Former Jameco Industries Site WYANDANCH, SUFFOLK COUNTY, NEW YORK

Periodic Review Report

NYSDEC Site Number: #1-52-006

Linzer Corporation 248 Wyandanch Avenue West Babylon, New York

Prepared by:

Goldman Environmental Consultants, Inc. 60 Brooks Drive, Braintree, MA 02184 (781) 356-9140

TABLE OF CONTENTS

1.0 EXE	CUTIVE SUMMARY1
2.0 SITE	OVERVIEW5
3.0 REM	IEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS8
4.0 IC/E	C PLAN COMPLIANCE REPORT15
5.0 MON	NITORING PLAN COMPLIANCE REPORT17
6.0 OVE	RALL CONCLUSIONS AND RECOMMENDATIONS20
7.0 WAI	RRANTY 21
	<u>FIGURES</u>
Figure 1:	Site Locus
Figure 2:	Site Plan of Remediation Areas & Sample Locations
	<u>TABLES</u>
Table 1:	Groundwater Monitoring Plan
Table 2:	Summary of Groundwater Analytical Data: Semi-Volatile Organic Compounds (SVOCs)
Table 3:	Summary of Groundwater Analytical Data: Total Metals
Table 4:	Proposed Revised Groundwater Monitoring Plan
	<u>ATTACHMENTS</u>
Attachment 1	: Plan showing Building Addition
Attachment 2	: Periodic Review Report Certification Statement and IC/EC Certification Forms
Attachment 3	: Inspection Photographs, IE/EC Inspection Forms, and March 2-3, 2021 Monitoring Well Purge Data Evaluation
Attachment 4	: Laboratory Certificate of Analysis

PERIODIC REVIEW REPORT

1.0 EXECUTIVE SUMMARY

Goldman Environmental Consultants, Inc. (GEC) of Braintree, Massachusetts - retained by the Linzer Corporation, Inc. (Linzer) - prepared the following Periodic Review Report (PRR) for 248 Wyandanch Avenue, Wyandanch, New York ("Site"). A PRR is required for sites in active Site management with the New York State Department of Environmental Conservation (NYSDEC) as promulgated in Section 6.3(b) of DER-10. This PRR covers the reporting period of May 13, 2020 to May 12, 2021 and reports on Site specific management requirements as described in the Site Management Plan (SMP), dated July 27, 2009, prepared by GEC, and approved by the NYSDEC, and addendum to the SMP requested and approved by the NYSDEC on March 31, 2016.

In a letter to Linzer dated April 9, 2021, NYSDEC provided their findings on the PRR and IC/EC Certification covering the period May 12, 2019, to May 12, 2020. Specifically, NYSDEC had the following two comments/requirements:

- 1. The last PRR reported that the thickness of light non-aqueous phase liquid (LNAPL) present in monitoring well MW-19 increased from 0.03 feet in 2016 to 0.07 feet in 2020 and concluded that since the LNAPL originated from an on-site source and the groundwater is being impacted by the contamination, efforts to remove the LNAPL before the next sampling round is necessary. NYSDEC stated: "To address this issue, you are required to submit a corrective measure plan (CMP) within 30 days, for Department review and approval." The CMP was submitted to NYSDEC on May 24, 2021, which entailed an evaluation of the most recent and historic gauging data for MW-19 as well as prior attempts to evaluate the recovery of the LNAPL. This evaluation is also provided below. The CMP recommended the following: (1) LNAPL thickness and depth to groundwater gauging during each groundwater monitoring round going forward; (2) if no LNAPL is present at MW-19, the collection of a groundwater sample for analysis of semi-volatile organic compounds (SVOCs) via USEPA Method 8270; and (3) if more than 6 inches of LNAPL is measured in MW-19, an attempt will be made to conduct an LNAPL transmissivity test to assess the recoverability of the LNAPL and/or to collect a sample of the LNAPL for laboratory analysis of viscosity and specific gravity, hydrocarbon fingerprinting and/or PIANO (paraffin, isoparaffin, aromatic, naphthenic and olefin).
- 2. NYSDEC also advised that, "with respect to the language in the Status of IC/EC Objectives portion of the IC/EC Compliance Report, which states that the site-related building may be expanded to the east, including pavement which may encroach onto AOC #1¹, the soil

Goldman Environmental Consultants, Inc.

¹ AOC-1 - located to the east-southeast of the building directly east of the current loading dock area - contained a seepage lagoon where four heavy metals (chromium, nickel, copper, and zinc) were released to the environment at levels exceeding relevant standards, criteria, and guidance in soil. All four metals were also detected in groundwater downgradient of AOC-1; however, only nickel was detected above relevant standards, criteria, and guidance.

management plan specified in the Site Management Plan should be followed and that a work plan for this disruption should be submitted to the Agencies for review prior to its implementation." The building addition was constructed prior to Linzer's receipt of NYSDEC's letter. The building addition did not encroach on Area of Concern (AOC) #1 (as depicted on the figure in Attachment 1). The Soil Management Plan, provided in Appendix B of the SMP, was developed for use when construction activities would occur within the limits of the five AOCs. In such case, NYSDEC must be notified of those activities. Because the construction occurred outside of the five AOCs (including AOC #1), the Soil Management Plan was not implemented. NYSDEC was notified of the planned activity in the last PRR.

Annual groundwater monitoring is conducted during the spring. Semi-annual Site inspections are conducted in the spring and fall. Based on the results of groundwater analyses, GEC is recommending/requesting eliminating the following monitoring wells from the annual groundwater sampling program: (1) MW-20 for semi-volatile organic compounds (SVOCs); (2) MW-21 for SVOCs; (3) MW-23 for SVOCs; (4) MW-3 for nickel; (5) MW-10 for chromium, copper and nickel; and (6) MW-26R for chromium, copper and nickel. GEC is also recommending/requesting that IC/EC inspections also be conducted at a reduced frequency – to take place annually in April of each year in conjunction with groundwater monitoring. Justifications for these recommendations/requests are provided below. These changes, if adopted, would be a further revision to the SMP.

Summary

The Site (#1-52-006) consists of approximately 9.35 +/- acres and is located in a mixed industrial/commercial/residential area. The Site is improved with a single-story concrete block building surrounded by paved and unpaved areas. The Site Locus is included as Figure 1 and the Site Plan is included as Figure 2. The Site is currently owned and occupied by Linzer, a manufacturer of painting products and has occupied the Site since early 1999. Prior to 1999, Jameco Industries (Jameco) occupied the property. Jameco used the Site to manufacture plumbing fixtures; some manufacturing included plating parts with chrome and nickel. Environmental investigations identified five discreet Areas of Concern or AOCs on the Site. Elevated concentrations of metals and volatile organic compounds (VOCs) from plating activities and process wastewater discharges were measured across several portions of the Site in areas identified as AOC-1, AOC-2, AOC-3, and AOC-5. SVOCs from a release of cutting oil were detected in the northern portion of the Site in an area identified as AOC-4.

Remedial activities - completed in January 2008 - are summarized in the August 2011 Final Engineering Report, prepared by GEC. Activities included: the closure of the concrete leaching pool structures, the removal of contaminated soils, in-situ stabilization of metals in soil, and the implementation of Institutional Controls / Engineered Controls (IC/EC) as described in an Environmental Easement prepared for the Site - executed by the current owner, Linzer. In accordance with the SMP (dated July 27, 2009) and the Soil Management Plan (dated January 22,

2009), the remedial program includes long-term groundwater monitoring and the inspection of the five AOCs.

Effectiveness of the Remedial Program

The remedial program has proven effective in fulfilling the remedial goals outlined in the SMP. Refer to Table 1 for the March 2021 groundwater monitoring plan.

No SVOCs were detected in groundwater during the March 2021 sampling event and no SVOCs have been at levels greater than applicable NYSDEC Class GA Groundwater Standards (Class-GA) over numerous consecutive monitoring rounds. Currently, only slightly elevated concentrations of chromium, copper and nickel in groundwater at the Site exceed the applicable Class-GA Groundwater Standards. Analytical results for the annual sampling event (conducted in March 2021) indicate steady state conditions or continued gradual declines in detected concentrations for monitored parameters since remedial activities were completed in 2006. When detected, these metals are within historic ranges. Refer to Tables 2 and 3 for summaries of the SVOC and metal analytical data, respectively, for groundwater.

SVOCs include a diverse group of organic compounds, of which the key analytes of concern for this Site are comprised of polycyclic aromatic hydrocarbons (PAHs) and phthalates, because these are the compounds that might be associated with a release of used naphthenic cutting oils. The following PAHs have Class-GA standards: (1) acenaphthene (20 μ g/l), and (2) naphthalene (10 μ g/l).

- 1. No acenaphthene has been detected in any groundwater sample from MW-19, MW-20, MW-21 and MW-23 during the period January 2007 to March 2021; the sample quantitation limit was always below the Class-GA standard.
- 2. Naphthalene was detected in each monitoring well at least once, usually when naphthalene was also detected in the method blank. Usually no naphthalene was detected, and the sample quantitation limit was always below naphthalene's Class-GA standard.

For the phthalates, Class-GA standards exist for bis-(2-ethylhexyl)phthalate (10 μ g/l) and din-butylphthalate (50 μ g/l). When detected these phthalates were usually also detected in the method blank. Bis-(2-ethylhexyl)phthalate was last detected above its Class-GA standard in March 2011. Since that time, bis-(2-ethylhexyl)phthalate was rarely detected, even for numerous sampling rounds where the sample quantitation limit was less than the Class-GA standard. Di-n-butylphthalate was last detected at concentrations greater than its Class-GA standard in March 2011. The sample quantitation limit for di-n-butylphthalate has always been below its Class-GA standard.

The levels of detected nickel in groundwater of MW-2, MW-4, MW-5R and MW-12 during the current and/or recent annual monitoring rounds indicate the continued presence of nickel at levels above its Class-GA standard. Including the most recent rounds of groundwater monitoring, the levels of detected nickel in groundwater of MW-3, MW-10 and MW-26R have been less than its Class-GA over consecutive annual and/or semi-annual monitoring rounds.

The levels of detected copper in groundwater of MW-12 during the current and/or recent annual monitoring rounds indicate the continued presence of copper at levels above its Class-GA standard. However, based on the most recent rounds of groundwater monitoring, the levels of detected copper in groundwater of MW-10 and MW-26R have been less than its Class-GA over consecutive annual and/or semi-annual monitoring rounds.

The levels of detected chromium in groundwater of MW-12 during one recent annual monitoring round indicates the continued presence of chromium at levels above its Class-GA standard (although it's been detected above its standard in only one of nine groundwater samples collected since March 2014). However, based on the most recent rounds of groundwater monitoring, the levels of detected chromium in groundwater of MW-10 and MW-26R have been less than its Class-GA over consecutive annual and/or semi-annual monitoring rounds.

During the March 2021 groundwater monitoring round, which was conducted to evaluate the effectiveness of the remedial program, only minor modifications were made to the approved Groundwater Monitoring Plan:

- (1) sampling of groundwater from MW-19 for analysis of SVOCs was excluded due to the presence of a measurable (0.03 foot) thickness of light non-aqueous phase liquid (LNAPL);
- (2) monitoring well MW-26R could not be sampled for analysis of chromium, copper and nickel due to an obstruction in the well's riser;
- (3) inadvertently, a groundwater sample was not collected from MW-5R during the March 2021 groundwater monitoring round; and
- (4) non-substantive changes to the analytical methods used for SVOC (USEPA Method 8270D-E instead of Method 8270C) and metal (USEPA Method 6020B instead of USEPA Method 6010C or D) analyses were made. With regards to MW-19, the LNAPL is likely trapped within the sand pack of the well, and not representative of conditions within the formation. Numerous consecutive rounds of groundwater sampling at nearby monitoring wells MW-20, MW-21, and MW-23 for SVOC analyses demonstrate that LNAPL is not a significant continuing source of groundwater contamination.

For MW-26R, metals were not detected at levels greater than Class-GA standards over the last nine consecutive monitoring rounds; therefore, GEC is not recommending the repair or replacement of MW-26R.

Groundwater samples were submitted to Contest Analytical Laboratory of Longmeadow, Massachusetts (Laboratory ID: 10899) for analysis. Refer to Attachment 4 for the laboratory certificate of analysis and Tables 2 and 3 for summaries of SVOCs and total metals results, respectively.

Compliance

No compliance issues were found with the groundwater sampling program, SMP, or the

IC/EC described in the Environmental Easement. On January 23, 2012, the NYSDEC notified Linzer that all remediation work required at the Jameco Site is completed. The Site was subsequently reclassified as a Class 4 Environmental Site. Watts (the previous PRP) addressed the "existing OHM condition" and fulfilled its obligation required in the Purchase and Sale agreement with Linzer. Under the Environmental Easement that Linzer entered into with NYSDEC on August 2, 2012, Linzer assumed all the remaining obligations under the NYSDEC-approved Site Management Plan. In a letter, dated May 16, 2012, Linzer consented to the responsibility of the remaining periodic inspections, monitoring, and reporting as outlined in the SMP. Since that time, Linzer has complied with the requirements of the SMP.

Recommendations

Linzer should continue monitoring the effectiveness of the remedial program at the currently approved frequency with the following modification:

- 1. IC/EC inspections should be conducted at a reduced frequency to take place annually in April or May in conjunction with the annual groundwater monitoring.
- 2. The Groundwater Monitoring Plan (Table 4) should be revised to eliminate monitoring wells MW-3, MW-10, MW-20, MW-21, MW-23 and MW-26R from future monitoring. Approved analytical methods should be expanded to include USEPA Method 6020B for metals and USEPA Method 8270D-E for SVOCs. Care shall be taken to make sure that sample quantitation limits for analytes of concern (i.e., metals, PAHs and phthalates) are below Class-GA standards.
- 3. LNAPL at MW-19 should be investigated as specified in the Corrective Measure Plan, dated May 2021. Specifically, the following will be conducted, as practicable: (a) LNAPL thickness and depth to groundwater at MW-19 will be measured during groundwater monitoring round going forward, (b) if or when no LNAPL is present at MW-19, a groundwater sample will be collected for analysis of SVOCs via USEPA Method 8270, and (c) if more than six inches of LNAPL is measured in MW-19, an attempt will be made to conduct an LNAPL transmissivity test to verify recoverability of LNAPL and / or to collect a sample of LNAPL for laboratory analysis of viscosity and specific gravity, hydrocarbon fingerprinting and/or PIANO (paraffin, isoparaffin, aromatic, naphthenic and olefin). Alternatively, we request approval to overdrill MW-19 or replace MW-19 with a new well directly adjacent to it in order to determine if the LNAPL periodically encountered in the well is representative of subsurface conditions.

2.0 SITE OVERVIEW

The Site, located in Suffolk County, New York, is identified as Block 02 and Lots 73.1 and 37.6 on the Suffolk County Tax Map, Parcel Numbers District 0100, Section 82.00. The $9.35 \pm$ acre (Parcels 1 and 3) Site is located within a mixed industrial/commercial/residential area bounded by Wyandanch Avenue to the north, Rockland Avenue to the east, Mount Avenue to the west-southwest,

and residential properties to the south-southeast. Refer to Figure 2 for a Site Plan depicting the boundaries of the Site.

Based on the results of environmental investigations, five discreet AOCs were identified on the Site and are as follows.

- AOC-1 located to the east-southeast of the building directly east of the current loading dock area - contained a seepage lagoon where four heavy metals (chromium, nickel, copper and zinc) were released to the environment at levels exceeding relevant standards, criteria, and guidance in soil. All four metals were also detected in groundwater downgradient of AOC-1; however, only nickel was detected above relevant standards, criteria, and guidance.
- AOC-2 located within the former Jameco building near the center of the building was formerly a degreasing area. Elevated concentrations of VOCs (i.e., trichloroethene (TCE), 1,2-dichloroethene (1,2-DCE) and tetrachloroethene (PCE)) were detected above relevant standards, criteria, and guidance in soil and groundwater in this area.
- AOC-3 a square area extending southward from the southern property line was the former location of forty-eight leaching chambers that received treated process water. A release to the environment of four heavy metals (chromium, nickel, copper, and zinc) occurred to the soil during the leaching process. Moderate to elevated concentrations of metals above relevant standards, criteria, and guidance were detected in soils in this area. Low to moderate concentrations of metals above relevant standards, criteria, and guidance were also detected in groundwater within the former leaching pool area.
- AOC-4 located beneath and in front of the Site building's north side is where machine cutting oil was released to a leaching pool system. As a result, both soil and groundwater in the area were impacted by the presence of LNAPL and PAHs.
- AOC-5 located within the former Jameco building near the center of the building was a
 former a metal plating shop. Four metals (chromium, nickel, copper, and zinc) were detected
 in soil at concentrations exceeding relevant standards, criteria, and guidance. In
 groundwater, chromium, copper, and zinc were detected at concentrations above relevant
 standards, criteria, and guidance.

Refer to Figure 2 for a Site Plan showing the locations of the five AOCs.

In December 1983, NYSDEC listed the Site as a Class 2a site. In May 1992, the NYSDEC reclassified the Site to Class 2 - however, after petitioning by Jameco Industries, Inc., the Site was reclassified to Class 4 in February 1993. Following additional investigations, the Site was reclassified back to Class 2 in February 1996. The NYSDEC issued a Record of Decision (ROD) for the Site, dated March 2003. Amendments were added to the ROD based on the results of supplemental subsurface investigations conducted in accordance with a *Work Plan for Soil and Groundwater Sampling and Analysis*, dated June 2003. The results of the subsurface investigation are documented in a *Draft Final Pre-Remedial Design / Remedial Action Soil and Groundwater*

Sampling Work Plan, dated May 2004. On May 11, 2005, NYSDEC issued a ROD Amendment letter outlining proposed amendments to the selected alternative remedies for the affected areas.

In August 2005, a Remedial Design Plan, summarizing the steps necessary to implement the proposed Amended ROD, was submitted. In March 2006, the final ROD Amendment was issued. ROD activities commenced in the fall of 2006. Chemical injections were completed on November 6, 2006. The replacement of monitoring wells MW-3 and MW-4 were completed on April 29, 2008. The *Final Engineering Report*, dated August 29, 2011, summarized site remedies conducted at the Site in accordance with the ROD.

The NYSDEC approved the *Final Engineering Report* on September 14, 2011. On January 23, 2012, the NYSDEC changed the Site classification from Class 2 to Class 4. Among the reasons the NYSDEC cited for this change were that the remedy has been constructed consistent with the ROD Amendment and the requisite institutional controls, in the form of an environmental easement were in place.

As stated in the Amended ROD, the Remedial Action Objectives (RAOs) were to eliminate or mitigate all significant threats to public health and/or the environment.

The remediation goals for the Site were to eliminate or reduce to the extent practicable:

- Exposures of persons at or around the site to metals and PAHs in soil and groundwater, and
- The release of contaminants from soil into groundwater that may create exceedances of ambient groundwater quality standards.

The remediation goals for the Site also included attaining, to the extent practicable, and with changes authorized by NYSDEC staff:

- Ambient Class GA groundwater quality standards; and
- The soil cleanup objectives specified in Technical and Administrative Guidance Memorandum (TAGM) #4046.

As part of the Amended ROD, groundwater monitoring is required. The SMP, dated July 27, 2009, and submitted to NYSDEC, describes the post-remedial groundwater monitoring plan, a reporting schedule, and appropriate institutional controls. The monitoring wells and analytes included in the post-remedial monitoring plan were identified in the original Table 1 Groundwater Sampling Program provided in the SMP.

GEC has been developing a plan of Long-Term MOnitoring Optimization (LTMO) in accordance with EPA guidance [https://www.epa.gov/remedytech/roadmap-long-term-monitoring-optimization] [https://www.epa.gov/remedytech/demonstration-two-long-term-groundwater-monitoring-optimization-approaches]. Sampling was conducted quarterly for the first year after initiation of remediation and then semi-annually for the next four years. The year of quarterly sampling was completed on September 11, 2008; the semi-annual monitoring began in March 2009 and has continued until April 2015. GEC, on behalf of Linzer, requested a change in the

groundwater monitoring frequency to an annual event instead of a semi-annual event. Approval for this change was granted on March 31, 2016. This report summarizes the annual sampling conducted during March 2021 and semi-annual inspection of the IC/ECs conducted in October 2020 and March 2021. GEC is now requesting that the semi-annual frequency of IC/EC inspection be reduced to an annual inspection, to coincide with the annual sampling event.

According to the Amended ROD, an environmental easement was implemented, and a Soil Management Plan developed to ensure safety if contaminated soils were disturbed during any future subsurface construction activities. The easement was recorded by the Suffolk County Clerk's Office on August 2, 2010.

The SMP was issued to the NYSDEC and approved on August 12, 2009. According to the plan, the NYSDEC would be notified of construction or development activities that may disturb existing subsurface contamination. A periodic certification, prepared by a professional engineer or environmental professional acceptable to NYSDEC, would also be submitted certifying that institutional controls and engineering controls remain effective. Periodic certification must be provided until the NYSDEC notifies in writing that this certification is no longer required. Please refer to the Periodic Review Report Certification Statement and IC/EC Certification form in Attachment.

3.0 REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

IC/ECs established for the Site include the maintenance of a protective soil cover system over each AOC and a prohibition against development of groundwater as a source of potable or process water without treatment. These controls have been implemented to reduce exposures of persons at or around the Site to metals and PAHs in soil and groundwater.

During the March 2021 monitoring event, groundwater samples were collected from monitoring wells MW-10 and MW-12 for analysis of chromium, copper, and nickel, and from MW-2, MW-3, and MW-4 for analysis of nickel. Groundwater samples were collected from MW-20, MW-21, and MW-23 for analysis of SVOCs. Laboratory analytical results are used to evaluate the effectiveness of the remedial program.

On March 2, 2021, GEC did not collect a groundwater sample from MW-19 for analysis of SVOCs during this monitoring period due to the presence of 0.03 feet (0.36 inch) of LNAPL within the well (Table 2). MW-19 is located in AOC #4, along with MW-20, MW-21 and MW-23. *Evaluation of Light Non-Aqueous Phase Liquid* within AOC #4 based on the available information is provided below on page 13. The LNAPL does not appear to be a significant source of dissolved-phase groundwater contamination as described below when interpreting the groundwater analytical data for AOC #4.

Discussion of Groundwater Sampling Results from March 2021 Sampling:

Based on the Groundwater Monitoring Plan (Table 1), groundwater samples from monitoring well MW-26R are analyzed for chromium, copper, and nickel. During the March 2021 groundwater

monitoring round, MW-26R could not be sampled due to an obstruction approximately 1.5 feet into the riser. The last time a groundwater sample from MW-26R contained these metals at levels exceeding the Class GA standard was in March 2013. Since that time (i.e., from September 2013 to May 2020), groundwater samples have been collected and analyzed nine times from this monitoring wells, and levels of chromium, copper and nickel have consistently been less than applicable Class GA standard, as summarized in the table below and depicted on Table 3. Based on these outcomes, GEC finds that continued monitoring of MW-26R is no longer warranted and that MW-26R does not need to be repaired or replaced.

Monitoring Well	Chromium	Copper	Nickel
MW-26R	<0.0012 to <0.010 mg/l;	<0.0022 to 0.076 mg/l; Detected 8 out of 9	<0.0014 to 0.015 mg/l; Detected 5 out of 9
	Detected 4 out of 9	times;	times;
	times;	Max. detected: 0.076	Max. detected: 0.015
	Max. detected: 0.0058 mg/l	mg/l	mg/l
Class GA Standard	0.05 mg/l	0.2 mg/l	0.1 mg/l

Based on the Groundwater Monitoring Plan (Table 1), groundwater samples from monitoring well MW-5R are analyzed for nickel. During the March 2021 groundwater monitoring round, a groundwater sample from MW-5R was inadvertently not collected. This monitoring well has been sampled twenty times between December 2007 and May 2020. Nickel levels have ranged between 0.21 and 1.65 mg/l, which are consistently greater than its Class GA standard of 0.1 mg/l. Continued monitoring of MW-5R is warranted. If necessary, GEC could resample MW-5R in October of 2021 during our semi-annual inspection (unless we are approved to go to annual inspections, then it will be sampled again in the spring or 2022 as scheduled).

The selected remedies to reduce or eliminate the release of contaminants from soil into groundwater are effective at remediating nickel, copper, chromium, zinc, and SVOCs in groundwater. Refer to Table 2 and 3 for a summary of the analytical results for SVOCs and metals, respectively. The analytical data are evaluated further in Section 5.0, below. During the March 2021 groundwater monitoring round:

- Based on the current Groundwater Monitoring Plan (Table 1), the groundwater samples from the following monitoring wells are scheduled for nickel analysis MW-2, MW-3, MW-4, MW-5R, MW-10, and MW-26R. As explained above, groundwater samples were not collected from MW-5R or MW-26R during this monitoring round. The concentration of nickel in three of five groundwater samples (MW-2, MW-4, and MW-12) analyzed exceeded Class-GA standard, but were all within post-remedial historical ranges. For MW-3, 0.036 mg/l nickel was detected, which is less than its Class GA standard of 0.1 mg/l. For MW-10, no nickel was detected, with a sample quantitation limit of 0.005 mg/l.
 - o For MW-3, groundwater samples collected during the last four sampling rounds from

- April 2018 to March 2021 had levels of nickel ranging from 0.036 to 0.078 mg/l, which are below the Class-GA standard of 0.1 mg/l. Based on these results, GEC believes that compliance with the GA Groundwater Standard for nickel has been demonstrated at MW-3, and therefore additional analytical data for nickel is not warranted for MW-3.
- o For MW-10, no nickel was detected during the last four monitoring rounds (April 2018 to March 2021) and the levels of nickel detected in thirteen samples collected during the period September 2009 to April 2017 were always less than the Class-GA Groundwater Standard. Based on these results, GEC believes additional analytical data for nickel is not needed for MW-10.
- o For MW-26R, no nickel was detected during the last three monitoring rounds (April 2018 to May 2020) and the levels of nickel detected in six samples collected during the period September 2013 to April 2017 were always less than nickel's Class-GA standard. Based on these results, GEC believes that compliance with the GA Groundwater Standard for nickel has been demonstrated at MW-26R, and therefore additional analytical data for nickel is not warranted for MW-26R.
- Based on the current Groundwater Monitoring Plan (Table 1), the groundwater samples from the following monitoring wells are scheduled for copper analysis MW-10, MW-12 and MW-26R. As explained above, a groundwater sample was not collected from MW-26R during this monitoring round. Low to non-detect concentrations of copper were reported for both analyzed groundwater samples (MW-10 and MW-12). For MW-10, no copper was detected with a sample quantitation limit of 0.001 mg/l. For MW-12, copper was detected (0.078 mg/l) at a level just below the low end of its historic range (2007 to 2020: 0.079 to 0.98 mg/l).
 - o For MW-10, no copper was detected during the last five monitoring rounds (April 2017 to March 2021) and the levels of copper detected in six samples collected during the period March 2013 to April 2016 were always less than copper's Class-GA standard. Based on these results, GEC believes that compliance with the GA Groundwater Standard for copper has been demonstrated at MW-10, and therefore additional analytical data for copper is not warranted for MW-10.
 - o For MW-26R, the levels of copper detected in nine samples collected during the period September 2013 to May 2020 were always less than copper's Class-GA standard. Based on these results, GEC believes that compliance with the GA Groundwater Standard for copper has been demonstrated at MW-26R, and therefore additional analytical data for copper is not warranted for MW-26R.
- Based on the current Groundwater Monitoring Plan (Table 1), the groundwater samples from
 the following monitoring wells are scheduled for chromium analysis MW-10, MW-12 and
 MW-26R. As explained above, a groundwater sample was not collected from MW-26R
 during this monitoring round. Low concentrations of chromium were reported for both

analyzed groundwater samples (MW-10 and MW-12). For MW-10 and MW-12, chromium was detected at 0.0016 and 0.007 mg/l, respectively. Both values are less than chromium's Class GA standard of 0.05 mg/l and within their historic ranges (2007 to 2020: <0.0012 to 0.26 mg/l and <0.001 to 0.096 mg/l, respectively).

- o For MW-10, chromium was detected in six of eleven groundwater samples during the last eleven monitoring rounds (March 2013 to March 2021), and always at levels less than chromium's Class-GA standard. Based on these results, GEC believes that compliance with the GA Groundwater Standard for chromium has been demonstrated at MW-10, and therefore additional analytical data for chromium is not warranted for MW-10.
- o For MW-26R, no chromium was detected in three samples collected between April 2018 and May 2020 and the levels of chromium detected in six samples collected during the period September 2013 to April 2017 were always less than chromium's Class-GA standard. Based on these results, GEC believes that compliance with the GA Groundwater Standard for nickel has been demonstrated at MW-26R, and therefore additional analytical data for chromium is not warranted for MW-26R.
- The collection of groundwater samples from monitoring wells MW-19, MW-20, MW-21, and MW-23 for analysis of SVOCs are part of the Groundwater Monitoring Plan (Table 1). These wells are located within AOC-4, on the north side of the Site building. During the March 2021 monitoring round, no groundwater sample was collected for analysis from MW-19 due to the presence of 0.03 feet (0.36 inches) of LNAPL as measured with an oil/water interface probe. Based on historic analytical data for MW-19 (April 2015) and analytical data for MW-20, MW-21, and MW-23 during the period April 2012 to March 2021, the LNAPL observed at MW-19 in March 2021 does not appear to be a significant continuing source of SVOCs contamination of groundwater within AOC-4. During the March 2021 monitoring round, no SVOCs were detected in groundwater samples from MW-20, MW-21, and MW-23 at concentrations above sample quantitation limits.
- For monitoring wells MW-19, MW-20, MW-21 and MW-23, the following SVOCs were detected at least once during the period 2007 to 2021 (see Note 1): (1) bis-(2-ethylhexyl)phthalate in all four monitoring wells; (2) di-n-butylphthalate in all four monitoring wells; (3) diethylphthalate in two monitoring wells (MW-20 and MW-23); (4) naphthalene in all four monitoring wells; (5) 2-methylnaphthalene in all four monitoring wells; and (6) chrysene in two monitoring wells (MW-21 and MW-23) (Table 2). Naphthalene, 2-methylnaphthalene and chrysene are polycyclic aromatic hydrocarbons (PAHs) and the remaining three detected SVOCs are phthalates. Of these six SVOCs, the following three have Class-GA standards: (1) naphthalene (10 μg/l); (2) bis-(2-ethylhexyl)phthalate (5 μg/l); and (3) di-n-butylphthalate (50 μg/l).

- O Naphthalene² was only detected when it was also detected in a method blank during the March 23, 2011 (all four wells) and September 21, 2011 (MW-23 only) groundwater monitoring events. The levels detected (maximum 4.94 μg/l, never exceeded naphthalene's Class-GA standard. No naphthalene has been detected in the thirty-seven groundwater samples collected from these four monitoring wells during the period April 2012 to March 2021. The sample quantitation limits for naphthalene for these samples were always less than the Class-GA standard. LNAPL does not appear to be a significant continuing source of naphthalene-contaminated groundwater. Based on these results, GEC believes that compliance with the GA Groundwater Standard for naphthalene has been demonstrated at MW-20, MW-21, and MW-23 and therefore additional analytical data for naphthalene is not warranted for MW-20, MW-21 or MW-23.
- o Bis-(2-ethylhexyl)phthalate was detected in groundwater samples from all four wells on March 23, 2011, when it was also detected in the method blank. The levels detected ranged between 5.57 and 5.76 μg/l, which are slightly above its Class-GA The only other sample containing a detectable level of bis-(2standard. ethylhexyl)phthalate (2.19 mg/l, i.e., less than its Class-GA standard)) was collected from MW-21 on September 21, 2011. Since September 21, 2011, no bis-(2ethylhexyl)phthalate was detected in any groundwater sample in any monitoring well. During the last four monitoring rounds (from April 2018 to March 2021), the sample quantitation limits for bis-(2-ethylhexyl)phthalate were greater than its Class-GA standard. However, each monitoring well had samples collected during the period September 2011 to April 2017 with sample quantitation limits for bis-(2ethylhexyl)phthalate that were less than its Class-GA standard: (1) MW-19 (1 sample); (2) MW-20 (7 samples); (3) MW-21 (9 samples); and (4) MW-23 (9 LNAPL does not appear to be a significant continuing source of bis-(2ethylhexyl)phthalate-contaminated groundwater. Based on these results, GEC believes that compliance with the GA Groundwater Standard for bis-(2ethylhexyl)phthalate has been demonstrated at MW-20, MW-21 or MW-23 and therefore additional analytical data for bis-(2-ethylhexyl)phthalate is not warranted for MW-20, MW-21 or MW-23.
- O Di-n-butylphthalate was detected in groundwater samples from all four monitoring wells on March 23, 2011, when it was also detected in the method blank. The levels detected ranged between 70.1 and 80.3 μg/l, which is above its Class-GA standard. Since that time, di-n-butylphthalate has been detected in five of forty samples at levels ranging up to 10.07 μg/l, which is less than its Class-GA standard. During the period from September 2011 to March 2021, all groundwater samples had sample

-

² Petroleum-based cutting oils include both paraffin-based or naphthalene-based oils.

quantitation limits for di-n-butylphthalate that are less than its Class-GA standard: (1) MW-19 (1 sample); (2) MW-20 (11 samples); (3) MW-21 (14 samples; and (4) MW-23 (14 samples). Based on these results, GEC believes that compliance with the GA Groundwater Standard for di-n-butylphthalate has been demonstrated at MW-20, MW-21 or MW-23 and therefore additional analytical data for di-n-butylphthalate is not warranted for MW-20, MW-21 and MW-23.

o None of the forty-eight samples collected for analysis from MW-19, MW-20, MW-21 or MW-23 during the period March 2010 to March 2021 had detectable levels of either chrysene or diethylphthalate. 2-Methylnaphthalene was detected in groundwater samples collected from all four monitoring wells on March 23, 2011, when 2-methylnaphthalene was also detected in the method blank. Since that time, 2-methylnaphthalene was detected in one (at 0.96 μg/l) of forty groundwater samples, with the last detection on September 21, 2011. Based on these results, GEC believes that compliance with the GA Groundwater Standards for chrysene, di-ethylphthalate, and 2-methylnaphthalene have been demonstrated at MW-20, MW-21 and MW-23 and therefore additional analytical data for chrysene, di-ethylphthalate, and 2-methylnaphthalene are not warranted for MW-20, MW-21 and MW-23.

Note 1: The following SVOCs were detected once in a groundwater sample collected from MW-21 on September 21, 2011: benzyl alcohol, 4-chloroanaline, 3,3-dichlorobenzidine, 3-nitroanaline, 4-nitroanaline and pyridine. These six SVOCs were detected once in sixty-four groundwater samples collected from MW-19, MW-20, MW-21, and MW-23 during the period 2007 to 2021. Their presence in the September 21, 2011 sample collected from MW-21 is attributed to contamination from the use of spray paint to label the monitoring wells on this day. These SVOCs are not considered contaminants of concern for this Site and are not evaluated further.

Evaluation of Light Non-Aqueous Phase Liquid

LNAPL has only been observed or measured in monitoring well MW-19 located in AOC #4. It was observed in this monitoring well on seventeen of twenty occasions over the period January 2007 to March 2021, i.e., a fourteen-year period. LNAPL thickness was measured with an oil-water interface probe capable of measuring LNAPL to a thickness of 0.01 ft (0.12 inch) starting in September 2014 and has ranged from 0.01 feet (0.12 inches) to 0.07 feet (0.84 inches) (see Table 2). The LNAPL thickness prior to September 2014 is unknown. Drought conditions can have an impact on LNAPL thickness. During droughts, as the water table drops, capillary pressures decrease allowing the LNAPL to be more mobile and increasing the likelihood it will flow into a monitoring well. GEC is unsure as to whether there was a drought on Long Island during May 2020. There was a drought watch in effect for Long Island by July 2020 and it may have been evolving during May 2020 when MW-19 was gauged.

For MW-19, no LNAPL was measured or observed during three groundwater monitoring

rounds, i.e., on March 24, 2010, March 23, 2011, and April 21, 2015. On those occasions, groundwater samples were collected from MW-19 for analysis of semi-volatile organic compounds via USEPA Method 8270. The only SVOCs detected were di-n-butyl phthalate (2 of 3 samples), bis-(2-ethylhexyl)phthalate (1 of 3 samples), naphthalene (1 of 3 samples) and 2-methylnaphthalene (1 of 3 samples). The SVOCs detected may be attributed to small amounts of LNAPL suspended in the groundwater samples. The last time no measurable LNAPL was present in MW-19 was on April 21, 2015. A groundwater sample was collected at that time for analysis of SVOCs. The only SVOC detected was 1.49 µg/l di-n-butylphthalate, which is less than its GA Groundwater Standard of 50 µg/l. These results indicated that the LNAPL is unlikely to be a significant source of dissolved-phase groundwater contamination.

No LNAPL has been observed or measured in other monitoring wells within or near AOC #4 for the following periods:

Monitoring Well	Gauging/Sampling Period	Number of Attempts
GEC-5	4/2008 to 9/2009	3
MW-21	1/2007 to 3/2021	22
MW-23	1/2007 to 3/2021	22
MW-16	1/2007 to 9/2009	5
MW-17	1/2007 to 9/2009	5
MW-20	1/2007 to 3/2021	17

On March 2, 2021, groundwater samples were collected from MW-20, MW-21, and MW-23 for analysis of SVOCs. Laboratory analytical results are used to evaluate the effectiveness of the remedial program. No SVOCs were detected in any of these groundwater samples. As described above, little to no SVOCs have been detected in groundwater samples from MW-20, MW-21 and MW-23 for at least four years. Refer to Table 2 for a summary of the SVOC analytical data and to Appendix 4 for the laboratory report.

GEC attempted to perform pump-down transmissivity tests at MW-19 in both October of 2018 and May of 2019 to assess whether the LNAPL was recoverable. Neither test resulted in any measurable thickness of product returning into the annular space of the well. This finding indicates that LNAPL recovery is unlikely to be successful, which is expected given the measurement of less than one inch of LNAPL at MW-19 and the hydrophobic nature of paraffinic and naphthenic cutting oils, which causes them to preferentially partition out of the aqueous phase and adsorb to soil particles.

MW-19 is located beneath the northern portion of the Site building. To remove the LNAPL, the floor would need to be removed to allow for excavation of the soils containing LNAPL. This approach is not feasible because of the disruption it would cause to facility operations and the inordinate cost compared to benefit. Furthermore, GEC questions whether the LNAPL observed in MW-19 is actually representative of LNAPL in the soil beneath the building, as it may be an artifact of LNAPL adsorbed to the filter pack of MW-19.

4.0 IC/EC PLAN COMPLIANCE REPORT

Institutional Controls

Institutional Controls at the Site were established to prevent exposure of persons at or around the Site to metals and SVOCs in groundwater by prohibiting the use of groundwater as a source of potable or process water without appropriate water quality treatment. An Environmental Easement has been recorded on the property Deed with additional restrictions imposed to ensure safety if residual contaminated soils were to be disturbed. The Environmental Easement requires a soil management plan if or when excavation activities take place on Site in any of the AOCs. A Soil Management Plan was submitted as an attachment in the approved SMP. The SMP was approved by the NYSDEC in a letter dated August 12, 2009. The Soil Management Plan describes what is required during any future excavation work within the AOCs. Linzer is required to provide annual certification to NYSDEC certifying that the institutional and engineering controls are still in place and effective.

The performance of the institutional controls is evaluated by visual inspections and interviews with on-Site representatives. Interviews consist of asking the current owner about any future plans to utilize groundwater at the Site or if any excavations were conducted and/or are planned to be conducted within an AOC.

Engineering Controls

Engineering controls consisting of soil cover systems placed over contaminated soil/fill were established to prevent exposure of persons at or around the Site to metals and SVOCs in soil. Figure 2 shows the location of AOC-1 to AOC-5. The cover system is different in each of the AOCs and is comprised of one or more of the following:

- clean backfill,
- bituminous concrete ("asphalt") pavement; and/or,
- concrete foundation slabs of buildings.

Performance for each type of soil cover system is evaluated by conducting a visual inspection to evaluate the integrity and completeness of the cover over each AOC.

Status of IC/EC Objectives

GEC visited the site on October 21, 2020, and March 2-3, 2021 to inspect Site conditions and collect groundwater samples (March 2-3, 2021 only). Please refer to photographs taken during the October 2020 and the March 2021 inspections and the Semi-Annual Site Inspection forms, in Attachment 3. The institutional and engineered controls described above are fully in place and were effective at fulfilling the objective to prevent exposure of persons at or around the Site to metals and PAHs in soil and groundwater.

• AOC-1 is completely covered by the bituminous concrete pavement adjacent to the loading docks.

- AOC-2 and AOC-5 are completely within the existing Site building and covered by the concrete foundation slab.
- AOC-3 is covered by approximately 5 feet of clean backfill (0 to 5 feet deep) and 6 feet of excavated soil reused for backfill (6 to 11 feet deep). Approximately 6 to 12 inches of compacted crushed concrete and Recycled Concrete Aggregate (RCA) blend is located at the surface.
- AOC-4 is about 75 percent located beneath the building concrete foundation slab, and about 25 percent located in front of the building and covered with approximately 8 to 10 feet of clean backfill soils, including a vegetative cover (grass) at the surface.
- According to an interview with Linzer personnel, there are no plans that would result in an impact on any of the AOCs in the near future. An addition to the existing Site building was constructed since the last Periodic Review Report was submitted. Based on GEC's review of the plans prior to the expansion, no impact to any AOC was expected. The building addition was constructed east of the existing Site building and did not encroach on AOC-1. The location of AOC-1 relative to the building addition is depicted on the figure in Attachment 1. GEC and Linzer were in regular communication during this project.

Corrective Measures

Monitoring well MW-26R could not be sampled during the March 2021 monitoring round because of an obstruction in well's riser. Groundwater samples from MW-26R are analyzed for chromium, copper and nickel. No chromium, copper or nickel was detected at levels above applicable Class-GA standards over nine monitoring rounds over the period September 2013 to May 2020. Based on these results, GEC does not believe that continued monitoring of MW-26R is warranted. GEC does not recommend the repair or replacement of MW-26R, and recommends that MW-26R be decommissioned. No corrective measures are needed at this time.

Conclusions and Recommendations

Current Site conditions comply with the provisions of the IC/EC Plan / Site Management Plan.

Linzer should continue with the groundwater monitoring events at the approved annual frequency. For the reasons documented in Section 3.0, GEC is recommending/requesting the elimination of the following monitoring wells / analytes from the Groundwater Monitoring Program: (1) MW-3 for nickel; (2) MW-10 and MW-26R for chromium, copper and nickel; and (3) MW-20, MW-21 and MW-23 for SVOCs. The proposed revised Groundwater Monitoring Plan is provided as Table 4.

GEC is also recommending/requesting that IC/EC inspections be conducted at a reduced frequency – to take place annually in April/May in conjunction with annual groundwater monitoring. Linzer is forthcoming and pro-actively consults GEC regarding proposed plans for any

improvements to the Site that may disturb the sub-surface within or outside of the AOCs in accordance with the recorded environmental easement.

5.0 MONITORING PLAN COMPLIANCE REPORT

Groundwater Monitoring Plan Components

Historically, there were a total of 24 groundwater monitoring wells on Site; however, a subset of 11 monitoring wells is included in the current Groundwater Monitoring Plan (Table 1) that was initiated in June 2012. For the March 2021 sampling round, the number of wells targeted for sampling and analysis was eleven.

The Monitoring Plan stipulates that, prior to collection of groundwater samples the groundwater level in each well shall be measured and recorded. Groundwater samples are to be collected via the low-flow sampling method. Laboratory analysis includes total chromium, copper, and nickel via USEPA Method 6010 or 6020 and/or SVOCs via USEPA Method 8270C. Samples must be submitted to a certified New York state laboratory under proper chain-of-custody documentation. Please refer to Table 1 attached for a summary of the Groundwater Monitoring Plan.

Monitoring Completed During Reporting Period

Since the submittal of the last PRR in June 2020, one round of long-term groundwater monitoring was conducted during March 2021. A total of 11 monitoring wells were sampled for metals or SVOCs as shown in Table 1.

Prior to groundwater sampling, the groundwater level in each well was measured and recorded. Peristaltic pumps with polyethylene tubing were used to purge and sample monitoring wells. Groundwater samples were collected using the USEPA Region II "Groundwater Sampling Procedure – Low Stress (low flow) Purging and Sampling (March 16, 1998) and field parameters monitored included: dissolved oxygen, pH, temperature, specific conductance, ORP, and turbidity. Laboratory analysis included total chromium, copper, and nickel via USEPA Method 6020B or SVOCs via USEPA Method 8270D-E. Samples were submitted to Contest Laboratories of Longmeadow, Massachusetts, which is a New York State certified laboratory, under proper chain-of-custody documentation. A copy of the analytical reports and chains-of-custody are included in Attachment 4. USEPA Method 6020B was used instead of USEPA Method 6010 to achieve lower sample quantitation limits and reporting limits. USEPA Method 8270D-E was used because they are newer revisions of USEPA Method 8270C and includes the analytes of concern (i.e., PAHs and phthalates) for this Site.

Comparison with Remedial Objectives

The remediation goal for the Site is to attain, to the extent practicable, ambient Class GA groundwater quality standards. Monitoring wells are sampled for analysis of select metals, as follows: (1) MW-5R (nickel) for AOC #1 and MW-26R (chromium, copper and nickel) for AOC #1 and AOC #4; (2) MW-2 (nickel), MW-10 (chromium, copper and nickel) and MW-12 (chromium, copper and nickel) in AOC #2 and AOC #5; and (3) MW-3 (nickel) and MW-4 (nickel) in AOC #3.

Overall, metal concentrations are essentially consistent compared to historical data, as summarized in Table 3.

For three (MW-2, MW-4, and MW-12) of the five (MW-2, MW-3, MW-4, MW-10, and MW-12) monitoring wells sampled and analyzed during this monitoring round, the levels of nickel (0.111 to 1.2 mg/l) still exceeded its Class-GA standard (0.1 mg/l). MW-5R and MW-26R were not sampled during this monitoring round. However, based on recent monitoring rounds, the levels of nickel exceed its Class-GA standard for MW-5R (0.10 to 1.6 mg/l during April 2017 to May 2020) and are less than its Class-GA standard or are not detectable for MW-26R (<0.0014 to 0.077 mg/l during September 2013 to May 2020). For MW-3 and MW-10, nickel levels have been less than its Class-GA standard (MW-3 0.036 to 0.078 mg/l from April 2018 through March 2021; and MW-10 <0.0005 to 0.019 mg/l from September 2009 through March 2021). Based on these findings, continued groundwater monitoring for nickel is warranted for monitoring wells MW-2, MW-4, MW-5R and MW-12. For nickel, remedial objectives are met at MW-3, MW-10 and MW-26R.

Groundwater from three monitoring wells (MW-10, MW-12 and MW-26R) are analyzed for copper. During this monitoring event, groundwater samples were collected from MW-10 and MW-12 for analysis of copper. Neither groundwater sample had a level of copper that exceeded its Class-GA standard (0.2 mg/l). However, for MW-12, the Class-GA standard was exceeded as recently as April 2020 (0.500 µg/l). For MW-10, the levels of copper (<0.0012 to 0.0058 mg/l) have been below its Class-GA standard from March 2013 through March 2021. A sample was not collected from MW-26R during this monitoring round. For MW-26R, the levels of copper detected (<0.0022 to 0.076 mg/l) were less than its Class-GA standard during the period September 2013 to May 2020. Based on these findings, continued groundwater monitoring for copper is warranted for monitoring well MW-12. For copper, remedial objectives are met at MW-10 and MW-26R.

Monitoring wells MW-19, MW-20, MW-21, and MW-23 are listed to be sampled for SVOCs. These wells are located within AOC-4, on the north side of the Site building. MW-19 was not sampled due to the presence of 0.03 feet of LNAPL as measured with an oil/water interface probe. Based on groundwater analytical data for MW-20, MW-21, and MW-23, the LNAPL observed at MW-19 does not appear to be a significant continuing source of SVOCs within AOC-4. This finding is consistent with prior analytical data for all four monitoring wells. For MW-20, MW-21, and MW-23, no PAHs or phthalates have been detected at levels above applicable Class-GA standards from September 2011 through March 2021 (11, 14 and 14 rounds, respectively). Limited groundwater analytical data is available for MW-19. Based on these findings, continued groundwater monitoring for SVOCs is warranted for MW-19, during monitoring rounds when no LNAPL is present. For PAHs and phthalates, remedial objectives are met at MW-20, MW-21 and MW-23. Refer to Table 2 for a summary of SVOC analytical data.

Changes made to Groundwater Monitoring Component of Site Management Plan

The original Groundwater Monitoring Plan presented in the 2009 SMP was revised by eliminating some monitoring wells from the scheduled monitoring and by reducing the groundwater

monitoring frequency from semi-annual to annual. GEC received oral approval from the NYSDEC after submitting the 2015 PRR and official approval in the form of a Site Management Addendum letter, dated March 31, 2016, which was included in the June 2017 PRR. The approved Groundwater Monitoring Plan is provided as Table 1.

Monitoring during this reporting period complied that approved in the 2016 Site Management Addendum letter, with the following qualifiers:

- 1. MW-5R was inadvertently not sampled for analysis during this groundwater monitoring period; it is still included in the groundwater monitoring plan and will be sampled going forward;
- 2. MW-19 was not sampled for analysis because LNAPL was present in the monitoring well;
- 3. MW-26R was not sampled for analysis because of the presence of an obstruction in the well's riser;
- 4. Groundwater samples were analyzed for metals via USEPA Method 6020 instead of USEPA Method 6010, in order to achieve lower sample quantitation limits; and
- 5. Groundwater samples were analyzed for SVOCs via USEPA Method 8270D-E instead of USEPA Method 8270C; both modifications of USEPA Method 8270 are comparable and target the same analytes of concern.

GEC recommends/request further revision of the Groundwater Monitoring Plan to eliminate monitoring wells that have levels of analytes of concern that have been consistently less than Class-GA standards over multiple sequential monitoring rounds. Specifically, GEC recommends/requests eliminating the following monitoring wells from the Groundwater Monitoring Plan: (1) MW-3 for nickel; (2) MW-10 and MW-26R for chromium, copper, and nickel; and (3) MW-20, MW-21 and MW-23 for SVOCs. The annual monitoring frequency would remain. GEC recommends expanding the allowed analytical methods to both USEPA Method 6010 or 6020 for metals and USEPA Method 8270C, 8270D or 8270D-E for SVOCs. The proposed revised Groundwater Monitoring Plan is provided in Table 4.

LNAPL Assessment

Additional information and data are needed to evaluate the LNAPL presence at MW-19 within AOC #4. LNAPL at MW-19 should be investigated as specified in the Corrective Measure Plan, dated May 2021. Specifically, the following will be conducted, as practicable:

- 1. LNAPL thickness and depth to groundwater at MW-19 will be measured during groundwater monitoring round going forward,
- 2. if or when no LNAPL is present at MW-19, a groundwater sample will be collected for analysis of SVOCs via USEPA Method 8270, and
- 3. if more than six inches of LNAPL is measured in MW-19, an attempt will be made to conduct an LNAPL transmissivity test to verify recoverability of LNAPL and / or to collect a

- sample of LNAPL for laboratory analysis of viscosity and specific gravity, hydrocarbon fingerprinting and/or PIANO (paraffin, isoparaffin, aromatic, naphthenic and olefin).
- 4. Alternatively, MW-19 will be overdrilled and the filter sand pack replaced or a new monitoring well will be installed within approximately 2 feet from the existing well. It is possible that existing well MW-19 is not providing representative information of the subsurface conditions and LNAPL may be trapped within the existing filter pack.

6.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

SMP Compliance

The IC/EC established in the Environmental Easement prevents exposure of persons at or around the Site to metals and SVOCs in soil and groundwater. All requirements of the IC/EC and Environmental Easement were met during the reporting period. The recent construction of a building addition did not encroach on any AOC and, therefore, did not require implementation of the Soil Management Plan presented in the SMP. Site inspections to verify the effectiveness of the IC/EC will continue. However, given the long history of Site inspections and Linzer's communications with GEC about Site issues and plans, GEC recommends/request reducing the IC/EC inspections to once a year concurrent with groundwater sampling in the spring. A spring inspection would confirm whether any damage occurred to the AOC coverings during snow removal over the prior winter.

Long-term groundwater monitoring was established in the 2009 SMP, and, based on years of groundwater analytical data, was subsequently modified by GEC in 2016 with NYSDEC's authorization. Five years has elapsed since the last revision to the Groundwater Monitoring Plan, during which period approximately six rounds of additional groundwater monitoring were conducted. Based on these results, GEC is recommending/requesting further revision of the Groundwater Monitoring Plan (Table 4).

Performance and Effectiveness of the Remedy

The terms of the IC/EC established in the Environmental Easement have been effective in achieving the remedial objective of eliminating exposures of persons at or around the Site to metals and SVOCs in soil and groundwater. Currently the groundwater data have shown that the other remedial objectives have been met at specific monitoring wells and will likely be met for the remaining monitoring wells over time. Using the groundwater monitoring data, the remedial objectives are to: (1) reduce the release of contaminants from soil into groundwater that may create exceedances of ambient groundwater quality standards; (2) meet ambient Class GA Groundwater Standards; and (3) meet soil cleanup objectives specified in Technical and Administrative Guidance Memorandum (TAGM) #4046.

Continued annual groundwater monitoring is sufficient to evaluate the variability of total chromium, copper, and nickel concentrations in groundwater. The LNAPL that is present historically in MW-19 does not appear to be contributing to groundwater contamination as the recent and historic analytical data suggest. As stated in the Corrective Measure Plan, dated May 2021,

additional evaluation of the LNAPL at MW-19, including feasibility of removal, will be conducted.

The current remedy has significantly improved water quality. GEC will continue to monitor its effectiveness.

PRR Submittal Schedule

The frequency of PRR submittals is not expected to change. The next PRR will be due 12 months from the submittal deadline of this report, or August 30, 2022. The frequency of sampling and Site inspections shall be annually – assuming NYSDEC approves modifying the inspection frequency from a semi-annual to an annual event.

7.0 WARRANTY

The conclusions and recommendations contained in this report are based on the information available to GEC as of the date of this document. The conclusions and recommendations may require revision if future regulatory changes occur. GEC provides no warranties on information provided by third parties and contained herein. Data compiled was in accordance with GEC's existing procedures and consistent with the NYSDEC regulations and should not be construed beyond its limitations. Any interpretations or use of this report other than those expressed herein are not warranted.

The use, partial use, or duplication of this report without the written consent of Goldman Environmental Consultants, Inc., and the Linzer Corporation is strictly prohibited.

Respectfully submitted,

Goldman Environmental Consultants, Inc.

Prepared By:

Approved By:

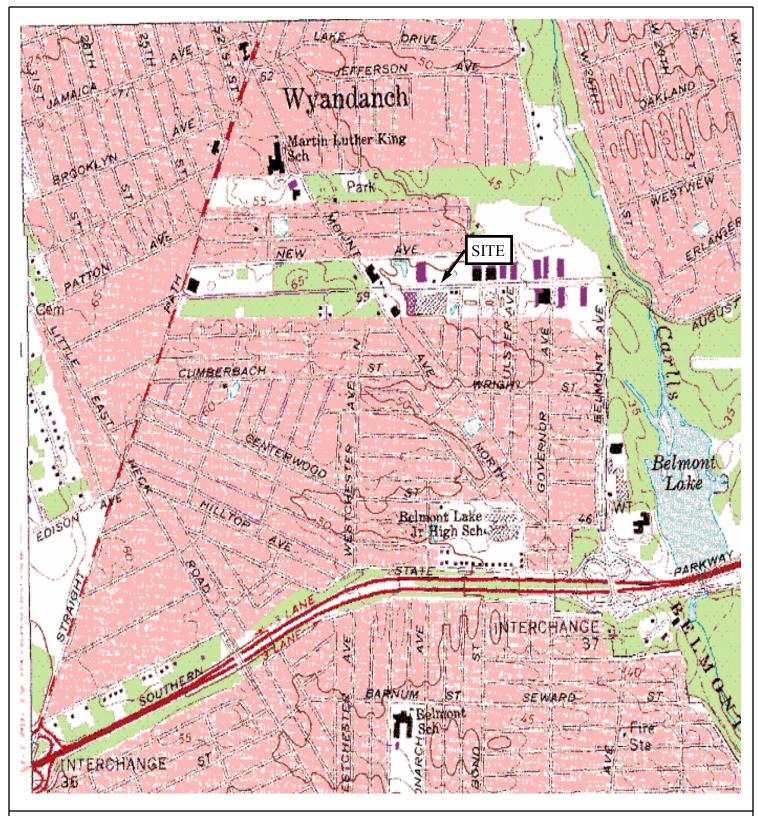
Amelia Flannery

Eileen A. Furlong

Amelia Flannery Project Scientist Eileen A. Furlong

Senior Risk Assessor

Approved By:


Brian T. Butler, P.G.

Sr. Vice President, Operations

Buint Buth

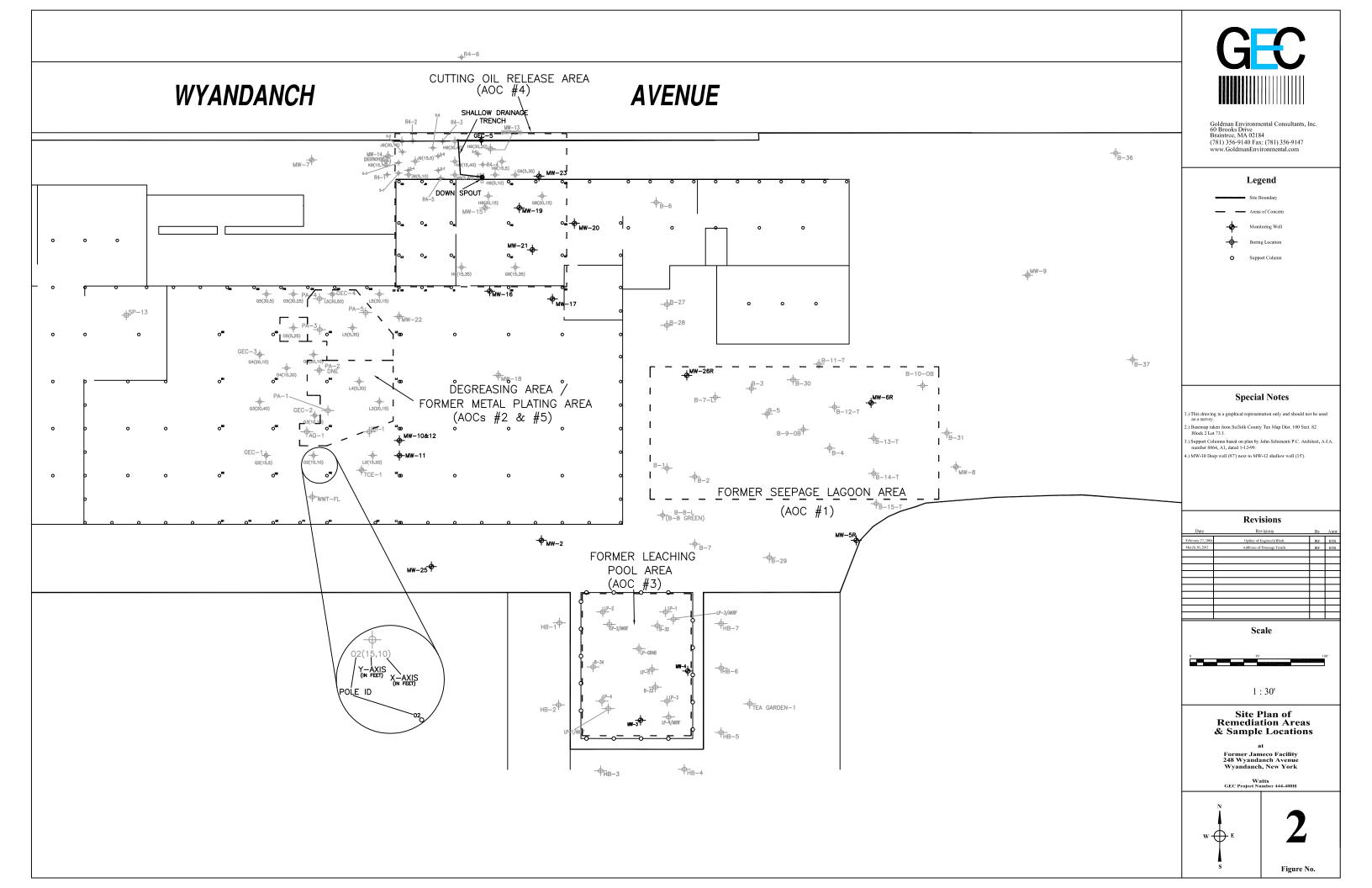
\\gec-v-fs\public\\Projects\1744-Linzer Corp\1744-0120 for 2020-2021\\2020-2021 Report

USGS 7.5 Minute Topographic

Goldman Environmental Consultants, Inc. 60 Brooks Drive Braintree, MA 02184 (781)356-9140 Fax: (781)356-9147 www.goldmanenvironmental.com

SITE LOCUS

248 Wyandanch Avenue Wyandanch, New York


GEC Project #: 444-5010

Bay Shore NewYork, Quadrangle

Figure 1

Scale 1: 25,000

TABLE 1: GROUNDWATER MONITORING PLAN

248 Wyandanch Ave. West Babylon, New York

Monitoring Well	Associated AOC	Screen Depth (feet)	Chromium, Copper, Nickel (6010C or 6020B)	Nickel (6010C or 6020B)	Semi-VOCs (8270C or D)
MW-2	AOC-2	6-16		X	
MW-3	AOC-3	10-20		X	
MW-4	AOC-3	10-20		X	
MW-5R	AOC-1	6-16		X	
MW-10	AOC-2 and 5	87-97	X		
MW-12	AOC-2 and 5	5-15	X		
MW-19	AOC-4	5-25			X
MW-20	AOC-4	5-25			X
MW-21	AOC-4	5-25			X
MW-23	AOC-4	2-20			X
MW-26R	AOC-1 and 4	10-20	X		
MS			X		X
MS-DUP			X		X
Total			5	4	6

AOC = Area of Concern

Semi-VOCs = Semi-Volatile Organic Compounds

248 Wyandanch Avenue, Wyandanch, New York (unit, parts per billion [ppb] µg/L)

Sample	Sample	Analytical	Acenaphthene	Ι.	nthracene	Benzo (a)		Benzyl		4-Chloroaniline	Chrysene		3.3-Dichloro	2.4-Dichloro	nhonol	Di-n-butvl		Diethyl	
Identification	Date	Method	S		SQL	anthracene	SQL	alcohol	SQL	SQL	Cili yserie	SQL	benzidine SQ		SQL	phthalate	SQL	phthalate	SQL
MW-2	12/4/2007	8270		5	ND 5	ND	5				ND	5		ND	5	principal		printing	
MW-3	1/25/2007	8270		10	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5		
(AOC #3)	12/4/2007***		led, destroyed dur			•••	-					-			-		-		
(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	4/16/2008***		d during soil remed	•															
	9/11/2008***	8270M(SIM)	_	.5	ND 0.5	ND	0.1	ND		ND	ND	0.02	ND	NA		ND	0.02	NS	
	9/28/2009***	8270C		93	ND 0.84	ND	1.03	ND		ND	ND	0.95	ND	ND	0.98	ND	0.95	ND	1.07
MW-4	12/4/2007***	8270	ND	5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5	ND	5
(AOC #3)	4/16/2008***	Well destroyed	d during soil remed	liation	, to be replaced.														
	3/30/2009***	8270	ND 1	02	ND 0.84	ND	1.03	ND		ND	ND	0.95	ND	ND	0.98	ND	0.95	ND	1.07
MW-5R	12/15/2003	8270	ND	5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5		
(AOC #1)	4/6/2006	8270	ND 0	30	ND 0.20	ND	0.05	ND		ND	ND	0.20	ND	ND	1	ND	0.20		
	1/29/2007***	8270	ND	5	ND 5	ND	5	ND		ND	ND	5	ND	13	5	ND	5		
	12/4/2007***	8270		5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5	ND	5
	4/16/2008***	8270		5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5	ND	5
	9/11/2008***	8270M(SIM)		.5	ND 0.5	ND	0.1	ND		ND	ND	0.02	ND	NA		ND	0.02	NS	
	3/30/2009***	8270		.02	ND 0.84		1.03	ND		ND	ND	0.95	ND	ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C		.13	ND 0.93		1.14	ND		ND	ND	1.06	ND	ND	1.09	ND	1.06	ND	1.19
MW-6R	12/15/2003	8270		5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5		
(AOC #1)	4/6/2006	8270		30	ND 0.20		0.05	ND		ND	ND	0.20	ND	ND	11	ND	0.20		
	12/4/2007***	8270		5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5		
M114/ 40	4/16/2008***	8270		.5	ND 0.5 ND 5	ND	0.1	ND		ND	ND	0.02	ND	NA		ND	0.02		
MW-10	1/24/2007***	8270		5 5	ND 5 ND 5	ND	5 5	ND		ND	ND	5 5	ND ND	ND ND	5 5	ND	5 5	ND	-
(AOC # 2/5)	4/16/2008*** 9/11/2008***	8270		-		ND	э	ND		ND	ND	5	ND	ND	Э	ND	Э	ND	5
	3/30/2009***	Sample contair 8270	i e	.02	aboratory ND 0.84	ND	1.03	ND		ND	ND	0.95	ND	ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C		.02	ND 0.88		1.03	ND ND		ND ND	ND ND	1.00	ND ND	ND ND	1.03	ND ND	1.00	1.23	1.13
MW-11	1/29/2007***	8270		5	ND 5	ND ND	5	ND		ND	ND	5	ND	ND	5	ND	5	1.23	1.10
(AOC # 2/5)	12/4/2007***	8270		5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5	ND	5
(1.00 11 210)	4/16/2008***	8270		5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5	ND	5
	9/11/2008***	8270M(SIM)		.5	ND 0.5	ND	0.1	ND		ND	ND	0.02	ND	NA		ND	0.02	NS	
	3/30/2009***	8270		02	ND 0.84		1.03	ND		ND	ND	0.95	ND	ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C		02	ND 0.84		1.03	ND		ND	ND	0.95	ND	ND	0.98	ND	0.95	ND	1.07
MW-12	1/24/2007***	8270	ND	5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5		
(AOC # 2/5)	4/16/2008***	8270	ND	5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5	ND	5
, ,	9/11/2008***	8270M(SIM)	ND (.5	ND 0.5	ND	0.1	ND		ND	ND	0.02	ND	NA		ND	0.02	NS	
	3/30/2009***	8270	ND 1	02	ND 0.84	ND	1.03	ND		ND	ND	0.95	ND	ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND 1	13	ND 0.93	ND	1.14	ND		ND	ND	1.06	ND	ND	1.09	ND	1.06	ND	1.19
MW-16	4/6/1999	8270	ND ·	10	ND 10	ND	10	ND		ND	ND	10	ND	ND	10	ND	10		
(AOC #4)	12/15/2003	8270	ND	5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5		
	4/6/2006	8270		.3	ND 0.2	ND	0.05	ND		ND	ND	0.2	ND	ND	1	ND	0.2		
	1/25/2007***	8270		5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5		
	12/4/2007***	8270	ND	5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5	ND	5
	4/16/2008***	8270	ND	5	ND 5	ND	5	ND		ND	ND	5	ND	ND	5	ND	5	ND	5
	9/11/2008***	Sample contain	ner broken in trans	it to la	aboratory			ND		ND			ND						
	3/30/2009***	8270		02	ND 0.84		1.03	ND		ND	ND	0.95	ND	ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND 1	.02	ND 0.84	ND	1.03	ND		ND	ND	0.95	ND	ND	0.98	ND	0.95	ND	1.07

Revised: 4/14/2021 Page 1 of 12

248 Wyandanch Avenue, Wyandanch, New York (unit, parts per billion [ppb] µg/L)

Sample	Sample	Analytical	Fluoranthe	ne	Fluorene		2-M ethyl		Naphthalene		3-Nitroaniline	T	4-Nitroaniline		Phenanthre	ene	Pyrene		Pyridine		bis (2-Ethyll	nexvI)
Identification	Date	M ethod		SQL		SQL	naphthalene	SQL		SQL		SQL		SQL		SQL	,	SQL		SQL	phthalate	SQL
MW-2	12/4/2007	8270	ND	5	ND	5	ND	5	ND	5					ND	5	ND	5				
MW-3	1/25/2007	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
(AOC #3)	12/4/2007***	Well not samp																				ļ
	4/16/2008***	Well destroyed	d .																			ļ
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5
	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.0	ND		ND	1.0
MW-4	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
(AOC #3)	4/16/2008***	Well destroyed	¢																			
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01
MW-5R	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
(AOC #1)	4/6/2006	8270	ND	0.5	ND	1	ND	1	ND	1	ND		ND		ND	0.1	ND	1	ND		ND	1
	1/29/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01
	9/28/2009***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.97	ND		ND		ND	1.00	ND	1.12			ND	1.12
MW-6R	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
(AOC #1)	4/6/2006	8270	ND	0.5	ND	11	ND	1	ND	1	ND		ND		ND	0.1	ND	1	ND		ND	1
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	4/16/2008***	8270	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5
MW-10	1/24/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
(AOC # 2/5)	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	9/11/2008***	Sample contai																				
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01
	9/28/2009***	8270C	ND	0.91	ND	0.96	ND	0.86	ND	0.92	ND		ND		ND	0.95	ND	1.06			ND	1.06
MW-11	1/29/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
(AOC # 2/5)	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01
MANA/ 40	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01
MW-12	1/24/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
(AOC # 2/5)	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01
	9/28/2009***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.97	ND		ND		ND	1.00	ND	1.12			ND	1.12
MW-16	4/6/1999	8270	ND	10	ND	10	ND	10	ND	10	ND		ND		ND	10	ND	10	ND		ND	10
(AOC #4)	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	4/6/2006	8270	ND	0.5	ND	1	ND	1	ND	11	ND		ND		ND	0.1	ND	1	ND		ND	1
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	9/11/2008***	Sample contai									ND		ND						ND			J
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01
	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01

Revised: 4/14/2021

248 Wyandanch Avenue, Wyandanch, New York (unit, parts per billion [ppb] µg/L)

Sample	Sample	Analytical	Acenaphth	nene	Anthracene		Benzo (a)		Benzyl		4-Chloroanil	ine	Chrysene		3,3-Dichloro		2,4-Dichlo	rophenol	Di-n-butyl		Diethyl	
Identification	Date	M ethod	-	SQL		SQL	anthracene	SQL	alcohol	SQL		SQL	-	SQL	benzidine	SQL		SQL	phthalate	SQL	phthalate	SQL
MW-17	4/6/1999	8270	ND	10	ND	10	ND	10	ND		ND		ND	10	ND		ND	10	ND	10		
(AOC #4)	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5		
,	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5		
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5	ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5	ND	5
	9/11/2008***	Sample contai	iner broken i	n transit to	laboratory																	
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
MW-19		Well was not	sampled due		sence of LNAF	PL																
(AOC #4)					sence of LNAF																	
(* * * * * * * * * * * * * * * * * * *					sence of LNAF																	
					sence of LNAF																	
					sence of LNAF																	
					sence of LNAF																	
	3/24/2010***	8270C	ND	1.02	•	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	9/16/2010***						U	1.00	IND		IND		ND	0.55	IND		110	0.50	ND	0.51	ND	1.07
	3/23/2011***	8270C	I ND	1.02	•	0.84	L ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	76.6	B 0.97	ND	1.07
					sence of LNAF		IND	1.00	IND		ND		ND	0.33	ND		IND	0.30	70.0	D 0.31	ND	1.07
					sence of trace a		of INADI															
					sence of trace a																	
					ection of 0.02'																	
	4/21/2015 ***		Sampred due				•	4.00	ND	0.54	ND	0.50	ND	4.05	ND	4.00	ND	0.00	4.40	1 4 25	ND	4.05
		8270D		0.96		1.10	ND ND	1.20	ND	0.51	ND	0.52	ND	1.25	ND	1.66	ND	0.90	1.49	J 1.35	ND	1.25
					ection of 0.03'																	
					ection of 0.01'																	
					ection of 0.01'																	
					ection of 0.02'																	
					ection of 0.07'																	
	3/2/2021***				ection of 0.03'																	
MW-20	4/6/2006	8270	ND	0.3	ND	0.2	ND	0.05	ND		ND		ND	0.2	ND		ND	11	ND			
(AOC #4)	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND			_
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND		ND	5
	9/11/2008***	Well was no																				
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	1.17	1.07
	3/24/2010***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	3/23/2011***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	75.4	B 0.97	ND	1.07
	9/21/2011***	8270C	ND	1.13	ND	0.93	ND	1.14	ND	0.53	ND	0.52	ND	1.06	ND	0.76		1.09	ND	1.08	ND	1.19
	4/2/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68		0.98	ND	0.97	ND	1.07
	9/18/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68	ND	0.98	ND	0.97	ND	1.07
	3/27/2013***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33		0.72	ND	1.08	ND	1.00
	9/17/2013***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	3/11/2014***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	4/20/2016***	Well was not	sampled due	eto a dama	ged road box		1				1											
	4/10/2017***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	9.06	B 1.08	ND	1.00
	4/23/2018***	8270D	ND	5.0	ND	5.0	ND	5.0	NR		ND	10	ND	5.0	ND	10	ND	10	ND	10	ND	10
	5/7/2019***	8270D	ND	5.1	ND	5.1	ND	5.1	NR		ND	10	ND	5.1	ND	10	ND	10	ND	10	ND	10
	5/21/2020***	8270D	ND	5.1	ND	5.1	ND	5.1	NR		ND	10	ND	5.1	ND	10	ND	10	ND	10	ND	10
	3/3/2021***	8270D-E	ND	4.9	ND	4.9	ND	4.9	NR		ND	9.8	ND	4.9	ND	9.8	ND	9.8	ND	9.8	ND	9.8

Revised: 4/14/2021

TABLE 2 **SUMMARY OF GROUNDWATER ANALYTICAL DATA:** SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) 248 Wyandanch Avenue, Wyandanch, New York

(unit, parts per billion [ppb] μg/L)

Sample	Sample	Analytical	Fluoranthene		Fluorene		2-M ethyl		Naphthalene		3-Nitroaniline		4-Nitroaniline		Phenanthre		Pyrene		Pyridine		bis (2-Eth	
Identification	Date	M ethod		SQL		SQL	naphthalene	SQL		SQL		SQL		SQL		SQL		SQL		SQL	phthalate	e SQL
MW-17	4/6/1999	8270	ND	10	ND	10	ND	10	ND	10	ND		ND		ND	10	ND	10	ND		ND	10
(AOC #4)	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5
	9/11/2008***	Sample contai	1																			
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01
	9/28/2009***	8270C	ND	0.86	ND	0.81	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01
MW-19	1/24/2007***	Well was not s	1																			
(AOC #4)	12/7/2007***	Well was not s																				
(* * * * * * * * * * * * * * * * * * *		Well was not s																				
		Well was not s																				
		Well was not s																				
		Well was not s																				
	3/24/2010***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44
	9/16/2010***	Well was not s		0.00	IND	0.51	IND	0.02	ND	0.07	ND		IND		ND	0.50	IND	1.01	ND		IND	1.77
	3/23/2011***	8270C	ND	0.86	ND	0.91	5.22	B 0.82	4.09 E	0.87	ND		ND		ND	0.90	ND	1.01	ND		5.75	B 1.44
		Well was not s		0.00	IND	0.51	5.22	D 0.02	4.03 L	0.07	ND		IND		ND	0.50	IND	1.01	ND		0.70	D 1.44
	3/27/2013***	Well was not s																				
	9/17/2013***	Well was not s																				
		Well was not s																				
				4.00	ND	4.00	ND	0.00	ND	0.00	ND	0.42	ND	0.05	ND	4.40	ND	4.00	ND	0.40	ND	4.50
	4/21/2015 ***	8270D	ND	1.20	ND	1.02	ND	0.93	ND	0.98	ND	0.43	ND	0.65	ND	1.19	ND	1.06	ND	0.46	ND	1.58
		Well was not s																				
	4/10/2017***	Well was not s																				
	4/23/2018***	Well was not s																				
		Well was not s																				
		Well was not s																				
	3/2/2021***	Well was not s																				
MW-20	4/6/2006	8270	ND	0.50	ND	11	ND	11	ND	1	ND		ND		ND	0.1	ND	11	ND		ND	
(AOC #4)	1/25/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	
	9/11/2008***	Well was not																				
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44
	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44
	3/24/2010***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44
	3/23/2011***	8270C	ND	0.86	ND	0.91	5.54	B 0.82	4.94 E	3 0.87	ND		ND		ND	0.90	ND	1.01	ND		5.61	B 1.44
	9/21/2011***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.97	ND	0.67	ND	1.19	ND	1.00	ND	1.12	ND	0.41	ND	1.60
	4/2/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND	0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44
	9/18/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND	0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44
	3/27/2013***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26
	9/17/2013***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26
	3/11/2014***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26
	4/20/2016***	Well was not s	ı																			
	4/10/2017***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26
	4/23/2018***	8270D	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	10	ND	5.0	ND	5.0	ND	5.0	ND	10
	5/7/2019***	8270D	ND	5.1	ND	5.1	ND	5.1	ND	5.1	ND	10	ND	10	ND	5.1	ND	5.1	ND	5.1	ND	10
	5/21/2020***	8270D	ND	5.1	ND	5.1	ND	5.1	ND	5.1	ND	10	ND	10	ND	5.1	ND	5.1	ND	5.1	ND	10
	3/3/2021***	8270D-E	ND	4.9	ND	4.9	ND	4.9	ND	4.9	ND	9.8	ND	9.8	ND	4.9	ND	4.9	ND	4.9	ND	9.8

Page 4 of 12 Revised: 4/14/2021

TABLE 2 **SUMMARY OF GROUNDWATER ANALYTICAL DATA:** SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) 248 Wyandanch Avenue, Wyandanch, New York

(unit, parts per billion [ppb] μg/L)

Sample	Sample	Analytical	Acenaphther	ne	Anthracene		Benzo (a)		Benzyl		4-Chloroanilin	ne .	Chrysene		3,3-Dichloro		2,4-Dichloro	phenol	Di-n-buty	I	Diethyl	
Identification	Date	M ethod		SQL		SQL	anthracene	SQL	alcohol	SQL		SQL	, , ,	SQL	benzidine	SQL	,	SQL	phthalate		phthalate	SQL
MW-21	4/6/1999	8270	ND	10	ND	10	ND	10	ND		ND		ND	10	ND		ND	10	ND			
(ACO #4)	4/6/2006	8270	ND	0.29	ND	0.19	ND	0	ND		ND		ND	0	ND		ND	1	ND			
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND			
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND		ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND		ND	5
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.1	ND		ND		0.03	0.02	ND		NA		ND		NS	
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.02
	3/24/2010***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.02
	3/23/2011***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	70.1	B 0.97	ND	1.07
Note 4	9/21/2011***	8270C	ND	1.13	ND	0.93	ND	1.14	5.31	0.53	21.80	0.52	ND	1.06	2.18	0.76	ND	1.09	ND	1.08	ND	1.19
	4/2/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68	ND	0.98	ND	0.97	ND	1.07
	9/18/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68	ND	0.98	ND	0.97	ND	1.07
	3/27/2013***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	9/17/2013***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	3/11/2014***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	9/17/2014***	8270D	ND	0.86	ND	0.98	ND	0.91	ND	0.46	ND	0.47	ND	1.11	ND	1.48	ND	1.79	ND	1.20	ND	1.11
	4/21/2015***	8270D	ND	0.96	ND	1.10	ND	1.20	ND	0.51	ND	0.52	ND	1.25	ND	1.66	ND	0.90	ND	1.35	ND	1.25
	4/20/2016***	8270D	ND	3.85	ND	4.40	ND	4.80	ND	2.05	ND	2.10	ND	5.00	ND	6.65	ND	3.65	ND	5.40	ND	5.00
	4/10/2017***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	8.42	B 1.08	ND	1.00
	4/23/2018***	8270D	ND	5.1	ND	5.1	ND	5.1	NR		ND	10	ND	5.1	ND	10	ND	10	ND	10	ND	10
	5/7/2019***	8270D	ND	5.0	ND	5.0	ND	5.0	NR		ND	10	ND	5.0	ND	10	ND	10	ND	10	ND	10
	5/21/2020***	8270D	ND	5.0	ND	5.0	ND	5.0	NR		ND	10	ND	5.0	ND	10	ND	10	ND	10	ND	10
	3/2/2021***	8270D-E	ND	4.9	ND	4.9	ND	4.9	NR		ND	9.8	ND	4.9	ND	9.8	ND	9.8	ND	9.8	ND	9.8

Revised: 4/14/2021 Page 5 of 12

TABLE 2 **SUMMARY OF GROUNDWATER ANALYTICAL DATA:** SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) 248 Wyandanch Avenue, Wyandanch, New York

(unit, parts per billion [ppb] μg/L)

Sample	Sample	Analytical	Fluoranthene)	Fluorene		2-M ethyl		Naphthale	ene	3-Nitroaniline		4-Nitroaniline		Phenanthrer	10	Pyrene		Pyridine		bis (2-Eth	ylhexyl)
Identification	Date	M ethod		SQL		SQL	naphthalene	SQL		SQL		SQL		SQL		SQL	,	SQL	•	SQL	phthalate	
MW-21	4/6/1999	8270	ND	10	ND	10	ND	10	ND	10	ND		ND		ND	10	ND	10	ND		ND	
(ACO #4)	4/6/2006	8270	ND	0	ND	0.95	ND	1	ND	1	ND		ND		ND	0	ND	1	ND		ND	
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	Į.
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	ļ
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	ŀ
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44
	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44
	3/24/2010***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44
	3/23/2011***	8270C	ND	0.86	ND	0.91	5.00	B 0.82	3.41	B 0.87	ND		ND		ND	0.90	ND	1.01	ND		5.57	B 1.44
Note 4	9/21/2011***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.97	15.10	0.67	2.65	1.19	ND	1.00	ND	1.12	8.47	0.41	2.58	1.60
	4/2/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND	0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44
	9/18/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND	0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44
	3/27/2013***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26
	9/17/2013***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26
	3/11/2014***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26
	9/17/2014***	8270D	ND	1.07	ND	0.91	ND	0.82	ND	0.87	ND	0.54	ND	0.58	ND	1.06	ND	0.94	ND	0.41	ND	1.40
	4/21/2015***	8270D	ND	1.20	ND	1.02	ND	0.93	ND	0.98	ND	0.43	ND	0.65	ND	1.19	ND	1.06	ND	0.46	ND	1.58
	4/20/2016***	8270D	ND	5.80	ND	4.10	ND	3.70	ND	3.90	ND	1.70	ND	2.60	ND	4.75	ND	4.25	ND	1.85	ND	6.30
	4/10/2017***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26
	4/23/2018***	8270D	ND	5.1	ND	5.1	ND	5.1	ND	5.1	ND	5.1	ND	10	ND	5.1	ND	5.1	ND	5.1	ND	10
	5/7/2019***	8270D	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	10	ND	5.0	ND	5.0	ND	5.0	ND	10
	5/21/2020***	8270D	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	10	ND	5.0	ND	5.0	ND	5.0	ND	10
	3/2/2021***	8270D-E	ND	4.9	ND	4.9	ND	4.9	ND	4.9	ND	9.8	ND	9.8	ND	4.9	ND	4.9	ND	4.9	ND	9.8

Revised: 4/14/2021 Page 6 of 12

248 Wyandanch Avenue, Wyandanch, New York (unit, parts per billion [ppb] µg/L)

Sample	Sample	Analytical	Acenaphth	ono	Anthracene		Benzo (a)		Benzyl		4-Chloroanil		Chrysene		3.3-Dichloro		2,4-Dichlor	onhonol	Di-n-buty		Diethyl	
Identification	Date	Method	Aceriapiiti	SQL	Antinacene	SQL	anthracene	SQL	alcohol	SQL	4-Cilior Gailli	SQL	Cili yserie	SQL	benzidine	SQL	2,4-Dialio	SQL	phthalate		phthalate	SQL
MW-23	4/6/1999	8270	ND	10	ND	10	ND	10	ND		ND		ND	10	ND		ND	10	ND		· ·	
(AOC #4)	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND			
(1100 11-1)	4/6/2006	8270	ND	0.3	ND	0.2	ND	0.5	ND		ND		ND	0.2	ND		ND	1	ND			
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND			
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND		ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND		ND	5
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.1	ND		ND		0.02	0.02	ND		NA		ND		NS	
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	1.23	1.07
	3/24/2010***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	1.23	1.07
	3/23/2011***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	80.3	B 0.97	ND	1.07
	9/21/2011***	8270C	ND	1.13	ND	0.93	ND	1.14	ND	0.53	ND	0.52	ND	1.06	ND	0.76	ND	1.09	ND	1.08	ND	1.19
	4/2/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68	ND	0.98	ND	0.97	ND	1.07
	9/18/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68	ND	0.98	ND	0.97	ND	1.07
	3/27/2013***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	9/17/2013***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	3/11/2014***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	9/17/2014***	8270D	ND	1.10	ND	1.26	ND	1.37	ND	0.59	ND	0.60	ND	1.43	ND	1.90	ND	1.03	ND	1.54	ND	1.43
	4/21/2015***	8270D	ND	0.96	ND	1.10	ND	1.02	ND	0.51	ND	0.52	ND	1.25	ND	1.66	ND	0.90	2.74	1.35	ND	1.25
	4/20/2016***	8270D	ND	3.85	ND	4.40	ND	4.80	ND	2.05	ND	2.10	ND	5.00	ND	6.65	ND	3.65	ND	5.40	ND	5.00
	4/10/2017***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	10.07	B 1.08	ND	1.00
	4/23/2018***	8270D	ND	5.1	ND	5.1	ND	5.1	NR		ND	10	ND	5.1	ND	10	ND	10	ND	10	ND	10
	5/6/2019***	8270D	ND	5.0	ND	5.0	ND	5.0	NR		ND	10	ND	5.0	ND	10	ND	10	ND	10	ND	10
	5/21/2020***	8270D	ND	5.0	ND	5.0	ND	5.0	NR		ND	10	ND	5.0	ND	10	ND	10	ND	10	ND	10
	3/2/2021***	8270D-E	ND	4.9	ND	4.9	ND	4.9	NR		ND	9.7	ND	4.9	ND	9.7	ND	9.7	ND	9.7	ND	9.7
MW-26R	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5		
(AOC #1)	4/6/2006	8270	ND	0.3	ND	0.2	ND	0.05	ND		ND		ND	0.2	ND		ND	1	ND	0.2		
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5	ND	40
	12/4/2007***	8270	ND	10	ND	10	ND	10	ND		ND		ND	10	ND		ND	10	ND	10	ND	10
	4/16/2008*** 9/10/2008***	8270 8270M(SIM)	ND ND	5 0.5	ND ND	5 0.5	ND ND	5 0.1	ND ND		ND ND		ND ND	5 0.02	ND ND		ND NA	5	ND ND	5 0.02	ND NS	5
	3/30/2009***	8270 8270	ND ND	1.02	ND ND	0.84	ND ND	1.03	ND		ND ND		ND ND	0.02	ND ND		ND ND	0.98	ND ND	0.02	ND	1.07
	9/28/2009***	8270C	ND	1.13	ND	0.04	ND	1.14	ND		ND ND		ND	1.06	ND		ND	1.09	ND	1.06	ND	1.19
GEC-5 ⁺	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5		
(AOC #4)	4/6/2006	8270	ND ND	0.3	ND ND	0.2	ND ND	0.05	ND		ND ND		ND	0.2	ND ND		ND ND	1	ND ND	0.2		
(1100 1)	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5	ND	5
	9/11/2008***	Sample contai		n transit to		-		-						-								-
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
N. (14 C ::	9/28/2009***	8270C	ND	1.13	ND	0.93	ND	1.14	ND		ND		ND	1.06	ND		ND	1.09	ND	1.06	ND	1.19
NY Water Quali	ty Standards		20		NV		NV		NV		5		NV		5		0.3		50		NV	

Notes:

- 1) Ambient Water Quality Standards and Guidance Values provided in the New York
 - State and Technical Operational Guidance Series (TOGS 1.1.1). For Class GA

Groundwater, developed in support of 6 NYCRR Part 700-705 (current to Janaury 2018).

https://govt.westlaw.com/nycrr/Document/14ed90418cd1711dda432a117e6e0f345?viewType=FullText&originationContext=documenttoc&transitionType=CategoryPageItem&contextData=(sc.Default)

- Analytical data for method blank is grouped with appropriate laboratory sample batch. Dates provided for method blanks represent the data of laboratory analysis.
- Phenol was detected in sample MW-20 on 12/11/02 but not a significant amount, results is less than RL but greater than or equal to MDL
- 4) Detections are likely a result of using spray paint to label wells during sampling on 9/21/11

SQL= Sample Quantitation Limit

GEC-5⁺ = Replaces MW-7 in groundwater sampling plan. MW-7 previously paved over.

Revised: 4/14/2021 Page 7 of 12

248 Wyandanch Avenue, Wyandanch, New York (unit, parts per billion [ppb] µg/L)

Identification Date Method SQL S	ND
MW-23	ND ND ND ND ND ND ND ND 1.4 ND 1.4 ND 1.4 2.19 J 1.6
(AOC #4) 12/15/2003 8270 ND 5	ND ND ND ND ND ND 1.4 ND 1.4 ND 1.4 S.76 B 1.4 2.19 J 1.6
4/8/2006 8.270 ND 0.5 ND 1 ND 1 ND 1 ND 1 ND ND	ND ND ND ND ND ND 1.4 ND 1.4 ND 1.4 S.76 B 1.4 2.19 J 1.6
1/25/2007*** 8270	ND ND ND ND ND 1.4 ND 1.4 ND 1.4 5.76 B 1.4 2.19 J 1.6
12/4/2007*** 8270 ND 5 ND ND	ND ND ND ND 1.4 ND 1.4 ND 1.4 S.76 B 1.4 2.19 J 1.6
4162008*** 8270 ND 5 ND ND	ND ND ND 1.4 ND 1.4 ND 1.4 5.76 B 1.4 2.19 J 1.6
9/11/2008*** 8270M(SIM) ND 0.5	ND 1.4 ND 1.4 ND 1.4 ND 1.4 5.76 B 1.4 2.19 J 1.6
3/30/2009*** 8270C ND 0.86 ND 0.91 ND 0.82 ND 0.87 ND ND ND ND 0.90 ND 1.01 ND ND 3/24/2010*** 8270C ND 0.86 ND 0.91 ND 0.82 ND 0.87 ND ND ND ND 0.90 ND 1.01 ND ND 3/24/2010*** 8270C ND 0.86 ND 0.91 S.04 B 0.82 3.65 B 0.87 ND ND ND ND 0.90 ND 1.01 ND ND ND ND 0.90 ND 1.01 ND ND ND ND ND ND 0.90 ND 1.01 ND ND 0.91 ND 0.91 ND 0.92 ND 0.85 ND ND ND ND ND ND 0.90 ND 1.01 ND 0.91 ND 0.92 ND 0.93 ND 0.67 ND ND ND 0.90 ND 1.01 ND 0.91 ND 0.92 ND 0.82 ND 0.87 ND 0.60 ND 1.07 ND 0.90 ND 1.01 ND 0.37 ND 0.91 ND 0.82 ND 0.82 ND 0.87 ND 0.60 ND 1.07 ND 0.90 ND 1.01 ND 0.37 ND 0.91 ND 0.92 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 ND 0.91 ND 0.92 ND 0.93 ND 0.93 ND 0.93 ND 0.93 ND 0.95 ND 0.85 ND 0.37 ND 0.91 ND 0.93 ND 0.94 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 ND 0.77 ND 0.78	ND 1.4 ND 1.4 ND 1.4 5.76 B 1.4 2.19 J 1.6
9/28/2009*** 8270C ND 0.86 ND 0.91 ND 0.82 ND 0.87 ND ND ND ND 0.90 ND 1.01 ND	ND 1.4 ND 1.4 5.76 B 1.4 2.19 J 1.6
3/24/2010*** 8270C ND 0.86 ND 0.91 ND 0.82 ND 0.87 ND ND ND ND ND 0.90 ND 1.01 ND	ND 1.4 5.76 B 1.4 2.19 J 1.6
3/23/2011*** 8270C ND 0.86 ND 0.91 5.04 B 0.82 3.65 B 0.87 ND ND ND 0.90 ND 1.01 ND	5.76 B 1.4 2.19 J 1.6
9/21/2011*** 8270C ND 0.96 ND 1.01 0.96 J 0.91 1.37 BJ 0.97 ND 0.67 ND 1.19 ND 1.00 ND 1.12 ND 0.41 4/2/2012*** 8270C ND 0.86 ND 0.91 ND 0.82 ND 0.82 ND 0.87 ND 0.60 ND 1.07 ND 0.90 ND 1.01 ND 0.37 9/18/2012*** 8270C ND 0.96 ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 9/17/2013*** 8270C ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 3/11/2014*** 8270C ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 3/11/2014*** 8270C ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 3/11/2014*** 8270C ND 0.96 ND 0.82 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 3/11/2014*** 8270C ND 0.96 ND 0.82 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 3/11/2014*** 8270C ND 0.96 ND 0.82 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 3/11/2014*** 8270D ND 1.37 ND 1.17 ND 1.06 ND 1.11 ND 0.49 ND 0.52 ND 0.95 ND 0.85 ND 0.37 3/11/2015*** 8270D ND 1.20 ND 1.20 ND 0.93 ND 0.93 ND 0.98 ND 0.43 ND 0.52 ND 0.95 ND 0.85 ND 0.53 4/21/2015*** 8270D ND 5.80 ND 4.10 ND 3.70 ND 3.90 ND 1.70 ND 0.43 ND 0.43 ND 1.19 ND 1.06 ND 0.46 A/20/2016*** 8270D ND 5.80 ND 4.10 ND 3.70 ND 3.90 ND 1.70 ND 0.43 ND 0.45 ND 0.45 ND 0.37 A/23/2018*** 8270D ND 5.80 ND 0.82 ND 0.74 ND 0.78 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 A/23/2018*** 8270D ND 5.1 ND 5.0 ND	2.19 J 1.6
4/2/2012*** 8270C ND 0.86 ND 0.91 ND 0.82 ND 0.87 ND 0.60 ND 1.07 ND 0.90 ND 1.01 ND 0.37	
9/18/2012*** 8270C ND 0.86 ND 0.91 ND 0.82 ND 0.87 ND 0.60 ND 1.07 ND 0.90 ND 1.01 ND 0.37	ND 1.4
3/27/2013*** 8270C ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37	
9/17/2013*** 8270D ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37	ND 1.4
3/11/2014*** 8270C ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37	ND 1.2
9/17/2014*** 8270D ND 1.37 ND 1.17 ND 1.06 ND 1.11 ND 0.49 ND 0.74 ND 1.36 ND 1.21 ND 0.53 4/21/2015*** 8270D ND 1.20 ND 1.02 ND 0.93 ND 0.98 ND 0.43 ND 0.43 ND 1.19 ND 1.06 ND 0.46 4/20/2016*** 8270D ND 5.80 ND 4.10 ND 3.70 ND 3.90 ND 1.70 ND 2.60 ND 4.75 ND 4.25 ND 1.85 4/10/2017*** 8270D ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 4/23/2018*** 8270D ND 5.1 ND 5.0 ND	ND 1.2
4/21/2015*** 8270D ND 1.20 ND 1.02 ND 0.93 ND 0.98 ND 0.43 ND 0.43 ND 1.19 ND 1.06 ND 0.46	ND 1.2
4/20/2016*** 8270D ND 5.80 ND 4.10 ND 3.70 ND 3.90 ND 1.70 ND 2.60 ND 4.75 ND 4.25 ND 1.85 4/10/2017*** 8270D ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 4/23/2018*** 8270D ND 5.1 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND </td <td>ND 1.8</td>	ND 1.8
4/10/2017*** 8270D ND 0.96 ND 0.82 ND 0.74 ND 0.78 ND 0.34 ND 0.52 ND 0.95 ND 0.85 ND 0.37 4/23/2018*** 8270D ND 5.1 ND 5.0 ND<	ND 1.5
4/23/2018*** 8270D ND 5.1 ND 5.0 ND <td>ND 6.3</td>	ND 6.3
5/6/2019*** 8270D ND 5.0 ND 4.9 ND 4.9 ND<	ND 1.2
5/21/2020*** 8270D ND 5.0 ND 5	ND 10
3/2/2021*** 8270D-E ND 4.9 ND 4.	ND 10
MW-26R 12/15/2003 8270 ND 5 ND	ND 10
	ND 9.
	ND 5
(AOC#1) 4/6/2006 8270 ND 0.5 ND 1 ND 1 ND 1 ND ND 0.1 ND 1 ND	ND 1
1/25/2007*** 8270 ND 5	ND 5
12/4/2007*** 8270 ND 10	ND 10
4/16/2008*** 8270 ND 5 ND 5 ND 5 ND 5 ND 5 ND ND	ND 5
9/10/2008*** 8270M(SIM) ND 0.5	ND 0.
3/30/2009*** 8270 ND 0.86 ND 0.91 ND 0.82 ND 0.87 ND ND ND 0.90 ND 1.01 ND 0.90 ND 0.90 ND 1.01 ND 0.90 ND 0.9	ND 1.0
9/28/2009*** 8270C ND 0.96 ND 1.01 ND 0.91 ND 0.97 ND ND 1.00 ND 1.12 ND	ND 1.1
GEC-5 ^T 12/15/2003 8270 ND 5 ND	ND 5
(AOC #4)	ND 1 ND 5
4/16/2008*** 8270 ND 5	טא 5
3/30/2009*** 8270 ND 0.86 ND 0.91 ND 0.82 ND 0.87 ND ND ND 0.90 ND 1.01 ND	ND 4.0
9/28/2009*** 8270C ND 0.96 ND 1.01 ND 0.91 ND ND ND 1.00 ND 1.12 ND	
NY Water Quality Standards	ND 1.0 ND 1.1

Not ND= Not Detected above SQL

NV= No standard or guidance value available as of January 2018.

*** = Samples collected after completion of remedial action.

NR= Not Reported

B= The method blank associated with these samples contained compunds detected at an unknown concentration

8270= USEPA Method 8270

Revised: 4/14/2021

J= Compound analyzed for and determined to be present in sample. Mass spectrum of compound meets identification criteria for method. Concentration listed as estimated value, less than contract required detection limit but greater than instrument detection limit.

248 Wyandanch Avenue Wyandanch, New York

(unit, parts per million [ppm], mg/L)

Sample	Sample Date	Analytical	Chromium	eo.	Copper	cor	Nickel	SOI	Zinc	501
Identification MW-2	5/23/1994	Method	9.12	SQL	2 16	SQL	4.49	SQL	0.747	SQL
	1/27/1995	NG NG	9.12 4		3.16		5.7		0.747	
(AOC #2/5)	11/18/1998	3010/6010	NS		3.8					*
	11/15/1998	NG	0.2560		0.231		10.6		0.263	
	12/11/2002	6010/7470/7196	0.2500		NA 0.292	0.010	NA 1.4	0.010	NA 0.048	В 0.05
	12/11/2002	200.7/6010	ND		0.292	0.010	NA	0.010	0.048	0.03
	4/5/2006	6010	0.017	0.005	0.0623	0.0003	NA NA		0.013	0.01
	4/5/2006	6010	0.017	0.005	NA	0.003	NA NA		NA	0.01
	1/24/2007***	6010B	ND	0.003	0.088	0.025	0.44	0.04	ND	0.2
	12/4/2007	200.7	ND	0.010	ND	0.023	0.30	0.04	ND	0.2
	4/16/2008***	200.7	ND	0.05	ND	0.05	0.30	0.05	ND	0.05
	9/10/2008***	200.7	ND	0.001	0.024	0.001	0.20	0.001	0.119	0.002
	3/30/2009***	6010/200.7	ND	0.0016	ND	0.0029	0.15	0.0005	0.040	0.0044
	9/28/2009***	6010/200.7	ND	0.0016	ND	0.0025	0.14	0.0005	0.0044	0.0044
	3/24/2010***	6010/200.7	NA		NA		0.13	0.0017	NA	
	3/23/2011***	6010/200.7	NA		NA		0.29	0.00072	NA	
	9/21/2011***	6010/200.7	NA		NA		0.17	0.00072	NA	
	4/2/2012***	6010/200.7	NA		NA		0.24	0.00072	NA	
	9/18/2012***	6010/200.7	NA		NA		0.094	0.0014	NA	
	3/27/2013***	6010/200.7	NA		NA		0.26	0.0014	NA	
	9/17/2013***	6010C	NA		NA		0.28	0.0014	NA	
	3/11/2014***\$	6010B	NA		NA		0.36	0.0014	NA	
	9/17/2014***	6010C	NA		NA		0.23	0.0014	NA	
	4/21/2015***	6010C	NA		NA		0.17	0.0014	NA	
	4/20/2016***	6010C	NA		NA		0.27	0.0071	NA	
	4/10/2017***	6010C	NA		NA		0.22	0.0071	NA	
	4/23/2018***	6010C	NA		NA		0.35	0.010	NA	
	5/6/2019***	6010D	NA		NA		0.34	0.010	NA	
	5/21/2020***	6010D	NA		NA		0.26	0.010	NA	
	3/3/2021***	6020B	NA		NA		0.28	0.005	NA	
MW-3	5/23/1994	NG	0.139		0.597		1.75		0.109	
(AOC #3)	1/27/1995	NG	0.320		4.5		3.5		0.68	
	11/17/1998	3010/6010	NA		0.13		0.195		0.0492	*
	12/11/2002	6010/7470/7196	0.203		0.30	0.010	1.39	0.010	0.0956	0.05
	12/16/2003	200.7/6010	0.056		0.0837	0.0005	NA		0.071	0.01
	1/24/2007	6010B	ND	0.01	ND	0.025	ND	0.04	ND	0.2
	12/4/2007***						ng remediation			
	4/16/2008***						n, to be replac			
	9/10/2008***	200.7	0.05	0.001	0.094	0.001	0.225	0.001	0.053	0.002
	3/30/2009***	6010/200.7	ND	0.0016	0.0660	0.0029	0.13	0.0005	0.045	0.0044
	9/28/2009***	6010/200.7	0.013	0.0016	0.0710	0.0029	0.12	0.0005	0.030	0.0044
	3/24/2010***	6010/200.7	NA		NA		0.064	0.0017	NA	
	3/23/2011***	6010/200.7	NA		NA NA		0.074	0.00072	NA	
	9/21/2011***	6010/200.7	NA		NA NA		0.091	0.00072	NA	
	4/2/2012***	6010/200.7	NA		NA NA		0.11	0.0014	NA	
	9/18/2012 3/27/2013***	6010/200.7 6010/200.7	NA NA		NA NA		0.065 0.074	0.0014 0.0014	NA NA	
	9/17/2013***	6010/200.7 6010C	NA NA		NA NA		0.074 0.11	0.0014	NA NA	
	3/11/2014***\$	6010B	NA NA		NA NA		0.080	0.0014	NA NA	
	9/17/2014***	6010B	NA NA		NA NA		0.080	0.0014	NA NA	
	4/21/2015***	6010C	NA NA		NA NA		0.13	0.0014	NA NA	
	4/20/2016***	6010C	NA NA		NA NA		0.049	0.0014	NA NA	
	4/10/2017***	6010C	NA NA		NA NA		0.048	0.0071	NA NA	
	4/23/2018***	6010C	NA NA		NA NA		0.13	0.0071	NA NA	
	5/6/2019***	6010D	NA NA		NA NA		0.078	0.010	NA NA	
	5/21/2020***	6010D 6010D	NA NA		NA NA		0.078	0.010	NA NA	
	3/3/2021***	6020B	NA NA		NA NA		0.032	0.010	NA NA	
NYSD		oundwater Standard	0.05		0.2		0.030	0.005	2.0	
Notes:			2.00			A	ound in the blan			

Notes:
NS= Not Sampled

SQL= Sample Quantitation Limit

NA= Not Analyzed

ND= Not detected above SQL

NG = Analytical Method not provided by previous consultant

Methods = Standard USEPA Methods

B= Analyte is found in the blanks as well as the sample.

*** = Sample collected after completion of remedial actions

- - = Sample quantitation limits not provided or not available.

E= Detected concentration exceeds calibration curve range.

T= Analysis by EcoTest due to short holding time *= Duplicate analysis not within control limit.

Bold= Exceeds Standard

GEC-5⁺ = Replaces MW-7 in groundwater sampling plan. MW-7 previously paved over.

\$= In March 2014 these samples were field filtered with a 0.45μm filter prior to collection in error

248 Wyandanch Avenue Wyandanch, New York (unit, parts per million [ppm], mg/L)

Sample	Sample	Analytical	Chromium		Copper		Nickel		Zinc	
Identification	Date	Method		SQL		SQL		SQL		SQL
MW-4	12/11/2002	6010/7470/7196	0.049		0.102	0.010	2.1	0.010	0.0561	0.05
(AOC #3)	12/16/2003	200.7/6010	0.010		0.0769	0.0005	NA		0.151	0.01
	4/6/2006	6010	0.160	0.005	0.1040	0.005	NA		0.181	0.01
	4/6/2006	6010	0.150	0.005	NA 0.14	0.025	NA	0.04	NA 0.2	0.2
	1/24/2007	6010B	0.19	0.01	0.14	0.025	2.2	0.04	0.3	0.2
	12/4/2007*** 9/10/2008***	200.7	0.08	0.05	0.14	0.05	1.65	0.05	0.26	0.05 0.002
	3/30/2009***	200.7 6010/200.7	0.035 0.017	0.001 0.0016	0.048 ND	0.001 0.0029	1.11 0.62	0.001 0.0005	0.124 0.1300	0.002
	9/28/2009***	6010/200.7	0.017 ND	0.0016	0.0410	0.0029	0.62	0.0005	0.1300	0.0044
	3/24/2010***	6010/200.7	NA NA	0.0010	0.0410 NA	0.0029	0.50	0.0003	0.0820 NA	0.004-
	3/23/2011***	6010/200.7	NA NA		NA NA		0.65	0.0017	NA NA	
	9/21/2011***	6010/200.7	NA		NA		0.92	0.00072	NA	
	4/2/2012***	6010/200.7	NA		NA		0.31	0.0014	NA	
	9/18/2013***	6010/200.7	NA		NA		0.41	0.0014	NA	
	3/27/2013***	6010/200.7	NA		NA		0.37	0.0014	NA	
	9/17/2013***	6010C	NA		NA		0.72	0.0014	NA	
	3/11/2014***	6010B	NA		NA		0.42	0.0014	NA	
	9/17/2014***	6010C	NA		NA		0.78	0.0014	NA	
	4/21/2015***	6010C	NA		NA		0.45	0.0014	NA	
	4/20/2016***	6010C	NA		NA		0.19	0.0071	NA	
	4/10/2017***	6010C	NA		NA		0.21	0.0071	NA	
	4/23/2018***	6010C	NA		NA		0.24	0.010	NA	
	5/6/2019***	6010D	NA		NA		0.41	0.010	NA	
	5/21/2020***	6010D	NA		NA		1.20	0.001	NA	
	3/3/2021***	6020B	NA		NA		1.20	0.050	NA	
MW-5R	12/16/2003	200.7/6010	ND		0.0419	0.0005	NA		0.090	0.005
(AOC #1)	4/6/2006	6010	0.009	0.005	0.1260	0.005	NA		0.1020	0.0100
	4/6/2006	6010	0.007	0.005	NA		NA		NA	
	1/25/2007***	6010B	ND	0.01	1.4	0.025	0.14	0.04	ND	0.2
	12/4/2007***	200.7	ND	0.05	ND	0.05	0.19	0.05	0.21	0.05
	4/16/2008***	200.7	ND	0.05	ND	0.05	1.61	0.05	0.85	0.05
	9/10/2008***	200.7	0.0009	B 0.001	0.008	0.001	0.070	0.001	0.089	0.002
	3/30/2009***	6010/200.7	0.0170	0.0016	ND	0.0029	0.20	0.0005	0.1300	0.0044
	9/28/2009***	6010/200.7	ND	0.0016	ND	0.0029	0.16	0.0005	0.0700	0.0044
	3/24/2010***	6010/200.7	NA		NA		0.17	0.0017	NA	
	3/23/2011***	6010/200.7	NA		NA		1.18	0.00072	NA	
	9/21/2011***	6010/200.7	NA		NA		ND	0.00072	NA	
	4/2/2012***	6010/200.7	NA		NA		0.22	0.0014	NA	
	9/18/2012***	6010/200.7	NA		NA		0.20	0.0014	NA	
	3/27/2013***	6010/200.7	NA		NA		4.95	0.0014	NA	
	9/17/2013***	6010C	NA		NA		0.38	0.0014	NA	
	3/11/2014***	6010B	NA		NA		0.78	0.0014	NA	
	9/17/2014***	6010C	NA		NA NA		0.73	0.0014	NA	
	4/21/2015***	6010C	NA		NA		0.57	0.0014	NA	
	4/20/2016***	6010C	NA		NA		3.64	0.0014	NA	
	4/10/2017***	6010C	NA		NA		0.77	0.0014	NA	
	4/23/2018***	6010C	NA		NA NA		1.6	0.0100	NA	
	5/6/2019***	6010D	NA NA		NA NA		0.20	0.0100	NA NA	
	5/21/2020***	6010D	NA		NA		0.10	0.0100	NA	
MW 6D	3/3/2021***	6020B	ND		0.0076	0.0005	Not sampled NA		0.106	0.005
MW-6R	12/16/2003 4/6/2006	200.7/6010		0.005	0.0076 0.0329	0.0005	NA NA		0.106	0.005 0.010
(AOC #1)	4/6/2006	6010 6010	0.043 0.023	0.005	0.0329 NA	0.005	NA NA		0.053 NA	0.010
-	1/24/2007***	6010B	0.023 ND	0.003	NA ND	0.025	NA ND	0.04	NA ND	0.2
	12/4/2007***	200.7	ND ND	0.01	ND ND	0.023	ND ND	0.04	ND ND	0.2
		200.7	ND ND	0.05	ND ND	0.05	ND ND	0.05	0.05	0.05
			INIJ	0.03	ND	0.03	ND	0.03	0.03	
	4/16/2008*** 9/10/2008***			0.001	0.005	0.001	0.014	0.001	0.018	ስ ሰሰን
	9/10/2008***	200.7	ND	0.001	0.005	0.001	0.014	0.001	0.018	
				0.001 0.0016 0.0016	0.005 ND ND	0.001 0.0029 0.0029	0.014 0.032 ND	0.001 0.0005 0.0005	0.018 0.063 0.017	0.002 0.004 0.004

Notes:

NS= Not Sampled

SQL= Sample Quantitation Limit

NA= Not Analyzed

ND= Not detected above SQL

NG = Analytical Method not provided by previous consultant

Methods = Standard USEPA Methods

B= Analyte is found in the blanks as well as the sample.

- *** = Sample collected after completion of remedial actions
 --= Sample quantitation limits not provided or not available.
- E= Detected concentration exceeds calibration curve range.
- T= Analysis by EcoTest due to short holding time *= Duplicate analysis not within control limit.

Bold= Exceeds Standard

GEC-5⁺ = Replaces MW-7 in groundwater sampling plan. MW-7 previously paved over.

\$\\$= \text{In March 2014 these samples were field filtered with a 0.45\text{\mu}m filter prior to collection in error.}

248 Wyandanch Avenue Wyandanch, New York

(unit, parts per million [ppm], mg/L)

MW-10	Sample	Sample	Analytical	Chromium		Copper		Nickel		Zinc	
(AOC #2.5) 41652098*** 200.7 ND 0.05 ND 0.05 ND 0.01 0.001 0.002 0.022 3302009*** 6010200.7 0.11 0.001 0.001 0.001 0.001 0.001 0.002 33242011*** 6010200.7 0.008 0.0010 0.013 0.0031 0.0096 0.0017 0.0005 0.18 0.000 32442011*** 6010200.7 0.008 0.0010 0.013 0.0031 0.0096 0.0017 0.002 0.004 32422011*** 6010200.7 0.0062 0.0016 0.0091 0.0029 0.0046 0.0007 NA	Identification	Date	Method		SQL	••	SQL		SQL		SQL
91022098*** 200.7	MW-10	1/24/2007***	6010B	ND	0.01	ND	0.025	ND	0.04	ND	0.2
3/30/2009*** 6010/2007 ND 0.0016 0.037 0.0029 0.12 0.0005 0.018 0.000 0.003 0.0006 0.037 0.0029 0.0046 0.007 0.008 0.0016 0.003 0.0006 0.0017 0.0007 0.006 0.007 0.0	(AOC #2/5)	4/16/2008***	200.7	ND	0.05	ND	0.05	ND	0.05	ND	0.05
9282/009*** 6010200.7 N.D 0.0016 0.037 0.0029 N.D 0.0005 0.018 0.004	· · ·	9/10/2008***	200.7	0.030	0.001	0.017	0.001	0.011	0.001	0.022	0.002
3/24/2019*** 6010/200.7 0.008 0.0010 0.013 0.0031 0.0096 0.0017 0.00072 NA		3/30/2009***	6010/200.7	0.11	0.0016	ND	0.0029	0.12	0.0005	0.16	0.0044
3/24/2014*** 6010/200.7 0.008 0.0010 0.013 0.0031 0.0096 0.0017 0.00072 NA											0.0044
		3/24/2010***									
9/26/2011*** 6010/200.7 0.0062 0.0016 0.0091 0.0029 0.0046 0.00972 NA		3/23/2011***									
4/22012*** 6010/200.7 0.26 0.0012 0.024 0.0034 0.008 0.0014 NA											
9/18/20/18-** 6010/20.07 0.018 0.0012 0.49 0.0014 0.006 0.0014 NA											
3/27/2013*** 6010/20.7 0.018 0.0012 0.010 0.0034 0.0055 0.0014 NA											
9/17/2013*** 6010C 0.0054 0.0012 0.0066 0.0034 0.0065 0.0014 NA											
3/11/2014***\$ 6010C ND 0.0012 0.007 0.0034 0.0005 0.0014 NA											
MW-11 7/6/1994 6010C ND 0.0012 0.025 0.0034 0.0020 0.0014 NA											
A40/2017*** 6010C ND 0.0018 ND 0.0031 ND 0.0011 NA 423/2018*** 6010C ND 0.010 ND 0.010 ND 0.010 NA 5/6/2019*** 6010D ND 0.010 ND 0.010 ND 0.010 NA 5/21/2020*** 6010D ND 0.010 ND 0.010 ND 0.010 ND 0.010 NA 5/21/2020*** 6010D ND 0.010 ND 0.010 ND 0.005 NA 5/21/2020*** 6010D ND 0.016 ND 0.010 ND 0.005 NA 5/21/2020*** 6010D ND 0.016 ND 0.0010 ND 0.005 NA 5/21/2020*** 6010D NS # 0.0105 B ND 0.0060 ND 0.010											
MW-11											
MW-11											
MW-11											
MW-11											
AOC #2/5 11/17/1998 3010/6010 NS	MW 11						0.001				
12/15/2003 200.7/6010 0.015 0.0071 0.00050 NA 0.014 0.00 0.00 0.052 0.0592 0.0590 NA 0.030 0.01 0.01 0.025 0.0592 0.0590 NA 0.030 0.01 0.01 0.025 0.0592 0.0590 NA 0.030 0.01 0.01 0.025 0.0592 0.0093 0.0592 0.0093 0.0592 0.0093 0.0592 0.0093 0.0593 0.0093 0.0592 0.0093 0.0592 0.0093 0.0093 0.0595 0.0093							ъ				* 0.017
4/5/2006	(AUC #2/3)										0.017
A/S/2006 6010 0.420 0.005 NA NA NA NA 1/25/2007*** 6010B 0.04 0.01 NID 0.025 NID 0.04 NID 0.02 1/24/2007*** 200.7 0.14 0.05 NID 0.00 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.00000000											
1/25/2007*** 6010B 0.04 0.01 ND 0.025 NID 0.04 ND 0.02							0.00500				0.010
12/4/2007*** 200.7 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.05 ND 0.06 ND 0.06 ND 0.07 0.07 0.032 0.001 0.0011 0.0001 0.0004 0.0001 0.0009 0.000 0.0009 0.000 0.0009 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000							0.025				
4/16/2008*** 200.7 N.D 0.05 N.D 0.05 N.D 0.05 N.D 0.05 N.D 0.05 N.D 0.009 0.0009 0.0005 0.0009											
P(10/2008*** 200.7 0.032 0.001 0.001 0.002 0.0380 0.0005 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000											
MW-12 5/23/1994 6010/200.7 0.044 0.0016 ND 0.0029 0.0380 0.0005 0.0560 0.000											
MW-12 5/23/1994 NG											0.002
MW-12											0.0044
(AOC #2/5) 7/6/1994 NG					0.0016		0.0029		0.0005		0.0044
1/27/1995											
11/17/1998 3010/6010 NS	(AOC #2/5)										
12/15/2003 200.7/6010 0.007 0.5300 0.0005 NA 0.289 0.00											
4/5/2006 6010 0.047 0.005 0.0224 0.005 NA 0.059 0.01 4/5/2006 6010 0.040 0.005 NA NA NA 1/25/2007*** 6010B ND 0.01 0.44 0.025 0.29 0.04 ND 0.2 4/16/2008*** 200.7 ND 0.05 0.13 0.05 0.09 0.05 ND 0.00 9/10/2008*** 200.7 ND 0.001 0.079 0.001 0.073 0.001 0.022 0.00 3/30/2009*** 6010/200.7 ND 0.002 0.20 0.003 0.24 0.0005 0.11 0.00 9/28/2009*** 6010/200.7 ND 0.0016 0.16 0.0029 0.085 0.0005 0.086 0.00 3/23/2011*** 6010/200.7 0.014 0.0016 0.22 0.0029 0.71 0.00072 NA 9/17/2011**** 6010/200.7											*
4/5/2006 6010 0.040 0.005 NA ND 0.02 0.001 0.073 0.001 0.022 0.002 0.001 0.073 0.001 0.022 0.000 0.001 0.0029 0.001 0.0029 0.005 0.005 0.086 0.003 3/23/2011*** 6010/200.7 0.014 0.0016 0.22 0.0029 0.20 0.00072 NA 0.012											0.005
1/25/2007***							0.005				0.010
4/16/2008*** 200.7 ND 0.05 0.13 0.05 0.09 0.05 ND 0.05 9/10/2008*** 200.7 ND 0.001 0.079 0.001 0.073 0.001 0.022 0.00 3/30/2009*** 6010/200.7 ND 0.002 0.20 0.003 0.24 0.0005 0.11 0.00 9/28/2009*** 6010/200.7 ND 0.0016 0.16 0.0029 0.085 0.0005 0.086 0.00 3/23/2011*** 6010/200.7 0.014 0.0016 0.22 0.0029 0.20 0.00072 NA 9/21/2011*** 6010/200.7 0.026 0.0016 0.43 0.0029 0.71 0.00072 NA 4/2/2012*** 6010/200.7 0.045 0.0012 0.83 0.0034 1.73 0.0014 NA 9/18/2012*** 6010/200.7 0.013 0.0012 0.60 0.0034 0.42 0.0014 NA 9/17/2013*** 6010/200.7 0.023 0.0012 0.32 0.0034 0.49 0.0014 NA 9/17/2013*** 6010C 0.0630 0.0012 0.44 0.0034 0.46 0.0014 NA 9/17/2014*** 6010C 0.015 0.0012 0.46 0.0034 0.46 0.0014 NA 4/21/2015*** 6010C 0.015 0.0012 0.46 0.0034 0.72 0.0014 NA 4/21/2016*** 6010C 0.019 0.0012 0.98 0.0034 0.30 0.0014 NA 4/20/2016*** 6010C 0.014 0.0034 0.51 0.0031 0.67 0.0071 NA 4/23/2018*** 6010C 0.017 0.0034 0.24 0.0031 0.67 0.0071 NA 4/23/2018*** 6010C ND 0.010 0.099 0.010 0.40 0.010 NA 5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.069 0.010 NA 5/6/2019*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 5/6/201*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA											
9/10/2008***											0.2
3/30/2009*** 6010/200.7 ND 0.002 0.20 0.003 0.24 0.0005 0.11 0.00											0.05
9/28/2009*** 6010/200.7 ND 0.0016 0.16 0.0029 0.085 0.0005 0.086 0.004											0.002
3/23/2011*** 6010/200.7 0.014 0.0016 0.22 0.0029 0.20 0.00072 NA											0.004
9/21/2011*** 6010/200.7 0.026 0.0016 0.43 0.0029 0.71 0.00072 NA 4/2/2012*** 6010/200.7 0.045 0.0012 0.83 0.0034 1.73 0.0014 NA 9/18/2012*** 6010/200.7 0.013 0.0012 0.60 0.0034 0.42 0.0014 NA 3/27/2013*** 6010/200.7 0.023 0.0012 0.32 0.0034 0.99 0.0014 NA 9/17/2013*** 6010C 0.0630 0.0012 0.44 0.0034 0.46 0.0014 NA 3/11/2014*** 6010B 0.013 0.0055 0.087 0.0034 0.39 0.0014 NA 9/17/2014*** 6010C 0.015 0.0012 0.46 0.0034 0.72 0.0014 NA 4/21/2015*** 6010C 0.015 0.0012 0.98 0.0034 0.30 0.0014 NA 4/21/2016*** 6010C 0.014 0.0034 0.51 0.0031 1.97 0.0071 NA 4/20/2016*** 6010C 0.014 0.0034 0.51 0.0031 1.97 0.0071 NA 4/23/2018*** 6010C 0.017 0.0034 0.24 0.0031 0.67 0.0071 NA 4/23/2018*** 6010C ND 0.010 0.099 0.010 0.40 0.010 NA 5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.072 0.010 NA 5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.578 0.001 0.111 0.005 NA											0.0044
4/2/2012*** 6010/200.7 0.045 0.0012 0.83 0.0034 1.73 0.0014 NA 9/18/2012*** 6010/200.7 0.013 0.0012 0.60 0.0034 0.42 0.0014 NA 3/27/2013*** 6010/200.7 0.023 0.0012 0.32 0.0034 0.99 0.0014 NA 9/17/2013*** 6010C 0.0630 0.0012 0.44 0.0034 0.46 0.0014 NA 3/11/2014***\$ 6010B 0.013 0.0055 0.087 0.0034 0.39 0.0014 NA 9/17/2014*** 6010C 0.015 0.0012 0.46 0.0034 0.72 0.0014 NA 4/21/2015*** 6010C 0.019 0.0012 0.98 0.0034 0.30 0.0014 NA 4/20/2016*** 6010C 0.014 0.0034 0.51 0.0031 1.97 0.0071 NA 4/23/2018**											
9/18/2012*** 6010/200.7 0.013 0.0012 0.60 0.0034 0.42 0.0014 NA 3/27/2013*** 6010/200.7 0.023 0.0012 0.32 0.0034 0.99 0.0014 NA 9/17/2013*** 6010C 0.0630 0.0012 0.44 0.0034 0.46 0.0014 NA 3/11/2014***\$ 6010B 0.013 0.0055 0.087 0.0034 0.39 0.0014 NA 9/17/2014*** 6010C 0.015 0.0012 0.46 0.0034 0.39 0.0014 NA 4/21/2015*** 6010C 0.019 0.0012 0.46 0.0034 0.30 0.0014 NA 4/21/2016*** 6010C 0.019 0.0012 0.98 0.0034 0.30 0.0014 NA 4/20/2016*** 6010C 0.014 0.0034 0.51 0.0031 1.97 0.0071 NA 4/10/2017*** 6010C 0.017 0.0034 0.24 0.0031 0.67 0.0071 NA 4/23/2018*** 6010C ND 0.010 0.099 0.010 0.40 0.010 NA 5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.072 0.010 NA 5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA		9/21/2011***	6010/200.7	0.026	0.0016	0.43	0.0029	0.71	0.00072	NA	
3/27/2013*** 6010/200.7 0.023 0.0012 0.32 0.0034 0.99 0.0014 NA 0.014 0.0034 0.0034 0.0014 0.0034 0.0014 0.0034 0.0014 0.0034 0.00		4/2/2012***	6010/200.7	0.045	0.0012	0.83	0.0034	1.73	0.0014	NA	
9/17/2013*** 6010C		9/18/2012***	6010/200.7	0.013	0.0012	0.60	0.0034	0.42	0.0014	NA	
3/11/2014***\$ 6010B 0.013 0.0055 0.087 0.0034 0.39 0.0014 NA		3/27/2013***	6010/200.7	0.023	0.0012	0.32	0.0034	0.99	0.0014	NA	
9/17/2014*** 6010C 0.015 0.0012 0.46 0.0034 0.72 0.0014 NA 4/21/2015*** 6010C 0.019 0.0012 0.98 0.0034 0.30 0.0014 NA 4/20/2016*** 6010C 0.014 0.0034 0.51 0.0031 1.97 0.0071 NA 4/10/2017*** 6010C 0.017 0.0034 0.24 0.0031 0.67 0.0071 NA 4/23/2018*** 6010C ND 0.010 0.099 0.010 0.40 0.010 NA 5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.072 0.010 NA 5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA		9/17/2013***	6010C	0.0630	0.0012	0.44	0.0034	0.46	0.0014	NA	
9/17/2014*** 6010C 0.015 0.0012 0.46 0.0034 0.72 0.0014 NA 4/21/2015*** 6010C 0.019 0.0012 0.98 0.0034 0.30 0.0014 NA 4/20/2016*** 6010C 0.014 0.0034 0.51 0.0031 1.97 0.0071 NA 4/10/2017*** 6010C 0.017 0.0034 0.24 0.0031 0.67 0.0071 NA 4/23/2018*** 6010C ND 0.010 0.099 0.010 0.40 0.010 NA 5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.072 0.010 NA 5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA		3/11/2014***\$	6010B	0.013	0.0055	0.087	0.0034	0.39	0.0014	NA	
4/21/2015*** 6010C 0.019 0.0012 0.98 0.0034 0.30 0.0014 NA 4/20/2016*** 6010C 0.014 0.0034 0.51 0.0031 1.97 0.0071 NA 4/10/2017*** 6010C 0.017 0.0034 0.24 0.0031 0.67 0.0071 NA 4/23/2018*** 6010C ND 0.010 0.099 0.010 0.40 0.010 NA 5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.072 0.010 NA 5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA		9/17/2014***							0.0014		
4/20/2016*** 6010C 0.014 0.0034 0.51 0.0031 1.97 0.0071 NA 4/10/2017**** 6010C 0.017 0.0034 0.24 0.0031 0.67 0.0071 NA 4/23/2018*** 6010C ND 0.010 0.099 0.010 0.40 0.010 NA 5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.072 0.010 NA 5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA		4/21/2015***			0.0012		0.0034	0.30	0.0014	NA	
4/10/2017*** 6010C 0.017 0.0034 0.24 0.0031 0.67 0.0071 NA 4/23/2018*** 6010C ND 0.010 0.099 0.010 0.40 0.010 NA 5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.072 0.010 NA 5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA											
4/23/2018*** 6010C ND 0.010 0.099 0.010 0.40 0.010 NA 5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.072 0.010 NA 5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA											
5/6/2019*** 6010D 0.013 0.010 0.860 0.010 0.072 0.010 NA 5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA											
5/21/2020*** 6010D 0.096 0.010 0.500 0.010 0.069 0.010 NA 3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA											
3/2/2021*** 6020B 0.007 0.001 0.078 0.001 0.111 0.005 NA											
	MVCD			0.05	0.001	0.078	0.001	0.111	0.003	2.0	

Notes:

NS= Not Sampled
SQL= Sample Quantitation Limit
NA= Not Analyzed
ND= Not detected above SQL

NG = Analytical Method not provided by previous consultant Methods = Standard USEPA Methods

B= Analyte is found in the blanks as well as the sample.

- B= Analyte is found in the blanks as well as the sample.

 *** = Sample collected after completion of remedial actions

 --= Sample quantitation limits not provided or not available.

 E= Detected concentration exceeds calibration curve range.

 T= Analysis by EcoTest due to short holding time

 *= Duplicate analysis not within control limit.

 Bold= Exceeds Standard

248 Wyandanch Avenue Wyandanch, New York (unit, parts per million [ppm], mg/L)

Sample	Sample	Analytical	Chromium		Copper		Nickel		Zinc	
Identification	Date	Method		SQL		SQL		SQL		SQL
MW-26R	12/15/2003	200.7/601	ND		0.0018	0.00050	NA		0.019	0.005
(AOC #1 and 4)	4/6/2006	3010/6010	0.018	0.005	0.040	0.01	NA		0.0740	0.010
	4/6/2006	6010	0.017	0.005	NA		NA		NA	
	1/24/2007***	6010B	ND	0.01	ND	0.025	ND	0.04	ND	0.2
	12/4/2007***	200.7	ND	0.05	ND	0.05	ND	0.05	ND	0.05
	4/16/2008***	200.7	ND	0.05	ND	0.05	ND	0.05	ND	0.05
	9/10/2008***	200.7	ND	0.001	0.005	0.001	ND	0.001	0.006	0.002
	3/30/2009***	6010/200.7	0.095	0.0016	ND	0.0029	0.12	0.0005	0.17	0.0044
	9/28/2009***	6010/200.7	ND	0.0016	0.038	0.0029	ND	0.0005	0.0087	0.0044
	3/24/2010***	6010/200.7	0.0048	0.0010	0.072	0.0031	0.0061	0.0017	NA	
	3/23/2011***	6010/200.7	ND	0.0016	0.060	0.0029	0.0062	0.0007	NA	
	9/21/2011***	6010/200.7	ND	U 0.0016	0.0053	0.0029	ND	U 0.00072	NA	
	4/2/2012***	6010/200.7	0.0025	0.0012	0.02	0.0034	0.0019	0.0014	NA	
	9/18/2012***	6010/200.7	0.0014	0.0012	0.60	0.0034	0.42	0.0014	NA	
	3/27/2013***	6010/200.7	0.3500	0.0020	0.70	0.0056	0.80	0.0024	NA	
	9/17/2013***	6010C	0.0033	0.0012	0.021	0.0034	ND	0.0014	NA	
	3/11/2014***\$	6010B	0.0055	0.0012	ND	0.0022	0.0022	0.0014	NA	
	9/17/2014***	6010C	0.0054	0.0012	0.066	0.0034	0.0021	0.0014	NA	
	4/21/2015***	6010C	ND	0.0012	0.030	0.0034	0.0077	0.0014	NA	
	4/20/2016***	6010C	ND	0.0034	0.076	0.0031	0.015	0.0071	NA	
	4/10/2017***	6010C	0.0058	0.0034	0.040	0.0031	0.014	0.0071	NA	
	4/23/2018***	6010C	ND	# 0.010	0.032	0.010	ND	0.010	NA	
	5/6/2019****	6010D	ND	0.010	0.019	0.010	ND	0.010	NA	
	5/21/2020***	6010D	ND	0.010	0.015	0.010	ND	0.010	NA	
	3/2/2021***	6020B	Not sampled	- because we	ell is obstruct	ed.				
GEC-5 [™]	4/16/2008***	200.7	ND	0.05	ND	0.05	ND	0.05	ND	0.05
(AOC #4)	9/10/2008***	200.7	ND	0.001	0.0008	B 0.001	ND	0.001	0.003	0.002
	3/30/2009***	6010/200.7	ND	0.0016	ND	0.003	ND	0.0005	0.0170	0.0044
	9/29/2009***	6010/200.7	ND	0.0016	ND	0.0029	ND	0.0005	ND	0.0044
NYSD	EC Class GA Gro	undwater Standard	0.05		0.2	•	0.1	•	2.0	

NS= Not Sampled

SQL= Sample Quantitation Limit

NA= Not Analyzed

ND= Not detected above SQL

NG = Analytical Method not provided by previous consultant

Methods = Standard USEPA Methods

- B= Analyte is found in the blanks as well as the sample.

 *** = Sample collected after completion of remedial actions
- -- = Sample quantitation limits not provided or not available.
- E= Detected concentration exceeds calibration curve range.
- T= Analysis by EcoTest due to short holding time
 *= Duplicate analysis not within control limit.

Bold= Exceeds Standard

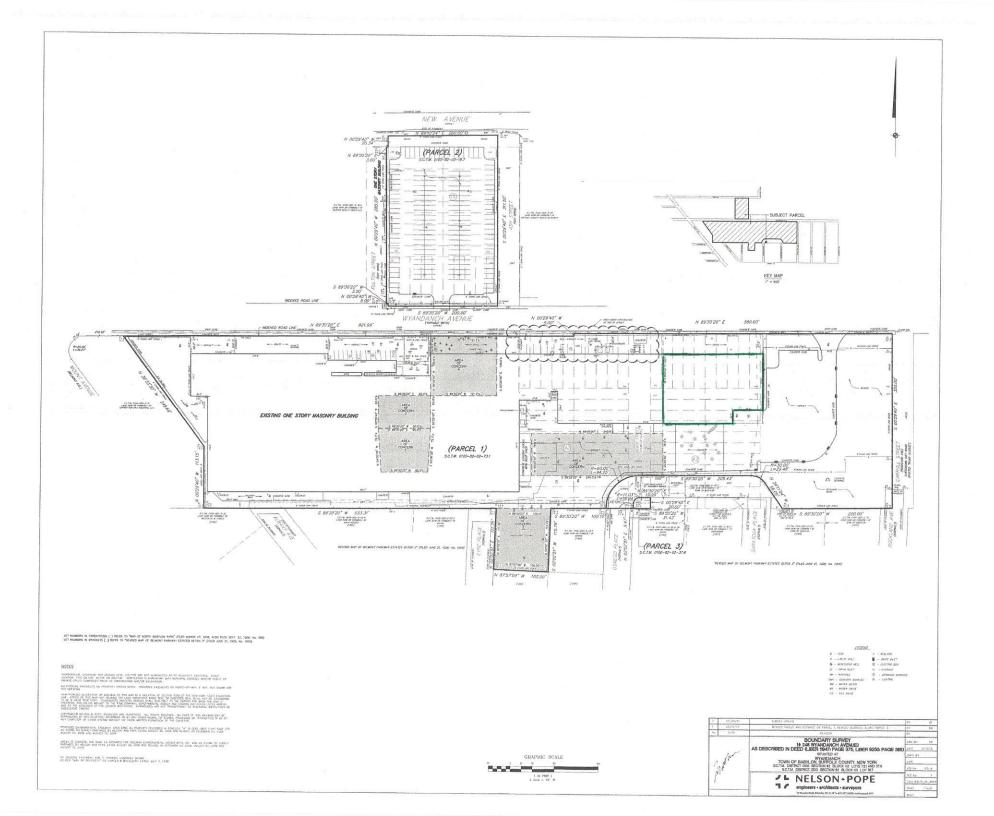
GEC-5⁺ = Replaces MW-7 in groundwater sampling plan. MW-7 previously paved over.

\$\[\text{In March 2014 these samples were field filtered with a 0.45\text{\mu}m filter prior to collection in error} \]

TABLE 4: PROPOSED REVISED GROUNDWATER MONITORING PLAN

248 Wyandanch Ave. West Babylon, New York

Monitoring Well	Associated AOC	Screen Depth (feet)	Chromium, Copper, Nickel (6010C or 6020B)	Nickel (6010C or 6020B)	Semi-VOCs (8270C or D)
MW-2	AOC-2	6-16		X	
MW-3	AOC-3	10-20		Eliminate	
MW-4	AOC-3	10-20		X	
MW-5R	AOC-1	6-16		X	
MW-10	AOC-2 and 5	87-97	Eliminate		
MW-12	AOC-2 and 5	5-15	X		
MW-19	AOC-4	5-25			X^{1}
MW-20	AOC-4	5-25			Eliminate
MW-21	AOC-4	5-25			Eliminate
MW-23	AOC-4	2-20			Eliminate
MW-26R	AOC-1 and 4	10-20	Eliminate		
MS			X		X^{1}
MS-DUP			X		X
Total			3	3	3


AOC = Area of Concern

Semi-VOCs = Semi-Volatile Organic Compounds

Note 1: A sample will be collected from MW-19 for analysis when no LNAPL is present during a sampling/gauging round.

ATTACHMENT 1:

Plan showing Building Addition

ATTACHMENT 2: Periodic Review Report Certification Statement and IC/EC Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. 152006	Box 1	
Sit	e Name Jameco Industries, Inc.		
City Co	e Address: 248 Wyandanch Avenue Zip Code: 11798 y/Town: Wyandanch unty: Suffolk e Acreage: 9.360		
Re	porting Period: May 31, 2020 to July 31, 2021		
		YES	NO
1.	Is the information above correct?	V	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		∠
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		∠
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	V	
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form		
5.	Is the site currently undergoing development?		y
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Industrial	V	
7.	Are all ICs in place and functioning as designed? ✓		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	
Α (Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	ues.
Sig	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. 152006 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

82-2-37.6 Linzer Products Corp.
Site Management Plan

Ground Water Use Restriction

Soil Management Plan Landuse Restriction Monitoring Plan O&M Plan IC/EC Plan

An environmental easement is in place which restricts land use, restricts the use of on-site groundwater and provides for the implementation of the Department approved site management plan.

82-2-73.1 Linzer Products Corp.

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan

An environmental easement is in place which restricts land use, restricts the use of on-site groundwater and provides for the implementation of the Department approved site management plan.

Box 4

Description of Engineering Controls

Parcel Engineering Control

82-2-37.6

Cover System

Fencing/Access Control

Subsurface soils which were contaminated with metals from discharges of plating solutions were excavated and disposed of off-site at a permitted disposal facility. Those areas were backfilled with certified clean fill material. Residual metals in subsurface soil were treated in-situ via solidification/stabilization. Residual SVOCs in soil and groundwater were treated in-situ via chemical oxidation. Access to the site is restricted by perimeter fencing.

82-2-73.1

Cover System Fencing/Access Control

Subsurface soils which were contaminated with metals from discharges of plating solutions were excavated and disposed of off-site at a permitted disposal facility. Those areas were backfilled with certified clean fill material. Residual metals in subsurface soil were treated in-situ via solidification/stabilization. Residual SVOCs in soil and groundwater were treated in-situ via chemical oxidation. Access to the site is restricted by perimeter fencing.

Box :	5
-------	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 152006

SITE NO. 152006	
w	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATED REPRE	rstand that a false Section 210.45 of the
print name print business address	
am certifying as(C	wner or Remedial Party)
for the Site named in the Site Details Section of this form.	
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	8/16/21

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is

punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. Mathew Hackman 97 Asylum Road, Warwick, RI print name print business address OWNER am certifying as a Professional Engineer for the (Owner or Remedial Party) 11 AUG 2021 Signature of Professional Engineer, for the Owner or Stamp Date Remedial Party, Rendering Certification (Required for PE)

ATTACHMENT 3:

Inspection Photographs, IE/EC Inspection Forms, and March 2-3, 2021 Monitoring well Purge Data Evaluation

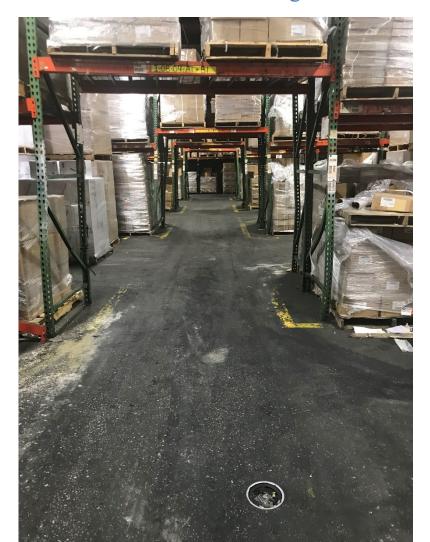

Photo 1: (10-21-2020) AOC 3. View looking west from southwest corner of AOC-1.

Photo 2: (10-21-2020) AOC 1. Taken from south side of AOC 1 looking north.

Photo 3 (10-21-2020) AOC 4. Interior portion of AOC 4 located in Warehouse area. Looking west.

Photo 4: 10-21-2020) AOC 4. Exterior portion of AOC 4. On north side of Site building. Looking west.

Photo 5: (10-21-2020) AOC 2&5. View from southeast corner of AOC 2 and 5. Production area to north.

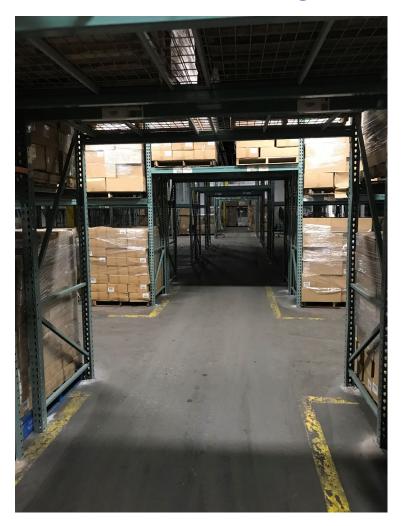

Photo 1: (03-03-2021) AOC 3. View looking west from southwest corner of AOC-1.

Photo 2: (03-31-2021) AOC 1. Taken from south side of AOC 1 looking north.

Photo 3 (03-03-2021) AOC 4. Interior portion of AOC 4 located in Warehouse area. Looking west.

Photo 4: (03-03-2021) AOC 4. Exterior portion of AOC 4. On north side of Site building. Looking west.

Photo 5: (03-03-2021) AOC 2&5. View from southeast corner of AOC 2 and 5. Production area to north.

Semi-annual Site Inspection And Groundwater Sampling Former Jameco Facility, Wyandanch, NY

•	Dates on Site: 10/21/2020 Start time: 10:25 AM Finish time: 11:15 AM
Groundwater Sampling	
groundwater monitoring. The NYSDI dated 3-31-2016. GEC received verba	nded to include only one annual round of EC had officially approved this change in a letter all approval to make this change during the coring will take place in April annually.
Site Inspection Each AOC to be inspected is briefly d the Nelson & Pope survey plan of the	lescribed below but GEC inspectors should refer to Site for accurate AOC locations.
AOC-1, parking area east of loading Date and time of inspection 10/21/20 Condition of surface integrity. Surf	
• 11	ork in AOC? None observed
Any work proposed or anticipated by Describe	plant personnel? None planned
AOCs-2&5, Plant interior enclosed by Date and time of inspection 10/21/20. Condition of surface integrity. Surface	<u>20</u>
***	ork in AOC? None observed
Any work proposed or anticipated by Describe	plant personnel? None planned
AOC-4, Area of plant including stocl Date and time of inspection 10/21/20 Condition of surface integrity. Surf	

Any observed apparent subsurface work in AOC? None observed If yes, describe.
Any work proposed or anticipated by plant personnel? None planned Describe
AOC-3, Square parcel extending south of south property line and enclosed by chainlink fer Date and time of inspection 10/21/2020 Condition of surface integrity. Surface is intact
Any observed apparent subsurface work in AOC? None observed If yes, describe.
Any work proposed or anticipated by plant personnel? None planned Describe
nterviews: Briefly discuss with knowledgeable plant personnel (Len Zichlin (comptroller). Describe below. Interviewed Levan
Subsurface construction or utility work: <u>Possible plans to expand Site building to east – not affecting any AOC</u>
Exploration for or use of groundwater under property for process or potable purposes: None Planned
Anticipated subsurface work within soil or groundwater beneath Site property: <u>Possible plans to expand Site building to east – not affecting any AOC</u>

Semi-annual Site Inspection And Groundwater Sampling Former Jameco Facility, Wyandanch, NY

Inspector 1: Andrew P. Foley Dates on Site: 3/2/2021 to 3/3/2021 Inspector 2: Start time: 10:25 on 3/2 Finish time: 11:00 on 3/3
Groundwater Sampling
Site Management plan has been amended to include only one annual round of groundwater monitoring. The NYSDEC had officially approved this change in a lette dated 3-31-2016. GEC received verbal approval to make this change during the summer of 2015. Groundwater monitoring will take place in April annually.
Site Inspection Each AOC to be inspected is briefly described below but GEC inspectors should refer to the Nelson & Pope survey plan of the Site for accurate AOC locations.
AOC-1, parking area east of loading dock Date and time of inspection 3/2/2021 Condition of surface integrity. Surface is intact
Any observed apparent subsurface work in AOC? None observed If yes, describe.
Any work proposed or anticipated by plant personnel? None planned Describe
AOCs-2&5, Plant interior enclosed by columns P6, L6K6, L2 and Q2 Date and time of inspection 3/2/2021 Condition of surface integrity. Surface is intact
Any observed apparent subsurface work in AOC? None observed If yes, describe.
Any work proposed or anticipated by plant personnel? None planned Describe

<u>AOC-4</u>, Area of plant including stockroom and outside lawn out to sidewalk. <u>Date and time of inspection</u> 3/3/2021

Condition of surface integrity.	Surface is intact
If yes, describe.	ce work in AOC? None observed
Any work proposed or anticipate Describe	ed by plant personnel? None planned
AOC-3, Square parcel extendin	g south of south property line and enclosed by chainlink fence (2021) Surface is intact
Condition of surface integrity.	Surface is intact
If yes, describe. Any work proposed or anticipate	ed by plant personnel?
Describe	
nterviews: Briefly discuss with knowledgea Describe below. Interviewed Le	able plant personnel (Len Zichlin (comptroller).
Subsurface construction or utility not affect any AOC	y work: Site building was expanded to the east – it did
	water under property for process or potable purposes:
Anticipated subsurface work wit building was expanded to the ear	thin soil or groundwater beneath Site property: <u>Site</u> st – it did not affect any <u>AOC</u>

Monitoring Well Purge Data Evaluation Annual GW Sampling 3-2,3-2021 Former Jameco Facilty

West Babylon, New York

MW-2 Start Purg	ge @	DTW = 8.49		3/3/2021			
Time	Temp (°C)	Specific Conductivity us/cm	Dissolved Oxygen (mg/L)	рН	ORP (mv)	Turbidity (NTU)	
834	12.50	98	1.66	7.08	-124.2		
837	12.60	97	1.43	6.62	-125.4		
840	12.73	96	1.50	6.44	-128.8	12	
845	12.95	98	0.83	6.37	-131.4		
848	13.04	97	0.92	6.36	-133.2	7.3	
851	12.46	96	0.86	6.36	-132.5	6.9	
855	12.21	94	0.92	6.36	-131.1	5.4	
	-2%	-2%	7%	0%	-1%	-22%	

Collect Sample @859 D' For Total Nickel DTW at end of sampling=

No odor or sheen

MW-3 Start Purge @ 830 DTW=11.21' 3/3/2021

Time	Temp (°C)	Specific Conductivity us/cm	Oxygen (mg/L)	pН	ORP (mv)	Turbidity (NTU)	
842	10.08	118	10.23	6.40	174.5	13	
846	10.10	118	2.08	6.02	182.6	11	
849	10.30	116	1.74	5.91	184.8	8.4	
852	10.37	117	1.70	5.84	186.7	7.1	
856	10.38	118	1.67	5.78	188.9	6.2	
	0%	1%	-2%	-1%	1%	-13%	•

Collect Sample @ 905 D For Total Nickel DTW at end of sampling=

No odor or sheen

MW-4 Start Purge @ 925 DTW=9.86 3/3/2021

Dunt Tung	,0 (6) 723						
Time	Temp (°C)	Specific Conductivity us/cm	Oxygen (mg/L)	pН	ORP (mv)	Turbidity (NTU)	
934	8.70	199	0.80	5.81	195.9		
938	8.76	203	0.54	5.82	188.7	18	
941	8.87	204	0.46	5.83	184.8		
944	8.59	204	0.44	5.85	181.3	12.1	
947	8.38	204	0.45	5.87	178.1	9.3	
950						7.5	
955						5.3	
	-2%	0%	2%	0.3%	-2%	-29%	

Collect Sample @ 1000 DTW at end of sampling=

For Total Nickel

No odor or sheen

DTW = 3/2/2021 MW-5R Start Purge @

		Specific	Dissolved			
Time	Temp (°C)	Conductivity us/cm	Oxygen (mg/L)	pН	ORP (my)	Turbidity (NTU)
	_ ` /		()		_ ` /	

Collect Sample @ For

DTW at end of sampling=

Water sample not collected

EPA Low flow stabilization

 $Turbidity \qquad {\footnotesize <} 5~NTU~or~10\%$ DO Specific <0.5 mg/L or 10%

Conductivity 3% Temp 0.1 pН ORP +-10 millivolts

3 consecutive readings within 20% for all parameters

Monitoring Well Purge Data Evaluation Annual GW Sampling 3-2,3-2021 Former Jameco Facilty

West Babylon, New York

MW-10 (deep)	DTW =8.18					3/2/202
Start Purg	ge @ 1252	!					
Time	Temp (°C)	Specific Conductivity us/cm	Dissolved Oxygen (mg/L)	pН	ORP (mv)	Turbidity (NTU)	
1305	15.42	308	0.14	6.23	104.1	9.6	
1312	15.63	308	0.04	6.09	85.0	8.3	
1315	15.63	308	0.04	6.09	83.5	5.6	
1318	15.63	307	0.05	6.09	85.2	5.6	
1321	15.62	307	0.05	6.09	88.4		
	-0.1%	0%	0%	0%	4%	0%	

Collect Sample @ 1323 DTW at end of sampling=

Collect MS/MSD Sample @ 1327

For Copper, Chromium and Nickel

No odor or sheen

MW-12 (shallow) DTW =8.19' Start Purge @ 1253

3/2/2021

Time	Temp (°C)	Specific Conductivity us/cm	Oxygen (mg/L)	pН	ORP (mv)	Turbidity (NTU)	
1306	16.95	111	0.56	6.39	1	28	
1312	16.96	108	0.16	5.94	65	17	
1315	16.97	106	0.14	5.88	78	12	
1318	16.96	107	0.16	5.84	88	10.3	
1321	16.96	105	0.17	5.81	94	7.8	
1324	16.95	106	0.15	5.80	98	6.2	
	-0.1%	0.9%	-13%	-0.2%	4%	5	

Collect Sample @ 1333 DTW at end of sampling=

For Total Copper, Chromium and Nickel

Initially purge water was murky, but cleared. No sheen or odor detected

MW-19 DTW = 8.08' DTP = 8.05' 3/2/2021 LNAPL Thickness = 0.03

Not sampled due to the presence of LNAPL

MW-20 DTW =8.25' 3/2/2021 Start Purge @ 1152

Specific Temp Conductivity Dissolved pН Turbidity Oxygen ORP Time (NTU) (°C) us/cm (mg/L) (mv) 1.03 7.34 1137 16.69 335 0.34 6.09 114 1141 346 0.37 8.4 16.91 6.05 94 1148 19.94 344 0.33 87 6.05 8.3 1153 16.83 352 0.38 6.05 84 8.0 1156 16.81 358 0.38 6.04

Collect Sample @ 1157 DTW at end of sampling=

For PAHs (8270C)

No sheen or odor detected

Monitoring Well Purge Data Evaluation Annual GW Sampling 3-2,3-2021 Former Jameco Facilty West Babylon, New York

MW-21		DTW =8.20					3/2/2021			
tart Purg	ge @ 1115	5								
Time	Temp (°C)	Specific Conductivity us/cm	Dissolved Oxygen (mg/L)	pН	ORP (mv)	Turbidity (NTU)				
1129	15.87	275	0.28	6.05	23.5	9.2				
1133	15.78	272	0.21	6.03	15.6	9.0				
1137	15.78	272	0.17	5.99	9.8					
1140	15.83	271	0.17	6.01	5.3	8.7				
1143	15.86	272	0.17	6.00	0.5	8.2				
	0.2%	0.4%	0%	-0.2%	-960%	-6%				

Collect Sample @ 1145 DTW at end of sampling= Collect MS/MSD Sample @ 1153 For PAHs (8270C)

No sheen or odor detected

MW-23		DTW = 7.97	3/2/2021				
Start Purg	e @						
Time	Temp	Specific Conductivity	Dissolved Oxygen	pН	ORP	Turbidity	
	(°C)	us/cm	(mg/L)		(mv)	(NTU)	
1422	10.29	198	1.60	5.95	129.3	12.7	
1425	10.33	198	1.51	5.82	124.2	10.4	
1428	10.25	198	1.49	5.78	119.6	9.8	

9.8 8.2 7.6 5.78 5.77 1431 10.02 198 1.49 113.4 1434 10.10 1.49 111.4 0.8% 0.5% 0% 0.0% -2% -8%

Collect Sample @ 1436 D7 For PAHs (8270C) DTW at end of sampling=

No sheen or odor

DTW = MW-26R 3/2/2021

Unable to sample because probe or tubing could not be advanced more than 1.5 feet below ground surface because of obstruction.

ATTACHMENT 4:

Laboratory Certificate of Analysis

March 11, 2021

Brian Butler Goldman Environmental 60 Brooks Drive Braintree, MA 02184

Project Location: MA Client Job Number:

Project Number: 1944 - 0120

Laboratory Work Order Number: 21C0234

My McCorthy

Enclosed are results of analyses for samples received by the laboratory on March 4, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raymond J. McCarthy Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	6
21C0234-01	6
21C0234-02	7
21C0234-03	8
21C0234-04	9
21C0234-05	10
21C0234-06	11
21C0234-07	13
21C0234-08	15
Sample Preparation Information	17
QC Data	18
Semivolatile Organic Compounds by GC/MS	18
B277678	18
Metals Analyses (Dissolved)	23
B277666	23
Flag/Qualifier Summary	24
Certifications	25
Chain of Custody/Sample Receipt	28

Goldman Environmental 60 Brooks Drive Braintree, MA 02184 ATTN: Brian Butler REPORT DATE: 3/11/2021

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 1944 - 0120

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 21C0234

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: MA

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-2	21C0234-01	Ground Water		SW-846 6020B	
MW-3	21C0234-02	Ground Water		SW-846 6020B	
MW-4	21C0234-03	Ground Water		SW-846 6020B	
MW-10	21C0234-04	Ground Water		SW-846 6020B	
MW-12	21C0234-05	Ground Water		SW-846 6020B	
MW-20	21C0234-06	Ground Water		SW-846 8270D-E	
MW-21	21C0234-07	Ground Water		SW-846 8270D-E	
MW-23	21C0234-08	Ground Water		SW-846 8270D-E	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8270D-E

Qualifications:

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

Benzidine

B277678-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

compound.
Analyte & Samples(s) Qualified:

Benzidine

21C0234-06RE1[MW-20], 21C0234-07RE1[MW-21], 21C0234-08RE1[MW-23], B277678-BLK1, B277678-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Benzidine

21C0234-06RE1[MW-20], 21C0234-07RE1[MW-21], 21C0234-08RE1[MW-23], B277678-BLK1, B277678-BS1, B277678-BSD1, S057572-CCV1, S057638-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

Benzoic Acid

S057572-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

4-Chloroaniline

21C0234-06RE1[MW-20], 21C0234-07RE1[MW-21], 21C0234-08RE1[MW-23], B277678-BLK1, B277678-BS1, B277678-BSD1, S057419-ICV1, S057572-CCV1, S057638-CCV1

V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

Benzidine

21C0234-06RE1[MW-20], 21C0234-07RE1[MW-21], 21C0234-08RE1[MW-23], B277678-BLK1, B277678-BS1, B277678-BSD1, S057419-ICV1, S057572-CCV1, S057638-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021
Field Sample #: MW-2

Sampled: 3/3/2021 08:59

Sample ID: 21C0234-01
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Nickel		280	5.0	μg/L	1		SW-846 6020B	3/8/21	3/8/21 13:59	TBC

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021
Field Sample #: MW-3

Sampled: 3/3/2021 09:05

Sample ID: 21C0234-02
Sample Matrix: Ground Water

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Nickel		36	5.0	μg/L	1		SW-846 6020B	3/8/21	3/8/21 14:02	TBC

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021
Field Sample #: MW-4

Sampled: 3/3/2021 10:00

Sample ID: 21C0234-03
Sample Matrix: Ground Water

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Nickel		1200	50	μg/L	10		SW-846 6020B	3/8/21	3/10/21 12:06	TBC

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021
Field Sample #: MW-10

Sampled: 3/3/2021 13:23

Sample ID: 21C0234-04
Sample Matrix: Ground Water

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chromium		1.6	1.0	μg/L	1		SW-846 6020B	3/8/21	3/8/21 13:42	TBC
Copper		ND	1.0	$\mu g/L$	1		SW-846 6020B	3/8/21	3/8/21 13:42	TBC
Nickel		ND	5.0	$\mu g/L$	1		SW-846 6020B	3/8/21	3/8/21 13:42	TBC

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021 Field Sample #: MW-12

Sampled: 3/3/2021 01:33

Sample ID: 21C0234-05
Sample Matrix: Ground Water

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chromium		7.0	1.0	μg/L	1		SW-846 6020B	3/8/21	3/8/21 14:15	TBC
Copper		78	1.0	$\mu g/L$	1		SW-846 6020B	3/8/21	3/8/21 14:15	TBC
Nickel		110	5.0	μg/L	1		SW-846 6020B	3/8/21	3/8/21 14:15	TBC

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021
Field Sample #: MW-20

Sampled: 3/3/2021 11:57

Sample ID: 21C0234-06
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Acenaphthylene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Acetophenone	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Aniline	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Anthracene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Benzidine	ND	20	μg/L	1	R-05, V-05, V-35	SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Benzo(a)anthracene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Benzo(a)pyrene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Benzo(b)fluoranthene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Benzo(g,h,i)perylene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Benzo(k)fluoranthene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Benzoic Acid	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Bis(2-chloroethoxy)methane	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Bis(2-chloroethyl)ether	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Bis(2-chloroisopropyl)ether	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
4-Bromophenylphenylether	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Butylbenzylphthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Carbazole	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
4-Chloroaniline	ND	9.8	μg/L	1	V-34	SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
4-Chloro-3-methylphenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2-Chloronaphthalene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2-Chlorophenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
4-Chlorophenylphenylether	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Chrysene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Dibenz(a,h)anthracene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Dibenzofuran	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Di-n-butylphthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
1,2-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
1,3-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
1,4-Dichlorobenzene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
3,3-Dichlorobenzidine	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2,4-Dichlorophenol	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Diethylphthalate	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2,4-Dimethylphenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Dimethylphthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
4,6-Dinitro-2-methylphenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2,4-Dinitrophenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2,4-Dinitrotoluene	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2,6-Dinitrotoluene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Di-n-octylphthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Fluoranthene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Fluorene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL

Page 11 of 30

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021
Field Sample #: MW-20

Sampled: 3/3/2021 11:57

Sample ID: 21C0234-06

Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

			volatile Organic Co	J	0.07.1.20				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobenzene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Hexachlorobutadiene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Hexachlorocyclopentadiene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Hexachloroethane	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Indeno(1,2,3-cd)pyrene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Isophorone	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
1-Methylnaphthalene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2-Methylnaphthalene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2-Methylphenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
3/4-Methylphenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Naphthalene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2-Nitroaniline	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
3-Nitroaniline	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
4-Nitroaniline	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Nitrobenzene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2-Nitrophenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
4-Nitrophenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
N-Nitrosodimethylamine	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
N-Nitrosodiphenylamine/Diphenylamine	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
N-Nitrosodi-n-propylamine	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Pentachloronitrobenzene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Pentachlorophenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Phenanthrene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Phenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Pyrene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Pyridine	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
1,2,4,5-Tetrachlorobenzene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
1,2,4-Trichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2,4,5-Trichlorophenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
2,4,6-Trichlorophenol	ND	9.8	μg/L μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 15:54	BGL
Surrogates		% Recovery	Recovery Limits		Flag/Qual	5.1. 0.10 027 02 2	3,0,21	3/3/21 10.0 .	
2-Fluorophenol		63.4	15-110					3/9/21 15:54	
Phenol-d6		47.3	15-110					3/9/21 15:54	
Nitrobenzene-d5		95.1	30-130					3/9/21 15:54	
2-Fluorobiphenyl		102	30-130					3/9/21 15:54	
2,4,6-Tribromophenol		95.8	15-110					3/9/21 15:54	
p-Terphenyl-d14		114	30-130					3/9/21 15:54	

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021

Field Sample #: MW-21

Sampled: 3/3/2021 11:53

Sample ID: 21C0234-07

Sample Matrix: Ground Water

			Semivolatile Organic (Compounds b	y GC/MS				_
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Acenaphthylene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Acetophenone	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Aniline	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Anthracene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Benzidine	ND	20	μg/L	1	R-05, V-05, V-35	SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Benzo(a)anthracene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Benzo(a)pyrene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Benzo(b)fluoranthene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Benzo(g,h,i)perylene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Benzo(k)fluoranthene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Benzoic Acid	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Bis(2-chloroethoxy)methane	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Bis(2-chloroethyl)ether	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Bis(2-chloroisopropyl)ether	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
4-Bromophenylphenylether	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Butylbenzylphthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Carbazole	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
4-Chloroaniline	ND	9.8	$\mu g/L$	1	V-34	SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
4-Chloro-3-methylphenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
2-Chloronaphthalene	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
2-Chlorophenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
4-Chlorophenylphenylether	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Chrysene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Dibenz(a,h)anthracene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Dibenzofuran	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Di-n-butylphthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
1,2-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
1,3-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
1,4-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
3,3-Dichlorobenzidine	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
2,4-Dichlorophenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Diethylphthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
2,4-Dimethylphenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Dimethylphthalate	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
4,6-Dinitro-2-methylphenol	ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
2,4-Dinitrophenol	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
2,4-Dinitrotoluene	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
2,6-Dinitrotoluene	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Di-n-octylphthalate	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Fluoranthene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
Fluorene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL

Page 13 of 30

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021
Field Sample #: MW-21

Sampled: 3/3/2021 11:53

Sample ID: 21C0234-07

Sample Matrix: Ground Water

ND	9.8 9.8 9.8 9.8 4.9	Units μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1	Flag/Qual	Method SW-846 8270D-E SW-846 8270D-E	3/8/21 3/8/21	Analyzed 3/9/21 16:21 3/9/21 16:21	BGL
ND ND ND ND	9.8 9.8 9.8 4.9	μg/L μg/L μg/L	1		SW-846 8270D-E			
ND ND ND	9.8 9.8 4.9	μg/L μg/L	1			3/8/21	3/9/21 16:21	
ND ND ND	9.8 4.9	$\mu g/L$						BGL
ND ND	4.9		1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND		μσ/I	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
	0.8	μ5/ L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	7.0	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	9.8		1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
								BGL
								BGL
								BGL
								BGL
								BGL
								BGL
								BGL
								BGL
								BGL
ND		μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	9.8	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
ND	9.8	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:21	BGL
	% Recovery	Recovery Limits		Flag/Qual				
	55.4	15-110					3/9/21 16:21	
	ND N	ND 4.9 ND 9.8 ND 4.9 ND 4.9 ND 4.9 ND 4.9 ND 9.8 ND 4.9 ND 9.8 ND 4.9 ND 9.8	ND 4.9 μg/L ND 9.8 μg/L ND 9.8 μg/L ND 9.8 μg/L ND 4.9 μg/L ND 9.8 μg/L	ND 4.9	ND 4.9 μg/L 1 ND 9.8 μg/L 1	ND 4.9 μg/L 1 SW-846 8270D-E ND 9.8 μg/L 1 SW-846 8270D-E ND 4.9 μg/L 1 SW-846 8270D-E ND 9.8 μg/L 1 SW-846 8270D-E ND 9.	ND 4.9 μg/L 1 SW-846 8270D-E 3/8/21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 ND 4.9 μg/L 1 SW-846 8270D-E 3/8/21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21	ND 4.9 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 4.9 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 4.9 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 4.9 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 4.9 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 4.9 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 4.9 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21 ND 9.8 μg/L 1 SW-846 8270D-E 3/8/21 3/9/21 16.21

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021
Field Sample #: MW-23

Sampled: 3/3/2021 14:36

Sample ID: 21C0234-08
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	4.9	μg/L	1	g	SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Acenaphthylene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Acetophenone	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Aniline	ND	4.9	μg/L μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Anthracene	ND	4.9	μg/L μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Benzidine	ND	19	μg/L μg/L	1	R-05, V-05, V-35	SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Benzo(a)anthracene	ND	4.9	μg/L μg/L	1	,,	SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Benzo(a)pyrene	ND	4.9	μg/L μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Benzo(b)fluoranthene	ND	4.9	μg/L μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Benzo(g,h,i)perylene	ND	4.9	μg/L μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Benzo(k)fluoranthene	ND	4.9		1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Benzoic Acid	ND ND	9.7	μg/L	1					BGL
Bis(2-chloroethoxy)methane			μg/L			SW-846 8270D-E	3/8/21	3/9/21 16:48	
	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Bis(2-chloroethyl)ether	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Bis(2-chloroisopropyl)ether	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
4-Bromophenylphenylether	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Butylbenzylphthalate	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Carbazole	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
4-Chloroaniline	ND	9.7	$\mu g/L$	1	V-34	SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
4-Chloro-3-methylphenol	ND	9.7	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2-Chloronaphthalene	ND	9.7	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2-Chlorophenol	ND	9.7	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
4-Chlorophenylphenylether	ND	9.7	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Chrysene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Dibenz(a,h)anthracene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Dibenzofuran	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Di-n-butylphthalate	ND	9.7	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
1,2-Dichlorobenzene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
1,3-Dichlorobenzene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
1,4-Dichlorobenzene	ND	4.9	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
3,3-Dichlorobenzidine	ND	9.7	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2,4-Dichlorophenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Diethylphthalate	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2,4-Dimethylphenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Dimethylphthalate	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
4,6-Dinitro-2-methylphenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2,4-Dinitrophenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2,4-Dinitrotoluene	ND	9.7	μg/L μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2,6-Dinitrotoluene	ND	9.7	μg/L μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Di-n-octylphthalate	ND ND	9.7		1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
1,2-Diphenylhydrazine/Azobenzene	ND ND	9.7	μg/L μg/I	1		SW-846 8270D-E SW-846 8270D-E			
Fluoranthene			μg/L				3/8/21	3/9/21 16:48	BGL
	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Fluorene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL

Page 15 of 30

Project Location: MA Sample Description: Work Order: 21C0234

Date Received: 3/4/2021 Field Sample #: MW-23

Sampled: 3/3/2021 14:36

Sample ID: 21C0234-08
Sample Matrix: Ground Water

5	
	•

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobenzene	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Hexachlorobutadiene	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Hexachlorocyclopentadiene	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Hexachloroethane	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Indeno(1,2,3-cd)pyrene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Isophorone	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
1-Methylnaphthalene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2-Methylnaphthalene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2-Methylphenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
3/4-Methylphenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Naphthalene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2-Nitroaniline	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
3-Nitroaniline	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
4-Nitroaniline	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Nitrobenzene	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2-Nitrophenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
4-Nitrophenol	ND	9.7	$\mu g/L$	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
N-Nitrosodimethylamine	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
N-Nitrosodiphenylamine/Diphenylamine	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
N-Nitrosodi-n-propylamine	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Pentachloronitrobenzene	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Pentachlorophenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Phenanthrene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Phenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Pyrene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Pyridine	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
1,2,4,5-Tetrachlorobenzene	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
1,2,4-Trichlorobenzene	ND	4.9	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2,4,5-Trichlorophenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
2,4,6-Trichlorophenol	ND	9.7	μg/L	1		SW-846 8270D-E	3/8/21	3/9/21 16:48	BGL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		55.4	15-110					3/9/21 16:48	
Phenol-d6		42.3	15-110					3/9/21 16:48	
Nitrobenzene-d5		77.3	30-130					3/9/21 16:48	
2-Fluorobiphenyl		83.0	30-130					3/9/21 16:48	
2,4,6-Tribromophenol		77.0	15-110					3/9/21 16:48	
p-Terphenyl-d14		90.2	30-130					3/9/21 16:48	

Sample Extraction Data

Prep Method: SW-846 3005A Dissolved Analytical Method: SW-846 6020B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21C0234-01 [MW-2]	B277666	10.0	10.0	03/08/21
21C0234-02 [MW-3]	B277666	10.0	10.0	03/08/21
21C0234-03 [MW-4]	B277666	10.0	10.0	03/08/21
21C0234-04 [MW-10]	B277666	10.0	10.0	03/08/21
21C0234-05 [MW-12]	B277666	10.0	10.0	03/08/21

Prep Method: SW-846 3510C Analytical Method: SW-846 8270D-E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21C0234-06RE1 [MW-20]	B277678	1020	1.00	03/08/21
21C0234-07RE1 [MW-21]	B277678	1020	1.00	03/08/21
21C0234-08RE1 [MW-23]	B277678	1030	1.00	03/08/21

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B277678 - SW-846 3510C										
Blank (B277678-BLK1)				Prepared: 03	3/08/21 Analy	yzed: 03/09/2	21			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	μg/L							
Acetophenone	ND	10	μg/L							
Aniline	ND	5.0	μg/L							
Anthracene	ND	5.0	μg/L							
Benzidine	ND	20	μg/L							R-05, V-05, V-35
Benzo(a)anthracene	ND	5.0	μg/L							
Benzo(a)pyrene	ND	5.0	$\mu g/L$							
Benzo(b)fluoranthene	ND	5.0	μg/L							
Benzo(g,h,i)perylene	ND	5.0	μg/L							
Benzo(k)fluoranthene	ND	5.0	μg/L							
Benzoic Acid	ND	10	μg/L							
Bis(2-chloroethoxy)methane	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	$\mu g/L$							
Bis(2-Ethylhexyl)phthalate	ND	10	$\mu \text{g/L}$							
4-Bromophenylphenylether	ND	10	$\mu g/L$							
Butylbenzylphthalate	ND	10	$\mu g/L$							
Carbazole	ND	10	$\mu g/L$							
4-Chloroaniline	ND	10	$\mu g/L$							V-34
4-Chloro-3-methylphenol	ND	10	$\mu g/L$							
2-Chloronaphthalene	ND	10	$\mu g/L$							
2-Chlorophenol	ND	10	$\mu g/L$							
4-Chlorophenylphenylether	ND	10	$\mu g/L$							
Chrysene	ND	5.0	μg/L							
Dibenz(a,h)anthracene	ND	5.0	μg/L							
Dibenzofuran	ND	5.0	μg/L							
Di-n-butylphthalate	ND	10	μg/L							
1,2-Dichlorobenzene	ND	5.0	μg/L							
1,3-Dichlorobenzene	ND	5.0	μg/L							
1,4-Dichlorobenzene	ND	5.0	$\mu g/L$							
3,3-Dichlorobenzidine	ND	10	μg/L							
2,4-Dichlorophenol	ND	10	μg/L							
Diethylphthalate	ND	10	μg/L							
2,4-Dimethylphenol	ND	10	μg/L							
Dimethylphthalate	ND	10	μg/L							
4,6-Dinitro-2-methylphenol	ND	10	μg/L							
2,4-Dinitrophenol	ND	10	μg/L							
2,4-Dinitrotoluene	ND	10	μg/L							
2,6-Dinitrotoluene	ND	10	μg/L							
Di-n-octylphthalate	ND	10	μg/L							
1,2-Diphenylhydrazine/Azobenzene	ND ND	10	μg/L							
Fluoranthene	ND	5.0	μg/L							
Fluorene	ND	5.0	μg/L							
Hexachlorobenzene	ND ND	10	μg/L							
Hexachlorobutadiene	ND ND	10	μg/L μg/L							
Hexachlorocyclopentadiene	ND ND	10	μg/L μg/L							
Hexachloroethane		10	μg/L μg/L							
Indeno(1,2,3-cd)pyrene	ND ND	5.0	μg/L μg/L							
Isophorone		10								
I-Methylnaphthalene	ND	5.0	μg/L μg/L							
i-ivicui y maphulaiche	ND	5.0	$\mu g/L$							

Notes

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Limit

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Units

Reporting

Limit

Result

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B277678 - SW-846 3510C										
Blank (B277678-BLK1)				Prepared: 03	3/08/21 Anal	yzed: 03/09/	21			
2-Methylphenol	ND	10	μg/L							
3/4-Methylphenol	ND	10	$\mu g/L$							
Naphthalene	ND	5.0	$\mu g/L$							
2-Nitroaniline	ND	10	$\mu g/L$							
-Nitroaniline	ND	10	$\mu g/L$							
-Nitroaniline	ND	10	$\mu \text{g/L}$							
Vitrobenzene	ND	10	$\mu \text{g/L}$							
-Nitrophenol	ND	10	$\mu \text{g/L}$							
-Nitrophenol	ND	10	$\mu \text{g/L}$							
N-Nitrosodimethylamine	ND	10	$\mu g/L$							
I-Nitrosodiphenylamine/Diphenylamine	ND	10	$\mu g/L$							
I-Nitrosodi-n-propylamine	ND	10	$\mu g/L$							
entachloronitrobenzene	ND	10	$\mu g/L$							
entachlorophenol	ND	10	$\mu \text{g}/L$							
henanthrene	ND	5.0	$\mu g/L$							
Phenol	ND	10	$\mu g/L$							
'yrene	ND	5.0	μg/L							
yridine	ND	5.0	μg/L							
,2,4,5-Tetrachlorobenzene	ND	10	μg/L							
,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$							
,4,5-Trichlorophenol	ND	10	μg/L							
,4,6-Trichlorophenol	ND	10	$\mu \text{g}/L$							
urrogate: 2-Fluorophenol	107		μg/L	200		53.7	15-110			
urrogate: Phenol-d6	78.8		$\mu g/L$	200		39.4	15-110			
urrogate: Nitrobenzene-d5	78.2		$\mu g/L$	100		78.2	30-130			
urrogate: 2-Fluorobiphenyl	78.8		$\mu g/L$	100		78.8	30-130			
surrogate: 2,4,6-Tribromophenol	76.3		$\mu g/L$	100		76.3	15-110			
Surrogate: p-Terphenyl-d14	95.4		μg/L	100		95.4	30-130			
LCS (B277678-BS1)				Prepared: 03	3/08/21 Anal	yzed: 03/09/	21			
Acenaphthene	41.8	5.0	$\mu g/L$	50.0		83.7	40-140			
Acenaphthylene	42.5	5.0	$\mu \text{g/L}$	50.0		85.0	40-140			
Acetophenone	44.0	10	$\mu g/L$	50.0		87.9	40-140			
Aniline	37.9	5.0	μg/L	50.0		75.7	40-140			
anthracene	44.6	5.0	$\mu \text{g/L}$	50.0		89.3	40-140			
Benzidine	86.6	20	$\mu \text{g}/L$	50.0		173 *	40-140			L-07A, V-05, V-
Benzo(a)anthracene	44.2	5.0	$\mu \text{g}/L$	50.0		88.5	40-140			
Benzo(a)pyrene	41.8	5.0	$\mu \text{g/L}$	50.0		83.6	40-140			
Benzo(b)fluoranthene	47.5	5.0	$\mu \text{g/L}$	50.0		94.9	40-140			
Benzo(g,h,i)perylene	37.3	5.0	$\mu \text{g}/L$	50.0		74.7	40-140			
Benzo(k)fluoranthene	46.0	5.0	$\mu \text{g}/L$	50.0		91.9	40-140			
Benzoic Acid	20.0	10	$\mu \text{g}/L$	50.0		40.0	10-130			
sis(2-chloroethoxy)methane	41.7	10	$\mu \text{g}/L$	50.0		83.4	40-140			
sis(2-chloroethyl)ether	41.1	10	$\mu g/L$	50.0		82.1	40-140			
Bis(2-chloroisopropyl)ether	48.4	10	$\mu \text{g/L}$	50.0		96.7	40-140			
Bis(2-Ethylhexyl)phthalate	46.5	10	$\mu g/L$	50.0		92.9	40-140			
-Bromophenylphenylether	41.3	10	$\mu \text{g}/L$	50.0		82.7	40-140			
Butylbenzylphthalate	45.7	10	$\mu g/L$	50.0		91.4	40-140			
Carbazole	44.8	10	$\mu g/L$	50.0		89.6	40-140			
-Chloroaniline	41.2	10	$\mu g/L$	50.0		82.5	40-140			V-34
4-Chloro-3-methylphenol	41.8	10	$\mu \text{g/L}$	50.0		83.5	30-130			
2-Chloronaphthalene	39.7	10	μg/L	50.0		79.4	40-140			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Batch B277678 - SW-846 3510C									
LCS (B277678-BS1)				Prepared: 03	/08/21 Analyzed: 03/09/2	21			
2-Chlorophenol	39.2	10	μg/L	50.0	78.4	30-130			
1-Chlorophenylphenylether	41.0	10	$\mu g/L$	50.0	81.9	40-140			
Chrysene	43.8	5.0	μg/L	50.0	87.6	40-140			
Dibenz(a,h)anthracene	34.2	5.0	μg/L	50.0	68.5	40-140			
Dibenzofuran	43.0	5.0	μg/L	50.0	86.0	40-140			
Di-n-butylphthalate	45.3	10	μg/L	50.0	90.6	40-140			
,2-Dichlorobenzene	33.3	5.0	μg/L	50.0	66.6	40-140			
,3-Dichlorobenzene	32.1	5.0	μg/L	50.0	64.2	40-140			
,4-Dichlorobenzene	32.5	5.0	μg/L	50.0	65.0	40-140			
3,3-Dichlorobenzidine	51.4	10	μg/L	50.0	103	40-140			
,4-Dichlorophenol	41.0	10	μg/L	50.0	82.0	30-130			
Diethylphthalate	42.6	10	μg/L	50.0	85.1	40-140			
2,4-Dimethylphenol	41.9	10	μg/L	50.0	83.7	30-130			
Dimethylphthalate	43.9	10	μg/L	50.0	87.8	40-140			
4,6-Dinitro-2-methylphenol	43.4	10	μg/L	50.0	86.8	30-130			
,4-Dinitrophenol	41.0	10	μg/L	50.0	81.9	30-130			
,4-Dinitrotoluene	43.4	10	μg/L	50.0	86.9	40-140			
,6-Dinitrotoluene	45.2	10	μg/L	50.0	90.5	40-140			
Di-n-octylphthalate	54.9	10	μg/L	50.0	110	40-140			
,2-Diphenylhydrazine/Azobenzene	48.1	10	μg/L	50.0	96.2	40-140			
luoranthene	44.9	5.0	μg/L	50.0	89.7	40-140			
luorene	42.5	5.0	μg/L μg/L	50.0	85.1	40-140			
exachlorobenzene	42.3	10	μg/L μg/L	50.0	80.2	40-140			
[exachlorobutadiene	31.7	10	μg/L μg/L	50.0	63.5	40-140			
Iexachlorocyclopentadiene	28.0	10	μg/L μg/L	50.0	56.1	30-140			
Iexachloroethane	32.2	10	μg/L μg/L	50.0	64.5	40-140			
ndeno(1,2,3-cd)pyrene	32.2 37.5	5.0	μg/L μg/L	50.0	75.1	40-140			
sophorone	37.3 45.4	10	μg/L μg/L	50.0	90.8	40-140			
-Methylnaphthalene		5.0	μg/L μg/L	50.0	76.8	40-140			
Methylnaphthalene	38.4	5.0	μg/L μg/L	50.0	85.5				
-Methylphenol	42.8	10				40-140			
• •	38.9		μg/L μg/I	50.0	77.8	30-130			
/4-Methylphenol	36.5	10	μg/L	50.0	73.0	30-130			
Vaphthalene Nitroppiling	37.5	5.0	μg/L ug/I	50.0	74.9	40-140			
-Nitroaniline	53.0	10	μg/L	50.0	106	40-140			
-Nitroaniline	45.4	10	μg/L	50.0	90.8	40-140			
-Nitroaniline	44.7	10	μg/L	50.0	89.4	40-140			
Vitrobenzene	39.5	10	μg/L	50.0	78.9	40-140			
-Nitrophenol	41.4	10	μg/L	50.0	82.8	30-130			
-Nitrophenol	21.5	10	μg/L	50.0	43.1	10-130			
I-Nitrosodimethylamine	26.2	10	μg/L	50.0	52.3	40-140			
-Nitrosodiphenylamine/Diphenylamine	50.6	10	μg/L	50.0	101	40-140			
I-Nitrosodi-n-propylamine	41.8	10	μg/L	50.0	83.7	40-140			
entachloronitrobenzene	44.4	10	μg/L	50.0	88.8	40-140			
entachlorophenol	39.0	10	μg/L	50.0	78.1	30-130			
henanthrene	44.6	5.0	μg/L	50.0	89.2	40-140			
henol	18.6	10	μg/L	50.0	37.1	20-130			
yrene	44.7	5.0	μg/L	50.0	89.4	40-140			
Pyridine	20.8	5.0	$\mu g/L$	50.0	41.6	10-140			
,2,4,5-Tetrachlorobenzene	38.7	10	μg/L	50.0	77.3	40-140			
,2,4-Trichlorobenzene	34.4	5.0	$\mu g/L$	50.0	68.9	40-140			
,4,5-Trichlorophenol	43.4	10	$\mu g/L$	50.0	86.8	30-130			
2,4,6-Trichlorophenol	42.1	10	$\mu g/L$	50.0	84.2	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B277678 - SW-846 3510C											
LCS (B277678-BS1)				Prepared: 03	/08/21 Anal	yzed: 03/09/2	21				
Surrogate: 2-Fluorophenol	112		μg/L	200		56.0	15-110				
Surrogate: Phenol-d6	83.7		μg/L	200		41.8	15-110				
Surrogate: Nitrobenzene-d5	85.9		μg/L	100		85.9	30-130				
Surrogate: 2-Fluorobiphenyl	90.7		μg/L	100		90.7	30-130				
Surrogate: 2,4,6-Tribromophenol	86.4		μg/L	100		86.4	15-110				
Surrogate: p-Terphenyl-d14	96.0		$\mu g/L$	100		96.0	30-130				
LCS Dup (B277678-BSD1)				Prepared: 03	/08/21 Anal	yzed: 03/09/2	21				
Acenaphthene	41.0	5.0	μg/L	50.0		82.1	40-140	1.93	20		
Acenaphthylene	41.6	5.0	μg/L	50.0		83.1	40-140	2.24	20		
Acetophenone	42.2	10	μg/L	50.0		84.3	40-140	4.16	20		
Aniline	34.6	5.0	μg/L	50.0		69.2	40-140	9.05	50		‡
Anthracene	44.2	5.0	$\mu g \! / \! L$	50.0		88.4	40-140	0.991	20		
Benzidine	44.4	20	$\mu \text{g/L}$	50.0		88.7	40-140	64.5	20	R-05, V-05, V-35	
Benzo(a)anthracene	43.4	5.0	$\mu \text{g/L}$	50.0		86.7	40-140	2.01	20		
Benzo(a)pyrene	41.6	5.0	$\mu g \! / \! L$	50.0		83.3	40-140	0.359	20		
Benzo(b)fluoranthene	46.3	5.0	$\mu g \! / \! L$	50.0		92.6	40-140	2.50	20		
Benzo(g,h,i)perylene	36.8	5.0	$\mu g \! / \! L$	50.0		73.5	40-140	1.54	20		
Benzo(k)fluoranthene	45.7	5.0	$\mu g/L$	50.0		91.5	40-140	0.502	20		
Benzoic Acid	19.5	10	$\mu g/L$	50.0		38.9	10-130	2.79	50	†	‡
Bis(2-chloroethoxy)methane	40.0	10	$\mu g/L$	50.0		80.1	40-140	4.11	20		
Bis(2-chloroethyl)ether	39.1	10	$\mu g/L$	50.0		78.1	40-140	4.99	20		
Bis(2-chloroisopropyl)ether	45.5	10	μg/L	50.0		91.0	40-140	6.09	20		
Bis(2-Ethylhexyl)phthalate	45.2	10	μg/L	50.0		90.5	40-140	2.66	20		
-Bromophenylphenylether	40.7	10	μg/L	50.0		81.3	40-140	1.66	20		
Butylbenzylphthalate	44.6	10	μg/L	50.0		89.3	40-140	2.30	20		
Carbazole	44.7	10	μg/L	50.0		89.4	40-140	0.268	20		
1-Chloroaniline	40.7	10	μg/L	50.0		81.3	40-140	1.44	20	V-34	
4-Chloro-3-methylphenol	40.9	10	μg/L	50.0		81.7	30-130	2.13	20		
2-Chloronaphthalene	38.2	10	μg/L	50.0		76.5	40-140	3.77	20		
2-Chlorophenol	36.8	10	μg/L	50.0		73.5	30-130	6.45	20		
4-Chlorophenylphenylether	40.0	10	μg/L	50.0		79.9	40-140	2.52	20		
Chrysene	43.3	5.0	μg/L	50.0		86.6	40-140	1.17	20		
Dibenz(a,h)anthracene	34.1	5.0	μg/L	50.0		68.3	40-140	0.351	20		
Dibenzofuran	42.8	5.0	μg/L	50.0		85.5	40-140	0.536	20		
Di-n-butylphthalate	45.1	10	μg/L	50.0		90.2	40-140	0.420	20		
1,2-Dichlorobenzene	31.7	5.0	μg/L	50.0		63.5	40-140	4.74	20		
1,3-Dichlorobenzene	29.8	5.0	μg/L	50.0		59.5	40-140	7.50	20		
1,4-Dichlorobenzene	30.0	5.0	μg/L μg/L	50.0		60.0	40-140	8.09	20		
3,3-Dichlorobenzidine	50.4	10	μg/L μg/L	50.0		101	40-140	1.98	20		
2,4-Dichlorophenol	40.2	10	μg/L μg/L	50.0		80.5	30-130	1.80	20		
Diethylphthalate	41.4	10	μg/L	50.0		82.7	40-140	2.86	20		
2,4-Dimethylphenol	40.8	10	μg/L μg/L	50.0		81.5	30-130	2.66	20		
Dimethylphthalate		10	μg/L μg/L	50.0		84.4	40-140	3.95	50		1
4,6-Dinitro-2-methylphenol	42.2 42.8	10	μg/L μg/L	50.0		85.7	30-130	1.25	50		†
2,4-Dinitrophenol		10	μg/L μg/L	50.0		77.5	30-130	5.52	50		1
2,4-Dinitrophenor	38.8	10	μg/L μg/L	50.0		83.6					+
2,6-Dinitrotoluene	41.8	10					40-140	3.85	20		
Di-n-octylphthalate	43.8	10	μg/L μg/I	50.0		87.7	40-140	3.17	20		
* *	55.1		μg/L μg/I	50.0		110	40-140	0.327	20		
1,2-Diphenylhydrazine/Azobenzene	46.6	10	μg/L	50.0		93.3	40-140	3.10	20		
Fluoranthene	44.2	5.0	μg/L	50.0		88.4	40-140	1.53	20		
Fluorene	41.9	5.0	μg/L	50.0		83.7	40-140	1.59	20		

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B277678 - SW-846 3510C											_
LCS Dup (B277678-BSD1)				Prepared: 03	5/08/21 Anal	yzed: 03/09/2	21				_
Hexachlorobenzene	40.2	10	μg/L	50.0		80.3	40-140	0.174	20		_
Hexachlorobutadiene	30.6	10	$\mu g/L$	50.0		61.2	40-140	3.69	20		
Hexachlorocyclopentadiene	27.5	10	$\mu g/L$	50.0		55.0	30-140	1.98	50		† ‡
Hexachloroethane	29.5	10	$\mu g/L$	50.0		59.1	40-140	8.71	50		1
Indeno(1,2,3-cd)pyrene	37.9	5.0	$\mu g/L$	50.0		75.8	40-140	1.01	50		1
Isophorone	44.2	10	$\mu g/L$	50.0		88.5	40-140	2.61	20		
1-Methylnaphthalene	37.9	5.0	$\mu g/L$	50.0		75.8	40-140	1.39	20		
2-Methylnaphthalene	42.2	5.0	$\mu g/L$	50.0		84.3	40-140	1.41	20		
2-Methylphenol	37.4	10	$\mu g/L$	50.0		74.9	30-130	3.88	20		
3/4-Methylphenol	35.2	10	$\mu g/L$	50.0		70.4	30-130	3.60	20		
Naphthalene	36.5	5.0	$\mu g/L$	50.0		73.0	40-140	2.62	20		
2-Nitroaniline	50.9	10	$\mu g/L$	50.0		102	40-140	4.00	20		
3-Nitroaniline	44.5	10	$\mu g/L$	50.0		89.1	40-140	1.87	20		
4-Nitroaniline	43.9	10	$\mu g/L$	50.0		87.9	40-140	1.74	20		
Nitrobenzene	37.7	10	$\mu g/L$	50.0		75.4	40-140	4.53	20		
2-Nitrophenol	39.1	10	$\mu g/L$	50.0		78.1	30-130	5.79	20		
4-Nitrophenol	20.6	10	$\mu g/L$	50.0		41.2	10-130	4.51	50		† ‡
N-Nitrosodimethylamine	24.4	10	μg/L	50.0		48.7	40-140	7.16	20		
N-Nitrosodiphenylamine/Diphenylamine	50.3	10	$\mu g/L$	50.0		101	40-140	0.515	20		
N-Nitrosodi-n-propylamine	40.6	10	$\mu g/L$	50.0		81.1	40-140	3.08	20		
Pentachloronitrobenzene	42.4	10	$\mu g/L$	50.0		84.9	40-140	4.49	20		
Pentachlorophenol	37.8	10	μg/L	50.0		75.5	30-130	3.33	50		1
Phenanthrene	44.0	5.0	$\mu g/L$	50.0		88.0	40-140	1.29	20		
Phenol	18.2	10	μg/L	50.0		36.4	20-130	1.96	20		†
Pyrene	43.3	5.0	$\mu g/L$	50.0		86.5	40-140	3.25	20		
Pyridine	15.2	5.0	μg/L	50.0		30.5	10-140	30.8	50		† ‡
1,2,4,5-Tetrachlorobenzene	38.5	10	$\mu g/L$	50.0		77.0	40-140	0.389	20		
1,2,4-Trichlorobenzene	33.5	5.0	μg/L	50.0		67.0	40-140	2.77	20		
2,4,5-Trichlorophenol	43.1	10	μg/L	50.0		86.1	30-130	0.717	20		
2,4,6-Trichlorophenol	41.6	10	$\mu g/L$	50.0		83.2	30-130	1.12	50		1
Surrogate: 2-Fluorophenol	107		μg/L	200		53.7	15-110				_
Surrogate: Phenol-d6	82.6		$\mu g/L$	200		41.3	15-110				
Surrogate: Nitrobenzene-d5	82.3		$\mu g/L$	100		82.3	30-130				
Surrogate: 2-Fluorobiphenyl	89.9		$\mu g/L$	100		89.9	30-130				
Surrogate: 2,4,6-Tribromophenol	86.3		$\mu g/L$	100		86.3	15-110				
Surrogate: p-Terphenyl-d14	96.2		$\mu g/L$	100		96.2	30-130				

QUALITY CONTROL

Metals Analyses (Dissolved) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B277666 - SW-846 3005A Dissolved										
Blank (B277666-BLK1)				Prepared &	Analyzed: 03	/08/21				
Chromium	ND	1.0	μg/L							
Copper	ND	1.0	$\mu g \! / \! L$							
Nickel	ND	5.0	$\mu g/L$							
Blank (B277666-BLK2)				Prepared: 03	3/08/21 Analy	yzed: 03/10/	21			
Nickel	ND	5.0	μg/L							
LCS (B277666-BS1)				Prepared &	Analyzed: 03	/08/21				
Chromium	90.4	1.0	μg/L	100		90.4	80-120			
Copper	188	1.0	$\mu g\!/\!L$	200		93.9	80-120			
Nickel	92.8	5.0	$\mu \text{g/L}$	100		92.8	80-120			
LCS (B277666-BS2)				Prepared: 03	3/08/21 Analy	yzed: 03/10/	21			
Nickel	91.8	5.0	μg/L	100		91.8	80-120			
Matrix Spike (B277666-MS1)	Sour	ce: 21C0234-	04	Prepared &	Analyzed: 03	/08/21				
Chromium	25.0	1.2	μg/L	25.0	1.58	93.6	75-125			
Copper	48.5	1.2	$\mu g \! / \! L$	50.0	ND	96.9	75-125			
Nickel	26.6	6.2	$\mu g/L$	25.0	2.27	97.5	75-125			
Matrix Spike Dup (B277666-MSD1)	Sour	ce: 21C0234-	04	Prepared &	Analyzed: 03	/08/21				
Chromium	25.2	1.2	μg/L	25.0	1.58	94.4	75-125	0.777	20	
Copper	48.8	1.2	$\mu g \! / \! L$	50.0	ND	97.6	75-125	0.721	20	
Nickel	27.2	6.2	$\mu g/L$	25.0	2.27	99.8	75-125	2.16	20	

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.
V-35	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 6020B in Water		
Chromium	CT,NH,NY,NC,ME,VA	
Copper	CT,NH,NY,NC,ME,VA	
Nickel	CT,NH,NY,NC,ME,VA	
SW-846 8270D-E in Water		
Acenaphthene	CT,NY,NC,ME,NH,VA	
Acenaphthylene	CT,NY,NC,ME,NH,VA	
Acetophenone	NY,NC	
Aniline	CT,NY,NC,ME,VA	
Anthracene	CT,NY,NC,ME,NH,VA	
Benzidine	CT,NY,NC,ME,NH,VA	
Benzo(a)anthracene	CT,NY,NC,ME,NH,VA	
Benzo(a)pyrene	CT,NY,NC,ME,NH,VA	
Benzo(b)fluoranthene	CT,NY,NC,ME,NH,VA	
Benzo(g,h,i)perylene	CT,NY,NC,ME,NH,VA	
Benzo(k)fluoranthene	CT,NY,NC,ME,NH,VA	
Benzoic Acid	NY,NC,ME,NH,VA	
Bis(2-chloroethoxy)methane	CT,NY,NC,ME,NH,VA	
Bis(2-chloroethyl)ether	CT,NY,NC,ME,NH,VA	
Bis(2-chloroisopropyl)ether	CT,NY,NC,ME,NH,VA	
Bis(2-Ethylhexyl)phthalate	CT,NY,NC,ME,NH,VA	
4-Bromophenylphenylether	CT,NY,NC,ME,NH,VA	
Butylbenzylphthalate	CT,NY,NC,ME,NH,VA	
Carbazole	NC	
4-Chloroaniline	CT,NY,NC,ME,NH,VA	
4-Chloro-3-methylphenol	CT,NY,NC,ME,NH,VA	
2-Chloronaphthalene	CT,NY,NC,ME,NH,VA	
2-Chlorophenol	CT,NY,NC,ME,NH,VA	
4-Chlorophenylphenylether	CT,NY,NC,ME,NH,VA	
Chrysene	CT,NY,NC,ME,NH,VA	
Dibenz(a,h)anthracene	CT,NY,NC,ME,NH,VA	
Dibenzofuran	CT,NY,NC,ME,NH,VA	
Di-n-butylphthalate	CT,NY,NC,ME,NH,VA	
1,2-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
1,3-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
1,4-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
3,3-Dichlorobenzidine	CT,NY,NC,ME,NH,VA	
2,4-Dichlorophenol	CT,NY,NC,ME,NH,VA	
Diethylphthalate	CT,NY,NC,ME,NH,VA	
2,4-Dimethylphenol	CT,NY,NC,ME,NH,VA	
Dimethylphthalate	CT,NY,NC,ME,NH,VA	
4,6-Dinitro-2-methylphenol	CT,NY,NC,ME,NH,VA	
2,4-Dinitrophenol	CT,NY,NC,ME,NH,VA	
2,4-Dinitrotoluene	CT,NY,NC,ME,NH,VA	
2,6-Dinitrotoluene	CT,NY,NC,ME,NH,VA	
Di-n-octylphthalate	CT,NY,NC,ME,NH,VA	
1,2-Diphenylhydrazine/Azobenzene	NY,NC	

CERTIFICATIONS

Certifications

Certified Analyses included in this Report

Analyte

SW-846 8270D-E in Water	
Fluoranthene	CT,NY,NC,ME,NH,VA
Fluorene	NY,NC,ME,NH,VA
Hexachlorobenzene	CT,NY,NC,ME,NH,VA
Hexachlorobutadiene	CT,NY,NC,ME,NH,VA
Hexachlorocyclopentadiene	CT,NY,NC,ME,NH,VA
Hexachloroethane	CT,NY,NC,ME,NH,VA
Indeno(1,2,3-cd)pyrene	CT,NY,NC,ME,NH,VA
Isophorone	CT,NY,NC,ME,NH,VA
1-Methylnaphthalene	NC
2-Methylnaphthalene	CT,NY,NC,ME,NH,VA
2-Methylphenol	CT,NY,NC,NH,VA
3/4-Methylphenol	CT,NY,NC,NH,VA
Naphthalene	CT,NY,NC,ME,NH,VA
2-Nitroaniline	CT,NY,NC,ME,NH,VA
3-Nitroaniline	CT,NY,NC,ME,NH,VA
4-Nitroaniline	CT,NY,NC,ME,NH,VA
Nitrobenzene	CT,NY,NC,ME,NH,VA
2-Nitrophenol	CT,NY,NC,ME,NH,VA
4-Nitrophenol	CT,NY,NC,ME,NH,VA
N-Nitrosodimethylamine	CT,NY,NC,ME,NH,VA
N-Nitrosodi-n-propylamine	CT,NY,NC,ME,NH,VA
Pentachloronitrobenzene	NC
Pentachlorophenol	CT,NY,NC,ME,NH,VA
Phenanthrene	CT,NY,NC,ME,NH,VA
Phenol	CT,NY,NC,ME,NH,VA
Pyrene	CT,NY,NC,ME,NH,VA
Pyridine	CT,NY,NC,ME,NH,VA
1,2,4,5-Tetrachlorobenzene	NY,NC
1,2,4-Trichlorobenzene	CT,NY,NC,ME,NH,VA
2,4,5-Trichlorophenol	CT,NY,NC,ME,NH,VA
2,4,6-Trichlorophenol	CT,NY,NC,ME,NH,VA
2-Fluorophenol	NC

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2021
CT	Connecticut Department of Publilc Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2021
FL	Florida Department of Health	E871027 NELAP	06/30/2021
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2021
ME	State of Maine	MA00100	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2021
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2021
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2021
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

A C C C C C C C C C		Page of C	² Preservation Code		Total Number Of:	VIALS	GLASS	PLASTIC	BACTERIA	ENCORE	:	Glassware in the fridge? Y / N	Glassware in freezer? Y / N	Prepackaged Cooler? Y / N	*Contest is not responsible for	missing samples from prepacked coolers	1 Matrix Codes:	GW = Ground Water WW = Waste Water	DW = Drinking Water	S = Soil	SOL = Solid	define)		2 Preservation Codes: = Iced u = uce	M = Methanol N = Nitric Acid		A = Sodium T = Sodium Thiosulfate	O = Other (please define)	> 100 GJG	Soxhlet	Non Soxblet	n the Chain of Custody. The and is used to determine what oratory's responsibility. Congirformation, but will not be
ALCO33C	o	SIS REOLIFICATED																							410000000000000000000000000000000000000	the following codes to indicate ple concentration within the Conc Code column above:	Medium; LLow; CClean; U Unknown		Other		AIHA-LAP,LLC	for any omitted information of state and accurate a sing information is not the latted will try to assist with missiful accountable.
ALCO33C	Por # 381 pov 7 0626201	7. # 301 hev 4.		1			<u> </u>		d & j	ファ) ァ つ.	دام	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	×	×		X	*	<u>У</u>	- - -	又						·	ारा	1	NELAC 3	WRTA		est Labs is not responsible a legal document that mu tory will perform. Any mit thership on each project a
Figure 11 12 13 13 13 14 14 14 14 14		39 Spruce Street East Longmeadow, MA	Field Filtered	Lab to Filter	Field Filtered	Lab to Filter		EXCEL	***************************************		, , , , , , , , , , , , , , , , , , , ,	PLASTIC BACTERIA			194-	********		7	2	2						MAN GENERAL CONTRACTOR	N. P. Left Shill (2000)	42.540				Disclaimer: Con-T Chain of Custody is analyses the labora Test values your par
### Phone: 413-525-4405 Fax: 413-525-4405	X(Iabs.com	CHAIN OF CLISTODY RECORD		Ţ] []	Mark Stellyess	PDF				Conc. Code VIALS	3 3							->							19.15.16.2	- CANADA PARA PARA PARA PARA PARA PARA PARA P	2.026	ncipality	J wnfield	
## Phone: 413-525-6405 Fax: 413-525-6405 Fax: 413-64-740 Fa	http://www.confe				11.11			at:	f. iba Data Dba Dominod.	₹	1	COMP/GRAB	Gat	05	ිට .	.13	32	5.7	23	3%			14		in la Everbrenante		777771114414114141414141414141414141414		SA	ent	*hadan	
A A A A A A A A A A A A A A A A A A A	يل ا		***************************************	PFAS	1-Da	2-Da		Form	Othe	Emai	Fax	Beginning Date/Time		5	<i>₀</i> /		[3	1/1:		<i>7!</i> →				33	144 Transfer	7	100 mm	32		Cove	Fede	
WIE TO THE TOWN THE T	SKONE	Phone: 413-525-2332 Fax: 413-525-6405	Email: info@contestlat		00100		and	1	2427		Sey	Client Sample ID / Description	12 - W	100-3		-	1	1	ŧ	,	5742	N.	13	3-42 (Time:	Date/Time:	My Date/Time:	Conserrate 1	J. We.	1 E		Date/Time:	
- 「		ATIENT I ANDREAD ORV				lerez	Court	5	- 1	Scipient: BBJH			*				_]		7				hed by: (signature)	th: (genetyt) alles	Medi by: (signature	by: (signature)	[e-2)	Signature)	hed by: (signature)	***************************************	by: (signature)	ments:

alcoasu

Glassware in freezer? Y / N Prepackaged Cooler? Y / N "Contest is not responsible for nissing samples from prepacked analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Con Test values your partnership on each project and will try to assist with missing information, but will not b Glassware in the fridge? Chain of Custody is a legal document that must be complete and accurate and is used to determine what Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. The 1 Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water S = Sulfuric Acid
B = Sodium Bisulfate
X = Sodium Hydroxide
T = Sodium Total Number Of: 2 Preservation Codes: A = Air S = Soil SL = Sludge SOL = Solid O = Other (please 0 = Other (please H = HCL M = Methanol N = Nitric Acid Non Soxhlet PCB ONLY Preservation Code coolers Soxhlet BACTERIA PLASTIC_ ENCORE VIALS GLASS_ ö Thiosulfate define) possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate NELAC and AHA-LAP, LLC Accredited Chromatogram Code column above: ANALYSIS REQUESTED held accountable. Unknown Doc # 381 Rev 2, 06262019 Cham WRTA ermikadoon forar Regon JOS 28 2015 East Longmeadow, MA 01028 ENCORE THE PLASTIC BACTERIA 39 Spruce Street EXCEL Field Filtered Field Fittered Lab to Filter Lab to Filter School GLASS CHAIN OF CUSTODY RECORD VIALS 0 0 0 Conc Code \langle http://www.contestlabs.com PDF Municipality Due Date: Brownfield ¹Matrix Code 3 10-Day 5 3-Day 4-Day CLP Like Data Pkg Required: COMP/GRAB Crark 787 IDE PFAS 10-Day (std) Ending Date/Time Government 13.23 3 /2/21 /18:53 ax To#: ormat: Other: Federal 7-Day -Day -Day Client Comments: City Project Entity Beginning Date/Time 3/2/21 Email: info@contestlabs.com 3/4/21 1900 3.5 34/11/140 MS/MS-DUP AVS - DUP Client Sample ID / Description Phone: 413-525-2332 S S Fax: 413-525-6405 J21-356 9140 - 0/20 Date/Time: Date/Time: Date/Time: 18648 (Stars Hh 2.1 Z るった 4 togs C Caroles 7 4 Con-Test Quote Name/Number; NOD-KS (signature) ą eceived by: (signature) Received by: (signature) Work Order# Con-Test Project Location: Project Manager: Invoice Recipient: Project Number: mments: aling of ished to Sampled By: 3 Address: 13 Page 29 of 30

Table of Contents

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client(<i>o</i> }											
Received By	<u> 900</u>		Date	_314 <i>lā</i>	31	Time	1400				
How were the samples	In Cooler		No Cooler		On Ice	T	No Ice				
received?	Direct from Samp	oling			Ambient		Melted Ice				
Mara complex within	·	By Gun #	<u> </u>		Actual Temp)- 23	•				
Were samples within Temperature? 2-6°C	*	By Blank #			Actual Temp			•			
Was Custody S	\ eal Intact?	nla	\\/ _\	re Sample	s Tampered		na	•			
Was COC Relin		<u> </u>	Does	•							
Are there broken/l		on any sam									
Is COC in ink/ Legible?		on any oam		noles recei	ved within ho	ldina time?	~				
Did COC include all	Client	T	Analysis			r Name		•			
pertinent Information?	Project		ID's Collection Dates/Times								
Are Sample labels filled	d out and legible?	7			•		· ·	•			
Are there Lab to Filters'	-	F	•	Who was	s notified?						
Are there Rushes?		F	•	Who was	s notified?			•			
Are there Short Holds?		F	•	Who was	s notified?			•			
Is there enough Volume	?		•		_						
Is there Headspace who		ηla	MS/MSD?	T							
Proper Media/Container	rs Used?	·T	•	Is splitting	samples requ	uired?	F				
Were trip blanks receive	ed?	E		On COC?	F		1				
Do all samples have the	proper pH?	*	Acid	4	•	Base	<u> </u>				
Vials #	Containers:	#			#			#			
Unp-	1 Liter Amb.	3	1 Liter				Amb.				
HCL-	500 mL Amb.			Plastic			b/Clear				
Meoh-	250 mL Amb.		250 mL		フ		b/Clear				
Bisulfate-	Flashpoint		Col./Ba				b/Clear				
DI-	Other Glass		Other				core				
Thiosulfate- Sulfuric-	SOC Kit Perchlorate		Plasti Zipl			Frozen:					
Sulfuric-	reicillorate				l						
		- 20	Unused I	Viedia				- 4			
Vials # Unp-	Containers: 1 Liter Amb.	#	1 Liter	Diactic	#	16.07	Amb.	#			
HCL-	500 mL Amb.		500 mL	~			ıb/Clear				
Meoh-	250 mL Amb.		250 mL				b/Clear				
Bisulfate-	Col./Bacteria			point			b/Clear				
DI-	Other Plastic			Glass			core				
Thiosulfate-	SOC Kit		Plasti	c Bag		Frozen:					
Sulfuric-	Perchlorate		Zipl	ock							
Comments:											