4.3	F&M	0.03++	0.6	3.0			
Mirex	5.83	F&M		}	}	0.0055+	3.7	18.5
		F&M			{	i	·	
Octachiorostyrene	About 6.0	1			(0.0005+	0.5	2.5
Parathion and methyl parathion	2.5	F	0.008++	0.003	0.015	!	ł	
Pentachiorophenoi	5.0	F	0.4++	40	200	}	j	
Phenanthracene	4.45 °	F	l	139**	695	ſ)	
}		M		102**	{	ļ	1	
Phenois, total	2.75	F	1++	0.6	3.0		1	
Phenois, total	2.0	F	5++	0.5	2.5			
unchiorinated		}			}		Į.	
PCB	6.14	F&M	<0.2+	<278	<1380	0.001++	1.4	7
į		F&M			i	0.0004+	0.6	3
		F				Ì	19.5**	97.3
(M				ŀ	41.8**	209
2,3,7,8-Tetrachloroethane	7.0	F&M	<0.001+	<10	<50	2XE-8	0.0002	0.001
		F&M				Í	}	
1,1,2,2-Tetrachloroethane	2.56	F&M				j	ł	
Tetrachioroethylene	2.88	F&M			}	. }	}	
O-Toluidine	1.4	F&M				1	ł	
Toxaphene	3. 3	F&M	0.005	0.01	<0.05	}	}	
Trichlorobenzenes	4.26	F&M	5++	91	455	į	}	
1,1,2-Trichioroethane	2.17	F&M	Ì	ı	<u> </u>	ļ	{	
Trichloroethylene	2.29	F&M			' [j	
Triphenyl phosphate	4.59	F	4++	156	780		Į.	
Vinyl chloride	0.6	F&M	· \		•]			

NOTES:

- AWQS/GV/C = Ambient water quality standard or guidance value in TOGS 1.1.1 or other water quality criterion.
- + AWQGV proposed by Division of Fish and Wildlife.
- ++ Current NYS AWQS or GV in TOGS 1.1.1.
- ** EPA proposed interim sediment criteria; taken from an EPA briefing document for the EPA Science Advisory Board. Sediment criteria are normalized to organic carbon (OC) content as ug/gOC; to obtain criteria for bulk sediments in ug/kg multiply criteria by fraction OC; i.e. for 1% multiply by 10, for 2% OC by 20, etc.).
- (1) Organic carbon data was not collected. A conservative organic carbon concentration of 0.5% was used for this comparison.
- (2) The sediment criterion for benzo(a)pyrene also applies to benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, and methylbenz(a)anthracenes. These PAH have the same TOGS 1.1.1. guidance value as benzo(a)pyrene.
- (3) Sodium dodecylbenzene sulfanate.

EAST FARMINGDALE, NEW YORK FAIRCHILD INDUSTRIES, INC.

TABLE 2

SEDIMENT CRITERIA FOR METALS, UG/G (PPM) EXCEPT IRON WHICH IS IN PERCENT.

METAL	BACKGROUND.	CRITERIA**	LIMIT OF TOLERANCE
Arsenic	12	5 (4.0 - 5.5)	33
Cadmium	2.5	0.8 (0.6 - 1.0)	01
Chromium	75	26 (22 - 31)	111
Copper	65	19 (15 - 25)	114
Iron (%)	5.9	2.4 (2 - 3)	4
Lead	55	27 (23 - 31)	250
Manganese	1200	428 (400 - 457)	1100
Mercury	9.0	0.11 (0.1 - 0.12)	۵.
Nickel	75	22 (15 - 31)	06
Zinc	145	85 (65 - 110)	800

NOTES:

- From MOE (1988); upper 95% confidence limit of pre-Industrial concentrations in Great Lakes sediments.
 - ** Values in parentheses are "no-effect" and "lowest-effect" levels, respectively,
- from Persaud (1989).

 ••• Concentration which would be detrimental to the majority of species, potentially eliminating most. (Persaud 1989)

APPENDIX A

GERAGHTY & MILLER, INC. ANALYTICAL DATA TABLES 3.1-3.11

Teble 3-1. Summary of Soil Boring Data from the Old Recharge Besin, Fairchild Republic Company, East Farmingdeie, New York.

	Drilling/	Cealng	Totel Depth	Depth to Native Soil	Total Number of	Sample Intervels Salacted
ioil Boring	Sampling	Disseter	(ft below	(ft below	Samples	for Laboratory
Humbers	Date	(inches)	basin bottom)	basin bottom)	Collected	Analysis (ft below basin bottom)
B-1	9/27/88		•	0.25	4	0-4, 4-7
B-2	9/27/88	4	•	5.5	3	0-4, 5-7
B-3	9/27/88	4	4	0.5	2	0-2, 2-4
B-4	9/28/88	4	6	6+	3	0-2, 2-6
B-5	9/28/88	4	4	3.5	2	2-4
B-6	9/29/88	4	4	2	2	0-2, 2-4
B-7	9/29/88	4	2	0.25	1	0-2
8-8	9/29/88	4	4	2	2	0-2, 2-4
3-9	10/4/88	4	6	4	3	0-4, 4-6
B-10	10/5/88	4	6	4	3	0-4, 4-6
B-11	10/5/88	4	6	4	3	0-4, 4-6
B-12	10/6/88	4	•	7	4	0-5, 5-7, 7-9
B-13	10/6/88	4	11	•	4	0-5, 5-9, 9-11
B-14	10/7/88	4	20	14.5	10	0-8, 8-13, 13-19
B~15	10/10/88	4	18	10	3	0-7, 7-10, 10-17
B-16	10/10/58	4	12	7	5	0-5, 5-7, 7-11

Table 3-2. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-1	3-1	B-2	3-2	3-3	
Sample Type:	S/Nº	#	S	S/ N +	S/ # *	
Sample Depth:	0-4	4-7	0-4	5-7	0-2	
Sample Date:	9/27/88	9/27/88	9/27/88	9/27/88	9/28/88	
Faremeter (ug/kg)						
Methylene chieride	12	<6	a_	~6	<19	
Acetone	53 3	<12	.49.3	32 J	<300	
1,2-Dichloroethene (total)	20	<6	<7	<6	<19	
Chloroform	<6	<6	<7	<6	<19	
Toluene	<6	<6	<7	<6	<19	
Chlorobensene	<6	<6	<7	<6	<19	
Ethylbensene	<6	<6	<7	<6	<19	
Styrene	<6	<6	<7	<6	<19	
Kylene (total)	<6	<6	<7	<6	<19	
2-Butanone	<13	<13	5 3	<12	<90	
Finyl chloride	<13	<13	<14	<12	<38	
Tetrachlorosthens	<6	6	<7	<6	<19	
Trichloroethene	<6	<6	<7	<6	<19	
1,1,1-Trichlorosthane	<6	<6	<7	<6	<19	
Total VOCs	85	6	54	32	••	

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Reagent blank.

S Sediment.

N Mative soil.

[.] Designates dominant component of composite sample.

R Unuscable data.

Table 3-2. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-3	3-4	3-4	3-5	3-6	
Sample Type:	*	\$	8	8	8	
Sample Depth:	2-4	0-2	2-6	2-4	0-2	
Sample Date:	9/28/88	9/28/88	9/28/88	9/29/88	9/29/88	
Parameter (ug/kg)						
Methylene chleride	<6	<7	<9	<9	<12	
Acetege	47 J	<190	<360	<210	<85	
1,2-Dichloroethene (total)	<6	<7	<9	<9	<12	
Chloroform	<6	<7	<9	<9	<12	
Toluene	<6	<7	<9	<9	<12	•
Chlorobensene	<6	<7	<9	<♥	<12	
[thy bensene	<6	<7	<♥	<9	<12	
Styrene	<6	<7	<9	<9	<12	
Kylene (total)	<6	<7	<9	<9	<12	
2-Butanone	<12	<41	<110	<63	<23	
Tinyl chloride	<12	<13	<19	<18	<23	
[etrachloroethene	<6	<7	<9	<9	<12	
Trichlorosthens	<6	<7	<9	<9	<12	
1,1,1-Trichloroethene	<6	<7	<9	<9	<12	
Cotal VOCs	47	••				

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Reagent blank.

S Sediment.

Native soil.

^{*} Designates dominant component of composite sample.

R Unuscable date.

Table 3-2. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-6	3-7	3-8	3-6	3-9	3-9
Sample Type:		S/N•	\$	7	\$	1
Sample Depth:	2-4	0-2	0-2	2-4	0-4	4-6
Sample Date:	9/29/88	9/29/88	9/29/88	9/29/88	10/4/88	10/4/88
Parameter (ug/kg)						
fethylene chloride	<6	<6	<25	<6	<3600 J	<6
icetone	30 J	42 J	<270	76 J	<7600 J	<61
,2-Dichlorosthene (total)	<6	<6	<25	<6	<3800 J	<6
Moroform	<6	<6	<25	<6	(<3800 J ≥	<6
cluene	<6	<6	<25	<6	300 J	<6
hlerobenzene	<6	<6	<25	<6	<3800 J	<6
thylbensens	<6	<6	<25	<6	L 0086>	<6
tyrene	<6	<6	<25	<6	<3800 J	<6
ylene (total)	<6	<6	<25	<6	<3800 J	2
-Butanone	2 J	<12	<49	11 J	R	R
inyl chloride	<12	<12	<49	<12	<7600 J	<12
etrachloresthens	<6	<6	<25	<6	<3800 J	2
richlorosthens	<6	<6	<25	<6	<3800 J	<6
,1,1-Trichloroethene	<6	<6	<25	<6	<3800 J	<6
otal VOCs	32	42		87	500	4

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Resgent blank.

S Sediment.

Mative soil.

[.] Designates dominant component of composite sample.

E Umuseable data.

Table 3-2. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-10	3-10	3-11	3-11	3-12	3-12
Sample Type:	8	3	\$		\$	\$
Sample Depth:	0-4	4-6	0-4	4-6	0-5	5-7
Sample Date:	10/5/88	10/5/88	10/5/88	10/5/88	10/6/88	10/6/88
Parameter (ug/kg)						
Hethylene chloride	<3600 J	<6	<13	<6	<12000 J	<2700
Leetone	<7400 J	<120	<160	<110	<67,000 B	<5400
,2-Dichlorosthene (total)	<3600 J	<6	<11	<6	<12000 J	5000
hleroform	<3600 J	<6	<11	<6	<12000 J	<2700
coluene	860 3	<6	<11	<6	<12000 J	<2700
hlorobensene	<3600 J	<6	<11	<6	<12000 J	<2700
thylbensene	<3600 J	<6	<11	<6	<12000 J	<2700
tyrene	<3600 J	<6	<11	<6	<12000 J	<2700
ylene (total)	<3600 J	1 J	<11	1 J	<12000 J	<2700
-Butanone	R	R	R	R	R	R
inyi chloride	<7400 J	<12	<22	<12	<27000 J	<5400
etrachloroethene	<3600 J	<6	<11	2 J	<12000 J	<2700
richloroethene	<3600 J	<6	<11	<6	<12000 J	1800
,1,1-Trichloroethane	<3600 J	11	<11	13	<12000 J	<2700
otal VOCs	860	12	••	16		6,800

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Reagent blank.

S Sediment.

E Mative soil.

Designates dominant component of composite sample.

R Umuseable data.

Commontrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old rgs Basin in September and October 1988, Fairchild Republic Company, East Farmingdale,

Sample Designation:	3-12	3-13	3-13	B-13	3-14	3-1
Sample Type:	×	S	\$	ı	8	;
Sample Depth:	7-9	0~5	5-9	9-11	0-6	8-1
Sample Date:	10/6/88	10/6/88	10/6/88	10/6/88	10/7/88	10/7/8
(ug/kg)						
chleride	<32	<84 J	<760 J	43	<250 J	<58
	<410	C 000>	<1500 J	430 J	<770 J	<610
roethens (total)	24 J	<84 J	<760 J	<29	<250 J	330
	<30	<84 J	<760 J	<29	<250 J	<58
	<30	<84 J	<760 J	<29	<250 J	44
ene	<30	<84 J	<760 J	<29	<250 J	<58
ne	<30	<84 J	<760 J	<29	<250 J	12
	<30	<84 J	<760 J	<29	<250 J	<58
:al)	<30	<84 J	<760 J	<29	400 J	<120
	R	<170 J	R	49 J	<500 J	7
ride	<60	<170 J	<1500 J	<58	<500 J	210
ethene	<30	<84 J	<760 J	<29	<250 J	<58
:hene	22 J	<84 J	<760 J	<29	<250 J	940
Loroethana	<30	<84 J	<760 J	<29	<250 J	<58
	46		••	522	400	1,536

t detected.

timated Value.

tested in the Reagent blank.

inent .

tive soil.

signates dominant component of composite sample.

mesable data.

Table 3-2. Concentrations of Voletile Organic Compounds Detected in Soil Samples Collected from the Old Racharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdals, New York.

Sample Designation:	3-14	3-15	3-15	B-15	3-16	3-16
Sample Type:	\$	S	\$	×	S	S
Sample Depth:	13-19	0-7	7-10	10-17	0-5	5-7
Sample Date:	10/7/88	10/10/88	10/10/88	10/10/88	10/10/88	10/10/88
Paremeter (ug/kg)						
Methylene chloride	<6	<92	<96	<30	<110	<64 ,
Asstons	<74	<1200	3,500 3	<1,300	4,600 3	<2,000
1,2-Dichloroethene (total)	<6	1000	<96	<30	<110	<64 .
Chloroform	<6	<92	<96	<50	<110	<64 .
Toluene	1 J	310	<96	<50	<110	<64 .
Chlerobensene	<6	<92	180	<50	160	<64 3
Ethyl bensens	<6	<92	<96	<50	<110	<64 .
St yren e	<6	<92	<96	<50	<110	<64 .
Kylene (total)	<6	380	400	<50	430	180
2-Butanone	R	R	1,000 J	370 J	1,100 J	620
Vinyl chloride	<12	<180	<190	1,100	<220	<130
lezzachlor oethene	· 3 J	<92	<96	<50	<110	<64 .
Prichloroethene	<6	<92	<96	<50	<110	<64 .
1,1,1-Trichloroethene	1 J	<92	<96	<50	<110	<64 .
Total VOCs	5	1,690	1,580	1,470	1,690	800

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Reagent blank.

S Sediment.

N Native soil.

[.] Designates dominant component of composite sample.

R Umuseable data.

Table 3-2. Commentrations of Volatila Organic Compounds Detected in Soil Samples Collected from the Old Racharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation: B-16
Sample Type: #
Sample Depth: 7-11
Sample Date: 10/10/88

Parameter (ug/kg)

Methylene chloride	<6
Acetone	<28
1,2-Dichlorostheme (total)	<6
Chleroform	<6
Toluene	<6
Chlorobensene	<6
Ethylbensene	<6
Styrene	<6
Xylene (total)	<6
2-Butanene	R
Vinyl chloride	<12
Tetrachloroethene	<6
Trichloresthane	<6
1,1,1-Trichlorosthans	<6
Total VOCs	

- -- Not detected.
- J Estimated Value.
- B Detected in the Reagent blank.
- S Sediment.
- M Native soil.
- Designates dominant component of composite sample.
- R Umuseable data.

Table 3-3. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Rechargo Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation: Sample Depth (ft):	B-1 0-4	B-1 4-7	B-2 0-4	3-2 5-7	3-3 0-2
Sample Date:	9/27/88 S/X°	9/27/ 88 #	9/ 27/88 £	9/27/88 S/ X°	9/28/86 S/N+
Franctor (ug/kg)			_		
-Witrosodiphenylamine	86 J	<380	<1300	<410	<440
2-Dichlorobensone	58 J	<380	110 J	<410	55 3
iethylphthalate	<570	<380	<1300	<410	<440
l-n-butylphalate	<570	<380	<1300	50 J	<440
nenei.	<570	<380	<1300	<410	<440
Fachlerobensens	<570	<380	<1300	<410	<440
s(2-Chloroethyl)ether	<570	<380	<1300	<410	<440
Chlorophenel	<570	<380	<1300	<410	<440
4-Dinitroteluene	<570	<380	<1300	<410	<440
4-Dichlorobensene	<570	<380	<1300	<410	<440
nzo(g,h,i)perylene	<570 J	<380	<1300	<410	<440 J
nao(a)pyrene	L 00£	<380	340 J	<410	<440 J
deno(1,2,3-cd)pyrene	<570 J	<380	<1300	<410	<440 J
Methylphenol	<570	<380	<1300	<410	<440
nitroso-di-n-pr opy lamine	<570	<380	<1300	<410	<440
enaphthene	<570	<380	<1300	<410	<440
s(2-Ethylhesyl)phthalate	<860	<380	<1300	<470	<1,900 J
Mitrophenol	<2800	<1900	<6400	<2000	<2200
ophorone	<570	<380	<1300	<410	<440
bensofuran	<570	<380	23 J	<410	36 J
4-Dimethylphenol	<570	<380	<1300	<410	<440
Droic acid	<2800	<1900	250 J	<2000	110 J
nse(b)fluoranthens	<570 J	6 J	480 J	43 J	<440 J
nso(k)fluoranthene	440 J	<380	<1300	<410	320 J
2,4-Trichlorobenzene	<570	<380	<1300	<410	<440
phthalane	<570	<380	<1300	<410	<440
ngo(a)anthracene	<570 J	<380	<1300	<410	<440
rysene	320 J	<380	430 J	47 J	230 J
Chlore-3-methylphenel	<570	<380	44 J	<410	<440
Me <u>thylnaphthal</u> ane	<570	<380	45 J	<410	<440
ntachlorophenol	<2800	<1900	<6400	<2000	<2200
enenchrene	<570	<380	250 JB	<410	<440
thracene	<570	<380	87 JB	<410	<440
-n-octyl phthelete	<570 J	<380	<1300	<410	<440 J
voranthens	400 J	<380	510 J	79 J	270 J
rene	660	<380	728 J	69 J	610 J
methyl phrhalate	<570	<380	<1300	<410	37 <i>3</i>
maphthylene	49 J	<380	<1300	<410	38 J
orens	<570	<380	<1300	<410	<440
tylbensylphthalate	<570	<380	<1300	<410	<440 J

B Detected in Respent blank.

J Estimated value.

S Sediment.

Mative soil

^{*} Designates dominant component of composits sample.

Table 3-3. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	8-3	3-4	3-4	3-5
Sample Depth (ft):	2-4	0-2	2-6	2-4
Sample Date:	9/28/88	9/28/88	9/28/88	9/28/88
	×	S	S	S*/#
Stanctor (ug/kg)				
N-Mitrosodithonylamine	<380	<470	<590	<490
1,2-Dichlorobensene	<380	<470	<590	70 3
Diethylphthalaze	<380	<470	<590	<490
Di-m-butylphalate	<380	<470	<590	51 J
Phonel	<380	<470	<590	<490
lexachlorobensens	<380	<470	<590	<490
is(2-Chlorosthyl)ether	<380	<470	<590	<490
?-Chlorophenol	<380	<470	<390	<490
2,4-Dinitrotoluene	<380	<470	<590	<490
,4-Dichiorobensene	<380	<470	<590	<490
lenso(g,h,i)perylens	<380	<470 J	<590 J	<490 J
Senzo(a)pyrene	<380	2,000 J	940 J	220 J
Indeno(1,2,3-cd)pyrene	<380	<478 J	<590 J	<490 J
-Hethylphenol	<380	<470	<590	<490
-nitroso-di-n-propylamine	<380	<470	<590	<490
censphthene	<380	350 J	150 J	<490
is(2-Ethylhesyl)phthalate	<380	<1,400 J	<6,300 J	<1,700 J
-Mitrophenol	<1900	<2300	<2900	<2400
sophorone	<380	<470	<590	<490
ibensofuran	<380	250 J	95 J	<490
,4-Dimethylphenol	<380	<470	<590	<490
ensois acid	<1900	<2300	<2900	<2400
enzo(b)fluoranthene	<380	5,300 J	1,300 J	180 J
mgo(k)fluoranthene	<380	430 J	<5 90 J	<490 J
2.4-Trichlorobensens	<380	<470	<590	<490
aphthalene	<380	170 J	190 J	<490
enso(a)anthracene	* J	1,700 J	<5 9 0 J	<490 J
NET/Sens	<380	1,900 J	< 590 J	230 J
Chloro-3-methylphenol	<380	<470	<590	<490
-Methylnaphthalene	<380	330 J	250 J	28 J
entachiorophenol	<1900	<2300	<2900	<2400
denanthrene	<380	1,800 B	<590	<490
nthracene	<380	580 B	<5 9 0	<490
i-n-octyl phthalate	<380	<470 J	<590 J	<490 J
luoranthena	<380	2,400	750	230 J
Trans	<380	5,300 J	1,300 J	520 J
imethyl phthalate	<380	<470	<590	<490
enaphthylene	<380	560	130 J	43 J
lvorene	<380	510 .	<590	<490
stylbensylphthalate	<380	<470 J	<590 J	<490 J
tal Semivolatile Organic Compounds		21,200	7,105	1,592

B Detected in Reseast blank.

J Estimated value.

S Sediment.

W Mative soil.

Designates dominant component of composite sample.

Table 3-3. Connentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-6	3-6	3-7	3-6
Sample Depth (ft):	0-2	2-4	9-7 0-2	
Sample Date:		9/29/88	9/29/88	0-2 9/ 29/88
	\$	1	S/H+	9/2 9/88 S
_		-		•
Parameter (ug/kg)				
H-Witrosodiphonylamina	<570	<400	<390	<530
1,2-Dichlorobensene	74 J	<480	<390	130 J
Disthylphthalate	<570	<400	<390	<530
Di-m-butylphalate	<570	<400	34 J	<530
Phenol	<570	<400	<390	<530
Sexachi orobensene	<570	<400	<390	43 J
bis(2-Chloroethyl)ether	<570	<400	<390	<530
2-Chlorophenoi	<570	<400	<390	<530
2,4-Dinitrotoluene	<570	<400	<390	<530
1,4-Dichlorobensene	<570	<400	<390	<530
lenzo(g,h,i)peryiene	<570 J	<400	210 J	<530 J
lenzo(a)pyrene	320 J	5,3	2,200 J	830 J
Indeno(1,2,3-cd)pyrene	<570 J	<400	330 J	<530 J
4-Methylphenol	<570	<400	<390	43 J
M-mitroso-di-m-propylemine	<570	<400	<390	<530
Acensphthene	<570	<400	300 J	250 J
ois(2-Ethylhemyl)phthalate	<2,300 J	<810	<730	<1,800 J
i-Fitrophenol	<2800	<2000	<1900	<2600
Isophorone	<570	<400	<390	<530
Dibensofuran	<570	<400	230 J	150 J
1,4-Dimethylphenol	<570	<400	<390	<530
lenseic acid	73 J	<2000	<1900	130 J
lense(b)fluoranthene	300 J	4 J	3,100 J	1,900 J
lense(k)fluoranthene	<570	<400	610 J	190 J
,2,4-Trichlorobensene	<570	<400	<390	<530
Saphthaiene	31 J	<400	140 J	110 J
lenso(a)anthracene	<570 J	<400	2,300	<530 J
hrysene	310 J	<400	2,300	<530 J
-Chloro-3-methylphenel	<570	<400	<390	<530
-Methylnaphthalene	35 J	<400	93 J	410 J
entachlorophenol	<2800	<2000	<1900	<2600
henanthrene	<570	<400	3,300 B	1,300 B
nthracene	<570	8 J	980 3	330 JB
i-n-octyl phthalate	<570 J	<400	<390 J	<530 J
luoranthene	370 J	15 J	4,200	1,100
yrene	820 J	14 J	5,400	2,400 J
imethyl phtheleto	<\$70	<400	<390	<530
cenaphthylene	53 J	<400	290 J	210 J
luerana	<570	<400	<390	390 J
utylbansylphthalate	<570 J	<400	<390	<530 J
otal Semivolatile Organic Compounds	2,386	46	21,737	8,286

B Detooted in Reagent blank.

J Istimated value.

S Sediment.

Hative soil.

Designates dominant component of composite sample.

GERAGHTY & MILLER, INC.

Designates dominant component of composite sample.

HARITM SOLL.

.smalles 8

. Latimated value.

Detected in Resease blank.

All results in misrograms per kilogram (ug/kg).

shaweques Organica Compensate	613	049,6	106	006'Z	799,1	
ylbensylphchalate	065>	<1300	t st	C 000'00T>	06E>	
95936	26 3	<7300	<390	c 000,001>	<390	
ecs / Luchziden	<390	<7300	<390	C 000,001>	<380	
schyl phthalete	<290	<7300	<390	L 000,001>	06E>	
900	L 26	1 026	£ 07	<pre>100,000 1</pre>	430	
-G-G3G3G10	L E6	2 098	L IT	L 000,S	320	r
g-octyl phthelate	L 082	<1300 J	t es	<pre>100,000 J</pre>	(390 ×	r
9099730	EL SE	<1300	<390	C 000,001>	06E>	
• contained	EC 041	L OEE	L 95	c 000,001>	091	r
rachio rophenel	<pre>006T></pre>	0099>	006T>	C 000'087>	<7900	
ene Ladadqaniydas	<390	00ET>	06E>	<700'000'>	<390	
Plere-3-methylphenel	<390	<7300	06E>	<100,000 J	06E>	
******	<390	L 094	L TA	<100,000 3	220	t
######################################	06E>	00£T>	06C>	C 000,001>	06E>	
eceledad	<390	<7300	06E>	<700.000 3	<390	
, 4-Trichlorobensens	<390	<7300	06E>	<pre>c 000,001></pre>	<390	
so(k)fluorenthene	r te	< 7300 l	<390	L 000,001>	065>	r
emedsassouil(d)es	<390	L 002	<300	C 000,00f>	260	r
soic scid	006T>	0099>	006T>	L 000,084>	006T>	
-Dimechylphenol	<390	<7300	<300	c 000,00f>	46	t
ansotusen ansotusen	06E>	<7380	<700	C 000,001>	<330	
phorone.	06E>	<1300	<390	<700'000'>	<390	
[Croppeno]	006T>	00 99 >	006T>	C 000,084>	006T>	
(2-Ethylhemyl)phthalete	06E>	001'E>	016>	r 000'00t>	<7300	
aceptrocase	L 82	<7300	06E>	C 000,001>	<390	
resosorqr-u-brobby outue	<390	<7300	<390	<pre>c 000'000'></pre>	<390	
espylphenel	<390	<1300	06E>	c 000'001>	06 C>	
enertq(bo-f,2,1)ene	06 5>	<7300 1	<390	C 000,001>	<300	r
scottq(a)om	24.3	L 07£	r 67	<pre>c 000'001></pre>	120	£
uso(g,h,l)perylene	<200	C 0061>	06E>	C 000,001>	<300	r
-Dichlorobensene	06 \$>	<7300	<390	c 000,001>	<300	
-Diaittotoluene	<300	<7300	<200	r 000'001>	<390	
#Tecoppend	<380	<7300	<390	L 000,001>	<390	
(2-Chloseethyl)ether	<390	<7300	<390	L 000,001>	065>	
- SGBEEGGCS0 Trions	<390	<7300	<200	£ 000'001>	<300	
ţeœ	06E>	<1300	06E>	£ 000'00T>	<300	
easysyd742nq-u-	26 J	<1300	c tz	C 000,001>	<390	
esparant parters	06 \$>	<7300	065>	£ 000'001>	<300	
s-Dichiorobensens	<280	<7300	065>	r 000'00T>	<390	
[[Ecosediphonylemine	<360	<1300	06E>	L 000,001>	06E>	
(\$7/3th) .zezesta					=	-
	ĸ	\$	ĸ	•	Ħ	
seaple lands	82/62/6	88/7/OT	##/ */ 01	1012/88	20/2/28	
:(33) Azqed elqme2	3-¥	7-0	9-7	Y-0	9-4	•
Semple Designation:	3-6	6-E	6-E	01-E	07-E	

Table 3-3. Concentrations of Semivolatile Organic Compennés Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Compeny, East Farmingdale, New York.

Table 1-3. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-11	B-11	B-12	B-12	B-12
Sample Depth (ft):	0-4	4-6	0-5	5-7	7-9
Sample Date:	10/5/88	10/5/88	10/6/88	10/6/88	10/6/88
·	\$	×	S		X
rameter (ug/kg)					
	-14.600		<33000 J	<95000 J	<450
-Hitrosodiphonylamine	<1600	<400	<33000 J		<450
,2-Dichlerobensens	<1800	<400 <400	<33000 J	<95000 J	<450
Diethylphthalate	<1600 100 J	<400	<33000 J		<450
li-m-butylphalate		<400	<33000 J		<450
Phonol	<1600		<33000 J		<450
jezachierobensene	<1600	<400	<33000 J		<450
is(2-Chloroethyl)ether	<1600	<400	<33000 J		<450
-Chlorophenei	<1600	<400			<450
2,4-Dinitroteluene	<1600	<400	<33000 J		<450
1,4-Dichlerobensens	<1600	<400	<33000 J		<450 J
lenso(s,h,l)perylene	<1600 J	<400 J	<33000 J	_	270 J
ienso(A)pyrene	<1600 J	160 J	<33000 J		
indeno(1,2,3-cd)pyrene	<1600 J	<400 J	<33000 J		<450 J
-Hethylphenol	<1600	<400	<33000 J		<450
f-aitroso-di-a -propy lemine	<1600	<400	<33000 J	_	<450
cenaphthene	<1600	<400	<33000 J		<450
is(2-Ethylhesyl)phthalate	<3,300	<1,500	<33000 J		<1,600
-Witrophenol	<7800	<2000	<160,000 J		<2200
sophorone	<1600	<400	<33000 J		<450
ibensofuran	<1800	<400	<33000 J		<450
,4-Dimethylphenol	<1600	<400	<33000 J		<450
enseic acid	<7800	<2000	<160,000 J		<2200
enso(b)fluoranthene	<1600 J	220 J	3,200 J		410 J
enso(k)fluoranthene	<1600 J	250 J	1,700 J		380 J
1,2,4-Trichlorobensene	<1600	<400	<33000 J	<95000 J	<450
Japhthalene	<1600	<400	<33000 J	<95000 J	110 3
lenso(1)anthracene	<1600	<400	<33000 J	<95000 J	<450
hrysene	<1600	230	2,400 J	<95000 J	370 J
-Chlore-3-methylphenel	<1600	<400	<33000 J	<95000 J	<450
-Methylnaphthalens	<1600	<400	<33000 J	<95000 J	1,600
•	<7800	<2000	<160,000 J	<450,000 J	<2200
entschiorophenol	71 J	<400	1,600 J		660
henanthrene	<1600	<400	<33000 J		170 3
nthracens	<1600 J	<400 J	<33000 J		<450 3
i-n-octyl phthalate	110 J	340 J	3,900 J		840
luoranthene	96 J	440	3,100 J		1.000
yrene	<1600	<400	<33000 J		56 3
insthyl phthalate	<1600	<400	<33000 J	_	<450
leenaphthylena	<1600	<400	<33000 J		<450
luorene	<1600	<400	<33000 J		<450
utylbensylphthalate					
otal Semivolatile Organic Compounds	379	1,640	15,900	46,000	5,866

B Detected in Resent blank.

J Estimated value.

Sediment.

W Mative soil.

Designates dominant component of composite sample.

Table 3-3. Consentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation	: 3-13	B-13	B-13	B-14	3-14	
Sample Depth (ft)		5-9	9-11	0-8	8-13	
Sample Date		10/6/88	10/6/88	10/7/88	10/7/88	
<u> </u>	8	8	T .	8	\$	
Faramater (ug/kg)						
W-Witrosediphonylamine	<45000 J	<2500	<370	<54000 J	<430	
1,2-Dichlorobensene	<45000 J	<2500	<370	<54000 J	<430	
Disthylphthelate	<45000 J	<2500	<370	<\$4000 J	<430	
Di-n-butylphalate	<45000 J	280 J	<370	<54000 J	<430	
Phenol	<45000 J	<2500	<370	<54000 J	<430	
Sezachi erobensene	<45000 J	<2500	<370	<54000 J	<430	
bis(2-Chloroethyl)ether	<45000 J	<2500	<370	<54000 J	<430	
2-Chlorophenol	<45000 J	<2500	<370	<54000 J	<430	
2,4-Dinitrotoluene	<45000 J	<2500	<370	<54000 J	<430	
1,4-Dichlorobensene	<45000 J	<2500	<370	<54000 J	<430	
Benso(g,h,i)perylene	<45000 J	<2500 J	<370 J	<54000 J	<430 J	
Senso(a)pyrene	4,600 J	3,100 J	710 J	4,500 J	1,300 J	
Indens(1,2,3-cd)pyrene	<45000 J	<2500 J	<370 J	<54000 J	260 J	
-Methylphenol	<45000 J	<2500	<370	<54000 J	<430	
i-mitrose-di-m-propylamine	<45000 J	<2500	<370	<54000 J	<430	
loenaphthene	<45000 J	750 J	240 J	<54000 J	<430	
is(2-Ethylhemyl)phthelete	<45000 J	<8,400	<1,900	<54000 J	<2,700 J	
-Witrophenol	<220,000 J	<13000	<1800	<260,000 J	<2100	
sephorone	<45000 J	<2500	<370	<54000 J	<430	
ibensofuran	<45000 J	410 J	140 J	<54000 J	200 J	
1,4-Dimethylphenol	<45000 J	310 J	<370	<54000 J	1,100	
Jenseic scid	<220,000 J	<13000	<1800	<260,000 J	79 J	
lense(b)fluoranthene	12,000 J	5,100 J	960 J	3,500 J	4,000 J	
lenzo(k)fluoranthene	<45000 J	<2500 J	210 J	<54000 J	<430 J	
,2,4-Trichlorobensene	<45000 J	<2500	<370	<54000 J	<430	
laphthalene	<45000 J	390 J	49 J	<54000 J	150 J	
lenso(a)anthracene	6,200 J	3,800	840	<54000 J	1, 5 00 J	
hrysene	7,000 J	4,100	880	<54000 J	1,500 J	
-Chloro-3-methylphenol	<45000 J	<2500	<370	<54000 J	<430	
-Methylnaphthalens	<4500D J	410 J	130 J	<54000 J	350 J	
entachi erophenol	<220,000 J	<13000	<1800	<250,000 J	<2100	
henenthrene	7,400 J	5,600	1,600	3,900 J	2,400	
nthracene	1,600 J	1,300 J	440	<54000 J	580	
i-n-octyl phthalate	<45000 J	<2500 J	<370 J	<54000 J	<430 J	
luoranthene	13,000 J	7,400	1,800	11,000 J	2,900	
Trene	11,000 J	9,500	2,400	10,000 J	4,300 J	1
imethyl phthalate	<45000 J	<2500	<370	<54000 J	<430	
cenephthylene	<45000 J	200 J	<370	<54000 J	190 J	
luorens	<45000 J	880 J	340 J	<54000 J	<430	
	<45000 J	<2500	<370	<54000 J	<430 J	
utyibensyiphthalate						

³ Detected in Reasont blank.

J Estimated value.

S Sediment.

Nativo soil.

Designates dominant component of composite sample.

Table 3-3. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-14	B-15	3-15	3-15	3-16	
Sample Depth (ft):	13-19	0-7	7-10	10-17	0-5	
Sample Date:	10/7/88	10/10/88	10/10/88	10/17/88	10/10/88	
	5/3*	5	S	*	S	
aremeter (ug/kg)						
N-Witrosodiphonylamine	<390	<1500	<\$8000 J	<53000	<58000	
1,2-Dichlorobensens	<390	390 J	<58000 J	<53000	<58000	
listhylphthalate	<390	<1500	<\$8000 J	<53000	<58000	
Di-n-butylphalate	<390	<1500	1,800 J	<53000	<58000	
Phonel	<390	<1500	<58000 J	<53000	<58000	
iemschi grobensene	<390	<1500	<\$8000 J	<53000	<58000	
ois(2-Chloroethyl)ether	<390	<1300	<58000 J	<53000	<58000	
i-Chlorophenol	<390	<1500	<58000 J	<53000	<58000	
1,4-Dinitrotoluene	<390	<1500	<58000 J	<53000	<58000	
1,4-Dichlorobensene	<390	<1500	<58000 J	<53000	<58000	
lenso(g,h,i)perylene	<390	<1500	<58000 J	<53000	<58000	
ienso(a)pyrene	<390	2,900	<58000 J	<53000	<58000	
indeno(1,2,3-cd)pyrene	<390	500 J	<58000 J	<53000	<58000	
-Hethylphenol	<390	<1500	<58000 J	<53000	<58000	
-nitroso-di-n-propylamine	<390	<1500	<\$8000 J	<53000	<58000	
cenephthene	<390	480 J	<58000 J	<53000	<58000	
is(2-Ethylheryi)phthalate	<530	15,000 BJ	<58000 J	<53000	<58000	
-Kitrophenol	<1900	<7100	<280,000 J	<260,000	<280,000	
esphorone	<390	<1500	<58000 J	<53000	<58000	
ibensofuran	<390	280 J	<58000 J	<53000	<58000	
4-Dimethylphenol	<390	27.000	12,000 J	<53000	<58000	
ensoic acid	<1900	<7100	<280,000 J	<260.000	<280,000	
enso(b)fluoranthens	<390	3,300	<\$8000 J	1,500 J	<58000	
enso(k)fluoranthens	<390	<1500	2.400 J	<53000	<58000	
.2.4-Trichiorobensens	<390	170 J	<38000 J	<53000	<58000	
anhthalene	<390	510 J	<58000 J	<53000	<58000	
enso(a)anthracene	<390	4,400 J	<58000 J	<53000	<58000	
hrysene	<390	4,700 J	<58000 J	<53000	1 000,e	
-Chlore-)-methylphenol	<390	<1500	<\$8000 J	<53000	<58000	
-Nothy inspital ene	<390	1,900	<58000 J	<53000	<58000	
entachiorophenel	<1900	<7100	<280,000 J	<260,000	<280,000	
henanthrene	<390	3.200	4,400 J	2,400 J	<58000	
nthracene	<390	600 J	<58000 J	<53000	1,700 J	
i-a-cetyl phthalate	<390	<1300	<\$8000 J	<53000	<58000	
l-m-octyl phinalata Luoranthene	<390	10,000	9,000 J	3,600 J		
YTORE	<390	4,600 J	6,500 J	3,400 J		
insthyl phthelete	<390	<1300	<58000 J	<53000	<58000	
consphing one	<390	160 J	<58000 J	<53000	<58000	
Lucrane	<390	510 J	<58000 J	<33000	<58000	
ntyibensyiphthalate	<390	<1500	<58000 J	<53000	<58000	
otal Sesivolatile Organic Compounds		65,800	36,100	10,900	37,700	

B Detected in Reagent blank.

J Estimated value.

S Sediment.

Native soil.

Designates dominant component of composite sample.

Table 3-3. Consentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation: 3-16 3-16 Sample Depth (ft): 5-7 7-11 Sample Date: 10/10/88 10/10/88

Parameter (ug/kg)

I-Nitrosediphonylamine	<51000	<400
1,2-Dichlorobensene	<51000	<400
Diethylphthalate	<51000	22 J
Di-m-butylphalata	<51000	48 J
Phenol	<51000	<400
Hexachlorobensene	<51000	<400
bis(2-Chloroethyl)ether	<51000	<400
2-Chlerophenol	<51000	<400
2,4-Dinitrotoluene	<51000	<400
1,4-Dichlorobensene	<51000	<400
Benzo(g,h.i)pezylene	<51000	<400
Benzo(a)pyrene	<51000	<400
Indeno(1,2,3-cd)pyrene	<51000	<400
4-Methylphenol	<51000	<400
W-nitrose-di-n-propylamine	.<51000	<400
Acensphehene	<51000	<400
bis(2-Ethylhemyl)phthalate	<51000	<520
4-Mitrophenol	<250,000	<1900
Isophorone	<51000	<400
Dibenzofuran	<51000	<400
2,4-Dimethylphenol	<51000	<400
Bennoic said	<250,000	<1900
Benso(b)fluoranthene	<51000	<400
Benso(k)fluoranthene	<51000	<400
1,2,4-Trichlorobensene	<51000	<400
Waphthalene	<51000	<400
Benzo (a) anthracene	<51000	<400
Chrysens	<51000	<400
4-Chloro-3-methylphenol	<51000	<400
2-Methylnephthalens	<51000	<400
Pentachiorophenol	<250,000	<1900
Phenanchrone	3,000 J	<400
Anthracene	<51000	<400
Di-n-octyl phthalate	<51000	<400
Fluoranthene	6,100 J	15 J
Pyrene	5,400 J	<400
Dimethyl phthalate	<51000	<400
Acenaphthylene	<51000	<400
Fluorene	<51000	<400
Butylbensylphthelate	<51000	<400
Total Semivolatile Organic Compounds	14,500	85

- B Detected in Respont blank.
- J Estimated value.
- S Sediment.
- Native soil.
- Designates dominant component of composite sample.

Table 3-4. Consentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge
Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Designation: Sample Type: Sample Depth: Sample Date:	3-1 S/R* 0-4 9/27/66	B-1 H 4-7 9/27/88	B-2 S 0-4 9/27/88	B-2 S/H* 5-7 9/27/88	3-3 5/H° 0-2 9/28/88	B-3 H 2-4 9/28/88
Parameter (ppm)	_						
Pesticides			_,				
siphs Chiordene		<0.140	<0.09	a	<0.099	<1.1	<0.093
gamma Chiordane		<0.140	<0.09	<1	<0.099	<1.1	<0.093
Total Pesticides			••	••		••	••
PCBs							
Arecler 1248	•	1.9 J	0.24 J	a	<0.099	12 J	0.120 J
Areclor 1254		1.4 J	0.13 J	4 J	0.13 J	\$ J	0.087 J
Total PCBs		3.3	0.37	4	0.13	20	0.207

All results reported in parts per million (ppm).

⁻⁻ Not detected.

J Estimated value.

S Sediment.

N Marive soil.

^{*} Designates dominant component of composite sample.

Table 3-4. Concentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Racharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-4	3-4	3-5	3-6	3-6	3-7
Sample Type:	S	S	S*/#	\$	x	S/N+
Sample Depth:	0-2	2-6	2-4	0-2	2-4	0-2
Sample Date:	9/28/88	9/28/88	9/28/88	9/29/88	9/29/88	9/29/88

Parameter (ppm)

Pesticides	•					
alpha Chlordane	<0.570	<2.9	<0.590	0.72 J	<0.097	<0.48
samma Chlordane	<0.570	<2.9	<0.590	0.75 J	<0.097	<0.48
Total Pasticides				1.47		
PCBs						
Aroclor 1248	7.0	38 J	2.3	6.5 J	<0.097	<0.48
Aroclor 1254	4.9	27 J	2.3	5.7 J	<0.19	0.73 J
Total PCBs	11.9	65	4.6	12.2	••	0.73

⁻⁻ Not detected.

J Estimated value.

S Sediment.

H Marive soil.

^{*} Designates dominant component of composite sample.

Table 3-4. Consentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge
Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Designation: Sample Type:	3-6 S	3-6 N	3-9 S	3-9	3-10 S	B-10 N
	Sample Depth:	0-2	2-4	0-4	4-6	0-4	4-6
	Sample Date:	9/29/88	9/29/88	10/4/88	10/4/88	10/5/88	10/5/88
arameter (ppm)							
esticides .	_			_			
ipha Chlordana	ı	4.3 J	0. 092 J	<1.6	<0.094	<6.7 J	<0.48
acma Chlordane	1	5.4 J	0.11 J	<1.6	<0.094	<6.7 J	<0.48
otal Pesticide		9.7	0.202	••			
· G •	_						
roclor 1248		<6.5	<0.094	3.6	0.9	39 J	39
roelor 1254		<13	0.24 J	2.7	0.54	25 J	25
otal PCBs			0.24	6.3	1.44	64	64

⁻⁻ Not detected.

J Estimated value.

S Sediment.

N Native soil.

^{*} Designates dominant component of composite sample.

Table 3-4. Concentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge
Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Designation: Sample Type: Sample Depth: Sample Date:	B-11 S 0-4 10/5/88	B-11 H 4-6 10/5/88	B-12 S 0-5 10/6/88	B-12 S 5-7 10/6/88	B-12 H 7-9 10/6/88	B-13 S 0-5 10/6/88
Parameter (ppm)			100000				
Pesticides						-	
siphs Chlordane		<1.9	<0.49	<2.2 J	<6.2 J	<0.54	<3 J
gemma Chlordane		<1.9	<0.49	<2.2 J	<6.2 J	<0.54	<3 J
Total Pesticides						••	••
PCBs							
Aroclor 1248		<1.9	2.5	19 J	<6.2 J	0.86	33 J
Aroslor 1254		<3.9	1.7	<4.5 J	10 J	0.63	19 J
Total PCBs			4.2	19	10	1.49	52

⁻⁻ For detected.

J Estimated value.

S Sediment.

N Mative soil.

^{*} Designates dominant component of composite sample.

Table 3-4. Concentrations of Posticides/PCBs Detected in Soil Samples Collected from the Old Racharge
Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Designation:	3-13	8-13	3-14	3-14	3-14	3-15
	Sample Type:	S	x	8	S	S/#*	5
	Sample Depth:	5-9	9-11	0-8	8-13	13-19	0-7
	Sample Date:	10/6/88	10/6/88	10/7/88	10/7/99	10/7/88	10/10/88
Parameter (ppm)							
Pesticides	_						
alpha Chlordane	1	<0.61	<0.44	<3.6 J	<0.52	<0.094	<1.8
samma Chlordane	•	<0.61	<0.44	<3.6 J	<0.52	<0.094	<1.8
Total Pesticide	:8						••
PCBs	-						
Aroclor 1248		15	2.0	39 J	5.7	<0.094	40 .
Aroclor 1254		13	1.8	25 J	5.1	1.5	<3.5
Total PCBs		28	3.8	64	10.8	1.5	40

⁻⁻ Not detected.

J Estimated value.

S Sediment.

N Native soil.

[•] Designates dominant component of composite sample.

Table 3-4. Concentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge
Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation	: B-15	8-15	B-16	B-16	3-16	
Sample Type	: S	H	S	5	n	
Sample Depth	7-10	10-17	0-5	5-7	7-11	
Sample Date	10/10/88	10/10/88	10/10/88	10/10/88	10/10/88	
Parameter (ppm)						
Pesticides						
slpha Chiordene	<3.8	<3.5	<3.8	<3.4	<0.0 96	
parms Chlordans	<3.8	<3.5	<3.8	<3.4	<0.096	
Total Pesticides	••					-
<u> </u>						
Aroclor 1248	21	<3.5	51	88	<0.096	

9.2

33

73

139

0.086

All results reported in micrograms per kilogram (ppm).

Total PCBs

⁻⁻ Not detected.

J Estimated value.

S Sediment.

^{# #}artwa anti

Designates dominant component of composite sample.

Table 3-5. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-1	3-1	3-2	B-2	3-3	3-3
Sample Type:	8/H+	x	8	S/#*	S/#*	×
Sample Depth (ft):	0-4	4-7	0-4	5-7	0-2	2-4
Sample Date:	9/27	9/27	9/27	9/27	9/28	9/28

Aluminum	21570 D	536 D	7,290 D	2,830 D	5,440 D	533 D
Ant imony	<19.5	<5.4	<17.4	<5.6	<6.2	<4.D
Arsenic	9.1	<0.55	2.0 J	3.0	4.3	<0.6
Barium	110	8.9 J	58.2	13.83	39 J	<8.1
Beryllium	1.43 QJ	<0.13	0.320 J	<0.13	0.220 JD	<0.12
Cadmium	36.1 QJ	0.80 JQ	54.9 QJ	1.2 Q	15.3 QJ	<0.39
Calcium	1,560 J	51.3 J	1,010 J	222	586 J	48.2 J
Chronium	1,320	44.1	1,700	97.8	502	28.8
Cobalt	13.8 Л	<1.1	5.7 JD	108 JD	4.9 JD	<0.98
Copper	95.5	<2.4	89.3	6.0	31.3	<2.6
Iron	18,560 D	1,370 D	6,380 D	3,600 D	6,120 D	908 D
Lead	128 D	2.1 D	22.4 D	2.7 D	23.2 D	2.6 D
Yagnesium	2,330	87.9	839	475 J	671 J	91.7 J
Anganese	473 QDJ	12.2 QDJ	131 QDJ	44.4 QDJ	148 QDJ	12.0 QD.
Hercury	1.7	<0.08	<0.11	<0.10	<0.17	<0.08
Nickel	25.1 D	<2.4	15.3 D	<2.5	8.1 JD	<2.2
Potassium	1,100 J	106 J	382 J	349 J	323 J	87.4 J
Selenium	<0.35	0.32 QJ	0.43 JWQ	0.25 JWQ	<0.3 JWQ	0.323 QJ
Silver	51.1 D	0.64 JD	41.2 D	0.54 JD	20.1 D	<0.39
Sodium	<279	<186	<250	<193	215	<169
Thallium	<0.61	<0.33	<0.54	<0.41	<0.44	<0.36
Vanadium	33.2 D	<0.87	17.1 D	4.3 J	10.55 D	1.2 JD
Zine	672 D	11.6 D	521 D	34.9 D	217 D	7.2 D
Cyanide	16.2	<0.72	<0.79	<0.69	2.3	<0.63

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

N Native soil.

Designates dominant component of composite sample.

Table 3-5. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-4	3-4	1-5	3-6	• •
Sample Type:	S	2	\$*/H		3-6
Sample Depth (ft):	0-2	2-6	2-4	0-2	
Sample Date:	9/28	9/28	9/28	9/29	2-4 9/29

Aluminum	12,890 D	15,400 D	5,500 D	20,700 D	420 D
Antimony	<7.4	<6.9	<5.8	<7.8	<5.8
Arsenic	7.5	8.5	4.1	10.0	<0.51
Berium	60.1	69.2	45.3 J	136	<9.5
Beryllium	0.79 JD	1.1 JD	0.14 JD	1.5 JD	<0.14
Cadmium	2.8 QJ	5.9 QJ	15.8 QJ	11.1 QJ	
Calcium	6,270	5.200	1,210	2,400	<0.46
Chromium	125.	322	377	664	53.2 J
Cobalt	7.2 JD	7.5.50	4.6 J		124
Copper	34.4	55.5		17.4 D	<1.2
Iron	15,200 D	17,200 D	43.5	62.1	<3.0
Load	13,200 B	17,200 D	7,240 D	20,400 D	661 D
Magnesium			96.7 D	85.9 D	0.90 JD
Hanganese	2,580	2,400	783 J	3,060	69.9 J
Mercury	290 QDJ	233 QDJ	214 QDJ	559 QDJ	9.2 QDJ
	0.26	0.36	<0.10	<0.18	<0.10
Nickel	9.2 JD	13.4 D	10.2 D	20.3 D	2.5 D
Potassium	559 J	512 J	337 J	1,430 J	80.5 J
Selenium	<0.35	<0.35	<0.28	<0.38	<0.24
Silver	2.3 J	8.6 D	43.4 D	46.2 D	<0.46
Sodium	<255	<237	201	<270	<199
Thallium	<0.53	<0.51	<0.38	<0.58	<0.30
Vanadium	25.6 D	39.3 D	14.5 D	35.2 D	1.1 Л
Zine	144 D	260 D	288 D	461 D	3.7 50
Cyanide	<0.78	<0.85	2.3	4.1	<0.62

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

M Marive soil.

^{*} Designates dominant component of composite sample.

Table 3-5. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

			•		
Sample Designation:	8-7	3-8	3-8	3-9	3-9
Sample Type:	5/ # *	S	×	S	Ħ
Sample Depth (ft):	0-2	0-2	2-4	0-4	4-6
Sample Date:	9/29	9/29	9/29	10/4	10/4

					
Aluminum	1,310 D	16,600 D	1,030 D	44,700 D	972 D
Antimony	<5.8	<7.8	<5.3	<24.9	<5.6
Arsenic	1.0 J	13.3	<0.60	20.1 QJ	<1.1
Barium	<9.5	139	<8.6	461	13.5
Beryllium	<0.14	0.98 JD	<0.13	3.3 J	<0.14
Cadmium	2.8 QJ	55.9 QJ	1.3 JQ	180 QDJ	1.3 QD.
Calcium	1,620	. 4,090	112 J	9,530 D	110 JD
Chronium	299	1,260	63.8	7,250 QDJ	65.3 QD.
Cobalt	1.2 D	12.2 D	<1.0	29.6 J	<11
Copper	16.1	81.7	3.9 J	556 D	4.1 JD
Iron	1,420 D	17,200 D	922 D	42,900 D	1,490 D
Lead	18.1 D	208 D	9.3 D	864	4.9
Magnesium	96 8 J	2,390	111 J	3,460 JD	100 Л
Manganese	25.6 QDJ	324 QDJ	18.0 QDJ	1,520 QDJ	21.7 QD.
Mercury	<0.11	0.95	0.46	6.4	<0.10
Hickel	<2.6	18.6 D	<2.3	58.6 D	<2.5
Potassium	134	822 J	127 J	1,300 J	<65.3
Selenium	<0.23	0.35 JWQ	<0.22	<1.1	<0.27
Silver	2.4 D	60.7 D	1.2 JD	357 D	0. 50 JD
Sodium	<199	307 J	<182	<857	<194
Thallium	<0.36	<0.62	<0.36	<1.9	<0.55
Vanadium	4.1 JD	32.4 D	<0.84	96.5	2.8 J
Zine	46.4 D	478 D	30.1 D	7,470 QDJ	32.8 QDJ
Cyanide	1.4	<1.0	<0.59	24.8	0.62

J Estimated value.

Q Spiked sample recevery not within control limits.

W Post-digest spiks recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment

N Native soil.

Designates dominant component of composite sample.

ble 3-5. Concentrations of Total Metals and Cyanids Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-10	B-10	3-11	3-11	3-12
Sample Type:	S	ĸ	\$	#	s
Sample Depth (ft):	0-4	4-6	0-4	4-6	0-5
Sample Date:	10/5	10/5	10/5	10/5	10/6

Aluminum	34,700 D	1,080 D	35,900 D	3,710 D	11 400 0
Antinony		-	-	<u>-</u>	13,600 D
···-	<30.2	<5.9	<11.1	<5.6	9.6 J
Arsenic	15.9 QJ	<1.2	34.4 SQJ	1.4 JQ	<1.9
Berium	297	8.7 JD	174	21.7 J	22.0 JD
Beryllium	4.1 J	<0.14	1.3 J	0.17 J	<0.21
Cadmium	267 QDJ	3.0 QDJ	2.6 QDJ	3.6 QDJ	57.7 QDJ
Calcium	13,900 D	263 JD	1,520 JD	443 JD	499 JD
Chromium	11,400 QDJ	169 QDJ	26.7 QDJ	185 QDJ	6,280 QDJ
Cobalt	29.5 J	1.4 J	12.8 J	2.0 J	5.3 J
Copper	779 D	9.0 D	78.5 D	16.8 D	1,010 D
Iron	47,600 D	1,940 D	22,800 D	3,710 D	2,320 D
Lead	740 QDJ	15.3	34.4 8	19.8	108 QDJ
agnesium	5,500 JD	154 JD	1,600 JD	330 JD	1,330 JD
rianganese	1,730 Q DJ	38.2 QDJ	432 QDJ	72.1 QDJ	124 QDJ
Hereury	5.4	<0.09	0.25	0.22	<0.16
Nickel	90.2 D	3.7 JD	15.6 JD	3.3 JD	13.0 JD
Potassium	894 J	95.1 J	867 J	205 J	<100
Selenium	<1.5	<0.28	1.4 JWQ	0.26 JQ	<0.45
Silver	360 D	5.4 D	<0.89	4.7 D	2.0 JD
Sodium	<1040	<203	481 J	<192	<298
Thallium	<2.8	<0.53	<1.1	<0.54	<0.77
Vanadium	142	3.3 J	33.0	7.9 J	17.4
Zine	3,840 QDJ	66.6 QDJ	149 QDJ	85.9 QDJ	2,370 QDJ
Cyanide	116	1.7	3.2	3.6	10.2

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

Hative soil.

Designates dominant component of composite sample.

Table 3-5. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-12	3-12	3-13	3-13	3-13
Sample Type:	S	¥	\$	\$	ж
Sample Depth (ft):	5-7	7-9	0-5	5-9	9-11
Sample Date:	10/6	10/6	10/6	10/6	10/6

Aluminum	21,400 D	3,210 D	19,900 D	12,000 D	3,240 D
Antimony	<20.5	<7.8	<13.3	<9.4	<5.2
Arsenic	12.7 QJ	2.8 J	10.4 QJ	4.2 QJ	1.5 JW
Barium	316	24.3 JD	125	91.5	31.6 JD
Beryllium	<0.49	<0.19	0.70 J	0.89 J	<0.13
Cadmium	252 QDJ	5.6 QDJ	57.6 QDJ	45.9 QDJ	9.4 QD.
Calcium	103,000 D	9,960 D	18,000 D	18,900 D	12,600 D
Chromium	6,740 D	248 QDJ	8,010 QDJ	4,420 QDJ	630 QD.
Cobalt	27.3 J	2.4 J	18.2 J	10.5 J	3.1 J
Copper	217 D	16.4 D	666 D	294 D	38.0 D
Iron	49,700 D	4,880 D	42,400 D	26,000 D	7,930 D
Lead	374 QDJ	73.4 QDJ	289 QDJ	212 QDJ	37.3
Magnesium	9,940 D	895 JD	5,270 D	3,450 D	2,820 D
Manganese	1,290 QDJ	85.8 QDJ	LGD 408	500 QDJ	156 QD.
Mercury	5.2	0.48	1.4	1.1	0.23
Nickel	42.5 D	5.4 JD	39.1 D	25.6 D	6.1 JD
Potassium	578 J	327 J	475 J	312 J	191 J
Selenium	<0.86	<0.38	<0.64	<0.42	<0.22
Silver	139 D	5.0 D	106 D	62.1 D	10.9 D
Sodium	<707	<268	<458	<322	<180
Thallium	<2.0	<0.85	<0.96	<0.43	<0.38
Venedium	84.8	8.2 J	63.1 J	34.5	11.0
Zine	2,500 QDJ	97.1 QDJ	2,680 QDJ	1,400 QDJ	209 QDJ
Cyanide	41.6	9.2	17.4	14.2	4.4

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

N Native soil.

Designates dominant component of composite sample.

Table 3-5. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-14	3-14	B-14	B-15	B-15
Sample Type:	\$	S	8/ 8 •	S	S
Sample Depth (ft):	0-8	8-13	13-19	0-7	7-10
Sample Date:	10/7	10/7	10/7	10/10	10/10

Aluninum	24,600 D	10,400 D	476 D	30,300	29,300
Antimony	<14.8	<8.1	<4.9	15.6 J	14.4 J
Arsenic	7.0 SQJ	6.7 QJ	<0.55	9.9 QJ	11.3 Q
Berium	93.8 JD	123	<8.1	168	<23.2
Beryllium	0.95 JQD	<0.20	<0.12	3.3	5.9
Cadaium	50.2 QDJ	63.8 QDJ	<0.46	59.5	63.9
Calcium	6,360 D	18,400 D	165 JD	30,600	24,700
Chromium	LGQ 088, A	2,370 QDJ	16.7 QOJ	9,250	8,550
Cobalt	13.5 J	10.3 J	<0.99	21.4 J	18.7 J
Copper	494 D	95.3 D	<2.6	1,130	1,040
Iron	22,900 D	25,000 D	1,430 D	43,600	39,400
Lead	257 QDJ	234 QDJ	1.6	368	358
renee ium	4,150 D	3,220 D	91.4 JD	8,860	8,110
nganese	384 QDJ	658 QDJ	10.9 QDJ	1,220	978
Mercury	0.71	0.54	<0.10	1.2	0.78
Sickel	41.3 D	23.6 D	<2.2	53.8	55.9
Potassium	697 J	569 J	<57.4	714 J	550 J
Selenium	0.70 J	<0.36	0.75 JQ	<0.75	0.99 J
Silver	24.5 D	86.5 D	<0.40	149 D	78.3 D
Sodium	<509	505 J	<170	859 J	812 J
Thellium	<0.90	<0.56	<0.33	<1.6	<1.3
Venedium	85.1	32.3	1.2 J	57.1	60.0
line	1,400 QDJ	LGD 896	6.5 QDJ	4,240	3,820
Cyanide	30.0	14.7	<0.65	84.0	44.0

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

⁵ Sediment.

N Native soil.

^{*} Designates dominant component of composite sample.

Table 3-5. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-15	3-16	B-16	B-16
Sample Type:	×	2	\$	P-10
Sample Depth (ft):	10-17	0-5	5-7	7-11
Sample Date:	10/10	10/10	10/10	10/10

Aluminum	25,500	34,600	26,700	659
Antimony	13.8 J	<16.4	<12.3	<5.7
Arsenic	13.3 QJ	13.4 QJ	12.1 QJ	<0.60
Barium	420	198	151	<9.4
Beryllium	<0.31	4.6	6.4	<0.14
Cadeium	85.5	66.0	56.4	<0.46
Calcium	24,400	18,800	14,300	123 J
Chromium	3,840	8,010	5,440	8.5
Cobalt	22.4 J	22.8 J	15.4 J	<1.1
Copper	333	970	865	<3.0
I ren	. 48,500	46,600	30,400	1,450
.ead	686	422	348	<4.8
agnesium	7,640	7,030	5,530	110 J
Anganese	982	959	625	26.5
ercury	2.3	1.2	0.66	<0.08
ickel	47.2	57.7	45.5	<2.5
Otassium	1200 J	754 J	525 J	120 J
elenium	1.9 JQ#	1.4 JQW	0.57 SQJ	<0.24
ilver	115 D	79.8 D	52.9 D	<0.46
odium	1210 J	605 J	442 J	<197
hallium	<1.5	<1.6	<1.1	<0.56
anadium	65.8	94.2	74.1	2.2 J
ine	1,800	3,650	3,040	8.0
yanide	9.5	45.2	53.6	<0.65

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

H Mative soil.

Designates dominant component of composite sample.

Results of EP Toxicity Testing of Soil Samples Collected from the Old Recharge Basin in September and October 1986, Pairchild Republic Company, East Farmingdele, New York. Table 3-6.

. 1, .

		Persont	mter (mg/L):	Arsenta	Bertun	Cadatus	Chrostus	Load	No reury	Selentur	SIIver
				5.0°	100.0₽	1.0	\$.0₽	5.0	0.2	1.0	5.04
		Semple									
Sample Designation	i t	Depth (feet)	Bete								
-	-	1.	9127/08	41.0	<0.20	0.03	0.01	<0.20	<0.00°	40.5	40.01
B-2	**	5-7	9/27/88	<1.0	<0.20	0.02	10 .0>	40.20	<0.002	<0.5	40.01
S -2	•	2-4	9/28/88	<1.0	<0.20	0.03	0.01	<0.20	<0.002	<0.5	40.01
7-	ø	2-6	9/28/88	c1.0	0.36	0.04	0.02	¢0.20	<0.002	<0.5	60.0 3
S-E	H/8	2-4	9/28/88	<1.0	<0.20	0.32	<0.01	<0.20	<0.007	<0.5	co .01
•-	••	2-4	9/29/88	61.0	<0.20	<0.01	40.01	<0.20	<0.002	<0.5	<0.01
1-1	8/11	0-2	9/29/88	<1.0	c 0.20	0.02	10.0>	<0.20	<0.002	<0.5	<0.01
0 - 4	=	7-2	9/29/88	<1.0	co.20	c0.01	10.0>	<0.20	<0.002	<0.5	60.0 3
:	-	•-•	10/4/88	<1.0	<0.20	0.03	0.02	<0.20	<0.002	<0.5	40.01
B-10	=	•-	10/5/08	<1.0	<0.20	0.01	40 · 01	<0.20	<0.002	<0.5	40.0 1
11-1	=	9-4	10/5/08	<1.0	<0.20	0.01	40.01	<0.20	<0.002	60.8	<0.01
B-12	=	4-9	10/6/00	<1.0	0.38	90.0	0.03	<0.20	<0.002	<0.5	40.01
0-13	*	9-11	10/6/88	41.0	0.21	0.0	c0.01	<0.20	<0.002	c0.5	40.01
1-14	K/8	13-19	10/1/66	<1.0	<0.20	40.01	<0.01	<0.20	<0.002	<0.5	40.0 1
B-15	8/8	10-17	10/10/88	<1.0	0.37	<0.01	0.03	<0.20	<0.002	¢0.9	<0.01
3-16	8/8	7-11	10/10/88	<1.0	c0.20	*********	60.0 3	c0.20	<0.002	60.9	<0.01

All results in milligrams per liter (mg/L).

Minimum concentration (mg/L) required for decieting a material hazardous.

Sediment.

Mative soil.

Designates dominant component of composite sample.

Table 3-7. Results of Total Metal Analyses of Bottom Sediment Samples From the Fairchild-Republic Storm-Water Sump (June 3, 1982; concentrations in ug/g). From York Wastewater Consultants, Inc., Report of July 1982.

Sampling Point	Depth (feet)	Chromium (total)	Titanium	Lead	Auminum	Copper	tron	Cadmium
1	27	60,790	1,639	. 800	100,000	24	9,994	46
1	34	35,483	1,529	1,470	16,000	523	171,171	244
2	35	43,448	1,418	800	72,000	21	19,976	124
2	40	9,995	939	1,640	30,000	13	54,221	300
3	42	46,495	1,260	580	65,000	14	17,000	24
3	48	15,500	2.049	600	44,000	11	33,000	77
4	35	55,795	6,325	621	70,945	16	9,237	53
4	42	22,498	7,599	530	45,295	76	17,298	74

Depths to sediment

Point 1 = 25 feet

Point 2 = 35 feet

Point 3 = 42 feet

Point 4 = 35 feet

Table 3-8. Results of EP Toxicity Analyses of Bottom Sediment Samples From the Fairchild-Republic Storm-Water Sump Collected on April 18, 1985 (concentrations are in micrograms per liter).

Sampling	Chromium	n (2)—						
Point (1)	(hexavalent)	(total)	Titanium (3)	Lead (4)	Aluminum (5)	Copper (2)	tron	Cadmium (6)
1	ND	ND	ND	ND	ND	ND	3.6	0.07
2	<0.08	ND	ND	0.007	0.10	0.08	34	0.027
3	ND	ND	ND	0.008	0.09	ND	14	0.12
4	ND	ND	ND	ND	ND	ND	13	ND
Federal Limits	5.0	5.0	None	5.0	None	None	None	1.0

⁽¹⁾ Samples were collected at the same locations as those collected by York Wastewater Consultants, inc. All samples were collected 1 to 2 feet into the bottom sediments.

⁽²⁾ Detection limit 0.02 mg/L

⁽³⁾ Detection limit 0.10 mg/L

⁽⁴⁾ Detection limit 0.005 mg/L

⁽⁵⁾ Detection limit 0.05 mg/L

⁽⁶⁾ Detection limit 0.001 mg/L

Table 3-9. Concentrations of Volatile Organic Compounds Detected in Surface-Water Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:	A	•)	С	ם
	Sample Designation: Sample Date:		SS-24 (S) 10/11/88	SS-19 (I) 10/11/88	SS-27 (5) 10/11/88	SS-17 (I) 10/11/88
Parameter (ug/L)	Lower Detection Limit					
Acetone	10					••
1,2-Dichlorosthens (tot	al) 5					
Chloroform	5				••	
Toluene	5				••	
Ethylbensene	5					
St yrene	5					
Kylene (total)	5					
Istrachiorosthene	5			••		
lensene	5		••			
richloroethene	5				••	~-
Carbon disulfide	5	••				

⁻⁻ Not detected.

B Detected in the Reagent blank.

J The concentration listed is less than the specified detection limit after dilution.

S Shallow surface-vater sample.

I Intermediate surface-sater sample.

Table 3-9. Consentrations of Volatile Organic Compounds Detected in Surface-Nater Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station: Sample Designation: Sample Date:	SS-20 (S)	I 55-26 (S) 10/11/88	7 SS-29 (S) 10/12/88	G 55-22 (S) 10/11/88	E 55-18 (S) 10/11/88
Parameter (ug/L)	Lower Detection Limit					
Acetone	10			••	30J	••
1,2-Dichloroethene (total	.) 5			••		
Chloroform	<u>.</u> 5					
Toluene	5					
Ethylbensene	5					
Styrene	5				••	
Xylene (total)	5		••	••		••
Tetrachloroethene	5				••	
Bensene	5			••		
Trichloroethene	5					
Carbon disulfide	5					
Total Volatile Organic Co	apounds		••		30	

- -- Not detected.
- B Detected in the Resgent blank.
- J The concentration listed is less than the specified detection limit after dilution.
- S Shallow surface-water sample.
- I Intermediate surface-sater sample.

Table 3-9. Concentrations of Volatile Organic Compounds Detected in Surface-Weter Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:	H .	I		J	ĸ
:	Sample Designation:	SS-25 (S)	SS-30 (S)	SS-28 (S)	55-16 (I)	SS-21 (S)
	Sample Date:	10/11/88	10/12/88	10/11/88	10/11/88	10/11/88
	Lower		•			
	Detection			•		
erameter (ug/L)	Linit					
cetone	10				••	
,2-Dichloroethene (total	= -					
hloroform	5					
oluene	5					
thylbensene	5					
tyrene	5					
ylene (total)	5					
etrachioroethene	5					
ensene	5		••			
richloroethene	5					

⁻⁻ Not detected.

B Detected in the Reagent blank.

J The concentration listed is less than the specified detection limit after dilution.

S Shallow surface-water sample.

I Intermediate surface-sater sample.

Table 3-9. Consentrations of Volatile Organic Compounds Detected in Surface-Water Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:	L		K	H	0
	Sample Designation: Sample Date:	SS-1 (S) 10/3/88	SS-2 (S) 10/3/88	SS-3 (I) 10/3/88	SS-13 (S) 10/11/88	88-5 (S) 10/3/88
arameter (ug/L)	Lower Detection Limit					
cetone	10	••	••	••	••	••
,2-Dichlereethene (to	stal) 5	43	32	45	29	34
hloroform	5					••
oluene	5			2.3		
thylbensene	5					
tyrens	5					
ylene (total)	5					
etrachlorosthene	5	66	43	18	32	45
ensene	5					
richiorosthene	5	19	12	8	12	13
arbon disulfide	5				••	

⁻⁻ Not detected.

B Detected in the Reagent blank.

J The concentration listed is less than the specified detection limit after dilution.

S Shallow surface-vater sample.

I Intermediate surface-sater sample.

Table 3-9. Concentrations of Volatile Organic Compounds Detected in Surface-Water Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sar	Sample Station:		Q		R	\$
Sample	Designation: Sample Date:	SS-4 (S) 10/3/88	SS-8 (\$) 10/3/88	SS-9 (I) 10/11/88	SS-14 (S) 10/11/88	SS-15 (S) 10/11/88
Parameter (ug/L)	Lower Detection Limit					
Acetone	10				••	
1,2-Dichlorosthene (total)	5	54	26	26	29	26
Chlereform	5			••		
Toluene	5					
Ethylbensene	5					
St yrene	5					
Xylene (total)	5					**
Tetrachloroethene	5	61	44	30	36	34
Benzene	5					
Trichlorosthens	5	19	13	11	14	12
Carbon disulfide	5					
Total Volatile Organic Compound	ia	134	83	67	79	72

⁻⁻ Not detected.

B Detected in the Reagent blank.

J The concentration listed is less than the specified detection limit after dilution.

S Shallow surface-water sample.

I Intermediate surface-sater sample.

Table 3-9. Concentrations of Volatile Organic Compounds Detected in Surface-Water Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation: Sample Date: Lower Detection Limit	\$5-6 (\$)	\$\$-7 (I) 10/3/88	SS-10 (S) 10/3/88	\$\$-11 (\$) 10/3/88	SS-12 (I) 10/3/88
Detection					
		_			
10		••	••		••
.) 5	32	32	30	29	26
5	••				
5			3 J		
5			2. J		
5					••
5			2.J		
5	44	47	51	52	40
5			2.J		
5	13	20	13	22	12
5				•	
	5 5 5 5 5 5 5 5 5	5 32 5 5 5 5 5 5 44 5 5 13 5	5 32 32 5 5 5 5 5 44 47 5 5 13 20 5	5 32 32 30 5 3J 5 2J 5 2J 5 2J 5 44 47 51 5 2J 5 13 20 13 5 2J	5 32 32 30 29 5 5 3J 5 2J 5 2J 5 44 47 51 52 5 2J 5 13 20 13 22 5

⁻⁻ Not detected.

³ Detected in the Reagent blank.

J The concentration listed is less than the specified detection limit after dilution.

S Shallow surface-water sample.

I Intermediate eurface-sater sample.

Table 3-9. Concentrations of Volatile Organic Compounds Detected in Surface-Water Samples Collected from the Old Recharge Basin in October 1988, Pairchild Republic Company, East Farmingdale, New York.

Sample Station:

Sample Designation: Blank Blank
Sample Data: 10/3/88 10/11/88

Louis Detection Parameter (ug/L) Limit Acetone 10 1,2-Dichlorosthene (total) 5 Chlereform 5 2J Toluene 5 Ethyl bensene Styrene 5 Xylene (total) 5 --Tetrachloroethene Bensene 5 Trichloroethene Carbon disulfide Total Volatile Organic Compounds 2

⁻⁻ Not detected.

B Detected in the Reagent blank.

J The concentration listed is less than the specified detection limit after dilution.

S Shallow surface-water sample.

I Intermediate surface-sater sample.

Table 3-10. Concentrations of Semivoletile Organic Compounds Detected in Surface-Heter Samples
Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East
Farmingdale, New York.

	Sample Station:	A		3		D
Samp	ole Designation: Sample Date:		'S\$-24 (\$) 10/11/88	SS-19 (I) 10/11/88	35-27 (5) 10/11/88	SS-17 (I) 10/11/88
Parameter (ug/L)	Lower Detection Limit					
4-Methylphenol	10	••		••		
Diethylphthalate	10		1.3			
-Mitrosodiphenylemine	10					
Sezachlorobensene	10			••		
Phenanthrene	10					
Anthracens	10					
Di-n-butyl phtheiste	10					
Pluoranthene	10					
Pyrene	10					
Butylbensylphthalate	10		2 J			
Chrysens	10			. ••		••
is(2-Ethylhemyl)phthalate	10	-	<53		<12	
Di-n-Octyl phthalate	10		59			31
lenso(k)fluoranthene	10			••		
lenso(a)pyrene	10					
Indeno(1,2,3-cd)pyrene	10					
Total Semivolatile Organic	: Compounds		62			31

All results reported in micrograms per liter (ug/L).

⁻⁻ Not detected.

B Detected in Reagent blank.

J Estimated value.

S Shallow surface-water sample.

I Intermediate surface-water sample.

Table 3-10. Concentrations of Semivolatile Organic Compounds Detected in Surface-Water Samples

Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East

Farmingdale, New York.

·	Sample Station: Sample Designation: Sample Date:		E SS-26 (S) 10/11/88	7 SS-29 (S) 10/11/88	G SS-22 (S) 10/11/88	E SS-18 (I) 10/11/88
Parameter (ug/L)	Lower Detection Limit					
-Nethylphenol	10				••	••
Diethylphthalate	10			2.73		1J
F-Witrosodiphenylami	ne 10					
Sexachlorobensene	10					
Phenanthrene	10					
inthracene	10					
i-n-butyl phthalate	10					
Pluoranthene	10					
Pyrene	10					
Butylbensylphthalate	10					
Chrysene	10					
ois(2-Ethylhesyl)pht	halate 10	<17	<14	<11		<23
i-n-Octyl phthalate	10					
Jenso(k)fluoranthene	10					
lenzo(a)pyrene	10					
	ne 10					

⁻⁻ Not detected.

B Detected in Resgent blank.

J Estimated Value.

S Shallow surface-vater sample.

I Intermediate surface-water sample.

Table 3-10. Concentrations of Samivolatile Organic Compounds Detected in Surface-Water Samples
Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East
Farmingdale, New York.

	•	Ħ	I	J		K
		• • • • • • • • • • • • • • • • • • • •	SS-30 (S) 10/11/88	SS-28 (\$) 10/11/88	SS-16 (I) 10/11/88	55-21(5) 10/11/88
	Lover					
Parameter (ug/L)	Detection Limit					
			<u>·</u>			
4-Hethylphenol	10	••	••			
Diethylphthalate	10		••			4.73
W-Witrosodiphenylami	ne 10					43
Bewachlorobensens	10					2.3
Phenanthrene	10					3J
Inthracene	10					2.J
Di-n-butyl phthalate	10					9 J
Pluoranthene	10					6.3
Trans	10					5.3
	10		••			6J
hrysene	10		••			2.3
is(2-Ethylhexyl)phti	halate 10	<17	<16	<16	<36	<15
i-n-Octyl phthalate	10			••		6J
enso(k)fluoranthene	10					3J
enzo(a)pyrene	10					3 J
Indeno(1,2,3-cd)pyres	ne 10			••	••	3.7

⁻⁻ Not detected.

B Detected in Reagent blank.

J Estimated value.

S Shallow surface-water sample.

I Intermediate surface-water sample.

Table 3-10. Concentrations of Semivolatile Organic Compounds Detected in Surface-Water Samples
Collected from the Old Racharge Basin in October 1988, Fairchild Republic Company, East
Farmingdale, New York.

	Sample Station:	L	K		X	0
Sacq	ole Designation: Sample Date:	SS-1(S) 10/3/88) SS-2 (\$)	SS-3 (I) 10/3/88	\$\$-13 (\$) 10/11/88	SS-5 (S) 10/3/88
Parameter (ug/L)	Lower Detection Limit		·			
4-Methylphenol	10	••	**	73		
Diethylphthalate	10					
N-Nitrosodiphenylamine	10					
Mexachlorobensens	10					
Phenanthrene	10					
Anthracene	10					
Di-n-butyi phthalate	10					
Fluoranthene	10	••				
Pyrene	10					
Butylbensylphthalate	10			2J		
hrysene	10					
bis(2-Ethylhexyl)phthalat	e 10					
Di-n-Octyl phthalate	10			3J	0. 9 J	
Benso(k)fluoranthene	10					
lenso(a)pyrene	10					
Indeno(1,2,3-cd)pyrene	10					

⁻⁻ Not detected.

B Detected in Reagant blank.

J Estimated value.

Shallow surface-water sample.

I Intermediate surface-water sample.

Table 3-10. Concentrations of Semivolatile Organic Compounds Detected in Surface-Water Samples
Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East
Farmingdale, New York.

	Sample Station:	P	Q		2	S	
	Sample Designation: Sample Date:	SS-4 (S) 10/3/88	SS-8 (8) 10/3/88	SS-9 (I) SS-14 (S) 10/11/88 10/11/88		55-15 (5) 10/11/88	
	Lower Detection						
Parameter (ug/L)	Linit						
4-Methylphenol	10		••	••			
Disthylphthalate	10			2 J	0.93	1J	
W-Witrosodiphenylamine	10			••			
Bezachlorobensene	10						
Phenenthrene	10						
Anthracene	10					•-	
Di-m-butyl phthelate	10						
Fluoranthene	10						
Pyrene	10						
Butylbensylphthalate	10			0.7J			
Chrysene	10						
is(2-Ethylhemyl)phtha	late 10		••	<38			
i-n-Octyl phthalate	10			41	••		
Senso(k)fluoranthens	10			••			
Benso(a)pyrene	10			••	••		
	10						

⁻⁻ Not detected.

B Detected in Reagent blank.

J Estimated value.

S Shallow surface-water sample.

I Intermediate surface-vater sample.

Table 3-10. Concentrations of Semivolatile Organic Compounds Detected in Surface-Mater Samples
Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East
Farmingdale, New York.

	Sample Station:		1	U	٧		
	Sample Designation: Sample Date:		SS-7 (I) 10/3/88	SS-10 (S) 10/3/88	SS-11 (S) 10/3/88	SS-12 (I) 10/3/88	
Parameter (ug/L)	Lower Detection Limit						
-Nethylphenol	10	••					
Diethylphthalate	10		••	1 J		1 J	
M-Witrosodiphenylemin	a 10						
Hexachiorobensene	10		••				
Phenenthrene	10		••				
Anthracene	10		••	••			
Di-m-butyl phthalate	10					••	
fluoranthene	10		*-				
Trene	10						
Butylbensylphthalate	10		••		'		
Chrysene	10		•-				
is(2-Ethylbesyl)phth	alate 10		~-				
Di-n-Octyl phthalate	10		~-				
Senzo(k)fluoranthene	10		~-				
lenso(a)pyrene	10		••				
Indeno(1,2,3-cd)pyren	a 10		••				

All results reported in micrograms per liter (ug/L).

⁻⁻ Not detected.

B Detected in Reagent blank.

J Estimated value.

S Shallow surface-water sample.

I Intermediate surface-water sample.

Table 3-11. Concentrations of Metals and Cyanide Detected in Mater Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:	A		3	C	D
	Sample Designation:	SS-23 (S)	55-24 (5)	55-19 (I)	SS-27 (S)	55-17 (I
	Sample Date:	10/11	10/11	10/11	10/11	10/11
	TOG*					
	Class GA					
	(DWS)					
Parameter (ug/L)	ug/L					
Aluminum	ns .	174 J	150 J	131 J	177 J	200
Ant Leony	3 G	<25.0	<25.0	<25.0	<25.0	<25.0
Arsonic	25 \$	<3.0	<3.0	<3.0	<3.0	<3.0
Barium	1,000 S	42.8 J	47.5 J	<41.0	47.5 J	55.9 J
Beryllium	3 G	<0.60	<0.60	<0.60	<0.60	<0.60
Codmium	10 S	<2.0	<2.0	<2.0	<2.0	<2.0
Calcium	75	23,200	22,500	22,600	22,800	22,400
Chromium	MS	4.7 J	5.3 J	3.7 J	6.7 J	7.6 J
Cobalt	MS	<5.0	<5.0	<5.0	<5.0	<5.0
Copper	200 S	<13.0	<13.0	<13.0	<13.0	<13.0
Iron	300 S	<84.6	<84.0	<84.0	<84.0	98.1 JD
Lead	25 S	<0.70	<0.70	<0.70	<0.70	<0.70
Magnesium	35,000 G	4,240 J	4,150 J	4,130 J	4,140 J	4,090 J
Hanganese	300 5	93.4 D	81.5 D	83.4 D	73.6 D	113 D
Lereury	. 28	<0.20	<0.20	<0.20	<0.20	<0.20
fickel	MS	<11.0	<11.0	<11.0	<2.0	<11.0
Potassium	rs	3,220 J	2,920 J	2,770 J	3,440 J	3,300 J
Selenium	10 \$	<1.2	<1.2	<1.2	<1.2	<1.2
Silver	50 S	<2.0	<2.0	<2.0	<4.0	<2.0
Sodium	N2	14,300 J	14,200 J	13,700 J	14,200 J	14,200 J
Thallium	4 G	<2.4	<2.4	<2.4	<2.4	<2.4
Vanadium	MS	<4.0	<4.0	<4.0	<4.0	<4.0
line	300 S	11.8 J	6.8 J	8.2 J	10.6 J	20.3
Cyanide	100 S	<10.0	<10.0	<10.0	<10.0	<10.0

ug/L Micrograms per liter.

J Estimated Value.

Q Spiked sample recovery not within control limits.

W Post-digestion spike recovery not within control limits.

D Duplicate analysis not within control limits.

S TOG standard.

G TOG guidance value.

FYSDEC's Division of Water Technical and Operational Guidance Series debient Water Quality Standards and Guidance Values (July 1985).

WS Not specified.

⁽⁵⁾ Denotes shellow surface-water sample.

⁽I) Denotes intermediate surface-veter sample.

Table 3-11. Concentrations of Metals and Cyanide Detected in Mater Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:	D	2	7	G	E
	Sample Designation:	58-20 (S)	\$5-26 (8)	SS-29 (S)	SS-22 (S)	SS-18 (I
	Sample Date:	10/11	10/11	10/12	10/11	10/11
	TOG+					
	Class GA					
	(DWS)					
Parameter (ug/L)	ug/L	•	_			
Aluminum) IS	190 J	177 J	148 J	238	142 J
Ant Leony	3 G	<25.0	<25.0	<25.0	<25.0	<25.0
Irsenic	25 \$	<3.0	<3.0	<3.0	<3.0	<3.0
larium	1,000 S	44.7 J	43.3 J	47.5 J	44.7 J	62.9 J
leryllium .	3 G	<0.60	<0.60	<0.60	<0.60	<0.60
admium	10 S	<2.0	<2.0	<2.0	<2.0	<2.0
Calcium	XS	22,700	23,100	23,100	22,800	22,500
Chromium	HS	4.8 J	3.1 J	4.3 J	4.9 J	4.7 J
Cobalt	HS	<5.0	<5.0	<5.0	<5.0	<5.0
Copper	200 \$	<13.0	<13.0	<13.0	<13.0	<13.0
ron	300 S	<84.0	<84.0	281 D	<84.0	<84.0
aad	25 8	<0.70	<0.070	<0.70	<0.70	<0.70
lagnesium	35,000 G	4,130 J	4,1 8 0 J	4,200 J	4,150 J	4,110 J
langanese	300 S	95.5 D	103 D	129 D	101 D	104 D
lercury	2 \$	<0.20	<0.20	<0.20	<0.20	<0.20
lickel	MS	<11.0	<11.0	<11.0	<11.0	<11.0
otassium	ns	3,460 J	2,980 J	3,380 J	3,340 J	3,170 J
elenium	10 \$	<1.2	<1.2	<1.2	<1.2	<1.2
ilver	50 S	<2.0	<2.0	<2.0	<2.0	<2.0
odium	HS	14,000 J	14,200 J	13,800 J	14,200 J	13.900 J
hallium	4 G	<2.4	<2.4	<2.4	<2.4	<2.4
anadium	HS	<4.0	<4.0	<4.0	<4.0	<4.0
inc	300 \$	12.2 J	21.2	7.4 J	19.7 J	11.6 J
Yanide	100 S	<10.0	<10.0	<10.0	<10.0	<10.0

ug/L Micrograms per liter.

J Estimated value.

Q Spiked sample recovery not within control limits.

Fost-digestion spike recovery not within control limits.

D Duplicate analysis not within control limits.

s TOG standard.

G TOG guidance value.

MYSDEC's Division of Water Tschnical and Operational Guidance Series Ambient Water Quality Standards and Guidance Values (July 1985).

MS Not specified.

⁽S) Denotes shallow surface-water sample.

⁽I) Denotes intermediate surface-vater sample.

Table 3-11. Concentrations of Metals and Cyanide Detected in Water Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:	Ħ	I		J	K
	Sample Designation:	\$8-25 (\$)	58-30 (S)	SS-28 (S)	SS-16 (I)	SS-21 (S
	Sample Date:	10/11	10/12	10/11	10/11	10/11
	TOG+					
	Class GA					
	(DVS)					
Parameter (ug/L)	ug/L					
Aluminum	¥8 ·	177 J	206	162 J	186 J	120 J
Antimony	3 G	<25.0	<25.0	<25.0	<25.0	<25.0
trenic	25 8	<3.0	<3.0	<3.0	<3.0	<3.0
arium	1,000 S	41.9 J	44.7 J	49.8 J	41.9 J	48.4 J
eryllium	3 G	<0.60	<0.60	<0.60	<0.60	<0.60
ada i un	10 S	<2.0	<2.0	<2.0	<2.0	<2.0
Calcium	WS	22,400	23,300	22,500	22,300	22,800
hronium	WS.	4.8 J	4.8 J	4.8 J	4.4 3	4.5 J
Cobelt	HS	<5.0	<5.0	<5.0	<5.0	<5.0
Copper	200 \$	<13.0	<13.0	<13.0	<13.0	<13.0
rea	300 S	<84.0	<84.0	<84.0	<84.0	<84.0
and	25 \$	<0.70	<0.70	<0.70	<0.70	<0.70
lagnesium	35,000 G	4,090 J	4,240 J	4,080 J	4,060 J	4,170 J
langanese	300 \$	99.0 D	74.3 D	75.8 D	81.9 D	87.9 D
ercury	2 5	<0.20	<0.20	<0.20	<0.20	<0.20
ickel	NS	<11.0	<11.0	<11.0	<11.0	<11.0
otassium	#8	3,220 J	3,380 J	3,130 J	3,440 J	3,140 J
elenium	10 \$	<1.2	<1.2	<1.2	<1.2	<1.2
Ilver	50 \$	<2.0	<2.0	<2.0	<2.0	<2.0
odium	YS	13,800 J	14,300 J	14,000 J	13,900 J	13,800 J
hallium	4 G	<2.4	<2.4	<2.4	<2.4	<2.4
anadium	HS	<4.0	<4.0	<4.0	<4.0	<4.0
ine	300 S	11.8 J	<5.0	<5.0	12 J	6.6 J
yanide	100 \$	<10.0	<10.0	<10.0	<10.0	<10.0

ug/L Micrograms per liter.

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digestion spike recovery not within control limits.

D Duplicate analysis not within control limits.

^{\$} TOG standard.

G TOG guidance value.

^{*} MYNDEC's Division of Nater Technical and Operational Guidance Series ~ Ambient Water Quality Standards and Guidance Values (July 1985).

MS Not specified.

^(\$) Denotes shallow surface-water sample.

⁽I) Denotes intermediate surface-vater sample.

Table 3-11. Concentrations of Metals and Cyanide Detected in Mater Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:	L		X	R	0	
	Sample Designation:	85-1 (S)	85-2 (S)	SS-3 (I)	55-13 (\$)	\$\$-5 (5	
	Sample Date:	10/3	10/3	10/3	10/11	10/3	
	106°						
	Class GA						
	(DWS)						
Parameter (ug/L)	ug/L		_				
Alusima	rs	117 J	112 J	130 J	112 J	118 J	
Ant Leony	3 G	<25.0	<25.0	<25.0	<25.0	<25.0	
Arsenic	25 S	<3.0	<3.0	<3.0	<3.0	<3.0	
Barium	1,000 S	51.2 J	82.0 J	90.9 J	54.5 J	51.2 J	
Beryllium	3 G	<0.60	<0.60	<0.60	<0.60	<0.60	
Cadmium	10 S	<2.0	<2.0	<2.0	<2.0	<2.0	
Calcium	MS	23,900 D	22,700 D	26,400 D	23,600	23,700 D	
Threeium	ns	<13.0	<13.0	<13.0	4.5 J	<13.0	
Cobalt	ns	<5.0	<5.0	<5.0	<5.0	<5.0	
Copper	200 \$	16.2 J	<13.0	<13.0	<13.0	<13.0	
Iron	300 S	<84.0	<84.0	461 D	<84.0	<84.0	
ead	25 \$	0.9 J	<0.70	<0.70	<0.70	0.70 J	
(agnes i um	35,000 G	4,600 J	4,380 J	4,620 J	4,430 J	4,570 J	
langanese	300 S	<6.1	<6.1	2,840	46.9 D	<6.1	
lercury	2 \$	<0.20	<0.20	<0.20	<0.20	<0.20	
lickel	. WS	<11.0	<11.0	<11.0	<11.0	<11.0	
Potassium	ns	3,450 J	3,230 J	3,760 J	3,140 J	3,310 J	
clenium	10 S	2.1 J	<1.2	<1.2	<1.2	<1.2	
ilver	50 \$	<2.0	<2.0	<2.0	<2,0	<2.0	
iodium	MS	16,300 D	15,700 D	15,500 D	15,700 J	16,100 D	
Thailium	4 G	<1.8	<1.8	41.8	<2.4	2.1 J	
'anadium	ns	<4.0	<4.0	<4.0	<4.0	<4.0	
ine	300 S	<5.0	<5.0	<5.0	18.0 J	<5.0	
Cyanide	100 S	<10.0	<10.0	<10.0	<10.0	<10.0	

ug/L Micrograms per liter.

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digestion spike recovery not within control limits.

D Duplicate enalysis not within control limits.

S TOG standard.

G TOG guidance value.

WYSDEC's Division of Water Technical and Operational Guidance Series > Ambient Water Quality Standards and Guidance Values (July 1985).

MS Not specified.

⁽⁵⁾ Denotes shallow surface-water sample.

⁽I) Denotes intermediate surface-vater sample.

Table 3-11. Concentrations of Metals and Cyanide Detected in Water Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:	7		Q	R	s
	Sample Designation: Sample Date:	\$\$-4 (\$) 10/3	\$8-8 (\$) 10/3	88-9 (I) 10/11	\$\$-14 (\$) 10/11	\$\$-15 (\$ 10/11
	TOG+					
	Class GA					
	(DWE)					
Parameter (ug/L)	ue/L					
Alusinus	NS.	115 J	134 J	112 J	178 J	184 J
Antimony	3 G	<25.0	<25.0	<25.0	<25.0	<25.0
Arsenic	25 8	<3.0	<5.1	<3.0	<3.0	<3.0
larium	1,000 S	52.0 J	50.3	55.9 J	51.2 J	82.0 J
Beryllium	3 G	<0.60	<0.60	<0.60	<0.60	<0.60
Cadaium	10 S	<2.0	<2.0	<2.0	<2.0	<2.0
Calcium	ns	23,600 D	23,700 D	23,400	23,100	23,300
Chromium	#S	<13.0.	<13.0	4.9 J	4.9 J	8.8 J
Cobalt	WS	<5.0	<5.0	<5.0	<5.0	<5.0
Copper	200 \$	<13.0	<13.0	<13.0	<13.0	<13.0
Iron	300 \$	<84.0	<84.0	<84.0	<84.0	<84.0
Lead	25 8	<0.70	<0.70	<0.70	<0.70	<0.70
Hagnesium	35,000 G	4,530 J	4,540 J	4,400 J	4,370 J	4,370 J
Hanganese	300 S	9.5 J	<6.1	46.8 D	27.5 D	73.1
Hercury	2 \$	<0.20	<0.20	<0.20	<0.20	<0.20
Tickel	XS	<11.0	<11.0	<11.0	<11.0	<11.0
Potassium	MS	3,420 J	3,500 J	3,310 J	3,010 J	3,500 J
Selenium	10 \$	<1.2	<1.2	<1.2	<1.2	<1.2
Silver	50 \$	<2.0	<2.0	<2.0	<2.0	<2.0
Sodium	MS	16,200 D	17,700 D	15,700 J	15,700 J	16,000 J
Challium	4 G	<1.8	<1.8	<2.4	<2.4	<2.4
Tanadium	MS	<4.0	<4.0	<4.0	<4.0	<4.0
line	300 \$	<5.0	<5.0	11.2 J	11.0 J	33.9
Cyanide	100 S	<10.0	<10.0	<10.0	<10.0	<10.0

ug/L Micrograms per liter.

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digestion spike recovery not within control limits.

D Duplicate analysis not within control limits.

S TOG standard.

G TOG guidance value.

MYSDEC's Division of Water Technical and Operational Guidance Series Ambient Water Quality Standards and Guidance Values (July 1985).

MS Not specified.

⁽S) Denotes shallow surface-water sample.

⁽I) Denotes intermediate surface-vater sample.

Table 3-11. Concentrations of Metals and Cyanide Detected in Mater Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:		1		▼	
	Sample Designation:	55-6 (5)	\$8-7 (I)	55-10 (5)	55-11 (5)	\$5-12 (I
	Sample Date:	10/3	10/3	10/3	10/3	10/3
	700*					
	Class GA					
	(DMS)					
Parameter (ug/L)	ug/L					
Aluninum	HS	141 J	118 J	103 J	130 J	119 J
Ant imony	3 G	<25.0	<25.0	<25.0	<25.0	<25.0
Arsenic	25 8	<5.1	<5.1	<5.1	<5.1	<5.1
larium	1,000 S	52.9	52.0 J	50.3 J	50.3 J	49.4 J
Beryllium	3 G	<0.60	<0.60	<0.60	<0.60	<0.60
Cadeium	10 \$	<2.0	<2.0	<2.0	<2.0	<2.0
Calcium	MS	24,500 D	23,200 D	23,400 D	23,600 D	22,600 D
hronium	HS	<13.0	<13.0	<13.0	<13.0	<13.0
Cobalt	MS	<5.0	<5.0	<5.0	<5.0	<5.0
Copper	200 \$	<13.0	13 J	<13.0	<13.0	<13.0
I ron	300 S	<84.0	<84.0	<84.0	<84.0	<84.0
Lead	25 \$	<0.70	<0.70	<0.70	<0.70	<0.70
lagnes i un	35,000 G	4, 68 0 J	4,450 J	L 084,4	4,510 J	4,350 J
langanese	300 S	<6.1	<6.1	<6.1	<6.1	<6.1
fercury	2 \$	<0.20	<0.20	0.53	<0.20	0.24
lickel	MS	<11.0	<11.0	<11.0	<11.0	<11.0
Petassium	HS	3,450 J	4,040 J	3,610 J	3,630 J	3,220 J
ielenium .	10 5	<1.2	<1.2	<1.2	1.7 J	<1.2
Silver	50 5	<2.0	<2.0	<2.0	<2.0	<2.0
iodium	X S	16,800 D	15,900 D	15,800 D	16,100 D	15,500 D
Challium	4 G	<1.8	<1.8	<1.8	<1.8	<1.8
Janadium	XS	<4.0	<4.0	<4.0	<4.0	<4.D
line	300 S	<5.0	<5.0	<5.0	<5.0	10.9 J
Cyanide	100 \$	<10.0	<10.0	<10.0	<10.0	<10.0

ug/L Micrograms per liter.

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digestion spike recovery not within control limits.

D Duplicate enalysis not within control limits.

S TOG standard.

G TOG guidance value.

^{*} MYSDEC's Division of Water Technical and Operational Guidance Series - Ambient Water Quality Standards and Guidance Values (July 1985).

MS Not specified.

⁽⁵⁾ Denotes shallow surface-water sample.

⁽I) Denotes intermediate surface-water sample.

Table 3-11. Concentrations of Metals and Cyanide Detected in Hater Samples Collected from the Old Recharge Basin in October 1988, Fairchild Republic Company, East Farmingdale, New York.

	Sample Station:		T	υ		▼	
	Sample Designation: Sample Date:	SS-6 (S) 10/3	88-7 (I) 10/3	SS-10 (S) 10/3	\$\$-11 (\$) 10/3	55-12 (I) 10/3	
	T00*						
	Class GA						
	(DHS)						
Parameter (ug/L)	ug/L						
Aluminum	75	141 J	118 J	103 J	130 J	119 J	
Antimony	3 G	<25.0	<25.0	<25.0	<25.0	<25.0	
Arsenic	25 8	<5.1	<5.1	<5.1	<5.1	<5.1	
Barium	1,000 S	52.9	52.0 J	50.3 J	50.3 J	49.4 J	
Beryllium	3 G	<0.60	<0.60	<0.60	<0.60	<0.60	
Cedmium	10 \$	<2.0	<2.0	<2.0	<2.0	<2.0	
Calcium	ns .	24,500 D	23,200 D	23,400 D	23,600 D	22,600 D	
Chromium	ns	<13.0	<13.0	<13.0	<13.0	<13.0	
Cobalt	MS	<5.0	<5.0	<5.0	<5.0	<5.0	
Copper	200 \$	<13.0	13 J	<13.0	<13.0	<13.0	
Iron	300 \$	<84.0	<84.0	<84.0	<84.0	<84.0	
Lead	25 \$	<0.70	<0.70	<0.70	<0.70	<0.70	
Magnesium	35,000 G	4,680 J	4,450 J	4,490 J	4,510 J	4,350 J	
Manganese	300 S	<6.1	<6.1	<6.1	<6.1	<6.1	
Hercury	2 \$	<0.20	<0.20	0.53	<0.20	0.24	
Fickel	MS	<11.0	<11.0	<11.0	<11.0	<11.0	
Petassium	YS	3,450 J	4,040 J	3,610 J	3,630 J	3,220 J	
Selenium	10 S	<1.2	<1.2	<1.2	1.7 J	<1.2	
Silver	50 \$	<2.0	<2.0	<2.0	<2.0	<2.0	
Sodium	ns	16,800 D	15,900 D	15,800 D	16,100 D	15,500 D	
Thallium	4 G	<1.8	<1.8	<1.8	41.8	<1.8	
Vanadium	TS .	<4.0	<4.0	<4.0	<4.0	<4.0	
line	300 S	<5.0	<5.0	<5.0	<5.0	10.9 J	
Cyanide	100 S	<10.0	<10.0	<10.0	<10.0	<10.0	

ug/L Hicrograms per liter.

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digestion spike recovery not within control limits.

D Duplicate analysis not within control limits.

S TOG standard.

G TOG guidance value.

^{*} MYSDEC's Division of Water Technical and Operational Guidance Series - Ambient Water Quality Standards and Guidance Values (July 1985).

WS Not specified.

⁽S) Denotes shallow surface-vater sample.

⁽I) Denotes intermediate surface-water sample.

APPENDIX K

SEDIMENT INVESTIGATIONS AT THE ORB IN 1988, GERAGHTY AND MILLER

HYDROGEOLOGIC INVESTIGATION OF THE OLD RECHARGE BASIN, FAIRCHILD REPUBLIC COMPANY, EAST FARMINGDALE, NEW YORK

Prepared for:

Fairchild Republic Company 548 Broadhollow Road Melville, New York 11749

December 1989

Geraghty & Miller, Inc.
Environmental Services
125 East Bethpage Road
Plainview, New York 11803

Soil Quality

The analytical results for the sediment samples collected from the bottom of the North and South Ponds and for native soil samples collected from below the sediment layer of the old recharge basin will be discussed in detail in this section, as will baseline soil quality conditions determined from the two nearby recharge basins. The laboratory data were validated by Geraghty & Miller according to the NYSDEC Contract Laboratory Protocol and recorded on the USEPA Region II Data Validation Standard Operating Procedure (SOP) forms; the results of the data validation are incorporated into the summary chemical data tables. Due to the high detection limits resulting from matrix interferences, many of the compounds could not be precisely quantified and, therefore, the concentrations of the compounds were estimated. These estimated values, which are indicated by the letter "J" in all chemical data summary tables,

were, however, used in the calculation of the total analyte concentration for each sample. It should be noted that when compounds were detected in the method blanks (indicated by the letter "B" in the tables), these values were not included in the calculated total.

Volatile Organic Compounds

A summary of the volatile organic compounds (VOCs) detected in sediment and native soils in the old recharge basin is presented in Table 5. Only those compounds detected in one or more borings are indicated in Table 5; compounds analyzed for but not detected have been omitted from the table. (This convention will be followed for all organic data tables.) Appendix C contains a listing of all compounds analyzed for. Due to matrix effects, likely to be attributable to the sediments, detection limits varied widely from boring to boring and from constituent to constituent. As observed in Table 5, the detection limits ranged from 6 micrograms per kilogram (ug/kg) to 7,600 ug/kg. Samples were analyzed according to USEPA CLP procedures which contain very strict quality assurance/quality control (QA/QC) requirements. As mentioned previously, NYSDEC CLP requirements were also met.

The analytical results presented in Table 5 show that relatively low concentrations of VOCs were detected in Borings B-1 through B-8, all of which are located in the South Pond. Total VOC concentrations ranged from 6 ug/kg in the 4 to 7 ft sample from Boring B-1, to 87 ug/kg of in the 2 to 4 ft sample from Boring B-8. With the exception of Boring B-1 (0 to 4 ft) in which three compounds were found, no more than two VOCs were detected in any of the samples analyzed from the South Pond. VOCs were not detected in any of the samples collected from Borings B-4 and B-5. The compounds detected in the South Pond are as follows:

methylene chloride

xylene (total)

acetone

1,2-dichloroethene (total)

2-butanone

tetrachloroethene

In the North Pond, (Borings B-9 to B-16), higher concentrations of VOCs were detected than in the South Pond with total concentrations ranging from 5 ug/kg total VOCs in the 13 to 19 ft sample from B-14 to 6,800 ug/kg total VOCs in the 5 to 7 ft sample from B-12. The compounds detected in the North Pond are as follows:

xylene (total)

2-butanone

tetrachloroethene

toluene -

1,1,1-trichloroethane

ethylbenzene

1,2-dichloroethene (total)

vinyl chloride

trichloroethene

acetone

methylene chloride

chlorobenzene

Methylene chloride and acetone are compounds commonly used in the laboratory and often show up in sample results as laboratory contaminants. Quality control review of the analytical data did not invalidate all methylene chloride and acetone results reported in Table 5; however, Geraghty & Miller believes that these compounds are laboratory artifacts and are not actually present in the soil. This belief is supported by the pattern in which these compounds were detected. Of the 24 samples analyzed, 15 contained at least two of the compounds. More importantly, acetone, a compound with a short environmental half-life, was detected in almost all of the samples. Since Fairchild's discharges to the basin ended in 1983, it is unlikely that this compound would be observed in so many samples. Finally, acetone was detected in the majority of the South Pond samples while the more persistent chlorinated hydrocarbons were only detected in two samples. A contaminant distribution such as this is highly unlikely. The

following discussion therefore assumes that these two compounds are laboratory contaminants despite their inclusion in the totals values presented in Table 4.

In North Pond Borings B-9, B-10, B-12, B-14, and B-16, higher VOC concentrations were detected in the sediment samples as compared to the native soil samples. In Borings B-11, B-13, and B-15 there was essentially no difference in VOC concentrations between the sediment and native soil samples. The borings containing the highest concentrations of VOCs (B-12, B-14, and B-15) are located in the deepest part of the eastern lobe of the North Pond or adjacent to the outflow pipe.

In the South Pond, only Boring B-1 had VOCs other than acetone or methylene chloride detected. These compounds were 1,2-dichloroethene (20 ug/L) and tetrachloroethene detected in samples from 0 to 4 ft and 4 to 7 ft, respectively.

Semivolatile Organic Compounds

A summary of the analytical results for semivolatile compounds detected in soil samples collected from the North and South Ponds of the old recharge basin is presented in Table 6. The distribution of semivolatile contaminants in the old recharge basin is similar to that of the VOCs. Specifically, higher concentrations of semivolatile compounds were detected in the North Pond, especially in or near the deepest part of the eastern lobe (in the vicinity of the outflow pipe), and the concentration of semivolatiles in the sediment samples was generally an order of magnitude higher than concentrations in native soil samples collected from the same boring.

A maximum of 19 semivolatile compounds was detected in any given sample. In the South Pond, samples of the sediment contained total semivolatile concentrations of greater than

8,000 ug/kg in Boring B-8 (0 to 2 ft), while total concentrations in native soil samples ranged from non-detected in Boring B-1, to 613 ug/kg in Boring B-8. In the North Pond, the highest total concentrations were detected in the sediment sample from Boring B-15 (0 to 7 ft) at greater than 60,000 ug/kg. Total concentrations in native soil samples from North Pond borings ranged from less than 100 ug/kg in Boring B-16 (7 to 11 ft), to more than 10,000 ug/kg in Boring B-15 (10 to 17 ft).

Pesticides/Polychlorinated Biphenyls

A summary of the analytical results for pesticides and polychlorinated biphenyls (PCBs) for soil samples collected from the North and South Ponds is presented in Table 7. The pesticides, alpha and gamma chlordane were detected in sediment samples from Borings B-6 (0.72 parts per million [alpha chlordane], 0.75 parts per million [gamma chlordane]), and B-8 (4.3 parts per million [alpha chlordane], 5.4 parts per million [gamma chlordane]). The only native soil sample containing pesticides was Boring B-8 (0.92 parts per million [alpha chlordane], 0.11 parts per million [gamma chlordane]), concentrations which are significantly attenuated from the corresponding (overlying) sediment sample.

PCBs (Aroclor 1248 and Aroclor 1254) were found to be distributed in a manner similar to the VOCs and semivolatiles, with higher PCB concentrations observed in the North Pond, in or near the deepest part of the eastern lobe in the vicinity of the discharge pipes (Fairchild and NYSDOT). The PCB concentrations in the sediment samples were generally an order of magnitude higher than native soil samples from the same boring.

Total concentrations of PCBs in sediment samples from the South Pond ranged from nondetected in Boring B-8 (0 to 2 ft) to 65 parts per million (ppm) in Boring B-4 (2 to 6 ft).

Native soils from South Pond borings contained no more than 0.37 ppm total PCBs (Boring B-1).

In the North Pond, the total concentration of PCBs in sediment samples ranged from non-detected in Boring B-11 (0 to 4 ft) to 139 ppm in Boring B-16 (5 to 7 ft). Native soils from North Pond borings contained total PCB concentrations ranging from 0.086 ppm in Boring B-16 (7 to 11 ft) to 64 ppm in Boring B-10 (4 to 6 ft). Like semivolatile compounds, pesticides and PCBs are relatively immobile compounds with low solubilities and are attenuated by the organic matter also found in the bottom sediments (Freeze & Cherry, 1979; Verschueren, 1983; Lyman, Reehl, and Rosenblatt, 1982).

Metals/Cyanide

A summary of the analytical results for total metals and cyanide for soil samples collected from the North and South Ponds is provided in Table 8. Because these analyses were performed on acid-digested samples of the soil, the acid also dissolves the soil matrix, which itself may contain native metallic elements. Despite the relatively high total metal concentrations in the acid-digested sediment samples, the results of the EP Toxicity testing presented in Table 9 reveal that none of the samples analyzed using this procedure had metal concentrations above statutory limits. Therefore, it appears that metals in the sediment are in a stable configuration confirming the results of a previous investigation (Geraghty & Miller, 1985).

Cyanide ion was detected in 23 of the 36 of the sediment/soil samples collected from the North and South Ponds. Concentrations ranged from nondetected to a high of 116 mg/kg in sediments in Boring B-10 (North Pond, western lake).

The concentration of metals in samples collected from borings in the North and South Pond is similar; however, metal concentrations are generally higher in the North Pond with the highest concentrations of metals observed in borings in or near the deepest part of the eastern lobe of the North Pond. As is the case with the VOCs and semivolatiles, the metal concentrations are at least an order of magnitude higher in the sediment samples than in the native soil samples collected from the same boring. The highest concentrations of metals detected were for aluminum (up to 44,700 milligrams per kilogram [mg/kg] in a sediment sample from Boring B-9), calcium (up to 103,000 mg/kg in sediment sample from B-12), iron (49,700 mg/kg in a sediment sample from B-12), manganese (1,730 mg/kg in a sediment sample from B-10), chromium (11,400 mg/kg in a sediment sample from B-10), potassium (1,430 mg/kg in a sediment sample from B-6), and zinc (7,470 mg/kg in a sediment sample from B-9).

Table 5. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Recharge Basin in September and October 1988, for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-1	B-1	B-2	3-2	3-3	
Sample Type:	S/N*	H	S	S/#*	S/#*	
Sample Depth:	0-4	4-7	0-4	5-7	0-2	
Sample Date:	9/27/88	9/27/88	9/27/88	9/27/88	9/28/88	
Parameter (ug/kg)						
Methylene chloride	12	<6	<7	<6	<19	
Acetone	53 J	<12	49 J	32 J	<300	
1,2-Dichlorosthene (total)	20	<6	<7	<6	<19	
Chloroform	<6	<6	<7	<6	<19	
Toluene	<6	<6	<7	<6	<19	
Chlorobenzene	<6	<6	<7	<6	<19	
Ithyibenzene	<6	<6 .	<7	<6	<19	
Styrene	<6	<6	<7	<6	<19	
(ylene (total)	· <6	<6	<7	<6	<19	
2-Butanone	<13	<13	5 J	<12	<90	
/inyl chloride	<13	<13	<14	<12	<38	
etrachloroethene	<6	6	<7	<6	<19	
richloroethene	<6	<6	<7	<6	<19	
,1,1-Trichloroethane	<6	<6	<7	<6	<19	
otal VOCs	85	6	54	32		

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Reagent blank.

S Sediment.

N Necture coll

Designates dominant component of composite sample.

R Unuscable data.

Table 5. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, for Fairchild Republic Company, East Farmingdale, New York.

· Sample Designation:	B-3	B-4	B-4	B-5	B-6	
Sample Type:	N	s	S	s	s	
Sample Depth:	2-4	0-2	2-6	2-4	0-2	
Sample Date:	9/28/88	9/28/88	9/28/88	9/29/88	9/29/88	
Parameter (ug/kg)		_				
Methylene chloride	<6	<7	<9	<9	<12	
Acetone	47 J	<190	<360	<210	<85	
1,2-Dichloroethene (total)	<6	<7	<9	<9	<12	
Chloroform	<6	<7	<9	<9	<12	
foluene	<6	<7	<9	<9	<12	
Chlorobenzene	<6	<7	<9	<9	<12	
Ethylbenzene	<6	<7	<9	<9	<12	
Styrene	<6	<7	<9	<9	<12	
(ylene (total)	<6	<7	<9	<9	<12	
2-Butanone	<12	<41	<110	<63	<23	
Vinyl chloride	<12	<13	<19	<18	<23	
Tetrachloroethene	<6	<7	<9	<9	<12	
[richloroethene	<6	<7	<9	<9	<12	
1,1,1-Trichloroethane	<6	<7	<9	<9	<12	
Total VOCs	47					

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Reagent blank.

^{\$} Sediment.

N Native soil.

Designates dominant component of composite sample.

R Unuscable data.

Table 5. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-6	B-7	B-8	3-8	B-9	3-9
Sample Type:	N	S/N*	S		S	n
Sample Depth:	2-4	0-2	0-2	2-4	0-4 10/4/88	4-6
Sample Date:	9/29/88	9/29/88	9/29/88	9/29/88		10/4/88
Parameter (ug/kg)			_			
Methylene chloride	<6	<6	<25	<6	<3800 J	<6
Acetone	30 J	42 J	<270	76 J	<7600 J	<61
,2-Dichloroethene (total)	<6	<6	<25	<6	<3800 J	<6
Chloroform	<6	<6	<25	<6	<3800 J	<6
Coluene	<6	<6	<25	<6	500 J	<6
Chlorobenzene	<6	<6	<25	<6	<3800 J	<6
Ethylbenzene	<6	<6	<25	<6	<3800 J	<6
Styrene	<6	<6	<25	<6	<3800 J	<6
(ylene (total)	<6	<6	<25	<6	<3800 J	2
-Butanone	2 J	<12	<49	11 J	R	R
inyl chloride	<12	<12	<49	<12	<7600 J	<12
etrachloroethene	<6	<6	<25	<6	<3800 J	2
richloroethene	<6	<6	<25	<6	<3800 J	<6
,1,1-Trichloroethane	<6	<6	<25	<6	<3800 J	<6
otal VOCs	32	42		87	500	4

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Reagent blank.

S Sediment.

N Native soil.

Designates dominant component of composite sample.

R Unuscable data.

Table 5. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-10	B-10	B-11	B-11	B-12	B-12
Sample Type:	S	N	S	¥	S	S
Sample Depth:	0-4	4-6	0-4	4-6	0-5	5-7
Sample Date:	10/5/88	10/5/88	10/5/88	10/5/88	10/6/88	10/6/88
Parameter (ug/kg)				_		
Methylene chloride	<3600 J	<6	<13	<6	<12000 J	<2700 .
Acetone	<7400 J	<120	<160	<110	<67,000 B	<5400
1,2-Dichloroethens (total)	<3600 J	<6	<11	<6	<12000 J	5000
Chloroform	<3600 J	<6	<11	<6	<12000 J	<2700
Coluene	860 J	<6	<11	<6	<12000 J	<2700 .
Chlorobenzene	<3600 J	<6	<11	<6	<12000 J	<2700
Ethylbenzene	<3600 J	<6	<11	<6	<12000 J	<2700
Styrene	<3600 J	<6	<11	<6	<12000 J	<2700 .
(ylene (total)	<3600 J	1 J	<11	1 J	<12000 J	<2700.
2-Butanone	R	R	R	R	R	R
/inyl chloride	<7400 J	<12	<22	<12	<27000 J	<5400
[etrachloroethene	<3600 J	<6	<11	2 J	<12000 J	<2700
richloroethene	<3600 J	<6	<11	<6	<12000 J	1800
,1,1-Trichloroethane	<3600 J	11	<11	13	<12000 J	<2700 J
Cotal VOCs	860	12		16		6.800

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Reagent blank.

S Sediment.

N Native soil.

Designates dominant component of composite sample.

R Unuscable data.

Table 5. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-12	B-13	B-13	B-13	B-14	B-14
Sample Type:	N	S	S	M	S	\$
Sample Depth:	7-9	0-5	5-9	9-11	0-8	8-13
Sample Date:	10/6/88	10/6/88	10/6/88	10/6/88	10/7/88	10/7/88
Parameter (ug/kg)						
Methylene chloride	<32	<84 J	<760 J	43	<250 J	<58
Acetone	<410	C 000>	<1500 J	430 J	<770 J	<610
1,2-Dichloroethene (total)	24 J	<84 J	<760 J	<29	<250 J	330
Chloroform	<30	<84 J	<760 J	<29	<250 J	<58
Toluene	<30	<84 J	<760 J	<29	<250 J	44
Chlorobenzene	<30	C 48>	<760 J	<29	<250 J	<58
Ethylbenzene	<30	<84 J	<760 J	<29	<250 J	12
Styrene	<30	L 48>	<760 J	<29	<250 J	<58
Kylene (total)	<30	<84 J	<760 J	<29	400 J	<120
2-Butanone	R	<170 J	R	49 J	<500 J	R
Vinyl chloride	<60	<170 J	<1500 J	<58	<500 J	210
[etrachloroethene	<30	<84 J	<760 J	<29	<250 J	<58
Trichloroethene	22 J	<84 J	<760 J	<29	<250 J	940
1,1,1-Trichloroethane	<30	<84 J	<760 J	<29	<250 J	<58
Cotal VOCs	46			522	400	1,536

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Reagent blank.

S Sediment.

N Native soil.

^{*} Designates dominant component of composite sample.

R Unuscable data.

Table 5. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, for Fairchild Republic Company, East Farmingdale, New York.

		-				-
Sample Designation:	B-14	B-15	B-15	B-15	B-16	B-16
Sample Type:	S	S	s	N	s	S
Sample Depth:	13-19	0-7	7-10	10-17	0-5	5-7
Sample Date:	10/7/88	10/10/88	10/10/88	10/10/88	10/10/88	10/10/88
Parameter (ug/kg)				,		
Methylene chloride	<6	<92	<96	<50	<110	<64 3
Acetone	<74	<1200	3,500 B	<1,300	4,600 B	<2,000
1,2-Dichloroethene (total)	<6	1000	<96	<50	<110	<64 .
Chloroform	<6	<92	<96	<50	<110	<64 .
Toluene	1 J	310	<96	<50	<110	<64 .
Chlorobenzene	<6	<92	180	<50	160	<64 .
Ethylbenzene	<6	<92 .	<96	<50	<110	<64 3
Styrene	<6	<92	<96	<50	<110	<64 J
Kylene (total)	<6	380	400	<50	430	180 J
2-Butanone	R	R	1,000 J	370 J	1,100 J	620 J
Vinyl chloride	<12	<180	<190	1,100	<220	<130 J
Tetrachloroethene	3 J	<92	<96	<50	<110	<64 J
Trichloroethene	<6	<92	<96	<50	<110	<64 J
1,1,1-Trichloroethane	1 J	<92	<96	<50	<110	<64 J
Total VOCs	5	1,690	1,580	1,470	1,690	800

⁻⁻ Not detected.

J Estimated Value.

B Detected in the Resgent blank.

S Sediment.

N Native soil.

Designates dominant component of composite sample.

R Unuseable data.

Table 5. Concentrations of Volatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988, for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:

B-16

Sample Type:

7-11

Sample Depth:

Sample Date: 10/10/88

Parameter (ug/kg)

Methylene chloride	<6
Acetone	<28
1,2-Dichloroethene (total)	<6
Chloroform	<6
Toluene	<6
Chlorobenzene	<6
Ethylbenzene	<6
Styrene	<6
Xylene (total)	<6
2-Butanone	R
Vinyl chloride	<12
Tetrachloroethene	<6
Trichloroethens	<6
1,1,1-Trichlorosthans	<6
Total VOCs	

- -- Not detected.
- J Estimated Value.
- B Detected in the Reagent blank.
- S Sediment.
- N Native soil.
- Designates dominant component of composite sample.
- R Unuscable data.

Table 6. Concentrations of Semiwolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:		B-1	B-2	B-2	B-3	
Sample Depth (ft):		4-7	0-4	5-7	0-2	
Sample Date:		9 /27/88	9/27/88	9/27/88	9/28/88	
	S/ W *	И	S	S/ # *	S/N*	
ameter (ug/kg)						
	86 J	<380	<1300	<410	<440	
Witrosodiphenylamine 2-Dichlorobenzene	58 J	<380	110 J	<410	55 J	
thylphthalate	<570	<380	<1300	<410	<440	
n-butylphalate	<570	<380	<1300	50 J	<440	
moi	<570	<380	<1300	<410	<440	
achlorobenzens	<570	<380	<1300	<410	<440	
(2-Chloroethyl)ether	<570	<380	<1300	<410	<440	
hlorophenol	<570	<380	<1300	<410	<440	
-Dinitrotoluene	<570	<380	<1300	<410	<440	
Dichlorobenzene	<570	<380	<1300	<410	<440	
mo(g,h,i)perylene	<570 J	<380	<1300	<410	<440 J	
eo(a)pyrene	300 J	<380	340 J	<410	<440 J	
no(1,2,3-cd)pyrene	<570 J	<380	<1300	<410	<440 J	
thylphenol	<570	<380	<1300	<410	<440	
troso-di-n-propylamine	<570	<380	<1300	<410	<440	
aphthene	<570	<380	<1300	<410	<440	
2-Ethylhexyl)phthalate	<860	<380	<1300	<470	<1.900 J	
rophenol	<2800	<1900	<6400	<2000	<2200	
torone	<570	<380	<1300	<410	<440	
zofuran	<570	<380	23 J	<410	36 J	
Oimethylphenol	<570	<380	<1300	<410	<440	
oic acid	<2800	<1900	250 J	<2000	110 J	
(b)fluoranthene	<570 J	6 J	480 J	43 J	<440 J	
(k) fluoranthene	440 J	<380	<1300	<410	320 J	
4-Trichlorobenzens	<570	<380	<1300	<410	<440	
thalene	<570	<380	<1300	<410	<440	
(a)anthracene	<570 J	<380	<1300	<410	<440	
sens	320 J	<380	430 J	47 J	230 J	
loro-3-methylphenol	<570	<380	44 J	<410	<440	
hylnaphthalene	<570	<380	45 J	<410	<440	
achlorophenol	<2800	<1900	<6400	<2000	<2200	
inthrene	<570	<380	250 ЛВ	<410	<440	
racene	<570	<380	87 ЛВ	<410	<440	
-octyl phthalate	<570 J	<380	<1300	<410	<440 J	
ranthene	400 J	<380	510 J	79 J	270 J	
4	660	<380	720 J	69 J	610 J	
hyl phthalate	<570	<380	<1300	<410	37 J	
phthylene	49 J	<380	<1300	<410	38 J	
rene	<570	<380	<1300	<410	<440	
bensylphthalate	<570	<380	<1300	<410	<440 J	
. Semivolatile Organic Compounds	2,313	6	2,952	288	1,706	
		-	_,			

B Detected in Reagent blank.

J Estimated value.

S Sediment.

N Native soil

Designates dominant component of composite sample.

Table 6. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-3	B-4	B-4	B-5
Sample Depth (ft):	2-4	0-2	2-6	2-4
Sample Date:	9/28/88	9/28/88	9/28/88	9/28/88
	¥	S	\$	S*/#
Parameter (ug/kg)				
N-Nitrosodiphonylamine	<380	<470	<590	<490
1,2-Dichlorobensens	<380	<470	<590	70 J
Diethyiphthalate	<380	<470	<590	<490
Di-n-butylphalate	<380	<470	<590	51 J
Phenol	<380	<470	<590	<490
Hexachlorobensens	<380	<470	<590	<490
bis(2-Chloroethyl)ether	<380	<470	<590	<490
2-Chlorophenol	<380	<470	<590	<490
2,4-Dinitrotoluene	<380	<470	<590	<490
1,4-Dichlorobensene	<380	<470	<590	<490
Benzo(g,h,i)perylene	<380	<470 J	<590 J	<490 J
Benzo(a)pyrene	<380	2,000 J	940 J	220 J
Indeno(1,2,3-cd)pyrene	<380	<470 J	<590 J	<490 J
4-Methylphenol	<380	<470	<590	<490
N-nitroso-di-n-propylamine	<380	<470	<590	<490
Acenaphthene	<380	350 J	150 J	<490
bis(2-Ethylhexyl)phthalate	<380	<1,400 J	<6,300 J	<1,700 J
4-Nitrophenol	<1900	<2300	<2 9 00	<2400
Isophorone	<380	<470	<590	<490
Dibenzofuran	<380	250 J	95 J	<490
2,4-Dimethylphenol	<380	<470	<590	<490
Benzoic acid	<1900	<2300	<2900	<2400
Benso(b)fluoranthene	<380	5,300 J	1,300 J	180 J
Benso(k)fluoranthene	<380	430 J	<590 J	<490 J
1,2,4-Trichlorobensens	<380	<470	<590	<490
Naphthalene	<380	170 J	190 J	<490
Benzo(a)anthracens	8 J	1,700 J	<590 J	<490 J
Chrysens	<380	1,900 J	<590 J	230 J
4-Chloro-3-methylphenol	<380	<470	<590	<490
2-Methylnaphthalene	<380	330 J	250 J	28 J
Pentachlorophenol	<1900	<2300	<2900	<2400
Phenanthrene	<380	1,800 B	<590	<490
Anthracene	<380	580 B	<590	<490
Di-n-octyl phthalate	<380	<470 J	<590 J	<490 J
Fluoranthene	<380	2,400	750	250 J
Pyrene	<380	5,300 J	3,300 J	520 J
Dimethyl phthalate	<380	<470	<590	<490
Acenephthylene	<380	560	130 J	43 J
Pluorene	<380	510	<590	<490
Butylbenzylphthalate	<380	<470 J	<590 J	<490 J
Total Semivolatile Organic Compounds	8	21,200	7,105	1,592

B Detected in Reagent blank.

J Estimated value.

S Sediment.

N Native soil.

Designates dominant component of composite sample.

Table 6. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Diethylphthalate <570 <400 <390 <530 Di-n-butylphalate <570 <400 34 J <530 Phemol <570 <400 <390 <530 Hexachlorobensene <570 <400 <390 <530 bis (2-Chloroethyl) ether <570 <400 <390 <530 2-Chlorophenol <570 <400 <390 <530 2, 4-Dinitrotoluene <570 <400 <390 <530 1, 4-Dichlorobensene <570 <400 <390 <530 1, 4-Dichlorobensene <570 <400 <390 <530 8enso(a, h, i) perylene <570 <400 <390 <530 1, 4-Dichlorobensene <570 <400 <390 <530 Benso(a, h, i) perylene <570 <400 <390 <530 Benso(a, h, i) perylene <570 <400 <390 <530 Indeno(1, 2, 3-ed)pyrene <570 <400 <390 <530 A-Heth					
Sample Date: 9/29/88 9/29/88 9/29/88 S S S S S	Sample Designation:	B-6	B-6	B-7	B-8
S N S/N+ S	Sample Depth (ft):	0-2	2-4	0-2	0-2
N=Nitrosodiphonylamine	Sample Date:	9/29/88	9/29/88	9/2 9/88	9/29/88
N-Hitrosodiphonylamins		S	X	S/W*	s
1,2-Dichlorobenzene 74 J <400 <390 130 J Diethyiphthalate <570 <400 390 <530 Diethyiphthalate <570 <400 34 J <530 Diethyiphthalate <570 400 34 J <530 Diethyiphthalate <570 400 390 <530 Escachlorobenzene <570 400 390 390 Escachlorobenzene <570 400 390 390 Escachlorobenzene <570 400 390 390 Diethyiphthalate <570 400 390 390 Diethyiphthalate <570 400 390 530 Diethyiphthalate 570 J 400 390 530 Diethyiphthalate 570 J 400 330 J 530 J Diethyiphthalate 570 J 400 330 J 530 J Diethyiphthalate 570 400 330 J 530 J Diethyiphthalate 570 400 300 J 250 J Diethyiphthalate 570 400 390 530 Diethyiphthalate 570 50 400	rameter (ug/kg)				
1,2-Dichlorobenzene 74 J <400 <390 130 J Diethyiphthalate <570 <400 390 <530 Diethyiphthalate <570 <400 34 J <530 Diethyiphthalate <570 400 34 J <530 Diethyiphthalate <570 400 390 <530 Escachlorobenzene <570 400 390 390 Escachlorobenzene <570 400 390 390 Escachlorobenzene <570 400 390 390 Diethyiphthalate <570 400 390 390 Diethyiphthalate <570 400 390 530 Diethyiphthalate 570 J 400 390 530 Diethyiphthalate 570 J 400 330 J 530 J Diethyiphthalate 570 J 400 330 J 530 J Diethyiphthalate 570 400 330 J 530 J Diethyiphthalate 570 400 300 J 250 J Diethyiphthalate 570 400 390 530 Diethyiphthalate 570 50 400					
Disthylphthalate	Mitrosodiphonylamina	<570	<400	<390	<530
Di-n-butylphalate	2-Dichlorobensene	74 J	<400	<390	130 J
Phanol <570	ethyiphthalate	<570	<400	<390	<530
Hexachlorobensene <570	-n-butyiphalate	<570	<400	34 J	<530
bis(2-Chloroethyl)ether	enol	<570	<400	<390	<530
2-Chlorophenol	xachlorobenzene	<570	<400	<390	43 J
2,4-Dinitrotolueme <570	s(2-Chloroethyl)ether	<570	<400	<390	<530
1,4-Dichlorobenzene	Chlorophenol	<570	<400	<390	<530
Benzo(g,h,i)perylene <570 J	4-Dinitrotoluene	<570	<400	<390	<530
Benzo(a)pyrene 320 J 5 J 2,200 J 830 J Indeno(1,2,3-cd)pyrene <570 J	4-Dichlorobenzene	<570	<400	<390	<530
Indeno(1,2,3-cd)pyrene	nso(g,h,i)perylene	<570°J	<400	210 J	<530 J
A-Methyiphenol	nzo(a)pyrene	320 J	5 J	2,200 J	830 J
N-nitroso-di-n-propylamine	deno(1,2,3-cd)pyrene	<570 J	<400	330 J	<530 J
Acenaphthene	Methyiphenol	<570	<400	<390	43 J
bis(2-Ethylhexyl)phthalate	nitroso-di-n-propylamine	<570	<400	<390	<530
4-Witrophenol <2800	enaphthene	<570	<400	300 J	250 J
Isophorone	s(2-Ethylhexyl)phthalate	<2,300 J	<810	<730	<1,800 J
Dibenzofuran	Mitrophenol	<2800	<2000	<1900	<2600
2,4-Dimethylphenol <570	opho rone	<570	<400	<390	<530
Benzoic acid 73 J <2000	benzofuran	<570	<400	230 J	150 J
Benzo(b)fluoranthene 300 J 4 J 3,100 J 1,900 J Benzo(k)fluoranthene <570	4-Dimethylphenol	<570	<400	<390	<530
Benzo(k)fluoranthene <570	ngoic acid	73 J	<2000	<1900	130 J
1,2,4-Trichlorobenzene	nzo(b)fluorenthene	300 J	4 J	3,100 J	1,900 J
Naphthalene 31 J <400	nso(k)fluoranthene	<570	<400	610 J	190 J
Benzo(a)anthracene <570 J	2,4-Trichlorobenzene	<570	<400	<390	<530
Chrysene 310 J <400 2,300 <530 J 4-Chloro-3-methylphenol <570 <400 <390 <530 J 2-Methylnaphthalene 35 J <400 93 J 410 J Pentachlorophenol <2800 <2000 <1900 <2600 Phenanthrene <570 <400 3,300 B 1,300 B Anthracene <570 B J 980 B 330 J Di-n-octyl phthalate <570 J <400 <390 J <530 J Fluoranthene 370 J 15 J 4,200 1,100	phthalene	31 J	<400	140 J	110 J
A-Chloro-3-methylphenol	nzo(a)anthracene	<570 J	<400	2,300	<530 J
2-Methylnaphthalene 35 J <400 93 J 410 J Pentachlorophenol <2800 <2000 <1900 <2600 Phenanthrene <570 <400 3,300 B 1,300 B Anthracene <570 8 J 980 B 330 J Di-n-octyl phthalate <570 J <400 <390 J <530 J Fluoranthene 370 J 15 J 4,200 1,100	rysene	310 J	<400	2,300	<530 J
Pentachlorophenol <2800	Chloro-3-methylphenol	<570	<400	<390	<530
Phenanthrene <570	Methylnaphthalene	35 J	<400	93 J	410 J
Anthracene <570 8 J 980 B 330 J Di-n-octyl phthalate <570 J <400 <390 J <530 J Fluoranthene 370 J 15 J 4,200 1,100	ntachlorophenol	<2800	<2000	<1900	<2600
Di-n-octyl phthalate <570 J <400 <390 J <530 J Fluoranthene 370 J 15 J 4,200 1,100	snanthrens	<570	<400	3,300 B	1,300 B
Fluoranthene 370 J 15 J 4,200 1,100	thracene	<570	8 J	980 B	330 ЛВ
Fluoranthene 370 J 15 J 4,200 1,100	-n-octyl phthalate	<570 J	<400	<390 J	<530 J
Pyrene 820 J 14 J 5,400 2,400 J		370 J	15 J	4,200	1,100
	rene	820 J	14 J	5,400	2,400 J
Dimethy1 phthalate <570 <400 <390 <530	methyl phthalate	<570	<400	<390	<530
Acenaphthylene 53 J <400 290 J 210 J	snaphthylene	53 J	<400	290 J	210 J
Fluorene <570 <400 <390 390 J	uorene	<570	<400	<390	390 J
Butylbensylphthalate <570 J <400 <390 <530 J	tylbensylphthalate	<570 J	<400	<390	<530 J
Total Semivolatile Organic Compounds 2,386 46 21,737 8,286	tal Semivolatile Organic Compounds	2,386	46	21,737	8,286

B Detected in Reagent blank.

J Estimated value.

S Sediment.

Native soil.

^{*} Designates dominant component of composite sample.

Table 6. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation: Sample Depth (ft): Sample Date:	B-8 2-4 9/29/88	B-9 0-4 10/4/88 S	B-9 4-6 10/4/88	B-10 0-4 10/5/88 S	B-10 4-6 10/5/88	
Parameter (ug/kg)	•			•	•	
N-Mitrosodiphonylamine	<390	<1300	<390	<100,000 J	<390	
1.2-Dichlorobensene	<390	<1300	<390	<100,000 J	<390	
Diethylphthalate	<390	<1300	<390	<100,000 J	<390	
Di-n-butyiphalate	26 J	<1300		<100,000 J	<390	
Phenol	<390	<1300	<390	<100,000 J	<390	
Hexachlorobenzene	<390	<1300	<390	<100,000 J	<390	
bis(2-Chloroethyl)ether	<390	<1300	<390	<100,000 J	<390	
2-Chlorophenol	<390	<1300	<390	<100,000 J	<390	
•	<390 <390	<1300	<390 <390	·	<390	
2,4-Dinitrotoluene				<100,000 J	<390	
1,4-Dichlorobenzene	<390	<1300 .	<390	<100,000 J		
Benzo(g,h,i)peryiene	<390	<1300 J	<390	<100,000 J	<390 J	
Benzo(a)pyrene	34 J	370 J		<100,000 J	150 J	
indeno(1,2,3-cd)pyrene	<390	<1300 J	<390	<100,000 J	<390 J	
-Methylphenol	<390	<1300	<390	<100,000 J	<390	
-nitroso-di-n-propylamine	<390	<1300	<390	<100,000 J	<390	
cenaphthene	28 J	<1300	<390	<100,000 J	<390	
is(2-Ethylhexyl)phthalate	<390	<3,100	<910	<100,000 J	<1300	
-Witrophenol	<1900	<6600	<1900	<480,000 J	<1900	
sophorone	<390	<1300	<390	<100,000 J	<390	
ibensofuran	<390	<1300	<390	<100,000 J	<390	
,4-Dimethylphenol	<390	<1300	<390	<100,000 J	97 J	
ensoic acid	<1900	<6600	<1900	<480,000 J	<1900	
enso(b)fluoranthene	<390	500 J	<390	<100,000 J	260 J	
enzo(k)fluoranthene	31 J	<1300 J	<390	<100,000 J	<390 J	
,2,4-Trichlorobenzene	<390	<1300	<390	<100,000 J	<390	
aphthalene	<390	<1300	<390	<100,000 J	<390	
Senzo(a)anthracene	<390	<1300	<390	<100,000 J	<390	
Thrysene	<390	460 J	47 J	<100,000 J	220 J	
-Chloro-3-methylphenol	<390	<1300	<390	<100,000 J	<390	
-Hethylnaphthalene	<390	<1300	<390	<100,000 J	<390	
entachlorophenol	<1900	<6600	<1900	<480,000 J	<1900	
henanthrens	140 ЈВ	530 J		<100,000 J	160 J	
nthracene	32 ЛВ	<1300	<390	<100,000 J	<390	
i-n-octyl phthalate	280 J	<1300 J		<100,000 J	<390 J	
luoranthene	93 J	860 J	71 J	2,900 J	350 J	
yrena	95 J	920 J		<100,000 J	430	
imethyl phthalate	<390	<1300	<390	<100,000 J	<390	
cenaphthylene	<390	<1300	<390	<100,000 J	<390	
Luorene	26 J	<1300	<390	<100,000 J	<390	
utylbensylphthalate	<390	<1300		<100,000 J	<390	
,,,				,		
otal Semivolatile Organic Compounds	613	3,640	304	2,900	1,667	

B Detected in Reagent blank.

J Estimated value.

S Sediment.

W Native soil.

^{*} Designates dominant component of composite sample.

Table 6. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-11	B-11	B-12	B-12	B-12
Sample Depth (ft):	0-4	4-6	0-5	5-7	7-9
Sample Date:	10/5/88	10/5/88	10/6/88	10/6/88	10/6/88
	S	H	S		N
arameter (ug/kg)					
f-Mitrosodiphonylamine	<1600	<400	<33000 J	<95000 J	<450
1,2-Dichlorobensene	<1600	<400	<33000 J		<450
Diethylphthalate	<1600	<400	<33000 J		<450
Di-n-butylphalate	100 J	<400	<33000 J	<95000 J	<450
Phenol	<1600	<400	<33000 J		<450
exachlorobensene	<1600	<400	<33000 J	<95000 J	<450
ois(2-Chloroethyl)ether	<1600	<400	<33000 J		<450
2-Chlorophenol	<1600	<400	<33000 J	<95000 J	<450
2,4-Dinitrotoluene	<1600	<400	<33000 J		<450
1,4-Dichlorobenzene	<1600	<400	<33000 J	<95000 J	<450
enso(g,h,i)perylene	<1600 J	<400 J	<33000 J		<450 J
ienzo(a)pyrene	<1600 J	160 J	<33000 J		270 J
indeno(1,2,3-cd)pyrene	<1600 J	<400 J	<33000 J	<95000 J	<450 J
-Methylphenol	<1600	<400	<33000 J	<95000 J	<450
-nitroso-di-n-propylamina	<1600	<400	<33000 J	<95000 J	<450
cenaphthene	<1600	<400	<33000 J	<95000 J	<450
is(2-Ethylhexyl)phthalate	<3,300	<1,500	<33000 J	<95000 J	<1,600
-Nitrophenol	<7800	<2000	<160,000 J	<450,000 J	<2200
sophorone	<1600	<400	<33000 J	<95000 J	<450
ibensofuran	<1600	<400	<33000 J	<95000 J	<450
,4-Dimethylphenol	<1600	<400	<33000 J	<95000 J	<450
ensoic acid	<7800	<2000	<160,000 J	<450,000 J	<2200
enzo(b)fluoranthene	<1600 J	220 J	3,200 J	12,000 J	410 J
enso(k)fluoranthene	<1600 J	250 J	1,700 J	<95000 J	380 J
,2,4-Trichlorobenzene	<1600	<400	<33000 J	<95000 J	<450
aphthalene	<1600	<400	<33000 J	<95000 J	110 J
enzo(a)anthracene	<1600	<400	<33000 J	<95000 J	<450
hrysene	<1600	230	2,400 J	<95000 J	370 J
-Chloro-3-methylphanol	<1600	<400	<33000 J	<95000 J	<450
-Methylnaphthalene	<1600	<400	<33000 J	<95000 J	1,600
entachlorophenol	<7800	<2000	<160,000 J	<450,000 J	<2200
henanthrene	71 J	<400	1,600 J	10,000 J	660
nthracene	<1600	<400	<33000 J	<95000 J	170 J
i-n-octyl phthalate	<1600 J	<400 J	<33000 J	<95000 J	<450 J
luoranthens	110 J	340 J	3, 900 J	13,000 J	840
yrene	98 J	440	3,100 J	11,000 J	1,000
imethyl phthalate	<1600	<400	<33000 J	<95000 J	56 J
cenaphthylene	<1600	<400	<33000 J	<95000 J	<450
luorene	<1600	<400	<33000 J	<95000 J	<450
utylbensylphthalate	<1600	<400	<33000 J	<95000 J	<450
otal Semivolatile Organic Compounds	379	1,640	15, 9 00	46,000	5,866

B Detected in Reagent blank.

J Estimated value.

S Sediment.

N Native soil

Designates dominant component of composite sample.

Table 6. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

		_				
Sample Designation	: 3-13	B-13	B-13	B-14	B-14	
Sample Depth (ft)		5-9	9-11	0-8	8-13	
Sample Date		10/6/88	10/6/88	10/7/88	10/7/88	
•	S	s	x	8	S	
mater (ug/kg)						
#itrosodiphonylamine	<45000 J	<2500	<370	<54000 J	<430	
2-Dichlorobenzene	<45000 J	<2500	<370	<54000 J	<430	
thylphthalate	<45000 J	<2500	<370	<54000 J	<430	
-n-butylphalate	<45000 J	280 J	<370	<54000 J	<430	
mol	<45000 J	<2500	<370	<54000 J	<430	
schlorobenzene	<45000 J	<2500	<370	<54000 J	<430	
(2-Chloroethyl)ether	<45000 J	<2500	<370	<54000 J	<430	
hlorophenol	<45000 J	<2500	<370	<54000 J	<430	
-Dinitrotoluene	<45000 J	<2500	<370	<54000 J	<430	
-Dichlorobenzene	<45000 J	<2500	<370	<54000 J	<430	
so(g,h,i)perylene	<45000 J	<2500 J	<370 J	<54000 J	<430 J	
so(a)pyrene	4,600 J	3,100 J	710 J	4,500 J	1,300 J	
eno(1,2,3-cd)pyrene	<45000 J	<2500 J	<370 J	<54000 J	260 J	
thylphenol	<45000 J	<2500	<370	<54000 J	<430	
troso-di-n-propylamine	<45000 J	<2500	<370	<54000 J	<430	
aphthene	<45000 J	750 J	240 J	<54000 J	<430	
2-Ethylhexyl)phthalate	<45000 J	<8,400	<1,900	<54000 J	<2,700 J	
trophenol	<220,000 J	<13000	<1800	<260,000 J	<2100	
horone	<45000 J	<2500	<370	<54000 J	<430	
nsofuran	<45000 J	410 J	140 J	<54000 J	200 J	
Dimethylphenol	<45000 J	310 J	<370	<54000 J	1,100	
oic acid	<220,000 J	<13000	<1800	<260,000 J	79 J	
so(b)fluoranthene	12,000 J	5,100 J	960 J	3,500 J	4,000 J	
o(k)fluoranthene	<45000 J	<2500 J	210 J	<54000 J	<430 J	
,4-Trichlorobensene	<45000 J	<2500	<370	<54000 J	<430	
hthalene	<45000 J	390 J	49 J	<54000 J	150 J	
so(a)anthracene	6,200 J	3,800	840	<54000 J	1,500 J	
ysene	7,000 J	4,100	880	<54000 J	1,500 J	
nloro-3-methylphenol	<45000 J	<2500	<370	<54000 J	<430	
ethylnaphthalene	<45000 J	410 J	130 J	<54000 J	350 J	
tachlorophenol	<220,000 J	<13000	<1800	<260,000 J	<2100	
nanthrene	7,400 J	5,600	1,600	3,900 J	2,400	
tracene	1,600 J	1,300 J	440	<54000 J	580	
a-octyl phthalate	<45000 J	<2500 J	<370 J	<54000 J	<430 J	
pranthene	13,000 J	7,600	1,800	11,000 J	2,900	
DIA.	11,000 J	9,500	2,400	10,000 J	4,300 J	
thyl phthalate	<45000 J	<2500	<370	<54000 J	<430	
aphthylene	<45000 J	200 J	<370	<54000 J	190 J	
prene	<45000 J	880 J	340 J	<54000 J	<430	
ylbensylphthalate	<45000 J	<2500	<370	<54000 J	<430 J	
al Semivolatile Organic Compounds	62,800	43,730	10,739	32,900	20,809	

- B Detected in Reagent blank.
- J Estimated value.
- S Sediment.
- N Native soil.
- Designates dominant component of composite sample.

Table 6. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

3-16	B-15	B-15	B-15	B-14	Sample Designation:
0-5	10-17	7-10	0-7	13-19	Sample Depth (ft):
10/10/88	10/17/88	10/10/88	10/10/88	10/7/88	Sample Date:
S	Ħ	S	S	S/N*	

Parameter (ug/kg)

			<u> </u>	-	
N-Nitrosodiphonylamine	<390	<1500	<58000 J	<53000	<58000
1,2-Dichlorobensene	<390	590 J	<58000 J	<53000	<58000
Diethylphthalate	<390	<1500	<58000 J	<53000	<58000
Di-n-butylphalate	<390	<1500	1,800 J	<53000	<58000
Phenol	<390	<1500	<58000 J	<53000	<58000
Hexachlorobenzene	<390	<1500	<58000 J	<53000	<58000
bis(2-Chloroethyl)ether	<390	<1500	<58000 J	<53000	<58000
2-Chlorophenol	<390	<1500	<58000 J	<53000	<58000
2,4-Dinitrotoluene	<390	<1500	<58000 J	<53000	<58000
1,4-Dichlorobenzene	<390	<1500	<58000 J	<53000	<58000
Benzo(g,h,i)perylene	<390	<1500	<58000 J	<53000	<58000
Benzo(a)pyrene	<390	2,900	<58000 J	<53000	<58000
Indeno(1,2,3-cd)pyrene	<390	500 J	<58000 J	<53000	<58000
4-Methylphenol	<390	<1500	<58000 J	<53000	<58000
N-nitroso-di-n-propylamine	<390	<1500	<58000 J	<53000	<58000
Acenaphthene	<390	480 J	<58000 J	<53000	<58000
bis(2-Ethylhemyl)phthalate	<530	15,000 BJ	<58000 J	<53000	<58000
4-Nitrophenol	<1900	<7100	<280,000 J	<260,000	<280,000
Isophorone	<390	<1500	<58000 J	<53000	<58000
Dibenzofuran	<390	280 J	<58000 J	<53000	<58000
2,4-Dimethylphenol	<390	27,000	12,000 J	<53000	<58000
Benzoic acid	<1900	<7100	<280,000 J	<260,000	<280,000
Benzo(b)fluoranthene	<390	3,300	<58000 J	1,500 J	<58000
Benzo(k)fluoranthene	<390	<1500	2,400 J	<53000	<58000
1,2,4-Trichlorobenzene	<390	170 J	<58000 J	<53000	<58000
Naphthalene	<390	510 J	<58000 J	<53000	<58000
Benzo(a)anthracene	<390	4,400 J	<58000 J	<53000	<58000
Chrysene	<390	4,700 J	<58000 J	<53000	9,000 J
4-Chloro-3-methylphenol	<390	<1500	<58000 J	<53000	<58000
2-Methylnaphthalene	<390	1,900	<58000 J	<53000	<58000
Pentachlorophenol	<1900	<7100	<2 80 ,000 J	•	<280,000
Phenanthrene	<390	3,200	4,400 J	2,400 J	<58000
Anthracene	<390	400 J	<58000 J	<53000	1,700 J
Di-n-octyl phthalate	<390	<1500	_ <58000 J	<53000	<58000
Fluoranthene	<390	10,000	9,000 J	3,600 J	13,000 J
Pyrene	<390	4,600 J	6,500 J	3,400 J	14,000 J
Dimethyl phthalate	<390	<1500	<58000 J	<53000	<58000
Acenaphthylene	<390	160 J	<58000 J	<53000	<58000
Fluorene	<390	510 J	<58000 J	<53000	<58000
Butylbenzylphthalate	<390	<1500	<58000 J	<53000	<58000
Total Semivolatile Organic Compounds		65,800	36,100	10,900	37,700

B Detected in Reagent blank.

J Estimated value.

S Sediment.

N Native soil.

^{*} Designates dominant component of composite sample.

Table 6. Concentrations of Semivolatile Organic Compounds Detected in Soil Samples Collected from the Old Recharge Basin, Fairchild Republic Company, East Farmingdale, New York.

Sample Designation: B-16 B-16
Sample Depth (ft): 5-7 7-11
Sample Date: 10/10/88 10/10/88
S

Parameter (ug/kg)

N-Nitrosodiphonylamine	<51000	<400
1,2-Dichlorobensene	<51000	<400
Diethylphthalate	<51000	22 J
Di-n-butylphalate	<51000	48 J
Phenol	<51000	<400
Hexachlorobenzene	<51000	<400
bis(2-Chloroethyl)ether	<51000	<400
2-Chlorophenol	<51000	<400
2,4-Dinitrotoluene	<51000	<400
1,4-Dichlorobenzene	<51000	<400
Benso(g,h,i)perylene	<51000	<400
Benzo(a)pyrene	<51000	<400
Indeno(1,2,3-cd)pyrene	<51000	<400
4-Methylphenol	<51000	<400
N-nitroso-di-n-propylamine	<51000	<400
Acenaphthene	<51000	<400
bis(2-Ethylhexyl)phthalate	<51000	<520
4-Nitrophenol	<250,000	<1900
Isophorone	<51000	<400
Dibensofuran	<51000	<400
2.4-Dimethylphenol	<51000	<400
Benzoic acid	<250,000	<1900
Benzo(b)fluoranthene	<51000	<400
Benzo(k)fluoranthene	<51000	<400
1,2,4-Trichlorobenzene	<51000	<400
Naphthalene	<51000	<400
Benso(a)anthracene	<51000	<400
Chrysene	<51000	<400
4-Chloro-3-methylphenol	<51000	<400
2-Methylnaphthalene	<51000	<400
Pentachlorophenol	<250,000	<1900
Phenanthrene	3,000 J	<400
Anthracene	<51000	<400
Di-n-octyl phthalate	<51000	<400
Fluoranthene	6.100 J	15 J
Pyrene	5,400 J	<400
Dimethyl phthalate	<51000	<400
Acenaphthylene	<51000	<400
Fluorene	<51000	<400
Butylbenzylphthalate	<51000	<400
Total Semivolatile Organic Compounds	14,500	85

- B Detected in Reagent blank.
- J Estimated value.
- S Sediment.
- N Native soil
- Designates dominant component of composite sample.

•

Table 7. Concentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

	Sample Designation:	B-1	B-1	3-2	B-2	B-3	1-3
	Sample Type:	S/N+	M	\$	S/W*	S/W+	H
	Sample Depth:	0-4	4-7	0-4	5-7	0-2	2-4
	Sample Date:	9/27/88	9/27/88	9/27/88	9/27/88	9/28/88	9/28/88
Parameter (ppm)							
Pesticides	-						
lpha Chlordane		<0.140	<0.09	<1	<0.099	<1.1	<0.093
amma Chlordane		<0.140	<0.09	a	<0.099	<1.1	<0.093
Total Pesticide:	•						
PCB s	_						
Aroclor 1248		1.9 J	0.24 J	<1	<0.099	12 J	0.120 J
Aroclor 1254		1.4 J	0.13 J	4 J	0.13 J	8 J	0.087 J
total PCBs		3.3	0.37	4	0.13	20	0.207

All results reported in parts per million (ppm).

⁻⁻ Not detected.

J Estimated value.

S Sediment.

N Native soil.

[•] Designates dominant component of composite sample.

Table 7. Concentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge Basin September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-4	B-4	B-5	B-6	3-6	• •
Sample Designation:	B-4	B -4	B-3	8-6	5-6	B -7
Sample Type:	S	S	S*/M	S	¥	S/#*
Sample Depth:	0-2	2-6	2-4	0-2	2-4	0-2
Sample Date:	9/28/88	9/28/88	9/28/88	9/29/88	9/29/88	9/29/88

Parameter (ppm)

Pesticides						
alpha Chlordane	<0.570	<2.9	<0.590	0.72 J	<0.097	<0.48
gamma Chlordane	<0.570	<2.9	<0.590	0.75 J	<0.097	<0.48
Total Pesticides				1.47		
PCB=						
Aroclor 1248	7.0	38 J	2.3	6.5 J	<0.097	<0.48
Aroelor 1254	4.9	27 J	2.3	5.7 J	<0.19	0.73 J
Total PCBs	11.9	65	4.6	12.2		0.73

⁻⁻ Not detected.

J Estimated value.

S Sediment.

N Native soil.

[•] Designates dominant component of composite sample.

Table 7. Concentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge Basin September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-8	B-6	3-9	3-9	B-10	B-10
Sample Type:	s	M	S	N	S	N
Sample Depth:	0-2	2-4	0-4	4-6	0-4	4-6
Sample Date:	9/29/88	9/29/88	10/4/88	10/4/88	10/5/88	10/5/88

Parameter (ppm)

Pesticides						
alpha Chlordane	4.3 J	0.092 J	<1.6	<0.094	<6.7 J	<0.48
gamma Chlordane	5.4 J	0.11 J	<1.6	<0.094	<6.7 J	<0.48
Total Pesticides	9.7	0.202				
PCBs						
Aroclor 1248	<6.5	<0.094	3.6	0.9	39 J	39
Aroclor 1254	<13	0.24 J	2.7	0.54	25 J	25
Total PCBs	••	0.24	6.3	1.44	64	64

⁻⁻ Not detected.

J Estimated value.

S Sediment.

N Native soil.

[•] Designates dominant component of composite sample.

Table 7. Concentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge Basin September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-11	B-11	B-12	B-12	B-12	B-13
Sample Type:	8	n	S	S	n	S
Sample Depth:	0-4	4-6	0-5	5-7	7-9	0-5
Sample Date:	10/5/88	10/5/88	10/6/88	10/6/88	10/6/88	10/6/88

Parameter (ppm)

						-
Pesticides						
alpha Chlordane	<1.9	<0.49	<2.2 J	<6.2 J	<0.54	<3 J
gamma Chlordane	<1.9	<0.49	<2.2 J	<6.2 J	<0.54	<3 J
Total Pesticides						••
PCBs						
Aroclor 1248	<1.9	2.5	19 J	<6.2 J	0.86	33 J
Aroclor 1254	<3.9	1.7	<4.5 J	10 J	0.63	19 J
Total PCBs		4.2	19	10	1.49	52

All results reported in micrograms per kilogram (ppm).

⁻⁻ Not detected.

J Estimated value.

S Sediment.

N Native soil.

^{*} Designates dominant component of composite sample.

Table 7. Concentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge Basin September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

	Sample Designation:	B-13	B-13	B-14	B-14	B-14	B-15
	Sample Type:	s	×	s	8	S/H=	S
	Sample Depth:	5-9	9-11	0-8	8-13	13-19	0-7
	Sample Date:	10/6/88	10/6/88	10/7/88	10/7/99	10/7/88	10/10/88
Parameter (ppm)							
esticides	-	_					
lpha Chlordane		<0.61	<0.44	<3.6 J	<0.52	<0.094	<1.8
amma Chlordane		<0.61	<0.44	<3.6 J	<0.52	<0.094	<1.8
Cotal Pesticides	•						
CBs	•						
roclor 1248		15	2.0	39 J	5.7	<0.094	40
roclor 1254		13	1.8	25 J	5.1	1.5	<3.5
otal PCBs		28	3.8	64	10.8	1.5	40

All results reported in micrograms per kilogram (ppm).

⁻⁻ Not detected.

J Estimated value.

S Sediment.

N Native soil.

^{*} Designates dominant component of composite sample.

Table 7. Concentrations of Pesticides/PCBs Detected in Soil Samples Collected from the Old Recharge Basin September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-15	B-15	B-16	B-16	B-16
Sample Type:	s	M	S	S	M
Sample Depth:	7-10	10-17	0-5	5-7	7-11
Sample Date:	10/10/88	10/10/88	10/10/88	10/10/88	10/10/88

Parameter (ppm)

Pesticides						
alpha Chlordane	<3.8	<3.5	<3.8	<3.4	<0.096	
gamma Chlordane	<3.8	<3.5	<3.8	<3.4	<0.096	
Total Pesticides						
CBs						
Aroclor 1248	21	<3.5	51	88	<0.096	
Aroclor 1254	12	9.2	22	51	0.086 J	
Total PCBs	33	9.2	73	139	0.086	

All results reported in micrograms per kilogram (ppm).

⁻⁻ Not detected.

J Estimated value.

S Sediment.

N Native soil.

[•] Designates dominant component of composite sample.

	7		
			,
-			

Table 8. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	8-1	B-1	8-2	B-2	B-3	B-3
Sample Type:	S/N+	K	S	S/N*	S/N*	N
Sample Depth (ft):	0-4	4-7	0-4	5-7	0-2	2-4
Sample Date:	9/27	9/27	9/27	9/27	9/28	9/28

Aluminum	21570 D	536 D	7,290 D	2,830 D	5,440 D	533 D
Antimony	<19.5	<5.4	<17.4	<5.6	<6.2	<4.9
Arsenic	9.1	<0.55	2.0 J	3.0	4.3	<0.6
Barium	110	8.9 J	58.2	13.8J	39 J	<8.1
Beryllium	1.43 QJ	<0.13	0. 320 J	<0.13	0.220 JD	<0.12
Cadmium	36.1 QJ	0.80 JQ	54.9 QJ	1.2 Q	15.3 QJ	<0.39
Calcium	1,560 J	51.3 J	1,010 J	222	586 J	48.2 J
Chromium	1,320	44.1	1,700	97.8	502	28.8
Cobalt	13.8 Л	<1.1	5.7 JD	108 JD	4.9 JD	<0.98
Copper	95.5	<2.4	89.3	6.0	31.3	<2.6
Iron	18,560 D	1,370 D	6,380 D	3,600 D	6,120 D	908 D
- ad	128 D	2.1 D	22.4 D	2.7 D	23.2 D	2.6 D
magnes ium	2,330	87.9	839	475 J	671 J	91.7 J
Manganese	473 QDJ	12.2 QDJ	131 QDJ	44.4 QDJ	148 QDJ	12.0 QDJ
Mercury	1.7	<0.08	<0.11	<0.10	<0.17	<0.08
Nickel	25.1 D	<2.4	15.3 D	<2.5	8.1 JD	<2.2
Potassium	1,100 J	106 J	382 J	349 J	323 J	87.4 J
Selenium	<0.35	0.32 QJ	0.43 JWQ	0.25 JWQ	<0.3 JWQ	0.323 QJ
Silver	51.1 D	0.64 JD	41.2 D	0.54 JD	20.1 D	<0.39
Sodium	<279	<186	<250	<193	215	<169
Thallium	<0.61	<0.33	<0.54	<0.41	<0.44	<0.36
Vanadium	33.2 D	<0.87	17.1 D	4.3 J	10.55 D	1.2 JD
Zinc	672 D	11.6 D	521 D	34.9 D	217 D	7.2 D
Cyanide	16.2	<0.72	<0.79	<0.69	2.3	<0.63

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

N Narive soil

Designates dominant component of composite sample.

'able 8. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-4	B-4	B-5	B-6	B-6
Sample Type:	S	S	S*/W	s	¥
Sample Depth (ft):	0-2	2-6	2-4	0-2	2-4
Sample Date:	9/28	9/28	9/28	9/29	9/29

Aluminum	12,890 D	15,400 D	5,500 D	20,700 D	420 D
Antimony	<7.4	<6.9	<5.8	<7.8	<5.8
Arsenic	7.5	8.5	4.1	10.0	<0.51
Barium	60.1	69.2	45.3 J	136	<9.5
Beryllium	0.79 JD	1.1 Л	0.14 JD	1.5 JD	<0.14
Cadmium	2.8 QJ	5.9 QJ	15.8 QJ	11.1 QJ	<0.46
Calcium	6,270	5,200	1,210	2,400	53.2 J
Chromium	125	322	377	564	124
Cobalt	7.2 JD	7.5 JD	4.6 J	17.4 D	<1.2
Copper	34.4	55.5	43.5	62.1	<3.0
Iron	15,200 D	17,200 D	7,240 D	20,400 D	661 D
sd	135 D	145 D	96.7 D	85.9 D	0.90 JD
.agnesium	2,580	2,400	783 J	3,060	69.9 J
Manganese	290 QDJ	233 QDJ	214 QDJ	559 QDJ	9.2 QDJ
Mercury	0.26	0.36	<0.10	<0.18	<0.10
Nickel	9.2 JD	13.4 D	10.2 D	20.3 D	2.5 D
Potassium	559 J	512 J	337 J	1,430 J	80.5 J
Selenium	<0.35	<0.35	<0.28	<0.38	<0.24
Silver	2.3 J	8.6 D	43.4 D	46.2 D	<0.46
Sodium	<255	<237	201	<270	<199
Thallium	<0.53	<0.51	<0.38	<0.58	<0.30
Vanadium	25.6 D	39.3 D	14.5 D	35.2 D	1.1 JD
Zinc	144 D	260 D	288 D	461 D	3.7 JD
Cyanide	<0.78	<0.85	2.3	4.1	<0.62

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

N Native soil.

Designates dominant component of composite sample.

'able 8. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

•					
Sample Designation:	B-7	3-8	3-8	8-9	B-9
Sample Type:	s/n+	s	Ħ	5	M
Sample Depth (ft):	0-2	0-2	2-4	0-4	4-6
Sample Date:	9/29	9/29	9/29	10/4	10/4

Aluminum	1,310 D	16,600 D	1,030 D	44,700 D	972 D
Antimony	<5.8	<7.8	<5.3	<24.9	<5.6
Arsenic	1.0 J	13.3	<0.60	20.1 QJ	<1.1
Barium	<9.5	139	<8.6	461	13.5
Beryllium	<0.14	0.98 JD	<0.13	3.3 J	<0.14
Cadmium	2.8 QJ	55.9 QJ	1.3 JQ	180 QDJ	1.3 QDJ
Calcium	1,620	4,090	112 J	9,530 D	110 Л
Chromium	299	1,260	63.8	7,250 QDJ	65.3 QDJ
Cobalt	1.2 D	12.2 D	<1.0	29.6 J	<11
Copper	16.1	81.7	3.9 J	556 D	4.1 JD
tron	1,420 D	17,200 D	922 D	42,900 D	1,490 D
ad	18.1 D	208 D	9.3 D	864	4.9
riagnesium	L 896	2,390	111 J	3,460 JD	100 JD
Manganese	25.6 QDJ	324 QDJ	18.0 QDJ	1,520 QDJ	21.7 QDJ
Mercury	<0.11	0.95	0.46	6.4	<0.10
Nickel	<2.6	18.6 D	<2.3	58.6 D	<2.5
Potassium	134	822 J	127 J	1,300 J	<65.3
Selenium	<0.23	0.35 JWQ	<0.22	<1.1	<0.27
Silver	2.4 D	60.7 D	1.2 JD	357 D	0.50 JD
Sodium	<199	307 J	<182	<857	<194
Thallium	<0.36	<0.62	<0.36	<1.9	<0.55
Vanadium	4.1 JD	32.4 D	<0.84	96.5	2.0 J
Zinc	46.4 D	478 D	30.1 D	7,470 QDJ	32.8 QDJ
Cyanide	1.4	<1.0	<0.59	24.8	0.62

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

N Native soil.

^{*} Designates dominant component of composite sample.

ible 8. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-10	B-10	B-11	B-11	B-12
Sample Type:	S	x	S	×	S
Sample Depth (ft):	0-4	4-6	0-4	4-6	0-5
Sample Date:	10/5	10/5	10/5	10/5	10/6

Aluminum	34,700 D	1,080 D	35,900 D	3,710 D	13,600 D
Antimony	<30.2	<5.9	<11.1	<5.6	9.6 J
Arsenic	15.9 QJ	<1.2	34.4 SQJ	1.4 JQ	<1.9
Barium	297	8.7 JD	174	21.7 J	22.0 JD
Beryllium	4.1 J	<0.14	1.3 J	0.17 J	<0.21
Cadmium	267 QDJ	3.0 QDJ	2.6 QDJ	3.6 QDJ	57.7 QDJ
Calcium	13,900 D	263 JD	1,520 JD	443 JD	499 JD
Chromium	11,400 QDJ	169 QDJ	26.7 QDJ	185 QDJ	6,280 QDJ
Cobalt	29.5 J	1.4 J	12.8 J	2.0 J	5.3 J
Copper	779 D	9.0 D	78.5 D	16.8 D	1,010 D
*ron	47,600 D	1,940 D	22,800 D	3,710 D	2,320 D
, ad	740 QDJ	15.3	34.4 S	19.8	108 QDJ
Magnesium	5,500 JD	154 JD	1,600 JD	330 JD	1,330 JD
Manganese	1,730 QDJ	38.2 QDJ	432 QDJ	72.1 QDJ	124 QDJ
Hercury	5.4	<0.09	0.25	0.22	<0.16
Nickel	90.2 D	3.7 JD	15.6 JD	3.3 JD	13.0 JD
Potassium	894 J	95.1 J	867 J	205 J	<100
Selenium	<1.5	<0.28	1.4 JWQ	0.26 JQ	<0.45
Silver	360 D	5.4 D	<0.89	4.7 D	2.0 JD
Sodium	<1040	<203	481 J	<192	<298
Thallium	<2.8	<0.53	<1.1	<0.54	<0.77
Vanadium	142	3.3 J	33.0	7.9 J	17.4
Zine	3,840 QDJ	66.6 QDJ	149 QDJ	85.9 QDJ	2,370 QDJ
Cyanide	116	1.7	3.2	3.6	10.2

J Estimated value.

Q Spiked sample recovery not within control limits.

W Post-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

N Native soil.

Designates dominant component of composite sample.

able 8. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	3-12	B-12	B-13	B-13	B-13
Sample Type:	S	Ħ	S	s	M
Sample Depth (ft):	5-7	7-9	0-5	5-9	9-11
Sample Date:	10/6	10/6	10/6	10/6	10/6

Aluminum	21,400 D	3,210 D	19,900 D	12,000 D	3,240 D
Antimony	<20.5	<7.8	<13.3	<9.4	<5.2
Arsenic	12.7 QJ	2.8 J	10.4 QJ	4.2 QJ	1.5 JWQ
Barium	316	24.3 JD	125	91.5	31.6 JD
Beryllium	<0.49	<0.19	0.70 J	0.89 J	<0.13
Cadmium	252 QDJ	5.6 QDJ	57.6 QDJ	45.9 QDJ	9.4 QDJ
Calcium	103,000 D	9,960 D	18,000 D	18,900 D	12,600 D
Chromium	6,740 D	248 QDJ	8,010 QDJ	4,420 QDJ	630 QDJ
Cobalt	27.3 J	2.4 J	18.2 J	10.5 J	3.1 J
Copper	217 D	16.4 D	666 D	294 D	38.0 D
*ron	49,700 D	4,880 D	42,400 D	26,000 D	7,930 D
ad	374 QDJ	73.4 QDJ	289 QDJ	212 QDJ	37.3
Hagnesium	9,940 D	895 JD	5,270 D	3,450 D	2,820 D
Manganese	1,290 QDJ	85.8 QDJ	894 QDJ	500 QDJ	156 QDJ
Mercury	5.2	0.48	1.4	1.1	0.23
Nickel	42.5 D	5.4 JD	39.1 D	25.6 D	6.1 JD
Potassium	578 J	327 J	475 J	312 J	191 J
Selenium	<0.86	<0.38	<0.64	<0.42	<0.22
Silver	139 D	5.0 D	106 D	62.1 D	10.9 D
Sodium	<707	<268	<458	<322	<180
Thallium	<2.0	<0.85	<0.96	<0.43	<0.38
Vanadium	84.8	8.2 J	63.1 J	34.5	11.0
Zine	2,500 QDJ	97.1 QDJ	2,680 QDJ	1,400 QDJ	209 QDJ
Cyanide	41.6	9.2	17.4	14.2	4.4

- J Estimated value.
- Q Spiked sample recovery not within control limits.
- W Post-digest spike recovery not within control limits.
- D Duplicate analysis not within control limits.
- S Sediment.
- N Native soil.
- Designates dominant component of composite sample.

thle 8. Concentrations of Total Metals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	B-14	B-14	B-14	B-15	B-15
Sample Type:	S	S	S/N*	S	S
Sample Depth (ft):	0-8	8-13	13-19	0-7	7-10
Sample Date:	10/7	10/7	10/7	10/10	10/10

Aluminum	24,600 D	10,400 D	476 D	30,300	29,300
Antimony	<14.8	<8.1	<4.9	15.6 J	14.4 J
Arsenic	7.0 SQJ	6.7 QJ	<0.55	19 e.e	11.3 QJ
Barium	93.8 JD	123	<8.1	168	<23.2
Beryllium	0.95 JQD	<0.20	<0.12	3.3	5.9
Cadmium	50.2 QDJ	63.8 QDJ	<0.46	59.5	63.9
Calcium	6,360 D	18,400 D	165 JD	30,600	24,700
Chromium	Ldp 088,4	2,370 QDJ	16.7 QDJ	9,250	8,550
Cobalt	13.5 J	10.3 J	<0.99	21.4 J	18.7 J
Copper	494 D	95.3 D	<2.6	1,130	1,040
Tron	22,900 D	25,000 D	1,430 D	43,600	39,400
, ad	257 QDJ	234 QDJ	1.6	368	358
ragnesium	4,150 D	3,220 D	91.4 JD	8,860	8,110
Manganese	Ldo ABE	LG D 82 6	10.9 QDJ	1,220	978
Hercury	0.71	0.54	<0.10	1.2	0.78
Nickel	41.3 D	23.6 D	<2.2	53.8	55.9
Potassium	697 J	569 J	<57.4	714 J	550 J
Selenium	0.70 J	<0.36	0.75 JQ	<0.75	0.99 JQ
Silver	24.5 D	86.5 D	<0.40	149 D	78.3 D
Sodium	<509	505 J	<170	859 J	812 J
Thallium	<0.90	<0.56	<0.33	<1.6	<1.3
Vanadium	85.1	32.3	1.2 J	57.1	60.0
Zine	1,400 QDJ	968 QDJ	6.5 QDJ	4,240	3,820
Cyanide	30.0	14.7	<0.65	84.0	44.0

- J Estimated value.
- Q Spiked sample recovery not within control limits.
- W Post-digest spike recovery not within control limits.
- D Duplicate analysis not within control limits.
- S Sediment.
- N Native soil.
- Designates dominant component of composite sample.

Table 8. Concentrations of Total Matals and Cyanide Detected in Soil Samples Collected from the Old Recharge Basin in September and October 1988 for Fairchild Republic Company, East Farmingdale, New York.

Sample Designation:	8-15	B-16	3-16	3-16
Sample Type:	*	\$	\$	×
Sample Depth (ft):	10-17	0-5	5-7	7-11
Sample Date:	10/10	10/10	10/10	10/10

Luminum	25,500	34,600	26,700	659
ntimony	13.8 J	<16.4	<12.3	<5.7
rsenic	13.3 QJ	13.4 QJ	12.1 QJ	<0.60
rium	420	198	151	<9.4
ryllium	<0.31	4.6	6.4	<0.14
dmium	85.5	66.0	56.4	<0.46
leium	24,400	18,800	14,300	123 J
romium	3,840	8,010	5,440	8.5
balt	22.4 J	22.8 J	15.4 J	<1.1
pper	333	970	865	<3.0
on.	48,500	46,600	30,400	1,450
nd.	686	422	348	<4.8
gnesium	7,640	7,030	5,530	110 J
ganese	982	959	625	26.5
cury	2.3	1.2	0.66	<0.08
kel	47.2	57.7	45.5	<2.5
assium	1200 J	754 J	525 J	120 J
lenium	1.9 JQN	1.4 JQW	0.57 SQJ	<0.24
ver	115 D	79.8 D	52.9 D	<0.46
lium	1210 J	605 J	442 J	<197
allium	<1.5	<1.6	<1.1	<0.56
adium	65.8	94.2	74.1	2.2 J
ıc	1,800	3,650	3,040	8.0
mide	9.5	45.2	53.6	<0.65

J Estimated value.

Q Spiked sample recovery not within control limits.

W Fost-digest spike recovery not within control limits.

D Duplicate analysis not within control limits.

S Sediment.

N Native soil.

Designates dominant component of composite sample.

, ŗ .

Results of EP Toxicity Testing of Soil Samples Collected from the Old Recharge Basin in September and October 1988 for Fairchild Republic Company, East Farmingdale, New York. Table 9.

,		Paramet	Parameter (mg/L):	Arsenic	Bertus	Cadmium	Chromium	Pee 7	Mercury	Selentum	Silver
				5.04	100.00	1.0	\$.0₽	5.0	0.24	1.04	5.0
		Sample									
Sample Designation	Seeple fype	Depth (feet)	Sample Date				-				
B-1	=	1	9/27/88	41.0	<0.20	0.08	0.01	¢0.20	<0.002	¢0.5	40.01
B-2	80	5-7	9/27/88	<1.0	<0.20	0.05	<0.01	<0.20	<0.002	<0.5	<0.01
B-3	w	2-4	9/28/88	<1.0	<0.20	0.05	0.01	<0.20	<0.002	<0.5	<0.01
9-4	w	2-6	9/28/88	<1.0	0.36	0.0	0.02	<0.20	<0.002	<0.5	<0.01
B- 5	8/R	2-4	9/28/88	<1.0	<0.20	0.32	<0.01	<0.20	<0.002	<0.5	<0.0>
9-9	s	2-4	9/29/88	<1.0	<0.20	<0.01	<0.01	<0.20	<0.002	<0.5	60.0
B-7	N/S	0-2	9/29/88	<1.0	<0.20	0.05	<0.01	<0.20	<0.002	<0.5	<0.0>
80-	Z	7-2	9/29/88	<1.0	<0.20	<0.01	<0.01	<0.20	<0.002	<0.5	0.0
6-9	×	9-4	10/4/88	<1.0	<0.20	0.03	0.02	<0.20	<0.002	<0.5	<0.0
B-1 0	=	9-4	10/5/88	<1.0	<0.20	0.01	<0.01	<0.20	<0.002	<0.5	60.0
B-11	×	9-4	10/5/88	<1.0	<0.20	0.01	<0.01	<0.20	<0.002	<0.5	60.0
B-12	×	7-9	10/6/88	<1.0	0.38	90.0	0.08	<0.20	<0.002	<0.5	60.0
B-13	Œ.	9-11	10/6/88	<1.0	0.21	0.0	<0.01	<0.20	<0.002	<0.5	0.0
B-14	N/S	13-19	10/7/88	<1.0	<0.20	<0.01	<0.01	<0.20	<0.002	40.5	¢0.0
B-15	8/H	10-17	10/10/88	<1.0	0.37	<0.01	0.03	<0.20	<0.002	\$.0 >	<0.01
B-16	8/H	7-11	10/10/88	41.0	<0.20	<0.01	<0.01	<0.20	<0.002	<0.5	10 07

All results in milligrams per liter (mg/L).

. Minimum concentration (mg/L) required for declaring a material hazardous.

Sediment.

Mative soil.

Designates dominant component of composite sample.