

February 5, 1996

Mr. Ajay Shah, P.E.
Division of Hazardous Waste Remediation
Department of Environmental Conservation
Building 40
SUNY - Stonybrook
Stonybrook, NY 11790-2356

RE: Quarterly Ground Water Sampling Results Jameco Industries, Inc.

248 Wyandanch Avenue Wyandanch, New York

Dear Mr. Shah:

Attached please find four copies of the Quarterly Ground Water Sampling report, prepared by Goldman Environmental Consultants, Inc. (GEC) for the above-referenced site. As documented in the report, GEC conducted the sampling of select monitoring wells in early January, 1996 in accordance with the Maintenance Plan as modified through your conversations with Paul Bartlett of GEC.

These reports include summary tables and complete laboratory results. We trust that the information provided is complete.

We would also like to inform you of a typographical error that was included in our October quarterly report. In this report, metals results for ground water samples, included as Table 3 were erroneously reported as being one thousand times higher than are actually present at the site. This error occurred when units reported by the lab as parts per billion (ppb) were not converted to parts per million (ppm) when the table was prepared. We have corrected the table in this report.

We would be happy to discuss these results with you if you are interested. If you have any questions, please do not hesitate to contact me at (617) 961-1200.

Sincerely,

Goldman Environmental Consultants, Inc.

Samuel W. Butcher

Senior Project Manager / Hydrogeologist

cc: Ms. Camille Gagnon, Watts Industries - with copy of report

Paul Bartlett, GEC - without copy of report

QUARTERLY GROUND WATER SAMPLING JAMECO INDUSTRIES, INC. 248 WYANDANCH, AVE WYANDANCH, NEW YORK

February 1, 1996

Prepared For:

New York State Department of Environmental Conservation

and

Camille Gagnon Watts Industries, Inc. P.O. Box 6431 South Main Street Franklin, NH 03235

GEC

Goldman Environmental Consultants, Inc. 15 Pacella Park Drive Randolph, MA 02368-1755 (617) 961-1200

QUARTERLY GROUND WATER SAMPLING REPORT 248 WYANDANCH AVENUE WYANDANCH, NEW YORK

TABLE OF CONTENTS

SECTION	TITLE	PAGE
1.0	Introduction	1
2.0		Sampling and Surveying1
3.0		ults2
4.0		3
5.0		4
		TABLES
	TABLE 1 TABLE 2 TABLE 3	GROUND WATER ELEVATION MEASUREMENTS SUMMARY OF LABORATORY RESULTS - VOCs SUMMARY OF LABORATORY RESULTS - Total Metals
		<u>FIGURES</u>
	FIGURE 1 FIGURE 2	SITE LOCUS MAP SITE PLAN WITH SAMPLING LOCATIONS
		APPENDICES
	APPENDIX A APPENDIX B	STANDARD OPERATING PROCEDURES LABORATORY ANALYTICAL REPORTS

1.0 Introduction

Goldman Environmental Consultants, Inc. (GEC) of Randolph, Massachusetts has been contracted by Watts Industries, Inc. (Watts) and Jameco Industries, Inc. (Jameco) to conduct Quarterly Ground Water Sampling at the Jameco facility located at 248 Wyandanch, Avenue in Wyandanch, New York. These activities are being conducted in accordance with Jameco's Maintenance Plan, that was approved by the New York Department of Environmental Conservation (NYSDEC).

The first quarterly sampling was conducted in July, 1994 by GEC and Jameco's previous consultants, AKRF, Inc. In conjunction with this sampling effort, GEC and AKRF also conducted a limited investigation to determine if there was evidence that a release of metals and/or chlorinated compounds had occurred beneath the site building. This investigation included the installation of three ground water observation wells through the floor of the building. As a result of this investigation dissolved-phase chlorinated compounds were detected in the shallow portions of the overburden aquifer beneath the building. Complete documentation of this investigation is presented in a document entitled Maintenance Plan First Quarterly Report prepared by AKRF and completed in August, 1994.

As a result of the investigations conducted by GEC and AKRF, and after conversations between GEC, Watts, and NYSDEC personnel, the scope of quarterly ground water sampling was amended so as to better characterize ground water conditions across the site. Changes in the scope were limited to adding one of the newly installed monitoring wells (MW-12) to the sampling list and removing two of the wells (MW-4 and MW-6) from the list. This revised sampling plan has been employed for several quarters.

All activities were conducted in accordance with GEC's Standard Operating Procedures and QA/QC Plan, copies of which are attached as Appendix A.

2.0 Ground Water Sampling and Surveying

On January 17, 1996, GEC personnel collected ground water samples from monitoring wells MW-1, MW-3, MW-7, MW-9 and MW-12. Wells MW-2 and MW-5 were covered with snow banks and were not accessible. Prior to sample collection the approximate volume of standing water in each well was computed

and a volume of water equal to between three and five times the volume of standing water was evacuated from the monitoring well. GEC utilized dedicated or precleaned standard check-valve bailers or pre-cleaned electric submersible pumps. The samples were collected using dedicated plastic bailers or electric peristaltic pumps and were stored on ice in laboratory-issued, preserved, glass and nalgene containers. All samples were shipped overnight to Thermo Analytical Laboratories (TMA), a New York State certified laboratory in Waltham, Massachusetts under fully documented chain of custody procedures.

Prior to initiation of well evacuation and sampling activities, GEC measured the depth to water in all of the on-site monitoring wells. Well MW-6, located in a dirt parking area, could not be located at the time of the site visit, and was not gauged as part of this effort. GEC personnel conducted a survey of monitoring wells, using standard "rod and level techniques" to determine the relative elevation of the monitoring wells as part of previous site investigations. Depth to water and ground water elevation for these wells is included in this Quarterly Sampling Report.

The results of the ground water gauging and well survey were used to determine the relative elevation of ground water at the site and to determine the direction of ground water flow. As a result of these activities, the ground water flow at the site appears to be toward the southeast. Complete results of the gauging and survey are included as Table 1.

3.0 Laboratory Analysis

Ground water samples were submitted for laboratory analysis to determine the concentration of volatile organic compounds (VOCs) (via EPA Method 8240), hexavalent chromium (via Colorimetric, 307-B Methods) and 13 Priority Pollutant Metals (total). The laboratory results are summarized on Tables 2 and 3 attached, and a complete laboratory report is included as Appendix B. Also included on these tables are the results of the sampling that was conducted during previous rounds. The results of these analyses are also summarized in the paragraphs below.

Volatile Organic Compounds

Results of recent analyses indicate that the concentrations of volatile organic compounds in ground water at the site remain essentially unchanged from previous sampling rounds. Low concentrations of chlorinated compounds

were detected in the upgradient observation well (MW-1) and higher concentrations were detected in a well situated within the building footprint and downgradient of the building. Four volatile organic compounds, not previously detected, were reported by the laboratory. Acetone, 2-butonone, 2-hexanone and methyl-t-butyl ether (MTBE) were all reported at low concentrations in groundwater samples collected from the site. Acetone, 2-butonone and 2-hexanone are all common laboratory reagents and there presence in the samples is likely the result of laboratory contamination. MTBE is a common gasoline additive and its presence may be related to the upgradient presence of a gasoline station.

Hexavalent Chrome and Metals

Concentrations of total and dissolved metals and hexavalent chrome remain essentially unchanged from previous sampling rounds. Concentrations are relatively low across the entire site but are somewhat higher in the immediate vicinity of the plating area (within the building footprint) and downgradient of the former leaching lagoons. Hexavalent chrome was not detected in ground water samples collected from any of the observation wells.

4.0 Conclusions

In accordance with the NYSDEC-approved Maintenance Plan, and on behalf of Jameco and Watts, GEC has completed the most recent round of quarterly ground water sampling at the Jameco facility, located at 248 Wyandanch, Avenue in Wyandanch, New York.

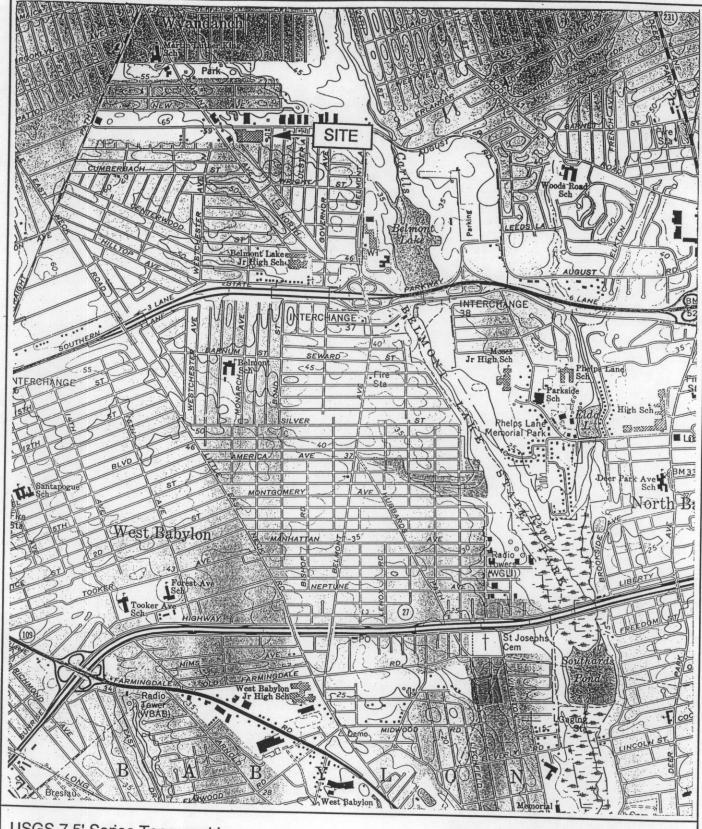
The results of the ground water sampling indicate that concentrations of volatile organic compound and metals remain generally unchanged from the previous sampling rounds. GEC will continue to collect ground water samples from designated wells on a regular basis. The next sampling round is tentatively scheduled for April, 1996.

5.0 Warranty

The conclusions contained in this report are based on the information readily available to GEC as of January 30, 1996. GEC provides no warranties on information provided by third parties and contained herein. Data compiled was in accordance with GEC's approved scope of services, and the NYSDEC -approved Maintenance Plan and should not be construed beyond its limitations. Any interpretations or use of this report other than those expressed herein are not warranted. The use, partial use, or duplication of this report without the express written consent of Goldman Environmental Consultants, Inc. is strictly prohibited.

Respectfully submitted,
Goldman Environmental Consultants, Inc.

Prepared By:


Samuel W. Butcher Senior Project Manager Reviewed By:

Gary W. Siegel, P.E.

Vice President,

Environmental Engineering

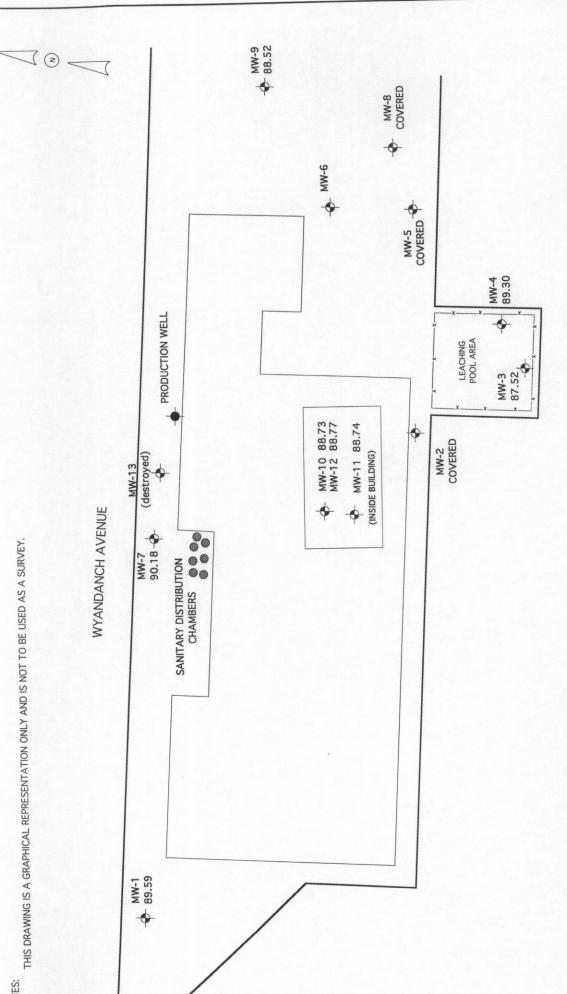
FIGURES

USGS 7.5' Series Topographic

BAY SHORE WEST, N.Y. Quadrangle

GEC

Goldman Environmental Consultants, Inc. 15 Pacella Park Drive Randolph, MA 02368 (617) 961-1200 SITE LOCATION MAP


248 WYANDANCH AVENUE WYANDANCH, NEW YORK Project No. 444-010-95 FIGURE 1

SCALE 1:24 000 (

THIS DRAWING IS A GRAPHICAL REPRESENTATION ONLY AND IS NOT TO BE USED AS A SURVEY.

WYANDANCH AVENUE

GROUND WATER ELEVATION PLAN JAMECO INDUSTRES 248 WYANDANCH AVENUE WYANDANCH, NEW YORK JOB NUMBER: 444-006-94 SCALE: 1" = 100' ± DATT: Inminty 30, 1996 DRAWN BY: IRD
--

Goldman Environmental Consulants, Inc. 15 Pacella Park Drive Randolpi, MA 02368 (617) 961-1200	
GEC	

N FIGURE

TABLES

Table 1 GROUNDWATER ELEVATION MEASUREMENTS Jameco Industries, Inc. Wyandanch, Ave., Wyandanch, New York (unit, feet)

Well Number	Screened Interval Depth	Depth to Water	Measuring Point Elevation	Groundwate Elevation
MW-1				
10/4/94	6.43 to 16.43	11.27	101.47	90.20
1/26/95		11.08	101.47	90.39
4/19/95		11.15	101.47	90.32
7/24/95		12.34	101.47	89.13
10/12/95	Market and the	12.72	101.47	88.75
1/17/96		11.88	101.47	89.59
MW-2				
10/4/94	6.00 to 16.00	11.02	100	88.98
1/26/95		10.79	100	89.21
4/19/95		10.90	100	89.10
7/24/95		11.92	100	88.08
10/12/95		12.16	100	87.84
1/17/96		Buried in snow		
MW-3 10/4/94	9.91 to 19.91	14.61	102.57	87.96
1/26/95	9,91 10 19,91	14.44	102.57	88.13
4/19/95		14.56	102.57	88.01
7/24/95		15.49	102.57	87.08
10/12/95		15.49	102.57	86.74
1/17/96		15.05	102.57	87.52
MW-4				
10/4/94	10.05 to 20.05	13.85	103.41	89.56
1/26/95		13.60	103.41	89.81
4/19/95		13.73	103.41	89.68
7/24/95		14.63	103.41	88.78
10/12/95	1	15.07	103.41	88.34
1/17/96		14.11	103.41	89.30
MW-5				
10/4/94	6.27 to 16.27	10.44	99.32	88.88
1/26/95		10.18	99.32	89.14
4/19/95		10.37	99.32	88.95
7/24/95		11.31	99.32	88.01
10/12/95		11.64	99.32	87.68
1/17/96		Buried in snow		
MW-6				
10/4/94	6.00 to 16.00	9.86	Not Found	NA
1/26/95		Not Found	Not Found	NA
4/19/95		Not Found	Not Found	NA
7/24/95		Not Found	Not Found	NA
10/12/95		Not Found Buried in snow	Not Found	
		Buried in snow		
MW-7 10/4/94	12.56 to 22.56	0.04	00.70	00.75
1/26/95	12.56 10 22.56	9.01	98.76	89.75
4/19/95		8.83 8.97	98.76 98.76	89.93 89.79
7/24/95		9.90	98.76	88.86
10/12/95		10.35	98.76	88.41
1/17/96		8.58	98.76	90.18
MW-8		Mary 1		
10/4/94	10.89 to 20.89	10.70	99.47	88.77
1/26/95		10.43	99.47	89.04
4/19/95		10.60	99.47	88.87
7/24/95		11.42	99.47	88.05
10/12/95		11.89	99.47	87.58
1/17/96		Buried in snow		
MW-9				
10/4/94	10.57 to 20.57	8.90	97.80	88.90
1/26/95	100	8.68	97.80	89.12
4/19/95		8.88	97.80	88.92
7/24/95		9.72	97.80	88.08
10/12/95		9.98	97.80	87.82
1/17/96		9.28	97.80	88.52
MW-10 10/4/94	86.7 to 96.7	11.14	00.07	00.00
1/26/95	00.7 10 90.7	11.14	99.97 99.97	88.83
4/19/95		10.53	99.97	89.44 89.25
7/24/95		11.66	99.97	89.25
10/12/95		12.06	99.97	87.91
	1		00.01	01.01

Table 1 GROUNDWATER ELEVATION MEASUREMENTS Jameco Industries, Inc. Wyandanch, Ave., Wyandanch, New York (unit, feet)

Well Number	Screened Interval Depth	Depth to Water	Measuring Point Elevation	Groundwater Elevation
MW-11				
10/4/94	50.0 to 60.0	10.77	99.95	89.18
1/26/95		10.54	99.95	89.41
4/19/95		10.66	99.95	89.29
7/24/95		11.61	99.95	88.34
10/12/95		12.10	99.95	87.85
1/17/96		11.21	99.95	88.74
MW-12				
10/4/94	5.35 to 15.35	11.79	99.97	88.18
1/26/95		10.51	99.97	89.46
4/19/95		10.66	99.97	89.31
7/24/95		11.66	99.97	88.31
10/12/95	Physical M	12.08	99.97	87.89
1/17/96		11.20	99.97	88.77

^{*=} Previously referred to as "Mystery Well"

** = Corrected for Petroleum Thickness assuming density of 0.87

Product thickness not measured during the 10/12/95 gauging event.

Table 2 SUMMARY OF GROUNDWATER ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS Watts Co., Wyandanch, New York (unit, parts per billion [ppb], µg/L)

6/91	II-AA-II		emane	ethene	Benzene	Chloride	pentanone	chloroethane	ethene	Toluene	ethane	ethane	-	ethene		
5/23/94	98	9 S	Q.	Q	Q	QN	7	QN	QN	QN	11	QN	QN		QN	
1/27/95	2 8	2 2	2 2	O S	NA:	0.5	NA	Q	QN	QN	30	QN	N		N N	
4/19/95	Q	QN	S	2 5	Z Z	ON.	NA.	ON S	2	QN	9.0	QN	QN		ON	
7/24/95	QN	QN	QN	2	S	CN	Z S	0.3 ND	25	Q S	9.0	Q.	Q.		ON	
10/12/95	Q S	9 9	2	QN	Q	QN	Q	Q.	20	28	NO ON	200	2 2		28	ON SA
MW-2	ON	ND	ON	QN	QN	7.1	NA	QN	QN	QN	QN	QN	2		2	
6/91	QN	QN	CN	CN	CIA	4	4							+		
5/23/94	QN	ND	Q.	QN	NAN	NO 03	ON N	2 2	1500	2 9	12	QN	5400	_	QN	
1/27/95	QN	QN	QN	Q	AN	C C	AN	2 2	87	2 2	4	0.4	1200		0.2	
4/19/95	QN	QN	QN	QN	QN	QN	NA	28	41		2 2	ON S	180		Q.	
7/24/95	Q.	QN	QN	QN	QN	Q	Q	N ON	0.5	2 2	2 2	25	46		2 2	NO ON
10/12/95	ON	QN	QN	QN	QN	6.7	QN	ON	QN	S	2 5	2 5	5 0		2 2	
MW-3	Civ	4		!								ON.	17		ND	1
5/23/94	2 2	2 2	2 2	2 9	9:	QN	Q	QN	QN	QN	QN	QN	QN		QN	
1/27/95	2 2	2 2	2 2	2 5	AN:	0.5	NA	QN	QN	QN	QN	QN	10		QN	
4/19/95	2 2	2 2	2 2	2 2	AN:	Q	NA	QN	QN	QN	QN	QN	4		QN	
7/24/95	QN	2 2	2 5	2 2	N S	ON.	NA.	Q.	25	QN	QN	QN	170		QN	
10/12/95	QN	2 2	2 5	2 2	S	ON C	Q.	Q!	4	QN	ON	QN	12		QN	
1/17/96	1.8***	Q.	2	2 2	2 5	12	ON N	O S	Q.	2	Q!	QN	Q		QN	QN QN
MW-5					200	0.0	NA.	ON	1.7	QN	QN	QN	5.3	_	QN	
6/91	2	Q	QN	QN	2	9	46	QN	30	14	30	CN CN	,	_	9	
5/23/94	2	2	Q	QN	NA	0.3	NA	QN	3 0	6.0	000	28		_	2 2	
1/27/95	99	2 2	2	Q.	NA	QN	NA	QN	0.00	N S	N	22	4 10		25	
7/24/95	2 5	25	22	2 5	2	Q	NA	QN	4	QN	N	2	0 10		2 2	
10/12/95	QN	2 9	2 2	2 2	2 2	2 =	25	2 2	280	25	Q!	2	6		QN	QN QN
MW-7								ON.		ON	ON	QN	5.6		QN	1
6/91	2 2	99	2 2	99	Q	Q	Q	QN	QN	QN	QN	QN.	QN		QN	
1/27/95	QN	2 8	2 5	2 2	NA NA	6.3	Y.	2 !	30	Q	QN	QN	4		QN	
4/19/95	QN	QN N	2	2 2	X C	25	A N	2 2	30	25	2	Q.	8		N	
7/24/95	QN	QN	Q	2	N O	2	QN	28	0 6	2 2	2 2	2 2	9.0		2	
10/12/95	Q.	QN	QN	QN	QN	12	QN	Q.	51	S S	25	25	8.00		2 2	
MW.0	ON	QN	QN	2.9	QN	7.6	NA	QN	17	Q	Q.	N ON	1.3		N ON	ON ON
6/91	QN	ND	QN	QN	QN	S	CN	SN SN	CIV	Ci.	4					
5/23/94	QN	QN	ND	QN	NA	200	NAN	2 5	NO.	2 2	2 2	2	Q		Q	
1/27/95	Q.	QN	QN	QN	NA	QN	NA	N ON	N N	2 9	28	2 2	6.0 CN		2 2	
7/24/05	O S	Q.	Q.	QN	QN	QN	NA	QN	QN	Q.	N	2 2	S S		2 5	
10/12/05	28	22	2	Q.	QN	QN	QN	QN	QN	QN	QN	Q.	Q.		Q Q	
1/17/96	200	288	28		O S	1 6	Q	Q.	QN	QN	QN	QN	QN		QN	QN
MW-12					QN	0.0	NA	ON ON	QN	ON	QN	QN	QN		QN	
6/91	2 :	Q	Q	QN	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	
1/07/05	25	2 2	Q.	Q.	NA	NA	NA	NA	NA	NA	NA	NA	NAN AN		AN	NA
4/10/05	25	2 2	O.S.	Q!	NA	370	NA	QN	120	QN	ON	QN	3300		Q	
7/24/95	2 5	25	22	2 9	Q	Q.	NA.	Q	400	QN	ND	QN	1500		QN	
10/12/95	QN	200	2 2	200	ON S	ON:	Q.	Q.	100	QN	NO	QN	1800		QN	
1/17/96	CIV		000	Qu.	2		ON		75	CN	67	22	2000		4::	

MDL. Method Detection Limit NA. Not Analyzed ND. Not Detected NS. Not Sampled
MDL. Method Detection Limit NA. Not Analyzed ND. Not Detected NS. Not Sampled
MDL. Method Detection Limit NA. Not Analyzed ND. Not Detected NS. Not Sampled
MDL. Method Detection Limit is not sampled to not sample and so that not sample and not sample and so that not sample and so that not sample and so that not sample and not sample and so that not sample and not representative of site conditions.

Accious methyl-butyl-butyl-ethyl-ether, 2-butanone and 2-haxanone were detected in several samples. These results were not abbutanted as they are considered laboratory contaminants and not representative of site conditions.

"No guidance value axists."

"Independent of the properties of the sample and not sample and not representative of site conditions.
"No guidance value axists."

Prepared by PT Reviewed by SB Revised 1/31/96

SUMMARY OF GROUNDWATER ANALYSIS FOR METALS (TOTAL) Watts Co., Wyandanch, New York (unit, parts per million [ppm], mg/L) Table 3

						Hamerolland								
Identification	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
MW-1					-									
5/23/95	32	0.019	QN	QN	0.029	0.02	0.026	0.035	0	QN	QN	QN	QN	0.173
1/27/95	QN	0.042	QN	0.0068	0.065	QN	0.084	0.056	0.00029	0.042	QN	0.01	QN	0.250
4/19/95	QN	0.035	QN	0.0061	0.040	NA	0.054	0.044	QN	QN	QN	Q.	QN	0.16
7/24/95	QN	0.048	QN	0.0077	0.052	QN	0.071	0.044	0.00034	ND	QN	QN	QN	0.18
10/27/95	NA	0.083	NA	QN	0.075	QN	NA	0.057	QN	NA	QN	QN	NA	NA
1/17/96	QN	0.129	0.00555	ND	0.124	QN	0.141	0.0861	QN	0.105	0.00552	QN	QN	0.353
MW-2														
5/23/95	0.038	0.007	QN	ND	8.88	0.24	3.16	0.087	0	4.49	QN	QN	QN	0.747
1/27/95	QN	0.03	QN	0.014	4	QN	3.8	0.079	0.00048	5.7	QN	0.01	QN	0.700
4/19/95	Q.	090.0	QN	0.021	4.9	NA	3.5	0.11	0.00044	4.3	QN	ND	QN	69.0
7/24/95	QN	0.054	QN	0.019	3.9	QN	4.1	0.10	0.0013	3.6	QN	QN	ND	0.67
10/27/95	NA	0.086	NA	ND	4.09	QN	NA	0.108	0.0038	NA	QN	0.014	NA	NA
MW-3														
5/23/95	QN	QN	QN	ND	0.119	0.02	0.597	QN	QN	1.75	QN	QN	QN	0.109
1/27/95	QN	QN	QN	ND	0.32	ND	4.5	QN	QN	3.5	QN	0.011	ND	0.680
4/19/95	QN	QN	QN	QN	0.20	AN	2.8	ND	QN	2.0	QN	QN	QN	0.37
7/24/95	QN	QN	QN	QN	0.061	QN	9.9	QN	0.0002	4.2	QN	QN	QN	0.89
10/27/95	NA N	Q	NA N	QN	0.201	Q.	NA N	0.041	QN	NA	QN	Q	AZ	AN
1/17/96	QN	Q	QN	ND	0.226	QN	4.630	0.0271	QN	2.640	QN	QN	ND	0.469
MW-5														
5/23/95	0.040	0.029	QN	QN	0.117	0.02	0.639	0.022	0	0.373	QN	Q	QN	0.582
1/27/95	Q	0.046	QN	9900.0	0.1	QN	0.73	0.020	QN	0.23	QN	0.013	QN	0.480
4/19/95	Q	0.049	QN	0.0081	0.13	NA	0.92	0.038	Q	0.27	Q	Q	ND	0.45
7/24/95	Q	0.048	ND	0.007	0.10	QN	0.75	0.018	0.00022	0.19	ND	Q.	Q.	0.36
10/27/95	NA	0.087	NA	QN	0.221	QN	NA	0.038	QN	NA	QN	QN	NA	NA
MW-7														
5/23/95	QN	0.002	QN	QN	QN	0.01	QN	900.0	QN	0.025	QN	ON	QN	0.026
1/27/95	Q	Q.	Q	QN	Q	QN	QN	Q.	Q	Q.	Q	0.011	2	2
4/19/95	QN	N N	QN	QN	QN	NA	ND	QN	QN	QN	QN	Q.	QN	QN
7/24/95	Q	Q.	QN	0.0052	Q	QN	0.013	ND	QN	QN	QN	Q	QN	0.035
10/27/95	NA.	0.015	NA	QN	0.021	Q	NA	0.011	Q.	NA:	ND	2	NA:	NA
1/17/96	QN	0.0104	QN	QN	QN	QN	0.0204	0.00718	QN	QN	0.00703	ND	ND	0.0333
6-WW							9	1000	,		9	-	9	7000
5/23/95	2 9	2 2	2 2	2 2	S S	10.0	2 2	c00.0	0 5	2 5	2 2	ON C	2 2	0.034
4/10/05	2 2	2 5	2 2	2 2	2 2	N N		2 2			2 2	2	2	0.025
7/24/95	2 2	0013	2 2	2 2	0.017	2 2	0100	0000	2 5	2 2	2 2	2 2	S	0.10
10/07/05	2 4	0.00	2 4		0.004		NA NA	0.00		NA NA	2	2	NA	NA
1/17/96	25	0.013	2 2	2 2	0.021	2 2	0 0 082	0.0137	2 2	0.0162	2 2	2 5	2 2	0 108
MW-12		0.00			01-10-10		20100	000		2010.0				
5/23/95	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1/27/95	0.18	0.11	0.019	0.082	18	QN	21	0.310	0.0013	21	0.0055	QN	QN	2.600
4/19/95	QN	0.10	0.015	0.059	14	NA	25	0.23	0.0013	22	QN	QN	QN	4.7
7/24/95	0.16	0.073	0.011	0.05	10	QN	13	0.16	0.0013	16	ND	QN	ND	3.0
10/27/95	NA	0.047	NA	0.017	5.870	ND	AN	60.0	0.0052	NA	QN	ND	NA	NA
1/17/96	Q	0.0423	Q	ND	Q.	QN	QN	0.0761	0.00048	9.740	QN	Q	Q	4.260
Standard	0.003**	0.025	0.003	0.01	0.05	0.05	0.2	0.025	0.002	No Stnd.	0.01	0.05	.004**	0.300

Notes:
Samples were analyzed via the following SW-846.
Samples were analyzed via the following SW-846.
Standard * refers to the groundwater standard for each element for Class GA groundwaters (6NYCHR Parts 700-705).
** Refers to a Guidance value where no Standard exists.
Barium was detected during 10/12/05 sampling period between 43.5 and 870 ppm.
MDL= Method Detection Limit (Method Detection Limit ranges from 0.00020 ppm to 0.2 ppm depending on analysis and element.
ND= Not Detected
NA= Not Analyzed
NS= Not Sampled

Prepared by PT Reviewed by SB Revised 2/1/96

APPENDIX A STANDARD OPERATING PROCEDURES

Standard Operating Procedure Decontamination Procedures for Field Equipment

All field equipment (bailers, well sounder, gloves, etc.) must be decontaminated before each use, between samples and before it is returned to the equipment room. Decontamination procedures vary for the type of analyses to be performed. The following basic procedures should always be used to decontaminate equipment regardless of the type of analysis:

1) Scrub equipment with soapy water (Liquinox, Alconox, trisodiumphosphate or equivalent).

Rinse with tap water, if available.

3) Rinse with deionized water from green spray bottle.

For Metals, perform the following additional procedures:

- 4) Rinse with 10% nitric acid (HNO₃).
- 5) Final rinse with deionized water.

For base/neutral/acid extractables, PCB's and pesticides perform the following, additional procedures:

- 4) Rinse with acetone and let dry.
- 5) Rinse with hexane and let dry.
- 6) Final rinse with deionized water.

For Volatile Organics and all other analyses, perform the following additional procedures:

- 4) Rinse with methanol.
- 5) Final rinse with deionized water

NOTE: When sampling for more than one of the above types of analyses, use the protocol for volatile organics last.

Solvent use should be gauged carefully so that a minimal amount of solvent is left after use. Allow any remaining solvent to evaporate.

Standard Operating Procedure Observation Well Sampling Using a Bucket-Type Bailer

This protocol is designed to ensure that proper techniques are used, safety is considered and quality assurance maintained during the performance of observation well sampling. A GEC representative is assigned to oversee and/or perform all observation well sampling for the project. The duties of the representative are to ensure that the scope of work is followed.

Sampling of groundwater observation wells is the primary means by which the chemical characteristics of groundwater can be determined. Therefore, it is imperative that care be taken in the development and subsequent sampling of observation wells. Water standing in the well prior to sampling may be stagnant and may not be representative of true groundwater quality in the aquifer in question

Procedures for performance of groundwater observation well evacuation and sampling are outline in the following paragraphs:

Well Evacuation:

- Prior to initiating any work, the Health and Safety Plan developed for the specific site activities should be reviewed by all field personnel. The indicated measures on the Plan should be enacted prior to initiation of the sampling activities. Any concerns not addressed in the Plan are to be brought immediately to the attention of the Health and Safety Officer. Personnel participating in the sampling will dress with protective equipment appropriate for the anticipated conditions.
- Decontaminate all equipment to be used in the performance of the activities. Decontamination should at least be performed by alternately rinsing all equipment with methanol and distilled water and vigorously scrubbing the equipment with a clean brush.
- 3) The extent that contamination may be known at a given site, observation wells should be sampled in an order from "least contaminated" to "most contaminated".
- 4) Screen the well headspace with a photoionization detector (PID) or other appropriate instrumentation to confirm that concentrations of potential contaminants are within acceptable limits.
- Test the well for accumulation of non-aqueous phase product (LNAPL or DNAPL) using a pre-cleaned interface probe or transparent disposable bailer. If present, collect a sample of the NAPL and place in an appropriate sample container. This sample should be kept away from other samples.

- Measure and record the depth to NAPL(if present), depth to water, and total depth of the wells. If NAPL is present, sampling for dissolved phase contaminants should generally not be performed. In addition, if sampling is to be performed, appropriate measures should be taken to assure that any water removed from a contaminated well is disposed appropriately.
- Calculate the volume of saturated well casing and the volume of water which will be removed to assure sufficient well evacuation. Evacuate well water into a clean, small (< 0.5 gallons), bucket or similar vessel in which precleaned and calibrated conductivity and pH probes have been placed. Attach a precleaned bailer to cable or line for lowering the bailer into the well. Lower the bailer slowly into the well until it contacts the water surface. Allow the bailer to sink and fill with a minimum of surface disturbance. Raise the bailer to the surface. Do not allow the bailer line to contact the ground. Drain the bailer into the small bucket.
- 8) Purging should continue until between three and five well volumes have been evacuated and pH, temperature, and specific conductivity values do not vary appreciably.
- 9) Record final pH, conductivity and temperature values.
- 10) Allow between one (1) and four (4) hours for the well to equilibrate prior to sampling. Discard string, and discard or decontaminate the bailer or pump in accordance with the Protocol for Decontamination.

Well Sampling:

- Sampling of observation wells will be conducted only with clean, decontaminated Teflon, or stainless steel sampling bailers or with clean disposable bailers. Disposable bailers shall not be re-used for any purpose. In addition, disposable gloves are worn for each individual well sampling and line used to support the bailer is to be discarded between wells.
- Samples at any given well will be collected in order of decreasing order of sensitivity to volatilization (i.e. VOC, total organic carbon, semi-volatile organics (BNA), ammonia, PCBs, pesticides, oil and grease, phenols, cyanide, sulfate and chloride, nitrate and ammonia, metals and radionuclides).

- Solution 20 Section 2018. Lower the bailer slowly until it contacts the water surface. Allow the bailer to sink to a point such that the bailer becomes filled with water, but not to the point where the string comes in contact with the water. Note: Under specific sampling conditions this sample collection procedure may vary. Under these conditions specific notation is required regarding any modifications or amendments made to the Protocol.
- 4) Slowly raise the bailer to the surface and remove the bailer from the well. Care should be taken to ensure that the string and bailer do not come in contact with the ground or other potential contaminant sources.
- Carefully and slowly transfer the contents of the bailer into appropriately preserved, pre-labeled containers. Check that the sample containers seal properly and that the cap is sealed tightly. Record applicable information in the field logbook and complete all chain-of-custody documents.
- 6) Discard string, and discard or decontaminate the bailer appropriately.

Standard Operating Procedure Sample Preservation and Chain of Custody

This protocol is designed to ensure that proper techniques are employed in the preservation and chain-of custody of samples collected for laboratory analyses or for screening. This Protocol is intended to be consistent with Massachusetts Publication #WSC-310-91 (Standard References for Monitoring Wells), and 40 CFR 136 (Guidelines Establishing Test Procedures for the Analysis of Pollutants).

The results of screening and/or laboratory analysis of solid, liquid or gaseous media constitute the basis of evaluation of the majority of the disposal sites under investigation. It is therefore imperative that the preservation of the samples be appropriate to the media being analyzed as well as the analysis which is being performed. In addition, the integrity of the sample is dependent upon the premise that a clear chain of responsibility for the sample integrity has been maintained. Without this "Chain-of-Custody", the integrity of the laboratory results may inevitably come into question.

The preservation and Chain-of-Custody (COC) protocols outlined in the following paragraphs are not intended to be all inclusive, and this protocol is written with the understanding that the sampling of certain media or analyses may require specific sample preservation. This protocol is, however, intended to cover the majority of the media and analyses performed as well as the COC procedures employed at the majority of waste disposal sites.

A COC program must be followed during sampling and handling activities from the field through laboratory operations. This program is designed to assure that each sample is accounted for at all times. Field data sheets, COC records, and sample labels must also be completed by the appropriate sampling and laboratory personnel for each sample. The objective of the sample custody identification and control system is to assure, to the extent practical, that:

- · all samples are uniquely identified;
- the correct samples are analyzed for the correct parameters and are traceable through their records;
- important sample characteristics are preserved;
- samples are protected from damage or loss;
- any processing of samples (e.g., filtration, preservation) is documented;
 and
- · client confidentially is maintained.

A sample is considered under a COC if it meets all of the following criteria:

- · the sample is in your custody,
- · the sample is in your view, after being in your possession,
- the sample is in your possession and then you locked it up to prevent tampering, and
- · the sample is in a designated, secured area.

The following paragraphs outline GEC's preservation and COC protocol.

- 1) Prior to initiating any work, the Health and Safety Plan developed for the specific site activities should be reviewed by all field personnel. The indicated measures on the Plan should be enacted prior to initiation of any sampling activities. Any concerns not addressed in the Plan are to be brought immediately to the attention of the Health and Safety Officer. Personnel participating in the excavations will dress with protective equipment appropriate for the anticipated conditions.
- 2) Sample integrity is assured by use of containers appropriate to both the matrix to be sampled and the analytes of interest. Sample containers must be prepared in the laboratory in a manner consistent with USEPA protocols. Unless the proper sample bottle preparation and sample preservation measures are taken in the field, sample composition can be altered by contamination, degradation, biological transformation, chemical interaction, and other factors during the time between sample collection and analysis. Prior to sampling GEC personnel will ensure that the sample containers obtained from either a laboratory or a commercial supplier have been prepared in accordance with DEP and EPA protocols. Sample containers are to be used once and discarded. Under no circumstance should a soil, water or gaseous media which has been collected for analysis be placed in a previously used sample container unless that container has been recleaned and preserved by a certified laboratory.

As part of the COC protocol, sample containers should have prepared labels for each sample. The label should include sample identification, date and time of collection, sample parameters to be analyzed, any preservatives used, and the name of the sample collector.

Upon collection of the sample(s), documentation of chain of custody (i.e. COC form) should be initiated and should include at least the following:

- date and time of sampling;
- sampling locations;
- sample bottle identification;
- and specific sample acquisition measures.

The COC and sample description requires:

- a unique identification of each sample;
- the name(s), address(es) and telephone number(s) of the sampler(s) and the person(s) shipping the samples and all subsequent transfers of custody;
- the type and method of analyses requested;

Standard Operating Procedure Field Sampling Protocols Quality Assurance/Quality Control

I. Purpose

The purpose of the GEC QA/QC program is to generate analytical data that is of known and defensible quality. These procedures apply to all projects in which sampling is involved. QA/QC from one project is not transferable to another.

II. Decontamination

- Decontamination should be performed on all reusable field sampling equipment and protective gear. Sampling equipment should be decontaminated before the collection of a sample and after sampling has been completed. Protective gear should be decontaminated after the collection of a sample.
- 2) It is necessary to use the following decontamination solutions in the field:
 - Non-phosphate detergent plus tap water wash.
 - Distilled/ deionized water rinse.
 - 10% Nitric Acid rinse.*
 - Distilled/ deionized water rinse.*
 - Methanol rinse, when sampling volatiles only.
 - Acetone then hexane rinse.**
 - Distilled/ deionized water rinse. **
 - * Only if sample is to be analyzed for metals.
 - ** Only if sample is to be analyzed for semi-volatile organics, PCBs or pesticides.
- 3) Sample bottles and sampling equipment should not be stored near gasoline, solvents, or other potential sources of contamination. If unavoidable bottles and equipment should be sealed in containers or plastic.
- 4) Heavy equipment, including hand tools, should be cleaned by steam cleaning or manual scrubbing prior and subsequent to use in hazardous waste investigations.

III. Measures or Quality Control/Quality Assurance

1. Trip Blanks

- Trip blanks are used in order to detect additional sources of contamination that might affect analytical results. The following are potential sources of additional contamination:
 - a. Sample containers,

b. Contamination during shipment to and from the site,

- c. Ambient air contact with analytical instrumentation at the laboratory during analysis, or
- d. Laboratory reagent used in analytical procedures.
- One trip blank is required for every set of samples sent to the lab regardless of job size. Generally, the trip blank should be for VOCs. If, however, VOCs are not a parameter of the sampling round, consult the laboratory as to which parameter should have an associated trip blank.
- Trip blanks are to be kept with containers used in the sampling round at all times. More specifically, they should accompany the site specific sampling containers from the time the containers leave the laboratory until they are returned for analysis.
- Obtain containers and trip blanks prepared specifically for each job from the laboratory. Return unused containers to the laboratory upon completion of a project.

2. Field Blanks

- Field blanks are used to indicate potential contamination contracted from ambient air or from sampling equipment. It also serves as a QA/QC for decontamination procedures.
- Collect one set of field blanks for every 20 samples per project. It is not necessary to take a field blank for jobs in which less than 10 samples are collected.

Procedure

- a. Collect two sets of sample containers to cover all sampling parameters. One set will be full of analyte free water (obtain extra analyte free water to fill two VOA vials). The other set is empty.
- b. Go to the most contaminated area and run the water from the full containers, through the decontaminated sampling equipment and into the associated empty containers.
- c. Send to the lab for analysis.
- Use containers and field blanks prepared specifically for job.

3. Duplicate Samples

Duplicate samples are collected in order to serve as a laboratory check.
 Therefore, it is important that the lab does not know which samples are to serve for this purpose.

- Frequency

- a. Obtain one (1) duplicate sample for every 10 samples of each matrix. If less than ten samples are collected of a given matrix, a duplicate must be collected anyway.
- b. If a total of less than 10 samples are collected, collect one (1) duplicate of the majority medium.
- c. If a total of less than five (5) samples are collected, it is not necessary to collect a duplicate sample.
- * Note that the frequency as outlined here pertains to the number of samples collected per project, not per location of a given project.

Procedures

The idea behind the duplicate sample is to collect two samples as close to identical as possible.

a. For water

Alternately fill containers for the same parameter with equal amounts of liquid per bailer. Fill duplicate VOC vials from the same bailer of liquid.

b. For soil

- -- VOC samples must be taken from the discreet sampling locations.
- -- For all other samples, mix the applicable soil in a decontaminated stainless steel or polyethylene bowl or tray. Then fill sample containers with the soil mix.
- -- When confronted with the option of collecting a water sample or a soil sample, choose the water sample.

Labeling for the laboratory

- a. Label the containers normally and give the duplicate samples different reference numbers.
- b. Indicate the quantity of duplicates in the "special instructions" or "remarks" portion of the chain of custody and laboratory services sheet, however, do not indicate the reference numbers of the duplicates.
- Upon receipt of analytical results, contact the laboratory and convey all data pertaining to the duplicates for their QA/QC.

4. Background samples

- Background samples are taken only if it is required for comparison of site conditions to the surrounding environment. This is to be dictated by client needs on a site to site basis.
- 5. Performance Evaluation Samples
- The project manger should consider the use of the following performance evaluation samples on a periodic basis. Typically, these will be reserved for larger jobs:
 - a. Laboratory performance evaluation samples
 - Collect duplicate samples and send to two different laboratories for comparison. Avoid using soil samples for this procedure.
 - Send a sample of known quantity and quality to the laboratory in order to determine laboratory performance. Such samples can be prepared by any laboratory.
 - b. Gas chromatograph (GC) performance evaluation samples
 - -- Acquire a sample of known quantity and quality from a laboratory. Analyze the sample with the gas chromatograph in order to determine the integrity of GC results.

IV. Field Sampling QA/QC

- 1) When sampling a well, collect VOA samples first and Oil & Grease samples last.
- 2) Start sampling at the presumed least contaminated areas, proceeding to the more contaminated areas.
- 3) Preservatives
 - Consult the laboratory in order to determine which sampling parameters require preservatives. The laboratory will provide sampling containers specific for each job.
 - It is necessary to fill the sample container when using preserved bottles; preservative is added with this assumption
 - If samples are not collected correctly, they will not pass GEC QA/QC.
- 4) A chain-of-custody must accompany each set of samples from the job site to the laboratory. Be sure to identify the presence of trip blanks on the chain-of-custody sheets.

5) If possible, use the numbering system outlined on the attached sheet for identifying samples.

V. Ordering Sample Containers

- 1) Pre-plan sampling strategy to determine the sample parameters, the number of sample points including QA/QC samples, and the matrix of the given sample points.
- 2) Call laboratory and tell them:

- Sample parameters,

Number of samples to be collected,

 The number of container sets needed for trip blanks, field blanks, and duplicates, and

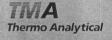
- The matrix of each sample to be collected.

 Sample containers should be ordered specifically for each job. Any sample containers unused at the end of the job should be sent back to the laboratory.

VI. Conclusions

- 1) Pre-planning is crucial.
- 2) Keep open communication with the laboratory on all matters.
- 3) If you make a mistake in sampling collection, accept it, and retake the necessary samples.

APPENDIX B LABORATORY ANALYTICAL REPORTS


QUALITY ENVIRONMENTAL SERVICES

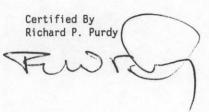
Report for

Goldman Environmental Consultants

WORK ORDER #S601066

Scientific Services Since 1922

Thermo Analytical 300 Second Avenue P.O. Box 521 Waltham, MA 02254


Attn: Client Services Phone: (617) 890-7200

Goldman Env. Consultants 15 Pacella Park Drive Randolph MA 02368

Attn: Sam Butcher Invoice Number: Order #: S6-01-066 Date: 01/29/96 10:42 Work ID: Water Analysis Date Received: 01/18/96 Date Completed: 01/29/96 Client Code: GOLDMAN

SAMPLE IDENTIFICATION

Sample Number		Sample Description	Sample Number	Sample Description
01	MW-1		04 MW-9	9
02	MW-3		05 MW-1	12
03	MW-7			

Sample: 01C MW-1	Co11	ected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units	Analyzed	Ву
Hex Chromium-Chelat/AA	U	10.0	ug/L	01/18/96	SRP
Sample: 01D MW-1	Coll	ected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units	Analyzed	Ву
Antimony - ICP	U	50.0	ug/L	01/23/96	JST
Arsenic - Trace Analyzer	129	5.0	ug/L	01/25/96	JST
Beryllium - ICP - Water	5.55	5.0	ug/L		JST
Cadmium - ICP	U	5.0	ug/L		JST
Chromium - ICP	124	20.0	ug/L		JST
Copper - ICP	141	10.0	ug/L		JST
Lead - Trace Analyzer	86.1	5.0	ug/L		JST
Mercury - Cold Vapor AA	U	0.20	ug/L		OR
Nickel - ICP	105	15.0	ug/L		JST
Selenium - Trace Analyzer	5.52	5.0	ug/L		JST
Silver - ICP	U	10.0	ug/L		JST
Thallium - Trace Analyzer	Ŭ	5.0		01/25/96	JST
Zinc - ICP	353	20.0	ug/L		JST
Zilic - Ici	333	20.0	ug/ L	01/23/30	031
Sample: O2C MW-3	Coll	ected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units	Analyzed	Ву
Hex Chromium-Chelat/AA	U	10.0	ug/L	01/18/96	SRP
Sample: O2D MW-3	Co11	ected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units	Analyzed	Ву
Antimony - ICP	U	50.0	ug/L		JST
Arsenic - Trace Analyzer	U	5.0	ug/L		JST
Beryllium - ICP - Water	Ü	5.0	ug/L		JST
Cadmium - ICP	Ü	5.0	ug/L		JST
Chromium - ICP	226	20.0	ug/L		JST
Copper - ICP	4630	10.0	ug/L		JST
Lead - Trace Analyzer	27.1	5.0	ug/L		JST
Mercury - Cold Vapor AA	U	0.20	ug/L		OR
Nickel - ICP	2640	15.0	ug/L		JST
Selenium - Trace Analyzer	U	5.0	ug/L		JST
Silver - ICP	Ŭ	10.0	ug/L		JST
Thallium - Trace Analyzer	Ü	5.0	ug/L		JST
Zinc - ICP	469	20.0	ug/L	01/23/96	JST
Sample: 03C MW-7	Co11	ected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units	Analyzed	D.
Hex Chromium-Chelat/AA	Kesuit	10.0	ug/L	01/18/96	By SRP
nex off official official/AA	U	10.0	ug/L	01/10/30	SKP

Sample: 03D MW-7	Coll	ected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units	Analyzed	Ву
Antimony - ICP	U	50.0	ug/L	01/23/96	JST
Arsenic - Trace Analyzer	10.4	5.0	ug/L	01/25/96	JST
Beryllium - ICP - Water	Ü	5.0	ug/L	01/23/96	JST
Cadmium - ICP	Ü	5.0	ug/L		JST
Chromium - ICP	Ü	20.0	ug/L	01/23/96	JST
Copper - ICP	20.4	10.0	ug/L		JST
Lead - Trace Analyzer	7.18	5.0	ug/L		JST
	,.10 U	0.20	ug/L	01/22/96	OR
Mercury - Cold Vapor AA Nickel - ICP	Ü	15.0	ug/L		JST
	7.03	5.0	ug/L	01/25/96	JST
Selenium - Trace Analyzer	7.03 U	10.0	ug/L	01/23/96	JST
Silver - ICP				01/25/96	
Thallium - Trace Analyzer	U	5.0	ug/L		
Zinc - ICP	33.3	20.0	ug/L	01/23/96	331
Sample: 04C MW-9	Coll	ected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units		
Hex Chromium-Chelat/AA	U	10.0	ug/L	01/18/96	SRP
Sample: 04D MW-9	Coll	ected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units		
Antimony - ICP	U	50.0	ug/L	01/23/96	JST
Arsenic - Trace Analyzer	13.1	5.0	ug/L	01/25/96	JST
Beryllium - ICP - Water	U	5.0	ug/L	01/23/96	JST
Cadmium - ICP	U	5.0	ug/L	01/23/96	JST
Chromium - ICP	24.3	20.0	ug/L	01/23/96	JST
Copper - ICP	28.2	10.0	ug/L	01/23/96	JST
Lead - Trace Analyzer	13.7	5.0	ug/L		JST
Mercury - Cold Vapor AA	U	0.20	ug/L		
Nickel - ICP	16.2	15.0	ug/L		JST
Selenium - Trace Analyzer	U	5.0	ug/L		Marine.
Silver - ICP	Ŭ	10.0	ug/L		10-510
Thallium - Trace Analyzer	Ü	5.0	ug/L		
Zinc - ICP	108	20.0	ug/L		
Sample: 05C MW-12	Coll	ected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units	Analyzed	Ву
Hex Chromium-Chelat/AA	U	10.0	ug/L	01/18/96	
Sample: O5D MW-12	Coll	lected: 01/17/96	Category:	WATER	
Test Description	Result	Limit	Units	Analyzed	Ву
Antimony - ICP	U	50.0	ug/L	01/23/96	JST
Arsenic - Trace Analyzer	42.3	5.0	ug/L		
Beryllium - ICP - Water	U	5.0	ug/L		JST
Cadmium - ICP	U	5.0	ug/L		
	7.00				

Order # S6-01-066 01/29/96 10:42 Thermo Analytical
TEST RESULTS BY SAMPLE

Page 4

Test Description	Result	Limit	Units	Analyzed	Ву
Chromium - ICP	U	20.0	ug/L	01/23/96	JST
Copper - ICP	U	10.0	ug/L	01/23/96	JST
Lead - Trace Analyzer	76.1	5.0	ug/L	01/25/96	JST
Mercury - Cold Vapor AA	0.48	0.20	ug/L	01/22/96	OR
Nickel - ICP	9740	15.0	ug/L	01/23/96	JST
Selenium - Trace Analyzer	U	5.0	ug/L	01/25/96	JST
Silver - ICP	U	10.0	ug/L	01/23/96	JST
Thallium - Trace Analyzer	U	5.0	ug/L	01/25/96	JST
Zinc - ICP	4260	20.0	ug/L	01/23/96	JST

Order # S6-01-066 01/29/96 10:42

Thermo Analytical TEST RESULTS BY SAMPLE

Page 5

Sample Description: MW-1

Lab No: 01A

Test Description: Water - VOA 8260/SW846 Collected: 01/17/96 12:00

Method: SW846 8260 Test Code: 8260_W

Q = recovery exceeds control limit

Category: WATER

Date Analyzed 01/24/96 Dilution Factor All results reported in

ug/L

COMPOUND	RESULT	LIMIT	COMPOUND	RESULT	LIMIT
acetone	9.1	2.0	1,2-dichloropropane	U	1.0
acrolein	U	1.0	1,3-dichloropropane	U	1.0
acrylonitrile	U	1.0	2,2-dichloropropane	U	1.0
benzene	U	1.0	1,1-dichloropropene	U	1.0
bromobenzene	U	1.0	cis,trans-1,3-dichloropropene	U	1.0
bromochloromethane	U	1.0	ethylbenzene	U	1.0
bromodichloromethane	U	1.0	ethyl methacrylate	U	1.0
bromoform	U	1.0	hexachlorobutadiene	U	2.0
bromomethane	U	1.0	2-hexanone	U	2.0
2-butanone	U	2.0	iodomethane	U	1.0
n-butylbenzene	U	1.0	isopropylbenzene	U	1.0
sec-butylbenzene	U	1.0	p-isopropyltoluene	U	1.0
tert-butylbenzene	U	1.0	2-methyl-2-pentanone	U	2.0
carbon disulfide	U	1.0	methyl-t-butyl ether	3.0	1.0
carbon tetrachloride	U	1.0	methylene chloride	7.1	1.0
chlorobenzene	U	1.0	napthalene	U	1.0
chloroethane	U	2.0	n-propylbenzene	U	1.0
2-chloroethylvinyl ether	U	1.0	styrene	U	1.0
chloroform	U	1.0	1,1,1,2-tetrachloroethane	U	1.0
chloromethane	U	2.0	1,1,2,2-tetrachloroethane	U	1.0
2-chlorotoluene	U	1.0	tetrachlorethene	U	1.0
4-chlorotoluene	U	1.0	toluene	U	1.0
dibromochloromethane	U	1.0	1,2,3-trichlorobenzene	U	1.0
1,2-dibromo-3-chloropropane	U	1.0	1,2,4-trichlorobenzene	U	1.0
1,2-dibromoethane	U	1.0	1,1,1-trichloroethane	U	1.0
dibromomethane	U	1.0	1,1,2-trichloroethane	U	1.0
1,2-dichlorobenzene	U	1.0	trichloroethene	U	1.0
1,3-dichlorobenzene	U	1.0	trichlorofluoromethane	U	1.0
1,4-dichlorobenzene	U	1.0	1,1,3-trichloropropane	U	1.0
1,4-dichloro-2-butene	U	1.0	1,2,4-trimethylbenzene	U	1.0
dichlorodifluoromethane	U	2.0	1,3,5-trimethylbenzene	U	1.0
1,1-dichloroethane	U	1.0	vinyl acetate	U	1.0
1,2-dichloroethane	U	1.0	vinyl chloride	U	1.0
1,1-dichloroethene	U	1.0	o-xylene	U	1.0
cis-1,2-dichloroethene	U	1.0	m-xylene	U	2.0
trans-1,2-dichloroethene	U	1.0	p-xylene	U	2.0
NOTES AND DEFINITION			SURROGATE STDS.	%REC	LIMITS
U = not detected at :			t dibromofluoromethane	102	45 - 149
J = detected below qu			toluene-d8	101	55 - 126
B = compound detected			4-bromofluorobenzene	96	41 - 149
0 = recovery exceeds	control li	mi t			

TMA Thermo Analytical Sample Description: MW-3

Test Description: Water - VOA 8260/SW846

Lab No: 02A

Method: SW846 8260

0 Test Code: 8260_W

Collected: 01/17/96 12:00

Category: WATER

Date Analyzed 01/24/96 Dilution Factor All results reported in

ug/L

COMPOUND	RESULT	LIMIT	COMPOUND	RESULT	LIMIT
acetone	22	2.0	1,2-dichloropropane	U	1.0
acrolein	U	1.0	1,3-dichloropropane	U	1.0
acrylonitrile	U	1.0	2,2-dichloropropane	U	1.0
benzene	U	1.0	1,1-dichloropropene	U	1.0
bromobenzene	U	1.0	cis,trans-1,3-dichloropropene	U	1.0
bromochloromethane	U	1.0	ethylbenzene	U	1.0
bromodichloromethane	U	1.0	ethyl methacrylate	U	1.0
bromoform	U	1.0	hexachlorobutadiene	U	2.0
bromomethane	U	1.0	2-hexanone	1.4 J	2.0
2-butanone	2.4	2.0	iodomethane	U	1.0
n-butylbenzene	U	1.0	isopropylbenzene	U	1.0
sec-butylbenzene	U	1.0	p-isopropyltoluene	U	1.0
tert-butylbenzene	U	1.0	2-methy1-2-pentanone	U	2.0
carbon disulfide	U	1.0	methyl-t-butyl ether	U	1.0
carbon tetrachloride	U	1.0	methylene chloride	8.1	1.0
chlorobenzene	U	1.0	napthalene	U	1.0
chloroethane	U	2.0	n-propylbenzene	Ü	1.0
2-chloroethylvinyl ether	U	1.0	styrene	Ü	1.0
chloroform	U	1.0	1,1,1,2-tetrachloroethane	U	1.0
chloromethane	1.8 J	2.0	1,1,2,2-tetrachloroethane	Ü	1.0
2-chlorotoluene	U	1.0	tetrachlorethene	1.7	1.0
4-chlorotoluene	U	1.0	toluene	U	1.0
dibromochloromethane	U	1.0	1,2,3-trichlorobenzene	U	1.0
1,2-dibromo-3-chloropropane	U	1.0	1,2,4-trichlorobenzene	U	1.0
1,2-dibromoethane	U	1.0	1,1,1-trichloroethane	Ü	1.0
dibromomethane	U	1.0	1,1,2-trichloroethane	Ü	1.0
1,2-dichlorobenzene	U	1.0	trichloroethene	5.3	1.0
1,3-dichlorobenzene	U	1.0	trichlorofluoromethane	U	1.0
1,4-dichlorobenzene	U	1.0	1,1,3-trichloropropane	Ü	1.0
1,4-dichloro-2-butene	U	1.0	1,2,4-trimethylbenzene	Ü	1.0
dichlorodifluoromethane	U	2.0	1,3,5-trimethylbenzene	Ü	1.0
1,1-dichloroethane	U	1.0	vinyl acetate	Ü	1.0
1,2-dichloroethane	U	1.0	vinyl chloride	U	1.0
1,1-dichloroethene	U	1.0	o-xylene	Ü	1.0
cis-1,2-dichloroethene	U	1.0	m-xylene	Ü	2.0
trans-1,2-dichloroethene	U	1.0	p-xylene	Ü	2.0
NOTES AND DEFINITIONS FOR THIS REPORT			SURROGATE STDS.	%REC	LIMITS
U = not detected at stated detection limit			t dibromofluoromethane	106	45 - 149
J = detected below qu	antitation	limit	toluene-d8	105	55 - 126
B = compound detected in the method blank			4-bromofluorobenzene	100	41 - 149
Q = recovery exceeds	control lim	nit		100	.1 143

TIVIA
Thermo Analytical

This report is rendered upon all of the following conditions: Thermo Analytical retains ownership of this report until associated submitted invoice is satisfied. Expert witness services shall be available in conjunction with this report only if prior notification of this potential requirement was made and accepted before the analysis. Client will be responsible for Thermo Analytical costs and consulting fees if our services are required by subpoena or otherwise in legal proceedings. Total liability is limited to the invoice amount. The results listed refer only to tested samples and applicable parameters. Samples are not analyzed in accordance with New York State protocol unless indicated. Product endorsement is neither inferred nor implied. Thermo Analytical will exercise due diligence but will not be responsible for lost or destroyed samples or evidence unless client makes appropriate insurance coverage arrangements. Samples are held for thirty days following issuance of report. Samples will be stored at client's expense, if authorized in writing.

300 Second Avenue P.O. Roy 521 Waltham Massachusatts 02354 0521 (617) 000 7200

Order # \$6-01-066 01/29/96 10:42

Thermo Analytical TEST RESULTS BY SAMPLE Page 7

Sample Description: MW-7

Lab No: 03A Method: SW846 8260

Test Code: 8260_W

Test Description: Water - VOA 8260/SW846 Collected: 01/17/96 12:00

Category: WATER

Date Analyzed 01/24/96 Dilution Factor

All results reported in

Q = recovery exceeds control limit

ug/L

COMPOUND	RESULT	LIMIT	COMPOUND	RESULT	LIMIT
acetone	3.6	2.0	1,2-dichloropropane	U	1.0
acrolein	U	1.0	1,3-dichloropropane	U	1.0
acrylonitrile	U	1.0	2,2-dichloropropane	U	1.0
benzene	U	1.0	1,1-dichloropropene	U	1.0
bromobenzene	U	1.0	cis, trans-1,3-dichloropropene	U	1.0
bromochloromethane	U	1.0	ethylbenzene	U	1.0
bromodichloromethane	U	1.0	ethyl methacrylate	U	1.0
bromoform	U	1.0	hexachlorobutadiene	U	2.0
bromomethane	U	1.0	2-hexanone	U	2.0
2-butanone	U	2.0	iodomethane	U	1.0
n-butylbenzene	U	1.0	isopropylbenzene	U	1.0
sec-butylbenzene	U	1.0	p-isopropyltoluene	U	1.0
tert-butylbenzene	U	1.0	2-methyl-2-pentanone	U	2.0
carbon disulfide	U	1.0	methyl-t-butyl ether	1.3	1.0
carbon tetrachloride	U	1.0	methylene chloride	7.6	1.0
chlorobenzene	U	1.0	napthalene	U	1.0
chloroethane	U	2.0	n-propylbenzene	U	1.0
2-chloroethylvinyl ether	U	1.0	styrene	U	1.0
chloroform	U	1.0	1,1,1,2-tetrachloroethane	U	1.0
chloromethane	U	2.0	1,1,2,2-tetrachloroethane	U	1.0
2-chlorotoluene	U	1.0	tetrachlorethene	17	1.0
4-chlorotoluene	U	1.0	toluene	U	1.0
dibromochloromethane	U	1.0	1,2,3-trichlorobenzene	U	1.0
1,2-dibromo-3-chloropropane	U	1.0	1,2,4-trichlorobenzene	U	1.0
1,2-dibromoethane	U	1.0	1,1,1-trichloroethane	U	1.0
dibromomethane	U	1.0	1,1,2-trichloroethane	U	1.0
1,2-dichlorobenzene	U	1.0	trichloroethene	1.3	1.0
1,3-dichlorobenzene	U	1.0	trichlorofluoromethane	U	1.0
1,4-dichlorobenzene	U	1.0	1,1,3-trichloropropane	U	1.0
1,4-dichloro-2-butene	U	1.0	1,2,4-trimethylbenzene	U	1.0
dichlorodifluoromethane	U	2.0	1,3,5-trimethylbenzene	U	1.0
1,1-dichloroethane	U	1.0	vinyl acetate	U	1.0
1,2-dichloroethane	U	1.0	vinyl chloride	U	1.0
1,1-dichloroethene	U	1.0	o-xylene	U	1.0
cis-1,2-dichloroethene	2.9	1.0	m-xylene	U	2.0
trans-1,2-dichloroethene	U	1.0	p-xylene	U	2.0
NOTES AND DEFINITION			SURROGATE STDS.	%REC	LIMITS
U = not detected at	stated dete	ction limi	t dibromofluoromethane	98	45 - 149
J = detected below q			toluene-d8	99	55 - 126
B = compound detected in the method blank			4-bromofluorobenzene	95	41 - 149

Order # S6-01-066 01/29/96 10:42

Thermo Analytical TEST RESULTS BY SAMPLE Page 8

Sample Description: MW-9

Test Description: Water - VOA 8260/SW846

Collected: 01/17/96 12:00

Lab No: 04A

Method: SW846 8260 Test Code: 8260_W

Category: WATER

Date Analyzed 01/24/96 Dilution Factor All results reported in ug/L

COMPOUND	RESULT	LIMIT	COMPOUND	RESULT	LIMIT
acetone	4.4	2.0	1,2-dichloropropane	U	1.0
acrolein	U	1.0	1,3-dichloropropane	U	1.0
acrylonitrile	U	1.0	2,2-dichloropropane	U	1.0
benzene	U	1.0	1,1-dichloropropene	U	1.0
bromobenzene	U	1.0	cis,trans-1,3-dichloropropene	U	1.0
bromochloromethane	U	1.0	ethylbenzene	U	1.0
bromodichloromethane	U	1.0	ethyl methacrylate	U	1.0
bromoform	U	1.0	hexachlorobutadiene	U	2.0
bromomethane	U	1.0	2-hexanone	U	2.0
2-butanone	U	2.0	iodomethane	U	1.0
n-butylbenzene	U	1.0	isopropylbenzene	U	1.0
sec-butylbenzene	U	1.0	p-isopropyltoluene	U	1.0
tert-butylbenzene	U	1.0	2-methyl-2-pentanone	U	2.0
carbon disulfide	U	1.0	methyl-t-butyl ether	3.9	1.0
carbon tetrachloride	U	1.0	methylene chloride	8.8	1.0
chlorobenzene	U	1.0	napthalene	U	1.0
chloroethane	U	2.0	n-propylbenzene	U	1.0
2-chloroethylvinyl ether	U	1.0	styrene	U	1.0
chloroform	58	1.0	1,1,1,2-tetrachloroethane	U	1.0
chloromethane	U	2.0	1,1,2,2-tetrachloroethane	U	1.0
2-chlorotoluene	U	1.0	tetrachlorethene	U	1.0
4-chlorotoluene	U	1.0	toluene	U	1.0
dibromochloromethane	U	1.0	1,2,3-trichlorobenzene	U	1.0
1,2-dibromo-3-chloropropane	U	1.0	1,2,4-trichlorobenzene	U	1.0
1,2-dibromoethane	U	1.0	1,1,1-trichloroethane	U	1.0
dibromomethane	U	1.0	1,1,2-trichloroethane	U	1.0
1,2-dichlorobenzene	U	1.0	trichloroethene	U	1.0
1,3-dichlorobenzene	U	1.0	trichlorofluoromethane	U	1.0
1,4-dichlorobenzene	U	1.0	1,1,3-trichloropropane	U	1.0
1,4-dichloro-2-butene	U	1.0	1,2,4-trimethylbenzene	U	1.0
dichlorodifluoromethane	U	2.0	1,3,5-trimethylbenzene	U	1.0
1,1-dichloroethane	U	1.0	vinyl acetate	U	1.0
1,2-dichloroethane	U	1.0	vinyl chloride	U	1.0
1,1-dichloroethene	U	1.0	o-xylene	U	1.0
cis-1,2-dichloroethene	U	1.0	m-xylene	U	2.0
trans-1,2-dichloroethene	U	1.0	p-xylene	U	2.0
NOTES AND DEFINITIONS	SURROGATE STDS.	%REC	LIMITS		
U = not detected at stated detection limit			dibromofluoromethane	117	45 - 149
J = detected below qu	toluene-d8	115	55 - 126		
B = compound detected Q = recovery exceeds	4-bromofluorobenzene	110	41 - 149		

Order # S6-01-066 01/29/96 10:42

Thermo Analytical TEST RESULTS BY SAMPLE Page 9

Sample Description: MW-12

Lab No: 05A

Test Description: Water - VOA 8260/SW846 Collected: 01/17/96 12:00

Method: SW846 8260

Test Code: 8260_W

Category: WATER

Date Analyzed 01/24/96 Dilution Factor All results reported in

ug/L

COMPOUND	RESULT	LIMIT	COMPOUND	RESULT	LIMIT
acetone	U	2.0	1,2-dichloropropane	U	1.0
acrolein	U	1.0	1,3-dichloropropane	U	1.0
acrylonitrile	U	1.0	2,2-dichloropropane	U	1.0
benzene	U	1.0	1,1-dichloropropene	U	1.0
bromobenzene	U	1.0	cis, trans-1,3-dichloropropene	U	1.0
bromochloromethane	U	1.0	ethylbenzene	U	1.0
bromodichloromethane	U	1.0	ethyl methacrylate	U	1.0
bromoform	U	1.0	hexachlorobutadiene	U	2.0
bromomethane	U	1.0	2-hexanone	U	2.0
2-butanone	U	2.0	iodomethane	U	1.0
n-butylbenzene	U	1.0	isopropylbenzene	U	1.0
sec-butylbenzene	U	1.0	p-isopropyltoluene	U	1.0
tert-butylbenzene	U	1.0	2-methyl-2-pentanone	1.2 J	2.0
carbon disulfide	U	1.0	methyl-t-butyl ether	U	1.0
carbon tetrachloride	U	1.0	methylene chloride	8.0	1.0
chlorobenzene	U	1.0	napthalene	U	1.0
chloroethane	U	2.0	n-propylbenzene	U	1.0
2-chloroethylvinyl ether	U	1.0	styrene	U	1.0
chloroform	13	1.0	1,1,1,2-tetrachloroethane	U	1.0
chloromethane	U	2.0	1,1,2,2-tetrachloroethane	U	1.0
2-chlorotoluene	U	1.0	tetrachlorethene	75	1.0
4-chlorotoluene	U	1.0	toluene	U	1.0
dibromochloromethane	U	1.0	1,2,3-trichlorobenzene	U	1.0
1,2-dibromo-3-chloropropane	U	1.0	1,2,4-trichlorobenzene	U	1.0
1,2-dibromoethane	U	1.0	1,1,1-trichloroethane	5.3	1.0
dibromomethane	U	1.0	1,1,2-trichloroethane	U	1.0
1,2-dichlorobenzene	U	1.0	trichloroethene	1400	1.0
1,3-dichlorobenzene	U	1.0	trichlorofluoromethane	U	1.0
1,4-dichlorobenzene	1.2	1.0	1,1,3-trichloropropane	U	1.0
1,4-dichloro-2-butene	U	1.0	1,2,4-trimethylbenzene	U	1.0
dichlorodifluoromethane	U	2.0	1,3,5-trimethylbenzene	U	1.0
1,1-dichloroethane	6.6	1.0	vinyl acetate	U	1.0
1,2-dichloroethane	U	1.0	vinyl chloride	54	1.0
1,1-dichloroethene	U	1.0	o-xylene	U	1.0
cis-1,2-dichloroethene	U	1.0	m-xylene	U	2.0
trans-1,2-dichloroethene	18	1.0	p-xylene	U	2.0
NOTES AND DEFINITIONS FOR THIS REPORT			SURROGATE STDS.	%REC	LIMITS
U = not detected at stated detection limit			t dibromofluoromethane	112	45 - 149
<pre>J = detected below quantitation limit</pre>			toluene-d8	114	55 - 126
B = compound detected in the method blank			4-bromofluorobenzene	111	41 - 149
Q = recovery exceeds	control lin	nit			

EPA-600/4-79-020 - Chromium, Hexavalent - Atomic Absorption, chelation-extraction Method 218.4

EPA 600/4-79-020 - Mercury - Automated Cold-Vapor Technique Method 245.2

EPA-600/4-79-020 - Silver - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7

EPA-600/4-79-020 - Beryllium - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7

EPA-600/4-79-020 - Cadmium - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7

EPA-600/4-79-020 - Chromium - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7

EPA-600/4-79-020 - Copper - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7

EPA-600/4-79-020 - Zinc - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7

EPA-600/4-79-020 - Arsenic - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7, Thermo Jarrell Ash ICAP 61E Trace.

EPA-600/4-79-020 - Lead - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7, Thermo Jarrell Ash ICAP 61E Trace.

 ${\sf EPA-600/4-79-020}$ - Selenium - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7, Thermo Jarrell Ash ICAP 61E Trace.

EPA-600/4-79-020 - Thallium - Inductively Coupled Plasma Spectroscopy (ICP) Method 200.7, Thermo Jarrell Ash ICAP 61E Trace.

SW846 Method 3010 - Acid digestion of aqueous samples and extracts for total metals for analysis by Flame Atomic Absorption Spectroscopy or Inductively Coupled Plasma Spectroscopy

USEPA Test Methods for Evaluating Solid Wastes (SW846, Third Edition) Method 8260 - Volatile Organics by purge and trap and Gas Chromatography/Mass Spectroscopy.

Order # \$6-01-066 01/29/96 10:42 Thermo Analytical REPORT_COMMENTS

Page 11

PROJECT DISCUSSION

Sample MW-12 was analyzed neat and at a 25X dilution to bring the target compounds within the calibrated range for volatiles.

This report is rendered upon all of the following conditions: Thermo Analytical retains ownership of this report until associated submitted invoice is satisfied. Expert witness services shall be available in conjunction with this report only if prior notification of this potential requirement was made and accepted before the analysis. Client will be responsible for Thermo Analytical costs and consulting fees if our services are required by subpoena or otherwise in legal proceedings. Total liability is limited to the invoice amount. The results listed refer only to tested samples and applicable parameters. Samples are not analyzed in accordance with New York State protocol unless indicated. Product endorsement is neither inferred nor implied. Thermo Analytical will exercise due diligence but will not be responsible for lost or destroyed samples or evidence unless client makes appropriate insurance coverage arrangements. Samples are held for thirty days of ollowing issuance of report. Samples will be stored at client's expense, if authorized in writing.

300 Second Avenue P.O. Box 521 Waltham Massachusetts 02254 0521 (617) 900 7200 1 000 1100

Chain of Custody Record

Thermo Analytical

SPECIAL SHIPMENT/HANDLING OR STORAGE REQUIREMENTS Hex GR W/IN PAGE OF Observations/ Comments MUST TREAT TOTAL NUMBER OF CONTAINERS METHOD OF SHIPMENT Feb Dr 7 7 NUMBER OF CONTAINERS 7 3 7 DATE TIME DATE Sample Type Thermo Analytical Waltham MA 02254-0521
 (617) 890-7200 Fax: (617) 890-3883 LATER RECEIVED BY Printed Name 1170] Company XX × Other benetii-DATE TIME DATE TIME pao Company RELINQUISHED BY RELINQUISHED BY Parameters Printed Name Printed Name Company Signature TATAT X X X X X × TAMEI AI TIME DATE DATE TIME 0928 Location Mad Wens Company RECEIVED BY RECEIVED BY Printed Name Printed Name DR Company 300 Second Avenue, P.O. Box 521 × 8ARD PK Project Name 444-006-95 COMP. 12:00 DATE DATE Time D ADDRESS 15 PACELLA Date RAMODI PH L1/1 GEC Sampler (Signature) Company RELINQUISHED BY RELINQUISHED BY Sample No. 1-W/W CLIENT AW-9 Printed Name Printed Name L-WM MW-3 1-WM Company Signature Signature