FINAL

GROUNDWATER SAMPLING REPORT (August 2007 Sampling Event)

Multi Site G
Operation, Maintenance & Monitoring

SMS Instruments Site Deer Park, Suffolk County, NY Site 1-52-026

Work Assignment No. D004445-14.1

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

February 2008

Prepared by:

Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, New Jersey 07003

		TABLE OF CONTENTS	
Chap	ter		Page
1.0	INTR	RODUCTION	1
2.0	BAC	KGROUND INFORMATION AND SITE CHRONOLOGY	1
	2.1	USEPA/REAC SOIL BORING ADVANCEMENT AND SVE/AIR SPARGE	
		WELL INSTALLATION ACTIVITIES (AUGUST 2004)	2
	2.2	USEPA/EARTH TECH GROUNDWATER PUMP & TREAT SYSTEM	
		EVALUATION SAMPLING (AUGUST 31, 2005)	3
	2.3	PHOSTER™ SYSTEM	3
		2.3.1 Technology Description	
		2.3.2 Technology Selection Rationale	4
		2.3.3 Evaluation of PHOSter TM Sampling Results	
		2.3.4 PHOSter TM System Effectiveness Evaluation	5
3.0	FIEL	D ACTIVITIES	
	3.1	ELEVATION SURVEY	5
	3.2	WATER LEVEL SURVEY	5
	3.3	GROUNDWATER SAMPLING	5
4.0	SAM	PLING RESULTS	6
	4.1	VOLATILE ORGANIC COMPOUNDS	
	4.2	SEMIVOLATILE ORGANIC COMPOUNDS	7
	4.3	TAL METALS	7
5.0	SUM	MARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION	
	ACT	IVITIES	8
LIST	OF TA	ABLES	

- 1 Well Construction Data
- 2 **Groundwater Elevations**
- 3 February, September 2006 and August 2007 Groundwater Sampling, Volatile Organic Compounds, Detections Only
- February, September 2006 and August 2007 Groundwater Sampling, Semivolatile Organic 4 Compounds, Detections Only
- February, September 2006 and August 2007 Groundwater Sampling, Target Analyte List Metals, 5 **Detections Only**

LIST OF FIGURES

- Site Location Map 1
- 2 Monitoring Well Location Map
- 3 Groundwater Contour Map, August 2007
- Summary of Volatile Organic Compounds in Groundwater 4
- Summary of Semivolatile Organic Compounds in Groundwater 5
- 6 Summary of TAL Metals in Groundwater

LIST OF APPENDICES

- Well Sampling Forms August 2007 Α
- NYSDEC Monitoring Well Field Inspection Logs В
- C Laboratory Data Summary Packages (Form Is)

1.0 INTRODUCTION

The SMS Instruments site was evaluated in 2003 as part of the Pump and Treat Optimization initiative from US Environmental Protection Agency (USEPA) headquarters which provided recommendations to enhance remedial and cost effectiveness. In July 2003, GeoTrans, Inc. (GeoTrans), on behalf of the USEPA, conducted a site visit to perform the optimization evaluation of the active Groundwater Pump and Treat system. The results of the evaluation were included in a Remediation System Evaluation (RSE) report (GeoTrans, December, 2003). The RSE report recommended developing an exit strategy and provided three potential approaches for consideration.

Site activities from 2004 to 2005 have been performed based on the recommendations provided by the RSE report. In 2005, the Site was transferred from USEPA to the New York State Department of Environmental Conservation (NYSDEC). This semiannual sampling report summarizes the SMS Instruments Site remediation activities that occurred since the transfer.

2.0 BACKGROUND INFORMATION AND SITE CHRONOLOGY

The SMS Instruments Superfund site is located at 120 Marcus Boulevard in Deer Park, Suffolk County, New York (Figure 1). At the time of sampling (August 2007), the building was vacant. The site was listed on the National Priority List (NPL) in 1986. The Site consists of a 34,000 square foot building located on a 1.5-acre lot that is surrounded by other light industrial facilities. A recharge basin is located adjacent to the Site to the east. Facility operations occurred between 1967 and 1990 and primarily involved overhauling of military aircraft components. These activities consisted of cleaning, painting, degreasing, refurbishing, metal machining, and testing components. The current uses include the manufacturing of wooden kitchen utensils. Site contamination was first discovered in 1980 when the Suffolk County Department of Health Services sampled a leaching pool on the south side of the facility. USEPA completed a remedial investigation/feasibility study (RI/FS) in 1989, and investigative and remedial activities have included pumping out the leaching pond and backfilling it, removal of an underground storage tank (which was used to store jet fuel), and operation of a soil vapor extraction system (SVE). The SVE system was operated from 1992 to 1994, near the former leaching pool and the former UST areas to remediate soils. Wastewater was historically discharged into a leaching pool at the site, which, subsequently contaminated soils and groundwater beneath the site. In addition, the leaking UST also contaminated soils and groundwater beneath the site. A Groundwater Pump and Treat (GW P&T) system, which includes an air stripper to treat contaminated groundwater, was constructed and began operation in 1994.

Soil sampling conducted after the operation of the SVE system reflected that the soil remedy reduced contamination and was effective in reducing potential exposure to contaminated soil vapor. The groundwater contamination has decreased substantially since activation of the GW P&T system. However, after several years of operation, the influent concentrations had decreased substantially, the contaminant removal cost per pound had increased dramatically, and the system was no longer seen as accelerating site cleanup. Furthermore, the system was failing to achieve the ultimate groundwater cleanup goals (e.g., the maximum contaminant levels [MCLs]). Therefore, In July 2003, GeoTrans, on behalf of the USEPA, conducted a site visit to perform an evaluation of the active Groundwater Pump and Treat system. The results of the evaluation were included in a Remediation System Evaluation (RSE) (GeoTrans, 2003). The RSE report recommended developing an exit strategy, and provided three potential approaches for consideration. One of the three recommended approaches, the most aggressive approach, was to conduct a pilot study on an alternative technology and determine if that alternative technology, or another approach, should replace the P&T system. The RSE report indicated various alternative technologies are available for reducing mass of volatile organic compounds (VOCs), including

air sparging, bioaugmentation, and chemical oxidation. The USEPA considered this approach the most viable of the three recommended approaches in the RSE report. The intent of aggressively addressing the remaining soil contamination was to reduce contaminant concentrations in the soil and reduce the potential for future contamination of the groundwater, thereby reducing both the cost and time required to remediate the site.

Following USEPA's selection of this recommendation from the RSE report, in May of 2004, the USEPA Remedial Action Branch sent a request for field support at the SMS Instruments Site. The request involved two phases: additional field characterization of a former UST area through use of a geoprobe down to the water table, and a second phase to assess and implement additional remedial technologies to address remaining source areas, such as air sparging with SVE and/or bioremedial-enhancing injections. In an effort to field characterize the former UST area and obtain data needed for the selection of a pilot alternative approach, 25 soil borings were advanced and installation of SVE and air sparge wells were performed in August 2004 by ERT and the Response Engineering and Analytical Contract (REAC) contractor (Lockheed Martin Technology Services [Lockheed Martin]). Further details of the August 2004 ERT/REAC activities are included in section 2.1 of this report.

Based on an evaluation of the data generated by ERT/REAC, the USEPA Remedial Project Manager (RPM) and the USEPA Removal On-Scene Coordinator (OSC) concluded the installation of a PHOSterTM bioremediation system would be the most appropriate and cost effective technology for the time frame of operation. In April of 2005, under the Emergency and Rapid Response Services (ERRS) contract, Earth Tech Northeast, Inc. (Earth Tech) procured a PHOSterTM system and the system was later installed and activated on site in May 2005. Further details of the PHOSterTM system are included in Section 2.3 of this report.

The USEPA operated the GW P&T system at the Site until July 15, 2005 when the Site was turned over to NYSDEC. Based on sampling conducted by CDM for the USEPA in June 2005 and effluent samples collected by Earth Tech in August 2005, Earth Tech determined that the GW P&T system was no longer removing significant quantities of contaminants, and VOC concentrations in the influent were below detection limits (at 5 ppb). In a letter to NYSDEC dated October 6, 2005, Earth Tech recommended that the groundwater treatment system be de-activated. NYSDEC concurred with this recommendation in a letter dated October 21, 2005 (Attachment A).

2.1 USEPA/REAC Soil Boring Advancement and SVE/Air Sparge Well Installation Activities (August 2004)

In July 2004, EPA-ERT/REAC provided the necessary field support to characterize the remaining source area and preliminary cost projections to implement sparging/bioremediation operations. A Geoprobe was used to advance 25 soil borings to collect 46 subsurface soil samples which were analyzed with a field GC for benzene, toluene, ethylbenzene, and xylenes (BTEX); and three samples were also analyzed for VOCs. The highest BTEX/VOC concentrations were detected in samples collected in the vicinity of the drywell and groundwater extraction well EXW-3. These soil samples were collected within the smear zone [between 24 and 28 feet below ground surface (ft bgs)]. The highest concentrations of BTEX were found in the drywell sample collected at 24 ft bgs with a total concentration of 170,580 micrograms per kilogram (μ g/kg). The highest VOC results were obtained from the drywell location at 24 feet bgs with a total VOC concentration of 408,100 μ g/kg. Vadose zone and in the groundwater table sample data indicated the contamination was contained within the smear zone. Complete details of the soil boring event are included in the Site Investigation Report (Technical Memorandum) (REAC / Lockheed Martin, August, 2005.

Following a review of these results, it was determined that bioremedial enhancement required further evaluation beyond the USEPA's Remedial Action Branch's required timeframe for transfer of the site to the NYSDEC. Therefore, in November 2004, USEPA's Removal Action Branch along with ERT/REAC were able to provide continual field support to install the necessary piping for the bioremediation system. However, it was determined that purchasing or rental of the bioremediation system was beyond the scope of their existing contract. Therefore, in May 2005, Earth Tech, EPA Region II ERRS contractor, procured and installed a PHOSterTM bioremediation system at the Site. Further details of the bioremediation system are included in Section 2.3 of this report.

The system performance was evaluated in June 2006 with a soil sampling program designed to collect subsurface soil samples for chemical testing and methanotrophs. The results of this evaluation were presented in the Final PHOSterTM System Soil Sampling Report (June 2006 Sampling Event) (Earth Tech, October 2006). The report concluded that the system was removing VOCs from the soil column; however, pockets of contamination still remained. The report recommended that the system continue to operate for another six months at which time the performance would again be evaluated.

2.2 USEPA/Earth Tech Groundwater Pump & Treat System Evaluation Sampling (August 31, 2005)

In an effort to evaluate the current status of the groundwater pump & treat system, on August 31, 2005, three groundwater samples (including one field duplicate) were shipped to Mitkem Corporation for VOC analysis by USEPA Method 624, along with three air samples (also including one field duplicate) , which were shipped to Con-Test Analytical Laboratory for total organic analysis.

The groundwater samples were collected after a minimum of five gallons was purged from the sample ports located within the treatment system. Samples were collected from the influent (INFLUENT) and effluent (EFFLUENT, as well as duplicate sample EFFLUENT-A) of the treatment system for volatile organics analysis.

The air samples were collected using Summa canisters for a period of two minutes per sample. Samples were collected from post air stripper (POST AIR STRIPPER, along with a field duplicate POST AIR STRIPPER-A) and post carbon (POST CARBON) of the treatment system for total organics analysis. Further details of the August 31, 2005 sampling activities are detailed in a Sampling Trip report dated August 31, 2005.

Results of the GW P&T system evaluation sampling performed on August 31, 2005 indicated no contamination was being treated by the Groundwater Pump and Treat system, and contaminants were not detected (at a detection limit of 5 ppb) in the influent. Therefore, on October 6, 2005 Earth Tech recommended the shut-down of the SMS groundwater pump and treatment plant and in a letter dated October 21, 2005 the NYSDEC approved the temporary shutdown of the groundwater treatment plant. The NYSDEC letter also indicated that groundwater sampling will continue to determine if any significant rebound occurs. If no rebound is observed after a reasonable period of time, the treatment system will be permanently shut down and dismantled.

2.3 PHOSterTM System

2.3.1 Technology Description

The Enhanced In-Situ Bioremediation Process is a biostimulation technology developed by the US Department of Energy (DOE) at the Westinghouse Savannah River Plant site in Aiken, S.C. DOE refers to their phosphate injection technology as PHOSterTM and has licensed the process to Earth Tech. Earth

Tech is utilizing the process to deliver a gaseous phase mixture of air, nutrients, and methane to contaminated soils at the SMS site. These enhancements are delivered to groundwater via injection wells to stimulate and accelerate the growth of existing microbial populations, especially methanotrophs. This type of aerobic bacteria has the ability to metabolize methane and produce enzymes capable of degrading chlorinated solvents and their degradation products to non-hazardous constituents. The primary components of Earth Tech's treatment system consist of injection wells, air injection equipment, groundwater monitoring wells, and soil vapor monitoring points. Figure 5 shows a plan view of the treatment area, the injection wells, and monitoring points. The injection wells are designed to deliver air, gaseous-phase nutrients, and methane to groundwater and the vadose zone in the underlying soils.

The SMS system consists of a 5 horsepower rotary screw compressor that is capable of delivering 15 to 30 pounds per square inch (psi) and approximately 10 to 100 standard cubic feet per hour (scfh) to a pressure rated steel tank. Air from the main line is diverted to the injection wells (screened 30 to 50 ft bgs). The monitoring wells and soil vapor monitoring points were installed upgradient, downgradient and cross-gradient relative to the injection well location to delineate the zone of influence and to monitor groundwater within and outside the zone of influence. The soil vapor monitoring points can be designed to release or capture vapors that may build up in the overburden. The monitoring wells were constructed in a manner to allow them to be converted to either injection wells or soil vapor extraction points.

The SMS injection system consists of air, nutrient, and methane injection equipment (all housed in a temporary building or shed). A compressor serves as the air source, and includes a condensate tank ("trap") with a drain, an air line, coalescing filters and pressure regulators and valves. Methane and nitrous oxide provide the source of carbon and nitrogen, respectively. Both are provided in standard gas cylinders and are piped into the main air line using regulators and flow meters. Triethyl phosphate (TEP), the phosphorus source, is stored as a liquid in a pressure-rated steel tank. Air from the main line is diverted through the tank to volatilize the TEP for subsurface delivery. The air, nitrous oxide, and TEP are injected continuously while the methane is injected on a pulsed schedule. The methane is closely monitored just prior to injecting into subsurface wells to ensure that the injection concentration does not exceed 4% by volume, thus avoiding the methane lower explosive limit (LEL) of 5%.

2.3.2 Technology Selection Rationale

The PHOSterTM technology was chosen for this site for a number of reasons. Contamination concentrations in the groundwater are at very low asymptotic levels and it was felt that the pump and treat system was no longer capable of removing a sufficient mass of contamination to justify operation. A system of groundwater and vadose zone wells were already in place that would be suitable for economically installing this technology. Soil and groundwater sampling results indicated existing biological activity was slowly degrading the contaminants. The site geology and hydrogeology was also ideal for this technology. The PHOSterTM technology has demonstrated ability to stimulate bacterial activity, promote the destruction of contaminants and act as a polishing technology for removal low levels of contamination often encountered in the final stages of site remediation.

2.3.3 Evaluation of PHOSterTM Sampling Results

Air samples are tested from on-site monitoring wells two times per month by Earth Tech staff scientists. The air is monitored for methane and CO₂ in percent with a CES-LANDTECH GEMTM 500 portable gas analyzer. A MultiRAE meter is used to analyze for CO, O₂ and H₂S. A MultiRAE PID is used to monitor for VOCs.

The results of these sampling events will be included in the next PHOSterTM System report. The data indicate that organic vapors in the monitoring wells have in general been decreasing steadily since the

installation of the PHOSterTM system. Methane concentrations have been somewhat variable but that is attributed to the fact that methane is being added in pulse doses to stimulate biological activity in the soil. The presence of methane in variable concentrations depending upon the timing of sampling events was expected and is desirable as an indication of the proper function of the system. Other parameters, such as O_2 and CO_2 , indicate that biological activity has increased. The O_2 levels have decreased, indicating increased aerobic biological activity that requires oxygen, and the CO_2 levels have increased, also indicating biological activity has been stimulated.

2.3.4 PHOSterTM System Effectiveness Evaluation

On March 22 and 23, 2007, Earth Tech advanced six soil borings and collected subsurface soil samples for analysis of VOCs, semivolatile organic compounds (SVOCs), pospholipid fatty acids (PLFA) and methanotrophs. The results were presented in the Final PHOSterTM System Soil Sampling Report dated June 2007. The results indicated that contaminant concentrations were decreasing; however, soil samples collected near the former dry well had contaminant concentrations exceeding applicable cleanup criteria. Based on the analytical results, Earth Tech recommended that the system continue to operate for an additional six months, at which time another round of soil samples would be collected and evaluated.

3.0 FIELD ACTIVITIES

In accordance with the June 2007 Sampling and Analysis Plan (Earth Tech, June 2007) developed for the SMS Instruments Site, Earth Tech conducted the third of five groundwater sampling events in August 2007. The first round of groundwater samples were collected in February 2006, under NYSDEC Work Assignment #D003821-41. The second round of groundwater samples was collected September 11 through 15, 2006. This section describes and presents the results of the groundwater sampling event that took place on August 13 through 17, 2007.

3.1 Elevation Survey

YEC, Inc. performed a survey of the wells at the Site to determine location and elevation as this data could not be located. The survey was performed on March 23, 2007. The survey data is presented in Table 1 along with pertinent well construction data.

3.2 Water Level Survey

At the start of the sampling effort, the depth to groundwater was measured in each well. These measurements are presented in Table 2. A groundwater contour map is presented in Figure 3. As shown on the figure, the direction of groundwater flow at the Site is to the south. The gradient, as measured between contour lines, is approximately 0.0024, a very shallow gradient.

3.3 Groundwater Sampling

Prior to sampling each well, a depth to water measurement was taken using a water level indicator, which was washed in a Liquinox bath and rinsed with distilled water before each use. Each monitoring well was purged of three well volumes with a submersible pump. The pump was decontaminated between each monitoring well by a liquinox bath followed by a distilled water rinse.

After purging, temperature, conductivity, pH, and turbidity measurements were recorded on the field observation logs. Water samples were obtained with new dedicated Teflon bailers. All groundwater samples were collected in bottles provided by the laboratory. Samples were packed on ice, and submitted

with a completed chain-of-custody (COC) to Mitkem Laboratories, Inc. (Warwick, RI). Each sample was analyzed for VOCs by SW-846 Method 8260B, (SVOCs) by Method 8270C, and target analyte list (TAL) metals by Method 6010, and mercury by Method 7470.

The locations of these wells are presented in Figure 2. A total of 19 monitoring wells were sampled during this sampling event. The pumps in the two extraction wells, EW-1 and EW-2, would not function during the sampling event. After consultation with the NYSDEC Project Manager, the decision was made to not sample these two wells during this event. MW-11 could not be located during the field effort as the area is under construction.

4.0 SAMPLING RESULTS

The laboratory analytical results for the VOCs, SVOCs and TAL metals analyses and the related COC's are included as Tables 3, 4, and 5 of this report, respectively. Nineteen monitoring wells were sampled during the August 2007 event. Extraction wells EW-1 and EW-2 were not sampled during the August 21007 event as the pumps could not be started and MW-11 could not be located (new construction on this property has obscured the location). In addition, the New York State Ambient Water Quality Standards and Guidance Values for groundwater are shown on each table. Any compound detected at a concentration at or above the applicable standard or guidance value is in bold/italics font.

4.1 Volatile Organic Compounds

VOCs results are shown on Table 3 of this report. The VOC results are also summarized on Figure 4.

EW-1 and EW-2 were not sampled during the September 2006 or August 2007 sampling events. MW-11 could not be located during the August 2007 sampling event. New construction on this property has obscured the location.

No VOCs were detected in monitoring wells MW-1, MW-4, MW-5, MW-6D, MW-8, MW-9, MW-12, MW-13, MW-13D, MW-15, MW-16S and MW-16M during the August 2007 sampling round.

Several VOCs, including 1,2-dichlorobenzene, acetone and methyl tert-butyl ether (MTBE), were detected in monitoring wells MW-2, WM-14, MW-16D, and MW-17 at concentrations below their Class GA criteria.

In monitoring well MW-1, the concentration of 1,1-dichloroethane has decreased from 14 μ g/L during the February 2006 sampling event to an estimated 4 μ g/L during the September 2006 sampling event to not detected during the August 2007 sampling event.

No VOCs were detected in MW-2 during the first two sampling events. 1,2-Dichlorobenzene was reported at an estimated concentration of 1 μ g/L during the August 2007 sampling event.

No VOCs were detected in MW-3 during the first two sampling events. During the August 2007 sampling event, vinyl chloride (Class GA criterion of 2 μ g/L) was detected at a concentration of 8 μ g/L and cis-1,2-dichloroethene (class GA criterion of 5 μ g/L) was detected at a concentration of 8 μ g/L.

No VOCs had been detected in MW-6D during the first sampling event. During the September 2006 sampling event three VOCs were detected and hexachlorobutadiene (Class GA criterion of 0.5 μ g/L) was detected at an estimated concentration of 2 μ /L. No VOCs were detected during the August 2007 sampling event.

Several VOCs, mostly benzene derivatives and xylenes, have been detected at MW-6S during the three sampling events. During the August 2007 sampling event, two exceedances of the Class GA criterion were noted: 1,3,5-trimethylbenzene at 5 μ g/L and 1,24-trimethylbenzene at 11 μ g/L. The concentrations and the exceedances at this location have remained relatively constant during the last two sampling events.

At MW-7, the concentration of 1,1-dichloroethane (Class GA criterion of 5 μ g/L) has increased during each sampling event: 1 μ g/L, 3 μ g/L and 13 μ g/L during the August 2007 sampling event. The concentration of 1,1,1-trichloroethane has increasing from an estimated 1 μ g/L during the September 2006 sampling event to an estimated 4 μ g/L during the August 2007 sampling event. The compounds are showing increasing concentrations through the three sampling events.

During the September 2006 sampling event, hexachlorobutadiene (Class GA criterion of 0.5 μ g/L) had been detected at an estimated concentration of 1 μ g/L in MW-16D and an estimated 2 μ g/L in MW-17. During the August 2007 sampling event, this compound was not detected in either monitoring well.

4.2 Semivolatile Organic Compounds

SVOC results are shown on Table 4 of this report. The SVOC results are also summarized on Figure 5.

No target SVOCs were detected in monitoring wells MW-1, MW-2, MW-4, MW-5, MW-8, MW-9, MW-12, MW-13, MW-13D, MW-14, MW-15, MW-16S and MW-17.

Bis(2-ethylhexyl)phthalate (Class GA criterion of 50 μ /L) was detected at estimated concentrations (less than 5 μ g/L) in monitoring wells MW-3, MW-6D, MW-16D and MW-16M during the August 2007 sampling event. No other SVOCs were detected in these four wells.

Several polynuclear aromatic hydrocarbons were detected in monitoring well MW-6S during the August 2007 sampling event. Several of these compounds had also been detected during the two previous sampling events. Several exceedances of the Class GA criterion (all at 0.002 μ g/L) were noted for benzo(a)anthracene (1 μ g/L), chrysene (2 μ g/L), benzo(b)fluoranthene (3 μ g/L), benzo(k)fluoranthene (1 μ g/L), benzo(a)pyrene (2 μ g/L) and indeno(1,2,3-cd)pyrene (2 μ g/L).

Phenol was detected at an estimated concentration of 1 μ g/L during the August 2007 sampling event which is the same value as the Class GA criterion. Phenol had not been detected during either of the two previous sampling events.

4.3 TAL Metals

Results for TAL metals are shown on Table 5 of this report. The metals data is also summarized on Figure 6. All 23 TAL metals were detected in one or more of the 19 monitoring wells sampled during the August 2007 sampling event. Exceedances of the Class GA criterion were noted for iron, manganese, sodium and zinc in several monitoring wells; as these four metals are common elements in groundwater, they will not be discussed further.

Antimony was detected in all 19 monitoring well samples. The concentrations exceeded the Class GA criterion of 3 μ g/L in 15 of these wells: MW-1, MW-2, MW-3, MW-4, MW-5, MW-6S, MW-6D, MW-7, MW-8, MW-9, MW-13D, MW-14, MW-15, MW-16M and MW-17. Concentrations ranged as high as 15.7 μ g/L in monitoring well MW-14. This compares with no exceedances noted during the September

2006 sampling event and only two exceedances (EW-2 and MW-1) during the February 2006 sampling event.

Cadmium has been present in most samples collected during the three sampling events but at concentrations below the Class GA criterion of $5\mu g/L$. Cadmium has exceeded the criterion in four monitoring wells: MW-5, MW-13D, MW-16S and MW-16D. Cadmium exceeded the criterion at MW-5 only during the February 2006 and August 2007 sampling events at concentrations of $5.8 \mu g/L$ and $8.4 \mu g/L$. Cadmium in monitoring well MW-13D exceeded the criterion during all three sampling events at concentrations of $72.8 \mu g/L$, $72.8 \mu g/L$ and $65.5 \mu g/L$. $11.8 \mu g/L$) exceeded the Class GA standard of $10 \mu g/L$. During the February 2006 sampling event, cadmium was detected in monitoring well MW-16S at a concentration of $17.4 \mu g/L$. Cadmium exceeded the criterion during all three events at MW-16D at concentrations of $23.4 \mu g/L$, $11.8 \mu g/L$ and $5.1 \mu g/L$.

Chromium has been detected in most samples during all three sampling event, mostly at concentrations below the Class GA criterion of 50 μ g/L. Chromium exceeded the criterion in three wells: MW-6S, MW-15 and MW-16S. During the August 2007 sampling event, the chromium concentration at MW-6S was 111 μ g/L. During the September 2006 sampling event, the chromium concentration at MW-15 was 275 μ g/L. At MW-16S, chromium concentrations have exceeded the criterion during the September 2006 and August 2007 sampling events at concentrations of 117 μ g/L and 95.7 μ g/L.

Lead was detected above its Class GA criterion of 25 μ g/L during all three sampling events at MW-2 at concentrations of 135 μ g/L, 128 μ g/L and 197 μ g/L.

During the February 2006 sampling event, selenium was detected in 14 of 22 wells sampled. There was only one exceedance of the Class GA criterion of 10 μ g/L at MW-6D at a concentration of 12.5 μ g/L. During the September 2006 sampling event, selenium was detected at 3 of 20 wells samples with no exceedances noted. During the August 2007 sampling event, selenium was detected in all 19 samples with exceedances noted at 15 wells. The highest concentration was noted at MW-14, 41.2 μ g/L.

During the February 2006 sampling event, thallium was detected in nine of 22 samples at concentration above the Class GA criterion of 0.5 μ /L with the highest concentration noted at MW-6S (6.4 μ g/L). During the September 2006 sampling event, thallium was detected in six of 20 samples above the criterion, with the highest concentration noted at MW-13 (4 μ g/L). During the August 2007 sampling event, thallium was detected in 12 of 19 samples above the criterion with the highest concentration noted at MW-14 (64.8 μ g/L).

5.0 SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION ACTIVITIES

During the February 2006 sampling event (Round 1) there were only two VOCs exceedances – chlorobenzene at EW-1 and 1,1-dichloroethane at MW-1. EW-1 was not sampled during Round 1 (September 2006 or Round 2 (August 2007) due to problems with the pump, so there is not information for comparison. During Round 2, there were three compounds that exceeded the criterion – total xylenes at MW-6S, 1,2,4-trimethylbenzene at MW-6S, and hexachlorobutadiene at MW-6D, MW-16D and MW-17. During Round 3, exceedances were noted in three monitoring well: MW-3, MW-6S and MW-7.

Several VOCs, mostly xylenes and benzene derivatives, have been detected at MW-6S during all three sampling events. The concentrations have remained relatively constant during this time frame with no discernable trends in either the number of compounds detected or the concentrations.

Hexachlorobutadiene was not historically associated with the Site. The VOCs hits noted at MW-6S, MW-16D and MW-17 during the September 2006 sampling are no longer present and may be a result of the soil sampling performed for the PHOSterTM system in June 2006. Collecting soil samples from below the groundwater table may have remobilized contaminants that were adsorbed on soil particles.

No significant rebound of VOC concentrations has been noted in the three rounds of groundwater samples collected at the Site since the Pump and Treat System was temporarily shut down in October 2005. The Final Semiannual Sampling Report for the February 2006 sampling event (Earth Tech, October 2006) recommended that if no further rebound of contaminant concentrations were noted in the next sampling event (detailed in this report), the Pump and Treat System could be dismantled.

During Round 1 there were several exceedances of SVOCs, most of which were in wells MW-6D and MW-6S. The six compounds which exceeded criteria in Round 1 at MW-6D were reported as not detected during Round 2 and Round 3.

Of the two SVOCs exceedances noted at MW-6S during Round 1, chrysene was reported as not detected and benzo(b)fluoranthene remained above the criterion in Round 2. Several other polynuclear aromatic hydrocarbons (PAHs) were detected at estimated concentrations during Round 3 including benzo(a)anthracene, chrysene, benzo(k)fluoranthene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene all of which exceeded the Class GA criterion of $0.002~\mu g/L$.

Antimony was present in all 19 samples during Round 3 with the concentrations exceeding the criterion in 15 of these samples. No exceedances were noted during Round 2 and only four exceedances were noted during Round 1. The significant increase in the presence of antimony cannot be explained at this time. The metals data indicate that lead concentrations remain above the criterion at MW-2. Cadmium concentrations remain above the criterion at MW-13D and MW-16D. The cadmium concentration at MW-5 increased and is above the criterion again for Round 3. Chromium exceedances were noted at MW-15 and MW-16S during Round 2, but not during Round 1. Thallium concentrations remain above the guidance value in several wells. Metals contamination was not a concern and therefore was not part of the remedial action.

Earth Tech recommends the following for the SMS Instruments Site:

- Continued operation of the PHOSterTM bioremediation system;
- Collection of soil borings in the areas of known soil impact via direct-push soil sampling methods for the evaluation of current soil conditions in the area of concern and the effectiveness of the PHOSterTM bioremediation system after six months;
- Two additional rounds of sampling are included in this work assignment. Groundwater sampling should continue for the next two scheduled events to provide groundwater information while the PHOSterTM system is in operation and continued monitoring after the PHOSterTM system is shut down to monitor for potential rebound; and
- Dismantlement of the groundwater Pump and Treat System at the Site.

TABLE 1 SMS INSTRUMENTS SITE (1-25-026) WELL CONSTRUCTION DATA

All elevations and depths in feet

Field survey performed by YEC, Inc., on March 23, 2007 Vertical datum: NAVD 88, for NGVD 29, add 1.13 feet

Horizontal datum assumed

TABLE 2 SMS INSTRUMENTS SITE (1-52-026) GROUNDWATER ELEVATIONS

Well #	Reference Elevation	Date	Depth To Water	Water Table Elevation	Comments
MW-1	73.18	8/13/07	17.98	55.20	
MW-2	72.34	8/13/07	16.91	55.43	
MW-3	71.40	8/13/07	15.95	55.45	
MW-4	72.04	8/13/07	16.68	55.36	
MW-5	70.87	8/13/07	15.72	55.15	
MW-6S	70.64	8/13/07	15.15	55.49	
MW-6D	70.70	8/13/07	15.59	55.11	
MW-7	72.09	8/13/07	17.06	55.03	
MW-8	71.22	8/13/07	15.54	55.68	
MW-9	70.58	8/13/07	14.87	55.71	
MW-11	67.54	8/13/07			could not locate
MW-12	69.82	8/13/07	15.57	54.25	
MW-13	71.16	8/13/07	17.08	54.08	
MW-13D	71.20	8/13/07	17.01	54.19	
MW-14	71.29	8/13/07	17.24	54.05	
MW-15	71.55	8/13/07	16.78	54.77	
MW-16S	71.47	8/13/07	16.64	54.83	
MW-16M	71.59	8/13/07	16.75	54.84	
MW-16D	71.62	8/13/07	16.79	54.83	
MW-17	71.19	8/13/07	16.26	54.93	

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006 AND AUGUST 2007 SEMI-ANNUAL GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	EW-1	EW-1	EW-2	EW-2	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2
Sample ID		SMS-EW-1	SMS-EW-1	SMS-EW-2	SMS-EW-2	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Groundwater	E0136-20A		E0203-03C		E0153-03A	E1376-16A	F1135-05A	E0136-03A	E1376-17A	F1135-13A
Sample Date	Criteria	2/9/06		2/23/06		2/10/06	09-12-06	08-14-07	2/7/06	09-12-06	08-15-07
Matrix	water	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
				conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Vinyl Chloride	2	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	NC	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	NA	ND	NA	14.0	4 J	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	NA	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	32.0	NA	ND	NA	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	1.0 J	NA	ND	NA	ND	ND	ND	ND	ND	ND
m,p-Xylene	NC	5.0	NA	ND	NA	ND	ND	ND	ND	ND	ND
Xylene (Total)	5	5.0	NA	ND	NA	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	5	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	NA	ND	ND	ND	ND	ND	1 J
1,2,4-Trichlorobenzene	5	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	NA	ND	NA	ND	ND	ND	ND	ND	ND
Number of TICs		0	NA	0	0	0	0	0	0	0	0
Total TICs		ND	NA	ND	NA	ND	ND	ND	ND	ND	ND

J - Estimated value

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006 AND AUGUST 2007 SEMI-ANNUAL GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location			MW-3	MW-4	MW-4	MW-4	MW-5	MW-5	MW-5	
Sample ID		SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-5	SMS-MW-5	SMS-MW-5
Laboratory ID	Groundwater	E0153-05A	E1376-12A	F1135-11A	E0153-01A	E1376-14A	F1135-14A	E0136-19A	E1376-03A	F1135-03A
Sample Date	Criteria	2/10/06	09-12-06	08-15-07	2/9/06	09-12-06	08-15-07	2/9/06	09-11-06	08-14-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q								
Vinyl Chloride	2	ND	ND	8	ND	ND	ND	ND	ND	ND
Acetone	50	ND								
Methyl tert-butyl ether	NC	ND								
1,1-Dichloroethane	5	ND								
cis-1,2-Dichloroethene	5	ND	ND	8	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND								
Chlorobenzene	5	ND								
Ethylbenzene	5	ND								
m,p-Xylene	NC	ND								
Xylene (Total)	5	ND								
Isopropylbenzene	5	ND								
1,3,5-Trimethylbenzene	5	ND								
1,2,4-Trimethylbenzene	5	ND								
1,3-Dichlorobenzene	5	ND								
1,4-Dichlorobenzene	5	ND								
1,2-Dichlorobenzene	4.7	ND								
1,2,4-Trichlorobenzene	5	ND								
Hexachlorobutadiene	0.5	ND								
Naphthalene	10	ND								
1,2,3-Trichlorobenzene	5	ND								
Number of TICs		0	0	0	0	0	0	0	0	0
Total TICs		ND								

J - Estimated value

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006 AND AUGUST 2007 SEMI-ANNUAL GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-6D	MW-6D	MW-6D	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Groundwater	E0136-17A	E1376-05A	F1135-02A	E0136-13A	E1376-01A	F1135-01A	E0153-07A	E1376-07A	F1135-04A
Sample Date	Criteria	2/9/06	09-11-06	08-14-07	2/8/06	09-11-06	08-14-07	2/10/06	09-11-06	08-14-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q								
Vinyl Chloride	2	ND								
Acetone	50	ND								
Methyl tert-butyl ether	NC	ND								
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	1.0 J	3 J	13 J
cis-1,2-Dichloroethene	5	ND								
1,1,1-Trichloroethane	5	ND	1 J	4 J						
Chlorobenzene	5	ND	ND	ND	1.0 J	ND	2 J	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	2 J	ND	ND	ND	ND
m,p-Xylene	NC	ND	ND	ND	ND	5	4 J	ND	ND	ND
Xylene (Total)	5	ND	ND	ND	ND	5	4 J	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	1 J	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	3 J	5	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	6	11	ND	ND	ND
1,3-Dichlorobenzene	5	ND	ND	ND	ND	ND	2 J	ND	ND	ND
1,4-Dichlorobenzene	5	ND	ND	ND	ND	2 J	4 J	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND								
1,2,4-Trichlorobenzene	5	ND	1 J	ND						
Hexachlorobutadiene	0.5	ND	2 J	ND						
Naphthalene	10	ND	ND	ND	ND	1 J	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	2 J	ND						
Number of TICs		0	0	0	0	0	0	0	0	0
Total TICs		ND								

J - Estimated value

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006 AND AUGUST 2007 SEMI-ANNUAL GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-11	MW-11	MW-11
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-11	SMS-MW-11	SMS-MW-11
Laboratory ID	Groundwater	E0136-01A	E1376-02A	F1135-07A	E0136-02A	E1376-15A	F1135-06A	E0136-05A	E1400-06A	
Sample Date	Criteria	2/7/06	09-11-06	08-14-07	2/7/06	09-12-06	08-14-07	2/8/06	09-13-06	08-14-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q								
Vinyl Chloride	2	ND	NA							
Acetone	50	ND	NA							
Methyl tert-butyl ether	NC	ND	NA							
1,1-Dichloroethane	5	ND	NA							
cis-1,2-Dichloroethene	5	ND	NA							
1,1,1-Trichloroethane	5	ND	NA							
Chlorobenzene	5	ND	NA							
Ethylbenzene	5	ND	NA							
m,p-Xylene	NC	ND	NA							
Xylene (Total)	5	ND	NA							
Isopropylbenzene	5	ND	NA							
1,3,5-Trimethylbenzene	5	ND	NA							
1,2,4-Trimethylbenzene	5	ND	NA							
1,3-Dichlorobenzene	5	ND	NA							
1,4-Dichlorobenzene	5	ND	NA							
1,2-Dichlorobenzene	4.7	ND	NA							
1,2,4-Trichlorobenzene	5	ND	NA							
Hexachlorobutadiene	0.5	ND	NA							
Naphthalene	10	ND	NA							
1,2,3-Trichlorobenzene	5	ND	NA							
Number of TICs		0	0	0	0	0	0	0	0	0
Total TICs		ND								

J - Estimated value

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006 AND AUGUST 2007 SEMI-ANNUAL GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-12	MW-12	MW-12	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Groundwater	E0136-06A	E1400-05A	F1159-04A	E0136-07A	E1400-01A	F1159-03A	E0136-09A	E1400-02A	F1135-19A
Sample Date	Criteria	2/8/06	09-13-06	08-17-07	2/8/06	09-13-06	8/17/07	2/8/06	09-13-06	08-16-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q						
Vinyl Chloride	2	ND	ND	ND						
Acetone	50	ND	ND	ND						
Methyl tert-butyl ether	NC	ND	ND	ND	1.0 J	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND						
cis-1,2-Dichloroethene	5	ND	ND	ND						
1,1,1-Trichloroethane	5	ND	ND	ND						
Chlorobenzene	5	ND	ND	ND	ND	2 J	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND						
m,p-Xylene	NC	ND	ND	ND						
Xylene (Total)	5	ND	ND	ND						
Isopropylbenzene	5	ND	ND	ND						
1,3,5-Trimethylbenzene	5	ND	ND	ND						
1,2,4-Trimethylbenzene	5	ND	ND	ND						
1,3-Dichlorobenzene	5	ND	ND	ND						
1,4-Dichlorobenzene	5	ND	ND	ND						
1,2-Dichlorobenzene	4.7	ND	ND	ND						
1,2,4-Trichlorobenzene	5	ND	ND	ND						
Hexachlorobutadiene	0.5	ND	ND	ND						
Naphthalene	10	ND	ND	ND						
1,2,3-Trichlorobenzene	5	ND	ND	ND						
Number of TICs		0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND						

J - Estimated value

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006 AND AUGUST 2007 SEMI-ANNUAL GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-16D	MW-16D	MW-16D
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D
Laboratory ID	Groundwater	E0136-08A	E1400-07A	F1135-18A	E0136-11A	E1376-11A	F1135-17A	E0136-16A	E1400-03A	F1135-09A
Sample Date	Criteria	2/8/06	09-13-06	08-16-07	2/8/06	09-12-06	08-16-07	2/9/06	09-13-06	08-13-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q						
Vinyl Chloride	2	ND	ND	ND						
Acetone	50	ND	ND	6	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	NC	ND	1 J	1 J						
1,1-Dichloroethane	5	ND	ND	ND						
cis-1,2-Dichloroethene	5	ND	ND	ND						
1,1,1-Trichloroethane	5	ND	ND	ND						
Chlorobenzene	5	ND	ND	ND						
Ethylbenzene	5	ND	ND	ND						
m,p-Xylene	NC	ND	ND	ND						
Xylene (Total)	5	ND	ND	ND						
Isopropylbenzene	5	ND	ND	ND						
1,3,5-Trimethylbenzene	5	ND	ND	ND						
1,2,4-Trimethylbenzene	5	ND	ND	ND						
1,3-Dichlorobenzene	5	ND	ND	ND						
1,4-Dichlorobenzene	5	ND	ND	ND						
1,2-Dichlorobenzene	4.7	ND	ND	ND						
1,2,4-Trichlorobenzene	5	ND	ND	ND						
Hexachlorobutadiene	0.5	ND	1 J	ND						
Naphthalene	10	ND	ND	ND						
1,2,3-Trichlorobenzene	5	ND	ND	ND						
Number of TICs		0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND						

J - Estimated value

Bold/Italics - Exceeds criterion

TABLE 3
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY 2006, SEPTEMBER 2006 AND AUGUST 2007 SEMI-ANNUAL GROUNDWATER SAMPLING
VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16M	MW-16M	MW-16M	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Groundwater	E0136-15A	E1376-10A	F1135-10A	E0136-12A	E1376-09A	F1135-16A	E0136-18A	E1376-04A	F1135-15A
Sample Date	Criteria	2/9/06	09-12-06	08-13-07	2/9/06	09-12-06	08-16-07	2/9/06	09-11-06	08-16-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q					
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	NC	ND	2 J	ND	ND	2 J	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
m,p-Xylene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	2 J	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	1 J	ND
Number of TICs		0	0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	ND	ND	ND	ND	ND	ND

J - Estimated value

Bold/Italics - Exceeds criterion

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	EW-1	EW-1		EW-2		EW-2		MW-1		MW-1	MW-1	MW-2	MW-2	MW-2
Sample ID		SMS-EW-01	SMS-EW	'-01	SMS-EW	-2	SMS-EW-	2	SMS-MW-	-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Groundwater	E0136-20B			E0203-	03C			E0153-0)3B	E1376-16B	F1135-05B	E0136-03C	E1376-17B	F1135-13B
Sample Date	Criteria	2/9/06			2/23/0	6			2/10/06		9/12/06	8/14/07	2/7/06	9/12/06	8/15/07
Matrix	water	water	water		water		water		water		water	water	water	water	water
Units	μg/L	μg/L	μg/L		μg/L		μg/L		μg/L		μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc	Q	conc	Q	conc	Q	conc	Q	conc Q	conc Q	conc Q	conc Q	conc Q
Phenol	1	ND	N.	A	NI	D	N/	١	ND		ND	ND	ND	ND	ND
1,3-Dichlorobenzene	5	ND	N.	Α	N	D	NA	١	ND)	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	4.7	ND	N.	Α	N	D	N/	١.	ND		ND	ND	ND	ND	ND
Isophorone	50	ND	N.	Α	N	D	N/	١.	ND)	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	N.	Α	N	D	N/	١.	ND)	ND	ND	ND	ND	ND
Naphthalene	10	ND	N.	Α	N	D	NA	١	ND)	ND	ND	ND	ND	ND
Phenanthrene	50	ND	N.	Α	N	D	N/	١.	ND)	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	N.	Α	N	D	NA	١	ND)	ND	ND	ND	ND	ND
Fluoranthene	50	ND	N.	Α	N	D	NA	١	ND)	ND	ND	ND	ND	ND
Pyrene	50	ND	N.	Α	N	D	NA	١	ND		ND	ND	ND	ND	ND
Butylbenzyl phthalate	50	ND	N.	Α	N	D	NA	١	ND)	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	N.	Α	N	D	NA		ND)	ND	ND	ND	ND	ND
Chrysene	0.002	ND	N.	Α	N	D	NA	١	ND)	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	50	83 B	N.	Α	1.	0 J	NA	١	21.0)	1 J	ND	2.0 J	2 J	ND
Benzo(b)fluoranthene	0.002	ND	N.	Α	N	D	NA	١	ND)	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	N.	Α	N	D	NA	١	ND		ND	ND	ND	ND	ND
Benzo(a)pyrene	0.002	ND	N.	Α	N	D	NA	١	ND		ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	N.	Α	N	D	NA	١	ND)	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	5	ND	N.	A	N	D	NA	١	ND)	ND	ND	ND	ND	ND
Number of TICs		2		0		0	O)	3	3	3	3	2	0	9
Total TICs		322 J	N/	A	NI	<u> </u>	NA		111	J	32 J	28 J	634 J	ND	34 J

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed, EW-1 & EW-2 are not accessable

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-5	MW-5	MW-5
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-5	SMS-MW-5	SMS-MW-5
Laboratory ID	Groundwater	E0153-05B	E1376-12B	F1135-12B	E0153-01B	E1376-14B	F1135-14B	E0136-19B	E1376-03B	F1135-03B
Sample Date	Criteria	2/10/06	9/12/06	8/15/07	2/9/06	9/12/06	8/15/07	2/9/06	9/11/06	8/14/07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q								
Phenol	1	ND								
1,3-Dichlorobenzene	5	ND								
1,4-Dichlorobenzene	4.7	ND								
Isophorone	50	ND								
2,4-Dimethylphenol	50	ND								
Naphthalene	10	ND								
Phenanthrene	50	ND								
Di-n-butyl phthalate	50	ND								
Fluoranthene	50	ND								
Pyrene	50	ND								
Butylbenzyl phthalate	50	ND								
Benzo(a)anthracene	0.002	ND								
Chrysene	0.002	ND								
bis(2-Ethylhexyl)phthalate	50	2.0 J	2 J	1 J	ND	ND	ND	ND	1 J	ND
Benzo(b)fluoranthene	0.002	ND								
Benzo(k)fluoranthene	0.002	ND								
Benzo(a)pyrene	0.002	ND								
Indeno(1,2,3-cd)pyrene	0.002	ND								
Benzo(g,h,i)perylene	5	ND								
Number of TICs		3	1	4.0	1	0	7	2	0	3
Total TICs		323 J	7 J	49 J	9 J	ND	79 J	353 J	ND	28 J

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed, EW-1 & EW-2 are not accessable

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-6D	MW-6D	MW-6D	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7
Sample ID		SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Groundwater	E0136-17B	E1376-05B	F1135-02B	E0136-13C	E1376-01B	F1135-01B	E0203-01A	E1376-07B	F1135-04B
Sample Date	Criteria	2/9/06	9/11/06	8/14/07	2/8/06	9/11/06	8/14/07	2/23/06	9/11/06	8/14/07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND	1 J
1,3-Dichlorobenzene	5	ND	ND	ND	1.0 J	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	4.7	ND	ND	ND	2.0 J	1 J	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	1.0 J	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	2 J	ND						
Di-n-butyl phthalate	50	ND	2 J	ND						
Fluoranthene	50	2.0 J	2 J	ND	1.0 J	ND	2 J	ND	ND	ND
Pyrene	50	2.0 J	2 J	ND	1.0 J	ND	1 J	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	ND	5.0 J	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	1.0 J	ND	ND	ND	ND	1 J	ND	ND	ND
Chrysene	0.002	2.0 J	ND	ND	1.0 J	ND	2 J	ND	ND	ND
bis(2-Ethylhexyl)phthalate	50	5.0 JB	3 J	4 J	6.0 JB	4 J	6 J	11.0	ND	ND
Benzo(b)fluoranthene	0.002	2.0 J	ND	ND	1.0 J	1 J	3 J	ND	ND	ND
Benzo(k)fluoranthene	0.002	1.0 J	ND	ND	ND	ND	1 J	ND	ND	ND
Benzo(a)pyrene	0.002	2.0 J	ND	ND	ND	ND	2 J	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	1.0 J	ND	ND	ND	ND	2 J	ND	ND	ND
Benzo(g,h,i)perylene	5	2.0 J	ND	ND	1.0 J	ND	3 J	ND	ND	ND
Number of TICs		10	0	3	19	11	8	6.0	0	3
Total TICs		963 J	ND	29 J	845 J	57 J	57 J	53 J	ND	27 J

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed, EW-1 & EW-2 are not accessable

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-11	MW-11	MW-11
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-11	SMS-MW-11	SMS-MW-11
Laboratory ID	Groundwater	E0136-01C	E1376-02B	F1135-07B	E0136-02C	E1376-15B	F1135-06B	E0136-05C	E1400-06B	
Sample Date	Criteria	2/7/06	9/11/06	8/14/07	2/7/06	9/12/06	8/14/07	2/8/06	9/13/06	8/14/07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q		conc Q	conc Q	conc Q	conc Q
Phenol	1	ND	NA							
1,3-Dichlorobenzene	5	ND	NA							
1,4-Dichlorobenzene	4.7	ND	NA							
Isophorone	50	ND	NA							
2,4-Dimethylphenol	50	ND	NA							
Naphthalene	10	ND	ND	ND	ND	1 J	ND	ND	ND	NA
Phenanthrene	50	ND	NA							
Di-n-butyl phthalate	50	ND	NA							
Fluoranthene	50	ND	NA							
Pyrene	50	ND	NA							
Butylbenzyl phthalate	50	ND	NA							
Benzo(a)anthracene	0.002	ND	NA							
Chrysene	0.002	ND	NA							
bis(2-Ethylhexyl)phthalate	50	2.0 J	ND	ND	2.0 J	3 J	ND	ND	ND	NA
Benzo(b)fluoranthene	0.002	ND	NA							
Benzo(k)fluoranthene	0.002	ND	NA							
Benzo(a)pyrene	0.002	ND	NA							
Indeno(1,2,3-cd)pyrene	0.002	ND	NA							
Benzo(g,h,i)perylene	5	ND	NA							
Number of TICs		9	0	3	8	4	2	3	0	
Total TICs		53 J	ND	25 J	198 J	26 J	19 J	552 J	ND	NA

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed, EW-1 & EW-2 are not accessable

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-12	MW-12	MW-12	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Groundwater	E0136-06C	E1400-05B	F1159-04B	E0136-07C	E1400-01B	F1159-03B	E0136-09C	E1400-02B	F1159-02A
Sample Date	Criteria	2/8/06	9/13/06	8/17/07	2/8/06	9/13/06	8/17/07	2/8/06	9/13/06	8/17/07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q						
Phenol	1	ND	ND	ND						
1,3-Dichlorobenzene	5	ND	ND	ND						
1,4-Dichlorobenzene	4.7	ND	ND	ND						
Isophorone	50	ND	ND	ND	ND	ND	ND	2.0 J	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND						
Naphthalene	10	ND	ND	ND						
Phenanthrene	50	ND	ND	ND						
Di-n-butyl phthalate	50	ND	ND	ND						
Fluoranthene	50	ND	ND	ND						
Pyrene	50	ND	ND	ND						
Butylbenzyl phthalate	50	ND	ND	ND						
Benzo(a)anthracene	0.002	ND	ND	ND						
Chrysene	0.002	ND	ND	ND						
bis(2-Ethylhexyl)phthalate	50	ND	1 J	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND						
Benzo(k)fluoranthene	0.002	ND	ND	ND						
Benzo(a)pyrene	0.002	ND	ND	ND						
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND						
Benzo(g,h,i)perylene	5	ND	ND	ND						
Number of TICs		4	0	3	4	1	7	3	0	4
Total TICs		229 J	ND	32 J	290 J	8 J	51 J	256 J	ND	35 J

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed, EW-1 & EW-2 are not accessable

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-16D	MW-16D	MW-16D
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D
Laboratory ID	Groundwater	E0136-08C	E1400-07B	F1135-18B	E0136-11C	E1376-11B	F1135-17B	E0136-16B	E1400-03B	F1135-09B
Sample Date	Criteria	2/8/06	9/13/06	8/16/07	2/8/06	9/12/06	8/16/07	2/9/06	9/13/06	8/13/07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q						
Phenol	1	ND	ND	ND						
1,3-Dichlorobenzene	5	ND	ND	ND						
1,4-Dichlorobenzene	4.7	ND	ND	ND						
Isophorone	50	ND	ND	ND						
2,4-Dimethylphenol	50	ND	ND	ND						
Naphthalene	10	ND	ND	ND						
Phenanthrene	50	ND	ND	ND						
Di-n-butyl phthalate	50	ND	ND	ND						
Fluoranthene	50	ND	ND	ND						
Pyrene	50	ND	ND	ND						
Butylbenzyl phthalate	50	ND	ND	ND						
Benzo(a)anthracene	0.002	ND	ND	ND						
Chrysene	0.002	ND	ND	ND						
bis(2-Ethylhexyl)phthalate	50	ND	2 J	ND	ND	ND	ND	190 DB		2 J
Benzo(b)fluoranthene	0.002	ND	ND	ND						
Benzo(k)fluoranthene	0.002	ND	ND	ND						
Benzo(a)pyrene	0.002	ND	ND	ND						
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND						
Benzo(g,h,i)perylene	5	ND	ND	ND						
Number of TICs		2	0	4	1	0	3	2	0	4
Total TICs		171 J	ND	31 J	7 J	ND	27 J	140 J	ND	31 J

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed, EW-1 & EW-2 are not accessable

TABLE 4
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16M	MW-16M	MW-16M	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Groundwater	E0136-15B	E1376-10B	F1135-10B	E0136-12C	E1376-09B	F1135-16B	E0136-18B	E1453-01A	F1135-15B
Sample Date	Criteria	2/9/06	9/12/06	08-13-07	2/8/06	09-12-06	08-16-07	2/9/06	09-21-06	08-16-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q					
Phenol	1	ND	ND	ND	ND	ND	ND			
1,3-Dichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	4.7	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	50	2.0 JB	ND	1.0 J	ND	ND	ND	ND	1 J	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		4	0	3	3	1	3	2	5	3
Total TICs		329 J	ND	28 J	188 J	23 J	27 J	102 J	30 J	28 J

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed, EW-1 & EW-2 are not accessable

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	EW-1	EW-1	EW-2	EW-2	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-EW-1	SMS-EW-1	SMS-EW-2	SMS-EW-2	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Groundwater	E0136-20B		E0203-03		E0153-03C	E1376-16C	F1135-05C	E0136-03B	E1376-17C	F1135-13C
Sample Date	Criteria	2/9/06		2/23/06		2/10/06	9/12/06	8-14-07	2/7/06	9/12/06	8-15-07
Matrix	water	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	28.8 BE	NA	77 B	NA	236 E	319	4,360	1,930 E	6,060	3,440
Antimony	3	ND	NA	4 B	NA	3.3 B	ND	12.6 B	2.2 B	ND	8.9 B
Arsenic	25	ND	NA	2 B	NA	3.5 B	ND	ND	2.6 B	4.4 B	ND
Barium	1,000	34.1 B	NA	88 B	NA	48.7 B	71.5 B	91 B	28.2 B	63.2 B	78.9 B
Beryllium	3	ND	NA	0 B	NA	ND	ND	0.48 B	ND	0.27 B	0.3 B
Cadmium	5	1.0 B	NA	ND	NA	0.7 B	0.19 B	0.39 B	4.1 B	3.2 B	3.9 B
Calcium	NC	13,300 E	NA	22,400	NA	24,000	19,500	20,100	13,100 E	18,300	19,700
Chromium	50	3.4 B	NA	8 B	NA	9.6 B	2.7 B	18 B	12.1 B	16.9 B	12.6 B
Cobalt	NC	4.4 BE	NA	1 B	NA	2.5 B	1.2 B	9.3 B	2.4 BE	3.7 B	4.4 B
Copper	200	8.9 B	NA	5 B	NA	16.8 B	ND	33.8	43.0	35.6	37
Iron	300	3,650 NE	NA	2,670	NA	<i>30,000</i> E	12,500	110,000	28,100 NE	25,100	40,400
Lead	25	0.9 B	NA	4 B	NA	3.2 B	0.95 B	17.3	135	128	197
Magnesium	35,000	2,000 E	NA	3,780	NA	4,610 E	3,370	4,230	3,380 E	4,660	4590
Manganese	300	684 E	NA	200	NA	226 E	126	585	221 E	715	1080
Mercury	2	ND	NA	ND	NA	ND	ND	0.066 B	ND	ND	0.055 B
Nickel	NC	4.3 B	NA	9 B	NA	13.9 B	4.8 B	19.8 B	13.6 B	14 B	10.9 B
Potassium	NC	2,810	NA	9,610	NA	7,940	9,380	4,450	4,210	6,750	14,100
Selenium	10	3.3 B	NA	2 B	NA	ND	ND	29.5 B	5.1 B	ND	14.5 B
Silver	50	ND	NA	2 B	NA	ND	ND	ND	ND	ND	ND
Sodium	20,000	17,300 E	NA	18,400	NA	28,400	27,200	73,900	8,240 E	16,500	20,100
Thallium	0.5	4.3 B	NA	3 B	NA	ND	ND	18.5 B	1.2 B	ND	2.5 B
Vanadium	NC	0.9 B	NA	ND	NA	1.3 B	0.85 B	9.3 B	11.1 B	18.8 B	14.6 B
Zinc	300	53 E	NA	126	NA	55	87	234	4,620 E	2,720	3,360

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-5	MW-5	MW-5
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-5	SMS-MW-5	SMS-MW-5
Laboratory ID	Groundwater	E0153-05C	E1376-12C	F1135-12C	E0153-01C	E1376-14C	F1135-14C	E0136-19C	E1376-03C	F1135-03C
Sample Date	Criteria	2/10/06	9-12-06	8-15-07	2/9/06	9/12/06	8-15-07	2/9/06	9/11/06	8-14-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	886 E	1,860	1860	139 BE	114 B	876	284 E	1140	583
Antimony	3	2.3 B	ND	8.6 B	4.7 B	2.5 B	11.2 B	1.7 B	2 B	8.8 B
Arsenic	25	2.2 B	3 B	ND	ND	ND	ND	6.9 B	5.5 B	2 B
Barium	1,000	72.7 B	49.8 B	56.9 B	31.8 B	26 B	64 B	22.3 B	39.2 B	199 B
Beryllium	3	ND	ND	0.16 B	ND	ND	ND	ND	ND	0.16 B
Cadmium	5	1.6 B	1 B	1.3 B	0.5 B	ND	ND	5.8	3.4 B	8.4
Calcium	NC	32,500	25,000	23,000	16,300	25,400	21,400	10,500 E	15,100	21,600
Chromium	50	15.4 B	10.6 B	12.6 B	2.4 B	2.3 B	5.7 B	8.8 B	18.1 B	17.5 B
Cobalt	NC	3.6 B	2.2 B	4.4 B	2.1 B	0.79 B	3.2 B	2.3 BE	2.4 B	5 B
Copper	200	29.8 B	21.6 B	27.1 B	ND	ND	ND	30.9	30 B	24.5 B
Iron	300	26,700 E	20,400	46,400	<i>47,800</i> E	23,800	78,200	44,700 NE	23,400	61,000
Lead	25	6.8 B	4.3 B	9.5 B	1.5 B	ND	4.5 B	4.2 B	7.9 B	8.4 B
Magnesium	35,000	4,790 E	3,630	3,550	3,020 E	1,500	1,470	1,560 E	2,500	3,570
Manganese	300	399 E	502	910	<i>544</i> E	210	686	291 E	551	548
Mercury	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	NC	18.5 B	8.5 B	12.3 B	6.6 B	2.1 B	5.3 B	13.4 B	12.8 B	13.7 B
Potassium	NC	10,300	7,410	9,170	2,370	5,600	5,690	2,240	3,100	3050
Selenium	10	ND	ND	15.2 B	3.5 B	ND	14.1 B	6.3 B	ND	13.4 B
Silver	50	1.6 B	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	16,900	20,000	12,700	6,310	3,990	3,600	3,670 E	5,230	12,600
Thallium	0.5	ND	ND	4.7 B	ND	ND	9.7 B	ND	ND	9.4 B
Vanadium	NC	3.5 B	5.2 B	4.6 B	2.1 B	2.5 B	5.1 B	4.3 B	7.3 B	8.1 B
Zinc	300	66	53	59.8	35 B	32 B	42.5 B	44 BE	40 B	40.6 B

Notes:

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-6D	MW-6D	MW-6D	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Groundwater	E0136-17C	E1376-05C	F1135-02C	E0136-13B	E1376-01C	F1135-01C	E0153-07C	E1376-07C	F1135-04C
Sample Date	Criteria	2/9/06	9/11/06	8-14-07	2/8/06	9-11-06	8-14-07	2/10/06	9-11-06	8-14-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	2,340 E	197 B	416	2,740 E	2790	8,920	161 BE	816	410
Antimony	3	2.3 B	2.3 B	6.2 B	2.0 B	ND	6.2 B	3.5 B	ND	8 B
Arsenic	25	5.1 B	1.7 B	ND	8.1 B	5.8 B	12.1 B	4.0 B	3.3 B	ND
Barium	1,000	52.1 B	60 B	16.5 B	44.2 B	52.4 B	86.7 B	30.2 B	39.3 B	62.6 B
Beryllium	3	ND	ND	ND	0.2 B	0.45 B	1 B	0.2 B	0.16 B	0.22 B
Cadmium	5	4.1 B	0.37 B	0.76 B	3.3 B	1.4 B	2.6 B	2.2 B	1.7 B	2.2 B
Calcium	NC	24,000 E	22,400	13,700	54,000 E	27,300	30,300	20,400	21,800	26,200
Chromium	50	16.7 B	6.7 B	4.9 B	15.0 B	16.4 B	111	10.1 B	12.6 B	7.7 B
Cobalt	NC	28.2 BE	54.1	10.8 B	21.2 BE	10.8 B	22 B	2.8 B	2 B	4.8 B
Copper	200	74.5	9.3 B	20.7 B	70.4	45.8	135	19.6 B	14.3 B	ND
Iron	300	72,300 NE	9,810	39,300	17,700 NE	8,790	40,400	72,000 E	60,300	96,100
Lead	25	21.7	ND	4.7 B	20.5	12.1	58.1	1.4 B	2.9 B	4.6 B
Magnesium	35,000	5,140 E	5,780	1,210	13,700 E	8,340	9,290	3,910 E	4,380	3,900
Manganese	300	593 E	276	256	869 E	223	732	<i>445</i> E	592	696
Mercury	2	ND	ND	ND	ND	ND	0.3	ND	ND	ND
Nickel	NC	25.8 B	12.9 B	12.7 B	21.1 B	9.6 B	24.8 B	15.4 B	9.7 B	9 B
Potassium	NC	3,180	3,480	2,790	4,710	2,720	3,530	3,230	3,900	6,600
Selenium	10	12.5 B	ND	3.9 B	5.9 B	ND	24.5 B	3.9 B	ND	17.9 B
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20,000	13,100 E	31,100	16,000	16,800 E	8,450	5,530	10,200	15,400	16,800
Thallium	0.5	ND	ND	10.6 B	6.4 B	1.8 B	7.9 B	ND	ND	17.6 B
Vanadium	NC	9.8 B	1.1 B	1.5 B	13.5 B	14.2 B	41.1 B	3.6 B	8.2 B	5.6 B
Zinc	300	225 E	113	76.2	<i>3,280</i> _E	608	1,390	36 B	47 B	39 B

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-11	MW-11	MW-11
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-11	SMS-MW-11	SMS-MW-11
Laboratory ID	Groundwater	E0136-01B	E1376-02C	F1135-07C	E0136-02C	E1376-15C	F1135-06C	E0136-05C	E1400-06C	
Sample Date	Criteria	2/7/06	9-11-06	8-14-07	2/7/06	9-12-06	8-14-07	2/8/06	9-13-06	Aug 2007
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		_	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	194 BE	161 B	120 B	50.6 BE	21.9 B	40.8 B	44.9 BE	159 B	NA
Antimony	3	2.8 B	ND	8.9 B	2.3 B	ND	6.7 B	ND	ND	NA
Arsenic	25	5.6 B	ND	ND	3.0 B	2.1 B	2.5 B	ND	ND	NA
Barium	1,000	43.4 B	39.6 B	61.3 B	35.1 B	25.7 B	34.4 B	19.8 B	25.6 B	NA
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	NA
Cadmium	5	1.2 B	0.11 B	ND	0.7 B	0.12 B	ND	0.2 B	0.23 BE	NA
Calcium	NC	24,500 E	27,200	25,000	9,130 E	16,400	29,200	13,200 E	14,400	NA
Chromium	50	31.7	9.9 B	26.1	38.5	6.3 B	5.4 B	1.5 B	0.99 BE	NA
Cobalt	NC	3.4 BE	1.1 B	7.3 B	2.0 BE	0.66 B	4.4 B	1.4 BE	0.57 B	NA
Copper	200	72.7	9.6 B	18.4 B	34.7	ND	ND	9.9 B	ND	NA
Iron	300	107,000 NE	15,900	71,400	78,300 NE	21,700	57,100	12,000 NE	11,800	NA
Lead	25	7.0 B	ND	3 B	3.9 B	ND	2.9 B	ND	3.5 B	NA
Magnesium	35,000	3,870 E	3,520	4,960	1,530 E	2,560	4,860	1,800 E	2,030 E	NA
Manganese	300	456 E	82.1	236	339 E	82.2	520	177 E	201 *E	NA
Mercury	2	ND	ND	ND	ND	ND	ND	ND	ND	NA
Nickel	NC	40.3 B	9.8 B	26.3 B	35.3 B	4.8 B	8.4 B	4.2 B	3.3 B	NA
Potassium	NC	6,370	6,970	13,400	5,400	3,990	4,540	3,730	3,040	NA
Selenium	10	9.9 B	ND	20.6 B	7.1 B	ND	14.2 B	1.6 B	1.7 B	NA
Silver	50	ND	ND	ND	ND	ND	ND	ND	ND	NA
Sodium	20,000	23,400 E	26,000	26,400	11,400 E	11,400	12,000	14,800 E	9,370	NA
Thallium	0.5	ND	ND	13.5 B	ND	ND	9.2 B	1.5 B	2.9 B	NA
Vanadium	NC	2.5 B	1 B	0.51 B	1.7 B	1.7 B	1.6 B	ND	3.2 B	NA
Zinc	300	96 E	31 B	68.6	34 BE	22 B	18.1 B	56 E	21 B	NA

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-12	MW-12	MW-12	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Groundwater	E0136-06B	E1400-05C	F1159-04C	E0136-07B	E1400-01C	F1159-03C	E0136-09C	E1400-02C	F1135-19C
Sample Date	Criteria	2/8/06	09-13-06	08-17-07	2/8/06	09-13-06	8-17-07	2/8/06	09-13-06	08-16-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q		conc Q	conc Q	conc Q	conc Q		conc Q	conc Q
Aluminum	NC	48.8 BE	55.8 B	165 B	82.6 BE	84 B	66.4 B	53.0 BE	82 B	24.5 B
Antimony	3	ND	ND	2.5 B	ND	ND	4.7 B	ND	ND	8.3 B
Arsenic	25	ND	3.5 B	ND	3.2 B	3.3 B	ND	ND	ND	ND
Barium	1,000	9.2 B	29.7 B	36.9 B	103 B	39.4 B	29.2 B	67.2 B	69.6 B	76.9 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	0.3 B	0.4 BE	1.3 B	1.4 B	0.89 BE	1.7 B	<i>7</i> 2.8	72.8 E	65.5
Calcium	NC	8,410 E	16,700	16,000	30,200 E	11,500	6,280	12,900 E	13,300	13,100
Chromium	50	2.1 B	2.1 BE	0.86 B	3.1 B	1.9 BE	3.4 B	7.8 B	5 BE	1.7 B
Cobalt	NC	1.4 BE	1 B	3.7 B	5.6 BE	2.3 B	5.3 B	1.1 BE	0.81 B	0.87 B
Copper	200	10.2 B	6.4 B	6.4 B	11.5 B	9.3 B	ND	32.9	19.6 B	15.3 B
Iron	300	6,600 NE	19,700	23,000	52,600 NE	15,400	40,200	746 NE	210	241
Lead	25	1.0 B	3.2 B	1.8 B	1.0 B	2.3 B	0.84 B	0.8 B	1.7 B	ND
Magnesium	35,000	1,210 E	2,190 E	2,180	3,260 E	1,230 E	1,020	7,790 E	8,300 E	8,340
Manganese	300	249 E	956 *E	854	867 E	186 *E	401	12 BE	5.9 B*E	6.3 B
Mercury	2	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	NC	5.0 B	3.6 B	4.5 B	9.3 B	3.6 B	6 B	15.1 B	11.2 B	9.2 B
Potassium	NC	7,140	2,970	3,330	11,200	14,600	15,800	2,430	2,440	2,960
Selenium	10	1.3 B	ND	8.3 B	2.2 B	1.9 B	3.3 B	3.3 B	2.2 B	10.7 B
Silver	50	ND	1.8 B	ND	ND	1.8 B	ND	ND	ND	1.4 B
Sodium	20,000	10,100 E	5,050	4,120	19,900 E	15,000	12,400	<i>27,500</i> E	28,700	31,800
Thallium	0.5	2.0 B	2.4 B	ND	4.4 B	4 B	7.8 B	ND	ND	ND
Vanadium	NC	ND	4.2 B	ND	0.8 B	3.4 B	ND	ND	1.1 B	ND
Zinc	300	45 BE	23 B	37.4 B	88 E	38 B	85.7	72 E	74	67.2

Notes: B - E

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-16D	MW-16D	MW-16D
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D
Laboratory ID	Groundwater	E0136-08B	E1400-07C	F1135-18C	E0136-11B	E1376-11C	F1135-17C	E0136-16C	E1400-03C	F1135-09C
Sample Date	Criteria	2/8/06	09-13-06	08-16-07	2/8/06	09-12-06	08-16-07	2/9/06	09-13-06	08-13-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	334.0 E	154 B	1,040	43.2 BE	199 B	37.9 B	29.0 BE	97.3 B	45.2 B
Antimony	3	ND	ND	15.7 B	ND	ND	9.6 B	ND	ND	2.5 B
Arsenic	25	ND	11.4 B	ND	ND	2 B	1.6 B	ND	ND	1.6 B
Barium	1,000	15.9 B	35.1 B	78.7 B	12.4 B	19.4 B	24.8 B	51.9 B	48.3 B	45.6 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	0.9 B	0.21 BE	2.7 B	4.1 B	0.85 B	ND	23.4	11.8 E	5.1
Calcium	NC	12,100 E	21,800	16,500	13,800 E	12,800	20,100	18,200 E	18,500	19,100
Chromium	50	1.7 B	1.4 BE	2.9 B	9.8 B	275	18.1 B	34.6	41.6 E	44.9
Cobalt	NC	1.0 BE	ND	4.6 B	1.1 BE	2.6 B	1.3 B	1.3 BE	0.87 B	1.4 B
Copper	200	12.8 B	ND	ND	9.5 B	10.5 B	ND	17.0 B	ND	ND
Iron	300	27,100 NE	48,000	296,000	276 NE	1,730	228	262 NE	232	234
Lead	25	2.6 B	4.3 B	12.7	2.3 B	2.6 B	ND	2.5 B	1.2 B	0.88 B
Magnesium	35,000	1,610 E	2520 E	2,470	2,260 E	2320	4,210	3,250 E	3,430 E	3,530
Manganese	300	287 E	910 *E	1,290	28 BE	175	19.3 B	60.7 E	196 *E	51.6
Mercury	2	ND	ND	0.052 B	ND	ND	ND	ND	ND	ND
Nickel	NC	6.1 B	3 B	13.3 B	6.9 B	24.9 B	3 B	10.6 B	11.3 B	6.7 B
Potassium	NC	2,460	4,990	8,340	3,330	3470	6,850	5,280	5,040	5,260
Selenium	10	ND	ND	41.2	ND	ND	19.6 B	ND	ND	9.5 B
Silver	50	ND	3.5 B	ND	ND	ND	1.6 B	ND	ND	1.8 B
Sodium	20,000	2,230 E	8710	6,000	9,790 E	11,000	15,600	15,600 E	16,000	16,700
Thallium	0.5	ND	2.6 B	64.8	ND	ND	ND	ND	ND	ND
Vanadium	NC	2.2 B	9.8 B	4.5 B	ND	1.2 B	ND	ND	0.89 B	ND
Zinc	300	29 BE	42 B	60.8	20 BE	30 B	20.1 B	61 E	40 B	20.5 B

Notes:

B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

TABLE 5
SMS INSTRUMENTS SITE (#1-52-026)
FEBRUARY, SEPTEMBER 2006 AND AUGUST 2007 GROUNDWATER SAMPLING
TARGET ANALYTE LIST METALS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16M	MW-16M	MW-16M	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Groundwater	E0136-15C	E1376-10C	F1135-10C	E0136-12B	E1376-09C	F1135-16C	E0136-18C	E1376-04C	F1135-15C
Sample Date	Criteria	2/9/06	09-12-06	08-13-07	2/8/06	09-12-06	08-16-07	2/9/06	09-11-06	08-16-07
Matrix	water	water	water	water	water	water	water	water	water	water
Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	203 E	94.2 B	55 B	135 BE	69.2 B	51.6 B	72.0 BE	34.3 B	19.6 B
Antimony	3	1.3 B	ND	4.5 B	ND	ND	1.2 B	2.6 B	2.3 B	10 B
Arsenic	25	ND	2.2 B	4.7 B	ND	ND	ND	ND	ND	3.7 B
Barium	1,000	97.9 B	93.6 B	97.5 B	46.1 B	18.7 B	18.2 B	22.8 B	28.4 B	29.1 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	4.0 B	2.3 B	0.22 B	17.4	3 B	0.47 B	3.1 B	0.65 B	0.16 B
Calcium	NC	23,900 E	19,200	21,900	27,900 E	17,800	25,200	13,900 E	17,200	24,800
Chromium	50	25.4	45.9	10.3 B	31.3	117	<i>95.7</i>	14.8 B	11.3 B	9 B
Cobalt	NC	2.5 BE	8 B	2.6 B	2.3 BE	2.1 B	3.6 B	1.6 BE	1.1 B	2 B
Copper	200	26.6 B	ND	ND	17.6 B	ND	ND	12.7 B	7.1 B	ND
Iron	300	458 NE	814	375	480 NE	433	587	645 NE	284	220
Lead	25	1.5 B	0.58 B	ND	2.0 B	ND	ND	1.3 B	ND	ND
Magnesium	35,000	2,650 E	2,950	2,940	4,920 E	3,270	3,920	1,930 E	1,160	1,830
Manganese	300	34.0 BE	536	29 B	251 E	108	173	77.9 E	109	113
Mercury	2	ND	ND	ND	ND	0.1 B	ND	0.1 B	ND	ND
Nickel	NC	12.4 B	46.9 B	27.9 B	28.6 B	47.7 B	37.9 B	15.6 B	5.7 B	2.8 B
Potassium	NC	12,300	9,340	10,000	5,460	5,630	4,870	2,760	3,960	3,220
Selenium	10	ND	ND	13.2 B	ND	ND	12.7 B	ND	ND	13.6 B
Silver	50	ND	ND	2.1 B	ND	ND	1.8 B	ND	ND	2.1 B
Sodium	20,000	17,500 E	15,300	17,900	12,100 E	14,100	17,300	5,940 E	2,690	6,680
Thallium	0.5	2.1 B	1.5 B	ND	2.2 B	ND	ND	ND	ND	ND
Vanadium	NC	0.6 B	0.71 B	ND	0.5 B	0.8 B	1 B	2.1 B	2.4 B	1.7 B
Zinc	300	106 E	31 B	31.7 B	67 E	18 B	17.4 B	43 BE	19 B	18.8 B

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

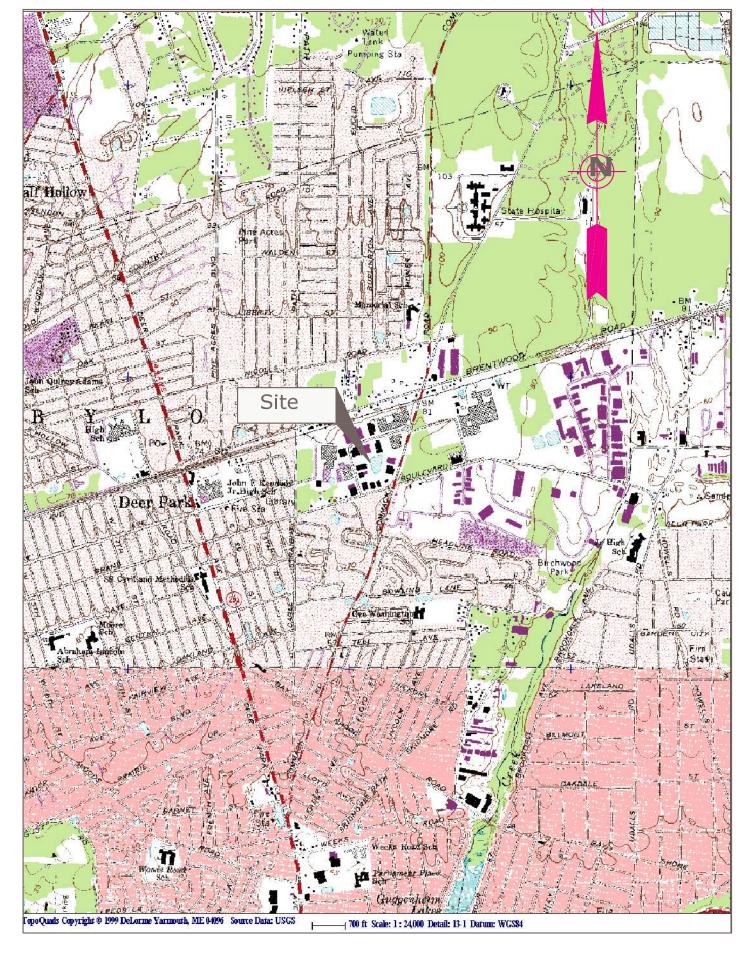
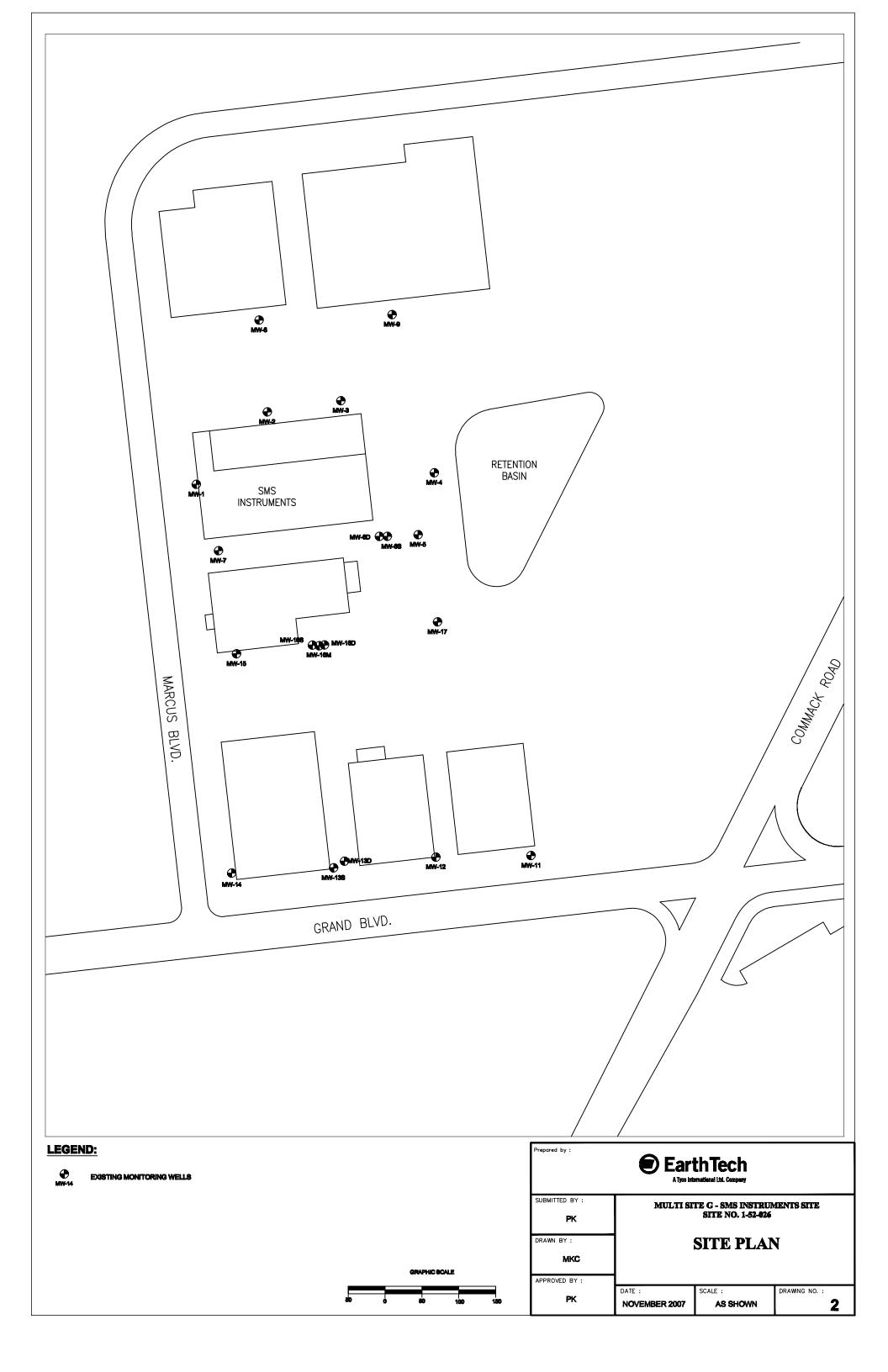
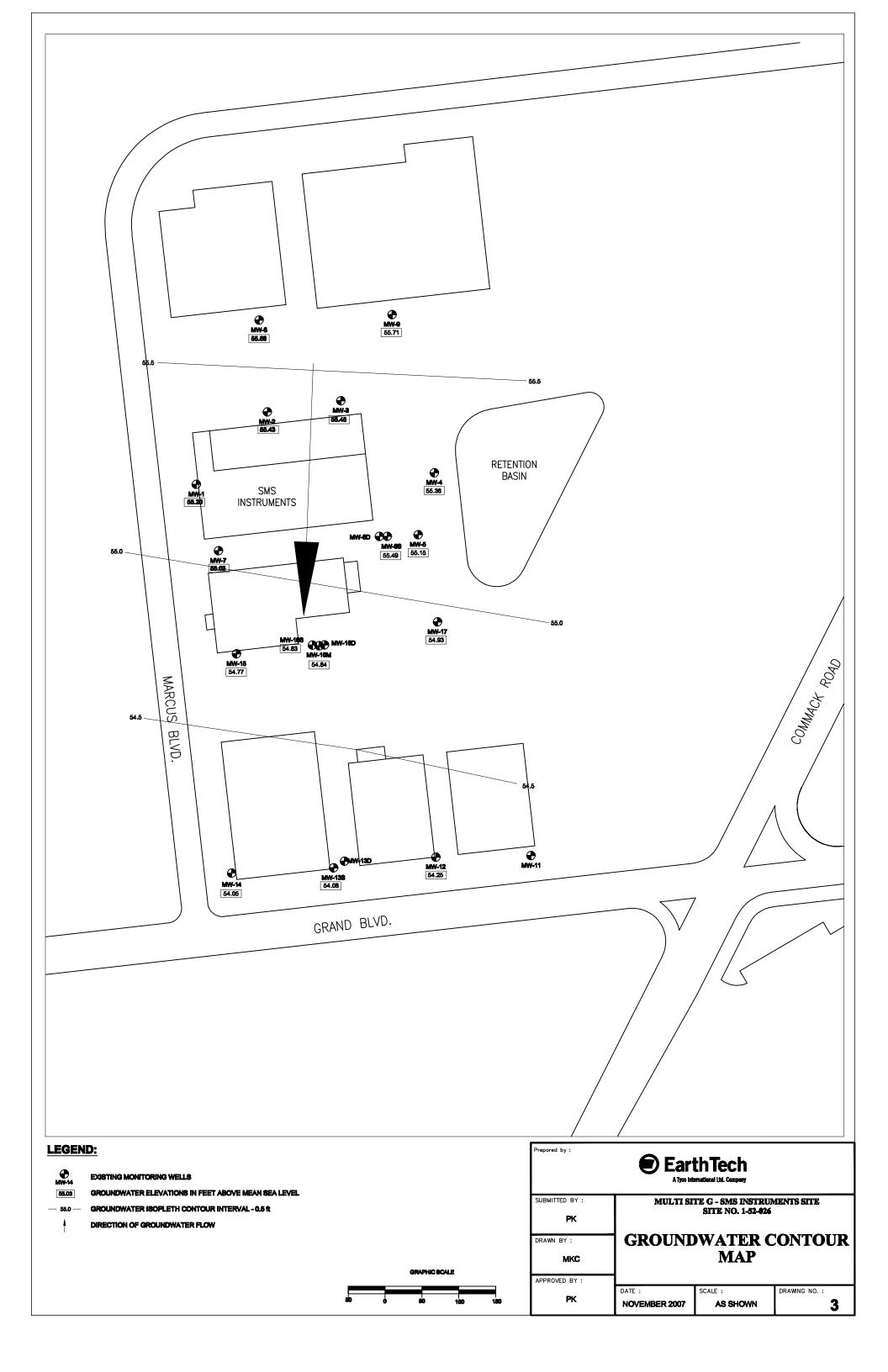
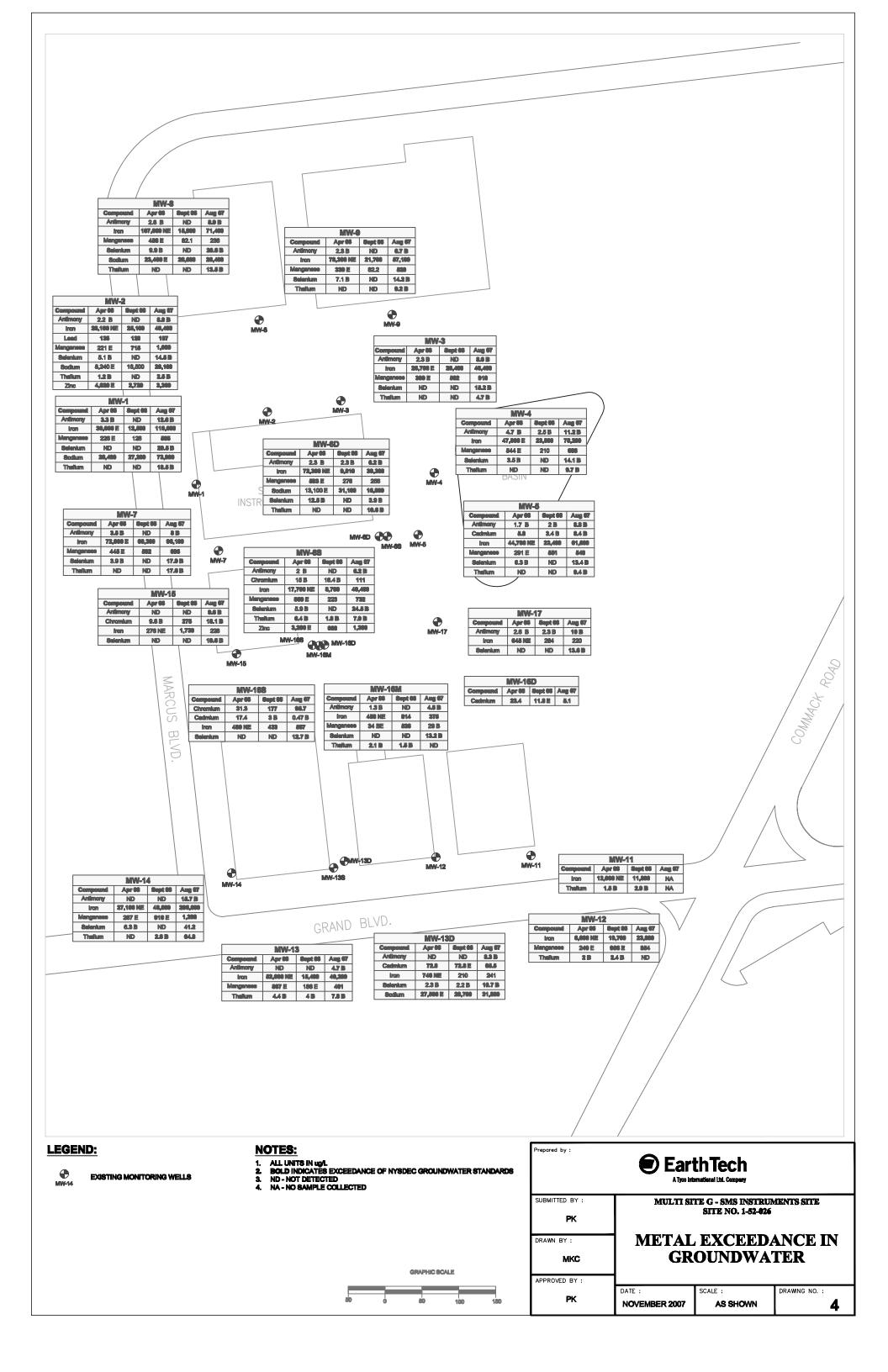
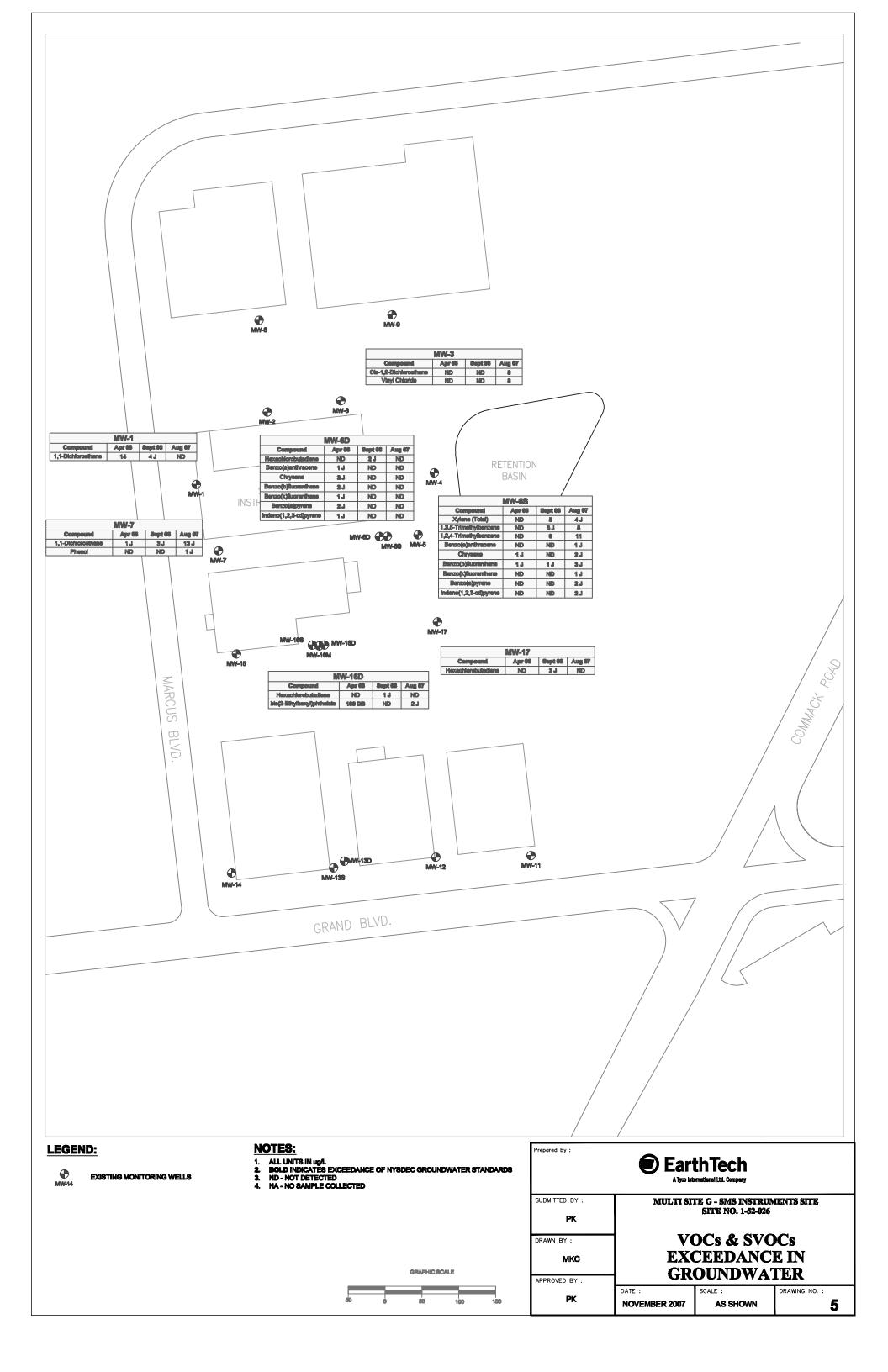






Figure 1 - Site Location Map

APPENDIX A WELL SAMPLING FORMS – ROUND 3 (AUGUST 2007)

Earth Tech Northeast, Inc. February 2008

WELL S	AMPLIN	G FORM		PROJECT MULTI SITE	E-G		PROJECT No.	SHEET 1	SHE OF	ETS 1
LOCATION SMS Inst	truments	Site, Dee		Y #1-52-026		DATE WELL S	TARTED /14/07	DATE WELL COMPLET	ED	
CLIENT							NAME OF INSPECTO			
New Yor	k State D	epartmen	t of Envir	onmental Co	onservation	1	Dan S SIGNATURE OF INS	Simpson, Dan P	<u>owierski</u>	
ONE WELL VO	OLUME :		2.09		WELL TD:	30.3	PUMP IN	NTAKE DEPTH:		
	Depth to	Purge		FIELD MEAS	UREMENTS					
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS		
10:15	17.98	2	16	0.431	6.88	596		brown/rust		
10:21	18.7	2	14.9	0.401	6.22	693		brown/rust		
10:27	18.75	2	14.7	0.376	6.17	999		brown/rust		
10:32	19.06	2	14.6	0.359	6.19	504		light brown		
Sampled Pump Ty	/pe:			oled with teflo						
Analytica	ıı Parame	eters:	voc's,	SVOC's, TA	al ivietais					

WELL S	AMPLIN	G FORM		PROJECT MULTI SITE	-G		PROJECT No.	SHEET 1	SHE OF	EETS 1
LOCATION						DATE WELL S	TARTED	DATE WELL COMPLET	ED	
SIVIS INS	truments	Site, Dee	r Park, N	Y #1-52-026			NAME OF INSPECTO	DR.		
	k State D	epartmen	t of Envir	onmental Co	nservation	1	Dan S	Simpson, Dan P	owierski	
DRILLING CO	MPANY						SIGNATURE OF INS	PECTOR		
ONE WELL VO	DLUME :		1.9		WELL TD:	28.54	PUMP IN	NTAKE DEPTH:		
	Depth to	Purge		FIELD MEAS	UREMENTS					
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	pН	Turbidity (ntu)		REMARKS		
8:45	16.91	2	16.4	0.248	7.13	748		brown		
8:52	16.95	2	16.9	0.206	6.63	684		brown		
8:57	16.95	2	15.7	0.218	6.07	371		light brown, turk	oid	
9:00	16.95	2	16	0.206	6.13	717		light brown		
	 									
Sampled Pump Ty		9:00 Ground	fos, samp	oled with teflo	on bailers					
Analytica	l Parame	eters:	VOC's,	SVOC's, TA	L Metals					

New York State Department of Environmental Conservation Dan Simpson, Dan Powiers	ski
Name of Inspector New York State Department of Environmental Conservation DRILLING COMPANY NAME OF INSPECTOR Dan Simpson, Dan Powiers SIGNATURE OF INSPECTOR	ski
DRILLING COMPANY SIGNATURE OF INSPECTOR	ski
ONE WELL VOLUME: 1.71 WELL TD: 25.99 PUMP INTAKE DEPTH:	
Depth FIELD MEASUREMENTS to Purge	
Time Water Rate Temp. Conduct. pH Turbidity REMARKS	
(ft) (gal/min) (C) (ms/cm) (ntu)	
9:08 15.95 2 16.7 0.224 6.53 325 light brown	
9:12 16 2 16.7 0.211 6.42 999 brown	
9:16	
9:20 16.01 2 16.5 0.215 6.46 806 light brown	
Sampled: 9:25 Pump Type: Groundfos, sampled with teflon bailers Analytical Parameters: VOC's, SVOC's, TAL Metals	

WELL S	AMPLIN	G FORM		PROJECT MULTI SITE	E-G	_	PROJECT No.	SHEET 1	SHEETS OF 1		
LOCATION SMS Inst	ruments	Site, Dee	r Park, N	Y #1-52-026		DATE WELL S	15/07	DATE WELL COMPLETE	ĒD		
CLIENT New York	k State D	epartmen	t of Envir	onmental Co	onservation	1	NAME OF INSPECTO Dan S		owierski		
DRILLING COI	MPANY						SIGNATURE OF INS	Simpson, Dan Po PECTOR			
ONE WELL VO	DLUME :		2.2		WELL TD:	29.61	PUMP IN	ITAKE DEPTH:			
	Depth to	Purge		FIELD MEAS	UREMENTS						
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS			
9:36	16.68	2	18.9	0.131	7.15	999	dark brown, turbid				
9:40		2	18.9	0.122	6.71	936		dark brown			
9:45		2	18.9	0.122	6.94	788		brown			
10:00		2	19.3	0.121	6.82	532		brown			
						<u> </u>					
	 					1					
Sampled Pump Ty Analytica	pe:			oled with teflo			MS/MSD				

WELL S	AMPLIN	G FORM		PROJECT MULTI SITE	E-G		PROJECT No.	SHEET 1	SH OF	EETS 1
LOCATION						DATE WELL S	TARTED	DATE WELL COMPLET	ED	
SMS Inst	truments	Site, Dee	r Park, N	Y #1-52-026			NAME OF INSPECTO	DP.		
	k State D	epartmen	t of Envir	onmental Co	onservation	1		Simpson, Dan P	owiersk	i
DRILLING CO	MPANY						SIGNATURE OF INS	PECTOR		
ONE WELL VO	OLUME :		0.83		WELL TD:	20.64	PUMP IN	NTAKE DEPTH:		
	Depth to	Purge		FIELD MEAS	UREMENTS					
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS		
11:22	15.72	2	15.4	0.168	7.31	501		brown		
11:26	16.01	2	15.8	0.162	6.61	999		light brown		
11:30	16	2	16.1	0.164	6.58	999		brown		
11:38	16.06	2	15.7	0.167	6.61	999		light brown		
Sampled Pump Ty Analytica	/pe:			oled with teflo						
, a lary a co	a i aiaiiit	, i i i i i i i i i i i i i i i i i i i	v O O S,	5 v 5 5 3, 17	· IVICIAIS					

	AMPLIN(G FORM		PROJECT MULTI SITE	≣-G		PROJECT No.	SHEET 1	OF	IEETS 1
LOCATION	trum onto	Cita Das	r Dork Ni	V #4 E2 026		DATE WELL S	TARTED 14/07	DATE WELL COMPLET	ED	
CLIENT	truments	Site, Dee	r Park, IN	Y #1-52-026)	0/	NAME OF INSPECTO	DR .		
New Yor	k State D	epartmen	t of Envir	onmental Co	onservation	1	Dan S	Simpson, Dan P	owiersk	i
DRILLING CO	MPANY						SIGNATURE OF INS	PECTOR		
ONE WELL V	OLUME :		1.81		WELL TD:	26.2	PUMP IN	ITAKE DEPTH:		
	Depth to	Purge		FIELD MEAS	SUREMENTS					
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity		REMARKS		
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)				
13:50	15.51	1.5	17.5	0.178	8.02	564		light brown		
13:55		1.5	17.6	0.176	7.05	916		brown		
14:14		1.5	18.2	0.179	6.35	999		brown		
14:18		1.5	18	0.173	6.07	892		light brown		
						ļ				
						 				
		<u> </u>			<u> </u>		<u> </u>			
Sampled Pump Ty		14:20 Ground	fos, samr	oled with tefl	on bailers					
	al Parame			SVOC's, TA						

WELL SAMPLING FORM				MULTI SITE-G			PROJECT No.	SHEET SHEETS 1 OF 1
LOCATION				Y #1-52-026		DATE WELL S	TARTED	DATE WELL COMPLETED
CLIENT							NAME OF INSPECT	
New Yor	k State D	epartmen	t of Envir	onmental Co	onservation	1	Dan S	Simpson, Dan Powierski
DRILLING CO	WFANT						SIGNATURE OF INS	FEGIOR
ONE WELL V	OLUME :		52.8		WELL TD:	95.66	PUMP IN	NTAKE DEPTH:
	Depth to	Purge		FIELD MEAS	UREMENTS			
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS
13:40	15.59	5	17.2	0.185	8.92	999		dark brown/black
13:55	15.58	5	15.2	0.255	6.78	938		brown
14:00	15.58	5	15.1	0.253	6.15	479		light brown
14:12	15.6	5	15	0.25	6.02	345	slic	ht brown appearance
				0.20			5.13	,
							ļ	
Sampled Pump Ty		14:14 Ground	fos samr	oled with tefl	on bailers	duplic	ate sample S	MS-MW-56d from this well.
	al Parame			SVOC's, TA				
, a lary aoc	i didiil		v O O O,	3 7 3 3 3 , 17	iviotalo	I		

WELL S	AMPLIN	G FORM		PROJECT MULTI SITE	E-G		PROJECT No.	SHEET 1	SHEETS OF 1			
LOCATION SMS Ins	truments	Site, Dee	r Park, N	Y #1-52-026		DATE WELL S	TARTED /14/07	DATE WELL COMPLET	ED			
CLIENT				onmental Co		<u> </u>	NAME OF INSPECTO Dan S		owierski			
DRILLING CO	MPANY						SIGNATURE OF INS	Simpson, Dan P				
ONE WELL VO	OLUME :		1.97		WELL TD:	28.66	PUMP IN	ITAKE DEPTH:				
	Depth to	Purge	FIELD MEASUREMEI			1						
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)	REMARKS					
10:50	17.06	2.2	17.8	0.219	6.8	999	(dark brown, sheen				
10:55	17.08	2.2	17.1	0.184	6.43	999	brown					
11:00	17.12	2.2	16.5	0.202	6.28	999		brown				
11:05	17.17	2.2	16.3	0.204	6.27	865		light brown				
						+						
		+ + + + + + + + + + + + + + + + + + + +				+						
						†						
						1						
Sampled Pump Ty		11:15 Ground	os, samı	oled with teflo	on bailers							
	i Parame	eters:	VOC's,	SVOC's, TA	AL Metals							

WELL S	AMPLIN	G FORM		PROJECT MULTI SITE	E-G		PROJECT No.	SHEET 1	SH OF	eets 1	
LOCATION SMS Inst	ruments	Site, Dee		Y #1-52-026		DATE WELL S	14/07	DATE WELL COMPLET	ED		
CLIENT							NAME OF INSPECTO				
New York	K State D	epartmen	t of Envir	onmental Co	onservation) 	Dan S SIGNATURE OF INS	Simpson, Dan P	owiersk	l	
ONE WELL VO	DLUME :		2.29		WELL TD:	29.05	PUMP IN	ITAKE DEPTH:			
	Depth to	Purge		FIELD MEAS							
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS			
8:45	15.54	2.5	20	0.292	6.08	968	da	rk brown, very t	urbid		
9:00	16.61	2.5	18.1	0.28	6.08	999		dark brown			
9:02	16.61	2.5	17.7	0.284	5.64	998	light brown				
9:04	16.64	2.5	17.7	0.27	5.68	951		light brown			
						1					
						 					
						<u> </u>					
						1					
						ļ					
						-					
						-					
						 					
						 					
						<u> </u>					
						1					
Sampled Pump Ty Analytica	pe:			oled with teflo		Initial v	water level fro	m 8/13/07 wate	r level r	ound	

WELL SAMPLING FORM LOCATION SMS Instruments Site, Deer Park, N				project MULTI SITE	E-G		PROJECT No.	SHEET 1	SHEETS OF 1
	truments	Site Dee	r Park N	Y #1-52-026	}	DATE WELL S	TARTED /14/07	DATE WELL COMPLE	TED
CLIENT						II.	NAME OF INSPECT		
DRILLING CO	K State L	epartmen	t of Envir	onmental Co	onservation	1	Dan S SIGNATURE OF INS	Simpson, Dan F	Powierski
ONE WELL V	OLUME :		2.36		WELL TD:	28.75	PUMP IN	TAKE DEPTH:	
	Depth	Dumma		FIELD MEAS	SUREMENTS				
Time	to Water	Purge Rate	Temp.	Conduct.	рН	Turbidity		REMARKS	
	(ft)	(gal/min)	(C)	(ms/cm)	P	(ntu)			
9:21	14.87	2	18	0.183	6.44	501		light brown	
9:25	17.45	2	18.3	0.175	5.63	999		brown	
9:32	21.2	2	18.3	0.196	6.17	705		light brown	
9:39	24.3	2	17.7	0.198	5.81	739		light brown	
						1			
						1	<u> </u>		
Sampled Pump Ty	/pe:			oled with tefl			slow	well recharge	
Analytica	al Parame	eters:	vOC's,	SVOC's, TA	AL IVIetals				

WELL S	AMPLIN(G FORM		PROJECT MULTI SITE	E-G		PROJECT No.	SHEET 1	SH OF	EETS 1
LOCATION						DATE WELL S		DATE WELL COMPLE	TED	
SMS Inst	truments	Site, Dee	r Park, N	Y #1-52-026		8/	/16/07 NAME OF INSPECTO	D. D.		
	k State D	epartmen	t of Envir	onmental Co	onservation	1			Powiersk	i
DRILLING CO	MPANY						SIGNATURE OF INS	Simpson, Dan F		
ONE WELL VO	DLUME :		20.28		WELL TD:	47.5	PUMP IN	NTAKE DEPTH:		
	Depth to	Purge		FIELD MEAS	UREMENTS					
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS		
10:17	16.76	4	17.3	0.113	7.77	700		black		
10:14	16.73	4	16.5	0.108	7.36	231		grey		
10:20		4	16.3	0.108	7.19	224		light grey		
10:24	16.78	4	16	0.107	7.12	212		clear		
							<u> </u>			
Sampled Pump Ty Analytica	φe:			oled with teflo SVOC's, TA						
miaiyiica	ii i aiaiile	icio.	v OC 5,	5 v O O S, 17	\∟ IVIGIAIS	1				

WELL NO. MW-13S

WELL S	AMPLIN	G FORM		PROJECT MULTI SITE	E-G		PROJECT No.	SHEET 1	OF	ETS 1
LOCATION				Y #1-52-026		DATE WELL S	TARTED /17/07	DATE WELL COMPLETE	D	
CLIENT							NAME OF INSPECTO			
New Yor	k State D	epartmen	t of Envir	onmental Co	onservation	1	Dan S	Simpson, Dan Po	wierski	
ONE WELL V	OLUME :		19.6		WELL TD:	36.87	PUMP IN	NTAKE DEPTH:		
	Depth to	Purge		FIELD MEAS	UREMENTS					
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)				
8:57	17.15	4	17.7	0.129	8.57	214		clear		
9:24	17.26	4	16.5	0.255	7.28	326		light brown		
9:30	17.32	4	16.8	0.257	7.26	236		clear		
9:36	17.33	4	16	0.262	7.14	300		clear		
	<u>!</u>	<u> </u>					<u>l</u>			
Sampled		9:45								
Pump Ty				oled with teflo						
Analytica	al Parame	eters:	VOC's,	SVOC's, TA	AL Metals					

WELL NO. MW-13D

WELL S	AMPLIN	G FORM		PROJECT MULTI SITE	E-G		PROJECT No.	SHEET 1	SH OF	EETS 1
LOCATION				Y #1-52-026		DATE WELL S	TARTED /16/07	DATE WELL COMPLET	ED	
CLIENT		J.10, 200				,	NAME OF INSPECTO	OR .		
New Yor	k State D	epartmen	t of Envir	onmental Co	onservation	1	Dan S	Simpson, Dan P	owiersk	
DRILLING CO	WIFAINT						SIGNATURE OF INS	FLOTOR		
ONE WELL VO	OLUME :		55.69		WELL TD:	101.4	PUMP IN	NTAKE DEPTH:		
	Depth to	Purge		FIELD MEAS	UREMENTS					
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS		
11:23	17.01	4	17.4	0.234	6.4	250		light brown		
11:29	19.53	4	15.5	0.235	5.68	199		clear		
11:43	21.3	4	16.1	0.233	5.62	181		clear		
11:53	17.91	4	15.6	0.234	5.54	201		clear		
Sampled Pump Ty		12:00 Ground	os, samr	oled with teflo	on bailers					
Analytica				SVOC's, TA						

	AMPLIN(G FORM		PROJECT MULTI SITE	E-G		PROJECT No.	SHEET 1	OF	IEETS 1
LOCATION	trumante	Sita Daa	r Park Ni	Y #1-52-026	:	DATE WELL S	TARTED 16/07	DATE WELL COMPLET	ED	
CLIENT							NAME OF INSPECTO			
New Yor	k State D	epartmen	t of Envir	onmental Co	onservation	<u> </u>	Dan S	Simpson, Dan P	owiersk	<u>i </u>
DRIEEII40 00							OIGHAT GIVE OF ING	LOTOK		
ONE WELL V	OLUME :		18.9		WELL TD:	45.88	PUMP IN	ITAKE DEPTH:		
	Depth	Durana		FIELD MEAS	SUREMENTS					
Time	to Water	Purge Rate	Temp.	Conduct.	рН	Turbidity		REMARKS		
	(ft)	(gal/min)	(C)	(ms/cm)	ļ	(ntu)				
10:40	17.24	4	16.7	0.273	7.15	999		brown/thick		
10:45		4	16	0.225	6.9	450		light brown		
10:49		4	15.7	0.214	6.52	407		light brown		
10:54		4	17.5	0.15	6.99	999		brown		
					-					
										•
Sampled Pump Ty				oled with tefl SVOC's, TA						
, wayuca	ııı aranıt	,	v O O S,	5 v 5 0 5, 17	~ IVICIAIS					

WELL S	AMPLIN(G FORM		PROJECT MULTI SITI	E-G		1 of		HEETS	
LOCATION	····	Cita Daa	" Dowle NI	V #4 F0 000		DATE WELL S		DATE WELL COMPLET	ED	
CLIENT	truments	Site, Dee	r Park, N	Y #1-52-026)	8/	/16/07 NAME OF INSPECTO	DR .		
New Yor	k State D	epartmen	t of Envir	onmental C	onservation	l	Dan S	Simpson, Dan P	owiersk	i i
DRILLING CO	MPANY						SIGNATURE OF INS	PECTOR		
ONE WELL VO	OLUME :		12.32		WELL TD:	36.61	PUMP IN	NTAKE DEPTH:		
	Depth to	Purge		FIELD MEAS	SUREMENTS					
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	1	REMARKS		
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)				
10:10	17.94		16.6	0.295	6.51	999		brown		
10:14			16.3	0.25	6.52	285		clear		
10:18			15.9	0.235	6.48	203		clear		
10:22			16.2	0.237	6.39	191		clear		
Sampled Pump Ty	/pe:			oled with tefl						
Analytica	ai Parame	eters:	VUC's,	SVOC's, TA	AL Metals					

WELL NO. MW-16S

Market M	WELL S	AMPLIN	G FORM		PROJECT MULTI SITE	E-G		PROJECT No.	SHEET 1	SH OF	EETS 1
New York State Department of Environmental Conservation State Department S	LOCATION								DATE WELL COMPLE	TED	
Noe well volume: 13.24	CLIENT	uumems	Site, Dee	raik, iv	1 #1-32-020		0/		DR		
Noe well volume: 13.24	New Yor	k State D	epartmen	t of Envir	onmental Co	onservation	1	Dan S	Simpson, Dan F	Powiersk	<u>i</u>
Time Value Purge (gal/min) Field Measurements Field Measurements	DRILLING CO	MPANY						SIGNATURE OF INS	PECTOR		
Time Vater (H) Vater (H)	ONE WELL V	OLUME :		13.24		WELL TD:	36.87	PUMP IN	NTAKE DEPTH:		
Time Water (th (gal/min) (C) (C) (ms/cm) (mt) (Purge		FIELD MEAS	UREMENTS					
9:40	Time	Water	Rate			pН			REMARKS		
9:48	9:40					6.85			clear		
9:51											
Sampled: 10:00 Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers	9:58		3.8	18.3	0.223	6.46	254		clear		
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers							 				
Pump Type: Groundfos, sampled with teflon bailers											
Pump Type: Groundfos, sampled with teflon bailers											
Analytical Parameters: VOC's, SVOC's, TAL Metals	Pump Ty	/pe:	Ground								

WELL NO. MW-16M

WELL SAMPLING FORM			PROJECT MULTI SITE-G			PROJECT No.	SHEET 1	SHEETS OF 1	
LOCATION SMS Inst	truments	Site, Dee	r Park, N	Y #1-52-026		DATE WELL S	TARTED /13/07	DATE WELL COMPLET	ED
CLIENT							NAME OF INSPECTO		owioroki
DRILLING CO	MPANY	ераппеп	t OI EIIVII	onmental Co	JIISEI VALIOI	1	SIGNATURE OF INS	Simpson, Dan P	OWIEISKI
ONE WELL VO	DLUME :		45.68		WELL TD:	56.7	PUMP IN	NTAKE DEPTH:	
	Depth to	Purge		FIELD MEAS	UREMENTS	}			
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS	
14:14	16.75	5	17.5	0.225	8	320		clear	
14:24	17.1	5	17.4	0.212	5.92	292		clear	
14:35	17.12	5	17	0.209	5.06	274		clear	
14:43	17.12	5	17.6	0.21	4.6	196			
						1			
						+			
						-			
						 			
						1			
]		
Sampled Pump Ty Analytica	фе:			oled with teflo					

WELL NO. MW-16D

WELL S	AMPLIN(G FORM		PROJECT MULTI SITE	-G		PROJECT No.	SHEET 1	SHE OF	ЕЕТS 1
LOCATION SMS Inst	truments	Site, Dee	r Park, N	Y #1-52-026		DATE WELL S	/13/07	DATE WELL COMPLET	ΓED	
CLIENT New Yor	k State D	epartmen	t of Envir	onmental Co	nservatio	n	NAME OF INSPECTO Dan S	ок Simpson, Dan F РЕСТОК	owierski	
DRILLING CO	MPANY						SIGNATURE OF INS	SPECTOR		
ONE WELL VO	OLUME :		39.65		WELL TD:	76.88	PUMP IN	NTAKE DEPTH:		
	Depth to	Purge		FIELD MEAS	UREMENTS					
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	рН	Turbidity (ntu)		REMARKS		
15:00	16.79	5	16	0.336	4.48	999		light brown		
15:10	16.8	5	16.1	0.245	4.07	207		clear		
15:18	16.8	5	15.9	0.247	3.74	227		clear		
15:28	16.81	5	16	0.249	3.71	195		clear		
						1				
						1				
Sampled Pump Ty	/pe:			oled with teflo						
Analytica	al Parame	eters:	VOC's,	SVOC's, TA	L Metals					

WELL SAMPLING FORM			PROJECT MULTI SITE-G			PROJECT No.	SHEET 1	SHEETS OF 1	
LOCATION SMS Ins	truments	Site, Dee	r Park, N	Y #1-52-026		DATE WELL S	/16/07	DATE WELL COMPLETE	ED
CLIENT New Yord RILLING CO	k State D	epartmen	t of Envir	onmental Co	onservatio	า	NAME OF INSPECTO Dan S SIGNATURE OF INS	or Simpson, Dan Po Pector	owierski
ONE WELL V	OLUME :		13.22		WELL TD:	36.45	PUMP IN	NTAKE DEPTH:	
	Depth to	Purge		FIELD MEAS	UREMENTS	i			
Time	Water (ft)	Rate (gal/min)	Temp. (C)	Conduct. (ms/cm)	pН	Turbidity (ntu)		REMARKS	
9:00	16.42	4	13.4	0.163	7.24	240		clear	
9:08	16.44	4	12.8	0.141	6.65	216		clear	
9:11	16.45	4	12.2	0.143	6.45	183		clear	
9:15	16.45	4	12.4	0.143	6.37	189		clear	
						1			
						+			
						1			
						1			
						†			
						†			
Sampled Pump Ty Analytica				oled with teflo					

APPENDIX B NYSDEC MONITORING WELL FIELD INSPECTION LOGS

Earth Tech Northeast, Inc. February 2008

SITE NAME:	SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
		INSPECTOR:	DS
MONITOR	ING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
		WEII ID.:	MW-1
			YES NO
WELL VISIBLES	? (If not, provide directions below)		$\sqrt{}$
WELL COORDI			
	eading from Trimble pathfinder: Satelites:		
GPS Met	hod (circle) Trimble And/Or Magellan		YES NO
WELL I.D. VISI	BLE?		TES ITO
	ON MATCH SITE MAP? (if not, sketch actual location on back)		√ .
WELL ID AS IT	APPEARS ON PROTECTIVE CASING OR WELL:		
WELL I.D. AS II	ATTEARS ON TROTLETIVE CASING OR WELL.		YES NO
SURFACE SEAL	PRESENT?		$\sqrt{}$
	COMPETENT? (If cracked, heaved etc., describe below)		$\sqrt{}$
PROTECTIVE C	ASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
	EADING (ppm) AND INSTRUMENT USED		0.0 PID
	ECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Grade
	ASING MATERIAL TYPE:		Metal
MEASURE PRO	TECTIVE CASING INSIDE DIAMETER (Inches):		YES NO
LOCK PRESENT	79		TLS NO
LOCK FUNCTIO			$\sqrt{}$
	ACE THE LOCK?		V
	ENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		1
WELL MEASUR	ING POINT VISIBLE?		$\sqrt{}$
			30.3
	TH TO WATER FROM MEASURING POINT (Feet):		17.98 2
WELL CASING	L DIAMETER (Inches): MATERIAL:		PVC
	IDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MA	RKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO	UNDERGROUND OR OVERHEAD UTILITIES		N/A
	ESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct imity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA		<i>.</i>
	Ilding, 15' from large tree		
_			
	L SETTING (For example, located in a field, in a playground, on pavement,	in a garden, etc.)	
	HE TYPE OF RESTORATION REQUIRED.		
At grade in the gr	ass		
		-	
	NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	1	
(e.g. Gas station,	salt pile, etc.):		
None			
REMARKS:			

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
	INSPECTOR:	DS
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
	WEII ID.:	MW-2
		YES NO
WELL VISIBLE? (If not, provide directions below)		$\sqrt{}$
WELL COORDINATES? NYTM X NYTM Y		
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		YES NO
WELL I.D. VISIBLE?		√ V
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		√ ·
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
WEEL I.D. AS IT ATTEARS ON TROTLETIVE CASING OR WEEL.		YES NO
SURFACE SEAL PRESENT?		$\sqrt{}$
		$\sqrt{}$
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Grade
PROTECTIVE CASING MATERIAL TYPE:		Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		YES NO
LOCK PRESENT?		125 110
LOCK FUNCTIONAL?		
DID YOU REPLACE THE LOCK?		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		1
WELL MEASURING POINT VISIBLE?		√
		30.3
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):		17.98 2
WELL CASING MATERIAL:		PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		N/A
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction)	ctions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON E	BACK, IF NECESSARY	7.
25' away from brick building, 8' from fence		
DESCRIPE WELL SETTING (For avample located in a field in a playaround an analysis	t in a garden stal	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavemen AND ASSESS THE TYPE OF RESTORATION REQUIRED.	n, m a garden, etc.)	
And Assess the title of Restoration required. At grade in paved parking lot		
At grade in paved parking lot		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN	NT	
(e.g. Gas station, salt pile, etc.):		
REMARKS:		

SITE NAME:	SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
		INSPECTOR:	DS
MONITOR	ING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
		WEII ID.:	MW-3
			YES NO
WELL VISIBLE?	? (If not, provide directions below)		$\sqrt{}$
WELL COORDIN			
	eading from Trimble pathfinder: Satelites:		
GPS Met	hod (circle) Trimble And/Or Magellan		YES NO
WELL I.D. VISIE	BLE?		TES ITO √
	ON MATCH SITE MAP? (if not, sketch actual location on back)		1
WELL ID AS IT	APPEARS ON PROTECTIVE CASING OR WELL:		
WELL I.D. AS II	ATTEARS ON TROTLETIVE CASING OR WELL.		YES NO
SURFACE SEAL	PRESENT?		$\sqrt{}$
	COMPETENT? (If cracked, heaved etc., describe below)		$\sqrt{}$
PROTECTIVE C.	ASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
	EADING (ppm) AND INSTRUMENT USED		0.0 PID
	ECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Grade
	ASING MATERIAL TYPE:		Metal
MEASURE PRO	TECTIVE CASING INSIDE DIAMETER (Inches):		YES NO
LOCK PRESENT	79		125 110
LOCK FUNCTIO	NAL?		$\sqrt{}$
	ACE THE LOCK?		V
	ENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		1
	ING POINT VISIBLE?		V
			25.99
	TH TO WATER FROM MEASURING POINT (Feet):		15.95 2
WELL CASING	, ,		PVC
	IDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MA	RKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO	UNDERGROUND OR OVERHEAD UTILITIES		N/A
DESCRIBE ACC	ESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct	ions, overhead	
power lines, proxi	imity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA	ACK, IF NECESSARY	<i>7</i> .
25' away from bri	ck building, 8' from fence		
DESCRIBE WEL	I SETTING (For example located in a field in a plantage of an arrange)	in a garden stal	
	L SETTING (For example, located in a field, in a playground, on pavement, HE TYPE OF RESTORATION REQUIRED.	in a garden, etc.)	
And Assess 1. At grade in paved			
At grade in paved	parking lot		
IDENTIFY ANY	NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	Γ	
(e.g. Gas station,	salt pile, etc.):		
None			
	-		
REMARKS:			

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
	INSPECTOR:	DS
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
	WEII ID.:	MW-4
		YES NO
WELL VISIBLE? (If not, provide directions below)		V
WELL COORDINATES? NYTM X NYTM Y		
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		YES NO
WELL I.D. VISIBLE?		1 LS NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		√ ·
		,
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		YES NO
SURFACE SEAL PRESENT?		1 L5 NO
		V
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Grade
PROTECTIVE CASING MATERIAL TYPE:		Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
A COM PRESENTA		YES NO
LOCK PRESENT?LOCK FUNCTIONAL?		\ \ \ \ \ \
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?		\ \ \ \ \
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below)		√
WELL MEASURING POINT VISIBLE?		$\sqrt{}$
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		29.61
ACT OF THE PERSON HOLD WANTED TO CALL OF A SAME AND THE PERSON HOLD AND THE PERSON HOL		16.68
MEASURE WELL DIAMETER (Inches):		4
WELL CASING MATERIAL:		PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		N/A
		N/A
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction)		_
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON B	ACK, IF NECESSARY	. .
Under trees, 6' from fence		
DESCRIPE WELL CETTING (For example legated in a field in a planar and an arrange	:	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement AND ASSESS THE TYPE OF RESTORATION REQUIRED.	i, in a garden, etc.)	
~		
At grade in paved parking lot		
IDENTIEV ANV NEADDV DOTENTIAL COLIDOES OF CONTAMINATION JE PRESENT	(T	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN	11	
(e.g. Gas station, salt pile, etc.):		
None		
REMARKS:		
MAIN MAN.		

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	
MONUTORING WITH A FIFT B INGREGATION LOG	INSPECTOR:	
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
	WEII ID.:	MW-5
WELL MANDY ED AC		YES NO
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y		V
GPS Method (circle) Trimble And/Or Magellan		
		YES NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		V
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		YES NO
SURFACE SEAL PRESENT?		√ \
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		V
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
41 /		0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable		Grade
PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		Metal
		YES NO
LOCK PRESENT?		V
LOCK FUNCTIONAL?		\ \ \ \ \ \ \
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below		1
WELL MEASURING POINT VISIBLE?		√ ,
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		20.64
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		15.72
MEASURE WELL DIAMETER (Inches):		2
WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:		PVC Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		0000
		N/A
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstr	ructions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON	BACK, IF NECESSARY	7.
35' away from brick building, 3' from Granite slabs		
DESCRIPE WELL CETTING (For avample leasted in a field in a glavore of	ant in a conder stall	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavem AND ASSESS THE TYPE OF RESTORATION REQUIRED.	ent, in a garden, etc.)	
And Assess the title of Restoration Regulard. At grade in paved parking lot		
At grade in paved parking lot		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRES	ENT	
(e.g. Gas station, salt pile, etc.):		
None		
DEMARKS.		
REMARKS:		

SITE NAME: SMS Instruments, Deer Park, NY		1-52-026
	INSPECTOR	DS
MONITORING WELL FIELD INSPECTION		
	WEII ID.:	MW-6S
		YES NO
, , , , , , , , , , , , , , , , , , ,		V
WELL COORDINATES? NYTM X PDOP Reading from Trimble pathfinder:	NYTM Y	
GPS Method (circle) Trimble And/Or Magella	Satelites:	
		YES NO
WELL I.D. VISIBLE?		√
WELL LOCATION MATCH SITE MAP? (if not, sketch actual lo	ocation on back)	√
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR W	VELL:	
		YES NO
SURFACE SEAL PRESENT?	iha halawi)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
PROTECTIVE CASING IN GOOD CONDITION? (If damaged,	· · · · · · · · · · · · · · · · · · ·	V
	,	
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP	P IN FFFT (If applicable)	0.0 PID Grade
		Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inche	es):	
		YES NO
LOCK PRESENT? LOCK FUNCTIONAL?		\ \ \ \ \ \ \
DID WOULDEDLY CE TWEET OCKS		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED		\
WELL MEASURING POINT VISIBLE?		√ √
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):	:	26.20
MEASURE DEPTH TO WATER FROM MEASURING POINT		
· · · · · ·		2
		PVC Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITII		N/A
DESCRIBE ACCESS TO WELL: (Include accessibility to truck in power lines, proximity to permanent structures, etc.); ADD SKET(25' away from brick building		SARY.
DESCRIBE WELL SETTING (For example, located in a field, in AND ASSESS THE TYPE OF RESTORATION REQUIRED. At grade in paved parking lot	a playground, on pavement, in a garden, etc.)
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONT.		
(e.g. Gas station, salt pile, etc.):		
None		
DEMADKS.		
REMARKS:		

SITE NAME:	SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
		INSPECTOR:	DS
MONITOR	ING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
		WEII ID.:	MW-6D
			YES NO
	? (If not, provide directions below)		$\sqrt{}$
WELL COORDI			
	eading from Trimble pathfinder: Satelites: hod (circle) Trimble And/Or Magellan		
GI 5 WICE	nod (chele) Timble And Of Wagehan		YES NO
WELL I.D. VISII	BLE?		$\sqrt{}$
WELL LOCATION	ON MATCH SITE MAP? (if not, sketch actual location on back)		$\sqrt{}$
WELL I.D. AS IT	Γ APPEARS ON PROTECTIVE CASING OR WELL:		
			YES NO
SURFACE SEAL			√ /
	. COMPETENT? (If cracked, heaved etc., describe below) ASING IN GOOD CONDITION? (If damaged, describe below)		√ √
			·
	EADING (ppm) AND INSTRUMENT USEDECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		0.0 PID Grade
	ASING MATERIAL TYPE:	••••••	Metal
	TECTIVE CASING INSIDE DIAMETER (Inches):		11101111
			YES NO
LOCK PRESENT			1
LOCK FUNCTION	NAL? ACE THE LOCK?		\ \ \ \ \ \ \
	ENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		1
	ING POINT VISIBLE?		V
MEASURE WEL	L DEPTH FROM MEASURING POINT (Feet):		95.66
	TH TO WATER FROM MEASURING POINT (Feet):		15.59
	L DIAMETER (Inches):		4
WELL CASING			PVC
	IDITION OF VISIBLE WELL CASING: .RKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	•••••	Good
	LINDED CROUND OR OVERLIE AD LITTLE		N/A
DESCRIBE ACC	ESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct	ions overhead	
	imity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA		7
25' away from bri			
	LL SETTING (For example, located in a field, in a playground, on pavement	, in a garden, etc.)	
	THE TYPE OF RESTORATION REQUIRED.		
At grade in paved	parking lot		
IDENTIFY ANY	NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN	Т	
(e.g. Gas station,			
None	1 / 2		
REMARKS:			

SITE NAME:	SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
		INSPECTOR:	DS
MONITOR	ING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
		WEII ID.:	MW-7
			YES NO
	? (If not, provide directions below)		$\sqrt{}$
WELL COORDIN			
	ading from Trimble pathfinder: Satelites: Satelites:		
GI S WICE	ind (circle) Timble Tild of Magerian		YES NO
WELL I.D. VISI	BLE?		$\sqrt{}$
WELL LOCATIO	ON MATCH SITE MAP? (if not, sketch actual location on back)		$\sqrt{}$
WELL I.D. AS IT	APPEARS ON PROTECTIVE CASING OR WELL:		
			YES NO
SURFACE SEAL			1
	. COMPETENT? (If cracked, heaved etc., describe below) ASING IN GOOD CONDITION? (If damaged, describe below)		√ √
	,		
	EADING (ppm) AND INSTRUMENT USEDECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		0.0 PID Grade
	ASING MATERIAL TYPE:		Metal
MEASURE PRO	TECTIVE CASING INSIDE DIAMETER (Inches):		
			YES NO
LOCK PRESENT			\ \ \ \ \ \
LOCK FUNCTION	NAL? ACE THE LOCK?	••••••	1
	ENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		V
	ING POINT VISIBLE?		$\sqrt{}$
MEASURE WEL	L DEPTH FROM MEASURING POINT (Feet):		28.66
MEASURE DEP	TH TO WATER FROM MEASURING POINT (Feet):		17.06
	L DIAMETER (Inches):		2
WELL CASING	MATERIAL: IDITION OF VISIBLE WELL CASING:		PVC Good
	RKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
	INDEPONDATION OF OVERTIES OF LITTLE		N/A
DESCRIBE ACC	ESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct	ions, overhead	
	imity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA		<i>7</i> .
20' away from fer	nce, Narrow rows of Granite slabs		
DEGODINE WEY	A CEPTEDIC (E		
	L SETTING (For example, located in a field, in a playground, on pavement,	in a garden, etc.)	
AND ASSESS 1 At grade in paved	HE TYPE OF RESTORATION REQUIRED.		
At grade iii paved	parking for		
IDENTIFY ANY	NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	Γ	
(e.g. Gas station,	salt pile, etc.):		
None			
REMARKS:			
KEMAKKO.			

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
	INSPECTOR:	DS
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
	WEII ID.:	MW-8
		YES NO
WELL VISIBLE? (If not, provide directions below)		√ /
WELL COORDINATES? NYTM X NYTM Y		
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
		YES NO
WELL I.D. VISIBLE?		
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
		YES NO
SURFACE SEAL PRESENT?		
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		
HEADSPACE READING (ppm) AND INSTRUMENT USED		
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		
PROTECTIVE CASING MATERIAL TYPE:		-
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		VEC NO
LOCK PRESENT?		YES NO
LOCK FUNCTIONAL?	••••••••••••	
DID YOU REPLACE THE LOCK?		
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		
WELL MEASURING POINT VISIBLE?		
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		29.05
ACT OF THE PERSON HOLD WATER TO BE AND THE PERSON HOLD TO BE AND THE P		15.54
MEASURE WELL DIAMETER (Inches):		2
WELL CASING MATERIAL:		PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		N/A
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction)	ctions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON B	BACK, IF NECESSARY	7.
25' away from brick building		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavemen	t, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
At grade in paved parking lot		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN	NT	
(e.g. Gas station, salt pile, etc.):		
None		
REMARKS:		

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	
MONUTODING WELL FIELD INGREGUION LOG	INSPECTOR:	
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07 MW-9
	WEII ID.:	
WELL VISIBLE? (If not, provide directions below)		YES NO √
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y		V
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		TTTT TTT
WELL I.D. VISIBLE?		YES NO √
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		1
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		<u> </u>
WELL I.D. AS IT ATTEARS ON TROTECTIVE CASING OR WELL.		YES NO
SURFACE SEAL PRESENT?		V
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		√ /
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	••••••	Grade Metal
		YES NO
LOCK PRESENT? LOCK FUNCTIONAL?		\ \ \ \ \ \
DID YOU REPLACE THE LOCK?		√
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		V
WELL MEASURING POINT VISIBLE?		$\sqrt{}$
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		28.75
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):		14.87 2
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:		PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
		N/A
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction of the control of the		7
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON B	SACK, IF NECESSAR	(.
25' away from brick building		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavemen	t, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
At grade in paved parking lot		
IDENTIFIES AND MEADAY DOTTEN THAT GOVERNESS OF COMMITTEES AND THE STATE OF COMMITTEES	TOP.	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN	N I	
(e.g. Gas station, salt pile, etc.): None		
TOILE		
REMARKS:		

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
	INSPECTOR:	DS
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
	WEII ID.:	MW-11
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan		YES NO
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		YES NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		YES NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		TBS TVS
HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		YES NO
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below) WELL MEASURING POINT VISIBLE?		TES NO
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BAUBuilding has been removed, Well is under sand pile		Υ.
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, and assess the type of restoration required.	in a garden, etc.)	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): None		
REMARKS:		

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	
MONUTORING WITH LEIDIN INGREGITANI LOG	INSPECTOR:	
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
	WEII ID.:	MW-12
WELL VISIDLE? (If not provide directions below)		YES NO √
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYTM Y	•••••	V
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		[
WELL LD VIGIDLES		YES NO √
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		V
		,
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	•••••	YES NO
SURFACE SEAL PRESENT?		√
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		V
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:		Grade Metal
		Wietai
		YES NO
LOCK PRESENT?		$\sqrt{}$
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?		\ \ \ \ \ \ \
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		1
WELL MEASURING POINT VISIBLE?		$\sqrt{}$
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		47.50
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		15.57
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:		PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		N/A
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction of the control of the		7
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON B	ACK, IF NECESSAR	(.
10' from street curb		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavemen	t, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
At grade in the grass		
IDENTIFIES AND MEADIN DOTENTIAL GOUDGES OF CONTAINING AT PROPERTY	T.T.	
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN	1 1	
(e.g. Gas station, salt pile, etc.): None		
110110		
REMARKS:		

SITE NAME:	SMS Instruments, Deer Park, NY	SITE ID.:	
1.601		INSPECTOR:	
MONITOR	ING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
		WEII ID.:	MW-13S
			YES NO
WELL COORDIN	? (If not, provide directions below)		$\sqrt{}$
	hod (circle) Trimble And/Or Magellan		
			YES NO
WELL I.D. VISIE			1
	ON MATCH SITE MAP? (if not, sketch actual location on back)		V
WELL I.D. AS IT	T APPEARS ON PROTECTIVE CASING OR WELL:		ALC NO
SURFACE SEAL	PRESENT?		YES NO √
	COMPETENT? (If cracked, heaved etc., describe below)		. 1
PROTECTIVE C	ASING IN GOOD CONDITION? (If damaged, describe below)		. $\sqrt{}$
HEADSPACE RE	EADING (ppm) AND INSTRUMENT USED		0.0 PID
	ECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable		Grade
	ASING MATERIAL TYPE:		Metal
MEASURE PRO	TECTIVE CASING INSIDE DIAMETER (Inches):		YES NO
LOCK PRESENT	T?		125 1(G
LOCK FUNCTIO	NAL?		V
	ACE THE LOCK?		V
	ENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below LING POINT VISIBLE?		. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	L DEPTH FROM MEASURING POINT (Feet): TH TO WATER FROM MEASURING POINT (Feet):		
	L DIAMETER (Inches):		4
WELL CASING			PVC
	IDITION OF VISIBLE WELL CASING:		Good
	AND THE CROSS OF CAMERIAN AND AND AND AND AND AND AND AND AND A		. <u>N/A</u>
	ESS TO WELL: (Include accessibility to truck mounted rig, natural obstrated to the control of th		
	imity to permanent structures, etc.); ADD SKETCH OF LOCATION ON		RY.
Under a large tree			
	L SETTING (For example, located in a field, in a playground, on pavem	ent, in a garden, etc.)	
	THE TYPE OF RESTORATION REQUIRED.		
At grade in the gr	ass		
IDENTIEV ANV	NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRES	FNT	
(e.g. Gas station,		LANI	
None			
REMARKS:			

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	
	INSPECTOR:	DS
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	
	WEII ID.:	MW-13D
		YES NO
WELL VISIBLE? (If not, provide directions below)		$\sqrt{}$
WELL COORDINATES? NYTM X NYTM Y PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
, , ,		YES NO
WELL I.D. VISIBLE?		√
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		$\sqrt{}$
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
AVENUE OF OF A DEPOSITOR		YES NO
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		\ \ \
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		√
HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Grade
PROTECTIVE CASING MATERIAL TYPE:		Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
LOGW PREGENTS		YES NO
LOCK PRESENT? LOCK FUNCTIONAL?		√ √
DID YOU REPLACE THE LOCK?		$\sqrt{}$
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		V
WELL MEASURING POINT VISIBLE?		$\sqrt{}$
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		101.40
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		17.01
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:		4 PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		N/A
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct	tions, overhead	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA	ACK, IF NECESSAR	Y.
25' from brick building, access from driveway		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement.	in a garden (4)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	, ili a gardell, etc.)	
At grade in the grass		
It glade in the glass		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	T	
(e.g. Gas station, salt pile, etc.):		
None		
REMARKS:		

SITE NAME:	SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
		INSPECTOR:	DS
MONITOR	ING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
		WEII ID.:	MW-14
			YES NO
	? (If not, provide directions below)		$\sqrt{}$
WELL COORDIN			
	ading from Trimble pathfinder: Satelites: Satelites:		
GPS Met	hod (circle) Trimble And/Or Magellan		YES NO
WELL I.D. VISI	BLE?		TES ITO
WELL LOCATION	ON MATCH SITE MAP? (if not, sketch actual location on back)		$\sqrt{}$
WELLID AS IT	APPEARS ON PROTECTIVE CASING OR WELL:		
,, EEE 1.B. 115 11	. THE EARLY OF THE FEET OF STATE OF WELLS.		YES NO
SURFACE SEAL	PRESENT?		$\sqrt{}$
	COMPETENT? (If cracked, heaved etc., describe below)		√
PROTECTIVE C	ASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
	EADING (ppm) AND INSTRUMENT USED		0.0 PID
	ECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Grade
	ASING MATERIAL TYPE:		Metal
MEASURE PRO	TECTIVE CASING INSIDE DIAMETER (Inches):		YES NO
LOCK PRESENT	79		1 LB I NO
LOCK FUNCTIO	NAL?		$\sqrt{}$
	ACE THE LOCK?		V
	ENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		1
WELL MEASUR	ING POINT VISIBLE?		$\sqrt{}$
			45.88
	TH TO WATER FROM MEASURING POINT (Feet):		<u>17.24</u> 4
WELL CASING			PVC
	IDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MA	RKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO	UNDERGROUND OR OVERHEAD UTILITIES		N/A
DESCRIBE ACC	ESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct	ions, overhead	
power lines, proxi	imity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA	ACK, IF NECESSARY	<i>7</i> .
10' from brick bui	llding, Accessible near driveway		
DECCRIBE WEL	I SETTING (For around a located in a field in a planeau d	in a conder stall	
	L SETTING (For example, located in a field, in a playground, on pavement,	, iii a garden, etc.)	
	HE TYPE OF RESTORATION REQUIRED.		
At grade in the gr	ass		
	NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	Γ	
(e.g. Gas station,	salt pile, etc.):		
None			
REMARKS:			
KEMAKKO.			

SITE NAME:	SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
		INSPECTOR:	DS
MONITOR	ING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
		WEll ID.:	MW-15
			YES NO
	? (If not, provide directions below)		$\sqrt{}$
WELL COORDI			
	eading from Trimble pathfinder: Satelites: Satelites:		
GPS Met	hod (circle) Trimble And/Or Magellan		YES NO
WELL I.D. VISII	BLE?		1 L S 1 (S
	ON MATCH SITE MAP? (if not, sketch actual location on back)		$\sqrt{}$
WELLID ASI	T APPEARS ON PROTECTIVE CASING OR WELL:		
,, EEE 1.B. 116 11			YES NO
SURFACE SEAL	PRESENT?		$\sqrt{}$
			$\sqrt{}$
PROTECTIVE C	ASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
	EADING (ppm) AND INSTRUMENT USED		0.0 PID
	ECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Grade
	ASING MATERIAL TYPE:		Metal
MEASURE PRO	TECTIVE CASING INSIDE DIAMETER (Inches):		YES NO
LOCK PRESENT	T?		TES NO
LOCK FUNCTIO	NAL?		$\sqrt{}$
	ACE THE LOCK?		$\sqrt{}$
	ENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		√
WELL MEASUR	LING POINT VISIBLE?		V
			36.61
	TH TO WATER FROM MEASURING POINT (Feet):		<u>16.78</u> 4
WELL CASING	L DIAMETER (Inches): MATERIAL:		PVC
	IDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MA	RKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO	UNDERGROUND OR OVERHEAD UTILITIES		N/A
	ESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction of the company of		7
-	imity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA	ACK, IF NECESSAR	[.
15' from brick but	nung		
DESCRIBE WEL	L SETTING (For example, located in a field, in a playground, on pavement	, in a garden, etc.)	
AND ASSESS T	HE TYPE OF RESTORATION REQUIRED.		
At grade in brush	/weeds		
		_	
	NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN	Т	
(e.g. Gas station,	salt pile, etc.):		
None			
REMARKS:			

SITE NAME: S	MS Instruments, Deer Park, NY	SITE ID.:	
MONITODINI			DS
MONITORING	G WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
		WEII ID.:	MW-16S
WELL VIGIDLES (IC	not musical disentions below)		YES NO √
WELL COORDINAT	not, provide directions below) PES? NYTM X NYTM Y	•••••	V
GPS Method			
			YES NO
WELL I.D. VISIBLE	/ //ATCH SITE MAP? (if not, sketch actual location on back) .		7
			· ·
WELL I.D. AS IT AP	PEARS ON PROTECTIVE CASING OR WELL:		YES NO
SURFACE SEAL PR	ESENT?		√ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
SURFACE SEAL CO	MPETENT? (If cracked, heaved etc., describe below)		$\sqrt{}$
PROTECTIVE CASI	NG IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
HEADSPACE READ	ING (ppm) AND INSTRUMENT USED		0.0 PID
	IVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Grade
	NG MATERIAL TYPE: TIVE CASING INSIDE DIAMETER (Inches):		Metal
MEASURE PROTEC	TIVE CASING INSIDE DIAMETER (IIICIES).		YES NO
LOCK PRESENT?			
LOCK FUNCTIONAL			V
DID YOU REPLACE			√ √
WELL MEASURING	E THAT THE WELL IS DOUBLE CASED? (If yes,describe below) POINT VISIBLE?		$\sqrt{}$
			36.87
	TO WATER FROM MEASURING POINT (Feet):		16.81
MEASURE WELL D			4
WELL CASING MAT			PVC
	TON OF VISIBLE WELL CASING:		Good
	ER (if well ID is confirmed) and IDENTIFY MARKER TYPE DERGROUND OR OVERHEAD UTILITIES		N/A
	TO WELL: (Include accessibility to truck mounted rig, natural obstru		
	to permanent structures, etc.); ADD SKETCH OF LOCATION ON I		Υ.
15' from brick buildin	•	,	
	ETTING (For example, located in a field, in a playground, on paveme	nt, in a garden, etc.)	
	TYPE OF RESTORATION REQUIRED.		
At grade in brush/wee	ds		
IDENTIEV AND NE	ADDV DOTENTIAL COUDCES OF CONTAMINATION IF PRESE	NT	
	ARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESE	IN I	
(e.g. Gas station, salt	pile, etc.):		
TORC			
REMARKS:			

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR:	DS
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: WEII ID.:	8/13/07 MW-16M
	WEII ID	
WELL VISIBLE? (If not, provide directions below)		YES NO
WELL COORDINATES? NYTM X NYTM Y		<u> </u>
PDOP Reading from Trimble pathfinder: Satelites:		
GPS Method (circle) Trimble And/Or Magellan		
WELL ID MAIN E		YES NO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		$\sqrt{}$
		V
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		YES NO
SURFACE SEAL PRESENT?		√ V
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)		V
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		$\sqrt{}$
HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Grade
PROTECTIVE CASING MATERIAL TYPE:		Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		YES NO
LOCK PRESENT?		TES NO
LOCK FUNCTIONAL?		
DID YOU REPLACE THE LOCK?		V
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)		V
WELL MEASURING POINT VISIBLE?		<u> </u>
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		56.70
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):		16.75 4
WELL CASING MATERIAL:		PVC
PHYSICAL CONDITION OF VISIBLE WELL CASING:		Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		N/A
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct		
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA	ACK, IF NECESSAR	Y.
15' from brick building		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement,	in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
At grade in brush/weeds		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	Γ	
(e.g. Gas station, salt pile, etc.):		
None		
REMARKS:		

SITE NAME: SMS Instruments, Deer Park, NY	SITE ID.:	1-52-026
	INSPECTOR:	DS
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME:	8/13/07
	WEII ID.:	MW-16D
		YES NO
WELL VISIBLE? (If not, provide directions below)		
WELL COORDINATES? NYTM X NYTM Y		
PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble And/Or Magellan Satelites:		
GPS Method (circle) Trinible And/Of Magenan		YES NO
WELL I.D. VISIBLE?		√ V
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		. 1
· · ·		<u> </u>
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		YES NO
SURFACE SEAL PRESENT?		√ V
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) .		. $\sqrt{}$
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		. 🗸
HEADSPACE READING (ppm) AND INSTRUMENT USED		0.0 PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applica		Grade
PROTECTIVE CASING MATERIAL TYPE:		Metal
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		
		YES NO
LOCK PRESENT?		. 1
LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?		\ \ \ \ \ \
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe bel		V
WELL MEASURING POINT VISIBLE?	, and the second	· + ·
MEASURE WELL DEPTH FROM MEASURING POINT (Feet):		. 76.88
MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):		
MEASURE WELL DIAMETER (Inches):		
WELL CASING MATERIAL:		
PHYSICAL CONDITION OF VISIBLE WELL CASING:		. Good
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE		
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		. <u>N/A</u>
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural or power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION		RY.
15' from brick building		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pav	ement, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION REQUIRED.		
At grade in brush/weeds		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PR	ESENT	
(e.g. Gas station, salt pile, etc.):		
None		
REMARKS:		

APPENDIX C LABORATORY DATA SUMMARY PACKAGES (FORM 1s)

Earth Tech Northeast, Inc. February 2008

"Environmental Testing For The New Millennium"

August 31, 2007

Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Allen Burton

RE: Client Project: SMS Instruments

Lab Work Order #: F1135

Dear Mr. Burton:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

CLP Project Manager

* Data Summary Pack *

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name: SMS Instruments, 152026

SDG: <u>F1135</u>

		Analytical Requirements				
Customer	Laboratory					
Sample ID	Sample ID	MSVOA	MSSEMI	GC*	ME	Other
		Method #	Method #	Method #		
SMS-MW-6S	F1135-01	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-6S	F1135-01				SW7470A	
SMS-MW-6D	F1135-02	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-6D	F1135-02				SW7470A	
SMS-MW-5	F1135-03	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-5	F1135-03				SW7470A	
SMS-MW-7	F1135-04	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-7	F1135-04				SW7470A	
SMS-MW-1	F1135-05	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-1	F1135-05				SW7470A	
SMS-MW-9	F1135-06	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-9	F1135-06				SW7470A	
SMS-MW-8	F1135-07	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-8	F1135-07				SW7470A	
SMS-MW-56D	F1135-08	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-56D	F1135-08				SW7470A	
SMS-MW-16D	F1135-09	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-16D	F1135-09				SW7470A	
SMS-MW-16M	F1135-10	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-16M	F1135-10				SW7470A	
SMS-TB-1	F1135-11	SW8260B_W				
SMS-MW-3	F1135-12	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-3	F1135-12				SW7470A	
SMS-MW-2	F1135-13	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-2	F1135-13				SW7470A	
SMS- MW-4	F1135-14	SW8260B_W	SW8270C_W		SW6010B_W	
SMS- MW-4	F1135-14	_	_		SW7470A	
SMS-MW-17	F1135-15	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-17	F1135-15	_			SW7470A	-
SMS-MW-16S	F1135-16	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-16S	F1135-16	_			SW7470A	
SMS-MW-15	F1135-17	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-15	F1135-17				SW7470A	
SMS-MW-14	F1135-18	SW8260B_W	SW8270C_W		SW6010B_W	
SMS-MW-14	F1135-18				SW7470A	
SMS-MW-13D	F1135-19	SW8260B_W			SW6010B_W	
SMS-MW-13D	F1135-19				SW7470A	
SMS-TB-2	F1135-20	SW8260B_W				

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: SMS Instruments, 152026

SDG: F1135

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8260B_W					
F1135-01A	AQ	8/14/2007	8/15/2007	NA	8/25/2007
F1135-02A	AQ	8/14/2007	8/15/2007	NA	8/25/2007
F1135-03A	AQ	8/14/2007	8/15/2007	NA	8/25/2007
F1135-04A	AQ	8/14/2007	8/15/2007	NA	8/25/2007
F1135-05A	AQ	8/14/2007	8/15/2007	NA	8/25/2007
F1135-06A	AQ	8/14/2007	8/15/2007	NA	8/25/2007
F1135-07A	AQ	8/14/2007	8/15/2007	NA	8/25/2007
F1135-08A	AQ	8/14/2007	8/15/2007	NA	8/25/2007
F1135-09A	AQ	8/13/2007	8/15/2007	NA	8/25/2007
F1135-10A	AQ	8/13/2007	8/15/2007	NA	8/27/2007
F1135-11A	AQ	8/14/2007	8/15/2007	NA	8/27/2007
F1135-12A	AQ	8/15/2007	8/17/2007	NA	8/27/2007
F1135-13A	AQ	8/15/2007	8/17/2007	NA	8/25/2007
F1135-14A	AQ	8/15/2007	8/17/2007	NA	8/25/2007
F1135-14AMS	AQ	8/15/2007	8/17/2007	NA	8/27/2007
F1135-14AMSD	AQ	8/15/2007	8/17/2007	NA	8/27/2007
F1135-15A	AQ	8/16/2007	8/17/2007	NA	8/25/2007
F1135-16A	AQ	8/16/2007	8/17/2007	NA	8/25/2007
F1135-17A	AQ	8/16/2007	8/17/2007	NA	8/27/2007
F1135-18A	AQ	8/16/2007	8/17/2007	NA	8/27/2007
F1135-19A	AQ	8/16/2007	8/17/2007	NA	8/27/2007
F1135-20A	AQ	8/15/2007	8/17/2007	NA	8/27/2007

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: SMS Instruments, 152026

SDG: <u>F1135</u>

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8270C_W					
F1135-01B	AQ	8/14/2007	8/15/2007	8/16/2007	8/18/2007
F1135-02B	AQ	8/14/2007	8/15/2007	8/16/2007	8/18/2007
F1135-03B	AQ	8/14/2007	8/15/2007	8/16/2007	8/18/2007
F1135-04B	AQ	8/14/2007	8/15/2007	8/16/2007	8/17/2007
F1135-05B	AQ	8/14/2007	8/15/2007	8/16/2007	8/17/2007
F1135-06B	AQ	8/14/2007	8/15/2007	8/16/2007	8/17/2007
F1135-07B	AQ	8/14/2007	8/15/2007	8/16/2007	8/17/2007
F1135-08B	AQ	8/14/2007	8/15/2007	8/16/2007	8/18/2007
F1135-09B	AQ	8/13/2007	8/15/2007	8/16/2007	8/18/2007
F1135-10B	AQ	8/13/2007	8/15/2007	8/16/2007	8/18/2007
F1135-12B	AQ	8/15/2007	8/17/2007	8/21/2007	8/23/2007
F1135-13B	AQ	8/15/2007	8/17/2007	8/21/2007	8/23/2007
F1135-14B	AQ	8/15/2007	8/17/2007	8/21/2007	8/23/2007
F1135-14BMS	AQ	8/15/2007	8/17/2007	8/21/2007	8/24/2007
F1135-14BMSD	AQ	8/15/2007	8/17/2007	8/21/2007	8/24/2007
F1135-14BRA	AQ	8/15/2007	8/17/2007	8/21/2007	8/24/2007
F1135-15B	AQ	8/16/2007	8/17/2007	8/21/2007	8/23/2007
F1135-16B	AQ	8/16/2007	8/17/2007	8/21/2007	8/23/2007
F1135-17B	AQ	8/16/2007	8/17/2007	8/21/2007	8/23/2007
F1135-18B	AQ	8/16/2007	8/17/2007	8/21/2007	8/23/2007

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: SMS Instruments, 152026

SDG: F1135

Laboratory		Analytical	Extraction	Low/Medium	Dil/Conc
Sample ID	Matrix	Protocol	Method	Level	Factor
SW8260B_W					
F1135-01A	AQ	SW8260B_W	NA	LOW	1
F1135-02A	AQ	SW8260B_W	NA	LOW	1
F1135-03A	AQ	SW8260B_W	NA	LOW	1
F1135-04A	AQ	SW8260B_W	NA	LOW	1
F1135-05A	AQ	SW8260B_W	NA	LOW	1
F1135-06A	AQ	SW8260B_W	NA	LOW	1
F1135-07A	AQ	SW8260B_W	. NA	LOW	1
F1135-08A	AQ	SW8260B_W	NA	LOW	1
F1135-09A	AQ	SW8260B_W	NA	LOW	1
F1135-10A	AQ	SW8260B_W	NA	LOW	1
F1135-11A	AQ	SW8260B_W	NA	LOW	1
F1135-12A	AQ	SW8260B_W	NA	LOW	1
F1135-13A	AQ	SW8260B_W	NA	LOW	1
F1135-14A	AQ	SW8260B_W	NA	LOW	1
F1135-14AMS	AQ	SW8260B_W	NA	LOW	1
F1135-14AMSD	AQ	SW8260B_W	NA	LOW	1
F1135-15A	AQ	SW8260B_W	NA	LOW	1
F1135-16A	AQ	SW8260B_W	NA	LOW	1
F1135-17A	AQ	SW8260B_W	NA	LOW	1
F1135-18A	AQ	SW8260B_W	NA	LOW	1
F1135-19A	AQ	SW8260B_W	NA	LOW	1
F1135-20A	AQ	SW8260B_W	NA	LOW	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: SMS Instruments, 152026

SDG: <u>F1135</u>

Laboratory		Analytical	Extraction	Auxiliary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
SW8270C_W					
F1135-01B	AQ	SW8270C_W	3520C	NA	1
F1135-02B	AQ	SW8270C_W	3520C	NA	1
F1135-03B	AQ	SW8270C_W	3520C	NA	1
F1135-04B	AQ	SW8270C_W	3520C	NA	1
F1135-05B	AQ	SW8270C_W	3520C	NA	1
F1135-06B	AQ	SW8270C_W	3520C	NA .	1
F1135-07B	AQ	SW8270C_W	3520C	NA	1
F1135-08B	AQ	SW8270C_W	3520C	NA	1
F1135-09B	AQ	SW8270C_W	3520C	NA	1
F1135-10B	AQ	SW8270C_W	3520C	NA	1
F1135-12B	AQ	SW8270C_W	3520C	NA	1
F1135-13B	AQ	SW8270C_W	3520C	NA	1
F1135-14B	AQ	SW8270C_W	3520C	NA	1
F1135-14BMS	AQ	SW8270C_W	3520C	NA	1
F1135-14BMSD	AQ	SW8270C_W	3520C	. NA	1
F1135-14BRA	AQ	SW8270C_W	3520C	NA	1
F1135-15B	AQ	SW8270C_W	3520C	NA	1
F1135-16B	AQ	SW8270C_W	3520C	NA	1
F1135-17B	AQ	SW8270C_W	3520C	NA	1
F1135-18B	AQ	SW8270C_W	3520C	NA	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name: SMS Instruments, 152026

SDG: <u>F1135</u>

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010B_W				
F1135-01C	AQ	SW6010B_W	8/15/2007	8/24/2007
F1135-02C	AQ	SW6010B_W	8/15/2007	8/24/2007
F1135-03C	AQ	SW6010B_W	8/15/2007	8/24/2007
F1135-04C	AQ	SW6010B_W	8/15/2007	8/24/2007
F1135-05C	AQ	SW6010B_W	8/15/2007	8/24/2007
F1135-06C	AQ	SW6010B_W	8/15/2007	8/24/2007
F1135-07C	AQ	SW6010B W	8/15/2007	8/24/2007
F1135-08C	AQ	SW6010B_W	8/15/2007	8/24/2007
F1135-09C	AQ	SW6010B_W	8/15/2007	8/24/2007
F1135-10C	AQ	SW6010B_W	8/15/2007	8/24/2007
F1135-12C	AQ	SW6010B_W	8/17/2007	8/24/2007
F1135-13C	AQ	SW6010B_W	8/17/2007	8/24/2007
F1135-14C	AQ	SW6010B_W	8/17/2007	8/24/2007
F1135-14CDUP	AQ	SW6010B_W	8/17/2007	8/24/2007
F1135-14CMS	AQ	SW6010B_W	8/17/2007	8/24/2007
F1135-15C	AQ	SW6010B_W	8/17/2007	8/24/2007
=1135-16C	AQ	SW6010B_W	8/17/2007	8/24/2007
F1135-17C	AQ	SW6010B_W	8/17/2007	8/24/2007
-1135-18C	AQ	SW6010B_W	8/17/2007	8/24/2007
F1135-19C	AQ	SW6010B_W	8/17/2007	8/24/2007
SW7470A				
F1135-01C	AQ	SW7470A	8/15/2007	8/22/2007
F1135-02C	AQ	SW7470A	8/15/2007	8/22/2007
-1135-03C	AQ	SW7470A	8/15/2007	8/22/2007
-1135-04C	AQ	SW7470A	8/15/2007	8/22/2007
F1135-05C	AQ	SW7470A	8/15/2007	8/22/2007
F1135-06C	AQ	SW7470A	8/15/2007	8/22/2007
=1135-07C	AQ	SW7470A	8/15/2007	8/22/2007
F1135-08C	AQ	SW7470A	8/15/2007	8/22/2007
=1135-09C	AQ	SW7470A	8/15/2007	8/22/2007
F1135-10C	AQ	SW7470A	8/15/2007	8/22/2007
F1135-12C	AQ	SW7470A	8/17/2007	8/22/2007
=1135-13C	AQ	SW7470A	8/17/2007	8/22/2007
=1135-14C	AQ	SW7470A	8/17/2007	8/22/2007
F1135-14CDUP	AQ	SW7470A	8/17/2007	8/22/2007
-1135-14CMS	AQ	SW7470A	8/17/2007	8/22/2007
=1135-15C	AQ	SW7470A	8/17/2007	8/22/2007
F1135-16C	AQ	SW7470A	8/17/2007	8/22/2007
F1135-17C	AQ	SW7470A	8/17/2007	8/22/2007
-1135-18C	AQ	SW7470A	8/17/2007	8/22/2007
F1135-19C	AQ	SW7470A	8/17/2007	8/22/2007

Analytical Data Package for Earth Tech Northeast, Inc.

Client Project: SMS Instruments

SDG# MF1135

Mitkem Work Order ID: F1135

August 31, 2007

Prepared For:

Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Allen Burton

Prepared By:

Mitkem Corporation

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to Earth Tech Northeast, Inc.'s SMS Instruments project. Under this deliverable, analysis results are presented for twenty aqueous samples that were received on August 15 and 17, 2007. Analyses were performed per specifications in the project's contract and the chain of custody forms, following discussions with the client. Following the narrative is the Mitkem Work Order for cross-referencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000 update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.
- M6 software did not integrate peak
- M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits with the exception of marginally high recovery of chloroethane and acetone and low recovery of 2,2-dichloropropane in V2JLCS, low recovery of 2,2-dichloropropane in V2JLCSD and low recovery of 2,2-dichloropropane, total xylene and 4-isopropyltoluene in V2NLCS. Replicate RPDs were within the QC limits.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SMS-MW-4. Spike recoveries and replicate RPDs were within the QC limits.

Sample analysis: no other unusual observation was made for the analysis.

3. Semivolatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample/lab control sample duplicate: spike recoveries were within the QC limits with the exception of low recovery of hexachlorocyclopentadiene in S3GLCS and its duplicate and low recovery of hexachlorocyclopentadiene and high recovery of dinbutyl-phthalate in S3ILCS. Replicate RPDs were within the QC limits.

Matrix spike/matrix spike duplicate: duplicate matrix spikes were performed on sample SMS-MW-4. Spike recoveries were within the QC limits with the exception of low recovery of N-nitrosodiphenylamine, high recovery of pentachlorophenol and no recovery of 3,3'-dichlorobenzidine in the matrix spike and low recovery of 2,4-dimethylphenol, N-nitrosodiphenylamine and 3,3'-dichlorobenzidine and high recovery of pentachlorophenol in the matrix spike duplicate. Replicate RPDs were within the QC limits with the exception of 2,4-dimethylphenol.

Sample analysis: internal standard area counts were within QC criteria with the exception of sample SMS-MW-4. The sample was re-analyzed with similar findings. No other unusual observation was made for the analysis.

4. Metals Analysis:

Lab control sample: spike recoveries were within the QC limits.

Matrix spike: matrix spike was performed on sample SMS-MW-4. Spike recoveries were within the QC limits with the exception of iron. The spike recovery for iron could not be accurately determined, as the sample concentration was significantly greater than the

spike concentration. When the sample concentration is more than four times the spike concentration, it tends to obscure the relatively smaller spike amount; control limits do not apply in this circumstance.

Duplicate: duplicate analysis was performed on sample SMS-MW-4. Replicate RPDs were within the QC limits.

Sample analysis: serial dilution was performed on sample SMS-MW-4. Percent differences were within the QC limits. No other unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Agnes Ng

CLP Project Manager

08/31/07

Mitkem Corporation	20/Aug/07 11:21	WorkOrder: F1135
Client ID: EARTH_NJ	Case:	Report Level: ASP-B
Project: SMS Instruments, 152026	SDG:	EDD: CLF
Location:	PO: D003821-41	HC Due: 09/07/07
Comments: N/A		Fax Due: 08/31/07

Sample ID	HS Client Sample ID	Collection Date Date Recv'd	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
F1135-01A	SMS-MW-6S	08/14/2007 14:20 08/15/2007	Aqueous	SW8260B_W		Nov 🗆 🗆
F1135-01B	SMS-MW-6S	08/14/2007 14:20 08/15/2007	Aqueous	SW8270C_W		HFLOO
F1135-01C	SMS-MW-6S	08/14/2007 14:20 08/15/2007	Aqueous	SW6010B_W	TAL	□
				SW7470A	TAL	M5
F1135-02A	SMS-MW-6D	08/14/2007 14:14 08/15/2007	Aqueous	SW8260B_W		NOA 🗆 🗆
F1135-02B	SMS-MW-6D	08/14/2007 14:14 08/15/2007	Aqueous	SW8270C_W		HFLOO
F1135-02C	SMS-MW-6D	08/14/2007 14:14 08/15/2007	Aqueous	SW6010B_W	TAL	MS MS
				SW7470A	TAL	
F1135-03A	SMS-MW-5	08/14/2007 11:45 08/15/2007	Aqueous	SW8260B_W		O C C
F1135-03B	SMS-MW-5	08/14/2007 11:45 08/15/2007	Aqueous	SW8270C_W		HFLOO
F1135-03C	SMS-MW-5	08/14/2007 11:45 08/15/2007	Aqueous	SW6010B_W	TAL	□ □ ⊠ M5
Client Rep:	: Agnes R Ng					Page 1 of 7

Mitkem Corporation	20/Aug/07 11:21	WorkOrder: F1135
Client ID: EARTH_NJ	Case:	Report Level: ASP-B
Project: SMS Instruments, 152026	SDG:	EDD: CLF
Location:	PO: D003821-41	HC Due: 09/07/07
Comments: N/A		Fax Due: 08/31/07

Sample ID	HS Client Sample ID	Collection Date	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
F1135-03C	SMS-MW-5	08/14/2007 11:45 08/15/2007	Aqueous	SW7470A	TAL	☐ ☐ M5
F1135-04A	SMS-MW-7	08/14/2007 11:15 08/15/2007	Aqueous	SW8260B_W		O C C
F1135-04B	SMS-MW-7	08/14/2007 11:15 08/15/2007	Aqueous	SW8270C_W		HFLOO
F1135-04C	SMS-MW-7	08/14/2007 11:15 08/15/2007	Aqueous	SW6010B_W	TAL	□
				SW7470A	TAL	□ □ MS
F1135-05A	SMS-MW-1	08/14/2007 10:40 08/15/2007	Aqueous	SW8260B_W		O O O
F1135-05B	SMS-MW-1	08/14/2007 10:40 08/15/2007	Aqueous	SW8270C_W		HELOO
F1135-05C	SMS-MW-1	08/14/2007 10:40 08/15/2007	Aqueous	SW6010B_W	TAL	MS MS
F1135-06A	SMS-MW-9	08/14/2007 9:45 08/15/2007	Aqueous	SW8260B_W	IAL	
F1135-06B	8MS-WW-9	08/14/2007 9:45 08/15/2007	Aqueous	SW8270C_W		
Client Rep:	o: Agnes R Ng				Pa	Page 2 of 7

Mitkem	Mitkem Corporation		20	1/4ug/(20/Aug/07 11:21	Worl	WorkOrder: F1135
Client ID: Project: Location: Comments:	Client ID: EARTH_NJ Project: SMS Instruments, 152026 Location: Comments: N/A	·		Case: SDG: PO:	Jase: DG: PO: D003821-41	Re	Report Level: ASP-B EDD: CLF HC Due: 09/07/07 Fax Due: 08/31/07
Sample ID	HS Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
F1135-06C	SMS-MW-9	08/14/2007 9:45	08/15/2007	Aqueous	SW6010B_W SW7470A	TAL	MS MS
F1135-07A	SMS-MW-8	08/14/2007 9:09	08/15/2007	Aqueous	SW8260B_W		
F1135-07B	SMS-MW-8	08/14/2007 9:09	08/15/2007	Aqueous	SW8270C_W		HFLOO
F1135-07C	SMS-MW-8	08/14/2007 9:09	08/15/2007	Aqueous	SW6010B_W	TAL	>
F1135-08A	SMS-MW-56D	08/14/2007 14:14 08/1	08/15/2007	Aqueous	SW7470A SW8260B_W	TAL	MS ON O
F1135-08B	SMS-MW-56D	08/14/2007 14:14	08/15/2007	Aqueous	SW8270C_W		HFLOO
F1135-08C	SMS-MW-56D	08/14/2007 14:14	08/15/2007	Aqueous	SW6010B_W SW7470A	TAL	□
F1135-09A	SMS-MW-16D	08/13/2007 15:35	08/15/2007	Aqueous	SW8260B_W		voa
Client Rep:	Agnes R Ng					Page	e 3 <i>of</i> 7

Mitken	Mitkem Corporation	20	20/Aug/07 11:21	11:21	Work	WorkOrder: F1135
Client ID: Project: Location: Comments:	Client ID: EARTH_NJ Project: SMS Instruments, 152026 Location: Comments: N/A		Case: SDG: PO: D003821-41	03821-41	Repor	Report Level: ASP-B EDD: CLF HC Due: 09/07/07 Fax Due: 08/31/07
Sample ID	HS Client Sample ID	Collection Date Date Recv'd	Matrix Tes	Test Code	Lab Test Comments	Hold MS SEL Storage
F1135-09B	SMS-MW-16D	08/13/2007 15:35 08/15/2007	Aqueous SW	SW8270C_W		HFLOO
F1135-09C	SMS-MW-16D	08/13/2007 15:35 08/15/2007	Aqueous SW	SW6010B_W	TAL	□ ⊠ M5
			MS	SW7470A	TAL	
F1135-10A	SMS-MW-16M	08/13/2007 14:45 08/15/2007	Aqueous SW	SW8260B_W		O O O
F1135-10B	SMS-MW-16M	08/13/2007 14:45 08/15/2007	Aqueous SW	SW8270C_W		HELOO
F1135-10C	SMS-MW-16M	08/13/2007 14:45 08/15/2007	Aqueous SW	SW6010B_W	TAL	☐ ☑ M5
			SW	SW7470A	TAL	
F1135-11A	SMS-TB-1	08/14/2007 0:00 08/15/2007	Aqueous SW	SW8260B_W		O O O

Page 4 of 7

□ voa

Aqueous SW8260B_W

08/15/2007 9:25 08/17/2007

SMS-MW-3

F1135-12A

Aqueous SW8270C_W

08/15/2007 9:25 08/17/2007

SMS-MW-3

F1135-12B

☐ 14

Client Rep: Agnes R Ng

Mitkem Corporation	20/Aug/07 11:21	WorkOrder: F1135
Client ID: EARTH_NJ	Case:	Report Level: ASP-B
Project: SMS Instruments, 152026	SDG:	EDD: CLF
Location:	PO: D003821-41	HC Due: 09/07/07
Comments: N/A		Fax Due: 08/31/07

Fax Due: 08/31/07

Sample ID	HS Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
F1135-12C	SMS-MW-3	08/15/2007 9:25	08/17/2007	Aqueous	SW6010B_W	TAL	☐ ☑ M4
					SW7470A	TAL	□ □ M4
F1135-13A	SMS-MW-2	08/15/2007 9:00	08/17/2007	Aqueous	SW8260B_W		
F1135-13B	SMS-MW-2	08/15/2007 9:00	08/17/2007	Aqueous	SW8270C_W		
F1135-13C	SMS-MW-2	08/15/2007 9:00	08/17/2007	Aqueous	SW6010B_W	TAL	□
					SW7470A	TAL	
F1135-14A	SMS-MW-4	08/15/2007 10:00 08/1			SW8260B_W		
F1135-14B	SMS- MW-4	08/15/2007 10:00 08/1	08/17/2007	Aqueous	SW8Z/0C_W SW6010B_W	TAL	Z Z Z
					SW7470A	TAL	✓ □ M4
F1135-15A	SMS-MW-17	08/16/2007 9:15	08/17/2007	Aqueous	SW8260B_W		O O O

Client Rep: Agnes R Ng

5 of 7

Page

Fax Due: 08/31/07 HC Due: 09/07/07 Report Level: ASP-B EDD: CLF **PO:** D003821-41 SDG: Case: Project: SMS Instruments, 152026 Client ID: EARTH_NJ Comments: N/A Location:

Sample ID	HS Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
F1135-15B	SMS-MW-17	08/16/2007 9:15	08/17/2007	Aqueous	SW8270C_W		
F1135-15C	SMS-MW-17	08/16/2007 9:15	08/17/2007	Aqueous	SW6010B_W	TAL	□ □
					SW7470A	TAL	
F1135-16A	SMS-MW-16S	08/16/2007 10:00 08/1	08/17/2007	Aqueous	SW8260B_W		NOA 🗆 🗆
F1135-16B	SMS-MW-16S	08/16/2007 10:00 08/1	08/17/2007	Aqueous	SW8270C_W		14
F1135-16C	SMS-MW-16S	08/16/2007 10:00 08/1	08/17/2007	Aqueous	SW6010B_W	TAL	□ □ M4
					SW7470A	TAL	□ □ M4
F1135-17A	SMS-MW-15	08/16/2007 10:25 08/	08/17/2007	Aqueous	SW8260B_W		O O O O
F1135-17B	SMS-MW-15	08/16/2007 10:25 08/1	08/17/2007	Aqueous	SW8270C_W		
F1135-17C	SMS-MW-15	08/16/2007 10:25 08/1	08/17/2007	Aqueous	SW6010B_W	TAL	□ □ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
				The state of the s	SW7470A	TAL	☐ ☐ M4

Page

6 of 7

Client Rep: Agnes R Ng

Project: SMS Instruments, 152026 Client ID: EARTH NJ Location:

Comments: N/A

SDG: Case:

PO: D003821-41

SW8260B W

Aqueous

08/17/2007

08/16/2007 11:00

Test Code

Matrix

Collection Date Date Recv'd

HS Client Sample ID

Sample ID

SMS-MW-14

F1135-18A

SW8270C W

Aqueous

08/16/2007 11:00 08/17/2007

SMS-MW-14

F1135-18B

HC Due: 09/07/07 EDD: CLF

Report Level: ASP-B

Fax Due: 08/31/07

Hold MS SEL Storage □ voa □ voa **>** M4 **>** M 4 M4 14 Lab Test Comments

TAL

SW6010B W

Aqueous

08/16/2007 11:00 08/17/2007

SMS-MW-14

F1135-18C

SW7470A

TAL

TAL Aqueous SW8260B W SW7470A 08/15/2007 0:00 08/17/2007 SMS-TB-2 F1135-20A

□ voA

M4

TAL

SW6010B W

Aqueous

08/16/2007 12:00 08/17/2007

SMS-MW-13D

F1135-19C

Aqueous SW8260B W

08/16/2007 12:00 08/17/2007

SMS-MW-13D

F1135-19A

7 of 7 Page

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SMS-MW-1

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-05A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9128

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. _____ Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

CAS NO.	COMPOUND (ug/)	L Or ug/kg)	ОСУ П	Q
75-71-8	Dichlorodifluorometha	ne	5	U
	Chloromethane		5	
75-01-4	Vinyl Chloride		5	Ū
74-83-9	Bromomethane		5	Ū
75-00-3	Chloroethane		5	Ū
75-69-4	Trichlorofluoromethane	<u> </u>	5	บี
75-35-4	1,1-Dichloroethene		5	Ū
67-64-1			5	Ū
	Iodomethane		5	Ū
	Carbon Disulfide		5	Ū
75-09-2	Methylene Chloride		5	Ū
156-60-5	trans-1,2-Dichloroethe	ene	5	Ū
	Methyl tert-butyl ethe		5	Ū
	1,1-Dichloroethane		5	Ū
108-05-4	Vinyl acetate		5	Ū
	2-Butanone		5	Ū
	cis-1,2-Dichloroethene	e l	<u> </u>	Ū
	2,2-Dichloropropane		5	Ū
74-97-5	Bromochloromethane		5	Ū
	Chloroform		5	Ū
	1,1,1-Trichloroethane		5	Ū
	1,1-Dichloropropene		5	Ū
	Carbon Tetrachloride		5	Ū
	1,2-Dichloroethane		5	U
71-43-2			5 5	U
	Trichloroethene		5	
	1,2-Dichloropropane		5	U
	Dibromomethane		5	U
	Bromodichloromethane		5	Ū
	cis-1,3-Dichloroproper	ne	- 5	U
	4-Methyl-2-pentanone		5	U
108-88-3	Toluene		5	U
10061-02-6	trans-1,3-Dichloroprop	oene	5	U
79-00-5	1,1,2-Trichloroethane		, 5	U
	- · ·			,
· · · · · · · · · · · · · · · · · · ·				

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SMS-MW-1

SDG No.: MF1135

Lab Name: MITKEM CORPORATION Contract:

CAS NO.

Lab Code: MITKEM Case No.: SAS No.:

Matrix: (soil/water) WATER Lab Sample ID: F1135-05A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9128

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

COMPOUND

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(uq/L or uq/Kq) UG/L Q 142-28-9-----1,3-Dichloropropane 5 | U 5 127-18-4----Tetrachloroethene U 591-78-6----2-Hexanone 5 U 124-48-1-----Dibromochloromethane 5 U 106-93-4----1,2-Dibromoethane 5 U 5 108-90-7-----Chlorobenzene U 5 630-20-6----1,1,1,2-Tetrachloroethane U 100-41-4----Ethylbenzene 5 U 5 ----m,p-Xylene U 5 95-47-6----o-Xylene IJ 5 1330-20-7-----Xylene (Total) U 5 100-42-5-----Styrene IJ 5 75-25-2-----Bromoform U 5 U 98-82-8-----Isopropylbenzene 5 79-34-5----1,1,2,2-Tetrachloroethane U 5 U 108-86-1-----Bromobenzene 5 96-18-4----1, 2, 3-Trichloropropane Ũ 103-65-1----n-Propylbenzene 5 U 5 95-49-8-----2-Chlorotoluene U 108-67-8-----1,3,5-Trimethylbenzene U 106-43-4----4-Chlorotoluene U U 98-06-6-----tert-Butylbenzene 5 5 95-63-6----1,2,4-Trimethylbenzene U 5 U 135-98-8-----sec-Butylbenzene 99-87-6-----4-Isopropyltoluene 541-73-1-----1,3-Dichlorobenzene 5 U 5 U 106-46-7----1,4-Dichlorobenzene 5 U 104-51-8----n-Butylbenzene 5 U 95-50-1-----1,2-Dichlorobenzene 5 U 96-12-8-----1,2-Dibromo-3-chloropropane U 120-82-1----1,2,4-Trichlorobenzene U 87-68-3-----Hexachlorobutadiene IJ 91-20-3-----Naphthalene 5 U 87-61-6-----1,2,3-Trichlorobenzene U

FORM I VOA

OLMO3.0

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SM	IS-MW-	1

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-05A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9128

Level: (low/med)

Number TICs found: 0

LOW

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1		======	=======================================	====:
1				
		<u> </u>		
4. 5.				
6.		-,	,	
7.				
0.				
9				
11.				
14.				
13.				
15.				
16.				
±0. !				
19				
Z1.				
22.				
23.				-
24.				
26.				
41.				
40.	<u> </u>			
29.	 			
				

FORM I VOA-TIC

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SMS-MW-13D

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-19A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9194

Level: (low/med)

LOW

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. (ug/L or ug/Kg) UG/L COMPOUND Q

FORM I VOA

SMS-MW-13D

SDG No.: MF1135

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.:

Matrix: (soil/water) WATER Lab Sample ID: F1135-19A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9194

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: not dec. _____ Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 5 | U 142-28-9----1,3-Dichloropropane 5 127-18-4----Tetrachloroethene U 591-78-6----2-Hexanone 5 U 5 124-48-1-----Dibromochloromethane U 106-93-4----1,2-Dibromoethane 5 U 108-90-7-----Chlorobenzene U 630-20-6----1,1,1,2-Tetrachloroethane U 100-41-4-----Ethylbenzene U -----m,p-Xylene 95-47-6-----o-Xylene 1330-20-7-----Xylene (Total) 5 U 5 U U 100-42-5-----Styrene 5 U 75-25-2-----Bromoform 5 Ū 98-82-8-----Isopropylbenzene 5 U 79-34-5----1,1,2,2-Tetrachloroethane 5 U 108-86-1----Bromobenzene U 96-18-4-----1,2,3-Trichloropropane_ 103-65-1-----n-Propylbenzene_ 95-49-8-----2-Chlorotoluene_ U U 5 U 108-67-8-----1,3,5-Trimethylbenzene 5 U 106-43-4----4-Chlorotoluene 5 U 98-06-6-----tert-Butylbenzene 5 U 95-63-6----1,2,4-Trimethylbenzene 5 U 5 135-98-8-----sec-Butylbenzene U 99-87-6----4-Isopropyltoluene U 541-73-1----1,3-Dichlorobenzene U 106-46-7----1,4-Dichlorobenzene U 104-51-8----n-Butylbenzene 5 U 95-50-1-----1,2-Dichlorobenzene 96-12-8-----1,2-Dibromo-3-chloropropane 5 U 5 U 120-82-1----1,2,4-Trichlorobenzene 5 U 87-68-3-----Hexachlorobutadiene 5 U 91-20-3-----Naphthalene 87-61-6-----1,2,3-Trichlorobenzene 5 U U

FORM I VOA

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SMS-MW-13D

Lab	Name:	MITKEM	CORPORATION
-----	-------	--------	-------------

Contract:

Lab Code: MITKEM

Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-19A

Sample wt/vol: 5.000 (q/mL) ML

Lab File ID: V2J9194

Level: (low/med)

Date Received: 08/17/07

% Moisture: not dec. _____

Date Analyzed: 08/27/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	_
	=======================================	======		=====
1				
2				
	the state of the s			
4				
5 _				
υ.				
7.				
8.				
J.				
TO. 1				
	·			
17.				
13. I				
14.				
15.				
16				
16				
18.				
10				
19.				
20.				
41.				
24.			·	
43.				
∠4.	,			
25.				
26.				
41.				
28.				
29				
30.				
	····			

FORM I VOA-TIC

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SMS-MW-14

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-18A

Sample wt/vol:

5.000 (q/mL) ML

LOW

Lab File ID:

V2J9193

Level: (low/med)

Date Received: 08/17/07

% Moisture: not dec. _____

Date Analyzed: 08/27/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

Q

	(45/ 1 01 45/	J	_
75-71-8	Dichlorodifluoromethane	5	U
	Chloromethane	5	บี
	Vinyl Chloride	5	บี
74-83-9	Bromomethane	5	บี
	Chloroethane	5	U
	Trichlorofluoromethane	5	U
	1,1-Dichloroethene	. 5 5	Ū
67-64-1		-6	
	Iodomethane	5	$\overline{\mathtt{U}}$
	Carbon Disulfide	5	U
75-09-2	Methylene Chloride	. 5	שׁ
156-60-5	trans-1,2-Dichloroethene	5	U
1634-04-4	Methyl tert-butyl ether	5	U
75-34-3	1,1-Dichloroethane	5	U
108-05-4	Vinyl acetate	5	U
	2-Butanone	5	Ū
	cis-1,2-Dichloroethene	5	U
590-20-7	2,2-Dichloropropane	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	U
74-97-5	Bromochloromethane	5	U
	Chloroform	5	ע
71-55-6	1,1,1-Trichloroethane	5	ע
	1,1-Dichloropropene	_ 5	Ū
	Carbon Tetrachloride	5	U
	1,2-Dichloroethane	5	U
71-43-2		5	U
	Trichloroethene	5	Ŭ
	1,2-Dichloropropane	5	U
	Dibromomethane	5	U
	Bromodichloromethane	5	U
	cis-1,3-Dichloropropene	5	U U
108-10-1	4-Methyl-2-pentanone	5 5	
		5	
	trans-1,3-Dichloropropene	5 5	1
/ 3-00-5	I, I, Z-II ICIIIOIOECIIAIIE	5	١
			1

FORM I VOA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SMS-MW-14

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-18A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9193

Level: (low/med)

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L CAS NO. COMPOUND Q

			
142-28-9	1,3-Dichloropropane	5	ט
	Tetrachloroethene	5	
	2-Hexanone	5	U
124-48-1	Dibromochloromethane		
	1,2-Dibromoethane	5	ע .
	Chlorobenzene	5 5 5	ש
	1,1,1,2-Tetrachloroethane	5	שׁ
	Ethylbenzene	5	
	m,p-Xylene	5	
95-47-6		5	
	Xylene (Total)	5	
100-42-5		5	
	Bromoform	5	
98-82-8	Isopropylbenzene	5	
	1,1,2,2-Tetrachloroethane	5	שׁ
	Bromobenzene	5	lυ
96-18-4	1,2,3-Trichloropropane	5	U
103-65-1	n-Propylbenzene	5 5 5 5 5 5 5	שׁ
	2-Chlorotoluene	5	U
108-67-8	1,3,5-Trimethylbenzene	. 5	U
	4-Chlorotoluene	5	U
98-06-6	tert-Butylbenzene	5	U
	1,2,4-Trimethylbenzene	5	U
135-98-8	sec-Butylbenzene	5	U
	4-Isopropyltoluene	5 5 5	U
	1,3-Dichlorobenzene	5	U
	1,4-Dichlorobenzene	5	U
104-51-8	n-Butylbenzene	5	U
95-50-1	1,2-Dichlorobenzene	5 5	שׁ
96-12-8	1,2-Dibromo-3-chloropropane	5	שׁ
120-82-1	1,2,4-Trichlorobenzene	5	U
87-68-3	Hexachlorobutadiene	5	U
91-20-3	Naphthalene	5	U
	1,2,3-Trichlorobenzene	5	שׁ

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-14 Contract:

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-18A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9193

Level: (low/med)

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	1
	=======================================	_======	=========	====:
1	<u></u>			
2				
3. 4.			<u> </u>	
5.				
6.				
7.				
0 - 1				
9.				
L.L. •				
L4.				
13.	·			
14				·
16				
10.				
17.				
19				
20			<u> </u>	
Z1. I				
££.				
44.				
۱ د ۲				
20.				
4/.				
28 .				
29.				
30				

FORM I VOA-TIC

EPA SAMPLE NO.

SMS-MW-15

Lab Name: MITKEM CORPORATION

Contract:

LOW

Lab Code: MITKEM

Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-17A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9192

Level: (low/med)

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NO. COMPOUND

75-71-8	Dichlorodifluoromethane		5	U	
74-87-3	Chloromethane		5	U	
75-01-4	Vinyl Chloride		5	U	
74-83-9	Bromomethane		5		
75-00-3	Chloroethane		5	U	
75-69-4	Trichlorofluoromethane		5		
75-35-4	1,1-Dichloroethene		5	U	
67-64-1			5	υ.	
74-88-4	Iodomethane		5	ש	
75-15-0	Carbon Disulfide		5	שׁו	
75-09-2	Methylene Chloride		5	υ	
	trans-1,2-Dichloroethene		5	U	
	Methyl tert-butyl ether		5	Ū	
	1,1-Dichloroethane		5	lυ	
	Vinyl acetate		5	lυ	
78-93-3			5	Ū	
	cis-1,2-Dichloroethene		5	שׁ	
	2,2-Dichloropropane		5	Ū	
	Bromochloromethane		5	Ū	
67-66-3			5	Ū	
	1,1,1-Trichloroethane		5	υ	
	1,1-Dichloropropene		5	lΰ	
	Carbon Tetrachloride		5	ΙŪ	
	1,2-Dichloroethane		5	υ	
71-43-2		ł	5	υ	
	Trichloroethene		5	υ	
	1,2-Dichloropropane		5	υ	
	Dibromomethane		5	υŪ	
	Bromodichloromethane		5	Ū	
	cis-1,3-Dichloropropene		5	Ū	
	4-Methyl-2-pentanone		5	Ü	
108-88-3			5	υ	
	trans-1,3-Dichloropropene		5	Ü	
	1,1,2-Trichloroethane	-	5	lπ	

FORM I VOA

EPA SAMPLE NO.

SMS-MW-15

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-17A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9192

Level: (low/med) LOW

Date Received: 08/17/07

Date Analyzed: 08/27/07

% Moisture: not dec. _____

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (uq/L or uq/Kq) UG/L

0

	CAD IVO.	COMPOUND	(ug/ L OI	ug/kg/ og	<i>,</i> ப	,	∠
	142-28-9	1,3-Dichloroprop	ane		5.	U	
		Tetrachloroethen			5	U	
	591-78-6		· <u> </u>	—	5	Ü	
		Dibromochloromet	hane		. 5	บั	
	106-93-4	1,2-Dibromoethan	e		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	บั	
l		Chlorobenzene			5	Ū	
l		1,1,1,2-Tetrachl	oroethane		5	Ū	
		Ethylbenzene			5	ָּ ט	
l		m,p-Xylene			5	שו	
l	95-47-6			-	5	U	
l		Xylene (Total)			5	U	
	100-42-5	Styrene			5	Ū	
	75-25-2	Bromoform			5	U	
		Isopropyl <u>benzene</u>		-	5	U	
	79-34-5	1,1,2,2-Tetrachl	oroethane		5	U	
	108-86-1	Bromobenzene	_		5	U	
	96-18-4	1,2,3-Trichlorop	ropane		5	U	
	103-65-1	n-Propylbenzene			5	U	
	95-49-8	2-Chlorotoluene			5	U	
		$1,3,5$ -Trimethyl $\overline{ m b}$	enzene		5	U	
		4-Chlorotoluene			5	Ū	
l	98-06-6	tert-Butylbenzen	e		5	U	
١	95-63-6	1,2,4-Trimethylb	enzene		· 5	U	
١	135-98-8	sec-Butylbenzene			5	U	
١	99-87-6	4-Isopropyltolue	ne		- 5	U	
	541-73-1	1,3-Dichlorobenz	ene		5	Ū	
	106-46-7	1,4-Dichlorobenz	ene		5	U	
١	104-51-8	n-Butylbenzene			5	U	
١		1,2-Dichlorobenz			5	U	
		1,2-Dibromo-3-ch		ne	5 5 5	U	
١		1,2,4-Trichlorob			5	U	
		Hexachlorobutadi	ene		5	U	
١	91-20-3	Naphthalene			5	U	
	87-61-6	$1,2,3$ -Trich $\overline{\text{lorob}}$	enzene		5	U	

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Contract:

SMS-MW-15

Lab Code: MITKEM Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-17A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9192

Level: (low/med)

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1. 2.				
, .			- '	
4.				
, ,,				
6. 7.				
8 9.	<u> </u>			
10				
11.				
12	· .			
14.				
15.				
16. 17.				
l 18.				
20		·		
44.				
23				
l 25.		<u> </u>		
26.				
27. 28.				
49.				
30.				

FORM I VOA-TIC

SMS-MW-16D

O

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM

CAS NO.

Contract:

Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-09A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9132

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

COMPOUND

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (uq/L or uq/Kq) UG/L

75-71-8-----Dichlorodifluoromethane 5 | U 74-87-3-----Chloromethane 5 U 75-01-4-----Vinyl Chloride 5 U 5 74-83-9-----Bromomethane U 75-00-3------Chloroethane 5 U 75-69-4----Trichlorofluoromethane 5 U 75-35-4----1,1-Dichloroethene 5 U 67-64-1-----Acetone U 74-88-4-----Iodomethane U 75-15-0-----Carbon Disulfide U 75-09-2----Methylene Chloride U 156-60-5----trans-1,2-Dichloroethene U 1634-04-4-----Methyl tert-butyl ether J 75-34-3-----1,1-Dichloroethane 5 U 108-05-4-----Vinyl acetate 5 U 78-93-3-----2-Butanone 5 U 5 156-59-2----cis-1,2-Dichloroethene U 590-20-7----2,2-Dichloropropane 5 U 74-97-5-----Bromochloromethane 5 U 67-66-3-----Chloroform 5 U 71-55-6-----1,1,1-Trichloroethane 5 U U 563-58-6----1,1-Dichloropropene U 56-23-5-----Carbon Tetrachloride 5 107-06-2----1,2-Dichloroethane 5 U 71-43-2----Benzene 5 U 79-01-6-----Trichloroethene 5 U 78-87-5-----1,2-Dichloropropane U 74-95-3-----Dibromomethane U 75-27-4-----Bromodichloromethane 5 U 10061-01-5----cis-1,3-Dichloropropene_ U 108-10-1-----4-Methyl-2-pentanone U 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene U 5 U

FORM I VOA

79-00-5-----1,1,2-Trichloroethane

OLM03.0

U

SMS-MW-16D

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-09A

Sample wt/vol:

5.000 (q/mL) ML

Lab File ID: V2J9132

Level: (low/med)

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NO.

591-78-6----2-Hexanone

COMPOUND

5 U 142-28-9-----1,3-Dichloropropane 127-18-4-----Tetrachloroethene 5 U 5 U 124-48-1-----Dibromochloromethane 5 U

106-93-4-----1,2-Dibromoethane 108-90-7-----Chlorobenzene 630-20-6-----1,1,1,2-Tetrachloroethane 100-41-4-----Ethylbenzene ----m,p-Xylene 95-47-6-----o-Xylene 1330-20-7-----Xylene (Total) 100-42-5-----Styrene 75-25-2-----Bromoform 98-82-8-----Isopropylbenzene 79-34-5----1,1,2,2-Tetrachloroethane 108-86-1-----Bromobenzene 96-18-4-----1,2,3-Trichloropropane 103-65-1----n-Propylbenzene 95-49-8-----2-Chlorotoluene 108-67-8-----1,3,5-Trimethylbenzene

5 U 5 U 5 Ū 5 | U 5 U 5 U 5 U 5 U

106-43-4-----4-Chlorotoluene 98-06-6-----tert-Butylbenzene 95-63-6-----1,2,4-Trimethylbenzene 135-98-8-----sec-Butylbenzene

99-87-6-----4-Isopropyltoluene 541-73-1----1,3-Dichlorobenzene 106-46-7----1,4-Dichlorobenzene

104-51-8----n-Butylbenzene 95-50-1-----1,2-Dichlorobenzene 96-12-8-----1,2-Dibromo-3-chloropropane 120-82-1-----1,2,4-Trichlorobenzene

87-68-3-----Hexachlorobutadiene 91-20-3-----Naphthalene

87-61-6-----1,2,3-Trichlorobenzene

5 שו 5 U U IJ 5 U

0

5 U 5 U 5 U 5 U 5 U

5 U 5 U 5 | U 5 | U 5 | U 5 | U 5 | U 5 U 5 U 5 U

5 U

5 U

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

DIAD LIM TOT	SMS	-MW-	16D
--------------	-----	------	-----

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-09A

Date Received: 08/15/07

Sample wt/vol:

5.000 (q/mL) ML

Lab File ID: V2J9132

Level: (low/med)

% Moisture: not dec.

Date Analyzed: 08/25/07

Number TICs found: 0

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: (uL)

Soil Extract Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
			========	=====
2				
3				
T •				
٥.				
0.				
, ·				
J.				
±0.				
				
12.				
1.3.				
	<u> </u>			
<u> </u>				
TO. 1		ļ		
19.				
20				
21				
44.	· · · · · · · · · · · · · · · · · · ·			
23.				
24				
25	<u> </u>			
26. 27.				
28				
28				-
30.		<u> </u>		
JU				

SMS-MW-16M

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-10A

Sample wt/vol:

5.000 (q/mL) ML

Lab File ID: V2J9189

Level: (low/med)

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

	(49, 1 01 49	,, <u>-</u> ,,, -	Z
75-71-8	Dichlorodifluoromethane	5	U
74-87-3	Chloromethane	5	
	Vinyl Chloride	- 5	υ
	Bromomethane	- 5	
75-00-3	Chloroethane	5	Ū
	Trichlorofluoromethane	- 5	ט
75-35-4	1,1-Dichloroethene	- 5	υ
67-64-1		5	"
	Iodomethane	5	Ū
	Carbon Disulfide	- 5	
75-09-2	Methylene Chloride	⁻ 5	ט
156-60-5	trans-1,2-Dichloroethene	⁻ 5	
1634-04-4	Methyl tert-butyl ether	⁻ 5	
75-34-3	1,1-Dichloroethane	⁻ 5	
	Vinyl acetate	⁻ 5	
	2-Butanone	⁻ 5	שׁ
156-59-2	cis-1,2-Dichloroethene	⁻ 5	U
	2,2-Dichloropropane	_ 5	U
74-97-5	Bromochloromethane	⁻ 5	U
67-66-3	Chloroform	5	שׁ
71-55-6	1,1,1-Trichloroethane	5	U
	1,1-Dichloropropene	⁻ 5	U
	Carbon Tetrachloride	5	U
107-06-2	1,2-Dichloroethane	5	U
71-43-2		5	U
	Trichloroethene	5	U
	1,2-Dichloropropane	5	U
	Dibromomethane	5	U
	Bromodichloromethane	5	U
10061-01-5	cis-1,3-Dichloropropene	_ 5	U
	4-Methyl-2-pentanone	_ 5	U
108-88-3		_ 5	ע
10061-02-6	trans-1,3-Dichloropropene	_	1
79-00-5	1,1,2-Trichloroethane	_ 5	שׁ
 			l

EPA SAMPLE NO.

SMS-MW-16M

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.:

se No.: SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-10A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9189

Level:

(low/med) LOW

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

5 | U 142-28-9-----1,3-Dichloropropane 127-18-4----Tetrachloroethene 5 U 591-78-6----2-Hexanone 5 | U 124-48-1-----Dibromochloromethane 5 ΙŪ 106-93-4-----1,2-Dibromoethane 5 U 108-90-7-----Chlorobenzene 5 U 630-20-6-----1,1,1,2-Tetrachloroethane 5 U 100-41-4-----Ethylbenzene 5 U -----m,p-Xylene 5 IJ 95-47-6----o-Xylene 5 U 1330-20-7-----Xylene (Total) 5 ΙU 100-42-5-----Styrene 5 บไ 75-25-2-----Bromoform 5 ็บ 98-82-8-----Isopropylbenzene 5 U 79-34-5----1,1,2,2-Tetrachloroethane 5 U 108-86-1----Bromobenzene 5 U 96-18-4-----1,2,3-Trichloropropane 5 U 103-65-1----n-Propylbenzene 5 U 5 95-49-8-----2-Chlorotoluene U 108-67-8-----1,3,5-Trimethylbenzene 5 U 106-43-4-----4-Chlorotoluene U 98-06-6----tert-Butylbenzene 95-63-6----1,2,4-Trimethylbenzene U 5 U 135-98-8----sec-Butylbenzene 5 U 99-87-6-----4-Isopropyltoluene 5 U 541-73-1-----1,3-Dichlorobenzene 5 U 106-46-7-----1,4-Dichlorobenzene 5 U 104-51-8----n-Butylbenzene U 5 95-50-1----1,2-Dichlorobenzene IJ 96-12-8----1,2-Dibromo-3-chloropropane 5 U 120-82-1-----1,2,4-Trichlorobenzene U 87-68-3-----Hexachlorobutadiene U 91-20-3-----Naphthalene U 87-61-6-----1,2,3-Trichlorobenzene

FORM I VOA

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-16M

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.:

Contract:

SAS No.:

LOW

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-10A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9189

Level: (low/med)

Date Received: 08/15/07

% Moisture: not dec.

Number TICs found: 0

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

1		T		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======		=====
1			·	
2				
, J.				
4				
5.				
6				
, ·				
0.				
J				
TO.				
1 1 -				
12.				
13.				
14				
⊥J•				
16				
17. 18.	· · · · · · · · · · · · · · · · · · ·			
19.				
20.				
21.		<u> </u>		
22				·
23				
24				
25. 26.				
27.				
27.				
29.		•		
30				

FORM I VOA-TIC

SMS-MW-16S

Lab Name: MITKEM CORPORATION

Contract:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-16A

Sample wt/vol:

Lab Code: MITKEM

5.000 (q/mL) ML

Case No.:

LOW

Lab File ID: V2J9139

Level: (low/med)

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

		. 5	
75-71-8	Dichlorodifluoromethane	5	U
74-87-3	Chloromethane	5	שׁ
	Vinyl Chloride	5	Ü
74-83-9	Bromomethane	5	υ
75-00-3	Chloroethane	5	U
75-69-4	Trichlorofluoromethane	5	U
	1,1-Dichloroethene	5	U
67-64-1		5	שׁ
74-88-4	Iodomethane	.5	שׁ
75-15-0	Carbon Disulfide	5	U
75-09-2	Methylene Chlori de	5	U
	trans-1,2-Dichloroethene	5	U
1634-04-4	Methyl tert-butyl ether	5	שׁ
75-34-3	1,1-Dichloroethane	5	U
108-05-4	Vinyl acetate	5	U
	2-Butanone	5	U
156-59-2	cis-1,2-Dichloroethene	5	שׁ
590-20-7	2,2-Dichloropropane	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	U
74-97-5	Bromochloromethane	5	U
67-66-3	Chloroform	5	U
	1,1,1-Trichloroethane	5	U
563-58-6	1,1-Dichloropropene	5	ש
56-23-5	Carbon Tetrachloride	5	שׁ
107-06-2	1,2-Dichloroethane	5	שׁ
71-43-2	Benzene	5	U
	Trichloroethene	5	U
78-87-5	1,2-Dichloropropane	5	U
74-95-3	Dibromomethane	5	U
75-27-4	Bromodichloromethane	5	U
10061-01-5	cis-1,3-Dichloropropene	5	U
	4-Methyl-2-pentanone	5	U ·
108-88-3	Toluene	5	U
10061-02-6	trans-1,3-Dichloropropene	5	U
	1,1,2-Trichloroethane	5	שׁ
		· ————	

FORM I VOA

EPA SAMPLE NO.

SMS-MW-16S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-16A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9139

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: not dec. _____ Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

142-28-91,3-Dichloropropane 5 U 127-18-4Tetrachloroethene 5 U 591-78-62-Hexanone 5 U 124-48-1Dibromochloromethane 5 U 106-93-41,2-Dibromoethane 5 U 108-90-7
127-18-4Tetrachloroethene
591-78-62-Hexanone 5 U 124-48-1Dibromochloromethane 5 U 106-93-41, 2-Dibromoethane 5 U 108-90-7Chlorobenzene 5 U 630-20-61, 1, 1, 2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U
124-48-1
106-93-41,2-Dibromoethane 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U
108-90-7
Succession Suc
1330-20-7
1330-20-7
1330-20-7
1330-20-7
100-42-5Styrene 5 U 75-25-2Bromoform 5 U 98-82-8Isopropylbenzene 5 U 79-34-51,1,2,2-Tetrachloroethane 5 U 108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 99-87-61,2,4-Trimethylbenzene 5 U 99-87-61,3-Dichlorobenzene 5 U 106-46-71,3-Dichlorobenzene 5 U 104-51-81,2-Dichlorobenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U
98-82-8Isopropylbenzene 5 U 79-34-51,1,2,2-Tetrachloroethane 5 U 108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 98-06-61,2,4-Trimethylbenzene 5 U 98-06-6
98-82-8Isopropylbenzene 5 U 79-34-51,1,2,2-Tetrachloroethane 5 U 108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 98-06-61,2,4-Trimethylbenzene 5 U 98-06-6
79-34-51,1,2,2-Tetrachloroethane 5 108-86-1Bromobenzene 5 96-18-41,2,3-Trichloropropane 5 103-65-1n-Propylbenzene 5 95-49-82-Chlorotoluene 5 108-67-81,3,5-Trimethylbenzene 5 106-43-44-Chlorotoluene 5 98-06-6tert-Butylbenzene 5 95-63-61,2,4-Trimethylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5 104-51-81,4-Dichlorobenzene 5 104-51-81,2-Dichlorobenzene 5 96-12-81,2-Dibromo-3-chloropropane 5 120-82-11,2,4-Trichlorobenzene 5 87-68-3
108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-81,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Naphthalene 5 U
96-18-41,2,3-Trichloropropane 5 103-65-1n-Propylbenzene 5 95-49-82-Chlorotoluene 5 108-67-81,3,5-Trimethylbenzene 5 106-43-44-Chlorotoluene 5 98-06-6tert-Butylbenzene 5 95-63-61,2,4-Trimethylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5 104-51-81,4-Dichlorobenzene 5 104-51-81,2-Dichlorobenzene 5 96-12-81,2-Dibromo-3-chloropropane 5 120-82-11,2,4-Trichlorobenzene 5 87-68-3
103-65-1n-Propylbenzene 5 95-49-82-Chlorotoluene 5 108-67-81,3,5-Trimethylbenzene 5 106-43-44-Chlorotoluene 5 98-06-6tert-Butylbenzene 5 95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5 106-46-71,4-Dichlorobenzene 5 104-51-81,2-Dichlorobenzene 5 95-50-11,2-Dichlorobenzene 5 96-12-81,2-Dibromo-3-chloropropane 5 120-82-11,2,4-Trichlorobenzene 5 87-68-3
95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3
108-67-81,3,5-Trimethylbenzene 5 106-43-44-Chlorotoluene 5 98-06-6tert-Butylbenzene 5 95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5 106-46-71,4-Dichlorobenzene 5 104-51-8n-Butylbenzene 5 95-50-11,2-Dichlorobenzene 5 96-12-81,2-Dibromo-3-chloropropane 5 120-82-11,2,4-Trichlorobenzene 5 87-68-3
106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U
95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U
135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5 106-46-71,4-Dichlorobenzene 5 104-51-8n-Butylbenzene 5 95-50-11,2-Dichlorobenzene 5 96-12-81,2-Dibromo-3-chloropropane 5 120-82-11,2,4-Trichlorobenzene 5 87-68-3Hexachlorobutadiene 5 91-20-3Naphthalene 5
99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U
541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U
106-46-71,4-Dichlorobenzene 5 104-51-8n-Butylbenzene 5 95-50-11,2-Dichlorobenzene 5 96-12-81,2-Dibromo-3-chloropropane 5 120-82-11,2,4-Trichlorobenzene 5 87-68-3Hexachlorobutadiene 5 91-20-3Naphthalene 5
104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U
95-50-11,2-Dichlorobenzene 5 96-12-81,2-Dibromo-3-chloropropane 5 120-82-11,2,4-Trichlorobenzene 5 87-68-3Hexachlorobutadiene 5 91-20-3Naphthalene 5
96-12-81, 2-Dibromo-3-chloropropane 5 120-82-11, 2, 4-Trichlorobenzene 5 87-68-3Hexachlorobutadiene 5 91-20-3Naphthalene 5
120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U
87-68-3Hexachlorobutadiene 5 91-20-3Naphthalene 5
91-20-3 Naphthalene 5 U
87-61-61,2,3-Trichlorobenzene5U

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SMS-MW-16S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-16A

Sample wt/vol: 5.000 (q/mL) ML Lab File ID: V2J9139

Date Received: 08/17/07

Level: (low/med) LOW

Date Analyzed: 08/25/07

% Moisture: not dec. _____

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1				
1				
2. 3.				
4				
5.				
5				
7	· · · · · · · · · · · · · · · · · · ·			
8	· · · · · · · · · · · · · · · · · · ·			
J .				
10.				
		-		
1 12.				
1 12.				
14 .				
1 15.				
16.				
19.				
1 20.				
Z1.				
44.				
43.				
24.				
40.				
27.	<u> </u>			
28.				
29.				
30				

FORM I VOA-TIC

SMS-MW-17

Lab Name: MITKEM CORPORATION

Contract:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-15A

Sample wt/vol:

Lab Code: MITKEM

5.000 (g/mL) ML

Case No.:

Lab File ID: V2J9138

Level: (low/med)

Date Received: 08/17/07

% Moisture: not dec. _____

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND . (ug/L or ug/Kg) UG/L

Q

75-71-8	Dichlorodifluoromethane	!		5	U	
74-87-3	Chloromethane				U	
75-01-4	Vinyl Chloride				U	
	Bromomethane			5	U	
75-00-3	Chloroethane				U	
75-69-4	Trichlorofluoromethane				U -	
	1,1-Dichloroethene	1			U	
67-64-1					Ū	
74-88-4	Iodomethane				U	
75-15-0	Carbon Disulfide		•	- 5	Ū	
75-09-2	Methylene Chloride				U	
	trans-1,2-Dichloroethene				Ū	
	Methyl tert-butyl ether				Ū	
	1,1-Dichloroethane				Ū	
	Vinyl acetate			5	Ū	
	2-Butanone				Ū	
	cis-1,2-Dichloroethene				Ū	
	2,2-Dichloropropane			5	Ū	
	Bromochloromethane				Ū	
	Chloroform				Ū	
	1,1,1-Trichloroethane			5	Ū	
	1,1-Dichloropropene	İ			Ū	
	Carbon Tetrachloride				Ŭ.	
	1,2-Dichloroethane				Ū	
71-43-2					Ū	
	Trichloroethene			5	Ū	
	1,2-Dichloropropane				U	
	Dibromomethane				Ū	
	Bromodichloromethane			5	Ū	
	cis-1,3-Dichloropropene			- 1	U	
108-10-1	4-Methyl-2-pentanone				U	
108-88-3					U	
	trans-1,3-Dichloropropene				IJ	
	1,1,2-Trichloroethane				IJ	
,, 00 5	1,1,2 111011101000110110			7		
		l		 I.		

SMS-MW-17

0

Lab Name: MITKEM CORPORATION

Contract:

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-15A

Sample wt/vol:

Lab Code: MITKEM

5.000 (q/mL) ML

Lab File ID: V2J9138

Level:

(low/med) LOW

..ооо (9/кш/ гн

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

5 U 142-28-9-----1,3-Dichloropropane 127-18-4-----Tetrachloroethene 5 U 5 591-78-6----2-Hexanone U 124-48-1-----Dibromochloromethane 5 U 5 106-93-4----1,2-Dibromoethane U 108-90-7-----Chlorobenzene U 630-20-6-----1,1,1,2-Tetrachloroethane U ŢŢ 5 U 5 U 5 U 5 100-42-5-----Styrene U 75-25-2-----Bromoform 5 U 98-82-8-----Isopropylbenzene 5 U 79-34-5----1,1,2,2-Tetrachloroethane 5 U 108-86-1-----Bromobenzene U 96-18-4-----1,2,3-Trichloropropane_ 103-65-1----n-Propylbenzene_ U 5 U 95-49-8-----2-Chlorotoluene 5 U 108-67-8-----1,3,5-Trimethylbenzene 5 U 5 U 106-43-4-----4-Chlorotoluene 5 98-06-6-----tert-Butylbenzene U 95-63-6-----1,2,4-Trimethylbenzene 5 U 5 U 135-98-8-----sec-Butylbenzene 5 U 99-87-6-----4-Isopropyltoluene 5 U 541-73-1----1,3-Dichlorobenzene 106-46-7-----1,4-Dichlorobenzene U 104-51-8----n-Butylbenzene 5 U 95-50-1-----1,2-Dichlorobenzene 96-12-8-----1,2-Dibromo-3-chloropropane 120-82-1-----1,2,4-Trichlorobenzene 5 U 5 U 5 U 87-68-3-----Hexachlorobutadiene 5 U 91-20-3-----Naphthalene 5 U 87-61-6-----1,2,3-Trichlorobenzene 5 U

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SMS-MW-17

Lab 1	Name:	MITKEM	CORPORATION
-------	-------	--------	-------------

Contract:

Lab Code: MITKEM Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-15A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9138

Level: (low/med)

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
	:=====================================	== =====	==========	=====
1				
4				
J.				
6.				
/ •				
0.				
9.				
TO.				
 1				
14.				
TO:				
14	,			
15				
TO.				
10.	·		<u> </u>	
19.				
20.				
21.				
44.				
23				
24	· · · · · · · · · · · · · · · · · · ·			
25.				
26		_		
27				
29.				
30.				-
~·		_		

FORM I VOA-TIC

SMS-MW-2

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-13A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9136

Level: (low/med)

LOW

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. (ug/L or ug/Kg) UG/L COMPOUND Q

75-71-8	Dichlorodifluoromethane	5	U .
	Chloromethane	5	
	Vinyl Chloride	5	
	Bromomethane	5	
	Chloroethane	5	Ū
	Trichlorofluoromethane	5	Ū
	1,1-Dichloroethene	. 5	
67-64-1		5	Ū.
	Iodomethane	5	Ū
	Carbon Disulfide	5	Ü
	Methylene Chloride	5	Ŭ
	trans-1,2-Dichloroethene	5	υ
	Methyl tert-butyl ether	5	ϋ
75-34-3	1,1-Dichloroethane	5	Ŭ
	Vinyl acetate	5	Ū
	2-Butanone	5	ϋ
	cis-1,2-Dichloroethene	5	Ŭ
	2,2-Dichloropropane	5 5 5 5	Ŭ
	Bromochloromethane	5	Ü
67-66-3	Chloroform	5	Ū
	1,1,1-Trichloroethane	5	Ū
	1,1-Dichloropropene	5 5	Ü
	Carbon Tetrachloride	5	Ū
	1,2-Dichloroethane	5	Ū
71-43-2		5	Ū
	Trichloroethene	5	ט l
	1,2-Dichloropropane	5	υ
	Dibromomethane	5	Ü
	Bromodichloromethane	5	Ü
	cis-1,3-Dichloropropene	5	Ϊ́Ū
108-10-1	4-Methyl-2-pentanone	5	ϋ
108-88-3		5	υ
	trans-1,3-Dichloropropene	5	Ū
	1,1,2-Trichloroethane	5	Ū
		,	
		l	·

FORM I VOA

EPA SAMPLE NO.

SMS-MW-2

Lab Name: MITKEM CORPORATION

Contract:

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-13A

Sample wt/vol:

Lab Code: MITKEM

5.000 (g/mL) ML

Lab File ID: V2J9136

Level:

(low/med)

LOW

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

Q

127-18-4 591-78-6	1,3-Dichloropropane Tetrachloroethene 2-Hexanone Dibromochloromethane	5 U 5 U 5 U 5 U	
108-90-7 630-20-6 100-41-4	1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethane Ethylbenzene	5 U 5 U 5 U 5 U	
95-47-6 1330-20-7 100-42-5	Xylene (Total)	5 U 5 U 5 U 5 U	
98-82-8 79-34-5 108-86-1 96-18-4	Isopropylbenzene1,1,2,2-TetrachloroethaneBromobenzene1,2,3-Trichloropropane	5 U 5 U 5 U 5 U	
95-49-8 108-67-8 106-43-4	n-Propylbenzene2-Chlorotoluene1,3,5-Trimethylbenzene4-Chlorotoluenetert-Butylbenzene	5 U 5 U 5 U 5 U 5 U	
95-63-6 135-98-8 99-87-6 541-73-1	1,2,4-Trimethylbenzene sec-Butylbenzene 4-Isopropyltoluene	5 U 5 U 5 U 5 U	
104-51-8 95-50-1 96-12-8	1,4-Dichlorobenzenen-Butylbenzene1,2-Dichlorobenzene1,2-Dibromo-3-chloropropane	5 U 5 U 1 J 5 U	
87-68-3 91-20-3	1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	5 U 5 U 5 U 5 U	

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-2

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-13A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9136

Level: (low/med)

LOW

Date Received: 08/17/07

% Moisture: not dec. _____

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Number TICs found: 0

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL)

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1				
2.				
3			•	
4.				
٦.				
6.			,	
7.	<u> </u>			
0.				
9.		<u> </u>		
±0.				
11.				
12.				
13.	····			
14.				
16.				
17.				
18				
19.				
20.				
21.	_			
22.			· · · · · · · · · · · · · · · · · · ·	
23			-	
24.				
25.	·			
26.				
27.				
28.				
<i>2</i> 9.				
30				
		<u> </u>		

FORM I VOA-TIC

EPA SAMPLE NO.

SMS-MW-3

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-12A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9191

Level: (low/med)

Soil Extract Volume: (uL)

LOW

Date Received: 08/17/07

% Moisture: not dec.

Dilution Factor: 1.0

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	Q
74-87-3 75-01-4 74-83-9 75-00-3 75-69-4 75-35-4 75-35-4 75-15-0 75-09-2 156-60-5 1634-04-4 75-34-3 108-05-4 74-97-5 563-58-6 563-58-6 71-55-6 71-43-2 79-01-6 78-87-5 74-95-3 74-95-3 75-27-4 108-10-1 108-88-3 108-88-3 10061-02-6	IodomethaneCarbon DisulfideMethylene ChlorideTrans-1,2-DichloroetheneMethyl tert-butyl etherI,1-DichloroethaneVinyl acetate2-Butanonecis-1,2-Dichloroethene2,2-DichloropropaneBromochloromethaneChloroform1,1,1-Trichloroethane1,1-DichloropropeneCarbon Tetrachloride1,2-DichloroethaneBenzeneTrichloroethene1,2-DichloropropaneDibromomethaneBromodichloromethaneBromodichloromethaneBromodichloromethane	55855555555555555555555555555555555555

EPA SAMPLE NO.

SMS-MW-3

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-12A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9191

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

Q

142-28-91,3-Dichloropropane 5 U 127-18-4Tetrachloroethene 5 U 591-78-62-Hexanone 5 U 124-48-1Dibromochloromethane 5 U 106-93-41,2-Dibromoethane 5 U 108-90-7				
127-18-4	142-28-9	1.3-Dichloropropane	5	IJ
591-78-62-Hexanone 5 U 124-48-1Dibromochloromethane 5 U 106-93-41, 2-Dibromoethane 5 U 108-90-7Chlorobenzene 5 U 630-20-61, 1, 1, 2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U				
124-48-1			5	
106-93-41, 2-Dibromoethane 5 U 108-90-7Chlorobenzene 5 U 630-20-61, 1, 1, 2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 100-41-4			5	1
108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U			. 5	
630-20-61,1,1,2-Tetrachloroethane 100-41-4Ethylbenzene				
S U 95-47-6			5	Ū
S U 95-47-6			5	_
95-47-6		m,p-Xvlene	5	
1330-20-7Xylene (Total)	95-47-6	o-Xvlene	5	
75-25-2Bromoform 5 U 98-82-8Isopropylbenzene 5 U 79-34-51,1,2,2-Tetrachloroethane 5 U 108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1			5	Ū
75-25-2Bromoform 5 U 98-82-8Isopropylbenzene 5 U 79-34-51,1,2,2-Tetrachloroethane 5 U 108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1			5	ا ن
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3			5	ا ن
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3			5	lŪ
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3			5	Ü
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3			5	Ū
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3			5	ΙŪ
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3			5	lŪ
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3			5	Ü
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3			5	Ū
98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3	106-43-4	4-Chlorotoluene	5	υ
95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-6			5	Ū
135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5 106-46-71,4-Dichlorobenzene 5 104-51-8	95-63-6	1,2,4-Trimethvlbenzene	5	ΙŪ
99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8	135-98-8	sec-Butylbenzene	5	ט
541-73-11,3-Dichlorobenzene 5 U 106-46-71,4-Dichlorobenzene 5 U 104-51-8Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U	99-87-6	4-Isopropyltoluene	5	ט
106-46-71,4-Dichlorobenzene 5 104-51-8n-Butylbenzene 5 95-50-11,2-Dichlorobenzene 5 96-12-81,2-Dibromo-3-chloropropane 5 120-82-11,2,4-Trichlorobenzene 5 87-68-3Hexachlorobutadiene 5 91-20-3Naphthalene 5	541-73-1	1,3-Dichlorobenzene	5	lΰ
104-51-8n-Butylbenzene 5 U 95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U			5	Ū
95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3			5	שׁו
96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U 87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U			5	
87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U	96-12-8	1,2-Dibromo-3-chloropropane	5	
87-68-3Hexachlorobutadiene 5 U 91-20-3Naphthalene 5 U	120-82-1	1,2,4-Trichlorobenzene	J 5	
91-20-3			J 5	
			5	1
	87-61-6	1,2,3-Trichlorobenzene		ט
				<u> </u>

FORM I VOA

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION

Contract:

SMS-MW-3

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-12A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9191

Level: (low/med) LOW

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1				
∠.				
	,			
l				
5. 6.	<u></u>	<u> </u>		
7				
0.				
9.				
10.				
11.			· ·	
12. 13.				·
l 14.			•	
TD.				
16.				
17.				
18.				
1				
20.				
22.				
23.				
24.				
25.				
26				
27				·
28. 29.				
30.				
· · · · ·	.,			

FORM I VOA-TIC

EPA SAMPLE NO.

SMS- MW-4

Q

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-14A

Sample wt/vol:

5.000 (q/mL) ML

Lab File ID: V2J9137

Level:

(low/med) LOW

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (uq/L or uq/Kq) UG/L

75-71-8-----Dichlorodifluoromethane 5 | U 74-87-3-----Chloromethane 5 U 75-01-4-----Vinyl Chloride 5 U 74-83-9-----Bromomethane 5 U 75-00-3-----Chloroethane 5 U 75-69-4-----Trichlorofluoromethane 5 U 75-35-4----1,1-Dichloroethene U 67-64-1-----Acetone U 5 74-88-4-----Iodomethane U 5 75-15-0-----Carbon Disulfide U 75-09-2-----Methylene Chloride 156-60-5-----trans-1,2-Dichloroethene 1634-04-4-----Methyl tert-butyl ether 5 U 5 5 U U 75-34-3----1,1-Dichloroethane 5 U 108-05-4-----Vinyl acetate 5 U 5 5 5 78-93-3----2-Butanone U 156-59-2----cis-1,2-Dichloroethene U 590-20-7----2,2-Dichloropropane lυ 74-97-5-----Bromochloromethane 5 U 67-66-3-----Chloroform 5 U 5 71-55-6-----1,1,1-Trichloroethane U 563-58-6-----1,1-Dichloropropene 5 U 5 56-23-5-----Carbon Tetrachloride U 107-06-2-----1,2-Dichloroethane 5 U 5 71-43-2-----Benzene U 5 79-01-6-----Trichloroethene U 78-87-5-----1,2-Dichloropropane U 74-95-3-----Dibromomethane 5 U 75-27-4-----Bromodichloromethane 5 U 10061-01-5----cis-1,3-Dichloropropene 5 U 108-10-1-----4-Methyl-2-pentanone 5 U 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene 5 U 5 U 79-00-5-----1,1,2-Trichloroethane 5 U

FORM I VOA

EPA SAMPLE NO.

SMS- MW-4

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-14A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9137

Level: (low/med) LOW

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/L Q

		
142-28-91,3-Dichloropropane	5	ט
127-18-4Tetrachloroethene	5	ן מ
591-78-62-Hexanone	5 5	U
124-48-1Dibromochloromethane	5.	ן דו
106-93-41,2-Dibromoethane	5	ן די
108-90-7Chlorobenzene	5	ן ען
630-20-61,1,1,2-Tetrachloroethane	5 5 5 5 5	ן מן
100-41-4Ethylbenzene	5	U
m,p-Xylene	5	U
95-47-6o-Xylene	5	U
1330-20-7Xylene (Total)	5	ן ט
100-42-5Styrene	5	ן ט
75-25-2Bromoform	5	ט -
98-82-8Isopropylbenzene	5	ע
79-34-51,1,2,2-Tetrachloroethane	5	ט
108-86-1Bromobenzene	5	U
96-18-41,2,3-Trichloropropane	. 5	ע
103-65-1n-Propylbenzene	5	U
95-49-82-Chlorotoluene	5	ן י ט
108-67-81,3,5-Trimethylbenzene	5	ע
106-43-44-Chlorotoluene	5	U
98-06-6tert-Butylbenzene	5	U
95-63-61,2,4-Trimethylbenzene	5	U
135-98-8sec-Butylbenzene	5	U
99-87-64-Isopropyltoluene	5 5 5 5 5	U
541-73-11,3-Dichlorobenzene		U
106-46-71,4-Dichlorobenzene	5	U
104-51-8n-Butylbenzene	5	ט
95-50-11,2-Dichlorobenzene	5	ע
96-12-81,2-Dibromo-3-chloropropane_	5	ט
120-82-11,2,4-Trichlorobenzene	. 5	U
87-68-3Hexachlorobutadiene	5	ט
91-20-3Naphthalene	5	ע
87-61-61,2,3-Trichlorobenzene	5	ן ש

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SMS- MW-4

Lab Name: MITKEM Co	ORPORATION
---------------------	------------

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-14A

Sample wt/vol: 5.000 (q/mL) ML

Lab File ID: V2J9137

Level: (low/med)

LOW

Date Received: 08/17/07

% Moisture: not dec. _____

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

1				
	COMPOUND NAME	RT ======	EST. CONC.	Q
1				
1				
∠.				
1 -				·
J			i	
0.				
/.				
0.				
9.				
10.				
11.				
12				
12. 13.				
- LJ - I				
14			· · ·	
15.				
10.	444 - 4			
⊥/.				
18.				
19.				
20.				······
21.				
22.				
23.				
24				
25			<u> </u>	
25				
26.				
Z1.				
<i>2</i> 8.				
49.				
30				

FORM I VOA-TIC

CLIENT SAMPLE NO.

FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET

SMS- MW-4MS

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-14AMS

Sample wt/vol:

5.000 (q/mL) ML

Lab File ID: V2J9200

Level: (low/med)

LOW

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (uq/L or uq/Kq) UG/L 0

49 75-71-8-----Dichlorodifluoromethane 74-87-3-----Chloromethane 59 75-01-4-----Vinyl Chloride 57 74-83-9-----Bromomethane 59 75-00-3-----Chloroethane 59 75-69-4-----Trichlorofluoromethane 63 75-35-4----1,1-Dichloroethene 58 67-64-1-----Acetone 61 74-88-4-----Iodomethane 52 75-15-0-----Carbon Disulfide 55 75-09-2-----Methylene Chloride 55 156-60-5----trans-1,2-Dichloroethene 48 1634-04-4-----Methyl tert-butyl ether 43 75-34-3-----1,1-Dichloroethane 49 108-05-4-----Vinyl acetate 48 78-93-3----2-Butanone 51 156-59-2----cis-1,2-Dichloroethene 46 590-20-7----2,2-Dichloropropane 45 74-97-5-----Bromochloromethane 46 67-66-3-----Chloroform 49 71-55-6----1,1,1-Trichloroethane 47 563-58-6----1,1-Dichloropropene 46 56-23-5-----Carbon Tetrachloride 47 107-06-2----1,2-Dichloroethane 47 71-43-2----Benzene 49 79-01-6-----Trichloroethene 44 78-87-5----1,2-Dichloropropane 50 74-95-3-----Dibromomethane 49 75-27-4-----Bromodichloromethane 48 10061-01-5----cis-1,3-Dichloropropene 48 108-10-1-----4-Methyl-2-pentanone 52 108-88-3-----Toluene 48 10061-02-6----trans-1,3-Dichloropropene 48 79-00-5-----1,1,2-Trichloroethane 50

FORM I VOA

EPA SAMPLE NO.

SMS- MW-4MS

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-14AMS

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9200

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: not dec. Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 0 47 142-28-9-----1,3-Dichloropropane 127-18-4-----Tetrachloroethene 53 591-78-6----2-Hexanone 46 124-48-1-----Dibromochloromethane 46 106-93-4----1,2-Dibromoethane____ 46 108-90-7-----Chlorobenzene 44 630-20-6-----1,1,1,2-Tetrachloroethane 44 44 89 44 130 100-42-5-----Styrene 43 75-25-2-----Bromoform 51 98-82-8-----Isopropylbenzene 44 79-34-5-----1,1,2,2-Tetrachloroethane 48 108-86-1----Bromobenzene 42 96-18-4----1,2,3-Trichloropropane 50 103-65-1----n-Propylbenzene 40 95-49-8----2-Chlorotoluene 42 108-67-8-----1,3,5-Trimethylbenzene 42 106-43-4----4-Chlorotoluene 42 98-06-6-----tert-Butylbenzene 42 95-63-6----1,2,4-Trimethylbenzene 43 135-98-8-----sec-Butylbenzene 43 99-87-6----4-Isopropyltoluene 41 541-73-1----1,3-Dichlorobenzene 42 106-46-7----1,4-Dichlorobenzene 41 104-51-8----n-Butylbenzene 43 95-50-1-----1,2-Dichlorobenzene 42 96-12-8-----1,2-Dibromo-3-chloropropane 44 120-82-1----1,2,4-Trichlorobenzene 40 87-68-3-----Hexachlorobutadiene 37 91-20-3-----Naphthalene 38 87-61-6----1,2,3-Trichlorobenzene 40

FORM I VOA

SMS- MW-4MSD Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135 Matrix: (soil/water) WATER Lab Sample ID: F1135-14AMSD Lab File ID: 5.000 (g/mL) MLSample wt/vol: V2J9202 Level: (low/med) LOW Date Received: 08/17/07 % Moisture: not dec. Date Analyzed: 08/27/07 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) UG/L COMPOUND Q 75-71-8-----Dichlorodifluoromethane 47 74-87-3-----Chloromethane 55 75-01-4-----Vinyl Chloride 53 74-83-9-----Bromomethane 56 75-00-3-----Chloroethane 55 75-69-4-----Trichlorofluoromethane 60 75-35-4-----1,1-Dichloroethene 52 67-64-1------Acetone 61 74-88-4-----Iodomethane 51 75-15-0-----Carbon Disulfide 53 75-09-2-----Methylene Chloride 53 156-60-5-----trans-1,2-Dichloroethene 46 1634-04-4-----Methyl tert-butyl ether_ 43 75-34-3-----1,1-Dichloroethane_ 108-05-4-----Vinyl acetate____ 48 48 78-93-3-----2-Butanone 51 156-59-2----cis-1,2-Dichloroethene_ 48 590-20-7----2,2-Dichloropropane 42 74-97-5----Bromochloromethane 46 67-66-3-----Chloroform 48 71-55-6-----1,1,1-Trichloroethane 45 563-58-6-----1,1-Dichloropropene 46 56-23-5-----Carbon Tetrachloride 45 107-06-2----1,2-Dichloroethane 46 71-43-2-----Benzene 48 79-01-6-----Trichloroethene 45 78-87-5----1,2-Dichloropropane 48 74-95-3-----Dibromomethane 49 75-27-4-----Bromodichloromethane 47 10061-01-5----cis-1,3-Dichloropropene 47 108-10-1-----4-Methyl-2-pentanone 53 108-88-3-----Toluene 47 10061-02-6----trans-1,3-Dichloropropene 47 79-00-5-----1,1,2-Trichloroethane 50

FORM I VOA

EPA SAMPLE NO.

SMS- MW-4MSD

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-14AMSD

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9202

Level: (low/med) LOW

Date Received: 08/17/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q

1		
142-28-91,3-Dichloropropane	47	
127-18-4Tetrachloroethene	46	
591-78-62-Hexanone	49	
124-48-1Dibromochloromethane	46	
106-93-41,2-Dibromoethane	46	,
108-90-7Chlorobenzene	44	
630-20-61,1,1,2-Tetrachloroethane	44	
100-41-4Ethylbenzene	43	
m,p-Xylene	88	
95-47-6o-Xylene	43	
1330-20-7Xylene (Total)	130	
100-42-5Styrene	43	
75-25-2Bromoform	51	
98-82-8Isopropylbenzene	44	
79-34-51,1,2,2-Tetrachloroethane	50	
108-86-1Bromobenzene	41	
96-18-41,2,3-Trichloropropane	53	
103-65-1n-Propylbenzene	40	
95-49-82-Chlorotoluene	41	
108-67-81,3,5-Trimethylbenzene	42	
106-43-44-Chlorotoluene	42	
98-06-6tert-Butylbenzene	40	
95-63-61,2,4-Trimethylbenzene	42	
135-98-8sec-Butylbenzene	42	
99-87-64-Isopropyltoluene	41	
541-73-11,3-Dichlorobenzene	41	
106-46-71,4-Dichlorobenzene	41	
104-51-8n-Butylbenzene	42	
95-50-11,2-Dichlorobenzene	41	
96-12-81,2-Dibromo-3-chloropropane	46	
120-82-11,2,4-Trichlorobenzene	40	
87-68-3Hexachlorobutadiene	36	
91-20-3Naphthalene	42	
87-61-61,2,3-Trichlorobenzene	41	

FORM I VOA

EPA SAMPLE NO.

SMS-MW-5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.: SAS No.:

LOW

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-03A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9126

Level: (low/med)

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NO. COMPOUND

Q

FORM I VOA

EPA SAMPLE NO.

SMS-MW-5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-03A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9126

Level: (low/med)

LOW

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NO. COMPOUND 0

1			
142-28-9	1,3-Dichloropropane	5	U
127-18-4	Tetrachloroethene	5	Ū
	2-Hexanone	5	U
	Dibromochloromethane	5	U
	1,2-Dibromoethane	. 5	Ū
	Chlorobenzene	5	lΰ
	1,1,1,2-Tetrachloroethane	5	lΩ
100-41-4	Ethylbenzene	5	Ü
	m,p-Xylene	5	Ü
95-47-6		5	lΰ
	Xylene (Total)	5	lπ
100-42-5		5	lΩ
75-25-2		5	Ü
	Isopropylbenzene	5	υ
70-24-5	1,1,2,2-Tetrachloroethane	5	lΰ
	Bromobenzene	5	Ü
	1,2,3-Trichloropropane) 2	Ü
102 CE 1	n-Propylbenzene	5	ם מ
T02-62-T	2-Chlorotoluene	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ָ [ָ]
		5	υ
	1,3,5-Trimethylbenzene	5	ָ ט
		5	I -
	tert-Butylbenzene	5	U
95-63-6 	1,2,4-Trimethylbenzene	5	Ū
	sec-Butylbenzene	5	U
	4-Isopropyltoluene	5	U
	1,3-Dichlorobenzene	5	Ū
	1,4-Dichlorobenzene	5	Ŭ
	n-Butylbenzene	5	U
	1,2-Dichlorobenzene	5	U
	1,2-Dibromo-3-chloropropane_	5	U
	1,2,4-Trichlorobenzene	5	U
	Hexachlorobutadiene	5	Ū
	Naphthalene	5	U
87-61-6	1,2,3-Trichlorobenzene	5	Ŭ

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDE

INTIFIED COMPOUNDS	
	SMS-MW-5
Contract:	,

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-03A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9126

Level: (low/med)

Date Received: 08/15/07

LOW

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL)

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 0 (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1.	·			
۷.				
3. 4.				
J.				
0.	·			
7. 8.				
ا ا				
10.				
⊥ ∠ •				
13.				
14				
TO.				
17. 18.				
19.				
20				
21.				
23.				
25. i			·	
26.				
27.				
<i>29</i> .				
30				
		l	l	ll`

FORM I VOA-TIC

OLMO3.0

EPA SAMPLE NO.

SMS-MW-56D

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-08A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9131

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. ____

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

Q

FORM I VOA

EPA SAMPLE NO.

SMS-MW-56D

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-08A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9131

Level: (low/med)

LOW

Date Received: 08/15/07

% Moisture: not dec. __

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/L

Q

142-28-9	1,3-Dichloropropane		5 U
127-18-4	Tetrachloroethene		5 U
	2-Hexanone	•	5 U
124-48-1	Dibromochloromethane	,	5 U
	1,2-Dibromoethane		5 U
108-90-7	Chlorobenzene		5 U
630-20-6	1,1,1,2-Tetrachloroethane		5 U
	Ethylbenzene		. 5 U
	m,p-Xylene	·	5 U
	o-Xylene	*	5 U
	Xylene (Total)		5 U
100-42-5			5 U
	Bromoform		5 U
	Isopropylbenzene		5 U
	1,1,2,2-Tetrachloroethane		5 บั
	Bromobenzene		5 U
	1,2,3-Trichloropropane		5 U
	n-Propylbenzene		
	2-Chlorotoluene		5 U 5 U 5 U 5 U 5 U
	1,3,5-Trimethylbenzene		5 U
	4-Chlorotoluene		5 U
	tert-Butylbenzene		5 U
	1,2,4-Trimethylbenzene		5 U
	sec-Butylbenzene		5 U
	4-Isopropyltoluene		5 U
	1,3-Dichlorobenzene		5 U
	1,4-Dichlorobenzene		5 U
	n-Butylbenzene		5 U
	1,2-Dichlorobenzene		5 U
	1,2-Dibromo-3-chloropropane		5 U
	1,2,4-Trichlorobenzene		5 U
	Hexachlorobutadiene		5 U
	Naphthalene		5 U
	1,2,3-Trichlorobenzene		5 U
			-

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SMS-MW-56D

Lab Name: MITK	IM CORPORATION
----------------	----------------

Contract:

Lab Code: MITKEM

Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-08A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9131

Level: (low/med)

Date Received: 08/15/07

% Moisture: not dec. _____

Number TICs found: 0

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================				
1				
2				
3	· · · · · · · · · · · · · · · · · · ·			
5	·		i	
6.—————————————————————————————————————				
6				
7				
~· _				
9.				
				
11.			<u></u>	
12.				
13.				
15.	· · · · · · · · · · · · · · · · · · ·			
15.				
1				
10.				
19.				
20.				
21.				
22.				
23.				
24.				
43.				
40.				
27.				
28.				
4).				
30				

FORM I VOA-TIC

EPA SAMPLE NO.

SMS-MW-6D

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.:

Matrix: (soil/water) WATER

Lab Sample ID: F1135-02A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9125

SDG No.: MF1135

Level: (low/med)

LOW

Date Received: 08/15/07

Date Analyzed: 08/25/07

% Moisture: not dec. _____

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

SMS-MW-6D

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-02A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9125

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. ___ Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-6D

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-02A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9125

Level: (low/med) LOW

Date Received: 08/15/07

% Moisture: not dec. _____

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1 .				
1. 2. 3.	<u></u>			
3				
4				
5				
6.				
7	**************************************			
Ö.				
9.	-			
10.				
14.				
IJ.				
1.4.				
15.				
TO.				
⊥/.				
10.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28				
<i>2</i> 9.				
30				

EPA SAMPLE NO.

SMS-MW-6S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-01A

Sample wt/vol: 5.000 (q/mL) ML Lab File ID: V2J9124

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (uq/L or uq/Kq) UG/L Q 75-71-8------Dichlorodifluoromethane 5 | U 74-87-3-----Chloromethane 5 U 75-01-4-----Vinyl Chloride 5 | U 74-83-9-----Bromomethane 5 lυ 5 75-00-3-----Chloroethane IJ 75-69-4----Trichlorofluoromethane 5 U 75-35-4-----1,1-Dichloroethene 5 U 5 67-64-1-----Acetone U 5 74-88-4-----Iodomethane U 5 U 75-15-0-----Carbon Disulfide 5 U 75-09-2----Methylene Chloride 156-60-5----trans-1,2-Dichloroethene 5 U 5 U 1634-04-4-----Methyl tert-butyl ether 5 U 75-34-3----1,1-Dichloroethane 5 108-05-4-----Vinyl acetate U 5 U 78-93-3----2-Butanone 156-59-2----cis-1,2-Dichloroethene 5 U 5 U 590-20-7----2,2-Dichloropropane 5 U 74-97-5-----Bromochloromethane 5 U 67-66-3-----Chloroform 5 U 71-55-6-----1,1,1-Trichloroethane 5 | U 563-58-6----1,1-Dichloropropene 5 | U 56-23-5-----Carbon Tetrachloride 107-06-2----1,2-Dichloroethane 5 U 71-43-2-----Benzene 5 ΙU 79-01-6-----Trichloroethene 5 lυ 5 78-87-5----1, 2-Dichloropropane U 74-95-3-----Dibromomethane 5 | U 75-27-4-----Bromodichloromethane 5 U 10061-01-5----cis-1,3-Dichloropropene 5 U 108-10-1----4-Methyl-2-pentanone 5 | U 108-88-3-----Toluene 5 U 10061-02-6----trans-1,3-Dichloropropene 5 | U 79-00-5-----1,1,2-Trichloroethane 5 U

FORM I VOA

SMS-MW-6S

Lab Name: MITKEM CORPORATION

Contract:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-01A

Sample wt/vol:

Lab Code: MITKEM

5.000 (g/mL) ML

Case No.:

Lab File ID: V2J9124

Level:

(low/med) LOW

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

142-28-9----1,3-Dichloropropane 5 | U 127-18-4-----Tetrachloroethene 5 | U 591-78-6----2-Hexanone 5 U 5 124-48-1-----Dibromochloromethane U 106-93-4----1,2-Dibromoethane 5 U 108-90-7-----Chlorobenzene 2 J 630-20-6-----1,1,1,2-Tetrachloroethane 5 U 100-41-4-----Ethylbenzene 2 J -----m,p-Xylene 4 | J 95-47-6----o-Xylene 5 U 1330-20-7-----Xylene (Total) 4 J 100-42-5-----Styrene 5 | U 5 | U 75-25-2-----Bromoform 98-82-8-----Isopropylbenzene 1 | J 79-34-5----1,1,2,2-Tetrachloroethane 5 U 5 108-86-1-----Bromobenzene lυ 96-18-4----1, 2, 3-Trichloropropane 5 | U 5 | U 103-65-1----n-Propylbenzene 5 U 95-49-8-----2-Chlorotoluene 5 108-67-8-----1,3,5-Trimethylbenzene 106-43-4----4-Chlorotoluene 5 | U 98-06-6----tert-Butylbenzene 5 U 95-63-6----1,2,4-Trimethylbenzene 11 135-98-8----sec-Butylbenzene 5 Ū 99-87-6----4-Isopropyltoluene 5 U 541-73-1----1,3-Dichlorobenzene 2 J 106-46-7----1,4-Dichlorobenzene 4 IJ 5 | U 104-51-8----n-Butylbenzene 95-50-1----1,2-Dichlorobenzene 5 | U 96-12-8----1,2-Dibromo-3-chloropropane 5 | U 120-82-1-----1,2,4-Trichlorobenzene 5 | U 87-68-3-----Hexachlorobutadiene 5 | U 91-20-3-----Naphthalene 5 lυ 87-61-6----1,2,3-Trichlorobenzene 5 | U

FORM I VOA

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SMS-MW-6S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-01A

Sample wt/vol:

5.000 (g/mL) ML

LOW

Lab File ID: V2J9124

Level: (low/med)

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

Number TICs found: 1

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
	BENZENE, 1-ETHYL-3-METHYL-	13.23		
6 7				
10 11				
13. 14. 15.				
17. 18. 19. 20. 21.				
22 23 24 25.				
26 27 28 29.				
30				

EPA SAMPLE NO.

SMS-MW-7

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-04A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9127

Level: (low/med)

LOW

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/L

Q

		, ,, ,	~
75-71-8	Dichlorodifluoromethane	5	U
	Chloromethane		Ū,
	Vinyl Chloride	5	Ŭ.
	Bromomethane	5	Ū
	Chloroethane	5	Ū
	Trichlorofluoromethane	5	Ū.
	1,1-Dichloroethene	5	Ū
67-64-1		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Ü
	Iodomethane	5	Ū
	Carbon Disulfide	5	Ū .
	Methylene Chloride	5	Ū
156-60-5	trans-1,2-Dichloroethene	5	U
	Methyl tert-butyl ether	5	U
	1,1-Dichloroethane	13	
	Vinyl acetate	5	Ū
78-93-3		5	U
156-59-2	cis-1,2-Dichloroethene	5	ש
590-20-7	2,2-Dichloropropane	5	U
	Bromochloromethane	5 5	U
67-66-3		5	U
71-55-6	1,1,1-Trichloroethane	4	J
563-58-6	1,1-Dichloropropene	5	U
	Carbon Tetrachloride	5	U
	1,2-Dichloroethane	5	U
71-43-2		5	U
	Trichloroethene	5555555555555	U
	1,2-Dichloropropane	5	Ū
	Dibromomethane	5	U
	Bromodichloromethane	. 5	U
	cis-1,3-Dichloropropene	5	U
	4-Methyl-2-pentanone	5	U
108-88-3		5	U
	trans-1,3-Dichloropropene	5	U
79-00-5	1,1,2-Trichloroethane	5	U
			l

FORM I VOA

EPA SAMPLE NO.

SMS-MW-7

SDG No.: MF1135

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM

Contract:

SAS No.:

Case No.:

Matrix: (soil/water) WATER Lab Sample ID: F1135-04A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9127

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

 CAS NO.
 COMPOUND
 (ug/L or ug/Kg) UG/L
 Q

 142-28-9-----1,3-Dichloropropane
 5 U

 127-18-4------Tetrachloroethene
 5 U

	142-28-91,3-Dichloropropane	5 U	
	127-18-4Tetrachloroethene	5 U	
	591-78-62-Hexanone	5 U	
	124-48-1Dibromochloromethane	5 U	
	106-93-41,2-Dibromoethane	· · · · 5 U	
	108-90-7Chlorobenzene	5 U 5 U	
	630-20-61,1,1,2-Tetrachloroethane		
ı	100-41-4Ethylbenzene	5 U	
ı	m,p-Xylene	5 U	
ı	95-47-6o-Xylene	· · 5 U · ·	
ı	1330-20-7Xylene (Total)	. 5 U	
ı	100-42-5Styrene	5 U 5 U	
ı	75-25-2Bromoform		
ı	98-82-8Isopropylbenzene	5 U	
ı	79-34-51,1,2,2-Tetrachloroethane	5 U	
ı	108-86-1Bromobenzene	5 U 5 U	
ı	96-18-41,2,3-Trichloropropane	5 U	
ı	103-65-1n-Propylbenzene	5 U	
ı	95-49-82-Chlorotoluene	5 U 5 U 5 U	
ı	108-67-81,3,5-Trimethylbenzene	5 U	
ı	106-43-44-Chlorotoluene	5 U	
ı	98-06-6tert-Butylbenzene	5 U	
ı	95-63-61,2,4-Trimethylbenzene	5 U	
ı	135-98-8sec-Butylbenzene	5 U	
I	99-87-64-Isopropyltoluene	5 U	
I	541-73-11,3-Dichlorobenzene	5 U	
	106-46-71,4-Dichlorobenzene	5 U 5 U 5 U	
	104-51-8n-Butylbenzene	5 U	
	95-50-11,2-Dichlorobenzene	5 U	
l	96-12-81,2-Dibromo-3-chloropropane_	5 U 5 U	
l	120-82-11,2,4-Trichlorobenzene	5 U 1	
	87-68-3Hexachlorobutadiene	5 U	
	91-20-3Naphthalene	5 U	
	87-61-61,2,3-Trichlorobenzene	5 U	
١			

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-7 Contract:

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-04A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9127

Level: (low/med)

LOW

Date Received: 08/15/07

% Moisture: not dec. _____

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL)

Soil Extract Volume: (uL)

CONCENTRATION UNITS:

Number TICs found: 0

(ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	·			
1				
2.				
. .		<u> </u>		
4				
5				
6. 7.				
7. 8.				
9				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
1.J.				
20.				
∠⊥.				
22.				
23.				
24.				
43.				
26.				
27.	***************************************			
28.				
29.				
30.			`	
-				

FORM I VOA-TIC

EPA SAMPLE NO.

SMS-MW-8

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.:

Contract:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-07A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9130

Level: (low/med)

LOW

Date Received: 08/15/07

% Moisture: not dec.

CAS NO.

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

COMPOUND

Dilution Factor: 1.0

Soil Aliquot Volume: (uL)

Soil Extract Volume: (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Q

	Dichlorodifluoromethane		5 U
	Chloromethane	-	5 U
	Vinyl Chloride		5 U
	Bromomethane	-	5 U .
	Chloroethane	-	5 บ
	Trichlorofluoromethane	-	5 T
75-35-4	1,1-Dichloroethene		5 U
67-64 -1-	Acetone	-	5 U
74-88-4	Iodomethane	-	5 U
	Carbon Disulfide	-	. 5 U
	Methylene Chlori de	-	5 U
	trans-1,2-Dichloroethene		5 U
	Methyl tert-butyl ether		5 U 5 U
	1,1-Dichloroethane	-	5 U
	Vinyl acetate	-	5 U
	2-Butanone		5 U
	cis-1,2-Dichloroethene	_	5 U
590-20-7	2,2-Dichloropropane		5 U
	Bromochloromethane		5 U
	Chloroform	-	5 U 5 U
	1,1,1-Trichloroethane	-	5 T
	1,1-Dichloropropene		5 U
	Carbon Tetrachloride	•	5 U
107-06-2	1,2-Dichloroethane		5 U
	Benzene		5 บ
	Trichloroethene		5 U 5 U
	1,2-Dichloropropane		5 U
	Dibromomethane		5 U 5 U
	Bromodichloromethane		5 U
10061-01-5-	cis-1,3-Dichloropropene	_	5 U
108-10-1	4-Methyl-2-pentanone		5 U
	Toluene	_	5 U
	trans-1,3-Dichloropropene	_1	5 บ
79-00-5 -	1,1,2-Trichloroethane		5 ט

FORM I VOA

SMS-MW-8

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-07A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9130

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

142-28-91, 3-Dichloropropane 5 127-18-4Tetrachloroethene 5 591-78-62-Hexanone 5 124-48-1Dibromochloromethane 5 106-93-41, 2-Dibromoethane 5 108-90-7Chlorobenzene 5 630-20-61, 1, 1, 2-Tetrachloroethane 5 100-41-4Ethylbenzene 5		_
127-18-4Tetrachloroethene 5 591-78-62-Hexanone 5 124-48-1Dibromochloromethane 5 106-93-41,2-Dibromoethane 5 108-90-7Chlorobenzene 5 630-20-61,1,1,2-Tetrachloroethane 5 100-41-4Ethylbenzene 5	5 11	
591-78-62-Hexanone 5 U 124-48-1Dibromochloromethane 5 U 106-93-41,2-Dibromoethane 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 95-47-6m,p-Xylene 5 U 1330-20-7Xylene 5 U 100-42-5	5 0	
124-48-1Dibromochloromethane 5 U 106-93-41,2-Dibromoethane 5 U 108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U 95-47-6	5 17	
108-90-7	5 17	
108-90-7Chlorobenzene 5 U 630-20-61,1,1,2-Tetrachloroethane 5 U 100-41-4Ethylbenzene 5 U	5 U	
100-41-4Ethylbenzene 5 U	5 U	
100-41-4Ethylbenzene 5 U	5 U	
95-47-6	5 Ū	
95-47-6	ร์ ไบ้	
1330-20-7Xylene (Total) 5 100-42-5Styrene 5 75-25-2Bromoform 5 98-82-8Isopropylbenzene 5 79-34-51,1,2,2-Tetrachloroethane 5 108-86-1Bromobenzene 5 96-18-41,2,3-Trichloropropane 5 103-65-1n-Propylbenzene 5 95-49-82-Chlorotoluene 5 106-43-44-Chlorotoluene 5 98-06-6tert-Butylbenzene 5 95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5	5 U	
75-25-2Bromoform 5 U 98-82-8Isopropylbenzene 5 U 79-34-51,1,2,2-Tetrachloroethane 5 U 108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U	5 บ	
75-25-2Bromoform 5 U 98-82-8Isopropylbenzene 5 U 79-34-51,1,2,2-Tetrachloroethane 5 U 108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U	5 U	
98-82-8Isopropylbenzene 5 79-34-51,1,2,2-Tetrachloroethane 5 108-86-1Bromobenzene 5 96-18-4Bromobenzene 5 96-18-4	5 ซ	
108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U	5 U	
108-86-1Bromobenzene 5 U 96-18-41,2,3-Trichloropropane 5 U 103-65-1n-Propylbenzene 5 U 95-49-82-Chlorotoluene 5 U 108-67-81,3,5-Trimethylbenzene 5 U 106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U	. 5 บ	
108-67-81,3,5-Trimethylbenzene 5 106-43-44-Chlorotoluene 5 98-06-6tert-Butylbenzene 5 95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5	5 บ	
108-67-81,3,5-Trimethylbenzene 5 106-43-44-Chlorotoluene 5 98-06-6tert-Butylbenzene 5 95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5	5 U	
108-67-81,3,5-Trimethylbenzene 5 106-43-44-Chlorotoluene 5 98-06-6tert-Butylbenzene 5 95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5	5 U	
108-67-81,3,5-Trimethylbenzene 5 106-43-44-Chlorotoluene 5 98-06-6tert-Butylbenzene 5 95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5	5 U	
106-43-44-Chlorotoluene 5 U 98-06-6tert-Butylbenzene 5 U 95-63-61,2,4-Trimethylbenzene 5 U 135-98-8sec-Butylbenzene 5 U 99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U	5 บ	
95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5	5 U	
95-63-61,2,4-Trimethylbenzene 5 135-98-8sec-Butylbenzene 5 99-87-64-Isopropyltoluene 5 541-73-11,3-Dichlorobenzene 5	5 U	
99-87-64-Isopropyltoluene 5 U 541-73-11,3-Dichlorobenzene 5 U	5 ט	
541-73-11,3-Dichlorobenzene 5 U	5 U	
5 U	์5 บ	
100 40 7 1 4 Dighter space	5 บ	
	5 U	
104-51-8n-Butylbenzene 5 U	5 U	
95-50-11,2-Dichlorobenzene 5 U 96-12-81,2-Dibromo-3-chloropropane 5 U 120-82-11,2,4-Trichlorobenzene 5 U	5 ט	
96-12-8	5 บ	
120-82-11,2,4-Trichlorobenzene5U	5 บ	
87-68-3	5 บ	
91-20-3 Naphthalene 5 U		
87-61-61,2,3-Trichlorobenzene5U	5 U	

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-8

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-07A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9130

Level: (low/med)

LOW

Date Received: 08/15/07

% Moisture: not dec.

Number TICs found: 0

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	:=======	======	======================================	=====
1				
2				
			<u> </u>	
4				
6				
7				
8.				
9.				
TO.				
14.				
±0.				
14.				
15.				
16.				
1 /•				
1J.				
20.				
ZI.				
44.				
23.				
44.				
25.				
∠o.				
27.				
40.				
49.				
30				

FORM I VOA-TIC

EPA SAMPLE NO.

SMS-MW-9

SDG No.: MF1135

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.:

Matrix: (soil/water) WATER Lab Sample ID: F1135-06A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9129

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. (ug/L or ug/Kg) UG/L COMPOUND 0 75-71-8-----Dichlorodifluoromethane 5 U 74-87-3-----Chloromethane 5 | U 5 U 75-01-4-----Vinyl Chloride 5 74-83-9-----Bromomethane U 75-00-3-----Chloroethane 5 ΙŢŢ 75-69-4-----Trichlorofluoromethane 5 | U 75-35-4-----1,1-Dichloroethene 5 U 67-64-1-----Acetone 5 U 74-88-4-----Iodomethane 5 | U 75-15-0-----Carbon Disulfide 5 U 75-09-2-----Methylene Chloride 5 | U 156-60-5-----trans-1,2-Dichloroethene 5 | U 1634-04-4-----Methyl tert-butyl ether 5 U 75-34-3-----1,1-Dichloroethane 5 U 108-05-4-----Vinyl acetate 5 U 78-93-3----2-Butanone 5 | U 156-59-2-----cis-1,2-Dichloroethene 5 | U 5 | U 590-20-7----2,2-Dichloropropane 74-97-5-----Bromochloromethane 5 | U 67-66-3-----Chloroform 5 | U 71-55-6----1,1,1-Trichloroethane 5 | U 563-58-6-----1,1-Dichloropropene 5 U 56-23-5-----Carbon Tetrachloride 5 U 107-06-2----1, 2-Dichloroethane 5 lυ 71-43-2----Benzene 5 U 5 U 79-01-6-----Trichloroethene 5 78-87-5----1,2-Dichloropropane U 5 74-95-3------Dibromomethane U 75-27-4-----Bromodichloromethane 5 U 10061-01-5----cis-1,3-Dichloropropene U 108-10-1----4-Methyl-2-pentanone U 108-88-3-----Toluene
10061-02-6-----trans-1,3-Dichloropropene U 5 U 79-00-5-----1,1,2-Trichloroethane 5 U

FORM I VOA

EPA SAMPLE NO.

SMS-MW-9

Q

Lab Name: MITKEM CORPORATION Contract:

CAS NO.

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-06A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9129

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: not dec. Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

COMPOUND

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (uq/L or uq/Kq) UG/L

142-28-9-----1,3-Dichloropropane 5 | U 127-18-4-----Tetrachloroethene 5 U 5 | U 591-78-6----2-Hexanone 5 124-48-1-----Dibromochloromethane U 106-93-4-----1,2-Dibromoethane 5 ΙU 108-90-7-----Chlorobenzene 5 U 630-20-6----1,1,1,2-Tetrachloroethane 5 U 100-41-4-----Ethylbenzene 5 U 5 ----m,p-Xylene U 95-47-6------Xylene 5 U 1330-20-7-----Xylene (Total)____ 5 U 100-42-5-----Styrene 5 U 75-25-2-----Bromoform 5 U 98-82-8-----Isopropylbenzene 5 IJ 79-34-5----1,1,2,2-Tetrachloroethane 5 U 108-86-1----Bromobenzene 5 U 5 | U 96-18-4----1,2,3-Trichloropropane 103-65-1----n-Propylbenzene 5 U 95-49-8----2-Chlorotoluene 5 U 108-67-8-----1,3,5-Trimethylbenzene 5 U 106-43-4----4-Chlorotoluene U 5 98-06-6----tert-Butylbenzene U 95-63-6-----1,2,4-Trimethylbenzene 5 U 135-98-8----sec-Butylbenzene 5 U 5 99-87-6----4-Isopropyltoluene บ 541-73-1-----1,3-Dichlorobenzene 5 U 106-46-7----1,4-Dichlorobenzene 5 U 5 104-51-8----n-Butylbenzene lυ 5 95-50-1----1,2-Dichlorobenzene lυ 96-12-8----1, 2-Dibromo-3-chloropropane U 120-82-1----1,2,4-Trichlorobenzene U 87-68-3-----Hexachlorobutadiene U 91-20-3----Naphthalene 5 U

FORM I VOA

87-61-6----1,2,3-Trichlorobenzene

OLM03.0

5 U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SMS-MW-9

-	Lab	Name:	MT.I.KEM	CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-06A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9129

Level: (low/med) LOW

% Moisture: not dec. _____

Date Received: 08/15/07

Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

			<u> </u>	······
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1	=======================================	=======		
1.		·		
2 -				
1. 2. 3.				-
1				
4				
J.				
0.		· · ·		
/ •				
8.				
9				
_ ±0.				
14.				
13				
14	A STATE OF THE STA			
14.				
16.————				
16				
/ • I				
±0.		-		
19				
20.			<u> </u>	
ZZ.				
43.				
44.				
25. I				
26				
26				
40.				
47.		-		
30				
ı <u> </u>				

FORM I VOA-TIC

EPA SAMPLE NO.

SMS-TB-1

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-11A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9190

Level: (low/med)

LOW

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L Q

		1	 		
 75-71-8	Dichlorodifluoromethane			5 U	
	Chloromethane	-		5 U	
	Vinyl Chloride	1		5 U	
	Bromomethane	-		5 U	
	Chloroethane	^		5 U	
75-69-4	Trichlorofluoromethane	• [5 U	
	1,1-Dichloroethene	-		5 U	
67-64-1		•		5 U	
	Iodomethane	•		5 U	
75-15-0	Carbon Disulfide	•		5 U	e e .
75-09-2	Methylene Chloride	-		5 U	
	trans-1,2-Dichloroethene	•		5 U	
	Methyl tert-butyl ether	-		5 U 5 U	
75-34-3	1,1-Dichloroethane	-		5 U	
108-05-4	Vinyl acetate	•		5 U	
	2-Butanone	-		5 U	
156-59-2	cis-1,2-Dichloroethene	7		5 U	
590-20-7	2,2-Dichloropropane			5 U	
	Bromochloromethane	•		5 U	
67-66-3	Chloroform	7		5 U	
71-55-6	1,1,1-Trichloroethane	•		5 U	
	1,1-Dichloropropene	•		5 U	
	Carbon Tetrachloride	7		5 U	
	1,2-Dichloroethane	•		5 U	
71-43-2		•		5 U	
79-01-6	Trichloroethene	-		5 U	
78-87-5	1,2-Dichloropropane	•		5 U	
	Dibromomethane	-		5 U	
75-27-4	Bromodichloromethane	•		5 U	
10061-01-5	cis-1,3-Dichloropropene	•		5 U	
	4-Methyl-2-pentanone	-		5 U	
108-88-3				5 U	
	trans-1,3-Dichloropropene	•		5 U	
	1,1,2-Trichloroethane	-		5 U	
		.		_	

EPA SAMPLE NO.

SMS-TB-1

Lab Name: MITKEM CORPORATION

Contract:

LOW

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-11A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V2J9190

Level: (low/med)

Date Received: 08/15/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

Q

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-11A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID:

V2J9190

Level: (low/med)

LOW

Date Received: 08/15/07

% Moisture: not dec.

Number TICs found: 0

Date Analyzed: 08/27/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL)

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

1. 2. 3. 4. 5. 6. 7.				
2. 3. 4. 5. 6. 7.				
4. 5. 6. 7.				
5. 6. 7.				
7			-	
8.				
8.	· · · · · · · · · · · · · · · · · · ·			
9.				
10.				
12				
13.				
15.				
16.				
- - - - -				
		- -		
19.				
20.				
21.				
23.				
24.				
25.				
26.				
21.				
∠8.				
29.				
30				

FORM I VOA-TIC

EPA SAMPLE NO.

SMS-TB-2

SDG No.: MF1135

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.:

Matrix: (soil/water) WATER Lab Sample ID: F1135-20A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9195

Level: (low/med) Date Received: 08/17/07 LOW

% Moisture: not dec. _____ Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

	Dichlorodifluoromethane	5	ט
74-87-3	Chloromethane	· 5	ט ו
75-01-4	Vinyl Chloride	5	i U
74-83-9	Bromomethane	5	ט
	Chloroethane	5	. U
75-69-4	Trichlorofluoromethane	5	שׁ
75-35-4	1,1-Dichloroethene	5	שׁ
67-64-1		5	U
	Iodomethane	5	ับ
	Carbon Disulfide	5	Π
75-09-2	Methylene Chloride	5	שׁוּ
156-60-5	trans-1,2-Dichloroethene	5	ַ ט
1634-04-4	Methyl tert-butyl ether	ĺ 5	U
75-34-3	1,1-Dichloroethane	5	U
108-05-4	Vinyl acetate	5	U
	2-Butanone	5	U
	cis-1,2-Dichloroethene	5	U
590-20-7	2,2-Dichloropropane	5	U -
	Bromochloromethane	5	U
	Chloroform	5	U
71-55-6	1,1,1-Trichloroethane	5	U
	1,1-Dichloropropene	5	U
	Carbon Tetrachloride	5	U
107-06-2	1,2-Dichloroethane	5	
71-43-2		5	
79-01-6	Trichloroethene	5	U
78-87-5	1,2-Dichloropropane	5	
	Dibromomethane	5	
	Bromodichloromethane	· 5	
10061-01-5	cis-1,3-Dichloropropene	5	U
108-10-1	4-Methyl-2-pentanone	5	U
108-88-3		5	U
	trans-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	U
			.

FORM I VOA

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-20A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9195

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: not dec. ____ Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: _____(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/Kg) UG/L	Q
127-18-4	1,3-Dichloropropane	5	ן ט ז
	2-Hexanone		U
	Dibromochloromethane	5	
	1,2-Dibromoethane	5	
	Chlorobenzene	5 5 5 5	ן דַּדָּ
	1,1,1,2-Tetrachloroethane		ַ ט
	Ethylbenzene	5	ן ע
	m,p-Xylene		
95-47-6	o-Xylene	5	
1330-20-7	Xylene (Total)	5	
100-42-5	Styrene	5	
	Bromoform	5	
98-82-8	Isopropylbenzene	5	ט
	1,1,2,2-Tetrachloroethane	5	ן ט
	Bromobenzene	5	
96-18-4	1,2,3-Trichloropropane	5	ן ט
103-65-1	n-Propylbenzene	5	U
	2-Chlorotoluene	5	U
108-67-8	1,3,5-Trimethylbenzene	5	ט
106-43-4	4-Chlorotoluene	5	ן ט
98-06-6	tert-Butylbenzene	5	
95-63-6	1,2,4-Trimethylbenzene	5	
135-98-8	sec-Butylbenzene	5	
99-87-6	4-Isopropyltoluene	5	ו טו
541-73-1	1,3-Dichlorobenzene	5	
106-46-7	1,4-Dichlorobenzene	5	U
104-51-8	n-Butylbenzene	5	
95-50-1	1,2-Dichlorobenzene	5	
96-12-8	1,2-Dibromo-3-chloropropane	5	
120-82-1	1,2,4-Trichlorobenzene	5	Ū
	Hexachlorobutadiene	5	
	Naphthalene	5	ן ט
	1,2,3-Trichlorobenzene	5	ט ו
0,010	1,2,3 1110111010001120110		
		I	. 1

FORM I VOA

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

SMS-TB-2

Lab Name: MITKEM COF	RPORATION
----------------------	-----------

Contract:

Lab Code: MITKEM Case No.:

LOW

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-20A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID:

V2J9195

Level:

(low/med)

Date Received: 08/17/07

Date Analyzed: 08/27/07

% Moisture: not dec.

ID: 0.25 (mm)

Dilution Factor: 1.0

GC Column: DB-624

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
	=======================================	=======		=====
1				
2				
3				
·				
5.				
•				
7.				
0.				
9.				
10.				
I 144 • I				
I 40.				· · · · · · · · · · · · · · · · · · ·
14 .				
15.				
16.				
17				
18.				
19.				
20.				
21.				
22.				
22.				
1 49.				
41.				
25.				
26.	·			
4, •				
∠8.				
∠9 .				
30.				

FORM I VOA-TIC

EPA SAMPLE NO.

	V2JLCS	

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: LCS-31881

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9118A

Date Received:

Level: (low/med) LOW

% Moisture: not dec. _____

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/L

75-71-8	Dichlorodifluoromethane	45
	Chloromethane	- 62
	Vinyl Chloride	62
	Bromomethane	62
	Chloroethane	68
	Trichlorofluoromethane	65
	1,1-Dichloroethene	- 57
67-64-1		- 72
	Iodomethane	-
	Carbon Disulfide	63
	Methylene Chloride	59
	trans-1,2-Dichloroethene	52
1634-04-4	Methyl tert-butyl ether	46
	1,1-Dichloroethane	- 52
	Vinyl acetate	44
	2-Butanone	48
	cis-1,2-Dichloroethene	50
	2,2-Dichloropropane	- 31
	Bromochloromethane	- 51
	Chloroform	- 52
	1,1,1-Trichloroethane	- 50
	1,1-Dichloropropene	- 50
	Carbon Tetrachloride	- 50
	1,2-Dichloroethane	- 49
71-43-2		- 52 -
	Trichloroethene	- 50
	1,2-Dichloropropane	53
	Dibromomethane	- 53
	Bromodichloromethane	- 50 -
	cis-1,3-Dichloropropene	- 47
10001-01-5	4-Methyl-2-pentanone	- 52
108-10-1		- 51
	trans-1,3-Dichloropropene	- 46
79-00-5	1,1,2-Trichloroethane	- 52
19-00-5	1, 1, 2-11 1CII1O1Oecilarie	-
		_

75-25-2-----Bromoform

108-86-1-----Bromobenzene

98-82-8-----Isopropylbenzene

103-65-1----n-Propylbenzene

95-49-8----2-Chlorotoluene

106-43-4-----4-Chlorotoluene

98-06-6----tert-Butylbenzene

135-98-8-----sec-Butylbenzene

104-51-8----n-Butylbenzene

91-20-3-----Naphthalene

99-87-6----4-Isopropyltoluene

541-73-1----1,3-Dichlorobenzene

106-46-7-----1,4-Dichlorobenzene

95-50-1-----1,2-Dichlorobenzene

87-68-3-----Hexachlorobutadiene

120-82-1----1,2,4-Trichlorobenzene

87-61-6-----1,2,3-Trichlorobenzene

96-12-8-----1,2-Dibromo-3-chloropropane

79-34-5-----1,1,2,2-Tetrachloroethane

96-18-4-----1,2,3-Trichloropropane

108-67-8-----1,3,5-Trimethylbenzene

95-63-6----1,2,4-Trimethylbenzene

EPA SAMPLE NO.

48

50

50

46

49

45

47

49

48

45

49

49

48

48

47

48

47

46

45

43

46 B

44 B

				V2JLCS	
Lab Name: MITKEM CO	RPORATION (Contract:			
Lab Code: MITKEM	Case No.:	SAS No.:	SDG	No.: MF1135	;
Matrix: (soil/water) WATER	Lab Sar	mple ID:	LCS-31881	٠
Sample wt/vol:	5.000 (g/mL) ML	Lab Fil	le ID:	V2J9118A	
Level: (low/med)	LOW	Date Re	eceived:		
% Moisture: not dec	•	Date Ar	nalyzed:	08/25/07	
GC Column: DB-624	ID: 0.25 (mm)	Dilutio	on Facto	r: 1.0	
Soil Extract Volume	:(uL)	Soil Al	liquot Vo	olume:	(uL)
CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/F		Q	
127-18-4 591-78-6 124-48-1 106-93-4 108-90-7 630-20-6 100-41-4 95-47-6	1,3-DichloroproTetrachloroethe2-HexanoneDibromochlorome1,2-DibromoethaChlorobenzene1,1,1,2-TetrachEthylbenzenem,p-XyleneXyleneXylene (Total)	ethanenloroethane		52 60 48 49 50 50 50 50 100 50	

FORM I VOA

V2JLCSD

Lab Name: MITKEM COR	PORATION	Contract:	
Lab Code: MITKEM	Case No.:	SAS No.:	SDG No.: MF1135
Matrix: (soil/water)	WATER	Lab Sample	ID: LCSD-31881
Sample wt/vol:	5.000 (g/mL) ML	Lab File II): V2J9119
Level: (low/med)	LOW	Date Receiv	<i>r</i> ed:

% Moisture: not dec. _____ Date Analyzed: 08/25/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 0 75-71-8-----Dichlorodifluoromethane 48 74-87-3-----Chloromethane 60 75-01-4-----Vinyl Chloride 64 74-83-9-----Bromomethane 61 75-00-3-----Chloroethane 66 75-69-4-----Trichlorofluoromethane 60 75-35-4-----1,1-Dichloroethene 57 67-64-1-----Acetone 69 74-88-4-----Iodomethane 57 75-15-0-----Carbon Disulfide 63 75-09-2----Methylene Chloride 59 156-60-5----trans-1,2-Dichloroethene 52 1634-04-4-----Methyl tert-butyl ether 47 75-34-3-----1,1-Dichloroethane 53 108-05-4------Vinyl acetate 44 78-93-3----2-Butanone 51 156-59-2----cis-1,2-Dichloroethene 50 590-20-7----2,2-Dichloropropane_ 31 74-97-5-----Bromochloromethane 50 67-66-3-----Chloroform 52 71-55-6----1,1,1-Trichloroethane 50 563-58-6-----1,1-Dichloropropene 51 56-23-5-----Carbon Tetrachloride 50 107-06-2----1,2-Dichloroethane 49 71-43-2-----Benzene 52 79-01-6-----Trichloroethene 49 78-87-5-----1,2-Dichloropropane 52 74-95-3------Dibromomethane 53 75-27-4-----Bromodichloromethane 49 10061-01-5----cis-1,3-Dichloropropene 46 108-10-1-----4-Methyl-2-pentanone 52 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene 79-00-5-----1,1,2-Trichloroethane 52 46 52

FORM I VOA

EPA SAMPLE NO.

V2JLCSD	
	ı

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.:

Contract:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: LCSD-31881

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9119

Date Received:

Level: (low/med)

% Moisture: not dec.

CAS NO.

LOW

Date Analyzed: 08/25/07

GC Column: DB-624

ID: 0.25 (mm)

COMPOUND

Dilution Factor: 1.0

Soil Aliquot Volume: (uL)

Soil Extract Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L Q

FORM I VOA

EPA SAMPLE NO.

Lab Name: MITI	KEM CORPORATION	Contract:	V2NLCS
Lab Code: MITI	KEM Case No.:	SAS No.:	SDG No.: MF1135
Matrix: (soil,	/water) WATER	Lab Sample 1	ID: LCS-31892
Sample wt/vol	: 5.000 (g/mL) MI	Lab File ID:	V2J9184
Level: (low,	/med) LOW	Date Receive	ed:
% Moisture: no	ot dec.	Date Analyze	ed: 08/27/07
GC Column: DB-	-624 ID: 0.25 (mm)	Dilution Fac	ctor: 1.0
Soil Extract V	/olume:(uL)	Soil Aliquot	Volume:(uL
CAS NO.	COMPOUND	CONCENTRATION UNIT	
74-87-3 75-01-4 74-83-9 75-00-3 75-69-4 75-35-4 67-64-1 74-88-4 75-15-0 75-09-2 156-60- 1634-04 75-34-3 108-05-	3Dichlorodiflu 3Vinyl Chlorid 3Vinyl Chlorid 3Bromomethane 3Trichlorofluo 4Acetone 4Carbon Disulf 2Methylene Chl 5Trins-1,2-Dichloroe 4	eromethane ethene ide oride chloroethene outyl ether	40 50 48 52 52 50 48 57 49 47 50 45 48 47 45 49

FORM I VOA

590-20-7----2,2-Dichloropropane

563-58-6----1,1-Dichloropropene

107-06-2----1,2-Dichloroethane

78-87-5----1,2-Dichloropropane

75-27-4-----Bromodichloromethane

108-10-1-----4-Methyl-2-pentanone

10061-01-5----cis-1,3-Dichloropropene

10061-02-6----trans-1,3-Dichloropropene_79-00-5-----1,1,2-Trichloroethane____

79-01-6-----Trichloroethene

74-95-3-----Dibromomethane

56-23-5-----Carbon Tetrachloride

71-55-6----1,1,1-Trichloroethane

74-97-5----Bromochloromethane

67-66-3-----Chloroform

71-43-2-----Benzene

108-88-3-----Toluene

OLM03.0

31

49

49

45

44

44

48

48

44

49

49

48

45

53

46

45 49

EPA SAMPLE NO.

Lab Name: MITKEM COR	PORATION	Contract:		V2NLCS	
Lab Code: MITKEM (Case No.:	SAS No.:	SDG I	No.: MF1135	
Matrix: (soil/water)	WATER	Lab Sa	mple ID: 1	LCS-31892	
Sample wt/vol:	5.000 (g/mL) ML	Lab Fi	le ID: \	V2J9184	
Level: (low/med)	LOW	Date R	eceived: _	· .	
% Moisture: not dec.		Date A	nalyzed: (08/27/07	
GC Column: DB-624	ID: 0.25 (mm)	Diluti	on Factor	: 1.0	
Soil Extract Volume:	(uL)	Soil A	liquot Vol	lume:	(uL)
CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/		Q	
127-18-4 591-78-6 124-48-1 106-93-4 108-90-7 630-20-6 100-41-4 95-47-6	Dibromochlorome 1,2-Dibromoetha Chlorobenzene 1,1,1,2-Tetrach Ethylbenzene m,p-Xylene	ethaneane		47 46 48 47 46 43 43 41 82 42 120	

100-42-5-----Styrene 42 75-25-2-----Bromoform 53 98-82-8-----Isopropylbenzene 40 79-34-5-----1,1,2,2-Tetrachloroethane 47 108-86-1-----Bromobenzene 40 96-18-4-----1,2,3-Trichloropropane 49 103-65-1----n-Propylbenzene 37 95-49-8----2-Chlorotoluene 40 108-67-8-----1,3,5-Trimethylbenzene 40 106-43-4-----4-Chlorotoluene 40 98-06-6----tert-Butylbenzene 36 95-63-6----1,2,4-Trimethylbenzene 40 135-98-8-----sec-Butylbenzene 38 99-87-6----4-Isopropyltoluene 37 541-73-1-----1,3-Dichlorobenzene 40 106-46-7-----1,4-Dichlorobenzene 40 104-51-8----n-Butylbenzene 37 95-50-1----1,2-Dichlorobenzene 41 96-12-8-----1,2-Dibromo-3-chloropropane 44 120-82-1-----1,2,4-Trichlorobenzene 39 87-68-3-----Hexachlorobutadiene 32 91-20-3-----Naphthalene 39 87-61-6-----1,2,3-Trichlorobenzene 40

FORM I VOA

EPA SAMPLE NO.

SMS-MW-1

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-05B

Sample wt/vol: 1000 (q/mL) ML Lab File ID: S3E5414

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/17/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

	(45, 2 01 45	,5,	~
95-57-8 541-73-1 106-46-7 95-50-1 95-48-7 108-60-1 106-44-5 621-64-7	bis(2-Chloroethyl)Ether2-Chlorophenol1,3-Dichlorobenzene1,4-Dichlorobenzene1,2-Dichlorobenzene2-Methylphenol2,2'-oxybis(1-Chloropropane)4-MethylphenolN-Nitroso-di-n-propylamine	10 10 10 10 10 10 10 10 10	מממממממ
98-95-3 78-59-1 88-75-5 105-67-9 120-83-2 120-82-1 91-20-3	HexachloroethaneNitrobenzeneIsophorone2-Nitrophenol2,4-Dimethylphenol1,2,4-TrichlorobenzeneNaphthalene4-Chloroaniline	10 10 10 10 10 10 10 10	ם ם ם ם ם ם
87-68-3 111-91-1 59-50-7 91-57-6 77-47-4 88-06-2 95-95-4 91-58-7	Hexachlorobutadienebis(2-Chloroethoxy)methane4-Chloro-3-Methylphenol2-MethylnaphthaleneHexachlorocyclopentadiene2,4,6-Trichlorophenol2,Chloronaphthalene	10 10 10 10 10 10 20 10	מממממממ
131-11-3 208-96-8 606-20-2 99-09-2	2-Nitroaniline2-NitroanilineDimethylphthalateAcenaphthylene2,6-Dinitrotoluene3-NitroanilineAcenaphthene	20 10 10 10 20 10	ָ ט

FORM I SV-1

EPA SAMPLE NO.

SMS-MW-1 Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM SAS No.: Case No.: SDG No.: MF1135 Matrix: (soil/water) WATER Lab Sample ID: F1135-05B 1000 (g/mL) ML Sample wt/vol: Lab File ID: S3E5414 (low/med) Level: LOW Date Received: 08/15/07 % Moisture: _____ decanted: (Y/N) ___ Date Extracted:08/16/07 Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/17/07 Injection Volume: 1.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

51-28-5-----2,4-Dinitrophenol 20 U 100-02-7----4-Nitrophenol 20 U 132-64-9-----Dibenzofuran 10 U 121-14-2----2,4-Dinitrotoluene 10 U 84-66-2-----Diethylphthalate 10 U 7005-72-3----4-Chlorophenyl-phenylether 10 ע 86-73-7-----Fluorene 10 U 100-01-6-----4-Nitroaniline 20 U 534-52-1-----4,6-Dinitro-2-methylphenol 20 U 86-30-6----N-Nitrosodiphenylamine (1) 10 U 101-55-3-----4-Bromophenyl-phenylether 10 U 118-74-1-----Hexachlorobenzene 10 U 87-86-5-----Pentachlorophenol 20 U 85-01-8-----Phenanthrene 10 U 120-12-7-----Anthracene 10 U 86-74-8-----Carbazole 10 U 84-74-2-----Di-n-butylphthalate 10 U 206-44-0-----Fluoranthene 10 U 129-00-0-----Pyrene 10 U 85-68-7-----Butylbenzylphthalate 10 U 91-94-1-----3,3 - Dichlorobenzidine 10 U 56-55-3-----Benzo (a) anthracene 10 U 218-01-9-----Chrysene 10 U 117-81-7-----bis(2-Ethylhexyl)phthalate 10 U 117-84-0------Di-n-octylphthalate 205-99-2------Benzo(b) fluoranthene 10 U 10 U 207-08-9-----Benzo(k) fluoranthene 10 U 50-32-8-----Benzo (a) pyrene 10 U 193-39-5----Indeno (1, 2, 3-cd) pyrene 10 U 53-70-3-----Dibenzo(a,h)anthracene 10 U 191-24-2----Benzo(q,h,i)perylene 10 U (1) - Cannot be separated from Diphenylamine

FORM I SV-2

OLMO3.0

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION

Contract:

SMS-MW-1

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-05B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID:

S3E5414

Level:

(low/med) LOW

Date Received: 08/15/07

% Moisture: decanted: (Y/N)

Date Extracted: 08/16/07

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 08/17/07

Injection Volume: 1.0(uL)

Number TICs found: 3

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.	UNKNOWN UNKNOWN UNKNOWN		EST. CONC. ====================================	Q ====== JB JB JB ==================
25. 26. 27. 28. 29.				

FORM I SV-TIC

SMS-MW-14 Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-18B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5532

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: decanted: (Y/N) Date Extracted: 08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

> CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

GLED 110.	(dg/H Of dg/	, 119, 00, 1	×
108-95-2 111-44-4 95-57-8	Phenol bis(2-Chloroethyl)Ether	10 10 10	ט
541-73-1	1,3-Dichlorobenzene	10	
	1,4-Dichlorobenzene	10	E
	1,2-Dichlorobenzene	10	1
	2,2'-oxybis(1-Chloropropane)	10	
106-44-5	4-Methylphenol	10	
621-64-7	N-Nitroso-di-n-propylamine_	10	ì
	Hexachloroethane	10	l .
	Nitrobenzene	10	1
	Isophorone 2-Nitrophenol	10 10	1
105-67-9	2,4-Dimethylphenol	10	
120-83-2	2,4-Dichlorophenol	10	1
120-82-1	1,2,4-Trichlorobenzene	10	U
91-20-3	Naphthalene	1.0	
	4-Chloroaniline	10	1
	Hexachlorobutadiene bis(2-Chloroethoxy)methane	10 10	I .
59-50-7		10	I .
	2-Methylnaphthalene	10	
77-47-4	Hexachlorocyclopentadiene	10	l .
	2,4,6-Trichlorophenol	10	
	2,4,5-Trichlorophenol	20	
	2-Chloronaphthalene	10 20	
	Dimethylphthalate	10	
	Acenaphthylene	10	
606-20-2	2,6-Dinitrotoluene	10	
	3-Nitroaniline	20	
83-32-9	Acenaphthene	10	U

FORM I SV-1

SMS-MW-14

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-18B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID:

S3E5532

Level: (low/med) LOW

Date Received: 08/17/07

% Moisture: ____ decanted: (Y/N)___

Concentrated Extract Volume:

CAS NO.

1000 (uL)

Date Extracted: 08/21/07

Date Analyzed: 08/23/07

Injection Volume: 1.0(uL)

COMPOUND

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

	2,4-Dinitrophenol	20	U
100-02-7	4-Nitrophenol	20	ע
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	U
86-73-7		10	U
100-01-6	4-Nitroaniline	20	U
534-52-1	4,6-Dinitro-2-methylphenol	20	U
86-30-6	N-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
87-86-5	Pentachlorophenol	20	U
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3 ¹ -Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9		10	U
	bis(2-Ethylhexyl)phthalate	10	U
117-84-0	Di-n-octylphthalate	10	U
	Benzo (b) fluoranthene	10	U
	Benzo(k) fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	Ū
193-39-5	Indeno $(1, 2, 3-cd)$ pyrene	10	Ū
53-70-3	Dibenzo (a, h) anthracene	10	U
	Benzo(q,h,i)perylene	10	Ü

FORM I SV-2

EPA SAMPLE NO. 1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-14

S3E5532

Lab Name:	MITKEM	CORPORATION
-----------	--------	-------------

Sample wt/vol:

Number TICs found: 4

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135 Lab Sample ID: F1135-18B Matrix: (soil/water) WATER

Lab File ID: 1000 (g/mL) ML

Date Received: 08/17/07 Level: (low/med) LOW

% Moisture: ___ decanted: (Y/N)___ Date Extracted: 08/21/07

Date Analyzed: 08/23/07 Concentrated Extract Volume: 1000(uL)

Dilution Factor: 1.0 Injection Volume: 1.0(uL)

GPC Cleanup: (Y/N) N pH: ____

> CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT		-
1. 2. 3. 4. 63-25-2 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27.	UNKNOWN UNKNOWN CARBARIL	1	EST. CONC. 13 4 8 6	JB JB JB
28. 29. 30.				

FORM I SV-TIC

OLMO3.0

SMS-MW-15

Contract: Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Lab Sample ID: F1135-17B Matrix: (soil/water) WATER

Sample wt/vol: 1000 (q/mL) ML Lab File ID: S3E5531

Date Received: 08/17/07 Level: (low/med) LOW

decanted: (Y/N) Date Extracted: 08/21/07 % Moisture:

Date Analyzed: 08/23/07 1000 (uL) Concentrated Extract Volume:

Dilution Factor: 1.0 Injection Volume: 1.0(uL)

GPC Cleanup: (Y/N) N pH:

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L 0 CAS NO. COMPOUND

10 U 108-95-2----Phenol 10 U 111-44-4-----bis(2-Chloroethyl)Ether 10 U 95-57-8----2-Chlorophenol 541-73-1----1,3-Dichlorobenzene 10 U 106-46-7-----1,4-Dichlorobenzene 10 U 95-50-1----1,2-Dichlorobenzene_ 10 U 95-48-7----2-Methylphenol 10 U 108-60-1-----2,2'-oxybis(1-Chloropropane) 10 U 106-44-5-----4-Methylphenol 10 U 621-64-7----N-Nitroso-di-n-propylamine 10 U 67-72-1-----Hexachloroethane 10 U 98-95-3-----Nitrobenzene 10 U 78-59-1----Isophorone 10 U 88-75-5-----2-Nitrophenol 10 U 105-67-9-----2,4-Dimethylphenol 10 U 10 U 120-83-2----2,4-Dichlorophenol 10 U 120-82-1----1,2,4-Trichlorobenzene 10 U 91-20-3----Naphthalene 106-47-8-----4-Chloroaniline 10 U 87-68-3-----Hexachlorobutadiene 10 U 10 ע 111-91-1-----bis(2-Chloroethoxy)methane 10 U 59-50-7----4-Chloro-3-Methylphenol 10 U 91-57-6----2-Methylnaphthalene 10 U 77-47-4-----Hexachlorocyclopentadiene 10 U 88-06-2----2,4,6-Trichlorophenol 20 U 95-95-4----2,4,5-Trichlorophenol 91-58-7----2-Chloronaphthalene 10 U 20 U 88-74-4----2-Nitroaniline 131-11-3-----Dimethylphthalate 10 U 10 U 208-96-8-----Acenaphthylene 10 U 606-20-2----2,6-Dinitrotoluene 99-09-2----3-Nitroaniline 20 U 83-32-9-----Acenaphthene 10 U

SMS-MW-15

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Lab Sample ID: F1135-17B Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) MLLab File ID: S3E5531

Date Received: 08/17/07 Level: (low/med) LOW

% Moisture: decanted: (Y/N)___ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Dilution Factor: 1.0 Injection Volume: 1.0(uL)

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

117

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	·	TENTATIVELY	IDENTIFIED COMPOUNDS	SMS-MW-15
Lab Name	: MITKEM	CORPORATION	Contract:	

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-17B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5531

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

Number TICs found: 3

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. UI 2. UI 3. UI	NKNOWN NKNOWN	3.85 4.00 4.02	14 4 9	JB JB JB
4				
9. 10				
13.				
16. 17. 18. 19.				
21				
24. 25. 26.				
28.				

FORM I SV-TIC

SMS-MW-16D

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-09B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S3E5417

Level: (low/med) LOW

Date Received: 08/15/07

% Moisture: ____ decanted: (Y/N)___

Date Extracted: 08/16/07

Concentrated Extract Volume: 1000(uL)

CAS NO.

Date Analyzed: 08/18/07

Injection Volume: 1.0(uL)

COMPOUND

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

95-57-8 541-73-1 106-46-7 95-50-1 95-48-7 108-60-1 106-44-5 621-64-7 98-95-3 78-59-1 120-83-2 120-83-2 120-82-1 91-20-3 111-91-1 59-50-7	bis (2-Chloroethyl) Ether2-Chlorophenol1,3-Dichlorobenzene1,4-Dichlorobenzene1,2-Dichlorobenzene2-Methylphenol2,2'-oxybis (1-Chloropropane)4-MethylphenolN-Nitroso-di-n-propylamineHexachloroethaneIsophorone2-Nitrophenol2,4-Dimethylphenol2,4-Dichlorophenol1,2,4-TrichlorobenzeneNaphthalene4-ChloroanilineHexachlorobutadienebis (2-Chloroethoxy) methane4-Chloro-3-Methylphenol2-Methylnaphthalene	10 10 10 10 10 10 10 10 10 10 10 10 10 1	מממממממממממממממממממ
67-72-1 98-95-3 78-59-1 88-75-5 105-67-9	HexachloroethaneNitrobenzeneIsophorone2-Nitrophenol2,4-Dimethylphenol	10 10 10 10 10	ם ם ם ם
120-82-1 91-20-3 106-47-8 87-68-3 111-91-1 59-50-7	1,2,4-TrichlorobenzeneNaphthalene4-ChloroanilineHexachlorobutadienebis(2-Chloroethoxy)methane4-Chloro-3-Methylphenol	10 10 10 10 10 10	ם ח ח ח
77-47-4 88-06-2 95-95-4 91-58-7 88-74-4	Hexachlorocyclopentadiene2,4,6-Trichlorophenol2,4,5-Trichlorophenol2-Chloronaphthalene2-Nitroaniline	10 10 20 10 20	ם ח ח
208-96-8 606-20-2 99-09-2	DimethylphthalateAcenaphthylene2,6-Dinitrotoluene3-NitroanilineAcenaphthene	10 10 10 20 10	U U U U

FORM I SV-1

OLMO3.0

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Contract: SMS-MW-16D

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-09B

Sample wt/vol: 1000 (q/mL) ML Lab File ID: S3E5417

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: decanted: (Y/N) Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/18/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

51-28-5----2,4-Dinitrophenol 20 U 100-02-7----4-Nitrophenol 20 U 132-64-9-----Dibenzofuran 10 U 121-14-2----2,4-Dinitrotoluene 10 U 84-66-2-----Diethylphthalate 10 U 7005-72-3----4-Chlorophenyl-phenylether 10 U 86-73-7-----Fluorene 10 U 100-01-6----4-Nitroaniline 20 U 534-52-1----4,6-Dinitro-2-methylphenol 20 U 86-30-6----Nitrosodiphenylamine (1) 10 U 101-55-3-----4-Bromophenyl-phenylether 10 U 118-74-1-----Hexachlorobenzene 10 U 87-86-5-----Pentachlorophenol 20 U 85-01-8-----Phenanthrene 10 U 120-12-7-----Anthracene 10 U 86-74-8-----Carbazole 10 U 84-74-2-----Di-n-butylphthalate 10 U 206-44-0-----Fluoranthene 10 U 129-00-0-----Pyrene 10 U 85-68-7-----Butylbenzylphthalate 10 U 91-94-1----3,3'-Dichlorobenzidine 10 U 56-55-3-----Benzo(a) anthracene 10 U 218-01-9-----Chrysene 10 U 117-81-7-----bis(2-Ethylhexyl)phthalate 2 J 117-84-0-----Di-n-octylphthalate 10 U 205-99-2-----Benzo (b) fluoranthene 10 U 207-08-9-----Benzo(k)fluoranthene 10 U 50-32-8-----Benzo(a)pyrene 10 U 193-39-5-----Indeno (1, 2, 3-cd) pyrene 10 U 53-70-3-----Dibenzo(a,h)anthracene 10 U 191-24-2----Benzo(g,h,i)perylene 10 U (1) - Cannot be separated from Diphenylamine

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-16D

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-09B

Sample wt/vol: 1000 (g/mL) ML Lab File ID:

S3E5417

Level: (low/med) LOW

Date Received: 08/15/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/18/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH: ____

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Number TICs found: 4

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4. 112-84-5 5. 6.	UNKNOWN UNKNOWN UNKNOWN 13-DOCOSENAMIDE, (Z)-	3.93 4.08 4.10 15.08	12 4 8 7	JB JB JB JB NJ
8. 9. 10. 11. 12. 13.				
16. 17. 18.				
20. 21. 22. 23. 24. 25.				
27. 28. 29.				

FORM I SV-TIC

SMS-MW-16M

10 U

20 U

10 U

10 U

10 U

20 U

10 U

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-10B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5418

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: _____ decanted: (Y/N) Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/18/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

108-95-2----Phenol

88-74-4----2-Nitroaniline

208-96-8-----Acenaphthylene

99-09-2----3-Nitroaniline

83-32-9-----Acenaphthene

131-11-3-----Dimethylphthalate

606-20-2----2,6-Dinitrotoluene

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

111-44-4----bis(2-Chloroethyl)Ether 10 U 95-57-8----2-Chlorophenol 10 U 541-73-1----1,3-Dichlorobenzene 10 U 106-46-7----1,4-Dichlorobenzene 10 U 95-50-1----1,2-Dichlorobenzene 10 U 95-48-7----2-Methylphenol 10 U 108-60-1----2,2'-oxybis(1-Chloropropane) 10 U 106-44-5----4-Methylphenol 10 U 621-64-7----N-Nitroso-di-n-propylamine 10 U 67-72-1-----Hexachloroethane 10 U 98-95-3----Nitrobenzene 10 U 78-59-1-----Isophorone 10 U 88-75-5----2-Nitrophenol 10 U 105-67-9-----2,4-Dimethylphenol 10 U 120-83-2----2,4-Dichlorophenol 10 U 120-82-1----1,2,4-Trichlorobenzene 10 U 91-20-3----Naphthalene 10 U 106-47-8-----4-Chloroaniline 10 U 87-68-3-----Hexachlorobutadiene 10 U 111-91-1-----bis (2-Chloroethoxy) methane 10 U 59-50-7----4-Chloro-3-Methylphenol 10 U 10 U 91-57-6----2-Methylnaphthalene 77-47-4-----Hexachlorocyclopentadiene 10 U 88-06-2----2,4,6-Trichlorophenol 10 U 95-95-4----2,4,5-Trichlorophenol 20 U 91-58-7----2-Chloronaphthalene 10 U

FORM I SV-1

Lab Name: MITKEM CORPORATION

Contract:

SMS-MW-16M

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

20 U

20 U

10 U

10 U

10 U

20 U

10 U 10 U

10 U

10 U

10 U

10 U

10 U

1 J

Matrix: (soil/water) WATER

Lab Sample ID: F1135-10B

Sample wt/vol:

1000

(g/mL) ML

Lab File ID: S3E5418

Level:

(low/med)

LOW

Date Received: 08/15/07

% Moisture:

decanted: (Y/N)

Date Extracted: 08/16/07

Concentrated Extract Volume:

1000 (uL)

Date Analyzed: 08/18/07

Injection Volume:

1.0(uL)

Dilution Factor: 1.0

CONCENTRATION UNITS:

GPC Cleanup: (Y/N) N

pH:

CAS NO.	COMPOUND	(ug/L or ug/	/Kg) UG/L		Q
100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3	2,4-Dinitroph 4-Nitrophenol Dibenzofuran 2,4-Dinitroto Diethylphthal 4-Chloropheny	oluene		20 20 10 10 10	บ บ บ บ
00-/3-/	ridorelle	1		10	U

534-52-1-----4,6-Dinitro-2-methylphenol 86-30-6----Nitrosodiphenylamine (1) 101-55-3----4-Bromophenyl-phenylether 118-74-1-----Hexachlorobenzene

87-86-5-----Pentachlorophenol 85-01-8-----Phenanthrene 120-12-7-----Anthracene

100-01-6-----4-Nitroaniline

86-74-8-----Carbazole 84-74-2----Di-n-butylphthalate

206-44-0-----Fluoranthene 129-00-0-----Pyrene 85-68-7-----Butylbenzylphthalate

91-94-1----3,3'-Dichlorobenzidine 56-55-3-----Benzo (a) anthracene 218-01-9-----Chrysene

117-81-7-----bis(2-Ethylhexyl)phthalate 117-84-0-----Di-n-octylphthalate 205-99-2-----Benzo(b) fluoranthene 207-08-9-----Benzo(k)fluoranthene

50-32-8-----Benzo (a) pyrene 193-39-5-----Indeno (1, 2, 3-cd) pyrene

53-70-3-----Dibenzo(a,h)anthracene 191-24-2----Benzo(g,h,i)perylene

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-16M Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-10B

Sample wt/vol: 1000 (q/mL) ML Lab File ID: S3E5418

Level: (low/med) LOW

Date Received: 08/15/07

% Moisture: ____ decanted: (Y/N)___

Date Extracted: 08/16/07

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 08/18/07

Injection Volume: 1.0(uL)

Number TICs found: 3

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1.	UNKNOWN	3.93	14	1
2.	UNKNOWN	4.08	5	JВ
3.	UNKNOWN	4.10	9	JΒ
4				
5.				
6				
/ •				
8.		_ -		
8. 9.				-
10. 11. 12.				
 11.				
12.		-		
13.				
13. 14.				
		<u> </u>		
				
16. 17		 -		
			· · · · · · · · · · · · · · · · · · ·	
18.		-	· · · · · · · · · · · · · · · · · · ·	
エノ・				
20.				
41.				
22		-		<u> </u>
	_			
<u>4</u> T .				
۵0.				
4).				
30				

FORM I SV-TIC

SMS-MW-16S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-16B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5530

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: decanted: (Y/N) Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

CAS NO.	COMPOUND	(ug/L or ug/kg)) UG/Li	Q
95-57-8 541-73-1 106-46-7 95-50-1 95-48-7 108-60-1 106-44-5 621-64-7 67-72-1	bis(2-Chloroet2-Chlorophenol1,3-Dichlorobe1,4-Dichlorobe1,2-Dichlorobe2-Methylphenol2,2'-oxybis(14-MethylphenolN-Nitroso-di-nHexachloroetha	nzene nzene nzene Chloropropane) -propylamine	10 10 10 10 10 10 10 10 10	מממממממממ
67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 120-83-2 120-82-1 91-20-3 111-91-1 59-50-7 91-57-6 77-47-4 88-06-2 91-58-7 88-74-4 131-11-3	HexachloroethaNitrobenzeneIsophorone2.Nitrophenol2,4-Dimethylph2,4-Dichloroph1,2,4-TrichlorNaphthalene4-ChloroanilinHexachlorobutabis(2-Chloroet2-Methylnaphth2-Methylnaphth2,4,6-Trichlor2,4,5-Trichlor2-Chloronaphth2-NitroanilineDimethylphthal	enol enol obenzene e diene hoxy) methane hylphenol alene opentadiene ophenol ophenol alene	10 10 10 10 10 10 10 10 10 10 10 20 10	aaaaaaaaaaaaaaaaaaaaaaaaa
606-20-2 99-09-2-+	Acenaphthylene 2,6-Dinitrotoli 3-Nitroaniline Acenaphthene		10 10 20 10	บ บ บ บ

FORM I SV-1

SMS-MW-16S

Lab Name: MITKEM CORPORATION

Contract:

SAS No.:

Case No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-16B

Sample wt/vol:

Lab Code: MITKEM

Lab File ID: S3E5530

LOW

CONCENTRATION UNITS:

Level:

(low/med)

decanted: (Y/N)

1000 (g/mL) ML

Date Received: 08/17/07

% Moisture: _____

Date Extracted: 08/21/07

Concentrated Extract Volume:

1000 (uL)

Date Analyzed: 08/23/07

Injection Volume:

1.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH:

CAS NO.	COMPOUND	(ug/L or ug/	Q
100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7 86-74-8 206-44-0 129-00-0 85-68-7 91-94-1 205-99-2 217-84-0 217-84-0 205-99-2 207-08-9 50-32-8 193-39-5 191-24-2	Butylbenzylpht3,3'-DichlorobBenzo(a) anthraChrysenebis(2-EthylhexDi-n-octylphthBenzo(b) fluoraBenzo(k) fluoraBenzo(a) pyreneIndeno(1,2,3-cDibenzo(a,h) anBenzo(g,h,i) pe	uene te -phenylether methylphenol nylamine (1) phenylether ene nol alate halate enzidine cene yl)phthalate alate nthene nthene thracene rylene	20 U U U U U U U U U U U U U U U U U U U
(I) – Cannot be	separated from Di	pnenyramine	

FORM I SV-2

OLMO3.0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-16S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-16B

Sample wt/vol:

1000 (g/mL) ML

Lab File ID:

S3E5530

Level:

(low/med)

LOW

Date Received: 08/17/07

% Moisture: _____

decanted: (Y/N)

Date Extracted:08/21/07

Concentrated Extract Volume:

1000 (uL)

Date Analyzed: 08/23/07

Injection Volume:

1.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH:

CONCENTRATION UNITS: Number TICs found: 3 (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
=======================================		======	=======================================	1 !
1.	UNKNOWN	3.85	14	
2.	UNKNOWN	4.00	4	
3.	UNKNOWN	4.02	9	JB
4				
5.				
0.				
/ •				
1 2.				
1				
1 14.				
13.				
1 44.				
1 15.				
1 10.				
1 10.				
19.				
l ∡U.				
1 21.				
1 44.				
23.				
24.				
25.				
26.				
26. 27.				
28				
28. 29.				
30				
] 50.				
				l

FORM I SV-TIC

SMS-MW-17

Lab Name: MITKEM CORPORATION Contract:

GPC Cleanup: (Y/N) N

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-15B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5529

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: ____ decanted: (Y/N)___ Date Extracted: 08/21/07

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

pH:

CONTOURNED A DECNE TREEDIC.

108-95-2Phenol 111-44-4bis(2-Chloroethyl)Ether 10 U 95-57-82-Chlorophenol 10 U 106-46-71,3-Dichlorobenzene 10 U 95-58-71,2-Dichlorobenzene 10 U 95-48-72-Methylphenol 10 U 108-60-12,2'-oxybis(1-Chloropropane) 10 U 106-44-54-Methylphenol 10 U 621-64-7N-Nitroso-di-n-propylamine 67-72-1Hexachloroethane 10 U 98-95-3Nitrobenzene 10 U 98-95-3Nitrobenzene 10 U 105-67-9,4-Dimethylphenol 10 U 105-67-9,4-Dimethylphenol 10 U 120-82-11,2,4-Trichlorobenzene 10 U 110-82-11,2,4-Trichlorobenzene 10 U 11-91-1bis(2-Chloroethoxy)methane 10 U 111-91-1bis(2-Chloroethoxy)methane 10 U 191-57-62-Methylphenol 10 U 10 S-57-44-Chloro-3-Methylphenol 10 U 10 S-57-44-Chlorophenol 10 U 10 S-59-42,4,5-Trichlorophenol 10 U 11-91-1	CAS NO.		CONCENTRATION UNITS (ug/L or ug/Kg) UG/	· ·
	111-44-4 95-57-8 541-73-1 106-46-7 95-50-1 95-48-7 108-60-1 106-44-5 621-64-7 98-95-3 78-59-1 88-75-5 120-83-2 120-82-1 91-20-3 111-91-1 59-50-7 91-57-6 77-47-4 88-06-2 95-95-4 91-58-7	bis(2-Chloroethyl)2-Chlorophenol1,3-Dichlorobenzer1,4-Dichlorobenzer1,2-Dichlorobenzer2-Methylphenol2,2'-oxybis(1-Chlorophenol4-MethylphenolNitroso-di-n-proHexachloroethaneIsophorone2,4-Dimethylphenol2,4-Dimethylphenol2,4-Dichlorophenol1,2,4-TrichloroberNaphthalene4-ChloroanilineHexachlorobutadierbis(2-Chloroethoxy4-Chloro-3-Methylp2-Methylnaphthaler1,2,4-Trichlorophe2,4,5-Trichlorophe2,4,5-Trichlorophe2,4,5-Trichlorophe2,4,5-Trichlorophe2,6-Dinitrotoluene3-Nitroaniline	ne ne ne ne oropropane) opylamine l l nzene ne y) methane phenol ne ntadiene enol enol ne	10 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

FORM I SV-1

SMS-MW-17

Lab Name: MITKEM CORPORATION Contract:

(Y/N) N

GPC Cleanup:

SDG No.: MF1135 Lab Code: MITKEM Case No.: SAS No.:

Matrix: (soil/water) WATER Lab Sample ID: F1135-15B

Lab File ID: Sample wt/vol: 1000 (q/mL) ML S3E5529

(low/med) Date Received: 08/17/07 Level: LOW

Date Extracted: 08/21/07 decanted: (Y/N) % Moisture:

Date Analyzed: 08/23/07 Concentrated Extract Volume: 1000 (uL)

Dilution Factor: 1.0 Injection Volume: 1.0(uL)

pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L · Q 20 U 51-28-5----2,4-Dinitrophenol 20 U 100-02-7-----4-Nitrophenol 10 U 132-64-9-----Dibenzofuran 10 U 121-14-2----2,4-Dinitrotoluene 10 U 84-66-2----Diethylphthalate 10 U 7005-72-3----4-Chlorophenyl-phenylether 10 U 86-73-7-----Fluorene 20 U 100-01-6-----4-Nitroaniline 20 U 534-52-1----4,6-Dinitro-2-methylphenol 10 U 86-30-6----N-Nitrosodiphenylamine (1) 101-55-3----4-Bromophenyl-phenylether 10 U 10 U 118-74-1-----Hexachlorobenzene 87-86-5-----Pentachlorophenol 20 U 10 U 85-01-8-----Phenanthrene 10 U 120-12-7-----Anthracene 10 U 86-74-8-----Carbazole 10 U 84-74-2-----Di-n-butylphthalate 10 U 206-44-0-----Fluoranthene 10 U 129-00-0-----Pyrene 85-68-7-----Butylbenzylphthalate 10 U 91-94-1----3,3'-Dichlorobenzidine 10 U 10 U 56-55-3-----Benzo (a) anthracene 10 U 218-01-9-----Chrysene 10 U 117-81-7-----bis(2-Ethylhexyl)phthalate 117-84-0-----Di-n-octylphthalate 10 U 205-99-2----Benzo (b) fluoranthene 10 U 207-08-9----Benzo(k) fluoranthene 10 U 50-32-8-----Benzo (a) pyrene 10 U 193-39-5----Indeno (1, 2, 3-cd) pyrene 10 U 53-70-3-----Dibenzo(a,h)anthracene 10 U 191-24-2----Benzo(g,h,i)perylene 10 U (1) - Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-17

EPA SAMPLE NO.

Tっト	Mama.	ו/עניבולוני בויענ	CODDODATION
Lan	Name:	MILLI K HIM	CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-15B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S3E5529

Level:

(low/med) LOW

Date Received: 08/17/07

% Moisture:

decanted: (Y/N)___

Date Extracted: 08/21/07

Concentrated Extract Volume:

Number TICs found: 3

1000 (uL)

Date Analyzed: 08/23/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

			_	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1. 2. 3. 4.	UNKNOWN UNKNOWN UNKNOWN	3.85 4.00 4.02		JB JB
5				
12. 13.				
15 16 17 18 19				
20. 21. 22.				
25. 26. 27.				
28. 29. 30.				

FORM I SV-TIC

SMS-MW-2

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-13B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5525

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: ____ decanted: (Y/N)____ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

108-95-2	Phenol	10	U
111-44-4	bis(2-Chloroethyl)Ether	10	U
	2-Chlorophenol	10	U
	1,3-Dichlorobenzene	10	υ
	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	U
	2-Methylphenol	10	U
	2,2'-oxybis(1-Chloropropane)	10	U
106-44-5	4-Methylphenol	10	U
	N-Nitroso-di-n-propylamine	10	U
	Hexachloroethane	10	U
98-95-3	Nitrobenzene	10	U
78-59-1	Isophorone	10	U
88-75-5	2-Nitrophenol	10	U .
105-67-9	2,4-Dimethylphenol	10	U
120-83-2	2,4-Dichlorophenol	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	U
	Naphthalene	10	
	4-Chloroaniline	10	U
	Hexachlorobutadiene	10	U
	bis(2-Chloroethoxy)methane	10	U
	4-Chloro-3-Methylphenol	10	U
	2-Methylnaphthalene	10	U
	Hexachlorocyclopentadiene	10	-
	2,4,6-Trichlorophenol	10	1
	2,4,5-Trichlorophenol	20	1
	2-Chloronaphthalene	10	U
	2-Nitroaniline	20	U
	Dimethylphthalate	10	U,
	Acenaphthylene	10	U
	2,6-Dinitrotoluene	10	1
	3-Nitroaniline	. 20	U
83-32-9	Acenaphthene	10	Ū

FORM I SV-1

SMS-MW-2

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-13B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5525

Date Received: 08/17/07 Level: (low/med) LOW

Date Extracted: 08/21/07 % Moisture: decanted: (Y/N)

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 08/23/07

Dilution Factor: 1.0 Injection Volume: 1.0(uL)

GPC Cleanup: (Y/N) N pH:

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L CAS NO. COMPOUND

E1 20 E	2.4 Dinitrophonol	20	IJ
	2,4-Dinitrophenol	1	1
	4-Nitrophenol	20	
	Dibenzofuran	10	1
	2,4-Dinitrotoluene	10	
	Diethylphthalate	10	
	4-Chlorophenyl-phenylether	10	l .
	Fluorene	10	1
	4-Nitroaniline	20	I
	4,6-Dinitro-2-methylphenol	20	I
	N-Nitrosodiphenylamine (1)	10	
101-55-3	4-Bromophenyl-phenylether	10	
	Hexachlorobenzene	10	Ū
87-86-5	Pentachlorophenol	20	U
	Phenanthrene	10	U.
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
	Di-n-butylphthalate	10	
	Fluoranthene	10	
129-00-0		10	
	Butylbenzylphthalate	10	
91-94-1	3,3'-Dichlorobenzidine	10	
	Benzo (a) anthracene	10	
	Chrysene	10	
	bis(2-Ethylhexyl)phthalate	10	
117-84-0	Di-n-octylphthalate	10	
205-99-2	Benzo (b) fluoranthene	10	1 -
	Benzo(k) fluoranthene	10	
ZU/~UO~J~~~~ EN 33 0	Benzo(a) pyrene	10	
30-32-0 102 20 E	Tridono (1 2 2 ad/pursono		1
	Indeno (1, 2, 3-cd) pyrene	10	1
	Dibenzo (a, h) anthracene	10	1
191-24-2	Benzo(g,h,i)perylene	10	U

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-2	
SMS-MW-2	

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-13B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S3E5525

Level: (low/med) LOW

Date Received: 08/17/07

% Moisture: ____ decanted: (Y/N)___

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Date Extracted: 08/21/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ____

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Number TICs found: 4

CAS NUMBER COMPOUND NAME RTEST. CONC. ======= _____ ===== ______ UNKNOWN 3.85 16 JB 2. UNKNOWN 3.96 4 JB 3. UNKNOWN 3.99 4 JB 10 JB UNKNOWN 4.02 4. 9. 10. 11. 12. 13. 16. 17. 18. 19. 20. 21. 22. 23. 25. 26. 27. 28. 29. 30.

FORM I SV-TIC

SMS-MW-3
Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-12B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5524

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

CAS NO.	COMPOUND (ug/L or ug/	/kg) UG/L	Q.
108-95-2	Phenol	10	U
	bis(2-Chloroethyl)Ether	10	
95-57-8	2-Chlorophenol	10	
	1,3-Dichlorobenzene	10	1
	1,4-Dichlorobenzene	10	ט
95-50-1	1,2-Dichlorobenzene	10	1
95-48-7	2-Methylphenol	10	U
	2,2'-oxybis(1-Chloropropane)	10	lυ
	4-Methylphenol	10	שו
621-64-7	N-Nitroso-di-n-propylamine	10	שו
	Hexachloroethane	10	1
	Nitrobenzene	10	1
	Isophorone	10	1
	2-Nitrophenol	10	1
105-67-9	2,4-Dimethylphenol	10	1
120-83-2	2,4-Dichlorophenol	10	+
120-82-1	1,2,4-Trichlorobenzene	10	I .
91-20-3	Naphthalene	10	,
106-47-8	4-Chloroaniline	10	1
	Hexachlorobutadiene	10	
	bis(2-Chloroethoxy) methane	10	1
59-50-7	4-Chloro-3-Methylphenol	10	U
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichĺorophenol	10	Ū
	2,4,5-Trichlorophenol	20	U
	2-Chloronaphthalene	10	שׁו
	2-Nitroaniline	20	שׁ
	Dimethylphthalate	10	
	Acenaphthylene	10	
606-20-2	2,6-Dinitrotoluene	10	
99-09-2	3-Nitroaniline	20	
	Acenaphthene	10	1
		l	

FORM I SV-1

SMS-MW-3

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-12B

Sample wt/vol: 1000 (q/mL) ML Lab File ID: S3E5524

Level: (low/med) LOW Date Received: 08/17/07

Date Extracted: 08/21/07 decanted: (Y/N) % Moisture:

Concentrated Extract Volume: Date Analyzed: 08/23/07 1000 (uL)

Injection Volume: Dilution Factor: 1.0 1.0(uL)

pH:

GPC Cleanup: (Y/N) N

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

	confootb (ag/fi of ag	,, 1,9, 00,1	· · · ×
51-28-5	2,4-Dinitrophenol		20 U
	4-Nitrophenol	-	20 U
	Dibenzofuran	-	10 U
	2,4-Dinitrotoluene	-	10 U
84-66-2	Diethylphthalate	· ·	10 U
7005-72-3	4-Chlorophenyl-phenylether	-	10 U
86-73-7	Fluorene	-	10 U
	4-Nitroaniline	-	20 U
534-52-1	4,6-Dinitro-2-methylphenol	-	20 U
	N-Nitrosodiphenylamine (1)	-	10 U
101-55-3	4-Bromophenyl-phenylether —	-	10 U
118-74-1	Hexachlorobenzene	-	10 U
	Pentachlorophenol	-	20 U
	Phenanthrene	-	10 U
120-12-7	Anthracene	-	10 U
86-74-8	Carbazole	-	10 U
84-74-2	Di-n-butylphthalate	-	10 U
206-44-0	Fluoranthene	- -	10 U
129-00-0	Pyrene	-	10 U
	Butylbenzylphthalate		10 U
	3,3'-Dichlorobenzidine	•	10 U
56-55-3	Benzo (a) anthracene	-	10 U
218-01-9	Chrysene		10 U
117-81-7	bis(2-Ethylhexyl)phthalate		1 J
117-84-0	Di-n-octylphthalate		10 U
205-99-2	Benzo(b) fluoranthene		10 U
	Benzo(k)fluoranthene		10 U
50-32-8	Benzo(a)pyrene		10 U
193-39-5	Indeno (1,2,3-cd) pyrene		10 U
53-70-3	Dibenzo(a,h)anthracene		10 U
191-24-2	Benzo(g,h,i)perylene		10 U
<u> </u>			

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-3	

Lab	Name:	MITKEM	CORPORATION
-----	-------	--------	-------------

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-12B

Sample wt/vol:

1000 (g/mL) ML

Lab File ID: S3E5524

Level:

(low/med)

LOW

Date Received: 08/17/07

% Moisture:

decanted: (Y/N)

Date Extracted: 08/21/07

Concentrated Extract Volume:

1000 (uL)

Date Analyzed: 08/23/07

Injection Volume:

1.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Number TICs found: 4

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	=======================================	======		=====
1.	UNKNOWN	3.85	16	
2.	UNKNOWN	4.00	5	JB
3.	UNKNOWN	4.02	10	
4.	UNKNOWN	4.11	18	JB
5				
6.				
1 . / •				
·).				
1 1 1 6				·
1 1/4				
14. 15.				
15				
16.				
1 10.				
1 20.				
41.				
1 20.				
. 44.				
				,
∠6.				
1 20.				
43.				
30				

FORM I SV-TIC

SMS- MW-4

Q

Lab Name: MITKEM CORPORATION

Contract:

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-14B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5526

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: decanted: (Y/N) Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

COMPOUND

88-06-2----2,4,6-Trichlorophenol

95-95-4----2,4,5-Trichlorophenol

91-58-7----2-Chloronaphthalene

131-11-3-----Dimethylphthalate

606-20-2-----2,6-Dinitrotoluene

88-74-4----2-Nitroaniline

208-96-8-----Acenaphthylene

99-09-2----3-Nitroaniline

83-32-9-----Acenaphthene

GPC Cleanup: (Y/N) N pH:

CAS NO.

108-95-2----Phenol 10 U 111-44-4----bis(2-Chloroethyl)Ether 10 U 95-57-8----2-Chlorophenol 10 U 541-73-1-----1,3-Dichlorobenzene 10 U 106-46-7----1,4-Dichlorobenzene 10 U 95-50-1-----1,2-Dichlorobenzene 10 U 95-48-7-----2-Methylphenol 10 U 108-60-1-----2,2'-oxybis(1-Chloropropane) 10 U 106-44-5----4-Methylphenol 10 U 621-64-7----N-Nitroso-di-n-propylamine 10 U 10 U 67-72-1-----Hexachloroethane 98-95-3-----Nitrobenzene 10 U 10 U 78-59-1-----Isophorone 88-75-5----2-Nitrophenol 10 U 105-67-9----2,4-Dimethylphenol 10 U 120-83-2----2,4-Dichlorophenol 10 U 120-82-1-----1,2,4-Trichlorobenzene 10 U 91-20-3-----Naphthalene 10 U 10 U 106-47-8-----4-Chloroaniline 87-68-3-----Hexachlorobutadiene 10 U 111-91-1-----bis (2-Chloroethoxy) methane 10 U 10 U 59-50-7----4-Chloro-3-Methylphenol 91-57-6----2-Methylnaphthalene 10 U 77-47-4----Hexachlorocyclopentadiene 10 U

FORM I SV-1

OLM03.0

10 U

20 U

10 U

20 U

10 U

10 U

10 | U

20 U

10 U

SMS- MW-4

Q

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-14B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5526

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: decanted: (Y/N) Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

COMPOUND

GPC Cleanup: (Y/N) N pH:

CAS NO.

51-28-5----2,4-Dinitrophenol 20 U 100-02-7----4-Nitrophenol 20 U 132-64-9------Dibenzofuran 10 U 121-14-2----2,4-Dinitrotoluene 10 U 84-66-2-----Diethylphthalate 10 U 7005-72-3----4-Chlorophenyl-phenylether 10 U 86-73-7-----Fluorene 10 U 100-01-6-----4-Nitroaniline 20 U 534-52-1-----4,6-Dinitro-2-methylphenol 20 U 86-30-6----N-Nitrosodiphenylamine (1) 10 U 101-55-3-----4-Bromophenyl-phenylether 10 U 10 U 118-74-1-----Hexachlorobenzene 87-86-5----Pentachlorophenol 20 U 10 85-01-8-----Phenanthrene U 120-12-7-----Anthracene 10 U 10 U 86-74-8-----Carbazole 84-74-2-----Di-n-butylphthalate 10 U 10 U 206-44-0----Fluoranthene 10 U 129-00-0----Pyrene 85-68-7-----Butylbenzylphthalate 91-94-1-----3,3'-Dichlorobenzidine 10 U 10 U 56-55-3-----Benzo (a) anthracene 10 U 218-01-9-----Chrysene 10 U 117-81-7-----bis(2-Ethylhexyl)phthalate 10 U 117-84-0-----Di-n-octylphthalate 10 U 205-99-2----Benzo (b) fluoranthene 10 U 207-08-9-----Benzo(k) fluoranthene 10 U 50-32-8-----Benzo (a) pyrene 10 U 193-39-5----Indeno (1, 2, 3-cd) pyrene 10 U

CONCENTRATION UNITS:

(uq/L or uq/Kq) UG/L

(1) - Cannot be separated from Diphenylamine

53-70-3-----Dibenzo(a,h)anthracene

191-24-2----Benzo(q,h,i)perylene

FORM I SV-2

OLM03.0

10 U

10 U

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS- MW-4

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-14B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S3E5526

Level:

30.

(low/med) LOW

Date Received: 08/17/07

% Moisture: _____ decanted: (Y/N) ___ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS: (uq/L or uq/Kq) uq/L

Number TICs found: 7

CAS NUMBER COMPOUND NAME RTEST. CONC. _______________ _____ 1. 3.85 16 JB UNKNOWN UNKNOWN 3.96 6 JB 2. 3. UNKNOWN 4.00 5 JB 13 JB 4. UNKNOWN 4.03 14 | NJ 5. 556-67-2 CYCLOTETRASILOXANE, OCTAMETH 4.22 UNKNOWN 7.46 7 | J 6. 7. UNKNOWN 8.13 18 J 8. 9. 10. 11. 12. 13. 16. 17. 18. 19. 20. 21. 22. 23. 25. 26. 27. 28. 29.

FORM I SV-TIC

SMS- MW-4MS

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-14BMS

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5563

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: ____ decanted: (Y/N) Date Extracted: 08/21/07

Concentrated Extract Volume: Date Analyzed: 08/24/07 1000 (uL)

Injection Volume: Dilution Factor: 1.0 1.0(uL)

GPC Cleanup: (Y/N) N pH:

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L CAS NO. COMPOUND 0

			~
108-95-2	Phenol	40	
	bis(2-Chloroethyl)Ether	41	
95-57-8	2-Chlorophenol	44	
	1,3-Dichlorobenzene	38	
	1,4-Dichlorobenzene	38	
	1,2-Dichlorobenzene	38	
	2-Methylphenol	38	
108-60-1	2,2'-oxybis(1-Chloropropane)	52	
	4-Methylphenol	41	
	N-Nitroso-di-n-propylamine	43	
67-72-1	Hexachloroethane	40	
	Nitrobenzene	45	
78-59-1	Isophorone	43	
88-75-5	2-Nitrophenol	46	
105-67-9	2,4-Dimethylphenol	22	
120-83-2	2,4-Dichlorophenol	45	
120-82-1	1,2,4-Trichlorobenzene	39	
	Naphthalene	41	
	4-Chloroaniline	14	
	Hexachlorobutadiene	38	
	bis(2-Chloroethoxy)methane	42	
	4-Chloro-3-Methylphenol	42	
91-57-6	2-Methylnaphthalene	42	
	Hexachlorocyclopentadiene	19	
	2,4,6-Trichlorophenol	45	
95-95-4	2,4,5-Trichlorophenol	44	
	2-Chloronaphthalene	46	
	2-Nitroaniline	47	
131-11-3	Dimethylphthalate	48	
	Acenaphthylene	42	
	2,6-Dinitrotoluene	46	
	3-Nitroaniline	43	
83-32-9	Acenaphthene	45	
· · · · · · · · · · · · · · · · · · ·			

FORM I SV-1

Lab Name: MITKEM CORPORATION Contract: SMS- MW-4MS

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-14BMS

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5563

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: _____ decanted: (Y/N)___ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/24/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
51-28-5	2,4-Dinitroph	enol	6	2

CONCENTRATION UNITS:

	51-28-52,4-Dinitrophenol	62		
	100-02-74-Nitrophenol	57		
	132-64-9Dibenzofuran	47		
	121-14-22,4-Dinitrotoluene	48		
	84-66-2Diethylphthalate	49		
	7005-72-34-Chlorophenyl-phenylether	44		
	86-73-7Fluorene	46		
ł	100-01-64-Nitroaniline	34		
	534-52-14,6-Dinitro-2-methylphenol	56		
	86-30-6N-Nitrosodiphenylamine (1)	21		
ı	101-55-34-Bromophenyl-phenylether	46		
ı	118-74-1Hexachlorobenzene	45		
ĺ	87-86-5Pentachlorophenol	66		
	85-01-8Phenanthrene	52		
	120-12-7Anthracene	47		
	86-74-8Carbazole	49		
	84-74-2Di-n-butylphthalate	56		
	206-44-0Fluoranthene	51		
	129-00-0Pyrene	53		
	85-68-7Butylbenzylphthalate	54		
	91-94-13,3 ¹ -Dichlorobenzidine	10	Ū	
	56-55-3Benzo (a) anthracene	49		
	218-01-9Chrysene	49		
	117-81-7bis(2-Ethylhexyl)phthalate	55		
	117-84-0Di-n-octylphthalate	59		
	205-99-2Benzo (b) fluoranthene	50		
	207-08-9Benzo(k)fluoranthene	56		
	50-32-8Benzo(a)pyrene	38		
	193-39-5Indeno(1,2,3-cd)pyrene	49		
	53-70-3Dibenzo(a,h)anthracene	50		
	191-24-2Benzo(g,h,i)perylene	47		

(1) - Cannot be separated from Diphenylamine

SMS- MW-4MSD

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

1000 (uL)

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-14BMSD

Sample wt/vol:

1000 (g/mL) ML

LOW

Lab File ID:

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

S3E5564

Date Received: 08/17/07

Level: (low/med)

% Moisture: ____ decanted: (Y/N)___

Date Extracted: 08/21/07

Concentrated Extract Volume:

CAS NO.

Date Analyzed: 08/24/07

Injection Volume: 1.0(uL)

COMPOUND

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

	Phenol	
	1 11C11C1	40
	bis(2-Chloroethyl)Ether	42
95-57-8	2-Chlorophenol	44
	1,3-Dichlorobenzene	38
	1,4-Dichlorobenzene	39
	1,2-Dichlorobenzene	39
95-48-7	2-Methylphenol	31
108-60-1	2,2'-oxybis(1-Chloropropane)	52
106-44-5	4-Methylphenol	37
	N-Nitroso-di-n-propylamine	45
67-72-1	Hexachloroethane	41
	Nitrobenzene	46
78-59-1		44
	2-Nitrophenol	48
	2,4-Dimethylphenol	46 J
	2,4-Dichlorophenol	44
	1,2,4-Trichlorobenzene	
120-82-1	Nanhthalana	40
306 47 0	Naphthalene 4-Chloroaniline	41
		16
	Hexachlorobutadiene	38
TTT-2T-T	bis(2-Chloroethoxy) methane	42
	4-Chloro-3-Methylphenol	42
	2-Methylnaphthalene	43
77-47-4	Hexachlorocyclopentadiene	21
	2,4,6-Trichlorophenol	43
	2,4,5-Trichlorophenol	45
	2-Chloronaphthalene	47
	2-Nitroaniline	48
131-11-3	Dimethylphthalate	49
	Acenaphthylene	43
	2,6-Dinitrotoluene	48
99-09-2	3-Nitroaniline	32
	Acenaphthene	45

FORM I SV-1

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-14BMSD

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5564

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/24/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

	UG/L Q
51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate 91-94-13,3'-Dichlorobenzidine 56-55-3Benzo(a) anthracene 218-01-9	63 57 47 49 49 45 47 32 58 16 47 46 64 54 44 49 57 52 53 54 1 50 51 56 36 50 52 48

FORM I SV-2

SMS- MW-4RA

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-14BRA

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5562

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: decanted: (Y/N) ___ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/24/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

CAS NO.	COMPOUND (ug/L OI ug/	/kg/ 00/11	Q
108-95-2	Phenol	10	U
	bis(2-Chloroethyl)Ether	10	U
95-57-8	2-Chlorophenol		U
	1,3-Dichlorobenzene		U
	1,4-Dichlorobenzene		U
	1,2-Dichlorobenzene		Ū
	2-Methylphenol		U
	2,2'-oxybis(1-Chloropropane)		U
	4-Methylphenol		U
	N-Nitroso-di-n-propylamine		Ū
	Hexachloroethane		Ū
	Nitrobenzene		Ū
	Isophorone		Ū
	2-Nitrophenol		Ū
105-67-9	2,4-Dimethylphenol		Ū
120-83-2	2,4-Dichlorophenol		Ū
120-82-1	1,2,4-Trichlorobenzene		Ü
	Naphthalene		υ
106-47-8	4-Chloroaniline		Ū
	Hexachlorobutadiene		υ
	bis (2-Chloroethoxy) methane		υ
59-50-7	4-Chloro-3-Methylphenol		υ
91-57-6	2-Methylnaphthalene		Ū
77-47-4	Hexachlorocyclopentadiene		Ū
	2,4,6-Trichlorophenol		Ū
	2,4,5-Trichlorophenol		Ü
	2-Chloronaphthalene	10	
	2-Nitroaniline	20	1
	Dimethylphthalate	10	1
	Acenaphthylene		U U
	2,6-Dinitrotoluene		Ü
	3-Nitroaniline		Ü
	Acenaphthene	10	1
03-34-3	Acetapitchene	10	
			l

FORM I SV-1

SMS- MW-4RA

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-14BRA

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5562

Level: (low/med) LOW Date Received: 08/17/07

% Moisture: decanted: (Y/N) Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/24/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

CAS NO.	COMPOUND (6	19/11 OF (49/149/	00/11	Q
51-28-5	2,4-Dinitrophenol			20	U
	4-Nitrophenol			20	I .
	Dibenzofuran			10	
	2,4-Dinitrotoluene			10	1
84-66-2	Diethylphthalate		-	10	
	4-Chlorophenyl-pher	nvlether		10	
86-73-7	Fluorene			10	
	4-Nitroaniline			20	
	4,6-Dinitro-2-methy	/lphenol		20	
	N-Nitrosodiphenylar			10	
	4-Bromophenyl-pheny			10	t
	Hexachlorobenzene			10	1
	Pentachlorophenol			20	
85-01-8	Phenanthrene	·		10	
	Anthracene			10	
	Carbazole			10	
	Di-n-butylphthalate			10	1
206-44-0	Fluoranthene			10	
129-00-0		:	-	10	1
85-68-7	Butylbenzylphthalat			10	
	3,3'-Dichlorobenzio			10	1
	Benzo (a) anthracene			10	
218-01-9			-	10	
	bis(2-Ethylhexyl)pl	thalate		. 10	f
117-84-0	Di-n-octylphthalate			10	
	Benzo (b) fluoranther		—	10	i .
	Benzo(k) fluoranthe			10	
	Benzo (a) pyrene			10	
	Indeno (1, 2, 3 - cd) pyr	rene		10	
	Dibenzo (a, h) anthra			10	I .
	Benzo(q,h,i)peryle			10	
Cannot be	gonarated from Dinhons				

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS- MW-4RA

Lab Name: MITKEM CORPORATION

Contract:

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-14BRA

Sample wt/vol:

Lab Code: MITKEM

1000 (g/mL) ML

Lab File ID:

S3E5562

Level:

(low/med)

Concentrated Extract Volume:

Date Received: 08/17/07

% Moisture:

decanted: (Y/N)____

1000 (uL)

Date Extracted: 08/21/07

Date Analyzed: 08/24/07

Injection Volume:

1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

CONCENTRATION UNITS: Number TICs found: 4 (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4.	UNKNOWN UNKNOWN UNKNOWN	3.96 3.99 7.40 8.06	5	JB JB J
5. 6. 7. 8. 9.				
11. 12. 13.				
15. 16. 17.				
19. 20.				
23. 24.				
26. 27. 28. 29.				

FORM I SV-TIC

OLMO3.0

SMS-MW-5

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-03B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5419

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/18/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (uq/L or uq/Kq) UG/L Q

CAS NO.	COMPOUND (ug/II or ug/	rig, og/ii	Q
108-95-2	Phenol	10	U
	bis(2-Chloroethyl)Ether	10	1
	2-Chlorophenol	10	1
	1,3-Dichlorobenzene	10	
106-46-7	1,4-Dichlorobenzene	10	
95-50-1	1,2-Dichlorobenzene	10	
95-48-7	2-Methylphenol	10	
	2,2'-oxybis(1-Chloropropane)	10	
	4-Methylphenol	10	1
	N-Nitroso-di-n-propylamine	10	l .
	Hexachloroethane	10	
	Nitrobenzene	10	
	Isophorone	10	
	2-Nitrophenol	10	
105-67-9	2,4-Dimethylphenol	10	
120-83-2	2,4-Dichlorophenol	10	
	1,2,4-Trichlorobenzene	10	
	Naphthalene	10	1
	4-Chloroaniline	10	
	Hexachlorobutadiene	10	
	bis (2-Chloroethoxy) methane	10	
59-50-7	4-Chloro-3-Methylphenol	10	
	2-Methylnaphthalene	10	
	Hexachlorocyclopentadiene	10	
	2,4,6-Trichlorophenol	10	
	2,4,5-Trichlorophenol	20	1
91-58-7	2-Chloronaphthalene	10	
	2-Nitroaniline	20	1
	Dimethylphthalate	10	1
	Acenaphthylene	10	1
	2,6-Dinitrotoluene	10	I .
	3-Nitroaniline	20	I .
	Acenaphthene	10	1
UU UU U		10	
		l	1

FORM I SV-1

SMS-MW-5

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-03B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5419

Level: (low/med) Date Received: 08/15/07 LOW

decanted: (Y/N)___ Date Extracted: 08/16/07 % Moisture:

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 08/18/07

Injection Volume: Dilution Factor: 1.0 1.0(uL)

GPC Cleanup: (Y/N) N pH:

> CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L O

	1	
51-28-52,4-Dinitrophenol	20	U
100-02-74-Nitrophenol	20	-
132-64-9Dibenzofuran	10	
121-14-22,4-Dinitrotoluene	10	
84-66-2Diethylphthalate	10	Ū
7005-72-34-Chlorophenyl-phenylether	10	Ū
86-73-7Fluorene	10	Ū
100-01-64-Nitroaniline	20	Ū
534-52-14,6-Dinitro-2-methylphenol	20	U
86-30-6N-Nitrosodiphenylamine (1)	10	U
101-55-34-Bromophenyl-phenylether	10	U
118-74-1Hexachlorobenzene	10	U
87-86-5Pentachlorophenol	20	Ū
85-01-8Phenanthrene	10	U
120-12-7Anthracene	10	U
86-74-8Carbazole	10	U
84-74-2Di-n-butylphthalate	10	Ū
206-44-0Fluoranthene	10	U
129-00-0Pyrene	10	U
85-68-7Butylbenzylphthalate	10	U
91-94-13,3'-Dichlorobenzidine	10	U
56-55-3Benzo (a) anthracene	10	U
218-01-9Chrysene	10	U
117-81-7bis(2-Ethylhexyl)phthalate	10	U
117-84-0Di-n-octylphthalate	10	
205-99-2Benzo (b) fluoranthene	10	Ū
207-08-9Benzo(k) fluoranthene	10	U
50-32-8Benzo(a) pyrene	10	
193-39-5Indeno (1, 2, 3-cd) pyrene	10	
53-70-3Dibenzo (a, h) anthracene	10	
191-24-2Benzo(g,h,i)perylene	10	U
- Cannot be separated from Diphenylamine		

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-03B

Sample wt/vol: 1000 (q/mL) ML

Lab File ID: S3E5419

Level:

(low/med) LOW

Concentrated Extract Volume:

Date Received: 08/15/07

% Moisture: _____ decanted: (Y/N)

1000 (uL)

Date Extracted: 08/16/07 Date Analyzed: 08/18/07

Injection Volume: 1.0(uL)

Number TICs found: 3

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
CAS NUMBER ====================================	COLIT COLVED TATALIES	1	=======================================	
26. 27. 28. 29. 30.				

FORM I SV-TIC

SMS-MW-56D

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-08B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S3E5421

Level: (low/med)

Date Received: 08/15/07

% Moisture: decanted: (Y/N)

LOW

Date Extracted:08/16/07

Concentrated Extract Volume:

1000(uL) Date Analyzed: 08/18/07

Injection Volume: 1.0(uL)

CAS NO.

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

	CONCENTRATION UNITS:	
COMPOUND	(ug/L or ug/Kg) UG/L	

Q

95-57-8 541-73-1 95-50-1 95-48-7 108-60-1 621-64-7 621-64-7 98-95-3 78-59-1 120-83-2 120-82-1 91-20-3 11-91-1 59-50-7	bis(2-Chloroethyl)Ether2-Chlorophenol1,3-Dichlorobenzene1,4-Dichlorobenzene1,2-Dichlorobenzene2-Methylphenol2,2'-oxybis(1-Chloropropane)4-MethylphenolN-Nitroso-di-n-propylamineHexachloroethaneNitrobenzeneIsophorone2-Nitrophenol2,4-Dimethylphenol2,4-Dichlorophenol1,2,4-TrichlorobenzeneNaphthalene4-ChloroanilineHexachlorobutadienebis(2-Chloroethoxy)methane4-Chloro-3-Methylphenol2-Methylnaphthalene	10 10 10 10 10 10 10 10 10 10 10 10 10 1	ממממממממממממממממממממ
67-72-1 98-95-3 78-59-1 88-75-5 105-67-9 120-83-2 120-82-1 91-20-3	HexachloroethaneNitrobenzeneIsophorone2-Nitrophenol2,4-Dimethylphenol2,4-TrichlorobenzeneNaphthalene	10 10 10 10 10 10 10	מממממממ
111-91-1 59-50-7 91-57-6 77-47-4 88-06-2 95-95-4	bis(2-Chloroethoxy)methane	10 10	บ บ
88-74-4 131-11-3 208-96-8 606-20-2 99-09-2	2-NitroanilineDimethylphthalateAcenaphthylene2,6-Dinitrotoluene3-NitroanilineAcenaphthene	20 10 10 10 20 10	ט ט ט ט ט

FORM I SV-1

SMS-MW-56D Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-08B

1000 (g/mL) ML Sample wt/vol: Lab File ID: S3E5421

Level: (low/med) Date Received: 08/15/07 LOW

decanted: (Y/N) % Moisture: Date Extracted: 08/16/07

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 08/18/07

Dilution Factor: 1.0 Injection Volume: 1.0(uL)

GPC Cleanup: (Y/N) N pH:

> CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) UG/L COMPOUND 0

51-28-52,4-Dinitrophenol		20 U 20 U 10 U 10 U 10 U
100-02-74-Nitrophenol 132-64-9Dibenzofuran		20 U 10 U 10 U 10 U 10 U
132-64-9Dibenzofuran		10 U 10 U 10 U 10 U
	 	10 U 10 U 10 U
	_ _ _ _	10 U 10 U
84-66-2Diethylphthalate		10 U
7005-72-34-Chlorophenyl-phenylether	_	I
86-73-7Fluorene	-1	10 U
100-01-64-Nitroaniline	i	20 U
534-52-14,6-Dinitro-2-methylphenol		20 U
86-30-6Nitrosodiphenylamine (1)		10 U
101-55-34-Bromophenyl-phenylether	-	10 U
118-74-1Hexachlorobenzene		10 U
87-86-5Pentachlorophenol	-	20 U
85-01-8Phenanthrene		10 U
120-12-7Anthracene	-	10 U
86-74-8Carbazole	-	10 U
84-74-2Di-n-butylphthalate	·	10 U
206-44-0Fluoranthene	-	10 U
129-00-0Pyrene		10 บ
85-68-7Butylbenzylphthalate	-	10 U
91-94-13,3'-Dichlorobenzidine	-	10 U
56-55-3Benzo (a) anthracene	-	10 U
218-01-9Chrysene	- .	10 U
117-81-7bis(2-Ethylhexyl)phthalate		3 J
117-84-0Di-n-octylphthalate		10 U
205-99-2Benzo(b) fluoranthene	-	10 U
207-08-9Benzo(k) fluoranthene	-	10 U
50-32-8Benzo (a) pyrene		10 U
193-39-5Indeno (1, 2, 3-cd) pyrene	-	10 U
53-70-3Dibenzo (a, h) anthracene	- .	10 U
191-24-2Benzo(g,h,i)perylene	_	10 U
\ - Cannot be generated from Diphenylamine		

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

OLMO3.0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-56D	
------------	--

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-08B

Sample wt/vol:

1000 (q/mL) ML

decanted: (Y/N)

Lab File ID: S3E5421

Level:

(low/med)

LOW

Date Received: 08/15/07

% Moisture: ____

Date Extracted: 08/16/07

Concentrated Extract Volume:

1000 (uL)

Date Analyzed: 08/18/07

Injection Volume:

Number TICs found: 2

1.0 (uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1. 2. 3. 4.	UNKNOWN	3.93		ЈВ ЈВ
6. 7. 8.				
11. 12. 13.				
16. 17.				
20. 21. 22.				
24. 25. 26. 27.				
28. 29. 30.				

FORM I SV-TIC

SMS-MW-6D

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-02B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5420

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/18/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L (

CAS NO.	COMPOUND (ug/L Of	ug/kg/ UG/L	Q
108-95-2	Dhenol	1	.0 U
	bis(2-Chloroethyl)Ether		.0 บ
	2-Chlorophenol		.0 ט
	1,3-Dichlorobenzene	1	.0 U
	1,4-Dichlorobenzene		.0 U
	1,2-Dichlorobenzene		.0 U
	2-Methylphenol	 {	.0 U
	2,2'-oxybis(1-Chloropropan		.0 U
	4-Methylphenol		.0 U
621-64-7	N-Nitroso-di-n-propylamine		Ū
67-72-1	Hexachloroethane		O U
	Nitrobenzene		.O U
	Isophorone		.0 U
	2-Nitrophenol		.O U
	2,4-Dimethylphenol		.0 υ
	2,4-Dichlorophenol	1	.ס ע
120-82-1	1,2,4-Trichlorobenzene		.ס ע
	Naphthalene	_ 1	.0 U
106-47-8	4-Chloroaniline	<u> </u>	.0 U
87-68-3	Hexachlorobutadiene	<u> </u>	.0 U
111-91-1	bis (2-Chloroethoxy) methane	1	.0 U
	4-Chloro-3-Methylphenol	1	.0 U
91-57-6	2-Methylnaphthalene	1	.0 U
77-47-4	Hexachlorocyclopentadiene	1	.0 U
	2,4,6-Trichlorophenol		.0 ט
	2,4,5-Trichlorophenol	2	0 U
	2-Chloronaphthalene		.0 U
	2-Nitroaniline	ř	0 U
	Dimethylphthalate		.0 U
	Acenaphthylene		.0 ד
	2,6-Dinitrotoluene		.0 U
	3-Nitroaniline		0 U
83-32-9	Acenaphthene	1	.0 U

FORM I SV-1

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-02B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5420

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: decanted: (Y/N) Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/18/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

51-28-5	2,4-Dinitrophenol	20	IJ
	4-Nitrophenol	20	_
	Dibenzofuran	10	i
	2,4-Dinitrotoluene	10	1
	Diethylphthalate	10	
7005-72-3	4-Chlorophenyl-phenylether	10	1
86-73-7	Fluorene	10	. –
	4-Nitroaniline	20	
	4,6-Dinitro-2-methylphenol	20	
86-30-6	N-Nitrosodiphenylamine (1)	10	
101-55-3	4-Bromophenyl-phenylether	10	
118-74-1	Hexachlorobenzene	10	ì
97-96-5	Pentachlorophenol	20	
95_01_9	Phenanthrene	10	
	Anthracene	10	
	Carbazole	10	
	Carbazore Di-n-butylphthalate	10	
206 44 0	Fluoranthene		ı
		10	
129-00-0	Pyrelle	10	ı
	Butylbenzylphthalate	10	,
	3,3'-Dichlorobenzidine	10	
	Benzo (a) anthracene	10	
218-01-9		10	ת
117-81-7	bis(2-Ethylhexyl)phthalate	4	J
117-84-0	Di-n-octylphthalate	10	
205-99-2	Benzo(b) fluoranthene	10	
207-08-9	Benzo(k) fluoranthene	. 10	
50-32-8	Benzo(a)pyrene	10	
193-39-5	Indeno(1,2,3-cd)pyrene		
53-70-3	Dibenzo(a,h)anthracene		
191-24-2	Benzo(g,h,i)perylene	10	Ū
\ Cannot bo	generated from Diphonulamine		

(i) - Cannot be separated from Diphenylamine

FORM I SV-2

OLMO3.0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-6D

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-02B

Sample wt/vol:

1000 (g/mL) ML

Lab File ID:

S3E5420

Level:

(low/med)

Date Received: 08/15/07

% Moisture: decanted: (Y/N)

LOW

Date Extracted: 08/16/07

Concentrated Extract Volume:

1000 (uL)

Date Analyzed: 08/18/07

Injection Volume:

Number TICs found: 3

1.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH: ___

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST.	CONC.	Q
1. UI	IKNOWN	3.93		15	
	JKNOWN	4.04		6	
	KNOWN	4.10		8	
	VILLIONIV	4.10		Ų	01
4				· · · · · · · · · · · · · · · · · · ·	
5					
O. 1					l
					
0.			•		l
		— ļ———			
					l
					l ——
					l ———
					l ——-
. J .				<u></u>	l
	<u> </u>				l
.0.					
. /					
0					

FORM I SV-TIC

SMS-MW-6S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-01B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S3E5422

CONCENTRATION UNITS:

Level: (low/med) LOW

Date Received: 08/15/07

% Moisture: _____ decanted: (Y/N)

Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/18/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

CAS NO.	COMPOUND (ug/L or ug/	/Kg) UG/L	Q
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 95-50-1 95-48-7 108-60-1 106-44-5 621-64-7 98-95-3 78-59-1 98-95-3 120-83-2 120-82-1 91-20-3 106-47-8 87-68-3	Phenolbis(2-Chloroethyl)Ether2-Chlorophenol1,3-Dichlorobenzene1,4-Dichlorobenzene1,2-Dichlorobenzene2-Methylphenol2,2'-oxybis(1-Chloropropane)4-MethylphenolN-Nitroso-di-n-propylamineHexachloroethaneNitrobenzeneIsophorone2,4-Dimethylphenol2,4-Dichlorophenol1,2,4-TrichlorobenzeneNaphthalene4-ChloroanilineHexachlorobutadienebis(2-Chloroethoxy)methane	10 U 10 U 10 U 1 J 2 J 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	Q
78-59-1 88-75-5 105-67-9 120-83-2 120-82-1 91-20-3 87-68-3 111-91-1 59-50-7 91-57-6 77-47-4 88-06-2 91-58-7	Isophorone2-Nitrophenol2,4-Dimethylphenol2,4-Dichlorophenol1,2,4-TrichlorobenzeneNaphthalene4-Chloroanilinebis(2-Chloroethoxy)methane4-Chloro-3-Methylphenol2-MethylnaphthaleneHexachlorocyclopentadieneHexachlorocyclopentadiene2,4,6-Trichlorophenol2,4,5-Trichlorophenol	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	
131-11-3 208-96-8 606-20-2 99-09-2	2-NitroanilineDimethylphthalateAcenaphthylene2,6-Dinitrotoluene3-NitroanilineAcenaphthene	20 U 10 U 10 U 10 U 20 U 10 U	,

FORM I SV-1

SMS-MW-6S

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-01B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5422

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: decanted: (Y/N) Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/18/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate 91-94-13,3'-Dichlorobenzidine 56-55-3	10 10 20 10 10 10 10 10 10 10 10	למנינים מממממממממממממממממ
218-01-9Chrysene 117-81-7bis(2-Ethylhexyl)phthalate 117-84-0Di-n-octylphthalate	2 6	J J U

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-6S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-01B

Sample wt/vol:

1000 (g/mL) ML

Lab File ID: S3E5422

Level:

(low/med)

LOW

Date Received: 08/15/07

% Moisture: decanted: (Y/N)

Date Extracted: 08/16/07

Concentrated Extract Volume:

Date Analyzed: 08/18/07

Injection Volume:

1.0 (uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH:

1000 (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Number TICs found: 8

FORM I SV-TIC

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SMS-MW-7

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-04B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID:

S3E5413

Level: (low/med)

LOW

Date Received: 08/15/07

% Moisture: decanted: (Y/N)

Date Extracted:08/16/07

Q

Concentrated Extract Volume:

1000 (uL) Date Analyzed: 08/17/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH: ____

		CONCENTRATION UNITS:
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L

108-95-2Phenol	1	J
111-44-4bis(2-Chloroethyl)Ether	10	U
95-57-82-Chlorophenol	10	ט
541-73-11,3-Dichlorobenzene	10	ט
106-46-71,4-Dichlorobenzene	10	U
95-50-11,2-Dichlorobenzene	10	U
95-48-72-Methylphenol	10	U
108-60-12,2'-oxybis(1-Chloropropane)	10	U
106-44-54-Methylphenol	10	ן ט
621-64-7N-Nitroso-di-n-propylamine	10	ש
67-72-1Hexachloroethane	10	ן ט
98-95-3Nitrobenzene	10	ש
78-59-1Isophorone	10	ן ש
88-75-52-Nitrophenol	10	ן ד
105-67-92,4-Dimethylphenol	10	U
120-83-22,4-Dichlorophenol	10	ע
120-82-11,2,4-Trichlorobenzene	. 10	U
91-20-3Naphthalene	10	U
106-47-84-Chloroaniline	10	U
87-68-3Hexachlorobutadiene	10	U
111-91-1bis(2-Chloroethoxy) methane	10	U
59-50-74-Chloro-3-Methylphenol	10	U
91-57-62-Methylnaphthalene	10	U
77-47-4Hexachlorocyclopentadiene	10	U
88-06-22,4,6-Trichlorophenol	10	U
95-95-42,4,5-Trichlorophenol	20	U
91-58-72-Chloronaphthalene	10	U
88-74-42-Nitroaniline	20	U
131-11-3Dimethylphthalate	10	U
208-96-8Acenaphthylene	10	U
606-20-22,6-Dinitrotoluene	10	U
99-09-23-Nitroaniline	20	Ū
83-32-9Acenaphthene	10	ן ט
,		

FORM I SV-1

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-04B

Sample wt/vol: 1000 (q/mL) ML Lab File ID: S3E5413

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: decanted: (Y/N) Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/17/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

	and no.	(4)	g/	·	
	51-28-5	2,4-Dinitrophenol		20 U	-
		4-Nitrophenol	***	20 U	ļ
		Dibenzofuran		10 U	
		2,4-Dinitrotoluene		10 U	
		Diethylphthalate	· · ·	10 U	
		4-Chlorophenyl-phen	vlether	10 U	
	86-73-7			10 U	
		4-Nitroaniline		20 U	
		4,6-Dinitro-2-methy	phenol	20 U	
		N-Nitrosodiphenylam		10 U	
	101-55-3	4-Bromophenyl-phenyl	lether	10 U	
	118-74-1	Hexachlorobenzene		10 U	ł
		Pentachlorophenol	·····	20 U	
		Phenanthrene		10 U	ı
	120-12-7			10 U	j
ı	86-74-8			10 U	
		Di-n-butylphthalate		10 U	
	206-44-0	Fluoranthene		10 U	
	129-00-0			10 U	
		Butylbenzylphthalate	<u> </u>	10 U	
	91-94-1	3,3'-Dichlorobenzid	ne	10 U	
		Benzo(a)anthracene		10 U	
	218-01-9	Chrysene		10 U	
	117-81-7	bis(2-Ethylhexyl)pht	chalate	10 U	
	117-84-0	Di-n-octylphthalate		10 U	
	205-99-2	Benzo (b) fluoranthene	2	10 U	
	207-08-9	Benzo(k) fluoranthene	=	10 U	
		Benzo (a) pyrene		10 U	
	193-39-5	Indeno (1, 2, 3-cd) pyre	ene	10 U	
	53-70-3	Dibenzo (a, h) anthrace	ene	10 U	
		Benzo(q,h,i)perylene		10 U	
. !	. 		······································		1

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

14 LTB

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-04B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5413

Level: (low/med) LOW

Date Received: 08/15/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/17/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CONCENTRATION UNITS:

mber TICs found: 3 (ug/L o	or ug/Kg)	ug/L	
CAS NUMBER COMPOUND NAME	RT	EST.	CONC.
1. UNKNOWN 2. UNKNOWN	3.93	=====	====== 14 4
a ramatorat		ı	

⊥•	OINVINOMIN	3.93		lob
2.	UNKNOWN	4.08	4	JB
3.	UNKNOWN	4.10	و	JB
	CHILITONIA	4.10		
4				
5				
6				
7				
8				
8				
1 2.				
1 10.				
+++				
12.				
13				
14				
14				
16				
1 18.				
20				
20.				
			<u> </u>	
22.	-			
24.				
25				
26				
26				
1 4 / •		 		
28				
49.				
30.				

FORM I SV-TIC

OLMO3.0

SMS-MW-8

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-07B

Sample wt/vol:

1000 (g/mL) ML

LOW

Lab File ID:

S3E5416

Level: (low/med)

Date Received: 08/15/07

% Moisture:

decanted: (Y/N)

Date Extracted: 08/16/07

Concentrated Extract Volume:

Date Analyzed: 08/17/07

Injection Volume:

1.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH:

1000 (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

Q

108-95-2	Phenol	10 U	
111-44-4	bis(2-Chloroethyl)Ether	10 0	
95-57-8	2-Chlorophenol	10 U	
541-73-1	1,3-Dichlorobenzene	10 ט	
	1,4-Dichlorobenzene	10 0	
	1,2-Dichlorobenzene	10 U	
	2-Methylphenol	10 U	
	2,2'-oxybis(1-Chloropropane)	10 U	
	4-Methylphenol	10 U	
	N-Nitroso-di-n-propylamine	10 U	
67-72-1	Hexachloroethane	10 U	
	Nitrobenzene	10 U	
	Isophorone	10 U	
	2-Nitrophenol	10 U	
	2,4-Dimethylphenol	10 U	
120-83-2	2,4-Dichlorophenol	10 U	
120-82-1	1,2,4-Trichlorobenzene	10 U	
91-20-3	Naphthalene	10 U	
	4-Chloroaniline	10 U	
	Hexachlorobutadiene	10 U	
	bis(2-Chloroethoxy)methane	10 U	
	4-Chloro-3-Methylphenol	10 U	
91-57-6	2-Methylnaphthalene	10 U	
77-47-4	Hexachlorocyclopentadiene	10 U	
88-06-2	2,4,6-Trichlorophenol	10 U	
	2,4,5-Trichlorophenol	20 U	
	2-Chloronaphthalene	10 U	
	2-Nitroaniline	20 U	
	Dimethylphthalate	10 U	
	Acenaphthylene	10 U	
	2,6-Dinitrotoluene	10 U	
	3-Nitroaniline	20 0	
	Acenaphthene	10 U	

FORM I SV-1

Lab Name: MITKEM CORPORATION

Contract:

SMS-MW-8

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-07B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID:

S3E5416

Level: (low/med)

Date Received: 08/15/07

% Moisture: decanted: (Y/N)

LOW

Concentrated Extract Volume:

COMPOUND

Date Extracted:08/16/07

Injection Volume:

CAS NO.

1000 (uL) Date Analyzed: 08/17/07

1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N

pH:

CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/L

Q

51-28-5	2,4-Dinitrophenol	20 U
	4-Nitrophenol	20 U
	Dibenzofuran	10 U
	2,4-Dinitrotoluene	10 U
84-66-2	Diethylphthalate	10 U
7005-72-3	4-Chlorophenyl-phenylether	10 U
86-73-7	Fluorene	10 U
	4-Nitroaniline	20 0
	4,6-Dinitro-2-methylphenol	20 U
86-30-6	N-Nitrosodiphenylamine (1)	10 U
101-55-3	4-Bromophenyl-phenylether	10 U
118-74-1	Hexachlorobenzene	10 U
	Pentachlorophenol	20 U
	Phenanthrene	10 U
	Anthracene	10 U
	Carbazole	10 U
84-74-2	Di-n-butylphthalate	10 U
206-44-0	Fluoranthene	10 U
129-00-0	Pyrene	10 U
85-68-7	Butvlbenzvlphthalate	10 U
91-94-1	3,3'-Dichlorobenzidine	10 U
56-55-3	Benzo(a) anthracene	10 U
218-01-9	Chrysene	10 U
117-81-7	bis(2-Ethylhexyl)phthalate	10 U
117-84-0	Di-n-octylphthalate	10 U
205-99-2	Benzo(b) fluoranthene	10 U
	Benzo(k) fluoranthene	10 U
50-32-8	Benzo(a)pyrene	10 U
193-39-5	Indeno (1, 2, 3-cd) pyrene	10 U
53-70-3	Dibenzo (a, h) anthracene	10 U
191-24-2	Benzo(g,h,i)perylene	10 U
- Cannot be	separated from Diphenylamine	

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-8

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-07B

Sample wt/vol:

1000 (g/mL) ML

Lab File ID:

S3E5416

Level:

(low/med)

LOW

Date Received: 08/15/07

% Moisture:

decanted: (Y/N)

Date Extracted: 08/16/07

Concentrated Extract Volume:

Date Analyzed: 08/17/07

Injection Volume:

1.0(uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH:

1000 (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Number TICs found: 3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	_
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26.	UNKNOWN UNKNOWN UNKNOWN	RT ====== 3.93 4.08 4.10	EST. CONC. ====================================	 ЈВ ЈВ
27. 28. 29. 30.				

FORM I SV-TIC

SMS-MW-9

0

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-06B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5415

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: decanted: (Y/N) Date Extracted:08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/17/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

2.0.	(.	ag/ H OI	49/149/	00/ 1		×	
108-95-2	Dhonol				10	тт	
	bis(2-Chloroethyl)	Zthor			10		
	bis(2-chioloethyi) 2-Chlorophenol	7CTTGT		•	10		
55-57-6 E41 72 1	1,3-Dichlorobenzene				10		
106 46 7	1,3-Dichlorobenzene	₹			10	_	
	1,4-Dichlorobenzene 1,2-Dichlorobenzene						
		<u></u>			10		
	2-Methylphenol				10		
108-60-1	2,2'-oxybis(1- Chlo i	copropan	ie)		10		
106-44-5	4-Methylphenol				1	Ü	
621-64-7	N-Nitroso-di-n-prop	руташтпе			10		
	Hexachloroethane				1	Ŭ	
	Nitrobenzene					U	
	Isophorone					U	
	2-Nitrophenol					U	
	2,4-Dimethylphenol					U	
	2,4-Dichlorophenol					U	
	1,2,4-Trichlorobenz	zene				U	
91-20-3	Naphthalene				1	U	
	4-Chloroaniline					U	
	Hexachlorobutadiene					U	
	bis(2-Chloroethoxy)		:			U	
	4-Chloro-3-Methylph				10	U	
91-57-6	2-Methylnaphthalene	<u></u>			10	U	
	Hexachlorocyclopent				10	U	
88-06-2	2,4,6-Trichloropher	ıol			10	U	
95-95-4	2,4,5-Trichloropher	ıol			20	U	
91-58-7	2-Chloronaphthalene	<u></u>			10	U	
	2-Nitroaniline					U	
131-11-3	Dimethylphthalate					U	
	Acenaphthylene				10	U	
	2,6-Dinitrotoluene					Ū	
	3-Nitroaniline -					Ū	
	Acenaphthene					Ū	
						-	
					1		

FORM I SV-1

,

Lab Name: MITKEM CORPORATION Contract: SMS-MW-9

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix: (soil/water) WATER Lab Sample ID: F1135-06B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5415

Level: (low/med) LOW Date Received: 08/15/07

% Moisture: decanted: (Y/N) Date Extracted: 08/16/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/17/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

51-28-52,4-Dinitrophenol 100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate 91-94-13,3'-Dichlorobenzidine	20 20 10 10 10 10 20 20 10 10 10 10	מממממממממממ
100-02-74-Nitrophenol 132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	20 10 10 10 10 20 20 10 10 20 10	מממממממממממ
132-64-9Dibenzofuran 121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10 10 10 10 20 20 10 10 20 10	מממממממממממ
121-14-22,4-Dinitrotoluene 84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10 10 10 20 20 10 10 20 10	ממממממממממ
84-66-2Diethylphthalate 7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0	10 10 20 20 10 10 20 10	מממממממממ
7005-72-34-Chlorophenyl-phenylether 86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10 10 20 20 10 10 20 10	ממממממממ
86-73-7Fluorene 100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10 20 20 10 10 20 10	ם מ מ מ מ מ מ מ מ
100-01-64-Nitroaniline 534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine_(1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	20 20 10 10 10 20 10	ם מ מ מ מ מ מ מ
534-52-14,6-Dinitro-2-methylphenol 86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	20 10 10 10 20 10	ט ט ט ט ט ט
86-30-6N-Nitrosodiphenylamine (1) 101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10 10 10 20 10	บ บ บ บ บ
101-55-34-Bromophenyl-phenylether 118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10 10 20 10 10	บ บ บ บ
118-74-1Hexachlorobenzene 87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10 20 10 10	บ บ บ
87-86-5Pentachlorophenol 85-01-8Phenanthrene 120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	20 10 10	U U U
85-01-8Phenanthrene 120-12-7Phenanthrene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10 10	U U
120-12-7Anthracene 86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10	U
86-74-8Carbazole 84-74-2Di-n-butylphthalate 206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate		1
84-74-2Di-n-butylphthalate	10	1 U
206-44-0Fluoranthene 129-00-0Pyrene 85-68-7Butylbenzylphthalate	10	
85-68-7Butylbenzylphthalate	10	ַ ע
85-68-7Butylbenzylphthalate	10	ט
91-94-13,3 ¹ -Dichlorobenzidine	10	ט
	10	U
56-55-3Benzo (a) anthracene	10	U
218-01-9Chrysene	10	υ .
117-81-7bis(2-Ethylhexyl)phthalate	10	U
117-84-0Di-n-octylphthalate	10	שׁ
205-99-2Benzo (b) fluoranthene	10	U .
207-08-9Benzo (k) fluoranthene	10	ע
50-32-8Benzo (a) pyrene	. 10	ע
193-39-5Indeno(1,2,3-cd)pyrene	10	ע .
53-70-3Dibenzo(a,h)anthracene	10	שׁ
191-24-2Benzo(g,h,i)perylene	10	U

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

OLMO3.0

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-9

Lab	Name:	MITKEM	CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1135

Matrix: (soil/water) WATER

Lab Sample ID: F1135-06B

Sample wt/vol:

1000 (g/mL) ML

Lab File ID:

S3E5415

Level:

(low/med)

LOW

Date Received: 08/15/07

% Moisture: decanted: (Y/N)

Date Extracted: 08/16/07

Concentrated Extract Volume:

1000 (uL)

Date Analyzed: 08/17/07

Injection Volume:

1.0 (uL)

Dilution Factor: 1.0

GPC Cleanup:

(Y/N) N

pH:

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Number TICs found: 2

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1.	UNKNOWN	3.93	12	===== ЈВ
2.	UNKNOWN	4.11	7	JВ
3				
4.				·
5. 6.				
/ •				
9				
11.				
13.				
14.			···	
15. 16.				
1/.				
18. 19.				
19				
20.				
21				
7.5 -				
24.				
45.				
26				
28				
29.				
30.				

FORM I SV-TIC

Lab Name: MITKEM CORPORA	RATION C	Contract:	S3GLCS
Lab Code: MITKEM Case	se No.:	SAS No.: SDG	No.: MF1135
Matrix: (soil/water) WA	TER	Lab Sample ID:	LCS-31718
Sample wt/vol: 100	000 (g/mL) ML	Lab File ID:	S3E5389
Level: (low/med) LOW	W	Date Received:	
% Moisture: dec	ecanted: (Y/N)	Date Extracted	:08/16/07
Concentrated Extract Vol	olume: 1000(u	L) Date Analyzed:	08/17/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

CONCENTRATION UNITS:

GPC Cleanup: (Y/N) N pH: ___

CAS NO.	COMPOUND (ug/L or ug,		Q
108-95-2 111-44-4 95-57-8 541-73-1 106-46-7 95-50-1 95-48-7 106-44-5 621-64-7 67-72-1 98-95-3 78-59-1 120-83-2 120-83-2 120-82-1 91-20-3 120-83-2	Phenolbis(2-Chloroethyl)Ether2-Chlorophenol1,3-Dichlorobenzene1,4-Dichlorobenzene1,2-Dichlorobenzene2-Methylphenol2,2'-oxybis(1-Chloropropane)4-MethylphenolN-Nitroso-di-n-propylamineHexachloroethaneNitrobenzeneIsophorone2,4-Dichlorophenol2,4-Dichlorophenol2,4-TrichlorobenzeneNaphthalene4-ChloroanilineHexachlorobutadienebis(2-Chloroethoxy)methane4-Chloro-3-Methylphenol2-Methylnaphthalene4-Chlorocyclopentadiene2,4,6-Trichlorophenol2,4,5-Trichlorophenol2-Chloronaphthalene2-Nitroaniline	/Kg) UG/L 37 36 38 33 34 34 37 48 38 41 33 41 39 40 31 40 36 36 38 37 38 41 38 41 38 42 42 39 41	Q
88-74-4 131-11-3 208-96-8 606-20-2 99-09-2			

FORM I SV-1

					Q-	3GLCS
Lab N	ame: MITKEM COR	PORATION	Contract	:		
Lab C	ode: MITKEM	Case No.:	SAS No.	: SDC	G No.: N	1F1135
Matri:	x: (soil/water)	WATER		Lab Sample II	D: LCS-3	1718
Sample	e wt/vol:	1000 (g/mL) ML		Lab File ID:	S3E53	89
Level	: (low/med)	LOW		Date Received	d:	
% Moi:	sture:	decanted: (Y/N)		Date Extracte	ed:08/16	5/07
Conce	ntrated Extract	Volume: 1000	(uL)	Date Analyzed	i: 08/17	'/07
Inject	tion Volume:	1.0(uL)		Dilution Fact	tor: 1.0	ŀ
GPC C	leanup: (Y/N)	N pH:	<u>.</u>		·	
	* · ·		CONCE	NTRATION UNITS	z.	
	CAS NO.	COMPOUND		or ug/Kg) UG/		Q
	100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7 86-74-8 84-74-2	4-Nitroaniline4,6-Dinitro-24,6-Dinitro-24-BromophenylHexachlorobenzPentachloropheAnthraceneCarbazoleDi-n-butylphthFluoranthene	luene ate l-phenylet e -methylphe enylamine -phenyleth zene	=nol(1)	48 50 43 44 43 41 38 45 37 42 42 51 44 44 46 49	
	91-94-1 56-55-3 218-01-9 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3	Butylbenzylpht 3,3'-Dichlorok Benzo(a)anthra	cenzidine acene xyl)phthal nalate anthene enthene ed)pyrene nthracene	late_	42 38 47 45 44 43 40 47 44 41 44 44	

FORM I SV-2

(1) - Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Code: MITKEM

GPC Cleanup:

(Y/N) N

					S3GLCSD
Lab	Name:	MITKEM	CORPORATION	Contract:	

Case No.: SAS No.:

Lab Sample ID: LCSD-31718 Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5390

Level: (low/med) LOW Date Received:

% Moisture: ____ decanted: (Y/N)___ Date Extracted: 08/16/07

Date Analyzed: 08/17/07 Concentrated Extract Volume: 1000 (uL)

Injection Volume: Dilution Factor: 1.0 1.0(uL)

pH:

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 0

	CAS NO.	COMPOUND (ug/L or ug)	/kg) UG/L	Q
	95-57-8 541-73-1 106-46-7 95-50-1 95-48-7 108-60-1 621-64-7 98-95-3 78-59-1 120-83-2 120-82-1 120-82-1 111-91-1 59-50-7 91-57-6 91-57-6 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7 91-58-7	-bis(2-Chloroethyl)Ether -2-Chlorophenol -1,3-Dichlorobenzene -1,4-Dichlorobenzene -1,2-Dichlorobenzene -2-Methylphenol -2,2'-oxybis(1-Chloropropane) -4-Methylphenol -N-Nitroso-di-n-propylamine -Hexachloroethane -Nitrobenzene -Isophorone -2-Nitrophenol -2,4-Dimethylphenol -2,4-Dichlorophenol -1,2,4-Trichlorobenzene -Naphthalene -4-Chloroaniline -4-Chloroaniline -4-Chloro-3-Methylphenol -2,4,6-Trichlorophenol -2,4,5-Trichlorophenol -2,4,5-Trichlorophenol -2,4,5-Trichlorophenol -2-Chloronaphthalene -2-Nitroaniline -Dimethylphthalate -Acenaphthylene -2,6-Dinitrotoluene -3-Nitroaniline		36
Ι.		<u></u>	l	

FORM I SV-1

OLM03.0

EPA SAMPLE NO.

SDG No.: MF1135

44

43

44

46

48

41

38

Lab Name: MITKEM COR	PORATION Con	tract:	S3GLCSD
Lab Code: MITKEM	Case No.: SA	S No.: SDG	No.: MF1135
Matrix: (soil/water)	WATER	Lab Sample ID:	LCSD-31718
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S3E5390
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	d:08/16/07
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/17/07
Injection Volume:	1.0(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.	· ·	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/I	
100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3	2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluend Diethylphthalate 4-Chlorophenyl-pho 4-Nitroaniline 4,6-Dinitro-2-metl N-Nitrosodiphenyla 4-Bromophenyl-phen Hexachlorobenzene	eenyletherenylphenolemine (1)	34 51 42 45 44 42 41 38 42 37 40 42

85-68-7-----Butylbenzylphthalate 91-94-1----3,3 -Dichlorobenzidine 50 56-55-3-----Benzo (a) anthracene 44 218-01-9-----Chrysene 43 117-81-7-----bis (2-Ethylhexyl) phthalate 43 117-84-0-----Di-n-octylphthalate 40 205-99-2----Benzo (b) fluoranthene 45 207-08-9----Benzo(k) fluoranthene 44 50-32-8-----Benzo (a) pyrene 40 193-39-5----Indeno (1, 2, 3-cd) pyrene 43 53-70-3-----Dibenzo (a, h) anthracene 43 191-24-2----Benzo(q,h,i)perylene 42

(1) - Cannot be separated from Diphenylamine

87-86-5----Pentachlorophenol

84-74-2-----Di-n-butylphthalate

85-01-8-----Phenanthrene

206-44-0----Fluoranthene

120-12-7-----Anthracene

86-74-8-----Carbazole

129-00-0-----Pyrene

FORM I SV-2

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

				S3ILCS
Lab Name: MITKEM COR	PORATION	Contract:		
Lab Code: MITKEM	Case No.:	SAS No.:	SDG	No.: MF1135
Matrix: (soil/water)	WATER	Lab Sa	ample ID:	: LCS-31795
Sample wt/vol:	1000 (g/mL) ML	Lab F	ile ID:	S3E5523
Level: (low/med)	LOW	Date 1	Received:	
% Moisture:	decanted: (Y/N)_	Date I	Extracted	d:08/21/07
Concentrated Extract	Volume: 1000	(uL) Date A	Analyzed:	08/23/07
Injection Volume:	1.0 (uL)	Dilut:	ion Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:	_		
CAS NO.	COMPOUND	CONCENTRATIO		
95-57-8 541-73-1 106-46-7 95-50-1 95-48-7 108-60-1 106-44-5 621-64-7 98-95-3 98-95-3 120-82-1 120-82-1 120-82-1 120-82-1 91-20-3 111-91-1 59-50-7 91-57-6 91-57-6 91-58-7	bis(2-Chloroet 2-Chlorophenol 1,3-Dichlorobe 1,4-Dichlorobe 1,2-Dichlorobe 2-Methylphenol 2,2'-oxybis(1- 4-Methylphenol N-Nitroso-di-ne Hexachloroetha Nitrobenzene	enzene enzene enzene enzene enzene -Chloropropane)		43 43 46 40 41 40 39 54 42 46 43 48 45 48 17 47 41 43 34 40 43 44 10 46 47 48 48 49 40 40 40 41 41 42 46 47 41 41 42 46 47 47 47 47 47 47 47 47 47 47

FORM I SV-1

				Q:	BILCS
Lab Name: MITKEM COR	PORATION	Contract:			
Lab Code: MITKEM	Case No.:	SAS No.:	SDG	No.: M	Æ1135
Matrix: (soil/water)	WATER	Lab Samp	le ID:	: LCS-3	31795
Sample wt/vol:	1000 (g/mL) ML	Lab File	ID:	S3E55	523
Level: (low/med)	LOW	Date Rece	eived:	<u></u>	
% Moisture:	decanted: (Y/N)_	Date Ext	racted	d:08/21	_/07
Concentrated Extract	Volume: 1000(uL) Date Ana	lyzed:	08/23	/07
Injection Volume:	1.0 (uL)	Dilution	Facto	or: 1.0)
GPC Cleanup: (Y/N)	N pH:	- -			
CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/Kg)			Q
100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7 86-74-8 206-44-0 129-00-0 129-00-0 129-00-0 117-81-7 117-84-0 205-99-2 207-08-9 50-32-8 193-39-5 53-70-3	4-Nitroaniline4,6-Dinitro-2N-Nitrosodiphe4-BromophenylHexachlorobenzPentachlorophePhenanthreneCarbazoleCi-n-butylphthFluoranthenePyreneButylbenzylpht3,3'-DichlorobeBenzo(a)anthrae	uene te -phenylether methylphenol nylamine (1) phenylether ene nol alate halate enzidine cene yl)phthalate alate nthene nthene thracene		25 58 49 51 51 48 40 52 48 48 46 54 55 55 55 56 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	

FORM I SV-2

(1) - Cannot be separated from Diphenylamine

U.S. EPA - CLP

EPA SAMPLE NO.

INC

ORGANIC	ANALYSIS	DATA	SHEET	SMS-	MW-4	
	Cont	ract:	D003821-41			

SAS No.: SDG No.: MF1135 Lab Code: MITKEM Case No.:

Lab Sample ID: F1135-14

Date Received: 08/17/2007 Level (low/med): MED

% Solids: 0.0

Lab Name: Mitkem Corporation

Matrix (soil/water): WATER

7429-90-5 Aluminum 876 P 7440-36-0 Antimony 11.2 B P 7440-38-2 Arsenic 1.6 U P 7440-39-3 Barium 64.0 B P 7440-41-7 Beryllium 0.15 U P 7440-43-9 Cadmium 0.10 U P 7440-70-2 Calcium 21400 P 7440-47-3 Chromium 5.7 B P 7440-48-4 Cobalt 3.2 B P 7440-50-8 Copper 6.3 U P 7439-89-6 Iron 78200 P 7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P </th <th>CAS No.</th> <th>Analyte</th> <th>Concentration</th> <th>С</th> <th>Q</th> <th>М</th>	CAS No.	Analyte	Concentration	С	Q	М
7440-38-2 Arsenic 1.6 U P 7440-39-3 Barium 64.0 B P 7440-41-7 Beryllium 0.15 U P 7440-43-9 Cadmium 0.10 U P 7440-70-2 Calcium 21400 P 7440-47-3 Chromium 5.7 B P 7440-48-4 Cobalt 3.2 B P 7440-50-8 Copper 6.3 U P 7439-89-6 Iron 78200 P 7439-95-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-62-2 Vanadium 5.1 B P	7429-90-5	Aluminum				P
7440-39-3 Barium 64.0 B P 7440-41-7 Beryllium 0.15 U P 7440-43-9 Cadmium 0.10 U P 7440-70-2 Calcium 21400 P 7440-47-3 Chromium 5.7 B P 7440-48-4 Cobalt 3.2 B P 7440-50-8 Copper 6.3 U P 7439-89-6 Iron 78200 P 7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7440-02-0 Nickel 5.3 B P 7440-02-0 Nickel 5.3 B P 7440-22-4 Silver 0.91 U P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-62-2 Vanadium 5.1 B P	7440-36-0	Antimony	11.2	В		P
7440-41-7 Beryllium 0.15 U P 7440-43-9 Cadmium 0.10 U P 7440-70-2 Calcium 21400 P 7440-47-3 Chromium 5.7 B P 7440-48-4 Cobalt 3.2 B P 7440-50-8 Copper 6.3 U P 7439-89-6 Iron 78200 P 7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7440-02-0 Nickel 5.3 B P 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-38-2	Arsenic	1.6	U		P
7440-43-9 Cadmium 0.10 U P 7440-70-2 Calcium 21400 P 7440-47-3 Chromium 5.7 B P 7440-48-4 Cobalt 3.2 B P 7440-50-8 Copper 6.3 U P 7439-89-6 Iron 78200 P 7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-39-3	Barium	64.0	В		P
7440-70-2 Calcium 21400 P 7440-47-3 Chromium 5.7 B P 7440-48-4 Cobalt 3.2 B P 7440-50-8 Copper 6.3 U P 7439-89-6 Iron 78200 P 7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-41-7	Beryllium	0.15	U		Р
7440-47-3 Chromium 5.7 B P 7440-48-4 Cobalt 3.2 B P 7440-50-8 Copper 6.3 U P 7439-89-6 Iron 78200 P 7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-43-9	Cadmium	0.10	ΰ		P
7440-48-4 Cobalt 3.2 B P 7440-50-8 Copper 6.3 U P 7439-89-6 Iron 78200 P 7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7742-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-70-2	Calcium	21400			P
7440-50-8 Copper 6.3 U P 7439-89-6 Iron 78200 P 7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-47-3	Chromium	5.7	В		P
7439-89-6 Iron 78200 P 7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-48-4	Cobalt	3.2	В		Р
7439-92-1 Lead 4.5 B P 7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-50-8	Copper	6.3	U		Р
7439-95-4 Magnesium 1470 P 7439-96-5 Manganese 686 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7439-89-6	Iron	78200			P
7439-96-5 Manganese 686 P 7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7439-92-1	Lead	4.5	В		Р
7439-97-6 Mercury 0.047 U CV 7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7439-95-4	Magnesium	1470			P
7440-02-0 Nickel 5.3 B P 7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7439-96-5	Manganese	686			Р
7440-09-7 Potassium 5690 P 7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7439-97-6	Mercury	0.047	U		CV
7782-49-2 Selenium 14.1 B P 7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-02-0	Nickel	5.3	В		P
7440-22-4 Silver 0.91 U P 7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-09-7	Potassium	5690			P
7440-23-5 Sodium 3600 P 7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7782-49-2	Selenium	14.1	В		P
7440-28-0 Thallium 9.7 B P 7440-62-2 Vanadium 5.1 B P	7440-22-4	Silver	0.91	U		Р
7440-62-2 Vanadium 5.1 B P	7440-23-5	Sodium	3600			P
	7440-28-0	Thallium	9.7	В		P
7440-66-6 Zinc 42.5 B P	7440-62-2	Vanadium	5.1	В		P
	7440-66-6	Zinc	42.5	В		P

Comme	nts:

U.S. EPA - CLP

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-1 Contract: D003821-41

SAS No.: SDG No.: MF1135 Lab Code: MITKEM Case No.:

Lab Sample ID: F1135-05 Matrix (soil/water): WATER

Date Received: 08/15/2007 Level (low/med): MED

% Solids: 0.0

Lab Name: Mitkem Corporation

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	4360			Р
7440-36-0	Antimony	12.6	В		P
7440-38-2	Arsenic	1.6	Ū		Р
7440-39-3	Barium	91.0	В		Р
7440-41-7	Beryllium	0.48	В		P
7440-43-9	Cadmium	0.39	В		Р
7440-70-2	Calcium	20100			P
7440-47-3	Chromium	18.0	В		Р
7440-48-4	Cobalt	9.3	В		Р
7440-50-8	Copper	33.8			P
7439-89-6	Iron	110000			P
7439-92-1	Lead	17.3			Р
7439-95-4	Magnesium	4230			Р
7439-96-5	Manganese	585			P
7439-97-6	Mercury	0.066	В		CV
7440-02-0	Nickel	19.8	В		Р
7440-09-7	Potassium	4450			Р
7782-49-2	Selenium	29.5	В		Р
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	73900			P
7440-28-0	Thallium	18.5	В		P
7440-62-2	Vanadium	9.3	В	,	Р
7440-66-6	Zinc	234			P

Comme	nts:

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-13D

Contract: D003821-41

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Lab Sample ID: F1135-19 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 08/17/2007

% Solids: 0.0

Lab Name: Mitkem Corporation

					1
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	24.5	В		P
7440-36-0	Antimony	8.3	В		Р
7440-38-2	Arsenic	1.6	Ū		Р
7440-39-3	Barium	76.9	В		P
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	65.5			Р
7440-70-2	Calcium	13100			P
7440-47-3	Chromium	1.7	В		P
7440-48-4	Cobalt	0.87	В		P
7440-50-8	Copper	15.3	В		P
7439-89-6	Iron	241			Р
7439-92-1	Lead	0.46	U		P
7439-95-4	Magnesium	8340			P
7439-96-5	Manganese	6.3	В		Р
7439-97-6	Mercury	0.047	U		CV
7440-02-0	Nickel	9.2	В		Р
7440-09-7	Potassium	2960			P
7782-49-2	Selenium	10.7	В		P
7440-22-4	Silver	1.4	В		Р
7440-23-5	Sodium	31800			P
7440-28-0	Thallium	1.2	Ü		Р
7440-62-2	Vanadium	0.47	U		P
7440-66-6	Zinc	67.2			P
L					

Commer	nts:			
		 •	 	

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-14

Lab Name: Mitkem Corporation Contract: D003821-41

SAS No.: SDG No.: MF1135 Lab Code: MITKEM Case No.:

Lab Sample ID: F1135-18 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 08/17/2007

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	1040			P
7440-36-0	Antimony	15.7	В		P
7440-38-2	Arsenic	1.6	Ū		P
7440-39-3	Barium	78.7	В		Р
7440-41-7	Beryllium	0.15	Ū		Р
7440-43-9	Cadmium	2.7	В		P
7440-70-2	Calcium	16500			P
7440-47-3	Chromium	2.9	В		Р
7440-48-4	Cobalt	4.6	В		Р
7440-50-8	Copper	6.3	Ü		Р
7439-89-6	Iron	296000			P
7439-92-1	Lead	12.7			Р
7439-95-4	Magnesium	2470			Р
7439-96-5	Manganese	1290			Р
7439-97-6	Mercury	0.052	В		CV
7440-02-0	Nickel	13.3	В		Р
7440-09-7	Potassium	8340			Р
7782-49-2	Selenium	41.2			Р
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	6000			P
7440-28-0	Thallium	64.8			Р
7440-62-2	Vanadium	4.5	В		Р
7440-66-6	Zinc	60.8			Р

Comme	mments:	

EPA SAMPLE NO.

SMS-MW-15

INORGANIC ANALYSIS DATA SHEET

Contract: D003821-41

Lab Name: Mitkem Corporation

SAS No.: SDG No.: MF1135 Lab Code: MITKEM Case No.:

Lab Sample ID: F1135-17 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 08/17/2007

% Solids: 0.0

CAS No.	Analyte	Concentration	C	Q	М]
7429-90-5	Aluminum	37.9	В		P	
7440-36-0	Antimony	9.6	В		P	
7440-38-2	Arsenic	1.6	В		P	
7440-39-3	Barium	24.8	В		P	
7440-41-7	Beryllium	0.15	Ū		P	1
7440-43-9	Cadmium	0.10	Ū		Р]
7440-70-2	Calcium	20100			P	İ
7440-47-3	Chromium	18.1	В		P	
7440-48-4	Cobalt	1.3	В		P	
7440-50-8	Copper	6.3	U		Р	
7439-89-6	Iron	228			Р	
7439-92-1	Lead	0.46	Ü		P	
7439-95-4	Magnesium	4210			P	
7439-96-5	Manganese	19.3	В		Р	
7439-97-6	Mercury	0.047	U		CV	
7440-02-0	Nickel	3.0	В		P	
7440-09-7	Potassium	6850			P	
7782-49-2	Selenium	19.6	В		P	
7440-22-4	Silver	1.6	В		Р	
7440-23-5	Sodium	15600			P	
7440-28-0	Thallium	1.2	Ū	*	Р	14
7440-62-2	Vanadium	0.47	U		P	
7440-66-6	Zinc	20.1	В	·-····································	Р	
		f				,

Commen	its:				
				•	
	•				
-		 			

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET	SMS-MW-16D
	Cont	ract:	D003821-41	

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix (soil/water): WATER Lab Sample ID: F1135-09

Level (low/med): MED Date Received: 08/15/2007

% Solids: 0.0

Lab Name: Mitkem Corporation

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	45.2	В		Р
7440-36-0	Antimony	2.5	В		Р
7440-38-2	Arsenic	1.6	В		P
7440-39-3	Barium	45.6	В		P
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	5.1			P
7440-70-2	Calcium	19100			Р
7440-47-3	Chromium	44.9			P
7440-48-4	Cobalt	1.4	В		P
7440-50-8	Copper	6.3	Ū		P
7439-89-6	Iron	234			P
7439-92-1	Lead	0.88	В	,	P
7439-95-4	Magnesium	3530			P
7439-96-5	Manganese	51.6			P
7439-97-6	Mercury	0.047	Ü		CV
7440-02-0	Nickel	6.7	В		P
7440-09-7	Potassium	5260			P
7782-49-2	Selenium	9.5	В		P
7440-22-4	Silver	1.8	В		Р
7440-23-5	Sodium	16700			P
7440-28-0	Thallium	1.2	U		Р
7440-62-2	Vanadium	0.47	Ū		P
7440-66-6	Zinc	20.5	В		P

Commen	ats:

U.S. EPA - CLP

1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-16M

MIND CICIDANA	OHEET	0110	1744	2 011
Contract:	D003821-41			

Lab Name: Mitkem Corporation Contract: D003821-41

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix (soil/water): WATER Lab Sample ID: F1135-10

Level (low/med): MED Date Received: 08/15/2007

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	55.0	В		P
7440-36-0	Antimony	4.5	В		P
7440-38-2	Arsenic	4.7	В		Р
7440-39-3	Barium	97.5	В		Р
7440-41-7	Beryllium	0.15	Ū		P
7440-43-9	Cadmium	0.22	В		P
7440-70-2	Calcium	21900			P
7440-47-3	Chromium	10.3	В		P
7440-48-4	Cobalt	2.6	В		P
7440-50-8	Copper	6.3	U		P
7439-89-6	Iron	375			P
7439-92-1	Lead	0.46	υ		P
7439-95-4	Magnesium	2940			P
7439-96-5	Manganese	29.0	В		P
7439-97-6	Mercury	0.047	U	,	CV
7440-02-0	Nickel	27.9	В		P
7440-09-7	Potassium	10000			P
7782-49-2	Selenium	13.2	В		P
7440-22-4	Silver	2.1	В		P
7440-23-5	Sodium	17900			Р
7440-28-0	Thallium	1.2	U		P
7440-62-2	Vanadium	0.47	υ		P
7440-66-6	Zinc	31.7	В		Р

Comments:		

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-16S

Contract: D003821-41

Lab Name: Mitkem Corporation

SAS No.: SDG No.: MF1135 Lab Code: MITKEM Case No.:

Lab Sample ID: F1135-16 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 08/17/2007

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	51.6	В		Р
7440-36-0	Antimony	1.2	В		P
7440-38-2	Arsenic	1.6	Ū		P
7440-39-3	Barium	18.2	В		P
7440-41-7	Beryllium	0.15	Ü		Р
7440-43-9	Cadmium	0.47	В		P
7440-70-2	Calcium	25200			P
7440-47-3	Chromium	95.7			Р
7440-48-4	Cobalt	3.6	В		Р
7440-50-8	Copper	6.3	Ü		P
7439-89-6	Iron	587			P
7439-92-1	Lead	0.46	Ū		P
7439-95-4	Magnesium	3920			Р
7439-96-5	Manganese	173			P
7439-97-6	Mercury	0.047	U		CV
7440-02-0	Nickel	37.9	В		P
7440-09-7	Potassium	4870			P
7782-49-2	Selenium	12.7	В		Р
7440-22-4	Silver	1.8	В		Р
7440-23-5	Sodium	17300			P
7440-28-0	Thallium	1.2	U		P
7440-62-2	Vanadium	1.0	В		P
7440-66-6	Zinc	17.4	В		P
	L				

Commer	ents:	
		,

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET	SMS-MW-I/
	Cont	ract:	D003821-41	

SAS No.: SDG No.: MF1135 Lab Code: MITKEM Case No.:

Lab Sample ID: F1135-15 Matrix (soil/water): WATER

Date Received: 08/17/2007 Level (low/med): MED

% Solids: 0.0

Lab Name: Mitkem Corporation

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	19.6	В		P
7440-36-0	Antimony	10	В		Р
7440-38-2	Arsenic	3.7	В		P
7440-39-3	Barium	29.1	В		Р
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	0.16	В		P
7440-70-2	Calcium	24800			P
7440-47-3	Chromium	9.0	В		P
7440-48-4	Cobalt	2.0	В		P
7440-50-8	Copper	6.3	U		Р
7439-89-6	Iron	220			Р
7439-92-1	Lead	0.46	U		P
7439-95-4	Magnesium	1830			P
7439-96-5	Manganese	113			P
7439-97-6	Mercury	0.047	U		CV
7440-02-0	Nickel	2.8	В		P
7440-09-7	Potassium	3220			P
7782-49-2	Selenium	13.6	В		P
7440-22-4	Silver	2.1	В		P
7440-23-5	Sodium	6680			P
7440-28-0	Thallium	1.2	υ		P
7440-62-2	Vanadium	1.7	В		P
7440-66-6	Zinc	18.8	В		Р

Commen	nts:

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-2 Contract: D003821-41 Lab Name: Mitkem Corporation

SAS No.: SDG No.: MF1135 Lab Code: MITKEM Case No.:

Lab Sample ID: F1135-13 Matrix (soil/water): WATER

Date Received: 08/17/2007 Level (low/med): MED

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	3440			P
7440-36-0	Antimony	8.9	В		P
7440-38-2	Arsenic	1.6	Ū		P
7440-39-3	Barium	78.9	В		Р
7440-41-7	Beryllium	0.30	В		Р
7440-43-9	Cadmium	3.9	В		P
7440-70-2	Calcium	19700			Р
7440-47-3	Chromium	12.6	В		Р
7440-48-4	Cobalt	4.4	В		Р
7440-50-8	Copper	37.0			P
7439-89-6	Iron	40400			Р
7439-92-1	Lead	197			Р
7439-95-4	Magnesium	4590			Р
7439-96-5	Manganese	1080			P
7439-97-6	Mercury	0.055	В		CV
7440-02-0	Nickel	10.9	В		Р
7440-09-7	Potassium	14100			Р
7782-49-2	Selenium	14.5	В		P
7440-22-4	Silver	0.91	Ū		P
7440-23-5	Sodium	20100			Р
7440-28-0	Thallium	. 2.5	В		Р
7440-62-2	Vanadium	14.6	В		P
7440-66-6	Zinc	3360			P

Commer	nts:

EPA SAMPLE NO.

I EPA SA
INORGANIC ANALYSIS DATA SHEET SMS-MW-3

Lab Name:	Mitkem Corporation	Contract:	D003821-41	

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix (soil/water): WATER Lab Sample ID: F1135-12

Level (low/med): MED Date Received: 08/17/2007

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	1860			P
7440-36-0	Antimony	8.6	В		Р
7440-38-2	Arsenic	1.6	U		Р
7440-39-3	Barium	56.9	В		P
7440-41-7	Beryllium	0.16	В		P
7440-43-9	Cadmium	1.3	В		P
7440-70-2	Calcium	23000			Р
7440-47-3	Chromium	12.6	В		P
7440-48-4	Cobalt	4.4	В		P
7440-50-8	Copper	27.1	В		P
7439-89-6	Iron	46400			Р
7439-92-1	Lead	9.5	В		P
7439-95-4	Magnesium	3550			P
7439-96-5	Manganese	910			Р
7439-97-6	Mercury	0.047	Ū		CV
7440-02-0	Nickel	12.3	В		Р
7440-09-7	Potassium	9170			Р
7782-49-2	Selenium	15.2	В		P
7440-22-4	Silver	0.91	Ü		Р
7440-23-5	Sodium	12700			Р
7440-28-0	Thallium	4.7	В		Р
7440-62-2	Vanadium	4.6	В		P
7440-66-6	Zinc	59.8			Р

Comme	nts:				
		······································		The state of the s	

EPA SAMPLE NO.

1		EPA SAMPLE NO.
INORGANIC ANALYSIS DATA	SHEET	SMS-MW-5
Contract:	D003821-41	

Lab Name: Mitkem Corporation

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix (soil/water): WATER

Lab Sample ID: F1135-03

Level (low/med): MED

Date Received: 08/15/2007

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	583			P
7440-36-0	Antimony	8.8	В		Р
7440-38-2	Arsenic	2.0	В		Р
7440-39-3	Barium	199	В		P
7440-41-7	Beryllium	0.16	В		P
7440-43-9	Cadmium	8.4			Р
7440-70-2	Calcium	21600			P
7440-47-3	Chromium	17.5	В		P
7440-48-4	Cobalt	5.0	В		Р
7440-50-8	Copper	24.5	В		Р
7439-89-6	Iron	61000			Р
7439-92-1	Lead	8.4	В		P
7439-95-4	Magnesium	3570			P
7439-96-5	Manganese	548			P
7439-97-6	Mercury	0.047	υ		CV
7440-02-0	Nickel	13.7	В		P
7440-09-7	Potassium	3050			P
7782-49-2	Selenium	13.4	В		P
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	12600			Р
7440-28-0	Thallium	9.4	В		Р
7440-62-2	Vanadium	8.1	В		P
7440-66-6	Zinc	40.6	В		Р

Commer	nts:

U.S. EPA - CLP 1

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-56D

Lab Name: Mitkem Corporation Contract: D003821-41

SAS No.: SDG No.: MF1135 Lab Code: MITKEM Case No.:

Lab Sample ID: F1135-08 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 08/15/2007

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	304			P
7440-36-0	Antimony	4.8	В		P
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	13.1	В		P
7440-41-7	Beryllium	0.15	Ü		P
7440-43-9	Cadmium	0.52	В		Р
7440-70-2	Calcium	12800			P
7440-47-3	Chromium	2.6	В		P
7440-48-4	Cobalt	7.9	В		P
7440-50-8	Copper	14.3	В		Р
7439-89-6	Iron	26600			Р
7439-92-1	Lead	2.5	В		P
7439-95-4	Magnesium	1040			P
7439-96-5	Manganese	170			Р
7439-97-6	Mercury	0.047	U		CV
7440-02-0	Nickel	7.6	В		P
7440-09-7	Potassium	2740			Р
7782-49-2	Selenium	8.5	В		P
7440-22-4	Silver	0.91	Ü		Р
7440-23-5	Sodium	16000			Р
7440-28-0	Thallium	3.4	В		P
7440-62-2	Vanadium	0.81	В		P
7440-66-6	Zinc	56.2			Р

Commer	nts:

EPA SAMPLE NO.

		INORGANIC ANALYSIS DATA S	SHEET	SMS-MW-6D
Lab Name:	Mitkem Corporation	Contract:	D003821-41	

SDG No.: MF1135 SAS No.: Lab Code: MITKEM Case No.:

Lab Sample ID: F1135-02 Matrix (soil/water): WATER

Level (low/med): MED Date Received: 08/15/2007

% Solids: 0.0

		r	1		
CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	416			P
7440-36-0	Antimony	6.2	В		P
7440-38-2	Arsenic	1.6	Ū		Р
7440-39-3	Barium	16.5	В		Р
7440-41-7	Beryllium	0.15	U		P
7440-43-9	Cadmium	0.76	В		P
7440-70-2	Calcium	13700			P
7440-47-3	Chromium	4.9	В	***************************************	Р
7440-48-4	Cobalt	10.8	В		P
7440-50-8	Copper	20.7	В		P
7439-89-6	Iron	39300			P
7439-92-1	Lead	4.7	В		Р
7439-95-4	Magnesium	1210			Р
7439-96-5	Manganese	256			P
7439-97-6	Mercury	0.047	U		CV
7440-02-0	Nickel	12.7	В		P
7440-09-7	Potassium	2790			P
7782-49-2	Selenium	3.9	В		Р
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	16000			P
7440-28-0	Thallium	10.6	В	, , , , , , , , , , , , , , , , , , , ,	Р
7440-62-2	Vanadium	1.5	В		P
7440-66-6	Zinc	76.2			P

ommer	nts:		

EPA SAMPLE NO.

U.S. EPA - CLP

1
INORGANIC ANALYSIS DATA SHEET

SMS-MW-	·6S	

Lab Name: Mitkem Corporation

Contract: D003821-41

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix (soil/water): WATER

Lab Sample ID: F1135-01

Level (low/med): MED

Date Received: 08/15/2007,

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	8920			P
7440-36-0	Antimony	6.2	В		P
7440-38-2	Arsenic	12.1	В		P
7440-39-3	Barium	86.7	В		P
7440-41-7	Beryllium	1.0	В		P
7440-43-9	Cadmium	2.6	В		P
7440-70-2	Calcium	30300			P
7440-47-3	Chromium	111			P
7440-48-4	Cobalt	22.0	В		P
7440-50-8	Copper	135			P
7439-89-6	Iron	40400			P
7439-92-1	Lead	58.1			Р
7439-95-4	Magnesium	9290			Р
7439-96-5	Manganese	732			P
7439-97-6	Mercury	0.30			CV
7440-02-0	Nickel	24.8	В		Р
7440-09-7	Potassium	3530			P
7782-49-2	Selenium	24.5	В		P
7440-22-4	Silver	0.91	Ū		P
7440-23-5	Sodium	5530			P
7440-28-0	Thallium	7.9	В		Р
7440-62-2	Vanadium	41.1	В		P
7440-66-6	Zinc	1390			P

Commer	ts:	
		_
		_

EPA SAMPLE NO.

SMS-MW-7

INORGANIC ANALYSIS DATA SHEET

Contract: D003821-41

Matrix (soil/water): WATER Lab Sample ID: F1135-04

Level (low/med): MED Date Received: 08/15/2007

% Solids: 0.0

Lab Name: Mitkem Corporation

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	410			Р
7440-36-0	Antimony	8.0	В		Р
7440-38-2	Arsenic	1.6	Ū		P
7440-39-3	Barium	62.6	В		P
7440-41-7	Beryllium	0.22	В		P.
7440-43-9	Cadmium	2.2	В		Р
7440-70-2	Calcium	26200			P
7440-47-3	Chromium	7.7	В		P
7440-48-4	Cobalt	4.8	В		P
7440-50-8	Copper	6.3	U		P
7439-89-6	Iron	96100			Р
7439-92-1	Lead	4.6	В		Р
7439-95-4	Magnesium	3900			P
7439-96-5	Manganese	696			P
7439-97-6	Mercury	0.047	U		CV
7440-02-0	Nickel	9.0	В		P
7440-09-7	Potassium	6600			P
7782-49-2	Selenium	17.9	В		P
7440-22-4	Silver	0.91	U		P
7440-23-5	Sodium	16800			P
7440-28-0	Thallium	17.6	В		P
7440-62-2	Vanadium	5.6	В		P
7440-66-6	Zinc	39.0	В		P

Commer	ments:		
		· · · · · · · · · · · · · · · · · · ·	

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-8

ab	Name:	Mitkem	Corporation	
----	-------	--------	-------------	--

Contract: D003821-41

Lab Code: MITKEM Case No.:

SAS No.: SDG No.: MF1135

Matrix (soil/water): WATER

Lab Sample ID: F1135-07

Level (low/med): MED

Date Received: 08/15/2007

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	120	В		Р
7440-36-0	Antimony	8.9	В		P
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	61.3	В		P
7440-41-7	Beryllium	0.15	Ü		P
7440-43-9	Cadmium	0.10	U		P
7440-70-2	Calcium	25000			P
7440-47-3	Chromium	26.1			Р
7440-48-4	Cobalt	7.3	В		Р
7440-50-8	Copper	18.4	В		P
7439-89-6	Iron	71400			Р
7439-92-1	Lead	3.0	В		Р
7439-95-4	Magnesium	4960			Р
7439-96-5	Manganese	236			Р
7439-97-6	Mercury	0.047	U		CV
7440-02-0	Nickel	26.3	В		Р
7440-09-7	Potassium	13400			Р
7782-49-2	Selenium	20.6	В		Р
7440-22-4	Silver	0.91	Ū		P
7440-23-5	Sodium	26400			Р
7440-28-0	Thallium	13.5	В		Р
7440-62-2	Vanadium	0.51	В		P
7440-66-6	Zinc	. 68.6			P

Commer	nts:				

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-9

Contract: D003821-41

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1135

Matrix (soil/water): WATER Lab Sample ID: F1135-06

Level (low/med): MED Date Received: 08/15/2007

% Solids: 0.0

Lab Name: Mitkem Corporation

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	40.8	В		Р
7440-36-0	Antimony	6.7	В		P
7440-38-2	Arsenic	2.5	В		P
7440-39-3	Barium	34.4	В		P
7440-41-7	Beryllium	0.15	Ū		Р
7440-43-9	Cadmium	0.10	U		Р
7440-70-2	Calcium	29200			P
7440-47-3	Chromium	5.4	В		Р
7440-48-4	Cobalt	4.4	В		Р
7440-50-8	Copper	6.3	U		Р
7439-89-6	Iron	57100			P
7439-92-1	Lead	2.9	В		Р
7439-95-4	Magnesium	4860			Р
7439-96-5	Manganese	520			Р
7439-97-6	Mercury	0.047	U		CV
7440-02-0	Nickel	8.4	В		P
7440-09-7	Potassium	4540			P
7782-49-2	Selenium	14.2	В		Р
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	12000			P
7440-28-0	Thallium	9.2	В		P
7440-62-2	Vanadium	1.6	В	-	Р
7440-66-6	Zinc	18.1	В		Р

Comme	nts:	

"Environmental Testing For The New Millennium"

August 31, 2007

Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Allen Burton

RE: Client Project: SMS Instruments

Lab Work Order #: F1159

Dear Mr. Burton:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

Agnes R. Ng

CLP Project Manager

* Data Summary Pack *

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name: SMS Instruments, 152026

		Analytical Requirements						
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other		
SMS-TB-3	F1159-01	SW8260B_W						
SMS-MW-13D	F1159-02		SW8270C_W					
SMS-MW-13S	F1159-03	SW8260B_W	SW8270C_W		SW6010B_W			
SMS-MW-13S	F1159-03				SW7470A			
SMS-MW-12	F1159-04	SW8260B_W	SW8270C_W		SW6010B_W			
SMS-MW-12	F1159-04				SW7470A			

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: SMS Instruments, 152026

Laboratory Sample ID	Matrix	Date Collected	Date Received By Lab	Date Extracted	Date Analyzed
SW8260B_W					
F1159-01A	AQ	8/17/2007	8/18/2007	NA	8/27/2007
F1159-03A	AQ	8/17/2007	8/18/2007	NA	8/27/2007
F1159-04A	AQ	8/17/2007	8/18/2007	NA	8/27/2007

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: SMS Instruments, 152026

Laboratory Sample ID	Matrix	Date Collected	Date Received By Lab	Date Extracted	Date Analyzed
SW8270C_W					
F1159-02A	AQ	8/17/2007	8/18/2007	8/21/2007	8/23/2007
F1159-03B	AQ	8/17/2007	8/18/2007	8/21/2007	8/23/2007
F1159-04B	AQ	8/17/2007	8/18/2007	8/21/2007	8/23/2007

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name: SMS Instruments, 152026

SDG: <u>F1159</u>

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Low/Medium Level	Dil/Conc Factor
SW8260B_W					
F1159-01A	AQ	SW8260B_W	NA	LOW	1
F1159-03A	AQ	SW8260B_W	NA	LOW	1
F1159-04A	AQ	SW8260B_W	NA	LOW	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name: SMS Instruments, 152026

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Auxiliary Cleanup	Dil/Conc Factor
SW8270C_W					
F1159-02A	AQ	SW8270C_W	3520C	NA	1
F1159-03B	AQ	SW8270C_W	3520C	NA	1
F1159-04B	AQ	SW8270C_W	3520C	NA	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name: SMS Instruments, 152026

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010B_W				
F1159-03C	AQ	SW6010B_W	8/18/2007	8/28/2007
F1159-04C	AQ	SW6010B_W	8/18/2007	8/28/2007
SW7470A				
F1159-03C	AQ	SW7470A	8/18/2007	8/23/2007
F1159-04C	AQ	SW7470A	8/18/2007	8/23/2007

Analytical Data Package for Earth Tech Northeast, Inc.

Client Project: SMS Instruments

SDG# MF1159

Mitkem Work Order ID: F1159

August 31, 2007

Prepared For:

Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Allen Burton

Prepared By:

Mitkem Corporation

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to Earth Tech Northeast, Inc.'s SMS Instruments project. Under this deliverable, analysis results are presented for four aqueous samples that were received on August 18, 2007. Analyses were performed per specifications in the project's contract and the chain of custody forms. Following the narrative is the Mitkem Work Order for cross-referencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000 update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.
- M6 software did not integrate peak
- M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits with the exception of high recovery of acetone in V2OLCS.

Sample analysis: no unusual observation was made for the analysis.

3. Semivolatile Analysis:

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits with the exception of low recovery of hexachlorocyclopentadiene and di-n-butylphthalate.

Sample analysis: no other unusual observation was made for the analysis.

4. Metals Analysis:

Lab control sample: spike recoveries were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

CLP Project Manager

08/31/07

Mitkem Corporation	20/Aug/07 17:29	WorkOrder: F1159
Client ID: EARTH_NJ	Case:	Report Level: ASP-B
Project: SMS Instruments, 152026	SDG:	EDD: CLF
Location:	PO: D003821-41	HC Due: 09/10/07
Comments: N/A		Fax Due: 09/03/07

Sample ID	HS Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Lab Test Comments	Hold MS SEL Storage
F1159-01A	SMS-TB-3	08/17/2007 0:00	08/18/2007	Aqueous	SW8260B_W		
F1159-02A	SMS-MW-13D	08/17/2007 10:00 08/1	08/18/2007	Aqueous	SW8270C_W		
F1159-03A	SMS-MW-13S	08/17/2007 9:45	08/18/2007	Aqueous	SW8260B_W		O O O
F1159-03B	SMS-MW-13S	08/17/2007 9:45	08/18/2007	Aqueous	SW8270C_W		
F1159-03C	SMS-MW-13S	08/17/2007 9:45	08/18/2007	Aqueous	SW6010B_W	TAL	
					SW7470A	TAL	☐ ☐ M2
F1159-04A	SMS-MW-12	08/17/2007 10:30 08/1	08/18/2007	Aqueous	SW8260B_W		
F1159-04B	SMS-MW-12	08/17/2007 10:30 08/1	08/18/2007	Aqueous	SW8270C_W		H2
F1159-04C	SMS-MW-12	08/17/2007 10:30 08/	08/18/2007	Aqueous	SW6010B_W	TAL	Z W
					SW7470A	TAL	

Page 1 of 1

Client Rep: Agnes R Ng

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

SMS-MW-12
Lab Name: MITKEM CORPORATION Contract:

Sample wt/vol: 5.000 (g/mL) ML

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1159

Matrix: (soil/water) WATER Lab Sample ID: F1159-04A

Level: (low/med) LOW Date Received: 08/18/07

% Moisture: not dec. _____ Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Lab File ID: V2J9232

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

CAS NO.	COMPOUND (19/11 01	ug/kg/	0.67 1.1	Q
75-71-8	Dichlorodifluoromet	hane		5	Ū
	Chloromethane				Ū
	Vinyl Chloride				Ū
	Bromomethane		—		Ū
	Chloroethane			. 5	
	Trichlorofluorometh	nane		5	שׁוֹ
	1,1-Dichloroethene			5	
67-64-1				5	U
	Iodomethane			5	ַ
	Carbon Disulfide			5	ט
	Methylene Chloride			5	שׁ
	trans-1,2-Dichloro	thene		5	U
	Methyl tert-butyl e			5	U
	1,1-Dichloroethane			5	שׁ
	Vinyl acetate		_	5	Ū
	2-Butanone			5	U
156-59-2	cis-1,2-Dichloroeth	nene	_	5 5 5 5	U
	2,2-Dichloropropane			5	U
	Bromochloromethane			5	U
67-66-3	Chloroform			5	
71-55-6	1,1,1-Trichloroetha	ine		5 5 5	U
563-58-6	1,1-Dichloropropene	<u></u>		5	U
56-23-5	Carbon Tetrachloric	ie		5	U
107-06-2	1,2-Dichloroethane			5	U
71-43-2				5	U
	Trichloroethene			5	U
78-87-5	1,2-Dichloropropane	3		5	U
	Dibromomethane			5	ע
	Bromodichloromethan			5	
	cis-1,3-Dichloropro			5	
	4-Methyl-2-pentanor	1e		5	שׁ
108-88-3				5	
	trans-1,3-Dichloror		[5	שׁ
79-00-5	1,1,2-Trichloroeth	ine		5	ע

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SMS-MW-12

Lab Name: MITKEM CORPORATION Contract:

SDG No.: MF1159 Lab Code: MITKEM Case No.: SAS No.:

Lab Sample ID: F1159-04A Matrix: (soil/water) WATER

Lab File ID: V2J9232 Sample wt/vol: 5.000 (g/mL) ML

Date Received: 08/18/07 Level: (low/med) LOW

% Moisture: not dec. _____ Date Analyzed: 08/27/07

Dilution Factor: 1.0 GC Column: DB-624 ID: 0.25 (mm)

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

> CONCENTRATION UNITS: COMPOUND (ug/L or ug/Kg) UG/L

Q CAS NO.

CAD IVO.	(49, 1 01 45,	9,, -	
142-28-9	1,3-Dichloropropane	5	บ
	Tetrachloroethene	5	U
	2-Hexanone	5	U
	Dibromochloromethane	5	
	1,2-Dibromoethane	5	U
	Chlorobenzene	5	U
630-20-6	1,1,1,2-Tetrachloroethane	5	U
100-41-4	Ethylbenzene	. 5	U
	m,p-Xylene	5	U
95-47-6	o-Xvlene	5	U
1330-20-7	Xylene (Total)	5	Ū
100-42-5	Stvrene	55555555555	U
75-25-2		5	U
	Isopropylbenzene	5	U
79-34-5	1,1,2,2-Tetrachloroethane	5	U
108-86-1	Bromobenzene	5	U
96-18-4	1,2,3-Trichloropropane	5	Ū
	n-Propylbenzene	5	U
	2-Chlorotoluene	5	U
108-67-8	1,3,5-Trimethylbenzene	5 5	U
106-43-4	4-Chlorotoluene	5	U
98-06-6	tert-Butylbenzene	5	Ū
	1,2,4-Trimethylbenzene	5	Ū
	sec-Butylbenzene	5	U
99-87-6	4-Isopropyltoluene	5	U
541-73-1	1,3-Dichlorobenzene	5	U
	1,4-Dichlorobenzene	5	U
	n-Butylbenzene	5	U
95-50-1	1,2-Dichlorobenzene	5	U
96-12-8	1,2-Dibromo-3-chloropropane_	5	U
120-82-1	1,2,4-Trichlorobenzene	5	U
	Hexachlorobutadiene	5	U
91-20-3	Naphthalene	5	Ŭ
87-61-6	1,2,3-Trichlorobenzene	5	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1	Lab	Code: MIT	KEM Case	No.: SA	AS No.:	SDG No.:	MF1159
--	-----	-----------	----------	---------	---------	----------	--------

Matrix: (soil/water) WATER Lab Sample ID: F1159-04A

Lab File ID: V2J9232 Sample wt/vol: 5.000 (g/mL) ML

Level: (low/med) LOW Date Received: 08/18/07

% Moisture: not dec. _____ Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 0 (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		======		====
1				l
2				
٦.			-	
				
J				
. 6 .				
, • I				ļ
0.				
2.				ļ
10.				l
11.				
1Z.				
15				
16.				
17.				
18. l				
19			, ,	
20		·	4	
20.				
		·		
22.				
43.		·		
24.				
25.				
26.				
4/.				
20.				l
49.				l
30.				

FORM I VOA-TIC

VOLATILE ORGANICS ANALYSIS DATA SHEET

SMS-MW-13S

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1159

Matrix: (soil/water) WATER Lab Sample ID: F1159-03A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9231

Level: (low/med) LOW Date Received: 08/18/07

% Moisture: not dec. Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

	5.		
	Dichlorodifluoromethane_	5	
	Chloromethane	5	U
	Vinyl Chloride	5	U
	Bromomethane	5	U
	Chloroethane	5	ט
75-69-4	Trichlorofluoromethane	5	U
75-35-4 	1,1-Dichloroethene	5 5	ט
67-64-1		5 5	U
74-88-4	Iodomethane	5	U
75-15-0	Carbon Disulfide	5	ן ט
75-09-2	Methylene Chloride	5	U
	trans-1,2-Dichloroethene	5	U
	Methyl tert-butyl ether	5	U
	1,1-Dichloroethane	5	U
	Vinyl acetate	5	U
	2-Butanone	5	U
	cis-1,2-Dichloroethene	5	U
	2,2-Dichloropropane	5 5 5 5 5	U
	Bromochloromethane	5	U
	Chloroform	[5	ט
	1,1,1-Trichloroethane	5	U
	1,1-Dichloropropene	5	ע
	Carbon Tetrachloride	5	U
	1,2-Dichloroethane	[5	U
71-43-2		5	U
	Trichloroethene	5	U
	1,2-Dichloropropane	5	U
	Dibromomethane	5	U
	Bromodichloromethane	5	ע
	cis-1,3-Dichloropropene	5 5	U
	4-Methyl-2-pentanone	. 5	U
108-88-3		5	U
	trans-1,3-Dichloropropene	5	
79-00-5	1,1,2-Trichloroethane	5	U

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SMS-MW-13S

Q.

5 U

5 U

U

U 5

U

U

5

5 U

5 Ū 5

Lab Name: MITKEM CORPORATION Contract:

142-28-9-----1,3-Dichloropropane

104-51-8----n-Butylbenzene

91-20-3----Naphthalene

95-50-1-----1,2-Dichlorobenzene

87-68-3-----Hexachlorobutadiene

120-82-1-----1,2,4-Trichlorobenzene_

87-61-6-----1,2,3-Trichlorobenzene

96-12-8----1, 2-Dibromo-3-chloropropane

CAS NO.

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1159

Matrix: (soil/water) WATER Lab Sample ID: F1159-03A

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V2J9231

Level: (low/med) LOW Date Received: 08/18/07

% Moisture: not dec. Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

> CONCENTRATION UNITS: COMPOUND (uq/L or uq/Kq) UG/L

127-18-4-----Tetrachloroethene 5 U 5 U 591-78-6----2-Hexanone 5 124-48-1-----Dibromochloromethane U 106-93-4----1,2-Dibromoethane 5 U 5 108-90-7-----Chlorobenzene U 5 630-20-6-----1,1,1,2-Tetrachloroethane UΙ 5 100-41-4-----Ethylbenzene U 5 -----m,p-Xylene ΙU 5 U 5 U 5 U 100-42-5----Styrene 5 75-25-2-----Bromoform U 98-82-8-----Isopropylbenzene 5 U 5 79-34-5----1,1,2,2-Tetrachloroethane U 108-86-1-----Bromobenzene 5 U 5 96-18-4----1,2,3-Trichloropropane U 5 103-65-1----n-Propylbenzene lυ 95-49-8----2-Chlorotoluene 5 U 108-67-8-----1,3,5-Trimethylbenzene 5 U 5 U 106-43-4----4-Chlorotoluene 98-06-6----tert-Butylbenzene 5 U 95-63-6-----1,2,4-Trimethylbenzene 5 U 135-98-8----sec-Butylbenzene 5 U 99-87-6----4-Isopropyltoluene 5 U 541-73-1-----1,3-Dichlorobenzene_ 5 U 106-46-7-----1,4-Dichlorobenzene U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-13S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: MF1159

Matrix: (soil/water) WATER

Lab Sample ID: F1159-03A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9231

Level: (low/med) LOW

Date Received: 08/18/07

% Moisture: not dec. _____

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Number TICs found: 0

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

	CONTROL TO THE CONTRO			
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	=======================================	======	=======	=====
1				
2.				
J.				
7.				
5.				
6.				
, •				
0.	·			
J.				
10				
11.				
12.				
13.				
14.				
13.				
TO.				
- 1				
18.				
19.				
20				
21.				
22.				
∠ 3.				•
24.				
∠5.				
26.				
27.				
28.				
29.				
30.				

SMS-TB-3

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1159

Matrix: (soil/water) WATER

Lab Sample ID: F1159-01A

Lab File ID: V2J9230

Sample wt/vol: 5.000 (g/mL) ML

Level: (low/med) LOW

Date Received: 08/18/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

1		
75-71-8Dichlorodifluoromethane	5	ש
74-87-3Chloromethane	5	ט
75-01-4Vinyl Chloride		ט
74-83-9Bromomethane	5	ט
75-00-3Chloroethane	5	Ū
75-69-4Trichlorofluoromethane	5	U
75-35-41,1-Dichloroethene	5	U
67-64-1Acetone	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	U
74-88-4Iodomethane	5	ับ
75-15-0Carbon Disulfide	5	U
75-09-2Methylene Chloride	5	U
156-60-5trans-1,2-Dichloroethene	5	שׁ
1634-04-4Methyl tert-butyl ether	5	U
75-34-31,1-Dichloroethane	5	U
108-05-4Vinyl acetate	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	U
78-93-32-Butanone	5	U
156-59-2cis-1,2-Dichloroethene	5	U
590-20-72,2-Dichloropropane	. 5	U
74-97-5Bromochloromethane	5	U
67-66-3Chloroform_	5	U
71-55-61,1,1-Trichloroethane	5	U
563-58-61,1-Dichloropropene	5	U
56-23-5Carbon Tetrachloride	5	U
107-06-21,2-Dichloroethane	5	Ŭ
71-43-2Benzene	5	U
79-01-6Trichloroethene	5	U
78-87-51,2-Dichloropropane	5	U
74-95-3Dibromomethane	5	U
75-27-4Bromodichloromethane	5	U
10061-01-5cis-1,3-Dichloropropene	5	U
108-10-14-Methyl-2-pentanone	. 5	U
108-88-3Toluene	5	U
10061-02-6trans-1,3-Dichloropropene	5	U
79-00-51,1,2-Trichloroethane	. 5	ט

FORM I VOA

OLMO3.0

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SMS-TB-3

SDG No.: MF1159

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.:

Matrix: (soil/water) WATER

Lab Sample ID: F1159-01A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9230

Level: (low/med) LOW

Date Received: 08/18/07

% Moisture: not dec. _____

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

	_	
142-28-91,3-Dichloropropane 127-18-4Tetrachloroethene 591-78-62-Hexanone 124-48-1Dibromochloromethane 106-93-41,2-Dibromoethane 108-90-7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	מממממממממממממממממממממ
108-67-81,3,5-Trimethylbenzene 106-43-44-Chlorotoluene 98-06-6tert-Butylbenzene 95-63-61,2,4-Trimethylbenzene 135-98-8sec-Butylbenzene 99-87-64-Isopropyltoluene 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 104-51-8Butylbenzene 95-50-11,2-Dichlorobenzene 96-12-81,2-Dibromo-3-chloropropane 120-82-11,2,4-Trichlorobenzene	5555555555	ממממממ
87-68-3Hexachlorobutadiene 91-20-3Naphthalene 87-61-61,2,3-Trichlorobenzene	5 5 5	U . U

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-TB-3 Lab Name: MITKEM CORPORATION Contract:

SAS No.:

Lab Code: MITKEM Case No.:

SDG No.: MF1159

Matrix: (soil/water) WATER

Lab Sample ID: F1159-01A

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9230

Level: (low/med) LOW

Date Received: 08/18/07

% Moisture: not dec.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
Cais Norman			1	
				====
1				
1 2.				
, , ,		ļ		
1 1				
5				
6				
7				
7				
8				
9.				
10				
11.				
1 40.				
1				
1 13.				
16.				
17				'
		·		
1 ±0.				
40.				
41.				
44.				
23.				
44.				
25	The state of the s			
26				
26.				
1 4/•				
40.				
49.				
30.				
<u> </u>				

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

;			V2OLCS	
. :		SDG	No.: MF1159	
Lab	Sample	ID:	LCS-31897	
T _ 1_	mila m	.	170 T001 2	

Lab Name: MITKEM CORPORATION

Contract:

SAS No.:

Matrix: (soil/water) WATER

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9213

Lab Code: MITKEM

Level: (low/med) LOW

Case No.:

Date Received:

% Moisture: not dec. _____

CAS NO.

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

COMPOUND

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Q

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION

CAS NO.

EPA SAMPLE NO.

V2OLCS	

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1159

Contract:

Matrix: (soil/water) WATER Lab Sample ID: LCS-31897

Sample wt/vol: 5.000 (q/mL) ML Lab File ID: V2J9213

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 08/27/07

ID: 0.25 (mm) GC Column: DB-624 Dilution Factor: 1.0

COMPOUND

Soil Aliquot Volume: (uL) Soil Extract Volume: (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L Q 142-28-9-----1,3-Dichloropropane 53 127-18-4-----Tetrachloroethene 50 B 591-78-6----2-Hexanone 60 124-48-1-----Dibromochloromethane 51 106-93-4----1, 2-Dibromoethane 52 108-90-7-----Chlorobenzene 49 630-20-6----1,1,1,2-Tetrachloroethane 48 100-41-4----Ethylbenzene 48 ----m, p-Xylene 98 95-47-6----o-Xylene 49 1330-20-7-----Xylene (Total) 150 100-42-5-----Styrene 50 75-25-2-----Bromoform 56 98-82-8-----Isopropylbenzene 48 79-34-5----1,1,2,2-Tetrachloroethane 55 108-86-1-----Bromobenzene 44 96-18-4----1,2,3-Trichloropropane 57 103-65-1----n-Propylbenzene____ 42 95-49-8----2-Chlorotoluene 44 108-67-8-----1,3,5-Trimethylbenzene 46 106-43-4----4-Chlorotoluene 45 98-06-6----tert-Butylbenzene 44 95-63-6----1,2,4-Trimethylbenzene 46 135-98-8----sec-Butylbenzene 46 99-87-6----4-Isopropyltoluene 44 541-73-1-----1,3-Dichlorobenzene 46 106-46-7----1,4-Dichlorobenzene 46 104-51-8----n-Butylbenzene 46 95-50-1-----1, 2-Dichlorobenzene 46 96-12-8----1,2-Dibromo-3-chloropropane 54 120-82-1----1,2,4-Trichlorobenzene 46 87-68-3-----Hexachlorobutadiene 39 91-20-3-----Naphthalene 46 | B 87-61-6----1,2,3-Trichlorobenzene 46 B

FORM I VOA

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION	La	Name:	MITKEM	CORPORATION	ĺ
------------------------------	----	-------	--------	-------------	---

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1159

Matrix: (soil/water) WATER

Lab Sample ID: LCS-31897

Sample wt/vol: 5.000 (g/mL) ML

Lab File ID: V2J9213

Level: (low/med) LOW

Date Received: _____

% Moisture: not dec. _____

Date Analyzed: 08/27/07

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Number TICs found: 4

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

1		T	1	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1.	UNKNOWN	1.55	780	
2.	UNKNOWN	2.01	12	
3.	UNKNOWN	2.08	18	
4.	UNKNOWN	3.26	27	
5	Cititionit	3.20		
6				
6				
, •				
8				
9				
10.				
11				
12				
15				
16				-
17.				
18.				
20.				
22.	· · · · · · · · · · · · · · · · · · ·			
24.				
25				
2d / •				
20.				
49.				
30.				
1				

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SMS-MW-12

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MF1159

Matrix: (soil/water) WATER

Lab File ID: S3E5536

Sample wt/vol:

1000 (g/mL) ML

Level: (low/med) LOW

Date Received: 08/18/07

Concentrated Extract Volume:

% Moisture: decanted: (Y/N)

Date Extracted: 08/21/07 Date Analyzed: 08/23/07

Lab Sample ID: F1159-04B

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

1000 (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/L

Q

108-95-2Phenol 111-44-4bis (2-Chloroethyl) Ether 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 95-50-11,2-Dichlorobenzene 95-48-72-Methylphenol 108-60-12,2'-oxybis (1-Chloropropane) 106-44-54-Methylphenol 621-64-7N-Nitroso-di-n-propylamine 67-72-1Hexachloroethane 98-95-3Nitrobenzene 78-59-1Isophorone 88-75-52-Nitrophenol 105-67-92,4-Dichlorophenol 120-83-22,4-Dichlorophenol 120-82-11,2,4-Trichlorobenzene 91-20-3Naphthalene 106-47-8	10 10 10 10 10 10 10 10 10 10 10 10 10 1	מממממממממממממממממממממממממ מממממממממ
88-74-42-Nitroaniline 131-11-3Dimethylphthalate	20 10	n n

FORM I SV-1

SMS-MW-12 Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1159

Matrix: (soil/water) WATER Lab Sample ID: F1159-04B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5536

Level: (low/med) LOW Date Received: 08/18/07

% Moisture: decanted: (Y/N) Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

51-28-52,4-Dinitrophenol	20	TT
100-02-74-Nitrophenol	20	
132-64-9Dibenzofuran	1	U
121-14-22,4-Dinitrotoluene	i i	U
84-66-2Diethylphthalate	l l	U -
7005-72-34-Chlorophenyl-phenylether	1	U
86-73-7Fluorene	1	U
100-01-64-Nitroaniline	i i	U
534-52-14,6-Dinitro-2-methylphenol	I I	Ū
86-30-6N-Nitrosodiphenylamine (1)	i i	n .
101-55-34-Bromophenyl-phenylether		U
118-74-1Hexachlorobenzene		U
87-86-5Pentachlorophenol		Ŭ
85-01-8Phenanthrene		Ū
120-12-7Anthracene	l i	Ŭ
86-74-8Carbazole		Ŭ
84-74-2Di-n-butylphthalate		Ū
206-44-0Fluoranthene	10	
129-00-0Pyrene		U
85-68-7Butylbenzylphthalate		U
91-94-13,3'-Dichlorobenzidine	1	U .
56-55-3Benzo (a) anthracene		Ū
218-01-9Chrysene		Ū
117-81-7bis(2-Ethylhexyl)phthalate		U
117-84-0Di-n-octylphthalate		U
205-99-2Benzo (b) fluoranthene	10	-
207-08-9Benzo (k) fluoranthene	10	
50-32-8Benzo (a) pyrene	10	
193-39-5Indeno (1, 2, 3-cd) pyrene	10	
53-70-3Dibenzo (a, h) anthracene		U
191-24-2Benzo(g,h,i)perylene		U
131 21 2 Delize (9,11, 1, per y refic	. 10	-
) - Cannot be separated from Diphenylamine	I [

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-12

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1159

Matrix: (soil/water) WATER

Lab Sample ID: F1159-04B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID:

S3E5536

Level:

(low/med)

LOW

Date Received: 08/18/07

% Moisture: decanted: (Y/N)___

Date Extracted: 08/21/07

Concentrated Extract Volume:

1000 (uL)

Date Analyzed: 08/23/07

Injection Volume: 1.0(uL)

Number TICs found: 3

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ____

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.	UNKNOWN UNKNOWN UNKNOWN	RT ====== 3.85 3.99 4.03	EST. CONC.	 ЈВ ЈВ
29.				

FORM I SV-TIC

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION

Contract:

SMS-MW-13D

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1159

Matrix: (soil/water) WATER

Lab Sample ID: F1159-02A

Sample wt/vol:

1000 (g/mL) ML

Lab File ID: S3E5534

Level: (low/med) LOW

Date Received: 08/18/07

% Moisture: decanted: (Y/N) ___ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 08/23/07

Injection Volume: 1.0(uL)

CAS NO.

COMPOUND

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

		·····
108-95-2Phenol	10	U
111-44-4bis(2-Chloroethyl)Ether		
95-57-82-Chlorophenol		1
541-73-11,3-Dichlorobenzene	10	U
106-46-71,4-Dichlorobenzene	10	U
95-50-11,2-Dichlorobenzene		U
95-48-72-Methylphenol	10	Ū
108-60-12,2'-oxybis(1-Chloropropane)	10	U
106-44-54-Methylphenol	10	U
621-64-7N-Nitroso-di-n-propylamine	10	Ū
67-72-1Hexachloroethane	10	U
98-95-3Nitrobenzene	10	U
78-59-1Isophorone	10	U
88-75-52-Nitrophenol	10	U
105-67-92,4-Dimethylphenol	10	U
120-83-22,4-Dichlorophenol	10	U
120-82-11,2,4-Trichlorobenzene	10	Ū
91-20-3Naphthalene	10	U
106-47-84-Chloroaniline	10	Ū
87-68-3Hexachlorobutadiene	10	Π.
111-91-1bis(2-Chloroethoxy)methane	10	U
59-50-74-Chloro-3-Methylphenol	10	Ū
91-57-62-Methylnaphthalene	10	U
77-47-4Hexachlorocyclopentadiene	10	U
88-06-22,4,6-Trichlorophenol	10	U
95-95-42,4,5-Trichlorophenol	20	U
91-58-72-Chloronaphthalene	10	U
88-74-42-Nitroaniline		Ŭ
131-11-3Dimethylphthalate		U
208-96-8Acenaphthylene	1	U
606-20-22,6-Dinitrotoluene		U
99-09-23-Nitroaniline		U
83-32-9Acenaphthene	10	U

FORM I SV-1

SMS-MW-13D

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1159

Matrix: (soil/water) WATER

Lab Sample ID: F1159-02A

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S3E5534

Level:

(low/med) LOW

Date Received: 08/18/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:08/21/07

Concentrated Extract Volume:

1000 (uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL)

CONCENTRATION UNITS:

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CAS NO.	COMPOUND (ug	g/L or ug/Kg) UG/L	Q
51-28-5	2,4-Dinitrophenol		20 U
100-02-7	4-Nitrophenol		20 U
	Dibenzofuran		10 U
	2,4-Dinitrotoluene		10 U
	Diethylphthalate		10 U
	4-Chlorophenyl-pheny	lether	10 U
86-73-7			10 ע
100-01-6	4-Nitroaniline		20 U
	4,6-Dinitro-2-methyl		20 U
86-30-6	N-Nitrosodiphenylami	ine (1)	10 U
101-55-3	4-Bromophenyl-phenyl	lether	10 U
118-74-1	Hexachlorobenzene		10 U
87-86-5	Pentachlorophenol		20 U
85-01-8	Phenanthrene		10 U
	Anthracene		10 U
	Carbazole		10 U
	Di-n-butylphthalate		10 U
	Fluoranthene		10 U
129-00-0	Pyrene		10 U
85-68-7	Butylbenzylphthalate	2	10 U
91-94-1	3,3'-Dichlorobenzidi	ine	10 U
	Benzo (a) anthracene		10 U
	Chrysene		10 U
	bis(2-Ethylhexyl)pht	chalate	10 U
	Di-n-octylphthalate_		10 U
	Benzo (b) fluoranthene		10 U
	Benzo(k)fluoranthene	2	10 U
	Benzo(a)pyrene		10 U
193-39-5	Indeno (1, 2, 3-cd) pyre	ene	10 U
	Dibenzo (a, h) anthrace		10 U
191-24-2	Benzo(g,h,i)perylene	3	10 U

OLMO3.0

1 F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MF1159

Matrix: (soil/water) WATER Lab Sample ID: F1159-02A

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5534

Level: (low/med) LOW Date Received: 08/18/07

% Moisture: ____ decanted: (Y/N) ___ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

Number TICs found: 4 CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	UNKNOWN UNKNOWN UNKNOWN UNKNOWN	3.85 4.00 4.03 4.11	14	Д ЈВ ЈВ ЈВ ЈВ
14. 15. 16. 17. 18. 19. 20. 21. 22.				
23. 24. 25. 26. 27. 28. 29. 30.				

FORM I SV-TIC

SMS-MW-13S

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SA

SAS No.: SDG No.: MF1159

Matrix: (soil/water) WATER Lab Sample ID: F1159-03B

Sample wt/vol: 1000 (g/mL) ML Lab File ID: S3E5535

Level: (low/med) LOW Date Received: 08/18/07

% Moisture: decanted: (Y/N) Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

	(35, 2 32,	
108-95-2	Phenol	10 U
	bis(2-Chloroethyl)Ether	10 U
	2-Chlorophenol	10 U
	1,3-Dichlorobenzene	10 0
	1,4-Dichlorobenzene	10 U
	1,2-Dichlorobenzene	10 0
	2-Methylphenol	10 U
	2,2'-oxybis(1-Chloropropane)	10 0
106-44-5	4-Methylphenol	10 U
621-64-7	N-Nitroso-di-n-propylamine	10 U
67-72-1	Hexachloroethane	10 U
	Nitrobenzene	10 U
	Isophorone	10 U
	2-Nitrophenol	10 U
	2,4-Dimethylphenol	10 U
	2,4-Dichlorophenol	10 U
	1,2,4-Trichlorobenzene	10 U
	Naphthalene	10 U
	4-Chloroaniline	10 U
87-68-3	Hexachlorobutadiene	10 U
	bis(2-Chloroethoxy)methane	10 U
59-50-7	4-Chloro-3-Methylphenol	10 U
91-57-6	2-Methylnaphthalene	10 U
77-47-4	Hexachlorocyclopentadiene	10 U
88-06-2	2,4,6-Trichlorophenol	10 U
	2,4,5-Trichlorophenol	20 U
	2-Chloronaphthalene	10 U
88-74-4	2-Nitroaniline	20 U
	Dimethylphthalate	10 U
208-96-8	Acenaphthylene	10 U
	2,6-Dinitrotoluene	10 U
99-09-2	3-Nitroaniline	20 U
	Acenaphthene	10 U
	-	

FORM I SV-1

SMS-MW-13S

Q

SDG No.: MF1159

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.:

Matrix: (soil/water) WATER

Lab Sample ID: F1159-03B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: S3E5535

Level: (low/med) LOW

Date Received: 08/18/07

% Moisture: decanted: (Y/N)___

Date Extracted: 08/21/07

Concentrated Extract Volume: 1000(uL)

CAS NO.

COMPOUND

Date Analyzed: 08/23/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

GPC Cleanup: (Y/N) N

pH:

	(ug/II of ug/II)	,, -
51-28-5	2,4-Dinitrophenol	20 U
100-02-7	4-Nitrophenol	20 U
132-64-9	Dibenzofuran	10 U
121-14-2	2,4-Dinitrotoluene	10 U
84-66-2	Diethylphthalate	10 U
7005-72-3	4-Chlorophenyl-phenylether	10 U
86-73-7	Fluorene	10 U
100-01-6	4-Nitroaniline	20 U
534-52-1	4,6-Dinitro-2-methylphenol	20 U
86-30-6	N-Nitrosodiphenylamine (1)	10 U
101-55-3	4-Bromophenyl-phenylether —	10 U
118-74-1	Hexachlorobenzene	10 U
87-86-5	Pentachlorophenol	20 U
85-01-8	Phenanthrene	10 U
120-12-7	Anthracene	10 ע
	Carbazole	10 U
84-74-2	Di-n-butylphthalate	10 U
206-44-0	Fluoranthene	10 U
129-00-0	Pyrene	10 U
85-68-7	Butylbenzylphthalate	10 U
	3,3 -Dichlorobenzidine	10 U
	Benzo (a) anthracene	10 U
218-01-9	Chrysene	10 U
117-81-7	bis(2-Ethylhexyl)phthalate	10 U
117-84-0	Di-n-octylphthalate	10 U
205-99-2	Benzo(b) fluoranthene	10 U
207-08-9	Benzo(k) fluoranthene	10 U
50-32-8	Benzo(a)pyrene	10 U
193-39-5	Indeno (1, 2, 3-cd) pyrene	10 U
53-70-3	Dibenzo (a, h) anthracene	10 U
191-24-2	Benzo(g,h,i)perylene	10 U

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS-MW-13S Lab Name: MITKEM CORPORATION Contract:

SDG No.: MF1159

S3E5535

Lab Code: MITKEM Case No.: SAS No.:

Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) ML

Lab File ID:

Level:

(low/med) LOW

Date Received: 08/18/07

Lab Sample ID: F1159-03B

% Moisture: decanted: (Y/N)

Date Extracted: 08/21/07

Concentrated Extract Volume: 1000(uL)

Date Analyzed: 08/23/07

Injection Volume: 1.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CONCENTRATION UNITS:

Number TICs found	d: 7 (ug/L d	or ug/Kg)	ug/L
CAS NUMBER	COMPOUND NAME	RT	EST
==========			=====

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4. 5. 78-40-0 6. 7. 13798-23-7 8.	UNKNOWN UNKNOWN UNKNOWN UNKNOWN TRIETHYL PHOSPHATE UNKNOWN SULFUR	3.85 4.00 4.02 4.11 5.86 6.68 10.61	5 10 6 6	JB JB JB JB JB NJ J
13. 14. 15. 16.				
23. 24. 25. 26. 27.				

FORM I SV-TIC

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	•		S3ILCS
Lab Name: MITKEM COR	PORATION Contract	:	
Lab Code: MITKEM	Case No.: SAS No.	: SDG	No.: MF1159
Matrix: (soil/water)	WATER	Lab Sample ID:	LCS-31795
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S3E5523
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	d:08/21/07
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/23/07
Injection Volume:	1.0 (uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		
	CONCE	NTRATION UNITS:	

CAS NO.	COMPOUND	(ug/L or ug/	'Kg) UG/L		Q
95-57-8	-bis(2-Chloroeth			43 43 46	

	111-44-4bis(2-Chloroethyl)Ether	43	
	95-57-82-Chlorophenol	46	
	541-73-11,3-Dichlorobenzene	40	
	106-46-71,4-Dichlorobenzene	41	
	95-50-11,2-Dichlorobenzene	40	
	95-48-72-Methylphenol	39	
	108-60-12,2'-oxybis(1-Chloropropane)	54	
	106-44-54-Methylphenol	42	
	621-64-7N-Nitroso-di-n-propylamine	46	
	67-72-1Hexachloroethane	43	
	98-95-3Nitrobenzene	48	
	78-59-1Isophorone	45	
	88-75-52-Nitrophenol	48	
	105-67-92,4-Dimethylphenol	17	
	120-83-22,4-Dichlorophenol	47	
	120-82-11,2,4-Trichlorobenzene	41	
	91-20-3Naphthalene	43	
	106-47-84-Chloroaniline	34	
	87-68-3Hexachlorobutadiene	40	
	111-91-1bis(2-Chloroethoxy)methane	43	
	59-50-74-Chloro-3-Methylphenol	43	
	91-57-62-Methylnaphthalene	44	
	77-47-4Hexachlorocyclopentadiene	10	
	88-06-22,4,6-Trichlorophenol	46	
	95-95-42,4,5-Trichlorophenol	47	
	91-58-72-Chloronaphthalene	48	
	88-74-42-Nitroaniline	48	
	131-11-3Dimethylphthalate	50	
	208-96-8Acenaphthylene	47	
1	606-20-22,6-Dinitrotoluene	50	
	99-09-23-Nitroaniline	39	· ·
	83-32-9Acenaphthene	47	
	os sa sa rectapitatione		

FORM I SV-1

Date Received:

Lab Name: MITKEM CORPOR	RATION (Contract:	_	S3ILCS
Lab Code: MITKEM Cas	se No.:	SAS No.:	SDG No	o.: MF1159
Matrix: (soil/water) WA	ATER	Lab Sam	ple ID: I	LCS-31795
Sample wt/vol: 10	000 (g/mL) ML	Lab Fil	e ID:	S3E5523

% Moisture: _____ decanted: (Y/N) ___ Date Extracted:08/21/07

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/23/07

Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ____

Level: (low/med) LOW

CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/L Q

	2,4-Dinitrophenol	25
	4-Nitrophenol	58
132-64-9	Dibenzofuran	49
121-14-2	2,4-Dinitrotoluene	51
84-66-2	Diethylphthalate	51
7005-72-3	4-Chlorophenyl-phenylether	46
86-73-7	Fluorene	48
100-01-6	4-Nitroaniline	40
534-52-1	4,6-Dinitro-2-methylphenol	52
86-30-6	N-Nitrosodiphenylamine (1)	43
101-55-3	4-Bromophenyl-phenylether	48
118-74-1	Hexachlorobenzene	48
87-86-5	Pentachlorophenol	46
	Phenanthrene	54
120-12-7	Anthracene	53
	Carbazole	54
	Di-n-butylphthalate	59
	Fluoranthene	55
129-00-0	Pyrene	54
85-68-7	Butylbenzylphthalate	56
	3,3'-Dichlorobenzidine	38
56-55-3	Benzo (a) anthracene	53
	Chrysene	52
117-81-7	bis(2-Ethylhexyl)phthalate	60
117-84-0	Di-n-octylphthalate	59
205-99-2	Benzo (b) fluoranthene	55
	Benzo(k) fluoranthene	51
	Benzo(a)pyrene	48
193-39-5	Indeno (1, 2, 3-cd) pyrene	52
	Dibenzo(a,h)anthracene	53
191-24-2	Benzo(g,h,i)perylene	52

FORM I SV-2

1 F

Number TICs found: 0

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

			GO TT GG
Lab Name: MITKEM COR	PORATION	Contract:	S3ILCS
Lab Code: MITKEM	Case No.:	SAS No.: SD	G No.: MF1159
Matrix: (soil/water)	WATER	Lab Sample II	D: LCS-31795
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S3E5523
Level: (low/med)	LOW	Date Received	d:
% Moisture:	decanted: (Y/N)_	Date Extracte	ed:08/21/07
Concentrated Extract	Volume: 1000(uL) Date Analyzed	d: 08/23/07
Injection Volume:	1.0(uL)	Dilution Fact	cor: 1.0
GPC Cleanup: (Y/N)	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

1		1	 	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1				
1				
2				<u> </u>
1 3.				
7 •				
1 2.				
<u> </u>				
/ •				
8.				
9.				
10.				
1 11.				
1 14.				
1 20.				
14.				
±J.				
16.				
1 17.				
18.) 	
19.				
20.				
21				
21.				
22				
1 20.				
24				
25.				
26.				
4, •				
1 20.		 		
1 42.				
30.				
<u> </u>				

FORM I SV-TIC

U.S. EPA - CLP

1

EPA SAMPLE NO.

INORGANIC	ANALYSIS	DATA	SHEET	SMS-MW-12
	Cont	ract:	D003821-41	

SAS No.: SDG No.: MF1159 Lab Code: MITKEM Case No.:

Lab Sample ID: F1159-04 Matrix (soil/water): WATER

Date Received: 08/18/2007 Level (low/med): MED

% Solids: 0.0

Lab Name: Mitkem Corporation

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	165	В		P
7440-36-0	Antimony	2.5	В		P
7440-38-2	Arsenic	1.6	U		P
7440-39-3	Barium	36.9	В		P
7440-41-7	Beryllium	0.15	Ū		P
7440-43-9	Cadmium	1.3	В		P
7440-70-2	Calcium	16000			P
7440-47-3	Chromium	0.86	В		P
7440-48-4	Cobalt	3.7	В		P
7440-50-8	Copper	6.4	В		P
7439-89-6	Iron	23000			P
7439-92-1	Lead	1.8	В		P
7439-95-4	Magnesium	2180			P
7439-96-5	Manganese	854		-	Р
7439-97-6	Mercury	0.047	U		CV
7440-02-0	Nickel	4.5	В		P
7440-09-7	Potassium	3330			P
7782-49-2	Selenium	8.3	В		P
7440-22-4	Silver	0.91	Ū		P
7440-23-5	Sodium	4120			P
7440-28-0	Thallium	1.2	Ū	* -	Р
7440-62-2	Vanadium	0.47	Ū		P
7440-66-6	Zinc	37.4	В		P

Commer	nts:			
	,			
				10-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

U.S. EPA - CLP

EPA SAMPLE NO.

INORGANIC ANALYSIS DATA SHEET SMS-MW-13S

Lab Name: Mitkem Corporation

Contract: D003821-41

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MF1159

Matrix (soil/water): WATER

Lab Sample ID: F1159-03

Level (low/med): MED

Date Received: 08/18/2007

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	66.4	В		P
7440-36-0	Antimony	4.7	В		P
7440-38-2	Arsenic	1.6	Ū		P
7440-39-3	Barium	29.2	В		P
7440-41-7	Beryllium	0.15	Ū		P
7440-43-9	Cadmium	1.7	В		P
7440-70-2	Calcium	6280			P
7440-47-3	Chromium	3.4	В		P
7440-48-4	Cobalt	5.3	В		P
7440-50-8	Copper	6.3	U		P
7439-89-6	Iron	40200			P
7439-92-1	Lead	0.84	В		Р
7439-95-4	Magnesium	1020			Р
7439-96-5	Manganese	401			P
7439-97-6	Mercury	0.047	ט		CV
7440-02-0	Nickel	6.0	В		Р
7440-09-7	Potassium	15800			Р
7782-49-2	Selenium	3.3	В		Р
7440-22-4	Silver	0.91	U		Р
7440-23-5	Sodium	12400			P
7440-28-0	Thallium	7.8	В		Р
7440-62-2	Vanadium	0.47	Ū		Р
7440-66-6	Zinc	85.7			Р

Comme	nts:			
