FINAL PHOSTER™ SYSTEM SOIL SAMPLING REPORT (November 2008 Sampling Event)

Multi Site G Operation, Maintenance & Monitoring

SMS Instruments Site Deer Park, Suffolk County, NY Site 1-52-026

Work Assignment No. D004445-14.2

Prepared for:

SUPERFUND STANDBY PROGRAM New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

April 2009

Prepared by:

Earth Tech Northeast, Inc. 300 Broadacres Drive Bloomfield, New Jersey

Page

TABLE OF CONTENTS

r				8-
1.0	INTF	RODUCT	FION	1
	1.1		GROUND INFORMATION AND SITE CHRONOLOGY	
		1.1.1	USEPA/REAC Soil Boring Advancement and SVE/Air Sparge Well	
			Installation Activities (August 2004)	2
		1.1.2	USEPA/Earth Tech Groundwater Pump And Treat System Evaluation	
			Sampling (August 31, 2005)	
		1.1.3	Groundwater Pump and Treat System Shutdown and Dismantlement	3
2.0	PHO		YSTEM	
	2.1	TECHN	NOLOGY DESCRIPTION/SELECTION RATIONALE	5
	2.2		er TM SYSTEM OVERVIEW	
	2.3	REME	DIAL SYSTEM MONITORING AND SAMPLING	6
	2.4	PHOSt	er™ SYSTEM SAMPLING RESULTS AND EFFECTIVENESS EVALUATI	ON7
	2.5	TECHN	NOLOGY AND PROCESS OPTIMIZATION	7
3.0	BIOS		PERFORMANCE EVALUATION	
	3.1		LE NUMBERS AND COLLECTION POINTS	
	3.2	DATA	INTERPRETATION AND EVALUATION	9
		3.2.1	Bioremediation Process Description	9
		3.2.2	Microbial Data Results	9
		3.2.3	VOC Data Results	
	3.3		ARISON OF DATA FROM THE FOUR SAMPLING EVENTS	
4.0	CON	ICLUSIC	ONS AND RECOMMENDATIONS	12
	4.1		LUSIONS	
	4.2	RECO	MMENDATIONS	12

LIST OF TABLES

Chapter

	Table 1	Summary of Methanotrophs Data	(November 2008)
--	---------	-------------------------------	-----------------

- Table 2Summary of Methanotrophs Data (2006, 2007 and 2008)
- Table 3Summary of Phospholipid Fatty Acid Data (2006, 2007 and 2008)
- Table 4Summary of Volatile Organic Compounds in Soil, Detections Only (November 2008)
- Table 5Volatile Organic Compounds, Detections Only, Comparison of June 2006, March 2007,
January 2008 and November 2008 Data

LIST OF FIGURES

- Figure 1 Site Location Map
- Figure 2Boring Location Map
- Figure 3 Summary of Total VOCs in Soil
- Figure 4 Summary of BTEX in Soil
- Figure 5 Total VOCs Isopleth Map, 22.5 25 ft Interval, March 2006, June 2007, January 2008 & November 2008

TABLE OF CONTENTS (CONTINUED)

LIST OF APPENDICES

- Appendix A Soil Boring Logs
- Mitkem Laboratory Data Package (Form 1s) Microbial Insights Data Package Appendix B Appendix C

1.0 INTRODUCTION

The SMS Instruments site was evaluated in 2003 as part of the Pump and Treat Optimization initiative from US Environmental Protection Agency (USEPA) headquarters, which provided recommendations to enhance remedial and cost effectiveness. In July 2003, GeoTrans, Inc. (GeoTrans), on behalf of the USEPA, conducted a site visit to perform the optimization evaluation of the active Groundwater Pump and Treat (GW P&T) system. The results of the evaluation were included in a Remediation System Evaluation (RSE) report (GeoTrans, December, 2003). The RSE report recommended developing an exit strategy and provided three potential approaches for consideration.

Site activities from 2004 to 2005 have been performed based on the recommendations provided by the RSE report. In 2005, the Site was transferred from USEPA to the New York State Department of Environmental Conservation (NYSDEC). This sampling report summarizes the SMS Instruments Site remediation activities that occurred since the transfer.

1.1 BACKGROUND INFORMATION AND SITE CHRONOLOGY

The SMS Instruments Superfund site is located at 120 Marcus Boulevard in Deer Park, Suffolk County, New York (Figure 1). The site was listed on the National Priority List (NPL) in 1986. The Site consists of a 34,000 square foot building located on a 1.5-acre lot that is surrounded by other light industrial facilities. A recharge basin is located adjacent to the Site to the east. Facility operations occurred between 1967 and 1990 and primarily involved overhauling of military aircraft components. These activities consisted of cleaning, painting, degreasing, refurbishing, metal machining, and testing components. Other historic uses, under different tenants, included the manufacturing of wooden kitchen utensils. The building was unoccupied for the past several years but as of January 2, 2008, the building is used to store furniture.

Site contamination was first discovered in 1980 when the Suffolk County Department of Health Services sampled a leaching pool on the southern side of the facility. USEPA completed a remedial investigation/feasibility study (RI/FS) in 1989. Groundwater contaminants included volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) and metals. The primary VOC contaminants in groundwater consisted of tetrachloroethene (PCE), trichloroethene (TCE), trans-1,2-dichloroethane, chlorobenzene, total xylenes, ethylbenzene, and 1,1-dichloroethane. SVOCs included naphthalene, 1,4-dichlorobenzene, 1,3-dichlorobenzene, and 1,2-dichlorobenzene. Two metals, chromium and lead, were also a concern for groundwater. Soil contaminants of concern included ethylbenzene, total xylenes, chlorobenzene, trans-1,2-dichloroethene, and PCE. Investigative and remedial activities at the Site have included pumping out the leaching pond and backfilling it, removal of an underground storage tank (which was used to store jet fuel), and operation of a soil vapor extraction system (SVE). The SVE system was operated from 1992 to 1994, near the former leaching pool and the former UST areas to remediate residual VOCs in soils. Wastewater was historically discharged into a leaching pool at the site, which, subsequently contaminated soils and groundwater beneath the site. In addition, the leaking UST also contaminated soils and groundwater beneath the site. A GW P&T system, which included an air stripper to treat contaminated groundwater, was constructed and began operation in 1994.

Soil sampling conducted after the operation of the SVE system indicated that the soil remedy reduced VOC contamination and therefore reduced potential exposure to contaminated soil vapor. The groundwater contamination had decreased substantially since activation of the GW P&T system, and as a direct result of the successful SVE remedial action. After several years of operation, the influent

concentrations had decreased substantially and the GW P&T system was no longer seen as accelerating site cleanup. Furthermore, the GW P&T system was failing to achieve the ultimate groundwater cleanup goals (e.g., the maximum contaminant levels [MCLs]). Therefore, in July 2003, GeoTrans, on behalf of the USEPA, conducted a site visit to perform an evaluation of the active GW P&T system. The results of the evaluation were included in a RSE (GeoTrans, 2003). The RSE report recommended conducting a pilot study on alternative technologies and to determine if an alternative technology should replace the GW P&T system. The RSE report indicated various alternative technologies were available for reducing mass of VOCs, including air sparging, bioaugmentation, and chemical oxidation.

Following acceptance of the RSE report, in May of 2004, the USEPA Remedial Action Branch sent a request for field support at the SMS Instruments Site. The request involved two phases: additional field characterization of a former UST area through use of a Geoprobe down to the water table, and a second phase to assess and implement additional remedial technologies to address remaining source areas, such as air sparging with SVE and/or bioremedial-enhancing injections. In an effort to field characterize the former UST area and obtain data needed for the selection of a pilot alternative approach, 25 soil borings were advanced and sampled, and SVE and air sparge wells were installed in August 2004 by ERT and the Response Engineering and Analytical Contract (REAC) contractor (Lockheed Martin Technology Services [Lockheed Martin]).

Based on an evaluation of the data generated by ERT/REAC, the USEPA Remedial Project Manager (RPM) and the USEPA Removal On-Scene Coordinator (OSC) concluded that a bioremedial – enhancing approach via gaseous injection to facilitate cometabolic degradation of the residual chlorinated chemicals of concern (COCs) contamination in groundwater would be the most appropriate and cost effective technology for the time frame of operation. In April of 2005, under the Emergency and Rapid Response Services (ERRS) contract, Earth Tech Northeast, Inc. (Earth Tech) procured a PHOSterTM system and the system was later installed and activated on site in May 2005. Further details of the PHOSterTM system are included in Section 2.1 of this report.

The USEPA operated the GW P&T system at the Site until July 15, 2005 when the Site was turned over to NYSDEC. Based on sampling conducted by CDM for the USEPA in June 2005 and effluent samples collected by Earth Tech in August 2005, Earth Tech determined that the GW P&T system was no longer removing significant quantities of contaminants, and VOC concentrations in the influent were below laboratory reporting limits (5 μ g/L). In a letter to NYSDEC dated October 6, 2005, Earth Tech recommended that the GW P&T system be de-activated. NYSDEC concurred with this recommendation in a letter dated October 21, 2005.

1.1.1 USEPA/REAC Soil Boring Advancement and SVE/Air Sparge Well Installation Activities (August 2004)

In July 2004, EPA-ERT/REAC provided the necessary field support to characterize the remaining source area located off the southeast corner of the SMS Building, and preliminary cost projections to implement sparging/bioremediation operations. A Geoprobe was used to advance 25 soil borings to collect 46 subsurface soil samples, which were analyzed with a field gas chromatograph (GC) for benzene, toluene, ethylbenzene, and xylenes (BTEX). Three samples were also analyzed for total VOCs (method 8260B). The highest BTEX/VOC concentrations were detected in samples collected in the vicinity of the drywell and groundwater extraction well EW-3. These soil samples were collected in the saturated zone (between 24 and 28 feet below ground surface [ft bgs]). The focus of the current remedial action is on this submerged contaminant zone. The highest concentrations of BTEX were found in the drywell sample collected at 24 ft bgs with a total concentration of 170,580 micrograms per kilogram (μ g/kg). The highest

VOC results were obtained from the drywell location at 24 feet bgs with a total VOC concentration of 408,100 μ g/kg. Vadose zone and saturated zone soil sample data indicated that contamination was contained within the shallow saturated zone. Complete details of the soil boring event are included in the Site Investigation Report (Technical Memorandum, REAC / Lockheed Martin, August, 2005).

Following a review of these results, it was determined that bioremedial enhancement required further evaluation beyond the USEPA's Remedial Action Branch's required timeframe for transfer of the site to the NYSDEC. Therefore, in November 2004, USEPA's Removal Action Branch along with ERT/REAC were able to provide continual field support to install the necessary piping for the bioremediation system. However, it was determined that purchasing or rental of the bioremediation system was beyond the scope of their existing contract. Therefore, in May 2005, Earth Tech, EPA Region II ERRS contractor, procured and installed a PHOSter[™] bioremediation system at the Site. Further details of the bioremediation system are included in Section 2.3 of this report.

The PHOSterTM system performance was evaluated in June 2006 with a soil sampling program designed to collect subsurface soil samples for chemical testing and methanotrophs. The results of this evaluation were presented in the Final PHOSterTM System Soil Sampling Report (June 2006 Sampling Event) (Earth Tech, October 2006). The report concluded that the PHOSterTM system was removing VOCs from the soil column; however, pockets of contamination still remained. The report recommended that the PHOSterTM system continue to operate for another six months at which time the performance would again be evaluated. A second system performance evaluation was performed in March 2007. These results documented a significant reduction in contaminant concentrations. The report recommended that the PHOSterTM system continue to operate for at least an additional six months. Modifications were made to the PHOSterTM system to focus the bioremediation amendment injections on the limited areas where soils had not met the cleanup objectives.

1.1.2 USEPA/Earth Tech Groundwater Pump And Treat System Evaluation Sampling (August 31, 2005)

In an effort to evaluate the current status of the GW P&T system, on August 31, 2005, three groundwater samples (including one field duplicate) were shipped to Mitkem Corporation for VOC analysis by USEPA Method 624, along with three air samples (also including one field duplicate), which were shipped to Con-Test Analytical Laboratory for total organic analysis.

Results of the GW P&T system evaluation sampling performed on August 31, 2005 indicated no contamination was being treated by the system, as no contaminants were detected in the influent. Therefore, on October 6, 2005 Earth Tech recommended the shut-down of the SMS groundwater pump and treatment plant. In a letter dated October 21, 2005, the NYSDEC approved the temporary shutdown of the groundwater treatment plant. The NYSDEC letter also indicated that groundwater sampling would continue to determine if any significant rebound occurs. If no rebound was observed after a reasonable period of time, the treatment GW P&T system would be permanently shut down and dismantled.

1.1.3 Groundwater Pump and Treat System Shutdown and Dismantlement

Following the temporary shutdown of the GW P&T system in August 2005, two rounds of groundwater samples were collected: February 2006 and September 2006. These results were summarized in the Final Groundwater Sampling Report (Earth Tech, December 2006). No apparent rebound was noted in the monitoring well groundwater samples. One of the recommendations of this report was the demolition of the GW P&T system building. This report also recommended that the PHOSterTM system continue

operations for a minimum of six additional months. A third groundwater sampling event was conducted in August 2007 after the decision was made to demolish the building.

A Dismantlement Plan was prepared and finalized in April 2007 (Earth Tech, 2007), which detailed the demolition of the treatment building. Several tasks were required to obtain the demolition permit from the City of Babylon, New York. These tasks included the termination of electrical and water service to the building. The electrical main to the treatment building was terminated on July 16, 2007 by a licensed electrical contractor, ADB Electric and Sons. The service was moved to a new "H" frame service to continue the PHOSterTM system operations. The potable water line to the building was capped on November 20, 2007 by a licensed plumber, Pro Mechanical. On November 2, 2007, Veolia ES Technical Solutions removed all waste from the treatment building including water treatment chemicals, test meter solutions and other wastes. The building was demolished in two phases. All piping and carbon units were dismantled in June 2007. Final building demolition and concrete foundation removal occurred in late December 2007.

2.0 PHOSterTM SYSTEM

2.1 TECHNOLOGY DESCRIPTION/SELECTION RATIONALE

The Enhanced In-Situ Bioremediation Process is a biostimulation technology developed by the US Department of Energy (DOE) at the Westinghouse Savannah River Plant site in Aiken, S.C. DOE refers to their phosphate injection technology as PHOSterTM and has licensed the process to Earth Tech. Earth Tech is utilizing the process to deliver a gaseous phase mixture of air, nutrients (triethylphosphate [TEP]), and methane (an alternative carbon source) to contaminated soils at the SMS site. These enhancements are delivered to groundwater via injection wells to stimulate and accelerate the growth of existing microbial populations, specifically methanotrophs. These methanotrophs are capable of direct aerobic and aerobic cometabolic bioremediation. The advantage of aerobic cometabolic bioremediation is that at low VOC concentrations (as at this site) there may not be an adequate carbon source available to support bacterial growth for direct aerobic biodegradation. This type of aerobic bacteria has the ability to metabolize methane and produce enzymes (soluble methane mono-oxygenase [sMMO]) capable of degrading chlorinated solvents and their degradation products to non-hazardous constituents. Furthermore, these methanotrophs typically adhere to soil grain surfaces and would be ideally located for the degradation of the remaining residual adsorbed contaminants. The primary components of Earth Tech's treatment system consist of injection wells, air injection equipment, groundwater monitoring wells, and soil vapor monitoring points. Figure 2 shows a plan view of the treatment area, the injection wells, and monitoring points. The injection wells are designed to deliver air, gaseous-phase nutrients, and methane to groundwater and the vadose zone in the underlying soils.

The PHOSterTM technology was chosen for this site for a number of reasons. Contaminant concentrations in the groundwater are at very low asymptotic levels and it was felt that the GW P&T system was no longer capable of removing a sufficient mass of contamination to justify operation. A system of groundwater and vadose zone wells were already in place that would be suitable for economically installing this technology. Soil and groundwater sampling results indicated existing biological activity was slowly degrading the primary contaminants (chlorinated VOCs). The site geology and hydrogeology was also ideal for this technology. The PHOSterTM technology has demonstrated ability to stimulate bacterial activity, promote the destruction of the primary site COCs (chlorinated VOCs - PCE, TCE and dichlorobenzenes), provide a means to focus remediation on the submerged zone of residual contamination, and act as a polishing technology for the removal of low level contamination often encountered in the final stages of site remediation.

2.2 PHOSterTM SYSTEM OVERVIEW

The initial SMS system consisted of two compressors capable of delivering 10 to 20 pounds per square inch (psi) and approximately 10 to 200 standard cubic feet per hour (scfh) to a pressure rated steel tank. Air from the main line is diverted to the injection wells. The monitoring wells and soil vapor monitoring points were installed as part of a proposed air sparging and vacuum extraction system that was never completed since the PHOSterTM injection system was subsequently implemented.

The SMS injection system consists of air, nutrient, and methane injection equipment, all housed in a mobile trailer. A compressor system provides the air source, and includes a condensate tank with a drain, an air line, coalescing filters and pressure regulators and valves. Methane and nitrous oxide provide the source of carbon and nitrogen, respectively. Both are provided in standard gas cylinders and are piped into the main air line using regulators and flow meters. TEP, the phosphorus source, is stored as a liquid in a pressure-rated steel tank. Air from the main line is diverted through the tank to volatilize the TEP for

subsurface delivery. The air, nitrous oxide, and TEP are injected continuously while the methane is injected on a pulsed schedule. The methane is closely monitored just prior to injecting into subsurface wells to ensure that the injection concentration does not exceed 4% by volume, thus avoiding the methane lower explosive limit (LEL) of 5%.

The gaseous phase bioremediation amendments will stimulate bacterial populations capable of direct aerobic and aerobic cometabolic bioremediation. The advantage of the aerobic cometabolic bioremediation is that at low VOC concentrations (as at this site) there may not be an adequate carbon source available to support bacterial growth for direct aerobic biodegradation. With the addition of an alternative carbon source (methane), the microbial population (methanotrophs) can multiply and produce an enzyme sMMO that degrades a number of VOCs to non-toxic end products. Furthermore, these methanotrophs typically adhere to soil grain surfaces and would be ideally located for the degradation of the remaining residual adsorbed contaminants.

2.3 REMEDIAL SYSTEM MONITORING AND SAMPLING

Following the implementation of the PHOSterTM technology in May of 2005, several sampling events have been conducted at the SMS site. Sampling has included air, groundwater, and discrete saturated soil sampling to evaluate performance and overall remedial effectiveness. As previously discussed, soil and groundwater concentrations had reached an asymptotic condition under the ongoing GWP&T remedial action, so implementation of the PHOSterTM system was designed to continue the positive contaminant reduction trend that had been achieved to date.

Air samples are tested from on-site monitoring wells two times per month by Earth Tech staff scientists. The air is monitored for methane and CO_2 in percent with a CES-LANDTEC GEMTM 500 portable gas analyzer. A MultiRAE meter is used to analyze for CO, O_2 , and H_2S . A MultiRAE PID is used to monitor for VOCs.

The data indicate that organic vapors in the monitoring wells have in general been decreasing steadily since the installation of the PHOSterTM system. Methane concentrations have been somewhat variable but that is attributed to the fact that methane is being added in pulse doses to stimulate biological activity in the soil. The presence of methane in variable concentrations depending upon the timing of sampling events was expected and is desirable as an indication of the proper function of the PHOSterTM system. The O₂ levels have decreased, indicating increased aerobic biological activity that requires oxygen, and the CO₂ levels have increased, indicating complete degradation of the site contaminants.

Soil samples were collected from varying depths and locations within the water-bearing zone and analyzed for the presence of methanotrophs. Methanotrophs are a group of bacteria that are considered ubiquitous in the environment (Hanson and Hanson, 1996), but are often a minor group within the natural subsurface bacterial populations. Table 1 presents the methanotrophs data for the soil samples: total methanotrophs; Type I methanotrophs; and Type II methanotrophs. The Type I methanotrophs appear best adapted to grow at low methane concentrations. The growth of some Type II methanotrophs is favored when methane levels are high, when combined nitrogen and oxygen levels are low, and when copper is substantially depleted in the growth media. The conditions in groundwater appear to favor the growth of the Type II methanotrophs and the synthesis of sMMO that is essential for the rapid degradation of TCE and some other low molecular-weight halogenated hydrocarbons (Hanson and Hanson, 1996). However, Type I methanotrophs can also produce sMMO. The expression of the sMMO enzyme is the important mechanism of methanotrophs. The enzyme breaks down a number of VOCs including the targeted compounds at this site.

As expected, methanotrophs were detected in all six soil samples. An abundant methanotrophs population $(10^5 \text{ to } 10^8 \text{ cells per gram})$ was reported for soil samples collected at the targeted shallower depths (23.5 to 24.5 ft bgs). This methanotrophs population size is consistent with a successfully stimulated subsurface in the range that is conducive for VOC degradation. This coincides with the targeted amendment injection that was implemented after the June 2006 results were evaluated. After the June 2006 results were evaluated, Earth Tech turned off several injection points and directed the injection to focus on the three remaining hot spots: DW, SMS-12, and SMS-16. These microbial results indicate the successful stimulation of the methanotrophs in these targeted areas as indicated on Table 2 which shows all four methanotrophs data sets from June 2006, March 2007, January 2008 and November 2008.

2.4 PHOSterTM SYSTEM SAMPLING RESULTS AND EFFECTIVENESS EVALUATION

Four soil sampling events have been conducted to evaluate the PHOSter[™] system since 2005: June 2006, March 2007, January 2008, and November 2008. In June 2006, six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, SVOCs, phospholipid fatty acids (PLFA) and methanotrophs. The results were presented in the Final PHOSter[™] System Soil Sampling Report dated October 2006. The results indicated that contaminant concentrations were decreasing; however, soil samples collected near the former dry well had contaminant concentrations exceeding applicable cleanup criteria. Based on the analytical results, Earth Tech recommended that the PHOSter[™] system continue to operate for an additional six months, at which time another round of soil samples would be collected and evaluated.

The second evaluation occurred in March 2007, when six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, PLFA and methanotrophs. The results were presented in the Final PHOSterTM System Soil Sampling Report dated June 2007. The results indicated that contaminant concentrations were decreasing; however, soil samples collected near the former dry well had contaminant concentrations that continued to exceed applicable cleanup criteria. Based on the analytical results, Earth Tech again recommended that the PHOSterTM system continue to operate for an additional six months, at which time another round of soil samples would be collected and evaluated.

The third evaluation occurred in January 2008, when six soil borings were advanced and subsurface soil samples were collected for analysis of VOCs, PLFA and methanotrophs. The results were presented in the Final PHOSterTM System Soil Sampling Report dated May 2008. When comparing the January 2008 data with the March 2007 data, the data indicated that total VOC contaminant concentrations increased significantly at borings SMS-12, SMS-16, SMS-16B and DW, while at borings SMS-12B and DWB there were significant decreases. The total VOC concentration exceeded the criterion at SMS-12, SMS-16B. The variation in concentrations between sampling rounds was attributed to the heterogeneous nature of the soil contaminant distribution.

2.5 TECHNOLOGY AND PROCESS OPTIMIZATION

Based on the analytical results collected over the last three sampling events, Earth Tech recommended modifying the existing system to better focus on the existing COCs and to optimize the system performance. Along with the modifications, continued operation of the system for an additional six month period was also recommended. System modifications included the replacement of the two old compressor units with a new rotary screw compressor and the elimination of the PHOSterTM aspect of the sparge technology. As previously discussed, the PHOSterTM technology was selected as an ideal technology for the remediation of chlorinated VOCs. However, based on the data collected over the last

three sampling events, chlorinated VOCs are no longer an issue at this site, indicating that the PHOSterTM application effectively achieved its goal. The existing data from the site indicates that the primary COCs are now limited to aromatic hydrocarbons (BTEX and TMB compounds), which are readily biodegradable under standard aerobic conditions.

In consideration of this positive change in site conditions, remediation over the last operational period focused on dissolved oxygen enrichment through biosparging to drive the aerobic degradation process. This was accomplished through the controlled injection of ambient air into select wells using the same base equipment established for the PHOSterTM application. The primary technological change was the elimination of the gaseous nutrients (nitrous oxide, TEP and methane) that drove the cometabolic degradation process.

In addition to the technology modification, remediation during this most recent period focused strictly on the saturated zone (22-25 ft bgs) using select injection wells and biosparging to optimize dissolved oxygen concentrations in groundwater and facilitate aerobic biodegradation of the residual organic compounds. After the system modifications were completed, the system was operated with six sparge points: AS-2, AS-4, AS-5, AS-7, AS-8 and AS-10. The flow rate at each sparge point was set at 180 cubic feet per hours (CFH). Performance of this optimization process was evaluated as part of the fourth monitoring event, which occurred in November 2008 and is the subject of this report.

3.0 BIOSPARGE PERFORMANCE EVALUATION

Through the course of the six month biosparge operation period, routine monitoring was conducted to ensure continual system operation and to optimize performance. Routine monitoring included the evaluation of system and well head pressures and the periodic collection of field data to evaluate DO and ORP conditions.

Following six additional months of active biosparge remediation, the same six sampling locations utilized for the January 2008 sampling event were targeted to evaluate the current conditions regarding the residual VOCs located in the shallow saturated zone. A total of six soil borings were advanced over a two day period (November 18 and 19, 2008) to collect soil samples from varying depths for laboratory analyses. A total of six soil borings were advanced and sampled for evaluation purposes (SMS-12, SMS-12B, SMS-16, SMS-16B, DW and DWB). Samples were collected from depths ranging from 16 to 31 feet, with specific focus on the 22 − 25 ft bgs saturated zone. All six saturated soil samples were shipped to Mitkem Corporation for VOC analysis and Microbial Insights, Inc. for analysis of PLFA and methanotrophs. Although the PHOSterTM technology was no longer being utilized, the PLFA and methanotrophs analyses were continued to evaluate the relative change in biological characteristics since the technology was modified.

3.1 SAMPLE NUMBERS AND COLLECTION POINTS

Figure 2 is a site map of SMS Instruments which shows the locations of the soil sampling locations. Boring logs are in Appendix A. The Form 1s from the Mitkem Laboratory data package are included in Appendix B. The Microbial Insights laboratory data package is included in Appendix C. Every effort was made to collect soil samples from the same intervals from which samples were collected during the January 2008 sampling effort. Samples were usually collected at the capillary fringe/water table (19-20 feet below ground surface [ft bgs]), the targeted zone containing elevated residual VOCs (22-25 ft bgs), and at the bottom of the soil boring (29-30 ft bgs), below the targeted treatment zone.

3.2 DATA INTERPRETATION AND EVALUATION

3.2.1 Bioremediation Process Description

As previously indicated, biosparging is designed to maximize oxygen transfer to groundwater, while minimizing contaminant volatilization, which is a primary focus of a standard air sparge application. The goal of biosparging is to optimize aerobic biodegradation conditions through the controlled injection of air into groundwater. For this site, the transfer of the adsorbed contaminants to the dissolved phase appears to be a slow process based on the low VOC concentrations in groundwater. Therefore, the most effective cleanup technology at this stage in the site cleanup continues to be *in situ* bioremediation. Several types of data are used to evaluate biodegradation with the two primary data results being the microbial population and contaminant concentration, which are discussed in the following sections.

3.2.2 Microbial Data Results

Total biomass (PLFA) in soil was measured during each sampling event. The results are presented in Table 3. During the previous three sampling events, the samples were collected from the shallow saturated zone (22-25 ft bgs). As shown on Table 3, there has not been a significant change in total biomass during the last three sampling events at any location (a significant change is defined as an order of magnitude increase or decrease in total biomass). During the last three samples

from the shallow saturated zone have all exhibited high biomass concentrations (greater than 10^7 cells per gram). The data also indicates that the change from PHOSterTM to biosparging had little affect on the existing biomass, which helps to confirm that the technology modification was warranted.

As shown on Table 2, the methanotrophs data do not indicate a significant change in population size from January 2008 to November 2008. The population size increased slightly at borings SMS-12 and SMS-16B. The population size decreased slightly at borings SMS 12B, SMS-16 and DW. The population size remained unchanged at boring DWB.

3.2.3 VOC Data Results

The laboratory results from the November 2008 sampling event indicated an overall decreasing trend in total VOC concentrations in groundwater when compared to previous events. In all cases, VOC concentrations had been reduced to below detection or below the cleanup goals. The exception was at monitoring well MW-6S where concentrations of chlorinated and non-chlorinated benzene related aromatics were present at concentrations ranging from slightly below to slightly above the cleanup criteria.

As a follow up to the groundwater sampling event, eighteen saturated soil samples were collected and analyzed for VOCs during the November 2008 sampling event from locations and depths at which elevated concentrations of VOCs concentrations had been reported during the June 2006, March 2007 and January 2008 soil sampling events. Table 4 presents a summary of the detected VOCs results for the November 2008 soil sampling event along with the NYSDEC unrestricted use Soil Cleanup Objectives (SCOs) (6 NYCRR Part 375 Table 375-6.8a). The unrestricted use criteria are the most stringent of the residential, protection of groundwater, and ecological SCOs as identified in Table 375-6.8(b). The majority of the compounds detected are chlorinated and non-chlorinated benzene related aromatics. These results are also summarized on Figure 3 (Summary of Total VOCs) and Figure 4 (Summary of Total BTEX). The majority of the VOCs that were detected were at concentrations below the NYSDEC SCOs.

The total VOC concentration SCO of 10,000 μ g/kg was slightly exceeded in two samples during the November 2008 sampling event. Total VOC concentrations for these two samples were 11,207 μ g/kg (SMS-12, 23.5-24.5 ft bgs), and 10,338 μ g/kg (SMS-16B, 23.5-24.5 ft bgs). These two samples were collected from the soil borings in the area of the former underground storage tank (UST) shown on Figure 2 and were collected from the shallow saturated zone. In both cases, the primary COCs were 1,2,4- and 1,3,5-trimethylbenzene. The total VOCs concentration in the shallow saturated zone sample from DWB (22.5 – 23.5 ft bgs) reported a much higher concentration from January 2008 to November 2008 (229 μ g/kg to 9,640 μ g/kg), which likely resulted from a subtle difference in actual sample location between the two events. However, the November 2008 result remains much lower than the concentration reported during March 2007 sampling event from this location (181,540 μ g/kg). This appears to be another example of how heterogeneous the contamination is at the Site; samples collected from nearby borings can show significant differences in concentrations.

BTEX concentration decreases were observed at all sampling locations when compared to the January 2008 event. Significant decreases were observed in soil samples collected from the two northern sampling points (SMS-12 and SMS-12B) and at sample location SMS-16. During the November 2008 sampling round, there was only one exceedance of a BTEX compound. Total xylenes exceeded the NYSDEC SCO of 260 μ g/kg in one sample (310 μ g/kg in sample SMS-16B [23.5-24.5 ft bgs]).

3.3 COMPARISON OF DATA FROM THE FOUR SAMPLING EVENTS

Table 5 presents a comparison of the VOCs results for the June 2006, March 2007, January 2008 and November 2008 soil samples. The data is also summarized on Figure 3 (total VOCs) and Figure 4 (total BTEX). These data indicate a decreasing trend in the total VOCs concentrations in the soil at four locations: SMS-12, SMS-12B and SMS-16 and SMS-16B. Only two of the samples collected in November 2008 had a total VOC concentration above 10,000 μ g/kg (SMS-12, 23.5 – 24.5 ft bgs). Contamination appears to be limited to the 22 to 25 ft bgs interval. The data also indicate that residual soil contamination remains in two very small, isolated pockets as shown on Figure 5. For example, the original DW location from June 2006 indicated a total VOC concentration of 140,241 μ g/kg in the 19-20 ft bgs sample interval. The two off-set borings (DW and DWB) drilled a few feet away in March 2007 had total VOC concentrations of 18 μ g/kg and zero in the same depth interval. At boring location DW in the 24-25 ft bgs interval, the total VOC concentration in the June 2006 sample was 96,100 μ g/kg while the total VOC concentration in the two March 2007 off-set borings (DW and DWB) had total VOC concentrations of zero and 181,540 μ g/kg in the same depth interval.

The total VOC concentrations around borings SMS-12 and SMS-12B indicate a decreasing trend since 2006 and 2007 (concentrations above 100,000 μ g/kg), as the concentrations from November 2008 are about 10,000 μ g/kg. The November 2008 total VOC concentration at boring DW, 23.5-24.5 ft bgs (7,384 μ g/kg) are similar to those from the January 2008 sampling round (6,237 μ g/kg at 24-25 ft bgs). The November 2008 total VOC concentration at DWB 23.5-24.5 ft bgs was significantly higher (9,640 μ g/kg) than reported during the January 2008 sampling round (229 μ g/kg from 24 to 25 feet bgs), but was still below the criterion.

The isopleth map of the Total VOC concentrations in the 22.5 to 25 ft bgs interval (Figure 5) indicates that total VOC concentrations in the northern most area, SMS-12 and SMS-12B, has effectively been reduced as a function of this remedial action (concentrations are slightly above the 10,000 μ g/kg criterion at SMS-12 and slightly below the criterion at SMS-12B during the November 2008 sampling round). The aerial extent of contamination at SMS-16 and SMS-16B has also effectively been reduced as the total VOC concentration at SMS-16 is less than 10 μ g/kg. However, the total VOC concentration at SMS-16B remains slightly above the criterion at 10,338 μ g/kg. Consequently, the 10,000 contour line area is significantly smaller than the January 2008 isopleth. These shifting isopleth lines indicate that the soil contamination in the shallow saturated soils is not a homogeneous mass but is present in small isolated pockets with significant variability in concentration.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

As presented in this report, the conversion from a PHOSterTM application to a biosparge application, and the focused approach using select injection wells, has resulted in the continual reduction in contaminant mass associated within the shallow saturated zone. As expected, BTEX compound concentrations in the areas of concern have readily deceased under aerobic conditions during the past six months, indicating that the enhancement of dissolved oxygen via biosparging has been an effective remedial optimization approach for this site. The more recalcitrant aromatics, such as the trimethylbenzene compounds, have also reported positive affects, but not to the same extent as the BTEX compounds, which are more easily degradable.

4.2 **RECOMMENDATIONS**

Based on the soil and groundwater results discussed above, Earth Tech recommends that biosparging be continued to focus on the limited areas (former dry well and soil boring SMS-12 locations) that were reported above the cleanup objectives for soil. Earth Tech will perform a system evaluation to continually optimize the bioremediation effort. A recommendation will be presented to NYSDEC outlining potential system modifications such as whether new injection points are needed to focus the remedial action on problem areas. The biosparging configuration will continue operations for several months followed by resampling and analysis of the soil in these final remaining areas. The next soil sampling event is tentatively scheduled for July 2009. The next five-quarter groundwater monitoring and sampling event is currently scheduled for February 2010. If the biosparging system is still in operation, the groundwater sampling event will be postponed until the biosparging system has been shut down.

TABLE 1 MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING, NOVEMBER 2008 SUMMARY OF METHANOTROPHS DATA

Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB
Sample ID	12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5	DWB 23.5-24.5
Sample Date	11/18/08	11/18/08	11/18/08	11/18/08	11/19/08	11/19/08
Matrix	Soil	Soil	Soil	Soil	Soil	Soil
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5
Units	cells/gram	cells/gram	cells/gram	cells/gram	cells/gram	cells/gram
Methanotrophs (total)	3.51E+06	5.95E+06	9.56E+06	1.66E+07	5.51E+07	1.27E+08
Type I MOB	7.85E+05	9.00E+05	6.14E+05	7.09E+06	9.52E+06	3.77E+07
Type II MOB	2.72E+06	5.05E+06	8.95E+06	9.55E+06	4.55E+07	8.83E+07

TABLE 2MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026)PHOSTER SYSTEM SOIL SAMPLINGSUMMARY OF METHANOTROPHS DATA (2006, 2007 AND 2008)

Boring Location	SMS-12	SMS-12	SMS-16	DW	DW	SMS-10	SMS-15	SMS-21
Sample ID	SMS-SB12-16-17	SMS-SB12-29-30	SMS-SB16-19-20	SMS-DW-19-20	SMS-DW-30-31	SMS-SB10-18-19	SMS-SB15-27-28	SMS-SB21-22-23
Sample Date	6/28/06	6/28/06	6/29/06	6/28/06	June 2006	6/28/06	6/29/06	6/28/06
Sample Depth (ft bgs)	16 - 17	29 - 30	19 - 20	19 - 20	30 - 31	18 - 19	27 - 28	22 - 23
Methanotrophs (total)	3.20E+07	7.37E+06	5.07E+06	2.90E+08	8.49E+05	3.77E+08	7.27E+04	2.31E+08
Type I MOB	1.56E+07	7.45E+05	1.46E+05	7.28E+07	2.52E+05	2.07E+08	1.27E+04	1.26E+08
Type II MOB	1.65E+07	6.62E+06	4.92E+06	2.17E+08	5.97E+05	1.70E+08	6.00E+04	1.05E+08
Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB		
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425		
Sample Date	3/22/07	3/22/07	3/22/07	3/22/07	3/23/07	3/23/07		
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	22.5 - 23.5	22.5 - 23.5	24 - 25	24 - 25		
Methanotrophs (total)	2.65E+10	1.56E+10	4.67E+10	9.16E+10	7.57E+10	3.41E+10		
Type I MOB	7.55E+08	8.91E+08	1.17E+10	6.20E+09	5.95E+09	3.31E+09		
Type II MOB	2.58E+10	1.47E+10	4.55E+10	5.84E+10	6.97E+10	3.08E+10		
Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB		
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425		
Sample Date	1/16/08	1/16/08	1/16/08	1/16/08	1/17/08	1/17/08		
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	22.5 - 23.5	22.5-23.5	24 - 25	24 - 25		
Methanotrophs (total)	2.31E+05	2.95E+07	2.65E+07	8.57E+06	1.28E+08	1.06E+08		
Type I MOB	1.15E+05	1.59E+06	1.11E+06	6.88E+05	2.60E+06	2.75E+06		
Type II MOB	1.15E+05	2.79E+07	2.54E+07	7.88E+06	1.26E+08	1.03E+08		
							-	
Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB		
Sample ID	12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5	DWB 23.5-24.5		
Sample Date	11/18/08	11/18/08	11/18/08	11/18/08	11/19/08	1/17/08		
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5		
Methanotrophs (total)	3.51E+06	5.95E+06	9.56E+06	1.66E+07	5.51E+07	1.27E+08		
Type I MOB	7.85E+05	9.00E+05	6.14E+05	7.09E+06	9.52E+06	3.77E+07		
Type II MOB	2.72E+06	5.05E+06	8.95E+06	9.55E+06	4.55E+07	8.83E+07		

All sample units in cells/gram

TABLE 3 MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING SUMMARY OF PHOSPHOLIPID FATTY ACID DATA (2006, 2007 AND 2008)

Boring Location	SMS-12	SMS-12	SMS-16	DW	DW	SMS-10	SMS-15	SMS-21
Sample ID	SMS-SB12-16-17	SMS-SB12-29-30	SMS-SB16-19-20	SMS-DW-19-20	SMS-DW-30-31	SMS-SB10-18-19	SMS-SB15-27-28	SMS-SB21-22-23
Sample Date	6/28/06	6/28/06	6/29/06	6/28/06	June 2006	6/28/06	6/29/06	6/28/06
Sample Depth (ft bgs)	16 - 17	29 - 30	19 - 20	19 - 20	30 - 31	18 - 19	27 - 28	22 - 23
Total biomass	3.30E+07	3.93E+06	3.12E+07	1.76E+08	2.17E+06	1.47E+08	2.44E+06	7.41E+07
Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB		
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425		
Sample Date	3/22/07	3/22/07	3/22/07	3/22/07	3/23/07	3/23/07		
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	22.5 - 23.5	22.5 - 23.5	24 - 25	24 - 25		
Total biomass	9.92E+07	4.05E+07	1.26E+08	1.35E+08	1.12E+08	1.33E+08		
							-	
Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB		
Sample ID	SMS12235245	SMS12B235245	SMSSB16225235	SMSSB16B225235	SMSDW2425	SMSDWB2425		
Sample Date	1/16/08	1/16/08	1/16/08	1/16/08	1/17/08	1/17/08		
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	22.5 - 23.5	22.5-23.5	24 - 25	24 - 25		
Total biomass	5.58E+07	8.42E+07	1.58E+08	1.32E+08	1.12E+08	1.18E+08		
							-	
Boring Location	SMS-12	SMS-12B	SMS-16	SMS-16B	DW	DWB		
Sample ID	12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5	DWB 23.5-24.5		
Sample Date	11/18/08	11/18/08	11/18/08	11/18/08	11/19/08	1/17/08		
Sample Depth (ft bgs)	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5	23.5 - 24.5		
Total biomass	1.16E+08	1.19E+08	4.33E+07	1.61E+08	1.62E+08	1.63E+08		

All sample units in cells/gram

TABLE 4 MULTI SITE G - SMS INSTRUMENTS (SITE# 1-52-026) PHOSTER SYSTEM SOIL SAMPLING

SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL, DETECTIONS ONLY (NOVEMBER 2008)

Sample Location	NYSDEC	SMS-12	SMS-12	SMS-12	SMS-12B	SMS-12B	SMS-12B	SMS-16	SMS-16	SMS-16
Sample ID	Soil	SMS-12 19-20	SMS 12 23.5-24.5	SMS 12 29-30	SMS-12B 19-20	SMS12B 23.5-24.5	SMS12B 29-30	SMS-16 19-20	16 23.5-24.5	16 29-30
Lab ID	Cleanup	G2173-03	G2173-11	G2173-12	G2173-04	G2173-13	G2173-14	G2173-05	G2173-16	G2173-17
Sample Depth (ft bgs)	Objectives	19-20	23.5-24.5	29-30	19-20	23.5-24.5	29-30	19-20	23.5-24.5	29-30
Sample Date		11/18/08	11/18/08	11/18/08	11/18/08	11/18/08	11/18/08	11/18/08	11/18/08	11/18/08
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	1.9 J	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	4,400 D	ND	ND	2,200 D	ND	ND	2.2 J	ND
1,3,5-Trimethylbenzene	8,400	ND	3,200 D	ND	ND	4,300 D	ND	ND	3.3 J	ND
1,3-Dichlorobenzene	2,400	ND	190	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	300 JD	ND	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	780 D	ND	ND	900 D	ND	ND	ND	ND
Acetone	50	ND	58	ND	ND	81	ND	4.3 J	ND	7.8
Carbon disulfide	NC	ND	ND	ND	ND	4.9	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	200	ND	ND	32	ND	ND	ND	ND
m,p-Xylene	260	ND	8	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	50	ND	ND	11	ND	ND	13	ND	ND	ND
n-Butylbenzene	12,000	ND	1,200 D	ND	ND	1,700 D	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	400 D	ND	ND	130	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000	ND	330 JD	ND	ND	170	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	130	ND	ND	120	ND	ND	ND	ND
Toluene	700	ND	11	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	260	ND	8	ND	ND	ND	ND	ND	ND	ND
Total BTEX		0	19	0	0	0	0	0	0	0
Total VOCs	<10,000	0	11,207	11	0	9,639.8	13	4.3	5.5	7.8
Total VOC TICs		1076 NJ	74,700 NJ	0	44.1	73,900 NJ	0	276 J	472 NJ	264 NJ

Notes: NC - No official NYSDEC Remedial Program Soil Cleanup Objective

BOLD / Italics - exceeds the NYSDEC Remedial Program Soil Cleanup Objective

J - Estimated value

D - Diluted sample

ND - Not detected

All results in µg/kg

TABLE 4MULTI SITE G - SMS INSTRUMENTS (SITE# 1-52-026)PHOSTER SYSTEM SOIL SAMPLING

SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL, DETECTIONS ONLY (NOVEMBER 2008)

Sample Location	NYSDEC	SMS-16B	SMS-16B	SMS-16B	DW	DW	DW	DWB	DWB	DWB
Sample ID	Soil	SMS-16B 19-20	16B 23.5-24.5	16B 29-30	DW 19-20	DW 23.5-24.5	DW 29-30	DWB 19-20	DWB 23.5-24.5	DWB 29-30
Lab ID	Cleanup	G2173-06	G2173-18	G2173-19	G2173-01	G2173-07	G2173-08	G2173-02	G2173-09	G2173-10
Sample Depth (ft bgs)	Objectives	19-20	23.5-24.5	29-30	19-20	23.5-24.5	29-30	19-20	23.5-24.5	29-30
Sample Date		11/18/08	11/18/08	11/18/08	11/19/08	11/19/08	11/19/08	11/19/08	11/19/08	11/19/08
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	3,400 D	2.9 J	ND	130	ND	ND	4,300 D	ND
1,3,5-Trimethylbenzene	8,400	ND	4,700 D	3.6 J	ND	4,500 D	ND	ND	4,400 D	ND
1,3-Dichlorobenzene	2,400	ND	380 D	ND	ND	270	ND	ND	33	ND
1,4-Dichlorobenzene	1,800	ND	570 D	ND	ND	1,900 D	ND	ND	90	ND
4-Isopropyltoluene	NC	ND	190	ND	ND	220	ND	ND	240	ND
Acetone	50	ND	78	2.9 J	ND	30	ND	ND	67	ND
Carbon disulfide	NC	ND	3.8 J	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	59	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	110	ND	ND	15 J	ND	ND	33	ND
m,p-Xylene	260	ND	310	ND	ND	27	ND	ND	22	ND
Methylene chloride	50	ND	ND	ND	ND	ND	13	ND	ND	12
n-Butylbenzene	12,000	ND	170	ND	ND	ND	ND	ND	270	ND
n-Propylbenzene	3,900	ND	190	ND	ND	ND	ND	ND	48	ND
Naphthalene	12,000	ND	6.3 J	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	11,000	ND	71	ND	ND	52	ND	ND	83	ND
tert-Butylbenzene	5,900	ND	90	ND	ND	240	ND	ND	54	ND
Toluene	700	ND	9.9	ND	ND	ND	ND	ND	ND	ND
Xylene (Total)	260	ND	310	ND	ND	27	ND	ND	22	ND
Total BTEX		0	378.9	0	0	27	0	0	22	0
Total VOCs	<10,000	0	10,338	9.4	0	7,384	13	0	9,640	12
Total VOC TICs		0	5,780 NJ	321 J	0	83,500 NJ	0	93.1	9,430 NJ	0

Notes: NC - No official NYSDEC Remedial Program Soil Cleanup Objective

BOLD / Italics - exceeds the NYSDEC Remedial Program Soil Cleanup Objective

J - Estimated value

D - Diluted sample

ND - Not detected

All results in µg/kg

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location	NYSDEC		SMS-10	SMS-10	SMS-12	SMS-12
Sample ID	Unre-	SB101819	SB102425	SB285295	B121617	B121920
Laboratory ID	strictive	E0901-10B	E0901-11B	E0901-12B	E0901-13B	F0378-01A
Sample Date	Soil	6/28/06	6/28/06	6/28/06	6/28/06	3/22/07
Sample Depth (ft bgs)	Objective		24-25	28.5-29.5	16-17	19-20
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Acetone	50	320 E	230	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	2 J	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	4 J	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	4 J	ND	ND	ND
Xylenes (total)	260	ND	150	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	2,500 D	750 D	4 J	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	180	72	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	51	420 D	3 J	ND	ND
sec-Butylbenzene	11,000	72	ND	ND	ND	ND
4-Isopropyltoluene	NC	93	450 E	ND	ND	ND
1,3-Dichlorobenzene	2,400	270 E	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	330 DJ		ND	ND	ND
n-Butylbenzene	12,000	140	620 D	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	4 J	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	0	154	0	0	0
Total VOCs	<10,000	3,960	2,700	9	0	0
Total VOC TICs	NC	27,430 J	19,190 J	7,369 J	64 J	28,400 J

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location	NYSDEC	ř.	SMS-12	SMS-12	SMS-12	SMS-12
Sample ID	Unre-	SB121920	SMS121920	B12235245	B12235245	SB12235245
Laboratory ID	strictive	G0076-07A	G2173-03A	E0901-14B	F0378-02A	G0076-08A
Sample Date	Soil	1/16/08	11/18/08	6/28/06	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective		19-20	23.5-24.5	23.5-24.5	23.5-24.5
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Acetone	50	ND	ND	3,500 E	ND	20 J
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	7	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	93
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	550
Xylenes (total)	260	ND	ND	3,800 D	ND	3,600
Isopropylbenzene	NC	ND	ND	ND	ND	2,100
n-Propylbenzene	3,900	ND	ND	7,000 D	ND	2,800 D
2-Chlorotoluene	NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	50,000 D	260	19,000 D
4-Chlorotoluene	NC	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	1,800 DJ		610
1,2,4-Trimethylbenzene	3,600	ND	ND	55,000 D	ND	30,000 D
sec-Butylbenzene	11,000	ND	ND	4,400 D	ND	1,600
4-Isopropyltoluene	NC	ND	ND	360 E	84	3,400 D
1,3-Dichlorobenzene	2,400	ND	ND	210	ND	1100
1,4-Dichlorobenzene	1,800	ND	ND	320 E	ND	2,000
n-Butylbenzene	12,000	ND	ND	18,000 D	ND	9,000 D
1,2 Dichlorobenzene	1,100	ND	ND	98	ND	ND
1,2-Dibromo-3-chloropropane		ND	ND	ND	ND	450
1,2,4-Trichlorobenzene	NC	ND	ND	2 J	ND	20 J
Naphthalene	12,000	ND	ND	3 J	ND	720
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	3,800	0	4,243
Total VOCs	<10,000	7	0	144,493	344	77,063
Total VOC TICs	NC	62 J	1,076 NJ	24,647 J	11,180 J	122,200 J

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location	NYSDEC		SMS-12	SMS-12	SMS-12	SMS-12
Sample ID	Unre-	SMS12235245		B122930	SB122930	SMS122930
Laboratory ID	strictive	G2173-11A	E0901-15B	F0378-03A	G0076-09A	G2173-12A
Sample Date	Soil	11/18/08	6/28/06	3/22/07	1/16/08	11/18/08
Sample Depth (ft bgs)		23.5-24.5	29-30	29-30	29-30	29-30
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Acetone	50	58	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	11
2-Butanone	120	ND	ND	ND	25	ND
Chloroform	370	ND	3 J	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND
Toluene	700	11	ND	ND	4 J	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND
Xylenes (total)	260	8	ND	ND	ND	ND
Isopropylbenzene	NC	200	ND	ND	ND	ND
n-Propylbenzene	3,900	400 D	3 J	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	3,200 D	44	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	130	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	4,400 D	72	ND	1 J	ND
sec-Butylbenzene	11,000	330 JD		ND	ND	ND
4-Isopropyltoluene	NC	780 D	40	ND	ND	ND
1,3-Dichlorobenzene	2,400	190	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	300 JD		ND	ND	ND
n-Butylbenzene	12,000	1,200 D	240	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane		ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	4 J	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	19	0	0	4	0
Total VOCs	<10,000	11,207	406	0	30	11
Total VOC TICs	NC	74,700 NJ	1,182 J	ND	7 J	0

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location		SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-12B
Sample ID	Unre-	B12B1920	SB12B1920	SMS12B1920	B12B235245	SB12B235245
Laboratory ID	strictive	F0378-04A	G0076-10A	G2173-04A	F0378-05A	G0076-11A
Sample Date	Soil	3/22/07	1/16/08	11/18/08	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective		19-20	19-20	23.5-24.5	23.5-24.5
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Acetone	50	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	77
Bromodichloromethane	NC	ND	ND	ND	ND	250
Toluene	700	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	16,000 E
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	1,200	52 J
Isopropylbenzene	NC	ND	ND	ND	2,300 D	300
n-Propylbenzene	3,900	ND	ND	ND	4,600 D	720
2-Chlorotoluene	NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	32,000 D	3,100 D
4-Chlorotoluene	NC	ND	ND	ND	ND	21 J
tert-Butylbenzene	5,900	ND	ND	ND	ND	360
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	51,000 D	3,300 D
sec-Butylbenzene	11,000	ND	ND	ND	3,400 D	900
4-Isopropyltoluene	NC	ND	ND	ND	4,700 D	1,600
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	120
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	100
n-Butylbenzene	12,000	ND	ND	ND	15,000 D	2,400 D
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	460
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	160	71
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	1,200	52
Total VOCs	<10,000	0	0	0	114,360	29,831
Total VOC TICs	NC	ND	8 J	44.1	37,700 J	20,000 J

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location		SMS-12B	SMS-12B	SMS-12B	SMS-12B	SMS-15
Sample ID	Unre-		B12B2930	SB12B2930	SMS12B2930	
Laboratory ID	strictive	SMS12B235245 G2173-13A	Б12Б2930 F0378-06A	G0076-12A	G2173-14A	E0901-19B
Sample Date	Soil	11/18/08	3/22/07	1/16/08	11/18/08	6/28/06
Sample Depth (ft bgs)	Objective		29-30	29-30	29-30	16.5-17.5
Units	µg/kg	23.3-24.5 μg/kg	μg/kg	µg/kg	μg/kg	µg/kg
Acetone	μ <u></u> 9/kg 50	μ <u>γ</u> γκ <u>γ</u> 81	ND	ND	ND	μ <u>g</u> /kg ND
Carbon Disulfide*	NC	4.9	ND	ND	ND	ND
	50	4.9 ND	ND	ND	13	ND
Methylene Chloride 2-Butanone	120	ND	ND	8	ND	ND
Chloroform	370	ND	ND	o ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
	470	ND	ND	ND	ND	ND
Trichloroethene	470 NC	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropropane Bromodichloromethane	NC	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene	700	ND	ND	2 J	ND	ND
	NC	ND	ND	ND 2 J	ND	ND
1,1,2-Trichloroethane Chlorobenzene	1,100	ND	ND	ND	ND	ND
	1,000	ND	ND	ND	ND	ND
Ethylbenzene Xylenes (total)	260	ND	ND	ND	ND	ND
Isopropylbenzene	200 NC	32	ND	ND	ND	ND
n-Propylbenzene	3,900	32 130	ND	ND	ND	ND
2-Chlorotoluene	3,900 NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	4,300 D	ND	2 J	ND	ND
4-Chlorotoluene	8,400 NC	4,300 D ND	ND	ND 2 J	ND	ND
tert-Butylbenzene	5,900	120	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	2,200 D	ND	1 J	ND	ND
sec-Butylbenzene	11,000	2,200 D 170	ND	ND	ND	ND
4-Isopropyltoluene	NC	900 D	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	1,700 D	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	1.9 J	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	4 JB
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	2	0	0
Total VOCs	<10,000	9,639.8	0	13	13	4
Total VOC TICs	NC	73,900 NJ	ND	346 J	0	ND

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location	NYSDEC		SMS-15	SMS-16	SMS-16	SMS-16
Sample ID	Unre-	B152223	B152728	B16165175	SB161920	B161920
Laboratory ID	strictive	E0901-20B	E0901-22B	E0901-16B	E0901-21B	F0378-11A
Sample Date	Soil	6/28/06	6/28/06	6/29/06	6/29/06	3/22/07
Sample Depth (ft bgs)	Objective		27-28	16.5-17.5	19-20	19-20
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Acetone	50 <u>50</u>	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	2 J	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	26 J
Trichloroethene	470	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	4 J	ND	70
4-Chlorotoluene	NC	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	ND	ND	6	ND	51 J
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	7	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	3 JB		ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0
Total VOCs	<10,000	3	0	19	0	147
Total VOC TICs	NC	ND	ND	163 J	ND	42,000 J

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location	NYSDEC	SMS-16	SMS-16	SMS-16	SMS-16	SMS-16
Sample ID	Unre-	SB161920		SB1622.523.5		SB16235245
Laboratory ID	strictive	G0076-04A	G2173-05A	E0901-17B	F0378-12A	G0076-05A
Sample Date	Soil	1/16/08	11/18/08	6/29/06	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective		19-20	22.5-23.5	23.5-24.5	23.5-24.5
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Acetone	50	ND	4.3 J	960	47	690
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	7	ND	ND	ND	370
Chloroform	370	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	300 J
Toluene	700	1 J	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	20,000 E
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	2,100 E	ND	570
Xylenes (total)	260	ND	ND	13,000 D	ND	4,500
Isopropylbenzene	NC	ND	ND	1,400 DJ	ND	660
n-Propylbenzene	3,900	ND	ND	1,200 E	ND	1,200
2-Chlorotoluene	NC	ND	ND	ND	ND	93 J
1,3,5-Trimethylbenzene	8,400	ND	ND	24,000 D	120	17,000 D
4-Chlorotoluene	NC	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	660
1,2,4-Trimethylbenzene	3,600	ND	ND	32,000 D	55	15,000 D
sec-Butylbenzene	11,000	ND	ND	1,000	ND	1,300
4-Isopropyltoluene	NC	ND	ND	ND	ND	2,200
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	1,800 E	ND	2,600
n-Butylbenzene	12,000	ND	ND	1,700 E	ND	5,700
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	130	ND	2,100
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	1	0	15,100	0	5,070
Total VOCs	<10,000	8	4.3	79,290	222	74,943
Total VOC TICs	NC	7 J	276 J	35,950 J	33,300 J	171,200 J

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location	NYSDEC		SMS-16	SMS-16	SMS-16	SMS-16
Sample ID	Unre-	16 23.5-24.5	SB162930	B162930	SB162930	16 29-30
Laboratory ID	strictive	G2173-16A	E0901-18B	F0378-13A	G0076-06A	G2173-17A
Sample Date	Soil	11/18/08	6/29/06	3/22/07	1/16/08	11/18/08
Sample Depth (ft bgs)		23.5-24.5	29-30	29-30	29-30	29-30
Units	µg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg
Acetone	50 pg/Ng	ND	ND	ND	ND	7.8
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	16	ND
Chloroform	370	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	ND
Xylenes (total)	260	ND	ND	ND	ND	ND
Isopropylbenzene	NC	ND	ND	ND	ND	ND
n-Propylbenzene	3,900	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	3.3 J	ND	ND	ND	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	2.2 J	ND	ND	ND	ND
sec-Butylbenzene	11,000	ND	ND	ND	ND	ND
4-Isopropyltoluene	NC	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	ND
n-Butylbenzene	12,000	ND	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane		ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	0	0
Total VOCs	<10,000	5.5	0	0	16	7.8
Total VOC TICs	NC	472 NJ	ND	ND	114 J	264 NJ

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location		SMS-16B	SMS-16B	SMS-16B	SMS-16B	SMS-16B
Sample ID		B16B1920	SB16B1920	SMS16B19-20		SB16B225235
Laboratory ID	strictive	F0378-07A	G0076-01A	G2173-06A	F0378-08A	G0076-02A
Sample Date	Soil	3/22/07	1/16/08	11/18/08	3/22/07	1/16/08
Sample Depth (ft bgs)	Objective		19-20	19-20	22.5-23.5	22.5-23.5
Units	, µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Acetone	50	ND	ND	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	ND	12	ND	ND	33 J
Chloroform	370	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	30 J
Bromodichloromethane	NC	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	27 J
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	ND	45 J
Xylenes (total)	260	ND	ND	ND	50 J	380
Isopropylbenzene	NC	ND	ND	ND	ND	85
n-Propylbenzene	3,900	ND	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	480	8,700 D
4-Chlorotoluene	NC	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	240
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	300	1,100
sec-Butylbenzene	11,000	ND	ND	ND	ND	250
4-Isopropyltoluene	NC	ND	ND	ND	120	750
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	300
1,4-Dichlorobenzene	1,800	ND	ND	ND	ND	680
n-Butylbenzene	12,000	ND	ND	ND	ND	1,200
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	ND	110
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	50	452
Total VOCs	<10,000	0	12	0	950	13,930
Total VOC TICs	NC	8,120 J	5 J	0	104,500 J	195,000 J

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location		SMS-16B	SMS-16B	SMS-16B	SMS-16B	SMS-21
Sample ID	Unre-	16B 23.5-24.5	B16B2930	SB16B2930	16B 29-30	B211920
Laboratory ID	strictive	G2173-18A	F0378-09A	G0076-03A	G2173-19A	E0901-06B
Sample Date	Soil	11/18/08	3/22/07	1/16/08	11/18/08	6/28/06
Sample Depth (ft bgs)	Objective	23.5-24.5	29-30	29-30	29-30	19-20
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Acetone	50	78	ND	ND	2.9 J	ND
Carbon Disulfide*	NC	3.8 J	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	18	ND	ND
Chloroform	370	ND	ND	ND	ND	2 J
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND
Toluene	700	9.9	ND	2 J	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	59	ND	ND	ND	ND
Xylenes (total)	260	310	ND	ND	ND	3 J
Isopropylbenzene	NC	110	ND	ND	ND	ND
n-Propylbenzene	3,900	190	ND	ND	ND	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	4,700 D	ND	ND	3.6 J	ND
4-Chlorotoluene	NC	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	90	ND	ND	ND	ND
1,2,4-Trimethylbenzene	3,600	3,400 D	ND	ND	2.9 J	ND
sec-Butylbenzene	11,000	71	ND	ND	ND	ND
4-Isopropyltoluene	NC	190	ND	ND	ND	ND
1,3-Dichlorobenzene	2,400	380 D	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	570 D	ND	ND	ND	3 J
n-Butylbenzene	12,000	170	ND	ND	ND	ND
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane		ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	6.3 J	ND	ND	ND	ND
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	379	0	2	0	3
Total VOCs	<10,000	10,338	0	20	9.4	8
Total VOC TICs	NC	5,780 NJ	ND	857 J	321	ND

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location NYSDEC SMS-21 SMS-21 DW DW DW							
Sample Location			SMS-21			DW	
Sample ID	Unre-	B212223	B212930	DW-1920	DW-1920	DW-1920	
Laboratory ID	strictive	E0901-07B	E0901-09B	E0901-01B	F0378-15A	G0076-17A	
Sample Date	Soil	6/28/06	6/28/06	6/28/06	3/23/07	1/17/08	
Sample Depth (ft bgs)	Objective		29-30	19-20	19-20	19-20	
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	
Acetone	50	110	ND	66	ND	ND	
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	
Methylene Chloride	50	ND	ND	ND	ND	ND	
2-Butanone	120	ND	ND	ND	ND	ND	
Chloroform	370	ND	ND	18 J	ND	ND	
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	
Trichloroethene	470	ND	ND	ND	ND	ND	
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	
Bromodichloromethane	NC	ND	ND	ND	ND	ND	
Toluene	700	6	ND	ND	ND	ND	
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	
Chlorobenzene	1,100	ND	ND	37	ND	ND	
Ethylbenzene	1,000	ND	ND	400	ND	ND	
Xylenes (total)	260	ND	ND	20,000 D	ND	ND	
Isopropylbenzene	NC	ND	ND	210	ND	ND	
n-Propylbenzene	3,900	140	ND	280	ND	ND	
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	
1,3,5-Trimethylbenzene	8,400	300 DJ		34,000 D	ND	ND	
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	
tert-Butylbenzene	5,900	ND	ND	ND	ND	ND	
1,2,4-Trimethylbenzene	3,600	170 DJ	ND	22,000 D	ND	ND	
sec-Butylbenzene	11,000	190	ND	300	ND	ND	
4-Isopropyltoluene	NC	360 E	ND	1,000	ND	ND	
1,3-Dichlorobenzene	2,400	ND	ND	8,700 D	ND	ND	
1,4-Dichlorobenzene	1,800	ND	ND	41,000 D	ND	ND	
n-Butylbenzene	12,000	490 D	ND	ND	ND	ND	
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	NC	ND	ND	10,000 D	ND	ND	
Naphthalene	12,000	ND	ND	1,900 D	18 J	ND	
1,2,3-Trichlorobenzene	NC	ND	ND	330	ND	ND	
Total BTEX	NC	6	0	20,400	0	0	
Total VOCs	<10,000	1,766	0	140,241	18	0	
Total VOC TICs	NC	21,130 J	ND	63,300 J	2,270 J	83 J	

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location	NYSDEC		DW	DW	DW	DW
Sample ID	Unre-	DW 19-20	DW215225	DW-2425	DW-2425	DW-2425
Laboratory ID	strictive	G2173-01A			F0378-16A	G0076-18A
Sample Date	Soil	11/19/08	6/28/06	6/28/06	3/23/07	1/17/08
Sample Depth (ft bgs)	Objective	19-20	21.5-22.5	24-25	24-25	24-25
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
Acetone	50	ND	70	ND	ND	ND
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	ND	ND	ND	ND	ND
Chloroform	370	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	ND	2 J	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND
Bromodichloromethane	NC	ND	ND	ND	ND	ND
Toluene	700	ND	8	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	130	3,700	ND	56 J
Xylenes (total)	260	ND	3400 D	33,000	ND	630
Isopropylbenzene	NC	ND	130	1,900	ND	60
n-Propylbenzene	3,900	ND	93	2,400	ND	ND
2-Chlorotoluene	NC	ND	72	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	9700 D	17,000	ND	2,000
4-Chlorotoluene	NC	ND	ND	ND	ND	94
tert-Butylbenzene	5,900	ND	ND	600 J	ND	100
1,2,4-Trimethylbenzene	3,600	ND	7800 D	30,000	ND	1,100
sec-Butylbenzene	11,000	ND	100	1,800	ND	200
4-Isopropyltoluene	NC	ND	170	ND	ND	410
1,3-Dichlorobenzene	2,400	ND	140	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	4600 D	3,900	ND	440
n-Butylbenzene	12,000	ND	ND	ND	ND	990
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	86
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	69	1,800	ND	71 B
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	0	3,538	36,700	0	686
Total VOCs	<10,000	0	26,484	96,100	0	6,237
Total VOC TICs	NC	0	17,426 J	950,800 J	474 J	96,300 J

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location NYSDEC DW DW DW DW DW							
Sample ID	Unre-		DVV DW-2930	DVV DW-2930		DVV DW-3031	
					DW 29-30		
Laboratory ID Sample Date	strictive Soil	G2173-07A 11/19/08	F0378-17A 3/23/07	G0076-19A 1/17/08	G2173-08A	E0901-05B 6/28/06	
		23.5-24.5	3/23/07 29-30	29-30	11/19/08 29-30	6/26/06 30-31	
Sample Depth (ft bgs)	-						
Units	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	
Acetone	50	30	ND	ND	ND	ND	
Carbon Disulfide*	NC	ND	ND	ND	ND	ND	
Methylene Chloride	50	ND	ND	ND	13	ND	
2-Butanone	120	ND	ND	8	ND	ND	
Chloroform	370	ND	ND	ND	ND	ND	
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND	
Trichloroethene	470	ND	ND	ND	ND	ND	
1,2-Dichloropropane	NC	ND	ND	ND	ND	ND	
Bromodichloromethane	NC	ND	ND	ND	ND	ND	
Toluene	700	ND	ND	2 J	ND	ND	
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND	
Chlorobenzene	1,100	ND	ND	ND	ND	ND	
Ethylbenzene	1,000	ND	ND	ND	ND	ND	
Xylenes (total)	260	27	ND	ND	ND	ND	
Isopropylbenzene	NC	15 J	ND	ND	ND	ND	
n-Propylbenzene	3,900	ND	ND	ND	ND	ND	
2-Chlorotoluene	NC	ND	ND	ND	ND	ND	
1,3,5-Trimethylbenzene	8,400	4,500 D	ND	ND	ND	ND	
4-Chlorotoluene	NC	ND	ND	ND	ND	ND	
tert-Butylbenzene	5,900	240	ND	ND	ND	ND	
1,2,4-Trimethylbenzene	3,600	130	2 J	ND	ND	ND	
sec-Butylbenzene	11,000	52	ND	ND	ND	ND	
4-Isopropyltoluene	NC	220	ND	ND	ND	ND	
1,3-Dichlorobenzene	2,400	270	ND	ND	ND	ND	
1,4-Dichlorobenzene	1,800	1,900 D	ND	ND	ND	ND	
n-Butylbenzene	12,000	ND	ND	ND	ND	ND	
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND	
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND	
Naphthalene	12,000	ND	ND	ND	ND	ND	
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND	
Total BTEX	NC	27	0	2	0	0	
Total VOCs	<10,000	7,384	2	10	13	0	
Total VOC TICs	NC	83,500 NJ	159 J	ND	ND	ND	

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

D - Diluted sample

MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

Sample Location	NYSDEC	DWB	DWB	DWB	DWB	DWB
Sample ID	Unre-	DWB-1920	DWB-1920	DWB 19-20	DWB-2425	DWB-2425
Laboratory ID	strictive	F0378-18A	G0076-14A	G2137-02A	F0378-19A	G0076-15A
Sample Date	Soil	3/23/07	1/17/08	11/19/08	3/23/07	1/17/08
Sample Depth (ft bgs)	Objective		19-20	19-20	24-25	24-25
Units	µg/kg	µg/kg	µg/kg	µg/kg	∠⊣ 20 µg/kg	∠⊣ 20 µg/kg
Acetone	<u>50</u>	ND	ND	ND	ND	<u>ug</u> , ng 3 J
Carbon Disulfide*	NC	ND	ND	ND	ND	ND
Methylene Chloride	50	ND	ND	ND	ND	ND
2-Butanone	120	ND	3 J	ND	ND	6
Chloroform	370	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	680	ND	ND	ND	ND	ND
Trichloroethene	470	ND	ND	ND	ND	ND
1,2-Dichloropropane	NC	ND	ND	ND	ND	1 J
Bromodichloromethane	NC	ND	ND	ND	ND	ND
Toluene	700	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	NC	ND	ND	ND	ND	ND
Chlorobenzene	1,100	ND	ND	ND	ND	ND
Ethylbenzene	1,000	ND	ND	ND	3,100 D	ND
Xylenes (total)	260	ND	ND	ND	23,000 D	9
Isopropylbenzene	NC	ND	ND	ND	5,200 D	1 J
n-Propylbenzene	3,900	ND	ND	ND	10,000 D	ND
2-Chlorotoluene	NC	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	8,400	ND	ND	ND	41,000 D	75
4-Chlorotoluene	NC	ND	ND	ND	ND	ND
tert-Butylbenzene	5,900	ND	ND	ND	ND	3 J
1,2,4-Trimethylbenzene	3,600	ND	ND	ND	73,000 D	76
sec-Butylbenzene	11,000	ND	ND	ND	2,200 E	5 J
4-Isopropyltoluene	NC	ND	ND	ND	4,700 D	13
1,3-Dichlorobenzene	2,400	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	1,800	ND	ND	ND	1,400	5 J
n-Butylbenzene	12,000	ND	ND	ND	17,000 D	29
1,2 Dichlorobenzene	1,100	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane	NC	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Naphthalene	12,000	ND	ND	ND	940	3 JB
1,2,3-Trichlorobenzene	NC	ND	ND	ND	ND	ND
Total BTEX	NC	0	0	0	26,100	9
Total VOCs	<10,000	0	3	0	181,540	229
Total VOC TICs	NC	1,179 J	39 J	0	9,660 J	7,080 J

Notes:

Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

NC - No Soil Cleanup Objective

BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value

E - Result exceeds the calibration range, estimated value

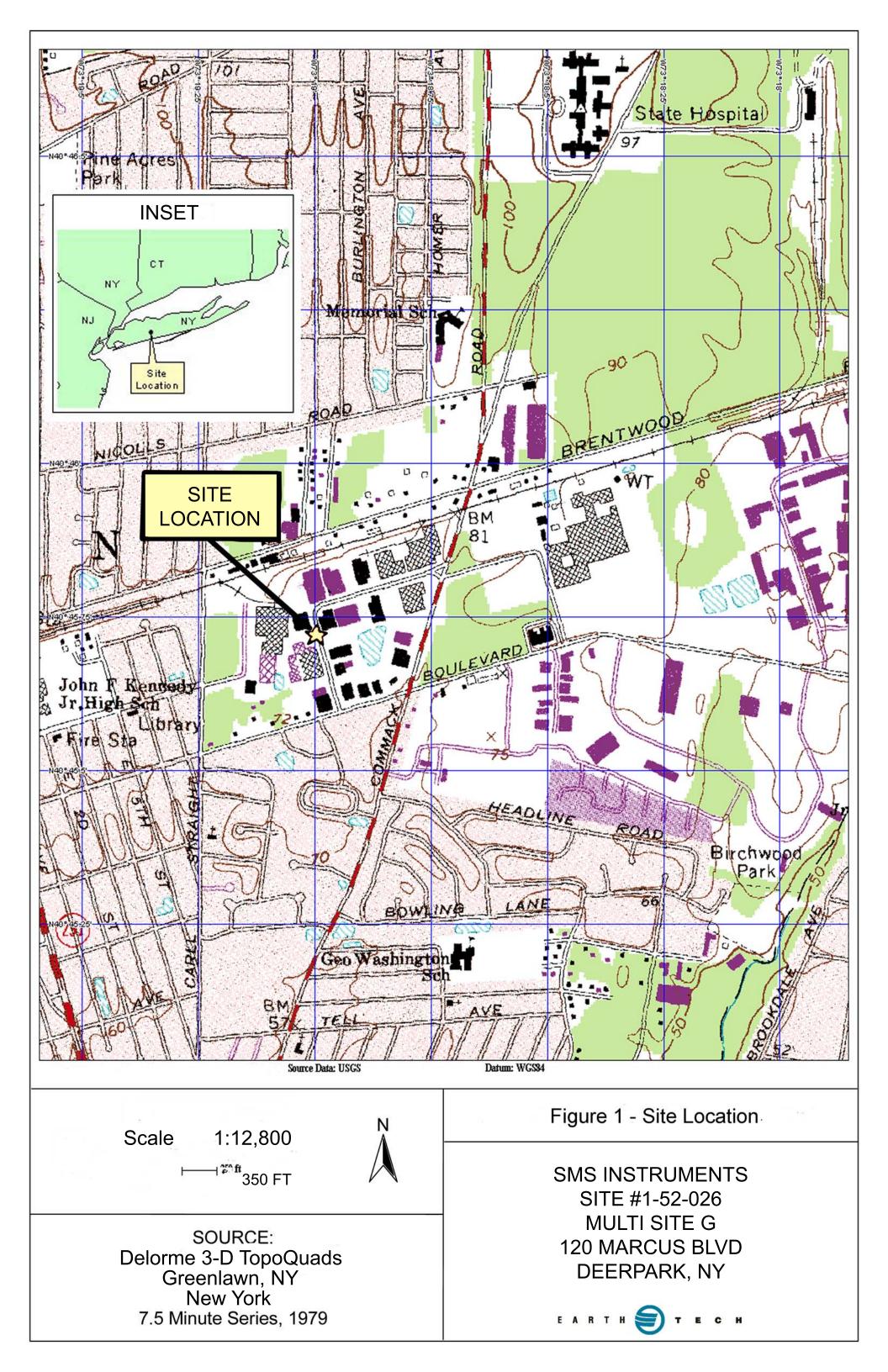
D - Diluted sample

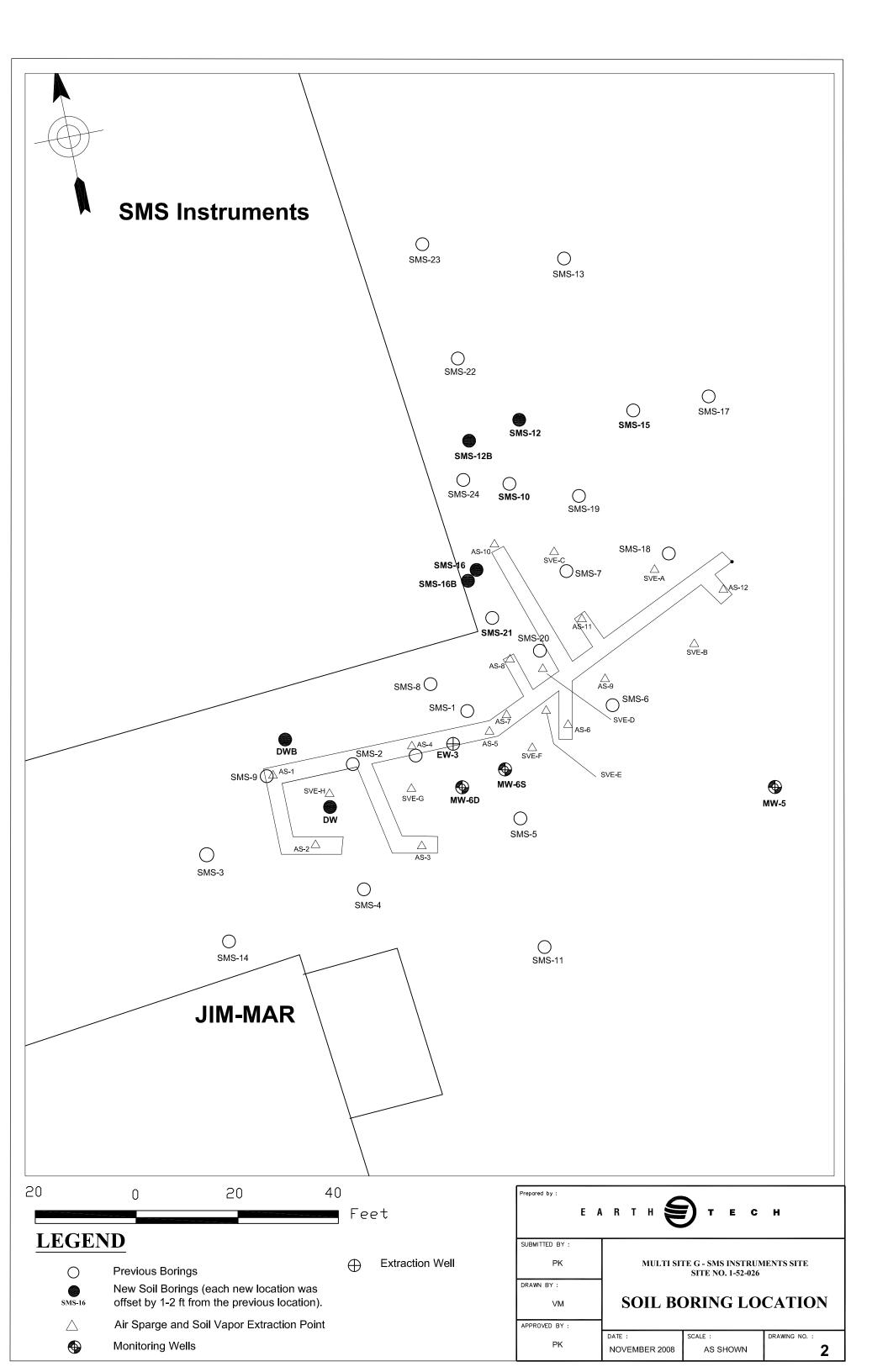
MULTI SITE G - SMS INSTRUMENTS (SITE # 1-52-026) PHOSTER SYSTEM SOIL SAMPLING VOLATILE ORGANIC COMPOUNDS, DETECTIONS ONLY COMPARISON OF JUNE 2006, MARCH 2007, JANUARY 2008 AND NOVEMBER 2008 DATA

E 2000, III/	· · · · · · · · · · · · · · · · · · ·		1	
	DWB	DWB	DWB	DWB
Unre-	DWB 23.5-24.5	DWB-2930	DWB-2930	DWB 29-30
strictive	G2173-09A		G0076-16A	G2173-10A
				11/19/08
				29-30
				µg/kg
				ND
	ND	ND	ND	ND
		ND	ND	12
120		ND	ND	ND
370		ND		ND
680	ND	ND	ND	ND
470	ND	ND	ND	ND
NC	ND	ND	4 J	ND
NC	ND	ND	ND	ND
700	ND	ND	ND	ND
NC	ND	ND	ND	ND
1,100	ND	ND	ND	ND
1,000	ND	ND	ND	ND
260	22	ND	ND	ND
NC	33	ND	ND	ND
3,900	48	ND	ND	ND
NC	ND	ND	ND	ND
8,400	4,400 D	ND	ND	ND
NC	ND	ND	ND	ND
5,900	54	ND	ND	ND
3,600	4,300 D	ND	ND	ND
11,000	83	ND	ND	ND
NC	240	ND	ND	ND
2,400	33	ND	ND	ND
1,800	90	ND	ND	ND
12,000	270	ND	ND	ND
1,100	ND	ND	ND	ND
NC	ND	ND	ND	ND
NC	ND	ND	ND	ND
12,000	ND	ND	ND	ND
NC	ND	ND	ND	ND
NC	22	0	0	0
<10,000	9,640	0	4	12
NC	9,430 NJ	51 J	7 J	0
	NYSDEC Unre- strictive Soil Objective µg/kg 50 NC 50 120 370 680 470 NC 700 NC 1,100 1,000 260 NC 3,900 NC 3,900 NC 3,900 NC 3,900 NC 3,900 NC 5,900 3,600 11,000 2,400 1,800 12,000 1,100 NC 2,400 1,100 NC 2,400 1,2000 NC 2,400 1,000 NC 2,000 NC 1,0000 NC	NYSDEC DWB Unre- DWB 23.5-24.5 strictive G2173-09A Soil 11/19/08 Objective 23.5 - 24.5 µg/kg µg/kg 50 67 NC ND 50 ND 120 ND 370 ND 680 ND 470 ND NC ND 700 ND NC ND 1,000 ND 1,000 ND 1,000 ND 1,000 ND 1,000 ND 1,000 ND 260 22 NC ND 3,900 48 NC ND 3,600 4,300 11,000 83 NC 240 2,400 33 1,800 90 12,000 270 1,100 <t< td=""><td>NYSDEC DWB DWB Unre- DWB 23.5-24.5 DWB-2930 strictive G2173-09A F0378-20A Soil 11/19/08 3/23/07 Objective 23.5 - 24.5 29-30 µg/kg µg/kg µg/kg 50 67 ND NC ND ND 50 67 ND 50 ND ND 50 ND ND 50 ND ND 370 ND ND 370 ND ND 470 ND ND NC ND ND NC ND ND NC ND ND 1,000 ND ND 1,000 ND ND 1,000 ND ND 1,000 ND ND 3,900 48 ND NC ND ND 3,600 <t< td=""><td>NYSDEC DWB DWB DWB Unre- strictive DWB 23.5:24.5 DWB-2930 DWB-2930 Soil 11/19/08 3/23/07 1/17/08 Objective 23.5 - 24.5 29-30 29-30 µg/kg µg/kg µg/kg µg/kg pg/kg µg/kg µg/kg µg/kg 50 67 ND ND NC ND ND ND 50 67 ND ND 50 ND ND ND 50 ND ND ND 370 ND ND ND 470 ND ND ND NC ND ND ND 1,100 ND ND ND NC</td></t<></td></t<>	NYSDEC DWB DWB Unre- DWB 23.5-24.5 DWB-2930 strictive G2173-09A F0378-20A Soil 11/19/08 3/23/07 Objective 23.5 - 24.5 29-30 µg/kg µg/kg µg/kg 50 67 ND NC ND ND 50 67 ND 50 ND ND 50 ND ND 50 ND ND 370 ND ND 370 ND ND 470 ND ND NC ND ND NC ND ND NC ND ND 1,000 ND ND 1,000 ND ND 1,000 ND ND 1,000 ND ND 3,900 48 ND NC ND ND 3,600 <t< td=""><td>NYSDEC DWB DWB DWB Unre- strictive DWB 23.5:24.5 DWB-2930 DWB-2930 Soil 11/19/08 3/23/07 1/17/08 Objective 23.5 - 24.5 29-30 29-30 µg/kg µg/kg µg/kg µg/kg pg/kg µg/kg µg/kg µg/kg 50 67 ND ND NC ND ND ND 50 67 ND ND 50 ND ND ND 50 ND ND ND 370 ND ND ND 470 ND ND ND NC ND ND ND 1,100 ND ND ND NC</td></t<>	NYSDEC DWB DWB DWB Unre- strictive DWB 23.5:24.5 DWB-2930 DWB-2930 Soil 11/19/08 3/23/07 1/17/08 Objective 23.5 - 24.5 29-30 29-30 µg/kg µg/kg µg/kg µg/kg pg/kg µg/kg µg/kg µg/kg 50 67 ND ND NC ND ND ND 50 67 ND ND 50 ND ND ND 50 ND ND ND 370 ND ND ND 470 ND ND ND NC ND ND ND 1,100 ND ND ND NC

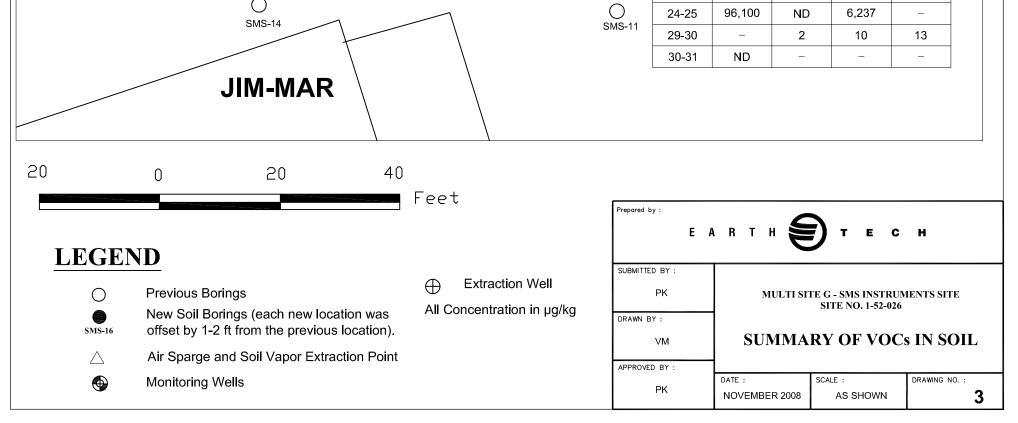
Notes:

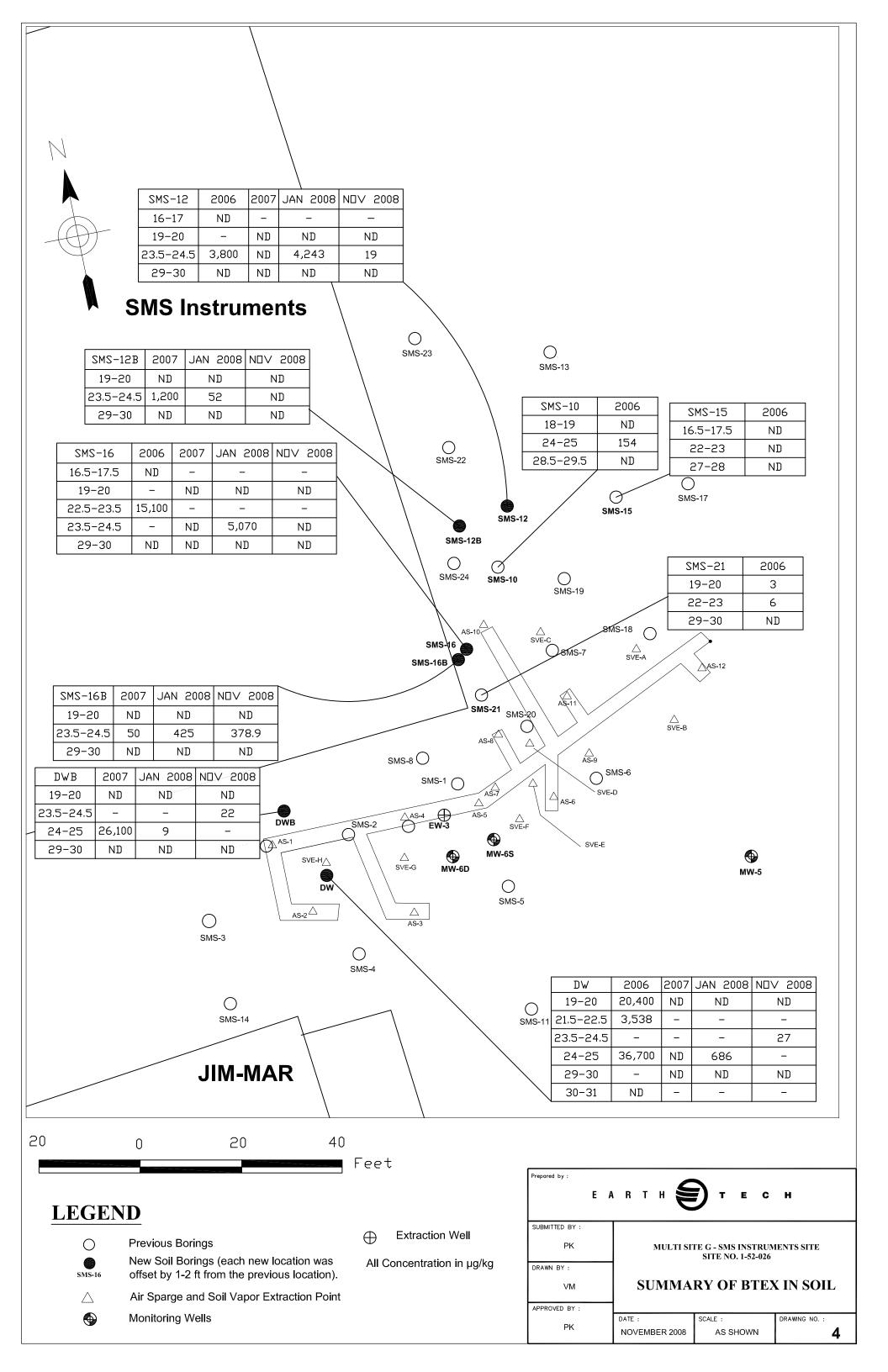
Soil cleanup objectives taken from 6 NYCRR Part 375-6.8(a)

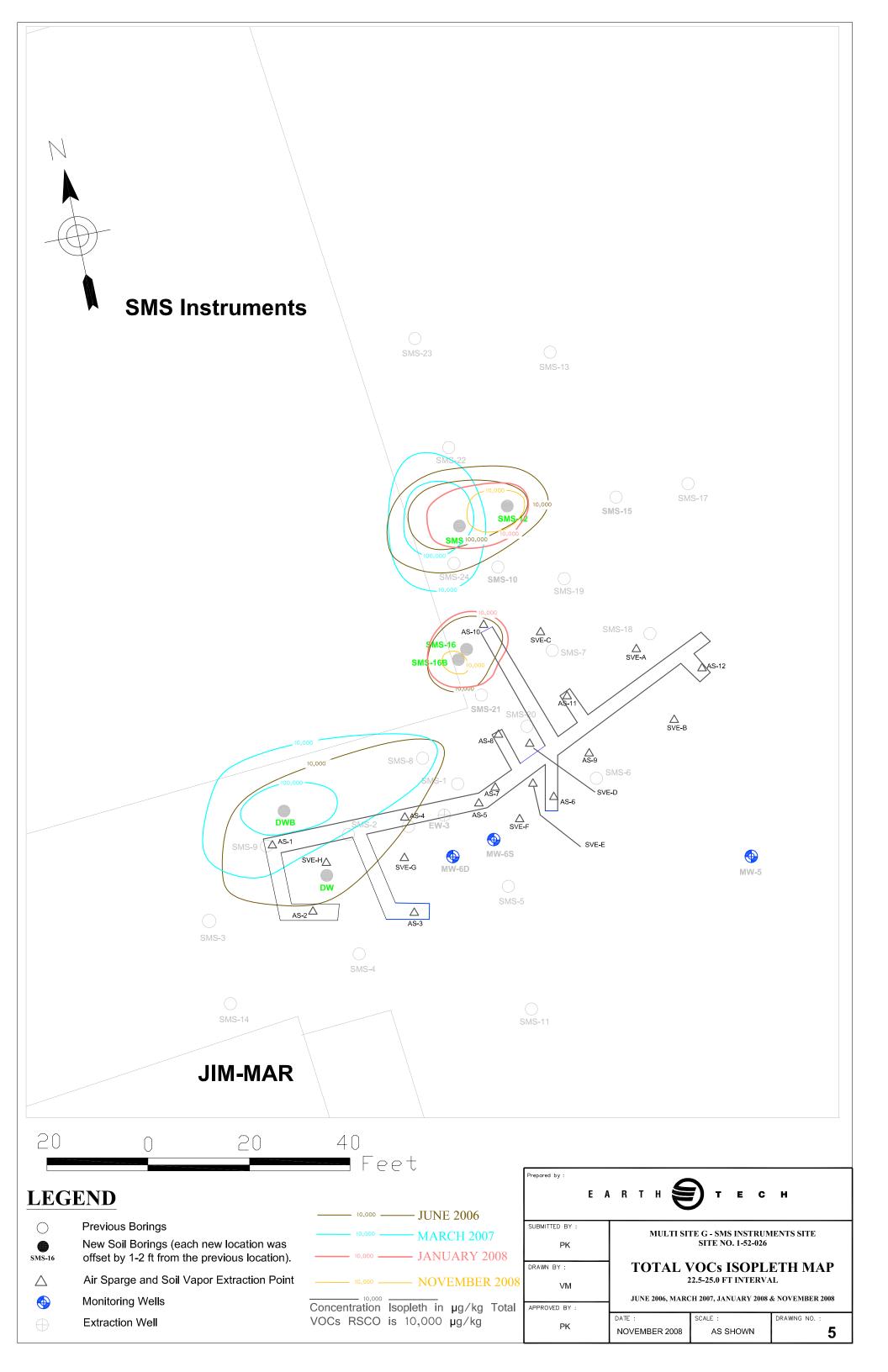

NC - No Soil Cleanup Objective


BOLD/ITALICS - exceeds the unrestricted Soil Cleanup Objective

J - Estimated value


E - Result exceeds the calibration range, estimated value


D - Diluted sample



				0.40.40		14 0007	1 0000	N. 000				
				SMS-12 16-17	Jun 2006 ND	Mar 2007	Jan 2008 _	Nov 200	8			
Th_				19-20	_	ND	7	ND				
Ð				23.5-24.5	144,493	344	77,063	11,207				
T				29-30	406	ND	30	11				
	MS Ir	nstrun	nonte									
		istiun	161113							SMS-15	Jun 2	006
SMS-12B	Mar 2007	7 Jan 200	08 Nov 2	008		2				16.5-17.5	4	
19-20	ND	ND	NC	\ \	SMS-2	J	SMS	-13		22-23	3	
23.5-24.5	114,360			$ \rightarrow $	L.					27-28	NE)
29-30	ND	13	13	, /	$\langle \rangle$				/			
L	1	1	1	J								
SMS-16	Jun 2006	Mar 2007	Jan 2008	Nov 2008		0			/			
16.5-17.5	19	-	_	-		SMS-22						
19-20	ND	147	8	4.3	$ \downarrow $ $ \land $	\ \				\bigcirc		
22.5-23.5	79,290	-	-	_					Ø	SMS-17		
23.5-24.5	-	222	74,943	5.5	-		SMS-12	SI	MS-15			
29-30	ND	ND	16	7.8		SMS-12B			SM	S-10	Jun 2006	
SMS-16B	Mar 2007	Jan 2008	Nov 2008			\bigcirc	<u></u>		_	-19	3,960	
19-20	ND	12	ND		$\langle \rangle$	- (0	24	-25	2,700	
22.5-23.5	950	13,900	_	_			S	MS-19	28.5	-29.5	9	
23.5-24.5	-	-	10,338	-		\mathcal{N}						
29-30	ND	20	9.4			AS-10		SI	^{MS-18} O	\land	•	
[]			1	_		SMS-16 5-16B		SMS-7	SVE-A	$/\langle$		
DWB	Mar 2007	Jan 2008	Nov 2008							\frown	AS-12 >	
19-20	ND	3	ND	SMS		2006		AS-11				
23.5-24.5	-	-	9,640	19-2			21 SMS-20	///////////////////////////////////////		\bigtriangleup		
24-25	181,540	229	-	22-2		66	\sim $O \setminus$			∆ sve-b		
29-30	ND	4	12	29-3	30 N sмs-8 С			AS-9				
							\rightarrow		MS-6			
					5	MS-1		SVE	-D			
				_	AS-4	$ \Delta $		AS-6				
			DWB	SMS	5-2 AS-4		SVE-F					
		SMS-	9 AS-1			€ ⊕ M	W-6S	SVE-E			•	
				E-H <u>∧</u> \	SVE-G	MW-6D					MM-	5
				DW	++		0					
		\sim	AS-2	Δ			SMS-5					
		SMS-3	2]	AS-3				lup 2000	Mar 2007	lon 2000	New 200
		21112-2		\cap				DW 19-20	Jun 2006 140,241	Mar 2007 18	Jan 2008 ND	Nov 200
				SMS	3-4			21.5-22.5	26,284	-		
								23.5-24.5		_		7,384
		\bigcirc					\bigcirc	20.0-24.0	96 100		6 2 2 7	.,

Appendix A

Soil Boring Logs November 2008 Soil Boring Event

Farth Tech | AFCOM

DIRECT PUSH BORING LOG

PROJEC ⁻ LOCATIO	T: SMS Ins T No · 9590	struments					
LOCATIO	T No · 9590					PAGE 1 OF	2
				CONTRACTOR: LAWES		DATE:	11/18/08
W)N: Deer Pa	ark, NY		DRILLERS NAME: Scott		ET REP.:	KS
	ATER LEVE	ELS	DESIGNATI	ON OF DRILL RIG: Geopro	be 66 DT		
DATE	TIME	DEPTH	SIZE AND T	YPE OF EQUIPMENT:			
					OF BOREHOLE:	30	
					SITION OF BOREHOL		
			OCs, methan		SITION OF BOILEHOL	· L ·	
LADUKA		LISES. V		otropris			
	Sample	_	PID				
Depth	Number	Rec.	Readings	SAMPLE DESCRIPTION	, REMARKS, AND ST	RATUM CHANG	ES
(ft)	& Time	(feet)	(ppm)				
			0	Asphalt angular large gravel, c	oarse medium bro	own sand	
_			0				
1 —			0	Angular group and dark brown	agaraa gand		-
_			0	Angular gravel and dark brown	coarse sanu		
2 —							_
~			0	Medium and coarse tan sand			
-							
3 —			0				-
_			0				
4 —							_
4 -			0	Medium reddish brown sand a	nd rounded grave		—
-			-				
5 —		0					-
_		0					
c							
6 —			0	Medium, coarse tan sand with	rounded angular	aravel	_
_			°,			9	
7 —							_
8 —							—
-							
9 —							_
Ū			0				
			0.0				
10 —			0.0				
-		~					
11 —		0					
			0.0				
12 —			0.0	Polo ton/white modium and fin	o cond with modi-	im rounded ~	raval
			0.0	Pale tan/white medium and fine	e sanu with medit	un rounded g	lavel
13 —							_
			0				—
			-				
14 —							-
15			1.8				
15 —							
-		0					
16 —		U					_
_			0	Pale tan coarse sand with rour	nded gravel with r	eddish mottle	s
17 —			-				-
18 —			1.8				_
			0				
19 —			10	Coturated arow assesses and the	the mixed array al		
			18	Saturated grey coarse sand wi			
20	910		27		Co	ollect sample	SB12-19-20
20							

Earth Tech | AECOM

DIRECT PUSH BORING LOG

Boring No.: SB-12

			DIRECT PUSH BORING LOG Boring No.: SB-12
PROJECT: SMS I	nstruments		
PROJECT No.: 95			PAGE 2 OF 2
Depth Sample (ft) & Time	er Rec.	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
20			
- 21 —	0		-
22		74.0 591	Medium coarse grey sand with gravel, saturated, black stain
23 —		211	Large grey gravel with coarse sand
24 —		371.0	
25 923		20	Collect sample SB12-23.5-24.5 Saturated mixed sand with large angular gravel, light tan
26 —			
-		1.6	-
27 —		2.4	-
28 —		0	-
29 —		0.0	_
30 938		0.0	Collect sample SB12-29-30
-			End of boring
31 —			-
42 —			_
- 33 —			
-			
34 —			-
35 —			_
36 —			-
-			-
37 —			-
38 —			-
- 39 —			
-			-
40 —			

Farth Tech | AFCOM

DIDECT DUSH BODING LOG

Earth	Tech A	AECOM	l	DIRECT PUSH BORING LOG	Boring No.:	SB-12 B
PROJEC	T: SMS Ins	struments			-	2
PROJEC	T No.: 9590	00		CONTRACTOR: LAWES		11/18/08
	DN: Deer Pa			DRILLERS NAME: Scott	ET REP.: I	<s< td=""></s<>
	ATER LEVI			ION OF DRILL RIG: Geoprobe 66 DT		
DATE	TIME	DEPTH		TYPE OF EQUIPMENT:		
				CE ELEVATION: DEPTH OF BOREHOLE:	30	
				S OF OVERBURDEN: DISPOSITION OF BOREH	OLE:	
LABORA		LYSES: V	OCs, methan	notrophs		
	Sample		PID			
Depth	Number	Rec.	Readings	SAMPLE DESCRIPTION, REMARKS, AND	STRATUM CHANGES	5
(ft)	& Time	(feet)	(ppm)	Llevel eveneral to C Cost		
				Hand augered to 5 Feet		_
1 1 —						
_		5.0	0	Asphalt, large gravel with coarse dark brown s	sand	_
2 —						
2						
2						
3 —]					
. ⁻	1					-
4 —						
						-
5 —			0	Medium and coarse tan sand with large round	od grovol	
			0	inequality and coarse tail sand with large round	eu graver	-
6 —	-	5.0				
		5.0				_
7 —						
· _			0			_
8 —						
0			0			
9 —	1		1.2			
-						
10 —						
-		0				-
11 —		Ũ	2.2			
-	1		2.2			-
12 —	4	4.0	10	Coarso polo top cond with rounded aroust and	I raddiab arou /m	
-	4	4.0	13	Coarse pale tan sand with rounded gravel and	reduish grey /mo	Juing _
13 —	4					_
-	4		16			_
14 —						
			24			_
15 —						
15]					
	1					-
16 —	1	0				_
-	1	-				
17 —	1	3.5	3.3	Coarse tan gravel with coarse sand		_
-	1	0.0	10			-
18 —	4					_
-	4		5.4			-
19 —						_
_			5.2	Gravel with coarse tan sand, saturated		_
20	1108			co	llect sample SB	-12B-19-20
_						

Earth Tech | AECOM

DIRECT PUSH BORING LOG

Boring No.: SB-12 B

			DIRECT PUSH BORING LOG Boring No.: SB-12 B
T: SMS Inst	ruments		
Г No.: 9590	0		PAGE 2 OF 2
Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
	0		
		402.0 597	Coarse grey fine sand with rounded gravel
		897	
		1638.0	Rounded gravel, coarse sand, stained with odor
1120			collect sample SB-12B-23.5-24.5
		18	Saturated coarse tan sand with gravel
		22.0	
	5.0	16.0	
		20	
1134		17.0	collect sample SB-12B-29-30
1101			End of boring
	T: SMS Inst No.: 9590 Sample Number & Time	Number Rec. (feet) & I 0 1120 5.0	Image: Signature stres PID Sample Rec. Readings Number Rec. (feet) Number 0 402.0 507 897 1638.0 1120 18 22.0 5.0 16.0 20 17.0 17.0 10

Farth Tech | AFCOM

DIDECT DUSH BODING LOG

Earth	Tech /	AECOM		DIRECT PUSH BORING LOG	Boring No.:	SB-16
	T: SMS Ins				PAGE 1 OF 2	
	T No.: 9590			CONTRACTOR: LAWES	DATE: 11/18/0	8
	DN: Deer Pa			DRILLERS NAME: Scott	ET REP.: KS	
	ATER LEVI			ON OF DRILL RIG: Geoprobe 66 DT		
DATE	TIME	DEPTH		YPE OF EQUIPMENT:		
				E ELEVATION: DEPTH OF BOREH		
				S OF OVERBURDEN: DISPOSITION OF B	OREHOLE:	
LABORA		LYSES: V	OCs, methan	otrophs		
	Sample		PID			
Depth	Number	Rec.	Readings	SAMPLE DESCRIPTION, REMARKS,	AND STRATUM CHANGES	
(ft)	& Time	(feet)	(ppm)			
_				Hand augered to 5 ft		_
4						_
'			0	Asphalt, gravel and dark brown coarse sa	and	
			_			-
2 —						
-						-
3 —						_
_						-
Л						
4 —						_
_						-
5 —		0				
-		0				-
6 —			_			
_			0	Coarse light tan sand with angular grave		_
7 -						
' _			0			
				Reddish brown coarse sand with large ar	ngular and rounded gravel	-
8 —	1		0	9		
-						-
9 —			0	Light grov opprop and with angular area		_
-			0	Light grey coarse sand with angular grav		-
10 —						
_						_
11 —						_
''						
		1	3.7	Coarse pale tan sand with large rounded	gravel	
12 —						-
-			47			-
13 —			4.7			
-			4.8			-
14 —						
			3.6			
4.5						
15 —		0				
-		Ŭ				-
16 —						
_						_
17 —						
10			4	Coarse pale tan sand with large rounded	gravel	
18 —					5	
-			1.8	Coarse pale grey sand with large rounde	d gravel	-
19 —			1.0	Coarse pare grey sand with large rounde	u yiavei	
-						
20	1330		4		collect sample SB-16-	19-20

Earth Tech | AECOM

DIRECT PUSH BORING LOG

Boring No.: SB-16

PROJEC	T: SMS Inst	truments		
	T No.: 9590			PAGE 2 OF 2
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
20 —				
-				-
21 —				
22 —		0.0		—
23 —				-
_				
24 —		1.5	0	Coarse light tan sand with small angular rounded gravel
25 —				collect sample SB-16-23.5-24.5 Coarse light tan sand with small angular rounded gravel
26 —				
-				-
27 —				
28 —				_
 29				_
-		0.5	0.0	collect sample SB-16-29-30
30 —		0.5	0.0	Large to medium rounded gravel with some coarse tan sand End of boring
31 —				
_				-
42 —				
33 —				_
				-
_				-
35 —				—
36 —				_
37 —				-
- 38 —				-
_				-
39 —				
40 —				_

Farth Tech | AFCOM

DIDECT DUSH BODING LOG

Earth	Tech /	AECOM		DIRECT PUSH BORING LOG	Boring No.: SB-10	6 B
	T: SMS Ins				PAGE 1 OF 3	
	T No.: 9590			CONTRACTOR: LAWES	DATE: 11/18/08	
	DN: Deer Pa			DRILLERS NAME: Scott	ET REP.: KS	
W	ATER LEVI	ELS	DESIGNATI	ON OF DRILL RIG: Geoprobe 66DT DT		
DATE	TIME	DEPTH	SIZE AND T	YPE OF EQUIPMENT:		
			REFERENC	E ELEVATION: DEPTH OF BOREHOLI	E: 30	
			THICKNES	S OF OVERBURDEN: DISPOSITION OF BOR	EHOLE:	
LABORA	TORY ANA	LYSES: V	OCs, methan			
	Sample		PID	•		
Depth	Number	Rec.	Readings	SAMPLE DESCRIPTION, REMARKS, AI	ND STRATUM CHANGES	
(ft)	& Time	(feet)	(ppm)			
(19		()	(FF)	Hand augered to 5 ft		
						-
1 —						
				Asphalt, angular gravel with dark brown me	edium and coarse sand	_
2						
2 —			0			
-	1		-			-
3 —						
_			_			_
4 —			0			
	1					-
5 —			0	Coarse grey light tan sand with some round	ted gravel	
			0	Coarse grey light tan sand with some round	ded graver	-
6 —						
			0			
-						
/			0			
_			ů,			-
8 —						_
_						
9 —			0	Rounded/angular gravel with coarse tan sa	nd	
3						
_						-
10 —						
_						_
11 —						
				Angular coarse gravel with coarse tan sand	1	Ţ
12 —	1		0.2			-
-	1		0.2			-
13 —			_			
			0			_
14 —				Reddish grey with tan coarse sand and gra	vel	
14]		0			
-	1		0.6			-
15 —			0.0			
_						_
16 —						
10						
		0.0				-
17 —	1	0.0				
-	-		4 7			
18 —			1.7	Mottled reddish and black coarse sand and	gravei	
]	2.5	0	Greyish tan sand with large gravel, saturate	ed	7
19 —	1	-	-	,		
-	1511		0		collect sample SB-16B-19	_20
20	1311		0		conect sample 3D-10B-19	-20
			l			

Earth Tech | AECOM

DIRECT PUSH BORING LOG

Boring No.: SB-16 B

				DIRECT PUSH BORING LOG Boring No.: SB-16 B
PROJEC	T: SMS Inst	ruments		
PROJEC	T No.: 9590	0		PAGE 2 OF 2
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES
20 —		0		
- 21 —		0	329	- Coarse black sand, saturated, with black stains
22 —			1955	Coarse dark grey sand
23 —	1520		2973	
24 —			498	collect sample SB-16B-23.5-24.5
25 —			124	Coarse rounded gravel tan with some coarse tan gravel
26 — -			2	-
27 — -			1.7	Coarse tan gravel to 28 ft
28 — - 29 —			0.6	Coarse tan saturated sand with some rounded gravel
-	1535		0.3	collect sample SB-16B-29-30
30 — -				End of boring
31 — -				-
32 —				_
33 —				_
- 34 —				-
- 35 —				-
- 36 —				-
- 37 —				-
- 38 —				-
- 39 —				-
40 —				-

Farth Tech | AFCOM

PROJECT: SMS Instruments PAGE 1 OF 2 PROJECT: SMS Instruments DRILLERS NAME: Sout ET REP: KS WATER LEVELS DESIGNATION OF DILL Rig: Geoprobe 66 DT S DATE TIME DEPTH SIZE AND TYPE OF EQUIPMENT: REFERENCE ELEVATION: DEPTH OF BOREHOLE: 30 LABORATORY ANALYSES: VOCS, methanomorphs DISPOSITION OF BOREHOLE: 30 2 0 Asphalt, coarse gravel with coarse brown red sand - 2 0 - 0 - 3 0 - - - 4 0 - - - 5 0 - - - - 4 0 - - - - -	Earth	Tech /	AECOM		DIRECT PUSH BORIN	IG LOG	Boring No.	: DW
LOCATION: Deer Park, NY DRILLERS NAME: Scott [ET REP: KS WATER LEVELS DESIGNATION OF PRILL R(S): Geoprobe 66 DT So DATE TIME DEPTH SIZE AND TYPE OF EQUIPMENT: DEPTH OF BOREHOLE: 30 THICKNESS OF OVERBURDEN: DEPTO FF BOREHOLE: 30 THICKNESS OF OVERBURDEN: DEPTO FF BOREHOLE: grouted LABORATORY ANLYSES: VOCS, methanotophs THICKNESS OF OVERBURDEN: DEPTO FF BOREHOLE: grouted 1 Depth Number Rec. Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (t) Number (feet) (ppm) Hand augered to 5 ft Hand augered to 5 ft 1 0 0 Coarse brown sand with coarse brown red sand 2 0 Coarse brown sand with gravel 3 0 0 4 0 5 0 Coarse light tan brown sand with gravel 10 0 0 11 0.0 0 12 3.0 0.0 13 0 0 14 0 15 0 16 0 17 0 18 2.0 19 2.0								
WATER LEVELS DESIGNATION OF DRILL RIG: Geoprate 66 DT DATE TIME DEPTH Size AND TYPE OF EQUIPMENT: DEPTH OF BOREHOLE: 30 Depth NUMERSS OF OVERBURDEN: DEPTH OF BOREHOLE: 30 DIPOSITION OF BOREHOLE: 30 LABORATORY ANALYSES: VOCs, methanotophs Sample Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (ft) * Time (feet) PID Hand augered to 5 ft Hand augered to 5 ft 1 5.0 0.0 Asphalt, coarse gravel with coarse brown red sand 0 3 0 0 Coarse brown sand with gravel 0 7 0 0 Coarse light tan brown sand with gravel 0 10 0.0 0.0 Coarse light tan brown sand with gravel 0 11 0.0 0.0 0 0 0 12 3.0 0.0 0 0 0 14 0 0 0 0 0 14 0 0 0 0 0								
DATE TIME DEPTH SIZE AND TYPE OF EQUIPATENT: DEPTH OF BOREHOLE: 30 Image: Constraint of the strength of ELEVATION Nonher Reference Sample Source 30 LABORATORY ANALYSES: VOCs, methanotrophs DISPOSITION OF BOREHOLE: gouded 30 LABORATORY ANALYSES: VOCs, methanotrophs SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (f) LABORATORY ANALYSES: VOCs, methanotrophs SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (f) LABORATORY ANALYSES: VOCs, methanotrophs Hand augered to 5 ft 1 - 1 5.0 0.0 Asphalt, coarse gravel with coarse brown red sand - 2 0 - 0 - - 4 0 0 - - - 5 0 0 - - - - 6 4.0 0 - - - - - - - - - - - - - - -							ET REP.:	KS
Image: Constraint of the						oprobe 66 DT		
LABORATORY ANLYSES PID Sample (test) PID (keet) Depth (t) Sample (test) Rec. (test) Readings (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 5.0 0.0 Asphalt, coarse gravel with coarse brown red sand 2 0 0 3 0 0 4 0 Coarse gravel with coarse brown red sand 5 0 0 6 4.0 0 7 0 0 8 0 0 9 0 Coarse brown sand with gravel 10 0 0 11 0.0 Coarse light tan brown sand with gravel 12 3.0 0.0 13 0 0 14 0 0 15 0 0 16 0 0 18 2.0 3.2 18 2.0 3.2	DATE	TIME	DEPTH				20	
LABORATORY ANALYSES: VOCs. methanorrophs Depth Number Rec. PID Readings SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES (i) 1 5.0 0.0 Asphalt, coarse gravel with coarse brown red sand 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 4.0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 10 0 0 0 11 0.0 0 0 12 3.0 0.0 0 13 0.0 0 0 14 0 0 0 15 0 0 0 16 0 0 0 17 2.0 3.2 Light tan sand with rounded gravel								
Sample (f) Sample A Time PID Readings ((ppr)) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 - 5.0 0.0 Hand augered to 5 ft 2 - 0 - - 3 - 0 - - 4 - 0 - - 5 0 0 - - 6 4.0 0 - - 7 - 0 - - 8 0 0 - - 9 - 0.0 - - 11 - 0.0 - - 12 3.0 0.0 - - 13 - - - - - 14 - - - - - 16 0 - - - - 18 - - 3.2 Light tan sand with rounded gravel - </td <td></td> <td></td> <td>IVEE V</td> <td></td> <td></td> <td>PUSITION OF BUREH</td> <td>OLE: grouted</td> <td></td>			IVEE V			PUSITION OF BUREH	OLE: grouted	
Depth (ft) Number 8 Time Rec. (reet) Rec. (ppm) Resc. (ppm) SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES 1 5.0 0.0 Asphalt, coarse gravel with coarse brown red sand 2 0 0 Asphalt, coarse gravel with coarse brown red sand 4 0 0 0 5 0 0 0 6 4.0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 10 0.0 0 0 11 0.0 0 0 12 3.0 0.0 0 13 0.0 0 0 14 0 0 0 15 0 0 0 16 0 0 0 17 2.0 3.2 Light tan sand with rounded gravel	LADUKA		LISES. V		otropris			
(if) & Time (feet) (ppm) 1 5.0 0.0 Asphalt, coarse gravel with coarse brown red sand 2 0 0 Asphalt, coarse gravel with coarse brown red sand 3 0 0 Asphalt, coarse gravel with coarse brown red sand 4 0 0 Asphalt, coarse gravel with coarse brown red sand 5 0 0 Coarse brown sand with gravel 7 0 0 Coarse brown sand with gravel 7 0 0 Coarse brown sand with gravel 10 0 0 Coarse light tan brown sand with gravel 11 0.0 0 Coarse sand with black/grey mottles with round gravel 14 0 0 Nedium, coarse sand with black/grey mottles with round gravel 15 0 1 1 1 18 2.0 3.2 Light tan sand with rounded gravel	Depth		Rec		SAMPLE DESCRIP	ION REMARKS AND	STRATI IM CHANG	FS
1 5.0 0.0 Hand augered to 5 ft 2 0 0 Asphalt, coarse gravel with coarse brown red sand 3 0 0 0 4 0 0 0 5 0 0 0 6 4.0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 10 0.0 0 0 11 0.0 0.0 0 12 3.0 0.0 0.0 13 0.0 0.0 0 14 0 0 0 15 0 3.2 Light tan sand with rounded gravel 18 2.0 3.2 Light tan sand with rounded gravel	-			-				20
1 5.0 0.0 Asphalt, coarse gravel with coarse brown red sand 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 4.0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 10 0.0 0 0 11 0.0 0 0 12 3.0 0.0 0 13 0.0 0 0 14 0 0 0 15 0 0 0 16 0 1 0 18 2.0 3.2 Light tan sand with rounded gravel	(11)		(1001)	(PPIII)	Hand augered to 5 ft			
2 - 5.0 0.0 Asphalt, coarse gravel with coarse brown red sand 2 - 0 0 3 - 0 0 4 0 0 0 5 0 0 0 6 4.0 0 Coarse brown sand with gravel 7 0 0 0 8 0 0 Coarse brown sand with gravel 10 0.0 0 Coarse light tan brown sand with gravel 10 0.0 0 Coarse light tan brown sand with gravel 11 0.0 0 Coarse sand with black/grey mottles with round gravel 14 0 0 0 15 0 0 0 16 0 0 0 17 0 3.2 Light tan sand with rounded gravel	_				Trand adgered to 5 ft			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 —		5.0	0.0				
3 - 0 4 - 0 5 0 - 6 4.0 0 7 0 - 8 0 0 9 0 0 10 0 - 11 0.0 - 12 3.0 0.0 13 0.0 - 14 0 0 15 - 0 16 0 - 17 - - 18 2.0 3.2 Light tan sand with rounded gravel			5.0	0.0	Asphalt, coarse gravel with	coarse brown red	sand	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 —							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3			0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1						
5 - 0 + 0 + 0 - 0 + 0 - 0 - 0 - 0 - 0 - 0	4 —			0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			Ŭ				
$\begin{array}{c cccc} 6 & - & & 4.0 & 0 & & \\ 7 & - & & 0 & 0 & & \\ 8 & - & 0 & 0 & & \\ 9 & - & 0 & 0 & & \\ 9 & - & 0 & 0 & & \\ 10 & & 0 & & & \\ 11 & - & 0.0 & & & \\ 12 & - & 3.0 & 0.0 & & \\ 13 & - & & 0 & & \\ 14 & - & & 0 & & \\ 14 & - & & 0 & & \\ 15 & & 0 & & & \\ 16 & - & 0 & & & \\ 17 & - & & & & \\ 18 & - & 2.0 & 3.2 & & \\ 19 & - & & & & \\ 19 & - & & & & \\ 19 & - & & & & \\ \end{array}$	5 —		0					
74.00Coarse brown sand with gravel8009001000110.00123.00.0130.00.01400150016012182.03.2192.03.2	_		0					
74.00Coarse brown sand with gravel8009001000110.00123.00.0130.00.01400150016012182.03.2192.03.2	6 —							
$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & & &$	Ŭ		4.0	0	Coarse brown sand with gr	avel		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7			0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0				
$\begin{array}{c cccc} 8 & - & 0 & 0 \\ 9 & - & 0 & 0 \\ 10 & 0.0 & 0.0 \\ 11 & - & 0.0 & 0.0 \\ 12 & - & 3.0 & 0.0 \\ 13 & - & 0 & 0.0 \\ 14 & - & 0 & 0 \\ 15 & - & 0 & 0 \\ 15 & - & 0 & 0 \\ 16 & - & 0 & 0 \\ 17 & - & 0 & 0 \\ 18 & - & 2.0 & 3.2 \\ 19 & - & 0 & 3.2 \\ 19 & - & 0 & 3.2 \\ 19 & - & 0 & 0 \\ 19 & - & 0 & 0 \\ 10 & - & 0 &$								
9 - 0 0.0 Coarse light tan brown sand with gravel $10 0.0$ 0.0 $11 0.0$ 0.0 $12 3.0$ 0.0 $13 0.0$ 0.0 $14 0$ 0.0 $14 0$ 0 $15 0$ 0 $16 0$ 0 $17 0$ 12 $18 2.0$ 3.2 Light tan sand with rounded gravel	8 —							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 —				Cooree light ten brown oo	d with group		
10 - 10 - 11 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0 -					Coarse light tall brown sai	iu with graver		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 —			0.0				
12 - 12 - 13 - 14 - 10 - 14 - 10 - 15 - 16 - 17 - 18 - 2.0 - 3.2 Light tan sand with rounded gravel	_							
12 - 12 - 13 - 14 - 10 - 14 - 10 - 15 - 16 - 17 - 18 - 2.0 - 3.2 Light tan sand with rounded gravel	11							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 —	1	3.0	0.0				
13 0.0 Medium, coarse sand with black/grey mottles with round gravel 14 0 0 15 0 0 16 0 0 17 0 0 18 2.0 3.2 Light tan sand with rounded gravel 0	-							
$14 - 0 \\ 0 \\ 15 - 0 \\ 16 - 0 \\ 17 - 18 - 2.0 \\ 18 - 2.0 \\ 2.0 \\ 3.2 $ Light tan sand with rounded gravel	13 —				Medium coarse sand with	hlack/grev mottles	with round area	ما
14 - 0 $15 - 0$ $16 - 0$ $17 - 0$ $18 - 2.0$ 3.2 Light tan sand with rounded gravel						biacivyicy moules	with round grav	
15 - 0 $16 - 0$ $17 - 10$ $18 - 2.0$ 3.2 Light tan sand with rounded gravel	14 —							
16 0 17 - 18 - 2.0 3.2 Light tan sand with rounded gravel	_			0				
16 0 17 - 18 - 2.0 3.2 Light tan sand with rounded gravel	15 —							
16								
17	16		0					
18 2.0 3.2 Light tan sand with rounded gravel 19	10 -	1						
18 2.0 3.2 Light tan sand with rounded gravel 19								
2.0 3.2 Light tan sand with rounded gravel	17 —							
2.0 3.2 Light tan sand with rounded gravel	-							
2.0 3.2 Light tan sand with rounded gravel	18 —							
19 – 8.2 Dark grey coarse sand, saturated	_		2.0	3.2	Light tan sand with rounde	a gravel		
8.2 Dark grey coarse sand, saturated	19							
	13			8.2	Dark grey coarse sand, sat	urated		
20 800 800 Collect sample DW-19-20, MS, M	20	800		800			ample DW-19-	20, MS, MSD
	20 —						•	, , ,

Earth Tech | AECOM

DIRECT PUSH BORING LOG

Boring No.:

DW

PROJECT: SMS Instruments PROJECT No.: 95900 PAGE 2 OF 2 PID Sample Readings Depth Number Rec. SAMPLE DESCRIPTION, REMARKS, AND STRATUM CHANGES & Time (ft) (feet) (ppm) 20 21 22 Light grey coarse sand with some rounded gravel 162 23 570 Fine rounded gravel with light tan coarse sand 685 24 Collect sample DW-23.5-24.5 810 3221 25 1.2 Coarse light tan sand with some rounded gravel 26 2.3 27 1.7 28 1.6 29 1.6 Coarse reddish brown/grey gravel with coarse sand 830 Collect sample DW-29-30 30 End of boring 31 42 33 34 35 36 37 38 39 40

Farth Tech | AFCOM

	Tech /	AECOIN		DIRECT PUSH BORING LOG	Boring No.:	DW B
	T: SMS Ins				PAGE 1 OF	2
	T No.: 9590	-		CONTRACTOR: LAWES	DATE:	11/19/2008
	DN: Deer Pa			DRILLERS NAME: Scott	ET REP.:	KS
				ON OF DRILL RIG: Geoprobe 66 DT		
DATE	TIME	DEPTH		TYPE OF EQUIPMENT:		
				CE ELEVATION: DEPTH OF BOREHOLE:	30	
				S OF OVERBURDEN: DISPOSITION OF BOREHC)LE:	
LABORA		LYSES: V	OCs, methar	lotrophs		
Danth	Sample	Dee	PID			- 0
Depth	Number	Rec.	Readings	SAMPLE DESCRIPTION, REMARKS, AND S	TRATUM CHANGE	:5
(ft)	& Time	(feet)	(ppm)		1	
_				Hand augered to 5 ft. Asphalt with angular grav	/ei	
1 —						_
			0	Dark brown/black coarse sand, with slight odor		
2				clay layer at 1.5 ft		
2 —			0	Light brown medium sand with rounded gravel		-
_			0	5		
3 —			Ĭ	Light tan medium sand with rounded gravel		-
-			0	Light tan mealann sana with rounded graver		
4 —			0			_
_			0			
5 —			0.0			
5						
6 —						_
_		0				
7 —		0				
_						
8 —		2.5	0	Coarse pale tan sand with rounded gravel		_
Ŭ						
0			0			
9 —				Reddish coarse sand with reddish rounded gra	vel	_
_			1	5		
10 —						
_		0				
11 —		0				
_			0	Coarse tan sand with angular gravel		
12 —		4	0			
12				Light rounded gravel with traces of coarse sand	b	
40			0			
13 —				Coarse tan sand with rounded and angular gra	vel	—
-			0	seales tan sana marisanasa ang ang ang ang ang		
14 —						_
_						
15 —			0.3			
16		0				
16 —	1					-
-			0	Light grey saturated coarse sand with rounded	gravel with red	mottles
17 —		3.5	Ŭ		graver with leu	
-		3.3	_			
18 —			0			_
10			0			
19 —				Saturated rounded gravel with coarse sand		
			1	•		
_ 20	950		0		collect sample	DWR10_20

Earth Tech | AECOM

DIRECT PUSH BORING LOG

Boring No.: DW B

				DIRECT PUSH BORING LOG	Boring No.:	DW B
PROJEC	T: SMS Inst	ruments				
PROJEC	T No.: 9590	0			PAGE 2 OF 2	
Depth (ft)	Sample Number & Time	Rec. (feet)	PID Readings (ppm)	SAMPLE DESCRIPTION, REMARKS, AND S	TRATUM CHANGES	
20 —						
_ 21 —		0		Saturated dark grey coarse sand with gravel		
22 —		4.0	234 1048	Gravel with coarse and medium grey sand		-
23 —			1189	Light grey coarse sand with gravel		_
24 — _	1005		6096 1005 1617	coll	ect sample DWB2	3.5-24.5
25 —			0			-
26 — 27 —			1.7 1.3			-
 28 —			0	Coarse tan sand with rounded and angular grav	vel	-
29 —			1 0	Coarse tan sand with large rounded gravel		
- 30 —	1018		9		collect sample DW	/B29-30
				End of boring		-
31 —						_
42 —						-
33 —						_
34 —						
35 — _						-
36 — -						-
37 — -						
38 —						-
39 — 40 —						
40						

Appendix B

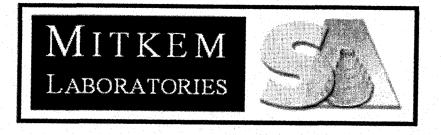
Laboratory Data Package (Form 1s) November 2008 Sampling Event

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

December 9, 2008

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

RE: Client Project: SMS Instruments Lab Work Order #: G2173


Dear Mr. Kareth:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project. If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

Shirley Project Manager

* Data Summary Pack *

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name : SMS Instruments, 152026

SDG: <u>G2173</u>

		Analytical Requirements						
Customer Sample ID	Laboratory Sample ID	MSVOA Method #	MSSEMI Method #	GC* Method #	ME	Other		
DW 19-20	G2173-01	SW8260_LOW_S			· · · · · · · · · · · · · · · · · · ·			
DWB 19-20	G2173-02	SW8260_LOW_S						
SMS-12 19-20	G2173-03	SW8260_LOW_S		· · · · · ·				
SMS-12B 19-20	G2173-04	SW8260_LOW_S						
SMS-16 19-20	G2173-05	SW8260_LOW_S						
SMS-16B 19-20	G2173-06	SW8260_LOW_S	1 					
DW 23.5-24.5	G2173-07	SW8260_LOW_S						
DW 23.5-24.5	G2173-07	SW8260_MED_S						
DW 29-30	G2173-08	SW8260_LOW_S						
DWB 23.5-24.5	G2173-09	SW8260_LOW_S						
DWB 23.5-24.5	G2173-09	SW8260_MED_S	· · · · · · · · · · · · · · · · · · ·					
DWB 29-30	G2173-10	SW8260_LOW_S	• • • • • • • • • • • • • • • • • • •					
SMS 12 23.5-24.5	G2173-11	SW8260_LOW_S						
SMS 12 23.5-24.5	G2173-11	SW8260_MED_S						
SMS12 29-30	G2173-12	SW8260_LOW_S	<u>{</u>					
SMS 12B 23.5-24.5	G2173-13	SW8260_LOW_S						
SMS 12B 23.5-24.5	G2173-13	SW8260_MED_S						
SMS 12B 29-30	G2173-14	SW8260_LOW_S	· · · · · · · · · · · · · · · · · · ·		······································			
FIELD BLANK	G2173-15	SW8260_W						
16 23.5-24.5	G2173-16	SW8260_LOW_S						
16 29-30	G2173-17	SW8260_LOW_S	· · · · · ·					
16B 23.5-24.5	G2173-18	SW8260_LOW_S				<u> </u>		
16B 23.5-24.5	G2173-18	SW8260_MED_S						
16B 29-30	G2173-19	SW8260_LOW_S						

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : <u>SMS Instruments, 152026</u>

SDG : <u>G2173</u>

Laboratory		Date	Date Received	Date	Date
Sample ID	Matrix	Collected	By Lab	Extracted	Analyzed
SW8260_LOW_S					
G2173-01A	SL	11/19/2008	11/20/2008	NA	11/24/2008
G2173-01AMS	SL	11/19/2008	11/20/2008	NA	11/27/2008
G2173-01AMSD	SL	11/19/2008	11/20/2008	NA	11/27/2008
G2173-02A	SL	11/19/2008	11/20/2008	NA	11/24/2008
G2173-03A	SL	11/18/2008	11/20/2008	NA	11/24/2008
G2173-04A	SL	11/18/2008	11/20/2008	NA	11/24/2008
G2173-05A	SL	11/18/2008	11/20/2008	NA	11/24/2008
G2173-06A	SL	11/18/2008	11/20/2008	NA	11/25/2008
G2173-07A	SL	11/19/2008	11/20/2008	NA	11/27/2008
G2173-08A	SL	11/19/2008	11/20/2008	NA	12/2/2008
G2173-09A	SL	11/19/2008	11/20/2008	NA	11/27/2008
G2173-10A	SL	11/19/2008	11/20/2008	NA	12/2/2008
G2173-11A	SL	11/18/2008	11/20/2008	NA	11/25/2008
G2173-12A	SL	11/18/2008	11/20/2008	NA	12/2/2008
G2173-13A	SL	11/18/2008	11/20/2008	NA	11/25/2008
G2173-14A	SL	11/18/2008	11/20/2008	NA	12/2/2008
G2173-16A	SL	11/18/2008	11/20/2008	NA	11/25/2008
G2173-17A	SL	11/18/2008	11/20/2008	NA	11/25/2008
G2173-18A	SL	11/18/2008	11/20/2008	NA	11/27/2008
G2173-19A	SL	11/18/2008	11/20/2008	NA	11/25/2008
SW8260_MED_S					
G2173-07A	SL	11/19/2008	11/20/2008	12/2/2008	12/2/2008
G2173-09A	SL	11/19/2008	11/20/2008	12/2/2008	12/2/2008
G2173-11A	SL	11/18/2008	11/20/2008	11/29/2008	11/29/2008
G2173-13A	SL	11/18/2008	11/20/2008	11/29/2008	11/29/2008
G2173-18A	SL	11/18/2008	11/20/2008	12/2/2008	12/2/2008
SW8260_W					
G2173-15A	AQ	11/19/2008	11/20/2008	NA	11/22/2008

Mitkem Laboratories

New York State Department of Environmental Conservation Sample Preparation and Analysis Summary MSVOA

Project Name : SMS Instruments, 152026

```
SDG: <u>G2173</u>
```

Laboratory		Analytical	Extraction	Low/Medium	Dil/Conc
Sample ID	Matrix	Protocol	Method	Level	Factor
SW8260_LOW_S			• • • • •	I	
G2173-01A	SL	SW8260_LOW_S	NA	LOW	1
G2173-01AMS	SL	SW8260_LOW_S	NA	LOW	1
G2173-01AMSD	SL	SW8260_LOW_S	NA	LOW	1
G2173-02A	SL	SW8260_LOW_S	NA	LOW	1
G2173-03A	SL	SW8260_LOW_S	NA	LOW	1
G2173-04A	SL	SW8260_LOW_S	NA	LOW	1
G2173-05A	SL	SW8260_LOW_S	NA	LOW	1
G2173-06A	SL	SW8260_LOW_S	NA	LOW	1
G2173-07A	SL	SW8260_LOW_S	NA	LOW	· 1
G2173-08A	SL	SW8260_LOW_S	NA	LOW	1
G2173-09A	SL	SW8260_LOW_S	NA	LOW	1
G2173-10A	SL	SW8260_LOW_S	NA	LOW	1
G2173-11A	SL	SW8260_LOW_S	NA	LOW	1
G2173-12A	SL	SW8260_LOW_S	NA	LOW	1
G2173-13A	SL	SW8260_LOW_S	NA	LOW	1
G2173-14A	SL	SW8260_LOW_S	NA	LOW	1
G2173-16A	SL	SW8260_LOW_S	NA	LOW	1
G2173-17A	SL	SW8260_LOW_S	NA	LOW	1
G2173-18A	SL	SW8260_LOW_S	NA	LOW	1
G2173-19A	SL	SW8260_LOW_S	NA	LOW	1
SW8260_MED_S					
G2173-07A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
G2173-09A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
G2173-11A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
G2173-13A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
G2173-18A	SL	SW8260_MED_S	SW5035_MED_PR	MED	1
SW8260_W					
G2173-15A	AQ	SW8260 W	NA	LOW	1

Analytical Data Package for Earth Tech Northeast, Inc.

Client Project: SMS Instruments

SDG# MG2173

Mitkem Work Order ID: G2173

December 9, 2008

Prepared For:

Earth Tech – AECOM 300 Broadacres Drive Bloomfield, NJ 07003 Attn: Mr. Paul Kareth

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Laboratories submits the enclosed data package in response to Earth Tech Northeast, Inc.'s SMS Instruments project. Under this deliverable, analysis results are presented for nineteen aqueous samples that were received between November 20, 2008. Analyses were performed per specifications in the project's contract and chain of custody forms. Following the narrative is the Mitkem Work Order for cross-referencing sample client ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP protocols (2000update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.
- M6 software did not integrate peak
- M7 partial peak integration

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Surrogate recovery: recoveries were within the QC limits with the exception of toluened8 and bromofluorobenzene in samples SMS 12 23.5-24.5, SMS 12B 23.5-24.5, DW 23.5-24.5, DWB 23.5-24.5, 16B 23.5-24.5, DW 23.5-24.5ME and DWB 23.5-24.5ME. The recovery of bromofluorobenzene was outside the QC limits in sample 16B 23.5-24.5ME.

Lab control sample: spike recoveries were within the QC limits with the exception of iodomethane and 2-hexanone in V6TLCSD. The spike recovery of iodomethane was outside the QC limits in V6ULCS and V6DLCS. Replicate RPDs were within the QC limits with the exception of acetone and naphthalene in VS5LCS and VS5LCSD.

Matrix spike/ matrix spike duplicate: duplicate analysis was performed on sample DW 19-20. Spike recoveries were within the QC limits with the exception of fifty-six recoveries. Replicate RPDs were within the QC limits with the exception of acetone.

Sample analysis: due to high concentration of target analytes, sample DW 23.5-24.5 was initially analyzed using 1.2g of sample instead of normally 5g. This sample was reanalyzed by medium level approach as DW 23.5-24.5ME. Samples DWB 23.5-24.5, SMS 12 23.5-24.5, SMS 12B 23.5-24.5 and 16B 23.5-24.5 were re-analyzed by medium level approach as DWB 23.5-24.5 ME, SMS 12 23.5-24.5 ME, SMS 12B 23.5-24.5 ME and 16B 23.5-24.5 ME respectively. The recovery of internal standard 1,4dichlorobenzene-d4 was outside the QC limits in sample DWB 23.5-24.5, the internal standard recoveries were within the QC limits for the medium level analysis for this sample. Due to the complexity of sample SMS 12B 23.5-24.5, tentatively identified compounds could not be evaluated from low-level analysis, please refer to medium level analysis for tentatively identified compounds information for this sample. No other unusual observation was made for the analysis.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Shirley Ng) Project Manager 12/9/08

1A - FORM I VOA-1

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

DW 19-20

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	G2173-01A
Sample wt/vol: 5.	40 (g/mL)	G	Lab File ID:	V6G2940.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	11/24/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

r	1	CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/	KG	Q
75-71-8	Dichlorodifluoromethane			υ
	Chloromethane			υ
75-01-4	Vinyl chloride			U
	Bromomethane			U
75-00-3	Chloroethane			U
75-69-4	Trichlorofluoromethane			U
75-35-4	1,1-Dichloroethene		.~ 1	υ
67-64-1	Acetone		••	U
74-88-4	Iodomethane			U
75-15-0	Carbon disulfide	-	••	U
75-09-2	Methylene chloride			U
156-60-5	trans-1,2-Dichloroethene			U
1634-04-4	Methyl tert-butyl ether		• •	U
75-34-3	1,1-Dichloroethane		•••	U
	Vinyl acetate			U
	2-Butanone			U
156-59-2	cis-1,2-Dichloroethene			U
594-20-7	2,2-Dichloropropane			U
74-97-5	Bromochloromethane			U
67-66-3	Chloroform			U
71-55-6	1,1,1-Trichloroethane			U
	1,1-Dichloropropene			U
56-23-5	Carbon tetrachloride		••	U
107-06-2	2 1,2-Dichloroethane		.5	U
	Benzene		.5	U
79-01-6	Trichloroethene		.5	U
	1,2-Dichloropropane	-	.5	U
	B Dibromomethane		.5	U
75-27-4	Bromodichloromethane		.5	U
10061-01-5	cis-1,3-Dichloropropene		.5	υ
	4-Methyl-2-pentanone		.5	ט
	3 Toluene		.5	U
	trans-1,3-Dichloropropene		.5	U
79-00-5	1,1,2-Trichloroethane		.5	U
) 1,3-Dichloropropane	5	.5	U

CLIENT SAMPLE NO.

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

DW 19-20

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	G2173-01A
Sample wt/vol: 5.	40 (g/mL) G		Lab File ID:	V6G2940.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	11/24/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	5.5	U
	2-Hexanone	5.5	U
	Dibromochloromethane	5.5	Ŭ
	1,2-Dibromoethane	5.5	U
	Chlorobenzene	5.5	U
630-20-6	1,1,1,2-Tetrachloroethane	5.5	U
	Ethylbenzene	5.5	U
1330-20-7	m,p-Xylene	5.5	U
95-47-6	o-Xylene	5.5	U
1330-20-7	Xylene (Total)	5.5	U
100-42-5	Styrene	5.5	U
75-25-2	Bromoform	5.5	ט
98-82-8	Isopropylbenzene	5.5	U
79-34-5	1,1,2,2-Tetrachloroethane	5.5	υ
	Bromobenzene	5.5	U
96-18-4	1,2,3-Trichloropropane	5.5	U
	n-Propylbenzene	5.5	U
95-49-8	2-Chlorotoluene	5.5	U
108-67-8	1,3,5-Trimethylbenzene	5.5	U
106-43-4	4-Chlorotoluene	5.5	U
98-06-6	tert-Butylbenzene	5.5	U
	1,2,4-Trimethylbenzene	5.5	ט
	sec-Butylbenzene	5.5	U
99-87-6	4-Isopropyltoluene	5.5	U
	1,3-Dichlorobenzene	5.5	U
106-46-7	1,4-Dichlorobenzene	5.5	U
104-51-8	n-Butylbenzene	5.5	U
	1,2-Dichlorobenzene	5.5	U
	1,2-Dibromo-3-chloropropane	5.5	U
	1,2,4-Trichlorobenzene	5.5	U
	Hexachlorobutadiene	5.5	U
	1,2,3-Trichlorobenzene	5.5	U
	Naphthalene	5.5	U

.

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

DW 19-20

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.:
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: G2173-01A
Sample wt/vol: 5.40 (g/mL) G	Lab File ID: V6G2940.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/20/2008
% Moisture: not dec. 16	Date Analyzed: 11/24/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

DW 19-20MS

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	G2173-01AMS
Sample wt/vol: 5.	40 (g/mL) G		Lab File ID:	V6G3082.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	11/27/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	_ Q
75-71-8	Dichlorodifluoromethane	21	
74-87-3	Chloromethane	32	
75-01-4	Vinyl chloride	36	
74-83-9	Bromomethane	32	
	Chloroethane	34	
75-69-4	Trichlorofluoromethane	47	
75-35-4	1,1-Dichloroethene	60	
67-64-1	Acetone	13	
74-88-4	Iodomethane	53	
75-15-0	Carbon disulfide	36	
75-09-2	Methylene chloride	56	
156-60-5	trans-1,2-Dichloroethene	48	
1634-04-4	Methyl tert-butyl ether	52	
75-34-3	1,1-Dichloroethane	48	
108-05-4	Vinyl acetate	19	
78-93-3	2-Butanone	5.7	
156-59-2	cis-1,2-Dichloroethene	47	
594-20-7	2,2-Dichloropropane	38	
74-97-5	Bromochloromethane	48	
67-66-3	Chloroform	46	
71-55-6	1,1,1-Trichloroethane	48	
563-58-6	1,1-Dichloropropene	41	
56-23-5	Carbon tetrachloride	45	
107-06-2	1,2-Dichloroethane	41	
71-43-2	Benzene	39	
79-01-6	Trichloroethene	46	
78-87-5	1,2-Dichloropropane	42	
	Dibromomethane	42	
75-27-4	Bromodichloromethane	43	
10061-01-5	cis-1,3-Dichloropropene	37	
	4-Methyl-2-pentanone	71	
	Toluene	35	
10061-02-6	trans-1,3-Dichloropropene	35	
	1,1,2-Trichloroethane	64	
	1,3-Dichloropropane	44	

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

DW 19-20MS

Lab Name: MITKEM LABOR	ATORIES	Cc	ontract:	
Lab Code: MITKEM	Case No.:	Мс	od. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEP	SOIL	La	ab Sample ID:	G2173-01AMS
Sample wt/vol: 5.	40 (g/mL) G	La	b File ID:	V6G3082.D
Level: (TRACE/LOW/MED)	LOW	Da	te Received:	11/20/2008
% Moisture: not dec.	16	Da	te Analyzed:	11/27/2008
GC Column: DB-624	ID: 0.25	(mm) Di	lution Factor:	1.0
Soil Extract Volume:		(uL) Sc	oil Aliquot Volu	ume: (uL)
Purge Volume: 10.0		(mL)		

	<u> </u>	CONCENTRATION UNITS:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q **
127-18-4	Tetrachloroethene	47	
591-78-6	2-Hexanone	50	
124-48-1	Dibromochloromethane	47	
106-93-4	1,2-Dibromoethane	46	
108-90-7	Chlorobenzene	43	
630-20-6	1,1,1,2-Tetrachloroethane	48	
100-41-4	Ethylbenzene	36	
1330-20-7	m,p-Xylene	33	
	o-Xylene	38	
1330-20-7	Xylene (Total)	71	
	Styrene	16	
75-25-2	Bromoform	43	
98-82-8	Isopropylbenzene	30	
79-34-5	1,1,2,2-Tetrachloroethane	54	
108-86-1	Bromobenzene	43	
96-18-4	1,2,3-Trichloropropane	41	
103-65-1	n-Propylbenzene	23	
95-49-8	2-Chlorotoluene	38	
108-67-8	1,3,5-Trimethylbenzene	40	
106-43-4	4-Chlorotoluene	18	
98-06-6	tert-Butylbenzene	. 36	
95-63-6	1,2,4-Trimethylbenzene	14	
	sec-Butylbenzene	23	
99-87-6	4-Isopropyltoluene	5.5	U
541-73-1	1,3-Dichlorobenzene	36	
106-46-7	1,4-Dichlorobenzene	35	
104-51-8	n-Butylbenzene	9.5	
95-50-1	1,2-Dichlorobenzene	. 31	
96-12-8	1,2-Dibromo-3-chloropropane	44	
	1,2,4-Trichlorobenzene	20	
87-68-3	Hexachlorobutadiene	27	
87-61-6	1,2,3-Trichlorobenzene	18	
91-20-3	Naphthalene	13	

CLIENT SAMPLE NO.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

DW 19-20MSD

Lab Name: MITKEM LABOR	ATORIES		Contract:		
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173	
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	G2173-01AMSD	
Sample wt/vol: 5.	20 (g/mL) G		Lab File ID:	V6G3083.D	
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008	
% Moisture: not dec.	16		Date Analyzed:	11/27/2008	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)	
Purge Volume: 10.0		(mL)			

[CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	B Dichlorodifluoromethane		24	
74-87-3	3 Chloromethane		30	
75-01-4	Vinyl chloride		36	
	Bromomethane		35	
75-00-3	3 Chloroethane		36	
75-69-4	Trichlorofluoromethane		49	
75-35-4	1,1-Dichloroethene		62	
67-64-1	Acetone		5.3	J
74-88-4	1 Iodomethane		54	
75-15-0) Carbon disulfide		38	
75-09-2	2 Methylene chloride		58	
156-60-5	trans-1,2-Dichloroethene		49	
1634-04-4	Methyl tert-butyl ether		54	
75-34-3	3 1,1-Dichloroethane		49	
108-05-4	1 Vinyl acetate		19	
78-93-3	3 2-Butanone		5.2	J
156-59-2	2 cis-1,2-Dichloroethene		49	
	7 2,2-Dichloropropane		39	
74-97-5	5 Bromochloromethane		51	
67-66-3	3 Chloroform		48	
71-55-6	5 1,1,1-Trichloroethane		49	
563-58-6	5 1,1-Dichloropropene		43	
56-23-5	5 Carbon tetrachloride		46	
107-06-2	2 1,2-Dichloroethane		43	
71-43-2	2 Benzene		41	
79-01-6	6 Trichloroethene		47	
78-87-5	5 1,2-Dichloropropane		43	
74-95-3	3 Dibromomethane		44	
75-27-4	4 Bromodichloromethane			
10061-01-5	5 cis-1,3-Dichloropropene	40		
	1 4-Methyl-2-pentanone	68		
	3 Toluene	37		
10061-02-0	6 trans-1,3-Dichloropropene	37		
79-00-5	5 1,1,2-Trichloroethane	52		
	9 1,3-Dichloropropane		45	

1B - FORM I VOA-2

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

DW 19-20MSD

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	G2173-01AMSD
Sample wt/vol: 5.	20 (g/mL)	G	Lab File ID:	V6G3083.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	11/27/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q	
127-18-4	Tetrachloroethene	48		
591-78-6	2-Hexanone	75		
124-48-1	Dibromochloromethane	48		
	1,2-Dibromoethane	47		
	Chlorobenzene	43		
	1,1,1,2-Tetrachloroethane	49		
	Ethylbenzene	38		
	m,p-Xylene	34		
95-47-6	o-Xylene	40		
1330-20-7	Xylene (Total)	74		
	Styrene	19		
75-25-2	Bromoform	45		
98-82-8	Isopropylbenzene	31		
	1,1,2,2-Tetrachloroethane	47		
	Bromobenzene	44		
96-18-4	1,2,3-Trichloropropane	41		
	n-Propylbenzene	25		
	2-Chlorotoluene	39		
108-67-8	1,3,5-Trimethylbenzene	35		
	4-Chlorotoluene	17		
98-06-6	tert-Butylbenzene	37		
	1,2,4-Trimethylbenzene	11		
	sec-Butylbenzene	26		
	4-Isopropyltoluene	5.7	U	
541-73-1	1,3-Dichlorobenzene	34		
106-46-7	1,4-Dichlorobenzene	34		
104-51-8	n-Butylbenzene	11		
95-50-1	1,2-Dichlorobenzene	31		
96-12-8	1,2-Dibromo-3-chloropropane	41		
120-82-1	1,2,4-Trichlorobenzene	19		
	Hexachlorobutadiene	29		
	5 1,2,3-Trichlorobenzene	18		
91-20-3 Naphthalene		14		

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

DWB 19-20

Lab Name: MITKEM LABORA	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	G2173-02A
Sample wt/vol: 5.	60 (g/mL) <u>G</u>	Lab File ID:	V6G2959.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
% Moisture: not dec.	9.0	Date Analyzed:	11/24/2008
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0	(mL)		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane		4.9	U
74-87-3	Chloromethane		4.9	U
75-01-4	Vinyl chloride		4.9	U
	Bromomethane		4.9	U
75-00-3	Chloroethane		4.9	U
75-69-4	Trichlorofluoromethane		4.9	U
75-35-4	1,1-Dichloroethene		4.9	U
67-64-1	Acetone		4.9	U
74-88-4	Iodomethane		4.9	U
75-15-0	Carbon disulfide		4.9	U
75-09-2	Methylene chloride		4.9	U
156-60-5	trans-1,2-Dichloroethene		4.9	U
1634-04-4	Methyl tert-butyl ether	· ·	4.9	U
75-34-3	1,1-Dichloroethane		4.9	U
108-05-4	Vinyl acetate		4.9	U
	2-Butanone		4.9	U
156-59-2	cis-1,2-Dichloroethene		4.9	σ
594-20-7	2,2-Dichloropropane		4.9	U
	Bromochloromethane		4.9	U
67-66-3	Chloroform	· · · · · · · · · · · · · · · · · · ·	4.9	U
71-55-6	1,1,1-Trichloroethane		4.9	υ
563-58-6	1,1-Dichloropropene		4.9	U
56-23-5	Carbon tetrachloride		4.9	υ
107-06-2	2 1,2-Dichloroethane		4.9	υ
71-43-2	Benzene		4.9	υ
79-01-6	Trichloroethene	·····	4.9	U
78-87-5	1,2-Dichloropropane		4.9	U
74-95-3	B Dibromomethane		4.9	U
	Bromodichloromethane	······································	4.9	U
10061-01-5	cis-1,3-Dichloropropene		4.9	U
	4-Methyl-2-pentanone	· · · · · · · · · · · · · · · · · · ·	4.9	U
108-88-3	3 Toluene		4.9	υ
10061-02-6	5 trans-1,3-Dichloropropene		4.9	U
	5 1,1,2-Trichloroethane		4.9	U
142-28-9) 1,3-Dichloropropane		4.9	U

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

CLIENT SAMPLE NO.

DWB 19-20

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	G2173-02A
Sample wt/vol: 5.	60 (g/mL) G	Lab File ID:	V6G2959.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
% Moisture: not dec.	9.0	Date Analyzed:	11/24/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume:(uL)
Purge Volume: 10.0		(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/Ku	g Q
127-18-4	Tetrachloroethene	4.9	
591-78-6	2-Hexanone	4.9	9 U
124-48-1	Dibromochloromethane	4.9	
106-93-4	1,2-Dibromoethane	4.9	-
108-90-7	Chlorobenzene	4.9	9 U
630-20-6	1,1,1,2-Tetrachloroethane	4.9	
100-41-4	Ethylbenzene	4.9	
	m,p-Xylene	4.9	9 U
	o-Xylene	4.9	
1330-20-7	Xylene (Total)	4.9	
	Styrene	4.9	9 U
75-25-2	Bromoform	4.9	9 U
	Isopropylbenzene	4.	9 U
79-34-5	1,1,2,2-Tetrachloroethane	4.	
	Bromobenzene	4.	
96-18-4	1,2,3-Trichloropropane	4.	9 U
	n-Propylbenzene	4.	9 U
95-49-8	2-Chlorotoluene	4.9	
	1,3,5-Trimethylbenzene	4.	
106-43-4	4-Chlorotoluene	4.9	9 U
98-06-6	tert-Butylbenzene	4.	
95-63-6	1,2,4-Trimethylbenzene	4.	
135-98-8	sec-Butylbenzene	4.	
99-87-6	4-Isopropyltoluene	4.	9 U
541-73-1	1,3-Dichlorobenzene	4.	
106-46-7	1,4-Dichlorobenzene	4.1	9 U
104-51-8	n-Butylbenzene	4.	
95-50-1	1,2-Dichlorobenzene	4.	9 U
	1,2-Dibromo-3-chloropropane	4.	
120-82-1	1,2,4-Trichlorobenzene	4.	9 U
	Hexachlorobutadiene	4.	9 U
87-61-6	1,2,3-Trichlorobenzene	4.	9 U
91-20-3	Naphthalene	4.	9 U

1J - FORM I VOA-TIC

CLIENT SAMPLE NO.

DWB 19-20

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name:	MITKEM LABORATO	RIES			Contract:		
Lab Code:	MITKEM Ca	ase No.:			Mod. Ref No.:	SDG No.:	MG2173
Matrix: (S	OIL/SED/WATER)	SOIL			Lab Sample ID:	G2173-02A	·
Sample wt/	vol: 5.60	(g/mL)	G		Lab File ID:	V6G2959.D	
Level: (TR	ACE or LOW/MED)	LOW			Date Received:	11/20/2008	
<pre>% Moisture: not dec. 9.0</pre>			Date Analyzed:	11/24/2008			
GC Column:	DB-624	ID:	0.25	(mm)	Dilution Facto	r: 1.0	
Soil Extra	ct Volume:			(uL)	Soil Aliquot V	olume:	(uL)
CONCENTRAT	ION UNITS: (ug/]	L or ug/K	(g) U	G/KG	Purge Volume:	10.0	(mL)
CAS NUN	MBER	COMPOUND	NAME		RT	EST. CONC.	Q
E96	6796 ¹ Total Alka	nes			N/A		

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-12 19-20

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	.) <u>SOIL</u>		Lab Sample ID:	G2173-03A
Sample wt/vol: 5.	30 (g/mL)	G	Lab File ID:	V6G2960.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	13		Date Analyzed:	11/24/2008
GC Column: DB-624	ID:	0.25 (r	nm) Dilution Factor:	1.0
Soil Extract Volume:		. (1	ıL) Soil Aliquot Vol	Lume:(uL)
Purge Volume: 10.0		(1	nL)	

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) U	G/KG	Q
75-71-8	Dichlorodifluoromethane	· · · · · · · · · · · · · · · · · · ·	5.4	U
74-87-3	Chloromethane		5.4	υ
75-01-4	Vinyl chloride	· · · · · · · · · · · · · · · · · · ·	5.4	υ
74-83-9	Bromomethane		5.4	U
75-00-3	Chloroethane		5.4	U
75-69-4	Trichlorofluoromethane		5.4	υ
75-35-4	1,1-Dichloroethene		5.4	U
67-64-1	Acetone		5.4	U
74-88-4	Iodomethane		5.4	σ
75-15-0	Carbon disulfide		5.4	U
75-09-2	Methylene chloride		5.4	U
156-60-5	trans-1,2-Dichloroethene		5.4	U
1634-04-4	Methyl tert-butyl ether		5.4	U
75-34-3	1,1-Dichloroethane		5.4	U
108-05-4	Vinyl acetate		5.4	U
78-93-3	2-Butanone		5.4	U
156-59-2	cis-1,2-Dichloroethene		5.4	U
594-20-7	2,2-Dichloropropane		5.4	υ
74-97-5	Bromochloromethane		5.4	U
67-66-3	Chloroform		5.4	U
71-55-6	1,1,1-Trichloroethane		5.4	U
563-58-6	1,1-Dichloropropene		5.4	U
56-23-5	Carbon tetrachloride		5.4	U
107-06-2	2 1,2-Dichloroethane		5.4	U
71-43-2	Benzene		5.4	U
79-01-6	Trichloroethene		5.4	U
78-87-5	1,2-Dichloropropane		5.4	U
74-95-3	B Dibromomethane		5.4	U
75-27-4	Bromodichloromethane		5.4	U
10061-01-5	cis-1,3-Dichloropropene		5.4	U
	4-Methyl-2-pentanone		5.4	U
	3 Toluene		5.4	U
10061-02-6	trans-1,3-Dichloropropene		5.4	U
79-00-5	5 1,1,2-Trichloroethane	· · · · · · · · · · · · · · · · · · ·	5.4	U
	1,3-Dichloropropane		5.4	U

CLIENT SAMPLE NO.

SMS-12 19-20

Lab Name: MITKEM LABO	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATE	R) SOIL		Lab Sample ID:	G2173-03A
Sample wt/vol: 5	.30 (g/mL) G		Lab File ID:	V6G2960.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	13		Date Analyzed:	11/24/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	5.4	U
591-78-6	2-Hexanone	5.4	U
124-48-1	Dibromochloromethane	5.4	U
106-93-4	1,2-Dibromoethane	5.4	U
108-90-7	Chlorobenzene	5.4	U
630-20-6	1,1,1,2-Tetrachloroethane	5.4	U
100-41-4	Ethylbenzene	5.4	U
1330-20-7	m,p-Xylene	5.4	U
	o-Xylene	5.4	U
1330-20-7	Xylene (Total)	5.4	U
100-42-5	Styrene	5.4	U
75-25-2	Bromoform	5.4	U
98-82-8	Isopropylbenzene	5.4	U
79-34-5	1,1,2,2-Tetrachloroethane	5.4	U
108-86-1	Bromobenzene	5.4	U
96-18-4	1,2,3-Trichloropropane	5.4	U
	n-Propylbenzene	5.4	U
95-49-8	2-Chlorotoluene	5.4	U
108-67-8	1,3,5-Trimethylbenzene	5.4	U
106-43-4	4-Chlorotoluene	5.4	U
98-06-6	tert-Butylbenzene	5.4	U
95-63-6	1,2,4-Trimethylbenzene	5.4	U
135-98-8	sec-Butylbenzene	5.4	U
99-87-6	4-Isopropyltoluene	5.4	U
541-73-1	1,3-Dichlorobenzene	5.4	U
	1,4-Dichlorobenzene	5.4	U
104-51-8	n-Butylbenzene	5.4	U
	1,2-Dichlorobenzene	5.4	U
96-12-8	1,2-Dibromo-3-chloropropane	5.4	U
	1,2,4-Trichlorobenzene	5.4	U
87-68-3	Hexachlorobutadiene	5.4	Ū
87-61-6	1,2,3-Trichlorobenzene	5.4	U
	Naphthalene	5.4	U

CLIENT SAMPLE NO.

SMS-12 19-20

Lab Name: MITH	XEM LABORATORIES	Contract:		
Lab Code: MITH	KEM Case No.:	Mod. Ref No.:	SDG No.:	MG2173
Matrix: (SOIL/	SED/WATER) SOIL	Lab Sample ID:	G2173-03A	
Sample wt/vol:	5.30 (g/mL) G	Lab File ID:	V6G2960.D	
Level: (TRACE	or LOW/MED) LOW	Date Received:	11/20/2008	
<pre>% Moisture: no</pre>	t dec. 13	Date Analyzed:	11/24/2008	
GC Column: DB	-624 ID: 0.25 (mm)	Dilution Factor:	1.0	
Soil Extract V	olume: (uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRATION	UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10).0	(mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01 34694-70-7	1,3,5,6-Tetramethyladamantan	15.182	13	NJ
02	Unknown-01	15.602	26	J
03	Unknown-02	15.997	15	J
04	Unknown-03	16.447	23	J
05	Unknown-04	16.496	89	J
06	Unknown-05	16.691	52	J
07	Unknown-06	16.727	140	J
08	Unknown-07	16.904	260	J
09	Unknown-08	17.336	130	J
10	Unknown-09	17.543	78	J
11 000100-23-6	Decahydro-8a-ethyl-1,1,4a,6-	17.701	250	NJ

N/A

E966796¹Total Alkanes

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-12B 19-20

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATE)	R) <u>SOIL</u>		Lab Sample ID:	G2173-04A
Sample wt/vol: 5.	.00 (g/mL) <u> </u>		Lab File ID:	V6G2961.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	11/24/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	6.0	U
74-87-3	Chloromethane	6.0	U
75-01-4	Vinyl chloride	6.0	U
74-83-9	Bromomethane	6.0	U
75-00-3	Chloroethane	6.0	U
75-69-4	Trichlorofluoromethane	6.0	U
75-35-4	1,1-Dichloroethene	6.0	Ŭ
67-64-1	Acetone	6.0	U
74-88-4	Iodomethane	6.0	υ
75-15-0	Carbon disulfide	6.0	U
75-09-2	Methylene chloride	6.0	U
156-60-5	trans-1,2-Dichloroethene	6.0	υ
1634-04-4	Methyl tert-butyl ether	6.0	U
	1,1-Dichloroethane	6.0	U
108-05-4	Vinyl acetate	6.0	U
	2-Butanone	6.0	U
156-59-2	cis-1,2-Dichloroethene	6.0	U
594-20-7	2,2-Dichloropropane	6.0	U
74-97-5	Bromochloromethane	6.0	U
	Chloroform	6.0	Ŭ
71-55-6	1,1,1-Trichloroethane	6.0	U
	1,1-Dichloropropene	6.0	ט
	Carbon tetrachloride	6.0	U
107-06-2	1,2-Dichloroethane	6.0	U
71-43-2	Benzene	6.0	U
1	Trichloroethene	6.0	U
	1,2-Dichloropropane	6.0	U
	Dibromomethane	6.0	U
	Bromodichloromethane	6.0	U
	cis-1,3-Dichloropropene	6.0	U
	4-Methyl-2-pentanone	6.0	U
	Toluene	6.0	U
	trans-1,3-Dichloropropene	6.0	U
	1,1,2-Trichloroethane	6.0	Ū
	1,3-Dichloropropane	6.0	U

CLIENT SAMPLE NO.

SMS-12B 19-20

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	.) SOIL		Lab Sample ID:	G2173-04A
Sample wt/vol: 5.	00 (g/mL) G		Lab File ID:	V6G2961.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	11/24/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

	1	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	6.0	U
591-78-6	2-Hexanone	6.0	υ
124-48-1	Dibromochloromethane	6.0	U
106-93-4	1,2-Dibromoethane	6.0	U
108-90-7	Chlorobenzene	6.0	U
630-20-6	1,1,1,2-Tetrachloroethane	6.0	U
	Ethylbenzene	6.0	U
1330-20-7	m,p-Xylene	6.0	U
	o-Xylene	6.0	U
1330-20-7	Xylene (Total)	6.0	U
100-42-5	Styrene	6.0	U
75-25-2	Bromoform	6.0	U
	Isopropylbenzene	6.0	U
79-34-5	1,1,2,2-Tetrachloroethane	6.0	U
	Bromobenzene	6.0	U
96-18-4	1,2,3-Trichloropropane	6.0	U
	n-Propylbenzene	6.0	U
95-49-8	2-Chlorotoluene	6.0	U
	1,3,5-Trimethylbenzene	6.0	U
106-43-4	4-Chlorotoluene	6.0	U
98-06-6	tert-Butylbenzene	6.0	U
95-63-6	1,2,4-Trimethylbenzene	6.0	U
135-98-8	sec-Butylbenzene	6.0	U
	4-Isopropyltoluene	6.0	U
541-73-1	1,3-Dichlorobenzene	6.0	U
106-46-7	1,4-Dichlorobenzene	6.0	U
	n-Butylbenzene	6.0	U
95-50-1	1,2-Dichlorobenzene	6.0	U
96-12-8	1,2-Dibromo-3-chloropropane	6.0	U
120-82-1	1,2,4-Trichlorobenzene	6.0	U
87-68-3	Hexachlorobutadiene	6.0	U
87-61-6	1,2,3-Trichlorobenzene	6.0	U
91-20-3	Naphthalene	6.0	U

1J - FORM I VOA-TIC

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS CLIENT SAMPLE NO.

SMS-12B 19-20

Lab Name: MI	TKEM LABORATO	RIES		Contract:		
Lab Code: MI	TKEM Ca	se No.:		Mod. Ref No.:	SDG No.:	MG2173
Matrix: (SOIL	/SED/WATER)	SOIL		Lab Sample ID:	G2173-04A	
Sample wt/vol	: 5.00	(g/mL) (3	Lab File ID:	V6G2961.D	
Level: (TRACE	or LOW/MED)	LOW		Date Received:	11/20/2008	
% Moisture: n	ot dec. 16			Date Analyzed:	11/24/2008	
GC Column: D	B-624	ID: ().25 (mm)	Dilution Factor:	1.0	
Soil Extract	Volume:		(uL)	Soil Aliquot Vol	Lume:	(uL)
CONCENTRATION	UNITS: (ug/L	or_ug/Kg) UG/KG	Purge Volume: 1	0.0	(mL)
CAS NUMBER	R (COMPOUND N	IAME	RT	EST. CONC.	Q
01	Unknown-01			16.903	7.8	J
02	Unknown-02			17.475	14	J
03	Unknown-03			17.719	16	J

18.224

N/A

¹EPA-designated Registry Number.

Unknown-04 E966796¹Total Alkanes

04

SW846

6.3

J

CLIENT SAMPLE NO.

SMS-16 19-20

Lab Name: MITKEM LABOR	ATORIES		<u>. </u>	Contract:	
Lab Code: MITKEM	Case Nc.:			Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL			Lab Sample ID:	G2173-05A
Sample wt/vol: 6.	30 (g/mL)	G		Lab File ID:	V6G2962.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/20/2008
% Moisture: not dec.	22			Date Analyzed:	11/24/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0			(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	5.1	- U
	Chloromethane	5.1	U
1	Vinyl chloride	5.1	U
	Bromomethane	5.1	Ū
	Chloroethane	5.1	U
	Trichlorofluoromethane	5.1	U
ł	1,1-Dichloroethene	5.1	U
	Acetone	4.3	J
	Iodomethane	5.1	U
1	Carbon disulfide	5.1	U
	Methylene chloride	5.1	U
	trans-1,2-Dichloroethene	5.1	U
1	Methyl tert-butyl ether	5.1	U
	1,1-Dichloroethane	5.1	U
	Vinyl acetate	5.1	U
	2-Butanone	5.1	U
156-59-2	cis-1,2-Dichloroethene	5.1	U
	2,2-Dichloropropane	5.1	U
	Bromochloromethane	5.1	U
67-66-3	Chloroform	5.1	U
71-55-6	1,1,1-Trichloroethane	5.1	U
563-58-6	1,1-Dichloropropene	5.1	U
56-23-5	Carbon tetrachloride	5.1	U
107-06-2	1,2-Dichloroethane	5.1	U
71-43-2	Benzene	5.1	U
79-01-6	Trichloroethene	5.1	U
78-87-5	1,2-Dichloropropane	5.1	U
74-95-3	Dibromomethane	5.1	U
75-27-4	Bromodichloromethane	5.1	ט
	cis-1,3-Dichloropropene	5.1	U
108-10-1	4-Methyl-2-pentanone	5.1	U
108-88-3	Toluene	5.1	υ
10061-02-6	5 trans-1,3-Dichloropropene	5.1	U
79-00-5	1,1,2-Trichloroethane	5.1	U
142-28-9	1,3-Dichloropropane	5.1	U

CLIENT SAMPLE NO.

SMS-16 19-20

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	SOIL	Lab Sample ID:	G2173-05A
Sample wt/vol: 6.	30 (g/mL) G	Lab File ID:	V6G2962.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
% Moisture: not dec.	22	Date Analyzed:	11/24/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume:(uL)
Purge Volume: 10.0		(mL)	

·····		CONCENTRATION UNIT	: :	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		5.1	U
591-78-6	2-Hexanone		5.1	Ü
124-48-1	Dibromochloromethane		5.1	U
106-93-4	1,2-Dibromoethane		5.1	U
108-90-7	Chlorobenzene		5.1	U
630-20-6	1,1,1,2-Tetrachloroethane		5.1	U
100-41-4	Ethylbenzene		5.1	U
1330-20-7	m,p-Xylene		5.1	U
95-47-6	o-Xylene		5.1	U
	Xylene (Total)		5.1	U
100-42-5			5.1	U
	Bromoform		5.1	U
	Isopropylbenzene		5.1	U
79-34-5	1,1,2,2-Tetrachloroethane		5.1	U
108-86-1	Bromobenzene		5.1	U
96-18-4	1,2,3-Trichloropropane		5.1	U
	n-Propylbenzene		5.1	U
95-49-8	2-Chlorotoluene		5.1	U
	1,3,5-Trimethylbenzene		5.1	U
106-43-4	4-Chlorotoluene		5.1	U
98-06-6	tert-Butylbenzene		5.1	U
95-63-6	1,2,4-Trimethylbenzene		5.1	U
135-98-8	sec-Butylbenzene		5.1	U
99-87-6	4-Isopropyltoluene		5.1	U
541-73-1	1,3-Dichlorobenzene		5.1	U
106-46-7	1,4-Dichlorobenzene		5.1	U
	n-Butylbenzene		5.1	U
	1,2-Dichlorobenzene		5.1	υ
96-12-8	1,2-Dibromo-3-chloropropane		5.1	U
	1,2,4-Trichlorobenzene		5.1	U
87-68-3	Hexachlorobutadiene		5.1	U
	1,2,3-Trichlorobenzene		5.1	Ü
91-20-3	Naphthalene		5.1	U

CLIENT SAMPLE NO.

SMS-16 19-20

RIES	Contract:		and a second
se No.:	Mod. Reí No.:	SDG No.:	MG2173
SOIL	Lab Sample ID:	G2173-05A	
(g/mL) G	Lab File ID:	V6G2962.D	
LOW	Date Received:	11/20/2008	
	Date Analyzed:	11/24/2008	
ID: 0.25 (mm)	Dilution Factor:	1.0	
(uL)	Soil Aliquot Vol	ume:	(uL)
or ug/Kg) UG/KG	Purge Volume: 10	.0	(mL)
COMPOUND NAME	RT	EST. CONC.	Q
	15.206	24	J
	15.419	25	J
	15.705	21	J
	se No.: SOIL (g/mL) G LOW ID: 0.25 (mm) (uL) or ug/Kg) UG/KG	See No.: Mod. Ref No.: SOIL Lab Sample ID: (g/mL) G Lab File ID: LOW Date Received: Date Analyzed: Date Analyzed: ID: 0.25 (mm) Dilution Factor: (uL) Soil Aliquot Volume: 10 comPound NAME RT 15.206; 15.419; 15.419;	See No.:Mod. Ref No.:SDG No.:SOILLab Sample ID:G2173-05A(g/mL)GLab File ID:V6G2962.DLOWDate Received:11/20/2008Date Analyzed:11/24/2008ID:0.25 (mm)Dilution Factor:(uL)Soil Aliquot Volume:or ug/Kg)UG/KGPurge Volume:15.206j2415.419j25

04	Unknown-04	15.784	22	J
05	Unknown-05	15.918	34	J
06	Unknown-06	15.985	25	J
07	Unknown-07	16.264	21	J
08	Unknown-08	16.337	24	J
09	Unknown-09	16.441	27	J
10	Unknown-10	16.727	25	J
11	Unknown-11	17.001	28	J
	E966796 ¹ Total Alkanes	N/A		

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS-16B 19-20

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	G2173-06A
Sample wt/vol: 6.	40 (g/mL) G		Lab File ID:	V6G2963.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	17		Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		_(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS	5:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane		4.7	U
74-87-3	Chloromethane		4.7	U
75-01-4	Vinyl chloride		4.7	U
74-83-9	Bromomethane		4.7	U
75-00-3	Chloroethane		4.7	U
75-69-4	Trichlorofluoromethane		4.7	U
75-35-4	1,1-Dichloroethene		4.7	U
67-64-1	Acetone		4.7	U
74-88-4	Iodomethane		4.7	U
75-15-0	Carbon disulfide		4.7.	U
75-09-2	Methylene chloride		4.7	U
156-60-5	trans-1,2-Dichloroethene		4.7	U
1634-04-4	Methyl tert-butyl ether		4.7	U
	1,1-Dichloroethane		4.7	U
108-05-4	Vinyl acetate		4.7	U
78-93-3	2-Butanone		4.7	U
156-59-2	cis-1,2-Dichloroethene		4.7	U
594-20-7	2,2-Dichloropropane		4.7	U
74-97-5	Bromochloromethane		4.7	U
67-66-3	Chloroform		4.7	U
71-55-6	1,1,1-Trichloroethane		4.7	U
563-58-6	1,1-Dichloropropene		4.7	U
	Carbon tetrachloride		4.7	U
107-06-2	1,2-Dichloroethane		4.7	U
71-43-2	Benzene		4.7	U
79-01-6	Trichloroethene		4.7	U
78-87-5	1,2-Dichloropropane		4.7	U
74-95-3	Dibromomethane		4.7	U
75-27-4	Bromodichloromethane		4.7	υ
10061-01-5	cis-1,3-Dichloropropene		4.7	U
	4-Methyl-2-pentanone		4.7	ט
	3 Toluene		4.7	U
10061-02-6	trans-1,3-Dichloropropene		4.7	U
79-00-5	1,1,2-Trichloroethane		4.7	U
142-28-9	1,3-Dichloropropane	· · · · · · · · · · · · · · · · · · ·	4.7	U

CLIENT SAMPLE NO.

SMS-16B 19-20

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	G2173-06A
Sample wt/vol: 6.	40 (g/mL) G		Lab File ID:	V6G2963.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	17		Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

<u>_</u>	T	CONCENTRATION UNIT	5:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene	· · · · · · · · · · · · · · · · · · ·	4.7	U
591-78-6	2-Hexanone		4.7	U
124-48-1	Dibromochloromethane		4.7	U
106-93-4	1,2-Dibromoethane		4.7	U
108-90-7	Chlorobenzene		4.7	Ŭ
630-20-6	1,1,1,2-Tetrachloroethane		4.7	U
100-41-4	Ethylbenzene		4.7	U
1330-20-7	m,p-Xylene		4.7	U
95-47-6	o-Xylene		4.7	U
1330-20-7	Xylene (Total)		4.7	U
100-42-5			4.7	U
75-25-2	Bromoform		4.7	U
98-82-8	Isopropylbenzene		4.7	U
79-34-5	1,1,2,2-Tetrachloroethane		4.7	U
108-86-1	Bromobenzene		4.7	U
96-18-4	1,2,3-Trichloropropane		4.7	ט
	n-Propylbenzene		4.7	U
95-49-8	2-Chlorotoluene		4.7	U
108-67-8	1,3,5-Trimethylbenzene		4.7	U
106-43-4	4-Chlorotoluene		4.7	U
98-06-6	tert-Butylbenzene		4.7	U
95-63-6	1,2,4-Trimethylbenzene		4.7	U
135-98-8	sec-Butylbenzene		4.7	U
99-87-6	4-Isopropyltoluene		4.7	ט
541-73-1	1,3-Dichlorobenzene		4.7	U
106-46-7	1,4-Dichlorobenzene		4.7	U
104-51-8	n-Butylbenzene		4.7	U
	1,2-Dichlorobenzene		4.7	U
	1,2-Dibromo-3-chloropropane		4.7	U
120-82-1	1,2,4-Trichlorobenzene		4.7	U
	Hexachlorobutadiene		4.7	U
87-61-6	1,2,3-Trichlorobenzene		4.7	U
	Naphthalene		4.7	U

CLIENT SAMPLE NO.

SMS-16B 19-20

Lab Name: MITKEM	1 LABORATORIES		Contract:		
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173	
Matrix: (SOIL/SEI	D/WATER) SOIL	,	Lab Sample ID:	G2173-06A	
Sample wt/vol:	6.40 (g/mL)	G	Lab File ID:	V6G2963.D	
Level: (TRACE or	LOW/MED) LOW		Date Received:	11/20/2008	
% Moisture: not o	dec. 17		Date Analyzed:	11/25/2008	
GC Column: DB-62	24 ID:	0.25 (mm)	Dilution Factor	: 1.0	
Soil Extract Volu	lme:	(uL)	Soil Aliquot Vo	lume:	(uL)
CONCENTRATION UNI	ITS: (ug/L or ug/Ko	g) UG/KG	Purge Volume: 1	0.0	(mL)
CAS NUMBER	COMPOUND	NAME	RT	EST. CONC. Q]
E966796 ¹ T	otal Alkanes		N/A		

¹EPA-designated Registry Number.

1A - FORM I VOA-1

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

DW 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	G2173-07A
Sample wt/vol: 1.	20 (g/mL) G		Lab File ID:	V6G3075.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	13		Date Analyzed:	11/27/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL
Purge Volume: 10.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	24	U
74-87-3	Chloromethane	24	U
75-01-4	Vinyl chloride	24	U
	Bromomethane	24	U
75-00-3	Chloroethane	24	U
75-69-4	Trichlorofluoromethane	24	U
75-35-4	1,1-Dichloroethene	24	U
67-64-1	Acetone	30	
74-88-4	Iodomethane	24	U
75-15-0	Carbon disulfide	24	U
75-09-2	Methylene chloride	24	U
	trans-1,2-Dichloroethene	24	U
	Methyl tert-butyl ether	24	U
	1,1-Dichloroethane	24	U
	Vinyl acetate	24	U
	2-Butanone	24	U
	cis-1,2-Dichloroethene	24	U
	2,2-Dichloropropane	24	U
	Bromochloromethane	24	U
	Chloroform	24	U
71-55-6	1,1,1-Trichloroethane	24	U
	1,1-Dichloropropene	24	U
	Carbon tetrachloride	24	U
107-06-2	1,2-Dichloroethane	24	U
	Benzene	24	U
79-01-6	Trichloroethene	24	U
	1,2-Dichloropropane	24	U ·
	Dibromomethane	24	U
	Bromodichloromethane	24	U
	cis-1,3-Dichloropropene	24	U
	4-Methyl-2-pentanone	24	U
	Toluene	24	U
	trans-1,3-Dichloropropene	24	U
	1,1,2-Trichloroethane	24	U
	1,3-Dichloropropane	24	U

1B - FORM I VOA-2

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

DW 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	· · ·	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	G2173-07A
Sample wt/vol: 1.	20 (g/mL) G	· .	Lab File ID:	V6G3075.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	13		Date Analyzed:	11/27/2008
GC Column: DB-624	ID: 0.	.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Volu	ume: (uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	24	U
591-78-6	2-Hexanone	24	U
124-48-1	Dibromochloromethane	24	U
106-93-4	1,2-Dibromoethane	24	U
108-90-7	Chlorobenzene	24	U
630-20-6	1,1,1,2-Tetrachloroethane	24	U
100-41-4	Ethylbenzene	24	U
1330-20-7	m,p-Xylene	27	
95-47-6	o-Xylene	24	U
	Xylene (Total)	27	
100-42-5	Styrene	24	U
	Bromoform	24	U
98-82-8	Isopropylbenzene	15	J
79-34-5	1,1,2,2-Tetrachloroethane	24	U
108-86-1	Bromobenzene	24	U
96-18-4	1,2,3-Trichloropropane	24	U
	n-Propylbenzene	24	U
95-49-8	2-Chlorotoluene	24	U
108-67-8	1,3,5-Trimethylbenzene	1900	E
106-43-4	4-Chlorotoluene	24	U
98-06-6	tert-Butylbenzene	240	
95-63-6	1,2,4-Trimethylbenzene	130	
135-98-8	sec-Butylbenzene	52	
99-87-6	4-Isopropyltoluene	220	
541-73-1	1,3-Dichlorobenzene	270	
106-46-7	1,4-Dichlorobenzene	1400	E
104-51-8	n-Butylbenzene	24	U
95-50-1	1,2-Dichlorobenzene	24	U
96-12-8	1,2-Dibromo-3-chloropropane	24	U
120-82-1	1,2,4-Trichlorobenzene	24	U
87-68-3	Hexachlorobutadiene	24	U
87-61-6	1,2,3-Trichlorobenzene	24	U
91-20-3	Naphthalene	24	U

1J - FORM I VOA-TIC TILE ORGANICS ANALYSIS DATA S

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

DW 23.5-24.5

Lab	Name: MITKEM LABORATORIES	Contract:		
Lab	Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.:	MG2173
Mati	rix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	G2173-07A	
Samp	ple wt/vol: 1.20 (g/mL) G	Lab File ID:	V6G3075.D	
Leve	el: (TRACE or LOW/MED) LOW	Date Received:	11/20/2008	
8 M	oisture: not dec. 13	Date Analyzed:	11/27/2008	
GC (Column: DB-624 ID: 0.25 (mm) Dilution Factor	: 1.0	
Soi	l Extract Volume: (uL) Soil Aliquot Vol	lume:	(uL)
CON	CENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 1	0.0	(mL)
	CAS NUMBER COMPOUND NAME	RT	EST. CONC.	Q
01	592-27-8 Heptane, 2-methyl-	7.389	5700	NJ
02	589-81-1 Heptane, 3-methyl-	7.572	8200	NJ
03	6876-23-9 Cyclohexane, 1,2-dimethyl-,	8.247	4800	NJ
04	Unknown-01	8.983	5400	J
05	Unknown-02	9.062	88.00	J
06	Unknown-03	9.421	12000	J
07	19489-10-2 cis-1-Ethyl-3-methyl-cyclohe	10.054	10000	NJ
08	Unknown-04	10.443	6600	J
09	Unknown-05	10.565	4200	J
10	Unknown-06	10.741	4900	J

10.863

11.112

N/A

E966796¹Total Alkanes ¹EPA-designated Registry Number.

Unknown-07

Unknown-08

11

12

SW846

7700

5200

J

J

1B - FORM I VOA-2

EPA SAMPLE NO.

DW 23.5-24.5ME

VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM LABORATORIES Contract: Lab Code: MITKEM Case No.: Mod. Ref No.: SDG No.: MG2173 Matrix: (SOIL/SED/WATER) SOIL Lab Sample ID: G2173-07A Sample wt/vol: 5.00 (g/mL) G Lab File ID: V1K2158.D Level: (TRACE/LOW/MED) MED Date Received: 11/20/2008 % Moisture: not dec. 13 Date Analyzed: 12/02/2008 GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0 (uL) Soil Aliquot Volume: 100.00 Soil Extract Volume: 5000 (uL) Purge Volume: 5.0 (mL)

		CONCENTRATION UNIT	TS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane		320	U
74-87-3	Chloromethane		320	U
75-01-4	Vinyl chloride		320	U
74-83-9	Bromomethane		320	U
75-00-3	Chloroethane		320	U
75-69-4	Trichlorofluoromethane	· · · · · · · · · · · · · · · · · · ·	320	U
75-35-4	1,1-Dichloroethene		320	U
67-64-1	Acetone		320	U
74-88-4	Iodomethane		320	U
75-15-0	Carbon disulfide		320	U
75-09-2	Methylene chloride		320	U
156-60-5	trans-1,2-Dichloroethene		320	U
1634-04-4	Methyl tert-butyl ether		320	U
75-34-3	1,1-Dichloroethane		320	U
108-05-4	Vinyl acetate		320	U
	2-Butanone		320	U
156-59-2	cis-1,2-Dichloroethene	· · · · ·	320	U
594-20-7	2,2-Dichloropropane		320	U
74-97-5	Bromochloromethane	· · · · · · · · · · · · · · · · · · ·	320	U
67-66-3	Chloroform		320	U
71-55-6	1,1,1-Trichloroethane		320	U
563-58-6	1,1-Dichloropropene		320	U
56-23-5	Carbon tetrachloride		320	U
107-06-2	1,2-Dichloroethane		320	U
71-43-2	Benzene		320	U
79-01-6	Trichloroethene	······································	190	BJ
78-87-5	1,2-Dichloropropane		320	U
74-95-3	Dibromomethane		320	U
75-27-4	Bromodichloromethane		320	U
10061-01-5	cis-1,3-Dichloropropene		320	U
108-10-1	4-Methyl-2-pentanone		320	U
108-88-3	Toluene	· · · ·	320	U
10061-02-6	trans-1,3-Dichloropropene		320	U
79-00-5	1,1,2-Trichloroethane		320	U
	1,3-Dichloropropane		320	U

EPA SAMPLE NO.

DW 23.5-24.5ME

Lab Name: MITKEM LABOR	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATE)	R) SOIL		Lab Sample ID:	G2173-07A
Sample wt/vol: 5.	00 (g/mL) G		Lab File ID:	V1K2158.D
Level: (TRACE/LOW/MED)	MED		Date Received:	11/20/2008
% Moisture: not dec.	13		Date Analyzed:	12/02/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/H	kg Q
127-18-4	Tetrachloroethene	320	U
591-78-6	2-Hexanone	320	U
124-48-1	Dibromochloromethane	320	U
106-93-4	1,2-Dibromoethane	320	U
108-90-7	Chlorobenzene	320	U
630-20-6	1,1,1,2-Tetrachloroethane	320	U
100-41-4	Ethylbenzene	320	U
1330-20-7	m,p-Xylene	110	J
95-47-6	o-Xylene	320	U
	Xylene (Total)	110	J
100-42-5		320	U
	Bromoform	320	U
98-82-8	Isopropylbenzene	320	U
79-34-5	1,1,2,2-Tetrachloroethane	. 320	U
	Bromobenzene	320	U
96-18-4	1,2,3-Trichloropropane	320	U
103-65-1	n-Propylbenzene	320	U
95-49-8	2-Chlorotoluene	320	U
108-67-8	1,3,5-Trimethylbenzene	4500	
106-43-4	4-Chlorotoluene	320	U
98-06-6	tert-Butylbenzene	620	
95-63-6	1,2,4-Trimethylbenzene	400	
135-98-8	sec-Butylbenzene	170	J
99-87-6	4-Isopropyltoluene	320	U
541-73-1	1,3-Dichlorobenzene	410	
	1,4-Dichlorobenzene	1900	
	n-Butylbenzene	320	U
	1,2-Dichlorobenzene	320	U
96-12-8	1,2-Dibromo-3-chloropropane	320	U
	1,2,4-Trichlorobenzene	320	U
87-68-3	Hexachlorobutadiene	320	U
	1,2,3-Trichlorobenzene	320	U
91-20-3	Naphthalene	340	

0030

CLIENT SAMPLE NO.

DW 23.5-24.5ME

Lab Name: MITKEM LABORATORIES	Contract:	
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: <u>G2173-07A</u>	
Sample wt/vol: 5.00 (g/mL) G	Lab File ID: V1K2158.D	
Level: (TRACE or LOW/MED) MED	Date Received: 11/20/200	8
% Moisture: not dec. 13	Date Analyzed: 12/02/200	8
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0	
Soil Extract Volume: 5000 (uL)	Soil Aliquot Volume: 100.	00 (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 5.0	(mL)
CAS NUMBER COMPOUND NAME	RT EST. CO	DNC. Q
01 1072-05-5 Heptane, 2,6-dimethyl-	8.580	32000 NJ
02 Unknown-01	8.737	57000 JJ
03 3073-66-3 Cyclohexane, 1,1,3-trimethyl	8.934	35000 NJ
04 Unknown-02	9.289	72000 J
05 2216-33-3 Octane, 3-methyl-	9.437	49000 NJ

10.314

10.609

10.718

11.082

11.122

11.240

14.265

N/A

Unknown-03

Unknown-04

Unknown-05

Unknown-06

Unknown-07

Unknown-08

¹EPA-designated Registry Number.

5911-04-6 Nonane, 3-methyl-

E966796¹Total Alkanes

06

07

80

09

10

11

12

SW846

44000

45000

44000

39000

67000

68000

40000

J

J

J

J

J

J

NJ

CLIENT SAMPLE NO.

DW 29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	G2173-08A
Sample wt/vol: 5.	00 (g/mL)	G	Lab File ID:	V5K3623.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	13		Date Analyzed:	12/02/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

[CONCENTRATION UNITS	:	1
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane		5.7	U
74-87-3	Chloromethane		5.7	U
75-01-4	Vinyl chloride		5.7	U
74-83-9	Bromomethane	······································	5.7	U
75-00-3	Chloroethane	· · · · · · · · · · · · · · · · · · ·	5.7	U
75-69-4	Trichlorofluoromethane		5.7	U
75-35-4	1,1-Dichloroethene		5.7	U
67-64-1	Acetone		5.7	U
74-88-4	Iodomethane		5.7	U
75-15-0	Carbon disulfide		5.7	U
75-09-2	Methylene chloride		13	
156-60-5	trans-1,2-Dichloroethene	· · · · · · · · · · · · · · · · · · ·	5.7	U .
1634-04-4	Methyl tert-butyl ether		5.7	U
75-34-3	1,1-Dichloroethane		5.7	U
108-05-4	Vinyl acetate		5.7	U
78-93-3	2-Butanone		5.7	Ū
156-59-2	cis-1,2-Dichloroethene		5.7	U
	2,2-Dichloropropane		5.7	U
74-97-5	Bromochloromethane		5.7	U
67-66-3	Chloroform		5.7	U
71-55-6	1,1,1-Trichloroethane		5.7	U
563-58-6	1,1-Dichloropropene		5.7	U
56-23-5	Carbon tetrachloride		5.7	U
107-06-2	1,2-Dichloroethane		5.7	U
71-43-2	Benzene		5.7	U
79-01-6	Trichloroethene		5.7	U
78-87-5	1,2-Dichloropropane		5.7	U
74-95-3	Dibromomethane		5.7	U
75-27-4	Bromodichloromethane		5.7	U
10061-01-5	cis-1,3-Dichloropropene		5.7	U
108-10-1	4-Methyl-2-pentanone		5.7	U
	Toluene		5.7	U
10061-02-6	trans-1,3-Dichloropropene		5.7	U
	1,1,2-Trichloroethane		5.7	U
142-28-9	1,3-Dichloropropane		5.7	U

CLIENT SAMPLE NO.

DW 29-30

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	G2173-08A
Sample wt/vol: 5.	00 (g/mL) G	Lab File ID:	V5K3623.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
% Moisture: not dec.	13	Date Analyzed:	12/02/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume:(uL)
Purge Volume: 10.0		(mL)	

· ·		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	1 Tetrachloroethene	5.7	U
591-78-6	5 2-Hexanone	5.7	U
124-48-1	Dibromochloromethane	5.7	U
106-93-4	1,2-Dibromoethane	5.7	U
108-90-7	7 Chlorobenzene	5.7	U
630-20-6	5 1,1,1,2-Tetrachloroethane	5.7	U
100-41-4	1 Ethylbenzene	5.7	U
1330-20-7	7 m,p-Xylene	5.7	U
95-47-6	5 o-Xylene	5.7	U
1330-20-7	7 Xylene (Total)	5.7	U
100-42-5	5 Styrene	5.7	U
75-25-2	2 Bromoform	5.7	U
98-82-8	3 Isopropylbenzene	5.7	U
79-34-5	5 1,1,2,2-Tetrachloroethane	5.7	U
108-86-1	l Bromobenzene	5.7	U
96-18-4	1,2,3-Trichloropropane	5.7	U
	l n-Propylbenzene	5.7	U
95-49-8	3 2-Chlorotoluene	5.7	U
108-67-8	3 1,3,5-Trimethylbenzene	5.7	U
106-43-4	4 4-Chlorotoluene	5.7	U
98-06-6	6 tert-Butylbenzene	5.7	U
95-63-6	6 1,2,4-Trimethylbenzene	5.7	U
135-98-8	8 sec-Butylbenzene	5.7	U
99-87-6	6 4-Isopropyltoluene	5.7	Ŭ
541-73-1	1 1,3-Dichlorobenzene	5.7	U
106-46-	7 1,4-Dichlorobenzene	5.7	U
104-51-8	8 n-Butylbenzene	5.7	U
95-50-1	1 1,2-Dichlorobenzene	5.7	U
96-12-8	8 1,2-Dibromo-3-chloropropane	5.7	υ
120-82-1	1 1,2,4-Trichlorobenzene	5.7	ט
87-68-3	3 Hexachlorobutadiene	5.7	U
	6 1,2,3-Trichlorobenzene	5.7	U
91-20-3	3 Naphthalene	5.7	U

SW846

CLIENT SAMPLE NO.

DW 29-30

Lab Name: MITKE	IM LABORATORIES	Contract:	
Lab Code: MITKE	CM Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SE	ED/WATER) SOIL	Lab Sample ID:	G2173-08A
Sample wt/vol:	5.00 (g/mL) G	Lab File ID:	V5K3623.D
Level: (TRACE or	r LOW/MED) LOW	Date Received:	11/20/2008
% Moisture: not	dec. 13	Date Analyzed:	12/02/2008
GC Column: DB-6	524 ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Vol	lume: (uL)	Soil Aliquot Vol	ume:(uL)
CONCENTRATION UN	NITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10).0(mL)
CAS NUMBER	COMPOUND NAME	RT	EST. CONC. Q
E966796 ¹	Total Alkanes	N/A	

¹EPA-designated Registry Number.

,

EPA SAMPLE NO.

DWB 23.5-24.5

Lab Name: MITKEM LABORA	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL			Lab Sample ID:	G2173-09A
Sample wt/vol: 4.0	00 (g/mL) G		Lab File ID:	V6G3077.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
<pre>% Moisture: not dec.</pre>	14		Date Analyzed:	11/27/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

· · · · · · · · · · · · · · · · · · ·		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	7.3	U .
74-87-3	Chloromethane	7.3	U
75-01-4	Vinyl chloride	7.3	U
	Bromomethane	7.3	U
75-00-3	Chloroethane	7.3	U
75-69-4	Trichlorofluoromethane	7.3	U
75-35-4	1,1-Dichloroethene	7.3	U
67-64-1	Acetone	67	
74-88-4	Iodomethane	7.3	U
75-15-0	Carbon disulfide	7.3	U
75-09-2	Methylene chloride	7.3	U
156-60-5	trans-1,2-Dichloroethene	7.3	U
1634-04-4	Methyl tert-butyl ether	7.3	U
75-34-3	1,1-Dichloroethane	7.3	U
108-05-4	Vinyl acetate	7.3	U
78-93-3	2-Butanone	7.3	U
156-59-2	cis-1,2-Dichloroethene	7.3	U
594-20-7	2,2-Dichloropropane	7.3	U
74-97-5	Bromochloromethane	7.3	U
67-66-3	Chloroform	7.3	U
71-55-6	1,1,1-Trichloroethane	7.3	U
563-58-6	1,1-Dichloropropene	7.3	U
56-23-5	Carbon tetrachloride	7.3	U
107-06-2	1,2-Dichloroethane	7.3	U
71-43-2	Benzene	7.3	U
79-01-6	Trichloroethene	7.3	U
	1,2-Dichloropropane	7.3	U
74-95-3	Dibromomethane	7.3	Ū,
75-27-4	Bromodichloromethane	7.3	U
	cis-1,3-Dichloropropene	7.3	U
	4-Methyl-2-pentanone	7.3	Ü,
	Toluene	7.3	Ŭ .
	trans-1,3-Dichloropropene	7.3	U
79-00-5	1,1,2-Trichloroethane	7.3	U
142-28-9	1,3-Dichloropropane	7.3	U

EPA SAMPLE NO.

DWB 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	G2173-09A
Sample wt/vol:4.	00 (g/mL) G		Lab File ID:	V6G3077.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	14		Date Analyzed:	11/27/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:	· · · · · · · · · · · · · · · · · · ·	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene	······	7.3	U
591-78-6	2-Hexanone		7.3	. U
124-48-1	Dibromochloromethane		7.3	U
106-93-4	1,2-Dibromoethane	· · ·	7.3	U
108-90-7	Chlorobenzene		7.3	U
630-20-6	1,1,1,2-Tetrachloroethane	· · · · · · · · · · · · · · · · · · ·	7.3	U
100-41-4	Ethylbenzene		7.3	υ
1330-20-7	m,p-Xylene		22	
95-47-6	o-Xylene		7.3	U
1330-20-7	Xylene (Total)		22	
100-42-5	Styrene		7.3	U
75-25-2	Bromoform		7.3	U
98-82-8	Isopropylbenzene		33	
79-34-5	1,1,2,2-Tetrachloroethane		7.3	U
108-86-1	Bromobenzene		7.3	U
96-18-4	1,2,3-Trichloropropane		7.3	U
103-65-1	n-Propylbenzene		48	
95-49-8	2-Chlorotoluene		7.3	U
108-67-8	1,3,5-Trimethylbenzene		790	E .
106-43-4	4-Chlorotoluene		7.3	U
98-06-6	tert-Butylbenzene		54	
95-63-6	1,2,4-Trimethylbenzene		700	Е
135-98-8	sec-Butylbenzene		83	
99-87-6	4-Isopropyltoluene		240	
541-73-1	1,3-Dichlorobenzene		33	
106-46-7	1,4-Dichlorobenzene		90	
104-51-8	n-Butylbenzene		270	
95-50-1	1,2-Dichlorobenzene		7.3	U
96-12-8	1,2-Dibromo-3-chloropropane		7.3	U
120-82-1	1,2,4-Trichlorobenzene		7.3	U.
87-68-3	Hexachlorobutadiene	······································	7.3	U
	1,2,3-Trichlorobenzene		7.3	U
91-20-3	Naphthalene		7.3	U

CLIENT SAMPLE NO.

DWB 23.5-24.5

Lab Name: MITKEM LABORATORIES	Contract:			
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.:	MG2173	
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	G2173-09A		
Sample wt/vol: 4.00 (g/mL) G	Lab File ID:	V6G3077.D		
Level: (TRACE or LOW/MED) LOW	Date Received:	11/20/2008		
% Moisture: not dec. 14	Date Analyzed:	11/27/2008		
GC Column: DB-624 ID: 0.25 (m	m) Dilution Factor:	Dilution Factor: 1.0		
Soil Extract Volume: (ui	L) Soil Aliquot Vol	Soil Aliquot Volume:(u		
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 1	0.0	(mL)	
CAS NUMBER COMPOUND NAME	RT	EST. CONC.	Q	
01 Unknown-01	7.584	1900	J	
02 Unknown-02	8.028	930	J	
03 Unknown-03	8.253	980	J	
04 Unknown-04	8.995	2200	J	
05 Unknown-05	9.074	1300	J	

9.415

9.579

10.449

10.857

11.203

12.481

13.016

N/A

¹EPA-designated Registry Number.

E966796¹Total Alkanes

2216-34-4 Octane, 4-methyl-

Unknown-06

Unknown-07

Unknown-08

Unknown-09

Unknown-10

535-77-3 Benzene, 1-methyl-3-(1-methy

06

07

80

09

10

11

12

SW846

500

330

290

300

240

240

220

NJ

J

J

J

J

J

NJ

CLIENT SAMPLE NO.

DWB 23.5-24.5ME

Lab Name: MITKEM LABOF	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) <u>SOIL</u>		Lab Sample ID:	G2173-09A
Sample wt/vol: 5.	.20 (g/mL) G		Lab File ID:	V1K2159.D
Level: (TRACE/LOW/MED)	MED		Date Received:	11/20/2008
% Moisture: not dec.	14		Date Analyzed:	12/02/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane		320	U
74-87-3	Chloromethane		320	U
75-01-4	Vinyl chloride		320	U
	Bromomethane		320	U
75-00-3	Chloroethane		320	υ
75-69-4	Trichlorofluoromethane		320	U
75-35-4	1,1-Dichloroethene		320	U
67-64-1	Acetone		320	U
74-88-4	Iodomethane		320	U
75-15-0	Carbon disulfide		320	U
75-09-2	Methylene chloride		320	U
	trans-1,2-Dichloroethene		320	U
	Methyl tert-butyl ether	· · · · · · · · · · · · · · · · · · ·	320	U
75-34-3	1,1-Dichloroethane		320	U
	Vinyl acetate		320	Ŭ
	2-Butanone		320	U
156-59-2	cis-1,2-Dichloroethene		320	U
	2,2-Dichloropropane		320	U
	Bromochloromethane		320	U
67-66-3	Chloroform		320	U
71-55-6	1,1,1-Trichloroethane		320	U
	1,1-Dichloropropene		320	U
	Carbon tetrachloride		320	U
	1,2-Dichloroethane		320	U
71-43-2	Benzene		320	U ·
79-01-6	Trichloroethene		160	BJ
	1,2-Dichloropropane		320	U
	Dibromomethane		320	U
75-27-4	Bromodichloromethane		320	U
	cis-1,3-Dichloropropene		320	U
	4-Methyl-2-pentanone		320	U
	Toluene		320	U
	trans-1,3-Dichloropropene		320	U
	1,1,2-Trichloroethane		320	U
	1,3-Dichloropropane		320	U

CLIENT SAMPLE NO.

DWB 23.5-24.5ME

Lab Name: MITKEM LABC	RATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATH	CR) SOIL		Lab Sample ID:	G2173-09A
Sample wt/vol: 5	.20 (g/mL)	G	Lab File ÍD:	V1K2159.D
Level: (TRACE/LOW/MED)	MED		Date Received:	11/20/2008
% Moisture: not dec.	14		Date Analyzed:	12/02/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	5000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

····		CONCENTRATION UNIT	?S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		320	υ
591-78-6	2-Hexanone		320	U
124-48-1	Dibromochloromethane		320	U
106-93-4	1,2-Dibromoethane		320	U
108-90-7	Chlorobenzene		320	U
630-20-6	1,1,1,2-Tetrachloroethane		320	U
100-41-4	Ethylbenzene		320	U
1330-20-7	m,p-Xylene		98	J
95-47-6	o-Xylene		320	U
	Xylene (Total)		98	Ĵ
100-42-5	Styrene		320	Ū
75-25-2	Bromoform		320	U
	Isopropylbenzene		250	J
79-34-5	1,1,2,2-Tetrachloroethane		320	U
108-86-1	Bromobenzene		320	U
96-18-4	1,2,3-Trichloropropane		320	Ŭ
	n-Propylbenzene		450	
95-49-8	2-Chlorotoluene		320	U
	1,3,5-Trimethylbenzene		4400	· · · · · · · · · · · · · · · · · · ·
106-43-4	4-Chlorotoluene		320	U
98-06-6	tert-Butylbenzene		320	U
95-63-6	1,2,4-Trimethylbenzene		4300	
135-98-8	sec-Butylbenzene		500	
	4-Isopropyltoluene		900	
	1,3-Dichlorobenzene		92	J
106-46-7	1,4-Dichlorobenzene		200	J
	n-Butylbenzene		2300	
	1,2-Dichlorobenzene		320	U
96-12-8	1,2-Dibromo-3-chloropropane		320	U
	1,2,4-Trichlorobenzene		320	U
87-68-3	Hexachlorobutadiene		320	U
87-61-6	1,2,3-Trichlorobenzene		320	U
91-20-3	Naphthalene		320	U

CLIENT SAMPLE NO.

ET DWB 23.5-24.5ME

37000

38000

30000

26000

34000

48000

51000

29000

28000

28000

NJ

NJ

NJ

NJ

NJ

NJ

NJ

J

J

J

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: G2173-09A
Sample wt/vol: 5.20 (g/mL) G	Lab File ID: V1K2159.D
Level: (TRACE or LOW/MED) MED	Date Received: 11/20/2008
% Moisture: not dec. 14	Date Analyzed: 12/02/2008
GC Column: DB-624 ID: 0.25 (mr	n) Dilution Factor: 1.0
Soil Extract Volume: 5000 (u.	L) Soil Aliquot Volume: 100.00 (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 5.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
01 589-81-1 Heptane, 3-methyl-	7.451 41000 NJ
02 638-04-0 Cyclohexane, 1,3-dimethyl-,	7.668 34000 NJ

8.574

8.722

8.840

9.156

9.215

9.274

9.432

10.299

10.594

10.712

N/A

¹EPA-designated Registry Number.

E966796¹Total Alkanes

1072-05-5 Heptane, 2,6-dimethyl-2216-30-0 Heptane, 2,5-dimethyl-

3074-71-3 Heptane, 2,3-dimethyl-

1839-63-0 Cyclohexane, 1,3,5-trimethyl

1678-91-7 Cyclohexane, ethyl-

2216-34-4 Octane, 4-methyl-

2216-33-3 Octane, 3-methyl-

Unknown-01

Unknown-02

Unknown-03

03

04

05

06

07

08

09 10

11 12

CLIENT SAMPLE NO.

DWB 29-30

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	G2173-10A
Sample wt/vol: 5.	00 (g/mL) G	Lab File ID:	V5K3624.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
% Moisture: not dec.	11	Date Analyzed:	12/02/2008
GC Column: DB-624	ID: 0.25	mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume: (uL)
Purge Volume: 10.0	(mL)	

· · · · · ·	1	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	5.6	U
74-87-3	Chloromethane	5.6	υ
75-01-4	Vinyl chloride	5.6	U ·
74-83-9	Bromomethane	5.6	U
75-00-3	Chloroethane	5.6	υ
75-69-4	Trichlorofluoromethane	5.6	U
75-35-4	1,1-Dichloroethene	5.6	U
67-64-1	Acetone	5.6	υ
74-88-4	Iodomethane	5.6	U
75-15-0	Carbon disulfide	5.6	U
75-09-2	Methylene chloride	12	
156-60-5	trans-1,2-Dichloroethene	5.6	U
1634-04-4	Methyl tert-butyl ether	5.6	U
75-34-3	1,1-Dichloroethane	5.6	U
108-05-4	Vinyl acetate	5.6	U
78-93-3	2-Butanone	5.6	U
156-59-2	cis-1,2-Dichloroethene	5.6	Ū
594-20-7	2,2-Dichloropropane	5.6	U
74-97-5	Bromochloromethane	5.6	U
67-66-3	Chloroform	5.6	U
71-55-6	1,1,1-Trichloroethane	5.6	U
563-58-6	1,1-Dichloropropene	5.6	U
56-23-5	Carbon tetrachloride	5.6	U
107-06-2	1,2-Dichloroethane	5.6	Ū
1	Benzene	5.6	U
79-01-6	Trichloroethene	5.6	U
78-87-5	1,2-Dichloropropane	5.6	U
	Dibromomethane	5.6	U
75-27-4	Bromodichloromethane	5.6	U
10061-01-5	cis-1,3-Dichloropropene	5.6	U
	4-Methyl-2-pentanone	5.6	U
108-88-3		5.6	U
10061-02-6	trans-1,3-Dichloropropene	5.6	U
79-00-5	1,1,2-Trichloroethane	5.6	U
	1,3-Dichloropropane	5.6	U

CLIENT SAMPLE NO.

1B - FORM I VOA-2 VOLATILE ORGANICS ANALYSIS DATA SHEET

DWB 29-30

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No	: SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) SOIL	Lab Sample :	ID: G2173-10A
Sample wt/vol: 5.	00 (g/mL) G	Lab File ID	V5K3624.D
Level: (TRACE/LOW/MED)	LOW	Date Receive	ed: 11/20/2008
% Moisture: not dec.	11	Date Analyze	ed: 12/02/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Fac	ctor: 1.0
Soil Extract Volume:		(uL) Soil Aliquot	Volume: (uL)
Purge Volume: 10.0	· · ·	(mL)	

,		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KC	ç Q
127-18-4	Tetrachloroethene	5.6	5 U
	2-Hexanone	5.6	U
	Dibromochloromethane	5.6	5 U
106-93-4	1,2-Dibromoethane	5.6	5 U
108-90-7	Chlorobenzene	5.6	U
630-20-6	1,1,1,2-Tetrachloroethane	5.6	5 U
100-41-4	Ethylbenzene	5.6	U
1330-20-7	m,p-Xylene	5.6	U U
95-47-6	o-Xylene	5.6	5 U
1330-20-7	Xylene (Total)	5.6	U U
100-42-5	Styrene	5.6	5 U
75-25-2	Bromoform	5.6	U
98-82-8	Isopropylbenzene	5.6	5 U
79-34-5	1,1,2,2-Tetrachloroethane	5.6	U U
108-86-1	Bromobenzene	5.6	U U
96-18-4	1,2,3-Trichloropropane	5.6	5 U
103-65-1	n-Propylbenzene	5.6	5 U
95-49-8	2-Chlorotoluene	5.6	5 U
108-67-8	1,3,5-Trimethylbenzene	5.6	5 U
106-43-4	4-Chlorotoluene	5.6	5 U
98-06-6	tert-Butylbenzene	5.6	
95-63-6	1,2,4-Trimethylbenzene	5.6	
135-98-8	sec-Butylbenzene	5.6	5 U
99-87-6	4-Isopropyltoluene	5.6	5 U
541-73-1	1,3-Dichlorobenzene	5.6	5 U
106-46-7	1,4-Dichlorobenzene	5.6	5 U .
104-51-8	n-Butylbenzene	5.6	
95-50-1	1,2-Dichlorobenzene	5.6	
96-12-8	1,2-Dibromo-3-chloropropane	5.6	
	1,2,4-Trichlorobenzene	5.6	
87-68-3	Hexachlorobutadiene	5.6	
87-61-6	1,2,3-Trichlorobenzene	5.6	
91-20-3	Naphthalene	5.6	U

CLIENT SAMPLE NO.

DWB 29-30

Lab Name:	MITKEM LABORAT	ORIES		Contract:		
Lab Code:	MITKEM C	ase No.:		Mod. Ref No.:	SDG No.: M	G2173
Matrix: (SC	DIL/SED/WATER)	SOIL		Lab Sample ID:	G2173-10A	
Sample wt/w	vol: 5.00	(g/mL) G		Lab File ID:	V5K3624.D	
Level: (TRA	ACE or LOW/MED)	LOW		Date Received:	11/20/2008	
% Moisture:	not dec. 1	1		Date Analyzed:	12/02/2008	
GC Column:	DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extrac	ct Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)
CONCENTRATI	ION UNITS: (ug/	Lorug/Kg) U	JG/KG	Purge Volume: 10	Ĵ.O	(mL)
CAS NUM	IBER	COMPOUND NAME		RT	EST. CONC.	Q
E96	6796 ¹ Total Alka	anes		N/A		

¹EPA-designated Registry Number.

SW846 .

EPA SAMPLE NO.

SMS 12 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES		Contract:	· · · · · · · · · · · · · · · · · · ·
			001101000	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	.) SOIL		Lab Sample ID:	G2173-11A
Sample wt/vol: 5.	70 (g/mL)	G	Lab File ID:	V6G2968.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	17		Date Analyzed:	11/25/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	1	(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/H	KG	Q
75-71-8	Dichlorodifluoromethane	5.	3 U	
74-87-3	Chloromethane	5.	3 U	
75-01-4	Vinyl chloride	5.	3 U	
74-83-9	Bromomethane	5.	3 U	
75-00-3	Chloroethane	5.	3 U	
75-69-4	Trichlorofluoromethane	5.	3 U	
75-35-4	1,1-Dichloroethene	5.	3 U	
67-64-1	Acetone	58		
74-88-4	Iodomethane	5.	3 U	
75-15-0) Carbon disulfide	5.	3 U	
75-09-2	Methylene chloride	5.	3 U	
156-60-5	trans-1,2-Dichloroethene	5.	.3 U	
1634-04-4	Methyl tert-butyl ether	5.	.3 U	
75-34-3	3 1,1-Dichloroethane	5.	.3 U	
108-05-4	Vinyl acetate	5.	.3 U	
78-93-3	3 2-Butanone	5.	.3 U	
156-59-2	cis-1,2-Dichloroethene	5.	.3 U	
594-20-7	2,2-Dichloropropane	5.	.3 U	
74-97-5	Bromochloromethane	5.	.3 U	
67-66-3	3 Chloroform	5.	.3 U	
71-55-6	5 1,1,1-Trichloroethane	5.	.3 U	
563-58-6	5 1,1-Dichloropropene	5	.3 U	
56-23-5	5 Carbon tetrachloride	5.	.3 U	· .
107-06-2	2 1,2-Dichloroethane	5.	.3 U	
71-43-2	2 Benzene	5.	.3 U	
79-01-6	5 Trichloroethene	5.	.3 U	
78-87-5	1,2-Dichloropropane	5	.3 U	
74-95-3	3 Dibromomethane	5	.3 U	
75-27-4	1 Bromodichloromethane		.3 U	
10061-01-5	cis-1,3-Dichloropropene	5	.3 U	
108-10-1	1 4-Methyl-2-pentanone	5	.3 U	
	3 Toluene	11		
10061-02-6	6 trans-1,3-Dichloropropene	5	.3 U	
	5 1,1,2-Trichloroethane	5	.3 U	
	9 1,3-Dichloropropane	5	.3 U	

EPA SAMPLE NO.

SMS 12 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	G2173-11A
Sample wt/vol: 5.	70 (g/mL) G		Lab File ID:	V6G2968.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	17		Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) U	G/KG	Q
127-18-4	Tetrachloroethene		5.3	U
591-78-6	2-Hexanone	· · ·	5.3	U
124-48-1	Dibromochloromethane		5.3	U.
106-93-4	1,2-Dibromoethane		5.3	U
108-90-7	Chlorobenzene	· ·	5.3	U
630-20-6	1,1,1,2-Tetrachloroethane		5.3	U
100-41-4	Ethylbenzene		5.3	U
1330-20-7	m,p-Xylene		8.0	
95-47-6	o-Xylene		5.3	U
1330-20-7	Xylene (Total)		8.0	
100-42-5	Styrene		5.3	U
75-25-2	Bromoform		5.3	U
98-82-8	Isopropylbenzene	20	00	
79-34-5	1,1,2,2-Tetrachloroethane	· · · · · · · · · · · · · · · · · · ·	5.3	U
	Bromobenzene		5.3	U
96-18-4	1,2,3-Trichloropropane		5.3	U .
103-65-1	n-Propylbenzene	56	50	E
95-49-8	2-Chlorotoluene		5.3	U
108-67-8	1,3,5-Trimethylbenzene	120)0	Ε
106-43-4	4-Chlorotoluene		5.3	U
98-06-6	tert-Butylbenzene	13	30	
95-63-6	1,2,4-Trimethylbenzene	120)0	E
135-98-8	sec-Butylbenzene	22	20	E
99-87-6	4-Isopropyltoluene	41	10	E
541-73-1	1,3-Dichlorobenzene	19	90	
106-46-7	1,4-Dichlorobenzene	24	40	E
	n-Butylbenzene	33		E
	1,2-Dichlorobenzene		5.3	U
96-12-8	1,2-Dibromo-3-chloropropane		5.3	U
120-82-1	1,2,4-Trichlorobenzene		5.3	U
87-68-3	Hexachlorobutadiene		5.3	U
	1,2,3-Trichlorobenzene		5.3	U
91-20-3	Naphthalene		5.3	U

SW846

004S

CLIENT SAMPLE NO.

SMS 12 23.5-24.5

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.:
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: <u>G2173-11A</u>
Sample wt/vol: 5.70 (g/mL) G	Lab File ID: V6G2968.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/20/2008
% Moisture: not dec. 17	Date Analyzed: 11/25/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS 12 23.5-24.5ME

Lab Name: MITKEM LABOR	ATORIES	Contract:	· · · · · · · · · · · · · · · · · · ·
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) SOIL	Lab Sample ID:	G2173-11A
Sample wt/vol: 5.	.10 (g/mL) G	Lab File ID:	V1K2073.D
Level: (TRACE/LOW/MED)	MED	Date Received:	11/20/2008
% Moisture: not dec.	17	Date Analyzed:	11/29/2008
GC Column: DB-624	ID: 0.25 (m	m) Dilution Factor:	1.0
Soil Extract Volume: 5	000 (u	L) Soil Aliquot Vol	Lume: 100.00 (uL)
Purge Volume: 5.0	(π	L)	

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	IS: UG/KG	Q
75-71-8	B Dichlorodifluoromethane		350	U
	Chloromethane		350	σ
	Vinyl chloride		350	U
	Bromomethane		350	U
75-00-3	Chloroethane		350	U
75-69-4	Trichlorofluoromethane		350	Ū
75-35-4	1,1-Dichloroethene		350	U
	Acetone		350	U
74-88-4	Iodomethane		350	U
75-15-0) Carbon disulfide		350	U
75-09-2	Methylene chloride		350	U
156-60-5	trans-1,2-Dichloroethene		350	U
1634-04-4	Methyl tert-butyl ether		350	U
75-34-3	3 1,1-Dichloroethane		350	U
108-05-4	Vinyl acetate		350	U
	3 2-Butanone		350	U
156-59-2	2 cis-1,2-Dichloroethene		350	U
594-20-7	7 2,2-Dichloropropane		350	U
74-97-5	Bromochloromethane		350	U
67-66-3	3 Chloroform		350	U
71-55-6	5 1,1,1-Trichloroethane		350	Ū
563-58-6	5 1,1-Dichloropropene		350	U
56-23-5	Carbon tetrachloride		350	U
107-06-2	2 1,2-Dichloroethane		350	U
71-43-2	2 Benzene		350	U
79-01-6	5 Trichloroethene		350	U
78-87-5	5 1,2-Dichloropropane		350	U
74-95-3	3 Dibromomethane		350	U
75-27-4	4 Bromodichloromethane		350	U
10061-01-5	5 cis-1,3-Dichloropropene		350	U
108-10-1	1 4-Methyl-2-pentanone		350	U
	3 Toluene		350	U
10061-02-0	6 trans-1,3-Dichloropropene		350	U
	5 1,1,2-Trichloroethane		350	U
142-28-9	9 1,3-Dichloropropane		350	U

CLIENT SAMPLE NO.

SMS 12 23.5-24.5ME

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	G2173-11A
Sample wt/vol: 5.	10 (g/mL) G		Lab File ID:	V1K2073.D
Level: (TRACE/LOW/MED)	MED		Date Received:	11/20/2008
% Moisture: not dec.	17		Date Analyzed:	11/29/2008
GC Column: DB-624	ID: 0.2	25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	350	U
591-78-6	2-Hexanone	350	U
124-48-1	Dibromochloromethane	350	U
106-93-4	1,2-Dibromoethane	350	U
108-90-7	Chlorobenzene	350	U
630-20-6	1,1,1,2-Tetrachloroethane	350	U
100-41-4	Ethylbenzene	350	U
1330-20-7	m,p-Xylene	350	U
95-47-6	o-Xylene	350	U
	Xylene (Total)	350	U
100-42-5	Styrene	350	U
75-25-2	Bromoform	350	U
98-82-8	Isopropylbenzene	220	J
79-34-5	1,1,2,2-Tetrachloroethane	350	U
108-86-1	Bromobenzene	350	U
96-18-4	1,2,3-Trichloropropane	350	U
	n-Propylbenzene	400	
95-49-8	2-Chlorotoluene	350	U
108-67-8	1,3,5-Trimethylbenzene	3200	
106-43-4	4-Chlorotoluene	350	U
98-06-6	tert-Butylbenzene	280	J
95-63-6	1,2,4-Trimethylbenzene	4400	
135-98-8	sec-Butylbenzene	330	J
99-87-6	4-Isopropyltoluene	780	
541-73-1	1,3-Dichlorobenzene	300	J
106-46-7	1,4-Dichlorobenzene	300	J
104-51-8	n-Butylbenzene	1200	
	1,2-Dichlorobenzene	350	U
96-12-8	1,2-Dibromo-3-chloropropane	350	U
	1,2,4-Trichlorobenzene	110	J
	Hexachlorobutadiene	350	U
87-61-6	1,2,3-Trichlorobenzene	350	U
91-20-3	Naphthalene	530	

1J - FORM I VOA-TIC

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS CLIENT SAMPLE NO.

SMS 12 23.5-24.5ME

Lab	Name: MITK	EM LABORATORIES	Contract:		
Lab	Code: MITK	EM Case No.:	Mod. Ref No.:	SDG No.:	MG2173
Matı	rix: (SOIL/S	SED/WATER) SOIL	Lab Sample ID:	G2173-11A	
Samp	ple wt/vol:	5.10 (g/mL) G	Lab File ID:	V1K2073.D	·
Leve	el: (TRACE c	or LOW/MED) MED	Date Received:	11/20/2008	
% Mo	oisture: not	dec. 17	Date Analyzed:	11/29/2008	
GC (Column: DB-	624 ID: 0.25 (mm)	Dilution Factor	: 1.0	
Soi	l Extract Vo	blume: 5000 (uL)	Soil Aliquot Vol	lume: 100.00	(uL)
CONC	CENTRATION U	UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 5	.0	(mL)
	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown-01	10.308	9400	J
02		Unknown-02	10.604	10000	J
03		Unknown-03	10.712	10000	J
04		Unknown-04	11.067	5600	J
05	874-41-9	Benzene, 1-ethyl-2,4-dimethy	13.225	4800	NJ
06	527-84-4	Benzene, 1-methyl-2-(1-methy	13.303	5900	NJ
07		Unknown-05	13.432	4700	J
08		Unknown-06	13.747	4000	J
09	527-53-7	Benzene, 1,2,3,5-tetramethyl	13.816	4900	NJ
10	824-90-8	1-Phenyl-1-butene	14.259	8400	NJ
11		Unknown-07	14.437	7000	J
	E966796	¹ Total Alkanes	N/A		

E966796¹Total Alkanes ¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS12 29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:	-	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) SOIL		Lab Sample ID:	G2173-12A
Sample wt/vol: 5.	10 (g/mL) G		Lab File ID:	V5K3625.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	12/02/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

F		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	5.8	U
74-87-3	Chloromethane	5.8	U
75-01-4	Vinyl chloride	5.8	U
	Bromomethane	5.8	U
75-00-3	Chloroethane	5.8	U
75-69-4	Trichlorofluoromethane	5.8	U
75-35-4	1,1-Dichloroethene	5.8	U
67-64-1	Acetone	5.8	U
74-88-4	Iodomethane	5.8	υ
75-15-0	Carbon disulfide	5.8	U
75-09-2	Methylene chloride	11	
156-60-5	trans-1,2-Dichloroethene	5.8	U
1634-04-4	Methyl tert-butyl ether	5.8	U
75-34-3	1,1-Dichloroethane	5.8	U
108-05-4	Vinyl acetate	5.8	U
78-93-3	2-Butanone	5.8	U
156-59-2	cis-1,2-Dichloroethene	5.8	U
594-20-7	2,2-Dichloropropane	5.8	U
	Bromochloromethane	5.8	U
67-66-3	Chloroform	5.8	U
71-55-6	1,1,1-Trichloroethane	5.8	U
563-58-6	1,1-Dichloropropene	5.8	U
56-23-5	Carbon tetrachloride	5.8	U
107-06-2	1,2-Dichloroethane	5.8	U
71-43-2	Benzene	5.8	U
79-01-6	Trichloroethene	5.8	U
78-87-5	1,2-Dichloropropane	5.8	U
74-95-3	Dibromomethane	5.8	U
*	Bromodichloromethane	5.8	U
	cis-1,3-Dichloropropene	5.8	U
	4-Methyl-2-pentanone	5.8	U
	Toluene	5.8	U
	trans-1,3-Dichloropropene	5.8	U
	1,1,2-Trichloroethane	5.8	U
142-28-9	1,3-Dichloropropane	5.8	U

CLIENT SAMPLE NO.

SMS12 29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	G2173-12A
Sample wt/vol: 5.	10 (g/mL) G		Lab File ID:	V5K3625.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	12/02/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	JG/KG	Q
127-18-4	Tetrachloroethene		5.8	U
	2-Hexanone		5.8	U
124-48-1	Dibromochloromethane		5.8	U
106-93-4	1,2-Dibromoethane		5.8	U
108-90-7	Chlorobenzene		5.8	U
630-20-6	1,1,1,2-Tetrachloroethane		5.8	U
	Ethylbenzene		5.8	U
	m,p-Xylene		5.8	U .
95-47-6	o-Xylene		5.8	U
1330-20-7	Xylene (Total)		5.8	U
	Styrene		5.8	υ
	Bromoform		5.8	U
98-82-8	Isopropylbenzene		5.8	U
79-34-5	1,1,2,2-Tetrachloroethane		-5.8	U
	Bromobenzene		5.8	U
96-18-4	1,2,3-Trichloropropane		5.8	U
103-65-1	n-Propylbenzene		5.8	U
95-49-8	2-Chlorotoluene		5.8	U
108-67-8	1,3,5-Trimethylbenzene		5.8	υ
106-43-4	4-Chlorotoluene		5.8	U
98-06-6	tert-Butylbenzene		5.8	U
95-63-6	1,2,4-Trimethylbenzene		5.8	U
	sec-Butylbenzene		5.8	U
99-87-6	4-Isopropyltoluene		5.8	υ
541-73-1	1,3-Dichlorobenzene		5.8	U
106-46-7	1,4-Dichlorobenzene		5.8	U
104-51-8	n-Butylbenzene		5.8	U
	1,2-Dichlorobenzene		5.8	U
96-12-8	1,2-Dibromo-3-chloropropane	· · · · · · · · · · · · · · · · · · ·	5.8	Ü
	1,2,4-Trichlorobenzene		5.8	U
	Hexachlorobutadiene		5.8	U
87-61-6	1,2,3-Trichlorobenzene		5.8	U
	Naphthalene		5.8	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SMS12 29-30

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: <u>G2173-12A</u>
Sample wt/vol: 5.10 (g/mL) G	Lab File ID: V5K3625.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/20/2008
% Moisture: not dec. 16	Date Analyzed: 12/02/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS 12B 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	R) SOIL	Lab Sample ID:	G2173-13A
Sample wt/vol: 6.	00 (g/mL) G	Lab File ID:	V6G2970.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
% Moisture: not dec.	12	Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume:(uL)
Purge Volume: 10.0		(mL)	

		CONCENTRATION UNITS:]
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/K	G Q
75-71-8	Dichlorodifluoromethane	4.	7 U
74-87-3	Chloromethane	4.1	7 U
75-01-4	Vinyl chloride	4.	7 U
74-83-9	Bromomethane	4.7	7 U
75-00-3	Chloroethane	4.	7 U
75-69-4	Trichlorofluoromethane	4.	7 U
75-35-4	1,1-Dichloroethene	4.	7 U
67-64-1	Acetone	81	
74-88-4	Iodomethane	4.	7 U
75-15-0	Carbon disulfide	4.9	9
75-09-2	Methylene chloride	4.	7 U
156-60-5	trans-1,2-Dichloroethene	4.1	7 U
1634-04-4	Methyl tert-butyl ether	4.7	7 U
75-34-3	1,1-Dichloroethane	4.	7 U
108-05-4	Vinyl acetate	4.	7 U
	3 2-Butanone	4.	7 U
156-59-2	cis-1,2-Dichloroethene	4.	7 U
	2,2-Dichloropropane	4.	7 U
	Bromochloromethane	4.	ד
67-66-3	Chloroform	4.	7 ט
71-55-6	1,1,1-Trichloroethane	4.	7 ט
	1,1-Dichloropropene	4.	7 U
	Carbon tetrachloride	4.	7 U
107-06-2	1,2-Dichloroethane	4.	
71-43-2	Benzene	4.	7 U .
79-01-6	Trichloroethene	4.	7 U
	1,2-Dichloropropane	4.	7 U
	Dibromomethane	4.	7 U
	Bromodichloromethane	4.	7 U
	cis-1,3-Dichloropropene	4.	7 U
	4-Methyl-2-pentanone	4.	7 U
	3 Toluene	4.	7 U
	trans-1,3-Dichloropropene	4.	ס 7
	1,1,2-Trichloroethane	<u>4</u> .	7 U
	0 1,3-Dichloropropane	4.	7 U

CLIENT SAMPLE NO.

SMS 12B 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	SOIL			Lab Sample ID:	G2173-13A
Sample wt/vol: 6.	00 (g/mL)	G		Lab File ID:	V6G2970.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/20/2008
% Moisture: not dec.	12			Date Analyzed:	11/25/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0			(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	; Q
127-18-4	Tetrachloroethene	4.7	
	2-Hexanone	4.7	U
	Dibromochloromethane	4.7	
	1,2-Dibromoethane	4.7	U
	Chlorobenzene	4.7	
	1,1,1,2-Tetrachloroethane	4.7	
	Ethylbenzene	4.7	
	m,p-Xylene	4.7	
	o-Xylene	- 4.7	
	Xylene (Total)	4.7	
	Styrene	4.7	
	Bromoform	4.7	U
98-82-8	Isopropylbenzene	32	
	1,1,2,2-Tetrachloroethane	4.7	
	Bromobenzene	4.7	
96-18-4	1,2,3-Trichloropropane	4.7	U
	n-Propylbenzene	130	
	2-Chlorotoluene	4.7	
	1,3,5-Trimethylbenzene	1000	E
	4-Chlorotoluene	4.7	' U
	5 tert-Butylbenzene	120	
95-63-6	1,2,4-Trimethylbenzene	790	E
135-98-8	sec-Butylbenzene	170	
99-87-6	4-Isopropyltoluene	410	E
	1,3-Dichlorobenzene	4.7	
	/ 1,4-Dichlorobenzene	4.7	
	n-Butylbenzene	350	Ε
	1,2-Dichlorobenzene	4.7	
	3 1,2-Dibromo-3-chloropropane	4.7	
	1,2,4-Trichlorobenzene	1.9	
	B Hexachlorobutadiene	4.1	7 0
	5 1,2,3-Trichlorobenzene	4.	
	8 Naphthalene	4.7	7 U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SMS 12B 23.5-24.5

Lab Name:	MITKEM LAP	BORATO	RIES			Contract	::		
Lab Code:	MITKEM	Ca	se No.:			Mod. Ref	No.:	SDG No.:	MG2173
Matrix: (S	OIL/SED/WA	FER)	SOIL			Lab Samp	ole ID:	G2173-13A	
Sample wt/	vol:	6.00	(g/mL)	G		Lab File	e ID:	V6G2970.D	
Level: (TR	ACE or LOW	/MED)	LOW			Date Rec	ceived:	11/20/2008	,,,,
% Moisture	: not dec.	12				Date Ana	lyzed:	11/25/2008	
GC Column:	DB-624		ID:	0.25	(mm)	Dilution	Factor:	1.0	
Soil Extra	ct Volume:			-	(uL)	Soil Ali	quot Vol	ume:	(uL)
CONCENTRAT	ION UNITS:	(ug/I	or ug/F	(g) (JG/KG	Purge Vo	lume: 10	0.0	(mL)
CAS NUN	MBER		COMPOUND	NAME		RT		EST. CONC.	Q
E96	6796 ¹ Total	Alka	nes				N/A		

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

SMS 12B 23.5-24.5ME

Lab Name: MITKEM LABOR	ATORIES		Contract:	· · · · · · · · · · · · · · · · · · ·
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	G2173-13A
Sample wt/vol: 5.	00 (g/mL) G		Lab File ID:	V1K2074.D
Level: (TRACE/LOW/MED)	MED		Date Received:	11/20/2008
% Moisture: not dec.	12		Date Analyzed:	11/29/2008
GC Column: DB-624	ID: 0.2	5 (mm)	Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
75-71-8	Dichlorodifluoromethane		320	U
74-87-3	Chloromethane		320	U
75-01-4	Vinyl chloride	· · · · · · · · · · · · · · · · · · ·	320	U
74-83-9	Bromomethane		32.0	U
75-00-3	Chloroethane		320	U
75-69-4	Trichlorofluoromethane		320	U
75-35-4	1,1-Dichloroethene		320	U
67-64-1	Acetone	·····	320	U
74-88-4	Iodomethane	· · · ·	320	U
75-15-0	Carbon disulfide		320	U
75-09-2	Methylene chloride		320	U
156-60-5	trans-1,2-Dichloroethene		32,0	U
1634-04-4	Methyl tert-butyl ether		320	U
75-34-3	1,1-Dichloroethane		320	U
108-05-4	Vinyl acetate		320	U
	2-Butanone		320	U
156-59-2	cis-1,2-Dichloroethene		320	U
594-20-7	2,2-Dichloropropane		320	U .
	Bromochloromethane		320	U
67-66-3	Chloroform		320	U
71-55-6	1,1,1-Trichloroethane		320	U
563-58-6	1,1-Dichloropropene		320	U
56-23-5	Carbon tetrachloride		320	U
107-06-2	1,2-Dichloroethane		320	U
	Benzene		320	U
79-01-6	Trichloroethene		320	U
78-87-5	1,2-Dichloropropane		320	U
	Dibromomethane		320	Ū
75-27-4	Bromodichloromethane	· · · · · · · · · · · · · · · · · · ·	320	U
10061-01-5	cis-1,3-Dichloropropene		320	U
	4-Methyl-2-pentanone		320	U
	Toluene		320	U
10061-02-6	trans-1,3-Dichloropropene		320	U
	1,1,2-Trichloroethane		320	U
142-28-9	1,3-Dichloropropane		320	U

CLIENT SAMPLE NO.

SMS 12B 23.5-24.5ME

Lab Name: MITKEM LABO	RATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATE	R) SOIL	Lab Sample ID:	G2173-13A
Sample wt/vol: 5	.00 (g/mL) G	Lab File ID:	V1K2074.D
Level: (TRACE/LOW/MED)	MED	Date Received:	11/20/2008
% Moisture: not dec.	12	Date Analyzed:	11/29/2008
GC Column: DB-624	ID: 0.25 (1	nm) Dilution Factor:	1.0
Soil Extract Volume: 5	5000 (1	ıL) Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0	(1	nL)	

		CONCENTRATION UNIT		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		320	U
591-78-6	2-Hexanone		320	U
124-48-1	Dibromochloromethane		320	U
106-93-4	1,2-Dibromoethane		320	U
108-90-7	Chlorobenzene		320	U
630-20-6	5 1,1,1,2-Tetrachloroethane		320	U
100-41-4	Ethylbenzene		320	U
1330-20-7	/ m,p-Xylene		320	U
	5 o-Xylene		320	U
	Xylene (Total)		320	ט
	Styrene		320	U
75-25-2	2 Bromoform		320	U
98-82-8	Isopropylbenzene		320	U
	5 1,1,2,2-Tetrachloroethane		320	U
108-86-1	Bromobenzene		320	U
96-18-4	1,2,3-Trichloropropane		320	U
	n-Propylbenzene		130	J
	3 2-Chlorotoluene		320	U
108-67-8	3 1,3,5-Trimethylbenzene		4300	
	4 4-Chlorotoluene		320	U
98-06-6	5 tert-Butylbenzene		240	J
	5 1,2,4-Trimethylbenzene		2200	
	B sec-Butylbenzene		330	
	5 4-Isopropyltoluene		900	
	1 1,3-Dichlorobenzene		320	U
	7 1,4-Dichlorobenzene		320	U
	3 n-Butylbenzene		1700	
	1 1,2-Dichlorobenzene	······································	320	U
	3 1,2-Dibromo-3-chloropropane	·····	320	U
	1 1,2,4-Trichlorobenzene		. 77	J
	3 Hexachlorobutadiene		320	Ŭ
87-61-0	5 1,2,3-Trichlorobenzene		320	U
	3 Naphthalene		94	J

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

SMS 12B 23.5-24.5ME

5400

5600

6500

4800

5300

8000

5200

J

J

NJ

NJ

NJ

NJ

NJ

Lab Name:	MITKEM LAB	ORATORIES		Contract:		
Lab Code:	MITKEM	Case No.:		Mod. Ref No.:	SDG No.:	MG2173
Matrix: (S	OIL/SED/WAT	YER) SOIL		Lab Sample ID	: <u>G2173-13A</u>	
Sample wt/	vol:	5.00 (g/mL)	G	Lab File ID:	V1K2074.D	
Level: (TR	ACE or LOW/	MED) MED		Date Received	: 11/20/2008	
% Moisture	: not dec.	12		Date Analyzed	: 11/29/2008	
GC Column:	DB-624	ID:	0.25 (mm)	Dilution Fact	or: <u>1.0</u>	
Soil Extra	ct Volume:	5000	(uL)	Soil Aliquot	Volume: 100.00	(uL)
CONCENTRAT	ION UNITS:	(ug/L or ug/H	(g) UG/KG	Purge Volume:	5.0	(mL)
CAS NU	MBER	COMPOUND	NAME	RT	EST. CONC.	Q
01 2216-	-34-4 Octan	e, 4-methyl-		9.279	8700	NJ
02	Unkno	wn-01		10.599	9300	J
03	Unkno	wn-02		10.717	10000	J
04	Unkno	wn-03	<u></u>	11.062	5100	J

Unknown-04

Unknown-05

874-41-9 Benzene, 1-ethyl-2,4-dimethy 874-41-9 Benzene, 1-ethyl-2,4-dimethy

874-35-1 1H-Indene, 2,3-dihydro-5-met

119-64-2 Naphthalene, 1,2,3,4-tetrahy

2847-72-5 Decane, 4-methyl-

E966796¹Total Alkanes

¹EPA-designated Registry Number.

05

06

07

80

09

10

11

11.111

11.230

12.018

13.220

13.299

14.254

14.432

N/A

SW846

*80*58

CLIENT SAMPLE NO.

SMS 12B 29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	() SOIL		Lab Sample ID:	G2173-14A
Sample wt/vol: 5.	10 (g/mL) G		Lab File ID:	V5K3626.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	19		Date Analyzed:	12/02/2008
GC Column: DB-624	ID: 0	.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
		<u> </u>	
	Dichlorodifluoromethane	_	
	Chloromethane	6.1	U
	Vinyl chloride	6.1	0
	Bromomethane	6.1	
	Chloroethane	6.1	U
	Trichlorofluoromethane	6.1	U
75-35-4	1,1-Dichloroethene	6.1	U
	Acetone	6.1	U
	Iodomethane	6.1	U
75-15-0	Carbon disulfide	6.1	U
	Methylene chloride	13	
	trans-1,2-Dichloroethene	6.1	U
1634-04-4	Methyl tert-butyl ether	6.1	U
75-34-3	1,1-Dichloroethane	6.1	U
	Vinyl acetate	6.1	U
78-93-3	2-Butanone	6.1	U
156-59-2	cis-1,2-Dichloroethene	6.1	U
	2,2-Dichloropropane	6.1	U
	Bromochloromethane	6.1	U
67-66-3	3 Chloroform	6.1	U
	5 1,1,1-Trichloroethane	6.1	U
	5 1,1-Dichloropropene	6.1	ט
	Carbon tetrachloride	6.1	U
	2 1,2-Dichloroethane	6.1	U
	2 Benzene	6.1	U
	5 Trichloroethene	6.1	U
	5 1,2-Dichloropropane	6.1	U
	B Dibromomethane	6.1	U
	4 Bromodichloromethane	6.1	U
	5 cis-1,3-Dichloropropene	6.1	U
	1 4-Methyl-2-pentanone	6.1	Ŭ
	3 Toluene	6.1	U
	6 trans-1,3-Dichloropropene	6.1	υ
79-00-	5 1,1,2-Trichloroethane	6.1	U
	9 1,3-Dichloropropane	6.1	U

CLIENT SAMPLE NO.

SMS 12B 29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	<u> </u>
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	G2173-14A
Sample wt/vol: 5.	10 (g/mL) G		Lab File ID:	V5K3626.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	19		Date Analyzed:	12/02/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	6.1	U
591-78-6	2-Hexanone	6.1	U
124-48-1	Dibromochloromethane	6.1	U
106-93-4	1,2-Dibromoethane	6.1	U
108-90-7	Chlorobenzene	6.1	U
630-20-6	1,1,1,2-Tetrachloroethane	6.1	U
100-41-4	Ethylbenzene	6.1	U
1330-20-7	m,p-Xylene	6.1	U
95-47-6	o-Xylene	6.1	U
	Xylene (Total)	6.1	U
100-42-5	Styrene	6.1	U
75-25-2	Bromoform	6.1	U
98-82-8	Isopropylbenzene	6.1	U
79-34-5	1,1,2,2-Tetrachloroethane	6.1	U
108-86-1	Bromobenzene	6.1	U
96-18-4	1,2,3-Trichloropropane	6.1	U
103-65-1	n-Propylbenzene	6.1	U
95-49-8	2-Chlorotoluene	6.1	U
	1,3,5-Trimethylbenzene	6.1	U
106-43-4	4-Chlorotoluene	6.1	U
98-06-6	tert-Butylbenzene	6.1	U
95-63-6	1,2,4-Trimethylbenzene	6.1	U
135-98-8	sec-Butylbenzene	6.1	U
99-87-6	4-Isopropyltoluene	6.1	U
541-73-1	1,3-Dichlorobenzene	6.1	U
106-46-7	1,4-Dichlorobenzene	6.1	U
104-51-8	n-Butylbenzene	6.1	U
95-50-1	1,2-Dichlorobenzene	6.1	U
	1,2-Dibromo-3-chloropropane	6.1	U
	1,2,4-Trichlorobenzene	6.1	ט
	Hexachlorobutadiene	6.1	U
87-61-6	1,2,3-Trichlorobenzene	6.1	U
91-20-3	Naphthalene	6.1	U

1J - FORM I VOA-TIC

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SMS 12B 29-30

Lab Name: MITKEM LABORATORIES	Contract:
Lab Code: MITKEM Case No.:	Mod. Ref No.: SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID: G2173-14A
Sample wt/vol: 5.10 (g/mL) G	Lab File ID: V5K3626.D
Level: (TRACE or LOW/MED) LOW	Date Received: 11/20/2008
% Moisture: not dec. 19	Date Analyzed: 12/02/2008
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10.0 (mL)
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q
E966796 ¹ Total Alkanes	N/A

¹EPA-designated Registry Number.

1A - FORM I VOA-1

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

FIELD BLANK

Lab Name: MITKEM LABORA	TORIES			Contract:	
Lab Code: MITKEM	Case No.:			Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER)	WATER			Lab Sample ID:	G2173-15A
Sample wt/vol: 5.0	0 (g/mL)	ML		Lab File ID:	V1K1890.D
Level: (TRACE/LOW/MED)	LOW			Date Received:	11/20/2008
% Moisture: not dec.				Date Analyzed:	11/22/2008
GC Column: DB-624	ID:	0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:			(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 5.0			(mL)		

	1	CONCENTRATION UNIT:	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		5.0	U
	Chloromethane		5.0	U
75-01-4	Vinyl chloride		5.0	U
	Bromomethane		5.0	U
	Chloroethane		5.0	U
	Trichlorofluoromethane		5.0	U
75-35-4	1,1-Dichloroethene		5.0	U
	Acetone		5.0	U
74-88-4	Iodomethane		5.0	U
	Carbon disulfide		5.0	U
	Methylene chloride		5.0	U
	trans-1,2-Dichloroethene		5.0	U
1634-04-4	Methyl tert-butyl ether		5.0	U
75-34-3	1,1-Dichloroethane		5.0	U
108-05-4	Vinyl acetate		5.0	U
	2-Butanone		5.0	U
156-59-2	cis-1,2-Dichloroethene		5.0	U
594-20-7	2,2-Dichloropropane		5.0	U
74-97-5	Bromochloromethane		5.0	U
67-66-3	Chloroform		5.0	U
71-55-6	1,1,1-Trichloroethane		5.0	U
563-58-6	1,1-Dichloropropene		5.0	U
56-23-5	Carbon tetrachloride		5.0	U
107-06-2	1,2-Dichloroethane		5.0	U
	Benzene		5.0	U
79-01-6	Trichloroethene		5.0	U
78-87-5	1,2-Dichloropropane		5.0	U
74-95-3	Dibromomethane		5.0	U
	Bromodichloromethane		5.0	U
10061-01-5	cis-1,3-Dichloropropene		5.0	U
	4-Methyl-2-pentanone		5.0	U
108-88-3	3 Toluene		5.0	U
	trans-1,3-Dichloropropene		5.0	U
79-00-5	1,1,2-Trichloroethane		5.0	U
142-28-9	1,3-Dichloropropane		5.0	U

CLIENT SAMPLE NO.

FIELD BLANK

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) WATER		Lab Sample ID:	G2173-15A
Sample wt/vol: 5.	00 (g/mL) <u>ML</u>		Lab File ID:	V1K1890.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.			Date Analyzed:	11/22/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
127-18-4	Tetrachloroethene		5.0	U
591-78-6	2-Hexanone		5.0	U
124-48-1	Dibromochloromethane		5.0	U
106-93-4	1,2-Dibromoethane		5.0	ט
108-90-7	Chlorobenzene		5.0	U
630-20-6	1,1,1,2-Tetrachloroethane		5.0	U
100-41-4	Ethylbenzene		5.0	U
1330-20-7	m,p-Xylene		5.0	υ
95-47-6	o-Xylene		5.0	U
1330-20-7	Xylene (Total)		5.0	U
100-42-5	Styrene		5.0	U
75-25-2	Bromoform		5.0	U
98-82-8	Isopropylbenzene		5.0	U
79-34-5	1,1,2,2-Tetrachloroethane		5.0	U
108-86-1	Bromobenzene		5.0	U
96-18-4	1,2,3-Trichloropropane		5.0	U
103-65-1	n-Propylbenzene		5.0	U
95-49-8	2-Chlorotoluene		5.0	U
	1,3,5-Trimethylbenzene		5.0	U
106-43-4	4-Chlorotoluene		5.0	U
98-06-6	tert-Butylbenzene		5.0	U
95-63-6	1,2,4-Trimethylbenzene		5.0	U
135-98-8	sec-Butylbenzene		5.0	U
99-87-6	4-Isopropyltoluene		5.0	Ū
541-73-1	1,3-Dichlorobenzene		5.0	U
106-46-7	1,4-Dichlorobenzene		5.0	U
104-51-8	n-Butylbenzene		5.0	Ū
95-50-1	1,2-Dichlorobenzene		5.0	U
96-12-8	1,2-Dibromo-3-chloropropane	· · · · · · · · · · · · · · · · · · ·	5.0	U
120-82-1	1,2,4-Trichlorobenzene		5.0	U
87-68-3	Hexachlorobutadiene		5.0	U
87-61-6	1,2,3-Trichlorobenzene		5.0	ប
91-20-3	Naphthalene		5.0	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

FIELD BLANK

			Contract:		
Lab Name: MITKEM LABORATO	NKIES		CONLLACE:		
Lab Code: MITKEM Ca	nse No.:		Mod. Ref No.:	SDG No.: 1	MG2173
Matrix: (SOIL/SED/WATER)	WATER		Lab Sample ID:	G2173-15A	<u> </u>
Sample wt/vol: 5.00	(g/mL) ML		Lab File ID:	V1K1890.D	
Level: (TRACE or LOW/MED)	LOW		Date Received:	11/20/2008	·
% Moisture: not dec.			Date Analyzed:	11/22/2008	
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0	
Soil Extract Volume:		(uL)	Soil Aliquot Vol	Lume:	(uL)
CONCENTRATION UNITS: (ug/I	or ug/Kg)	UG/L	Purge Volume: 5	.0	(mL)
CAS NUMBER	COMPOUND NAME		RT	EST. CONC.	Q
E966796 ¹ Total Alka	nes		N/A		

¹EPA-designated Registry Number.

CLIENT SAMPLE NO.

1A - FORM I VOA-1 VOLATILE ORGANICS ANALYSIS DATA SHEET

16 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL	Lab Sample ID:	G2173-16A
Sample wt/vol: 5.	90 (g/mL) G	Lab File ID:	V6G2972.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
<pre>% Moisture: not dec.</pre>	14	Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume: (uL)
Purge Volume: 10.0		(mL)	

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	g Q
75-71-8	Dichlorodifluoromethane	4.9	U
74-87-3	Chloromethane	4.9	U
75-01-4	Vinyl chloride	4.9	U
74-83-9	Bromomethane	4.9	U
75-00-3	Chloroethane	4.9	
75-69-4	Trichlorofluoromethane	4.9	U
75-35-4	1,1-Dichloroethene	4.9	-
67-64-1	Acetone	4.9	
74-88-4	Iodomethane	4.9	υ
75-15-0	Carbon disulfide	4.9	υ
75-09-2	Methylene chloride	4.9	U
156-60-5	trans-1,2-Dichloroethene	4.9	U U
1634-04-4	Methyl tert-butyl ether	4.9	U
75-34-3	1,1-Dichloroethane	4.9	U
108-05-4	Vinyl acetate	4.9	U U
78-93-3	2-Butanone	4.9	U U
156-59-2	cis-1,2-Dichloroethene	4.9	U
594-20-7	2,2-Dichloropropane	4.9	U U
74-97-5	Bromochloromethane	4.9	U
67-66-3	Chloroform	4.9	U
71-55-6	1,1,1-Trichloroethane	4.9	υ
563-58-6	1,1-Dichloropropene	4.9	U U
56-23-5	Carbon tetrachloride	4.9	U U
107-06-2	1,2-Dichloroethane	4.9	U U
71-43-2	Benzene	4.9	U
79-01-6	Trichloroethene	4.9	U
78-87-5	1,2-Dichloropropane	4.9	U U
74-95-3	Dibromomethane	4.9	U
75-27-4	Bromodichloromethane	4.9	U
10061-01-5	cis-1,3-Dichloropropene	4.9) U
	4-Methyl-2-pentanone	4.9	U U
	Toluene	4.9) U
10061-02-6	trans-1,3-Dichloropropene	4.9) U
	1,1,2-Trichloroethane	4.9) U
142-28-9	1,3-Dichloropropane	4.9	U U

CLIENT SAMPLE NO.

16 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL	Lab Sample ID:	G2173-16A
Sample wt/vol: 5.	90 (g/mL) G	Lab File ID:	V6G2972.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
% Moisture: not dec.	14	Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm) Dilution Factor:	1.0
Soil Extract Volume:		(uL) Soil Aliquot Volu	ume:(uL)
Purge Volume: 10.0	·	(mL)	

r	······································	CONCENTRATION UNIT	S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		4.9	U
591-78-6	2-Hexanone		4.9	U
124-48-1	Dibromochloromethane		4.9	U
106-93-4	1,2-Dibromoethane		4.9	U
108-90-7	Chlorobenzene		4.9	U
630-20-6	1,1,1,2-Tetrachloroethane		4.9	U
100-41-4	Ethylbenzene		4.9	Ū
1330-20-7	m,p-Xylene		4.9	U
95-47-6	o-Xylene		4.9	U
1330-20-7	Xylene (Total)		4.9	U
100-42-5	Styrene		4.9	U .
75-25-2	Bromoform		4.9	U
98-82-8	Isopropylbenzene		4.9	U
79-34-5	1,1,2,2-Tetrachloroethane		4.9	U
108-86-1	Bromobenzene		4.9	U
96-18-4	1,2,3-Trichloropropane		4.9	U
	n-Propylbenzene		4.9	U
95-49-8	2-Chlorotoluene		4.9	U
108-67-8	1,3,5-Trimethylbenzene		3.3	J
106-43-4	4-Chlorotoluene		4.9	U
98-06-6	tert-Butylbenzene		4.9	υ
95-63-6	1,2,4-Trimethylbenzene		2.2	J
135-98-8	sec-Butylbenzene		4.9	U
99-87-6	4-Isopropyltoluene		4.9	U
541-73-1	1,3-Dichlorobenzene		4.9	U
106-46-7	1,4-Dichlorobenzene		4.9	U .
104-51-8	n-Butylbenzene		4.9	U
95-50-1	1,2-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	4.9	U
	1,2-Dibromo-3-chloropropane		4.9	U
120-82-1	1,2,4-Trichlorobenzene		4.9	U
	Hexachlorobutadiene		4.9	U
87-61-6	1,2,3-Trichlorobenzene		4.9	U
91-20-3	Naphthalene		4.9	U

ØØØS

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

J

J

J

J

NJ

16 23.5-24.5

Lab Name: MITKEM LABORATORIES Contract: Mod. Ref No.: SDG No.: MG2173 Lab Code: MITKEM Case No.: Lab Sample ID: G2173-16A Matrix: (SOIL/SED/WATER) SOIL Sample wt/vol: 5.90 (g/mL) G Lab File ID: V6G2972.D Level: (TRACE or LOW/MED) LOW Date Received: 11/20/2008 Date Analyzed: 11/25/2008 % Moisture: not dec. 14 (mm) Dilution Factor: 1.0 ID: 0.25 GC Column: DB-624 (uL) Soil Aliquot Volume: (uL) Soil Extract Volume: CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Purge Volume: 10.0 (mL) COMPOUND NAME EST. CONC. Q CAS NUMBER RT 01 Unknown-01 9.384 47 J 44 IJ 10.430 02 Unknown-02 10.710 42 J 03 Unknown-03 62 J Unknown-04 10.844 04 J 14.409 40 Unknown-05 14.585 44 NJ

37 07 Unknown-06 14.822 Unknown-07 15.199 30 80 6682-71-9 1H-Indene, 2,3-dihydro-4,7-d 15.704 48 09 16.069 33 10 Unknown-08 Unknown-09 16.726 45 11 E966796¹Total Alkanes N/A

¹EPA-designated Registry Number.

119-64-2 Naphthalene, 1,2,3,4-tetrahy

0.5

06

1A - FORM I VOA-1

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

16 29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	G2173-17A
Sample wt/vol: 5.	10 (g/mL) G		Lab File ID:	V6G2973.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	12		Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg) U	G/KG	Q
75-71-8	Dichlorodifluoromethane		5.6	Ū
74-87-3	Chloromethane	· · · · · · · · · · · · · · · · · · ·	5.6	U
75-01-4	Vinyl chloride	· · · · · · · · · · · · · · · · · · ·	5.6	U
74-83-9	Bromomethane		5.6	U
75-00-3	Chloroethane		5.6	U
75-69-4	Trichlorofluoromethane		5.6	U
75-35-4	1,1-Dichloroethene		5.6	U
67-64-1	Acetone		7.8	
74-88-4	Iodomethane		5.6	U
75-15-0	Carbon disulfide		5.6	U
75-09-2	Methylene chloride		5.6	U
156-60-5	trans-1,2-Dichloroethene		5.6	U
1634-04-4	Methyl tert-butyl ether		5.6	U
75-34-3	3 1,1-Dichloroethane		5.6	U
108-05-4	Vinyl acetate		5.6	U
78-93-3	2-Butanone		5.6	U
156-59-2	cis-1,2-Dichloroethene		5.6	U
594-20-7	2,2-Dichloropropane		5.6	U
74-97-5	Bromochloromethane	· · · · · · · · · · · · · · · · · · ·	5.6	U
67-66-3	3 Chloroform		5.6	U
71-55-6	1,1,1-Trichloroethane		5.6	U
563-58-6	5 1,1-Dichloropropene		5.6	U
56-23-5	Carbon tetrachloride		5.6	U
107-06-2	2 1,2-Dichloroethane		5.6	U
71-43-2	Benzene		5.6	U
79-01-6	Trichloroethene		5.6	U
78-87-5	1,2-Dichloropropane		5.6	U
74-95-3	B Dibromomethane		5.6	υ
75-27-4	Bromodichloromethane	· · · · · · · · · · · · · · · · · · ·	5.6	U
10061-01-5	cis-1,3-Dichloropropene		5.6	U
108-10-1	4-Methyl-2-pentanone		5.6	U
108-88-3	Toluene		5.6	ט
10061-02-6	5 trans-1,3-Dichloropropene		5.6	U
79-00-5	1,1,2-Trichloroethane		5.6	U
142-28-9	1,3-Dichloropropane		5.6	U

CLIENT SAMPLE NO.

16 29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	SOIL		Lab Sample ID:	G2173-17A
Sample wt/vol: 5.	10 (g/mL) G		Lab File ID:	V6G2973.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
<pre>% Moisture: not dec.</pre>	12		Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		- (mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	5.6	U
591-78-6	2-Hexanone	5.6	ט
124-48-1	Dibromochloromethane	5.6	U
106-93-4	1,2-Dibromoethane	5.6	U
108-90-7	Chlorobenzene	5.6	U
630-20-6	1,1,1,2-Tetrachloroethane	5.6	ט
100-41-4	Ethylbenzene	5.6	U
	m,p-Xylene	5.6	U
95-47-6	o-Xylene	5.6	U
	Xylene (Total)	5.6	U
100-42-5	Styrene	5.6	U
	Bromoform	5.6	U
98-82-8	Isopropylbenzene	5.6	U
	1,1,2,2-Tetrachloroethane	5.6	U
108-86-1	Bromobenzene	5.6	ט
96-18-4	1,2,3-Trichloropropane	5.6	U
103-65-1	n-Propylbenzene	5.6	U
	2-Chlorotoluene	5.6	U
108-67-8	1,3,5-Trimethylbenzene	5.6	U
	4-Chlorotoluene	5.6	U
98-06-6	tert-Butylbenzene	5.6	U
95-63-6	1,2,4-Trimethylbenzene	5.6	U
135-98-8	sec-Butylbenzene	5.6	υ
99-87-6	4-Isopropyltoluene	5.6.	U
	1,3-Dichlorobenzene	5.6	ט
	1,4-Dichlorobenzene	5.6	U .
	n-Butylbenzene	5.6	U
	1,2-Dichlorobenzene	5.6	U
	1,2-Dibromo-3-chloropropane	5.6	Ū
	1,2,4-Trichlorobenzene	5.6	U
87-68-3	Hexachlorobutadiene	5.6	U
87-61-6	1,2,3-Trichlorobenzene	5.6	U
	Naphthalene	5.6	U

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

16 29-30

34

31

29

20

17

22

JJ

J

J

J

J

J

Lab Name: MITKEM LABORATORIES	Contract:		
Lab Code: MITKEM Case No.:	Mod. Ref No.:	SDG No.: MG2	173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	G2173-17A	
Sample wt/vol: 5.10 (g/mL) G	Lab File ID:	V6G2973.D	
Level: (TRACE or LOW/MED) LOW	Date Received:	11/20/2008	
% Moisture: not dec. 12	Date Analyzed:	11/25/2008	
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor:	1.0	
Soil Extract Volume: (uL)	Soil Aliquot Volu	1me:	(uL)
CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10	.0	(mL)
CAS NUMBER COMPOUND NAME	RT	EST. CONC.	Q
01 7667-60-9 Cyclohexane, 1,2,4-trimethyl	9.336	20 NJ	
02 Unknown-01	9.384	31 J	
03 Unknown-02	9.543	21 J	
04 Unknown-03	10.035	18 J	
05 3728-55-0 1-Ethyl-3-methylcyclohexane	10.084	21 NJ	

06

07

08

09

10

11

Unknown-04

Unknown-05

Unknown-06

Unknown-07

Unknown-08

Unknown-09

E966796¹Total Alkanes ¹EPA-designated Registry Number. 10.431

10.711

10.838

11.088

11.708

16.478

N/A

1A - FORM I VOA-1

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

16B 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES	Contract:	- k
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	G2173-18A
Sample wt/vol: 4.	50 (g/mL) G	Lab File ID:	V6G3081.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
% Moisture: not dec.	18	Date Analyzed:	11/27/2008
GC Column: DB-624	ID: 0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume:	(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0	(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
75-71-8	Dichlorodifluoromethane	6.8	U
74-87-3	Chloromethane	6.8	U
75-01-4	Vinyl chloride	6.8	U
	Bromomethane	6.8	U
75-00-3	Chloroethane	6.8	U .
75-69-4	Trichlorofluoromethane	6.8	U
75-35-4	1,1-Dichloroethene	6.8	U
67-64-1	Acetone	78	
74-88-4	Iodomethane	6.8	U
75-15-0	Carbon disulfide	3.8	J
75-09-2	Methylene chloride	6.8	U
156-60-5	trans-1,2-Dichloroethene	6.8	U
1634-04-4	Methyl tert-butyl ether	6.8	U
75-34-3	1,1-Dichloroethane	6.8	U
108-05-4	Vinyl acetate	6.8	U
78-93-3	2-Butanone	6.8	U
156-59-2	cis-1,2-Dichloroethene	6.8	U
594-20-7	2,2-Dichloropropane	6.8	U
74-97-5	Bromochloromethane	6.8	U .
67-66-3	Chloroform	6.8	U
71-55-6	1,1,1-Trichloroethane	6.8	U
563-58-6	1,1-Dichloropropene	6.8	U
56-23-5	Carbon tetrachloride	6.8	U
107-06-2	1,2-Dichloroethane	6.8	U
71-43-2	Benzene	6.8	U
79-01-6	Trichloroethene	6.8	U
78-87-5	1,2-Dichloropropane	6.8	U
74-95-3	Dibromomethane	6.8	U
75-27-4	Bromodichloromethane	6.8	U
10061-01-5	cis-1,3-Dichloropropene	6.8	U
108-10-1	4-Methyl-2-pentanone	6.8	U
	Toluene	9.9	
10061-02-6	trans-1,3-Dichloropropene	6.8	U
79-00-5	1,1,2-Trichloroethane	6.8	U
142-28-9	1,3-Dichloropropane	6.8	U

EPA SAMPLE NO.

16B 23.5-24.5

Lab Name: MITKEM LABOR	ATORIES	Contract:	
Lab Code: MITKEM	Case No.:	Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL	Lab Sample ID:	G2173-18A
Sample wt/vol: 4.	50 (g/mL) G	Lab File ID:	V6G3081.D
Level: (TRACE/LOW/MED)	LOW	Date Received:	11/20/2008
% Moisture: not dec.	18	Date Analyzed:	11/27/2008
GC Column: DB-624	ID: 0.25 (m	m) Dilution Factor:	1.0
Soil Extract Volume:	(u	uL) Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0	("	nL)	

		CONCENTRATION UNIT	'S:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		6.8	U
591-78-6	2-Hexanone		6.8	U
124-48-1	Dibromochloromethane		6.8	U
106-93-4	1,2-Dibromoethane		6.8	U
108-90-7	Chlorobenzene		6.8	U
630-20-6	1,1,1,2-Tetrachloroethane		6.8	U
100-41-4	Ethylbenzene		59	
	m,p-Xylene		310	
95-47-6	o-Xylene		6.8	U
	Xylene (Total)		310	
100-42-5	Styrene		6.8	U
75-25-2	Bromoform		6.8	U
98-82-8	Isopropylbenzene		110	
79-34-5	1,1,2,2-Tetrachloroethane		6.8	U
108-86-1	Bromobenzene		6.8	U
96-18-4	1,2,3-Trichloropropane		6.8	U
103-65-1	n-Propylbenzene		190	
95-49-8	2-Chlorotoluene		6.8	U
108-67-8	1,3,5-Trimethylbenzene	· · · · · · · · · · · · · · · · · · ·	1100	E
106-43-4	4-Chlorotoluene		6.8	U -
98-06-6	tert-Butylbenzene		90	
95-63-6	1,2,4-Trimethylbenzene		820	E
135-98-8	sec-Butylbenzene		71	
99-87-6	4-Isopropyltoluene		190	
541-73-1	1,3-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	360	E
106-46-7	1,4-Dichlorobenzene		-370	E
	n-Butylbenzene		170	
95-50-1	1,2-Dichlorobenzene		6.8	U
96-12-8	1,2-Dibromo-3-chloropropane		6.8	U
120-82-1	1,2,4-Trichlorobenzene		6.8	U
87-68-3	Hexachlorobutadiene	· · · · · · · · · · · · · · · · · · ·	6.8	U
	1,2,3-Trichlorobenzene		6.8	U
91-20-3	Naphthalene		6.3	J

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

16B 23.5-24.5

Lab	Name: MITK	EM LABORATORIES	Contract:		
Lab	Code: MITK	EM Case No.:	Mod. Ref No.:	SDG No.: MG217	13
Mati	rix: (SOIL/S	ED/WATER) SOIL	Lab Sample ID:	G2173-18A	
Samp	ple wt/vol:	G	Lab File ID:	V6G3081.D	
Leve	el: (TRACE c	r LOW/MED) LOW	Date Received:	11/20/2008	
8 Ma	pisture: not	dec. 18	Date Analyzed:	11/27/2008	
GC (Column: DB-	624 ID: 0.25 (mm)	Dilution Factor:	1.0	
Soi	l Extract Vo	lume: (uL)	Soil Aliquot Vol	ume:	(uL)
CONC	CENTRATION U	NITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10	0.0	(mL)
1	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01		Unknown-01	9.061	2000 J	
02	2216-34-4	Octane, 4-methyl-	9.395	360 NJ	
03		Unknown-02	9.566	240 J	
04		Unknown-03	10.052	360 J	
05		Unknown-04	10.448	370 J	
06		Unknown-05	10.570	280 J	
07		Unknown-06	10.746	310 J	
80		Unknown-07	10.868	450 J	
09		Unknown-08	11.111	290 J	
10		Unknown-09	11.415	400 J	
11		Benzene, 1-ethyl-2-methyl-	11.628	430 NJ	
12	541-73-1	Benzene, 1,3-dichloro-	12.504	290 NJ	

N/A

E966796¹Total Alkanes ¹EPA-designated Registry Number.

1A - FORM I VOA-1

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET

16B 23.5-24.5ME

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER) SOIL		Lab Sample ID:	G2173-18A
Sample wt/vol: 5.	00 (g/mL)	G	Lab File ID:	V1K2160.D
Level: (TRACE/LOW/MED)	MED		Date Received:	11/20/2008
% Moisture: not dec.	18		Date Analyzed:	12/02/2008
GC Column: DB-624	ID:	0.25 (mm) Dilution Factor:	1.0
Soil Extract Volume: 50	000	(uL) Soil Aliquot Vol	.ume: 100.00 (uL)
Purge Volume: 5.0		(mL		

CAS NO.	COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	S: UG/KG	Q
75-71-8	3 Dichlorodifluoromethane		360	U
	3 Chloromethane		360	U
	4 Vinyl chloride		360	U
	9 Bromomethane		360	U
	3 Chloroethane	· · · · · · · · · · · · · · · · · · ·	360	U
	4 Trichlorofluoromethane		360	U
	4 1,1-Dichloroethene		360	U
	l Acetone		360	U
	4 Iodomethane		360	U
) Carbon disulfide		360	U
	2 Methylene chloride		360	U
	5 trans-1,2-Dichloroethene		360	U
	4 Methyl tert-butyl ether		360	Ū
	3 1,1-Dichloroethane		360	Ū
	4 Vinyl acetate		360	U
	3 2-Butanone		360	U
156-59-2	2 cis-1,2-Dichloroethene		360	U
	7 2,2-Dichloropropane		360	U
	5 Bromochloromethane		360	U
67-66-3	3 Chloroform		360	Ŭ
71-55-6	6 1,1,1-Trichloroethane		360	U
	6 1,1-Dichloropropene		360	U
56-23-5	5 Carbon tetrachloride		360	U
107-06-2	2 1,2-Dichloroethane		360	U
	2 Benzene		360	U
79-01-0	6 Trichloroethene		170	BJ
78-87-5	5 1,2-Dichloropropane		360	U
	3 Dibromomethane		360	Ū
75-27-4	4 Bromodichloromethane		360	U
10061-01-5	5 cis-1,3-Dichloropropene		360	U
108-10-1	1 4-Methyl-2-pentanone	· · · · · · · · · · · · · · · · · · ·	360	U
	3 Toluene		360	U
10061-02-0	6 trans-1,3-Dichloropropene		360	U
79-00-	5 1,1,2-Trichloroethane		360	U
142-28-	9 1,3-Dichloropropane		360	U

CLIENT SAMPLE NO.

16B 23.5-24.5ME

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATEF	R) SOIL		Lab Sample ID:	G2173-18A
Sample wt/vol: 5.	00 (g/mL)	G	Lab File ID:	V1K2160.D
Level: (TRACE/LOW/MED)	MED		Date Received:	11/20/2008
% Moisture: not dec.	18		Date Analyzed:	12/02/2008
GC Column: DB-624	ID:	0.25 (mm)	Dilution Factor:	1.0
Soil Extract Volume: 5	000	(uL)	Soil Aliquot Vol	ume: 100.00 (uL)
Purge Volume: 5.0		(mL)		

		CONCENTRATION UNITS	:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
127-18-4	Tetrachloroethene		360	U
591-78-6	2-Hexanone		360	ט
124-48-1	Dibromochloromethane		360	U
106-93-4	1,2-Dibromoethane		360	U
108-90-7	Chlorobenzene		360	U
630-20-6	1,1,1,2-Tetrachloroethane		360	U
100-41-4	Ethylbenzene		360	U
1330-20-7	m,p-Xylene		290	J
95-47-6	o-Xylene		360	U
1330-20-7	Xylene (Total)		290	J
100-42-5			360	U
75-25-2	Bromoform		360	U
98-82-8	Isopropylbenzene		140	J
79-34-5	1,1,2,2-Tetrachloroethane		360	U
108-86-1	Bromobenzene		360	υ
96-18-4	1,2,3-Trichloropropane		360	U
103-65-1	n-Propylbenzene		230	J
95-49-8	2-Chlorotoluene		360	U
108-67-8	1,3,5-Trimethylbenzene		4700	
106-43-4	4-Chlorotoluene		360	U
98-06-6	tert-Butylbenzene		250	J
95-63-6	1,2,4-Trimethylbenzene		3400	
135-98-8	sec-Butylbenzene		300	J
99-87-6	4-Isopropyltoluene		360	U
541-73-1	1,3-Dichlorobenzene		380	
106-46-7	1,4-Dichlorobenzene		570	
104-51-8	n-Butylbenzene		1900	
95-50-1	1,2-Dichlorobenzene		360	U
96-12-8	1,2-Dibromo-3-chloropropane		360	U
120-82-1	1,2,4-Trichlorobenzene		360	U
87-68-3	Hexachlorobutadiene		360	U
87-61-6	1,2,3-Trichlorobenzene		360	U
91-20-3	Naphthalene		390	

1J - FORM I VOA-TIC VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE NO.

16B 23.5-24.5ME

Lab	Name:	MITK	EM LABORATO	DRIES		Co	ntract:			
Lab	Code:	MITK	EM Ca	ase No.:		Мо	d. Ref No.:	SDG No.:	MG21	73
Mat:	rix: (S	OIL/S	ED/WATER)	SOIL		La	b Sample ID:	G2173-18A		
Sam	ple wt/	vol:	5.00	(g/mL)	G	La	b File ID:	V1K2160.D		
Lev	el: (TR	ACE O	r LOW/MED)	MED		Da	te Received:	11/20/2008		
8 M	oisture	: not	dec. 18	3 .		Da	te Analyzed:	12/02/2008		
GC (Column:	DB-	624	ID:	0.25 (mm)	Di	lution Factor	c: 1.0		
Soi	l Extra	ct Vo	lume: 5000)	(uL)	So	il Aliquot Vo	olume: 100.00		(uL)
CON	CENTRAT	ÍON U	NITS: (ug/)	L or ug/F	(g) UG/KG	Pu	rge Volume:	5.0		(mL)
	CAS NU	MBER		COMPOUND	NAME		RT	EST. CONC.		Q
01	3073-	66-3	Cyclohexan	e, 1,1,3	-trimethyl		8.915	22000	NJ	
02			Unknown-01	· · · · · · · · · · · · · · · · · · ·			10.295	25000	J	
03			Unknown-02				10.600	32000	J	
04			Unknown-03	3			10.708	29000	J	

05

06

07

80

09

10

11

Unknown-04

Unknown-05

Unknown-06

Unknown-07

17301-23-4 Undecane, 2,6-dimethyl-

2847-72-5 Decane, 4-methyl-

29949-27-7 n-Amylcyclohexane

E966796¹Total Alkanes ¹EPA-designated Registry Number. 11.585

12.029

13.241

13.310

13.723

14.275

14.453

N/A

SW846

12000

23000

12000

13000

13000

16000

20000

J

NJ

J

J

NJ

J

NJ

CLIENT SAMPLE NO.

16B 29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	.) SOIL		Lab Sample ID:	G2173-19A
Sample wt/vol: 5.	70 (g/mL) G		Lab File ID:	V6G2975.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume: (uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/K	(G Q
75-71-8	Dichlorodifluoromethane	5.	
74-87-3	Chloromethane	5.	2 U
75-01-4	Vinyl chloride	5.	
74-83-9	Bromomethane	5.	2 U
75-00-3	Chloroethane	5.	
75-69-4	Trichlorofluoromethane	5.	2 U
75-35-4	1,1-Dichloroethene	5.	2 U
67-64-1	Acetone	2.	9 J
74-88-4	Iodomethane	5.	2 U
75-15-0	Carbon disulfide	5.	2 U
75-09-2	Methylene chloride	5.	2 U
156-60-5	trans-1,2-Dichloroethene	5.	2 U
1634-04-4	Methyl tert-butyl ether	5.	2 U
	3 1,1-Dichloroethane	5.	2 U
108-05-4	Vinyl acetate	5.	2 U
	3 2-Butanone	5.	2 U
156-59-2	cis-1,2-Dichloroethene	5.	2 U
594-20-7	2,2-Dichloropropane	5.	2 U
	Bromochloromethane	5.	2 U
67-66-3	3 Chloroform	5.	2 U
71-55-6	5 1,1,1-Trichloroethane	5.	2 U
563-58-6	5 1,1-Dichloropropene	5.	
56-23-5	Carbon tetrachloride	5.	2 U
107-06-2	2 1,2-Dichlorcethane	5.	2 U
71-43-2	Benzene	5.	2 U
79-01-6	5 Trichloroethene	5.	2 U
78-87-5	1,2-Dichloropropane	5.	2 U
	B Dibromomethane	5.	2 U
75-27-4	Bromodichloromethane	5.	
10061-01-5	5 cis-1,3-Dichloropropene	5.	
	4-Methyl-2-pentanone	5.	2 U
	3 Toluene	5.	1
10061-02-6	5 trans-1,3-Dichloropropene	5.	
	1,1,2-Trichloroethane	5.	2 U
142-28-9) 1,3-Dichloropropane	5.	2 U

CLIENT SAMPLE NO.

16B 29-30

Lab Name: MITKEM LABOR	ATORIES		Contract:	
Lab Code: MITKEM	Case No.:		Mod. Ref No.:	SDG No.: MG2173
Matrix: (SOIL/SED/WATER	.) SOIL		Lab Sample ID:	G2173-19A
Sample wt/vol: 5.	70 (g/mL) G		Lab File ID:	V6G2975.D
Level: (TRACE/LOW/MED)	LOW		Date Received:	11/20/2008
% Moisture: not dec.	16		Date Analyzed:	11/25/2008
GC Column: DB-624	ID: 0.25	(mm)	Dilution Factor:	1.0
Soil Extract Volume:		(uL)	Soil Aliquot Vol	ume:(uL)
Purge Volume: 10.0		(mL)		

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q
127-18-4	Tetrachloroethene	5.2	U
591-78-6	2-Hexanone	5.2	U
124-48-1	Dibromochloromethane	5.2	U
106-93-4	1,2-Dibromoethane	5.2	U
108-90-7	Chlorobenzene	5.2	U
630-20-6	1,1,1,2-Tetrachloroethane	5.2	U
	Ethylbenzene	5.2	U
1330-20-7	m,p-Xylene	5.2	U
95-47-6	o-Xylene	5.2	U
1330-20-7	Xylene (Total)	5.2	U
	Styrene	5.2	U
	Bromoform	5.2	U
98-82-8	Isopropylbenzene	5.2	U
	1,1,2,2-Tetrachloroethane	5.2	U
	Bromobenzene	5.2	U
96-18-4	1,2,3-Trichloropropane	5.2	U
103-65-1	n-Propylbenzene	5.2	U
95-49-8	2-Chlorotoluene	5.2	U
108-67-8	1,3,5-Trimethylbenzene	3.6	J
	4-Chlorotoluene	5.2	U
98-06-6	tert-Butylbenzene	5.2	U
95-63-6	1,2,4-Trimethylbenzene	2.9	J
	sec-Butylbenzene	5.2	U
	4-Isopropyltoluene	5.2	U
	1,3-Dichlorobenzene	5.2	U
106-46-7	1,4-Dichlorobenzene	5.2	U
	n-Butylbenzene	5.2	U
	1,2-Dichlorobenzene	5.2	U
	1,2-Dibromo-3-chloropropane	5.2	U
	1,2,4-Trichlorobenzene	5.2	U
	Hexachlorobutadiene	5.2	U
87-61-6	1,2,3-Trichlorobenzene	5.2	υ
	Naphthalene	5.2	U

1J - FORM I VOA-TIC

CLIENT SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

16B 29-30

Lab	Name: MITK	EM LABORATORIES	Contract:		
Lab	Code: MITK	EM Case No.:	Mod. Ref No.:	SDG No.:	MG2173
Mat	rix: (SOIL/S	ED/WATER) SOIL	Lab Sample ID:	G2173-19A	
Sam	ple wt/vol:	5.70 (g/mL) G	Lab File ID:	V6G2975.D	
Lev	el: (TRACE o	r LOW/MED) LOW	Date Received:	11/20/2008	· · · · · · · · · · · · · · · · · · ·
% M	oisture: not	dec. 16	Date Analyzed:	11/25/2008	
GC	Column: DB-	624 ID: 0.25 (mm)	Dilution Factor:	1.0	
Soi	l Extract Vo	lume: (uL)	Soil Aliquot Vol	ume:	(uL)
CON	CENTRATION U	NITS: (ug/L or ug/Kg) UG/KG	Purge Volume: 10).0	(mL)
	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
01	2216-30-0	Heptane, 2,5-dimethyl-	8.821	45	NJ
02		Octane, 4-methyl-	9.381	26	NJ
03		Unknown-01	10.415	28	J
04		Unknown-02	13.725	25	J
05		Unknown-03	14.406	34	J
06	17301-23-4	Undecane, 2,6-dimethyl-	14.564	38	NJ
07	13632-94-5	Benzene, 1,4-diethyl-2-methy	14.820	22	NJ
80	2051-30-1	Octane, 2,6-dimethyl-	15.203	23	NJ
09	6682-71-9	1H-Indene, 2,3-dihydro-4,7-d	15.696	31	NJ
10		Unknown-04	16.627	26	J
11		Unknown-05	17.642	23	J

N/A

E966796¹Total Alkanes ¹EPA-designated Registry Number.

Appendix C

Microbial Insights Data Package November 2008 Sampling Event

2340 Stock Creek Blvd. Rockford TN 37853-3044 Phone: (865) 573-8188 Fax: (865) 573-8133 Email: info@microbe.com

DNA Analysis Report

l	Paul Kareth EarthTech AECO 300 Broad Acres			Phone:	(973) 338-6680
I	Bloomfield, NJ 07	003		Fax:	(973) 338-1052
MI Identifier	: 036FK	Date Rec: 1	1/20/2008	Repo	rt Date: 12/12/2008
Client Proje	ct #: 95900		Client Projec	t Name: SMS	3
Purchase O	rder #:				
Analysis Re	quested:	CENSUS, PLFA			
Comments:					

Reported By:

lihae Karan

Reviewed By:

Susa Aberris

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Q Potential (DNA)

Client: Project:	EarthTech AECO SMS	М			MI Project Number: Date Received:	036FK 11/20/2008	
Sample Inform	mation						
Client Sa	mple ID:		12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5
Sample D	Date:		11/18/2008	11/18/2008	11/18/2008	11/18/2008	11/19/2008
Units:			cells/g	cells/g	cells/g	cells/g	cells/g
Phylogenetic	Group						
Methane	Oxidizing Bacteria	MOB	3.51E+06	5.95E+06	9.56E+06	1.66E+07	5.51E+07
Туре І	MOB	MOBI	7.85E+05	9E+05	6.14E+05	7.09E+06	9.52E+06
Type I	I MOB	MOBII	2.72E+06	5.05E+06	8.95E+06	9.55E+06	4.55E+07

Legend:

NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL I = Inhibited

< = Result not detected

Q Potential (DNA)

Client: Project:	EarthTech AECO SMS	DM		MI Project Number: Date Received:	036FK 11/20/2008
nple Infor	mation				
Client Sa	mple ID:		DWB 23.5-24.5		
Sample [Date:		11/19/2008		
Units:			cells/g		
logenetic	: Group				
	Oxidizing Bacteria	MOB	1.27E+08		
Methane					
	MOB	MOBI	3.77E+07		

NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL I = Inhibited

< = Result not detected

Client: Project:	EarthTech AECOM SMS			MI Project Number: Date Received:	036FK 11/20/2008	
Sample Infor	mation					
Sample Name:		12 23.5-24.5	12B 23.5-24.5	16 23.5-24.5	16B 23.5-24.5	DW 23.5-24.5
Sample Date: Sample Matrix:		11/18/2008 Soil	11/18/2008 Soil	11/18/2008 Soil	11/18/2008 Soil	11/19/2008 Soil
Biomass						
Total Bioma	ss (cells/g)	1.16E+08	1.19E+08	4.33E+07	1.61E+08	1.62E+08
Community S	Structure (% total PLFA)					
Firmicutes (TerBrSats)	13.95	14.72	12.13	12.55	13.98
Proteobacte	ria (Monos)	56.62	57.67	56.38	58.06	56.88
Anaerobic m	netal reducers (BrMonos)	1.89	1.68	2.01	1.96	2.19
SRB/Actinor	nycetes (MidBrSats)	2.55	2.74	3.65	2.24	2.85
General (Ns	ats)	24.24	22.35	24.76	25.01	22.20
Eukaryotes	(polyenoics)	0.75	0.86	1.07	0.19	1.88
Physiologica	Il Status (Proteobacteria only	()				
Slowed Grov	wth	0.95	0.82	1.60	1.08	0.91
Decreased F	Permeability	0.19	0.16	0.31	0.17	0.14

<u>Legend:</u> NA = Not Analyzed

NS = Not Sampled

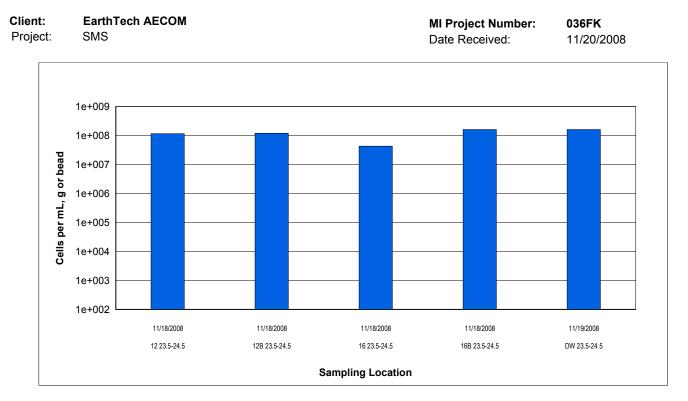


Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass (associated with higher organisms).

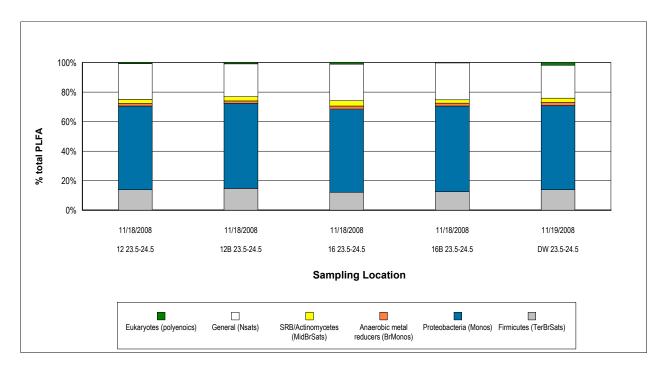


Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

Client: Project:	EarthTech AECOM SMS		MI Project Number: Date Received:	036FK 11/20/2008
Sample Infor	mation			
Sample Name:		DWB 23.5-24.5		
Sample Date: Sample Matrix:		11/19/2008 Soil		
Biomass				
Total Bioma	ss (cells/g)	1.63E+08		
Community	Structure (% total PLFA)			
Community S		13.80		
	TerBrSats)	13.80 60.10		
Firmicutes (Proteobacte	TerBrSats)			
Firmicutes (Proteobacte Anaerobic n	TerBrSats) ria (Monos)	60.10		
Firmicutes (Proteobacte Anaerobic n	TerBrSats) ria (Monos) netal reducers (BrMonos) mycetes (MidBrSats)	60.10 2.06		
Firmicutes (Proteobacte Anaerobic n SRB/Actinoi General (Ns	TerBrSats) ria (Monos) netal reducers (BrMonos) mycetes (MidBrSats)	60.10 2.06 2.65		
Firmicutes (Proteobacte Anaerobic n SRB/Actino General (Ns Eukaryotes	TerBrSats) rria (Monos) netal reducers (BrMonos) mycetes (MidBrSats) iats)	60.10 2.06 2.65 20.03 1.36		
Firmicutes (Proteobacte Anaerobic n SRB/Actino General (Ns Eukaryotes	TerBrSats) ria (Monos) netal reducers (BrMonos) mycetes (MidBrSats) ats) (polyenoics) al Status (Proteobacteria on	60.10 2.06 2.65 20.03 1.36		

<u>Legend:</u> NA = Not Analyzed

NS = Not Sampled

Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass (associated with higher organisms).

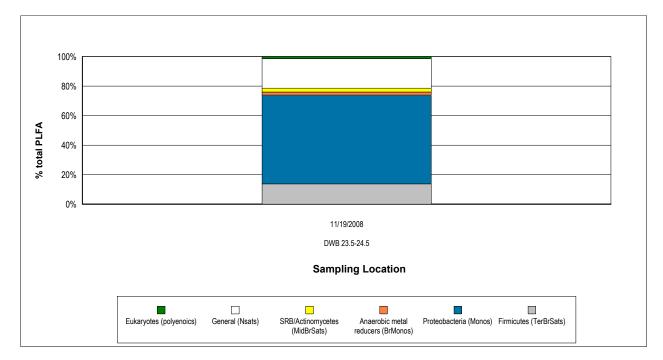


Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis.

REPORT TO:

Name:

Company:

Address:

email:

Phone:

Project Manager:

Project Name:

Project No.:

Report Type:

Fax:

Reports will be provided to the contact(s) listed below. Parties other than the contact(s) listed below will require prior approval.

300 BROAD ACRES DREVE

RLOOMFIELD, NJ 07003

6680

1052

KARETH @ AE(OM. COM

PAUL KARETH

PAU

338

ms

95900

□ Standard (default)

238

PAUL KARETH

RTH TECH

INVOICE TO:

Subcontract No.

For Invoices **paid by a third party** it is imperative that contact information & corresponding reference No. be provided.

Company:				4
Address:				
	_			
email:				
Phone:	()		
Fax:	()		

2340 Stock Creek Blvd. Rockford, TN 37853-3044 phone (865) 573-8188 fax: (865) 573-8133 email: info@microbe.com www.microbe.com

Please Check One:

More samples to follow
 No Additional Samples

Saturday Delivery

Please see sampling protocol for instructions

Please contact us prior to submitting samples regarding questions about the analyses you are requesting at (865) 573-8188 (8:00 am to 4:00 pm M-F). After these hours please call (865) 300-8053.

Comprehensive (15% surcharge)

	Sample Informatio	n										9 -	Farg	ets:	Prior I	o selç;	ting ta	yeta n	nark eit	har Q-f	Stenite	il for D	NAOI	9-E) qu	ession	for RN	A								
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Matrix	PLFA	VFA	ME/E	06GE+3ID	666E+5ID	Q-Potential (DNA)	Q-Expression (RNA)*	qDHC (Dehalococcoides)	qTCE R-Dase	qBAV1 VC R-Dase	pDHB (Dehalobacter)	pDSM (Desulturomonas)	qDSB (Desuffitobacterium)	per (Total)	qDSR (SRBs only)	qSRB/IRB	qMGN (methanogens)	K [qMOB (methanotrophs)	dDNF (Dentrifying)	AOB (ammonia oxidizing)	PM1 (MTBE aerobic)	TOD (Intial PAHs aerobic)	ICAT (Intermediate PAHs aerobic)	BSS (Toluen/Xylene Anaerobic)	NAH (Napthalene aerobic)	dd. qPCR:	dd. qPCR:	dd. qPCR:	Other:	Other:	Other
036FK1	12 23.5-24.5	11/18/08	923	Sozi	$\overline{\mathbf{X}}$					-	-	-		-		-	-1	-1	-	-1	-	Ż	-		-		- 2 -				.	- a -1			
. 2	12B 23.5-24.5			Sori	X																	X													
3		11/18/08		SOL	$\boldsymbol{\times}$																	X													
4	16B23.5-24,5	11/18/05	1520	SOIL	\times																	X						ř							
5	DW 23.5-24.5	11/19/08	810	SOFL	X																	X									-				
6	DWB 23.5-24,5	il la 108		Sort	X																	X													
		1.																																	
																'																			
1.1.11																																			
Relinquished by:	Seise	Date: 11/19/	08					Rece	ived	by:	oi.	n	L.	ti			Date		11	28) 0	8													

□ Historical (30% surcharge)

In order for analysis to be completed correctly, it is vital that chain of custody is filled out correctly & that all relative information is provided. Failure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable. * additional cost and sample preservation are associated with RNA samples.

Phospholipid Fatty Acid Analysis

Interpretation Guidelines

Phospholipids fatty acids (PLFA) are a main component of the membrane (essentially the "skin") of microbes and provide a powerful tool for assessing microbial responses to changes in their environment. This type of analysis provides direct information for assessing and monitoring sites where bioremediation processes, including natural attenuation, are of interest. Analysis of the types and amount of PLFA provides a broad based understanding of the entire microbial community with information obtained in three key areas viable biomass, community structure and metabolic activity.

What is the detection limit for PLFA?

Our limit of detection for PLFA analysis is ~50 picomoles of total PLFA and our limit of quantification is ~150 picomoles of total PLFA. Samples which contain PLFA amounts at or below 50 pmol cannot be used to determine biomass, likewise samples with PLFA content below ~150 pmol are generally considered to contain too few fatty acids to discuss community composition.

How should I interpret the PLFA results?

Interpreting the results obtained from PLFA analysis can be somewhat difficult, so this document was designed to provide a technical guideline. For convenience, this guideline has been divided into the three key areas.

Viable Biomass

PLFA analysis is one of the most reliable and accurate methods available for the determination of viable microbial biomass. Phospholipids break down rapidly upon cell death (21, 23), so biomass calculations based on PLFA content do not contain 'fossil' lipids of dead cells.

How is biomass measured?

Viable biomass is determined from the total amount of PLFA detected in a given sample. Since, phospholipids are an essential part of intact cell membranes they provide an accurate measure of viable cells.

How is biomass calculated?

Biomass levels are reported as cells per gram, mL or bead, and are calculated using a conversion factor of 20,000 cells/pmole of PLFA. This conversation factor is based upon cells grown in laboratory media, and varies somewhat with the type of organism and environmental conditions.

What does the concentration of biomass mean?

The overall abundance of microbes within a given sample is often used as an indicator of the potential for bioremediation to occur, but understanding the levels of biomass within each sample can be cumbersome. The following are benchmarks that can be used to understand whether the biomass levels are low, moderate or high.

Low	Moderate	High
10 ³ to 10 ⁴ cells	10 ⁵ to 10 ⁶ cells	10 ⁷ to 10 ⁸ cells

How do I know if a change in biomass is significant?

One of the primary functions of using PLFA analysis at contaminated sites is to evaluate how a community responds following a given treatment, but how does one know if the changes observed between two events are significant? As a general rule, biomass levels which increase or decrease by at least an order of magnitude are considered to be significant. However, changes in biomass levels of less than an order of magnitude may still show a trend. It is important to remember that many factors can affect microbial growth, so factors other than the treatment could be influencing the changes observed between sampling events. Some of the factors to consider are: temperature, moisture, pH, etc. The following illustration depicts three types of changes that occurred over time and the conclusions that could be drawn.

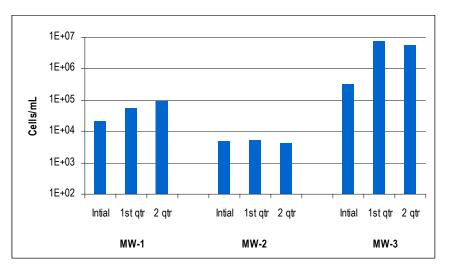


Figure 1. Biomass content is presented as a cell equivalent based on the total amount of phospholipid fatty acids (PLFA) extracted from a given sample. Total biomass is calculated based upon PLFA attributed to bacterial and eukaryotic biomass (associated with higher organisms).

Conclusions from graph above:

- MW-1 showed a trend of biomass levels increasing steadily over time, although cell concentrations were ~10⁴ cells/mL at each sampling event.
- MW-2 showed no notable trends or significant changes in biomass concentrations.
- MW-3 showed a significant increase in biomass levels between the initial and 1st quarter sampling events (from ~10⁵ to ~10⁶ cells/mL).

Community Structure:

The PLFA in a sample can be separated into particular types, and the resulting PLFA "profile" reflects the proportions of the categories of organisms present in the sample. Because groups of bacteria differ in their metabolic capabilities, determining which bacterial groups are present and their relative distributions within the community can provide information on what metabolic processes are occurring at that location. This in turn can also provide information on the subsurface conditions (i.e oxidation/reduction status, etc.). Table 1 describes the six major structural groups used and their potential relevance to site specific projects.

Table 1. Description of PLFA structural groups	Table 1.	Descriptio	n of PLFA	structural	groups.
--	----------	------------	-----------	------------	---------

PLFA Structural Group	General classification	Potential Relevance to Bioremediation Studies
Monoenoic (Monos)	Abundant in Proteobacteria (Gram negative bacteria), typically fast growing, utilize many carbon sources, and adapt quickly to a variety of environments.	Proteobacteria is one of the largest groups of bacteria and represents a wide variety of both aerobes and anaerobes. The majority of Hydrocarbon utilizing bacteria fall within the Proteobacteria
Terminally Branched Saturated (TerBrSats)	Characteristic of Firmicutes (Low G+C Gram-positive bacteria), and also found in Bacteriodes, and some Gram-negative bacteria (especially anaerobes).	Firmicutes are indicative of presence of anaerobic fermenting bacteria (mainly <i>Clostridia/Bacteriodes</i> -like), which produce the H_2 necessary for reductive dechlorination
Branched Monoenoic (BrMonos)	Found in the cell membranes of micro-aerophiles and anaerobes, such as sulfate- or iron-reducing bacteria	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria
Mid-Chain Branched Saturated (MidBrSats)	Common in sulfate reducing bacteria and also Actinobacteria (High G+C Gram-positive bacteria).	In contaminated environments high proportions are often associated with anaerobic sulfate and iron reducing bacteria
Normal Saturated (Nsats)	Found in all organisms.	High proportions often indicate less diverse populations.
Polyenoic	Found in eukaryotes such as fungi, protozoa, algae, higher plants, and animals.	Eukaryotic scavengers will often rise up and prey on contaminant utilizing bacteria

Following are answers to some of the common questions about community composition and some detailed descriptions of some typical shifts which can be observed between sampling events.

How is the community structure data presented?

Community structure data is presented as percentage (%) of the total amount of PLFA. In order to relate the complex mixture of PLFA to the organisms present, the ratio of a specifc PLFA group is determined (detailed in Table 1 above), and this corresponds to the proportion of the related bacterial classification within the overall community structure. Because normal saturated PLFA are found in both prokaryotes (bacteria) and eukaryotes (fungi, protozoa, diatoms etc), their distribution provides little insight into the types of microbes that are present at a sampling location. However, high proportions of normal saturates are often associated with less diverse microbial populations.

How can community structure data be used to manage my site?

It is important to understand that microbial communities are often a mixture of different types of bacteria (e.g. aerobes, sulfate reducers, methanogens, etc) with the abundance of each group behaving like a seesaw, i.e. as the population of one group increases, another is likely decreasing, mostly due to competition for available resources. The PLFA profile of a sample provides a "fingerprint" of the microbial community, showing relative proportions of the specific bacterial types at the time of sampling. This is a great tool for detecting shifts within the community over time and also to evaluate similarities/differences between sampling locations. It is important to note that PLFA analysis of community structure is analyzing the microbes directly, not just secondary breakdown products. So this provides evidence of how the entire microbial community is responding to the treatment.

How do I recognize community shifts and what they mean?

Shifts in the community structure are indications of changing conditions and their effect on the microbial community, and, by extension on the metabolic processes occurring at the sampling location. Some of the more commonly seen shifts within the community are illustrated and discussed below:

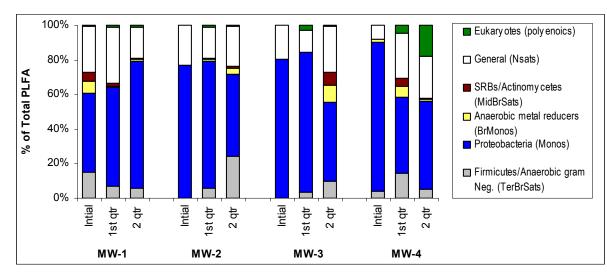


Figure 2. Relative percentages of total PLFA structural groups in the samples analyzed. Structural groups are assigned according to PLFA chemical structure, which is related to fatty acid biosynthesis. See Table 1 for detailed descriptions of structural groups.

Increased Proteobacteria

Proportions of Proteobacteria are of interest because it is one of the largest groups of bacteria and represents a wide variety of both aerobe and anaerobes. The majority of hydrocarbons (including benzene and naphthalene) are metabolized by some member of Proteobacteria, mainly due to their ability to grow opportunistically, quickly taking advantage of available food (i.e. hydrocarbons), and adapting quickly to changes in the environment. The detection of increased proportions of Proteobacteria coupled with increased biomass suggests that the Proteobacteria are consuming something. In situations where it is important to determine the extent to which the Proteobacteria are utilizing anaerobic or aerobic pathways, it is possible to measure relative proportions of specific biomarkers that are associated with anaerobic or aerobic pathways thus separating the Proteobacteria into different groups, based on pathways used. Sample MW-1 from Figure 2 depicts a shift in community structure where the proportion of Proteobacteria has increased over time.

Increased Firmicutes/Anaerobic Gram negative bacteria

Increased proportions of Firmicutes/Anaerobic Gram negative bacteria generally indicate that conditions are becoming more reductive (i.e. more anaerobic). Proportions of Firmicutes are of particular interest in sites contaminated with chlorinated hydrocarbons because Firmicutes include anaerobic fermenting bacteria (mainly *Clostridia/Bacteriodes*-like), which produce the H₂ necessary for reductive dechlorination.

Enhanced bioremediation of chlorinated solvents often employs the injection of fermentable substrates which, when utilized by fermenting bacteria, results in the release of H_2 . Engineered shifts in the microbial community can be shown by observing increased proportions Firmicutes following an injection of fermentable substrate. Through long-term monitoring of the community structure it is possible to know when re-injection may be necessary or desirable. Sample MW-2 from Figure 2 depicts a shift in community structure where the proportion of Firmicutes has increased over time.

• Increased anaerobic metal reducing bacteria (BrMonos) and SRB/Actinomycetes (MidBrSats)

An increase in the proportions of metal and sulfate reducing bacterial groups, especially when combined with shifts in the other bacterial groups, can provide information helpful to monitoring bioremediation. Generally, an increase in metal and sulfate reducers points to more reduced (anaerobic) conditions at the sampled location. This is especially true if there is an increase in Firmicutes at the same time. Large increases in either metal and sulfate reducers, particularly if accompanied by a decrease in Firmicutes, may suggest that conditions are becoming increasingly reduced. In this situation the metal and sulfate reducers may be out-competing dechlorinators for available H₂, thereby limiting the potential for reductive dechlorination at that location. Sample MW-3 from Figure 2 depicts a shift in community structure where the proportion of metal reducing bacteria has increased over time.

• Increased Eukaryotes

Eukaryotes include organisms such as fungi, protozoa, and diatoms. At a contaminated location, an increase in eukaryotes, particularly if seen with a decrease in the contaminant utilizing bacteria, suggests that eukaryotic scavengers are preying upon what had been an abundance of bacteria which were consuming the contaminant. Sample MW-4 from Figure 2 depicts a shift in community structure where the proportion of eukaryotes has increased over time.

Physiological status of Proteobacteria

The membrane of a microbe adapts to the changing conditions of its environment, and these changes are reflected in the PLFA. Toxic compounds or environmental conditions may disrupt the membrane and some bacteria respond by making *trans* fatty acids instead of the usual *cis* fatty acids (7) in order to strengthen the cell membrane, making it less permeable. Many Proteobacteria respond to lack of available substrate or to highly toxic conditions by making cyclopropyl (7) or mid-chain branched fatty acids (20) which point to less energy expenditure and a slowed growth rate. The physiological status ratios for Decreased Permeability (trans/cis ratio) and for Slowed Growth (cy/cis ratio) are based on dividing the amount of the fatty acid induced by environmental conditions by the amount of its biosynthetic precursor.

What does slowed growth or decreased permeability mean?

Ratios for slowed growth and for decreased permeability of the cell membrane provide information on the "health" of the Gram negative community, that is, how this population is responding to the conditions present in the environment. It should be noted that one must be cautious when interpreting these measures from only one sampling event. The most effective way to use the physiological status indicators is in long term monitoring and comparing how these ratios increase/decrease over time.

A marked increase in either of these ratios suggests a change in environment which is less favorable to the Gram negative Proteobacteria population. The ratio for slowed growth is a relative measure, and does not directly correspond to log or stationary phases of growth, but is useful as a comparison of growth rates among sampling locations and also over time. An increase in this ratio (i.e. slower growth rate) suggests a change in conditions which is not as supportive of rapid, "healthy" growth of the Gram negative population, often due to reduced available substrate (food). A larger ratio for decreased permeability suggests that the environment has become more toxic to the Gram negative population, requiring energy expenditure to produce *trans* fatty acids in order to make the membrane more rigid.

References

- 1. Amann, R. I., W. Ludwig, and K.-H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59:143-169.
- 2. Cottrell, MT and David L. Kirchman. Appl Environ Microbiol. 2000 April; 66 (4): 16921697.
- Gillis, M., V. Tran Van, R. Bardin, M. Goor, P. Hebbar, A. Willems, P. Segers, K. Kerstens, T. Heulin, and M. P. Fernadez. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an amended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol. 45:274-289.
- Dowling, N. J. E., F. Widdel, and D. C. White. 1986. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide forming bacteria. Journal of General Microbiology 132:1815-1825.
- Edlund, A., P. D. Nichols, R. Roffey, and D. C. White. 1985. Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. Journal of Lipid Research 26:982-988.
- Guckert, J. B., C. P. Antworth, P. D. Nichols, and D. C. White. 1985. Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Ecol. 31:147-158.
- 7. Guckert, J. B., M. A. Hood, and D. C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 52:794–801.
- Hedrick, D.B., A Peacock, J.R. Stephen, S.J. Macnaughton, Julia Brüggemann, and David C. White. 2000. Measuring soil microbial community diversity using polar lipid fatty acid and denatured gradient gel electrophoresis data. J. Microbiol. Methods, 41, 235-248.
- ITRC Internet Training on Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices, Apr 00.
- Löffler, F. E., Q. Sun, et al. (2000). "16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species." Appl Environ Microbiol 66(4): 1369-1374.
- 11. Maymo-Gatell X, Chien Y, Gossett JM, Zinder SH. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276(5318):1568-71.
- 12. Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59:695-700.
- 13. Ribosomal Database Project (http://rdp.cme.msu.edu. National Center for Biotechnology Information. (http://www.ncbi.nlm.nih.gov/)
- 14. Overman, J., "Family Chlorobiaceae," in M. Dworkin et al., eds., The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edition, release 3.7, November 2, 2001, Springer-Verlag, New York, www.prokaryotes.com.
- 15. Ringelberg, D. B., G. T. Townsend, K. A. DeWeerd, J. M. Sulita, and D. C. White. 1994. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrices by its signature lipopolysaccharide branch-long-chain hydroxy fatty acids. FEMS Microbiol. Ecol. 14:9-18.
- Schlötelburg, C. 2001. Mikrobielle Diversität und Dynamik einer 1,2-Dichlorpropan dechlorierenden Mischkultur (Microbial Diversity and Dynamics in a 1,2-Dichloropropane Dechlorinating Mixed Culture). Dissertation, Humbolt University, Berlin, Germany. In German: http://edoc.huberlin.de/dissertationen/schloetelburg-cord-2001-12-07/PDF/Schloetelburg.pdf
- 17. Sharp, R., D. Cossar, and R. Williams. 1995. Physiology and metabolism of Thermus. Biotechnol. Handb. 9:67-91.
- Stephen, J. R., Y.-J. Chang, Y. D. Gan, A. Peacock, S. Pfiffner, M. Barcelona, D. C. White, and S. J. Macnaughton. 1999. Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based approach. Environmental Microbiology 1:231-241.
- Tighe, S.W., de Lajudie, P., Dipietro, K., Lindström, K., Nick, G. & Jarvis, B.D.W. (2000). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50, 787-801.
- 20. Tsitko, I.V. Gennadi M. Zaitsev, Anatoli G. Lobanok, and Mirja S. Salkinoja-Salonen. 1999. Applied and Environmental Microbiology 65(2) 853-855.
- 21. White, D. C., W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie. 1979. Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51-62.
- White, D. C., H. C. Pinkart, and D. B. Ringelberg. 1997. Biomass measurements: Biochemical approaches, p. 91-101. In C. J. Hurst, G. R. Knudsen, M. J. McInerney, L. D. Stetzenbach, and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington.
- 23. White, D. C., and D. B. Ringelberg. 1995. Utility of signature lipid biomarker analysis in determining in situ viable biomass, community structure, and nutritional / physiological status of the deep subsurface microbiota. In P. S. Amy and D. L. Halderman (ed.), The microbiology of the terrestrial subsurface. CRC Press, Boca Raton.
- 24. White, D. C., J. O. Stair, and D. B. Ringelberg. 1996. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis. Journal of Industrial Microbiology 17:185-196.
- 25. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996 Jun;60(2):407-38.