FINAL

GROUNDWATER SAMPLING REPORT (November 2008 Sampling Event)

Multi Site G Operation, Maintenance & Monitoring

SMS Instruments Site Deer Park, Suffolk County, NY Site 1-52-026

Work Assignment No. D004445-14.2

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

March 2009

Prepared by:

Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, New Jersey 07003

TABLE OF CONTENTS

Chapt	er Pa	age
1.0	INTRODUCTION	1
2.0	 BACKGROUND INFORMATION AND SITE CHRONOLOGY 2.1 USEPA/REAC SOIL BORING ADVANCEMENT AND SVE/AIR SPARGE WELL INSTALLATION ACTIVITIES (AUGUST 2004) 	1 2
	2.2 USEPA/EARTH TECH GW P&T SYSTEM EVALUATION SAMPLING	∠
	(AUGUST 31, 2005)	3
	2.3 PHOSIER TM SISIEM	4 1
	2.3.1 Technology Description	4
	2.3.3 PHOSter TM System Effectiveness Evaluation	5
3.0	FIELD ACTIVITIES	5
	3.1 ELEVATION SURVEY	5
	3.2 WATER LEVEL SURVEY	5
	3.3 GROUNDWATER SAMPLING	5
4.0	SAMPLING RESULTS FOR ROUNDS 1 THROUGH 4	6
	4.1 VOLATILE ORGANIC COMPOUNDS	6
	4.2 SEMIVOLATILE ORGANIC COMPOUNDS	7
	4.3 TAL METALS	7
5.0	SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION	0
	5.1 SUMMARY OF CONTAMINATION	9
	5.1.1 Volatile Organic Compounds	9
	5.1.2 Semivolatile Organic Compounds	.10
	5.1.3 TAL Metals	.10
	5.2 RECOMMENDATIONS	. 10
LIST (OF TABLES	
1	Groundwater Elevations	
2	February 2006 September 2006 August 2007 and November 2008 Groundwater Sampling	
5	Volatile Organic Compounds. Detections Only	
4	February 2006, September 2006, August 2007 and November 2008 Groundwater Sampling,	
	Semivolatile Organic Compounds, Detections Only	
5	February 2006, September 2006, August 2007 and November 2008 Groundwater Sampling,	
	Target Analyte List Metals, Detections Only	
LIST (OF FIGURES	
1	Site Location Map	
2	Monitoring Well Location Map	
3	Groundwater Contour Map, November 5, 2008	
4 5	Metals Exceedances in Groundwater	
6	Total VOCs in Monitoring Wells	
LIST	OF APPENDICES	
A	Well Sampling Forms – November 2008	
В	NYSDEC Monitoring Well Field Inspection Logs	
С	Laboratory Data Summary Packages (Form Is)	

1.0 INTRODUCTION

The SMS Instruments site was evaluated in 2003 as part of the Pump and Treat Optimization initiative from US Environmental Protection Agency (USEPA) headquarters which provided recommendations to enhance remedial and cost effectiveness. In July 2003, GeoTrans, Inc. (GeoTrans), on behalf of the USEPA, conducted a site visit to perform the optimization evaluation of the active Groundwater Pump and Treat system. The results of the evaluation were included in a Remediation System Evaluation (RSE) report (GeoTrans, December, 2003). The RSE report recommended developing an exit strategy and provided three potential approaches for consideration.

Site activities from 2004 to 2005 were performed based on the recommendations provided by the RSE report. In 2005, the Site was transferred from USEPA to the New York State Department of Environmental Conservation (NYSDEC). This sampling report summarizes the SMS Instruments Site remediation activities that occurred since the transfer.

2.0 BACKGROUND INFORMATION AND SITE CHRONOLOGY

The SMS Instruments Superfund site is located at 120 Marcus Boulevard in Deer Park, Suffolk County, New York (Figure 1). At the time of sampling (November 2008), the building was occupied. The site was listed on the National Priority List (NPL) in 1986. The Site consists of a 34,000 square foot building located on a 1.5-acre lot that is surrounded by other light industrial facilities. A recharge basin is located adjacent to the Site to the east. Facility operations occurred between 1967 and 1990 and primarily involved overhauling of military aircraft components. These activities consisted of cleaning, painting, degreasing, refurbishing, metal machining, and testing components. Other historic uses, under different ownership, included the manufacturing of wooden kitchen utensils. The building was unoccupied for the past several years but as of January 2, 2008, the building is now occupied. Site contamination was first discovered in 1980 when the Suffolk County Department of Health Services sampled a leaching pool on the south side of the facility. USEPA completed a remedial investigation/feasibility study (RI/FS) in 1989, and investigative and remedial activities have included pumping out the leaching pond and backfilling it, removal of an underground storage tank (which was used to store jet fuel), and operation of a soil vapor extraction system (SVE). The SVE system was operated from 1992 to 1994, near the former leaching pool and the former UST areas to remediate soils. Wastewater was historically discharged into a leaching pool at the site, which, subsequently contaminated soils and groundwater beneath the site. In addition, the leaking UST also contaminated soils and groundwater beneath the site. A Groundwater Pump and Treat (GW P&T) system, which includes an air stripper to treat contaminated groundwater, was constructed and began operation in 1994.

Soil sampling conducted after the operation of the SVE system reflected that the soil remedy reduced contamination and was effective in reducing potential exposure to contaminated soil vapor. The groundwater contamination has decreased substantially since activation of the GW P&T system. However, after several years of operation, the influent concentrations had decreased substantially, the contaminant removal cost per pound had increased dramatically, and the system was no longer seen as accelerating site cleanup. Furthermore, the system was failing to achieve the ultimate groundwater cleanup goals (e.g., the maximum contaminant levels [MCLs]). Therefore, in July 2003, GeoTrans, on behalf of the USEPA, conducted a site visit to perform an evaluation of the active GW P&T system. The results of the evaluation were included in a Remediation System Evaluation (RSE) (GeoTrans, 2003). The RSE report recommended developing an exit strategy, and provided three potential approaches for consideration. One of the three recommended approaches, the most aggressive approach, was to conduct a pilot study on an alternative technology and determine if that alternative technology, or another approach, should replace the GW P&T system. The RSE report indicated various alternative technologies

are available for reducing the mass of volatile organic compounds (VOCs), including air sparging, bioaugmentation, and chemical oxidation. The USEPA considered this approach the most viable of the three recommended approaches in the RSE report. The intent of aggressively addressing the remaining soil contamination was to reduce contaminant concentrations in the soil and reduce the potential for future contamination of the groundwater, thereby reducing both the cost and time required to remediate the site.

Following USEPA's selection of this recommendation from the RSE report, in May of 2004 the USEPA Action Branch sent a request for field support at the SMS Instruments Site. The request involved two phases: additional field-characterization of a former UST area through use of a geoprobe down to the water table, and a second phase to assess and implement additional remedial technologies to address remaining source areas, such as air sparging with SVE and/or bioremedial-enhancing injections. In an effort to field characterize the former UST area and obtain data needed for the selection of a pilot alternative approach, 25 soil borings were advanced and installation of SVE and air sparge wells were performed in August 2004 by ERT and the Response Engineering and Analytical Contract (REAC) contractor (Lockheed Martin Technology Services [Lockheed Martin]). Further details of the August 2004 ERT/REAC activities are included in section 2.1 of this report.

Based on an evaluation of the data generated by ERT/REAC, the USEPA Remedial Project Manager (RPM) and the USEPA Removal On-Scene Coordinator (OSC) concluded the installation of a PHOSterTM bioremediation system would be the most appropriate and cost effective technology for the time frame of operation. In April of 2005, under the Emergency and Rapid Response Services (ERRS) contract, Earth Tech Northeast, Inc. (Earth Tech) procured a PHOSterTM system and the system was later installed and activated on site in May 2005. Further details of the PHOSterTM system are included in Section 2.3 of this report.

The USEPA operated the GW P&T system at the Site until July 15, 2005 when the Site was turned over to NYSDEC. Based on sampling conducted by CDM for the USEPA in June 2005 and effluent samples collected by Earth Tech in August 2005, Earth Tech determined that the GW P&T system was no longer removing significant quantities of contaminants, and VOC concentrations in the influent were below detection limits (at 5 μ g/L). In a letter to NYSDEC dated October 6, 2005, Earth Tech recommended that the groundwater treatment system be de-activated. NYSDEC concurred with this recommendation in a letter dated October 21, 2005.

2.1 USEPA/REAC Soil Boring Advancement and SVE/Air Sparge Well Installation Activities (August 2004)

In July 2004, EPA-ERT/REAC provided the necessary field support to characterize the remaining source area and preliminary cost projections to implement sparging/bioremediation operations. A Geoprobe was used to advance 25 soil borings to collect 46 subsurface soil samples which were analyzed with a field GC for benzene, toluene, ethylbenzene, and xylenes (BTEX); and three samples were also analyzed for VOCs. The highest BTEX/VOC concentrations were detected in samples collected in the vicinity of the drywell and groundwater extraction well EW-3. These soil samples were collected within the shallow saturated zone [between 24 and 28 feet below ground surface (ft bgs)]. The highest concentrations of BTEX were found in the drywell sample collected at 24 ft bgs with a total concentration of 170,580 micrograms per kilogram (μ g/kg). The highest VOC results were obtained from the drywell location at 24 ft bgs with a total VOC concentration of 408,100 μ g/kg. Vadose zone and saturated zone soil sample data indicated the contamination was contained within the shallow saturated zone. Complete details of the soil boring event are included in the Site Investigation Report (Technical Memorandum) (REAC / Lockheed Martin, August, 2005.

Following a review of these results, it was determined that bioremedial enhancement required further evaluation beyond the USEPA's Remedial Action Branch's required timeframe for transfer of the site to the NYSDEC. Therefore, in November 2004, USEPA's Remedial Action Branch, along with ERT/REAC, were able to provide continued field support to install the necessary piping for the bioremediation system. However, it was determined that purchasing or rental of the bioremediation system was beyond the scope of their existing contract. Therefore, in May 2005, Earth Tech, EPA Region II contractor, procured and installed a PHOSter[™] bioremediation system at the Site. Further details of the bioremediation system are included in Section 2.3 of this report.

The system performance was evaluated in June 2006 with a soil sampling program designed to collect subsurface soil samples for chemical testing and methanotrophs. The results of this evaluation were presented in the Final PHOSter[™] System Soil Sampling Report, June 2006 Sampling Event (Earth Tech, October 2006). The report concluded that the system was removing VOCs from the soil column; however, pockets of contamination still remained. The report recommended that the system continue to operate for another six months at which time the performance would again be evaluated.

2.2 USEPA/Earth Tech GW P&T System Evaluation Sampling (August 31, 2005)

In an effort to evaluate the current status of the GW P&T system, on August 31, 2005, three groundwater samples (including one field duplicate) were shipped to Mitkem Corporation for VOC analysis by USEPA Method 624, along with three air samples (also including one field duplicate), which were shipped to Con-Test Analytical Laboratory for VOC analysis by TO-15.

The groundwater samples were collected after a minimum of five gallons was purged from the sample ports located within the treatment system. Samples were collected from the influent (INFLUENT) and effluent (EFFLUENT, as well as duplicate sample EFFLUENT-A) of the treatment system for volatile organics analysis.

The air samples were collected using Summa canisters for a period of two minutes per sample. Samples were collected from post air stripper (POST AIR STRIPPER, along with a field duplicate POST AIR STRIPPER-A) and post carbon (POST CARBON) of the treatment system for total organics analysis. Further details of the August 31, 2005 sampling activities are detailed in a Sampling Trip report dated August 31, 2005.

Results of the GW P&T system evaluation sampling performed on August 31, 2005 indicated no contamination was being treated by the GW P&T system, and contaminants were not detected (at a detection limit of 5 μ g/L) in the influent. Therefore, on October 6, 2005, Earth Tech recommended the shut-down of the SMS groundwater pump and treatment plant and in a letter dated October 21, 2005, the NYSDEC approved the temporary shutdown of the groundwater treatment plant. The NYSDEC letter also indicated that groundwater sampling would continue to determine if any significant rebound occurs. If no rebound was observed after a reasonable period of time, the treatment system would be permanently shut down and dismantled.

Earth Tech prepared a Dismantlement Plan dated April 2007. The Plan was approved and notice to proceed was given by NYSDEC in a letter dated April 26, 2007. The building was demolished in two phases. All PVC piping and tanks were dismantled in May through June 2007. The interior of the P&T building was stripped of all electrical components, office furniture and equipment. Piping was placed in roll-offs for disposal. Metal was segregated into steel and stainless steel for disposal. Spent carbon was removed from the air stripper tower and placed in 1,000 pound bulk bags. The six 1,000 lb bulk bags were removed from the Site on October 9, 2007 and taken to the Siemens facility for disposal. On November 2, 2007, Veolia ES Technical Solutions removed all waste from the treatment building

including water treatment chemicals, test meter solutions and other chemical wastes. Final building demolition and concrete foundation removal occurred in late December 2007. The demolition activities were documented in the Final Pump and Treat Dismantlement Report (Earth Tech, May 2008).

2.3 PHOSterTM System

2.3.1 Technology Description

The Enhanced In-Situ Bioremediation Process is a biostimulation technology developed by the US Department of Energy (DOE) at the Westinghouse Savannah River Plant site in Aiken, South Carolina. DOE refers to their phosphate injection technology as PHOSter[™] and has licensed the process to Earth Tech. Earth Tech is utilizing the process to deliver a gaseous phase mixture of air, nutrients, and methane to contaminated soils at the SMS site. These enhancements are delivered to groundwater via injection wells to stimulate and accelerate the growth of existing microbial populations, especially methanotrophs. This type of aerobic bacteria has the ability to metabolize methane and produce enzymes capable of degrading chlorinated solvents and their degradation products to non-hazardous constituents. The primary components of Earth Tech's treatment system consist of injection wells, air injection equipment, groundwater monitoring wells, and soil vapor monitoring points. Figure 2 shows a plan view of the treatment area, the injection wells, and monitoring points. The injection wells are designed to deliver air, gaseous-phase nutrients, and methane to groundwater and the vadose zone in the underlying soils.

The SMS system consists of a 5 horsepower rotary screw compressor that is capable of delivering 15 to 30 pounds per square inch (psi) and approximately 10 to 100 standard cubic feet per hour (scfh) to a pressure-rated steel tank. Air from the main line is diverted to the injection wells (screened 30 to 50 ft bgs). The monitoring wells and soil vapor monitoring points were installed upgradient, downgradient and cross-gradient relative to the injection well location to delineate the zone of influence and to monitor groundwater within and outside the zone of influence. The soil vapor monitoring points can be designed to release or capture vapors that may build up in the overburden. The monitoring wells were constructed in a manner to allow them to be converted to either injection wells or soil vapor extraction points.

The SMS injection system consists of air, nutrient, and methane injection equipment (all housed in a small enclosed trailer). A compressor serves as the air source, and includes a condensate tank ("trap") with a drain, an air line, coalescing filters and pressure regulators and valves. Methane and nitrous oxide provide the source of carbon and nitrogen, respectively. Both are provided in standard gas cylinders and are piped into the main air line using regulators and flow meters. Triethyl phosphate (TEP), the phosphorus source, is stored as a liquid in a pressure-rated steel tank. Air from the main line is diverted through the tank to volatilize the TEP for subsurface delivery. The air, nitrous oxide, and TEP are injected continuously while the methane is injected on a pulsed schedule. The methane is closely monitored just prior to injecting into subsurface wells to ensure that the injection concentration does not exceed 4% by volume, thus avoiding the methane lower explosive limit (LEL) of 5%.

2.3.2 Technology Selection Rationale

The PHOSterTM technology was chosen for this site for a number of reasons. Contamination concentrations in the groundwater are at very low asymptotic levels and it was felt that the pump and treat system was no longer capable of removing a sufficient mass of contamination to justify operation. A system of groundwater and vadose zone wells were already in place that would be suitable for economically installing this technology. Soil and groundwater sampling results indicated existing biological activity was slowly degrading the contaminants. The site geology and hydrogeology was also ideal for this technology. The PHOSterTM technology has demonstrated ability to stimulate bacterial

activity, promote the destruction of contaminants and act as a polishing technology for removal low levels of contamination often encountered in the final stages of site remediation.

2.3.3 PHOSterTM System Effectiveness Evaluation

On November 18 and 19, 2008, Earth Tech advanced six soil borings and collected subsurface soil samples for analysis of VOCs, pospholipid fatty acids (PLFA) and methanotrophs. The results will be presented in the Final PHOSterTM System Soil Sampling Report (currently in preparation).

3.0 FIELD ACTIVITIES

In accordance with the June 2007 Sampling and Analysis Plan (Earth Tech, June 2007) developed for the SMS Instruments Site, Earth Tech conducted the fourth of five groundwater sampling events in November 2008. The first round of groundwater sampling was conducted in February 2006, under NYSDEC Work Assignment #D003821-41. The second round of groundwater sampling was conducted in September 2006 (under this work assignment). The third round of groundwater sampling was conducted in August 2007. This section describes and presents the results of the groundwater sampling event that took place on November 4 through 7, 2008.

3.1 Elevation Survey

YEC, Inc. performed a survey of the wells at the Site to determine location and elevation as this data could not be located. The survey was performed on March 23, 2007. The survey data is presented in Table 1 along with pertinent well construction data.

3.2 Water Level Survey

At the start of the sampling effort, the depth to groundwater was measured in each well. These measurements are presented in Table 2. A groundwater contour map is presented in Figure 3. As shown on the figure, the direction of groundwater flow at the Site is to the south. The gradient, as measured between contour lines, is approximately 0.0016, a very shallow gradient.

3.3 Groundwater Sampling

Prior to sampling each well, the depth to water was measured using a water level indicator, which was rinsed with distilled water before each use. Each monitoring well was purged of three well volumes with a submersible pump. The pump was decontaminated between each use by washing with Liquinox followed by a tap water rinse and a distilled water rinse.

After purging, temperature, conductivity, pH, and turbidity measurements were recorded on the field observation logs. Water samples were obtained with new dedicated Teflon bailers. All groundwater samples were collected in bottles provided by the laboratory. Samples were packed on ice, and submitted with a completed chain-of-custody (COC) to Mitkem Laboratories, Inc. (Warwick, RI). Each sample was analyzed for VOCs by SW-846 Method 8260B, semivolatile organic compounds (SVOCs) by Method 8270C, target analyte list (TAL) metals by Method 6010, and mercury by Method 7470.

Monitoring well locations are presented in Figure 2. A total of 19 monitoring wells were sampled during this sampling event. The pumps in the two extraction wells, EW-1 and EW-2, would not function during the sampling event. After consultation with the NYSDEC Project Manager, the decision was made to not

sample these two wells during this event. MW-11 could not be located during the field effort as the area is under construction and the well could not be located.

4.0 SAMPLING RESULTS FOR ROUNDS 1 THROUGH 4

The laboratory analytical results for the VOCs, SVOCs and TAL metals analyses are included as Tables 3, 4, and 5 of this report, respectively. In addition, the New York State Ambient Water Quality Standards and Guidance Values for groundwater are shown on each table. Any compound detected at a concentration at or above the applicable standard or guidance value is in bold/italics font.

4.1 Volatile Organic Compounds

VOCs results are shown on Table 3 of this report. The VOC results are also summarized on Figure 4.

No VOCs were detected in monitoring wells MW-5, MW-9, MW-11, MW-12, MW-13D, MW-15 and MW-16S during sampling Rounds 1 through 4. A few VOCs have been detected in monitoring wells MW-2, MW-4, MW-8, MW-13, MW-14, MW-16M and MW-16S at concentrations below the criterion during Rounds 1 through 4.

During Round 2, hexachlorobutadiene was detected in three monitoring wells at concentrations that exceeded the Class GA criterion of 0.5 μ g/L. These wells include MW-6D (2 μ g/L), MW-16D (1 μ g/L) and MW-17 (2 μ g/L). Hexachlorobutadiene was not detected in any other sample during of the four sampling events.

In monitoring well MW-1, 1,1-dichloroethane was detected at a concentration of 14 μ g/L during the February 2006 sampling which exceeded the Class GA criterion of 5 μ g/L. During the September 2006 sampling event, 1,1-dichloroethane was detected at an estimated 4 μ g/L. 1,1-Dichloroethane was not detected during the August 2007 and November 2008 sampling events.

Two exceedances have been noted at MW-3. Vinyl chloride was detected at a concentration of 8 μ g/L which exceeded the Class GA criterion of 2 μ g/L during the Round 3 sampling event but was not detected during Rounds 1, 2 and 4. cis-1,2-Dichloroethene was detected at a concentration of 8 μ /L during the Round 3 sampling event which exceeded the criterion of 5 μ g/L. cis-1,2-Dichloroethene was not detected during Rounds 1, 2 and 4. Tetrachloroethene (PCE) was detected below the criterion during Round 4. No other VOCs were detected at MW-3.

At MW-6S, chlorobenzene was detected at an estimated concentration of 1 μ g/L during the February 2006 (Class GA criterion of 5 μ g/L). Several VOCs, mostly benzene derivatives, ethylbenzene and xylenes, have been detected at MW-6S during the last three sampling events, some of which exceeded their respective criteria. During the November 2008 sampling event, three exceedances of the Class GA criterion were noted: 1,3,5-trimethylbenzene at 11 μ g/L; 1,2,4-trimethylbenzene at 21 μ g/L; and 1,4-dichlorobenzene at an estimated 3.2 μ g/L. The concentrations and the exceedances at this location have remained relatively constant during the last three sampling events.

At MW-7, the concentration of 1,1-dichloroethane (Class GA criterion of 5 μ g/L) had increased during each of the first three sampling events: 1 μ g/L, 3 μ g/L and 13 μ g/L. During the November 2008 sampling event, the concentration decreased to an estimated 2.3 μ g/L. 1,1,1-Trichloroethane had been detected below the criterion during the September 2006 and August 2007 sampling events but was not detected during the November 2008 sampling event.

4.2 Semivolatile Organic Compounds

SVOC results are shown on Table 4 of this report. The SVOC results are also summarized on Figure 4.

No target SVOCs were detected in monitoring wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-7, MW-8, MW-9, MW-12, MW-13, MW-13D, MW-14, MW-15, MW-16D, MW-16M, MW-16S and MW-17 during the November 2008 sampling event.

Bis(2-ethylhexyl)phthalate (Class GA criterion of 5 μ g/L) was detected at an estimated concentration of 3 μ g/L in MW-6D during the November 2008 sampling event. This compound was detected at similar concentrations during the first three sampling events. It has also been detected at low concentrations in other monitoring wells during the previous sampling events.

Several polynuclear aromatic hydrocarbons were detected in monitoring well MW-6S during the November 2008 sampling event. Of the 14 compounds detected during the November 2008 sampling event, eight exceeded the applicable criterion, including phenol ($1.2 \mu/L$), benzo(a)anthracene ($1.2 \mu g/L$), chrysene ($2.2 \mu g/L$), bis(2-ethylhexyl)phthalate ($12 \mu g/L$), benzo(b)fluoranthene ($8.4 \mu g/L$), benzo(k)fluoranthene ($6.5 \mu g/L$), benzo(a)pyrene ($3.1 \mu g/L$) and indeno(1,2,3-cd)pyrene ($4.9 \mu g/L$). Most of these compounds were detected during the previous sampling event at similar concentrations.

4.3 TAL Metals

Results for TAL metals are shown on Table 5 of this report. The metals data is also summarized on Figure 5. Exceedances of the Class GA criterion were noted for antimony, beryllium, cadmium, chromium, iron, lead, manganese, selenium, sodium and zinc.

Antimony was detected in 13 of 22 samples during Round 1, three of which exceeded the criterion of $3 \mu g/L$ (maximum concentration of 4.7 $\mu g/L$ in MW-4). Antimony was only detected in four samples during Round 2, none of which exceeded the criterion. During Round 3, antimony was detected in all 19 samples, 16 of which exceeded the criterion (maximum concentration of 15.7 $\mu g/L$ in MW-14). During Round 4, antimony was not detected in any of the 19 samples collected.

Beryllium was detected in three of 22 samples during Round 1, three of 20 samples during Round 2 and six of 19 samples during Round 3, none of which exceeded the criterion of $3 \mu g/L$. During Round 4, beryllium was detected in seven of 19 samples, one of which exceeded the criterion, 9.8 $\mu g/L$ at MW-6S.

Cadmium was detected in 21 of 22 samples during Round 1, four of which exceeded the criterion of 5 μ g/L (maximum concentration of 72.8 μ g/L at MW-13D). Cadmium was detected in 19 of 20 samples during Round 2 of which two exceeded the criterion (maximum concentration of 72.8 μ g/L at MW-13D). Cadmium was detected in 15 of 19 samples during Round 3 of which three exceeded the criterion (maximum concentration of 65.5 μ g/L at MW-13D). During Round 4, cadmium was detected in 18 of 19 samples and six exceeded the criterion (maximum concentration of 79 μ g/L at MW-13D).

Chromium has been detected in every sample during all four sampling events. There were no exceedances of chromium during Round 1. During Round 2, chromium exceeded the criterion of 50 μ g/L at two wells (maximum concentration of 275 μ g/L at MW-15). During Round 3, chromium exceeded the criterion at two wells (maximum concentration of 111 μ g/L at MW-6S). During the November 2008 sampling event, chromium exceeded the criterion at these same two wells (maximum concentration of 68.2 μ g/L at MW-6S).

Iron has been detected in every sample collected during all four sampling events. Iron concentrations exceeded the criterion of 300 μ g/L in 20 of 22 samples during Round 1 (maximum concentration of 107,000 μ g/L at MW-8). Iron exceeded the criterion in 17 of 20 samples during Round 2 (maximum concentration of 60,300 μ g/L at MW-7). Iron exceeded the criterion in 15 of 19 samples during Round 3 (maximum concentration of 296,000 μ g/L at MW-14). Iron exceeded the criterion in 18 of 19 samples during Round 4 (maximum concentration of 65,100 μ g/L at MW-14).

Lead was detected in 21 of 22 samples during Round 1 but only one sample (135 μ g/L at MW-2) exceeded the criterion of 25 μ g/L. Lead was detected in 14 of 20 samples during Round 2 with one exceedance (128 μ g/L at MW-2). Lead was detected in 14 of 19 samples during Round 3 with two exceedances (maximum concentration of 197 μ g/L at MW-2). Lead was detected in 17 of 19 samples during Round 4 with two exceedances (maximum concentration of 271 μ g/L at MW-2).

Manganese was detected in every sample during all four sampling events. Manganese exceeded the criterion of 300 μ g/L in 9 of 22 samples during Round 1 (maximum concentration of 869 μ g/L at MW-6S). Manganese exceeded the criterion in seven of 20 samples during Round 2 (maximum concentration of 956 μ g/L at MW-12). During Round 3, manganese exceeded the criterion in 11 of 19 samples (maximum concentration of 1,290 μ g/L at MW-14). During Round 4, manganese exceeded the criterion in 12 of 19 samples (maximum concentration of 1,940 μ g/L at MW-17).

During the February 2006 sampling event, selenium was detected in 14 of 22 samples. There was only one exceedance of the Class GA criterion of 10 μ g/L at MW-6D at a concentration of 12.5 μ g/L. During the September 2006 sampling event, selenium was detected in three of 20 samples with no exceedances noted. During the August 2007 sampling event, selenium was detected in all 19 samples with exceedances noted at 15 wells (maximum concentration of 41.2 μ g/L at MW-14). During the November 2008 sampling event, selenium was only detected in one well at a concentration below the criterion.

Sodium was detected in every sample collected during all four sampling events. Sodium exceeded the criterion of 20,000 μ g/L in three samples during Round 1 (maximum concentration of 28,400 μ g/L at MW-1). Sodium exceeded the criterion in five samples during Round 2 (maximum concentration of 31,100 μ g/L at MW-6D). Five samples during Round 3 exceeded the criterion (maximum concentration of 73,900 μ g/L at MW-1). During Round 4, five samples exceeded the criterion (maximum concentration of 32,200 μ g/L at MW-1).

During the February 2006 sampling event, thallium was detected in nine of 22 samples at concentrations above the Class GA criterion of 0.5 μ/L with the highest concentration noted at MW-6S (6.4 μ g/L). During the September 2006 sampling event, thallium was detected in six of 20 samples above the criterion, with the highest concentration noted at MW-13 (4 μ g/L). During the August 2007 sampling event, thallium was detected in 12 of 19 samples above the criterion with the highest concentration noted at MW-14 (64.8 μ g/L). During the November 2008 sampling event, thallium was not detected in any of the 19 samples (MDL of 4.2 μ g/L).

Zinc was detected in every sample collected during all four sampling events. During Round 1, only two samples exceeded the criterion of 2,000 μ g/L (maximum concentration of 4,620 μ g/L at MW-2). During Rounds 2, 3 and 4, the sample from MW-2 was the only exceedance with concentrations of 2,720 μ g/L, 3,360 μ g/L, and 4,230 μ g/L, respectively.

5.0 SUMMARY AND RECOMMENDATIONS FOR FUTURE SITE REMEDIATION ACTIVITIES

5.1 Summary of Contamination

The following sections summarize the contaminants found at the Site during the four sampling rounds completed to date. Summaries of the compounds detected and exceedances of the Class GA criteria are presented in Table 3 (VOCs), Table 4 (SVOCs) and Table 5 (metals). The exceedances are also presented on Figure 4 (VOCs and SVOCs) and Figure 5 (metals).

5.1.1 Volatile Organic Compounds

During the February 2006 sampling event (Round 1) there were only two VOCs exceedances: chlorobenzene at EW-1 and 1,1-dichloroethane at MW-1. EW-1 was not sampled during Round 2 (September 2006) or Round 3 (August 2007) due to problems with the pump, and Round 4 as the pump electric lines were disconnected during the pump and treat dismantlement so there is not information for comparison. During Round 2, there were three compounds that exceeded the criterion – total xylenes at MW-6S, 1,2,4-trimethylbenzene at MW-6S, and hexachlorobutadiene at MW-6D, MW-16D and MW-17. During Round 3, exceedances were noted in three monitoring wells: MW-3, MW-6S and MW-7. During Round 4, there were three exceedances in monitoring well MW-6S; VOCs were either not detected or detected at concentrations below the criterion in the other 18 monitoring wells.

A summary of total VOCs is depicted on Figure 6. Each groundwater sampling event since 1994 is included in the figure. For each sampling event, the total VOC concentration in each monitoring well is graphically represented in the bars. The concentration for MW-1 is shown at the base of the bar; the concentration for MW-2 is then added to the bar, then MW-3 and so on until all 20 monitoring wells are shown with each well depicted by a different color. Each bar represents the total VOC concentration for the sampling event. As shown on the figure, the majority of the groundwater contamination at the Site has historically been present in MW-6S. The trendline depicts the overall decreasing concentrations of VOCs through time from the start of the GW P&T system to the most recent sampling event in November 2008.

Several VOCs, mostly aromatics, have been detected at MW-6S during all four sampling events. The concentrations have remained relatively constant for the most part during this time frame. The concentrations of 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene have shown a steady increase during each of the four sampling events: 1,3,5-trimethylbenzene – ND, 3 μ g/L, 5 μ g/L and 11 μ g/L; and 1,2,4-trimethylbenzene – ND, 6 μ g/L, 11 μ g/L and 21 μ g/L.

Hexachlorobutadiene was not historically associated with the Site. Hexachlorobutadiene exceedances were noted at MW-6D, MW-16D and MW-17 during the September 2006 sampling event; however, it has not been detected in subsequent sampling events. The source of the hexachlorobutadiene is unknown and appears to have been an isolated occurrence.

No significant rebound of VOC concentrations has been noted in the four rounds of groundwater samples collected at the Site since the pump and treat system was shut down in October 2005 with the exception of the two trimethylbenzene compounds at MW-6S.

5.1.2 Semivolatile Organic Compounds

During Round 1 there were several exceedances of SVOCs, most of which were in wells MW-6D and MW-6S. The six compounds which exceeded criteria in Round 1 at MW-6D were reported as not detected during Rounds 2, 3 and 4.

Three SVOCs were detected at concentrations above the criterion during Round 1. During Round 2, only one SVOC was detected above the criterion. Seven SVOCs were detected at concentrations above the criterion during Round 3. During Round 4, eight SVOCs were detected at concentrations above the criterion. Most of the exceedances are polynuclear aromatic hydrocarbons (PAHs) have been detected in MW-6S during three of the four sampling events at concentrations that exceed the criteria. SVOC contamination appears to be limited to MW-6S.

5.1.3 TAL Metals

Eleven metals have been detected at concentrations that exceed the criterion including antimony, beryllium, cadmium, chromium, iron, lead manganese, selenium, sodium, thallium and zinc.

Antimony exceedances have varied greatly between sampling events with the majority of exceedances occurring in Round 3; however, these exceedances have not been replicated in the other three sampling events. Similarly, selenium concentrations peaked during Round 3 but were not replicated in the other three sampling events. Consequently, the presence of antimony and selenium do not appear to be site related. Beryllium has only exceeded the criterion once in four sampling rounds and does not appear to be an issue at the Site. The presence of iron, manganese and sodium in groundwater are most likely related to background conditions on Long Island and do not appear to be Site related.

Cadmium exceedances appear to be localized and are present in monitoring wells MW-5, MW-13D and MW-16D. Chromium exceedances are limited to monitoring wells MW-6S, MW-15 and MW-16S. Lead exceedances are limited to monitoring wells MW-2 and MW-6S. Zinc exceedances have been noted in all four sampling events at MW-2 and once at MW-6S (Round 1).

Although thallium concentrations have exceeded the criterion in numerous samples, the exceedances have for the most part not been replicated from one sampling event to the next. The exception has been at monitoring wells MW-6S and MW-13 where the concentration has exceeded the criterion in three of four sampling events.

5.2 Recommendations

Earth Tech recommends the following for the SMS Instruments Site:

- Continued operation of the PHOSterTM bioremediation system;
- Collection of soil borings in the areas of known soil impact via direct-push soil sampling methods for the evaluation of current soil conditions in the area of concern and the effectiveness of the PHOSter[™] bioremediation system after six months; and
- One additional round of sampling is included in this work assignment. Groundwater sampling should continue for the next scheduled event to provide groundwater information after the PHOSterTM system is shut down to monitor for potential rebound.

TABLE 1 SMS INSTRUMENTS SITE (1-25-026) WELL CONSTRUCTION DATA

						Top of	Top of	Total
Well			GPS	GPS	Ground	Riser	Casing	Depth
Number	Northing	Easting	Latitude	Longitude	Elevation	Elevation	Elevation	of Well
MW-1	4,932.30	5,066.36			73.7	73.18	73.71	30.3
MW-2	5,030.89	5,162.26	40º 45.712'	73º 18.951'	72.7	72.34	72.73	28.5
MW-3	5,046.01	5,262.27	40º 45.716'	73º 18.930'	72.0	71.40	72.00	26.0
MW-4	4,947.99	5,389.05	40º 45.702'	73º 18.902'	72.7	72.04	72.70	29.6
MW-5	4,864.24	5,367.21	40° 45.689'	73º 18.911'	71.5	70.87	71.54	20.6
MW-6S	4,861.60	5,322.33	40º 45.690'	73º 18.915'	71.2	70.64	71.17	26.2
MW-6D	4,861.31	5,315.87	40º 45.690'	73º 18.919'	71.2	70.70	71.16	95.7
MW-7	4,842.41	5,095.83	Paved over		72.6	72.09	72.64	28.7
MW-8	5,155.39	5,151.21	40º 45.728'	73º 18.959'	71.7	71.22	71.70	29.1
MW-9	5,162.70	5,331.93	Missing		71.1	70.58	71.11	28.8
MW-11	4,428.51	5,520.19	Missing		68.1	67.54	68.12	16.5
MW-12	4,426.77	5,391.08	Missing		70.4	69.82	70.43	47.5
MW-13	4,411.78	5,252.31	40º 45.617'	73º 18.907'	71.6	71.16	71.62	36.9
MW-13D	4,420.90	5,267.66	Missing		72.1	71.20	72.06	101.4
MW-14	4,404.80	5,114.02	Missing		71.8	71.29	71.84	45.9
MW-15	4,702.67	5,120.87	40º 45.658'	73º 18.945'	72.0	71.55	72.01	36.6
MW-16S	4,712.87	5,226.27	Missing		72.0	71.47	72.03	36.9
MW-16M	4,713.25	5,233.41	40º 45.690'	73º 18.915'	72.2	71.59	72.17	56.7
MW-16D	4,714.18	5,239.60	40º 45.690'	73º 18.919'	72.1	71.62	72.10	76.9
MW-17	4,745.67	5,393.99	40º 45.671'	73º 18.893'	71.7	71.19	71.68	36.5

Notes:

All elevations and depths in feet GPS coordinates collected using a Magellan hand-held GPS unit Field survey performed by YEC, Inc., on March 23, 2007 Vertical datum: NAVD 88, for NGVD 29, add 1.13 feet Horizontal datum assumed

TABLE 2 SMS INSTRUMENTS SITE (1-52-026) GROUNDWATER ELEVATIONS

Well #	Reference	Date	Depth	Water Table	Comments
	Elevation		To Water	Elevation	
MW-1	73.18	8/13/07 11/5/08	17.98 19.25	55.20 53.93	
MW-2	72.34	8/13/07 11/5/08	16.91 18.19	55.43 54.15	
MW-3	71.40	8/13/07 11/5/08	15.95 17.22	55.45 54.18	
MW-4	72.04	8/13/07 11/5/08	16.68 17.99	55.36 54.05	
MW-5	70.87	8/13/07 11/5/08	15.72 16.99	55.15 53.88	
MW-6S	70.64	8/13/07 11/5/08	15.15 16.73	55.49 53.91	
MW-6D	70.70	8/13/07 11/5/08	15.59 16.75	55.11 53.95	
MW-7	72.09	8/13/07 11/5/08	17.06 18.28	55.03 53.81	
MW-8	71.22	8/13/07 11/5/08	15.54 16.85	55.68 54.37	
MW-9	70.58	8/13/07 11/5/08	14.87 16.24	55.71 54.34	
MW-11	67.54	8/13/07 11/5/08			could not locate could not locate
MW-12	69.82	8/13/07 11/5/08	15.57 16.78	54.25 53.04	
MW-13	71.16	8/13/07 11/5/08	17.08 18.19	54.08 52.97	
MW-13D	71.20	8/13/07 11/5/08	17.01 18.24	54.19 52.96	
MW-14	71.29	8/13/07 11/5/08	17.24 18.33	54.05 52.96	

TABLE 2 SMS INSTRUMENTS SITE (1-52-026) GROUNDWATER ELEVATIONS

Well #	Reference	Date	Depth	Water Table	Comments
	Elevation		To Water	Elevation	
	74 66	0/10/07	16 70	E 4 77	
0100-10	71.55	0/13/07 11/5/08	10.70	54.77 53.52	
		11/0/00	10.00	00.02	
MW-16S	71.47	8/13/07	16.64	54.83	
		11/5/08	17.90	53.57	
	71 50	0/12/07	16 75	E4 94	
	71.59	8/13/07 11/5/08	10.75	53.58	
		11/3/00	10.01	55.50	
MW-16D	71.62	8/13/07	16.79	54.83	
		11/5/08	18.05	53.57	
	74.40	0/40/07	40.00	54.00	
IVIVV-17	71.19	8/13/07	16.26	54.93	
		11/3/00	17.31	55.00	

Sample Location	NYSDEC	EW-1	EW-1	EW-1	EW-1	EW-2	EW-2	EW-2	EW-2
Sample ID	Class GA	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2
Laboratory ID	Groundwater	E0136-20A				E0203-03C			
Sample Date	Criteria	2/9/06	09-12-06	08-14-07	11/5/08	2/23/06	09-12-06	08-14-07	11/5/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Vinyl Chloride	2	ND	NA	NA	NA	ND	NA	NA	NA
Acetone	50	ND	NA	NA	NA	ND	NA	NA	NA
Methyl tert-butyl ether	10	ND	NA	NA	NA	ND	NA	NA	NA
1,1-Dichloroethane	5	ND	NA	NA	NA	ND	NA	NA	NA
cis-1,2-Dichloroethene	5	ND	NA	NA	NA	ND	NA	NA	NA
1,1,1-Trichloroethane	5	ND	NA	NA	NA	ND	NA	NA	NA
Tetrachloroethene	5	ND	NA	NA	NA	ND	NA	NA	NA
Trichloroethene	5	ND	NA	NA	NA	ND	NA	NA	NA
Chlorobenzene	5	32.0	NA	NA	NA	ND	NA	NA	NA
Chloroform	7	ND	NA	NA	NA	ND	NA	NA	NA
Chloromethane	NC	ND	NA	NA	NA	ND	NA	NA	NA
Ethylbenzene	5	1.0 J	NA	NA	NA	ND	NA	NA	NA
Xylene (Total)	5	5.0	NA	NA	NA	ND	NA	NA	NA
Isopropylbenzene	5	ND	NA	NA	NA	ND	NA	NA	NA
n-Propylbenzene	5	ND	NA	NA	NA	ND	NA	NA	NA
1,3,5-Trimethylbenzene	5	ND	NA	NA	NA	ND	NA	NA	NA
1,2,4-Trimethylbenzene	5	ND	NA	NA	NA	ND	NA	NA	NA
1,3-Dichlorobenzene	3	ND	NA	NA	NA	ND	NA	NA	NA
1,4-Dichlorobenzene	3	ND	NA	NA	NA	ND	NA	NA	NA
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	NA	NA	NA
1,2,4-Trichlorobenzene	5	ND	NA	NA	NA	ND	NA	NA	NA
Hexachlorobutadiene	0.5	ND	NA	NA	NA	ND	NA	NA	NA
Naphthalene	10	ND	NA	NA	NA	ND	NA	NA	NA
1,2,3-Trichlorobenzene	5	ND	NA	NA	NA	ND	NA	NA	NA
Number of TICs		0	NA	NA	NA	0	0	0	0
Total TICs		ND	NA	NA	NA	ND	NA	NA	NA

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Groundwater	E0153-03A	E1376-16A	F1135-05A	G2029-10C	E0136-03A	E1376-17A	F1135-13A	G2029-02C
Sample Date	Criteria	2/10/06	09-12-06	08-14-07	11/5/08	2/7/06	09-12-06	08-15-07	11/4/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Vinyl Chloride	2	ND							
Acetone	50	ND							
Methyl tert-butyl ether	10	ND							
1,1-Dichloroethane	5	14.0	4 J	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND							
1,1,1-Trichloroethane	5	ND							
Tetrachloroethene	5	ND							
Trichloroethene	5	ND							
Chlorobenzene	5	ND							
Chloroform	7	ND							
Chloromethane	NC	ND							
Ethylbenzene	5	ND							
Xylene (Total)	5	ND							
Isopropylbenzene	5	ND							
n-Propylbenzene	5	ND							
1,3,5-Trimethylbenzene	5	ND							
1,2,4-Trimethylbenzene	5	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	1 J	ND
1,2,4-Trichlorobenzene	5	ND							
Hexachlorobutadiene	0.5	ND							
Naphthalene	10	ND							
1,2,3-Trichlorobenzene	5	ND							
Number of TICs		0	0	0	0	0	0	0	0
Total TICs		ND							

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4
Laboratory ID	Groundwater	E0153-05A	E1376-12A	F1135-11A	G2029-03C	E0153-01A	E1376-14A	F1135-14A	G2029-04C
Sample Date	Criteria	2/10/06	09-12-06	08-15-07	11/4/08	2/9/06	09-12-06	08-15-07	11/4/08
Units	μg/L	µg/L							
		conc Q							
Vinyl Chloride	2	ND	ND	8	ND	ND	ND	ND	ND
Acetone	50	ND							
Methyl tert-butyl ether	10	ND							
1,1-Dichloroethane	5	ND							
cis-1,2-Dichloroethene	5	ND	ND	8	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND							
Tetrachloroethene	5	ND	ND	ND	1.2 J	ND	ND	ND	ND
Trichloroethene	5	ND	1.4 J						
Chlorobenzene	5	ND							
Chloroform	7	ND							
Chloromethane	NC	ND							
Ethylbenzene	5	ND							
Xylene (Total)	5	ND							
Isopropylbenzene	5	ND							
n-Propylbenzene	5	ND							
1,3,5-Trimethylbenzene	5	ND							
1,2,4-Trimethylbenzene	5	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
1,2-Dichlorobenzene	3	ND							
1,2,4-Trichlorobenzene	5	ND							
Hexachlorobutadiene	0.5	ND							
Naphthalene	10	ND							
1,2,3-Trichlorobenzene	5	ND							
Number of TICs		0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	0	ND	ND	ND	ND

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-6D	MW-6D	MW-6D	MW-6D
Sample ID	Class GA	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D
Laboratory ID	Groundwater	E0136-19A	E1376-03A	F1135-03A	G2029-05C	E0136-17A	E1376-05A	F1135-02A	G2029-07C
Sample Date	Criteria	2/9/06	09-11-06	08-14-07	11/4/08	2/9/06	09-11-06	08-14-07	11/5/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Vinyl Chloride	2	ND							
Acetone	50	ND							
Methyl tert-butyl ether	10	ND							
1,1-Dichloroethane	5	ND							
cis-1,2-Dichloroethene	5	ND							
1,1,1-Trichloroethane	5	ND							
Tetrachloroethene	5	ND							
Trichloroethene	5	ND							
Chlorobenzene	5	ND							
Chloroform	7	ND							
Chloromethane	NC	ND							
Ethylbenzene	5	ND							
Xylene (Total)	5	ND							
Isopropylbenzene	5	ND							
n-Propylbenzene	5	ND							
1,3,5-Trimethylbenzene	5	ND							
1,2,4-Trimethylbenzene	5	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
1,2-Dichlorobenzene	3	ND							
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	1 J	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	2 J	ND	ND
Naphthalene	10	ND							
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	2 J	ND	ND
Number of TICs		0	0	0	0	0	0	0	0
Total TICs		ND							

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-6S	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Groundwater	E0136-13A	E1376-01A	F1135-01A	G2029-08C	E0153-07A	E1376-07A	F1135-04A	G2029-09C
Sample Date	Criteria	2/8/06	09-11-06	08-14-07	11/5/08	2/10/06	09-11-06	08-14-07	11/5/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	1.0 J	3 J	13 J	2.3 J
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	1 J	4 J	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	1.0 J	ND	2 J	1.1 J	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	2 J	ND	1.2 J	ND	ND	ND	ND
Xylene (Total)	5	ND	5	4 J	4.1 J	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	1 J	1.6 J	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	2 J	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	3 J	5	11	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	6	11	21	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	2 J	1.7 J	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	2 J	4 J	3.2 J	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	1 J	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1	0	0	0	0
Total TICs		ND	ND	ND	0 NJ	ND	ND	ND	ND

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9
Laboratory ID	Groundwater	E0136-01A	E1376-02A	F1135-07A	G2029-01C	E0136-02A	E1376-15A	F1135-06A	G2029-16C
Sample Date	Criteria	2/7/06	09-11-06	08-14-07	11/4/08	2/7/06	09-12-06	08-14-07	11/6/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Vinyl Chloride	2	ND							
Acetone	50	ND	ND	ND	5.8	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND							
1,1-Dichloroethane	5	ND							
cis-1,2-Dichloroethene	5	ND							
1,1,1-Trichloroethane	5	ND							
Tetrachloroethene	5	ND	ND	ND	1.6 J	ND	ND	ND	ND
Trichloroethene	5	ND							
Chlorobenzene	5	ND							
Chloroform	7	ND							
Chloromethane	NC	ND	ND	ND	3.5 J	ND	ND	ND	ND
Ethylbenzene	5	ND							
Xylene (Total)	5	ND							
Isopropylbenzene	5	ND							
n-Propylbenzene	5	ND							
1,3,5-Trimethylbenzene	5	ND							
1,2,4-Trimethylbenzene	5	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
1,2-Dichlorobenzene	3	ND							
1,2,4-Trichlorobenzene	5	ND							
Hexachlorobutadiene	0.5	ND							
Naphthalene	10	ND							
1,2,3-Trichlorobenzene	5	ND							
Number of TICs		0	0	0	0	0	0	0	1
Total TICs		ND	28 J						

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12
Laboratory ID	Groundwater	E0136-05A	E1400-06A			E0136-06A	E1400-05A	F1159-04A	G2029-23C
Sample Date	Criteria	2/8/06	09-13-06	08-14-07	11/7/08	2/8/06	09-13-06	08-17-07	11/7/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Vinyl Chloride	2	ND	ND	NA	NA	ND	ND	ND	ND
Acetone	50	ND	ND	NA	NA	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	ND	NA	NA	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	NA	NA	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	NA	NA	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	NA	NA	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	NA	NA	ND	ND	ND	ND
Trichloroethene	5	ND	ND	NA	NA	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	NA	NA	ND	ND	ND	ND
Chloroform	7	ND	ND	NA	NA	ND	ND	ND	ND
Chloromethane	NC	ND	ND	NA	NA	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	NA	NA	ND	ND	ND	ND
Xylene (Total)	5	ND	ND	NA	NA	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	NA	NA	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	NA	NA	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	NA	NA	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	NA	NA	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	NA	NA	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	NA	NA	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	NA	NA	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	NA	NA	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	NA	NA	ND	ND	ND	ND
Naphthalene	10	ND	ND	NA	NA	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	NA	NA	ND	ND	ND	ND
Number of TICs		0	0	0	0	0	0	0	1
Total TICs		ND	ND	NA	NA	ND	ND	ND	31 J

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13S	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Groundwater	E0136-07A	E1400-01A	F1159-03A	G2029-21C	E0136-09A	E1400-02A	F1135-19A	G2029-22C
Sample Date	Criteria	2/8/06	09-13-06	8/17/07	11/7/08	2/8/06	09-13-06	08-16-07	11/7/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	1.0 J	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	2 J	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		0	0	0	1	0	0	0	1
Total TICs		ND	ND	ND	34 J	ND	ND	ND	36 J

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15
Laboratory ID	Groundwater	E0136-08A	E1400-07A	F1135-18A	G2029-19C	E0136-11A	E1376-11A	F1135-17A	G2029-15C
Sample Date	Criteria	2/8/06	09-13-06	08-16-07	11/7/08	2/8/06	09-12-06	08-16-07	11/6/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Vinyl Chloride	2	ND							
Acetone	50	ND	ND	6	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND							
1,1-Dichloroethane	5	ND							
cis-1,2-Dichloroethene	5	ND							
1,1,1-Trichloroethane	5	ND							
Tetrachloroethene	5	ND							
Trichloroethene	5	ND							
Chlorobenzene	5	ND							
Chloroform	7	ND							
Chloromethane	NC	ND							
Ethylbenzene	5	ND							
Xylene (Total)	5	ND							
Isopropylbenzene	5	ND							
n-Propylbenzene	5	ND							
1,3,5-Trimethylbenzene	5	ND							
1,2,4-Trimethylbenzene	5	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
1,2-Dichlorobenzene	3	ND							
1,2,4-Trichlorobenzene	5	ND							
Hexachlorobutadiene	0.5	ND							
Naphthalene	10	ND							
1,2,3-Trichlorobenzene	5	ND							
Number of TICs		0	0	0	1	0	0	0	1
Total TICs		ND	ND	ND	30 J	ND	ND	ND	33 J

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

NA - Not Analyzed

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-16D	MW-16D	MW-16D	MW-16D	MW-16M	MW-16M	MW-16M	MW-16M
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M
Laboratory ID	Groundwater	E0136-16A	E1400-03A	F1135-09A	G2029-14C	E0136-15A	E1376-10A	F1135-10A	G2029-13C
Sample Date	Criteria	2/9/06	09-13-06	08-13-07	11/6/08	2/9/06	09-12-06	08-13-07	11/6/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Vinyl Chloride	2	ND							
Acetone	50	ND							
Methyl tert-butyl ether	10	ND	1 J	1 J	ND	ND	2 J	ND	ND
1,1-Dichloroethane	5	ND							
cis-1,2-Dichloroethene	5	ND							
1,1,1-Trichloroethane	5	ND							
Tetrachloroethene	5	ND							
Trichloroethene	5	ND							
Chlorobenzene	5	ND							
Chloroform	7	ND	1.3 J						
Chloromethane	NC	ND							
Ethylbenzene	5	ND							
Xylene (Total)	5	ND							
Isopropylbenzene	5	ND							
n-Propylbenzene	5	ND							
1,3,5-Trimethylbenzene	5	ND							
1,2,4-Trimethylbenzene	5	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
1,2-Dichlorobenzene	3	ND							
1,2,4-Trichlorobenzene	5	ND							
Hexachlorobutadiene	0.5	ND	1 J	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND							
1,2,3-Trichlorobenzene	5	ND							
Number of TICs		0	0	0	1	0	0	0	1
Total TICs		ND	ND	ND	29 J	ND	ND	ND	36 J

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

J - Estimated value NC - No criterion

Sample Location	NYSDEC	MW-16S	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Groundwater	E0136-12A	E1376-09A	F1135-16A	G2029-12C	E0136-18A	E1376-04A	F1135-15A	G2029-11C
Sample Date	Criteria	2/9/06	09-12-06	08-16-07	11/6/08	2/9/06	09-11-06	08-16-07	11/6/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	10	ND	2 J	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NC	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	5	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	2 J	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	1 J	ND	ND
Number of TICs		0	0	0	0	0	0	0	0
Total TICs		ND	ND	ND	ND	ND	ND	ND	ND

Notes: ND - Not Detected

Bold/Italics - Exceeds criterion

NA - Not Analyzed

J - Estimated value NC - No criterion

Sample Location	NYSDEC	EW-1	EW-1	EW-1	EW-1	EW-2	EW-2	EW-2	EW-2
Sample ID	Class GA	SMS-EW-01	SMS-EW-01	SMS-EW-01	SMS-EW-01	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2
Laboratory ID	Groundwater	E0136-20B			1	E0203-03C			
Sample Date	Criteria	2/9/06	9/12/06	8/14/07	11/5/08	2/23/06	9/12/06	8/14/07	11/5/08
Units	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
l'	í'	conc Q	conc Q	conc Q	conc Q				
Phenol	1	ND	NA	NA	NA	ND	NA	NA	NA
1,3-Dichlorobenzene	3	ND	NA	NA	NA	ND	NA	NA	NA
1,4-Dichlorobenzene	3	ND	NA	NA	NA	ND	NA	NA	NA
Isophorone	50	ND	NA	NA	NA	ND	NA	NA	NA
2,4-Dimethylphenol	50	ND	NA	NA	NA	ND	NA	NA	NA
Naphthalene	10	ND	NA	NA	NA	ND	NA	NA	NA
Phenanthrene	50	ND	NA	NA	NA	ND	NA	NA	NA
Di-n-butyl phthalate	50	ND	NA	NA	NA	ND	NA	NA	NA
Fluoranthene	50	ND	NA	NA	NA	ND	NA	NA	NA
Pyrene	50	ND	NA	NA	NA	ND	NA	NA	NA
Butylbenzyl phthalate	50	ND	NA	NA	NA	ND	NA	NA	NA
Benzo(a)anthracene	0.002	ND	NA	NA	NA	ND	NA	NA	NA
Dibenzo(a,h)anthracene	NC	ND	NA	NA	NA	ND	ND	ND	ND
Chrysene	0.002	ND	NA	NA	NA	ND	NA	NA	NA
bis(2-Ethylhexyl)phthalate	5	83 B	NA	NA	NA	1.0 J	NA	NA	NA
Dimethylphthalate	50	ND	NA	NA	NA	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	NA	NA	NA	ND	NA	NA	NA
Benzo(k)fluoranthene	0.002	ND	NA	NA	NA	ND	NA	NA	NA
Benzo(a)pyrene	ND	ND	NA	NA	NA	ND	NA	NA	NA
Indeno(1,2,3-cd)pyrene	0.002	ND	NA	NA	NA	ND	NA	NA	NA
Benzo(g,h,i)perylene	NC	ND	NA	NA	NA	ND	NA	NA	NA
Number of TICs	1	2	0	0	0	0	0	0	0
Total TICs	1	322 J	NA	NA	NA	ND	NA	NA	NA

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Groundwater	E0153-03B	E1376-16B	F1135-05B	G2029-10C	E0136-03C	E1376-17B	F1135-13B	G2029-02C
Sample Date	Criteria	2/10/06	9/12/06	8/14/07	11/5/2008	2/7/06	9/12/06	8/15/07	11/4/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
	<u> </u>	conc Q							
Phenol	1	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
Isophorone	50	ND							
2,4-Dimethylphenol	50	ND							
Naphthalene	10	ND							
Phenanthrene	50	ND							
Di-n-butyl phthalate	50	ND							
Fluoranthene	50	ND							
Pyrene	50	ND							
Butylbenzyl phthalate	50	ND							
Benzo(a)anthracene	0.002	ND							
Dibenzo(a,h)anthracene	NC	ND							
Chrysene	0.002	ND							
bis(2-Ethylhexyl)phthalate	5	21.0	1 J	ND	ND	2.0 J	2 J	ND	ND
Dimethylphthalate	50	ND							
Benzo(b)fluoranthene	0.002	ND							
Benzo(k)fluoranthene	0.002	ND							
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND							
Benzo(g,h,i)perylene	NC	ND							
Number of TICs	1	3	3	3	1	2	0	9	0
Total TICs	1	111 J	32 J	28 J	4.1 NJ	634 J	ND	34 J	ND

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-ME-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4
Laboratory ID	Groundwater	E0153-05B	E1376-12B	F1135-12B	G2029-03C	E0153-01B	E1376-14B	F1135-14B	G2029-04C
Sample Date	Criteria	2/10/06	9/12/06	8/15/07	11/4/2008	2/9/06	9/12/06	8/15/07	11/4/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Phenol	1	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
Isophorone	50	ND							
2,4-Dimethylphenol	50	ND							
Naphthalene	10	ND							
Phenanthrene	50	ND							
Di-n-butyl phthalate	50	ND							
Fluoranthene	50	ND							
Pyrene	50	ND							
Butylbenzyl phthalate	50	ND							
Benzo(a)anthracene	0.002	ND							
Dibenzo(a,h)anthracene	NC	ND							
Chrysene	0.002	ND							
bis(2-Ethylhexyl)phthalate	5	2.0 J	2 J	1 J	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND							
Benzo(b)fluoranthene	0.002	ND							
Benzo(k)fluoranthene	0.002	ND							
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND							
Benzo(g,h,i)perylene	NC	ND							
Number of TICs		3	1	4.0	0.0	1	0	7	0
Total TICs		323 J	7 J	49 J	ND	9 J	ND	79 J	ND

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

B - Possible laboratory contamination

NC - No criterion

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-6D	MW-6D	MW-6D	MW-6D
Sample ID	Class GA	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D
Laboratory ID	Groundwater	E0136-19B	E1376-03B	F1135-03B	G2029-05C	E0136-17B	E1376-05B	F1135-02B	G2029-07C
Sample Date	Criteria	2/9/06	9/11/06	8/14/07	11/4/2008	2/9/06	9/11/06	8/14/07	11/5/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Phenol	1	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
Isophorone	50	ND							
2,4-Dimethylphenol	50	ND							
Naphthalene	10	ND							
Phenanthrene	50	ND	ND	ND	ND	ND	2 J	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	2 J	ND	ND
Fluoranthene	50	ND	ND	ND	ND	2.0 J	2 J	ND	ND
Pyrene	50	ND	ND	ND	ND	2.0 J	2 J	ND	ND
Butylbenzyl phthalate	50	ND							
Benzo(a)anthracene	0.002	ND	ND	ND	ND	1.0 J	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND							
Chrysene	0.002	ND	ND	ND	ND	2.0 J	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	1 J	ND	ND	5.0 JB	3 J	4 J	3 J
Dimethylphthalate	50	ND							
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	2.0 J	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	1.0 J	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	2.0 J	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	1.0 J	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	ND	ND	2.0 J	ND	ND	ND
Number of TICs		2	0	3	0	10	0	3	6
Total TICs	ļ	353 J	ND	28 J	ND	963 J	ND	29 J	177.5 NJ

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

SMS INSTRUMENTS SITE (#1-52-026)

FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007 AND NOVEMBER 2008 GROUNDWATER SAMPLING SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

NYSDEC MW-7 Sample Location MW-6S MW-6S MW-6S MW-6S MW-7 MW-7 MW-7 Sample ID Class GA SMS-MW-6S SMS-MW-6S SMS-MW-6S SMS-MW-6S SMS-MW-7 SMS-MW-7 SMS-MW-7 SMS-MW-7 Laboratory ID Groundwater E0136-13C F1135-01B G2029-08C E0203-01A E1376-01B E1376-07B F1135-04B G2029-09C 2/23/06 8/14/07 Sample Date Criteria 2/8/06 9/11/06 8/14/07 11/5/2008 9/11/06 11/5/2008 Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L Q conc conc Q 1.2 J Phenol ND ND ND ND 1 J ND 1 ND 1.3-Dichlorobenzene 3 1.0 J ND ND ND ND ND ND ND 1.4-Dichlorobenzene 3 2.0 J 1 JND 1.3 J ND ND ND ND 50 Isophorone ND ND ND ND ND ND ND ND 2.4-Dimethylphenol 50 1.0 J ND Naphthalene 10 ND ND ND ND Phenanthrene 50 ND ND ND ND ND ND ND ND Di-n-butyl phthalate 50 ND ND ND ND ND ND ND ND 50 1.0 J ND ND ND Fluoranthene 2 J 3 J ND ND Pyrene 50 1.0 J ND 2 J ND 1 J ND ND ND Butylbenzyl phthalate 50 5.0 J ND ND ND ND ND ND ND Benzo(a)anthracene 0.002 ND ND 1 J 1.2 J ND ND ND ND NC ND ND ND 1.4 J ND ND ND Dibenzo(a,h)anthracene ND Chrysene 0.002 1.0 J ND 2 J 2.2 J ND ND ND ND bis(2-Ethylhexyl)phthalate 5 6.0 JB 4 J 6 J 12 11.0 ND ND ND ND ND ND Dimethylphthalate 50 ND 1.1 J ND ND ND ND Benzo(b)fluoranthene 0.002 1.0 J 1 J 3 J 8.4 J ND ND ND Benzo(k)fluoranthene 0.002 ND ND 1 J 6.5 J ND ND ND ND Benzo(a)pyrene ND ND ND 2 J 3.1 J ND ND ND ND 0.002 ND 2 J 4.9 J ND ND Indeno(1,2,3-cd)pyrene ND ND ND 3 J Benzo(g,h,i)perylene NC 1.0 J ND 6.4 J ND ND ND ND Number of TICs 8 19 11 17 6.0 0 3 0 ND 53 J ND Total TICs 845 J 57 J 57 J 114 NJ 27 J

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9
Laboratory ID	Groundwater	E0136-01C	E1376-02B	F1135-07B	G2029-01C	E0136-02C	E1376-15B	F1135-06B	G2029-16C
Sample Date	Criteria	2/7/06	9/11/06	8/14/07	11/4/2008	2/7/06	9/12/06	8/14/07	11/6/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Phenol	1	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
Isophorone	50	ND							
2,4-Dimethylphenol	50	ND							
Naphthalene	10	ND	ND	ND	ND	ND	1 J	ND	ND
Phenanthrene	50	ND							
Di-n-butyl phthalate	50	ND							
Fluoranthene	50	ND							
Pyrene	50	ND							
Butylbenzyl phthalate	50	ND							
Benzo(a)anthracene	0.002	ND							
Dibenzo(a,h)anthracene	NC	ND							
Chrysene	0.002	ND							
bis(2-Ethylhexyl)phthalate	5	2.0 J	ND	ND	ND	2.0 J	3 J	ND	ND
Dimethylphthalate	50	ND							
Benzo(b)fluoranthene	0.002	ND							
Benzo(k)fluoranthene	0.002	ND							
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND							
Benzo(g,h,i)perylene	NC	ND							
Number of TICs		9	0	3	0	8	4	2	9
Total TICs		53 J	ND	25 J	ND	198 J	26 J	19 J	111.3 NJ

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12
Laboratory ID	Groundwater	E0136-05C	E1400-06B			E0136-06C	E1400-05B	F1159-04B	G2029-23C
Sample Date	Criteria	2/8/06	9/13/06	8/14/07	8/14/07	2/8/06	9/13/06	8/17/07	11/7/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Phenol	1	ND	ND	NA	NA	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	NA	NA	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	NA	NA	ND	ND	ND	ND
Isophorone	50	ND	ND	NA	NA	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	NA	NA	ND	ND	ND	ND
Naphthalene	10	ND	ND	NA	NA	ND	ND	ND	ND
Phenanthrene	50	ND	ND	NA	NA	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	NA	NA	ND	ND	ND	ND
Fluoranthene	50	ND	ND	NA	NA	ND	ND	ND	ND
Pyrene	50	ND	ND	NA	NA	ND	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	NA	NA	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	NA	NA	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	NA	NA	ND	ND	ND	ND
Chrysene	0.002	ND	ND	NA	NA	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	ND	NA	NA	ND	1 J	ND	ND
Dimethylphthalate	50	ND	ND	NA	NA	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	NA	NA	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	NA	NA	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	NA	NA	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	NA	NA	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	NA	NA	ND	ND	ND	ND
Number of TICs		3	0			4	0	3	0
Total TICs		552 J	ND	NA	NA	229 J	ND	32 J	ND

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

SMS INSTRUMENTS SITE (#1-52-026) FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007 AND NOVEMBER 2008 GROUNDWATER SAMPLING

SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13S	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Groundwater	E0136-07C	E1400-01B	F1159-03B	G2029-21C	E0136-09C	E1400-02B	F1159-02A	G2029-22C
Sample Date	Criteria	2/8/06	9/13/06	8/17/07	11/7/2008	2/8/06	9/13/06	8/17/07	11/7/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	2.0 J	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		4	1	7	3	3	0	4	5
Total TICs		290 J	8 J	51 J	50.6 NJ	256 J	ND	35 J	45.2 NJ

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

SMS INSTRUMENTS SITE (#1-52-026)

FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007 AND NOVEMBER 2008 GROUNDWATER SAMPLING

SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15
Laboratory ID	Groundwater	E0136-08C	E1400-07B	F1135-18B	G2029-19C	E0136-11C	E1376-11B	F1135-17B	G2029-15C
Sample Date	Criteria	2/8/06	9/13/06	8/16/07	11/7/2008	2/8/06	9/12/06	8/16/07	11/6/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Phenol	1	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
Isophorone	50	ND							
2,4-Dimethylphenol	50	ND							
Naphthalene	10	ND							
Phenanthrene	50	ND							
Di-n-butyl phthalate	50	ND							
Fluoranthene	50	ND							
Pyrene	50	ND							
Butylbenzyl phthalate	50	ND							
Benzo(a)anthracene	0.002	ND							
Dibenzo(a,h)anthracene	NC	ND							
Chrysene	0.002	ND							
bis(2-Ethylhexyl)phthalate	5	ND	2 J	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	ND							
Benzo(b)fluoranthene	0.002	ND							
Benzo(k)fluoranthene	0.002	ND							
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND							
Benzo(g,h,i)perylene	NC	ND							
Number of TICs		2	0	4	0	1	0	3	1
Total TICs		171 J	ND	31 J	ND	7 J	ND	27 J	4.2 J

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination

SMS INSTRUMENTS SITE (#1-52-026)

FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007 AND NOVEMBER 2008 GROUNDWATER SAMPLING

SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16D	MW-16D	MW-16D	MW-16D	MW-16M	MW-16M	MW-16M	MW-16M
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M
Laboratory ID	Groundwater	E0136-16B	E1400-03B	F1135-09B	G2029-14C	E0136-15B	E1376-10B	F1135-10B	G2029-13C
Sample Date	Criteria	2/9/06	9/13/06	8/13/07	11/6/2008	2/9/06	9/12/06	08-13-07	11/6/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q							
Phenol	1	ND							
1,3-Dichlorobenzene	3	ND							
1,4-Dichlorobenzene	3	ND							
Isophorone	50	ND							
2,4-Dimethylphenol	50	ND							
Naphthalene	10	ND							
Phenanthrene	50	ND							
Di-n-butyl phthalate	50	ND							
Fluoranthene	50	ND							
Pyrene	50	ND							
Butylbenzyl phthalate	50	ND							
Benzo(a)anthracene	0.002	ND							
Dibenzo(a,h)anthracene	NC	ND							
Chrysene	0.002	ND							
bis(2-Ethylhexyl)phthalate	5	190 DB	ND	2 J	ND	2.0 JB	ND	1.0 J	ND
Dimethylphthalate	50	ND							
Benzo(b)fluoranthene	0.002	ND							
Benzo(k)fluoranthene	0.002	ND							
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND							
Benzo(g,h,i)perylene	NC	ND							
Number of TICs		2	0	4	1	4	0	3	1
Total TICs		140 J	ND	31 J	4.2 J	329 J	ND	28 J	9 NJ

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

D - Dilution

NA - Not analyzed

B - Possible laboratory contamination
TABLE 4

SMS INSTRUMENTS SITE (#1-52-026)

FEBRUARY 2006, SEPTEMBER 2006, AUGUST 2007 AND NOVEMBER 2008 GROUNDWATER SAMPLING

SEMIVOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY

Sample Location	NYSDEC	MW-16S	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Groundwater	E0136-12C	E1376-09B	F1135-16B	G2029-12C	E0136-18B	E1453-01A	F1135-15B	G2029-11C
Sample Date	Criteria	2/8/06	09-12-06	08-16-07	11/6/2008	2/9/06	09-21-06	08-16-07	11/6/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	50	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(a,h)anthracene	NC	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	1 J	ND	ND
Dimethylphthalate	50	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	NC	ND	ND	ND	ND	ND	ND	ND	ND
Number of TICs		3	1	3	3	2	5	3	0
Total TICs		188 J	23 J	27 J	111.8 J	102 J	30 J	28 J	ND

Notes: ND - Not Detected

J - Estimated value

Bold/Italics - Exceeds criterion

NA - Not analyzed

B - Possible laboratory contamination

NC - No criterion

Sample Location	NYSDEC	EW-1	EW-1	EW-1	EW-1	EW-2	EW-2	EW-2	EW-2
Sample ID	Class GA	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-1	SMS-EW-2	SMS-EW-2	SMS-EW-2	SMS-EW-2
Laboratory ID	Groundwater	E0136-20B				E0203-03			
Sample Date	Criteria	2/9/06	9/12/06	8-14-07	11/5/08	2/23/06	9/12/06	8-14-07	11/5/08
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	28.8 BE	NA	NA	NA	77.2 B	NA	NA	NA
Antimony	3	ND	NA	NA	NA	4.0 B	NA	NA	NA
Arsenic	25	ND	NA	NA	NA	1.6 B	NA	NA	NA
Barium	1,000	34.1 B	NA	NA	NA	88.3 B	NA	NA	NA
Beryllium	3	ND	NA	NA	NA	0.15 B	NA	NA	NA
Cadmium	5	0.97 B	NA	NA	NA	ND	NA	NA	NA
Calcium	NC	13,300 E	NA	NA	NA	22,400	NA	NA	NA
Chromium	50	3.4 B	NA	NA	NA	8.3 B	NA	NA	NA
Cobalt	NC	4.4 BE	NA	NA	NA	1.3 B	NA	NA	NA
Copper	200	8.9 B	NA	NA	NA	4.6 B	NA	NA	NA
Iron	300	3,650 NE	NA	NA	NA	2,670	NA	NA	NA
Lead	25	0.93 B	NA	NA	NA	3.6 B	NA	NA	NA
Magnesium	35,000	2,000 E	NA	NA	NA	3,780	NA	NA	NA
Manganese	300	684 E	NA	NA	NA	200	NA	NA	NA
Mercury	0.7	ND	NA	NA	NA	ND	NA	NA	NA
Nickel	100	4.3 B	NA	NA	NA	9.4 B	NA	NA	NA
Potassium	NC	2,810	NA	NA	NA	9,610	NA	NA	NA
Selenium	10	3.3 B	NA	NA	NA	2.0 B	NA	NA	NA
Silver	50	ND	NA	NA	NA	1.8 B	NA	NA	NA
Sodium	20,000	17,300 E	NA	NA	NA	18,400	NA	NA	NA
Thallium	0.5	4.3 B	NA	NA	NA	2.6 B	NA	NA	NA
Vanadium	NC	0.92 B	NA	NA	NA	ND	NA	NA	NA
Zinc	2,000	52.7 E	NA	NA	NA	126	NA	NA	NA

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

- ND Not Detected
- NA Not Analyzed

Sample Location	NYSDEC	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2
Sample ID	Class GA	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-1	SMS-MW-2	SMS-MW-2	SMS-MW-2	SMS-MW-2
Laboratory ID	Groundwater	E0153-03C	E1376-16C	F1135-05C	G2029-10C	E0136-03B	E1376-17C	F1135-13C	G2029-02C
Sample Date	Criteria	2/10/06	9/12/06	8-14-07	11/5/08	2/7/06	9/12/06	8-15-07	11/4/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	236 E	319	4,360	705	1,930 E	6,060	3,440	929
Antimony	3	3.3 B	ND	12.6 B	ND	2.2 B	ND	8.9 B	ND
Arsenic	25	3.5 B	ND	ND	ND	2.6 B	4.4 B	ND	ND
Barium	1,000	48.7 B	71.5 B	91 B	76.7 B	28.2 B	63.2 B	78.9 B	64.5 B
Beryllium	3	ND	ND	0.48 B	0.19 B	ND	0.27 B	0.30 B	0.17 B
Cadmium	5	0.67 B	0.19 B	0.39 B	0.6 B	4.1 B	3.2 B	3.9 B	9.2
Calcium	NC	24,000	19,500	20,100	38,600	13,100 E	18,300	19,700	24,700
Chromium	50	9.6 B	2.7 B	18 B	12.3 B	12.1 B	16.9 B	12.6 B	6.5 B
Cobalt	NC	2.5 B	1.2 B	9.3 B	4.0 B	2.4 BE	3.7 B	4.4 B	1.3 B
Copper	200	16.8 B	ND	33.8	41.3	43.0	35.6	37.0	37.5
Iron	300	30,000 E	12,500	110,000	50,300	28,100 NE	25,100	40,400	20,500
Lead	25	3.2 B	0.95 B	17.3	6.5 B	135	128	197	271
Magnesium	35,000	4,610 E	3,370	4,230	6,880	3,380 E	4,660	4590	5,950
Manganese	300	226 E	126	585	724	221 E	715	1,080	295
Mercury	0.7	ND	ND	0.066 B	ND	ND	ND	0.055 B	ND
Nickel	100	13.9 B	4.8 B	19.8 B	16.7 B	13.6 B	14.0 B	10.9 B	5.6 B
Potassium	NC	7,940	9,380	4,450	9,970	4,210	6,750	14,100	11,100
Selenium	10	ND	ND	29.5 B	ND	5.1 B	ND	14.5 B	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	1.2 B
Sodium	20,000	28,400	27,200	73,900	32,200	8,240 E	16,500	20,100	25,900
Thallium	0.5	ND	ND	18.5 B	ND	1.2 B	ND	2.5 B	ND
Vanadium	NC	1.3 B	0.85 B	9.3 B	2.0 B	11.1 B	18.8 B	14.6 B	6.0 B
Zinc	2,000	55.1	87.1	234	128	<i>4,620</i> E	2,720	3,360	4,230

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

- ND Not Detected
- NA Not Analyzed

Sample Location	NYSDEC	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4
Sample ID	Class GA	SMS-MW-3	SMS-MW-3	SMS-MW-3	SMS-ME-3	SMS-MW-4	SMS-MW-4	SMS-MW-4	SMS-MW-4
Laboratory ID	Groundwater	E0153-05C	E1376-12C	F1135-12C	G2029-03C	E0153-01C	E1376-14C	F1135-14C	G2029-04C
Sample Date	Criteria	2/10/06	9-12-06	8-15-07	11/4/2008	2/9/06	9/12/06	8-15-07	11/4/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	886 E	1,860	1,860	184 B	139 BE	114 B	876	208
Antimony	3	2.3 B	ND	8.6 B	ND	4.7 B	2.5 B	11.2 B	ND
Arsenic	25	2.2 B	3.0 B	ND	ND	ND	ND	ND	ND
Barium	1,000	72.7 B	49.8 B	56.9 B	49.8 B	31.8 B	26 B	64 B	53.8 B
Beryllium	3	ND	ND	0.16 B	ND	ND	ND	ND	0.15 B
Cadmium	5	1.6 B	1.0 B	1.3 B	0.24 B	0.51 B	ND	ND	0.4 B
Calcium	NC	32,500	25,000	23,000	25,200	16,300	25,400	21,400	12,800
Chromium	50	15.4 B	10.6 B	12.6 B	3.5 B	2.4 B	2.3 B	5.7 B	5.0 B
Cobalt	NC	3.6 B	2.2 B	4.4 B	ND	2.1 B	0.79 B	3.2 B	3.0 B
Copper	200	29.8 B	21.6 B	27.1 B	14.4 B	ND	ND	ND	12.0 B
Iron	300	26,700 E	20,400	46,400	12,600	47,800 E	23,800	78,200	20,800
Lead	25	6.8 B	4.3 B	9.5 B	4.8 B	1.5 B	ND	4.5 B	5.5 B
Magnesium	35,000	4,790 E	3,630	3,550	3,950	3,020 E	1,500	1,470	1,110
Manganese	300	399 E	502	910	499	544 E	210	686	541
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	18.5 B	8.5 B	12.3 B	2.2 B	6.6 B	2.1 B	5.3 B	3.7 B
Potassium	NC	10,300	7,410	9,170	6,830	2,370	5,600	5,690	1,790
Selenium	10	ND	ND	15.2 B	ND	3.5 B	ND	14.1 B	ND
Silver	50	1.6 B	ND	ND	0.99 B	ND	ND	ND	1.5 B
Sodium	20,000	16,900	20,000	12,700	17,600	6,310	3,990	3,600	3,030
Thallium	0.5	ND	ND	4.7 B	ND	ND	ND	9.7 B	ND
Vanadium	NC	3.5 B	5.2 B	4.6 B	1.2 B	2.1 B	2.5 B	5.1 B	3.0 B
Zinc	2,000	66.1	52.6	59.8	47.7 B	35.2 B	32.4 B	42.5 B	51.2

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected

NA - Not Analyzed

Sample Location	NYSDEC	MW-5	MW-5	MW-5	MW-5	MW-6D	MW-6D	MW-6D	MW-6D
Sample ID	Class GA	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-5	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D	SMS-MW-6D
Laboratory ID	Groundwater	E0136-19C	E1376-03C	F1135-03C	G2029-05C	E0136-17C	E1376-05C	F1135-02C	G2029-07C
Sample Date	Criteria	2/9/06	9/11/06	8-14-07	11/4/2008	2/9/06	9/11/06	8-14-07	11/5/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	284 E	1140	583	130 B	2,340 E	197 B	416	254
Antimony	3	1.7 B	2.0 B	8.8 B	ND	2.3 B	2.3 B	6.2 B	ND
Arsenic	25	6.9 B	5.5 B	2.0 B	ND	5.1 B	1.7 B	ND	ND
Barium	1,000	22.3 B	39.2 B	199 B	190 B	52.1 B	60 B	16.5 B	24.4 B
Beryllium	3	ND	ND	0.16 B	0.14 B	ND	ND	ND	ND
Cadmium	5	5.8	3.4 B	8.4	5.0 B	4.1 B	0.37 B	0.76 B	1.4 B
Calcium	NC	10,500 E	15,100	21,600	13,400	24,000 E	22,400	13,700	18,800
Chromium	50	8.8 B	18.1 B	17.5 B	3.5 B	16.7 B	6.7 B	4.9 B	4.0 B
Cobalt	NC	2.3 BE	2.4 B	5.0 B	4.8 B	28.2 BE	54.1	10.8 B	6.5 B
Copper	200	30.9	30.0 B	24.5 B	35.5	74.5	9.3 B	20.7 B	27.9 B
Iron	300	44,700 NE	23,400	61,000	8,990	72,300 NE	9,810	39,300	5,350
Lead	25	4.2 B	7.9 B	8.4 B	4.0 B	21.7	ND	4.7 B	5.5 B
Magnesium	35,000	1,560 E	2,500	3,570	2,150	5,140 E	5,780	1,210	2,320
Manganese	300	291 E	551	548	777	593 E	276	256	281
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	13.4 B	12.8 B	13.7 B	6.7 B	25.8 B	12.9 B	12.7 B	5.2 B
Potassium	NC	2,240	3,100	3050	2,360	3,180	3,480	2,790	1,720
Selenium	10	6.3 B	ND	13.4 B	ND	12.5 B	ND	3.9 B	ND
Silver	50	ND	ND	ND	1.1 B	ND	ND	ND	0.75 B
Sodium	20,000	3,670 E	5,230	12,600	3,690	13,100 E	31,100	16,000	3,380
Thallium	0.5	ND	ND	9.4 B	ND	ND	ND	10.6 B	ND
Vanadium	NC	4.3 B	7.3 B	8.1 B	1.1 B	9.8 B	1.1 B	1.5 B	1.2 B
Zinc	2,000	44.3 BE	40.2 B	40.6 B	39.6 B	225 E	113	76.2	76.8

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

- ND Not Detected
- NA Not Analyzed

Sample Location	NYSDEC	MW-6S	MW-6S	MW-6S	MW-6S	MW-7	MW-7	MW-7	MW-7
Sample ID	Class GA	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-6S	SMS-MW-7	SMS-MW-7	SMS-MW-7	SMS-MW-7
Laboratory ID	Groundwater	E0136-13B	E1376-01C	F1135-01C	G2029-08C	E0153-07C	E1376-07C	F1135-04C	G2029-09C
Sample Date	Criteria	2/8/06	9-11-06	8-14-07	11/5/2008	2/10/06	9-11-06	8-14-07	11/5/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	2,740 E	2790	8,920	21,400	161 BE	816	410	106 B
Antimony	3	2.0 B	ND	6.2 B	ND	3.5 B	ND	8.0 B	ND
Arsenic	25	8.1 B	5.8 B	12.1 B	13.7 B	4.0 B	3.3 B	ND	ND
Barium	1,000	44.2 B	52.4 B	86.7 B	96.1 B	30.2 B	39.3 B	62.6 B	56.7 B
Beryllium	3	0.24 B	0.45 B	1.0 B	9.8	0.19 B	0.16 B	0.22 B	0.23 B
Cadmium	5	3.3 B	1.4 B	2.6 B	9.7	2.2 B	1.7 B	2.2 B	2.1 B
Calcium	NC	54,000 E	27,300	30,300	40,300	20,400	21,800	26,200	32,400
Chromium	50	15.0 B	16.4 B	111	68.2	10.1 B	12.6 B	7.7 B	6.6 B
Cobalt	NC	21.2 BE	10.8 B	22 B	56.9	2.8 B	2.0 B	4.8 B	2.6 B
Copper	200	70.4	45.8	135	156	19.6 B	14.3 B	ND	14.7 B
Iron	300	17,700 NE	8,790	40,400	42,000	72,000 E	60,300	96,100	34,700
Lead	25	20.5	12.1	58.1	81.1	1.4 B	2.9 B	4.6 B	4.4 B
Magnesium	35,000	13,700 E	8,340	9,290	9,060	3,910 E	4,380	3,900	4,690
Manganese	300	869 E	223	732	1,800	445 E	592	696	683
Mercury	0.7	ND	ND	0.3	ND	ND	ND	ND	ND
Nickel	100	21.1 B	9.6 B	24.8 B	55.9	15.4 B	9.7 B	9.0 B	3.9 B
Potassium	NC	4,710	2,720	3,530	3,500	3,230	3,900	6,600	5,690
Selenium	10	5.9 B	ND	24.5 B	ND	3.9 B	ND	17.9 B	ND
Silver	50	ND	ND	ND	ND	ND	ND	ND	1.5 B
Sodium	20,000	16,800 E	8,450	5,530	6,050	10,200	15,400	16,800	14,500
Thallium	0.5	6.4 B	1.8 B	7.9 B	ND	ND	ND	17.6 B	ND
Vanadium	NC	13.5 B	14.2 B	41.1 B	40 B	3.6 B	8.2 B	5.6 B	2.1 B
Zinc	2,000	3,280 E	608	1,390	1,570	35.9 B	47.4 B	39.0 B	51.1

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

- ND Not Detected
- NA Not Analyzed

Sample Location	NYSDEC	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9
Sample ID	Class GA	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-8	SMS-MW-9	SMS-MW-9	SMS-MW-9	SMS-MW-9
Laboratory ID	Groundwater	E0136-01B	E1376-02C	F1135-07C	G2029-01C	E0136-02C	E1376-15C	F1135-06C	G2029-16C
Sample Date	Criteria	2/7/06	9-11-06	8-14-07	11/4/2008	2/7/06	9-12-06	8-14-07	11/6/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	194 BE	161 B	120 B	69.8 B	50.6 BE	21.9 B	40.8 B	ND
Antimony	3	2.8 B	ND	8.9 B	ND	2.3 B	ND	6.7 B	ND
Arsenic	25	5.6 B	ND	ND	ND	3.0 B	2.1 B	2.5 B	ND
Barium	1,000	43.4 B	39.6 B	61.3 B	119 B	35.1 B	25.7 B	34.4 B	50.3 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	0.19 B
Cadmium	5	1.2 B	0.11 B	ND	ND	0.65 B	0.12 B	ND	0.30 B
Calcium	NC	24,500 E	27,200	25,000	35,700	9,130 E	16,400	29,200	23,300
Chromium	50	31.7	9.9 B	26.1	6.7 B	38.5	6.3 B	5.4 B	2.8 B
Cobalt	NC	3.4 BE	1.1 B	7.3 B	2.1 B	2.0 BE	0.66 B	4.4 B	4.6 B
Copper	200	72.7	9.6 B	18.4 B	37.9	34.7	ND	ND	14.7 B
Iron	300	<i>107,000</i> NE	15,900	71,400	27,600	78,300 NE	21,700	57,100	29,600
Lead	25	7.0 B	ND	3.0 B	4.5 B	3.9 B	ND	2.9 B	4.7 B
Magnesium	35,000	3,870 E	3,520	4,960	5,300	1,530 E	2,560	4,860	3,770
Manganese	300	456 E	82.1	236	279	339 E	82.2	520	1,060
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	40.3 B	9.8 B	26.3 B	4.6 B	35.3 B	4.8 B	8.4 B	5.9 B
Potassium	NC	6,370	6,970	13,400	21,500	5,400	3,990	4,540	3,540
Selenium	10	9.9 B	ND	20.6 B	ND	7.1 B	ND	14.2 B	ND
Silver	50	ND	ND	ND	1.5 B	ND	ND	ND	1.9 B
Sodium	20,000	23,400 E	26,000	26,400	29,800	11,400 E	11,400	12,000	13,600
Thallium	0.5	ND	ND	13.5 B	ND	ND	ND	9.2 B	ND
Vanadium	NC	2.5 B	1.0 B	0.51 B	1.8 B	1.7 B	1.7 B	1.6 B	1.4 B
Zinc	2,000	95.5 E	31.0 B	68.6	72.0	33.9 BE	22.2 B	18.1 B	36.4 B

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

- ND Not Detected
- NA Not Analyzed

Sample Location	NYSDEC	MW-11	MW-11	MW-11	MW-11	MW-12	MW-12	MW-12	MW-12
Sample ID	Class GA	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-11	SMS-MW-12	SMS-MW-12	SMS-MW-12	SMS-MW-12
Laboratory ID	Groundwater	E0136-05C	E1400-06C			E0136-06B	E1400-05C	F1159-04C	G2029-23C
Sample Date	Criteria	2/8/06	9-13-06	Aug 2007	Nov 2008	2/8/06	09-13-06	08-17-07	11/7/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	44.9 BE	159 B	NA	NA	48.8 BE	55.8 B	165 B	101 B
Antimony	3	ND	ND	NA	NA	ND	ND	2.5 B	ND
Arsenic	25	ND	ND	NA	NA	ND	3.5 B	ND	ND
Barium	1,000	19.8 B	25.6 B	NA	NA	9.2 B	29.7 B	36.9 B	27.4 B
Beryllium	3	ND	ND	NA	NA	ND	ND	ND	ND
Cadmium	5	0.16 B	0.23 BE	NA	NA	0.32 B	0.4 BE	1.3 B	1.8 B
Calcium	NC	13,200 E	14,400	NA	NA	8,410 E	16,700	16,000	13,100
Chromium	50	1.5 B	0.99 BE	NA	NA	2.1 B	2.1 BE	0.86 B	2.7 B
Cobalt	NC	1.4 BE	0.57 B	NA	NA	1.4 BE	1.0 B	3.7 B	ND
Copper	200	9.9 B	ND	NA	NA	10.2 B	6.4 B	6.4 B	19 B
Iron	300	12,000 NE	11,800	NA	NA	6,600 NE	19,700	23,000	3,810
Lead	25	ND	3.5 B	NA	NA	1.0 B	3.2 B	1.8 B	7.2 B
Magnesium	35,000	1,800 E	2,030 E	NA	NA	1,210 E	2,190 E	2,180	1,700
Manganese	300	177 E	201 *E	NA	NA	249 E	956 *E	854	503
Mercury	0.7	ND	ND	NA	NA	ND	ND	ND	0.02 B
Nickel	100	4.2 B	3.3 B	NA	NA	5.0 B	3.6 B	4.5 B	5.1 B
Potassium	NC	3,730	3,040	NA	NA	7,140	2,970	3,330	6,340
Selenium	10	1.6 B	1.7 B	NA	NA	1.3 B	ND	8.3 B	ND
Silver	50	ND	ND	NA	NA	ND	1.8 B	ND	6.5 B
Sodium	20,000	14,800 E	9,370	NA	NA	10,100 E	5,050	4,120	7,390
Thallium	0.5	1.5 B	2.9 B	NA	NA	2.0 B	2.4 B	ND	ND
Vanadium	NC	ND	3.2 B	NA	NA	ND	4.2 B	ND	ND
Zinc	2,000	56.4 E	21.2 B	NA	NA	44.5 BE	22.6 B	37.4 B	99.2

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

- ND Not Detected
- NA Not Analyzed

Sample Location	NYSDEC	MW-13	MW-13	MW-13	MW-13	MW-13D	MW-13D	MW-13D	MW-13D
Sample ID	Class GA	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D	SMS-MW-13D
Laboratory ID	Groundwater	E0136-07B	E1400-01C	F1159-03C	G2029-21C	E0136-09C	E1400-02C	F1135-19C	G2029-22C
Sample Date	Criteria	2/8/06	09-13-06	8-17-07	11/7/2008	2/8/06	09-13-06	08-16-07	11/7/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	82.6 BE	84 B	66.4 B	120 B	53.0 BE	82.0 B	24.5 B	63.7 B
Antimony	3	ND	ND	4.7 B	ND	ND	ND	8.3 B	ND
Arsenic	25	3.2 B	3.3 B	ND	ND	ND	ND	ND	ND
Barium	1,000	103 B	39.4 B	29.2 B	20.8 B	67.2 B	69.6 B	76.9 B	66.8 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	1.4 B	0.89 BE	1.7 B	1.6 B	72.8	72.8 E	65.5	79
Calcium	NC	30,200 E	11,500	6,280	5,350	12,900 E	13,300	13,100	13,000
Chromium	50	3.1 B	1.9 BE	3.4 B	3.2 B	7.8 B	5.0 BE	1.7 B	5.8 B
Cobalt	NC	5.6 BE	2.3 B	5.3 B	3.5 B	1.1 BE	0.81 B	0.87 B	ND
Copper	200	11.5 B	9.3 B	ND	8.7 B	32.9	19.6 B	15.3 B	28.4 B
Iron	300	52,600 NE	15,400	40,200	25,800	746 NE	210	241	383
Lead	25	1.0 B	2.3 B	0.84 B	2.4 B	0.83 B	1.7 B	ND	2.4 B
Magnesium	35,000	3,260 E	1,230 E	1,020	902	7,790 E	8,300 E	8,340	7,990
Manganese	300	867 E	186 *E	401	413	12.3 BE	5.9 B*E	6.3 B	25.2 B
Mercury	0.7	ND	ND	ND	0.095 B	ND	ND	ND	ND
Nickel	100	9.3 B	3.6 B	6.0 B	4.9 B	15.1 B	11.2 B	9.2 B	18.5 B
Potassium	NC	11,200	14,600	15,800	17,200	2,430	2,440	2,960	3,030
Selenium	10	2.2 B	1.9 B	3.3 B	ND	3.3 B	2.2 B	10.7 B	7.0 B
Silver	50	ND	1.8 B	ND	0.89 B	ND	ND	1.4 B	1.9 B
Sodium	20,000	19,900 E	15,000	12,400	12,000	27,500 E	28,700	31,800	28,700
Thallium	0.5	4.4 B	4.0 B	7.8 B	ND	ND	ND	ND	ND
Vanadium	NC	0.79 B	3.4 B	ND	ND	ND	1.1 B	ND	ND
Zinc	2,000	88.0 E	37.7 B	85.7	301	72.4 E	74.2	67.2	84.3

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

- ND Not Detected
- NA Not Analyzed

Sample Location	NYSDEC	MW-14	MW-14	MW-14	MW-14	MW-15	MW-15	MW-15	MW-15
Sample ID	Class GA	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-14	SMS-MW-15	SMS-MW-15	SMS-MW-15	SMS-MW-15
Laboratory ID	Groundwater	E0136-08B	E1400-07C	F1135-18C	G2029-19C	E0136-11B	E1376-11C	F1135-17C	G2029-15C
Sample Date	Criteria	2/8/06	09-13-06	08-16-07	11/7/2008	2/8/06	09-12-06	08-16-07	11/6/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	334 E	154 B	1,040	161 B	43.2 BE	199 B	37.9 B	122 B
Antimony	3	ND	ND	15.7 B	ND	ND	ND	9.6 B	ND
Arsenic	25	ND	11.4 B	ND	ND	ND	2.0 B	1.6 B	ND
Barium	1,000	15.9 B	35.1 B	78.7 B	40.6 B	12.4 B	19.4 B	24.8 B	19.6 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	0.86 B	0.21 BE	2.7 B	0.68 B	4.1 B	0.85 B	ND	4.1 B
Calcium	NC	12,100 E	21,800	16,500	26,000	13,800 E	12,800	20,100	4,990
Chromium	50	1.7 B	1.4 BE	2.9 B	2.5 B	9.8 B	275	18.1 B	12.8 B
Cobalt	NC	1.0 BE	ND	4.6 B	ND	1.1 BE	2.6 B	1.3 B	1.9 B
Copper	200	12.8 B	ND	ND	10.7 B	9.5 B	10.5 B	ND	9.0 B
Iron	300	27,100 NE	48,000	296,000	65,100	276 NE	1,730	228	661
Lead	25	2.6 B	4.3 B	12.7	5.8 B	2.3 B	2.6 B	ND	4.1 B
Magnesium	35,000	1,610 E	2520 E	2,470	2,990	2,260 E	2320	4,210	1,480
Manganese	300	287 E	910 *E	1,290	508	27.9 BE	175	19.3 B	188
Mercury	0.7	ND	ND	0.052 B	ND	ND	ND	ND	0.15 B
Nickel	100	6.1 B	3.0 B	13.3 B	3.3 B	6.9 B	24.9 B	3.0 B	12.9 B
Potassium	NC	2,460	4,990	8,340	13,200	3,330	3470	6,850	2,680
Selenium	10	ND	ND	41.2	ND	ND	ND	19.6 B	ND
Silver	50	ND	3.5 B	ND	1.4 B	ND	ND	1.6 B	5.6 B
Sodium	20,000	2,230 E	8710	6,000	22,900	9,790 E	11,000	15,600	4,880
Thallium	0.5	ND	2.6 B	64.8	ND	ND	ND	ND	ND
Vanadium	NC	2.2 B	9.8 B	4.5 B	3.1 B	ND	1.2 B	ND	1.7 B
Zinc	2,000	29.2 BE	41.6 B	60.8	57.0	19.8 BE	29.8 B	20.1 B	56.0

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

- ND Not Detected
- NA Not Analyzed

Sample Location	NYSDEC	MW-16D	MW-16D	MW-16D	MW-16D	MW-16M	MW-16M	MW-16M	MW-16M
Sample ID	Class GA	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16D	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M	SMS-MW-16M
Laboratory ID	Groundwater	E0136-16C	E1400-03C	F1135-09C	G2029-14C	E0136-15C	E1376-10C	F1135-10C	G2029-13C
Sample Date	Criteria	2/9/06	09-13-06	08-13-07	11/6/2008	2/9/06	09-12-06	08-13-07	11/6/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q				
Aluminum	NC	29.0 BE	97.3 B	45.2 B	104 B	203 E	94.2 B	55.0 B	91.6 B
Antimony	3	ND	ND	2.5 B	ND	1.3 B	ND	4.5 B	ND
Arsenic	25	ND	ND	1.6 B	ND	ND	2.2 B	4.7 B	ND
Barium	1,000	51.9 B	48.3 B	45.6 B	43.8 B	97.9 B	93.6 B	97.5 B	91.6 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	23.4	11.8 E	5.1	35.3	4.0 B	2.3 B	0.22 B	2.2 B
Calcium	NC	18,200 E	18,500	19,100	18,500	23,900 E	19,200	21,900	17,600
Chromium	50	34.6	41.6 E	44.9	48.7	25.4	45.9	10.3 B	9.6 B
Cobalt	NC	1.3 BE	0.87 B	1.4 B	ND	2.5 BE	8.0 B	2.6 B	5.4 B
Copper	200	17.0 B	ND	ND	12.8 B	26.6 B	ND	ND	13.2 B
Iron	300	262 NE	232	234	420	458 NE	814	375	822
Lead	25	2.5 B	1.2 B	0.88 B	3.3 B	1.5 B	0.58 B	ND	4.4 B
Magnesium	35,000	3,250 E	3,430 E	3,530	3,690	2,650 E	2,950	2,940	2,380
Manganese	300	60.7 E	196 *E	51.6	53.2	34.0 BE	536	29.0 B	125
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	0.038 B
Nickel	100	10.6 B	11.3 B	6.7 B	9.0 B	12.4 B	46.9 B	27.9 B	31.7 B
Potassium	NC	5,280	5,040	5,260	5,990	12,300	9,340	10,000	13,400
Selenium	10	ND	ND	9.5 B	ND	ND	ND	13.2 B	ND
Silver	50	ND	ND	1.8 B	1.6 B	ND	ND	2.1 B	ND
Sodium	20,000	15,600 E	16,000	16,700	15,100	17,500 E	15,300	17,900	12,000
Thallium	0.5	ND	ND	ND	ND	2.1 B	1.5 B	ND	ND
Vanadium	NC	ND	0.89 B	ND	ND	0.59 B	0.71 B	ND	ND
Zinc	2,000	61.4 E	40.2 B	20.5 B	39.1 B	106 E	30.8 B	31.7 B	107

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

E - result is estimated due to interference or exceedance of the calibrated range

ND - Not Detected

NA - Not Analyzed

Sample Location	NYSDEC	MW-16S	MW-16S	MW-16S	MW-16S	MW-17	MW-17	MW-17	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-16S	SMS-MW-17	SMS-MW-17	SMS-MW-17	SMS-MW-17
Laboratory ID	Groundwater	E0136-12B	E1376-09C	F1135-16C	G2029-12C	E0136-18C	E1376-04C	F1135-15C	G2029-11C
Sample Date	Criteria	2/8/06	09-12-06	08-16-07	11/6/2008	2/9/06	09-11-06	08-16-07	11/6/2008
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q	conc Q
Aluminum	NC	135 BE	69.2 B	51.6 B	73.2 B	72.0 BE	34.3 B	19.6 B	57.7 B
Antimony	3	ND	ND	1.2 B	ND	2.6 B	2.3 B	10.0 B	ND
Arsenic	25	ND	ND	ND	ND	ND	ND	3.7 B	ND
Barium	1,000	46.1 B	18.7 B	18.2 B	38.1 B	22.8 B	28.4 B	29.1 B	72.7 B
Beryllium	3	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	5	17.4	3.0 B	0.47 B	33.4	3.1 B	0.65 B	0.16 B	3.1 B
Calcium	NC	27,900 E	17,800	25,200	25,300	13,900 E	17,200	24,800	12,600
Chromium	50	31.3	117	95.7	54.2	14.8 B	11.3 B	9.0 B	6.9 B
Cobalt	NC	2.3 BE	2.1 B	3.6 B	4.0 B	1.6 BE	1.1 B	2.0 B	3.6 B
Copper	200	17.6 B	ND	ND	11.9 B	12.7 B	7.1 B	ND	9.9 B
Iron	300	480 NE	433	587	626	645 NE	284	220	145 B
Lead	25	2.0 B	ND	ND	ND	1.3 B	ND	ND	ND
Magnesium	35,000	4,920 E	3,270	3,920	3,290	1,930 E	1,160	1,830	1,100
Manganese	300	251 E	108	173	394	77.9 E	109	113	1,940
Mercury	0.7	ND	0.1 B	ND	ND	0.14 B	ND	ND	ND
Nickel	100	28.6 B	47.7 B	37.9 B	65.3	15.6 B	5.7 B	2.8 B	7.1 B
Potassium	NC	5,460	5,630	4,870	6,720	2,760	3,960	3,220	3,110
Selenium	10	ND	ND	12.7 B	ND	ND	ND	13.6 B	ND
Silver	50	ND	ND	1.8 B	ND	ND	ND	2.1 B	0.73 B
Sodium	20,000	12,100 E	14,100	17,300	12,800	5,940 E	2,690	6,680	3,060
Thallium	0.5	2.2 B	ND	ND	ND	ND	ND	ND	ND
Vanadium	NC	0.5 B	0.8 B	1 B	1.7 B	2.1 B	2.4 B	1.7 B	3.4 B
Zinc	2,000	66.8 E	18.4 B	17.4 B	42.7 B	43.4 BE	18.6 B	18.8 B	36.6 B

Notes: B - Estimated value

Bold/Italics - Exceeds criterion

- ND Not Detected
- NA Not Analyzed

LEGEND:

EXISTING MONITORING WELLS

GRAPHIC SCALE

50

100

150

LEGEND:

\bullet	EXISTING MONITORING WELLS
MW-14	

(52.96)	GROUNDWATER ELEVATIONS IN FEET ABOVE MEAN SEA LEVEL

GRAPHIC SCALE

100

150

LEGEND:

EXISTING MONITORING WELLS

(53.9) GROUNDWATER ELEVATIONS IN FEET ABOVE MEAN SEA LEVEL

- -53.9 - - GROUNDWATER ISOPLETH CONTOUR INTERVAL - 0.5 ft

DIRECTION OF GROUNDWATER FLOW

MW-14									
Compound	Feb 06	Sept 06	Aug 07	Nov 08					
Antimony	ND	ND	15.7 B	ND					
Iron	27,100 NE	48,000	296,000	65,100					
Manganese	287 E	910 E	1,290	508					
Selenium	ND	ND	41.2	ND					
Sodium	2,230 E	8,710	6,000	22,900					
Thalllum	ND	2.6 B	64.8	ND					

	MW-13									
Compound	Feb 06	Sept 06	Aug 07	Nov 08						
Antimony	ND	ND	4.7 B	ND						
Iron	52,600 NE	15,400	40,200	25,800						
Manganese	867 E	186 E	401	413						
Thallium	4.4 B	4 B	7.8 B	ND						

				-
	MV	V-13D		
Compound	Feb 06	Sept 06	Aug 07	Nov 08
Antimony	ND	ND	8.3 B	ND
Cadmium	72.8	72.8 E	65.5	79
Iron	746 NE	210	241	383
Selenlum	3.3 B	2.2 B	10.7 B	7 B
Sodium	27.500 E	28,700	31,800	28,700

GRAPHIC SCALE

100

150

,					
/		N	1W-11		
/	Compound	Feb 06	Sept 06	Aug 07	Nov 08
	Iron	12,000 NE	11,800	NA	NA
	Thalium	1.5 B	2.9 B	NA	NA

LEGEND:

- EXISTING MONITORING WELLS
- MW-14
- (53.9) GROUNDWATER ELEVATIONS IN FEET ABOVE MEAN SEA LEVEL
- -53.9 - GROUNDWATER ISOPLETH CONTOUR INTERVAL 0.5 ft
 - DIRECTION OF GROUNDWATER FLOW

APPENDIX A

WELL SAMPLING FORMS – ROUND 4 (NOVEMBER 2008)

				PROJECT			PROJECT No.	SHEET	SHEETS
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ	1
LOCATION							DATE WELL STARTED	DATE WELL COMP	LETED
SMS Inst	ruments \$	Site, Deer	Park, NY	′ #1-52-026			11/5/08	11/5/08	
CLIENT							NAME OF INSPECTOR	•	
New York State Department of Environmental Conservation							Peter Lawler		
DRILLING CON	MPANY						SIGNATURE OF INSPECTOR		
ONE WE	ELL VOLUME :	1.62	gallons	WELL TD:	30.98	ft	PUMP INTAKE DEPTH:	26 ft	
	Depth to	Purge		FIELD MEAS	UREMENTS				
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)	P	(ntu)			
			. ,	<i>/</i> /		. ,			
14:14	19.25						Static water level		
14:21	19.36	0.5	15.9	0.359	6.55	789	Pump on, rusty color	r	
14:25	19.39	1	16.1	0.331	6.62	388	Beige color		
14:27	19.39	1	15.8	0.321	6.59	186	Light brown color		
14:29	19.40	1	15.8	0.315	6.49	95	Light grav		
14:31	19.40	1	15.8	0.312	6.47	67	Clear		
14:33	19.40	1	15.8	0.309	6.46	52	Clear		
14:36	19 40	1	15.8	0.308	6.46	45	Clear		
11.00	10.10		10.0	0.000	0.10	10			
14.45							Collect sample MW-	1	
14.40								•	
Pump Ty	pe:	Grundfos	, sample	d with Teflon	bailers				
Analytica	I Parame	ters:	VOCs, S	VOCs, TAL	Metals (Un	filtered)			

	-			PROJECT			PROJECT No.	SHEET	SHEETS
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ	1
LOCATION							DATE WELL STARTED	DATE WELL COMP	LETED
SMS Inst	ruments S	Site, Deer	Park, NY	′ #1-52-026			11/4/08	11/4/08	
CLIENT	_						NAME OF INSPECTOR	•	
New York	New York State Department of Environmental Conservation								
DRILLING CON	MPANY						SIGNATURE OF INSPECTOR		
ONE WE	ELL VOLUME :	1.75	gallons	WELL TD:	28.52	ft	PUMP INTAKE DEPTH:	23.5 ft	
	Depth to	Purge		FIELD MEAS	UREMENTS				
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REMARKS		
	(ft)	(gal/min)	(C)	(ms/cm)	P	(ntu)			
			. ,	<i>/</i> /		. ,			
							Static water level		
11:32	17.31	1.5	18.1	0.244	6.75	999	Pump on, rusty oran	ae color	
11:35	17.31	0.7	18.3	0.24	6.72	762	Light rust color	0	
11:38	17 31	11	18.2	0.238	6.65	511	Light coloration		
11:40	17.31	1	18.3	0.234	6.59	164	Slight vellowish colo	ration	
11:10	17.01	1	18.3	0.235	6 58	59	Clear		
11:45	17.01	0.95	18.3	0.200	6 57	33	Clear		
11.10	17.01	0.00	10.0	0.202	0.07	00			
11.55							Collect sample MW-	2	
11.00								2	
		O mus -16		al	hallara				
Pump Ty	pe:	Grundios	, sample	a with terion	ballers				
	Dorom	lara			Motole /I In	filtore d\			
Апагушса	rarame	iers.	vuus, S	VUUS, TAL	ivietais (UN	merea)			

					PROJECT No.	SHEET	SHEETS		
WELL SA	AMPLING	FORM			95900	1 оғ	1		
LOCATION							DATE WELL STARTED	DATE WELL COM	IPLETED
SMS Inst	ruments S	Site, Deer	Park, NY	′ #1-52-026			11/4/08	11/4/08	
CLIENT					_		NAME OF INSPECTOR		
New York	k State De	epartment	of Enviro	onmental Co	nservation		Dan Simpson		
	MPANY			SIGNATURE OF INSPECTOR					
ONE WELL VOLUME : 1.83 gallons WELL TD: 28.0						ft	PUMP INTAKE DEPTH:	25 ft	
	Depth		-	FIELD MEAS	UREMENTS				
	to	Purge				-			
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REMARKS		
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)			
							Static water level		
							-		
12:20	17.31	1.5	18.1	0.244	6.75	999	Pump on, orange		
12:22	17.31	0.7	18.3	0.24	6.72	762	Rusty color		
12:23	17.31	1.1	18.2	0.238	6.65	511	Rusty color		
12:28	17.31	1	18.3	0.234	6.59	164	Yellowish color		
12:29	17.31	1	18.3	0.235	6.58	59	Clear		
12:31	17.31	0.95	18.3	0.232	6.57	33	Clear		
12:32	17.31	0.95	18.3	0.232	6.56	24	Clear		
12:45							Collect sample MW-	3	
		_							
Pump Ty	pe:	Grundfos	, sample	d with teflon	bailers				
Analytica	I Paramet	ters:	VOCs, S	VOCs, TAL	Metals (Un	filtered)			

				PRO IECT			IPROJECT No. SHEET SHEET			
WELL SA		FORM			-G		95900			
LOCATION							DATE WELL STARTED	DATE WELL COMPLETED		
SMS Inst	ruments \$	Site, Deer	Park, NY	/ #1-52-026			11/4/08	11/4/08		
			NAME OF INSPECTOR							
	K State De	epartment	of Enviro	onmental Col	nservation		Dan Simpson			
ONE WELL VOLUME : 7.62 gallons		gallons	WELL TD:	29.53	ft	PUMP INTAKE DEPTH:	24.5 ft			
	Depth to	Purge		FIELD MEAS	UREMENTS					
Time	Water	Rate	Temp.	Conduct.	На	Turbidity	REM	ARKS		
	(ft)	(gal/min)	(C)	(ms/cm)	P	(ntu)				
							Static water level			
13:29	18.10	1.25	21.1	0.076	7.01	501	Pump on, rusty colo	r		
13:31	18.10	1.5	21.5	0.075	6.88	296	Dark orange color			
13:33	18.08	1.5	21.7	0.075	6.79	232	Tan color			
13:36	18.09	1.5	21.8	0.075	6.79	170	Tan color			
13:39	18.08	1.5	21.8	0.074	6.77	124	Light yellow			
13:41	18.08	1.5	21.9	0.074	6.72	95	Light yellow			
13:43	18.03	1.5	21.9	0.074	6.70	82	Light yellow			
13:50							Collect sample MW-	4		
	-									
						1				
						1				
						1				
		•								
Pump Ty	pe:	Grundfos	, sample	d with teflon	bailers					
			-							
Analytica	I Parame	ters:	VOCs, S	VOCs, TAL	Metals (Un	filtered)				

UNELL SAMPLING FORM MULTI SITE-G 95900 Are well syntem SMS Instruments Site, Deer Park, NY #1-52-026 Anter well syntem I1/4/08 I1/4/08 SMS Instruments Site, Deer Park, NY #1-52-026 Date well syntem Date well syntem Date well syntem New York State Department of Environmental Conservation Date syntem Date syntem Date syntem New Work State Department of Environmental Conservation Date syntem Sixuarus Date syntem Date syntem Ower well volume: 2.01 gallons well to: 28.35 ft PumP intrake Deprit 23 ft Time Purge FIELD MEASUREMENTS Pump on, dark orange 14.40 14:40 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14:42 17.06 1 19.0 0.079 6.71 146 Light beige color 14:44 17.05 1 19.0 0.079 6.71 146 Light beige color 14:44 17.05 1 19.0 0.079 6.71 146 Light bei	PROJECT							PROJECT No.	SHEET	SHEETS
Dockstor Date Will State Date Will State Department of Environmental Conservation Date Will State Department of Environmen	WELL SA	AMPLING	FORM			95900	1 оғ	1		
SMS Instruments Site, Deer Park, NY #1-52-026 11/4/08 11/4/08 New York State Department of Environmental Conservation Name of Rispectors Dan Simpson New York State Department of Environmental Conservation Statume of Rispectors Dan Simpson owe well volume: 2.01 gallons well to 28.35 ft PUMP INTAKE DEPTH: 23 ft Time Purge FIELD MEASUREMENTS REMARKS REMARKS 16.73 FIELD MEASUREMENTS Static water level 14.40 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14.40 14.40 17.05 1 19.0 0.079 6.71 146 16.70 114.00 14.40 19.0 0.079 6.71 146 16.70 114.61 19.0 0.079 6.71 146 16.70 114.61 19.0 0.079 6.71 146 16.70 117 Yellowish color 14:42 17.05 1 19.0 0.079 6.71 116 16.70 117 Yellowish hue 15.00 117 Yellowish hue 16.70 117 Yellowish hue 16.70	LOCATION							DATE WELL STARTED	DATE WELL COMP	LETED
NUME OF INSPECTOR NUME OF INSPECTOR SIGNATURE OF INSPECTOR ONE WELL VOLUME: 2.01 gallons WELT TO: 2.8.35 ft PUMP INTAKE DEPTH: 2.3 ft TIME PUMP INTAKE DEPTH: 2.01 gallons WELT TO: 2.8.35 ft PUMP INTAKE DEPTH: 2.3 ft TIME TELD MEASUREMENTS TIME (r) Conduct, pH Turbidity REMARKS 16.73 Conduct, pH Turbidity REMARKS 14.40 17.06 1 18.7 0.075 6.91 960 Pump on, dark orange 14.44 17.06 1 18.7 0.079 6.71 146 Light beige color 14.44 17.05 1 19.0 0.068 6.70 117 Yellowish hue 15:00 Collect sample MW-5 Collect sample MW-5 <td>SMS Inst</td> <td>ruments S</td> <td>Site, Deer</td> <td>Park, NY</td> <td>′ #1-52-026</td> <td></td> <td></td> <td>11/4/08</td> <td>11/4/08</td> <td></td>	SMS Inst	ruments S	Site, Deer	Park, NY	′ #1-52-026			11/4/08	11/4/08	
New York State Department of Environmental Conservation Dan Simpson DREWLING COMPANY SignATURE OF INSPECTOR ONE WELL VOLUME: 2.01 gallons WELT TO: 28.35 ft PUMP INTAKE DEPTH: 23 ft Time Depth (r) Purge (gal/min) FIELD MEASUREMENTS REMARKS REMARKS 16.73 Image: Conduct. PH Turbidity (ntu) REMARKS REMARKS 14.35 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14.40 17.06 1 18.7 0.079 6.71 146 Light beige color 14.44 17.06 1 19.0 0.079 6.71 146 Light beige color 14.44 17.05 1 19.0 0.079 6.70 117 Yellowish hue 15:00 Image: Color Image: Color Image: Color Image: Color Image: Color 14:44 17.05 1 19.0 0.079 6.71 146 Light beige color Image: Color								NAME OF INSPECTOR		
Depth Purge FIELD MEASUREMENTS PUMP INTARE DEPTH: 23 ft Time Vist (n) Reter (n) Temp. Conduct. pH Turbidity REMARKS 116.73 Image: Conduct. pH Turbidity REMARKS REMARKS 14:40 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14:40 17.06 1 18.7 0.079 6.79 444 Beige color 14:42 17.06 1 18.7 0.079 6.71 144 Light beige color 14:44 17.05 1 19.0 0.078 6.68 246 Yellowish color 14:44 17.05 1 19.0 0.078 6.71 146 Light beige color 14:46 17.05 1 19.0 0.078 6.71 146 Light beige color 14:46 17.05 1 19.0 0.08 6.70 117 Yellowish hue 15:00 Im	New York	< State De	epartment	of Enviro	onmental Co	nservation		Dan Simpson		
ONE WELL VOLUME: 2.01 gallons WELL TO: 28.35 ft PUMP INTAKE DEPTH: 23 ft Time Purge Water Rate (gal/min) FIELD MEASUREMENTS (ms/cm) PH Turbidity REMARKS 16.73 Image: Conduct. PH Turbidity REMARKS 14:35 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14:40 17.06 1 18.7 0.079 6.71 146 Beige color 14:44 17.05 1 19.0 0.079 6.71 146 Light beige color 14:42 17.05 1 19.0 0.08 6.70 117 Yellowish color 15:00 Image:	DRILLING COMPANY							SIGNATURE OF INSPECTOR		
Def WELL VOLUME: 2.01 gallons WELL TO: 28.35 ft PUMP TARKE DEPTH: 23 ft Time Repth (t) Purge (t) FIELD MEASUREMENTS (C) FIELD MEASUREMENTS REMARKS 16.73 Image: Conduct. PH Turbidity REMARKS 14:40 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14:40 17.06 1 18.7 0.079 6.73 444 Beige color 14:42 17.04 1 19.0 0.078 6.68 246 Yellowish color 14:44 17.05 1 19.0 0.08 6.70 117 Yellowish hue 15:00 Image: Ima										
Depth to (t) Purge (t) FIELD MEASUREMENTS REMARKS 16.73 Temp. (c) Conduct. (ms/cm) pH Turbidity (ntu) REMARKS 14.40 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14.40 17.06 1 18.7 0.079 6.79 444 Beige color 14.42 17.05 1 19.0 0.078 6.68 246 Yellowish color 14.44 17.05 1 19.0 0.079 6.71 146 Beige color 14.44 17.05 1 19.0 0.08 6.70 117 Yellowish color 14.44 17.05 1 19.0 0.08 6.70 117 Yellowish hue 15:00 Image: I	ONE WE	ELL VOLUME :	2.01	gallons	WELL TD:	28.35	ft	PUMP INTAKE DEPTH:	23 ft	
Time Yo Purge (gal/min) Temp. (C) Conduct. (ms/cm) PH Turbidity (ntu) REMARKS 16.73 - - - Static water level -<		Depth			FIELD MEAS	UREMENTS				
Imme Water Temp. Conduct. рн Turbinity REMARKS 16.73 - - - - Static water level 14:35 17.06 1 18.6 0.075 6.91 960 Pump on, dark orange 14:40 17.06 1 18.7 0.079 6.79 444 Beige color 14:42 17.05 1 19.0 0.079 6.71 146 Light beige color 14:44 17.05 1 19.0 0.078 6.68 246 Yellowish color 14:44 17.05 1 19.0 0.08 6.70 117 Yellowish hue 15:00 - - - - Collect sample MW-5 - - - - - - - - - - - - - - 10 - - - - - - 117 Pellowish hue	Time	tO	Purge	Tamm	Conduct		Turkiditu	рги		
100 (gamm) (e) (mach) (mach) 16.73 1 18.73 1 1 1 14:35 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14:40 17.06 1 18.7 0.079 6.79 444 Beige color 14:42 17.04 1 19.0 0.078 6.68 246 Yellowish color 14:44 17.05 1 19.0 0.078 6.68 246 Yellowish hue 15:00 1 19.0 0.078 6.70 117 Yellowish hue 15:00 1 19.0 0.08 17 144 18.0 16 1 1 </td <td>rime</td> <td>(f+)</td> <td>Rate (gal/min)</td> <td>(C)</td> <td>(ms/cm)</td> <td>рп</td> <td>(ptu)</td> <td></td> <td>AKNJ</td> <td></td>	rime	(f+)	Rate (gal/min)	(C)	(ms/cm)	рп	(ptu)		AKNJ	
16.73 Image: Constraint of the second of		(1)	(yai/iiiii)	(0)	(IIIS/CIII)		(iitu)			
14:35 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14:40 17.06 1 18.7 0.079 6.79 444 Beige color 14:42 17.05 1 19.0 0.079 6.71 146 Light beige color 14:42 17.05 1 19.0 0.08 6.70 117 Yellowish hue 15:00 1 19.0 0.08 6.70 117 Yellowish hue 16:00 1 1 1 1 1 1 1 16:00 1 1 1 1 1 1		16 73						Static water level		
14:35 17.06 0.85 18.6 0.075 6.91 960 Pump on, dark orange 14:40 17.06 1 18.7 0.079 6.79 444 Beige color 14:42 17.04 1 19.0 0.078 6.68 246 Yellowish color 14:44 17.05 1 19.0 0.078 6.70 117 Yellowish hue 14:44 17.05 1 19.0 0.08 6.70 117 Yellowish hue 14:46 17.05 1 19.0 0.08 6.70 117 Yellowish hue 15:00		10.75								
14:30 17.06 0.03 10.0 0.073 0.031 10.00 1	11.35	17.06	0.85	18.6	0.075	6.01	060	Pump on dark oran	20	
14:42 17:06 1 18:7 0.079 6:79 4444 beige color 14:42 17:05 1 19:0 0.079 6:71 146 Light beige color 14:44 17:05 1 19:0 0.079 6:71 146 Light beige color 14:46 17:05 1 19:0 0.08 6:70 117 Yellowish hue 15:00 1 19:0 1 1 1 1 1 14:44 17:0 1 19:0 1 1 1 1 14:40 14:0 1 1 1 1 1 1 1 14:40 14:0 1 1 1 1 </td <td>14.33</td> <td>17.00</td> <td>0.05</td> <td>10.0</td> <td>0.075</td> <td>6.70</td> <td>900</td> <td>Poigo color</td> <td>ye</td> <td></td>	14.33	17.00	0.05	10.0	0.075	6.70	900	Poigo color	ye	
14:44 17.05 1 19.0 0.078 6.68 246 Tellowish Color 14:44 17.05 1 19.0 0.078 6.70 117 Yellowish hue 14:46 17.05 1 19.0 0.078 6.70 117 Yellowish hue 15:00	14.40	17.00	1	10.7	0.079	0.79	444	Delye Coloi		
14:44 17.05 1 19.0 0.079 6.71 146 Light Degle Color 14:46 17.05 1 19.0 0.08 6.70 117 Yellowish hue 15:00	14:42	17.04	1	19.0	0.078	0.08	240	Yellowish color		
14:46 17.05 1 19.0 0.08 6.70 117 Yellowish hue 15:00 1 1 1 1 1 1 1 1 15:00 1 1 1 1 1 1 1 1 1 15:00 1 1 1 1 1 1 1 1 1 15:00 1 1 1 1 1 1 1 1 1 15:00 1 1 1 1 1 1 1 1 1 14:10 1	14:44	17.05	1	19.0	0.079	6.71	146	Light beige color		
15:00 Collect sample MW-5 Image: Sector of the s	14:46	17.05	1	19.0	0.08	6.70	117	Yellowish hue		
15:00	1 - 00								_	
Image: Constraint of the state of the s	15:00							Collect sample MW-	5	
Image: Constraint of the state of the s										
Image:										
Image: Control of the state of the stat										
Image: Constraint of the state of the s										
Image: Constraint of the state of the s										
Image: Constraint of the state of the s										
Image: Sector of the sector										
Image: Constraint of the state of the s										
Image:										
Image:										
Image:										
Image:										
Image: Constraint of the second se										
Image: Constraint of the second se										
Image: Constraint of the second se										
Pump Type: Grundfos, sampled with teflon bailers Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)										
Pump Type: Grundfos, sampled with teflon bailers Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)										
Pump Type: Grundfos, sampled with teflon bailers Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)							1			
Pump Type: Grundfos, sampled with teflon bailers Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)										
Pump Type: Grundfos, sampled with teflon bailers Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)										
Pump Type: Grundfos, sampled with teflon bailers Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)										
Pump Type: Grundfos, sampled with teflon bailers Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)										
Pump Type: Grundfos, sampled with teflon bailers Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)								I		
Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)		ne.	Grundfoe	sample	d with teflon	hailers				
Analytical Parameters: VOCs, SVOCs, TAL Metals (Unfiltered)	i unip i y	μο.	Signaturos	, sumple		Saliors				
	Analytica	Paramet	ters:	VOCe S		Metals (I In	filtered)			
					, I''L					

					PROJECT No.	SHEET	SHEETS		
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ	1
	rumonto	Sito Door					DATE WELL STARTED	DATE WELL COMPL	ETED
SIVIS INST	numents	Sile, Deer	raik, NY	#1-52-026			I I/O/UO	80/5/11	
New Yor	k State De	epartment	of Enviro	onmental Co	nservation		Peter Lawler		
DRILLING CO	MPANY						SIGNATURE OF INSPECTOR		
		1 36	aallone		26 14	ft		21 ft	
ONE WI	ELL VOLUME :	1.50	yalions	WELL ID:	20.44	r IL	PUMP INTAKE DEPTH:	211	
	Depth			FIELD MEAS	UREMENTS				
	to	Purge	-			- · · · ·			
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(11)	(gai/min)	(0)	(ms/cm)		(ntu)			
9.00	16 73						Static water level		
0.00	10.10								
9:25	16.92	1	17.4	0,465	4,50	441	Pump on, brown col	or	
9:27	16.94	0.85	17.9	0.172	4.60	299	Light gray		
9:30	16.96	0.85	17.8	0.459	4.53	157	Yellow hue		
9:32	16.85	0.85	17.8	0.539	4.41	83	Clear		
9:34	16.88	0.85	17.8	0.523	4.43	56	Clear		
9:37	16.95	0.85	18.0	0.375	4.68	36	Clear		
9:39	16.89	0.85	18.1	0.41	4.68	25	Clear		
9:42	16.84	0.85	17.8	0.479	4.49	47	Clear		
9:46	16.88	0.85	17.9	0.465	4.54	39	Clear		
9:55							Collect sample MW-	·6S	
			oomal-	d with talla	hoilora				
Pumpiy	pe:	Grundios	, sample	a with terion	ballers				
Apolytics	Doromo	tore			Motola (Lir	filtored)			
Anaiyuca	ii Falame	1015.	vuus, 5	VUUS, TAL		milerea)			

WELL NO. MW- 6D

					PROJECT No.	SHEET	SHEETS			
WELL SA	AMPLING	FORM		MULTI SITE	:-G		95900		DF 1	
SMS Inst	ruments S	Site, Deer	Park. NY	′ #1-52-026			11/5/08	11/5/08		
CLIENT		, = = = = =					NAME OF INSPECTOR			
New York	< State De	epartment	of Enviro	onmental Co	nservation		Peter Lawler			
DRILLING CO	WIFAINT						SIGNATORE OF INSPECTOR			
ONE WE		53 23	gallons		97 4	ft	Ρυμριντακε υερτη.	92 ft		
	Dorth	00.20	301010				· · · · · · · · · · · · · · · · · · ·			
	to	Purge		FIELD MEAS	UREMENTS					
Time	Water	Rate	Temp.	Conduct.	pH Turbidity REMARK					
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)				
10.25	16 75						Static water level			
10.20	10.70									
10:30	16.79					1	Pump on, GFI proble	em		
11:00	20.31	1	14.6	0.145	7.14	949	Black			
11:25	20.40	2	14.2	851	Pump on, GFI problem Black Brownish gray color Light gray					
11:44	20.78	3	14.2	0.391	6.60	220	Light gray			
12:01	20.30	3	14.3	0.39	6.55	135	Very light gray			
40.00								~ D		
12:08							Collect sample MW-6D			
						1				
						 				
						I	<u> </u>			
Pump Tv	pe:	Grundfos	, sample	d with teflon	bailers					
	•									
Analytica	I Paramet	ers:	VOCs, S	VOCs, TAL	Metals (Ur	filtered)				

	-				PBO JECT No.	SHEET	SHEETS		
WELL SA		FORM			-G		95900	1 OF	1
LOCATION							DATE WELL STARTED	DATE WELL COMF	·LETED
SMS Inst	ruments \$	Site, Deer	Park, NY	/ #1-52-026			11/5/08	11/5/08	
	04 4 D						NAME OF INSPECTOR		
New York	k State De	epartment	of Enviro	onmental Co	nservation		Peter Lawler		
							SIGNATORE OF INSPECTOR		
ONE WE	ELL VOLUME :	1.45	gallons	WELL TD:	28.67	ft	PUMP INTAKE DEPTH:	23.5 ft	
	Depth to	Purge		FIELD MEAS	UREMENTS				
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft) (gal/min) (C) (ms/cm)			(ntu)					
13:26	18.28						Static water level		
13:34	18.38	0.95	17.2	0.241	6.7	999	Pump on, very rusty	color	
13:37	18.38 0.95 17.1 0.255 6.5 925 10.00 0.05 17.0 0.057 0.057 0.057						Rusty		
13:39	18.38	0.95	17.0	0.257	6.52	664	Rusty		
13:41	18.38	0.95	17.1	0.258	6.47	356	Light rust color		
13:43	43 18.38 0.95 17.0 0.258 6.56 20						Light gray		
13:45	18.38	0.95	17.1	0.258	6.41	119	Grayish clear		
13:45	18.38	0.95	17.0	0.257	6.47	95.00	Grayish clear		
13:55							Collect sample MW-	7	
					-				
						1		-	
						1		-	
		1				L			
Pump Tv	pe:	Grundfos	. sample	d with teflon	bailers				
p i y	F 0.	2.0.000	,		201010				
Analvtica	l Parame	ters:	VOCs. S	VOCs. TAL	Metals (Ur	filtered)			
,			, _	, _	- (-	/			

	-				PROJECT No.	SHEET	SHEETS		
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ	1
LOCATION					-		DATE WELL STARTED	DATE WELL COMP	LETED
SMS Inst	ruments \$	Site, Deer	Park, NY	′ #1-52-026			11/4/08	11/4/08	
CLIENT	-						NAME OF INSPECTOR		
New York	State Description: State Beach Description: State: State Description: State Beach Description: State Beach Description: State Beach Description: State Beach B	epartment	of Enviro	onmental Co	nservation		Dan Simpson		
DRILLING CON	IPANY						SIGNATURE OF INSPECTOR		
ONE WE	ELL VOLUME :	2.09	gallons	WELL TD:	29.15	ft	PUMP INTAKE DEPTH:	24 ft	
	Depth			FIELD MEAS	UREMENTS				
Time	tO	Purge	Tamm	Conduct		Turkiditu	DEM		
Time	water	Rate (gol/min)	remp.	Conduct.	рн	i urbiaity	KEW	ARKS	
	(1)	(yai/iiiii)	(0)	(IIIS/CIII)		(nitu)			
10.21	16.85						Static water level		
10.21	10.05								
10.31	16.03	1	173	0.340	6.45	000	Pump on orange		
10.31	16.02	1	17.5	0.349	6.61	999	r unp on, orange		
10.33	16.92	1	17.5	0.340	6.69	404			
10.30	16.92	0.22	17.0	0.344	0.00	404			
10.42	10.92	0.33	17.0	0.339	0.77	1//			
10:45	16.92	0.5	17.5	0.339	0.78	118	Clear		
10:50	16.92	0.5	17.6	0.336	0.83	80	Clear		
40.50								_	
10:50							Collect sample MW-	8	
Pump Ty	pe:	Grundfos	, sample	d with teflon	bailers				
	-		•						
Analytica	I Paramet	ters:	VOCs, S	VOCs, TAL	Metals (Un	filtered)			
-			-		``	,			

				PROJECT			PROJECT No.	SHEET SHEETS		
WELL S/	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ 1		
			<u> </u>				DATE WELL STARTED	DATE WELL COMPLETED		
SIMS Inst	ruments s	Site, Deer	Park, NY	7#1-52-026			11/6/08	11/6/08		
New Yorl	State Delayer	nartment	of Enviro	nmental Co	nservation		Peter Lawler			
DRILLING CO		spartment					SIGNATURE OF INSPECTOR			
		1 75	aollono		20.76	· #		00 0 4		
ONE WE	ELL VOLUME :	1.75	galions	WELL TD:	20.70		PUMP INTAKE DEPTH:	23.0 II		
	Depth	Purge		FIELD MEAS	UREMENTS					
Time	Water	Rate	Temp.	Conduct.	рΗ	Turbidity	REM	ARKS		
	(ft)	(gal/min)	(C)	(ms/cm)	P	(ntu)				
14:25	16.24						Static water level			
44.00	40.00	4.5	47.0	0.004						
14:30	16.28	1.5	17.2	0.201	6.5	999	Pump on, rusty colo	r		
14:32	16.28	1.1	17.3	0.211	846	Pump on, rusty color Rusty color Dirty orange color Light brown Almost clear				
14:34	16.28	1.1	17.3	0.215	6.56	388	Dirty orange color			
14:35	16.28	1.1	17.3	0.216	6.58	179				
14:38	16.28	1.1	17.3	0.215	6.59	88 50	Almost clear			
14:40	16.28	1.1	17.3	0.216	6.58	58	Clear			
11.15	-							0		
14.45								9		
	-									
<u> </u>										
Sampled	:	14:45		1 11 4 11	L - 1.					
Pump Ty	pe:	Grundtos	, sampled	a with tetlon	pailers					
Analytica	Dorom	toro			Motole /I In	filtored)				
Analytica	rrarame	1015.	v00s, 5	v005, TAL	ivietais (Uf	milerea)				

				PROJECT		PROJECT No.	SHEET	SHEETS		
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ	1	
LOCATION				-			DATE WELL STARTED	DATE WELL CON	IPLETED	
SMS Inst	ruments S	Site, Deer	Park, NY	′ #1-52-026			11/7/08	11/7/08		
	01						NAME OF INSPECTOR			
New York	k State De	epartment	of Enviro	onmental Co	nservation		Dan Simpson			
DRILLING CO	WPANY						SIGNATURE OF INSPECTOR			
ONE WE		20.3	gallons	WELL TO-	47 54	ft		42 5 ft		
	•• •• •• ••	20.0	54.10110					12.0 10		
	Depth to	Purge		FIELD MEAS	UREMENTS					
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS		
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)				
	40.70						Otatia wata a laval			
	16.78						Static water level			
12.50	17.00	3	15.6	Pump on grav						
12.50	17.00	3	15.0	0.14	6.78	115	Grav			
12.07	17.05	4	15.7	0.153	6.82	54	Pump on, gray Gray Clear			
12:00	17.05	4	15.7	0.153	6.92	29	Clear			
13.09	17.05	4	15.7	0.152	0.05	20	Clear			
13.15							Collect sample MW-	12		
10.10								12		
D		0		J	h allas -					
Pump Ty	pe:	Grundios	, sample	a with terion	ballers					
Analytica	Darama	ore			Motale (Lin	filtorod)				
Analytica		1013.	v005, 5	initered)						

WELL NO. MW- 13S

					PROJECT No.	SHEET	SHEETS			
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ	- 1	
	numente (Sito Door		(#1 50 000			DATE WELL STARTED	DATE WELL COI	MPLETED	
	ruments	Site, Deer	Park, IN	#1-52-026			1 1/7/U8 NAME OF INSPECTOR	11/7/08		
New Yor	k State De	epartment	of Enviro	onmental Co	nservation		Dan Simpson			
DRILLING CO	MPANY						SIGNATURE OF INSPECTOR			
		18 58	gallons	WELL TD.	46 34	ft				
		10.00	guilonio	WEEL ID.	40.04	it.	POWP INTAKE DEPTH.	- TIN		
	Depth	Dumme		FIELD MEAS	UREMENTS					
Timo	to Water	Purge	Tomp	Conduct	ъЦ	Turbidity	DEM	ADKG		
Time	(ft)	(gal/min)	(C)	(ms/cm)	рп	(ntu)				
	()	(3)	(-)	(,		()				
9:48	18.19						Static water level			
						1				
9:56	18.38	2.5	14.8	0.202	7.03	496	Pump on, brown			
10:03	18.41	3.4	15.0	0.212	6.59	104	Clear			
10:08	18.41	3.4	15.0	0.215	6.46	57	Clear			
10:13	18.41	3.4	15.0	0.215	6.4	27	Clear			
10:18	18.41	3.4	15.0	0.214	6.36	25	Clear			
10:20							Collect sample MW-	13S		
						1				
Pump Ty	pe:	Grundfos	, sample	d with teflon	bailers					
Analytica	I Parame	ters:	VOCs, S	VOCs, TAL	Metals (Un	filtered)				

WELL NO. MW- 13D

					PROJECT No.	SHEET	SHEETS			
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ	1	
	rumonto	Sito Door		(#1 50 000				DATE WELL COMPL	ETED	
	truments	Site, Deer	Park, IN	#1-52-026			1 1/7/U8 NAME OF INSPECTOR	11/7/08		
New Yor	k State De	epartment	of Enviro	onmental Co	nservation		Dan Simpson			
DRILLING CO	MPANY						SIGNATURE OF INSPECTOR			
		54.8	aallons	WELL TD-	101 4	ft		97 ft		
	LLL VOLONIL .	04.0	guilonio	WEEL ID.	101.4		FOMF INTAKE DEFTI.	57 10		
	Depth			FIELD MEAS	UREMENTS					
_ .	to	Purge	-							
Time	Water (ft)	Rate (gal/min)	Temp.	Conduct.	рн	l urbidity	REMARKS			
						(iitu)				
	18.24						Static water level			
10:47	18.54	4	14.2	0.26	6.32	214	Pump on, clear			
11:40	40 18.53 3.5 14.9 0.246 6.09 240						Clear (generator pro	ump on, clear lear (generator problem) lear lear collect sample MW-13D		
11:55	1:55 18.53 3.5 14.7 0.248 5.75 11						Clear	,		
12:10	18.53	3.5	14.6	0.247	5.69	33	Clear			
12:30							Collect sample MW-	13D		
		_								
Pump Ty	pe:	Grundfos	, sample	d with teflon	bailers					
						6 16 1				
Analytica	I Parame	ters:	vocs, S	VOCs, TAL	Metals (Ur	itiltered)				

					PROJECT No.	SHEET SHEET	s		
WELL S	AMPLING	FORM		MULTI SITE	-G		95900	1 оғ 1	
		-	_				DATE WELL STARTED		
SMS Inst	ruments S	Site, Deer	Park, NY	/ #1-52-026			11/6/08	11/6/08	
New Yor	k State De	anartment	of Enviro	nmental Co	nservation		Potor I awlor		
DRILLING CO		spartment					SIGNATURE OF INSPECTOR		
		40.04			45.00			44.6	
ONE WE	ELL VOLUME :	18.21	galions	WELL TD:	45.92	π	PUMP INTAKE DEPTH:	41 π	
	Depth			FIELD MEAS	UREMENTS				
	to	Purge							
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)			
	10.00						Statio water loval		
	10.33						Static water level		
8.32	18.82	1	147	0.304	367	Pump on, brown/rust			
8:43	10.02	2	14.7	0.304	200	Brown		-	
8.52	10.12	2	14.0	0.240	163	Light brown		-	
9.00	19.10	2	14.0	0.237	6 69	103	Light brown		-
9.00	19.10	2	14.6	0.233	6.66	56	Light brown		
5.05	10.10	2	14.0	0.200	0.00	50			
9.09							Collect sample MW-	9	
0.00						0	-		
							MS/MSD		_
									-
									_
						ļ			
									_
			oomal-	d with tafla-	hoilora				
Pump Ty	pe.	Grunalos	, sample	u with terion	Dallers				
Analytica	Paramet	ters.			Motale (I In	filtered)			
Anarytica			,003,0	1003, TAL		mereu)			

				PROJECT		PROJECT No.	SHEET SH	IEETS		
WELL SA	AMPLING	FORM		MULTI SITE	-G		95900		1	
SMS Inst	ruments S	Site. Deer	Park, NY	/ #1-52-026			11/6/08	11/6/08	ED	
CLIENT			,				NAME OF INSPECTOR	, .,		
New Yor	k State De	epartment	of Enviro	onmental Co	nservation		Peter Lawler			
DRILLING COI	MPANY						SIGNATURE OF INSPECTOR			
ONE WE	ELL VOLUME :	12.31	gallons	WELL TD:	36.68	ft	PUMP INTAKE DEPTH:	31.5 ft		
	Depth	Purgo		FIELD MEAS	UREMENTS					
Time	Water	Rate	Temp.	Conduct.	На	Turbidity	REM	ARKS		
	(ft) (gal/min) (C)		(ms/cm)	P	(ntu)					
	10.02						Statio water loval			
	16.03						Static water level			
9:26	18.18	2.0	15.6	0.294	96	Pump on, clear				
9:30	30 18.21 2.5 15.8 0.305 6.64 27						Static water level Pump on, clear Clear Clear Clear Clear Clear Clear Clear			
9:38	18.19	2.5	15.8	39	Clear					
9:42	18.19	2.5	15.8	20	Clear					
10.00								10		
10:00					Collect sample MW-	10				
						MS/MSD				
Pump Tv	pe:	Grundfos	. sample	d with teflon	bailers					
			,							
Analytica	I Parame	ters:	VOCs, S	VOCs, TAL	Metals (Ur	nfiltered)				

WELL NO. MW- 16S

					PROJECT No.	SHEET SHEETS			
WELL SA		FORM		MULTI SITE	-G		95900	1 оғ 1	
	rumonto (Cita Daar		(#1 50 000			DATE WELL STARTED		
	ruments	Sile, Deel	Park, IN	#1-52-026			I 1/0/UO	11/0/08	
New Yor	k State De	epartment	of Enviro	onmental Co	nservation		Dan Simpson		
DRILLING CO	MPANY						SIGNATURE OF INSPECTOR		
ONE WE	ELL VOLUME :	12.55	gallons	WELL TD:	36.92	ft	PUMP INTAKE DEPTH:	32 ft	
	Depth to	Purge		FIELD MEAS	UREMENTS			SHEET SHEETS 1 OF 1 DATE WELL COMPLETED 11/6/08 11/6/08	
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)	-	(ntu)			
	17.90						Static water level		
							-		
10:23	18.01	2.7	16.1	0.238	7.03	82	Pump on, light gray	color	
10:29	18.02	2.9	16.5	0.248	6.76	15	Clear		
10:35	0:35 18.02 3.0 16.5 0.249 6.89 10						Clear		
10:41	18.02	3.0	16.6	0.245	6.93	9	Clear		
10.15								100	
10:45							Collect sample MW-	16S	
					-				
		_							
Pump Ty	pe:	Grundfos	, sample	d with teflon	bailers				
						<i></i>			
Analytica	Il Parame	ters:	vocs, S	vous, TAL	ivietals (Ur	filtered)			

WELL NO. MW- 16M

						PROJECT No.	SHEET	SHEETS	
		FORM		MULTISITE	-G		95900 DATE WELL STARTED	1 OF	1 PI FTFD
SMS Inst	truments \$	Site, Deer	Park, NY	/ #1-52-026			11/6/08	11/6/08	
CLIENT		,					NAME OF INSPECTOR		
New Yor	k State De	epartment	of Enviro	onmental Co	nservation		Dan Simpson		
DRILLING COI	WPANT						SIGNATURE OF INSPECTOR		
ONE WE		26.26	gallons	WELL TD:	57.8	; ft		53 ft	
	Donth	20:20	ganorio			, it		00 11	
	to	Purge		FIELD MEAS	UREMENTS				
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)			
	18.01						Static water level		
	10.01								
11:27	18.16	2.4	14.9	0.192	66	Pump on, light grayish clear			
11:37	18.16	3.0	15.1	15.1 0.195 6.47 6			Clear		
11:43	18.19	4.1	15.2	8	Clear				
11:50	18.19	4.2	15.1	0.195	6.19	10	Clear		
11:59	18.19	4.2	15.2	0.194	6.17	7	Clear		
12:08	18.19	4.2	15.2	0.195	6.15	5	Clear		
12:12					Collect sample MW-	16M			
					-				
							Duplicate MW-66M		
	-	-				-	-		
Pump Ty	pe:	Grundfos	, sample	d with teflon	bailers				
Analytica	u Parame	iers:	vuus, S	VUUS, TAL	ivietais (Ur	illitered)			
Earth Tech | AECOM

WELL NO. MW- 16D

							PROJECT No.	SHEET	SHEETS
	AMPLING	FORM		MULTISITE	-6		95900 DATE WELL STARTED		1 LETED
SMS Inst	truments \$	Site, Deer	Park, NY	′ #1-52-026			11/6/08	11/6/08	
CLIENT		,					NAME OF INSPECTOR		
New Yor	k State De	epartment	of Enviro	onmental Co	nservation		Dan Simpson		
DRILLING CO	WP'AN T						SIGNATURE OF INSPECTOR		
ONE WE	ELL VOLUME :	39.19	gallons	WELL TD:	77.44	ft	PUMP INTAKE DEPTH:	72.5 ft	
	Denth		U · -						
	to	Purge							
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)			
	18.05						Static water level		
	10.00								
12:40	18.22	3.3	14.5	0.218	5.79	100	Pump on		
12:51	18.22	3.4	14.5	0.222	5.6	16	Clear		
13:03	18.25	4.0	14.6	0.222	5.3	28	Clear		
13:14	18.25	4.0	14.7	0.222	5.31	7	Clear		
40.00								100	
13:20							Collect sample MVV-	16D	
						1			
						1			
Pump Tv	pe:	Grundfos	, sampled	d with teflon	bailers				
, ,									
Analytica	I Parame	ters:	VOCs, S	VOCs, TAL	Metals (Ur	filtered)			

Earth Tech | AECOM

WELL NO. MW- 17

WFILS					-6		PROJECT №. 95900	SHEET	SHEETS 1
					0		DATE WELL STARTED	DATE WELL COMF	I PLETED
SMS Inst	ruments \$	Site, Deer	Park, NY	′ #1-52-026			11/6/08	11/6/08	
New Yor	k State De	epartment	of Enviro	onmental Co	nservation		Peter I awler		
DRILLING CO	MPANY	partment					SIGNATURE OF INSPECTOR		
		10 50							
ONE WI	ELL VOLUME :	12.53	gallons	WELL TD:	36.49	ft	PUMP INTAKE DEPTH:	31.5 ft	
	Depth to	Purge		FIELD MEAS	UREMENTS				
Time	Water	Rate	Temp.	Conduct.	рН	Turbidity	REM	ARKS	
	(ft)	(gal/min)	(C)	(ms/cm)		(ntu)			
	17 51						Static water level		
	17.01								
8:14	17.59	0.5	17.6	0.087	6.93	13	Pump on, clear		
8:22	17.59	1.2	18.1	0.082	6.87	6	Clear		
8:29	17.61	2.2	18.3	0.082	6.73	6	Clear		
8:34	17.61	2.2	18.2	0.081	6.8	2	Clear		
8.15							Collect sample MW-	17	
0.45								17	
								•	
						I	<u> </u>		
Pump Ty	pe:	Grundfos	, sample	d with teflon	bailers				
Analytica	Doroma	tora			Motole (Li-	filtored			
Anaiyuca	ii Faiamei	1615.	vocs, 5	VOUS, TAL					

APPENDIX B

NYSDEC MONITORING WELL FIELD INSPECTION LOGS

SITE NAME: 5 /V >		$\frac{\text{SITE ID.: } 5^{M} >}{\text{INSPECTOR}}$	
MONITORING WELL FIE	LD INSPECTION LOG	DATE/TIME: <u>11/5/08 149</u> 8 WEILID: <u>ハルー</u>	
WELL VISIBLE? (If not, provide directio WELL COORDINATES? NYTM PDOP Reading from Trimble path GPS Method (circle) Trimble	ns below) f X NYTM Y nfinder: Satelite And/Or Mageilan	YES NO X	
WELL I.D. VISIBLE?	? (if not, sketch actual location on back)	YES NO	
WELL I.D. AS IT APPEARS ON PROTE	CTIVE CASING OR WELL:		
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If crac PROTECTIVE CASING IN GOOD CONI	cked, heaved etc., describe below) DITION? (If damaged, describe below)	YES NO X X X	
HEADSPACE READING (ppm) AND IN TYPE OF PROTECTIVE CASING AND I PROTECTIVE CASING MATERIAL TY MEASURE PROTECTIVE CASING INSI	STRUMENT USED HEIGHT OF STICKUP IN FEET (If appli PE: IDE DIAMETER (Inches):	cable) <u>O.c/PID</u> <u>Avik wownt</u> why <u>metry</u>	nde
LOCK PRESENT? OCK FUNCTIONAL? DID YOU REPLACE THE LOCK? S THERE EVIDENCE THAT THE WEL WELL MEASURING POINT VISIBLE?	L IS DOUBLE CASED? (If yes,describe b	YES NO X x x x x	
MEASURE WELL DEPTH EROM MEAS MEASURE DEPTH TO WATER FROM M MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE W ATTACH ID MARKER (if well ID is conf POOVIMIENT TO INDEPEND OF O	SURING POINT (Feet): MEASURING POINT (Feet): /ELL CASING: irmed) and IDENTIFY MARKER TYPE	19.25 19.25 Meter 3000	ца 1. 1. 1.
DESCRIBE ACCESS TO WELL: (Include ower lines, proximity to permanent structu Front- yard of busine 55,	accessibility to truck mounted rig, natural ires, etc.); ADD SKETCH OF LOCATION Overheid lines and	obstructions, overhead VON BACK, IF NECESSARY. frees near by.	in.
ESCRIBE WELL SETTING (For example AND ASSESS THE TYPE OF RESTORA Grassy Vard, Surrounde	e, located in a field, in a playground, on pa TION REQUIRED. In by curb. and but	ivement, in a garden, etc.)	
DENTIFY ANY NEARBY POTENTIAL: e.g. Gas station, salt pile, etc.): poss.b(1:14, for fertier	SOURCES OF CONTAMINATION, IF P	RESENT	
EMARKS: lacehea: in gress: hulfwry	y between row and build	ling, between sign pist	

-

••••

;

	site name: SM S	ji kana sa	SITE ID.: SM.S	
	MONITORING WELL FIELD INSPECTIO	N LOG	INSPECTOR: <u>Free Lac</u> DATE/TIME: <u>Helloc</u> WEII ID.: <u>Mul - a</u>	1130 <u>1</u>
	WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble And/Or Magellar Lat 40° 45.712' Lor	NYTM Y	YE YE YE	
,	WELL LOCATION MATCH SITE MAP? (if not, sketch actual loc	cation on back)		
2. 	SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describ PROTECTIVE CASING IN GOOD CONDITION? (If damaged, de HEADSPACE READING (ppm) AND INSTRUMENT USED	scribe below)	YE X X X	S NO
	TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP I PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches LOCK PRESENT?	N FEET (If applicable)	Fisc Fisc Pup YES	n remot fulgrede tel NO X
	IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet) MEASURE WELL DIAMETER (Inches):	(If yes,describe below) eet):		X X 5:52 4:19
in see see see see see see see see see se	WELL CASING MATERIAL PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACHID MARKER (if well ID is confirmed) and IDENTIFY M PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL (Include accessibility to tank mark	IARKER TYPE	<u>المحرار</u> المحرار المحرار المحرار المحرار	Ed poly <u>d</u> <u>ser</u> <u>from</u> under on <u>Marrus</u> st.
	power lines, proximity to permanent structures, etc.); ADD SKETCH Fenced alley/drive view is parking lot.	Force open	K, IF NECESSARY.	
	DESCRIBE WELL SETTING (For example, located in a field, in a p AND ASSESS THE TYPE OF RESTORATION REQUIRED. Drive way rest to building, Three Biden horse	Cents wide f	n a garden, etc.)	
-	DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAM (e.g. Gas station, salt pile, etc.): Perking lot rearby	IINATION, IF PRESENT		
-	REMARKS:			
-				
				•

			· .	
	CAOS			
. '	SITE NAME: > KV()		SITE ID.: $\frac{5}{11}$	ns
	MONITORING WELL FIFLD INSPECTION	NIOC	INSPECTOR: Ver	Lawler
			WEILID	108 1225
				VESINO
	WELL VISIBLE? (If not, provide directions below)		,	X
	WELL COORDINATES? NYTM X	NYTM Y		
	GPS Method (circle) Trimble And/Or Magellan	Satelites:	*	
	1 + 40° 45 716' 10	730 19 9201		YES NO
	WELL I.D. VISIBLE?	9 13 10.750		X
	WELL LOCATION MATCH SITE MAP? (It not, sketch actual locat	tion on back)	•••••	× L
	WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WEI	LL:		VER NO
	SURFACE SEAL PRESENT?			X
	SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe	below)		X
:	PROTECTIVE CASING IN GOOD CONDITION? (If damaged, des	cribe below)	······	
	HEADSPACE READING (ppm) AND INSTRUMENT USED			O.O PID
in in the second se	PROTECTIVE CASING MATERIAL TYPE;	TEE1 (II applicable)	•••••• <u>·</u> ·	Hish nevet w/grade
· · · · ·	MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		·····	Le Ci
	LOCK PRESENT?	na raistra d'an Alt		YES NO
	LOCK FUNCTIONAL?	dig seeda ta ga	ی این این این این این این این این این این	X
م الم يُعَدِّ وَجَنَّوْ حَدْثُ	DID YOU REPLACE THE LOCK?			
	IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (1) WELL MEASURING POINT VISIBLE?	lf yes,describ e below)		<u> </u>
	MEASURE WELL DEPTH EPOMAR ASIM DODITION			
	MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet)	:):		<u>28,0</u>
	MEASURE WELL DIAMETER (Inches):			2
	PHYSICAL CONDITION OF VISIBLE WELL CASING		·····	mt An Paly
	ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MA	ARKER TYPE		And the
	PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES		14-1-41 1	250' to water march
	DESCRIBE ACCESS TO WELL: (Include accessibility to truck mour	nted rig, natural obstruction	s, overhead	on Mercus Str
	power lines, proximity to permanent structures, etc.); ADD SKETCH (OF LOCATION ON BACK	K, IF NECESSARY.	
	Drive weight to parking lor, thread in	1, gate open		
	DESCRIBE WELL SETTING (For example, located in a field, in a pla	ayground, on pavement, in	a garden, etc.)	
	AND ASSESS THE TYPE OF RESTORATION REQUIRED.	4 . I		
-	and have been porteing behind word	chause surrounda	d Dy Worth	UUSE
•				
-	IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMI	NATION, IF PRESENT		· · · · · · · · · · · · · · · · · · ·
	(e.g. Gas station, salt pile, etc.):	. , 		
-	Parking lot on apposite side of Ence	cars sarked	m drivelians.	
-			U	
· -	REMARKS:			· · · ·
-				

offermile. (/ / · · ·)		ves
MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: <u>1//4</u> WEII ID.: <u>M</u>	lan 1331 W - 4
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYT	M Y	YES NO
PDOP Reading from Trimble pathfinder:	Satelites:	
WELL I.D. VISIBLE? Lat 40°45,702' Long 73°1	18.9021	YES NO
WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		4
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	missing J-d.g	YES NO
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe belo HEADSPACE READING (ppm) AND INSTRUMENT USED	w)	D.D PID
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (I PROTECTIVE CASING MATERIAL TYPE:	f applicable)	Flush month mater
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):		د ۲ YES NO
LOCK PRESENT?		У Х
DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes des WELL MEASURING POINT VISIBLE?	cribe below)	
MEASURE WELL DEPTH FROM MEASURING POINT (Feet); MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet);		29.53
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL:		4" leiy
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER T PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	ҮРЕ	Good Shi Era con
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, r nower lines, provinity to permanent structures, etc.): ADD SKETCH OF LOC	natural obstructions, overhead	<u> </u>
forced lot accessible from 2 drivewings, gas	ter one ofen	
DESCRIPE WELL SETTING (Bas grample logated in a field in a players and		
AND ASSESS THE TYPE OF RESTORATION REQUIRED.	, on pavement, in a garden, etc.)	
Prking lot behind workhouse, near true		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION	I, IF PRESENT	
(e.g. Gas station, salt pile, etc.):		
REMARKS:		
	·	-

· · . · ·

Ą

SITE NAME: Sin 5	·· ••	SITE ID .	5 11 5
		INSPECTOR: 7	Lanter
MONITORING WELL FIELD]	INSPECTION LOG	DATE/TIME: <u>J</u> WEII ID.: _	14/05 1475 MW - 5
WELL VISIBLE? (If not, provide directions belo WELL COORDINATES? NYTM X PDOP Reading from Trimble pathfinder: GPS Method (circle) Trimble An	ow) NYTM Y : Satelites: id/Or (Magellan)		YES NO
WELL I.D. VISIBLE? Lat 40° 456 WELL LOCATION MATCH SITE MAP? (if no	$(89 Long 73^{\circ}/8.911^{\circ})$		YES NO
WELL I.D. AS IT APPEARS ON PROTECTIVE	E CASING OR WELL:		···
SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, h PROTECTIVE CASING IN GOOD CONDITION	eaved etc., describe below) N? (If damaged, describe below)	·····	YES NO X X X
HEADSPACE READING (ppm) AND INSTRUM TYPE OF PROTECTIVE CASING AND HEIGH PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DI	MENT USED IT OF STICKUP IN FEET (If applicabl	le)	(). C PPM/PI Sist mont w/gad
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DO WELL MEASURING PODIT VISION FO	OUBLE CASED? (If yes,describe belov	w)	YES NO V V k K
MEASURE WELL DEPTH FROM MEASURING MEASURE DEPTH TO WATER FROM MEASU MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL C	G-POINT (Feet): JRING POINT (Feet): ASING:		
PROXIMITY TO UNDERGROUND OR OVERH DESCRIBE ACCESS TO WELL: (Include accessi power lines, proximity to permanent structures, etc	and IDENTIFY MARKER TYPE IEAD UTILITIES ibility to truck mounted rig, natural obs	tructions, overhead	<u>Pifrom</u> werhed <u>Pifrom</u> werhed lines
Overhead lines piesent; 5	thects of polished rock	Must to well.	
DESCRIBE WELL SETTING (For example, locate	ed in a field, in a playground, on paven	nent, in a garden, etc.)	
AND ASSESS THE TYPE OF RESTORATION F Parting lot, fined in, ga	required. Let open, used for	Mick storage	
	· · · · · · · · · · · · · · · · · · ·	·····	
(e.g. Gas station, salt pile, etc.): located - portang lot, 10	CES OF CONTAMINATION, IF PRES	ENT	•
REMARKS:			<u></u>
		······································	
	•		•
· · · · ·		- - -	

:

SITE NAME: / N/		SITE ID.: INSPECTOR: 🥢	the Lauts	
MONITORING W	VELL FIELD INSPECTION LOG	DATE/TIME: [] WEII ID.:	15/08 0908 MW-65	
WELL VISIBLE? (If not, p WELL COORDINATES?	NYTM X NYTM Y		YES NO	
GPS Method (circle	e) Trimble And/Or Magellan		· · · · · · · · · · · · · · · · · · ·	
WELL I.D. VISIBLE?	Lat 40° 45.690' Long #3° 18.915'			
WELL LOCATION MATC	H SITE MAP? (if not, sketch actual location on back)			
WELL I.D. AS IT APPEAR	S ON PROTECTIVE CASING OR WELL:	•••••	YES NO	
SURFACE SEAL PRESEN SURFACE SEAL COMPET PROTECTIVE CASING IN	T? FENT? (If cracked, heaved etc., describe below) GOOD CONDITION? (If damaged, describe below)	·····		
HEADSPACE READING (TYPE OF PROTECTIVE C	ppm) AND INSTRUMENT USED ASING AND HEIGHT OF STICKUP IN FEET (If applicable)		. 0.0/PID Glush manof-la	erde-
MEASURE PROTECTIVE	CASING INSIDE DIAMETER (Inches):			ц.
LOCK PRESENT? LOCK FUNCTIONAL?			YES NO	
IS THERE EVIDENCE THE WELL MEASURING POIN	LOCK? AT THE WELL IS DOUBLE CASED? (If yes, describe below) T VISIBLE?			
MEASURE WELL DEPTH MEASURE DEPTH TO WA MEASURE WELL DIAME	FROM MEASURING POINT (Feet):		. <u>16,44</u> . <u>16,73</u>	nin in Sin in Sin is Sin is Sin is
WELL CASING MATERIA			Poly	
ATTACH ID MARKER (ify PROXIMITY TO UNDERG	e VISIBLE WELL CASING: well ID is confirmed) and IDENTIFY MARKER TYPE ROUND OR OVERHEAD UTILITIES		5 Graph and her	ર
DESCRIBE ACCESS TO W power lines, proximity to per In drive year / P	ELL: (Include accessibility to truck mounted rig, natural obstruct manent structures, etc.); ADD SKETCH OF LOCATION ON BA	tions, overhead ACK, IF NECESSAR	Y.	
11	3	······································	· · · · · · · · · · · · · · · · · · ·	
DESCRIBE WELL SETTING AND ASSESS THE TYPE (Parking 104,/545	G (For example, located in a field, in a playground, on pavement, DF RESTORATION REQUIRED.	in a garden, etc.)		
DENTIFY ANY NEARBY	POTENTIAL SOURCES OF CONTAMINATION, IF PRESEN	Г		
(e.g. Gas station, salt pile, etc Cars (200 ked)	e): Norby, trivets parked close			·
REMARKS:				

· · ·

.

· · · · · · · · ·

	SITE NAME: STATIS	SITE ID 5	ne server en
n gradin N	MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11/5 WEll ID.: 1	108 1100 100 - 60
· · ·	WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYTM Y PDOP Reading from Trimble pathfinder:Satelites: GPS Method (circle) Trimble And/Or Magellan		YES NO
	WELL I.D. VISIBLE? Lat 40° 45.690' Long 73° 18.919' WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		YES NO
	WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
	SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)		YES NO X X
	HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	·····	A.D. PID Auth/moin/wjgrada Metal 6"
	LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?		YES NO X CO X
	MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD LITULITIES		97;40 16:75 4" <u>Poly</u> <u>10: d</u>
	DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BAC <u>Cpen dove way perkens</u> lot overhead toos class class	ons, overhead CK, IF NECESSARY. Bck Storage	<u>stron southere</u> lines
	DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, i AND ASSESS THE TYPE OF RESTORATION REQUIRED. Perkent let, forced in gales open limited	n a garden, etc.) ! traffic	
	IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):		
	Cors, trucks parked near by		
-	REMARKS:		· · · · · · · · · · · · · · · · · · ·

· · · ·

ł

		NGC N THE O	an an ann a bhailte		1. A. A.	n na satatan	
÷.,	SITE NAME:	<u>SMS</u>			SITE ID.:	SMS	4
	MONITORING	WELL FIELD	INSPECTION L	OG	DATE/TIME: <u>U</u> WEII ID.:	- L 15/08/ 1375- inw-7	- -
*•	WELL VISIBLE? (If not WELL COORDINATES PDOP Reading f GPS Method (cir	, provide directions be ? NYTM X from Trimble pathfinde	low)	NYTM Y		YES NO X	
	WELL I.D. VISIBLE? WELL LOCATION MA	ICH SITE MAP? (if n	ot, sketch actual location	on back)		YES NO	
	SURFACE SEAL PRESE SURFACE SEAL COMP	ARS ON PROTECTIV	E CASING OR WELL: heaved etc., describe belo	w)		YES NO × ≮	
	HEADSPACE READING TYPE OF PROTECTIVE PROTECTIVE CASING	IN GOOD CONDITIC (ppm) AND INSTRU CASING AND HEIG MATERIAL TYPE:	NY (If damaged, describe MENT USED HT OF STICKUP IN FE	ET (If applicable)		10/BID Automatic	grade
	MEASURE PROTECTIV LOCK PRESENT? LOCK FUNCTIONAL?	E CASING INSIDE D	IAMETER (Inches):			YES NO YES NO	
	DID YOU REPLACE TH IS THERE EVIDENCE T WELL MEASURING PO MEASURE WELL DEPT	E LOCK? HAT THE WELL IS E INT VISIBLE? H FROM ME A SUB IN	OUBLE CASED? (If ye	s,describe below)			
	MEASURE DEPTH TO V MEASURE WELL DIAM WELL CASING MATERI PHYSICAL CONDITION	ATER FROM MEAS ETER (Inches): AL: OF VISIBLE WELL	URING POINT (Feet):			18.38 	
۲۰۱۹ (۲۹۵۵) ۲۰۱۹ (۲۹۵۹) ۲۰۱۹ (۲۹۹۹) ۲۰۱۹ (۲۹۹۹) ۲۰۱۹ (۲۹۹۹) ۲۰۱۹ (۲۹۹۹)	ATTACH ID MARKER (i PROXIMITY TO UNDER DESCRIBE ACCESS TO	f well ID is confirmed GROUND OR OVER WELL: (Include access	and IDENTIFY MARK HEAD UTILITIES sibility to truck mounted	ER TYPE	ons. overbead	15th From over the	ed 15 St.
· 	power lines, proximity to p Drive way, a tractice a	ermanent structures, et	e.); ADD SKETCH OF I مدين من من المطلقة الم	OCATION ON BAC	CK, IF NECESSARY.	hiyh	
Ī	DESCRIBE WELL SETTI AND ASSESS THE TYPE Pared Lin	NG (For example, loca	ted in a field, in a playgre REQUIRED.	ound, on pavement, i	n a garden, etc.)		
	DENTIFY ANY NEARBY	POTENTIAL SOUR	CES OF CONTAMINAT	TON, IF PRESENT	1	Y 4.6 4.7	
((e.g. Gas station, salt pile, e	nc.): 5 near by.					,
R	EMARKS:		,			<u></u>	
_							
			·	. ·	•	•	
	an a			• • • • •	• •		· · ·

		later in the	
	SITE NAME: SM3	SITE ID. 5/11) - 100-84	•# .
	MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: $\frac{1}{10} \frac{1}{100} \frac{1}{100}$ WEII ID.: $\frac{1}{100} \frac{1}{100} \frac{1}{100}$	•
	WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan	YES NO	
	WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		
	WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked heaved etc. describe below)	YES NO	
	PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED	× 1 0.0 /10	
	TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Fich word Metal Pizer 8" LYESI NO	viq rece
	LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK?		
eta en la composición de la composición References de la composición de la compo References de la composición de la comp	IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTHEROM MEASURING POINT (Forth	ec.cut	
en de Galaite (117) Ser de Ser de gereer	MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL	16.85 2" Vatal	
	PHYSICAL CONDITION OF VISIBLE WELL CASING ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	<u>- 5002</u> 	wher main
	DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BAC Parking 104, with gate, vere lacked	is, overhead in A K, IF NECESSARY.	- -
	DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in	a garden, etc.)	-
-	open parking lot for light indefinal		-
-	IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):		-
 	Caro train parking Ici.		- - ·
-	REMARKS: No J Qlug		- -
	·		

		tati na sana ang sa			
	SITE NAME:	SMS	$\frac{1}{2} = -\frac{1}{2} \int_{-\infty}^{\infty} dx$	SITE ID.: 5 M 5	<u>.</u>
	MONITORI	NG WELL FIELD INSPE	ECTION LOG	DATE/TIME: <u>k 6/6%</u> WEII ID.: <u>M wi</u>	1425
·	WELL VISIBLE? (WELL COORDIN, PDOP Rea GPS Metho	(If not, provide directions below) ATES? NYTM X ding from Trimble pathfinder: rd (circle) Trimble And/Or	NYTM Y Satelites:		
	WELL I.D. VISIBL	E? J MATCH SITE MAP? (if not, sketch	actual location on back)	······	IS NO
	WELL I.D. AS IT A	APPEARS ON PROTECTIVE CASIN	IG OR WELL:		
	SURFACE SEAL P SURFACE SEAL C PROTECTIVE CAS	RESENT? COMPETENT? (If cracked, heaved etc SING IN GOOD CONDITION? (If day	c., describe below) maged, describe below)	YE	
	HEADSPACE REA TYPE OF PROTEC PROTECTIVE CAS MEASURE PROTE	DING (ppm) AND INSTRUMENT U TIVE CASING AND HEIGHT OF SI SING MATERIAL TYPE: CTIVE CASING INSIDE DIAMETE	ISED FICKUP IN FEET (If applicable) R (Inches):	() () () () () () () () () ()	U/PJD Li marrit styrade
	LOCK PRESENT? LOCK FUNCTION DID YOU REPLAC IS THERE EVIDEN WELL MEASURIN	AL? E THE LOCK? ICE THAT THE WELL IS DOUBLE G POINT VISIBLE?	CASED? (If yes, describe below)	YE	S NO X X X
	MEASURE WELL I MEASURE DEPTH MEASURE WELL I WELL CASING MA PHYSICAL CONDI ATTACH ID MARK	DEPTH FROM MEASURING POINT TO WATER FROM MEASURING I DIAMETER (Inches): ATERIAL: TION OF VISIBLE WELL CASING: CER (if well ID is confirmed) and IDE	T (Feet): POINT (Feet): MARKER TYPE		876 737 427 elect
	PROXIMITY TO UP DESCRIBE ACCESS power lines, proximit	NDERGROUND OR OVERHEAD U' S TO WELL: (Include accessibility to ty to permanent structures, etc.); ADD	TILITIES truck mounted rig, natural obstruct SKETCH OF LOCATION ON BA	ions, overhead ACK, IF NECESSARY.	5' Fring redeed
	Proked. lot	is finied and are	new dumpsters. Wh estimated lines choss	on sen tuits or	č
	DESCRIBE WELLS AND ASSESS THE Parking	ETTING (For example, located in a f TYPE OF RESTORATION REQUIR 10t Perved Sur face	ield, in a playground, on pavement, RED. د ک	in a garden, etc.)	
	IDENTIFY ANY NE (e.g. Gas station, salt ていこだら のこ	ARBY POTENTIAL SOURCES OF pile, etc.): <ked drown<="" meerby,="" td=""><td>CONTAMINATION, IF PRESEN</td><td>r well.</td><td></td></ked>	CONTAMINATION, IF PRESEN	r well.	
-	REMARKS: Well Was	s covered by dump	ister had to mo.	ne to gain acc	ess.
-			,		
	· .			· ·	

MONITORING WELL FIELD INSPECTION LOG DATE/TIME: U7/08/1/24/5 WELL VISIBLE? (If not, provide directions below) WELL COORDAATES? WELL COORDAATES? NYTM X POOP Reading from Trinible pathfode: Statilitie: CPS Method (circle) Trinible pathfode: Statilitie: CPS Method (circle) WELL LD. VISIBLE? Statilitie: WELL LD. STIBLE? Statilitie: WELL LD. STIBLE? WELL D. STIBLE? WELL D. AST APPEARS ON PROTECTIVE CASING OR WELL: Nb.2 SURFACE SEAL PRESENT? SURFACE SEAL COMPTECTIVE (CASING OR WELL: SURFACE SEAL COMPTECTIVE (CASING OR WELL: Nb.2 SURFACE SEAL COMPTECTIVE (CASING OR WELL: Nb.2 SURFACE SEAL COMPTECTIVE CASING OR WELL: Nb.2 SURFACE SEAL OPENENT? CONTINUE (GAMO HEIGHT OF STICKUP IN FEET (If applicable) MEADURACE RADING (ADD HEIGHT OF STICKUP IN FEET (If applicable) THEADY NOT APPLICATIVE (CASING AND HEIGHT OF STICKUP IN FEET (If applicable) ILOCK PRESENT? SUEL DAMETER (Method): Hightsh LOCK PRESENT SUEL CASING AND HEADURACE CASING AND HEAD			•	SITE ID.:	SMS
MONITORING WELL FIELD INSPECTION LOG DATE/IME: 17702/1245 WEIL CORDINATES NYTAX NYTMY PDP Reading from Trinble pathfador: Satalites:				INSPECTOR	D5
WELL VISIBLE? (If not, provide directions below) WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTMX NYTMY POOP Reading from Trinible pathfidder: Satelites:	MONITORIN	IG WELL FIELD IN	SPECTION LOC	DATE THE I	START MIT
WEIL VISIBLE? (If not, provide directions below) YES NO WEIL COORDINATES? NYTM X NYTM Y PDOP Reading from Trinble pathfinder: Satelites:			SI ECHON LOG	DATE/TIME: 1	1081 1275
WELL VISIBLE? (If not, provide directions below) NYTM Y PDOP Reading from Trinible pathfader: Satellites: GPS Method (screle) Trinible And/OC WELL LD. VISIBLE? WELL D. VISIBLE? WELL LD. VISIBLE? WELL D. VISIBLE? WELL LD. VISIBLE? WELL D. VISIBLE? WELL D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: Magelian SURFACE SEAL OPMEETENT? (If amaged, describe below) READSTACE READING Open JADI INSTRUMENT USED Mint. Mcg. Jadi O TYPE OF PROTECTIVE CASING INSIDE DIAMETER (Inches): (If applicable) TYPE OF PROTECTIVE CASING INSIDE DIAMETER (Inches): (If applicable) LOCK PROSTONAL? WELL MCGNING AND MESDE DIAMETER (Inches): (If applicable) LOCK PROSTONAL? WELL MCGNING AND MESDE DIAMETER (Inches): (If applicable) LOCK PROSTONAL? WELL MCGNING AND MESDE DIAMETER (Inches): (If applicable) MESUBLE WILL LOCKTINAL? WELL MCGNING AND MESDE DIAMETER (Inches): (If applicable) DID YOU REPEACHT PEROM MEASURING POINT (Feet): (If applicable) (If applicable)<				WEII ID.:	MW-17
WELL VISIBLE? (If not, provide directions below) WTM Y Satelines: DOP Reading from Trimble pathfinder: Satelines: Satelines: OPS Method (circle) Trimble pathfinder: Satelines: WELL LO. VISIBLE? WELL LO. VISIBLE? YES NO WELL LO. XISIBLE? YES NO YES NO WELL LO. AS IT APPEARS ON PROTECTIVE CASING OR WELL: Abac YES NO SURFACE SEAL PRESENT? SURFACE SEAL COMPETENTY (If craaked, heaved ec., dearine below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) READSPACE READING (ppn) AND INSTRUMENT USED Mith. Boc JEWO PROTECTIVE CASING AND BEIGTTO STICKUP IN FEET (If applicable) JEWE MEASURE PROTECTIVE CASING SINDE DIAMETER (Inches): G JEWE LOCK PRESENT? JEWE MAGNER FORM YERE INCOMENT JEWE MAGNER FORM YERE LOCK PRESENT? JEWE MAGNER FORM YERE INCOMENT JEWE MAGNER FORM YERE INCOMENT LOCK PRESENT? JEWE MAGNER FORM YERE INCOMENT JEWE MAGNER FORM YERE INCOMENT LOCK PRESENT? JEWE MAGNER FORM YERE INCOMENT JEWE MAGNER FORM YERE INCOMENT LOCK PRESENT? JEWE MAGNER FORM YERE INCOMENT JEWE MAGNER FORM YERE INCOMENT LOCK PRESENT? JEWE MAGNER FORM Y					YESINO
WELL COORDINATES? NYTM X	WELL VISIBLE? (I	f not, provide directions below)			
PDOP Reading from Trimble pathfulder:	WELL COORDINA	TES? NYTM X	NYTM Y		
OPS Method (circle) Trimble AndFOr Magellan WELL LD. VISIBLE? WELL LO. AS IT APPEARS ON PROTECTIVE CASING OR WELL: Abac YES NO SURFACE SEAL PRESENTY SURFACE SEAL COMPETENTY? (If cacked, heaved etc., describe below) WELL D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: Abac YES NO SURFACE SEAL COMPETENT? (If cacked, heaved etc., describe below) WELL D. AS IT APPEARS ON THE ADD (If canced, heaved etc., describe below) WELL D. AS IT APPEARS ON PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) If Abac If Abac PROTECTIVE CASING MATERIAL TYPE If Abac If Abac If Abac ILOCK PRESENT? ICOCK PRESENT? If Abac If Abac If Abac IDO YOU RELACE THEICOCK? IS THERE BYDENCE THAT THE WELL IS DOUBLE CASED? (If yes; describe below) If Abac If Abac MEASURE WELL DETH ROM MEASURING POINT (Feet) If Abac If Abac If Abac MEASURE WELL DETH ROM MEASURING POINT (Feet) If Abac If Abac If Abac MEASURE WELL DETH ROM MEASURING POINT (Feet) If Abac If Abac If Abac MEASURE WELL DETH ROM MEASURING POINT (Feet) If Abac If Abac <td< td=""><td>PDOP Read</td><td>ing from Trimble pathfinder:</td><td>Satelites:</td><td>······································</td><td></td></td<>	PDOP Read	ing from Trimble pathfinder:	Satelites:	······································	
WELL LD. VISIBLE? YES NO WELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL: Name SURFACE SEAL PRESENT? YES NO SURFACE SEAL OWNERTENT? YES NO PROTECTIVE CASING ON GOOD CONDITION? (If damaged, describe below) JECON PROTECTIVE CASING MATERIAL TYPE: JECON MEASURE PROTECTIVE CASING NSIDE DIAMETER (Inches): JECON LOCK FUNCTIONAL? YES NO DID YOU REPLACE THAT THE WELL IS DOUBLE CASED? (If yes describe below) YES NO MEASURE POTECTIVE CASING INSIDE DIAMETER (Inches): JECON DUD NO REPLACE THAT THE WELL IS DOUBLE CASED? (If yes describe below) YES NO MEASURE WELL DEPTH TO WATEL FROM MEASURING POINT (Feed): JECON MEASURE WELL DEPTH TO WATEL FROM MEASURING POINT (Feed): JECON MEASURE WELL CASING YES NOM JECON MEASURE WELL DEPTH TO WATEL FROM MEASURING POINT (Feed): JECON MEASURE POTENTIAL SOURCES O	GPS Method	I (circle) Trimble And/	Dr Magellan		
WELL LD. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) WELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL: Name SURFACE SEAL PRESENT? WES NO SURFACE SEAL COMPTIENT (If eracked, heaved atc., describe below) WES NO PROTECTIVE CASING IN GOD CONDITION (If damaged, describe below) WES NO PROTECTIVE CASING (MD DINSTRUMENT USED Min. R.Q. JECTO PROTECTIVE CASING (AND HEIGHT OF STICKLIP IN PEET (If applicable) PROTECTIVE CASING INSIDE DIAMETER (Inches): LOCK PRESENT? YES NO LOCK TRUNCTIONALCE THAT THUE WELL IS DOUBLE CASED? (If yes describe below) YES NO MELL MEASURE WELL DEATH TO KEEN THAT THUE WELL SCASED? YES NO LOCK TRUNCTIONAL CE THAT THAT THE WE					VESNO
WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) Image: Constraint of the state	WELL I.D. VISIBLE	3?			
WELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL: Nave VES Nove SURPACE SEAL PRESENT? VES Nove VES Nove SURPACE SEAL COMPTENT? (If canadod, heaved etc., describe below) Date Nove VES Nove PROTECTIVE CASING MOOD CONDITION? (If damaged, describe below) Date Date <td< td=""><td>WELL LOCATION</td><td>MATCH SITE MAP? (if not, sl</td><td>ketch actual location on back)</td><td>•••••••••••••••••••••••••••••••••••••••</td><td></td></td<>	WELL LOCATION	MATCH SITE MAP? (if not, sl	ketch actual location on back)	•••••••••••••••••••••••••••••••••••••••	
WELL DLAS IT APPEARS ON PROTECTIVE CASING OR WELL: Item 2 SURFACE SEAL PRESENT? YES INO SURFACE SEAL COMPETENTY (If cracked, heaved etc., describe below) Item 2 PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) Item 2 PROTECTIVE CASING (pm), AND INSTRUMENT USED Item 2 MEASURE PROTECTIVE CASING MATERIAL TYPE: Item 2 MEASURE PROTECTIVE CASING INSTRUMENT USED Item 2 LOCK PRESENT? Item 2 MEASURE WELL DEPTH FROM MEASURING POINT (Feet): Item 2 MEASURE WELL DEPTH FROM MEASURING POINT (Feet): Item 2 MEASURE WELL DAMETER (Inches): Item 2 WELL CASING MATERIAT: Item 2 MEASURE WELL CASINO: Item 2 MEASURE WELL DAMETER (Inches): Item 2 WELL CASING MATERIAT: Item 2 MEASURE WELL DAMETER (Inches): Item 2 WELL CASING MATERIAT: Item 2 MEASURE WELL DAMETER (Inches): Item 2 WELL CASING MATERIAT: Item 2	WELLID FOR A		toron abraan formion on backy	۸)	
SURFACE SEAL PRESENT? YES NO SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) Image: Control of Conditions of Conding Conditions of Conditions of Conditions of Conding Co	WELL I.D. AS II A	PEARS ON PROTECTIVE C.	ASING OR WELL:	1/2.2	
SURACE SEAL PRESENT? SURACE SEAL COMPETENT? (If cracked, heaved etc., describe below) HEADSPACE READING (ppn) AND INSTRUMENT USED Min. Row Jato O O O O O O O O O O O O O O O O O O O	STEPPACE OF AFA				YES NO
SUMPACE SEAL COMPETENTY (If caracked, heaved etc., describe below) Image: Constraint of the	SURFACE SEAL PR	ESEN1?		•••••	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) Image: Condition of the condit	SURFACE SEAL CC	MPETENT? (If cracked, heav	ed etc., describe below)		
HEADSPACE READING (ppm) AND INSTRUMENT USED Min Roll All Control of the state of the stat	PROTECTIVE CASE	NG IN GOOD CONDITION?	(If damaged, describe below)	A	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) If an internal type: PROTECTIVE CASING MATERIAL TYPE: If applicable) PROTECTIVE CASING MATERIAL TYPE: If applicable) INCOMENSATION OF CONTROL AND TYPE (If applicable) If applicable) INCOMENSATION OF CONTROL AND TYPE (If applicable) If applicable) INCOMENSATION OF CONTROL AND TYPE (If applicable) If applicable) INCOMENSATION OF CONTROL AND TYPE (If applicable) If applicable) INCOMENSATION OF CONTROL AND TYPE (If applicable) If applicable) INCOMENSATION OF CONTROL AND TYPE (If applicable) If applicable) INCOMENSATION OF CONTROL AND TYPE (If applicable) If applicable) INCOMENSATION OF THE CONTROL AND TYPE (If applicable) If applicable) WELL CASING MATERIAL If applicable) If applicable) WELL CONDITION OF VISIBLE WELL CASING: If applicable) If applicable) WELL CASING MATERIAL If applicable) If applicable) If applicable) WELL CASING MATERIAL If applicable) If applicable) If applicable) WELL CASING MATERIAL If applicable) If applicable) If applicable) WELL CASING MATERIAL If applicable) If applicable)	HEADSPACE READ	ING (ppm) AND INSTRUME	NTUSED Min RAV	200	OA PRO
PROTECTIVE CASING MATERIAL TYPE: IIII Show and a state of the s	TYPE OF PROTECT	IVE CASING AND HEIGHT	OF STICKIP IN FEET (16		<u>UUIN</u>
MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): 0	PROTECTIVE CASH	NG MATERIAL TYPE	or original integration (in applicable)		<u>-11456</u>
LOCK PRESENT? YES NO DID YOU REPLACE THE LOCK? YES NO DID YOU REPLACE THE LOCK? YES NO B THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes describe below) YES NO WELL MEASURING POINT VISIBLE? H7.51 MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): H7.51 MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): H7.51 MEASURE WELL OPTH TO WATER FROM MEASURING POINT (Feet): H7.51 MEASURE WELL OPTH TO WATER FROM MEASURING POINT (Feet): H7.51 MEASURE WELL OPTH TO WATER FROM MEASURING POINT (Feet): H7.51 MEASURE WELL OPTH TO WATER (Finite): H7.51 MEASURE WELL CASING MATERIALE: WT MELL CASING MATERIALE: WT MOMMATERIALE: WT MOMMATERIALE: WT MEASURE: WT Describe continuo throughout the fourth of	MEASURE PROTEC	TIVE CASING INSIDE DIAM	(ETER Anches)-	6	J'KATO)
LOCK PRESENT? LOCK FUNCTIONAL? LOCK FUNCTIONAL? LOCK FUNCTIONAL? LOCK FUNCTIONAL? LOCK FUNCTIONAL? LOCK FUNCTIONAL? LOCK FUNCTIONAL? LOCK FUNCTIONAL? LOCK FUNCTIONAL? LOCK FUNCTIONAL? MEASURE WELL CAC THE INCOME MEASURE WELL DEPTH FUNCTION MEASURING POINT (Feet): MEASURE WELL DAMETER (Inches): WELL CASING MATERIAL? MEASURE WELL DAMETER (Inches): WELL CASING MATERIAL? MEASURE WELL DAMETER (Inches): WELL CASING MATERIAL? MEASURE WELL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (If well ID is confirmed) and IDENTIFY MARKER TYPE MEASURE WELL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (If well ID is confirmed) and IDENTIFY MARKER TYPE MEASURE WELL CONDITION OF VISIBLE WELL CASING: MEASURE WELL: CONDITION OF VISIBLE WELL CASING: MEASURE WELL CONDITION OF VISIBLE WELL CASING: MEASURE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ND ASSESS THE TYPE OF RESTORATION REQUIRED. MEASURE DATA Gradium from SMS Site: Dawn Gradium from SMS Site: MARKS: MARKS:		THE PLANE HOLDE DIAN	AND A SAN (LINAIGS).	····•	Wind Sec.
LOCK FUNCTIONAL?	LOCK PRESENT?		소문 전 문문 문문 문문 문문		YES NO.
DD YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE WELL DAMETER (Incluse): WELL CASING MATERIAL PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well TD is confirmed) and IDENTIFY MARKER TYPE WRAXURE WELL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well TD is confirmed) and IDENTIFY MARKER TYPE WROXINITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead ower lines, proximity to permanent structures, etc.), ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. OPA ALL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ND ASSESS THE TYPE OF RESTORATION REQUIRED. MA 112/ GYaSS WEAT MY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT Ag. Gas station, salt pile, etc.): Down Gyadi/unt from SMS Site DAWA GYAdi/unt from SMS Site	LOCK FINCTIONAL	2			X
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Fee): MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Fee): MEASURE WELL DIAMETER (Inches): WELL CASING MATTERIALS MEASURE WELL DIAMETER (Inches): WELL CASING MATTERIALS PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH IB MARKER (if well D is confirmed) and IDENTIFY MARKER TYPE ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. OPEN CALLESS ON HELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. OPEN CALLESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. OPEN CALLESS THE TYPE OF RESTORATION REQUIRED. DESCRIBE WELL SETTING (FOR EXAMPLE, INCLUES OF CONTAMINATION, IF PRESENT 26. Gas station, sall pile, etc.): DESCRIBE YOTENTIAL SOURCES OF CONTAMINATION, IF PRESENT 26. Gas station, sall pile, etc.): DESCRIBE ACCESS OF CONTAMINATION, IF PRESENT 28. Gas station, sall pile, etc.): MAARKS:	DID YOU REPLACE	THEIOCKS			
WELL MEASURING POINT VISIBLE? If yes, describe below) WELL MEASURING POINT VISIBLE? If yes, describe below) MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): If yes, describe below) MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): If yes, describe below) MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): If yes, describe below) MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet): If yes, describe below) WELL CASING (MATERIALE: If yes, describe below) PHYSICAL CONDITION OF VISIBLE WELL CASING: If yes, describe below) ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE If yes, describe below) PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES If yes, describe below) PSCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead Over tines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. PDM OLDESS ON HEAR E (over the for example, located in a field, in a playground, on pavement, in a garden, etc.) Image: describe below;	IS THERE EVIDENC	FTHAT THE WELL IS DOLL		and the second	
MEASURE WELL DEPTH TROM MEASURING POINT (Feed): MEASURE WELL DIAMETER (Inches): MEASURE WELL DIAMETER (Inches): MELL CASING MATERIALE: MELL CASING MATERIALE: MATERIALE: MELL CASING MATERIALE: MELL CASING MATERIALE: MELL CASING MATERIALE: MELL CASING MATERIALE: MELL CASING MATERIALE: MATERIALE: MELL CASING MATERIALE: MELL CASING MATERIALE: MELL CASING MATERIALE: MELL CASING MATERIALE: MATERIALE: MELL CASING MATERIALE: MELL CASING MATERIALE: MATERIALE: MELL CASING MATERIALE: MELL CASING MATERIALE: MATERIAL: MATERIALE:	WELL MEASI IPINIC	POINT MEDICO	DLE CASED (If yes, describe below)		
MEASURE WELL DEPTH TROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER PROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIALE WELL CASING MATERIALE MATCACH IB MARKER (If well D is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. PARAMETRY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. PARAMETRY OF ALL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ND ASSESS THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. THE TYPE OF CONTAMINATION, IF PRESENT 2g. Gas station, salt pile, etc.): Dawn Gradium from SMS Site MARKS: MARKS:	Dhirtocran	- CHAI YEODLE!		· · · · · · · · · · · · · · · · · · ·	LIXI
MEASURE DETTH TO WATER FROM MEASURING POINT (Feet):	MEASURE WELL DI	PTH FROM MEASURING P	OINT (Feet):	and a second	47.54
MEASURE WELL DIAMETER (Inches): WELL CASING MATERIALE WELL CASING MATERIALE WELL CASING OF VISIBLE WELL CASING: ATTACH ID MARKER (if well D is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over fines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. PARAMENSES ON THE FLAY IN of D; HAZIO ELECTVIC DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ND ASSESS THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT 2g. Gas station, salt pile, etc.): Dawn gradiunt from SM S Site MARKS:	MEASURE DEPTH T	O WATER FROM MEASURI	NG POINT (Feet):		16.78
WELL CASING MATERIAIE Miltian PHYSICAL CONDITION OF VISIBLE WELL CASING: Miltian ATTACH ID MÄRKER (if well D is confirmed) and IDENTIFY MARKER TYPE Miltian PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES Miltian DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Miltian Open Millian Float Miltian Open Millian Float Miltian Very lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Miltian Open Millian Float Miltian Open Millian Float Miltian Open Millian Float Miltian Open Millian Float Miltian Very MEARS On Millian Millian Millian Very MEARS Millian Millian Millian Millian Millian Very Marker Millian Millian Millian Millian Millian Millian Very Marker Millian Millian Millian<	MEASURE WELL DI	AMETER (Inches):	and the second states of the second	- the state of the	<u><u> </u></u>
PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well D is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over lines, proximity to permanent spuctures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Describe wells of the flow of D; fazle Electric PESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT 2g. Gas station, salt pile, etc.): Dawn gradient from SMS Site MARKS:	WELL CASING MAT	ERIAL		Ver Karl	matal
ATTACH ID MARKER (if well TD is confirmed) and IDENTIFY MARKER TYPE	PHYSICAL CONDITI	ON OF VISIBLE WELL CAS	ING:		Gard
PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES 251 DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Open classes in the flow of D; fazle Electric PESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) NND ASSESS THE TYPE OF RESTORATION REQUIRED. The the gradient from Single for the formation of the second structure in a garden, etc.) NND ASSESS THE TYPE OF RESTORATION REQUIRED. The the gradient from Single for the second structure in a garden, etc.) NND ASSESS THE TYPE OF RESTORATION REQUIRED. The the gradient from Single for the second structure in a garden, etc.) NND ASSESS THE TYPE OF RESTORATION REQUIRED. The the gradient from Single for the second structure in the se	AITACH ID MARKE	R (if well ID is confirmed) and	IDENTIFY MARKER TYPE	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Al.
DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead nover lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY.	PROXIMITY TO UNI	JERGROUND OR OVERHEA	D UTILITIES		251
Dever lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Can all the front lawn of D; fazla Electric DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ND ASSESS THE TYPE OF RESTORATION REQUIRED. The theory grass (well keipt) DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT 2.g. Gas station, salt pile, etc.): Dawn gradient from SMS Site MARKS:	DESCRIBE ACCESS	TO WELL . (Include accessibili	ity to truck mounted size actional to the		<u> </u>
Open alless on the front lawn of Difazio Electric Describe Well SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. In the grass (well kept) Dentify ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT 2g. Gas station, salt pile, etc.): Dawn gradiunt from SMS Site SMARKS:	ower lines, proximity	to nermanent structures ato).	ADD SKETCH OF LOOATION ON T	cuons, overhead	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. TH. THE GYRSS (Well Kept) DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT a.g. Gas station, salt pile, etc.): Dawn gradient from SMS Site MARKS:	Com arma	An pormanent structures, etc.); 1	NOW SKETCH OF LUCATION ON I	BACK, IF NECESSARY.	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. AN 1122 Grass (Well Kept) DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT a.g. Gas station, salt pile, etc.): Dawn gradiunt from SMS Site BMARKS:	-per aues	2 UN THE FIONT	Iann or Utazi	ERETRIC	
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. THE TYPE OF RESTORATION REQUIRED. DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT a.g. Gas station, salt pile, etc.): Down gradient from SMS site SMARKS:	·····		. • •		
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED. THE				· ·	
AND ASSESS THE TYPE OF RESTORATION REQUIRED. In the grass (well kept) DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT a.g. Gas station, salt pile, etc.): Down gradient from SMS site	DESCRIBE WELL SE	ITING (For example, located i	n a field, in a playeround, on navemer	t in a garden etc.)	
In the grass (well kept) DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT a.g. Gas station, salt pile, etc.): Down gradient from SMS site	AND ASSESS THE T	YPE OF RESTORATION DEC	TIBED	n, ma garucit, clc.)	
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT .g. Gas station, salt pile, etc.): Down gradient from SMS site EMARKS:	Le that	NCALS 1 1 1	evert		
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT =g. Gas station, salt pile, etc.): Down gradient from SMS site EMARKS:	ENN/ U	Well Fr	4U	······································	
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.): Down gradient from SMS site MARKS:	۲.	·	U -		
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT e.g. Gas station, salt pile, etc.): Dawn gradiunt from SMS site MARKS:	· · · · · · · · · · · · · · · · · · ·				
e.g. Gas station, salt pile, etc.): Down gradient from SMS site EMARKS:		DATENTIAL COLUCOS	OF CONTAMINATION IF PRESEN	JT	
Dawn gradient from SMS site EMARKS:	DENTIFY ANY NEAF	WE FUILDN HAL SOURCES	CONTRACTOR IN TREDE	*1	
EMARKS:)ENTIFY ANY NEAF	le. etc.)	. 1		
EMARKS:	DENTIFY ANY NEAF	le, etc.):	in since it-		
EMARKS:	DENTIFY ANY NEAF 2.g. Gas station, salt pi Da	le, etc.): In gradient fro	m sms site		
EMARKS:	DENTIFY ANY NEAF 2.g. Gas station, salt pi Da	le, etc.): In gradient fro	m sms site		·
	DENTIFY ANY NEAF e.g. Gas station, salt pi Da	le, etc.): INN gradient fro	m sms site		
	DENTIFY ANY NEAF e.g. Gas station, salt pi Da BMARKS:	le, etc.): INN gradiunt fro	m sms site		<u>.</u>
	DENTIFY ANY NEAF 2.g. Gas station, salt pi DC BMARKS:	le, etc.): INN gradiunt fro	m sms site		<u>.</u>
	DENTIFY ANY NEAF 	le, etc.): INN gradient fro	m sms site		
	DENTIFY ANY NEAF	le, etc.): INN gradient fro	m sms site		· · · · · · · · · · · · · · · · · · ·
	DENTIFY ANY NEAF	le, etc.): <u>ENN</u> gradient fro	m sms site		· · · · · · · · · · · · · · · · · · ·
	DENTIFY ANY NEAF	e, etc.): <u>ENN</u> gradient fre	m SMS site		······································

MONITORING WELL FIELD INSPECTION LOG DATETINE: WEL WISHE? (ffnct provide directions below) WEI DO: MAIL 13.8° WELL CORDENATES? NYTM Y Sateline: Sateline: <th>SILE NAME:</th> <th>SITE ID.: $5/7/7$</th>	SILE NAME:	SITE ID.: $5/7/7$
WELL VISIBLE? (If not, provide directions below) NTIM Y PDOP Reading from Thinble pathfinds: Satellins: GPS Method (circle) Trimble And/Or Gasellan WELL LOXATION MATCH SITE MAP? (If not, sketch actual location on back) Sect. J.Q. in. Attast Mathematical Sect. Sec	MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 11/7/08/0956 WEII ID.: 11/7/08
GPS Method (circle) Trimble And/Or Tagelland WELL LD. VISIBLE Lat 40° 45.617 Long 73° 18307 YES WELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL: NdAc. YES No SURFACE SEAL ORDERENT? WELL D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: NdAc. YES NO SURFACE SEAL ORDERENT? WEL D. AS IT APPEARS ON PROTECTIVE CASING OR WELL: NdAc. YES NO BURACE SEAL ORDERINT (If cracked, heaved etc., describe below) WEL D. AS IT APPEARS ON PROTECTIVE CASING INSTOLE DIAMETER (Inches): O. D. PLFD. WELDED PROTECTIVE CASING INSTOLE DIAMETER (Inches): Wai. Kade DAW WELS WEASURE PROTECTIVE CASING INSTOLE DIAMETER (Inches): WELL MARKING POINT (ISBLE? WEL MARKING POINT (ISBLE?	WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYTM Y PDOP Reading from Trimble pathfinder: Satelites:	
WELL LDA VISIELY (Inc., stech, actual location on back) Sorth AC	GPS Method (circle) Trimble And/Or Magellan Lat 40°45617 Long 73° 18907	YESNO
WELL LD. AS IT APPEARS ON PROTECTIVE CASING OR WELL: Name SURFACE SEAL ORDETENT? YES NO SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) Other in the intervention of the interventing the intervention of the intervention of the intervention of th	WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back) South	10' in grass
SURFACE SEAL PRESENT? YES NO SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) OUTPUT SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) OUTPUT SURFACE SEAL COMPETENT? (If damaged, describe below) OUTPUT SURFACE SEAL COMPETENT? (If damaged, describe below) OUTPUT WEASURE PROTECTIVE CASING AND INSTRUMENT USED (If applicable)	WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	Nave
SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) Imaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED Imaged, describe below) Imaged, describe below) HEADSPACE READING (ppm) AND INSTRUMENT USED Imaged, describe below) Imaged, describe below) PROTECTIVE CASING AND INSTRUMENT USED Imaged, describe below) Imaged, describe below) PROTECTIVE CASING AND INSTRUMENT USED Imaged, describe below) Imaged, describe below) PROTECTIVE CASING INSTDE DIAMETER (Inches): Imaged, describe below) Imaged, describe below) OCK PRESENT7 Imaged, describe below) Imaged, describe below) OCK PRESENT7 Imaged, describe below) Imaged, describe below) PDEVOURPRCE THAT THE WELL IS DOUBLE CASED? (If yee, describe below) Imaged, describe below) VELL CASING MATERIAL Imaged, describe below) Imaged, describe below) VELL CASING MATERIAL Imaged, describe below) Imaged, describe below) VELL CASING MATERIAL Imaged, describe below) Imaged, describe below) VELL CASING MATERIAL Imaged, describe below) Imaged, describe below) VELL CASING MATERIAL Imaged, describe below) Imaged, describe below) VELL CASING MATERIAL Imaged, describe	SURFACE SEAL PRESENT?	YES NO
HEADSTACE READING (pop) AND INSTRUMENT USED Miles, Role and population of the second s	SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below)	
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) If all disk PRODECTIVE CASING MATERIAL TYPE If all disk WEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches): If all disk OCK PRESENT? If all disk OCK PUNCTIONAL? If all disk JDE VOU REPLACE THE LOCK? If all disk STHERE EVENDENCE THAT INTE: If all disk MEASURE PREDECT THAT INTE: If all disk IF ASURE VELL DEPTH FROM MEASURING POINT (Feet) If all disk IFASURE VELL DIAMETER (Inches): If all disk IFASURE VELL DEPTH FROM MEASURING POINT (Feet) If all disk IFASURE VELL DEPTH FROM MEASURING POINT (Feet) If all disk IFASURE VELL DEPTH FROM MEASURING POINT (Feet) If all disk IFASURE VELL DEPTH FROM MEASURING POINT (Feet) If all disk IFASURE VELL DEPTH FROM MEASURING POINT (Feet) If all disk IFASURE VELL DEPTH FROM MEASURING POINT (Feet) If all disk IFASURE DEPTH TOW OF VISIBLE WELL CASING: If all disk IFASURE DEPTH FROM MEASURING	HEADSPACE READING (ppm) AND INSTRUMENT USED Min KOL- 2	DO ONPED
MARKET WARKEN WARKEN DATER (Inches): BUTA MARKET WARKEN WARKEN DATER (Inches): WELL OCK PRESENT? WELL NEADENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) STHERE EVELL DEPTH FROM MEASURING POINT (Peet) HE 34 MEASURE WELL DEPTH FROM MEASURING POINT (Peet) HE 34 MEASURE WELL DEPTH FROM MEASURING POINT (Peet) HE 34 MEASURE WELL DEPTH FROM MEASURING POINT (Peet) HE 34 MEASURE WELL DIAMETER (Inches): MUTA MEASURE WELL DEPTH FROM MEASURING POINT (Peet) HE 34 MEASURE WELL DIAMETER (Inches): MUTA MEASURE WELL DEPTH FROM MEASURING POINT (Peet) HE 34 MEASURE WELL DIAMETER (Inches): MUTA MEASURE WELL DIAMETER (Inches): MUTA MEASURE WELL DEPTH FROM MEASURING POINT (Peet) HE 34 MEASURE WELL DIAMETER (Inches): MUTA WELL CASING MATERIAL MUTA MESCANDER CONDITION OF VISIBLE WELL CASING: MUTA CIASING TORDER CONDITION OF VISIBLE WELL CASING: MUTA CIASING TORDER CONDITION OF VISIBLE WELL CASING: MUTA CIASING TORDER CONDITION OR OVERHEAD UTILITIES BUTA SecRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural	TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)	Grade High
OCK PRESENT? YES NO OCK PUNCTIONAL? Yes JDE YOUR REPLACE THE LOCK? Yes STHERE EVENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) Yes VELL MEASURING POINT VISIBLE? Yes MEASURE WELL DEPTH FROM MEASURING POINT (Feet) Yes MEASURE WELL DEPTH FROM MEASURING POINT (Feet) Yes MEASURE WELL DAMETER INCOMENTING POINT (Feet) Yes MEASURE WELL DAMETER (Inches): Yes VELL CASING MATERIAL Yes HYSICAL CONDITION OF VISIBLE WELL CASING: Yes TTACH ID MARKER (if well ID is confirmed) and IDENTITY MARKER TYPE No ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES Yes ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead Were Jines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. O Yes ESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ND ASSESS THE TYPE OF RESTORATION REQUIRED. YMA Yes WENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT 'g. Gas station, selt pile, etc.): Yes Yes Yes	MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	Metal
GCK FUNCTIONAL? Image: Constraint of the second	OCK PRESENT?	YES NO
JAC YOO KUPLACE THE LOK YELL IS DOUBLE CASED? (If yes, describe below) JAC YOO KUPLACE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE? JAC YOO KUPLACE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) JAC YOO KUPLACE THAT THE WELL SETTING POINT (Feet): MEASURE WELL DEPTH FROM MEASURING POINT (Feet): JAC YOO KUPLACE THAT THE WELL CASING: JAC YOO KUPLACE (Include): MEASURE WELL DAMERE (In WELL CASING: JAC YOO KUPLACE (Include): JAC YOO KUPLACE (Include): VELL CASING MATERIAL: JAC YOO KUPLACE (Include accessibility to truck mounted rig, natural obstructions, overhead) WELL SECRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead) JAC YOU KUPLACE (Include accessibility to truck mounted rig, natural obstructions, overhead) Wer Jines, proximity to pamanent gructures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. JAC YOU KUPLACE (Include accessibility to truck mounted rig, natural obstructions, overhead) Wer Jines, proximity to pamanent gructures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. JAC YOU KUPLACE (Include accessibility to truck mounted rig, natural obstructions, overhead) Wer Jines, proximity to pamanent gructures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. JAC YOU KUPLACE (Include accessibility to truck mounted rig, natural obstructions, overhead) Wer Jines, proximity to pamanent gructures, etc.); ADD YOU ALL Y	OCK FUNCTIONAL?	
WELL MEASURING POINT VISIBLE? UG34 MEASURE WELL DEPTH TO WATER FROM MEASURING POINT (Feet) UG34 MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet) US14 MEASURE WELL DIAMETER (Incline): US14 WELL CASING MATERIAL US14 HYSICAL CONDITION OF VISIBLE WELL CASING: US14 TTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE No ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES No ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead No Wer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. No (form Grand UML, Official accessibility to truck mounted rig, natural obstructions, overhead No Wer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. No (form Grand UML, Official accessibility to truck mounted rig, natural obstructions, overhead No Wer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. No (form Grand UML, Official accessibility to truck mounted rig, natural obstructions, overhead No Wer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. No ESCRIBE WELL SETTING (For example, located in a fi	S THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe, below)	
MASSUR: WELL DEPTH TROM MEASURING POINT (Feet): 4(2,34) MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): 13,14) MEASURE WELL DIAMETER (Inches): 13,14) WELL CASING MATERIAL: 11,14) HYSICAL CONDITION OF VISIBLE WELL CASING: 120,000 TTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE 10,000 ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES 10,000 ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead 10,000 Swer lines, proximity to permanent gructures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. 10,000 C from Grand GUL, ODM ALLSS on front Iconn of Low Dive, Product's inc.); 10,000 MASSESS THE TYPE OF RESTORATION BROUIRED. 10,000 MASSESS THE TYPE OF RESTORATION BROUIRED. 10,000 MASSESS THE TYPE OF RESTORATION BROUIRED. 10,000 MASSESS THE TYPE OF RESTORATION SUCCES OF CONTAMINATION, IF PRESENT 10,000	VELL'MEASURING POINT VISIBLE?	
DEASURE WELL DIAMETER (Inches): Inches): Inches): VELL CASING MATTRIAL Inches): Inches): HYSICAL CONDITION OF VISIBLE WELL CASING: Inches): ITTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE Inches): ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES Inches): ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead Ower lines, proximity to permanent gructures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. O (tom Grand BMU, Open alless on front Gavin of Located bible, Fraduct's bc., ESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ND ASSESS THE TYPE OF RESTORATION REQUIRED. IM that grass Verified Kept) Inches): Verified Kept) Inches): MARKES: Inches):	MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet):	<u> </u>
HYSICAL CONDITION OF VISIBLE WELL CASING: Internet in the internet internet in the internet inter	TEASURE WELL DIAMETER (Inches):	$\frac{4^{\prime\prime}}{312}$
ITTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE No ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES GO ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead over lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. Go (rom Grand GU Go ESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ND ASSESS THE TYPE OF RESTORATION REQUIRED. IM Hac grass Guil Kept FENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	HYSICAL CONDITION OF VISIBLE WELL CASING:	Jeod
ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead Over lines, proximity to promanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. O (trom Grand (), Open (), (), (), (), (), (), (), (), (), (),	ROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	<u>No</u>
Dever Jines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY. D from Grand	ESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct	ions, overhead
ESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) IND ASSESS THE TYPE OF RESTORATION REQUIRED. IN The gross (Well Kept) DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT ag. Gas station, salt pile, etc.): WARKS:	Wer lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA	CK, IF NECESSARY.
ESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) ND ASSESS THE TYPE OF RESTORATION REQUIRED. IN The grass (New Kept) DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT a.g. Gas station, salt pile, etc.): Naw Nearby Contamination (State State S	a hard and good many the frank toward	
AND ASSESS THE TYPE OF RESTORATION REQUIRED. <u>IM</u> <u>Har</u> <u>grass</u> (<u>Well Kept</u>) WENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT .g. Gas station, salt pile, etc.): <u>Waw</u>	ESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement,	in a garden, etc.)
IM THE glass COULERIPT) DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT :g. Gas station, salt pile, etc.): Ware !MARKS:	ND ASSESS THE TYPE OF RESTORATION REQUIRED.	č , ,
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT	-Un The grass CUEII Rept)	••••••••••••••••••••••••••••••••••••
DENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT .g. Gas station, salt pile, etc.): 		
MARKS:	JENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT 2.2. Gas station. salt pile. etc.):	
MARKS:	Nane	
EMARKS:		
	MARKS:	

·	SITE NAME: SITE ID.: 57 INSPECTOR: D. MONITORING WELL FIELD INSPECTION LOG DATE/TIME: /// WEILID:	NS 3
	WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM X	
	PDOP Reading from Trimble pathfinder: Satelites: GPS Method (circle) Trimble And/Or Magellan	VESING IA
	WELL I.D. VISIBLE?	XX
	WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	
	SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	
	HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE:	<u>A. N/PD</u> Flush Metra
	MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	YES NO
	DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes,describe below)	
	MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (101.4 1 <u>1</u> 2.24
	WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	H Mata Coord
	PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstructions, overhead power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BACK, IF NECESSARY, SO from Grand BIVA, UKM OLLES on front called of it ordering Front	-60
	DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a garden, etc.) AND ASSESS THE TYPE OF RESTORATION REQUIRED.	
	In the grass (we'll page 1)	
	IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):	
		· .
	REMARKS:	
	REMARKS:	

na na serie de la construcción de l La construcción de la construcción d		at in a	a satisfies
SITE NAME: SM 5	SITE ID.:	5m5	÷
MONITORING WELL FIELD INSPECTION LOG	INSPECTOR: DATE/TIME: WEII ID.:	11/7/08/0930 mw-14	Ì
WELL VISIBLE? (If not, provide directions below) WELL COORDINATES? NYTM XNYTM Y PDOP Reading from Trimble pathfinder:Satelites:		YESNO	
WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)	of Blog (other months and 850	YES NO X Blue	
SURFACE SEAL PRESENT?	M	 YES NO	
PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below) HEADSPACE READING (opm) AND INSTRUMENT USED	æØ		:
TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inchast)		<u>flish</u> <u>metal</u>	an a
LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THELOCK?		YES NO	
IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?			
MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING:		<u>15:33</u> <u>14"</u> <u>Metal</u> <u>Cond</u>	
ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruct	tions, overhead	<u>Ne</u> <u>25/</u>	
power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BA Open alless on front Jann of Wardbing Padints at the Grand	ACK, IF NECESSAF	Marlus and	:
DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, AND ASSESS THE TYPE OF RESTORATION REQUIRED.	, in a garden, etc.)		
	······		
IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):	Γ		
REMARKS:		999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999 - 999	· ·
	·	· ·	
	· ·		

•

.

	SITE NAME: $\leq M \leq$	SITEID	
	MONITORING WELL FIELD INSPECTION LOG	INSPECTOR: $\frac{1}{1}$ DATE/TIME: $\frac{1}{10} \frac{1}{100} 1$	
·	WELL VISIBLE? (If not, provide directions below)	ng garing Sexsin X	
	WELL I.D. VISIBLE? Lat 40°45.658 Long 73°18,945 WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		
	WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:		
1944	SURFACE SEAL PRESENT? SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD CONDITION? (If damaged, describe below)	YES NO X X Y	
a an	HEADSPACE READING (ppm) AND INSTRUMENT USED TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable) PROTECTIVE CASING MATERIAL TYPE: MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	O.D/PID Guil Monty metal 10"	lg nde
	LOCK PRESENT? LOCK FUNCTIONAL? DID YOU REPLACE THE LOCK? IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?		
	MEASURE WELL DEPTH FROM MEASURING POINT (Feet): MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches): WELL CASING MATERIAL: PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE PROXIMITY TO UNDERGROUND OR OVERHEAD UTILITIES	36.68 18.03 4" metul 1300 <u>1300</u> <u>251 from or</u>	Aul
-	DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction power lines, proximity to permanent structures, etc.); ADD SKETCH OF LOCATION ON BAG <u>Originant crea</u> under free, near building un one in, open gate	ons, overhead CK, IF NECESSARY. Check lives, fonced	
	DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, i AND ASSESS THE TYPE OF RESTORATION REQUIRED. Overgnown avec very to forced in park, incs auross enderance.	n a garden, etc.) ncy (ct, overhead	
-	IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.): perking 12t perking		
- 	REMARKS:		
		•	

		· · · · · · · · · · · · · · · · · · ·	· · · · · ·	DIDDOTOD 4	
MONITORIN	G WELL FIELD IN	SPECTION LOG		DATE/TIME: <u>i/</u> 4 WEII ID.:	108 1075 W-165
WELL VISIBLE? (If WELL COORDINAT PDOP Readin GPS Method	not, provide directions below) ES? NYTM X g from Trimble pathfinder: (circle) Trimble And/O	Maylatbr. NYTM T MagellaD	<u>x35142008.</u> Y telites:	<u></u>	YES NO
WELL I.D. VISIBLE WELL LOCATION M	40,°45.6 1ATCH SITE MAP? (if not, sk	90° Long 73°18 which actual location on back).915)		X X
WELL I.D. AS IT AP	PEARS ON PROTECTIVE CA	ASING OR WELL:			TYPE NO.
SURFACE SEAL PRI SURFACE SEAL CO PROTECTIVE CASIN	ESENT? MPETENT? (If cracked, heav (G IN GOOD CONDITION? (ed etc., describe below) If damaged, describe below) {		X X
HEADSPACE READI TYPE OF PROTECTI PROTECTIVE CASIN	NG (ppm) AND INSTRUME VE CASING AND HEIGHT (IG MATERIAL TYPE:	NT USED	pp[icậble)		O. J/PID Flich mont of great
LOCK PRESENT?	11VE CASING INSIDE DIAM	1811EK (Inches): Marka 1949			YES NO
DID YOU REPLACE IS THERE EVIDENCI WELL MEASURING	THE LOCK? E THAT THE WELL IS DOU POINT VISIBLE?	BLE CASED? (If yes,descr	be below)		×
MEASURE WELL DE MEASURE DEPTH T MEASURE WELL DL	PTH FŘOM MEASURING P O WATER FROM MEASURI AMETER (Inches):	OINT (Feet):			36.97. 17.90
WELL CASING MAT PHYSICAL CONDITI ATTACH ID MARKE PROXIMITY TO UNE	ERIAL: ON OF VISIBLE WELL CAS R (if well ID is confirmed) and DERGROUND OR OVERHEA	ING: I IDENTIFY MARKER TY D UTILITIES	PE	1	acrid
DESCRIBE ACCESS T power lines, proximity	TO WELL: (Include accessibil to permanent structures, etc.);	ity to truck mounted rig, nat ADD SKETCH OF LOCAT	ural obstruction	s, overhead L, IF NECESSARY.	lines
overgreen inde	orr thanked in	ter with over	red (ine)	Creising ei	y come e
DESCRIBE WELL SE AND ASSESS THE T OVE grown are	ITING (For example, located YPE OF RESTORATION REC 	in a field, in a playground, o QUIRED. Led in perking h	n pavement, in a	a garden, etc.)	
		·		· · · · · · · · · · · · · · · · · · ·	
IDENTIFY ANY NEAL (e.g. Gas station, salt pi <u>hear picting</u>	RBY POTENTIAL SOURCES ile, etc.): .+	OF CONTAMINATION,	IF PRESENT		
REMARKS:		· · · · · · · · · · · · · · · · · · ·			

MONITORING	WELL FIELD INS	SPECTION LOG	DATE/TIME: WC/	1/127
WELL VISIBLE? (If no WELL COORDINATE PDOP Reading GPS Method (c	ot, provide directions below) S? NYTM X from Trimble pathfinder: ircle) Trimble And/Or	May not be Visible NYTM Y Satelites: Magellan	. during graving tasan	YESINO
WELL I.D. VISIBLE? WELL LOCATION MA	ATCH SITE MAP? (if not. ske	etch actual location on back)		
WELL I.D. AS IT APPE	EARS ON PROTECTIVE CA	SING OR WELL:	Nare	
SURFACE SEAL PRES SURFACE SEAL COM PROTECTIVE CASING	ENT? PETENT? (If cracked, heave IN GOOD CONDITION? (I	d etc., describe below) If damaged, describe below)		YES NO
HEADSPACE READIN TYPE OF PROTECTIVI PROTECTIVE CASING MEASURE PROTECTIV	G (ppm) AND INSTRUMEN E CASING AND HEIGHT O MATERIAL TYPE: VE CASING DISIDE DIAME	IT USED Mile F STICKUP IN FEET (If applical	10 10 10 10 10 10 10 10 10 10 10 10 10 1	0.0/PTD Crode Alish Meta
LOCK PRESENT?				YES NO
DID YOU REPLACE TH S THERE EVIDENCE WELL MEASURING PO	HE LOCK? THAT THE WELL IS DOUB DINT VISIBLE?	ILE CASED? (If yes, describe belt	M. C.	
MEASURE WELL DEP MEASURE DEPTH TO MEASURE WELL DIAN	TH FROM MEASURING PO WATER FROM MEASURIN METER (Inches):	DINT (Feet): NG POINT (Feet):		<u>57.80</u> 1801
HYSICAL CONDITION TTACH ID MARKER (ROXIMITY TO UNDE	UAL: N OF VISIBLE WELL CASH (if well ID is confirmed) and I RGROUND OR OVERHEAT	NG: IDENTIFY MARKER TYPE D UTILITIES		Metal Good NO 250(E)
DESCRIBE ACCESS TO ower lines, proximity to O'OH North E why the South	WELL: (Include accessibility permanent structures, etc.); A May A payking 10 direction	y to truck mounted rig, natural ob DD SKETCH OF LOCATION C T in overgrown o	structions, overhead N BACK, IF NECESSARY. VRA With a fence	an all
ESCRIBE WELL SETT IND ASSESS THE TYP N The GYRSS	ING (For example, located in E OF RESTORATION REQ GALES : AVIA	n a field, in a playground, on pave UIRED. From the Ser-th	ment, in a garden, etc.)	
DENTIFY ANY NEARB a.g. Gas station, salt pile,	etc.):	OF CONTAMINATION, IF PRE	SENT	·····
Marks: Well loca-	ted 5' Fast	of temporary fe	nce	
	,			

		INSPECTOR: <u>P.</u>	
	MONITORING WELL FIELD INSPECTION LOG	DATE/TIME: 4/6/05 194 WEILID.:	[J
	WELL VISIBLE? (If not, provide directions below) MAY. ALL. V. S. ble	Unity greating success X	
	PDOP Reading from Trimble pathfinder: Satelites:		
	GPS Method (circle) I rimble And/Or (Magellan)	YES NO	
	WELL I.D. VISIBLE? WELL LOCATION MATCH SITE MAP? (if not, sketch actual location on back)		
	WELL I.D. AS IT APPEARS ON PROTECTIVE CASING OR WELL:	[rmg] are	1
	SURFACE SEAL PRESENT?	YES NO	
	SURFACE SEAL COMPETENT? (If cracked, heaved etc., describe below) PROTECTIVE CASING IN GOOD_CONDITION? (If damaged, describe below)		
	HEADSPACE READING (ppm) AND INSTRUMENT USED	00/19	D
	TYPE OF PROTECTIVE CASING AND HEIGHT OF STICKUP IN FEET (If applicable)		Julga
	MEASURE PROTECTIVE CASING INSIDE DIAMETER (Inches):	10"	
	A CONTRACTOR AND A CONTRA	YES NO	n 2010 - generale 2
	LOCK PRESENT?	X	
	DID YOU REPLACE THE LOCK?	×	el Solici e de la constante Transmissiones Transmissiones
	IS THERE EVIDENCE THAT THE WELL IS DOUBLE CASED? (If yes, describe below) WELL MEASURING POINT VISIBLE?		ing and a second se
÷ .	MEASURE WELL DEFTH FROM MEASURING POINT (Feet)	77.44	
	MEASURE DEPTH TO WATER FROM MEASURING POINT (Feet): MEASURE WELL DIAMETER (Inches):	10-01- 	
	WELL CASING MATERIAL	metal	
	PHYSICAL CONDITION OF VISIBLE WELL CASING: ATTACH ID MARKER (if well ID is confirmed) and IDENTIFY MARKER TYPE	good	ма ан ан н
	DESCRIBE ACCESS TO WELL: (Include accessibility to truck mounted rig, natural obstruction:	s, overhead	tines
	power lines, proximity to permanent structures, etc.); ADD SKEICH OF LOCATION ON BACK	FIF NECESSART.	
	The flow of the former for the former for	, jare gra	•
	DESCRIBE WELL SETTING (For example, located in a field, in a playground, on pavement, in a AND ASSESS THE TYPE OF RESTORATION REQUIRED. Orrgnm area back of perking lot	a garden, etc.)	
	J	······································	-
	IDENTIFY ANY NEARBY POTENTIAL SOURCES OF CONTAMINATION, IF PRESENT (e.g. Gas station, salt pile, etc.):		•
	None		•
		•	•
	REMARKS:		
	wen 15 y Last 61 (Dell 14)M		•
	· · ·		•
-			

	a the other and a second second second	enter en enter	An Arristan and Arriver and	
SITE NAME:	SMS		SITE ID.: 7MS	
MONITOR	ING WELL FIELD INS	PECTION LOG	INSPECTOR: P . C DATE/TIME: $u \left(\frac{1}{6} \right) \frac{1}{6\%}$ (WEII ID.: $MW - 17$	- <u>8</u> 34
WELL VISIBLE? WELL COORDIN PDOP Re GPS Metl	(If not, provide directions below) VATES? NYTM X ading from Trimble pathfinder: 10d (circle) Trimble And/Or	NYTM Y	YES NO	
WELL I.D. VISIB WELL LOCATIO	LE? Lat 40°45.6 N MATCH SITE MAP? (if not, sket	$71'$ Long 73° (8.893) ch actual location on back)	YES NO	
WELL I.D. AS IT	APPEARS ON PROTECTIVE CAS	ING OR WELL:		1
SURFACE SEAL SURFACE SEAL PROTECTIVE CA	PRESENT? COMPETENT? (If cracked, heaved SING IN GOOD CONDITION? (If	etc., describe below)	YES NO X Y X X	
HEADSPACE REA TYPE OF PROTEC PROTECTIVE CA MEASURE PROT	ADING (ppm) AND INSTRUMENT CTIVE CASING AND HEIGHT OF SING MATERIAL TYPE ECTIVE CASING INSIDE DIAMET	USED STICKUP IN FEET (If applicable) IFER (Inches):	0.0/PI first more mitel 10~~	U ulqrude
LOCK PRESENT? LOCK FUNCTION DID YOU REPLAC IS THERE EVIDER WELL MEASURIN	IAL? CE THE LOCK? NCE THAT THE WELL IS DOUBL NG POINT VISIBLE?	B CASED? (If yes,describe below)	YES NO Y X X X X X	
MEASURE WELL MEASURE DEPTH MEASURE WELL WELL CASING M PHYSICAL COND ATTACH ID MARI PROXIMITY TO U	DEPTH-FROM MEASURING POIL TO WATER FROM MEASURING DIAMETER (Inches): ATERIAL ITION OF VISIBLE WELL CASIN KER (if well ID is confirmed) and II NDERGROUND OR OVERHEAD	NT (Feel): POINT (Feel): G: DENTIFY MARKER TYPE UTILITIES	36: 14 1.17.57 1.47.57 1.47. 1.47	
DESCRIBE ACCES power lines, proximi <u>Lo carled</u> .	STO WELL: (Include accessibility ity to permanent structures, etc.); AD	to truck mounted rig, natural obstruction DD SKETCH OF LOCATION ON BACK Aced by shorts of rec	ns, overhead K, IF NECESSARY. K, CML Fencel	ж <i>ты</i> тер
All Polor	Thes may hinder	access. gate open	•	
DESCRIBE WELLS AND ASSESS THE Parking 10	SETTING (For example, located in a TYPE OF RESTORATION REQU of Used Strategy	l field, in a playground, on pavement, in IRED. अट्	a garden, etc.)	
IDENTIFY ANY NE (e.g. Gas station, salt	CARBY POTENTIAL SOURCES OF t pile, etc.):	F CONTAMINATION, IF PRESENT	·····	
• .				
	· 	······································		
REMARKS:		:		
	· · · · · · · · · · · · · · · · · · ·			

APPENDIX C

LABORATORY DATA SUMMARY PACKAGES (FORM 1s)

Sample ID Class GA SMS-MW-1 SMS-MW-2 SMS-MW-3 SMS-MW-4 SMS	
	-MW-5
Laboratory ID Groundwater G2029-10C G2029-02C G2029-03C G2029-04C G20	29-05C
Sample Data Criteria 11/5/08 11/4/08 11/4/08 11/4/08 11/4/08 11/4/08	4/08
Matrix water water water water water	er
Units μg/L μg/L μg/L μg/L μg/L μg/L	g∕L
Conc. Q Conc.	onc. Q
Volatile Organic Compounds	
1,1,1,2-Tetrachloroethane 5 5U 5U 5U 5U	5 U
1,1,1-Trichloroethane 5 5U 5U 5U 5U	5 U
1,1,2,2-Tetrachloroethane 5 5U 5U 5U 5U	5 U
1,1,2-Trichloroethane 1 5U 5U 5U 5U	5 U
1,1-Dichloroethane 5 5U 5U 5U 5U	5 U
1,1-Dichloroethene 5 5U 5U 5U 5U	5 U
1,1-Dichloropropene 5 5U 5U 5U 5U	5 U
1,2,3-Trichlorobenzene 5 5U 5U 5U 5U	5 U
1.2.3-Trichloropropane 0.04 5U 5U 5U 5U	5 U
1.2.4-Trichlorobenzene 5 5U 5U 5U 5U	5 U
1.2.4-Trimethylbenzene 5 5U 5U 5U 5U	5 U
1.2-Dibromo-3-chloropropane 0.04 5 U 5 U 5 U	5 U
1.2-Dibromoethane NC 5U 5U 5U 5U	5 U
1.2-Dichlorobenzene 3 5U 5U 5U	5 U
1.2-Dichloroethane 0.6 $5 U$ $5 U$ $5 U$	5 U
1.2-Dichloropropane 1 5 U 5 U 5 U	5 U
1.3.5-Trimethylbenzene 5 5 5 4 5 4 5 4	5 U
1.3-Dichlorobenzene 3 5U 5U 5U	5 U
1.3-Dichloropropane 5 5 5 4 5 5 4	5 U
1.4-Dichlorobenzene 3 5U 5U 5U 5U	5 U
2.2-Dichloropropane 5 5U 5U 5U	5 U
2-Butanone 50 5U 5U 5U	5 U
2-Chlorotoluene 5 5U 5U 5U 5U	5 U
2-Hexanone 50 5U 5U 5U	5 U
4-Chlorotoluene 5 5U 5U 5U	5 U
4-Isopropyltoluene 5 5U 5U 5U 5U	5 U
4-Methyl-2-pentanone 50 5U 5U 5U	5 U
Acetone 50 5U 5U 5U 5U	5 U
Benzene 1 5U 5U 5U	5 U
Bromobenzene 5 5U 5U 5U 5U	5 U
Bromochloromethane 5 5U 5U 5U 5U	5 U
Bromodichloromethane 50 5 U 5 U 5 U	5 U
Bromoform 50 5U 5U 5U 5U	5 U
Bromomethane 5 5U 5U 5U 5U	5 U
Carbon disulfide 60 5U 5U 5U 5U	5 U
Carbon tetrachloride 5 5U 5U 5U 5U	5 U
Chlorobenzene 5 5U 5U 5U 5U	5 U
Chloroethane 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 U
Chloroform 7 511 511 511 511	5 U
Chloromethane	5 U
cis-1,2-Dichloroethene 5 5U 5U 5U 5U	5 U

Sample Location	NYSDEC	MW-1	MW-2	MW-3	MW-4	MW-5
Sample ID	Class GA	SMS-MW-1	SMS-MW-2	SMS-MW-3	SMS-MW-4	SMS-MW-5
Laboratory ID	Groundwater	G2029-10C	G2029-02C	G2029-03C	G2029-04C	G2029-05C
Sample Data	Criteria	11/5/08	11/4/08	11/4/08	11/4/08	11/4/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q				
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	5 U	5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U	5 U
lodomethane	NC	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U
m,p-Xylene	5	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	10	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	5 U	5 U	5 U	5 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
n-Propylbenzene	5	5 U	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U	5 U
tert-Butvlbenzene	5	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 U	1.2 J	5 U	5 U
Toluene	5	5 U	5 U	5 U	5 U	5 U
trans-1.2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
trans-1.3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	5 U	5 U	1.4 J	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U
Vinvl acetate	NC	5 U	5 U	5 U	5 U	5 U
Vinvl chloride	2	5 U	5 U	5 U	5 U	5 U
Xvlene (Total)	5	5 U	5 U	5 U	5 U	5 U
Semivolatile Organic Compound	ls					
1.2.4-Trichlorobenzene	5	10 U				
1,2-Dichlorobenzene	3	10 U				
1.3-Dichlorobenzene	3	10 U				
1.4-Dichlorobenzene	3	10 U				
2.2'-oxybis(1-Chloropropane)	NC	10 U				
2.4.5-Trichlorophenol	NC	20 U				
2.4.6-Trichlorophenol	NC	10 U				
2.4-Dichlorophenol	1	10 U				
2.4-Dimethylphenol	50	10 U				
2.4-Dinitrophenol	10	20 U				
2,4-Dinitrotoluene	5	10 U				
2,6-Dinitrotoluene	5	10 U				
2-Chloronaphthalene	10	10 U				
2-Chlorophenol	NC	10 U				

Sample Location	NYSDEC	MW-1	MW-2	MW-3	MW-4	MW-5
Sample ID	Class GA	SMS-MW-1	SMS-MW-2	SMS-MW-3	SMS-MW-4	SMS-MW-5
Laboratory ID	Groundwater	G2029-10C	G2029-02C	G2029-03C	G2029-04C	G2029-05C
Sample Data	Criteria	11/5/08	11/4/08	11/4/08	11/4/08	11/4/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q				
2-Methylnaphthalene	NC	10 U				
2-Methylphenol	NC	10 U				
2-Nitroaniline	5	20 U				
2-Nitrophenol	NC	10 U				
3,3'-Dichlorobenzidine	5	10 U				
3-Nitroaniline	5	20 U				
4,6-Dinitro-2-methylphenol	NC	20 U				
4-Bromophenyl-phenylether	NC	10 U				
4-Chloro-3-methylphenol	NC	10 U				
4-Chloroaniline	5	10 U				
4-Chlorophenyl-phenylether	NC	10 U				
4-Methylphenol	NC	10 U				
4-Nitroaniline	5	20 U				
4-Nitrophenol	NC	20 U				
Acenaphthene	20	10 U				
Acenaphthylene	NC	10 U				
Anthracene	50	10 U				
Benzo(a)anthracene	0.002	10 U				
Benzo(a)pyrene	ND	10 U				
Benzo(b)fluoranthene	0.002	10 U				
Benzo(g,h,i)perylene	NC	10 U				
Benzo(k)fluoranthene	0.002	10 U				
Bis(2-chloroethoxy)methane	5	10 U				
Bis(2-chloroethyl)ether	1	10 U				
Bis(2-ethylhexyl)phthalate	5	10 U				
Butylbenzylphthalate	50	10 U				
Carbazole	NC	10 U				
Chrysene	0.002	10 U				
Di-n-butylphthalate	50	10 U				
Di-n-octylphthalate	50	10 U				
Dibenzo(a,h)anthracene	NC	10 U				
Dibenzofuran	NC	10 U				
Diethylphthalate	50	10 U				
Dimethylphthalate	50	10 U				
Fluoranthene	50	10 U				
Fluorene	50	10 U				
Hexachlorobenzene	0.04	10 U				
Hexachlorobutadiene	0.5	10 U				
Hexachlorocyclopentadiene	5	10 U				
Hexachloroethane	5	10 U				
Indeno(1,2,3-cd)pyrene	0.002	10 U				
Isophorone	50	10 U				

Sample Location	NYSDEC	MW-1	MW-2	MW-3	MW-4	MW-5
Sample ID	Class GA	SMS-MW-1	SMS-MW-2	SMS-MW-3	SMS-MW-4	SMS-MW-5
Laboratory ID	Groundwater	G2029-10C	G2029-02C	G2029-03C	G2029-04C	G2029-05C
Sample Data	Criteria	11/5/08	11/4/08	11/4/08	11/4/08	11/4/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q				
N-Nitroso-di-n-propylamine	NC	10 U				
N-Nitrosodiphenylamine	50	10 U				
Naphthalene	10	10 U				
Nitrobenzene	0.4	10 U				
Pentachlorophenol	1	20 U				
Phenanthrene	50	10 U				
Phenol	1	10 U				
Pyrene	50	10 U				
TAL Metals						
Aluminum	NC	705	929	184 B	208	130 B
Antimony	3	4.6 U				
Arsenic	25	5.3 U				
Barium	1,000	76.7 B	64.5 B	49.8 B	53.8 B	190 B
Beryllium	3	0.19 B	0.17 B	0.13 U	0.15 B	0.14 B
Cadmium	5	0.6 B	9.2	0.24 B	0.4 B	5 B
Calcium	NC	38,600	24,700	25,200	12,800	13,400
Chromium	50	12.3 B	6.5 B	3.5 B	5 B	3.5 B
Cobalt	NC	4 B	1.3 B	1.2 U	3 B	4.8 B
Copper	200	41.3	37.5	14.4 B	12 B	35.5
Iron	300	50,300	20,500	12,600	20,800	8,990
Lead	25	6.5 B	271	4.8 B	5.5 B	4 B
Magnesium	35,000	6,880	5,950	3,950	1,110	2,150
Manganese	300	724	295	499	541	777
Mercury	0.7	0.016 U				
Nickel	100	16.7 B	5.6 B	2.2 B	3.7 B	6.7 B
Potassium	NC	9,970	11,100	6,830	1,790	2,360
Selenium	10	6.6 U				
Silver	50	0.59 U	1.2 B	0.99 B	1.5 B	1.1 B
Sodium	20,000	32,200	25,900	17,600	3,030	3,690
Thallium	0.5	4.2 U				
Vanadium	NC	2 B	6 B	1.2 B	3 B	1.1 B
Zinc	2,000	128	4230	47.7 B	51.2	39.6 B

Notes:

U - Not detected

NC - No criterion

J - Estimated value (organics)

B - Estimated value (metals)

Sample Location	NYSDEC	MW-6D	MW-6S	MW-7	MW-8	MW-9
Sample ID	Class GA	SMS-MW-6D	SMS-MW-6S	SMS-MW-7	SMS-MW-8	SMS-MW-9
Laboratory ID	Groundwater	G2029-07C	G2029-08C	G2029-09C	G2029-01C	G2029-16C
Sample Data	Criteria	11/5/08	11/5/08	11/5/08	11/4/08	11/6/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q				
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	2.3 J	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
1,1-Dichloropropene	5	5 U	5 U	5 U	5 U	5 U
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U
1,2,3-Trichloropropane	0.04	5 U	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U
1,2,4-Trimethylbenzene	5	5 U	21	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	NC	5 U	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1.2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U
1,3,5-Trimethylbenzene	5	5 U	11	5 U	5 U	5 U
1.3-Dichlorobenzene	3	5 U	1.7 J	5 U	5 U	5 U
1.3-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	5 U	3.2 J	5 U	5 U	5 U
2,2-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U
2-Butanone	50	5 U	5 U	5 U	5 U	5 U
2-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U
4-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
4-Isopropyltoluene	5	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	50	5 U	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 U	5 U	5.8	5 U
Benzene	1	5 U	5 U	5 U	5 U	5 U
Bromobenzene	5	5 U	5 U	5 U	5 U	5 U
Bromochloromethane	5	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	5 U
Bromoform	50	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	60	5 U	5 U	5 U	5 U	5 U
Carbon tetrachloride	5	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	5	5 U	1.1 J	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U	5 U
Chloroform	7	5 U	5 U	5 U	5 U	5 U
Chloromethane	NC	5 U	5 U	5 U	3.5 J	5 U
cis-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U

Sample Location	NYSDEC	MW-6D	MW-6S	MW-7	MW-8	MW-9
Sample ID	Class GA	SMS-MW-6D	SMS-MW-6S	SMS-MW-7	SMS-MW-8	SMS-MW-9
Laboratory ID	Groundwater	G2029-07C	G2029-08C	G2029-09C	G2029-01C	G2029-16C
Sample Data	Criteria	11/5/08	11/5/08	11/5/08	11/4/08	11/6/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q				
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	1.2 J	5 U	5 U	5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U	5 U
lodomethane	NC	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	1.6 J	5 U	5 U	5 U
m,p-Xylene	5	5 U	4.1 J	5 U	5 U	5 U
Methyl tert-butyl ether	10	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	5 U	5 U	5 U	5 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
n-Propylbenzene	5	5 U	2 J	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U	5 U
tert-Butvlbenzene	5	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 U	5 U	1.6 J	5 U
Toluene	5	5 U	5 U	5 U	5 U	5 U
trans-1.2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
trans-1.3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U
Vinyl acetate	NC	5 U	5 U	5 U	5 U	5 U
Vinvl chloride	2	5 U	5 U	5 U	5 U	5 U
Xvlene (Total)	5	5 U	4.1 J	5 U	5 U	5 U
Semivolatile Organic Compound	ls					
1.2.4-Trichlorobenzene	5	10 U				
1,2-Dichlorobenzene	3	10 U				
1.3-Dichlorobenzene	3	10 U				
1.4-Dichlorobenzene	3	10 U	1.3 J	10 U	10 U	10 U
2.2'-oxybis(1-Chloropropane)	NC	10 U				
2.4.5-Trichlorophenol	NC	20 U				
2.4.6-Trichlorophenol	NC	10 U				
2.4-Dichlorophenol	1	10 U				
2.4-Dimethylphenol	50	10 U				
2.4-Dinitrophenol	10	20 U				
2.4-Dinitrotoluene	5	10 U				
2.6-Dinitrotoluene	5	10 U				
2-Chloronaphthalene	10	10 U				
2-Chlorophenol	NC	10 U				

Sample Location	NYSDEC	MW-6D	MW-6S	MW-7	MW-8	MW-9
Sample ID	Class GA	SMS-MW-6D	SMS-MW-6S	SMS-MW-7	SMS-MW-8	SMS-MW-9
Laboratory ID	Groundwater	G2029-07C	G2029-08C	G2029-09C	G2029-01C	G2029-16C
Sample Data	Criteria	11/5/08	11/5/08	11/5/08	11/4/08	11/6/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q				
2-Methylnaphthalene	NC	10 U				
2-Methylphenol	NC	10 U				
2-Nitroaniline	5	20 U				
2-Nitrophenol	NC	10 U				
3,3'-Dichlorobenzidine	5	10 U				
3-Nitroaniline	5	20 U				
4,6-Dinitro-2-methylphenol	NC	20 U				
4-Bromophenyl-phenylether	NC	10 U				
4-Chloro-3-methylphenol	NC	10 U				
4-Chloroaniline	5	10 U				
4-Chlorophenyl-phenylether	NC	10 U				
4-Methylphenol	NC	10 U				
4-Nitroaniline	5	20 U				
4-Nitrophenol	NC	20 U				
Acenaphthene	20	10 U				
Acenaphthylene	NC	10 U				
Anthracene	50	10 U				
Benzo(a)anthracene	0.002	10 U	1.2 J	10 U	10 U	10 U
Benzo(a)pyrene	ND	10 U	3.1 J	10 U	10 U	10 U
Benzo(b)fluoranthene	0.002	10 U	8.4 J	10 U	10 U	10 U
Benzo(g,h,i)perylene	NC	10 U	6.4 J	10 U	10 U	10 U
Benzo(k)fluoranthene	0.002	10 U	6.5 J	10 U	10 U	10 U
Bis(2-chloroethoxy)methane	5	10 U				
Bis(2-chloroethyl)ether	1	10 U				
Bis(2-ethylhexyl)phthalate	5	3 J	12	10 U	10 U	10 U
Butylbenzylphthalate	50	10 U				
Carbazole	NC	10 U				
Chrysene	0.002	10 U	2.2 J	10 U	10 U	10 U
Di-n-butylphthalate	50	10 U				
Di-n-octylphthalate	50	10 U				
Dibenzo(a,h)anthracene	NC	10 U	1.4 J	10 U	10 U	10 U
Dibenzofuran	NC	10 U				
Diethylphthalate	50	10 U				
Dimethylphthalate	50	10 U	1.1 J	10 U	10 U	10 U
Fluoranthene	50	10 U	3 J	10 U	10 U	10 U
Fluorene	50	10 U				
Hexachlorobenzene	0.04	10 U				
Hexachlorobutadiene	0.5	10 U				
Hexachlorocyclopentadiene	5	10 U				
Hexachloroethane	5	10 U				
Indeno(1,2,3-cd)pyrene	0.002	10 U	4.9 J	10 U	10 U	10 U
Isophorone	50	10 U				

Sample Location	NYSDEC	MW-6D	MW-6S	MW-7	MW-8	MW-9
Sample ID	Class GA	SMS-MW-6D	SMS-MW-6S	SMS-MW-7	SMS-MW-8	SMS-MW-9
Laboratory ID	Groundwater	G2029-07C	G2029-08C	G2029-09C	G2029-01C	G2029-16C
Sample Data	Criteria	11/5/08	11/5/08	11/5/08	11/4/08	11/6/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q				
N-Nitroso-di-n-propylamine	NC	10 U				
N-Nitrosodiphenylamine	50	10 U				
Naphthalene	10	10 U				
Nitrobenzene	0.4	10 U				
Pentachlorophenol	1	20 U				
Phenanthrene	50	10 U				
Phenol	1	10 U	1.2 J	10 U	10 U	10 U
Pyrene	50	10 U	2 J	10 U	10 U	10 U
TAL Metals						
Aluminum	NC	254	21,400	106 B	69.8 B	56 U
Antimony	3	4.6 U				
Arsenic	25	5.3 U	13.7 B	5.3 U	5.3 U	5.3 U
Barium	1,000	24.4 B	96.1 B	56.7 B	119 B	50.3 B
Beryllium	3	0.13 U	9.8	0.23 B	0.13 U	0.19 B
Cadmium	5	1.4 B	9.7	2.1 B	0.14 U	0.3 B
Calcium	NC	18,800	40,300	32,400	35,700	23,300
Chromium	50	4 B	68.2	6.6 B	6.7 B	2.8 B
Cobalt	NC	6.5 B	56.9	2.6 B	2.1 B	4.6 B
Copper	200	27.9 B	156	14.7 B	37.9	14.7 B
Iron	300	5,350	42,000	34,700	27,600	29,600
Lead	25	5.5 B	81.1	4.4 B	4.5 B	4.7 B
Magnesium	35,000	2,320	9,060	4,690	5,300	3,770
Manganese	300	281	1,800	683	279	1,060
Mercury	0.7	0.016 U				
Nickel	100	5.2 B	55.9	3.9 B	4.6 B	5.9 B
Potassium	NC	1,720	3,500	5,690	21,500	3,540
Selenium	10	6.6 U				
Silver	50	0.75 B	0.59 U	1.5 B	1.5 B	1.9 B
Sodium	20,000	3,380	6,050	14,500	29,800	13,600
Thallium	0.5	4.2 U				
Vanadium	NC	1.2 B	40 B	2.1 B	1.8 B	1.4 B
Zinc	2,000	76.8	1570	51.1	72	36.4 B

Notes:

U - Not detected

NC - No criterion

J - Estimated value (organics)

B - Estimated value (metals)

Sample Location	NYSDEC	MW-12	MW-13	MW-13D	MW-14	MW-15
Sample ID	Class GA	SMS-MW-12	SMS-MW-13S	SMS-MW-13D	SMS-MW-14	SMS-MW-15
Laboratory ID	Groundwater	G2029-23C	G2029-21C	G2029-22C	G2029-19C	G2029-15C
Sample Data	Criteria	11/7/08	11/7/08	11/7/08	11/7/08	11/6/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q	Conc. Q	Conc. Q	Conc. Q	Conc. Q
Volatile Organic Compounds						
1,1,1,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
1,1-Dichloropropene	5	5 U	5 U	5 U	5 U	5 U
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U
1,2,3-Trichloropropane	0.04	5 U	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	5 U	5 U
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	NC	5 U	5 U	5 U	5 U	5 U
1.2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1.2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U
1.2-Dichloropropane	1	5 U	5 U	5 U	5 U	5 U
1.3.5-Trimethylbenzene	5	5 U	5 U	5 U	5 U	5 U
1.3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
1.3-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U
1.4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U
2.2-Dichloropropane	5	5 U	5 U	5 U	5 U	5 U
2-Butanone	50	5 U	5 U	5 U	5 U	5 U
2-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
2-Hexanone	50	5 U	5 U	5 U	5 U	5 U
4-Chlorotoluene	5	5 U	5 U	5 U	5 U	5 U
4-Isopropyltoluene	5	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	50	5 U	5 U	5 U	5 U	5 U
Acetone	50	5 U	5 U	5 U	5 U	5 U
Benzene	1	5 U	5 U	5 U	5 U	5 U
Bromobenzene	5	5 U	5 U	5 U	5 U	5 U
Bromochloromethane	5	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	50	5 U	5 U	5 U	5 U	5 U
Bromoform	50	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 U	5 U	5 U	5 U
Carbon disulfide	60	5 U	5 U	5 U	5 U	5 U
Carbon tetrachloride	5	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 U	5 U	5 U	5 U
Chloroform	7	5 U	5 U	5 U	5 U	5 U
Chloromethane	NC	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U

Sample Location	NYSDEC	MW-12	MW-13	MW-13D	MW-14	MW-15
Sample ID	Class GA	SMS-MW-12	SMS-MW-13S	SMS-MW-13D	SMS-MW-14	SMS-MW-15
Laboratory ID	Groundwater	G2029-23C	G2029-21C	G2029-22C	G2029-19C	G2029-15C
Sample Data	Criteria	11/7/08	11/7/08	11/7/08	11/7/08	11/6/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q	Conc. Q	Conc. Q	Conc. Q	Conc. Q
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	5 U	5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U	5 U
lodomethane	NC	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	5 U	5 U	5 U
m,p-Xylene	5	5 U	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	10	5 U	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	5 U	5 U	5 U	5 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
n-Propylbenzene	5	5 U	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U	5 U
tert-Butvlbenzene	5	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 U	5 U	5 U	5 U
Toluene	5	5 U	5 U	5 U	5 U	5 U
trans-1.2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U
trans-1.3-Dichloropropene	0.4	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U
Vinvl acetate	NC	5 U	5 U	5 U	5 U	5 U
Vinvl chloride	2	5 U	5 U	5 U	5 U	5 U
Xvlene (Total)	5	5 U	5 U	5 U	5 U	5 U
Semivolatile Organic Compound	s					
1.2.4-Trichlorobenzene	5	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	3	10 U	10 U	10 U	10 U	10 U
1.3-Dichlorobenzene	3	10 U	10 U	10 U	10 U	10 U
1.4-Dichlorobenzene	3	10 U	10 U	10 U	10 U	10 U
2.2'-oxybis(1-Chloropropane)	NC	10 U	10 U	10 U	10 U	10 U
2.4.5-Trichlorophenol	NC	20 U	20 U	20 U	20 U	20 U
2.4.6-Trichlorophenol	NC	10 U	10 U	10 U	10 U	10 U
2.4-Dichlorophenol	1	10 U	10 U	10 U	10 U	10 U
2.4-Dimethylphenol	50	10 U	10 U	10 U	10 U	10 U
2.4-Dinitrophenol	10	20 U	20 U	20 U	20 U	20 U
2.4-Dinitrotoluene	5	10 U	10 U	10 U	10 U	10 U
2.6-Dinitrotoluene	5	10 U	10 U	10 U	10 U	10 U
2-Chloronaphthalene	10	10 U	10 U	10 U	10 U	10 U
2-Chlorophenol	NC	10 U	10 U	10 U	10 U	10 U

Sample Location	NYSDEC	MW-12	MW-13	MW-13D	MW-14	MW-15
Sample ID	Class GA	SMS-MW-12	SMS-MW-13S	SMS-MW-13D	SMS-MW-14	SMS-MW-15
Laboratory ID	Groundwater	G2029-23C	G2029-21C	G2029-22C	G2029-19C	G2029-15C
Sample Data	Criteria	11/7/08	11/7/08	11/7/08	11/7/08	11/6/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q	Conc. Q	Conc. Q	Conc. Q	Conc. Q
2-Methylnaphthalene	NC	10 U	10 U	10 U	10 U	10 U
2-Methylphenol	NC	10 U	10 U	10 U	10 U	10 U
2-Nitroaniline	5	20 U	20 U	20 U	20 U	20 U
2-Nitrophenol	NC	10 U	10 U	10 U	10 U	10 U
3,3'-Dichlorobenzidine	5	10 U	10 U	10 U	10 U	10 U
3-Nitroaniline	5	20 U	20 U	20 U	20 U	20 U
4,6-Dinitro-2-methylphenol	NC	20 U	20 U	20 U	20 U	20 U
4-Bromophenyl-phenylether	NC	10 U	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol	NC	10 U	10 U	10 U	10 U	10 U
4-Chloroaniline	5	10 U	10 U	10 U	10 U	10 U
4-Chlorophenyl-phenylether	NC	10 U	10 U	10 U	10 U	10 U
4-Methylphenol	NC	10 U	10 U	10 U	10 U	10 U
4-Nitroaniline	5	20 U	20 U	20 U	20 U	20 U
4-Nitrophenol	NC	20 U	20 U	20 U	20 U	20 U
Acenaphthene	20	10 U	10 U	10 U	10 U	10 U
Acenaphthylene	NC	10 U	10 U	10 U	10 U	10 U
Anthracene	50	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	0.002	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	ND	10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	0.002	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	NC	10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	0.002	10 U	10 U	10 U	10 U	10 U
Bis(2-chloroethoxy)methane	5	10 U	10 U	10 U	10 U	10 U
Bis(2-chloroethyl)ether	1	10 U	10 U	10 U	10 U	10 U
Bis(2-ethylhexyl)phthalate	5	10 U	10 U	10 U	10 U	10 U
Butylbenzylphthalate	50	10 U	10 U	10 U	10 U	10 U
Carbazole	NC	10 U	10 U	10 U	10 U	10 U
Chrysene	0.002	10 U	10 U	10 U	10 U	10 U
Di-n-butylphthalate	50	10 U	10 U	10 U	10 U	10 U
Di-n-octylphthalate	50	10 U	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene	NC	10 U	10 U	10 U	10 U	10 U
Dibenzofuran	NC	10 U	10 U	10 U	10 U	10 U
Diethylphthalate	50	10 U	10 U	10 U	10 U	10 U
Dimethylphthalate	50	10 U	10 U	10 U	10 U	10 U
Fluoranthene	50	10 U	10 U	10 U	10 U	10 U
Fluorene	50	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04	10 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene	0.5	10 U	10 U	10 U	10 U	10 U
	5	10 U	10 U	10 U	10 U	10 U
	5	10 U	10 U	10 U	10 U	10 U
indeno(1,2,3-cd)pyrene	0.002	10 U	10 U	10 0	10 0	10 0
isophorone	50	10 U	10 U	10 U	10 U	10 U

Sample Location	NYSDEC	MW-12	MW-13	MW-13D	MW-14	MW-15
Sample ID	Class GA	SMS-MW-12	SMS-MW-13S	SMS-MW-13D	SMS-MW-14	SMS-MW-15
Laboratory ID	Groundwater	G2029-23C	G2029-21C	G2029-22C	G2029-19C	G2029-15C
Sample Data	Criteria	11/7/08	11/7/08	11/7/08	11/7/08	11/6/08
Matrix	water	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q	Conc. Q	Conc. Q	Conc. Q	Conc. Q
N-Nitroso-di-n-propylamine	NC	10 U	10 U	10 U	10 U	10 U
N-Nitrosodiphenylamine	50	10 U	10 U	10 U	10 U	10 U
Naphthalene	10	10 U	10 U	10 U	10 U	10 U
Nitrobenzene	0.4	10 U	10 U	10 U	10 U	10 U
Pentachlorophenol	1	20 U	20 U	20 U	20 U	20 U
Phenanthrene	50	10 U	10 U	10 U	10 U	10 U
Phenol	1	10 U	10 U	10 U	10 U	10 U
Pyrene	50	10 U	10 U	10 U	10 U	10 U
TAL Metals						
Aluminum	NC	101 B	120 B	63.7 B	161 B	122 B
Antimony	3	4.6 U	4.6 U	4.6 U	4.6 U	4.6 U
Arsenic	25	5.3 U	5.3 U	5.3 U	5.3 U	5.3 U
Barium	1,000	27.4 B	20.8 B	66.8 B	40.6 B	19.6 B
Beryllium	3	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
Cadmium	5	1.8 B	1.6 B	79	0.68 B	4.1 B
Calcium	NC	13,100	5,350	13,000	26,000	4,990
Chromium	50	2.7 B	3.2 B	5.8 B	2.5 B	12.8 B
Cobalt	NC	1.2 U	3.5 B	1.2 U	1.2 U	1.9 B
Copper	200	19 B	8.7 B	28.4 B	10.7 B	9 B
Iron	300	3,810	25,800	383	65,100	661
Lead	25	7.2 B	2.4 B	2.4 B	5.8 B	4.1 B
Magnesium	35,000	1,700	902	7,990	2,990	1,480
Manganese	300	503	413	25.2 B	508	188
Mercury	0.7	0.02 B	0.095 B	0.016 U	0.016 U	0.15 B
Nickel	100	5.1 B	4.9 B	18.5 B	3.3 B	12.9 B
Potassium	NC	6,340	17,200	3,030	13,200	2,680
Selenium	10	6.6 U	6.6 U	7 B	6.6 U	6.6 U
Silver	50	6.5 B	0.89 B	1.9 B	1.4 B	5.6 B
Sodium	20,000	7,390	12,000	28,700	22,900	4,880
Thallium	0.5	4.2 U	4.2 U	4.2 U	4.2 U	4.2 U
Vanadium	NC	0.96 U	0.96 U	0.96 U	3.1 B	1.7 B
Zinc	2,000	99.2	301	84.3	57	56

Notes:

U - Not detected

NC - No criterion

J - Estimated value (organics)

B - Estimated value (metals)

Sample Location	NYSDEC	MW-16	MW-16M	MW-16D	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16M	SMS-MW-16D	SMS-MW-17
Laboratory ID	Groundwater	G2029-12C	G2029-13C	G2029-14C	G2029-11C
Sample Data	Criteria	11/6/08	11/6/08	11/6/08	11/6/08
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q	Conc. Q	Conc. Q	Conc. Q
Volatile Organic Compounds					
1,1,1,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U
1.1-Dichloropropene	5	5 U	5 U	5 U	5 U
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	5 U
1,2,3-Trichloropropane	0.04	5 U	5 U	5 U	5 U
1.2.4-Trichlorobenzene	5	5 U	5 U	5 U	5 U
1.2.4-Trimethylbenzene	5	5 U	5 U	5 U	5 U
1.2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U
1.2-Dibromoethane	NC	5 U	5 U	5 U	5 U
1 2-Dichlorobenzene	3	5 U	5 U	5 U	5 U
1 2-Dichloroethane	0.6	5 U	5 U	5 U	5 U
1 2-Dichloropropane	1	5 U	5 U	5 U	5 U
1.3.5-Trimethylbenzene	5	5 U	5 U	5 U	5 U
1.3-Dichlorobenzene	3	5 U	5 U	5 U	5 U
1.3-Dichloropropane	5	5 U	5 U	5 U	5 U
1 4-Dichlorobenzene	3	5 U	5 U	5 U	5 U
2 2-Dichloropropane	5	5 U	5 U	5 U	5 U
2-Butanone	50	5 U	5 U	5 U	5 U
2-Chlorotoluene	5	5 U	5 U	5 U	5 U
2-Hexanone	50	5 U	5 U	5 U	5 U
4-Chlorotoluene	5	5 U	5 U	5 U	5 U
4-Isopropyltoluene	5	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	50	5 U	5 U	5 U	5 U
Acetone	50	5 11	5 11	5 11	5 1
Benzene	1	5 U	5 U	5 U	5 U
Bromobenzene	5	5 11	5 11	5 11	5.0
Bromochloromethane	5	5 11	5 11	5 11	5.0
Bromodichloromethane	50	511	5 11	511	5 11
Bromoform	50	5 11	5 11	5 11	511
Bromomethane	5	5 11	5 11	5 11	50
	60	511	511	511	50
Carbon tetrachloride	5	50	5 11	50	50
Chlorobenzene	5	50	50	50	50
Chloroethane	5	50	50	50	50
Chloroform	7	50	121	50	50
Chloromethane		50	1.3 J E I I	50	50
cis-1.2-Dichloroothono	F INC	50	50	50	50
CIS-1,2-DICITIOTOELITETIE	Э	50	50	50	50
APPENDIX C TABLE 1 SMS INSTRUMENTS SITE (#1-52-026) NOVEMBER 2008 GROUNDWATER SAMPLING EVENT VOLATILE ORGANIC COMPOUNDS, SEMIVOLATILE ORGANIC COMPOUNDS AND TAL METALS

Sample Location	NYSDEC	MW-16	MW-16M	MW-16D	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16M	SMS-MW-16D	SMS-MW-17
Laboratory ID	Groundwater	G2029-12C	G2029-13C	G2029-14C	G2029-11C
Sample Data	Criteria	11/6/08	11/6/08	11/6/08	11/6/08
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q	Conc. Q	Conc. Q	Conc. Q
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U
Dibromomethane	5	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	5 U
Hexachlorobutadiene	0.5	5 U	5 U	5 U	5 U
lodomethane	NC	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	5 U	5 U
m,p-Xylene	5	5 U	5 U	5 U	5 U
Methyl tert-butyl ether	10	5 U	5 U	5 U	5 U
Methylene chloride	5	5 U	5 U	5 U	5 U
n-Butylbenzene	5	5 U	5 U	5 U	5 U
n-Propylbenzene	5	5 U	5 U	5 U	5 U
Naphthalene	10	5 U	5 U	5 U	5 U
o-Xylene	5	5 U	5 U	5 U	5 U
sec-Butylbenzene	5	5 U	5 U	5 U	5 U
Styrene	5	5 U	5 U	5 U	5 U
tert-Butylbenzene	5	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 U	5 U	5 U
Toluene	5	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	5 U	5 U	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U
Vinyl acetate	NC	5 U	5 U	5 U	5 U
Vinyl chloride	2	5 U	5 U	5 U	5 U
Xylene (Total)	5	5 U	5 U	5 U	5 U
Semivolatile Organic Compound	ls				
1,2,4-Trichlorobenzene	5	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	3	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	3	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	3	10 U	10 U	10 U	10 U
2,2'-oxybis(1-Chloropropane)	NC	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol	NC	20 U	20 U	20 U	20 U
2,4,6-Trichlorophenol	NC	10 U	10 U	10 U	10 U
2,4-Dichlorophenol	1	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	50	10 U	10 U	10 U	10 U
2,4-Dinitrophenol	10	20 U	20 U	20 U	20 U
2,4-Dinitrotoluene	5	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	5	10 U	10 U	10 U	10 U
2-Chloronaphthalene	10	10 U	10 U	10 U	10 U
2-Chlorophenol	NC	10 U	10 U	10 U	10 U

Earth Tech Northeast, Inc.

APPENDIX C TABLE 1 SMS INSTRUMENTS SITE (#1-52-026) NOVEMBER 2008 GROUNDWATER SAMPLING EVENT VOLATILE ORGANIC COMPOUNDS, SEMIVOLATILE ORGANIC COMPOUNDS AND TAL METALS

Sample Location	NYSDEC	MW-16	MW-16M	MW-16D	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16M	SMS-MW-16D	SMS-MW-17
Laboratory ID	Groundwater	G2029-12C	G2029-13C	G2029-14C	G2029-11C
Sample Data	Criteria	11/6/08	11/6/08	11/6/08	11/6/08
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q	Conc. Q	Conc. Q	Conc. Q
2-Methylnaphthalene	NC	10 U	10 U	10 U	10 U
2-Methylphenol	NC	10 U	10 U	10 U	10 U
2-Nitroaniline	5	20 U	20 U	20 U	20 U
2-Nitrophenol	NC	10 U	10 U	10 U	10 U
3,3'-Dichlorobenzidine	5	10 U	10 U	10 U	10 U
3-Nitroaniline	5	20 U	20 U	20 U	20 U
4,6-Dinitro-2-methylphenol	NC	20 U	20 U	20 U	20 U
4-Bromophenyl-phenylether	NC	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol	NC	10 U	10 U	10 U	10 U
4-Chloroaniline	5	10 U	10 U	10 U	10 U
4-Chlorophenyl-phenylether	NC	10 U	10 U	10 U	10 U
4-Methylphenol	NC	10 U	10 U	10 U	10 U
4-Nitroaniline	5	20 U	20 U	20 U	20 U
4-Nitrophenol	NC	20 U	20 U	20 U	20 U
Acenaphthene	20	10 U	10 U	10 U	10 U
Acenaphthylene	NC	10 U	10 U	10 U	10 U
Anthracene	50	10 U	10 U	10 U	10 U
Benzo(a)anthracene	0.002	10 U	10 U	10 U	10 U
Benzo(a)pyrene	ND	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene	0.002	10 U	10 U	10 U	10 U
Benzo(g,h,i)perylene	NC	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	0.002	10 U	10 U	10 U	10 U
Bis(2-chloroethoxy)methane	5	10 U	10 U	10 U	10 U
Bis(2-chloroethyl)ether	1	10 U	10 U	10 U	10 U
Bis(2-ethylhexyl)phthalate	5	10 U	10 U	10 U	10 U
Butylbenzylphthalate	50	10 U	10 U	10 U	10 U
Carbazole	NC	10 U	10 U	10 U	10 U
Chrysene	0.002	10 U	10 U	10 U	10 U
Di-n-butylphthalate	50	10 U	10 U	10 U	10 U
Di-n-octylphthalate	50	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene	NC	10 U	10 U	10 U	10 U
Dibenzofuran	NC	10 U	10 U	10 U	10 U
Diethylphthalate	50	10 U	10 U	10 U	10 U
Dimethylphthalate	50	10 U	10 U	10 U	10 U
Fluoranthene	50	10 U	10 U	10 U	10 U
Fluorene	50	10 U	10 U	10 U	10 U
Hexachlorobenzene	0.04	10 U	10 U	10 U	10 U
Hexachlorobutadiene	0.5	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene	5	10 U	10 U	10 U	10 U
Hexachloroethane	5	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	0.002	10 U	10 U	10 U	10 U
Isophorone	50	10 U	10 U	10 U	10 U

Earth Tech Northeast, Inc.

APPENDIX C TABLE 1 SMS INSTRUMENTS SITE (#1-52-026) NOVEMBER 2008 GROUNDWATER SAMPLING EVENT VOLATILE ORGANIC COMPOUNDS, SEMIVOLATILE ORGANIC COMPOUNDS AND TAL METALS

Sample Location	NYSDEC	MW-16	MW-16M	MW-16D	MW-17
Sample ID	Class GA	SMS-MW-16S	SMS-MW-16M	SMS-MW-16D	SMS-MW-17
Laboratory ID	Groundwater	G2029-12C	G2029-13C	G2029-14C	G2029-11C
Sample Data	Criteria	11/6/08	11/6/08	11/6/08	11/6/08
Matrix	water	water	water	water	water
Units	µg/L	µg/L	µg/L	µg/L	µg/L
		Conc. Q	Conc. Q	Conc. Q	Conc. Q
N-Nitroso-di-n-propylamine	NC	10 U	10 U	10 U	10 U
N-Nitrosodiphenylamine	50	10 U	10 U	10 U	10 U
Naphthalene	10	10 U	10 U	10 U	10 U
Nitrobenzene	0.4	10 U	10 U	10 U	10 U
Pentachlorophenol	1	20 U	20 U	20 U	20 U
Phenanthrene	50	10 U	10 U	10 U	10 U
Phenol	1	10 U	10 U	10 U	10 U
Pyrene	50	10 U	10 U	10 U	10 U
TAL Metals					
Aluminum	NC	73.2 B	91.6 B	104 B	57.7 B
Antimony	3	4.6 U	4.6 U	4.6 U	4.6 U
Arsenic	25	5.3 U	5.3 U	5.3 U	5.3 U
Barium	1,000	38.1 B	91.6 B	43.8 B	72.7 B
Beryllium	3	0.13 U	0.13 U	0.13 U	0.13 U
Cadmium	5	33.4	2.2 B	35.3	3.1 B
Calcium	NC	25,300	17,600	18,500	12,600
Chromium	50	54.2	9.6 B	48.7	6.9 B
Cobalt	NC	4 B	5.4 B	1.2 U	3.6 B
Copper	200	11.9 B	13.2 B	12.8 B	9.9 B
Iron	300	626	822	420	145 B
Lead	25	2.2 U	4.4 B	3.3 B	2.2 U
Magnesium	35,000	3,290	2,380	3,690	1,100
Manganese	300	394	125	53.2	1,940
Mercury	0.7	0.016 U	0.038 B	0.016 U	0.016 U
Nickel	100	65.3	31.7 B	9 B	7.1 B
Potassium	NC	6,720	13,400	5,990	3,110
Selenium	10	6.6 U	6.6 U	6.6 U	6.6 U
Silver	50	0.59 U	0.59 U	1.6 B	0.73 B
Sodium	20,000	12,800	12,000	15,100	3,060
Thallium	0.5	4.2 U	4.2 U	4.2 U	4.2 U
Vanadium	NC	1.7 B	0.96 U	0.96 U	3.4 B
Zinc	2,000	42.7 B	107	39.1 B	36.6 B

Notes:

U - Not detected

NC - No criterion

J - Estimated value (organics)

B - Estimated value (metals)

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

November 25, 2008

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

RE: Client Project: SMS Instruments Lab Work Order #: G2029

Dear Mr. Kareth:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

Shirley Ng

Project Manager

* Data Summary Pack *

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : <u>SMS Instruments, 152026</u>

SDG : <u>G2029</u>

			Anal	ytical Requirements		
Customer	Laboratory					
Sample ID	Sample ID	MSVOA	MSSEMI	GC*	ME	Other
		Method #	Method #	Method #		
SMS-MW-8	G2029-01	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-8	G2029-01				SW7470	·····
SMS-MW-2	G2029-02	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-2	G2029-02				SW7470	
SMS-ME-3	G2029-03	SW8260_W	SW8270_W		SW6010_W	
SMS-ME-3	G2029-03	· · · · · · · · · · · · · · · · · · ·			SW7470	
SMS-MW-4	G2029-04	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-4	G2029-04	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		SW7470	
SMS-MW-5	G2029-05	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-5	G2029-05			**	SW7470	
TB-1	G2029-06	SW8260_W				
SMS-MW-6D	G2029-07	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-6D	G2029-07				SW7470	
SMS-MW-6S	G2029-08	SW8260_W	SW8270_W	······································	SW6010_W	
SMS-MW-6S	G2029-08				SW7470	
SMS-MW-7	G2029-09	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-7	G2029-09				SW7470	
SMS-MW-1	G2029-10	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-1	G2029-10				SW7470	
SMS-MW-17	G2029-11	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-17	G2029-11				SW7470	
SMS-MW-16S	G2029-12	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-16S	G2029-12				SW7470	
SMS-MW-16M	G2029-13	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-16M	G2029-13				SW7470	
SMS-MW-16D	G2029-14	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-16D	G2029-14				SW7470	
SMS-MW-15	G2029-15	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-15	G2029-15				SW7470	
SMS-MW-9	G2029-16	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-9	G2029-16				SW7470	
SMS-MW-66M	G2029-17	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-66M	G2029-17	· · · · · · · · · · · · · · · · · · ·			SW7470	
TB-2	G2029-18	SW8260_W				
SMS-MW-14	G2029-19	SW8260_W	SW8270_W		SW6010_W	
SMS-MW-14	G2029-19				SW7470	
ТВ-3	G2029-20	SW8260_W				
SMS-MW-13S	G2029-21	SW8260_W	SW8270_W		SW6010_W	

11/25/2008 10:54

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : SMS Instruments, 152026

Customer Sample ID		Analytical Requirements							
	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other			
SMS-MW-13S	G2029-21				SW7470				
SMS-MW-13D	G2029-22	SW8260_W	SW8270_W		SW6010_W				
SMS-MW-13D	G2029-22				SW7470				
SMS-MW-12	G2029-23	SW8260_W	SW8270_W		SW6010_W				
SMS-MW-12	G2029-23				SW7470				

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : SMS Instruments, 152026

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8260_W	L				
G2029-01A	AQ	11/4/2008	11/6/2008	NA	11/12/2008
G2029-02A	AQ	11/4/2008	11/6/2008	NA	11/12/2008
G2029-03A	AQ	11/4/2008	11/6/2008	NA	11/12/2008
G2029-04A	AQ	11/4/2008	11/6/2008	NA	11/12/2008
G2029-05A	AQ	11/4/2008	11/6/2008	NA	11/12/2008
G2029-06A	AQ	11/4/2008	11/6/2008	NA	11/10/2008
G2029-07A	AQ	11/5/2008	11/6/2008	NA	11/12/2008
G2029-08A	AQ	11/5/2008	11/6/2008	NA	11/12/2008
G2029-09A	AQ	11/5/2008	11/6/2008	NA	11/12/2008
G2029-10A	AQ	11/5/2008	11/6/2008	NA	11/12/2008
G2029-11A	AQ	11/6/2008	11/7/2008	NA	11/12/2008
G2029-12A	AQ	11/6/2008	11/7/2008	NA	11/12/2008
G2029-13A	AQ	11/6/2008	11/7/2008	NA	11/15/2008
G2029-14A	AQ	11/6/2008	11/7/2008	NA	11/15/2008
G2029-15A	AQ	11/6/2008	11/7/2008	NA	11/15/2008
G2029-16A	AQ	11/6/2008	11/7/2008	NA	11/15/2008
G2029-17A	AQ	11/6/2008	11/7/2008	NA	11/15/2008
G2029-18A	AQ	11/6/2008	11/7/2008	NA	11/15/2008
G2029-19A	AQ	11/7/2008	11/8/2008	NA	11/15/2008
G2029-20A	AQ	11/7/2008	11/8/2008	NA	11/15/2008
G2029-21A	AQ	11/7/2008	11/8/2008	NA	11/15/2008
G2029-22A	AQ	11/7/2008	11/8/2008	NA	11/15/2008
G2029-23A	AQ	11/7/2008	11/8/2008	NA	11/15/2008

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name : SMS Instruments, 152026

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8270_W	•				
G2029-01B	AQ	11/4/2008	11/6/2008	11/7/2008	11/14/2008
G2029-02B	AQ	11/4/2008	11/6/2008	11/7/2008	11/14/2008
G2029-03B	AQ	11/4/2008	11/6/2008	11/7/2008	11/14/2008
G2029-04B	AQ	11/4/2008	11/6/2008	11/7/2008	11/15/2008
G2029-05B	AQ	11/4/2008	11/6/2008	11/7/2008	11/15/2008
G2029-07B	AQ	11/5/2008	11/6/2008	11/7/2008	11/14/2008
G2029-08B	AQ	11/5/2008	11/6/2008	11/7/2008	11/14/2008
G2029-08BRA	AQ	11/5/2008	11/6/2008	11/7/2008	11/16/2008
G2029-09B	AQ	11/5/2008	11/6/2008	11/7/2008	11/15/2008
G2029-10B	AQ	11/5/2008	11/6/2008	11/7/2008	11/15/2008
G2029-11B	AQ	11/6/2008	11/7/2008	11/11/2008	11/14/2008
G2029-12B	AQ	11/6/2008	11/7/2008	11/11/2008	11/14/2008
G2029-13B	AQ	11/6/2008	11/7/2008	11/11/2008	11/14/2008
G2029-14B	AQ	11/6/2008	11/7/2008	11/11/2008	11/14/2008
G2029-15B	AQ	11/6/2008	11/7/2008	11/11/2008	11/15/2008
G2029-16B	AQ	11/6/2008	11/7/2008	11/11/2008	11/14/2008
G2029-17B	AQ	11/6/2008	11/7/2008	11/11/2008	11/14/2008
G2029-19B	AQ	11/7/2008	11/8/2008	11/11/2008	11/14/2008
G2029-21B	AQ	11/7/2008	11/8/2008	11/11/2008	11/14/2008
G2029-22B	AQ	11/7/2008	11/8/2008	11/11/2008	11/14/2008
G2029-22BRA	AQ	11/7/2008	11/8/2008	11/11/2008	11/15/2008
G2029-23B	AQ	11/7/2008	11/8/2008	11/11/2008	11/14/2008

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : SMS Instruments, 152026

Dil/Conc Extraction Low/Medium Laboratory Analytical Method Level Factor Sample ID Matrix Protocol SW8260_W G2029-01A AQ SW8260_W NA LOW 1 SW8260_W NA LOW 1 G2029-02A AQ LOW G2029-03A AQ SW8260_W NA 1 SW8260_W AQ NA LOW 1 G2029-04A LOW 1 SW8260_W NA G2029-05A AQ SW8260_W LOW 1 G2029-06A AQ NA G2029-07A AQ SW8260_W NA LOW 1 G2029-08A AQ SW8260 W NA LOW 1 G2029-09A AQ SW8260 W NA LOW 1 SW8260_W G2029-10A AQ NA LOW 1 AQ SW8260_W NA LOW 1 G2029-11A SW8260_W NA LOW 1 G2029-12A AQ LOW SW8260_W NA ÂQ 1 G2029-13A NA LOW SW8260_W G2029-14A AQ 1 G2029-15A AQ SW8260_W NA LOW 1 G2029-16A AQ SW8260_W NA LOW 1 AQ SW8260 W NA LOW 1 G2029-17A SW8260_W NA LOW 1 G2029-18A AQ SW8260_W LOW G2029-19A AQ NA 1 G2029-20A AQ SW8260_W NA LOW 1 G2029-21A AQ SW8260_W NA LOW 1 G2029-22A SW8260_W NA LOW 1 AQ SW8260_W LOW 1 G2029-23A AQ NA

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSSEMI

Project Name : SMS Instruments, 152026

Laboratory		Analytical	Extraction	Auxiliary	Dil/Conc
Sample ID	Matrix	Protocol	Method	Cleanup	Factor
SW8270_W			······································		
G2029-01B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-02B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-03B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-04B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-05B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-07B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-08B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-08BRA	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-09B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-10B	AQ	\$W8270_W	BNA_W_PR	NA	1
G2029-11B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-12B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-13B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-14B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-15B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-16B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-17B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-19B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-21B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-22B	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-22BRA	AQ	SW8270_W	BNA_W_PR	NA	1
G2029-23B	AQ	SW8270_W	BNA_W_PR	NA	1

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary ME

Project Name : SMS Instruments, 152026

Laboratory		Metals	Date Received	Date
Sample ID	Matrix	Requested	By Lab	Analyzed
SW6010 W		_	·I*	
G2029-01C	AQ	SW6010 W	11/6/2008	11/18/2008
G2029-02C	AQ	SW6010 W	11/6/2008	11/18/2008
G2029-03C	AQ	SW6010 W	11/6/2008	11/18/2008
G2029-04C	AQ	SW6010 W	11/6/2008	11/18/2008
G2029-05C	AQ	SW6010 W	11/6/2008	11/18/2008
G2029-07C	AQ	SW6010 W	11/6/2008	11/18/2008
G2029-08C	AQ	SW6010 W	11/6/2008	11/18/2008
G2029-09C	AQ	SW6010 W	11/6/2008	11/18/2008
G2029-10C	AQ	SW6010 W	11/6/2008	11/18/2008
G2029-11C	AQ	SW6010 W	11/7/2008	11/18/2008
G2029-12C	AQ	SW6010_W	11/7/2008	11/18/2008
G2029-13C	AQ	SW6010_W	11/7/2008	11/18/2008
G2029-14C	AQ	SW6010_W	11/7/2008	11/18/2008
G2029-15C	AQ	SW6010_W	11/7/2008	11/18/2008
G2029-15CDUP	AQ	SW6010_W	11/7/2008	11/18/2008
G2029-15CMS	AQ	SW6010_W	11/7/2008	11/18/2008
G2029-16C	AQ	SW6010_W	11/7/2008	11/18/2008
G2029-17C	AQ	SW6010_W	11/7/2008	11/18/2008
G2029-19C	AQ	SW6010_W	11/8/2008	11/18/2008
G2029-21C	AQ	SW6010_W	11/8/2008	11/18/2008
G2029-22C	AQ	SW6010_W	11/8/2008	11/18/2008
G2029-23C	AQ	SW6010_W	11/8/2008	11/18/2008
SW7470				
G2029-01C	AQ	SW7470	11/6/2008	11/17/2008
G2029-02C	AQ	SW7470	11/6/2008	11/17/2008
G2029-03C	AQ	SW7470	11/6/2008	11/17/2008
G2029-04C	AQ	SW7470	11/6/2008	11/17/2008
G2029-05C	AQ	SW7470	11/6/2008	11/17/2008
G2029-07C	AQ	SW7470	11/6/2008	11/17/2008
G2029-08C	AQ	SW7470	11/6/2008	11/17/2008
G2029-09C	AQ	SW7470	11/6/2008	11/17/2008
G2029-10C	AQ	SW7470	11/6/2008	11/17/2008
G2029-11C	AQ	SW7470	11/7/2008	11/17/2008
G2029-12C	AQ	SW7470	11/7/2008	11/17/2008
G2029-13C	AQ	SW7470	11/7/2008	11/17/2008
G2029-14C	AQ	SW7470	11/7/2008	11/17/2008
G2029-15C	AQ	SW7470	11/7/2008	11/17/2008
G2029-15CDUP	AQ	SW7470	11/7/2008	11/17/2008
G2029-15CMS	AQ	SW7470	11/7/2008	11/17/2008
G2029-16C	AQ	SW7470	11/7/2008	11/17/2008
G2029-17C	AQ	SW7470	11/7/2008	11/17/2008
G2029-19C	AQ	SW7470	11/8/2008	11/17/2008
G2029-21C	AQ	SW7470	11/8/2008	11/17/2008
G2029-22C	AQ	SW7470	11/8/2008	11/17/2008
G2029-23C	AQ	SW7470	11/8/2008	11/17/2008

Analytical Data Package for Earth Tech Northeast, Inc.

Client Project: SMS Instruments

SDG# MG2029

Mitkem Work Order ID: G2029

November 25, 2008

Prepared For:

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Laboratories submits the enclosed data package in response to Earth Tech Northeast, Inc.'s SMS Instruments project. Under this deliverable, analysis results are presented for twenty three aqueous samples that were received between October 4, 2008 to October 8, 2008. Analyses were performed per specifications in the project's contract, chain of custody forms and discussion with client. Following the narrative is the Mitkem Work Order for cross-referencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.
- M6 software did not integrate peak
- M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits with the exception of toluened8 in sample SMS-MW-8 and SMS-MW-2.

Lab control sample: spike recoveries were within the QC limits with the exception of 2-hexanone in V1FLCS. Replicate RPDs were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

3. Semivolatile Analysis:

Surrogate recovery: recoveries were within the QC limits with the exception of nitrobenzene-d5 and phenol-d5 in sample SMS-MW-13D. This sample was re-analyzed which the recovery of phenol-d5 was still recovered low. The recovery of 2-fluorobiphenyl in sample SMS-MW-15 was outside the QC limits.

Lab control sample: spike recoveries were within the QC limits with the exception of 2,4dimethylphenol in S1JLCS and carbazole in S1JLCSD. Replicate RPDs were within the QC limits with the exception of thirteen RPDs.

Sample analysis: samples SMS-MW-13D and SMS-MW-6S were recovered low in internal standard perylene-d12. These two samples were re-analyzed with similar finding. No other unusual observation was made for the analysis.

4. Metals analysis:

Lab control sample: percent recoveries were within the QC limits.

Matrix spike analysis: matrix spike was performed on sample SMS-MW-15. Spike recoveries were within the QC limits.

Duplicate analysis: duplicate analysis was performed on sample SMS-MW-15. Percent recoveries were within the QC limits.

Sample analysis: serial dilution was performed on sample SMS-MW-15. Percent differences were within the QC limits. No unusual occurrences were noted during sample analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Shirley Ng S

Project Manager 11/25/08

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-8

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER	N) WATER		Lab Sample ID:	G2029-01A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1369.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/06/2008
% Moisture: not dec.	·		Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS	J:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		5.0	Ū
74-87-3	Chloromethane		3.5	J
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0 -	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone		5.8	
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	Ū
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone	· · · · ·	5.0	U
156-59-2	cis-1,2-Dichloroethene	· · · · · · · · · · · · · · · · · · ·	5.0	U
594-20-7	2,2-Dichloropropane		5.0	Ū
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		5.0	Ū
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
74-95-3	Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
108-88-3	Toluene		5.0	U
10061-02-6	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-8

SHEET	
-------	--

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATE) WATER			Lab Sample ID:	G2029-01A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1369.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/06/2008
% Moisture: not dec.				Date Analyzed:	11/12/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENEDATION UNITED	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	1.6	J
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U .
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U .
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U .
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO. SMS-MW-8

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2029-01A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1369.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/06/2008
Moisture: not dec.	Date Analyzed: 11/12/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-2

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATEF	() WATER		Lab Sample ID:	G2029-02A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1370.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/06/2008
% Moisture: not dec.			Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS	:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromothano		5.0	TT
71-97-3	Chloromothano		5.0	U
74-07-5			5.0	
71-93-0	Promomothana	· · · · · · · · · · · · · · · · · · ·	5.0	
74-03-3	Chloroothano		5.0	
75-00-3			5.0	0
75-25-4	1 1-Dichloroothono		5.0	U
67 64 1				U
74 00 4	Lodomothana			0
74-00-4	Corbon digulfido		5.0	U
75-15-0	Mathulana ahlamida			U
156.60 5	trang-1 2-Dichlorosthans		5.0	
1634 04 4	Mathul tent butul athen			
75-24-2	1 1-Dichloroothana		5.0	
100 05 4			5.0	
70-03-4				
166 50 2	z-Bucanone		5.0	
504 20 7	2.2-Dichloropropana		5.0	
74 07 5	Z, Z-Dichioropropane	·····	5.0	U 11
67 66 3			5.0	U
71 55 0			5.0	U 17
71-55-6	1, 1, 1-Irichioroethane		5.0	U
563-38-6	1, 1-Dichioropropene	· · · · ·	5.0	U
36-23-5	Larbon tetrachioride		5.0	U ·
107-06-2	1,2-Dichioroethane	·····	5.0	U
71-43-2	Benzene		5.0	U
79-01-6	1 2 Disklaussesses		5.0	U
/8-8/-5	1,2-Dichioropropane		5.0	U
74-95-3	Dibromometnane		5.0	U
/5-2/-4	Bromodichloromethane		.5.0	U
1001-01-5	Cls-1, 3-Dichloropropene		5.0	U
100 00 0	4-Metny1-2-pentanone		5.0	U
T08-88-3	TOLUENE		5.0	U
10061-02-6	trans-1, 3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-2

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATEF	R) WATER		Lab Sample ID:	G2029-02A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1370.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/06/2008
% Moisture: not dec.			Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	· · ·	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	tu d
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	Ū
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	. 5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SMS-MW-2

Lab Name: MITKEM LABORATO	RIES	Contract:	
Lab Code: MITKEM Ca	ase No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	G2029-02A
Sample wt/vol: 5.00	(g/mL) ML	Lab File ID:	V1K1370.D
Level: (TRACE or LOW/MED)	LOW	Date Received:	11/06/2008
% Moisture: not dec.		Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25 (mm)) Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume:
CONCENTRATION UNITS: (ug/I	or ug/Kg) UG/L	Purge Volume: 5.	0 (mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC. Q
E966796 ¹ Total Alka	nes	N/A	

E966796¹|Total Alkanco ¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-3

NALISIS DATA SHEET

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2029-03A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1371.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/06/2008
% Moisture: not dec.			Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS.	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	0
		<u> </u>	×
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U .
75-69-4	Trichlorofluoromethane	5.0	U .
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-3

Lab Name: MITKEM LABOR	ATORIES	*	Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2029-03A
Sample wt/vol: 5.	00 (g/mL) M	1L	Lab File ID:	V1K1371.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/06/2008
% Moisture: not dec.			Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0).25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	1.2	J
591-78-6	2-Hexanone	5.0	U_
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	ט
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	Ū · ·
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	Ŭ
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U .
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SMS-MW-3

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2029-03A
Sample wt/vol: (g/mL)	Lab File ID: V1K1371.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/06/2008
% Moisture: not dec.	Date Analyzed: 11/12/2008
GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0
Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/	L Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E966796 ¹ Total Alkanes	N/A

E966796 TOTAL AIRCING

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-4

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: MITKEM Case No.:		Mod. Ref No.:	SDG No.: MG2029	
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2029-04A	
Sample wt/vol: 5.00 (g/mL) ML		Lab File ID:	V1K1372.D	
Level: (TRACE/LOW/MED) LOW		Date Received:	11/06/2008	
% Moisture: not dec.		Date Analyzed:	11/12/2008	
GC Column: DB-624 ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Volu	1me:	(uL)
Purge Volume: 5.0	(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	UU
75-01-4	Vinyl chloride	5.0	υ
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	1.4	J
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-4

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER	WATER		Lab Sample ID:	G2029-04A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1372.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/06/2008
% Moisture: not dec.			Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	· ·	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U ·
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U ·
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	Ū.
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U ·
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	Ū.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-4

TENTATIVELY	IDENTIFIED	COMPOUNDS

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2029-04A
Sample wt/vol: (g/mL)	Lab File ID: V1K1372.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/06/2008
% Moisture: not dec.	Date Analyzed: 11/12/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q

N/A

E966796¹Total Alkanes ¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

1	SMS-MW-5	

Lab Name: MIT	KEM LABORA	TORIES			Contract:	· · · · · · · · · · · · · · · · · · ·
Lab Code: MIT	KEM	Case No.:		1.	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL,	/SED/WATER)	WATER			Lab Sample ID:	G2029-05A
Sample wt/vol	5.0	0 (g/mL)	ML		Lab File ID:	V1K1373.D
Level: (TRACE,	/LOW/MED)	LOW			Date Received:	11/06/2008
% Moisture: no	ot dec.				Date Analyzed:	11/12/2008
GC Column: DI	3-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract V	/olume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume:	5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ŭ
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-5

Lab Name: MITKEM LABC	RATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATE	CR) WATER	Lab Sample ID:	G2029-05A
Sample wt/vol:	.00 (g/mL) ML	Lab File ID:	V1K1373.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/06/2008
% Moisture: not dec.	·	Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0		(mL)	

		CONCENTRATION UNITS.	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	υ
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U ·
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO. SMS-MW-5

Lab Name:	MITKEM LABORAT	DRIES			Contract:		
Lab Code:	MITKEM C	ase No.:			Mod. Ref No.:	SDG No.: MG2029	
Matrix: (Se	OIL/SED/WATER)	WATER			Lab Sample ID:	G2029-05A	
Sample wt/	vol: 5.00	(g/mL)	ML		Lab File ID:	V1K1373.D	
Level: (TR	ACE or LOW/MED)	LOW			Date Received:	11/06/2008	
% Moisture	: not dec.	-			Date Analyzed:	11/12/2008	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRAT	ION UNITS: (ug/	L or ug/K	(g) I	UG/L	Purge Volume: 5.	0	(mL)
CAS NUN	1BER	COMPOUND	NAME		RT	EST. CONC. Q	2
E96	6796 ¹ Total Alka	ines			N/A		

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

ET TB-1

Lab Name: MITKEM LABOR	ATORIES			Contract:			
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No	.: MG2029	
Matrix: (SOIL/SED/WATER	R) WATER			Lab Sample ID:	G2029-06A		
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1322.D		
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/06/2008		
% Moisture: not dec.				Date Analyzed:	11/10/2008		
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0		
Soil Extract Volume: _			(uL)	Soil Aliquot Vol	ume:		(uL)
Purge Volume: 5.0			(mL)				

		CONCENTRATION UNITS.	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U .
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

TB-1

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: SDG No.: MG2029 Mod. Ref No.: Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: G2029-06A Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V1K1322.D Date Received: 11/06/2008 Level: (TRACE/LOW/MED) LOW Date Analyzed: 11/10/2008 % Moisture: not dec. GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 (uL) Soil Extract Volume: (uL) Soil Aliquot Volume: Purge Volume: 5.0 (mL)

· · · · · · · · · · · · · · · · · · ·		CONCENTRATION JINIT	.	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		5.0	U
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene		5.0	U
1330-20-7	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
75-25-2	Bromoform		5.0	U ·
98-82-8	Isopropylbenzene		5.0	U .
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U
108-86-1	Bromobenzene		5.0	U
96-18-4	1,2,3-Trichloropropane	······································	5.0	U
103-65-1	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	U
· 108-67-8	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene	·	5.0	U
95-63-6	1,2,4-Trimethylbenzene		5.0	U
135-98-8	sec-Butylbenzene	-	5.0	U
99-87-6	4-Isopropyltoluene		5.0	U ·
541-73-1	1,3-Dichlorobenzene		5.0	U
106-46-7	1,4-Dichlorobenzene		5.0	U
104-51-8	n-Butylbenzene		5.0	U
95-50-1	1,2-Dichlorobenzene	·	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane		5.0	U
120-82-1	1,2,4-Trichlorobenzene	······	5.0	U
87-68-3	Hexachlorobutadiene	· · ·	5.0	U
87-61-6	1,2,3-Trichlorobenzene		5.0	U
91-20-3	Naphthalene		5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED

CLIENT SAMPLE NO.

	COME		ng i	
J	U.U.//Y/P	A 71 JIMI	1.5	

TB-1	

Lab N	ame:	MITKEM LAP	BORATO	DRIES			Contract:	-	
Lab C	ode:	MITKEM	Ca	ase No.:			Mod. Ref No.:	SDG No.:	MG2029
Matri	x: (S	OIL/SED/WA	TER)	WATER		,	Lab Sample ID:	G2029-06A	
Sampl	e wt/	vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1322.D	
Level	: (TR	ACE or LOW	/MED)	LOW			Date Received:	11/06/2008	
% Moi	sture	: not dec.					Date Analyzed:	11/10/2008	
GC Co	lumn:	DB-624		ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil	Extra	ct Volume:				(uL)	Soil Aliquot Vol	ume:	(uL)
CONCE	NTRAT	ION UNITS:	(ug/I	L or ug/K	(g)	UG/L	Purge Volume: 5	.0	(mL)
CI	AS NUN	MBER		COMPOUND	NAME		RT	EST. CONC.	. Q
	E96	6796 ¹ Total	Alka	nes		· · · · · · · · · · · · · · · · · · ·	N/A		

E966796¹Total Alkanes ¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-6D

Lab Name: MITKEM LABOR	ATORIES	-	Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2029-07A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1374.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/06/2008
% Moisture: not dec.			Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U ·
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U ·
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ū
79-00-5	1,1,2-Trichloroethane	5.0	Ū
142-28-9	1,3-Dichloropropane	5.0	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

SMS-MW-6D

Lab Name: MITKEM LABOR	ATORIES		Contract:		
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	G2029-07A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1374.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/06/2008
% Moisture: not dec.				Date Analyzed:	11/12/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTER A TON UNITED	T
CAS NO	COMPOUND	(UG/I or UG/Ka)	
0110 110.			V V
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	Ū
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	Ū
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	Ū
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U .
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	Ū
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U
CLIENT SAMPLE NO. SMS-MW-6D

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2029-07A
Sample wt/vol: (g/mL) ML	Lab File ID: V1K1374.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/06/2008
% Moisture: not dec.	Date Analyzed: 11/12/2008
GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0
Soil Extract Volume: (uI) Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E966796 ¹ Total Alkanes	N/A

E966796 TOTAL AIRANGE ¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-6S

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER	.) WATER			Lab Sample ID:	G2029-08A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1375.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/06/2008
% Moisture: not dec.				Date Analyzed:	11/12/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	, Q
75-71-8	Dichlorodifluoromethane	5.0	ט (
74-87-3	Chloromethane	5.0	U . (
75-01-4	Vinyl chloride	5.0) U
74-83-9	Bromomethane	5.0	U (
75-00-3	Chloroethane	5.0) <u> </u> U
75-69-4	Trichlorofluoromethane	5.0) U
75-35-4	1,1-Dichloroethene	5.0) U
67-64-1	Acetone	5.0) U
74-88-4	Iodomethane	5.0) U
75-15-0	Carbon disulfide	5.0	U (
75-09-2	Methylene chloride	5.0	U (
156-60-5	trans-1,2-Dichloroethene	5.0	U (
1634-04-4	Methyl tert-butyl ether	5.0	U (
75-34-3	1,1-Dichloroethane	5.0	U U
108-05-4	Vinyl acetate	5.0	ט (
78-93-3	2-Butanone	5.0	ט (
156-59-2	cis-1,2-Dichloroethene	5.0	ט (
594-20-7	2,2-Dichloropropane	5.0	ט נ
74-97-5	Bromochloromethane	5.(U (
67-66-3	Chloroform	5.0	U (
71-55-6	1,1,1-Trichloroethane	5.0) U (
563-58-6	1,1-Dichloropropene	5.0	U (
56-23-5	Carbon tetrachloride	5.0	U (
107-06-2	1,2-Dichloroethane	5.0	ט (
71-43-2	Benzene	5.0	U (
79-01-6	Trichloroethene	5.0) U - 1
78-87-5	1,2-Dichloropropane	5.0	U (
74-95-3	Dibromomethane	5.0	ט (
75-27-4	Bromodichloromethane	5.0) U
10061-01-5	cis-1,3-Dichloropropene	5.0) U
108-10-1	4-Methyl-2-pentanone	5.0	ט נ
108-88-3	Toluene	5,0) די
10061-02-6	trans-1,3-Dichloropropene	5.0) U
79-00-5	1,1,2-Trichloroethane	5.0	U (
142-28-9	1,3-Dichloropropane	5.0	D U

CLIENT SAMPLE NO.

SMS-MW-6S

Lab Name: MITK	em laborat	ORIES			Contract:		
Lab Code: MITK	EM C	Case No.:			Mod. Ref No.:	SDG No.: MG2029	
Matrix: (SOIL/S	ED/WATER)	WATER			Lab Sample ID:	G2029-08A	
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1375.D	
Level: (TRACE/L	OW/MED) I	MOL			Date Received:	11/06/2008	
% Moisture: not	dec.			· .	Date Analyzed:	11/12/2008	
GC Column: DB-	624	ID:	0.25	(mm)	Dilution Factor:	1.0	-
Soil Extract Vo	lume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume:	5.0			(mL)			

		CONCENTRATION UNITS.	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	1.1	J
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	1.2	J
1330-20-7	m,p-Xylene	4.1	J
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	4.1	J
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	1.6	J
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	2.0	J
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	11	
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	Ū
95-63-6	1,2,4-Trimethylbenzene	21	
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	1.7	J
106-46-7	1,4-Dichlorobenzene	3.2	J
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO.

SMS-MW-6S

Lab Name: MITK	EM LABORATO	RIES			Contract:		· · · ·	
Lab Code: MITK	EM Ca	ase No.:			Mod. Ref No.:		SDG No.:	MG2029
Matrix: (SOIL/S	ED/WATER)	WATER			Lab Sample ID:	G2029-08A	, [•]	
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1375.D		
Level: (TRACE c	r LOW/MED)	LOW			Date Received:	11/06/200	8	
% Moisture: not	dec.				Date Analyzed:	11/12/200	8	
GC Column: DB-	624	ID:	0.25	(mm)	Dilution Factor	1.0		
Soil Extract Vo	lume:			(uL)	Soil Aliquot Vol	Lume:		(uL)
CONCENTRATION U	NITS: (ug/I	or ug/K	ig) (JG/L	Purge Volume: 5	.0	- <u>.</u>	(mL)
CAS NUMBER	1	COMPOUND	NAME		RT	EST. CO	DNC.	Q
01 620-14-4	Benzene, 1	-ethyl-3	-methyl	L-	11.462		0	NJ

N/A

01

620-14-4 Benzene, 1-ethyl-3-methyl-E966796¹Total Alkanes ¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-7

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2029-09A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1376.D
Level: (TRACE/LOW/MED) LOW	Date Received: 11/06/2008
% Moisture: not dec.	Date Analyzed: 11/12/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
Purge Volume: 5.0 (mL)	

		CONCENTRATION UNIT	5:	Ι
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromothano		5.0	тт
71-87-3	Chloromethane		5.0	
75-01-4	Vinvl chloride		5.0	
71-83-9	Bromomethane		5.0	17
75-00-3	Chloroethane		5.0	11
75-69-4	Trichlorofluoromethane		5.0	
75-35-4	1 1-Dichloroethene	· · · · · · · · · · · · · · · · · · ·	5.0	
67-64-1	Acetone		5.0	
74-88-4	Todomethane		5.0	11
75-15-0	Carbon disulfide		5.0	11
75-09-2	Methylene chloride		5.0	11
156-60-5	trans-1.2-Dichloroethene		5.0	11
1634-04-4	Methyl tert-butyl ether		5.0	11
75-34-3	1.1-Dichloroethane		23	UT I
108-05-4	Vinvl acetate		5.0	11
78-93-3	2-Butanone		5.0	Ū
156-59-2	cis-1,2-Dichloroethene		5.0	U
594-20-7	2,2-Dichloropropane		5.0	U.
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		5.0	U
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
74-95-3	Dibromomethane	······································	5.0	U
75-27-4	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
108-10-1	4-Methyl-2-pentanone	,	5.0	U
108-88-3	Toluene		5.0	U
10061-02-6	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

CLIENT SAMPLE NO.

SMS-MW-7

Lab Name: MITKEM LABORATORIES		Contract:	
Lab Code: MITKEM Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2029-09A
Sample wt/vol: 5.00 (g/mL) ML		Lab File ID:	V1K1376.D
Level: (TRACE/LOW/MED) LOW		Date Received:	11/06/2008
% Moisture: not dec.		Date Analyzed:	11/12/2008
GC Column: DB-624 ID: 0.2	25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	(mL)		

		CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q .
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U.
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	. 5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U ·
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U ·
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U .
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2029-09A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1376.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/06/2008
% Moisture: not dec.	Date Analyzed: 11/12/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-7

CLIENT SAMPLE NO.

SMS-MW-1

Lab Name: MITK	EM LABORATO	RIES			Contract:		
Lab Code: MITK	ÉM Ca	ase No.:			Mod. Ref No.:	SDG No.:	MG2029
Matrix: (SOIL/S	ED/WATER)	WATER	÷		Lab Sample ID:	G2029-10A	
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1377.D	· ·
Level: (TRACE/I	OW/MED) LO	W			Date Received:	11/06/2008	
% Moisture: not	dec.				Date Analyzed:	11/12/2008	
GC Column: DB-	624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Vo	lume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume:	5.0			(mL)			

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U ·
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U ·
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

SMS-MW-1

Lab Name: MITKEM LABOR	MITKEM LABORATORIES			· · · · · · · · · · · · · · · · · · ·
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATEF	X) WATER		Lab Sample ID:	G2029-10A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1377.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/06/2008
% Moisture: not dec.			Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25	(mm).	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		· · ·

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U.
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	Ų
98-82-8	Isopropylbenzene	5.0	Ū .
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	Ū
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO.

SMS-MW-1

Lab Name: MITKEM LABORATORIES	Contract:		
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2029	
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	G2029-10A	
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	V1K1377.D	
Level: (TRACE or LOW/MED) LOW	Date Received:	11/06/2008	
% Moisture: not dec.	Date Analyzed:	11/12/2008	
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor:	1.0	
Soil Extract Volume: (uL)	Soil Aliquot Volu	ume: (uL)	
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.	0 (mL)	
CAS NUMBER COMPOUND NAME	RT	EST. CONC. Q	
E966796 ¹ Total Alkanes	N/A		

E966796 TOLAL ALKUNCE ¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-17

Lab Name: MITKEM	LABORATOR	IES			Contract:			
Lab Code: MITKEM	Cas	se No.:			Mod. Ref No.:	SD	G No.:	MG2029
Matrix: (SOIL/SED	/WATER) V	WATER			Lab Sample ID:	G2029-11A		
Sample wt/vol:	5.00	(g/mL)	ML		Lab File ID:	V1K1378.D		
Level: (TRACE/LOW	/MED) LOW	1			Date Received:	11/07/2008		
% Moisture: not d	ec				Date Analyzed:	11/12/2008		
GC Column: DB-62	4	ID:	0.25	(mm)	Dilution Factor:	1.0		
Soil Extract Volu	me:			(uL)	Soil Aliquot Vol	ume:		(uL
Purge Volume: 5.	0			(mL)				

· · · · · · · · · · · · · · · · · · ·		CONCENTRATION UNITS:	T
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U ·
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U .
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

SMS-MW-17

SHEET

Lab Name: MITKEM LABO	RATORIES			Contract:		· · · ·
Lab Code: MITKEM	Case No.	•		Mod. Ref No.:	SDG No.:	MG2029
Matrix: (SOIL/SED/WATE	R) WATER			Lab Sample ID:	G2029-11A	
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V1K1378.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/07/2008	
% Moisture: not dec.	MEMIA 81 4 - 4			Date Analyzed:	11/12/2008	
GC Column: DB-624	ID	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

		CONCENTRATION UNITS:		· · · · · ·
CAS NO.	COMPOUND	(ug/L or ug/Kg)	G/L	Q
127-18-4	Tetrachloroethene		5.0	U
591-78-6	2-Hexanone		5.0	U.
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	U
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	U
95-47-6	o-Xylene		5.0	U
1330-20-7	Xylene (Total)		5.0	υ
100-42-5	Styrene		5.0	U
75 - 25-2	Bromoform		5.0	U
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U
108-86-1	Bromobenzene	· · · · · · · · · · · · · · · · · · ·	5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	U
103-65-1	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	U
108-67-8	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene		5.0	U
95-63-6	1,2,4-Trimethylbenzene		5.0	U
135-98-8	sec-Butylbenzene		5.0	U
99-87-6	4-Isopropyltoluene		5.0	U
541-73-1	1,3-Dichlorobenzene		5.0	U.
106-46-7	1,4-Dichlorobenzene		5.0	U
104-51-8	n-Butylbenzene		5.0	U ·
95-50-1	1,2-Dichlorobenzene		5.0	U
96-12-8	1,2-Dibromo-3-chloropropane		5.0	U
120-82-1	1,2,4-Trichlorobenzene		5.0	U
87-68-3	Hexachlorobutadiene		5.0	U
87-61-6	1,2,3-Trichlorobenzene		5.0	U
91-20-3	Naphthalene		5.0	TT

CLIENT SAMPLE NO.

SMS-MW-17

Lab Name: MITKEM LABORATORIES		Contract:	· · ·			
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (S	OIL/SED/WATER)	WATER			Lab Sample ID:	G2029-11A
Sample wt/	vol: 5.00	(g/mL)	ML		Lab File ID:	V1K1378.D
Level: (TR	ACE or LOW/MED)	LOW			Date Received:	11/07/2008
% Moisture	: not dec.				Date Analyzed:	11/12/2008
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extra	ct Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
CONCENTRAT	ION UNITS: (ug/	L or ug/k	(g) (JG/L	Purge Volume: 5	.0
CAS NUN	MBER	COMPOUND	NAME		RT	EST. CONC. Q
E96	6796 ¹ Total Alk	anes			N/A	

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-16S

Lab Name: MITKEM LABORA	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2029-12A
Sample wt/vol: 5.0	00 (g/mL) ML		Lab File ID:	V1K1379.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/07/2008
% Moisture: not dec.			Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

	· · · · · · · · · · · · · · · · · · ·	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	Ū
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

SMS-MW-16S

Lab Name: MITKEM LABORA	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	G2029-12A
Sample wt/vol: 5.0)0 (g/mL) ML	Lab File ID:	V1K1379.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/07/2008
% Moisture: not dec.		Date Analyzed:	11/12/2008
GC Column: DB-624	ID: 0.25 (mm) Dilution Factor:	1.0
Soil Extract Volume:	(uL) Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0	. (mL)	

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/	L	Q
127-18-4	Tetrachloroethene	5.	0	U
591-78-6	2-Hexanone	5.	0	U
124-48-1	Dibromochloromethane	5.	0	U
106-93-4	1,2-Dibromoethane	5.	0	U
108-90-7	Chlorobenzene	5.	0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.	0	U
100-41-4	Ethylbenzene	5.	0	Ŭ
1330-20-7	m,p-Xylene	5.	0	U
95-47-6	o-Xylene	5.	0	U
1330-20-7	Xylene (Total)	5.	0	U
100-42-5	Styrene	5.	0	υ
75-25-2	Bromoform	5.	0	υ
98-82-8	Isopropylbenzene	5.	0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.	0	U
108-86-1	Bromobenzene	5.	0	U
96-18-4	1,2,3-Trichloropropane	5.	0	U
103-65-1	n-Propylbenzene	5.	0	U
95-49-8	2-Chlorotoluene	5.	0	U
108-67-8	1,3,5-Trimethylbenzene	5.	0	U
106-43-4	4-Chlorotoluene	5.	0	U
98-06-6	tert-Butylbenzene	5.	0	U
95-63-6	1,2,4-Trimethylbenzene	5.	0	U
135-98-8	sec-Butylbenzene	5.	0	U ·
99-87-6	4-Isopropyltoluene	5.	0	U
541-73-1	1,3-Dichlorobenzene	5.	0	U
106-46-7	1,4-Dichlorobenzene	5.	0	U
104-51-8	n-Butylbenzene	5.	0	Ū
95-50-1	1,2-Dichlorobenzene	5.	0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.	0	U
120-82-1	1,2,4-Trichlorobenzene	5.	0	U
87-68-3	Hexachlorobutadiene	5.	0	U
87-61-6	1,2,3-Trichlorobenzene	5.	0	U
91-20-3	Naphthalene	5.	0	U

CLIENT SAMPLE NO.

SMS-MW-16S

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2029-12A
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID: V1K1379.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/07/2008
% Moisture: not dec.	Date Analyzed: 11/12/2008
GC Column: DB-624 ID: 0.25 (1	mm) Dilution Factor: 1.0
Soil Extract Volume:()	uL) Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/I	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-16M

Lab Name:	MITKEM LABORA	ATORIES			Contract:	
Lab Code:	MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SO)IL/SED/WATER)	WATER	5	,	Lab Sample ID:	G2029-13A
Sample wt/v	rol: 5.0)0 (g/mL)	ML		Lab File ID:	V1K1515.D
Level: (TRA	ACE/LOW/MED)	LOW			Date Received:	11/07/2008
% Moisture:	not dec.	•			Date Analyzed:	11/15/2008
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extrac	t Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volum	ie: 5.0			(mL)		

		CONCENTRATION UNITS.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	JG/L	° Q
75-71-8	Dichlorodifluoromethane		5.0	U
74-87-3	Chloromethane	· · · ·	5.0	U
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene	· · · · · · · · · · · · · · · ·	5.0	U
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane	· · · · · · · · · · · · · · · · · · ·	5.0	U
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		5.0	U
594-20-7	2,2-Dichloropropane		5.0	U .
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		1.3	J
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	Ŭ
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U .
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
74-95-3	Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
108-88-3	Toluene		5.0	U
10061-02-6	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

CLIENT SAMPLE NO.

SMS-MW-16M

Lab Name: MITKEM LABORA	TORIES	Contr	act:	
Lab Code: MITKEM	Case No.:	Mod.	Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER)	WATER	Lab S	ample ID:	G2029-13A
Sample wt/vol: 5.0	0 (g/mL) ML	Lab E	ile ID:	V1K1515.D
Level: (TRACE/LOW/MED)	LOW	Date	Received:	11/07/2008
% Moisture: not dec.		Date	Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25	(mm) Dilut	ion Factor:	1.0
Soil Extract Volume:		(uL) Soil	Aliquot Volu	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U .
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U ·
95-49-8	2-Chlorotoluene	5.0	U ·
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO. SMS-MW-16M

Lab Name: MITKEM LABORATOR	RIES	Contract:	
Lab Code: MITKEM Cas	se No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER)	WATER	Lab Sample ID:	G2029-13A
Sample wt/vol: 5.00	(g/mL) <u>ML</u>	Lab File ID:	V1K1515.D
Level: (TRACE or LOW/MED)	LOW	Date Received:	11/07/2008
% Moisture: not dec.		Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volu	ume:(uL)
CONCENTRATION UNITS: (ug/L	or ug/Kg) UG/L	Purge Volume: 5.	0 (mL)
CAS NUMBER C	OMPOUND NAME	RT	EST. CONC. O

Unknown-01 E966796¹Total Alkanes ¹EPA-designated Registry Number. 01 12.757 36 J N/A

CLIENT SAMPLE NO.

SMS-MW-16D

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2029-14A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1510.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/07/2008
% Moisture: not dec.			Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.2	25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinvl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U .
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U.
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	υ
79-01-6	Trichloroethene	5.0	Ū .
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	Ū
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone		
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

SMS-MW-16D

Lab Name: MITKEM LABORATORIES	3	Contract:	
Lab Code: MITKEM Case 1	No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WAT	ER	Lab Sample ID:	G2029-14A
Sample wt/vol: 5.00 (g/	mL) <u>ML</u>	Lab File ID:	V1K1510.D
Level: (TRACE/LOW/MED) LOW		Date Received:	11/07/2008
% Moisture: not dec.		Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 5.0	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4 ·	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene		U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO. SMS-MW-16D

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2029-14A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1510.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/07/2008
% Moisture: not dec.	Date Analyzed: 11/15/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uI
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mI
CAS NUMBER COMPOUND NAME	

	CAS NUMBER	COMPOUND NAME		RT	EST. CONC.	Q
01		Unknown-01	Ì	12.757	29	J
	E9667961	Total Alkanes		N/A		

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-15

Lab Name: MITKEM LABOF	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER	R) WATER		Lab Sample ID:	G2029-15A
Sample wt/vol: 5.	00 (g/mL)	ML	Lab File ID:	V1K1511.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/07/2008
% Moisture: not dec.	· ·		Date Analyzed:	11/15/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS.	T
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	0
			×
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	υ
75-01-4	Vinyl chloride	5.0	υ
74-83-9	Bromomethane	5.0	υ
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U.
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	υ
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone		U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

SMS-MW-15

Tab News MERICAL TROOP				~	
Lab Name: MITKEM LABORA	ATORIES			Contract:	· · · · · · · · · · · · · · · · · · ·
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	G2029-15A
Sample wt/vol: 5.0	00 (g/mL)	ML		Lab File ID:	V1K1511.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/07/2008
% Moisture: not dec.				Date Analyzed:	11/15/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U · U
99-87-6	4-Isopropyltoluene	5.0	U ·
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U.
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO.

SMS-MW-15

Lab Name:	MITKEM LABORA	TORIES		Contract:			
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:	No.: SDG No.: MG20		
Matrix: (S	SOIL/SED/WATER) WATER		Lab Sample ID:	G2029-15A		
Sample wt/	/vol:5.()0 (g/mL)	ML	Lab File ID:	V1K1511.D		
Level: (TH	RACE or LOW/ME	D) LOW	<u>_</u>	Date Received:	11/07/2008		
% Moisture	e: not dec.			Date Analyzed:	11/15/2008		
GC Column:	DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0		
Soil Extra	act Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)	
CONCENTRAT	TION UNITS: (uc	g/L or ug/H	(g) UG/L	Purge Volume: 5.	0	(mL)	
CAS NU	MBER	COMPOUNE	NAME	RT	EST. CONC.	Q	
01	Unknown-	01		12.763	33	J	
E96	66796 ¹ Total Al	kanes		N/A			
¹ EPA-d	esignated Regi	stry Numbe	r.	······································			

SW846

CLIENT SAMPLE NO.

SMS-MW-9

Contract: Lab Name: MITKEM LABORATORIES Lab Code: MITKEM Case No.: SDG No.: MG2029 Mod. Ref No.: Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: G2029-16A Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V1K1512.D Level: (TRACE/LOW/MED) LOW Date Received: 11/07/2008 Date Analyzed: 11/15/2008 % Moisture: not dec. GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 (uL) Soil Aliquot Volume: Soil Extract Volume: (uL) Purge Volume: 5.0 (mL)

	I	CONCENTRATION UNITS.	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	· Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	Ū.
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U.
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U.
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	. 5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

SMS-MW-9

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	G2029-16A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1512.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/07/2008
% Moisture: not dec.				Date Analyzed:	11/15/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	, Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	Ŭ
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U.
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	Ŭ
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO.

SMS-MW-9

Lab	Name:	MITKEM L	ABORATC	DRIES		Со	ntract:				
Lab	Çode:	MITKEM	Ca	ase No.:		Мо	d. Ref No.:	-	SDG No.:	MG20	29
Mat	rix: (S	SOIL/SED/W	ATER)	WATER		La	b Sample ID:	G2029-16	A		
Sam	ple wt/	vol:	5.00	(g/mL)	ML	La	b File ID:	V1K1512.	D		
Lev	el: (TF	RACE or LO	W/MED)	LOW		Da	te Received:	11/07/20	08		
8 M	oisture	e: not dec	•			Da	te Analyzed:	11/15/20	08		
GC	Column:	DB-624		ID:	0.25 (mm)	Di	lution Factor	1.0			-
Soi	l Extra	act Volume	:		(uL)	So	il Aliquot Vo	lume:			(uL)
CON	CENTRAT	TION UNITS	: (ug/I	」 or ug∕H	(g) UG/L	Pu	rge Volume:	5.0			(mL)
	CAS NU	MBER		COMPOUNE	NAME		RT	EST.	CONC.		Q
01		Unkı	nown-01				12.757		28	J	
	E96	66796 ¹ Tota	al Alka	nes			N/A				
	¹ EPA-d	lesignated	Regist	ry Numbe	er.						

CLIENT SAMPLE NO.

SMS-MW-66M

	TOPTO					
Lab Name: MITKEM LABOR	ATORIES			Contract:	·	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.:	MG2029
Matrix: (SOIL/SED/WATER	() WATER			Lab Sample ID:	G2029-17A	
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1513.D	
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/07/2008	-
% Moisture: not dec.		· .		Date Analyzed:	11/15/2008	
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	- · · ·		(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume: 5.0			(mL)			

		CONCENTRATION UNITS	z •	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		5.0	U
74-87-3	Chloromethane	· · · · · · · · · · · · · · · · · · ·	5.0	U
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		. 5.0	U
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	U
108-05-4	Vinyl acetate		5.0	Ū
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		5.0	U
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		1.4	J
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	Ū
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
74-95-3	Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
108-10-1	4-Methyl-2-pentanone	······································	5.0	U
108-88-3	Toluene		5.0	U
10061-02-6	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	υ

CLIENT SAMPLE NO.

SMS-MW-66M

Lab Name: MITKEM LABO	RATORIES	×	Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATE	R) WATER		Lab Sample ID:	G2029-17A
Sample wt/vol: 5	.00 (g/mL) ML		Lab File ID:	V1K1513.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/07/2008
% Moisture: not dec.			Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U .
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	ט
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO. SMS-MW-66M

34

J

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2	2029-17A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1	1K1513.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11	1/07/2008
% Moisture: not dec.	Date Analyzed:	1/15/2008
GC Column: DB-624 ID: 0.25 (r	nm) Dilution Factor:	1.0
Soil Extract Volume:(1	1L) Soil Aliquot Volume	e: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/I	Purge Volume: 5.0	(mL)
CAS NUMBER COMPOUND NAME	RT	EST. CONC. Q

12.756

N/A

01

Unknown-01

E966796¹Total Alkanes ¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

	TB-2

Lab Name: MITKEM LABORATORIES	Cont	ract:	
Lab Code: MITKEM Case No.:	Mod	Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab	Sample ID:	G2029-18A
Sample wt/vol: 5.00 (g/mL) ML	Lab	File ID:	V1K1508.D
Level: (TRACE/LOW/MED) LOW	Date	e Received:	11/07/2008
% Moisture: not dec.	Date	e Analyzed:	11/15/2008
GC Column: DB-624 ID: 0.25	5 (mm) Dilu	tion Factor:	1.0
Soil Extract Volume:	(uL) Soil	. Aliquot Volu	ume: (uL)
Purge Volume: 5.0	(mL)		

	l	CONCENTRATION UNITS.	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	U
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U
156-59-2	cis-1,2-Dichloroethene	5.0	Ū
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	Ū
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

TB-2

Lab Name: M	ITTKEM LABORA	TORIES			Contract.		
Lab Code: M	IITKEM	Case No.:	<u> </u>		Mod. Ref No.:	SDG No.:	MG2029
Matrix: (SOI	L/SED/WATER)	WATER			Lab Sample ID:	G2029-18A	
Sample wt/vo	ol: <u> </u>	00 (g/mL)	ML		Lab File ID:	V1K1508.D	
Level: (TRAC	CE/LOW/MED)	LOW			Date Received:	11/07/2008	
% Moisture:	not dec.				Date Analyzed:	11/15/2008	
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0	
Soil Extract	Volume:			(uL)	Soil Aliquot Vol	ume:	(uL)
Purge Volume	e: 5.0			(mL)			

		CONCENTRATION UNITS.	T1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	Ū
591-78-6	2-Hexanone	5.0	Ū
124-48-1	Dibromochloromethane	5.0	Ū
106-93-4	1,2-Dibromoethane	5.0	Ū
108-90-7	Chlorobenzene	5.0	Ū
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U ,
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	ט
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U .
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87 - 6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	1.7	BJ
91-20-3	Naphthalene	1.2	BJ

CLIENT SAMPLE NO.

TB-2

31

IJ

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G2029-18A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K1508.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/07/2008
% Moisture: not dec.	Date Analyzed: 11/15/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q

12.762

N/A

01

Unknown-01

¹EPA-designated Registry Number.

E966796¹Total Alkanes

CLIENT SAMPLE NO.

SMS-MW-14

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER	WATER		Lab Sample ID:	G2029-19A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1514.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/08/2008
% Moisture: not dec.	·		Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

	CONCENTRATION UNITS:			
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75 71 0	Dighlomodifluoromothono		E O	77
75-71-0			5.0	U
74-87-3	Unioromethane		5.0	U
75-01-4	Vinyi chloride		5.0	U
/4-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U .
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	U
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		5.0	U
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		5.0	U
71-55-6	1,1,1-Trichloroethane	· · · · · · · · · · · · · · · · · · ·	5.0	Ū
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
74-95-3	Dibromomethane	······································	5.0	Ū
75-27-4	Bromodichloromethane	······································	5.0	U
10061-01-5	cis-1.3-Dichloropropene		5.0	[]
108-10-1	4-Methyl-2-pentanone		5.0	Ū
108-88-3	Toluene		5.0	Ū
10061-02-6	trans-1.3-Dichloropropene		5.0	
79-00-5	1 1 2-Trichloroethane		5.0	
142-28-9	1.3-Dichloropropane		5.0	Ŭ

CLIENT SAMPLE NO.

SMS-MW-14

Lab Name: MITKEM LABORATORIES		Contract:		
Lab Code: MITKEM Case No.:		Mod. Ref No.:	SDG No.: MG2029	
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID:	G2029-19A		
Sample wt/vol: 5.00 (g/mL) ML		Lab File ID:	V1K1514.D	
Level: (TRACE/LOW/MED) LOW		Date Received:	11/08/2008	
% Moisture: not dec.		Date Analyzed:	11/15/2008	
GC Column: DB-624 ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)	
Purge Volume: 5.0	(mL)			

		CONCENTRATION UNIT	CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q	
127-18-4	Tetrachloroethene		5.0	U	
591-78-6	2-Hexanone		5.0	U	
124-48-1	Dibromochloromethane	· · · ·	5.0	U	
106-93-4	1,2-Dibromoethane		5.0	U	
108-90-7	Chlorobenzene		5.0	U ·	
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U	
100-41-4	Ethylbenzene		5.0	U	
1330-20-7	m,p-Xylene		5.0	U	
95-47-6	o-Xylene	· .	5.0	U	
1330-20-7	Xylene (Total)		5.0	U	
100-42-5	Styrene	· · · ·	5.0	U	
75-25-2	Bromoform		5.0	U	
.98-82-8	Isopropylbenzene		5.0	U	
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U	
108-86-1	Bromobenzene		5.0	U	
96-18-4	1,2,3-Trichloropropane		5.0	U	
103-65-1	n-Propylbenzene		5.0	U	
95-49-8	2-Chlorotoluene		5.0	U	
108-67-8	1,3,5-Trimethylbenzene		5.0	U	
106-43-4	4-Chlorotoluene		5.0	U	
98-06-6	tert-Butylbenzene		5.0	Ŭ	
95-63-6	1,2,4-Trimethylbenzene		5.0	U	
135-98-8	sec-Butylbenzene		5.0	U	
99-87-6	4-Isopropyltoluene		5.0	U	
541-73-1	1,3-Dichlorobenzene		5.0	U	
106-46-7	1,4-Dichlorobenzene		5.0	U	
104-51-8	n-Butylbenzene		5.0	U	
95-50-1	1,2-Dichlorobenzene		5.0	U	
96-12-8	1,2-Dibromo-3-chloropropane		5.0	U	
120-82-1	1,2,4-Trichlorobenzene		5.0	U	
87-68-3	Hexachlorobutadiene		5.0	U	
87-61-6	1,2,3-Trichlorobenzene		5.0	U	
91-20-3	Naphthalene		5.0	U	
CLIENT SAMPLE NO. SMS_MM_1/

SMS-MW-14

30

J

I

Lab Name: MITKEM LABORATO	RIES		Contract:	
Lab Code: MITKEM Ca	.se No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2029-19A
Sample wt/vol: 5.00	(g/mL) <u>ML</u>		Lab File ID:	V1K1514.D
Level: (TRACE or LOW/MED)	LOW		Date Received:	11/08/2008
% Moisture: not dec.			Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
CONCENTRATION UNITS: (ug/L	or ug/Kg) UG	3/L	Purge Volume: 5.	0 (mL)
CAS NUMBER	COMPOUND NAME	<u></u>	RT	EST. CONC. O

12.762

N/A

01

Unknown-01

E966796¹Total Alkanes ¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

TB-3

Ich Nome, MIERPM INDOD				C and here when	
Lab Name: MITKEM LABOR	ATORIES			contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER			Lab Sample ID:	G2029-20A
Sample wt/vol: 5.	00 (g/mL)	ML		Lab File ID:	V1K1509.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/08/2008
% Moisture: not dec.				Date Analyzed:	11/15/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	· · · · ·		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

r		CONCENTRATION UNITE.	T
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	U
74-87-3	Chloromethane	5.0	Ū
75-01-4	Vinyl chloride	5.0	U
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	υ
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	υ
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	Ū
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	Ū
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	Ū
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	Ū
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

TB-3

Lab Name: MITKEM LABORA	TORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER)	WATER	•	Lab Sample ID:	G2029-20A
Sample wt/vol: 5.0	0 (g/mL) ML		Lab File ID:	V1K1509.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/08/2008
% Moisture: not dec.			Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.	25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		· · · · · · · · · · · · · · · · · · ·

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	. 5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO.

TB-3

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	Lab Sample ID: G20	29-20A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID: V1K	1509.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/	08/2008
% Moisture: not dec.	Date Analyzed: 11/	15/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.	0
Soil Extract Volume: (uL)	Soil Aliquot Volume:	(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	Purge Volume: 5.0	(mL)
CAS NUMPER COMPOUND NAME		

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown-01	12.756	27	J
	E966796 ¹	Total Alkanes	N/A		
	1				

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-13S

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATEF	R) WATER		Lab Sample ID:	G2029-21A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1516.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/08/2008
% Moisture: not dec.	· · · · ·		Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-8	Dichlorodifluoromethane	5.0	TT
74-87-3	Chloromethane	5.0	11
75-01-4	Vinyl chloride	5.0	11
74-83-9	Bromomethane	5.0	U
75-00-3	Chloroethane	5.0	Ū
75-69-4	Trichlorofluoromethane	5.0	U
75-35-4	1,1-Dichloroethene	5.0	U
67-64-1	Acetone	5.0	Ū
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U .
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	U
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	υ
108-10-1	4-Methyl-2-pentanone	5.0	U
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	U
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

SMS-MW-13S

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER) WATER	-	Lab Sample ID:	G2029-21A
Sample wt/vol: 5.	00 (g/mL) ML		Lab File ID:	V1K1516.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/08/2008
% Moisture: not dec.			Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U ·
100-41-4	Ethylbenzene	5.0	Ū
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U ·
108-86-1	Bromobenzene	5.0	Ū
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U ·
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO.

SMS-MW-13S

Lab Name: MITKEM LAB	ORATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WAT	ER) WATER	Lab Sample ID:	G2029-21A
Sample wt/vol:	5.00 (g/mL) ML	Lab File ID:	V1K1516.D
Level: (TRACE or LOW)	MED) LOW	Date Received:	11/08/2008
% Moisture: not dec.		Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25 (mm) Dilution Factor:	1.0
Soil Extract Volume:	(uL) Soil Aliquot Vol	.ume:(uL)
CONCENTRATION UNITS:	(ug/L or ug/Kg) UG/L	Purge Volume: 5	.0 (mL)
CA C NUMPER	COMPOUND NAME		FST CONC

	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown-01	12.767	34	J
	E966796 ¹	Total Alkanes	N/A		

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-13D

Lab Name: MITKEM LABO	RATORIES			Contract:	L
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATE	R) WATER		<u>.</u>	Lab Sample ID:	G2029-22A
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V1K1517.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/08/2008
% Moisture: not dec.				Date Analyzed:	11/15/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			_(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
75-71-0	Dighlorodifluoromethene		
71 07 2		5.0	U
74-07-5		5.0	U 17
75-01-4	Vinyi chioride	5.0	U
74-83-9	Bromometnane	5.0	U
75-00-3	Chloroethane	5.0	U
75-69-4	Trichlorofluoromethane	5.0	U
/5-35-4	1,1-Dichloroethene	5.0	U
6/-64-1	Acetone	5.0	U
74-88-4	Iodomethane	5.0	U
75-15-0	Carbon disulfide	5.0	U
75-09-2	Methylene chloride	5.0	U
156-60-5	trans-1,2-Dichloroethene	5.0	U
1634-04-4	Methyl tert-butyl ether	5.0	U
75-34-3	1,1-Dichloroethane	5.0	U
108-05-4	Vinyl acetate	5.0	U
78-93-3	2-Butanone	5.0	U .
156-59-2	cis-1,2-Dichloroethene	5.0	U
594-20-7	2,2-Dichloropropane	5.0	U
74-97-5	Bromochloromethane	5.0	U
67-66-3	Chloroform	5.0	U
71-55-6	1,1,1-Trichloroethane	5.0	U
563-58-6	1,1-Dichloropropene	5.0	Ū.
56-23-5	Carbon tetrachloride	5.0	U
107-06-2	1,2-Dichloroethane	5.0	U
71-43-2	Benzene	5.0	U
79-01-6	Trichloroethene	5.0	U
78-87-5	1,2-Dichloropropane	5.0	U
74-95-3	Dibromomethane	5.0	U
75-27-4	Bromodichloromethane	5.0	U
10061-01-5	cis-1,3-Dichloropropene	5.0	U .
108-10-1	4-Methyl-2-pentanone	5.0	Ū
108-88-3	Toluene	5.0	U
10061-02-6	trans-1,3-Dichloropropene	5.0	Ü
79-00-5	1,1,2-Trichloroethane	5.0	U
142-28-9	1,3-Dichloropropane	5.0	U

CLIENT SAMPLE NO.

SMS-MW-13D

HEET

Ish Name, MITTER INDO				Contract.	
	NATORIES			CUITETACE:	i
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATE	R) WATER			Lab Sample ID:	G2029-22A
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V1K1517.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/08/2008
% Moisture: not dec.	• •			Date Analyzed:	11/15/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U.
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO.

SMS-MW-13D

36

J

Lab Name: MITKEM LABORATORI	ES	Contract:	
Lab Code: MITKEM Case	e No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER)	ATER	Lab Sample ID:	G2029-22A
Sample wt/vol: 5.00 (g/mL) ML	Lab File ID:	V1K1517.D
Level: (TRACE or LOW/MED)	LOW	Date Received:	11/08/2008
% Moisture: not dec.		Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Volu	ume:(uL)
CONCENTRATION UNITS: (ug/L c	er ug/Kg) UG/L	Purge Volume: 5.	0 (mL)
CAS NUMBER CO	MPOUND NAME	RT	EST. CONC. Q

12.757

N/A

01

Unknown-01 E966796¹Total Alkanes ¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-MW-12

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATER	N) WATER	Lab Sample ID:	G2029-23A
Sample wt/vol: 5.	00 (g/mL) ML	Lab File ID:	V1K1518.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/08/2008
% Moisture: not dec.		Date Analyzed:	11/15/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume: _		(uL) Soil Aliquot Volu	me:(uL)
Purge Volume: 5.0		(mL)	

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane	· · · · · · · · · · · · · · · · · · ·	5.0	U
74-87-3	Chloromethane	· · · · · · · · · · · · · · · · · · ·	5.0	U
75-01-4	Vinyl chloride		5.0	U
74-83-9	Bromomethane		5.0	U
75-00-3	Chloroethane		5.0	U
75-69-4	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene	<u> </u>	5.0	U
67-64-1	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
75-15-0	Carbon disulfide		5.0	U
75-09-2	Methylene chloride		5.0	U
156-60-5	trans-1,2-Dichloroethene	· · ·	5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	U
108-05-4	Vinyl acetate		5.0	U
78-93-3	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene	· · · · · · · · · · · · · · · · · · ·	5.0	U
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane	· · · · · · · · · · · · · · · · · · ·	5.0	U
67-66-3	Chloroform		5.0	U
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	U
71-43-2	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
74-95-3	Dibromomethane		5.0	U
75-27-4	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
108-10-1	4-Methyl-2-pentanone		5.0	U
108-88-3	Toluene		5.0	U
10061-02-6	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

CLIENT SAMPLE NO.

SMS-MW-12

Lab Name: MITKEM LABO	RATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2029
Matrix: (SOIL/SED/WATE	R) WATER			Lab Sample ID:	G2029-23A
Sample wt/vol: 5	.00 (g/mL)	ML		Lab File ID:	V1K1518.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/08/2008
% Moisture: not dec.				Date Analyzed:	11/15/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0			(mL)		· · · · ·

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/L	Q
127-18-4	Tetrachloroethene	5.0	U
591-78-6	2-Hexanone	5.0	U
124-48-1	Dibromochloromethane	5.0	U
106-93-4	1,2-Dibromoethane	5.0	U
108-90-7	Chlorobenzene	5.0	U
630-20-6	1,1,1,2-Tetrachloroethane	5.0	U
100-41-4	Ethylbenzene	5.0	U
1330-20-7	m,p-Xylene	5.0	U
95-47-6	o-Xylene	5.0	U
1330-20-7	Xylene (Total)	5.0	U
100-42-5	Styrene	5.0	U
75-25-2	Bromoform	5.0	U
98-82-8	Isopropylbenzene	5.0	U
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U.
108-86-1	Bromobenzene	5.0	U
96-18-4	1,2,3-Trichloropropane	5.0	U
103-65-1	n-Propylbenzene	5.0	U
95-49-8	2-Chlorotoluene	5.0	U
108-67-8	1,3,5-Trimethylbenzene	5.0	U
106-43-4	4-Chlorotoluene	5.0	U
98-06-6	tert-Butylbenzene	5.0	U
95-63-6	1,2,4-Trimethylbenzene	5.0	U
135-98-8	sec-Butylbenzene	5.0	U
99-87-6	4-Isopropyltoluene	5.0	U
541-73-1	1,3-Dichlorobenzene	5.0	U
106-46-7	1,4-Dichlorobenzene	5.0	U
104-51-8	n-Butylbenzene	5.0	U
95-50-1	1,2-Dichlorobenzene	5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	5.0	U
120-82-1	1,2,4-Trichlorobenzene	5.0	U
87-68-3	Hexachlorobutadiene	5.0	U
87-61-6	1,2,3-Trichlorobenzene	5.0	U
91-20-3	Naphthalene	5.0	U

CLIENT SAMPLE NO.

SMS-MW-12

31

J

Lab Name: MITKEM LABORATORIES Contract: SDG No.: MG2029 Lab Code: MITKEM Case No.: Mod. Ref No.: Matrix: (SOIL/SED/WATER) WATER Lab Sample ID: G2029-23A Sample wt/vol: 5.00 (g/mL) ML Lab File ID: V1K1518.D Date Received: 11/08/2008 Level: (TRACE or LOW/MED) LOW % Moisture: not dec. Date Analyzed: 11/15/2008 ID: 0.25 (mm) Dilution Factor: 1.0 GC Column: DB-624 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Purge Volume: 5.0 (mL) CAS NUMBER COMPOUND NAME RT EST. CONC. 0

01 Unknown-01 12.752 E966796¹Total Alkanes N/A

¹EPA-designated Registry Number.