

lial Response, Enforcement Oversight |on-time Critical Removal Activities |es of Release or Threatened Release |zardous Substances in EPA Region II

CDM

Data Evaluation Report Lawrence Aviation Industries Site Remedial Design Port Jefferson Station, New York Work Assignment No.: 173-RDRD-02PF

Prepared for:
U.S. Environmental Protection Agency
290 Broadway
New York, New York 10007-1866

Prepared by: CDM Federal Programs Corporation 125 Maiden Lane - 5th Floor New York, New York 10038

EPA Work Assignment No. : 173-RDRD-02PF

EPA Region : II

Contract No. : 68-W-98-210

CDM Federal Programs Corporation

Document No. : 3223-173-TM-MEMO-07479

Prepared by : CDM

Site Manager : Demetrios Klerides, P.E.

Telephone Number : (212) 785-9123

EPA Remedial Project Manager : Salvatore Badalamenti

Telephone Number : (212) 637-9160
Date Prepared : August 22, 2008

Data Evaluation Report
Lawrence Aviation Industries Site
Remedial Design
Port Jefferson Station, New York
Work Assignment No.: 173-RDRD-02PF

Prepared for:
U.S. Environmental Protection Agency
290 Broadway
New York, New York 10007-1866

Prepared by: CDM Federal Programs Corporation 125 Maiden Lane - 5th Floor New York, New York 10038

EPA Work Assignment No. : 173-RDRD-02PF

EPA Region : II

Contract No. : 68-W-98-210

CDM Federal Programs Corporation

Document No. : 3223-173-TM-MEMO-07479

Prepared by : CDM

Site Manager : Demetrios Klerides, P.E.

Telephone Number : (212) 785-9123

EPA Remedial Project Manager : Salvatore Badalamenti

Telephone Number : (212) 637-3314
Date Prepared : August 22, 2008

125 Maiden Lane, 5th Floor New York, New York 10038 tel: 212 785-9123 fax: 212 785-6114

August 22, 2008

Mr. Salvatore Badalamenti Remedial Project Manager U.S. Environmental Protection Agency 290 Broadway - 20th Floor New York, NY 10007-1866

PROJECT:

RAC II Contract No.: 68-W-98-210

Work Assignment No.: 173-RDRD-02PF

DOC CONTROL NO.:

3223-173-TM-MEMO-07479

SUBJECT:

Data Evaluation Report

Lawrence Aviation Industries Site

Remedial Design

Port Jefferson Station, New York

Dear Mr. Badalamenti:

CDM Federal Programs Corporation (CDM) is pleased to submit the Data Evaluation Report for the Lawrence Aviation Industries Site at Port Jeffereson Station, New York as partial fulfillment of Subtask No. 6.3 of the Statement of Work.

If you have any questions regarding this submittal, please contact Mr. Demetrios Klerides or myself at (212) 785-9123.

Very truly yours,

CDM FEDERAL PROGRAMS CORPORATION

Jeanne Litwin, REM

RAC II Program Manager

Enclosure

cc.

F. Rosado, EPA Region II

R. Goltz/PSO File, CDM

D. Klerides, CDM

RAC II Document Control

Contents

Section	1 Introduction	1-1
1.1	Site Background	1-2
	1.1.1 Site Location and Description	1-2
	1.1.2 Site History	1-2
	1.1.3 Previous Investigations and Regulatory Activity	1-3
	1.1.4 Current Conditions	
1.2	Summary of Field Activities	1-5
	1.2.1 Deep Soil Boring Investigation	
	1.2.1.1 Soil Drilling Procedures	
	1.2.1.2 Subsurface Soil Sample Collection	1-6
	1.2.1.3 Groundwater Screening in Deep Boring	
	1.2.2 Monitoring Well Drilling, Installation, and Development	
	1.2.2.1 Groundwater Screening Sample Collection	1-7
ı	1.2.2.2 Monitoring Well Drilling	1-8
	1.2.2.3 Monitoring Well Installation	1-8
	1.2.2.4 Monitoring Well Development	1-9
	1.2.3 Groundwater Sampling	
	1.2.3.1 Synoptic Water Level Measurements	1-9
	1.2.3.2 Groundwater Sampling - Round 1.\	1-10
	1,2.3.3 Groundwater Sampling - Round 2	
•	1.2.4 Borehole Geophysics	
	1.2.5 Survey	
	1.2.6 Disposal of Investigation-Derived Waste	1-11
Section	2 Hydrogeologic Setting	2-1
2.1	Geology	
2.2	Hydrogeology	
	,	
Section	3 Summary of Sampling Results	3-1
3.1	Data Presentation	
3.2	Deep Soil Boring Sampling Results	3-1
3.3	Groundwater	. 3-3
	3.3.1 Groundwater Screening Sample Results	3-4
	3.3.1.1 Deep Soil Boring Groundwater Screening Sampling	
	Results	. 3-4
	3.3.1.2 Monitoring Well Groundwater Screening Sample Results.	. 3-6
	3.3.2 Monitoring Well Sampling	. 3-7
	3.3.2.1 RD Round 1	
	3.3.2.2 RD Round 2	. 3-8
Section	A Conclusions	4_1
4.1	4 ConclusionsUpdated Conceptual Site Model	1 1
4.1	Oparica Conceptual one Model	. .

	4.1.1 Physical Setting and Groundwater Movement			
	4.1.2 Groundwater Contamination and Movement 4-1			
4.2	Conclusions 4-2			
Section 5 Acronyms 5-1				
Cartia	on C. Polanesson			
Section 6 References6-1				
LIST OF TABLES				
1-1	Deep Soil Boring Sample Summary			
1-2	Groundwater Screening Sample Summary			
1-3	Monitoring Well Construction Details			
1-4	Well Development Summary			
1-5	Synoptic Water Levels			
1-6a	Round 1 Groundwater Sample Summary (November 2007)			
1-6b	Round 2 Groundwater Sample Summary (May 2008)			
TICT (OF FIGURES			
1-1	Site Location Map			
1-1 1-2	Site Layout			
1-3	Deep Soil Boring Locations			
1-4	Groundwater Screening Locations			
1-5	Remedial Design Monitoring Well Locations			
2-1	Revised Cross Section Location Map			
2-1	Cross Section A - A'			
2-3	Cross Section B - B'			
2-4	Cross Section C - C'			
2-5	Cross Section D-D'			
2-6	Cross Section E-E"			
2-7	June 2008 Upper Glacial Aquifer Potentiometric Surface and Round 2			
<u>~</u> ,	Trichloroethene Isoconcentration Contours			
3-1	Volatile Organic Detections in Deep Soil Borings			
3-2	Volatile Organic Detections in Groundwater Screening Samples			
3-3	Volatile Organic Detections in Groundwater (Round 1)			
3-4	Volatile Organic Detections in Groundwater (Round 2)			
4-1	Conceptual Model of Groundwater Flow and Contamination Migration			

APPENDICES

Α	Field Change Request Forms
В	Soil Boring Logs

Monitoring Well Logs Low Flow Sampling Logs Well Development Logs Analytical Data Tables C D E

F Data Usability Assessment G

Section 1

Introduction

CDM Federal Programs Corporation (CDM) received Work Assignment 173-RDRD-02PF under the Response Action Contract (RAC) II to prepare a Remedial Design (RD) for the United States Environmental Protection Agency (EPA), Region 2 at the Lawrence Aviation Industries, Inc. (LAI) Site (the site) located in Port Jefferson Station, New York. The overall purpose of the work assignment is to develop RD plans and specifications to be implemented and constructed as the remedial action (RA). The RD will comprise the basis for the RA to achieve the remediation goals specified in the Record of Decision (ROD).

As part of the RD, pre-design (PD) field activities were conducted between November 2007 and June 2008 to achieve the following goals:

- Support the design of the groundwater treatment system at the LAI facility
- Support the design of in-situ chemical oxidation (ISCO) treatment at the LAI facility
- Refine the locations of potential source areas at the LAI facility
- Refine the geometry and boundary of the groundwater plume

The PD field investigation included the following major activities:

- Geotechnical borings and infiltration testing
- Aquifer testing
- Deep soil boring investigation
- Well drilling and installation (including monitoring and extraction wells and piezometers)
- Downhole gamma logging of new monitoring wells
- Groundwater screening and monitoring well sampling
- Synoptic water level measurements
- Surveying
- Investigation derived waste (IDW) management and disposal

The overall objective of this Data Evaluation Report is to present, evaluate, and summarize the data collected during the PD investigation that are relevant to refinement of the locations of the source areas and the geometry and boundary of the groundwater plume. Specifically, the data evaluated in this report include the results of the subsurface soil sampling, two rounds of monitoring well sampling, groundwater screening, synoptic water level measurements, and geophysical logging of new wells. Engineering data relevant to the RD, including aquifer testing and geotechnical investigation data, are presented and evaluated in the Design Analysis Report (DAR) (CDM 2008) submitted as part of the RD.

1.1 Site Background

The information below briefly summarizes the characteristics of the site that are relevant to this Data Evaluation Report. Detailed information concerning the physical characteristics of the site, site history, and nature and extent of contamination is presented in the previous reports prepared during the Remedial Investigation/Feasibility Study:

- Outlying Parcels Technical Memorandum (CDM 2004a)
- Final Technical Memorandum (CDM 2004b)
- Final Remedial Investigation Report (CDM 2006a)
- Final Feasibility Study report (CDM 2006b)

1.1.1 Site Location and Description

The site is located in Port Jefferson Station, Suffolk County, New York (Figure 1-1). The LAI site encompasses approximately 126 acres and consists of the LAI manufacturing facility and areas referred to as the "Outlying Parcels", wooded areas located east and northeast of the LAI facility. The Long Island Railroad and Sheep Pasture Road form the northern border of the site; to the east and west are various residential single family houses, and to the south is a wooded area beyond which is a residential area with single family houses. The Village of Port Jefferson and Port Jefferson Harbor, an embayment of Long Island Sound, lie approximately one mile to the north.

The LAI facility, approximately 40 acres in size, is an active manufacturer of titanium sheeting for the aeronautics industry, although plant operations have been scaled down and the plant is operating well below its capacity. The LAI facility consists of 10 buildings located in the southwestern portion of the property. An abandoned, unlined, earthen lagoon which formerly received liquid wastes lies west of the buildings, and a former drum crushing area is situated south of the buildings. Figure 1-2 shows the layout of the LAI facility.

1.1.2 Site History

The property currently occupied by the LAI facility was previously a turkey farm owned by LAI's corporate predecessor, Ledkote Products Co. of New York (Ledkote). Originally located in Brooklyn, New York, Ledkote produced items that included lead gutters and spouts for roof drains. When the company moved to Port Jefferson Station in 1951, all the existing equipment and material from the original manufacturing processes was transferred to the new location. In 1959, Ledkote changed its name to Lawrence Aviation Industries, Inc. From approximately 1959 to the present, the LAI facility has manufactured products from titanium sheet metal, including golf clubs and products for the aeronautics industry.

Federal, State and local regulatory bodies have investigated the facility since the 1970s. Past disposal practices have resulted in a variety of contaminant releases

including trichloroethene (TCE), tetrachloroethene (PCE), acid wastes, oils, sludge, metals, and other plant wastes. Previous investigations indicated that releases of hazardous substances from the facility have affected site soils and groundwater, surface water and sediment downgradient of the site.

1.1.3 Previous Investigations and Regulatory Activity

Several Suffolk County and New York State investigations concerning contamination of the LAI site were conducted during the 1970s and 1980s. In 1970, the Suffolk County Department of Health Services (SCDHS) collected an aqueous sample from within a sump at the facility and determined that its contents exceeded permissible discharge limits for pH, hexavalent chromium (Cr+6) and nitrates. Further inspections by the SCDHS (SCDHS 1981) and the Brookhaven Department of Environmental Protection (BHDEP) found that adjacent residential wells were contaminated with fluoride, nitrates, TCE, 1,1-dichloroethylene, cis-1,2-dichloroethene (cis-1,2-DCE), PCE, and heavy metals. In conjunction with the SCDHS, the New York State Department of Environmental Conservation (NYSDEC) also investigated the site during the 1980s. Samples of surface liquids collected between 1982 and 1985 by SCDHS from sumps, puddles, laboratory cesspools, and surficial runoff exhibited high concentrations of fluoride, toluene, carbon tetrachloride, and heavy metals.

Additional SCDHS and NYSDEC site visits documented other potential environmental concerns at the LAI site. These concerns included a battery storage pile, a construction and demolition debris landfill, and pits used for the routine disposal of degreasing solvents, lubricating oils, and heavy equipment insulating oils. The disposal pits reportedly were six to eight feet deep and often were covered with soil to hide their contents. In addition, it was reported that approximately 100 drums were buried about 15 feet deep at the northeast section of the plant. Another dump reportedly existed on the east side of the facility buildings.

Groundwater samples collected in 1987 from four private wells downgradient of the site exhibited the presence of TCE, PCE, and dichloroethene (DCE). In 1991, the NYSDEC Region 1 Resource Conservation and Recovery Act (RCRA) Hazardous Substance Group oversaw a major drum removal action. Between July 1991 and March 1992, nine test wells were installed downgradient and five wells were installed crossgradient (northwest) of the LAI site by the SCDHS.

In 1997, NYSDEC contracted CDM to perform a remedial investigation/feasibility study (RI/FS) at the site under the NYSDEC State superfund program. Once LAI withdrew access, NYSDEC decided to pursue a preliminary RI along the site perimeter until site access could be achieved via legal means. In the interim, NYSDEC referred the LAI site to the National Priorities List (NPL). During the preliminary RI, CDM installed three monitoring wells, advanced one deep boring and three shallow Geoprobe borings on the New York State Department of Transportation (NYSDOT) easement, and collected groundwater samples from the three newly installed wells

and two previously installed SCDHS wells. Associated activities included an ecological assessment and a cultural resources survey.

The site was eventually accepted on the NPL. At that point in time, CDM was directed by NYSDEC to prepare a preliminary RI report to document NYSDEC actions (CDM 2000). EPA prepared a hazard ranking system (HRS) report and proposed the site for inclusion on the NPL on October 22, 1999 (Weston 1999). The site was listed on the NPL on March 6, 2000.

In April 2003, NYSDEC performed a multimedia inspection of the LAI site and found violations of air, soil, solid waste, chemical bulk storage, and hazardous waste regulations. LAI was ordered to cease production until all violations were resolved.

In March and April 2004, EPA's Emergency Response and Removal Section (ERRS) un-stacked, characterized, and re-staged approximately 1,300 drums/containers/cylinders containing various flammable solids, acids, bases, gas cylinders and unknowns. A total of 1,205 samples of the various contents were collected for onsite hazardous categorization analysis. ERRS also inventoried the onsite laboratory area and identified at least 390 containers. The drums and containers were disposed at an off-site facility in October and November 2004.

CDM conducted an RI/FS at the LAI site from August 2003 to May 2005. The RI included soil and groundwater screening, surface water and sediment sampling, soil sampling, multiport monitoring well installation and sampling, and hydraulic testing of selected wells. The RI (CDM 2006a) documented a chlorinated volatile organic compound (VOC) plume originating at the LAI site and identified polychlorinated biphenol (PCB)-contaminated soil at the site. The FS Report presented remedial alternatives for groundwater, soil, surface water and sediment; it was completed in July 2006 (CDM 2006b). EPA issued a ROD on September 29, 2006, selecting the remedy for the LAI Site.

The following is a list of conclusions and recommendations from the RI (CDM 2006a) that are relevant to objectives of the Pre-design investigation.

- At the completion of the RI, no evidence confirming the presence of undissolved solvent below the LAI facility was encountered.
- A VOC groundwater plume extends northward from the LAI Facility to Port Jefferson (MPW-09). The plume is characterized by elevated levels of TCE and PCE, is approximately 6,400 feet long, and is estimated to be about 1,000 feet wide at its widest point. The highest concentrations of TCE were detected in monitoring wells on the LAI Facility, and those wells also showed the highest levels of contamination is the shallowest samples, indicating that contamination is located at or near the groundwater surface. At least three historical TCE sources were documented upgradient to or near the two monitoring wells on the LAI property (MPW-02 and MPW-07).
- The vertical limit of the VOC plume at one monitoring well, MPW-09, has not

Shape of the standard of the s

- been fully defined. Round 1 and Round 2 groundwater sampling results indicate elevated TCE concentrations in the deepest interval of MPW-09.
- Additional data may be needed to define hydrogeologic conditions and groundwater contamination in the area between MPW-9/Old Mill Pond area and Port Jefferson Harbor. Based on the groundwater sampling results, it is likely that groundwater contamination extends further north, between MPW-09 and Port Jefferson Harbor. Additional information on the limits of salt water intrusion in this area, groundwater/surface water interaction near the Old Mill Pond/Creek, groundwater flow, and contaminant distribution may be needed in the vicinity of Port Jefferson Harbor.

1.1.4 Current Conditions

The PD investigation was conducted from November 2007 to June 2008. During that time there was little activity at the plant. Activities observed consisted of the clearing of debris and the apparent disposal of scrap metal that was located in and around the facility buildings. Overall, conditions at the site were similar to those reported in the RI Report (CDM 2006a).

1.2 Summary of Field Activities

PD field activities were performed from November 2007 to June 2008. All sampling, decontamination, and IDW handling activities were conducted in accordance with the LAI Remedial Design Work Plan, Volume I (CDM 2007a) and the Final Quality Assurance Project Plan (QAPP) (CDM 2007b), except where amended by field change requests (FCRs). FCRs are provided in Appendix A.

1.2.1 Deep Soil Boring Investigation

Four deep soil borings (SBD-PD-16, SBD-PD-17, SBD-PD-18 and SBD-PD-19) were advanced at the LAI Facility to collect soil and groundwater screening samples. The objectives of the soil boring program were as follows:

- Determine if a residual source of contamination is present in the subsurface soils
- Provide additional data on site lithology
- Further delineate on-site groundwater contamination
- Provide contaminant profiles for the design of the ISCO injection system
- Provide soil samples for the bench-scale soil treatability study

The soil borings targeted both the historical areas of highest detected contaminant concentrations in groundwater and the areas with the highest detected soil vapor concentrations (ERT 2007). The locations of the soil borings are shown on Figure 1-3. Soil boring logs are provided in Appendix B.

1.2.1.1 Soil Boring Drilling Procedures

Soil borings were drilled by advancing 3.25-inch inside diameter (ID) hollow stem augers to the terminal depth of 260 feet below grade. During auger advancement, 2-

foot split-spoon soil samples were collected at 10-foot intervals, beginning at 8 feet below grade and using a 140-pound hammer. Additional split-spoon samples were collected, as needed, to obtain sufficient soil volume for the required soil analyses.

Each split-spoon sample was brought to the surface, opened, and placed on new plastic sheeting. Each soil sample was logged and screened for volatile organic vapor content using a MiniRae 2000 portable photoionization detector (PID).

1.2.1.2 Subsurface Soil Sample Collection

CDM collected a total of 102 subsurface soil samples from the deep soil borings for laboratory analysis. Samples were obtained at 102 intervals of the predetermined 104 sample intervals. Soil samples could not be obtained at two intervals, SBD-PD-18-H and SBD-PD-19-O, due to lack of sample recovery. Additionally, soil samples for grain size analysis could not be obtained at SBD-PD-16-P, SBD-PD-16-Q, SBD-PD-19-H, and SBD-PD-19-N, due to low soil recovery volume.

Soil from each split spoon was placed directly into three 40-milliliter (ml) vials for Target Compound List (TCL) VOC analysis using new, dedicated 5-gram plastic samplers. The remaining soil was placed into a clean stainless steel bowl for a composite sample. Soil was mixed in the stainless steel bowl using a clean stainless steel trowel to create the composite sample, which was placed into two 8-ounce jars for total organic carbon (TOC) analysis and a sealed plastic bag for grain size analysis.

The soil samples were analyzed for TCL VOCs using modified analysis #1505.1 for the SOM01.2 VOA method through the EPA Contract Laboratory Program (CLP). TOC analysis was conducted using the Lloyd Kahn method through EPA's Division of Environmental Site Assessment Laboratory (DESA). Grain size was analyzed using American Society of Testing and Materials (ASTM) method D-421-85/422-63-S-GS through a CDM laboratory subcontractor, Katahdin Analytical. Table 1-1 summarizes the subsurface soil samples. The results of the deep soil boring investigation are further discussed in Section 3.2.

1.2.1.3 Groundwater Screening in Deep Soil Borings

CDM collected a total of eight groundwater screening samples from the four deep soil boreholes. At each borehole, groundwater samples were collected at depths of approximately 10 and 20 feet below the water table. Groundwater screening locations are depicted on Figure 1-4.

To obtain groundwater screening samples, a steel, 2-inch diameter, 5-foot length, 10-slot well screen attached to hollow rods was lowered through the augers to the desired groundwater screening depth. A decontaminated GrundfosTM pump connected to new dedicated tubing was lowered through the hollow rods to the midpoint of the well screen. Subsequently, the pump was activated and water was purged into 55-gallon drums.

During purging the flow rate and water quality parameters (pH, temperature, specific conductance, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity) were monitored using a YSI 600 XL water quality meter and a LaMotte 2020 turbidity meter. Subsequently, groundwater samples were collected using the site-specific low-flow, minimal drawdown sampling procedure, which follows the EPA Region 2 Final Groundwater Sampling SOP entitled "Ground Water Sampling Procedure, Low Stress (Low Flow) Purging and Sampling", dated March 16, 1998.

Samples were collected directly into three 40-ml vials (hydrochloric acid [HCI] preserved). The groundwater samples were analyzed for TCL VOCs using the SOM01.2 trace water method through the EPA CLP. Final water quality parameters are summarized on Table 1-2. Low-flow sampling logs are provided in Appendix D. The results of the groundwater screening are discussed in Section 3.3.

1.2.2 Monitoring Well Drilling, Installation, and Development

Figure 1-5 shows the locations of the seven monitoring wells (MW-PD-11 through MW-PD-17) installed within and along the boundary of the existing TCE contaminant plume. The purpose of the monitoring wells was to:

- Better define the lateral boundaries of the plume (2 wells installed on the eastern boundary and 2 installed on the western boundary)
- Better define the concentrations along the centerline of the plume (3 wells)

1.2.2.1 Groundwater Screening Sample Collection

Prior to installing the monitoring wells, groundwater screening samples were collected to estimate the vertical distribution of VOCs in groundwater at each monitoring well location. Groundwater screening results were evaluated and were used to select the depths of the monitoring well screens. A total of 27 groundwater screening samples were collected from the new monitoring well locations. Groundwater screening samples are summarized on Table 1-2.

At each monitoring well location, groundwater screening samples were obtained at three predetermined depths based on the results of groundwater samples collected during, the RI. Groundwater samples were collected at additional depths, if needed, to further characterize the vertical distribution of VOCs. The decision to collect additional groundwater screening samples was based on evaluation of the results of the initial three screening samples. The collection of additional screening samples was approved by EPA prior to collection and was documented in FCRs (Appendix A). Additional groundwater screening samples were collected at the locations of MW-PD-12 and MW-PD-16 to evaluate the vertical extent of VOC contamination. At MW-PD-13, the borehole could not be advanced to the bottommost interval, due to dense soil conditions that impeded auger advancement. The sample depth intervals at MW-PD-13 were adjusted to obtain the three groundwater screening samples (FCR No. 8).

To collect the groundwater screening samples, augers were advanced to the uppermost groundwater screening depth and a groundwater sample was obtained in the same manner as described in Section 1.2.1. Subsequently, augers were advanced to the second, and then, third, predetermined depths for groundwater screening sample collection. However, at MW-PD-13 and MW-PD-15, groundwater screening samples were obtained from the bottom interval first, then the middle interval, and finally the upper interval. This method (documented in FCR-8) was used to avoid drilling problems (i.e., flowing fine-grained sands, borehole destabilization) encountered at these locations.

Due to the flowing sands encountered while drilling, potable water was injected into the borehole using a tremie pipe, as needed, to clean out the borehole interval in order to lower the temporary well screen to the appropriate sample depth. The volume of water injected into the interval was recorded and was subsequently evacuated from the borehole interval, prior to collection of the groundwater screening sample. Groundwater screening samples were obtained in the same manner as described in Section 1.2.1.3. Low-flow sampling logs are included as Appendix D.

Groundwater screening samples were submitted to the EPA Mobile Laboratory for TCL trace VOCs analysis using method OLM 04.3-W. Groundwater screening results are discussed in Section 3.3.1.

1.2.2.2 Monitoring Well Drilling

Following completion of the groundwater screening at a well location, the hollow stem augers were retracted from the borehole and the final screen interval of each well was chosen so the well would screen the zone with the highest concentration of TCE.

The larger diameter boreholes for the 4-inch diameter monitoring wells were installed by advancing 6.25-inch ID hollow stem augers from the surface to the well screen depth. Augers were advanced in the same boreholes that were used for groundwater screening.

1.2.2.3 Monitoring Well Installation

Following borehole drilling, a 4-inch ID stainless steel well was lowered through the augers and installed at the appropriate depth. The stainless-steel well was comprised of 10-foot lengths of riser casing attached to a 10-foot length of 0.010-inch (10-slot) wire wrapped well screen with flush-threaded joints.

When the well was positioned at the final borehole depth, a sand filter pack (#1 size sand) was placed into the borehole annulus around the well by gravity feed. The sand filter pack extended from the final borehole depth up to a minimum of two feet above the top of the well screen. Subsequently, a minimum 2-foot thick seal of bentonite slurry was placed into the borehole annulus above the sand pack using a tremie pipe lowered to depth. Augers were slowly retracted as the sand pack and

bentonite slurry were installed. The remainder of the borehole annulus was filled with a cement/bentonite grout up to a depth of approximately three feet below grade.

A steel flush-mount protective casing was set in concrete around the well at the surface. All wells were secured with 4-inch diameter, removable polyvinyl chloride (PVC) well caps fitted with keyed-alike locks. Table 1-3 summarizes the construction details of each newly installed monitoring well. Well construction logs are included in Appendix C.

1.2.2.4 Monitoring Well Development

At least 12 hours after installation, the monitoring wells were developed to remove fine-grained material from and around the well screen in order to create a better hydraulic connection with the aquifer.

Decontaminated 3-inch diameter submersible pumps and dedicated tubing were used to develop the wells. Each well was surged using the submersible pump to facilitate the removal of fine-grained material.

During purging, water quality parameters were collected using methods described in Section 1.2.1.3. Well development continued until water quality parameters stabilized, purge-water was free of fine-grained material and all water lost to the formation during well installation procedures was recovered. Well development is summarized on Table 1-4 and well development logs are included as Appendix E.

Following development, wells were allowed to equilibrate for a minimum period of two weeks, prior to collecting groundwater samples.

1.2.3 Groundwater Sampling

As part of the PD investigation CDM collected two rounds of groundwater samples and two rounds of synoptic water level measurements. In Round 1, groundwater samples were collected from 12 existing monitoring wells to define baseline groundwater conditions. In Round 2, groundwater samples were collected at the 12 existing wells sampled during Round 1 plus 7 additional monitoring wells (MW-PD-11 through MW-PD-17) installed during the PD investigation. Synoptic water levels were collected in conjunction with both rounds of groundwater sampling to provide data to refine the groundwater flow and the conceptual site model.

1.2.3.1 Synoptic Water Level Measurements

As part of the Round 1 and Round 2 groundwater sampling events, CDM measured the groundwater elevations at the multi-port wells and conventional monitoring wells. Fluid pressure was measured in the multiport wells using the in-situ vibrating wire transducers. A water level meter was used to measure water levels in the conventional monitoring wells. Monitoring well locations are shown on Figure 1-5. During each event, water levels were collected over a time period of approximately 6

hours in order to provide data to better understand groundwater flow. Water level data is presented on Table 1-5.

1.2.3.2 Groundwater Sampling - Round 1

CDM collected groundwater samples from a total of 12 existing monitoring wells during the Round 1 sampling event conducted from November 26 through 30, 2007. Groundwater samples were obtained from 10 existing mulitport wells (MPW-1 through MPW-10) and two conventional wells (MW-05 and FG-01).

A total of 43 groundwater samples were collected during the Round 1 event. During the initial week of sampling, two of the sampling ports on the multiport wells did not function properly. Following rehabilitation of MPW-02 Port A and MPW-07 Port B, samples were collected on January 4, 2008. In addition, a second round of confirmatory samples was collected from MPW-02 Ports A, B, C and D between March 6 to 11, 2008.

Groundwater samples were obtained in accordance with the low-flow sampling procedures approved in the final QAPP. Multiport wells were purged and sampled using nitrogen driven, dedicated bladder pumps. Conventional monitoring wells were purged and sampled using decontaminated Grundfos™ submersible pumps and dedicated tubing as described in Section 1.2.1. Groundwater samples were collected directly into laboratory containers.

Groundwater samples were submitted to EPA CLP to be analyzed for TCL trace level VOCs using SOM01.2. Samples were also submitted to EPA CLP to be analyzed for titanium using modified analysis #1502.0 for the ILM05.4 (Inductively Coupled Plasma (ICP) - Atomic Emission Spectroscopy (AES)) method. Fluoride analysis was conducted using EPA method 300 through EPA DESA. A summary of the RD Round 1 groundwater sampling is included on Table 1-6a and the Low flow sampling logs are included In Appendix D. The results of the groundwater sampling are discussed further in Section 3.3.2.

1.2.3.3 Groundwater Sampling - Round 2

CDM collected groundwater samples for analysis from a total of 19 monitoring wells during the Round 2 sampling event conducted from May 19 through June 3, 2008. Groundwater samples were obtained from 10 existing multiport wells (MPW-1 through MPW-10), seven new monitoring wells (MW-PD-11 through MW-PD-17), MW-05, and FG-01.

A total of 49 groundwater samples were collected during the Round 2 event. Following numerous attempts at rehabilitation, CDM was unable to sample MPW-07 Port A as it appears the port has become inoperable. Monitoring wells were purged and sampled using the same methods that were used during Round 1 (described above).

Groundwater samples were submitted to the EPA CLP to be analyzed for TCL trace level VOCs using the SOM01.2. Samples were also submitted to EPA CLP to be analyzed for titanium using modified analysis #1502.1 for the ILM05.4 ICP-AES method. Fluoride analysis was conducted using EPA method 340.2 through a CDM laboratory subcontractor, Katahdin Analytical. A summary of the Round 2 groundwater sampling is included on Table 1-6b and the Low flow sampling logs are included In Appendix D. The results of the groundwater sampling are discussed further in Section 3.3.2.

1.2.4 Borehole Geophysics

CDM conducted natural gamma logs from June 10 through 12, 2008 on each new well and piezometer installed during the PD field investigation. The natural gamma logs were performed using a 4MXA-1000 winch and 2PGA-1000 Poly-Gamma probe for the 5MXA Matrix logging system. The natural gamma logging instrument was lowered from the ground surface to the total depth of each monitoring well, collecting data as it descended at a rate of approximately 15 feet/minute (ft/min). Once the total depth of the well was sounded, a second natural gamma log was performed as the instrument was raised from the base of the well back to the ground surface. As a quality control check, selected segments of each borehole were repeated to ensure data were reproducible. The final natural gamma data are presented in Appendix C on the individual monitoring well logs.

1.2.5 Survey

Coordinates and elevations for the newly installed four deep soil boreholes (SBD-PD-16 through SBD-PD-19) and seven monitoring wells (MW-PD-11 through MW-PD-17) were surveyed by GEOD Corporation, a professional land surveyor subcontracted to CDM, in June 2008. The survey subcontractor surveyed the northing and easting coordinates plus ground surface elevation at each deep borehole and monitoring well. Additionally, elevations of the top of the flush-mount protective casing and the inner stainless steel casing were also surveyed for each monitoring well.

1.2.6 Disposal of Investigation-Derived Waste

CDM procured the services of Seacoast Environmental, an IDW subcontractor, to characterize, transport, and dispose of all IDW generated during the course of the RD field investigation. Waste soil and drilling fluids generated during drilling and soil sampling activities were transferred to 20-cubic yard roll-off containers located at the staging area. Wastewater derived from aquifer testing, well development and purging, and decontamination were bulked and stored in 21,000-gallon tanks prior to disposal. The IDW subcontractor sampled all soil and wastewater to determine RCRA characteristics for disposal. All soil and wastewater generated during the investigation were determined to be non-hazardous and were properly disposed by the IDW subcontractor.

Section 2

Hydrogeologic Setting

The following sections summarize the site-specific geology and hydrogeology in order to provide a framework for the RD at the LAI facility. Complete discussions of the regional and site-specific geology and hydrogeology are presented in the RI Report (CDM 2006a).

2.1 Geology

Site-specific geologic data was obtained from literature review, historic boring logs, stratigraphic borings, deep exterior soil borings (SBD) and multiport monitoring wells (MPW) installed during the RI and deep soil borings (SBD-PD) and conventional monitoring wells (MW-PD) installed during the RD. Lithologic and geophysical data collected from these borings and wells provide an understanding of the subsurface geology and hydrogeology from the LAI facility to Port Jefferson Harbor to the north.

Cross-sections were developed from the data generated from the aforementioned borings and wells. The cross sections also include potentiometric and groundwater chemistry (TCE) data. Figure 2-1 presents the plan-view locations of the cross-sections. Cross-section A-A' (Figure 2-2) focuses on potential source areas at the facility explored during the RD. Cross-section B-B' (Figure 2-3) presents a south to north view of the lithology from the site to the Port Jefferson Harbor. Cross-sections C-C', D-D' and E-E' (Figures 2-4 to 2-6) present west to east cross-sectional views perpendicular to the local groundwater flow direction.

Three aquifers are present beneath the LAI site: the Upper Glacial aquifer, the Magothy aquifer and the Lloyd sand member of the Raritan Formation (Koszalka 1984). The Magothy and underlying Lloyd Sand Aquifers are separated by the Raritan Clay member of the Raritan Formation. Consequently, water is interchanged much more readily between the Upper Glacial and Magothy aquifers than between the Magothy and Lloyd aquifers. The presence of the virtually impermeable Raritan Clay, directly underlying the Magothy aquifer, is the lower boundary of the upper flow system. Investigations at the site have only focused on the Upper Glacial and the top of the Magothy aquifers.

Magothy Aquifer: As seen on Cross section B-B' (Figure 2-3), the top of the Magothy formation, which underlies the Upper Glacial Aquifer, was at a depth of 324 feet bgs (99 feet below msl) in stratigraphic boring ST-3. This unit was also observed in the boring for MPW-09 at a depth of 108 feet bgs (98.34 feet below msl).

The Magothy aquifer consists of Upper Cretaceous Magothy deposits to the top of the confining clay unit of the Raritan Formation. The aquifer has a fluvio-deltaic depositional origin, is wedge shaped, and thickens progressively towards the south and southeast. The Magothy deposits were unconformably overlain by a veneer of

Pliocene and Pleistocene deposits, chiefly of glacial origin (Franke and McClymonds 1972). Deposition of the glacial deposits left the top of the Magothy Aquifer irregular and marked by discontinuous clay bodies within the deposits of the Pliocene-Pleistocene succession (Upper Glacial Aquifer), Smithtown Clay Unit, or Magothy Formation. This upper portion of the Magothy will be referred to as the reworked Magothy.

Upper Glacial Aquifer: Cross section B-B' (Figure 2-3) shows the extent and lithology of the Upper Glacial Aquifer underlying the LAI Facility as compared to downgradient of the site. The LAI facility itself is directly underlain by the Pleistocene-age Harbor Hill moraine, a remnant of the most recent glaciation. The moraine is up to 70 feet thick and composed primarily of sand and gravel with occasional lenses of silty sand and silt. The moraine deposits thin to the south and to the north.

At the LAI facility, the moraine deposits are underlain by well graded fine to medium grained sands and silts with occasional layers of silt and clay or sand and gravel. The clay rich layers observed in this zone were thin and discontinuous, likely derived from Magothy formation materials (or Smithtown Clays) reworked and then redeposited during the creation of the local moraine. This localized glacial activity at the site has reworked the upper layers of the Magothy Formation and left very complex heterogeneous glacial deposits at the base of the Upper Glacial aquifer, this material is not differentiated from the reworked Magothy material described above.

2.2 Hydrogeology

Groundwater Flow: Generally, the aquifer is under unconfined conditions and the upper limit of the aquifer is the water table. Synoptic groundwater elevation data collected in May 2008 was used to prepare a potentiometric surface map for the Upper Glacial aquifer at the LAI site and north of the site to the Village of Port Jefferson. In order to interpret vertical and horizontal flow potential the water level elevation data was contoured in cross section (Figures 2-3 to 2-6) and then projected to plan view. The May 2008 potentiometric surface map is shown on Figure 2-7. The map includes the approximate extent of the TCE plume investigated during the RD.

The potentiometric surface map shows that groundwater flow, in the vicinity of the LAI facility, is to the north towards Port Jefferson Harbor. Figure 2-3 shows that the depth to the water table is approximately 185 ft at the site and decreases as you move off the moraine towards the Port Jefferson Harbor. As expected there is a downward gradient observed under the moraine, but as you move off the moraine and towards the Port Jefferson Harbor, there is a significant upward hydrologic gradient driving groundwater towards the ground surface (at MPW-09 the Upper Glacial Aquifer is under artesian conditions). These observations are consistent with previous studies.

Estimates of Hydraulic Conductivity and Transmissivity: During the RI/FS, CDM performed a series of packer tests at the site to estimate hydraulic conductivity and transmissivity. Packer tests are used to isolate vertical sections of the well with

inflatable bladders to define the vertical distribution of water quality parameters and hydraulic conductivity. Tests were performed at MPW-07, located at the LAI facility, MPW-10 located approximately 1,700 feet downgradient of the LAI facility, and at MPW-09, near Port Jefferson Harbor. Using several different analytical methods, hydraulic conductivity values were calculated to range from <0.02 foot/day to 89 feet/day, and transmissivity estimates to range from 12 to 22,219 gallons per day/foot (or 2 to 2,973 feet²/day). Lithologic logs indicate that the saturated portion of the Upper Glacial and Magothy aquifers at the site, where the multiport wells were screened, generally consisted of a layer of fine to medium sand overlying a silty sand layer.

As part of the RD investigation, aquifer testing was performed in the area proposed for extraction wells. A step-drawdown test, a 48-hour constant rate test and recovery measurements were collected in order better characterize the bulk hydraulic properties of the aquifer in this area. Using several different analytical methods (for details see the DAR Appendix G) hydraulic conductivity estimates ranged from 31 to 63 feet/day and transmissivity estimates ranged from 4,377 to 8,780 feet²/day.

The wide range of hydraulic conductivity values is not unexpected considering the heterogeneity of the glacially deposited material encountered in the borings. The results of the packer testing only represent the hydraulic properties of the aquifer material that immediately surrounds the well screen. The results of the 48-hour constant rate test represent the mean hydraulic properties of the material between the pumping well and the piezometers used to measure drawdown. Therefore, the estimates derived from the 48-hour constant rate test are likely more representative of the bulk hydraulic properties of the unit in that area.

Section 3

Summary of Sampling Results

This section provides a summary of the results of the PD field activities. The discussion of analytical results will focus on chlorinated VOCs, the primary contaminants of concern. However, all of the analytical data collected are presented in Appendix F.

During the RI, the EPA selected the following screening criteria as the most relevant and applicable to the LAI site. These screening criteria are presented in Worksheet 15 of the Final QAPP (October 2007b). CDM has reevaluated the applicability of the screening criteria for this technical memorandum. Whenever possible, established regulatory criteria, known as chemical-specific applicable or relevant and appropriate requirements (ARARs), were used to screen the data. In the absence of ARARs, regulatory guidance values, known as "to be considered" (TBC), were used to screen the data.

In preparing the screening criteria, the lowest value of the applicable ARAR/TBC was used as the applicable screening criteria, unless otherwise noted. The screening criteria are presented in Appendix F with the full analytical results. The following list indicates how the screening criteria were compiled for each media:

- Groundwater screening criteria were compiled from the EPA National Primary Drinking Water Standards (NPDWS) and the NYSDEC Surface and Groundwater Quality Standards. The lower of the two standards was used as the screening criteria.
- Subsurface soil screening criteria were selected from the EPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (EPA 2002), a companion guidance to the to the EPA 1996 Soil Screening Guidance (SSG).

3.1 Data Presentation

The analytical results from the PD field activities were put into the site database for evaluation purposes. The data were exported to an Environmental Geographic Information System (EGIS) for analysis and graphical presentation. The data presented on the figures in this section are in units consistent with Appendix F and are as follows: organic and inorganic data for aqueous samples are presented in micrograms per liter (μ g/L) and organic data for solid samples are presented in micrograms per kilogram (μ g/kg). A data usability evaluation assesses the usability of the analytical data generated from the field investigation (Appendix G).

3.2 Deep Soil Boring Sampling Results

CDM conducted a deep soil boring investigation that included four deep soil borings to a depth of 260 feet bgs. The objectives of the soil borings were: to determine if a

residual source of contamination remains in the subsurface; provide soil samples for the bench scale treatability testing; provide additional data on site lithology; and provide contaminant profiles for the design of ISCO injection. The sample locations and VOC detections are shown on Figure 3-1. Complete analytical results are included in Appendix F.

Eleven VOCs were detected in the soil samples, including, 2-butanone, acetone, benzene, carbon disulfide, chloroform, cyclohexane, m,p-xylene, methylene chloride, PCE, toluene, and TCE. With the exception of acetone, the concentrations of all of the detected VOCs were below their respective soil screening criteria. All of these compounds were also detected at concentrations below their screening criteria in soil samples collected during the RI.

The following discussion focuses on the distribution of TCE and PCE in the soil boring samples since TCE and PCE are the primary contaminants associated with the groundwater plume. Acetone is also discussed as it is the only compound detected at concentrations exceeding its screening criterion.

TCE was detected at concentrations below its screening criterion ($700 \,\mu\text{g/kg}$) in soil samples collected in all four deep soil borings (SBD-PD-16 through SBD-PD-19). Soil containing TCE primarily consisted of fine- to medium-grained sand with trace silt and gravel. TCE was detected in samples collected in the unsaturated and saturated (below the groundwater table) zones. Detections observed in samples collected below the groundwater table are likely attributable to groundwater contamination.

SBD-PD-16: TCE was detected in the unsaturated zone in consecutive samples collected between 10 to 70 feet bgs; concentrations ranged from 1.9 μ g/kg to 6.2 μ g/kg. TCE was detected in only two samples collected at depths greater than 70 feet bgs: SBD-PD-16-J (100 feet) and SPB-PD-16-S (190 feet) had TCE concentrations of 1.9 μ g/kg and 1.1 μ g/kg, respectively.

In the remaining borings TCE was generally concentrated in several depth intervals within each boring in both the unsaturated and saturated zones.

SBD-PD-17: TCE was detected in soil samples collected between 80 and 120 feet bgs at concentrations ranging from 1.3 μ g/kg to 10 μ g/kg, and in samples collected in the saturated zone from 190 and 230 feet bgs ft at concentrations ranging from 3 μ g/kg to 24 μ g/kg.

SPD-PD-18: TCE was detected at concentrations ranging from 1.8 μ g/kg to 48 μ g/kg in the 40 to 60 foot depth interval and from 1.2 μ g/kg to 12 μ g/kg in the saturated zone (180 to 220 foot depth intervals).

SBD-PD-19: TCE was detected at concentrations ranging from 1.6 μ g/kg to 8.8 μ g/kg in the 40 to 80 foot depth interval, and in the saturated zone (200 to 260 foot depths), ranging from 2.8 μ g/kg to 46 μ g/kg.

PCE was detected only in boring SBD-PD-18 and all concentrations were below the PCE screening criterion. PCE was detected in four soil samples: SBD-PD-18-D (40 feet) 3.5 μ g/kg; SBD-PD-18-K (110 feet) 3.3 μ g/kg; SBD-PD-18-O (150 feet) 1.3 μ g/kg; SBD-PD-18-T (200 feet) 1.5 μ g/kg. The sporadic pattern of contamination distribution does not indicate that the SBD-PD-18 is a likely area for PCE entry into the aquifer.

Acetone was detected in all 26 soil samples collected from SBD-PD-19; 19 soil samples collected from SBD-PD-18; 9 soil samples collected from SBD-PD-17; and 5 soil samples collected from SBD-PD-16. Acetone concentrations in soil boring samples ranged from 4.4 μ g/kg to 6,200 μ g/kg. Eight of the nine samples that exceeded the acetone screening criterion were detected in SBD-PD-19. Acetone is not known to have been used at the facility nor was it used for equipment decontamination during field activities. Acetone was also detected during the RI in SBD-03 from 104 to 106 feet bgs (260 μ g/kg) and SBS-11 from 2 to 4 feet and 10 to 12 feet bgs (6 and 280 μ g/kg, respectively). There were no detections of acetone in any of the production area borings during the RI.

A significant number of acetone detections were flagged as non-detect during data validation because of acetone contamination in the blanks. The reason that some of the higher levels were not flagged non-detects associated with blank contamination was because the concentrations were greater than 10 times the concentrations detected in the blanks. Overall, it is unclear whether acetone is related to laboratory contamination or is a constituent in the soils.

Summary:

- The soil boring analytical data do not indicate the presence of any significant VOC sources in soils at the boring locations.
- With the exception of acetone, none of the VOCs exceeded the soil screening criteria.
- There is no consistent pattern or trends in the distribution of PCE and TCE detected in the soil boring samples.
- VOC detections in the saturated zone are likely attributable to dissolved phase VOCs in the groundwater.
- Acetone was the only VOC that exceeded screening criteria and its presence in the soils samples may be the result of laboratory contamination. The presence of acetone is inconsistent with the RI soil sampling results, which did not indicate the presence of acetone in the LAI production area.
- Despite the presence of elevated concentrations of VOCs in soil-vapor samples collected in the vicinity of the soil borings, VOCs were not detected at elevated levels in the subsurface soil samples. This suggests that the VOCs are primarily present in the vapor phase and are not adsorbed to soils.

3.3 Groundwater

Results of the groundwater investigation activities conducted during the PD are discussed in this section including:

- Groundwater screening performed as part of the monitoring well drilling and installation activities
- Groundwater screening performed in connection with the deep soil borings drilled on the LAI facility
- Round 1 and Round 2 monitoring well sampling

Details of the sampling procedures and analyses performed are described in Section 1.2. Appendix F contains all the analytical data collected during the groundwater investigation. Analytical results for the groundwater investigation activities are shown on Figures 3-2 through 3-4.

3.3.1 Groundwater Screening Sample Results

Groundwater screening samples were collected at several depth intervals within each monitoring well borehole (prior to well installation) and at two depths in each of the four deep soil borings: 1) just below the water table and 2) 10 feet below water table sample. Table 1-3 lists the samples collected and the sample depth intervals. Figure 3-2 shows the VOCs detected in the groundwater screening samples.

3.3.1.1 Deep Soil Boring Groundwater Screening Sample Results

Eleven VOCs were detected in groundwater screening samples collected from deep soil borings SBD-PD-16 through SBD-PD-19: acetone, bromomethane, chloromethane, cis 1,2-DCE, MTBE, 1,1-DCA, chloroform, 1,1,1-TCA, TCE, toluene and PCE. Concentrations of TCE, toluene, and acetone exceeded screening criteria. The discussion below focuses on the VOCs that exceeded the screening criteria.

TCE was detected in all of the deep soil boring groundwater screening samples. TCE concentrations ranged from 1 μg/L in SPD-PD-16-GW-B to 200 μg/L in SBD-PD-17-GW-A. With one exception, SBD-PD-19-GW, the highest TCE concentration at all locations was detected in the screening sample collected at the water table. At the SPD-PD-19 groundwater screening location, the TCE concentration in the water table sample (SBD-PD-19-GW-A) and the sample collected 10 feet below the water table (SPD-PD-19-GW-B) were identical: 12 μg/L. The highest TCE concentration (200 μg/L) was detected at SBD-PD-17-A, which is located in the vicinity of RI multi-port monitoring well MPW-07. This is consistent with the RI results, in which samples from the shallow interval of MPW-07 (-22 feet below msl) showed the highest concentration of TCE on the LAI facility. The second highest TCE concentration (93 μg/L) occurred in water table sample SBD-PD-18-GW-A, located south of SBD-PD-17. SBD-PD-19 was located near RI boring SBD-10; however, the concentrations detected in SBD-PD-19 were over an order of magnitude below those previously detected at SBD-10. The TCE concentrations were lowest in the SBD-PD-16 samples (16 µg/L and 1 μg/L). The SPD-PD-16 location was selected based on high concentrations of TCE detected in soil vapor samples collected by ERT (ERT 2007). The soil sampling and groundwater screening results do not suggest that a significant source of groundwater contamination is present in the vicinity of SBD-PD-16.

Toluene was detected in samples SBD-PD-18-GW-A, SBD-PD-18-GW-B and SBD-PD-16-GW-A, with concentrations exceeding the groundwater screening criterion in only one sample, SBD-PD-18A (45 μ g/L). Toluene was also detected in low concentrations (1 to 4.2 μ g/kg) in soil samples from SBD-PD-16 and SPD-PD-18. However, the detections were more than three orders of magnitude below the soil screening criterion.

Acetone was detected in two soil boring groundwater screening locations; SPB-PD-18 and SPD-PD-19. At SBD-PD-18, it was detected at a concentration of 66 μ g/L in the deeper sample, which exceeded the acetone screening criterion of 50 μ g/L. In SBD-PD-19, acetone was detected in both groundwater screening intervals at concentrations below its screening criterion; 20 μ g/L in SBD-PD-19-GW-A and 15 μ g/L in SBD-PD-19-GW-B. In comparison, acetone was detected in every soil sampling interval of SBD-PD-19 and exceeded its soil screening criterion in eight of the samples. Acetone was detected in 19 soil sampling intervals of SBD-PD-18, but all concentrations were below screening criteria.

Acetone detections were frequently elevated above the contract required quantitation limit (CRQL) levels in field blanks associated with the groundwater screening samples, although acetone was not used for equipment decontamination during the field activities. The more elevated acetone results typically ranged from 17 to 60 μ g/L. There was one high concentration of acetone (150 μ g/L) detected in a field blank collected on December 5, 2007. As a result of field blank contamination, many of the acetone detections were changed to "U" or "non-detect" values during data validation. The QC data suggest that the presence of acetone in the screening samples may not reflect actual conditions and are likely a result of laboratory contamination. Additional discussion of the presence of acetone in blank samples is provided in the data usability assessment (Appendix G).

Summary

The groundwater screening results are consistent with the groundwater data collected in the RI for monitoring wells on the LAI facility. Groundwater screening samples collected from SBD-PD-19 and SBD-16 had the lowest concentrations of TCE (up to 16 μ g/L). Higher concentrations of TCE were detected in the water table samples compared to samples collected 10 feet below the water table. These results are consistent with the RI results for multi-port wells located on the LAI Facility (MPW-02 and MPW-07), which generally showed decreasing TCE concentrations with increasing depth. The elevated TCE results at SBD-PR-18 (93 μ g/L) provides additional data that the plume extends slightly further to the south, compared to the RI results. Groundwater screening results for SBD-PD-17, which is located near MPW-07, showed the highest TCE result, although the concentration is less than 5 times the maximum TCE result (1,100 μ g/L) for MPW-07.

3.3.1.2 Monitoring Well Groundwater Screening Sample Results

Groundwater screening samples were collected from targeted zones to provide analytical data to support selection of the screen intervals for the monitoring wells. Analytical results for groundwater screening samples collected at the monitoring well locations are shown on Figure 3-2.

A total of seven VOCs were detected in screening samples collected from the seven monitoring well locations: acetone, bromomethane, *cis*-1,2-DCE, MTBE, TCE, toluene, and PCE. Concentrations of acetone and MTBE in the samples did not exceed groundwater screening criteria. Concentrations of bromomethane, *cis*-1,2-DCE, TCE, toluene, and PCE exceeded site-specific screening criteria in one or more of the screening samples. Three of the VOCs, acetone, bromomethane, and MTBE, are not considered to be related to the site. The maximum concentration of MTBE, a common gasoline additive, detected in the groundwater screening samples was 6 μ g/L. MTBE was also detected in background groundwater samples (MPW-01) collected during Rounds 1 and 2 (Figures 3-3 and 3-4). Acetone and bromomethane concentrations were low (less than 12 μ g/L) and are common laboratory contaminants. Bromomethane (methyl bromide) was detected in eight samples from five locations. All the detections of bromomethane were within approximately two times screening criterion. Acetone and bromomethane are not know to be associated with the plume and were not detected in the Round 1 and Round 2 groundwater samples.

The discussion below focuses on the distribution of TCE and PCE as these are the primary VOCs associated with the groundwater plume. The distribution of *cis-*1,2-DCE is also discussed since it is a common degradation product of the reductive dechlorination of TCE and PCE. Three groundwater screening locations, MW-PD-12, MW-PD-14, and MW-PD-16, were located along the north-south axis of the plume. Groundwater screening locations MW-PD-11, MW-PD-13, MW-PD-15, and MW-PD-17 are located along the plume boundary (Figure 3-2).

TCE was detected above screening criterion in four screening locations, MW-PD-12, MW-PD-14, MW-PD-16, located along the plume's north-south axis, and at MW-PD-15, a location selected to identify the northwest boundary of the plume. TCE was detected in nearly all screening intervals at these locations. The highest concentration of TCE was detected at the location of MW-PD-16-D (2,000 µg/L). A TCE concentration of 800 µg/L was detected in the screening intervals above and below MW-PD-16-D. MW-PD-16 is located upgradient of RI monitoring well MPW-09, where the highest downgradient TCE concentrations were detected during the RI. TCE concentrations in MW-PD-14 were generally between the maximum concentrations detected at the MW-PD-16 screening location and the MW-PD-12 screening location. TCE concentrations ranged from 21 to 400 µg/L at the MW-PD-14 screening location, and from non-detect to 130 µg/L at the MW-PD-12 screening location. TCE was not detected in screening samples from MW-PD-11, MW-PD-13, and MW-PD-17, three of the four boundary well locations. At the MW-PD-15 screening location, TCE was detected at concentrations ranging from 12 to 42 µg/L, indicating that the plume boundary likely extends westward beyond this location.

However, the screening sample concentrations at the MW-PD-15 screening location generally were below those detected in the samples from the locations along the plume axis (MW-PD-12, MW-PD-14, and MW-PD-16).

PCE was detected at screening locations MW-PD-14 and MW-PD-16, located along the plume's north-south axis. PCE concentrations generally were two to three orders of magnitude lower than the TCE concentrations in the same samples. PCE concentrations ranged from 6 to 18 μ g/L, less than 4 times the screening criterion of 5 μ g/L. PCE was detected only in association with high concentrations of TCE detected in wells along the plume axis.(MW-PD-14 and MW-PD-16).

cis-1,2-DCE was detected only at one monitoring well screening location, MW-PD-16. Concentrations of cis-1,2-DCE concentrations were relatively low, ranging from 6 to 13 μ g/L, and were 2 orders of magnitude below the TCE concentrations in the respective samples. The PCE detections are co-located only with the highest concentrations of TCE. The low concentrations of cis-1,2-DCE relative to the TCE concentrations suggest only minimal degradation of TCE and/or PCE may be occurring.

Summary

Groundwater screening data collected at the monitoring well locations provided the additional information needed to select the screen intervals for the monitoring wells installed during the PD investigation. The screening data also helped define the VOC distribution along the plume's axis (MW-PD-12, MW-PD-14, and MW-PD-16) and at the boundaries of the plume (MW-PD-11, MW-PD-13, and MW-PD-17). In particular, screening data for MW-PD-16 showed higher concentrations of TCE (2,000 μ g/L) than was previously detected in the downgradient area of the plume (870 μ g/L). The screening data at MW-PD-15 suggests that the plume extends further west beyond this location.

3.3.2 Monitoring Well Sampling

Results of the groundwater monitoring performed during the PD investigation at the LAI site are presented and discussed in this section. Two rounds of sampling were conducted. Round 1 documented baseline conditions at the start of the PD investigation and included sampling of 10 multiport monitoring wells installed during the RI and two existing monitoring wells; FG-01 and MW-05. Round 2 included the wells sampled in Round 1 plus seven conventional monitoring wells (MW-PD-11 through MW-PD-17) installed to refine VOC concentrations along the plume axis and the plume boundary: Results of Round 1 and Round 2 sampling are shown on Figures 3-3 and 3-4, respectively. Figures 2-3 through 2-7 show the revised plume geometry and boundary based on the results of the groundwater monitoring conducted during the Pre-Design investigation.

3.3.2.1 RD Round 1 (November 2007)

The Round 1 sampling event was performed to verify that the groundwater plume had not changed significantly since the last RI sampling, which was in May 2005. Round 1 was conducted in November 2007. The sampling team discovered that the sampling port MPW-02-A, the shallowest port, was not operational. The port was rehabilitated and a sample was eventually collected. However, the results for MPW-02-A were anomalous and it was determined that the port should be re-sampled. MPW-02 was re-sampled on March 6 through March 11, 2008. The March 2008 results were generally consistent with the previous RI results.

Overall, the results of the Round 1 sampling event did not indicate any significant differences in VOC distribution and plume geometry compared to the May 2005 sampling event. No modifications to the PD field program were necessary based on the Round 1 sampling results.

3.3.2.2 RD Round 2 (May 2008)

A total of 19 VOCs were detected in the Round 2 groundwater samples (Figure 3-4). However, concentrations of only four VOCs exceeded screening criteria: TCE, PCE, cis-1,2-DCE, and chloroform. With the exception of chloroform, which was detected in only one existing well (FG-01) outside of the plume boundary, TCE, PCE and cis-1,2-DCE are the primary contaminants associated with the plume and, therefore, are the focus of the discussion in this section.

TCE exceeded its screening criterion in 25 of the 49 Round 2 groundwater samples. TCE concentrations that exceeded the screening criteria range from 6.4 μ g/L in MPW-05 to 1,900 μ g/L in MW-PD-16. In general, the highest TCE concentrations occurred in monitoring wells along the approximate north-south axis of the plume, including MPW-02 located on the LAI facility (820 μ g/L), MPW-04 (100 μ g/L), MW-PD-12 (210 μ g/L), MW-PD-14 (350 μ g/L), MW-PD-16 (1,900 μ g/L), MPW-09 (560 μ g/L). TCE results for MW-PD-16 verify that the plume extends to a depth of at least -150 feet below msl. The RI indicated that the lower plume boundary near MPW-09 was not determined and that VOC contamination likely extended deeper than the terminal depth of MPW-09 (-120 feet below msl).

Lower concentrations of TCE (less than 100 $\mu g/L$) occur in the monitoring wells east and west of the approximate north-south axis of the plume: MPW-10 (59 $\mu g/L$), MPW-03 (16 $\mu g/L$), MPW-05 (8.4 $\mu g/L$), MW-PD-15 (35 $\mu g/L$) and MPW-08 (37 $\mu g/L$). TCE was not detected or was detected at low concentrations in wells that define the plume boundary including MW-PD-11 (not detected), MPW-06 (6.9 $\mu g/L$), MW-PD-13 (not detected) and MW-PD-17 (not detected). No significant TCE concentrations were detected in MPW-01, the upgradient background monitoring well.

PCE exceeded its screening criterion of $5 \mu g/L$ in 11 of the 49 samples collected in Round 2. PCE concentrations that exceeded the screening criterion ranged from 5.8

 μ g/L to 58 μ g/L. The highest PCE concentration (58 μ g/L) occurred in sample MPW-04-PD-B-R2. In general, when TCE was detected in a sample, PCE was also detected but at a lower concentration than TCE. Overall, the spatial distribution of PCE in the Round 2 groundwater samples is similar to the TCE distribution and is consistent with the PCE distribution defined in the RI Report.

cis-1,2-DCE was detected in 28 of the 49 samples; however, cis-1,2-DCE only exceeded its screening criterion (5 μ g/L) in two monitoring wells, MW-PD-16 (13 μ g/L) and MPW-09 (6.6 to 10 μ g/L). The highest concentration of cis-1,2-DCE (13 μ g/L) was detected in MW-PD-16, which also had the highest concentration of TCE (1,900 μ g/L) detected in Round 2. In nearly all instances, when cis-1,2-DCE was detected in a sample, TCE was also detected. However, cis-1,2-DCE concentrations were frequently much lower than TCE concentrations. The low ratios of cis-1,2-DCE to TCE do not suggest that significant biological degradation of TCE is occurring in the plume. For example, the ratios of TCE to cis-1,2-DCE are 50:1 or greater in the monitoring wells with the highest concentrations of cis-1,2-DCE (MPW-09 and MW-PD-16). This is consistent with the RI Report, which indicated that relatively little degradation of TCE is occurring in the plume.

Summary

Results of the Round 2 monitoring well sampling, which is the most comprehensive sampling event conducted at the site to date, provided additional data to refine the plume geometry and boundary. Figure 2-7 shows the revised TCE isoconcentration map based primarily on the Round 2 monitoring well data. Figure 2-3 shows a north-south cross-section of the plume based on the Round 2 data. Data for monitoring wells MW-PD-11, MW-PD-13, and MW-PD-17 (boundary wells) refined the east and west boundary of the plume. MW-PD-15 was also installed to define the northwest plume boundary, however, the Round 2 sampling results show that the plume likely extends further west beyond the location MW-PD-15.

Data for MW-PD-12, MW-PD-14, and MW-PD-16, installed to refine contaminant concentrations along the north-south axis of the plume, showed elevated concentrations of TCE. Specifically, the highest concentration of TCE (1,900 μ g/L) in all monitoring well samples was detected in MW-PD-16. Significant, but lower, concentrations of TCE were detected in MW-PD-14 (350 μ g/L) and MW-PD-12 (210 μ g/L), refining the contaminant distribution between wells on the LAI facility (MPW-02 and MPW-07) and MPW-09, located near the northern end of the plume. However, the overall bi-lobed structure of the plume identified in the RI remains unchanged, with the highest concentrations of TCE occurring in two areas: below the LAI facility (MPW-07, 1,100 μ g/L) and at MW-PD-16 (1,900 μ g/L).

The RI indicated that the lower boundary of the plume at MPW-09 was not established and that VOC contamination likely extended deeper than the deepest sampling port of MPW-09 (-120 feet below msl). The Round 2 sampling and monitoring well screening results for MW-PD-16 indicate that the plume extends to

an elevation of at least -170 feet below msl (Figure 3-2) and likely extends to approximately 200 feet below msl at MW-PD-16 (Figure 2-3).

Section 4 Conclusions

4.1 Updated Conceptual Site Model

The updated conceptual site model (CSM) integrates the different types of information collected during the RI and the PD field Investigation and integrates them into a coherent generalized model of contaminant distribution and migration at the site. The CSM summarized below emphasizes the components relevant to the PD field work (groundwater flow and plume orientation). A complete discussion of the CSM is presented in the RI Report (CDM 2006a). A schematic diagram of the CSM is shown in Figure 4-1.

4.1.1 Physical Setting and Groundwater Movement

The LAI facility sits atop the Harbor Hill moraine at an elevation of about 225 feet above msl while Port Jefferson harbor is located to the north at an elevation close to sea level. Potentiometric data indicate a downward hydraulic gradient beneath the LAI facility. Groundwater in this area moves downward through the sediments of the Upper Glacial and Magothy aquifers as it moves laterally to the north toward Long Island Sound. Water level data collected during the PD is consistent with the general groundwater flow characteristics cited above.

4.1.2 Groundwater Contamination and Movement

Site contaminants released to the soil surface would be expected to infiltrate into the soil and move primarily downward, through the unsaturated zone. Chlorinated solvents such as PCE and TCE can move downward in the undissolved phase or dissolved in precipitation-derived water. When the undissolved solvents reach the groundwater they dissolve in the groundwater and move in the direction of groundwater flow. Based on the PD data, little evidence was discovered that undissolved solvent is present below the LAI facility. However, residual soil contamination might still exist in low permeability zones serving as sources for groundwater contamination based on the following considerations:

- High TCE concentrations in groundwater were detected at the site more than 20 years after known releases of the contaminants had stopped.
- The highest concentration of TCE (1,100 micrograms per liter [μg/L]) was detected in the shallowest sample interval of a monitoring well on the LAI facility.
- Only a limited number of deep borings/monitoring wells have been advanced at the site, as deep drilling and sampling is difficult and costly.
- Residual soil contamination generally exists in sporadic, thin layers and has only been located at other sites with unique investigative tools and very closely spaced soil borings.

Following groundwater flow, the dissolved VOC plume is moving north from the facility towards Port Jefferson Harbor. Elevated concentrations of VOCs occur in the shallow groundwater at the southwest portion of the LAI facility. The VOC concentrations generally decrease as the plume moves north and increase again near the Port Jefferson High School Track and Old Mill Pond. The highest concentrations of VOCs were found in this area. The plume moves toward the surface under a significant upward hydrologic gradient in this area, resulting in discharge of VOCs to Old Mill Pond and Old Mill Stream.

This plume configuration may be related to the manner in which the release occurred (i.e., as a slug) or to the location of the monitoring wells relative to the centerline of the plume. Lower contaminant concentrations in the plume center could be a result of residual contamination or a continuous, lower-concentration release over time. The plume may also be moving through preferential flow zones, meaning areas of higher and lower contamination may be present between the wells.

Chlorinated VOCs such as TCE and PCE can be attenuated through a microbially-mediated anaerobic degradation process known as reductive dechlorination. As discussed previously, evidence that reductive dechlorination is occurring at the site is limited. Thus, significant attenuation of the plume is not expected to occur as a result of the reductive dechlorination process.

4.2 Conclusions

The following conclusions are made from the data collected during the PD investigation:

Deep Soil Boring (Source Area) Investigation:

Consistent with the investigations performed previously at the site during the RI, the soil boring program did not identify the presence of any significant VOC sources in the subsurface soils.

Groundwater (Plume) Investigation:

The groundwater investigation further characterized the extent and magnitude of the chlorinated VOC groundwater plume. The following were the main conclusions derived from the investigation.

- Soil boring groundwater screening results show that the plume extends further to the south (SBD-17 and SBD-18) than previously detected.
- VOCs along the plume axis (MW-PD-14, -12, and -16) show that the plume is continuous, although bi-lobed (i.e., with two hot spots)
- Data for monitoring wells MW-PD-11, MW-PD-13, and MW-PD-17 (boundary wells) refined the east and west boundary of the plume. MW-PD-15 was installed to define the northwest plume boundary, however, the Round 2 sampling results show that the plume likely extends further west beyond the location MW-PD-15.

■ The plume in the downgradient area (MW-PD-16) extends deeper than previously detected, extending to at least -170 feet below msl and possiblly to approximately 200 feet below msl or deeper.

Section 5 Acronyms

AES Atomic Emission Spectroscopy

ARAR Applicable or Relevant and Appropriate Requirement

ASTM American Society of Testing and Materials

bgs below ground surface

BHDEP Brookhaven Department of Environmental Protection

CDM CDM Federal Programs Corporation

CLP Contract Laboratory Program

CRQL Contract Required Quantitation Limit

Cr*6 Hexavalent chromium CSM Conceptual site model DAR Design Analysis Report

DCE Dichloroethene

DESA Division of Environmental Science and Assessment

DO Dissolved Oxygen

EGIS Environmental Geographic Information System
EPA (United States) Environmental Protection Agency

ERRS Emergency Response and Removal Section

FCR Field Change Request Form

Ft/min feet per minute
HCl hydrochloric acid
HRS Hazard Ranking System
ICP Inductively Coupled Plasma

ID inner diameter

IDW investigation derived waste ISCO in-situ chemical oxidation LAI Lawrence Aviation Industries

ml milliliter

MPW multiport monitoring well

msl mean sea level

MTBE methyl tert butyl ether

MW-PD conventional monitoring well – pre-design NPDWS National Primary Drinking Water Standards

NPL National Priorities List

NTUs Nephelometric Turbidity Units

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

NYSDOT New York State Department of Transportation

NYWQS New York Water Quality Standards ORP Oxidation and Reduction Potential

PCB Polychlorinated biphenyl

PCE Tetrachloroethene

PD pre-design

PID Photo-ionization Detector

PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

RA Remedial Action

RAC Response Action Contract

RCRA Resource Conservation and Recovery Act

RD Remedial design

RI/FS Remedial Investigation/Feasibility Study`

ROD Record of Decision

SBD deep exterior soil boring
SBD-PD deep soil boring – pre-design.

SCDHS Suffolk County Department of Health Services

SSG soil screening guidance

TBC To Be Considered TCE Trichloroethene

TCL Target Compound List

The site Lawrence Aviation Industries Site

TOC Total Organic Carbon
μg/kg micrograms per kilogram
μg/L micrograms per liter

VOC Volatile Organic Compound

1,1-DCA 1,1-dichloroethane 1,1,1-TCA 1,1,1-trichloroethane 1,2-DCE 1,2-dichloroethene

Section 6 References

CDM. 2008. 90% Design Analysis Report, Lawrence Aviation Industries Site, Port Jefferson Station, New York. TBD. . 2007a. LAI Remedial Design Work Plan, Volume I, Lawrence Aviation Industries Site, Port Jefferson Station, New York. October. _ 2007b. LAI Remedial Design Quality Assurance Project Plan (QAPP), Lawrence Aviation Industries Site, Port Jefferson Station, New York. October. . 2006a. Final Remedial Investigation Report, Lawrence Aviation Industries Site, Port Jefferson Station, New York. March. . 2006b. Final Feasibility Study Report, Lawrence Aviation Industries Site, Port Jefferson Station, New York. March. _ 2004a. Lawrence Aviation Industries, Port Jefferson Station, New York: Technical Memorandum. Outlying Parcel Soil Sampling Results. August. . 2004b. Lawrence Aviation Industries, Port Jefferson Station, New York: Final Technical Memorandum. Field Screening Activities. June. . 2000. Lawrence Aviation Industries, Port Jefferson Station, New York: Final Preliminary Remedial Investigation Report. May. EPA 2002. Generic SSLs for the Residential and Commercial/Industrial Scenario, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, Appendix A-C. Accessed August 2007. http://www.epa.gov/superfund/health/conmedia/soil/index.htm ERT 2007. Lawrence Aviation Industries Site, Port Jefferson Station, New York. Work Assignment EAC00242 - Trip Report. Soil Gas Sampling (July 2007). November 21. Franke, O.L., and McClymonds, N.E., 1972. Summary of the Hydrologic Situation on Long Island, New York, as a Guide to Water-Management Alternatives. Geological Survey Professional Paper 627-F, 59 pp. Koszalka, E.J., 1984. Geohydrology of the northern part of the Town of Brookhaven, Suffolk County, New York. USGS Water-Resources Investigations Report 83-4042. 37p. Suffolk County Department of Health Services (SCDHS), 1981. Affidavit, Re: Lawrence Aviation Industries, Inc.; written by Robert C. Olsen, 25 pp.

Weston, R.F., 1999. Hazard Ranking System Documentation Package, Lawrence Aviation Industries, Inc., Port Jefferson Station, Suffolk County, New York. pp 47.

Table 1-1
Deep Soil Boring Sample Summary
Remedial Design
Lawrence Aviation Industries Superfund Site
Port Jefferson Station, New York

		1	Surface Elevation (ft			Sample		2	0
CDM Sample ID	Easting (X) ¹	Northing (Y) ¹	amsl)		Sample Date	Time	Depth (ft)	And the second s	Comments
SBD-PD-16-A	278509.4	1241569.8	228.8	B4JM3	12/27/2007	8:45	8-10	TCL VOC, TOC, Grain Size	
SBD-PD-16-B	278509.4	1241569.8	228.8	B4JM4	12/27/2007	9:20	18-20	TCL VOC, TOC, Grain Size	
SBD-PD-61-B	278509.4	1241569.8	228.8	B4K01	12/27/2007	9:20	18-20	TCL VOC, TOC, Grain Size	Duplicate of SBD-PD-16-B
SBD-PD-16-C	278509.4	1241569.8	228.8	B4JM5	12/27/2007	9:50	28-30	TCL VOC, TOC, Grain Size	
SBD-PD-16-D	278509.4	1241569.8	228.8	B4JM6	12/27/2007	11:00	38-40	TCL VOC, TOC, Grain Size	
SBD-PD-16-E	278509.4	1241569.8	228.8	B4JM7	12/27/2007	11:35		TCL VOC, TOC, Grain Size	
SBD-PD-16-F	278509.4	1241569.8	228.8	B4JM8	12/27/2007	13:40	58-60	TCL VOC, TOC, Grain Size	
SBD-PD-16-G	278509.4	1241569.8	228.8	B4JM9	12/27/2007	14:30	70-72	TCL VOC, TOC, Grain Size	A COLUMN TO THE
SBD-PD-16-H	278509.4	1241569.8	228.8	B4JN0	12/28/2007	9:25	78-80	TCL VOC, TOC, Grain Size	
SBD-PD-16-I	278509.4	1241569.8	228.8	B4JN1	12/28/2007	10:00	88-90	TCL VOC, TOC, Grain Size	
SBD-PD-16-J	278509.4	1241569.8	228.8	B4JN2	12/28/2007	10:40	98-100	TCL VOC, TOC, Grain Size	
SBD-PD-16-K	278509.4	1241569.8	228.8	B4JN3	12/28/2007	11:20		TCL VOC, TOC, Grain Size	
SBD-PD-16-L	278509.4	1241569.8	228.8	B4JN4	12/28/2007	13:30		TCL VOC, TOC, Grain Size	
SBD-PD-16-M	278509.4	1241569.8	228.8	B4JN5	12/28/2007	14:10		TCL VOC, TOC, Grain Size	
SBD-PD-16-N	278509.4	1241569.8	228.8	B4JN6	1/2/2008	9:10		TCL VOC, TOC, Grain Size	
SBD-PD-16-O	278509.4	1241569.8	228.8	B4JN7	1/2/2008	9:25		TCL VOC, TOC, Grain Size	
SBD-PD-16-P	278509.4	1241569.8	228.8	B4JN8	1/2/2008	9:35	158-160	TCL VOC, TOC	
SBD-PD-61-P	278509.4	1241569.8	228.8	B4K02	1/2/2008	9:35	158-160	TCL VOC, TOC	Duplicate of SBD-PD-16-P
SBD-PD-16-Q	278509.4	1241569.8	228.8	B4JN9	1/2/2008	10:00	168-170	TCL VOC, TOC	
SBD-PD-16-R	278509.4	1241569.8	228.8	B4JP0	1/2/2008	10:30		TCL VOC, TOC, Grain Size	1
SBD-PD-16-S	278509.4	1241569.8	228.8	B4JP1	1/2/2008	10:45		TCL VOC, TOC, Grain Size	
SBD-PD-16-T	278509.4	1241569.8	228.8	B4JP2	1/2/2008	11:05	198-200	TCL VOC, TOC, Grain Size	
SBD-PD-16-U	278509.4	1241569.8	228.8	B4JP3	1/2/2008	13:35		TCL VOC, TOC, Grain Size	
SBD-PD-16-V	278509.4	1241569.8	228.8	B4JP4	1/3/2008	10:50		TCL VOC, TOC, Grain Size	
SBD-PD-16-W	278509.4	1241569.8	228.8	B4JP5	1/3/2008	14:00	230-232	TCL VOC, TOC, Grain Size	
SBD-PD-16-X	278509.4	1241569.8	228.8	B4JP6	1/3/2008	14:20	240-242	TCL VOC, TOC, Grain Size	
SBD-PD-16-Y	278509.4	1241569.8	228.8	B4JP7	1/3/2008	14:45		TCL VOC, TOC, Grain Size	
SBD-PD-16-Z	278509.4	1241569.8	228.8	B4JP8	1/3/2008	14:55	258-260	TCL VOC, TOC, Grain Size	
SBD-PD-17-A	278714.6	1241467.9	228.5	B4JP9	1/7/2008	11:10	8-10	TCL VOC, TOC, Grain Size	
SBD-PD-17-B	278714.6	1241467.9	228.5	B4JQ0	1/7/2008	11:30	18-20	TCL VOC, TOC, Grain Size	
SBD-PD-17-C	278714.6	1241467.9	228.5	B4JQ1	1/7/2008	11:45	28-30	TCL VOC, TOC, Grain Size	
SBD-PD-71-C	278714.6	1241467.9	228.5	B4K03	1/7/2008	11:45	28-30	TCL VOC, TOC, Grain Size	Duplicate of SBD-PD-17-C

Table 1-1
Deep Soil Boring Sample Summary
Remedial Design
Lawrence Aviation Industries Superfund Site

awrence Aviation Industries Superfund Si Port Jefferson Station, New York

l			Surface		<u>"</u>				
,		1	Elevation (ft			Sample			
CDM Sample ID	Easting (X) ¹	Northing (Y) ¹	amsl)	CLP ID	Sample Date	Time	Depth (ft)		Comments
SBD-PD-17-D	278714.6	1241467.9	228.5	B4JQ2	1/7/2008	13:25	38-40	TCL VOC, TOC, Grain Size	
SBD-PD-17-E	278714.6	1241467.9	228.5	B4JQ3	1/7/2008	13:45	48-50	TCL VOC, TOC, Grain Size	
SBD-PD-17-F	278714.6	1241467.9	228.5	B4JQ4	1/7/2008	13:55	58-60	TCL VOC, TOC, Grain Size	
SBD-PD-17-G.	278714.6	1241467.9	228.5	B4JQ5	1/7/2008	14:05	68-70_	TCL VOC, TOC, Grain Size	
SBD-PD-17-H	278714.6	1241467.9	228.5	B4JQ6	1/7/2008	14:15	78-80	TCL VOC, TOC, Grain Size	
SBD-PD-17-I	278714.6	1241467.9	228.5	B4JQ7	1/7/2008	14:30	88-90	TCL VOC, TOC, Grain Size	
SBD-PD-17-J	278714.6	1241467.9	228.5	B4JQ8	1/7/2008	14:40		TCL VOC, TOC, Grain Size	
SBD-PD-17-K	278714.6	1241467.9	228.5	B4JQ9	1/8/2008	8:45		TCL VOC, TOC, Grain Size	
SBD-PD-17-L	278714.6	1241467.9	228.5	B4JR0	1/8/2008	8:55		TCL VOC, TOC, Grain Size	
SBD-PD-17-M	278714.6	1241467.9	228.5	B4JR1	1/8/2008	9:10		TCL VOC, TOC, Grain Size	_ , _
SBD-PD-17-N	278714.6	1241467.9	228.5	B4JR2	1/8/2008	9:25		TCL VOC, TOC, Grain Size	<u> </u>
SBD-PD-17-O	278714.6	1241467.9	228.5	B4JR3	1/8/2008	9:40		TCL VOC, TOC, Grain Size	<u> </u>
SBD-PD-17-P	278714.6	1241467.9	228.5	B4JR4	1/8/2008	9:55		TCL VOC, TOC, Grain Size	
SBD-PD-17-Q	278714.6	1241467.9	228.5	B4JR5	1/8/2008	10:10		TCL VOC, TOC, Grain Size	
SBD-PD-17-R	278714.6	1241467.9	228.5	B4JR6	1/8/2008	11:30		TCL VOC, TOC, Grain Size	
SBD-PD-17-S	278714.6	1241467.9	228.5	B4JR7	1/8/2008	13:00		TCL VOC, TOC, Grain Size	
SBD-PD-17-T	278714.6	1241467.9	228.5	B4JR8	1/8/2008	13:30		TCL VOC, TOC, Grain Size	
SBD-PD-17-U	278714.6	1241467.9	228.5	B4JR9	1/9/2008	9:40		TCL VOC, TOC, Grain Size	
SBD-PD-17-V	278714.6	1241467.9	228.5	B4JS0	1/9/2008	14:25		TCL VOC, TOC, Grain Size	
SBD-PD-17-W	278714.6	1241467.9	228.5	B4JS1	1/9/2008	14:40		TCL VOC, TOC, Grain Size_	
SBD-PD-17-X	278714.6	1241467.9	228.5	B4JS2	1/9/2008	14:50		TCL VOC, TOC, Grain Size	
SBD-PD-71-X	278714.6	1241467.9	228.5	B4K04	1/9/2008	14:50		TCL VOC, TOC, Grain Size	Duplicate of SBD-PD-17-X
SBD-PD-17-Y	278714.6	1241467.9	228.5	B4JS3	1/9/2008	15:15		TCL VOC, TOC, Grain Size	
SBD-PD-17-Z	278714.6	1241467.9	228.5	B4JS4	1/9/2008	15:25		TCL VOC, TOC, Grain Size	<u>. </u>
SBD-PD-18-A	278571.6	1241479.3	228.9	B4JS5	12/17/2007	11:20		TCL VOC, TOC, Grain Size	
SBD-PD-18-B	278571.6	1241479.3	228.9	B4JS6	12/17/2007	13:40		TCL VOC, TOC, Grain Size	
SBD-PD-18-C	278571.6	1241479.3	228.9	B4JS7	12/17/2007	13:50		TCL VOC, TOC, Grain Size	
SBD-PD-18-D	278571.6	1241479.3	228.9	B4JS8	12/17/2007	<u> 14:10</u>		TCL VOC, TOC, Grain Size	
SBD-PD-81-D	278571.6	1241479.3	228.9	B4K05	12/17/2007	14:10		TCL VOC, TOC, Grain Size	Duplicate of SBD-PD-18-D
SBD-PD-18-E	278571.6	1241479.3	228.9	B4JS9	12/17/2007	14:25		TCL VOC, TOC, Grain Size	
SBD-PD-18-F	278571.6	1241479.3	228.9	B4JT0	12/18/2007	9:35		TCL VOC, TOC, Grain Size	
SBD-PD-18-G	278571.6	1241479.3	228.9	B4JT1	12/18/2007	9:55	68-70	TCL VOC, TOC, Grain Size	

Table 1-1
Deep Soil Boring Sample Summary
Remedial Design
Lawrence Aviation Industries Superfund Site
Port Jefferson Station, New York

			Surface						· ·
i		Ĭ.	Elevation (ft			Sample	ļ		
CDM Sample ID	Easting (X) ¹	Northing (Y) ¹	amsi)	CLP ID	Sample Date	Time	Depth (ft)		Comments
SBD-PD-18-I	278571.6	1241479.3	228.9	B4JT3	12/18/2007	15:10		TCL VOC, TOC, Grain Size	
SBD-PD-18-J	278571.6	1241479.3	228.9	B4JT4	12/19/2007	8:30		TCL VOC, TOC, Grain Size	
SBD-PD-18-K	278571.6	1241479.3	228.9	B4JT5	12/19/2007	8:45		TCL VOC, TOC, Grain Size	
SBD-PD-18-L	278571.6	1241479.3	228.9	B4JT6	12/19/2007	9:05		TCL VOC, TOC, Grain Size	<u> </u>
SBD-PD-18-M	278571.6	1241479.3	228.9	B4JT7	12/19/2007	9:35		TCL VOC, TOC, Grain Size	
SBD-PD-18-N	278571.6	1241479.3	228.9	B4JT8	12/19/2007	10:00		TCL VOC, TOC, Grain Size	
SBD-PD-18-O	278571.6	1241479.3	228.9	B4JT9	12/19/2007	10:15		TCL VOC, TOC, Grain Size	
SBD-PD-18-P	278571.6	1241479.3	228.9	B4JW0	12/19/2007	10:30		TCL VOC, TOC, Grain Size	
SBD-PD-18-Q	278571.6	1241479.3	228.9	B4JW1	12/19/2007	10:50		TCL VOC, TOC, Grain Size	
SBD-PD-18-R	278571.6	1241479.3	228.9	B4JW2	12/19/2007	13:00		TCL VOC, TOC, Grain Size	
SBD-PD-18-S	278571.6	1241479.3	228.9	B4JW3	12/19/2007	13:20		TCL VOC, TOC, Grain Size	
SBD-PD-18-T	278571.6	1241479.3	228.9	B4JW4	12/19/2007	13:45		TCL VOC, TOC, Grain Size	
SBD-PD-18-U	278571.6	1241479.3	228.9	B4JW5	12/20/2007	9:10		TCL VOC, TOC, Grain Size	
SBD-PD-18-V	278571.6	1241479.3	228.9	B4JW6	12/21/2007	9:35		TCL VOC, TOC, Grain Size	
SBD-PD-18-W	278571.6	1241479.3	228.9	B4JW7	12/21/2007	9:45		TCL VOC, TOC, Grain Size	
SBD-PD-18-X	278571.6	1241479.3	228.9	B4JW8	12/21/2007	10:05		TCL VOC, TOC, Grain Size	
SBD-PD-18-Y	278571.6	1241479.3	228.9	B4JW9	12/21/2007	10:15		TCL VOC, TOC, Grain Size	
SBD-PD-18-Z	278571.6	1241479.3	228.9	B4JX0	12/21/2007	10:25	258-260	TCL VOC, TOC, Grain Size	
SBD-PD-19-A	278915.2	1241579.8	229.2	B4JX3	12/5/2007	12:50	8-10	TCL VOC ,Grain Size	
SBD-PD-91-A	278915.2	1241579.8	229.2	B4K06	12/5/2007	12:50	<u>8-10</u>	TCL VOC, Grain Size	Duplicate of SBD-PD-19-A
SBD-PD-19-B	278915.2	1241579.8	229.2	B4JX4	12/5/2007	13:10	18-20	TCL VOC, Grain Size	
SBD-PD-19-C	278915.2	1241579.8	229.2	B4JX5	12/5/2007	13:30	28-30	TCL VOC, Grain Size	
SBD-PD-19-D	278915.2	1241579.8	229.2	B4JX6	12/5/2007	13:50_	38-40	TCL VOC, Grain Size	
SBD-PD-19-E	278915.2	1241579.8	229.2	B4JX7	12/5/2007	14:50	48-50	TCL VOC, Grain Size	
SBD-PD-19-F	278915.2	1241579.8	229.2	B4JX8_	12/5/2007	15:00	58-60	TCL VOC, Grain Size	<u> </u>
SBD-PD-19-G	278915.2	1241579.8	229.2	B4JX9	12/5/2007	15:15		TCL VOC, Grain Size	
SBD-PD-19-H	278915.2	1241579.8	229.2	B4JY0	12/5/2007	15:25	78-80	TCL VOC, Grain Size	
		10115700	0000	D4 IV4	40/E/2007	15.55	99 00	TOL VOC Grain Size	ĺ

12/5/2007

12/5/2007

12/6/2007

12/6/2007

12/6/2007

B4JY1

B4JY2

B4JY3

B4JY4

B4JY5

229.2

229.2

229.2

229.2

229.2

1241579.8

1241579.8

1241579.8

1241579.8

1241579.8

278915.2

278915.2

278915.2

278915.2

278915.2

TCL VOC, Grain Size

98-100 TCL VOC, Grain Size

108-110 TCL VOC, Grain Size

118-120 TCL VOC, Grain Size

128-130 TCL VOC, Grain Size

88-90

15:55

16:10

9:05

9:35

SBD-PD-19-I

SBD-PD-19-J

SBD-PD-19-K

SBD-PD-19-L

SBD-PD-19-M

Table 1-1 Deep Soil Boring Sample Summary Remedial Design

Lawrence Aviation Industries Superfund Site Port Jefferson Station, New York

CDM Sample ID	Easting (X) ¹	Northing (Y) ¹	Surface Elevation (ft amsl)	CLP ID	Sample Date	Sample Time	Depth (ft)	Analysis ²	Comments
SBD-PD-19-N	278915.2	1241579.8	229.2	B4JY6	12/6/2007	11:10		TCL VOC, Grain Size	
SBD-PD-19-P	278915.2	1241579.8	229.2	B4JY8	12/7/2007	10:00		TCL VOC, Grain Size	
SBD-PD-19-Q	278915.2	1241579.8	229.2	B4JY9	12/7/2007	10:25		TCL VOC, Grain Size	
SBD-PD-19-R	278915.2	1241579.8	229.2	B4JZ0	12/7/2007	10:45		TCL VOC, Grain Size	
SBD-PD-19-S	278915.2	1241579.8	229.2	B4JZ1	12/7/2007	11:00	188-190	TCL VOC, Grain Size	
SBD-PD-19-T	278915.2	1241579.8	229.2	B4JZ2	12/7/2007	11:35		TCL VOC, Grain Size	
SBD-PD-19-U	278915.2	1241579.8	229.2	B4JZ3	12/11/2007	8:35		TCL VOC, Grain Size	
SBD-PD-19-V	278915.2	1241579.8	229.2	B4JZ4	12/11/2007	8: <u>55</u>		TCL VOC, Grain Size	
SBD-PD-19-W	278915.2	1241579.8	229.2	B4JZ5	12/11/2007	14:05		TCL VOC, Grain Size	
SBD-PD-19-X	278915.2	1241579.8	229.2	B4JZ6	12/11/2007	14;20		TCL VOC, Grain Size	<u> </u>
SBD-PD-19-Y	278915.2	1241579.8	229.2	B4JZ7	12/11/2007	14:40		TCL VOC, TOC, Grain Size	
SBD-PD-19-Z	278915.2	1241579.8	229.2	B4JZ8	12/11/2007	15:05	258-260	TCL VOC, TOC, Grain Size	

Notes:

¹ - Horizontal Datum: NAD 93-96 (NYLI Zone 3104); Vertical Datum: NAVD 88; Units: U.S. Survey Feet

² - TCL VOC used modified analysis #1505.1

Acronyms:

amsi - above mean sea level

CLP - Contract Laboratory Program

ft - feet

ID - Identification

TCL - Target Compound List

TOC - Total Organic Carbon

VOC - Volatlie Organic Compounds

Table 1-2 **Groundwater Screening Sample Summary** Remedial Design Lawrence Aviation Industries Site Port Jefferson Station, New York

																		
Well ID	Zone	Sample ID	Depth to Water (TIC)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Pump Intake Depth (feet bgs)	Purge Start Date/Time	Volume Purged (Liters)	Flow Rate (L/min)	Sample Date/Time	pН	Specific Conductance (mS/cm ^c)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Turbidity (NTU)	Analysis	Notes
SBD-PD-16	Α	SBD-PD-16-GW-A	NA*	201	206	203	1/2/2008 14:30	40	0.5	1/2/08 15:20	5.80	0.477	9.02	18.51	196.4	50	TCL VOCs	
SBD-PD-16	В	SBD-PD-16-GW-B	NA*	212	217	215	1/3/2008 11:35	55	0.5	1/3/08 12:25	5.70	0.449	8.23	14.90	213.3	75.9	TCL VOCs	
SBD-PD-17	_ A .	SBD-PD-17-GW-A	190.77	192	197	195	1/8/2008 14:48	15	0.5	1/8/08 15:45	5.82	0.346	5.40	17.39	225.7	49	TCL VOCs	
SBD-PD-17	В	SBD-PD-17-GW-B	NA*_	202	207	205	1/9/2008 10:54	40	0.5	1/9/08 12:15	5.59	_ 0.280	7.40	18,44	207.7	55.9	TCL VOCs	
SBD-PD-18	Α	SBD-PD-18-GW-A	191.4	192	197	195	12/19/2007 15:00	16	0.35	12/19/07 15:45	6.10	0.467	4.64	17.97	207.5	60	TCL VOCs	
SBD-PD-18	В	SBD-PD-18-GW-B	191.25	202	207	205	12/20/2007 14:08	32	0.5	12/20/07 15:10	5.85	0.509	6.91	17.59	222	22	TCL VOCs	
SBD-PD-19	A	SBD-PD-19-GW-A	192.7	202	207	205	12/10/2007 14:25	25	0.5	12/10/07 15:15	5.80	0.316	3.90	19.22	79.6	38	TCL VOCs	
SBD-PD-19	В	SBD-PD-19-GW-B	193	212	217	215	12/11/2007 9:58	31	0.5	12/11/07 11:55	6.02	0.453	4.63	15.20	198.9	85	TCL VOCs	
MW-PD-11	Α	MW-PD-11-GW-A	137.3	185	190	187	1/15/2008 15:05	_ 400	0.2	1/16/08 9:10	6.23	1.093	0.50	6.83	37.7	3.88	TCL VOCs	
MW-PD-11	В	MW-PD-11-GW-B	139.05	195	200	197	1/16/2008 11:35	27	0.3	1/16/08 13:10	6.24	0.614	0.10	15.68	-14.9	>500	TCL VOCs	
MW-PD-11	С	MW-PD-11-GW-C	148.5	205	210	207	1/16/2008 14:35	27	0.3	1/16/08 16:10	6.43	0.422	0.11	15.46	-46.6	>999	TCL VOCs	
MW-PD-12	AAA	MW-PD-12-GW-AAA	NA*	150	155	153	2/6/2008 13:10	130	1.0	2/6/08 15:15	5.56	0.215	5.57	16.40	178.6	47	TCL VOCs	
MW-PD-12	AA	MW-PD-12-GW-AA	NA*	180	185	183	2/6/2008 9:41	95	2.0	2/6/08 11:00	5.90	0.231	3.93	16.33	158.6	750	TCL VOCs	Collected duplicate MW-PD-21-GW-AA
MW-PD-12	Ā	MW-PD-12-GW-A	. 170	210.	215	213	1/24/2008 12:05	16	0.4	1/24/08 14:15	6.20	0.329	1,57	11.14	79.3	>500	TCL VOCs	
MW-PD-12	В	MW-PD-12-GW-B	118.2	240	245	243	1/31/2008 11:00	600	1.5	1/31/08 16:15	5.92	0.206	3.48	12.63	214.6	10.9	TCL VOCs	MS/MSD
MW-PD-12	С	MW-PD-12-GW-C	121.25	270	275	273	2/4/08 13:15	1600	2.0	2/5/08 16:00	5.80	0.259	8.14	13.24	234	9.4	TCL VOCs	
MW-PD-13	Α	MW-PD-13-GW-A	NA*	160	165	163	5/20/2008 10:00	100	1.0	5/20/2008 11:45	5.54	0.382	2.96	16.83	160.3	>100	TCL VOCs	
MW-PD-13	В	MW-PD-13-GW-B	150	180	185	183	5/20/2008 8:00	80	1.0	5/20/2008 9:50	5.67	0.209	3.81	16.58	218.7	<10	TCL VOCs	
MW-PD-13	С	MW-PD-13-GW-C	NA*	210	215	213	5/19/2008 8:30	600	1.0	5/19/2008 17:30	5.13	0.206	4.18	14.90	212.3	<10	TCL VOCs	MS/MSD
MW-PD-14	Α	MW-PD-14-GW-A	154.4	210	215	213	4/9/2008 9:25	750	0.1	4/9/08 16:55	5.91	0.213	0.13	16.37	224.6	6.6	TCL VOCs	Collected duplicate MW-PD-41-GW-A
. MW-PD-14	В	MW-PD-14-GW-B	154.9	240	245	243	4/10/2008 10:35	. 450	0.5	4/11/08 10:40	5.99	.0.228	1.53	17.30	238.2	5.3	TCL VOCs	MS/MSD_
MW-PD-14	С	MW-PD-14-GW-C	NA*	270	275	273	4/23/2008 10:30	120	1.0	4/23/2008 12:30	6.03	0.220	3.12	17.36	164.5	>999	TCL VOCs	
MW-PD-14	D	MW-PD-14-GW-D	157.45	300	305	303	4/22/2008 17:40	190	1.0	4/23/2008 9:30	5.57	0.221	3.09	15.28	149.3	>999	TCL VOCs	
MW-PD-15	Α	MW-PD-15-GW-A	NA*	150	155	153	5/7/2008 10:50	6	1.0	5/7/2008 11:55	5.02	0.152	0.08	15.85	205,3	>250	TCL VOCs	
MW-PD-15	В	MW-PD-15-GW-B	NA*	180.	185	183	5/7/2008 9:30	6	1.0	5/7/2008 10:30	5.87	0.148	0.07	15.37	209.1	55.8	TCL VOCs	
MW-PD-15	С	MW-PD-15-GW-C	NA*	210	215	212.5	5/6/2008 17:00	450	0.5	5/7/2008 8:10	6.18	0.273	0.10	13.21	220.1	10.3	TCL VOCs	
MW-PD-16	Α	MW-PD-16-GW-A	NA*	105	110	103	2/21/2008 11:57	230	1.6-0.4	2/21/08 13:45	5.91	0.252	5.37	11.85	185	>999	TCL VOCs	
MW-PD-16	В	MW-PD-16-GW-B	NA*	135	140	133 、	2/21/2008 15:59	530	2.5	2/21/08 18:40	6.09	0.257	8.88	12.03	211.6	>999	TCL VOCs	
MW-PD-16	С	MW-PD-16-GW-C	74.45	165	170	167	2/25/2008 10:15	210	3.0	2/25/08 14:00	5.86	0.323	2.55	12.87	210.6	5.3	TCL VOCs	
MW-PD-16	D	MW-PD-16-GW-D	NA	195	200	197	2/28/2008 13:25	800	2.5	2/28/08 17:00	5.69	0.603	2.56	12.51	225 `	>999	TCL VOCs	Collected duplicate MW-PD-61-GW-D
MW-PD-16	E	MW-PD-16-GW-E	NA	225	230	227	3/4/2008 9:02	600	1.0	3/5/08 15:00	5.69	0.354	3.07	12.86	194	>999	TCL VOCs	
MW-PD-16	F	MW-PD-16-GW-F	NA NA	245	250	247	3/6/2008 13:46	500	1.1	3/7/08 12:30	5.65	0.289	3.51	11.96	170.2	>999	TCL VOCs	
MW-PD-17	Α	MW-PD-17-GW-A	8.5	70	75	- 73	2/12/2008 12:00	185	1.0	2/12/08 15:00	6.41	0.223	7.81	10.18	198.8	67	TCL VOCs	
MW-PD-17	В	MW-PD-17-GW-B	8.6	80	85	83	2/13/2008 10:20	720	4.0	2/13/08 13:30	5.36	0.182	5.36	11.86	195.6	64	TCL VOCs	
MW-PD-17	С	MW-PD-17-GW-C	NA	90	95	93	2/13/2008 14:30	650	4.0	2/13/08 17:00	6.12	0.076	4.93	11.45	179	20.7	TCL VOCs	

Notes:

¹ - Water level meter was unable to reach depth to water table

Acronyms:

°C - degrees Celcius

bgs - below ground surface

ID - identification

L/min - liters per minute

LDL - lower detection limit

mg/L - milligrams per liter mS/cm - microseimens per centimeter

mS/cm^c - specific conductance (specific conductivity at 25 °C) MS/MSD - Matrix Spike/Matrix Spike Duplicate

mV - millivoits

MW - Monitoring Well NA - Not Available

NTU - Nephelometric Turbidity Units
TCL VOCs - Target Analyte List Volatile Organic Compounds - OLMO4.3
TIC - top of inner casing

Table 1-3 **Monitoring Well Construction Details** Remedial Design Lawrence Aviation Industries Site Port Jefferson Station, New York

Well	Elevation ¹ Ground Surface	Elevation ¹ Top of Casing	Easting X ¹	Northing Y ¹	Riser -Diameter	Riser Type		Grout Type	Grout Interval (ft	- Seal-Type	Seal Interval (fi	Sand Pack	Sand Pack Interval	Screen -Diameter	Screen	-	n Interval : bgs) —	Screen (Eleva	Interval ation) ¹
1	(ft above msl)	(ft above msl)			(inches)		(ft bgs)	ł	bgs)]	bgs)	Туре	(ft bgs)	(inches)	Туре	Тор	Bottom	Top	Bottom
MW-PD-11	164.4	164.9	280312.5	1239752.5	4	Stainless Steel	0-195	Cement/Bentonite	0-185	Bentonite Slurry	185-190	#1 Sand	190-205	4	0.010 inch	195	205	-30.6	-40.6
MW-PD-12	143.1	142.7	280706.4	1240644.6	4	Stainless Steel	_0-150	Cement/Bentonite	0-140	Bentonite Slurry	140-145	#1 Sand	145-165	4	0.010 inch	150	160	-6.9	-16.9
MW-PD-13	177.3	176.9	281370.7	1241574.8	4	Stainless Steel	_ 0-175	Cement/Bentonite	0-165	Bentonite Slurry	165-170	#1 Sand	170-185	4	0.010 inch	175	185	2.3	-7.7
MW-PD-14	178.2	177.6	282166.2	1240627.5	4	Stainless Steel	0-239	Cement/Bentonite	0-229	Bentonite Slurry	229-234	#1 Sand	234-249	4	0,010 inch	239	249	-60.8	-70.8
MW-PD-15	95.5	95.3	284168.4	1239734.7	4	Stainless Steel	0-204	Cement/Bentonite	0-194	Bentonite Slurry	194-199	#1 Sand	199-214	4	0.010 inch	204	214	-108.5	-118,5
MW-PD-16	86.3	86.1	283265.3	1240340.9	4	Stainless Steel	0-190	Cement/Bentonite	0-175	Bentonite Slurry	175-185	#1 Sand	185-200	4	0.010 inch	190	200	-103.7	-113,7
MW-PD-17	25.5	24.7	283697.9	1241728.6	4	Stainless Steel	0-80	Cement/Bentonite	0-60	Bentonite Slurry	60-73	#1 Sand	73-90	4	0.010 inch	80	90	-54.5	-64.5

¹ - Horizontal Datum: NAD 93-96 (NYLI Zone 3104); Vertical Datum: NAVD 88; Units: U.S. Survey Feet

Acronyms: bgs - below ground surface

ft - feet

msi - mean sea level

Table 1-4 Well Development Summary Remedial Design

Lawrence Aviation Industries Superfund Site Port Jefferson Station, New York

Well	Screened Interval (feet bgs)	Development Date	Development Duration (minutes)	Development Rate (gpm)	pН	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Turbidity (NTU)
MW-PD-11	195-205	3/3/2008	170	5.5	6.21	3.15	0.00	12.95	158.80	22
MW-PD-12	150-160	3/4/2008	130	6.6	5.79	0.222	8.96	12.17	196.7	32
MW-PD-13	175-185	5/22/2008	75	12-13	6.20	0.192	10.63	12.20	127.4	<10
	239-249	5/5/2008	180	3-4	5.71	0.253	0.14	12.99	177.2	<10
MW-PD-14	 	5/14/2008	80	14-15	6.06	0.301	1.95	11.89	140.7	7.76
MW-PD-15	204-214				5.42	0.600	2.81	11.38	225.9	64.2
MW-PD-16	190-2 <u>00</u>	4/3/2008	300	5.1		0.137	8.41	11,54	129.0	23.1
MW-PD-17	80-90	3/5/2008	110	9.3	6.99	0.137	1. 0.41	11,07	.20.0	

Acronyms:

°C - degrees Celcius

bgs - below ground surface

ID - identification

gpm - gallons per minute

mg/L - milligrams per liter

mS/cm - microseimens per centimeter (data normalized to 25 °C)

mV - millivolts

MW - Monitoring Well

NTU - Nephelometric Turbidity Units

Table 1-5

Synoptic Water Levels Remedial Design Lawrence Aviation Industries Superfund Site Port Jefferson Station, New York

		March 7, 2	005			April 25,	2005			December 1	3. 2007			1		
Well	Transducer Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsl)	Transducer Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsl)	Transducer Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsl)	Transducer Reading (Dg)	June 9, 2 Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsl)
MPW-01-A	8395.6	11.4	141.65	41.75	8405.2	11	142.18	41,22	8327.3	11.5	154.17	44.91	8368.6	11.6	140.36	43.04
MPW-01-B	7873.1	11.4	142.24	41.16	7881.5	11.4	142.73	40.67	7801.1	11.4	178.77	44.53	7842.9	11.5	140.74	42.66
MPW-01-C	7295.2	11.2	142.45	40.95	7304.6	11.3	142.98	40.42	7225.5	11.2	201.47	44.32	7264.3	11.2	140.95	42.45
MPW-02-A	8654.7	11.1	185.52	35.5	8662.6	12.1	185.96	35.06	8598.1	11.9	183.27	38.46	8630.2	11	184.04	36.98
MPW-02-B	7751.8	11.5	186.1	34.92	7760.5	11.6	186.56	34.46	7692.9	11.4	206.27	37.93	.7726.6	11.4	184.57	36.45
MPW-02-C	7722.3	11.3	188.68	32.34	7729.9	11.2	189.1	31.92	7662.6	11.1	234.07	35.32	7697.5	11.1	187.41	33.61
MPW-02-D	6940.1	11.2	189.15	31.87	6947.9	10.9	189.56	31.46	6878.5	10.8	258.87	34.81	6914.9	10.8	187.92	33.1
MPW-03-A	8541.7	10.6	159.11	30.62	8548.0	10.6	159.48	30.25	*	*	. *	*	8522.2	10.5	157.96	31.77
MPW-03-B	8145.4	10.3	159.47	30.26	8152.6	10.4	159.86	29.87	8100.2	10.4	156.91	32.82	8130.8	10.4	158.5	31.23
MPW-03-C	6891.6	10.4	159.73	30	6898.4	10.3	160.1	29.63	6844	10.4	156.91	32.82	6874.6	10.4	158.5	31.23
MPW-03-D	6505	10.5	158.96	30.77	6512.6	10.4	159.31	30.42	6451.8	10.4	156.37	33.36	6488.3	10.4	157.97	31.76
MPW-04-A	8491.5	12.6	146.33	30.9	8500.3	12.6	146.84	30.39	8438.8	12.9	143.6	33.63	8471.8	13	145.22	32.01
MPW-04-B	8200.1	12.9	146.63	30.6	8207.7	12.8	147.14	30.09	8156.1	10.6	144.02	33.21	8184.4	10.6	145.64	31.59
MPW-04-C	7531.4	12.2	147.05	30.18	7539,3	12.4	147.55	29.68	7490.1	12.3	144.64	32.59	7517.8	12.4	146.03	31.2
MPW-04-D	6954.6	11.8	146.97	30.26	6962.1	11.8	147.5	29.73	6911.5	12	144.24	32.99	6937.8	11.7	145.86	31.37
MPW-04-E	5899	11.7	147.42	29:81	5909.2	11.7	147.95	29.28	5847.2	11.8	144.86	32.37	5878.7	11.8	146.48	30.75
MPW-05-A	7627.3	10.8	134.48	22.32	7631.4	10.7	134.85	21.95	7602.2	10.8	132.98	23.82	7624	10.8	133.95	22.85
MPW-05-B	7265.8	10.5	134.83	21.97	7269.5	10.5	135.2	21.6	7244.3	10.5	133.23	23.57	7262.8	10.5	134.43	22.37
MPW-05-C	7542.9	10.5	134.86	21.94	7546.4	10.5	135.25	21.55	7520.9	10.5	133.26	23.54	7538.9	10.5	134.23	22.57
MPW-05-D	6510.4	10.1	134.68	22.12	6513,9	10.2	135.03	21.77_	6486.3	10	133.34	23.46	6509.2	10.1	134.31	22.49
MPW-06-A	8451.5	11	35.21	22.08	8453.3	11	35.51	21.78	8423.7	10.8	33.34	23.95	8445.4	10.8	34.61	22.68
MP.W-06-B	7506.1	10.4	35.11	22.18	7508.8	10.3	35.45	21.84	7484.6	10.2	33.74	23.55	7510.2	10.3	35.01	22.28
MPW-06-C	6706.2	10	35.37	21.92	6709.8	10.1	35.74	21.55	6681.3	10	33.9	23.39	6706.8	9.7	34.94	22.35
MPW-06-D	5716.6	9.8	35.65	21.64	5720.1	9.8	36	21.29	5696.9	9.8	34.27	23.02	5721.6	9.7	35.54	21.75
MPW-07-A	8418	11.8	192.33	36.78	8426.3	11.8	192.77	36.34	8353.8	11.7	189.21	39.9	7926.5	11.7	174.24	54.87
MPW-07-B	8307.3	11.6	192.74	36.37	8317.8	11.5	193.25	35.86	8243.1	11.4	189.69	39.42	8279.6	11.4	191.36	37.75
MPW-07-C	7593.4	10.3	193.44	35.67	7602.9	10.9	193.95	35.16	7531.7	10.8	190.25	38.86	7535.2	10.9	190.76	38.35
MPW-08-A	8132.4	11.6	6.22	10.86	8131.0	11.6	6.43	10.65	8136.5	11.6	5.67	11.41	8151.3	11.5	6.5	10.58
MPW-08-B	8276.3	11.3	5.83	11.25	8269.8	11.3	5.81	11.27	8274.2	11.3	5.16	11.92	8283.9	11.3	5.76	11.32
MPW-08-C	6817.9	11.1	6.07	11.01	6815.6	11.1	6.23	10.85	6808.8	11.1	5.15	11,93	6825.8	11.1	5.98	11.1
MPW-08-D	6557.4	11	7.08	10	6537.0	10.9	6.57	<u>10.51</u>	6540.9	10.8	5.67	11.41	6558.2	10.9	6.74	10.34
MPW-08-E	5733.7	10.4	5.66	11.42	5734.1	10.4	5.92	11.16	5739.7	10.4	5.18	11.9	5758.1	10.4	6.24	10.84
MPW-09-A	8903.9	10	-2.87	12.53	8896.0	9.7	-2.94	<u>12.6</u>	8888.2	10.6	-4.17	13.83	8901.2	10	-3.36	13.02
MPW-09-B	7760.9	10.4	-5.45	15.11	7761.9	10.4	-5.18	14.84	7757	10.2	-6.26	15.92	7773.9	10.3	-5.22	14.88
MPW-09-C	6895.5	10.2	-5.82	15,48	6896.8	10.1	<i>-</i> 5.54	15.2	6899.3	10.1	-6.44	16.1	6910.3	10	-5.63	15.29
MPW-09-D	5901.9	10.1	-6.16	15.82	5905.2	10.3	-5.81	15.47	5899	10.1	-6.87	16.53	5915.7	10.1	-6.06	15.72
MPW-09-E	5276.8	10.2	-6.51	16.17	5279.8	10,1	-6.17	<u>15</u> .83	*	*	*	*	5295.1	10.1	-6.19	15.85
MPW-10-A	8801.6	11.4	141.44	29.29	8807.5	11.3	141.65	29.08	8767.2	11.8	138.87	31.86	8793.3	11.8	140.47	30.26
MPW-10-B	7981.8	11.6	141.44	29.29	7989.2	11.7	141.67	29.06	7937.2	12.1	138.71	32.02	7966.7	12.1	140.3	30.43
MPW-10-C	6884.3	11.3	141.73	_29	6891.9	11.3	141.96	28.77	6843.2	11.7	139.32	31.41	6875.8	11.7	140.92	29.81
MPW-10-D	6271.9	11.3	141.76	28.97	6279.7	11.2	142.01	28.72	6236,6	11.6	139.61	31.12	_6266.7	11.6	-140.97	29.76

Table 1-5

Synoptic Water Levels Remedial Design

Lawrence Aviation Industries Superfund Site Port Jefferson Station, New York

		March 7, 2	2005			April 25,	2005			December 1	3, 2007			June 9, 2	2008	
Well	Transducer Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsl)	Transducer Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsl)	Transducer Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsl)	Transducer Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet ams!)
MW-01	多用性各类相同	的名词复数有关部分	136.03	43.97	1.6 产税的 数据序	THE MALE WILLIAM	136.26	43.74	来自使证的证明	5486571656	**	**	医野猪类 化排放器	SAPERT LANGER	**	**
MW-05			186.9	33.1		2.55.541	186.83	33.17			182.31	37.69		STATE STATE	183.22	36.78
FG-01	"心"对视 发生		166.92	34.51	margaQ-guevay.	心感觉 觉症的	167.34	34.09	Skiller (Stock	$S_{i} \in \{1,2,3,4\}, \forall i \in I_{i}\}$	163.65	37.78	PALAMAR SEE	AND A SECURIS	164.82	36.61
MW-PD-11	《是我的信息》 《		NI	NI	THE STATE OF		NI	NI	33475		NI	NI	The second section		134.1	30.82
MW-PD-12		A. A. C. C. L. C.	NI	NI	an end literals.	ara makan dari	Nil	NI	2002 2000		NI	NI	V SAL STEELS	La registration (112.7	30.04
MW-PD-13	And Marie	建 设备的基本指令	NI	NI	40.00	物理學學的言意	NI	NI	(1) 建乳化学	CALL PRESIDEN	NI	NI	1224427	1909-04-6-7-19	148.61	28.33
MW-PD-14		Property Comments	NI	NI	# 16 W		NI	NI	1100		NI	NI			152.56	25.06
MW-PD-15	Juni 2 mars 1976		NI	NI	The second	a the Cart	NI	NI	And a September	e di di Gularia di California	NI	NI	Margar Asses	raid substantia	78.36	16.9
MW-PD-16	Flat Straight	有关 自己的标志。	NI	NI	计学程度性负	Gradia E.A.	NI	NI	7 Tag 1 14		NI	NI	W 12 - 40 T	The Market Service	65.34	20.77
MW-PD-17	EN MILES		NI	NI	CAMBOAS.	8.5% L 1 2 4 K	NI	NI	Bate. Lasts	** , 7,5 m ./	NI	NI	Carolinate A.		4.88	19.86
PZ-PD-01	and while	Mary See A. A.	NI	NI	Marine 1999		NI	NI	"沙公园"作业 图	resumment.	NI	NI	(Market Section	· 经联络企业企业	184.96	37.53
PZ-PD-02	ALC: NO.	60年 医克勒克特克克	NI	NI	THE STATE OF		NI	NI			NI	Ni	A Program of	10 S 10 S 10 S 10 S	186.33	36.73
PZ-PD-03			NI	NI		double that is at	NI	NI	76.3		NI	NI	47225	Carried Section	184.55	35.61
TW-01	(6) 地名美国	化电流 计正规设施	NI	NI.	Stranger and	A1.05.004.5	NI	· NI	Carakras	Standard Company	NI	NI	bile in the excession	FORES PERSON	185	37.82

Notes:

On December 13, 2007, no data were collected from MPW-03-A and MPW-09-E.

** Water levels could not be collected at MW-01 because well was paved over.

Depth to water at MW-5 and FG-01 was measured in the field from top of outside casing. The reading above was adjusted to land surface by subtracting the stickup from the depth to water.

Not applicable to standard monitoring wells.

Acronyms:

amsl

Above mean sea lev

dg Digits. The reading from the vibrating wire transducer. Water levels calculated from this reading using the method described in LAI RI Report (CDM 2006a)

NI Well not installed until later date.

Table 1-5 Synoptic Water Levels Remedial Design

Lawrence Aviation Industries Superfund Site Port Jefferson Station, New York

		March 7, 2	2005			April 25,	2005			December 1	3, 2007			June 9, 2	008	
Well	Transducer - Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsl)	Transducer Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level - Elevation (feet- amsl)	Transducer Reading (Dg)	Tomperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsi)	Transducer Reading (Dg)	Temperature (°C)	Depth to Water (feet)	Water Level Elevation (feet amsl)
MW-01	新州市	"沙里司" "沙里斯"	136.03	43.97	使原始等国际		136.26	43.74	和流流。	型 2000年,在1900年	**	**		视觉的主义的	**	**
MW-05	1.274.52.8		186.9	33.1			186.83	33.17	2004年1月		182.31	37.69	Training to the second		183.22	36.78
FG-01	* 242 19 19 19	经 。1000年2月	166.92	34.51	A LANGE MA	医多种的 种。	167.34	34.09	3.24 pt. 24.24kg	is two a file	163.65	37.78	History House	建设建设设施	164.82	36.61
MW-PD-11			NI	NI	19.6	() (h) (1) (h)	NI	NI	海温泉水流	建海线	NI	NI			134.1	30.82
MW-PD-12		A Commence of	NI	NI			NI	NI		Fig. 1/4 do	NI	NI			112.7	30,04
MW-PD-13	CHIER N	ができる。	NI	NI	ne d an	14259	NI	NI	Par Profession	ale beginnings	NI	NÍ	32. O 48. 10	Marchael e	148.61	28.33
MW-PD-14			NI	NI_		有一种的特殊等于	NI.	NI	2550 248	7.27	N!	N!	"种" ,"这个"。		152.56	25.06
MW-PD-15	La Garage	Avenue and the said	NI	NI	S. 44-5		NI	NI	"没有这是没有 "	Market Fig.	NI	NI		A	78.36	16.9
MW-PD-16	a plant	有效的基础的基础中	NI	NI	A Part of the	and the second	NI	NI	. W . √ E . 1.	ALERS TO TAKE	NI	NI	200	1,00° (1.50 m) 100 m	65.34	20.77
MW-PD-17	7 1600		NI	NI	1 447 48	371 413.7	NI_	NI	THE PARTY		NI	NI			4.88	19.86
PZ-PD-01	10 A	Contract of the	NI	NI	1000		NI	NI	一位。引起	38 14 St. 42	NI	NI	CHEN LESSY:	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	184.96	37.53
PZ-PD-02	777	er en s	NI	NI	Part of the	"""""" ""	NI	NI	公里 教训生者第1年	(4.5 m) (4.7 m)	NI	NI		対策を設定する	186.33	36.73
PZ-PD-03		10 THE 1	NI	N!	型 一里 。"	2077-779-5	NI	NI	"特别是""		NI	NI		0.00 C	184.55	35.61
TW-01	12.6 (behits)	And With States	Ni	NI		DESERT LINE	NI	NI		A BALLINE	NI	NI		A SHOWN WITH	185	37.82

Notes:

On December 13, 2007, no data were collected from MPW-03-A and MPW-09-E.

** Water levels could not be collected at MW-01 because well was paved over.

Depth to water at MW-5 and FG-01 was measured in the field from top of outside casing. The reading above was adjusted to land surface by subtracting the stickup from the depth to water.

Not applicable to standard monitoring wells.

Acronyms:

ams! Above mean sea leve

dg Digits. The reading from the vibrating wire transducer. Water levels calculated from this reading using the method described in LAI RI Report (CDM 2006a)

NI Well not installed until later date.

—Table 1-6a— Round 1 Monitoring Well Sample Summary
Remedial Design
Lawrence Aviation Industries Superfund Site
Port Jefferson Station, New York

Well	Port	Sample ID	Sampling Round	Sample Date	Sample Time	Top of Screen (feet bgs)		pH	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Turbidity (NTU)	Volume Purged (liters)	Drive/Vent Cycle Drive Pressure	Analysis	CLP Number	Notes
MPW-01	A	MPW-01-PD-A-R1	R1	11/27/2007	10:35	160	170	5.76	0.435	3.90	11.72	16.1	0.8	15.0	12/11 135 psi	LDL VOC, Ti, FI	B4GD7	
MPW-01	<u>B</u>	MPW-01-PD-B-R1	R1	11/27/2007	10:30	185	195	5.53	0.441	9.85	11.72	160.6	0	15.0	12/11 135 psi	LDL VOC, Ti, FI	B4GD8	
MPW-01	C	MPW-01-PD-C-R1	R1	11/27/2007	11:35	210	220	7.29	0.392	1.52	11.67	-27.1	0	10.0	12/11 135 psi	LDL VOC, Ti, FI	B4GD9	
MPW-02	A	MPW-02-PD-A-R1	R1	1/4/2008	10:50	190	200	6.07	0.546	3.22	11.80	163.2	0	5.5	20/10 100 psi	LDL VOC, Ti, FI	B4GE4	2nd sampling event.
MPW-02	В	MPW-02-PD-B-R1	R1	11/26/2007	14:20	215	225	5.86	0.403	8.69	12.00	125.7	0	5.0	16/14 125 psi	LDL VOC, Ti, FI	B4GE5	
MPW-02	င	MPW-02-PD-C-R1	R1	11/26/2007	16:15	240	250	6.35	0.379	1.24	12.01	132.7	0	7.5	18/14 130 psi	LDL VOC, Ti, FI	B4GE6	Collected duplicate MPW-22-PD-C-R1
MPW-02	D	MPW-02-PD-D-R1	R1	11/26/2007	17:10	265	275	6.25	0.354	6.30	11.97	58.6	0	5.0	20/14 145 psi	LDL VOC, Ti, FI	B4GE7	
MPW-02	Α	MPW-02-PORT1	R1*	3/6/2008	16:00	190	200	5.85	0.368	6.89	11.51	207.9	0	36.0	10/40 180 psi	TCL VOCs	N/A*	
MPW-02	В	MPW-02-PORT2	R1*	3/11/2008	11:45	215	225	5.85	0.271	8.54	12.10	178.1	0	54.0	10/20 180 psi	TCL VOCs	N/A*	
MPW-02	С	MPW-02-PORT3	R1*	3/11/2008	12:35	240	250	6.20	0.264	4.41	11.69	199.8	0	6.0	10/20 180 psi	TCL VOCs	N/A*	
MPW-02	D	MPW-02-PORT4	R1*	3/11/2008	14:40	265	275	6.24	0.253	8.60	11.79	70.4	0	26.0	15/20 190 psi	TCL VOCs	N/A*	
MPW-03	Α	MPW-03-PD-A-R1	R1	11/28/2007	14:25	175	185	6.67	0.281	0.46	10.85	-69.5	0.65	6.0	14/12 110 psi	LDL VOC, Ti, FI	B4GE9	
MPW-03	В	MPW-03-PD-B-R1	R1	11/27/2007	14:50	195	205	6.63	0.214	0.51	11.35	-95.4	2	6.3	16/14 115 psi	LDL VOC, Ti, FI	B4GF0	Collected duplicate MPW-33-PD-B-R1
MPW-03_	С	MPW-03-PD-C-R1	R1	11/28/2007	15:15	215	225	7.25	0.393	0.80	10.45	-24.7	6.09	5.5	17/13 120 psi	LDL VOC, Ti, FI	B4GF1	
MPW-03	D	MPW-03-PD-D-R1	R1	11/28/2007	16:15	235	245	6.50	0.418	0.39	10.23	-70.1	61.2	5.0	18/14 120 psi		B4GF2	
MPW-04	Α	MPW-04-PD-A-R1	R1	11/27/2007	9:50	150	160	5.50	0.436	0.46	12.86	24.1	1.32	6.0	12/18 150 psi		B4GF4	
MPW-04	В	MPW-04-PD-B-R1	R1	11/27/2007		170	180	5.94	0.452	0.47	13.52	100.7	0.2	7.5	11/14 120 psi	LDL VOC, Ti, FI	B4GF5	
MPW-04	С	MPW-04-PD-C-R1	R1	11/27/2007	10:40	200	210	7.09	0.612	0.85	13.27	-66.5	1.2	15.0	14/16 150 psi	LDL VOC, Ti, FI	B4GF6	
MPW-04	D	MPW-04-PD-D-R1	R1	11/27/2007		220	230	5.99	0.418	3.56	13.83	110.1	0.39	7.5	12/12 140 psi	LDL VOC, Ti, FI	B4GF7	
MPW-04	E	MPW-04-PD-E-R1	R1	11/27/2007		240	250	6.64	0.365	5.41	12.95	73	0.25	6.5	14/14 150 psi	LDL VOC, Ti, FI	B4GF8	
MPW-05	A	MPW-05-PD-A-R1	R1	11/28/2007		160	170	5.87	0.321	2.81	10.98	30.1	1.05	17.0	10/15 120 psi	LDL VOC, Ti, FI	B4GF9	
MPW-05	B	MPW-05-PD-B-R1	R1	11/28/2007	15:35	185	195	5.79	0.284	0.89	10.79	-170.2	0	6.0	10/15 120 psi	LDL VOC, Ti, FI	B4GG0	
MPW-05	C	MPW-05-PD-C-R1	R1	11/29/2007	10:25	205	215	6.00	0.290	4.54	11.25	-19.8	5.95	12.0	15/15 125 psi	LDL VOC, Ti, FI	B4GG1	
MPW-05	D	MPW-05-PD-D-R1	R1	11/29/2007		225	235	6.10	0.313	4.28	11.30	86.9	0.82	10.0	15/15 125 psi	LDL VOC, Ti, FI	B4GG2	
MPW-06	Α	MPW-06-PD-A-R1	R1	11/29/2007		65	75	10.37	0.545	0.55	11.29	70.2	4.1	5.5	16/14 120 psi	LDL VOC, Ti, FI	B4GG3	
MPW-06	В	MPW-06-PD-B-R1	R1	11/29/2007		90	100	6.00	0.169	0.51	10.79	30	0	6.0	16/14 120 psi	LDL VOC, Ti, FI	B4GG4	MS/MSD
MPW-06	C	MPW-06-PD-C-R1	R1	11/29/2007		115	125	6.26	0.233	7.06	10.84	63.8	16	8.0	16/14 120 psi	LDL VOC, Ti, FI	B4GG5	
MPW-06	D	MPW-06-PD-D-R1	R1	11/29/2007	1	160	170	7.55	0.170	4.79	10.59	36.3	1.3	8.0	16/14 120 psi	LDL VOC, Ti, FI	B4GG6	
MPW-07	Α	MPW-07-PD-A-R1	R1	11/30/2007		202	212	5.50	0.427	5.50	11.42	196.9	0	8.0	12/12 130 psi		B4GG7	
MPW-07	В	MPW-07-PD-B-R1	R1	1/4/2007	9:30	220	230	7.01	0.429	7.12	11.70	100.1	0	4.0	15/30 180 psi	LDL VOC, Ti, FI	B4GG8	2nd sampling event
MPW-07	C	MPW-07-PD-C-R1	R1	11/29/2007		250	260	7.50	0.402	8.47	12.33	44.2	0.3	8.0	14/18 150 psi	LDL VOC, Ti, FI	B4GG9	Collected duplicate MPW-77-PD-C-R1
MPW-08	A	MPW-08-PD-A-R1	R1	11/28/2007		25	35	5.49	0.260	14.27	12.31	157.8	0	15.0	10/15 80 psi	LDL VOC, Ti, FI	B4GH1	
MPW-08	В	MPW-08-PD-B-R1	R1	11/28/2007		45	55	5.68	0.265	13.70	11.97	108.7	0	14.0	10/15 80 psi	LDL VOC, Ti, FI	B4GH2	
MPW-08	C	MPW-08-PD-C-R1	R1_	11/28/2007		75	_85	6.02	0.223	<u>13.</u> 51	11.90	121.9	0	15.0	10/15 80 psi	LDL VOC, Ti, FI	B4GH3	
MPW-08	D	MPW-08-PD-D-R1	R1	11/28/2007	12:00	95	105	6.35	0.220	13.59	11.62	51.1	0	15.0	10/15 85 psi	LDL VOC, Ti, FI	B4GH4	
MPW-08	E	MPW-08-PD-E-R1	R1	11/28/2007		115	125	6.84	0.137	8.02	11.56	80.5	0	15.0	10/15 85 psi	LDL VOC, Ti, FI	B4GH5	
MPW-09	A	MPW-09-PD-A-R1	R1	11/29/2007		10	20	5.73	0.277	8.44	10.85	185.7	0.05	8.0	16/14 130 psi	LDL VOC, Ti, FI	B4GH6	Artesian Well
MPW-09	В	MPW-09-PD-B-R1	R1	11/29/2007		45	55	5.61	0.348	7.51	10.56	172.2	0	8.5	16/14 130 psi		B4GH7	Artesian Well
MPW-09	С	MPW-09-PD-C-R1	R1	11/29/2007		70	80	5.85	0.378	1.59	10.42	153.9	0.9	8.0	16/14 130 psi		B4GH8	Artesian Well
MPW-09	D	MPW-09-PD-D-R1	R1	11/29/2007		90	100	6.36	0.263	3.05	10.34	111.3	2.8	9.0	16/14 130 psi	LDL VOC, Ti, FI	B4GH9	Artesian Well
MPW-09	E	MPW-09-PD-E-R1	R1	11/29/2007		125	135	6.40	0.239	1.37	9.91	158.4	0.05	6.0	16/14 100 psi		B4GJ0	Artesian Well
MPW-10	Α	MPW-10-PD-A-R1	R1	11/27/2007		160	170	5.84	0.616	5.84	11.88	78.9	0	10.0	12/11 135 psi	LDL VOC, Ti, FI	B4GE0	
MPW-10	В	MPW-10-PD-B-R1	R1	11/27/2007	14:30	185	195	5.87	0.845	2.40	11.86	96.7	0.1	10.0	12/11 135 psi		B4GE1	<u> </u>
MPW-10	С	MPW-10-PD-C-R1	R1	11/27/2007		215	225	6.27	0.529	6.10	11.71	-46.2	0	7.5	12/11 135 psi		B4GE2	
MPW-10	D	MPW-10-PD-D-R1	R1	11/27/2007	+	235	245	6.38	0.508	7.70	11.59	37.2	0	7.5	12/11 135 psi		B4GE3	 -

_Table 1-6a__

Round 1 Monitoring Well Sample Summary

Remedial Design

Lawrence Aviation Industries Superfund Site Port Jefferson Station, New York

Well	Port	Sample ID	Sampling Round	Sample Date	Sample Time	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	pН	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Turbidity (NTU)	Volume Purged (liters)	Drive/Vent Cycle Drive Pressure	Analysis	CLP Number	Notes
MW-05	N/A	MW-05-PD-R1	R1	11/28/2007	13:00	180	195	5.60	0.209	8.38	18.92	172.4	12.1	22.5	**	LDL VOC, Ti, FI	B4GJ2	Completed with Country Burn
FG-01	N/A	FG-01-PD-R1	R1	11/28/2007	9:55	170	180	5.97	0.225	9.57	16.80	151.6	8	12.0	**	LDL VOC, Ti, FI	B4GD1	Sampled with Grundfos Pump Sampled with Grundfos Pump

Notes:
* - Well MPW-02 was resampled during Round 1, CLP was not used
** - Sampled with Grundfos Pump

Acronyms:

°C - degrees Celcius

bgs - below ground surface CLP - Contract Laboratory Program

Fi - flouride

ID - identification

LDL - low detection limit

mg/L - milligrams per liter

mS/cm - microseimens per centimeter (data normalized to 25 °C)
MS/MSD - Matrix Spike/Matrix Spike Duplicate
mV - millivolts

MW - Monitoring Well
N/A - Not Applicable
NTU - Nephelometric Turbidity Units
psi - pounds per square inch
R1 - Round 1

Ti - Titanium

TCL - Target Compound List

VOC - Volatile Organic Compound

Table 1-6b
Round 2 Monitoring Well Sample Summary
Remedial Design
Lawrence Aviation Industries Superfund Site
Port Jefferson Station, New York

Well	Port	Sample ID	Sampling Round	Sample Date	Sample Time	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	рН	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Turbidity (NTU)	Volume Purged (liters)	Analysis	CLP Number	Drive/Vent Cycle Drive Pressure	Notes
MPW-01	<u>A</u>	MPW-01-PD-A-R2	R2	5/19/2008	9:25	160	170	5.26	0.363	0.05	11.66	64	1.1	14.3	TCL VOC, Ti, FI	B4X11	12/11 135 psi	Collected duplicate MPW-11-PD-A-R2
MPW-01	В	MPW-01-PD-B-R2	R2	5/19/2008	10:45	160	170	5.09	0.367	0.66	11.59	119.5	0.08	13.8	TCL VOC, Ti, FI	B4X12	12/11 135 psi	
MPW-01	C	MPW-01-PD-C-R2	R2	5/19/2008	11:50	160	170	7.03	0.337	0.15	11.82	61.6	2.4	12.5	TCL VOC, Ti, Fl	B4X13	12/11 135 psi	
MPW-02 MPW-02	A B	MPW-02-PD-A-R2	R2	5/27/2008	16:00	190	200	5.75	0.402	5.43	17.37	287.1	0.1	2.8	TCL VOC, Ti, FI	B4X14	20/10 100 psi	
		MPW-02-PD-B-R2	R2	5/27/2008	14:10	215	225	5.36	0.295	10.22	20.52	279.2	0.3	5.5	TCL VOC, Ti, FI	B4X15	16/14 125 psi	
MPW-02 MPW-02	<u>C</u>	MPW-02-PD-C-R2 MPW-02-PD-D-R2	R2	5/27/2008 5/27/2008	12:25	240	250	6.02	0.265	4.80	19.20	. 154	0.15	8.3	TCL VOC, Ti, FI	B4X16	18/14 130 psi	
MPW-03	A	MPW-03-PD-A-R2	R2 R2	5/20/2007	11:05 15:05	265 175	275 185	5.95	0.257	9.24	13.34	95.2	0.2	8.3	TCL VOC, Ti, FI	B4X17	20/14 145 psi	
MPW-03		MPW-03-PD-B-R2	R2	5/20/2007	15:50	195	205	6.42 6.41	0.219	0.21	10.92	-9.1	3.62	11.3	TCL VOC, Ti, FI	B4X18	14/12 110 psi	
MPW-03	C	MPW-03-PD-C-R2	R2	5/20/2008	17:05	215	205	6.57	0.241 0.310	0.58 1.35	10.80	-57	9	11.3	TCL VOC, Ti, FI	B4X19	16/14 115 psi	
MPW-03	D	MPW-03-PD-D-R2	R2	5/20/2008	18:10	235	245	6.30	0.310	0.61	10.74	14.8	1.3	10.0	TCL VOC, Ti, FI	B4X20	17/13 120 psi	
MPW-04	<u>A</u>	MPW-04-PD-A-R2	R2	5/21/2008	9:10	150	160	5.34	0.552	0.81	10.53 12.54	-40.4 62.4	9.8	15.0	TCL VOC, Ti, FI	B4X21	18/14 120 psi	<u> </u>
MPW-04	- B	MPW-04-PD-B-R2	R2	5/21/2008	9:10	170	180	5.34	0.430	0.33	12.71	20.5	0.9	10.0	TCL VOC, Ti, FI	B4X22	12/18 150 psi	
MPW-04	Č	MPW-04-PD-C-R2	R2	5/21/2008	10:05	200	210	7.15	0.555	0.06	13.00	-31.8	2	10.0 7.0	TCL VOC, Ti, FI		11/14 120 psi	
MPW-04	<u>D</u>	MPW-04-PD-D-R2	R2	5/21/2008	10:05	220	230	5.68	0.561	0.38	13.56	59.4	0.05	8.8	TCL VOC, Ti, FI	B4X24 B4X25	14/16 150 psi	
MPW-04	Ē	MPW-04-PD-E-R2	R2	5/21/2008	11:03	240	250	6.18	0.465	0.75	16.76	58.3	0.05	8.8	TCL VOC, Ti, FI	B4X26	12/12 140 psi	
MPW-05	A	MPW-05-PD-A-R2	R2	5/21/2008	13:55	160	170	4.36	0.229	0.64	13.92	93.4	0.13	11.3	TCL VOC, Ti, FI	B4X27	14/14 150 psi	
MPW-05	В	MPW-05-PD-B-R2	R2	5/21/2008	13:50	185	195	5.19	0.260	0.92	14.27	53.9	0.1	10.0	TCL VOC, TI, FI	B4X28	10/15 120 psi 10/15 120 psi	MONIOD
MPW-05	C	MPW-05-PD-C-R2	R2	5/21/2008	15:10	205	215	5.56	0.256	2.99	14.60	76.1	1	13.8	TCL VOC, TI, FI	B4X29	15/15 125 psi	MS/MSD
MPW-05	D	MPW-05-PD-D-R2	R2	5/21/2008	15:15	225	235	4.66	0.216	1.58	15.15	118.1	2.5	13.8	TCL VOC, Ti, FI	B4X30	15/15 125 psi	
MPW-06	Α	MPW-06-PD-A-R2	R2	5/22/2008	9:00	65	75	10.06	0.374	0.11	11.80	96	6	8.8	TCL VOC, Ti, FI	B4X31	16/14 120 psi	
MPW-06	В	MPW-06-PD-B-R2	R2	5/22/2008	9:10	90	100	4.97	0.121	0.06	11.46	80.5	0.2	11.3	TCL VOC, Ti, FI	B4X32	16/14 120 psi	·
MPW-06	С	MPW-06-PD-C-R2	R2	5/22/2008	10:20	115	125	6.01	0.168	1.29	10.87	82.3	9.1	13.8	TCL VOC, Ti, FI	B4X33	16/14 120 psi	
MPW-06	D	MPW-06-PD-D-R2	R2	5/22/2008	10:10	160	170	6.75	0.140	3.69	11.03	38.9	0.75	10.0	TCL VOC, Ti, FI	B4X34	16/14 120 psi	
MPW-07	Α	1							•		N/A*					2	10/14 120 001	
MPW-07	В	MPW-07-PD-B-R2		6/2/2008	15:55	220	230	5.83	0.390	6.20	16.52	192.3	0.9	8.8	TCL VOC, Ti, FI	B4X36	15/30 180 psi	
MPW-07	C	MPW-07-PD-C-R2		6/3/2008	_ 16:00	250	260	6.72	0.318	9.52	12.75	170.2	1.1	18.9	TCL VOC, Ti, FI	B4X37	14/18 150 psi	
MPW-08	A	MPW-08-PD-A-R2		5/22/2008	11:45	25	35	4.90	0.203	6.89	12.39	170.5	o	7.5	TCL VOC, Ti, FI	B4X38	10/15 80 psi	
MPW-08	В	MPW-08-PD-B-R2		5/22/2008	12:00	45	55	5.29	0.207	0.63	11.97	142.7	0.05	8.8	TCL VOC, Ti, FI	B4X39	10/15 80 psi	
MPW-08	С	MPW-08-PD-C-R2		5/22/2008	13:00	75	85	5.81	0.180	0.40	11.22	146.1	Ö	11.3	TCL VOC, Ti, FI	B4X40	10/15 80 psi	
MPW-08	D	MPW-08-PD-D-R2		5/22/2008	13:05	95	105	5.79	0.161	6.62	11.64	153	Ö	11.3	TCL VOC, Ti, FI	B4X41	10/15 85 psi	
MPW-08	<u>E</u>	MPW-08-PD-E-R2		5/22/2008	13:40	115	125	6.70	0.111	0.14	11.60	100	0.05	10.0	TCL VOC, Ti, FI	B4X42	10/15 85 psi	
MPW-09	A	MPW-09-PD-A-R2		5/28/2008	11:30	10	20	5.06	0.223	6.97	12.14	217.9	0.2	4.0	TCL VOC, Ti, FI	B4X43	16/14 130 psi	
MPW-09	B	MPW-09-PD-B-R2		5/28/2008	10:55	45	55	5.23	0.282	9.01	11.69	157.8	0.1	6.0	TCL VOC, Ti, FI	B4X44	16/14 130 psi	
MPW-09	C	MPW-09-PD-C-R2		5/28/2008	12:10	70	80	5.25	0.302	4.35	13.53	256.6	0.2	4.0	TCL VOC, Ti, FI	B4X45	16/14 130 psi	
MPW-09	D	MPW-09-PD-D-R2		5/28/2008	12:45	90	100	5.46	0.261	6.61	12.76	292	0.6	4.0	TCL VOC, Ti, FI	B4X46	16/14 130 psi	
MPW-09	E	MPW-09-PD-E-R2		5/28/2008	13:20	125	135	5.80	0.195	3.09	12.78	299.7	0.25	3.6	TCL VOC, Ti, FI	B4X47	16/14 100 psi	
MPW-10	<u> </u>	MPW-10-PD-A-R2		5/28/2008	17:00	160	170	4.98	0.453	0.27	12.56	83.7	0	9.5	TCL VOC, Ti, FI	B4X48	12/11 135 psi	MS/MSD
MPW-10	В	MPW-10-PD-B-R2		5/28/2008	17:00	185	195	5.54	0.663	0.70	12.56	88.9	0.1	10.0	TCL VOC, Ti, FI	B4X49	12/11 135 psi	
MPW-10	C	MPW-10-PD-C-R2		5/28/2008	15:50	215	225	5.48	0.404	1.86	12.79	91.8	0	6.0	TCL VOC, Ti, FI	B4X50	12/11 135 psi	
MPW-10	D	MPW-10-PD-D-R2	R2	5/28/2008	15:50	235	245	5.96	0.396	5.91	12.67	111.6	0.1	7.4	TCL VOC, Ti, FI	B4X51	12/11 135 psi	

Table 1-6b Round 2 Monitoring Well Sample Summary Remedial Design Lawrence Aviation Industries Superfund Site

Port Jefferson Station, New York

Well	Port	Sample ID	Sampling Round	Sample Date	Sample Time	Screen	Bottom of Screen (feet bgs)	рН	Specific Conductance (mS/cm)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Turbidity (NTU)	Volume Purged (liters)	Analysis	CLP Number	Drive/Vent Cycle Drive Pressure	Notes
MW-05	N/A	MW-05-PD-R2	R2	6/2/2008	14:45	180	195	5.18	0.218	12.64	17.54	169.5	9.5	11.0	TCL VOC, Ti, FI	B4X52	**	
FG-01	N/A	FG-01-PD-R2	R2	6/3/2008	14:40	170	180	3.54	0.195	12.05	19.31	292.3	11	15.00	TCL VOC, Ti, FI	B4X53	**	
MW-PD-11	N/A	MW-PD-11-PD-R2	R2	6/2/2008	12:00	195	205	5.76	0.542	0.73	14.42	128.5	50	10.13	TCL VOC, Ti, FI	B4X54	**	· - · · · · · · · · · · · · · · · · · · ·
MW-PD-12	N/A	MW-PD-12-PD-R2	R2	6/2/2008	10:30	150	160	5.45	0.339	1.34	13.95	188.3	45	16.50	TCL VOC. Ti, FI	B4X55	##	Collected duplicate MW-PD-21-PD-R2
MW-PD-13	N/A	MW-PD-13-PD-R2	R2	6/3/2008	9:30	175	185	5.78	0.434	9.98	14.01	230.1	45	11.00	TCL VOC, Ti, FI	B4X56	**	
MW-PD-14	N/A	MW-PD-14-PD-R2	R2	6/3/2008	11:00	239	249	6.07	0.413	2.76	12.70	175	40	13.75	TCL VOC. Ti. FI	B4X57	t#	MS/MSD
MW-PD-15	N/A	MW-PD-15-PD-R2	R2	6/3/2008	12:45	204	214	6.04	0.412	6.41	13.00	151.1	10	17.10	TCL VOC, Ti, FI	B4X58	**	Collected duplicate MW-PD-51-PD-R2
MW-PD-16	N/A	MW-PD-16-PD-R2	R2	5/29/2008	14:50	190	200	4.99	0.686	1.39	12.44	212.2	36	37.50	TCL VOC, Ti, FI	B4X59	**	TORREST TELEVISION OF THE TELE
MW-PD-17	N/A	MW-PD-17-PD-R2	R2	5/29/2008	10:40	80	90.00	6.80	0,256	8.52	12.75	145.5	33	22.50	TCL VOC, Ti, FI	B4X60	**	

*- Well MPW-07 Port A was unable to be sampled during Round 2

** - Sampled with Grundfos Pump

Acronyms:

°C - degrees Celcius

bgs - below ground surface CLP - Contract Laboratory Program FI - Flouride

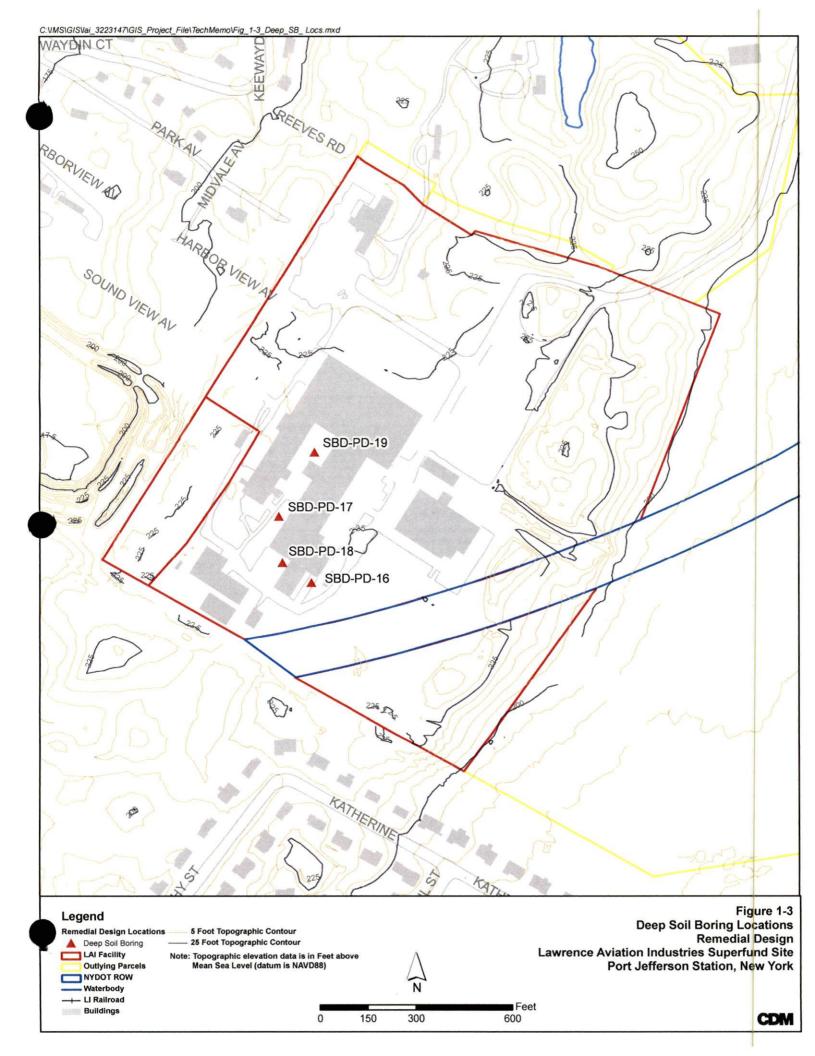
ID - identification

LDL - low detection limit

mg/L - milligrams per liter

mS/cm - microseimens per centimeter (data normalized to 25 °C)
MS/MSD - Matrix Spike/Matrix Spike Duplicate

mV - millivolts


mV - millivolts
MW - Monitoring Well
NA - Not Available
NTU - Nephelometric Turbidity Units
psi - pounds per square inch
R2 - Round 2
TCL - Target Compoind List
Ti - Titanium

VOC - Volatile Organic Compound

Figure 1-1
Site Location Map
Remedial Design
Lawrence Aviation Industries Superfund Site
Port Jefferson Station, New York

APPENDIX A

Field Change Request Forms

REQUEST NO	D:FCR-1	DATE:	12/3/07
FCR TITLE:_[Orilling Method Selection		
DESCRIPTIO	N: Hollow stem auger (HSA) drilling	methods were se	elected as the preferred
method to ins	tall the deep soil borings, geotechnical b	orings, piezome	eters and the 7 monitoring
wells. If auge	r refusal or other issues arise, mud rotar	y methods will l	be used as described in
the OAPP.			
REASON FO	R DEVIATION: <u>During procurement t</u>	o select a driller,	, the drillers were asked to
propose an al	ternate method (mud rotary was selecte	d for cost estima	ting purposes) to more
cost effectivel	y perform the drilling scope. ADT (the s	elected drilling	subcontractor) chose
hollow stem a	auger (HSA) drilling methods.		·
RECOMMEN	DED/MODIFICATION: HSA drilling r	nethods will be 1	used preferably rather
than mud rot	ary drilling. If refusal or other issues ari	se mud rotary di	rilling methods will be
used as descr	ibed in the OAPP.		
INCLUDE IM	IPACT ON PROJECT OBJECTIVES <u>: The</u>	change in the d	rilling methodology
should allow	for a more cost-effective/timely comple	tion of the drillir	ng scope.
Signatures:	Joseph Button (FTL)	12/3	<u>107</u>
	Demetrios Klerides CDM Site Manager (SM)	Dat	16/0.7 te
Distribution:	Salvatore Badalamenti (EPA Remedial Demetrios Klerides (CDM SM) Jennifer Oxford (Regional Quality Assi Seth Kellogg (Field Team Manager) RAC II Project File 3223-173 Field Files	, ,	

REQUEST NO: FCR-2	DATE:	12/17/07	
FCR TITLE: Soil Boring SBD-PD-18 Location Chan	ige	·	
DESCRIPTION:The location of SBD-PD-18 was o	changed during a si	te walk-through with	,
CDM site manager, Demetrios Klerides, and the R	D senior scientist, Id	oe Mayo. The new	
location is included on the attached figure. (Previo	ously forwarded to	Sal Badalamenti, the E	<u>PA</u>
RPM.)			
REASON FOR DEVIATION:The location of deep	p soil boring SBD-P	D-18 was moved in or	<u>rder</u>
to investigate the source of high concentrations of	VOCs in subsurface	vapor samples collec	<u>ted</u>
<u>in this area. Site-wide vapor sampling was perfort</u>	med by EPA ERT ar	nd was not available a	t the
time the work plan was prepared. The elevated su	<u>bsurface vapor resu</u>	lts suggest that a	
potential source may be present in this area. Since	the purpose of the	soil boring is to furthe	ī
investigate potential soil sources and collect soil sa	mples for the treata	bility study to suppor	<u>ct</u>
the remedial design, the boring was relocated to th	ie area of the high V	OC vapor concentrati	ions
identified by ERT.			
RECOMMENDED/MODIFICATION: Location wi	ill be modified on F	igure 5-2 in the Final	
Work Plan, Volume I and Figure 4 in the Final QAI	PP. Because of the I	nigh levels of VOCs	
detected in vapor samples at the revised location, th	ie field team will mo	onitor the levels of VO) <u>Cs</u>
closely using a PID and will visually inspect soil sar	mples for evidence	of source materials. If	; :
source material is encountered, drilling will stop an	d CDM will discuss	the condition with EP	<u>'A.</u>
An alternate drilling method may be used that will i	solate potential sou	rce materials and preven	<u>ent</u>
migration to greater depths within the borehole. To	closely monitor for	source materials withi	n
the boring, CDM will collect continuous soil sample	es at SBD-PD-18, in	nstead of collecting soi	il

INCLUDE IMPACT ON PROJECT OBJECTIVES: The modified location meets the project objective to further define the sources at the site to support the remedial design. Data quality

samples at 10-foot intervals as described in the work plan and OAPP.

objectives and data quality indicators will remain the same since the overall objective of the soil

boring is unchanged.

Signatures:

Joseph Button (FTL)

Demetrios Klerides

CDM Site Manager (SM)

Distribution: Salvatore Badalamenti (EPA Remedial Project Manager)

Demetrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)

Seth Kellogg (Field Team Manager)

RAC II Project File 3223-173

REQUEST NO: FCR-3 DATE: 1/18/08
FCR TITLE: Offsite Monitoring Well Installation Method Change
DESCRIPTION: <u>Drilling method will be changed from mud rotary to hollow stem auger - see</u>
attached memorandum for details.
REASON FOR DEVIATION: See attached memorandum.
RECOMMENDED/MODIFICATION: See attached memorandum.
INCLUDE IMPACT ON PROJECT OBJECTIVES: The change in drilling methods will not
have an impact on project data quality objectives.
Signatures: Joseph Button (FTL) Date Demetrios Klerides CDM Site Manager (SM) Difference 1/8/08 Date

Distribution: Salvatore Badalamenti (EPA Remedial Project Manager)

Demetrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)

Seth Kellogg (Field Team Manager) RAC II Project File 3223-173

REQUEST NO: FCR-3	DATE: <u>1/18/08</u>
FCR TITLE: Offsite Monitoring Well Installation	Method Change
DESCRIPTION: Drilling method will be changed	d from mud rotary to hollow stem auger - see
attached memorandum for details.	,
REASON FOR DEVIATION: See attached memor	andum.
RECOMMENDED/MODIFICATION: See attache	ed memorandum.
INCLUDE IMPACT ON PROJECT OBJECTIVE	S: The change in drilling methods will not
have an impact on project data quality objectives.	
Signatures: Joseph Button (FTL)	
Deservo, levides Demetrios Klerides CDM Site Manager (SM)	
ODIVI DITO IVIALIAGOI (DIVI)	

Distribution: Salvatore Badalamenti (EPA Remedial Project Manager)

Demetrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)

Seth Kellogg (Field Team Manager)

RAC II Project File 3223-173

REQUEST NO:FCR-4 DATE: DATE:	
FCR TITLE: MW-PD-12 Additional Sampling	
DESCRIPTION: Two additional groundwater screening samples will be collected	at a depths of
150-155 and 180 - 185 feet below ground surface (bgs) at the location of MW-PD-12.	
REASON FOR DEVIATION: The additional groundwater screening samples will al	low for
further delineation of the vertical distribution of contaminants at the MW-PD-12 loc	ation. The
data are needed to determine the proper depth of the screen interval for MW-PD-12	I •♥
RECOMMENDED/MODIFICATION: The groundwater screening sample will be co augers are retracted from the borehole. A temporary well screen will be set and the	
be allowed to collapse around the screen as the augers are retracted. The groundwa	
will be collected using the same methodology as the previous samples, as described	_
INCLUDE IMPACT ON PROJECT OBJECTIVES: The additional sampling will not i	ncur
significant time or cost increases and will allow for further vertical delineation of the	e constituents
of concern to support placement of the screen interval for MW-PD-12.	
Signatures: Joseph Button (FTL) Date	
Venetion Revides 2/6/08	
Demetrios Klerides Date	
CDM Site Manager (SM)	

Distribution: Salvatore Badalamenti (EPA Remedial Project Manager)

Demetrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)
Seth Kellogg (Field Team Manager) RAC II Project File 3223-173

REQUEST NO: FCR-5		DATE:	2/18/08
FCR TITLE: <u>EW-01 Developme</u>	nt Methods	 .	
DESCRIPTION: An additiona	l step will be taken to aid	in the develop	oment of EW-01. A
Bentonite Mud Recovery TM (BM	IR) product will be utilize	ed to aid in rec	overy of drilling mud
from the well.	١		
REASON FOR DEVIATION: In	order to increase the pro	ductivity of ex	traction well EW-01,
BMR will be used to aid in the	emoval of drilling mud t	hat was used f	or the installation of the
well. The bentonite clays in the	drilling mud are preven	ting the extract	tion well from operating
efficiently.			
RECOMMENDED/MODIFICA	TION: The BMR will be i	injected and su	rged into each 10-ft
section as a solution. Each secti	on will be surged in order	r to agitate the	BMR and allow it to
penetrate the well. The BMR br	eaks down the bentonite	clays and allov	vs them to be removed.
Following the injection and agi	tation steps, each 10-ft zo	ne of well scree	en will be discretely
purged in order to remove the l	BMR and fine particles.		
INCLUDE IMPACT ON PROJE	CT OBJECTIVES: Proper	well developn	nent is necessary to
ensure data generated during a	quifer testing represents a	actual site cond	litions.
Signatures: Joseph Br Joseph Br Demetrios K CDM Site Man		2//8/ Date Date	08

Distribution: Salvatore Badalamenti (EPA Remedial Project Manager)

Demetrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)

Seth Kellogg (Field Team Manager) RAC II Project File 3223-173

REQUEST NO	D:FCR-6		DATE:	2/25/08
FCR TITLE:	Additional EW-01	Development Method	<u>s</u>	
DESCRIPTIO	N: An additiona	l step will be taken to	aid in the develo	opment of EW-01. High
pressure wate	er jetting will be us	sed in order to help br	eak down fine s	ediment in and around the
gravel pack.				,
REASON FO	R DEVIATION: Th	nere does not appear to	o be a good hydi	raulic connection between
the aquifer an	d the well based o	on the well production	and the volume	e of sediment in the purge
water. Conve	entional well deve	lopment methods (pu	mping and surgi	ing) are not decreasing the
sediment load	l or increasing the	well production. In o	rder to increase	the productivity of
extraction we	Il EW-01, high pre	ssure jetting with pota	able water will b	e used to aid in the
removal of fir	ne sediment from t	the filter pack and form	nation adjacent	to the well screen.
RECOMMEN	DED/MODIFICA	TION: High pressure	jetting will be u	sed to break apart the fine
sediment that	: has lodged into t	he gravel pack and for	mation adjacent	to the well screen.
Subsequent to	the jetting, air-lif	ting methods will be t	ised to remove t	he heavy sediment that
accumulates i	n the base of the v	vell screen.		
INCLUDE IM	IPACT ON PROJE	CT OBJECTIVES: Proj	per well develop	oment is necessary to
ensure data g	enerated during a	quifer testing represer	nts actual site co	nditions.
Signatures:	Demetrios K		シ/35/ Da 2/2 Da	te
	CDM Site Ma	Hager (SIVI)		

Distribution: Salvatore Badalamenti (EPA Remedial Project Manager)

Demetrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)

Seth Kellogg (Field Team Manager) RAC II Project File 3223-173

REQUEST NO:	FCR-7 DATE: 2/28/08
FCR TITLE: MW-P	D-16 Additional Sampling
DESCRIPTION: C	ne additional groundwater screening sample will be collected at a depth of
195-200 feet below (ground surface (bgs) at the location of MW-PD-16.
REASON FOR DEV	TATION: The additional groundwater screening samples will allow for
further delineation	of the vertical distribution of contaminants at the MW-PD-16 location. The
data are needed to	determine the proper depth of the screen interval for MW-PD-16.
	to compare a many off at the state of the order of the or
)/MODIFICATION: The borehole will be advanced to 200 feet bgs. The
groundwater samp	les will be collected using the same methodology as the previous samples, as
described in the QA	APP.
	·
INCLUDE IMPACT	ON PROJECT OBJECTIVES: The additional sampling will not incur
significant time or o	cost increases and will allow for further vertical delineation of the
contaminants of co	ncern to support placement of the screen interval for MW-PD-16.
Signatures:	ShXollage Ser 2/28/08
	Joseph Button (FTL) Date
1	Demetrios Klerides 2/28/08 Date
C	DM Site Manager (SM)
	atore Badalamenti (EPA Remedial Project Manager) netrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)
Seth Kellogg (Field Team Manager)
RAC II Project File 3223-173
Field Files

REQUEST NO: _	FCR-8	DATE:	4/14/08
FCR TITLE: <u>MW</u>	-PD-14 Additional Sampling	, <u>w</u>	
DESCRIPTION:	An additional groundwater ser	reening sample will b	e collected at a depth of
300 - 305 feet belo	ow ground surface (bgs) at the le	ocation of MW-PD-14	Also, the 300-305 and
270-275 foot sam	ples will be collected from the b	ottóm up.	

REASON FOR DEVIATION: An additional groundwater screening sample will match the elevation of the highest concentration detected at MW-PD-16. Samples will be collected from the bottom up because of difficult drilling at this location.

RECOMMENDED/MODIFICATION: In order to collect the deeper groundwater screening sample at this location the methods used will be slightly modified. At these depths drilling has become very hard and allowing the augers to sit in the dense/tight material for an extended period of time is problematic. The initial borehole drilled at this location had to be abandoned because the augers were sheared of from the drill string. To avoid any future loss of augers and to facilitate collection of the necessary screening samples, the two deep samples at MW-PD-14 will be collected using bottom-up methods, which will entail drilling to 305 feet, setting the screen and retracting the augers, allowing the formation to collapse around the screen. The groundwater sample will be collected using the same methodology as the previous samples, as described in the QAPP.

Following collection of the 300 - 305 ft bgs sample the screen will be retracted to a depth of 270 - 275 ft bgs and the 270 - 275 ft bgs groundwater screening sample will be collected using the same methodology as the previous samples, as described in the QAPP.

INCLUDE IMPACT ON PROJECT OBJECTIVES: The additional sampling will not incur significant time or cost increases and will allow for further vertical delineation of the constituents of concern in this area. The revised screening sample collection method has been used successfully on other RAC II projects having similar geologic materials. The proposed modification will not affect the project data quality objectives for the collection of groundwater screening samples

Signatures:

Joseph Button H

Demetrios Klerides

CDM Site Manager (SM)

Distribution: Salvatore Badalamenti (EPA Remedial Project Manager)

Demetrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)

Seth Kellogg (Field Team Manager) RAC II Project File 3223-173

<u>y</u>	
ter screening	samples will be collected
ling was enc	ountered, suggesting the
ing, etc) tha	at were encountered at
the groundw	vater screening samples at
top. This alt	ternate sampling method
e collected u	ising the same
e QAPP.	
e of the altern	nate sampling methods
	٠
5/2 Da 5/2 Da	108 te
	ter screening ling was end ing, etc) tha the groundw top. This all se collected to QAPP.

Distribution: Salvatore Badalamenti (EPA Remedial Project Manager)

Demetrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)
Seth Kellogg (Field Team Manager)

RAC II Project File 3223-173

REQUEST NO: FCR=10	DATE:	5/21/08	
FCR TITLE: MW-PD-13 - Sampling Modifications due to	Auger Refu	sal	
DESCRIPTION: At the MW-PD-13 monitoring well locate	ion, Aquifer	Drilling and Testing	
(ADT) encountered auger refusal at 218 ft (below ground a	surface) bgs.	The groundwater	
screening sample proposed at 245 feet bgs will be collected	l at 160 feet.	The depths of the	
remaining two groundwater screening samples will remai	n unchangeo	d at 185 and 215 feet bg	s,

REASON FOR DEVIATION: Difficult drilling conditions were encountered throughout the entire length of the borehole for MW-PD-13 (likely cobbles and potentially boulders). Initial refusal was encountered at approximately 216 ft bgs. The augers were removed from the borehole and the drill head was found to be severely damaged. ADT replaced the drill head, advanced the augers to 216 feet bgs, and attempted to advance the augers to the target depth. The drillers encountered hard drilling and were able to advance the augers to 218-ft bgs, at which point they again encountered auger refusal. Further advancement of the augers risks locking the augers in the borehole, further damage to the augers, and potential loss of the borehole.

RECOMMENDED/MODIFICATION: Due to auger refusal at 218 feet bgs, CDM can not collect the groundwater screening sample planned for 245-ft bgs. A replacement sample will be collected just below the water table from 160-165 ft bgs. This will provide groundwater screening data from 160 feet bgs to 215 feet bgs. The groundwater screening data will be used as the basis to select the screened interval for MW-PD-13.

In order to avoid loss of the borehole and/or locking the augers in the borehole, collection of groundwater screening samples will proceed from the bottom of the borehole (at 218 feet bgs) toward the sample at 160 feet bgs (bottom to top). This alternate sampling method was

documented in FCR-8. The groundwater screening samples will be collected using the same methodology as the previous samples, as described in the QAPP.

INCLUDE IMPACT ON PROJECT OBJECTIVES: The use of the alternate sampling methods will not have an impact on project objectives. As planned, groundwater screening data will be collected to support selection of the screened interval for MW-PD-13. The groundwater screening sample depth modification was discussed with EPA. The groundwater screening data will be discussed with EPA prior to selection of the screened interval for MW-PD-13.

Signatures:

Joseph Button (

i.

Demetrios Klerides

CDM Site Manager (SM)

Distribution: Salvatore Badalamenti (EPA Remedial Project Manager)

Demetrios Klerides (CDM SM)

Jennifer Oxford (Regional Quality Assurance Coordinator)

Seth Kellogg (Field Team Manager)

RAC II Project File 3223-173

APPENDIX B

Soil Boring Logs

PROJE LOCAT			ence Aviation Industries Jefferson Station, New York		so	OIL BO	RING	10:			SBD	-PD	-16	
START DRILLI DRILLI DRILLI SAMPI	TED: ING COM ING EQU ING MET LING ME ACE COM	12/27 IPANY IPMEN HOD: THOD:	//08 COMPLETED: 1/4/08 : ADT NT: Failing F-10 3.25" ID Hollow Stem Augers : Split-spoon (ASTM D1586)		EL W. LC HC	ORTHII LEVATI ATER: OGGED ORIZOI ERTIC/	ON: 2 1 BY: J NTAL I NL DAT	28.76 95 fe oe Bu DATU UM: I	i feet et utton M: NA NAVD	M.F TO CH ND83 as revised	STING: P. ELEV: TAL DEP ECKED E , COORD	TH: 260 IY:	VYSP, LI	
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	(mdd) QId	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	°,
			Hand augered from 0-6 ' bgs for utility clearance.				225-			÷				
5-		sw	Dark yellowish brown medium-grained sand, little fine to medium gravel (angular quartz). No odor, Dry.	9 19 23 34	2	2.1								; ,
-		sw	Same as above	10 18 17 15	1.5	2.1	220-			SBD-PD-16- A	4.9 U	1.9 J	4.9 U	4.9
10-		sw	Light yellowish brown, fine/medium-grained sand, trace fine gravel (rounded). No odor. Dry.	10 7 5 12	2	7		-						
		sw	Same as Above	12 8 9 13	1.8	22.1	215-	- -						!
15-		sw	Same as Above	14 8 6 8	1.7	180.1		-						
	-	sw	Light yellowish brown, fine/medium-grained sand, trace fine gravel (rounded). No odor. Dry. Loose.	12 18 17 12	1	149				;				
		sw	Same as Above	22 11 11 13	2	171	210			SBD-PD-16- B	3.8 U	1,9 J	3.8 U	3.8
20-	-	sw	Dark yellowish brown medium-grained sand, trace fine/medium gravel. No odor. Dry.	15 17 18 18	1	42.1								
		sw	Same as Above	8 14 13 11	1.1	271	205							
		sw		12 13								1		

DM T

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 1 OF 10

PROJI LOCA			ence Aviation Industries Jefferson Station, New York		so	OIL BO	RING	NO:		SBI)-PD	-16		
(feet)	GRAPHIC	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	<u> </u>		ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	Ac
-		sw	Dark yellowish brown, fine/medium-grained sand, trace fine/medium gravel (cobbles in	10	1.8	189						1		
-		sw	cuttings). No odor. Dry. Loose. (continued) Same as Above	10 8 12 20	1.5	109							 - 	
-		sw	Same as Above	14 6 12 20	2	7.1	200-			SBD-PD-16- C	3.7 U	5.1	3.7 U	3.7 U
30 -		sw.	Dark yellowish brown, fine/medium-grained sand, trace fine gravel. No odor. Dry.Mod dense, slightly finer than above.	12 14 16 8	2	60.9		-		'				
		sw	Light yellowish brown, fine to coarse-grained sand, little fine to coarse gravel (sub-rounded). No odor. Dry. Loose. Poorly sorted.	19 17 13 9	1.7	4.7	195-	, ,			, .			
35-		sw	Same as Above. Slightly higher fraction of gravels.	11 20 17 13	1.8	7.9		-						
		sw	Same as Above. Less gravel.	18 12 16 15	1.6	62.7								
40		sw	Same as Above	20 15 15 18	2	7.1	190-			SBD-PD-16- D	4.6 U	2 J	4.6 U	4.6 U
40-	-	sw	Light yellowish brown fine/medium-grained sand, trace fine/medium gravel (rounded).	19 24 17 19	1.4	33.2								
		sw	Dark yellowish brown, medium-grained sand, trace fine gravel. No odor. Dry.	24 20 13 17	1	22.7	185							
45-		sw	Same as above. Small layer (2-3 slightly finer).	17 20 20 8	1.7	20.9								
		sw	Same as Above	6 11 14 4	1.2	14.2		-			,			
50		sw	Dark yellowish brown, fine/medium-grained sand, trace fine to coarse gravel. No odor. Dry.	5 7 10 14	1.8	50.2	180			SBD-PD-16- E	4.7 U	1.8 J	4.7 U	4,7 L
50		sw	Light yellowish brown fine/medium-grained sand, trace fine gravel. Dry.	7 10 6 5	1.4	33.7								,
		sw	gravel. Dry.	6	1.4	33.7	-	-			PROJE	TOT N	0.222	-

SOIL BORING LOG

PAGE 2 OF 10

			ence Aviation Industries lefferson Station, New York		S	JIL BO	RING	NO:		SBI)-PD)-16			
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	٥	~
		sw	Same as Above (continued)	8 13 15 9	1	5.1	175-								
55-		sw	Light yellowish brown fine to coarse-grained sand, little fine/medium gravel (rounded). Dry. No odor or staining.	4 6 7 9	1.7	17.2		<u> </u>							
-		sw	Same as Above. Poor recovery,	10 7 14 4	0.7	42.1	 .	 - -							
-		sw	Same as above. Some light/dark color banding (lighter bands slightly coarser)	9 11 10 12	1.9	18.6	170~		ı.	SBD-PD-16- F	4.6 U	2.6 J	4.6 U	4.0	, (
60-			No Recovery	15 13 10 19	0	×			!						
-		SW	Same as Above. Banding as above.	2 6 5 12	2	127.1	165-								
65-		sw	Same as Above	3 5 13 17	1.4	3.8							1		
		sw	Same as Above	14 7 13 13	1.7	7.1									
•	-		No Recovery	6 14 12 6	0	х	160-								
70-	-	sw	Light yellowish brown fine/medium-grained sand and fine to coarse gravel, Dry. No odor.	4 8 5 7	2	6.7				SBD-PD-16- G	4.8 U	6.2	4.8 U	4.	•
		sw	Same as Above	4 6	2	4		-							
		sw	Dark yellowish brown fine/medium-grained sand, trace fine gravel. Dry.	9 7	4	+	155-								
75-		sw	Same as Above.	8 10 14 35	2	61.7		-							
			No Recovery	21 28 30 32	0	x	,	- - - -							
		sw	Dark yellowish brown fine/medium-grained sand, trace fine/medium gravel. Dry.	6 11 13 32	1.5	1.8	150-			SBD-PD-16- H	3.9 U	3.9 U	3.9 U	3	ŀ.

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PROJECT NO. 3223.173

PAGE 3 OF 10

ROJE			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:		SBD)-PD	-16		
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (ppm)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID.	PCE	TCE	cis-1,2-DCE	, C
-		sw	Same as Above. Large piece of gravel in center of spoon	15 44 35 31	1	0	-							
1		sw	Same as Above.	16 30 15 17	1.6	27.2	145-	<u> </u>						
85-			No Recovery	21 27 14 21	0	×	•	<u> </u>		·				
-		sw	Poor recovery, large piece of gravel in spoon.	50 23 50(0.2')	0.5	x								
-		sw	Light yellowish brown medium/coarse-grained sand, little fine/medium gravel (angular, mostly quartz). Dry. Very loose.	4 7 9 11	1.2	22.1	140-			SBD-PD-16-I	4 U	4 U	4 U	, 4
90-		sw	Same as above, Some 1-2 layers of darker fine/medium-grained sand.	23 9 10 16	0.8	7.1								
		sw	Same as above. Moist.	20 24 11 5	0.9	57.1	135-							
95-		sw	Same as Above.	4 5 6 4	1.6	7.1		-	:					
		sw	Same as above, Moist.	4 3 3 4	1	1.2								
	-	sw	Light yellowish brown medium/coarse-grained sand, some fine/medium gravel. Dry.	4 3 6 33	1	6.8	130-			SBD-PD-16-J	4.9 U	1,9 J	4.9 U	4
100-		sw	, Same as Above.	50 20 8 4	0.6	1.4		-] 					
	_ /		Poor recovery, obstruction.	10 8 14 10	0.4	0	125							
105-		sw	Same as above. Some 1-2 layers of darker fine/medium-grained sand.	7 9 8 8	1	2.8								
		sw		11 50 50(0.2)	1.2	1.1		-						

SOIL BORING LOG

PROJECT NO. 3223.173

PROJE			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:		SBI)-PC	-16			
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	Ş	,
440		sw	Light yellowish brown medium/coarse-grained sand, little fine/medium gravel (rounded to angular). Dry. (continued) Same as Above	14 17 10 15	1.5	0	120-			SBD-PD-16- K	4.8 U	4.8 U	4.8 U	4.8) J
110		sw	Light yellowish brown medium/coarse-grained sand, little fine/medium gravel (rounded to angular). Moist.	10 11 7 9	1	104		 					•	i [ì
-		sw	Same as Above	4 45 19 20	1.8	17.7	115-	 							
115-		sw	Dark yellowish brown medium/coarse-grained sand, trace fine gravel. Dry Light yellowish brown fine to	8 12 15 9	1.7	7.2		 		, 		16			
•		sw	coarse-grained sand, trace fine/medium gravel. Loose. Dry. Same as Above	11 10 12 16	1.9	19.4									
-		sw	Same as Above	7 6 14 14	1.4	51.2	110-			SBD-PD-16- L	5.2 U	5.2 U	5.2 U	5.2	2
120-		sw	Light yellowish brown medium/coarse-grained sand, some fine/medium gravel. Mod Loose. Dry.	17 30 21 25	0.8	38.1								 	,
-		sw	Same as above, Less gravel, Cobbles in cuttings.	13 24 37 14	1.7	0	105-								
125-	-	sw	Same as above.	9 12 6 18	1	4		-							
-		sw	Light yellowish brown fine to coarse-grained sand, trace fine gravel.No odor. Dry.	6 17 18 16	1.8	5.7									
420-		sw	Same as above.	7 9 13 11	2	9.4	100			SBD-PD-16- M	4.5 U	4.5 U	4.5 U	4.5	5
130-							,	-							
	-						95	_							
				<u> </u>				_		<u> </u>	DEC :	ECTA	O. 322		#

SOIL BORING LOG

PAGE 5 OF 10

ROJE OCAT			ence Aviation Industries lefferson Station, New York		SC	OIL BO	RING	10 :		SBI	D-PD	-16		
	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	ois-1,2-DCE	<u> </u>
140		sw	Same as Above	5 3 7 2	1	0	90-			SBD-PD-16- N	4.2 U	4.2 U	4.2 U	4.2
145—							85-	- - - -						
150		sw	Light yellowish brown fine/medium-grained sand, little fine gravel. No odor.	7 5 22 24	1.3	0	80-			SBD-PD-16- O	4.1 U	4.1 U	4.1 U	4.
155) 1		75-	-					•	•
- - 160 –		sw	Same as above. Rust banding at bottom. No odor.	12 10 13 9	1	18	70-			SBD-PD-16- P	4.7 U	4.7 U	4.7 U	4.

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 6 OF 10

PROJE			ence Aviation Industries Jefferson Station, New York		so	OIL BC	RING	NO:		SBI)-PD	-16		
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (mdd)	(feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	S.
165-							65 — - -			,				
170		sw	Light yellowish brown fine/medium-grained sand, little fine gravel. No odor.2 layers of rust staining.	17 14 26 30	0.9	25	60-			SBD-PD-16- Q	4.3 U	4.3 U	4.3 U	4.3 (
175-						,	55-						,	:
180-		sw	Same as above. 1 thick layer of gravel.	7 11 16 21	1.8	7	50-			SBD-PD-16- R	4.7 U	4.7 U	4.7 U	4.7
185-			•				45-							
		SW	Light yellowish brown fine/medium-grained sand, Gravel absent. Moist	3 3 5 3	0.7	10	40			SBD-PD-16- S	4.7 U	1.1 J	4.7 U	

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 7 OF 10

PROJECT: LOCATION:		ence Aviation Industries Jefferson Station, New York		30	JIL BU	RING	NO.		SBL)-PD	-16		
(feet) GRAPHIC LOG	USCS	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (ppm)	(feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	J/A
-									į				
195—		¥				35-							
200-	sw	Light yellowish brown fine/medium-grained sand, some fine gravel. Saturated.	3 2 3 5	1.1	3	30-			SBD-PD-16- T	4.7 U	4.7 U	4.7 U	4.7
205-						25-	-		SBD-PD-16- GW-A	0.63	16	0.5 U	0.8
210	sw	Same as Above.	2 3 7 8	0.8	0	20-	- - -	9 9 9 9 9 9 9 9 9 9 9 9					
215						15			SBD-PD-16- U SBD-PD-16- GW-B	5.9 U 0.4 J	5.9 U	5.9 U 0.5 U	5

Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 8 OF 0

			nce Aviation Industries efferson Station, New York		S	OIL BO	RING	NO:		SBI)-PD)-16		
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (ppm)	ELEV (feet)	SOIL SAMPLE	WATER	SAMPLE ID	PCE	TCE	cis-1,2-DCE	Ş
220-		sw	Light yellowish brown fine/medium-grained sand, Satura No odors.	ted. 5 8 9	1.1	0	10-		*1	SBD-PD-16- V	4.8 U	4.8 U	4.8 U	4.8
- - 225		X.					5-							
- - - 230 –		sw	Same as Above.	3 2 1 4	1.5	0	0-			SBD-PD-16- W	5.8 U	5.8 ປ	5.8 U	5.8
235-	- - - - -						-5							
240-	-	sw	Same as Above.	5 3 3 8	1.4	0	-10]		SBD-PD-16-	5.7 U	5.7 U	5.7 ∪	5.
						1	-15	-\ - - j-						

Edison, NJ 08818
Telephone: 732-225-7000

PAGE 9 OF 10

				S	OIL BC	RING	NO:		SBI)-PD	-16			
GRAPHIC C	USCS	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV	PID (ppm)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	ΛC	,
	sw	Same as Above.	4 3 10 14	1.7	0	-20-			SBD-PD-16- Y	6 U	6 U	6 U	6	U
						-25-	-							,
	sw	Same as Above.	5 5 6 6	1	0	-30-			SBD-PD-16- Z	6.6 U	6.6 U	6.6 U	6.6	งบ
		Borehole abandoned with grout from 0 to 260 feet. Soil sample results in micrograms per kilogram. Water sample results in micrograms per liter.				-35	-							
- - - - -						-40	-							
		OBAPHIC LOG LOG SW	Same as Above. Sw Same as Above.	SW Same as Above. Sw W Same as Above. Sw W Same as Above. Sw W Same as Above.	SW Same as Above. SW SA	TION: Port Jefferson Station, New York DESCRIPTION (Sampler Length: 2 feet) SW Same as Above. SW SW Same as Above. SW Same as Above. SW SW Same as Above.	TON: Port Jefferson Station, New York Sampler Length: 2 feet) Solution Solution	SW Same as Above. SW Same as Ab	SW Same as Above. Sw Sw Sw Sw Sw Sw Sw S	DESCRIPTION (Sampler Length: 2 feet) SW Same as Above. SW Same as Above. SW Same as Above. SBD-PD-16- The sampler sealts in micrograms per kilogram. Water sampler results in micrograms per litter.	Tion: Port Jefferson Station, New York DESCRIPTION (Sampler Length: 2 feet) SW Same as Above. SBD-PD-16- 6.6 U	Description Description	Same as Above. Same	Same as Above

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 10 OF 10

DRILLI DRILLI SAMPI	TION:	Port 1/7/0. MPANY JIPMEI THOD:	f: ADT NT: Failing F-10 3.25" ID Hollow Stem Augers b: Split-spoon (ASTM D1586)	8	NO EL W	EVAT ATER: OGGEI ORIZO	NG: 2 ION: 2 1 D BY: N	278714 228.53 185 fee Mike E	feet et hnot M: NA	eet EAS M.F TO CH D83 as revised	STING: P. ELEV: FAL DEP ECKED E	TH: 260 SY:	1467.94 .0 feet	
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	OA _
5-							225- -							
- - - 10-		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded. Slightly Moist. No Recovery	26 20 14 18 21 27 38	0.5	0	220-			SBD-PD-17- A	4.9 U	4.9 U	4.9 U	4.9
15-				41			215-							
20-		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace coarse Cobble, Moist.	24 7 10 16	1.3	0.8	210			SBD-PD-17- B	4.8 U	4.8 U	4.8 U	4.8
	1			,			205	-						

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 1 OF 10

ROJE OCAT			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:		SBI)-PD	-17		
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (ppm)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	٠,٠
30-		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace coarse-grained Sand, Trace Boulder, Slightly Moist. Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded. Slightly Moist to Dry.	39 34 21 12 16 12 15 11	0.5	3.3	200-			SBD-PD-17- C	5.2 ປ	5.2 U	5.2 U	5.2
35-							195-	- - - - -						
. 40-	**************************************		No Recovery	15 13 15 14	0	0	190-			SBD-PD-17- D	4.4 U	4.4 U	4,4 U	4.
-		sw	Brown & Light Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine to medium Cobble. Dry.	8 8 10 15	1.7	0	185	-						
45-	-							-						
50-		sw	Same as Above	10 13 17 24	1.9	23	180	-		SBD-PD-17- E	4.7 U	4.7 U	4.7 U	4.

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 2 OF 10

ROJE			ence Aviation Industries Defferson Station, New York		S	OIL BC	RING	VO :		SBI)-PD	-17		
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	<u>ي</u>
55-							175- - -							
60-		sw	Very Light Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded. Dry.	7 10 17 20	1.2	11	170-			SBD-PD-17- F	4.6 U	4.6 U	4.6 U	4.6
65-							165-	-						
70-		sw	Light Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine to medium Cobble, rounded, Dry.	8 17 20 15	1.9	4.1	160-			SBD-PD-17- G	4.6 U	4.6 U	4.6 U	4.6
75-	-		·		,		155	-						
		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine to medium Cobble, rounded. Slightly Moist.	13 20 23 12	1.3	0	150	-		SBD-PD-17- H	4.3 U	7.3	4.3 U	

SOIL BORING LOG

]

PROJE LOCA			rence Aviation Industries Jefferson Station, New York		s	OIL BC	RING	NO:		SBI)-PD	-17	 -	
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	OId (mdd)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	VC
85							145		4					
90-		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine to medium Cobble, rounded. Dry.	9 15 20 17	1.5	4.8	- 140- -			SBD-PD-17-i	4.4 U	1.4 J	4.4 U	4.4 U
95-			,				135~							
- 100-		sw	Brown fine- to medium-grained Sand, Trace fine to medium Gravel, rounded. Dry.	5 8 7 10	1	0	130-			SBD-PD-17-J	5.2 U	1.3 J	5.2 U	5.2 U
100-							125-				PROJE			

Rarital Edisor Telept

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PROJECT NO. 3223.173

PROJEC			ence Aviation Industries Jefferson Station, New York		S	DIL BC	RING	NO:		SBI)-PC)-17			
	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	P1D (mdd)	(feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCF.	cis-1,2-DCE	Ü	<u> </u>
110-		SW	Light Brown & Brown fine- to medium-grained Sand, Trace to Little fine to coarse Gravel & fine to medium Cobble, rounded. Dry.	5 17 19 34	1.1	2.8	120-			SBD-PD-17- K	4.4 U	4.4 U	4.4 U	4.4	υ
115—							115-								
120		sw	Same as Above	40 9 15 20	1	0.4	110-		lf .	SBD-PD-17- L	4.7 U	10	4.7 U	4.7	, 7 U
125-		,					105-	- - -					,		
130 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine to coarse Cobble, rounded. Dry. White fine- to medium-grained Sand, Dry.	10 6 9 13	1.1	4.8	100-			SBD-PD-17- M	4.8 U	4.8 U	4.8 U	4.4	8 U
יייי אייייי אייייי אייייי איייייי איייייי		DM					95	- -			PPO!	ECT N	0.333	93.1	72

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

(feet)	2		Jefferson Station, New York						_		D-PC	•		
	GRAPHIC	SOSN	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	ais-1,2-DCE	٢
140		sw	White fine- to medium-grained Sand, Trace medium to coarse Gravel, rounded @ 137'-140'. Dry.	11 21 27 25	1.7	4.3	90-			SBD-PD-17- . N	4.4 U	4.4 U	4.4 U	4.4
145—	,				,		85- -							
150		sw	White fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine to medium Cobble, rounded, Dry.	12 11 11 11 15	1.7	3.9	80~			SBD-PD-17- O	4.1 U	4.1 U	4.1 U	4.1
155-							75-							
160		sw	White fine- to medium-grained Sand, Trace fine to medium Gravel, rounded @ 158.1'-158.4', Dry.	7 12 13 19	1.9	33	70-			SBD-PD-17- P	4.8 U	4.8 U	4.8 U	4.8

SOIL BORING LOG

PROJECT NO. 3223.173

PROJECT LOCATIO			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:		SBI)-PD)-17		
	<u> </u>	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (mdd)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	χC
165				,			65 - -							
170		sw	White fine- to medium-grained Sand, Trace medium to coarse Cobble, rounded @ 169.1'-169.4'. Dry.	8 14 11 16	1.9	4	60-			SBD-PD-17- Q	4.7 U	4.7 U	4.7 U	4.7 L
175-							55-							.
180		sw	Light Brown & White fine- to medium-grained Sand, Trace fine to medium Gravel, rounded. Dry.	5 16 13 18	2	17	50-			SBD-PD-17- R	4.7 U	4.7 U	4.7 U	4.7 1
185			¥				45-							
	CD	SW	Light Brown fine- to medium-grained Sand, Trace coarse-grained Sand, Trace fine to medium Gravel, rounded. Wet.	7 9 13 16	1	0	40-			SBD-PD-17- S	4.9 U PROJE	11 ECT N	4.9 U O. 322	3.173

SOIL BORING LOG

PAGE 7 OF. 10

PROJE			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:		SBI)-PD	-17		
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV.	PID (mdd)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	۸c
_		sw.	Light Brown fine- to medium-grained 'Sand, Trace fine to medium Gravel, rounded. Wet.	3 4 7 6	2	0	-							
		sw	Same as Above	8 3 :5 11	2	0	35-			SBD-PD-17-		000	4.5	0.51
195-										GW-A	2.6	200	1.5	0.5 U
200-		sw	Same as Above	6 5 4 3	2	0	30-			SBD-PD-17- T	5.5 U	24	5.5 U	5.5 ป
205-							25-			SBD-PD-17- GW-B	0.76	16	0.5 บ	0.5 J
210-		sw	Light Brown fine- to medium-grained Sand, Little coarse-grained Sand, Trace fine to medium Gravel, rounded. Saturated.	16 5 4 7	2	0	20-			SBD-PD-17- U	5.5 U	5.5 U	5.5 U	5.5 L
215-	- - - -		,				15	-						
	1	CDM						1			PROJI	ECT N	O. 322	3.17

SOIL BORING LOG

PAGE 8 OF 10

PROJ:			ence Aviation Industries Jefferson Station, New York		S	OIL BO	RING	NO:		SBI)-PD)-17	-		T
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (ppm)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	VC	
-		sw	Light Brown fine- to medium-grained Sand, Trace coarse-grained Sand. Saturated.	14 11 6 9	0.5	0	10-			SBD-PD-17- V	4.9 U	7.1	4.9 U	4.91	U
220-		sw	Same as Above	5 11 14 23	1	0		-						! ! !	•
-							5-								
225 –	- - - - -													 	
230-		sw	Light Brown fine- to medium-grained Sand. Saturated.	16 11 10 5	1.3	0	0-			SBD-PD-17- W	5.6 U	3J	5.6 U	5.6	U
	-		<u>.</u>					-							
235-							-5-] - - - -	ļ						
<u>}</u>	-	sw	Same as Above	12 9 9	1.1	0	-10-			SBD-PD-17-	5.5 U	5.5 U	5.5 U	5.5	U
240-		sw	Same as Above	6 7 10 14	0.6	0		-		^					
	-						-15·								
		DM				1		1_			PROJ	ECT N	O. 322	 3.17	3

SOIL BORING LOG

PAGE 9 OF 10

PROJI LOCA			ence Aviation Industries Jefferson Station, New York		S	OIL BO	RING	NO:		SBI)-PC)-17			
DEPTH (feet)	GRAPHIC CLOG	SOSN	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	(feet)	SAMPLE	SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	ΛC	
- - 250-		sw	Same as Above	8 13 14 23	1.4	0	20	4		SBD-PD-17- Y	5.8 U	5.8 U	5.8 U	5.8	U
255-							-25-			,					
260-	-	sw	Same as Above Soil sample results in micrograms per kilogram. Water sample results in micrograms per liter.	11 22 19 31	1	0	-30-			SBD-PD-17- Z	5.7 ∪	5.7 บ	5.7 บ	5.7	U
265-			,				-35-								
265-		СОМ					-40	-			PRO	ECT N	0.22	23 1	73

R E T

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 10 OF 10

PROJ LOCA			rence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:			SBD	-PD	-18	
DRILL DRILL SAMP	ING COI ING EQI ING ME LING ME ACE CO	UIPME THOD: ETHOD	Y: ADT NT: Failing F-10 3.25" ID Hollow Stem Augers Split-spoon (ASTM D1586)		EL W LC	.EVAT ATER: OGGE! ORIZO	DBY: N	228.93 185 fe Viike E DATU IUM:	3 feet et Ehnot IM: NA NAVD	M.F TO CH D83 as revised	STING: P. ELEV: TAL DEF ECKED I , COORI	PTH: 260 BY:	NYSP, I	
DEPTH (feet)	GRAPHIC LOG	SOSD	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL	WATER	SAMPLE ID	PCE	тсе	cis-1,2-DCE	ΛC
- - - 5-							225-							
10-		sw	Brown fine- to medium-grained Sand, Trace to Little fine to coarse Gravel, rounded, Trace fine Cobble, rounded. Slightly Moist.	15 5 7 8	1.2	0.2	220-			SBD-PD-18- A	5.4 U	5.4 U	5.4 U	5.41
15-	-						215-	-						
20-	-	sw	Brown fine- to medium-grained Sand, Trace coarse Cobble, rounded. Dry.	21 10 10 9	0.9	0	210-			SBD-PD-18- B	60	6U	6U	60
	-						205				PROJI			

Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 1 OF 10

ROJE	TION:		ence Aviation Industries Jefferson Station, New York	_	S	OIL BO	RING	NO:		SBI)-PC)-18			Ī
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length; 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (ppm)	ELEV (feet)	SOIL	SAMPLE	SAMPLE ID	PCE	TCE	ais-1,2-DCE	J/\	ر د
30-		sw	Brown fine- to medium-grained Sand, Trace fine to medium Gravel, Trace Cobble, rounded, Dry.	9 10 14 21	1	10	200-			SBD-PD-18- C	5.7 U	5.7 U	5.7 U	5.7	7
35-							195-								
40-		sw	Light Brown & Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine Cobble. Dry. Same as Above	11 13 13 15 8 6 14 16	2	19	190~			SBD-PD-18- D	3.5 J	. 48	5.4 U	5.4	
- - 45-				,,0			185-								
- - 50-		sw	Very Light Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine to coarse Cobble, rounded, Dry.	9 8 12 30	1	35.4	180-			SBD-PD-18- E	5.5 U	5.5 U	5.5 U	5.4	5
· -	-	:DM						-			PROJI	ECT N	7 322	3 15	-

SOIL BORING LOG

PAGE 2 OF 10

ROJE OCAT			ence Aviation Industries Jefferson Station, New York		so	DIL BO	RING	NO:		SBI)-PD)-18		
(teet)	GRAPHIC LOG	USCS	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (ppm)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	2
55							- 175- - -							:
60-		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine to coarse Cobble, rounded. Dry.	12 15 15 16	1.4	1.6	170- -			SBD-PD-18- F	4.9 U	1.8 J	4.9 U	4.9 t
65-							165-	-			ι			
70-		sw	Light Brown fine- to medium-grained Sand, Trace to Little fine to coarse Gravel, rounded, Trace Cobble. Dry. Light Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine Cobble. Dry.	9 12 13 14 10 19 15 50(4")	0.5	0	160-		7	SBD-PD-18- G	4.6 U	4.6 U	4.6 U	4.6
75-	-		,				155-							
		sw	Same as Above	19 9 16 27	0.1	82.3	150	-			DBO!	ECT N	O. 322	23 47

SOIL BORING LOG

PAGE 3 OF 10

PROJE			ence Aviation Industries Jefferson Station, New York	-	S	OIL BO	RING	NO:		SBI)-PC)-18		
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (mdd)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	ΛC
-		,	No Recovery	22 33 18 10	0	0	-					:		
85-							145- -							
-							- -					C		
90		sw	Same as Above	12 24 23 21	0.2	146	140-			SBD-PD-18-I	4.2 U	4.2 U	4.2 U	4.2 L
30		sw	Light Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine Cobble, rounded. Dry.	12 19 17 11	0,6	14] - -			Ī			
95—							135-							
- 100-		sw	No Recovery Brown fine- to medium-grained Sand, Trace to Little medium to coarse Gravel, rounded, Trace fine Cobble, rounded. Dry. Light Brown fine- to medium-grained Sand, Trace fine Gravel, rounded. Dry.	14 17 13 41	1.4	3.5	130-			SBD-PD-18-J	4 U	4 U	4 U	ىن 4 ئا ا
100-							125-							
	<u> </u>	:DM				,	<u> </u>	1_		ļ	PROJ	ECT N	O. 322	3.173

SOIL BORING LOG

PAGE 4 OF 10

PROJE LOCA			rence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:		SBI)-PD)-18		-
DEPTH (feet)	GRAPHIC LOG	SOSN	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL SAMPLE WATER	SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	ο
110-		sw	Brown & Light Brown fine- to medium-grained Sand, Little fine to coarse Gravel, rounded. Dry.	65 51 18 26	1.5	2	120-			SBD-PD-18- K	3.3 J	3.9 R	3.9 R	3.9 R
115—						,	115-					,		
- 120- -		sw	Very Light Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded @ 118.7'-119.6', Little fine to coarse Gravel, rounded, Trace Boulder, rounded @ 119.6'-120'. Dry.	11 13 23 30	1.8	26	110-			SBD-PD-18- L	4.6 U	4.6 U	4.6 U	4.6 L
125- -							105-	- - -						
130-		sw	Very Light Brown fine- to medium-grained Sand, Trace fine to medium Gravel, rounded, Trace medium Cobble, rounded, Dry.	8 11 15 23	1.4	70	100-			SBD-PD-18- M	4.4 U	0.95 J	4.4 U	4.4 (
	-						95-							

PROJECT NO. 3223.173

PAGE 5 OF 10

OCATIO	N: I		nce Aviation Industries efferson Station, New York		S	OIL BC	RING	NO:		SBI	D-PE)-18		
(feet)	907 907	SOSO	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	OIA (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	Ş
140		sw	Same as Above without Cobble	10 14 19 24	1.6	66	90-			SBD-PD-18- N	4.6 U	0.92 J	4.6 U	4.6
145-			·				85-							
150		sw	Very Light Brown fine- to medium-grained Sand, Trace fine Gravel. Dry.	11 17 33 21	1.3	2.4	80-			SBD-PD-18- O	1.3 J	4.5 U	4.5 U	4.5
155 —							75-	- - - - - -				:		
160		sw	Same as Above	14 24 13 6	1.8	1.7	70-			SBD-PD-18- P	4.8 U	4.8 U	4.8 U	4.8

SOIL BORING LOG

PAGE 6 OF 10

PROJE	TION:		ence Aviation Industries Jefferson Station, New York		S	OIL BO	RING	NO:		SBI)-PC)-18			
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (ppm)	ELEV (feet)	SOIL	SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	ΛC	
165							65-								
170-		sw	Same as Above	12 6 13 21	1.9	118	60- -			SBD-PD-18- Q	4.5 U	4.5 U	4.5 U	4.5	J
- 175—							55-			·					
- - 180-		sw	Same as Above	18 22 32 41	2	3.5	50-			SBD-PD-18- R	5.1 U	1.2 J	5.1 U	5.1	L
- 185 -	-	,	. 				45-	-							
		sw	Light Brown fine- to medium-grained Sand, Trace coarse-grained Sand, Trace fine Gravel. Wet.	7 6 6 9	2	2.6	40-			SBD-PD-18- S	4.3 บ	12	4.3 U O. 322	4.3	

SOIL BORING LOG

PROJECT NO. 3223.17β

GRAPHIC 100 I	nscs	lefferson Station, New York	1 >										
77.72	_ ≌	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV.	CJA (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	\$
	sw	Same as Abovė	4 6 3 8	2	1.6	-					,		
	sw	Brown to Dark Brown fine- to medium-grained Sand, Trace fine to medium Gravel, rounded. Saturated.	3 1 2 5	1.4	0	35-			200 bb 40				
:									GW-A	4.7	93	0.54	0.5 L
	sw	Same as Above	1 2 4 9	2	1.6	30-			SBD-PD-18- T	1.5 J	4.3 U	4.3 U	: 4.3 L
						25-	-		SBD-PD-18- GW-B	0.81	10	0.5 U	0. 5 U
	sw	Light Brown fine- to medium-grained Sand, Trace to Little coarse-grained Sand, Trace fine Gravel. Wet.	3 5 2 4	0.7	0	20-			SBD-PD-18- U	4.7 U	4.7 U	4.7 U	4.71
	sw	Same as Above	7 10 13 20	2	0		-				-	ļ	
						15-			,				1
		sw	SW Same as Above Light Brown fine- to medium-grained Sand, Trace to Little coarse-grained Sand, Trace fine Gravel. Wet. Same as Above	SW Same as Above 1 2 4 9 Light Brown fine- to medium-grained Sand, Trace to Little coarse-grained Sand, Trace fine Gravel. Wet. 3 SW Same as Above 7 10 13 20	SW Same as Above 1 1 2 4 9 2 2 4 9 2 2 4 9 2 2 4 9 2 2 4 9 2 2 4 9 2 2 4 9 2 2 4 9 2 2 4 9 2 2 4 9 2 2 4 9 2 2 2 4 9 2 2 2 4 9 2 2 2 2	SW Same as Above 1 2 4 9 2 1.6 SW Light Brown fine- to medium-grained Sand, Trace to Little coarse-grained Sand, Trace fine Gravel. Wet. 3 0.7 0 SW Same as Above 7 0 10 13 2 0	Same as Above	SW Same as Above 1 1 2 4 1.6 30- SW Light Brown fine- to medium-grained Sand, Trace to Little coarse-grained Sand, Trace fine Gravel. Wet. 2 0.7 0 20- SW Same as Above 7 0 10 13 2 0 15-	SW Same as Above 1 2 2 1.6 30 2 25 35 35 35 35 35 35 35 35 35 35 35 35 35	Same as Above 1	SW Same as Above 1 1 2 4 9 2 1.6 30— SBD-PD-18- 1.5 J 25— SBD-PD-18- 1.5	SW Same as Above 1 2 2 1.6 30— SBD-PD-18- 1.5 J 4.3 U 25— SBD-PD-18- 1.5 J	SW Same as Above 1 1 2 1.6 30 SBD-PD-18- 1.5 J 4.3 U 4.3 U 25 SBD-PD-18- 0.81 10 0.5 U 25 SW Sand, Trace to Little coarse-grained Sand, Trace fine Gravel. Wet. 2 4 SW Sand as Above 7 10 13 2 0 15 SW Same as Above 7 10 13 2 0 15 SW Same as Above 7 10 13 2 0 15 SW Sand as Above 7 10 13 2 0 15 SW Sand as Above 7 10 13 2 0 15 SW Sand as Above 7 10 15 SW SW SAND AS ABOVE 7 10 15 SW

Ra Ed Te

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

100201 100. 0220. 17

PAGE 8 OF 10

PROJE			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	10:		SBI)-PC	-18		
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length; 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (ppm)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	Ş
- 220-		sw	Same as Above	11 7 9 13	1.1	22	10- -			SBD-PD-18- V	4.9 U	4.3 J	4.9 U	4.9 \
- - 225-							5-					-		
230-		sw	Same as Above	6 6 9 12	1.6	0.4	0-			SBD-PD-18- W	4.5 U	4.5 U	4.5 U	4.5
235-	 - - - -						-5 -	-						,
240-		sw	Same as Above with Trace coarse-grained Sand. Saturated.	13 5 11 17	1.1	0.2	-10			SBD-PD-18- X	4.5 U	, 4.5 U	4.5 U	4.5
	-						-15							

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 9 OF 10

PROJE			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:	SBI)-PE)-18		
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	(feet)	SAMPLE WATER	SAMPLE ID	PCE	TCE	cis-1,2-DCE	O/
250-		sw	Same as Above	7 4 9 6	1.1	0.3	-20-		SBD-PD-18- Y	4.6 U	4.6 U	4.6 U	4.6 U
255- -	-						-25-						
260-		sw	Light Brown fine- to medium-grained Sand, Trace coarse-grained Sand, Trace fine Gravel. Saturated. Soil sample results in micrograms per kilogram. Water sample results in micrograms per liter.	11 10 11 9	1.4	ō	-30-		SBD-PD-18- Z	4.6 U	4.6 U	4.6 U	4.6 U
265-	- - - - -						-35-	-		·			
270-	-		,				-40	-			ECTN		

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 10 OF 10

START DRILL DRILL DRILL SAMP	TION: TED: ING CON ING EQU ING MET LING ME ACE CON	Port 12/5/ MPANY MPANY MPMEI THOD:	Y: ADT NT: Failing F-10 3.25" ID Hollow Stem Augers D: Split-spoon (ASTM D1586)		NO EL W	ORTHI LEVAT 'ATER:	ION: 2 DBY: N NTAL I	27891: 229.23 195 fed Mike E DATU [UM: I	feet et hnot M: NA VAVD	eet EA M.F TO CH AD83 as revised	SBD STING: P. ELEV: TAL DEF ECKED I , COORI	124 PTH: 260 BY:	1579.84 0.0 feet	
DEP I H (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	, TCE	dis-1,2-DCE	JA.
5-			~		,		225-			·				
10-		sw sw sw	Brown fine- to medium-grained Sand. Moist. Brown & Gray Silt, Trace fine-grained Sand. Dry. Orange Brown & Yellow Brown fine- to coarse-grained Sand. Dry to Slightly Moist. Orange Brown fine- to coarse-grained Sand, Trace coarse Cobble. Dry.	8 8 14 14 10 9 7 10	1.6	0	220-			SBD-PD-19- A	3.5 U	3.5 U	3.5 ∪	3.5
- 15-							215-	-						
20-		SW SW SW	No Recovery Same as Above Brown fine- to medium-grained Sand. Dry. Light Brown fine- to medium-grained Sand, Trace coarse Gravel. Dry.	8 18 20 22	1.5	11.6	210-			' SBD-PD-19- B	3.9 U	3.9 U	3.9 ∪	3.9
	-						205-							,

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 1 OF 10

DCATI			ence Aviation Industries Jefferson Station, New York		SC	OIL BO	RING	NO:		SBI)-PD	-19		
	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (ppm)	ELEV (feet)	SOIL SAMPLE WATER	SAMPLE	SAMPLE ID	PCE	TOE	cis-1,2-DCE	Λ
30		sw	Brown fine- to medium-grained Sand, Trace coarse Cobble & coarse Gravel. Slightly Moist. Same as Above	27 38 50 16 17 17 23 24	0.6	5.4	200-			SBD-PD-19- C	2.9 U	2.9 U	2.9 U	2.9
35-							195-	-						1
40		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel. Dry.	19 18 17 18	1.5	71	190-			SBD-PD-19- D	3 U	1.6 J	3 U	3
45-							185-	-						
50		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, subrounded. Dry.	9 18 20 31	1.6	21.4	180			SBD-PD-19- E	3.5 U	1.6 J	3.5 U	3.

DM

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

.

PAGE 2 OF 10

PROJE			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:		SBI)-PC)-19			
(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (ppm)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	POE	TCE	cis-1,2-DCE	J/V	}
55-							175-		,						
60-		sw	Light Brown fine- to medium-grained Sand. Dry.	15 21 31 19	1.5	29.6	170-			SBD-PD-19- F	3.8 U	3.8 U	3.8 U	3.8	3 U
65							165-				.				
- - 70-		SW	Brown & Light Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, subrd. & rd., Trace coarse Cobble. Dry.	33 49 50(3")	1.4	53.1	160-			SBD-PD-19- G	3.6 U	3.8	3.6 U	3.6	ų. Į
- 75-							155-							,	
		sw	Brown & Dark Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded. Slightly Moist.	50(3")	0.4	82.7	150-			SBD-PD-19- H	2.9 U	8.8	2.9 U O. 322		9 U

Ra Edi Tel

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PROJECT NO. 3223.173

PAGE 3 OF 10

PROJI			ence Aviation Industries Jefferson Station, New York		S	OIL BO	RING	NO:		SBI)-PC)-19		
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (ppm)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	, NC
85-			No Recovery	100(0)	0	0	145-							
90-		sw	Coarse Gravel, Trace fine- to medium-grained Sand. Dry. Light Brown fine- to medium-grained Sand, Trace to Little fine to coarse Gravel, Trace Boulders. Dry.	50(3") 55 43 31 50(1")	0.1	66.2	140-			SBD-PD-19-I	3.3 U	3.3 U	3.3 ∪	3.3 U
95—							135-							
DESIGN.GPJ 7/30/08 REV.		sw	Brown fine- to medium-grained Sand, Trace fine to coarse Gravel. Dry.	7 25 38 45	1.5	27.6	130-			SBD-PD-19-J	3.5 U	3.5 U	3.5 U	3.5 U
ORING LOG LAI-PRE DESIGN.GPJ 7/30/08 REV.		DM	,				125-	-					D. 3223	

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 4 OF 10

PROJ			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:		SBI)-PC)-19			
DEPTH (feet)	GRAPHIC LOG	SOSU	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TOE	cis-1,2-DCE	y X	
		sw	Brown fine- to medium-grained Sand, Trace fine to medium Gravel. Dry.	50(6") 50(0)	0.5	0	120-		ā	\$BD-PD-19- K	3.9 U	3.9 U	3.9 U	3.9	U
110-		sw	Same as Above	48 50(3")	0.5	0.2									
115-							115-			,				;	
		sw	Brown fine- to medium-grained Sand, Trace fine to medium Gravel, rounded, Dry.	22 40 50(2")	1	7.4	110-			SBD-PD-19- L	4.2 U	4.2 U	4.2 U	4.2	U
120-															
125-	- - -						105-								•
IRING LOG LAI-PRE_DESIGN.GPJ LAI-PRE_DESIGN.GPJ 7/30/08 REV.		sw	Brown fine- to medium-grained Sand, Trace fine to medium Gravel, rounded. Dry.	45 50(2")	0.5	35.7	100-			 SBD-PD-19- M	3.9 U	3.9 U	: 3.9 U	3.9	U
DESIGN.GPJ LAI-PRE		sw	Same as Above	50 50(3")	0.3	8.2		-			:				
INGLOG LAI-PRE		СОМ					95-				PROJI	ECT N	0.322	3 17	3

SOIL BORING LOG

-KOSECT NO. 3223.17

PAGE 5 OF 10

PROJE LOCA			ence Aviation Industries Jefferson Station, New York	•	S	OIL BC	RING	NO:		SBI)-PC)-19		
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	PID (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	Ş
- - - 140 -		sw	Light Brown fine- to medium-grained Sand, Trace fine to medium Gravel, rounded. Dry. Same as Above	48 50(1") 46 50(1")	0.2	503	90-			SBD-PD-19- N	3.4 U	3.4 U	3.4 U	3.4.U
145-							85-							
- 150- -			No Recovery	50(0)	0	0	80-							
- 1 5 5-				l:			75-	-						
155- 160-		SW SW	Brown fine-grained Sand, Trace medium-grained Sand, Trace fine to medium Gravel, rounded. Dry. Light Brown fine- to medium-grained Sand, Trace fine Gravel. Dry. Light Brown fine-grained Sand, Trace	47 15 17 24 25 10 19 23	0.8	0	70-			SBD-PD-19- P	3.6 U	1.6 J	3.6 U	3.6
CD	R	dison, I	Plaza I, Raritan Center NJ 08818 ne: 732-225-7000	SOIL B	ORIN	G LOG	i	,		*************************************	PROJE		O. 3223	

PROJEC			ence Aviation Industries Jefferson Station, New York		so	OIL BC	RING	NO:		SBI)-PD	-19			
	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV (feet)	PID (ppm)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	VC	
165-			medium-grained Sand, well sorted, Trace fine to coarse Gravel & fine Cobble @ 161.7'-162'. Dry.				65- -								
170		sw	Light Brown fine- to medium-grained Sand, well sorted, Trace fine to medium Gravel, rounded. Dry.	12 26 50 50(3")	1.1	14.8	60-			SBD-PD-19- Q	4 U	4 Ü	4 U	4 [J
175-							55-	-							
180		sw	Light Brown fine-grained Sand, Trace medium-grained Sand, well sorted. Dry.	17 29 27 50	1	33.6	50-			SBD-PD-19- R	4 U	4 U	4 U	41	1
185-							45-	- - - -						 - -	
100 A 100 A		sw	Same as Above with Trace Orange Brown thin bands @189 feet.	35 30 24 33	1.8	30.6	40-			SBD-PD-19- S	3.7 U	3.7 U	3.7 U	3.7	

SOIL BORING LOG

PROJECT NO. 3223.178

PAGE 7 OF 10

PROJ			ence Aviation Industries Jefferson Station, New York	<u>-</u>	S	OIL BC	RING	NO:	 -	SBI)-PD	-19		
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	OIA (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	NC .
- 195 -			▼				35-							
200-		sw	Same as Above. Wet.	12 24 27 35	2	0	30-			SBD-PD-19- T	4.2 U	46	4.2 U	4.2 U
205-							25-	-		SBD-PD-19- GW-A	0.44 J	12	0.5 Ü	0.5U
210		sw	Light Brown fine-grained Sand, Trace medium-grained Sand, Trace fine to medium Gravel, rounded. Wet.	11 7 14 22	2	1.2	20-			SBD-PD-19- U	4.2 U	8.5	4.2 U	4.2U
210 - 2	-		•				15-	 - - - -		SBD-PD-19- GW-B	0.34 J	12	0.5 U	0.5 U

Ra Ed Te

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 8 OF 10

PROJ			ence Aviation Industries lefferson Station, New York	-	S	OIL BO	RING	NO:		SBI)-PE)-19		
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	9/
220-		sw	Same as Above. Wet.	19 12 16 20	1.5	0.2	- 10- - -			SBD-PD-19- V	3.8 U	6.5	3.8 U	3.8 U
225-		-					5-				-			
230-		sw	Light Brown fine-grained Sand, Trace medium-grained Sand. Wet.	7 12 8 11	2	0.2	0-			SBD-PD-19- W	4.2 U	4.2 U	4.2 U	4.2 L
235-							-5-	-			,			
SCRING LOG EAT-PRE DESIGNAGES TRU-PRE DESIGNAGES TR		sw	Same as Above. Wet.	10 12 14 19	1.9	0.2	-10-			SBD-PD-19- X	4 U	4 U	4ប	4 U
אוואס בסס באין דאוין דאר המסומא		DM					-15-	-	,		PROJE	ECT NO	O. 322	3.173

SOIL BORING LOG

PROJ LOCA			ence Aviation Industries Jefferson Station, New York		S	OIL BC	RING	NO:	,	SBI	D-PE)-19		
DEPTH (feet)	GRAPHIC	nscs	DESCRIPTION (Sampler Length: 2 feet)	SPT Blow Counts	RECOV. (feet)	Old (mdd)	ELEV (feet)	SOIL SAMPLE	WATER SAMPLE	SAMPLE ID	PCE	TCE	cis-1,2-DCE	\$
250 —		sw	Same as Above. Wet.	7 21 17 17	0.6	0	-20-			SBD-PD-19- `Y	4.6 U	2.8 J	4.6 U	4.6
255 –							-25-							
260-		sw	Light Brown fine-grained Sand, Trace medium-grained Sand. Wet. Soil sample results in micrograms per kilogram. Water sample results in micrograms per liter.	7 5 11 22	0.9	0	-30-			SBD-PD-19- Z	3.9 U	3.8 J	3.9 U	3.9
265-	-						-35-	-						
265 - 270 -	- - -						-40-							

CDM_

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

SOIL BORING LOG

PAGE 10 OF 10

APPENDIX C

Monitoring Well Logs

210 pull 220	PROJECT: Lawrence Aviation Industries LOCATION: Port Jefferson Station, New York		МС	NITOR	ING WE	ELL NO	* MW-PD-11
10 mm	DRILLING COMPANY: ADT DRILLING EQUIPMENT: CME 85 DRILLING METHOD: 6.25" ID Hollow Stem Augers SAMPLING METHOD: NA SURFACE COMPLETION: Steel Flush-mount	22/08	ELI WA LO HO	EVATIO NTER: GGED I IRIZON'	N: 164 BY: Mik TAL DA DATUI	I.42 fee e Ehno TUM: N	ot M.P. ELEV: TOTAL DEPTH: 205.0 feet ot CHECKED BY: NAD83 as revised, COORD. SYS.: NYSP, LI
10 mm	OEPTH (feet) ORAPHIC LOG LOG ORAPHIC		SAMPLE	RECOV. (feet)	BLOW COUNTS	OId (mdd)	
S CUM Raritan Plaza I, Raritan Center Monitoring Well Construction Log Folison, N.1 08818	20 30 40 20 50 60 70 80 90 100 mpm paraparaparaparaparaparaparaparaparapar	And the second s					160 155 150 145 150 145 140 140 135 130 125 140 100 100 100 100 100 100 100 100 100
Telephone: 732-225-7000	CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Calendaria Calendaria	Monitoring Well	Cons	truction	Log		PROJECT NO. 3223.173

LOCATION:	Port Jeffe	rson Station, New Yo	ork							IW-P	
	JIPMENT: THOD: ETHOD:	COMPLETED: ADT CME 85 6.25" ID Hollow Stem Aug NA Steel Flush-mount	ers	EL W/ LC HC VE	ORTHING EVATIO ATER: OGGED E ORIZONT ORTICAL	N: 143 BY: Mik TAL DA DATUI	3.08 feet te Ehnot TUM: N	t t IAD83 as	CHEC	ELEV: L DEPTH :KED BY:	1240644.56 fee : 245.0 feet :YS.: NYSP, LI
(feet) GRAPHIC LOG	nscs	DESCRIPTION	O Natural Gamma (CPS)		RECOV. (feet)	BLOW COUNTS	Old (mdd)	(feet)	Flush Mount		/ELL RUCTION
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 20 210 220 240 250 100 100 100 100 100 100 100 100 100 1				NAME AND AND THE THEORY AND THE				ակնոկումընդիմի կումի մին միմ միմ միմ միմ միմ միմ միմ միմ մ		-Bentor	nt/Bentonite Grout nite Slurry Pack Sand Slot Stainless St

Edison, NJ 08818
Telephone: 732-225-7000

LOCATION:	Port Jeff	erson Station, New York									PD-13
DRILLING CON DRILLING EQU DRILLING MET SAMPLING ME SURFACE CO	IPMENT: HOD: THOD;	COMPLETED: 5/ ADT CME 85 6.25" ID Hollow Stem Augers NA I: Steel Flush-mount	22/08	LO HO VE	RTICAL	N: 177 BY: Mik TAL DA DATUI	7.3 feet e Ehnot TUM: N	t IAD83 as	CHEC	ELEV: L DEPT :KED B	1241574.79 fee H: 185.0 feet ': SYS.: NYSP, LI
UEPIH (feet) GRAPHIC LOG	nscs	DESCRIPTION	Natural Gamma (CPS)	SAMPLE	RECOV. (feet)	BLOW COUNTS	PID (ppm)	(feet)	Flush Mount		WELL STRUCTION
10 20 30 40 50 60 70 80 90,100 110 120 130 140 150 160 170 80 90,100 110 120 130 140 150 160 170 80 90,200 210 120 220 230 240 150 150 150 150 150 150 150 150 150 15								175 170 170 170 170 170 170 170 170 170 170		- Bente	ent/Bentonite Grou onite Slurry Pack Sand 0 Slot Stainless St

PAGE 1 OF 1

	wrence Aviation Industries	•	MO	NITORI	NG WE	ELL NO	;	M	IW-PD-14
STARTED: 4/ DRILLING COMP DRILLING EQUIP DRILLING METH SAMPLING METH SURFACE COMP	MENT: CME 85 DD: 6.25" ID Hollow Stem Augers		WA LOO HO VEI	EVATIO ITER: GGED E RIZONI RTICAL	N: 178 3Y: Mik TAL DA DATUI	e Ehno	l IAD83 as	CHEC	
DEPTH (feet) GRAPHIC LOG USCS	DESCRIPTION	O Natural 94 Gamma 001 (CPS)	SAMPLE	RECOV. (feet)	BLOW	OIA (mdd)	ELEV (feet)	Flush Mount	WELL CONSTRUCTION
10 20 30 40 40 50 60 70 100 110 120 120 120 120 120 120 120 12							175 170 165 160 155 150 145 140 155 150 145 150 165 160 155 150 145 150 165 160 155 150 165 165 165 165 165 165 165 165 165 165		-Cement/Bentonite Grounds - Bentonite Slurry - Filter Pack Sand No. 10 Slot Stainless S Screen

STARTED: 5/8 DRILLING COMP. DRILLING EQUIP. DRILLING METHO SAMPLING METHO	MENT: CME 85 DD: 6.25" ID Hollow Stem Augers OD: NA	3/08	NO ELI WA LO HO	RTHING EVATIO ITER: GGED I	G: 284 N: 95. BY: Mik TAL DA	ILL NO 1168.40 54 feet E Ehno	feet t AD83 a	EAST M.P. E TOTA CHEC	
Cleet) (feet) SAPHIC PAPELLOG COMMENT OF COM	LETION: Steel Flush-mount DESCRIPTION	Natural Gamma (CPS)	SAMPLE	RECOV. (feet)	BLOW COUNTS TA	PIC (mdd)	ELEV 88 (feet)	Flush Mount	WELL CONSTRUCTION
10 10 10 10 10 10 10 10 10 10 10 10 10 1					3		90 85 80 75 70 65 80 75 70 65 60 75 70 65 50 90 90 90 90 90 90 90 90 90 90 90 90 90		-Bentonite Slurry -Filter Pack Sand No. 10 Slot Stainless Ste
CDM Rarita	n Plaza I, Raritan Center	4						PF	OJECT NO. 3223.17
Edisc	n, NJ 08818 hone: 732-225-7000	Monitoring Well	Cons	truction	Log				

PROJECT: Lav	rt Jefferson Station, New York					ELL NO	•	IV	IW-PD-16
DRILLING COMPA DRILLING EQUIPN DRILLING METHO SAMPLING METH SURFACE COMPL	MENT: CME 85 D: 6.25" ID Hollow Stem Augers		교육호오된 기술	EVATIO ITER: IGGED I RIZON' RTICAL	N: 86. BY: Mik TAL,DA DATUI	3265.25 31 feet e Ehno TUM: N M: NAV	t IAD83 as r	CHEC	
(feet) GRAPHIC LOG USCS	DESCRIPTION	O Natural (CPS)	SAMPLE	RECOV. (feet)	BLOW COUNTS	PID (mdd)	(feet)	ush Mount	WELL CONSTRUCTION
10 20 30 40 50 60 70 80 90 100 110 120 130 100 100 170 180 190 200 210 220 230 100 220 230 100 220 230 100 220 230 100 100 100 100 100 100 100 100 100 1							85 80 75 70 65 60 55 04 40 35 02 21 10 5 0 5 1-15 20 22 30 35 40 45 05 56 65 77 5-80 5-90 5-100 5-110 5-110 5-15 50 65 100 5-105 110 5-110		- Cement/Bentonite Grou

Edison, NJ 08818
Telephone: 732-225-7000

PROJECT: LOCATION: STARTED: DRILLING O DRILLING O SAMPLING SURFACE O	Port 2/19/20MPANY QUIPME METHOD:	Y: ADT NT: CME 85 6.25" ID Hollow Stem Augers		NO ELI WA LO HO VE	RTHING EVATIO ITER: GGED I RIZON' RTICAL	G: 283 N: 25. BY: Mik TAL DA DATUI	6697.93 49 feet e Ehno TUM: N	feet t IAD83 as	EAST M.P. E TOTA CHEC	
DEPTH (feet) GRAPHIC LOG	nscs	DESCRIPTION	Natural Semma (CPS)	SAMPLE	RECOV. (feet)	BLOW COUNTS	Old (mdd)	ELEV (feet)	Flush Mount	WELL CONSTRUCTION
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 200 210 120 220 230 140 150 150 200 200 200 110 120 130 140 150 160 170 180 190 200 210 120 220 230 240 100 110 120 150 160 170 180 190 190 190 190 190 190 190 190 190 19								20 15 10 15 10 15 10 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17		- Concrete - Cement/Bentonite Grou - Bentonite Sturry - Filter Pack Sand No. 10 Slot Stainless St Screen
CDM	Edison, N	Plaza I, Raritan Center Mo NJ 08818 ne: 732-225-7000	onitoring Well	Const	ruction	Log			PF	ROJECT NO. 3223,1° PAGE 1 OF

	QUIPMEI IETHOD: METHOD	/: ADT NT: Failing F-10 4.25" ID Hollow Stem Augers	E V L F	LEVA VATE OGG IORIZ ERTI	ED BY: ZONTAL ICAL DA	220.75 Joe But DATUN TUM: N	feet ton 1: NAD83		EAST M.P. I TOTA CHEC vised, C	Z-PD-01 ING: 1241174.71 fe ELEV: L DEPTH: 228.0 feet CKED BY: COORD. SYS.: NYSP, LI
DEPTH (feet) GRAPHIC LOG	nscs	DESCRIPTION	Natural Samma (CPS)	RECOV.	(feet) BLOW	COUNTS	(ppm) ELEV	Sti	ck-Up	WELL CONSTRUCTION
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 90 200 210 220 230 240 250 250 250 250 250 250 250 250 250 25							215 210 205 200 195 190 185 180 175 170 165 150 145 140 135 130 125 110 100 90 85 80 75 70 65 60 55 50 45 40 40 30 30 30 40 40 40 40 40 40 40 40 40 40 40 40 40	ար արդարական արդանական արդանական արդանական արդանական արդանական արդարական արդանական արդանական արդանական արդանակ Մարդան արդանական արդ		- Cement/Bentonite Grou
<u> </u>										

LOCATION:	Port J	ence Aviation Industries efferson Station, New York /08 COMPLETED: 1/2/08				ELL NO				Z-PD-02
	QUIPMEN ETHOD: METHOD:	: ADT IT: Failing F-10 4.25" ID Hollow Stem Augers	ELI WA LO HO VE	EVATION TER: GGED I RIZON RTICAL	N: 220 BY: And TAL DA DATUI	0065.04 0.08 feet drea Soc TUM: N M: NAV	t o IAD83 as	M Ti C	OTAL HEC	NG: 1241159.69 fee LEV: DEPTH: 228.0 feet KED BY: DORD. SYS.: NYSP, LI
DEPTH (feet) GRAPHIC LOG	nscs	DESCRIPTION	SAMPLE	RECOV. (feet)	BLOW	Old (mdd)	(feet)	Stick-l	 	WELL CONSTRUCTION
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 90 100 110 120 130 140 150 160 170 180 190 200 210 220 130 140 150 160 170 180 190 200 210 220 230 140 150 160 170 180 190 190 190 190 190 190 190 190 190 19							215 210 205 195 185 180 175 185 185 185 185 185 185 185 185 185 18			- Concrete - Cement/Bentonite Ground - Bentonite Slurry - No. 10 Slot PVC Screen Filter Pack Sand

Monitoring Well Construction Log

LOCATION: Po	rt Jefferson Station, New Yor	ĸ						•		D-03
STARTED: 12. DRILLING COMPA DRILLING EQUIPA DRILLING METHO SAMPLING METH SURFACE COMPI	18/07 COMPLETED: NY: ADT MENT: Failing F-10 D: 4.25" ID Hollow Stern Auge	12/21/08	ELEY WAT LOG HOR VER	VATION ER: GED ENIZONT TICAL	N: 217 BY: Joe FAL DA DATUI	087.95 '.94 feet Button TUM: N	l AD83 as	M.P TOT CHE	CKED B	1241091.93 fe "H: 228.0 feet Y: SYS.: NYSP, LI
DEPTH (feet) GRAPHIC LOG USCS	DESCRIPTION	Natural Samma (CPS)	SAMPLE	RECOV. (feet)	BLOW COUNTS	PID (ppm)	ELEV (feet)	Stick-Up		WELL STRUCTION
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 90 100 110 120 130 140 150 160 170 180 190 100 110 120 130 140 150 160 170 180 190 190 190 190 190 190 190 190 190 19						•	215 0 200 195 185 187 170 165 155 145 140 140 140 140 140 140 140 140 140 140		-Cem	ent/Bentonite Grou

Edison, NJ 08818
Telephone: 732-225-7000

PAGE 1 OF

OCATION:	Port Jeff	erson Station, New York									TW-(/ I
DRILLING E DRILLING N SAMPLING SURFACE (METHOD: COMPLETION	COMPLETED: ADT CME 85 6 5/8-inch ID HAS Split-spoon (ASTM D1586) I: Steel Stickup	4/7/0		ELI WA LO HO VEI	EVATIO TER: GGED I RIZON RTICAL	N: 220 181 3Y: Mik FAL DA DATUI	0044.40 0.91 feet 1.5 feet te Ehnot TUM: N M: NAV	: : :AD83 as	M.P TOT CHE	ECKED B	1241187.33 (TH: 240.0 feet Y: .SYS.: NYSP, LI
(feet) GRAPHIC LOG	nscs	DESCRIPTION		O Natural S Gamma (CPS)	SAMPLE	RECOV. (feet)	BLOW COUNTS	PID (mdd)	(feet)	Stick-Up	CON	WELL STRUCTION
10-									215-210-205-200-200-200-200-200-200-200-200-20		-Cond	crete

PAGE 1 OF 9

Edison, NJ 08818 Telephone: 732-225-7000

PROJ.			rence Aviation Industries Jefferson Station, New York	<u> </u>	МС	NITOR	ING W	ELL NO	:	TW-01
DEPTH (feet)	GRAPHIC LOG	SOSO	DESCRIPTION	O Natural CPS)	SAMPLE	RECOV. (feet)	BLOW	PID (ppm)	ELEV (feet)	WELL CONSTRUCTION
-				40-40-40-40-40-40-40-40-40-40-40-40-40-4					195-	
30-				WYEVEROVETAPARE	•	,			190— - -	
-									- - - -	
40 — 40 — 40 — 40 — 40 — 40 — 40 — 40 —				4 A A A A A A A A A A A A A A A A A A A					- 180- - -	
KING WELL LOG LAFPRE DESIGN.GPJ LAFPRE DESIGN.GPJ 7/30/08 REV.				Andra				3.	175-	
- CG WELL				}					_	PRO IECT NO. 3223 173

CDM ^E

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

Monitoring Well Construction Log

PROJECT NO. 3223.173

DESCRIPTION DESCRIPTION	LOCATION: Port Jefferson Station, New York HLADO DESCRIPTION DESCRI		•		МО	NITOR	ING WE	LL NO	:	TW-01	
60-		OCATION: Port Je	rion: Port Jefferson Station, New York	<u> </u>	<u> </u>		1				
60- 160- 155- 155- 170-		(feet) (Reet) GRAPHIC LOG USCS	ORAPHIC CRAPHIC CO. C.	O Natural C Gamma (CPS)	SAMPLE	RECOV. (feet)	BLOW	OID (ppm)	ELEV (feet)	WELL CONSTRUCTION	
	70- - - - - - - - - - - - - - - - - - -	60-	3 S S S S S S S S S S S S S S S S S S S	50	SAM	REI (fr		F (P	165-	CONSTRUCTION	

Monitoring Well Construction Log

PROJECT NO. 3223.173

PROJECT:		rence Aviation Industries		МС	NITOR	ING W	ELL NO	:	TW-01	
LOCATION:	Port	Jefferson Station, New York	, .						,	L
DEPTH (feet) GRAPHIC LOG	nscs	DESCRIPTION	Natural SG Gamma (CPS)	SAMPLE	RECOV. (feet)	BLOW COUNTS	PID (ppm)	ELEV (feet)	WELL CONSTRUCTION	
90-			CANTENTAL TO THE CONTRACT OF T					140- 135- 130- 125- 115-	- Cement/Bentonite Grout	

Monitoring Well Construction Log

PROJECT NO. 3223.173

PAGE 4 OF 9

PROJEC			rence Aviation Industries Jefferson Station, New York		MC	NITOR	ING W	ELL NO	:	TW-01	
	TOG TOG	SOSO	DESCRIPTION	O Natural CPS)	SAMPLE	RECOV. (feet)	BLOW	PID (ppm)	ELEV (feet)	WELL CONSTRUCTION	
110-				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					110-		
				www.abyzkantaka					- 105-		
120-				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					- 100- - -		
IRING WELL LOG LAI-PRE_DESIGN.GPJ LAI-PRE_DESIGN.GPJ 7/30/08 REV.				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					95-		
SING WELL LOG L		:DM		7						PROJECT NO. 3223.17	73

Monitoring Well Construction Log

PROJECT NO. 3223.17|3

PROJECT:	Lawrence Aviation Industries		MC	NITOR	ING W	ELL NO	:	TW-01	
LOCATION:	Port Jefferson Station, New York	1	117	· · · · ·	(0)	-		r 	Н
DEPTH (feet) GRAPHIC LOG	S DESCRIPTION	O Natural CBmma (CPS)	SAMPLE	RECOV.	BLOW COUNTS	Old (ppm)	(feet)	WELL CONSTRUCTION	
140-		TOTO TOTO TOTO TOTO TOTO TOTO TOTO TOT					85-		
150		Compared to the water of the state of the st					75-		4
WHIL LOG LA-PRE_DESIGN.GPJ LA-PRE_DESIGN.GPJ //30/08 REV.		7/h~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					70 –		
RING WELL LOG LAIPTRE DESIGNAGE	CDM	100 - 100 -					60-	PROJECT NO. 3223.17	73

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000 Monitoring Well Construction Log

PROJECT NO. 3223.173

PROJECT		ence Aviation Industries Jefferson Station, New York	·	MC	NITOR	ING WE	ELL NO	:	TW-01	
DEPTH (feet)		DESCRIPTION	O Natural Samma (CPS)	SAMPLE	RECOV. (feet)	BLOW	PID (mdd)	ELEV (feet)	WELL CONSTRUCTION	
170-			Andread Miles Construction of the construction					55— - - - 50—	-Bentonite Slurry	
	SW SW SW SW	No Recovery Brown fine- to medium-grained Sand, Trace fine Gravel, Dry.	}		1.7		0	45-		
	sw	Light Brown fine- to medium-grained Sand, Trace fine Gravel, well sorted Dry. White very fine- to fine-grained Sand. Dry.	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1		0			
180	sw	White very fine- to medium-grained Sand, Trace fine to medium Gravel, subrounded & subangular, Trace fine Cobble, rd. Dry.	7		1,6	'	0	40-		
SIGN.GPJ 7/30/0	sw	White very fine- to medium-grained Sand, Trace fine Gravel, subrounder & subangular. Dry. No Recovery White very fine- to medium-grained	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	=	0			
PU LAIPRE DE	sw	Sand, Trace fine Gravel, subrounded & subangular. Dry. White & Light Brown fine- to medium-grained Sand, Trace coarse-grained Sand, Trace fine to	7 1 1 1 1 1 1 1 1 1		1.3		0			
PRE DESIGN.G	SW	coarse Gravel, Wet. Water @181.5 Light Brown fine- to medium-grained Sand, Trace fine to medium Gravel Wet.	\{\tau\}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1.7		0	35-		
DRING WELL LOG LAI-PRE_DESIGN.GPJ. LAI-PRE_DESIGN.GPJ. 7/30/08 REV.	SW	Light Brown very fine- to fine-grained—Sand. Wet. Same as Above Light Brown very fine- to fine-grained Sand. Wet.			1.5		0		PROJECT NO. 3223.17	72

CDM

CDM Raritan Plaza I, Raritan Center Edison, NJ 08818 Telephone: 732-225-7000

Monitoring Well Construction Log

ROJECT NO. 3223.17

PROJ			rence Aviation Industries Jefferson Station, New York		МС	ONITOR	ING W	ELL NO	:	TW-01	
	GRAPHIC LOG	SOSO	DESCRIPTION	Natural Natural Gamma (CPS)	SAMPLE	RECOV. (feet)	BLOW	Old (mdd)	ELEV (feet)	WELL CONSTRUCTION	
		sw	Light Brown very fine- to fine-grained Sand, Trace fine to medium Gravel, rounded. Wet.	~ - ∤ -		1.8		0	30-		
		sw	Light Brown very fine- to fine-grained Sand. Saturated.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1.7		0	-		
_		sw	Light Brown very fine- to fine-grained Sand, Trace medium Gravel. Wet.	A 22 A - 22		1.8		0	- 25-		
		sw	Light Brown very fine- to fine-grained Sand. Wet.	24/8/4/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2		1.8		0	-		
		sw	Light Brown very fine- to fine-grained Sand, dense. Slightly Moist.	**************************************		1.6		0	- -		
200-		SW	Light Brown very fine- to fine-grained Sand. Very moisture to Wet.	2		1.8		0	20-		
		sw	Light Brown very fine- to fine-grained Sand, dense. Very Moist.	4		2		0			
-		św	Light Brown very fine- to medium-grained Sand. Very Moist.			0.5		0	15-		
		sw	Light Brown very fine- to medium-grained Sand. Moist.			1.1		0		-Filter Pack Sand	
7/30/08 REV.	-	sw	Light Brown very fine- to medium-grained Sand, Trace fine Gravel, subrounded. Very Moist to Wet.			1		0		Allo 40 Clet Steinless Ste	201
210-		sw	Light Brown very fine- to medium-grained Sand, Trace fine to coarse Gravel, rounded, Trace fine Cobble, rounded. Wet.	A		1.2		0	10-	-No. 10 Slot Stainless Ste	eı
GN.GPJ LAI-PR		sw	Light Brown fine- to medium-grained Sand, Trace Cobble, rounded. Slightly Moist.			1.7		0			
RING WELL LOG LAI-PRE DESIGN.GPJ LAI-PRE DESIGN.GPJ 7/30/08 REV.	-	sw	Brown Silt, Trace to Little Clay. Dry.	\$\frac{1}{2}\chi_{\text{\chi}} \\ \frac{1}{2}\chi_{\text{\chi}} \\ \frac{1}\chi_{\text{\chi}} \\ \frac{1}{2}\chi_{\text{\chi}} \\ \frac{1}{2}\chi_{\text{\chi}} \\ \frac{1}{2}\chi_{\text{\chi}} \\ \frac{1}{2}\chi_{\text{\chi}} \\ \frac{1}{2}\chi_{\text{\chi}} \\ \frack{\chi} \\ \frac{1}\chi_{\text{\chi}} \\ \frac{1}\chi_{\c		1,1.		0	5-		
ING WELL LOG		SW	Brown Silt, Trace to Little Clay. Dry.			0.3		0		PROJECT NO. 3223.17	12

Monitoring Well Construction Log

PROJECT NO. 3223.173

PROJ			rence Aviation Industries Jefferson Station, New York		МС	ONITOR	ING WI	ELL NO	:	TW-01	
	GRAPHIC	sosn	DESCRIPTION	O Natural Gamma (CPS)	SAMPLE	RECOV. (feet)	BLOW	PID (mdd)	ELEV (feet)	WELL CONSTRUCTION	,
-		SW SW SW	No Recovery Brown Silt, Trace to Little Clay. Dry. Brown Silt w/ Light Brown very thin	T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.6		0	-		
220-		sw	interbeds of fine- to medium-grained Sand. Dry. Gray very fine- to fine-grained Sand, Trace medium-grained Sand, Dry.	M		1.4		0	0-		
		SW SW SW	No Recovery Yellow Brown fine- to medium-grained Sand, Trace fine to coarse Gravel, Wet. Gray fine- to medium-grained Sand	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.5		. 0			'! '
-		sw	Yellow Brown fine- to medium-grained Sand, Trace Silt lens, Wet. Gray Silty fine- to medium-grained	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1.1		0	-5-		
-		sw sw sw	Sand, laminated, Little orange brown color. Moist. No Recovery Same as Above w/ Odor.			0.8	:	0	•		1
230~		SW	Gray to Black Silt, friable. Odor, Dry. Black stained? Gray very fine- to fine-grained Sand, Trace Silt. Slightly Moist. Odor.			0.6		0			
		sw 	Orange Brown & Gray very fine- to			0		0	-10-		
		sw	medium-grained Sand, laminated, Trace to Little Silt w/ depth. Slightly Moist. No Recovery			1.1		0			
B REV.		sw	Gray fine- to medium-grained Sand, Little Orange Brown color,, Trace Silt @ 235'-235.2'. Wet to Saturated. Grayish Yellow Brown fine- to	_		-1		0	-15-		
SIGN.GPJ 7730K		SW	medium-grained Sand. Very Moist to Moist. Grayish Yellow Brown fine- to medium-grained Sand. Wet.			1.6		0			
GPJ LAI-PRE DE		sw	, and a condition			1.		0	-20-		
N-PRE DESIGN.C									-20-		
IRING WELL LOG LAI-PRE_DESIGN.GPJ 7/30/08 REV	-	l)							PROJECT NO. 3223.1	

Monitoring Well Construction Log

APPENDIX D

Low Flow Sampling Logs

LD-GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: JANUARY 16,	HOZ
-------------------	-----

ft TIC or th BGS (circle one)

WEATHER CONDITIONS: SUNM CON EMICO SAMPLE ID: WW-PD-11 - GW-A SAMPLE TIME: 910

SCREENED/OPEN BOREHOLE INTERVAL: 185-190

SAMPLE FLOW RATE: / GK/ -ml/minute CLP ID:

						YSI Model # / / Horiba U-22 (circle one) Other (specify)					
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	(± 10%)	
24-Hour	gallons / liters (circle	ft TIC /ft BGS (Circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs	
505	Blow PW2GE	134.3									
6 ⁰⁰ 700	v3Dan		REUG				-	- -			
700	RESUME										
848	~ 95 GAL	137.7	1800E	HEN TO	160 m	Sec.				,	
950					6.16	0.809	1.10	10.46	77.6	6.39	
2 8 <u>8</u>			,		6.19	0.808	0.41		1 /	4.23	
900					6.19	0.780	0.43			4.02	
903					6.20	0.747	100		41.9	4.27	
906	400L				621		. (1-1			4.26	
909	- 100 tellis	,			6.23	0.714	0,50			3,88	

trawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. he well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

ypical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (uS/cm) = 0.01 - 5,000; up to 10,000 in industrial. ~55,000 in high salt content water. Note: 1,000 uS/cm = 1 mS/cm

ELT-EIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: JANUARY 16, 2008

SAMPLERS: MESTS

WEATHER CONDITIONS: SUNY & COU, MILLS

SAMPLE ID: MW-19-11- GW-B SAMPLE TIME:

WELL#: MUJ-PD-11 ZONEB

DEPTH OF PUMP INTAKE: ~ FF ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: (5-200) R TIC or R BGS

SAMPLE FLOW RATE: 300

ml/minute

CLP ID:		Instrument Typ Complete and/	e/Model: or Circle at		YSI Model Other (spe	*	Horiba U-22	(circle		Instrument: WMSTEZOZ
CURRENT TIME		DEPTH TO WATER	FLOW	DRAWDOWN		CONDUCTIVITY	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	(± 10%)
24-Hour	gallons / liters (circle	n TIC n BGS (circle one)	Units:	ft TIC / ft BGS (circle one)		S/cm, mS/cmº/ or µS/cm (circle one)	mg/L. (not %)	Units: °C	mV	NTUs
1135	BEGIN	139.05	3/0			.60.6	0.00	100	149	200

35	BEGIN PURGE	139.05	300			1016	6.00	15-00	14.9	7520
50					6.24	0.494	0.09	15:55	1.60	+
x55		Ŷ			6.23	0.505	0.08	15:56		>500
			<u> </u>		10-23	0.53	0.09	15.56	-14.7	2250
300		·			6.24		0.10	15-68	14.9	7500
305					-0.0	0,00	- 15			
	~Alltos		 	 -						
									 	
						<u>.</u>			<u> </u>	
			+						<u>]</u>	
		eet. Flow rate sh		<u></u>	<u> </u>	250 ml/min during sa abilized for three cons	Decelia	en chould he f	aken every thr	ee to five minut

The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm Typical values: DO = 0.3 - 10 mg/L

nner Casing

THE MOLTANIMATINOS RETAINDINDS ULBET THE WAS CONTAINED IN THE STATE OF THE STATE OF

ГОМ ЕГОМ СКОПИРМАТЕЯ SAMPLING PURGE RECORD

DEPTH OF PUMP INTAKE: (Circle one) MELLS: MU-PA-11-ZONE C

SCREENED/OPEN BOREHOLE INTERVAL: 7010

S :STAR WOJR BLYMAR stunim\im

(ano elonio)

instrument:

___(อกo อไวกเ๋ว)

SOR IT TO OIT IT

M-9-2X 000)

nŒ	31102007					VSI Model s	.3	e/Model: or Circle at n	ratrument Type Somplete and/o) It	·
-	TURBIDITY (# 10%)	REDOX POTENTIA L		(† 10%) OXAGEN DISSOFAED	(± 3%) CONDUCTIVITY SPECIFIC	ļ	NWOGWARD	WOJ4 STAR	OT HT930 ABTAN	YOLUME	CURRENT TIME
-	s∪TN	Vm	:stinU O°	7/6tn (% 10u)	S/cm, mS/cm²/ or µS/cm (circle one)	US	R TIC / ft BGS (circle one)	:atinU	(TTC) It BGS		S4-Hont
-						John 9	My-	008	5.8/1	,	
-	7//	987	26-91	590	098.0	149		000	Siala	BOWN BEEN	seh1
_	TYP	984-	79:51	£10		かがつ					54.51
_	_tv	1.8%	25:31		158.0	5h'9					1250
_	+N	5°th-	14.51	01'0	the 0	149					الكوير
ЬЪ	66 XX	, , ,	94:51	11.0	5/18 '0	Ehi9					0871
-					<u> </u>	(0:10)				HUTE	5091
-											
						ŀ	1	i	Ì		

The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthresis Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 milmin during purging or 250 milmin during sampling. Readings should be taken every three to five minutes.

SUTM 003< - 0 = VibidiuT

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm Vm 008+ - 00f-= isinated xobaR

DO = 0.3 - 10 mg/L

Typical values:

TIC = Top of Inner Casing

CLD.ROGEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: FEBRUARY 6, 2008 SAMPLERS: TB & MOR

WEATHER CONDITIONS: WELLOS & MILL)
SAMPLE ID: MW PD-12-GW-AAA SAMPLE TIME: 1515

WELL #: MW-PD-12 ZONE AAA

DEPTH OF PUMP INTAKE: The off BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 150-7

(circle on

SAMPLE FLOW RATE: / DO

ml/minute

:LP ID:		Instrument Typ	pe/Model: or Circle a	t right	YSi Model Other (spe	- <u>127</u>	Horiba U-22	(circle		Instrument
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDIT*
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1310	BEGINGE					4.00	11 2	1/12	1920	49
1400			<u> </u>		5.42	0.173	4.81	16.62	1	<u>.)</u>
1415					5.55	0.183	5-34	16.53	1722	40
1430			-		5.49	0.178	5-21	16.16	176.8	36
1445					5.48	0178	5.46	16.52	178-1	47
1500		 			5.52	0-179	547	16.73	178.7	36
1505 1510			+		5.53	0.180	5.21	16.29		61
1505	~35410	11306	+		5.56	0.180	3.57	16.40	178.6	47
15	ARROWS							<u> </u>		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high satt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = 10... If Inner Casing

OLD ROBSEVELT FIELD GROUNDWATER CONTAMINATION SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: FEBRUARY 6, 2008 SAMPLERS: JB & MOE

WEATHER CONDITIONS: WELCAST & MILLS

SAMPLE ID: MW-PO-12-GW-AA SAMPLE TIME: // DO

WELL #: MW-PD-12 ZONE AA

DEPTH OF PUMP INTAKE: 2/87 ft TIC of ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 180-185

Instrument:

SAMPLE FLOW RATE: JUDOTO ml/minute

LP ID:		Instrument Typ	e/Model: or Circle at	right.	Other (specify) / Horiba U-22 (circle one)					Instrument:	
CURRENT	VOLUME PURGED	DEPTH TO WATER OF THE WORLDON'S	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (±3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	(± 10%)	
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units;	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs	
941	BELOW	N4	rai				 				
1010	PATE SECRETE	to	600			ļ			 		
1020	SWEE	PERUSPUP					 	 -	 		
1035	REQUE				3.86	12.193	8.03	14.92	226.2	900	
1000					6.59	0.210	3.34	17-26	157.8	NA	
10'5					6.04		8.45	15.74	190.8	WA	
1045					6.20	0.182	4.72	1899	P5-1	NA	
1050					6.08	0.186	4.14	16.19	1886	NA	
1055		<u>-</u>			5.90	4	3.93		3 1586	NA 3	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. 2016. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis and Turbidity = 0 - >500 NTUs

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD OLD ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE

PORTURE	DIOPEN BOREHOLE INTERVAL: 210-215	記名 計 TiC OI 计 (Sitcher One)
IO HT930	F PUMP INTAKE: 216 ft TIC or A BGS Circle	
:# 113 M	MW-PD-13 ZOVE A	
muuve Vi	/ m.aami 7010 1611	

MASSIE FLOW RATE: MASSIES MASS

DATE: JANUARY 24, 2008
SAMPLERS: JRUB & HOR
LOW 1 & HOR

SAMPLE ID: FW-PA-13-GW-A SAMPLE IDE: 148-

Instrument:	(euc	o elonio)	SS-U sdinoH		Spom ISY Sport (spec	1	Model: ¶Circle at r	instrument Type Complete and/o		:OI 473
YTIGIBAUT	REDOX	.9M∃T	DISSOLVED	SPECIFIC	Hq	DRAWDOWN	<u> </u>	<u>l. </u>		111200110
(%01 ∓)	AJTNETO9	(%or ±)	(± 10%)	(‡ 3%) CONDUCTIVITY	(US 1.0±)		STA9		VOLUME PURGED	CURRENT TIME
гОТИ	Vm	Units:	1/6m (% ion)	S/am, mS/am°/ or µS/am (circle one)		R TIC / ft BGS (sincle one)	:atinU	A TIC) R BGS (circle one)	gallons / liters (circle	24-Hour
								/ W	Laber factor	sit!
				 		July h	HMAG	A 1. AW &	and gars	ceci
		N AN	172 0	1330A	JO JOL	\$ 591 ic	M 3		SESMIS	05E!
-AV	七岁上	80'91	1.5,0	£56.0	20%			at!		00/1/
2096	260	h'll	t.8.1	UTIU	909		BU	AN CHORE	ABOUT	sott
0.00		5_3211	10:1	-Chc.0	069	30 pros	Lango	1311 390M	184-120	31/11
								Şu	mbs -	

The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 milmin during purging or 250 milmin during sampling. Readings should be taken every three to five minutes.

SUTM = 0 - 5000 MTUs

(circle one)

agnujw/jw

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm Vm 003+ - 001- = Isimato q xobe 9

DO = 0.3 - 10 mg/L

Typical values:

OLD ROUSEVELT FIELD GROUND JATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WEATHER CONDITIONS: SIMM & COLD

SAMPLE ID: MWPD-12-GW A SAMPLE TIME: 1665

CLP ID:

MW-PD-12 ZONE

DEPTH OF PUMP INTAKE 15 ft TIC of ft BGS (gircle one)

SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLE FLOW RATE: 1500 - ANDOMIMINUTE

Instrument: 体医 / Horiba U-22 (circle one) LAMONE Other (specify)

FL ID.	٠	Instrument Typ Complete and	e/Model: or Circle a		Other (spe	# (060) 14185 / cify)	Honda U-22	(CHOR)	·	LAMONE
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	(± 10%)
24-Hour	gallons / liters (circle	It TIC IT BGS (Circle one)	Units:	ft TIC / ft BGS (circle one)	su (/	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
/100	BEGWAREE	9 (54/m)								
1120	Willes Page Rose or Tilling				6.00	0.112	9.55	11:40	202.7	MA
1200		118.7	-		6.19	0.131	6-80	11.65	298.0	NA
1300		118.7	-		6.07	0-140	5-85	11.85	291.3	NA
1400	-	NA			6.03	0.144	5.09	12-30		60
12/30		NA			6.03	0.145	4.95	12.50		29
14K		NA			6.00	0.147	4.57	12.63		32
15th 1515		118.65 NA			5.96	0.146	3.53		2349	.20

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm DO = 0.3 - 10 mg/L

CLD ROCEVEET FIELD GROUNDWATER CONTAMINATION SITE. LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

WELL#: MW-PD-12 ZWEB

SAMPLERS:

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS (circle one)

SAMPLE ID:

SAMPLE TIME: 1615

SAMPLE FLOW RATE:

ml/minute

Instrument: CLP ID: / Horiba U-22 (circle one) YSI Model # Instrument Type/Model: Other (specify) Complete and/or Circle at right TURBIDITY REDOX DISSOLVED TEMP. SPECIFIC DRAWDOWN ρH FLOW POTENTIA DEPTH TO VOLUME OXYGEN CURRENT CONDUCTIVITY RATE (± 10%) WATER (± 10%) (± 10%) PURGED TIME (± 0.1 SU) |(± 3%) (± 0.3 FT) NTUS mV Units: mg/L S/cm. mS/cmº/ or RTIC/RBGS lsu ATIC / A BGS Units: °C aalions / (not %) 24-Hour uS/cm (circle one) (circle one) (circle one) liters (circle 18-6 6.00 0.147 NA 1530 226.0 5.50 NA 17-8 220-6 0.147 118,65 600 12.5 Z1B B 0,149 1605 14.2 216.8 3,57 0.150 NA 1610 10,9 1263 3.48 214.6 5.92 0,157 114.65 1615 mlbosallas

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm Typical values: DO = 0.3 - 10 mg/L

TIC = Finner Casing

VATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

VAGE (OF 2 ()

WEATHER CONDITIONS: OVERLART & COUS

WELL#: MW-PD-12 ZONE C

DEPTH OF PUMP INTAKE: 17 ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 270-275

WEATHER CO	MULTIONS: (NELCART & L-GW-C	SAMPLE	2/5/08 TIME: 1600	_	LE FLOW RATE: 2 600 XL-G-TY	2000 mVn	ninute	//3	circle one)
CLP ID:		instrument Typ	e/Model:		(SI Model Other (spe	a for Hos	Horiba U-22	(circle	one)	Instrument:
CURRENT		DEPTH TO WATER	FLOW	DRAWDOWN		CONDUCTIVITY	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	(± 10%)
Of News	radions / /	n TIC (In BGS	<u> </u>	(± 0.3 FT)		S/cm, mS/cm²/ or	 	Units:	mV	NTUs

CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	OXYGEN (± 10%)	(± 10%)	POTENTIA L	(± 10%)
24-Hour		ft TIC //ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1315	RECUPERE	121.25	2000		6.26	0.176		10.66 U43	225.3	NA NA
1400		1221			6.40	0.188	8.79	11.66	252.8	
1500		122-1			5-91	0.188	8.44	11.97	244.6	NA
17-00	YLESHE	122.1			5.87	0.188	8.35	10,56	260.6	NA.
85	PINGE		 		6.50	0.220	11.35	1256		NA
900					6.94	0.701	7-60	12.80	2530	NA.
1000				-	5.87 5.83	0. 200	7.41		241.1	NA

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

OLD ROOSEVELT PIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

PAGE ZOF Z

DATE:

WELL#: MW-12 ZORC

SAMPLERS:

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS (circle one)

SAMPLE ID:

SAMPLE TIME: // JO

SAMPLE FLOW RATE:

ml/minute

LP ID:		Instrument Type/Model: Complete and/or Circle at right			YSI Model #/ Horiba U-22 Other (specify)			(circle one)		
	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons /	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
	litera (Groso	(0.1010)			5.78	0.197	7.79	225	238:3	NA
1200					5.76	0-199	7-61	1287	240.4	NI
1300			 		5-81	0.201	7.78	1293	236.6	14.9
1400		-	-		5.26	0.201	7.69	13.05	1 6 16	5.4
1500		`			5.73	0.200	7.86	13.07	740,2	14.7
1550					577		796	134	236.9	10,3
i555			 		5.80	0.201	8.14		1234.0	94
1600		(1)			15.70					
INGE	n400	Bailows								
								1		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mil/min during purging or 250 mil/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm Typical values: DO = 0.3 - 10 mg/L.

TIC = T., Inner Casing

Lawrence Avial. **Development Record**

DATE:	MAY	20,	2008
	•	_ R	_

WEATHER CONDITIONS: DVECCAST & COOL

SAMPLE ID: MW-10-13-GW-A SAMPLE TIME: (145)

WELL# MW-PD-13 BONE A

DEPTH OF PUMP INTAKE: 755 ft TIC of ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 160 -165

ft TIC or ft BG (circle one)

SAMPLE FLOW RATE:

	Instrument Typ	e/Model: or Circle at	right	YSI Model Other (spe	cify)	Horiba U-22	(circle one)		Instrument:	
VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
gallons / liters (circle	fi TIC / fi BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs	
BEGIN PINGWG		20.25		2 150	2 240	227	17.75	2344	ALL COOR	
Alexander)	Culhaus		Tenta		0. dr2	0.67	17:03	20(1)	LT. BRN	
COORNES	Jag Per /		3/9	5.70	0.364	2.41			-	
				5.71 cet				T	7/00/201	
	`			5-21	0.000					
·										
		 		 		 	 	 		
	gallons / liters (circle	VOLUME DEPTH TO WATER gallons / fit TIC / fit BGS (circle one)	PURGED DEPTH TO WATER gallons / Inters (circle (circle one)) SEGAL PURGED DEPTH TO RATE FLOW RATE Units: GITH VO. 25	Complete and/or Circle at right VOLUME PURGED DEPTH TO WATER FLOW RATE Gallons / Iters (circle (circle one) FLOW RATE (± 0.3 FT) Iters (circle (circle one) GAH PAGWG VO. 25	VOLUME PURGED DEPTH TO WATER PLOW RATE Complete and/or Circle at right Other (specific property)	VOLUME PURGED DEPTH TO WATER FLOW RATE DRAWDOWN (± 0.3 FT) (± 0.1 SU) (± 3%) gallons / liters (circle one) Circle one) FLOW RATE ### TIC / ft BGS (circle one) FLOW RATE #### TIC / ft BGS (circle one) FLOW RATE #### TIC / ft BGS (circle one) FLOW RATE #### TIC / ft BGS (circle one) FLOW RATE ##### TIC / ft BGS (circle one) FLOW RATE ##### TIC / ft BGS (circle one) FLOW RATE ###################################	VOLUME PURGED DEPTH TO WATER FLOW RATE SPECIFIC CONDUCTIVITY (± 0.1 SU) (± 3%) S/CM, mS/CM* (± 10%)	VOLUME PURGED DEPTH TO WATER FLOW RATE (± 0.3 FT) (± 0.1 SU) (± 3%) gallons / liters (circle one) FLOW (± 10%) Graphy Flow RATE (± 0.3 FT) (± 0.1 SU) (± 3%) Graphy Flow RATE (± 0.3 FT) (± 0.1 SU) (± 3%) FITIC / ft BGS (circle one) Flow (± 10%) (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) FITIC / ft BGS (circle one) Flow (± 10%) FITIC / ft	VOLUME PURGED DEPTH TO WATER FLOW RATE (± 0.3 FT) (± 0.1 SU) PH SPECIFIC CONDUCTIVITY (± 3%) TEMP. POTENTIA (± 10%) (± 10%) PH (± 10%) PH (± 10%) POTENTIA (± 1	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

DATE:	MAY	20,	2008
DAIE.	1 1	-	

SAMPLERS: MIRETE

WEATHER CONDITIONS: DVERCAST & COOL

SAMPLE ID: MW-PO-13-GW-B

SAMPLE TIME: 950

WELL #: NW-PD-13 ZONE TS

DEPTH OF PUMP INTAKE: 185 ft TIC of ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 180 -195

ft TIC of ft BGS (circle one)

SAMPLE FLOW RATE:

1,000 ml/minute

600 XC-B-M

CLP (D: instrument: VSI Model# Mass (55) Moriba U-22 (circle one) instrument Type/Model: / AMOUR 202 Other (specify) Complete and/or Circle at right TURBIDITY REDOX TEMP. DISSOLVED SPECIFIC DRAWDOWN Нα FLOW DEPTH TO VOLUME POTENTIA CURRENT OXYGEN CONDUCTIVITY RATE WATER (± 10%) PURGED TIME (土 10%) (± 10%) (± 3%) (± 0.1 SU) (± 0.3 FT) **NTUs** mV Units: mq/L S/cm. mS/cm^c/ or ft TIC / ft BGS SU ATIC (A BGS/ Units: gallons / 24-Hour °C uS/cm (circle one) (not %) (circle one) (circle one) GPH liters (circle BEGIN 800 n0.25 ~150 PURGING 16.28 208.2 NA BAN 0.202 0,15 210.6 16.66 0.208 430 0,45 DUF 5.60 050

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

CON/END

PUELE

Redox Potential = -100 - +600 mV

PURGING ~ 20 GALS

Turbidity = 0 ->500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm Typical values: DO = 0.3 - 10 mg/L

TIC = Top her Casing

DATE: MAY 19, 2003 SAMPLERS: JB & MOE

WEATHER CONDITIONS: SUMLY & HOLD SAMPLE ID: MW-PD-13-GW-C SAMPLE TIME: /700

CLP ID:

WELL#: MW-PD-13 ZONE

DEPTH OF PUMP INTAKE: 1 7 ft TIC of ft BGS (gircle one)

SCREENED/OPEN BOREHOLE INTERVAL: 2/01-2151

i,000ml/minute

Instrument:

327

		instrument Typ Complete and/	re/Model: or Circle at I		YSI Model # 100 635 Horiba U-22 (circle one)					LAMARE
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	fit TIC / fit BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs -
930	BELIN		0.25						010 (
1100	1,42,42				6.08	0.238		17.83	T	NA
1300					5.30	0-213	4.08	16,41	239.2	
1500			-) ·	5.14	0.210	4.32	16.30	190.7	NA
15			<u> </u>		5.17	0.211	4.31	16.57	187.7	
1645			 	<u> </u>	5.07		4.19	14.73	2095	10/
1650		<u> </u>	 		5.13.		418	14.20	212.3	OVERC
16	- 0/-		100 0			0.00				
1700	STA / GOS RISPLANCE	Purges ~	150 Gy	5	 		 			
	<u> </u>						 			
		<u></u>			<u> </u>	٠,			<u></u>	o to five minute

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Instrument:

Lawrence Aviation Industries Site **Development Record**

DATE: APRIL 9, 2008

SAMPLERS: MEETHER CONDITIONS: OVERCAST & Cook

CLP ID:

SAMPLE ID: MW-PD-14-GW-ASAMPLE TIME: AUD

WELL#: MW-PO-14

DEPTH OF PUMP INTAKE: A TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 210-215 'n TIC of the BG

ml/minute

		Instrument Typ Complete and/		right	Other (specify) Honba U-22 (C				·	ZAMORIE
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY 202 (± 10%)
24-Ноиг	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
925	BESW	154.4	1.5					<u> </u>		
1700	- Full Colored				6.26	0,210	3.72	19.06		7500
1100			1		6.43	0.207	2.23	16.02	204.8	7200
1200	 -		1		6.33	0.201	0.18	15.14	1949	37
1300					6.01	0.209	Q.09	16.48	196.7	21.9
1335	RVRGES	2/10 GA	18 VB 6	ar						
-jefoo					5.96	0.207	0.03	1630	195.8	11
1500	 		 		5.99	0.218	0.05	16.44	3 211.1	18/
1600	165 GAS	 	·		5-97		0.04		220-1	8.8
1645	& GAR	 	 		5-97		0.10	16.3	1220.0	6.4
10		<u></u>		<u></u>		_1		_		as to five minutes

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = To:

THER DOG 2

	•	-	-		
п	в	ı		_	•

SAMPLERS:

WELL#: MW-PD-14 ZONE A

DEPTH OF PUMP INTAKE:

ft TiC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS:

SAMPLE ID: NW-PD-14-6W-A SAMPLE TIME:

SAMPLE FLOW RATE:

ml/minute

LP ID:					YSI Model # GSD Full Horiba U-22 (circle one) Other (specify)					Instrument:
CURRENT	VOLUME PURGED		FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
4-Hour	gallons /	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	ຮບ	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1650					5.96	0.209	0.09	16.31	224.	14
1655	 	155.6	 		5-91	0.213	0.13	16.37	224.6	6.6
10-	RALL	1/1/2	Gozs	7072						
	VICE	122		1				ļ <u>-</u>		
							ļ	<u> </u>	 	
							<u>'</u>	 	 	
								_	 	
					<u> </u>		 	 	 	+
					 	<u> </u>	 	┼──	 	-
	j	· ·	<u> </u>		<u> </u>	1	<u> </u>			

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (μS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 μS/cm = 1 mS/cm

APRIL 10, 2008

WELL#: MW-PO-14 ZONE B

SAMPLERS: MOR

DEPTH OF PUMP INTAKE: 258 ft TIC or ft BGS circle one) SCREENED/OPEN BOREHOLE INTERVAL: 240 -245 'R TIC or ft BGS

WEATHER CONDITIONS: WELLAST

SAMPLE ID: MW-PD-H-GW-B CLP ID:

SAMPLE FLOW RATE: 500

ml/minute

CLP ID:		instrument Typ Complete and/e	ne/Model: or Circle at 1	right	YSI Model Other (spe	Instrument:				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	CONDUCTIVITY	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU J	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1035	BEGIN	154.9	500ml/					-		
1055		156.35			ļ <u>.</u>			11 70	1111	NA 75
1100			<u> </u>		6,57	0.133	0.37	16.25	161.6	20-77
1105	PVAP	SHUT OF		RIVERS 1	EPAR.	Bred_		<u></u>	-	
1350	RESUME- PURGINE		520 /285ac		 		S On	19.07	180.2	2520
12/00		153.5	<u> </u>		6.23	0.160	D. 83	+		
1500		154.8			5.96		0.47	7	2136	
1600		153.2			5-94	0-254	0,90	21.02		CLERELY
1200		153.4			5.93	0.246	1.14	14.98	202-5	22
1700	STUP		70344	-70 K	ASURE	TOMORROW	<u> </u>		<u> </u>	<u> </u>

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm Typical values: DO = 0.3 - 10 mg/L

TIC = To

VHG4 01- 2

DATE: APRIL 11, 2008 SAMPLERS: NOVE

WELL#: MW-PO-14 BONE B

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: () IELENT

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS (circle one)

SAMPLE ID: MW-PO-14-GW-B

SAMPLE FLOW RATE:

ml/minute

CLP ID: Instrument: / Horiba U-22 (circle one) YSi Model # Instrument Type/Model: Other (enecifu) Complete and/or Circle at right

		Complete and/	or Circle at	Circle at right		Other (specify)					
CURRENT TIME	VOLUME	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
24-Hour	gallons /	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs	
9,00		<u> </u>	 		5-93	0.293	0.67	17.23	216.0	6.7	
300			 	 	5.97	0.230	0.83		267.3		
1000		<u> </u>	+		5.96	0.226	1.12	17.34	928.2	8.3	
1020	Pillon	2/10 B	72 80 G					1		ļ	
		1000	THE AUTS		5.94	0.227	1.87	17.4.	328.1	65	
1030		- 	 		5-99	0.230	1.75	12.36	234.1	6.3	
UD					5.99	T	1.53	17.3t	238.2	5.3	
1740	Reclies	~ 115	Sars	1Dan_						-	
							 		-		
					<u> </u>	<u></u>		_l	,		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mi/min during purging or 250 mi/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

DATE: APRIL 23, 2008
SAMPLERS: JB & LUTE

CLP ID:

WEATHER CONDITIONS: SUNLY & WARM
SAMPLE ID: MW-PD-VF-GW-C SAM

WELL#: MW PS-14 ZONE C

ft TIC or (t BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 270 -275

instrument:

SAMPLE FLOW RATE:

1,000 ml/minute

•	Instrument Typ Complete and/	oe/Model: or Circle at	right		instrument:				
VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	(± 10%)
gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs
BEGW AVEGWG	NA	~0.25						1116	NA REN
				5.89	0.224	217			NA REN
				5.88	0.220	3.30	17.58	140.3	NA
					0.221	4.00	17.89	157.7	NA
		 				3.18	17.60	2 161.4	NA
		-				3.12	17.36	164.5	14 BO)
STOP/RUS	after An	GUG ~	30 GALS						
				<u> </u>			<u> </u>		
 				T				<u> </u>	
 	 	 			1			<u> </u>	<u> </u>
	gallons / litters (circle BEGW AVAGUAG	VOLUME PURGED DEPTH TO WATER gallons / iters (circle (circle one) BEGW AURGUG NA	VOLUME PURGED DEPTH TO WATER gallons / iters (circle (circle one) GPM BEGW AUPGING NA ~0.25	VOLUME PURGED DEPTH TO WATER PURGED WATER FLOW RATE fit TIC / ft BGS (circle one) CIRCLE one) BEGW AVAGING NA ~0.25	VOLUME PURGED DEPTH TO WATER FLOW RATE (± 0.3 FT) (± 0.1 SU) gallons / (t TIC / ft BGS) (circle one) GPM (circle one) BEGW AVAGING NA ~0.25 5.89 5.99 6.03	VOLUME PURGED DEPTH TO WATER FLOW RATE To purge one of the purge of t	VOLUME DEPTH TO FLOW DRAWDOWN PH SPECIFIC CONDUCTIVITY (± 0.1 SU) (± 3%) (± 10%)	VOLUME PURGED DEPTH TO WATER PLOW RATE (± 0.3 FT) (± 0.1 SU) (± 3%) PH CONDUCTIVITY (± 10%)	VOLUME PURGED DEPTH TO WATER DRAWDOWN (± 0.3 FT) (± 0.1 SU) (± 0.1 SU) (± 10%

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

nner Casing

DATE: APPLL 22-23, 2008

SAMPLERS: MOE & JB

WEATHER CONDITIONS: UVERUS & MOD

WELL# MW-PO-14 ZONE D

DEPTH OF PUMP INTAKE 288 ft TIC of ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 300-215

(circle one)

SAMPLE ID: MW-PD-14-GW-D CLP ID:

SAMPLE TIME:

SAMPLE FLOW RATE: 1,000

ml/minute

	JEF ID.		Instrument Typ Complete and/	e/Model: or Circle at 1	right	YSI Model # MAS 650 / Horiba U-22 (circle Other (specify)				one)	Instrument:
		VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
	24-Hour	gallons / liters (circle	f TIC) ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
١,	17.40	BRGIN PURGING	NA	~0.25	,						. 20
	19,00	FWEIDOG				6.36	0.171	11.75	19.65	1711	NH
	1900	STOPHEWG	AFTER AN	GWG A	25 GALS	SO GAR					1/2
	800	RESUME	157.45	~0.25		5-57	0.221	3.09	15:28		NAG
	0,30	1906				5.57	0.221	3.09	15.26	149.3	NA
	, ,		- /						<u> </u>	 	<u> </u>
											
						<u> </u>		 	 	 	
						<u> </u>		<u> </u>	<u> </u>		
	-		 		1				<u> </u>		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

DATE:	My	7,	200	9
		~ /	and the	

SAMPLERS: MORECOLS

WEATHER CONDITIONS: SUNY & MILD SAMPLE ID: MW-PD-15-GW-A CAN

CLP ID:

SAMPLE TIME: 1200

WELL#: MN-10-15 ZONE A

DEPTH OF PUMP INTAKE 155 ft TIC or \$186\$ (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 150 / 55 (

(circle one

Instrument:

SAMPLE FLOW RATE:

1:000

ml/minute

(circle one)

Instrument Type/Model: Complete and/or Circle at right Horiba U-22

1 AMME 2025

		Complete and/	or Circle at	right	Other (spe	CAMOUEZOLL				
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)		REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1050	Brein Furging		0.25							
1135	PVREGINEY				5.01	0.155	0.13	16.05	383,6	96
11 to		<u> </u>			4.65	0.156	0.11	15.64	408.3	337
11 45		 	 	 	5.24		0.08	16.6	226.5	N4
1150			 		4.88	0.155	0.07		212.7	
1155	6,000	n1			5.02	 	0.08	15.85	205.3	BLN 72
	66							<u> </u>		<u> </u>
				<u> </u>	 	 	 	-	 	+
			<u> </u>		<u> </u>	<u> </u>		-		
		-								

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = To

mer Casing

SAMPLERS: MEATHER CONDITIONS: SUNY DHILD

SAMPLE ID: MW-PO-15-GW-IS SAM

WELL#: MW-PO-15 ZONE B

DEPTH OF PUMP INTAKE: 183 ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS

OOOml/minute/80-185 (circle one)

LP ID:	mw-Po-ts	Instrument Type/Model: < Complete and/or Circle at right				# 1488 660 3	(circle (one)	Instrument:	
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	(± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
9:30	BEGIN	,						100 m	211 1	76.9
1005	70,00		0.25400		6.16	0.192	0.06		211.2	
100	 		1 1		6,39	0.147	0.08	15.69	196.2	NA
10			 		6.14	1 //-	0.07	15.5	199.4	NA
10 15			-	<u> </u>	6.07	0.144	0.06	15.5	199.9	NA
1000		-	 			1	0.06		210,6	195
1030	1			<u> </u>	5.88	^	0.07		209.1	55.8

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

LAI SUPERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/6 - 5/7/08
SAMPLERS: JB /ME

mw-PD-15-GW-C

DEPTH OF PUMP INTAKE: 2125

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: 70'5. 5-04

SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLE ID: WWHID -15-6WEC

ml/minute

SAMPLE TIME: 5/7/4 0900 SAMPLE FLOW RATE: CLP ID:

		Instrument Typ Complete and/c		right	YSI Modèl Other (spe	#	Horiba U-22	(circle c	one)	Instrument:
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE GIM	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gailons / liters (circle one)	ft TIC / ft bgs (circle one)	Units: GPM	ft TIC / ft bgs (circle one)	su	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
12 ht 17100		· NA ·		-	6.50	6-113	.0.47	12.71	127.8	140
ינון:	_	1	1.1		6.43	0.136	0.24	13712	155.8	7995
cido		.	1-1		6.70	0-233	0.10	13:41	153.4	338
[9]00			1.0	~	6.33	0-258	0.10	13.29	151:4.	75.9
[3:30 [3:40]	e 1104allus		1.0		6.25	0-262	.0.03	14.12	1529	47.1
2/3/58			500 m/m		5.40	0.297	1.70	13.57	236.2	21.0
07:40		• -	-1	-	6.01	0.273 -	0.10	13.21	.222.L	15.1
94.20			1	LAK:	6.20	0.271	0-09	13.41	221.0	10.1
0700			500 mg	17.79	Theat	0-273	0.10	13.28	214.0	9.5
03:10	11 tigallas		500 ab/an	~	6.18	0-213	0.10	13.21	220-1	10.3

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of

bgs = below ground surface

FELT FIELD-GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

FEBRUARY 21, 2008

WELL#: MW PD-16 ZONE A

DEPTH OF PUMP INTAKE: 103 HTC of ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 1050 110

育TIC or 作BGS (circle one)

AMPLERS: MOE & JB

MEATHER CONDITIONS: JUMY & COO

AMPLE ID: MW-PD-16-GW-A SAMPLE TIME: 1345

SAMPLE FLOW RATE: 1.64 Huml/minute

LP ID: SI Model # 600 XJ55 Horiba U-22 Instrument: (circle one) Instrument Type/Model: Other (specify) Complete and/or Circle at right REDOX TURBIDITY DISSOLVED TEMP. SPECIFIC pН **FLOW** DRAWDOWN DEPTH TO **JURRENT** VOLUME POTENTIA OXYGEN CONDUCTIVITY RATE PURGED WATER IME (± 10%) (土 10%) (± 10%) (土 3%) (± 0.1 SU) 仕 0.3 FT) **NTUs** m۷ mg/L Units: S/cm. mS/cm°/ or fi TIC / ft BGS ft TIC / ft BGS Units: gallons / '4-Hour °C uS/cm (circle one) (not %) (circle one) (circle one) liters (circle BEEW PURGE MA ALA 12-00 2.194 .10 NH NA 205 NA 1465 188.2 zh A 187.2 13:43

FYILLE ~ 55-60 BALL TOTAL rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

DO = 0.3 - 10 mg/L/pical values:

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

C = Top of Inner Casing

FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

ATE: FEBRUAY 21, 2008

AMPLERS: WE & DB

FEATHER CONDITIONS: SUMMY & COND

AMPLE ID: MW. PO-16-GW-B SAMPLE TIME: 1840

MWP1-16 ZONE B

DEPTH OF PUMP INTAKE: \\ \sqrt{56} ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: /35-140

(circle one

SAMPLE FLOW RATE: 2 54 Mun ml/minute

		instrument Typ Complete and/		right	YSI Model Other (spe	one)	Instrument:			
URRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
4-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs
1559	BEEN PHER	WA								"
175					6.56	0.172	4.10	11.46	206.0	asa
1730					6.46	0.176	2.11	11.66	207.6	MA
1745					6.41	0.183	7.57	11.71	203.4	NS
1800					6.26	0.186	7.01	11.81	208.(NA
1915					6.23	0.188	8.03	11.73	211.0	NA
1830					6.08	0.190	8.68	11.90	213.0	NA
183					6.09	0.193	88.88	12.03	211.6	NA
1460	SIN / GUD	Purces~1	40 GALS	TOTAL						
VR.60	SNY/FUE FIREFE	Purces~1	40 GALS	TOTAL						

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

/pical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

C = Top of Inn

OLD ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

ATE: FEBLUARY 25, 2008

AMPLERS: ME ADB

MEATHER CONDITIONS: SWM & Cord

AMPLE ID: MW-PO-16-GW-C SAMPLE TIME: 1200

HW-PD-16 Zave C

DEPTH OF PUMP INTAKE: A TIC or IT BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 165-178

SAMPLE FLOW RATE: 34/HW. ml/minute

ep id:		Instrument Ty Complete and		right	Other (specify) Horiba U-22 (circle one)					Instrument:	
URRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 9.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
:4-Hour	gallons / liters (circle	fit TIC / fit BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs	
430	BEGIN					- 20					
954	STOPPED PRENIE	Les Recinea	E				·				
1015	RESUME PURGUG	74.45	Pulles	75 GA68	G FAR	Mg 3(9)					
1100		74,45		~25 Cars							
1245					5.85	0.245	3.47	1264	188.0	13.5	
1315					5.71	0.247	3.56	12.87	194.3	6.2	
1345					5.69	6.244	2.62	12.75	203.7	5.1	
1350					5.74	0.252	2-80	12.74	205.8	4.6	
1355	<u> </u>		<u> </u>		5.83	0.248	2.63	1282	209.2	4.2	
1400	1/20 Ml		 	 	5.86	0.248	2.55	12.57	210.6	5.3	

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mil/min during purging or 250 mil/min during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

/pical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

C = Top of Inner Casing

HED GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

ATE: FREMULY 28, 2008
AMPLERS: FOR 808

WELL#: MUN_ PO-16 - ZONE D

DEPTH OF PUMP INTAKE: ~/97

ft TIC or ft BGS (circle one)

FEATHER CONDITIONS: SVING & COLO

SCREENED/OPEN BOREHOLE INTERVAL: 1951-200'

ft TIC or ft BGS (circle one)

SAMPLE FLOW RATE: 2.51/put.ml/minute AMPLE ID: MW PA 16- DW D SAMPLE TIME: 17-00

		Instrument Typ Complete and/		t right	YSI Model Other (spe	Instrument: Whome 2020				
URRENT IME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
:4-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU (S/cm, mS/cm°/ or pS/cm (circle one)	mg/L (not %)	Units: °Ċ	mV	NTUs
1325	PURGULG	NA			6.20	0.287	3.49	11.21	204.4	- Mr 35)
1400					6.20	0.287	3.49	11.21	204.4	NA
1430	SE GALS SO FAR									<u> </u>
1500					6.01	0.404	3.30	11,00	227.4	NA_
1530	110 GALS ST FAR			*				<u> </u>		
1600					6.03	0,417	3.08	11.23	236.3	12_
1630	165 GALS SO FAR									•
1665					5.80	0.454	281	12.59	225.4	TURB HAR OUT
1650					5.76	0.440	2.60	12.28	225.3	и
1655					5.69	0.459	2.56	12.51	238.0	14

~310 aylos rawdown is not to exceed QB feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

/pical values: DO = 0.3 - 10 ma/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

C = Top of Inn. __sing

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: MARCH 57 2008

WELL# MW-PO-16 ZOVE E

SAMPLERS: MOR dos

DEPTH OF PUMP INTAKE: A TIC of ft BGS (circle one)

SAMPLE ID: MONDONG-GW & SAMPLETIME: 15

SCREENED/OPEN BOREHOLE INTERVAL: 295-230

(circle one

CLP ID:

SAMPLE FLOW RATE: 12/ Jun,

ml/minute

	,-		Instrument Typ Complete and/		right	YSI Model Other (spe	# <u>1600</u> XEBM cify)	Horiba U-22	(circle d	one)	Instrument:
	CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
	24-Hour	gallons / liters (circle one)	(circle one)	Units:	ft TIC / ft bgs (circle one)	SU .	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
3	902	BEGIN	NA 1	930 PM		e; wo	Resonator Ruel	F Rus	PHOT	OFF-	
	1300	RESURVE		IL/HIN.	·	1			=		
	1415	,				6.06	0-24	7.31	12.49	171.3	>500
	1645	ATOM	2c~70 /3418	,							-
В		PLESVAGE KRGENG		~0.25 am							
`	Goo					5.63	0.266	4.41	12.73	183.2	NA
	1230	FURGERS	4 rosse ac	1125 G	LE STO BAR						B
	1230			It/ Men.		,			12.D		
	1300					6.30	0.275	3,%	6.76	1970	Ms
	12/00	11 (2 2 1)	3 + A			6-20	19-2772	3.65	12,26	207.1	NA

15 20 24.4 No. Drawdown is not to exceed 0,3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

bgs = below ground surface

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:	MARCH	67 2008
	1 061 -10	

WELL#: MUPE 16 ZONE F

DEPTH OF PUMP INTAKE: A ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 245-250 ft TiC or ft BG

WEATHER CONDITIONS:

SAMPLE ID: MW-PA-No-GW-F SAMPLE TIME: D30

SAMPLE FLOW RATE: // Like milminute

		Instrument Typ Complete and/		right	YSI Model Other (spe	* Loop KL-B-M	Horiba U-22	(circle d	one)	Instrument:
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1346	BOSW		12/tw.							
1500		-	Some		5.56	0.190	7.05	12.87	-180,0	MA
1630.	purples 53	GARS FO BE	v ·						_	
1 <i>†/</i> 2W	Porp Idiaa		~ 9D	ESUS AS FAR						
Ber	PLESWA PREINE		50 ml/28cm						-	
93	NALLE !	·	•				-			
900	RESUME		,							
940	PURGES 4 -	some also	Sals	BONER RES	500me/z	bsac				
1000					5.65	0217	3.51	11.96	170.2	WA
1035	14-0 0 0 0			Proceeding						, ·

1000 PUMP JHLIT OFF Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing bgs = below ground surface

A Payeor Cla) Depolis

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

ATE: FEBRUARY 12 2008
AMPLERS: TB & MOE

MAPLE ID: MW-PD-17-GW-A SAMPLE TIME: 1500

SCREENED/OPEN BOREHOLE INTERVAL: 70-75

SAMPLE FLOW RATE: 1000

ml/minute

LP ID:		instrument Typ Complete and/		right	YSI Model Other (spe	one)	instrument:			
:URRENT TME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
	gations / liters (circle	f TIC 1 ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV __	NTUs
1200	BEGWARE	8.5								* · · · · · · · · · · · · · · · · · · ·
125		11.9			6-10	0.147		0.33	207-8	NA
10.95		11.9			608	0-161	7-93	11-01	213.8	NA.
1300		BAR			6.14	0-162	7.21		25.7	N4
1330			1	<u> </u>	6.17	0.167	8.03	11.29	212.0	NA.
1400	Charles	LUB HO	R-DVA	TO DERO	Brue	ey				
1450					636	D.157	305	1205	200.5	127
1454					6.40	0.160	7.88	10.16	200.8	126
1457		-			6.41	0-160	7.81	10.18	198.8	67
	~50 polos									

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

/pical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

C = Top of Inn

ER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

ATE: FEBRUARY 13, 2008
AMPLERS: MOR & OB

MW-PD-17 ZOUR B

DEPTH OF PUMP INTAKE: A ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 80-95'

ft TIC or ft BGS (circle one)

MAPLE ID: MW PD- 17-GW B SAMPLE TIME: 1330

SAMPLE FLOW RATE: 4 Juw ml/minute

		Instrument Typ Complete and/		right	Si Mode Other (spe	Instrument:				
CURRENT IME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
!4-Hour	galions / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	รบ	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
108		8.6								
1020	BEGIN PURCE		Helew							
1030	570 PVM	Covilor	80x - M41	ruchon						
1000	RESUME	11.8								
1100					5.11	0.147	9.00	11.96	198.6	NA
1200		11.5			5.44	0.135	600	11.23	200.9	NA
1300		11.5			3.41	0.137	541	12-06	197.8	NA
1705	Puples ~	165 GAZS.	TO FAR							
1300	·		-		5.33	0.137	5.38	11.88	198.0	149
1300					5.36	0.133	5.36	11.33	196,0	191
(330	~190 poles	5	<u> </u>	<u> </u>	5.36	0.136	5.36	11.86	195.6	64

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 milmin during purging or 250 milmin during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

/pical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

ATE: FEBRUARY 13, 2008
AMPLERS: MORO JB

WELL#: MULPO-17

DEPTH OF PUMP INTAKE: 1983

ft TIC or at BGS (circle one)

MAPLE ID: MW-P8-17 - GW-C SAMPLE TIME: (700

SCREENED/OPEN BOREHOLE INTERVAL: 901951

ft TIC or ft (circle én

SAMPLE FLOW RATE: 44/HW ml/minute

L 15.		instrument Typ Complete and/		rîght	SI Model Other (spe	Instrument:				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
:4-Hour	galions / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	ຮຸບ	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
14/30	BEEN PURGE	NA	4lber	; 15°00	5.94	0.062	3.83	11.44	188.9	<i>U</i> 4
1600	110 GAS FAR				5.84	0.17.59	4.34	11.96	188.6	N/s
1630	1				5.84	0-058	4.14	16.88	197.6	NA
1645					5.83	0.058	4.12	11.69	193.6	als
1650					5.89	0.057	4.32	11.84	1849	29.3
1655				17.	6.07	0-056	473	11,54	1806	47
1700					6.12	0.056	4.93	11.45	1790	20.7
	~175 plles									
			 							
			1		-			7		

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

/pical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

C = Top of Ini

isina

LAI SUPEKFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

11/27/07

WELL#: MPW-0 | PORT#1/A

SAMPLERS: BULL WERT, JOE BUTTON

DEPTH OF PUMP INTAKE: 165 ft TIC or & BG8 (circle one)

WEATHER CONDITIONS: PARTLY (COUDY, 55°F

SCREENED/OPEN BOREHOLE INTERVAL: 160-17-0

ft TIC or (TBG (circle one

SAMPLE ID: MPW-01-PD-A-PS SAMPLE TIME: 1035

SAMPLE FLOW RATE:

mi/minute

CLP ID: 84GD7

	1907	Instrument Typ Complete and/o		right	YSI Model Other (spe	one)	Instrument:			
CURRENT	VOLUME PURGED	DEPTH TO WATER Daire / Vent	RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons (liters)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su .	S/cm, nS/cm or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
0945		12/11	250		5.81	0.321	2.91	11.64	61.5	7.3.2
0950		12/11	250		5.80	0.321	2.54	11.65	49.5	1.05
0155		12/11	750		5.20	0.322	2.41	11.62	43.2	1.00
1000		12/11	750		5.77	0.324	2.62	1464	38.5	0.78
1005		12/11_	250		5.77	0.324	2.86	11.65	30,4	0.81
1010		12/11	250		5.77	0.324	2.71	11.63	27.4	0.95
1015		12/11	250		5:17	0.324	3.26	11.05	25.3	1.0
1020		12/11	250		5.75	0.324	3-39	11.47	17.2	0.95
1025		12/11	250		5.76	0.325	3.83	11.71	17.0	0.89
(030	15	12/11	250	Dear He /S	5.76	0.325	3.90	11.72	16.1	0.80

* Putting Simultaneously with PRT #2/8

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPEKI UND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

11 27 67

WELL #:

MPW-01

Port #2 (B)

SAMPLERS:

BILL WERT, TOE BUTTON

DEPTH OF PUMP INTAKE: +65 ft TIC or ft BGS (circle one)

PHOTLY CLOUDY, 53°F

SAMPLE ID: MPW-01-PD-B-R1 SAMPLETIME: (0:30

SAMPLE FLOW RATE: ~250

ml/minute

		Instrument Type/Model: Complete and/or Circle at right			YSI Model Other (spe	one)	Instrument:			
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm, mS/cm or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
0950		12/11 13505:	250		5.52	0.327	至,9.26	11.58	1027	
0955					5.52	0.327	2.32	11.59	106.9	0.00 -16
1000			-		5.52	0.328	9.48	11.58	130.9	0.00 - bola co
1005		13/11 135	250		5.52	0.329	9.60	4.60	145.3	0.00 - below
0101					5.53	8.321	271	11.57	154.3	000 - beton
1015			_		5.53	0.329	9-78	162	1523	
1020	<u> </u>	12/11 135	250		5.53	6.329	9.85	11.42	159.8	0.00
1025	~15Liters	12/11 135			9.53	0.329		11-72	160.6	0.00 -66-
						at suple Q 1	0:30			
					القل					

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

 $TiC = Top c_i$

bgs = below ground surface

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

11/27/07

PORT #3 (c)

BULL WERT, JOE BUTTON

DEPTH OF PUMP INTAKE: 2/5 ft TIC of the BG8 (circle one)

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLE FLOW RATE:

ml/minute

CLP ID: TJUGD9

		Instrument Typ Complete and/o		right	YSI Model Other (spe	Instrument:				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER DAWE/VENT ~ PS I	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons /(iters/ (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm, nS/cm² or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
● (050		12/11 135	250		6.91	0.270	4.38	11.74	-49.8	0
1055		12/11	250		7.15	0.290	2.78	11.64	-43.c	0
1100		12/11	250		7.19	0.291	\$ 2.64	11.65	-420	6
1105		(2/11	750		7.23	0.271	7.17	11.61	1 •	.0
llio		12/11	750		7.24	0-291	1.86	11.67	-36.4	Ö
itiS		135	250		7.26	0.293	-1.65	11.65	- 34.3	0 "
[120		12/11	250		7.27	0.243	1.60	11.65	-30.8	0
1125		12/11	250		7.29	0.290	1.54	11.66	-28.0	0
1130		12/11	750		7.29	0.272	1.52	11.67	-27.1	0
1135						,			• • •	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPENCUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

SAMPLERS: ME, JR, BW

WEATHER CONDITIONS: OVERGET 40-45

SAMPLE ID: MAW-02-PD- A-RI CLP ID: BUGEY

WELL#: MPW-02 Port A =

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS (circle one)

SAMPLE FLOW RATE: 200

ml/minute

		Instrument Typ Complete and/o		ight	YSI Model # 650 MD 51 Horiba U-22 (circle one) Other (specify)					Instrument:
CURRENT TIME	VOLUME PURGED	WATER	FLOW BATE FOR CUR	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	i e	Units:	ft TIC / ft bgs (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1440	Pegiv	1456	BOST	y ives	6.20	0.425	5.43	11.20	165.8	0.12
1466	400	u	10	1	1	it	, A	11		h
150L	1,400		13085E	8,65	6.09	0.417	4.16	11.84	165.6	0
1506	2400		130A=	\$ 12 K	6.06	0.417	3.97	1,39	165-6	0
1511	3400		BORT	V148	6.05	0.417	3.92	11.87	165-9	0
154	4,400	Park Hay Funces to 100kg	130 RSZ	\$ 192 \$ 192 \$ 192	6.05	0.417	3.90	232	166,1	0
1540	Pert	NO SAUPIC	Ker PSF							
									. <u> </u>	
										; ;
										4 to 1 to

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top c

bgs = below ground surface

Canal Califord (ZW Stuffer Dren Valled. God VAS

FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

SAMPLERS:

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL: 190 200 ft TIC or (T BGS)

DEPTHIO

ATIC! A BGS

موالله معالم

معراسم لاوة

100

(circle one)

WATER

SAMPLE TIME:

SAMPLE FLOW RATE: ~\\" == mi/minute

(circle one)

SAMPLE ID: CLP ID:

CURRENT

TIME

24-Hour

0950

1000

1010

1020

(030)

1039

040

1045

BULEY

VOLUME

PURGED

gallons /

liters (circle

Instrument Type/Model: Complete and/or Circle at right

FLØW

RATE

Units: .

170

right	YSI Model Other (spe		Horiba U-22	(circle	one)	Instrument:
DRAWDOWN (± 0.3 F)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
ft TIC / ft BGS (circle one)	ຣບ	S/cm, mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
30/10	(,45	0-440	7.21	10.91	190.1	0
1	6.27	0.420	11.24	11.54	171.5	
	6.20	0.415	5.21	1182	168.1	
	6.15	0.4(4	3.44	1181	1674	
	G. Il	0-415	3.40	11.30	165.0	0
	01.0	0.413	3.29	11.94	1642	
	608	6.40	3.21	11.93	164.0	
	6.07	0.408	3.22	11.80	163.2	0

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPENCUND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:	11/2	le [07
-------	------	------	----

SAMPLERS: JBJF, BW, JD, MJR

SAMPLE ID: MPW-D2-PJ-B-RI SAMPLE TIME: 1470

WELL#: MPW-02

DEPTH OF PUMP INTAKE: 226 ft TIC or & BGS circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 215-225ft TIC off BG

(circle one)

SAMPLE FLOW RATE: 200

ml/minute

5	76865	Instrument Type Complete and/o		ight	YSI Model Other (spe	#_ 600 Xiz (S-M) cify)	Horiba U-22	(circle o	ne)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE VILESUISE	DRAWDOWN 1842/VEDT (±0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU .	S/cm (mS/cm ^c) or µS/cm (circle one)	mg/L (not %)	Units: °C	mV ,	NTUs
1340	BREGIN									
1358	4.00	NA	125 PSI	V 145EC	5-86	0.305	<i>B.D0</i>	1206	125.2	0.03
1408	240D	NA	125 AZ	D. 165 V 14	5-86	0.303	8.71	1205	120.0	0
1413	3 400	MA	HERE	a 165 V 145	5-86	0.303	8,72	12.01	1225	0
1418	4,400	NA	PSAIT	VIEC	5.86	0.303	8.69	1200	125.7	0
1420	Colle	F GW	Same	1185 201	0 614	Onl. (1) IL	PLASTIC 4		pre PU	STIC
			- 1		THO	D CHA	153	Live		
					טע	ं गाम	VIIVA	FUL	RIE	
									٠.	,

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPENTUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: NOWHER 26, 2007

SAMPLERS: JL BWINGE

WEATHER CONDITIONS: DVELCAST

SAMPLE ID: HOW, 02-10-C-PAL

WELL#: MPW-02 PORT 3(C)

DEPTH OF PUMP INTAKE: 245 ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 240-250 ft TIC or ft

(circle one

SAMPLE FLOW RATE:

ml/minute

OLPID: BY	22-Po-CK	Instrument Typ Complete and/o	e/Model: or Circle at r	ight	VSI Model # 600 1605 / Horiba U-22 (circle one) Other (specify)					
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW BATE TELSIVER	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1545	BREW		Taria.			; 		4.05		0
1550	1,250		130 PSZ	0,185	6-01	0.307	4.03		150-6	0
1555	2,500 3,750		13065I	Sies Sies	6.37	0.20	1.69	1200	135.5 132-8	0
11005	5,000		13085E	14. A. 18.	6.34	D. 286		1202	132.6	0
1/10	6.250		130PSI	D183 2 V145	6.35	0-285	1.24	1201	1327	0
1665	Co User	GW for	PLR &	MI JUPL		two A SE	OF BOX	75E.P.		· <u></u>
				, , , , , , , , , , , , , , , , , , ,	1	ELACE VOC	7) Travirn			
					<u> </u>	PLATIL (UNPUS)	EWALOR			

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: WEMBER 16, 2007

SAMPLERS: DE BU FOR

WEATHER CONDITIONS: WEATH, DASH

SAMPLE ID: MILL DZ - (1) - (1) - (1) SAMPLE TIME: (7) (1) CLP ID:

WELL#: MPW-02 POG-4(D)

DEPTH OF PUMP INTAKE: a 70 ft TIC or BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 265-275ft TIC or EBGS (circle one)

SAMPLE FLOW RATE: 160 pl/ ml/minute

	CUDDENT VOLUME		Instrument Type/Model: Complete and/or Circle at right			# GOXCEM / cify)	(circle o	one)	Instrument:	
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW BATE PASSIVE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	ຮບ	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs
1640	BEGW	·				·				
1/50	1,600		145 PIT	D 20	6.03	0.334	6.08	11.84	149.6	0
1655	2400		145 BC	8 22 V 14	6.08	0.284	4,67	11.85	68.0	0.
1700	3,200	,	145pg		6-19	0.269	5-83	1629	58.6	0
1705	4,000		145 per	X 20	6.75	0.266	6-30	12-27	386	0
AW	COLLA	cer Gi) Q	ufle	AS B	GFORE				
		-	Ì					<u> </u>		
							``			
								<u>.</u>		
			_							3

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (uS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top /

er Casina

bgs = below ground surface

-0111

THO

FOM LEOM GROUNDWATER SAMPLING PURGE RECORD OF DIRECTAINS CROUNDWATER CONTAMINATION SITE

DEPTH OF PUMP INTAKE: [Q S R TIC or BES (circle one) MET #: WIM-03 (robot) Go-11

ംno ചിചിച്ച) SCREENED/OPEN BOREHOLE INTERVAL: (10-200) क्षा गठ आ म

SAMPLE FLOW RATE: ~75

SAMPLE TIME: 600

OI "8% miles SAMPLE ID: MAN-07 SICH!

SAHPLERS:

WEATHER CONDITIONS: 40% 5-7

mirdini Amand See	(aus	o elaris)	SS-U school		HOOM IEY		Model: r Circle at 1	instrument Typi Com plets and/o	07.	Me fredut	_
(%01 ±)	REDOX ATTNETO9 J	.9M3T (#01±)	(† 10%) OXAGEN DISSOFAED	(± 3%) SPECIFIC SPECIFIC	Hq	DEVANDOMA	FLOW	DEPTH TO	AOTRIME		
sUTN	Vm	Units:	1/6m (% 30n)	S/cm, (mS/cm ⁺) or µS/cm (circle one)	ns	(ano elone)	:stinU	R TIC / ft BGS (dride one)	ĭ		Ţ
1>	H-681	20:11	25.9	918.0	64.9:	Down of Drant		6.4198		०४५०	051
					74	180 64:		San	Maker	5hb9	ļ
	4881	0877	51%	5000	00.9		תפשר/שט	<i>198</i>		اهاو	COLI
	1.581	15.51	£1.6	0.363	98'5	91		rung.	ع ما الماح	911	05H
	2059	08701	050	846.0	49.5		-1/745L	E-1198	endlag &	1700	0001
	6881	1300	262	0.285	SL'S			- 6.0198	4.5 dellas	1300	
-	310.1	He	01-8	585.0	08.₹		1	69798	ره مداله	Soul	18
-	ove	0811	TE-8	4160	Z8.2		V=/1-00]	5-0198		0510	Septem 3
-	8.90%	, , , , , , , , , , , , , , , , , , , 	8-20	cre.o	08 5			8-0118	7 22	SHEET	
, ,		. • -		-							

TO S 121 P8 2 C1-21 P8

Turbidity = 0 - >500 NTUs

918-0

Vm 003+ - 001- = Isitnetoq xobesi

Ilgan Of - 6.0 = OO :souley issuigy?

9120

The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three considered stabilized and readings by the measurements indicated in pare

1802 1/11 666

PIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WEATHER CONDITIONS: 10'5 Lary

WELLS: MPLI-02

DEPTH OF PUMP INTAKE: 2000

ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 215-225 R TIC

SAMPLE ID:

6.0

SAMPLERS:

SAMPLE TIME:

SAMPLE FLOW RATE:

mi/minute

CLF ID:		Instrument Typ Complete and/	e/Model: or Circle at I	ight	YSI Mode # COD MIC / Horiba U-22 (circle one) Other (specify)					
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBII (± 10%)
24-Hour	gations / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1040	Short	7703.0	MO alfan							 -
1120 -off	- Zapilo:			<u></u>	-				/23.00	
1323 ON			190 de	<u> </u>	8333		G.CE	 	1724	
1333	-39-10-				5.83	0.19/	6.73	11.53	 	
	~35		140		5.83:	0.207	900	11.37	1820	<u> </u>
1345	5		190		5.84	0.194	7-73	11.37	101./	<u> </u>
1415	6	7703.1	—		5.83	0.196	7.69	1133	1929	
	54	of an major	4							
		V								
	 									<u> </u>

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mil/min during purging or 250 mil/min during sampling. Readings should be taken every three to five mi The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in pare

Redox Potential ==100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

Top of Inner Casing

FOM EFOM GEODRIDMATER SAMPLING PURGE RECORD STIS NOITANIMATINOS SETTANDINOSES GLEM THE STEP CONTAMINATION SITE エサン

METT# KINGS :

SCREENED/OPEN BOREHOLE INTERVAL: 215-225 n Ticorth (circle one.) DEPTH OF PUMP INTAKE: 225 A TIC ordEGS (circle one)

SAMPLE FLOW RATE:

SS-U adinoH __

(circle one)

atunimum

SAMPLE TIME:

instrument Type/Model:

SAMPLERS:

Titae: T	70474					3116	u ve aloug k	Complete and/o		
は 日本 (米 0 1 ±)	REDOX POTENTIA	1	OXAGEN DISSOFAED	SPECIFIC SPECIFIC		į.	FLOW	OT HTGEO RETAW		CURRENT
		(%OL Ŧ)	(*01 ±)	(¥2¥)	(# 0"4 3N)	(T 7 5.0 ±)			PURGED	IME
аОТИ	ΛŒ	Sejun O.	7\gm (% 100)	S/cm, mS/cm°/ or us/cm (circle one)	ns	(ano simia)		SOB A / OIT A (circle one)	gallons / lifers (circle	StHone
751	E:88/	55'01	455	PC1.0	81.9		15,8081			((,
75	1281	6901	29'2	5/1.0	28.0		15.8081	· · · · · ·	+4/5	ee>1.
12	1:191	12.01	SAZ	181.0	O£.5		velator)		52°C	0051
13	1-38	1601	85.5	661.0	16.9				Support h	0351
		· .		Isquin		7	7		whites	1061
					· vo	78-5	Jes			
·										

STREET IN THE RESTRICT OF THE PROPERTY OF SERVICE OF THE PROPERTY OF SERVICE OF THE PROPERTY O Enter the state of State Flow rate should not exceed 500 mirring purging or 250 mirring sampling. Readings should be taken every three for five mirring purging or 250 mirring sampling. Readings should be taken every three for five mirring or 250 mirring samples of the samples

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high sait content water. Note: 1,000 µS/cm = 1 mS/cm Vm 008+ - 001- = Isimetoq xobeЯ

Typical values: DO = 0.3 - 10 mg/L

TIC = Top of Inner Casing

(OC Hower)

murdani

OLD-ROOSEVALE FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL #: MW-02

SAMPLERS:

WEATHER CONDITIONS: 405 June 1

SAMPLE ID:

MIW-02 - PERTZ

SAMPLE FLOW RATE: 200

mi/minute

CLP ID:

		Instrument Type/Model: YSI Complete and/or Circle at right			YSI Model Other (spe		(circle one)		instrum junith 707	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	(± 10%)
24-Hour	gations / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
18 10	Shit	7705.3	~180		5.97	Bd 268	7-16	1231	1828	</td
1115				10/20 180ps		0,208	776	√	1828	5/
M3€			200		6.01	0.195	8.23	4228	1855	
(\$0					5.84	0.215	8.38	12.04	168.7	-
1139			âw		5.14	0.209	8.80	4201	1724	-
1130	long		200		5.85	0.204	8.54	RIO	1781	<1
	7	<u> </u>	5-pl	a 1/9	5			· ·		
			37						,	
							-			
						*				

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mil/min during purging or 250 mil/min during sampling. Readings should be taken every three to five mi The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in pare

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV /

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

Top of Inner Casing

ELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

SANPLERS:

SAMPLE ID:

WELL#: MPW-02

DEPTH OF PUMP INTAKE: 245 ft TIC of the BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 240-250

WEATHER CONDITIONS:

MDW-02-PORT3

SAMPLE TIME: (235

SAMPLE FLOW RATE: 200 milminute

CLP ID:	Į diese vai	Instrument Type/Model: Complete and/or Circle at right				YSI Model # 145 660 YC Horiba U-22 (circle one) Other (specify)					instrum Ludic 7
CURRENT TIME	VOLUME PURGED gations / liters (circle	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT) n TIC / ft BGS		pH (± 0.1 SU) SU	SPECIFIC CONDUCTIVITY (± 3%) S/cm, mS/cm²/ or µS/cm (circle one)	DISSOLVED OXYGEN (± 10%) mg/L (not %)	TEMP. (± 10%) Units: °C	REDOX POTENTIA L mV	(± 10%) NTUS
		ft TIC / ft BGS (circle one)	Units:								
1000	Steh	7673.0	300	10/20	1308	6.05	0.198	8.32	11.55	1867	7
	-	16190	1	1 7		6.07	0.196	6.12	11.41	197.1	
1205			 	 		609	0.196	5.46	4.76	7043	
1510:		 		1		-	0-196	4.80	11.65	200/	· _
1315		ļ		 		C.16	0.186	4.21	11.71	199.9	1-
1330				ļ		6.15	 	4.51	11.70	1727	1_
1372	ولي.	<u>.</u>		<u> </u>		6.18	0.196		+	172.9	
1230	ورين ما					6.20	0-197	4.41	11.67	11.8	
			Sarple	6	123	5			<u> </u>		
-											
		 		1					<u></u>		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mil/min during purging or 250 mil/min during sampling. Readings should be taken every three to five mi The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in pare

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm Typical values: DO = 0.3 - 10 mg/L

TELLO CROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL#: MPW-OZ POAY

SAMPLERS: 78

DEPTH OF PUMP INTAKE:

ft TIC of ft BGS (circle one)

WEATHER CONDITIONS: 4045 5-41

SCREENED/OPEN BOREHOLE INTERVAL: 265-275 ft TIC or (BGS

SAMPLE ID:

CLP ID:

MW-02 PARTOY

SAMPLE TIME: 1440

SAMPLE FLOW RATE: ~~

ml/minute

CLP ID:		Instrument Typ		right	YSI Model #/ Horiba U-22 (circle one) Other (specify)					Instrument:	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
24-Hour	gailons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	ຣບ	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs	
1240	Short	6889.3	2000	15/20 190	5.82	080	3.64	1224	80,0	</td	
1300	1 g-16m	1	1	15/20 MOIST		6./86	7.01	12.00	22.6	1	
1330	2.5 giller				6.19	·139	9.74	1232	43.9		
1400	nygallery	r			Gai	0.190	9.01	1241	40.1		
1410	4.5				6.24	0-194	8.45	18.5C	235		
1420	5				6.24	0-194	8.71	12.20	61.2		
1925					6.27	0.187	8.53	11.90	66.5		
1430	6				(25	0-187	8.71	11.85	72.1		
1435	~ G.S gilles				6.24	0-189	8.60	11.79	70.4	</td	
		1	C 1440								

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top to subser Casing

LAI SUPE JND SITE
LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL#: MFW-3 POTTAGE

DEPTH OF PUMP INTAGE. 160

200

DEPTH OF PUMP INTAKE: 180 ft TIC or It BGS (circle one)

SAMPLERS: JR, ME

DATE: 11-27-07

WEATHER CONDITIONS: 50

SCREENED/OPEN BOREHOLE INTERVAL: 175-/85

(circle one)

SAMPLE ID:

SAMPLE TIME:

SAMPLE FLOW RATE: Prose Flow Rato

ml/minute

CLP ID:

Instrument: YSI ModeD# 600 X446 74 toriba U-22 (circle one) Instrument Type/Model: Other (specify) Complete and/or Circle at right DISSOLVED TEMP. RFDOX TURBIDITY DRAWDOWN **SPECIFIC** DEPTH TO **FLOW** Hα CURRENT VOLUME OXYGEN . **POTENTIAL** RATE-CONDUCTIVITY **PURGED** WATER TIME (± 10%) (± 10%) (± 0.1 SU) (± 3%) (± 10%) (± 10 mV) (± 0.3 FT) S/cm.(mS/cm^c/)or **NTUs** ft TIC / ft bgs mV ft TIC / ft bgs SU ma/L Units: 24-Hour gallons / liters Units: uS/cm (circle one) (not %) (circle one) (circle one) (circle one) Secon Es 14.0 IIOpage vent 1) 11 64 11.34 -0.8 11.30 -14.0 110 0.140

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

and Attempt

DATE:

1-28-07

WELL#: MPW B POAT I CA

SAMPLERS: ME, TO

DEPTH OF PUMP INTAKE: /80

ft TIC or f(BG8 (circle one)

(circle one)

WEATHER CONDITIONS: 45 0

SCREENED/OPEN BOREHOLE INTERVAL: 175-185

ft TIC or (ft B33 (circle one)

Instrument:

SAMPLE ID: MOW-03-PD-A-RI

SAMPLETIME: 1425

SAMPLE FLOW RATE: 200

ml/minute

Instrument Type/Model: Complete and/or Circle at right

		Complete and/	or Circle at	right	Other (specify)					Camero
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATES PST	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cm ^o / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1360	Stat	pump	110	Seconds Orive Vent						
1400			110	14 12	6.39	0.196	3.23	11.07	-22.3	2.06
1405		-	110	1412	6.48	0.202	1:02	11.01	-48.5	0.89
1410			40	14 12	6.56	0,264	0.75	10.56	-56.9	0.45
1415			lio	1412	6.64	0.205	0.52	10.85		0.61
1426	-28-0 7		110	14 12	6.66	0.205	0.48	ic.85	-69.3	0.78
1421	COL		110	14 12	6.67	0.205	0.46	10.85	-69.5	0.65
								_		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (uS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top $\sqrt{2}$

118

∋r Casing

LAI SUPERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL#: MPW-3 Port = (B)

SAMPLERS: MEJR

DEPTH OF PUMP INTAKE: 200 ft TIC of ft BGS (circle one)

WEATHER CONDITIONS: 50

SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLE TIME: 1450

2€ ml/minute

SAMPLE ID: MPW-03-PD-B-RI
CLP ID: B4GFO
Duplicate MPW-33-PD-B-RI
QUITTIBLE OF THE PORT OF THE PROPERTY OF THE PORT OF THE PORT

(circle one) Instrument;

9166	3	Complete and	or Circle at	right	Other (spe	2020				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	รบ	S/cm, (nS/cm²/)or µS/cm (circle one)	mg/L. (not %)	Units: °C	mV	NTUs
1415			115	Drive Voit						Childy
1425			115	16 14	6.22	0.160	1,28	11.64	-58,2	3.1
i430			115	1614	6.46	0.198	0.91	11.58	-77.2	2.9
1435			115	16 14	6.56	0.156	0.67	11.52	-87.6	2.3
1440			115	16.14	6.61	0.157	0.59	11.46	-92,0°	1.8
1443			115	1614	6.63	0.158	0.55	11.42		1,9
1446	636		115	16 14	6.63	0.158	0.51	11.35	-95.4	2.0
								_		
79				1	<u></u>					

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

LAI SUPEKFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

11-28-07

WELL#: MPW-03 POA 3(C)

SAMPLERS: ME, Ja

DEPTH OF PUMP INTAKE: 220 ft TIC or († BGS circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 215-225 ft TIC or the BG

(circle one)

Instrument:

WEATHER CONDITIONS: 45°

SAMPLE ID: MW-03-PD-C-R | SAMPLE TIME: 1515

CLP ID: BUGF1

SAMPLE FLOW RATE: 150 FURSE Flow Pate 150

ml/minute

(circle one)

Instrument Type/Model:
Complete and/or Circle at right

	•	Complete and	/or Circle at	right	Other (specify)					2010	
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE PSI	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm, nS/cm ^c /or µS/cm (circle one)	mg/L (not %)	Units: °C	mV ≅	NTUs	
1437	Start p	wae	120	seconds now ven	1						
1445	1	3)	17 13	4.86	0.239	5.53	10.30	1.0	4,28	
1450				1	6.31	0.263	2.22	1054	-12.0	6,27	
1456					6.80	0.278	1.08	10.5	-20,c	6.55	
1500					7.68	0.287	0,92	10.49	-32 <u>5</u>	6.03	
1505					7.77	0.290	0.85	10.50	-27.9	6.24	
1508				1/1/	7.52	0.288	0.82	10.47	-26.5	6.17	
1511	5.5L			VV	7.25		0,80	10.45	-24.7	6.09	
		-		1/1			-				
				 		· · · · · · · · · · · · · · · · · · ·	" [1	t	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top 🐷 Jer Casing

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD WELL#: MPW-03 Port 4 (M)

11-28-07

DEPTH OF PUMP INTAKE: 240 ft TIC or TES (circle one)

WEATHER CONDITIONS: 40

SAMPLERS: ME, JR

SCREENED/OPEN BOREHOLE INTERVAL: 235-245 ft TIC or TEGS

SAMPLE ID: MPW-03-PD-D-R |
CLP ID: 846F2

SAMPLE TIME: 1615

150 SAMPLE FLOW RATE: Purge How Rate

mi/minute

Instrument Type/Model:

YSI Model # 600 MS THoriba U-22 (circle one) Instrument: Other (specify) Complete and/or Circle at right **FLQW** SPECIFIC DISSOLVED TEMP. REDOX TURBIDITY CURRENT VOLUME DEPTH TO DRAWDOWN Hœ RATE **POTENTIAL** CONDUCTIVITY OXYGEN TIME **PURGED** WATER (± 10%) (± 10%) (± 10%) (± 10 mV) (± 0.3 FT) (± 0.1 SU) (± 3%) S/cm, mS/cm^c) or mV **NTUs** ft TIC / ft bgs SU Units: gallons / liters | ft TIC / ft bgs mg/L 24-Hour Units: µS/cm (circle one) (not %) °C (circle one) (circle one) (circle one) Seconds orive vent Solvi y 4.56 9.89 20 550 600 120 59.10 10,26 0.39 10,23 61.2 120 0.300 5 litus

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPERFUND SITE

7 14	LOW FLOW GROUNDWATER SA
11-27-07	

Instrument Type/Model:

DATE:

WEATHER CONDITIONS 50°

AMPLING PURGE RECORD WELL#: MAN-4 PORTA =

DEPTH OF PUMP INTAKE: 1555

SCREENED/OPEN BOREHOLE INTERVAL: 150-160

(circle one

SAMPLE ID: MPW-04-PD-A-R 1 CLPID: BYGFU

SAMPLE TIME: 0950

ml/minute

	Complete and/or Circle at right				Other (spe	P# <u>@00 NCS///</u> ecify)	one)	Instrument:		
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE- 15I	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm, mS/cm ^{c)} or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
0920	Start	SUM)		Drive Vent						
0930	,		15005		5.40	0.345	1.16	12.86	11-7	3.49
0935			150	12 18	5.43	0.341	0.72	12,88	16.2	2 12
0940			150	12 18	5.46	0.340		12.83	19.7	1.55
0945	1.5 gallons		150	12 18	5.48	0.339		12,86	22.3	1.44
0948			150	12 18	5.50	0,335	0.46	12.86		1.32
·			ļ —————							
										· ·
			,							
			<u> </u>		İ	·		· j		1 .

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

. Turbidity = 0 - >500 NTUs

Spec. Conductivity (μ S/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high sait content water. Note: 1,000 μ S/cm = 1 mS/cm

TIC = Top Grasing

LAI SUPERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

11-27-07

WELL#: MPW-4 Port # 2 (B)

SAMPLERS: ME, TE

DEPTH OF PUMP INTAKE: 175

WEATHER CONDITIONS: 50

SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLEID: MPW-04-PD-B-RI

SAMPLE TIME: 1/20

Instrument Type/Model:

SAMPLE FLOW RATE: 250

ml/minute

(circle one)

instrument:

		Complete and		right	Other (specify)					2020	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE PSI	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs	
1053	Start	aump	120	seconds							
1103			120	11 14	5.90	0.338	0.97	13.40	68,5	0.51	
1108			120	11 14	5.94	07350	0.52	13.36	93.2	0.29	
1111			126	11 14	5,94	0.352	0.50	13.52	96.8	0.25	
1114	756		120	11 14	5 94	0.353	0.47	13.52	100.7	0.20	
									<u> </u>		
											
										· ·	
									_	3	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPEKFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

WELL#: MPW-4-Port3 (C)

SAMPLERS: ME, JR

DEPTH OF PUMP INTAKE: 200 ft TIC or (TBG) (circle one)

WEATHER CONDITIONS: 50

SCREENED/OPEN BOREHOLE INTERVAL: 200-210

(circle one

SAMPLE ID: MPW-64-PD-C-R1

SAMPLE TIME: 1040

SAMPLE FLOW RATE: 500 ml/minute

CLPID: BUGF6

Instrument Type/Model:

(circle one)

	· · · · · · · · · · · · · · · · · · ·	Complete and	or Circle at	right	Other (specify)					Congre	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE PST	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle one)	ft:TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cm²/or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs	
1010	Start	pump		Seconds Onlive Uent							
1020			150	14 16	7.28	0.450	1.25	13,13	-89.7	2.56	
025			150		7.0.9	0.469	0.37	13,29	1	0.67	
1030			150		7.08	0.471	0.86	13,26	-66.7	0.3	
1035	15 Litrs		150		7.09	0.475	0.83	13.27		1.26	
, ,	į.						,			high se	
			43								
		: در م نو		*							
			3								
							-		7.		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes, The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top (

er Casina

LAI SUFERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 11-27-0

WELL#: MPW-4 Port 4 CD)

SAMPLERS: JR, ME

DEPTH OF PUMP INTAKE: 225 ft TIC or (1 BGS) (circle one)

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL: 220-230 ft TIC or ft BG

(circle one)

SAMPLE ID: MPW-04-PD-D-R

SAMPLE TIME: 1200

SAMPLE FLOW RATE: 250 Ourge Flat rate 250 ml/minute

CLPID: BUCET

Instrument Type/Model:
Complete and/or Circle at right

Other (specify)

circle one) Instrument:

		Complete and	or Circle at	right	Other (spe	cify)		2020		
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0:3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm mS/cm/yor µS/cm (circle one)	mg/L. (not %)	Units: °C	mV	NTUs
1130	Start	pump		Seconds Drive vent						
-1140			140	12 12	5.83	0.313	3.34	13.66	56.8	
145			140	12 12	5.95	0.327	3.50	13.76	87.1	0.50
142/150			140	12 12	597	0,329	3.57	13,78	107.0	0.35
1153			140	1212	5.99	0.328	356	13.95	109:4	0.40
1156	7.56		140	12 12	5.99		3.56	13.83	110.1	0.39
										v
								,		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPERFUND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 1-27-07

WELL#: MPW-4 Port 5(E)

SAMPLERS: ME, JR

DEPTH OF PUMP INTAKE: 245 ft TIC or (BG) (circle one)

WEATHER CONDITIONS: 50

SCREENED/OPEN BOREHOLE INTERVAL: 240-250 ft TIC or BGS

(circle one)

Instrument:

SAMPLE ID: MOW-04-PO-E-R

SAMPLE TIME: 1240

SAMPLE FLOW RATE: 200

ml/minute

Purge How Rate 210 instrument Type/Model:

		Complete and	•	right	Other (specify)					COSO CONTRACTOR
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1205	Start	Dump	140	noive vent						
1215		4	150	14 14	6.07	0.274	1.86	13.39	1,5	2.6
1220			150	14 14	6.33	0.273	4.88	13,30	22.0	0,50
12235			150	14 14	6.50	0,276	5.54	13.09	54.4	0.25
1238 1228			150	14 14	6,55	0.277	5,60	13.02	63.9	0.25
17-11-1231			150	14 14	6.59	0.219	5,53	12.96	69.3	0.35
1234	6.56		150	14 14	6.64	0,281	5.41	12.95	13.0	0.25
						•				-

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (uS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high saft content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top

er Casing

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL#: MPW-05- Port (A)

DEPTH OF PUMP INTAKE: 165

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: 45° San'y

SCREENED/OPEN BOREHOLE INTERVAL: 160-170

SAMPLEID: MOW-05-PD-A-RI

SAMPLE TIME: 15:40

SAMPLE FLOW RATE: mi/minute

	446F1	Instrument Type Complete and/o		right	SI Mode Other (spe	one)	Instrument:			
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER Vent year	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)		Units:	ft TIC / ft bgs (circle one)	su	S/cm (mS/cm²) or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
[5300		10/15 120 15I	250		5.23	0.225	9.36	11.42	73.4	3./
15:05	-				5.85	0.231	6.54	11.23	54.4	1.5
(5)(0		10/15 12095			5,86	0.232	5,87	11.19	45.5	1-1
15.15			_		5.86	0.233	5.86	11.13	398	1.13
(5.20		-	250	_	5,87	0.233	3.50	11-08	35.6	106
45725		~	-		5.87	0.233	2.93	11.03	33.1	1.00
15570					587	0.235	2.87	10.97	300	1.01
15:35	~171745	<u> </u>			987	0.235	2.81	10.98	30.(1.05
			ī		15340)				

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

LAI-SUPERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

11/28/07

WELL#:

MPW-05 (PORT # 2/B)

SAMPLERS:

BILL WERT , JOE BUTTON

DEPTH OF PUMP INTAKE: 196

ft TIC or (BGS (circle one)

(circle one)

WEATHER CONDITIONS: Surrey, 50 F

SCREENED/OPEN BOREHOLE INTERVAL: 185-195 ft TIC or 1865

600 XL / Horiba U-22

Instrument:

SAMPLE ID: MPW-05-PD-B-R1-SAMPLE TIME: 1535

SAMPLE FLOW RATE: 200 ml/minute

CLP ID: BYGGO

Instrument Type/Model:

•		Complete and/o		right	Other (spe	LARIOTT				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER DAVE/VONT PSI	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su .	S/cm_mS/cm ^c /Por µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1500		10/15	200		5.81	0.200	3.15	11.08	7121.8	0.78
1505	_	10/15	200		5.82	0.200	1.60	10.99	-152.9	0.65
1510		10/15	200		5.83	0.201	1.31	10.95	-157.9	0.60
1515	•	10/15	200		5.83	0. 201	1.17	10.93	-163.5	0.55
1520		120	200		5.82	0- Zo3	1.02	10.87	-171.5	0.36
1525		10/15	200		5.79	0.207	0.91	10.80	-170-7	00.
1530		to /15	200		5.71	6.207	0.89	10.79	-17b.2	0.0
	- Le laters		ŕ							
	<u> </u>				1	t	1	I	ī	I

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typicai values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top.

LAI SUFER UND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

11/29/04 DATE:

WELL#: MY -05 (Bot+3) (C)

SAMPLERS: Je Button / Bill West

DEPTH OF PUMP INTAKE: 210 ft TIC or ft GGS (circle one)

WEATHER CONDITIONS: 56 WAY

SCREENED/OPEN BOREHOLE INTERVAL: 205-215 ft TIC or (BG) (circle one)

SAMPLE ID: MPW-05-PD-CR1

SAMPLE TIME: 10:25

SAMPLE FLOW RATE: 200

ml/minute

CLP ID:

	Instrument Type/Model: Complete and/or Circle at right					TSI Model # 600 / Horiba U-22 (circle one) Other (specify)					
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER ' Dr.ve/Vent Reserve	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle one)		Units:	ft TIC / ft bgs (circle one)	su	S/cm, mS/cm ⁹ / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs	
0950		16/15	200		6.47	0.193	9.80	11.34	26.7	8.84	
0955			1		5,95	0.214	7.00	11.35	-38-0	7.46	
1640			\		6.00	0.214	5.38	11.28	-35.6	4.45	
1005					6.01	0.24	4.83	11.32	-30.1	2.45	
0101			200		6.00	0.214	4.35	11.20	-24.3	5.92	
1815					600	O-21H	4.58	11.22	-21.4	6.75	
030	~12 ।तस्त	t5/15 125mi			600	0.214	4.54	11,25	-19.8	5.95	
·								·			
	0.	and .									

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5.000; up to 10.000 in industrial. ~55.000 in high salt content water. Note: 1.000 µS/cm = 1 mS/cm

LAI SUPERCUND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

11/29/07

WELL #:

MPW-05 (PORT #4/D)

SAMPLERS:

BILL WERT, JOE BUTTON

DEPTH OF PUMP INTAKE: 230 ft TIC on TBGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 25-235 ft TIC or EBGS

(circle one)

WEATHER CONDITIONS: CLOUDY, 50°F MPW-05-PD-D-RAMPLETIME: 10.75

SAMPLE FLOW RATE: 200

ml/minute

CLP ID:

	B4662	Instrument Typ Complete and/o		ight (YSI Model # 600 XL / Horiba U-22 (circle one) Other (specify)					Instrument:
CURRENT	VOLUME PURGED	DEPTH TO WATER PURICE JUENT PS 1	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cm ^c or µS/cm (circle one)	mg/L (not %)	Units: °C	mV , .	NTUs
0950		10/15	700		6.24	0.229	8.97	10.88	111.2	17.8
0955		15/15	200		6.13	0.235	8.55	11.35	74.8	4.82
[000		15/15	200		5.99	0.233	7.85	11.35	64.4	3.02
1005	<u> </u>	15/15	200		6.10	0.231	5.47	11.33	72.5	1.76
1010		15/15	200		6.10	0.231	4.54	11.30	81.7	0.70
1015		15/15	200		(4.10	0.231	4,43	11,25	84.2	0.96
[020		12/12	200		6.0	0.231	4.28	(1.30	86.9	0.82
	ران (رامه الله الله الله الله الله الله الله ا								·	
			_				 			

SIMULTANEAUSLY WITH Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top a

er Casing

LAI SUPERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 1-29-07

WELL#: PAW MOW-06 Port 1 (A)

DEPTH OF PUMP INTAKE: \$ 70 ft TIC or TBGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 65-75

SAMPLE ID: MPW-06-PD-A-RI SAMPLE TIME: 1355
CLP ID: BUGG?

SAMPLE FLOW RATE: 190 ml/minute

Brose Clau Rate 190

SI Moder# 600XITBT Horiba U-22 Instrument Type/Model: (circle one) Instrument: Other (specify) Complete and/or Circle at right CURRENT VOLUME **DEPTH TO** FLOW SPECIFIC DISSOLVED DRAWDOWN pΗ TEMP. REDOX TURBIDITY TIME PURGED WATER CONDUCTIVITY **OXYGEN POTENTIAL** (± 0.1 SU) (± 3%) (± 0.3 FT) (± 10%) (± 10%) (± 10 mV) (± 10%) 24-Hour gallons / liters | ft TIC / ft bgs. S/cm, (mS/cm^c/)or ft TIC / ft bgs Units: SU ma/L Units: mV **NTUs** (circle one) (circle one) (circle one) uS/cm (circle one) (not %) °C 4000C Prove Vent クタショウ 11.33 0.394 0.400 0.402 11.29 70,2

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

_AI SUPEKFUND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL#: MPW-06 Port ZCB)

DEPTH OF PUMP INTAKE: 95

ft TIC or ff BGS (circle one)

(circle one)

WEATHER CONDITIONS: COOL) O'WINGST

SCREENED/OPEN BOREHOLE INTERVAL: 90-100

Horiba U-22

ft TIC or (t BGS (circle one)

lpstrument:

SAMPLE ID: MPW -06-PD-B-R | CLP ID: BUGGU

SAMPLE TIME: 1445

SAMPLE FLOW RATE: 200

ml/minute

Instrument Type/Model: Complete and/or Circle at right

r	2 9	Complete and	OI OILOIC GLI	.9	outer (openny)					2020
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm(mS/cm²/)or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
Sta	+ DIA	roje	1355	prive vent						
1405	<i>f</i>	9	120	16 14	7.02	0.123	0.60	10.87	-6.8	0.50
4201418			. 1	1 1	6.77	0:124	0.58	10,88		0:10
1425					6.27	0.121	053	10.83	·	0,00
1430				À	6.20	0.120	0.51	10.82	25.9	0.60
1435			Y		6.10	0,121	0.51	10,80	29.2	0:00
1438					6.0	0.122	0.51	10.79	30.5	0.00
1441	66				6.00	0.123	0.51	10.79	30.0	0.00
	· · · ·			 						
										

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

Spec. Conductivity (μS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 μS/cm = 1 mS/cm

TIC = Top

er Casing

LAI SUP___ UND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:	11-29-07
	MAT TOR

WELL#: MPW-06 Port 3 (c)

SAMPLERS: /// /

DEPTH OF PUMP INTAKE: 120

ft TIC or (TBG6 (circle one)

WEATHER CONDITIONS: Cos

SCREENED/OPEN BOREHOLE INTERVAL: 115-125

SAMPLE ID: MPW-6-PU-C-PSAMPLE TIME: KIS

mi/minute

(circle one

Instrument Type/Model:

Instrument:

		Complete and	or Circle at I	right	Other (spe	cify) 600 16-B-	<u>w</u>			(Sight
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE PSI	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SÚ)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm, mS/cm ²)or µS/cm (circle one)	mg/L (not %)	Units:	m∨	NTUs
Start	Dirok	2 1430	7	Drive wat				_		
1455	700			16 14	6.32	0.173	6.58	10.95	52.1	/3
500					6.37	D. 174	6.39	10.86	58.5	16
105					6.33	0.171	6.83	10.87		17
1510				VV	6.76	0.170	7.06	10.84	63.8	16
				7						
-	Rolins					,				
-									,	
	· · · · · · · · · · · · · · · · · · ·				:	·				
								:	·	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL#: MPW-06 Port 4 CD)

DEPTH OF PUMP INTAKE: 165 ft TIC or EBGS (circle one) ERS: 11-29-07

SCREENED/OPEN BOREHOLE INTERVAL: 160-170

ft TIC orat BG (circle one)

HER CONDITIONS: MEJR LE ID: MPW-06-PD-D-RI ml/minute SAMPLETIME: 600

•	34666	Instrument Typ Complete and/	e/Model: or Circle at t		Other (spe	#_ <i>GGO NOS</i> ! cify) (600 Yc-G-	DISSOLVED	TEMP.	REDOX	TURBIDIT
		DEPTH TO WATER	FLOW	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	OXYGEN (± 10%)	(± 10%)	POTENTIAL (± 10 mV)	(± 10%)
'ne	gallons / liters	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not.%)	Units: °C	mV	NTUs
CUI		15/5	120	Second 3 nave ven		0.120	4.41	10:64	47.3	2.5
00	<u> </u>	· ·	1.	16 14	6.45 7.10	0:123	482	3	1	2.39
15					7.49	0.123	4,80	10.63	36,3	1.50
53 53					7.53	0.123		10.50		1.30
	86	•	++	M	7.50	0112				
								-		

vdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mi/min during purging or 250 mi/min during sampling. Readings should be taken every three to five minute well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenth.

cal valuer:

Turbidity = 0 - >500 NTUs

pec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial === 000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm $n_0 = 0.3 - 10 \, mg/L$

LAI SUP ... UND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 11/30/07

WELL#: MPW-07 PORT#1/A

SAMPLERS: BILL WERT, JOE RUTTON

DEPTH OF PUMP INTAKE: 267 ft TIC or (BGS)(circle one)

WEATHER CONDITIONS: 40 F , Surry

SCREENED/OPEN BOREHOLE INTERVAL: 202-212 ft TIC or (ft BG\$

(circle one)

SAMPLE ID: MPW-07-PD-A-RY SAMPLETIME: 0920

SAMPLE FLOW RATE: 200 ml/minute

(circle on

CLPID: BUGGT

•	D4667	Instrument Typ Complete and/o		ight	YSI Model # 600 X / Horiba U-22 (circle one) Other (specify)					Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER muse/vent 931	FLOW RATE	DRAWDOWN (± 0.3 FT)	, ,	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gations (liters (circle one)	ft TIÇ / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm mS/cm ² /or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
0820		12/12	700		5.53	0.316	21.66	11.39	197.3	0.43
0855		12/12	200		551	: 6.31b	16.28	11-26	197.4	0.28
0900		12/12	200	-	5.51	0.316	8.52	11.37	197.4	0.13
0905	_	12/12	700	·	5.50	0.316	6.69	11.39	197.3	0.21
0710		12/12	200	<u></u>	5.50	0.316	5.79	11.40	197.1	0.00
0715		12/12	700	<u> </u>	5.50	2316	5.50	11-42	196.9	0.00
	8						-	-		
· ·					<u> </u>					

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

OLD ROOSEVELT FIELD-GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: $\sqrt{4/70}$ SAMPLERS: $\sqrt{5}/\sqrt{J}$

WELL#: MPWIOT Port B (2)

UDIVIC

DEPTH OF PUMP INTAKE: 225 ft TIC of Bos (circle one)

WEATHER CONDITIONS: 305 was (Rich)

SCREENED/OPEN BOREHOLE INTERVAL: 220-230 ff TIC or

SAMPLE ID:

MPW-07-PD-B-R1

SAMPLE TIME: ()9/80

SAMPLE FLOW RATE: ~50

ml/minute

CLP ID:

B4668

OAMPLE HIME. O to OAMPLE LOW MALE.

		Instrument Type/Model: Complete and/or Circle at right				YSI Model Other (spe	Instrument:				
CURRENT	VOLUME PURGED	DERTH TO WATER Prod/vort		FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / (circle c	ff BGS	Units:	ft TIC / ft BGS (circle one)	ຣບ	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
0800		15/9	10 (20 ps			6.40	0.406	1[.11	11.41	69.1	0
OJEO			l.			6.71	0.401	140	11.51	721	
0870	•					6.84	0.382	and toll	11.60	49.1	
୦୫୯୦	-					6.90	0.366	7.90	11.69	75.2	
\$50						6.95	0.324	7.41	11.69	98-1	
0900						6.45	0.318	7.20	4.71	98.2	
0910						6.18	0.322	715	11.74	104.1	
0420 0						10.	0.320	212	11.70	100-1	ථ
	~4 likes		1				·				
-						<u> </u>		<u> </u>	<u> </u>	<u> </u>	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top.

ter Casing

BGS = Below Ground Surface

LAI SUPERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

SAMPLERS:

11/24/07

BILL WEST, TOE BUTTON

WEATHER CONDITIONS: COUDY, 58 F

SAMPLE ID: MPW-07-PD-C-R1 SAMPLE TIME: 16:05

WELL #:

MPW-07-(PORT #9/6)

DEPTH OF PUMP INTAKE: 255 ft TIC of BGS (circle one)

SAMPLE FLOW RATE: 200

SCREENED/OPEN BOREHOLE INTERVAL: 250 -260 ft TIC of ft E

ml/minute

B4	991	Instrument Typ Complete and/o		right	YSI Model Other (spe		Horiba U-22	(circle d	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER Daine (ver)	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle_one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm_mS/cm/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1540		14/18	200		7.33	0.304	9.23	12.14	67.8	0.57
1545		N/16	200		7.50	0.307	9.19	12.52	41.5	0.28
1550		ų 11% 150	200		7.52	0.306	9.48	/2.43	42.6	0.31
1555		14 /18 150	200		7.53	0.306	9.12	17.41	432	0.35
1600			ঠেক	,	2-80	0.305	8.47	12.33	442	0.30
1605	~हे प्रसंड									
						hade MPW=77	PD-C-RI			,,
			. "	_also co	leter vi	News Williams				
	<u></u> _			·					·_ ·_ · · · · · · · · · · · · · · · · ·	
₹.	1		·		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₹ ` ,				

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

11/28/07

Mpw -08 PORT #1/A

SAMPLERS:

BILL WERT, JOE BUTTON

DEPTH OF PUMP INTAKE: 30

ft TIC of ft BGS (circle one)

WEATHER CONDITIONS: SUNPY, 55°F

SCREENED/OPEN BOREHOLE INTERVAL: 25-35

(circle one)

SAMPLE ID: MPW-08-PD- A-PISAMPLE TIME: 1330

SAMPLE FLOW RATE: 250

ml/minute

CLP ID: BYGH1

₩.	······································	Instrument Typ Complete and/c		right	YSI Model Other (spe	/ 	Horiba U-22 (circle one) Instrument		one) 	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER DAIVE/CONT	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	(circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm, nS/cm ^c) or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1300		10/15 80	250		5.51	0.197	14.39	(Z.32	129.0	0.0
1305			250		5.50	0.117	14.47	12.30	138-4	0_0
1310			250		5.50	0.197	14.30	12,33	143-8	0,05
1315			250		549	0.197	14.57	12.43	150.0	00
1320			250		549	0,197	14.12	12.40	154.7	0.0
1325			250	·	5,19	0.197	14.27	1231	157.8	0.0
1330	~15140									
	,									
·										
					_			-		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top c

LAI SUPERCUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: (1/25/07

SAMPLERS: Jacks Boll west

DEPTH OF PUMP INTAKE: 50

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL: 45-55

ft TIC or ft BC

(circle one

CLP ID: ይለያኒል

SAMPLEID: MPLY-08-PP-B-RI

SAMPLE TIME: 1245

SAMPLE FLOW RATE:

ml/minute

		Instrument Typ Complete and/		right	XSI Model Other (spe	#((circle c	one)	Instrument.	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER Jamy Wast	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	1	Units:	ft TIC / ft bgs (circle one)	su	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
12115		10/15 80	~350		5.63	0.202	12.42	12.00	46.6	Ø.C
12,25					5.69	0.200	11.83	11.83	85.6	0.15
1220-										•
1225					5.68	0 200	3.50	11.83	94.8	0.0
12.30			P		5.68	0.200	13.55	11.84	105.1	0.15
1235		10/15 80	~250		5.68	0.200	13.62	11.72	110-1	0.0
125-60	a 14 ides				5.68	0-199	13.70	11.97	108.7	0.0
				Collect	suple	e 12:45				建设施设
				·						A consultable will

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five min The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPERFUND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

11/28/07 DATE:

WELL#:

MPW-08 PORT#3/C

SAMPLERS: BILL WELLT, TOE BUTTON

DEPTH OF PUMP INTAKE: 80

ft TIC or BG3 (circle one)

WEATHER CONDITIONS: 5000y, 50°F

SCREENED/OPEN BOREHOLE INTERVAL: 75-85

ft TIC or K BG (circle one)

SAMPLE ID: MPW-08-PD-C-R1 SAMPLETIME: 1246

SAMPLE FLOW RATE:

ml/minute

CLP ID:

RUGH3

)	Instrument Typ Complete and/c		ight~	YSI Model # 600 %L / Horiba U-22 (circle one) Other (specify)					Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER DENNE/Vernt PS1	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs. (circle one)	Units:	ft TIC / ft bgs (circle one)	รบ	S/cm, nS/cm² or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
[215		10/15 80	250		6.01	0.167	14.64	11.90	109.8	0.0
1220		10/15	250		6.04	0-166	15.04	12.00	114.5	0.0
1225		10/15	250		6.03	0.167	13.38	17.89	117.7	0.0
(230		10/15	250		6.03	0.167	13.60	11.90	119.9	0.0
1235	~15 fkg	10 /15	250		GOZ	0-167	13.51	11.90	121.9	0.0
							-			
							-			
			ii							-

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (μS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 μS/cm = 1 mS/cm

TIC = Top 🦿

er Casing

LAI SUP JIND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 11/23/07

WELL#: MPW-08 Porty (1)

SAMPLERS:

Toe Button Bil West

DEPTH OF PUMP INTAKE: 160

ft TIC of ft BGS (circle one)

WEATHER CONDITIONS: 50°F 5-00

SCREENED/OPEN BOREHOLE INTERVAL:

5-105 ft TIC or

circle one)

SAMPLE ID: MPW-08-PD-D-K

SAMPLE TIME: 12.00

SAMPLE FLOW RATE:

ml/minute

D. D.	र ७ तथ्	Instrument Typ Complete and/o		right ·	YSI Model Other (spe	# #ST-600 w & /	Horiba U-22	(circle o	ne)	Instrument;
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER Deve/vent PS	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)		Units:	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cm ⁹ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1:30	,	10 /15 28	-250		635	0.164	13.34	11.60	7.4	0
11735	,		_		6.36	0.164	13.35	11.55	18.1	0.05
(११३५०)	<u> </u>		_		6.36	0.164	13.51	11.49	40.6	0
11:45			-		6.36	0.164	13.49	11.54	45.1	0
UC 40			1		6.34	6.164	13.55	11.60	49.6	0
ાાક્ક			1		6.35	0.164	1 3.59	11.62	51.1	0
12,00	15 lakes	10/15 85	~250		Colle	et saple	2 prov			
							,			<u></u>
					•				-	•

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

bgs = below ground surface

A STATE OF THE STA

LAI-SUPERFUND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

11/23/07

WELL #:

MPW-08

(POPT 5/E)

SAMPLERS: BILL WERET, TOE BUTTON

DEPTH OF PUMP INTAKE: 120 ft TIC or t BGS (circle one)

WEATHER CONDITIONS: SWAY, 50 F

SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLE ID: MPW-08-PD-E-R1 SAMPLE TIME: 1200

SAMPLE FLOW RATE:

ml/minute

CLP ID:

רטי		Instrument Type/Model: Complete and/or Circle at right			Other (Specify) / Horiba U-22 (circle one)					Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER DEIVE/VENT PS 1	FLOW RATE mL/mm	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm, nS/cm9 or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs
1130		.10 /15 25	260		6.32	0,101	6.85	11.50	74.5	0.20
1135		10/15	260		6.71	0.102	7.72	11.55	73.4	0.0
1149		10/15	260		677	0-102	7.84	11.36	75.7	0.0
1145		10 /15 \$5	260		6.80	5.102	7.96	11.52	77.3	0.10
1150		10/15	760		6.82	0.102	7.99	11.50	79.0	0.0
1155	~15 pks	10/15	260		6.84	0.102	8.02	11.36	80.5	0.0
	•									
	-								<u></u>	

WITH POPET 4/D

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of

r Casing

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

MPW-09 Port / (A)

DEPTH OF PUMP INTAKE: 15

ft TIC or REGS (circle one)

WEATHER CONDITIONS: COO) OVERCAST

SCREENED/OPEN BOREHOLE INTERVAL: 10-20

ft TIC of ft BG

(circle one)

VOLUME

PURGED

CLP ID:

CURRENT

TIME

instrument i ype/	Model:
Complete and/or	Circle at right
	<u>: </u>

DEPTH TO

WATER

FLOW

,	ight	Other (spe	cify) 74-64				2020	
		pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)	
	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cm ²) or µS/cm (sirele one)	mg/L. (not %)	Units: °C	mV	NŤUs	
	Secord 3		1	T				

			1251	(± 0.3 FT)	(± 0.1 SU)	(± 3%)	(± 10%)	(± 10%)	(± 10 mV)	(± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	(circle one)	SU	S/cm, mS/cm ⁹)or µS/cm (circle one)	mg/L (not %)	Units: . °C	mV	NŤUs
1215	Stact	Dirge		now vent						
1225	1019111		130	1614	5.73	0.202	8.59	10.81	176.9	0.15
1235)		1		5,73	0.202	L .	10.85	181.3	0.05
1240				£	5.73	0.202	8.45	10.85	184.5	
1243	86				5,73	0.207	8, 44	10.85	185.7	0.05
				X			4.		,	<u> </u>
· · · · · · · · · · · · · · · · · · ·				-			1. *:-		,	
			· · · · · ·						15 A	
		-								
	 	· "				·.			å 1	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 11-29-07

WELL#: MPW-09- PONT 2 (B)

SAMPLERS: ME, JOZ

DEPTH OF PUMP INTAKE: 50 ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: Cool, over 95+

SCREENED/OPEN BOREHOLE INTERVAL: 45-55

ft TIC or ft BG

SAMPLE ID: MPW-09-PD-B-R SAMPLE TIME: 1210 SAMPLE FLOW RATE: 240 ml/minute purge flow rate 240 _____

(circle one)

\5 	4GH 7	Instrument Typ Complete and/o		right _	YSI Model Other (spe	# 50 My 3 cify) [600 X - 6	Horiba U-22	(circle c	one)	instrument:
CURRENT . TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units: PSI	ft TIC / ft bgs (circle one)	su	S/cm, nS/cm² or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
Stort	Duray	113	130	Secres +6-14	5.65	RR 11-29-07				
1145			1	16 14	6.85	0.252	6.87	10,45	157.6	0,00
1150				5.62	7.43	0,251		h.50	160.8	
1155		,		L.C.It-	5.62	0.25	7.48	10.51	163.9	0:00
<u> 200</u>			ļ.		5.61	0.252	7.49	10.59	170.5	0.00
1205					5.61	0.252	7.49	10,58	171.3	0:00
1209			77	V	5.61	0.252	7.5 i	10.5%	172,0	0.00
	8.5 likes		3							
									-	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of

Casing

WELL#: MPW-09 Post 3 (C)

SAMPLERS: ME, OR

DEPTH OF PUMP INTAKE: 75

ft TIC or R.BGS (circle one)

ml/minute

WEATHER CONDITIONS: O Vercost Cold

SCREENED/OPEN BOREHOLE INTERVAL: 70-80

SAMPLE ID: MPW-09-PD-C-R | CLPID: BUGH8

SAMPLE TIME: 130

SAMPLE FLOW RATE: 230
Purge Flow Parle 230

(circle one)

		Instrument Typ Complete and/o		right	Other (spe		Horiba U-22	(circle o	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	RANE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm mS/cm*/or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
Stoff	DUVOR	1055	130	Geconds Drive Vent						
105	1			16 14	5.90	0.273	1.78	10.28	133.6	0,90
1115				i	5.86	0.274	1.66	10.25	145.9	0,80
1120					5.85	0.273	1.63	10.37	149.8	0,80
1125		<u>.</u>		1	5.85	0:273	1.60	10.40	152.3	1.00
1158		8.0 €			5.85	0.273	1.59	10.42	153.9	0.90
					·	1				
			,							
	·	_						,		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

LAI SUPER UND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DEPTH OF PUMP INTAKE: 95 ft TIC out BGS (circle one)

WEATHER CONDITIONS: OVECST, COID

SCREENED/OPEN BOREHOLE INTERVAL: 40-100

ft TIC or (circle one

SAMPLE ID: MPW-09-PD-D-K SAMPLETIME: 1045

SAMPLE FLOW RATE: 250

ml/minute

· ·		Instrument Type/Model: Complete and/or Circle at right			YST Model # 4600 4475 Horiba U-22 (circle one) Other (specify) XC-13-m				one)	instrument:
CURRENT . TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Ноиг	gallons,/ liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	su	S/cm,mS/cm ^c /or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
Star	1 Pu	80 10	15	Live vent	6 34 1-2C					
1025			130	16 14	6.34	0.136	3.60	10.30	95.7	2.7
1030					6.36	0:187	2.99	10.32	100.8	2.2
1035					6.36	0.18.7	3.06	10.34	105.6	2,2
1040					6.36	0.188	3.08	10.34	108.9	2.6
1043	9.06		7	JJ	6.36	0.189	3,05	10.34	111.3	2.8
:										·
			,		·	<u>-</u>				

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TiC = Top c

r Casino

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:	11-29-	07
DATE:	11-29-	0/

DEPTH OF PUMP INTAKE:

ft TIC of ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 125-135 ft TIC or

(circle one)

CLP ID:

ml/minute

· ,		instrument Typ Complete and/o		right	YSI Mode Other (spe		(circle one)		Instrument:	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE PSI	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gailons / liters (circle one)		Units:	ft TIC / ft bgs (circle one)	SU	S/cm (mS/cm²/)or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
-5tart	Dura	0919	B 100	seconds Drive Vent						
0925) / ,)		,	16:14	6.43	0.181	1.95	9.66	176.7	015
0935			,	16 14	6.40	0.171	1.53	9.90	168,00	0.10
6940				16 14	6.40	01170	1.38	9.94	163.7	0.05
0945				16 14	6,40	0.170	1.37	9.94	161.5	0.05
0950		,		1614	6.40	0.170	1.38	9,90	159.4	0.05
0953	i.5goll	<u>``</u>		1614	6.10	0.170	1.37	9.91	158.4	0.05
	3.	•								
	-									•

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPER UND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 11/27/07

SAMPLERS: J. B. B. West

DEPTH OF PUMP INTAKE: 165 ft TIC or & BGS (circle one)

WEATHER CONDITIONS: 500 F Sunny

SCREENED/OPEN BOREHOLE INTERVAL: 160-170

ft TIC or tt BC (circle one)

SAMPLE ID: MPW-10-11-A-LI

SAMPLE TIME:

SAMPLE FLOW RATE: 250

ml/minute

CLP ID: 244.EA

JEI 1D. 12 1	47_241				•					
	4GEO				YSI Model Other (spe	Instrument: مُونِّع عَالِمُونُ				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER PARTYERS ISL	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	• -	Units:	ft TIC / ft bgs (circle one)	SU	S/cm (mS/cmc) or µS/cm (circle one)	mg/L (not %)	Units: °C	mV .	NTUs
1315		174 ilse 13505	ZSON		5.86	0-465	3.79	1243	68.5	0.0
1310		items/ilands		_	5.84	0.465	5.83	12.42	73.2	,—
1315		135 psi			5.84	0.465	5.34	1247	745	0.0
1320			250al		5.83	0.465	583	12.34	769	0.25
1325	_			- NY	in East		•			
1330 1410		12/11 3505:	250ml		5.88	0.463	5.87	1275	8 5.2	0.0
MIS					5.84	0.462	524	11.912	80.7	0.0
1420	WL				5.84	6.462	5.84	N. 37 2	78.7	0-0
					south P	1425			·	
			-			'			}	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three-to-five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of

r Casing

LAI SUPEL JUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE:

11/27/07

(PORT # Z (B))

SAMPLERS: BILL WEST / JOE BUTTON
WEATHER CONDITIONS: PARTLY CLOUDY, 55°F

DEPTH OF PUMP INTAKE: 190

ft TIC or BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 185-195

(circle one)

SAMPLE ID: MPW-10-PD-B-R1 SAMPLETIME: 1430

SAMPLE FLOW RATE: 250

ml/minute

CLP ID:

Д.	(GE					YSI Model # 600 X				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER DELVE/VENT	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour .	gallons (liters (circle one)	ft TIC / ft bgs (circle one)		ft TIC / ft bgs (circle one)	su	S/cm mS/cm or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1305		12/11	250		5.90	0.624	5.27	12.37	38.7	0
1310		12/11 155	250		5.88	0-629	2.79	12.40	52.3	<u>6</u>
1315		12/11	250	·	5.87	0.629	2.34	12.64	57.9	0.25
1320		12/11	250		5.87	0.630	2.27	12,50	60.5	0_
1325		12/11	250		5.88	0.631	2.42	12.14	67.2	0
-1330 MI	7	12/11	250		5.86	0.633	3.53	11.89	93.3	0.05
1415	-4-	12/11	2.50		5.85	0.633	2.86	11.89	73.8	0.05
1420		12/11	250		5.87	6.632	2.31	11.88	95.1	0.10
1425	106	12/11	250		5.87	0.633	2.40	11.86	96.7	0.10
						· _	<u>.</u>		,	

PumpED Symutaceusly with MPW-ID PORT #1 (A)
Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPEKEUND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 11/27/08

WELL#: MPW-10: Port 3 (c)

SAMPLERS: Joe Button / Bill Wert

220 ft TIC or (TBGS (circle one) **DEPTH OF PUMP INTAKE:**

SCREENED/OPEN BOREHOLE INTERVAL: 215-225 ft TIC or ft BG

WEATHER CONDITIONS: 50F SURNY
SAMPLE ID: MPW-10-PD-C-R1 SAMPLE TIME: 1625

(circle one)

CLP ID:

SAMPLE FLOW RATE: 200 minute

BUGEZ				e/Model: or Circle at :	right	VSI Model # 606 XL-6-14 Horiba U-22 (circle one) Other (specify)					Instrument:
CURRENT TIME	VOLUME PURGED	WATER CAN'T		FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY
24-Hour	gallons / liters (circle one)	ft-FIC / ft bgs. (circle one)		Units:	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1545		12/11	135	200		6.24	0.392	5.21	11.72	-126.1	0
1550						6.28	0.395	5.65	11.73	-98.1	0
122					•	6.28	0.395	5.75	11.72	-67.9	0
16,0						6.28	0.395	5.85	11.73	-60.8	0
1605		-				627	0.395	6.00	11.72	-50.4	0
1610						6.27	0.395	6.08	11.71	-49.40	0
1615	7.5L	4		7		6.27	0.395	6.10	11.7/	- 46.2	D
					:					<u> </u>	_
											
								<u> </u>			<u> </u>

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of

∍r Casing

LAI SUPERFUND SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 11-27-08

SAMPLERS: Joe Button: 18ill West

WEATHER CONDITIONS: 50%, Sunny

SAMPLE ID: mPW-10-PD-D-R-1 SAMPLE TIME:

WELL#: MOW-10 Pirt 4 (D)

ft TIC or (t BGS (circle one) DEPTH OF PUMP INTAKE: 240

SCREENED/OPEN BOREHOLE INTERVAL: 235-245 ft TIC or #BGS

(circle one)

SAMPLE FLOW RATE: 200 ml/minute

CLP ID BUGES		Instrument Type/Model: Complete and/or Circle at right					YSI Model# 600 XC-B THoriba U-22 (circle one) Other (specify)					Instrument:
CURRENT TIME	VOLUME PURGED	DEPTE WATE	NEW PS	FLO RAT		DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIG / it bgs (circle one)		Units:		ft TIC / ft bgs (circle one)	su	S/cm/mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1545		12/11	135	1	00		603	0.378	4.83	11.51	29.0	0.
1550					1		6.28	0.378	6.00	11-54	26.5	G
1555	<u> </u>						6.32	6.377	6.52	11.58	27.7	0
1600			\top		T		6.35	0.378	6.91	11.60	29.7	0
1605							6.37	0.378	7.45	11.57		0
1610		,	1		_		6.39	0.378	7.67	11.58		0
1615	7.56		1	1	,		6-38	0.376	7.70	11.59	37.2	0
		-					14.1			;		·
·												
	 											

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LAI SUPERFUND SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

11-28-07

WELL#: MW-05

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: 45°

SCREENED/OPEN BOREHOLE INTERVAL: 180 -195 ft TIC or ft BGS

(circle one)

SAMPLE ID: MW-05-PD-RI

SAMPLE TIME: 1300 SAMPLE FLOW RATE: 250 ml/minute

Instrument Type/Model:

(circle one) Instrument;

		Complete and/	or Circle at	right	Other (spe	2020				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1/30	Star	+ Pumpl84.	1250							
135		184.92	250		5199	0188	9.48	13.58	18.9	16.0
1140		184,92	250		5.68	0.187	8,97	16.00	137,8	16,1
1/50	-	184,92	250		5,67	0:189	8,57	13,14	148.7	30
1200		184.92	250		5.66	0,188	8.50	18.79	143.8	36.1
1210		184.92	250		5.63	0.187	8.43	18,97	156.8	40.2
220		184.92	250		5.62	0.187	8.40	18.87	160, 2	31,1
1230		104,02	250		5.61	0.187	8.33	19.25	162.0	24.0
1240		184.92	250		5.60	0.187	જે.યા	13.86	167.2	18.5
1250		184,92	250		5, 60	0.186	8.38	18,91	171,2	15.3
12-55	225 C	154.90	250	`	5.60	0.185	9,35	18.92	172.4	12.1

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TiC = Top <

∍r Casing

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 11-28-07

SAMPLERS: ME, JO

DEPTH OF PUMP INTAKE: 184

SCREENED/OPEN BOREHOLE INTERVAL: 180-485 ft TIC offt BG

WEATHER CONDITIONS: 40-45° SAMPLE ID: FG-01-PD-R1

SAMPLE TIME: 0955

SAMPLE FLOW RATE: 200

mi/minute

			Instrument Typ Complete and/o		ight	SI Model Other (spe	# 660-1/18] cify) <u>XC-6-</u> M	Horiba U-22	(circle o	ne)	Instrument:
	CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
	24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle o ne)	mg/L (not %)	Units:	mV	NTUs
	0855		4165.19 Dur	W	Brown	Color	Turbid				
30	0405	2 30	165.12	ప్రం		5.98	0.192	9.48	16.81	145.4	29
	0935		11	400		5.97	7:191	9.45	16.85	147,4	20
	0940		11	400		5.91	0.191	9.51	16.84	148.8	18
	0945		1.1	400		5.97	0.191	9.52	16.8 /	149.2	15
	0950		ĮΙ	५८०		5.91	0,190	9.53	16.87	150.3	10
	0953	12.00		400		5.97	0.190	91.57	16.80	151,6	8
	,	-									
					· 					£	
									<u> </u>	<u> </u>	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

LT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/19/08

WELL#: MPW-01-PD-A-R2

SAMPLERS:

DEPTH OF PUMP INTAKE: 165

ft TIC or ft BG6 (circle one)

(circle one)

WEATHER CONDITIONS: Sunny 50°F breezy

Instrument:

(circle one

CLP ID:

Instrument Type/Model:

CmDminute

10-1		Complete and	•	right	Other (spe	cify)	nonya U-22	(Circle		La motte 202
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons /	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
08:28		1	250~1		5.25	Q.350	0.16	11.44	177.2	
08:35			250-1	·	5.30	0.348	4.3	(1.45	124.6	a.04
○8 :40			2502		5.35	0.350	0.03	1146	107.8	1.58
∂ 8:45			250%		5.34	0.353	9.04	11.46	99.4	1.27
08:50		6	250~		5.39	0.854	0.07	11.47	93.7	1.80
08:55			250~		5.30	0.357	0.08	11.53	90.7	1.70
09:00			259~		5.29	0.331		11.58		1.70
09:95			250ml		5.26	0.360	0.04	11.56	72.9	1-60
09:10	14.3L		250ml		ছ.গ্ৰ	0.361	0.05	11.57	68.8	1.30
09:15	09:25		2507		5.27	636.0	0.04	11.69	66.1	1.30
09:20 (sampling ?	time)	920VI		5.56	0.363	0-05	11-66	64.0	to five minutes

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~65,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

ROOSEVEET FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/19/08

WELL#: MPW-01-PD-B-R7

SAMPLERS: Jose

DEPTH OF PUMP INTAKE: [65 ft TIC or ft EGS circle one)

WEATHER CONDITIONS: Swy/Bresy 50-F

SCREENED/OPEN BOREHOLE INTERVAL: 160-170

ft TIC or tt BGS (circle one)

SAMPLE ID: MPW-01-PD-B-RZ SAMPLE TIME: 1045

SAMPLE FLOW RATE:

ml/minute

CLP ID:					47 (0)		420	,		
CLP ID: 84	XIZ	instrument Typ Complete and		right	YSI Model Other (spe	# (n00 XL-B-M) ecify)	/ Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons /	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: . °C	mV.	NT∪s
7:50	0		250.		5.00	0. 363	0.46	11:48	61.0	0.95
9:55			250		5.05	0.363	0.54	11:49	65.7	0.35
10:00			250		5.08	0-367	0.55	1147	74.2	0.25
10:05		·	250		5.08	0.343	6.56	.11.47	76.7	0.10
10:10			250.		5.09	0.363	0.57	11.50	83.7	0.05
10:15			256.	<u> </u>	5.09.	.6.365	6-58	1:50	87. j.	0.15
10:20			250		5.09	0.364	0.61	ii.53	100.4	0.10
10:25			250.		5.09	0.366	0.63	11.54	107.3	0.05
10:30	1	•	হ্লত		5.06	0.367	0.64	11.56	ila·2	0010
10:35	12.96		250		5.09	0,367	0.66	11.57	117.7	0.03
19:45	. SGAllon	15	250		5.09	0-367	0.66	11.59	1195	0.08

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

10:45 - 5 smale calleder Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top €

er Casing

VATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/19/08

WELL#: MPW-01-PD-(-R2

DEPTH OF PUMP INTAKE: 165 ft TIC or (BGS (circle one)

SAMPLERS: J. Neyes; S. OHARE
WEATHER CONDITIONS: 50, 2 Sample Time: 150

CLR ID: MPW-61-PD-C-R Z SAMPLE TIME: 1150

SCREENED/OPEN BOREHOLE INTERVAL: 160-170 ft TIC or ft BGS (circle one

SAMPLE FLOW RATE: ml/minute

CLP ID:

840	YIYA XIZ	Instrument Typ Complete and/		right	YSI Model Other (spe	#	Horiba U-22	(circle	one)	Instrument:
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA	TURBIDITY ²⁰⁷ (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
11:10			250		5.78	0.313	-0.60	11.49	98.0	2-64
11:05			250		5.56	0.314	-0.65	11:48	78.0	6.99
11:10	1/		250		6- 35	0.348	0.13	11:50	56.1	0.85
11:15	1/		250		6.68	0.351	0.12	11.51	56.6	0,50
11:20			250		6.88	0.352	0.12	11.52	57.8	0.30
11:25	1		250		6.94	0,363	6.13	11.51	28.8	0.35
11:30			250		6.97	0.350	0.13	11.57	59.1	0.40
11:35	را د		250		7.00	0.347	0.14	11.65	60.1	1.3
11:40	12.56		250		7.92		0.14	11.78	61.7	5.3
11:45	5 gallors		250		7.93	Q.337	0.15	11-80	61-6	2.4

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Lawrence Aviation Industries Site **Development Record**

DATE: 5/27/08

WELL#: MPW-02-A

SAMPLERS: ACT SO

CLP ID: 2 /1: 36 1.61

WEATHER CONDITIONS: Sonny Hand

SAMPLE ID: 100 - 02 - PD - A-R2 SAMPLE TIME: 1605

L

DEPTH OF PUMP INTAKE: [95 ft TIC or t BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 190-200 ft TiC or (1868

SAMPLE FLOW RATE: 80

mi/minute

54 	۲۱ نج 	instrument Typ Complete and		right	Si Model Other (spe): <u>680 XL=6-1^m</u> scity)	Horiba U-22	(circle	one)	instrument: Zozo
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
15 25			80		6.00	0.403	4.15	28.32	204.5	2.0
15.30					6.05	0-408	4.38	24.85	223.7	0-15
1535				-	\$5.76	0-406	4.90	18.04	244.3	0.00
1540	5				5,69	0.401	4.80	17.80	255.6	0./0
1545		·	_		5.64	0.401	4.99	16.80	267.4	0.05
1550					5.73	0.402	5.37	17-14	277.1	0.10
1555	a.8L				5.75	0-402	5.43	17.37	287.1	0.10
1600 -	P Smp	le collect	el V			•				
								Junio de la		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top.

ner Casing

Lawrence Av. n Industries Site **Development Record**

DATE: 5/ 27/08

WELL#: MONOR-B

SAMPLERS: FR SO

DEPTH OF PUMP INTAKE: 220 ft TIC or BGS (circle one)

WEATHER CONDITIONS: Sonny / hund

SCREENED/OPEN BOREHOLE INTERVAL: 215 - 225 ft TIC offt BGS

SAMPLE FLOW RATE: 160

COD WAR-OD

ml/minute

SAMPLE ID: MPW-62 PO-B-R2 SAMPLE TIME: 1410
CLP ID: 84×15

		Instrument Type Complete and/		right (Other (spe	ecify)	/ Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
13 18		-	100		5.89	0.287	4.47	22.35	130.9	0.25
1325.					5.35	0.294	19.41	20.01	178.9	0.60
1335	<u> </u>				7.35	0.294	10,52	သ၀.30	203. 4	0.45
1340				<u> </u>	5.35	0.294	9.99	20.41	217.5	0.10
1345					5.36	O ₂ 295	9017	38,00	ටු බුව ද	0010
1359	<u> </u>		1 100		5.35	0,215	8-80	30.5 8	240.0	0.35
1335					5.37	0.295	10.15	20,48	253.4	۵.45
1400					5.35	0 294	10.15	20.46	266.0	O. 40
1405	5.50		V	·	5.36	0.291	10.22	20.52	279.2	0.30
1410 -	Sande C	ollected								

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Lawrence Aviation Industries Site **Development Record**

DATE: 5/27/08

WELL#: MPWO3-\$6

SAMPLERS: F.R. /S.O.

WEATHER CONDITIONS: Over-cost / Light precipitation

SAMPLE ID: MPWO2-PD-B-R2

SAMPLE TIME: 1225

CLP ID:

DILY 160

DEPTH OF PUMP INTAKE: 245 ft TIC or fulge (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 240-250 ft TIC OKT BGS

SAMPLE FLOW RATE:

ml/minute

B4	1/1/0	instrument Typ Complete and/		right	YSI Model # 680 MWS / Horiba U-22 (circle one) Other (specify)					Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 9.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1130			120		6.37	0.268	4.06	17.59	106.3	0.35
1140			. \$		6.06	0.265	4.07	17.49	116.4	0.00
1150]		6.05	0.264	4.18	18.22	/23.3	0.25
1200				٠.	6.04	0.266	4.40	18.69	133.6	0.15
1205	·		1		602	0.264	4.58	19.03	139.3	0.05
1210					6:02	0.265	4.68	19.15	144.1	0.15
1215	·				6.01	0.265	4.74	19.15	149. 4	0.25
1220	9.36		V		6.02	0.265	4,80	19.20		0.15
1225 -	Sample									
•		_								

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top a timer Casing

Lawrence Avi **Development Record**

DATE: 5/27/08

SAMPLERS: FR + SO

WEATHER CONDITIONS: Overcast / light rain

SAMPLE ID: MPW -02-PD-B-R2 . SAMPLE TIME: //0/ CLP ID: @4X17

WELL #: MPW-02-80- 24 AMARIN

DEPTH OF PUMP INTAKE: 270 ft TIC or EBGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 265-275 ft TIC or FEGS (circle one)

ml/minute

		instrument Typ Complete and		right	Other (spe	x: <u>660 XD=6- M</u> :cify)	Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1010			150		6.56	6.263	9.12	17-60	148.0	0.55
1020			1		5.84	0.255	6.42	15.36	49.1	0.50
1030					5.94	0.256	8.08	15.14	62.7	0.20
10 40					5.99	0.257	8.67	532	75.5	0.15
1045					5.97	0.256	8.78	15.41	81.3	0-20
1050					5.96	0.257	8.96	15.37	86.9	0.20
1055	· ·				5.96	0.257	9.17	15.36	91.3	0.25
1100	8.36		J		5.95	0.252	9.24	13.34	95.2	0.20
1105-	- Supe	Collected					<u> </u>	ļ		
			<u> </u>	<u> </u>						

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

20.6°C

CLD ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/80/08

SAMPLERS: Jose Reyes / Son Q'Have
WEATHER CONDITIONS: Cloudy / Light Drizzle

SAMPLE ID: MPW-03-PD-A-R2-SAMPLE TIME: 1505

CLP ID: 34×18

WELL #: MPWO3-PP-ATE

DEPTH OF PUMP INTAKE: 180 ft TIC or BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 135-185 ft TIC or RBGS

(circle one)

SAMPLE FLOW RATE: COO ml/minute

	·	Instrument Typ Complete and/		right	YSI Model Other (spe	#_ GEOX	Horiba U-22	(circle	one)	Instrument 4
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
14:20			3504L		6.17	0.209	0.80	11.08	46-2	7.16
14:25			seri		6.20	0.ಎ೦೪	0.75	11-07	39.1	6.51
14:30			250mL		6.23	0.209	0.62	11.03	35. Q	5.58
14:35			250.1		624	0.20g	0.61	10.99	35.8	5.17
14:40			SEOUL		6.28	0.313	Q. 52	10.96	51.5	4,28
14:45			250 mL		6.32	9.214	0.42	10.90	10.1	3.77
14:50			850/F		6.36	0.217	0.31	10.87	-1.8	3.67
14:55			DER ML		6.38	0.218	0,24	10.91	- 8,7	3.6!
15:09	11.36		250 nL		6.42	0.019	0,21	10.92	-9.1	3.62
15:05	-> sale	4	850 YF	, <u>S</u> ,0,						

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial -55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top or miner Casing

LWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/20/08

WELL #: MPW-03-PD-B-

SAMPLE FLOW RATE:

SAMPLERS: J.R. /S. O.

DEPTH OF PUMP INTAKE: 265 ft TIC or (BG) (circle one)

WEATHER CONDITIONS: Clary / Light Drizzle

SCREENED/OPEN BOREHOLE INTERVAL: 195-205 It TIC ON BGS (circle one)

SAMPLE ID: MPW-03-PD-B-RZ SAMPLE TIME: 1550 CLP ID: 图以19

ml/minute

		Instrument Typ Complete and/		right	YSI Model Other (spe	# 650X&\\ P\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Horiba U-22	*		Instrument:	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs	
15:05			250 nL		6.5l	0.202	0.84	10.64	-19.6	48.0	
15:10		. *	250 mL		6.08	0.210	1.00	11-10	0.1	608	
15:15			250 mL		6.00	E16.0	0.65	11.07	- 7.1	ට දි ල	
15:29			250mL		6.14	0.006	~0.45	10.96	1-35-	4.39	
15; <i>8\$</i>			250mL		6.36	0. 249	-0.62	10,93	-43.6	1.14	
(5:39			520m		6.40	0. 947	-0.65	10.85	-52	1.43	
15135			250 %		6.43	O. 245	-0.65	10.82	- <i>57,</i> 5	2.36	
15:40			∂ 50%L	:	6.44	0,243	-0,62	10.86	-59.8	9 .00	
15:45	11.36		250 mL		6.41	0.241	~ 0.2 g	10-80	-57.0		
15:50	s calle	ěl ne	<u> </u>								

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

OLD ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE 5.0. LOW FLOW GROUNDWATER SAMPLING PURGE RECORD 50 C

DATE: 5/20/08

SAMPLERS: J.R. /SO.

WEATHER CONDITIONS: Clary / Light drizzle

SAMPLE ID: MPW-03-PD-C-PSAMPLE TIME: 1705

CLP ID: 0122

WELL #: APW-03-PD 6-74

DEPTH OF PUMP INTAKE: 220 ft TIC or BGS circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 215-225 ft TIC or TEGS

(circle one)

SAMPLE FLOW RATE:

ml/minute

હવ	K20	Instrument Type Complete and/		right	Model Other (spe	# 656 X6-8-17 cify)	Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs
16:25			2504		5,86	0.291	2,13	10.77	3.7	5.47
16:30	_		250 mL		6.40	O. 332	1.80	10.70	-11.7	2.49
16-35			250 mL		6.90	0.327	0,98	10.76	-16.2	1.48
16:40			2504		6.85	0-312	0.88	ic.74	-7.0	1.75
16:45			250 1		6.75	0,307	0.87	lo,73	-0.5	50
16:50		·	25901		6.60	0.309	1.11	10,71	5.6	9.0
16:55			250,1		6.57	0.305	1,22	10.71	11.8	1.5
17100	10.02		2502		6.57	0.310	1.35	10,74	14.8	1.3
17105	>Calla	tel Song	10							
	1	1				Ì	1			

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top A

er Casing

RELT-FIELD GROUND WATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/20/08;

WELL #: MPW-03-PD-D-FL

SAMPLERS: J.R. / S.O.

DEPTH OF PUMP INTAKE: 240 ft TIC or EBGS (circle one)

WEATHER CONDITIONS: Cloudy / Light Drizzle

SCREENED/OPEN BOREHOLE INTERVAL: 235-245 ft TIC of EBG3

SAMPLE ID: MPW-03-PD-D-RID

SAMPLE TIME: 18 10

SAMPLE FLOW RATE: 500

ml/minute

CLPID: RUXZ\

6	9761	instrument Typ Complete and/		right .	(S) Model Other (spe	#_ 660 A53 M	Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	ຣບ	S/cm, mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
17:00			J20 67		6.59	0.310	3.48	10,55°	26.7	3.5
17:15			250~1		6.SD	0, 259	3.47	10.51	26.7	33
17:20			250~		5.46	0.297	-0.02	10.73	9.6	26
17:05			2504		6.22	0.297	-0.61	10.40	-,21.0	35
17:30			25001		6.25	ପ୍ର ଅଟେ	-0.17	10.41	-24,2	36
17:35		,	920ml		6.30	0.299	-0.39	1053	-30.2	38
17:40	·		250ml		6,28	0.299	-0.61	10.50	-32.9	38
17:50			STONL		6.30	0.298		10.54	-37.7	3Q
17:55			250~1		6.30	a.298	-0.74	10,53	-3901	30
16:00	1 6 5 4		250mL		630	0.298	-0.61	10,53	-40,4	9.8

18:10 -3 collected sample

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

OF TROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/21/08

WELL#: MPWO4 - A

SAMPLERS: JR. / S.O.

DEPTH OF PUMP INTAKE: 155

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: SURRY 50°F
SAMPLE ID: MPWOH-PD-A-RD SAME

SCREENED/OPEN BOREHOLE INTERVAL: 150 -160

(circle one

SAMPLE TIME: 910

SAMPLE FLOW RATE: 200

mi/minute

CLP ID:

134	xzz	Instrument Typ		right	Si Model # 600% / Horiba U-22 (circle one) Other (specify) NA					Instrument;
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
ॐ :3○			250mL		5.65	0.484	०.उड	11.75	108.4	16
08:35			9204L		543	0.534	0.85	(1.88.	95.3	8.7
08:40		and a	250 mL		5 35	0.550	0.34	PO.5	82.4	126
08:45			5204T		5,34	0.551	0.41	। ସ.ସ୩	.75.3	1,0
as:50	·		250 ml		5,34	0.550	0,44	12.36	70.3	121
08:5S			950mL		5.34	o.852	a.40	12.34	66.8	1.0
9100			250×L		533	Q.552	0.35	1253	64.3	Q.85
09:05	10.01		950mL		5.34	0.555	0.33	1254	62.9	0.90
09:10 -		collected								
·			<u> </u>	<u> </u>						

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

OLD ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

Janh - 10.0 C

DATE: 5/21/08

WELL# HPW-04/B

SAMPLERS: JR, 50

DEPTH OF PUMP INTAKE: 175 ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: 30 7 Same

SCREENED/OPEN BOREHOLE INTERVAL: 1701-180ft TIC of BGS

SAMPLE ID: MAW-O4-DD A-R? SAMPLE TIME: 9:10

SAMPLE FLOW RATE: 200

ml/minute

CLP ID:

Instrument Type/Model: Complete and/or Circle at right

/ Horiba U-22 (circle one) Other (enerity)

		Complete and	of Circle at	ugut	Ontal (she					<u>වෘත්</u> ව
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	ຣບ	S/cm, mS/cm3/or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
8:30			250	/	5.24	०. 40	-13.75	12.04	-7.6	0.90
8:36			250		5.33	0.41	- 0.31	12.38	-14.4	0.45
8:40		·	250		5.35	0.422	0-89	12.56	-6.3	0.25
8:45			250		5.56	0.426	0.85	12.69	2.3	0-15
B:50			250	1	5.35	0.429	0.63	12.70	11.9	0.12
8:55			250		5.34	0.430	0.43	12.67	20.0	0-05
9:00			250		5.35	0.431	0.दा	12.70	20.4	0.10
9:05	1001		250	/	5.34	0.430	0.40	12.71	20.5	0.08
9:10	ye-42	codec	ted.	•						
_	1	1			1		l		L	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

OLD ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5 21 08

WELLS: 11702-04-C.

SAMPLERS: JILSO

DEPTH OF PUMP INTAKE: 205 ft TIC or (EBGS)(circle one)

WEATHER CONDITIONS: 50° + 2004

SCREENED/OPEN BOREHOLE INTERVAL: 200-210

(circle one)

SAMPLE ID: 40-04- PEC-772 SAMPLE TIME: 1005

SAMPLE FLOW RATE: 250 ml/minute

CLP ID:	ian					×(-6-1				
347	(24	Instrument Typ Complete and/		right	YSI Model Other (spe	# 680 +39 ecify) ~/A	Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	ຣບ	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs
9:30			200		6.95	0-548	0. N	12.76	-36.2	0.15
9:35			200		7.02	0.555	0.09	12.81	-35.4	1.00
9:40			Zob		7.09	0-554	0.09	12.87	-34.5	1.09.1
9:46			200		7.10	0-554	0-09	12.87	-340	1.00
9:50			200		7.14	0.559	0.01	12.90	-33.9	0.40
9:56			200		7.15	0.554	0.07	12.99	-31.6	0.45
10:00	7.06		200		7.15	0.55	0.05	13.00	-31.8	2.0
10:05	Cool	6000	el.				, , , , , , , , , , , , , , , , , , , ,	<u>.</u>		
				,						
	-									

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top obligation Casing

ilt field groundwater contamination site LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/21/08

WELL#: MPUCH-OHED)

DEPTH OF PUMP INTAKE: 225 ft TIC or R BGS (circle one)

WEATHER CONDITIONS: Sunay

SCREENED/OPEN BOREHOLE INTERVAL: 230-230

ft TIC or ft BG (circle one

SAMPLE TIME: \(

SAMPLE FLOW RATE: OCO

ml/minute

CLP ID:	4x25	instrument Typ Complete and		right .	YSI Model Other (spe	one)	Instrument:			
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs
09:30			282~F		5.70	0.510	0.30	1245	57,2	0.80
<i>0</i> 9:35			25046		5.72	0.497	0.26	12.41	41.0	0.80
09:40			Sour		5.74	0.514	೦.ಎ3	12.65	348	0.80
09:45			250mL		5.74	०,५५०	0.32	13.86	.42.3	0,30
Q41,50		,	⊃ 20.47		5.71	0.558	0.30	13,02	49.7	0.10
09:55			250 mL		5.69	0.560	0.29	13.33	54.8	0.10
10:00	8.80		sec-1		5.66	0.861	0.38	13.56	59.4	0.05
10105 -	-> 5 cmp	Ve Collate	250mt				,			
				,						

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - > 500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high salt-content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of inner Casing

FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/21/08

WELL #: MPWOH - E

SAMPLERS: J.R. /S.O.

DEPTH OF PUMP INTAKE: 245 ft TIC or ft. BGS (circle one)

WEATHER CONDITIONS: Sway 55°F

SCREENED/OPEN BOREHOLE INTERVAL: 240 250 ft TIC of the BGS

(circle one)

SAMPLE ID: MPWOH-PP-E-RQ

SAMPLE TIME:

SAMPLE FLOW RATE: QQQ

ml/minute

CLP ID: BUX26

•		instrument Typ Complete and/		right	YSI Model Other (spe		650X6₽65-11 Horiba U-22 (circle one)				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs	
10:28	4.7		25 9 _L		5.9Q	Q.593	9.81	f7.06	38.6	0.80	
10:33			959 ₁ L		2/24	0.436	0.84	16-19	35.1	0,25	
38:00			25 Onl		6.12	0.437	0.76	16,95	41.9	0.60	
10,43			2592		6.26	0.447	0.76	18.5	হা,হ	0.40	
10748			250nL		% .බුබ	0.447	0.64	16.38	58£	0.40	
10:53			250m		6,28	9.458	0.71	1664	23.5	0.95	
10:58	8.80		2501		618	0.465	0.75	16.76	58.3	0.15	
11:03	-> 5e	nole Called	97								
		0									
							<u> </u>				

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mil/min during purging or 250 mil/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (μS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 μS/cm = 1 mS/cm

TIC = Top (

r Casing

JATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

- DATE: 5/21/08

SAMPLERS: J.R. / S.O.

WEATHER CONDITIONS: Partly Cloudy 50°F

SAMPLE ID: MPW05-PD-A-PO SAMPLE TIME: 1355

CLP ID: BUX27

WELL #: MPW95-A

DEPTH OF PUMP INTAKE: 165 ft TIC or (T BGS) (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 160-170

ft TIC onff BGS (circle one)

mi/minute

O1	· rat	instrument Typ Complete and/		right	Si Model Other (spe	ecity)	Horiba U-22	(circle	one)	Instrument;
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
13:19			250 mL		4.63	0.181	2.26	15.95	163.1	8.8
13:15			250 mL		4,40	0.318	a .05	15.31	121.6	2.9
(3:50			350~L		4.34	0.937	1.54	14.63	104.3	1,3
13,52			050 mL		4.33	0.397	เงร	14.22	99.7	0.75
13:39			250 °L		4.34	0.558	0.91	14.08	98.2.	6°52
13:35			250 mL		4.35	0.929	0.80	13.77	97.1	0.85
13:40			250 ml		4536	0.229	0.85	13.64	95.7	0.49
13:45			250 ₀ L		435	୦. ୨୭୬୩	0.65	13.65	95.1	46,0
13:50	11.36		5250 mL		4.36	0.229	0.64	13.92	934	0.30
13:55		et Samp	e							

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

2°6.01 &

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD OLD ROOSEVELT FIELD. GROUNDWATER CONTAMINATION SITE

Q-50 -MIN #TIEM

SCREENED/OPEN BOREHOLE INTERVAL: (85-195 GOR IN THE SES (eno elorio) COE fino OIT fi DEPTH OF PUMP INTAKE: [9 0

SAMPLE FLOW RATE: **atunim\lm** (eno elonio)

hattument; O scos	ne)	io elonio)	SS-U sdiroH		(SI Model Other (spe	1		Instrument Typ Complete and/o	0~	× 2-0
YTIGIBAUT (%01 ±)	REDOX POTENTIA L		(† 10%) OXAGEN DISSOFAED	(± 3%)	Hq (US 1.0 ±)	NWOGWAЯG (T∃ £.0 ±)	WOJ3 ETAR	OT HT90 ASTAW	VOLUME PURGED	CURRENT TIME
sUTN	Vm	:alinU O°	1\gm (% វon)	Elem, melement palem (circle one)	ns	258 A \ OIT A (eino elorio)	:etinU	858 화 \ 21T 화 (ande one)	gallons / liters (circle	
28.0	۶۶.۶۶	14:81	48.1	662.0	01.0		210			01:21
16.0	₽.₽€	1L:5/	157	25.0	15.2		052			11:51
.027	34.8	08.51	60.1	272.0	18.5		ase			65:81
53.0	15:50	16/21	76.1	132.0	61.5		032			13:81
05.0	119	45.61	01.1	92. B	81.2		050			08: 81
13.0	4.52	12:51	#60	652.0	51.5		094			12:31
0.0	9.89	12-11	26.0	-652.0	61.5		050			ohEl
01.0	6.85	12:11	26.0	092.0	P1.2		62		V0.01	Sh: 81.
	- <u> </u>	 		·	<u></u> _	S.J.	4 2011 0	ा व	25	05:21

The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 milmin during purging or 250 milmin during sampling. Readings should be taken every three to five minutes.

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high saft content water. Note: 1,000 µS/cm = 1 mS/cm sUTM 002 < -0 = vibidiuT

Vm 008+ - 001~= Isinato9 xobeЯ

Typical values: DO = 0.3 - 10 mg/L

TIC = Top iser Casing

FIELD GROU, WATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

Temp. -> 10/ C

ft TIC of ft BGS (circle one)

CLP ID BUX 29

inclument Type/Model:

SCREENED/OPEN BOREHOLE.INTERVAL: 205-215 SAMPLE FLOW RATE: 250

DEPTH OF PUMP INTAKE: 210

ml/minute

Instrument:

		Complete and/or Circle at right			Other (spe			(CIICIO	2050	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TiC / ft BGS (circle one)	SU	S/cm. mS/em³/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1415			250		5.23.	0.276	1.47	14.21	16.7	0.77
1420			250		5.62	0.269	5.07	14.62	_	: 0.75
1425			250	•	5.74	0.263	5.00	14.64	71.53	3.25.
1430			250		5.61	0. 25B.	3.50	14.51	640	2.36
1435			250	,	5.56	. 0.255	3.09	14.50	73.2	0.80
1440			250		5,56	0.255	3.0%	14.60	74.0	5.00
1450	,		250.		5.56	0.259	3.01	1443	75.6	3-48
1500			250		5.56	0.255	2.97	14.61	76.2	2.03
1505	12.90		250		5.56	0.256	2.99	14.60	76.1	1.0
15/0		ple coll	ected		<u> </u>					

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity $\approx 0 - >500$ NTUs

CAIL

CLD ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

Toransducer = 10.1°C

DATE: 5/21/08

SAMPLERS: J.R./S.O.

WEATHER CONDITIONS: Partly Cloudy 55°F

SAMPLE ID: MPWOS-PD-D-RD SAMPLE TIME: 1518

WELL#: MPWOS-D

DEPTH OF PUMP INTAKE: 230 ft

ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 225-235

SSQ 5.0.

(circle one)

SAMPLE FLOW RATE: 300-

ml/minute

CLP ID: 3	はマゴム					* - B-50			<u> </u>	· · · · · · · · · · · · · · · · · · ·
	4 V 2 C	instrument Typ Complete and/		right	SI Model Other (spe	one)	Instrument:			
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
14:20			250 m		4.36	0.006	1.57	14.08	94.0	0.17
N:95			2507		4.35	0.006	1,57	14.08	94.0	291
14:30		3/	250~1		4.35	0.208	1.54	15.86	97,2	5.8
14:35		24.4	250√F		4.88	0.907	1.82	15.92	100.6	3.4
14:40	.4	<u>/:</u>	250 nL	·	4.78	0.296	1.72	16.00	973	3.6
14:45		· · · · · · · · · · · · · · · · · · ·	250 L		4.68	0.213	1-38	15.90	87.7	1.3
14:50			250.L		4.68	0.213	1.55	15.33	102.1	101
14:55			250~		4.67	0.213	1.57	15.38	108.8	1.1
15:00	1		250 mL		4,67		1.56	15.28	112.6	1-0
15:05	راه		250.1		4.66	0.214	1.60	15.10	(15.1	2.6
(15:10	1381		250 ML	1500 - 16 in decis	14.66	0.236	1.58	15/5	118.1	3.5

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top & ser Casing

BGS = Below Ground Surface

1 1 - A11 0

OLD ROOSEVELT FIELD CROUND WATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

Presine (8499.7)

DATE: 5/22/08

WELL#: MAW_D6-A

Temp (10.8)

SAMPLERS: JL 50

DEPTH OF PUMP INTAKE: 70

ft TiC or ft BGS (circle one)

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL: 65-75

ft TIC or EBGS (circle one)

SAMPLE ID: MPW-06- PS- A-12 SAMPLE TIME: 900

SAMPLE FLOW RATE: 200 ml/minute

(Circ

CLP ID: PAX 3	> (_								
		Instrument Typ Complete and/		right	Si Model Other (spe	# 6 6 0 415 cify)	Horiba U-22	(circle	one)	Instrument:
	OLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
	allons / ters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm⊅r µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
8:25			250		6.00	0. 347	0.68	11-21	152.9	9.2
8:30			250		9.02	0.352	0.15	11.06	103.3	9.7
8:35			250		9.36	0-360	0.11	1/31	99.5	8.4
8:40			250		9.84	0.369	0.10	11.37	96.8	7.3
8:45			250		10:00	Ø·370	0.11	11.62	96.1	6.9
8:50		,	250	·	10,07	0.372	0.11	11.88	96.1	6.3
8:55	હ.છે		250		10.06	0.314	0.11	11.80	96.0	6.0
9:00	Sur	le col	ectal						,	
								,		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

DED ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/20/08

WELL#: MPWOG B

SAMPLERS: J.R. / S.Q.

DEPTH OF PUMP INTAKE: 95

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: Cloudy 50°F

SCREENED/OPEN BOREHOLE INTERVAL: 90-100

ft TIC or ft BG

SAMPLE ID: MPWQ6-PD-

SAMPLE FLOW RATE: 950

ml/minute

(circle one

CLP ID:

GED ID:	1432	Instrument Type/Model: Complete and/or Circle at right			Other (specify) Horiba U-22 (circle one)					Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cmc/or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
. ඉහැටුතු	·	<u> </u>	950 mL		6.51	0.074	5.63	13.27	219.8	0.70
08:30		· · · · · · · · · · · · · · · · · · ·	ಅತ್ಯಾಗಿ		4.99	8:47	9.75 5.65	139	90.8	0.35
08.35		<u> </u>	250 mL		4.95	0.117	0.91	11.39	88.6	0.15
08:40			250 rL		4.95	0.117	0.18	11.62	86.7	0,95
08:42			050mL	 	4.95	0.117	9,23	11.69	85.1	0.30
08:50	 		290 aL	 	4.99	0.117	0.15	11.95	84.2	0.95
es:22			250 mL		4.95	0.118	0.16	11,43	84-1	0.10
09100			250 mL	 	4.97	0.118	0.10	(1.52	84.3	0.15
09:05	11.36		250 nL		4.97	0.121	0.06	11.46	80.5	0.50
09:10	-950	male Collect	11 /						<u> </u>	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high saft content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Topt her Casing

T-FIELD-GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/22/08

WELL #: MPWOG - C

SAMPLERS: J.R. /S.Q.

DEPTH OF PUMP INTAKE: 120, ft TIC or EBGS (circle one)

WEATHER CONDITIONS: Cloudy 50°F

SAMPLE ID: MPWOL-PD-C-R2 SAMPLE TIME: 1029.

SCREENED/OPEN BOREHOLE INTERVAL: (15 - 125 A TIC OF BGS

(circle one)

11

SAMPLE FLOW RATE: 950

ml/minute

CLP ID: RU X 33

יכ <i>ו</i> י	4 × 5>	instrument Typ Complete and/	e/Model: or Circle at		YSI Model Other (spe	# <u>660 X45050</u> cify)	Horiba U-22	(circle (one)	instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY : 10%)
24-Hour	gallons / liters (circle	fi TIC / fi BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
0925			850~1		7.71	0.179	10.1	11.07	<i>5</i> 2.().	0.6
0100 0930			250~1		7.54	0.180	1.04	11.00	27:9:	1.1
0935	<u> </u>		0500		7.22	0-179	195	10.92	38.0	0.35
0940			25001		7.07	0.178	1.06	10.87	44.>	0-30
09'45			250~1		6.78	0.175	1.11	10.87	51.8	0.75
959			850,1		6.43	0.170	1.21	10.84	62.6	4.7.
09:55			950%		6.32	0.169	1.24	10.85	66.9	6.0
10:00			250~1		6019	0-169	1.25	10.83	72.8	5% 6.4
10:05			OSON		6.10	0.168	1.29	10.84	78.0	8.8
10:00			25001		6.03	0-167	1,28	10.86		900
10815	13.80	1	220ml		16.01	0 · (6 8	11.24	16.87	62.3	9,1

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis 10:20 > 5 mple Calleded

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~65,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

: OLD ROOSEVELT FIELD.GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 5/22/08

WELL #: 420-6-(04) 00)

SAMPLERS: Jil, 05(50)

DEPTH OF PUMP INTAKE: 165 ft TIC or (ft BGS) (circle one)

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL: 160-170

ft TIC or tt BGS (circle one)

SAMPLE ID: MAW-06-40-D-122 SAMPLE TIME:

SAMPLE FLOW RATE: Z50 ml/minute

CLP ID:

YSI Model # 680 1 Horiba U-22 Instrument: B4X34 (circle one) Instrument Type/Model: Other (Specify) Complete and/or Circle at right TURBIDITY TEMP. REDOX DRAWDOWN На SPECIFIC DISSOLVED DEPTH TO FLOW CURRENT VOLUME **POTENTIA** CONDUCTIVITY **OXYGEN** RATE PURGED WATER TIME (± 10%) (± 0.1 SU) (± 3%) (土 10%) (± 0.3 FT) (± 10%) S/cm, mS/cm2or Units: mV **NTUs** Isu ma/L Units: fi TIC / fi BGS ft TIC / ft BGS 24-Hour gallons / uS/cm (circle one) °C (circle one) (not %) liters (circle (circle one) 1.1 4.19 5.50 3.10 62.7 0.137 250 9:30 0.80 5.63 0. 137 3.14 11.14 **250** 63.5 435 6.11 0.139 1107 0.82 3.20 57.8 9:40 250 0.85 6.23 3.49 11.10 250 51.7 0.139 9:45 3.44 0.139 11.80 0.90 46.7 250 6.47 9:50 1. 140 29:55 6.50 3.62 0.65 250 <u> છે. ૧૭</u> 250 11.05 39.0 D. 140 6.72 3.67 10:00 JO. 01 0.75 3.69 11.03 38.9 (). ryo 6.75 10:05 250 > Collected bap le

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top &er Casing

DATE: 6/2/08

Ausg

Lawrence Aviation Industries Site Development Record

WELL#: MPW-07-02-(B)

SAMPLERS: JB + FR

CLP ID:

DEPTH OF PUMP INTAKE: 225

ft TIC of ft BGS (circle one)

WEATHER CONDITIONS: Jumy 60°

SCREENED/OPEN BOREHOLE INTERVAL: 220-230

ft TIC or ft BGS (circle one)

SAMPLE ID: MPU-07- PO-B-RZ

SAMPLE TIME: CHARLES

SAMPLE FLOW RATE: /3

ml/minute

GLP ID. GY	X 36	Instrument Typ Complete and/			YSI Model Other (spe	one)	Instrument:			
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV .	NTUs
1450	·		135		6.23	0:375	4.80	15.28	156.5	1-1
\$455	,		-		6.08	0.3 36	6.12	16.28	159.4	1.0
95%					3. 8y	0.390	6.00	15.80	158. 2	0.9
D506				•	5.80	0,388	5.89	15.70	1646	1.1
15%					5.83	0.391	5.85.85	15.78	170-7	0-9
1935					5.81	6.389	6.48	14.38	176-8	1-0
\$5%					5,82	0-388	6.34	16.05	182.2	1.1
1545					5-86	0 ,391	6.28	16.54	183.0	0,9
1930	8.8 ^L				5.85	0.389	6.15	16.62	189-4	1.1
1555	Sanded		V		ত. 🖁 3	0-390	6.20	16.52	192.3	5.9

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

Lawrence Aviation Industries Site Development Record

DATE: 930/56 - 6/3/68

D/90/

WELL#:

MM of (Port 2)

DEPTH OF PUMP INTAKE: 255

ft TIC or ft BGs (circle one)

WEATHER CONDITIONS:

pun-07-10-C-R2

SAMPLE TIME: ((00

SAMPLE FLOW RATE:

10

SCREENED/OPEN BOREHOLE INTERVAL: 250-260

ml/minute

SAX CTB ID:	37	Instrument Typ Complete and		right	Other (spe	Instrument:				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
Beg- 1		63 C 11:60-	Very	Ja pageRh	· ffad	token out ~ O.	Sgotlers on	threby	3/27/80	
0830 GS/8		ļ.	-102		7.34	0.387	11.39 (*	13.12	D. (3)4)	1.4
1000	J	V 1			6.82	ં માા	10-91 2	12di	151.2	1.1
1300			~~~		6.71	6-371	7-12 *	13.14	171.1	1.7
1900					6-31	0.400	5.14+	1222	(61.8	1.9
1620			~~		6.71	0.337	9-124	13.764	155.2	1.0
1010 6/3	18.96		<i>(1)</i>		6-76	0.319	19.17 1	13.[[167.1	1.5
1600	-6,50	ph			6.72	0:31%	9.52±	12.75	170.7	1.1
		-cdet	the a	(600					:	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Ti In

Inner Casing

ELT FIELD GROWN WATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

(8152-0) Profus.

DATE: 5/22/08

WELL#: MPW-08 A

SAMPLERS した。 so

ft TIC or ft BGS (circle one) **DEPTH OF PUMP-INTAKE:**

WEATHER CONDITIONS: 50°F Cludy.

SCREENED/OPEN BOREHOLE INTERVAL: 25-35

ft TIC or ft BG3

SAMPLE ID: NOW -08-20-A- RZ SAMPLE TIME: 1145

SAMPLE FLOW RATE: 250

ml/minute

(circle one)

CLP ID: 24×38

Instrument Tyne/Model:

VSI Model# 660 TOUS (Horiba 11-22

(circle one)

Instrument:

()	,	Complete and			Other (spe		nonba 0-22	(Circle)		Co Coope	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs	
11:15			260		25.20	6.204	6.05	<i>1</i> 2⋅53	104.8	6.40	
11:20			250		4.97	0.903	6.39	12.57	124.7	0e.0	
11: 25			250	- min ar s	4.91	0.203	6.59	12.46	140.7	0.15	
11: 30			250		4.88	0.203	6.76	12.34	157.1	0.10	
n:35			.250		4.90	0-203	6.84	12.35	162.3	0.05	
11:40	7.56		250		4.90	0.003	6.89	12.39	170.5	0.00	
11:45	-> Smp	le collected	-25 0-								
	,							,			
			<u> </u>								
					·		<u> </u>				

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redex-Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

(eircle one)

(ento eloric) \$38 mo OIT fi

mlminute

:mammunasni

(ano ələiiə)

EDB# 10 OIT #

Development Record Lawrence Aviation Industries Site

METT #: NY MOR-B

SS-U adroH \ SER OOG & ISLOM ISY

SAMPLE FLOW RATE: 250

DEPTH OF PUMP INTAKE: 20

SCREENED/OPEN BOREHOLE INTERVAL: 代ス・25

BO/ECIC STAG

SAMPLERS: J.S. A.C.

WEATHER CONDITIONS: C | WEATHER CONDITIONS:

SAMPLE ID: MPWOS-PD-45

Instrument Type/Model: CLP ID: BUX39

2000 0508		· ···· • ·		city) (Vila	other (spe	tight	or Circle at	Complete and/o		/ table
YTIGIERUT	XODER ATTNETOS	,qM∃T	OXAGEN DISSOFAED	SPECIFIC SPECIFIC		имодмаяд	WOJ7 STAЯ	OT HTGAO RETEN	PURGED VOLUME	CURRENT TIME
(¥01 ±)	7	(%0 L ∓)	(%O1 ±)		(US 1.0±)	(T∃ E.O±)				
≥UTN.	Vm	Units: O°	.1/8m (% 10n)	S/cm, mS/cm ^c / or µS/cm (circle one)	1	f TIC / f BGS (circle one)	:stinU	R TIC / R BGS (circle one)	\ anolisg elonio) arehil	74-Hour
Q7.0	1/311	73 61	09.0	308,0	SH'S		65 C			इह: ॥
05.9	1,001	नाःध	65.0	306.0	14.2		05C			02:11
50.0	132.6	1)01	03.0	. YOB.0	75.2		05C			58:11
06.9	4,581	(0.C)	€4.0	Toe.o	18'5		03.6	,		06:11
29.0	6.081	20.01	E9.0	700.0	08.2		05C			Sh!1(
9.25	क्रिका	66.11	59.0	₹26.0	8C,2		3 20			11:20
20.0	3.CPI	96.11	C9.0	20e-0	Be's		950	,	J. B. B	55!11
₹4.0	7.chl	16.11	51.0	706.0	6e's		ose	الماعلات	g-25 C	00:21
								hatsollo3		- 60: 01
				<u> </u>	<u> </u>				1	

The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parentinesis Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes.

Turbidity ≈ 0.500 NTUs

Redox Potential = -100 - +600 mV

SAMPLE TIME: TEST

Typical values: DO = 0.3 - 10 mg/L

industries Site **Development Record**

DATE: 5/22/08

WELL # HAW - OB C

SAMPLERS: JR,SO

DEPTH OF PUMP INTAKE: 80

ft TIC or R BGS (circle one)

WEATHER CONDITIONS: 50% Sun

SCREENED/OPEN BOREHOLE INTERVAL: 75-85

ft TIC or ft BG

SAMPLE ID: MEW-08- PDC-TC2 SAMPLE TIME: 1300

SAMPLE FLOW RATE: 250

(circle one)

ml/minute

		instrument Ty Complete and		right -	Other (spe	ecify)	нопра U-22	(Circle	one ; 	Sozo
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su ,	S/cm, mS/emº/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
12:15			250		5.29	0.179	0.40	12.30	142.7	0.05
12:20			250		5.68	0.100	0-43	11.62	141.8	0.12
n:25	1		250		5.74	0.180	0.42	ા છી	144.4	0.15
12:30			250		5-18	0-190	0.41	11.40	145.7	0.20
12:35			250		5.78	0.130	9-4	11.38	140.0	0.00
12:40	1		250		5.79	0.180	0.42	11.22	144.5	0.00
12:45			250		5-80	0.190	0.41	1124	146.8	0.00
12: 50			250		5.00	0.190	O.yo	11.27	144.4	0. W
12:54	1 . 24	1	250		501	0.180	0.40	11.22	146.1	0.00
B:00	8	Le col	ected			<u> </u>				

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs ·

DATE: 5/22/08

WELL #: MPWOS-D

SAMPLERS: JR. チS.Q.

DEPTH OF PUMP INTAKE: 160

ft TIC of ft BG\$ (circle one)

(circle one)

WEATHER CONDITIONS: Cloudy / 50° F

SCREENED/OPEN BOREHOLE INTERVAL: 9.5-105

(circle one)

Instrument

SAMPLE FLOW RATE: २८०

ml/minute

CLP ID: BYX41 YSI Model # 600X/0=850 Horiba U-22 Instrument Type/Model:

		Complete and	or Circle at	right ·	Other (spe	cify)				50.50
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	ຣບ	S/cm, mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
13:20			ఖకం		541	0.160	3.21	11.78	142.1	0.20
5.52			බුපුර		<u> පහ</u>	0.161	3,89	11.74	141.2	0.10
12:30	<u> </u>		250		5.6	0.161	3,87	11.74	144-4	0.00
12:35			<u> ೨</u> ೮೦		5.65	0.161	5.78	11.49	150.1	0.15
15:40	,		2S 0		5.70	0.161	5,85	11.46	150.1	9-00
p:45			නවර	, , , , , , , , , , , , , , , , , , ,	5.74	0.161	661	11.43	152	Q.05
12150			250		5.74	0.161		1.51	153.7	0.00
ि:स्ट			250	,	5.77	0.161	6.57	11,57	153.1	0.05
13:00	11.30	<u> </u>	250		5.79	00/61	6.62	11.64	(S3.Q	0.00
13:05 -	> Sample	Callenter								

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top:

Lawrence Avi Industries Site **Development Record**

DATE:

5/22/08

WELL # HPO-08 E

SAMPLERS: JR.50

DEPTH OF PUMP INTAKE: 120

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: 58 P G ht Roag.

SAMPLE ID: 120-08-70-E-22 SAMPLE TIME: 1340

SCREENED/OPEN BOREHOLE INTERVAL: 115-125

(circle one)

SAMPLE FLOW RATE: 250

ml/minute

CURRENT TIME PURGED DEPTH TO WATER RATE (± 0.3 FT) (± 0.1 SU) (± 3%) TEMP. OXYGEN (± 10%) L TURB POTENTIA (± 10%) L TURB POTEN	10: 0 (1 \ (1 \)		δ(C-B-1α)	<u> </u>				
CURRENT TIME	BUXUL							
18:00 250 (circle one)		WATER RATE	CONDUCTIVITY	OXYGEN	1		TURBIDITY (± 10%)	
13:25 250 4.31 0.11 0.16 4:25 98.9 0 13:15 250 6.53 0.11 0.17 11.49 98.5 0 13:25 250 6.64 0.11 0.15 11.48 99.1 0 13:25 7.50 6.67 0.11 0.14 11.55 99.4						mV	NTUs	
B: 10 Z50 6.50 0.11 0.17 11.29 98.5 13:15 Z50 6.53 0.11 0.15 11.30 98.9 13:20 250 6.64 0.11 0.15 11.48 99.1 13:25 250 6.67 0.11 0.14 11.56 99.4	3: 00	250	(0.18 0.111	0.18	11.20	99.9	0.35	
13:15	: 05	250	4.37 0. III	0.10	u:25	98.9	0.05	
13:20 250 6.64 0.11 0.15 11:48 99.1 13:25 6.69 0.111 0.14 11.56 99.4	<u>s: 10</u>	250	6.50 0.111	0.17	11.29	98.5	0-00	
13:25 250 6.69 0.111 0.14 11.55 99.4	3:15	750	6.53 0.111	0.15	11.30	98.9	0.00	
	13:20	250	6.64 0.111	0.15	11:48	99.1	0.00	
	13:25	250	6.69 0.111	0.14	11.50	99.4	0.00	
		250	6.69 0.41	0-15	IL SF	99.9	0.00	
13:35 10.00 2.50 6.70 0.111 0.14 11.40 100.0		,	6.70 0.111	0.14	11.40	100-0	0.45	
13:40 Sombe collecter.	13:40	male collecter.						
							-	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

(circle one)

ງບ້ອນນາກຸຮຸບເ

(eno elaria)

SEE Tho OIT IT

Other (specify)

MELL # M PW-09-02 (A)

SAMPLE FLOW RATE: SOC

Los Kust-Thoriba U-22

SCREENED/OPEN BOREHOLE INTERVAL: 10-20

DEPTH OF PUMP INTAKE: 15 If TIC orth BG (circle one)

80/84/ 2 ESTAG

BAKAZ

CLP ID:

SAMPLERS: MACH SO

WEATHER CONDITIONS: SURVEY ~60°

SAMPLE 1D: M.M. - 09 - P.D. A- P.

SAMPLE TIME: 1(30

Complete and/or Circle at right: instrument Type/Model:

		 	 			 				
					<u> </u>					
···		<u> </u>				<u> </u>				
					<u> </u>					
									Sunded	, 0811
3.20	8-472	31-61		825.0	70.5	·			10.H	5811
۵۱٬۵	7712			272.0	827					11 ste.
55.0	6 900	81°C1	۶۶ ۶	5.22.3	£8.7					١١١٤
Jy.0	173	12.31	比七	155.0	867		asis			@P11
SUTN	Λш	Units: 5°	ուց/L (% ion)	S/cm, mS/cm ^{c)} or pS/cm (circle one)	กร	R TIC / ft BGS (circle one)	StinU July	# TIC / # BGS (circle one)	galions / liters (circle	24-Hour
YTIGIBAUT (*01 ±)	REDOX POTENTIA L	TEMP. (± 10%)	(¥ 10%) OXAGEN DISSOFNED	(¥ 3%) CONDUCTIVITY SPECIFIC	Hq (US 1.0±)	NWOQWARD (T∃ 8.0.±)	FLOW TTAR	OT HT930 A3TAW	VOLUME PURGED	CURRENT

The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 milmin during or 250 milmin during sampling. Readings should be taken every three to five minutes.

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm SUTN 002< - 0 = VibidiuT

Redox Potential = -100 + +600 mV

Typical values: DO = 0.3 - 10 mg/L

BGS = Below Ground Sufface

ler Casing

TIC = Top

Lawrence Avi industries Site Development Record

tomp. s lacc

DATE: 5/28/08

WELL #: MAW-09-02

SAMPLERS: FR+ 50

DEPTH OF PUMP INTAKE: 50

ft TIC or (t BG8 (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 45-55

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: SUMY 60°F

SAMPLE ID: MPW-69-PD-B-RZ SAMPLE TIME: 655

SAMPLE FLOW RATE: 300

ml/minute

(SI Mode) # 600 XC 9 Moriba U-22 B4X44 Instrument Type/Model: Instrument: (circle one) Complete and/or Circle at right Other (specify) 2010 CURRENT VOLUME **DEPTH TO FLOW** DISSOLVED DRAWDOWN Hα SPECIFIC TEMP. REDOX TURBIDITY TIME **PURGED** WATER RATE CONDUCTIVITY **OXYGEN POTENTIA** (± 0.1 SU) (± 3%) (± 0.3 FT) (± 10%) (± 10%) 仕 10%) 24-Hour gallons / ft TIC / ft BGS Units: , fitic / fi BGS ISU S/cm, mS/cmº/ or mg/L Units: mV NTUs ハル (circle one) liters (circle (circle one) µS/cm (circle one) °C (not %) 300 5.28 7-61 148.4 0.15 1035 0.282 11.59 1040 5-25 0-281 8.48-11-65 1520 0-40 10 45 0.282 0-05 11.51 154.4 6.00 5-23 0 282 1050 11.69 157 8 0.10 1055 -

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

J. 01.01 2. grat

Development Record Lawrence Aviation Industries Site

EO-30-MdW #TIEM

SAMPLE FLOW RATE: (60m/

80/81/2 :3TAG

(900 elorio) (258 f) to OIT if DEPTH OF PUMP INTAKE: 75

SS-U sdinoH & BONK OGO

(eno elaio) EDE DIO OIT II SCREENED/OPEN BOREHOLE INTERVAL: Po-86

aturimute

SAMPLE TIME: /2/0

SAMPLE ID: MPW-09-80-C-R2 WEATHER CONDITIONS: Sumy 60-F

CLP 10: BYK45

SAMPLERS: ML+50

Ş	instrument room	(auc	o ələniə) — — .	SS-U sdiroH		Sel Model Other (spe			Instrument Typ Complete and/c		
-	YTIGIBAUT	REDOX POTENTIA J.	TEMP. (± 10%)	(† 10%) OXAGEN DISSOTAED	SPECIFIC (± 3%)	Hq (US 1.0±)	И WOGWA ЯД (ТЯ 8.6 ±)	FLOW	OT HTGG ABTAW	VOLUME	CURRENT TIME
_	гUТИ	Vm	Units: 5°	17gm (% 30m)	Stem, mStem ^{er} or Stem, direte one)	ns	R TIC / ft BGS (einde one)	istinU Malon	868 개 (기다 개 (sincle one)	Vallons / liters (circle	24-Hour
	09.0	Z:8E.Z	t€\$	28.4	708.0	50.5		09/			Jh11
~	25,0	3°CHC	9E.EI	40.4	605.0	2.35		091			9211
-	07.0	8 th 2	13 36	277	F08-0	52.5		99/			2211
	11-0	7-756	9/5'81	てらり	205.0	92.5		97/		· · · ·	00.61
_	0.30	756.6	ε z.ε/	25.4	508.0	2.25		.07/		10h	1502
-						-				Sandel	0121
-										1	
-	**										
-				-					· · · · · · · · · · · · · · · ·		

The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mi/min during purging or 250 mi/min during sampling. Readings should be taken every three to five minutes.

aUTM cos<-0 = vibidiuT

Vm 003+ - 001- = Isitnato9 xob99

Typical values: DO = 0.3 - 10 mg/L

Lawrence Aviation Industries Site Development Record

DATE: 5/28/08

CLP ID:

WELL # 17 pu-09-04

SAMPLERS: PR+50

DEPTH OF PUMP INTAKE: 95

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: Surry 2650

SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLE ID: MPW-09-PD-D-RZSAMPLE TIME: 1245

SAMPLE FLOW RATE:

ml/minute

- 84	X46 	instrument Typ Complete and/		right		Other (specify) (circle one)					
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs	
1220	 		160		5.59	0.272	6.22	14.00	266,9	3.3	
1225			40		5.38	0.261	6.29	12.73	278.1	1.2	
1230			160		5-41	0-261	6.57	12.65	284.3	0-85	
1235			160		5.45	0.260	6.65	12.82	288-3	0-65	
1240	4.00		160		5-46	0.261	6.61	12.76	292.0	0.60	
1245	Sandad					<u>-</u>	,				
									·		
					<u> </u>					<u></u>	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

- 10,1°C

DATE: 5/28/6 8

WELL# MPW-09-05

SAMPLERS: M+ SO

ft TIC or BGS (circle one) DEPTH OF PUMP INTAKE: 130

WEATHER CONDITIONS: Jumy 650

SCREENED/OPEN BOREHOLE INTERVAL: (25-135 ft TIC of the BGS

(circle one)

SAMPLE ID: 1200-09-09-00-E-02

SAMPLE TIME: /3 20

SAMPLE FLOW RATE: 180

ml/minute /80-

CLP ID: BUX47

Instrument Type/Model:

650 %-B-M/ Horiba U-22 (circle one) Instrument:

		Complete and	or Circle at	ngm	Other (spe	еспу)				-9 Moto
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1300			180	4	5.62	0.195	3.18	12,79	286.2	0.50
1305			180		5.75	0.195	3.26	12.73	-	0.55
13.10			180	_	5.79	0.195	3.17	12.76	296.9	0.50
13.15	3.66		180	·	5.80	0.195	3.09		299.7	0.25
1320	Sampled									
	'									
· · · · · · · · · · · · · · · · · · ·										
		*								i
		*	<u> </u>							
		*								

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top: ner Casino

Temp. -> 11. 6

DATE: 5/28/08

SAMPLERS: S.Q. / J.B.

SAMPLE ID: MPWIO-PD-A-R2

WELL #: MPW 10-01CA)

DEPTH OF PUMP INTAKE: 165 ft TIC of ft BGS (cîrcle one)

SCREENED/OPEN BOREHOLE INTERVAL: 160-170

SAMPLE FLOW RATE: 190

ml/minute

GLP ID: BUX	48	Instrument Typ Complete and	istrument Type/Model: omplete and/or Circle at right)# <u>660%08-11</u> !cify)	(circle	one)	Instrument:	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NŤUs
1610			190		4.98	0.453	0.76	12.6	84.23	0.90
1615		1	190		4.99	0.453	0.34	p.53	8107	0.10
1600			190		4.99	Q.453	೦್ಶಿ	12.54	818	0.00
1625			190		4.99	0.453	0,24	12,58	8201	0.00
1630			190		4.99	0.453	6.83	12.55	82.7	0.90
1635			190		4.99	0.453	0.23	1254	83.0	0:00
1640			190		4.98	0.453	0.52	13.58	63.5	0.00
1645			190		4.98	0.453	0.96	(2.57	83.5	0.00
1650			190		4.98	0.453	0.06	13,55	83.7	0.00
1655	9.50		190		4.98		0.27	1056	83.7	0-00

1700 >> Sample Collected

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mi/min during purging or 250 mi/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 -> 500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

DATE: 5/28/05

WELL #: MPW10-B

SAMPLERS: SQ-/J.B.

DEPTH OF PUMP INTAKE: 190 ft TIC or f(BG9 (circle one)

WEATHER CONDITIONS: SURTY/Windy SOF

SCREENED/OPEN BOREHOLE INTERVAL: 185-195

SAMPLE ID: MPW 10 - PD-B-R2 SAMPLE TIME: 1700

SAMPLE FLOW RATE: ml/minute

CLP ID:

BUX49

SI Model & GOD XOTOS Horiba U-22 (circle one) Instrument:.

		Instrument Typ Complete and/		right"	Other (spe	cify)		(oitoic (·······	Sosp
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1610		-	ଅ ୦୦		6.00	0.436	-14.65	13.59	88.9	0.30
1615			900		5-55	0-660	1.49	ಡಿವಿ	7901	0.40
1620			200		5-54	0.662.	1011	15°20	81.4	0-50
1625	-		200		5-54	0-664	1.03	12,58	85,3	0.95
1630			ಶಾಂ		554	0.664	Q.54	19 <i>5</i> 3	87.3	0.15
1635			200		5.53	9.664	9-66	12.54	88.7	0.15
1640	<u> </u>		909		5,53	0.663	0.69	12.54	88.9	0.15
1645			200	† <u> </u>	5.54	0.664	0.68	12.56	88.8	0-10
1650			200		5.54	0.663	0.71	12.54	88.8	0.15
1655	10.01		200		5.50	0.663	0.70		88.9	0.10

1700-> Sample Callected

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top \ ... ner Casing

Industries Site Lawrence Avi: **Development Record**

DATE: 5/28/08

WELL#: 120-10-03 (C)

SAMPLERS: H+50

DEPTH OF PUMP INTAKE: 22 ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: Sumy 70

SCREENED/OPEN BOREHOLE INTERVAL: 215-225 ft TIC or ft BGS

SAMPLE ID: MPW-10-PD-B-RZ-SAMPLE TIME: 1550

SAMPLE FLOW RATE: \

ml/minute

GLP ID:	so ·	instrument Ty		reindre	YSI Mode Other (Spe	600 XLAS-M	/ Horiba U-22	(circle	one)	instrument:
CURRENT TIME	VOLUME- PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units:	m∨	NTUs
1500			120		5.24	0.370		12-94	60.5	1-7
1510		- 	120		5.50	0.463	1.46	Q.60	69.3	0.15
1520			120		5.52	0.405	1-61	12.80	79.5	0-20
1530			150		5.49	0.403	1.73	12.79	86.0	0.00
1535			190		5.48	0.404	1.74	12.80	88.6	0,00
1540			120		5.48	0.404	1.81	ର ସେ	90.7	0.00
1545	6.06		150		5.48	0.404	1.86	12.79	21.8	0.00
1559 -	5 Sompl	e Collecte								
		^								
]		-	İ]]]

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

'Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

DATE: 5/28/08

SAMPLERS: FR+ SO

WEATHER CONDITIONS: Jumy ~680

WELL #: MPW-10-04 (D)

DEPTH OF PUMP INTAKE: 240 ft TIC of BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 235-245 ft TIC or BGS

(circle one)

SAMPLE ID: M/W-10 PD-4-RZ SAMPLE TIME: 1850

SAMPLE FLOW RATE: 160

ml/minute

BUXS	1	{) Instrument Typ Complete and/		right-	Other (spe		Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1504	 		160	1	5.74	0.393	1.39	12.61	93.0	1.2
1515		. ,	160		5.90	0.398	4. 24	12.70	98.7	0.30
1525			160		5.93	0.397	4.97	17.51	104.0	0.20
1535			160	<u> </u>	5.95	0.396	5.58	12.68	108.7	0-10
1549			160		5.95	0.396	5.62	12.74	109.2	0.05
1545	7.46		160		5-96	0.396	5.91	12.67	11106	0.10
1550	> Sample	a Collect	ec							
							·			
				t					1	

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

ndustries Site Lawrence Aviat **Development Record**

NIM - 185.00

a/2/08 DATE:

WELL:#: MW-05

SAMPLERS:

JB/5.0

DEPTH OF PUMP INTAKE: 187 ft TIC or (BGS) (circle one)

WEATHER CONDITIONS: 80° F 5-47

SCREENED/OPEN BOREHOLE INTERVAL: 180-195 ft TIC or BGS

(circle one)

SAMPLE ID:

MW-05-90-RZ

SAMPLE TIME: 1445

SAMPLE FLOW RATE: OCCUPATION MI/minute

CLP ID: BYX52 X1-9-M

SI Model # 650 HTS / Horiba U-22 Instrument: (circle one) Instrument Type/Model: Other (specify) Complete and/or Circle at right TURBIDITY DISSOLVED TEMP. REDOX SPECIFIC DRAWDOWN FLOW вH **DEPTH TO** CURRENT VOLUME **POTENTIA** CONDUCTIVITY OXYGEN RATE **PURGED** WATER TIME (± 10%) (± 0.1 SU) (± 3%) $(\pm 10\%)$ (± 10%) (± 0.3 FT) S/cm. mS/cmº/ or NTUs Units: m۷ R TIC / R BGS SU ma/L ft TIC / ft BGS Units: 24-Hour gailons / uS/cm (circle one) (not %) (circle one) liters (circle (circle one) mL/min 185.60 اسادسن 1350 Stat 0-228 14.29 19 1355 6.42 سادلالهد 1272 1026 185.63 13.62 13.27 1342 0.225 10.4 200 L . 02 405 5,95 185.61 13.91 0.219 13.33 149.6 1410 497 . aQ 185.61 200~L 9.0 13.96 154.3 4.95 185.61 0.218 1915 200 . 02 13.44 155.2 3 0.317 186.62 200 4.98 1420 . 01 158.2 12.99 . 0 0.218 15.57 5.97 185.62 200 12.60 0,218 166.1 (9.53)ه-185. 62 200 124 0-217 5-19 7.50 168 10 14 35 200 lo. 0.218 (2.64 48.67 200 1440 ·al

1945 Somple Collect -Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec_Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

FG-01

DEPTH OF PUMP INTAKE: (95

ft TIC or t BG\$ (circle one)

(circle one

Instrument:

WEATHER CONDITIONS:

SAMPLE TIME:

SAMPLE FLOW RATE: 300 al/min ml/minute

SCREENED/OPEN BOREHOLE INTERVAL: [90-250

SAMPLEID: PG-01-10-R2

Instrument Type/Model: (circle one)

		Complete and	or Circle at	right	Other (spe	cify)				Landa 2020
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	f(TIC) ft BGS (circle one)	Units:	ft TIC/ ft BGS (circle one)	SU	S/cm, fnS/cm3 or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
Inda.[Strettice-	[GG.30	300	0 -	4.32	0.194	11071	13.79	78.9	23, S.
13:50		166.30	30.0	Q	4.32	0.194	11.71	13.79	78.9	83
14:00		166.39	300	2	3,56	0.189	11.69	15.73	168.9	14
14:05		166.30	300	Q	3,67	0.192	11.75	[6.9Q	ව31.8	13
14:10		166.30	300	C	3.70	0.193	11.70	16.50	C91,2	18
14715		166.30	300	0	3.74	0.193	11.40	17,28	2861	11
14:20		166-39	300	4	3-61	9-193	12.10	16.51	289.0	18
14:05		166.30	300	ď	3-46	0.194	13.80	15.72	290.1	13
19:30	. , .	166-30	300	9	3.50	0.194	12.13	19.31	271.2	}}
14:35	15.00	[6(a-3))	3000	0	3.54	02 195	12.05	19.31	2723	14

14:40-9 Sample collect and

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

Inner Casing TIC = T

WELL#: MW-10-11

DEPTH OF PUMP INTAKE: ~>000 ft TIC or TBGS (circle one)

WEATHER CONDITIONS: 860 55-7

SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLE TIME: 12.00

SAMPLE FLOW RATE: 225

ml/minute

CLP ID:

		Instrument Typ Complete and/		rìght	YSI Model Other (spe		G-XL-B-A / Horiba U-22 (circle one)			
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units:	mV <u>.</u>	NTUs
Inited	sfat 1(.70	134.03	225					51	ert	
11:15	11:15	134.29	225	0.76	5.30	0.572	1.28	14.03	1036	16
1125		134.29	295	Je.0	5.90	0.567	0.74	13.83	116.7	16
11:30		134.29	ജ്ട	0.26	5,90	0.564	9.68	40.41	119.7	33
1635		134.28	225	0.25	5.91	0.565	0.79	14.52	123.0	33
1:40		134,28	500	0.25	5.89	0,584	0.73	1म्ड	196.3	65
1145		(34). 25	ಎ ನ್	0.22	5.63	0, 340	1	14.45	127.1	50
[[50		134.85	225	0.02	5.77	0.543	0.74	14.41	158.5	49
1155	10.13	134,25	39z	<i>o.</i> 22	5.76	9542	9.73	ります	126.5	50
1200.	s Sompl	- collect	9							

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

-Spec. Conductivity (uS/cm) = 0.01 - 5.900; up to 10.000 in industrial, ~55.000 in high salt content water. Note: 1.000 uS/cm = 1 mS/cm

TIC = Top of Inner Casing

WELL#: MW- PO-12

DEPTH OF PUMP INTAKE: 155

ft TIC or (t BGS (circle one)

- Du 625 of - L. H

SCREENED/OPEN BOREHOLE INTERVAL: (50-(60)

WEATHER CONDITIONS: 80 F SAMPLE ID: MU-PATA PAR

SAMPLE FLOW RATE: ~250 ml/minute

	400	instrument Tyl Complete and		right	Other (spe	# <u>600 XL- 4-P</u> ecify)	/ Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	galions / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm (mS/cms/or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
Intel		113.69	~280		6.66	0.345	3.62	1253	213.3	110
0945	-0445	112.78	~280	0.0	5.67	0.341	1-73	13.08		290
09		112.78	~300	0.09	5.60	0.344	1.21	14.23	191.5	180
1000		112.78	300	0.09	5.54	6.344	1:18	14.24	190.0	120
1003	~	11278		509	5.51	0.343	1.27	1407	189.6	80
1010		11278	_	0.09	5.49	0.341	1.30	14.14	189.0	70
1015		112.78	_	0.09	547	0.34	1.30	14.16	188.5	55
(030)		113.78	_	_	5.47	0.341	1,34	14.09	1884	<i>5</i> 5
1025	·	112.78	•••	-	5.47	0.34	1.35	1395	168-4	40
1030	~ 4.5 pello	5	-380	0.09	5.45	0.339	1.34	13.95	188.3	45
ż	11. CL.V	-		<u>-</u>				+ -		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = To nner Casing

DATE: 6/3/08

WELL#: MW-PD-13

SAMPLERS: S.Q./ JB.

DEPTH OF PUMP INTAKE:

ft TiC or ft BGS (circle one)

WEATHER CONDITIONS: Sumy Hot 700F

SCREENED/OPEN BOREHOLE INTERVAL:

175-185 ft TIC or ft BG

SAMPLE ID: 144-13-40-10

SAMPLE TIME: 6930

SAMPLE FLOW RATE: 250

ml/minute

(circle one)

CLP ID: Ady56

GEF ID: Ga	(k.) P	Instrument Ty Complete and		t right	YSI Model Other (spe	# 660 MTS-	Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
Int-1 0846		148.95		-						
sh-te 634		142.99	250	6.0)	6.49	6.477	13.52	12.45	182.5	250
0855		14884	250	0.02	5.84	0.478	345	12.54		210
0900		148AF	250	10 m.	5-81	७.५७५	13.18	なわ	219.7	250
6405		148.97	250	٠٠ مر	5.88	0.466	13,30	1300	7228	110
6410		14897			5.14	0.459	10.63	13.76		150
न्तर्		149.97	250		5.18	0.449	10.48	M.09	238.5	190
6420		148.97	250	16	5.17	0.440	10.40	14.22	221.4	5 0
8125	11:02	148977	250	-5~	6.00	B.437	9.97	14.37	2307	45
6430	~5 gallers	143.47	2.70		5.78	0.434	9.98	14.01	2.50.	45

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

:Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

WEATHER CONDITIONS: 80° F 5-my SAMPLE ID: MW-11-14-10-12

SAMPLE TIME:

MW-10-14-20-R7 WELL#:

DEPTH OF PUMP INTAKE: 35 ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 239-219

(circle one)

SAMPLE FLOW RATE:

ml/minute

B47			nplete and/or Circle at right Other (specify)						Instrument:	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
Intel 18:19	(06.0) State	152.00	250		6.38	۵.417	1.77	12.40	197.9	360
10:04	18:35	153.40	250		6.30	0.417	2.08	प्रिश्च	194.0	320
10:30		- 1			6.23	0.418	2.45	13.18	184.8	270
(0:35					6.18	0.417	a.36	13.26	179.5	230
(०:५३					6.16	0.417	2.36	13.32	175.7	220
10:45					6.11	0.417	2.35	13.12	174.6	160 a
10,3				,	૯.જી	- ૭.વાન	2-78	12.79	175	45
10:55	3.756	153.90	940		6.06	0.416	2.87	12.65	175.0	50
00:)]	. 18	(5350	(•	6.07	0.413	2.76	12.70	179.0	40
	- Mechan			<u>.</u>						

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = T

Inner Casing

Industries Site Lawrence Avia **Development Record**

DATE: 6/3/08

WELL #: MW-PD-15

SAMPLERS: JB / S.Q.

DEPTH OF PUMP INTAKE: 407

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: Quecast

SCREENED/OPEN BOREHOLE INTERVAL: 201-214

ft TIC or ft BGS

RAMPLE TIME: 1249

SAMPLE FLOW RATE: 250

(circle one)

ml/minute

YSI Model # GOOXGBM / Horiba U-22 Instrument Type/Model: (circle one) Instrument: Complete and/or Circle at right Other (specify) DRAWDOWN **SPECIFIC** DISSOLVED TEMP. REDOX TURBIDITY CURRENT VOLUME DEPTH TO **FLOW** CONDUCTIVITY DOTENTIA

TIME	PURGED	WATER	RAIL	(± 0.3 FT)	(± 0.1 SU)	(± 3%)	(± 10%)	(± 10%)	L	(± 10%)
24-Hour	gallons / liters (circle	f(TIO/ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1155564	1014	78.5a.			5-38	0.377	11.09	-13-41	82.7	- (ID \$13/
1200		78.76	380	,	5.88	0.372	11-09	13.41	82.7	6.0
1210		7\$.70			6.14	0,409	6.41	13.28	111.3	29
(a15		78.65	T -		6.18	0.411	6.04	la.73	117.8	<u> </u>
(220					6.18	9.414	6.26	GO, E1	126.6	19
1225			· · ·		6:07	6.414	6.30	1301	145.7	13
1230	,	78.61			6.13	0.415	6.36	13.19	135.0	11
- [235		7860			5.97	0.413	6.63	13.45	153.5	į0
1240	13.100	79-60			6.04	0.412	6-41	13.00	151.1	10
	whallow		-750	أمطأن	2 12-15					

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DQ = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

DATE: 5/29/48

WELL#: MNI_P0-16

SAMPLERS: F.R. /S.Q.

DEPTH OF PUMP INTAKE: (TTC or ft BGS (circle one)

WEATHER CONDITIONS: Sunny/Clear/65°F

SCREENED/OPEN BOREHOLE INTERVAL: 190-200

ft TIC or ft BGS (circle one)

SAMPLE ID: MW-PD-16-PD-RZ SAMPLE TIME: 1450

SAMPLE FLOW RATE: 250

ml/minute

CLP ID: YSI Model# 650 mos Instrument Type/Model: / Horiba U-22 instrument: (circle one) Lamote Complete and/or Circle at right Other (specify) CURRENT **FLOW** SPECIFIC DISSOLVED TEMP. REDOX TURBIDITY VOLUME **DEPTH TO** DRAWDOWN Ha RATE POTENTIA TIME **PURGED** WATER CONDUCTIVITY **OXYGEN** (± 10%) (± 0.3 FT) (± 0.1 SU) (± 3%) (± 10%) (± 10%) S/cm, mS/cm^c/ or **NTUs** 24-Hour gallons / ft TIC / ft BGS Units: ft TIC / ft BGS SU ma/L Units: mV (circle one) µS/cm (circle one) liters (circle (circle one) m//min (not %) 2-01 67.7 380 5.57 1245 300 12.93 65-21 0.591 700 5.01 0.03 1255 300 65.29 0.24 12.75 75.3 0.616 400 **顧**1.03 91.8 4.90 12.43 300 65.24 0636 0.03 1305 0. (30 1315 4. 70 1.05 1/2.38 109.8 65.24 300 250 0.07 0.658 12.16 200 65.24 300 0.03 4-62 1325 129.7 1.03 4,82 49,2 150 65,24 12,23 1335 300 0.03 0.669 .06 (Q.SQ 1345 1.11 20 65.24 4.89 0.675 161.9 300 0,03 1355 4.89 00 0.03 0.680 65-24 300 1.16 12.37 172.1 1405 65-24 300 478 0.682 1.19 12.34 184.2 003 1995 .3~ 4.65 12.41 65-24 1.23 Q703 0615

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TiC = Top (া Casing

Lawrence Applied Industries Site **Development Record**

DATE: 5/29/58

SAMPLERS: PR/50

WELL#: MW-PD-16

DEPTH OF PUMP INTAKE: 19

ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 190-200

ft TIC or ft BGS

SAMPLEID: MW-PD-16-PD-RZ

WEATHER CONDITIONS: Somy ~70°

SAMPLE TIME: 1418

SAMPLE FLOW RATE: 250

ml/minute

(circle one)

CLP 10: 24 x 59

D '(Instrument Ty Complete and		right"	Other (spe	# GDX68-M ecify)	/ Horiba U-22	(circle	one)	Instrument:
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	galions/ liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1425		65.24	300 -	0.03	4.80	0.684	1.29	12-35	209-5	50
1430	-	65.24	300	0.03	4.89	0.684	1.32	12.40	211,1	50
1435	-V	65.24	300	0.03	4.95	0.684	1.34	12.38	211.4	45
1446	34.50	65,24	300	0.03	4.97	0.685	1.37	12.41	212-0	34
1848	15 Gallana	65.24	300	0,03	4.99	0.686	1.39	12.44	212-2	36
1450-	D Somo	le Colles	en							· · · · · ·
	0									
<u></u>				•						

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

DATE: 5/29/08

SAMPLERS: S.Q. /F.R.

WEATHER CONDITIONS: Sunay 55°F

SAMPLE ID: MW- PD-17-05-RZ

CLPID: 24460"

SAMPLE TIME: 1040

DEPTH OF PUMP INTAKE: 35

SCREENED/OPEN BOREHOLE INTERVAL:

ft TiC or ft BGS (circle one)

SAMPLE FLOW RATE: 200

ml/minute

	· · · · · · · · · · · · · · · · · · ·	instrument Type/Model: Complete and/or Circle at right				Si Mode #650 XL-3-77 / Horiba U-22 (circle one)					
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	 	SPECIFIC CONDUCTIVITY	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC) ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs	
0925		4.75	300		6.86	0.263	5.64	12.91	131.2	>1000	
0935		4.82	300	0.07	6.89	0.262	7.85	12-48	130.8	>1000	
0945		4.84	300	0.09	6.91	0. 265	7-85	12.64	130.4	700	
095.5		4,85	300	0.10	6.88	0.262	8,18	12.54	133.8	330	
1005		4.85	300	0./0	6.85	0.261	8.36	12-56	136.2	170	
1015		4.81	320	0-10	6.83	0.260	8-44	12.64	139-1	75	
1020		4.85	300	0.10	6.82	0.258	8.21	12.93	140.9	58	
1025	1	4.85	300	0.10	6.82	G. 256	8.60	12.69	142.8	40	
	22500	4,85	300	0.10	6.80	0.256	8.56	12.77	144.1	30	
1035	136cl.	4.85	300	0.10	6-80	9.256	୫.୭ಎ	12.75	145.5	33	
1040 -	5 Sonple (Callected		•							

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 în industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

iner Casing

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: 1-2-08

SAMPLERS: JR, FR

WEATHER CONDITIONS: 26'5 Cold

SAMPLE ID: 58D-PD-16-GU-A

5BD-PD-16-6W-A

DEPTH OF PUMP INTAKE: 263 ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 20/-206 ft TIC or ft BGS

(circle one)

ml/minute

		Instrument Typ Complete and/		right:	YSI Model Other (spe	one)	Instrument:			
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	р́Н (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm) or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1430	Start V	ump				m5/cm				
1445		y -	500		6.05	-0.430	7.33	19.01	174.0	450
1455			500		5.95	0.420	8.26	18.60		180
1500			500		5.92	0.426	8.53	19.15	183,2	150
1505			500		5.88	0.423	8-66	18.83	188.2	95
isio		,	500		5 _{su}	0.426	8.92	18.86	191.7	65
1515			500		5.80	0.418	9.02	18.5	196.4	50
1520	Sample	i me					<u>.</u>			
	~40 LHS	•				,				
										

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (uS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 uS/cm = 1 mS/cm

OLD ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL#: Groundwater Screening 16-6W-B

DEPTH OF PUMP INTAKE: 215 ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: 10-20 F

SCREENED/OPEN BOREHOLE INTERVAL: 22-217 ft TIC or ft BGS

SAMPLE FLOW RATE: 500 ml/minute

(circle one)

SAMPLE ID: 500-40-16-6W-B SAMPLE TIME: 1225

CLP ID: (४ ५७४	Instrument Typ		right_	YSI Model Other (spe	one)	Instrument:			
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su <	S/cm), mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units: °C	m∨	NTUs
1135	Start	purge				m5/cm		ļ. 		
1155			80.		5.87	0.379	5.97	14.56	180.6	650
1205		,	700		5.83	0.377	7.24	15.27	194.6	262
[2]0			700		5.79	0.372	7.54	15.22	200.8	181
1215	55V		700		5,74	0.370	% •00	15.09	208.6	116
1220		tal	700		5,70	0.362	8.23	14.90	213.3	75.9
			ļ	·						
···							-		<u> </u>	
								ļ <u>.</u>	<u> </u>	` .
	1 .	l							<u> </u>	<u> </u>

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of

Casing

FLD GROUNDWATER CONTAMINATION SITE

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLE FLOW RATE; 500

mi/minute

CLP ID: pravio

	PAKIO	Instrument Type/Model: Complete and/or Circle at right				15/ AT-1	/ Horiba U-22	(circle	Instrument:	
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1448	BERGIN	190.77							 	
1500					5-31	0.317	5.70	19.78	161.9	336
15%	RREER	e i/econ	KED 7	D ZSDM	Office.		<u> </u>	 / · / · /	1017	330
1510 1515 1520					5.61	0.296	5.74	16.67	175-1	200
55				_	5-61	n. 277	5-93	14,00	190.3	189
520					5.50	1292	4.70			280
1573			<i>,</i>		5.39	0.293	1/00	15.37	196.4	144
1530			_		5.95	0.796	5-03	16.57	1994	123
1535		,"			5.86	0.302	3.05	12.19	209.1	104
1540	~15 ldes				5.84	0.297		4. 2	219.8	50
545	tto mmood (1 2 fo	et Flow rate chau		500 ml/min during	5.82	0296			225.7	49

frawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. he well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

ypical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

IC = Top of Inner Casing

OLD RECEIVED THESE GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WEATHER CONDITIONS: WELGAST, BWSTERY & BAN SAMPLE ID: SBA-PA-17-GW-B SAMPLE TIME: 1215

CLP ID:

WELL#: SBD-17-17

DEPTH OF PUMP INTAKE:

ft TIC or ft/BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 202

SAMPLE FLOW RATE: 500

ml/minute

	34F01	Instrument Ty Complete and	pe/Model: /or Circle a	t right	SI Model	Instrument:				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
4-Hour	gattons / ft TIC / ft BGS Units: ft TIC / ft BGS SU (circle one)		SU	SU S/cm, mS/cm°/ or µS/cm (circle one)		Units:	mV	NTUs		
1054	BEGWARGE	MA	500							
111	ļ				5.73	0.259	6.72	18.39	129.8	534
1135	 				5.68	0.254	7.34	18.30	15.2	341
1140			 	ļ	5-66	0.251	7.53	.4	152.8	230
1750	 		<u> </u>		5.63	0.746	7-65	18,04	162.3	184
D 00					5.61	0.245			177.8	123
1205					3.59	0.245	3.55	18,46	1926	73
Dio				 	5.59	0.245				59.7
215	~ 40 Ldos			 	5.58	0.244				49.5
	3- 4-1-2	<u></u>		<u> </u>	5.59	0.245	7.40	8.44	207.7	55-9

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. he well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

ypical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

IC = Top of Inner

EVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: DECEMBER 1	1,2007
------------------	--------

DEPTH OF PUMP INTAKE: 498

fi TIC or fit BGS (circle one)

CLP ID:

SCREENED/OPEN BOREHOLE INTERVAL: 192-197

(Circle one)

SAMPLE FLOW RATE: 350

ml/minute

	·	Instrument Ty Complete and		right	YSI Model Other (spe	one)	Instrument:			
CURRENT TIME 24-Hour	VOLUME PURGED gallons / liters (circle	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
		ft TIC / ft BGS (circle one)	Units:		SU	S/cm, mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1500	GEGW ALREWG		350				 	 	 	
1510		191-40								·
1520				`	6.13	0.420	4.3	18.42	195.6	210
1525					6.12	0.420	4.52	1876		140
1530					6.11	0.412	4.68		204.1	80
1535					6.10	0.404	464		207.5	60
15 ⁴⁰		191.45								35 249
1545				·						19
	ax lo liters									

trawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. he well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

ypical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (μS/cm) = 0.01 + 5,000; up to 10,000 in industrial, -55,000 in high salt content water. Note: 1,000 μS/cm = 1 mS/cm

TELED GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DATE: DECEMBER 20, 2007

ZOUE B

DEPTH OF PUMP INTAKE: 205 ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: OVERCAST & COUN

SCREENED/OPEN BOREHOLE INTERVAL: 302-207

SAMPLE FLOW RATE: 500

(circle one) ml/minute

CLP ID:

2026

	···	Instrument Ty Complete and			YSI Model Other (spe	one)	instrument:			
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / (liters (circle	ft TIC / ft BGS (circle one)				S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1402		191.25					<u> </u>	 	 	
1408	REGURAGE							 	 	
1400					6.31	0.512	3.51	12.72	1345	700
1425					6.28	0.503	,	7.85	1843	NA
14/30			·		6.22	0.493		18.04	185.8	330
1435					6.16	0.479	5.11	17-86		200
1440	<u> </u>				6.11	0.469	5.54			110
1445					6.05	0.461	5.89	17984	199.9	86
1450			! 		5.99	0.453	6.02		206.7	40
14:55	~2601kg				5.95					32

trawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. he well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

ypical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

PAGE 2 04 }

OLD PROSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

DELEMBER 20, 2007

SAMPLERS:

DEPTH OF PUMP INTAKE:

ft TiC or ft BGS (circle one)

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS

SAMPLE ID: JBD-FJ-18-GW-B SAMPLE TIME: 150 CLP ID:

SAMPLE FLOW RATE:

m/minute

(circle one)

		instrument Ty Complete and		ıt right	YSI Model Other (spe	Instrument:				
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
1500					5.90	0.448	6.63	1213	217.4	26
1505					5.85	0.437	6.91		200	22
	~32 Hrs								-	
	 		<u> </u>							
				· .			·			

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. he well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

ypical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

EVELT FIELD GROUNDWATER CONTAMINATION SITE **LOW FLOW GROUNDWATER SAMPLING PURGE RECORD**

DATE: DECEMBER	10,	2001
----------------	-----	------

SAMPLERS: TR & MOE

WEATHER CONDITIONS: O'URICART, COW, GT. RAW SAMPLE ID: SBD-PD-19-BW-A SAMPLE TIME: 1515

CLP ID:

DEPTH OF PUMP INTAKE: JOB

ft TIC or at BGS (circle one)

SCREENED/OPEN BOREHOLE

SAMPLE FLOW RATE: 5750 (200 XL-B-M)

ml/minute

			nt Type/Model: e and/or Circle at right			YSI Model & ///////////////////////////////////						
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)		
24-Hour	gallons / liters (circle	ft TIC of the BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su (pS/cm) mS/cm°/ or pS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs		
1100		192.7										
145	BEGINGE	192.85	DODAN									
1500					5.89	0.286	3.79	19.2	70-6	38		
1505					5.88	0.283	392	19.14	73.6	36		
1510					5.80	0.281		19.22	79.6	38		
515	25 L									@ UNGST		
,										wassen		
										•		
		<u> </u>										

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. he well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

ypical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

IC = Top of $lnn^{\lambda_{c}}$. Sing

					TWEEN 3	11837	25/1,	Me o	Day as a	ownamag	an01				
	ass	6.221	JSE:91		825.0	88.5					9£01				
	&22<	4:011	22.51	至33	E8E,0	76.5					9201				
,	QQ\$\t	E E GI	2.81	28.9	FO7.0	109					dell				
								905		BEENGEE	356				
						•		1	0.891		976				
_	sUTN	Vm	Units: °C	(% ₃ou) 7/8ш	S/cm, mS/cm°/ or pS/cm (circle one)	ns	ff TIC / ff BGS (circle one)	:etinU	A TIC A BGS (circle one)	gallons / liters (circle	Z4-Hour				
	(%01 ±)	٦	(%OL Ŧ)	(%01 ±)	(∓ 3%)	(US 1.0 ±)	(± 0.3 FT)								
	YTIGIBAUT	REDOX POTENTIA	.dmat	OXAGEN DISSOFAED	SPECIFIC CONDUCTIVITY	. Hd	имодмаяд	FLOW STE	OT HTGED SETAW	VOLUME	CURRENT TIME				
OSSI.	Instrument Type/Model: Complete and/or Circle at right Complete and/or Circle at right Other (specify) Conditions to the circle one)														
	SAMPLE ID: SEA-PI-19-19-19-19-19-19-19-19-19-19-19-19-19-														
(EDB IT 90 DIT				ENED/OBEN BOKEN		6	DOD	J& MUS	2 : SNOITIQNG	WEATHER C				
	PLERS: TO & TIC OF BEST OF PUMP INTAKE: NOTE BEST (circle one)														
	*	2) 3M	空 51-	W-632 :#	METT		7	LOOC 11						
	LOW FLOW GROUNDWATER SAMPLING PURGE RECORD														

861

2.51

he well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 mi/min during purging or 250 mi/min during sampling. Readings should be taken every three to five minutes.

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm PUTN 002< - 0 = VibidiuT Vm 000+ - 001- = Isimato9 xobe9

BGS = Below Ground Surface

Shaples

-DM9W

NAN

671

ypical values: DO = 0.3 - 10 mg/L

APPENDIX E

Well Development Logs

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

70.40	<u> </u>	سي ه	0
			$\angle \cap enll$
ATE.	1 1 1 1 A A A	$M \sim$	מינונוני
ATE:	Mape	7U -	000

WELL#: MW- PD-11

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

TEATHER CONDITIONS: SYMMY & FULLS

SCREENED/OPEN BOREHOLE INTERVAL:

195-205 ft TIC of ft B

AMPLE ID: LP ID:

SAMPLE FLOW RATE:

ml/minute

					YSI Model Other (spe	one)	Instrument:			
URRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
!4-Hour	gallons / (liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	s∪	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not %)	Units:	mV	NTUs
945		133.8			-			F 44 50 1	A - A	
456	BEGWAREWE									
1000		134.75	500 mel/405				1 1			
1005		135.1	IN CLEASE	Park to Stoppel	155		, , , , , , , , , , , , , , , , , , ,			
105		136.82		The street was a second	6.31	0.387	6.41	15.16	2092	24
1020		136.96								
1025	•	137.00			# 1974	Bender State (1997)		: ::		li Links orderes
1030		137.02	THERESE	RAME TO STO AND	1206.53	0.382	4.63	15.22	213.1	NA
1035		137.5								
1040		137.66	A Cheal/	- X & O &						7

137. 41 ASUM/USEE TUCKERSE RATE mus rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

/pical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec, Conductivity (uS/cm) = 0.01 - 5,000; up to 10,000 in Industrial, ~55,000 in high salt content water. Note: 1,000 uS/cm = 1 mS/cm

OLD ROOSEVELT FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL DESKINDENT

«⊃ <i>ti</i> √v	~	•	_
ATE.			

AMPLERS:

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

IEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS (circle one)

AMPLE ID:

LP ID:

SAMPLE TIME:

SAMPLE FLOW RATE:

ml/minute

LF ID.						and the second s				24 - 1 25 - 12	
		Instrument Ty Complete and			YSI Model #/ Horiba U-22 (circle one) Other (specify)				one)	Instrument:	
URRENT	VOLUME PURGED	DEPTH TO WATER	FLOW	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)	
!4-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm°/ or µS/cm (circle one)	mg/L (not %)	Units:	m∨	NTUs	
10-50		137-61	1								
1005	PUMA STOPRES						· var or come		t ga sis		
1200	RESILIE NUP @ 21/ML	1			6.51	0.363	3.97	15.89	211.0	NA	
1195		136.65					F				
1176		136.79									
1115		136-82			8	Art Cold	and the second second				
1120		136 8H			~		en en geleg in geleg en en en en en en en en en en en en en				
1125		136 84				. · · · · · · · · · · · · · · · · · · ·					
1130		136.84			6.63	0.357	658	16.00	2149		
1135	STOP KLYPER	136.29									
1140		136.56					777				

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

/pical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial; -55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

C = Top of Inner

Mpl nearmh. a

D SITE WELL DEVELOPMENT RECORD

DATE: 3/3/08

SAMPLERS: JBDME.

WEATHER CONDITIONS: Sunny Mild

MW-PD-11 WELL#:

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL:

(circle one)

		Instrument Typ Complete and/o	e/Model: or Circle at	riğht	YSI Model Other (spe	Instrument:				
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (±3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle one)	ft TIC / ft bgs (circle one)	Units:	ft TIC / ft bgs (circle one)	SU.	S/cm) mS/cmº/ or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1310		135,85	apm		6.15	0.387	0	16,12	2114	309
1345		136.05	7		636	0.359	O	15,59	224.7	300
1415	Switch	od to la	uger	Bump		200-	- 1 ⁻¹		L. 23. 12. 24.	
1430		165.40	- U		6,38	0.318	0	13,50	177.6	2999
1440		167.00			6.69	0,311	O	13.12	1769	546
1455	OFF									
1525		Name to the state of the state				- 30.1				
1530	<u> </u>	155,40		. 	6.06	0.319	0	13.60	157	104
1540		16490		•	6.28	0.320	0	13.20	1583	80
1550		16590	1		6.17	0.319	0	13.00	158.3	40_
1600	•	165.90	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6,15	0.340	0	13.00	159.5	29
1610		166.05			6.20	3.18	0	13.61	15750 B	25
1620		166.21	5.59pm		6,21	3.15	0	1295	1568	89

Romand @ 700 gallons
asing bgs = below ground surface (

SAMPLE TIME:

FIELD GROUNDWATER CONTAMINATION SITE LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL#: MW-PD-12

NEVEROPHENT

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

TEATHER CONDITIONS: SWAY & MILLS

SCREENED/OPEN BOREHOLE INTERVAL:

150-160 ft TIC or ft BG

(circle one

SAMPLE FLOW RATE:

ml/minute

AMPLE ID:

LP ID:

20

		Instrument Type Complete and/		right	Other (specify) / Horiba U-22 (circle one)					instrument:
CURRENT IME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
:4-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
9135	BEGIN	113							·	
1200	5 GAY 455EL	1182 =	REMANS	STATIC D	Polan 1240	WHEN STUSPES	AUNTUS			
1215		•			6-01	0.236	12.12	12.43	138.6	NA
1220					5.87	0,235	12.39	12.34	187.1	WA
1235					5.77	0.220	10.38	12.33	1867	NA
12.30				,	5.B8	0,228	7.56	1236	189.7	108
1235	:				5.91	0.279	758	12,33	1887	. 80
1310	RESUME PURBING									*
1315		117.8			6.20	0.229	7.14	12.28	1928	340
1300		1778			5.80	0.736	6.50	12.26	1932	100
1072		10-7 17	•		- ۸۸ شر	10 × 7 × 5	9 0	10.21	10-11	124

rawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. ne well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

/pical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 ~ >500 NTUs

Spec. Conductivity (uS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 uS/cm = 1 mS/cm

C = Top of Inner (

THE PH T CON SO DE TUBB STW 13²⁰ 5-80 12-24 0.225 8.35 197.7, 44 117.8 13³⁵ 5.79 12.19 0.224 8.41 20.4 39 117.8 13⁴⁶ 5.79 12.20 0.223 7-84 188.3 31 13⁴⁵ 5.79 12.17 0.222 8.96 1967 32 117.85 13⁴⁵ 5.79 12.17 0.222 8.96 1967 32

> 13th Sof / Evo WEU DEVENDENT PURSEON SOD GOVET OF WATER

WEATHER CONDITIONS: MOSTLY CLASSIFE HULLS

SAMPLE ID: CLP ID:

SAMPLE TIME:

Muss 13

WELL DEVELOPHENT ft TIC or ft BGS (circle one) DEPTH OF PUMP INTAKE: A STO

SCREENED/OPEN BOREHOLE INTERVAL: 175-185

SAMPLE FLOW RATE:

ml/minute

CLP ID:		Instrument Type/Model: Complete and/or Circle at right			YSI Model Other (spe	one)	Instrument:			
CURRENT TIME	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	fi TIC / fi BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SU	S/cm, mS/cm ^o /or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs
1345	REGING	148.78			,	h 100	1.00-	14.22	129.5	NA
1400	1000	- OIEAO	46	<u> </u>	6.05	D.199	6.55	17.00	121-2	NA
1448	PURGEL	LATER CURARI	<u> </u>	<u> </u>	6.13	12.193	8.50	12.42	128.6	CLEAR
1500	- -	-			6,20	0.192	10.63	12.20	127-4	40
1500	STOPPINGUE	& ACTOR PV	news ~	- 925 GHLS			<u> </u>	<u> </u>		
			<u></u>		1		<u> </u>	<u> </u>		***************************************
				_		<u> </u>				
					. A. 154 33					

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top $\hat{\mathbf{u}}_{c_{\infty}}$ or Casing

سر	~ - _~
wer Je	MAUDO

Lawrence Aviatio **Development Record**

MW-82-14

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL:

SAMPLE ID:

CLP ID:

SAMPLE TIME:

SAMPLE FLOW RATE:

ml/minute

orl iő.		Instrument Typ Complete and/				YSI Model # 600 / / Horiba U-22 (circle one) Other (specify)				
CURRENT	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (±3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons /		Units:	fi TIC / ft BGS (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L, (not %)	Units:	mV	NTUs
900	7		3-4		6.01	0.250	0.20	12.60		CLEAR
0,30	100				6.32	0.142	0.25	031	154	
10,00	150				6.35	0.257	0.19	13.61	1236	1
1/00	200				686	0.255	0.15	13.63	173.9	
1130	300				5.93	0.242	0.13	13.61	163.4	
1145	400				5.80	0.250	0.14	13.21	170.1	
100	500				5.71	0.253	0.14	12.99	177.2	
·	1,00									
					w					
-	· - ·							:		

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

- Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, -55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top of Inner Casing

DATE: MAY 14, 2008

SAMPLERS: ME
WEATHER CONDITIONS: SAMPLEM

SAMPLE ID: CLP ID:

WELL#: MW-PO-15 DEVELOPMENT

DEPTH OF PUMP INTAKE: 150 ft TIC of ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL: 304-214 ft TIC or ft BGS

SAMPLE TIME: NA SAMPLE FLOW RATE: ml/minute

CLP ID:					YSI Model Other (spe	one)	Instrument:			
CURRENT TIME	VOLUME	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0,3 FT)	pH (± 0.1:SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Ноиг	gallons /	nt TIC Int BGS	Units:	fi TIC / ft BGS (circle one)	su	S/cm, mS/cm ^c / or µS/cm (circle one)	mg/L (not %)	Units: °C	mV	NTUs.
1400	BROWG	78.85	a 15 au	7	5.53	0.444	0.82	16.64	214-9	NA
1435			cw4 2 3	DO GALS 7	UNIOA				100 11	100
1545	REDIKE AVLANG				5.92	0.308	1.64	282		21.7
1615	,,				6.06	0.301	1.95	11.89	140.7	7.76
1630	STA/ EUS	BEVELOSHE	157810	furgues -	- 1,150 6	465	<u> </u>		<u> </u>	
 		 			 			1	<u> </u>	
				مانون و مساور داده المساور و المساور و المساور و المساور و المساور و المساور و المساور و المساور و المساور و ا المساور و المساور و				<u> </u>		
	_					<u> </u>	, = 1, 5, 664 3.	1		
								- 		
1	1	.j	<u>,</u>		<u>ج محملت</u>	<u> </u>	N. N. W. T. W.			

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Typical values: DO = 0.3 - 10 mg/L Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top do T Casing

Lawrence AviaL....andustries Site **Development Record**

DIB- 200.20

SAMPLERS:

WEATHER CONDITIONS: 50° F5-001

SAMPLE ID: CLP ID:

SAMPLE TIME

WELL #:

MW-60-16

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL:

(circle one)

SAMPLE FLOW RATE: 5 900 ml/minute

a Valler bar bayana a	e osže a esperime				The second secon	YSI Model # 600 XL 54 Moriba U-22 (circle one)				
CURRENT	VOLUME PURGED		FLOW	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIA L	TURBIDITY (± 10%)
24-Hour	gallons / liters (circle	ft TIC / ft BGS (circle one)	Units:	ft TIC / ft BGS (circle one)	SÜ	S/cm; vs/cm²) or µS/cm (circle one)	mg/L (not:%)	Units:	m∨	NTUs
1138	SHAPPE,	65.00	~59pm		5.84°	0.203	6.06	1310	1124	44.4 days
1145	14470	68.20	~5.311a		7.74	0.214	5.18	1248	128.9	1011
1155	~100 piles	C8.00 -	~5.1 ¹¹		6.44	0.388	205	11.90	1529	3999 relail
1205	~ 150 pla	(7.90	~5.1		5.67	0385	466	11.86	184.4	476
ON(3(0			~5,0		5.10	6.547	5.08	1200	184.3	(05)49
1320	205	67.90	०२		340	0-547	3.93	12,00	189.3	143
1340	~310	6270	5.2	•	5.31	0.580	3.50	11.72	163.7	74.6
1400	NIGO	67.70	5.2		5.34	O.196	277	11.60	207.0	267
1370	~530	67.75	5.1	- Eq.	535	0.600	2.70	11.40	223.8	13.5
Buo	640	67.70	5.1		5.34	0.602	268	11.42	231.3	143

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

1201 4

Lawrence Aviation Industries Site Development Record

WELL #: MW-PD-16

SAMPLERS: Th

DEPTH OF PUMP INTAKE: 145 ft TIC or ft BGS (circle one)

WEATHER CONDITIONS: 505

1010

1060

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS (circle one)

654

64.2

SAMPLE ID:

SAMPLE TIME:

2.5.1

67.70

SAMPLE FLOW RATE:

0.600

C ¶ ← ml/minute

CLP ID: YSI Model # **Instrument Type/Model:** Horiba U-22 (circle one) Instrument: Other (specify) Complete and/or Circle at right Late 2020 CURRENT VOLUME **DEPTH TO FLOW** DRAWDOWN рH SPECIFIC DISSOLVED TEMP. REDOX TURBIDITY CONDUCTIVITY POTENTIA PURGED WATER RATE OXYGEN TIME (± 0.3 FT) (± 0.1 SU) (± 3%) (± 10%) (± 10%) (± 10%) ft TIC / ft BGS SU mg/L dallons/ ft TIC / ft BGS Units: S/cm. mS/cmº/ or Units: mV NTUs 24-Hour (circle one) μS/cm (circle one) °C liters (circle (circle one) GIM (not %) 360 0.600 25/ 285 (B) 67.70 220.4 5.36 11.5 80.7 1440 st 950 ~5.(5.35 0.611 2.78 61.8 223.5 62.80 11.54 400 ON 67,60 0,606

5.41

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging of 250 ml/min during sampling. Readings should be taken every three to five minutes.

The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis

1510

1520 1530-

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

2.90

11.47

230.6

2259

Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial; ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

TIC = Top V. ter Casing

DATE: MARCH 5, 2008

LAISUPER SAMPLING PURGERECORD

WELL#: MW-PD-17 WELL JEWEIGHTEN

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS

(circle one)

WEATHER CONDITIONS:

SAMPLERS: MOR 408

SAMPLE ID:

SAMPLE TIME: WA

SAMPLE FLOW RATE: 5 GAC/ ml/minute CLP ID: YSI Model # 105 600 X Horiba U-22 Instrument: (circle one) instrument Type/Model: LAMORE Other (specify) Complete and/or Circle at right TURBID REDOX . SPECIFIC DISSOLVED TEMP. Ha DEPTH TO FLOW DRAWDOWN CURRENT VOLUME **POTENTIAL OXYGEN** CONDUCTIVITY RATE PURGED WATER TIME (± 10%) (± 10%) (± 10 mV) (± 0.1 SU) (±3%) (± 0.3 FT) S/cm, mS/cm⁻/ or ma/L ft TIC / ft bgs SU Units: m۷ NTUs Units: ft TIC / ft bas 24-Ноиг gallons / liters (circle one) °C uS/cm (circle one) (not %) (circle one) (circle one) 36m/32 015 025 71 167.0 NA. 11.26 930 11.27 035 20.08 0.142 040 160.8 1592 0,45 140 20.08 950 20.00

1292 11-24 Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

0,55

1000

Typical values: DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (uS/cm) = 0.01 - 5.000; up to 10.000 in industrial, ~55,000 in high salt content water. Note: 1,000 uS/cm = 1 mS/cm

TIC = Top of Inner Casing

bgs = below ground surface

20.10

(MIKE)

TURS 9.10 11,24 20.16 153.1 WA 694 0137 11.29 8.12 1506 65 20.16 1000 1021 AFTER PURCULA a 500 GAS; LAS BERNE PUMPUG Recovery) 1025 1027 5.08 5700 DZY 4.96 4.94 y 30 n31 4.93 4.92 732 733 4.92 h34 4.92 4.92 735

•

, i

LOW FLOW GROUNDWATER SAMPLING PURGE RECORD

WELL DENTHURCH

WELL#: MW-PD-17

SAMPLERS:

SAMPLE ID:

DEPTH OF PUMP INTAKE:

ft TIC or ft BGS (circle one)

WEATHER CONDITIONS:

SCREENED/OPEN BOREHOLE INTERVAL:

ft TIC or ft BGS (circle one)

SAMPLE TIME:

SAMPLE FLOW RATE:

ml/minute

CLP ID:			Oram Li	- 11440 Par.					·		
		Instrument Typ Complete and/		tright	YSI Model Other (spe		Horiba U-22	(circle one)		Instrument:	
CURRENT .	VOLUME PURGED	DEPTH TO WATER	FLOW RATE	DRAWDOWN (± 0.3 FT)	pH (± 0.1 SU)	SPECIFIC CONDUCTIVITY (± 3%)	DISSOLVED OXYGEN (± 10%)	TEMP. (± 10%)	REDOX POTENTIAL (± 10 mV)	TURBIDITY (± 10%)	
24-Hour	gallons / liters (circle one)	(circle one)	Units:	ft TIC / ft bgs (circle one)	SU	S/cm, mS/cm²/ or µS/cm (circle one)	mg/L (not:%)	Units:	mV	NTUs	
1105	besiever	PWS				•					
1100		18.3			7,03	0.139	8.04	11.72	140.7	NA	
Mie		18,45			7.06	0.137	8.81	11.66	136.5	44	
1120		18.52	in.		7.05	0.135	8.73	11.23	134.5	24	
1125		18.56			7.01	0.137	8.66	11.66	132.0	24	
1130		19.62			7.04	0.137	8.07	11.55	129.0	22	
1135		18.62		,	7.00	0.136	8.28	11.56	1300	20.9	
1140		13.71			6.99	0.137	84	11.54	129.0	23.1	
1145	Sim/Eno	AME POR	WG AN	AMOXUME	DM W	BDE GAS					
	,										

Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis.

Typical values:

DO = 0.3 - 10 mg/L

Redox Potential = -100 - +600 mV

Turbidity = 0 - >500 NTUs

Spec. Conductivity (uS/cm) = 0.01 - 5.000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm

APPENDIX F

Analytical Data Tables

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

Cas Rn Chemical Name Analytic Metr Unit \\ Depth Depth 25.85 ft ams 11/26/2007 3.35 ft ams -24.15 ft ams -24				Station, New York	Port Jefferson				
Cas Rn Chemical Name Che	MPW-02-PD-C-R1-DUP	MPW-02-PD-C-R1	MPW-02-PD-B-R1	MPW-02-PD-A-R1	Site-specific-GW	Sample Code	 -		
Cas Rn Chemical Name Che	MPW-22-PD-C-R1		! !			Sample Name			
Volatile Organic Compounds Volatile Organ	11/26/2007		11/26/2007	1/4/2008		Sample Date			
Volatile Organic Compounds	-24.15 ft amsl	-24.15 ft amsi	3.35 ft amsl	25.85 ft amsl		l Unit \\ Depth	Analytic Meth	Chemical Name	Cas Rn
75-71-8	_ .	1.1.1	T						
Total	0.5					ug/L	LDL VOC		75-71-8
75-01-4	0.35 J				5	ug/L	LDL VOC	Chloromethane	74-87-3
Name	0.5 U	0.5 U		0.073 J #	2	ug/L	LDL VOC	Vinyl Chloride	
Tichlorothane	0.5 U				5	ug/L	LDL VOC		
Trichlorofluoromethane	0.5 0		0.5[U] [0.5 U	5	ug/L	LDL VOC	Chloroethane	
1,1-Dichloroethene	0.5 U		0.5 U		5		LDL VOC		
1,1,2-Trichloro-1,2,2-trifluoroethane	0.32 J		0.54 #		5				
Company	0.5 U		0.5 U	0.5 U	5		LDL VOC		
75-15-0 Carbon Disulfide LDL VOC ug/L 50 0.5 U 0.5 U 0.5 U 79-20-9 Methyl Acetate LDL VOC ug/L 5 0.5 U	5 U		1-, ,	- 5 U	50		LDL VOC		
79-20-9 Methyl Acetate LDL VOC ug/L N/A 0.5 U	0.5 U	0.5 U		0.5 ₺	50				
75-09-2 Methylene Chloride LDL VOC ug/L 5 0.5 U	0.5 U				N/A		LDL VOC		
156-60-5 trans-1,2-Dichloroethene LDL VOC ug/L 5 0.5 U 0	0.5 U	0.5 U	0.5 U	0.5 ひ					
1634-04-4 Methyl tert-Butyl Ether LDL VOC ug/L 10 0.37 J # 0.37 J # 0.37 J # 0.5 U # 75-34-3 1,1-Dichloroethane LDL VOC ug/L 5 0.12 J # 0.5 U # 0.5 U # 0.38 J # 156-59-2 cis-1,2-Dichloroethene LDL VOC ug/L 5 0.12 J # 0.5 U # 0.5 U # 0.38 J # 78-93-3 2-Butanone LDL VOC ug/L 5 0.5 U # 0.73 J # 0.73 J # 0.38 J # 0.38 J # 0.3 U # 0.38 J # 0.5 U # 0.38 J # 0.5 U # 0.5 U # 0.5 U # 0.5 U # 0.5 U # 0.5 U # 0.5 U # 0.5 U # 0.5 U # 0.5 U # 0.5 U # 0.73 J # 0.73 J # 0.73 J # 0.73 J # 0.73 J # 0.73 J # 0.73 J # 0.73 J # 0.73 J J # 0.73 J J # 0.73 J J # 0.73 J J # 0.73 J J # 0.73 J J # 0.73 J J # 0.73 J J J # 0.73 J J J J J J J J J J J J J J J	0.5 U	0.5 U	0.5 U	0.5]나	5				
75-34-3 1,1-Dichloroethane LDL VOC ug/L 5 1.9 # 1.7 # 1.5 J J 1.5 J J 1.5 J J J 1.5 J J J J J J J J J J J J J J J <t< td=""><td>0.5 U</td><td>0.5 U </td><td>0.37 J #</td><td>0.37 J #</td><td>10</td><td></td><td>LDL VOC</td><td>•</td><td></td></t<>	0.5 U	0.5 U	0.37 J #	0.37 J #	10		LDL VOC	•	
156-59-2 cis-1,2-Dichloroethene LDL VOC ug/L 5 0.12 J W 0.5 U W 0.38 J W 78-93-3 2-Butanone LDL VOC ug/L 50 5 U W 0.5 W 0.73 W 0.75 W 0.75 W 0.75 W 0.75 W 0.75 W 0.75 W 0.75 W 0.75 W 0.75 W 0.75 W 0.75 W	1.5] 1.7 #]		5				
78-93-3 2-Butanone LDL VOC ug/L 50 5 U U U U U U U U U U U U U U U U U U U	0.41 J	0.38 J # i	0.5 U	0.12 J #	5		LDL VOC		
74-97-5 Chlorobromomethane LDL VOC ug/L 5 0.5 U 0.73 # 0.74 # 0.74 # 0.74 # 0.74 # 0.74 # 0.74 # 0.74 # 0.74 # 0.74 # 0.74 # 0.74 # 0.75 U 0.75 U </td <td>2]<u>u</u> </td> <td>5[U] </td> <td>j 5 U </td> <td></td> <td>50</td> <td></td> <td></td> <td>•</td> <td></td>	2] <u>u</u>	5[U]	j 5 U		50			•	
67-66-3 Chloroform LDL VOC ug/L 7 0.77 # 0.51 # 0.73 # 71-55-6 1,1,1-Trichloroethane LDL VOC ug/L 5 1.2 # 1.2 # 0.97 # 110-82-7 Cyclohexane LDL VOC ug/L N/A 0.5 U 0.5	0.5 U	0.5 U	0.5 U	0.5 U	5	ug/L			
71-55-6 1,1,1-Trichloroethane LDL VOC ug/L 5 1.2 # 1.2 # 0.97 # 110-82-7 Cyclohexane LDL VOC ug/L N/A 0.5 U	0.7		0.51 #	0.77 #					
110-82-7 Cyclohexane LDL VOC ug/L N/A 0.5 U	1	0.97 #	1.2 #	1.2 #	5				
56-23-5 Carbon Tetrachloride LDL VOC ug/L 5 71-43-2 Benzene LDL VOC ug/L 1 0.5 U 0.5	0.5 U	0.5 U	0.5 0		N/A				
71-43-2 Benzene LDL VOC ug/L 1 0.5 U	0.5 U	0.5 U	0.5 U		1				
107-06-2 1,2-Dichloroethane LDL VOC ug/L 0.6 0.5 U 0.5 U </td <td>0.5 U </td> <td>0.5 U </td> <td>0.5 U </td> <td></td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td>	0.5 U	0.5 U	0.5 U		1			-	
79-01-6 Trichloroethene LDL VOC ug/L 5 1.7 # 2.3 # 3.2 # 3.2 #	0.5 U	0.5 บ	0.5[U].	0.5 U	0.6				
70 01 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.1	3.2 #	2.3 #						
	0.5 U	0.5 U	0.5 0	0.5 U	N/A	ug/L	LDL VOC	Methylcyclohexane	108-87-2
78-87-5 1,2-Dichloropropane LDL VOC ug/L 1 0.5 U 0.5 U 0.5 U 0.5 U	0.5[U	0.5 U	0.5 0						
75-27-4 Bromodichloromethane LDL VOC ug/L 50 0.5 U 0.5 U 0.5 U 0.5 U	0.5 <u>]</u> U	0.5 U			· ·				
10061-01-5 cis-1,3-Dichloropropene LDL-VOC ug/L 0.4 0.5 U 0.5 U 0.5 U 0.5 U	0. <u>5</u> U	0.5 U	0.5 0						
108-10-1 4-Methyl-2-pentanone LDL VOC ug/L 50 5 U 5 U 5 U	5 U	5 U	5 U				-		
108-88-3 Toluene LDL VOC ug/L 5 0.5 U 0.5 U 0.5 U	0.5 ∪	0.5 U						• •	
1006-80-3 Foliderie 1006-8	0.5 U	0.5							
79-00-5 1,1,2-Trichloroethane LDL VOC ug/L 1 0.5 U 0.5 U 0.5 U	0.5 U								
79-00-5 1,1,2-1 inchibitoethalie LDL VOC ug/L 5 0.21 J # 0.56 # 0.33 J #	0.32 J	. 0.33 J l# l						-, -, -	
127-16-4 Tetracinologiteine EBE VOO ug/E	5 U								
591-76-6 2-Hexalione EDE VOS 49/2 50 0.5 11 0.5 11 0.5 11	0.5	0.5lūl l	1 -1-1 1						
124-48-1 Dibromochloromethane LDL VOC ug/L 50 0.5 U 0.5 U<	0.5\U			0.5					

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	 	The state of the s	Site-specific-GW	MPW-02-PD-A-R1	MPW-02-PD-B-R1	MPW-02-PD-C-R1	MPW-02-PD-C-R1-DUP MPW-22-PD-C-R1
		Sample Name		4440000	14/00/0007	44/20/2007	
	•	Sample Date		1/4/2008	11/26/2007	11/26/2007	11/26/2007
Cas Rn	Chemical Name	Analytic Meth Unit \\ Depth		25.85 ft amsl	3.35 ft amsl	-24.15 ft amsl	-24.15 ft amsl
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC ' ug/L	5	0.5 ับ	0.5 U	0.5 U _	0.5 ひ
179601-23-1	m,p-Xylene	LDL VOC ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 U	0.5 U	0.5 い .	0.5 ∪∫
98-82-8	Isopropylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U↓
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC ug/L	5	0.5 บ	0.5 ป	0.5 U	0.5 ∪∤
541-73-1	1,3-Dichlorobenzene	LDL VOC ug/L	3	0.5 บ	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1.2-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 U	0.5[U	0.5 ป
120-82-1	1.2.4-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1.2.3-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
	11-3-						
5	Wet Chemistry			[]			
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 U	10 0	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	1.3 A	1.3 A	10 A	10 A

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			0 1 0 1	O'L O'L	MPW-02-PD-D-R1	MPW-01-PD-A-R1	MPW-01-PD-B-R1	MPW-01-PD-C-R1
ł				Site-specific-GW	1VIPVV-U2-PD-D-K1	INFVV-01-FD-A-INI	W1 W-01-1 D-D-101	
			Sample Name		11/26/2007	11/27/2007	11/27/2007	11/27/2007
l	· · · · · · · ·	A 1 () - B.E41	Sample Date		-48.65 ft amsl	17.73 ft amsl	-6.77 ft amsi	-29.27 ft amsl
Cas Rn	Chemical Name	Analytic Met	l Unit \\ Depth_	_	-40.05 It allisi	17.73 11 211131	-0.77 11 0.1101	
	Volatile Organic Compounds	101.1/00	0	<u>r</u>	0.5 U	0.5 U	0.5 U	0.5 U
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5 5	0.5 U 0.48 J #		0.4 J #	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	_	0.46 3 # 0.5 U	0.5	0.5]U	0.5 U
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	1	0.5	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5	0.5 U	0.5 0	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5	0.5 U	0.5 0	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U	1 1 1	0.5 J #	0.5 U
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.39 J #		0.26 3 # 0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	0.5 U		5.5 U
67-64-1	Acetone	LDL VOC	ug/L	50	5 0	5 0	5 0	0.5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 0	0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U	0.5[U]	0.5[U	0.5 U
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	. 5	0.5 U	0.5	0.5	
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.5 U	4.2 #	1.7	0.5 U
75-34-3	1,1-Dichloroethane	LDL VOC	ug/L	5	1.1 #	0.5	0.35 J #	1.2 #
156-59-2	cis-1,2-Dichloroethene	TDF AOC	ug/L	5	0.21 J #		0.5 U	0.5 U
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U	5 0	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	LDL VOC	ug/L	7	1.2 #	0.5 U	0.82 #	0.5 U
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.89 #	0.5 U	0.93 #	0.47 J #
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 ป	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	0.46 J #	: 0.5] U	0.5 U	0.5 U
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 U	0.5 ひ)	° 0.5 U	0.5 ひ
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 U	[5 บ	5 U	5 U
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 ひ	0.5 U
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5	0.5 U	0.5 U	0.5 U
79-00-5	1.1.2-Trichloroethane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5	0.5 U
79-00-5 127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
127-18-4 591-78-6	2-Hexanone	LDL VOC	ug/L .	50	5 0	5 0	5 U	5\U\
*	2-nexanone Dibromochloromethane	LDL VOC	ug/L ug/L	50	0.5 0	0.5 0	0.5 U	0.5 [U
124-48-1 106-93-4	1,2-Dibromoethane	LDL VOC	ug/L ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

[Sample Code	Site-specific-GW	MPW-02-PD-D-R1	MPW-01-PD-A-R1	MPW-01-PD-B-R1	MPW-01-PD-C-R1
			Sample Name					
			Sample Date		11/26/2007	11/27/2007	11/27/2007	11/27/2007
Cas Rn	Chemical Name	Analytic Me	tr Unit \\ Depth		-48.65 ft amsl	17.73 ft amsl	-6.77 ft amsl	-29.27 ft amsl
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	LDL VOC	. ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	LDL VÓC	ug/L	5	0.5 U	0.5 U	0.5 ປ	0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachioroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 j U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 ป	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 ∪ }
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0,5 U	0.5 U	0.5 U
	Wet Chemistry	•					; []	
7440-32-6	Titanium	SW6010B-7	「(ug/L	N/A	10 U	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	1 A	0.073 #	0.074 #	0.18 A

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter
mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson	Station, New York			
 -		s	Sample Code	Site-specific-GW	MPW-03-PD-B-R1	MPW-03-PD-B-R1-DUP	MPW-04-PD-A-R1	MPW-04-PD-B-R1
		s	Sample Name			MPW-33-PD-B-R1	Į	
		s	Sample Date		11/27/2007	11/27/2007	11/27/2007	11/27/2007
Cas Rn	Chemical Name	Analytic Meth U			-12.90 ft amsi	-12.90 ft amsl	21.56 ft amsl	2.06 ft amsl
	Volatile Organic Compounds	· -						·
75-71-8	Dichlorodifluoromethane	LDL VOC u	ıg/L	5	0.5 ひ	0.5 U }	0.5 U	0.5 U
74-87-3	Chloromethane		ıg/L	5	0.21 J #	0.57 # }	0.45 J #	0.5 U
75-01-4	Vinyl Chloride		ıg/L	2	0.5 U	0.5 U	0.5 U	0.5
74-83-9	Bromomethane		ıg/L	5	0.5 U	0.5 U	0.5 U	0.5∤∪_
75-00-3	Chloroethane		ıg/L	5	0.5 บ	0.5 ∪}	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane		ıg/L	5	0.5 บ	0.5 U] ·	0.5 U	0.5[U
75-35-4	1,1-Dichloroethene		ıg/L	5	0.5 U	0.5 U	0.5 U	0.5\U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane		ıg/L	5	0.5 U	0.5 U	0.5]U	0.5 ひ
67-64-1	Acetone		ıg/L	50	ร[บ]	5 U	5 U	5 U
75-15-0	Carbon Disulfide		ıg/L	50	o.5 U	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate		ıg/L	N/A	0.5 บ	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride		ıg/L	5	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene		ıg/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether		ıg/L	10	o.5 U	0.5 U	1.5 #	7.9
7 5-34- 3	1.1-Dichloroethane		ıg/L	5	o.5lu l	0.5 U -	0.5 U	0.5 U
156-59-2	cis-1,2-Dichloroethene		ıg/L	5	0.5 U	0.5 U	1 #	1.5
78-93-3	2-Butanone		ıg/L	50	ร บ	5 U	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC u	ıg/L	5	0.5ใบ	0.5 ぴ	0.5 U	0.5 U
67-66-3	Chloroform	LDL VOC u	ıg/L	7	0.5 U	0.5 U	0.5\U	0.5]U
71-55-6	1,1,1-Trichloroethane	LDL VOC u	ıg/L	5	0.5 U	0.5 U	0.5 U	0.5 U
110-82-7	Cyclohexane		ıg/L	N/A	0.5 _U	0.5 U	0.5 U	0.5\U
56-23-5	Carbon Tetrachloride		ığ/L	5	0.5 🗓	0.5 U	0.5 U	0.5
71-43-2	Benzene		ig/L	1	0.5 U	0.5 U	0.5 U	0.5
107-06-2	1.2-Dichloroethane		ıg/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene		19/L	5	1.7	2.2 #	15 A	79
108-87-2	Methylcyclohexane	LDL VOC u	ıg/L	N/A	0.5	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC u	.g/L .g/L	1	0.5 U	0.5 U	0.5 U \	0.5 U
75-27-4	Bromodichloromethane	LDL VOC u	ıg/L	50	0.5 U	0.5 U	0.5 U)	0.5
10061-01 - 5	cis-1,3-Dichloropropene	LDL VOC u	ıg/L	0.4	0.5 U	0.5 0	0.5 บ	0.5 U
			19/L 1g/L	50	5 0	5 บ	5 บ	5 U
108-10-1	4-Methyl-2-pentanone Toluene		ig/L	5	0.5 U	0.5 0	0.38 J #	0.5 U
108-88-3			19/L 19/L	0.4	0.5 U	0.5 0	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene		ig/L	1 1	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane		ig/L	5	0.5 U	0.5 U	6 A	40
127-18-4	Tetrachloroethene			50	5.5 U	5 0	5 U	5 U
591-78-6	2-Hexanone		ıg/L	50	0.5	0.5	0.5	0.5 U
124-48-1	Dibromochloromethane	_	ıg/L	0.0006	0.5 U	0.5	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	LDL VOC u	ıg/L	סטטט.ט ן	_ 0.5[0]	0.50		5.0(0

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			T			11011144 55 4 54	MONTO CONTRACTO
	 :	Sample Code	Site-specific-GW	MPW-03-PD-B-R1	MPW-03-PD-B-R1-DUP	MPW-04-PD-A-R1	MPW-04-PD-B-R1
		Sample Name			MPW-33-PD-B-R1		
		Sample Date		11/27/2007	11/27/2007	11/27/2007	11/27/2007
Cas Rn	Chemical Name	Analytic Meth Unit \\ Depth		-12.90 ft amsl	12.90 ft amsl	21.56 ft amsl	2.06 ft amsl
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 <u> </u> U	0.5[나
179601-23-1	m.p-Xylene	LDL VOC ug/L	N/A	0.5 U	[0.5[U] ·	(0.22 J ~	· 0.5 U
100-42-5	Styrene	LDL VOC ug/L	5	0.5 U	0.5[U]	0.5 U	0.5 ป
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 U	0.5년	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1.1.2.2-Tetrachloroethane	LDL VOC ug/L .	5	0.5 U	0.5 U	0.5 U	0.5 ひ
541-73-1	1.3-Dichlorobenzene	LDL VOC ug/L	3	0.5U	0.5 ∪	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 ∪
95 - 50-1	1,2-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5[년
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U.	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
			1				
	Wet Chemistry	CIAICA COD TTC - II]	ابامه	10 0	10 0	10 U
7440-32-6	Titanium ′	SW6010B-T(ug/L	N/A	10 U			1 1
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.17 A	0.24 A	0.16 A	1.6 A

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

Sample Code Sample Name Sample Date Unit \\ Depth ug/L ug/L ug/L	Site-specific-GW	MPW-04-PD-C-R1 11/27/2007 -28.44 ft amsl	MPW-04-PD-D-R1 11/27/2007 -44.94 ft amsl	MPW-04-PD-E-R1 11/27/2007 -67.44 ft ams!	MPW-10-PD-A-R1 11/27/2007 5.56 ft amsl
Sample Date Jnit \\ Depth ug/L ug/L ug/L	5	-28.44 ft amsl	-44.94 ft amsl	-67.44 ft amsl	
Jnit \\ Depth ug/L ug/L ug/L	5	-28.44 ft amsl	-44.94 ft amsl	-67.44 ft amsl	
ıg/L ıg/L	5	0.5 U	· 111		5.56 ft amsl
ıg/L	5		0.5 U	<u> </u>	1 1
ıg/L	5		0.5)U I		
ıg/L	-			0.5 U	0.5 U
		0.35 J #	0.24 J #	0.28 J #	0.46 J #
ın/l İ	2	0.5 U	0.5[U]	0.5[년]	0.5\U
49/	5 [:]	0.5 U	0.5 U	0.5 U	0.5 U
ug/L.	5	0.5 U	0.5 U	0.5 U	0.5 U
ug/L	5	0.5 U			0.5 U
.ig/L	5	0.5 U	0.21 J #	0.82 #]	0.5 U
ıg/L	5	0.5 U	0.5 U	0.5 U	0.5 U
Jg/L	50	5 U	έU	5 U	5 U
ug/L	50	0.5 U	0.5년		0.5 U
يوًرL	N/A	0.5 U	0.5 U	0.5 U]	0.5 U
ıg/L	5	0.5 U	· 0.5]U	0.5 U	0.5 U
	5	0.5 U	0.5 U	0.5 ∪	0.5 U
	10	1.1 #	2 #	1.4 #	1.4
	5	0.5 U	_ 0.42 J #	2.3 #	0.36 J (#
	5	0.42 J #	1 # }	0.35J #	0.46 J #
	50	ธ บ	5 U	5 <mark> U </mark>	5 U
	5	0.5 U	0.5 U	0.5 U	0.5 U
ıg/L	7	0.5 U	0.5 U	0.65 #	0.5 U
•	5	0.5 U	0.72	2.1 #	0.46 J #
	N/A	0.5 U	0.5 U	0.5 U	0.5 U
	5	0.5 U	0.5 U	0.5 U	0:5 U
	1		0.5 U	0.5 U	0.5 ひ
	0.6		0.5 U	0.5 U	0.5 U
	5	5.3 A	45 A	9.8 A	· 17 <i> </i>
	N/A	o.5 U	0.5 U	0.5 U	0.5 U
	1		0.5 U	0.5 U	0.5[U]
	50		0.5 U	0.5 U	0.5 U
			0.5 U	0.5 U	0.5 U
		5 U	5 U	5 U	5 U
	5		0.5	0.5 ป	0.5 U
	0.4		0.5lu l		0.5 U
	1		1-1	0.5 U	0.5 U
	5			3 #	5.7
		5.U	รีเบโ	5 บ ๊	5 U
		-1-1	• I - I I	- - 1	0.5 U
					0.5 U
	g/L 19/L 19/L 19/L 19/L 19/L 19/L 19/L 19	9/L 5 9/L 5 9/L 5 9/L 50 9/L 50 9/L 50 9/L 50 9/L 5 9/L 5 9/L 5 9/L 5 9/L 5 9/L 5 9/L 5 9/L 5 9/L 5 9/L 5 9/L 7 9/L 5 9/L 7 9/L 5 9/L 1 9/L 5 9/	1g/L 5 0.5 U 1g/L 5 0.5 U 1g/L 50 5 U 1g/L 50 0.5 U 1g/L 50 0.5 U 1g/L 5 0.5 U 1g/L 1 0.5 U 1g/L 5 0.5 U	1g/L 5 0.5 U 0.5 U	1

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample.Code	Site-specific-GW	MPW-04-PD-C-R1	MPW-04-PD-D-R1	MPW-04-PD-E-R1	MPW-10-PD-A-R1
			Sample Name					
			Sample Date		11/27/2007	11/27/2007	11/27/2007	11/27/2007
Cas Rn	Chemical Name	Analytic Me	th Unit \\ Depth		-28.44 ft amsl	-44.94 ft amsl	-67.44 ft amsl	5.56 ft amsl
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 ป	0.5 ひ	0.5 U	0.5 ∪∤
179601-23-1	m.p-Xylene	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 ∪∤
100-42-5	Styrene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 ひ
98-82-8	Isopropylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U .	0.5 ひ	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 Ù	0.5 U	0.5 ∪	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	0.5 ∪	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
	Wet Chemistry							
7440-32-6	Titanium	SW6010B-7	「Cug/L	N/A	10 0	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	2.8 A	2.2	0.37 A	0.12 #

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

ams! above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jefferson Sta	LIOH, NEW TOIK			
			Sample Code	Site-specific-GW	MPW-10-PD-B-R1	MPW-10-PD-C-R1	MPW-10-PD-D-R1	FG-01-PD-R1
			Sample Name	•				
			Sample Date		11/27/2007	11/27/2007	11/27/2007	11/28/2007
Cas Rn	Chemical Name	Analytic Met	r Unit \\ Depth		-19.94 ft amsl	-51.44 ft amsl	-67.94 ft amsl	12 to 2 ft amsl
	Volatile Organic Compounds	·						
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 U	0.33 J #	0.31\J #	0.47 J #
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	0.5	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U}	、 0.5 U	0.5 U
75-35-4	1.1-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.28 J #	0.41 J #	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 ป
67-64-1	Acetone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	2.9 #	1.1 #	0.39 J # 	0.49 J #
75-34-3	1.1-Dichloroethane	LDL VOC	ug/L	5	0.26 J #	0.8 #	1.9 #	0.5 U
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	1.3 #	1.8 #	0.5 U	0.5 U
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	LDL VOC	ug/L	7	0.5 U	0.52 #	0.5]J #	9.9 A
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.47 J #	0.98 #	1.9	0.5 U
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 ひ	U 2.0	0.5 U}	0.5 U
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 ひ	0.5 U	0.5 나	0.5 U
71-43-2	Benzene	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
107-06-2	1.2-Dichloroethane	LDL VOC	ug/L	0.6	0.5U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	58 A	30 A	1.3	0.5 U
108-87-2	Methylcyclohexane	LDL VOC	ug/L r	N/A	0.5 U	0.5 U	<u> 0.5</u> U	0.5\U\
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U}
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U {	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 U	5 5 0	5 U]	5 U
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 บ	0.5 U	0.5 U	0.5 ป
100-60-3	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 บ	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	23 A	14 A	0.67 #	0.54 #
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 ∪
106-93-4	1.2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5 U	0.5 U	0.5 บ	0.5 U

Table F-1 **Groundwater Sampling - Round 1** Full Data Table

Lawrence Aviation Industries Site Port Jefferson Station, New York

				OILOCHOISON DE				
			Sample Code	Site-specific-GW	MPW-10-PD-B-R1	MPW-10-PD-C-R1	MPW-10-PD-D-R1	FG-01-PD-R1
			Sample Name					
			Sample Date	ļ	11/27/2007	11/27/2007	11/27/2007	11/28/2007
Cas Rn	Chemical Name	Analytic Met	r Unit \\ Depth		-19.94 ft amsi	-51.44 ft amsl	-67.94 ft amsl	12 to 2 ft amsl
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	LDL VOC	ug/L	N/A	0.5 U	0.5U	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC	ug/L	5	0.5 ひ	0.5{U	0.5 U <u> </u>	0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 ひ	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1.1.2.2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U 	0.5 ひ
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5↓U
106-46-7	1.4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1.2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 ป	0.5 U	0.5 U
96-12-8 -	1.2-Dibromo-3-chloropropane	LDL VÔC	ug/L	0.04	0.5 U	0.5 U	0.5U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 บ	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
						'		1 (
	Wet Chemistry			1	1 1]		40 11
7440-32-6	Titanium	SW6010B-T	Cug/L	N/A	10 U	10 U	10 0	10 0
16984-48-8	Fluoride	Fluoride	mg/L	0.12	1] A	1.6 A	0.36 A	0.15 A

Notes:

Compound detected below or equal to screening criteria

Compound detected above screening criteria Α Compound without screening criteria detected

above mean sea level amsl

feet ft

Value estimated

Compound not detected above reporting limit U

micrograms per liter ug/L mg/L LDL VOC milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Port Jenerson 3	tation, New York			
		Sample	Code Site-specific-GW	MPW-03-PD-A-R1	MPW-03-PD-C-R1	MPW-03-PD-D-R1	MPW-05-PD-A-R1
		Sample	e Name				
		Sample	e Date Í	11/28/2007	11/28/2007	11/28/2007	11/28/2007
Cas Rin	Chemical Name	Analytic Meth Unit \\	Depth_	9.60 ft amsl	-30.40 ft amsl	-50.40 ft amsl	-8.37 ft amsl
-	Volatile Organic Compounds		· · · · · · · · · · · · · · · · · · ·				
75- 71- 8	Dichlorodifluoromethane	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	LDL VOC ug/L	5	0.25 J #	0.5 ひ	0.5 U	0.5 U
75-01-4	Vinyl Chloride	LDL VOC ug/L	2	[0.5 U [0.5 년	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC ug/L	5	0.5 U	0.5 U	1.4 #	0.5 ⊍
75-69-4	Trichlorofluoromethane	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	LDL VOC ug/L	5	0.5 U	0.5 U	0.21 J #	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	LDL VOC ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	LDL VOC ug/L	50	0.5[U	0.5 U	0.5 U	0.29 J #
79-20-9	Methyl Acetate	LDL VOC ug/L	N/A	0.5 U i	0.5 บ	0.5 U	0.5 U
75-09-2	Methylene Chloride	LDL VOC ug/L	5	0.5 U j	0.5 U	0.23 J #	0.5 ∪
156-60-5	trans-1,2-Dichloroethene	LDL VOC ug/L	5	0.5\UJ	0.5 ป	0.5 U	0.5 UJ
1634-04-4	Methyl tert-Butyl Ether	LDL VOC ug/L	10	0.4 J #	0.58 #	0.5[U]	2.4 #
75-34-3	1.1-Dichloroethane	LDL VOC ug/L	.5	0.5 U	0.49 J #	0.57 #	0.5 ป
156-59-2	cis-1,2-Dichloroethene	LDL VOC ug/L	5	0.5 UJ	0.55 #	0.32 J #	0.5 บป
78-93-3	2-Butanone	LDL VOC ug/L	50	5 U	5 U	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC ug/L	5	0.5 U 1	0.5 U	0.5\U	0.5 U
67-66-3	Chloroform	LDL VOC ug/L	7	0.2 J #	0.5 U	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	LDL VOC ug/L	5	0.5 U	0.44 J #	0.5 U	0.5 U
110-82-7	Cyclohexane	LDL VOC ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ∪-
71-43-2	Benzene	LDL VOC ug/L	1	0.5 U	0.5 U	0.5 ป	0.5 U
107-06-2	1.2-Dichloroethane	LDL VOC ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	LDL VOC ug/L	5	0.5 บ	11 A	0.69 #	0.5 U
108-87-2	Methylcyclohexane	LDL VOC ug/L	N/A	0.5 U	0.5JU	0.5 U	0.5 <u> </u> U
78-87-5	1,2-Dichloropropane	LDL VOC ug/L	1	0.5 U	0.5JU	0.5 U	0.5 U
75-27-4	Bromodichloromethane	LDL VOC ug/L	50	0.5 U	0.5	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC ug/L	50	5 U	5 U	5 U) 5 U
108-88-3	Toluene	LDL VOC ug/L	5	0.5 U	0.5 U	2.2 #	0.77
10061-02-6	trans-1,3-Dichloropropene	LDL VOC ug/L	0.4	0.5 U	0.5 ป	0.5 U	0.5 U
79-00-5	1.1.2-Trichloroethane	LDL VOC ug/L	1	0.5 U	0.5 U	0.5 0	0.5 U
127-18-4	Tetrachioroethene	LDL VOC ug/L	5	0.5 U	0.47 J #	0.5 Ú	0.5 U
591-78-6	2-Hexanone	LDL VOC ug/L	50	5 0	5 U	5 U	5 U
124-48-1	Dibromochloromethane	LDL VOC ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1.2-Dibromoethane	LDL VOC ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Cod	le Site-specific-GW	MPW-03-PD-A-R1	MPW-03-PD-C-R1	MPW-03-PD-D-R1	MPW-05-PD-A-R1
		Sample Nar	ne			1	
		Sample Dat	e l	11/28/2007	11/28/2007	11/28/2007	11/28/2007
Cas Rn	Chemical Name	Analytic Meth Unit \\ Depti	ا ۱	9.60 ft amsl	-30.40 ft amsl	-50.40 ft amsl	-8.37 ft amsl
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	LDL VOC ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	O.5 U
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropyibenzene	LDL VOC ug/L	5	0.5ใบ	0.5 U	0.5 U	0.5 U (
79-34-5	1.1.2.2-Tetrachloroethane	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1.3-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5\U \
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 ひ
95-50-1	1,2-Dichlorobenzene	LDL VOC ug/L	3	0.5 ນ	0.5 บ	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 0	0.5 U	0.5 ひ
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	[0.5 ป	0.5 U	0.5 ひ
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	. 5	0.5 U	0.5 U	0.5 U	0.5 U
				. —	1		[
} ·	Wet Chemistry				ا المام	40	1 40 1
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 U	10 0	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.23 A	0.74 A	0.22 A	0.13 A

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

Cas Rn			,		Port Jefferson St	ation, New York			
Cas Rn				Sample Code	Site-specific-GW	MPW-05-PD-B-R1	MPW-08-PD-A-R1	MPW-08-PD-B-R1	MPW-08-PD-C-R1
Cas Rn				Sample Name	·	•	•		
Volatile Organic Compounds						11/28/2007	11/28/2007	11/28/2007	11/28/2007
Volatile Organic Compounds	Cas Rn C	Chemical Name	Analytic Met	r Unit \\ Depth		-36.87 ft amsl	-13.59 ft amsl	-33.09 ft amsl	-63.59 ft amsl
75-71-8	V	/olatile Organic Compounds	•			_			
74-87-3			LDL VOC	ug/L	5	0.5 U	0.5 U		0.5 ป
75-01-4	74-87-3 C	Chloromethane	LDL VOC		5	0.5 U	0.5 U	0.5 U	0.5 ป
TAB-39-9 Bromomethane			LDL VOC		2	0.5 U	0.5 U	0.5 U	0.5 U
75-09-3		-	LDL VOC		5	0.5 U	0.5 U	0.5 U	0.5 U -
Trichloroflucromethane		Chloroethane	LDL VOC		5	0.5 U	0.5 U	0.5 U	0.5 U
1,1Dichloroethene					5	0.5 บ	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane					5	0.5 U	0.5 U	0.5 U	0.5 U
Carbon C		•			5	0.5 U	0.5 ひ	0.5 U	0.5 U
75-15-0 Carbon Disulfide			LDL VOC		50	5 บ	5 . U	5 U	5 U
19-20-9 Methyl Acetate						0.5 บ	0.5 ひ	0.5 U	0.5 U
15-09-2 Methylene Chloride					N/A	0.5 [บ]	0.5 U	0.5 U	0.5 U
156-60-5 173-1,2-Dichloroethene LDL VOC ug/L 10 0.5 U 0.5		•				0.5 U	0.5 U	0.5 U	0.5 ป
1634-04-4 Methyl tert- Butyl Ether LDL VOC ug/L 5 0.5 U 0.5		•			5		0.5[UJ{ }	0.5 UJ	0.5 U
1,1-Dichloroethane				ua/L		0.5 U	0.5 U	0.5 U	0.5 U
156-59-2 cls-1,2-Dichloroethene LDL VOC ug/L 5 0.5 U 5					5	0.5 U	0.5 U] }	0.5 U	0.5 U
78-93-3 2-Butanone		•			5	0.5 U	0.5 บ.វ	0.5 UJ	0.3 J #
74-97-5 Chlorobromomethane					50		5 U	5 U	5 U
Color Colo						0.5 U	0.5 U	0.5 U	0.5 U
71-55-6 1,1,1-Trichloroethane LDL VOC ug/L 5 0.5 U 0.5						0.5 U	0.5 U	0.5 U	0.5[U]
110-82-7					5	0.5 U	0.5 U	0.5 U	0.5[U
Second S				ug/L	_		0.5 U	0.5 U	0.5\U\
T1-43-2 Benzene				ug/l.			o.5 u	0.5 U	0.5 U
107-06-2					_	0.5 U	, o.5 v	o.5 U	0.5 U
Trichloroethene				ug/I	0.6				0.5 ∪∤
108-87-2 Methylcyclohexane LDL VOC ug/L 1 0.5 U 0.				ug/L		0.77{ #	3 - #	3.2 #	19 /
Table Tabl				ug/L			0.5 U		0.5(U
Total Contro						0.5 0	0.5 U	0.5 U	0.5 ひ
10061-01-5 cis-1,3-Dichloropropene LDL VOC ug/L		• •				0.5 U		0.5 U	0.5 ひ
108-10-1 4-Methyl-2-pentanone LDL VOC ug/L 50 5 U 5 U 5 U 0.5 U								0.5 บ	0.5년
108-88-3 Toluene LDL VOC ug/L 5 0.21 J # 0.5 U 0.5 U 10061-02-6 trans-1,3-Dichloropropene LDL VOC ug/L 1 0.5 U 0.5						الناة			5\U
10061-02-6 trans-1,3-Dichloropropene LDL VOC ug/L 0.4 0.5 U						0.21 J #	-1-1	0.5 U	0.5{U
79-00-5 1,1,2-Trichloroethane LDL VOC ug/L 1 0.5 U 0.5 U 0.5 U 127-18-4 Tetrachloroethene LDL VOC ug/L 5 0.5 U 0.5 U 0.5 U 591-78-6 2-Hexanone LDL VOC ug/L 50 5U 5U 5U 5U 5U 5U 5U 5U 5U 5U 5U 5U 5U								0.5 U	0.5 U
127-18-4 Tetrachloroethene LDL VOC ug/L 5 0.5 U 0.5 U 0.5 U 0.5 U 591-78-6 2-Hexanone LDL VOC ug/L 50 5 U 5 U 5 U				ug/L					0.5 U
591-78-6 2-Hexanone LDL VOC ug/L 50 5 U 5 U 5 U					=				0.5 U
091-70-0 2-11examone EBE 400 49/2 00 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1					-				5 U
							0.5 0	0.5 0	0.5
124-48-1 Dibromochloromethane LDL VOC ug/L 50 0.5 U 0.									0.5 ป

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	<u></u>		Sample Code	Site-specific-GW	MPW-05-PD-B-R1	MPW-08-PD-A-R1	MPW-08-PD-B-R1	MPW-08-PD-C-R1
			Sample Name			1		·
			Sample Date		11/28/2007	11/28/2007	11/28/2007	11/28/2007
Cas Rn	Chemical Name	Analytic Me	tr Unit \\ Depth		-36.87 ft ams!	-13.59 ft amsl	-33.09 ft amsl	-63.59 ft ams!
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 0	. 0.5 U	0.5 U
179601 <i>-</i> 23-1	m,p-Xylene	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5lu l	0.5 ∪
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5lu l	0.5]U
98-82-8	isopropylbenzene	LDL VOC	ug/L	5	. 0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC	ug/L	5,	0.5 U	0.5 0	0.5 U	0.5 ⊍
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	^ 0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	· 0.5 U	(o.5 u	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L՝	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 ป	0.5 U	J 0.5 ∪	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
	Wet Chemistry							
7440-32-6	Titanium	SW6010B-T	(ug/L	N/A	10 U	1010	10 U	10 0
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.18	سا المممم	I . I . I	0.11 #

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jefferson S	auon, new fork			
		-	Sample Code	Site-specific-GW	MPW-08-PD-D-R1	MPW-08-PD-E-R1	MW-05-PD-R1	MPW-05-PD-C-R1
			Sample Name	•	i			
			Sample Date		11/28/2007	11/28/2007	11/28/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Met	· Unit \\ Depth		-85.09 ft amsl	-102.59 ft amsi	40 to 25 ft amsl	-53.57 ft amsl
545 (4.1	Volatile Organic Compounds	_	· -					_
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 U	0.5 U [0.5 U	0.5 U
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5(U { }	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5{U	0.5 U	0.5 U	0.5 U
75-35-4	1.1-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 ぴ	0.5 ป	0.5 U]
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5∤∪ │	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 년
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U	0.5 บ	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 UJ	0.5 UJ	0.5 UJ	0.5 UJ
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.5 U	0.5 U }	0.5 U	0.5 U
75-34-3	1,1-Dichloroethane	LDL VOC	ug/L	5	0.31 J #	0.5 U)	0.5 U	0.33 J #
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	0.88J#	0.33 J]#	0.5 UJ	0.5 ม
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U }	5 U	5 U	5 U }
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U }	0.5{U	0.5 U	0.5 U
67-66-3	Chloroform	LDL VOC	ug/L	7	0.ธ[บ ้	0.5 U	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.22 J #	0.5 ひ	0.5 U	# 0.41 J
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5し	0.5 U	0.5 U	0.5 Մ
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	LDL VOC	ug/L	1	0.5 U	0.5 บ	0.5 U }	0.5 U
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 บ	0.5 บ	0.5 U	0.5 U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	30 A	13 A	1 #	6.7 A
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 U	0.5[U]	0.5 U	0.5 U
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U X	0.5 U	0.5 บ	0.5(난
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5\U	0.5\U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5∤∪	0.5 U
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.52 #	0.35 J #
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-1 Groundwater Sampling - Round 1 Full Data Table **Lawrence Aviation Industries Site**

Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-08-PD-D-R1	MPW-08-PD-E-R1	MW-05-PD-R1	MPW-05-PD-C-R1
	-	Sample Nam	e				
		Sample Date		11/28/2007	11/28/2007	11/28/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Meth Unit \\ Depth		-85.09 ft amsl	-102.59 ft amsl	40 to 25 ft amsl	-53.57 ft amsl
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
179601-23-1	m,p-Xylene	LDL VOC ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 ับ
100-42-5	Styrene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 บ	0.5 บ [0.5[U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC ug/L	5	0.5 U	0.5 บ	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC ug/L	5	0.5 ひ	0.5 ∪	0.5 U	o.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC ug/L	3	0.5∫∪	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U ·
95-50-1	1,2-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 บ	0.5 บ
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 บ	0.5 U [0.5 U	0.5 ับ
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
Ì	Wet Chemistry						[]
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.16 A	0.13 A	0.085 #	0.19 A

Notes:

Compound detected below or equal to screening criteria

Compound detected above screening criteria Α Compound without screening criteria detected

above mean sea level amsl ft feet

Value estimated

Compound not detected above reporting limit U

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	•			Port Jenerson S	Station, New York				
			Sample Code	Site-specific-GW	MPW-05-PD-D-R1		MPW-06-PD-A-R1	MPW-06-PD-B-R1	MPW-06-PD-C-R1
			Sample Name	-		- 1			
		4	Sample Date		11/29/2007	- {	11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Meth	Unit \\ Depth		-71.87 ft amsl		-12.88 ft amsl	-38.38 ft amsl	-64.88 ft amsl
	Volatile Organic Compounds	•		-				1	
75-71 - 8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U		0.5 บ	0.5 U	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride		ug/L	2	0.5 U		0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U		0.5 ป	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 ป		0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 U	0.22 J #
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U		0.5 บ	0.5 U	0.5 U
67-64-1	Acetone		ug/L	50	5 U		5 U	5 U	5 U. }
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U		0.5 ป	[0.5 U	0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U		0.5 U ·	0.5 U	0.5 U
75-09-2	Methylene Chloride		ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene		ug/L	5	0.5 บฦ		0.5 บม	0.5 UJ	0.5 UJ
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.5 U		0.5 U	0.28 J #	0.5 U
75-34-3	1.1-Dichloroethane		ug/L	5		#	0.5 U	0.5 U	0.45 J #
156-59-2	cis-1,2-Dichloroethene		ug/L	5	0.5 UJ		0.5 UJ	~ 0.5 UJ	0.5 UJ
78-93-3	2-Butanone	LDL VOC	ug/L	50 ·	5 U		5 U	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
67-66-3	Chloroform		ug/L	7	0.5 U		0.5 U	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane		ug/Ĺ	5	0.59	#	0.5 U	0.5 U	0.45 J #
110-82-7	Cyclohexane		ug/L	N/A	ຸ 0.5 ປ		0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride		ug/L	5	0.5 U		0.5¦U	0.5 U	0.5 U
71-43-2	Benzene		ug/L	· 1	0.5 U		0.5 ป	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane		ug/L	0.6	0.5 U		0.5\U	0.5 ひ	0.5 U
79-01-6	Trichloroethene		ug/L	5	8 4	Α	1.2	# 0.52 #	14 A
108-87-2	Methylcyclohexane		ug/L	N/A	0.5 U	ľ	0.5 U	0,5 U	0.5 U
78-87-5	1,2-Dichloropropane		ug/L	1	0.5 U		0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane		ug/L	50	0.5 U		0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene		ug/L	0.4	0.5 U		0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone		ug/L	50	5 U		5 U	5 U	5 U
108-88-3	Toluene		ug/L	5	0.5[U]		. 2	# 1.7 #	0.5 U
10061-02-6	trans-1,3-Dichloropropene		ug/L	0.4	0.5 U		0.5 U	0.5 U	0.5 U
79-00-5	1.1.2-Trichloroethane		ug/L	1	0.5 U		0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene		ug/L	5	0.43 J	#	0.5 ป	0.5 U	0.21 J #
591-78-6	2-Hexanone		ug/L	50	5 U		5 บ	5 U	5 U
124-48-1	Dibromochloromethane		ug/L	50	0.5 U		0.5 빇	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane		ug/L	0.0006	0.5 ป		0.5 U	0.5 U	0.5 U

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-05-PD-D-R1	MPW-06-PD-A-R1	MPW-06-PD-B-R1	MPW-06-PD-C-R1
		Sample Name	-				
		Sample Date		11/29/2007	11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Meth Unit \\ Depth		-71.87 ft amsl	-12.88 ft amsi	-38.38 ft ams!	-64,88 ft amsl
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5JU
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5[U	0.5 U	0.5]나
179601-23-1	m.p-Xylene	LDL VOC ug/L	. N/A	0.5 U	0.5[U	0.5 U	0.5 U)
100-42-5	Styrene	LDL VOC -ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U }
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 บ	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1.1.2.2-Tetrachloroethane	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1.3-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1.4-Dichlorobenzene	LDL VOC ug/L	3	0.5 บ	0.5 U	0.5 U	0.5 U
95-50-1	1.2-Dichlorobenzene	LDL·VOC ug/L	3	0.5 ป	0.5 U	0.5 U	0.5 U }
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L .	0.04	0.5 U	0.5 U	0.5 U -	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U {
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U
-				-]
	Wet Chemistry						_
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 U	10 0	10 U.
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.18 A	0.29 A	0.17A	0.15 A

A I		
N	otes	

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

ams! above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson	Station, New York			
			Sample Code	Site-specific-GW	MPW-06-PD-D-R1	MPW-07-PD-C-R1	MPW-07-PD-C-R1-DUP	MPW-09-PD-A-R1
			Sample Name	,			MPW-77-PD-C-R1	
			Sample Date		11/29/2007	11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Metr	Unit \\ Depth	ļ	-108.38 ft ams <u>l</u>	-26.56 ft amsl	-26.56 ft amsl	-5.01 ft amsl
	Volatile Organic Compounds							
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	LDĽ VOÇ	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	0.5 U	0.5 บ	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00 - 3	Chloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 ひ	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0,5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene		ug/L	5	0.5 U	0.5 U	0.5 U	0.25 J #
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane		ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone		ug/L	50	5 บ	5 U	5 U	5 U
75-15-0	Carbon Disulfide		ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate		ug/L	N/A	0.5 U	0.5 U	0.5 U]	0.5 U
75-09-2	Methylene Chloride		ug/L	5	0.5 ⊍	0.5 U	0.5 U]	0.5 U
156-60-5	trans-1,2-Dichloroethene		ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether		ug/L	10	0.5 U	0.5 U	0.5 U	0.5 ∪
75-34-3	1,1-Dichloroethane		ug/L	5	0.23 J #	0.52 #	0.52 #	0.78
156-59-2	cis-1,2-Dichloroethene		ug/L	5	0.36 J #	0.5 0	0.5[U]	1.7
78-93-3	2-Butanone		ug/L	50	5 U	[5 U	, 5 ∪∖ > 5	5 U
74-97-5	Chlorobromomethane		ug/L	5	0.5 U	0.5 U	0.5 0	0.5 U
67-66-3	Chloroform		ug/L	· 7	0.5 U	0.86 #	0.84 #	0.5 U
71-55-6	1,1,1-Trichloroethane		ug/L	5	0.5 U	0.49 J #	0.44 J #	0.86
110-82-7	Cyclohexane		ug/L	N/A	0.5 U	0.5 U	` 0.5 Û {	0.5 U
56-23-5	Carbon Tetrachloride		ug/L	5	- 0.5 U	0.5 U	0.5 U	0.5 U
71-43-2	Benzene		ug/L	1	0.5 U	0.5 บ	0.5 U	0.5 U
107-06-2	1.2-Dichloroethane		ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 ∪
79-01-6	Trichloroethene		ug/L	5	9.8 A	0.59 #	0.53 #	54 A
108-87-2	Methylcyclohexane		ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane		ug/L	1	0.5 U	0.5 U	o.s u	0.5 U
75-27-4	Bromodichloromethane		ug/L	50	0.5 U	0.5 0	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene		ug/L	0.4	0.5 U	0.5	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone		ug/L	50	5 U	5 0	ร บ	5 U
108-88-3	Toluene		ug/L	5	0.5 U	0.5	0.5 บ	0.5
10061-02-6	trans-1,3-Dichloropropene		ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane		ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene		ug/L	5	0.5 U	0.5 U	0.5 U	0.64
591-78-6	2-Hexanone		ug/L	50	5 0	5 U	ร บ	5 U
124-48-1	Dibromochloromethane		ug/L	50	0.5 U	0.5 0	0.5 U	0.5 U
106-93-4	1.2-Dibromoethane		ug/L	0.0006	0.5 U	0.5 U	0.5 0	0.5 U

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-06-PD-D-R1	MPW-07-PD-C-R1	MPW-07-PD-C-R1-DUP	MPW-09-PD-A-R1
		Sample Name	<u> </u>			MPW-77-PD-C-R1	
		Sample Date	· 1	11/29/2007	11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Meth Unit \\ Depth]	-108.38 ft ams!	-26.56 ft amsl	26.56 ft amsl	-5.01 ft amsl
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 ป	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 ป	0.5 บ	0.5 U
179601-23-1	m,p-Xylene	LDL VOC ug/L	N/A	0.5 U	0.5 ป	0.5 Ü	0.5 U
100-42-5	Styrene	LDL VOC ug/L	5	0.5 ป	0.5 ป	0.5 U	0.5 U
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC ug/L	5	0.5 ป	0.5 ป	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 (U)	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3	0.5 Ų	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 ひ	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
	Wet Chemistry						
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 0	10 U	10 0
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.12 #	20 A	20 A	0.11 #

Compound detected below or equal to screening criteria

Compound detected above screening criteria Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling:- Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson Sta	<u> </u>	MPW-09-PD-C-R1	MPW-09-PD-D-R1	MPW-09-PD-E-R1
				Site-specific-GW	MPW-09-PD-B-R1	MPVV-09-PD-C-R1	1VIPVV-09-PD-D-R1	MIL AA-02-LD-E-W
			Sample Name		4410010007	44/20/2007	11/29/2007	11/29/2007
			Sample Date		11/29/2007	11/29/2007	-88.51 ft amsl	-120.01 ft amsi
Cas Rn	Chemical Name	Analytic Me	tr Unit \\ Depth		-38.51 ft amsl	-69.01 ft amsl	-00.31 If airisi	-120.01 it amst
	Volatile Organic Compounds		_		ا ا	ا ا ا ا	0.5 U	0.5 U
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U 0.5 U	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 U	0.5 U		0.5 U
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	
75-69-4	Trichlorofluoromethane	LDL VOC	• ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.61 #	0.53 #	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67- 64-1	Acetone	LDL VOC	ug/L	50	5 U	5 0	5 U	5 0
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U	0.5	0.5 U	0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 ∪	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/Ļ	. 5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.5 U	0.5 U]	0.5 U	0.5 U
75-34-3	1,1-Dichloroethane	LDL VOC	ug/L	5	1.7 [#	1.8]#	0.42 J #	0.86
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	-5	7.2 A	14 A	10 A	0.59 #
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	LDL VQC	ug/L	7	0.5 U	0.5 U	0.52 U	0.51 #
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	1.5 #	1.3 #	0.24 J #	0.59 #
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	LDL VOC	ug/L	1	0.5 บ	0.5 บ	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	280 A	580 A	470 A	67 A
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 บ	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 U	0.5 0	0.5 U	0.5 U }
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	l slul	5 U	5 U	5 U
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
100-60-3	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U	0.5 U	. 0.5 U
	1,1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 U	0.22 J #	0.53 #	0.5 U
79-00-5 127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	5 #	4.6 #	1.2 #	0,65 #
		LDL VOC	ug/L ug/L	50		["5 u "	5 U	5 U
591-78-6	2-Hexanone	LDL VOC		50 50	0.5 U	0.5 0	0.5 0	0.5 0
124-48-1	Dibromochloromethane	LDL VOC	ug/L	0.0006	0.5 U	0.5 U	0.5 0	0.5 U
106-93-4	1,2-Dibromoethane	FDF AOC	ug/L	0.0000	1 0.0[0]	<u> </u>		

Table F-1 Groundwater Sampling - Round 1 Full Data Table **Lawrence Aviation Industries Site** Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MPW-09-PD-B-R1	MPW-09-PD-C-R1	MPW-09-PD-D-R1	MPW-09-PD-E-R1
		:*	Sample Name					
	•		Sample Date		11/29/2007	11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Me	th Unit \\ Depth		-38.51 ft amsl	-69.01 ft amsl	-88.51 ft amsi	-120.01 ft amsl
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	FDF AOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 0
100-42-5	Styrene	LDL VOC	ug/L	5	0.5 U	0.5 U	[0.5 ป]	0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
79-34-5	1.1.2.2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
541-73-1	1.3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1.4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 ひ
95-50-1	1.2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0,5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	0.5 U	0.5 U	0.5 บ	0.5]니
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
-								
	Wet Chemistry							
7440-32-6	Titanium	SW6010B-7	「(ug/L	N/A	10 U	10 U	10 0	10 0
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.16 A	0.16 A	0. <u>16</u> A	0.17 NA

N	_	te	٠.
14	u	ľ	₽.

Compound detected below or equal to screening criteria Compound detected above screening criteria Compound without screening criteria detected

above mean sea level amsl

feet ft

Value estimated

Compound not detected above reporting limit U

ug/L micrograms per liter mg/L milligrams per liter

Low Detection Limit Volatile Organic Analyte - Aqueous LDL VOC

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MPW-07-PD-A-R1	MPW-07-PD-B-R1
			Sample Name			
			Sample Date	1.0	11/30/2007	1/4/2008
Cas Rn	Chemical Name	Analytic Met	Unit \\ Depth		22.44 ft amsl	3.94 ft amsl
Cas IXII	Volatile Organic Compounds	7 triary to into	One a popul	_		
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.510	.o.5 U]
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 0	0.5 Ū
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5lU	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U
75-35-4	1.1-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	0.5 U
67-64-1	Acetone	LDL VOC	ug/L	50	รไบ	- s u
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5lU l	0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 ป	0.5 U.
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 ป	0.5 0
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 เม	0.5 U
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.6	0.52 #
75-34 -3	1,1-Dichloroethane	LDL VOC	ug/L	5	o.5 U	0.5 U
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	1.1 J #	0.96
78-93-3	2-Butanone	LDF AOC	ug/L	50	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5 .	0.5 U	0.5 U
67-66-3	Chloroform	LDL VOC	ug/L	7	0.23 J #	0.5 U
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5 1	0.24 J #	0.12 J #
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 U	0.5 U
71-43-2	Benzene *	LDL VOC	ug/L	1 1	0.5JU	0.5 U
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5lU	0.5 U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	1100 A	
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 U	0.5
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 U	5 0
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 U	0.5
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U
79-00-5	1.1.2-Trichloroethane	LDL VOC	ug/L	1	0.5 U	0.16 J #
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	14 A	. 5.9 A
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5 U	_ 5[U]
124-48-1	Dibromochloromethane	LDL VOC	ug/L	50	0.5\U	0.5 U
106-93-4	1.2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5 U	0.5 [7]

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		-	Sample Code	Site-specific-GW	MPW-07-PD-A-R1	MPW-07-PD-B-R1
			Sample Name			
			Sample Date		11/30/2007	1/4/2008
Cas Rn	Chemical Name	Analytic Met	Unit \\ Depth		22.44 ft amsi	3.94 ft amsl
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 0	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U
179601-23-1	m,p-Xylene	LDL VOC	ug/L	N/A	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC	ug/L	5	0.5 U.	0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VQC	ug/L	5	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U
	Wet Chemistry					
7440-32-6	Titanium	. SW6010B-T	(ug/L	N/A	10 U	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	36 A	24 A

Compound detected below or equal to screening criteria Compound detected above screening criteria Α Compound without screening criteria detected above mean sea level amsl ft feet Value estimated Ŭ Compound not detected above reporting limit ug/L micrograms per liter milligrams per liter mg/L Low Detection Limit Volatile Organic Analyte - Aqueous LDL VOC

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson	Station, New York			<u> </u>
		_	Sample Code	Site-specific-GW	MPW-02-PD-A-R1	MPW-02-PD-B-R1	MPW-02-PD-C-R1	MPW-02-PD-C-R1-DUP
			Sample Name					MPW-22-PD-C-R1
•			Sample Date]	1/4/2008	11/26/2007	11/26/2007	11/26/2007
Cas Rn	Chemical Name	Analytic Meth	Unit \\ Depth		190 to 200 ft bgs	215 to 225 ft bgs	240 to 250 ft bgs	240 to 250 ft bgs
	Volatile Organic Compounds							
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 U	0.53 #	0.5 U	0.35 J #
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.073 J #	. 0.5 U	0.5 U	0.5 U
74-83- 9	Bromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5U	J 0.5 U	0.5 U	0.5 U
75-69-4	- Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.5 U	[0.54 #	0.41 J #	0.32 J #
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 J U	0.5 U	0.5 U	0.5 U
67-64-1	Acetoné	LDL VOC	ug/L	50	5 U	5 บ	5 U	5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5[U	0.5 U	0.5 ป	0.5 Ų
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U	0.5 ひ	0.5 ป	0.5 D
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 บ
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.37 J #	0.37 J #	0.5 U	0.5 U
75-34-3	1,1-Dichloroethane	LDL VOC	ug/L	5	1.9 #	1.7 #	1.5	1.5 #
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L ့	5	0.12 J #		. 0.38 J #	0.41 J #
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 0
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
67-66-3	Chloroform	LDL VOC	ug/L	7	0.77 #	0.51 #	0.73 #	0.7 #
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	1.2 #	1.2] [#	0:97 #	1 #
110-82-7	Cyclohexane	LDL VOC	ug/L	` N/A	0.5 U	0.5 U	0.5 U	0.5 U}
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 ป	0.5 ひ	0.5 U	0.5 U
71-43-2	Benzene	LDL VOC	ug/L	1	0.5 ป	0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 บ	0.5 ひ	0.5 U	0.5 ∪
79-01-6	Trichloroethene	LDL VOC	ug/L	5	1.7 #	2.3 #	3.2 #	3.1 #
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 บ	0.5 ∪}	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 บ	0.5[い]	0.5 U	0.5 い
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 ป	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 บ	5 U	5 U	5 U
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 ป	0.5[U	0.5 U	0.5 บ
79-00-5	1,1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 ป	0.5 U	0.5 ∪	0.5 U
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	0.21 J #	0.56 #	0.33 J #	0.32 J #
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5	0.5 U
106-93-4	1,2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

							-
		Sample Code	Site-specific-GW	MPW-02-PD-A-R1	MPW-02-PD-B-R1	MPW-02-PD-C-R1	MPW-02-PD-C-R1-DUP
		Sample Name	e			·	MPW-22-PD-C-R1
		Sample Date		1/4/2008	11/26/2007	11/26/2007	11/26/2007
Cas Rn	Chemical Name	Analytic Metr Unit \\ Depth		190 to 200 ft bgs	215 to 225 ft bgs	240 to 250 ft bgs	240 to 250 ft bgs
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 0	0.5 U
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
179601-23-1	m,p-Xylene	LDL VOC ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC ug/L	5	0.5 U ´	0.5 U	0.5 ป	0.5 U
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 U	0.5 U	0.5]U]	0.5 U
98-82-8	Isopropyibenzene	LDL VOC ug/L	5	0.5 U	0.5 ป	0.5 U	0.5 U·
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC ug/L	5	0.5 U	0.5 ป	0.5[U i	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 ป	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3 -	0.5 ป	0.5 U	0.5 U i	0.5 U ·
95-50-1	1,2-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 ∪	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5∤∪∤
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0,5 U _i -
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	· 0.5 U
}	Wet Chemistry						
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 U	10 0	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	1.3 A	1.3 A	10 A	10] [A

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson Sta					
			Sample Code	Site-specific-GW	MPW-02-PD-D-R1	- 1	MPW-01-PD-A-R1	MPW-01-PD-B-R1	MPW-01-PD-C-R1
			Sample Name						
_			Sample Date		11/26/2007		- 11/27/2007	11/27/2007	11/27/2007
Cas Rn	Chemical Name	Analytic Met	r Unit \\ Depth		265 to 275 ft bgs	_	160 to 170 ft bgs	185 to 195 ft bgs	210 to 220 ft bgs
	Volatile Organic Compounds							_	
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 ป	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.48 J	#	0.64 #	0.4 J #	0.5 U
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U		0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U		0.5 ป	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U		0.5 U]	0.5 U∤	0.5 U
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.39 J	#	0.5[U]	0.26 J #	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	ΙÌ	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	LDL VOC	ug/L	50	5 U	1	5 U	5 U	5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U		0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U		0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 บ		0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 U		- 0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.5 U		4.2	1.7	0.5 U
75-34-3	1,1-Dichloroethane	LDL VOC	ug/L	5	1.1	#	0.5 U	0.35 J #	1.2
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	0.21 J	#	0.5 U	0.5 U	0.5[U
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 0		5 U	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	LDL VOC	ug/L	7	1.2	#	0.5[U]	0.82	0.5 U
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.89	#	0.5U	0.93 # {	0.47 J #
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 U		0.5 U	0.5ไป	· 0.5 ປ
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 บ		0.5 U	0.5 U	0.5 U
71-43-2	Benzene ·	LDL VOC	ug/L	1	0.5 U		o.5 v	0.5 U	0.5 บ
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 U		0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	0.46 J	#	0.5 U	0.5 U	0.5 U
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	" l	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5\U		0.5 U	0.5 U	0.5 u
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U	1	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U		0.5 U	0.5	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5.5 U		5 0	5 0	5 0
108-88-3	Toluene	LDL VOC	ug/L ug/L	5	0.5 U		0.5 U	0.5 U	0.5 0
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U		0.5 U	0.5 U	0.5 U
79-00-5	1.1.2-Trichloroethane	LDL VOC	ug/L ug/L	1	0.5 U		0.5 U	0.5 U	0.5 U
79-00-5 127-18-4	Tetrachloroethene	LDL VOC		5	0.5 ป		0.5 U	0.5 U	0.5 U
		LDL VOC	ug/L	50 50	5 U		5 U	5 0	- 5 U
591 - 78-6	2-Hexanone		ug/L	50 50	0.5 ປ		0.5 U	0.5 U	0.5 U
124-48-1	Dibromochloromethane	LDL VOC	ug/L (0.0006	0.5 U 0.5 U		0.5 U 0.5 U	0.5 U 0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	_LDL VOC	ug/L	0.0000	<u> </u>	┸	ן טופ.ט		<u> </u>

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		-	Sample Code	Site-specific-GW	MPW-02-PD-D-R1	MPW-01-PD-A-R1	MPW-01-PD-B-R1	MPW-01-PD-C-R1
			Sample Name			1		
			Sample Date		11/26/2007	11/27/2007	11/27/2007	11/27/2007
Cas Rn	Chemical Name	Analytic Me	th Unit \\ Depth		265 to 275 ft bgs	160 to 170 ft bgs	185 to 195 ft bgs	210 to 220 ft bgs
108-90-7	Chlorobenzene	LDL VOC	ug/Ĺ	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5]	0.5 U	0.5 U	0.5 U	0.5 ∪ ∮
179601-23-1	m,p-Xylene	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 ひ	0.5 0	JU 6.0	0.5[U
98-82-8	Isopropylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 Ú	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5[U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L .	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	0.5 U	0.5 ป	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL, VOC	ug/L	5	0.5 ປ	0.5 U	0.5 U [0.5 U
87-61-6	1,2,3-Trichiorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
	Wet Chemistry						·	- }
7440-32-6	Titanium	SW6010B-T	Cua/L	N/A	10 U	10 0	10 0	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	1 _A	0.073 #	0.074 #	0.18 A

Notes	•
1000	

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

					Station, New York			
-			Sample Code	Site-specific-GW	MPW-03-PD-B-R1	MPW-03-PD-B-R1-DUP	MPW-04-PD-A-R1	MPW-04-PD-B-R1
			Sample Name			MPW-33-PD-B-R1		
		*	Sample Date		11/27/2007	11/27/2007	11/27/2007	11/27/2007
Cas Rn	Chemical Name	Analytic Met	tr Unit \\ Depth_		195 to 205 ft bgs	195 to 205 ft bgs	150 to 160 ft bgs	170 to 180 ft bgs
	Volatile Organic Compounds					1 - 1		
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 ひ	0.5 U }	0.5 U	0.5
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.21 J #	0.57 #	0.45 J #	0.5 [U
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	0.5 ぴ	0.5 U	0.5]U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U	0.5]ひ	0.5 U	0.5∤∪
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U]	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 บ	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	LDL VOC	ug/L	50	5 U	5 U	·5 U	5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 ป	- 0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.5 U	0.5 0	1.5 #	7.9 #
75-34-3	1,1-Dichloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U 1	0.5 บ	0.5 U
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U	1 #	1.5 #
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U	5 U }	5 บ	5 บ
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
67-66-3	Chloroform	LDL VOC	ug/L	7	0.5 U	0.5 U	0.5 U	0.5 ป
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.5]U j	0.5 U	0.5 U	0.5 U
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5	0.5 U	0.5 U	0,5 ป
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ∪
71-43-2	Benzene	LDL VOC	ug/L ·	1 1	0.5 U	0.5 U	0.5 U	0.5 บ
107-06-2	1.2-Dichloroethane	LDL VOC	ug/L	0.6	0.5년	0.5 U	0.5 U	0.5 บ
79-01-6	Trichloroethene	LDL VOC	ug/L	5	1.7 #	2.2 #	15 A	79 A
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	′ 0.5 U	0.5 U	0.5 U	0.5 บ
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5\U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	รโบโ	5 0	5 U	5 U
108-88-3	Toluene	LDL VOC	ug/L	5	0.5[U]	0.5 U	0.38 J #	0.5 U
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5(U	0.5 U	0.5 U	0.5 U
79-00-5	1.1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	0.5\U	0.5 U	6 A	40 A
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5lu l	5 0	5 U	5 U
124-48-1	Dibromochloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 0	0.5 U
106-93-4	1,2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-03-PD-B-R1	MPW-03-PD-B-R1-DUP	MPW-04-PD-A-R1	MPW-04-PD-B-R1
		Sample Name			MPW-33-PD-B-R1		
		Sample Date		11/27/2007	11/27/2007	11/27/2007	11/27/2007
Cas Rn	Chemical Name	Analytic Metr Unit \\ Depth		195 to 205 ft bgs	195 to 205 ft bgs	150 to 160 ft bgs	170 to 180 ft bgs
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 😈	0.5 U
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	LDL VOC ug/L	N/A	0.5 U	0.5 U	0.22 J ~	0.5 U
100-42-5	Styrene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 U	0.5 U	0.5 U	0.5 ป
98-82-8	Isopropylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 บ
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 년	0.5 U ·	0.5 ∪
95-50-1	1,2-Dichlorobenzene	LDL VOC ug/L	3	0.5 ป	0.5 U	0.5 U i	0.5 ∪
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 ป	0.5 U	0.5 U	0.5[U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5[U [0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
	Wet Chemistry				1 1 1		
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.17 A	0.24 A	0.16 A	1.6 A

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

_	Port Jefferson Station, New York									
			Sample Code	Site-specific-GW	MPW-04-PD-C-R1	MPW-04-PD-D-R1	MPW-04-PD-E-R1	MPW-10-PD-A-R1		
			Sample Name		•					
			Sample Date		11/27/2007	11/27/2007	11/27/2007	11/27/2007		
Cas Rn	Chemical Name	Analytic Met	th Unit \\ Depth		200 to 210 ft bgs	220 to 230 ft bgs	240 to 250 ft bgs	160 to 170 ft bgs		
	Volatile Organic Compounds				· ·					
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5[U		
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.35 J #	0.24 J #	0.28 J # J	0.46 J #		
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U		
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U	0.5 ひ	0.5 U	0.5 U		
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.21 J #	0.82 #	0.5 U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	_ 0.5 U		
67-64-1	Acetone	LDL VOC	ug/L	50	5 U]	5 U {	5 U	5 U _.		
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U		
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U		
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5[U	0.5 U	0.5 U		
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	1.1 #	2 #)	1.4 #	1.4		
75-34-3	1,1-Dichloroethane	LDL VOC	ug/L	5	0.5 ひ	0.42 J #	2.3 #	0.36 J #		
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	0.42 J #	1 #	0.35[J #	0.46 J #		
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U		
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
67-66-3	Chloroform	LDL VOC	ug/L	7	0.5 U	0.5 U	0.65 #	0.5 U		
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.5 U	0.72	2.1 #	0.46 J #		
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	. 0.5 U	0.5 U		
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5[U		
71-43-2	Benzene	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U		
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U		
79-01-6	Trichloroethene	LDL VOC	ug/L	5	5.̈3 A	45 A	9.8 A	17 A		
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U		
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U		
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 ป	0.5 U	0.5 U	0.5 U		
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 บ	0.5 U	0.5 U	0.5 U		
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 บ	5 U	5 บ"	5 U		
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 บ	0.5 ∪∤	0.5 U	0.5 U		
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 ∪ }	0.5 U	0.5 ∪		
79-00-5	1,1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 ป	0.5 ひ	0.5 U	0.5 U		
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	0.64 #	. 11 A	3 #	5.7 A		
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5 U	5 U	5 บ	5 U		
124-48-1	Dibromochioromethane	LDL VOC	ug/L	50	0.5 U	0.5 0	0.5 U	0.5 U		
106-93-4	1,2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5 ป	0.5 ひ [_]	0.5 U	0.5 U		

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

1			Sample Code	Site-specific-GW	MPW-04-PD-C-R1	MPW-04-PD-D-R1	MPW-04-PD-E-R1	MPW-10-PD-A-R1
			Sample Name	1				
			Sample Date	,	11/27/2007	11/27/2007	11/27/2007	11/27/2007
Cas Rn	Chemical Name	Analytic Me	tr Unit \\ Depth	_ [200 to 210 ft bgs	220 to 230 ft bgs	240 to 250 ft bgs	160 to 170 ft bgs
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
179601-23-1	m,p-Xylene	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC	ug/L	5	0.5]ひ	0.5 U	0.5 U ÷	0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U ⁻	0.5 U -
98-82-8	Isopropylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 Ü
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
	Wet Chemistry	<u></u>						•
7440-32-6	Titanium	SW6010B-1	Cug/L	N/A	10 U	10 U	10 U	10 U j
16984-48-8	Fluoride	Fluoride	mg/L	0.12	2.8 A	2.2 A	0.37 A	0.12 #

٩c		

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson Station, New York						
			Sample Code	Site-specific-GW	MPW-10-PD-B-R1		MPW-10-PD-C-R1	MPW-10-PD-D-R1	FG-01-PD-R1	
			Sample Name			1	ŀ			
			Sample Date		11/27/2007	1	11/27/2007	11/27/2007	11/28/2007	
Cas Rn	Chemical Name	Analytic Me	th Unit \\ Depth		185 to 195 ft bgs		215 to 225 ft bgs	235 to 245 ft bgs	190 to 200 ft bgs	
	Volatile Organic Compounds					1 1				
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U	Ιł	0.5)ひ	0.5 U	0.5 U∤	
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 U	Ιí	0.33 J #	0.31 J #	0,47 J #	
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	H	0.5 ∪∤	0.5 U	0.5 U	
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 ป	1	0.5 ∪∱	0.5 U	0.5 U	
75-00-3	Chloroethane	LDL VOC	ug/L	5	ั 0.5 บ	H	0.5 U	0.5 U	0.5 U	
75-69-4	Trichlorofluoromethane-	LDL VOC	ug/L	5	0.5 U	11	0.5 U	0.5 U	0.5 U	
75-35-4	1.1-Dichloroethene	LDL VOC	ug/L	5	0.5 U	łΙ	0.28 J # 1	0.41 J #	0.5 U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	H	0.5 U	0.5 U	0.5 U	
67-64-1	Acetone	LDL VOC	ug/L	50	5 บ	H	5 U	5 U	5 U	
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U	1 1	0.5 ひ	0.5 U	0.5 U	
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 ับ	11	0.5 U	0.5 U	0.5 U	
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U]	0.5 ひ[]	0.5 U	0.5 U	
156-60-5	trans-1.2-Dichloroethene	LDL VOC	ug/L	5	0.5 U	1 1	0.5\U \ {	0.5 U	0.5 ป	
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	2.9	#	1.1 #	0.39 J #	0.49 J #	
75-34-3	1,1-Dichloroethane	LDL VOC	ug/L	5	0.26 J	#	0.8 #	1.9 #	0.5 ひ	
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	1.3	# [1.8 #	0.5 U	0.5 ∪↓	
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 υ [†]	1 1	- 5 ∪	5 U	5 U	
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U	1	0.5 U[]	0.5 U	0.5 U	
67-66-3	Chloroform	LDL VOC	ug/L	7	0.5 U	1	0.52 . #	0.5 J #	9.9 A	
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.47 J	#	0.98 #	1.9 #	0.5 ひ	
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 U	ľΙ	0.5 U	0.5 U	0.5 U	
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 ひ		0.5[다]	0.5 U	0.5 U	
71-43-2	Benzene	LDL VOC	ug/L	1	0.5 U		0.5 U	0.5 U	0.5 U	
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 U		0.5 U	0.5 U	0.5 U	
79-01-6	Trichloroethene	LDL VOC	ug/L	5	58	A I	30 A	1.3 #	0.5 U	
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U		0.5 U {	0.5 U	0.5 U	
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 Ū		0.5 U	0.5 U	0.5 ป	
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U		0.5 U	0.5 บ	0.5 ひ	
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U		0.5 U	0.5 U	0.5 U	
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 U		5 U	5 U	5 U	
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 บ	0.5 U	
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U		0.5[년	0.5 U	0.5 U	
79-00-5	1,1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 U		0.5	. 0.5 U	0.5 U	
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	23	la l	14 A	0.67 #	0.54 #	
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5 U		5 U \	5 U	5 U	
124-48-1	Dibromochloromethane	LDL VOC	ug/L	50	0.5 U		0.5 U[]	0.5 U	0.5 U	
106-93-4	1,2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5 U		0.5 U	0.5 U	0.5 U	

Table F-1 Groundwater Sampling - Round 1 Full Data Table

Lawrence Aviation Industries Site Port Jefferson Station, New York

	<u> </u>		Sample Code	Site-specific-GW	MPW-10-PD-B-R1	MPW-10-PD-C-R1	MPW-10-PD-D-R1	FG-01-PD-R1
			Sample Name			ŀ		
			Sample Date	1	11/27/2007	11/27/2007	11/27/2007	11/28/2007
Cas Rn	Chemical Name	Analytic Me	tr Unit \\ Depth		185 to 195 ft bgs	215 to 225 ft bgs	235 to 245 ft bgs	190 to 200 ft bgs
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 บ	0.5 U	0.5 U
179601-23-1	m,p-Xylene	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0:5 U	0.5 U
100-42-5	Styrene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U] 0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U	[0.5[년]	0.5 U	0.5 U
98-82-8	isopropylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 ひ	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 ป	0.5 U]	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 ปี	0.5 ひ	0.5 U	0.5 ひ
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 <mark> </mark> ∪	0.5 U	0.5 Ü
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
,	Wet Chemistry				11			
7440-32-6	Titanium	SW6010B-	ΓC ug/L	N/A	10 U	10 U	10 0	10 0
16984-48-8	Fiuoride	Fluoride	mg/L	0.12	1] [A	1.6 A	0.36 A	0.15 A

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				1 01100110130110	tation, New York			
			Sample Code	Site-specific-GW	MPW-03-PD-A-R1	MPW-03-PD-C-R1	MPW-03-PD-D-R1	MPW-05-PD-A-R1
			Sample Name	1				
_			Sample Date		11/28/2007	11/28/2007	11/28/2007	11/28/2007
Cas Rn	Chemical Name	Analytic Meth	Unit \\ Depth		175 to 185 ft bgs	215 to 225 ft bgs	235 to 245 ft bgs	160 to 170 ft bgs
	Volatile Organic Compounds					111	111	
75-71 -8	Dichlorodifluoromethane		ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U {
74-87-3	Chloromethane		ug/L	5	0.25 J #	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride		ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane		ug/L	5	[0.5 U	0.5 U	0.5 U i	0.5 U
75-00-3	Chloroethane		ug/L	5	0.5 U	0.5 U 	1.4 #	0.5 U
75-69 - 4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 ひ	0.5 U	0.5 U	0.5 ป
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.5[U]	0.5 U	0.21 J #	0.5 <mark> </mark> U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5{U	0.5[U
67-64-1	Acetone	LDL VOC	ug/L	50	5 U 1	5 U	5 0	5 U
75-15-0	Carbon Disulfide	LDL VQC	ug/L	50	0.5 บ	0.5 0	0.5 U	0.29 J #
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5U	0.5 U	0.5 บ	0.5 U
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U	0.5 ป	0.23 J #	0.5 บ
156-60-5	trans-1,2-Dichloroethene		ug/L	5	0.5ใบม	0.5 U	0.5 U	0.5 UJ
1634-04-4	Methyl tert-Butyl Ether		ug/L	10	0.4 J # I	0.58 #	0.5 U	2.4 #
75-34-3	1,1-Dichloroethane		ug/L	5	0.5 U <i> </i>	0.49 J #	0.57	ი.5 υ
156-59-2	cis-1,2-Dichloroethene		ug/L	5	ا الداء.٥	0.55	0.32 J #	0.5 UJ
78-93-3	2-Butanone		ug/L	50	์ * รไบ	5 U	5 U 	5 U
74-97-5	Chlorobromomethane		.ug/L	5	0.5 U	0.5 บ้	0.5 U	0.5 ປ
67-66 -3	Chloroform		ug/L	7	0.2 J #	0.5 U	o.5lu l	0.5 U [*]
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.5 U	0.44 J #	0.5 U	0.5 U
110-82-7	Cyclohexane		ug/L	N/A	0.5 U	ا الاق.0	0.5(U	้ อ:์ธ์โบ
56-23-5	Carbon Tetrachloride		ug/L	5	0.5 U	0.5 U	0.5 U	0.5lU l
71-43-2	Benzene		ug/L	1 1	0.5 U	0.5 U	o.5 v	0.5 U
107-06-2	1,2-Dichloroethane		ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene		ug/L	5	0.5 U	11 A	0.69 #	0.5 U
108-87-2	Methylcyclohexane		ug/L	N/A	0.5 U	. 0.5 U	0.5 U	0.5 ป
78-87-5	1,2-Dichloropropane		ug/L	1	0.5	0.5 U	0.5 U	0.5 ป
75-27-4	Bromodichloromethane		ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene		ug/L	0.4	0.5 ป	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone		ug/L	50	5 บ	5 U	5 U	5 U
108-88-3	Toluene		ug/L	5	0.5 0	0.5	2,2 #	0.77
10061-02-6	trans-1,3-Dichloropropene		ug/L	0.4	0.5 U	0.5 U	0.5 U 1	0.5 U
79-00-5	1,1,2-Trichloroethane		ug/L	1	0.5 U	0.5	0.5 U	0.5 U
127-18-4	Tetrachloroethene		ug/L	5	0.5 U	0.47 J #	0.5 U	0.5 U
591-78-6	2-Hexanone		ug/L	50	5 0	5 0 "	5 0	5 0
124-48-1	Dibromochloromethane		ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane		ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample (Code Site-specific-GW	MPW-03-PD-A-R1	MPW-03-PD-C-R1	MPW-03-PD-D-R1	MPW-05-PD-A-R1
		Sample !	Name				
		Sample i		11/28/2007	11/28/2007	11/28/2007	11/28/2007
Cas Rn	Chemical Name	Analytic Meth Unit \\ De	epth	175 to 185 ft bgs	215 to 225 ft bgs	235 to 245 ft bgs	160 to 170 ft bgs
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 บ	0.5	0.5 U
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	LDL VOC ug/L	N/A	0.5 U	0.5 U		0.5 U
100-42-5	Styrene	LDL VOC ug/L	5	0.5 ป	0.5 U	0.5 บ	0.5 U
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 ป	0.5 U	0.5 บ	0.5 U
98-82-8	Isopropylbenzene	LDL VOC ug/L	5	0.5 บ	0.5 U	[0.5 U	0.5 ひ
79-34-5	1.1.2.2-Tetrachloroethane	LDL VOC ug/L	5	0.5 U	[0.5[U	0.5 บ	0.5 U
541-73-1	1.3-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1.4-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	[0.5] ∪,	0.5 U	0.5 U
95-50-1	1.2-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	[0.5[U]	0.5 U	0.5 U
96-12-8	1.2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 U	0.5 U}	0.5 ひ]
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
	Wet Chemistry						
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 0	10 0	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12		1. 1	A 0,22 A	0.13 A

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				-	_					•	
Г	U 3.0	Ula.o		0.5	$\neg \Box$	0.50	9000.0		ror Aoc	1,2-Dibromoethane	₽-£6-901
Ì	U 8.0	0.5		0 2 ח	- 1 5	0.5 U	09		LDL VOC	Dibromochloromethane	124-48-1
	200	10 9		2 ก	-	e n	09	, 7/6n	LDL VOC	S-Hexanone	9-87-163
	U 2.0	0.5 U		0.5 U		0.5 U	g	7/6л	LDL VOC	Tetrachloroethene	4-81-721
Ì	U 8.0	U 8.0		l ulao		0.5 U	1		LDL VOC	1,1,2-Trichloroethane	9~00-6∠
	U 8.0	0.5.0				U 8.0	4.0		LDL VOC	trans-1,3-Dichloropropene	10061-02-6
ł	0.5 U	0.50		Ula.o		0.21	g		LDL VOC	Toluene	£-88-801
ŀ	[[[] [] [] [] []	ยาเรื่อ		2 n s		nle	20	7/6n	LDL VOC	Վ -Methyl-2-pentanone	1-01-801
	0.5 U	U è.0		0.5.0		U 3.0	4.0		LDL VOC	cis-1,3-Dichloropropene	10061-01-5
	U 5.0	U 8.0		0.5 U		U 3.0	09	/6n	EDE AOC	Bromodichloromethane	7 -72-67
	0.5 U	0.50		0.5 U		U 3.0	i		LDL VOC	1,2-Dichloropropane	9-78-87
-	U 3.0	U 8.0		U 2.0		U 3.0	A/N	7/6n	TDF AOC	Methylcyclohexane	Z-78-801
١,	√ 61 	# z.e		# 8	#	77.0	g	7/6n	LDL VOC	Trichloroethene	9-10-64
1	, U 8.0	ี้ "กไจ๊ งั		กรง		U 3.0	9.0	7/5n	TDT AOC	1,2-Dichloroethane	2-90-201
1	U 2.0	0.5 0		0.50		Ų[3.0	"."		LDL VOC	Benzene	71-43-2
1]U]3.0	0.5		0.50		U 2.0	Ś	7/6n	LDL VOC	Carbon Tetrachloride	9-52-99
	n 9.0	กร้อ		0.5 0		บ[ล.0	A/N -		LDL VOC	Сусюрехале	7-28-011
	U 8.0	ด อีโก		0 2 0		U 2.0	9		LDL VOC	1,1,1-Trichloroethane	9-99-14
	U(2.0	Ula.o		กรู้จั		ค. 6.0	1 2	J/6n	LDL VOC	Chloroform	£-99-79
	U 2.0	0.50		0.50		U 8.0	9	7/6n	LDL VOC	Chlorobromethane	9-76-47
ŀ	U a	กร		פוח פוח			20	7/6n	LDL VOC	S-Butanone	5-59-87
١.	# LE.0	0.5 1		0.5		U 2.0	9		LDL VOC	cis-1,2-Dichloroethene	Z-69-991
'	้ ก่อง	U 8.0		กร้อ		U 3.0	g	- ¬//6n	rpr voc	1,1-Dichloroethane	6-46-37
	U 8.0	0.50		0.50		U 3.0	oī.	7/6n	LDL VOC	Methyl tert-Butyl Ether	1634-04-4
	U18.0	0.5 [U]	_	LU 2.0		U 3.0	ğ	- ¬//6n	LDL VOC	frans-1,2-Dichloroethene	9-09-991
	U 3.0	0.50		0.50		u 2.0	ğ	7/6n	TDF AOC	Methylene Chloride	Z-60-94
	U 8.0	U 8.0		0.50		U 2.0	AN	7/6n	LDL VOC	Methyl Acetate	6-02-62
	กเร็ง	0.5 0		0.5.0		U 2.0	20	7/6n	TDF AOC	Carbon Disulfide	0-91-94
	n e	์ ยูก		פות		n e	09		LDL VOC	Acetone	1-49-19
l	U 3.0	(การ์เก		U a.0	-	U 3.0	g	7/6n	LDL VOC	1,1,2-Trichloro-1,2,2-trifluoroethane	1-61-97
ł	U 3.0	o.5 U		0.5.0		U 8.0	g		LDL VOC	1,1-Dichloroethene	1- 98-97
1	U 3.0	0.5 0		0.5.0		U 8.0	g		LDL VOC	Trichlorofluoromethane	1- 69-94
	U 3.0	กรู้จั		n s o		n 9.0	g		LDL VOC	Chloroethane	£-00-9Z
	0.50	0.5 U		U 8.0		U 2.0	9	¬/βn	LDL VOC	Bromomethane	6-83-47
	U 3.0	0.5 U		U 8.0		n s o	2	, ¬/,6n	LDL VOC	Vinyl Chloride	t-10-97
I	U.8.0	U 3.0		0.5 U		U 3.0	g G	7/6n	LDL VOC	Chloromethane	£-78-47
I	U 3.0	U 3.0		0.5 0		U 8.0	ç	7/6n	LDL VOC	Dichlorodifluoromethane	8-17-37
l	' "	''] ''] ~				[507. 191	Volatile Organic Compounds	
\vdash	26d ft 88 of 27	sgd ff 85 of 84	,	Sgd ff dg of 25	\top	2gd ff 261 of 381		th Unit // Depth	Analytic Me	Chemical Name	Cas Rn
	7002/82/11	7002/82/11		11/28/2007	1	11/28/2007		Sample Date		<u></u>	_ [
		2000,00,77			- 1			Sample Name			•
	MPW-08-PD-C-R1	18-8-D9-W-	IM :	1A-A-09-W9M		A-8-09-8-R	WD-officeperation				
ш	AC O CC DO MICHA	<u> </u>		1 50 1 00 WON			1	<u>, , , , , , , , , , , , , , , , , , , </u>			

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site

Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MPW-05-PD-B-R1	1	MPW-08-PD-A-R1	MPW-08-PD-B-F	₹1	MPW-08-PD-C-R1
			Sample Name							
			Sample Date		11/28/2007		11/28/2007	11/28/2007		11/28/2007
Cas Rn	Chemical Name	Analytic Me	th Unit \\ Depth		185 to 195 ft bgs		25 to 35 ft bgs	45 to 55 ft bgs		75 to 85 ft bgs
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 U	\top	0.5 U	0.5	ز	. 0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 U	1	0.5 U	0.5	ا ر	0.5 ∪
179601-23-1	m,p-Xylene	LDL VOC	ug/L	N/A	0.5 U	1	0.5 U	0.5	ן נ	0.5 U
100-42-5	Styrene	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5	기	0.5 ∪∤
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U		0.5 U	0.5	ן נ	0.5 U
98-82-8	Isopropylbenzene	LDL VOC	· ug/L	5	. 0.5 U		0.5 U	0.5	ן ן נ	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 U		. 0.5 U	0.5	ן ן נ	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U		0.5 U	0.5	ן ן נ	0.5∤U
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	1	0.5 U	0.5	ן נ	0.5[U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U		0.5 U	0.5	ן ן נ	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	0.5 U		0.5 U	0.5	د	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5	J	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 <u>U</u>	Ш	0.5 ป	0.5	<u> </u>	0.5 U
	Wet Chemistry		· ·					- :		
7440-32-6	Titanium	SW6010B-7	"(ug/L	N/A	10 U		10 U	10 l	J	· 10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.18	Α	0.082	# 0.15	A	0.11 #

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jefferson S	tation, New York			
		-	Sample Code	Site-specific-GW	MPW-08-PD-D-R1	MPW-08-PD-E-R1	MW-05-PD-R1	MPW-05-PD-C-R1
			Sample Name					1
			Sample Date		11/28/2007	11/28/2007	11/28/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Met	h Unit \\ Depth		95 to 105 ft bgs	115 to 125 ft bgs	180 to 195 ft bgs	205 to 215 ft bgs
	Volatile Organic Compounds							1 1
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U]	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0,5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U] 0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	LDL VOC	ug/L	50	5 บ	5 U	5 U) 5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	່ 0.5 ປ
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 บ) 0.5 บ
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 じ	0.5 U]	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5\UJ	0.5 เป	0.5 UJ	0.5 UJ
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.5 U	0.5 ป	0.5 U	0.5 ป
75-34-3	1,1-Dichloroethane	LDL VOC	ug/L	5	0.31 J #	0.5 ป	0.5 U	0.33 J #
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	0.88 J #	0.33 J #	0.5 UJ	0.5 UJ
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	LDL VQC	ug/L	7	0.5 U	0.5 U	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.22 J #	0.5 U	0.5 U	0.41 J #
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5]U
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	o.5 u	0.5 U	0.5 ひ	0.5 U
71-43-2	Benzene	LDL VOC	ug/L	1 1	0.5 บ	0.5 U	0.5 U	0.5 U
107-06-2	1.2-Dichloroethane	LDL VOC	ug/L	0.6	o.5 v	0.5 U	0.5 U	0.5\U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	30 A	13 A	1 #	6.7 A
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	. 0.5 U	0.5(ひ
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 い	0.5 U	0.5 U	0.5 ∪
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	o.5 U	0.5 U	0.5 ป	J 0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 U	5 U	5 ป	{ 5 U
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 ับ	0.5\U
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.52 #	0.35 J #
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 ป	0.5 U
106-93-4	1,2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5 U	0.5 U	0.5 ป	0.5 U

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	 		Sample Code	Site-specific-GW	MPW-08-PD-D-R1	1	MPW-08-PD-E-R1		MW-05-PD-R1	MPW-05-PD-C-R1
			Sample Name			- 1				
			Sample Date	i	11/28/2007	- 1	11/28/2007		11/28/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Me	th Unit \\ Depth		95 to 105 ft bgs	1	115 to 125 ft bgs		180 to 195 ft bgs	205 to 215 ft bgs
108-90-7	Chlorobenzene	LDL VOC	ug/L	5	0.5 U	\Box	0.5 U		0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VÓC	ug/L	5	0.5 U	1	0.5 U	1 1	0.5 U	0.5 ひ
179601-23-1	m,p-Xylene	LDL VOC	ug/L	N/A	0.5 U	11	0.5 U	Ιí	0.5 U	0.5{U
100-42-5	Styrene	LDL VOC	ug/L	5	0.5 U	11	0.5 ป	11	0.5 U	0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U	11	0.5 U	1 1	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC	ug/L	5	0.5 U	11	0.5 U	11	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 U	11	0.5 U		0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	11	0.5 U	11	0.5 ひ	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U		0.5 ひ	11	0.5년	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	11	0.5 U	1	0.5 ป	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	0.5 U	11	0.5 U		0.5JU	0.5(U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U		0.5 U	11	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	Ш	0.5 U	Ш	0.5 U	0.5 ป
	Mot Chamiatas									1
7440 00 0	Wet Chemistry	CWCO40D T	· · · = 11	N//A	4011		40 11		40 11	10 0
7440-32-6	Titanium	SW6010B-7	-	N/A	10 U	١, ١	10 U	ایا	10 U	
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.16	Α	0.13	<u> [A] .</u>	0.085	# 0.19 A

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

J Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson	Station, New York		_		
			Sample Code	Site-specific-GW	MPW-05-PD-D-R1		MPW-06-PD-A-R1	MPW-06-PD-B-R1	MPW-06-PD-C-R1
		,	Sample Name	1					
	·		Sample Date		11/29/2007		11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Meth	Unit \\ Depth		225 to 235 ft bgs		65 to 75 ft bgs	90 to 100 ft bgs	115 to 125 ft bgs
	Volatile Organic Compounds	_				П		1 1	ļ I I
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride		ug/L	2	0.5 U		0.5 U	0.5 U	0.5 0
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5 U		0.5 ป	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5 -	0.5 U	Ιl	0.5 U	0.5 U	0.5 U
75-35-4	1.1-Dichloroethene		ug/L	5	0.5 U	1 [0.5 U	0.5 Ū	0.22 J #
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane		ug/L	5	0.5 U		0.5 บ	0.5 U	0.5 U
67-64-1	Acetone		ug/L	50	5 U	1 [5 บ	5 U	J 5 U
75-15-0	Carbon Disulfide		ug/L	50	0.5 U		0.5 ป	0.5 U	0.5 U
79-20-9	Methyl Acetate		ug/L	N/A	0.5 U		0.5 ป	0.5 U	0.5 U
75-09-2	Methylene Chloride		ug/L	5	0.5 U	Ηl	0.5 ∪	0.5 U	0.5 ひ
156-60-5	trans-1,2-Dichloroethene		ug/L	5	0.5[UJ	1 [0.5 บม	0.5 UJ	(0.5 UJ
1634-04-4	Methyl tert-Butyl Ether		ug/L	10	0.5 U	1 1	0.5 บ	0.28 J #	0.5 U
75-34-3	1,1-Dichloroethane		ug/L	5	U.5.0	#	0.5 บ	0.5 U	0.45 J #
156-59-2	cis-1,2-Dichloroethene		ug/L	5	0.5 ŪJ	1 1	0.5 บม	0.5 UJ ·	0.5 UJ
78-93-3	2-Butanone		ug/L	50	5 U		5 บ	5 U	5 U
74-97-5	Chlorobromomethane		ug/L	5	0.5 U		0.5 U	· 0.5 U	0.5 U
67-66-3	Chloroform		ug/L	7	0.5 U		0.5 บ	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane		ug/L	5	0.59	#	0.5 บ	0.5 U	0.45 J #
110-82-7	Cyclohexane		ug/L	N/A	0.5 U	H	0.5 บ	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride		ug/L	5	0.5 U	`	0.5 บ	0.5 U	0.5 U
71-43-2	Benzene		ug/L	1	0.5 U		0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane		ug/L	0.6	0.5 U		0.5 บ	0.5 U	0.5 U
79- 01- 6	Trichloroethene		ug/L	5	8	la l	1.2	0.52 #	14 A
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U		0.5 ป	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane		ug/L	1	0.5 U		0.5 บ	0.5 U	0.5 U
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U	1 }	0.5 U I	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene		ug/L	0.4	0.5 U	ΙI	0.5 ป	0.5 ป	0.5 U
108-10-1	4-Methyl-2-pentanone		ug/L	50	ร บ		5 บ	5 U	5 U
108-88-3	Toluene		ug/L	5	0.5 U		2 #	1.7 #	0.5 U
100-00-3	trans-1,3-Dichloropropene		ug/L	0.4	0.5 U	1 1	0.5 ป	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane		ug/L	1	0.5 U	1 1	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene		ug/L	5	0.43 J	 #	0.5 U	0.5 U	0.21 J #
591-78-6	2-Hexanone		ug/L ug/L	50	5 U		5 U	5 U	5 U
124-48-1	2-nexanone Dibromochloromethane		ug/L ug/L	50	0.5 U		0.5 U	0.5 U	0.5 U
	— 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 	LDL VOC	ug/L ug/L	0.0006	0.5 U		0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	_LDE 400 - 1	ug/L	L	0.5[0]	\perp	0.0 0	<u>\$;\$</u> }	

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-05-PD-D-R1	MPW-06-PD-A-R1	MPW-06-PD-B-R1	MPW-06-PD-C-R1
		Sample Name		i			
ŀ		Sample Date		11/29/2007	11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Meth Unit \\ Depth		225 to 235 ft bgs	65 to 75 ft bgs	90 to 100 ft bgs	115 to 125 ft bgs
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 ∪	0.5 U
179601-23-1	m,p-Xylene	LDL VOC. ug/L] N/A]	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC ' ug/L	5	0.5 U	0.5 U	0.5 じ	0.5 U
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	isopropylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC ug/L	3	0.5 บ	0.5 U	0.5 U	0,5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 บ [0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC ug/L	3	0.5 บ	. 0.5 U	0.5 บ	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
	Wet Chemistry						
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.18 A	0.29 A	0.17 A	0.15 A

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson	Station, New York			
	···-·		Sample Code	Site-specific-GW	MPW-06-PD-D-R1	MPW-07-PD-C-R1	MPW-07-PD-C-R1-DUP	MPW-09-PD-A-R1
			Sample Name				MPW-77-PD-C-R1	
			Sample Date		11/29/2007	11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Met	tr Unit \\ Depth		160 to 170 ft bgs	250 to 260 ft bgs	260 to 260 ft bgs	10 to 20 ft bgs
	Volatile Organic Compounds						1 1 1	
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 υ	0.5 U	0.5[U]	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-01 - 4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 บ	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 บ	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 บ	0.5 บ	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 บ	0.5 U	0.25 J #
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	LDL VOC	ug/L	50	5 U	5 0	5 U 1	5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U	0.5 0	0.5 U	0.5 ป
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U ⁻	0.5 U
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 ป	0.5\U	0.5 บ	0.5 U
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5ไป	0.5[U]	0.5 บ	0.5 U
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.5 U	0.5 0	0.5 ป -	0.5 U
75-34-3	1.1-Dichloroethane	LDL VOC	ug/L	5	0.23 J #	0.52 #	0.52 #	0.78 #
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	0.36 J #		0.5 U	1.7
78-93-3	2-Butanone	LDL VOC	ug/L,	50	5 U	5 U	5 บ	5 U
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	LDL VOC	ug/L	7	0.5 U	0.86	0.84 #	0.5 U
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	0.5 U	0.49JJ#	0.44 J #	0.86 #
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 ับ	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 U	0.5 บ	0.5]U	0.5 U
71-43-2	Benzene	LDL VOC	ug/L	1	0.5 U	0.5 บ	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 U	0.5 บ	0.5 ∪∤	0.5 U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	9.8 A	1 1 1	0.53 #	54 A
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 บ	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U	0.5	0.5 0	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U	0.5 0	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 0	5 0	5.0	5 U
108-88-3	Toluene	LDL VOC	ug/L	5	0.5	0.5 0	0.5 0}	0.5 0
100-00-3	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U	0.5 U	0.5	0.5 U
79-00-5	1,1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 0	0.64
		LDL VOC	ug/L ug/L	50	5 U	5.50	5 0	5 U {"
591-78-6	2-Hexanone Dibromochloromethane	LDL VOC	ug/L ug/L	50	0.5 U	0.5	0.5 0	0.5 U
124-48-1		LDL VOC		0.0006	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	_ LDL VOC	ug/L	0.000	0.510	0.5[0]		0.5101

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

_		Sample Code	Site-specific-GW	MPW-06-PD-D-R1	MPW-07-PD-C-R1	MPW-07-PD-C-R1-DUP	MPW-09-PD-A-R1
ļ		Sample Name	<u> </u>		•	MPW-77-PD-C-R1	
Ì		Sample Date	,	11/29/2007	11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Meth Unit \\ Depth	_[160 to 170 ft bgs	250 to 260 ft bgs	260 to 260 ft bgs	10 to 20 ft bgs
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 0	0.5 U
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	. 0.5 U
179601-23-1	m,p-Xylene	LDL VOC ug/L	N/A	0.5 U	0.5 ป	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U}
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 ป	0.5 ป	0.5 U	0.5 Ŭ
98-82-8	Isopropylbenzene	LDL VOC ug/L	5	0.5 U	0.5 บ	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC ug/L	5	0.5 U	· 0.5 U	[0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 ひ	0.5 U	0:5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC ug/L	3	0.5 ∪	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 บ	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L 4	5	0.5 U	0.5 U	0.5 U	0.5 U
							}
	Wet Chemistry	OMC040D T(A1/A	10 0	10 0	10 0	10 U
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	1 1 1			4 1
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.12 #_	20 A	20 A	0.11 #

വ		

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

t feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jefferson Sta	tion, New York			
		<u> </u>	Sample Code	Site-specific-GW	MPW-09-PD-B-R1	MPW-09-PD-C-R1	MPW-09-PD-D-R1	MPW-09-PD-E-R1
			Sample Name					
			Sample Date		11/29/2007	11/29/2007 *	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Met	Unit \\ Depth		45 to 55 ft bgs	70 to 80 ft bgs	90 to 100 ft bgs	125 to 135 ft bgs
	Volatile Organic Compounds							11
75-71-8	Dichlorodifluoromethane	LDL VOC	ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5	0.5 ับ	0.5 U ⁻	0.5 ひ	0.5 U
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U	0.5 U	0.5 ひ	0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	LDL VOC	ug/Ŀ	5	0.5 U	0.5 U	0.5	0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U	0.5]U	0.5 U	0.5 U ·
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.61 #	0.53 #	0.5 ∪ {	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U	0.5]U	0.5 U {	0.5 U
67-64-1	Acetone	LDL VOC	ug/L	50 -	5 U	5 U	5 V [5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50 -	0.5 U	0.5 ひ	0.5 U	. 0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 U	0.5 U \	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	10	0.5 U	0.5 U	0.5 U	0.5 U
75-34 . 3	1,1-Dichloroethane	LDL VOC	ug/L	5	1.7 #	1.8 #	0.42 J #	0.86 #
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	7.2 A	14 A	10 A	0.59 #
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U	5 บ	5 U	5 U
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 ป-	0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	LDL VOC	ug/L	7	0.5 U	0.5 U	,0.52 U	- 0.51 #
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	5	1.5 #	1.3 #	0.24 J #	0.59 #
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 ป	0.5 U	0.5 0	0.5 U
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U	Ó.5∤U
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 U	0.5]U.	0.5 U	0.5\U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	280 A	580 A	470 A	67 A
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1	0.5 U	0.5 U	0.5 U [0.5 U
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 ひ	0.5 ひ	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 ひ	0.5 ぴ	0.5 ป	0.5 U
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5 U	5 ⊍	5 U	5 U
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichforopropene	LDL VOC	ug/L	0.4	0.5 บ	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	LDL VOC	ug/L	1	0.5 U	0.22 J #	0.53 #	0.5 U
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	5 #	4.6 #	1.2	0.65 #
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	LDL VOC	ug/L	50	0.5 U	' 0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5[Ų <u></u>	0.5 U	0.5 U	0.5 U

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	·		Sample Code	Site-specific-GW	MPW-09-PD-B-R1	MPW-09-PD-C-R1	MPW-09-PD-D-R1	MPW-09-PD-E-R1
			Sample Name					
			Sample Date		11/29/2007	11/29/2007	11/29/2007	11/29/2007
Cas Rn	Chemical Name	Analytic Me	tr Unit \\ Depth		45 to 55 ft bgs	70 to 80 ft bgs	90 to 100 ft bgs	125 to 135 ft bgs
108-90-7	Chlorobenzene	LDL VOC	ug/L -	5	0.5 U	0.5	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	LDL VOC	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC	ug/L	5 .	0.5 U	0.5 U	0.5 ひ	0.5 U
75-25-2	Bromoform	LDL VOC	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC	ug/L	5	0.5 ひ	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 0
106-46-7	1,4-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC	ug/L	0.04	·0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	LDL VOC	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	LDL VOC	ug/L	5	0.5 <u>U</u>	0.5 U	0.5 U	0.5 U
	Wet Chemistry				ا ایال	40,11	1 4011	4011
7440-32-6	Titanium	SW6010B-7	(ug/L	N/A	10 U	10 0	10 U	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12]	0.16 A	0.16 A	0.16 A	0.17 JA

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Port Je	efferson Station	<u> </u>			
			Sample Code	Site-specific-GW	MPW-07-PD-A-R1		MPW-07-PD-B-R1
			Sample Name				
			Sample Date		11/30/2007		1/4/2008
Cas Rn	Chemical Name	Analytic Me	th Unit \\ Depth		201.5 to 211.5 ft bgs	_	220 to 230 ft bgs
	Volatile Organic Compounds					└ .	
75-71-8	Dichlorodifluoromethane	FDF AOC	ug/L	5	0,5 U	: I	0.5 U
74-87-3	Chloromethane	LDL VOC	ug/L	5`	0.5 U		0.5 U
75-01-4	Vinyl Chloride	LDL VOC	ug/L	2	0.5 U		0.5 U
74-83-9	Bromomethane	LDL VOC	ug/L	5	0.5 U		0.5 U
75-00-3	Chloroethane	TDF AOC	ug/L	5	0.5 U		0.5 U
75-69-4	Trichlorofluoromethane	LDL VOC	ug/L	5	0.5 U		0.5 U
75-35-4	1,1-Dichloroethene	LDL VOC	ug/L	5	0.5 U		0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	LDL VOC	ug/L	5	0.5 U		0.5 U
67-64-1	Acetone	LDL VOC	ug/L ·	50	5 U		5 U
75-15-0	Carbon Disulfide	LDL VOC	ug/L	50	0.5 U		0.5 U
79-20-9	Methyl Acetate	LDL VOC	ug/L	N/A	0.5 U	. I	0.5 U
75-09-2	Methylene Chloride	LDL VOC	ug/L	5	0.5 U	ĺ	0.5 บ
156-60-5	trans-1,2-Dichloroethene	LDL VOC	ug/L	5	0.5 UJ	ı	0.5 U
1634-04-4	Methyl tert-Butyl Ether	LDL VOC	ug/L	· 10	0.6	#	0.52 #
75-34-3	1.1-Dichloroethane	LDL VOC	ug/L	5, 1	0.5 U	1	0.5 นู
156-59-2	cis-1,2-Dichloroethene	LDL VOC	ug/L	5	1.1 J	#	0.96 #
78-93-3	2-Butanone	LDL VOC	ug/L	50	5 U		5 ∪
74-97-5	Chlorobromomethane	LDL VOC	ug/L	5	0.5 บ	- }	0.5 ป
67-66-3	Chloroform	LDL VOC	ug/L	7	0.23 J	#	0.5 U
71-55-6	1,1,1-Trichloroethane	LDL VOC	ug/L	` 5	0.Ź4 J	#	0.12 J #
110-82-7	Cyclohexane	LDL VOC	ug/L	N/A	0.5 U	- 1	0.5 ป
56-23-5	Carbon Tetrachloride	LDL VOC	ug/L	5	0.5 ປ	- 1	0.5 U
71-43-2	Benzene	LDL VOC	ug/L	1 1	0.5 ປ	ı	0.5 U
107-06-2	1,2-Dichloroethane	LDL VOC	ug/L	0.6	0.5 ป		0.5 U
79-01-6	Trichloroethene	LDL VOC	ug/L	5	1100	Α	620 A
108-87-2	Methylcyclohexane	LDL VOC	ug/L	N/A	0.5 U	ŀ	0.5 U
78-87-5	1,2-Dichloropropane	LDL VOC	ug/L	1 1	0.5 U	ŀ	0.5 U
75-27-4	Bromodichloromethane	LDL VOC	ug/L	50	0.5 U		0.5 U
10061-01-5	cis-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5ໄປ		0.5 บ
108-10-1	4-Methyl-2-pentanone	LDL VOC	ug/L	50	5[U		5ប្រ
108-88-3	Toluene	LDL VOC	ug/L	5	0.5 เบ		0.5 U
10061-02-6	trans-1,3-Dichloropropene	LDL VOC	ug/L	0.4	0.5 U		0.5 U
79-00-5	1,1,2-Trichloroethane	LDL VOC	ug/L	1 1	0.5 U		0.16 J #
127-18-4	Tetrachloroethene	LDL VOC	ug/L	5	5 1	Αl	5.9 A
591-78-6	2-Hexanone	LDL VOC	ug/L	50	5 l U		5 U
124-48-1	Dibromochloromethane	LDL VOC	ug/L	50	0.5 U	ا ـ	0.5 0
106-93-4	1,2-Dibromoethane	LDL VOC	ug/L	0.0006	0.5 U		0.5

Table F-1
Groundwater Sampling - Round 1
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-07-PD-A-R1	MPW-07-PD-B-R1
		Sample Nam	e		
•		Sample Date]	11/30/2007	1/4/2008
Cas Rn	Chemical Name	Analytic Meth Unit \\ Depth		201.5 to 211.5 ft bgs	220 to 230 ft bgs
108-90-7	Chlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U
100-41-4	Ethylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U
179601-23-1	m,p-Xylene	LDL VOC ug/L	N/A	0.5 U	0.5 U
100-42-5	Styrene	LDL VOC ug/L	5	0.5 U]	0.5 U
75-25-2	Bromoform	LDL VOC ug/L	50	0.5 U	0.5 U
98-82-8	Isopropylbenzene	LDL VOC ug/L	5	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	LDL VOC ug/L	5.	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	LDL VOC ug/L	3	. 0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	LDL VOC ug/L	3	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	LDL VOC ug/L	0.04	0.5 U	0.5 Ü
120-82-1	1,2,4-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 ป
87-61-6	1,2,3-Trichlorobenzene	LDL VOC ug/L	5	0.5 U	0.5 U
	Wet Chemistry				
7440-32-6	Titanium	SW6010B-T(ug/L	N/A	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	36 A	24 A

Notes:	•
#	Compound detected below or equal to screening criteria
Α	Compound detected above screening criteria
~	Compound without screening criteria detected
bgs	below ground surface
ft	feet
J	Value estimated
U	Compound not detected above reporting limit
ug/L	micrograms per liter
mg/L	milligrams per liter
DOV IGT	Low Detection Limit Volatile Organic Analyte - Aqueous

Table F-1a
MPW-02 Resample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

<u> </u>	· · · · · · · · · · · · · · · · · · ·		Sample Code	Site-specific-GW	MPW-02-PORT1	MPW-02-PORT2	MPW-02-PORT3	MPW-02-PORT4
			Sample Name					
			Sample Date		3/6/2008	3/11/2008	3/11/2008	3/11/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		25.85 ft amsl	3.35 ft amsl	-24.15 ft amsl	-48.65 ft amsl
	Volatile Organic Compounds				_	_		- -
67-64-1	Acetone	SW8260B	ug/L	50	5 UL	5 UJ	5 UJ	5 UJ
71-43-2	Benzene	SW8260B	ug/L	1	5 U	5 U	5 U	5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	5 U	5 U] [5 U	5 U
75-25-2	Bromoform	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
74-83-9	Bromomethane	SW8260B	ug/L	5	6 U	5 UJ	5 UJ	5 UJ
78-93-3	2-Butanone	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B	ug/L	50	5 บ	5 U	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	5 U	5 U	5 U {	5 <u> </u> U
108-90-7	Chlorobenzene	SW8260B	ug/L	5	5 ⊍	5 U	5 U 1	5 U
75-00-3	Chloroethane	SW8260B	ug/L	5	5 U	5 บ.)	5 UJ	5 บ ม
67-66-3	Chloroform	SW8260B	ug/L	7	5 U	5 ∪	5 U	5 U
74-87-3	Chloromethane	SW8260B	ug/L	5	5 U	5 U	5 ∪	5 U
110-82-7	Cyclohexane	SW8260B	ug/L	N/A	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	5 U	U 3	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006	5 U	5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U 5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	5 U	} 5[U }	5 U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	ร บ	5 U	5 U	5 ป
75-71-8	Dichlorodifluoromethane	SW8260B	ug/L	5	ร บ	5 U	5 U	5 U
75-34-3	1,1-Dichloroethane	SW8260B	ug/L	5	5 บ	5 U 5 U	5 บ	5 U
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	5 U	5 U	ร[บ	5 U
75-35-4	1.1-Dichloroethene	SW8260B	ug/L	5	รไบ ไ	5 U	5lU !	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B	ug/L	5	5 บ	5 U	5 U { {	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L	5	5 U	5 U	5 U ! !	5 U
78-87-5	1,2-Dichloropropane	SW8260B	ug/L	1 1	5 U	5 บ	5 ∪ {	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B	ug/L	0.4	ธไบ	5 ป	5 U [5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	5 U	5 U	5 บ	5 U
100-41-4	Ethylbenzene	SW8260B	ug/L	5	· 5 U	5 U	5 บ	5 U
591-78-6	2-Hexanone	SW8260B	ug/L	50	5 U	5 U 1	5 U \	5 U
98-82-8	Isopropylbenzene	SW8260B	ug/L	5	l Ula	5 U	รไบ โ	5 U
79-20-9	Methyl Acetate	SW8260B	ug/L	N/A	5 U	š ŭ	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	510		5 U	5 U
75-09-2	Methylene Chloride	SW8260B	ug/L ug/L	5	5 U	5 0	5 U	5 U
	,	SW8260B	ug/L ug/L	50	510	5 0	5 U	5 11
108-10-1	4-Methyl-2-pentanone			10	5 U	5 U	5 U	5 11
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	5 5	5 U	5 U	5 U	5 11
100-42-5	Styrene	SW8260B	ug/L	5 ,	910 }	<u> </u>	<u>əlu </u>	30 1

Table F-1a
MPW-02 Resample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MPW-02-PORT1	MPW-02-PORT2	MPW-02-PORT3	MPW-02-PORT4
		•	Sample Name		•		1	
			Sample Date		3/6/2008	3/11/2008	3/11/2008	3/11/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		25.85 ft amsl	3.35 ft amsi	-24.15 ft amsl	-48.65 ft amsl
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	, 5	5 U	5 U	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	25	A 5년) 5 U	5 U
108-88-3	Toluene	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 U	5 0 1	5 U j	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	5 U	5 U [5 U	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1 1	5 U].	5 U	5 U	5 U
79-01-6	Trichloroethene	SW8260B	ug/L	5	550	A 5 U	6 A	5 U
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	_{.x} 5 U	5 U	5 U	5 ∪ [
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 U	5 U	5 U_	5 U

Table F-1a MPW-02 Resample Results Full Data Table Lawrence Aviation Industries Site Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MPW-02-PORT1	MPW-02-PORT2	MPW-02-PORT3	MPW-02-PORT4
			Sample Name					
			Sample Date		3/6/2008	3/11/2008	3/11/2008	3/11/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		190 to 200 ft bgs	215 to 225 ft bgs	240 to 250 ft bgs	240 to 250 ft bgs
	Volatile Organic Compounds							
67-64-1	Acetone	SW8260B	ug/L	50	5 UL '	5 UJ	5 UJ	5 UJ
71-43-2	Benzene	SW8260B	ug/L	1	5 U	<u></u> 5 ∪	5 U [. 5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	5 U 1	5 U	5 U }	5 U
75-25-2	Bromoform	SW8260B	ug/L	50	5 บ	5 U	5 U	5 U
74-83-9	Bromomethane	SW8260B	ug/L	5	6 ບ	5 ひ」	5 UJ	5 UJ
78-93-3	2-Butanone	SW8260B	ug/L	50	5 U 1	t	5 ぴ	5 U
75-15-0	Carbon Disulfide	SW8260B	ug/L	50	5 U	5 U	5 U	5 U 5 U
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	5 U	5 U { {	5 บ	5 U
108-90-7	Chlorobenzene	SW8260B	ug/L	5	5 U 1	5 U	5[U.	5 บ
75-00-3	Chloroethane	SW8260B	ug/L	5	5{U	5 บ	5 UJ	5 บ.)
67-66-3	Chloroform	SW8260B	ug/L	7	5 U	5 U	5 U	5 U
74-87-3	Chloromethane	SW8260B	ug/L	5	5 U	5 U	5 U [~]	5 ป
110-82-7	Cyclohexane	SW8260B	ug/L	N/A	5 U .	5 U	5 U	5 17
124-48-1	Dibromochloromethane	SW8260B	ug/L	50	5 U 1	5 U	5 U	. 5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	. 5 U i	5 U	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006		5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U]	5] U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U }	5 U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	5 ぴ	5 U \$ {	5 U	5 U {
75-71-8	Dichlorodifluoromethane	SW8260B	ug/L	5	5 U	5 U }	5 U	5 U
75-34-3	1,1-Dichloroethane	SW8260B	ug/L	5	5 U	5 U 1	5 U }	5 U
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	. 5 U	5 บ	5 U	5 U 3
75-35-4	1,1-Dichloroethene	SW8260B	ug/L	5	.	5 U	5 U	5 U 1
156-59-2	cis-1,2-Dichloroethene	SW8260B	ug/L	5	รุโบ ไ	5 U	5 U (5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L	5	5 U]	5 U	5 U i	5 U
78-87-5	1,2-Dichloropropane	SW8260B	ug/L	1	5 U 	5 ∪	5 บ	5 U
10061-01-5	cis-1,3-Dichloropropene		ug/L	0.4	5 U 1	5 U	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	5 U	5 U	5 U	5 U
100-41-4	Ethylbenzene	SW8260B	ug/L	5	5 บ	5 U	5 U	5 U
591-78-6	2-Hexanone	SW8260B	ug/L	50	5 U 1	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B	ug/L	5	5 U	5 ป	5 U	5 ∪
79-20-9	Methyl Acetate	SW8260B	ug/L	N/A	5 U	5 U 1	5]U	5 U
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	5 U	5 U }	5 U	5 U
75-09-2	Methylene Chloride	SW8260B	ug/L	5	5 U	5 U }	5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B	ug/L	50	5 Ū	5 U }	5 U	5 U
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	- 5 0		- 5(U	5 U
100-42-5	Styrene	SW8260B	ug/L	5	5 U	5 U 1	5 U	5 U

Table F-1a
MPW-02 Resample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MPW-02-PORT1	MPW-02-PORT2	MPW-02-PORT3	MPW-02-PORT4
			Sample Name					
			Sample Date]	3/6/2008	3/11/2008	3/11/2008	3/11/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		190 to 200 ft bgs	215 to 225 ft bgs	240 to 250 ft bgs	240 to 250 ft bgs
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	5 U.	5 U 	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	25 A	5 U 1	5 U	5 U
108-88-3	Toluene	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 U	5 U 	5]U	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	5 U	5 U	5∤∪	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1	5 U	5 U	5 U	5 U
79-01-6	Trichloroethene	SW8260B	ug/L	5	550 A	[5 U] [6 A	5 U
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	5 U	[5 U [5 U :	5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	5 U	5 U [5 U :	5 U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	5 U	5 U	5 U i	5 U
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 U	5 U	5 U	5 U

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-16-A	SBD-PD-16-B	SBD-PD-16-B-DUP	SBD-PD-16-C	SBD-PD-16-D	SBD-PD-16-E
			Sample Name	'	•		SBD-PD-61-B	i		
			Sample Date		12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007
Cas Rn	Chemical Name	Analytic Method			8 to 10 ft bgs	18 to 20 ft bgs	18 to 20 ft bgs	28 to 30 ft bgs	38 to 40 ft bgs	48 to 50 ft bgs
	Volatile Organic Compounds									
75-71-8	- Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.9U	3.8 U	4.6 U	3.7 U	4.6 U	4.7 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.9 U	3.8 U	4.6 U] 3.7 U	4.6 U }	4,7 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	4.9 U	3.8 U	4.6 U] 3.7 U]	4.6 U	4.7 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	4.9U	3.8 U	4.6 U	3.7 U	4.6 U	4.7 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4.9U	3.8 U	4.6 U	3.7 U	4.6 U	4.7 U
75-35-4	1.1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.9 U	3.8 🔰 📗	4.6 U] 3.7 U	4.6 U	4.7 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.9 U	3.8 U	4.6 U] 3.7[U]	4.6 U	4.7 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	14 U	10 U	9.2 U	82 #	14 U	9.5 ∪
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4.9 U	3.8 U │	4.6 ∪	3.7 U	4.6 U	4.7 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	4.9 U	3.8 U	4,6 U	3.7 U	4.6 U	4.7\U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.9U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	9.9U	7.6 U	9.2 U	7.5 U	9.2 U	9.5 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
71-55-6	1.1.1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.9 U	3.8 ∪	4.6 U	3.7 ∪	4.6 U	4.7 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	1.1 J #	3.8 U	4.6 U	3.7 U	4.6 ∪	4.7 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4.9 U	3.8 U	4.6 U	3.7 ∪	4.6 U	4.7 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 ∪	4.7 U
107-06-2	1.2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	1.9 J #	1.9 J #	2.5 J #	5.1 #	2 J #	1.8 J #
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4.9 U	3.8 U	4.6 U	3.7 U	4.6 U	4.7 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4.9 U	3.8 ∪	4.6 U	3.7 🗸	4.6 U	4.7 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.9 U	3.8 U	4.6 U	3.7 0	4.6 U	4.7 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.5 U	1.9 U	2.3 U	1.9 U	2.3 U │	2.4 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	9.9 U	7.6 U	9.2 U	7.5 U	9.2 U	9.5 ∪
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	1 J #	0.77 J #	0.96 J #	3.7 0	4.6 U	4.7 U
10061-02-6		TCL-S-VOC	ug/Kg	10000	2.5 🗸	1.9 U	2.3 U	1.9 U	2.3	2.4 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	. 800	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7]U
127-18-4	Tetrachioroethene	TCL-S-VOC	ug/Kg	1400	4.9 U	3.8 U	4.6 U	3.7U	4.6 U	4.7 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	9.9 U	7.6 U	9.2\U	7.5 U	9.2 U	9.5 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4.9 U	3.8 U	4.6 U	3.7 🔰 🕽	4.6 U	4.7 U
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	4.9 U	3.8 U∫	4.6 U	3.7 U	4.6 U	4.7 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4.9 U	3.8 U	4.6 U _	3.7 U	4.6 U	4.7U

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				6'4 '6 "1	000 00 40 A	ODD DD 40 D	SBD-PD-16-B-DUP	SBD-PD-16-C	SBD-PD-16-D	SBD-PD-16-E
				Site-specific-soil	SBD-PD-16-A	SBD-PD-16-B		300-50-10-6	300-70-10-0	300-70-10-6
			Sample Name				SBD-PD-61-B			
-			Sample Date		12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007	12/27/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		8 to 10 ft bgs_	18 to 20 ft bgs	18 to 20 ft bgs	28 to 30 ft bgs	38 to 40 ft bgs	48 to 50 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	4.9 U	3.8 U	4.6 U	3.7 U	4.6 U	4.7 U
179601-23-1	m.p-Xylene	TCL-S-VOC	ug/Kg	N/A	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.9 U	{ 3.8 U	4.6 U	3.7 U	4.6 ∪	4.7 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.9 U{	} 3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4.9 U	3.8 ∪	4.6 U	3.7 ∪	4.6 U	4.7 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.5 U ∫	1.9 U	2.3 U	1.9 U	2.3 ∪	2.4 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.9 U	3.8 U	4.6 U	3.7 U	4.6 U	4.7 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.9 U	3.8 ∪	4.6]U	3.7 U	4.6 ∪	4.7 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.9 U	3.8 U	4.6 U	3.7 U	4.6 U	4.7 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.9 U	3.8 ∪	4.6 U	3.7 U	4.6 U	4.7 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400_	4.9 U }	3.8 U	4.6 U	3.7 U	4.6 U	4.7 U
	-		_	_	1 1					
	Wet Chemistry						[, [.	.	.
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	310 J]~	340 J ~	370 J ~	300[J]~[260 J ~	330 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram

mg/Kg milligrams per kilogram
TCL-S-VOC Target Compound List Volatile Organic Compounds - Soil

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-16-F	SBD-PD-16-G	SBD-PD-16-J	SBD-PD-16-K	SBD-PD-16-L	SBD-PD-16-M
			Sample Name			i .				
l			Sample Date	*	12/27/2007	12/27/2007	12/28/2007	12/28/2007	12/28/2007	12/28/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	<u>-</u>	58 to 60 ft bgs	70 to 72 ft bgs	98 to 100 ft bgs	108 to 110 ft bgs	118 to 120 ft bgs	128 to 130 ft bgs
	Volatile Organic Compounds				اا	ll.	l .al			4 -
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	4.6 U	4.8 U	4.9∫U	4.8 U	5.2 U	4.5 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4.6 U	4.8 U	4.9U	4.8 U	5.2 U	4.5 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.6 U	4.8]U	4.9 U	4.8 U	5.2 U	4.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.6 U∤	1 4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	17 U	17 U	60 U	60 U	240 A	.60 #
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U i	4.5 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 Ū
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	4.6 U	4.8 U.	4.9U	4.8 U	5.2 U	4.5 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4.6 U	4.8 U∤	4.9U	4.8 U	5.2 U	4.5 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.6 U	4.8 ∪[4.9U	4.8 U	5.2 U	4.5 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.6 U	4.8 ∪	4.9U	4.8 U	5.2 U	4.5 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	9.3 U	9.6 U	9.8U	9.5 U	10 U	9 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4.6 U	l 4.8 ∪	4.9U	4.8 U	5.2 U	4.5 U
71-55-6	1.1.1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.6∤∪	4.8 U	4.9 U	' 4.8 U	5.2 U	4.5 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4.6 U	4.8 U	4.9 U	4.8 UJ	5.2 UJ	4.5 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	4.6 U	ا ال 4.8	4.9 UJ	4.8 UJ	5.2 UJ	4.5 UJ
107-06-2	1.2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	2.6 J #	6.2	1.9 J #	4.8 U	5.2 U	4.5 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4.6 U	4.8 U	4.9U	4.8 UJ	5.2 UJ	4.5 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4.6 U	4.8 U	4.9U	4.8 UJ	5.2 UJ	4.5 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.6{U	4.8U	4,9 U	4.8 UJ	5.2 UJ	4.5 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.3	2.4 U	2.5	2.4	2.6 U	2.2 U
108-10-1	4-Methyl-2-pentaпone	TCL-S-VOC	ug/Kg	1000	9.3 U	9.6	9.80	9.5 0	10 0	9 0
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	4.6 U	4.8 U	4.9 UJ	4.8 UJ	5.2 UJ	4.5 UJ
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.3	2.4 U	2.5 U	2.4 U	2.6 U	2.2 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	9.3 0	9.6 U	9.8 U	9.5 U	1010	9 0
	-	TCL-S-VOC		1100		I I I I	9,8 U 4.9 U	9.5 U 4.8 U	5.2	4.5 U
124-48-1	Dibromochloromethane		ug/Kg			4.8 U				4.5 U
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10 1700	4.6 U 4.6 U	4.8 U 4.8 U	4.9 U 4.9 U 1	4.8 U 4.8 U	5.2 U 5.2 U	4.5 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	(Uاه. 4	4.0 U	4.9 0	4.0 0	ე.∠ ∪	4.5 0

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-16-F	SBD-PD-16-G	SBD-PD-16-J	SBD-PD-16-K	SBD-PD-16-L	SBD-PD-16-M
			Sample Name				!			•
İ			Sample Date		12/27/2007	12/27/2007	12/28/2007	12/28/2007	12/28/2007	12/28/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		58 to 60 ft bgs	70 to 72 ft bgs	98 to 100 ft bgs	108 to 110 ft bgs	118 to 120 ft bgs	128 to 130 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U .	4.5 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.6 U	4.8 U	4.9 U	4.8[U	5.2 U	4.5 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.3 년	2.4 U	2.5 U	2.4 U	2.6 U	2.2 U
541-73-1	1.3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.6 U	4.8 U (4.9 U	4.8 U	5.2 U	4.5 U
106-46-7	1.4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.6 U -	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
95-50-1	1.2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U ⁻
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.6 U	4.8 U	4.9 U	4.8 U	5.2 U	4.5 U
<u> </u>										
	Wet Chemistry						ll. l l			
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	340 J ~	320 J ~	340 J ~	350 J ~	250 J ~_	. 230 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria

Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram

mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-16-H	SBD-PD-16-I	SBD-PD-16-N	\$BD-PD-16-O	SBD-PD-16-P
			Sample Name				ļ		
	•		Sample Date		12/28/2007	12/28/2007	1/2/2008	1/2/2008	1/2/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	·	78 to 80 ft bgs	88 to 90 ft bgs	138 to 140 ft bgs	148 to 150 ft bgs	- 158 to 160 ft bgs
	Volatile Organic Compounds				l				
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	3.9 U	4 U	4.2 U	4.1 U	4.7 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	3.9 U	4 U	4.2 U	4.1 U	4.7 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	3.9 U	4 U	4.2 U	4.1 U	4.7 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	3.9 U	4 U	4.2 U	4.1 U	4.7 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	3.9 U	4 ∪	4.2 U	4.1 U	4.7 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	3.9 U	4 ∪	4.2 U	4.1 U	4.7 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	3.9 U	4 U	4.2 U	4.1 U	4.7 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	3.9 U	4 U	4.2 U	` 4.1 U	4.7[U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	7.7 U	8.1 U	8.4 U	8.3 U	70 #
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	3.9 U	4 U	4.2 U	4.1 U	4.7 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	3.9 U	4 U	4.2 U	4.1 U	4.7 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	3.9 U	4 U	4.2 U	4.1 U	4.7 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	3.9 U	4 U	4.2 U	4.1 U	4.7 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	3.9 U	4 U	4.2 U	4.1 U	4.7 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	3.9 U	4 U	4.2 U	4.1 U	4.7 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	3.9 U i	4 U (4.2 U	4.1 U	4.7 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	7.7 U	8.1 U	8.4¦U	8.3 U	9.4 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	3.9 ∪	4 U	4.2 U	4.1 U	4.7 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	3.9 U	4 U	4.2 U .	4.1 U	4.7 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	3.9 UJ	4 ÚJ	4.2 UJ	4,1 U	4.7 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	3.9 U	4]U	4.2 U	4.1 U	4.7 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	3.9 UJ	4 UJ	4.2 UJ	4.1 UJ	4.7 UJ
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	3.9 ∪	4 ∪	4.2 U	4.1 U	4.7 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	3.9∤∪	4 U	4.2 U	4.1 U	4.7 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	3.9 UJ	_4 UJ	4.2 UJ	4.1 U	4.7 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	3.9 UJ	4 UJ	4.2 UJ	4.1 U	4.7 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	3.9 UJ	4 UJ	4.2 UJ	4.1 U	4.7 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	1.9 U	2 U	2.1 U	2.1 U	2.4 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	7.7 U	8.1 U	8.4 U	8.3 U	9.4 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	3:9 UJ	4 UJ	4.2 UJ	4.1 UJ	4.7 UJ
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	1.9 U	2 U	2.1 U	2.1 U	2.4 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	3.9 ∪	4 U	4.2 U	4.1 U	4.7 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	3.9 U	4 U	4.2 U	4.1 U	4.7 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	7.7 U	8.1 U	8.4 U	8.3 U	9.4 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	3.9∤∪	4 U	4.2 U	4.1 U	4.7 U
106-93-4	1.2-Dibromoethane	TCL-S-VOC	ug/Kg	10	3.9 U	4 U	4.2 U	4:1 U	4.7 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg-	1700	3.9 U	4 U	4.2 U	4.1 U	4.7 U

Table F-2 Deep Soil Boring Sample Results Full Data Table Lawrence Aviation Industries Site Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-16-H	SBD-PD-16-I	SBD-PD-16-N	SBD-PD-16-O	SBD-PD-16-P
			Sample Name						
			Sample Date		12/28/2007	12/28/2007	1/2/2008	1/2/2008	1/2/2008
Ças Rn	Chemical Name	Analytic Method	Unit \\ Depth		78 to 80 ft bgs	88 to 90 ft bgs	138 to 140 ft bgs	148 to 150 ft bgs	158 to 160 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	3.9 U	4 U	4.2 U	4.1 U	4.7 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	3.9 U	4 U	4.2 U	.4.1 U	4.7 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	3.9 U	4 U	4.2 U	4.1 U	4.7 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	3.9 U	4 U	4,2 U	4.1 U	4.7 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	3.9 ∪	4 U	4.2 U	4.1 U	4.7 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	1.9년	2 U	2.1 U	2.1 U	2.4 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	3.9 ∪	4 U	4.2 U	4.1 U	4.7 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	3.9 ∪	4 U	4.2 U	4.1 U	4.7 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	3.9 U	4 U	4.2 U	4.1 U	4.7 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	3.9 U	4 U	4.2 U	4.1 U	4.7 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	3.9 U	4 U	4.2 U	4.1 U	4.7 U
	18. 4.01								
	Wet Chemistry	I I and I Calar	7	N/A	200	250 1	270 J ~	210 J ~	190 J ~
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A_	380 J ~	350 J ~	210 3 ~	210[3 [~]	เลบเม [~

Compound detected below or equal to screening criteria Compound detected above screening criteria #

Α Compound without screening criteria detected

bgs below ground surface

ft feet

Value estimated J

Compound not detected above reporting limit U

micrograms per kilogram ug/Kg mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Avlation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-16-P-DUP	SBD-PD-16-Q	SBD-PD-16-R	SBD-PD-16-S	SBD-PD-16-T
			Sample Name		SBD-PD-61-P				
}			Sample Date		1/2/2008	1/2/2008	1/2/2008	1/2/2008	1/2/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		158 to 160 ft bgs	168 to 170 ft bgs	178 to 180 ft bgs	188 to 190 ft bgs	198 to 200 ft bgs
	Volatile Organic Compounds				i I				
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.6 ∪	4.3 U	4.7 U	4.7 U	4.7 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4.6 U	4.3 U	4.7 U	4.7.U	4.7 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.6 U	4.3 U	4.7 บ	4.7 U	4.7 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	9.1 U	42 #	11 U	15 U	14 U
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4.6 U	4.3 U	4.7 U	4.7 U }	4.7 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.6 U	4.3 U	4.7 U	4.7 U]	4.7 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.6 U	4.3 U	4.7 U.	4.7 U	4.7[U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	9.1 U	8.6 U	9.4 U	9.4 U	9.5 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4.6 U	4.3 ∪	4.7 U	4.7 U	4.7 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.6 U	4.3 U	4.7 U	4.7 U ∫	4.7 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4.6 U	4.3 UJ	4.7 UJ	4.7 U	4.7 UJ
56-23-5	Carbon Tetrachioride	TCL-S-VOC	ug/Kg	200	4.6 ∪	4.3 ∪	4.7 U	4.7 U	4.7 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	4.6 UJ	4.3 UJ	4.7 UJ	4.7 UJ	4.7 UJ
107-06-2	1.2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.6 U	4.3 U	4.7 U 1	4.7 U	4.7 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	4.6 U	4.3 U	4.7 U	1.1 J #	4.7 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4.6 U	4.3 UJ	4.7 UJ	4.7 U	4.7 UJ
78-87-5	1.2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4.6 U {	4.3 UJ	4.7 UJ	4.7 ∪ } ·	4.7 UJ
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.6 U	4.3 UJ	4.7 UJ	4.7 U	4.7 UJ
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.3 U │	2.2 U	2.4 U	2.4 U	2.4 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	9.1 U	8.6 U	9.4 U	9.4 U	9.5 ∪
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	4.6 UJ	4.3 UJ	4.7 UJ	4.7 UJ	4.7 UJ
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.3 U	2.2 U	2.4 U │	2.4 U	2.4 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.6 U	4.3 U	4.7]U	4.7 U	4.7 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	9.1 U	8.6 U	9.4 Ū	9.4 U	9.5 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U

Table F-2 Deep Soil Boring Sample Results Full Data Table Lawrence Aviation Industries Site Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-16-P-DUP	SBD-PD-16-Q	SBD-PD-16-R	SBD-PD-16-S	SBD-PD-16-T
			Sample Name		SBD-PD-61-P				
			Sample Date		1/2/2008	1/2/2008	1/2/2008	1/2/2008	1/2/2008
Cas Rn	Chemical Name	Analytic Method			_158 to 160 ft bgs	168 to 170 ft bgs	178 to 180 ft bgs	188 to 190 ft bgs	198 to 200 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	4.6 U	4.3 U	4.7 Ü	4.7 U	4.7 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.6 U	4.3 U]]	4.7 U	4.7}U	4.7 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.3 U	2.2 U	2.4 U	2.4 U	2,4 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.6 U	4.3 U	4.7 U⊢	4.7 U	4.7 U
106-46-7	1.4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.6 U	4.3 U	4.7 ∪	4.7 U	4.7 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.6 ∪	4.3 U	4.7 U	4.7 U	4.7 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.6 U	4.3 U	4.7 U	4.7 U	4.7 U
	Wet Chemistry				1. 1	1	lI, I i	ì . -	450
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	170 J ~	220 J ~	220 J ~	170 J ~	150 J ~

N	ote	۸.
- 13	ULE	э.

Compound detected below or equal to screening criteria Compound detected above screening criteria

Α Compound without screening criteria detected

bgs below ground surface

ft feet

Value estimated

Compound not detected above reporting limit U

ug/Kg micrograms per kilogram milligrams per kilogram mg/Kg

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			_		r		T === == := :=:		000 00 40 14	OPD DD 40.7
			Sample Code	Site-specific-soil	SBD-PD-16-U	SBD-PD-16-V	SBD-PD-16-W	SBD-PD-16-X	SBD-PD-16-Y	SBD-PD-16-Z
			Sample Name				4 (0 10 0 0 0	4 10 10 00 0	41010000	1/3/2008
			Sample Date		1/2/2008	1/3/2008	1/3/2008	1/3/2008	1/3/2008	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		212 to 214 ft bgs	218 to 220 ft bgs	230 to 232 ft bgs	240 to 242 ft bgs	248 to 250 ft bgs	258 to 260 ft bgs
1	Volatile Organic Compounds				.		l		6 0	6.6 U
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	5.9\U	4.8 U	5.8 U	5.7 U	1 -1-1	6.6 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	5.9 U	4.8 U	5.8 U	5.7 U	6 U	
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	5.9∫U∤	4.8 U	5.8 U	5.7 U	6 U	6.6 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	5.9 U	4.8 U	5.8 U	5.7 U	6 0	6.6 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	18 U	9.6 U	12 U	11 U	12 U	13 U
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	5.9 U	4.8 U	5.8 U	5.7 ∪	6 U	6.6 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	5.9 U	4.8 U	5.8 ∪	5.7 ∪	6 U	6.6 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	5.9 U	4.8 U	5.8 U	5.7 U	6 Ú	6.6 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	12 U	9.6 U	12 U	11 U .	12 U	13 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	5.9 U	4.8 U	5.8 U	5.7 U	U 8	6.6 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	5.9 U	4.8 U	5.8 U	5.7 U	[U 6	6.6 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	5.9 U	4.8 U	5.8 U	5.7\U (6 U	6.6 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	5.9 U	4.8 U	5.8 U	5.7\U	6 U	6.6 ∪
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
107-06-2	1.2-Dichloroethane	TCL-S-VOC	ug/Kg	100	5.9 ∪	4.8 U	5.8 U	5.7 U \ "	6 U	6.6 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	5.9 U	4.8 U	5.8 U [5.7 U	6 U	6.6 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 ∪
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	3 U	2.4 U	2.9 U	2.8 U	3 U	3.3 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	12 U	9.6 U	12 U	11 U	12 U	13 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	5.9U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	3 0	2.4 U	2.9 U	2.8 U	3 U	3.3 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6
591-78 - 6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	12 U	9.6 U	12 U	11 U	12 U	13 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	5.9 0	4.8 U	5.8 U	5.7 U	6 U	6.6 U
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	100	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 ∪
106-93-4	Chlorobenzene	TCL-S-VOC	ug/Kg ug/Kg	1700	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
104-90-1	Ciliotopenzene	_ TOL-3-VOC	ugring	1700	0.0[0]	7.00	0.010	5,, 0		

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-16-U	SBD-PD-16-V	SBD-PD-16-W	SBD-PD-16-X	SBD-PD-16-Y	SBD-PD-16-Z
			Sample Name							
			Sample Date		1/2/2008	1/3/2008	1/3/2008	1/3/2008	1/3/2008	1/3/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		212 to 214 ft bgs	218 to 220 ft bgs	230 to 232 ft bgs	240 to 242 ft bgs	248 to 250 ft bgs	258 to 260 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	5.9 U	4.8 U	5.8 U	5.7 U	6 U j	6.6 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	5.9 U	4.8 U	· 5.8 U	5.7 U	6 U	6.6 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	5.9 U	4.8 U	5.8 U	5.7 U	6 년	6.6 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	3 U	2.4 U	2.9 U	2.8 U	3 U	3.3 ∪
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	5.9 U	4.8 U	5.8 U	5.7 U	6] U]	6.6 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	5.9 U	4.8 U	5.8 년	5.7 U	6 U	6.6 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	5.9 U	4.8 U	5.8 ぴ	5.7 U	6 U	6.6 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150 [%]	5.9 U	4.8]U	5.8 U	5.7 U	6 U	6.6 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	5.9 U	4.8 U	5.8 U	5.7 U	6 U	6.6 U
	Wet Chemistry									
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	130 J ~	190 J ~	140 J ~	140 J ~	130JJ [~	1 <u>50</u> J ~_

Compound detected below or equal to screening criteria

A Compound detected above screening criteria

Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

CPD DD 47 C CPD DD 47 C CPD DD 47 C CPD DD 47 C DUB CPD DD									
			Sample Code	Site-specific-soil	SBD-PD-17-A	SBD-PD-17-B	SBD-PD-17-C	SBD-PD-17-C-DUP	SBD-PD-17-D
			Sample Name				4 = 40000	SBD-PD-71-C	4/7/2000
			Sample Date		1/7/2008	1/7/2008	1/7/2008	1/7/2008	1/7/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		8 to 10 ft bgs	18 to 20 ft bgs	28 to 30 ft bgs	28 to 30 ft bgs	. 38 to 40 ft bgs
	Volatile Organic Compounds						<u> </u>	- 4.1	4401
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U 4.4 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.9 U	4.8 U .	5.2 U	5.4 U	4.4 U 4.4 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4.9 U	4.8 U	5.2 U	5.4 U	
74-83-9	Bromomethane	TCL-S-VOC	uġ/Kġ	400	4.9 U	4.8 U	5.2 U	,5.4 U	4.4 U
75-00-3	Chloroethane	TCL-S-VOC ~	ug/Kg	1900	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
75-69-4	Trichlorofluoromethane .	TCL-S-VOC	ug/Kg	10000	4.9 U	4.8 U	5.2 U	5.4 U	.4.4 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.9 U	4.8 U	5.2 U	5.4 0	4.4 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	15 #	5.8 J #	11 #	14 #	8.7 U
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	270 0	4.9 U	. 4.8 U	5.2 U	5.4 U	4.4 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.9 U i	4.8 U	5.2 U	5.4 U	4.4 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.9 U }	4.8 U	5.2 U	5.4 U	4.4 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	9.8 U	9.7 U	10 U	11 U	8.7 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4.9 U \	4.8 U	5.2 ∪	5.4 U	4.4 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.9 U	4.8 U	5.2 U	5.4 🗸 📗	4.4 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4.9 U [4.8 U	5.2 U	5.4 ∪	4.4 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4.9 U {	4.8 Ü	5.2 U	5.4 U j	4.4 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.9 U }	4.8 U	5.2 U	5.4 U	4.4 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	4.9 ∪ ↓	4.8 U	5.2 U	1.2 J #	4.4 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	- 10000	4.9 U {	4.8 U	5.2 U	5.4 U	4.4 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	.ug/Kg	350	4.9 U {	4.8 U	5.2 U	5.4 U	4.4 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.9 ∪	4.8 U	5.2 U	5.4 U {	4.4 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.4 ∪	2.4 U	2.6 U	2.7 U	2.2 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	9.8 U	9.7 U	10 U	11 0	8.7 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.4 U	- 2.4 U	2.6 U	2.7 U	2.2 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	9.8JU	9.7 U j	10 U	11 U	8.7 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	4.9U	4.8 U	5.2 U	5.4 U	4.4 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U

Table F-2
Deep Soil Boring Sample Results
Full-Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-17-A	SBD-PD-17-B	SBD-PD-17-C	SBD-PD-17-C-DUP	SBD-PD-17-D
1	•		Sample Name					\$BD-PD-71-C	
			Sample Date		1/7/2008	1/7/2008	1/7/2008	1/7/2008	1/7/2008
Cas Rn :	Chemical Name	Analytic Method	Unit \\ Depth		8 to 10 ft bgs	18 to 20 ft bgs	28 to 30 ft bgs	28 to 30 ft bgs	38 to 40 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	4.9 U }	4.8 U	5.2 U	5.4 U	4.4 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.9 U}	4.8 U	5.2 U	5.4 U	4.4 U
98-82-8	Isopropyibenzene	TCL-S-VOC	ug/Kg	10000	4.9 U	4.8 U	5.2 U	5.4[U]	4.4 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.4 U	2.4 U	2.6 U	2.7 U	2.2 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.9 Ų	4:8 U i	5.2 U	5.4 U	4.4 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.9 U	4.8 U {	5.2 U	5.4 U	4.4 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.9 U	4.8 U	5.2 U	5.4 U	4.4 U
	Mark Observators		·				111		
l	Wet Chemistry	11-112-6		1.74	4000	الالممم	400	500	ايامور
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	1600 ~	360 J ~	400 J ~	520 <u> </u> J ~	200 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-17-Ë	SBD-PD-17-F	SBD-PD-17-G	SBD-PD-17-H	SBD-PD-17-I	SBD-PD-17-J
			Sample Name							
			Sample Date		1/7/2008	1/7/2008	1/7/2008	1/7/2008	1/7/2008	1/7/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		48 to 50 ft bgs	58 to 60 ft bgs	68 to 70 ft bgs	78 to 80 ft bgs	88 to 90 ft bgs	98 to 100 ft bgs
_	Volatile Organic Compounds									
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.7 ∪	4.6 U	4.6 U {	4.3 U	4.4 U	5.2 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.7 U	4.6 U	4.6 U	4.3 U	4.4 0	5.2 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.7 U	4.6 U	- 4.6 U	4.3 U	4.4 0	5.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	37 #	6.9 J #	15 #	- 8.6 U	14 #	20 #
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.7 U	. 4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	9.5 U	9.1 U	9.1 U	8.6 U	8.9 U	10 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5,2 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4.7 ∪	4.6 U	. 4.6 U	4.3 U	4.4 U	5.2 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4.7 U	4.6 U	4.6 U	4.3 U <u> </u>	4.4 U	5.2 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	.60	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	4.7 ∪	4.6 U	4.6 U	7.3 #	1.4 J #1	1.3 J #
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
78-87-5	1.2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4.7 U	4.6 U	4.6 U	4.3 ∪	4.4 U	5.2 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.4 U	2.3 U	2.3 U	2.1 U	2.2 U	2.6 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	9.5 U	9.1 U	9.1 U	8.6 U	8.9 U	10 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.4 U	2.3 U	2.3 U	2.1 U	2.2 U	2.6 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	9.5 U	9.1 U	9.1 U	8.6 U	8.9 U	10 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	4.7 ∪	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	· · · · · · · · · · · · · · · · · · ·		Sample Code	Site-specific-soil	SBD-PD-17-E	SBD-PD-17-F	SBD-PD-17-G	SBD-PD-17-H	SBD-PD-17-I	SBD-PD-17-J
			Sample Name		}					
			Sample Date		1/7/2008	1/7/2008	1/7/2008	1/7/2008-	1/7/2008	1/7/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		48 to 50 ft bgs	58 to 60 ft bgs	68 to 70 ft bgs	78 to 80 ft bgs	88 to 90 ft bgs	98 to 100 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A ´	4.7{U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.4 U	2.3 U	2.3 U	2.1 U	2.2 U	2.6 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.7U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.7 U	4.6 U {	4.6 U	4.3 U	4.4 U	5.2 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.7 U	4.6 U	4.6 ูป	4.3 U	4.4 U	5.2 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.7 U	4.6 U	4.6 U	4.3 U	4.4 U	5.2 U
	Wet Chemistry									
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	190 J ~	280 J ~	300 J ~	380 J ~	340 J ~	320 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria

Compound without screening criteria detected

bgs below ground surface

ft feet

Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-17-K	SBD-PD-17-L	SBD-PD-17-M	SBD-PD-17-N	SBD-PD-17-O	SBD-PD-17-P
			Sample Name							
			Sample Date		1/8/2008	1/8/2008	1/8/2008	1/8/2008	1/8/2008	1/8/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		108 to 110 ft bgs	118 to 120 ft bgs	128 to 130 ft bgs	138 to 140 ft bgs	148 to 150 ft bgs	158 to 160 ft bgs
	Volatile Organic Compounds]]	111		
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
75-00-3 -	Chloroethane	TCL-S-VOC	ug/Kg	1900	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4.4 U	4.7 U	4.8 U	4.4 U	4.1]U	4.8 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	74 #	9.5 U	16 U	8.8 U	6.2 U	7.9 U
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U _	4.8 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U 〕	4.8 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	5.1 U	4.7 U	5.3 #	4.4 U	4.6 # .	5
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U 1	4.8 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
78-93-3	2-Butanone	TCL-S-VQC	ug/Kg	300	8.9 U	9.5 ับ	9.5 U	8.8	8.2 U	9.5 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4.4 U	4.7 U	4.8 U	4.4\U	4.1 U	4.8 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.4 U	4.7 U	4.8 U	4.4[U]	4.1 U	4.8 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4.4 U	4.7 U	4.8 U	4.4[U]	4.1 U	4.8 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 Ü
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	4.4 U	10 #	4.8 U	4.4 U	4.1 U	4.8 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U∫	4.8 ∪
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.2 U	2.4 U	2.4 U	2.2 U	2 U	2.4 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	8.9 U	9.5 U	9.5 U	8.8 U	8.2 U	9.5 U
108-88-3	Toluene	TCL-S-VQC	ug/Kg	1500	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.2 U	2.4 U	2.4 U	2.2	2 U	2.4 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	8.9 0	9.5 U	9.5 U	8.8 U	8.2 U	9.5 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U

Table F-2 Deep Soil Boring Sample Results Full Data Table **Lawrence Aviation Industries Site** Port Jefferson Station, New York

	 		Sample Code	Site-specific-soil	SBD-PD-17-K	SBD-PD-17-L	SBD-PD-17-M	SBD-PD-17-N	SBD-PD-17-0	SBD-PD-17-P
					300-60-11-6	300-FD-11-L	30D-F D-17-WI	300-10-11-14		300-10-17-1
			Sample Name	i I				×		
			Sample Date	}	1/8/2008	1/8/2008	1/8/2008	1/8/2008	1/8/2008	1/8/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	ł	108 to 110 ft bgs	118 to 120 ft bgs	128 to 130 ft bgs	138 to 140 ft bgs	148 to 150 ft bgs	158 to 160 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 ∪
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.2 U	2.4 U	2.4 U	2.2 U	2 0	2.4 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.4 U	4.7 U	4.8 U	4:4 U	4.1 U	4.8 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.4 U	4.7 U	4.8 U]	4.4[U]	4.1 U	4.8 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.4 U	4.7 U	4.8 U	4.4 U	4.1 U	4.8 U
	-		-					111		
	Wet Chemistry							! ! !	1 1	
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	350 J ~	340 J ~	310 J ~	170]J ~	160 J ~	160 J ~

Compound detected below or equal to screening criteria

Compound detected above screening criteria Α

Compound without screening criteria detected

below ground surface bgs

feet ft Value estimated

U Compound not detected above reporting limit

micrograms per kilogram ug/Kg milligrams per kilogram mg/Kg

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

					•					
			Sample Code	Site-specific-soil	SBD-PD-17-Q	SBD-PD-17-R	SBD-PD-17-S	SBD-PD-17-T	SBD-PD-17-U	SBD-PD-17-V
			Sample Name					i		
	•		Sample Date		1/8/2008	1/8/2008	1/8/2008	1/8/2008	1/9/2008	1/9/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		168 to 170 ft bgs	178 to 80 ft bgs	188 to 190 ft bgs	198 to 200 ft bgs	208 to 210 ft bgs	218 to 220 ft bgs
	Volatile Organic Compounds									
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.7 U	4.7 U∤	4.9 U	5.5 U	5.5 U	4.9 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.7 U	4.7 ∪[4.9 U	5.5(U	5.5 U	4.9 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	20 0	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	40 0	4.7 U	4.7 U	4.9 U	5.5 ป	5.5 U	4.9 U
75-00-3	Chloroethane ·	TCL-S-VOC	ug/Kg	1900	4.7 U	4.7[U]	4.9 U	5.5 U	5.5 U	、4.9 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4.7 U	4.7 <mark> ∪ </mark>	4.9 U	5.5 U	· 5.5 U	4.9 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.7 U ~ .	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	12 U	44 U	9.9 U	11 1	11 U	9.7 U
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4.7] U	4.7U	4.9 Ŭ ∫	5.5 U	5.5 U	4.9 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.7]U .	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
75-09 - 2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	· 4.9 #	5.3 #	4.9 U	5.5 ป	5.5 U	4.9 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	` 4.7 U	4.7 U ,	4.9 U	5.5 U	5.5 U J	4.9 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.7 U	4.7 U	4.9[U	5,5 U	5.5 U	4.9 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 ∪
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.7 U	4.7U	4.9 U	5.5 U	5.5 U	4.9 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	9.4 U	9.5	9.9 U	11 U	11 0	9.7 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4.7 U	4.7U	4.9 U	5.5 U	5.5 U	4.9 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.7 U	4.7 U	4.9 U	5.5 ∪	5.5 U	4.9 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4.7 U	4.7 ∪ 1	4.9 U	5.5 ∪	5.5 U	4.9 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4.7U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	4.7U	4,7 0	4.9 U	5.5 U	5.5 U	4.9 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	4.7 U	4.7\U	11 #	24 #	5.5 U	7.1
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4.7 U	4.7U	4.9 ∪	5.5 U	5.5 U	4.9 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4.7 U	4.7 ∪	4.9 ∪	5.5 U	5.5 U	4.9 ∪
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.7 U	4.7U	4.9 U	5.5 U	5.5 U	4.9 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.3 U	2.4 U	2.5 U	2.8 ∪	2.8 ∪	2.4 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	9.4 U	9.5 ∪	9.9 U	11 0	11 0	9.7 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.3 U	2.4 U	2.5 U	2.8 U	2.8 U	2.4 U
79-00-5	1.1.2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.7 U	4.7 0	4.9 U	5.5 U	5.5 U	4.9 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	4.7 U	4.7\U	4.9 0	5.5 U	5.5 U	4.9 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	9.4 U	9.5 U	9.9 0	11 0	11 0	9.7 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	100	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
1-06-20-1	Officionelization	10L-0-100	ugil\g	1700	7.70	ا احانید	الاامند	3,5[5]	0.01011	7.510

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		×- <u>-</u>	Sample Code	Site-specific-soil	SBD-PD-17-Q	SBD-PD-17-R	SBD-PD-17-S	SBD-PD-17-T	SBD-PD-17-U	SBD-PD-17-V
			Sample Name	,						4
			Sample Date		1/8/2008	1/8/2008	1/8/2008	1/8/2008	1/9/2008	1/9/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		168 to 170 ft bgs	178 to 80 ft bgs	188 to 190 ft bgs		208 to 210 ft bgs	218 to 220 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2,3 U	2.4 U	2.5 U	2.8 U	2.8 ∪	2.4 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4:9 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 ∪
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.7 U	4.7 U	4.9 U	5.5 U	5.5 U	4.9 U
	Wet Chemistry	<u> </u>							-	11
тос	Total Organic Carbon_	Lloyd Kahn	mg/kg	N/A	150 J ~	190 J ~	170 J ~	180 J ~	200 J ~	180 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

					-				
			Sample Code	Site-specific-soil	SBD-PD-17-W	SBD-PD-17-X	SBD-PD-17-X-DUP	SBD-PD-17-Y	SBD-PD-17-Z
			Sample Name				SBD-PD-71-X		
		•	Sample Date	٠	1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		228 to 230 ft bgs	238 to 240 ft bgs	238 to 240 ft bgs	248 to 250 ft bgs	258 to 260 ft bgs
	Volatile Organic Compounds		_					.	
75-71-8	Dichlorodifluoromethane	TCL-S-VQC	ug/Kg	9400	5.6 U	5.5 U	6 U	5.8 U	5.7 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	5.6 U	5.5 U	6 U	5.8 U	5.7 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	5.6 U	5.5 U	6 U	5.8 U	5.7 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	5.6 U	5.5 U	6 U	5.8 U	5.7 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	5.6 U	5.5 U	6 U	5.8 U	5.7 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	5.6 U	5.5 U	6 U	5.8 U	5.7 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	5.6 ∪	5.5 U	6 U	5.8 U	5.7 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	5.6 U	5.5 U	6 U	5.8 ∪	5.7 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	11 U	11 U	12 U	12 U	44 U
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	5.6 U	5.5 U	6 U	5.8 U	5.7 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	5.6 U	5.5 U	6 U	5.8 ∪	5.7 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	5.6 ∪	5.5	6 U	5.8 U	5.7 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	5.6 U	5.5 U	6 U	5.8 ∪	5.7 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	5.6 U	5.5 U	6 U	5.8 U	5.7 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	5.6 U	5.5 U	6 U	5.8 U	5.7 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	5.6 U	5.5 U	6 U	5.8 U	5.7 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	11 U	11 U	12 U	12 ປີ	11 0
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	5.6 U	5.5{U	6 U	5.8 U	5.7 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	5:6 U	5.5 U	6 U	5.8 ป	5.7 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	5.6 U	} 5.5 U	6 U	5.8 U	5.7 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	5,6 U	5.5 U	6 U	5.8 U	5.7 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	5.6 ับ∤	∫ 5.5 U	6 U	5.8 ∪	5.7 ∪
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	5.6 U	5.5 U	6 U	5.8 U	5.7 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	3 J (#	j 5.5∫U	6 U	5.8 U	5.7 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	5.6 ับ∫	5.5 U	6 U	5.8 U	5.7 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	5.6 U	5.5 U	6 U	5.8 U	5.7 U
75-27-4	Bromodichloromethane	TCL-\$-VOC	ug/Kg	-1000	5.6 U	5.5 U	6 U J	5.8 U	5.7 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.8 U	2.7 U	3 U	2.9 U	2.8 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	11 U	11 U	12 U	12 U	11 0
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	5.6 U	5.5 U	6 U	5.8 U	5.7 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.8 ∪	2.7 U	3 U	2.9 U	2.8 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	5.6 U	5.5U	6 U	5.8 U	5.7 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	5.6 U	5.5 U	6 U	5.8 U	5.7 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	11 U	11 0	12 U	12 U	11 0
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	5.6 U	5.5 U	6 U	5.8 U	5.7 U
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	5.6 U	5:5 U	6 U	5.8 U	5.7 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	5.6 U	5.5 U	6 U	5.8 U	5.7 U

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-17-W	SBD-PD-17-X	SBD-PD-17-X-DUP	SBD-PD-17-Y	SBD-PD-17-Z
			Sample Name				SBD-PD-71-X		
			Sample Date		1/9/2008	1/9/2008	1/9/2008	1/9/2008	1/9/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth_		228 to 230 ft bgs	238 to 240 ft bgs	238 to 240 ft bgs	248 to 250 ft bgs	258 to 260 ft bgs
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	5.6 U	5.5 U	6 U	5.8 U	5.7 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	5.6 U	5.5 U	6] U	5.8 U 	5.7 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	5.6 U	5.5 U	6 U	5.8 U	5.7 [U]
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	5.6 U	5.5 U	6 U	5.8 U	5.7 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	5.6 U	5.5 ∪	6 U	5.8 U	5.7 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.8 U	2.7 U	3 U	2.9 U	2.8 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	- ug/Kg	1300	5.6 U	5.5 U	6 U	5.8 U	5.7 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	5.6 U	5.5 U	6 U	5.8 U	5.7]U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	5.6 U	5.5 U	6 U	5.8 U	5.7 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	5.6 U	5.5 U	6 U	5.8 U	5.7 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	5.6 U	5.5 U	6 U	5.8 U	5.7 U
		·					[]		
	Wet Chemistry		_		ارامه		200	000	000
TOC	Total Organic Carbon .	Lloyd Kahn	mg/kg	N/A	190 J ~	· 200 J	220 J ~	230 J ~	230 J [~]

Compound detected below or equal to screening criteria

A Compound detected above screening criteria

Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram

mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

12/5/2007 28 to 30 ft bgs	3D-PD-19-B	SBD-PD-19-A-DUP	SBD-PD-19-A					I
28 to 30 ft.bgs		SBD-PD-91-A		Site-specific-soil	Sample Code Sample Name			
	12/5/2007	12/5/2007	12/5/2007		Sample Date			
2 0 1 1	to 20 ft bgs	8 to 10 ft bgs	8 to 10 ft bgs			Analytic Method	Chemical Name	Cas Rn
انتام و					ome waspu	Talaly do modioa	Volatile Organic Compounds	Oas Idi
2.9 U	3.9 U	3.6 0	3.5 U	9400	ug/Kg	TCL-S-VOC	Dichlorodifluoromethane	75-71-8
·2.9 U	3.9 U	3.6 U	3.5 U	1200	ug/Kg	TCL-S-VOC	Chloromethane	74-87-3
2.9 U	3.9 U	3.6 U	3.5 U	200	ug/Kg	TCL-S-VOC	Vinyl Chloride	75-01-4
2.9 U	3.9 U	3.6 U	3.5 U	400	ug/Kg	TCL-S-VOC	Bromomethane	74-83-9
2.9 U	3.9 U	3.6 U	3.5 U	1900	ug/Kg	TCL-S-VOC	Chloroethane	75-00-3
2.9 U	3.9 U	3.6 U	3.5 U	10000	ug/Kg	TCL-S-VOC	Trichlorofluoromethane	75-69-4
2.9 U	3.9 U	3.6 U	3.5 U	50	ug/Kg	TCL-S-VOC	1.1-Dichloroethene	75-05-4 75-35-4
2.9 U	3.9 U	3.6 U	3.5 U	6000	ug/Kg	TCL-S-VOC	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1
5000	350 A	7.5 #	15 #	200	ug/Kg	TCL-S-VOC	Acetone	67-64-1
2.9 U	3.9 U	3.6 U	3.5 ∪	2700	ug/Kg	TCL-S-VOC	Carbon Disulfide	75-15-0
2.9 U	3.9 U	3.6 U	3.5 U	10000	ug/Kg	TCL-S-VOC	Methyl Acetate	79-20-9
2.9∤∪	3.9 U	. 3.6 U	3.5 U	100	ug/Kg	TCL-S-VOC	Methylene Chloride	75-20-3 75-09-2
2.9 U	3.9 U	3.6 U	3.5 U	300	ug/Kg	TCL-S-VOC	trans-1.2-Dichloroethene	156-60-5
2.9 U	3.9 U	3.6 U	3.5 U	10000	ug/Kg	TCL-S-VOC	Methyl tert-Butyl Ether	1634-04-4
2.9 U	3.9 U	3.6lu	3.5 U	200	ug/Kg	TCL-S-VOC	1.1-Dichloroethane	75-34-3
2.9 U	3.9 U	3.6 U	3.5 U	4300	ug/Kg	TCL-S-VOC	cis-1,2-Dichloroethene	156-59-2
5.8 U	7.7 U	7.1U	6.9 U	300	ug/Kg	TCL-S-VOC	2-Butanone	78-93-3
2.9 U	3.9 U	3.6[U	3.5 U	40	ug/Kg	TCL-S-VOC	Chloroform	67-66 - 3
2.9 U	3.9 U	3.6 U	3.5 U	800	ug/Kg	TCL-S-VOC	1.1.1-Trichloroethane	71-55-6
2.9 U	3.9 U	3.6 U	3.5 U	10000	ug/Kg	TCL-S-VOC	Cyclohexane	110-82-7
2.9 U	3.9 U	3.6U	3.5 U	200	ug/Kg	TCL-S-VOC	Carbon Tetrachloride	56-23-5
2.9 U	3.9 U	3.6 U	3.5 U	60	ug/Kg	TCL-S-VOC	Benzene	71-43-2
2.9 U	3.9 0	3.6 U	3.5 U	100	ug/Kg	TCL-S-VOC	1.2-Dichloroethane	107-06-2
2.9 U	3.9U	3.6 U					.,	
2.9 U	3.9 U							
2.9 U	3.9 U							1
2.9 U	3.9 0						• •	1 -
1.5 U	1.9 U							
5.8 U								
0.75 J /								
1.5 U								
2.9 U	3.9 U		1 1 1					
2.9 U								
5.8 U						•		1
2.9 U				I i			—	
	3.9 U 3.9 U 1.9 U 7.7 U 3.9 U 1.9 U	3.6 U 3.6 U 3.6 U 1.8 U 7.1 U 3.6 U 3.6 U 3.6 U 7.1 U 3.6 U	3.5 U 3.5 U 3.5 U 3.5 U 1.7 U 6.9 U 3.5 U 3.5 U 6.9 U 3.5 U	700 10000 350 1000 10000 1000 1500 10000 800 1400 10000	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	TCL-S-VOC TCL-S-VOC TCL-S-VOC TCL-S-VOC TCL-S-VOC TCL-S-VOC TCL-S-VOC TCL-S-VOC TCL-S-VOC TCL-S-VOC TCL-S-VOC TCL-S-VOC	Trichloroethene Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane cis-1,3-Dichloropropene 4-Methyl-2-pentanone Toluene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene 2-Hexanone Dibromochloromethane	79-01-6 108-87-2 78-87-5 75-27-4 10061-01-5 108-10-1 108-88-3 10061-02-6 79-00-5 127-18-4 591-78-6 124-48-1

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site

		-	Sample Code	Site-specific-soil	SBD-PD-19-A	SBD-PD-19-A-DUP	SBD-PD-19-B	SBD-PD-19-C
,			Sample Name	į		SBD-PD-91-A		
			Sample Date		12/5/2007	12/5/2007	12/5/2007	12/5/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	·	8 to 10 ft bgs	8 to 10 ft bgs	18 to 20 ft bgs	28 to 30 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	3.5 U	3.6 U	3.9 U	2.9 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	3.5 U	3.6 0	3.9 U	2.9 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	3.5 U	3.6 [U]	3.9 U	2.9[U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	1 J -	3.6 🗸	3.9 U	2.9 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	3.5 U	3.6 U	3.9 U [2.9 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	3.5 U	3.6 U	3.9 U	2.9 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	3.5 U	3.6 U	3.9 U	2.9 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	1.7 Û	1.8 U	1.9 U	1.5 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	3.5 U	3.6 U	3.9 U	2.9 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	3.5 U	3.6 U	3.9 U	2.9 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	3.5 U	3.6 U	3.9 U	2.9 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	3.5 U	3.6 U	3.9 ∪	2.9 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	3.5 U	3.6 U	3.9 U	2.9 U
	Wet Chemistry		÷					
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	3800 _ ~	2800 ~	1900 ~	2100 ~

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria

Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Port Je	efferson Station, N	lew fork			
			Sample Code	Site-specific-soil	SBD-PD-19-D	SBD-PD-19-E	SBD-PD-19-F	SBD-PD-19-G
			Sample Name					
,			Sample Date		12/5/2007	12/5/2007	12/5/2007	12/5/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		38 to 40 ft bgs	48 to 50 ft bgs	58 to 60 ft bgs	68 to 70 ft bgs
	Volatile Organic Compounds	-					-	
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	3 ∪	[3.5 ป	3.8 U	3.6 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	3 ∪	3.5 U	3.8 U	3.6 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	3 ∪	3.5 U	3.8 U	3.6 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	3 U	[3.5 U∫	3.8 U	3.6 ∪
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	3 U	3.5 U	3.8 U	3.6 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	3 ∪	3.5 U	3.8 U	3.6 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50.	3 U	3.5 U	3.8 U	3.6 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOĆ	ug/Kg	6000	3 ∪	3.5 ひ	3.8 U	3.6 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	180 #	670 J A	190 #	1500 A
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	3 0	3.5 U }	3.8 U	3.6 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	3 U	3.5 U j	3.8 U	. 3.6 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	3 U	3.5 ひ	3.8 ∪	3.6 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	3 U	3.5 U	3.8]U	3.6 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	3]U	3.5 U I	, 3.8 U	3.6 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	3[U]	3.5 U	´ 3.8 U	3.6∫U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	uġ/Kg	4300	3 [U	3.5 U	3.8	3.6 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	6 U	6.9U	7.7 U	7.3 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	3 U	3.5 U	3.8 U	3.6 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	3 U	3.5 U	3.8 U	3.6 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	3 U	3 <u>.</u> 5 U	3.8 U	3.6 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	3 U	3.5 U	3.8 U	3.6 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	3 U	3.5 U	3.8U	3.6 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	3 U	3.5 U	3.8[U]	3.6 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	1.6 J #	1.6 J #	3.8 U	3.8 #
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	3 U	3.5 U	3.8 U	3.6 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	3 U	3.5 U	3.8 U	3.6 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	3 U	3.5 U	3.8 U	3.6 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	1.5 U	1.7 U	1.9 U	1.8 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg ′	1000	6 U	6.9U	7.7 U	7.3 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	3 U	_ຼ 3.5 ນ	3.8 U	3.6 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	1.5	1.7 U	1.9 U	1.8 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	3 U	3.5 U	3.8 U	3.6 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	3 U	3.5 U	3.8 U	3.6 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	6 U 1	6.9 U	7.7 U	7.3 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	3 U 1	3.5 U	3.8 U	3.6JU

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site

			Sample Code	Site-specific-soil	SBD-PD-19-D	SBI	D-PD-19-E	SBD-PD-19-	F	SBD-PD-19-G
			Sample Name					ł		
			Sample Date		12/5/2007	1	2/5/2007	12/5/2007		12/5/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		38 to 40 ft bgs	481	o 50 ft bgs	58 to 60 ft bg		68 to 70 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	3 U	וי י	3.5 U	3.8	- [3.6 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	3 U	וי וי	3.5 U	3.8		3.6 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	3 U	기	3.5 U	3.8		3.6 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	3 U	기	3.5 U	3.8		3.6[U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	3 U	기	3.5 U	3.8		3.6[U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	3 U	기	3.5 U	3.8		3.6 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	3 U	기	3.5 ∪	3.8		3.6 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	1.5 U	기	1.7 U	1.9	υll	1.8 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	3 U	1	3.5 U	3.8	미	3.6 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	3 U	1	3.5 U	3.8	미	3.6 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	3 U	1	3.5 U	3.8		3.6 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	3 U	기	3.5 U	3.8	1 1	3.6 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	3 U	<u> </u>	3.5 U	3.8	니	3.6 U
	Wet Chemistry				ļ		1			
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	1900	~	1100	- 1300	~	1500} ~

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J · Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jerrerson	Station, New York					
	-		Sample Code	Site-specific-soil	SBD-PD-19-H	Т	SBD-PD-19-I	SBD-PD-19-J	SBD-PD-19-K	SBD-PD-19-L
			Sample Name	•						
			Sample Date		12/5/2007		12/5/2007	12/5/2007	12/6/2007	12/6/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		78 to 80 ft bgs		88 to 90 ft bgs	98 to 100 ft bgs	108 to 110 ft bgs	118 to 120 ft bgs
	Volatile Organic Compounds					Т				
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400 `	2.9 U		3.3[U	3.5 U	3.9 UJ	4.2 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	2.9 U		3.3 ∪	3.5 U	3.9 UJ	4.2 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	2.9 U	ı	. 3.3 U	3.5 ป	3.9 ∪	4.2 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	2.9 ∪ {	1	3.3 🔰	3.5 U	3.9 UJ	4.2 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	2.9 U		3.3 U	3.5 U	3.9 UJ	4.2 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	2.9 U		3.3 U	3.5 U	3.9 U	. 4.2 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	6200 A		170 #	98 #	110 #	1300 A
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	0.85 J #	f	3.3 ປ	3.5 U	3.9 UJ	4.2 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	2.9 U		3.3 U	3.5 U	3.9 U │	4.2 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	2.9 Ü		3.3 U	3.5 U	3.9 U	4.2 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	10 #	<i>‡</i>	6.6 U	7.1 U	7.7 U	8.5 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
71-55-6	1.1.1-Trichloroethane	TCL-S-VOC	ug/Kg	800	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	2.9 U	ŀ	3.3 U	3.5	3.9 U	4.2 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	2.9\U	-	3.3 U	3.5 U	3.9 U	4.2 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	1 J #	‡	3.3 U	3.5 U	3.9 U	4.2 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	2.9 U	-	3.3 U	3.5 U	3.9 U	4.2 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	8.8 #	*]	3.3 U	3.5 Ú	3.9U	4.2 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	2.9 U	1	3.3 U	3.5 U	3.9 U	4.2 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	1.4 U		1.6 ป	1.8 U	1.9 U	2.1 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	5.7 U		6.6 U	7.1 U	7.7 U	8.5 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	0.99 J #	#	3.3 U	3.5 U	3.9 U	4.2 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	1.4 U		1.6 U	1.8 U	1.9 U	2.1 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	2.9 U		3.3 U	3.5 U	3.9 U	4.2 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	5.7 U	ı	6.6 U	7.1 U	7.7 U	8.5 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	2.9 U _	\perp	3.3 U	3.5 U	3.9 U	4.2 U

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site

			Sample Code	Site-specific-soil	SBD-PD-19-H	SBD-PD-19-I	SBD-PD-19-J	SBD-PD-19-K	SBD-PD-19-L
			Sample Name			4			
ļ			Sample Date		12/5/2007	12/5/2007	12/5/2007	12/6/2007	12/6/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		78 to 80 ft bgs	88 to 90 ft bgs	98 to 100 ft bgs	108 to 110 ft bgs	118 to 120 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	2.9 U	3.3 U	3.5 U	3.9 U	4.2 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	2.9 U	3.3 U	3.5 U	3.9 U	4.2 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	2.9 U	3.3 U	3.5 U	3.9 U	4.2 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	2.9 U	3.3 Ŭ	3.5 U	3.9 U	4.2 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	2.9 U	3.3 U	3.5 U	3.9 U ~	4.2 U J
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	2.9 0	3.3 U	3.5 U	3.9 U	4.2 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	2.9 U	3.3 U	3.5 U	3.9 Ŭ	4.2 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	1.4 🗸 📗	1.6 U	1.8 U	1.9 ∪	- 2.1 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	2.9[U]	3.3 U	3.5 [U]	3.9 U	4.2 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	2.9 U	3.3 U	3.5 U	3.9 U	4.2 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	2.9 U	3.3 U	3.5 U	3.9 U	4.2 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	2.9 U	3.3 U	3.5 U	3.9 U	4:2 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	2.9 U	3.3 U	3.5 U	3.9 U	4.2 U
	Wet Chemistry								
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A		1100 _ [~]	2100 ~	2000 ~	1300

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria

Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Fort Jenerson	Station, New York	F			
			Sample Code	Site-specific-soil	SBD-PD-19-M	SBD-PD-19-N	SBD-PD-19-P	SBD-PD-19-Q	SBD-PD-19-R
			Sample Name	i					
			Sample Date		12/6/2007	12/6/2007	12/7/2007	12/7/2007	12/7/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		128 to 130 ft bgs	138 to 140 ft bgs	158 to 160 ft bgs	168 to 170 ft bgs	178 to 180 ft bgs
	Volatile Organic Compounds								
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	3.9 U	3.4 U	3.6 ป	4 U	4 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	3.9 U	3.4 U	3.6 U	4 U	4 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	3.9 U	3.4 U	3.6 U	4 0	4 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	3.9 U	3.4 U	3.6 U	4 U	4 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	3.9 บ	3.4 U	3.6 U	4 U	4]U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	3.9 ∪ [3.4 U	3.6 U	4 0	4 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	3.9 U	3.4 U	3.6 ∪	4 U	4 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	3.9 U	3.4 ∪	3.6 ∪	4 U	4 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	1200 A	390 A	15 #	110 #	48 #
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	3.9 U	3.4 U	3.6 U [4 0 1	4 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	3.9 U	3.4[U]	3.6 U	4 U	4 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	3.9 U	3.4 U	3.6 U	4 U	`4 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	3.9 U [*]	3.4 U	3.6 U	4 U	14 U 4 U 4 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	3.9 U	3.4 U	3.6 U	4 U	4 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	3.9 ∪ - 1	3.4 U	3.6 U	4 U	4 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	3.9U	3.4 U	3.6 U	4 U	4 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	7.8 ∪	6.9 U	7.3 U	7.9 U	8.1 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	3.9	3.4 U	3.6 ∪	4 U	4 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	3.9 U	3.4 U	3.6 Ú	4 U	4 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	3.9 [U	3.4 ∪	3.6(U)	U 4	4 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	3.9[U]	3.4 \ U	3.6 0	4 U	4 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	3.9 U	3.4 U	3.6 U	4 U 1	4 U 4 U 4 U 4 U 4 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	3.9 U	3.4 U	3.6 U i	ا إن 4	4 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	3.9 U	3.4 U	1.6 J #	4 U	4 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	3.9 U	3.4 U	3.6 U	4 U	4 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	3.9 U	3.4 U	3.6 U	4 U	4 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	3.9 U	3.4 U	3.6 บ	4 U	4 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2 U	1.7 ป	1.8 ป	2 U	2 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	7.8 U	6.9 U	7.3 U	7.9 U	8.1 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	3.9 U	3.4 U	3.6 U	4 U	0.85 J #
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2 U	1.7 U	1.8 U	2 U	2 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	3.9 U	3.4 U	3.6 ∪	4 U	4 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	3.9 U	3.4 U	3.6 U	4 U	4 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	7.8 U	6.9 U	7.3 U	7.9 U	8.1 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	3.9 U	3.4 U	3.6(∪}	4 U	4 U

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-19-M	SBD-PD-19-N	SBD-PD-19-P	SBD-PD-19-Q	\$BD-PD-19-R
			Sample Name						
		-	Sample Date		12/6/2007	12/6/2007	12 <i>/</i> 7/2007	12/7/2007	12/7/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		128 to 130 ft bgs	138 to 140 ft bgs	158 to 160 ft bgs	168 to 170 ft bgs	178 to 180 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	3.9 U	3.4 U	3.6 U	4 U	4 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	3.9 U	3.4 U	3.6 U	4 U]	4 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	3.9 U	3.4 U	3.6 U	4 U	4 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	3.9 U	3.4[U	3.6 U	4 U	4 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	3.9 U	3.4 U	3.6 U	4 [U	4 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	0 e.E	3.4 U	3.6 <u> </u> U	4 U	4 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	3.9 U	3.4 U	3.6 U	4 U	4 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2 U	1.7 U	1.8 U	2 U	2(U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	3.9 U	3.4 U	3.6 U	4 U	4]U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	3.9 U	3.4 U	3.6 U	4 U	4 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	3.9 U	3.4 U	3.6	4 U	4 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	3.9 U	3.4 U	3.6 U	4 U	4 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	3.9 U	3.4 U	3.6 U	4 U	4 U
	Wet Chemistry								
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	1500 ~	1200 ~	340 J ~	190 J ~	180 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria

Compound without screening criteria detected

bgs below ground surface

ft feet
J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson 5	bathorn, reon tone				
			Sample Code	Site-specific-soil	SBD-PD-19-S	SBD-PD-19-T	SBD-PD-19-U	SBD-PD-19-V	SBD-PD-19-W
			Sample Name			i			
1			Sample Date		12/7/2007	12/7/2007	12/11/2007	12/11/2007	12/11/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		188 to 190 ft bgs	198 to 200 ft bgs	210 to 212 ft bgs	220 to 222 ft bgs	228 to 230 ft bgs
	Volatile Organic Compounds]	
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	3.7 U	4.2 U	4.2 U	3.8U	4.2 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	3.7JU	4.2 U	4.2 U	3.8 U.	4.2 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	3.7 ∪	4.2 ט	4.2 U	3.8 U	4.2 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	3.7 U	4.2 U	4.2 U	3.8JU	4.2 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	3.7 U	4.2 U	4.2 U	3.8U	4.2 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	110 #	4.4 J #	26 #	98 #	6.2 J #
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	3.7 U	4.2 U	4.2 U	່ 3.8 ∪	4.2 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	3.7 U	4.2 U	4.2 Ū	3.8 U	4.2 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VÖC	ug/Kg	10000	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	3.7U	4.2 U	4.2 U	3.8 U	4.2 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	3.7 ∪ [4.2 U [4.2 U	3.8 U	4.2 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	7.4 U	8.5 U	8.4 U	7.6 U	8.3 U
67-66 -3	Chloroform	TCL-S-VOC	ug/Kg	40 _	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	3.7 U	4.2 U	4.2 U	3.8 U i	4.2 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	3.7 U	4.2 U	4.2 U	3.8 ∪	4.2 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	3.7 U	46 #	8.5 #	6.5 #	4.2 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	3.7 U J	4.2 U	4.2 U	3.8 0	4.2 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	3.7 U	4.2 U	4.2 U	3.8U	4.2 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	1.8 U	2.1 U	2.1 U	1.9 U	2.1 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	7.4 U	8.5 U	8.4 U	7.6 U	8.3 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	0.86 J #	4.2 U	4.2 U	3.8 U	4.2 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	1.8 0	2.1 U	2.1 U	1.9 U	2.1 U
79-00 - 5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	3.7\U	4.2 U	4.2 U	3.8 U	4.2 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	7.4 U	8.5 U	8.4 U	7.6 U	8.3 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	3.7 U	4.2 U	4.2 U	3.8 ∪	4.2 U

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		_	Sample Code	Site-specific-soil	SBD-PD-19-S	SBD-PD-19-T	SBD-PD-19-U	SBD-PD-19-V	SBD-PD-19-W
			Sample Name						
			Sample Date		12/7/2007	12/7/2007	12/11/2007	12/11/2007	12/11/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		188 to 190 ft bgs	198 to 200 ft bgs	210 to 212 ft bgs	220 to 222 ft bgs	228 to 230 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	3.7 U	4.2 U	4.2 U	3.8 บ	4.2 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	3.7 U	4.2 U	4.2 U	3.8 ∪	4.2 U
98-82-8	isopropyibenzene	TCL-S-VOC	ug/Kg	10000	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	1.8 U	2.1 U	2.1 U	1.9U	2.1 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	3.7 🗸	4.2 U	4.2 U	3.8 U	4.2 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	3.7[U]	4.2 U	4.2 U	3.8 U	4.2 U
120-82 <u>-1</u>	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	3.7 U	4.2 U	4.2 U	3.8 U	4.2 U
[
	Wet Chemistry				. [.]				
тос	Total Organic Carbon	Lloyd Kahn _	mg/kg	N/A	120 J ~	200 J ~	350∤J ~	240 J ~	410 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	Port Jefferson Station, New York										
			Sample Code	Site-specific-soil	SBD-PD-19-X	SBD-PD-19-Y	SBD-PD-19-Z	SBD-PD-18-A	SBD-PD-18-B		
			Sample Name								
			Sample Date		12/11/2007	12/11/2007	12/11/2007	12/17/2007	12/17/2007		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	~	238 to 240 ft bgs	248 to 250 ft bgs	258 to 260 ft bgs	8 to 10 ft bgs	18 to 20 ft bgs		
	Volatile Organic Compounds										
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4 U	4.6 U	3.9 U	5.4 U	6 U		
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4 U	4.6 U	3.9 U	5.4 U	6 U		
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4 U	4.6 U	3.9 U	5.4 U	6 U		
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	4 U	4.6 U	3.9 U	5.4 U	6 U		
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	4 U	4.6 U	3.9 U	5.4 U	6 U		
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4 U	4.6 U	3.9 U	5.4 ∪	6 U		
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4 U	4.6 U	3.9 U	5.4 U	6 U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4 U	4.6 U	3.9 U	5.4 U	6 บ		
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	4.4 J #	16 #	20 #	17 #	28 #		
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4 U	4.6 U	3.9 U	5.4 U	6 U		
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4 U	4.6 U	3.9 U	5.4 U	6 U		
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	4 U	4.6 U	3.9 U	5.4 U	6 U		
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4 U	4.6 U	3.9 U	5.4 U	6[U]		
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4 U	4.6 U	3.9U	5.4 U	6 U		
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4 U	4.6 U	3.9U	5.4 U	6 U		
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4 U	4.6 U	3.9 U	5.4U	6 U		
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	7.9 U	9.2 U	7.7 0	11 U	12 U		
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4 U	4.6 U	3.9 U	5.4 U	. 6U		
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4 U	4.6 U	U e.c	5.4 U	6 U		
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4 U)	4.6 U	3.9 U	1.5 J #	·6 U		
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4 U	4.6 U	3.9 U	5.4 U	6 U		
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	4 0	4.6 U	3.9 U	5.4 U	6 U		
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4 U	4.6 U	3.9 ∪	5.4 U	6 U		
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	4 U	2.8 J #	3.8 J #	5.4 U	6 U		
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4 U	4.6 U	3.9[∪ [5.4 U	6 U		
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4 U	4.6 U	3.9 U	5.4 U	6 U		
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4 U	4.6 U	3.9 U	5.4 U │	6 U		
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2 U	2.3 U	1.9 U	2.7 ∪	3 U		
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	7.9 U	9.2 U	7.7 U	11 U	12 U		
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	4 U	4.6 U	3.9 U	5.4 U	6 U		
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2 U	2.3 U	1.9 U	2.7 U	3 U		
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4 U	4.6 U	3.9 U	5.4 U	6 U		
127-18-4	Tetrachloroethene	TCL-S-VOC	uģ/Kg	1400	4 U	4.6 U	3.9 U	5.4 U	6 U		
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	7.9 U	9.2 U	7.7 U	11 U	12 U		
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4 U	4.6 U	3.9 U	5.4 U	6 U		

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site

			Sample Code	Site-specific-soil	SBD-PD-19-X	SBD-PD-19-Y	SBD-PD-19-Z	SBD-PD-18-A	SBD-PD-18-B
				-	300-FD-13-X	355-1 D-18-1	000-10-13-2	000-10-70-X	000-1 D-10-D
			Sample Name		40/44/0007	40/44/0007	40/44/0007	40/47/0007	40/47/0007
ĺ			Sample Date		12/11/2007	12/11/2007	12/11/2007	12/17/2007	12/17/2007
Cas,Rn	Chemical Name	Analytic Method	Unit \\ Depth		238 to 240 ft bgs	248 to 250 ft bgs		8 to 10 ft bgs	18 to 20 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	4 U	4.6 U	3.9 U	5.4 U	6 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4 U	4.6 U	3.9 U	5.4 } U	6 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	550Ö	4 U	4.6 U	3.9 U	5.4 U	6 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	4 U	4.6 U	3.9 U	5.4 U	6 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4 U	4.6 U	3.9 U	5.4 U	6 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4 U	4.6 U	3.9U	5.4 U	6 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4 U	4.6 U	3.9 U	5.4 U	6 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2 U	2.3 U	1.9 U	2.7 U	3 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4 U	4.6 U	3.9 U	5.4 U	6 ∪∤
106-46-7	1.4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4 U	4.6 U	3.9 U	5.4 U	6 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4 U	4.6 U	3.9 U	5.4 U	6{U
96-12-8	1.2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4 U	4.6 U	3.9 U	5.4 [U	6 ∤ U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4 U	4.6 U	3.9 U	5.4 U	6 U
	Wet Chemistry								
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	440 J ~	1200 ~	650 ~	760 ~	510 ~

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson 5	tation, new rock				
	- -		Sample Code	Site-specific-soil	SBD-PD-18-C	SBD-PD-18-D	SBD-PD-18-D-DUP	SBD-PD-18-E^	SBD-PD-18-F
	. "		Sample Name				SBD-PD-81-D	i	
			Sample Date		12/17/2007	12/17/2007	12/17/2007	12/17/2007	12/18/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		28 to 30 ft bgs	38 to 40 ft bgs	38 to 40 ft bgs	48 to 50 ft bgs	58 to 60 ft bgs
	Volatile Organic Compounds								
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	5.7 U	5.4 ป	4.4 U	. 5.5 U	4.9 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	_ 200	5.7 U	5.4 U	4.4 U :	5.5 U	4.9 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
75-00-3	Chloroethane	TCL-S-VOC	u g/K g	1900	5.7 U	5.4 U	4.4 U	`5.5 U	4.9 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	5.7 ป	5.4 U	4.4 U	5.5 U	4.9 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	5.7 U	5.4 U	4.4 U l	5.5 ับ	4.9 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	34 #	28 #	22 #	180 #	9.8∤∪
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC -	ug/Kg	300	5.7 U	5.4 U	4.4 ∪	5.5 U	4.9 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	5.7 ป	5.4JU	4.4]U	5.5 U	4.9 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	5.7 U	5.4 U	4.4[U]	5.5 ูบ	4.9 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	11 0	11 0	8.9 U	11 U	9.8
67-66-3	Chloroform	TCL-S-VOC	ug/Kg.	40	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	5.7 U	5.4 U	4.4 U	5.5 Û	4.9 U
56-23 - 5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200~	5.7 U	5.4 U	4.4 ∪	5.5 U	4.9 ∪
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	5.7 U	5.4 U	4.4]∪	5.5 U	4.9 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	5.7 U	5.4 U	4.4[U]	5.5 U	4.9 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	5.7 U	48 #	- 31 #	້ 5.5 ປ	1.8 J #
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.9 U	2.7 U	2.2 U	2.8 U	2.5 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	11 U	11 U	8.9 U	11 0	9.8 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	5.7 U	5.4 U	4.4 0	5.5 U	4.9 ∪
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.9 U	2.7 U	2.2 U	2.8 U	2.5 ∪ {
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	5.7 U	5.4 U	4.4[U	5.5U	4.9] U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	5.7 U	3.5 J #	2.6 J #	5.5[U	4.9 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	11 0	11 0	8.9 U	11 0	9.8 U
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U _

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-18-C	SBD-PD-18-D	SBD-PD-18-D-DUP	SBD-PD-18-E	SBD-PD-18-F
ł			Sample Name				SBD-PD-81-D		
			Sample Date		12/17/2007	12/17/2007	12/17/2007	12/17/2007	12/18/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		28 to 30 ft bgs	38 to 40 ft bgs	38 to 40 ft bgs	48 to 50 ft bgs	58 to 60 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	5.7 U	5.4 U	4.4 U	5.5 U	√4.9 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	5.7 U	√5.4 Ŭ]	4.4[U]	5.5 U	4.9 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	, 5.7 U	5.4 U	4.4[U	5.5 U	4.9 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	5.7 U	5.4 U	4.4 U	5.5 U ;	4.9 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.9 U	2.7 U	2.2 U	2.8 U	2.5 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	5.7 U	5.4 U i	4.4 U	5.5 U :	4.9 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	5.7 U	5.4 U	4.4 U	5.5 U∤ i	4.9 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	5.7 U	5.4 U	4.4 U	5.5 U}	4.9 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	5.7 U	5.4 U	4.4 U	5.5 U	4.9 U
	Wet Chemistry]] :		
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	610 ~	430 J ~	370 J ~	380 J ~	410 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

Port Jenerson Station, New York										
			Sample Code	Site-specific-soil	SBD-PD-18-G	SBD-PD-18-1	SBD-PD-18-J	SBD-PD-18-K	SBD-PD-18-L	
			Sample Name	l						
			Sample Date		12/18/2007	12/18/2007	12/19/2007	12/19/2007	12/19/2007	
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	·	68 to 70 ft bgs	88 to 90 ft bgs	98 to 100 ft bgs	108 to 110 ft bgs	118 to 120 ft bgs	
	Volatile Organic Compounds	· ·								
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	4.6 U	4.2 U	4 U 1	3.9 R	4.6 U	
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.6 U	4.2 U	4]U	3.9 R	4.6 U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	9.1 U	8.5 U	12 #	13 J #	41 #	
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4.6 U	4,2 U	4 U -	3.9 R	4.6 U	
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.6 U	4.2 ป	4 U	3.9 R	4.6 U	
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.6 U	4.2 U	4 ∪-	3.9 R	4.6 U	
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	9.1 [U]	8.5 U	8 0 1	7.8 R	9.1 U	
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4.6 U	1.6 J #	4 U	3.9 R	4.6 ∪	
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.6 U	4,2 U	4 U	3.9 R	4.6 U	
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4.6 U	4.2 U	4 0	3.9 R	4.6 U	
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
71-43-2	Benzene	TCL-S-VOC	ug/Kg ·	60	4.6 U	4.2 ป	4 U	3.9 R	4.6 U	
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.6 U	4.2 U	4 U	3.9 R	4.6 U	
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	4.6 U	4.2 U	4 ∪	3.9 R	4.6 U	
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4.6 U	4.2 U	4] U	3.9 R	4.6 U	
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4.6 U (4.2 U	4 ∪	3.9 R	4.6 U	
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.6 U	4.2 U	4 U 1	3.9 R	4.6 U	
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.3 U	2.1 U	2 U	2 R	2.3 U	
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	9.1 U	8.5 U	8 u	7.8 R	9.1 U	
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	4.6 U	4.2 U	4 U	4.2 J #	4.6 U	
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.3 U	2.1 U	2 Ū	2 R	2.3 U	
79-00-5	1.1.2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.6 U	4.2 U	ا انا4	3.9 R	4.6 U	
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	4.6 U	4.2 U	4 U	3.3 J #	4.6 U	
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	9.1 U	8.5 ป	8 0	7.8 R	9.1 U	
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4.6 U	4.2 U	4 Ū	3.9 R	4.6 U	

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-18-G	SBD-PD-18-I	SBD-PD-18-J	SBD-PD-18-K	SBD-PD-18-L
			Sample Name						
			Sample Date		12/18/2007	12/18/2007	12/19/2007	12/19/2007	12/19/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth_		68 to 70 ft bgs	88 to 90 ft bgs	98 to 100 ft bgs	108 to 110 ft bgs	118 to 120 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	4.6 U	4.2 U	4 U	3.9 R	4.6 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4.6 U	4.2 U	4 U	3.9 R	4.6 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	4.6 U	` 4.2 U	4 U	3.9 R	4.6 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	4.6 U	4.2 U	4 U	3.9 R	4.6 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.6 U	4,2 U	4 U	3.9 R	4.6 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.6 U	4.2 U	4 U	3.9 R	4.6 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4.6 U	4.2 U	4 U	3.9 R	4.6 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.3 U]	2.1 U	2 U	2 R	2.3 U
541-73-1	1.3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.6 U	4.2 U	4 U	3.9 Ř	4.6 U
106-46-7	1.4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.6 U	4.2 U	4 U	3.9 R	4.6 년
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.6 U	4.2 U	4 U	3.9 R	4.6 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.6 U	4.2 U	4 U	3.9 R	4.6 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.6 U	4.2 U	4 U	3.9 R	4.6 U
		ž.	-	<u> </u>					
	Wet Chemistry					1 1			
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	730~	450 J ~	420 J ~	590 ~	310 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Port Jenerson Sta	mon, new ronc				
			Sample Code	Site-specific-soil	SBD-PD-18-M	SBD-PD-18-N	SBD-PD-18-O	SBD-PD-18-P	SBD-PD-18-Q
			Sample Name				•		
			Sample Date		12/19/2007,	12/19/2007	12/19/2007	12/19/2007	12/19/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		128 to 130 ft bgs	138 to 140 ft bgs	148 to 150 ft bgs	158 to 160 ft bgs	168 to 170 ft bgs
	Volatile Organic Compounds								
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	4.4 U	4.6 U	4.5[U	4.8 U	4.5 U
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4.4 U	4.6 U	4.5 U	4.8 U į	4.5 U
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.4 U	4.6 U	4.5 U	4.8 Ú	4.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	74 #	150 #	9 J #	11 #	56 #
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	4.4 U	4.6 U	4.5 U	4.8 บ	4.5 U
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	8.9 U	9.2 U	u e	9.6 U	9 U
67-66-3	Chloroform	TCL-S-VOC	ug/Kg-	40	4.4 U	4.6 U	- 4.5 U	4.8U	4.5 U
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	~ 800	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4.4 U	4.6 ∪	4.5 U	4.8 U	4.5 U
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4.4 U	4.6 ∪	4.5 U	4.8 U	4.5 U
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	0.95 J #	0.92 J #	4.5 U	4.8 U	4.5 U
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.2 U	2.3 U	2.2 0	2.4 U	2.2 U
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	8.9 U	9.2 U	g u	9.6 U	9 U
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	4.4 U	4.6 U	4.5 U	4.8 🗸 📗	4.5 U
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.2 U	2.3 U	2.2 U	2.4 U	2.2 U
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	4.4 U	4.6 U	1.3 J #	4.8 U	4.5 U
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	8.9 U	9.2 U	9 0 "	9.6 U	9 0
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Accession Acade	Cita annuiti a nuit	SBD-PD-18-M	SBD-PD-18-N	SBD-PD-18-O	SBD-PD-18-P	SBD-PD-18-Q
				Site-specific-soil	300-PD-10-W	300-FU-10-N	300-60-10-0	300-60-10-6	300-FD-10-Q
			Sample Name]			
			Sample Date		12/19/2007	12/19/2007	12/19/2007	12/19/2007	12/19/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		128 to 130 ft bgs	138 to 140 ft bgs		158 to 160 ft bgs	168 to 170 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
100-41-4	Ethylbenzene ·	TCL-S-VOC	ug/Kg	5500	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
179601-23-1	m.p-Xylene	TCL-S-VOC	ug/Kg	N/A	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.2 U	2.3 U	2.2 U	2.4 U	2.2 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
106-46-7	1.4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.4 U	4.6 U j	4.5 U	4.8 U	4.5 U
95-50-1	1.2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
96-12-8	1.2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.4 U	4.6 U	4.5 U	4.8 U	4.5 U
			.						
	Wet Chemistry								
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	280 J ~	400 J ~	290 [] [~	240 J ~	260 J ~

ULGS.

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

t feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	Port Jetterson Station, New York										
			Sample Code	Site-specific-soil	SBD-PD-18-R	SBD-PD-18-S	SBD-PD-18-T	SBD-PD-18-U	SBD-PD-18-V		
			Sample Name	·				<u>'</u>			
l			Sample Date		12/19/2007	12/19/2007	12/19/2007	12/20/2007	12/21/2007		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		178 to 180 ft bgs	188 to 190 ft bgs	198 to 200 ft bgs	208 to 210 ft bgs	218 to 220 ft bgs		
	Volatile Organic Compounds		Ī								
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	5.1 U	4.3 U	4.3 U	4.7 ป	4.9 U		
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	5.1 ป	4.3 U	4.3 U	4.7 U	4.9]U		
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	5.1 ป	4.3\U	4.3 U	4.7 U	4.9 U		
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	5.1 ป	4.3 U	4.3 U	4.7 U	4.9 U		
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50 .	5.1 ป	4.3 U	4.3 U	4.7 U :	4.9 U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	13 #	5 J #	16 #	4.6 J #	99		
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	5.1 U	4.3 U	4.3 U	4.7 U ∤	4.9 U		
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	5.1 U	4.3 U	4.3 U	4.7 U \	4.9 U		
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	5.1 U	4.3 U	4.3 U	4.7 U ∤	4.9 U		
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	5.1 U	4.3 U	4.3 U	4.7 U	4.9 0		
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
75-34-3	1.1-Dichloroethane	TCL-S-VOC	ug/Kg	200	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg -	4300	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	10 U	8.6 U	8.5 U	9.4 U	9.9		
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	5.1 U	4.3 U	4.3 ป	4.7 U	4.9 U		
71-55-6	1,1,1-Trichioroethane	TCL-S-VOC	ug/Kg	800	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	5.1 U	4.3 U	4.3 U	4:7 U	4.9 U		
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	1.2 J #	12 #	4.3 U	4.7 U	4.3 J		
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	5.1 U	4.3 U∤	4.3 U	4.7 U	4.9 U		
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.5 U	2.2 ∪	2.1 U	2.3 U	2.5 U		
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	10 U	8.6 U	8.5 U	9.4 U	9.9 0		
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.5 U	2.2 U	2.1 U	2.3 U	2.5 ∪		
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U		
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	5.1 U	4.3 ∪	1.5 J #	4.7 U	4.9 U		
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	10 U	8.6 U	8.5 ∪	9.4 U	9.9 ∪∤		
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	5.1 じ	4.3 U	4.3 U	4.7 U	4.9 U		

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-soil	SBD-PD-18-R	SBD-PD-18-S	SBD-PD-18-T	SBD-PD-18-U	SBD-PD-18-V
			Sample Name	-					
			Sample Date		12/19/2007	12/19/2007	12/19/2007	12/20/2007	12/21/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth	=	178 to 180 ft bgs	188 to 190 ft bgs	198 to 200 ft bgs	208 to 210 ft bgs	218 to 220 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	5.1 U	4.3 U	4.3 U <u> </u>	4.7 U	4.9 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	5.1 U	4.3 U∤	4.3 U	4.7 U	4.9 U
179601-23-1	m,p-Xylene	TCL-S-VOC	ug/Kg	N/A	5.1 U	4.3 U	4.3 U	4.7 U	4.9 บ
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	5.1 U	4:3 U	4.3 U	4.7 U	4.9 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U
98-82-8	Isopropyibenzene	TCL-S-VOC	ug/Kg	10000	5.1 U	4.3 U ,	4.3 U	4.7 U	4.9 U}
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.5 U	2.2 0	2.1 0	2.3 U	2.5 U}
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	5.1 U	4.3 U	4.3 U}	4.7 U	4.9 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	5.1 U	4.3 U	4.3 U	4.7 U	4.9 U
	Wet Chemistry					:	-		
тос	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	220 J ~	210 J ~	300] [~	290 J ~	220 J ~

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J. Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	Port Jefferson Station, New York									
	 		Sample Code	Site-specific-soil	SBD-PD-18-W	SBD-PD-18-X	SBD-PD-18-Y	SBD-PD-18-Z		
			Sample Name							
			Sample Date		12/21/2007	12/21/2007	12/21/2007	12/21/2007		
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		228 to 230 ft bgs	238 to 240 ft bgs	248 to 250 ft bgs	258 to 260 ft bgs		
	Volatile Organic Compounds					·				
75-71-8	Dichlorodifluoromethane	TCL-S-VOC	ug/Kg	9400	4.5 U	4.5 U	4.6 U	4.6 U \		
74-87-3	Chloromethane	TCL-S-VOC	ug/Kg	1200	4.5 U	4.5 U	4.6 U	4.6 U }		
75-01-4	Vinyl Chloride	TCL-S-VOC	ug/Kg	200	4.5 U	4.5 U	4.6 U	. 4.6 ∪}		
74-83-9	Bromomethane	TCL-S-VOC	ug/Kg	400	4.5 U	4.5 U	4.6 U	4.6 U		
75-00-3	Chloroethane	TCL-S-VOC	ug/Kg	1900	4.5 U	4.5 U	4.6 U	4.6 U		
75-69-4	Trichlorofluoromethane	TCL-S-VOC	ug/Kg	10000	4.5 U	4.5 U	4.6 U	4.6 U		
75-35-4	1,1-Dichloroethene	TCL-S-VOC	ug/Kg	50	4.5 U	4.5 U	4.6 U	4.6 U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TCL-S-VOC	ug/Kg	6000	4.5 U	4.5 U	- 4.6 U	4.6 U		
67-64-1	Acetone	TCL-S-VOC	ug/Kg	200	6 J #	8.9 0	9.2 U	9,1 U		
75-15-0	Carbon Disulfide	TCL-S-VOC	ug/Kg	2700	4.5 U	4.5 U	4.6 U	4.6 U		
79-20-9	Methyl Acetate	TCL-S-VOC	ug/Kg	10000	4.5 U	4.5 U	4.6 U	4.6 U		
75-09-2	Methylene Chloride	TCL-S-VOC	ug/Kg	100	4.5 U	4.5 Ų	4.6 U	4.6 U		
156-60-5	trans-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	300	4.5 U	4.5 U	4.6 U	4.6 U∤		
1634-04-4	Methyl tert-Butyl Ether	TCL-S-VOC	ug/Kg	10000	4.5 U	4.5 U	4.6 U	4.6 U		
75-34-3	1,1-Dichloroethane	TCL-S-VOC	ug/Kg	200	4.5 U	4.5 U	4.6 U	4.6 U		
156-59-2	cis-1,2-Dichloroethene	TCL-S-VOC	ug/Kg	4300	4.5 U	4.5 U	4.6 U	4.6 ∤ U		
78-93-3	2-Butanone	TCL-S-VOC	ug/Kg	300	8.9 U	8.9 บ	9.2 U	9.1∤U		
67-66-3	Chloroform	TCL-S-VOC	ug/Kg	40	4.5 U	4.5 U	4.6 U	4.6 U		
71-55-6	1,1,1-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.5 U	4.5 U	4.6 U	4.6 U		
110-82-7	Cyclohexane	TCL-S-VOC	ug/Kg	10000	4.5 U	4.5 U	4.6 U	4.6 U		
56-23-5	Carbon Tetrachloride	TCL-S-VOC	ug/Kg	200	4.5 U ∫	4.5 U i	4.6 U	4.6 U		
71-43-2	Benzene	TCL-S-VOC	ug/Kg	60	4.5 U	4.5 U	4.6 U	4.6 U		
107-06-2	1,2-Dichloroethane	TCL-S-VOC	ug/Kg	100	4.5 U	4.5 U	4.6 U	4.6 U		
79-01-6	Trichloroethene	TCL-S-VOC	ug/Kg	700	4.5 U	4.5 U	4.6 U	4.6 U		
108-87-2	Methylcyclohexane	TCL-S-VOC	ug/Kg	10000	4.5 U	4.5 U	4.6 U	4.6 ∪∫		
78-87-5	1,2-Dichloropropane	TCL-S-VOC	ug/Kg	350	4.5 U	4.5 U	4.6 U	4.6 U		
75-27-4	Bromodichloromethane	TCL-S-VOC	ug/Kg	1000	4.5 U	4.5 ∪	4.6 U	4.6 U		
10061-01-5	cis-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.2 U	· 2.2 U	2.3 U	2.3 U		
108-10-1	4-Methyl-2-pentanone	TCL-S-VOC	ug/Kg	1000	8.9{U	8.9\U	9.2 U	9.1 U		
108-88-3	Toluene	TCL-S-VOC	ug/Kg	1500	4.5 U	4.5 U	4.6 U	4.6 U		
10061-02-6	trans-1,3-Dichloropropene	TCL-S-VOC	ug/Kg	10000	2.2 U	2.2	2.3 U	2.3 ∪		
79-00-5	1,1,2-Trichloroethane	TCL-S-VOC	ug/Kg	800	4.5 U	4.5 U	4.6 U	4.6 U		
127-18-4	Tetrachloroethene	TCL-S-VOC	ug/Kg	1400	4.5 U	4.5 U	4.6 U	4.6 U		
591-78-6	2-Hexanone	TCL-S-VOC	ug/Kg	10000	8.9\U	8.9 0	9.2 U	9.1 ∪ }		
124-48-1	Dibromochloromethane	TCL-S-VOC	ug/Kg	1100	4.5 U	4.5 U	4.6 U	4.6 ∪		

Table F-2
Deep Soil Boring Sample Results
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		-	Sample Code	Site-specific-soil	SBD-PD-18-W	SBD-PD-18-X	SBD-PD-18-Y	SBD-PD-18-Z
			Sample Name					
			Sample Date		12/21/2007	12/21/2007	12/21/2007	12/21/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		228 to 230 ft bgs	238 to 240 ft bgs_	248 to 250 ft bgs	258 to 260 ft bgs
106-93-4	1,2-Dibromoethane	TCL-S-VOC	ug/Kg	10	4.5 U	4.5 U	4.6 U	4.6 U
108-90-7	Chlorobenzene	TCL-S-VOC	ug/Kg	1700	4.5 U	4.5 U	4.6 U	4.6 U
100-41-4	Ethylbenzene	TCL-S-VOC	ug/Kg	5500	· 4.5 U	4.5 U	4.6 U	4.6 U
179601-23-1	m.p-Xylene	TCL-S-VOC	ug/Kg	N/A	4.5 U	4.5 U	4.6 U	4.6 U
100-42-5	Styrene	TCL-S-VOC	ug/Kg	10000	4.5 U	4.5 U	4.6 U	4.6 U
75-25-2	Bromoform	TCL-S-VOC	ug/Kg	10000	4.5 U	4.5 U	4.6 U	4.6 U
98-82-8	Isopropylbenzene	TCL-S-VOC	ug/Kg	10000	4.5 U	4.5 U	4.6 U	4.6 U
79-34-5	1,1,2,2-Tetrachloroethane	TCL-S-VOC	ug/Kg	400	2.2 U	2.2 U	2.3 U	2.3 U
541-73-1	1,3-Dichlorobenzene	TCL-S-VOC	ug/Kg	1300	4.5 U	4.5 U	4.6 U	4.6 U
106-46-7	1,4-Dichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.5 U	4.5 U	4.6 U	4.6 U
95-50-1	1,2-Dichlorobenzene	TCL-S-VOC	ug/Kg	7900	4.5 U	4.5 U	4.6 U	4.6 U
96-12-8	1,2-Dibromo-3-chloropropane	TCL-S-VOC	ug/Kg	150	4.5 U	4.5 U	4.6 U	4.6 U
120-82-1	1,2,4-Trichlorobenzene	TCL-S-VOC	ug/Kg	3400	4.5 U	4.5 U	4.6 U	4.6 U
	Wet Chemistry							
TOC	Total Organic Carbon	Lloyd Kahn	mg/kg	N/A	_260 J ~	230 J ~	310 J ~	320 J ~

IN	O.	te	S.

#

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/Kg micrograms per kilogram mg/Kg milligrams per kilogram

Table F-3a

Deep Soil Boring Groundwater Screening
Full Data Table

Lawrence Aviation Industries Site

Lawrence Aviation I	ndustries Site
Port Jefferson Stati	on, New York

r		1 0110	Somple Code	Site-specific-GW	SBD-PD-19-GW-A	SBD-PD-19-GW-B	SBD-PD-18-GW-A
			Sample Name		355-F5-19-34V-A	300-10-19-344-0	000-10-10-011-0
			Sample Date		12/10/2007	12/11/2007	12/19/2007
Cas Rn	Chemical Name	Analytic Method		,	202 to 207 ft bgs	212 to 217 ft bgs	192 to 197 ft bgs
Cas Kii	Volatile Organic Compounds	Allalytic Method	Onit ti Deptii			212 to 217 tt bga	132 to 137 it bg3
75-71-8	Dichlorodifluoromethane	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	0.5 U	0.5 U	0.5 0
74-83-9	Bromomethane	SW8260B	ug/L	5	0.5 UJ	0.5 UJ	0.5 U
75-00-3	Chloroethane	SW8260B	ug/L	5	0.5 0	0.5 U	0.5 U
	Trichlorofluoromethane	SW8260B		5	0.5 U	0.5 U	0.5 U
75-69-4	1.1-Dichloroethene	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
75-35-4	• • • • • • • • • • • • • • • • • • • •	SW8260B	ug/L	5	0.5 0	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	50	20 #	15 #	5 0
67-64-1	Acetone Carbon Disulfide	SW8260B	ug/L	50 50	0.5 U #	0.5 U	0.5 0
75-15-0		SW8260B	ug/L	N/A	0.5 0	0.5 U	0.5 U
79-20-9 75-09-2	Methyl Acetate	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
	Methylene Chloride	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L	10	2.5 #	2.1	0.5 0
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
75-34-3	1,1-Dichloroethane	SW8260B	ug/L	5	0.5 U	0.5 U	0.54 #
156-59-2	cis-1,2-Dichloroethene	SW8260B	ug/L	50 50	5.5U	5 U	5 U #
78-93-3	2-Butanone	-	ug/L	5	0.5 U	0.5 U	0.5 U
74-97-5	Chlorobromomethane	SW8260B	ug/L		l 1	0.5 U	
67-66-3	Chloroform	SW8260B	ug/L	7	1 *''' 1		0.5 U
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	1	¥ -	0.5 U
110-82-7	Cyclohexane	SW8260B	ug/L	` N/A	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	SW8260B	ug/L	1	0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	0.5 U.	0.5 U	0.5 U
79-01-6	Trichloroethene	SW8260B	ug/L	5	12 A	12 A	93 A
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	SW8260B	ug/L	1 50	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B	ug/L	0.4	0.5 U	0.5 U	0.5∤∪
108-10-1	4-Methyl-2-pentanone	SW8260B	ug/L	50	5 U	5 U	5 U
108-88-3	Toluene	SW8260B	ug/L.	5	0.5 U	0.5 U	45 A
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1 -	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	0.44 J #	0.34 J #	4.7
591-78-6	2-Hexanone	SW8260B	ug/L	50	5 U	5 U	5 U

CDM

Page 1 of 6

Table F-3a Deep Soil Boring Groundwater Screening Full Data Table

		, ,	Sample Code	Site-specific-GW	SBD-PD-19-GW-A	SBD-PD-19-GW-B	SBD-PD-18-GW-A
ţ			Sample Name	4			_
			Sample Date		12/10/2007	12/11/2007	12/19/2007
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		202 to 207 ft bgs	212 to 217 ft bgs	192 to 197 ft bgs
124-48-1	Dibromochloromethane	SW8260B	ug/L	50	0.5 U	0.5 U	0.5 🛈
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006	0.5 U	0.5 U	0.5 U \
108-90-7	Chlorobenzene	SW8260B	ug/L	5	0.5 U	0.5 ປ [[0.5 U
100-41-4	Ethylbenzene	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 ป
179601-23-1	m,p-Xylene	SW8260B	ug/L	. N/A	0.5 U	0.5 リ	0.5∤∪
100-42-5	Styrene	SW8260B	ug/L	5	0.5 ぴ	0.5 U	0.5 U
75-25-2	Bromoform	SW8260B	ug/L	50	0.5 U	0.5 U	0.5 UJ
98-82-8	Isopropylbenzene	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 บ
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	0.5 Ŭ	0.5∤∪	0.5]∪
541-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	0.5 U	0.5 U	0:5 U
95-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	0.5 U	0.5 U	0.5 ひ
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	SW8260B	ug/L	5	0.5JU	0.5U	0.5 U

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

SW8260B Volatile Organic Analyte - Aqueous

Table F-3a

Deep Soil Boring Groundwater Screening

Full Data Table

Lawrence Aviation Industries Site

			Sample Code	Site-specific-GW	SBD-PD-18-GW-B	SBD-PD-16-GW-A	SBD-PD-16-GW-B
			Sample Name		1	,	j
			Sample Date	1	12/20/2007	1/2/2008	1/3/2008
Cas Rn	Chemical Name	Analytic Method	•		202 to 207 ft bgs	201 to 206 ft bgs	212 to 217 ft bgs
	Volatile Organic Compounds	 			· · · · · · · · · · · · · · · · · · ·		
75-71-8	Dichlorodifluoromethane	SW8260B	ug/L	5	0.5 U }	0.5 ป	0.5 U
74-87-3	Chloromethane	SW8260B	ug/L	5	0.5 U	0.5 U	0.22 J #
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	0.5 UJ	0.5 U	0.5 ひ
74-83-9	Bromomethane	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	SW8260B	ug/L	5	0.5 U	0.5 บ	0.5 U
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	SW8260B	ug/L	5] 0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	0.5 ひ	0.5 U	0.5 U
67-64-1	Acetone	SW8260B	ug/L	50	66 A	16 U	5.6 U
75-15-0	Carbon Disulfide	SW8260B	ug/L	50	0.5 U	0.5 나	0.5 U
79-20-9	Methyl Acetate	SW8260B	ug/L	N/A	0.5 U	0.5 U	0.5∫∪
75-09-2	Methylene Chloride	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L	5	0.5 U	0.5 U 	0.5 U
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	0.5 U	4.4 # [1.6
75-34-3	1,1-Dichloroethane	SW8260B	ug/L	5	0.38 J #	0.5 U	0.21 J #
156-59-2	cis-1,2-Dichloroethene	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
78-93-3	2-Butanone	SW8260B	ug/L	50	5 บ	5 U	5 U
74-97-5	Chlorobromomethane	SW8260B	ug/L	5	0.5 U <u> </u>	0.5 U	0.5 U
67-66-3	Chloroform	SW8260B	ug/L	7	1.1 #	0.99 U	0.53 U
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	1.3 # [0.52 #	0.45 J #
110-82-7	Cyclohexane	SW8260B	ug/L	N/A	0.5 U [0.5 U	0.5 ป
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	0.5 ∪	0.5 U	0.5 U
71-43-2	Benzene -	SW8260B	ug/L	1 1	0.5] U	0.5 U	0.5 ป
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	0.5 U	0.5 U	0.5 U ·
79-01-6	Trichloroethene	SW8260B	ug/L	5	10 A	16 A	1 #
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	0.5[U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	SW8260B	ug/L	1	0.5[ひ	0.5 U	0.5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	0.5[U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B	ug/L	0.4	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	SW8260B	ug/L	50	5 U	5 U	5 U
108-88-3	Toluene	SW8260B	ug/L	5	4.7 #	0.21 J #	0.5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	0.5 U	0.5 U	0.5 \ U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L] 1	0.5 U {	0.5 U	0.5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	0.81 #	0.63 #	0.4 J #
591-78-6	2-Нехаполе	SW8260B	ug/L	50	_ 5 U _	5 U <u> </u>	5[<u>U</u>]

Table F-3a

Deep Soil Boring Groundwater Screening
Full Data Table

		· · · · · · · · · · · · · · · · · · ·	Sample Code	Site-specific-GW	SBD-PD-18-GW-B	SBD-PD-16-GW-A	SBD-PD-16-GW-B
		•	Sample Name				
			Sample Date		12/20/2007	1/2/2008	· 1/3/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		202 to 207 ft bgs	201 to 206 ft bgs	212 to 217 ft bgs
124-48-1	Dibromochloromethane	SW8260B	ug/L	50	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006	0.5 U	0.5 U	0.5 U
108-90-7	Chlorobenzene	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	SW8260B	ug/L	N/A	0.5{U	0.5 U	0.5 ป]
100-42-5	Styrene	SW8260B	ug/L	5	0.5 U	0.5 บ	0.5] U
75-25-2	Bromoform	SW8260B	ug/L	50	0.5 U	0.5 U	0.5] U
98-82-8	Isopropylbenzene	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	0.5 び	0.5 U	0.5 ∪
106-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	0.5 U	0.5 U	0.5 ∪
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	0.5 U [0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	0.5 U	0.5 Մ	0.5 U
87-61-6	1,2,3-Trichlorobenzene	SW8260B	ug/L	5	0.5 ป	0.5 U	0.5[U]

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

SW8260B Volatile Organic Analyte - Aqueous

Table F-3a

Deep Soil Boring Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site

		Port Jefferson Static	on, New York				
			Sample Code	Site-specific-GW	SBD-PD-17-GW-A	\neg	SBD-PD-17-GW-B
			Sample Name				•
			Sample Date		1/8/2008		1/9/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		192 to 197 ft bgs	\Box	202 to 207 ft bgs
	Volatile Organic Compounds					il	
75-71-8	Dichlorodifluoromethane	SW8260B	ug/L	5	0.5 U		0.5[ひ]
74-87-3	Chloromethane	SW8260B	ug/L	5	0.5 U		0.73 U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	0.5 ป		0.5
74-83-9	Bromomethane	SW8260B	ug/L	5	0.5 U		0.5 U
75-00-3	Chloroethane	SW8260B	ug/L	5	0.5 U		0.5 U
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	0.5 U		0.5 บ
75-35-4	1,1-Dichloroethene	SW8260B	ug/L	5	0.5 U		0.5 ป
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	0.5 U	li	0.5 U
67-64-1	Acetone	SW8260B	ug/L	50	11 U]	5 U
75-15-0	Carbon Disulfide	SW8260B	ug/L ^	50	0.5 U		0.5 U
79-20-9	Methyl Acetate	SW8260B	ug/L	N/A	0.5 U		0.5 ป
75-09-2	Methylene Chloride	SW8260B	ug/L	5	0.5 U		0.5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L	5	0.5 U		0.5 U
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	0.3 J		1.4
75-34-3	1,1-Dichloroethane	SW8260B	ug/L	5	0.5 U		0.5 ป
156-59-2	cis-1,2-Dichloroethene	SW8260B	ug/L	5	•	#	0.5 U
78-93-3	2-Butanone	SW8260B	ug/L	50	5 U	ll	5 U
74-97-5	Chlorobromomethane	SW8260B	ug/L	5	0.5 U		0.5 U
67-66-3	Chloroform	SW8260B	ug/L	7	0.5 U		0.81 U
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5 -	0.5 U		0.24 J #
110-82-7	Cyclohexane	SW8260B	ug/L	N/A	0.5 U		0.5 U
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	0.5 ป		0.5 U
71-43-2	Benzene	SW8260B	ug/L	1	0.5 U		0.5 U
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	0.5 U		0.5 U
79-01-6	Trichloroethene	SW8260B	ug/L	5	200	Α	16
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	0.5 ป		0.5 U
78-87-5	1,2-Dichloropropane	SW8260B	ug/L ·	1 1	0.5 U		0.5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	0.5 U		0.5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B	ug/L	0.4	0.5 U		0.5
108-10-1	4-Methyl-2-pentanone	SW8260B	ug/L	50	5 U	ŀł	5 0
108-88-3	Toluene	S:W8260B	ug/L	5	0.74 U		0.5
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	0.5 U		0.5 U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1	0.5 U		0.5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	2.6	#	0.76
591-78-6	2-Hexanone	SW8260B	ug/L	50	5 U		<u>5 U </u>

Table F-3a Deep Soil Boring Groundwater Screening Full Data Table

			Sample Code	Site-specific-GW	SBD-PD-17-GW-A	SBD-PD-17-GW-B
			Sample Name			1
			Sample Date		1/8/2008	1/9/2008
Cas Rn	Chemical Name	Analytic Method	Unit \\ Depth		192 to 197 ft bgs	202 to 207 ft bgs
24-48-1	Dibromochloromethane	SW8260B	ug/L	50	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006	0.5 ป	0.5 U
08-90-7	Chiorobenzene	SW8260B	ug/L	5	0.5 ป	0.5 U
00-41-4	Ethylbenzene	SW8260B	ug/Ŀ	5	0.5 ป	0.5 ป
79601-23-1	m,p-Xylene	SW8260B	ug/L	N/A	0.5 U	0.5 U
00-42-5	Styrene	\$W8260B	ug/L	5	0.5]U	0.5 U
5-25-2	Bromoform	SW8260B	ug/L	50	0.5	0.5 U
8-82-8	Isopropylbenzene	SW8260B	ug/L	5	0.5 U	0.5 U
9-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	0.5 U	0.5 U
41-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	0.5 U	0.5 U J
06-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	0.5 U	0.5 U
5-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	0.5 U	0.5 U
6-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	0.5 U	0.5 U
20-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	0.5 U	0.5
37-61-6	1,2,3-Trichlorobenzene	SW8260B	ug/L	5	0.5 U	0.5U

L I		٠.	_
v	n	ш	

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

SW8260B Volatile Organic Analyte - Aqueous

Table F-3b

Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MW-PD-11-GW-A	MW-PD-11-GW-B	MW-PD-11-GW-C	MW-PD-12-GW-A
			Sample Name					
			Sample Date		1/16/2008	1/16/2008	1/16/2008	1/24/2008
Cas Rn	Chemical Name	Analytic Me	Unit \\ Depth	,	-20.58 to -25.58 at amsl	-30.58 to -35.58 ft amsi	-40.58 to .45.58 ft amsl	-66.92 to -71.92 ft amsl
	Volatile Organic Compounds							
67-64-1	Acetone	SW8260B	ug/L	50	6 U	5 U	5] U	7]#
71-43-2	Benzene	SW8260B	ug/L	1	5 U	5 U	5 U	5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	5 U	5 ∪	5 U	5 U
75-25-2	Bromoform	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
74-83-9	Bromomethane	SW8260B	ug/L	5	5 ひ]	5 UJ	6 J A	9 UJ
78-93-3	2-Butanone	SW8260B	ug/L	50	5 U	5 U ;	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B	ug/L	50	5 U	5 บ	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	5 U	5 U 1	5 U	5 ∪ }
108-90-7	Chlorobenzene	SW8260B	ug/L	5	5 U	5 U	5 U	5 ป
75-00-3	Chloroethane	SW8260B	ug/L	5	5 UJ	5 UJ	5 UJ	5 UJ
67-66-3	Chloroform	SW8260B	ug/L	7	5 U	5 U [5 U	5 U
74-87-3	Chloromethane	SW8260B	ug/L	5	5 Մ	5 U [. 5U	5 U
110-82-7	Cyclohexane	SW8260B	ug/L	N/A	5 U	5 U 1	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B	ug/L	50	5 ∪	[5 U]	5 U	5 ∪
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	5 U	5 U	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006	5 U	5 U	5 U	5 ∪
95-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U	5 U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U	5 U	5 U
75-71-8	Dichlorodifluoromethane	SW8260B	ug/L	5	5 ∪	5 ∫ ∪ [i	5] U	5 UJ
75-34-3	1,1-Dichloroethane	SW8260B	ug/L	5	5) U	5 U	5 U	5 U
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	5 U	5 U	5 U	5 U
75-35-4	1.1-Dichloroethene	SW8260B	ug/L	5	5 U	5 U 1	5(U	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B	ug/L	5	5 U	5 U 1	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L	5	5 U 5 U 5 U	5 U	5 U	5 U
78-87-5	1,2-Dichloropropane	SW8260B	ug/L	1	5 U	5 U	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B	ug/L	0.4	5 U	∫ 5 U ¹	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	5 U] 5 U ;	5 U	5 U
100-41-4	Ethylbenzene	SW8260B	ug/L	5	5 U	} 5 U], Ì	. 5 U	5 U
591-78-6	2-Hexanone	SW8260B	ug/L	50	5 U	5 U	5 J U	5 U
98-82-8	Isopropylbenzene	SW8260B	ug/L	5	5 U 5 U	5 U	5 U	5 U
79-20-9	Methyl Acetate	SW8260B	ug/L	N/A	5 U	5 U	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	5 U	5 U	5 U	5 U
75-09-2	Methylene Chloride	SW8260B	ug/L	5	5 U. 5 U	5 U	5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B	ug/L	50	5 U	5 U	5U	5 U

Table F-3b Monitoring Well Groundwater Screening Full Data Table

,			Sample Code	Site-specific-GW	MW-PD-11-GW-A	MW-PD-11-GW-B	MW-PD-11-GW-C	MW-PD-12-GW-A
}			Sample Name					
!			Sample Date	ĺ	1/16/2008	1/16/2008	1/16/2008	1/24/2008
Cas Rn	Chemical Name	Analytic Me	t Unit \\ Depth		-20.58 to -25.58 at ams!	-30.58 to -35.58 ft amsl	-40.58 to .45.58 ft amsl	-66.92 to -71.92 ft amsl
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	5 U	5 U	5]U [[ร บ]
100-42-5	Styrene	SW8260B	ug/L	5	5 U	5]U	5 U	5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	5 U ;	5 U] 5 ∪	5¦U
108-88-3	Toluene	SW8260B	ug/L	5	5 U '	5 U	5 U	38 A
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 บ 1	5 U	5 U	5 ∪
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	5 U	5 U	[5 U	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1	5 U	5 U	5 U	5 U .
79-01-6	Trichloroethene	SW8260B	ug/L	5	5 U	5 U	5 U	34 A
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	5 U	5 U	. 5[U	5 UJ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	5 ∪	5 U	5 U ;	5 UJ}
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	5 U	5 U	5 U } i	ธ บม
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 <u> </u> U	5U	5 U	5 U

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria

Compound without screening criteria detected

ams! above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

SW8260B Volatile Organic Analyte - Aqueous

Table F-3b Monitoring Well Groundwater Screening Full Data Table Lawrence Aviation Industries Site

_	-		Site-specific-GW	MW-PD-12-GW-AA	MW-PD-12-GW-AA-DUP MW-PD-21-GW-AA	MW-PD-12-GW-AAA	MW-PD-12-GW-B
		Sample Name		2/6/2008	2/6/2008	2/6/2008	1/31/2008
Coa Bo	Chemical Name	Sample Date Analytic Met Unit \\ Depth		-36.92 to -41.92 ft amsl	-36.92 to -41.92 ft amsl	-6.92 to -11.92 ft amsl	-96.92 to 101.92 ft amsl
Cas Rn	Volatile Organic Compounds	Analytic Met Offit it Deptil		-50.92 to -41.92 it amsi	-30.52 to -41.52 trains	9.02.10 17.02 11.01	00.02.0 10.102.11.0.11
67-64-1	Acetone	SW8260B ug/L	50	5 UJ	5 5 5	5 U	5 U
71-43-2	Benzene	SW8260B ug/L	1 1	5 U	5 U	5 0	l slul
75-27-4	Bromodichloromethane	SW8260B ug/L	50	5 U	5 U	501	5 0
75-27-4 75-25-2		•	50 50	ا الم	5 U	5 0	5 0
	Bromoform	•	5	6 A	5 #	5 4	5 0
74-83-9	Bromomethane	-	50 50	ا ``ا الأ	5 U "	5 11 "	5 0
78-93-3	2-Butanone	SW8260B ug/L	50 50	5 U	5 U	5111	5 01
75-15-0	Carbon Disulfide	SW8260B ug/L	50	5 U	slu i	501	1 510
56-23-5	Carbon Tetrachloride	SW8260B ug/L	5 5		5 U	- 5111	1
108-90-7	Chlorobenzene	SW8260B ug/L		5 U	510	5 U	5 0
75-00-3	Chloroethane	SW8260B ug/L	5_	5 U		200	5 0
67-66-3	Chloroform	SW8260B ug/L	7	5 U	<u> </u>	ချုပျ	
74-87-3	Chloromethane	SW8260B ug/L	5	5 U	5 U	2 2	5 U
110-82-7	Cyclohexane	SW8260B ug/L	N/A	5 U	5 U	5[0]	
124-48-1	Dibromochloromethane	SW8260B ug/L	50	5 U	5 U	5[0]	
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B ug/L	0.04	5 U	5 U	5[0]	5 U
106-93-4	1,2-Dibromoethane	SW8260B ug/L	0.0006	5 U	5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B ug/L	3	5 [년	5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	티미	5 U
75-71-8	Dichlorodifluoromethane	SW8260B ug/L	5	5 년	5 U	5 บ) 5 U
75-34-3	1,1-Dichloroethane	SW8260B ug/L	5	5 U	5 U [5 U) 5 U
107-06-2	1,2-Dichloroethane	SW8260B ug/L	0.6	5[U	5] U [5 U	[5 U
75-35-4	1,1-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B ug/L	5	U 5	5 U	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B ug/L	5	5 U 1	5 <u> </u> U	5 U	5 U
78-87-5	1,2-Dichloropropane	SW8260B ug/L	1	5 U	510	5 U	5 U 5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 ! U	5 U	
10061-02-6	trans-1,3-Dichloropropene	SW8260B ug/L	0.4	· 5 U	5 U	5 U	5 U
100-41-4	Ethylbenzene	SW8260B ug/L	5	5 U	5 U	5 ∪	5 U
591-78-6	2-Hexanone	SW8260B ug/L	50	5 U	5{∪ ∫	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B ug/L	5	5 U	5 บ	รโบไ	[5 U
79-20-9	Methyl Acetate	SW8260B ug/L	N/A	5 U 1	ร์โบ	slul	5 U
108-87-2	Methylcyclohexane	SW8260B ug/L	N/A	<u> </u>	5 U 1	ธ บ	5 U
75-09-2	Methylene Chloride	SW8260B ug/L	5	slu l	5 0	ร์ไบไ	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B ug/L	50	5 Ŭ	5 U 1	5 Ū	l slul l

Table F-3b Monitoring Well Groundwater Screening Full Data Table

Lawrence Aviation Industries Site Port Jefferson Station, New York

	 -	- Sample Code	Site-specific-GW	MW-PD-12-GW-AA	MW-PD-12-GW-AA-DUP	MW-PD-12-GW-AAA	MW-PD-12-GW-B
1		Sample Name			MW-PD-21-GW-AA		}
		Sample Date		2/6/2008	2/6/2008	2/6/2008	1/31/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		-36.92 to -41.92 ft amsl	-36.92 to -41.92 ft amsl	-6.92 to -11.92 ft amsl	-96.92 to 101.92 ft amsl
1634-04-4	Methyl tert-Butyl Ether	SW8260B ug/L	10	5 0	5 U	5 U	5 U
100-42-5	Styrene	SW8260B ug/L	5	5 U [5 ∪	5 0	5{U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B ug/L	5	5 U	5 \ U \	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B ug/L	5	5 U	ธุบ	[5]다	5 U
108-88-3	Toluene	SW8260B ug/L	5	5 #	6 A	5 0	5 [나
120-82-1	1,2,4-Trichlorobenzene	SW8260B ug/L	5	5 U	5 U	티	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B ug/L	1 1	5 U	5 Մ	5 U	5 U
79-01-6	Trichloroethene	SW8260B ug/L	5	52 A	43 A	130 A	33 A
75-69-4	Trichlorofluoromethane	SW8260B ug/L	5	5 U	5 U	Į 5 U	5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B ug/L	5	5 U	[5 U	5 U ′	5 U
75-01-4	Vinyl Chloride	SW8260B ug/L	2	5 U	5 U	5 5	5 U
1330-20-7	Xvlenes (total)	SW8260B ug/L	i 5	5 U	5 <u> U </u>	5 U	5 U

Notes:

Compound detected below or equal to screening criteria Compound detected above screening criteria Α Compound without screening criteria detected

above mean sea level amsl

feet ft

Value estimated

Compound not detected above reporting limit U

micrograms per liter ug/L milligrams per liter mg/L

Volatile Organic Analyte - Aqueous SW8260B

Table F-3b
Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MW-PD-12-GW-C	MW-PD-13-GW-A	MW-PD-13-GW-B	MW-PD-13-GW-C
			Sample Name		l I	•		
			Sample Date		2/5/2008	5/19/2008	5/19/2008	5/19/2008
Cas Rn	Chemical Name	Analytic Me	t Unit \\ Depth		126.92 to -131.92 ft ams	17.3 to 12.6 ft amsl	-2.7 to -7.7 ft amsl	-32.7 to -37.7 ft amsl
	Volatile Organic Compounds							
67-64-1	Acetone	SW8260B	ug/L	50	5 ೮೨	5 U	5 U	5 U
71-43-2	Benzene	SW8260B	ug/L	1	<u> </u>	5 U	5 U	5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
75-25-2	Bromoform	SW8260B	ug/L	50	l 5 ∪	5 U	5 U	5 U
74-83-9	Bromomethane -	SW8260B	ug/L	5	5 U	- 5 UJ	5 UJ	5 UJ
78-93-3	2-Butanone	SW8260B	ug/L	50	5 0 1 1	, 5 ∪	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B	ug/L	50	s v [5 UL	5 UL	5 UL
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	5 U []	5 U	5 J U	5 U
108-90-7	Chlorobenzene	SW8260B	ug/L	5	s u	5 U	5 U	5 U
75-00-3	Chloroethane	SW8260B	ug/L	5	5 U	ร บม โ	5 UJ	5 UJ
67-66-3	Chloroform	SW8260B	ug/L	7	ธุโบ	5 U	5 U 1	5 U
74-87-3	Chloromethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
110-82-7	Cyclohexane	SW8260B	ug/L	N/A	s v	5 U	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	5 U	5 U	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006	5 U	5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 ∪	5 U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U	5 J U	5 U
75-71-8	Dichlorodifluoromethane	SW8260B	ug/L	5	5 U	5 บ	5 J U	5 U
75-34-3	1,1-Dichloroethane	SW8260B	ug/L	5	. 5 U	5 U	5 U.	5 U 5 U
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	5 U	5 U	5 U.	5 U
75-35-4	1,1-Dichloroethene	SW8260B	ug/L	5	5 나	5 U	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	'SW8260B	ug/L	5	5 U	5 U	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L	5	5 ぴ	5 U	5 U	5 U
78-87-5	1,2-Dichloropropane	SW8260B	ug/L	1	5 U	5 U	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B	ug/L	0.4	5 U	5 U	5 U	5 U^
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	5 U	5 U]	5 U	, 5 U
100-41-4	Ethylbenzene	SW8260B	ug/L	5	5 U]	5 U]	5 U	5 U
591-78-6	2-Hexanone	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
79-20-9	Methyl Acetate	SW8260B	ug/L	N/A	5 U	5 U	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	5 U	5 U	5 U	5 U
75-09-2	Methylene Chloride	SW8260B	ug/L	5	5 U	5 U	5 U []	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B	ug/L	50	5 บู	5 U	5 [U]]	5 U

Lawrence Aviation Industries Site Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MW-PD-12-GW-C	MW-PD-13-GW-A	MW-PD-13-GW-B	MW-PD-13-GW-C
		Sample Name] [
		Sample Date		2/5/2008	5/19/2008	5/19/2008	5/19/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth	I	126.92 to -131.92 ft ams	17.3 to 12.6 ft ams	-2.7 to -7.7 ft amsl	-32.7 to -37.7 ft amsl
1634-04-4	Methyl tert-Butyl Ether	SW8260B ug/L	10	5 U	5 U	5 U	5 U
100-42-5	Styrene	SW8260B ug/L	5	5 U	5 U	5 U	5
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B ug/L	5	5 Մ	5 U	- 5 U	5 U
108-88-3	Toluene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B ug/L	5	5 년 1	5 U	5 U -	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B ug/L	1	5 ひ	5 U		5 U
79-01-6	Trichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-69-4	Trichlorofluoromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-01-4	Vinyl Chloride	SW8260B ug/L	2	5 U	5 U	5 U	5 U
1330-20-7	Xylenes (total)	SW8260B ug/L	5	5 U <u></u> 5	<u>5</u> U	5 U	5 U

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria

~ Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter
mg/L milligrams per liter

Table F-3b
Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			FOLL Delibiso	n Station, New York	,		
		Sample Code	Site-specific-GW	MW-PD-14-GW-A	MW-PD-14-GW-A-DUP	MW-PD-14-GW-B	MW-PD-14-GW-C
		Sample Name			MW-PD-41-GW-A	•	
		Sample Date		4/9/2008	4/9/2008	4/10/2008	4/22/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		-31.8 to -36.8 ft amsl	-31.8 to -36.8 ft amsl	-61.8 to -66.8 ft amsi	-91.8 to -96.8 ft amsl
	Volatile Organic Compounds						
67-64-1	Acetone	SW8260B ug/L	50	5 UJ	5 UJ	5 UL	5 UJ
71-43-2	Benzene	SW8260B ug/L	1	5 U [5 ∪ }	5 U	5 U
75-27-4	Bromodichloromethane	SW8260B ug/L	50	5 U	5 U	5 U	5 U
75-25-2	Bromoform	SW8260B ug/L	50	5 U	5]U]	5 U	5 U
74-83-9	Bromomethane	SW8260B ug/L	5	5 U	5 U 1	5 UJ	5 UJ
78-93-3	2-Butanone	SW8260B ug/L	50	5 U	5 U]	5) U	5 U
75-15-0	Carbon Disulfide	SW8260B ug/L	50	5 U	5 U	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B ug/L	5	5 U	5 บ	5 U [5 j U
108-90-7	Chlorobenzene	SW8260B ug/L	5	5 ∪	5 U	5 U	5 U
75-00-3	Chloroethane	SW8260B ug/L	5	5 นฦ	5 UJ	5 UJ	5 UJ
67-66-3	Chloroform	SW8260B ug/L	7	5 U	5 년	5 U	5 U
74-87-3	Chloromethane	SW8260B ug/L	5	5 U	5 U	5 U^	5 U
110-82-7	Cyclohexane	SW8260B ug/L	N/A	5 UJ	5 UJ	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B ug/L	50	5 U	5 U	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B ug/L	0.04	5 U]	5 U	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B ug/L	0.0006	5 U 1	5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B ug/L	· 3	5 U	5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U 1	5 U	5 ∪ {
106-46-7	1,4-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U ;	5 U	5 U
75-71-8	Dichlorodifluoromethane	SW8260B ug/L	5	5 UJ	5 UJ	- 5 UJ	5 UJ
75-34-3	1,1-Dichloroethane	SW8260B ug/L	5	5[U	、 5 U	5 U	5 U
107-06-2	1,2-Dichloroethane	SW8260B ug/L	0.6	5[U	5 U	5 U 5 U 5 U	5 U
75-35-4	1,1-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
78-87-5	1,2-Dichloropropane	SW8260B ug/L	1	5 U	5 Մ	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	ริ บ	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5 U 5 U 5 U 5 U	5 U
100-41-4	Ethylbenzene	SW8260B ug/L	5	5 U	5 U		5 U
591-78-6	2-Hexanone	SW8260B ug/L	50	5 U	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
79-20-9	Methyl Acetate	SW8260B ug/L	N/A	5 U	5 <u> </u> U	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
75-09-2	Methylene Chloride	SW8260B ug/L	5	5 U	5 U	5 U 5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B ug/L	50	5 U	5 U	<u>5</u> U	5 U

Table F-3b Monitoring Well Groundwater Screening Full Data Table Lawrence Aviation Industries Site

Port Jefferson Station, New York

			Site-specific-GW	MW-PD-14-GW-A	MW-PD-14-GW-A-DUP	MW-PD-14-GW-B	MW-PD-14-GW-C
		Sample Nam	e		MW-PD-41-GW-A		
		Sample Date		4/9/2008	4/9/2008]	4/10/2008	4/22/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		-31.8 to -36.8 ft amsl	-31.8 to -36.8 ft amsi	-61.8 to -66.8 ft ams!	-91.8 to -96.8 ft ams!
1634-04-4	Methyl tert-Butyl Ether	SW8260B ug/L	10	6 #	6 #	5 U	5 U
100-42-5	Styrene	SW8260B ug/L	5	5 U	5 0 1	5 U	5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B ug/L	5	5 [U	5 U	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B ug/L	5	5 U	5 U 	6 A	5 U
108-88-3	Toluene	SW8260B ug/L	5	5 U	│ 5 U 	, 5 U	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B ug/L	5	5 U	5 ∪	5 U	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B ug/L	5	5 U [5 U	5 U	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B ug/L	1 1	5 U 1	5	5 U	5 U
79-01-6	Trichloroethene	SW8260B ug/L	5	21 A	21 A	410 A	220 A
75-69-4	Trichlorofluoromethane	SW8260B ug/L	5	5 U	(5 U	5 U)	5[U]
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B ug/L	5	5 Մ	5 U	′ 5 U	5 U
75-01-4	Vinyl Chloride	SW8260B ug/L	2	5 U	[5[U	5 U	5 U
1330-20-7	Xylenes (total)	SW8260B ug/L	5	5 U _	5[U]	5 U	5 U

Notes:

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-3b
Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	·	Sample Code		MW-PD-14-GW-D	MW-PD-15-GW-A	MW-PD-15-GW-B	MW-PD-15-GW-C
		Sample Name	•		1		
		Sample Date		4/22/2008	5/6/2008	5/6/2008	5/6/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		-121.8 to -126.8 ft amsl	-54.46 to -59.46 ft amsl	-84.46 to -89.46 ft amsl	-114.49 to -119.46 ft ams
	Volatile Organic Compounds			ll	11	l _l_ l	_
67-64-1	Acetone	SW8260B ug/L	50	5 UJ	5 U	5 U	5 U .
71-43-2	Benzene	SW8260B ug/L	1	5 U	5 U	5 Ú	5 U
75-27-4	Bromodichloromethane	SW8260B ug/L	50	5 U	5 U	5 U	5 U
75-25-2	Bromoform	SW8260B ug/L	50	5 U	5 U	5 U	5 U
74-83-9	Bromomethane	SW8260B ug/L	5	11 J A	5 U	5 U	5 U
78-93-3	2-Butanone	SW8260B ug/L	50	5 U]	5 U	5 ∪	5 U
75-15-0	Carbon Disulfide	SW8260B ug/L	50	5 U]	5 U	5 ∪	5 U
56-23-5	Carbon Tetrachloride	SW8260B ug/L	5	5 U]] 5 U]	5 U	5 U·
108-90-7	Chlorobenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-00-3	Chloroethane	SW8260B ug/L	5	5 UJ	5 UJ ·	5 UJ	5 UJ
67-66-3	Chloroform	SW8260B ug/L	7	5 U	5 U	5 U	5 U
74-87-3	Chloromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
110-82-7	Cyclohexane	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B ug/L	50	· 5 U	5 U	5 U	[5 ∪
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B ug/L	0.04	5 U	5 U	5 U.	· 5 U
106-93-4	1,2-Dibromoethane	SW8260B ug/L	0.0006	5 U	5 U	5 U	5 U
95 -50 -1	1,2-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	.5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 j U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B ug/L	3	5 U [5 <mark> </mark> U	5 U	5[U
75-71-8	Dichlorodifluoromethane	SW8260B ug/L	5	5 บม	[5 UL	5 UL	5 UL
75-34-3	1,1-Dichloroethane	SW8260B ug/L	5	5[บ	[5 U	5 U	5 U
107-06-2	1,2-Dichloroethane	SW8260B ug/L	0.6-	5 บ	5 U	- 5 년	5 U
75-35-4	1,1-Dichloroethene	SW8260B ug/L	5	5 U	5 U	. 5 년	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B ug/L	5	U z.	5 년	5 U	5 U .
78-87-5	1,2-Dichloropropane	SW8260B ug/L	1	5 U	5 U	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5ไป [5(U 1
10061-02-6	trans-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U }	5 U	5 บ	5 U 5 U
100-41-4	Ethylbenzene	SW8260B ug/L	5	5 U	5 U	5 U	
591-78-6	2-Hexanone	SW8260B ug/L	50	5 U	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U .
79-20-9	Methyl Acetate	SW8260B ug/L	N/A	5 U	5 U 1	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B ug/L	N/A	5 U	5 U 1	5 U	5 U 🖠
75-09-2	Methylene Chloride	SW8260B ug/L	5	5 U	<u>-</u> 5 U	5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B ug/L	50	5 U	5 U	5 U	5 U [

Lawrence Aviation Industries Site Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MW-PD-14-GW-D	MW-PD-15-GW-A	MW-PD-15-GW-B	MW-PD-15-GW-C
			Sample Name	į				
ļ			Sample Date		4/22/2008	5/6/2008	5/6/2008	5/6/2008
Cas Rn	Chemical Name	Analytic Me	t Unit \\ Depth	_	-121.8 to -126.8 ft amsl	-54.46 to -59.46 ft amsl	-84.46 to -89.46 ft amsl	-114.49 to -119.46 ft ams
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	5 U	5 U	5 0	5 U
100-42-5	Styrene	SW8260B	ug/L	5	5 U	5[U <u> </u>	5 U	5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	5 U	5 ひ	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	5 U	5 U	5 U	} 5 U
108-88-3	Toluene	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	5 U	5 Մ	5 U	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1	5 U	5 U	5 U	5 U
79-01-6	Trichloroethene	SW8260B	ug/L	5	34 A	12 A	24 A	42 A
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	5 J U .	5 U	5 U	5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	5 U	[5 U	5 U	5 U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	5 U	5 U	5 ∪	5 U
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 U	5 U	5 U	5 U_ _

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

ams! above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-3b
Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			T=1=		I 100 55 45 504 5	144 00 40 004 0	L MAN DD 46 OW D
		Sample Code		MW-PD-16-GW-A	MW-PD-16-GW-B	MW-PD-16-GW-C	MW-PD-16-GW-D
		Sample Nam	II .		0.02.0000	0.05.0000	8/20/2000
	<u>.</u>	Sample Date		2/25/2008	2/25/2008	2/25/2008	2/28/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		-18.69 to -23.69 ft amsl	-48.69 to -53.69 ft amsl	-78.69 to -83.69 ft amsl	-108.69 to -113.69 ft ams
	Volatile Organic Compounds				ا ا ا		
67-64-1	Acetone ·	SW8260B ug/L	50	5 UL	5 UL	5 UL	5 UL
71-43-2	Benzene	SW8260B ug/L	1 1	5 U	5 U	5 U	5 U
75-27-4	Bromodichloromethane	SW8260B ug/L	50	5 U	5 0	5 U	5 U
75-25-2	Bromoform	SW8260B ug/L	50	5 U	5 U	5 U	
74-83-9	Bromomethane	SW8260B ug/L	5	5 U	6 K A	5 U	5 U
78-93-3	2-Butanone	SW8260B ug/L	50	. 5U	5 0	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B ug/L	50	5 U	5 U	5 U	5 0
56-23-5	Carbon Tetrachloride	SW8260B ug/L	5	5 U	5 U	5 U	5 U
108-90-7	Chlorobenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-00-3	Chloroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
67-66-3	Chloroform	SW8260B ug/L	7	5 ∪	5 U	5 U	5 U
74-87-3	Chloromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
110-82-7	Cyclohexane	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B ug/L	50	[5 U	5 U	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B ug/L	0.04	5 U	5 U	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B ug/L	0.0006	5 U	5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
75-71-8	Dichlorodifluoromethane	SW8260B ug/L	5	5 U	5]U	5 U	5 U
75-34-3	1,1-Dichloroethane	SW8260B ug/L	5	5 U	5 U	5 U 	5 U
107-06-2	1,2-Dichloroethane	SW8260B ug/L	0.6	5 U	5 U	[5 U	5 U
75-35-4	1.1-Dichloroethene	SW8260B ug/L	5	5 U	5\U	5}U }	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U [9 A	13 <i> </i> A
156-60-5	trans-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	U 2
78-87-5	1,2-Dichloropropane	SW8260B ug/L	1	5 U	5 U	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B uğ/L	0.4	5 U	5 U	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5 U	5 U
100-41-4	Ethylbenzene	SW8260B ug/L	5	5 U	5 U	j 5 ∪	∫ 5 U
591-78-6	2-Hexanone	SW8260B ug/L	50	5 U J	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
79-20-9	Methyl Acetate	SW8260B ug/L	N/A	Í 5 U	5 U	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
75-09-2	Methylene Chloride	SW8260B ug/L	5	5 U	5 U	5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B ug/L	50	5 U	5 U	5 ∪	5 U

Table F-3b Monitoring Well Groundwater Screening Full Data Table

			Sample Code	Site-specific-GW	MW-PD-16-GW-A	MW-PD-16-GW-B	MW-PD-16-GW-C	MW-PD-16-GW-D
_	•	•	Sample Name					
			Sample Date		2/25/2008	2/25/2008	2/25/2008	2/28/2008
Cas Rn	Chemical Name	Analytic Met	t Unit \\ Depth		-18.69 to -23.69 ft ams!	-48.69 to -53.69 ft ams	-78.69 to -83.69 ft amsi	-108.69 to -113.69 ft ams
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	5 U	5 U,	5 U	5 U
100-42-5	Styrene	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	5 U	5 U	9 A	18 A
108-88-3	Toluene	SW8260B	ug/L	5	5 U	[5 U	5 U [5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 U	[5 U]	5 U	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	5 U	[5 U	5 ∪	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1,	5 Մ	5 U	5 ∪	5 U
79-01-6	Trichloroethene	SW8260B	ug/L	5	5 U	70 <u> </u> A	800 A	2000 A
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	5 U	5 U	5] U	. 5U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	5 U	5 U	5 U	. 5 U }
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 U	5 ป	5 U	5 U

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

ams! above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-3b
Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MW-PD-16-GW-D-DUP	MW-PD-16-GW-E	MW-PD-16-GW-F	MW-PD-17-GW-A
		5	Sample Name		MW-PD-61-GW-D			
			Sample Date	•	2/28/2008	3/6/2008	3/6/2008	2/12/2008
Cas Rn	Chemical Name	Analytic Met U	Unit \\ Depth		-108.69 to -113.69 ft amsi	-138,69 to -143,69 ft ams	-158.69 to -163.69 ft ams	-44.51 to -49.51 ft amsl
-	Volatile Organic Compounds	•						
67-64-1	Acetone	SW8260B u	ıg/L	50	5 UL	12 L #	5 UL .	5 UJ
71-43-2	Benzene	SW8260B u	ug/L	1	5 U	5 U	5 ∪ ↓	5 U
75-27-4	Bromodichloromethane	SW8260B t	ug/L	50	5 U	5 U	5 U	5 U
75-25-2	Bromoform	SW8260B L	ıg/L	50	. 5 ∪	5 U	5 ∪ ↓	5 U
74-83-9	Bromomethane	SW8260B u	ug/L	5	: 6 ∪	5 U	6 U	7 J A
78-93-3	2-Butanone	SW8260B u	ıg/L	50	5 ∪	5 U	5 U 1	5 U
75-15-0	Carbon Disulfide	SW8260B u	ug/L	50	5 ∪	5 U ·	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B U	ıg/L	5	5 U	5 4	5 U	5 U
108-90-7	Chlorobenzene		ug/L	5	5 U	5 U	5 U	5 U
75-00-3	Chloroethane	SW8260B u	ug/L	5	5 U	5 U	5 U 5 U 5 U	ຸ 5 ປ
67-66-3	Chloroform _		ıg/L	7	5 U	5 U	5]U	` 5 Ս
74-87-3	Chloromethane	SW8260B u	ug/L	5	5 U	5 U	5]U	5 ∪
110-82-7	Cyclohexane	SW8260B L	ug/L	N/A	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B u	ıg/L	50	5 U	5 U {	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B u	ıg/L	0.04	5 ļ U [5 0	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B u	ıg/L	0.0006	5]U	5 U	5 U	5 U 5 U 5 U
95-50-1	1,2-Dichlorobenzene	SW8260B u	ıg/L	3	5 U	5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B u	ıg/L	3	5 U	5 U	5 0	5 U 5 U
106-46-7	1,4-Dichlorobenzene -	SW8260B u	ıg/L	3	5 U	5 U	5 U J	5 U
75-71-8	Dichlorodifluoromethane	SW8260B u	ıg/L	5	5 ∪	5 U	5 U {	5 U
75-34-3	1,1-Dichloroethane	SW8260B u	ıg/L	5	5 U	5 U	5 U	5∫∪
107-06-2	1,2-Dichloroethane	SW8260B u	.g/L	0.6	5 ∪	5 U	5 U	5 U
75-35-4	1,1-Dichloroethene	SW8260B u	ıg/L	5	5 U	5 U	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B U	ıg/L	5	13 A	6 A	5 U	5 U
156-60 - 5	trans-1,2-Dichloroethene	SW8260B u	ıg/L	5	5 U	5 U	5 U	5 U
78-87-5	1,2-Dichloropropane	SW8260B U	ıg/L	1	5 U	5 U	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B U	ıg/L	0.4	5 U]	- 5U	5 U	5 U }
10061-02-6	trans-1,3-Dichloropropene	SW8260B u	ıg/L	0.4	5 U	5 U	5 U	5 U
100-41-4	Ethylbenzene		ıg/L	5	5 U	5[U]	5 U	5 U
591-78-6	2-Hexanone	SW8260B u	ıg/L	50	5 U }	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B u	ıg/L	5	5 U	[5 U	5 ∪	. 5 U
79-20-9	Methyl Acetate		ıg/L	N/A	5 U	5 0	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B u	.g/L	N/A	5 ∪ ∤	5 0	5 ∪	5 U
75-09-2	Methylene Chloride		ıg/L	5	5 U	5 U	5 U }	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B u	ıg/L	50	5 U	5 U	5 U	5 U

Lawrence Aviation Industries Site Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MW-PD-16-GW-D-DUP	MW-PD-16-GW-E	MW-PD-16-GW-F	MW-PD-17-GW-A
		Sample Name		MW-PD-61-GW-D		l	l
		Sample Date		2/28/2008	3/6/2008	3/6/2008	2/12/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		-108.69 to -113.69 ft amsl	-138.69 to -143.69 ft ams	-158.69 to -163.69 ft amsl	-44.51 to -49.51 ft amsi
1634-04-4	Methyl tert-Butyl Ether	SW8260B ug/L	10	5 U	5 0	5 U	6 #
100-42-5	Styrene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B ug/L	5	5[U]	5 0 1	5 ∪	5 U
127-18-4	Tetrachloroethene	SW8260B ug/L	5	18 A	() 6 A	5 U	5 U
108-88-3	Toluene	SW8260B ug/L	5	5 U	[5 U	{ 5 U	5 U {
120-82-1	1,2,4-Trichlorobenzene	SW8260B ug/L	5	5 U] 5[U]	5 U	5 U {
71-55-6	1,1,1-Trichloroethane	SW8260B ug/L	5	5 U	5 U	5 U- .	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B ug/L	1	5 U	5 U	5 U]	5 U
79-01-6	Trichloroethene	SW8260B ug/L	5	2000 A	A 008 A	190 A	5 U
75-69-4	Trichlorofluoromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-01-4	Vinyl Chloride	SW8260B ug/L	2	5 U	5 U	5 U	5 U
1330-20-7	Xylenes (total)	SW8260B ug/L	5	5 U	5 U	5 U	5[U

Notes:

Compound detected below or equal to screening criteria Compound detected above screening criteria Α Compound without screening criteria detected

above mean sea level amsl

feet

Value estimated

Compound not detected above reporting limit υ

micrograms per liter ug/L milligrams per liter mg/L

Table F-3b

Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			1015011 31411011,	1000 1000			
		<u> </u>	Sample Code	Site-specific-GW	MW-PD-17-GW	-B	MW-PD-17-GW-C
			Sample Name		,		
			Sample Date		2/13/2008		2/13/2008
Cas Rn	Chemical Name	Analytic Me	t Unit \\ Depth		-54.51 to -59.51 ft	amsl	-64.51 to -69.51
	Volatile Organic Compounds		<u>-</u>				
67-64-1	Acetone	SW8260B	ug/L	50	5		5 UJ
71-43-2	Benzene	SW8260B	ug/L	1	5		5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	5		5 U
75-25-2	Bromoform	SW8260B	ug/L	50	5	ו ע	5 U
74-83-9	Bromomethane	SW8260B	ug/L	5	7		
78-93-3	2-Butanone	SW8260B	ug/L	50	5	υl	5 U
75-15-0	Carbon Disulfide	SW8260B	ug/L	50	5		5 U
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	5		5 U
108-90-7	Chlorobenzene	SW8260B	ug/L	5	5		5 U
75-00-3	Chloroethane	SW8260B	ug/L	5	5		5 U
67-66-3	Chloroform	SW8260B	ug/L	7	5		5 U
74-87-3	Chloromethane	SW8260B	ug/L	5	5		5 U
110-82-7	Cyclohexane	SW8260B	ug/L	N/A	5		5 U
124-48-1	Dibromochloromethane	SW8260B	ug/L	50	5		5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	5		5 U
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006	5		5 U
95-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	5 1		5 U [
541-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	5		5 U
106-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	5		5 U
75-71-8	Dichlorodifluoromethane	SW8260B	ug/L	5.	5 1		5 บ 5 บ
75-34-3	1,1-Dichloroethane	SW8260B	ug/L	5	5		5 U
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	5 1		5 U 5 U
75-35-4	1,1-Dichloroethene	SW8260B	ug/L	5	5		5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B	ug/L	5	5		5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L	5	5 5	u	5 U
78-87-5	1,2-Dichloropropane	SW8260B	ug/L	1	5	ן ט	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B	ug/L	0.4	5	_	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	5		5 U
100-41-4	Ethylbenzene	SW8260B	ug/L	5	5		5 U
591-78-6	2-Hexanone	SW8260B	ug/L	50	5	J	5 U
98-82-8	Isopropylbenzene	SW8260B	ug/L	5	5		5 U
79-20-9	Methyl Acetate	SW8260B	ug/L	N/A	5	ן נו	5 U
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	5	J	5 U
75-09-2	Methylene Chloride	SW8260B	ug/L	5	5	ן ט	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B	ug/L	50	5	ן נו	5 U_

Table F-3b Monitoring Well Groundwater Screening Full Data Table

			Sample Code		MW-PD-17-GW-B	MW-PD-17-GW-C
			Sample Date		2/13/2008	2/13/2008
Cas Rn	Chemical Name	Analytic Met	Unit \\ Depth		-54.51 to -59.51 ft amsl	-64.51 to -69.51
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	5 Ū	5 U
100-42-5	Styrene	SW8260B	ug/L	5	5 U [5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	5[U	5 บ
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	5 ับ	5 U
108-88-3	Toluene	SW8260B	ug/L	5	5 U	5 U]
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 U	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	5 U	5(U)
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1	5 U	5 U
79-01 - 6	Trichloroethene	SW8260B	ug/L	5	5 U	5[ป
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	5 U	5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	5 U [;	5 U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	5 U [5 U
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 U	5 U

М	^	te	•	٠	
N	.,				

#	Compound detected below or equal to screening criteria
Α	Compound detected above screening criteria
~	Compound without screening criteria detected
amsl	above mean sea level
ft	feet
J	Value estimated
υ	Compound not detected above reporting limit
ug/L	micrograms per liter
mg/L	milligrams per liter
SW8260B	Volatile Organic Analyte - Aqueous

Table F-3b
Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MW-PD-11-GW-A	MW-PD-11-GW-B	MW-PD-11-GW-C	MW-PD-12-GW-A
			Sample Name					
			Sample Date		1/16/2008	1/16/2008	1/16/2008	1/24/2008
Cas Rn	Chemical Name	Analytic Me	t Unit \\ Depth		185 to 190 ft bgs	195 to 200 ft bgs	205 to 210 ft bgs	210 to 215 ft bgs
	Volatile Organic Compounds		· · · · ·					
67-64-1	Acetone	SW8260B	ug/L	50	6 U	5 U		7 #
71-43-2	Benzene	SW8260B	ug/L	1	5 U	5 U 1	5 U	5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	5 U	5 10 1	5 U	5 U
75-25-2	Bromoform	SW8260B	ug/L	50	5 U 5 UJ	5 U) }	5 U	5 U
74-83-9	Bromomethane	SW8260B	ug/L	5	5 UJ	5 UJ}	6 J A	6 UJ
78-93-3	2-Butanone	SW8260B	ug/L	50	5 Ú	5 U	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	5 U	5 U	5 U {	5 U
108-90-7	Chlorobenzene	SW8260B	ug/L	5	5 U	5 ∪	5 U	5 U
75-00-3	Chloroethane	SW8260B	ug/L	5	5 UJ	5 UJ	5 UJ	5 UJ
67-66-3	Chloroform	SW8260B	ug/L	7	5 U	5 U	5 U	5 U
74-87-3	Chloromethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
110-82-7	Cyclohexane ,	SW8260B	ug/L	N/A	5 U 1	5 U { }	5 U 1	5 U
124-48-1	Dibromochloromethane	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	5 U	5 U	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006	5 U	5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U	5 U ·	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U	5 Մ	5 U
75-71 -8	Dichlorodifluoromethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 UJ
75-34-3 .	1,1-Dichloroethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	5 Մ	5 U	5 U 1	5 U
75-35-4	1,1-Dichloroethene	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B	ug/Ŀ	5	5 U	5 U]	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L ·	5	5 U	5 U	5 U	5 U
78-87-5	1,2-Dichloropropane	SW8260B	ug/L	1	5 U	5 U	5[U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B	ug/L	0.4	5 U	5 U	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	5] U	5 ∪	5 U	5 U
100-41-4	Ethylbenzene	SW8260B	ug/L	5	5] U	5 U	5 U	5 ∪
591-78-6	2-Hexanone	SW8260B	ug/L	50	5 U	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B	ug/L	5	5 ∪	5 U	5 U	5 U
79-20-9	Methyl Acetate	SW8260B	ug/L	N/A	5 U	5 U	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	5 U	5 U 	5 U	5 U
75-09-2	Methylene Chloride	SW8260B	ug/L	5	5 U 5 U	5 U	5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B	ug/L	50	5 U	5]U <u> </u>	5 U	5 U

Table F-3b Monitoring Well Groundwater Screening Full Data Table

			Sample Code	Site-specific-GW	MW-PD-11-GW-A	MW-PD-11-GW-B	MW-PD-11-GW-C	MW-PD-12-GW-A
			Sample Name					
			Sample Date		1/16/2008	1/16/2008	1/16/2008	1/24/2008
Cas Rn	Chemical Name	Analytic Me	t Unit \\ Depth_		185 to 190 ft bgs	195 to 200 ft bgs	205 to 210 ft bgs	210 to 215 ft bgs
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	5 U	5 U	5 U	5 U
100-42-5	Styrene	SW8260B	ug/L	5	5 U	5 U	5 U	5 ∪
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
127-18-4	Tetrachioroethene	SW8260B	ug/L	5	5 U	5 บ	5 U	5 U
108-88-3	Toluene	SW8260B	ug/L	5	5 บ	5 ∪	5 U	38 A
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 U	5 U	5 U i	5 U }
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	5 U	5 U	5 ∪ [5] U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1	5 U	5 U	5 U	5 [U
79-01-6	Trichloroethene	SW8260B	ug/L	5	5 ∪	5 U 	5 U	34 A
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	5 U	5 U {	5 U	5 ប្រ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	5 U	5 U }	5 U	5 UJ
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	5 U	5 ∪	5 U	. 5 UJ
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 U	5 U	5 U	5U

Notes:

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected Α

above mean sea level amsl

feet ft,

Value estimated

Compound not detected above reporting limit U

ug/L micrograms per liter mg/L SW8260B milligrams per liter

Volatile Organic Analyte - Aqueous

Table F-3b Monitoring Well Groundwater Screening Full Data Table Lawrence Aviation Industries Site Port Jefferson Station, New York

			Site-specific-GW	MW-PD-12-GW-AA	MW-PD-12-GW-AA-DUP	MW-PD-12-GW-AAA	MW-PD-12-GW-B
		Sample Name	-		MW-PD-21-GW-AA		
l		Sample Date		2/6/2008	2/6/2008	2/6/2008	1/31/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		180 to 185 ft bgs	180 to 185 ft bgs	150 to 155 ft bgs	240 to 245 ft bgs
	Volatile Organic Compounds		,	-l	` _	_ll i	_
67-64-1	Acetone	SW8260B ug/L	50	5 UJ	5 UJ	5 U	5 U}
71-43-2	Benzene	SW8260B ug/L	1	5 U	5 U	5 U [5 U
75-27-4	Bromodichloromethane	SW8260B ug/L	50	5 U .	5 U }	5 U	5 U
75-25-2	Bromoform	SW8260B ug/L	50	되다	5 U [5 U	5 U
74-83-9	Bromomethane	SW8260B ug/L	5	6 A	5 #	5 #	5 U 5 U 5 U
78-93-3	2-Butanone	SW8260B ug/L	50	5 Մ	5 U	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B ug/L	50	5 U ! 	5 나	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B ug/L	5	5 U 	5 U	5 U	5 U 5 U
108-90-7	Chlorobenzene	SW8260B ug/L	5	5 U	5 U	5 U 	5 U
75-00-3	Chloroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
67-66-3	Chloroform	SW8260B ug/L	7	5 U	5 U []	5 U	5 U
74-87-3	Chloromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
110-82-7	Cyclohexane	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B ug/L	50	5 U	5 U	5 U	5 U[
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B ug/L	0.04	5 U	5 U	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B ug/L	0.0006	5 U	5 U	5JU	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U i	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B ug/L	3	5 บ	5 U	5 U 	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
75-71-8	Dichlorodifluoromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-34-3	1,1-Dichloroethane	SW8260B ug/L	5	5 U	5[U	5 U	5 U
107-06-2	1,2-Dichloroethane	SW8260B ug/L	0.6	5 U	5 U	5 U	. 5 U
75-35-4	1,1-Dichloroethene	SW8260B ug/L	5	5 Մ	5 U	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B ug/L	5	5 Ū	5 U	5 U 1	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U]	5 ∪
78-87-5	1,2-Dichloropropane	SW8260B ug/L	1	5lU l l	5 U	5[U] }	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U 5 U 5 U 5 U 5 U 6 U	5 U	5 U	5 U 5 U 5 U 5 U
100-41-4	Ethylbenzene	SW8260B ug/L	5	5 U	5 U (, 5 U	5 U
591-78-6	2-Hexanone	SW8260B ug/L	50	5 U	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 ∪
79-20-9	Methyl Acetate	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B ug/L	N/A	5 U	ธ บ	5 U	5 ! U
75-09-2	Methylene Chloride	SW8260B ug/L	5	5 U	5 U	5 บ	5 U 5 U
108-10-1	4-Methyl-2-pentanone	SW8260B ug/L	50	5 บ	5 U	5 U	5 0

Lawrence Aviation Industries Site Port Jefferson Station, New York

_		Sample Code	Site-specific-GW	MW-PD-12-GW-AA	MW-PD-12-GW-AA-DUP	MW-PD-12-GW-AAA	MW-PD-12-GW-B
,		Sample Name			MW-PD-21-GW-AA		
		Sample Date		2/6/2008	2/6/2008	2/6/2008	1/31/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		180 to 185 ft bgs	180 to 185 ft bgs	150 to 155 ft bgs	240 to 245 ft bgs
1634-04-4	Methyl tert-Butyl Ether	SW8260B ug/L	10	· 5U	5[U]	5 U	5 U
100-42-5	Styrene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
108-88-3	Toluene	SW8260B ug/L	5	.5 #	6 A	5 U	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B ug/L	[5	5 U	5 U	5 ∪∤	5 U
71-55-6	1,1,1-Trichioroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B ug/L	1 1	5 U	5 U	5∤∪	5 U
79-01-6	Trichloroethene	SW8260B ug/L	5	52 A	43 A	130 A	33 A
75-69-4	Trichlorofluoromethane	SW8260B ug/L	5	5 U	5 U	5 ∪	5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-01-4	Vinyl Chloride	SW8260B ug/L	2	5 U	5 U	5 U	5 U
1330-20-7	Xylenes (total)	SW8260B _ ug/L	5	5 U_	5 U	5ļU ļ	5{∪

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

J Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-3b Monitoring Well Groundwater Screening Full Data Table **Lawrence Aviation Industries Site** Port Jefferson Station, New York

MW-PD-13-GW-B MW-PD-13-GW-C MW-PD-13-GW-A Sample Code Site-specific-GW MW-PD-12-GW-C Sample Name 5/19/2008 5/19/2008 5/19/2008 2/5/2008 Sample Date 210 to 215 ft bgs Analytic Met Unit \\ Depth 270 to 275 ft bgs 160 to 165 ft bas 180 to 185 ft bgs Cas Rn Chemical Name Volatile Organic Compounds 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 UL 5 UJ 50 SW8260B 67-64-1 Acetone ug/L 5 U 5 U 5 U 5 UJ SW8260B 1 5 U 71-43-2 ug/L Benzene 5 U 5 U 50 75-27-4 Bromodichloromethane SW8260B ug/L 5 U 75-25-2 SW8260B ug/L 50 Bromoform 5 UJ 5 U 74-83-9 SW8260B ug/L 5 Bromomethane 5 U 5 UL 5 U 5 U 5 U 5 U 5 U 5 U 50 SW8260B 78-93-3 2-Butanone ug/L 5 UL 50 5 U SW8260B 75-15-0 Carbon Disulfide ug/L 5 U 5 U 5 U 5 U 5 U 5 UJ 5 56-23-5 Carbon Tetrachloride SW8260B ug/L ug/L 5 108-90-7 Chlorobenzene SW8260B 5 U 75-00-3 Chloroethane SW8260B ug/L 5 5 U 7 SW8260B ug/L 67-66-3 Chloroform 74-87-3 SW8260B 5 Chloromethane ug/L 5 U 110-82-7 Cyclohexane SW8260B ug/L N/A 50 SW8260B 124-48-1 Dibromochloromethane ug/L 5 U 0.04 96-12-8 1,2-Dibromo-3-chloropropane SW8260B ug/L 5 U 0.0006 SW8260B 106-93-4 1,2-Dibromoethane ug/L 5 U SW8260B 3 ug/L 95-50-1 1.2-Dichlorobenzene 5 U 541-73-1 SW8260B ug/L 3 1.3-Dichlorobenzene 5 U SW8260B 3 ug/L 106-46-7 1.4-Dichlorobenzene 5 U 5 75-71-8 SW8260B ug/L Dichlorodifluoromethane 5 U 5 75-34-3 1,1-Dichloroethane SW8260B ug/L 5 U 5 U SW8260B 0.6 107-06-2 1,2-Dichloroethane ug/L 5 U 5 U SW8260B ug/L 5 75-35-4 1,1-Dichloroethene SW8260B ug/L 5 156-59-2 cis-1,2-Dichloroethene 5 U SW8260B 5 156-60-5 trans-1,2-Dichloroethene ug/L 5 U 5U 78-87-5 SW8260B uq/L 1 1,2-Dichloropropane 5 U SW8260B 0.4 cis-1,3-Dichloropropene ug/L 10061-01-5 5 U 0.4 10061-02-6 trans-1,3-Dichloropropene SW8260B ug/L SW8260B 5 100-41-4 Ethylbenzene ug/L 5 U 5 U 50 591-78-6 2-Hexanone SW8260B ug/L 5 U 98-82-8 SW8260B ug/L 5 Isopropylbenzene

N/A

N/A

5 50 5|U

SW8260B

SW8260B

SW8260B

SW8260B

ug/L

ug/L

ug/L

ug/L

79-20-9

108-87-2

75-09-2

108-10-1

Methyl Acetate

Methylcyclohexane

Methylene Chloride

4-Methyl-2-pentanone

Table F-3b Monitoring Well Groundwater Screening Full Data Table

	-		Sample Code	Site-specific-GW	MW-PD-12-GW-C	MW-PD-13-GW-A	MW-PD-13-GW-B	MW-PD-13-GW-C
			Sample Name	}				
			Sample Date	[2/5/2008	5/19/2008	5/19/2008	5/19/2008
Cas Rn	Chemical Name	_ Analytic Me	t Unit \\ Depth		270 to 275 ft bgs	160 to 165 ft bgs	180 to 185 ft bgs	210 to 215 ft bgs
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	5 Ü	5 U	5 Ü	5 U
100-42-5	Styrene	SW8260B	ug/L	5	5 U	5 U	5 U]	5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	5 U	j 5 U	5 U	5 ∪ 1
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	5 U	5 บ 1	5 U	-´ 5 U
108-88-3	Toluene	SW8260B	ug/L	5	5 U	5 U	5 U	5 ∪
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 년	5 บ	5 U	¦ 5 ∪
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	, 5 U	5 U	5 U	5 U 1
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1 1	5 U	5 U 1	5 U	5 U 1
79-01-6	Trichloroethene	SW8260B	ug/L	5	5 U	5 년 1	5 U	5 U
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	5 U]	5 U 1	5 U	5 <u>[</u> U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	5 U	5 U	5 U	5[U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	5 U	5 U]	5 U 1	5 U
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 U	5 U	5 U	5 U

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-3b Monitoring Well Groundwater Screening Full Data Table Lawrence Aviation Industries Site

			1011 20110130	in Station, New York			
		Sample Code	Site-specific-GW	MW-PD-14-GW-A	MW-PD-14-GW-A-DUP	MW-PD-14-GW-B	MW-PD-14-GW-C
		Sample Name			MW-PD-41-GW-A		
		Sample Date		4/9/2008	4/9/2008	4/10/2008	4/22/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		210 to 215 ft bgs	210 to 215 ft bgs	240 to 245 ft bgs	270 to 275 ft bgs
	Volatile Organic Compounds		-				
67-64-1	Acetone	SW8260B ug/L	50	5 UJ	5 UJ	5 UL	5 ÚJ
71-43-2	Benzene	SW8260B ug/L	1	ธ บ	´ 5 U :	5 U	, 5 U
75-27-4	Bromodichloromethane	SW8260B ug/L	50	5 U	5 บ 🖟	5 U	5 U
75-25-2	Bromoform	SW8260B ug/L	50	5 U 	5 U	5 U	5 ∪
74-83-9	Bromomethane	SW8260B ug/L	5	5 U	5 U	5 UJ	5 UJ
78-93-3	2-Butanone	SW8260B ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B ug/L	50	5 U	5 U	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B ug/L	5	5 U .	5[U	5 U]	5 U
108-90-7	Chlorobenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-00-3	Chloroethane	SW8260B ug/L	5	5]UJ	[5 UJ]	5 UJ	5 U.)
67-66-3	Chloroform	SW8260B ug/L	7	5 U	[5 U	5 U	5 U
74-87-3	Chloromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
110-82-7	Cyclohexane	SW8260B ug/L	N/A	5[UJ	5 UJ	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B ug/L	50	5 U	[5 U	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B ug/L	0.04	5 U	[5 U	. 5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B ug/L	0.0006	5 \ U	5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B ug/L	3	5 U	5 Մ	5 U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
75-71-8	Dichlorodifluoromethane	SW8260B ug/L	5	5 UJ	5 UJ	5 UJ	5 UJ
75-34-3	1,1-Dichloroethane	SW8260B ug/L	5	5 Մ	5 U	5 U	5 U {
107-06-2	1,2-Dichloroethane	SW8260B ug/L	0.6	5 ∪	5 U	5 U	5 U
75-35-4	1,1-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B ug/L	5	5 Մ	5 U	5 U	5 <u></u> U
156-60-5	trans-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
78-87-5	1,2-Dichloropropane	SW8260B ug/L	1	5 U	5 U	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5 U	5 U
100-41-4	Ethylbenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
591-78-6	2-Hexanone	SW8260B ug/L	50	5 U	5 U 1	5 ⊍	5 U
98-82-8	Isopropylbenzene	SW8260B ug/L *	5	5 U	5 U	5 U	5 U
79-20-9	Methyl Acetate	SW8260B ug/L	N/A	5 U	5 U	5 U	5 ∪
108-87-2	Methylcyclohexane	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
75-09-2	Methylene Chloride	SW8260B ug/L	5	5 U	5 U 5 U	5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B ug/L	50	5 U_ <u> </u>	J 5]U J	5U	5 U

Lawrence Aviation Industries Site Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MW-PD-14-GW-A	MW-PD-14-GW-A-DUP	MW-PD-14-GW-B	MW-PD-14-GW-C
		Sample Name			MW-PD-41-GW-A	·	
		Sample Date		4/9/2008	4/9/2008	4/10/2008	4/22/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		210 to 215 ft bgs	210 to 215 ft bgs	240 to 245 ft bgs	270 to 275 ft bgs
1634-04-4	Methyl tert-Butyl Ether	SW8260B ug/L	10	6 #	6 #	5 Û	5 U
100-42-5	Styrene	SW8260B ug/L	5	5 U	5 U [5 U	5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B ug/L	5	5 U	5 ∪	5 U]	5}∪
127-18-4	Tetrachloroethene	SW8260B ug/L	5	5ใบ	5 U	6 A	
108-88-3	Toluene	SW8260B ug/L	5	5 U	5 U	5 U }	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B ug/L	5	5[U [5 U	5{∪	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B ug/L	5	5[U	5 U	5 U i	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B ug/L	1 1	5 U	5 U	5[U	5 U
79-01-6	Trichloroethene	SW8260B ug/L	5	21 JA I	21 A	410 A	220 A
75-69-4	Trichlorofluoromethane	SW8260B ug/L	5	5 U	5 บ (5 U]	5 บ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-01-4	Vinyl Chloride	SW8260B ug/L	2	-5 ∪ ,	5 ∪	5 U .	5 U
1330-20-7	Xylenes (total)	SW8260B ug/L	5	5[U]	5 U	5 U	5 U

Notes:

Compound detected below or equal to screening criteria Compound detected above screening criteria #

Α Compound without screening criteria detected

above mean sea level amsi

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-3b
Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

-		Sample Code	Site-specific-GW	MW-PD-14-GW-D	MW-PD-15-GW-A	MW-PD-15-GW-B	MW-PD-15-GW-C
ļ		Sample Name					
		Sample Date	•	· 4/22/2008	5/6/2008	5/6/2008	5/6/2008
l Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		300 to 305 ft bgs	150 to 155 ft bgs	180 to 185 ft bgs	210 to 215 ft bgs
040741	Volatile Organic Compounds						1. 1. 1
67-64-1	Acetone	SW8260B ug/L	50	ธ บม	5 U	5 U	5 U
71-43-2	Benzene	SW8260B ug/L	1 1	5 U	5 U	5)U]	5]∪
75-27-4	Bromodichloromethane	SW8260B ug/L	50	5 U	5 U	5 U	5 U
75-25-2	Bromoform	SW8260B ug/L	50	5] U	5 U	5 U	5 U
74-83-9	Bromomethane	SW8260B ug/L	5	11 J A	5 U	5 U	5 U
78-93-3	2-Butanone	SW8260B ug/L	50	5 U	5 ∪	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B ug/L	50	5 U 1	5 U	. 5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B ug/L	5	5] U	5 U	5 U	5 U
108-90-7	Chlorobenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-00-3	Chloroethane	SW8260B ug/L	5	5 UJ	5 UJ	5 UJ	5 UJ
67-66-3	Chloroform	SW8260B ug/L	7	5 U	5 U	5 U	5 U
74-87-3	Chloromethane	SW8260B ug/L	5	5] U	5 U	5 U	5 U
110-82-7	Cyclohexane	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B ug/L	50	5 U	5 U	· 5 U	5 U
96-12-8	1,2-Dibromo-3-chioropropane	SW8260B ug/L	0.04	5 U	5 U	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B ug/L	0.0006	5 U	5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B ug/L	3	5 U (5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B ug/L	3	5 U }	5 U	5 U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U 5 UL
75-71-8	Dichlorodifluoromethane	SW8260B ug/L	5	5 UJ	5 UL	5 UL	5 UL
75-34-3	1,1-Dichloroethane	SW8260B ug/L	5	5 U	5 U	5 U	
107-06-2	1,2-Dichloroethane	SW8260B ug/L	0.6	5 U	5 U	5 U	5 U
75-35-4	1,1-Dichloroethene	SW8260B ug/L	5	5 U \	5 U	5 U [5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U 5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
78-87-5	1,2-Dichloropropane	SW8260B ug/L	1 1	5 U	5 U	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5 U	
10061-02-6	trans-1,3-Dichloropropene	SW8260B ug/L	0.4	. 5 U	5 U	5 U	5 U 5 U
100-41-4	Ethylbenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
591-78-6	2-Hexanone	SW8260B ug/L	50	5 U	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B ug/L	5	5 U	5 U	5 U 5 U	5 U 5
79-20-9	Methyl Acetate	SW8260B ug/L	N/A	5 U	5 U	5 U 5 U	5 U
108-87-2	Methylcyclohexane	SW8260B ug/L	N/A	5 U	5 U		5 U
75-09-2	Methylene Chloride	SW8260B ug/L	5	5 U	5 U 5 U	5 U 5 U	5 U 5 U
108-10-1	4-Methyl-2-pentanone	SW8260B ug/L	50	5 U	<u> </u>	<u> </u>	

Table F-3b Monitoring Well Groundwater Screening Full Data Table

		Sample Co	de Site-specific-GW	MW-PD-14-GW-D	MW-PD-15-GW-A	MW-PD-15-GW-B	MW-PD-15-GW-C
		Sample Na	me				
		Sample Da	ie	4/22/2008	5/6/2008	5/6/2008	5/6/2008
Cas Rn -	Chemical Name	Analytic Met Unit \\ Dept	h	300 to 305 ft bgs	150 to 155 ft bgs	180 to 185 ft bgs	210 to 215 ft bgs
1634-04-4	Methyl tert-Butyl Ether	SW8260B ug/L	10	5 U	5 U	5 U	5 U
100-42-5	Styrene	SW8260B ug/L	5	5 U	5 U	5 U	5 U [
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B ug/L	5	5 U	5 U	5 U	[5 U
127-18-4	Tetrachloroethene	SW8260B ug/L	5	5 U	5 U	5 U	[5 ∪
108-88-3	Toluene	SW8260B ug/L	5	5 U	5 U	5 U 1	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B ug/L	5	5 U	5 U -	5 U	[5 U
71-55-6	1,1,1-Trichloroethane	SW8260B ug/L	5	5[U	5 U 1	5 난	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B ug/L	1	5 U	5 บ } :	5 U -	5 U
79-01-6	Trichloroethene	SW8260B ug/L	5	34 A	12 A	24 A	42 A
75-69-4	Trichlorofluoromethane	SW8260B ug/L	5	5 간	[5 U]	5 U	· 5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-01-4	Vinyl Chloride	SW8260B ug/L	2	. 5 U	5 Մ 1	5 U	5 U
1330-20-7	Xylenes (total)	SW8260B ug/L	5	5 U	5 U _	5 U	5 U

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-3b Monitoring Well Groundwater Screening Full Data Table Lawrence Aviation Industries Site

			i Olf Generatin C	tation, New York			
		Sample Code	Site-specific-GW	MW-PD-16-GW-A	MW-PD-16-GW-B	MW-PD-16-GW-C	MW-PD-16-GW-D
		Sample Name				!	
		Sample Date		2/25/2008	2/25/2008	2/25/2008	2/28/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth	•	105 to 110 ft bgs	135 to 140 ft bgs	165 to 170 ft bgs	195 to 200 ft bgs
	Volatile Organic Compounds						
67-64-1	Acetone	SW8260B ug/L	50	5 UL	5 UL	5}UL	5 UL
71-43-2	Benzene	SW8260B ug/L	1	.5 U	5 U 1	. 5U	5 U
75-27-4	Bromodichloromethane	SW8260B ug/L	50	5 U	5 U	5 U	5 U
75-25-2	Bromoform	SW8260B ug/L	50	5 U	5 ∪	5 U	5 U
74-83-9	Bromomethane	SW8260B ug/L	5	5 U	6 K A	5 U	5 U
78-93-3	2-Butanone	SW8260B ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B ug/L	50	5 U	5 U	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B ug/L	5	5 U	5 U	5 U	5 U
108-90-7	Chlorobenzene .	SW8260B ug/L	5	5 U	. 5 U	5 U	5 U
75-00-3	Chloroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
67-66-3	Chloroform	SW8260B ug/L	7	5 U }	5 U]	_ 5 U	5 U
74-87-3	Chloromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
110-82-7	Cyclohexane ,	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B ug/L	50	5 U	5 U	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B ug/L	0.04	5 [U]	5 U -	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B ug/L	0,0006	5 U	5 U	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
106-46-7	1,4-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
75-71-8	Dichlorodifluoromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 5
75-34-3	1,1-Dichloroethane	SW8260B ug/L	5	5 Ü]	5 U	5 U	5 U
107-06-2	1,2-Dichloroethane	SW8260B ug/L	0.6	5 U]	5 U	5 U	5 5 0
75-35-4	1,1-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 0
156-59-2	cis-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	9 A	13 A
156-60-5	trans-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 } U	5 U
78-87-5	1,2-Dichloropropane	SW8260B ug/L	1	5 U	5 U	5 U	5 0
10061-01-5	cis-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U 5 U	5 U	5 U	5 U
100-41-4	Ethylbenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
591-78-6	2-Hexanone	SW8260B ug/L	50	5 U	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B ug/L	5	- 5 U	5 U	5 U	5 U
79-20-9	Methyl Acetate	SW8260B ug/L	N/A	5 U	5[U	5 U .	5 U
108-87-2	Methylcyclohexane	SW8260B ug/L	N/A	5 U _.	5 <u>[</u> U [5 U	5 U
75-09-2	Methylene Chloride	SW8260B ug/L	5	5 U 5 U	5 J U []	5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B ug/L	50	5[U]	5]U	5 U	5 U

Table F-3b Monitoring Well Groundwater Screening Full Data Table

			Sample Code	Site-specific-GW	MW-PD-16-GW-A	MW-PD-16-GW-B	MW-PD-16-GW-C	MW-PD-16-GW-D
			Sample Name		•	ļ		
			Sample Date		2/25/2008	2/25/2008	2/25/2008	2/28/2008
Cas Rn	Chemical Name	Analytic Me	t Unit \\ Depth		105 to 110 ft bgs	135 to 140 ft bgs	165 to 170 ft bgs	195 to 200 ft bgs
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	5 U	5 U	5 U	5ĮU
100-42-5	Styrene	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B	ug/L	5	5 U	[5 U]	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	5 ∪	[5 U	9 A	18 A
108-88-3	Toluene	SW8260B	ug/L	5	5 U	5 U	5 U	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 U	[- 5]U	5 U	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	5 ∪	[5 U	5 U	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1	5 U	5 U	5 U	5 U
79-01-6	Trichloroethene	SW8260B	ug/L	5	5 ∪	70 A	800 A	2000 A
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	5 U	5 U	5 U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	5 U	5 <mark> </mark> U	- 5 U	5 U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	5 U	5 U	5 U	5 U
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 U	5 U	5 U	5 U

Notes:

Compound detected below or equal to screening criteria Compound detected above screening criteria #

Α Compound without screening criteria detected

above mean sea level amsl

ft feet

Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter milligrams per liter mg/L

Volatile Organic Analyte - Aqueous SW8260B

Table F-3b Monitoring Well Groundwater Screening Full Data Table Lawrence Aviation Industries Site

			LOIT aguaran	I Station, New Tork			
		Sample Code	Site-specific-GW	MW-PD-16-GW-D-DUP	MW-PD-16-GW-E	MW-PD-16-GW-F	MW-PD-17-GW-A
		Sample Name	'	MW-PD-61-GW-D			A 140 100 00 0
		Sample Date		2/28/2008	3/6/2008	3/6/2008	2/12/2008
Cas Rn	Chemical Name	Analytic Met Unit \\ Depth		195 to 200 ft bgs	225 to 230 ft bgs	245 to 250 ft bgs	70 to 75 ft bgs
	Volatile Organic Compounds				111	_	اا
67-64-1	Acetone	SW8260B ug/L	50	5 UL	12 L #	5 UL	5 UJ
71-43-2	Benzene	SW8260B ug/L	1	5 U	5 U	5 U	5 U
75-27-4	Bromodichloromethane	SW8260B ug/L	50	5 U	5 U	5 U	50
75-25-2	Bromoform	SW8260B ug/L	50	5 U	5 U	5 U	5 U 7 J
74-83-9	Bromomethane	SW8260B ug/L	5	6 U	5 U	6 U	7 J 5 U
78-93-3	2-Butanone	SW8260B ug/L	50	5 U	5 U	5 U	-1-
75-15-0	Carbon Disulfide	SW8260B ug/L	50	5 U	5 U	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B ug/L	5	5 U	5 U	5 U	5 U
108-90-7	Chlorobenzene	SW8260B ug/L	5	5 U	5 U	5 U	50
75-00-3	Chloroethane	SW8260B ug/L	5	5 บ	5 U	5 U	5 0
67-66-3	Chloroform	SW8260B ug/L	7	5] U	5 U	5 U -	5 0
74-87-3	Chloromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
110-82-7	Cyclohexane	SW8260B ug/L	N/A	5 U	5 U	5 U '	5 U
124-48-1	Dibromochloromethane	SW8260B ug/L	50	5 U	5 U	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B ug/L	0.04	5 U	5 U	5 U 5 U	5 U
106-93-4	1.2-Dibromoethane	SW8260B ug/L	0.0006	5 U	5 U		5 U
95-50-1	1,2-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
541-73-1	1.3-Dichlorobenzene	SW8260B ug/L	3	5 Մ	5 U	5 U	5 U
106-46-7	1.4-Dichlorobenzene	SW8260B ug/L	3	5 U	5 U	5 U	5 U
75-71-8	Dichlorodifluoromethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U
75-34-3	1.1-Dichloroethane	SW8260B ug/L	5	5 U	5 U	5 U	5 U 5 U
107-06-2	1.2-Dichloroethane	SW8260B ug/L	0.6	5 U	5 U	5 U	50
7 5- 35-4	1.1-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B ug/L	5	13 A	6 A	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
78-87-5	1,2-Dichloropropane	SW8260B ug/L	1	5 U	5 U	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B ug/L	0.4	5 U	5 U	5 U	5 U
100-41-4	Ethylbenzene	SW8260B ug/L	5	5 U	5 U	5 U	5 U
591-78-6	2-Hexanone	SW8260B ug/L	50	5 U	5 U	5 U	5 U
98-82-8	Isopropylbenzene	SW8260B ug/L	5	5 U	5 U }	5 U	50
79-20-9	Methyl Acetate	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B ug/L	N/A	5 U	5 U	5 U	5 U
75-09-2	Methylene Chloride	SW8260B ug/L	5	5 U	5 ∪	5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B ug/L	50	5 U <u>(</u>	5 U	5 U	5U

Lawrence Aviation Industries Site Port Jefferson Station, New York

		San	nple Code Site-specific-GW	MW-PD-16-GW-D-DUP	MW-PD-16-GW-E	MW-PD-16-GW-F	MW-PD-17-GW-A
		San	nple Name	MW-PD-61-GW-D			
		San	nple Date	2/28/2008	3/6/2008	3/6/2008	2/12/2008
Cas Rn	Chemical Name	Analytic Met Unit	t \\ Depth	195 to 200 ft bgs	225 to 230 ft bgs	245 to 250 ft bgs	70 to 75 ft bgs
1634-04-4	Methyl tert-Butyl Ether	SW8260B ug/L	L 10	5 U	5 U	5 U	6 #
100-42-5	Styrene	SW8260B ug/L	L <u>5</u>	5 [U	[5 U	5 U] 5 U
79-34-5	1,1,2,2-Tetrachloroethane	SW8260B ug/L	L 5	5 U	5 U	5 U	5 U }
127-18-4	Tetrachloroethene	SW8260B ug/L	L 5	18 /	A 6 A	5[U	[5 U
108-88-3	Toluene	SW8260B ug/L	L 5	5 U	5 U	5 U	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B ug/L	L 5	5 U	5 U	5 U	5 U
71-55-6	1,1,1-Trichloroethane	SW8260B ug/L	L 5	5 0	5 U	5 U	5 U
79-00-5	1,1,2-Trichloroethane	SW8260B ug/L	L 1	5 U	5 0	5 U	5 U
79-01-6	Trichloroethene	SW8260B ug/L	L 5	2000	A 800 A] 190 A	5 บ
75-69-4	Trichlorofluoromethane	SW8260B ug/L	L 5	5 U	5 U	5 U	5 ∪
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B ug/L	L 5	5 U	5 U	5 U	5 Ú
75-01-4	Vinyl Chloride	SW8260B ug/L	L 2	5 U	j 5 ∪	5 U	5 U 5
1330-20-7	Xylenes (total)	SW8260B ug/L	L 5	5 บ	5 U	5 U	5 U

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-3b
Monitoring Well Groundwater Screening
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MW-PD-17-GW-B	MW-PD-17-GW-C
			Sample Name			
			Sample Date		2/13/2008	2/13/2008
Cas Rn	Chemical Name	Analytic Me	t Unit \\ Depth		80 to 85 ft bgs	90 to 95 ft bgs
	Volatile Organic Compounds		<u> </u>			
67-64-1	Acetone	SW8260B	ug/L	50	5 UJ	5 UJ
71-43-2	Benzene	SW8260B	ug/L	. 1	5 U	5 U
75-27-4	Bromodichloromethane	SW8260B	ug/L	50	5 U	5 U
75-25-2	Bromoform	SW8260B	ug/L	50	5 U	5 U
74-83-9	Bromomethane	SW8260B	ug/L	5	7 J A	6 J A
78-93-3	2-Butanone	SW8260B	ug/L	50	5 U	5 U
75-15-0	Carbon Disulfide	SW8260B	ug/L	50	5 U	5 U
56-23-5	Carbon Tetrachloride	SW8260B	ug/L	5	5 U	5 U
108-90-7	Chlorobenzene	SW8260B	ug/L	5	5]U	5 U
75-00-3	Chloroethane	SW8260B	ug/L	5	5 U	5 0
67-66-3	Chloroform	SW8260B	ug/L	7	5 U	5 ∪
74-87-3	Chloromethane	SW8260B	ug/L	5	5 U	5 U
110-82-7	Cyclohexane	SW8260B	ug/L	N/A	5 U	5 U
124-48-1	Dibromochloromethane	SW8260B	ug/L	50	5 U	5 U
96-12-8	1,2-Dibromo-3-chloropropane	SW8260B	ug/L	0.04	5 U	5 U
106-93-4	1,2-Dibromoethane	SW8260B	ug/L	0.0006	5 U	5 U
95-50-1	1,2-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U
541-73-1	1,3-Dichlorobenzene	SW8260B	ug/L	3	5 U	[5 U
106-46-7	1,4-Dichlorobenzene	SW8260B	ug/L	3	5 U	5 U
75-71-8	Dichlorodifluoromethane	SW8260B	ug/L	5	5 U	5 년
75-34-3	1,1-Dichloroethane	SW8260B	ug/L	5	5 U	5 U
107-06-2	1,2-Dichloroethane	SW8260B	ug/L	0.6	5 U	5 U
75-35-4	1,1-Dichloroethene	SW8260B	ug/L	5	5 U	5 U
156-59-2	cis-1,2-Dichloroethene	SW8260B	ug/L	5	5 U	5 U
156-60-5	trans-1,2-Dichloroethene	SW8260B	ug/L	5	5 U	5 U
78-87 - 5	1,2-Dichloropropane	SW8260B	ug/L	1	5 U	5 U
10061-01-5	cis-1,3-Dichloropropene	SW8260B	ug/L	0.4	5 U	5 U
10061-02-6	trans-1,3-Dichloropropene	SW8260B	ug/L	0.4	5 U	5 U
100-41-4	Ethylbenzene	SW8260B	ug/L	5	5 U	5 U
591-78-6	2-Hexanone	SW8260B	ug/L	50	5 U	5 U
98-82-8	isopropylbenzene	SW8260B	ug/L	5	5 U	5 U
79-20-9	Methyl Acetate	SW8260B	ug/L	N/A	5 U	5 U
108-87-2	Methylcyclohexane	SW8260B	ug/L	N/A	5 U	5 U
75-09-2	Methylene Chloride	SW8260B	ug/L	5	5 U	5 U
108-10-1	4-Methyl-2-pentanone	SW8260B	ug/L	50	5 U	5 U

Table F-3b Monitoring Well Groundwater Screening Full Data Table

	-		Sample Code Sample Name	Site-specific-GW	MW-PD-17-GW-B	MW-PD-17-GW-C
	•		Sample Date		2/13/2008	2/13/2008
Cas Rn	Chemical Name	Analytic Me	t Unit \\ Depth		80 to 85 ft bgs	90 to 95 ft bgs
1634-04-4	Methyl tert-Butyl Ether	SW8260B	ug/L	10	5]U	5 U
100-42-5	Styrene	SW8260B	ug/L	5	5 U	5 U
79-34-5	1,1,2,2-Tetrachioroethane	SW8260B	ug/L	5	5 U	5 U
127-18-4	Tetrachloroethene	SW8260B	ug/L	5	5 U	5 U
108-88-3	Toluene	SW8260B	ug/L	5 .	5 U .	5 U
120-82-1	1,2,4-Trichlorobenzene	SW8260B	ug/L	5	5 U S	ร บ
71-55-6	1,1,1-Trichloroethane	SW8260B	ug/L	5	5 U	s U
79-00-5	1,1,2-Trichloroethane	SW8260B	ug/L	1	5 U	s U
79-01-6	Trichloroethene	SW8260B	ug/L	5	5 ∪	5 U
75-69-4	Trichlorofluoromethane	SW8260B	ug/L	5	ا با إع	5 ∪
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	SW8260B	ug/L	5	ัร บ	5 U
75-01-4	Vinyl Chloride	SW8260B	ug/L	2	5 U	5 U
1330-20-7	Xylenes (total)	SW8260B	ug/L	5	5 U .	5 U

N	OI	es	•

# Compound detect	ted below or equal to screening criteria
-------------------	--

Α	Compound detected above screening criteria
~	Compound without screening criteria detected

amsl	ahove mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				ort Jenerson Stat	ion, new rolk			
-			Sample Code	Site-specific-GW	MPW-01-PD-A-R2	MPW-01-PD-B-R2	MPW-01-PD-C-R2	MPW-02-PD-A-R2
			Sample Name	-				
			Sample Date		5/19/2008	5/19/2008	5/19/2008	5/27/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		17.73 ft amsl	-6,77 ft amsl	-29,27 ft amsi	25.85 ft amsl
	Volatile Organic Compounds							.
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U }	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1.1-Dichloroethene	TVOA	ug/L	5	o.5 U	0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	o.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 บ	5 U	5 ∪∤
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 ป	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U <u> </u>	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10 ·	2.6	1.1 #[0.5 U	0.71 #
75-34-3	1.1-Dichloroethane	TVOA	ug/L	5	0.5 U	0.36 J #	2 #	0.5 [U
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5-	o.5 U	0.5 U [0.5 U	2.3 #
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	s u [5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.5U	0.84 U	0.81 U	0.5 ∪∤
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.11 J #	1 1 1#1	0.9 #	0.12 J #
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	(0.5 U	0.5 U	0.5 ∪}
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 [U]	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
107-06-2	1.2-Dichloroethane	TVOA	ug/L	0.6	o.5[U]	0.5 0	0.5 U	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.18 J #	820 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 [U]	0.5 나	0.5 บ	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5(U)	0.5 U	0.5 บ	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 リ	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 0	0.5 U	0.5]U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	5 U	5 U	5 ∤ U
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.5 0	0.5 U	0.5 U
100-05-3	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5[간]
79-00-5	1.1.2-Trichloroethane	TVOA	ug/L	1	0.5 U	0.5 0	0.5 U	0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.5 UJ	0.17 J #	0.5 UJ	31 A
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 <u>U</u>

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

-			Sample Code	Site-specific-GW	MPW-01-PD-A-R2	MPW-01-PD-B-R2	MPW-01-PD-C-R2	MPW-02-PD-A-R2
			Sample Name					
			Sample Date		5/19/2008	5/19/2008	5/19/2008	5/27/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth_		17.73 ft amsl	-6.77 ft amsi	29.27 ft amsl	25.85 ft amsl
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA	ug/L	N/A	0.5 U	0.5JU	0.5 U	0.5 U
100-42-5	Styrene	TVOA	ug/L	5	0.5 U	0.5 _U	0.5 U	0.5 ∪∫
75-25-2	Bromoform	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5년	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5
541-73-1	1,3-Dichlorobenzene	TVOA	ug/L	3	0,5 U	0.5 U	0.5 U	0.5(0)
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 U	0.5 U-	[0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOÁ	ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA	ug/L	5	0.5 บ	0.5 U	0.5 U	0.5 U
 Titanium and F	- Iuoride			.				
7440-32-6	Titanium Metal Powder	SW6010)E μα/L	N/A	10 0	10 0	10 U	10 0
16984-48-8	Fluoride	Fluoride	_	0.12		# 0.052 J		

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	Port Jefferson Station, New York									
i		_	Sample Code	Site-specific-GW	MPW-02-PD-B-R2	MPW-02-PD-C-R2	MPW-02-PD-D-R2	MPW-03-PD-A-R2		
			Sample Name	•		1				
			Sample Date		5/27/2008	5/27/2008	5/27/2008	5/20/2008		
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		3.35 ft amsi	-24.15 ft amsl	-48.65 ft amsl	9.60 ft amsl		
	Volatile Organic Compounds									
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U		
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 0		
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 년	0.5 0	0.5 U	0.5 U		
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
67-64-1	Acetone	TVOA	ug/L	50	5 U	_. 5 ∪	5 U	5 U		
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U		
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 リ	0.5 U	0.5 U	0.5 U		
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U		
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.31 J #	0.11 J # j	0.22 J #	0.2 J #		
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	2.5 #	1.3 #	1.8 #	0.5 U ·		
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.14 J #	0.14 J #	0.5 U	0.5 U		
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 U	5 U	5 0		
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
67-66-3	Chloroform	TVOA	ug/L	7	0.78 #	1.1 #	1.6 #	0.15 J #		
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	2.2 #	1.1 #	1.4	0.5 U		
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U		
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U		
71-43-2	Benzene	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U		
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5	0.5 U	0.5 U		
79-01-6	Trichloroethene	TVOA	ug/L	5	2.4 #	8.5 A	0.41 J #	1.9		
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U		
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 ป	0.5 U	0.5 U	0.5 U 0.5 U		
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 0		
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	5 U		
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	5 U	5 U			
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U		
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U 0.5 U		
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0,5 U	0.5 U	0.5 U			
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.86	0.31 J #	0.26 J #	0.5 UJ 5 U		
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 U	5 0	1 -1- 1		
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5		
106-93-4	1,2-Dibromoethane	TVOA	ug/L .	0.0006	0.5 U	0.5 U _	0.5 U	0.5 U		

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	-		Sample Code Sample Name	Site-specific-GW	MPW-02-PD-B-R	2	MPW-02-PD-C-R	2	MPW-02-PD-D-R2	MPW-03-PD-A-R2
			Sample Date		5/27/2008		5/27/2008		5/27/2008	5/20/2008
Cas Rn	Chemical Name		Unit \\ Depth		3.35 ft amsi		-24.15 ft amsl		-48.65 ft amsl	9.60 ft amsl
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5 U	ı	0.5ไป	17	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5 U	ا ار	0.5 U	11	0.5 U	0.5 U
95-47-6	o-Xylene		ug/L	5	0.5 U	ا ر	0.5 U	1 1	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA	ug/L	N/A	0.5 U	ıl lı	0.5 U		0.5 ט	0.5 U
100-42-5	Styrene	TVOA	ug/L	5	0.5 U	ا ر	0:5{U	11	0.5 U	0.5 U
75-25-2	Bromoform	TVOA	ug/L	50	0.5 U	ıl lı	0.5 U	11	0.5 U	0.5 U }
98-82-8	Isopropylbenzene	TVOA	ug/L	5	0,5 U)	0.5 U		0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5 U	1	0,5 บ	11	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	AOVT	ug/L	3	0.5 U	;	0.5 U	11	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5 U	,	0.5 U	11	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	0.5 ป	ı	0.5 U		0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA	ug/L	0.04	0.5 ป	,	0.5 U	1 1	0.5 U	0.5 ∪
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5 U	네	0.5 U		0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA	ug/L	5	0.5 U	Ш	0.5 U	11	.0.5 U	0.5 U
 Titanium and F	Fluoride									
7440-32-6	Titanium Metal Powder	SW6010E	ug/L	N/A	10 U	1	10 U		10 0	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.95	Α		A	0.69 A	0.092 J #

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			•	Site-specific-GW	MPW-03-PD-B-R2	MPW-03-PD-C-R2	MPW-03-PD-D-R2	MPW-04-PD-A-R2
			Sample Name					
			Sample Date		5/20/2008	5/20/2008	5/20/2008	5/21/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		-12.90 ft amsl	-30.40 ft amsl	-50,40 ft amsl	21.56 ft amsi
	Volatile Organic Compounds]			}	[]
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 ป	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5	1.1 #	0.5[U]	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5\U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 ぴ	0.5 ひ	0.5 U	0.5\U
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 U	5 U	5 0
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 U	0.5	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U]	0.5 U	0.5 U	0.5
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.12 J #	0.5 リ	0.41 J #]	1.3
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	_ 0.5 U	0.95 #	0.49 J #	0.5 U
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.4 J #	0.5	1.3
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	˙ 5 U	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	. 0.5 U	0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.5 U	0.5 U	0.5	0.5 U
71-55-6	1.1.1-Trichloroethane	TVOA	ug/L	5	0.5 U	0.23 J #	0.44 J #	0.5 U
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5{U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	[0.5{U	0.5 บ	0.5 U
71-43-2	Benzene	TVOA	ug/L	1	0.5 ひ	0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	3.4 #	0.79 #	15 A	25 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U	0.5 บ	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5 U	· 0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.56 ひ	0.5 U	0.41 J #
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5\U	0.5	0.5 U	(0.5 U
79-00-5	1.1.2-Trichloroethane	TVOA	ug/L	1	0.5 U]	0.5 U	0.5 U	0.5 ひ
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.2 J #	0.12 J #	0.76	10 A
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 บ	5 U	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 บ	0.5 U	0.5 U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site

Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-03-PD-B-R2	MPW-03-PD-C-R2	MPW-03-PD-D-R2	MPW-04-PD-A-R2
		Sample Name			i		
		Sample Date		5/20/2008	5/20/2008	5/20/2008	5/21/2008
Cas Rn	Chemical Name	Analytic Iv Unit \\ Depth		-12.90 ft amsl	-30.40 ft amsl	-50.40 ft amsl	21.56 ft amsl
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 0
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.1 J ~	0.5 ป	0.19 J ~
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0,5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA ug/L] 3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	. 0.5 U	0.5 년
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5JU
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5	0.5 U	0.5 U	0.5 U
		·					
Titanium and I	Fluoride]	1 1	[
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	5.7 J ~ i		10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.088 J #	0.1 J #	0.54 A	0.13 J A

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				on Jenerson Stati		T ADM OF DD C D2	MPW-04-PD-D-R2	MPW-04-PD-E-R2
				Site-specific-GW	MPW-04-PD-B-R2	MPW-04-PD-C-R2	WIPW-04-PD-D-RZ	MIL 88-04-1 D-F-175
			Sample Name		5/04/0000	5/24/2022	5/21/2008	5/21/2008
			Sample Date		5/21/2008	5/21/2008	-44.94 ft amsi	-67.44 ft amsi
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		2.06 ft amsl	-28.44 ft amsl	-44.54 11 20151	-07.44 it airioi
	Volatile Organic Compounds			3 -	ا ا ا	0.5 U	0.5 U	0.5 U
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	<u> </u>	0.5		0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.5 U		0.5
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 ひ	0.5 U	0.5 U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 0	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 0	5 U	5 0
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.35 J #	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	· N/A	0.5 U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U }	0.5 U	0,5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	8.4 #	: 0.96 #	2.2 #	2.4
75-34-3	1,1-Dichloroethane	TVOA	ug/L "	5	0.5 U	0.5 J U	0.36 J #	1.4 #
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	1.6	0.13 J # J	0.87 #	0.5
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 U }	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.5U	0.5 U	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.5	0.5 U	0.69 #	1.5
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 0	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachioride	TVOA	ug/L	5	0.5 U) o.s u	0.5 U	0.5 U
71-43-2	Benzene	TVOA	ug/L] 1	0.5 U	. ง.รโบไ ไ	0.5 U	0.5 U
	1.2-Dichloroethane	TVOA	ug/L	0.6	0.5	0.5 U	0.5 บ	0.5[년]
107-06-2	••	TVOA	ug/L	5	100 A	4.1 #	51 A	21 A
79-01-6	Trichloroethene	TVOA	ug/L	N/A	0.5 U	` 0.5 U	0.5 U	0.5 ∪ \
108-87-2	Methylcyclohexane	TVOA	ug/L ug/L	1	0.5 U	0.5 U	0.5 Ú	0.5 U
78-87-5	1,2-Dichloropropane	TVOA		50	0.5 0	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	0.4	0.5 0	0.5 U	0.5	0.5 U
10061-01-5	cis-1,3-Dichloropropene		ug/L	50	5 0	5 0	5 U	5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5
108-88-3	Toluene	TVOA	ug/L	_	0.5 0	0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 0	0.5 0	0.5 U	0.5 0
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1 - 1		0.81 #	10 A	5.8 A
127-18-4	Tetrachloroethene	TVOA	ug/L	5	58 A	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	5 U ^	5.5 U ^`
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	1 -1-1 1	0.5	0.5
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 U	, , ,	0.5 U
106-93-4	1,2-Dibromoethane	TVOA _	ug/L	0.0006	0.5[U]	0.5 U _}	0.5 U]	0.0[0]

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MPW-04-PD-B-R2	MPW-04-PD-C-R2	MPW-04-PD-D-R2	MPW-04-PD-E-R2
			Sample Name)				•
			Sample Date		5/21/2008	5/21/2008	5/21/2008	5/21/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		2.06 ft amsi	-28.44 ft amsl	-44.94 ft amsl	-67.44 ft amsl
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA	ug/L	N/A	0.5 ป	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	TVOA	ug/L	5	0.5 ป	0.5[U]	0.5 U	0.5 U
75-25-2	Bromoform	TVOA	ug/L	50	0.5 U	0.5	0.5 U	0.5 ∪∫
98-82-8	Isopropylbenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 U	0.5 U	0.5∤∪
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA	ug/L	0.04	0.5 U	0.5	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
Titanium and I	Fluoride							
7440-32-6	Titanium Metal Powder	SW6010	E ug/L	N/A	10 U	10 0	10 U	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	1.4 A	ا ما اسما	2.1 A	0.22 A

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			1	Site-specific-GW	MPW-05-PD-A-R2	MPW-05-PD-B-R2 T	MPW-05-PD-C-R2	MPW-05-PD-D-R2
			Sample Name	•				
			Sample Date		5/21/2008	5/21/2008	5/21/2008	5/21/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		-8.37 ft amsi	-36.87 ft amsl	-53.57 ft amsl	-71.87 ft ams!
_	Volatile Organic Compounds							
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 🗸	0.5 U	0.5 U	0.5 ひ
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 ป	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5 ป	0.5 U	0.5 ∪
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 ป	0.5 U	0.5 Ų	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U]	0.5 Ů	0.5 ∪∤
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 ひ
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.45 J #	0.5 U	0.5 บ	0.5 ひ
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 บ	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 ひ	0.5 ひ	0.5 U
1634-04-4	Methyi tert-Butyi Ether	TVOA	ug/L	10	1.8 #	0.5 U	0.5 U	0.5 U
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	0.5	0.5 ひ	0.33 J #	0.54 #
156-59-2	cis-1.2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 ひ .	0.5 U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.32 J #	0.5]ひ	0.5 U	0.37 J #
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.5 U	0.17 J #	0.44 J #	0.72 #
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5{U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 다	0.5 U
71-43-2	Benzene	TVOA	ug/L_	1	0.5 나	0.5 U	0.5 U\	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 U	0,5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	0.33 J #	0.89 #	6.4 A	8.4 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5[다]	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 ひ	0.5 U	0,5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5[U]	5 U	5 U	5 U
108-88-3	Toluene	TVOA	ug/L	5	1.2 #	0.5 U	0.5 U	0.14 J #
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5\U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0.5 U	0.5U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.36 J #	0.5 U	0.53 #	0.61
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 년	5 U	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5[년	0.5 U	0.5 U
106-93-4	1.2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	0, <u>5</u> U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-05-PD-A-R2	MPW-05-PD-B-R2	MPW-05-PD-C-R2	MPW-05-PD-D-R2
		Sample Name	<u> </u>				
		Sample Date		5/21/2008	5/21/2008	5/21/2008	5/21/2008
Cas Rn	Chemical Name	Analytic N Unit \\ Depth		-8.37 ft ams!	-36.87 ft amsl	-53.57 ft amsl	-71.87 ft amsl
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5[U	0.5 ∪ ∫
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5[U	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 บ	0.5 U	0.5∤∪∤	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ひ
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 U	. 0.5 U	0.5
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 ∪⋅	0.5\U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 บ	0.5 U	0.5 U	0.5{U
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 <mark>U</mark>	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 ป	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	· TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
							ļ <u> </u>
Titanium and	Fluoride			11			
7440-32-6	Titanium Metal Powder	SW6010£ ug/L	N/A	10 U	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.11 J #	0.08 J #	0.094 J #	0.082 J #

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				ort Jeherson Stati				MENT OF BRIDE
			Sample Code	Site-specific-GW	MPW-06-PD-A-R2	MPW-06-PD-B-R2	MPW-06-PD-C-R2	MPW-06-PD-D-R2
			Sample Name					- 100 100 05
			Sample Date	ļ	5/22/2008	5/22/2008	5/22/2008	5/22/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		-18.88 ft amsl	-38.38 ft amsl	-64.88 ft amsl	-108.38 ft amsl
	Volatile Organic Compounds		<u>, </u>					
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U {	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.13 J #	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5	0.5	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U}	0.5 ひ	0.19 J #
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U }	0.5[U]
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 U	5 U 	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 ひ	0.5 บ	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 ป
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 ぴ	0.5	0.5 U	0.5 บ
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.5 ∪	0.21 J # j	0.5 U	0.5 U
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	~ 0.5 U	0.5 U	0.44\J #	0.48 J #
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.5 ひ	0.5 U	0.18 J #	0.19 J
78-93-3	2-Butanone	TVOA	ug/L	50	ร บ	5 U 1	5[U]	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 ປ ·	0.5 U	0.5 \ U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.5 U	\ 0.5 U	0.5 U	0.49}J ŧ
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.49 J #	0.36 J
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U .	0.5 い	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5	0.5 ひ	0.5 U	0.5 U
71-43-2	Benzene	TVOA	ug/L	1	0.5	0.5 U	0.5 ป	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 U i	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	0.5 ひ	0.76 #	1.7 #	6.9
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U 1	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1 1	0.5 U	0.5 U	0.5 U	0.5\U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5[U	0.5 U
		TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 0	0.5 U
10061-01-5 108-10-1	cis-1,3-Dichloropropene	TVOA	ug/L ug/L	50	5 0	5 U	5 U	5 U
108-10-1	4-Methyl-2-pentanone Toluene	TVOA	ug/L	5	1 1 #	1.3 #	0.5 U	0.5 U
		TVOA	ug/L ug/L	0.4	0.5 บ	0.5∤∪	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	",	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene		•	50	5 0	5 U	5 0	5 U
591-78-6	2-Hexanone	TVOA	ug/L	50	0.5	0.5 0	0.5 U	0.5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	0.0006	0.5 0	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	J 0.0006	<u> </u>	1	5.0 0	

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site

			Sample Code	Site-specific-GW	MPW-06-PD-A-R2	MPW-06-PD-B-R2	MPW-06-PD-C-R2	MPW-06-PD-D-R2
			Sample Name					
			Sample Date		5/22/2008	5/22/2008	5/22/2008	5/22/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		-18.88 ft amsl	-38.38 ft amsl	-64.88 ft amsl	-108.38 ft amsl
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5[U]	0.5 U
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA	ug/L	5	0.5 U	0.5∫∪∤	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA	ug/L	N/A	0.5 U	0.13[J ~	0.5 U	0.5 U
100-42-5	Styrene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA	ug/L	50	0.5[U	0.5 ป	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5 บ	0.5 U	0.5 U	0.5[น
541-73-1	1,3-Dichlorobenzene	TVOA	ug/L	3	0.5 บ	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5]U	0.5	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA	ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA	ug/L ,	5	0.5 U	0.5 U	0.5 U	0.5 ป
	,							
Titanium and F					1 1			
7440-32-6	Titanium Metal Powder	SW6010	-	N/A	10 U	10 U	27.8 ~	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.15 J A	0.096 J #	0.056 J #	0.076 J #

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Site-specific-GW	MPW-07-PD-B-R2	MPW-07-PD-C-R2	MPW-08-PD-A-R2	MPW-08-PD-B-R2
			Sample Name					
			Sample Date		6/2/2008	6/3/2008	5/22/2008	5/22/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		3.94 ft amsl	-26.56 ft amsl	13.59 ft amsl	-33.09 ft amsi
	Volatile Organic Compounds					11	[, _]	[]
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.17 J #	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5[U	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 い	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U {	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 ∪	5 U	5 U	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5∫U	0.5 ป	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5\U	0.5 U {	0.5
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.9 #	0.5 U	0.33 J #	0.25 J
75-34 - 3 -	1,1-Dichloroethane	TVOA	uğ/L	5	0.19 į J #	0.11 J #	0.5 U	0.5 U
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.5{U	0.5 U	0.5 U	0.5 U
78-93-3	2-Butanone	TVOA	ug/L	50	5[U	5 U	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5]U
67-66-3	Chloroform	TVOA	ug/L	7	0.5 U	0.5 U	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.6 #	0.5 U	0.5 U -	0.5[U]
110-82-7	Cyclohexane	TVOA	ug/L	N/A	o.5 U	0.5 บ }	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride,	TVOA	ug/L	5	0.5 บ ใ	0.5 บ	0.5 U	0.5 U
71-43-2	Benzene	TVOA	ug/L	1	o.5 u	0.5 บ	0.5 U	0.5] U
107-06-2	1.2-Dichloroethane	TVOA	ug/L	0.6	o.5 U.	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	1.1 #	0.3 J #	2.6 #	3.6
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 ป	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5]U	0.5 บ	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5) U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 0	5 U	5 U \	5 U
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5\U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	5 1	0.27 J #	0.5 U	0.5 U	0.5 U
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 0	5 0	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 0	0.5 U	0.5	0.5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-07-PD-B-R2	MPW-07-PD-C-R2	MPW-08-PD-A-R2	MPW-08-PD-B-R2
		Sample Nam	e	'			
		Sample Date		6/2/2008	6/3/2008	5/22/2008	5/22/2008
Cas Rn	Chemical Name	Analytic Iv Unit \\ Depth		3.94 ft amsl	-26.56 ft amsl	-13.59 ft amsl	-33.09 ft amsl
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U]	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 U	0.5 0	0.5JU
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U I	0.5 U	0.5 U	0.5∤∪
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5∤∪
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 (0)	o.5{u	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5[U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.ś U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 ป	0.5 U	0.5 ป
Titanium and F	luoride						
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 U		10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	2.6 A		0.062\J #	0.056 J #

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

					LIDW OO DD O DO	MPW-08-PD-D-R2	MPW-08-PD-E-R2	MPW-09-PD-A-R2
			•	Site-specific-GW	MPW-08-PD-C-R2	1V1PVV-U8-PU-U-R2	141LA4-00-LD-E-45	MIL MA-CA-L D-V-LV
			Sample Name		5/22/2008	5/22/2008	5/22/2008	5/28/2008
	Ol or to al Name	A 14? _	Sample Date		-63.59 ft amsl	-85.09 ft amsl	-102.59 ft amsl	-5.01 ft amsl
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		-03.59 It amsi	-05.09 It allisi	-102.39 11 811131	-5.01 ((4///5)
	Volatile Organic Compounds	T7 (O 4		5	0.5 0	0.5	0.5 U	0.5 U
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U 0.5 U	0.5 U 0.5 U	0.5 U	0.5
74-87-3	Chloromethane	TVOA	ug/L			0.5 U 0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U		0.5 0	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5 U		0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.50
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	5(U
67-64-1	Acetone	TVOA	ug/L	50	5 U	5[U]	5 0	-1-1
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5[U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	.0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 ひ	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.16 J #	0.5 U	0.5 U	0.5 U
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	0.14[J #	0.36 J #	0.15 J #	0.78
156-59-2	cis-1,2-Dichloroethene	TVOA	_ug/L	5	0.19[J #	0.74 #	0.32 J #	1.7
78-93-3	2-Butanone	TVOA	ug/L -	50	5[U	5 나	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5[ひ	0.5]U[0.5 U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.5 [U	0.5 ∪∤	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.18J #	0.28 J] #	0.5 リ	0.98
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 บ	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5(ひ)	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	TVOA	ug/L	1 1	0.5 U	0.5 U	0.5 U	0.5 U
107-06-2	1.2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 U (0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	16 A	37 A	15 A	49 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 บ	0.5 U \	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ua/L	1 1	0.5년	0.5 ป	0.5 U	0.5 ป
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5 ป	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5し	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 0	5 U	5 U	5 U
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/Ļ	0.4	0.5	0.5 U	0.5	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1 1	0.5 U	0.5 U	0.5	0.5
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.5	0.5 U	0.5 U	0.85 #
127-18 -4 591-78-6	2-Hexanone	TVOA	ug/L	50	5 0	5 U	5 U	5 U
	- · · · · · · · · · · · · · · · · · · ·	TVOA	ug/L	50	0.5 0	0.5 0	0.5 0	0.5 U
124-48-1	Dibromochloromethane	TVOA	ug/L ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	IVUA	ugrL	1 0.0000		0.0]0]		

Table F-4
Groundwater Sampling - Round 2
Full Data Table

Lawrence Aviation Industries Site Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-08-PD-C-R2	MPW-08-PD-D-R2	MPW-08-PD-E-R2	MPW-09-PD-A-R2
		Sample Name					
		Sample Date	į į	5/22/2008	5/22/2008	5/22/2008	5/28/2008
Cas Rn	Chemical Name	Analytic N Unit \\ Depth		-63.59 ft amsl	-85.09 ft amsl	-102.59 ft amsl	-5,01 ft amsi
108-90-7	Chlorobenzene	TVOA üg/L	5	0.5 U	0.5 U	0.5 U	0.5
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0,5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 ป	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 ひ	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
							
Titanium and f							
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 U	10 U	10 U	10 0
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.052 J #	0.048 J #	0.11 j #	0.082 J #

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table

Lawrence Aviation Industries Site Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-09-PD-B-R2	MPW-09-PD-C-R2	MPW-09-PD-D-R2	MPW-09-PD-E-R2
	1	Sample Name	<u> </u>				
		Sample Date		5/28/2008	5/28/2008	5/28/2008	5/28/2008
Cas Rn	Chemical Name	Analytic N Unit \\ Depth	ļ	-38.51 ft amsl	-69.01 ft amsl	-88.51 ft amsl	-120.01 ft amsl
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 ぴ	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 บ	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 { U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 ひ	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61- 6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
Titanium and F	luoride						
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 U	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.068 J #	0.066 J #	0.06 J #	0.054 J #

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

J Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				ort Jenerson Stat	on, New Tork				
		-	Sample Code	Site-specific-GW	MPW-10-PD-A-R2		MPW-10-PD-B-R2	MPW-10-PD-C-R2	MPW-10-PD-D-R2
			Sample Name						
			Sample Date		5/28/2008		5/28/2008	5/28/2008	5/28/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		5,56 ft amsi		-19.94 ft amsl	-51,44 ft amsl	-67.94 ft amsl
	Volatile Organic Compounds				·			_	
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U		0.5 U	0.5 ป	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2 '	0.5 ひ	1 1	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	1 1	0.5	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L ,	5	0.5 ぴ	1 1	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	ΙĒ	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5[U		0.5[다]	0.5 U	0.86
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U		0.5]나	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 U		5 U	5 U	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U		0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U		0.5 년	0.5 U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U		0.5	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	1.6 J	#	4.3]J #	1.4 J #	0.37 J
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	0.72 J	#	0.23 J #	0.7 3 #	2.9
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.32 J	#	1.4 #	1.7	0.5 U
78-93-3	2-Butanone	TVOA	ug/L	50	5 Ú		5 U[5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.57 J	#	0.5 U	0.57 J #	0.7 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	1 J	#	0.38 J #	1 J #	2.4
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5U		0.5 U	0.5 U	0.5]U}
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U		0.5]∪	0.5 U	0.5[U
71-43-2	Benzene	TVOA	ug/L	1	0.5 U		0.5 U	0.5 U	0.5 U
107-06-2	1.2-Dichloroethane	TVOA	ug/L	0.6	0.5 U		0.5[ひ]	0.5 U	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	18	A	59 A	40 A	3.3
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 ป		0.5[บ]	0.5 ป	0,5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U		0.5 U	0.5	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U		0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U		0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U		5 U	5 ป	5 U
108-88-3	Toluene	TVOA	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U		0.5 ป	0.5 U	0.5 U
79-00-5	1.1.2-Trichloroethane	TVOA	ug/L	1	0.5 U		0.5 ป	0.5 U	0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	5	7	A	27 A	19 A	1.1
591-78-6	2-Hexanone	TVOA	ug/L	50	ร์โบ		5 U	5 U	5 ป
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U		0.5 0	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U]]	0.5 U	0.5 U	0.5 U

Table F-4 Groundwater Sampling - Round 2 Full Data Table **Lawrence Aviation Industries Site** Port Jefferson Station, New York

_ 		Sample Code	Site-specific-GW	MPW-10-PD-A-R2	MPW-10-PD-B-R2	MPW-10-PD-C-R2	MPW-10-PD-D-R2
		Sample Nam		IAII AA-IO-I D-V-475	141 FF-10-1 D-D-1\Z	1911 44-10-1 D-Q-11/2	1411 A4-10-1 D-D-L/S
		Sample Nam	1	5/28/2008	5/28/2008	5/28/2008	5/28/2008
]		•		= "			
Cas Rn_	Chemical Name	Analytic N Unit \\ Depth		5.56 ft amsl	-19.94 ft amsl	-51.44 ft amsl	-67.94 ft amsl
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
95-47 -6	o-Xylene	TVOA ug/L	⁻ 5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Хуlеле	TVOA ug/L	N/A	0.5 U -	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	TVOA ug/L	5	o.5 u	0.5 U	0.5 บ	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5[U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ∪
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 บ	0.5 U	0.5 ∪ ∤	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug̃/L	3	0.5 ນ	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 บ	0.5 U	0.5(U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 ป	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	' 0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
Titanium and I	-luoride			i I I			
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 [U]	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.074 J #_	1 A	1.4 A	0.26 A

Compound detected below or equal to screening criteria Compound detected above screening criteria #

Α Compound without screening criteria detected

above mean sea level amsl

ft feet

J Value estimated

U Compound not detected above reporting limit

micrograms per liter ug/L mg/L milligrams per liter

Trace Volatile Organic Analyte - Aqueous TVOA

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

Cas Rn Chemical Name Analytic N Unit \\ Depth Date Sample Date	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U
Cas Rn Chemical Name Analytic N Unit \\ Depth 12 to 2 ft amsl 40 ft 24 ft amsl -30.6 to -40.6 ft amsl 75-71-8 Dichlorodifluoromethane TVOA ug/L 5 0.5 U	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U
Volatile Organic Compounds Volatile Organ	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U
75-71-8	0.5 U 0.5 U 0.5 U 0.5 U
73-71-6	0.5 U 0.5 U 0.5 U 0.5 U
TS-01-4	0.5 U 0.5 U 0.5 U
74-83-9 Bromomethane	0.5 U 0.5 U
Total	0.5
75-69-4	1 1
Trichlorondorformer trans	II OFILE
1,1,2-Trichloro-1,2,2-trifluoroethane	0.5 0
Total Tota	0.5 U
67-64-1 Acetone	0.5 U
10	5 0
75-09-2 Methylene Chloride TVOA ug/L 156-60-5 trans-1,2-Dichloroethene TVOA ug/L 10 0.5 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 105 U 106-69-2 cis-1,2-Dichloroethane TVOA ug/L 10 10 10 10 10 10 10 10 10 1	
75-09-2 Methylene Chloride TVOA ug/L 5 0.5 U	0.5 U
156-60-5 trans-1,2-Dichloroethene TVOA ug/L 5 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.33 J 0.33 J 0.33 J 0.33 J 0.5 U 0.	0.5 U
1634-04-4 Methyl tert-Butyl Ether TVOA ug/L 10 0.17 J J # 0.36 J J # 0.33 J F 75-34-3 1,1-Dichloroethane TVOA ug/L 5 0.5 U F 0.5 U	0.5 U
75-34-3 1,1-Dichloroethane TVOA ug/L 5 0.5 U	
156-59-2 Cis-1,2-Dichloroethene TVOA Ug/L 5 0.5 U 0.5 U 5 U 78-93-3 2-Butanone TVOA Ug/L 5 0.5 U 5 U 5 U 74-97-5 Chlorobromomethane TVOA Ug/L 5 0.5 U 0.5	0.1 J #
78-93-3 2-Butanone TVOA ug/L 50 5 U 5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.14 J # 0.13 J 0.13 J 0.13 J 0.14 J # 0.13 J 0.5 U <	
74-97-5 Chlorobromomethane TVOA ug/L 5 0.5 U 1.1 U 0.5 U 0.14 J # 0.13 J 0.13 J 0.13 J 0.5 U	5 U
67-66-3 Chloroform TVOA ug/L 7 9.4 A 0.5 U 1.1 U 71-55-6 1,1,1-Trichloroethane TVOA ug/L 5 0.5 U 0.14 J # 0.13 J 110-82-7 Cyclohexane TVOA ug/L N/A 0.5 U 0.5 U 0.5 U 56-23-5 Carbon Tetrachloride TVOA ug/L 5 0.5 U 0.5 U 0.5 U 71-43-2 Benzene TVOA ug/L 1 0.5 U 0.5 U 0.5 U	0.5 U
71-55-6	
110-82-7	
56-23-5 Carbon Tetrachloride TVOA ug/L 5 0.5 U 0	0.5 U
71-43-2 Benzene TVOA ug/L 1 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5
Control of the contro	
107-06-2 1,2-Dichloroethane TVOA ug/L 0.6 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	
79-01-6 Trichlomethene TVOA ug/L 5 0.16 J # 1 0.52 U 0.5 U	1 1
108-87-2 Methylcyclohexane TVOA ug/L N/A 0.5 U 0.5 U 0.5 U 0.5 U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
78-87-5 1 2-Dichloropropage TVOA ug/L 1 0.5[U 0.5[U 0.5]U 0.5[U	
75-27-4 Bromodichloromethane TVOA ug/L 50 0.5[U 0.5[U] 0.5[U] 0.5[U]	
10061-01-5 cis-1-3-Dichloropropene TVOA ug/L 0.4 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	
108-10-1 4-Methyl-2-pentanone TVOA ug/L 50 5 U 5 U 5 U 5 U	
109 88 3 Toluene TVOA µg/L 5 0.5 U 0.15 J # - 0.5 U	
10061-02-6 trans-1 3-Dichloropropene TVOA ug/L 0.4 0.5 U 0.5 U 0.5 U 0.5 U	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
79-00-5 1.1.2-Trichlorgethane TVOA ug/L 1 0.5 U 0.5 U 0.5 U 0.5 U	1 1 1
127-18-4 Tetrachloroethene TVOA ug/L 5 0.5 U 0.11 J # 0.16 J	# 4.1 #
12/-18-4 Tetracino detriene	
424.48.4 Dibromochloromothone TVOA 110/L 50 0.5[U] 0.5[U] 0.5[U]	
106-93-4 1,2-Dibromoethane TVOA ug/L 0.0006 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site

	· ·	Sample Code	Site-specific-GW	FG-01-PD-R2	MW-05-PD-R2	MW-PD-11-PD-R2	MW-PD-12-PD-R2
		Sample Name					•
		Sample Date		6/3/2008	6/2/2008	6/2/2008	6/2/2008
Cas Rn	Chemical Name	Analytic N Unit \\ Depth		12 to 2 ft amsl	40 ft 24 ft ams/	-30.6 to -40.6 ft amsl	-6.9 to -16.9 ft amsi
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5\U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5[다]	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 U	0.5 U	0.5 ひ
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ひ
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0:5 ∪{
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5]다	0.5]U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 ぴ	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
						-	
Titanium and F	Fluoride		Ī				
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	19 ~	10 U	33 ~	19.7 -
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.04 J #	0.088J_#	0.12 J #	2.9 A

Notes:

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

amsi above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

Sample Name Sample Name Sample Name Sample Date	0.5 U 0.5 U	5/29/2008 -103.7 to -113.7 ft am 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U
Cas Rn	0.5 to -118.5 ft amsi 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	-103.7 to -113.7 ft am 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U
Cas Rn	0.5 to -118.5 ft amsi 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	-103.7 to -113.7 ft am 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U
Volatile Organic Compounds	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.91 0.5 U
TVOA	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.91 0.5 U 5 U
74-87-3 Chloromethane TVOA ug/L 5 0.5 U 0.15 J # 75-01-4 Vinyl Chloride TVOA ug/L 2 0.5 U 0.5 U 74-83-9 Bromomethane TVOA ug/L 5 0.5 U 0.5	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.91 0.5 U 5 U
Total Tota	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.5 U 0.91 0.5 U
74-83-9 Bromomethane TVOA ug/L 5 0.5 U 0.5 U 75-00-3 Chloroethane TVOA ug/L 5 0.5 U 0.5 U 0.5 U 75-69-4 Trichlorofluoromethane TVOA ug/L 5 0.5 U	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.5 U 0.91 0.5 U 5 U
74-83-9 Brommite traile	0.5 U 0.5 U 0.5 U 0.5 U 5 U 0.5 U 0.5 U	0.5 U 0.5 U 0.91 0.5 U 5 U
75-00-3 Chidroetriane TVOA ug/L 5 0.5 U 0.5 U 75-69-4 Trichlorofluoromethane TVOA ug/L 5 0.5 U 0	0.5 U 0.5 U 0.5 U 5 U 0.5 U 0.5 U	0.5 U 0.91 0.5 U 5 U
75-35-4 1,1-Dichloroethene TVOA ug/L 5 0.5 U 75-35-4 1,1-Dichloroethene TVOA ug/L 5 0.5 U 0.5 U 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane TVOA ug/L 5 0.5 U 5 U 5 U 75-15-0 Carbon Disulfide TVOA ug/L 50 0.5 U 79-20-9 Methyl Acetate TVOA ug/L N/A 0.5 U 0.5	0.5 U 0.5 U 5 U 0.5 U 0.5 U	0.91 0.5 U 5 U
75-35-4 1,1-Dichlordetherie 170A ug/L 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane TVOA ug/L 5 0.5 U 5 U 5 U 5 U 75-15-0 Carbon Disulfide TVOA ug/L 50 0.5 U 79-20-9 Methyl Acetate TVOA ug/L N/A 0.5 U 0.5	0.5 U 5 U 0.5 U 0.5 U	0.5 U 5 U
76-15-1 1,1,2-1 Inchiolo-1,2,2-tillidoloetilalie TVOA ug/L 50 5 U 5 U 5 U 75-15-0 Carbon Disulfide TVOA ug/L 50 0.5 U 0.5 U 79-20-9 Methyl Acetate TVOA ug/L N/A 0.5 U 0	5 U 0.5 U 0.5 U	5 U
67-64-1 Acetone TVOA ug/L 50 5 U 5 U 5 U 0.5 U	0.5 U 0.5 U	
75-15-0 Carbon Disulfide TVOA ug/L 50 0.5 U 0.5 U 79-20-9 Methyl Acetate TVOA ug/L N/A 0.5 U 0.5	0.5 U	0.510 l
79-20-9 Methyl Acetate 170A dg/L 1875	-	اربا
		0.5 U
	0.5 U	0.5 U
156-60-5 trans-1,2-Dichloroethene TVOA ug/L 5 0.5 U 0.	0.5 U	0.1 J
1634-04-4 Methyl tert-Butyl Ether TVOA Ud/L 10 0.17 J # 0.36 J #	0.5 U	0.5 U
75-34-3 1,1-Dichloroethane TVOA ug/L 5 0.5 U 0.34 J #	1.9	3
156-59-2 cis-1,2-Dichloroethene TVOA ug/L 5 0.5 U 3 #	0.94	13
78-93-3 2-Butenone TVOA ug/L 50 5 U 5 U	5 Ų	5 0
74-97-5 Chlorobromomethane TVOA ug/L 5 0.5 U 0.5 U 0.5 U	0.5 ∪	0.5 U
67.66.3 Chloroform TVOA ug/L 7 0.5 U 0.5 U 0.5 U	0.5 U	0.56 じ
71.55-6 1.1.1-Trichloroethane TVOA ug/L 5 0.5 U 0.31 J #	1.5	1.7
110-82-7 Cyclohexane TVOA ug/L N/A 0.5 U 0.5 U 0.5 U	0.5 U	0.5 U
56-23-5 Carbon Tetrachloride TVOA ug/L 5 0.5 U 0.5 U 0.5 U	0.5 U	0.16 J
71-43-2 Benzene TVOA ug/L 1 0.5 U 0.5 U 0.5 U	0.5 U	0.5 U
107-06-2 1,2-Dichloroethane TVOA ug/L 0.6 0.5 U 0.5 U 0.5 U	0.5 U	0.5 U
79-01-6 Trichloroethene TVOA ug/L 5 0.5 U 350 A	35 A	1900
108-87-2 Methylcyclohexane TVOA ug/L N/A 0.5 U 0.5 U 0.5 U	0.5 U	0.5 ひ
78-87-5 1,2-Dichloropropane TVOA ug/L 1 0.5 U 0.5 U 0.5 U	0.5 U	0.5 ט
75-27-4 Bromodichloromethane TVOA ug/L 50 0.5 U 0.5 U 0.5 U	0.5 U	0.5 U
10061-01-5 cis-1,3-Dichloropropene TVOA ug/L 0.4 0.5 U 0.5 U 0.5 U	0.5 U	0.5 U
108-10-1 4-Methyl-2-pentanone TVOA ug/L 50 5 U 5 U	5 บ	5 U
108-88-3 Toluene TVOA ug/L 5 0.5 U 0.62 U	0.5 U	0.5 U
1006-08-3 Tolidene 1006-100 1006-100 1006-100 1006-1006-10	0.5 U	0.5 U
10061-02-0 tratis-1,3-Dichloroproperie 14071 day2	0.5 U	0.38 J
79-00-5 1,1,2-Trichloroethane TVOA ug/L 1 0.5 U 127-18-4 Tetrachloroethene TVOA ug/L 5 0.5 U 4.5 #	1.9 #	14
127-10-4 retractionocements	5 U	5 U
591-78-6 2-mexanone 1400 49/2 45 5 5 5 5 5 5 5 5	0.5 ป	0.5 ป
124-48-1 Dibromochloromethane TVOA ug/L 50 0.5 U 0.5 U 0.5 U 106-93-4 1,2-Dibromoethane TVOA ug/L 0.0006 0.5 U 0.5 U 0.5 U	0.5 U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MW-PD-13-PD-R2	MW-PD-14-PD-R2	MW-PD-15-PD-R2	MW-PD-16-PD-R2
		Sample Name					
		Sample Date		6/3/2008	6/3/2008	6/3/2008	5/29/2008
Cas Rn	Chemical Name	Analytic Iv Unit \\ Depth		2.3 to -7.7 ft amsl	-60.8 to -70.8 ft amsl	-108.5 to -118.5 ft amsi	-103.7 to -113.7 ft ams
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 🖯	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 リ	0.5 บ	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 ひ	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5U	0.5 ひ	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 ∪
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5¦U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5[U]	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	. 0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	55	0.5 U	0.5 U	0.5 U	0.5 U
Titanium and f	Fluoride						
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	45.1	10 0	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.12 J #	0.1 J #	0.08 J #	0.07 J J#

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

amsl above mean sea level

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

Port Jefferson Station, New York										
_			Sample Code	Site-specific-GW	MW-PD-17-PD-R2					
			Sample Name							
			Sample Date		5/29/2008					
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth_	<u></u>	-54.5 to -64.5 ft amsl					
	Volatile Organic Compounds									
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 บ					
74-87-3	Chloromethane	TVOA	ug/L ·	5	0.5 U					
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 ป					
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U					
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U					
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U					
75-35-4	1,1-Dichloroetheле	TVOA	ug/L	5	0.26 J i					
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U					
67-64-1	Acetone	TVOA	ug/L	50	5 U					
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U					
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U					
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U					
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U					
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	1.4					
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	0.81					
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.17 J					
78-93-3	2-Butanone	TVOA	ug/L	50	5 U					
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U					
67-66-3	Chloroform	TVOA	ug/L	7	1.8					
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.91					
110-82 - 7	Cyclohexane	TVOA	ug/L	N/A	0.5 U					
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U					
71-43-2	Benzene	TVOA	ug/L	1	0.5 U					
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U					
79-01-6	Trichloroethene	TVOA	ug/L	5	0.5 U					
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U					
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U					
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.51					
10061-01-5	cis-1.3-Dichloropropene	TVOA	ug/L	0.4	0.5 U					
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U					
108-88-3	Toluene	TVOA	ug/L	5	0.5 ป					
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U					
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0.5 U					
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.5 U					
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U					
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.39 J					
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U					

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	MW-PD-17-PD-R2
			Sample Name	i	
			Sample Date		5/29/2008
Cas Rn	Chemical Name	Analytic I	V Unit \\ Depth	-	-54.5 to -64.5 ft amsl
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5 U
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5 U
95-47-6	o-Xylene	TVOA	ug/L	5	0.5 บ
179601-23-1	m,p-Xylene	TVOA	ug/L	N/A	0.5 U
100-42-5	Styrene	TVOA	ug/L	5	0.5 U
75-25-2	Bromoform	TVOA	ug/L	50	0.5 U
98-82-8	Isopropylbenzene	TVOA	ug/L	5	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA	ug/L	3	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA	ug/L	0.04	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5[U]
87-61-6	1,2,3-Trichlorobenzene	TVOA	ug/L	5	0.5 U
	-	-			
Titanium and I					
7440-32-6	Titanium Metal Powder	SW6010	∄ug/L	N/A	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.078 J

	п	

110162.	
#	Compound detected below or equal to screening criteria
Α	Compound detected above screening criteria
~	Compound without screening criteria detected
amsi	above mean sea level
ft	feet
J	Value estimated
U	Compound not detected above reporting limit
ug/L	micrograms per liter
mg/L	milligrams per liter
TVOA	Trace Volatile Organic Analyte - Aqueous

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	•		F	ort Jefferson Stat	ion, New York			
	· · · · ·		Sample Code	Site-specific-GW	MPW-01-PD-A-R2	MPW-01-PD-B-R2	MPW-01-PD-C-R2	MPW-02-PD-A-R2
			Sample Name					
			Sample Date		5/19/2008	5/19/2008	5/19/2008	5/27/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		160 to 170 ft bgs	185 to 195 ft bgs	210 to 220 ft bgs	190 to 200 ft bgs
	Volatile Organic Compounds]	_ :	
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 ป	0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 0
67-64-1	Acetone	TVOA	ug/L	50	. 5 บ	5 U	5 U	5 0
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U 1	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 ป
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 0	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	2.6 #	1.1 #	0.5 U	0.71 #
75-34 - 3	1,1-Dichloroethane	TVOA	ug/L	5	0.5 U	1 0.36 J #	2 #	0.5 ひ
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U i	2.3 #
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	(5 U	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	(0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.5 U	0.84 U	, 0.81 U]	0.5 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.11 J #	1 #	0.9 #	0.12 J #
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5∤∪	{ 0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	(0.5 U	0.5 U	0.5 U
71-43-2	Benzene	· TVOA	ug/L	1	0.5 U	0.5 U	0.5 U ·	0.5 ひ
107-06-2	1.2-Dichloroethane	TVOA	ug/L	0.6	0.5 ∪	0.5 U	0.5 U	0.5
79-01-6	Trichloroethene	TVOA	ug/L	5	0.5 U] 0.5 U	0.18 J #	820 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 년	0.5 U	0.5 U j	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5JU	0.5 U)	0:5 U i	0.5
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 ひ	(0.5 U	0.5 U	0,5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	∫ 0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	<u> 5</u> υ	5 U -	5 U{
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	- 0.5 U	0.5 U	0.5 ป
79-00-5	1.1.2-Trichloroethane	TVOA	ug/L	1	0.5 U	0.5 U	0.5[U	0.5 U
127-18-4	Tetrachioroethene	TVOA	ug/L	5	0.5 UJ	0.17 J #	0.5 UJ	31 A
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	∮ 5 ∪	5 j U	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5	0.5 U	0.5 U

Table F-4 Groundwater Sampling - Round 2 Full Data Table

Lawrence Aviation Industries Site Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-01-PD-A-R2	MPW-01-PD-B-R2	MPW-01-PD-C-R2	MPW-02-PD-A-R2
		Sample Nam	e		1		
		Sample Date		5/19/2008	5/19/2008	5/19/2008	5/27/2008
Cas Rn	Chemical Name	Analytic N Unit \\ Depth		160 to 170 ft bgs	185 to 195 ft bgs	210 to 220 ft bgs	190 to 200 ft bgs
108-90-7	Chiorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 Ü	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 ぴ	0.5 U	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5	0.5 U	0.5 U
98-82-8	Isopropyibenzene	TVOA ug/L	5	0.5 บ	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 U	0.5 U }	0.5 บ
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 _. U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 ນ	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5]บ
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	o.5[U	0.5 U	0.5 U	· 0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5	0.5	0.5 U
_			•				
Titanium and F	Fluoride				[[]		
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 U	10 U	10 U	10 U
16984-48-8	_ Fluoride	Fluoride mg/L	0.12	0.072 J #	0.052 J #	0.06J #	22 A

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

Port Jefferson Station, New York									
	•		Sample Code	Site-specific-GW	MPW-02-PD-B-R2	MPW-02-PD-C-R2	MPW-02-PD-D-R2	MPW-03-PD-A-R2	
			Sample Name						
			Sample Date		5/27/2008	5/27/2008	5/27/2008	5/20/2008	
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		215 to 225 ft bgs	240 to 250 ft bgs	265 to 275 ft bgs	175 to 185 ft bgs	
	Volatile Organic Compounds							2 5 11	
75 - 71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U [0.5 U	0.5 U	0.5\U	
74-87-3	Chloromethane	TVOA	ug/L	5	0.5	0.5 U	0.5 U	0.5 U	
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 0	
74-83 -9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U	
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U	
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U	
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 ป	0.5 U	0.5 U	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U [0.5 U	0.5[U]	0.5 U	
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 U	5 U	5 U)	
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 ひ	0.5 U	0.5 U	0.5 U 1	
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 ป	0.5 U	0.5 U	
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U	
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 0	0.5 U	0.5 U	
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.31 J # }	0.11 J #	0.22 J #	0.2 J #	
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	2.5 # 1	1.3 #	1.8 #	0.5 U	
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.14 J #	· 0.14 J #	0.5 U	0.5 0	
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U	
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 나	0.5 U	0.5 U	0.5 U	
67-66-3	Chloroform	TVOA	ug/L	7	0.78	1.1 #	1.6	0.15 J #	
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	2.2 #	1.1 #	1.4	0.5 U	
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 ป	0.5 U	0.5 U	
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5 ∪	0.5 U	0.5 U	
71-43-2	Benzene	TVOA	ug/L	1	0.5 ひ	0.5 U	0.5 ∪	0.5 U	
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5] U	0.5 U	0.5 U	0.5 U	
79-01-6	Trichloroethene	TVOA	ug/L	5	2.4 #	8.5 A	0.41 J #	1.9	
108-87-2	Methylcyclohexane	TVOA	ug/L	, N/A	0.5] U	0.5 ป	0.5 U	0.5 U	
78-8 7- 5	1,2-Dichloropropane	TVOA	ug/L	1	0.5	0.5 U	0.5 U	0.5 U	
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5	0.5 U	
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 ぴ	0.5 ับ	0.5 U	0.5 U	
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U	
108-88-3	Toluene	TVOA	ug/L	5	0.5 [リー]	0.5 U	0.5 U	0.5 U	
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U	
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0.5 0	0.5 U	0.5 U	0.5 U	
127-18-4	Tetrachioroethene	TVOA	ug/L	5	0.86	0.31 J #	0.26 J #	0.5 UJ	
591-78-6	2-Hexanone	TVOA	ug/L	50	` 5 U	5 U	5 U	5 U	
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U	
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U	

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-02-PD-B-R2	MPW-02-PD-C-R2	MPW-02-PD-D-R2	MPW-03-PD-A-R2
		Sample Name	;				_
		Sample Date		5/27/2008	5/27/2008	5/27/2008	5/20/2008
Cas Rn	Chemical Name	Analytic N Unit \\ Depth		215 to 225 ft bgs	240 to 250 ft bgs	265 to 275 ft bgs	175 to 185 ft bgs
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	`0.5 U	0.5 U	0.5 U	0.5 U]
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U {
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5∤U ∫
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 ひ	0.5 ∪	0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L] 5	0.5 U	0.5 U	0.5 V	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L] 3	0.5 U	0.5 U	0.5 U	0.5 บ
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 บ	0.5 U	0.5[나	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0,5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	_0.5 U	0.5 U	0.5 U	0.5 U
Titanium and Fluoride							
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 0	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.95 A	8.9 A	0.69 A	0.092 J #

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			<u> </u>	04	MDW 02 DD D D2	MPW-03-PD-C-R2	MPW-03-PD-D-R2	MPW-04-PD-A-R2
			•	Site-specific-GW	MPW-03-PD-B-R2	WIPW-U3-PD-C-R2	MIL AA-OO-L D-D-LVZ	INI TY OT I DICING
			Sample Name	1	5/20/2008	5/20/2008	5/20/2008	5/21/2008
	Ob a maile of Milleren	A a lo d' -	Sample Date N Unit \\ Depth		195 to 205 ft bgs	215 to 225 ft bgs	235 to 245 ft bgs	150 to 160 ft bgs
Cas Rn	Chemical Name	Analytic	iv Onit it Depth		193 to 203 it bgs	210 to 220 it bgs	200 to 2-10 to 2-90	
	Volatile Organic Compounds	TVOA	uall	5	0.5 U	0.5	0.5 U	0.5 U
75-71-8	Dichlorodifluoromethane		ug/L	5	0.5 U	0.5 0	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	2	0.5 U	0.5 0	0.5 U	0.5(U
75-01-4	Vinyl Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U 0.5 U	1.1 #	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	_	0.5 U	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5		0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L.	5	0.5 U	5 0	5 U	5 U
67-64-1	Acetone	TVOA	ug/L	50	5 U		0.5 U	0.5 U
75~15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 0	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 0	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 0	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5	0.5 U		1.3
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.12 J #	0.5	0.41 J #	0.5 U
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	0.5 U	0.95 #	0.49 J #	
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.4 J #	0.5	1.3
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 0	5 U	5 0
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U
67-66 - 3	Chioroform	TVOA	ug/L	7	0.5 บ	0.5 U	0.5	0.5 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.5 U	0.23 J #	0.44 J #	0.5 U
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 0
71-43-2	Benzene	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	AOVT	ug/L	0.6	0.5 U	0.5 ປ]	0.5 U	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	3.4 #	0.79 #	15 A	25 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1 1	0.5 U	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5]U	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5\U	0.5 U	0.5U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	5 U	5[U] (5 U
108-88-3	Toluene	TVOA	ug/L	5	0.5\U	0.56 U	0.5 U	0.41 J #
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 ∪	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0.5 U	0.5	0.5 U	0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.2 J #	0.12 J #	0.76 #	10 A
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	· 5 U	5 U	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 0	0,5 U	0.5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5	0.5 U	0.5 U
100-93-4	1,z-Dibtombethane	1707	<u> </u>	0.000				

Table F-4 Groundwater Sampling - Round 2 **Full Data Table** Lawrence Aviation Industries Site Port Jefferson Station, New York

	-		Sample Code	Site-specific-GW	MPW-03-PD-B-R2	MPW-03-PD-C-R2	MPW-03-PD-D-R2	MPW-04-PD-A-R2
			Sample Name				ì	
			Sample Date		5/20/2008	5/20/2008	5/20/2008	5/21/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		195 to 205 ft bgs	215 to 225 ft bgs	235 to 245 ft bgs	150 to 160 ft bgs
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5 U	0.5JU	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA	ug/L	5	0.5 U	0.5] U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA	ug/L	N/A	0.5 U	0.1 J ~	0.5[ひ]	0.19 J ~
100-42-5	Styrene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ひ
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 U	0.5 บ	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 ป	0.5 U}	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA	ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA_	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
Titanium and I				,	.]	4, 1,	
7440-32-6	Titanium Metal Powder	SW6010		N/A	5.7 J		10 0	10 U
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.088 J	# 0.1 J #	0.54 A	0.13 J A

N	otes:	

Compound detected below or equal to screening criteria Compound detected above screening criteria Compound without screening criteria detected below ground surface bgs ft feet Value estimated Compound not detected above reporting limit U ug/L micrograms per liter mg/L milligrams per liter TVOA Trace Volatile Organic Analyte - Aqueous

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			P	ort Jefferson Stati	on, new tork			
		-	Sample Code	Site-specific-GW	MPW-04-PD-B-R2	MPW-04-PD-C-R2	MPW-04-PD-D-R2	MPW-04-PD-E-R2
			Sample Name					
			Sample Date		5/21/2008	5/21/2008	5/21/2008	5/21/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		170 to 180 ft bgs	200 to 210 ft bgs	220 to 230 ft bgs	240 to 250 ft bgs
	Volatile Organic Compounds						[]	
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 ับ	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 ป	0.5 บ	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 ひ	0.35 J #	0.5 U	0.5 ป
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5\U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
1 56- 60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	8.4 #	0.96 #	2.2 #	2.4
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.36 J #	1.4 #
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5 .	1.6 #	0.13 J #	0.87 #	0.5
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.5 U	0.5 リ	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.69 #	1.5
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 나	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5 ひ	0.5 ป	0.5]U
71-43-2	Benzene	TVOA	ug/L	1	0.5 U	0.5 ひ	0.5 ป	0.5 U
107-06-2	1.2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 ป	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L .	5	100 A	4.1 #	51 A	21)
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 ป	0 <u>.</u> 5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 บ	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichioromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	_ 5U	5 U	5 U	5 U)
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 บ	0.5 U
79-00-5	1.1.2-Trichloroethane	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	5	58 A	0.81 #	10 A	5.8 .
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 U	5 U	5 บ
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 ひ	0.5 U	0.5 U
106-93-4	1.2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site

	•		Sample Code	Site-specific-GW	MPW-04-PD-B-R2	MPW-04-PD-C-R2	MPW-04-PD-D-R2	MPW-04-PD-E-R2
			Sample Name	·	•			
	-		Sample Date		5/21/2008	5/21/2008	5/21/2008	5/21/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		_ 170 to 180 ft bgs	200 to 210 ft bgs	220 to 230 ft bgs	240 to 250 ft bgs
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
179601-23-1	m,p-Xylene	TVOA	ug/L	N/A	0.5 บ	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	TVOA	ug/L	5	0.5]∪	0.5 U	0.5 U	0.5 U J
75-25-2	Bromoform	TVOA	ug/L	50	. 0.5[U]	0.5 U	0.5 U	0.5 ∪ }
98-82-8	Isopropyibenzene	TVOA	ug/L	5	0.5U	0.5 U	0.5 ป	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5]บ
541-73-1	1,3-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5[U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 บ	0.5 U	0.5 ป
96-12-8	1,2-Dibromo-3-chloropropane	TVOA	ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA	ug/L	5	0.5 U	0.5 ひ	0.5 U	0.5 U
Titanium and F	iluorida							
7440-32-6	Titanium Metal Powder	SW6010	E a /l	N/A	10 0	4011	ا ارامه	ابرامه
16984-48-8	Fluoride	Fluoride		0.12 .	1.4 A	10 U 2.5 A	10 U A	10 U 0.22 A

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			•	on Jenerson Stati		I MENNING DO DOC T	MOM OF DO O DO	MPW-05-PD-D-R2
				Site-specific-GW	MPW-05-PD-A-R2	MPW-05-PD-B-R2	MPW-05-PD-C-R2	MILAA-00-LD-D-K5
			Sample Name			5/54/2000	E 104 10000	5/21/2008
			Sample Date		5/21/2008	5/21/2008	5/21/2008	5/21/2008 225 to 235 ft bgs
Cas Rn_	Chemical Name	Analytic	N Unit \\ Depth		160 to 170 ft bgs	185 to 195 ft bgs	205 to 215 ft bgs	225 to 235 it bys
	Volatile Organic Compounds					ا ایام	ا المام	0.5 U
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5	
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5[U]
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5U	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	' 0.5 U	0.5 ป	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 U	5 U]	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	. 0.45 J #		0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5\U	0.5 U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5\U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	1.8	0.5 U	0.5 U	0.5 U
75-34-3	1.1-Dichloroethane	TVOA	ug/L	5	0.5 U	0.5\U	0.33 J #	0.54 #
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5 .	0.5 U	0.5(U	0.5 U	0.5 U
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 0	5 บ]	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5[U]	0.5 บ	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.32 J #	0.5[U]	0.5 U	0.37 J #
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.5 U	0.17 J #	0.44 J #	0.72 #
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U -	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5)u	0.5 U	0.5 U
71-43-2	Benzene	TVOA	ug/L		0.5 U	0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	0.33 J #		6.4 A	8.4 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5∤∪
78-87-5	1,2-Dichloropropane	TVOA	ug/L	''''	0.5 U	0.5 U	0.5 U	0.5 U
76-67-5 75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5	0.5 U	0.5 U	0.5(ひ)
		TVOA	ug/L ug/L	0.4	0.5 _U	0.5 U	0.5	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	50	5.5 U	5 0	5 U	5 U
108-10-1	4-Methyl-2-pentanone	TVOA		5	1.2 #	1	0.5 U	0.14 J #
108-88-3	Toluene		ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L		0.36 J #		0.53 #	0.61
127-18-4	Tetrachloroethene	TVOA	ug/L	5		5 0	5 U	5 ป
591-78-6	2-Hexanone	TVOA	ug/L	50	5 0		0.5 U	0.5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 0	0.5 U 0.5 U	0.5 U
106-93-4	1.2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	v.5[U]	

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sam	ple Code Site-specific-GW	MPW-05-PD-A-R2	MPW-05-PD-B-R2	MPW-05-PD-C-R2	MPW-05-PD-D-R2
		Sam	ple Name				
(Sam	ple Date	5/21/2008	5/21/2008	5/21/2008	5/21/2008
Cas Rn	Chemical Name	Analytic N Unit '	N Depth	160 to 170 ft bgs	185 to 195 ft bgs	205 to 215 ft bgs	225 to 235 ft bgs
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene '	TVOA ug/L	5	0.5 U	0.5	0.5 U	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	[0.5 บ	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 บ	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L] 3	0.5 U	0.5 じ	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
Titanium and F	Fluoride						
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 U		10 0	10 0
16984-48-8	Fluoride	Fluoride mg/L		0.11 J			

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Site-specific-GW	MPW-06-PD-A-R2	MPW-06-PD-B-R2	MPW-06-PD-C-R2	MPW-06-PD-D-R2
			Sample Name		10.1 91-00-1 0-71-112		11 55 . 5 5 7.2	
			Sample Date		5/22/2008	5/22/2008	5/22/2008	5/22/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		65 to 75 ft bgs	90 to 100 ft bgs	115 to 125 ft bgs	160 to 170 ft bgs
Oas Itil	Volatile Organic Compounds	- 711017110	II OIII II OODAI		 			
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.13 J #	0.5 U	0.5 U	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 ປ	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U {	0.5 U	0.5 U
75-35-4	1.1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.19 J #
75-33-4 76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 0	5 U	5 U	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5	0.5	0.5 U	0.5 U
79-13-0 7 9-20- 9	Methyl Acetate	TVOA	ug/L	N/A	0.5	0.5 U	0.5 U	0.5 U
75-20-9 75-09 - 2	Methylene Chloride	TVOA	ug/L	5	0.5	0.5 U	0.5 บ	0.5(U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	o.5 U	0.5 U
		TVOA	ug/L	10	0.5	0.21 J #	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L ug/L	5	0.5	0.5 0	0.44 J #	0.48 J #
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	0.5	0.5	0.18 J #	0.19J l
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L ug/L	50	5 0	5 0	5 U	รโบ
78-93-3	2-Butanone	TVOA		5	0.5	0.5 U	0.5 0	0.5 U
74-97-5	Chlorobromomethane		ug/L	7	0.5 U	0.5 U	0.5 U	0.49 J #
67-66-3	Chloroform	TVOA	ug/L	5	0.5 U	0.5 U	0.49 J #	0.36 J
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 0	0.5 U
110-82-7	Cyclohexane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 0	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	1	0.5 U	0.5 U	0.5 0	0.5 U
71-43-2	Benzene	TVOA	ug/L	•	0.5 U	0.5 U	0.5 0	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.76 #	1.7	6.9
79-01-6	Trichloroethene	TVOA	ug/L	5		0.5 0	0.5 U	0.5 U
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U	0.5 U 0.5 U	0.5 0	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5 U 0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U		5 U	5 0
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U <u></u>	5 4 5 0 4	0.5 U	0.5 U
108-88-3	Toluene	TVOA	ug/L	5	1 #	1.3 #		0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 0	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0.5[U	0.5 U	0.5	
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.5 U	0.5 0	0.5 0	0.5 U
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 0	5 0	250
124-48-1	Dibromochloromethane *	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site

		Sample Code	Site-specific-GW	MPW-06-PD-A-R2	MPW-06-PD-B-R2	MPW-06-PD-C-R2	MPW-06-PD-D-R2
		Sample Name					
		Sample Date		5/22/2008	5/22/2008	5/22/2008	5/22/2008
Cas Rn	Chemical Name	Analytic N Unit \\ Depth	_	65 to 75 ft bgs	90 to 100 ft bgs	115 to 125 ft bgs	160 to 170 ft bgs
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 Ú	0.5 U	0.5 [Ü]
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 บ
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ย
179601-23-1	m,p-Xyiene	TVOA ug/L	N/A	0.5 U	0.13 J ~	0.5 U	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 U	0.5 U	0.5 ぴ
98-82-8	Isopropyibenzene	TVOA ug/L	5	0.5 U	0.5(U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5[ひ]	0.5	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5∤∪
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L -	5	0.5 U	0.5 U	0.5 U	0.5 บ
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
.		-] []	
Titanium and I							
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 0	10 U	27.8	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.15 J A	0.096JJ#	0.056 J #	0.076 J {#

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				ort Jenerson Stati		LADIAL OF DO O DO	MPW-08-PD-A-R2	MPW-08-PD-B-R2
				Site-specific-GW	MPW-07-PD-B-R2	MPW-07-PD-C-R2	MPW-08-PD-A-R2	MIPVV-U0-PD-RZ
			Sample Name		01010000	0/0/0000	5/22/2008	5/22/2008
_			Sample Date		6/2/2008	6/3/2008	25 to 35 ft bgs	45 to 55 ft bgs
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		220 to 230 ft bgs	250 to 260 ft bgs	25 to 35 it bys	45 to 55 it bgs
	Volatile Organic Compounds	7.01		_	ا ا	0.5 U	0.5 U	0.5 U
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5	0.5 U #	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U			0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 0
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5	0.5 0
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 บ	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 ป	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.9	0.5 U	0.33 J #	0.25 J
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	0.19J#	0.11 J #	0.5 ป	0.5 U
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 U	5 บ	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.5 U	0.5 U	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	TVOĀ	ug/L	5	0.6 #	0.5 U	- 0.5 U	0.5 U
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 ป	0.5 ป
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 U	0,5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	1.1 #	0.3 J #	2.6 #	3.6
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 บ
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U	. 0.5 U	0.ธ บ	0.5 ป
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 บ	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	5 U	ร บ	5 U i
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.5 0	0.5 U	. 0.5 U
100-00-3	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
		TVOA	ug/L ug/L	1 4	0.5 0	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	5	0.27 J #	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	50	5 0.27	5.50	5.0	5 U
591-78-6	2-Hexanone	TVOA	_	50	0.5 0	0.5 U	0.5 U	0.5 U
124-48-1	Dibromochloromethane		ug/L					0:5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	0.5 U	

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site

		Sample Code	Site-specific-GW	MPW-07-PD-B-R2	MPW-07-PD-C-R2	MPW-08-PD-A-R2	MPW-08-PD-B-R2
		Sample Name	,				
		Sample Date		6/2/2008	6/3/2008	5/22/2008	5/22/2008
Cas Rn	Chemical Name	Analytic N Unit \\ Depth	ļ	220 to 230 ft bgs	250 to 260 ft bgs	25 to 35 ft bgs	45 to 55 ft bgs
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5[U	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5[U	0.5 ป
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 ひ	0.5 U	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
75-25-2	Bromoform	TVOA ug/L	50	0.5 ひ	0.5 U}	0.5 U	(0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 ∪ }
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ひ
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
	· · · · · ·	_			<u> </u>		
Titanium and F	Fluoride						
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 U		10 U	10 0
16984-48-8	Fluoride	Fluoride mg/L	0.12	2.6 A		0.062 J # __	0.056 J #

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	=		P	ort Jefferson Stati	on, new tork			
			Sample Code	Site-specific-GW	MPW-08-PD-C-R2	MPW-08-PD-D-R2	MPW-08-PD-E-R2	MPW-09-PD-A-R2
			Sample Name					
			Sample Date		5/22/2008	5/22/2008	5/22/2008	5/28/2008
Cas Rn	Chemical Name	Analytic N	Unit \\ Depth		75 to 85 ft bgs	95 to 105 ft bgs	115 to 125 ft bgs	10 to 20 ft bgs
	Volatile Organic Compounds							2511
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane		ug/L	5	0.5 U	0.5 U	0.5	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U ,	0.5	0.5 U	0.5
74-83-9	Bromomethane		ug/L	5	0.5 U	0.5 U	0.5	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 ひ	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5]ひ	0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 U	5 U	5 0
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 [U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U.	0.5\U	0.5 U	0.5
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5(U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.16 J #		0.5 U	0.5 U
75-34-3	1.1-Dichloroethane	TVOA	ug/L	5	0.14 J #		0.15 J #	0.78
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.19 J #		0.32 J #	1.7
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 5	5 V	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U ₋	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.5 U	0.5 U	0.5 U	0.5 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.18 J #		0.5 U	0.98
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
71-43-2	Benzene		ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
107-06-2	1.2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene		ug/L	5	16 A	. 37 A	15 A	49
108-87-2	Methylcyclohexane	TVOA ~	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U	0.5]U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone		ug/L	50	5 U	5 U	5 U	5 U
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene		ug/L	0.4	0.5 U	0.5 ป	0.5 U	0.5 U
79-00-5	1,1,2-Trichioroethane		ug/L	1	0.5	0.5 U	0.5 U	0.5 U
127-18-4	Tetrachloroethene		ug/L	5	0.5 U	0.5 U	0.5 U	0.85
591-78-6	2-Hexanone		ug/L	50	5 U	5 U	[5 U	5 U
124-48-1	Dibromochloromethane		ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane		ug/L	0.0006	0.5 0	0.5 U	0.5 U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site

	<u> </u>		Sample Code	Site-specific-GW	MPW-08-PD-C-F	₹2	MPW-08-PD-D-R2	MPW-08-PD-E-R2	MPW-09-PD-A-R2
			Sample Name	· I					
			Sample Date	1	5/22/2008	- 1	5/22/2008	5/22/2008	5/28/2008
Cas Rn	Chemical Name	Analytic N	Unit \\ Depth_		75 to 85 ft bgs		95 to 105 ft bgs	115 to 125 ft bgs	10 to 20 ft bgs
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5	미	0.5 U	0.5 U	0.5
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5	미	0.5 U	0.5 U	[0.5 U
95-47-6	o-Xylene	TVOA	ug/L	5	0.5	미	0.5 ป	0,5 U	0.5 U
179601-23-1	m,p-Xylene		ug/L	N/A	0.5	미	0,5 ป	0.5 U	0.5 U
100-42-5	Styrene	TVOA	ug/L	5	0.5	u	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA	ug/L	50	0.5	u	0.5 U	0.5 U	0.5 U
98-82-8	Isopropylbenzene	TVOA	ug/L	5	0.5	v	0.5 U	0.5 U	j 0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5	ᄖᆝ	0.5 U	[0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA	ug/L	3	0.5	u	0.5 U	0.5 U	[0.5 บ
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5	미	0.5 U	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	0.5	마니	0.5 U	0.5	0.5
96-12-8	1,2-Dibromo-3-chloropropane	TVOA	ug/L	0.04	0.5	u	0.5 U	0.5 U	J 0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5	미	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA	ug/L	5	0.5	υ	0.5 U	0.5 U	0.5 U
Titanium and F									
7440-32-6	Titanium Metal Powder	SW6010E	uo/l	N/A	10	υl	10 U	10 0	10 0
16984-48-8	Fluoride	Fluoride	•	0.12	0.052		0.048 J	1 2 1	0.082 J #

Nο	
N.U	Les.

Compound detected below or equal to screening criteria

Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Site-specific-GW	MPW-09-PD-B-R2	. 1	MPW-09-PD-C-R2	MPW-09-PD-D-R2	MPW-09-PD-E-R2
			Sample Name	•					
			Sample Date		5/28/2008		5/28/2008	5/28/2008	5/28/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		45 to 55 ft bgs		70 to 80 ft bgs	90 to 100 ft bgs	125 to 135 ft bgs
	Volatile Organic Compounds								·
7 5-71- 8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	ll	0.5 U	0.5 U	0.5
75-01-4	Vinyl Chloride	TVOA	ug/L	. 2	0.5 U	ll	0.5 [U]	0.5 U	0.5 ひ
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	ll	0.5 U	0.5 U	0.5
75-00-3	Chloroethane	TVOA	ug/L	5	0.5JU		0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5]U	ll	0.5 U	0.5 U	0.5 U
75-35-4	1,1-Dichloroethene	TVOA	uġ/L	5	0.5 U		0.5 U	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5 U	l 1	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 U		5 U	5[U]	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	. 0.5 U	!	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 0		0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U		0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 ป		0.5 U	0.11 J #	0.5 บ
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.5 U	1	0.5 U	0.5 U	0.5 U
75-34-3	1.1-Dichloroethane	TVOA	ug/L	5	1.8	#	2.3 J # I	1.6 J #	1.1 J #
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	6.6	Α	8.2 A j	10 A	0.59 #
78-93-3	2-Butanone	TVOA	ug/L	50	5 U		1 1 1	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U		0.5 U	0.5 U	0.5[U]
67-66-3	Chloroform	TVOA	ug/L	7	0.5 U		0.62 J #	0.6 J #	0.63 J #
71-55-6	1.1.1-Trichloroethane	TVOA	ug/L	5	1.6	#	1.6 J #	1.1 J #	0.71 J #
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U		0.5 U	0.5 ป	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.2 J	#	0.2 J #	0.14 J #	0.5 U
71-43-2	Benzene	TVOA	ug/L	1	0.5 U		0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U		0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	330	Α	560 A	510 A	71 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U		0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U	lł	0.5[나]	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	IJ	0.5 U	0.5 U	0.5\U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	[0.5 U	0.5	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 ∪		5 U	5 U	5 U
108-88-3	Toluene	TVOA	ug/L	5	Q.5[U		0.5 ป	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5[U		0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0.5∫Ư		0.16 J #	0.39 J #	0.5
127-18-4	Tetrachioroethene	TVOA	ug/L	5	6.6	Α	6 A	4 #	0.87 #
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U		5 U	5 U	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	{	0.5 U	0.5 U	0.5 U
106-93-4	1.2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U		0.5 U	0.5 U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MPW-09-PD-B-R2	MPW-09-PD-C-R2	MPW-09-PD-D-R2	MPW-09-PD-E-R2
ļ		Sample Name	<u> </u>				_
		Sample Date	1	5/28/2008	5/28/2008	5/28/2008	5/28/2008
Cas Rn	Chemical Name	Analytic N Unit \\ Depth		45 to 55 ft bgs	70 to 80 ft bgs	90 to 100 ft bgs	125 to 135 ft bgs
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5 บ	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 บ -	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	.0.5 U
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5 U	0.5 ぴ	0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5]	0.5 U	0.5 U	0.5 U	0.5 ป
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 U	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5 ย	0.5 U	0.5 ∪∫
95-50-1	1,2-Dichtorobenzene	TVOA ug/L	3	0.5 U	0.5JU	0.5 U	0.5JU}
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
				11:	1 1		
Titanium and							
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 0	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.068JJ #	0.066 J #	0.06 J [#	0.054 J #

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		_		ort Jefferson Stat	<u> </u>			
				Site-specific-GW	MPW-10-PD-A-R2	MPW-10-PD-B-R2	MPW-10-PD-C-R2	MPW-10-PD-D-R2
			Sample Name					
			Sample Date		5/28/2008	5/28/2008	5/28/2008	5/28/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		160 to 170 ft bgs	185 to 195 ft bgs	215 to 225 ft bgs	235 to 245 ft bgs
-	Volatile Organic Compounds					ll		م د ا د ا
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-01-4	Vinyi Chloride	AOVT	ug/L	2	0.5 U	0.5 U	0,5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5U	,0.5 U	0.5	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5 U	- 0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5[U]	0.5 U	0.5
75-35-4	1,1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5[U]	0.5 U	0.86
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	5	0.5[U]	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	1.6 J #	4.3 J #	1.4 J #	0.37 J #
75-34-3	1,1-Dichloroethane	TVOA	ug/Ĺ	5	0.72 J. #	0.23 J #	0.7 J #	2.9
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.32 J #	1.4 #	1.7 #	0.5 Ú
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5[U] }	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 U {	0.5 U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	0.57 J #	0.5 U }	0.57 J #	0.7 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	1 1 #	0.38 J #	1 J #	2.4
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	TVOA	ug/L	1	[O.5 U	0.5 U	0.5 ป	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	18 A	59 A	40 A	3.3
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 ป	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50 ¯	0.5 U	0.5 U	0.5 U	0.5
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 ป	0.5
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	5 U	5 บ	5 U
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0.5U	0.5 ひ	0.5 U	0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	5	7 A	27 A	19 A	1.1
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50 🦳	0.5 U	0.5	0.5 U	0.5 U
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 0	0.5JU	0.5 U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site

			Sample Code	Site-specific-GW	MPW-10-PD-A-R	2	MPW-10-PD-B-R2	MPW-10-PD-C-F	₹2	MPW-10-PD-D-R2
1			Sample Name							
			Sample Date		5/28/2008		5/28/2008	5/28/2008		5/28/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		160 to 170 ft bgs	5	185 to 195 ft bgs	215 to 225 ft bg	s	235 to 245 ft bgs
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5 L	丌	0.5 U	0.5	υl	0.5 U
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5 L	J	0.5 U	0.5	υl	0.5 Ú
95-47-6	o-Xylene	TVOA	ug/L	5	0.5 1	J١	0.5 U	0.5	υl	0.5 ひ
179601-23-1	m,p-Xylene	TVOA	ug/L	N/A	0.5 เ	J١	0.5 U	0.5	υl	0.5 U
100-42-5	Styrene	TVOA	ug/L	5	0.5	ᆡ	0.5 U	0.5	υŀ	0.5 U
75-25-2	Bromoform	TVOA	ug/L	50	0.5 ใ	J١	0.5 ป	0.5	υ	0.5 U
98-82-8	Isopropylbenzene	TVOA	ug/L	5	0.5	۱۱	0.5 U	0.5	υļ	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5	ၨ	0.5 U	0.5	υÌ	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA	ug/L	3	0.5	ر	0.5 U	0.5	υÌ	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5 L	ונ	0.5 U	0.5	υl	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	0.5 L	ار	0.5 U	0.5] U	0.5 บ
96-12-8	1,2-Dibromo-3-chloropropane	TVOA	ug/L	0.04	0.5 L	ار	0.5 U	0.5	ال	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5 L	ار	0.5 U	0.5	υl	0.5{ひ
87-61-6	1,2,3-Trichlorobenzene	TVOA	ug/L.	5	0.5 L	<u>. </u>	0.5 U	0.5	<u>u </u>	0.5 U
								1		
Titanium and I						.]	lll			1
7440-32-6	Titanium Metal Powder	SW6010	•	N/A	10	•	10 U	10 0	٧].	10 0
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.074 J	 #	1	A '1.4	ĮΑ	0.26 A

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	FG-01-PD-R2	MW-05-PD-R2	MW-PD-11-PD-R2	MW-PD-12-PD-R2
			Sample Name		, 00,,, 2,,,2			
~			Sample Date		6/3/2008	6/2/2008	6/2/2008	6/2/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		190 to 200 ft bgs	180 to 195 ft bgs	195 to 205 ft bgs	150 to 160 ft bgs
000 / (Volatile Organic Compounds							
75-71-8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 ひ	0.5 U	0.5 U	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5] U	0.5 U	0.5 U	0.5]나
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U	0.5 U	0.5 U	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U	0.5[ひ]	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-35-4	1.1-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 ぴ	0.5 U	0.5 U
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	· 5	0.5 U	0.5 U	0.5 U	0.5 U
67-64-1	Acetone	TVOA	ug/L	50	5 ∪	5 U	5 0	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U	0.5 U	0.16 J #	0.5[년]
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	0.17 J #	0.36 J #	0.33 J #	1.6
75-34-3	1.1-Dichloroethane	TVOA	ug/L	5	0.5 U	0,5 U	0.5 U	0.1 J #
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	0.5 U {	0.5 ป	1.1 #
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	9.4 A	0.5 U	1.1 U	0.5 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.5 U	0.14 J #	0.13 J #	0.11 J #
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
71-43-2	Benzene	TVOA	ug/L	1 1	0.5 U	0.5\U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5 U	0.5 U
79-01-6	Trichloroethene	TVOA	ug/L	5	0.16 J #	0.52 U	0.5 U	210 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5U	0.5 U	0.5
78 - 87-5	1,2-Dichloropropane	TVOA	ug/L	1 1	0.5 U	0.5] U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5 U	0.5\U	0.5 U	0.5 U
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	5 U	5 U	5 0
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.15 J #	0.5 ป	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1.1.2-Trichloroethane	TVOA	ug/L	1 1	0.5 U	0.5 U	0.5 U	.0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	5	o.5 U	0.11 J #	0.16 J #	4.1
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
106-93-4	1.2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

			Sample Code	Site-specific-GW	FG-01-PD-R2	MW-05-PD-R2	MW-PD-11-PD-R2	MW-PD-12-PD-R2
			Sample Name				,	1
			Sample Date		6/3/2008	6/2/2008	6/2/2008	6/2/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		190 to 200 ft bgs	180 to 195 ft bgs	195 to 205 ft bgs	150 to 160 ft bgs
108-90-7	Chlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA	ug/L	5	0.5 บ	0.5 U	0.5 U	0.5 ひ
95-47-6	o-Xylene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5]ひ
179601-23-1	m,p-Xylene	TVOA	ug/L	N/A	0.5JU	0.5 U	0.5 U	0.5 U
100-42-5	Styrene -	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-25-2	Bromoform	TVOA	ug/L	50	0.5 U	0.5 U	0.5 บ	0.5 U
98-82-8	Isopropylbenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 ป	0.5 U	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA	ug/L	3	0.5 U	0.5 ับ	0.5 U	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA	ug/L	3	o.5 U	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA	ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5{ひ
87-61 -6	1,2,3-Trichlorobenzene	TVOA	ug/L	5	0.5 U	0,5 U	0.5 U	0.5 U
Titaminum and I								_
Titanium and I		0140040	C 0	1	45	4		
7440-32-6	Titanium Metal Powder	SW6010	•	N/A	19	~ 10 U	33 ~	19.7
16984-48-8	Fluoride	Fluoride	mg/L	0.12	0.04[J	# 0.088 J	# 0.12 J #	2.9 A

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

TVOA Trace Volatile Organic Analyte - Aqueous

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

				Site-specific-GW	MW-PD-13-PD-R2	MW-PD-14-PD-R2	MW-PD-15-PD-R2	MW-PD-16-PD-R2
			Sample Name		19199-FD-13-FD-1\2	10/0 0-1 4-1 D-172	13,77-1 15 10 10 10 10	
			Sample Date		6/3/2008	6/3/2008	6/3/2008	5/29/2008
O== D=	Chemical Name	Analytic	V Unit \\ Depth		175 to 185 ft bgs	239 to 249 ft bgs	204 to 214 ft bgs	190 to 200 ft bgs
Cas Rn	Volatile Organic Compounds	Analytic	14 Offic & Deptil		170 to 100 tt 190			
75 74 O	Dichlorodifluoromethane	,TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
75-71-8 7 4- 87-3	Chloromethane	TVOA	ug/L ug/L	5	0.5 U	0.15 J #	0.5 ป	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 0	0.5	0.5 U	0.5)U
75-01-4 74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U	0.5	0.5 U	0.5 U
	Chloroethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-00-3		TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
75-69-4	Trichlorofluoromethane	TVOA	ug/L ug/L	5	0.5 U	0.5 U	0.5 U	0.91 #
75-35-4	1,1-Dichloroethene	TVOA	ug/L ug/L	5	0.5 U	0.5 U	0.5 U	0.5 ป
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	TVOA		50	5.50	5 0	5 U	5 U
67-64-1	Acetone	TVOA	ug/L	50	0.5 0	0.5 0	0.5	0.5 U
75-15-0	Carbon Disulfide		ug/L	N/A	0.5 0	0.5	0.5 U	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	5	0.5 U	0.5 U	0.5	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5 -	0.5 U	0.5 U 0.5 U	0.5 U	0.1 J #
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L		0.5 b 0.17 J #	0.36 J #	0.5 U	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10		0.34 J #	1.9 #	3 #
75-34-3	1,1-Dichloroethane	TVOA	ug/L	5	0.5 U	1 1 1	0.94 #	13 A
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U	3 #	5 U	آراءً'
78-93-3	2-Butanone	TVOA	ug/L	50	5 U	<u> </u>	-1-1	0.5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	
67-66-3	Chloroform	TVOA	ug/L	7	0.5 U	0.5 U	0.5 U	0.56 U
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.5 U	0,31 J #	1.5	1.7
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 0
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U	0.5 U	0.5 U	0.16 J #
71-43-2	Benzene	AOVT	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	0.5 U	0.5 U	0.5	0.5 U
79-01-6	Trichloroethene	TVOA ·	ug/L	5	0.5 U	350 A	35 A	1900 A
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
78-87-5	1,2-Dichloropropane	TVOA	ug/L	1	0.5 U	0.5 U	0.5 U	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.5[U	0.5 U	0.5 U	0.5
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	· 0.5 U	0.5 U	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
108-88-3	Toluene	TVOA	ug/L	5	0.5 U	0.62 U	0.5 じし	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U	0.5 U	0.5 U	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1 1	0.5 U	0.5 U	0.5 U	0.38 J #
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.5 U	4.5 #	1.9 #	14
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U	5 U	5 U	5 U
	2-riexanone Dibromochloromethane	TVOA	ug/L	50	0.5 U	0.5 U	0.5 U	0.5 U
124-48-1 106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U	0.5 U	0.5 U	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

		Sample Code	Site-specific-GW	MW-PD-13-PD-R2	MW-PD-14-PD-R2	MW-PD-15-PD-R2	MW-PD-16-PD-R2
		Sample Nam	e l				
		Sample Date	t l	6/3/2008	6/3/2008	6/3/2008	5/29/2008
Cas Rn	Chemical Name	Analytic Iv Unit \\ Depth	·	175 to 185 ft bgs	239 to 249 ft bgs	204 to 214 ft bgs	190 to 200 ft bgs
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
100-41-4	Ethylbenzene	TVOA ug/L	5	0.5 U	0.5 U	_ o.s u	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U	0.5 U	0.5[U]	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U	0.5 U	0.5 U	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5]U	0.5 U	0.5 บ	0.5 U J
75-25-2	Bromoform	TVOA ug/L	50	0.5 U	0.5	0.5 บ	0.5 ป
98-82-8	Isopropylbenzene	TVOA vg/L	5	0.5 U	0.5 U	0.5 บ	0.5 0
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U	0.5 ป	o.s u	0.5∤∪
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U	0.5	0.5 บ	0.5
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 บ	0.5 U	o.5 u i	0.5 U
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	. 3	0.5	0.5 U	0.5 U	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U	0.5 U	0.5 U	0.5 ∪
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U	0.5 U	0.5 U	0.5 U
Titanium and F				.1.1.1			
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	45.1	10 U	10 U	10 U
16984-48-8	Fluoride	Fluoride mg/L	0.12	0.12 J #	0.1 J #	# 0.08 J #	0.07 J #

Notes:

Compound detected below or equal to screening criteria

A Compound detected above screening criteria
Compound without screening criteria detected

bgs below ground surface

ft feet

J Value estimated

U Compound not detected above reporting limit

ug/L micrograms per liter mg/L milligrams per liter

TVOA Trace Volatile Organic Analyte - Aqueous

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

-			Sample Code	Site-specific-GW	MW-PD-17-PD-R2
			Sample Name	•	
			Sample Date		5/29/2008
Cas Rn	Chemical Name	Analytic	N Unit \\ Depth		80 to 90 ft bgs
505.1.1.	Volatile Organic Compounds				
75-71 - 8	Dichlorodifluoromethane	TVOA	ug/L	5	0.5 U
74-87-3	Chloromethane	TVOA	ug/L	5	0.5 U
75-01-4	Vinyl Chloride	TVOA	ug/L	2	0.5 U
74-83-9	Bromomethane	TVOA	ug/L	5	0.5 U
75-00-3	Chloroethane	TVOA	ug/L	5	0.5 U
75-69 -4	Trichlorofluoromethane	TVOA	ug/L	5	0.5 U
75-35-4	1.1-Dichloroethene	TVOA	ug/L	5	0.26 J #
76-13-1	1.1.2-Trichloro-1,2,2-trifluoroethane	TVOA	ug/L	· 5	0.5[ひ]
67-64-1	Acetone	TVOA	ug/L	50	5 U
75-15-0	Carbon Disulfide	TVOA	ug/L	50	0.5 U
79-20-9	Methyl Acetate	TVOA	ug/L	N/A	0.5 U
75-09-2	Methylene Chloride	TVOA	ug/L	5	0.5 U
156-60-5	trans-1,2-Dichloroethene	TVOA	ug/L	5	0.5 U
1634-04-4	Methyl tert-Butyl Ether	TVOA	ug/L	10	1.4
75-34-3	1.1-Dichloroethane	TVOA	ug/L	5	0.81
156-59-2	cis-1,2-Dichloroethene	TVOA	ug/L	5	0.17 J #
78-93-3	2-Butanone	TVOA	ug/L	50	5 U
74-97-5	Chlorobromomethane	TVOA	ug/L	5	0.5 U
67-66-3	Chloroform	TVOA	ug/L	7	1.8
71-55-6	1,1,1-Trichloroethane	TVOA	ug/L	5	0.91
110-82-7	Cyclohexane	TVOA	ug/L	N/A	0.5 U
56-23-5	Carbon Tetrachloride	TVOA	ug/L	5	0.5 U
71-43-2	Benzene	TVOA	ug/L	1]	0.5 U
107-06-2	1,2-Dichloroethane	TVOA	ug/L	0.6	· 0.5 U∤
79-01-6	Trichloroethene	TVOA	ug/L	5	0.5 U
108-87-2	Methylcyclohexane	TVOA	ug/L	N/A	0.5 U
78-87-5	1,2-Dichloropropane	TVOÁ	ug/L	1 '	0.5 U
75-27-4	Bromodichloromethane	TVOA	ug/L	50	0.51 #
10061-01-5	cis-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U
108-10-1	4-Methyl-2-pentanone	TVOA	ug/L	50	5 U
108-88-3	Toluene	TVOA	ug/L	5	0.5 U
10061-02-6	trans-1,3-Dichloropropene	TVOA	ug/L	0.4	0.5 U
79-00-5	1,1,2-Trichloroethane	TVOA	ug/L	1	0.5 U
127-18-4	Tetrachloroethene	TVOA	ug/L	5	0.5 U
591-78-6	2-Hexanone	TVOA	ug/L	50	5 U
124-48-1	Dibromochloromethane	TVOA	ug/L	50	0.39 J #
106-93-4	1,2-Dibromoethane	TVOA	ug/L	0.0006	0.5 U

Table F-4
Groundwater Sampling - Round 2
Full Data Table
Lawrence Aviation Industries Site
Port Jefferson Station, New York

	· · · · · · · · · · · · · · · · · · ·	Sam	ple Code Site-specific-GW	MW-PD-17-PD-R2
		Sam	ple Name	
		Samj	ple Date	5/29/2008
Cas Rn	Chemical Name	Analytic N Unit	\\ Depth	80 to 90 ft bgs
108-90-7	Chlorobenzene	TVOA ug/L	5	0.5 U
100-41-4	Ethylbenzene	TVQA ug/L	5	0.5 U
95-47-6	o-Xylene	TVOA ug/L	5	0.5 U
179601-23-1	m,p-Xylene	TVOA ug/L	N/A	0.5 U
100-42-5	Styrene	TVOA ug/L	5	0.5
75-25-2	Bromoform	TVOA ug/L	50	0.5 U
98-82-8	Isopropylbenzene	TVOA ug/L	5	0:5 U
79-34-5	1,1,2,2-Tetrachloroethane	TVOA ug/L	5	0.5 U
541-73-1	1,3-Dichlorobenzene	TVOA ug/L	3	0.5 U
106-46-7	1,4-Dichlorobenzene	TVOA ug/L	3	0.5 0
95-50-1	1,2-Dichlorobenzene	TVOA ug/L	3	0.5 U
96-12-8	1,2-Dibromo-3-chloropropane	TVOA ug/L	0.04	0.5 U
120-82-1	1,2,4-Trichlorobenzene	TVOA ug/L	5	0.5 U
87-61-6	1,2,3-Trichlorobenzene	TVOA ug/L	5	0.5 U
Titanium and l	· Fluoride		,	-
7440-32-6	Titanium Metal Powder	SW6010E ug/L	N/A	10 0
16984-48-8	Fluoride	Fluoride mg/L		0.078 J #

Notes:

#	Compound detected below or equal to screening criteria
Α	Compound detected above screening criteria
~	Compound without screening criteria detected
bgs	below ground surface
ft	feet
J	Value estimated
U	Compound not detected above reporting limit
ug/L	micrograms per liter
mg/L	milligrams per liter
TVOA	Trace Volatile Organic Analyte - Aqueous

APPENDIX G

Data Usability Assessment

Appendix G Data Usability/Data Quality Assessment Report

CDM Federal Programs Corporation (CDM), under contract with U.S. Environmental Protection Agency (EPA), Region 2, performed field activities in support of the Remedial Design Activities at the Lawrence Aviation Industries Site (LAI). Samples were collected from November 2007 through May 2008.

The purpose of this assessment is to evaluate the data collected and determine whether they met the quality objectives outlined in the CDM Final Quality Assurance Project Plan (QAPP) dated October 2007.

The results of the data evaluations completed by CDM are presented in this section.

G.1.0 Usability Summary

Samples were collected and analyzed in accordance with the Final QAPP for the LAI Site except for field changes enacted during the investigation. These changes did not have an adverse impact on the field program objectives. The changes are summarized below in Section G.3.1.

Except for data qualified as "R" rejected, the data reported herein are usable as reported with the data validation qualifiers added.

The data associated with this report were analyzed in accordance with approved methods and are usable for remedial design with the exception of the rejected "R" results.

G.2 Project Objectives

Field data collection activities were conducted to support design of the groundwater extraction and treatment system and design and application of in-situ chemical oxidation on the LAI property. Additional chemical and physical data were collected to refine the boundaries of the groundwater plume and refine soil sources that may contribute to groundwater contamination. The following summarizes the sampling activities performed in support of the project objectives:

- Aquifer testing
- Continuous water level measurement
- Monitoring well sampling
- Subsurface soil boring sampling from selected locations
- Pump testing

The Technical Memorandum and Design Report provide details of the field activities performed to accomplish the project objectives discussed above.

G.2.0 Data Quality Objectives

Data quality objectives (DQOs) were established during project planning to generate data of sufficient quality and quantity to achieve the project objectives. Data for expedited field decisions were collected as screening level data utilizing less stringent quality control (QC) measures and not requiring data validation. Data to be used for more critical decisions such as determining the plume boundary were collected for definitive level measurements requiring stricter QC measures and data validation. For each data level, measurement performance criteria were established for the data quality indicators (DQI) of precision, accuracy, representativeness, comparability, and completeness. These DQIs provide a mechanism for ongoing control, evaluating and measuring data quality throughout the project. These DQIs are outlined in Worksheets #12, 15, and 28 of the Final QAPP.

G.3.0 Summary of Field Activities

CDM completed sampling activities in accordance with the EPA approved Final QAPP. A summary of the samples collected and the analyses performed is presented in Table G-1. Samples were collected and shipped to the EPA contract laboratory program (CLP) laboratories, Division of Environmental Science and Assessment (DESA), and CDM's subcontract laboratory, Kathadin Analytical Laboratory. The Final QAPP defined the procedures to be followed and documented the data quality requirements for the field program.

Matrix spike/matrix spike duplicates (MS/MSDs) or laboratory duplicates, field duplicates, field rinsate blanks, and trip blanks were collected at the frequency described in the Final QAPP to determine the accuracy and precision of the field data.

Field rinsate blanks were associated with each day of sample collection for both groundwater screening (hyphenated with "-GW") and soil boring samples. One exception was the soil samples collected on January 7, 2008; these were associated with the equipment decontamination event on January 3. The number of field rinsate blanks collected for groundwater sampling was lower than planned in the Final QAPP; however, dedicated equipment was used for sampling the multiport wells and a field rinsate blank was collected for each decontamination event for standard well sampling (FG-01 and MW-05 in Round 1 and MW-PD-16, MW-PD-17, FG-01 and MW-05 in Round 2). Therefore the lower number of field blanks did not impact the data quality of the soil samples collected.

Trip blanks were submitted with each shipment of associated water samples for volatile organic analysis including the groundwater screening samples collected from the bottom of the deep soil borings.

Field duplicate samples (blind duplicate samples submitted to the laboratory for confirmation analysis) were numbered using a similar format to the original samples, but were given non-specific numbers for sample anonymity. After receipt of analytical results the laboratory duplicate samples were renamed to their true sample identification with the suffix "-Dup" added to signify a duplicate sample.

CDM G-2

Example:

Sample name = MPW-07-PD-C-R1

Blind duplicate sample name = MPW-77-PD-C-R1 True duplicate sample name = MPW-07- PD-C-R1-Dup

G.3.1 Deviations from Field Procedures

Ten field change requests (FCRs) were prepared to address deviations from planned events and are cited in Appendix A and discussed in the Technical Memorandum. FCRs -1 and -3 represented changed drilling procedures for the deep soil boring installation and the monitoring well respectively. These changes resulted in more cost effective and timely completion of drilling and improved quality of the groundwater screening samples.

FCR-2 was implemented to change the location of boring SBD-PD-18 to investigate the source of high concentrations of volatile organic compounds (VOCs) detected during the site wide vapor sampling performed by EPA's Environmental Response Team (ERT). This change was made to improve the information provided from this boring.

FCRs -4, -7, and -8 each covered an additional groundwater screening sample (MW-PD-12, -16, and -14) at depth to further delineate the vertical contaminant distribution and to determine the proper depth for the screen intervals. In addition, for FCR #8, the samples were collected from the bottom up and the drilling method changed due to difficulty in drilling at that location. FCR-9 implemented changes at the MW-PD15 location similar to those for FCR-8. These alternate methods and additional samples will improve the achievement of the project objectives.

FCRs-5, and -6 involved additional steps to improve the development of extraction well EW-01. A bentonite mud recovery and then the use of high pressure jetting was utilized to improve well productivity and to generate data representative of the actual conditions.

FCR-10 reflected a change in the depth of the groundwater screening sample at MW-PD-13 proposed at 245 feet due to auger refusal. A sample was collected at 160 feet below ground surface instead. These field changes allowed the investigation to proceed and facilitated the achievement of planned objectives.

G.4.0 Quality Assurance/ Quality Control (QA/QC)

Field Quality Assurance/Quality Control (QA/QC) objectives were accomplished through the use of appropriate sampling techniques and collection of rinsate blanks and trip blanks. Analytical QA/QC was assessed by internal QC checks, method blanks, surrogate and related spikes, sample custody tracking, sample preservation, adherence to holding times, laboratory control samples (LCSs) and MS/MSDs.

G.4.1 Methods

Samples were analyzed using the methods listed on Table G-2. The method SOPs listed on Table G-2 incorporate the requirements of the methods listed Final QAPP. Analytical QC procedures are detailed in the most current revision of the CLP SOWs, Standard Methods and

CDM

laboratory-specific SOPs. The SOPs utilized by the EPA DESA laboratory (Table G-2) are laboratory specific procedures to implement the requested analytical procedures and are not necessarily QAPP deviations. Some of the methods (alkalinity, hardness, nitrate, nitrite and filterable and non-filterable residue) noted in the validation reports seem to deviate from those listed in the Final QAPP. The nitrate, nitrite and hardness deviations are acceptable. The other methods (310, 130, and 160) are derived from and based on Standard Methods (SM) procedures, so the project needs/requirements of the QAPP methods have therefore been met or exceeded except as noted in the data usability report or data validation reports.

CLP data were subsequently reviewed by EPA or their validation contractor; DESA generated data was self validated; and subcontract data was reviewed by CDM. The data review was performed using EPA Region 2 standard operating procedures (SOP). The analyses were validated using the following documents, as applicable to each method:

- SOP HW-34 (Revision 0 and revision 1) for Validation of Trace Volatile Organic Analysis under CLP SOW SOM01.1 and the current CLP SOW SOM01.2.
- SOP HW-33 (Revision 0 and Revision 1) for Validation of Organic Analysis for review of Low/Medium Level analysis under CLP SOW SOM01.1 and the current CLP SOW SOM01.2.
- SOP HW-36 and HW-37 (Revision 1) for Validation of Pesticides and PCBs under the current CLP SOW SOM01.2.
- HW-2 (Revision 13) for Evaluation of Metals Data for the CLP.
- CDM Standard Operating Procedures (SOP) CDM-029A, Rev.0.

The data validation narratives indicate that the sample analyses generally met the QC criteria cited in the methods. Results associated with QC outliers were appropriately qualified by data validators.

G.5.0 Data Quality Indicators (DQI)

Achievement of the project's quality objectives were determined by the use of DQIs. Worksheet numbers 12, 13, 15, 24, 28, 35, 36, and 37 of the Final QAPP outline the DQI requirements for the project. All applied data qualifiers are reflected in the data tables included in the Technical Memorandum.

G.5.1 Accuracy

Accuracy is the degree of agreement for a given measurement against an accepted reference value. It is typically assessed through the analysis of matrix spike and calibration check samples, and expressed as a percent recovery.

Analytical accuracy for the entire data collection activity is difficult to measure because several sources of potential error exist. Errors can be introduced by any of the following:

- Sampling procedure
- Field contamination

CDM

- Sample preservation and handling
- Sample matrix
- Sample preparation
- Analytical techniques

By adhering to the approved field and analytical SOPs, approved Final QAPP and by using EPA approved analytical methods for sample analyses the data generated is believed to be accurate. CDM reviewed the laboratory's data for accuracy, that is, the reported surrogate/deuterated monitoring compounds, internal standards, calibration, MS/MSD and LCS results.

EPA and CDM validators reviewed the MS/MSD or laboratory duplicate results reported by the laboratories. MS/MSDs were not required for the VOC and semivolatile organic compound (SVOC) fractions. The MS/MSD recovery failed for pesticide gamma-BHC associated with the Aquifer testing sample ST02-1 so this result was qualified as estimated. Several deuterated monitoring compounds in the VOCs, pesticides and polychlorinated biphenyl (PCB) fractions failed the recovery criteria resulting in estimation of the associated compounds. Iron and lead matrix spike recoveries were below the required criteria resulting in estimation of these analytes in one sample (Phalen-res-01).

The sample data packages received from the EPA DESA laboratory stated that the analytical results met the data quality indicator of accuracy; however, two issues occurred which affect the reported results. One sample designated for alkalinity analysis, PT01-1 Filtered 20 microns, was received at pH 2.6. It is not known if this sample was inadvertently acidified in the field. The alkalinity was reported as non-detect without any titration. Due to laboratory error, the reporting limit of 4 milligrams per liter (mg/L) for total suspended solids was not achieved for five samples.

No other wet chemistry or titanium QC samples used to gauge accuracy required qualification.

Instrument calibration and calibration checks were performed by the laboratories to ensure proper operation and monitoring of drifts in operating parameters. All inorganic calibration criteria were achieved. VOCs (carbon tetrachloride, PCE, toluene, tetrachloroethene, 1,2,3-trichlorbenzene and benzene) and pesticides (gamma-BHC and 4,4-DDE) results were estimated due to percent differences exceeding QC criteria. Non-detect 4,4-DDE and/or gamma-BHC results (Case 37381) were rejected in the aquifer testing samples due to poor recovery of calibration standards. These aquifer testing samples are not included in the Technical Memorandum discussions.

Internal standard recovery below the required criteria resulted in rejection of the VOCs in one sample (SBD-PD-18-K) and estimation of VOCs in six samples.

CDM

G.5.2 Precision

Precision is a quantitative term that estimates the reproducibility of a set of replicate measurements under a given set of conditions. It is defined as a measurement of mutual agreement between measurements of the same property, and is expressed in terms of relative percent difference (RPD) between duplicate determinations.

RPD is calculated as follows:

RPD = absolute value $[(C1-C2)/(C1+C2)/2)] \times 100\%$

where:

C1 = Concentration of sample #1

C2 = Concentration of sample #2

The duplicate samples were collected in the same manner as the original samples but were collected in separate, individual containers, given separate sample identifiers and treated as individual samples by the laboratory.

The analytical precision for the reported data was determined by review of organic MS/MSD, inorganic laboratory duplicate results, and inductively coupled plasma (ICP) serial dilution results. Field and analytical precision was determined from the review of the field duplicate results. The sample results were compared based upon their RPD. The field duplicate samples were collected in the same manner as the original samples but were collected in individual containers, assigned unique sample identifiers and treated as individual samples by the laboratory.

All analytical RPDs were within criteria for method duplicate analyses.

Tables G-3a through G-3e report field duplicate data for the groundwater samples, groundwater screening, aquifer tests, and soil boring samples. Analytical precision cannot be determined if the reported value is less than the instrument detection limit so non-detected result pairs are shown as not calculable (NC) when both reported values were less than the reporting limit. The absolute difference (ABS) was calculated when one result was non-detect or reported below the detection limit, both were below the reporting limit, and for RPD failures. For field duplicate water samples, an RPD of less than 25 percent indicates good precision and an RPD of less than 50 percent (QAPP criteria) is considered reasonable and acceptable. For soil samples, an RPD of less than 50 percent indicates good precision and an RPD of less than 100 percent (QAPP criteria) is reasonable and acceptable. An ABS less than five times the contract required quantitation limit (CRQL) meet the Final QAPP goal.

Table G-3 series show that good precision was achieved between the field duplicate pairs except for the aquifer test sample. One result pair exceeded the water RPD criteria (Table G-3a) (chloromethane in MPW-03-PD-B-R1 [92.3%RPD]), the original sample was below the CRQL of 0.5 micrograms per liter (μ g/L) so an ABS value was calculated. The ABS result was below criteria so the result is believed to be reliable and have no impact on the data quality. One soil result exceeded the ABS criteria (Table G-3c) (acetone in SBD-PD-16-P) so this result should be considered as an estimate and used with caution. The groundwater screening field duplicate

sample results (Table G-3d) met the RPD criteria. The aquifer testing field duplicate sample pair results were not precise. Six metal results were rejected by the data validator (aluminum, chromium, iron, lead, manganese, and nickel) representing 1.8 percent of the aquifer samples metal results. Three other inorganic results (barium, copper, and total suspended solids) failed the Final QAPP RPD criteria; of these three barium and copper had one result below the CRQL and met the ABS criteria. The total suspended solid result failed both the RPD and the ABS Final QAPP criteria. The original sample results (PT01-1) are generally higher than the duplicate sample (PT10-1) possible due to the higher suspended solid content.

There is no adverse impact to the usability of the groundwater, screening or soil data due to field duplicate results. The data validator rejected some of the aquifer testing inorganic data as required by EPA Region 2 SOP Guidelines due to differences in the field duplicate results.

G.5.3 Blank Contamination

Table G-4 contains the trip blank and rinsate blank results. Trip blanks are used to determine the intrusion of volatile contaminants during sample shipping and storage. Rinsate blanks are used to demonstrate the effectiveness of the decontamination of sampling tools. Laboratory method and storage blanks are analyzed to indicate possible contamination introduced by sample handling, preparation, and/or analysis in the laboratory.

Groundwater Blanks: Contaminant detections were minimal in the Round 1 (11/28/07 - 11/30/07) trip blanks and the one field rinsate blank. VOCs chloroform and trichloroethene (TCE) were detected at levels at or near their CRQLs. More contaminants were detected in the Round 1 reanalysis (TB010408) and Round 2 (5/29/08 - 6/3/08) trip and field rinsate blanks but their levels were similarly low in general. Noted exceptions detected above the CRQL were acetone (9.5 to 11 μ g/L) in four Round 2 trip blanks; TCE in one field rinsate blank (16μ g/L in FB052908); and methylene chloride (0.58μ g/L), chloroform (4.2μ g/L) and bromodichloromethane (0.88μ g/L) in TB060208. The other commonly detected VOCs in the blanks were at or near the CRQLs. Detected compounds in associated samples were qualified as non-detect "U" at the CRQL or at the reported level as required.

Groundwater Field Screening Blanks (1/16/08 – 5/19/08): Similar contaminants were detected in the trip and field rinsate blanks. Bromomethane and chloroform were detected slightly above the CRQL (5 μ g/L) in the trip and field rinsate blanks (5 - 8 μ g/L) collected during the groundwater screening sampling.

Soil Blanks and Groundwater Screening Blanks Collected During Soil Boring Event (12/5/07 - 1/9/08): Similar contaminants were detected in the trip blanks associated with the groundwater screening samples collected from the bottom of the soil borings and the field rinsate blanks. Chloromethane, acetone, methylene chloride, 2-butanone, chloroform, 1,1,1,-trichloroethane, cyclohexane, bromodichloromethane, toluene, and dibromochloromethane were detected in one or more of the blanks. Of these compounds, chloroform was detected in all field rinsate blanks and trip blanks ($0.46 - 12 \mu g/L$). Chloromethane ($0.2 - 0.75 \mu g/L$), toluene ($0.26 - 0.65 \mu g/L$), bromodichloromethane ($0.74 - 1.8 \mu g/L$) and acetone ($5.2 - 150 \mu g/L$) were also frequently detected. Other compound detections were below the CRQL. The associated

results were qualified as non-detect "U" at the reported level or raised to the appropriate CRQL and qualified "U".

Acetone detections were also widespread, however, detections were elevated above the CRQL levels in the December 2007 to January 2008 sampling event. The more elevated results typically ranged from 17 to 60 μ g/L with one high detection of acetone (150 μ g/L in FB120508). Acetone was not used for decontamination purposes at the site during the design investigation since the remedial investigation (RI) results showed acetone detection in several samples. The remedial design (RD) investigation samples associated with these blank acetone results also showed detections of acetone up to 240 μ g/kg; associated results within the qualification range were flagged "U". Higher sample results above the blank action range were not qualified. The method and storage blank results associated with these sample batches varied from non-detect for acetone to low concentrations (up to 3.2 μ g/L). It is uncertain whether acetone resulted from contamination or if the detections are truly representative of site conditions.

Aquifer Blanks (4/16/08 - 4/24/08): Methylene chloride was detected in one method blank and chloroform, chloromethane, and trichloroethene were detected at low levels in the trip and field rinsate blanks.

G.5.4 Representativeness and Comparability

Representativeness and comparability are achieved by using EPA-approved sampling procedures and analytical methodologies. By following approved field plan procedures for sample collection, this and future sampling events should yield results representative of environmental conditions at the time of sampling. Similarly, reasonable comparability of analytical results for this and future sampling events can be achieved if the EPA-approved analytical methods and standardized reporting units are utilized.

G.5.4.1 Representativeness

Representativeness is a qualitative term that expresses the degree to which the sample data accurately and precisely represents the environmental conditions corresponding to the location and depth interval of sample collection. Requirements and procedures for sample collection are designed to maximize sample representativeness. Representativeness also can be monitored by reviewing field documentation and by performing field audits. Appropriate laboratory QA/QC requirements were described in the Final QAPP and laboratory SOWs ensure that the laboratory analytical results were representative of true field conditions.

Sample representativeness was achieved by CDM through the use of EPA analytical methods, the use of inert materials to collect samples, clean sample gloves, and standard sampling procedures designated for EPA Region 2 projects. Samples were shipped on ice at 4°C and received intact at the laboratory. The generally low concentrations of blank contaminants as discussed above indicate that sample results are representative of the site conditions. One uncertainty however, is the acetone detections in the soil samples and associated blanks. It is uncertain whether acetone resulted from contamination or if the detections are truly representative of site conditions.

G.5.4.2 Comparability

Comparability is a qualitative term that expresses the confidence with which a data set can be compared with another. Strict adherence to standard sample collection procedures, analytical detection limits, and analytical methods assures that data from like samples and sample conditions are comparable. This comparability is independent of laboratory personnel, data reviewers, or sampling personnel. Comparability criteria are met for the project if, based on data review, the sample collection and analytical procedures are determined to have been followed, or defined to show that variations did not affect the values reported.

To ensure comparability of data generated for the site, standard sample collection procedures were followed by CDM, and EPA-approved analytical methods were utilized by DESA, CLP and Katahdin laboratories (Table G-5). Utilizing such procedures and methods enables the current data to be comparable with the previous data sets generated with similar methods.

With the exception of results obtained from the groundwater screening analyses CRQLs or reporting limits were low enough to compare the data with applicable project goals listed in the Final QAPP. However, the site-specific groundwater criteria used in the Technical Memorandum are not met for the compounds listed on Table G-6. These compounds are not considered as contaminants of concern for the site.

All soil sample data were consistently reported: organics in micrograms per kilogram ($\mu g/kg$), metals in milligrams per kilogram (mg/kg), and all aqueous samples in $\mu g/L$ or mg/L.

G.5.5 Data Completeness

Completeness of the field program is defined as the percentage of samples planned for collection as listed in the Final QAPP versus the actual samples collected during the field program. (See equation A).

Completeness for acceptable data is defined as the percentage of acceptable data obtained judged to be valid versus the total quantity of data generated. (See equation B.) Acceptable data includes both data which passes all the QC criteria (unqualified data) and data that may not pass all of the QC criteria but had appropriate corrective actions taken (qualified but usable data).

A.
$$\%$$
 Completeness = $C \times 100$

n

where,

C= actual number of samples collected n = total number of samples planned

B. % Completeness =
$$V \times \frac{100}{r'}$$

where,

V= number of measurements judged valid n' = total number of measurements made

The goal was to generate a complete data set for at least 90 percent of the samples planned to be collected and 90 percent valid data of the samples analyzed. One hundred percent of the planned data was collected along with the additional samples collected from MW-PD-12, -14, and -16. No field samples were lost due to shipping. Table G-5 summarizes the number of data points rejected during data validation. Rejected data represents less than one percent of all definitive data. By parameter, data rejected include, two percent of the TAL metals; 6 percent of the pesticide data collected for aquifer testing; and one percent of the VOC soil data. The soil VOC rejection impacted only one sample which had an internal standard QC failure. Eleven metal results were rejected by the data validator in sample PT-01-I and its duplicate due to exceedance of the field duplicate validation criteria. Non-detect 4,4-DDE and/or gamma-BHC results (Case 37381) were rejected in the aquifer testing samples due to poor recovery of calibration standards.

The DQO of 90 percent completeness for the sampling event was exceeded.

G.6 Project Assessments

An office audit and a technical systems audit were conducted for the LAI RD. The office audit included a review of the quality procedures for planning to conduct field procedures, preparation and submittal of documents and measurement reports, and review of subcontract procurements. The office audit report indicated that the project staff met the quality requirements and procedures except for documentation for remedial design training for two staff members working on the project; missing documentary evidence of technical and quality review; and missing or extraneous documents in the project files. Prompt corrective action was taken to address these findings. Since the audit was performed early in the project schedule these issues did not impact work performance.

A field technical systems audit was performed on December 18, 2007 and an audit report prepared and dated December 21, 2007. This field audit covered piezometer drilling and the subsurface soil sample collection from a deep soil boring. The auditor noted that the staff was aware of the necessary QA requirements and QC protocols for the work being performed. Minor deviations from documented procedures were noted relating to field logbook documentation. These problems were immediately corrected by the field team. The auditor observed the field team adhering to the Final QAPP and FCRs for all other tasks and requirements.

The project team displayed continuous improvement in performing project tasks and evaluating the impact of field changes on project goals. This was evidenced by the FCRs discussed earlier in this report.

G.7 Assessment of Data Usability and Reconciliation with QAPP Goals

The reporting limits generally meet the project quantitation limit goals except as noted on Tables G-2 and G-6.

The field and laboratory data reported are generally suitable for the remedial design objectives. Data of potentially unusable quality, that is rejected data, should not be used. Data of unusable quality have been rejected (0.45 percent) and are not considered usable for design purposes. Non-detect results for compounds whose reporting limits are higher than the site-specific groundwater criteria (Table G-6) may not be usable to ascertain if contaminant levels are above the criteria. The achievement of the completeness goal for usable data provides sufficient data to achieve the project objectives and to make decisions for the LAI Site.

Data Qualifiers Lawrence Aviation Industries Superfund Site Port Jefferson Station, New York

Qualifiers:

В	-	Analyte is found in the associated blank and in the sample.
D	-	Compound is identified at a secondary dilution factor.
E		Compound concentration exceeds the calibration range of the instrument for that specific analysis.
J	-	Estimated data due to exceeded quality control criteria.
K	-	The reported value may be biased high
L	-	The reported value may be biased low
M	-	Duplicate injection precision not met.
N	-	Sample recovery is not within control limits.
R	-	Data is rejected due to exceeded quality control criteria.
U	-	Compound was analyzed for but not detected. The associated numerical value is
		the sample quantitation limit.

TABLES

Table G-1 Sample Summary Lawrence Aviation Industries Site Port Jefferson Station, New York

	1									7		7	_		/	7	7	7	7	7	7	/	78/	—	///
				/33			/	/18	/ 5	/		/	/		/		/	/X			//	/ N. P.	Arge Co	2 405 205 405	
		Sample		kalinky Ar	Thronis	noride	uoride G	ain site	ardness	iite vi	tigite /	Mate 1	\$/ <u>\$</u>	5 / N	X / C		C'H/C'	aride X	Jarium 7	Metal	Solid	ر"را	25 / 15 / 15 / 15 / 15 / 15 / 15 / 15 /		Comment - Duplicate Parent ID
Sample Name Groundwater Sam	nice -	Date Pound 1	C350	3703	<u> </u>	7 8	7 6	<u> </u>	<u> </u>	<u> </u>	<u>7 9</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	7 6	<u> </u>	7~	- 0/0		<u> </u>	7 ^	7 3	Duplicate Parent 10
MPW-02-PD-B-R1	nica -	11/26/07	Case	7,03	<u> </u>	1				_					\vdash	_	_	1				_	51	3	
MPW-02-PD-C-R1	i	11/26/07		_		1												1					51	3	
MPW-02-PD-C-R1-	DUP	11/26/07				1				,								1					51	3	MPW-22-PD-C-R1
MPW-02-PD-D-R1		11/26/07				1			<u> </u>	<i>.</i>					<u> </u>	ļ		1					51	3	
MPW-01-PD-A-R1		11/27/07				1	1	-	}	ļ	<u> </u>	_	_		⊢		_	1					51 51	3	
MPW-01-PD-B-R1 MPW-01-PD-C-R1		11/27/07 11/27/07		 		1				-	 -			├─		_		1	-				51	3	
MPW-03-PD-B-R1	\vdash	11/27/07				1		-	1				 -					1	-				51	3	1
MPW-03-PD-B-R1-	DUP	11/27/07				1	1			_								1					51	3	MPW-33-PD-B-R1
MPW-04-PD-A-R1	i T	11/27/07				1												1					51	3	
MPW-04-PD-B-R1		11/27/07				1										<u> </u>		1			<u> </u>		51	3	
MPW-04-PD-C-R1	igsquare	11/27/07		<u> </u>		1	<u> </u>									<u> </u>		1					51	3	
MPW-04-PD-D-R1		11/27/07			<u> </u>	1	-	 			 		 	_		 		1	_				51 51	3	
MPW-04-PD-E-R1 MPW-10-PD-A-R1		11/27/07	\vdash	\vdash		1	1		-				_		-	 		1.		,			51 '	3	
MPW-10-PD-B-R1		11/27/07	\vdash	_	 	1		1	 			_			 	 		1					51	3	
MPW-10-PD-C-R1		11/27/07		 		1]								-	-		1					51	3	
MPW-10-PD-D-R1	-	11/27/07				1												1					51	3	
FG-01-PD-R1		11/28/07				1												1			L		51	3	
MPW-03-PD-A-R1	_	11/28/07	ļ			1			ļ				<u> </u>	ļ	ļ	<u> </u>		1	\vdash				51	3	
MPW-03-PD-C-R1	<u> </u>	11/28/07	<u> </u>	ļ	<u> </u>	1			<u> </u>					 	 	-		1					51 51	3	
MPW-03-PD-D-R1		11/28/07	\vdash	<u> </u>		1		-	\vdash	\vdash			_		\vdash	\vdash		1					51 51	3	
MPW-05-PD-A-R1 MPW-05-PD-B-R1	[11/28/07	\vdash			1	\vdash		\vdash	\vdash	-	_	\vdash	_	\vdash	\vdash		1			\vdash		51	3	
MPW-08-PD-A-R1	\vdash	11/28/07		<u> </u>		1	1		\vdash			_			\vdash			1					51	3	
MPW-08-PD-B-R1	Н	11/28/07				1												1					51	3	
MPW-08-PD-C-R1		11/28/07				1			<u> </u>									1					51	3	
MPW-08-PD-D-R1		11/28/07				1												1					51	3	
MPW-08-PD-E-R1	\Box	11/28/07				1									<u> </u>			1					51	3	
MW-05-PD-R1		11/28/07	<u> </u>			1		<u> </u>	<u> </u>	<u> </u>	<u> </u>		_	<u> </u>	<u> </u>	ļ		1			$\mid - \mid$		51	3	
MPW-05-PD-C-R1		11/29/07				1_		 	<u> </u>		<u> </u>		-		\vdash	<u> </u>		1	\vdash		\vdash		51 51	3	
MPW-05-PD-D-R1		11/29/07				1								_	-	<u> </u>		1	-				51	3	
MPW-06-PD-A-R1 MPW-06-PD-B-R1		11/29/07 11/29/07				1							 	 		\vdash		1					51	3	
MPW-06-PD-C-R1		11/29/07	_		<u> </u>	1			_							-		1					51	3	
MPW-06-PD-D-R1	f	11/29/07			-	1								\vdash	\vdash			1					51	3	
MPW-07-PD-C-R1		11/29/07				1								\vdash		_		1					51	3	
MPW-07-PD-C-R1-	DUP	11/29/07				1												1					51	3	MPW-77-PD-C-R1
MPW-09-PD-A-R1		11/29/07				1											-	1					51	3	1
MPW-09-PD-B-R1		11/29/07				1												1					51	3	<u> </u>
MPW-09-PD-C-R1		11/29/07				1	<u> </u>						├─					1					51	3	
MPW-09-PD-D-R1	ļ ļ	11/29/07		├─		1-1-									<u> </u>		—	1					51 51	3	
MPW-09-PD-E-R1 MPW-07-PD-A-R1	 - 	11/29/07			\vdash	1							 		 	-		1					51	3	
Field QC Samples	Asso		the F	Round	1 Gro		ater S	ampl	es				l		L			•					<u> </u>		
FB-112807		11/28/07				1												1					51	3	
TB112607		11/26/07																					51	3	
TB112807		11/28/07												ldash									51	3	
TB112907		11/29/07													<u> </u>	<u> </u>							51	3	
TB113007		11/30/07	لـــا		l				_					 	_								51	3	····
Reanalysis of MPV MPW-07-PD-B-R1	<u>V02 aı</u>	1/4/08	7 - Cas	se 371	20	1			_						 	-		1					51	2	
MPW-02-PD-A-R1		1/4/08				1												1					51	2	
TB010408		1/4/08																					51	2	
Source Area Soil S	ampl	ing Event	- Case	3707	3								,												
SBD-PD-19-A		12/5/07													1					1		52			
SBD-PD-19-A-DUP	Ш	12/5/07						<u> </u>	<u> </u>						1	<u> </u>				1		52		\vdash	SBD-PD-91-A
SBD-PD-19-B	\vdash	12/5/07					 							<u> </u>	1					1		52 52		\vdash	
SBD-PD-19-C SBD-PD-19-D	\vdash	12/5/07 12/5/07			ļ. —	 		<u> </u>							1	\vdash	-		\vdash	1		52		\vdash	
SBD-PD-19-E		12/5/07													1					1		52_			
SBD-PD-19-F		12/5/07	\Box												1					1		52		<u> </u>	
SBD-PD-19-G	\square	12/5/07					_	<u> </u>							1					1		52 52	_	\vdash	
SBD-PD-19-H	\vdash	12/5/07 12/5/07											—		1					1	\vdash	52			
SBD-PD-19-I SBD-PD-19-J	╁╌┤	12/5/07	\vdash	\vdash	\vdash			_					_		1	-			-	1	\vdash	52		\vdash	
SBD-PD-19-J SBD-PD-19-K	} -	12/6/07	\vdash				9								1				. 1	<u> </u>		52			
SBD-PD-19-L	 	12/6/07	\vdash	\vdash			10								1					1		52			
SBD-PD-19-M		12/6/07					10			,					1					1		52			
SBD-PD-,19-N		12/6/07													1							52			
SBD-PD-19-P		12/7/07					10					•			-					1		52		آـــــــــا	
SBD-PD-19-Q		12/7/07					10					,			1	 				1		52			
SBD-PD-19-R	<u> </u>	12/7/07				<u> </u>	10		<u> </u>						1				\Box	1		52			
SBD-PD-19-S	$\vdash\vdash$	12/7/07				\vdash	10								1	\vdash				1		52	 -	\vdash	<u> </u>
SBD-PD-19-T		12/7/07	 			\vdash	10			\square					1					1		52	E4		
SBD-PD-19-GW-A SBD-PD-19-GW-B	 	12/10/07 12/11/07																	\longrightarrow				51 51	\vdash	
SBD-PD-19-GW-B SBD-PD-19-U	╁╌┤	12/11/07				\vdash	-8							\vdash	1	-	-		\vdash	1		52	- 1		·,
SBD-PD-19-V	\vdash	12/11/07	-				9								1		\neg			1	\vdash	52			
SBD-PD-19-W		12/11/07					7							-	1		-			1		52			
SBD-PD-19-X		12/11/07					8								1					1		52			
SBD-PD-19-Y		12/11/07					10								1					1		52			
SBD-PD-19-Z		12/11/07				L	7								1					1_		52			

Table ਦੇ-ਜ Sample Summary Lawrence Aviation Industries Site Port Jefferson Station, New York

-		Γ-			_		/	_	/	//	//			//		_	//			/		/8		7//
		:0ala		unity/	oriz	jde/	ide/	SITE TO	, Sess/		/_/	/ %/	/,	//		soil	Ŋ/	dride it	ium/	Metals olose	105.2	40,14 1868,	7/1800 X	Comment - Duplicate Parent ID
ample Name		'Sample Date	/ PIN	Ralinity Por	heoris	Noride KIN	dide C	**/*	ordness	itic M	Hole Si	Male 10	5/15	3/XX	<u>/ %</u>	50) 50) 10)	CA CO	<u> </u>	arium (A)	Metals	100/	<u>~</u> /	1/10/	Duplicate Parent ID
BD-PD-18-A		12/17/07					∵D∵:							-	1	\dashv				1	- 52	: —		
BD-PD-18-B	<u> </u>	12/17/07					0							—}	1	 			-	1	52 52		+	
BD-PD-18-C	<u> </u>	12/17/07		LI		├	0.		<u> </u>						1			-	 -	1	52		+	
BD-PD-18-D	<u> </u>	12/17/07	\vdash			-	0		_						1		-			1	52	_	+	SBD-PI
BD-PD-18-D-DUP	<u> </u>	12/17/07	\vdash			 	0		<u> </u>				-	\dashv	1 1	-+	-	-		1	52	—	+	05571
3D-PD-18-E	<u> </u>	12/17/07					0							\rightarrow	1	~-	_	\dashv		1	52	_	+	·
BD-PD-18-F	 	12/18/07		-		\vdash				_	\vdash		_	\rightarrow	-		\dashv	\dashv	_	+	52	_	-	
3D-PD-18-G		12/18/07	 		_		0			_				-+	1			-		1	52	_	+	+
BD-PD-18-I	_	12/18/07				├	∵0∵		 	 				\dashv		\dashv	\neg	\dashv		- 	- "	_	1 1	
BD-PD-18-GW-A	⊢	12/19/07	\vdash			\vdash	::a:::		+	├─	\vdash				1					1	52			
BD-PD-18-J		12/19/07		\vdash		\vdash	0							\vdash	i	\neg	_			1	52	-	\neg	-
BD-PD-18-K	\vdash	12/19/07				 	0			-	\vdash			-	1	\dashv		+		1	52	\rightarrow		
BD-PD-18-L	_	12/19/07	<u> </u>		-	1—1	:0:	_	 					-	1					1	52	-1	+	
BD-PD-18-M	-		├	-	-		:0:			\vdash	\vdash				1	\neg	_			1	52	$\overline{}$	\dashv	1
BD-PD-18-N	-	12/19/07	├─	\vdash	\vdash	\vdash	:0:	-		\vdash	\vdash	—		$\overline{}$	1	\rightarrow	-			1	52	\rightarrow	┪-	<u> </u>
BD-PD-18-O BD-PD-18-P	 -	12/19/07				\vdash	∵0∵		_	┢	-		·		1	\neg	\neg		\dashv	1	52	_	_ -	
	-	+					0			 	\vdash	_			1				\rightarrow	1	52			
BD-PD-18-Q		12/19/07 12/19/07		\vdash		\vdash	0			 					1		\dashv			1	52	_	_	
BD-PD-18-R	} —	_	 	\vdash			0				\vdash	_			-			-		1	52		\top	
BD-PD-18-S	1-	12/19/07	\vdash		 	$\vdash \vdash$. 0			 	\vdash		\vdash	$\vdash \vdash$	-			-		+	5;		\dashv	
BD-PD-18-T	1	12/19/07				$\vdash \vdash$			1	 		-		\vdash					_	-+	- '		1	
BD-PD-18-GW-B	1	12/20/07			 	$\vdash \vdash$: 0 :::		1	├	H			$\vdash \vdash$	1		\dashv		+	1	52		\top	
BD-PD-18-U	-	12/20/07	-		\vdash	 	0		 	1	\vdash	 		$\vdash \dashv$	1		\dashv		-+	1	52	-	+	1
BD-PD-18-V	-	12/21/07				₩			\vdash	\vdash		 		$\vdash \dashv$	1		\rightarrow	\dashv		1	52	$\overline{}$	\dashv	-
BD-PD-18-W	<u> </u>	12/21/07	 	 	\vdash	 	0			\vdash	 	 	\vdash	 +	1	-			-+	+	52		+	
BD-PD-18-X	<u> </u>	12/21/07	 	 -	\vdash	$\vdash \vdash \vdash$	0		1	 -	\vdash	 		$\vdash \vdash$		-+	-		-	1	- 52	$\overline{}$	-+-	
BD-PD-18-Y	<u> </u>	12/21/07	1	ļ	ļ	\longmapsto	0		\vdash		1-	_	 -	$\vdash \vdash$	1		\dashv			1	52	_	┰	+
BD-PD-18-Z	 _	12/21/07	 —		<u> </u>	$\vdash \dashv$	0		<u> </u>	-	 	 	\vdash	 	1			\rightarrow		_	52	_	+	
BD-PD-16-A	<u> </u>	12/27/07	 -	<u> </u>			10	<u> </u>	-	₩	 	\vdash	\vdash	├ →	1 1		-	\dashv		1		$\overline{}$	+	-
BD-PD-16-B	<u> </u>	12/27/07		<u> </u>	<u> </u>		10		1	 		—		$\vdash \rightarrow$	1			}	\rightarrow	1	52	$\overline{}$		SBD-PI
BD-PD-16-B-DUP	<u> </u>	12/27/07	<u> </u>	 	l	\square	10		-	-	 —	\vdash	<u> </u>	$\vdash \vdash$	1					1		_		380-71
BD-PD-16-C		12/27/07	<u> </u>	<u> </u>	ļ	\sqcup	10		—		 	\vdash	ļ	$\vdash \vdash \vdash$	1				\rightarrow	1	52	$\overline{}$		+
BD-PD-16-D	<u> </u>	12/27/07					10	_		<u> </u>			<u> </u>					\rightarrow		1	_	-		
BD-PD-16-E	<u> </u>	12/27/07				\sqcup	10		<u> </u>		<u> </u>		<u> </u>		1			<u>`</u>		1	52	\rightarrow	+	
BD-PD-16-F	<u> </u>	12/27/07			L	\Box	10				↓		L_	\Box	1			 -∤		1	52		_	<u>-</u>
BD-PD-16-G		12/27/07	L_		Ĺ ,		10		ļ		<u> </u>		<u> </u>		1					1	52	_	_	-
BD-PD-16-H		12/28/07					10		L.	<u> </u>		L		Ш	_1_					1	52		+	
BD-PD-16-I	Г	12/28/07					10					<u> </u>		Ш	1					1	52	_		
BD-PD-16-J		12/28/07					10						L		1					1	5:	_	_ _	
BD-PD-16-K		12/28/07					10								1					1	51	$\overline{}$	_	
BD-PD-16-L	i	12/28/07					10				l				1			,		1	5:	$\overline{}$	_	
SBD-PD-16-M		12/28/07					10								1					1	52	<u> </u>		
SBD-PD-16-GW-A	<u> </u>	1/2/08														٧					_	5	1	
SBD-PD-16-N	1	1/2/08					9								1					1	5:	2	__	
SBD-PD-16-O		1/2/08					10								1					1	5:	<u> </u>		
SBD-PD-16-P	П	1/2/08													1					0	5	<u> </u>		
BD-PD-16-P-DUP	T	1/2/08								П				·	1	_				::o	5	<u>²</u>		SBO-P
SBD-PD-16-Q	T	1/2/08							Ĭ					\Box . \Box	1					::0:::	5	2		
SBD-PD-16-R	I	1/2/08					10								1					∴ó∷	5	2		
SBD-PD-16-S	T	1/2/08					9							Γ'	_1_					: o: ::	5:	2		
BD-PD-16-T	i —	1/2/08					9							. 1	1					1	5	<u> </u>		
BD-PD-16-U	i	1/2/08	T			\Box	10								1					1	5:	2		
BD-PD-16-GW-B	 	1/3/08				11			1					П								5	1	
SBD-PD-16-V	i —	1/3/08	1				9								1					1	5:	2		
SBD-PD-16-W	-	1/3/08	t		\vdash		8				Γ.			П	1					1	5	2 }_		
BD-PD-16-X	\vdash	1/3/08	Γ-		\Box		8		1		Γ.				1					.1	5	2		
BD-PD-16-Y	\Box	1/3/08			\vdash		8	\Box	I		Γ	Ė			1					1	5:	<u> </u>		
BD-PD-16-Z	i –	1/3/08	t —				7	 		 	1		Γ-	П	1					1	5:	2		
BD-PD-17-A	1	1/7/08		\vdash		\Box	10			 				\sqcap	1				\Box	1	5:	2		
BD-PD-17-B		1/7/08			T	\Box	10			1				\Box	1		\Box			1	5:	2		
BD-PD-17-C	1-	1/7/08	1		1	\Box	. 10					T-			1					1	_ 5:	2		
BD-PD-17-C-DUP		1/7/08	t^-			\Box	10	1		1				П	1					1	5:	2		SBD-PI
BD-PD-17-D	 	1/7/08	 		 		10	 	1	ţ,	\vdash				1	_				1	5:	2		
BD-PD-17-E		1/7/08	\vdash	\vdash	\vdash	\vdash	10	 - 		Τ	T	$\overline{}$	$\overline{}$		1					1	5	2	_ _	
BD-PD-17-E	1	1/7/08	 	 		┼┈┤	10			t		İ	L^{-}		1					1	5.			
BD-PD-17-G		1/7/08					10								1				\Box	1	5.		\bot	4
BD-PD-17-H		1/7/08					10		1		 		L . –	\sqcup	1		—		<u> </u>	1	5	$\overline{}$		
SBD-PD-17-1	_	1/7/08	<u> </u>	Ь	<u> </u>		10	<u> </u>	₩	 —	—	Ь—	<u> </u>	} —-	1				\vdash	1	5	_	+	
BD-PD-17-J		1/7/08		$ldsymbol{ldsymbol{ldsymbol{eta}}}$	<u> </u>	igspace	10	<u> </u>	<u></u>	 	₩	\vdash	—	├	1		$\vdash \vdash$				5			-
BD-PD-17-GW-A		1/8/08				igsqcut		_		 	ـــــ	ļ	<u> </u>						\sqcup		-		51	
BD-PD-17-K		1/8/08				$oxed{\Box}$	10		<u> </u>	ـــــ			<u> </u>	$\sqcup \downarrow$	1				—_	1	5	_		
BD-PD-17-L		1/8/08					10		<u> </u>		lacksquare		_	$\sqcup \hspace{-0.1cm} \sqcup$	1				 .	1	5	$\boldsymbol{-}$	+	
BD-PD-17-M		1/8/08		1			10	oxdot	<u> </u>	<u> </u>	<u> </u>	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	 	ш	_1_	<u> </u>				1	5		+	
BD-PD-17-N		1/8/08					10	\Box	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Ш	1				<u> </u>	1	5		+	
BD-PD-17-O		1/8/08					10					<u> </u>	<u>}</u>	igsquare	1				\vdash	1	5			
BD-PD-17-P		1/8/08					10						ì	\Box	1		igsqcut		$\sqcup \downarrow$	1	5	_	+	
BD-PD-17-Q	П	1/8/08					10					L	1		1				لسا	1	5	_		<u> </u>
BD-PD-17-R		1/8/08		$\overline{}$		\Box	10						İ		1					1	5		\perp	
	i i	1/8/08	T				. 9								1			,		1	5	-		
SBD-PD-17-S	 	1/8/08	+	1	t	+	8	Τ.	1	1		Τ	T	┌─┤	1					1	5	2		
	1	1/9/08	1—	+	 	+ -	Ť		1-	\top		\vdash							\Box	$\neg \neg$			51	
BD-PD-17-T	1	1/9/08	 	+	+	+	9		1	T	†	 	t	\Box	1					1	5	2		
BD-PD-17-T BD-PD-17-GW-B			+	+	\vdash	+	9	\vdash	┼	+	+	t	 	\vdash	1					1	5	2	$\neg \top$	
SBD-PD-17-S SBD-PD-17-T SBD-PD-17-GW-B SBD-PD-17-U		4 /0 /00	1	+	 	1	10	 	+	+	+	+	 	\vdash	1					- i†		2	$\neg \uparrow \neg$	
BD-PD-17-T BD-PD-17-GW-B BD-PD-17-U BD-PD-17-V		1/9/08	T					1	1	1	1	1 .	1						. 1					
SBD-PD-17-T SBD-PD-17-GW-B SBD-PD-17-U SBD-PD-17-V SBD-PD-17-W		1/9/08		1	 	+	-	t	1		1				1					1	- 5	2 T	\Box	
SBD-PD-17-T SBD-PD-17-GW-B SBD-PD-17-U SBD-PD-17-V SBD-PD-17-W SBD-PD-17-X		1/9/08	,		-	<u> </u>	9	ļ.,	-		1				1					1	5			SBD-P
BD-PD-17-T BD-PD-17-GW-B		1/9/08		-	-	_	-								1 1					\rightarrow	-	2		SBD-P

Table ਹੈ-1 Sample Summary Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Name					/ .	/	/ ,	/	/ ,	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/ /	/s>/		///
Sample Name Field QC Samples As				, Kr.	/io			ci As		/	/		/,	/,	/,	, sit	/	, ser	, Itt	Hotal	9/38/	24.6 18.6	LEGO /	25 VO	5 sm
Field QC Samples As		Sample Date		Azalirited Pr	unding	hords	Joide G	all Size	dress hi	dig Mi	date Si	Hate 1	5/ K	5/X	<u>*</u> /c	S SON	C'A	anide A	Sanium 1	No William	Solid	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*/<		Comment - Duplicate Parent ID
	SSO		h the S	Source	Area	Soil	and G	round	water	Scree	ning s	amp	es Co	llecte	fron	the b	ottom	of th	e Bor	ings					
FB-120507		12/5/07																	_	_			51 51		
FB-120607	_	12/6/07	<u> </u>		_	├—		-											\vdash	_	 		51		
FB-120707 FB-121007		12/10/07				\vdash	-																51	-	
FB-121107		12/11/07																					51		
FB-121707		12/17/07				<u> </u>														<u> </u>			51 51		
FB-121807 FB-121907	-	12/18/07 12/19/07	-	<u> </u>		├	-											_					51		
FB-121907		12/20/07	 -			┼┈																	51		
FB-122107		12/21/07																					51		
FB-122707		12/27/07				_			<u></u>											├	<u> </u>		51 51		
FB-122807		1/2/08	\vdash				-	_									_	_			_		51		
FB-010208 FB-010308	-	1/3/08	-		\vdash	+-						_			_								51		
FB-010808		1/8/08																					51		
FB-010908		1/9/08		_									<u> </u>	_					├		<u> </u>		51 51		
TB-121007	_	12/10/07 12/11/07	⊢		_	┢				_			-		_	_		_			 		51		
TB-121107 TB-121907	_	12/11/07	\vdash	-		\vdash																	51		
TB-122007	_	12/20/07	T																				51		
TB-010208		1/2/08																_			<u> </u>		51	-	
TB-010308		1/3/08		_	<u> </u>	-	<u> </u>											<u> </u>			 		51 51	-	
TB-010808 TB-010908	-	1/8/08	 	\vdash		\vdash	\vdash		\vdash		_								\vdash	\vdash			51		
Groundwater Screen	ning		- EPA	On Si	te Mo	bile L	abora	tory												ļ			_		
MW-PD-11-GW-A		1/16/08																	-	 —	48		<u> </u>		
MW-PD-11-GW-B	_	1/16/08	\vdash	 	 	\vdash	-	-	\vdash				 			<u> </u>			\vdash	-	48 48		-		
MW-PD-11-GW-C MW-PD-12-GW-A	\dashv	1/16/08	+	\vdash	-	\vdash	\vdash	-		_			 	-					\vdash	\vdash	48				
MW-PD-12-GW-B		1/31/08																		<u> </u>	48				,
MW-PD-12-GW-C		2/5/08				_														<u> </u>	48				
MW-PD-12-GW-AA		2/6/08	<u> </u>	├		 —	├								_	_				├	48 48				
MW-PD-12-GW-AAA MW-PD-12-GW-AAAD) I I D	2/6/08	┼─	\vdash		-	\vdash								_	\vdash					48		_	_	MW-PD-21-GW-AA
MW-PD-17-GW-A	,0,	2/12/08	\vdash	-																	48				
MW-PD-17-GW-B		2/13/08																			48				
MW-PD-17-GW-C		2/13/08	ــــــ	_		<u> </u>	<u> </u>	<u> </u>	_							_			ļ.—		48		-		<u> </u>
BMR-01 MW-PD-16-GW-A	\dashv	2/25/08	₩	_	-	\vdash		<u> </u>	_											\vdash	48				
MW-PD-16-GW-B		2/25/08						 	_										\vdash		48				
MW-PD-16-GW-C		2/25/08																			48				
MW-PD-16-GW-D		2/28/08					_				_								_	<u> </u>	48				MW-PD-61-GW-D
MW-PD-16-GW-D-DL	JP	2/28/08 3/6/08	⊬	 		\vdash	 												├		48 48	_			MVV-PU-61-GVV-D
MPW-02-PORT1 MW-PD-16-GW-E	\dashv	3/6/08	 	\vdash		\vdash	-												-		48				
MW-PD-16-GW-F		3/6/08																			48				,
MPW-02-PORT2		3/11/08	<u> </u>																	<u> </u>	48				······································
MPW-02-PORT3	_	3/11/08			_														-		48 48			_	
MPW-02-PORT4 MW-PD-14-GW-A	-	4/9/08	\vdash			\vdash											_		\vdash		48				
MW-PD-14-GW-A-DU	JР	4/9/08	1	\vdash	_																48				MW-PD-41-GW-A
MW-PD-14-GW-B		4/10/08	<u> </u>	Ŀ																	48				
MW-PD-14-GW-C		4/22/08	├	<u> </u>	 	_															48				
MW-PD-14-GW-D MW-PD-15-GW-A	\dashv	4/22/08 5/6/08	├	1-	_	+			 							_				\vdash	48				
MW-PD-15-GW-B		5/6/08	t																		48				
MW-PD-15-GW-C		5/6/08																			48				
MW-PD-13-GW-A	\dashv	5/19/08	<u> </u>			-		<u> </u>					_						 		48				
MW-PD-13-GW-B MW-PD-13-GW-C	\dashv	5/19/08	 			\vdash										-				 	48				
Field QC Samples As	\$ 80	ciated wit	h the (Groun	dwate	er Scre	ening	Sam	oles											_					
FB-011608		1/16/08	-		<u> </u>	-	 		<u> </u>										<u> </u>	 	48				
FB-012408 TB-012408		1/24/08		 	\vdash	\vdash	 										-		\vdash	\vdash	48 48				
FB-013108		1/31/08	\vdash														=			\vdash	48				
TB-013108		1/31/08																			48				
TB-020508		2/5/08	<u> </u>	ļ	ļ	ļ													lacksquare		48				
TB-020608 FB-021208	_	2/6/08 2/12/08	_	<u> </u>	<u> </u>	_	<u> </u>												\vdash	<u> </u>	48 48				
TB-021208		2/12/08				\vdash		_				•	Н						\vdash	\vdash	48				
FB-022108		2/21/08																			48				
TB-022108		2/21/08					\sqsubseteq														48				
TB-022808	_	2/22/08					<u> </u>						$\vdash \vdash$						-		48				
FB-022808 FB-030508	\dashv	2/28/08 3/5/08		\vdash															 		48 48				
TB-030508		3/5/08																			48				
TB030708	\Box	3/7/08																			48				
TB-031108		3/11/08	$\vdash \vdash$	$\vdash \mid$	ļ	 									_						48				
FB040908		4/9/08 4/9/08	$\vdash\vdash$												-	\dashv					48 48				
18040908		4/10/08	$\vdash \vdash$	$\vdash \vdash$		\vdash							\dashv	\dashv	\dashv	\dashv				\vdash	48				<u> </u>
TB040908 FB041008	\dashv	4/10/08																			48				
FB041008																	\neg				48	_			
FB041008 TB041008 FB042308	_	4/23/08	ш	\vdash			_	_									!		_	_					
FB041008 TB041008 FB042308 TB042308		4/23/08				_															48				
FB041008 TB041008 FB042308																					48				
FB041008 TB041008 FB042308 TB042308 FB050708		4/23/08 5/7/08																			$\overline{}$				

Table G-1 Sample Summary Lawrence Aviation Industries Site Port Jefferson Station, New York

										Po	rt Jef	ferso	n Sta	ition,	New	York									
[]					7	7	7	/	7	7	//	7	//	7	//	//	7	//	//	7	7	//	~ (gb/	//	
				, KY.	,ia			c 12	150	/		/.	/,	/	Ι.	, sil	/	aride.W		Metal	/.s/	25 10	168/ 1406/ 1406/	360 M	Comment - Duplicate Parent ID
Comme Name		Sample Date		Salinity Pr	Prinopis	rioride	or Grand	ain site	ardness	rite ki	ing 5	Mate 15	5 / K	5/×	*/,		Ci ^N	34/13	Sanite 1	W. olo	Solid VC	56/20	×/<	368/1	Comment - Duplicate Parent ID
Sample Name Test Wells for Aqu	ifer T			7 8	7 6	7 3		<u> </u>	7 5		7_3														
TW-01 (184-186)		3/21/08					Ø.													1				<u> </u>	
TW-01 (190-192)		3/21/08					0.					ļ							<u> </u>	1				-	
TW-01 (196-198)		3/21/08		_		├	0		-			 		-						1				-	· · · · · · · · · · · · · · · · · · ·
TW-01 (202-204) TW-01 (206-208)	_	3/24/08	_			╁╌	. 0		 		\vdash									1			_		
TW-01 (212-214)		3/24/08		ļ			. 0													1					
TW-01 (214-216)		3/24/08					0	<u> </u>			<u> </u>			<u> </u>					<u> </u>	1				_	
TW-01 (218-220)		3/24/08 3/24/08			_	├	0				_			-						1					
TW-01 (220-222) TW-01 (224-226)	_	3/25/08			-		Ď.													1_					
TW-01 (232-234)		3/25/08					Ω.:													1					
TW-01 (236-238)		3/25/08	<u></u>	22224			0	<u> </u>	<u> </u>			<u> </u>			L					1	<u> </u>				
Aquifer Testing St	amplii I	4/16/08	Gase :	37381 1	1	T^{-}	T .	1	1	1	1	1	1	1	•	1	1		23				51		Also analyzed for P/P & SVO
Phalen-res-01		4/17/08												_			1		23				51	<u> </u>	Also analyzed for P/P & SVO
Phalen-res-02		4/17/08			L.	<u> </u>	<u> </u>	<u></u>	<u> </u>	-			_	<u> </u>	_	_	1				 		51 51		Also analyzed for P/P & SVO
PT01-I	 	4/29/08 4/29/08	1	1	1	 	├─	1	1	1	1	1	1	1_1_	├	1	1		23	_		\vdash	31		PT01-I (filtered 20 micron
PT01-I(filter 20 mc) PT01-I(filter 45 mc)		4/29/08	1		 			1			1	1					_		22						PT01-I (filtered 45 micron
PT01-I-DUP	ĺ	4/29/08	1	1	1			1	1	1	1	1	1	1		1	1		23				51		PT10-1
PT02-I		4/29/08	1	1	1			1	1	1	1	1	1	1		1	1		23	<u> </u>			51	_	Also analyzed for P/P & SVO
PT02-I(filter 20 mc)	 -	4/29/08	1		<u> </u>	-		1	 -		1		_		-	\vdash		<u> </u>	22			 	-	\vdash	PT02-I (filtered 20 micron PT02-I (filtered 45 micron
PT02-I(filter 45 mc)	_	4/29/08 4/30/08	1	1	1	┼	 	1	1	1	1	1	1	1	 	1	1		23				51	T	Also analyzed for P/P & SVO
PT03-I (filter 20 mc)	 	4/30/08	1	┌╌	宀	1	\vdash	1	 	Ė	1	İ		Ė		Ė			22						PT03-I (filtered 20 micror
PT03-I(filter 45 mc)	1 -	4/30/08	1					1	<u> </u>		1								22				ļ		PT03-I (filtered 45 micron
PT04-I		4/30/08	1	1	1	ļ_		1	1	1	1_	1	1	1	 	1	1		23	<u> </u>			51	\vdash	Also analyzed for P/P & SVO
PT04-I(filter 20 mc)	-	4/30/08	1	├ —	_	├		1	 	_	1		\vdash			\vdash			22			-	 - 	\vdash	PT04-1 (filtered 20 micron
PT04-l(filter 45 mc)	-	4/30/08 5/1/08	1 1	1	1	+-		1	1	1	1	1	1	1	\vdash	1	1		23		\vdash		51	\vdash	Also analyzed for P/P & SVO
PT05-I PT05-I(filter 20 mc)		5/1/08	1	Ļ	 	١.	 	1	Ė		1	Ė	Ė	Ė					22						PT05-I (filtered 20 micron
PT05-I(filter 45 mc)	! 	5/1/08	1					1			1								23	\sqsubseteq		ļ		ļ	PT05-I (filtered 45 micron
ST01-1		4/24/08	1	1	1		$ldsymbol{oxedsymbol{oxedsymbol{eta}}}$	1	1	1	1	1	1_	1		1	1		23	_	<u> </u>	-	51	<u> </u>	Also analyzed for P/P & SVO
ST01-I(filter 20 mc		4/24/08	1		ļ.,	╄	 -	1	1	├ -	1			-			_	<u> </u>	22	 	 	├		├	ST01-I(filtered 45 micror
ST01-l(filter 45 mc)	} —	4/24/08 4/24/08	1	1	1	┼╌		1	1	1	1	1	1	1		1	1		23	 - -			51	1-	Also analyzed for P/P & SVO
ST02-1 ST02-1(filter 20 mc)	! 	4/24/08	1	 	广	1		1	╅∸	广	1	亡	Ė	╅┷		Ϊ́	<u> </u>		22						ST02-I(filtered 20 micror
ST02-I(filter 45 mc)		4/24/08	1					1			1								22						ST02-I(filtered 45 micror
ST03-I		4/24/08	1	1	1			1	1	1	1	1	1	1		1	1		23	<u> </u>	ļ		51	-	Also analyzed for P/P & SVO
ST03-I(filter 20 mc)		4/24/08	1		ļ	 	<u> </u>	1	↓ —	\vdash	1	-	<u> </u>					_	22				₩	╂─	ST03-l(filtered 20 micror ST03-l(filtered 45 micror
ST03-I(filter 45 mc)	<u> </u>	4/24/08	1	1	Top!	ting S	nmple.	1	├	_	1					_		-	22				\vdash	-	G103-I(IIIIGIGA 43 IIIIGIGA
Field QC Samples FB-042408	ASSC	4/24/08	the /	Agune	rtes	ling 3		<u>. </u>	 	\vdash				-		\vdash	1		23			1	51		
TB-041608		4/16/08																					51		
TB-041708		4/17/08													<u> </u>		<u> </u>	<u> </u>	<u> </u>	_	<u> </u>		51	 	
TB-042408	├	4/24/08			_	-	├		₩				-	-						 -	-	-	51 51	\vdash	<u> </u>
TB-042908 TB-043008	 	4/29/08 4/30/08	 			 	 		+	\vdash	-		\vdash		 	\vdash							51	\vdash	
TB-050108	 	5/1/08		_		 																	51		
Groundwater Sam			- Cas	e 3749	95				τ	_		1	T		1	ı			_	_				_	
MPW-01-PD-A-R2 MPW-01-PD-A-R2-	-	5/19/08 5/19/08		_		1	 	_	╆	-		\vdash					_	1	-			_	51 51	\vdash	MPW-11-PD-A-R
MPW-01-PD-B-R2	+	5/19/08	_		-	1	\vdash	-	 			t		_		\vdash		1					51		
MPW-01-PD-C-R2	-	5/19/08	<u> </u>			1												1					51		
MPW-03-PD-A-R2		5/20/08	L			1		Ľ.		<u> </u>			<u> </u>			_		1	<u> </u>			-	51	├ —	
MPW-03-PD-B-R2	. 	5/20/08	_		_	1	├	<u> </u>	 —		<u> </u>			-		┝	<u> </u>	1	-	 	<u> </u>	-	51 51	├	
MPW-03-PD-C-R2 MPW-03-PD-D-R2	┼	5/20/08 5/20/08	\vdash	\vdash	\vdash	1	 		-	\vdash		\vdash		-	-	\vdash	\vdash	1	\vdash	\vdash	 	 	51	\vdash	-
MPW-04-PD-A-R2	:	5/21/08		\vdash		1					<u> </u>							1					51		
MPW-04-PD-B-R2	+	5/21/08				1												1					51		
MPW-04-PD-C-R2	-	5/21/08	<u> </u>	<u> </u>	\vdash	1	\vdash	<u> </u>	├	<u> </u>	_			<u> </u>	ļ	<u> </u>	 	1	<u> </u>			 	51	-	
MPW-04-PD-D-R2 MPW-04-PD-E-R2	:	5/21/08 5/21/08	\vdash	\vdash	 	1 1	\vdash	\vdash	\vdash	\vdash	\vdash	-		 		\vdash	\vdash	1					51 51	\vdash	
MPW-05-PD-A-R2	, 	5/21/08				1				<u> </u>								1					51		
MPW-05-PD-B-R2	;	5/21/08				1												1					51		
MPW-05-PD-C-R2	! 	5/21/08		<u> </u>		1						<u> </u>	ļ			\vdash		1		<u> </u>	<u> </u>		51	<u> </u>	
MPW-05-PD-D-R2	. 	5/21/08		_	<u> </u>	1		_	\vdash		\vdash		\vdash		<u> </u>	 -	<u> </u>	1	\vdash		_	-	51	-	
MPW-06-PD-A-R2 MPW-06-PD-B-R2	`	5/22/08 5/22/08			\vdash	1	 	-	 						\vdash	\vdash	\vdash	1	 		_		51 51		
MPW-06-PD-C-R2	,	5/22/08				1	\vdash		\vdash									1					51		
MPW-06-PD-D-R2	-					1												1					51		
		5/22/08				1						_						1		$oxedsymbol{oxed}$			51		
		5/22/08								ı					r	<u> </u>	\Box	1	l i		L				i
MPW-08-PD-B-R2		5/22/08 5/22/08				1																-	51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2		5/22/08 5/22/08 5/22/08				1 1												1				_	51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-D-R2		5/22/08 5/22/08				1												1 1					1		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-D-R2 MPW-08-PD-E-R2	!	5/22/08 5/22/08 5/22/08 5/22/08				1												1					51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-D-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-B-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08				1 1 1 1 1												1 1 1					51 51 51 51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-B-R2 MPW-02-PD-C-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08				1 1 1 1 1 1 1					-							1 1 1 1 1					51 51 51 51 51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-B-R2 MPW-02-PD-C-R2 MPW-02-PD-D-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08 5/27/08				1 1 1 1 1 1 1												1 1 1 1 1					51 51 51 51 51 51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-B-R2 MPW-02-PD-C-R2 MPW-02-PD-D-R2 MPW-03-PD-D-R2 MPW-03-PD-A-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08				1 1 1 1 1 1 1 1												1 1 1 1 1					51 51 51 51 51 51 51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-B-R2 MPW-02-PD-C-R2 MPW-02-PD-D-R2 MPW-03-PD-A-R2 MPW-09-PD-A-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08 5/27/08 5/27/08				1 1 1 1 1 1 1												1 1 1 1 1 1 1					51 51 51 51 51 51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-B-R2 MPW-02-PD-C-R2 MPW-02-PD-D-R2 MPW-09-PD-A-R2 MPW-09-PD-B-R2 MPW-09-PD-C-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08 5/27/08 5/28/08 5/28/08				1 1 1 1 1 1 1 1 1												1 1 1 1 1 1 1 1					51 51 51 51 51 51 51 51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-C-R2 MPW-02-PD-D-R2 MPW-09-PD-A-R2 MPW-09-PD-B-R2 MPW-09-PD-C-R2 MPW-09-PD-R2 MPW-09-PD-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08 5/27/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08				1 1 1 1 1 1 1 1 1 1												1 1 1 1 1 1 1 1 1 1 1 1					51 51 51 51 51 51 51 51 51 51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-C-R2 MPW-02-PD-D-R2 MPW-09-PD-A-R2 MPW-09-PD-B-R2 MPW-09-PD-C-R2 MPW-09-PD-D-R2 MPW-09-PD-D-R2 MPW-09-PD-D-R2 MPW-09-PD-D-R2 MPW-09-PD-E-R2 MPW-09-PD-E-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08 5/27/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08				1 1 1 1 1 1 1 1 1 1 1 1												1 1 1 1 1 1 1 1 1 1 1 1 1					51 51 51 51 51 51 51 51 51 51 51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-C-R2 MPW-02-PD-D-R2 MPW-09-PD-A-R2 MPW-09-PD-C-R2 MPW-09-PD-C-R2 MPW-09-PD-E-R2 MPW-09-PD-E-R2 MPW-09-PD-E-R2 MPW-09-PD-E-R2 MPW-10-PD-A-R2 MPW-10-PD-A-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												1 1 1 1 1 1 1 1 1 1 1 1 1					51 51 51 51 51 51 51 51 51 51 51 51 51		
MPW-08-PD-B-R2 MPW-08-PD-C-R2 MPW-08-PD-E-R2 MPW-02-PD-A-R2 MPW-02-PD-C-R2 MPW-02-PD-D-R2 MPW-03-PD-A-R2 MPW-09-PD-B-R2 MPW-09-PD-C-R2 MPW-09-PD-E-R2 MPW-09-PD-E-R2 MPW-09-PD-E-R2 MPW-10-PD-A-R2 MPW-10-PD-A-R2 MPW-10-PD-B-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08 5/27/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08				1 1 1 1 1 1 1 1 1 1 1 1												1 1 1 1 1 1 1 1 1 1 1 1 1					51 51 51 51 51 51 51 51 51 51 51 51		
MPW-02-PD-D-R2 MPW-09-PD-A-R2 MPW-09-PD-B-R2		5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/22/08 5/27/08 5/27/08 5/27/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08 5/28/08				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					51 51 51 51 51 51 51 51 51 51 51 51 51 5		

Table G-1 Sample Summary Lawrence Aviation Industries Site Port Jefferson Station, New York

				7	7	7	7	7	7	7	7	7	7	7	//	7	7	//	7	//	7	<i>&</i> /	7	
			/	/.0			/3°.	/ 5		/	/	/	/.	/,		/.	anide in	, .c.	Metal	/,	26 K	10°	20° 40°	Comment - Duplicate Parent ID
j	Sample		Salinity A	huding Ch	dige (oride G	ain Ho	dress	it /	igic (Mare 10	3/2	5/X	*/ 2	e soil	S'A'	anio.	Sarium 1		Solld	&/.	<i>3</i> //	ş ^o /.c	Comment -
Sample Name	Date	<u> </u>	<u> </u>	<u>~ ~</u>	<u>Z</u> 🗞	<u>/ </u>	<u> </u>	<u> </u>	<u> </u>	<u>/ છ</u>	100	<u> </u>	$\angle \overset{\sim}{\sim}$	<u> </u>	<u> </u>	$\angle 3$		<u> </u>	100	<u> </u>	<u> </u>	<u> </u>	7.3	Duplicate Parent ID
MPW-07-PD-B-R2	6/2/08				1				•								1	<u> </u>	<u> </u>	 		51		
MW-05-PD-R2	6/2/08				1						\Box			-			1	<u> </u>	<u> </u>			51		
MW-PD-11-PD-R2	6/2/08				1												_1_		-			51		
MW-PD-12-PD-R2	6/2/08				1											_	1	├	_			51_		10V DD 04 DD D0
MW-PD-12-PD-R2 DUF	6/2/08				1												1	<u> </u>	L_			51		MW-PD-21-PD-R2
FG-01-PD-R2	6/3/08				1												1	<u> </u>	<u> </u>			51		la sufficient and a supplemental to
MPW-07-PD-C-R2	6/3/08				NA												NA					51		Insufficient mass was recovered to perform fluoride and titanium analysis.
MW-PD-13-PD-R2	6/3/08				1												1	<u> </u>				51		
MW-PD-14-PD-R2	6/3/08				1												1		L			51		
MW-PD-15-PD-R2	6/3/08				1											L.	1		L_			51		
MW-PD-15-PD-R2-DUI	6/3/08				1											$ldsymbol{ld}}}}}}}}}$	1	<u> </u>				51		MW-PD-51-PD-R2
Field QC Samples Ass	ociated with	the F	Round	2 Gro	undw	ater S	ample	<u>s</u>								ldash			└	ļ				
FB-052908	5/29/08		<u>.</u>		1											$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1_		<u> </u>	 _		51		
FB-060208	6/2/08				1											$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1	!				51_		
FB-060308	6/3/08				1		r									$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1	L_	Ь	<u> </u>		51_		
TB-051908	5/19/08													\square					Щ.			51		
TB-052008	5/20/08															$ldsymbol{ldsymbol{ldsymbol{eta}}}$			Щ.	ļ		51_		
TB-052208	5/22/08															$ldsymbol{ldsymbol{ldsymbol{eta}}}$			Ь.			51_		
TB-052708	5/27/08															$ldsymbol{ldsymbol{ldsymbol{eta}}}$				<u> </u>		51		
TB-052808	5/28/08																			<u> </u>		51		
TB-052908	5/29/08															igsquare			<u> </u>	<u> </u>		51_		
TB-060208	6/2/08															\sqcup			<u> </u>	ļ. —	<u> </u>	51		
TB-060308	6/3/0B									L		L		ليلا	L	ليا	L		L		5045	51	450	
Total Data Points		26	10	10	101	625	26	10	10	26	10	10	10	107	10	12	101 101	629 28	112 112	2976 62	5616 108	8466 166	153 51	
Samples Analyzed		26	10	10	101	68	26	10	10	26	10	10	10	107	10	12	101	20	112	02	100	100	31	

Notes and Abbreviations:

Sample results receipt pending - not yet uploaded to the Equis database. Data quality of these results were not assessed.

GW = Groundwater

FB = Field blank

ID = Identification

TDS

TDS = Total dissolved solids TKN = total Kjeldahl nitrogen MPW = Multiport well TB = Trip blank NA = not analyzed TOC = total organic carbon SIM = simultaneous ion monitoring MW = Monitoring Well S = soil TSS = Total suspended solids WB = Water blank TAL = total analyte list PT = Pump Test P/P = Pesticides & PCBs TCL = target compound list W = water SBD = Soil boring VOC = volatile organic compound

ST = Stress Test % = percent TW = Test Well mc = micron

Table G-2 Laboratories, Methods Used and Sensitivities Achieved Lawrence Aviation Industries Site Port Jefferson Station, New York

Parameter	Matrix	Planned Method/ SOW	Actual Method/ SOP# Used	Laboratory Used	Requested Sensitivity	Sensitivity Achieved ¹
Alkalinity	Aqueous	310.1	EPA SOP C-18/ SM2320B	DESA	NA	1 mg/L
Ammonia	Aqueous	350.1/02	C-80/EPA 350.1	DESA	0.2 mg/L	0.05 mg/L
Chloride	Aqueous	325.1 or 300	EPA SOP C-94	DESA	1 mg/L	0.1 mg/L
Fluoride	Aqueous	340.1/.2 or 300	C-94 (Ion chromatography) & 340.2	DESA & Katahdin	4/0.8 mg/L	DL not reported; lowest sample concentration was 0.073 mg/L and field blanks was 0.069 mg/L.
	Aqueous					
Grain size	Soil	ASTM D421-85/D422-63	Laboratory SOP	Katahdin lower tiered	None	NA
**************************************		130.1/.2 or ILM05.4/ 200.7				_
Hardness	Aqueous	by calculation	SM 2340B	DESA .	1 mg/L	1 mg/L
Nitrate	Aqueous	352.1 or 300	EPA SOP C-78/353.2	DESA	0.1 mg/L	0.1 mg/L
Nitrite	Aqueous	354.1 or 300	EPA SOP C-79/353.2	DESA	0.1 mg/L	0.05 mg/L
Sulfate	Aqueous	375.3, 375.4 or 300	C-94/EPA 300	DESA	5 mg/L	0.5 mg/L
Residue, Filterable	Aqueous	160.1	C-37 SM2540C	DESA	10 mg/L	10 mg/L
Residue, Non-Filterable	Aqueous	160.2	C-33 SM2540D	DESA	4 mg/L	4 mg/L
TOC	Aqueous	415.2 or 415.1	C-83 (Combustion/IR method)	DESA	1 mg/L	1 mg/L
			(Combustion/IR method) &	DESA & Katahdin		DL not reported; lowest detection was
тос	Soil	Lloyd Kahn	Lloyd Kahn	lower tiered	None	120 mg/kg
Titanium	Aqueous	Added in field	200.7/ILM05.4	DESA & CLP	None	10 μg/L
Metals	Aqueous	ILM05.4	EPA SOP C-109	CLP Laboratories	Varies ICP-AES and MS**	Met requirement
Nitrogen, Tot. Kjeldahl	Aqueous	351.2/.4	C-40/EPA 351.2/3	DESA	0.1 mg/L	0.1 mg/L
			·			5 μg/kg - varies with soil moisture
VOC	Soil	SOM01.2 - Low	SOM01.2		Worksheet #15f)	level. Met requirement
VOC-screening data	Aqueous	SOM01.2 - Trace	OLM04.3		0.5 µg/L	5 μg/L - okay for screening
voc	Aqueous	SOM01.2 - Trace	SOM01.2			0.5 µg/L
SVOC	Aqueous	SOM01.2	SOM01.2	CLP-Mitkem	Varies	Met requirement
Pest/PCBs	Aqueous	SOM01.2	SOM01.2	CLP-Mitkem	Varies	Met requirement

Notes & Abbreviations:

1. Some VOC compounds did not achieve the 0.5 µg/L limit. These are listed on Table 6.

The SOPs listed above are the laboratory specific SOP references utilized by the EPA DESA laboratory. These SOPs are laboratory specific procedures to implement the requested analytical procedures and are not necessarily QAPP deviations. The method deviations are for alkalinity, hardness, nitrate, nitrite and filterable and non-filterable residue. The nitrate, nitrite and hardness deviations are acceptable. The other methods (310, 130, and 160) are derived from and based on Standard Methods (SM) procedures, so the project needs/requirements of the QAPP methods have therefore been met or exceeded except as noted in the data usability report or data validation reports.

Metals were not collected for the groundwater samples. Metals were collected for the aquifer test for which ICP_AES limits were requested and obtained.

CLP - contract laboratory program

DESA - Division of Science and Assessment

EPA - Environmental Protection Agency

ICP/AES - inductively coupled plasma/atomic emission spectrometry

MS - mass spectrophotometer

PCBs - polychlorinated biphenyls

kg - kilogram

mg/L - milligram per liter

NA - not applicable

SOP - standard operating procedure

TOC - total organic carbon

VOC - volatile organic compound

DL - detection limit

μg/L - microgram per liter

Tot. - total IR - infra-red

SVOC - semivolatile organic compound

μg/L - microgram per liter

Table G-3a - Field Duplicate Comparison Groundwater Samples - Round 1 Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code		MPW-02-PD-C-R1	MPW-02-PD-C-R1-DUP MPW-22-PD-C-R1	RPD	ABS	MPW-03-PD-B-R1	MPW-03-PD-B-R1-DUP MPW-33-PD-B-R1	RPD	ABS	MPW-07-PD-C-R1	MPW-07-PD-C-R1-DUP MPW-77-PD-C-R1	RPD	ABS
Sample Name Sample Date		11/26/2007	11/26/2007			11/27/2007	11/27/2007		'	11/29/2007	11/29/2007		
Volatile Organic Compounds - Trac													
	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 ป	0.5 U	NC	ı
Chloromethane	µg/L	0.5 U	0.35 J	NA	0.15	0.21 J	0.57	92.3	-0.36	0.5 U	0.5 U	NC	
Vinyl Chloride	µg/L	0.5 U	0.5 U	NC	***************************************	0.5 U	0.5 U	NC		0.5 U	0.5 U	NÇ	
Bromomethane	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Chloroethane	μg/L	0.5 U	0.5 U	NC	·	0.5 Ü	0.5 U	NC	-	0.5 U	0,5 U	NC	
Trichlorofluoromethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0,5 U	NÇ		0.5 U	0.5 U	NC	
1.1-Dichloroethene	μg/L	0.41 J	0.32 J	24.7	0.09	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/L	0.5 U	0.5 U	NC	-	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Acetone	μg/L	5 ∪	5 U	NC		5 U	5 U	NC		5 U	5 U	NC	
Carbon Disulfide	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Methyl Acetate	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Methylene Chloride	μg/L	0.5 U	0.5 U	NC		0.5 ป	0.5 U	NC		0,5 U	0.5 U	NC	
trans-1,2-Dichloroethene	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Methyl tert-Butyl Ether	μg/L	0.5 U	0.5 U	NC		0.5 ∪	0.5 U	NC		0.5 U	0.5 U	NC	
1,1-Dichloroethane	μg/L	1.5	1.5	0.0	NA	0.5 Ų	0.5 U	NC		0.52	0.52	0.0	
cis-1,2-Dichloroethene	µg/L	0.38 J	0.41 J	7.6	-0.03	· 0.5 U	0.5 U	NC		0.5 U	0.5 U	NÇ	
2-Butanone	μg/L	5 U	5 U	NC		. 5 ป	5 U	NC		_ 5 ປ	· 5 U	NC	
Chlorobromomethane	μg/L	0.5 U	0.5 U	NC		0.5 ป	, 0.5 U	NC		0.5 U	0.5 U		
Chloroform	μg/L	0.73	0.7	4.2	NA	0.5 U	0.5 U	NC		0.86	0.84	2.4	
1,1,1-Trichloroethane	µg/L	0.97	- 1	3.0	NA	0.5 Ų	0.5 U	NC		0.49 J		10.8	0.05
Cyclohexane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Carbon Tetrachloride	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0,5 ∪	NC	
Benzene	μg/L	0,5 U	0,5 U	NC		0.5 U	0.5 U	NC	<u> </u>	. 0.5 U	0,5 ∪	NC	
1,2-Dichloroethane*	µg/L	0,5 U	0.5 U	NC	<u> </u>	0.5 U	0.5 U	NC	<u> </u>	0.5 U	0.5 U	NC	***************************************
Trichloroethene	µg/L	3.2	3.1	3.2	NA	1.7	2.2	25.6		0.59		10.7	
Methylcyclohexane	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	***************************************
1,2-Dichloropropane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Bromodichloromethane	μg/L	0.5 U	0.5 ป	NC		0.5 U	0.5 U	NC		0.5 Ü	0.5 U	NC	······································
cis-1,3-Dichloropropene	μg/L	0,5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	***************************************
4-Methyl-2-pentanone	µg/L	5 U	5 U	NC		5 U	5 U	NC		5 U	5 U	NC	~
Toluene	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
trans-1,3-Dichloropropene	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	ļ	0,5 U	0,5 Ü	NC	
1,1,2-Trichloroethane	μg/L	0.5 U	0.5 ป	NC	<u> </u>	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC :	******
Tetrachloroethene	µg/L	0.33 J	0.32 J		0.01	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
2-Hexanone	μg/L	5 <u>U</u>	5 U	NC		5 U	5 U	NC	L	5 U	5 U	NC	

Table G-3a - Field Duplicate Comparison Groundwater Samples - Round 1 Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code		MPW-02-PD-C-R1	MPW-02-PD-C-R1-DUP	RPD	ABS	MPW-03-PD-B-R1	MPW-03-PD-B-R1-DUP	RPD	ABS	MPW-07-PD-C-R1	MPW-07-PD-C-R1-DUP	ŔPD	ABS
Sample Name		1	MPW-22-PD-C-R1				MPW-33-PD-B-R1				MPW-77-PD-C-R1		1 !
Sample Date		11/26/2007	11/26/2007			11/27/2007	11/27/2007	<u> </u>		11/29/2007	11/29/2007		
Volatile Organic Compounds - Trac	e:e		'	l									
Dibromochloromethane	μg/L	0.5 U	0.5 U			0.5 U	0.5 U			0.5 U	0.5 U		
1,2-Dibromoethane	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Chlorobenzene	μg/L	0,5 U	0.5 U	NC		0.5 U	0.5 U			0.5 U	0.5 U	NC	ļ
Ethylbenzene	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U		ļ	0.5 U	0.5 U		ļ
m,p-Xylene	μg/L	0.5 U	0.5 U	NC	<u> </u>	0.5 U	0.5 U			0.5 U	0.5 U	NC	
Styrene	μg/L	0.5 U	- 0.5 U	NC	<u> </u>	0.5 U	0.5 년		ļ	0.5 U	0.5 U	NC	ļ
Bromoform	μg/L	0.5 U	0,5 U	NC	<u> </u>	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Isopropylbenzene	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC		0.5 ป	0.5 ป	NC	ļl
1,1,2,2-Tetrachloroethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U		ļ	0.5 U	0.5 U	NC	<u> </u>
1,3-Dichlorobenzene	µg/L	0,5 Ų	0.5 U	NC	<u></u>	0.5 U	0.5 U			0.5 U	0.5 ป	NC	
1,4-Dichlorobenzene	µg/L	0.5 U	0.5 ป			0.5 U	0.5 ป	NC		0.5 U	0.5 U	NC	
1,2-Dichlorobenzene	μg/L	0.5 U	0.5 U	NC	<u> </u>	0.5 U	0.5 ป		<u> </u>	0.5 U	0.5 U	NC	
1,2-Dibromo-3-chloropropane	µg/L	0.5 U	0.5 U	NC	<u> </u>	0.5 U	0.5 ป			0.5 U	0.5 U	NC	
1,2,4-Trichlorobenzene	µg/L	0.5 U	0.5 U	NC	<u> </u>	0.5 ป	0.5 U	NC		0.5 U	0.5 U	NC	
1,2,3-Trichlorobenzene	µg/L	0.5 U	0.5 U	NC	<u> </u>	0.5 ป	0.5 ป	NC		0,5 U	0.5 U	NC	
VOC - SIM Analyses					<u> </u>			ļ					
1,2-Dibromo-3-chloropropane	µg/L	0.04 U	0.04 U	NC		0.04 U	0.04 U			0.04 U	0.04 U	NC	<u> </u>
1,2-Dichloroethane	μg/L	0.05 U	0.05 U	NC		0.05 U	0.05 U			0.05 U	0.05 U	NC	
trans-1,3-Dichloropropene	μg/L	0.05 U	0.05 U	NC		0.05 U	0.05 U	NC		0.05 U	0.05 U	NC	ш
		,											l l
Inorganics	١.,	40	4.5	١.,	۱	0.47	0.24	24.4	-0.07	20	20	0.0	i I
Fluoride	mg/l	10	10	0.0	NA_	0.17			1-0.07	20 10 U	20 10 U	NC	j
Titanium Metal Powder	μg/L	10 U	10 U	NC		10 U	_10 U	NC		10 0	10 0	140	

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS is calculated for results failing the RPD and where one result is detected and one is non-detect or results fall below the CRQL.

RPD values above 50% are bolded if both sample and duplicate are detected. ABS values above Detection Limits are in italics if either the sample or duplicate is detected.

Blank cells reflect non-detect value

ABS = absolute difference RPD = rtelative percent difference

CRQL = contract required detection limit

mg = milligram; µg = microgram; L = liter

NA = Not available or not applicable

Table G-3b - Field Duplicate Comparison Groundwater Samples - Round 2 Trace Volatiles, Fluoride, and Titanium Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code Sample Name		MPW-01-PD-A-R2	MPW-01-PD-A-R2-DUP MPW-11-PD-A-R2	RPD	ABS	MW-PD-15-PD-R2	MW-PD-15-PD-R2-DUP MW-PD-51-PD-R2	RPD	ABS
Sample Name Sample Date	Units	5/19/2008	5/19/2008			6/3/2008	6/3/2008		
- Campio Date						<u> </u>			
Volatile Organic Compounds - Trace						-			i
Dichlorodifluoromethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Chloromethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.11 J	NA	0.39
Vinyl Chloride	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Bromomethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Chloroethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Trichlorofluoromethane	μg/L	0.5 U	0.5 ป	NC		0.5 U	0.5 U	NC	
1.1-Dichloroethene	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Acetone	μg/L	5 U	5 U	NC		5 U	5 U.	NC	
Carbon Disulfide	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Methyl Acetate	μg/L	0.5 U	0.5 Ü	NC		0.5 U	0.5 ∪	NC	
Methylene Chloride	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
frans-1,2-Dichloroethene	μg/L	0.5 ป	0.5 U	NC		0,5 U	0,5 U	NC	
Methyl tert-Butyl Ether	μg/L	2.6	2.7	3.8	NA	0.5 U	0.5 U	NC	
1,1-Dichloroethane	μg/L	0.5 U	0.5 U	NC		. 1.9	1.9	0.0	
cis-1,2-Dichloroethene	µg/L	0.5 U	0.5 U	NC		0.94	0.95	1.1	NA
2-Butanone	µg/L	5 U	1,2 J	NA	3.8	5 U	5 U	NC	
Chlorobromomethané	μg/L	0.5 U	0.5 ⁻ U	NC		0.5 U	0.5 U	NC	
Chloroform	μg/L	0.5 U	0:5 U	NC		0.5 ป	0.52 U	NC	
1,1,1-Trichloroethane	μg/L	0.11 J	0.5 U	NA	-0.39	1.5	1.4	6.9	NA
Cyclohexane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Carbon Tetrachloride	μg/L	0.5 U	0.5 U	NC .		0.5 ป	0.5 U	NC	
Benzene	μg/L	0.5 U	0.5 ∪	NC		0.5 U	0.5 U	NC	
1,2-Dichloroethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	ŅĊ	
Trichloroethene	μg/L	0.5 U	0.5 U	NC		35	35	0.0	NA
Methylcyclohexane	μg/L	0.5 U	0.5 U	NC-		0.5 U	0.5 U	NC	
1,2-Dichlöropropane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Bromodichloromethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
cis-1,3-Dichloropropene	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
4-Methyl-2-pentanone	µg/L	5 U	5 U	NC		5 U	5 U	NC	
Toluene	µg/L.	0.5 U	0.5 U	NC		0.5 U	0.5 _. U	NC	
trans-1,3-Dichloropropene	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
1,1,2-Trichloroethane	µg/L	0.5 U	0.5 ป	NC		0.5 U	0.5 U	NC	
Tetrachloroethene	µg/L	0.5 UJ	0.5 UJ	NC		1.9	1.8	5.4	NA
2-Hexanone	μg/L	5 U	5 U	NC		5 U	5 U	NC	1

Table G-3b - Field Duplicate Comparison Groundwater Samples - Round 2 Trace Volatiles, Fluoride, and Titanium Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code Sample Name Sample Date		MPW-01-PD-A-R2 5/19/2008	MPW-01-PD-A-R2-DUP MPW-11-PD-A-R2 5/19/2008	RPD	ABS	MW-PD-15-PD-R2 6/3/2008	MW-PD-15-PD-R2-DUP MW-PD-51-PD-R2 6/3/2008	RPD	ABS
Volatile Organic Compounds - Trace									
Dibromochloromethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
1,2-Dibromoethane	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Chlorobenzene	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Ethylbenzene	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
o-Xylene	μġ/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
m,p-Xylene	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Styrene	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Bromoform	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
isopropyibenzene	µg/L	0.5 U	0.5 บ	NC		0.5 U	0.5 U	NC	
1,1,2,2-Tetrachloroethane	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
1,3-Dichlorobenzene	μg/L	0.5 U	0.5 U	NC		0.5 ป	0.5 U	NC	
1,4-Dichlorobenzene	μg/L	0.5 U	0.5 ป	NC		0.5 U	0.5 U	NC	
1,2-Dichlorobenzene	µg/L	0.5 U	0.5 ป	NC		0.5 U	0.5 U	NC	
1,2-Dibromo-3-chloropropane	µg/L	0.5 U	0.5 ป	NC		0.5 U	0.5 U	NC	
1,2,4-Trichlorobenzene	µg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
1,2,3-Trichlorobenzene	μg/L	0.5 U	0.5 U	NC		0.5 U	0.5 U	NC	
Inorganics									
Titanium Metal Powder	µg/L	10 · U	10 U	NC		10 U	ຸ 10 ປ	NC	ļ
Fluoride	mg/L	0.072 J	0.088 J	20	-0.02	0.08 J	0.12 J	40	0.0

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS is calculated for results failing the RPD and where one result is detected and one is non-detect or results fall below the CRQL.

RPD values above 50% are bolded if both sample and duplicate are detected. ABS values above Detection Limits are in italics if either the sample or duplicate is detected.

Blank cells reflect non-detect value

ABS = absolute difference

RPD = rtelative percent difference

CRQL = contract required detection limit

mg = milligram; µg = microgram; L = liter

NA = Not available or not applicable

Table G-3b - Field Duplicate Comparison Groundwater Samples - Round 2 Trace Volatiles, Fluoride, and Titanium Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code	-	MW-PD-12-PD-R2	MW-PD-12-PD-R2-DUP	RPD	ABS
Sample Name			MW-PD-21-PD-R2		ŀ
Sample Date	Units	6/2/2008	6/2/2008		
Volatile Organic Compounds - Tráce					
Dichlorodifluoromethane	μg/L	0.5 U	0.5 U	NC	
Chloromethane	μg/L	0.5 U	0.5 U	NC	
Vinyl Chloride	μg/L	0.5 U	0.5 U	NC	<u> </u>
Bromomethane	μg/L	0.5 U	0.5 U	NC	<u> </u>
Chloroethane	μg/L	0.5 U	0.5 U	NC	
Trichlorofluoromethane	μg/L	0.5 U	0.5 U	NC	
1,1-Dichloroethene	μg/L	0.5 U	0.5 U	NC	<u> </u>
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/L	0.5 U	0.5 U	NC	<u> </u>
Acetone	μg/L	5 U	5 U	NC	
Carbon Disulfide	μg/L	0.5 U	0.5 U	NC	
Methyl Acetate	μg/L	0.5 U	0.5 U	NC	
Methylene Chloride	μg/L	0.5 U	0.5 U	NC	
trans-1,2-Dichloroethene	µg/L	0.5 U	0.5 ป	NC	
Methyl tert-Butyl Ether	μg/L	1.6	1.7	6.1	
1.1-Dichloroethane	µg/L	0.1 J	0.5 U	133.3	-0.40
cis-1,2-Dichloroethene	µg/L	1.1	1	9.5	NA
2-Butanone	μg/L	5 U	5 ป	NC	
Chlorobromomethane	μg/L	0.5 U	0.5 U	NC	
Chloroform	μg/L	0.5 U	0.5 U	NC	
1,1,1-Trichloroethane	µg/L	0.11 J	0.12 J	8.7	0.0
Cyclohexane	µg/L	0.5 U	0.5 U	NC	
Carbon Tetrachloride	μg/L	0.5 U	0.5 ป	NC	
Benzene	μg/L	0.5 U	0.5 U	NC	
1,2-Dichloroethane	μg/L	0.5 U	0.5 U	NC	
Trichloroethene	μg/L	210	240	13.3	NA
Methylcyclohexane	µg/L	0.5 U	0.5 U	NC	
1,2-Dichloropropane	μg/L	0.5 U	0.5 U	NC	
Bromodichloromethane	µg/L	0.5 U	0.5 U	NC	
cis-1,3-Dichloropropene	μg/L	0.5 U	0.5 U	NC	
4-Methyl-2-pentanone	µg/L	5 U.	5 U	NC	
Toluene	µg/L	0.5 U	0.5 U	NC	-
trans-1,3-Dichloropropene	μg/L	0.5 U	0.5 U	NC	
1,1,2-Trichloroethane	μg/L	0.5 U	0.5 U	NC	<u> </u>
Tetrachloroethene	μg/L	4.1	3.9	5.0	NA
2-Hexanone	μg/L	5 U	5 U	NC	

Table G-3b - Field Duplicate Comparison Groundwater Samples - Round 2 Trace Volatiles, Fluoride, and Titanium Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code		MW-PD-12-PD-R2	MW-PD-12-PD-R2-DUP	RPD	ABS
Sample Name			MW-PD-21-PD-R2		
Sample Date	Units	6/2/2008	6/2/2008		
Volatile Organic Compounds - Trace	ı				
Dibromochloromethane	μg/L	0.5 U	,0.5 ∪	NC	<u></u>
1,2-Dibromoethane	μg/L	0.5 U	0.5 Ü	NC	
Chlorobenzene	μg/L	0.5 U	0.5 U	NC]
Ethylbenzene ~	μg/L	0.5 U	0.5 U	NC	
o-Xylene	μg/L	0.5 U	- 0.5 U	NC	
m,p-Xylene	μg/L	0.5 U	0.5 ป	NC	
Styrene	μg/L	0.5 U	0.5 U	NC	
Bromoform	μg/L	0.5 U	0.5 U	NC	
Isopropylbenzene	μg/L	0.5 U	0.5 U	NC	
1,1,2,2-Tetrachloroethane	μg/L	0.5 ป	0.5 U	NC	
1,3-Dichlorobenzene	μg/L	0.5 U	0.5 U	NC	
1,4-Dichlorobenzene	µg/L	0.5 U	0.5 U	NC.	
1,2-Dichlorobenzene	µg/L	0.5 U	0.5 U	NC	
1,2-Dibromo-3-chloropropane	μg/L	0.5 U	0.5 U	NC	
1,2,4-Trichlorobenzene	μg/L	0:5 U	0.5 U	NC	<u> </u>
1,2,3-Trichlorobenzene	μg/L	0.5 U	0.5 U	NC	
Inorganics					
Titanium Metal Powder	μg/L	19.7	19.2	2.6	
Fluoride	mg/L	2.9	2.9	0	0.0

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS is calculated for results failing the RPD and where one result is detected and one is non-detect or results fall below the CRQL.

RPD values above 50% are bolded if both sample and duplicate are detected. ABS values above Detection Limits are in italics if either the sample or duplicate is detected.

Blank cells reflect non-detect value

ABS = absolute difference

RPD = rtelative percent difference

CRQL = contract required detection limit

mg = milligram; μg = microgram; L = liter

NA = Not available or not applicable

Table G-3c - Field Duplicate Comparison 2007-2008 Subsurface Soils Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code			SBD-PD-16-B	SBD-PD-16-B-DUP	RPD	ABS	SBD-PD-16-P	SBD-PD-16-P-DUP	RPD	ABS
Sample Name			•	SBD-PD-61-B				SBD-PD-61-P	ļ	l
Sample Date	Units	CRQL	12/27/2007	12/27/2007			1/2/2008	1/2/2008		<u> </u>
Volatile Organic Compounds										l
Dichlorodifluoromethane	μg/kg	5	3.8 U	4.6 U	NC		4.7 U		NC	
Chloromethane	μg/kg	、5	3.8 U	4.6 U	NC		4.7 U	4.6 U	NC	
Vinyl Chloride	μg/kg	5	3.8 U		NC		4.7 U	4.6 U	NC	
Bromomethane	μg/kg	5	3.8 U	4.6 U			4,7 U	4.6 U	NC	
Chloroethane	μg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
Trichlorofluoromethane	µg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
1,1-Dichloroethene	μg/kg	5	3.8 U	4.6 U			4.7 ป	4.6 U	NC	
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/kg	5	3.8 U		NC		4.7 U	4.6 U	NC	
Acetone	µg/kg	10	10 U	9.2 U			70	9.1 U	NA	60.9
Carbon Disulfide	µg/kg	5	3.8 U	4.6 Ü			4.7 U	4.6 U	NC	
Methyl Acetate	μg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
Methylene Chloride	μg/kg	5	3.8 U	4.6 U	I		4.7 U	4.6 U	NC	
trans-1,2-Dichloroethene	µg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
Methyl tert-Butyl Ether	μg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
1,1-Dichloroethane	μg/kg	5	3.8 U	4.6 U			. 4.7 U	4.6 U	NC	
cis-1,2-Dichloroethene	µg/kg	5	3.8 U	4.6 ∪			4.7 U		NC	
2-Butanone	μg/kg	10	7.6 U	9.2 U			9.4 U		NC	
Chloroform	μg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
1,1,1-Trichloroethane	µg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
Cyclohexane	μg/kg	5	3.8 U		NC		4.7 U	4.6 U	NÇ	
Carbon Tetrachloride	µg/kg	5	3.8 U	4.6 U	NC		4.7 U	4.6 U	NC	
Benzene	µg/kg	5	3.8 U		NC		4.7 UJ	4.6 UJ		
1,2-Dichloroethane	μg/kg	5	3.8 U	4.6 U			-4.7 U		NC	
Trichloroethene	µg/kg	5	1.9 J	2.5 J	27.3	-0.6	4.7 U		NC	
Methylcyclohexane	μg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
1,2-Dichloropropane	µg/kg	5	3.8 U		NC		4.7 U	4.6 U	NC.	
Bromodichloromethane	μg/kg	5	3.8 Ü	4.6 U			4.7 U	4.6 U	NC	
cis-1,3-Dichloropropene	μg/kg	2.5	1.9 U	2.3 U	NC		2.4 U		NC	
4-Methyl-2-pentanone	μg/kg	10	7.6 U	9.2 U			9,4 U	9.1 U	NC	
Toluene	µg/kg	5	0.77 J	0.96 J	22.0	-0.2	4.7 UJ	4.6 UJ		
trans-1,3-Dichloropropene	μġ/kg	2.5	1.9 U	2:3 U	NC		2.4 U		NC	
1,1,2-Trichloroethane	μg/kg	5	3.8 U	4.6 U	NC		4.7 U		NC	
Tetrachloroethene	µg/kg	5	3.8 U	4.6 U	NC		4.7 U		NC	
2-Hexanone	µg/kg	10	7.6 U	9,2 U	NC		9.4 U	9.1 U	NC	

Table G-3c - Field Duplicate Comparison 2007-2008 Subsurface Soils Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code			SBD-PD-16-B	SBD-PD-16-B-DUP	RPD:	ABS	SBD-PD-16-P	SBD-PD-16-P-DUP	RPD	ABS
Sample Name				SBD-PD-61-B			•	SBD-PD-61-P		ĺ
Sample Date	Units	CRQL	12/27/2007	12/27/2007			1/2/2008	1/2/2008		<u> </u>
Volatile Organic Compounds				_					i i	
Dibromochloromethane	μg/kg	.5	3.8 U	4.6 Ū			4.7 U		NC	
1,2-Dibromoethane	μg/kg	5	3.8 U	4.6 U	B		4.7 U	4.6 U	NC	
Chlorobenzene	μg/kg	5	3.8 U	4.6 U	1		4.7 U		NC	
Ethylbenzene	μg/kg	5	3.8 U	4.6 U			4.7 U		NC	
m,p-Xylene	μg/kg	5	3.8 U	4.6 U			4.7 U		NC	
Styrene	μg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
Bromoform	μg/kg	5	3.8 U	4.6 U			4.7 U		NC	
Isopropylbenzene	µg/kg	5	3.8 U	4.6 U			4.7 U		NC	
1,1,2,2-Tetrachloroethane	μg/kg	2.5	1.9 U	2.3 U			2.4 U	2.3 U	NC	
1,3-Dichlorobenzene	μg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
1,4-Dichlorobenzene	μg/kg	5	3.8 U	4.6 U			4.7 U	4.6 U	NC	
1,2-Dichlorobenzeле	μg/kg	5	3.8 U	4.6 U			4.7 U		NC	
1,2-Dibromo-3-chloropropane	μg/kg	5	3.8 U	4.6 U			4.7 U		NC	
1,2,4-Trichlorobenzene	μg/kg	5	3.8 U	4.6 U	NC		4.7 U	4.6 U	NC	
Total Organic Carbon	mg/kg		340 J	370 J	8.5		190 J	170 J	11	20

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS is calculated for results failing the RPD and where one result is detected and one is non-detect or results fall below the CRQL.

RPD values above 100% are bolded if both sample and duplicate are detected. ABS values above five times the detection limits are in italics if either the sample or duplicate is detected.

Blank cells reflect non-detect value

ABS = absolute difference

RPD = rtelative percent difference

CRQL = contract required detection limit

mg = milligram; µg = microgram; kg = kilogram

NA = Not available or not applicable

Table G-3c - Field Duplicate Comparison 2007-2008 Subsurface Soils Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code		1	SBD-PD-17-C	SBD-PD-17-C-DUP	RPD	ABS	SBD-PD-17-X		RPD	ABS
Sample Name				SBD-PD-71-C	ľ	1 1		SBD-PD-71-X	1	
Sample Date		CRQL	1/7/2008	1/7/2008			1/9/2008	1/9/2008	<u> </u>	ļ
Volatile Organic Compounds					1	,				
Dichlorodifluoromethane	μg/kg	5	5.2 U	5.4 Ü	£		5.5 U	6 U		
Chloromethane	μg/kg		5.2 U	5.4 U			5,5 U	6 ป		
Vinyl Chloride	μg/kg		5.2 U	5.4 U			5.5 U	6 U		
Bromomethane	µg/kg		5.2 U	5.4 ปั			5.5 U	6 U		
Chloroethane	µg/kg		5.2 U	5.4 U			5.5 U	6 U		
Trichlorofluoromethane	μg/kg		5.2 U	5.4 U			5.5 U	6 U		
1,1-Dichloroethene	μg/kg		5.2 U	5.4 U			5.5 U	6 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/kg		5.2 U	5.4 U			5.5 U	6 U		ļ
Acetone	µg/kg		11	14	24	-3	11 U	12 U		
Carbon Disulfide	μg/kg		5.2 U	5.4 U			5.5 ป	6 U		
Methyl Acetate	μg/kg		5.2 U	5.4 U			5.5 U	6 บ		
Methylene Chloride	μg/kg		5.2 U	5.4 U			5.5 U	6 ป		
trans-1,2-Dichloroethene	μg/kg		5.2 U	5.4 U			5.5 U	6 บ		
Methyl tert-Butyl Ether	μg/kg		5.2 U	5.4 U			5.5 U	6 ປັ		
1,1-Dichloroethane	μg/kg		5.2 U	5.4 U			5.5 U	6 U		
cis-1,2-Dichloroethene	µg/kg		5.2 U	5.4 U			5.5 U	6 บ		
2-Butanone	µg/kg		10 U	11 U			11 U	12 U		
Chloroform	μg/kg		5.2 U	5.4 U			5.5 U	6 ป		
1,1,1-Trichloroethane	μg/kg		5.2 U	5.4 U			5.5 U	6 U		
Cyclohexane	μg/kg		5.2 U	5.4 U			5.5 U	6 Ú	1	
Carbon Tetrachloride	μg/kg		5.2 U	5.4 U			5.5 U	6 U		
Benzene	µg/kg		5.2 U	5.4 U			5.5 U	6 U		
1,2-Dichloroethane	µg/kg		5.2 U	5.4 U			5.5 U	6 U		
Trichloroethene	µg/kg		5.2 U		NA	4	5.5 U	6 U		
Methylcyclohexane	µg/kg		5.2 U	5.4 U			5.5 U	6 U		<u> </u>
1,2-Dichloropropane	µg/kg		5.2 U	5.4 U			5.5 U	6 U		
Bromodichloromethane	μg/kg		5.2 U	5.4 U			5.5 U	6 U		1
cis-1,3-Dichloropropene	µg/kg		2.6 U	2.7 U			2.7 U	3 U		<u> </u>
4-Methyl-2-pentanone	µg/kg		10 U	11 U			11 ປ	12 U]
Toluene	µg/kg		5.2 U	5.4 Ü			5.5 ປັ	6 U		
trans-1,3-Dichloropropene	µg/kg		2.6 U	2.7 U			2.7 U	3 U		1
1,1,2-Trichloroethane	µg/kg	·	5.2 U	5.4 U	NC		5.5 U	6 U		
Tetrachloroethene	µg/kg		5.2 U	5.4 U	NC		5.5 U	6 U		
2-Hexanone	µg/kg		10 U	11 U	NC		11 U	12 U	NC	

Table G-3c - Field Duplicate Comparison 2007-2008 Subsurface Soils Lawrence Aviation Industries Site Port Jefferson Station, New York

ode		SBD-PD-17-C	SBD-PD-17-C-DUP	RPD	ABS	SBD-PD-17-X	SBD-PD-17-X-DUP	RPD	ABS
	l Ì		SBD-PD-71-C				SBD-PD-71-X		
	CRQL	1/7/2008	1/7/2008			1/9/2008	1/9/2008		
								-	
μg/kg		5.2 U	5.4 U	NC	LI	5.5 U	6 U	NC	
μg/kg		5.2 U	5.4 U	NC		5.5 U	6 U	NC	
μg/kg		5.2 U	5.4 U	NC		5.5 U	<u> </u>		
μg/kg		5.2 U							
μg/kg		5.2 U				5.5 U			
μg/kg		5.2 U							
μg/kg		5.2 U							
		5.2 ป							
μg/kg		2.6 U						•	
µg/kg		5.2 U							
μg/kg									
μg/kg									
μg/kg	i	5.2 U				5.5 U			
µg/kg		5.2 U	5.4 U	NC		5.5 U	6 U	NC	
mg/kg		400 J	520 J	26	-120	200 J	220 J	9.52	-20
	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	ame Date pg/kg	μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U μg/kg 5.2 U	ame Date CRQL 1/7/2008 SBD-PD-71-C 1/7/2008 μg/kg 5.2 U 5.4 U μg/kg 5.2 U 5.4 U	ame Date CRQL 1/7/2008 SBD-PD-71-C 1/7/2008 μg/kg 5.2 U 5.4 U NC NC NC NC NC NC NC NC NC NC NC NC NC	ame Date CRQL 1/7/2008 SBD-PD-71-C 1/7/2008 μg/kg 5.2 U 5.4 U NC μg/kg 5.2 U 5.4 U NC	ame Date CRQL 1/7/2008 SBD-PD-71-C 1/9/2008 μg/kg 5.2 U 5.4 U NC 5.5 U μg/kg 5.2 U 5.4	ame Date CRQL 1/7/2008 SBD-PD-71-C 1/9/2008 SBD-PD-71-X 1/9/2008 μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC 5.5 U 6 U μg/kg 5.2 U 5.4 U NC	ame Date CRQL 1/7/2008 SBD-PD-71-C 1/7/2008 1/9/2008 SBD-PD-71-X 1/9/2008 μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U 5.4 U NC 5.5 U 6 U NC μg/kg 5.2 U

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS is calculated for results failing the RPD and where one result is detected and one is non-detect or results fall below the CRQL.

Blank cells reflect non-detect value

ABS = absolute difference

RPD = rtelative percent difference

CRQL = contract required detection limit

mg = milligram; µg = microgram; kg = kilogram

NA = Not available or not applicable

Table G-3c - Field Duplicate Comparison 2007-2008 Subsurface Soils Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code			SBD-PD-18-D	SBD-PD-18-D-DUP	RPD	ABS	SBD-PD-19-A	SBD-PD-19-A-DUP	RPD	ABS
Sample Name				SBD-PD-81-D				SBD-PD-91-A		1
Sample Date		CRQL	12/17/2007	12/17/2007			12/5/2007	12/5/2007	<u> </u>	
Volatile Organic Compounds										
Dichlorodifluoromethane	μg/kg	5	5.4 U	· 4.4 U			3.5 U		NC	
Chloromethane	μg/kg		5.4 U	4,4 U			3.5 U		NC	
Vinyl Chloride	μg/kg		5.4 U	4.4 U			3.5 U	I	NC	<u> </u>
Bromomethane	µg/kg		5.4 U	4.4 U			3.5 U		NC	
Chloroethane	µg/kg		5.4 U	4.4 U			3.5 U		NC	
Trichlorofluoromethane	μg/kg		5.4 U		NC		3.5 U		NC	ļ
1.1-Dichloroethene	μg/kg		5.4 U	4.4 U			3.5 U		NC	
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/kg		5.4 U	4.4 U			3.5 U		NC	<u> </u>
Acetone	μg/kg		28	22	24		15	7.5	66.7	7.
Carbon Disulfide	μg/kg		5.4 U	4.4 U			3.5 U		NC	
Methyl Acetate	μg/kg		5.4 U	4.4 U			3.5 U	<u> </u>	NC	
Methylene Chloride	μg/kg		5.4 U	.4.4 U			3.5 U	1	NC	ļ
trans-1.2-Dichloroethene	μg/kg		5.4 U	4.4 U			3.5 U		NC	<u> </u>
Methyl tert-Butyl Ether	μg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	ļ
1,1-Dichloroethane	μg/kg		5.4 U	4.4 U		<u> </u>	3.5 U	3.6 U	NC	<u> </u>
cis-1,2-Dichloroethene	µg/kg		5.4 U	4.4 U			3.5 U		NC	
2-Butanone	μg/kg		11 U	8.9 U			6.9 U	7.1 U	NC	ļ
Chloroform	μg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	ļ
1,1,1-Trichioroethane	μg/kg		5.4 U	4.4 U			3.5 ປັ	3.6 U	NC	ļ
Cyclohexane	μg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	ļ
Carbon Tetrachloride	μg/kg		5.4 U	4.4 U			3.5 U		NC	ļ
Benzene	μg/kg		5.4 U		NC		3.5 ป	3.6 U	NC	<u> </u>
1,2-Dichloroethane	µg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	
Trichloroethene	μg/kg		48	31	43.0	<u> </u>	3.5 U		NC	ļ
Methylcyclohexane	μg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	ļ
1,2-Dichloropropane	μg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	
Bromodichloromethane	μg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	
cis-1,3-Dichloropropene	μg/kg		2.7 U	2.2 U		<u> </u>	1.7 U	1.8 U	NC	ļ
4-Methyl-2-pentanone	µg/kg		11 U	8.9 U			6.9 U	7.1 U	NC	
Toluene	μg/kg		5.4 U	4.4 U		<u> </u>	3.5 U	3.6 U	NC	
trans-1,3-Dichloropropene	μg/kg		2.7 U	2.2 U			1.7 U	1.8 U	NC	<u> </u>
1,1,2-Trichloroethane	µg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	
Tetrachloroethene	μg/kg		3.5 J		NC	0.9			NC	1
2-Hexanone	μg/kg		11 U	8.9 U	NC		6.9 U	7.1 U	NC	

Table G-3c - Field Duplicate Comparison 2007-2008 Subsurface Soils Lawrence Aviation Industries Site Port Jefferson Station, New York

<u> </u>	ample Code		SBD-PD-18-D	SBD-PD-18-D-DUP	RPD	ABS	SBD-PD-19-A	SBD-PD-19-A-DUP	RPD	ABS
Sa	ample Name			SBD-PD-81-D				SBD-PD-91-A		}
s	Sample Date	CRQL	12/17/2007	12/17/2007	<u> </u>		12/5/2007	12/5/2007		1
Volatile Organic Compounds										}
Dibromochloromethane	μg/kg	1	5.4 U	4.4 U	NC		3.5 U	3.6 U	NC_	L
1,2-Dibromoethane	μg/kg		5.4 U	4.4 U	NC		3.5 U	3.6 U	NC	
Chlorobenzene	μg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	
Ethylbenzene	μg/kg		5.4 U	4.4 U	•		3,5 U	3.6 U	NC	
m,p-Xylene	μg/kg		5.4 U	4.4 U			1 J	3.6 U	NA	-2.6
Styrene	μg/kg		5.4 U	4.4 U	NC		3,5 U	3.6 U	NC	
Bromoform	μg/kg		5.4 U	4.4 U	NC		3.5 U	3.6 U	NC	
Isopropylbenzene	μg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	
1,1,2,2-Tetrachloroethane	μg/kg		2.7 U	2.2 U	NC		1.7 U	1.8 U	NC	
1,3-Dichlorobenzene	μg/kg		5.4 U	4.4 U			3.5 U	3.6 U	NC	
1,4-Dichlorobenzene	μg/kg		5.4 U	4.4 U	NC		3.5 U	3.6 U	NC	
1,2-Dichlorobenzene	µg/kg		5.4 U	4.4 U	NC		3.5 U	3.6 U	NC	
1,2-Dibromo-3-chloropropane	µg/kg		5.4 U	4.4 U	NC		3.5 U	3.6 U	NC	
1,2,4-Trichlorobenzene	µg/kg		5.4 U	4.4 U	NC		3.5 U	3.6 U	NC	
Total Organic Carbon	mg/kg		430 J	370 J	15	60	3800	2800	30.3	1000
-					<u> </u>					

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS is calculated for results failing the RPD and where one result is detected and one is non-detect or results fall below the CRQL.

Blank cells reflect non-detect value

ABS = absolute difference

RPD = rtelative percent difference

CRQL = contract required detection limit

mg = milligram; μg = microgram; kg = kilogram

NA = Not available or not applicable

NC = Not calculable

Table G-3d - Field Duplicate Comparison Groundwater Screening Samples Lawrence Aviation Industries Site Port Jefferson Station, New York

Benzene	Sample C		MW-PD-14-GW-A	MW-PD-14-GW-A-DUP	RPD ·
Volatile Organic Compounds - OLM04.3 Acetone Igg/L 5 UJ 5 UJ NC					
Value Ordanic Compounds - Using 1 S UJ S UJ No.	Sample I	Date Units	4/9/2008		
Benzene	Volatile Organic Compounds - OL	M04.3		·	
Bromoform	Acetone		5 UJ	5 ปม	NC
Bromoform		μg/Ĺ	5 U	5 Ü	NC
Bromomethane	Bromodichloromethane	μg/L	5 U	5 U	NC
2-Butanome	Bromoform	μg/L	5 ป	5 U	NC
Carbon Disulfide	Bromomethane	μg/L	5 U	5 Ü	NC
Carbon Tetrachloride	2-Butanone	μg/L	5 ป	5 U	NC
Carbon Tetrachloride	Carbon Disulfide		5 U	5 U	NC
Chlorobetane	Carbon Tetrachloride	μg/L	5 U	5 U	NC
Chloroform	Chlorobenzene		5 U	5 U	NC
Chloromethane	Chloroethane		5 UJ	5 ปั่ม	NC
Chloromethane	Chloroform	μg/L	5 U	. 5 U	NC
Cyclohexane µg/L 5 UJ 6 UJ NC Dibromochloromethane µg/L 5 U 5 U NC 1,2-Dibromo-3-chloropropane µg/L 5 U 5 U NC 1,2-Dibromoethane µg/L 5 U 5 U NC 1,2-Dichlorobenzene µg/L 5 U 5 U NC 1,3-Dichlorobenzene µg/L 5 U 5 U NC 1,4-Dichlorobenzene µg/L 5 U 5 U NC 1,4-Dichlorobenzene µg/L 5 U 5 U NC Dichlorodifluoromethane µg/L 5 U 5 U NC 1,1-Dichlorothane µg/L 5 U 5 U NC 1,2-Dichlorothane µg/L 5 U 5 U NC cis-1,2-Dichlorothane µg/L 5 U 5 U NC cis-1,2-Dichlorothene µg/L 5 U 5 U NC cis-1,3-Dichlorothene µg/L 5 U 5 U NC 1,2-Dichlorothene µg/L <t< td=""><td>Chloromethane</td><td></td><td>5 U</td><td>5 U</td><td>NC</td></t<>	Chloromethane		5 U	5 U	NC
Dibromochloromethane	Cyclohexane		5 UJ		NC
1,2-Dibromo-3-chloropropane µg/L 5 U 5 U NC 1,2-Dibromoethane µg/L 5 U 5 U NC 1,2-Dichlorobenzene µg/L 5 U 5 U NC 1,3-Dichlorobenzene µg/L 5 U 5 U NC 1,4-Dichlorobenzene µg/L 5 U 5 U NC 1,4-Dichlorobenzene µg/L 5 U 5 U NC 1,1-Dichlorobenzene µg/L 5 U 5 U NC 1,1-Dichlorobenene µg/L 5 U 5 U NC 1,2-Dichlorobethene µg/L 5 U 5 U NC 1,2-Dichlorobethene µg/L 5 U 5 U NC 1,2-Dichloropropane µg/L 5 U 5 U NC 1,2-Dichloropropane µg/L 5 U 5 U NC cis-1,3-Dichloropropane µg/L 5 U 5 U NC cis-1,3-Dichloropropane µg/L 5 U NC Ethylbenzene µg/L 5 U <			5 U		NC
1,2-Dibromoethane µg/L 5 U 5 U NC 1,2-Dichlorobenzene µg/L 5 U 5 U NC 1,3-Dichlorobenzene µg/L 5 U 5 U NC 1,4-Dichlorobenzene µg/L 5 U 5 U NC Dichlorodifluoromethane µg/L 5 U 5 U NC 1,1-Dichloroethane µg/L 5 U 5 U NC 1,2-Dichloroethane µg/L 5 U 5 U NC 1,2-Dichloroethane µg/L 5 U 5 U NC cis-1,2-Dichloroethane µg/L 5 U 5 U NC cis-1,2-Dichloroethane µg/L 5 U 5 U NC trans-1,2-Dichloropropane µg/L 5 U 5 U NC cis-1,3-Dichloropropane µg/L 5 U 5 U NC cis-1,3-Dichloropropene µg/L 5 U 5 U NC Ethylbenzene µg/L 5 U 5 U NC Ethylbenzene µg/L <td< td=""><td>1,2-Dibromo-3-chloropropane</td><td>μg/L</td><td>5 ป</td><td></td><td>NC</td></td<>	1,2-Dibromo-3-chloropropane	μg/L	5 ป		NC
1,2-Dichlorobenzene µg/L 5 U 5 U NC 1,4-Dichlorobenzene µg/L 5 U 5 U NC 1,4-Dichlorobenzene µg/L 5 U 5 U NC Dichlorodifluoromethane µg/L 5 UJ NC 1,1-Dichloroethane µg/L 5 U NC NC 1,1-Dichloroethane µg/L 5 U 5 U NC NC NC 1,2-Dichloroethane µg/L 5 U NC NC NC 1,2-Dichloroethene µg/L 5 U NC NC NC NC 1,2-Dichloroethene µg/L 5 U NC NC NC 1,2-Dichloroethene µg/L 5 U NC NC NC NC 1,2-Dichloroethene µg/L 5 U NC NC <td></td> <td></td> <td>5 U</td> <td>5 U</td> <td>NC</td>			5 U	5 U	NC
1,3-Dichlorobenzene µg/L 5 U 5 U NC 1,4-Dichlorobenzene µg/L 5 U 5 U NC Dichlorodifluoromethane µg/L 5 UJ 5 UJ NC 1,1-Dichloroethane µg/L 5 U 5 U NC 1,2-Dichloroethane µg/L 5 U 5 U NC 1,1-Dichloroethene µg/L 5 U 5 U NC cis-1,2-Dichloroethene µg/L 5 U 5 U NC cis-1,2-Dichloroethene µg/L 5 U 5 U NC cis-1,2-Dichloroptene µg/L 5 U 5 U NC cis-1,2-Dichloroptene µg/L 5 U 5 U NC cis-1,3-Dichloropropene µg/L 5 U 5 U NC cis-1,3-Dichloropropene µg/L 5 U 5 U NC Ethylbenzene µg/L 5 U 5 U NC Ethylbenzene µg/L 5 U 5 U NC Ethylbenzene µg/L 5 U<	1,2-Dichlorobenzene		5 U	5 U	NC
1,4-Dichlorobenzene					NC
Dichlorodifluoromethane	1,4-Dichlorobenzene		5 U		NC
1,1-Dichloroethane µg/L 5 U 5 U NC 1,2-Dichloroethane µg/L 5 U 5 U NC 1,1-Dichloroethene µg/L 5 U 5 U NC cis-1,2-Dichloroethene µg/L 5 U 5 U NC trans-1,2-Dichloroethene µg/L 5 U 5 U NC cis-1,3-Dichloropropane µg/L 5 U 5 U NC cis-1,3-Dichloropropene µg/L 5 U 5 U NC trans-1,3-Dichloropropene µg/L 5 U 5 U NC Ethylbenzene µg/L 5 U 5 U NC Betraphylbenzene µg/L 5 U 5 U NC Methyl Acetate µg/L 5 U 5 U NC Methyl-Qcolohexane µg/L 5 U	Dichlorodifluoromethane		5 UJ		NC
1,2-Dichloroethane µg/L 5 U 5 U NC 1,1-Dichloroethene µg/L 5 U 5 U NC cis-1,2-Dichloroethene µg/L 5 U 5 U NC trans-1,2-Dichloroptopene µg/L 5 U 5 U NC tis-1,3-Dichloropropene µg/L 5 U 5 U NC cis-1,3-Dichloropropene µg/L 5 U 5 U NC Ethylbenzene µg/L 5 U 5 U NC Ethylbenzene µg/L 5 U 5 U NC 2-Hexanone µg/L 5 U 5 U NC Isopropylbenzene µg/L 5 U 5 U NC Methyl Acetate µg/L 5 U 5 U NC Methylockohexane µg/L 5 U 5 U NC Methylockohexane µg/L 5 U 5 U NC 4-Methyl-2-pentanone µg/L 5 U 5 U NC Methyl tert-Butyl Ether µg/L 5 U 5 U NC Styrene µg/L 5 U 5 U			**************************************		NC
1,1-Dichloroethene μg/L 5 U 5 U NO cis-1,2-Dichloroethene μg/L 5 U 5 U NO trans-1,2-Dichloroethene μg/L 5 U 5 U NO 1,2-Dichloropropane μg/L 5 U 5 U NO cis-1,3-Dichloropropene μg/L 5 U 5 U NO trans-1,3-Dichloropropene μg/L 5 U 5 U NO Ethylbenzene μg/L 5 U 5 U NO 2-Hexanone μg/L 5 U 5 U NO Isopropylbenzene μg/L 5 U 5 U NO Isopropylbenzene μg/L 5 U 5 U NO Methyl Acetate μg/L 5 U 5 U NO Methylene Chloride μg/L 5 U 5 U NO Methylene Chloride μg/L 5 U 5 U NO Methyl tert-Butyl Ether μg/L 5 U 5 U NO Styrene μg/L 5 U 5	1.2-Dichloroethane	µa/L			NC
cis-1,2-Dichloroethene µg/L 5 U 5 U NO trans-1,2-Dichloroethene µg/L 5 U 5 U NO 1,2-Dichloropropane µg/L 5 U 5 U NO cis-1,3-Dichloropropene µg/L 5 U 5 U NO trans-1,3-Dichloropropene µg/L 5 U 5 U NO Ethylbenzene µg/L 5 U 5 U NO Ethylbenzene µg/L 5 U 5 U NO 2-Hexanone µg/L 5 U 5 U NO Isopropylbenzene µg/L 5 U 5 U NO Methyl Acetate µg/L 5 U 5 U NO Methyl Acetate µg/L 5 U 5 U NO Methylocyclohexane µg/L 5 U 5 U NO Methylocyclohexane µg/L 5 U 5 U NO 4-Methyl-2-pentanone µg/L 5 U 5 U NO 4-Methyl-2-pentanone µg/L 5 U 5		ua/L			NC
trans-1,2-Dichloroethene µg/L 5 U 5 U NC 1,2-Dichloropropane µg/L 5 U 5 U NC cis-1,3-Dichloropropene µg/L 5 U 5 U NC trans-1,3-Dichloropropene µg/L 5 U 5 U NC Ethylbenzene µg/L 5 U 5 U NC 2-Hexanone µg/L 5 U 5 U NC Isopropylbenzene µg/L 5 U 5 U NC Methyl Acetate µg/L 5 U 5 U NC Methyl Acetate µg/L 5 U 5 U NC Methylocyclohexane µg/L 5 U 5 U NC Methylocyclohexane µg/L 5 U 5 U NC 4-Methyl-2-pentanone µg/L 5 U 5 U NC 4-Methyl-2-pentanone µg/L 5 U 5 U NC Styrene µg/L 5 U 5 U NC 1,1,2,2-Tetrachloroethane µg/L 5 U 5 U					NC
1,2-Dichloropropane					NC
cis-1,3-Dichloropropene µg/L 5 U NO trans-1,3-Dichloropropene µg/L 5 U 5 U NO Ethylbenzene µg/L 5 U 5 U NO 2-Hexanone µg/L 5 U 5 U NO Isopropylbenzene µg/L 5 U 5 U NO Methyl Acetate µg/L 5 U 5 U NO Methylcyclohexane µg/L 5 U NO NO Methylcyclohexane µg/L 5 U NO NO Styrene µg/L 5 U NO NO					NC
trans-1,3-Dichloropropene µg/L 5 U 5 U NC Ethylbenzene µg/L 5 U 5 U NC 2-Hexanone µg/L 5 U 5 U NC Isopropylbenzene µg/L 5 U 5 U NC Methyl Acetate µg/L 5 U 5 U NC Methyl Acetate µg/L 5 U 5 U NC Methyl Cyclohexane µg/L 5 U 5 U NC Methylene Chloride µg/L 5 U 5 U NC 4-Methyl-2-pentanone µg/L 5 U 5 U NC Methyl tert-Butyl Ether µg/L 5 U 5 U NC Methyl tert-Butyl Ether µg/L 6 6 0,0 Styrene µg/L 5 U 5 U NC 1,1,2,2-Tetrachloroethane µg/L 5 U 5 U NC Toluene µg/L 5 U 5 U NC 1,1,2-Trichloroethane µg/L 5 U 5 U <					NC
Ethylbenzene μg/L 5 U 5 U NC 2-Hexanone μg/L 5 U 5 U NC Isopropylbenzene μg/L 5 U 5 U NC Methyl Acetate μg/L 5 U 5 U NC Methylcyclohexane μg/L 5 U 5 U NC Methylene Chloride μg/L 5 U 5 U NC 4-Methyl-2-pentanone μg/L 5 U 5 U NC Methyl tert-Butyl Ether μg/L 5 U 5 U NC Methyl tert-Butyl Ether μg/L 5 U 5 U NC Styrene μg/L 5 U 5 U NC 1,1,2,2-Tetrachloroethane μg/L 5 U 5 U NC Toluene μg/L 5 U 5 U NC 1,2,4-Trichloroethane μg/L 5 U 5 U NC 1,1,1-Trichloroethane μg/L 5 U 5 U NC 1,1,2-Trichloroethane μg/L 5 U 5 U					NC
2-Hexanone μg/L 5 U 5 U NC Isopropylbenzene μg/L 5 U 5 U NC Methyl Acetate μg/L 5 U 5 U NC Methylcyclohexane μg/L 5 U 5 U NC Methylene Chloride μg/L 5 U 5 U NC 4-Methyl-2-pentanone μg/L 5 U 5 U NC Methyl tert-Butyl Ether μg/L 6 6 0.0 Styrene μg/L 5 U 5 U NC 1,1,2,2-Tetrachloroethane μg/L 5 U 5 U NC Tetrachloroethene μg/L 5 U 5 U NC 1,2,4-Trichloroethene μg/L 5 U 5 U NC 1,1,1-Trichloroethane μg/L 5 U 5 U NC 1,1,1-Trichloroethane μg/L 5 U 5 U NC 1,1,2-Trichloroethane μg/L 5 U 5 U NC Trichlorofluoromethane μg/L 5 U <					NC
Isopropylbenzene					NC
Methyl Acetate μg/L 5 U NO Methylcyclohexane μg/L 5 U 5 U NO Methylene Chloride μg/L 5 U 5 U NO 4-Methyl-2-pentanone μg/L 5 U 5 U NO Methyl tert-Butyl Ether μg/L 6 6 0.1 Styrene μg/L 5 U 5 U NO 1,1,2,2-Tetrachloroethane μg/L 5 U 5 U NO Tetrachloroethene μg/L 5 U 5 U NO 1,2,4-Trichloroethene μg/L 5 U 5 U NO 1,2,4-Trichloroethane μg/L 5 U 5 U NO 1,1,1-Trichloroethane μg/L 5 U 5 U NO 1,1,2-Trichloroethane μg/L 5 U NO NO 1,1,2-Trichloroethane μg/L 5 U NO					NC
Methylcyclohexane μg/L 5 U 5 U NC Methylene Chloride μg/L 5 U 5 U NC 4-Methyl-2-pentanone μg/L 5 U 5 U NC Methyl tert-Butyl Ether μg/L 6 6 0.0 Styrene μg/L 5 U 5 U NC 1,1,2,2-Tetrachloroethane μg/L 5 U 5 U NC Tetrachloroethene μg/L 5 U 5 U NC 1,2,4-Trichloroethene μg/L 5 U 5 U NC 1,2,4-Trichloroethane μg/L 5 U 5 U NC 1,1,1-Trichloroethane μg/L 5 U 5 U NC 1,1,2-Trichloroethane μg/L 5 U 5 U NC Trichloroethene μg/L 5 U 5 U NC 1,1,2-Trichloro-1,2,2-trifluoroethane μg/L 5 U 5 U NC 1,1,2-Trichloro-1,2,2-trifluoroethane μg/L 5 U 5 U NC					NC NC
Methylene Chloride µg/L 5 U No 4-Methyl-2-pentanone µg/L 5 U 5 U No Methyl tert-Butyl Ether µg/L 6 6 0.0 Styrene µg/L 5 U 5 U No 1,1,2,2-Tetrachloroethane µg/L 5 U 5 U No Tetrachloroethene µg/L 5 U 5 U No Toluene µg/L 5 U 5 U No 1,2,4-Trichlorobenzene µg/L 5 U 5 U No 1,1,1-Trichloroethane µg/L 5 U 5 U No 1,1,2-Trichloroethane µg/L 5 U 5 U No Trichloroethene µg/L 5 U 5 U No Trichlorofluoromethane µg/L 5 U 5 U No 1,1,2-Trichloro-1,2,2-trifluoroethane µg/L 5 U No No					NC
4-Methyl-2-pentanone μg/L 5 U 5 U NO Methyl tert-Butyl Ether μg/L 6 6 0,0 Styrene μg/L 5 U 5 U NO 1,1,2,2-Tetrachloroethane μg/L 5 U 5 U NO Tetrachloroethene μg/L 5 U 5 U NO Toluene μg/L 5 U 5 U NO 1,2,4-Trichloroethane μg/L 5 U 5 U NO 1,1,1-Trichloroethane μg/L 5 U 5 U NO 1,1,2-Trichloroethane μg/L 5 U 5 U NO Trichloroethene μg/L 21 21 0. Trichlorofluoromethane μg/L 5 U 5 U NO 1,1,2-Trichloro-1,2,2-trifluoroethane μg/L 5 U 5 U NO			[NC
Methyl tert-Butyl Ether μg/L 6 6 0.0 Styrene μg/L 5 U 5 U NO 1,1,2,2-Tetrachloroethane μg/L 5 U 5 U NO Tetrachloroethene μg/L 5 U 5 U NO Toluene μg/L 5 U 5 U NO 1,2,4-Trichlorobenzene μg/L 5 U 5 U NO 1,1,1-Trichloroethane μg/L 5 U 5 U NO 1,1,2-Trichloroethane μg/L 5 U 5 U NO Trichloroethene μg/L 21 21 0.0 Trichlorofluoromethane μg/L 5 U 5 U NO 1,1,2-Trichloro-1,2,2-trifluoroethane μg/L 5 U 5 U NO					NC
Styrene µg/L 5 U 5 U NO 1,1,2,2-Tetrachloroethane µg/L 5 U 5 U NO Tetrachloroethene µg/L 5 U 5 U NO Toluene µg/L 5 U 5 U NO 1,2,4-Trichloroethane µg/L 5 U 5 U NO 1,1,1-Trichloroethane µg/L 5 U 5 U NO 1,1,2-Trichloroethane µg/L 5 U 5 U NO Trichloroethene µg/L 21 21 0. Trichlorofluoromethane µg/L 5 U 5 U NO 1,1,2-Trichloro-1,2,2-trifluoroethane µg/L 5 U 5 U NO					0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					NC
Tetrachloroethene μg/L 5 U NO Toluene μg/L 5 U NO 1,2,4-Trichlorobenzene μg/L 5 U NO 1,1,1-Trichloroethane μg/L 5 U NO 1,1,2-Trichloroethane μg/L 5 U NO Trichloroethene μg/L 21 21 Trichlorofluoromethane μg/L 5 U NO 1,1,2-Trichloro-1,2,2-trifluoroethane μg/L 5 U NO		un/l			NC NC
Toluene μg/L 5 U 5 U NO 1,2,4-Trichlorobenzene μg/L 5 U 5 U NO 1,1,1-Trichloroethane μg/L 5 U 5 U NO 1,1,2-Trichloroethane μg/L 5 U 5 U NO Trichloroethene μg/L 21 21 0. Trichlorofluoromethane μg/L 5 U NO 5 U NO 1,1,2-Trichloro-1,2,2-trifluoroethane μg/L 5 U NO 5 U NO		ug/L			NC
1,2,4-Trichlorobenzene μg/L 5 U NO 1,1,1-Trichloroethane μg/L 5 U NO 1,1,2-Trichloroethane μg/L 5 U NO Trichloroethene μg/L 21 21 0. Trichlorofluoromethane μg/L 5 U NO NO 1,1,2-Trichloro-1,2,2-trifluoroethane μg/L 5 U NO			• · · · · · · · · · · · · · · · · · · ·		NC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					NC NC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					NC
					NC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.0
1,1,2-Trichloro-1,2,2-trifluoroethane µg/L 5 U 5 U NO					NC
					NC
	Vinyl Chloride	<u>μ</u> g/L	5 U	5 U	NC
					NC

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS calculations are not applicable for the above data set; results passed RPD criteria and were non-detects.

ABS = absolute difference RPD = relative percent difference μg = microgram; L = liter NC = Not calculable

U - non-detect value

Table G-3d - Field Duplicate Comparison **Groundwater Screening Samples** Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code Sample Name		MW-PD-12-GW-AA	MW-PD-12-GW-AA-DUP MW-PD-21-GW-AA	RPD
Sample Name		2/6/2009	· · · · · · · · · · · · · · · · · · ·	'
	Units	2/6/2008	2/6/2008	
Volatile Organic Compounds				
Acetone	μg/L	5 UJ	5 UJ	NC
Benzene	μg/L	5 U	5 U	NC
Bromodichloromethane	μg/L	5 U	5 U	NC
Bromoform	μg/L	5 U	` 5 U	NC
Bromomethane	µg/L	6	5	18.2
2-Butanone	μg/L	5 U	5 U	NC
Carbon Disulfide	µg/L	5 U	5 ป	NC
Carbon Tetrachloride	μg/L	5 U	5 ป	NC
Chlorobenzene	μg/L	5 ป	5 U	NC
Chloroethane	µg/L	5 U	5 U	NC
Chloroform	µg/L	5 U	5 U	NC
Chloromethane	μg/L	5 U	5 U	NC
Cyclohexane	μg/L	5 U	, 5 U	NC
Dibromochloromethane	μg/L	5 U	5 U	NC
1,2-Dibromo-3-chloropropane	μg/L	5 U	5 U	NC
1,2-Dibromoethane	μg/L	5 U	5 U	NC
1,2-Dichlorobenzene	µg/L	5 U .	5 Ŭ	NC
1,3-Dichlorobenzene	µg/L	5 U	5 U	NC
1,4-Dichlorobenzene	μg/L	5 U	5 U	NC
Dichlorodifluoromethane	μg/L	5 U	5 U	NC
1,1-Dichloroethane	µg/L	5 U	5 U	NC
1,2-Dichloroethane	hg/r	5 U	5 U	NC
1,1-Dichloroethene	µg/L	5 U	5 U	NC
cis-1,2-Dichloroethene	µg/L	5 U	5 U	NC
trans-1,2-Dichloroethene	hg/r	5 U	5 U	NC NC
1,2-Dichloropropane		5 U		NC NC
	μg/L	5 U	5 U ' 5 U	
cis-1,3-Dichloropropene	µg/L			NC NC
trans-1,3-Dichloropropene	µg/L	5 U	5 U	NC_
Ethylbenzene	μg/L	5 U	5 U	NC NC
2-Hexanone	µg/L	5 U	5 U	NC
Isopropylbenzene	μg/L	5 U	5 U	NC
Methyl Acetate	μg/L	5 <u>U</u>	5 U	NC
Methylcyclohexane	µg/L	5 U	5 U	NC
Methylene Chloride	µg/L	5 U	5 U	NC
4-Methyl-2-pentanone	µg/L	5 U	5 U	NC
Methyl tert-Butyl Ether	μg/L	5 U	5 U	0.0
Styrene	μg/L	5 U	5 U	. NC
1,1,2,2-Tetrachloroethane	μg/L	5 U	5 U	NC
Tetrachloroethene	μg/L	5 U	י 5 ע	NC
Toluene	μg/L	5	6	18.2
1,2,4-Trichlorobenzene	µg/L	5 U	5 U	NC
1,1,1-Trichloroethane	µg/L	5 U	5 U	NC
1,1,2-Trichloroethane	µg/L	5 U	5 U	NC
Trichloroethene	μg/L	52	43	18.9
Trichlorofluoromethane	μg/L	5 U	5 U	NC
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/L	. 5 U	5 U	NC
Vinyl Chloride	μg/L	5 U	5 U	NC
Xylenes (total)	μg/L	⁷ 5 U	5 U	NC

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS calculations are not applicable for the above data set; results passed RPD criteria and were non-detect:

ABS = absolute difference RPD = relative percent difference

μg = microgram; L = liter NC = Not calculable

U - non-detect value

Table G-3d - Field Duplicate Comparison **Groundwater Screening Samples** Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code Sample Name		MW-PD-16-GW-D	MW-PD-16-GW-D-DUP	RPD
Sample Name		0/00/0000	MW-PD-61-GW-D	
	Units	2/28/2008	2/28/2008	
Volatile Organic Compounds				
Acetone	µg/L	5 UL	5 UL	NC
Benzene	µg/L	5 U	5 U	NC
Bromodichloromethane	µg/L	5 U	5 U	NC
Bromoform	μg/L	5 U	5 U	NC
Bromomethane	μg/L	5 U	6 U	NC
2-Butanone	µg/L	5 U	5 U '	NC
Carbon Disulfide	μg/L	5 U	5 U	NC
Carbon Tetrachloride	µg/L	5 U	5 U	NC
Chlorobenzene	µg/L	5 U	5 U	NC
Chloroethane	μg/L	5 U	5 U	NC
Chloroform	µg/L	5 U	5 U	NC
Chloromethane	μg/L	5 U	5 U	NC
Cyclohexane	µg/L	5 U	5 U	NC
Dibromochloromethane	μg/L	5 U	5 ปั	NC
1,2-Dibromo-3-chloropropane	μg/L	5 U	5 U	NC
1,2-Dibromoethane	μg/L	5 U	5 U	NC
1,2-Dichlorobenzene	µg/L	5 U	5 U	NC
1,3-Dichlorobenzene	μg/L	5 U	5 U	NC
1,4-Dichlorobenzene	μg/L	5 U	5 U	NC
Dichlorodifluoromethane	µg/L	5 U	5 U	NC
1,1-Dichloroethane	μg/L	5 U	5 U	NC
1,2-Dichloroethane	μg/L	5 Ü	5 U	NC
1,1-Dichloroethene	μg/L	5 U	5 U	NC
cis-1,2-Dichloroethene	μg/L	13	13	0.0
trans-1,2-Dichloroethene	µg/L	5 U	5 U	NC
1,2-Dichloropropane	µg/L	5 U	5 U	NC
cis-1,3-Dichloropropene	µg/L	5 U	5 U	NC
trans-1,3-Dichloropropene	µg/L	5 U	5 U	NC NC
Ethylbenzene	µg/L	5 U		NC NC
2-Hexanone	µg/L	5 U	5 U 5 U	NC NC
l		<u> </u>		NC NC
Isopropylbenzene Methyl Acetate	μg/L	The state of the s	5 U	
	ug/L	5 U	5 U	NC
Methylcyclohexane	μg/L	5 U	5 U	NC
Methylene Chloride	µg/L	5 U 5 U	5 U	NC
4-Methyl-2-pentanone	ug/L		5 U	NC
Methyl tert-Butyl Ether	μg/L	5 U	5 U	0.0
Styrene	µg/L	5 U	5 U	NC
1,1,2,2-Tetrachloroethane	μg/L	5 U	5 U	NC
Tetrachloroethene	µg/L	18	18	0.0
Toluene	μg/L	<u>5 U</u>	5 U	NC
1,2,4-Trichlorobenzene	µg/L	5 U	5 U	NC
1,1,1-Trichloroethane	µg/L	5 U	5 U	NC
1,1,2-Trichloroethane	μg/L	5 U	5 U	NC
Trichloroethene	μg/L	2000	2000	0.0
Trichlorofluoromethane	μg/L	5 U	5 U	NC
1,1,2-Trichloro-1,2,2-trifluoroethane	ng/r	5 U	5 บ	NC
Vinyl Chloride	μg/L	5 U	5 U	NC
Xylenes (total)	µg/L	5 Ü	5 U	NC

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS calculations are not applicable for the above data set; results passed RPD criteria and were non-dete

ABS = absolute difference RPD = relative percent difference μg = microgram; L = liter NC = Not calculable

U - non-detect value

Table G-3e - Field Duplicate Comparison Aquifer Testing Samples Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code Sample Name		CRQL	PT01-I	PT01-I-DUP PT10-I	RPD	ABS
Sample Date	Units	[4/29/2008	4/29/2008	ł	
Volatile Organic Compounds - Trace					<u> </u>	
Dichlorodifluoromethane	μg/L	0.5 U	0.5 U	0.5 U	NC	
Chloromethane	µg/L	0.5 U	0.5 L	0.5 U	NC	
Vinyl Chloride	µg/L	0.5 U	0.5 (NC	
Bromomethane	μg/L	0.5 U	0.5 (NC	
Chloroethane	µg/L	0.5 U	0.5 U	0.5 U	NC NC	
Trichlorofluoromethane	µg/L	0.5 U	0.5		NC	
1,1-Dichloroethene	μg/L	0.5 U	0.5 L		NC	
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/L	0.5 U	0.5 L		NC	
Acetone	μg/L	5 U	5 L	5 U	NC	
Carbon Disulfide	μg/L	0.5 U	0.5		NC	
Methyl Acetate	μg/L	0.5 U	0.5		NC	·
Methylene Chloride	μg/L	0.5 U	0.5 L		NC	
trans-1,2-Dichloroethene	μg/L	0.5 U	0.5 (NC	
Methyl tert-Butyl Ether	μg/L	0.5 U	0.92	0.91	1.1	0.01
1,1-Dichloroethane	μg/L	0.5 U	0.5 (NC	
cis-1,2-Dichloroethene	μg/L	0.5 U	2.1	2.1	0.0	0.0
2-Butanone	μg/L	5 U	5 L		NC	
Chlorobromomethane	μg/L	0.5 Ü	0.5 (NC	
Chloroform	μg/L	0.5 U	0.5 (NC	
1,1,1-Trichloroethane	μg/L	0.5 U	0.23 J		0.0	0.0
Cyclohexane	μg/L	0.5 U	0.5 (NC	
Carbon Tetrachloride	µg/L	0.5 U	0.5 (NC	<u> </u>
Benzene	μg/L	0,5 U	0.5 (NC	†
1,2-Dichloroethane	μg/L	0.5 U	0.5 (NC	
Trichloroethene	μg/L	0.5 U	440	490	10.8	-50.0
Methylcyclohexane	μg/L	0.5 U	0.5 (NC	
1,2-Dichloropropane	μg/L	0.5 U	0.5 (NC	
Bromodichloromethane	µg/L	0.5 U	0.5 (NC	
cis-1,3-Dichloropropene	μg/L	0.5 U	0.5		NC	
4-Methyl-2-pentanone	μg/L	5 U	5 L		NC	
Toluene	μg/L	0.5 U	0.5 (0.5 U	NC	
trans-1,3-Dichloropropene	μg/L	0.5 U	0.5	0.5 U	NC	T
1,1,2-Trichloroethane	μg/L	0.5 U	0.5	J 0.5 U	NC	
Tetrachloroethene	μg/L	0.5 U	25	27	7.7	-2.0
2-Hexanone	μg/Ľ	5 U	. 5 L	J 5 U	NC	
Dibromochloromethane	μg/L	0.5 U	0.5		NC	
1,2-Dibromoethane	μg/L	0.5 U	0.5 ใ		NC	
Chlorobenzene	μg/L	0.5 U	0.5 (J 0.5 U	NC	L
Ethylbenzene	μg/L	0.5 U	0.5 L 0.5 L	J 0.5 U	NC	
o-Xylene	μg/L	0.5 U				
m,p-Xylene	μg/L	0.5 U	0.5			
Styrene	μg/L	0.5 U	0.5 (
Bromoform	µg/L	0.5 U	0.5			
Isopropylbenzene	μg/L	0.5 U	0.5			
1,1,2,2-Tetrachloroethane	μg/L	0.5 U	0.5 (
1,3-Dichlorobenzene	µg/L	0.5 U	0.5 (
1,4-Dichlorobenzene	μg/L	0.5 U	0.5 (
1,2-Dichlorobenzene	μg/L	0,5 U	0.5 (J 0.5 U		
1,2-Dibromo-3-chloropropane	μg/L	0.5 U	0.5 l			
1,2,4-Trichlorobenzene	μg/L	0.5 U	0.5 (
1,2,3-Trichlorobenzene	μg/L	0.5 U	0.5	J 0.5 U	NC	

Table G-3e - Field Duplicate Comparison Aquifer Testing Samples Lawrence Aviation Industries Site Port Jefferson Station, New York

Sample Code Sample Name		CRQL	PT01-I		PT01-I-DUP PT10-I	1	RPD	ABS
Sample Name Sample Date	Units		4/29/2008		4/29/2008	- 1		
Sample Date	Units		4/23/2000	\dashv	4/25/2000	+		
Metals analysis ILM05-2-W-AES - 23 cor	mpounds -	DESA	Į.					
Aluminum	μg/L	200 U	36000	RΪ	9260 F	RΪ	118.2	*
Antimony	μg/L	60 U	60	미	60 L	υľ	NC	
Arsenic	μg/L	10 U	9.8	J	10 0	Ū	2.0	-0.2
Barium	µg/L	200 U	223		104	J	72.8	119.0
Beryllium	μg/L	5 U	5		5 1	Ū	NC	
Cadmium	μg/L	5 U	5	ŪΪ	5 (Ū	NC	
Calcium	μg/L	5000 U	12500		12200		2.4	
Chromium .	μg/L	10 U	321		32.3		163.4	*
Cobalt	μg/L	50 U	50	U	50]1		NC	
Copper	μg/L	25 U	= "	J	11.6		70.0	12.5
Iron	μg/L	100 U	10400		1670		144.7	*
Lead	μg/L	10 U	37.8	R	7.3	R	135.3	*
Magnesium	μg/L	5000 ປ	6430		6280		2.4	150.0
Manganese	μg/L	15 U	1020		187	_	138.0	*
Mercury	μg/L	0.2 U	0.2		0.2		NC	
Nickel	µg/L	40 U	193	R	44.4	R	125.2	*
Potassium	μg/L	5000 U	38100		37900		0.5	200.0
Selenium	μg/L	35 U	35		35		NC	
Silver	μg/L	10 U	10	υl	10 1	υļ	NC	······
Sodium	μg/L	5000 U	17100	[17200		0.6	
Thallium	μg/L	25 U	25		25		NC	
Vanadium	μg/L	50 U	49.1	J	50	U	1.8	-0.9
Zinc	μg/L	60 U	536		551	_	2.8	-15.0
Cyanide	μg/L	10 U	10	U	10	U	NC	
Wet Chemistry Analysis - STL]	Ì		
Total Dissolved Solids	mg/L	10 U	230		230		0.0	0.0
Total Suspended Solids	mg/L	4 U	1700		470		113.4	1230.0
Alkalinity, Total (as CaCO3)	mg/L	1 0	58	-	56		3.5	2.0
IChloride	mg/L	0.1 U	16		17		6.1	-1.0
Nitrogen, Ammonia	mg/L	0.05 U	0.16		0.23		35.9	-0,07
Nitrogen, Total Kjeldahl	mg/L	0.1 U	0.35		0.44		22.8	-0.09
Sulfate	mg/L	0.5 U	24	,,,,,,,,,	25	,,,,,,,,,,,	4.1	-1.0
Total Organic Carbon	mg/L	1 U		Ū	1	Ū	NC	
Nitrate	mg/L	0.1 U	10	Г	9.2		8.3	0.8
Nitrite	mg/L	0.05 U	0.13		0.11		16.7	0.02
Hardness	mg/L	1 U	62		62		0.0	0.00

Notes and Abbreviation:

RPD is calculated for all detected results.

ABS is calculated for results failing the RPD and where one result is detected and one is non-detect or results fall below the CRQL.

RPD values above 100% are bolded if both sample and duplicate are detected. ABS values above five times the detection limits are in italics if either the sample or duplicate is detected. Bolded values exceed criteria.

ABS = absolute difference RPD = rtelative percent difference NA = Not available or not applicable NC = Not calculable

CRQL = contract required detection limit

mg = milligram; µg = microgram; kg = kilogram; L = liter

^{*} Results were rejected during data validation so no further evaluation is warranted. Therefore thee RPD results are only summarized in the text.

LDL Volatile Organic Compounds Field Rinsate Blanks - Soil Sampling

Units: ua/L

Sample Code		FB-120507	FB-120607	FB-120707	FB-121007	FB-121107	FB-121707	FB-121807	FB-121907
Sample Date	}.	12/5/2007	12/6/2007	12/7/2007	12/10/2007	12/11/2007	12/17/2007	12/18/2007	12/19/2007
Chemical Name	CRQL				_				
Chloromethane	0.5 U			-			0.58	0.4 J	
Acetone	5 U	150							
Methylene Chloride	0.5 U	0.23 J							
Chloroform	0.5 U	0.55	0.49 J	0.47 J	0.46 J	0.48 J	8.9	6.3	12
1,1,1-Trichloroethane	0.5 U							0.49 J	
Cyclohexane	0.5 U						0.38 J		
Bromodichloromethane	0.5 U						1.3 J	1	1.8
Toluene	0.5 U			0.43 J	0.34 J	. 0.37 J		0.27 J	0.26 J
Dibromochloromethane	0.5 U								

Sample Code		FB-122007	FB-122107	FB-122707	FB-122807	FB-010208	FB-010308	FB-010808	FB-010908
Sample Date		12/20/2007	12/21/2007	12/27/2007	12/28/2007	1/2/2008	1/3/2008	1/8/2008	1/9/2008
Chemical Name	CRQL								
Chloromethane	0.5 Ü		0.34 J	0.34 J	0.28 J	0.84	-	0.33 J	
Acetone	5 U	43	5.2	17	60	6.4	6.5	28	44
Methylene Chloride	0.5 U							0.34 J	
Chloroform	0.5 U	11	6.7	8.2	6.2	7.5	8.6	8.3 J	8.7 J
1,1,1-Trichloroethane	. 0.5 U								
Cyclohexane	0.5 U								
Bromodichloromethane	0.5 U	1	1.1	1.3	1	1.2	1.4	0.74	0.8
Toluene	0.5 U	0.65					0.29 J	0.38 J	0.3 J
Dibromochloromethane	0.5 U	0.32 J	0.3 J	0.35 J	0.29 J	0.37 J	0.4 J	0.22 J	0.22 J

Definitions and Notes:

CRQL - Contract required quantitation limit

LDL - low detection limit

μg/L - microgram per liter

Hits above the CRQL are bolded.

J - estimated values U - non-detected values Blank cells represent non-detected values.

Blanks with no hits are not shown above.

Volatile Organic Compounds - Trace

Field Rinsate Blanks - May to June 2008 - Aquifer Test and Groundwater Round 1 and 2

Units: µg/L

Onics. pg/L						_		_	
Sample Code		FB112807	FB-042408	3	FB-052908		FB-06020	8	FB-060308
Sample Date	1	11/28/2007	4/24/2008	3	5/29/2008		6/2/2008	}	6/3/2008
Chemical Name	CRQL	Round 1	Aquifer tes	t	Round 2		Round 2		Round 2
Chloromethane	0.5 U		0.45	J					
Acetone	5 U						3.6	J	
Methylene Chloride	0.5 U				0.36	J			0.47 J
Chloroform	0.5 U	0.48 J	0.35	J					0.35 J
Trichloroethene	0.5 U		0.44	J	16				
Toluene	0.5 U						0.11	J	0.11 J
Tetrachloroethene	0.5 U				0.11	J			
Fluoride	0.5 _. U				0.086	J	0.054	J	0.06 J

Definitions and Notes:

CRQL - Contract required quantitation limit

LDL - low detection limit

μg/L - microgram per liter Hits above the CRQL are bolded.

J - estimated values
U - non-detected values
Blank cells represent non-detected values.
Blanks with no hits are not shown above.

Trace Volatile Organic Compounds

Trip Blanks - Round 1 Groundwater Samples and Groundwater Screening Samples collected during the Soil Boring Event

Units: ua/L

Units: µg/L									
Sample Code		TB-121007	TB-121107	TB-121907	TB-122007	TB-010208	TB-010308	TB-010808	TB-010908
Sample Date	CRQLs	12/10/2007	12/11/2007	12/19/2007	12/20/2007	1/2/2008	1/3/2008	1/8/2008	1/9/2008
Chemical Name		GW screen	GW screen	GW screen	GW screen	GW screen	GW screen	GW screen	GW screen
Chloromethane	0.5 U		0.22 J	0.6				0.75	_
Acetone	5 U	29	27				22	26	24
Methylene Chloride	0.5 U							0.2 J	
2-Butanone	5 U								
Chloroform	0.5 U	5.3	4.9	12	12	8	8.5	8.4	7.6
Trichloroethene	0.5 U								
Bromodichloromethane	0.5 U	0.5 J	0.56	1.8	2	1.3	0.78	0.77	0.73
Toluene	0.5 U	0.82	0.86				0.42 J	0.38 J	0.36 J
Dibromochloromethane	0.5 U			0.63	0.57	0.37 J	0.22 J	0.22 J	
m,p-Xylene	0.5 U								

Sample Code		TB112607	TB112807	TB112907	TB113007	TB010408
1	CRQLs	11/26/2007	11/28/2007	11/29/2007	11/30/2007	1/4/2008
Sample Date	CRULS					
Chemical Name		Round 1	Round 1	Round 1	Round 1	Round 1 reanalysis
Chloromethane	0.5 U					0.43 J
Acetone	5 U					5.4
Methylene Chloride	0.5 U					0.19 J
2-Butanone	5 U					3 J
Chloroform	0.5 U	0.48 J	0.5	0.6		5.9
Trichloroethene	0.5 U			0.26 J		
Bromodichloromethane	0.5 U			_		111
Toluene	0.5 U					0.21 J
Dibromochloromethane	0.5 U					0.33 J
m,p-Xylene	0.5 U	-				0.095 J

Definitions and Notes:

CRQL - Contract required quantitation limit

LDL - low detection limit

µg/L - microgram per liter

Hits above the CRQL are bolded.

J - estimated values

Blank cells represent non-detected values.

U - non-detected values

Blanks with no hits are not shown above.

Trace Volatile Organic Compounds

Trip Blanks - May and June 2008 - Aquifer Test and Groundwater Round 2

Units: µg/L

Onica, pg/L										_						
Sample Code		TB-050108	TB-05190	18	TB-052008		TB-052208	В	TB-052708		TB-052808	8	TB-052908		TB-060208	TB-060308
Sample Name	CRQLs	Ļ				- 1						_				a 10 10 00 0
Sample Date	 	5/1/2008	5/19/200	18	5/20/2008	i	5/22/2008		5/27/2008		5/28/2008		5/29/2008		6/2/2008	6/3/2008
Chemical Name	, i	Aquifer Tes	t Round 2	2	Round 2		Round 2		Round 2	_	Round 2		Round 2		Round 2	Round 2
Chloromethane	0.5 U								0.11	J	0.14	J			0.16 J	
Bromomethane	0.5 U											-			0.14 J	
Acetone	5 Ú		9.5	5	11.		9.1		4		2.7	******	2.7	20202	9.7	3.9 J
Methylene Chloride	0.5 U	Proposition of the Party of the	0.38	3 J	0.38	J	0.32	J	0.35		0.46	J	0.4		0.58	0.41 J
Chloroform	0.5 U	0.21	J 0.23	3 J					0.47	<u>J</u>	0.4	<u>J_</u>	0.39	J	4.2	·
Trichloroethene	0.5 U									[0.18	<u>J</u>			0.17 J	
Bromodichloromethane	0.5 U									[correlate:			0.88	
Toluene	0.5 U		0.12	2 J	0.13	J	0.15	J	0.12	IJ	0.1	J	0.11	J		0.11 J
Dibromochloromethane	0.5 U	1				[0.35 J	

Definitions and Notes:

CRQL - Contract required quantitation limit

LDL - low detection limit

μg/L - microgram per liter

Hits above the CRQL are bolded.

J - estimated values

Blank cells represent non-detected values.

U - non-detected values

Blanks with no hits are not shown above.

Volatile Organic Compounds, OLM04.3

Field Rinsate Blanks - Groundwater Screening Samples

Units: ua/L

Sample Code Sample Date		FB-021208 2/12/2008	FB-022808 2/28/2008	FB-030508 3/5/2008
Chemical Name	CRQL			
1]
Bromomethane	5 U I	6 J		<u></u>
Chloroform	5 U	5	8	8

9 Field blanks not listed are clean.

Volatile Organic Compounds, OLM04.3

Trip Blanks - Groundwater Screening Samples Units: ug/l.

Onits, pg/L								
Sample Code		TB-020508	TB-020608	TB-021208	TB-022808	TB-030508	TB-031108	TB030708
Sample Date		2/5/2008	2/6/2008	2/12/2008	2/22/2008	3/5/2008	3/11/2008	3/7/2008
Chemical Name	CRQL							
Bromomethane	5 U	il	5	6 J	1	l		6
Chloroform	5 U	7	7	5	8	8	8	8

Definitions and Notes:

CRQL - Contract required quantitation limit

µg/L - microgram per liter

J - estimated values

U - non-detected values

Hits above the CRQL are bolded. Blank cells represent non-detected values.

Blanks with no hits are not shown above.

8 Trip blanks not listed are clean.

Table G-5 2007-2008 Data Completeness Report Lawrence Aviation Industries Site Port Jefferson Station, New York

	Τ-		· -				
Analytical Parameter	Non-Detects	Hits	Rejects	Total	Estimated Hits	Percent Estimated (Hits Only)	Percent Rejected
Alkalinity	1	25		26			Rejected
Ammonia	8	2	0	10	- 0		
Chloride	0	10	0	10	0		
Fluoride	0	97	0	97	36		
Grain Size Distribution	0	625	. 0	625	0		
Hardness as Calcium Carbonate	- 0	26	o,	26	1		
Nitrite	8	2	0	10	0		
Nitrate	. 0	10	0	10	. 0	_	
Sulfate	0	26	0	26	. 0		<u> </u>
Total Dissolved Solids	0	10	0	10	0		
Total Suspended Solids	5	- 5	0	10	Ö	,	
TKN	1	.9	0	10	0		i
Total Organic Carbon-water	9	, ¹	0	10	1		- 1
Total Organic Carbon-soil	0	107	0	107	. 85	79.4	
Solids, Percent	0	112	0	112	. 0		
Cyanide	11	0	0	. 11	0	ï	-
Titanium	89	8	0	97	2		- - - - - - - - - -
TAL Metais	296	299	11	606	71		1.8
Pesticides	217	O	14	231	Ó		6.1
PCBs	99	. 0	0	99	.0)
Trace Volatile Organics	2490	264	0	2754	96	3.5	1
Volatile Organic Compounds	2943	321	0	3264	138		
TCL Volatile Organics - Soil	5444	123	49	5616	52	0.9	0.9
Volatile Organics (SIM)	136	. 0	0	136	0		
svoc		1	0	737	1		,
VOC Screening-8260	1632	48	0	1680	5		
TOTALS	14125	2131	74	16330	488	3.0	0.5

Percent of all Data Rejected	0.45
Percent Soil VOCs rejected	0.9
Percent of all Hits Estimated	3.0
Percent complete (judged valid)	99.55

(does not include estimated non-detect data)
(Includes all estimated data)

Notes:

TCL = target compound list

SIM = simultaneous ion monitoring

TKN = Total Kjeldahl nitrogen

PCB = Polychlorinated biphenyls

SVOC = Semi-Volatile Organic Compounds

Table G-6 Quantitation Limits Above Site Specific Criteria Lawrence Aviation Industries Site Port Jefferson Station, New York

Groundwater Sample Collected from bottom of Soil Borings

Method: OLM04.3 Units: ua/L

Office.	P9'-				
. Sample Code	Tech Memo	QAPP listed	SBD-PD-19-GW-A		
Sample Name	Site-specific-GW	Action Limit			
Sample Date	Criteria	or Goal for GW	12/10/2007		
Unit \\ Depth			202 to 207 ft bgs		
Chemical Name			•		
cis-1,3-Dichloropropene	0.4	Not listed	0.5 U		
trans-1,3-Dichloropropene	0.4	0.5	0.5 U		
1,2-Dibromoethane	0.0006	Not listed	0.5 U		
1,2-Dibromo-3-chloropropane	0.04	0.5	0.5 U		

Sample Code	Tech Memo	QAPP listed	MW-PD-11-GW-A	
Sample Name	Site-specific-GW	Action Limit		
Sample Date	Criteria	or Goal for GW(2)	1/16/2008	
Unit \\ Depth			185 to 190 ft bgs	
Chemical Name				
Benzene	1	1	5 U	
1,2-Dibromo-3-chloropropane	0.04	0.5	5 U	
1,2-Dibromoethane	0.0006	Not listed	5 U	
1,2-Dichlorobenzene	3	3	5 U	
1,3-Dichlorobenzene	3	3	5 U	
1,4-Dichlorobenzene	3	3	5 U	
1,2-Dichloroethane	0.6	0.6	5{U	
1,2-Dichloropropane	1	1	5 U	
cis-1,3-Dichloropropene	0.4	Not listed	5 U	
trans-1,3-Dichloropropene	0.4	0.5	5 U	
1,1,2-Trichloroethane	1	1	5 U	
Vinyl Chloride	2	2	5 U	

Notes and Abbreviations:

- 1 Compounds listed above have detection limits above screening criteria in samples collected from the above events
- 2 Less conservative number from QAPP listed above
 - ft feet
 - J Value estimated
 - U Compound not detected above reporting limit micrograms per liter $\mu g/L$ -micrograms per liter

SW8260B -Method for Volatile Organic Analysis - Aqueous