Former Jameco Industries Site WYANDANCH, SUFFOLK COUNTY, NEW YORK

Periodic Review Report

NYSDEC Site Number: #1-52-006

Linzer Corporation 248 Wyandanch Avenue West Babylon, New York

Prepared by:

Goldman Environmental Consultants, Inc. 100 Grandview RD, Ste. 102, Braintree, MA 02184 (781) 356-9140

TABLE OF CONTENTS

1.0 I	EXEC	UTIVE SUMMARY1
2.0	SITE (OVERVIEW5
3.0 I	REME	DY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS8
4.0 I	C/EC	PLAN COMPLIANCE REPORT
5.0 N	MONI	TORING PLAN COMPLIANCE REPORT17
6.0	OVER	ALL CONCLUSIONS AND RECOMMENDATIONS20
7.0 V	WARF	RANTY
		FIGURES
Figure 1	:	Site Locus
Figure 2	:	Site Plan of Remediation Areas & Sample Locations
		<u>TABLES</u>
Table 1:		Groundwater Monitoring Plan
Table 2:		Summary of Groundwater Analytical Data: Semi-Volatile Organic Compounds (SVOCs)
Table 3:		Summary of Groundwater Analytical Data: Total Metals
Table 4:		Proposed Revised Groundwater Monitoring Plan
		<u>ATTACHMENTS</u>
Attachm	ent 1:	Plan showing Building Addition
Attachm	ent 2:	Periodic Review Report Certification Statement and IC/EC Certification Forms
Attachm	ent 3:	Inspection Photographs, IE/EC Inspection Forms, and May11-12, 2022 Monitoring Well Purge Data Evaluation
Attachm	ent 4:	Laboratory Certificate of Analysis

PERIODIC REVIEW REPORT

1.0 EXECUTIVE SUMMARY

Goldman Environmental Consultants, Inc. (GEC) of Braintree, Massachusetts - retained by the Linzer Corporation, Inc. (Linzer) - prepared the following Periodic Review Report (PRR) for 248 Wyandanch Avenue, Wyandanch, New York ("Site"). A PRR is required for sites in active Site management with the New York State Department of Environmental Conservation (NYSDEC) as promulgated in Section 6.3(b) of DER-10. This PRR covers the reporting period of June 1, 2021 to June 1, 2022 and reports on Site specific management requirements as described in the Site Management Plan (SMP), dated July 27, 2009, prepared by GEC, and approved by the NYSDEC, and addendum to the SMP requested and approved by the NYSDEC on March 31, 2016.

In a letter to Linzer dated March 23, 2022, NYSDEC provided their findings on the PRR and IC/EC Certification covering the period May 31, 2020 to May 31, 2021. Specifically, NYSDEC had the following two comments:

- 1. The frequency of the Periodic Review for this site is 1 year.
- 2. Your next PRP is due on June 30, 2022.

Annual groundwater monitoring is conducted during the spring. Semi-annual Site inspections are conducted in the spring and fall. Based on the results of groundwater analyses, GEC is recommending/requesting eliminating the following monitoring wells from the annual groundwater sampling program: (1) MW-20, MW-21, and MW-23 for analysis of polycyclic aromatic hydrocarbons via USEPA Method 8270D-E; (2) MW-3, for dissolved nickel; and (3) MW-10 for dissolved chromium, copper, and nickel. MW-4 is blocked at 10.2 ft and could not be gauged or sampled. MW-5R was located underwater from a recent rain event and could not be sampled. Therefore, GEC recommends the replacement or repair of MW-4 and MW-5R. Justifications for these recommendations/requests are provided below. These changes, if adopted, would be a further revision to the SMP.

Summary

The Site (#1-52-006) consists of approximately 9.35 +/- acres and is located in a mixed industrial/commercial/residential area. The Site is improved with a single-story concrete block building surrounded by paved and unpaved areas. The Site Locus is included as Figure 1 and the Site Plan is included as Figure 2. The Site is currently owned and occupied by Linzer, a manufacturer of painting products and has occupied the Site since early 1999. Prior to 1999, Jameco Industries (Jameco) occupied the property. Jameco used the Site to manufacture plumbing fixtures; some manufacturing included plating parts with chrome and nickel. Environmental investigations identified five discreet Areas of Concern or AOCs on the Site. Elevated concentrations of metals and volatile organic compounds (VOCs) from plating activities and process wastewater discharges were measured across several portions of the Site in areas identified as AOC-1, AOC-2, AOC-3, and

AOC-5. SVOCs from a release of cutting oil were detected in the northern portion of the Site in an area identified as AOC-4.

Remedial activities - completed in January 2008 - are summarized in the August 2011 Final Engineering Report, prepared by GEC. Activities included: the closure of the concrete leaching pool structures, the removal of contaminated soils, in-situ stabilization of metals in soil, and the implementation of Institutional Controls/Engineered Controls (IC/EC) as described in an Environmental Easement prepared for the Site - executed by the current owner, Linzer. In accordance with the SMP (dated July 27, 2009) and the Soil Management Plan (dated January 22, 2009), the remedial program includes long-term groundwater monitoring and the inspection of the five AOCs.

Effectiveness of the Remedial Program

The remedial program has proven effective in fulfilling the remedial goals outlined in the SMP. Refer to Table 1 for the May 2022 groundwater monitoring plan.

No SVOCs were detected in groundwater during the May 2022 sampling event above the laboratory reporting limits. No SVOCs have been detected at levels greater than applicable NYSDEC Class GA Groundwater Standards (Class-GA) over numerous consecutive monitoring rounds, however for some constituents the laboratory reporting limit exceeds the NY Water Quality Standard. Currently, only a slightly elevated concentration of nickel was detected in groundwater (e.g. MW-2) exceeding the applicable Class-GA Groundwater Standard. Analytical results for the annual sampling event (conducted in May 2022) indicate steady state conditions or continued gradual declines in detected concentrations for monitored parameters since remedial activities were completed in 2006. When detected, these metals are within historic ranges. Refer to Tables 2 and 3 for summaries of the SVOC and metal analytical data, respectively, for groundwater.

SVOCs include a diverse group of organic compounds, of which the key analytes of concern for this Site are comprised of polycyclic aromatic hydrocarbons (PAHs) and phthalates, because these are the compounds that might be associated with a release of used naphthenic cutting oils. The following PAHs have Class-GA standards: (1) acenaphthene (20 μ g/l), and (2) naphthalene (10 μ g/l).

- 1. No acenaphthene has been detected in any groundwater sample from MW-19, MW-20, MW-21 and MW-23 during the period January 2007 to May 2022; the sample quantitation limit was always below the Class-GA standard.
- 2. Naphthalene was detected in each monitoring well at least once, usually when naphthalene was also detected in the method blank. Usually no naphthalene was detected, and the sample quantitation limit was always below naphthalene's Class-GA standard.

For the phthalates, Class-GA standards exist for bis-(2-ethylhexyl)phthalate (5 μ g/l) and di-nbutylphthalate (50 μ g/l). When detected these phthalates were usually also detected in the method blank. Bis-(2-ethylhexyl)phthalate was last detected above its Class-GA standard in March 2011.

Since that time, bis-(2-ethylhexyl)phthalate was rarely detected, even for numerous sampling rounds where the sample quantitation limit was less than the Class-GA standard. Di-n-butylphthalate was last detected at concentrations greater than its Class-GA standard in March 2011. The sample quantitation limit for di-n-butylphthalate has always been below its Class-GA standard.

The levels of detected nickel in groundwater samples from MW-2 and MW-12 during the current and/or recent annual monitoring rounds indicate the continued presence of nickel at levels above to its Class-GA standard. The concentrations of nickel in MW-2 have been detected at a level above its Class GA standard (0.1 mg/l) twenty-one times in the twenty-three monitoring rounds from 2007 to 2022 and stayed above 0.22 mg/L during past seven years (2017 to 2022). The concentrations of nickel in MW-12 remained above and equal to its Class GA standard in 2021 and 2022, respectively. GEC noted no significant change in the concentration of dissolved nickel found in groundwater for MW-10 during the 2021-2022.

The levels of detected copper in groundwater samples from MW-12 during the current and/or recent annual monitoring rounds indicate the continued presence of copper at levels exceeding the sample quantitation limit but at or below its Class-GA standard since 2020. The levels of copper in MW-10 were last detected at concentrations greater than its Class-GA standard in April 2016.

The levels of detected chromium in groundwater samples from MW-10 and MW-12 during one recent annual monitoring round indicates the continued presence of chromium at levels exceed the sample quantitation limit but below its Class-GA standard (it's been detected above its standard in only one of ten groundwater samples collected since March 2014). Also, based on the most recent rounds of groundwater monitoring, the levels of detected chromium in groundwater from MW-10 have been less than its Class-GA over consecutive annual and/or semi-annual monitoring rounds.

During the May 2022 groundwater monitoring round, which was conducted to evaluate the effectiveness of the remedial program, only minor modifications were made to the approved Groundwater Monitoring Plan:

- (1) sampling of groundwater from MW-3 and MW-4 for analysis of nickel was excluded due to an obstruction in the well's riser.
- (2) monitoring well MW-5R could not be sampled for analysis of nickel because it is located in a low area of the parking lot and was under stormwater from a current rain event;
- (3) MW-26R was found to be destroyed during the 2021 sampling event. GEC did not recommend the repair or replacement of MW-26R in 2021, therefore it was not included in the 2022 sampling round.

Groundwater samples were submitted to Contest Analytical Laboratory of Longmeadow, Massachusetts (Laboratory ID: 10899) for analysis. Refer to Attachment 4 for the laboratory certificate of analysis and Tables 2 and 3 for summaries of SVOCs and total metals results, respectively.

Compliance

No compliance issues were found with the groundwater sampling program, Site Management Plan (SMP), or the Institutional Control/Engineering Control (IC/EC) described in the Environmental Easement. On January 23, 2012, the NYSDEC notified Linzer that all remediation work required at the Jameco Site is completed. The Site was subsequently reclassified as a Class 4 Environmental Site. Watts (the previous PRP) addressed the "existing OHM condition" and fulfilled its obligation required in the Purchase and Sale agreement with Linzer. Under the Environmental Easement that Linzer entered into with NYSDEC on August 2, 2012, Linzer assumed all the remaining obligations under the NYSDEC-approved Site Management Plan. In a letter, dated May 16, 2012, Linzer consented to the responsibility of the remaining periodic inspections, monitoring, and reporting as outlined in the SMP. Since that time, Linzer has complied with the requirements of the SMP.

Recommendations

Linzer should continue monitoring the effectiveness of the remedial program at the currently approved frequency with the following modification:

- 1. IC/EC inspections should be conducted at a reduced frequency to take place annually in April or May in conjunction with the annual groundwater monitoring.
- 2. The Groundwater Monitoring Plan (Table 4) should be revised to eliminate monitoring well MW-3 from future monitoring for nickel, and to eliminate monitoring well MW-10 for chromium, copper and nickel. MW-4 and MW-5R should be repaired or replaced. MW-20, MW-21 and MW-23 should be eliminated from future monitoring for Semi-VOCs.
- Approved analytical methods should be expanded to include USEPA Method 6020B for metals and USEPA Method 8270D-E for SVOCs. Care shall be taken to make sure that sample quantitation limits for analytes of concern (i.e., metals, PAHs, and phthalates) are below Class-GA standards.

2.0 SITE OVERVIEW

The Site, located in Suffolk County, New York, is identified as Block 02 and Lots 73.1 and 37.6 on the Suffolk County Tax Map, Parcel Numbers District 0100, Section 82.00. The $9.35 \pm$ acre (Parcels 1 and 3) Site is located within a mixed industrial/commercial/residential area bounded by Wyandanch Avenue to the north, Rockland Avenue to the east, Mount Avenue to the west-southwest, and residential properties to the south-southeast. Refer to Figure 2 for a Site Plan depicting the boundaries of the Site.

Based on the results of environmental investigations, five discreet AOCs were identified on the Site and are as follows.

 AOC-1 - located to the east-southeast of the building directly east of the current loading dock area - contained a seepage lagoon where four heavy metals (chromium, nickel, copper, and zinc) were released to the environment at levels exceeding relevant standards, criteria, and guidance in soil. All four metals were also detected in groundwater downgradient of AOC-1; however, only nickel was detected above relevant standards, criteria, and guidance.

- AOC-2 located within the former Jameco building near the center of the building was formerly a degreasing area. Elevated concentrations of VOCs (i.e., trichloroethene (TCE), 1,2-dichloroethene (1,2-DCE) and tetrachloroethene (PCE)) were detected above relevant standards, criteria, and guidance in soil and groundwater in this area.
- AOC-3 a square area extending southward from the southern property line was the former location of forty-eight leaching chambers that received treated process water. A release to the environment of four heavy metals (chromium, nickel, copper, and zinc) occurred to the soil during the leaching process. Moderate to elevated concentrations of metals above relevant standards, criteria, and guidance were detected in soils in this area. Low to moderate concentrations of metals above relevant standards, criteria, and guidance were also detected in groundwater within the former leaching pool area.
- AOC-4 located beneath and in front of the Site building's north side is where machine cutting oil was released to a leaching pool system. As a result, both soil and groundwater in the area were impacted by the presence of LNAPL and PAHs.
- AOC-5 located within the former Jameco building near the center of the building was a
 former a metal plating shop. Four metals (chromium, nickel, copper, and zinc) were detected
 in soil at concentrations exceeding relevant standards, criteria, and guidance. In
 groundwater, chromium, copper, and zinc were detected at concentrations above relevant
 standards, criteria, and guidance.

Refer to Figure 2 for a Site Plan showing the locations of the five AOCs.

In December 1983, NYSDEC listed the Site as a Class 2a site. In May 1992, the NYSDEC reclassified the Site to Class 2 - however, after petitioning by Jameco Industries, Inc., the Site was reclassified to Class 4 in February 1993. Following additional investigations, the Site was reclassified back to Class 2 in February 1996. The NYSDEC issued a Record of Decision (ROD) for the Site, dated March 2003. Amendments were added to the ROD based on the results of supplemental subsurface investigations conducted in accordance with a *Work Plan for Soil and Groundwater Sampling and Analysis*, dated June 2003. The results of the subsurface investigation are documented in a *Draft Final Pre-Remedial Design / Remedial Action Soil and Groundwater Sampling Work Plan*, dated May 2004. On May 11, 2005, NYSDEC issued a ROD Amendment letter outlining proposed amendments to the selected alternative remedies for the affected areas.

In August 2005, a Remedial Design Plan, summarizing the steps necessary to implement the proposed Amended ROD, was submitted. In March 2006, the final ROD Amendment was issued. ROD activities commenced in the fall of 2006. Chemical injections were completed on November 6, 2006. The replacement of monitoring wells MW-3 and MW-4 were completed on April 29, 2008. The *Final Engineering Report*, dated August 29, 2011, summarized site remedies conducted at the Site in accordance with the ROD.

The NYSDEC approved the *Final Engineering Report* on September 14, 2011. On January

23, 2012, the NYSDEC changed the Site classification from Class 2 to Class 4. Among the reasons the NYSDEC cited for this change were that the remedy has been constructed consistent with the ROD Amendment and the requisite institutional controls, in the form of an environmental easement were in place.

As stated in the Amended ROD, the Remedial Action Objectives (RAOs) were to eliminate or mitigate all significant threats to public health and/or the environment.

The remediation goals for the Site were to eliminate or reduce to the extent practicable:

- Exposures of persons at or around the site to metals and PAHs in soil and groundwater, and
- The release of contaminants from soil into groundwater that may create exceedances of ambient groundwater quality standards. The remediation goals for the Site also included attaining, to the extent practicable, and with changes authorized by NYSDEC staff:
- Ambient Class GA groundwater quality standards; and
- The soil cleanup objectives specified in Technical and Administrative Guidance Memorandum (TAGM) #4046.

As part of the Amended ROD, groundwater monitoring is required. The SMP, dated July 27, 2009, and submitted to NYSDEC, describes the post-remedial groundwater monitoring plan, a reporting schedule, and appropriate institutional controls. The monitoring wells and analytes included in the post-remedial monitoring plan were identified in the original Table 1 Groundwater Sampling Program provided in the SMP.

GEC has been developing a plan of Long-Term Monitoring Optimization (LTMO) in accordance with EPA guidance [https://www.epa.gov/remedytech/roadmap-long-term-monitoring-optimization] [https://www.epa.gov/remedytech/demonstration-two-long-term-groundwater-monitoring-optimization-approaches]. Sampling was conducted quarterly for the first year after initiation of remediation and then semi-annually for the next four years. The year of quarterly sampling was completed on September 11, 2008; the semi-annual monitoring began in March 2009 and has continued until April 2015. GEC, on behalf of Linzer, requested a change in the groundwater monitoring frequency to an annual event instead of a semi-annual event. Approval for this change was granted on March 31, 2016. This report summarizes the annual sampling conducted during May 2022 and semi-annual inspection of the IC/ECs conducted in October 2021 and May 2022. GEC is now requesting that the semi-annual frequency of IC/EC inspection be reduced to an annual inspection, to coincide with the annual sampling event.

According to the Amended ROD, an environmental easement was implemented, and a Soil Management Plan developed to ensure safety if contaminated soils were disturbed during any future subsurface construction activities. The easement was recorded by the Suffolk County Clerk's Office on August 2, 2010.

The SMP was issued to the NYSDEC and approved on August 12, 2009. According to the

plan, the NYSDEC would be notified of construction or development activities that may disturb existing subsurface contamination. A periodic certification, prepared by a professional engineer or environmental professional acceptable to NYSDEC, would also be submitted certifying that institutional controls and engineering controls remain effective. Periodic certification must be provided until the NYSDEC notifies in writing that this certification is no longer required. Please refer to the Periodic Review Report Certification Statement and IC/EC Certification form in Attachment. It should be noted that a building addition was completed as previously reported, however the addition was conducted outside of the five AOCs and did not disturb any of the AOC subsurface conditions. Please refer to Figure 2 for the location of the building additions.

3.0 REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

IC/ECs established for the Site include the maintenance of a protective soil cover system over each AOC and a prohibition against development of groundwater as a source of potable or process water without treatment. These controls have been implemented to reduce exposures of persons at or around the Site to metals and PAHs in soil and groundwater.

During the May 2022 monitoring event, groundwater samples were collected from monitoring wells MW-10 and MW-12 for analysis of chromium, copper, and nickel, and from MW-2 for analysis of nickel. Groundwater samples were collected from MW-19, MW-20, MW-21, and MW-23 for analysis of SVOCs. Laboratory analytical results are used to evaluate the effectiveness of the remedial program.

Discussion of Groundwater Sampling Results from May 2022 Sampling

The selected remedies to reduce or eliminate the release of contaminants from soil into groundwater are effective at remediating nickel, copper, chromium, zinc, and SVOCs in groundwater. Refer to Table 2 and 3 for a summary of the analytical results for SVOCs and metals, respectively. The analytical data are evaluated further in Section 5.0 below.

- Based on the Groundwater Monitoring Plan (Table 1) during the May 2022, groundwater samples from monitoring well MW-2, MW-3, MW-4, MW-5R, MW-10 and MW-12 are analyzed for nickel analysis. During this monitoring round, MW-3, MW-4 could not be sampled since they were found blocked at 4.3 and 10.2 ft, respectively. MW-5R was located under stormwater therefore it was not available to be sampled.
 - The concentrations of nickel in MW-2 were relatively stable with ~ 0.26 mg/l during 2020 to 2022. The nickel levels in groundwater samples analyzed exceed Class GA standard in most monitoring rounds except the ones sampled in September 2012 and April 2016. Therefore, additional analytical data for nickel is warranted for MW-2.
 - O Nickel levels found in MW-3 exceed its Class GA standard of 0.1 mg/l from 2008 to 2009. After that, nickel levels do not exceed its Class GA standard in most monitoring time except 2012, 2014 and 2017. In this case, GEC believes additional analytical data is not warranted for MW-3.

- o Nickel level found in MW-4 are consistently higher than its Class GA standard prior to 2022. Moreover, the nickel levels were up to 1.2 mg/L in 2020 and 2021. Based on these results, additional analytical data for nickel is warranted for MW-4.
- O MW-5R was found under stormwater therefore it could not be sampled in this round. This monitoring well has been sampled twenty times between December 2007 and May 2020. Nickel levels have ranged between 0.21 and 1.65 mg/l, which are consistently greater than its Class GA standard. Therefore, additional analytical data for nickel is warranted for MW-5R.
- O The concentrations of nickel in MW-10 are consistently non-detectable in recent 6 years (2018 to 2022). Prior to 2018, the nickel level was found with detectable low concentrations and below its Class GA standard except the year of 2009. Therefore, GEC believes additional analytical data is not warranted for MW-10.
- Nickel levels found in MW-12 exceed its Class GA standard in most ground monitoring rounds from 2007 to 2022. The concentration of nickel is lower than its Class GA standard in 2019 and 2020 but increased to approximately 0.1 mg/l in recent 2 monitoring rounds in 2021 and 2022. Based on these results, additional analytical data for nickel is warranted for MW-12.
- Based on the current Groundwater Monitoring Plan (Table 1), the groundwater samples from the following monitoring wells are scheduled for copper analysis MW-10 and MW-12. Low to non-detect concentrations of copper were consistently reported in MW-10 groundwater samplings from 2013 to 2017. For MW-12, copper was detected at a level above its Class GA standard (0.2 mg/l) 14 times in 21 monitoring rounds. All the sampling records are detectable from 2007.
 - o For MW-10, no copper was detected during the last six monitoring rounds (April 2017 to May 2022) and the levels of copper detected in six samples collected during the period March 2013 to April 2016 were always less than copper's Class-GA standard. Based on these results, GEC believes that compliance with the GA Groundwater Standard for copper has been demonstrated at MW-10, and therefore additional analytical data for copper is not warranted for MW-10.
 - o For MW-12, the concentration of copper increased from 0.078 mg/l in 2021 to 0.1 mg/l in 2022. Both recent two samples were detectable and remained in its historical range. However, the levels of copper detected greater than copper's Class-GA standard fourteen times in twenty-one samples collected during the period January 2007 to May 2022. Based on these results, GEC believes additional analytical data for copper is warranted for MW-12.
- Based on the current Groundwater Monitoring Plan (Table 1), the groundwater samples from the following monitoring wells are scheduled for chromium analysis MW-10, MW-12. Low concentrations of chromium were reported for both analyzed groundwater samples. Chromium was detected at 0.0016 and 0.007 mg/l in MW-10 and MW-12, respectively. Both

values are less than chromium's Class GA standard of 0.05 mg/l and even below their historic ranges (2007 to 2021: <0.0016 to 0.26 mg/l and <0.007 to 0.096 mg/l, respectively).

- o For MW-10, chromium was detected in six of twelve groundwater samples during the last twelve monitoring rounds (March 2013 to May 2022), and always at levels less than chromium's Class-GA standard. Based on these results, GEC believes that compliance with the GA Groundwater Standard for chromium has been demonstrated at MW-10, and therefore additional analytical data for chromium is not warranted for MW-10.
- o For MW-12, chromium was detected in four out of five sampling rounds since 2018, and exceeded the chromium Class-GA standard in 2020. Based on these results, GEC believes additional analytical data for chromium is warranted for MW-12.
- The collection of groundwater samples from monitoring wells MW-19, MW-20, MW-21, and MW-23 for analysis of SVOCs are part of the Groundwater Monitoring Plan (Table 1). These wells are located within AOC-4, on the north side of the Site building. Based on historic analytical data for MW-19 (April 2015) and analytical data for MW-20, MW-21, and MW-23 during the period April 2012 to May 2022, no SVOCs were detected in groundwater samples from those monitoring wells. During the May 2022 monitoring round, no SVOCs were detected in groundwater samples from MW-20, MW-21, and MW-23 at concentrations above sample quantitation limits.
- For monitoring wells MW-19, MW-20, MW-21 and MW-23, the following SVOCs were detected at least once during the period 2007 to 2022 (see Note 1): (1) bis-(2-ethylhexyl)phthalate in all four monitoring wells; (2) di-n-butylphthalate in all four monitoring wells; (3) diethyl phthalate in all four monitoring wells; (4) naphthalene in all four monitoring wells; (5) 2-methylnaphthalene in all four monitoring wells; and (6) chrysene in all four monitoring wells (Table 2). Naphthalene, 2-methylnaphthalene and chrysene are polycyclic aromatic hydrocarbons (PAHs) and the remaining three detected SVOCs are phthalates. Of these six SVOCs, the following three have Class-GA standards: (1) naphthalene (10 μg/l); (2) bis-(2-ethylhexyl) phthalate (5 μg/l); and (3) di-n-butylphthalate (50 μg/l).
 - O Naphthalene¹ was only detected when it was also detected in a method blank during the March 23, 2011 (all four wells) and September 21, 2011 (MW-23 only) groundwater monitoring events. The levels detected (maximum 4.94 μg/l, never exceeded naphthalene's Class-GA standard. No naphthalene has been detected in the fifty-one groundwater samples collected from these four monitoring wells during the period April 2012 to May 2022. The sample quantitation limits for naphthalene for these samples were always less than the Class-GA standard. Based on these results, GEC believes that compliance with the GA Groundwater Standard for naphthalene

_

Petroleum-based cutting oils include both paraffin-based or naphthalene-based oils.

- has been demonstrated at MW-19, MW-20, MW-21, and MW-23 and therefore additional analytical data for naphthalene is not warranted for MW-20, MW-21, or MW-23.
- o Bis-(2-ethylhexyl) phthalate was detected in groundwater samples from all four wells on March 23, 2011, when it was also detected in the method blank. The levels detected ranged between 5.57 and 5.76 µg/l, which are slightly above its Class-GA standard. The only other sample containing a detectable level of bis-(2-ethylhexyl) phthalate (2.19 mg/l, i.e., less than its Class-GA standard) was collected from MW-21 on September 21, 2011. Since September 21, 2011, no bis-(2-ethylhexyl) phthalate was detected in any groundwater sample in any monitoring well. During the last five monitoring rounds (from April 2018 to May 2022), the sample quantitation limits for bis-(2-ethylhexyl) phthalate were greater than its Class-GA standard. However, each monitoring well had samples collected during the period September 2011 to April 2017 with sample quantitation limits for bis-(2-ethylhexyl) phthalate that were less than its Class-GA standard: (1) MW-19 (1 sample); (2) MW-20 (7 samples); (3) MW-21 (9 samples); and (4) MW-23 (9 samples). Based on these results, GEC believes that compliance with the GA Groundwater Standard for bis-(2-ethylhexyl) phthalate has been demonstrated at MW-20, MW-21 or MW-23 and therefore additional analytical data for bis-(2-ethylhexyl) phthalate is not warranted for MW-20, MW-21, or MW-23.
- O Di-n-butylphthalate was detected in groundwater samples from all four monitoring wells on March 23, 2011, when it was also detected in the method blank. The levels detected ranged between 70.1 and 80.3 μg/l, which is above its Class-GA standard. Since that time, di-n-butylphthalate has been detected in five of forty samples at levels ranging up to 10.07 μg/l, which is less than its Class-GA standard. During the period from September 2011 to May 2022, all groundwater samples had sample quantitation limits for di-n-butylphthalate that are less than its Class-GA standard: (1) MW-19 (1 sample); (2) MW-20 (11 samples); (3) MW-21 (14 samples; and (4) MW-23 (14 samples). Based on these results, GEC believes that compliance with the GA Groundwater Standard for di-n-butylphthalate has been demonstrated at MW-20, MW-21 or MW-23 and therefore additional analytical data for di-n-butylphthalate is not warranted for MW-20, MW-21, and MW-23.
- o None of the fifty-five samples collected for analysis from MW-19, MW-20, MW-21 or MW-23 during the period March 2010 to May 2022 had detectable levels of either chrysene or diethyl phthalate. 2-Methylnaphthalene was detected in groundwater samples collected from all four monitoring wells on March 23, 2011, when 2-methylnaphthalene was also detected in the method blank. Since that time, 2-methylnaphthalene was detected in one (at 0.96 μg/l) of forty groundwater samples, with the last detection on September 21, 2011. Based on these results, GEC believes

that compliance with the GA Groundwater Standards for chrysene, diethyl phthalate, and 2-methylnaphthalene have been demonstrated at MW-20, MW-21 and MW-23 and therefore additional analytical data for chrysene, diethyl phthalate, and 2-methylnaphthalene are not warranted for MW-20, MW-21, and MW-23.

 Although recent sampling rounds have slightly elevated detection limits for some semi-VOCs, historic data from 2009 to 2017 has sufficiently low laboratory detection limits to show compliance with the GA Groundwater standards for all semi-VOCs in MW-20, MW-21 and MW-23.

Note 1: The following SVOCs were detected once in a groundwater sample collected from MW-21 on September 21, 2011: benzyl alcohol, 4-chloroanaline, 3,3-dichlorobenzidine, 3-nitroanaline, 4-nitroanaline and pyridine. These six SVOCs were detected once in sixty-seven groundwater samples collected from MW-19, MW-20, MW-21, and MW-23 during the period 2007 to 2022. Their presence in the September 21, 2011 sample collected from MW-21 is attributed to contamination from the use of spray paint to label the monitoring wells on this day. These SVOCs are not considered contaminants of concern for this Site and are not evaluated further.

Evaluation of Light Non-Aqueous Phase Liquid

LNAPL has only been observed or measured in monitoring well MW-19 located in AOC #4. It was observed in this monitoring well on seventeen of twenty-one occasions over the period January 2007 to May 2022, i.e., a sixteen-year period. LNAPL thickness was measured with an oil-water interface probe capable of measuring LNAPL to a thickness of 0.01 ft (0.12 inch) starting in September 2014 and has ranged from 0.01 feet (0.12 inches) to 0.07 feet (0.84 inches) (see Table 2). The LNAPL thickness prior to September 2014 is unknown. Drought conditions can have an impact on LNAPL thickness. During droughts, as the water table drops, capillary pressures decrease allowing the LNAPL to be more mobile and increasing the likelihood it will flow into a monitoring well. There was a drought watch in effect for Long Island by July 2020 and it may have been evolving during May 2020 when MW-19 was gauged. In this monitoring round, GEC did not detect LNAPL in May 2022.

GEC attempted to perform pump-down transmissivity tests at MW-19 in both October of 2018 and May of 2019 to assess whether the LNAPL was recoverable. Neither test resulted in any measurable thickness of product returning into the annular space of the well. This finding indicates that LNAPL recovery is unlikely to be successful, which is expected given the measurement of less than one inch of LNAPL at MW-19 and the hydrophobic nature of paraffinic and naphthenic cutting oils, which causes them to preferentially partition out of the aqueous phase and adsorb to soil particles. To remove the LNAPL, the floor would need to be removed to allow for excavation of the soils containing LNAPL. This approach is not feasible because of the disruption it would cause to facility operations and the in-ordinate cost compared to benefit. Furthermore, GEC questions whether the LNAPL observed in MW-19 is actually representative of LNAPL in the soil beneath the building,

as it may be an artifact of LNAPL adsorbed to the filter pack of MW-19.

For MW-19, LNAPL was measured or observed during three past groundwater monitoring rounds, i.e., on March 24, 2010, March 23, 2011, and April 21, 2015. On those occasions, groundwater samples were collected from MW-19 for analysis of semi-volatile organic compounds via USEPA Method 8270. The only SVOCs detected were di-n-butyl phthalate (2 of 3 samples), bis-(2-ethylhexyl)phthalate (1 of 3 samples), naphthalene (1 of 3 samples) and 2-methylnaphthalene (1 of 3 samples). The SVOCs detected may be attributed to small amounts of LNAPL suspended in the groundwater samples. The last time no measurable LNAPL was present in MW-19 prior to this year was on April 21, 2015. A groundwater sample was collected at that time for analysis of SVOCs. The only SVOC detected was 1.49 μg/l di-n-butylphthalate, which is less than its GA Groundwater Standard of 50 μg/l. These results indicated that the LNAPL is unlikely to be a significant source of dissolved-phase groundwater contamination.

No LNAPL has been observed or measured in other monitoring wells within or near AOC #4 for the following periods:

Monitoring Well	Gauging/Sampling Period	Number of Attempts
GEC-5	4/2008 to 9/2009	3
MW-21	1/2007 to 5/2022	22
MW-23	1/2007 to 5/2022	22
MW-16	1/2007 to 9/2009	5
MW-17	1/2007 to 9/2009	5
MW-20	1/2007 to 5/2022	17

On May 11 and May 12, 2022, groundwater samples were collected from MW-19, MW-20, MW-21, and MW-23 for analysis of SVOCs. Laboratory analytical results are used to evaluate the effectiveness of the remedial program. No SVOCs were detected in any of these groundwater samples including the sample from MW-19 above the laboratory detection limits. As described above, little to no SVOCs have been detected in groundwater samples from MW-20, MW-21, and MW-23 for at least four years. Refer to Table 2 for a summary of the SVOC analytical data and to Attachment 4 for the laboratory report.

4.0 IC/EC PLAN COMPLIANCE REPORT

Institutional Controls

Institutional Controls at the Site were established to prevent exposure of persons at or around the Site to metals and SVOCs in groundwater by prohibiting the use of groundwater as a source of potable or process water without appropriate water quality treatment. An Environmental Easement has been recorded on the property Deed with additional restrictions imposed to ensure safety if residual contaminated soils were to be disturbed. The Environmental Easement requires a soil management plan if or when excavation activities take place on Site in any of the AOCs. A Soil Management Plan was submitted as an attachment in the approved SMP. The SMP was approved by

the NYSDEC in a letter dated August 12, 2009. The Soil Management Plan describes what is required during any future excavation work within the AOCs. Linzer is required to provide annual certification to NYSDEC certifying that the institutional and engineering controls are still in place and effective.

The performance of the institutional controls is evaluated by visual inspections and interviews with on-Site representatives. Interviews consist of asking the current owner about any future plans to utilize groundwater at the Site or if any excavations were conducted and/or are planned to be conducted within an AOC.

Engineering Controls

Engineering controls consisting of soil cover systems placed over contaminated soil/fill were established to prevent exposure of persons at or around the Site to metals and SVOCs in soil. Figure 2 shows the location of AOC-1 to AOC-5. The cover system is different in each of the AOCs and is comprised of one or more of the following:

- clean backfill,
- bituminous concrete ("asphalt") pavement; and/or,
- concrete foundation slabs of buildings.

Performance for each type of soil cover system is evaluated by conducting a visual inspection to evaluate the integrity and completeness of the cover over each AOC.

Status of IC/EC Objectives

GEC visited the site on December 10, 2021 and again on May 11-12, 2022 to inspect Site conditions and collect groundwater samples. Please refer to photographs taken during the December 10, 2021 and May 11-12, 2022 inspections in Attachment 3. The institutional and engineered controls described above are fully in place and were effective at fulfilling the objective to prevent exposure of persons at or around the Site to metals and PAHs in soil and groundwater.

- AOC-1 is completely covered by the bituminous concrete pavement adjacent to the loading docks.
- AOC-2 and AOC-5 are completely within the existing Site building and covered by the concrete foundation slab.
- AOC-3 is covered by approximately 5 feet of clean backfill (0 to 5 feet deep) and 6 feet
 of excavated soil reused for backfill (6 to 11 feet deep). Approximately 6 to 12 inches of
 compacted crushed concrete and Recycled Concrete Aggregate (RCA) blend is located at
 the surface. A grass lawn has developed on top of the aggregate which is well
 maintained.

- AOC-4 is about 75 percent located beneath the building concrete foundation slab, and about 25 percent located in front of the building and covered with approximately 8 to 10 feet of clean backfill soils, including a vegetative cover (grass) at the surface.
- According to an interview with Linzer personnel, there are no plans that would result in an impact on any of the AOCs in the near future. An addition to the existing Site building was constructed since the last Periodic Review Report was submitted. Based on GEC's review of the plans prior to the expansion, no impact to any AOC was expected. The building addition was constructed east of the existing Site building and did not encroach on AOC-1. The location of AOC-1 relative to the building addition is depicted on the figure in Attachment 1. GEC and Linzer were in regular communication during this project.

Corrective Measures

Monitoring well MW-26R could not be sampled during the May 2022 monitoring round because it was found to be destroyed in the 2021 sampling event. Groundwater samples from MW-26R are analyzed for chromium, copper and nickel. No chromium, copper or nickel was detected at concentrations above applicable Class-GA standards over nine monitoring rounds during the period September 2013 to May 2020. Based on these results, GEC does not believe that continued monitoring of MW-26R is warranted. GEC does not recommend the repair or replacement of MW-26R, and recommends that MW-26R be decommissioned. MW-4 is obstructed and should be repaired or replaced. MW-5R is often under stormwater after rain events. If possible the well and sourrounding pavement should be razed so it above the pooled stormwater and therefore available for sampling.

Conclusions and Recommendations

Current Site conditions comply with the provisions of the IC/EC Plan / Site Management Plan.

Linzer should continue with the groundwater monitoring events at the approved annual frequency. For the reasons documented in Section 3.0, GEC is recommending/requesting the elimination of the following monitoring wells/analytes from the Groundwater Monitoring Program: (1) MW-3 for nickel; (2) MW-10 for chromium, copper and nickel; and (4) MW-20, MW-21 and MW-23 for SVOCs. The proposed revised Groundwater Monitoring Plan is provided as Table 4.

GEC is also recommending/requesting that IC/EC inspections be conducted at a reduced frequency – to take place annually in April/May in conjunction with annual groundwater monitoring. Linzer is forthcoming and pro-actively consults GEC regarding proposed plans for any improvements to the Site that may disturb the sub-surface within or outside of the AOCs in accordance with the recorded environmental easement.

5.0 MONITORING PLAN COMPLIANCE REPORT

Groundwater Monitoring Plan Components

Historically, there were a total of 24 groundwater monitoring wells on Site; however, a subset of 11 monitoring wells is included in the current Groundwater Monitoring Plan (Table 1) that was initiated in June 2012. For the May 2022 sampling round, the number of wells targeted for sampling and analysis was 10.

The Monitoring Plan stipulates that, prior to collection of groundwater samples the groundwater level in each well shall be measured and recorded. Groundwater samples are to be collected via the low-flow sampling method. Laboratory analysis includes total chromium, copper, and nickel via USEPA Method 6010 or 6020 and/or SVOCs via USEPA Method 8270 D-E. Samples must be submitted to a certified New York state laboratory under proper chain-of-custody documentation. Please refer to Table 1 attached for a summary of the Groundwater Monitoring Plan.

Monitoring Completed During Reporting Period

Since the submittal of the last PRR in June 2021, one round of long-term groundwater monitoring was conducted during May 2022. A total of 7 monitoring wells were sampled for metals or SVOCs as shown in Table 1.

Prior to groundwater sampling, the groundwater level in each well was measured and recorded. Peristaltic pumps with polyethylene tubing were used to purge and sample monitoring wells. Groundwater samples were collected using the USEPA Region II "Groundwater Sampling Procedure – Low Stress (low flow) Purging and Sampling (March 16, 1998) and field parameters monitored included: dissolved oxygen, pH, temperature, specific conductance, ORP, and turbidity. Laboratory analysis included total chromium, copper, and nickel via USEPA Method 6020B or SVOCs via USEPA Method 8270D-E. Samples were submitted to Contest Laboratories of Longmeadow, Massachusetts, which is a New York State certified laboratory, under proper chain-of-custody documentation. A copy of the analytical reports and chains-of-custody are included in Attachment 4. USEPA Method 6020B was used instead of USEPA Method 6010 to achieve lower sample quantitation limits and reporting limits. USEPA Method 8270D-E was used because they are newer revisions of USEPA Method 8270C and includes the analytes of concern (i.e., PAHs and phthalates) for this Site.

Comparison with Remedial Objectives

The remediation goal for the Site is to attain, to the extent practicable, ambient Class GA groundwater quality standards. Monitoring wells are sampled for analysis of select metals, as follows: (1) MW-5R (nickel) for AOC #1 (2) MW-2 (nickel), MW-10 (chromium, copper and nickel) and MW-12 (chromium, copper and nickel) in AOC #2 and AOC #5; and (3) MW-3 (nickel) and MW-4 (nickel) in AOC #3. Overall, metal concentrations are essentially consistent compared to historical data, as summarized in Table 3.

Monitoring wells MW-2, MW-10 and MW-12 were sampled and analyzed during this monitoring round, and the levels of nickel (0.1 to 0.26 mg/l) are at or above its Class-GA standard (0.1 mg/l). MW-3, MW-4 and MW-5R were not sampled during this monitoring round. However,

based on recent monitoring rounds, the levels of nickel exceed its Class-GA standard for MW-5R (0.10 to 1.6 mg/l during April 2017 to May 2020). For MW-4, nickel levels have been always greater than its Class-GA standard (0.21 to 1.2 mg/l from April 2017 through May 2022; and MW-10 <0.0005 to 0.019 mg/l from September 2009 through May 2022). Based on these findings, continued groundwater monitoring for nickel is warranted for monitoring wells MW-2, MW-4, MW-5R and MW-12. For nickel, remedial objectives are met at MW-3 and MW-10.

Groundwater from two monitoring wells (MW-10, MW-12) are analyzed for copper during this monitoring event in May 2022. The groundwater sample had a level of copper below its Class-GA standard (0.2 mg/l) in MW-10 and MW-12. For MW-12, the Class-GA standard was last exceeded in May 2020. For MW-10, the levels of copper (<0.0012 to 0.0058 mg/l) have been below its Class-GA standard from March 2013 through May 2022. Based on these findings, continued groundwater monitoring for copper is warranted for monitoring well MW-12. For copper, remedial objectives are met at MW-10.

Monitoring wells MW-19, MW-20, MW-21, and MW-23 are listed to be sampled for SVOCs. These wells are located within AOC-4, on the north side of the Site building. Based on groundwater analytical data for MW-19, MW-20, MW-21, and MW-23, findings are consistent with prior analytical data for all four monitoring wells. For MW-20, MW-21, and MW-23, no PAHs or phthalates have been detected at levels above applicable Class-GA standards from September 2011 through May 2022 (12, 15 and 15 rounds, respectively). Limited groundwater analytical data is available for MW-19. Based on these findings, continued groundwater monitoring for SVOCs is warranted for MW-19, during monitoring rounds when no LNAPL is present. For PAHs and phthalates, remedial objectives are met at MW-20, MW-21, and MW-23. Refer to Table 2 for a summary of SVOC analytical data.

Changes made to Groundwater Monitoring Component of Site Management Plan

The original Groundwater Monitoring Plan presented in the 2009 SMP was revised by eliminating some monitoring wells from the scheduled monitoring and by reducing the groundwater monitoring frequency from semi-annual to annual. GEC received oral approval from the NYSDEC after submitting the 2015 PRR and official approval in the form of a Site Management Addendum letter, dated March 31, 2016, which was included in the June 2017 PRR. The approved Groundwater Monitoring Plan is provided as Table 1.

Monitoring during this reporting period complied with that approved in the 2016 Site Management Addendum letter, with the following qualifiers:

- 1. MW-5R was inadvertently not sampled for analysis during this groundwater monitoring period; it is still included in the groundwater monitoring plan and will be sampled going forward;
- 2. Groundwater samples were analyzed for metals via USEPA Method 6020B instead of USEPA Method 6010, in order to achieve lower sample quantitation limits; and

3. Groundwater samples were analyzed for SVOCs via USEPA Method 8270D-E instead of USEPA Method 8270C; both modifications of USEPA Method 8270 are comparable and target the same analytes of concern.

GEC recommends/request further revision of the Groundwater Monitoring Plan to eliminate monitoring wells that have levels of analytes of concern that have been consistently less than Class-GA standards over multiple sequential monitoring rounds. Specifically, GEC recommends/requests eliminating the following monitoring wells from the Groundwater Monitoring Plan: (1) MW-3 for nickel; (2) MW-10 for chromium, copper and nickel; and (3) MW-20, MW-21 and MW-23 for SVOCs. The annual monitoring frequency would remain. GEC recommends expanding the allowed analytical methods to both USEPA Method 6010 or 6020B for metals and USEPA Method 8270C, 8270D or 8270D-E for SVOCs. The proposed revised Groundwater Monitoring Plan is provided in Table 4.

6.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

SMP Compliance

The IC/EC established in the Environmental Easement prevents exposure of persons at or around the Site to metals and SVOCs in soil and groundwater. All requirements of the IC/EC and Environmental Easement were met during the reporting period. The recent construction of a building addition did not encroach on any AOC and, therefore, did not require implementation of the Soil Management Plan presented in the SMP. Site inspections to verify the effectiveness of the IC/EC will continue. However, given the long history of Site inspections and Linzer's communications with GEC about Site issues and plans, GEC recommends/requests reducing the IC/EC inspections to once a year concurrent with groundwater sampling in the spring. A spring inspection would confirm whether any damage occurred to the AOC coverings during snow removal over the prior winter.

Long-term groundwater monitoring was established in the 2009 SMP, and, based on years of groundwater analytical data, was subsequently modified by GEC in 2016 with NYSDEC's authorization. Several years has elapsed since the last revision to the Groundwater Monitoring Plan, during which period approximately six rounds of additional groundwater monitoring were conducted. Based on these results, GEC is recommending/requesting further revision of the Groundwater Monitoring Plan (Table 4).

Performance and Effectiveness of the Remedy

The terms of the IC/EC established in the Environmental Easement have been effective in achieving the remedial objective of eliminating exposures of persons at or around the Site to metals and SVOCs in soil and groundwater. Currently the groundwater data have shown that the other remedial objectives have been met at specific monitoring wells and will likely be met for the remaining monitoring wells over time. Using the groundwater monitoring data, the remedial objectives are to: (1) reduce the release of contaminants from soil into groundwater that may create exceedances of ambient groundwater quality standards; (2) meet ambient Class GA Groundwater

Standards; and (3) meet soil cleanup objectives specified in Technical and Administrative Guidance Memorandum (TAGM) #4046.

Continued annual groundwater monitoring is sufficient to evaluate the variability of total chromium, copper, and nickel concentrations in groundwater. The LNAPL that is present historically in MW-19 does not appear to be contributing to groundwater contamination as the recent and historic analytical data suggest. As stated in the Corrective Measure Plan, dated May 2021, additional evaluation of the LNAPL at MW-19, including feasibility of removal, will be conducted.

The current remedy has significantly improved water quality. GEC will continue to monitor its effectiveness.

PRR Submittal Schedule

The frequency of PRR submittals is not expected to change. The next PRR will be due 12 months from the submittal deadline of this report, or June 30, 2023. The frequency of sampling and Site inspections shall be annually – assuming NYSDEC approves modifying the inspection frequency from a semi-annual to an annual event.

7.0 WARRANTY

The conclusions and recommendations contained in this report are based on the information available to GEC as of the date of this document. The conclusions and recommendations may require revision if future regulatory changes occur. GEC provides no warranties on information provided by third parties and contained herein. Data compiled was in accordance with GEC's existing procedures and consistent with the NYSDEC regulations and should not be construed beyond its limitations. Any interpretations or use of this report other than those expressed herein are not warranted.

The use, partial use, or duplication of this report without the written consent of Goldman Environmental Consultants, Inc., and the Linzer Corporation is strictly prohibited.

Respectfully submitted,

Goldman Environmental Consultants, Inc.

Prepared By:

langin hu

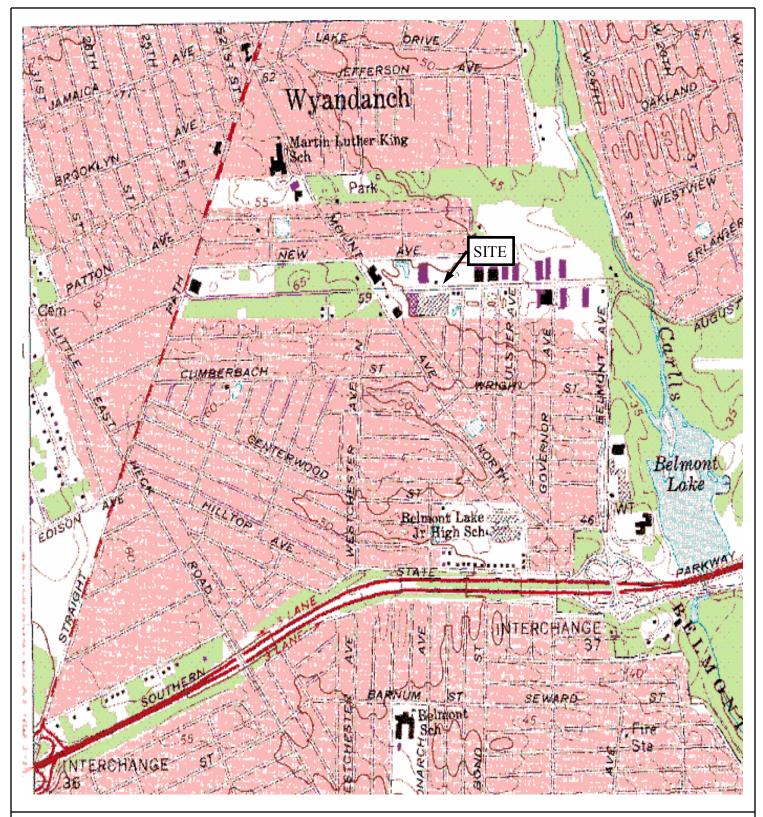
Lanxin Hu

Environmental Scientist

Matthew C. Perrotti

Matthew C. Perrotti Environmental Scientist

Approved By:


Brian T. Butler, P.G.

Sr. Vice President, Operations

Buint But

P:\Projects\1744-Linzer Corp\1744-1130 for 2021-2022\2021-2022 Report\Periodic Review Report 2021-2022.doxc

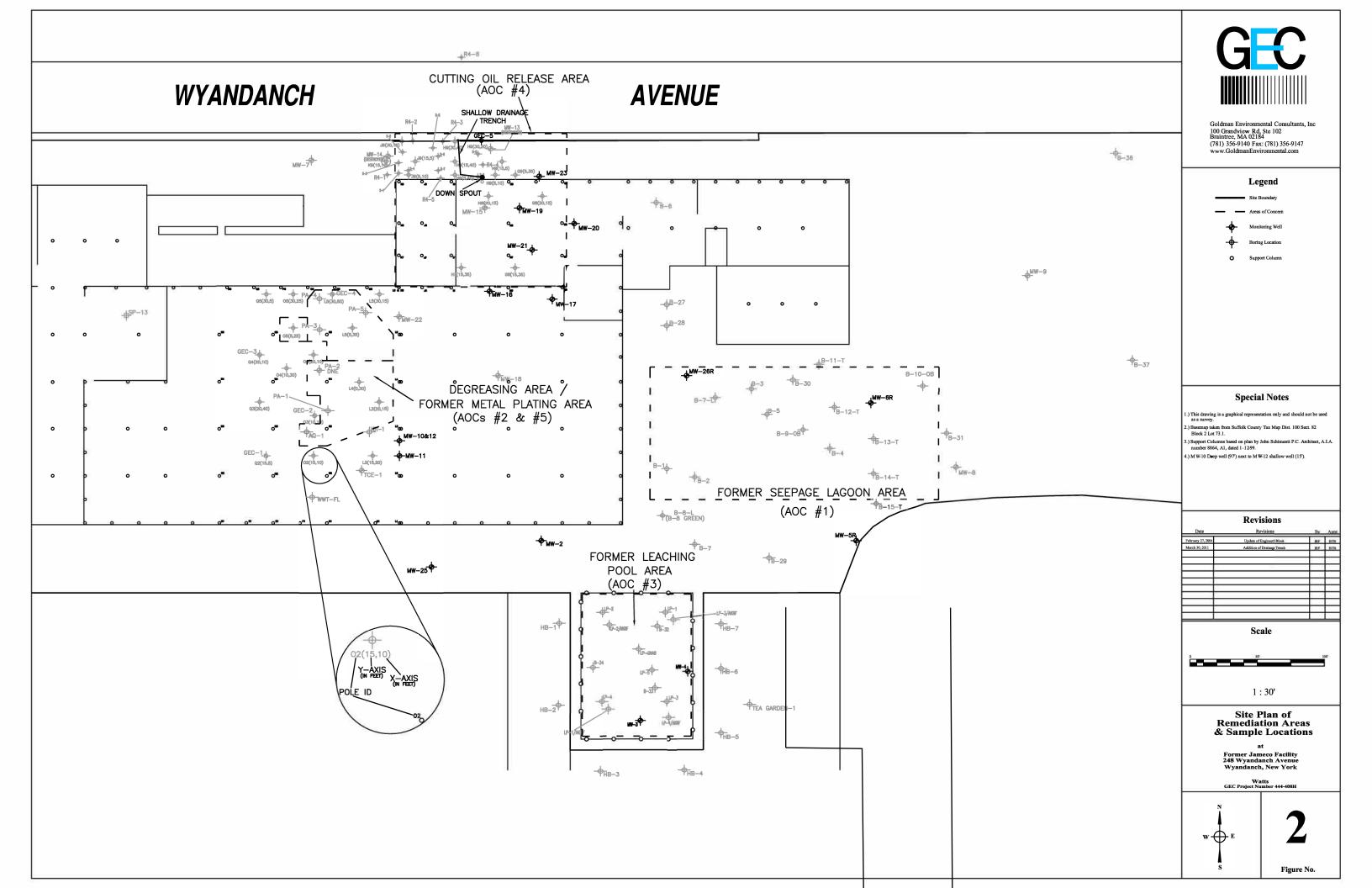
USGS 7.5 Minute Topographic

GEC

Goldman Environmental Consultants, Inc. 100 Grandview Rd, Ste.102 Braintree, MA 02184 (781)356-9140 Fax: (781)356-9147 www.goldmanenvironmental.com

SITE LOCUS

248 Wyandanch Avenue Wyandanch, New York


GEC Project #: 1744-1130

Bay Shore NewYork, Quadrangle

Scale 1: 25,000

TABLE 1: GROUNDWATER MONITORING PLAN

248 Wyandanch Ave. West Babylon, New York

Monitoring Well	Associated AOC	Screen Depth (feet)	Chromium, Copper, Nickel (6010C or 6020B)	Nickel (6010C or 6020B)	Semi-VOCs (8270C or D)
MW-2	AOC-2	6-16		X	
MW-3	AOC-3	10-20		X	
MW-4	AOC-3	10-20		X	
MW-5R	AOC-1	6-16		X	
MW-10	AOC-2 and 5	87-97	X		
MW-12	AOC-2 and 5	5-15	X		
MW-19	AOC-4	5-25			X
MW-20	AOC-4	5-25			X
MW-21	AOC-4	5-25			X
MW-23	AOC-4	2-20			X
MS					X
MS-DUP			X		
Total			3	3	5

AOC = Area of Concern

Semi-VOCs = Semi-Volatile Organic Compounds

Sample	Sample	Analytical	Acenaphthe	ene	Anthracene	ı,	Benzo (a)		Benzyl		4-Chloroaniline	Chrysene		3.3-Dichloro		2,4-Dichloro	nhenol	Di-n-butyl		Diethyl	$\overline{}$
Identification	Date	Method	l	SOL			anthracene	SQL	alcohol	SQL	SOL	CITyselle	SQL	benzidine	SOL		SQL	phthalate	SOL	phthalate	SQL
MW-2	12/4/2007	8270	ND	5	ND	5	ND	5			,	ND	5			ND	5			-	
MW-3	1/25/2007	8270	ND	10	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5		
(AOC #3)	12/4/2007***	Well not samp	led, destroye	d during s	soil excavation	n															
, ,	4/16/2008***	Well destroyed																			
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.1	ND		ND	ND	0.02	ND		NA		ND	0.02	NS	
	9/28/2009***	8270C	ND	0.93	ND	0.84	ND	1.03	ND		ND	ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
MW-4	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5	ND	5
(AOC #3)	4/16/2008***	Well destroyed	d during soil i	remediation	on, to be repl	aced.															
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND	ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
MW-5R	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5		
(AOC #1)	4/6/2006	8270	ND	0.30	ND	0.20	ND	0.05	ND		ND	ND	0.20	ND		ND	1	ND	0.20		
	1/29/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		13	5	ND	5		
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5	ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5	ND	5
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.1	ND		ND	ND	0.02	ND		NA		ND	0.02	NS	
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND	ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND	1.13	ND	0.93	ND	1.14	ND		ND	ND	1.06	ND		ND	1.09	ND	1.06	ND	1.19
MW-6R	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5		
(AOC #1)	4/6/2006	8270	ND	0.30	ND	0.20	ND	0.05	ND		ND	ND	0.20	ND		ND	1	ND	0.20	<u> </u>	
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5		
	4/16/2008***	8270	ND	0.5	ND	0.5	ND	0.1	ND		ND	ND	0.02	ND		NA		ND	0.02		
MW-10	1/24/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5		
(AOC # 2/5)	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5	ND	5
	9/11/2008***	Sample contain	ner broken in	transit to	laboratory																
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND	ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND	1.07	ND	0.88	ND	1.08	ND		ND	ND	1.00	ND		ND	1.03	ND	1.00	1.23	1.13
MW-11	1/29/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5		
(AOC # 2/5)	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5	ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5	ND	5
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.1	ND		ND	ND	0.02	ND		NA		ND	0.02	NS	
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND	ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND	ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
MW-12	1/24/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5		
(AOC # 2/5)	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5	ND	5
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.1	ND		ND	ND	0.02	ND		NA		ND	0.02	NS	
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND	ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND	1.13	ND	0.93	ND	1.14	ND		ND	ND	1.06	ND		ND	1.09	ND	1.06	ND	1.19
MW-16	4/6/1999	8270	ND	10	ND	10	ND	10	ND		ND	ND	10	ND		ND	10	ND	10		l
(AOC #4)	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5		
	4/6/2006	8270	ND	0.3	ND	0.2	ND	0.05	ND		ND	ND	0.2	ND		ND	<u>l</u>	ND	0.2	 	
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5		_
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5	ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND	ND	5	ND		ND	5	ND	5	ND	5
	9/11/2008***	Sample contain						4.0-	ND		ND			ND			0.0-		0.05		4.05
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND	ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND	ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07

Revised: 6/29/2022 Page 1 of 8

Sample	Sample	Analytical	Fluoranth	ene	Fluorene		2-Methyl		Naphthalene		3-Nitroaniline	[,	4-Nitroaniline		Phenanthro	ene	Pyrene		Pyridine	b	is (2-Ethylhe	exyl)	1,4 - Dioxane	
Identification	Date	Method		SQL		SQL	naphthalene	SQL		SQL	S	SQL		SQL		SQL	-	SQL	S	QL	phthalate	SQL		SQL
MW-2	12/4/2007	8270	ND	5	ND	5	ND	5	ND	5					ND	5	ND	5						
MW-3	1/25/2007	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
(AOC #3)	12/4/2007***	Well not samp																						
	4/16/2008***	Well destroyed																						
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5	NR	
	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.0	ND		ND	1.0	NR	
MW-4	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5		
(AOC #3)	4/16/2008***	Well destroyed				0.04					1770											4.04		
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01	1170	
MW-5R	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
(AOC #1)	4/6/2006	8270	ND	0.5	ND	1	ND	1	ND	1	ND ND		ND		ND	0.1	ND	1	ND		ND	1	NR	
	1/29/2007*** 12/4/2007***	8270 8270	ND	5 5	ND	5 5	ND ND	5 5	ND ND	5 5	ND ND		ND ND		ND ND	5 5	ND	5 5	ND ND		ND ND	5 5	NR NR	
	4/16/2008***	8270 8270	ND ND	5	ND ND	5	ND ND	5	ND ND	5	ND ND		ND ND		ND ND	5	ND ND	5	ND ND		ND ND	5	NR NR	
	9/11/2008***	8270M(SIM)	ND ND	0.5	ND ND	0.5	ND ND	0.5	ND ND	0.5	ND ND		ND ND		ND ND	0.5	ND ND	0.5	ND ND		ND ND	0.5	NR NR	
	3/30/2009***	8270W(SHVI)	ND	0.86	ND ND	0.91	ND ND	0.82	ND ND	0.87	ND ND		ND ND		ND	0.90	ND ND	1.01	ND ND		ND	1.01	NR NR	
	9/28/2009***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.97	ND		ND		ND	1.00	ND	1.12	ND		ND	1.12	NR	
MW-6R	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	1110	
(AOC #1)	4/6/2006	8270	ND	0.5	ND	1	ND	1	ND	1	ND		ND		ND	0.1	ND	1	ND		ND	1		
(,	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5		
	4/16/2008***	8270	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5		
MW-10	1/24/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
(AOC # 2/5)	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
	9/11/2008***	Sample contai																						
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01	NR	
	9/28/2009***	8270C	ND	0.91	ND	0.96	ND	0.86	ND	0.92	ND		ND		ND	0.95	ND	1.06	ND		ND	1.06	NR	
MW-11	1/29/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
(AOC # 2/5)	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5	NR	
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01	NR	
3.6337.12	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01	NR	
MW-12	1/24/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
(AOC # 2/5)	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5	NR	
	3/30/2009***	8270	ND	0.86	ND ND	0.91	ND ND	0.82	ND ND	0.87	ND ND		ND		ND	0.90	ND	1.01	ND ND		ND ND	1.01	NR NB	
MW 16	9/28/2009***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.97	ND ND		ND		ND	1.00	ND	1.12	ND ND		ND	1.12	NR NB	
MW-16	4/6/1999 12/15/2003	8270 8270	ND ND	10	ND ND	10	ND ND	10 5	ND ND	10 5	ND ND		ND ND		ND ND	10 5	ND ND	10	ND ND		ND ND	10	NR NB	
(AOC #4)	4/6/2006	8270 8270	ND ND	5 0.5	ND ND	5 1	ND ND	3 1	ND ND	5 1	ND ND		ND ND		ND ND	0.1	ND ND	5 1	ND ND		ND ND	5	NR NR	
	1/25/2007***	8270 8270	ND ND	0.3 5	ND ND	5	ND ND	5	ND ND	5	ND ND		ND ND		ND ND	0.1 5	ND ND	5	ND ND		ND ND	5	NR NR	
	12/4/2007***	8270	ND ND	5	ND ND	5	ND ND	5	ND ND	5	ND ND		ND ND		ND ND	5	ND ND	5	ND ND		ND ND	5	NR NR	
	4/16/2008***	8270 8270	ND ND	5 5	ND ND	5	ND ND	5	ND ND	5 5	ND ND		ND ND		ND ND	5 5	ND ND	5	ND ND		ND ND	5	NR NR	
	9/11/2008***	Sample contai		3		3		3		3	ND ND		ND ND			3		3	ND ND			3	INK	
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND ND		ND ND		ND	0.90	ND	1.01	ND ND		ND	1.01	NR	
	9/28/2009***	8270C	ND ND	0.86	ND ND	0.91	ND ND	0.82	ND ND	0.87	ND ND		ND ND		ND ND	0.90	ND ND	1.01	ND ND		ND ND	1.01	NR NR	
<u> </u>	7,20,2007	02700	ND	0.00	1110	0.71	1110	0.02	יווט	0.07	ND		מוז		ND	0.70	HD	1.01	I IID		IND	1.01	1111	

Revised: 6/29/2022 Page 2 of 8

Sample	Sample	Analytical	Acenaphthe		Anthracene	e	Benzo (a)		Benzyl		4-Chloroan		Chrysene		3,3-Dichloro		2,4-Dichloro	phenol	Di-n-butyl		Diethyl	
Identification	Date	Method		SQL		SQL	anthracene	SQL	alcohol	SQL		SQL		SQL	benzidine	SQL		SQL	phthalate	SQL	phthalate	SQL
MW-17	4/6/1999	8270	ND	10	ND	10	ND	10	ND		ND		ND	10	ND		ND	10	ND	10		
(AOC #4)	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5		
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5		
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5	ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5	ND	5
	9/11/2008***	Sample conta	iner broken in	transit to	laboratory																	
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
MW-19	1/24/2007***	Well was not	sampled due t	o the pres	sence of LNA	APL																
(AOC #4)	12/7/2007***	Well was not	sampled due t	o the pres	sence of LNA	APL																
	4/16/2008***	Well was not	sampled due t	o the pres	sence of LNA	APL																
	9/11/2008***	Well was not	sampled due t	o the pres	sence of LNA	APL																
	3/20/2009***	Well was not	sampled due t	o the pres	sence of LNA	APL																
	9/29/2009***	Well was not	sampled due t			APL																
	3/24/2010***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	9/16/2010***		sampled due t			of LNAF	PL.															
	3/23/2011***	8270C	ND			0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	76.6	B 0.97	ND	1.07
	9/21/2011***		sampled due t																			
	3/27/2013***		sampled due t																			
	9/17/2013***		sampled due t																			
	9/17/2014***		sampled due t																			
	4/21/2015 ***	8270D		0.96		1.10		1.20	ND	0.51	ND	0.52	ND	1.25	ND	1.66	ND	0.90	1.49	J 1.35	ND	1.25
	4/20/2016***		sampled due t																			
	4/10/2017***		sampled due t																			
	4/23/2018***		sampled due t																			
	5/7/2019***		sampled due t																			
	5/22/2020***		sampled due t																			
	3/2/2021***		sampled due t									40.00				40.00		40.00		40.00		40.00
	5/11/2022***	8270E	ND	5.00	ND	5.00	ND	5.00	NR		ND	10.00	ND	5.00	ND	10.00	ND	10.00	ND	10.00	ND	10.00
MW-20	4/6/2006	8270	ND	0.3	ND	0.2	ND	0.05	ND		ND		ND	0.2	ND		ND	1	ND			
(AOC #4)	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND			_
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND		ND	5
	9/11/2008***	Well was no		1.00	NTD	0.04	NID	1.00	NID		NID		MD	0.05	NE		NTD.	0.00	NE	0.05	ND	1.07
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	1.17	1.07
	3/24/2010***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	3/23/2011***	8270C	ND ND	1.02	ND	0.84	ND	1.03	ND	0.52	ND	0.53	ND ND	0.95	ND	0.76	ND ND	0.98	75.4	B 0.97	ND ND	1.07
	9/21/2011*** 4/2/2012***	8270C 8270C	ND ND	1.13 1.02	ND ND	0.93 0.84	ND ND	1.14	ND ND	0.53 0.48	ND	0.52 0.47	ND ND	1.06	ND ND	0.76 0.68	ND ND	1.09	ND ND	1.08 0.97	ND ND	1.19 1.07
		8270C 8270C	ND ND		ND ND		ND ND	1.03	ND ND		ND ND		ND ND	0.95	ND ND		ND ND	0.98	ND ND	0.97		
	9/18/2012*** 3/27/2013***	8270C 8270C	ND ND	1.02 0.77	ND ND	0.84 0.88	ND ND	1.03	ND ND	0.48 0.41	ND ND	0.47 0.42	ND ND	0.95	ND ND	0.68 1.33	ND ND	0.98 0.72	ND ND	1.08	ND ND	1.07 1.00
	9/17/2013***	8270C 8270D	ND ND	0.77	ND ND	0.88	ND ND	0.96	ND ND		ND ND	0.42	ND ND	1.00	ND ND	1.33	ND ND	0.72	ND ND			
	9/1//2013*** 3/11/2014***	8270D 8270C	ND ND	0.77	ND ND	0.88	ND ND	0.96 0.96	ND ND	0.41	ND ND	0.42	ND ND	1.00 1.00	ND ND	1.33	ND ND	0.72	ND ND	1.08 1.08	ND ND	1.00 1.00
	4/20/2016***		sampled due t				ND	0.90	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	מא	1.08	מא	1.00
	4/20/2016****	8270D	ND ND	0.77	ged road box	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	9.06	B 1.08	ND	1.00
	4/10/2017*** 4/23/2018***	8270D 8270D	ND ND	5.0	ND ND	5.0	ND ND	5.0	ND NR	0.41	ND ND	10	ND ND	5.0	ND ND	1.55	ND ND	10	9.06 ND	B 1.08	ND ND	1.00
	5/7/2019***	8270D 8270D	ND ND	5.1	ND ND	5.1	ND ND	5.1	NR NR		ND ND	10	ND ND	5.1	ND ND	10	ND ND	10	ND ND	10	ND ND	10
	5/1/2019*** 5/21/2020***	8270D 8270D	ND ND	5.1	ND ND	5.1	ND ND	5.1	NR NR		ND ND	10 10	ND ND	5.1	ND ND	10 10	ND ND	10	ND ND	10 10	ND ND	10 10
	3/3/2021***	8270D 8270D-E	ND ND	4.9	ND ND	5.1 4.9	ND ND	5.1 4.9	NR NR		ND ND	9.8	ND ND	5.1 4.9	ND ND	9.8	ND ND	9.8	ND ND	9.8	ND ND	9.8
	5/12/2022***	8270D-E 8270E	ND ND	5.4	ND ND	4.9 5.4	ND ND	4.9 5.4	NR NR		ND ND	9.8 11.0	ND ND	5.4	ND ND	9.8	ND ND	9.8 11.0	ND ND	9.8 11.0	ND ND	9.8 11.0
	3/14/2022	02/UE	עא	3.4	MD	3.4	ND	3.4	INK		ND	11.0	ND	3.4	ND	11.0	ND	11.0	ND	11.0	ND	11.0

Revised: 6/29/2022 Page 3 of 8

Sample	Sample	Analytical	Fluoranther	ie	Fluorene		2-Methyl		Naphthalei	ne	3-N	Nitroaniline		4-Nitroaniline		Phenanthre	ene	Pyrene		Pyridine		bis (2-Eth	vlhexvl)	1,4 - Dioxane	
Identification	Date	Method	- 100101101	SOL	1 Idoresie		naphthalene	SOL	мришис	so	-		SOL		SQL		SQL	1 Jiene	SOL	1 Jiidiile	SOL	phthalate		1,1 210.11.10	SQL
MW-17	4/6/1999	8270	ND	10	ND	10	ND	10	ND	10		ND	_	ND		ND	10	ND	10	ND		ND	10	NR	
(AOC #4)	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5		ND		ND		ND	5	ND	5	ND		ND	5	NR	
(AOC #4)	1/25/2007***	8270	ND	5	ND	5	ND	5	ND	5		ND		ND		ND	5	ND	5	ND		ND	5	NR	
	12/4/2007***	8270 8270	ND	5	ND ND	5	ND	5	ND	5		ND		ND ND		ND	5	ND	5	ND		ND ND	5	NR NR	
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5		ND		ND		ND	5	ND	5	ND		ND	5	NR	
	9/11/2008***	Sample contain		3	ND	3	ND	3	ND	3	'	ND		ND		ND	3	ND	3	ND		ND	3	INK	
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.8	7	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01	NR	
	9/28/2009***	8270C	ND	0.86	ND ND	0.81	ND	0.82	ND	0.8		ND		ND ND		ND ND	0.90	ND	1.01	ND ND		ND ND	1.01	NR	
MW-19	1/24/2007***		ND	0.80	ND	0.61	ND	0.62	ND	0.8	57	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01	INK	
(AOC #4)	12/7/2007***	Well was not s																							
(AOC #4)	4/16/2008***	Well was not s																							
	9/11/2008***																								
	3/20/2009***																								
	9/29/2009***	Well was not s		0.00	NID	0.01	NID	0.02	NID	0.0	.7	NID		NID		NID	0.00	NID	1.01	NID		NID	1.44	NID	
	3/24/2010***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.8	5 /	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
	9/16/2010***	Well was not s	NIP	0.00	NID	0.01	£ 22	D 0.00	4.00	D 00	.7	NID		NID		ND	0.00	NIP	1.01	NID			D 144	NID	
	3/23/2011***	8270C	ND	0.86	ND	0.91	5.22	B 0.82	4.09	B 0.8	5 /	ND		ND		ND	0.90	ND	1.01	ND		5.75	B 1.44	NR	
	9/21/2011***																								
	3/27/2013***	Well was not s																							
	9/17/2013***	Well was not s																							
	9/17/2014***	Well was not s				4.00								1770						175			4.50	1770	
	4/21/2015 ***		ND	1.20	ND	1.02	ND	0.93	ND	0.9	98	ND	0.43	ND	0.65	ND	1.19	ND	1.06	ND	0.46	ND	1.58	NR	
	4/20/2016***																								
	4/10/2017***	Well was not s																							
	4/23/2018***																								
	5/7/2019***	Well was not s																							
	5/22/2020***	Well was not s																							
	3/2/2021***	Well was not s	NID	5.00	NID	5.00	NID	5.00	NID	5.0	00	NID	10.00	NID	10.00	NID	5.00	NID	5.00	NID	5.00	NID	10.00	NID	
2.00	5/11/2022***	8270E	ND	5.00	ND	5.00	ND	5.00	ND	5.0			10.00	ND	10.00		5.00	ND	5.00	ND	5.00	ND	10.00	NR	
MW-20	4/6/2006	8270	ND	0.50	ND	1	ND	1	ND	1		ND		ND		ND	0.1	ND	1	ND		ND		NR	
(AOC #4)	1/25/2007***	8270	ND	5	ND	5	ND	5	ND	5		ND		ND		ND	5	ND	5	ND		ND		NR	
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	'	ND		ND		ND	5	ND	5	ND		ND		NR	
	9/11/2008***	Well was not	NTD	0.06	1770	0.01	MD	0.02	NID	0.0		ND		NTD		ND	0.00	NID	1.01	N.T.		NID	1.44	NTD	
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.8		ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.8		ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
	3/24/2010***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.8		ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
1	3/23/2011***	8270C	ND	0.86	ND	0.91	5.54	B 0.82	4.94	B 0.8		ND	0.67	ND	1.10	ND	0.90	ND	1.01	ND	0.41	5.61	B 1.44	NR	
	9/21/2011***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.9			0.67	ND	1.19	ND	1.00	ND	1.12	ND	0.41	ND	1.60	NR	
	4/2/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.8			0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44	NR	
	9/18/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.8			0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44	NR	
	3/27/2013***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.7			0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
1	9/17/2013***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.7			0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
1	3/11/2014***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.7	/8	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
1	4/20/2016***					0.05								1770					0.0-					1770	
1	4/10/2017***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.7			0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
	4/23/2018***	8270D	ND	5.0	ND	5.0	ND	5.0	ND	5.0		ND	5.0	ND	10	ND	5.0	ND	5.0	ND	5.0	ND	10	NR	
	5/7/2019***	8270D	ND	5.1	ND	5.1	ND	5.1	ND	5.		ND	10	ND	10	ND	5.1	ND	5.1	ND	5.1	ND	10	NR	
	5/21/2020***	8270D	ND	5.1	ND	5.1	ND	5.1	ND	5.		ND	10	ND	10	ND	5.1	ND	5.1	ND	5.1	ND	10	NR	
	3/3/2021***	8270D-E	ND	4.9	ND	4.9	ND	4.9	ND	4.9		ND	9.8	ND	9.8	ND	4.9	ND	4.9	ND	4.9	ND	9.8	NR	
	5/12/2022***	8270E	ND	5.4	ND	5.4	ND	5.4	ND	5.4	4	ND	11.0	ND	11.0	ND	5.4	ND	5.4	ND	5.4	ND	11.0	NR	

Sample	Sample	Analytical	Acenaphthe	ne	Anthracene		Benzo (a)		Benzyl		4-Chloroan	iline	Chrysene		3,3-Dichloro		2,4-Dichloro	phenol	Di-n-buty]	Diethyl	
Identification	Date	Method		SQL		SQL	anthracene	SQL	alcohol	SQL		SQL	-	SQL	benzidine	SQL		SQL	phthalate	SQL	phthalate	SQL
MW-21	4/6/1999	8270	ND	10	ND	10	ND	10	ND		ND		ND	10	ND		ND	10	ND			
(ACO #4)	4/6/2006	8270	ND	0.29	ND	0.19	ND	0	ND		ND		ND	0	ND		ND	1	ND			
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND			
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND		ND	5
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND		ND	5
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.1	ND		ND		0.03	0.02	ND		NA		ND		NS	
	3/30/2009***	8270	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.02
	3/24/2010***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.02
	3/23/2011***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	70.1	B 0.97	ND	1.07
Note 4	9/21/2011***	8270C	ND	1.13	ND	0.93	ND	1.14	5.31	0.53	21.80	0.52	ND	1.06	2.18	0.76	ND	1.09	ND	1.08	ND	1.19
	4/2/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68	ND	0.98	ND	0.97	ND	1.07
	9/18/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68	ND	0.98	ND	0.97	ND	1.07
	3/27/2013***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	9/17/2013***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	3/11/2014***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	9/17/2014***	8270D	ND	0.86	ND	0.98	ND	0.91	ND	0.46	ND	0.47	ND	1.11	ND	1.48	ND	1.79	ND	1.20	ND	1.11
	4/21/2015***	8270D	ND	0.96	ND	1.10	ND	1.20	ND	0.51	ND	0.52	ND	1.25	ND	1.66	ND	0.90	ND	1.35	ND	1.25
	4/20/2016***	8270D	ND	3.85	ND	4.40	ND	4.80	ND	2.05	ND	2.10	ND	5.00	ND	6.65	ND	3.65	ND	5.40	ND	5.00
	4/10/2017***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	8.42	B 1.08	ND	1.00
	4/23/2018***	8270D	ND	5.1	ND	5.1	ND	5.1	NR		ND	10	ND	5.1	ND	10	ND	10	ND	10	ND	10
	5/7/2019***	8270D	ND	5.0	ND	5.0	ND	5.0	NR		ND	10	ND	5.0	ND	10	ND	10	ND	10	ND	10
	5/21/2020***	8270D	ND	5.0	ND	5.0	ND	5.0	NR		ND	10	ND	5.0	ND	10	ND	10	ND	10	ND	10
	3/2/2021***	8270D-E	ND	4.9	ND	4.9	ND	4.9	NR		ND	9.8	ND	4.9	ND	9.8	ND	9.8	ND	9.8	ND	9.8
	5/11/2022***	8270E	ND	5.0	ND	5.0	ND	5.0	NR		ND	10.0	ND	5.0	ND	10.0	ND	10.0	ND	10.0	ND	10.0

Revised: 6/29/2022 Page 5 of 8

Sample	Sample	Analytical	Fluoranthene	2	Fluorene		2-Methyl		Naphthalen	ie	3-	-Nitroaniline		4-Nitroaniline		Phenanthre	ne	Pyrene		Pyridine		bis (2-Ethy	lhexyl)	1,4 - Dioxane	
Identification	Date	Method		SQL		SQL	naphthalene	SQL	-	SQ	QL.		SQL		SQL		SQL	Ť	SQL	·	SQL	phthalate	SQL	-	SQL
MW-21	4/6/1999	8270	ND	10	ND	10	ND	10	ND	10	0	ND		ND		ND	10	ND	10	ND		ND		NR	
(ACO #4)	4/6/2006	8270	ND	0	ND	0.95	ND	1	ND	1	1	ND		ND		ND	0	ND	1	ND		ND		NR	
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND	5	5	ND		ND		ND	5	ND	5	ND		ND		NR	
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	5	ND		ND		ND	5	ND	5	ND		ND		NR	
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	5	ND		ND		ND	5	ND	5	ND		ND		NR	
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.	.5	ND		ND		ND	0.5	ND	0.5	ND		ND		Nr	
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.8	87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.8	87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
	3/24/2010***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.8	87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
	3/23/2011***	8270C	ND	0.86	ND	0.91	5.00	B 0.82	3.41	B 0.8	87	ND		ND		ND	0.90	ND	1.01	ND		5.57	B 1.44	NR	
Note 4	9/21/2011***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.9	97	15.10	0.67	2.65	1.19	ND	1.00	ND	1.12	8.47	0.41	2.58	1.60	NR	
	4/2/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.8	87	ND	0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44	NR	
	9/18/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.8	87	ND	0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44	NR	
	3/27/2013***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.7	78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
	9/17/2013***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.7	78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
	3/11/2014***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.7		ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
	9/17/2014***	8270D	ND	1.07	ND	0.91	ND	0.82	ND	0.8	87	ND	0.54	ND	0.58	ND	1.06	ND	0.94	ND	0.41	ND	1.40	NR	
	4/21/2015***	8270D	ND	1.20	ND	1.02	ND	0.93	ND	0.9		ND	0.43	ND	0.65	ND	1.19	ND	1.06	ND	0.46	ND	1.58	NR	
	4/20/2016***	8270D	ND	5.80	ND	4.10	ND	3.70	ND	3.9		ND	1.70	ND	2.60	ND	4.75	ND	4.25	ND	1.85	ND	6.30	NR	
	4/10/2017***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.7		ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
	4/23/2018***	8270D	ND	5.1	ND	5.1	ND	5.1	ND	5.		ND	5.1	ND	10	ND	5.1	ND	5.1	ND	5.1	ND	10	NR	
	5/7/2019***	8270D	ND	5.0	ND	5.0	ND	5.0	ND	5.		ND	5.0	ND	10	ND	5.0	ND	5.0	ND	5.0	ND	10	NR	
	5/21/2020***	8270D	ND	5.0	ND	5.0	ND	5.0	ND	5.		ND	5.0	ND	10	ND	5.0	ND	5.0	ND	5.0	ND	10	NR	
	3/2/2021***	8270D-E	ND	4.9	ND	4.9	ND	4.9	ND	4.		ND	9.8	ND	9.8	ND	4.9	ND	4.9	ND	4.9	ND	9.8	NR NB	
	5/11/2022***	8270E	ND	5.0	ND	5.0	ND	5.0	ND	5.	.0	ND	10.0	ND	10.0	ND	5.0	ND	5.0	ND	5.0	ND	10.0	NR	

Revised: 6/29/2022 Page 6 of 8

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL DATA: SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs)

248 Wyandanch Avenue, Wyandanch, New York (unit, parts per billion [ppb] µg/L)

g 1	G 1		1.1				D ()		ln 1	1	4.60.1	•••	CI		2.2 D. 1.1		0 4 D: 11		D: 1 (1		D: 4.1	
Sample Identification	Sample Date	Analytical Method	Acenaphthe	ene SQL	Anthracene	SOL	Benzo (a) anthracene	SQL	Benzyl alcohol	SQL	4-Chloroan	iline SQL	Chrysene	SQL	3,3-Dichloro benzidine	SQL	2,4-Dichloro	phenol SQL	Di-n-butyl phthalate	SOL	Diethyl phthalate	SQL
										SQL		JQL				SQL			-	SQL	phinalate	SQL
MW-23	4/6/1999	8270	ND	10	ND	10	ND	10	ND		ND		ND	10	ND		ND	10	ND			
(AOC #4)	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND			
	4/6/2006	8270	ND	0.3	ND	0.2	ND	0.5	ND		ND		ND	0.2	ND		ND	1	ND			
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND			_
	12/4/2007***	8270	ND ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND		ND	5
	4/16/2008***	8270 8270M(SIM)	ND ND	5	ND ND	5	ND	5	ND ND		ND ND		ND	5	ND ND		ND NA	5	ND ND		ND NC	5
	9/11/2008*** 3/30/2009***	8270M(SIM)	ND ND	0.5	ND	0.5	ND	0.1	ND		ND		0.02	0.02	ND		NA ND	0.00	ND	0.07	NS	1.07
		8270	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	ND	1.07
	9/28/2009***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	1.23	1.07
	3/24/2010***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.97	1.23	1.07
	3/23/2011***	8270C	ND	1.02	ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	80.3	B 0.97	ND	1.07
	9/21/2011***	8270C	ND	1.13	ND	0.93	ND	1.14	ND	0.53	ND	0.52	ND	1.06	ND	0.76	ND	1.09	ND	1.08	ND	1.19
	4/2/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68	ND	0.98	ND	0.97	ND	1.07
	9/18/2012***	8270C	ND	1.02	ND	0.84	ND	1.03	ND	0.48	ND	0.47	ND	0.95	ND	0.68	ND	0.98	ND	0.97	ND	1.07
	3/27/2013***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	9/17/2013***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	3/11/2014***	8270C	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	ND	1.08	ND	1.00
	9/17/2014***	8270D	ND	1.10	ND	1.26	ND	1.37	ND	0.59	ND	0.60	ND	1.43	ND	1.90	ND	1.03	ND	1.54	ND	1.43
	4/21/2015***	8270D	ND	0.96	ND	1.10	ND	1.02	ND	0.51	ND	0.52	ND	1.25	ND	1.66	ND	0.90	2.74	1.35	ND	1.25
	4/20/2016***	8270D	ND	3.85	ND	4.40	ND	4.80	ND	2.05	ND	2.10	ND	5.00	ND	6.65	ND	3.65	ND	5.40	ND	5.00
	4/10/2017***	8270D	ND	0.77	ND	0.88	ND	0.96	ND	0.41	ND	0.42	ND	1.00	ND	1.33	ND	0.72	10.07	B 1.08	ND	1.00
	4/23/2018***	8270D	ND	5.1	ND	5.1	ND	5.1	NR		ND	10	ND	5.1	ND	10	ND	10	ND	10	ND	10
	5/6/2019***	8270D	ND	5.0	ND	5.0	ND	5.0	NR		ND	10	ND	5.0	ND	10	ND	10	ND	10	ND	10
	5/21/2020***	8270D	ND	5.0	ND	5.0	ND	5.0	NR		ND	10	ND	5.0	ND	10	ND	10	ND	10	ND	10
	3/2/2021*** 5/11/2022***	8270D-E 8270E	ND ND	4.9 5.0	ND ND	4.9 5.0	ND ND	4.9 5.0	NR NR		ND ND	9.7 10.0	ND ND	4.9	ND ND	9.7 10.0	ND ND	9.7 10.0	ND ND	9.7 10.0	ND ND	9.7 10.0
MW 26D					1							10.0		5.0		10.0					ND	10.0
MW-26R	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5		
(AOC #1)	4/6/2006	8270	ND	0.3	ND	0.2	ND	0.05	ND		ND		ND	0.2	ND		ND	1	ND	0.2		
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5		
	12/4/2007***	8270	ND	10	ND	10	ND	10	ND		ND		ND	10	ND		ND	10	ND	10	ND	10
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5	ND	5
	9/10/2008***	8270M(SIM)	ND ND	0.5	ND	0.5	ND	0.1	ND		ND		ND	0.02	ND		NA	0.00	ND	0.02	NS	1.07
	3/30/2009*** 9/28/2009***	8270 8270C	ND ND	1.02	ND ND	0.84	ND ND	1.03	ND ND		ND ND		ND ND	0.95	ND ND		ND ND	0.98 1.09	ND ND	0.95 1.06	ND ND	1.07 1.19
OFIC 5 ⁺								1.14						1.06							ND	1.19
GEC-5	12/15/2003	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5		
(AOC #4)	4/6/2006	8270	ND ND	0.3	ND ND	0.2	ND	0.05	ND		ND ND		ND ND	0.2	ND		ND ND	1	ND ND	0.2	ND	
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND		ND		ND	5	ND		ND	5	ND	5	ND	5
	9/11/2008*** 3/30/2009***	Sample contai 8270	ner broken in ND	transit to	laboratory ND	0.84	ND	1.03	ND		ND		ND	0.95	ND		ND	0.98	ND	0.95	ND	1.07
	9/28/2009***	8270C	ND ND	1.02	ND ND	0.84	ND ND	1.03	ND ND		ND ND		ND ND	1.06	ND ND		ND ND	1.09	ND ND	1.06	ND ND	1.19
NY Water Quali	,, = 0, = 0 0 ,	02700	20	1.13	NV	0.73	NV	1.14	NV		5		NV	1.00	5		0.3	1.09	50	1.00	NV	1.17

Notes:
1) Ambient Water Quality Standards and Guidance Values provided in the New York
State and Technical Operational Guidance Series (TOGS 1.1.1). For Class GA

Groundwater, developed in support of 6 NYCRR Part 700-705 (current to Janaury 2018).

ortoindwater, developed in supplor of a NT-CNR Part 700-703 (current to salatary 2018).

https://govt.westlaw.com/nycrr/Document/14ed90418cd1711dda432a117e6e0f345?viewType=FullText&originationContext=documenttoc&transitionType=CategoryPageItem&contextData=(sc.Default)

2) Analytical data for method blank is grouped with appropriate laboratory sample batch. Dates provided for method blanks represent the data of laboratory analysis.

3) Phenol was detected in sample MW-20 on 12/11/02 but not a significant amount,

- results is less than RL but greater than or equal to MDL 4) Detections are likely a result of using spray paint to label wells during sampling on 9/21/11

SQL= Sample Quantitation Limit

GEC-5⁺ = Replaces MW-7 in groundwater sampling plan. MW-7 previously paved over.

Revised: 6/29/2022 Page 7 of 8

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL DATA: SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs)

248 Wyandanch Avenue, Wyandanch, New York (unit, parts per billion [ppb] µg/L)

Sample	Sample	Analytical	Fluoranthe	mo	Fluorene		2-Methyl		Naphthalene		3-Nitroaniline		4-Nitroaniline		Phenanthre	ono	Pvrene	l ₁	Pyridine		bis (2-Ethylh	ovvl)	1.4 - Dioxane	
Sample Identification	Sample Date	Anaiyucai Method	Fluorantne	ene SOL	riuorene	SOL	2-Metnyl naphthalene	SOL	Napntnaiene	SQL	3-Nitroaniine	SOL	4-Nitroaniine	SOL	Pnenantnre	ene SQL	Pyrene	SOL	Pyriaine	SOL	phthalate	iexyi) SOL	1,4 - Dioxane	SQL
			NID	_ `	NID			·	MD		NID.	bQL	MD	bQL	MD		NID	`	MD	bQL	£	bQL	MD	bQL
MW-23	4/6/1999	8270	ND	10	ND	10	ND	10	ND	10	ND		ND		ND	10	ND	10	ND		ND		NR	
(AOC #4)	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND		NR	
ļ	4/6/2006	8270	ND	0.5	ND	1	ND	1	ND	1	ND		ND		ND	0.1	ND	1	ND		ND		NR	
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND		NR	
	12/4/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND		NR	
	4/16/2008***	8270 8270M(SIM)	ND	5	ND	5	ND ND	5	ND ND	5 0.5	ND ND		ND		ND ND	5	ND	5	ND		ND		NR ND	
	9/11/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND		ND	0.5	ND	0.5	ND		ND	1.44	NR	
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
	9/28/2009***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
	3/24/2010***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.44	NR	
	3/23/2011***	8270C	ND	0.86	ND	0.91	5.04	B 0.82	3.65	B 0.87	ND		ND		ND	0.90	ND	1.01	ND		5.76	B 1.44	NR	
	9/21/2011***	8270C	ND	0.96	ND	1.01	0.96	J 0.91	1.37	BJ 0.97	ND	0.67	ND	1.19	ND	1.00	ND	1.12	ND	0.41	2.19	J 1.60	NR	
	4/2/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND	0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44	NR	
	9/18/2012***	8270C	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND	0.60	ND	1.07	ND	0.90	ND	1.01	ND	0.37	ND	1.44	NR	
	3/27/2013***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
	9/17/2013***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
	3/11/2014***	8270C	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
	9/17/2014***	8270D	ND	1.37	ND	1.17	ND	1.06	ND	1.11	ND	0.49	ND	0.74	ND	1.36	ND	1.21	ND	0.53	ND	1.80	NR	
	4/21/2015***	8270D	ND	1.20	ND	1.02	ND	0.93	ND	0.98	ND	0.43	ND	0.43	ND	1.19	ND	1.06	ND	0.46	ND	1.58	NR	
	4/20/2016***	8270D	ND	5.80	ND	4.10	ND	3.70	ND	3.90	ND	1.70	ND	2.60	ND	4.75	ND	4.25	ND	1.85	ND	6.30	NR	
	4/10/2017***	8270D	ND	0.96	ND	0.82	ND	0.74	ND	0.78	ND	0.34	ND	0.52	ND	0.95	ND	0.85	ND	0.37	ND	1.26	NR	
	4/23/2018***	8270D	ND	5.1	ND	5.1	ND	5.1	ND	5.1	ND	5.1	ND	10	ND	5.1	ND	5.1	ND	5.1	ND	10	NR	
	5/6/2019***	8270D	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	10	ND	5.0	ND	5.0	ND	5.0	ND	10	NR	
	5/21/2020***	8270D	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	10	ND	5.0	ND	5.0	ND	5.0	ND	10	NR	
	3/2/2021***	8270D-E	ND	4.9	ND	4.9	ND	4.9	ND	4.9	ND	4.9	ND	9.7	ND	4.9	ND	4.9	ND	4.9	ND	9.7	NR	
	5/11/2022***	8270E	ND	5.0	ND	5.0	ND	5.0	ND	5.0	ND	10.0	ND	10.0	ND	5.0	ND	5.0	ND	5.0	ND	10.0	NR	
MW-26R	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
(AOC #1)	4/6/2006	8270	ND	0.5	ND	1	ND	1	ND	1	ND		ND		ND	0.1	ND	1	ND		ND	1	NR	
	1/25/2007***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
	12/4/2007***	8270	ND	10	ND	10	ND	10	ND	10	ND		ND		ND	10	ND	10	ND		ND	10	NR	
	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
	9/10/2008***	8270M(SIM)	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND		ND		ND	0.5	ND	0.5	ND		ND	0.5	NR	
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01	NR	
	9/28/2009***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.97	ND		ND		ND	1.00	ND	1.12	ND		ND	1.12	NR	
GEC-5 ⁺	12/15/2003	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
(AOC #4)	4/6/2006	8270	ND	0.5	ND	1	ND	1	ND	1	ND		ND		ND	0.1	ND	1	ND		ND	1	NR	
(1.00)	4/16/2008***	8270	ND	5	ND	5	ND	5	ND	5	ND		ND		ND	5	ND	5	ND		ND	5	NR	
	9/11/2008***	Sample contai		-		-	1	-			1					-		-				-	1	
	3/30/2009***	8270	ND	0.86	ND	0.91	ND	0.82	ND	0.87	ND		ND		ND	0.90	ND	1.01	ND		ND	1.01	NR	
	9/28/2009***	8270C	ND	0.96	ND	1.01	ND	0.91	ND	0.97	ND		ND		ND	1.00	ND	1.12	ND		ND	1.12	NR	
NY Water Oualit	v Standards		NV		NV		NV		10		5		5		NV		NV		NV		5		NV	

ND= Not Detected above SQL

NV= No standard or guidance value available as of January 2018.

J= Compound analyzed for and determined to be present in sample. Mass spectrum of compound meets identification criteria for method. Concentration listed as estimated value, less than

contract required detection limit but greater than instrument detection limit.

**** = Samples collected after completion of remedial action.

NR= Not Reported

B= The method blank associated with these samples contained compunds detected at an unknown concentration

8270= USEPA Method 8270

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL DATA: TOTAL METALS

248 Wyandanch Avenue Wyandanch, New York

(unit, parts per million [ppm], mg/L)

Sample	Sample	Analytical	Chromium		Copper		Nickel	207	Zinc	go.
Identification	Date	Method		SQL		SQL		SQL		SQL
MW-2	5/23/1994	NG	9.12		3.16		4.49		0.747	
(AOC #2/5)	1/27/1995	NG	4		3.8		5.7		0.70	
	11/18/1998	3010/6010	NS		0.231		10.6		0.263	*
	11/15/2000	NG	0.2560		NA		NA		NA	
	12/11/2002	6010/7470/7196	0.389		0.292	0.010	1.4	0.010	0.048	B 0.05
	12/15/2003	200.7/6010	ND		0.0197	0.0005	NA		0.015	0.01
	4/5/2006	6010	0.017	0.005	0.0623	0.005	NA		0.042	0.01
	4/5/2006	6010	0.010	0.005	NA		NA		NA	
	1/24/2007***	6010B	ND	0.010	0.088	0.025	0.44	0.04	ND	0.2
	12/4/2007***	200.7	ND	0.05	ND	0.05	0.30	0.05	ND	0.05
	4/16/2008***	200.7	ND	0.05	ND	0.05	0.30	0.05	ND	0.05
	9/10/2008***	200.7	ND	0.001	0.024	0.001	0.20	0.001	0.119	0.002
	3/30/2009***	6010/200.7	ND	0.0016	ND	0.0029	0.15	0.0005	0.040	0.0044
	9/28/2009***	6010/200.7	ND	0.0016	ND	0.0026	0.14	0.0005	0.0044	0.0044
	3/24/2010***	6010/200.7	NA		NA		0.13	0.0017	NA	
	3/23/2011***	6010/200.7	NA		NA		0.29	0.0017	NA	
	9/21/2011***	6010/200.7	NA		NA		0.17	0.00072	NA	
	4/2/2012***	6010/200.7	NA NA		NA NA		0.17	0.00072	NA NA	
	9/18/2012***	6010/200.7	NA		NA		0.094	0.0014	NA	
	3/27/2013***	6010/200.7	NA		NA		0.26	0.0014	NA	
	9/17/2013***	6010C	NA		NA		0.28	0.0014	NA	
	3/11/2014***	6010B	NA		NA		0.36	0.0014	NA	
	9/17/2014***	6010C	NA		NA		0.23	0.0014	NA	
	4/21/2015***	6010C	NA		NA		0.17	0.0014	NA	
	4/20/2016***	6010C	NA		NA		0.27	0.0071	NA	
	4/10/2017***	6010C	NA		NA		0.22	0.0071	NA	
	4/23/2018***	6010C	NA		NA		0.35	0.010	NA	
	5/6/2019***	6010D	NA		NA		0.34	0.010	NA	
	5/21/2020***	6010D	NA		NA		0.26	0.010	NA	
	3/3/2021***	6020B	NA		NA		0.28	0.005	NA	
	5/11/2022***	6020B	NA		NA		0.26	0.005	NA	
MW-3	5/23/1994	NG	0.139		0.597		1.75		0.109	
(AOC #3)	1/27/1995	NG	0.320		4.5		3.5		0.68	
()	11/17/1998	3010/6010	NA		0.13		0.195		0.0492	*
	12/11/2002	6010/7470/7196	0.203		0.30	0.010	1.39	0.010	0.0956	0.05
	12/16/2003	200.7/6010	0.056		0.0837	0.0005	NA		0.071	0.01
	1/24/2007	6010B	ND	0.01	ND	0.0003	ND	0.04	ND	0.2
		00100	ND				.	0.04	ND	0.2
	12/4/2007*** 4/16/2008***				not sampled, d					
		200.7	0.05				on, to be replace		0.052	0.002
	9/10/2008***	200.7	0.05	0.001	0.094	0.001	0.225	0.001	0.053	0.002
	3/30/2009***	6010/200.7	ND	0.0016	0.0660	0.0029	0.13	0.0005	0.045	0.0044
	9/28/2009***	6010/200.7	0.013	0.0016	0.0710	0.0029	0.12	0.0005	0.030	0.0044
	3/24/2010***	6010/200.7	NA		NA		0.064	0.0017	NA	
	3/23/2011***	6010/200.7	NA		NA		0.074	0.00072	NA	
	9/21/2011***	6010/200.7	NA		NA		0.091	0.00072	NA	
	4/2/2012***	6010/200.7	NA		NA		0.11	0.0014	NA	
	9/18/2012	6010/200.7	NA		NA		0.065	0.0014	NA	
	3/27/2013***	6010/200.7	NA		NA		0.074	0.0014	NA	
	9/17/2013***	6010C	NA		NA		0.11	0.0014	NA	
	3/11/2014***\$	6010B	NA		NA		0.080	0.0014	NA	
	9/17/2014***	6010C	NA		NA		0.13	0.0014	NA	
	4/21/2015***	6010C	NA		NA		0.049	0.0014	NA	
	4/20/2016***	6010C	NA		NA		0.048	0.0071	NA	
	4/10/2017***	6010C	NA		NA		0.15	0.0071	NA	_
	4/23/2018***	6010C	NA NA		NA NA		0.15	0.0071	NA NA	
	5/6/2019***									
		6010D	NA		NA		0.078	0.010	NA	
	5/21/2020***	6010D	NA		NA		0.052	0.010	NA	
	3/3/2021***	6020B	NA		NA		0.036	0.005	NA	
	5/11/2021***	6020B 6020B oundwater Standard	0.05		0.2	Not sa	mpled well obs		NA 2.0	

Notes:

NS= Not Sampled

SQL= Sample Quantitation Limit

NA= Not Analyzed

ND= Not detected above SQL

NG = Analytical Method not provided by previous consultant

Methods = Standard USEPA Methods

*** = Sample collected after completion of remedial actions

- = Sample quantitation limits not provided or not available.
E= Detected concentration exceeds calibration curve range.
T= Analysis by EcoTest due to short holding time

*= Duplicate analysis not within control limit.

Bold= Exceeds Standard

GEC-5⁺ = Replaces MW-7 in groundwater sampling plan. MW-7 previously paved over.

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL DATA: TOTAL METALS

248 Wyandanch Avenue Wyandanch, New York (unit, parts per million [ppm], mg/L)

Sample	Sample	Analytical	Chromium		Copper		Nickel		Zinc	
Identification	Date	Method		SQL		SQL		SQL		SQL
MW-4 (AOC #3)	12/11/2002	6010/7470/7196	0.049		0.102	0.010	2.1	0.010	0.0561	0.05
	12/16/2003	200.7/6010	0.010		0.0769	0.0005	NA		0.151	0.01
	4/6/2006	6010	0.160	0.005	0.1040	0.005	NA NA		0.181 NA	0.01
	4/6/2006 1/24/2007	6010 6010B	0.150 0.19	0.005 0.01	NA 0.14	0.025	NA 2.2	0.04	0.3	0.2
	12/4/2007	200.7	0.19	0.01	0.14	0.023	1.65	0.04	0.26	0.2
	9/10/2008***	200.7	0.035	0.001	0.048	0.001	1.11	0.001	0.124	0.002
	3/30/2009***	6010/200.7	0.017	0.0016	ND	0.0029	0.62	0.0005	0.1300	0.0044
	9/28/2009***	6010/200.7	ND	0.0016	0.0410	0.0029	0.44	0.0005	0.0820	0.0044
	3/24/2010***	6010/200.7	NA		NA		0.50	0.0017	NA	
	3/23/2011***	6010/200.7	NA		NA		0.65	0.00072	NA	
	9/21/2011***	6010/200.7	NA		NA		0.92	0.00072	NA	
	4/2/2012***	6010/200.7	NA		NA		0.31	0.0014	NA	
	9/18/2013***	6010/200.7	NA		NA		0.41	0.0014	NA	
	3/27/2013***	6010/200.7	NA		NA		0.37	0.0014	NA	
	9/17/2013***	6010C	NA		NA		0.72	0.0014	NA	
	3/11/2014***	6010B	NA		NA		0.42	0.0014	NA	
	9/17/2014***	6010C	NA		NA		0.78	0.0014	NA	
	4/21/2015***	6010C	NA		NA		0.45	0.0014	NA	
	4/20/2016***	6010C	NA		NA		0.19	0.0071	NA	
	4/10/2017***	6010C	NA		NA		0.21	0.0071	NA	
	4/23/2018***	6010C	NA		NA		0.24	0.010	NA	
	5/6/2019***	6010D	NA		NA		0.41	0.010	NA	
	5/21/2020***	6010D	NA		NA		1.20	0.001	NA	
	3/3/2021***	6020B	NA		NA	** ·	1.20	0.050	NA	
MW-5R	5/11/2021***	6020B	MD		0.0410		mpled well ob		0.000	0.005
	12/16/2003 4/6/2006	200.7/6010 6010	ND 0.009	0.005	0.0419 0.1260	0.0005 0.005	NA NA		0.090 0.1020	0.005
(AOC #1)	4/6/2006	6010	0.009	0.005	0.1260 NA	0.003	NA NA		0.1020 NA	0.0100
	1/25/2007***	6010B	ND	0.003	1.4	0.025	0.14	0.04	ND ND	0.2
	12/4/2007***	200.7	ND ND	0.01	ND	0.023	0.14	0.04	0.21	0.2
	4/16/2008***	200.7	ND	0.05	ND	0.05	1.61	0.05	0.85	0.05
	9/10/2008***	200.7	0.0009	B 0.001	0.008	0.001	0.070	0.001	0.089	0.002
	3/30/2009***	6010/200.7	0.0170	0.0016	ND	0.0029	0.20	0.0005	0.1300	0.0044
	9/28/2009***	6010/200.7	ND	0.0016	ND	0.0029	0.16	0.0005	0.0700	0.0044
	3/24/2010***	6010/200.7	NA		NA		0.17	0.0017	NA	
	3/23/2011***	6010/200.7	NA		NA		1.18	0.00072	NA	
	9/21/2011***	6010/200.7	NA		NA		ND	0.00072	NA	
	4/2/2012***	6010/200.7	NA		NA		0.22	0.0014	NA	
	9/18/2012***	6010/200.7	NA		NA		0.20	0.0014	NA	
	3/27/2013***	6010/200.7	NA		NA		4.95	0.0014	NA	
	9/17/2013***	6010C	NA		NA		0.38	0.0014	NA	
	3/11/2014***	6010B	NA		NA		0.78	0.0014	NA	
	9/17/2014***	6010C	NA		NA		0.73	0.0014	NA	
	4/21/2015***	6010C	NA		NA		0.57	0.0014	NA	
	4/20/2016***	6010C	NA		NA		3.64	0.0014	NA	
	4/10/2017***	6010C	NA		NA		0.77	0.0014	NA	
	4/23/2018***	6010C	NA		NA		1.6	0.0100	NA	
	5/6/2019***	6010D	NA		NA		0.20	0.0100	NA	
	5/21/2020***	6010D	NA		NA		0.10	0.0100	NA	
	3/3/2021***	6020B			1		mpled well und			
Mari Co	5/11/2021***	6020B	3.775		0.00==		mpled well und		0.101	0.05
MW-6R	12/16/2003	200.7/6010	ND		0.0076	0.0005	NA		0.106	0.005
(AOC #1)	4/6/2006	6010	0.043	0.005	0.0329	0.005	NA		0.053	0.010
	4/6/2006	6010	0.023	0.005	NA ND		NA		NA	
	1/24/2007***	6010B	ND	0.01	ND	0.025	ND	0.04	ND	0.2
	12/4/2007***	200.7	ND	0.05	ND	0.05	ND	0.05	ND 0.05	0.05
	4/16/2008***	200.7	ND	0.05	ND 0.005	0.05	ND 0.014	0.05	0.05	0.05
	9/10/2008***	200.7	ND	0.001	0.005	0.001	0.014	0.001	0.018	0.002
	3/30/2009***	6010/200.7	0.0079	0.0016	ND	0.0029	0.032	0.0005	0.063	0.004
	9/28/2009***	6010/200.7	ND	0.0016	ND	0.0029	ND	0.0005	0.017	0.0044
NYSD	EC Class GA Gro	oundwater Standard	0.05		0.2		0.1		2.0	

 $\frac{Notes:}{NS=\ Not\ Sampled}$

SQL= Sample Quantitation Limit NA= Not Analyzed ND= Not detected above SQL

NG = Analytical Method not provided by previous consultant

Methods = Standard USEPA Methods

B= Analyte is found in the blanks as well as the sample.

*** = Sample collected after completion of remedial actions

- - = Sample quantitation limits not provided or not available.

E= Detected concentration exceeds calibration curve range.

T= Analysis by EcoTest due to short holding time

*= Duplicate analysis not within control limit.

Bold= Exceeds Standard

GEC-5⁺ = Replaces MW-7 in groundwater sampling plan. MW-7 previously paved over.

\$= In March 2014 these samples were field filtered with a 0.45μm filter prior to collection in error

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL DATA: TOTAL METALS

248 Wyandanch Avenue Wyandanch, New York (unit, parts per million [ppm], mg/L)

Sample	Sample	Analytical	Chromium		Copper		Nickel		Zinc	
Identification	Date	Method	Om omium	SQL	Сорры	SQL	11101101	SQL	23110	SQL
MW-10	1/24/2007***	6010B	ND	0.01	ND	0.025	ND	0.04	ND	0.2
(AOC #2/5)	4/16/2008***	200.7	ND	0.05	ND	0.05	ND	0.05	ND	0.05
	9/10/2008***	200.7	0.030	0.001	0.017	0.001	0.011	0.001	0.022	0.002
	3/30/2009***	6010/200.7	0.11	0.0016	ND	0.0029	0.12	0.0005	0.16	0.0044
	9/28/2009***	6010/200.7	ND	0.0016	0.037	0.0029	ND	0.0005	0.018	0.0044
	3/24/2010***	6010/200.7	0.008	0.0010	0.013	0.0031	0.0096	0.0017	NA	
	3/23/2011***	6010/200.7	ND	0.0016	ND	0.0029	0.017	0.00072	NA	
	9/26/2011***	6010/200.7	0.0062	0.0016	0.0091	0.0029	0.0046	0.00072	NA	
	4/2/2012***	6010/200.7	0.024	0.0012	0.021	0.0034	0.0088	0.0014	NA	
	9/18/2012***	6010/200.7	0.26	0.0012	0.49	0.0034	0.069	0.0014	NA	
	3/27/2013***	6010/200.7	0.018	0.0012	0.010	0.0034	0.012	0.0014	NA	
	9/17/2013***	6010C	0.0054	0.0012	0.0066	0.0034	0.0055	0.0014	NA	
	3/11/2014***	6010B	0.0023	0.0012	0.0077	0.0034	0.0065	0.0014	NA	
	9/17/2014***	6010C	ND	0.0012	0.025	0.0034	0.0020	0.0014	NA	
	4/21/2015***	6010C	0.012	0.0012	0.031	0.0034	0.0058	0.0014	NA	
	4/20/2016***	6010C	ND	0.0034	0.070	0.0031	0.019	0.0071	NA	
	4/10/2017***	6010C	0.0058	0.0034	ND	0.0031	0.011	0.0071	NA	
	4/23/2018***	6010C	ND	0.010	ND	0.010	ND	0.010	NA	
	5/6/2019***	6010D	ND	0.010	ND	0.010	ND	0.010	NA	
	5/21/2020***	6010D	ND	0.010	ND	0.010	ND	0.010	NA	
	3/2/2021***	6020B	0.0016	0.001	ND	0.001	ND	0.005	NA	
34337.11	5/12/2022***	6020B	ND	0.001	ND 0.22	0.001	ND 0.07	0.005	NA 0.22	
MW-11	7/6/1994	NG	0.08		0.22	D	0.07		0.23	* 0.017
(AOC #2/5)	11/17/1998	3010/6010	NS 0.015		0.0105	B	ND NA	0.0060	ND 0.014	* 0.017
	12/15/2003	200.7/6010		0.005	0.0071	0.00050	NA NA		0.014	0.005
	4/5/2006 4/5/2006	6010 6010	0.620 0.420	0.005	0.0592 NA	0.00500	NA NA		0.030 NA	0.010
	1/25/2007***	6010B	0.420	0.003	ND	0.025	ND	0.04	ND	0.2
	12/4/2007***	200.7	0.14	0.05	ND	0.025	ND	0.05	ND	0.05
	4/16/2008***	200.7	ND	0.05	ND	0.05	ND	0.05	ND	0.05
	9/10/2008***	200.7	0.032	0.001	0.011	0.001	0.0040	0.001	0.0090	0.002
	3/30/2009***	6010/200.7	0.044	0.0016	ND	0.0029	0.0380	0.0005	0.0560	0.0044
	9/28/2009***	6010/200.7	0.02	0.0016	ND	0.0029	ND	0.0005	ND	0.0044
MW-12	5/23/1994	NG	NS		NS		NS		NS	
(AOC #2/5)	7/6/1994	NG	ND		ND		ND		0.06	
	1/27/1995	NG	18.00		21		21		5.60	
	11/17/1998	3010/6010	NS		5.31		7.07		0.859	*
	12/15/2003	200.7/6010	0.007		0.5300	0.0005	NA		0.289	0.005
	4/5/2006	6010	0.047	0.005	0.0224	0.005	NA		0.059	0.010
	4/5/2006	6010	0.040	0.005	NA		NA		NA	
	1/25/2007***	6010B	ND	0.01	0.44	0.025	0.29	0.04	ND	0.2
	4/16/2008***	200.7	ND	0.05	0.13	0.05	0.09	0.05	ND	0.05
	9/10/2008***	200.7	ND	0.001	0.079	0.001	0.073	0.001	0.022	0.002
	3/30/2009***	6010/200.7	ND	0.002	0.20	0.003	0.24	0.0005	0.11	0.004
	9/28/2009***	6010/200.7	ND	0.0016	0.16	0.0029	0.085	0.0005	0.086	0.0044
	3/23/2011***	6010/200.7	0.014	0.0016	0.22	0.0029	0.20	0.00072	NA	
	9/21/2011***	6010/200.7	0.026	0.0016	0.43	0.0029	0.71	0.00072	NA NA	
	4/2/2012*** 9/18/2012***	6010/200.7	0.045	0.0012	0.83	0.0034	1.73	0.0014	NA NA	
		6010/200.7	0.013	0.0012	0.60	0.0034	0.42	0.0014	NA NA	
	3/27/2013*** 9/17/2013***	6010/200.7 6010C	0.023 0.0630	0.0012 0.0012	0.32 0.44	0.0034 0.0034	0.99 0.46	0.0014 0.0014	NA NA	
	3/11/2014***\$	6010E	0.0630	0.0012	0.44	0.0034	0.46	0.0014	NA NA	
	9/17/2014***	6010C	0.015	0.0033	0.087	0.0034	0.39	0.0014	NA NA	
	4/21/2015***	6010C	0.013	0.0012	0.40	0.0034	0.72	0.0014	NA NA	
	4/20/2016***	6010C	0.019	0.0012	0.50	0.0034	1.97	0.0014	NA	
	4/10/2017***	6010C	0.017	0.0034	0.24	0.0031	0.67	0.0071	NA	
	4/23/2018***	6010C	ND	0.0034	0.099	0.0031	0.40	0.0071	NA	
	5/6/2019***	6010D	0.013	0.010	0.860	0.010	0.072	0.010	NA	
	5/21/2020***	6010D	0.013	0.010	0.500	0.010	0.072	0.010	NA	
	3/2/2021***	6020B	0.007	0.001	0.078	0.001	0.111	0.005	NA	
	5/12/2022***	6020B	0.006	0.001	0.100	0.001	0.100	0.005	NA	
NYSD		undwater Standard	0.05		0.2		0.1		2.0	
Notes:	011 010					= Analyte is fo				

Notes:

NS= Not Sampled

SQL= Sample Quantitation Limit

NA= Not Analyzed

ND= Not detected above SQL NG = Analytical Method not provided by previous consultant

Methods = Standard USEPA Methods

B= Analyte is found in the blanks as well as the sample.

*** = Sample collected after completion of remedial actions

--= Sample quantitation limits not provided or not available.

E= Detected concentration exceeds calibration curve range.

T= Analysis by EcoTest due to short holding time

*= Duplicate analysis not within control limit.

Bold= Exceeds Standard

 GEC-5^+ = Replaces MW-7 in groundwater sampling plan. MW-7 previously paved over.

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL DATA: TOTAL METALS

248 Wyandanch Avenue Wyandanch, New York (unit, parts per million [ppm], mg/L)

Sample	Sample	Analytical	Chromium		Copper		Nickel		Zinc	
Identification	Date	Method		SQL		SQL		SQL		SQL
MW-26R	12/15/2003	200.7/601	ND		0.0018	0.00050	NA		0.019	0.005
(AOC #1 and 4)	4/6/2006	3010/6010	0.018	0.005	0.040	0.01	NA		0.0740	0.010
	4/6/2006	6010	0.017	0.005	NA		NA		NA	
	1/24/2007***	6010B	ND	0.01	ND	0.025	ND	0.04	ND	0.2
	12/4/2007***	200.7	ND	0.05	ND	0.05	ND	0.05	ND	0.05
	4/16/2008***	200.7	ND	0.05	ND	0.05	ND	0.05	ND	0.05
	9/10/2008***	200.7	ND	0.001	0.005	0.001	ND	0.001	0.006	0.002
	3/30/2009***	6010/200.7	0.095	0.0016	ND	0.0029	0.12	0.0005	0.17	0.0044
	9/28/2009***	6010/200.7	ND	0.0016	0.038	0.0029	ND	0.0005	0.0087	0.0044
	3/24/2010***	6010/200.7	0.0048	0.0010	0.072	0.0031	0.0061	0.0017	NA	
	3/23/2011***	6010/200.7	ND	0.0016	0.060	0.0029	0.0062	0.0007	NA	
	9/21/2011***	6010/200.7	ND	U 0.0016	0.0053	0.0029	ND	U 0.00072	NA	
	4/2/2012***	6010/200.7	0.0025	0.0012	0.02	0.0034	0.0019	0.0014	NA	
	9/18/2012***	6010/200.7	0.0014	0.0012	0.60	0.0034	0.42	0.0014	NA	
	3/27/2013***	6010/200.7	0.3500	0.0020	0.70	0.0056	0.80	0.0024	NA	
	9/17/2013***	6010C	0.0033	0.0012	0.021	0.0034	ND	0.0014	NA	
	3/11/2014***	6010B	0.0055	0.0012	ND	0.0022	0.0022	0.0014	NA	
	9/17/2014***	6010C	0.0054	0.0012	0.066	0.0034	0.0021	0.0014	NA	
	4/21/2015***	6010C	ND	0.0012	0.030	0.0034	0.0077	0.0014	NA	
	4/20/2016***	6010C	ND	0.0034	0.076	0.0031	0.015	0.0071	NA	
	4/10/2017***	6010C	0.0058	0.0034	0.040	0.0031	0.014	0.0071	NA	
	4/23/2018***	6010C	ND	0.010	0.032	0.010	ND	0.010	NA	
	5/6/2019****	6010D	ND	0.010	0.019	0.010	ND	0.010	NA	
	5/21/2020***	6010D	ND	0.010	0.015	0.010	ND	0.010	NA	
	3/2/2021***	6020B	Not sampled	- because we	ell is obstruct	ed.				
GEC-5 ⁺	4/16/2008***	200.7	ND	0.05	ND	0.05	ND	0.05	ND	0.05
(AOC #4)	9/10/2008***	200.7	ND	0.001	0.0008	B 0.001	ND	0.001	0.003	0.002
	3/30/2009***	6010/200.7	ND	0.0016	ND	0.003	ND	0.0005	0.0170	0.0044
	9/29/2009***	6010/200.7	ND	0.0016	ND	0.0029	ND	0.0005	ND	0.0044
NYSD	EC Class GA Gro	undwater Standard	0.05		0.2		0.1		2.0	

Notes:

NS= Not Sampled

SQL= Sample Quantitation Limit

NA= Not Analyzed

ND= Not detected above SQL

NG = Analytical Method not provided by previous consultant

Methods = Standard USEPA Methods

 $B = \mbox{ Analyte is found in the blanks as well as the sample.} \\ *** = \mbox{ Sample collected after completion of remedial actions}$

-- = Sample quantitation limits not provided or not available.

E= Detected concentration exceeds calibration curve range.

T= Analysis by EcoTest due to short holding time *= Duplicate analysis not within control limit.

Bold= Exceeds Standard

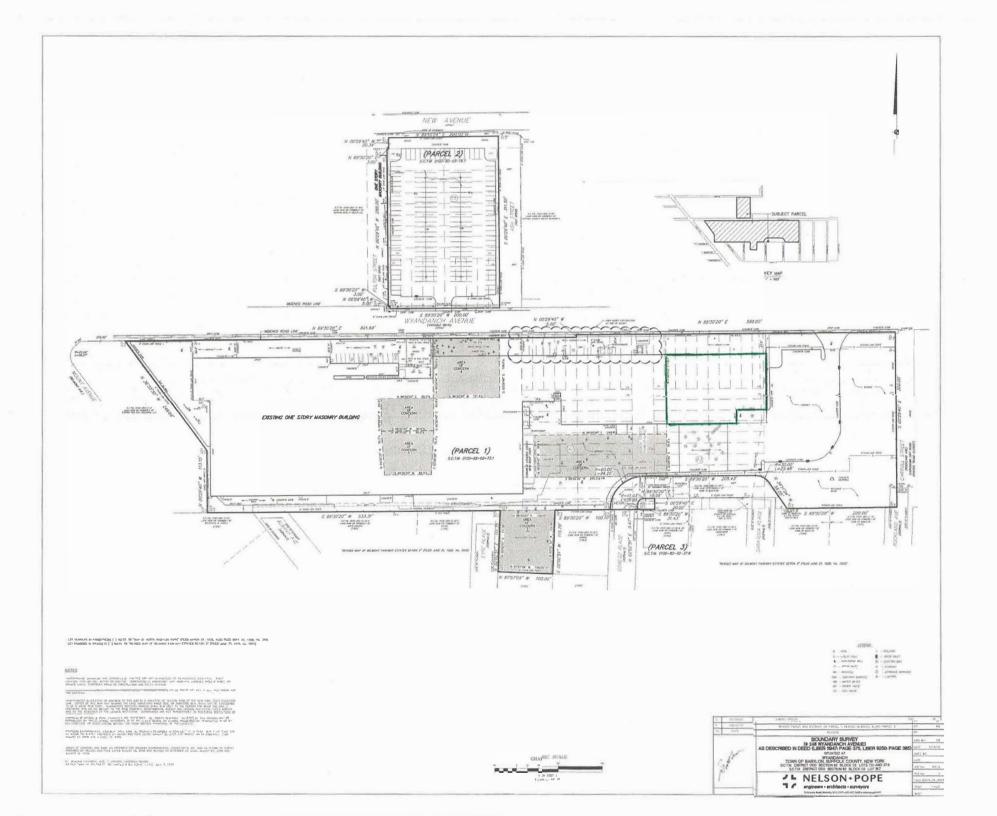
GEC-5⁺ = Replaces MW-7 in groundwater sampling plan. MW-7 previously paved over.

\$= In March 2014 these samples were field filtered with a 0.45µm filter prior to collection in error

TABLE 4: PROPOSED REVISED GROUNDWATER MONITORING PLAN

248 Wyandanch Ave. West Babylon, New York

Monitoring Well	Associated AOC	Screen Depth (feet)	Chromium, Copper, Nickel (6010C or 6020B)	Nickel (6010C or 6020B)	Semi-VOCs (8270C or D)
MW-2	AOC-2	6-16		X	
MW-3	AOC-3	10-20		Eliminate	
MW-4	AOC-3	10-20		X	
MW-5R	AOC-1	6-16		X	
MW-10	AOC-2 and 5	87-97	Eliminate		
MW-12	AOC-2 and 5	5-15	X		
MW-19	AOC-4	5-25			X^{1}
MW-20	AOC-4	5-25			Eliminate
MW-21	AOC-4	5-25			Eliminate
MW-23	AOC-4	2-20			Eliminate
MS					X^1
MS-DUP			X		
Total			3	1	5


AOC = Area of Concern

Semi-VOCs = Semi-Volatile Organic Compounds

Note 1: A sample will be collected from MW-19 for analysis when no LNAPL is present during a sampling/gauging round.

ATTACHMENT 1:

Plan showing Building Addition

ATTACHMENT 2: Periodic Review Report Certification Statement and IC/EC Certification Forms

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details e No. 152006	Box 1		
Sit	e Name Jameco Industries, Inc.			
City Co	e Address: 248 Wyandanch Avenue Zip Code: 11798 y/Town: Wyandanch unty: Suffolk e Acreage: 9.360			
Re	porting Period: June 1, 2021 to June 1, 2022			
		YES	NO	
1.	Is the information above correct?			
	If NO, include handwritten above or on a separate sheet.			
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		\checkmark	
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?			
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		$ \underline{\checkmark} $	
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.			
5.	Is the site currently undergoing development?		✓	
		Box 2		
		YES	NO	
6.	Is the current site use consistent with the use(s) listed below? Industrial			
7.	Are all ICs in place and functioning as designed? ✓			
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and		
AC	Corrective Measures Work Plan must be submitted along with this form to address the	hese iss	ues.	
Sig	nature of Owner, Remedial Party or Designated Representative Date			

SITE NO. 152006 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

82-2-37.6 Linzer Products Corp.
Site Management Plan

Ground Water Use Restriction

Soil Management Plan Landuse Restriction Monitoring Plan O&M Plan IC/EC Plan

An environmental easement is in place which restricts land use, restricts the use of on-site groundwater and provides for the implementation of the Department approved site management plan.

82-2-73.1 Linzer Products Corp.

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan

An environmental easement is in place which restricts land use, restricts the use of on-site groundwater and provides for the implementation of the Department approved site management plan.

Box 4

Description of Engineering Controls

Parcel Engineering Control

82-2-37.6

Cover System

Fencing/Access Control

Subsurface soils which were contaminated with metals from discharges of plating solutions were excavated and disposed of off-site at a permitted disposal facility. Those areas were backfilled with certified clean fill material. Residual metals in subsurface soil were treated in-situ via solidification/stabilization. Residual SVOCs in soil and groundwater were treated in-situ via chemical oxidation. Access to the site is restricted by perimeter fencing.

82-2-73.1

Cover System Fencing/Access Control

Subsurface soils which were contaminated with metals from discharges of plating solutions were excavated and disposed of off-site at a permitted disposal facility. Those areas were backfilled with certified clean fill material. Residual metals in subsurface soil were treated in-situ via solidification/stabilization. Residual SVOCs in soil and groundwater were treated in-situ via chemical oxidation. Access to the site is restricted by perimeter fencing.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
	$oldsymbol{arnothing}$
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	$m{arKledow}$
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
4	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
;	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. 152006

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

LEONARD ZICHLIN at	WEST RABYLON NY 11704
print name	print business address
am certifying as Own ER	(Owner or Remedial Party)
for the Site named in the Site Details Section of	EXEC. VP 6/30/22
Signature of Owner, Remedial Party, or Designa Rendering Certification	ated Representative Date

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

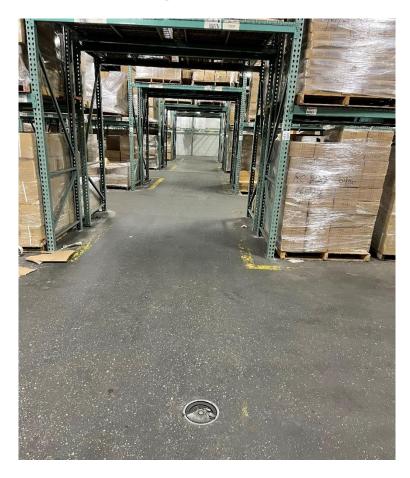
I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is

punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. Mathew Hackman 97 Asylum Road, Warwick, RI print name print business address OWNER am certifying as a Professional Engineer for the (Owner or Remedial Party) 11 AUG 2021 Signature of Professional Engineer, for the Owner or Stamp Date Remedial Party, Rendering Certification (Required for PE)

ATTACHMENT 3:

Inspection Photographs, IE/EC Inspection Forms, and May 11-12 2022 Monitoring well Purge Data Evaluation

Photos 1A and 1B: AOC 3. View looking west from southwest corner of AOC-1.



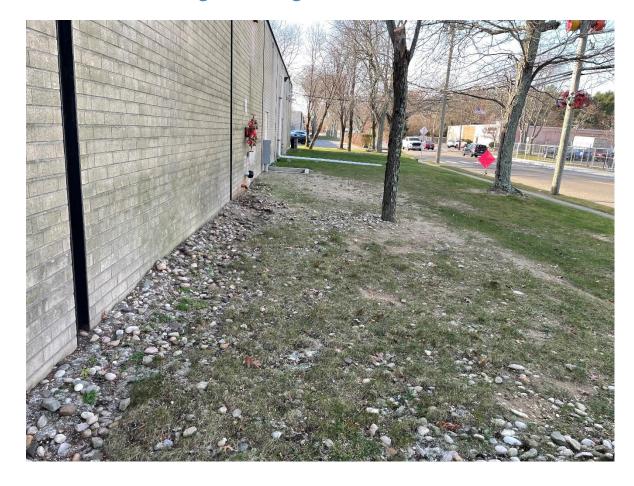

Photo 2: AOC 1. Taken from south side of AOC 1 looking north.

Photo 3: AOC 4. Interior portion of AOC 4 located in Warehouse area. Looking west.

Photo 4: AOC 4. Exterior portion of AOC 4. On north side of Site building. Looking west.

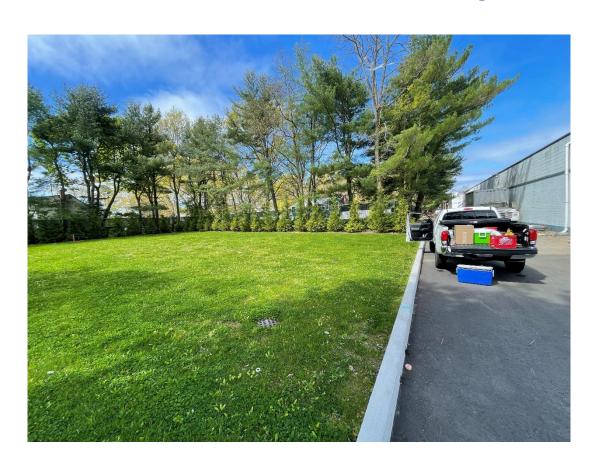


Photo 5A and 5B: AOC 2&5. View from southeast corner of AOC 2 and 5. Production area to north.

Photos 6A and 6B: AOC 3. View looking west from southwest corner of AOC-1.

Photo 7: AOC 1. Taken from south side of AOC 1 looking north.

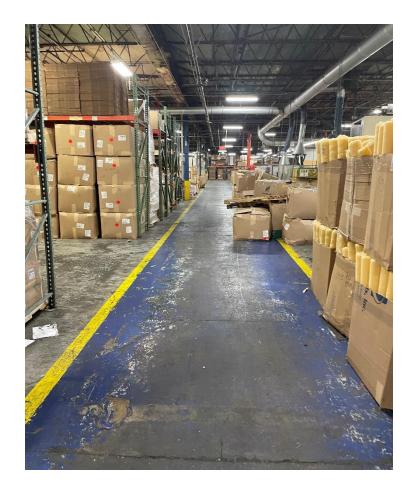

Photo 8: AOC 4. Interior portion of AOC 4 located in Warehouse area. Looking west.

Photo 9: AOC 4. Exterior portion of AOC 4. On north side of Site building. Looking west.

Photo 10A and 10B: AOC 2&5. View from southeast corner of AOC 2 and 5. Production area to north.

Semi-annual Site Inspection And Groundwater Sampling Former Jameco Facility, Wyandanch, NY

Inspector 1: Brian Butler Inspector 2:	Dates on Site: <u>12/10/2021</u> Start time: <u>10:30</u> Finish time: <u>11:30</u>
Groundwater Sampling	
groundwater monitoring. The N dated 3-31-2016. GEC received v	amended to include only one annual round of YSDEC had officially approved this change in a letter verbal approval to make this change during the nonitoring will take place in April or May annually.
	efly described below but GEC inspectors should refer to of the Site for accurate AOC locations.
AOC-1, parking area east of loa Date and time of inspection 12/2 Condition of surface integrity.	
	ce work in AOC? None observed
Any work proposed or anticipate Describe	ed by plant personnel? None planned
Date and time of inspection 12	osed by columns P6, L6K6, L2 and Q2 /10/2021 urface is intake, covered by concrete
	ce work in AOC? None observed
	ed by plant personnel? None planned
AOC-4, Area of plant including Date and time of inspection 12	stockroom and outside lawn out to sidewalk. /10/2021

Condition of surface integrity. Surface is intact, interior covered by concrete. Exterior covered by dirt, gravel, and grass
Any observed apparent subsurface work in AOC? None observed If yes, describe.
Any work proposed or anticipated by plant personnel? None planned Describe
AOC-3, Square parcel extending south of south property line and enclosed by chainlink fence. Date and time of inspection 12/10/2021 Condition of surface integrity. Surface is intact, covered by lawn
Any observed apparent subsurface work in AOC? None observed If yes, describe.
Any work proposed or anticipated by plant personnel? None planned Describe
Interviews: Briefly discuss with knowledgeable plant personnel (Len Zichlin (comptroller). Describe below. Interviewed Len Zichlin
Subsurface construction or utility work: None planned
Exploration for or use of groundwater under property for process or potable purposes: None Planned
Anticipated subsurface work within soil or groundwater beneath Site property: None planned

Semi-annual Site Inspection And Groundwater Sampling Former Jameco Facility, Wyandanch, NY

Inspector 1: Matt Perrotti	Dates on Site: <u>5/11-/12-2022</u>					
Inspector 2:	Start time: _	10:00	Finish time: <u>16:00</u>			
Groundwater Sampling						
<u>Groundwater Bampinig</u>						
-Site Management plan has been amende groundwater monitoring. The NYSDEC dated 3-31-2016. GEC received verbal a summer of 2015. Groundwater monitori	had officially ap	proved this ch	l this change in a letter ange during the			
Site Inspection Each AOC to be inspected is briefly described the Nelson & Pope survey plan of the Sit			-			
AOC-1, parking area east of loading doc Date and time of inspection 5/11/2022 Condition of surface integrity. Good.		anding v	water.			
Any observed apparent subsurface work If yes, describe.	in AOC? <u>No.</u>					
Any work proposed or anticipated by pla Describe	-	0.				
AOCs-2&5, Plant interior enclosed by a Date and time of inspection 5/11/2 Condition of surface integrity. Good	022		d Q2			
Any observed apparent subsurface work If yes, describe.	in AOC? No.					
Any work proposed or anticipated by pla Describe	ant personnel? No	0				

AOC-4, Area of plant including stockroom and of Date and time of inspection 5/11/2022	outside lawn out to sidewalk.
Condition of surface integrity. Good.	
Any observed apparent subsurface work in AOC? If yes, describe. No Subsurface work, but I inside building between MW-23 and MW-19.	Fire/Sprinkler pump room added on slab
Any work proposed or anticipated by plant person Describe	
AOC-3, Square parcel extending south of south pate and time of inspection 5/11/2022 Condition of surface integrity. Good.	property line and enclosed by chainlink fenc
Any observed apparent subsurface work in AOC? If yes, describe.	No.
Any work proposed or anticipated by plant person Describe	
nterviews: Briefly discuss with knowledgeable plant personn Giovan (maintenance). Describe below.	nel (Len Zichlin (comptroller) and
Subsurface construction or utility work: None of	ecurred 2021-2022.
Exploration for or use of groundwater under prop No exploration for either potable or process water	
Anticipated subsurface work within soil or ground None planned.	dwater beneath Site property:

Monitoring Well Purge Data Evaluation Annual GW Sampling 5-11,12-2022 Former Jameco Facilty West Babylon, New York

MW-2	@1120	DTW = 8.91	DTB =15.7				5/11/202
Start Purg	e @1120						
		Specific	Dissolved				
Time	Temp	Conductivity	Oxygen	pН	ORP	Turbidity	
	(°C)	us/cm	(mg/L)		(mv)	(NTU)	
1135	16.30	163.1	0.26	6.06	113.8	4.96	
1140	16.30	162.3	0.23	6.06	112.7	4.53	
1145	16.30	161.8	0.25	6.07	107.8	4.84	
	0%	0%	8%	0	-5	6%	
Collect Sa			ΓW at end of s	ampling=			
	For	Total Nickel					
		No odor or she	en				
MW-3							5/11/2022
Blocked a	t 4.3 ft, ca	an't gauged or sa	mpled				
		0 0	•				
MW-4							5/11/2022
	t 10.2 ft	can't gauged or s	ampled				
Dioenea a	. 10.2 1.,	cuirt gauged or a	umpieu				
							5/11/2022
MW 5D							5/11/2022
MW-5R							
	ter, canno	t sampled					
	ter, canno	t sampled					

EPA Low flow stabilization Turbidity <5 NTU or 10% DO <0.5 mg/L or 10% Specific Conductivity 3% Temp 3% 3% 0.1 +-10 millivolts pH ORP

Monitoring Well Purge Data Evaluation Annual GW Sampling 5-11,12-2022 Former Jameco Facilty

West Babylon, New York

MW-10 (Start Purg			DTB =98.2				5/12/2022
Time	Temp (°C)	Specific Conductivity us/cm	Dissolved Oxygen (mg/L)	pН	ORP (mv)	Turbidity (NTU)	
1105	16.5	177.5	0.87	5.78	197.7	2.03	
1110	16.5	178.4	0.78	5.78	194.4	1.85	
1115	16.40	180.3	0.72	5.78	189.6	0.88	
1120	16.40	181.5	0.69	5.78	187.2	0.82	
1125	16.40	182.7	0.64	5.78	186.8	0.79	
	0.0%	1%	-8%	0	0	-7%	

Collect Sample @ 1130 DTW at end of sampling= Collect MS/MSD Sample @ 1340 For dissvolved Copper, Chromium and Nickel

No odor or sheen

MW-12 (shallow) DTW =8.72 DTB=15.3 Start Purge @ 1140 5/12/2021 Specific Temp Conductivity Dissolved Oxygen Time pН ORP Turbidity (mg/L) 0.31 us/cm (mv) (NTU) 1145 17.3 126.3 5.87 117 30.22 30.94 1150 17.3 126.2 0.3 5.87 116 1155 126 0.28 5.87 30.09 116 1200 17.3 0.29 5.87 29.6 -0.2% 3.4% 0.1

Collect Sample @ 1205 DTW at end of sampling= For dissolved Copper, Chromium and Nickel

No sheen or odor detected

MW-19 Start Purge @ 1540 DTW = 8.48' DTB = 18.3 5/11/2022

Time	Temp (°C)	Specific Conductivity us/cm	Oxygen (mg/L)	pН	ORP (mv)	Turbidity (NTU)	
1550	13.5	378.2	0.50	5.89	126	7.81	
1555	13.4	377.8	0.47	5.88	129	6.74	
1600	13.4	377.2	0.44	5.88	131	6.52	
1605	13.4	377.1	0.42	5.88	132	6.56	
	0.0%	0.0%	-4.8%	0.0	1.4	0.6%	

Collect Sample @1610 DTW at end of sampling= For PAHs (8270C)

No sheen or odor detected

MW-20		DTW =8.73'	DTB = 22.5				5/12/2022
Start Purg	e @ 0920)					
Time	Temp	Specific Conductivity	Dissolved Oxygen	pН	ORP	Turbidity	
	(°C)	us/cm	(mg/L)		(mv)	(NTU)	
0935	14.3	1248	0.41	5.72	231	7.17	
0940	14.3	1239	0.38	5.72	231	6.08	
0945	14.3	1235	0.37	5.72	231	6.04	
0950	14.3	1231	0.36	5.72	231	6	
	0%	0%	-3%	0	0	-1%	

DTW at end of sampling= Collect Sample @ 0955

For PAHs (8270C)

No sheen or odor detected

Monitoring Well Purge Data Evaluation Annual GW Sampling 5-11,12-2022 Former Jameco Facilty West Babylon, New York

MW-21 Start Purge @ 1510		DTW =8.67				5/11/2022	
Time	Temp (°C)	Specific Conductivity us/cm	Dissolved Oxygen (mg/L)	pН	ORP (mv)	Turbidity (NTU)	
1515	15.87	603	1.11	6.16	50.1	8.14	
1520	15.78	588	0.53	6.14	43.1	4.1	
1525	15.78	582	0.51	6.14	42.7	4.04	
1530	15.83	580	0.48	6.14	42.9	3.74	
	0.3%	-0.3%	-6.3%	0.0	0.2	-8.0%	

Collect Sample @ 1535 DTW at end of sampling= Collect MS/MSD Sample @ 1153 For PAHs (8270C)

No sheen or odor detected

MW-23 Start Purge @ 1350 DTW = 8.39 DTB = 19.5 5/11/2022

Time	Temp (°C)	Specific Conductivity us/cm	Dissolved Oxygen (mg/L)	pН	ORP (mv)	Turbidity (NTU)
1405	12.2	393.4	0.55	5.65	144.9	153.1
1410	12	399.8	0.29	5.64	145.1	106.9
1415	12	402	0.25	5.64	142.6	99.7
1420	12	407.6	0.24	5.64	140.5	101.4
1425	12	409.8	0.25	5.64	139.3	99.7
	0.0%	0.5%	4%	0	-1.20	-2%

Collect Sample @ 1430 DTW at end of sampling=

For PAHs (8270C)

No sheen or odor

ATTACHMENT 4:

Laboratory Certificate of Analysis

June 1, 2022

Matt Perrotti Goldman Environmental 100 Grandview Road, Suite 102 Braintree, MA 02184

Project Location: W. Babylon, NY

Client Job Number:

Project Number: 1744-1130

Laboratory Work Order Number: 22E0996

Meghan S. Kelley

Enclosed are results of analyses for samples as received by the laboratory on May 16, 2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Meghan E. Kelley Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	8
22E0996-01	8
22E0996-02	9
22E0996-03	11
22E0996-04	13
22E0996-05	15
22E0996-06	17
22E0996-07	18
Sample Preparation Information	19
QC Data	20
Semivolatile Organic Compounds by GC/MS	20
B308671	20
B308767	28
Metals Analyses (Dissolved)	33
B308748	33
Flag/Qualifier Summary	34
Certifications	35
Chain of Custody/Sample Receipt	39

Goldman Environmental 100 Grandview Road, Suite 102 Braintree, MA 02184

ATTN: Matt Perrotti

REPORT DATE: 6/1/2022

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 1744-1130

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 22E0996

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: W. Babylon, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-2	22E0996-01	Ground Water		SW-846 6020B	
MW-23	22E0996-02	Ground Water		SW-846 8270E	
MW-21	22E0996-03	Ground Water		SW-846 8270E	
MW-19	22E0996-04	Ground Water		SW-846 8270E	
MW-20	22E0996-05	Ground Water		SW-846 8270E	
MW-10	22E0996-06	Ground Water		SW-846 6020B	
MW-12	22E0996-07	Ground Water		SW-846 6020B	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 6020B

Qualifications:

R-06

Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.

Analyte & Samples(s) Qualified:

Nickel

B308748-MSD1

SW-846 8270E

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

Benzidine

B308671-BS1, B308671-BSD1, B308767-BS1, B308767-BSD1

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

22E0996-05[MW-20], B308767-BLK1, B308767-BS1, B308767-BSD1

Hexachlorocyclopentadiene

22E0996-05[MW-20], B308767-BLK1, B308767-BS1, B308767-BSD1

Hexachloroethane

22E0996-05[MW-20], B308767-BLK1, B308767-BS1, B308767-BSD1

N-Nitrosodimethylamine

22E0996-02[MW-23], 22E0996-03[MW-21], 22E0996-04[MW-19], 22E0996-05[MW-20], B308671-BLK1, B308671-BS1, B308671-BSD1, B308767-BLK1, B308767-BS1, B308767-BLK1, B30876-BLK1, B30B308767-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Hexachlorobutadiene

B308767-BS1

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound. Analyte & Samples(s) Qualified:

1,2-Dichlorobenzene

B308767-BS1

1.4-Dichlorobenzene

B308767-BS1

Bis(2-chloroethyl)ether B308767-BS1

MS-09

Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

Analyte & Samples(s) Qualified:

3,3-Dichlorobenzidine

22E0996-02[MW-23], B308671-MS1, B308671-MSD1

Benzidine

22E0996-02[MW-23], B308671-MS1, B308671-MSD1

Benzoic Acid

22E0996-02[MW-23], B308671-MS1, B308671-MSD1

Hexachlorocyclopentadiene

22E0996-02[MW-23], B308671-MS1, B308671-MSD1

Pyridine

22E0996-02[MW-23], B308671-MS1, B308671-MSD1

MS-22

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria

within method specified criteria. Analyte & Samples(s) Qualified:

N-Nitrosodimethylamine

B308671-MS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound

compound. Analyte & Samples(s) Qualified:

1,2-Dichlorobenzene

22E0996-05[MW-20], B308767-BLK1, B308767-BSD1

1,3-Dichlorobenzene

B308767-BLK1, B308767-BS1, B308767-BSD1

1,4-Dichlorobenzene

22E0996-05[MW-20], B308767-BLK1, B308767-BSD1

2-Nitrophenol

22E0996-05[MW-20], B308767-BLK1, B308767-BS1, B308767-BSD1

Acetophenone

22E0996-05[MW-20], B308767-BLK1, B308767-BS1, B308767-BSD1

Bis(2-chloroethyl)ether

22E0996-05[MW-20], B308767-BLK1, B308767-BSD1

Bis(2-chloroisopropyl)ether

22E0996-05[MW-20], B308767-BLK1, B308767-BS1, B308767-BSD1

Nitrobenzene

22E0996-05[MW-20], B308767-BLK1, B308767-BS1, B308767-BSD1

N-Nitrosodimethylamine

22E0996-05[MW-20], B308767-BLK1, B308767-BS1, B308767-BSD1

N-Nitrosodi-n-propylamine

22E0996-05[MW-20], B308767-BLK1, B308767-BS1, B308767-BSD1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.

Analyte & Samples(s) Qualified:

Benzidine

22E0996-02[MW-23], 22E0996-03[MW-21], 22E0996-04[MW-19], 22E0996-05[MW-20], B308671-BLK1, B308671-BS1, B308671-BSD1, B308671-MSD1, B308671-BSD1, B30870-BSD1, B30870-BSD1, S071880-CCV1, S071952-CCV1, S072031-CCV1, S072141-CCV1, S072163-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2.4-Dinitrophenol

22E0996-02[MW-23], 22E0996-04[MW-19], 22E0996-05[MW-20], B308671-MS1, B308671-MSD1, S072031-CCV1, S072141-CCV1, S072163-CCV1

Aniline

22E0996-03[MW-21], B308671-BLK1, B308671-BS1, B308671-BSD1, B308767-BLK1, B308767-BSD1, B308767-BSD1, S071880-CCV1, S071952-CCV1, S072031-CCV1, B308767-BSD1, B308767-BSD1, B308767-BSD1, S071880-CCV1, S071952-CCV1, S071051-CCV1, S071051-CC

Benzidine

22E0996-02[MW-23], 22E0996-03[MW-21], 22E0996-04[MW-19], 22E0996-05[MW-20], B308671-BLK1, B308671-BS1, B308671-BSD1, B308671-MSD1, B308671-BSD1, B308767-BSD1, B308767-BSD1, S071880-CCV1, S071952-CCV1, S072031-CCV1, S072141-CCV1, S072163-CCV1

Hexachlorocyclopentadiene

22E0996-02[MW-23], 22E0996-03[MW-21], 22E0996-04[MW-19], 22E0996-05[MW-20], B308671-BLK1, B308671-BS1, B308671-BSD1, B308671-MSD1, B308671-BSD1, B308767-BSD1, B308767-BSD1, S071880-CCV1, S071952-CCV1, S072031-CCV1, S072141-CCV1, S072163-CCV1

Pentachlorophenol

22E0996-02[MW-23], 22E0996-04[MW-19], B308671-MS1, B308671-MSD1, S072163-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

4-Chloroaniline

22E0996-02[MW-23], 22E0996-03[MW-21], 22E0996-04[MW-19], 22E0996-05[MW-20], B308671-BLK1, B308671-BS1, B308671-BSD1, B308671-MS1, B308671-MSD1, B308767-BLK1, B308767-BSD1, B308767-BSD1, S070338-ICV1, S071880-CCV1, S071952-CCV1, S072031-CCV1, S072141-CCV1, S072163-CCV1, S072031-CCV1, S072031-CC

V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated

estimated.
Analyte & Samples(s) Qualified:

Benzidine

22E0996-02[MW-23], 22E0996-03[MW-21], 22E0996-04[MW-19], 22E0996-05[MW-20], B308671-BLK1, B308671-BS1, B308671-BSD1, B308671-MS1, B308671-MSD1, B308767-BSD1, B308767-BSD1, S070338-ICV1, S071880-CCV1, S071952-CCV1, S072031-CCV1, S072141-CCV1, S072163-CCV1, S072031-CCV1, S072031-CC

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington Technical Representative

Lua Watslengton

Project Location: W. Babylon, NY

Date Received: 5/16/2022

Sample Description:

Work Order: 22E0996

Field Sample #: MW-2 Sample ID: 22E0996-01 Sampled: 5/11/2022 11:50

Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time		
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst	
Nickel		260	5.0	ug/L	1		SW-846 6020B	5/18/22	5/19/22 18:47	ONW	

Work Order: 22E0996

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: W. Babylon, NY Sample Description:

Date Received: 5/16/2022

Field Sample #: MW-23

Sampled: 5/11/2022 14:30

Sample ID: 22E0996-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

		Sei	mivolatile Organic (Compounds	by GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	5.0	μg/L	1	riag/Quai	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Acenaphthylene	ND	5.0	μg/L μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Acetophenone	ND	10	μg/L μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Aniline	ND	5.0	μg/L μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Anthracene	ND	5.0	μg/L μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Benzidine	ND	20	μg/L	1	MS-09, V-04, V-05,	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Benzo(a)anthracene	ND	5.0	μg/L	1	V-35	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Benzo(a)pyrene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Benzo(b)fluoranthene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Benzo(g,h,i)perylene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Benzo(k)fluoranthene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Benzoic Acid	ND	10	μg/L	1	MS-09	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Bis(2-chloroethoxy)methane	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Bis(2-chloroethyl)ether	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
4-Bromophenylphenylether	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Butylbenzylphthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Carbazole	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
4-Chloroaniline	ND	10	μg/L	1	V-34	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
4-Chloro-3-methylphenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2-Chloronaphthalene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2-Chlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
4-Chlorophenylphenylether	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Chrysene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Dibenz(a,h)anthracene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Dibenzofuran	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Di-n-butylphthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
1,2-Dichlorobenzene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
1,3-Dichlorobenzene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
1,4-Dichlorobenzene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
3,3-Dichlorobenzidine	ND	10	μg/L	1	MS-09	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2,4-Dichlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Diethylphthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2,4-Dimethylphenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Dimethylphthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
4,6-Dinitro-2-methylphenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2,4-Dinitrophenol	ND	10	μg/L	1	V-05	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2,4-Dinitrotoluene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2,6-Dinitrotoluene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Di-n-octylphthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Fluoranthene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR

Project Location: W. Babylon, NY

Sample Description:

Work Order: 22E0996

Date Received: 5/16/2022 Field Sample #: MW-23

Sampled: 5/11/2022 14:30

Sample ID: 22E0996-02 Sample Matrix: Ground Water

Semivolatile	Organic	Compounds	by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Fluorene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Hexachlorobenzene	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Hexachlorobutadiene	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Hexachlorocyclopentadiene	ND	10	$\mu g/L$	1	MS-09, V-05	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Hexachloroethane	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Indeno(1,2,3-cd)pyrene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Isophorone	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
1-Methylnaphthalene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2-Methylnaphthalene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2-Methylphenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
3/4-Methylphenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Naphthalene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2-Nitroaniline	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
3-Nitroaniline	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
4-Nitroaniline	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Nitrobenzene	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2-Nitrophenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
4-Nitrophenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
N-Nitrosodimethylamine	ND	10	$\mu g/L$	1	L-04	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
N-Nitrosodiphenylamine/Diphenylamine	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
N-Nitrosodi-n-propylamine	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Pentachloronitrobenzene	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Pentachlorophenol	ND	10	$\mu g/L$	1	V-05	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Phenanthrene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Phenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Pyrene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Pyridine	ND	5.0	$\mu g/L$	1	MS-09	SW-846 8270E	5/18/22	5/31/22 11:29	IMR
1,2,4,5-Tetrachlorobenzene	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2,4,5-Trichlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
2,4,6-Trichlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:29	IMR
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2-Fluorophenol		46.8	15-110					5/31/22 11:29	
Phenol-d6		33.5	15-110					5/31/22 11:29	
Nitrobenzene-d5		78.2	30-130					5/31/22 11:29	
2-Fluorobiphenyl		85.0	30-130					5/31/22 11:29	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	46.8	15-110		5/31/22 11:29
Phenol-d6	33.5	15-110		5/31/22 11:29
Nitrobenzene-d5	78.2	30-130		5/31/22 11:29
2-Fluorobiphenyl	85.0	30-130		5/31/22 11:29
2,4,6-Tribromophenol	88.7	15-110		5/31/22 11:29
p-Terphenyl-d14	103	30-130		5/31/22 11:29

Work Order: 22E0996

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: W. Babylon, NY Sample Description:

Date Received: 5/16/2022

Field Sample #: MW-21
Sample ID: 22E0996-03
Sample Matrix: Ground Water

Sampled: 5/11/2022 15:35

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Acenaphthylene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Acetophenone	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Aniline	ND	5.0	μg/L	1	V-05	SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Anthracene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Benzidine	ND	20	μg/L	1	V-04, V-05, V-35	SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Benzo(a)anthracene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Benzo(a)pyrene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Benzo(b)fluoranthene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Benzo(g,h,i)perylene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Benzo(k)fluoranthene	ND	5.0	μg/L μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Benzoic Acid	ND	10	μg/L μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Bis(2-chloroethoxy)methane	ND	10	μg/L μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Bis(2-chloroethyl)ether	ND ND	10		1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Bis(2-chloroisopropyl)ether	ND ND	10	μg/L «/I	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Bis(2-Ethylhexyl)phthalate	ND ND	10	μg/L	1		SW-846 8270E SW-846 8270E	5/18/22		IMR
4-Bromophenylphenylether	ND ND	10	μg/L /I	1		SW-846 8270E	5/18/22	5/20/22 17:14 5/20/22 17:14	IMR
Butylbenzylphthalate			μg/L «/I			SW-846 8270E SW-846 8270E		5/20/22 17:14	
Carbazole	ND	10	μg/L	1			5/18/22		IMR
	ND	10	μg/L	1	7/24	SW-846 8270E	5/18/22	5/20/22 17:14	IMR
4-Chloroaniline	ND	10	μg/L	1	V-34	SW-846 8270E	5/18/22	5/20/22 17:14	IMR
4-Chloro-3-methylphenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2-Chloronaphthalene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2-Chlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
4-Chlorophenylphenylether	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Chrysene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Dibenz(a,h)anthracene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Dibenzofuran	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Di-n-butylphthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
1,2-Dichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
1,3-Dichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
1,4-Dichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
3,3-Dichlorobenzidine	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2,4-Dichlorophenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Diethylphthalate	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2,4-Dimethylphenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Dimethylphthalate	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
4,6-Dinitro-2-methylphenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2,4-Dinitrophenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2,4-Dinitrotoluene	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2,6-Dinitrotoluene	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Di-n-octylphthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Fluoranthene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Fluorene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR

Page 11 of 40

Project Location: W. Babylon, NY

Sample Description:

Work Order: 22E0996

Date Received: 5/16/2022 Field Sample #: MW-21

Sampled: 5/11/2022 15:35

Sample ID: 22E0996-03 Sample Matrix: Ground Water

Semivolatile Organic	Compounds	by	GC/MS	
----------------------	-----------	----	-------	--

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobenzene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Hexachlorobutadiene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Hexachlorocyclopentadiene	ND	10	μg/L	1	V-05	SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Hexachloroethane	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Isophorone	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
1-Methylnaphthalene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2-Methylnaphthalene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2-Methylphenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
3/4-Methylphenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Naphthalene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2-Nitroaniline	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
3-Nitroaniline	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
4-Nitroaniline	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Nitrobenzene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2-Nitrophenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
4-Nitrophenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
N-Nitrosodimethylamine	ND	10	$\mu g/L$	1	L-04	SW-846 8270E	5/18/22	5/20/22 17:14	IMR
N-Nitrosodiphenylamine/Diphenylamine	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
N-Nitrosodi-n-propylamine	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Pentachloronitrobenzene	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Pentachlorophenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Phenanthrene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Phenol	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Pyrene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Pyridine	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
1,2,4,5-Tetrachlorobenzene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2,4,5-Trichlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
2,4,6-Trichlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/20/22 17:14	IMR
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2-Fluorophenol		39.2	15-110					5/20/22 17:14	
Phenol-d6		26.8	15-110					5/20/22 17:14	
Nitrobenzene-d5		60.9	30-130					5/20/22 17:14	
2-Fluorobiphenyl		78.4	30-130					5/20/22 17:14	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	39.2	15-110		5/20/22 17:14
Phenol-d6	26.8	15-110		5/20/22 17:14
Nitrobenzene-d5	60.9	30-130		5/20/22 17:14
2-Fluorobiphenyl	78.4	30-130		5/20/22 17:14
2,4,6-Tribromophenol	83.8	15-110		5/20/22 17:14
p-Terphenyl-d14	71.8	30-130		5/20/22 17:14

Project Location: W. Babylon, NY

Sample Description:

Work Order: 22E0996

Date Received: 5/16/2022
Field Sample #: MW-19

Sampled: 5/11/2022 16:10

Sample ID: 22E0996-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

	B 1		mivolatile Organic (Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Acenaphthylene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Acetophenone	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Aniline	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Anthracene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Benzidine	ND	20	μg/L	1	V-04, V-05, V-35	SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Benzo(a)anthracene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Benzo(a)pyrene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Benzo(b)fluoranthene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Benzo(g,h,i)perylene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Benzo(k)fluoranthene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Benzoic Acid	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Bis(2-chloroethoxy)methane	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Bis(2-chloroethyl)ether	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Bis(2-chloroisopropyl)ether	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
4-Bromophenylphenylether	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Butylbenzylphthalate	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Carbazole	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
4-Chloroaniline	ND	10	μg/L	1	V-34	SW-846 8270E	5/18/22	5/31/22 11:55	IMR
4-Chloro-3-methylphenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2-Chloronaphthalene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2-Chlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
4-Chlorophenylphenylether	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Chrysene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Dibenz(a,h)anthracene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Dibenzofuran	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Di-n-butylphthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
1,2-Dichlorobenzene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
1,3-Dichlorobenzene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
1,4-Dichlorobenzene	ND	5.0	μg/L μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
3,3-Dichlorobenzidine	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2,4-Dichlorophenol	ND	10	μg/L μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Diethylphthalate	ND	10		1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2,4-Dimethylphenol	ND ND	10	μg/L	1					IMR
Dimethylphthalate			μg/L /ī			SW-846 8270E	5/18/22	5/31/22 11:55	
	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
4,6-Dinitro-2-methylphenol	ND	10	μg/L	1	11.05	SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2,4-Dinitrophenol	ND	10	μg/L	1	V-05	SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2,4-Dinitrotoluene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2,6-Dinitrotoluene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Di-n-octylphthalate	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	10	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Fluoranthene	ND	5.0	$\mu g/L$	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Fluorene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR

Page 13 of 40

Project Location: W. Babylon, NY

Sample Description:

Work Order: 22E0996

Date Received: 5/16/2022

Field Sample #: MW-19

Sampled: 5/11/2022 16:10

Sample ID: 22E0996-04
Sample Matrix: Ground Water

Semivolatile Organic	Compounds	by	GC/MS	
----------------------	-----------	----	-------	--

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobenzene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Hexachlorobutadiene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Hexachlorocyclopentadiene	ND	10	μg/L	1	V-05	SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Hexachloroethane	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Isophorone	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
1-Methylnaphthalene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2-Methylnaphthalene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2-Methylphenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
3/4-Methylphenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Naphthalene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2-Nitroaniline	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
3-Nitroaniline	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
4-Nitroaniline	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Nitrobenzene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2-Nitrophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
4-Nitrophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
N-Nitrosodimethylamine	ND	10	μg/L	1	L-04	SW-846 8270E	5/18/22	5/31/22 11:55	IMR
N-Nitrosodiphenylamine/Diphenylamine	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
N-Nitrosodi-n-propylamine	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Pentachloronitrobenzene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Pentachlorophenol	ND	10	μg/L	1	V-05	SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Phenanthrene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Phenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Pyrene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Pyridine	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
1,2,4,5-Tetrachlorobenzene	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2,4,5-Trichlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
2,4,6-Trichlorophenol	ND	10	μg/L	1		SW-846 8270E	5/18/22	5/31/22 11:55	IMR
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		41.8	15-110					5/31/22 11:55	
Phenol-d6		28.6	15-110					5/31/22 11:55	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	41.8	15-110		5/31/22 11:55
Phenol-d6	28.6	15-110		5/31/22 11:55
Nitrobenzene-d5	69.9	30-130		5/31/22 11:55
2-Fluorobiphenyl	80.2	30-130		5/31/22 11:55
2,4,6-Tribromophenol	86.8	15-110		5/31/22 11:55
p-Terphenyl-d14	98.0	30-130		5/31/22 11:55

Project Location: W. Babylon, NY

Sample Description:

Work Order: 22E0996

Date Received: 5/16/2022
Field Sample #: MW-20

Sampled: 5/12/2022 09:55

Sample ID: 22E0996-05
Sample Matrix: Ground Water

		Se	mivolatile Organic (Compounds b	y GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Acenaphthylene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Acetophenone	ND	11	μg/L	1	R-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Aniline	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Anthracene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Benzidine	ND	22	μg/L	1	V-04, V-05, V-35	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Benzo(a)anthracene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Benzo(a)pyrene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Benzo(b)fluoranthene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Benzo(g,h,i)perylene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Benzo(k)fluoranthene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Benzoic Acid	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Bis(2-chloroethoxy)methane	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Bis(2-chloroethyl)ether	ND	11	μg/L	1	R-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Bis(2-chloroisopropyl)ether	ND	11	μg/L	1	R-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Bis(2-Ethylhexyl)phthalate	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
4-Bromophenylphenylether	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Butylbenzylphthalate	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Carbazole	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
4-Chloroaniline	ND	11	μg/L	1	V-34	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
4-Chloro-3-methylphenol	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
2-Chloronaphthalene	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
2-Chlorophenol	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
4-Chlorophenylphenylether	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Chrysene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Dibenz(a,h)anthracene	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Dibenzofuran	ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Di-n-butylphthalate	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
1,2-Dichlorobenzene	ND	5.4	μg/L	1	R-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
1,3-Dichlorobenzene	ND	5.4	μg/L	1	L-04	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
1,4-Dichlorobenzene	ND	5.4	μg/L	1	R-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
3,3-Dichlorobenzidine	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
2,4-Dichlorophenol	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Diethylphthalate	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
2,4-Dimethylphenol	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Dimethylphthalate	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
4,6-Dinitro-2-methylphenol	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
2,4-Dinitrophenol	ND	11	μg/L	1	V-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
2,4-Dinitrotoluene	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
2,6-Dinitrotoluene	ND	11	μg/L μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Di-n-octylphthalate	ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
1,2-Diphenylhydrazine/Azobenzene	ND	11	μg/L μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Fluoranthene	ND	5.4	μg/L μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
Fluorene	ND	5.4	μg/L μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
	ND	J.T	μ <u>в</u> / L	1		5 11 OTO 02/0E	3117122	Page 15	

Page 15 of 40

Project Location: W. Babylon, NY

Sample Description:

Work Order: 22E0996

Date Received: 5/16/2022 Field Sample #: MW-20

Sampled: 5/12/2022 09:55

Sample ID: 22E0996-05 Sample Matrix: Ground Water

Semivolatile	Organic	Compounds	by	GC/MS	
--------------	---------	-----------	----	-------	--

	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1	L-04, V-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1	L-04	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	5.4	$\mu g/L$	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1	R-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1	R-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1	L-04, R-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1	R-05	SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	5.4	$\mu g/L$	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	$\mu g/L$	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	5.4	$\mu g/L$	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	5.4	$\mu g/L$	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	5.4	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	μg/L	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
ND	11	$\mu g/L$	1		SW-846 8270E	5/19/22	5/28/22 22:05	IMR
	% Recovery	Recovery Limits	3	Flag/Qual				
	44.1	15-110					5/28/22 22:05	
		ND 11 ND 11 ND 11 ND 5.4 ND 11 ND 5.4 ND 11 ND 5.4 ND 11 ND 5.4 ND 11	ND 11	ND 11 μg/L 1 ND 11 μg/L 1 ND 11 μg/L 1 ND 5.4 μg/L 1 ND 11 μg/L 1 ND 5.4 μg/L 1 ND 6.6 μg/	ND 11	ND 11	ND 11 μg/L 1 L-04, V-05 SW-846 8270E 5/19/22 ND 11 μg/L 1 L-04, V-05 SW-846 8270E 5/19/22 ND 11 μg/L 1 L-04 SW-846 8270E 5/19/22 ND 11 μg/L 1 SW-846 8270E 5/19/22 ND 5.4 μg/L 1 SW-846 8270E 5/19/22 ND 11 μg/L 1 R-05 SW-846 8270E 5/19/22 ND 11 μg/L 1 SW-846 8270E 5/19/22 ND 5.4 μg/L 1 SW-846 8270E 5/19/22	ND 11

Project Location: W. Babylon, NY

Sample Description:

Work Order: 22E0996

Date Received: 5/16/2022

Field Sample #: MW-10

Sampled: 5/12/2022 11:30

Sample ID: 22E0996-06
Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chromium		ND	1.0	μg/L	1		SW-846 6020B	5/18/22	5/19/22 18:30	QNW
Copper		ND	1.0	$\mu g/L$	1		SW-846 6020B	5/18/22	5/19/22 18:30	QNW
Nickel		ND	5.0	μg/L	1		SW-846 6020B	5/18/22	5/19/22 18:30	QNW

Project Location: W. Babylon, NY

Sample Description:

Work Order: 22E0996

Date Received: 5/16/2022

Field Sample #: MW-12

Sampled: 5/12/2022 12:05

Sample ID: 22E0996-07

Sample Matrix: Ground Water

Metals Analyses (Dissolved)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chromium		6.4	1.0	μg/L	1		SW-846 6020B	5/18/22	5/19/22 18:50	QNW
Copper		100	1.0	$\mu g/L$	1		SW-846 6020B	5/18/22	5/19/22 18:50	QNW
Nickel		100	5.0	μg/L	1		SW-846 6020B	5/18/22	5/19/22 18:50	QNW

Sample Extraction Data

Prep Method: SW-846 3005A Dissolved Analytical Method: SW-846 6020B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22E0996-01 [MW-2]	B308748	10.0	10.0	05/18/22
22E0996-06 [MW-10]	B308748	10.0	10.0	05/18/22
22E0996-07 [MW-12]	B308748	10.0	10.0	05/18/22

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22E0996-02 [MW-23]	B308671	1000	1.00	05/18/22
22E0996-03 [MW-21]	B308671	1000	1.00	05/18/22
22E0996-04 [MW-19]	B308671	1000	1.00	05/18/22

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
22E0996-05 [MW-20]	B308767	920	1.00	05/19/22

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B308671 - SW-846 3510C										
Blank (B308671-BLK1)				Prepared: 05	5/18/22 Analy	yzed: 05/20/2	.2			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	μg/L							
Acetophenone	ND	10	μg/L							
Aniline	ND	5.0	μg/L							V-05
Anthracene	ND	5.0	μg/L							
Benzidine	ND	20	μg/L							V-04, V-05, V-3
Benzo(a)anthracene	ND	5.0	μg/L							
Benzo(a)pyrene	ND	5.0	μg/L							
Benzo(b)fluoranthene	ND	5.0	μg/L							
Benzo(g,h,i)perylene	ND	5.0	μg/L							
Benzo(k)fluoranthene	ND	5.0	μg/L							
Benzoic Acid	ND	10	μg/L							
Bis(2-chloroethoxy)methane	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L							
-Bromophenylphenylether	ND	10	μg/L							
Butylbenzylphthalate	ND	10	μg/L							
Carbazole	ND	10	μg/L							
-Chloroaniline	ND	10	μg/L							V-34
-Chloro-3-methylphenol	ND	10	μg/L							
-Chloronaphthalene	ND	10	μg/L							
-Chlorophenol	ND	10	μg/L							
-Chlorophenylphenylether	ND	10	μg/L							
Chrysene Dibanz(a b)anthragana	ND	5.0	μg/L							
Dibenz(a,h)anthracene Dibenzofuran	ND	5.0	μg/L							
	ND	5.0	μg/L							
Di-n-butylphthalate ,2-Dichlorobenzene	ND	10 5.0	μg/L							
,3-Dichlorobenzene	ND	5.0 5.0	μg/L μg/L							
,4-Dichlorobenzene	ND	5.0	μg/L μg/L							
,3-Dichlorobenzidine	ND	10	μg/L μg/L							
,,3-Dichlorophenol	ND	10	μg/L μg/L							
Diethylphthalate	ND ND	10	μg/L μg/L							
y4-Dimethylphenol	ND ND	10	μg/L μg/L							
Dimethylphthalate	ND ND	10	μg/L μg/L							
-6-Dinitro-2-methylphenol	ND ND	10	μg/L μg/L							
2,4-Dinitrophenol		10	μg/L μg/L							
2,4-Dinitrophenoi	ND ND	10	μg/L μg/L							
g-6-Dinitrotoluene	ND ND	10	μg/L μg/L							
Di-n-octylphthalate	ND ND	10	μg/L μg/L							
,2-Diphenylhydrazine/Azobenzene	ND ND	10	μg/L μg/L							
Fluoranthene	ND ND	5.0	μg/L μg/L							
Fluorene	ND ND	5.0	μg/L μg/L							
Hexachlorobenzene	ND ND	10	μg/L μg/L							
Hexachlorobutadiene	ND ND	10	μg/L μg/L							
Hexachlorocyclopentadiene	ND ND	10	μg/L μg/L							V-05
Hexachloroethane	ND ND	10	μg/L μg/L							4-03
ndeno(1,2,3-cd)pyrene	ND ND	5.0	μg/L μg/L							
sophorone	ND ND	10	μg/L μg/L							
-Methylnaphthalene		5.0	μg/L μg/L							
-Methylnaphthalene	ND ND	5.0	μg/L μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
atch B308671 - SW-846 3510C										
lank (B308671-BLK1)				Prepared: 05	5/18/22 Analy	yzed: 05/20/2	2			
-Methylphenol	ND	10	$\mu g/L$							
/4-Methylphenol	ND	10	μg/L							
aphthalene	ND	5.0	μg/L							
Nitroaniline	ND	10	μg/L							
Nitroaniline	ND	10	μg/L							
Nitroaniline	ND	10	μg/L							
itrobenzene	ND	10	$\mu g/L$							
Nitrophenol	ND	10	$\mu g/L$							
Nitrophenol	ND	10	$\mu g \! / \! L$							
-Nitrosodimethylamine	ND	10	μg/L							L-04
-Nitrosodiphenylamine/Diphenylamine	ND	10	μg/L							
-Nitrosodi-n-propylamine	ND	10	μg/L							
entachloronitrobenzene	ND	10	μg/L							
entachlorophenol	ND	10	$\mu g/L$							
nenanthrene	ND	5.0	μg/L							
nenol	ND	10	μg/L							
yrene	ND	5.0	μg/L							
yridine	ND	5.0	μg/L							
2,4,5-Tetrachlorobenzene	ND	10	μg/L							
2,4-Trichlorobenzene	ND	5.0	μg/L							
4,5-Trichlorophenol	ND	10	μg/L							
4,6-Trichlorophenol	ND	10	μg/L							
urrogate: 2-Fluorophenol	99.1		μg/L	200		49.5	15-110			
urrogate: Phenol-d6	66.1		μg/L	200		33.1	15-110			
urrogate: Nitrobenzene-d5	78.2		μg/L	100		78.2	30-130			
urrogate: 2-Fluorobiphenyl	88.6		μg/L	100		88.6	30-130			
urrogate: 2,4,6-Tribromophenol	196		μg/L	200		98.1	15-110			
urrogate: p-Terphenyl-d14	90.8		μg/L	100		90.8	30-130			
CS (B308671-BS1)				Prepared: 05	5/18/22 Analy	zed: 05/20/2	2			
cenaphthene	33.3	5.0	μg/L	50.0		66.5	40-140			
cenaphthylene	34.5	5.0	μg/L	50.0		69.1	40-140			
cetophenone	33.1	10	μg/L	50.0		66.1	40-140			
niline	31.9	5.0	μg/L	50.0		63.7	40-140			V-05
nthracene	37.6	5.0	μg/L	50.0		75.2	40-140			
enzidine	73.3	20	μg/L	50.0		147 *	40-140		I	L-02, V-04, V-0
enzo(a)anthracene	36.7	5.0	μg/L	50.0		73.4	40-140			V-35
enzo(a)pyrene	36.9	5.0	μg/L	50.0		73.8	40-140			
enzo(b)fluoranthene	38.5	5.0	μg/L	50.0		77.1	40-140			
enzo(g,h,i)perylene	36.6	5.0	μg/L	50.0		73.3	40-140			
enzo(k)fluoranthene	39.9	5.0	μg/L	50.0		79.7	40-140			
enzoic Acid	16.3	10	μg/L	50.0		32.7	10-130			
is(2-chloroethoxy)methane	32.5	10	μg/L	50.0		65.1	40-140			
is(2-chloroethyl)ether	26.2	10	μg/L	50.0		52.3	40-140			
is(2-chloroisopropyl)ether	29.0	10	μg/L	50.0		58.0	40-140			
s(2-Ethylhexyl)phthalate	33.1	10	μg/L	50.0		66.2	40-140			
is(2-Eurymexyr)phunarate	JJ.1		μg/L	50.0		76.2	40-140			
	39 1	10		20.0		, 5.2	.0 1 10			
Bromophenylphenylether	38.1	10 10		50.0		61.7	40-140			
Bromophenylphenylether utylbenzylphthalate	30.8	10	$\mu g/L$	50.0 50.0		61.7 74.4	40-140 40-140			
Bromophenylphenylether utylbenzylphthalate arbazole	30.8 37.2	10 10	μg/L μg/L	50.0		74.4	40-140			V 24
Bromophenylphenylether utylbenzylphthalate arbazole Chloroaniline	30.8 37.2 37.9	10 10 10	μg/L μg/L μg/L	50.0 50.0		74.4 75.8	40-140 40-140			V-34
Bromophenylphenylether atylbenzylphthalate arbazole	30.8 37.2	10 10	μg/L μg/L	50.0		74.4	40-140			V-34

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %l		REC mits 1	PD mit	Notes	
Batch B308671 - SW-846 3510C										
CS (B308671-BS1)				Prepared: 05	5/18/22 Analyzed:	05/20/22				
-Chlorophenol	29.7	10	μg/L	50.0	59	.4 30	-130			
-Chlorophenylphenylether	37.4	10	μg/L	50.0	74		-140			
Chrysene	36.1	5.0	$\mu g/L$	50.0	72	.1 40	-140			
Dibenz(a,h)anthracene	37.4	5.0	μg/L	50.0	74	.7 40	-140			
Dibenzofuran	39.7	5.0	μg/L	50.0	79	.4 40	-140			
i-n-butylphthalate	35.0	10	μg/L	50.0	70	.0 40	-140			
,2-Dichlorobenzene	29.6	5.0	μg/L	50.0	59	.3 40	-140			
,3-Dichlorobenzene	28.2	5.0	μg/L	50.0	56	.3 40	-140			
,4-Dichlorobenzene	28.9	5.0	μg/L	50.0	57	.7 40	-140			
,3-Dichlorobenzidine	42.8	10	μg/L	50.0	85	.5 40	-140			
,4-Dichlorophenol	35.6	10	μg/L	50.0	71	.1 30	-130			
Diethylphthalate	33.0	10	μg/L	50.0	66	.0 40	-140			
,4-Dimethylphenol	33.2	10	μg/L	50.0	66	.4 30	-130			
Dimethylphthalate	33.8	10	$\mu g/L$	50.0	67	.5 40	-140			
,6-Dinitro-2-methylphenol	34.1	10	$\mu \text{g/L}$	50.0	68	.2 30	-130			
,4-Dinitrophenol	26.7	10	$\mu g/L$	50.0	53	.3 30	-130			
,4-Dinitrotoluene	36.8	10	$\mu g/L$	50.0	73	.5 40	-140			
,6-Dinitrotoluene	37.5	10	$\mu g \! / \! L$	50.0	75	.0 40	-140			
Di-n-octylphthalate	31.2	10	μg/L	50.0	62	.5 40	-140			
,2-Diphenylhydrazine/Azobenzene	32.4	10	μg/L	50.0	64	.8 40	-140			
luoranthene	39.0	5.0	$\mu g/L$	50.0	78	.0 40	-140			
luorene	37.5	5.0	$\mu g/L$	50.0	75	.1 40	-140			
Iexachlorobenzene	40.3	10	μg/L	50.0	80	.7 40	-140			
Iexachlorobutadiene	33.9	10	μg/L	50.0	67	.9 40	-140			
Iexachlorocyclopentadiene	23.6	10	μg/L	50.0	47	.2 30	-140		V-05	
Iexachloroethane	26.0	10	μg/L	50.0	52	.1 40	-140			
ndeno(1,2,3-cd)pyrene	36.7	5.0	μg/L	50.0	73	.5 40	-140			
sophorone	35.9	10	μg/L	50.0	71	.8 40	-140			
-Methylnaphthalene	33.3	5.0	μg/L	50.0	66		-140			
-Methylnaphthalene	38.8	5.0	μg/L	50.0	77		-140			
-Methylphenol	29.7	10	μg/L	50.0	59		-130			
/4-Methylphenol	28.6	10	μg/L	50.0	57		-130			
Japhthalene	32.8	5.0	μg/L	50.0	65		-140			
-Nitroaniline	31.7	10	μg/L	50.0	63		-140			
-Nitroaniline	34.4	10	μg/L	50.0	68		-140			
-Nitroaniline	35.6	10	μg/L	50.0	71		-140			
litrobenzene	30.9	10	μg/L	50.0	61		-140			
-Nitrophenol	33.4	10	μg/L	50.0	66		-130			
-Nitrophenol	18.3	10	μg/L	50.0	36		-130			
l-Nitrosodimethylamine	17.7	10	μg/L	50.0	35		-140		L-04	
I-Nitrosodiphenylamine/Diphenylamine	39.0	10	μg/L	50.0	78		-140		LUI	
I-Nitrosodi-n-propylamine	31.0	10	μg/L	50.0	62		-140			
entachloronitrobenzene	40.4	10	μg/L	50.0	80		-140			
entachlorophenol	29.4	10	μg/L	50.0	58		-130			
henanthrene	37.1	5.0	μg/L μg/L	50.0	74		-140			
henol	15.9	10	μg/L μg/L	50.0	31		-140			
lyrene		5.0	μg/L μg/L	50.0	72		-130 -140			
yridine	36.1	5.0	μg/L μg/L	50.0	27		-140 -140			
,2,4,5-Tetrachlorobenzene	13.6	10	μg/L μg/L	50.0	76		-140 -140			
,2,4-Trichlorobenzene	38.0	5.0								
2,4,5-Trichlorophenol	33.6		μg/L μα/Ι	50.0	67		-140			
,4,5-11icnioropnenoi	40.1 37.7	10 10	μg/L μg/L	50.0 50.0	80 75		-130 -130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B308671 - SW-846 3510C											_
LCS (B308671-BS1)				Prepared: 05	/18/22 Anal	yzed: 05/20/2	22				_
Surrogate: 2-Fluorophenol	91.7		μg/L	200		45.9	15-110				_
Surrogate: Phenol-d6	63.0		$\mu g/L$	200		31.5	15-110				
Surrogate: Nitrobenzene-d5	67.1		$\mu g/L$	100		67.1	30-130				
Surrogate: 2-Fluorobiphenyl	82.0		$\mu g/L$	100		82.0	30-130				
Surrogate: 2,4,6-Tribromophenol	176		$\mu g/L$	200		88.0	15-110				
Surrogate: p-Terphenyl-d14	77.7		$\mu g/L$	100		77.7	30-130				
LCS Dup (B308671-BSD1)				Prepared: 05	/18/22 Anal	yzed: 05/20/2	22				_
Acenaphthene	33.2	5.0	μg/L	50.0		66.4	40-140	0.120	20		
Acenaphthylene	34.7	5.0	$\mu g \! / \! L$	50.0		69.5	40-140	0.578	20		
Acetophenone	33.8	10	$\mu g/L$	50.0		67.6	40-140	2.15	20		
Aniline	31.0	5.0	$\mu g/L$	50.0		62.1	40-140	2.64	50	V-05	
Anthracene	37.2	5.0	$\mu g/L$	50.0		74.4	40-140	1.12	20		
Benzidine	88.5	20	$\mu \text{g/L}$	50.0		177 *	40-140	18.8	20	L-02, V-04, V-05, V-35	
Benzo(a)anthracene	35.6	5.0	$\mu g/L$	50.0		71.3	40-140	2.96	20	v-33	
enzo(a)pyrene	36.8	5.0	$\mu g/L$	50.0		73.5	40-140	0.434	20		
Benzo(b)fluoranthene	38.1	5.0	$\mu g/L$	50.0		76.3	40-140	1.04	20		
Benzo(g,h,i)perylene	37.2	5.0	$\mu g/L$	50.0		74.5	40-140	1.62	20		
Benzo(k)fluoranthene	40.4	5.0	μg/L	50.0		80.7	40-140	1.22	20		
Benzoic Acid	12.2	10	μg/L	50.0		24.3	10-130	29.3	50		†
sis(2-chloroethoxy)methane	33.1	10	μg/L	50.0		66.2	40-140	1.68	20		
Bis(2-chloroethyl)ether	26.3	10	μg/L	50.0		52.6	40-140	0.457	20		
Bis(2-chloroisopropyl)ether	29.4	10	μg/L	50.0		58.9	40-140	1.51	20		
sis(2-Ethylhexyl)phthalate	32.4	10	$\mu g/L$	50.0		64.8	40-140	2.08	20		
-Bromophenylphenylether	37.4	10	$\mu g/L$	50.0		74.7	40-140	1.99	20		
Butylbenzylphthalate	30.5	10	μg/L	50.0		61.1	40-140	0.978	20		
Carbazole	37.1	10	$\mu g/L$	50.0		74.3	40-140	0.135	20		
-Chloroaniline	37.1	10	μg/L	50.0		74.3	40-140	2.00	20	V-34	
-Chloro-3-methylphenol	31.9	10	μg/L	50.0		63.8	30-130	0.283	20		
-Chloronaphthalene	33.3	10	μg/L	50.0		66.5	40-140	1.61	20		
-Chlorophenol	29.8	10	μg/L	50.0		59.6	30-130	0.370	20		
-Chlorophenylphenylether	37.4	10	μg/L	50.0		74.9	40-140	0.00	20		
Chrysene	35.4	5.0	μg/L	50.0		70.9	40-140	1.71	20		
Dibenz(a,h)anthracene	37.7	5.0	μg/L	50.0		75.3	40-140	0.773	20		
Dibenzofuran	39.4	5.0	μg/L	50.0		78.7	40-140	0.860	20		
Di-n-butylphthalate	34.7	10	μg/L	50.0		69.5	40-140	0.803	20		
,2-Dichlorobenzene	30.3	5.0	μg/L	50.0		60.6	40-140	2.20	20		
,3-Dichlorobenzene	28.7	5.0	μg/L	50.0		57.3	40-140	1.80	20		
,4-Dichlorobenzene	29.3	5.0	μg/L μg/L	50.0		58.6	40-140	1.41	20		
3-Dichlorobenzidine	41.4	10	μg/L	50.0		82.7	40-140	3.31	20		
,4-Dichlorophenol	35.4	10	μg/L μg/L	50.0		70.7	30-130	0.564	20		
Diethylphthalate	33.4	10	μg/L μg/L	50.0		66.7	40-140	0.994	20		
,4-Dimethylphenol	33.5	10	μg/L μg/L	50.0		67.0	30-130	0.990	20		
Dimethylphthalate	34.2	10	μg/L μg/L	50.0		68.5	40-140	1.44	50		
-6-Dinitro-2-methylphenol	34.2	10	μg/L μg/L	50.0		68.1	30-130	0.235	50		
,4-Dinitrophenol		10	μg/L μg/L	50.0		52.3	30-130	1.86	50		
,4-Dinitrotoluene	26.2	10	μg/L μg/L	50.0							
,4-Dinitrotoluene	37.4	10		50.0		74.8 78.1	40-140 40-140	1.75 4.02	20 20		
o-Dinitrototuene Di-n-octylphthalate	39.0	10	μg/L μg/I								
• •	31.8		μg/L	50.0		63.6	40-140	1.81	20		
,2-Diphenylhydrazine/Azobenzene	31.9	10 5.0	μg/L	50.0		63.8	40-140	1.52	20		
moranmene	38.5	5.0	μg/L	50.0		77.0	40-140	1.29	20		

Page 23 of 40

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308671 - SW-846 3510C										
LCS Dup (B308671-BSD1)				Prepared: 05	5/18/22 Analy	zed: 05/20	/22			
Hexachlorobenzene	39.2	10	$\mu g/L$	50.0		78.3	40-140	2.92	20	
Hexachlorobutadiene	35.3	10	$\mu g/L$	50.0		70.6	40-140	3.98	20	
Hexachlorocyclopentadiene	23.4	10	$\mu g/L$	50.0		46.9	30-140	0.595	50	V-05
Hexachloroethane	25.9	10	$\mu g/L$	50.0		51.9	40-140	0.385	50	
Indeno(1,2,3-cd)pyrene	37.0	5.0	$\mu g/L$	50.0		74.0	40-140	0.759	50	
Isophorone	35.8	10	$\mu g/L$	50.0		71.7	40-140	0.223	20	
1-Methylnaphthalene	33.9	5.0	$\mu g/L$	50.0		67.9	40-140	1.84	20	
2-Methylnaphthalene	39.2	5.0	$\mu g/L$	50.0		78.5	40-140	1.23	20	
2-Methylphenol	29.2	10	μg/L	50.0		58.4	30-130	1.80	20	
3/4-Methylphenol	28.0	10	μg/L	50.0		56.1	30-130	2.15	20	
Naphthalene	33.5	5.0	μg/L	50.0		67.0	40-140	2.20	20	
2-Nitroaniline	30.9	10	μg/L	50.0		61.9	40-140	2.43	20	
3-Nitroaniline	33.1	10	μg/L	50.0		66.2	40-140	3.91	20	
4-Nitroaniline	36.3	10	μg/L	50.0		72.5	40-140	1.72	20	
Nitrobenzene	31.8	10	μg/L	50.0		63.6	40-140	2.81	20	
2-Nitrophenol	33.9	10	μg/L	50.0		67.9	30-130	1.69	20	
4-Nitrophenol	18.1	10	μg/L	50.0		36.3	10-130	0.714	50	
N-Nitrosodimethylamine	18.2	10	μg/L	50.0		36.4		3.01	20	L-04
N-Nitrosodiphenylamine/Diphenylamine	38.6	10	μg/L μg/L	50.0		77.2	40-140	1.01	20	L-04
N-Nitrosodi-n-propylamine		10	μg/L μg/L	50.0		63.1	40-140	1.66	20	
Pentachloronitrobenzene	31.5	10		50.0						
Pentachlorophenol	41.5	10	μg/L			83.0	40-140	2.66	20	
-	28.6		μg/L	50.0		57.3	30-130	2.41	50	
Phenanthrene	36.5	5.0	μg/L	50.0		72.9	40-140	1.71	20	
Phenol	15.3	10	μg/L	50.0		30.5	20-130	3.98	20	
Pyrene	35.7	5.0	μg/L	50.0		71.4	40-140	1.14	20	
Pyridine	15.5	5.0	μg/L	50.0		31.0	10-140	13.4	50	
1,2,4,5-Tetrachlorobenzene	38.7	10	μg/L	50.0		77.5	40-140	1.82	20	
1,2,4-Trichlorobenzene	34.1	5.0	μg/L	50.0		68.3	40-140	1.48	20	
2,4,5-Trichlorophenol	39.2	10	μg/L	50.0		78.5	30-130	2.17	20	
2,4,6-Trichlorophenol	37.7	10	μg/L	50.0		75.3	30-130	0.0531	50	
Surrogate: 2-Fluorophenol	94.4		$\mu g/L$	200		47.2	15-110			
Surrogate: Phenol-d6	62.9		$\mu g/L$	200		31.4	15-110			
Surrogate: Nitrobenzene-d5	68.8		$\mu g/L$	100		68.8	30-130			
Surrogate: 2-Fluorobiphenyl	82.6		$\mu g/L$	100		82.6	30-130			
Surrogate: 2,4,6-Tribromophenol	177		$\mu g/L$	200		88.4	15-110			
Surrogate: p-Terphenyl-d14	77.2		$\mu g/L$	100		77.2	30-130			
Matrix Spike (B308671-MS1)	Sou	rce: 22E0996-	02	Prepared: 05	5/18/22 Analy	zed: 05/31	/22			
Acenaphthene	34.6	5.0	μg/L	50.0	ND	69.3	40-140			
Acenaphthylene	36.2	5.0	$\mu g/L$	50.0	ND	72.4	40-140			
Acetophenone	36.8	10	μg/L	50.0	ND		40-140			
Aniline	20.3	5.0	μg/L	50.0	ND		40-140			
Anthracene	39.2	5.0	μg/L	50.0	ND		40-140			
Benzidine	ND	20	μg/L	50.0	ND		* 40-140			MS-09, V-04,
Benzo(a)anthracene	38.8	5.0	μg/L	50.0	ND	77.6	40-140			V-05, V-35
Benzo(a)pyrene		5.0	μg/L μg/L	50.0	ND ND		40-140			
Benzo(b)fluoranthene	37.8	5.0	μg/L μg/L	50.0			40-140			
Benzo(g,h,i)perylene	39.4	5.0		50.0	ND		40-140			
Benzo(g,n,1)peryiene Benzo(k)fluoranthene	38.1		μg/L μg/I		ND					
	42.9	5.0	μg/L ug/I	50.0	ND		40-140			MC 00
Benzoic Acid	15.6	10	μg/L	50.0	ND	31.2	* 40-140			MS-09
		10	/T	50 O		70.0	40 140			
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	36.0 30.8	10 10	μg/L μg/L	50.0 50.0	ND ND		40-140 40-140			

Hexachloroethane

Isophorone

Indeno(1,2,3-cd)pyrene

1-Methylnaphthalene

2-Methylnaphthalene

2-Methylphenol

Naphthalene

2-Nitroaniline

3-Nitroaniline

4-Nitroaniline

Nitrobenzene

2-Nitrophenol

4-Nitrophenol

N-Nitrosodimethylamine

N-Nitrosodi-n-propylamine

Pentachloronitrobenzene

Pentachlorophenol

N-Nitrosodiphenylamine/Diphenylamine

3/4-Methylphenol

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

		reporting		Spike	Source		/UICLC		ICI D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B308671 - SW-846 3510C										
Matrix Spike (B308671-MS1)	Sour	ce: 22E0996-	02	Prepared: 05	5/18/22 Analy	zed: 05/31/2	22			
Bis(2-chloroisopropyl)ether	37.5	10	μg/L	50.0	ND	74.9	40-140			
Bis(2-Ethylhexyl)phthalate	42.0	10	$\mu g\!/\!L$	50.0	ND	84.0	40-140			
4-Bromophenylphenylether	39.1	10	$\mu g\!/\!L$	50.0	ND	78.1	40-140			
Butylbenzylphthalate	40.7	10	$\mu g\!/\!L$	50.0	ND	81.5	40-140			
Carbazole	39.3	10	$\mu g\!/\!L$	50.0	ND	78.5	40-140			
4-Chloroaniline	23.6	10	$\mu g\!/\!L$	50.0	ND	47.1	40-140			V-34
4-Chloro-3-methylphenol	35.9	10	$\mu g/L$	50.0	ND	71.8	30-130			
2-Chloronaphthalene	32.8	10	$\mu g\!/\!L$	50.0	ND	65.7	40-140			
2-Chlorophenol	31.6	10	$\mu g\!/\!L$	50.0	ND	63.2	30-130			
1-Chlorophenylphenylether	37.7	10	$\mu g\!/\!L$	50.0	ND	75.3	40-140			
Chrysene	37.7	5.0	$\mu g\!/\!L$	50.0	ND	75.5	40-140			
Dibenz(a,h)anthracene	40.1	5.0	$\mu g\!/\!L$	50.0	ND	80.2	40-140			
Dibenzofuran	41.2	5.0	$\mu g\!/\!L$	50.0	ND	82.3	40-140			
Di-n-butylphthalate	38.1	10	$\mu g\!/\!L$	50.0	ND	76.2	40-140			
,2-Dichlorobenzene	33.8	5.0	$\mu g\!/\!L$	50.0	ND	67.6	40-140			
,3-Dichlorobenzene	32.2	5.0	$\mu g\!/\!L$	50.0	ND	64.4	40-140			
,4-Dichlorobenzene	33.0	5.0	$\mu g\!/\!L$	50.0	ND	66.0	40-140			
3,3-Dichlorobenzidine	ND	10	$\mu g\!/\!L$	50.0	ND	*	40-140			MS-09
2,4-Dichlorophenol	36.9	10	$\mu g\!/\!L$	50.0	ND	73.9	30-130			
Diethylphthalate	36.4	10	$\mu g\!/\!L$	50.0	ND	72.8	40-140			
2,4-Dimethylphenol	36.4	10	$\mu g/L$	50.0	ND	72.8	30-130			
Dimethylphthalate	35.7	10	$\mu g/L$	50.0	ND	71.5	40-140			
1,6-Dinitro-2-methylphenol	27.6	10	$\mu g/L$	50.0	ND	55.2	30-130			
2,4-Dinitrophenol	16.4	10	$\mu g/L$	50.0	ND	32.8	30-130			V-05
2,4-Dinitrotoluene	39.8	10	$\mu g/L$	50.0	ND	79.5	40-140			
2,6-Dinitrotoluene	40.4	10	$\mu g/L$	50.0	ND	80.9	40-140			
Di-n-octylphthalate	38.8	10	$\mu \text{g/L}$	50.0	ND	77.6	40-140			
,2-Diphenylhydrazine/Azobenzene	35.1	10	$\mu g/L$	50.0	ND	70.1	40-140			
Fluoranthene	37.2	5.0	$\mu g/L$	50.0	ND	74.4	40-140			
Fluorene	39.1	5.0	$\mu g/L$	50.0	ND	78.1	40-140			
Hexachlorobenzene	39.8	10	$\mu g/L$	50.0	ND	79.6	40-140			
Hexachlorobutadiene	38.9	10	$\mu g\!/\!L$	50.0	ND	77.8	40-140			
Hexachlorocyclopentadiene	12.1	10	$\mu g\!/\!L$	50.0	ND	24.2 *	30-130			MS-09, V-
TT 11 d		1.0	/r							

10

5.0

10

5.0

5.0

10

10

5.0

10

10

10

10

10

10

10

10

10

10

10

 $\mu \text{g/L}$

 $\mu g \! / \! L$

 $\mu g \! / \! L$

 $\mu \text{g/L}$

 $\mu \text{g/L}$

 $\mu g \! / \! L$

 $\mu g \! / \! L$

 $\mu \text{g/L}$

 $\mu g \! / \! L$

 $\mu g \! / \! L$

μg/L

 $\mu g\!/\!L$

 $\mu g \! / \! L$

 $\mu g/L$

 $\mu g/L$

 $\mu g\!/\!L$

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

ND 60.8

ND

ND

ND

ND 85.1

ND 61.3

ND 59.7

ND

ND 71.2

ND

ND

ND

ND 70.9

ND 52.4

ND

ND

ND 71.8

ND

ND 65.8

73.2

80.9

72.1

74.4

51.6

61.5

72.0

39.4

82.0

82.7

40-140

40-140

40-140

40-140

40-140

30-130

30-130

40-140

40-140

40-140

40-140

40-140

30-130

30-130

40-140

40-140

40-140

40-140

30-130

30.4

36.6

40.5

36.1

42.5

30.7

29.8

37.2

35.6

25.8

30.8

36.0

35.4

26.2

19.7

41.0

35.9

41.3

32.9

MS-22

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B308671 - SW-846 3510C										
Matrix Spike (B308671-MS1)	Sou	rce: 22E0996-		Prepared: 05	5/18/22 Analyz	zed: 05/31	/22			
Phenanthrene	38.9	5.0	$\mu \text{g/L}$	50.0	ND	77.8	40-140			
Phenol	15.2	10	$\mu g/L$	50.0	ND	30.4	30-130			
Pyrene	46.1	5.0	$\mu \text{g/L}$	50.0	ND	92.2	40-140			
Pyridine	14.6	5.0	$\mu g/L$	50.0	ND	29.1	* 40-140			MS-09
,2,4,5-Tetrachlorobenzene	38.8	10	$\mu g/L$	50.0	ND	77.6	40-140			
,2,4-Trichlorobenzene	36.9	5.0	$\mu g/L$	50.0	ND	73.8	40-140			
2,4,5-Trichlorophenol	40.7	10	μg/L	50.0	ND	81.5	30-130			
,4,6-Trichlorophenol	38.4	10	μg/L	50.0	ND	76.8	30-130			
Surrogate: 2-Fluorophenol	92.5		$\mu g/L$	200		46.3	15-110			
Surrogate: Phenol-d6	64.9		$\mu g/L$	200		32.5	15-110			
Surrogate: Nitrobenzene-d5	78.2		$\mu g/L$	100		78.2	30-130			
Surrogate: 2-Fluorobiphenyl	84.4		$\mu g/L$	100		84.4	30-130			
Surrogate: 2,4,6-Tribromophenol	178		$\mu g/L$	200		89.0	15-110			
urrogate: p-Terphenyl-d14	101		$\mu g/L$	100		101	30-130			
Matrix Spike Dup (B308671-MSD1)	Sou	rce: 22E0996-	02	Prepared: 05	5/18/22 Analyz	zed: 05/31	/22			
cenaphthene	33.7	5.0	μg/L	50.0	ND	67.3	40-140	2.84	30	
Acenaphthylene	35.1	5.0	$\mu \text{g/L}$	50.0	ND	70.2	40-140	3.06	30	
cetophenone	36.2	10	$\mu \text{g}/L$	50.0	ND	72.3	40-140	1.89	30	
niline	22.2	5.0	$\mu \text{g}/L$	50.0	ND	44.5	40-140	9.07	30	
Anthracene	38.1	5.0	$\mu \text{g}/L$	50.0	ND	76.2	40-140	2.77	30	
enzidine	ND	20	$\mu g/L$	50.0	ND		* 40-140	NC	30	MS-09, V-04 V-05, V-35
enzo(a)anthracene	38.4	5.0	$\mu \text{g}/L$	50.0	ND	76.7	40-140	1.12	30	
enzo(a)pyrene	37.6	5.0	$\mu \text{g/L}$	50.0	ND	75.3	40-140	0.451	30	
enzo(b)fluoranthene	39.7	5.0	$\mu g \! / \! L$	50.0	ND	79.5	40-140	0.859	30	
enzo(g,h,i)perylene	34.9	5.0	μg/L	50.0	ND	69.7	40-140	8.96	30	
enzo(k)fluoranthene	42.7	5.0	$\mu \text{g/L}$	50.0	ND	85.3	40-140	0.561	30	
Benzoic Acid	17.1	10	$\mu \text{g/L}$	50.0	ND	34.2	* 40-140	9.05	30	MS-09
is(2-chloroethoxy)methane	35.0	10	$\mu \text{g/L}$	50.0	ND	70.1	40-140	2.76	30	
is(2-chloroethyl)ether	31.2	10	$\mu \text{g/L}$	50.0	ND	62.5	40-140	1.58	30	
sis(2-chloroisopropyl)ether	38.9	10	$\mu \text{g}/L$	50.0	ND	77.9	40-140	3.85	30	
Bis(2-Ethylhexyl)phthalate	41.0	10	$\mu \text{g}/L$	50.0	ND	82.1	40-140	2.31	30	
-Bromophenylphenylether	37.4	10	$\mu \text{g}/L$	50.0	ND	74.7	40-140	4.48	30	
Butylbenzylphthalate	39.5	10	$\mu \text{g}/L$	50.0	ND	79.0	40-140	3.14	30	
Carbazole	39.5	10	$\mu \text{g/L}$	50.0	ND	79.1	40-140	0.711	30	
-Chloroaniline	23.5	10	$\mu \text{g/L}$	50.0	ND	47.0	40-140	0.212	30	V-34
-Chloro-3-methylphenol	34.2	10	$\mu \text{g}/L$	50.0	ND	68.4	30-130	4.85	30	
-Chloronaphthalene	36.0	10	$\mu \text{g}/L$	50.0	ND	71.9	40-140	9.07	30	
-Chlorophenol	31.1	10	$\mu \text{g/L}$	50.0	ND	62.2	30-130	1.63	30	
-Chlorophenylphenylether	36.5	10	$\mu \text{g}/L$	50.0	ND	72.9	40-140	3.21	30	
Chrysene	38.2	5.0	$\mu \text{g/L}$	50.0	ND	76.3	40-140	1.11	30	
Dibenz(a,h)anthracene	36.2	5.0	$\mu \text{g/L}$	50.0	ND	72.5	40-140	10.1	30	
Dibenzofuran	39.4	5.0	$\mu \text{g/L}$	50.0	ND	78.8	40-140	4.32	30	
Di-n-butylphthalate	36.0	10	$\mu \text{g/L}$	50.0	ND	72.0	40-140	5.56	30	
,2-Dichlorobenzene	33.0	5.0	$\mu \text{g/L}$	50.0	ND	66.1	40-140	2.21	30	
,3-Dichlorobenzene	31.0	5.0	$\mu \text{g/L}$	50.0	ND	62.1	40-140	3.61	30	
,4-Dichlorobenzene	32.3	5.0	$\mu \text{g/L}$	50.0	ND	64.6	40-140	2.08	30	
,3-Dichlorobenzidine	ND	10	$\mu \text{g/L}$	50.0	ND		* 40-140	NC	30	MS-09
,4-Dichlorophenol	35.3	10	$\mu \text{g/L}$	50.0	ND	70.7	30-130	4.40	30	
Diethylphthalate	36.3	10	$\mu \text{g/L}$	50.0	ND	72.6	40-140	0.220	30	
,4-Dimethylphenol	34.9	10	$\mu \text{g}/L$	50.0	ND	69.7	30-130	4.35	30	
imethylphthalate	35.1	10	μg/L	50.0	ND	70.2	40-140	1.86	30	

Page 26 of 40

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B308671 - SW-846 3510C										
Matrix Spike Dup (B308671-MSD1)	Sour	rce: 22E0996-	02	Prepared: 05	5/18/22 Analyz	zed: 05/31/	/22			
4,6-Dinitro-2-methylphenol	27.7	10	$\mu g \! / \! L$	50.0	ND	55.3	30-130	0.181	30	
2,4-Dinitrophenol	18.6	10	μg/L	50.0	ND	37.2	30-130	12.5	30	V-05
2,4-Dinitrotoluene	38.3	10	μg/L	50.0	ND	76.6	40-140	3.77	30	
2,6-Dinitrotoluene	39.6	10	μg/L	50.0	ND	79.1	40-140	2.20	30	
Di-n-octylphthalate	36.3	10	μg/L	50.0	ND	72.6	40-140	6.61	30	
1,2-Diphenylhydrazine/Azobenzene	35.2	10	μg/L	50.0	ND	70.4	40-140	0.399	30	
Fluoranthene	36.8	5.0	μg/L	50.0	ND	73.6	40-140	1.00	30	
Fluorene	38.6	5.0	μg/L	50.0	ND	77.3	40-140	1.06	30	
Hexachlorobenzene	37.5	10	μg/L	50.0	ND	75.0	40-140	5.98	30	
Hexachlorobutadiene	36.7	10	μg/L	50.0	ND	73.4	40-140	5.90	30	
Hexachlorocyclopentadiene	12.1	10	μg/L	50.0	ND	24.2	30-130	0.165	30	MS-09, V-05
Hexachloroethane	31.1	10	μg/L	50.0	ND	62.1	40-140	2.25	30	
Indeno(1,2,3-cd)pyrene	34.6	5.0	μg/L	50.0	ND	69.2	40-140	5.56	30	
sophorone	39.3	10	$\mu g\!/\!L$	50.0	ND	78.7	40-140	2.83	30	
1-Methylnaphthalene	34.3	5.0	$\mu g\!/\!L$	50.0	ND	68.7	40-140	4.92	30	
2-Methylnaphthalene	40.0	5.0	$\mu g\!/\!L$	50.0	ND	79.9	40-140	6.25	30	
2-Methylphenol	30.8	10	μg/L	50.0	ND	61.7	30-130	0.520	30	
3/4-Methylphenol	29.6	10	$\mu \text{g/L}$	50.0	ND	59.3	30-130	0.639	30	
Naphthalene	35.6	5.0	μg/L	50.0	ND	71.2	40-140	4.34	30	
2-Nitroaniline	36.4	10	μg/L	50.0	ND	72.9	40-140	2.25	30	
3-Nitroaniline	25.7	10	$\mu \text{g/L}$	50.0	ND	51.5	40-140	0.310	30	
4-Nitroaniline	32.5	10	$\mu \text{g/L}$	50.0	ND	65.0	40-140	5.44	30	
Nitrobenzene	36.6	10	$\mu g\!/\!L$	50.0	ND	73.2	40-140	1.65	30	
2-Nitrophenol	34.8	10	$\mu g\!/\!L$	50.0	ND	69.6	30-130	1.77	30	
4-Nitrophenol	25.4	10	$\mu g\!/\!L$	50.0	ND	50.8	30-130	3.10	30	
N-Nitrosodimethylamine	21.6	10	$\mu g\!/\!L$	50.0	ND	43.2	40-140	9.10	30	
N-Nitrosodiphenylamine/Diphenylamine	40.2	10	$\mu g\!/\!L$	50.0	ND	80.5	40-140	1.87	30	
N-Nitrosodi-n-propylamine	36.4	10	$\mu g\!/\!L$	50.0	ND	72.9	40-140	1.47	30	
Pentachloronitrobenzene	40.5	10	$\mu \text{g/L}$	50.0	ND	80.9	40-140	2.13	30	
Pentachlorophenol	32.2	10	μg/L	50.0	ND	64.5	30-130	2.00	30	V-05
Phenanthrene	38.4	5.0	$\mu g\!/\!L$	50.0	ND	76.8	40-140	1.27	30	
Phenol	15.4	10	$\mu \text{g/L}$	50.0	ND	30.8	30-130	1.50	30	
Pyrene	42.7	5.0	$\mu \text{g/L}$	50.0	ND	85.4	40-140	7.70	30	
Pyridine	15.9	5.0	$\mu \text{g/L}$	50.0	ND	31.8	40-140	8.92	30	MS-09
1,2,4,5-Tetrachlorobenzene	37.0	10	$\mu \text{g/L}$	50.0	ND	73.9	40-140	4.86	30	
1,2,4-Trichlorobenzene	35.2	5.0	$\mu \text{g/L}$	50.0	ND	70.4	40-140	4.72	30	
2,4,5-Trichlorophenol	40.0	10	$\mu \text{g/L}$	50.0	ND	80.1	30-130	1.68	30	
2,4,6-Trichlorophenol	37.8	10	$\mu g/L$	50.0	ND	75.7	30-130	1.52	30	
Surrogate: 2-Fluorophenol	90.4		μg/L	200		45.2	15-110			
Surrogate: Phenol-d6	64.6		$\mu g/L$	200		32.3	15-110			
Surrogate: Nitrobenzene-d5	76.9		$\mu g/L$	100		76.9	30-130			
Surrogate: 2-Fluorobiphenyl	82.5		$\mu g/L$	100		82.5	30-130			
Surrogate: 2,4,6-Tribromophenol	175		$\mu g/L$	200		87.3	15-110			
Surrogate: p-Terphenyl-d14	93.5		μg/L	100		93.5	30-130			

Notes

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Limit

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Units

Reporting

Limit

Result

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch B308767 - SW-846 3510C										
Blank (B308767-BLK1)				Prepared: 05	5/19/22 Anal	yzed: 05/24/2	22			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	$\mu g/L$							
Acetophenone	ND	10	$\mu g/L$							R-05
Aniline	ND	5.0	$\mu g/L$							V-05
Anthracene	ND	5.0	$\mu g/L$							
Benzidine	ND	20	$\mu g/L$							V-04, V-05, V-35
Benzo(a)anthracene	ND	5.0	$\mu g/L$							
Benzo(a)pyrene	ND	5.0	$\mu g/L$							
Benzo(b)fluoranthene	ND	5.0	$\mu g/L$							
Benzo(g,h,i)perylene	ND	5.0	$\mu g/L$							
Benzo(k)fluoranthene	ND	5.0	$\mu g/L$							
Benzoic Acid	ND	10	$\mu g/L$							
Bis(2-chloroethoxy)methane	ND	10	$\mu g/L$							
Bis(2-chloroethyl)ether	ND	10	$\mu g/L$							R-05
Bis(2-chloroisopropyl)ether	ND	10	$\mu g/L$							R-05
Bis(2-Ethylhexyl)phthalate	ND	10	$\mu g/L$							
4-Bromophenylphenylether	ND	10	$\mu g/L$							
Butylbenzylphthalate	ND	10	$\mu g/L$							
Carbazole	ND	10	$\mu g/L$							
4-Chloroaniline	ND	10	$\mu g/L$							V-34
4-Chloro-3-methylphenol	ND	10	$\mu g/L$							
2-Chloronaphthalene	ND	10	$\mu g/L$							
2-Chlorophenol	ND	10	$\mu g/L$							
4-Chlorophenylphenylether	ND	10	$\mu g/L$							
Chrysene	ND	5.0	$\mu g/L$							
Dibenz(a,h)anthracene	ND	5.0	$\mu g/L$							
Dibenzofuran	ND	5.0	$\mu g/L$							
Di-n-butylphthalate	ND	10	$\mu g/L$							
1,2-Dichlorobenzene	ND	5.0	$\mu g/L$							R-05
1,3-Dichlorobenzene	ND	5.0	$\mu g/L$							L-04, R-05
1,4-Dichlorobenzene	ND	5.0	$\mu g/L$							R-05
3,3-Dichlorobenzidine	ND	10	$\mu g/L$							
2,4-Dichlorophenol	ND	10	$\mu g/L$							
Diethylphthalate	ND	10	$\mu g/L$							
2,4-Dimethylphenol	ND	10	$\mu g/L$							
Dimethylphthalate	ND	10	$\mu g/L$							
4,6-Dinitro-2-methylphenol	ND	10	$\mu g/L$							
2,4-Dinitrophenol	ND	10	$\mu g/L$							
2,4-Dinitrotoluene	ND	10	$\mu g/L$							
2,6-Dinitrotoluene	ND	10	$\mu g/L$							
Di-n-octylphthalate	ND	10	$\mu g/L$							
1,2-Diphenylhydrazine/Azobenzene	ND	10	$\mu g/L$							
Fluoranthene	ND	5.0	$\mu g/L$							
Fluorene	ND	5.0	$\mu g/L$							
Hexachlorobenzene	ND	10	$\mu g/L$							
Hexachlorobutadiene	ND	10	$\mu g/L$							
Hexachlorocyclopentadiene	ND	10	$\mu g/L$							L-04, V-05
Hexachloroethane	ND	10	$\mu g/L$							L-04
Indeno(1,2,3-cd)pyrene	ND	5.0	$\mu g/L$							
Isophorone	ND	10	$\mu g/L$							
1-Methylnaphthalene	ND	5.0	μg/L							
2-Methylnaphthalene	ND	5.0	μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
eatch B308767 - SW-846 3510C										
lank (B308767-BLK1)				Prepared: 05	/19/22 Anal	yzed: 05/24/2	.2			
-Methylphenol	ND	10	$\mu g/L$							
/4-Methylphenol	ND	10	μg/L							
aphthalene	ND	5.0	μg/L							
Nitroaniline	ND	10	μg/L							
Nitroaniline	ND	10	μg/L							
Nitroaniline	ND	10	μg/L							
itrobenzene	ND	10	μg/L							R-05
Nitrophenol	ND	10	$\mu g/L$							R-05
Nitrophenol	ND	10	$\mu g \! / \! L$							
-Nitrosodimethylamine	ND	10	μg/L							L-04, R-05
-Nitrosodiphenylamine/Diphenylamine	ND	10	μg/L							
-Nitrosodi-n-propylamine	ND	10	μg/L							R-05
entachloronitrobenzene	ND	10	μg/L							
entachlorophenol	ND	10	$\mu g/L$							
enanthrene	ND	5.0	μg/L							
nenol	ND	10	μg/L							
yrene	ND	5.0	μg/L							
vridine	ND	5.0	μg/L							
2,4,5-Tetrachlorobenzene	ND	10	μg/L							
2,4-Trichlorobenzene	ND	5.0	μg/L							
4,5-Trichlorophenol	ND	10	μg/L							
4,6-Trichlorophenol	ND	10	μg/L							
irrogate: 2-Fluorophenol	75.4		μg/L	200		37.7	15-110			
irrogate: Phenol-d6	50.8		μg/L	200		25.4	15-110			
rrogate: Nitrobenzene-d5	63.5		μg/L	100		63.5	30-130			
urrogate: 2-Fluorobiphenyl	68.2		μg/L μg/L	100		68.2	30-130			
urrogate: 2,4,6-Tribromophenol	188		μg/L	200		94.0	15-110			
irrogate: p-Terphenyl-d14	85.2		μg/L μg/L	100		85.2	30-130			
CS (B308767-BS1)				Prepared: 05	/19/22 Anal					
cenaphthene	29.2	5.0	μg/L	50.0	, 1), 22	58.4	40-140			
cenaphthylene	31.4	5.0	μg/L	50.0		62.7	40-140			
cetophenone	27.0	10	μg/L	50.0		53.9	40-140			R-05
niline	32.1	5.0	μg/L	50.0		64.1	40-140			V-05
nthracene	36.7	5.0	μg/L	50.0		73.4	40-140			V-03
enzidine	105	20	μg/L μg/L	50.0		210 *	40-140			L-02, V-04, V-05
										V-35
enzo(a)anthracene	36.5	5.0	μg/L	50.0		72.9	40-140			
enzo(a)pyrene	37.7	5.0	μg/L	50.0		75.5	40-140			
enzo(b)fluoranthene	37.8	5.0	μg/L	50.0		75.5	40-140			
enzo(g,h,i)perylene	37.1	5.0	μg/L	50.0		74.1	40-140			
enzo(k)fluoranthene	40.2	5.0	μg/L	50.0		80.4	40-140			
enzoic Acid	7.47	10	μg/L	50.0		14.9	10-130			
s(2-chloroethoxy)methane	27.1	10	μg/L	50.0		54.3	40-140			
s(2-chloroethyl)ether	19.9	10	μg/L	50.0		39.8 *	40-140			L-07A
is(2-chloroisopropyl)ether	23.9	10	μg/L	50.0		47.8	40-140			R-05
s(2-Ethylhexyl)phthalate	38.5	10	μg/L	50.0		77.0	40-140			
Bromophenylphenylether	35.5	10	μg/L	50.0		71.0	40-140			
utylbenzylphthalate	35.4	10	μg/L	50.0		70.8	40-140			
arbazole	37.1	10	μg/L	50.0		74.2	40-140			
Chloroaniline	42.1	10	$\mu g/L$	50.0		84.2	40-140			V-34
Chloro-3-methylphenol	32.5	10	$\mu g/L$	50.0		64.9	30-130			
Chloronaphthalene	29.2	10	$\mu g/L$	50.0		58.4	40-140			
									F	age 29 of

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD Limi	
Batch B308767 - SW-846 3510C								
LCS (B308767-BS1)				Prepared: 05	5/19/22 Analyzed: 05/24	22		
2-Chlorophenol	22.8	10	μg/L	50.0	45.6	30-130		
-Chlorophenylphenylether	35.7	10	μg/L	50.0	71.3	40-140		
Chrysene	35.9	5.0	μg/L	50.0	71.7	40-140		
Dibenz(a,h)anthracene	37.6	5.0	μg/L	50.0	75.2	40-140		
Dibenzofuran	36.0	5.0	$\mu g/L$	50.0	71.9	40-140		
Di-n-butylphthalate	37.5	10	$\mu g/L$	50.0	74.9	40-140		
,2-Dichlorobenzene	17.4	5.0	$\mu g/L$	50.0	34.9	40-140		L-07A
,3-Dichlorobenzene	16.0	5.0	$\mu g/L$	50.0	32.1	40-140		L-04, R-05
,4-Dichlorobenzene	16.3	5.0	$\mu g/L$	50.0	32.6	40-140		L-07A
,3-Dichlorobenzidine	43.0	10	$\mu g/L$	50.0	85.9	40-140		
,4-Dichlorophenol	30.6	10	$\mu g/L$	50.0	61.2	30-130		
Diethylphthalate	36.2	10	$\mu g/L$	50.0	72.5	40-140		
,4-Dimethylphenol	30.3	10	$\mu g/L$	50.0	60.6	30-130		
Dimethylphthalate	35.0	10	$\mu g/L$	50.0	70.1	40-140		
,6-Dinitro-2-methylphenol	33.6	10	$\mu g/L$	50.0	67.2	30-130		
2,4-Dinitrophenol	23.6	10	$\mu g/L$	50.0	47.2	30-130		
2,4-Dinitrotoluene	38.4	10	μg/L	50.0	76.9	40-140		
2,6-Dinitrotoluene	38.1	10	μg/L	50.0	76.2	40-140		
Di-n-octylphthalate	37.0	10	μg/L	50.0	73.9	40-140		
,2-Diphenylhydrazine/Azobenzene	32.3	10	μg/L	50.0	64.7	40-140		
luoranthene	38.6	5.0	μg/L	50.0	77.3	40-140		
luorene	36.2	5.0	μg/L	50.0	72.4	40-140		
Iexachlorobenzene	37.3	10	μg/L	50.0	74.7	40-140		
Iexachlorobutadiene	19.9	10	μg/L	50.0	39.8			L-07
Iexachlorocyclopentadiene	12.6	10	μg/L	50.0	25.3			L-04, V-05
Jexachloroethane	15.0	10	μg/L	50.0	29.9			L-04
ndeno(1,2,3-cd)pyrene	36.3	5.0	μg/L	50.0	72.5	40-140		20.
sophorone	32.9	10	μg/L	50.0	65.8	40-140		
-Methylnaphthalene	27.2	5.0	μg/L	50.0	54.4	40-140		
-Methylnaphthalene	30.9	5.0	μg/L	50.0	61.8	40-140		
-Methylphenol	25.7	10	μg/L μg/L	50.0	51.4	30-130		
/4-Methylphenol	25.9	10	μg/L μg/L	50.0	51.9	30-130		
Vaphthalene		5.0	μg/L μg/L	50.0	45.6	40-140		
2-Nitroaniline	22.8	10	μg/L μg/L	50.0	67.1	40-140		
-Nitroaniline	33.6	10	μg/L μg/L	50.0	79.6	40-140		
-Nitroaniline	39.8	10	μg/L μg/L					
litrobenzene	41.4	10		50.0	82.8	40-140		D 05
-Nitrophenol	25.0		μg/L	50.0	50.0	40-140		R-05
	25.2	10	μg/L	50.0	50.4	30-130		R-05
-Nitrophenol	19.0	10	μg/L	50.0	38.1	10-130		I 04 D 05
N-Nitrosodimethylamine	15.2	10	μg/L	50.0	30.3			L-04, R-05
J-Nitrosodiphenylamine/Diphenylamine	37.6	10	μg/L	50.0	75.3	40-140		n 0.5
I-Nitrosodi-n-propylamine	28.1	10	μg/L	50.0	56.2	40-140		R-05
entachloronitrobenzene	39.8	10	μg/L	50.0	79.6	40-140		
entachlorophenol	27.9	10	μg/L	50.0	55.8	30-130		
Phenanthrene	35.8	5.0	μg/L	50.0	71.5	40-140		
Phenol	13.4	10	μg/L	50.0	26.9	20-130		
Pyrene	36.2	5.0	μg/L	50.0	72.3	40-140		
Pyridine	11.3	5.0	μg/L	50.0	22.6	10-140		
,2,4,5-Tetrachlorobenzene	30.7	10	μg/L	50.0	61.3	40-140		
,2,4-Trichlorobenzene	21.7	5.0	μg/L	50.0	43.4	40-140		
2,4,5-Trichlorophenol	38.0	10	μg/L	50.0	75.9	30-130		
2,4,6-Trichlorophenol	36.0	10	$\mu g/L$	50.0	72.1	30-130		

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B308767 - SW-846 3510C											
LCS (B308767-BS1)				Prepared: 05	/19/22 Anal	yzed: 05/24/2	22				
Surrogate: 2-Fluorophenol	66.4		μg/L	200		33.2	15-110				_
Surrogate: Phenol-d6	54.1		$\mu g/L$	200		27.0	15-110				
Surrogate: Nitrobenzene-d5	53.7		μg/L	100		53.7	30-130				
Surrogate: 2-Fluorobiphenyl	70.5		$\mu g/L$	100		70.5	30-130				
urrogate: 2,4,6-Tribromophenol	174		μg/L	200		87.1	15-110				
urrogate: p-Terphenyl-d14	80.0		μg/L	100		80.0	30-130				
.CS Dup (B308767-BSD1)				Prepared: 05	/19/22 Anal	yzed: 05/24/2	22				
cenaphthene	32.2	5.0	μg/L	50.0		64.3	40-140	9.65	20		
cenaphthylene	34.3	5.0	μg/L	50.0		68.5	40-140	8.81	20		
cetophenone	33.5	10	μg/L	50.0		67.0	40-140	21.6	* 20	R-05	
Aniline	38.1	5.0	μg/L	50.0		76.2	40-140	17.1	50	V-05	
Anthracene	38.4	5.0	μg/L	50.0		76.8	40-140	4.61	20		_
enzidine	109	20	μg/L	50.0		217 *	40-140	3.20	20	L-02, V-04, V-05 V-35	5,
enzo(a)anthracene	37.8	5.0	$\mu g/L$	50.0		75.5	40-140	3.53	20		
enzo(a)pyrene	40.0	5.0	$\mu g/L$	50.0		79.9	40-140	5.74	20		
enzo(b)fluoranthene	40.2	5.0	$\mu g/L$	50.0		80.3	40-140	6.21	20		
enzo(g,h,i)perylene	39.1	5.0	$\mu g/L$	50.0		78.2	40-140	5.33	20		
enzo(k)fluoranthene	42.5	5.0	μg/L	50.0		85.0	40-140	5.54	20		
enzoic Acid	7.39	10	μg/L	50.0		14.8	10-130	1.08	50		
is(2-chloroethoxy)methane	33.1	10	μg/L	50.0		66.2	40-140	19.8	20		
is(2-chloroethyl)ether	27.0	10	μg/L	50.0		53.9	40-140	30.0	* 20	R-05	
is(2-chloroisopropyl)ether	33.8	10	μg/L	50.0		67.5	40-140	34.2	* 20	R-05	
is(2-Ethylhexyl)phthalate	40.4	10	μg/L	50.0		80.8	40-140	4.87	20		
Bromophenylphenylether	36.0	10	μg/L	50.0		72.0	40-140	1.34	20		
utylbenzylphthalate	36.6	10	μg/L	50.0		73.2	40-140	3.31	20		
arbazole	39.7	10	μg/L	50.0		79.3	40-140	6.70	20		
Chloroaniline	41.4	10	μg/L	50.0		82.9	40-140	1.63	20	V-34	
Chloro-3-methylphenol	35.5	10	μg/L	50.0		71.0	30-130	8.97	20		
-Chloronaphthalene	28.9	10	μg/L	50.0		57.8	40-140	1.03	20		
-Chlorophenol	27.6	10	μg/L	50.0		55.1	30-130	18.9	20		
-Chlorophenylphenylether	36.7	10	μg/L	50.0		73.4	40-140	2.85	20		
hrysene	37.3	5.0	μg/L	50.0		74.6	40-140	3.96	20		
ibenz(a,h)anthracene ibenzofuran	40.4	5.0 5.0	μg/L μα/Ι	50.0		80.8	40-140	7.23	20		
i-n-butylphthalate	38.9	10	μg/L μg/L	50.0		77.8	40-140	7.85	20		
2-Dichlorobenzene	40.0	5.0	μg/L μg/L	50.0 50.0		79.9 42.7	40-140 40-140	6.46 20.3	20 * 20	R-05	
3-Dichlorobenzene	21.4	5.0	μg/L μg/L	50.0		39.7 *		21.3			
,4-Dichlorobenzene	19.9	5.0	μg/L μg/L	50.0		41.0	40-140	22.8	* 20 * 20	L-04, R-05 R-05	
3-Dichlorobenzidine	20.5	10	μg/L μg/L	50.0		88.8	40-140	3.27	20	K-03	
4-Dichlorophenol	44.4 34.2	10	μg/L μg/L	50.0		68.4	30-130	11.1	20		
iethylphthalate	38.0	10	μg/L μg/L	50.0		76.1	40-140	4.90	20		
4-Dimethylphenol	33.5	10	μg/L μg/L	50.0		67.0	30-130	9.94	20		
imethylphthalate	33.3 37.3	10	μg/L μg/L	50.0		74.6	40-140	6.22	50		
6-Dinitro-2-methylphenol	35.2	10	μg/L	50.0		70.5	30-130	4.68	50		
4-Dinitrophenol	24.7	10	μg/L	50.0		49.4	30-130	4.60	50		
4-Dinitrotoluene	40.4	10	μg/L	50.0		80.8	40-140	5.00	20		
6-Dinitrotoluene	40.4	10	μg/L	50.0		79.9	40-140	4.84	20		
i-n-octylphthalate	40.0	10	μg/L	50.0		80.0	40-140	7.85	20		
2-Diphenylhydrazine/Azobenzene	36.8	10	μg/L	50.0		73.6	40-140	13.0	20		
luoranthene	40.4	5.0	μg/L	50.0		80.8	40-140	4.38	20		
luorene	38.3	5.0	μg/L	50.0		76.6	40-140	5.72	20		

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		- 1
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B308767 - SW-846 3510C											_
LCS Dup (B308767-BSD1)				Prepared: 05	5/19/22 Anal	yzed: 05/24/2	.2				
Hexachlorobenzene	38.5	10	μg/L	50.0		77.0	40-140	3.11	20		
Hexachlorobutadiene	23.2	10	$\mu g\!/\!L$	50.0		46.4	40-140	15.4	20		
Hexachlorocyclopentadiene	14.6	10	$\mu g\!/\!L$	50.0		29.1 *	30-140	14.1	50	L-04, V-05	† ‡
Hexachloroethane	18.6	10	$\mu g\!/\!L$	50.0		37.1 *	40-140	21.6	50	L-04	1
Indeno(1,2,3-cd)pyrene	38.8	5.0	$\mu g\!/\!L$	50.0		77.6	40-140	6.77	50		1
Isophorone	38.9	10	$\mu g\!/\!L$	50.0		77.7	40-140	16.6	20		
1-Methylnaphthalene	30.5	5.0	μg/L	50.0		61.1	40-140	11.5	20		
2-Methylnaphthalene	34.3	5.0	μg/L	50.0		68.7	40-140	10.5	20		
2-Methylphenol	29.9	10	μg/L	50.0		59.8	30-130	15.2	20		
3/4-Methylphenol	29.5	10	μg/L	50.0		59.1	30-130	13.0	20		
Naphthalene	27.5	5.0	$\mu g/L$	50.0		55.0	40-140	18.6	20		
2-Nitroaniline	38.6	10	$\mu g/L$	50.0		77.2	40-140	13.9	20		
3-Nitroaniline	38.6	10	$\mu g/L$	50.0		77.1	40-140	3.19	20		
4-Nitroaniline	40.7	10	μg/L	50.0		81.4	40-140	1.80	20		
Nitrobenzene	32.4	10	μg/L	50.0		64.7	40-140	25.6	* 20	R-05	
2-Nitrophenol	31.4	10	$\mu g/L$	50.0		62.8	30-130	21.8	* 20	R-05	
4-Nitrophenol	21.5	10	μg/L	50.0		43.1	10-130	12.2	50		† ‡
N-Nitrosodimethylamine	19.4	10	μg/L	50.0		38.7 *	40-140	24.3	* 20	L-04, R-05	
N-Nitrosodiphenylamine/Diphenylamine	39.6	10	μg/L	50.0		79.2	40-140	5.13	20		
N-Nitrosodi-n-propylamine	34.4	10	μg/L	50.0		68.9	40-140	20.2	* 20	R-05	
Pentachloronitrobenzene	40.4	10	μg/L	50.0		80.7	40-140	1.45	20		
Pentachlorophenol	29.8	10	μg/L	50.0		59.6	30-130	6.52	50		1
Phenanthrene	38.0	5.0	μg/L	50.0		75.9	40-140	5.97	20		
Phenol	15.4	10	μg/L	50.0		30.8	20-130	13.4	20		†
Pyrene	37.2	5.0	μg/L	50.0		74.4	40-140	2.89	20		
Pyridine	13.4	5.0	μg/L	50.0		26.7	10-140	17.0	50		† ‡
1,2,4,5-Tetrachlorobenzene	33.5	10	μg/L	50.0		67.1	40-140	8.94	20		
1,2,4-Trichlorobenzene	25.4	5.0	μg/L	50.0		50.9	40-140	15.9	20		
2,4,5-Trichlorophenol	41.3	10	μg/L	50.0		82.7	30-130	8.50	20		
2,4,6-Trichlorophenol	37.9	10	$\mu g/L$	50.0		75.9	30-130	5.14	50		‡
Surrogate: 2-Fluorophenol	82.1		μg/L	200		41.0	15-110				_
Surrogate: Phenol-d6	61.9		$\mu g/L$	200		30.9	15-110				
Surrogate: Nitrobenzene-d5	69.3		$\mu g/L$	100		69.3	30-130				
Surrogate: 2-Fluorobiphenyl	77.3		$\mu g/L$	100		77.3	30-130				
Surrogate: 2,4,6-Tribromophenol	178		$\mu g/L$	200		89.2	15-110				
Surrogate: p-Terphenyl-d14	81.5		μg/L	100		81.5	30-130				

QUALITY CONTROL

Metals Analyses (Dissolved) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B308748 - SW-846 3005A Dissolved										
Blank (B308748-BLK1)				Prepared: 05	/18/22 Analy	zed: 05/19/2	22			
Chromium	ND	1.0	μg/L							
Copper	ND	1.0	$\mu g\!/\!L$							
Nickel	ND	5.0	$\mu g/L$							
LCS (B308748-BS1)				Prepared: 05	/18/22 Analy	zed: 05/19/2	22			
Chromium	100	1.0	μg/L	100		100	80-120			
Copper	197	1.0	$\mu g\!/\!L$	200		98.5	80-120			
Nickel	96.6	5.0	$\mu g/L$	100		96.6	80-120			
Matrix Spike (B308748-MS1)	Sourc	e: 22E0996-	06	Prepared: 05	/18/22 Analy	zed: 05/19/2	22			
Chromium	29.5	1.2	μg/L	25.0	ND	118	75-125			
Copper	61.0	1.2	$\mu g\!/\!L$	50.0	0.772	120	75-125			
Nickel	32.7	6.2	$\mu g/L$	25.0	4.16	114	75-125			
Matrix Spike Dup (B308748-MSD1)	Sourc	e: 22E0996-	06	Prepared: 05	/18/22 Analy	zed: 05/24/2	22			
Chromium	29.2	1.2	μg/L	25.0	ND	117	75-125	0.984	20	
Copper	55.4	1.2	$\mu g\!/\!L$	50.0	0.772	109	75-125	9.59	20	
Nickel	26.2	6.2	μg/L	25.0	4.16	88.0	75-125	22.2	* 20	R-06

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.
MS-09	Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.
MS-22	Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is within method specified criteria.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
R-06	Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.
V-35	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 6020B in Water		
Chromium	CT,NH,NY,NC,ME,VA	
Copper	CT,NH,NY,NC,ME,VA	
Nickel	CT,NH,NY,NC,ME,VA	
SW-846 8270E in Soil		
Acenaphthene	CT,NY,NH,ME,NC,VA	
Acenaphthylene	CT,NY,NH,ME,NC,VA	
Acetophenone	NY,NH,ME,NC,VA	
Aniline	NY,NH,ME,NC,VA	
Anthracene	CT,NY,NH,ME,NC,VA	
Benzidine	CT,NY,NH,ME,NC,VA	
Benzo(a)anthracene	CT,NY,NH,ME,NC,VA	
Benzo(a)pyrene	CT,NY,NH,ME,NC,VA	
Benzo(b)fluoranthene	CT,NY,NH,ME,NC,VA	
Benzo(g,h,i)perylene	CT,NY,NH,ME,NC,VA	
Benzo(k)fluoranthene	CT,NY,NH,ME,NC,VA	
Benzoic Acid	NY,NH,ME,NC,VA	
Bis(2-chloroethoxy)methane	CT,NY,NH,ME,NC,VA	
Bis(2-chloroethyl)ether	CT,NY,NH,ME,NC,VA	
Bis(2-chloroisopropyl)ether	CT,NY,NH,ME,NC,VA	
Bis(2-Ethylhexyl)phthalate	CT,NY,NH,ME,NC,VA	
4-Bromophenylphenylether	CT,NY,NH,ME,NC,VA	
Butylbenzylphthalate	CT,NY,NH,ME,NC,VA	
Carbazole	NC	
4-Chloroaniline	CT,NY,NH,ME,NC,VA	
4-Chloro-3-methylphenol	CT,NY,NH,ME,NC,VA	
2-Chloronaphthalene	CT,NY,NH,NC,VA	
2-Chlorophenol	CT,NY,NH,ME,NC,VA	
4-Chlorophenylphenylether	CT,NY,NH,ME,NC,VA	
Chrysene	CT,NY,NH,ME,NC,VA	
Dibenz(a,h)anthracene	CT,NY,NH,ME,NC,VA	
Dibenzofuran	CT,NY,NH,ME,NC,VA	
Di-n-butylphthalate	CT,NY,NH,ME,NC,VA	
1,2-Dichlorobenzene	NY,NH,ME,NC,VA	
1,3-Dichlorobenzene	NY,NH,ME,NC,VA	
1,4-Dichlorobenzene	NY,NH,ME,NC,VA	
3,3-Dichlorobenzidine	CT,NY,NH,ME,NC,VA	
2,4-Dichlorophenol	CT,NY,NH,ME,NC,VA	
Diethylphthalate	CT,NY,NH,ME,NC,VA	
2,4-Dimethylphenol	CT,NY,NH,ME,NC,VA	
Dimethylphthalate	CT,NY,NH,ME,NC,VA	
4,6-Dinitro-2-methylphenol	CT,NY,NH,ME,NC,VA	
2,4-Dinitrophenol	CT,NY,NH,ME,NC,VA	
2,4-Dinitrotoluene	CT,NY,NH,ME,NC,VA	
2,6-Dinitrotoluene	CT,NY,NH,ME,NC,VA	
Di-n-octylphthalate	CT,NY,NH,ME,NC,VA	
1,2-Diphenylhydrazine/Azobenzene	NY,NH,ME,NC,VA	

CERTIFICATIONS

Certified Analyses included in this Report

Benzoic Acid

Bis(2-chloroethoxy)methane

Analyte	Certifications	
SW-846 8270E in Soil		
Fluoranthene	CT,NY,NH,ME,NC,VA	
Fluorene	NY,NH,ME,NC,VA	
Hexachlorobenzene	CT,NY,NH,ME,NC,VA	
Hexachlorobutadiene	CT,NY,NH,ME,NC,VA	
Hexachlorocyclopentadiene	CT,NY,NH,ME,NC,VA	
Hexachloroethane	CT,NY,NH,ME,NC,VA	
Indeno(1,2,3-cd)pyrene	CT,NY,NH,ME,NC,VA	
Isophorone	CT,NY,NH,ME,NC,VA	
1-Methylnaphthalene	NC	
2-Methylnaphthalene	CT,NY,NH,ME,NC,VA	
2-Methylphenol	CT,NY,NH,ME,NC,VA	
3/4-Methylphenol	CT,NY,NH,ME,NC,VA	
Naphthalene	CT,NY,NH,ME,NC,VA	
2-Nitroaniline	CT,NY,NH,ME,NC,VA	
3-Nitroaniline	CT,NY,NH,ME,NC,VA	
4-Nitroaniline	CT,NY,NH,ME,NC,VA	
Nitrobenzene	CT,NY,NH,ME,NC,VA	
2-Nitrophenol	CT,NY,NH,ME,NC,VA	
4-Nitrophenol	CT,NY,NH,ME,NC,VA	
N-Nitrosodimethylamine	CT,NY,NH,ME,NC,VA	
N-Nitrosodi-n-propylamine	CT,NY,NH,ME,NC,VA	
Pentachloronitrobenzene	NY,NC	
Pentachlorophenol	CT,NY,NH,ME,NC,VA	
Phenanthrene	CT,NY,NH,ME,NC,VA	
Phenol	CT,NY,NH,ME,NC,VA	
Pyrene	CT,NY,NH,ME,NC,VA	
Pyridine	CT,NY,NH,ME,NC,VA	
1,2,4,5-Tetrachlorobenzene	NY,NC	
1,2,4-Trichlorobenzene	CT,NY,NH,ME,NC,VA	
2,4,5-Trichlorophenol	CT,NY,NH,ME,NC,VA	
2,4,6-Trichlorophenol	CT,NY,NH,ME,NC,VA	
2-Fluorophenol	NC	
SW-846 8270E in Water		
Acenaphthene	CT,NY,NC,ME,NH,VA	
Acenaphthylene	CT,NY,NC,ME,NH,VA	
Acetophenone	NY,NC	
Aniline	CT,NY,NC,ME,VA	
Anthracene	CT,NY,NC,ME,NH,VA	
Benzidine	CT,NY,NC,ME,NH,VA	
Benzo(a)anthracene	CT,NY,NC,ME,NH,VA	
Benzo(a)pyrene	CT,NY,NC,ME,NH,VA	
Benzo(b)fluoranthene	CT,NY,NC,ME,NH,VA	
Benzo(g,h,i)perylene	CT,NY,NC,ME,NH,VA	
Benzo(k)fluoranthene	CT,NY,NC,ME,NH,VA	

NY,NC,ME,NH,VA

CT,NY,NC,ME,NH,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8270E in Water		
Bis(2-chloroethyl)ether	CT,NY,NC,ME,NH,VA	
Bis(2-chloroisopropyl)ether	CT,NY,NC,ME,NH,VA	
Bis(2-Ethylhexyl)phthalate	CT,NY,NC,ME,NH,VA	
4-Bromophenylphenylether	CT,NY,NC,ME,NH,VA	
Butylbenzylphthalate	CT,NY,NC,ME,NH,VA	
Carbazole	NC	
4-Chloroaniline	CT,NY,NC,ME,NH,VA	
4-Chloro-3-methylphenol	CT,NY,NC,ME,NH,VA	
2-Chloronaphthalene	CT,NY,NC,ME,NH,VA	
2-Chlorophenol	CT,NY,NC,ME,NH,VA	
4-Chlorophenylphenylether	CT,NY,NC,ME,NH,VA	
Chrysene	CT,NY,NC,ME,NH,VA	
Dibenz(a,h)anthracene	CT,NY,NC,ME,NH,VA	
Dibenzofuran	CT,NY,NC,ME,NH,VA	
Di-n-butylphthalate	CT,NY,NC,ME,NH,VA	
1,2-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
1,3-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
1,4-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
3,3-Dichlorobenzidine	CT,NY,NC,ME,NH,VA	
2,4-Dichlorophenol	CT,NY,NC,ME,NH,VA	
Diethylphthalate	CT,NY,NC,ME,NH,VA	
2,4-Dimethylphenol	CT,NY,NC,ME,NH,VA	
Dimethylphthalate	CT,NY,NC,ME,NH,VA	
4,6-Dinitro-2-methylphenol	CT,NY,NC,ME,NH,VA	
2,4-Dinitrophenol	CT,NY,NC,ME,NH,VA	
2,4-Dinitrotoluene	CT,NY,NC,ME,NH,VA	
2,6-Dinitrotoluene	CT,NY,NC,ME,NH,VA	
Di-n-octylphthalate	CT,NY,NC,ME,NH,VA	
1,2-Diphenylhydrazine/Azobenzene	NY,NC	
Fluoranthene	CT,NY,NC,ME,NH,VA	
Fluorene	NY,NC,ME,NH,VA	
Hexachlorobenzene	CT,NY,NC,ME,NH,VA	
Hexachlorobutadiene	CT,NY,NC,ME,NH,VA	
Hexachlorocyclopentadiene	CT,NY,NC,ME,NH,VA	
Hexachloroethane	CT,NY,NC,ME,NH,VA	
Indeno(1,2,3-cd)pyrene	CT,NY,NC,ME,NH,VA	
Isophorone	CT,NY,NC,ME,NH,VA	
1-Methylnaphthalene	NC	
2-Methylnaphthalene	CT,NY,NC,ME,NH,VA	
2-Methylphenol	CT,NY,NC,NH,VA	
3/4-Methylphenol	CT,NY,NC,NH,VA	
Naphthalene	CT,NY,NC,ME,NH,VA	
2-Nitroaniline	CT,NY,NC,ME,NH,VA	
3-Nitroaniline	CT,NY,NC,ME,NH,VA	
4-Nitroaniline	CT,NY,NC,ME,NH,VA	
Nitrobenzene	CT,NY,NC,ME,NH,VA	
2-Nitrophenol	CT,NY,NC,ME,NH,VA	Page 27

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8270E in Water		
4-Nitrophenol	CT,NY,NC,ME,NH,VA	
N-Nitrosodimethylamine	CT,NY,NC,ME,NH,VA	
N-Nitrosodi-n-propylamine	CT,NY,NC,ME,NH,VA	
Pentachloronitrobenzene	NC	
Pentachlorophenol	CT,NY,NC,ME,NH,VA	
Phenanthrene	CT,NY,NC,ME,NH,VA	
Phenol	CT,NY,NC,ME,NH,VA	
Pyrene	CT,NY,NC,ME,NH,VA	
Pyridine	CT,NY,NC,ME,NH,VA	
1,2,4,5-Tetrachlorobenzene	NY,NC	
1,2,4-Trichlorobenzene	CT,NY,NC,ME,NH,VA	
2,4,5-Trichlorophenol	CT,NY,NC,ME,NH,VA	
2,4,6-Trichlorophenol	CT,NY,NC,ME,NH,VA	
2-Fluorophenol	NC	

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2024
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Publile Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2023
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2023
RI	Rhode Island Department of Health	LAO00373	12/30/2022
NC	North Carolina Div. of Water Quality	652	12/31/2022
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2022
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2022
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2022
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2022

				http://www	.contestlai	bs.com					1	Doc # 38	31 Rev 2	_06262019)				
Con-test	Phone: 413-525-2332				CHAI	N OF CUSTO	NNY RECO	ORD	39 Spruc		0400	•							Page of
ANALYTICAL LABORATORY	Fax: 413-525-6405	,	AND A CASH CASH CASH CASH CASH CASH CASH CA	Sound the property property of					East Lon	igmeadow, A	WA UTUZ	8		ANALYS	IS REC	UESTE)		rage 01
	Email: info@contestlabs.com		7-Day		10-Day	-x 1	┨╲	of Constitution Assessment Production	Field Filter	initia selektritin de seka kirik de seka 1921		T			T 1	2025, 2.	T T		² Preservation Code
concar series	Goldman		PFAS 10-Day	(std)	Due Dat	P. 1004	l'o		Lab to Filt		ŀ				1 1				Courier Use Only
Address: 100 Grandyle		aintree.		ida a Aggresia					phospitals			<u></u>				- 1	1 1		Total Number Of:
Phone: (78/) - 3	**************************************	LATE TE SE	1-Day	[7]	3-Day		0		Field Filter	gwynddigdyng Hoenigs	HIRAKARIK	<	\perp						
Project Contract	Linzer		2-Day		4-Day		0		Lab to Fift	er		3,				1	1 1		VIALS
Project Location: V	- Puby LODINX					1000	ivery						SIR	l I	***************************************				GLASS
Project Number:	44-1130		Format:			PDF				EXCEL	X	, 5	-{ &					1	PLASTIC
Project Manager:	Watt Pemiter		Other:									\circ	2 0						BACTERIA
Con-Test Quote Name/Number:			CLP Like Dat	a Pkg Required	1: 1							- <u>z</u>	ें ह	1					ENCORE
Invoice Recipient: / / /	att Pervotti		Email To:	Mux	1 12	1011	´					-3	7 3				1 1		
Sampled By:	att pervotti		Fax To #:									19055	7 7	1					Glassware in the fridge?
Con-Test Work Order#	Client Sample ID / Description	Date/ Fine	Ending -Sete/Time	COMP/GRAB	¹ Matrix Code	Conc Code	VIALS	GLASS	PLASTIC	BACTERIA E	NCORE	9	3 5						Y N
1	MW-2	05/11/20	n 1150	Gab	6-n	10			"X"										Glassware in freezer? Y / N
2	MW-23	05/11/20	W1430		l	1		Χ					$ \times $						Prepackaged Cooler? Y / N
3	MW-21 "	05/11/20	24 1535					×					\perp_{X}						*Contest is not responsible for
4	MW-19	05/11/20	22/6/0					×	-				X				T		missing samples from prepacke coolers
9	MW-W ··	05/12/2	2209.51			11.		X					7				1 1		¹ Matrix Codes:
t t	MW-12	05/12/20				$\Box I$			×		***************************************	X							GW = Ground Water WW = Waste Water
7	MW-12	05/12/20		16	11/	Chr			1 × 1			X							DW = Drinking Water
-	nskn50	Stiller		5 Y	#			X				-+	1				+		A = Air S = Soil
	ns/m 50	5/n/2m	11:40		1				又			X	+				++		SL = Sludge SOL = Solid
	11/2/11/0). 42	112-10		-			1				4	-			-	++	_	O = Other (please define)
Relinguished by: (signature)	Date/Time:	Client Comm	nents:	VYDE	C C.	iter	id R	20	- 011	1 1=	ا امرس			/ *		<u> </u>	1 1		
Jamps Mir	5-16-20221	:40		110			9 /	to) (W		J 71	WE		+(<u> </u>	25/13	4-70	7	
Received by: (signature)	Date/Time: 6-16-72114	<i>)</i>		NYDE	- C 1	10/18	LS.,												² Preservation Codes:
Philippedished by (signature)	Date/Time:		1111						equiremen								·		H = HCL M = Methanol
Paul Chi	Escel 8-1622 12										MA MCP	Requir	ed -			,			N = Nitric Acid
Received by: (signature)	Date/Time:				- Income				N	ACP Certifica		<u></u>	- "	lease use sible samp		_			S = Sulfuric Acid B = Sodium Bisulfate
1 6	3/16/2- 1720	?									CT RCP	Requir				olumn abo		ne cone	X = Sodium Hydroxide
Relinguisted by: (orgnature)	Date/Time:								P	RCP Certifica	tion Fort	n Requir	ed H-	High; M -		n; L - Low nknown	; C - Cle	an; U·	T = Sodium Thiosulfate
Received by: (signature)	Date/Time:									MA S	tate DW	Require		A STATE OF THE STA		÷			O = Other (please define)
Pullinguished by: (signature)	Date/Time:	Project Ent	•••		PWSID #	f								NELAC at	Particular Contraction	100	C Accred	lted	
12/20	5/11/20 1840		Government	poston.	Municipa	alitu	,		MWRA			WRTA			Othe		omatogra		PCB ONLY
Regelved by: (signature)	Date/Time:	→	Federal	I	21 J	u1111y	d		School		•	******					A-LAP.LL		Soxhlet Non Soxhlet
		E.	City		Brownfie	eld			MBTA	J						- AII	<i>en</i> i ,el		HOH SOAMEL
Comments:				M Model							-	. 1			<u> </u>				<u> </u>
1 = 1	ISD on metals on sample -					20			Chain	nmer: Con of Custody	ı-iest t	abs is	not res	ponsible	tor any	/ omitte	inform	lation or	n the Chain of Custody. TI nd is used to determine wi
and on -02 for	8270 per MP - MEK 5/17/2	2022		and the	Time of	Mariana.													oratory's responsibility. C
39	and the second s			The second	er Listration		1,000		Test val	lues your p	partner	ship or	each p	roject a	nd will	try to a	ssist wit	.h missin	ng information, but will no
1 1				1.44			atait is		1.					£					(

Table of Contents

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples_____ Pace

Doc# 277 Rev 5 2017

ogin Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False	ì
Statement will be brought to the attention of the Client - State True or False	

Client <u> 少り</u>	oman_						1/27/ =	
Received By	DH_		Date	3/16	/ /2上	Time	1840	<u> </u>
How were the samples	In Cooler		No Cooler		On Ice		_ No Ice	
received?	Direct from Samp	 oling			Ambient		Melted Ice	
	•	By Gun #	3		Actual Tem	p - 2.	0	
Were samples within	-	•			Actual Tem	N		
Temperature? 2-6°C		By Blank #	····		s Tampered		NA	
Was Custody S		<u>N</u>	•	•	ree With Sa		7	
Was COC Relin	•	on onvioom	-	tC	CC WIGI Oa	inpics:		
	leaking/loose caps	On any Sam	More can	nnles recei	ved within h	olding time?	7	
Is COC in ink/ Legible? Did COC include all	Client		Analysis	ipies receiv		er Name		
pertinent Information?	Project		ID's	- 		Dates/Time	s = -	
Are Sample labels filled	•							
Are there Lab to Filters'			_	Who was	s notified?			
Are there Rushes?	•		•	Who was	s notified?			
Are there Short Holds?			-		s notified?			
is there enough Volume	a?		•		,			
Is there Headspace wh		NA	_	MS/MSD?	7			
Proper Media/Containe		-		Is splitting	samples red	quired?	<u>+</u>	
Were trip blanks receive		F	•	On COC?	· · · · · ·	_		V
Do all samples have the	and the second s	•••••••••••	- Acid	1	man of the second of the secon	Base		,
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.	9	1 Liter	Plastic			oz Amb.	
HCL-	500 mL Amb.			. Plastic		1	mb/Clear	
Meoh-	250 mL Amb.			. Plastic	3		mb/Clear	
Bisulfate-	Flashpoint			acteria			mb/Clear	
DI-	Other Glass			Plastic			ncore	L
Thiosulfate-	SOC Kit			c Bag		Frozen:		
Sulfuric-	Perchlorate			lock				
			Unused	Media				
Vials #	Containers:	#			#	40	A I-	7
Unp-	1 Liter Amb.			Plastic			oz Amb.	
HCL-	500 mL Amb.			Plastic			mb/Clear	
Meoh-	250 mL Amb.			Plastic			mb/Clear mb/Clear	
Bisulfate-	Col./Bacteria	<u> </u>		npoint			ncore	
DI-	Other Plastic			Glass		Frozen:	ncore	<u></u>
Thiosulfate-	SOC Kit			ic Bag lock		- FIOZEII.		-
Sulfuric-	Perchlorate			IOCK	<u> </u>			
Comments:			÷ 1	10.5	170		٠Ц	
* Emaile	1 about	what	the	M5/.	w DD	goes	with	
				•				
								l