

PN: 07121-26

February 15, 1993

Ms. Sally Dewes Bureau of Eastern Remedial Action Division of Hazardous Waste Remediation New York State Department of Environmental Conservation

Subject: Review of Preliminary Risk Assessment Information Sheridan Waste Oil Company Site, Medford, NY

Dear Ms. Dewes:

As you know, ABB Environmental Services (ABB-ES) has begun to prepare a human health risk assessment for the Sheridan Waste Oil Company Site in Medford, NY. We have enclosed for critical review some preliminary risk assessment information. Our intent is to obtain feedback early in the risk assessment process and to minimize revisions to the draft risk assessment report. Therefore, a copy of this information has been forwarded to Lloyd Wilson in DOH's Bureau of Environmental Exposure Investigation who will be reviewing the risk assessment.

We have also included a description of the site and a brief site history (Attachment A) as background information.

Exposure Pathways

Attachment B contains several draft tables related to the exposure assessment. Table 1 lists the <u>potential</u> exposure pathways and identifies those pathways that we anticipate evaluating quantitatively. The current use of the site is both vacant land zoned for commercial use and a small residential lot. We have assumed that future use of the entire property is likely to be residential as a portion of the site is already so used and much of the adjacent land is residential. This assumption is critical, as it defines potential future exposures to theoretical receptors based on residential site usage.

The semivolatile polyaromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs), and a heavy metal (lead) are chemicals of potential concern (CPCs) for surface soil. These substances can be taken up by plants and bioconcentrate in plant tissue. Ingestion of home-grown fruits and vegetables is a potential exposure pathway under the residential use scenario. Because these CPCs are present in surface soil at such low concentrations (parts per billion except for lead), this pathway will be evaluated qualitatively.

Volatile organic compounds (VOCs) are CPCs in surface and subsurface soil. With VOCs present in soil, there is potential for volatilization of those chemicals into ambient air. Inhalation of those vapors represents an additional <u>potential</u> exposure pathway for receptors exposed to soil.

ABB ENVIRONMENTAL SERVICES

Ms. Sally Dewes February 15, 1993 Page Two

Ţ

Analysis of soil samples resulted in generally very low frequency of detections and concentrations of VOCs with the exception of a single "hotspot" sample (boring BS-3 at a depth of 6-8 ft.). Although a total of twelve VOCs are soil CPCs, six of them were detected in only one of 15 samples and all but one was detected in three or fewer samples. Except for a single sample "hotspot" with maximum detected concentrations of approximately 30 parts per million (ppm) total VOCs (toluene, xylene, ethylbenzene, 4-methyl-2-pentanone, total 1,2-dichloroethene), the maximum detected VOC concentrations for the other samples total approximately 2.2 ppm. The arithmetic average concentration of all VOCs detected in both surface and subsurface soil is less than 3 ppm total VOCs. With both frequency of detects and soil VOC concentrations as low as they are, the potential exposure pathway of VOC migration (via soil gas) into residential basements and the associated risks are unlikely to be significant. However, because construction workers could excavate into the "hotspot" area, we propose to evaluate risks from VOC soil volatilization for the construction worker exposure pathway only.

The inhalation of contaminants adhering to wind-eroded dust is a potential exposure pathway for the utility and the construction worker receptor. Air exposure point concentrations (EPCs) of CPCs borne on respirable dust particles will be estimated using a model developed by Cowherd (1985).

Tables 2 through 13 present exposure parameter values for the receptors in each of the respective media through which exposures could potentially occur. We have followed EPA's most recent guidance (USEPA, 1989a; USEPA, 1989b; USEPA, 1991; USEPA, 1992) in the selection of these values with the exception of the soil ingestion rate (IR) for receptors exposed through construction and/or soil excavation. The soil ingestion rate (IR) of 110 mg/day is an adjusted value based on a paper by Hawley from which the USEPA has adopted the current default soil ingestion value of 480 mg/day for a construction/soil excavation scenario (Hawley, 1985). The only change in assumptions made by ABB-ES from those in Hawley is a reduction in the soil adherence factor (SAF) of 3.5 mg/cm² to the current USEPA default <u>upper</u> bound value for a SAF of 1.0 mg/cm². Attachment C provides greater detail regarding the revised soil IR. Please review, in particular, the values described in the tables as "based on professional judgement".

Sampling Results

Figures showing soil sampling locations are included in Attachment D. Attachment D also contains tables summarizing the sampling data from locations and sampling depths we propose to use to estimate soil EPCs. Samples taken at a depth of 0 to 2 feet are evaluated as surface soil. Samples taken at a depth of 2 to 4 feet through 14 to 16 feet are evaluated as subsurface soil. Samples taken at a depth of 16 feet and deeper are not used to calculate soil EPCs because it is unlikely that any receptor will contact soil at such depths. The purpose of sample BS-1 is to establish site-specific soil background concentrations primarily to determine if concentrations of inorganic chemicals are substantially elevated from natural background levels. Additionally, the background sample could be of help in determining if off-site contamination could be impacting the site. Sample BS-1 was not used to calculate soil EPCs. Attachment E presents all soil data.

Chemicals of Potential Concern

Validated groundwater data are currently not available. When they are received, the data will be reviewed to determine if CPCs are present. If groundwater is contaminated, groundwater CPCs will be evaluated

Ms. Sally Dewes February 15, 1993 Page Three

ŗ

under the residential drinking water ingestion and the dermal contact during bathing exposure pathways described in the Potential Exposure Pathway Table (Table 1) using the exposure parameters listed in Attachment B, Tables 4 and 5, respectively. If VOCs are found to be groundwater CPCs, they will also be evaluated with the residential shower inhalation pathway described in Table 1 using the exposure parameters listed in Attachment B, Table 6. Indoor air EPCs will be estimated using a model developed by Foster and Chrostowski (1987). ABB-ES will communicate to you via either telephone or a short memorandum whether the drinking water pathway will be evaluated and, if so, substances determined to be groundwater CPCs.

Table 14 in Attachment B lists the proposed CPCs for surface soil and subsurface soil. We propose excluding all metals except lead. Using maximum detected inorganic chemical concentrations and the exposure parameters for a residential child receptor (the most exposed receptor to soil on a daily basis), predicted daily intakes were calculated. Predicted daily intakes including both the oral and dermal routes were compared to intakes which should not result in any toxic effects (allowable intakes) and were found to be below these allowable intakes for every chemical except lead (See Table 15).

There is currently no USEPA toxicity value for lead for comparison to predicted intakes. An oral and dermal chronic reference dose for lead was derived based on back-calculation from the drinking water action level of 0.015 mg/l. Risk from lead exposures can be evaluated using either this derived value or the EPA Uptake/Biokinetic Model for lead which estimates blood lead concentrations for children of ages 0 to 6 years old (USEPA, 1991b). Because young children are the most sensitive receptor to the effects of lead, it would be appropriate to use this model for the risk assessment.

Exposure Point Concentrations

Following USEPA guidance (USEPA, 1989), the 95th upper confidence limit (UCL) of the mean calculated for each CPC will be used as the EPC. However, for any CPCs in which the 95th UCL exceeds the maximum detected concentration, the maximum detected concentration will be the EPC. Dose/Response Assessment

To estimate the risks associated with the carcinogenic PAHs detected at this site, we propose to use the Toxic Equivalency Factor (TEF) approach. Evaluation of carcinogenic PAHs via the TEF approach is currently a Draft Policy of USEPA Region II (USEPA, Region II, 1992). This approach assigns relative potency factors to carcinogenic PAH compounds based on a comparison to the potency of benzo(a)pyrene. The relative potency factors for the carcinogenic PAHs reported at this site are shown below:

Benzo(a)pyrene	1.0 (not detected at site, included for comparison)
Benzo(a)anthracene	0.1
Benzo(k)fluoranthene	0.1
Chrysene	0.01

This approach has not been officially adopted by the U.S. EPA Superfund Program as of this date. An alternative (and more conservative approach) is to apply the cancer slope factor for benzo(a)pyrene (7.3E-0) to each of the carcinogenic PAH compounds. Although we propose to use the TEF approach to evaluate receptor risk and calculate target cleanup levels (if necessary), we will also evaluate risks using the conservative approach to determine the effect of each approach on the risk estimates.

Ms. Sally Dewes February 15, 1993 Page Four

Follow-up

ę

• ;

We will call you to arrange for the receipt of your comments on this material. Thank you for taking the time to review this information. We look forward to receiving your comments.

Sincerely,

ABB ENVIRONMENTAL SERVICES, INC.

avid Fordon

David Gordon Public Health Scientist

Attachments

cc: Lloyd Wilson, NYDOH Stan Reed, ABB-ES

m7-sheridan.mem

Mart Sech

Mark Seelen Project Manager

ATTACHMENT A

1

.

^- ţ

•

.

SITE DESCRIPTION AND HISTORY

·

ł

2.0 SUMMARY OF EXISTING DATA

2.1 SITE LOCATION, SIZE, AND ACCESS

The Sheridan Waste Oil Company was operated as a waste oil recycling facility located in Medford (Town of Brookhaven), Suffolk County, New York. Sheridan is located on a 2.7 acre lot bordered by Peconic Avenue to the north and private residences on Eileen Court to the south. The site is not paved, and the surface is sandy and relatively flat. Direct access to the site is obtained from the eastbound lane of Peconic Avenue in Medford. The property east of the site is wooded and undeveloped; properties west and south of the site are residential. North of Peconic Avenue near the site, the land use is primarily light industrial/ commercial. The site is surrounded with chainlink fence topped with looped concertina wire, and a locking double gate provides access from Peconic Avenue.

2.2 SITE TOPOGRAPHY AND DRAINAGE

The Sheridan site is at an elevation of approximately 85 feet above mean sea level (MSL) (Figure 2-1). The site and surrounding terrain are relatively flat and no surface water drainage has been observed on or adjacent to the site. The site is approximately 4.5 miles west of the Carmans River and 4.7 miles north of the Bellport Bay section of the Great South Bay of Long Island.

E.C. Jordan Co.

7121-00

2.3 SITE GEOLOGY AND HYDROGEOLOGY

٢

Sheridan is located on glacial outwash deposits of sand and gravel, approximately 85 feet above mean sea level. The site has been cleared, regraded, and slightly modified by the addition of 1 to 5 feet of sandy fill, but was originally wooded and relatively flat. No surface water ponding or stream drainage has been observed on or adjacent to the site. The site is located on sandy soil developed on Upper Glacial aquifer sand and gravel estimated to be approximately 100-125 feet in thickness. The Upper Glacial aquifer overlies the Magothy aquifer (more than 600 feet of sand and gravel). A thin, discontinuous layer of silty clay, the Gardiners Clay Formation, may separate the Upper Glacial and Magothy deposits near the site, but the Gardiners Clay is not expected to prevent vertical movement of groundwater between the aquifers. Based on previous investigations, the average depth to the groundwater saturated zone is 30 to 35 feet below ground surface (bgs) on-site, and the horizontal groundwater flow direction is to the southeast. The bedrock underlying Long Island is estimated to be approximately 1600 feet bgs and will not be encountered during the course of the field program.

2.4 SITE HISTORY

Sheridan operated as a waste oil recycling facility from 1977 to 1984. Suffolk County Department of Health Services (SCDHS) was contacted on April 9, 1982 by an employee of Vulcan Fuel Corporation, who was overcome by fumes emitted when a shipment of solvent from Sheridan was mixed with Number 2 fuel oil. As a follow-up to this preliminary involvement, SCDHS conducted a hydrogeologic investigation at the Sheridan site to determine the impact of the site operations on groundwater quality. The report was completed in July 1983. SCDHS did not

E.C. Jordan Co.

determine the exact nature of site operations; however, Sheridan reportedly collected and stored waste oil and separator water in above-ground and subsurface tanks and operated a water/oil evaporation unit. Backup reports and affidavits suggest that the Sheridan company was also involved in the storage of acid products. Sheridan also operated without a permit. As part of its hydrogeologic investigation SCDHS drilled groundwater profile wells upgradient and downgradient of the site. The profile wells were drilled to termination depths approximately 80 feet bgs, then sampled in 5 or 10 foot intervals as the profile wells were pulled up. Their observations are as follows:

- No organics were detected in groundwater in the upgradient profile wells. It was inferred that upgradient industries were not contributing to the degradation of groundwater quality and the Sheridan site operations are the sole cause of on-site and downgradient groundwater contamination.
 - Groundwater from four homeowner wells which were believed to be screened at approximately 80 feet bgs (40 feet below the water table), located south of the site on Eileen Court, was analyzed for organic compounds. No organics were detected in any of the homeowner wells.
 - Organic compounds were detected in groundwater above the drinking water guidelines in all the downgradient profile wells. As a result of the SCDHS July 1983 report, the County Attorney succeeded in obtaining a court order to close down the Sheridan site operations.

E.C. Jordan Co.

A site inspection conducted on May 17, 1983 to aid in initiating litigation of the site by the Attorney General revealed many areas of surface spillage and discoloration. Soil samples from the original soil surface reportedly exhibited organic solvent and petroleum contamination. The site has been regraded, with the addition of a layer of sandy fill, 1 to 5 feet in thickness.

\$

E.C. Jordan Co. KRN/SHERWKP/SHER3 2-5

7121-00

ATTACHMENT B

ç

۰.,

ţ

TABLES

TABLE 1 POTENTIAL EXPOSURE PATHWAYS SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

.

,

ł

\$

Bata atial Evageura	Potentially Exposed	Is Pathway	Risks	Reason for Selection
Potential Exposure	Population and	Complete?	Quantified	or Exclusion
Medium and Route	Exposure Point	Completer	Guantineu	
	Exposure Form	CURRENT LAND USE		
Surface Soil:		CONTLENT EARD OSE		Children living in area
	Child Trespasser	Current exposures	Yes	could be exposed if
Incidental ingestion	Child Hespasser	could occur	103	they trespass onto
			Yes	the site
Dermal contact		No. The commercially	162	
Surface Soil:			Yes	If commercial use of the
Incidental ingestion	Site Worker	zoned portion of the site is	165	site resumes, worker
			Yes	-
Dermal contact		presently vacant	145	exposure is possible
	CURR	ENT AND POTENTIAL FUTURE L	AND USE	
Groundwater:		,	Conditional	If site-related groundwater
Ingestion	Residents with	Unknown. Depends on	Yes	plume is present,
Dermal	downgradient wells	results of groundwater/	Yes	this pathway will be
Inhalation of vapors		private well data analysis	Yes	evaluated quantitatively.
during showering		not, as yet, available		If VOCs are present,
during showening				inhalation will be evaluated
Surface Soil:		· _ · _ ·		Current residents and future
Incidental ingestion	Child Resident	Current and	Yes	site-wide residents could
	0	potential future exposures	Yes	be exposed.
alation of vapors		could occur	No	VOC concentrations in soil
alation of vapors				are very low
rtace Soil:		<u> </u>		Current residents and future
Incidental ingestion	Adult Resident	Current and	Yes	site-wide residents could
Dermal contact	Addit Hesident	potential future exposures	Yes	be exposed.
		could occur	No	VOC concentrations in soil
Inhalation of vapors				are very low
Fruits & Vegetables,				
Homegrown:				Concentrations of surface
nomegrown.	Child and Adult	Current and		soil CPCs that can
Induction	Residents	potential future exposures	No	potentially bioconcentrate in
Ingestion	Nesidents	could occur		plants-PAHs, pesticides/PCB
				heavy metals, are very low
Surface and				
Subsurface Soil:				
Incidental ingestion	Utility Workers	Current and potential	Yes	Underground utilities may
Dermal contact	,	future exposures	Yes	need repair/installation
Inhalation of dust		could occur	Yes	for a limited duration.
Inhalation of vapors			No	VOC concentrations in soil
Innalation of Vapola				are very low
		POTENTIAL FUTURE LAND US	E	
Surface and				
Subsurface Soil:				Residential construction
Incidental ingestion	Construction Worker	No current exposures	Yes	could expose workers
Dermal contact	Construction Worker	Potential future exposures	Yes	for a limited duration.
Inhalation of dust		could occur	Yes	
			Yes	Workers could excavate at
halation of vapors				VOC "hotspot" locations

•

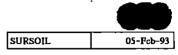
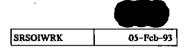


TABLE 2 DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL RECEPTOR: CHILD (AGE 7–16 YEARS), SITE TRESPASSER SHERIDAN WASTE OIL CO. SITE MEDFORD, NY


EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION SOIL	CS	95th UCL or MAX	mg/kg	· ·	CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)^-1
INGESTION RATE	IR	100	mg/day	USEPA,1991	
FRACTION INGESTED	FI	100 %		PRO.JUDGEMENT	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
SOIL ADHERENCE FACTOR	SAF	1	mg/cm ²	USEPA, 1992	
SURFACE AREA EXPOSED	SA	6,150	cm²/day	USEPA, 1989B(1)	INTAKE = (INTAKE-INGESTION) + (INTAKE-DERMAL)
CONVERSION FACTOR	CF	0.000001	kg/mg		1
BODY WEIGHT	BW	40	kg	USEPA, 1989B	$INTAKE-INGESTION = CS \times IR \times RAF \times FI \times CF \times EF \times ED$
EXPOSURE FREQUENCY	EF	26	days/ycar	PRO.JUDGEMENT (2)	BW x AT x 365 days/yr
EXPOSURE DURATION	ED	10	years	PRO.JUDGEMENT	
AVERAGING TIME					$INTAKE-DERMAL = CS \times SA \times SAF \times RAF \times CF \times EF \times ED$
CANCER	АТ	70	years	USEPA, 1989A	BW x AT x 365 days/yr
NONCANCER	AT	10	years	USEPA, 1989A*	
USEPA, 1991 "STANDARD DEF	AULT EXPOSURE F	ACTORS"	(1) HANDS, ARM	Note:	
USEPA, 1989A RISK ASSESSME	NT GUIDANCE FOR	SUPERFUND	•For noncarcinogenic effects: AT = ED		
USEPA, 1989B "EXPOSURE FA	CTORS HANDBOOK	I	MAY THROU	GH OCTOBER	

.

TABLE 3 DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL RECEPTOR: ADULT, SITE WORKER SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE		
CONCENTRATION SOIL	CS	95th UCL or MAX	mg/kg		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg	y/kg-day)^-1
INGESTION RATE	IR	50	mg/day	USEPA, 1991		
FRACTION INGESTED	FI	100%		PRO.JUDGEMENT	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (m	ng/kg-day)
SOIL ADHERENCE FACTOR	SAF	1	mg/cm²	USEPA, 1992		
SURFACE AREA EXPOSED	SA	2,104	cm²/day	USEPA, 1989B(1)	INTAKE = (INTAKE-INGESTION) + (INTAKE-DERMAL)	
CONVERSION FACTOR	CF	0,000001	kg/mg			
BODY WEIGHT	BW	70	kg	USEPA, 1989A	$INTAKE-INGESTION = \frac{CS \times IR \times RAF \times FI \times CF \times E}{CS \times IR \times RAF \times FI \times CF \times E}$	<u>14 x ED</u>
EXPOSURE FREQUENCY	EF	175	days/year	PRO.JUDGEMENT(2)	BW x AT x 365 days/y	r
EXPOSURE DURATION	ED	25	years	USEPA, 1991		
AVERAGING TIME				1	INTAKE-DERMAL = <u>CS x SA x SAF x RAF x CF x</u>	<u>EF x ED</u>
CANCER	AT	70	years	USEPA, 1989A	BW x AT x 365 days/y.	r
NONCANCER	AT	25	years	USEPA, 1989A*		
USEPA, 1991 "STANDARD DEF	FAULT EXPOSURE F	ACTORS"		Note:		
USEPA, 1989A RISK ASSESSMENT GUIDANCE FOR SUPERFUND (1) HANDS, FOREARMS				EARMS	*For noncarcinogenic effects: AT = ED	
USEPA, 1989B *EXPOSURE FA	CTORS HANDBOOK	•	(2) APRIL-NOVE	MBER, S DY/WK		

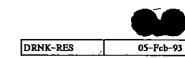


TABLE 4 INGESTION OF DRINKING WATER (GROUNDWATER) RECEPTOR: ADULT, RESIDENT SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

EXPOSURE PARAMETERS

•

-

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	· · · · · · · · · · · · · · · · · · ·
CONCENTRATION WATER	CW	95th UCL or MAX	mg/liter		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)^-1
INGESTION RATE	IR	2	liters/day	USEPA, 1991	
SURFACE AREA EXPOSED	SA	Not Applicable	cm ²		HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
BODY WEIGHT	BW	70	kg	USEPA, 1989A	
CONVERSION FACTOR	CF	0.001	liter/cm ³		
EXPOSURE TIME	ET	Not Applicable	hours/day		
EXPOSURE FREQUENCY	EF	350	days/ycar	USEPA, 1991	INTAKE-INGESTION = CW x IR x RAF x EF x ED
EXPOSURE DURATION	ED	· 30	years	USEPA, 1991	BW x AT x 365 days/yr
AVERAGING TIME					
CANCER	AT	70	years	USEPA, 1989A	
NGNCANCER	AT	30	years	USEPA, 1989A*	
USEPA, 1991 "STANDARD DEP	AULT EXPOSURE F	ACTORS"		Note:	
USEPA, 1989A RISK ASSESSME	NT GUIDANCE FOR	SUPERFUND		*For noncarcinogenic effects: AT = ED	
		•			

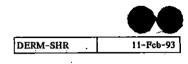
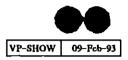


TABLE 5 DERMAL CONTACT WITH DRINKING WATER (GROUNDWATER) DURING SHOWERING RECEPTOR: ADULT, RESIDENT SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

EXPOSURE PARAMETERS

EQUATIONS


CONCENTRATION WATER	CW	95th UCL or MAX	mg/liter	
INGESTION RATE	IR	Not Applicable	liters/day	USEPA, 1991
SURFACE AREA EXPOSED	SA	18,180	cm ²	
BODY WEIGHT	BW	70	kg	USEPA, 1989A
CONVERSION FACTOR	CF	0.001	liter/cm ³	2
EXPOSURE TIME	ET	0.2	hours/day	
EXPOSURE FREQUENCY	EF	350	days/year	USEPA, 1991
EXPOSURE DURATION	ED	30	ycars	USEPA, 1991
AVERAGING TIME				
CANCER	АТ	70	years	USEPA, 1989A
NONCANCER	AT	30	years	USEPA, 1989A*
USEPA, 1991 "STANDARD DEFA	ULT EXPOSUR	E FACTORS*		
USEPA, 1989A RISK ASSESSMEN				
⁄				

CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)^-I								
HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)								
INTAKE-DERMAL =	CW x SA x PC x CF x ET x EF x ED							
INTARE-DERMAL ~	BW x AT x 365 days/yr							
Note:								
*For noncarcinogenic effects:	AT = ED							

7

EQUATIONS

.

TABLE 6 INHALATION EXPOSURE TO VOCs DURING SHOWERING RECEPTOR: RESIDENTIAL ADULT SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
					CANCER RISK = AVG. CONC. (ug/m3) * CANCER UNIT RISK (ug/m3)*-1
CONCENTRATION AIR	CA		ug/m3	Modeled	
CONVERSION FACTOR 1	CF1	24	·· hours/day		HAZARD QUOTIENT = AVG.CONC.(ug/m3)/REF. CONC. (ug/m3)
EXPOSURE TIME	ÉT	0.2	hours/day	USEPA, 1989a	
EXPOSURE FREQUENCY	EF	350	days/ycar	USEPA, 1991	CAair • EF • ET • ED
EXPOSURE DURATION	ED	30	years	USEPA, 1991	AVG. CONC. =
CONVERSION FACTOR 2	CF2	365	days/year		AT * CF1 * CF2
AVERAGING TIME CANCER	AT	70	years	USEPA, 1989a	
AVERAGING TIME NONCANCER	AT	30	years	USEPA, 1989a*	Note:
USEPA, 1991. "Human Health Evaluation Manu	al, Supplemental Guidar		*For noncarcinogenic effects: AT = ED		
Standard default Exposure Factors					
USEPA, 1989a. RAGs, Part A.					

ABB Environmental Services, Inc.

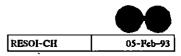
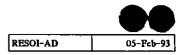


TABLE 7 DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL RECEPTOR: CHILD RESIDENT (AGE 1-6) SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

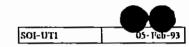

~

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION SOIL	CS	95th UCL or MAX	mg/kg	MAXIMUM	CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)^-1
INGESTION RATE	IR	200	mg/day	USEPA, 1991	
FRACTION INGESTED	FI	100 %		PRO.JUDGEMENT	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
SOIL ADHERENCE FACTOR	SAF	1	mg/cm²	USEPA, 1992	
SURFACE AREA EXPOSED	SA	3,720	cm²/day	USEPA, 1989B(1)	INTAKE = (INTAKE-INGESTION) + (INTAKE-DERMAL)
CONVERSION FACTOR	CF	0,000001	kg/mg		
BODY WEIGHT	BW	16	kg	USEPA, 1989B	INTAKE-INGESTION = <u>CS x IR x RAF x FI x CF x EF x ED</u>
EXPOSURE FREQUENCY	EF	350	days/year	USEPA, 1991	BW x AT x 365 days/yr
EXPOSURE DURATION	ED	6	ycars	USEPA, 1991	
AVERAGING TIME					$INTAKE-DERMAL = CS \times SA \times SAF \times RAF \times CF \times EF \times ED$
CANCER	АТ	70	ycars	USEPA, 1989A	BW x AT x 365 days/yr
NONCANCER	AT	6	усагз	USEPA, 1989A*	
USEPA, 1991 "STANDARD DEP	AULT EXPOSURE F.	ACTORS")	Note:	
USEPA, 1989A RISK ASSESSME	NT OUIDANCE FOR	SUPERFUND		*For noncarcinogenic effects: AT = ED	
USEPA, 1989B *EXPOSURE FAC	CTORS HANDBOOK	1	(1) HANDS, ARM	IS, LEGS, FEET	

•

- •


TABLE 8 DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE SOIL RECEPTOR: ADULT RESIDENT (AGE 7-30) SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	······································
CONCENTRATION SOIL	CS	95th UCL or MAX	mg/kg	MAXIMUM	CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)*-1
INGESTION RATE	IR	100	mg/day	USEPA, 1991	
FRACTION INGESTED	FI,	100 %		PRO.JUDGEMENT	HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
SOIL ADHERENCE FACTOR	SAF	1	mg/cm²	USEPA, 1992	
SURFACE AREA EXPOSED	SA	4,474	cm²/đay	USEPA, 1989B(1)	INTAKE = (INTAKE-INGESTION) + (INTAKE-DERMAL)
CONVERSION FACTOR	CF	0.000001	kg/mg		
BODY WEIGHT	BW	70	kg	USEPA, 1989B	INTAKE-INGESTION = <u>CS x IR x RAF x FI x CF x EF x ED</u>
EXPOSURE FREQUENCY	. EF	350	days/year	USEPA, 1991	BW x AT x 365 days/yr
EXPOSURE DURATION	ED	24	years	USEPA, 1991	
AVERAGING TIME					INTAKE-DERMAL = CS x SA x SAF x RAF x CF x EF x ED
CANCER	AT	70	years	USEPA, 1989A	BW x AT x 365 days/yr
NONCANCER	AT	24	years	USEPA, 1989A*	
USEPA, 1991 "STANDARD DEF	AULT EXPOSURE F	ACTORS"		Note:	
USEPA, 1989A RISK ASSESSME	NT GUIDANCE FOR	SUPERFUND	(1) HANDS, FOR	*For noncarcinogenic effects: AT = ED	
USEPA, 1989B "EXPOSURE FAC	CTORS HANDBOOK*		LOWER LEGS	6	

DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE AND SUBSURFACE SOIL RECEPTOR: SITE UTILITY WORKER - SHERIDAN WASTE OIL CO. SITE

MEDFORD, NY

EXPOSURE PARAMETERS

,•

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION SOIL	CS	95th UCL or MAX	mg/kg		CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)*-1
INGESTION RATE	IR	110	mg/day	ABB-ES, 1992 (1)	
FRACTION INGESTED	FI	100%		4 1	HAZARD QUOTIENT = INTAKE (mg/kg-لوه) / REFERENCE DOSE (mg/kg-لوه)
SOIL ADHERENCE FACTOR	SAF	1	mg/cm²	USEPA, 1992	
SURFACE AREA EXPOSED	SA	3,295	cm²/day	USEPA, 1989b (2)	INTAKE = (INTAKE-INDESTION) + (INTAKE-DERMAL)
CONVERSION PACTOR	CF	0.000001	kg/mg		
BODY WEIGHT	BW	70	kg	USEPA, 1989a	INTAKE-INOESTION = CS x IR x RAF x FL x CF x EF x ED
EXPOSURE FREQUENCY	EF	5	days/workweek	PRO.JUDGEMENT	(HQ) BW x AT x 5 days/workweek
EXPOSURE DURATION	ED	1	workweek(s)	PRO.JUDGEMENT	
AVERAGING TIME					INTAKE-INGESTION = $CS \times IR \times RAF \times FI \times CF \times EF \times ED$
CANCER	AT	70	years	USEPA, 1989a	(CANCER RISK) BW x AT x 365 راي sys/yr
NONCANCER	AT	1	workweek(s)	USEPA, 1989a*	
USEPA, 1991. "Human Health E	valuation Manual, Supp	plemental Guidance:	Standard Default		CS x SA x SAF x RAF x CF x EF x ED
Exposure Factors".					(flQ) BW x AT x 5 days/workweek
USEPA, 1992. Dermat Exposure	Assessment: Principles	and Applications, In	terim report,		
EPA/600/8-91/011B, January 19	92.		INTAKE-DERMAL = CS x SA x SAF x RAF x CF x EP x ED		
USEPA, 1989a. RAOs, Part A.		(1) See Attachme	(CANCER RISK) BW x AT x 365 days/yr		
USEPA, 1989b. Exposure Factors	Handbook.	(2) Upper extrem	ities		*For noncarcinogenic effects: AT = ED

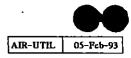


TABLE 10 INHALATION EXPOSURE TO DUST- SHORT-TERM RECEPTOR: UTILITY WORKER SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

EXPOSURE PARAMETERS

EQUATIONS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION AIR	CA		mg/m³	Modeled	CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)*-1
INHALATION RATE	IR	2.5	m³/hour	USEPA, 1991	'
BODY WEIGHT	BW	70	kg	USEPA, 1989a	$\mathbf{INTAKE} = \underline{\mathbf{CA} \times \mathbf{IR} \times \mathbf{RAF} \times \mathbf{ET} \times \mathbf{EF} \times \mathbf{ED}}$
EXPOSURE TIME	· ET	8	hours/day	USEPA, 1991	BW x AT x 365 days/year
EXPOSURE FREQUENCY	EF	5	days/workweek	PRO. JUDGEMENT	
EXPOSURE DURATION	ED	1	weeks	PRO. JUDGEMENT	
AVERAGING TIME					HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
CANCER	AT	70	years	USEPA, 1989a	
NGNCANCER	AT	1	weeks	USEPA, 1989a*	INTAKE = <u>CA x IR x RAF x EF x EF</u> x ED
USEPA, 1991. "Human Health	Evaluation Manual , St	pplemental Guidane	e:	BW x AT x 5 days/workweek	
Standard Default Exposure Fa	ictors			Note:	
USEPA, 1989a RAGs, Part A.				*For noncarcinogenic effects: AT = ED	

٢

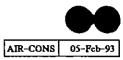
ABB Environmental Services, Inc.

.

SOI-CON 05-1/cb-93

. -

TABLE 11 DIRECT CONTACT WITH AND INCIDENTAL INGESTION OF SURFACE AND SUBSURFACE SOIL RECEPTOR: SITE CONSTRUCTION WORKER SIIERIDAN WASTE OIL CO. SITE MEDFORD, NY


EXPOSURE PARAMETERS

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE				
CONCENTRATION SOIL	CS	95th UCL or MAX	ing/kg		CANCER RISK = INTAKE (mg/kg-day)	x CANCER SLOPE FACTOR (mg/kg 'Jay)*-1		
INGESTION RATE	IR	110	nıg/day	ABB-ES, 1992 (1)				
FRACTION INGESTED	FI	.100%			HAZARD QUOTIENT = INTAKE (mg/kg-day) / REPERENCE DOSE (mg/kg-day)			
SOIL ADHERENCE PACTOR	SAF	1	nig/cm²	USEPA, 1992				
SURFACE AREA EXPOSED	SA	3,295	cm²/day	USEPA, 1989b (2)	INTAKE = (INTAKE-INGESTION) + (INTAKE-DERMAL)			
CONVERSION FACTOR	CF	0.000001	kg/mg					
BODY WEIGIIT	BW	70	kg	USEPA, 1989a	INTAKE-INGESTION =	CS x IR x RAP x PI x CP x EP x ED		
EXPOSURE FREQUENCY	EF	5	days/workweek	PRO.JUDGEMENT	(HQ)	 BW x AT x 3 days/workweek 		
EXPOSURE DURATION	ED .	8	workwcck(s)	PRO.JUDGEMENT				
AVERAGING TIME			-		INTAKE-INGESTION =	• CS x IR x RAF x H x CF x EF x ED		
CANCER	AT	70	years	USEPA, 1989a	(CANCER RISK)	HW x AT x 365 days/yr		
NONCANCER	AT	8	workweck(s)	USEPA, 1989a*				
USEPA, 1991. "Human Health E	valuation Manual, Sup	plemental Guidance:	Standard Default		INTAKE-DERMAL =	CS x SA x SAF x RAF x CF x EP x ED		
Exposure Pactors*.					(HQ)	BW x AT x 5 days/workweek		
USEPA, 1992. Dermal Exposure	USEPA, 1992. Dermal Exposure Assessment: Principles and Applications, Interim report,							
EPA/600/8-91/011B, January 19	EPA/600/8-91/011B, January 1992.					CS x SA x SAF x RAF x CF x EF x ED		
USEPA, 1989a. RAGs, Part A.		(1) See Attachmo	ent C		(CANCER RISK)	BW x AT x 365 days/yr		
USEPA, 1989b. Exposure Factor	Handbook,	(2) Upper extrem	aities		*Por noncarcinogenic effec	Ia: AT = ED		

1

. .

TABLE 12 INHALATION EXPOSURE TO DUST- SHORT-TERM RECEPTOR: CONSTRUCTION WORKER SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

EXPOSURE PARAMETERS

.

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
CONCENTRATION AIR	CA		mg/m³	Modeled	CANCER RISK = INTAKE (mg/kg-day) x CANCER SLOPE FACTOR (mg/kg-day)^-1
INHALATION RATE	IR	2.5	m³/hour	USEPA, 1991	
BODY WEIGHT	BW	70	kg	USEPA, 1989a	$INTAKE = \underline{CA \times IR \times RAF \times ET \times EF}$
EXPOSURE TIME	ET	8	hours/day	USEPA, 1991	BW x AT x 365 days/year
EXPOSURE FREQUENCY	EF	5	days/workweck	PRO. JUDGEMENT	
EXPOSURE DURATION	ED	8	weeks	PRO. JUDGEMENT	
AVERAGING TIME					HAZARD QUOTIENT = INTAKE (mg/kg-day) / REFERENCE DOSE (mg/kg-day)
CANCER	AT	70	years	USEPA, 1989a	
NONCANCER	AT	8	weeks	USEPA, 1989a*	INTAKE = $CA \mathbf{x} IR \mathbf{x} RAF \mathbf{x} EF \mathbf{x} EF \mathbf{x} ED$
USEPA, 1991. "Human Health Evaluation Manual, Supplemental Guidance:					BW x AT x 5 days/workweck
Standard Default Exposure Factors					Note:
USEPA, 1989a RAGs, Part A.			•	*For noncarcinogenic effects: AT = ED	

TABLE 13 INHALATION EXPOSURE TO VOCs VIA SOIL GAS, SHORT-TERM RECEPTOR: CONSTRUCTION WORKER SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

EXPOSURE PARAMETERS

- -

PARAMETER	SYMBOL	VALUE	UNITS	SOURCE	
					CANCER RISK = AVO. CONC. (ug/m3) * CANCER UNIT RISK (ug/m3)*-1
CONCENTRATION AIR	CA		ug/m3	Modeled	
CONVERSION FACTOR	CF	168	hours/week		HAZARD QUOTIENT = A VO.CONC.(ug/m3)/REF. CONC. (ug/m3)
EXPOSURE TIME	ET	8	hours/day	USEPA, 1989a	
EXPOSURE FREQUENCY	EF	5	days/week	USEPA, 1991	CAair * EF * ET * ED
EXPOSURE DURATION	ED	0.1538461	years	USEPA, 1991	AVG. CONC. =
AVERAGING TIME					АТ • CF
CANCER	АТ	70	years	USEPA, 1989a	
NONCANCER	AT	0.1538461	ycars	USEPA, 1989a*	Note:
USEPA, 1991. "Human Health Evaluation Manual	, Supplemental Guid	lance:	•		*For noncarcinogenic effects: AT = ED
Standard default Exposure Factors					
USEPA, 1989a. RAGs, Part A.					

EQUATIONS

. .

TABLE 14 CHEMICALS OF POTENTIAL CONCERN IN SURFACE AND SUBSURFACE SOIL SHERIDAN WASTE OIL CO. SITE MEDFORD, NY

4

Y

ì

Surface Su Soil Volatile Compounds: Acetone Benzene* 2-Butanone 1,1-Dichloroethane 1,2-Dichloroethane Ethyl Benzene Styrene* Tetrachloroethene* X Toluene 1,1,1-Trichloroethane Xylenes	Soil X X X X X X X X X X X X X X X X X X X
Acetone Benzene* 2-Butanone 1,1-Dichloroethane 1,2-Dichloroethene Ethyl Benzene Styrene* Tetrachloroethene* Toluene 1,1,1-Trichloroethane	X X X X X X X X X X
Benzene* 2-Butanone 1,1-Dichloroethane 1,2-Dichloroethene Ethyl Benzene Styrene* Tetrachloroethene* Toluene 1,1,1-Trichloroethane	X X X X X X X X X X
2-Butanone 1,1-Dichloroethane 1,2-Dichloroethene Ethyl Benzene Styrene* Tetrachloroethene* Toluene 1,1,1-Trichloroethane	X X X X X X X X X
1,1-Dichloroethane 1,2-Dichloroethene Ethyl Benzene Styrene* Tetrachloroethene* Toluene 1,1,1-Trichloroethane	X X X X X X X
1,2-Dichloroethene Ethyl Benzene Styrene* Tetrachloroethene* X Toluene 1,1,1-Trichloroethane	X X X X X X
Ethyl Benzene Styrene* Tetrachloroethene* X Toluene 1,1,1-Trichloroethane	X X X X X
Styrene* Tetrachloroethene* X Toluene 1,1,1-Trichloroethane	X X X X
Tetrachloroethene* X Toluene 1,1,1-Trichloroethane	X X X
Toluene 1,1,1-Trichloroethane	X X _
1,1,1-Trichloroethane	Χ _
Yvlenes	v I
lv Alertea	x
4-Methyl-2-Pentanone	X
Semivolatile Compounds:	
bis(2-Ethylhexyl)phthalate*	x
Butyibenzylphthalate X	х
Di-n-butylphthalate X	X
Di-n-octylphthalate X	х
Diethylphthalate X	X
Carbazole* X	Х
Phenol	x
N-nitrosodiphenylamine X	x
Hexachlorobenzene*	х
Isophorone*	x
2-Methylnaphthalene X	x
Naphthalene X	x
Acenaphthene X	х
Anthracene	x
Phenanthrene X	X
Fluoranthene X	X
Pyrene X	Х
Benzo(a)anthracene* X	
Chrysene* X	х
Benzo(k)fluoranthene* X	
Pesticides and PCBs:	
Chiordane* X	
Heptachlor epoxide* X	
Total PCBs* X	Х
4-4-DDT* X	Х
4-4-DDE* X	Х
4-4-DDD* X	X
Inorganics:	
Lead* X	X

* Chemicals classified as carcinogens by USEPA

1

INORGANIC COMPOUNDS EXCLUDED AS CHEMICALS OF POTENTIAL CONCERN FROM SOILS USING A CHILD RESIDENT EXPOSURE SCENARIO* SHERIDAN WASTE OIL CO. SITE

MEDFORD, NY

· · · ·	MAXIMUM	BACKGROUND	ALLOWABLE	BASIS FOR	MAXIMUM
	DETECTED	RANGE FOR	DAILY	ALLOWABLE DAILY	PREDICTED
	CONCENTRATION	NY REGION (1)	INTAKE	INTAKE	INTAKE
COMPOUNE	THE PERSON AND A MARKED	(mg/kg)	(mg/kg/day)		(mg/kg/day)
Aluminum	8,940	1,000 - 25,000	0.5 (3)	Doull et al., 1980	0.26
Arsenic	2.4	3–12	0.001	Oral RfD (4)	0.000069
Barium	36.3	15 - 600	0.13	Estimated Adequate	0.00010
Danum	30.3	15 - 600	0.13	and Safe Intake (5)	0.00010
Calcium	11,800	130 - 35,000	60	RDA (6)	0.34
Chromium	12.1	1.5-40	0.005	Oral RfD (VI)	0.00035
			0.005	Chronic toxic dose	0.000092
Cobalt	3.2	2.5 – 60	1	in children (7)	0.000052
Copper	17.2	1–15	1.4	Estimated Adequate	0.00050
Cohhei	17.2	1-10	1.7	and Safe Intake	0.00000
Iron	8,530	17,500 - 25,000	49	Estimated toxic level	0.25
101	0,000	11,000 20,000	-10	for humans (6)	0.20
Lead	195	10 - 37	0.00075	Back-calculation from USEPA	0.0056
a a na na cina propositivativa				Drinking Water Action Level	
Magnesium	839	1,700 6,000	10	RDA	[~] 0.024
Manganese	155	50 - 5,000	0.1	Oral RfD	0.0045
Nickel	10.4	0.5 – 25	0.02	Oral RfD	0.00030
Potassium	669	8,500 - 43,000	154	Estimated Adequate	0.0193
				and Safe Intake	
Vanadium	14.6	25 - 60	0.003	Oral RfD	0.00042
Zinc	69.3	37 – 60	0.5	RDA	0,0020

Selected as a CPC

* A Child resident is the most exposed individual on a daily basis to contaminants in soil

(2) "Background concentrations of 20 elements in soils with special regard for New York State", NYSDEC, no date

(3) Estimated intake of aluminum (largely from food)

(4) HEAST, 1991 (USEPA, 1991b)
(5) NAS, 1980
(6) Recommended Daily Allowance; NAS, 1980
(7) NAS, 1980

ATTACHMENT C

Ļ

REVISION OF SOIL INGESTION RATE

1

ļ,

.

The USEPA (1991) Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors" currently suggests for an individual engaged in construction or landscaping, a soil ingestion rate of 480 mg/day. This value was obtained from a Hawley (1985) article on exposure to contaminated soil. ABB-ES has reviewed the Hawley article and suggests a revised soil ingestion rate based on more recently available data.

Hawley assumed the following for an adult's ingestion exposure to outdoor soil:

- 1. The inside surface of the hands (fingers and thumbs) is 14% of the entire surface of the hands.
- An adult ingests soils covering one-half of the inside surface of the hands two times per day.
- 3. The amount of soil adhering to the hands is 3.5 mg/cm², based on density of soils and an assumed thickness of the adhering soil layer.

Items 1 and 2 appear reasonable. However, USEPA (1992) has recently issued guidance on adherence of soil to the skin surface (item 3). The guidance describes various studies and lists suggested values for use in risk assessment. The value to represent an average adherence is 0.2 mg/cm^2 , while 1 mg/cm² is suggested as a reasonable upper value.

If Hawley's assumptions (items 1 and 2, above) are used and it is also assumed that, 1) the surface area of the hands (adult, male and female combined) is 790 cm² (USEPA, 1989); and, 2) soil adherence is 1 mg/cm², a soil ingestion rate of 110 mg/day is obtained.

• •••

ABB ENVIRONMENTAL SERVICES

7121.appC

2/15/93

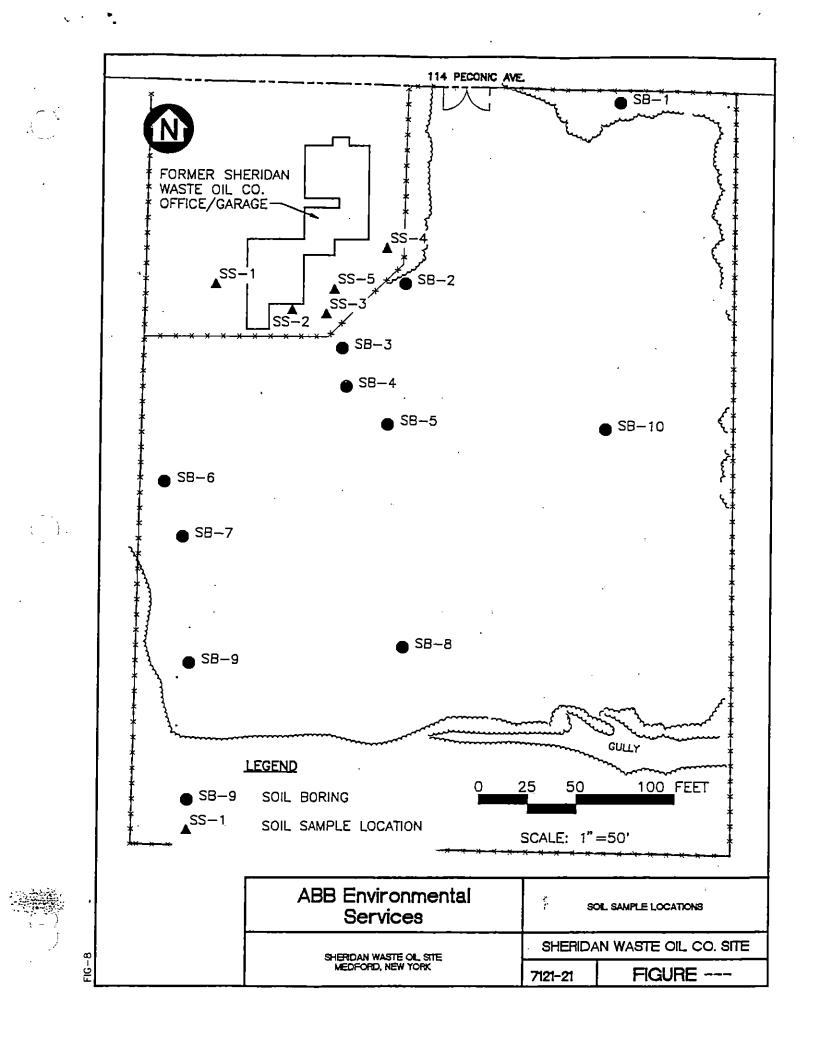
REFERENCES

- Hawley, John, K., 1985. "Assessment of Health Risk from Exposure to Contaminated Soil"; <u>Risk Analysis</u>; Vol. 5, No. 4.
- USEPA, 1989. <u>Exposure Factors Handbook;</u> Exposure Assessment Group, Office of Health and Environmental Assessment, Washington, D.C., May 1989.
- USEPA, 1991. <u>Standard Default Exposure Factors. Human Health Evaluation Manual, Supplemental</u> <u>Guidance</u>; Office of Emergency and Remedial Response; OSWER Directive 9285.6-03; Washington, D.C.
- USEPA, 1992. <u>Dermal Exposure Assessment: Principles and Applications;</u> Office of Research and Development; EPA/600/8-91/011B; Washington, D.C.

ABB ENVIRONMENTAL SERVICES

7121.appC

: 2/15/93


ATTACHMENT D

٩.

ş

SOIL SAMPLE LOCATIONS

Ċ

ATTACHMENT E

SOIL DATA

ੁੰ

Ì

TABLE 7-1 SUMMARY OF SITE-WIDE SURFACE SOIL DATA

SHERIDAN WASTE OIL CO. SITE MEDFORD, NEW YORK

COMPOUND	FREQUENCY OF DETECTION	RANGE OF DETECTED CONCENTRATION	95TH UCL	957H MAX	ARITHMETIC AVERAGE CONCENTRATION	BACKGROUND ARITHMETIC AVERAGE CONCENTRATION	BACKGROUND CONCENTRATIONS IN NEW YORK REGION#
DLATILE ORGANICS (vg/kg)	our contain	0011					The driving
trachloroethene	1/5	2	7.59	2	4.90		
EMIVOLATILE ORGANICS (ug/kg)	10	<u> </u>					
-Methyloaphthelene	1/5	180	377	180	223		<u></u>
cenaphthene	1/5	11	410	11	189		
anzo(a) Anthracene	1/5	79	235	79	160		
enzo(k)Fluorenthene	1/5	58	240	68	158		
tyberzyiphthaiate	2/5	78-81	390	61	182		
	1/5	4	413	4	185		
hrysene	1/5	200	201	200	184		
- n-butylphthelate	5/5	210-2,600	2,448	2,600	706		
- n-octyphthalate	2/5	19-41	253	41	119		
iethylphthalate	1/5	54	397	54	198		
upranthene	1/5	97	225	97	163	÷-	
- Nitrosodio henviemine	1/5	26	405	26	192		
aphthelene	1/5	28	405	28	193		
henanthrene	3/5	20-53	225	53	93.5		
//ene	3/5	29-130	234	130	111		
STICIDES/PCB# (ug/kg)							
4'-000	1/4	0.98	10.1	0.98	3.52		
4'-DDE	4/5	1-11	12.1	11	5.35		
4'-001	3/5	1.8-13	14.9	13	6.79		
nocior-1260	2/5	13-360	336	360	85.3		
eptechlor Epoxide	4/5	0.64-5.1	4.64	5.1	1.72		
pha-Cillordane	4/5	0.03-06	34.0	36	9.05		
mma-Chlordane	4/5	0.81-28	26.5	28	7.28		
ETALS (mg/kg)	4/3	0.01-20	20.0	20	F Algebra		
E racs (mg/kg)	5/5	5,580-8,940	9,080	6,940	6,884		1,000 - 25,000
senic	5/5	1.9-2.4	2.50	2.4	2.18		3 - 12
isenic Multin	5/5	14.5-36.3	40.3	36.3	25.1		15 - 600
alcium	5/5	248-4,020	4,080	4,020	1,774		130 - 35,000
hainin	5/5	6.7-9.6	10.3	9.6	8.40		1.5 - 40
obait	4/5	2.2-2.6	3.29	2.6	2.08		2.5 - 60
opper	4/5	4.5-8.9	9.80	8.9	4.93		1 - 15
on opper	5/5	6,180-8,530	8,464	8,530	6,942		17,500 - 25,000
ad	5/5	5.6-123	130	123	58.2		10 - 37
aci Ignesium	5/5	640-781	820	781	730		1,700 - 6,000
•	5/5	48-155	150	155	75.8		50 - 5,000
inganese ickel	2/5	5.2-10.4	10.4	10.4	4.25		0.5 - 25
	1/5	374	362	374	219		8,500 - 43,000
aradium	5/5	11.1~14.6	15.6	14.0	13.2		25 - 60
	5/5	15.8-67.3	74.8	67.3	43.1		37 - 60

Samples used to estimate surface soil exposures obtained from SS-1 through SS-4 and SB-2 at 0 - 2 ft bgs.

NOTES:

* Arithmetic average concentrations - non-detects were assigned values of

one-half the Sample Quantitation Limit (SQL) value.

** Concentrations obtained from "Background Concentrations of 20 Elements in

Sonta with Special Regard for New York State" (No date). Peper prepared by E. Carol McGovern,

NYSDEC Wildlife Resources Center.

-- No background surface soil sample available.

bgs. Below ground surface.

.

ug/kg miligrams per kilogram.

,

TABLE 7-2 SUMMARY OF SUBSURFACE SOIL DATA

SHERIDAN WASTE OIL CO. SITE MEDFORD, NEW YORK

			- -			RANGE	BACKGROUND
		RANGE OF	· · · ·		ARITHMETIC	OF	CONCENTRATIONS
- 1 A	FREQUENCY OF		95TH	95TH MAX		BACKGROUND	FOR INORGANICS
	DETECTION	CONCENTRATION		MAA	CONCENTION	CONCENTRATIONS	IN INT DEGION
OLATILE ORGANICS (ug/kg)	1/11	2	384	2.00	63.8	ND	
1,1,1-Trichloroethane 1,1-Dichloroethane	1/11	3	384	3,00	63.9	ND	
1,1-Dichloroethene (total)	2/11	6-1,200	707	1,200	114	ND	
2-Butanone	2/11	7-10	384	10.0	64,5	ND	
4-Methyl-2-Pentanone	1/11	10	384	10.0	64,5	ND	
Acetone	1/11	490	489	490	112	ND	
Benzene	1/11	1	364	1.00	63.6	ND	
Ethylbenzene	3/11	6-2,100	1,237	2,100	200	ND	
Styrene	1/11	25	385	25.0	65.9	ND	
Tetrachloroethene	3/11	1~9	384	9.00	64,0	ND	
Toluene	3/11	13-13,000	7,648	13,000	1,218	1	
Total Xylenes	3/11	39-14,000	8,303	14,000	1,398	ND	
SEMIVOLATILE ORGANICS (ug/kg)			· · · · · · · · · · · · · · · · · · ·				
2-Methylnaphthalene	3/11	41-160	301	160	169	ND	
Acenaphthene	3/11	24-32	311	32.0	154	ND	
Anthracene	1/11	20	301	20.0	180	ND	
Butyibenzyiphthalate	5/11	110-2,200	1,679	2,200	558	ND	
Carbazole	2/11	15-21	312	21.0	166	ND	
Chrysene	2/11	110-110	284	110	183	ND	
Di-n-butylphthalate	11/11	260-5,400	4,671	4,671	1,946	370 - 620	
Di-n-octylphthalate	4/11	26-53	303	53.0	144	ND	
Diethylphthalate	5/11	57140	291	140	152	ND	
Fluoranthene	3/11	3180	305	80.0	159	ND	
Fluorene	2/11	24 41	307	41.0	169	ND	
Hexachlorobenzene	1/11	30	297	30.0	180	ND	
Isophorone	1/11	240	267	240	200	ND	
tin alene	3/11	19-150	306	150	165	ND	
jithrene	3/11	46-70	300	70.0	162	ND	
fu₂ €	1/11	41	296	41.0	183	ND	
Pyrene	3/11	68-89	293	89.0	168	ND ·	
bis(2-Ethylhexyl)phthalate	5/11	31-960	2,803	960	769	1500	
PESTICIDES/PCBs (ug/kg)						NO.	
4,4'-DDD	2/11	3-9.4	8,14	9.40	3.26	ND	
4,4'-DDE	1/11	1.9	7.71	1.90	3.10	ND.	
4,4'	1/11	4.1	7.88	4,10	-3,30 40.5	ND ND	
Arocior-1242	2/11	120-160	123	160	40.5		
METALS (mg/kg)	11/11	114-3,580	3,579	3,579	1,283	572 - 5860	1,000 - 25,000
Aluminum	1/11	114-3,580	3,579	3,579	0.618	572 - 5660 ND	3 - 12
Arsenic	-	9.1-32	27.0	32.0	9.55	4.0 13.8	15 - 600
Barium	5/11			11,800	1,363	ND	130 - 35,000
	5/11	358-11,800 1.6-12.1	7,086 10.4	11,600	4.70	2.2 5.7	1.5 - 40
Chromium	10/11			3.28	1.69	27	2.5 - 60
Cobalt	6/11	1.5-3.2	3.28 12.0	3.20 17.2	3.36	ND	t - 15
Copper	4/11	2.8→17.2 292-4,350	4,319	4,319	1,822	972 - 5180	17,500 - 25,000
Iron	11/11		130	4,319	31.5	0.77 - 3.5	10 - 37
Lead	11/11	0.68-195 342-839	633	839	250	732	1,700 - 6,000
Magnesium	4/11		40.9	40.9	17.0	20.9 - 36.7	50 - 5,000
Manganese	11/11	2-48.8		40.9 669	324	20.9 - 3017 ND	8,500 - 43,000
Potassium	5/11	362-669	617 8 07	8.07	3.83	9.7	25 - 60
Vanadium	9/11	2.1-7.3	8.07	50.3	3.63 13.4	1.6 - 8.1	23 - 60 37 - 60
Zinc	7/11	1.6-69	50.3	50.3	13.4	1.0 - 0.1	0. – 00

Samples used to estimate subsurface soil exposures obtained from SB-1 through SB-10 at 2-16 ft bgs.

* Arithmetic average concentrations - non-detects were assigned values of

one-half the Sample Quantitation Limit (SQL) value.

** Concentrations obtained from "Background Concentrations of 20 Elements in

Soils with Special Regard for New York State" (No date). Paper prepared by E. Carol McGovern,

NYSDSC Wildlife Resources Center.

 $k^{\rm tree} \rightarrow k^{\rm tree}$ detected in two background samples from SB-1.

t inicrograms per kilogram

ർഇ 🗟 milligrams per kilogram

bgs Below ground surface.

🔺 • ' 🕨

NOTES: