OPERATIONS AND MAINTENANCE REPORT April 2020

United States Environmental Protection Agency Lawrence Aviation Industries Superfund Site Port Jefferson Station, Suffolk County, New York

Contract No. EP-W-09-009 Work Assignment No. 049-LTRA-02NS

USEPA WORK ASSIGNMENT NUMBER: 049-LTRA-02NS

USEPA CONTRACT NUMBER: EP-W-09-009

HDR

REMEDIAL ACTION CONTRACT (RAC) 2 PROGRAM

OPERATIONS AND MAINTENANCE REPORT

April 2020

LAWRENCE AVIATION INDUSTRIES SUPERFUND SITE

PORT JEFFERSON STATION, NEW YORK

June 2, 2020

TABLE OF CONTENTS

TABI	LE OF CONTENTS	ii
LIST	OF FIGURES	iii
LIST	OF TABLES	iv
LIST	OF APPENDICES	v
ACR	ONYMS AND ABBREVIATIONS	vi
1.0	OVERVIEW	1-1
1.1	Purpose of Report and LTRA Objectives	1-2
2.0	LAWRENCE AVIATION INDUSTRIES GROUNDWATER TREATMENT SYSTEM PERFORMANCE AND COMPLIANCE SAMPLING RESULTS	2-1
2.1	Extraction Well Performance	2-1
2.2	Treatment System Performance and Compliance	2-2
2.3	Injection Well Performance	2-3
3.0	OLD MILL POND GROUNDWATER TREATMENT SYSTEM PERFORMA AND COMPLIANCE SAMPLING RESULTS	NCE
3.1	Extraction Well Performance	3-1
3.2	Treatment System Performance and Compliance	3-2
4.0	FACILITY OFF-GAS TREATMENT SYSTEM PERFORMANCE AND COMPLIANCE MONITORING RESULTS	4-1
4.1	LAI GWTF	4-1
4.2	OMP GWTF	4-1
5.0	SUMMARY AND RECOMMENDATIONS	5-1
5.1	LAI GWTF	5-1
5.2	OMP GWTF	5-1

LIST OF FIGURES

- Figure 1-1 Site Location Map
- Figure 1-2 LAI and OMP GWTF Locations
- Figure 1-3 LAI GWTF Layout
- Figure 1-4 Old Mill Pond GWTF Layout
- Figure 1-5 LAI GWTF Process Diagram and Sample Locations
- Figure 1-6 OMP GWTF Process Diagram and Sample Locations
- Figure 2-1 LAI Influent CVOC Concentrations and Mass Removed vs. Time EW-01
- Figure 2-2 LAI Influent CVOC Concentrations and Mass Removed vs. Time EW-02
- Figure 3-1 OMP Influent CVOC Concentrations and Mass Removed vs. Time EW-1
- Figure 3-2 OMP Influent CVOC Concentrations and Mass Removed vs. Time EW-2
- Figure 3-3 OMP Influent CVOC Concentrations and Mass Removed vs. Time EW-6

LIST OF TABLES

Table 1-1	Summary of Well Construction Details, Lawrence Aviation Industries Groundwater Treatment Facility
Table 1-2	Summary of Well Construction Details, Old Mill Pond Groundwater Treatment Facility
Table 2-1	Summary of Monthly Operations, Lawrence Aviation Industries Groundwater Treatment Facility
Table 2-2	Summary of Extraction Well Groundwater Influent CVOC Data and Estimated Mass Removal Rates, Lawrence Aviation Industries Groundwater Treatment Facility
Table 2-3	Summary of Facility Process Sampling – CVOCs, Metals, and Wet Chemistry Parameters, Lawrence Aviation Industries Groundwater Treatment Facility
Table 2-4	Summary of SPDES Permit Equivalent Compliance Data, Lawrence Aviation Industries Groundwater Treatment Facility
Table 2-5	Summary of Operating Values, Lawrence Aviation Industries Groundwater Treatment Facility
Table 3-1	Summary of Monthly Operations, Old Mill Pond Groundwater Treatment Facility
Table 3-2	Summary of Extraction Well Groundwater Influent CVOC Data and Estimated Mass Removal Rates, Old Mill Pond Groundwater Treatment Facility
Table 3-3	Summary of Facility Process Sampling – CVOCs, Metals, and Wet Chemistry Parameters, Old Mill Pond Groundwater Treatment Facility
Table 3-4	Summary of SPDES Permit Equivalent Compliance Data, Old Mill Pond Groundwater Treatment Facility
Table 3-5	Summary of Operating Values, Old Mill Pond Groundwater Treatment Facility
Table 4-1	Summary of Air Pollution Control Permit Equivalent Compliance Data Lawrence Aviation Industries Groundwater Treatment Facility
Table 4-2	Summary of Air Sampling Data Old Mill Pond Groundwater Treatment Facility

LIST OF APPENDICES

Appendix A	Data Usability Analysis Report
Appendix B	System Runtime Log
B1	Lawrence Aviation Industries Groundwater Treatment Facility
B2	Old Mill Pond Groundwater Treatment Facility
Appendix C	System Alarm Log
C1	Lawrence Aviation Industries Groundwater Treatment Facility
C2	Old Mill Pond Groundwater Treatment Facility
Appendix D	Data Summary Tables
D1	Facility Process Sampling Aqueous Data
D2	Trip Blank Results
D3	Air Sample Results
Appendix E	Backup Calculations
E1	Figure 2-1 – Influent CVOC Concentrations and Mass Removed vs. Time – EW-01
E2	Figure 2-2 – Influent CVOC Concentrations and Mass Removed vs. Time – EW-02
E3	Figure 3-1 – Influent CVOC Concentrations and Mass Removed vs. Time – EW-1
E4	Figure 3-2 – Influent CVOC Concentrations and Mass Removed vs. Time – EW-2
E5	Figure 3-3 – Influent CVOC Concentrations and Mass Removed vs. Time – EW-6
Appendix F	Summary of Monthly Operations from October 2012 to September 2019
- F1	Lawrence Aviation Industries Groundwater Treatment Facility
F2	Old Mill Pond Groundwater Treatment Facility

ACRONYMS AND ABBREVIATIONS

amsl	above mean sea level
bgs	below ground surface
btc	below top of reference point on casing
cf	cubic feet
cfm	cubic feet per minute
cis-1,2-DCE	cis-1,2-dichloroethene
CVOC	chlorinated volatile organic compound
d	day
°F	degrees Fahrenheit
D	diluted result
1,1-DCA	1,1-dichloroethane
1,1-DCE	1,1-dichloroethene
DESA	Division of Environmental Science and Assessment
DPATM	Dry Penetrating Agent
DQI	data quality indicator
EFF	effluent
EPA	United States Environmental Protection Agency
ERRS	Emergency Response and Removal Section
EW	extraction well
ft	feet
g	gram
g/mole	gram per mole
GAC	granular activated carbon
gal	gallon
gpm	gallons per minute
GPS	global positioning system
GWTF	groundwater treatment facility
HDR	Henningson, Durham & Richardson, Architecture and Engineering PC
hp	horse power
ID	identification
in H ₂ O	inches water column
INF	influent
ITP	Initial Testing Program
IW	injection well
Κ	reported value maybe biased high
kWh	kilowatt hour
L	lamber projections
1	liter
L	reported value maybe biased low
l/gal	liter per gallon

ACRONYMS AND ABBREVIATIONS (CONTINUED)

LAI	Lawrence Aviation Industries
<	less than
lb	pound
lb/d	pounds per day
lb/g	pounds per gram
LTRA	Long-term Response Action
mg/l	milligram per liter
μg/l	microgram per liter
μg	microgram
μg/m3	microgram per cubic meter
min/day	minutes per day
mol/l	mole per liter
N/A	not applicable
NA	result not available
NAD	North American Datum
NAVD	North American Vertical Datum
NC	not collected
NS	not sampled
NSF	National Sanitation Foundation
NY	New York
NYS	New York State
NYSDEC	New York State Department of Environmental Conservation
O&M	operations and maintenance
OMP	Old Mill Pond
PCE	tetrachloroethene
%	percentage
PLC	programmable logic controller
ppbv	parts per billion by volume
ppm	parts per million
psi	pounds per square inch
Q	quarter
QAPP	Quality Assurance Project Plan
RA	remedial action
RAC 2	Remedial Action Contract 2
RD	remedial design
ROD	record of decision
Site	LAI Superfund Site
SPC	State Plane Coordinates
SPDES	State Pollutant Discharge Elimination System
STP	standard temperature and pressure
SU	standard unit
1,1,1-TCA	1,1,1-trichloroethane

ACRONYMS AND ABBREVIATIONS (CONTINUED)

TCE	trichloroethene
U	not detected
VC	vinyl chloride
VFD	variable frequency drive
VOC	volatile organic compound
Y	year

This operations and maintenance (O&M) report for the Lawrence Aviation Industries (LAI) Superfund Site (Site) was prepared by Henningson, Durham & Richardson, Architecture and Engineering PC, in association with HDR Engineering, Inc. (HDR) under United States Environmental Protection Agency (EPA) Contract Number EP-W-09-009, EPA Work Assignment Number 049-LTRA-02NS. The O&M report was prepared pursuant to Subtask 9.3 of the Work Plan.

The Site includes LAI's manufacturing plant which totals about 40 acres and historically produced titanium sheeting for the aeronautics industry (hereinafter referred to as the "LAI industrial facility"). The LAI industrial facility consists of 10 buildings located in the southwestern portion of the property. Approximately 80 acres located to the northeast and east of the LAI industrial facility are referred to as the "Outlying Parcels," which are vacant, wooded areas. The Outlying Parcels are part of the Site. The groundwater at the Site has been impacted by chlorinated volatile organic compounds (CVOCs), specifically tetrachloroethene (PCE) and trichloroethene (TCE) due to past disposal practices. On September 29, 2006, EPA issued the record of decision (ROD) selecting the remedial action (RA) for the Site, which covered both soil and groundwater. The soil remedy has been addressed by others. The RA is being conducted to hydraulically-contain and to treat groundwater further downgradient into Old Mill Pond (OMP), Old Mill Creek and Port Jefferson Harbor. **Figure 1-1** shows the Site Location Map.

HDR has been conducting the long-term response action (LTRA) including operation, maintenance and monitoring of the groundwater treatment facility (GWTF) at the source area at the LAI Site and a GWTF at the downgradient contaminated groundwater plume, located to the north of the LAI industrial facility, near OMP since October 2012. **Figure 1-2** shows the LAI and OMP GWTF Locations.

The GWTF at the LAI Site was completed in September 28, 2010 and is currently in the ninth year of LTRA. The LAI GWTF layout is shown on **Figure 1-3**. Hydraulic plume control of the source area is achieved by extracting contaminated groundwater via two extraction wells (EW-01 and EW-02). Extracted groundwater is treated by an air stripper and discharged to groundwater via five upgradient injection wells (IW-01 through IW-05) under a New York State Department of Environmental Conservation (NYSDEC) State Pollutant Discharge Elimination System (SPDES) permit equivalent. The volatile organic compound (VOC)-rich air exiting the air stripper is treated by two vapor phase granular activated carbon (GAC) units before discharging to the air under a NYSDEC air permit equivalent. **Table 1-1** provides the well construction details.

The downgradient GWTF near OMP was completed in August 2011 and is currently in the eighth year of LTRA. The OMP GWTF layout is shown on **Figure 1-4**. Design, construction, and initial operation of this treatment system were completed by EPA Region 2 Emergency Response and Removal Section (ERRS) Removal Action Branch. The system includes five extraction wells (EW-1 through EW-4 and EW-6) which provide hydraulic control of the plume. Three of the extraction wells (EW-1, EW-2, and EW-6) are currently active. EW-3 and EW-4 are standby wells and are not utilized for the extraction of groundwater due to elevated iron levels. Extraction well EW-5 is not used for groundwater extraction and hydraulic control since the well is not of adequate size or depth for a pump. The extracted groundwater is treated by an air stripper which is followed by two liquid phase GAC units. The treated effluent is discharged to OMP under a

NYSDEC SPDES permit equivalent. The VOC-contaminated air is treated by three vapor phase GAC units in lead-lag phase before discharge to the air under a NYSDEC air permit equivalent. **Table 1-2** provides the well construction details.

1.1 Purpose of Report and LTRA Objectives

This document summarizes the monthly performance of the GWTF at the LAI Site and the downgradient GWTF near OMP during the O&M period from April 1 to April 30, 2020. Operation, maintenance, and monitoring of the facilities were performed by HDR.

The purpose of this O&M report is to present the results of the monthly operations and compliance sampling, and provide a summary of maintenance and operational problems encountered at both treatment facilities.

The detailed scope and objectives are included in the April 2016, Revision 3 LTRA Quality Assurance Project Plan (QAPP); the primary objectives are summarized below:

- To confirm achievement of remedial system performance requirements, as specified in the RA subcontract documents (i.e., specifications, drawings, approved RA Subcontractor submittals);
- To confirm compliance with the NYSDEC SPDES and Air Pollution Control permit equivalents; and
- To obtain data for assessing LTRA progress and to support decisions regarding treatment system O&M and optimization.

A process flow schematic for the LAI and OMP treatment systems, including system sample locations, is provided as **Figure 1-5** and **Figure 1-6**, respectively.

A data usability evaluation was performed to verify conformance with the LTRA QAPP requirements and confirm data usability as per the data quality indicators (DQIs) specified in the LTRA QAPP. Sample data were evaluated for precision, accuracy, representativeness, comparability, sensitivity, and completeness. The data usability analysis report is included as **Appendix A**. Samples for the monthly treatment system performance and compliance sampling were analyzed for VOCs, metals, and/or wet chemistry parameters. No data were rejected for the samples, so all data are usable. The results indicate that sufficient data were collected to obtain a complete and usable data set.

2.0 LAWRENCE AVIATION INDUSTRIES GROUNDWATER TREATMENT SYSTEM PERFORMANCE AND COMPLIANCE SAMPLING RESULTS

Groundwater treatment system performance and compliance monitoring activities were conducted at the LAI GWTF from April 1 to April 30, 2020. The results are presented below. The primary site-related VOCs are PCE and TCE. The following CVOCs have also been included for monitoring purposes as they have been detected site wide at low concentrations historically: 1,1,1-trichloroethane (1,1,1,-TCA), cis-1,2-dichloroethene (cis-1,2-DCE), 1,1-dichloroethene (1,1-DCA), chloroform and vinyl chloride (VC).

2.1 Extraction Well Performance

The results of extraction well performance are summarized in the following tables and figures:

- **Table 2-1** Summary of monthly operations
- **Table 2-2** Summary of extraction well influent CVOC data and estimated mass removal rate
- **Table 2-3** Summary of facility process sampling for CVOCs, metals, and wet chemistry
- **Table 2-4** Summary of SPDES Permit Equivalent compliance data
- Figures 2-1 and 2-2 Illustration of extraction well influent CVOC data and mass removal rate estimates for extraction wells EW-01 and EW-02, respectively. Backup calculations for Figures 2-1 and 2-2 are included in Appendix E. Only mass that was removed from the ground and treated via the air-stripper was included in the mass removal totals.
- Extraction well performance for the LAI GWTF for April 2020 is provided in **Table 2-1** and summarized below. **Appendix B1** provides the system runtime log for the month. Monthly data from October 2012 to September 2019 is provided in **Appendix F1**.
- Both extraction wells operated in a flow control mode during the reporting period where the speed of the extraction well pump is set at a constant rate by the facility programmable logic controller (PLC).
- For the reporting period, EW-01 operated at an average flow rate of approximately 83 gallons per minute (gpm). A total of 3,392,360 gallons were extracted from EW-01 and treated via the air stripper with discharge to the effluent injection well field.
- For the reporting period, EW-02 operated at an average flow rate of approximately 82 gpm. A total of 3,360,800 gallons were extracted from EW-02 and treated via the air stripper with discharge to the effluent injection well field.
- Each extraction well is designed to operate at a minimum flow rate of 75 gpm. The facility operated under this configuration with a total average flow rate of approximately 165 gpm.

- Approximately 6.8 million gallons of groundwater were extracted, and approximately 3.08 pounds (lbs.) of CVOC mass were extracted and treated during the reporting period. A total of approximately 306.54 lbs. of CVOC mass have been extracted to date since October 2012. **Table 2-2** provides a summary of extraction well groundwater influent CVOC data and estimated mass removal rates.
- **Figure 2-1** indicates total site-related CVOC concentrations in EW-01 were detected at 251 μ g/l during ITP and 197 μ g/l in October 2012 when HDR took over the operations of the LAI facility. CVOC concentrations in EW-01 have decreased to approximately 70.3 μ g/l in April 2020. This is a reduction of approximately 72% since ITP. Concentrations in EW-01 have generally been stable since HDR took over operations.
- **Figure 2-2** indicates total site-related CVOC concentrations in EW-02 were detected at 154 μ g/l during ITP and 37 μ g/l in October 2012 when HDR took over the operations of the LAI facility. CVOC concentrations in EW-02 are approximately 38.6 μ g/l in April 2020. This is a reduction of approximately 75% since ITP. Concentrations in EW-02 have generally been stable since HDR took over operations with a slow decrease up until September 2017, when they started to slowly increase again.
- The decrease in CVOC concentrations in both extraction wells since ITP is likely attributable to reduction of CVOC concentrations in the source area due to in situ chemical oxidation (ISCO) treatment during the RA, pump-and-treat system operations and volume of water being extracted from each well during the reporting period, which would account for more dilution.

2.2 Treatment System Performance and Compliance

System performance data and observations (e.g., functionality, uptime) are detailed in **Table 2-1** and summarized below.

- A total system uptime of approximately 94.9% was achieved for the reporting period, which is above the minimum remedial design (RD) performance criterion of 90%.
- A total of 36.5 hours of planned overall system downtime was reported during the April 2020 reporting period. The planned system downtime was for routine maintenance activities and an incoming storm.
- There was no unplanned overall system downtime reported during the April 2020 reporting period.
- Appendix C1 provides a summary of alarms that resulted in system shutdown.
- Facility process samples were collected on April 14, 2020 to assist with evaluating the facility operations. **Table 2-3** shows the analytical results for extracted water samples collected throughout the treatment system.
- Total CVOC influent mass removal rate of approximately 100% was achieved by the air stripper.

- **Table 2-3** shows that aluminum in EW-01 was detected at a concentration of 1,770 μ g/l during the April 2020 reporting period. Aluminum concentrations in EW-01 have decreased since the ITP, when aluminum concentrations in EW-01 averaged approximately 2,700 μ g/l. Aluminum concentrations in EW-01 had been decreasing gradually from August 2014 to September 2017. Since that time, aluminum concentrations have been gradually increasing. Aluminum concentrations in EW-02 have remained relatively stable and at low levels since facility startup. Aluminum in EW-02 was detected at 282 μ g/l during the April 2020 reporting period.
- **Table 2-3** shows that potassium in EW-01 was detected at a concentration of 14,000 µg/l during the April 2020 reporting period. Overall, it appears that the residual potassium permanganate oxidant present near EW-01 had been generally decreasing from August 2014 to December 2017. Since that time, potassium concentrations have been gradually increasing. Potassium concentrations in EW-02 have remained relatively stable since facility startup.
- Monthly maintenance activities consisted of greasing the blower driveshaft and summit pump motor bearings.
- No injuries occurred during the reporting period.
- The results of the groundwater treatment system compliance sampling are summarized in Table 2-4. Detailed data summary tables are included in Appendix D. Effluent samples were collected on April 14, 2020. The NYSDEC SPDES permit equivalent criteria were met for groundwater effluent discharges to groundwater for all criteria.
- Operating parameters not monitored by the PLC were collected on a weekly basis with data summarized in **Table 2-5**.
- Off-gas treatment system performance and compliance is discussed in Section 4.0.

2.3 Injection Well Performance

Based on the sampling results for this period, aluminum continues to precipitate in the air stripper and is expected to continually foul the injection well screens. The injection wells were originally being reconditioned with DPATM and standard mechanical pump and surge methods. In the fall of 2014 a new method, that included use of DPATM in combination with a nitrogen burst technology, was tested. The new method resulted in a fair improvement in well capacity but due to lower than originally designed capacity, the effluent is being distributed amongst multiple injection wells to accommodate the flow. The last well cleaning was performed during the summer of 2019.

3.0 OLD MILL POND GROUNDWATER TREATMENT SYSTEM PERFORMANCE AND COMPLIANCE SAMPLING RESULTS

Groundwater treatment system performance and compliance monitoring activities were conducted at the downgradient OMP facility during the reporting period from April 1 to April 30, 2020. The results are presented below.

3.1 Extraction Well Performance

The results of extraction well performance are summarized in the following tables and figures:

- **Table 3-1** Summary of monthly operations
- **Table 3-2** Summary of extraction well influent CVOC data and estimated mass removal rate
- **Table 3-3** Summary of facility process sampling for CVOCs, metals, and wet chemistry
- **Table 3-4** Summary of SPDES Permit Equivalent compliance data
- Figures 3-1, 3-2 and 3-3 Illustration of extraction well influent CVOC data and mass removal rate estimates for extraction wells EW-1, EW-2 and EW-6, respectively. Backup calculations for Figures 3-1, 3-2 and 3-3 are included in Appendix E. Only mass that was removed from the ground and treated via the air-stripper was included in the mass removal totals.
- Extraction well performance for the GWTF at OMP for April 2020 is detailed in **Table 3-1** and summarized below. **Appendix B2** provides the system runtime log for the month. The data presented for the OMP facility in **Table 3-1** is based on the operator's field notes and available data recorded by the PLC. Monthly data from October 2012 to September 2019 are provided in **Appendix F2**.
- The three extraction wells operated in a flow control mode during the reporting period where the speed of the extraction well pump is set at a constant rate by the facility PLC.
- For the April 2020 reporting period, EW-1 operated at an average flow rate of approximately 77 gpm. A total of 3,221,808 gallons were extracted from EW-1 for the reporting period and treated via the air stripper with discharge to OMP.
- For the April 2020 reporting period, EW-2 operated at an average flow rate of approximately 84 gpm. A total of 3,516,544 gallons were extracted from EW-2 for the reporting period and treated via the air stripper with discharge to OMP.
- For the April 2020 reporting period, EW-6 operated at an average flow rate of approximately 92 gpm. A total of 3,858,694 gallons were extracted from EW-6 for the reporting period and treated via the air stripper with discharge to OMP.

- The facility operated under this configuration for the remainder of the April 2020 reporting period with a total average flow rate of approximately 253 gpm.
- Approximately 10.6 million gallons of groundwater were extracted, and approximately 9.17 lbs. of CVOC mass were extracted and treated during the April 2020 reporting period. Approximately 1,167.67 lbs. of CVOC mass have been extracted and treated to date since October 2012. **Table 3-2** provides a summary of extraction well groundwater influent CVOC data and estimated mass removal rates.
- Figure 3-1 indicates total site-related CVOC concentrations in EW-1 have decreased from 313 μ g/l since system startup in August 2011 to 51 μ g/l in April 2020. This is a reduction of approximately 85% since system startup. Concentrations in EW-1 have generally been stable since HDR took over operations.
- Figure 3-2 indicates total site-related CVOC concentrations in EW-2 have decreased since system startup from 454 μ g/l in August 2011 to 48 μ g/l in April 2020. This is a reduction of approximately 90% since system startup. Concentrations in EW-2 have generally been stable since HDR took over operations.
- Figure 3-3 indicates total site-related CVOC concentrations in EW-6 have decreased since system startup from 934 μ g/l in September 2013 to 199 μ g/l in April 2020. This is a reduction of approximately 79% since system startup. Concentrations in EW-6 have generally been stable since HDR took over operations.
- The overall decrease in CVOC concentrations observed in all three extraction wells is attributed to the operation of EW-6, which appears to be providing more hydraulic control to the plume since its startup in September 2013. These concentrations will continue to be monitored on a monthly basis to establish performance trends. Slight variations in trends are expected due to fluctuations in site-wide groundwater elevations.

3.2 Treatment System Performance and Compliance

System performance data and observations (e.g., functionality, uptime) are detailed in **Table 3-1** and summarized below. Data presented in the table and below is based on operator's field notes and available PLC data.

- A total system uptime of 96.7% was achieved for the April 2020 reporting period, which is above the minimum RD performance criterion of 90%.
- There was 24 hours of planned overall system downtime during the April 2020 reporting period due to an incoming storm.
- A total of 0 hours of unplanned overall system downtime was reported during the April 2020 reporting period.

- Facility process samples were collected on April 14, 2020 to assist with analyzing the facility operations. **Table 3-3** shows the analytical results for extracted water samples collected throughout the treatment system.
- A total CVOC influent mass removal rate of approximately 99% was achieved by the air stripper. The TCE concentration was approximately 3.1 μ g/l after the air stripper and non-detect with a reporting detection limit of 0.5 μ g/l after the first liquid activated carbon unit. TCE was not detected in the facility effluent, with a reporting detection limit of 0.5 μ g/l, which does not exceed the SPDES permit limit.
- Metals concentrations remained stable throughout the treatment system for the reporting period.
- No injuries or reported incidents occurred during the reporting period.
- The results of groundwater treatment system compliance sampling are summarized in **Table 3-4**. Detailed data summary tables are included in **Appendix D**. SPDES effluent samples were collected on April 14, 2020. The NYSDEC SPDES permit equivalent criteria were met for groundwater effluent discharges to groundwater, except for copper, iron, and zinc, which were all non-detect, but with reporting limits above their SPDES criteria.
- Operating parameters not monitored by the PLC were collected on a weekly basis with data summarized in **Table 3-5**.

4.0 FACILITY OFF-GAS TREATMENT SYSTEM PERFORMANCE AND COMPLIANCE MONITORING RESULTS

4.1 LAI GWTF

The off-gas treatment system performance and compliance monitoring activities were completed at the LAI GWTF during this reporting period from April 1 to April 30, 2020. The testing results and air calculations are summarized in **Table 4-1**.

System performance data and observations (e.g., functionality, uptime) discussed in Section 2.0 support that the treatment system is operating in accordance with RD requirements. Detailed data summary tables are included in **Appendix D**. Off-gas system performance for the GWTF is summarized below.

- Samples were collected from influent, intermediate, and effluent sample ports of the vapor-phase GAC system for VOC analysis via EPA method TO-15 (see Table 4-1) on April 14, 2020 in accordance with NYSDEC Air Pollution Control permit equivalency requirements.
- Very low concentrations of TCE were detected in the effluent samples from GAC-1 and GAC-2 for the reporting period, and a low concentration of PCE was detected in the effluent sample from GAC-1. The treatment system effluent vapor concentrations were below the permit equivalent limits.
- Operating parameters not monitored by the PLC were collected on a weekly basis with data summarized in **Table 2-5**.

4.2 OMP GWTF

The off-gas system performance and compliance monitoring activities were completed at the OMP GWTF during this reporting period from April 1 to April 20, 2020. The testing results are summarized in **Table 4-2**.

System performance data and observations (e.g., functionality, uptime) discussed in Section 3.0 support that the treatment system is operating in accordance with RD requirements. Detailed data summary tables are included in **Appendix D**. Off-gas system performance for the GWTF is summarized below.

- Samples were collected from influent, intermediate, and effluent sample ports of the vapor-phase GAC system for VOC analysis via EPA method TO-15 (see Table 4-2) on April 14, 2020 in accordance with NYSDEC Air Pollution Control permit equivalency requirements.
- TCE was detected in the effluent samples from GAC-3, GAC-1, and GAC-2 for the reporting period, and PCE was detected in GAC-3 and GAC-2. The treatment system effluent vapor concentrations were below the permit equivalent limits.
- Operating parameters not monitored by the PLC were collected on a weekly basis with data summarized in **Table 3-5**.

5.0 SUMMARY AND RECOMMENDATIONS

A summary of the monthly compliance and monitoring program results is provided below, along with corresponding recommendations for on-going O&M activities at both GWTFs.

5.1 LAI GWTF

- The treatment system at the LAI Site should continue to operate in flow control mode to maintain hydraulic control of the plume with groundwater flow from EW-01 and EW-02 operating above a minimum total design flow rate of approximately 150 gpm. Flow rates may need to be adjusted to extend the life of the bag filters.
- Aluminum precipitation continued to be observed within the air-stripper at the LAI GWTF during the reporting period. Aluminum concentrations in EW-01 have been gradually increasing since September 2017. Aluminum concentrations in EW-02 appear to be stabilized. Aluminum concentrations in both wells will continue to be monitored.
- CVOC concentrations observed in EW-01 and EW-02 have decreased by approximately 72% and 75%, respectively, since facility startup. Such trends will continue to be tracked and discussed as part of future monthly progress reports.
- SPDES permit equivalent criteria were met at the LAI GWTF. The treatment system will continue to be monitored for compliance with NYSDEC SPDES permit equivalents.

5.2 OMP GWTF

- The treatment system at OMP should continue to operate in flow control mode to capture the plume with groundwater flow from EW-1, EW-2, and EW-6. The operating total average flow rate is approximately 253 gpm.
- CVOC concentrations observed in EW-1, EW-2, and EW-6 have decreased by approximately 85%, 90%, and 79%, respectively, since facility startup. Such trends will continue to be tracked and discussed as part of future monthly progress reports.
- SPDES permit equivalent criteria were met at the OMP treatment facility. The treatment system will continue to be monitored for compliance with NYSDEC SPDES permit equivalent.

FIGURES

FSS

FSS

TABLES

Table 1-1 Summary of Well Construction Details Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Well ID	Surface Elevation (ft amsl)	Top of Casing (ft amsl)	Total Depth (ft bgs)	Diameter of Well (inches)	Top of Screened Interval (ft bgs)	Bottom of Screened Interval (ft bgs)	Top of Screened Interval (ft amsl) ¹	Bottom of Screened Interval (ft amsl) ¹
EW-01	220.8 *	219.30	252	10	182 *	222 *	38.8 *	-1.2 *
					238 *	248 *	-17.2 *	-27.2 *
EW-02	224.1 *	222.61	250	10	182 *	214 *	42.1 *	10.1 *
					229 *	240 *	-4.9 *	-15.9 *
IW-01	226.3 *	225.99	258	6	183	248	43.3 *	-21.7 *
IW-02	225.6 *	225.27	258	6	183	248	42.6 *	-22.4 *
IW-03	225.3 *	224.99	258	6	183	248	42.3 *	-22.7 *
IW-04	226.0 *	225.68	258	6	183	248	43.0 *	-22.0 *
IW-05	224.8 *	224.48	258	6	183	248	41.8 *	-23.2 *

Notes:

1. Coordinates based on Horizontal Datum : NAD 1983, SPC (3104 NY L); Vertical Datum: NAVD 1988

* Elevations are estimated.

Acronyms:

ID - identification ft - feet amsl- above mean sea level NY - New York NAVD - North American Vertical Datum NAD - North American Datum SPC - State Plane Coordinates L - lamber projections bgs - below ground surface EW- extraction well IW - injection well

Table 1-2Summary of Well Construction DetailsOld Mill Pond Groundwater Treatment FacilityLawrence Aviation Industries Site, Port Jefferson Station, New York

Well ID	Top of Casing Elevation ¹ (ft amsl)	Total Depth (ft btc)	Diameter of Well (inches)	Top of Screened Interval (ft btc)	Bottom of Screened Interval (ft btc)
EW-1 ²	22.58	139.7	6	120	140
EW-2 ²	22.76	109.4	6	90	110
EW-3 ³	22.88	109.8	6	90	110
EW-4 ³	22.56	79.5	6	60	80
EW-5 ⁴	22.84	39.6	4	20	40
EW-6 ²	18.97	127	6	90	120

Notes:

1. Measured by a licensed surveyor.

2. Currently being pumped for plume hydraulic control.

3. EW-3 and EW-4 are standby wells and are not used for groundwater extraction due to elevated iron levels.

4. EW-5 is not used for groundwater extraction since the well is not of adequate size or depth for a pump.

Acronyms:

- ID identification
- ft feet
- amsl- above mean sea level
- btc below top of reference point on casing
- EW extraction well

Table 2-1

Summary of Monthly Operations Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Item	Cumulative Year 2 ¹	Cumulative Year 3 ¹	Cumulative Year 4 ¹	Cumulative Year 5 ¹	Cumulative Year 6 ¹	Cumulative Year 7 ¹	Cumulative Year 8 ¹	Oct. 2019	Nov. 2019	Dec. 2019	Jan. 2020	Feb. 2020	Mar. 2020	Apr. 2020	Notes
Calendar Days in Period	365	365	365	366	365	365	365	31	30	31	31	29	31	30	
Treatment System Runtime (hours)															
EW-01 Runtime	8,026	8,486	8,592	8,219	8,398	8,253	8,455	722	697	733	722	672	703	684	Estimated based on Operator's notes and PLC
EW-02 Runtime	8,035	8,490	8,600	8,574	8,420	8,217	8,441	722	697	733	722	672	703	684	logs.
Treatment System Downtime (hours)															
Planned	173	92	49	19	169	65	104	12.75	11.25	9.50	11.83	12	15.5	36.5	System down for maintenance and preventative storm measures
Unplanned	554	177	95	90	171	188	173	9	12	2	10.5	12	25.5	0.0	
System Uptime	91.7%	96.9%	98.3%	98.8%	96.2%	97.1%	96.8%	97.1%	96.8%	98.5%	97.0%	96.6%	94.5%	94.9%	
Treatment Summary															
Gallons extracted from EW-01	35,092,444	37,425,150	39,360,108	37,911,184	38,807,936	38,526,144	40,176,316	3,165,300	3,232,040	3,405,660	3,252,790	2,805,380	3,185,950	3,392,360	Estimated based on Operator's notes and PLC
Average flow rate from EW-01 (gpm)	73	73	76	77	77	78	79	73	77	77	75	70	76	83	logs.
Gallons extracted from EW-02	36,103,992	37,304,570	39,182,852	39,850,976	38,342,384	37,753,568	39,738,481	3,184,640	3,247,830	3,417,970	3,260,480	2,802,750	3,166,360	3,360,800	
Average flow rate from EW-02 (gpm)	75	73	76	77	76	77	78	73	78	78	75	70	75	82	
Total gallons treated	71,196,436	74,729,720	78,542,960	77,762,160	77,150,320	76,279,712	79,914,797	6,349,940	6,479,870	6,823,630	6,513,270	5,608,130	6,352,310	6,753,160	

Acronyms:

gpm - gallons per minute

% - percentage

Notes:

1. Monthly data from October 2012 through September 2019 collected by HDR provided in Appendix F.

Table 2-2 Summary of Extraction Well Groundwater Influent CVOC Data and Estimated Mass Removal Rates Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Sampling Month	Extraction Well		Average		Concentrations of CVOCs (µg/l)											Total		No. of	0/ Systom	Total Mass					
		Sample ID	Flow Rate (gpm)	Flow Rate (gpm)	1,1,1- Trichloroeth	ane	1,1- Dichloroe	thane	1,1- Dichloroet	hene	Chlorofo	·m	Chlorometh	ane	cis-1,2 Dichloroet	hene	Tetrachloroeth	hene	Trichloroethene	Vinyl Chlo	ride	CVOCs ¹ (µg/l)	Mass Removal Rate (lb/d) ²	Days in the period	Uptime to GWTF
																-									
	EW-01	01-EW01-20200414	83	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.3		68	0.5	U	70.3	0.0702	30	04 0%	2.00
2020-04	EW-02	01-EW02-20200414	82	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.6		36	0.5	U	38.6	0.0381	30	94.970	1.08
																								Total	3.08
																						,	Total since O	ctober 2012	306.54

Notes:

1. Non detects assumed to be 0

2. Mass removal rate calculated:

Mass removal rate $(lb/d)^2$ = Groundwater Influent Concentration (μ g/l) x groundwater flow rate (gpm) x 1440 min/day x 3.79 l/gal x 1 lb/453,600,000 μ g

Acronyms:

ID - identification gpm - gallons per minute CVOCs - chlorinated volatile organic compounds µg/l - microgram per liter lb/d - pounds per day U - not detected % - percentage lb -pounds min/day - minute per day l/gal - liter per gallon lb/µg - pounds per microgram
Table 2-3 Summary of Facility Process Sampling - CVOCs, Metals and Wet Chemistry Parameters Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Facility Location							ce Aviation Industries						
Sample ID		01-E	CW01	01-E	CW02	01-0	CINF	01-	AS	01	AS	01-1	EFF
Sample Name		01-EW01	-20200414	01-EW02	-20200414	01-INF-2	20200414	01-AS-2	0200414	11-AS-2	0200414	01-EFF-2	20200414
Location Code		Extraction	on Well 1	Extraction	on Well 2	Combine	d Influent	Post-Air	Stripper	Post-Air Strij	oper Duplicate	Facility	Effluent
Sample Date		4/14/	2020	4/14/	/2020	4/14/	/2020	4/14/	2020	4/14	/2020	4/14/	2020
Analyte	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
VOLATILE ORGANIC COMPOUNDS					-		-			-			
1,1,1-Trichloroethane	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1-Dichloroethane	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1-Dichloroethene	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroform	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloromethane	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethylene	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Tetrachloroethylene (PCE)	ug/l	2.3		2.6		2.3		0.5	U	0.5	U	0.5	U
Trichloroethene (TCE)	ug/l	68		36		51		0.5	U	0.5	U	0.5	U
Vinyl Chloride	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
METALS													
Aluminum	ug/l	1770		282		992		925		787		886	
Antimony	ug/l	60	U	60	U	60	U	60	U	60	U	60	U
Arsenic	ug/l	10	U	4.5	J	10	U	5.2	J	4.6	J	10	U
Barium	ug/l	49.3	J	77	J	62.7	J	62.9	J	56.2	J	63.2	J
Beryllium	ug/l	5	U	5	U	5	U	5	U	5	U	5	U
Cadmium	ug/l	5	U	5	U	5	U	5	U	5	U	5	U
Calcium	ug/l	13100		13100		13200		13500		12300		13600	
Chromium, Total	ug/l	26.1		7.8	J	18.5		17.3		16.3		16.7	
Cobalt	ug/l	50	U	50	U	50	U	50	U	50	U	50	U
Copper	ug/l	25	U	25	U	25	U	25	U	25	U	25	U
Iron	ug/l	100	U	100	U	100	U	100	U	100	U	100	U
Lead	ug/l	3.9	J	4.1	J	2.5	J	4.2	J	4.1	J	3.4	J
Magnesium	ug/l	6400		6120		6370		6500		6070		6470	
Manganese	ug/l	13.5	J	2.3	J	8	J	7.7	J	7.8	J	7.5	J
Mercury	ug/l	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
Nickel	ug/l	8.2	J	5.6	J	6	J	6.8	J	5.8	J	6.5	J
Potassium	ug/l	14000		2930	J	8690		9330		8040	J	9300	
Selenium	ug/l	35	U	35	U	35	U	35	U	35	UJ	35	U
Silver	ug/l	10	U	10	U	10	U	10	U	10	U	10	U
Sodium	ug/l	20400		18800		19900		20500		19000		20500	
Thallium	ug/l	25	U	25	U	25	U	25	U	25	U	25	U
Vanadium	ug/l	50	U	50	U	50	U	50	U	50	U	50	U
Zinc	ug/l	40.9	J	42.6	J	47.4	J	32	J	21.3	J	43.2	J
WET CHEMISTRY	_												
Fluoride	mg/l	NA		NA		NA		NA		NA		NA	

Acronyms:

ID - Identification

U - Non-Detect Value J - Estimated value

J - Estimated value

μg/l - microgram per liter mg/l - milligram per liter

01 - Lawrence Aviation Industries Facility Sample

NA - Not Analyzed

Table 2-4

Summary of SPDES Permit Equivalent Compliance Data Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Sampling Month	mpling Month mple Location									
Sample Location			01-EFF							
Sample Name			01-EFF-20200	414						
Compound	SPDES Dischar	ge Criteria	4/14/2020							
1,1,1-Trichloroethane	5	µg/l	0.5	U						
1,1-Dichloroethane	5	µg/l	0.5	U						
cis-1,2-Dichloroethene	5	µg/l	0.5	U						
Tetrachloroethene	5	µg/l	0.5	U						
Trichloroethene	5	µg/l	0.5	U						
Aluminum	monitor	µg/l	886							
Chromium, total	100	µg/l	16.7							
Fluoride	monitor	mg/l	NA							
Iron	600	µg/l	100	U						
Lead	50	µg/l	3.4	J						
Manganese	600	µg/l	7.5	J						
Nickel	200	µg/l	6.5	J						
Sum of Iron & Manganese	<1000	μg/l	108							
pH (4/7/2020)*	5.8 to 8.5	SU	6.32							
pH (4/14/2020)*	5.8 to 8.5	SU	6.27							
pH (4/21/2020)*	5.8 to 8.5	SU	6.10							
pH (4/28/2020)*	5.8 to 8.5	SU	6.66							

Acronyms:

EFF - effluent µg/l - microgram per liter mg/l - milligram per liter SU - standard units SPDES - State Pollutant Discharge Elimination System U - not detected J - value is estimated NA - Not Analyzed < - less than * - value from field measurement Notes: Highlighted values indicate exceedances

Table 2-5

Summary of Operating Values Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

	Date:	4/7/2020	Date:	4/14/2020	Date:	4/21/2020	Date:	4/28/2020
Parameter	Reading		Reading		Reading		Reading	
EW-01 inlet line pressure	6.0	psi	6.0	psi	6.0	psi	5.0	psi
EW-02 inlet line pressure	6.0	psi	6.0	psi	6.0	psi	5.0	psi
Combined influent line pressure	5.0	psi	5.0	psi	5.0	psi	5.0	psi
Effluent line pressure	10.0	psi	12.0	psi	15.0	psi	16.0	psi
Air stripper blower discharge temp	88	°F	88	°F	88	°F	88	°F
Air stripper blower vacuum	-12.0	in H ₂ O						
VOC screening								
- Prior to GAC vessels	0.0	ppm	0.0	ppm	0.0	ppm	0.0	ppm
- Between GAC vessels	0.0	ppm	0.0	ppm	0.0	ppm	0.0	ppm
- Discharge to atmosphere	0.0	ppm	0.0	ppm	0.0	ppm	0.0	ppm
Blower Pressure Values		-	-	-	-	-	-	<u> </u>
- Prior to GAC vessels	4.5	psi	4.5	psi	4.5	psi	4.5	psi
- Between GAC vessels	2.0	psi	2.0	psi	2.0	psi	2.0	psi
Kilowatt hours (meter reading x40) *	NC	kWh	NC	kWh	NC	kWh	NC	kWh

Acronyms:

NC - not collected

ppm - parts per million

psi - pounds per square inch

°F - degrees Fahrenheit

kWh - kilowatt hour

in H_2O - inches water column

GAC - granular activated carbon

VOC - volatile organic compound

*Spot reading multiplied by factor of 40 per manufacturer's direction

Table 3-1

Summary of Monthly Operations Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Item	Cumulative Year 1 ¹	Cumulative Year 2 ¹	Cumulative Year 3 ¹	Cumulative Year 4 ¹	Cumulative Year 5 ¹	Cumulative Year 6 ¹	Cumulative Year 7 ¹	Oct. 2019	Nov. 2019	Dec. 2019	Jan. 2020	Feb. 2020	Mar. 2020	Apr. 2020	Notes
Calendar Days in Period	365	365	365	366	365	365	365	31	30	31	31	29	31	30	
Treatment System Runtime (hours)															
EW-1 Runtime	8,269	8,623	8,612	8,531	8,355	8586	8679	720	718	742	734	693	717	696	Estimated based on Operator's notes and
EW-2 Runtime	8,269	8,623	8,612	8,531	8,523	8611	8679	720	718	743	734	693	717	696	PLC logs.
EW-6 Runtime	349	8,623	8,612	8,531	8,518	8533	8679	720	718	743	734	693	717	696	
Treatment System Downtime (hours)															
Planned	398	89	37	216	292	1	47	4	2	1	0	0	27.5	24	Preventative storm measures
Unplanned	93.5	48	111	38	113	30	35	20	0	1.5	10	3	0	0	
System Uptime	94.3%	98.4%	98.3%	97.1%	97.3%	99.64%	99.08%	96.77%	99.72%	99.87%	98.66%	99.57%	96.30%	96.67%	
Treatment Summary															
Gallons extracted from EW-1	15,768,246	24,257,650	24,705,902	30,394,120	35,180,416	33,698,436	33,368,504	2,413,792	2,585,048	342,361	2,873,442	2,664,863	2,777,695	3,221,808	Estimated based on Operator's logs.
Average flow rate from EW-1 (gpm)	31	47	48	60	70	65	64	56	60	8	65	64	65	77	
Gallons extracted from EW-2	17,993,299	23,737,308	24,757,273	32,641,496	40,404,000	38,450,462	41,017,831	1,766,940	3,470,768	3,563,083	3,397,826	3,101,908	3,165,690	3,516,544	
Average flow rate from EW-2 (gpm)	33	47	48	64	79	74	79	41	81	80	77	75	74	84	
Gallons extracted from EW-6	379,888	19,894,160	24,089,619	28,893,808	40,902,808	42,864,260	43,438,751	3,470,941	3,753,365	3,869,890	3,699,010	3,387,375	3,460,199	3,858,694	
Average flow rate from EW-6 (gpm)	19	39	47	57	80	84	83	80	87	87	84	81	80	92	
Total gallons treated	34,141,433	67,889,118	73,552,794	91,929,424	116,487,224	115,013,158	117,825,086	7,651,673	9,809,181	7,775,334	9,970,278	9,154,146	9,403,584	10,597,046	

Acronyms:

gpm - gallons per minute

% - percentage

PLC - programmable logic controller GAC - granular activated carbon

Notes:

1. Monthly data from October 2012 to September 2019 collected by HDR provided in Appendix F.

Table 3-2 Summary of Extraction Well Groundwater Influent CVOC Data and Estimated Mass Removal Rates Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

			Avenage								Con	centrations of	f CVOC	s (µg/l)					Total	Mass	No. of	0/ System	Total Mass
Sampling Month	Extraction Well	Sample ID	Flow Rate (gpm)	1,1,1- Trichloroe	thane	1,1-Dichloroe	thane	1,1-Dichloro	oethene	Chlorof	orm	Chlorome	thane	cis-1,2- Dichloroethylene	Tetrachloroethen	e Trichloroethene	Vinyl Chlo	oride	CVOCs ¹ (µg/l)	Removal Rate (lb/d) ²	Days in the period	Uptime to GWTF	Removed and Treated (lb)
	EW-1	02-EW01-20200414	77	0.67		1.2		0.46	J	0.5	U	0.5	U	0.76	1.7	46	0.5	U	51	0.04705411			1.36
2020-04	EW-2	02-EW02-20200414	84	0.26	J	0.49	J	0.5	U	0.5	U	0.5	U	0.8	3.8	43	0.5	U	48	0.04886573	30	96.7%	1.42
2020-04	EW-6	02-EW06-20200414	92	0.24	J	0.48	J	0.5	U	0.5	U	0.5	U	1.3	7.1	190	0.5	U	199	0.22041004	T		6.39
																						Total	9.17
																					Total since (October 2012	1167.67

Notes:

1. Non detects assumed to be 0.

2. Mass removal rate calculated:

Groundwater Influent Concentration (µg/l) x groundwater flow rate (gpm) x 1440 min/day x 3.79 l/gal x 1 lb/453,600,000 µg

Acronyms:

ID - identification gpm - gallons per minute µg/l - microgram per liter CVOCs - chlorinated volatile organic compounds NS - no sample collected lb/d - pounds per day U - not detected J - estimated value L - reported value may be biased low % - percentage lb - pounds min/day- minute per day l/gal- liter per gallon lb/µg - pounds per microgram

Table 3-3 Summary of Facility Process Sampling - CVOCs, Metals, and Wet Chemistry Parameters Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Facility Location							Old Mill I	Road					
Sample ID		02-EW	01	02-EW	02	02-Е	W06	02-A	s	02-GA	AC .	02-EF	F
Sample Name		02-EW01-20	200414	02-EW02-20	200414	02-EW06-	20200414	02-AS-202	00414	02-GAC-20	0200414	02-EFF-202	200414
Location Code		Extraction	Well 1	Extraction	Well 2	Extractio	on Well 6	Post-Air S	tripper	Post-G	AC	Facility Ef	fluent
Sample Date		4/14/202	20	4/14/20	20	4/14/	2020	4/14/20	20	4/14/2	020	4/14/20	20
Analyte	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
VOLATILE ORGANIC COM	POUNDS	5											
1,1,1-Trichloroethane	ug/l	0.67		0.26	J	0.24	J	0.5	U	0.5	U	0.5	U
1,1-Dichloroethane	ug/l	1.2		0.49	J	0.48	J	0.5	U	0.5	U	0.5	U
1,1-Dichloroethene	ug/l	0.46	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroform	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloromethane	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethylene	ug/l	0.76		0.8		1.3		0.5	U	0.5	U	0.5	U
Tetrachloroethylene(PCE)	ug/l	1.7		3.8		7.1		0.5	U	0.5	U	0.5	U
Trichloroethene (TCE)	ug/l	46		43		190		3.1		0.5	U	0.5	U
Vinyl Chloride	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
METALS													
Aluminum	ug/l	42.8 J		27.6	27.6 J		J	27.7	J	200	U	56.5	J
Antimony	ug/l	60	U	60	U	60	U	60	U	60	U	60	U
Arsenic	ug/l	10	U	8.4	J	4.3	J	4	J	10	U	10	U
Barium	ug/l	130	J	130	J	135	J	129	J	133	J	130	J
Beryllium	ug/l	5	U	5	U	5	U	5	U	5	U	5	U
Cadmium	ug/l	5	U	5	U	5	U	5	U	5	U	5	U
Calcium	ug/l	17500		19000		19200		18200		18600		18400	
Chromium, Total	ug/l	4	J	8.4	J	9	J	6.8	J	7.8	J	8.8	J
Cobalt	ug/l	50	U	50	U	50	U	50	U	50	U	50	U
Copper	ug/l	25	U	25	U	25	U	25	U	25	U	25	U
Iron	ug/l	100	U	100	U	100	U	100	U	100	U	100	U
Lead	ug/l	4.9	J	4	J	5.5	J	4	J	3.7	J	4.2	J
Magnesium	ug/l	6100		8070		8300		7390		7410		7430	
Manganese	ug/l	15	U	15	U	2.5	J	15	U	15	U	15	U
Mercury	ug/l	0.2	U	0.067	J	0.036	J	0.037	J	0.2	U	0.2	U
Nickel	ug/l	40	U	40	U	40	U	40	U	40	U	40	U
Potassium	ug/l	482	J	11800		9590		7260		7280		7300	
Selenium	ug/l	35	U	35	U	35	U	35	U	35	U	35	U
Silver	ug/l	10	U	10	U	10	U	10	U	10	U	10	U
Sodium	ug/l	14500		18300		23200		18400		18800		18800	
Thallium	ug/l	25	U	25	U	25	U	5.6	J	25	U	25	U
Vanadium	ug/l	50	U	50	U	50	U	50	U	50	U	50	U
Zinc	ug/l	38.8	J	37.5	J	201		7.1	J	8.9	J	60	U
WET CHEMISTRY													
Fluoride	mg/l	NA		NA		NA		NA		NA		NA	

Acronyms: ID - Identification U - Non-Detect Value J - Estimated Value GAC - Granular Activated Carbon µg/l - microgram per liter mg/l - milligram per liter 02 - Old Mill Pond Facility Sample NA - Not Analyzed

Table 3-4 Summary of SPDES Permit Equivalent Compliance Data Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Sampling Month	npling Month nple Location										
Sample Location			02-EFF								
Sample Name			02-EFF-2020	0414							
Compound	SPDES Discharge	Criteria	4/14/2020)							
1,1,1-Trichloroethane	10	μg/l	0.5	U							
1,1-Dichloroethane	10	μg/l	0.5	U							
1,1-Dichloroethene	10	μg/l	0.5	U							
Chloromethane	10	μg/l	0.5	U							
cis-1,2-Dichloroethene	10	μg/l	0.5	U							
Tetrachloroethene	1	μg/l	0.5	U							
Trichloroethene	10	μg/l	0.5	U							
Chromium, total	monitor	μg/l	8.8	J							
Copper	13.4	μg/l	25	U							
Iron	0.3	µg/l	100	U							
Zinc	0.12	μg/l	60	U							
pH (4/7/2020)*	5.8 to 8.5	SU	6.74								
pH (4/14/2020)*	5.8 to 8.5	SU	6.52								
pH (4/21/2020)*	5.8 to 8.5	SU	6.67								
pH (4/28/2020)*	5.8 to 8.5	SU	6.40								

Acronyms:

EFF - effluent μg/l - microgram per liter SU - standard units SPDES - State Pollutant Discharge Elimination System U - not detected J - estimated value * - value from field measurement **Notes:** Highlighted values indicate exceedances

Table 3-5

Summary of Operating Values Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

	Date:	4/7/2020	Date:	4/14/2020	Date:	4/21/2020	Date:	4/28/2020
Parameter	Reading		Reading		Reading		Reading	
EW-01 inlet line pressure	4.0	psi	3.0	psi	3.0	psi	3.0	psi
EW-02 inlet line pressure	5.0	psi	5.0	psi	5.0	psi	5.0	psi
EW-06 inlet line pressure	5.0	psi	5.0	psi	5.0	psi	5.0	psi
Combined influent line pressure	NC	psi	NC	psi	NC	psi	NC	psi
Effluent line pressure	2.0	psi	2.0	psi	2.0	psi	2.0	psi
Air stripper blower discharge temp	NC	°F	NC	°F	NC	°F	NC	°F
Air stripper blower vacuum	NC	in H ₂ O	NC	in H ₂ O	NC	in H ₂ O	NC	in H2O
VOC screening								
- Prior to GAC 3 (influent)	0.8	ppm	0.7	ppm	0.9	ppm	0.8	ppm
- Between GAC 3 and GAC 1	0.0	ppm	0.0	ppm	0.0	ppm	0.1	ppm
- Between GAC 1 and GAC 2	0.0	ppm	0.0	ppm	0.0	ppm	0.0	ppm
- After GAC 2 (effluent to air)	0.0	ppm	0.0	ppm	0.0	ppm	0.0	ppm
Blower Differential Pressure Values	34	in H ₂ O	34	in H ₂ O	34	in H ₂ O	34	in H2O
Blower Flowrates	2,626	cfm	2,751	cfm	2,615	cfm	2,657	cfm
Kilowatt hours (meter reading x40)*	NC	kWh	NC	kWh	NC	kWh	NC	kWh

Acronyms:

NC - not collected ppm - parts per million

psi - pounds per square inch

- °F degrees Fahrenheit
- kWh kilowatt hour
- in H_2O inches water column
- GAC granular activated carbon
- VOC volatile organic compound
- cfm cubic feet per minute
- *Spot reading multiplied by factor of 40 per manufacturer's direction

Table 4-1 Summary of Air Pollution Control Permit Equivalent Compliance Data Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Sampling Month	Sampling Date	Compound	Influent GAC-1 Concentration (ppbv)	Effluent GAC- Concentration (ppbv)	-1 n	Effluent GAC Concentration (p	-2 pbv)	Molecular Weight (g/mole)	Air Flow Rate (cfm)	Emissions Rate from Stack (lb/d) ¹	Permit Equivalent Limit (lb/d)
April	4/14/2020	PCE	4.7	0.5	U	0.12	J	165.82	1 1 5 8	0.00008	0.0055
Арт	4/14/2020	TCE	170	0.11	J	1.6		131.38	1,156	0.00089	0.1320

Acronyms:

PCE - tetrachloroetheneg/mole - gram per molelb/g - pounds per graml - literTCE - trichloroethenecfm - cubic feet per minutemol/ 1 - mole per literJ - estimatedGAC - granular activated carbonlb/d - pounds per daySTP - standard temperature and pressureU - not detectedppbv - parts per billion by volumemin/day - minutes per daycf - cubic feetU - not detected

Notes:

1. Emissions rate was calculated :

Emissions rate (lb/d) 2 = Effluent air concentration (ppbv) x Molecular Weight (g/mole) x Air flow rate (cfm) x 1440 min/day x (1 lb/453.6 g) x (1 mol/24.47 l at STP) x (1 l/0.0353 cf) x 1/10⁹

Table 4-2 Summary of Air Sampling Data Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Sampling Month	Sampling Date	Compound	Influent GAC Concentratio (ppbv)	C-3 on	Effluent GA Concentrat (ppbv)	C-3 tion	Effluent GA Concentrat (ppbv)	C-1 tion	Effluent GA Concentrat (ppbv)	AC-2 tion	Molecular Weight (g/mole)	Air Flow Rate (cfm)	Emissions Rate from Stack (lb/d) ¹	OMP Permit Equivalent Limit (lb/d)
April	4/14/2020	PCE	11		0.18	J	0.17	J	0.5	U	165.82	2664	0.00081	0.0216
Арт	4/14/2020	TCE	380		13		11		0.48	J	131.38	2,004	0.00062	1.638

Acronyms:

PCE - tetrachloroethene TCE - trichloroethene GAC - granular activated carbon

ppbv - parts per billion by volume

g/mole - gram per mole cfm - cubic feet per minute lb/d - pounds per day min/day - minutes per day lb/g - pounds per gram mol/ l - mole per liter STP - standard temperature and pressure cf - cubic feet l - liter J - estimated U - not detected

Notes:

1. Emissions rate was calculated :

Emissions rate (cfm) = Effluent air concentration (ppbv) x Molecular Weight (g/mole) x Air flow rate (cfm) x 1440 min/day x (1 lb/453.6 g) x (1 mol/24.47 l at STP) x (1 l/0.0353 cf) x 1/10⁹

APPENDIX A

Data Usability Analysis Report

DATA USABILITY ANALYSIS LAWRENCE AVIATION INDUSTRIES SITE

To meet the primary objectives of the Long-Term Response Action (LTRA) program at the Lawrence Aviation Industries Site (LAI), in August 2012 the United States Environmental Protection Agency (EPA), Region 2 issued a work assignment to Henningson, Durham & Richardson, Architecture and Engineering PC, in association with HDR Engineering, Inc. (HDR) for the operation and maintenance of the groundwater treatment systems at the LAI Site. The system at the LAI facility was completed on September 28, 2010 and is currently in its 9th year of LTRA. Construction of the Old Mill Pond treatment facility was completed in August 2011 and is currently in its 8th year of LTRA. This data usability analysis is for samples collected in April 2020. Aqueous samples were collected from eleven locations and air samples from seven locations. In addition, quality assurance/quality control (QA/QC) samples were collected including one field duplicate and one trip blank associated with the aqueous samples only. QA/QC samples were not collected for the air samples in accordance with the EPA-approved Final QAPP (HDR, 2016). All analytical sample results were generated by the EPA Contract Laboratory Program (CLP) for the following analyses and methods:

Laboratory	Analysis	Method	Matrix
CLP - Chemtech Consulting Group	Mercury	ISM02.4	Aqueous
CLP - Chemtech Consulting Group	Metals ICP-AES	ISM02.4	Aqueous
CLP - Chemtech Consulting Group	TVOA	SOM02.4	Aqueous
CLP – Maxxam/Bureau Veritas	VOA	TO-15	Air

Note: ICP-AES = Inductively Coupled Plasma-Atomic Emission Spectroscopy; TAL = Target Analyte List; TVOA = Trace Volatile Organic Analysis; VOA = Volatile Organic Analysis; TO = Toxic Organic

The results provided by the CLP laboratories are considered definitive data and underwent a systematic data validation to provide assurance that the data were adequate for its intended use. The validation was performed based on an evaluation of project objectives, method-specific QA/QC information (such as holding times, calibration records, laboratory- and field-supplied blanks, duplicate precision, and surrogate and spike recovery), relevant sections of the EPA Region 2 Data Validation Standard Operating Procedures (SOPs), relevant sections of the EPA National Functional Guidelines for Organic and Inorganic Data Validation, and/or the best professional judgment of the validator. Validation was performed by EPA personnel with the appropriate training and/or experience in performing data validation for the analyses of interest associated with the project. Qualifiers (as appropriate) were added to the data based on the results of the validation.

Note that since this project is in the LTRA phase, the focus was placed on site-specific contaminants of concern with regard to the VOCs: 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), chloroform, cis-1,2-dichloroethene (cis-1,2-DCE), trichloroethene (TCE), tetrachloroethene (PCE), and vinyl chloride (VC). The attached results tables provide the sample number, sample location, sample collection date, and the result and qualifiers for these constituents.

As part of the data assessment by the CLP laboratories, data qualifiers are presented along with the analytical results. Qualifiers used with regard to the assessment of the April 2020 samples for the site-specific contaminants of concern are highlighted in bold for clarity.

- U- The analyte analyzed for, but was not detected at a level greater than or equal to the level of the adjusted CRQL.
- J- The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL).
- UJ- The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise.
- R- The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- N- The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ- The analysis indicated the presence of an analyte that has been "tentatively identified" and the associated numerical value represent its approximate concentration.
- D Although the definition for this qualifier is not included in the data narrative, it indicates a diluted value.

The data assessment for aqueous organic samples was performed for the following criteria per the EPA SOW: holding time, deuterated monitoring compounds (DMCs), matrix spike/matrix spike recovery, blank contamination, mass spectrometer (MS) tuning, calibration, internal standards performance, field duplicates, compound identification, contract problems – non-compliance, field documentation, other problems, and dilutions, re-extractions, and reanalysis.

The data assessment for aqueous inorganic samples was performed for the following criteria per the EPA SOW: holding time and preservation, calibration, blank contamination, interference check sample, spike sample analysis, duplicate sample analysis, field duplicates, laboratory control sample, ICP serial dilution, and percent solids.

The data assessment for organic air samples was performed for the following criteria per the EPA SOW: holding time, leak test evaluation, canister certification, laboratory control/laboratory control duplicate recovery (LCS/LCSD), blank contamination, MS tuning, calibration, internal standards performance, compound identification, dilutions, re-extractions & reanalysis, field duplicate, contract problems - non-compliance, field documentation, and other considerations.

A major finding is one where a level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. This finding was noted in the EPA validation narrative for the organic and inorganic aqueous sample data assessment.

A minor finding is one where the level of uncertainty is acceptable and no significant bias is observed. One minor finding noted in the EPA validation narrative for the organic air samples was that one or more analytes in one or more samples were qualified "J" due to results detected above the method detection limit (MDL) but below the CRQL.

All aqueous organic samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery

limits were outside Table 6 of the SOP HW 34A (Rev 1), qualifications were applied as per Table 7 of the SOP HW 34A (Rev. 1) to all the samples and analytes as shown below.

The following aqueous organic sample has DMC/surrogate percent recovery values less than the primary lower limit but greater than or equal to the expanded lower limit of the criteria window. Detected compounds are qualified J-. Non-detected compounds are qualified UJ.

1,1-Dichloroethene-d2 BF8L0

trans-1,2-Dichloroethene, cis-1,2-Dichloroethene, 1,1-Dichloroethene

Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as per Table 5 of SOP HW-34A (Rev 1).

The following aqueous organic samples have analyte concentrations reported less than the CRQL. The associated method blank concentration is less than the CRQL. Detected compounds are qualified U. Non-detected compounds are not qualified. Sample concentrations have been reported at the CRQL.

Chloroform BF8L5, BF8L4DL

The following aqueous organic sample has analyte concentrations reported greater than the CRQL and less than 2x the CRQL. The associated method blank has analyte concentration less than the CRQL. Reported concentration of the analyte in the sample have been qualified U. Non-detected compounds are not qualified.

Chloroform BF8L3, BF8L4

The following aqueous organic samples have analyte concentrations reported less than the CRQL. The associated trip blank concentration is less than the CRQL. Detected compounds are qualified U. Non-detected compounds are not qualified. Sample concentrations have been reported at the CRQL.

Trichloroethene BF8K6, BF8L7

The following aqueous TVOA samples have common contaminant analyte concentrations reported less than 2x the CRQL. The associated storage blank has common contaminant analyte concentration less than 2x the CRQL. Detected compounds are qualified U. Non-detected compounds are not qualified. Sample concentrations have been reported at the CRQL.

Acetone BF8K5, BF8K6, BF8K7, BF8K8, BF8K9, BF8L1, BF8L2, BF8L3, BF8L4, BF8L5, BF8L6, BF8L7, BF8K9DL, BF8L3DL, BF8L4DL, BF8K8DL

In addition, calibration blanks (ICB and CCB) are used to ensure a stable instrument baseline before and during the analysis of analytical inorganic samples. The preparation blank is used to assess the level of

contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below.

The following aqueous inorganic samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated ICB analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as U. Sample results are reported at CRQLs.

Selenium MBF8K7, MBF8K8, MBF8L1, MBF8L2, MBF8L4, MBF8L7.

The following aqueous inorganic samples have analyte results less than or equal to CRQLs. The associated CCB analyte results are less than or equal to CRQLs. Detects are qualified as U. Sample results are reported at CRQLs.

Selenium MBF8K7, MBF8K8, MBF8L1, MBF8L2, MBF8L4, MBF8L7.

The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 – 125%. However, spike recovery limits do not apply when the sample concentration is $\geq 4x$ the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample.

The following aqueous inorganic sample has matrix spike percent recovery less than 30% and Post-digestion spike sample has percent recovery greater than or equal to 75%. Detects are qualified as J. Nondetects are qualified as UJ.

Selenium MBF8L7.

The serial dilution of samples quantitated by ICP determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL)], the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the serial dilution sample.

The following ICP-AES Serial Dilution (SD) aqueous sample has percent difference (%D) greater than 10% but less than 100% and initial sample results are greater than 50xMDLs. Detects are qualified as J.

Potassium MBF8L7

Samples may be re-analyzed after dilution, re-extraction, and for other QC reasons. In such cases, the best result values are consolidated in one single report or Form 1 and in the EDDs.

The following air samples were analyzed at dilution.

BF8K0, BF8K4

The following aqueous organic dilution samples were only used for one or more analytes.

BF8K7DL, BF8K8DL, BF8K9DL, BF8L3DL, BF8L4DL, BF8L5DL

Under field documentation for the air samples, it was noted that the start and end pressures were not included on the chain of custody; however, under other considerations the canister end pressures are referenced.

Under other considerations, the EPA narrative for the air samples noted the following:

• SDG does not contain any field QC samples.

• Laboratory should provide details of their ppbv to $\mu g/m3$ conversion ensuring that it is consistent with EPA guidelines. Laboratory should include this information in their SDG narrative.

• Clean canister data does not include all compounds analyzed.

• Canister leak test, cleaning, analyses, sampling chronology is not clear.

With regard to field QC samples, this statement is correct and is in accordance with the EPA-approved QAPP.

None of the above impact the usability of the data. Sample results were qualified as described above and all data are usable as reported.

The following sections provide an evaluation of the usability of the data for the Site, as compared to the site-specific QA/QC requirements outlined in the EPA-approved Final QAPP (HDR, 2016).

Precision

Precision is the measurement of agreement in repeated tests of the same or identical samples, under prescribed conditions. Precision data indicate how consistent and reproducible the field sampling or analytical procedures have been. For the Site data, precision was determined through replicate measurements of the same or identical samples, i.e., a field duplicate sample. The acceptance criterion for the duplicate is a relative percent difference (RPD) of less than 25 percent (VOCs) or 20 percent (for TAL metals and mercury) for aqueous samples. The RPD was not calculated for any set of sample pairs where concentrations were not detected in both of the data sets as was the case with all VOCs results; agreement between the original sample and the duplicate can be inferred when both of the results are non-detects. All of the inorganic sample pairs that contained detections in both of the data sets were within the RPD limits prescribed with the exception of zinc (40%). The results indicate the sampling program achieved overall good reproducibility.

Accuracy

Accuracy is the degree of agreement of a measured sample result or average of results with an accepted reference or true value. It is the quantitative measurement of the bias of a system, and is expressed in terms of percent recovery (%R). Accuracy of the data can be determined through the use of surrogate compounds, internal standard compounds, matrix spike samples, and laboratory control spike samples.

Relevant issues are summarized above; sample results were qualified as necessary. Based on the information provided and available results, the laboratories achieved a good degree of accuracy.

Representativeness

Representativeness is the degree to which the results of the analyses accurately and precisely represent a characteristic of a population, a process condition, or an environmental condition. In this case, representativeness is the degree to which the data reflect the contaminants present and their concentration magnitudes in the sampled site areas. Representativeness of data occurs through the selection of appropriate sampling locations and the implementation of approved sampling procedures. The sampling locations for this round of sampling consisted solely of fixed sample locations/ports. In addition, field personnel followed the procedures outlined in the EPA-approved QAPP (HDR, 2016) for the Site.

Comparability

To increase the degree of comparability between data results and between past, present, and future sampling events, standard environmental analytical methods were employed by the off-site laboratories. Routine Analytical Service (RAS) sample analyses available through the EPA CLP were utilized for the TCL VOCs, TAL metals, and mercury analyses as specified in the CLP SOWs.

Completeness

Completeness is determined by the percentage of samples that meet or exceed all of the criteria objective levels (i.e., the number of usable sample results for the data set). All of the sample results were determined to be usable.

Sensitivity

Sensitivity is the ability of the analytical method or instrument to detect a target analyte at the level of interest. The method detection limit (MDL) is a statistically-derived value that represents a 99 percent confidence level that the reported instrument signal is different from a blank sample. The quantitation limit (QL) is the minimum concentration of an analyte that can be routinely identified by the laboratory, and is generally between three and ten times the MDL. Analytical methods are matrix-, moisture-, and dilution-dependent. The sample quantitation limit (SQL) actually determined for a constituent for a specific sample may be higher than the QL due to these issues. Relevant issues are summarized above; sample results were qualified as necessary.

Blank Contamination Elimination

Blanks were prepared to identify any contamination that may have been introduced into the samples. Validation determines the need for qualification of sampling analytical results based on blank contamination. Relevant issues are summarized above; sample results were qualified as necessary.

Usability Summary

The definitive data for the LTRA April 2020 event fulfilled the site-specific QA/QC requirements, as all of the results were determined to be usable. Therefore, the results are acceptable for use to support Site

decisions.

References

HDR, 2016. Uniform Federal Policy of Quality Assurance Project Plans, Region 2 Architect-Engineering Services Contract, Contract #EP-W-09-009, Project-Specific UFP-QAPP, Lawrence Aviation Industries Long-Term Response Action. Revised March 2016.

APPENDIX B

System Runtime Log

Appendix B1 System Runtime Log - April 2020 Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, NY

Datas	ASB_FR	EFF_PH	EW1_RT	EW1_TOT*	EW1_WTE	EW2_RT	EW2_TOT*	EW2_WTE	IW1_WTE	IW2_WTE	IW3_WTE	IW4_WTE	IW5_WTE
Dates	scfm	SU	hours	gallons	ft amsl	hours	gallons	ft amsl					
4/1/2020	1,230	8.08	24	107,584	34.46	24	104,992	32.92	40.31	195.47	197.37	196.47	190.56
4/2/2020	1,221	8.09	24	107,552	34.31	23	104,288	32.92	40.31	196.89	198.59	196.62	190.76
4/3/2020	1,043	8.08	21	92,224	34.78	21	91,648	33.25	40.19	171.94	172.56	172.96	166.93
4/4/2020	1,237	8.09	24	108,320	34.48	23	106,048	32.79	40.18	192.20	192.41	194.59	191.28
4/5/2020	1,243	8.09	24	106,816	34.55	24	105,728	32.78	40.23	194.83	195.63	196.02	193.45
4/6/2020	1,244	8.10	24	107,552	34.51	23	103,168	32.90	40.25	195.36	196.80	194.89	188.35
4/7/2020	1,161	8.11	22	99,328	34.72	22	99,104	33.08	40.25	182.76	182.47	184.76	179.36
4/8/2020	1,213	8.11	24	107,584	34.27	24	105,312	32.93	40.29	193.36	192.45	195.50	191.16
4/9/2020	1,195	8.10	24	107,616	34.21	23	103,648	33.42	40.35	195.29	195.74	195.58	188.68
4/10/2020	1,098	8.09	22	97,728	34.45	22	97,504	33.79	40.21	180.58	179.78	181.29	177.79
4/11/2020	1,227	8.09	23	107,616	34.40	23	104,032	33.53	40.15	192.53	192.22	193.09	189.75
4/12/2020	1,243	8.09	24	107,584	34.58	24	106,080	33.49	40.16	195.30	195.61	195.78	190.59
4/13/2020	414	8.07	9	36,224	36.81	8	36,192	35.11	40.12	94.96	94.39	96.34	84.35
4/14/2020	853	8.06	16	71,904	35.85	16	71,008	34.64	39.88	139.04	113.75	132.14	131.00
4/15/2020	1,216	8.08	24	107,584	34.71	23	106,272	33.82	40.15	191.63	182.83	191.47	188.44
4/16/2020	1,218	8.08	24	107,584	34.63	24	105,408	33.63	40.14	193.95	190.61	195.97	188.62
4/17/2020	1,222	8.08	24	107,584	34.72	23	103,200	33.71	40.17	195.14	193.82	193.88	187.35
4/18/2020	1,081	8.07	21	96,224	34.94	21	96,000	33.95	40.20	179.51	177.46	180.65	176.01
4/19/2020	1,215	8.07	24	107,552	34.54	24	107,104	33.59	40.21	192.57	190.81	195.35	194.35
4/20/2020	1,200	8.08	24	107,584	34.38	24	105,696	33.63	40.24	194.90	194.81	196.68	192.63
4/21/2020	1,190	8.08	24	109,056	34.33	24	107,008	33.64	42.70	196.03	196.34	193.95	190.10
4/22/2020	1,113	8.07	22	98,048	34.68	22	97,632	33.66	67.30	180.96	180.78	123.28	130.57
4/23/2020	1,212	8.07	24	107,584	34.60	24	106,752	33.52	87.12	191.58	191.37	104.06	107.52
4/24/2020	1,198	8.07	24	107,584	34.56	23	105,440	33.70	78.16	194.47	195.08	140.50	179.17
4/25/2020	1,225	8.08	24	107,552	34.51	24	106,944	33.41	96.24	197.48	197.15	109.68	185.02
4/26/2020	1,210	8.08	24	107,584	34.60	24	107,328	33.60	93.97	198.85	197.88	154.87	180.07
4/27/2020	1,170	8.07	24	104,480	34.58	23	104,544	33.56	96.55	187.17	188.94	129.63	177.96
4/28/2020	1,203	8.08	23	106,016	34.68	24	105,824	33.53	98.24	176.55	187.67	118.14	179.00
4/29/2020	1,229	8.08	24	107,552	34.66	24	107,552	33.43	100.30	192.50	192.46	121.70	178.36
4/30/2020	1,220	8.08	24	107,584	34.69	24	105,632	33.63	113.16	195.56	195.78	77.58	183.58
Averages	1,158	8.08	N/A	N/A	34.67	N/A	N/A	33.52	55.93	185.98	185.12	165.11	175.76
Totals	N/A	N/A	683	3,062,784	N/A	675	3,017,088	N/A	N/A	N/A	N/A	N/A	N/A

IW3_WTE - injection well 3 water table elevation

IW4_WTE - injection well 4 water table elevation

IW5_WTE - injection well 5 water table elevation

scfm - standard cubic feet per minute

ft amsl - feet above mean sea level

PLC - programmable logic controller

SU - standard units gpm - gallons per minute

N/A - not applicable

Acronyms:

ASB_FR - air stripper blower flow rate

EFF_PH - effluent pH

EW1_RT - extraction well 1 run time

EW1_TOT - extraction well 1 flow non-resetting totalizer

EW1_WTE - extraction well 1 water table elevation

EW2_RT - extraction well 2 run time

EW2_TOT - extraction well 2 flow non-resetting totalizer

EW2_WTE - extraction well 2 water table elevation

IW1_WTE - injection well 1 water table elevation

IW2_WTE - injection well 2 water table elevation

Notes:

* - Values retrieved from operator's logs and may not match data presented in Table 2-1 due to periodic flow fluctuations

Appendix B2 System Runtime Log - April 2020 Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, NY

Date	EW1_FLOW_TOTAL *	EW2_FLOW_TOTAL *	EW3_FLOW_TOTAL	EW4_FLOW_TOTAL	EW6_FLOW_TOTAL *
	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
4/1/2020	92,160	115,200	0	0	115,200
4/2/2020	92,096	115,120	0	0	115,120
4/3/2020	92,096	115,120	0	0	115,120
4/4/2020	92,096	115,120	0	0	115,120
4/5/2020	91,968	114,960	0	0	114,960
4/6/2020	92,160	115,200	0	0	115,200
4/7/2020	92,096	115,120	0	0	115,120
4/8/2020	92,096	115,120	0	0	115,120
4/9/2020	92,096	115,120	0	0	115,120
4/10/2020	92,096	115,120	0	0	115,120
4/11/2020	92,096	115,120	0	0	115,120
4/12/2020	92,096	115,120	0	0	115,120
4/13/2020	30,592	38,240	0	0	38,240
4/14/2020	61,120	76,400	0	0	76,400
4/15/2020	92,160	115,200	0	0	115,200
4/16/2020	92,096	115,120	0	0	115,120
4/17/2020	92,096	115,120	0	0	115,120
4/18/2020	92,096	115,120	0	0	115,120
4/19/2020	92,096	115,120	0	0	115,120
4/20/2020	92,032	115,040	0	0	115,040
4/21/2020	92,096	115,120	0	0	115,120
4/22/2020	92,096	115,120	0	0	115,120
4/23/2020	92,096	115,120	0	0	115,120
4/24/2020	92,160	115,200	0	0	115,200
4/25/2020	92,096	115,120	0	0	115,120
4/26/2020	92,096	115,120	0	0	115,120
4/27/2020	92,096	115,120	0	0	115,120
4/28/2020	92,096	115,120	0	0	115,120
4/29/2020	92,096	115,120	0	0	115,120
4/30/2020	92,096	115,120	0	0	115,120
TOTAL **	2,672,384	3,340,480	0	0	3,340,480

Acronyms:

EW- extraction well

Flow - totalizer flow

NA - not available

* - Values retrieved from operator's logs and may not match data presented in Table 3-1 due to periodic flow fluctuations.

** - Totals for EW1_FLOW_TOTAL, EW2_FLOW_TOTAL, and EW6_FLOW_TOTAL are the difference of the final and first totalizer readings of April for EW1, EW2, and EW6, respectively.

APPENDIX C

System Alarm Log

Appendix C1 System Alarm Logs - April 2020 Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, NY

Data	Time	TasNama		Res	tart	Sustan Shutdawa Daasaa
Date	Time	Tagivame	Alarm Description	Date	Time	System Shutdown Reason
4/14/2020	7:40	ASS_LAH	Air stripper sump high level alarm	4/14/2020	7:46	Complete system shutdown. Local alarm display
4/14/2020	7:40	ASB_SD	Air stripper blower shut down	4/14/2020	7:46	Complete system shutdown. Local alarm display
4/14/2020	7:40	EW1_SD	Extraction well 1 shut down	4/14/2020	7:46	Complete system shutdown. Local alarm display
4/14/2020	7:40	EW2_SD	Extraction well 2 shut down	4/14/2020	7:46	Complete system shutdown. Local alarm display
4/27/2020	11:02	ASB_SD	Air stripper blower shut down	4/27/2020	11:04	Complete system shutdown. Local alarm display
4/27/2020	11:02	EW1_SD	Extraction well 1 shut down	4/27/2020	11:04	Complete system shutdown. Local alarm display
4/27/2020	11:02	ASS_LAH	Air stripper sump high level alarm	4/27/2020	11:04	Complete system shutdown. Local alarm display
4/27/2020	11:02	EW2_SD	Extraction well 2 shut down	4/27/2020	11:04	Complete system shutdown. Local alarm display
4/28/2020	14:22	ASS_LAH	Air stripper sump high level alarm	4/28/2020	14:27	Complete system shutdown. Local alarm display
4/28/2020	14:22	ASB_SD	Air stripper blower shut down	4/28/2020	14:27	Complete system shutdown. Local alarm display
4/28/2020	14:22	EW1_SD	Extraction well 1 shut down	4/28/2020	14:27	Complete system shutdown. Local alarm display
4/28/2020	14:22	EW2_SD	Extraction well 2 shut down	4/28/2020	14:27	Complete system shutdown. Local alarm display

Note:

1. Only alarms resulting in system shutdown have been listed.

Appendix C2 System Alarm Logs - April 2020 Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Superfund Site, Port Jefferson Station, NY

Date	Time In	Alarm Description ¹	System Shutdown Reason
4/13/2020	7:58:00 AM	Airstripper Blower alarm	Blower shutdown due to high water level in the air stripper sump
4/13/2020	7:59:59 AM	Airstripper Blower alarm	Blower shutdown due to high water level in the air stripper sump
4/14/2020	8:01:40 AM	Airstripper Blower alarm	Blower shutdown due to high water level in the air stripper sump
4/14/2020	8:02:51 AM	Airstripper Blower alarm	Blower shutdown due to high water level in the air stripper sump

APPENDIX D

Data Summary Tables

Appendix D1 April 2020 - Water Sample Results Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Facility Location			Lawrence Aviation Industries			Old Mill Road																					
Sample ID				01-EW)1	01-EW0	2	01-CI	INF	01-AS		01-AS		01-EFI	F	02-EW0	1	02-EW02	1	02-EW0	6	02-A	s	02-GAC		02-EF	F
Sample Name				BF8K7/MB	F8K7	BF8K8/MB	F8K8	BF8K8/M	IBF8K8	BF8K5/MBF	F8K5	BF8L7/MBI	78L7	BF8K6/MB	F8K6	BF8L3/MBI	F8L3	BF8L4/MBF	8L4	BF8L5/MBI	F8L5	BF8L1/M	BF8L1	BF8L6/MBF	8L6	BF8L2/MB	3F8L2
Location Code				Extraction	Well 1	Extraction V	Well 2	Combined	Influent	Post-Air Stri	ipper	Post-Air Stri Duplicat	pper e	Facility Eff	luent	Extraction V	Vell 1	Extraction W	ell 2	Extraction V	Vell 6	Post-Air S	tripper	Post-GA	c	Facility Ef	fluent
Sample Date				4/14/202	20	4/14/202	20	4/14/2	020	4/14/2020	0	4/14/202	0	4/14/202	20	4/14/202	0	4/14/2020)	4/14/202	0	4/14/20	020	4/14/2020)	4/14/20	20
	Analyte	Cas No.	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual R	esults	Qual
VOLATILE ORGANIC	COMPOUNDS																										
USEPA SOP DW-1	1,1,1-Trichloroethane	71-55-6	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.67		0.26	J	0.24	J	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,1,2,2-Tetrachloroethane	79-34-5	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	0
USEPA SOP DW-1	1,1,2-Trichloroethane	79-00-5	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,1-Dichloroethane	75-34-3	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	1.2	Ŧ	0.49	J	0.48	J	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,1-Dichloroethene	75-35-4	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.46	J	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,2,3-Trichlorobenzene	87-61-6	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,2,4-Trichlorobenzene	120-82-1	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,2-Dibromo-3-Chloropropane	96-12-8	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,2-Dibromoethane	106-93-4	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	0
USEPA SOP DW-1	1,2-Dichlorobenzene	95-50-1	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,2-Dichloroethane	107-06-2	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,2-Dichloropropane	78-87-5	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,3-Dichlorobenzene	541-73-1	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	1,4-Dichlorobenzene	106-46-7	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	2-Butanone	78-93-3	ug/l	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
USEPA SOP DW-1	2-Hexanone	591-78-6	ug/l	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
USEPA SOP DW-1	4-Methyl-2-Pentanone	108-10-1	ug/I	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	0	5	U	5	U	5	U
USEPA SOP DW-1	Acetone	67-64-1	ug/I	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
USEPA SOP DW-1	Benzene	71-43-2	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Bromochloromethane	74-97-5	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Bromodichloromethane	75-27-4	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Bromotorm	75-25-2	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Bromomethane	74-83-9	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Carbon Disulfide	75-15-0	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Carbon Tetrachloride	56-23-5	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	0	0.5	0	0.5	U	0.5	U U
USEPA SOP DW-1	Chlorodenzene	108-90-7	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	0	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Chloroform	75-00-3	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U 11	0.5	U	0.5	U	0.5	U U
USEPA SOP DW-1	Chlorenethere	07-00-3	ug/I	0.3	U	0.3	U	0.3	U	0.5	U	0.3	U	0.3	U	0.3	U	0.5	U	0.5	U 11	0.5	U U	0.3	U	0.5	U
USEPA SOP DW-1	chioromethane	14-87-3	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	cis-1,2-Dichlorogenere	10061 01 5	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.76	T	0.8	п	1.5	II	0.5	U	0.5	U	0.5	U U
USERA SOR DW-1	Cuelabourg	110.82.7	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U U	0.5	U U	0.5	U	0.5	U
USEPA SOP DW-1	Dibromochloromethane	124-48-1	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Dichlorodifluoromethane	75-71-8	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USERA SOR DW-1	Ethylhonzono	100 41 4	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	- U
USEPA SOP DW-1	Isopronylbenzene	08-82-8	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	M P Xylenes	179601-23-1	ug/I	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Methyl Acetate	79-20-9	ug/1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	- U
USEPA SOP DW-1	Methyl tert-Butyl Ether	1634-04-4	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.17	I	0.44	I	0.83		0.28	I	0.25	I	0.18	- I
USEPA SOP DW-1	Methylcyclobexane	108-87-2	ug/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	J U	0.5	J U	0.55	II	0.20	J U	0.5	J U	0.10	- <u> </u>
USEPA SOP DW-1	Methylene Chloride	75-09-2	ug/1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	o-Xylene (1.2-Dimethylbenzene)	95-47-6	uø/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	Ū	0.5	U
USEPA SOP DW-1	Styrene	100-42-5	ug/1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	Tetrachloroethylene(PCE)	127-18-4	μσ/I	2.3		2.6	Ŭ	2.3	Ű	0.5	U U	0.5	U	0.5	U	17	Ť	3.8		7.1		0.5	U	0.5	Ū	0.5	- U
USEPA SOP DW-1	Toluene	108-88-3	μσ/I	0.5	U	0.5	IJ	0.5	U	0.5	U U	0.5	U	0.5	U	0.5	IJ	0.5	П	0.5	U	0.5	U	0.5	Ū	0.5	- U
USEPA SOP DW-1	trans-1.2-Dichloroethene	156-60-5	ug/1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
USEPA SOP DW-1	trans-1.3-Dichloropropene	10061-02-6	uø/l	0.5	Ū	0.5	Ū	0.5	U	0.5	Ū	0.5	Ū	0.5	Ũ	0.5	Ū	0.5	Ū	0.5	Ū	0.5	Ū	0.5	U	0.5	U
USEPA SOP DW-1	Trichloroethene (TCE)	79-01-6	ug/l	68		36	Ť	51		0.5	U	0.5	U	0.5	Ŭ	46	Ť	43	+ -	190		3.1		0.5	Ū	0.5	U
USEPA SOP DW-1	Trichlorofluoromethane	75-69-4	ug/l	0.5	U	0.5	U	0.5	U	0.5	Ū	0.5	Ū	0.5	Ũ	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	Ū
USEPA SOP DW-1	Vinyl Chloride	75-01-4	ug/l	0.5	Ū	0.5	U	0.5	U	0.5	U	0.5	Ū	0.5	Ũ	0.5	Ū	0.5	U	0.5	Ū	0.5	Ū	0.5	U	0.5	Ū
			0	1	1		1	1	-		-				-	1	1 1	1	-	i	-	1	1		-		-

Appendix D1 April 2020 - Water Sample Results Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Facility L	ocation								L	awrence Avia	ation Industries			Old Mill Road														
Sample ID)				01-EW0	01	01-EW(02	01-CI	NF	01-AS		01-AS		01-EFI	F	02-EW0	1	02-EW0	2	02-EW	706	02-A	5	02-GA	C	02-E	≤FF
Sample Na	ame				BF8K7/MB	F8K7	BF8K8/MB	F8K8	BF8K8/M	BF8K8	BF8K5/MB	F8K5	BF8L7/MB	F8L7	BF8K6/MB	F8K6	BF8L3/MB	F8L3	BF8L4/MB	F8L4	BF8L5/MF	BF8L5	BF8L1/MI	F8L1	BF8L6/MB	F8L6	BF8L2/M	4BF8L2
Location (Code				Extraction	Well 1	Extraction	Well 2	Combined	Influent	Post-Air Str	ipper	Post-Air Str Duplicat	ipper te	Facility Eff	luent	Extraction V	Vell 1	Extraction	Well 2	Extraction	Well 6	Post-Air St	ripper	Post-GA	.C	Facility F	Effluent
Sample Da	ate				4/14/202	20	4/14/202	20	4/14/2	020	4/14/202	0	4/14/202	0	4/14/202	20	4/14/202	0	4/14/202	20	4/14/20)20	4/14/20	20	4/14/202	20	4/14/2	2020
		Analyte	Cas No.	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual F	Results	Qual	Results	Qual
METALS																										4		
E200.7		Aluminum	7429-90-5	ug/l	1770		282		992		925		787		886		42.8	J	27.6	J	17	J	27.7	J	200	U	56.5	J
E200.7		Antimony	7440-36-0	ug/l	60	U	60	U	60	U	60	U	60	U	60	U	60	U	60	U	60	U	60	U	60	U	60	U
E200.7		Arsenic	7440-38-2	ug/l	10	U	4.5	J	10	U	5.2	J	4.6	J	10	U	10	U	8.4	J	4.3	J	4	J	10		10	U
E200.7		Barium	7440-39-3	ug/I	49.3	J	11	J	62.7	J	62.9	J	56.2	J	63.2	J	130	J	130	J	135	J	129	J	155	J	130	J
E200.7		Gelminn	7440-41-7	ug/I	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	
E200.7		Calainm	7440-43-9	ug/I	3	U	3	U	5	U	3	U	5	U	3	U	3	U	3	U	3	U	3	U	3		3	
E200.7		Chromium Total	7440-70-2	ug/I	13100		13100	т	13200		13300	-	12300		15000		17300	т	19000	т	19200	т	18200	т	7.9		18400	
E200.7		Cobalt	7440-47-5	ug/l	20.1 50	II	7.8	J	18.5	II	50	II	50	П	50	II	4 50	J	50	J	50	J	50	J	50	J U	8.8 50	J
E200.7		Copper	7440-50-8	ug/l	25	U	25	U	25	U	25	U	25	U	25	U	25	U	25	U	25	U	25	U	25		25	U
E200.7		Iron	7439-89-6	ug/1	100	U	100	U	100	U	100	U	100	U	100	U	100	U	100	U	100	U	100	U	100		100	U
E200.7		Lead	7439-92-1	ug/1	3.9	I	4 1	I	2.5	I	4.2	I	4 1	I	3.4	I	4 9	I	4	I	5.5	I	4	I	3.7		4 2	I
E200.7		Magnesium	7439-95-4	ug/l	6400	-	6120	-	6370	-	6500		6070	-	6470	-	6100	-	8070	-	8300	-	7390	-	7410	+	7430	
E200.7		Manganese	7439-96-5	ug/l	13.5	J	2.3	J	8	J	7.7	J	7.8	J	7.5	J	15	U	15	U	2.5	J	15	U	15	U	15	U
E245.1		Mercury	7439-97-6	ug/l	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.067	J	0.036	J	0.037	J	0.2	U	0.2	U
E200.7		Nickel	7440-02-0	ug/l	8.2	J	5.6	J	6	J	6.8	J	5.8	J	6.5	J	40	U	40	U	40	U	40	U	40	U	40	U
E200.7		Potassium	7440-09-7	ug/l	14000		2930	J	8690		9330		8040	J	9300		482	J	11800		9590		7260		7280	+ +	7300	-
E200.7		Selenium	7782-49-2	ug/l	35	U	35	U	35	U	35	U	35	UJ	35	U	35	U	35	U	35	U	35	U	35	U	35	U
E200.7		Silver	7440-22-4	ug/l	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
E200.7		Sodium	7440-23-5	ug/l	20400		18800		19900		20500		19000		20500		14500		18300		23200		18400		18800		18800	
E200.7		Thallium	7440-28-0	ug/l	25	U	25	U	25	U	25	U	25	U	25	U	25	U	25	U	25	U	5.6	J	25	U	25	U
E200.7		Vanadium	7440-62-2	ug/l	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U	50	U
E200.7		Zinc	7440-66-6	ug/l	40.9	J	42.6	J	47.4	J	32	J	21.3	J	43.2	J	38.8	J	37.5	J	201		7.1	J	8.9	J	60	U
WET CH	EMISTRY																											
E300.0		Fluoride	16984-48-8	mg/l	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	

Acronyms: ID - Identification J - Estimated Value U - Non-Detect Value GAC - Granular Activated Carbon NA - Not analyzed µg/l - microgram per liter mg/l - milligram per liter 01 - Lawrence Aviation Industries Facility Sample 02 - Old Mill Pond Facility Sample

Appendix D2 April 2020 - Trip Blank Results Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Fa	cility Location			Lawrence Indu	e Aviation stries
Sa	mple ID			BF	8L0
Sa	mple Name			01-TB-2	0200414
Sa	mple Date			4/14/	2020
	Analyte	Cas No.	Units	Results	Qual
vo	DLATILE ORGANIC COMPOUND	S			
	1,1,1-Trichloroethane	71-55-6	ug/l	0.5	U
	1,1,2,2-Tetrachloroethane	79-34-5	ug/l	0.5	U
	1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1	ug/l	0.5	U
	1,1,2-Trichloroethane	79-00-5	ug/l	0.5	U
	1,1-Dichloroethane	75-34-3	ug/l	0.5	U
	1,1-Dichloroethene	75-35-4	ug/l	0.5	UJ
	1,2,3-Trichlorobenzene	87-61-6	ug/l	0.5	U
	1,2,4-Trichlorobenzene	120-82-1	ug/l	0.5	U
	1,2-Dibromo-3-Chloropropane	96-12-8	ug/l	0.5	U
	1,2-Dibromoethane	106-93-4	ug/l	0.5	U
	1,2-Dichlorobenzene	95-50-1	ug/l	0.5	U
	1,2-Dichloroethane	107-06-2	ug/l	0.5	U
	1.2-Dichloropropane	78-87-5	ug/l	0.5	U
	1.3-Dichlorobenzene	541-73-1	ug/l	0.5	U
	1 4-Dichlorobenzene	106-46-7	ug/l	0.5	U
	2-Butanone	78-93-3	ug/l	3.2	I
	2-Hexanone	591-78-6	ug/l	5	J U
	4-Methyl-2-Pentanone	108-10-1	ug/l	5	U
	Acetone	67-64-1	ug/l	13	0
	Panzana	71 43 2	ug/I	0.5	U
	Bromachlaromathana	71-43-2	ug/1	0.5	U
	Bromochioromethane	74-97-3	ug/I	0.5	U
	Bromodicnioromethane	75-27-4	ug/l	0.5	U
	Bromotorm	75-25-2	ug/l	0.5	U
	Bromomethane	74-83-9	ug/l	0.5	U
	Carbon Disulfide	75-15-0	ug/l	0.5	U
	Carbon Tetrachloride	56-23-5	ug/l	0.5	U
	Chlorobenzene	108-90-7	ug/l	0.5	U
	Chloroethane	75-00-3	ug/l	0.5	U
	Chloroform	67-66-3	ug/l	0.5	U
	Chloromethane	74-87-3	ug/l	0.5	U
	cis-1,2-Dichloroethylene	156-59-2	ug/l	0.5	UJ
	cis-1,3-Dichloropropene	10061-01-5	ug/l	0.5	U
	Cyclohexane	110-82-7	ug/l	0.5	U
	Dibromochloromethane	124-48-1	ug/l	0.5	U
	Dichlorodifluoromethane	75-71-8	ug/l	0.5	U
	Ethylbenzene	100-41-4	ug/l	0.5	U
	Isopropylbenzene	98-82-8	ug/l	0.5	U
	M, P Xylenes	179601-23-1	ug/l	0.5	U
	Methyl Acetate	79-20-9	ug/l	0.5	U
	Methyl tert-Butyl Ether	1634-04-4	ug/l	0.5	U
	Methylcyclohexane	108-87-2	ug/l	0.5	U
	Methylene Chloride	75-09-2	ug/l	0.5	U
	o-Xylene (1,2-Dimethylbenzene)	95-47-6	ug/l	0.5	U
	Styrene	100-42-5	ug/l	0.5	U
	Tetrachloroethylene(PCE)	127-18-4	ug/l	0.5	U
	Toluene	108-88-3	ug/l	0.5	U
	trans-1,2-Dichloroethene	156-60-5	ug/l	0.5	UJ
	trans-1,3-Dichloropropene	10061-02-6	ug/l	0.5	U
	Trichloroethene (TCE)	79-01-6	ug/l	0.13	J
	Trichlorofluoromethane	75-69-4	ug/l	0.5	U
	Vinyl Chloride	75-01-4	ug/l	0.5	U

Acronyms: ID - Identification U - Non-Detect Value J - Estimated value µg/l - microgram per liter 01 - Lawrence Aviation Industries Facility Sample

Appendix D3 April 2020 - Air Sample Results Lawrence Aviation Industries Superfund Site, Port Jefferson Station, New York

Facility Location					Lawrence Avi	ation Industries						Old M	ill Pond			
Sample ID			01-INF	-GAC01	01-EFF	F-GAC01	01-EFF	-GAC02	02-INF	-GAC03	02-EFF	-GAC03	02-EFF	-GAC01	02-EFF	-GAC02
Sample Name			BF	'8K0	BF	8J8	BF	8J9	BF	8K4	BF	3K3	BF	8K1	BF	8K2
Location Code	ation Code		Influent	t GAC-01	Effluent	t GAC-01	Effluent	GAC-02	Infl	luent	Post G	AC-03	Post G	GAC-01	Eff	uent
Sample Date			4/14	/2020	4/14	/2020	4/14	/2020	4/14	/2020	4/14/	2020	4/14	/2020	4/14	/2020
ANALYTIC_METHOD	CAS No.	Units	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual	Results	Qual
VOLATILE ORGANIC COMI	POUNDS															
1,1,1-Trichloroethane	71-55-6	ppbv	1	U	0.5	U	0.5	U	1.4	J	1.1		0.28	J	0.5	U
1,1-Dichloroethane	75-34-3	ppbv	1	U	0.5	U	0.5	U	3.3		3.8		2.5		0.61	
1,1-Dichloroethene	75-35-4	ppbv	1	U	0.5	U	0.5	U	1.2	J	1.4		0.88		0.22	J
Chloroform	67-66-3	ppbv	0.18	J	0.5	U	0.5	U	1.6	J	1.6		0.61		0.5	U
cis-1,2-Dichloroethylene	156-59-2	ppbv	0.28	J	0.5	U	0.5	U	3.9		3.8		0.4	J	0.5	U
Tetrachloroethylene(PCE)	127-18-4	ppbv	4.7		0.5	U	0.12	J	11		0.18	J	0.17	J	0.5	U
Trichloroethene (TCE)	79-01-6	ppbv	170		0.11	J	1.6		380		13		11		0.48	J
Vinyl Chloride	75-01-4	ppbv	1	U	0.5	U	0.5	U	2.5	U	0.5	U	0.5	U	0.5	U

Acronyms: ID - identification

U - Non-Detect Value

J - Estimated Value

NA - Not Analyzed

GAC - Granular Activated Carbon

ppbv - parts per billion

01 - Lawrence Aviation Industries Facility Sample

02 - Old Mill Pond Facility Sample

APPENDIX E

Backup Calculations

Appendix E1 - Backup Calculations Figure 2-1 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-01 Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

			Average Flow	Total CVOC	No. of Pumping	Mass Removed	Cumulative Mass
Month	Sample ID	Sample Date	Rate	Concentration	No. of Fullping	and Treated ¹	Removed and Treated
			(gpm)	(µg/l)	Days in Period	(lbs)	(lbs)
ITP ²	ITP EW-01 Day 1	9/15/2010	47	251	1	0.17	0.2
	ITP EW-01 Day 2	9/16/2010	27	281	3	0.75	0.9
	ITP EW-01 Day 4	9/19/2010	28	188	1	0.17	1.1
	ITP EW-01 Day 5	9/20/2010	75	167	6	1.0	2.1
October ^{2,3}	N/A	10/15/2010	N/A	167	31	1.1	3.2
November 2,4	N/A	11/15/2010	N/A	141	30	1.0	4.2
December 2,5	EW-01-101214	12/14/2010	N/A	115	31	0.0	4.2
January 2,5,6	EW-01-110106	1/6/2011	N/A	2	31	0.0	4.2
February 2,6		1/0/2011	1.011	– No sample collecter	d	010	
March ^{2,5,6}	N/A	3/15/2011	N/A	2	31	0.0	4.2
April ^{2,5}	FW 01 110/13	4/13/2011	N/A	0	30	0.0	1.2
May 2,5	EW-01-110415	5/12/2011	N/A N/A	126	21	0.0	4.2
Juno 2,5	EW-01-110512	6/0/2011	N/A N/A	120	20	0.0	4.2
Julie Julie ^{2,5}	EW-01-110009	7/11/2011	N/A	2	30	0.0	4.2
July A	EW-01-110/11	//11/2011	N/A	3	31	0.0	4.2
August	EW-01-110809	8/9/2011	N/A	2	31	0.0	4.2
September	EW-01-110913	9/13/2011	N/A	5	30	0.0	4.2
October	EW-01-111011	10/11/2011	N/A	3	30	0.0	4.2
November 2,7	EW-01-111108	11/8/2011	N/A	5	31	0.0	4.2
December 2,7	EW-01-111213	12/13/2011	N/A	167	30	0.0	4.2
January 2,7	EW-01-120111	1/11/2012	N/A	158	31	0.0	4.2
February 2,7	EW-01-120214	2/14/2012	N/A	229	29	0.0	4.2
March ^{2,7}	EW-01-120313	3/13/2012	N/A	477	31	0.0	4.2
April ^{2,7}	EW-01-120412	4/12/2012	N/A	662	30	0.0	4.2
May ^{2,7}	EW-01-120509	5/9/2012	N/A	836	31	0.0	4.2
June ^{2,7}	EW-01-120613	6/13/2012	N/A	675	30	0.0	4.2
July ^{2,7}	EW-01-120709	7/9/2012	N/A	572	31	0.0	4.2
August 2,7				No sample collecte	d		
September 2,7	EW-01-120912	9/12/2012	N/A	439	30	5.0	9.2
October	NYD002041531-0006	10/25/2012	59	197	31	3.75	12.9
November	NYD002041531-0027	11/19/2012	74	177	30	413	17.1
December	NYD002041531-0047	12/19/2012	74	116	31	3.04	20.1
January	NYD002041531-0069	1/29/2012	74	106	31	2.49	22.6
Fabruary	01 EW01 20120210	2/10/2013	74	115	28	2.49	24.0
Morah	01-EW01-20130219	2/19/2013	75	105	20	2.23	24.9
March	01-EW01-20130312	3/12/2013	71	103	20	2.40	21.3
Арпі	01-EW01-20130409	4/9/2013	15	104	30	2.01	29.9
May	01-EW01-20130514	5/14/2013	/5	97	31	2.55	32.5
June	01-EW01-20130611	6/11/2013	74	85	30	2.19	34.7
July	01-EW01-20130709	7/9/2013	74	104	31	2.77	37.4
August	01-EW01-20130813	8/13/2013	73	83	31	2.24	39.7
September	01-EW01-20130917	9/17/2013	74	88	30	2.31	42.0
October	01-EW01-102213	10/22/2013	75	91	31	2.44	44.4
November	01-EW01-20131119	11/19/2013	74	76	30	1.91	46.3
December	01-EW01-20131210	12/10/2013	74	94	31	2.42	48.8
January	01-EW01-20140114	1/14/2014	75	100	31	2.71	51.5
February	01-EW01-20140211	2/11/2014	75	99	28	2.44	53.9
March	01-EW01-20140311	3/11/2014	73	93	31	2.48	56.4
April	01-EW01-20140408	4/8/2014	74	103	30	2.72	59.1
May	01-EW01-20140506	5/6/2014	67	94	31	2.22	61.3
June	01-EW01-20140610	6/10/2014	74	85	30	2.22	63.5
July	01-EW01-20140708	7/8/2014	74	81	31	2.21	65.8
August	01-EW01-20140812	8/12/2014	74	74	31	2.01	67.8
September	01-EW01-20140910	9/10/2014	73	67	30	1.72	69.5
October	01-EW01-20141014	10/14/2014	76	85	31	2.36	71.8
November	01-EW01-20141111	11/11/2014	74	85	30	2.36	74.2
December	01-EW01-20141209	12/9/2014	78	78	31	2.17	76.4
January	01-EW01-20150113	1/13/2015	78	84	31	2.17	78.7
February	01_EW01_20150210	2/10/2015	70	80	28	2.35	×1 0
March	01 EW01 20150210	3/10/2015	76	76	20	2.27	01.0 92.1
April	01-EW01-20150510	3/10/2015 4/14/2015	70	70	20	2.14	03.1
арті Мал	01-EW01-20150414	4/14/2015 5/10/2015	13	/4	30	1.97	0.1
Ividy	01-EW01-20150512	5/12/2015	15	94	51	2.39	8/./
June	01-EW01-20150609	6/9/2015	75	/5	30	1.99	89.7
July	01-EW01-20150715	//15/2015	-17	12	31	2.03	91.7
August	01-EW01-20150811	8/11/2015	77	71	31	1.94	93.7
September	01-EW01-20150908	9/8/2015	78	76	30	2.11	95.8
October	01-EW01-20151013	10/13/2015	77	83	31	2.32	98.1

Appendix E1 - Backup Calculations Figure 2-1 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-01 Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

			Average Flow	Total CVOC	N CD	Mass Removed	Cumulative Mass
Month	Sample ID	Sample Date	Rate	Concentration	No. of Pumping	and Treated ¹	Removed and Treated
			(gpm)	(µg/l)	Days in Period	(lbs)	(lbs)
November	01-EW01-20151110	11/10/2015	76	90	30	2.44	100.5
December	01-EW01-20151208	12/8/2015	77	92	31	2.64	103.2
January	01-EW01-20160112	1/12/2016	78	84	31	2.40	105.6
February	01-EW01-20160209	2/9/2016	78	82	29	2.23	107.8
March	01-EW01-20160308	3/8/2016	78	80	31	2.32	110.1
April	01-EW01-20160419	4/19/2016	78	79	30	2.22	112.3
May	01-EW01-20160510	5/10/2016	78	77	31	2.23	114.6
June	01-EW01-20160614	6/14/2016	76	76	30	2.03	116.6
July	01-EW01-20160712	7/12/2016	78	67	31	1.94	118.5
August	01-EW01-20160809	8/9/2016	76	68	31	1.92	120.5
September	01-EW01-20160913	9/13/2016	75	64	30	1.60	122.1
October	01-EW01-20161025	10/25/2016	71	79	31	1.90	124.0
November	01-EW01-20161115	11/15/2016	78	90	30	2.52	126.5
December	01-EW01-20161212	12/12/2016	76	76	31	1.61	128.1
January	01-EW01-20170110	1/10/2017	78	67	31	1.77	129.9
February	01-EW01-20170214	2/14/2017	78	64	28	1.65	131.5
March	01-EW01-20170316	3/16/2017	78	75	31	2.13	133.6
April	01-EW01-20170411	4/11/2017	78	75	30	2.08	135.7
May	01-EW01-20170510	5/10/2017	78	103	31	2.71	138.4
June	01-EW01-20170613	6/13/2017	78	82	30	2.29	140.7
July	01-EW01-20170712	7/12/2017	78	80	31	2.32	143.0
August	01-EW01-20170809	8/9/2017	77	72	31	2.03	145.1
September	01-EW01-20170913	9/13/2017	78	68	30	1.89	147.0
October	01-EW01-20171010	10/10/2017	78	79	31	2.30	149.3
November	01-EW01-20171114	11/14/2017	78	102	30	2.81	152.1
December	01-EW01-20171212	12/12/2017	77	102	31	2.90	155.0
January	01-EW01-20180109	1/9/2018	77	113	30	2.97	158.0
February	01-EW01-20180213	2/13/2018	77	86	28	2.23	160.2
March	01-EW01-20180314	3/14/2018	77	97	31	2.79	163.0
April	01-EW01-20180410	4/10/2018	77	101	30	2.79	165.8
May	01-EW01-20180508	5/8/2018	77	91	31	2.62	168.4
June	01-EW01-20180614	6/14/2018	78	80	30	2.26	170.6
July	01-EW01-20180710	7/10/2018	78	80	31	2.30	172.9
August	01-EW01-20180816	8/16/2018	89	72	31	2.37	175.3
September	01-EW01-20180911	9/11/2018	77	102	30	2.62	177.9
October	01-EW01-20181009	10/9/2018	83	88	31	2.64	180.6
November	01-EW01-20181113	11/13/2018	78	113	30	3.19	183.8
December	01-EW01-20181212	12/12/2018	94	113	31	3.77	187.5
January		1		No sample collecte	d		
February	01-EW01-20190213	2/13/2019	78	113	28	2.77	190.3
March	01-EW01-20190312	3/12/2019	80	101	31	2.99	193.3
April	01-EW01-20190409	4/9/2019	78	91	30	2.55	195.8
May	01-EW01-20190515	5/15/2019	78	91	31	2.62	198.5
June	01-EW01_20190611	6/11/2019	81	80	30	2.11	200.6
July	01-EW01-20190717	7/17/2019	72	43	31	1.06	201.6
August	01-EW-1-20190813	8/13/2019	80	99	31	2.89	204.5
September	01-EW-1-20190910	9/10/2019	75	98	30	2.61	207.1
October	01-EW01-20191008	10/8/2019	73	124	31	3.29	210.4
November	01-EW01-20191112	11/12/2019	77	104	30	2.80	213.2
December	01-EW01-20191217	12/17/2019	77	134	31	3.79	217.0
January	01-EW01-20200114	1/14/2020	75	134	31	3.63	220.6
February	01-EW01-20200211	2/11/2020	70	94	29	2.21	222.9
March	01-EW01-20200310	3/10/2020	76	102	31	2.74	225.6
April	01-EW01-20200414	4/14/2020	83	70	30	2.00	227.6

Notes:

1. The mass removal rate was calculated using the following formula. Only flow going to the GWTF was included.

Total CVOC Concentration (µg/l) x Groundwater Extracted (gal) x 3.79 (l/gal) x 1(lb)/453,600,000 (µg)

2. Data provided by CDM Smith/USEPA.

3. The sample results for ITP Day 5 were used for October. A representative date of October 15, 2011 was used.

4. The Total CVOC concentration was calculated as an average of the October and December results. A representative

date of November 15, 2011 was used.

5. Discharge from EW-01 was routed to the permanganate re-circulation system during this period.

6. EW-01 was not in operation from January 16 to March 20, 2011 due to pump failure. No sample was collected from EW-01 in February

or March. The EW-01 January sample results were used for the March calculations. A representative date of March 15, 2011 was used.

7. EW-01 was offline from November 8, 2011 to September 11, 2012. Flow from EW-01 was routed to the air stripper since September 12, 2012.

8. EW-01 was offline from August 9 to 15, 2018 due to well cleaning.

Appendix E1 - Backup Calculations Figure 2-1 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-01 Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

			Average Flow	Total CVOC	Na of Domains	Mass Removed	Cumulative Mass
Month	Sample ID	Sample Date	Rate	Concentration	No. of Pumping	and Treated ¹	Removed and Treated
			(gpm)	(µg/l)	Days III Ferrou	(lbs)	(lbs)

Acronyms:

CVOC - chlorinated volatile organic compound ITP - initial testing program EW- extraction well

GWTF - groundwater treatment facility

lb - pound μg/l - microgram per liter gal- gallons l - liter ID - identification N/A - not available

Appendix E2 - Backup Calculations Figure 2-2 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-02 Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

			Average Flow	Total CVOC		Mass Removed	Cumulative Mass
			Rate	Concentration	No. of Pumping	and Treated ¹	Removed and Treated
Month	Sample ID	Sample Date	(gpm)	(µg/l)	Days in Period	(lbs)	(lbs)
ITP ²	ITP EW-02 Day 1	9/15/2010	47	154	1	0.17	0.2
	ITP EW-02 Day 2	9/16/2010	2/	148	3	0.25	0.4
	ITP EW-02 Day 4 ITP EW-02 Day 5	9/19/2010	20	90	6	0.08	0.5
October 2,3	N/A	10/15/2010	N/A	90	31	1.1	2.1
November 2,4	EW-02-101105	11/15/2010	N/A	98	30	2.0	4.1
December 2,5	EW-02-101214	12/14/2010	N/A	77	31	1.5	5.6
January 2,5	EW-02-110106	1/6/2011	N/A	134	31	2.4	8.0
February 2,6	EW-02-110303	3/3/2011	N/A	115	28	0.5	8.5
March ^{2,6}	N/A	3/15/2011	N/A	115	31	0.7	9.2
April 2.5	EW-02-110413	4/13/2011	N/A	103	30	1.5	10.7
May 2,5	EW-02-110512	5/12/2011	N/A	124	31	2.1	12.8
June July ^{2,7}	EW-02-110609	6/9/2011	N/A N/A	64	30	1.1	13.9
August 2,7	EW-02-110/11 EW-02-110809	8/9/2011	N/A N/A	124	31	2.0	14.7
September 2,5	EW-02-110803	9/13/2011	N/A N/A	124	30	1.7	18.4
October 2,5	EW-02-111011	10/11/2011	N/A	93	30	1.4	19.8
November 2,5	EW-02-111108	11/8/2011	N/A	124	31	1.9	21.7
December 2,5	EW-02-111213	12/13/2011	N/A	81	30	1.4	23.1
January 2,7	EW-02-120111	1/11/2012	N/A	96	31	1.8	24.9
February ^{2,7}	EW-02-120214	2/14/2012	N/A	90	29	1.3	26.2
March 2.7	EW-02-120313	3/13/2012	N/A	103	31	1.5	27.7
April 2,7	EW-02-120412	4/12/2012	N/A	134	30	1.9	29.6
May ^{2,7}	EW-02-120509	5/9/2012	N/A	124	31	1.8	31.4
June June June 2,7	EW-02-120613	6/13/2012	N/A	144	30	1.9	33.3
August 2,8	EW-02-120709	7/9/2012	IN/A	103 No sample collecter	31	0.5	33.8
September 2,7	EW-02-120912	9/12/2012	N/A	236	30	3.4	37.2
October	NYD002041531-0007	10/25/2012	87	37	31	1.03	38.2
November	NYD002041531-0028	11/19/2012	74	61	30	1.41	39.6
December	NYD002041531-0048	12/19/2012	74	50	31	1.31	41.0
January	NYD002041531-0070	1/29/2013	74	26	31	0.61	41.6
February	01-EW02-20130219	2/19/2013	74	60	28	1.17	42.7
March	01-EW02-20130312	3/12/2013	74	45	31	1.12	43.9
April	01-EW02-20130409	4/9/2013	73	53	30	1.33	45.2
May	01-EW02-20130514	5/14/2013	74	49	31	1.28	46.5
June	01-EW02-20130611	6/11/2013	74	26	30	0.66	47.1
August	01-EW02-20130709	8/13/2013	74	36	31	0.96	48.5
September	01-EW02-20130917	9/17/2013	74	42	30	1.1	50.6
October	01-EW02-102213	10/22/2013	75	44	31	1.17	51.7
November	01-EW02-20131119	11/19/2013	74	35	30	0.88	52.6
December	01-EW02-20131210	12/10/2013	74	37	31	0.96	53.6
January	01-EW02-20140114	1/14/2014	75	41	31	1.11	54.7
February	01-EW02-20140211	2/11/2014	74	44	28	1.09	55.8
March	01-EW02-20140311	3/11/2014	74	42	31	1.15	56.9
April	01-EW02-20140408	4/8/2014	/4	46	30	1.22	58.2
June	01-EW02-20140500	6/10/2014	73	41	30	1.05	60.2
July	01-EW02-20140708	7/8/2014	74	39	31	1.05	61.2
August	01-EW02-20140812	8/12/2014	74	38	31	1.04	62.3
September	01-EW02-20140910	9/10/2014	72	38	30	0.97	63.2
October	01-EW02-20141014	10/14/2014	75	38	31	1.06	64.3
November	02-EW02-20141112	11/12/2014	74	41	30	1.10	65.4
December	01-EW02-20141209	12/9/2014	77	35	31	0.96	66.4
January	01-EW02-20150113	1/13/2015	77	37	31	1.03	67.4
February	01-EW02-20150210	2/10/2015	77	35	28	0.89	68.3
March	01-EW02-20150310	3/10/2015	77	31	31	0.88	69.2 70.1
May	01-EW02-20150512	5/12/2015	74	45	31	1.23	70.1
June	01-EW02-20150609	6/9/2015	74	44	30	1.16	72.5
July	01-EW02-20150715	7/15/2015	76	39	31	1.10	73.6
August	01-EW02-20150811	8/11/2015	76	36	31	0.97	74.6
September	01-EW02-20150909	9/9/2015	77	40	30	1.11	75.7
October	01-EW02-20151013	10/13/2015	76	36	31	1.00	76.7
November	01-EW02-20151110	11/10/2015	78	34	30	0.95	77.7
December	01-EW02-20151208	12/8/2015	76	35	31	0.98	78.6
January	01-EW02-20160112	1/12/2016	90	31	31	1.03	79.7
March	01-EW02-20160209	2/9/2016	/0 77	32	29	0.85	80.5
April	01-EW02-20100308	4/19/2016	77	35	30	0.94	82.4
May	01-EW02-20160510	5/10/2016	77	34	31	0.96	83.4
June	01-EW02-20160614	6/14/2016	76	31	30	0.82	84.2
July	01-EW02-20160713	7/13/2016	77	28	31	0.79	85.0
August	01-EW02-20160809	8/9/2016	75	29	31	0.80	85.8

Appendix E2 - Backup Calculations Figure 2-2 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-02 Lawrence Aviation Industries Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

			Average Flow	Total CVOC		Mass Removed	Cumulative Mass
			Rate	Concentration	No. of Pumping	and Treated ¹	Removed and Treated
Month	Sample ID	Sample Date	(gpm)	(µg/l)	Days in Period	(lbs)	(lbs)
September	01-EW02-20160913	9/13/2016	74	26	30	0.63	86.4
October	01-EW02-20161026	10/26/2016	70	24	31	0.56	87.0
November	01-EW02-20161115	11/15/2016	77	25	30	0.68	87.7
December	01-EW02-20161212	12/12/2016	75	19	31	0.40	88.1
January	01-EW02-20170110	1/10/2017	77	19	31	0.50	88.6
February	01-EW02-20170214	2/14/2017	77	15	28	0.39	89.0
March	01-EW02-20170316	3/16/2017	77	18	31	0.50	89.5
April	01-EW02-20170411	4/11/2017	77	20	30	0.54	90.0
May	01-EW02-20170510	5/10/2017	77	29	31	0.75	90.8
June	01-EW02-20170613	6/13/2017	77	21	30	0.57	91.3
July	01-EW02-20170712	7/12/2017	77	23	31	0.65	92.0
August	01-EW02-20170809	8/9/2017	76	19	31	0.52	92.5
September	01-EW02-20170913	9/13/2017	76	18	30	0.49	93.0
October	01-EW02-20171010	10/10/2017	73	20	31	0.55	93.6
November	01-EW02-20171114	11/14/2017	77	23	30	0.61	94.2
December	01-EW02-20171212	12/12/2017	76	21	31	0.58	94.8
January	01-EW02-20180109	1/9/2018	76	20	30	0.51	95.3
February	01-EW02-20180213	2/13/2018	76	18	28	0.47	95.8
March	01-EW02-20180314	3/14/2018	76	19	31	0.55	96.4
April	01-EW02-20180410	4/10/2018	76	20	30	0.56	96.9
May	01-EW02-20180508	5/8/2018	79	19	31	0.57	97.5
June	01-EW02-20180614	6/14/2018	77	25	30	0.69	98.2
July	01-EW02-20180710	7/10/2018	77	19	31	0.53	98.7
August ⁹	01-EW02-20180816	8/16/2018	91	26	31	0.88	99.6
September	01-EW02-20180911	9/11/2018	76	32	30	0.82	100.4
October	01-EW02-20181009	10/9/2018	82	33	31	0.97	101.4
November	01-EW02-20181113	11/13/2018	77	34	30	0.95	102.3
December	01-EW02-20181212	12/12/2018	93	33	31	1.09	103.4
January				No sample collected	1		
February	01-EW02-20190213	2/13/2019	78	33	28	0.81	104.2
March	01-EW02-20190312	3/12/2019	77	32	31	0.91	105.1
April	01-EW02-20190409	4/9/2019	77	36	30	0.99	106.1
May	01-EW02-20190515	5/15/2019	77	39	31	1.12	107.2
June	01-EW02_20190611	6/11/2019	80	33	30	0.86	108.1
July	01-EW02_20190717	7/17/2019	72	44	31	1.09	109.2
August	01-EW-2-20190813	8/13/2019	80	42	31	1.24	110.4
September	01-EW-2-20190910	9/10/2019	75	46	30	1.21	111.6
October	01-EW02-20191008	10/8/2019	73	52	31	1.37	113.0
November	01-EW02-20191112	11/12/2019	78	46	30	1.26	114.3
December	01-EW02-20191217	12/17/2019	78	62	31	1.78	116.1
January	01-EW02-20200114	1/14/2020	75	59	31	1.61	117.7
February	01-EW02-20200211	2/11/2020	70	46	29	1.08	118.7
March	01-EW02-20200310	3/10/2020	75	47	31	1.24	120.0
April	01-EW02-20200414	4/14/2020	82	39	30	1.08	121.1

Notes:

1. The mass removal rate was calculated using the following formula. Only flow going to the GWTF was included.

Total CVOC Concentration (μ g/l) x Groundwater Extracted (gal) x 3.79 (l/gal) x 1(lb)/453,600,000 (μ g)

2. Data provided by CDM Smith/USEPA.

3. The sample results for ITP Day 5 were used for October. A representative date of October 15, 2011 was used.

4. The Total CVOC concentration was calculated as an average of the October and December results. A representative

date of November 15, 2011 was used.

5. Discharge from EW-02 was treated via the air stripper.

6. Discharge from EW-02 was routed to the permanganate re-circulations system from February 10 to March 20, 2011.

No sample was collected from EW-02 in March. The EW-02 February sample results were used for the March calculations. A representative date of March 15, 2011 was used.

7. Discharge from EW-02 routed to the permanganate re-circulation system from July 12 to August 4, 2011.

Flow from EW-02 was treated via the air stripper on all other days of the reporting period. EW-02 was offline from July 13, 2012 to

September 9, 2012 during injection well redevelopment activities. Flow from EW-02 was treated via the air stripper since September 10, 2012.

8. No sample was collected since the plant was offline during injection well redevelopment activities.

9. EW-01 was offline from August 1 to 8, 2018 due to well cleaning.

Acronyms:

CVOC - chlorinated volatile organic compound ITP - initial testing program EW- extraction well GWTF - groundwater treatment facility ID - identification N/A - not available

lb - pound µg/l - microgram per liter gal- gallons 1 - liter

Appendix E3 - Backup Calculations Figure 3-1 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-1 Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

Month	Sample ID	Sample Date	Average Flow Rate (gpm)	Total CVOCs Concentrations (µg/l)	No. of Pumping Days in Period	Mass Removed and Treated ¹ (lbs)	Cumulative Mass Removed and Treated (lbs)
August	N/A	8/23/2011	8	313	1	0.03	0.03
	N/A	8/25/2011	8	332	2	0.06	0.1
	N/A	8/30/2011	8	182	5	0.10	0.2
September	N/A	9/13/2011	6	2/4	14	0.28	0.5
	N/A N/A	9/15/2011	6	364	2	0.06	0.5
	N/A	9/20/2011	7	373	2	0.10	0.0
	N/A	9/22/2011	8	393	5	0.20	0.9
	N/A	9/29/2011	8	152	2	0.02	0.9
October 2,3	N/A						
November 2,3	N/A						
December ^{2,3}	N/A						
January ²	N/A	1/25/2012	30	270	31	2 69	3.6
Fobruary ²	N/A	2/17/2012	30	220	28	2.09	5.0
Marah ²	N/A	2/17/2012	20	330	28	2.09	0.3
March	N/A	3/22/2012	26	230	30	2.69	9.0
April	N/A	4/19/2012	37	300	28	2.16	11.1
May ²	N/A	5/31/2012	17	190	28	2.16	13.3
June ²	N/A	6/7/2012	16	320	28	2.16	15.5
July ^{2,4}							
August 2,4							
September 2,4							
October	NYD002041531-0012	10/25/2012	16	333	31	1.78	17.2
November	NYD002041531-0033	11/19/2012	16	314	30	1.67	18.9
December 5	NYD002041531-0053	12/19/2012	10	323	31	1.20	20.1
January	NYD002041531-0080	1/30/2013	16	271	31	1.61	21.7
February	01-EW01-20130219	2/20/2013	30	282	28	2.44	24.2
March	02-EW01-20130313	3/13/2013	33	352	31	4.37	28.5
April	02-EW01-20130410	4/10/2013	33	333	30	3.90	32.4
May	02-EW01-20130515	5/15/2013	39	333	31	4.42	36.9
June	02-EW01-20130612	6/12/2013	48	342	30	5.59	42.4
July	02-EW01-20130710	7/10/2013	48	382	31	6.65	49.1
August	02-EW01-20130814	8/14/2013	48	403	31	6.74	55.8
September	02-EW01-20130918	9/18/2013	38	116	30	1.42	57.3
October	02-EW01-102313	10/23/2013	30	301	31	3.18	60.4
November	02-EW01-20131120	11/20/2013	34	230	30	2.64	63.1
December	02-EW01-20131211	12/11/2013	49	249	31	4.45	67.5
January	02-EW01-20140115	1/15/2014	48	241	31	4.28	71.8
February	02-EW01-20140212	2/12/2014	48	200	28	3.15	75.0
March	02-EW01-20140312	3/12/2014	51	189	31	3.57	78.5
April	02-EW01-20140409	4/9/2014	53	199	30	3.72	82.2
May	02-EW01-20140507	5/7/2014	54	149	31	2.97	85.2
June	02-EW01-20140611	7/0/2014	53	199	30	3.83	89.0
July	02-EW01-20140709	8/12/2014	51	1/9	21	2 50	92.3
September	02-EW01-20140813	9/11/2014	40	160	30	2.07	90.0
October	02-EW01-20141015	10/15/2014	49	179	31	3.27	99.3
November	02-EW01-20141112	11/12/2014	50	184	30	3.27	102.6
December	02-EW01-20141210	12/10/2014	49	158	31	2.87	105.5
January	02-EW01-20150114	1/14/2015	48	167	31	2.96	108.4
February	02-EW01-20150211	2/11/2015	48	148	28	2.30	110.7
March	02-EW01-20150311	3/11/2015	48	128	31	2.28	113.0
April	02-EW01-20150415	4/15/2015	47	138	30	2.23	115.3
May	02-EW01-20150513	5/13/2015	47	160	31	2.77	118.0
June	02-EW01-20150610	6/10/2015	48	160	30	2.77	120.8
July	02-EW01-20150716	7/16/2015	46	129	31	2.10	122.9
August	02-EW01-20150812	8/12/2015	47	138	31	2.41	125.3
September	02-EW01-20150909	9/9/2015	46	148	30	2.45	127.8
October	02-EW01-20151014	10/14/2015	48	278	31	4.90	132.7
November	02-EW01-20151111	11/11/2015	48	139	30	2.38	135.0
December	02-EW01-20151209	12/9/2015	48	149	31	2.64	137.7
January	02-EW01-20160113	1/13/2016	48	138	31	2.40	140.1
Appendix E3 - Backup Calculations Figure 3-1 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-1 Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

Month	Sample ID	Sample Date	Average Flow Rate (gpm)	Total CVOCs Concentrations (µg/l)	No. of Pumping Days in Period	Mass Removed and Treated ¹ (lbs)	Cumulative Mass Removed and Treated (lbs)
February	02-EW01-20160210	2/10/2016	48	128	29	2.11	142.2
March	02-EW01-20160309	3/9/2016	48	127	31	2.27	144.5
April	02-EW01-20160420	4/20/2016	71	128	30	2.34	146.8
May	02-EW01-20160511	5/11/2016	69	139	31	3.57	150.4
June	02-EW01-20160615	6/15/2016	72	131	30	3.39	153.7
July	02-EW01-20160713	7/13/2016	72	127	31	3.36	157.1
August	02-EW01-20160810	8/10/2016	72	138	31	3.68	160.8
September	02-EW01-20160914	9/14/2016	74	117	30	3.20	164.0
October	02-EW01-20161026	10/26/2016	71	128	31	3.09	167.1
November	02-EW01-20161115	11/15/2016	58	126	30	2.62	169.7
December	02-EW01-20161212	12/12/2016	71	98	31	2.57	172.3
January	02-EW01-20170110	1/10/2017	72	107	31	2.80	175.1
February	02-EW01-20170214	2/14/2017	73	95	28	2.30	177.4
March	02-EW01-20170316	3/16/2017	70	93	31	2.43	179.8
April	02-EW01-20170411	4/11/2017	71	108	30	2.58	182.4
May	02-EW01-20170510	5/10/2017	72	118	31	3.12	185.5
June	02-EW01-20170613	6/13/2017	72	117	30	2.88	188.4
July	02-EW01-20170712	7/12/2017	72	119	31	3.11	191.5
August	02-EW01-20170809	8/9/2017	71	103	31	2.65	194.1
September	02-EW01-20170913	9/13/2017	67	100	30	2.39	196.5
October	02-EW01-20171010	10/10/2017	62	109	31	2.47	199.0
November	02-EW01-20171114	11/14/2017	64	148	30	3.43	202.4
December	02-EW01-20171212	12/12/2017	62	105	31	2.43	204.9
January	02-EW01-20180109	1/9/2018	63	100	31	2.35	207.2
February	02-EW01-20180213	2/13/2018	64	91	28	1.96	209.2
March	02-EW01-20180314	3/14/2018	64	107	31	2.56	211.7
April	02-EW01-20180410	4/10/2018	64	127	30	2.93	214.7
Mav	02-EW01-20180508	5/8/2018	36	94	31	2.21	216.9
June	02-EW01-20180612	6/12/2018	64	87	30	2.02	218.9
Julv	02-EW01-20180710	7/10/2018	62	88	31	2.07	221.0
August	02-EW01-20180816	8/16/2018	85	90	31	2.85	223.8
September	02-EW01-20180911	9/11/2018	67	118	30	2.75	226.6
October	02-EW01-20181009	10/9/2018	62	102	31	2.36	228.9
November	02-EW01-20181113	11/13/2018	64	102	30	2.36	231.3
December	02-EW01-20181212	12/12/2018	74	97	31	2.55	233.8
January				No sample collec	ted		
February	02-EW01-20190213	2/13/2019	64	94	28	2.03	235.9
March	02-EW01-20190312	3/12/2019	64	85	31	1.95	237.8
April	02-EW01-20190409	4/9/2019	64	89	30	2.06	239.9
May	02-EW01-20190515	5/15/2019	64	81	31	1.93	241.8
June	02-EW01 20190611	6/11/2019	62	78	30	1.71	243.5
Julv	02-EW01 20190717	7/17/2019	61	84	31	1.90	245.4
August	02-EW01-20190813	8/13/2019	63	82	31	1.92	247.3
September	02-EW01-20190910	9/10/2019	64	85	30	1.94	249.3
October	02-EW01-20191008	10/8/2019	55	109	31	2.16	251.4
November	02-EW01-20191112	11/12/2019	60	82	30	1.78	253.2
December				No sample collec	ted		
January	02-EW01-20200114	1/14/2020	65	65	31	1.56	254.8
February	02-EW01-20200211	2/11/2020	64	69	29	1.54	256.3
March	02-EW01-20200310	3/10/2020	65	85	31	2.06	258.4
April	02-EW01-20200414	4/14/2020	77	51	30	1.36	259.7

Appendix E3 - Backup Calculations Figure 3-1 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-1 Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

Month Sample ID Sample Date Average Flow Total Rate Condition (gpm)	CVOCs htrations ug/l)No. of Pumping Days in PeriodMass Removed and Treated1 (lbs)Cumulative Mass Removed and Treated (lbs)
---	---

Notes:

1. The mass removal rate was calculated using the following formula. Only flow going to the GWTF was included.

Total CVOC Concentration (µg/l) x Groundwater Extracted (gal) x 3.79 (l/gal) x 1(lb)/453,600,000 (µg)

2. Data provided by USEPA/ERT.

3. No October to December 2011 data due to change in sampling strategy.

4. Data for July to September 2012 will be updated when received.

5. Spent vapor GAC unit was turned offline for change-out. All influent water was treated via the liquid phase GAC and the air stripper was turned off.

Acronyms:

CVOC - chlorinated volatile organic compounds

EW- extraction well

GWTF - groundwater treatment facility ID - identification

N/A - not available

gpm - gallons per minute

lb - pound µg/l - microgram per liter gal- gallons l - liter GAC - granular activated carbon

Appendix E4 - Backup Calculations Figure 3-2 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-2 Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

Month	Sample ID	Sample Date	Average Flow Rate (gpm)	Total CVOC Concentration (µg/l)	No. of Pumping Days in Period	Mass Removed and Treated ¹ (lbs)	Cumulative Mass Removed and Treated (lbs)
August ²	N/A	8/23/2011	7	454	0	0.00	0.0
	N/A	8/25/2011	7	443	2	0.08	0.1
Contouch ou 2	N/A	8/30/2011	7	323	5	0.15	0.2
September	N/A N/A	9/15/2011	8	436	2	0.70	1.0
	N/A	9/20/2011	8	225	5	0.10	1.1
	N/A	9/22/2011	7	604	2	0.10	1.2
	N/A	9/27/2011	7	555	5	0.25	1.5
Q (1 2,3	N/A	9/29/2011	8	343	2	0.06	1.5
November ^{2,3}	N/A N/A						
December ^{2,3}	N/A						
January ²	N/A	1/25/2012	36	530	30	6.47	8.0
February ²	N/A	2/17/2012	30	610	30	6.47	14.5
March ²	N/A	3/22/2012	34	450	30	6.47	20.9
April ²	N/A	4/19/2012	40	440	28	8 29	20.9
May ²	N/A	5/31/2012	53	470	28	8.29	37.5
June ²	N/A	6/7/2012	56	560	28	8.29	45.8
July ^{2,4}		0,772012	20	200	20	0.27	1010
August 2,4							
September 2,4							
October	NYD002041531-0013	10/25/2012	52	515	31	8.93	54.7
November	NYD002041531-0034	11/19/2012	52	557	30	9.62	64.3
December ⁵	NYD002041531-0054	12/19/2012	33	576	31	7.09	71.4
January	NYD002041531-0081	1/30/2013	52	464	31	8.96	80.4
February March	01-EW02-20130219 02-EW02-20130313	2/20/2013	38	484	28	5.30	85./
April	02-EW02-20130313	4/10/2013	35	474	30	5.83	97.9
May	02-EW02-20130515	5/15/2013	20	454	31	3.09	101.0
June	02-EW02-20130612	6/12/2013	20	493	30	3.33	104.3
July	02-EW02-20130710	7/10/2013	20	495	31	3.55	107.9
September	02-EW02-20130814	9/18/2013	20	494	30	2.87	111.5
October	02-EW02-102313	10/23/2013	20	414	31	2.97	117.1
November	02-EW02-20131120	11/20/2013	29	321	30	3.21	120.3
December	02-EW02-20131211	12/11/2013	50	331	31	6.05	126.4
January February	02-EW02-20140115 02-FW02-20140212	2/12/2014	48	260	28	5.35	131./
March	02-EW02-20140312	3/12/2014	52	249	31	4.75	140.7
April	02-EW02-20140409	4/9/2014	52	239	30	4.45	145.1
May	02-EW02-20140507	5/7/2014	54	179	31	3.59	148.7
June	02-EW02-20140611	6/11/2014	54	220	30	4.25	153.0
July	02-EW02-20140709	7/9/2014	51	189	31	3.59	156.6
August	02-EW02-20140813	8/13/2014	51	178	31	3.40	160.0
October	02-EW02-20140011	10/15/2014	49	189	31	3.46	163.4
November	02-EW02-20141112	11/12/2014	50	202	30	3.64	167.1
December	02-EW02-20141210	12/10/2014	50	167	31	3.07	170.1
January	02-EW02-20150114	1/14/2015	49	178	31	3.22	173.4
February	02-EW02-20150211	2/11/2015	47	178	28	2.76	176.1
March	02-EW02-20150311	3/11/2015	48	148	31	2.64	178.8
May	02-EW02-20150413	5/13/2015	47	108	31	3.28	184.8
June	02-EW02-20150610	6/10/2015	48	180	30	3.11	187.9
July	02-EW02-20150716	7/16/2015	45	159	31	2.56	190.4
August	02-EW02-20150812	8/12/2015	47	168	31	2.92	193.4
September	02-EW02-20150909	9/9/2015	46	158	30	2.62	196.0
October	02-EW02-20151014	10/14/2015	53	149	31	2.94	198.9
November	02-EW02-20151111	11/11/2015	48	149	30	2.55	201.5
January	02-EW02-20151209	1/13/2015	48	159	31	2.81	204.3
February	02-EW02-20160115	2/10/2016	40	138	29	2.40	200.7
March	02-EW02-20160309	3/9/2016	48	128	31	2.28	211.4
April	02-EW02-20160420	4/20/2016	79	158	30	3.23	214.6
May	02-EW02-20160511	5/11/2016	77	129	31	3.69	218.3

Appendix E4 - Backup Calculations Figure 3-2 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-2 Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

Month	Sample ID	Sample Date	Average Flow Rate (gpm)	Total CVOC Concentration (µg/l)	No. of Pumping Days in Period	Mass Removed and Treated ¹ (lbs)	Cumulative Mass Removed and Treated (lbs)
June	02-EW02-20160615	6/15/2016	80	121	30	3.49	221.8
July	02-EW02-20160713	7/13/2016	80	104	31	3.06	224.9
August	02-EW02-20160810	8/10/2016	80	109	31	3.21	228.1
September	02-EW02-20160914	9/14/2016	82	93	30	2.84	230.9
October	02-EW02-20161026	10/26/2016	79	101	31	2.74	233.7
November	02-EW02-20161115	11/15/2016	77	105	30	2.90	236.6
December	02-EW02-20161212	12/12/2016	78	86	31	2.52	239.1
January	02-EW02-20170110	1/10/2017	78	84	31	2.38	241.5
February	02-EW02-20170214	2/14/2017	79	68	28	1.79	243.2
March	02-EW02-20170316	3/16/2017	78	78	31	2.26	245.5
April	02-EW02-20170411	4/11/2017	79	78	30	2.06	247.6
May	02-EW02-20170510	5/10/2017	80	85	31	2.50	250.1
June	02-EW02-20170613	6/13/2017	80	80	30	2.19	252.3
July	02-EW02-20170712	7/12/2017	80	81	31	2.34	254.6
August	02-EW02-20170809	8/9/2017	80	70	31	2.03	256.6
September	02-EW02-20170913	9/13/2017	80	67	30	1.90	258.5
October	02-EW02-20171010	10/10/2017	73	70	31	1.86	260.4
November	02-EW02-20171114	11/14/2017	80	83	30	2.41	262.8
December	02-EW02-20171212	12/12/2017	77	62	31	1.79	264.6
January	02-EW02-20180109	1/9/2018	80	72	31	2.15	266.7
February	02-EW02-20180213	2/13/2018	80	57	28	1.52	268.3
March	02-EW02-20180314	3/14/2018	80	61	31	1.81	270.1
April	02-EW02-20180410	4/10/2018	77	67	30	1.86	271.9
May	02-EW02-20180508	5/8/2018	68	59	31	1.48	273.4
June	02-EW02-20180612	6/12/2018	68	52	30	1.27	274.7
July	02-EW02-20180/10	7/10/2018	74	51	31	1.42	276.1
August	02-EW02-20180816	8/16/2018	68	51	31	1.29	277.4
September	02-EW02-20180911	9/11/2018	68	58	30	1.36	278.7
October	02-EW02-20181009	10/9/2018	78	62	31	1.79	280.5
November	02-EW02-20181113	11/13/2018	80	65	30	1.87	282.4
December	02-EW02-20181212	12/12/2018	100	66	31	2.34	284.7
January			1	No sample collecte	d	1.00	
February	02-EW02-20190213	2/13/2019	80	70	28	1.89	286.6
March	02-EW02-20190312	3/12/2019	80	68	31	1.93	288.6
April	02-EW02-20190409	4/9/2019	80	72	30	2.07	290.6
May	02-EW02-20190515	5/15/2019	80	73	31	2.14	292.8
June	02-EW02_20190611	6/11/2019	82	65	30	1.87	294.6
July	02-EW02_20190717	7/17/2019	77	77	31	2.20	296.8
August	02-EW02-20190813	8/13/2019	83	76	31	2.36	299.2
September	02-EW02-20190910	9/10/2019	45	78	30	1.25	300.5
October	02-EW02-20191008	10/8/2019	40	83	31	1.19	301.6
November	02-EW02-20191112	11/12/2019	81	74	30	2.15	303.8
December	02-EW02-20191217	12/17/2019	80	77	31	2.29	306.1
January	02-EW02-20200114	1/14/2020	77	96	31	2.73	308.8
February	02-EW02-20200211	2/11/2020	75	70	29	1.82	310.6
March	02-EW02-20200310	3/10/2020	74	82	31	2.43	313.1
April	02-EW02-20200414	4/14/2020	84	48	30	1.42	314.5

Notes:

1. The mass removal rate was calculated using the following formula. Only flow going to the GWTF was included.

Total CVOC Concentration (µg/l) x Groundwater Extracted (gal) x 3.79 (l/gal) x 1(lb)/453,600,000 (µg)

2. Data provided by USEPA/ERT.

3. No October to December 2011 data due to change in sampling strategy.

4. Data for July to September 2012 will be updated when received.

5. Spent vapor GAC unit was turned offline for change-out. All influent water was treated via the liquid phase GAC and the air stripper was turned off.

Acronyms:

CVOC- chlorinated volatile organic compound EW- extraction well GWTF - groundwater treatment facility ID - identification N/A - not available gpm - gallons per minute lb - pound µg/l - microgram per liter gal- gallons l - liter GAC - granular activated carbon

Appendix E5 - Backup Calculations Figure 3-3 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-6 Old Mill Pond Groundwater Treatment Facility Lawrence Aviation Industries Site, Port Jefferson Station, New York

Month	Sample ID	Sample Date	Average Flow Rate (gpm)	Total CVOC Concentration (µg/l)	No. of Pumping Days in Period	Mass Removed and Treated ¹ (lbs)	Cumulative Mass Removed and Treated (lbs)
September ²	02-EW06-20130918	9/18/2013	19	934	30	3.05	3.1
October	02-EW06-102313	10/23/2013	18	841	31	2.97	6.0
December	02-EW06-20131120	12/11/2013	28 47	649 687	30	6.12 11.93	24.1
January	02-EW06-20140115	1/15/2014	47	637	31	11.14	35.2
February	02-EW06-20140212	2/12/2014	47	596	28	9.14	44.4
March	02-EW06-20140312	3/12/2014	43	575	31	9.02	53.4
April	02-EW06-20140409	4/9/2014	39	576	30	7.93	61.3
May	02-EW06-20140507	5/7/2014 6/11/2014	39	435	31	0.35 7.86	6/./
July	02-EW06-20140709	7/9/2014	39	515	31	7.37	82.9
August	02-EW06-20140813	8/13/2014	39	495	31	7.09	90.0
September	02-EW06-20140911	9/11/2014	41	474	30	6.93	96.9
October	02-EW06-20141015	10/15/2014	46	505	31	8.51	98.5
November	02-EW06-201411112	11/12/2014	44	342	30	8.26 5.88	106./
January	02-EW06-20150114	1/14/2015	40	385	31	6.78	112.0
February	02-EW06-20150211	2/11/2015	46	494	28	7.65	127.1
March	02-EW06-20150311	3/11/2015	48	394	31	7.01	134.1
April	02-EW06-20150415	4/15/2015	47	425	30	6.85	140.9
May	02-EW06-20150513	5/13/2015	47/	545	31	9.43	150.3
June	02-EW06-20150610	7/16/2015	48	426	30	8.95 6.70	159.5
August	02-EW06-20150812	8/12/2015	48	434	31	7.64	173.6
September	02-EW06-20150909	9/9/2015	46	414	30	6.84	180.5
October	02-EW06-20151014	10/14/2015	47	424	31	7.32	187.8
November	02-EW06-20151111	11/11/2015	48	404	30	6.93	194.7
December	02-EW06-20151209	1/13/2015	48	445	31	7.87	202.6
February	02-EW06-20160210	2/10/2016	48	424	29	7.00	216.9
March	02-EW06-20160309	3/9/2016	48	393	31	7.02	224.0
April	02-EW06-20160420	4/20/2016	67	374	30	6.51	230.5
May	02-EW06-20160511	5/11/2016	64	394	31	9.42	239.9
June	02-EW06-20160615	6/15/2016	68	373	30	9.11	249.0
July	02-EW06-20160713	7/13/2016	66	331	31	8.13	257.1
August	02-EW06-20160810	8/10/2016	64	353	31	8.35	265.5
October	02-EW06-20160914	9/14/2016	64	301	30	7.37	272.9
November	02-EW06-20161115	11/15/2016	61	280	30	6.16	286.0
December	02-EW06-20161212	12/12/2016	63	311	31	7.30	293.3
January	02-EW06-20170110	1/10/2017	70	271	31	6.87	300.2
February	02-EW06-20170214	2/14/2017	89	260	28	7.68	307.9
March	02-EW06-20170316	3/16/2017	86	250	31	8.02	315.9
April	02-EW06-20170411	4/11/2017	88	291	30	8.63	324.5
May	02-EW06-20170510	5/10/2017	88	301	31	9.76	334.3
June	02-EW06-20170613	6/13/2017	89	282	30	8.61	342.9
July	02-EW06-20170712	8/9/2017	88	294	31	9.38	352.5
September	02-EW06-20170913	9/13/2017	88	232	30	7 30	367.7
October	02-EW06-20171010	10/10/2017	85	263	31	8.18	378.4
November	02-EW06-20171114	11/14/2017	88	342	30	10.87	389.3
December	02-EW06-20171212	12/12/2017	85	281	31	8.88	398.1
January	02-EW06-20180109	1/9/2018	88	261	31	8.51	406.7
February	02-EW06-20180213	2/13/2018	87	220	28	6.47	413.1
March	02-EW06-20180314	3/14/2018	81	331	31	10.00	423.1
April	02-EW06-20180410	4/10/2018	80	293	30	8.45	431.6
May	02-EW06-20180508	5/8/2018	79	281	31	8.28	439.9
Jule	02-EW06-20180012	7/10/2018	80 79	2/0	30	7.90	447.8 454.9
August	02-EW06-20180816	8/16/2018	95	242	31	9.99	464 9
September	02-EW06-20180911	9/11/2018	76	302	30	7.92	472.8
October	02-EW06-20181009	10/9/2018	77	287	31	8.24	481.1
November	02-EW06-20181113	11/13/2018	80	342	30	9.87	491.0
December	02-EW06-20181212	12/12/2018	109	283	31	10.93	501.9
January		_	<u> </u>	No sample collecte	ed		
February	02-EW06-20190213	2/13/2019	80	313	28	8.42	510.3
March	02-EW06-20190312	3/12/2019	80	302	31	8.61	518.9

Appendix E5 - Backup Calculations Figure 3-3 - Influent CVOC Concentrations and Mass Removed vs. Time - EW-6 **Old Mill Pond Groundwater Treatment Facility** Lawrence Aviation Industries Site, Port Jefferson Station, New York

Month	Sample ID	Sample Date	Average Flow Rate (gpm)	Total CVOC Concentration (µg/l)	No. of Pumping Days in Period	Mass Removed and Treated ¹ (lbs)	Cumulative Mass Removed and Treated (lbs)
April	02-EW06-20190409	4/9/2019	80	282	30	8.14	527.1
May	02-EW06-20190515	5/15/2019	80	312	31	9.23	536.3
June	02-EW06_20190611	6/11/2019	89	303	30	9.50	545.8
July	02-EW06_20190717	7/17/2019	77	311	31	8.94	554.7
August	02-EW-6-20190813	8/13/2019	90	292	31	9.81	564.5
September	02-EW-6-20190910	9/10/2019	80	283	30	8.06	572.6
October	02-EW06-20191008	10/8/2019	79	332	31	9.47	582.1
November	02-EW06-20191112	11/12/2019	87	313	30	9.80	591.9
December	02-EW06-20191217	12/17/2019	87	262	31	8.48	600.3
January	02-EW06-20200114	1/14/2020	84	334	31	10.33	610.7
February	02-EW06-20200211	2/11/2020	81	270	29	7.58	618.3
March	02-EW06-20200310	3/10/2020	80	364	31	10.01	628.3
April	02-EW06-20200414	4/14/2020	92	199	30	6.39	634.7

Notes:

1. The mass removal rate was calculated using the following formula. Only flow going to the GWTF was included.

Total CVOC Concentration (µg/l) x Groundwater Extracted (gal) x 3.79 (l/gal) x 1(lb)/453,600,000 (µg)

2. Installation and startup of EW-6 was completed by August 31, 2013.

Acronyms: CVOC - chlorinated volatile organic compound EW- extraction well GWTF - groundwater treatment facility

lb - pound μg/l - microgram per liter gal- gallons

ID - identification GAC - granular activated carbon l - liter gpm - gallons per minute

APPENDIX F

Summary of Monthly Operations from

October 2012 to September 2019

Item	Oct. 2012	Nov. 2012	Dec. 2012	Jan. 2013	Feb. 2013	Mar. 2013	Apr. 2013	May 2013	Jun. 2013	Jul. 2013	Aug. 2013	Sep. 2013	Cumulative Year 2 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-01 Runtime	644	628	704	634	521	657	682	699	697	719	737	704	8,026
EW-02 Runtime	647	624	706	635	524	662	682	699	695	719	737	705	8,035
Treatment System Downtime (hours)													
Planned	79	57	0	0	0	19	0	0	1	15	0	2	173
Unplanned	18	35	38	110	148	68	38	45	24	10	7	13	554
System Uptime	86.96%	87.22%	94.89%	85.35%	77.97%	88.98%	94.72%	93.95%	96.81%	96.64%	99.06%	97.92%	91.71%
Treatment Summary													
Gallons extracted from EW-01	2,297,748	2,789,848	3,155,268	2,838,708	2,341,080	2,949,936	2,982,040	3,128,604	3,076,344	3,173,404	3,225,336	3,134,128	35,092,444
Average flow rate from EW-01 (gpm)	59	74	74.4	74.3	74.6	71	73.2	74.7	74	73.9	73.3	74.4	72.6
Gallons extracted from EW-02	3,398,856	2,803,508	3,138,300	2,825,020	2,321,688	2,938,988	2,978,928	3,117,764	3,066,004	3,169,072	3,217,712	3,128,152	36,103,992
Average flow rate from EW-02 (gpm)	87	74	74	74	74.5	74.4	73.1	74.3	73.7	73.8	73.1	74.3	75.1
Total gallons treated	5,696,604	5,593,356	6,293,568	5,663,728	4,662,768	5,888,924	5,960,968	6,246,368	6,142,348	6,342,476	6,443,048	6,262,280	71,196,436

Acronyms:

gpm - gallons per minute

% - percentage

Notes:

Item	Oct. 2013	Nov. 2013	Dec. 2013	Jan. 2014	Feb. 2014	Mar. 2014	Apr. 2014	May 2014	Jun. 2014	Jul. 2014	Aug. 2014	Sep. 2014	Cumulative Year 3 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-01 Runtime	715	676	692	722	656	727	709	708	704	738	733	706	8,486
EW-02 Runtime	715	677	692	722	660	726	709	708	704	738	733	706	8,490
Treatment System Downtime (hours)													
Planned	4	7	17	6	1	5	3	17	9	0	10.5	13.5	92
Unplanned	25	37	35	16	11	12	8	19	7	6	0.5	0.5	177
System Uptime	96.10%	94.03%	93.01%	97.04%	98.21%	97.72%	98.47%	95.16%	97.78%	99.19%	98.52%	98.06%	96.94%
Treatment Summary													
Gallons extracted from EW-01	3,202,168	3,010,928	3,059,608	3,250,064	2,928,160	3,234,224	3,160,550	2,833,544	3,116,864	3,262,176	3,273,424	3,093,440	37,425,150
Average flow rate from EW-01 (gpm)	75	73.7	73.9	75.3	74.7	72.9	74.3	66.7	73.8	73.7	74.4	73.0	73
Gallons extracted from EW-02	3,191,552	3,006,376	3,064,520	3,217,176	2,924,040	3,232,128	3,158,330	2,832,176	3,102,968	3,262,096	3,272,208	3,041,000	37,304,570
Average flow rate from EW-02 (gpm)	74.8	74	74	74.5	74.2	74.5	74.2	66.7	73.5	73.7	74.4	71.8	73
Total gallons treated	6,393,720	6,017,304	6,124,128	6,467,240	5,852,200	6,466,352	6,318,880	5,665,720	6,219,832	6,524,272	6,545,632	6,134,440	74,729,720

Acronyms:

gpm - gallons per minute \tilde{a}

% - percentage

Notes:

Item	Oct. 2014	Nov. 2014	Dec. 2014	Jan. 2015	Feb. 2015	Mar. 2015	Apr. 2015	May 2015	Jun. 2015	Jul. 2015	Aug. 2015	Sep. 2015	Cumulative Year 4 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-01 Runtime	736	717	716.25	725	666	742	707	734	707	711	711	719	8,592
EW-02 Runtime	737	717	716	725	669	742	707	736	708	711	712	720	8,600
Treatment System Downtime (hours)													
Planned	2.0	3.0	27.5	0.0	0.0	0.0	12.0	0.0	0.0	4.5	0.0	0.0	49
Unplanned	3.5	0.0	0.75	19.00	9.00	2.00	0.75	10.00	13.00	2.5	33.0	1.0	95
System Uptime	98.9%	99.6%	96.3%	97.4%	98.7%	99.7%	98.2%	98.7%	98.2%	99.1%	95.6%	99.9%	98.3%
Treatment Summary													
Gallons extracted from EW-01	3,334,832	3,188,970	3,506,200	3,261,210	3,085,096	3,391,200	3,201,808	3,288,136	3,194,336	3,274,400	3,283,072	3,350,848	39,360,108
Average flow rate from EW-01 (gpm)	75.5	74.1	77.9	78.0	77.2	76.2	75.5	74.7	75.3	76.8	77.0	77.7	76
Gallons extracted from EW-02	3,328,600	3,194,130	3,461,230	3,222,900	3,085,656	3,436,448	3,246,528	3,261,472	3,157,808	3,232,384	3,243,584	3,312,112	39,182,852
Average flow rate from EW-02 (gpm)	75.3	74.2	76.9	77.0	76.9	77.2	76.5	73.9	74.3	75.8	75.9	76.7	76
Total gallons treated	6,663,432	6,383,100	6,967,430	6,484,110	6,170,752	6,827,648	6,448,336	6,549,608	6,352,144	6,506,784	6,526,656	6,662,960	78,542,960

Acronyms:

gpm - gallons per minute \tilde{a}

% - percentage

Notes:

Item	Oct. 2015	Nov. 2015	Dec. 2015	Jan. 2016	Feb. 2016	Mar. 2016	Apr. 2016	May 2016	Jun. 2016	Jul. 2016	Aug. 2016	Sep. 2016	Cumulative Year 5 ¹
Calender Days in Period	31	30	31	31	29	31	30	31	30	31	31	30	366
Treatment System Runtime (hours)													
EW-01 Runtime	728	718	743	384	694	695	694	740	700	739	741	644	8,219
EW-02 Runtime	728	718	743	740	696	694	695	740	699	739	741	643	8,574
Treatment System Downtime (hours)													
Planned	0.0	0.0	0.0	2.0	0.0	0.8	0.0	2.8	12.3	0.5	0.0	0.5	19
Unplanned	16.5	2.0	1.25	2.50	0.50	0.00	1.00	0.25	6.00	2.0	2.8	55.0	90
System Uptime	97.8%	99.7%	99.8%	99.4%	99.9%	99.9%	99.9%	99.6%	97.5%	99.7%	99.6%	92.3%	98.8%
Treatment Summary													
Gallons extracted from EW-01	3,367,072	3,254,352	3,448,304	1,786,272	3,233,568	3,235,664	3,236,144	3,445,744	3,192,080	3,439,664	3,368,224	2,904,096	37,911,184
Average flow rate from EW-01 (gpm)	77.1	75.5	77.4	77.5	77.7	77.6	77.7	77.6	76.0	77.6	75.8	75.2	77
Gallons extracted from EW-02	3,329,584	3,350,272	3,403,680	4,014,368	3,190,496	3,193,440	3,190,416	3,397,856	3,200,784	3,393,856	3,320,112	2,866,112	39,850,976
Average flow rate from EW-02 (gpm)	76.3	77.8	76.4	90.5	76.5	76.7	76.5	76.5	76.3	76.5	74.7	74.3	77
Total gallons treated	6,696,656	6,604,624	6,851,984	5,800,640	6,424,064	6,429,104	6,426,560	6,843,600	6,392,864	6,833,520	6,688,336	5,770,208	77,762,160

Acronyms:

gpm - gallons per minute \tilde{a}

% - percentage

Notes:

Item	Oct. 2016	Nov. 2016	Dec. 2016	Jan. 2017	Feb. 2017	Mar. 2017	Apr. 2017	May 2017	Jun. 2017	Jul. 2017	Aug. 2017	Sept. 2017	Cumulative Year 6 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-01 Runtime	677	719	666	677	662	726	696	675	709	738	733	720	8,398
EW-02 Runtime	676	714	677	678	662	727	712	674	710	739	733	718	8,420
Treatment System Downtime (hours)													
Planned	63.00	1.00	46.00	23.00	9.00	15.00	6.00	2.75	1.00	1.00	1.00	0.25	169
Unplanned	4.50	5.00	21.00	43.00	1.00	2.00	2.00	67.25	9.00	4.00	10.00	1.75	171
System Uptime	90.9%	99.2%	91.0%	91.1%	98.5%	97.7%	98.9%	90.6%	98.6%	99.3%	98.5%	99.7%	96.2%
Treatment Summary													
Gallons extracted from EW-01	2,890,096	3,356,208	3,032,576	3,164,192	3,082,992	3,387,456	3,240,896	3,144,064	3,308,560	3,441,120	3,404,032	3,355,744	38,807,936
Average flow rate from EW-01 (gpm)	71	78	76	78	78	78	78	78	78	78	77	78	77
Gallons extracted from EW-02	2,855,392	3,286,608	3,045,808	3,117,296	3,044,720	3,344,336	3,272,576	3,100,560	3,265,232	3,394,880	3,343,232	3,271,744	38,342,384
Average flow rate from EW-02 (gpm)	70	77	75	77	77	77	77	77	77	77	76	76	76
Total gallons treated	5,745,488	6,642,816	6,078,384	6,281,488	6,127,712	6,731,792	6,513,472	6,244,624	6,573,792	6,836,000	6,747,264	6,627,488	77,150,320

Acronyms:

gpm - gallons per minute \tilde{a}

% - percentage

Notes:

Item	Oct. 2017	Nov. 2017	Dec. 2017	Jan. 2018	Feb. 2018	Mar. 2018	Apr. 2018	May. 2018	Jun. 2018	Jul. 2018	Aug. 2018	Sept. 2018	Cumulative Year 7 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-01 Runtime	742	704	734	681	671	743	718	741	619	739	592	569	8,253
EW-02 Runtime	743	704	734	681	671	739	717	743	614	739	566	566	8,217
Treatment System Downtime (hours)													
Planned	2.00	0.00	8.50	44.50	1.25	0.50	0.00	0.25	0.75	4.75	0.00	2.25	65
Unplanned	0.00	16.50	1.00	20.00	0.00	0.00	3.00	0.75	100.25	0.25	1.00	45.00	188
System Uptime	99.7%	97.7%	98.7%	91.3%	99.8%	99.9%	99.6%	99.9%	86.0%	99.3%	99.9%	93.4%	97.1%
Treatment Summary													
Gallons extracted from EW-01	3,463,040	3,283,328	3,387,552	3,147,024	3,116,464	3,425,984	3,313,920	3,437,552	2,875,760	3,445,984	2,987,248	2,642,288	38,526,144
Average flow rate from EW-01 (gpm)	78	78	77	77	77	77	77	77	77	78	84	77	78
Gallons extracted from EW-02	3,233,168	3,237,872	3,342,576	3,105,312	3,068,144	3,381,024	3,266,288	3,388,432	2,837,616	3,401,136	2,900,672	2,591,328	37,753,568
Average flow rate from EW-02 (gpm)	73	77	76	76	76	76	76	76	77	77	85	76	77
Total gallons treated	6,696,208	6,521,200	6,730,128	6,252,336	6,184,608	6,807,008	6,580,208	6,825,984	5,713,376	6,847,120	5,887,920	5,233,616	76,279,712

Acronyms:

gpm - gallons per minute \tilde{a}

% - percentage

Notes:

Item	Oct. 2018	Nov. 2018	Dec. 2018	Jan. 2019	Feb. 2019	Mar. 2019	Apr. 2019	May. 2019	Jun. 2019	Jul. 2019	Aug. 2019	Sept. 2019	Cumulative Year 8 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-01 Runtime	699	709	708	741	635	741	714	736	651	684	730	708	8,455
EW-02 Runtime	695	709	708	741	627	739	714	736	651	684	730	708	8,441
Treatment System Downtime (hours)													
Planned	0.00	0.00	36.00	3.00	45.00	3.00	1.50	6.50	0.00	3.00	4.00	2.40	104
Unplanned	21.00	0.50	0.00	0.00	0.00	0.00	2.75	1.75	69.50	57.50	10.00	9.75	173
System Uptime	97.2%	99.9%	95.2%	99.6%	93.3%	99.6%	99.4%	98.9%	90.3%	91.9%	98.1%	98.3%	96.8%
Treatment Summary													
Gallons extracted from EW-01	3,480,128	3,316,000	3,999,340	3,441,984	2,956,288	3,543,568	3,324,832	3,428,064	3,157,230	2,943,072	3,487,780	3,098,030	40,176,316
Average flow rate from EW-01 (gpm)	83	78	94	77	78	80	78	78	81	72	80	73	79
Gallons extracted from EW-02	3,402,115	3,272,672	3,955,430	3,397,888	2,921,888	3,409,248	3,282,240	3,399,008	3,125,940	2,958,432	3,499,330	3,114,290	39,738,481
Average flow rate from EW-02 (gpm)	82	77	93	76	78	77	77	77	80	72	80	73	78
Total gallons treated	6,882,243	6,588,672	7,954,770	6,839,872	5,878,176	6,952,816	6,607,072	6,827,072	6,283,170	5,901,504	6,987,110	6,212,320	79,914,797

Acronyms:

gpm - gallons per minute \tilde{a}

% - percentage

Notes:

Item	Oct 2012	Nov 2012	Dec 2012	Ian 2013	Feb 2013	Mar 2013	Apr 2013	May 2013	Jun 2013	Jul 2013	Δμα 2013	Sen 2013	Cumulative
item	000.2012	100.2012	DCC. 2012	Jan. 2013	FCD. 2013	Mar. 2013	Apr. 2013	Włay 2013	Jun. 2013	Jul. 2013	Aug. 2013	Sep. 2013	Year 1 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-1 Runtime	665	663	744	741	575	744	709	682.5	680	723	696	646	8,269
EW-2 Runtime	665	663	744	741	575	744	709	682.5	680	723	696	646	8,269
EW-6 Runtime	N/A	349	349										
Treatment System Downtime (hours)													
Planned	79	57	0	3	97	0	0	54.5	29	0	13	65.5	398
Unplanned	0	0	0	0	0	0	11	7	11	21	35	8.5	93.5
System Uptime	89.38%	92.08%	100.00%	99.59%	85.56%	100.00%	98.47%	91.73%	94.44%	97.18%	93.55%	89.72%	94.31%
Treatment Summary													
Gallons extracted from EW-1	622,080	668,160	446,400	1,305,138	864,230	1,435,678	1,322,059	1,597,751	1,933,018	2,038,214	2,059,064	1,476,454	15,768,246
Average flow rate from EW-1 (gpm)	16	16	10	16	30	33	33	38.7	48	48	48	37.9	31.3
Gallons extracted from EW-2	2,021,760	2,171,520	1,473,120	4,221,765	1,027,086	1,519,756	1,438,736	826,196	815,192	855,960	857,944	764,264	17,993,299
Average flow rate from EW-2 (gpm)	52	52	33	52	38	34.7	34.6	19.8	20	20	20	19.5	33.0
Gallons extracted from EW-6	N/A	379,888	379,888										
Average flow rate from EW-6 (gpm)	N/A	18.7	18.7										
Total gallons treated	2,643,840	2,839,680	1,919,520	5,526,903	1,891,316	2,955,434	2,760,795	2,423,947	2,748,210	2,894,174	2,917,008	2,620,606	34,141,433

Acronyms:

gpm - gallons per minute

PLC - programmable logic controller

Notes:

^{% -} percentage

Itom	Oct 2012	Nov. 2012	Dec 2012	Ion 2014	Eab 2014	Man 2014	Ann 2014	May 2014	Jun 2014	J.,1 2014	Aug 2014	San 2014	Cumulative
Item	Oct. 2015	INOV. 2015	Dec. 2015	Jan. 2014	red. 2014	Mar. 2014	Apr. 2014	Way 2014	Juli. 2014	Jul. 2014	Aug. 2014	Sep. 2014	Year 2 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-1 Runtime	712	677	733	742	652	736	710	743	718	740	744	716	8,623
EW-2 Runtime	712	677	733	742	652	736	710	743	718	740	744	716	8,623
EW-6 Runtime	712	677	733	742	652	736	710	743	718	740	744	716	8,623
Treatment System Downtime (hours)													
Planned	12	39	5	0	19	5	7	0	0	0	0	2	89
Unplanned	20	4	6	2	1	3	3	1	2	4	0	2	48
System Uptime	95.70%	94.03%	98.52%	99.73%	97.02%	98.92%	98.61%	99.87%	99.72%	99.46%	100.00%	99.44%	98.42%
Treatment Summary													
Gallons extracted from EW-1	1,181,304	1,340,866	2,108,928	2,135,224	1,876,720	2,231,848	2,239,568	2,322,368	2,236,496	2,281,056	2,200,424	2,102,848	24,257,650
Average flow rate from EW-1 (gpm)	29.6	33.9	48.6	48.3	48.2	51.2	52.6	53.7	53.4	51.4	49.3	48.9	47.4
Gallons extracted from EW-2	835,992	1,159,930	2,138,678	2,135,224	1,876,728	2,212,808	2,224,852	2,344,796	2,244,336	2,279,628	2,181,824	2,102,512	23,737,308
Average flow rate from EW-2 (gpm)	20.1	29.4	49.8	49.5	49.5	51.6	52.2	53.8	53.7	51.3	48.9	48.9	46.6
Gallons extracted from EW-6	757,007	1,078,611	2,058,836	2,070,261	1,814,709	1,805,363	1,647,036	1,734,432	1,674,106	1,712,433	1,792,928	1,748,438	19,894,160
Average flow rate from EW-6 (gpm)	18.4	27.8	47.3	47	47	42.5	38.7	39.2	39.2	38.6	40.2	40.7	38.9
Total gallons treated	2,774,303	3,579,407	6,306,442	6,340,709	5,568,157	6,250,019	6,111,456	6,401,596	6,154,938	6,273,117	6,175,176	5,953,798	67,889,118

Acronyms:

gpm - gallons per minute

PLC - programmable logic controller

Notes:

^{% -} percentage

Item	0-4 2014	Nov. 2014	Dec. 2014	Iam 2015	E.h. 2015	Man 2015	Amm 2015	May 2015	Jun 2015	T.J. 2015	Aug. 2015	Sam. 2015	Cumulative
nem	Oct. 2014	NOV. 2014	Dec. 2014	Jan. 2015	red. 2015	Mar. 2015	Арг. 2015	May 2015	Jun. 2015	Jul. 2015	Aug. 2015	Sep. 2015	Year 3 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-1 Runtime	738	712	724	744	647	743	680	743	720	709	739	714	8,612
EW-2 Runtime	738	712	724	744	647	743	680	743	720	709	739	714	8,612
EW-6 Runtime	738	712	724	744	647	743	680	743	720	709	739	714	8,612
Treatment System Downtime (hours)													
Planned	4	0	0	0	0	1	0.50	1.00	0	30.75	0	0	37
Unplanned	2	7.75	20.5	0	25.5	0	40	0	0	4	5.5	6	111
System Uptime	99.2%	98.9%	97.2%	100.0%	96.2%	99.9%	94.4%	99.9%	100.0%	95.3%	99.3%	99.2%	98.3%
Treatment Summary													
Gallons extracted from EW-1	2,149,232	2,139,350	2,268,679	2,073,921	1,853,776	2,129,088	1,930,520	2,072,000	2,072,304	1,954,272	2,084,640	1,978,120	24,705,902
Average flow rate from EW-1 (gpm)	48.5	50.1	49.1	47.8	47.8	47.8	47.4	46.5	48.0	45.9	47.0	46.2	47.7
Gallons extracted from EW-2	2,152,480	2,149,530	2,293,146	2,114,797	1,853,776	2,129,108	1,930,668	2,072,008	2,072,304	1,931,744	2,079,408	1,978,304	24,757,273
Average flow rate from EW-2 (gpm)	48.6	50.3	49.6	48.8	47.8	47.8	47.4	46.5	48.0	45.4	46.9	46.2	47.8
Gallons extracted from EW-6	2,002,356	1,869,801	2,141,084	2,050,988	1,853,228	2,127,246	1,930,448	2,072,000	2,071,724	1,883,200	2,109,272	1,978,272	24,089,619
Average flow rate from EW-6 (gpm)	45.2	43.8	46.4	47.6	47.8	47.7	47.3	46.5	48.0	44.3	47.6	46.2	46.5
Total gallons treated	6,304,068	6,158,681	6,702,909	6,239,706	5,560,780	6,385,442	5,791,636	6,216,008	6,216,332	5,769,216	6,273,320	5,934,696	73,552,794

Acronyms:

gpm - gallons per minute

PLC - programmable logic controller

Notes:

^{% -} percentage

Item	Oct 2015	Nov 2015	Dec 2015	Ian 2016	Feb 2016	Mar 2016	Apr 2016	May 2016	Jun 2016	Jul 2016	Δυσ 2016	Sep. 2016	Cumulative
	000.2015	1101.2013	Dec. 2015	Jan. 2010	100.2010	Mar. 2010	Арг. 2010	May 2010	Jun. 2010	Jul. 2010	Aug. 2010	Sep. 2010	Year 4 ¹
Calender Days in Period	31	30	31	31	29	31	30	31	30	31	31	30	366
Treatment System Runtime (hours)													
EW-1 Runtime	740	717	743	728	687	743	519	744	718	738	739	717	8,531
EW-2 Runtime	740	717	743	728	687	743	519	744	718	738	739	717	8,531
EW-6 Runtime	740	717	743	728	687	743	519	744	718	738	739	717	8,531
Treatment System Downtime (hours)													
Planned	3	0	1	6	0	1	200.75	0.25	0	0	4.5	0.25	216
Unplanned	1	3	0.25	11	9	0.5	0.5	0.25	2.5	6.5	0.5	3	38
System Uptime	99.5%	99.6%	99.9%	97.8%	98.7%	99.9%	72.0%	99.9%	99.7%	99.1%	99.3%	99.5%	97.1%
Treatment Summary													
Gallons extracted from EW-1	2,110,712	2,049,248	2,115,840	2,082,888	1,976,320	2,138,064	2,197,984	3,085,976	3,094,992	3,172,544	3,184,776	3,184,776	30,394,120
Average flow rate from EW-1 (gpm)	47.5	47.6	47.5	47.7	47.9	48.0	70.6	69.2	71.9	71.7	71.8	74.1	59.6
Gallons extracted from EW-2	2,358,520	2,051,192	2,116,224	2,082,944	1,976,624	2,138,240	2,452,752	3,428,808	3,438,848	3,524,992	3,536,176	3,536,176	32,641,496
Average flow rate from EW-2 (gpm)	53.1	47.7	47.5	47.7	48.0	48.0	78.8	76.9	79.9	79.7	79.8	82.2	64.1
Gallons extracted from EW-6	2,062,800	2,051,144	2,116,208	2,082,936	1,976,604	2,138,196	2,087,168	2,860,672	2,919,300	2,936,636	2,831,072	2,831,072	28,893,808
Average flow rate from EW-6 (gpm)	46.5	47.7	47.5	47.7	48.0	48.0	67.1	64.1	67.8	66.4	63.8	65.8	56.7
Total gallons treated	6,532,032	6,151,584	6,348,272	6,248,768	5,929,548	6,414,500	6,737,904	9,375,456	9,453,140	9,634,172	9,552,024	9,552,024	91,929,424

Acronyms:

gpm - gallons per minute

PLC - programmable logic controller

Notes:

^{% -} percentage

Itom	Oct 2016	Nov. 2016	Dec 2016	Ion 2017	Eab 2017	Man 2017	App 2017	Max 2017	Jun 2017	Jul 2017	Aug. 2017	Sont 2017	Cumulative
Item	Oct. 2010	NOV. 2010	Dec. 2010	Jan. 2017	red. 2017	Mar. 2017	Apr. 2017	May 2017	Jun. 2017	Jul. 2017	Aug. 2017	Sept. 2017	Year 5 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-1 Runtime	681	550	744	724	662	743	672	736	685	723	725	712	8,355
EW-2 Runtime	681	718	744	724	662	743	672	736	685	723	725	712	8,523
EW-6 Runtime	681	718	744	719	662	743	672	736	685	723	725	712	8,518
Treatment System Downtime (hours)													
Planned	63	168	0	19	9	0	31.5	0	0.5	1	0	0.25	292
Unplanned	0.5	2	0	1	1	1	17	8	35	20.5	19.5	7.75	113
System Uptime	91.5%	99.7%	100.0%	97.3%	98.5%	99.9%	93.3%	98.9%	95.1%	97.1%	97.4%	98.9%	97.3%
Treatment Summary													
Gallons extracted from EW-1	2,889,688	1,913,496	3,164,544	3,123,496	2,888,152	3,136,608	2,862,984	3,173,712	2,977,144	3,110,944	3,093,704	2,845,944	35,180,416
Average flow rate from EW-1 (gpm)	71	58	71	72	73	70	71	72	72	72	71	67	70
Gallons extracted from EW-2	3,239,056	3,311,528	3,500,992	3,368,408	3,131,712	3,489,528	3,180,984	3,527,136	3,306,112	3,456,624	3,476,464	3,415,456	40,404,000
Average flow rate from EW-2 (gpm)	79	77	78	78	79	78	79	80	80	80	80	80	79
Gallons extracted from EW-6	2,617,344	2,635,616	2,811,392	3,019,856	3,539,656	3,838,032	3,532,296	3,881,464	3,642,816	3,802,608	3,824,768	3,756,960	40,902,808
Average flow rate from EW-6 (gpm)	64	61	63	70	89	86	88	88	89	88	88	88	80
Total gallons treated	8,746,088	7,860,640	9,476,928	9,511,760	9,559,520	10,464,168	9,576,264	10,582,312	9,926,072	10,370,176	10,394,936	10,018,360	116,487,224

Acronyms:

gpm - gallons per minute

PLC - programmable logic controller

Notes:

^{% -} percentage

Itom	Oct 2017	Nov 2017	Dec. 2017	Ion 2018	Eab 2018	Mar 2018	Apr 2018	May 2018	Jun 2018	Jul. 2018	Aug. 2018	Sont 2018	Cumulative
Item	000.2017	NUV. 2017	Dec. 2017	Jan. 2010	red. 2010	Mai. 2010	Арі. 2016	Wiay 2018	Juli. 2010	Jul. 2010	Aug. 2016	Sept. 2018	Year 6 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-1 Runtime	729	720	744	744	672	744	720	744	719	601	744	706	8586
EW-2 Runtime	729	720	744	744	672	744	720	744	719	627	744	706	8611
EW-6 Runtime	729	720	744	744	672	744	720	744	719	548	744	706	8533
Treatment System Downtime (hours)													
Planned	0	0	0.25	0.25	0	0.25	0	0.17	0.25	0	0	0	1
Unplanned	15	0	0.25	0	0	0	0	0	0.75	0	0	14.25	30
System Uptime	98.0%	100.0%	99.9%	99.97%	100.00%	99.97%	100.00%	99.98%	99.86%	100.00%	100.00%	98.02%	99.64%
Treatment Summary													
Gallons extracted from EW-1	2,701,472	2,762,960	2,762,961	2,816,560	2,579,824	2,856,256	2,764,224	2,833,440	2,760,000	2,254,656	3,776,371	2,829,712	33,698,436
Average flow rate from EW-1 (gpm)	62	64	62	63	64	64	64	63	64	62	85	67	65
Gallons extracted from EW-2	3,194,160	3,443,664	3,443,665	3,559,904	3,224,736	3,570,480	3,319,760	3,014,416	2,957,776	2,800,224	3,051,197	2,870,480	38,450,462
Average flow rate from EW-2 (gpm)	73	80	77	80	80	80	77	68	69	74	68	68	74
Gallons extracted from EW-6	3,714,528	3,798,544	3,798,545	3,908,160	3,515,288	3,631,640	3,455,440	3,542,128	3,450,144	2,603,360	4,243,411	3,203,072	42,864,260
Average flow rate from EW-6 (gpm)	85	88	85	88	87	81	80	79	80	79	95	76	84
Total gallons treated	9,610,160	10,005,168	10,005,171	10,284,624	9,319,848	10,058,376	9,539,424	9,389,984	9,167,920	7,658,240	11,070,979	8,903,264	115,013,158

Acronyms:

gpm - gallons per minute

PLC - programmable logic controller

Notes:

^{% -} percentage

Itom	Oct 2018	Nov. 2018	Dec. 2018	Ion 2010	Eab 2010	Man 2010	Apr 2010	May 2010	Jun 2010	Jul 2010	Aug. 2010	Sont 2010	Cumulative
Item	001. 2018	INOV. 2018	Dec. 2018	Jan. 2019	red. 2019	Mar. 2019	Apr. 2019	May 2019	Jun. 2019	Jul. 2019	Aug. 2019	Sept. 2019	Year 6 ¹
Calender Days in Period	31	30	31	31	28	31	30	31	30	31	31	30	365
Treatment System Runtime (hours)													
EW-1 Runtime	744	720	708	739	671	739	720	737	702	744	744	711	8679
EW-2 Runtime	744	720	708	739	671	739	720	737	702	744	744	711	8679
EW-6 Runtime	744	720	708	739	671	739	720	737	702	744	744	711	8679
Treatment System Downtime (hours)													
Planned	0	0	36	5	1	5	0	0	0	0	0	0	47
Unplanned	0	0	0	0	0	0	0	7	18.5	0	0	9	35
System Uptime	100.0%	100.0%	95.2%	99.33%	99.85%	99.33%	100.00%	99.06%	97.43%	100.00%	100.00%	98.75%	99.08%
Treatment Summary													
Gallons extracted from EW-1	2,747,296	2,750,464	3,162,278	2,840,000	2,575,872	2,838,384	2,764,864	2,831,280	2,601,548	2,734,176	2,795,014	2,413,792	33,054,968
Average flow rate from EW-1 (gpm)	62	64	74	63	64	64	64	64	62	61	63	57	63
Gallons extracted from EW-2	3,476,096	3,456,080	4,256,056	3,550,000	3,220,096	3,547,984	3,456,080	3,539,104	3,465,401	3,417,728	3,707,126	1,766,940	40,858,691
Average flow rate from EW-2 (gpm)	78	80	100	80	80	80	80	80	82	77	83	41	78
Gallons extracted from EW-6	3,436,048	3,456,080	4,628,581	3,550,000	3,220,128	3,548,016	3,456,080	3,539,120	3,760,249	3,417,728	4,017,553	3,470,941	43,500,524
Average flow rate from EW-6 (gpm)	77	80	109	88	80	80	80	80	89	77	90	81	84
Total gallons treated	9,659,440	9,662,624	12,046,915	9,940,000	9,016,096	9,934,384	9,677,024	9,909,504	9,827,198	9,569,632	10,519,693	7,651,673	117,414,183

Acronyms:

gpm - gallons per minute

PLC - programmable logic controller

Notes:

^{% -} percentage